
RL-TR-94-65
Final Technical Report
May 1994 AD-A281 251

ADAPTIVE FAULT TOLERANCE

GE Aerospace Advanced Technology Laboratories

DTICSELECTE 1
Sponsored by m• JUL 06 1"41
Ballistic Missile Defense Organization D

APPROVED FOR PULIC RELEAS4,; 0ISTRIU7 N UNLIMITED.

The views and conclusions contained in this document are those of the authors and should
not be Inuerpreted as necessarily representing the official policies, either expressed or
implied, of the Ballistic Missile Defense Organization or the U.S. Government.

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

94l 205004l6' lyyllQUlli? !N5 128
11111119 7i ii~11111 lI DI 5 128

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-94-65 has been reviewed and is approved for publication.

APPROVED: 41,

7THOMAS F. LAWRENCE
Project Engineer

FOR THE COMMANDER

JOHN A. GRANIUI•'
Chief Scientist for C3

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3AB) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

ADAPTIVE FAULT TOLERANCE

L. T. Armstrong

Contractor: GE Aerospace Advanced Technology Laboratories
Contract Number: F30602-89-C-0182
Effective Date of Contract: 28 August 1989 Accesion For
Contract Expiration Date: 1 December 1991 N

Short Title of Work: Adaptive Fault Tolerance NTIS CRA &DTIC TAB •

Period of Work Covered: Sep 89 - Nov 91 Unannounced
Justification

Principal Investigator: Len Armstrong
Phone: (609) 866-6253 By

Dist, ibutiorri

RL Project Engineer: Thomas F. Lawrence
Phone: (315) 330-2805 Availability Codes

Dist Avail and I or
Special

Approved for public release; distribution unlimited.

This research was supported by the Ballistic Missile
Defense Organization of the Department of Defense and
was monitored by Thomas F. Lawrence, RL (C3AB), 525

Brooks Rd, Griffiss AFB NY 13441-4505 under Contract
F30602-89-C-0182.

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188
PLic rem.a bud tor oft --- ofki l u: Yri I om ne t •up pm prp rec rn g to U. for vpnwg ire - -mrw amv• On e SOd N
g-at ow i Ze• trnw"o dim rui du, w0 ' M - 'ge llecon d irfam'rvmu Send ciT€merts.npt flu bdwn gg1wa• a w, du w d t!
coubandiftw vW ckh a himmfo ueindWg 0r0 budmn to W@*Vwt HOCMAMN SOmn, OWheags hCPi ra-, 01000 Opm'atw "Repons. 1215 Jofs,
Drws lHiw S4A@ 1204. A*rqm VA 22•232= w ib ot 'Of Od: • Mwgmw wl Budge. Pawak R.i M Pf (07.oM M. W@@ DC 2

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE j3 REPORT TYPE AND DATES COVERED
May 1994 Final Sep 89 - Nov 91

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
ADAPTIVE FAULT TOLERANCE C - F30602-89-C-0182

PE - 63223C
PR - 2304

6. AUTHOR(S) TA - 30

TA - 02

L. T. Armstrong WU - 02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES) & PERFORMING ORGANIZATION

GE Aerospace Advanced Technology Laboratories REPORT NUMBER

Bldg 145
Moorestown Corporate Center
Moorestown NJ 08057

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRE$S(ES) 10. SPONSORING/MONITORING

Ballistic Missile Defense Rome Laboratory (C3AB) AGENCY REPORTNUMBER

Organization 525 Brooks Rd
7100 Defense Pentagon Griffiss AFB NY 13441-4505 RL-TR-94-65
Wash DC 20301-7100

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Thomas F. Lawrence/C3AB/(315) 330-2805

12a. DISTRIBUTION/AVAJLABIJTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT("n- 2'
The objective of the Adaptive Fault Tolerance program is to provide large complex

distributed military systems with greater degrees of survivability, and graceful

degradation than is currently available. Most research on these systems to date has
focused on the management of static threat and environmental conditions. However,

many military Battle Management/Command, Control, Communication, and Intelligence
systems exist not in a static but in a highly dynamic environment. The dynamics

occur along several dimensions such as alternate modes of operation, changing threat

type or threat rate, loss of system resources such as communication links or processing
assets, and changing network topology and asset configuration. Using static fault-

tolerance approaches in these systems is inappropriate because system requirements

may change as a result of changes along one or more dimensions in the dynamic operating
environment. Furthermore, designing a system for worst-case situations in every

dimension of conceivable threat is cost prohibitive. An adaptive approach to fault

management enables the system to dynamically tailor its fault tolerance/survivability
mechanisms to best deal with a changing environment and to apply limited system

assets appropriately.
This effort was not completed due to lack of funds. This interim report represents
the only output from the effort and will be published as a final renort.

14. SUBJECT TERMS IINUMBER OF PAGS
Distributed Systems, Fault Tolerance, Adaptivity, Resource 56

Management, Command and Control Systems PRICECOoE

17. SECURITY CLASSFICATION 18& SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION 20. UMITATION OF ABSTRAC¢
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-1 -29155M Stu -- o Fao' 2Y 7 a ,

P ,cdby ANSi. t dZ'178
2W-10

1. Introduction and Overview

This report documents the work performed on the Adaptive Fault Tolerance
(AFT) contract (contract number F30602-89-C-0182), sponsored by the U.S. Air
Force's Rome Laboratory, Command and Control Directorate, Computer
Systems Technology Branch (C3AB). Thomas F. Lawrence was AFT's
Contracting Officer, Technical Representative. The work documented in this
report was performed during the 27 month period from September, 1989 until
November, 1991.

The objective of the AFT program is to provide large complex distributed military
systems with greater degrees of survivability, availability, and graceful
degradation than is currently available.

Many systems currently address requirements for high availability and reliability
through the use of various fault-tolerant strategies to detect and recover from
potential problem areas. Most research on these systems to date has focused
on the management of static threat and environmental conditions. However,
many military Battle Management/Command, Control, Communication, and
intelligence (BM/C31) systems, such as the Strategic Defense Initiative (SDI)
Strategic Defense System (SDS), exist not in a static but in a highly dynamic
environment. The dynamics occur along several dimensions such as alternate
modes of operation, changing threat type or threat rate, loss of system
resources such as communication links or processing assets, and changing
network topology and asset configuration. Because the continued effectiveness
of these systems is essential to our national security, fault tolerance,
survivability, and continued operation are critical attributes that must be
provided.

Using static fault-tolerance approaches in these systems is inappropriate
because system requirements may change as a result of changes along one or
more dimensions in the dynamic operating environment. Furthermore,
designing a system for worst-case situations in every dimension of conceivable
threat is cost prohibitive. An adaptive approach to fault management enables
the system to dynamically tailor its fault tolerance/survivability mechanisms to
best deal with a changing environment and to apply limited system assets
appropriately.

This report is divided into three major sections. The remainder of Section 1,
Overview and Introduction, provides background and logistics of the AFT
program. Specifically, program organization, team members, and milestones
achieved are discussed.

Section 2, Research, details a multitude of topics related directly to the
theoretical basis and vision of AFT. Included are subsections on definition and
focus of the AFT concept; AFT system architecture description; the Adaptive
Behavior Manager, a method for insertion of AFT into a large system; a
taxonomy of faults in large complex distributed systems; traditional or static fault
tolerance techniques which serve as a basis for potential adaptation;

Adaptive Fault Tolerance 1

adaptations which can be made within an AFT system; and a notional example
which demonstrates a practical application of the presented theory.

Finally, Section 3, Demonstration, discusses the AFT simulation system which
was developed as a concept proof of many of the theoretical issues presented
in Section 2.

Adaptive Fault Tolerance 2

1.1. Program Organization

To achieve the AFT program goal of providing greater degrees of availability,
survivability, and graceful degradation to large complex military systems, the
program was organized into two phases: research and concept demonstration.

The cumulative result of the research phase is the specification of a formal
structure for AFT concepts which serves as a cornerstone for further AFT
technology development and insertion and as a common framework for
interested researchers and developers.

The research phase consisted of a wide variety of individual tasks which
collectively form the resultant formal structure. These tasks include concept
definition, system architecture specification, adaptive behavior management,
fault taxonomy development, fault tolerance technique classification,
investigation of potential adaptations, and the development of notional
examples which serve to continually shape the AFT framework and associated
requirements.

In the concept demonstration phase many of the abstract concepts developed in
the research phase were applied to a simulated BM/C31 application modelled
loosely on the Monitor Function of the Strategic Defense Initiative (SDI)
Command Center Element. The resulting demonstration system allows
researchers to interactively inject faults into the simulation system, and observe
the effect on the system's fault tolerance strategies.

Adaptive Fault Tolerance 3

1.2. Team Members and Technology Thrusts

The AFT program is sponsored by the U.S. Air Force's Rome Laboratory. The
technical efforts of the GE AFT team are directed in Rome Laboratory by
Thomas F. Lawrence.

The structure of AFT is founded in variety of technologies. Hence, building the
proper team was essential for the AFT program to be successful. Each member
of the AFT team brings a unique set of technical skills and practical problem
knowledge to the development of this new technology.

The AFT team consists of three organizations from GE (the Advanced
Technology Laboratories, the Strategic Systems Department, and the
Corporate Research and Development Center), the Concurrent Computer
Corporation, and Dr. Kane H. Kim from the University of California at Irvine.GE's
Advanced Technology Laboratories (ATL) served as prime contractor and
program lead. Figure 1-1 shows an organization chart of AFT team members
and the technology/development areas under their responsibility.

AFT Program Management

. AFT Program Lead
• AFT Program Integrators
* AFT Concept Development
- AFT Demonstration Development

GESý ECDConcurrent K~ane Kim
GE D E RDComputw Corp. Ucl

"• BM/C31 applications •Adaptation PeDistributed, q Fault tolerance
"• SDI requirements techniques real-time systems techniques

Distributed decision
making •ý (),

Figure 1-1
AFT Program Organization

The primary technologies which serve as the foundation for AFT are: distributed
real-time computer systems, traditional fault tolerance and fault management
techniques, distributed decision making, and an understanding of BM/C31
applications and the SDI system in particular.

Adaptive Fault Tolerance 4

The AFT program is centered in the Digital Processing Laboratory of GE ATL.
Along with serving as the prime contractor, ATL's technical responsibilities
within the program include program integration, AFT concept development, and
concept demonstration implementation.

Expert knowledge of the current state-of-the-art in fault tolerance and fault
management is a critical component in the development of AFT. The GE team
was complemented in this area with the talents of Dr. Kane H. Kim of the
University of California at Irvine. Dr. Kim is a respected and highly published
researcher in the field of fault tolerance, especially as applied to large
distributed military systems.

As lead contractors of the SDI Integration Effort, GE's Strategic Systems
Department (SSD) provides unique expertise in the design, and requirements
of large military BMIC31 applications, including the SDI system.

GE's Corporate Research and Development Center (CRD) is responsible for
adaptation strategies that are needed to properly implement AFT. CRD's
experience in the fields of distributed decision making, rule-based scheduling,
and case-based planning provided the proper core for adaptive behavior
management technology growth.

Finally, Concurrent Computer Corporation rounds out the GE team with
expertise in the areas of real-time distributed systems and state-of-the-art real-
time scheduling techniques.

Adaptive Fault Tolerance 5

1.3. Milestones

Including program award, the GE team reached four significant milestone since
program commencement.

First, in September, 1989, the AFT program was awarded from Rome
Laboratory to the GE team.

Second, in September, 1990, the paper "Adaptive Fault Tolerance: Issues and
Approaches" was published in the Proceedings of the Second IEEE Computer
Society's Workshop on Future Trends of Distributed Computing. Tom Lawrence
and Kane Kim authored this paper.

Third, in September, 1991, a completed version of the AFT interim
demonstration was shown to the NATO Study Group on Distributed Systems
during a Study Group Meeting at Rome Laboratory.

Fourth, also in September, 1991, the paper "Adaptive Fault Tolerance" was
published in the Proceedings of the 1991 System's Design Synthesis
Technology Workshop, sponsored by the Naval Surface Warfare Center, and
the Office of Naval Technology. Leonard T. Armstrong and Thomas F.
Lawrence were the authors.

Adaptive Fault Tolerance 6

2. Research

The goal of AFT program research phase was to establish a formal structure of
abstract or theoretical AFT concepts to act as a cornerstone for further AFT
technology development and insertion and serve as a common framework for
researchers and developers of future AFT systems.

To achieve this goal the research phase was divided into 7 individual tasks:
concept definition, system architecture specification, adaptive behavior
management, fault taxonomy development, fault tolerance technique
classification, investigation of potential adaptations, and the development of
notional examples.

Although the tasks were separate, each tasks had some interrelationship with
other tasks. These tasks are described in greater detail in sections 2.1 through
2.7, respectively.

Adaptive Fault Tolerance 7

2.1. AFT Concept

The driving focus behind the development of AFT was to provide higher
degrees of availability, survivability, and graceful degradation than is currently
available in nonadaptive systems. This concept applies to large, complex
military systems that operate in a highly dynamic environment where mission,
mode of operation (e.g., peace time, alert, and battle), and threats to the system
change.

One of the consequences of experiencing faults is a loss of resources. Because
there is a finite amount of resources in the system, the resource manager must
decide to what purpose the limited resources will be put. As faults lower
available system resources, re-optimization of resource usage becomes
necessary. Similarly, for systems that operate in highly dynamic environments,
the requirements placed on these resources may change frequently. For
example, increasing the system's processing load or changing the system's
objective function based on current mission or mode of operation will precipitate
similar re-optimization.

More specifically, Adaptive Fault Tolerance is defined as the ability to change
the system's fault-management mechanisms or modify their parameters in run
time to accommodate changes in the system's resource management objective
function, and fault profile, with respect to available resources.

The system's fault profile refers to all aggregates associated with faults that a
system can experience during operation. Primary focal points include fault type,
fault rate, and probability of fault occurrence.

The system's resource management objective function consists of a set of the
system's highest level requirements domains: performance, functionality, and
consistency.

Performance refers to the time characteristics (e.g., response/delay, throughput,
hard deadline) specified for a task or set of tasks within a system. Explicit run-
time resource management to meet these performance specifications makes
the system a real-time system.

Functionality refers to the different types of activities the system can perform
(e.g., tracking, correlation, diagnostics, housekeeping). It also refers to the
importance of a given task within each of these activities. The greater the
number of simultaneous activities and tasks, the more complex the function.

Consistency refers to the specification of an acceptable/unacceptable
(anomalous) system state that is used by the fault-management mechanisms in
the system. Consistency is composed of several subcategories including
mutual/non-mutual and internal/external.

Mutual consistency exists when several distributed entities must maintain some
relationship, as in the case of replicated distributed data in which updates need

Adaptive Fault Tolerance 8

to be synchronized to maintain mutual consistency among the several
replicated copies. Non-mutual consistency exists when only one copy of a
resource exists and consistency criterion is established for its internal state
(e.g., concurrency control for multiple users of shared data).

For both mutual and non-mutual consistency, internal and external consistency
are defined. Internal consistency refers to a static consistency criterion
specification, where a minimum amount of application semantics are required
for the fault management to function (e.g., backward error recovery or read/write
serializability for concurrency control). External consistency refers to a situation
where the consistency specification can change to provide adaptivity. In this
case, the semantics of the application become critical (e.g., forward error
recovery or decreasing the precision of the processing to produce an
approximate solution in less time). Additional fault-management mechanisms
above and beyond those needed to support internal consistency are necessary
if external consistency is specified.

Therefore, given a finite set of resources and the objective function consisting of
functionality, performance and consistency, the resource manager in the system
must attempt to optimize the benefit provided by the system. In a highly
dynamic system, the objective function, the load, and the available resources
can change.

Because trade-offs are made among performance, consistency, and
functionality, one of these requirements cannot, in general, be increased or
decreased without affecting the others. Changes along one of the dynamic
dimensions of the system's operating environment affect the system's
performance, functionality, and consistency requirements, which in turn affect
adaptations of the system's fault-tolerance/survivability mechanisms, over which
there is some parameterized control.

Adaptive Fault Tolerance 9

2.2. System Architecture

Traditional fault-tolerance schemes maintain internal consistency through static
fault-tolerance techniques in a fairly straightforward fashion; faults
(inconsistencies in the system state) are detected and then fault recovery
mechanisms are used to bring the system back into a consistent state.

Adaptive Fault Tolerance builds upon this strategy. First, both the internal and
external components of the system state are evaluated. An inconsistent system
state is then defined to be an undesirable match between the external and
internal states of a system. The external state places dynamic requirements on
the internal state of the system. Changes in the external state of a system may
force inconsistencies in the internal state. In other words, changes in the
system's operating environment force adjustment of system requirements that
are no longer efficiently met by the system's current internal state. Alternatively,
changes in the internal state, e.g., uncontrollable loss of resources, may also
cause inconsistencies between the internal and external states.

Once the inconsistencies have been detected, the system requirements must be
evaluated in the context of the changes in the operating environment.
Continuous requirements evaluation is most clearly understood in terms of
performance, functionality, and consistency.

If the requirements have changed, then it must be decided if the system's
internal state still efficiently meets the new requirements. If the current internal
state does not efficiently meet the new requirements set, then a new internal
state must be determined to better match the given external state. Ideally, the
new desired internal state, when matched with the given external state, will
cause the system to align more effectively with the new requirement set forth as
a result of the state change.

If it is determined that a new internal state is required, a method to achieve the
new state must be formulated. The formulated method provides specific actions
to be taken to alter the system's current internal state into the more desirable
internal state.

Once a method to achieve the new internal state is formulated, adjustments are
made to the system to bring its current internal state to the recently determined
desired internal state. Adjustments to the internal state to avoid anticipated
threats to system survivability may take on various forms. A few examples are
dynamic task (re)allocation; load shedding; a priori scheduling to avoid conflicts
that could produce an anomalous state; replicated processing (masking);
changes in computational precision; approximation techniques for processing,
data, or communications; and increasing/decreasing fault-tolerance overhead.

As the system's resource management objective profile or fault profile changes,
an adaptive system maintains continuity of operation by selecting a new set of
the above mechanisms to handle the new fault/requirement situation.

Adaptive Fault Tolerance 10

2.3. Adaptive Behavior Management

Adaptive fault tolerance is achieved in a system through the use of Adaptive
Behavior Managers (AB Managers). The specific purpose of the AB Manager is
to closely model the behavior characteristics described in the previous section
in order to implement AFT technology within a real system. An AB Manager is
responsible for controlling all aspects of AFT behavior in some component of a
large distributed system. The AB Manager considers the system component
over which it has AFT-control as its domain of responsibility or internal state. An
AB Mrnager interacts with other AB Managers in the system to achieve
cooperative control of survivability adaptations.

AB Managers may have different granularities of responsibility, thus mapping
effectively onto different abstract levels of a large distributed system. For
example, there may be one large-grained AB Manager that is responsible for
adaptation control of an entire system. The same system may also have a
number of finer grained AB Managers that are responsible for adaptation
control of particular subsystems. The decision-making strategy, types of
decisions made, and actions taken within each of the different grained AB
Managers are also tailored toward the abstract system view contained within
each AB Manager.

Primary responsibilities of the AB Manager at any level of abstraction are state
assessment, requirements analysis, desired state generation, and policy
generation. The AB Managers are supported by knowledge bases of system-
constraint information.

First, an AB Manager must assess the state of the world as it understands it.
This involves both internal and external state assessment. State assessment
can be achieved through traditional methods, such as database query, system
observation functions, user-input, through more sophisticated methods such as
knowledge-based situation assessment and automated reasoning, or by
communication with other AB Managers. Coarser grained AB Managers can
provide external state information to finer-grained AB Managers because the
domain of influence of a coarser grained AB Manager would be larger (and
more abstract) than the domain of influence of a finer grained AB Manager.
Conversely, a finer grained AB Manager can provide internal state information
to a coarser grained AB Manager that has a scope that encompasses (as a
minimum) the finer grained AB Manager. This capability is provided as it is
assumed that coarser grained abstraction levels have a loose hierarchical
domain over finer grained abstractions.

External state assessment and the ability to communicate with the external
world are at the very heart of AFT because AFT is linked to a system's need to
maintain external consistency. External state assessment provides the ability to
determine the requirements of external consistency and to alter fault-tolerance
mechanisms accordingly.

Adaptive Fault Tolerance 11

After state assessment, the AB Manager must perform a revised requirements
analysis. Because requirements are linked closely to the application, much of
the requirements analysis must come from application-supplied sources.

If, after requirements analysis, it is determined that the system requirements
have changed, the AB Manager must decide whether the current internal state
can efficiently meet the updated system requirements. If the current internal
state is insufficient, then a new internal state must be determined as it applies to
the domain of responsibility over which the AB Manager has control.

Once an AB Manager decides that the internal state should be adjusted, a more
specific formulation of hcw that adjustment should be achieved is needed. The
forms that internal state adjustments may take vary greatly depending upon the
abstraction level of an AB Manager.

The level of internal state abstraction used within an AB Manager is
proportional to its granularity. Coarse grained AB Managers may implement
internal state changes as commands to finer grained AB Managers, global
resource reallocation, or dynamic task migration. Finer-grained AB Managers
may implement internal state changes as extreme as task termination, local
network reconfiguration, application algorithm alteration, fault tolerance
technique internal parameter adjustment, dynamic reconfiguration of fault
tolerance techniques, or computational precision adjusn "',nts.

Adaptive Fault Tolerance 12

2.4. Taxonomy of Faults

To properly evaluate the effects of changes in a system's fault profile as related
to successfully meeting system requirements, one first needs to clearly
understand the types of faults that can occur in large distributed systems. To
accomplish this in the AFT program, a taxonomy of large distributed system
faults was developed. This taxonomy serves as the basis for categorization of
fault management techniques (cf. Section 2.5).

At the top level of the taxonomy faults are described according to their attributes
in three separate classes: Environment Features, Fault Features, and Auxiliary
Features.

Environment Features are those attributes of a fault that are dir related to
the design and operation of a particular system. The Environment Features
class has two subclasses: System Features, and Deadline Features. The
System Features subclass is used to specify the locality of a fault's influence.
Values which can be specified in the System Features subclass follow the
traditional three-tiered computer network model: single computing station, local
area network, and wide area network.

The Deadline Features subclass is used to specify the real-time implications of
experiencing a fault. Values which can be specified in the Deadline Features
subclass are: soft deadline, andhard deadline.

Fault Features are those attributes of a fault that are directly related to the error
that is propagated, regardless of the system environment or application. The
Fault Features class has three subclasses: Output Behavior Features,
Multiplicity Features, and Component Features.

The Output Behavior Features subclass is used to specify a fault according to its
visible propagated effect. Values which can be specified in the Output Behavior
Features subclass are: crash fault, omission fault, and erroneous fault. A crash
fault is experienced when a module has a complete, unrecoverable crash
failure. An omission fault is experienced when an event does not occur within a
proper time frame. Examples of omission faults are: data being unavailable
when needed; a node being unable to communicate with another node on a
network within a reasonable period of time; and a processor not finishing a real-
time computation within a hard deadline. An erroneous fault is experienced
when an event occurs incorrectly. Examples of erroneous faults are: data being
decidably incorrect through use of an acceptance test; and incorrect
computation being performed as a result of operator input error.

The Multiplicity Features subclass is used to specify the magnitude of
occurrence of a fault within a system. Values which can be specified in the
Multiplicity Features subclass are: single, multiple staggered, and temporary
blackout. A single magnitude of occurrence implies that the effect of a fault is
localized to one component of the system with little or no probability of effect in
other components. (The granularity of the affected component is specified in

Adaptive Fault Tolerance 13

the System Features subclass). A multiple staggered magnitude of occurrence
implies that an experienced fault has affected more than one component of the
system. Temporary blackout is a special case of magnitude of fault occurrence
that can arguably be placed under other subclasses instead. Temporary
blackout implies that a fault has briefly taken down an entire component of the
system, but that the component was able to return to operation within a short
time period. After a temporary blackout the affected component may return to
the system in a "hot," "warm," or "cold" state.

The Component Features subclass is used to specify the hardware and/or
software entity that was affected by a particular fault. This subclass attempts to
generalize computer system components to a small limited set for ease of use
and understanding, yet still be specific enough so that fault tolerance
techniques can be adequately classified. Values which can be specified in the
Component Features subclass are: hardware processor node, hardware
storage node, software node, broadcast channel communication link, and point-
to-point channel communication link.

The third and final top level class of fault attributes is Auxiliary Features.
Auxiliary Features are those attributes of a fault that are not properly classified
within the Environment Features of Fault Features classes. The Auxiliary
Features class has two subclasses: Occurrence Rate Features, and
Predictability Features. The Occurrence Rate Features subclass is used to
specify the frequency of experiencing a particular fault. Values which can be
specified in the Occurrence Rate Features subclass are: high rate, and low rate.

The Predictability Features subclass is used to specify if a particular fault had
been expected to occur. This subclass is useful in potentially hostile military
environments where external situation (e.g., battle mode) may dictate that a
system's physical components could be in danger of attack. Values which can
be specified in the Predictability Features subclass are: with warning, and
without warning.

Having first defined the seven subclasses of attributes which are used to
describe faults, a fault can then be defined as a 7-tuple:

F=(S,D,B,M,C,R,P)

where S is the fault's System Features attribute, D is the Deadline Features
attribute, B is the Output Behavior Features attribute, M is the Multiplicity
Features attribute, C is the Component Features attribute, R is the Occurrence
Rate Feature attribute, and P is the Predictability Features attribute.

Adaptive Fault Tolerance 14

For example, a typical fault could be described as:

F= (S => Computing Station
D => Soft Deadline
B => Erroneous Fault
M => Single
C => Software Node
R => Low Rate
P => Without Warning

This fault might specify an error which is experienced by an engineer running a
piece of scientific software on his personal workstation. The error might have
been propagated due to a design flaw in a piece of software which does not
handle one special (and rare) input case properly.

Adaptive Fault Tolerance 15

2.5. Fault Tolerance Techniques

Having developed a suitable taxonomy of distributed system faults, the next
step was to classify fault tolerance techniques according to the fault types which
they address.

To date, an initial classification has been done for six distinct fault tolerance
techniques: Periodic Diagnosis with Monitor Nodes, Recovery Blocks,
Distributed Recovery Blocks, N-Modular Redundancy, Abort-Propagating
Transactions, and Compensating Transactions. These techniques are well
documented in the literature.

Periodic Diagnosis with Monitor Nodes (PD/MN) is primarily a fault detection
technique, where a small set of nodes (potentially one) monitor the system by
performing periodic diagnosis on the other nodes. The purpose is to shorten
fault latency (the period during which faults are present).

Recovery Blocks (RB) is a scheme for structuring and prioritizing multiple
algorithms aiming for the same or similar computations ("try-blocks") together
with a reasonableness check ("acceptance test") and a rollback and retry
operation. RB facilitates backward recovery, software fault tolerance, and the
structuring of resilient atomic actions.

Distributed Recovery Blocks (DRB) is a distributed version of the RB technique.
In DRB, each try-block is executed on a separate processor. After execution of
the applicable try-block, each processor executes the acceptance test for
determination of success or failure. Watchdog timers are also used to avoid
hard real-time failures, by timing-out (i.e., failing) try-blocks which are not
completed within a specified time limit. DRB enables efficient real-time forward
recovery from hardware malfunction or software defects.

The N-Modular Redundancy (N-MOD) scheme uses three or more distributed
copies of a computation (analogous to an RB/DRB try-block) and a majority
voting mechanism to a determine correct result. This scheme facilitates forward
recovery, and thus, has predictable real-time advantages similar to DRB.

Both Abort-Propagating Transactions (APTRANS) and Compensating
Transactions (CTRANS) are variations of transaction processing. Transaction
processing is used to implement a series of actions as an atomic element where
either all the effects of a transaction are permanent or none of the effects remain
past the life of the transaction. APTRANS and CTRANS are transaction
schemes intended specifically for lengthy transactions when data locking is not
always convenient for extended periods of time. In these two techniques, a
primary transaction allows other transactions to read data which has already
been modified during the execution of the primary transaction, and before the
primary transaction has fully committed.

In the APTRANS scheme, if the primary transaction is aborted, aborting actions
must be taken on all other transactions which have read any altered data before

Adaptive Fault Tolerance 16

the decision to abort occurred. Hence, an abort in one transaction could have a
propagating effect, causing aborts in other transactions as well.

In the CTRANS scheme, if the primary transaction is aborted, application-
dependent compensating actions are used to bring the non-primary
transactions back into a correct (or at least acceptable) state. Although forward
recovery is achieved through the use of compensating actions for the non-
primary transactions, the application domains for which compensation actions
exist is somewhat limited.

Using these six techniques and the taxonomy of faults as initial building blocks,
a table was developed to classify the techniques according to the fault types to
which they apply. The goal was to create a table that was easily manageable
and visually understandable. Two problems prevented this: the overall large
number of elements in the table (dictated by the total number of fault types), and
the large number of table dimensions (dictated by the number of subclasses in
the fault taxonomy).

Given that there are 3 choices of System Features, 2 choices of Deadline
Features, 3 choices of Output Behavior Features, 3 choices of Multiplicity
Features, 5 choices of Component Features, 2 choices of Occurrence Rate
Features, and 2 choices of Predictability Features, the total number of possible
fault types is:

3x2x3x3x5x2x2 = 1080.

This number was considered high for initial manageability. Therefore, the
Auxiliary Features class (subclasses: Occurrence Rate Features and
Predictability Features) was eliminated from the initial table. After elimination,
the total number of possible fault types that the table addresses is:

3x2x3x3x5 = 270.

Since faults in the taxonomy are categorized by a seven-way cross product (i.e.,
a 7-tuple) of finite information, the ideal table for classification of fault tolerance
techniques is seven dimensional - one dimension for each field of the 7-tuple.
However, a seven dimension table is difficult to visualize for textual information
retrieval. The decision to eliminate the Auxiliary Features class reduced the
number of fields in the relevant fault categorization to 5. This made the problem
less severe, but the resulting table would still be unreadable at 5 dimensions.

This problem was overcome by observing that the number of possible choices
for many fields in the remaining 5-tuple is low. Therefore, the number of
dimensions in the table could be reduced by combining fields in the 5-tuple. By
combining System Features (3 possible elements) and Deadline Features (2
possible elements) subclasses and the Output Behavior Features (3 possible
elements) and Multiplicity Features (3 possible elements) subclasses, the
resulting table could be reduced to three dimensions of 6, 9, and 5 elements
each.

Adaptive Fault Tolerance 17

To further optimize the readability of this table, it was noted that a finite three
dimensional image could be displayed as a series of two-dimensional images.
Hence, the table was ultimately formulated as six 9x5 two-dimensional tables.

A final table optimization was made after noting that a temporary blackout
effected all system components simultaneously. Therefore, a fault tolerance
technique that is applicable to temporary blackouts should apply equally to all
system components. This allowed the rows of the table that represented a
temporary blackout to span all the Component Features with only one entry.

Appendix 1, shows the resulting Fault Categorization Table which currently
classifies the six fault tolerance techniques described previously according to
their applicable fault types.

Adaptive Fault Tolerance 18

2.6. Potential for Adaptations

Initially, it may seem that the potential for adaptation comes solely from the Fault
Categorization Table. However, this table provides only a small amount of the
total information that is required. Additional information is needed for AFT to be
effectively and efficiently used by modern BMWC 3 1 systems. This is especially
true if adaptations are among distinct fault tolerance techniques.

In general, there are five types of adaptations that can be made in an AFT
system:

Type 1: Transition between fault tolerance techniques.
Type 2: Adjustment to internal parameters of fault tolerance techniques.
Type 3: Transition between application algorithms.
Type 4: Adjustment to internal parameters of application algorithms.
Type 5: Dynamic resource management.

Type 1 adaptations are generally considered the most difficult to implement due
to the direct influence many modern fault tolerance techniques have on the
overall design of a fault tolerant system. An important goal of Type 1
adaptations is the capability to dynamically transition between distinct fault
tolerance techniques with little or no burden placed on the application. The
black box approach was taken to achieve this goal. That is, sets of techniques
which are candidates for Type 1 adaptations were required to have the majority
of their internal hidden from the application, with only a common set of
application interfaces made public.

After some research, three initial candidates for Type 1 adaptations were
identified:

1. Adjustment between Recovery Blocks and Distributed Recovery Blocks.

2. Adjustment between Abort-Propagating Transactions and Compensating
Transactions.

3. Adjustment between Programmer Transparent Coordination with Obedient
Receivers and Programmer Transparent Coordination with Adaptive
Receivers. I

Type 2 adaptations are primarily intended to shift resource consumption used
by fault tolerance techniques. These adaptations stress dynamic control over
internal parameters of fault tolerance techniques, leaving the application in a
static state. Candidate techniques for Type 2 adaptations include:

I Programmer Transparent Coordination with Obedient Receivers and Programmer Transparent
Coordination with Adaptive Receivers are not described here, although these techniques were studied during the AFT
program.

Adaptive Fault Tolerance 19

1. Altering the level of redundancy in N-Modular Redundancy or Distributed

Recovery Blocks.

2. Altering the frequency of Periodic Diagnosis or Checkpointing.

Type 3 adaptations require that the application has some knowledge about the
use of AFT within the system. Type 3 adaptations require a list of alternative
algorithm segments from an application, and some information as to the costs
and benefits of using each algorithm alternative.

An example of a Type 3 adaptation is switching from a Connection Machine
version of a target identification algorithm to an alternate (but slower and less
informative) version which operates on a single CPU Sun-4. This may be
req.1ired if the site which houses the system's Connection Machine has fallen
due to hostile attack.

Type 4 adaptations are similar to Type 2 adaptations in that they are primarily
intended to shift resource consumption in a particular component of a system.
The difference is that in Type 4 adaptations there is dynamic control over the
application, while fault tolerance techniques are left in a static state.

An example of a Type 4 adaptations is computing with imprecise results, as
researched by Jane Liu at the University of Illinois.

In Type 5 adaptations, dynamic system resource management techniques are
used to benefit the system's fault management capabilities. Common Type 5
adaptations include, load balancing to avoid real-time omission errors, dynamic
processes shedding and reallocation (i.e., fail-over operation) in the event of
component failure.

Adaptive Fault Tolerance 20

2.7. Notional Example

A notional example was developed to better understand the practical
application of many AFT theoretical concepts prior to completion of the
demonstration system. Although modeled after a small portion of a large-scale
military command and control application, the example can be adapted to a
variety of other systems that operate in a highly dynamic environment and
require advanced fault-tolerance concepts.

Section 2.7.1 provides an overview of the architecture of the notional system.
Section 2.7.2 discusses the insertion of static fault-tolerance into the notional
system. Section 2.7.3 details the use of AFT in this system as a logical
progression of the insertion of static fault-tolerance.

2.7.1. AFT Application Architecture

The hardware and software architectures assumed in the notional example are
detailed in Figures 2-1 and 2-2, respectively. The system detailed in these two
figures represents a small portion of a fuller military BMWC 3 1 system. However,
even the small number of hardware and software nodes in this example will
sufficiently show the effect AFT technology can have on these and similar
systems.

"SATI t

Nshtwk(WAN

," (P am

IIL l

3 ss Opwaftwcanw
WADr1

a Fixed Gund.Sued
_______I Command Cunw

PEI (CCE)

CCE WoduM wIM(WS)

(PE)

Figure 2-1
Notional Example Hardware Architecture

Adaptive Fault Tolerance 21

SSpace/Ground-Based •sW=-O" oolm

SP3 Sensor Processing Pfmtsg. and
Oisamtm-o(SP)

Cdh~Aef (GOC)
Ground-Based Data * Gnwund-c.Oi ktemon
Processing and Fusmn (GOI)

PRawsmwg (IDP)

SGanmrUm aand

rDisonrutgjan (WVAG)

Figure 2-2
Notional Example Software Architecture

The hardware details a large, geographically-distributed system where
individual elements communicate via Wide-Area Networks (WANs), Local-Area
Networks (LANs), and multiprocessor interconnection networks. Processing
hardware in this system consists of space-based sensor and processing units
such as satellites (SAT), ground-based sensor and processing units such as
radar (RAD), ground-based mobile processing units such as mobile operations
centers (MOC), and ground-based fixed-processing units such as command
centers (CCE). In finer detail, a processing element may be composed of some
integration of single CPU workstation systems (WS) or multiprocessor
workstations. Figure 2-1 shows one possible system composed of these
elements.

The software for the notional system consists of both sensor processing and
data processing components. Figure 2-2 shows a functional data flow of the
software that will be run on this system. In this software a variety of separate
sources perform sensor data collection and initial processing (SP). A fewer
number of sources then perform data collection of the sensor output (GDC).
Finally, a single source is responsible for ground-data integration and fusion of
all sensor data (GDI). A single source is also responsible for integrated data
post-processing on the fused sensor data (IDP). Finally, a single source is
responsible for report and analysis generation and data dissemination (R/AG).

Figure 2-3 shows a mapping of the notional software architecture onto the
notional hardware. The sensor processing (SPI, SP2, and SP3) routines have
been allocated to the sensor processors in the system (SAT1, SAT2, and RAD1,
respectively). Ground data collection (GDC) is performed by both a mobile
operations center (MOCl) and one workstation processor (WS1) in the

Adaptive Fault Tolerance 22

command center (CCE). The remaining data processing routines (GDI, IDP,
R/AG) have been allocated to workstations within the command center element
(CCE).

configurgau.a
dtaMling um of
R11technmque: PE3
around Got. PEI P12

_ _ 0 0=.,•. •.• _L_.

* . -

SA 2\A

'•' •I e elws

Figure2WS 43
WAN2 WSl Wa 2 M ptaillpng

aroundct :

MOCI

ftI Ws3

Figure 2.3
Notional Example Hardware/Software Mapping

Notice, the allocation of the ground data integration and fusion (GIDI) function
does not exactly resemble the single node structure shown in Figure 2-2. This
is because Figure 2-2 only shows the simple data flow of the software, and does
not allow for any fault tolerance to be expressed. The mapping of GDI onto
WS4 in both alternate configurations will be explained in the next section.

It should be emphasized that the software architecture shown here is not
necessarily the only software running on our notional hardware. The software
shown consists of only those components that make up the logical data flow of
one portion of a larger system. It is assumed that a number of additional
auxiliary processing software elements are also running on the notional
hardware. This issue will be of some importance as we continue to show how
AFT can be used within this system.

2.7.2. Adding Static Fault Tolerance to the Notional Example

Adaptive Fault Tolerance 23

Before we can speak sensibly about the use of AFT in the notional example, we
must first understand how and where the given system could be made fault
tolerant in the traditional sense. For the sake of clarity and convenience, we will
focus on one specific area where the use of AFT technology could benefit this
system.

The focus will be on adding fault tolerance to the GDI function. Being one of the
non-redundant nodes in a critical bottleneck of a C3 1 system, it is reasonable to
expect a function such as GDI to be fault tolerant. In fact, one could easily argue
that all functions in this notional example should have some level of fault
tolerance. We simply focus on one example.

It is assumed that GDI is a fairly complex function that will meaningfully combine
the incoming sensor data by some form of intelligent processing. Quite
frequently multisensor data fusion problems have a number of different
algorithms or software methods that can implement a solution. It should also be
noted that multisensor fusion is not an exact science, and that different
algorithms can be stronger in generating results for different portions of a total
solution space. Some algorithms may even generate obviously incorrect
answers for small portions of a solution space. In designing such a system, the
costs and benefits of different solutions are evaluated and an "overall best"
solution is picked.

Researchers have studied the use of techniques, such as recovery blocks (RB)
and distributed recovery blocks (DRB), to provide fault tolerance against both
common hardware faults as well as software faults as a result of improper
algorithm implementation or algorithms that do not operate properly for an
entire solution space. These techniques use a prioritized ordering of multiple
designs and/or implementations of a solution and an acceptance test of the
computed results.

The RB technique works on a single processor. The various solution algorithms
are executed in priority order until the result of an algorithm passes the
acceptance test. If an acceptance test fails, RB uses a backward error recovery
strategy to run the next algorithm from its initial point. The RB technique is good
at tolerating hardware faults resulting in erroneous or omitted computational
results as well as design and implementation software faults.

Conversely, DRB uses a multiple processor configuration. All solution
algorithms are executed simultaneously, and the results of the highest
prioritized algorithm that passes the acceptance test are used. The DRB
technique tolerates all the faults tolerated by RB in addition to hard crashes of
either a hardware or software component. Also, the run-time of a DRB-based
computation is only as long as the run-time of the longest executing single-
solution implementation, plus some small overhead for acceptance testing and
communication of results. This makes DRB computation desirable when
predictable real-time performance is important.

Adaptive Fault Tolerance 24

Because of the similarity in these fault-tolerance techniques (FTTs), the term
RB-class FTT is used to describe the use of either the RB or DRB technique.
Given the assumptions about the type of processing being performed in GDI,
and that GDI is a critical bottleneck through which all sensor data must pass, an
RB-class FTT is used to provide the necessary fault tolerance in our notional
example.

Figure 3-3 showed the notional hardware/software mapping using either the RB
or DRB technique to implement a fault tolerant version of GDI, assuming that
three different designs/implementations of the GDI solution were available. We
label these three implementations GDI1, GDI2, and GDI3. We also must
assume that an acceptance test has been generated to properly determine if a
solution is valid. We label the data flow node for the acceptance test GDlat. In
the RB implementation, GD1i, GDI2, GDI3, and GIlat were all mapped onto one
of the processors, PE1, available in WS4. This leaves PE2 and PE3 available
for auxiliary or background processing. Alternatively, in the DRB
implementation, GDI1, GDI2 and GDI3 are all mapped onto separate
processors in WS4. Local copies of GDlat are also mapped onto each of the
processors for efficiency. This would necessarily limit the amount of auxiliary.
processing done on PE2 and PE3.

2.7.3. Adding AFT to the Notional Example

The decision on whether to use the RB technique versus the DRB technique as
the fault-tolerance mechanism for GDI provides an excellent example of the
application of AFT. In command and control processing, the mechanisms that
apply to a peacetime mode are not relevant to a battle mode. The change from
a peacetime processing mode to a battle processing mode represents an
external situation change in our dynamic operating environment. The external
situation change from peacetime mode to battle mode subsequently prompts a
change in system priorities.

In peacetime mode, it is important to maintain a high degree of consistency to
verify any potential incoming hostile targets. In such a situation, soft deadlines
are usually in effect because it could be acceptable to wait on or even lose an
occasional data frame when the incoming target probability is extremely low.
The soft deadline requirement then allows us to use processing cycles for
miscellaneous auxiliary processing. The RB processing strategy fits this
scenario perfectly. Only one processor is needed for GDI processing in this
situation, leaving other processors free to handle auxiliary tasks.

If it is believed that the probability of incoming hostile targets is low, then we
emphasize the capability to prevent false alarir .. that could have catastrophic
results if incorrectly detected. This is one argument for the use of auxiliary
processing, where the auxiliary processing could consist of various assurance
checks, and hence, one additional recommendation for the use of an RB-class
computation.

Adaptive Fault Tolerance 25

Conversely, in battle mode, time is at a premium, processing loads are
extremely heavy, and consistency is of less concern than performance and
functionality. During battle mode, the overall assumption is that incoming
hostile targets are of a high probability and that high priority should be given to
counteracting any target as soon as it is discovered.

With the change from peace mode to battle mode, system requirements have
also changed. It is now most important to get maximum performance out of the
system. Auxiliary processing is a lower priority than those functions that are
absolutely essential to achieving system goals, which in this example are
directed at tracking and counteracting an incoming hostile target.

The DRB processing strategy is more applicable to this situation because DRB
provides assurances that the performance of the computations will be known,
even in the occurrence of a fault. Because performance is highest priority in
battle mode, auxiliary computation can be dropped if it will allow essential
functions to be executed at maximum priority.

If AFT was used by such a system, both capabilities would exist. Furthermore,
AFT, and the use of the AB Manager in particular, would allow the decision
strategy and dynamic adjustment mechanisms to be isolated and properly
modularized, maintaining good software design principles.

Adaptive Fault Toleranr, 26

3. Demonstration

In the demonstration phase the abstract and theoretical concepts developed in
the research portions of the AFT effort were applied to a prototype application.
The resulting contract deliverable is referred to as the Interim Demonstration.

Throughout the AFT program, the Strategic Defense System (SDS) was used
as a motivating application which drove the development of AFT requirements.
In particular, the MONITOR function of the SDS Command Center Element
(CCE) was the focal point. The MONITOR function is a central point through
which all incoming raw telemetry data is collected, unified, operated on, and
then disseminated. This makes MONITOR a single point of functional failure in
the SDS system. Fault tolerance is, therefore, critical to MONITOR's operation.

A top level functional breakdown of MONITOR is shown in Figure 3-1. In fact,
the information flow through this system follows a very common signal
processing model of data collection, data processing, and report dissemination.
The evolving SDS design currently identifies separate processors for each of
three top level MONITOR subfunctions.

Figure 3-1
MONITOR Function Top Level Breakdown

The demonstration exhibited the viability of AFT concepts as applied to a
BM/C31 signal processing stream modelled after the control structure of the
SDS CCE MONITOR function. The system uses a simplified one-component
AB Manager with knowledge of one potential adaptation.

Since Type 1 adaptations are generally considered the most difficult, it was
decided that a Type 1 adaptation could best demonstrate the viability of AFT in
a demonstration system which involved only one adaptation. Section 2.7
prcvides rational for the use of RB/DRB adaptations within a system like SDS.
This rational was similarly applied to the PROCESS subfunction, and the Type
1 adaptation between RB and DRB was used in the demonstration.

Having chosen a suitable adaptation for demonstration, attention focused on
the adaptation's causing scenario. That is, what stimulus will be used to effect
demonstration system requirements to cause an adaptation to occur. Two
potential scenarios for adaptation were evaluated.

The first scenario was analogous to the scenario detailed in the notional
example of section 2.7 where adaptations were made in response to

Adaptive Fault Tolerance 27

reprioritized system requirements after incurring changes in the system's
external environment. That is, raising emphasis on performance, and lowering
emphasis on consistency as threat of attack increases.

In the second scenario, adaptations were based on an evaluation of the time
spent in backward error recovery (with RB) as the error rate of the system
increased. As error rate increases so does the time spent in error recovery -
possibly forcing deadlines to be missed with greater frequence. Thus, the
rational for using DRB over RB increases too.

As a result of discussions with Rome Laboratory it was decided to use the
second scenario in the AFT demonstration.

Section 3.1 describes the architecture of the demonstration system as installed
at Rome Laboratory's DISE testbed facility. Section 3.2 details the critical
components used in development of the Interim Demonstration. Section 3.3
describes overall result.

Adaptive Fault Tolerance 28

3.1. Demonstration Architecture

There are two ways to describe the architecture of the AFT demonstration
system: the virtual level ana the physical level. At the virtual level, the
demonstration simulates a BMWC 3 1 application running on a distributed system
of 5 nodes. At the physical level, this simulation consists of nine separate
processes running across three physical processors.

The architecture of the virtual BM/C 3 1 application models the functional structure
shown in structure shown in Figure 3-1. However, this model needed to be
supplemented with additional top-level functionality for insertion of AFT
technology.

Figure 3-2 is a screen dump of one of the windows of the interim demonstration.
This figure shows the high-level breakdown of the BM/C31 application at the
virtual level. At the hardware level, the virtual system contains 5 processors
labeled (Virtual) Hardware Node 1 through (Virtual) Hardware Node 5 in the
figure. At the software level, the virtual system still models the COLLECT,
PROCESS, and DISSEMINATE functions of the CCE MONITOR. A second.
level breakdown of PROCESS is required to show the multiple try-blocks that
are required in RB-class fault tolerance techniques.

-r] •^FT Demonstration - Appliction Interface

[NIvrkmQ.eIoraddware*radaa 4b, lz•qnt All.IItgaa*Lff.tem

Auxiliary TR I MOA uxilliary
Functions I I I Functions

Virtual Hardvare 4 Faults Virtual Hardware 2 Faults Virtual Hardwre 5 Faults

No Fa, ,it 1

Figure 3-2
High-Level Structure of AFT Interim Demonstration

Virtual Application View (RB mode)

Adaptive Fault Tolerance 29

Note that when the system is running in RB mode, all three try-blocks exist on
the same processor as the parent function, PROCESS. This is the scenario
shown in Figure 3-2. During this mode of operation, (Virtual) Hardware Node 4
and (Virtual) Hardware Node 5 are considered to be running useful but
expendable auxiliary functions. However, Figure 3-3 shows the high-level
breakdown of the same window when an adaptation has caused the application
to switch to DRB mode, replacing the auxiliary functionality with one of the try-
blocks.

F'D AFT Oemenstotien - Appllcatlem Interfa

frfrtuel3 Nggdware #od* 3

(Virtual) Ugrdws ?dod* 4't IwlNtod*l). Imallwau ,dI
L :: !i om o~lo :::::i:i _______ _______ _____II 1tlllglft..........

Virtual Hardware 4 Faults Virtual Hardware 2 Faults Virtual Hardware S Faults

Figure 3-3
High-Level Structure of AFT Interim Demonstration

Virtual Application View (DRB mode)

The architecture of the demonstration's physical level is a bit more detailed.
Figure 3-4 shows the high-level physical structure of the AFT demonstration.

The physical system consists of only three hardware nodes. At the Rome
Laboratory installation, these nodes were Orion, Rigel, and Janus. To properly
emulate the distributed processing of the 5 node virtual model on a 3 node
physical system (Virtual) Hardware Node 2, (Virtual) Hardware Node 4, and
(Virtual) Hardware Node 5, were required to be on separate physical
processors. This was to achieve true physically distributed processing of all try-
blocks when a system was in DRB mode. The simulation of (Virtual) Hardware
Node 1 and (Virtual) Hardware Node 3 could exist on any of the three physical
processors.

Adaptive Fault Tolerance 30

Manager angr ~ rns ~c Oeaio nocto

oB don A

M a n g ei. a a e

O Cronus Chent UNIX Pipe' Communication

Figure 3-4

High-Level Structure of AFT Interim Demonstration
Physical View

There are nine separate software processes comprising the physical

demonstration system. Separate software processes still exist representing the

COLLECT, PROCESS, and DISSEMINATE functions.

An AB Manager process also exists (as would be required in any AFT system).

This process continues the adaptive behavior decision making mechanisms for

the demonstration.

The RB Manager module is a process which implements the black-box interface

to RB-class fault tolerance techniques.

The three modules labelled "Try Block 1" through "Try Block 3" represent try-

block server processes which exist at each physical node. Upon command, a

try block server can execute any of the requested try-blocks on input data.

Hence, the capability exists to execute any try-block at any given node. Thus, in

RB mode, only Try Block Server 2 executes try-blocks. It execution of the first try-

block fails, Try Block Server 2 executes the second try block, followed by the

third if necessary. However, in DRB mode, Try Block Server 1 would execute

the first try-block, simultaneously, Try Block Server 2 would execute the second

try-block, and Try Block Server 3 would execute the third try-block. The

additional capability to execute all try-blocks at all try-block servers is unused at

this time, but should prove useful for future research in this field.

Adaptive Fault Tolerance 31

, •a•
1111111101I

Lastly, the demonstration's human-computer interface is represented by two
modules labelled HCI and HCI Manager. Although the use of the Cronus
Distributed System toolset and X-Windows will be explained in Section 3.2, the
rational for dividing the human-computer interface functionality is related to their
roles in the demonstration. The HCI module is implemented in X-Windows and
contains the portions of the human-computer interface which deal with
workstation, mouse, and keyboard I/O (for example, the drawing of output
graphics). The HCI Manager module is implemented in Cronus, and is the
communication interface between the all other portions of the demonstration
and the HCI module. This is necessary because both Cronus and X-Windows
want to take entire control of an application process. Thus, the demonstration's
HCI functionality was partitioned into separate Cronus (HCI Manager) and X-
Windows (HCI) processes which communicate via a common Unix pipe
interface.

Adaptive Fault Tolerance 32

3.2. Components Used In Demonstration Development

The interim demonstration was developed entirely on the Sun-4 platform at GE
ATL. Ports to the Sun-3 platform should only require recompilation. As stated
in Section 3.1, the system required 3 separate processors to run, however, up to
7 processors could be used. A simple database of physical software modules
to physical hardware nodes needs to be constructed prior to demonstration
execution. This database allows reconfiguration of software modules to
hardware nodes without recompilation.

The Cronus distributed system development environment was used to
formalized the distributed element communication model. It is also believed
that the Cronus tasking model will be highly useful for future AFT development.
Most of the software modules were implemented as Cronus managers.

The X-Windows system was used for human-computer interface development.
In particular, the Motif interface standard was adhered to for the greatest degree
of future portability.

Also, to ease the turn-around time in demonstration development, the Widget
Creation Library (WCL) toolset was used in human-computer interface
development. WCL provides a greater degree of flexibility in the development
of X-Windows applications by enabling much of the structure of the resulting
interface to be specified in a resource file, rather than directly into the code.
Hence, major changes !o the structure of an interface ceveloped with X-
Windows can be made without lengthy recompilations.

Adaptive Fault Tolerance 33

3.3. Demonstration Results

The AFT interim demonstration is an interactive platform for the study of AFT
concepts and their related performance. The interim demonstration enables
users to interactively inject faults (either crash, erroneous, or omission faults)
into the simulated BM/C 3 1 application, and observe the effects of adaptive
behavior management on the organization of try-blocks which compute the
PROCESS function.

During the demonstration, frames of data pass from COLLECT, to PROCESS,
and then eventually onto DISSEMINATE. The real-time goal is to have each
frame take no longer than one second to pass from COLLECT through to
DISSEMINATE. If this real-time limit is violated, then a frame error is signalled.
A frame error is also signalled if the real-time goal is achieved, but the final
result sent to DISSEMINATE is incorrect, as determined by the acceptance
tests. This means that all try-blocks have failed, but have done so within the
real-time limit.

Note that a try-block error can occur without a frame error occurring, as long as
at least one try-block is successful, and a correct result is reached within the
real-time limit.

The AB Manager uses a history-based heuristic to determine if adaptation is
needed. A running window of history is kept across the number of frame errors
which have occurred, and the average time spent in computation of the
application stream. Once the number of frame errors within the history window
and the average computation time go beyond given threshold values, an
adaptation is made from RB to DRB. Both number of frame errors and average
computation time are used to avoid random spikes in either of the two data sets.
Similar heuristics are used for the DRB to RB adaptation, although the threshold
values differ to avoid thrashing across a state represented by a single threshold
point.

The AFT interim demonstration does prove the viability of AFT concepts within
the chosen BM/C 3 1 application. Interestingly, the use of similar heuristics with
different threshold values did not prevent thrashing, but only slowed down the
process. Future efforts will study the use of multiple adaptations, adaptations of
Type 2 through Type 5, and variations within both optimistic and pessimistic
adaptation strategies to prevent thrashing.

Adaptive Fault Tolerance 34

DISTRIBUTION LIST

addresses number
of copies

MR. THOMAS'LAWRENCE 20
RLIC3A9
BLDG 03
525 BROOKS ROAD
GRIFFISS AFS NY 13441-4505

MR. LARRY ALEXANDER 5
MARTIN MARIETTA
ADVANCED TECHNOLOGY LABIBLDG 145
MOORESTOWN CORPORATE CENTER
MOORESTOWN NJ 08057

RLISUL 1
TECHNICAL LIBRARY
26 ELECTRONIC PKY
GRIFFISS AFB NY 13441-4514

ADMINISTRATOR 2
DEFENSE TECHNICAL WNFO CENTER
DTIC-FDAC
CAMERON STATION BUILDING 5
ALEXANDRIA VA 22304-6145

BALLISTIC MISSILE DEFENSE 2

ORGANIZATION
710U DEFENSE PENTAGON
WASH DC 23301-7103

RLIC3AB 1
525 3ROOKS RD
GRIFFISS AFS NY 13441-4505

NAVAL WARFARE ASSESSMENT CENTER 1
GIDEP OPERATIONS CENTEOICODE QA-56
ATTN: E RICHARDS
CORONA CA 91718-5300

HQ ACCIDRIY 1
ATTN: MAJ. DIVINE
LANGLEY AFR VA 23665-5575

DL-1

ASC/=E NMS1
WRIGHT-PATTERSON 4F8 ON 45433-6503

WRIGHT LABORATORYIAAAI-4
WRIGHT-PATTERSON AFa OH 45433-6543

WRIGHT LABORATORYIAAAI-2
ATTN: MR FRANKLIN HUTSON
WRIGHT-PATTERSON AFB OH 45433-6543

AFITILDEE
BUILDING 642, AREA 8
WRIGHT-PATTERSON AF8 OH 45433-6583

WRIGHT LABORATORY/MTEL
WRIGHT-PATTERSON AFB OH 45433

AAMRL/HE
WRIGHT-PATTERSON AFS OH 45433-6573

AIR FORCE HUMAN RESOURCES LAB
TECHNICAL DOCUMENTS CENTER
AFHRL/LRS-TDC
WRIGHT-PATTERSON AFB OH 45433

AUL/LSE
BLDG 1405
MAXWELL AFB A'- 36112-5564

US ARMY STRATEGIC DEF
C SSD- I M-PA
Po BoX 1500
HUNTSVILLE AL 35807-3801

DL- 2

COMMANDING OFFICER
NAVAL AVIONICS CENTER
LIBRARY D/765
INDIANAPOLIS IN 46219-2189

Commanding Officer
NCCOSC RDTE Division
Code 0274B, Tech Library
53560 Hull Street
San Diego CA 92152-5001

CMDR
NAVAL WEAPONS CENTER
TECHNICAL LIBRARYIC3431
CHINA LAKE CA q3555-6o01

SPACE & NAVAL WARFARE SYSTEMS COMM
WASHTNGTON DC 20363-5100

C*;R, U.S. ARMY MISSILE COMMAND 2
REDSTONE SCIENTIFIC TNFO CENTER
AMSMI-RD-CS-R/ILL DOCUMENTS
REDSTONE ARSENAL AL 35898-5241

ADVISORY GROUP ON ELECTRON DEVICES 2
ATTN: DOCUMENTS
2011 CRYSTAL DRIVEPSUITE 307
ARLINGTON VA 22202

LOS ALAMOS NATIONAL LABORATORY
REPORT LIBRARY
MS 5030
LOS ALAMOS NM 87544

AEDC LIBRARY
TECH FILES/MS-1I0
ARNOLD AFB TN 37389

COMMANDER/USA ISC 1
ATTN: ASOP-D0-TL
BLDG 61801
FT HUACHUCA AZ 85613-5000

DL-3

AIR WEATHER SERVICE TECHNICAL LI9
FL 4414

SCOTT AFB IL 62225-5458

AFIWC/f4SO
102 HALL BLVD STE 315
SAN ANTONIO TX 78243-7016

SOFTWARE ENGINEERING INST (SEI)
TECHNICAL LIBRARY
5000 FORBES AVE
PITTSBURGH PA 15213

DIRECTOR NSAICSS
W157
9800 SAVAGE ROAD
FORT MEADE MD 21055-6000

NSA
E323/1$C
SAB2 DOOR 22
FORT MEADE MD 21055-600

NSA
ATTN: D. ALLEY

-DIV X911
9800 SAVAGE ROAD
FT MEADE MD 20755-6000

DOD
R31
9800 SAVAGE ROAD
FT. MEADE MD 20755-6000

DIRNSA
R509
9800 SAVAGE ROAD
FT MEADE MD 20775

DIRECTOR
NSA/CSS
R08/R & E BLDG
FORT GEORGE G. MEADE MD 20755-6000

0L-04

DOD COMPUTER CENTER
C/TIC
9800 SAVAGE ROAD
FORT GEORGE G. MEADE MD 20755-6000

ESC/IC
50 GRIFFISS STREET
HANSCOM AFB MA 01731-1619

ESC/AV
20 SC14ILLING CIRCLE
HANSCOM AFR MA 01731-2816

DCMAO/GWE
ATTN: JOHN CHENG
US COURTHOUSE/SUTTE B-34
401 N MARKET
WICHITA KS 67202-2095

FL 2807/RESEARCH LIaRARY
OL AA/SULL
HANSCOM AF3 MA 01731-5000

TECHNICAL REPORTS CENTER
MAIL DROP D130
SUPLINGTON ROAD
BEDFORD 4A 01731

DEFENSE TECHNOLOGY SEC ADMIN (DTSA)
ATTN: STTD/PATRICK SULLIVAN
400 ARMY NAVY DRIVE
SUITE 30O
ARLINGTON VA 22202

ADVANCED SYSTEM TECHNOLOGIES
ATTN-: DUANE R. BALL
5113 LEESBURG PIKE, SUITE 514
FALLS CHURCH VA 22041

ODYSSEY RESEARCH ASSOCIATES, INC.
ATTN: DOUG WEBER
301A HARRIS P. DATES DR
LT4ACA NY 14850-1313

DL-5

SRI INTERNATIONAL
333 PAVENSWOOD AVE
MENLO PARK CA 94025

CONCURRENT COMPUTER COOP
ATTN: RAYMOND CLARK
1 TECHNOLOGY WAY
WESTFORD MA 01886

U. S. ARMY CECOM
ATTN: LAKSHMI V. REB0APRAGADA
CENTER FOR C3 SYSTEMS
AMSEL-RD-C3-IR
FT MONMOUTH NJ 07703

NRAD
ATTN: LES ANDERSON
271 CATALINA BLVDP CODE 413
SAN DIEGO CA 92151

DARPA/ISTO
ATTN: BRIAN BOESH
1400 WILSON BLVD
ARLINGTON VA 222C9-2308

AFSCS/SRER SUITE 139
ATTN: GLENN ARMSTRONG

.250 HALL BLVD
SAN ANTONIO TX 78243-7063

NRAIR232
ATTN: DANIEL W. ATKINSON
9800 SAVAGE RD
FT MEADE MD 20755-6000

TRUSTED INFORMATION SYSTEMS, INC.
ATTN: WILLIAM C. BARKER
3060 WASHINGTON RD
GLENWOOD MD 21738

9BN SYSTEMS AND TECHNOLOGIES CORP
ATTN: JAMES C. BERETS
10 MOULTON STREET
CAMBRIDGE MA 02138

OL-6

DIRNSA
ATTN: LEN BINNS
R232
9800 SAVAGE RD
FT. MEADE MD 20755

HONEYWELLP INC.
ATTN: MIKE BOSQUEZ
3660 TECHNOLOGY DRIVE
MINNNEAPOLIS MN 55418

AFSCS/SRER
ATTN: JOHN BRES
KELLY AF9 TX 78219

NSAIV5
ATTN: DR. JOHN CAMPBELL
9800 SAVAGE RD
FT. GEORGE G. MADE MD 20755-6000

SYRACUSE UNIVERSITY
ATTN: SHIU-KAI CHIN
SYRACUSE NY 13244-4100

DEFESNE INFORMATION SYSTEMS AGENCY
ATTN: LT COL RICHARD HEPWORTH
MLS PROGRAM OFFICE
3701 N. FAIRFAX DRIVE
ARLINGTON VA 22209

ATTN: PATRICA BASKINGER
TASC
555 FRENCH ROAD
NEW HARTFORD NY 13413-0895

ATTN: MIKE DAVIS
SRI INTEQNATIONAL
33y PAVENSWOOD AVE
MENLO PARK CA 94C25-3493

SRI INTEPNATIONAL
ATTN: JACK GOLDBERG
333 RAVENSWOOD AVE
MENLO PARK CA 04025-3423

DL-7

MITRE CORPORATION
ATTN: HARRIET GOLDMAN
3URL!NGTOti RD
BEDFORD MA 01730

SECURE COMPUTING TECHNOLOGY COP
ATTN: DR. J. THOMAS HAIGH
1210 WSST COUNTY RD E, SUITE 100
ARDEN HILLS $N 55112

ORA CORPORATION
ATTN: 8RET HARTMAN
301A HARRIS 9. DATES DR.
ITHACA NY 1485C-1313

NAVAL SYSTEMS WEAPONS CENTER
ATTN: STEVE HOWELL/U33
10901 NEW HAMPSHIRE AVE
SILVER SPRINGS ND 20903-5000

AFCSCISRER
ATTN: DA HURER
SAN ANTONIO TX 78234-5000

SDIOISDA
ATTN: RICHARD IIEF
THE PENTAGON
WASH DC 20301

GEORGE MASON UNIVERSITY
ATTN: SUSHIL JAJODIA
ISSE DEPT
FAIRFAX VA 22030-4444

NSA/R206
ATTN: LT COL JOE JAREMKO
FT MEADE MD 20755-6000

NRADIE 413
ATTN: RUSSELL JONSTON
271 CATALINA BLVD
SAN DIEGO CA 92152-5000

DL-8

AFSC/XTK
ATTN: CAPT GIL LEE
ANDREWS AFB MD 20334

US ARMY CECOM
ATTN: JENNY LEE
AMS EL-ORD-C3-CC-A
FT MEADE NJ 07703

APPLIED RESEARCH 9 ENGINEERING
ATTN: DONALD M. LESKIW
435 ARBORETUM WAY
BURLINGTON MA 01803

SRI INTERNATIONAL
ATTN: TERESA LUNT
COMPUTER SCIENCE LABORATORY
333 RAVENSWOOD AVE
MENLO PARK CA 94025-3493

KNOWLEDGE BASE SYSTEMS LAB
ATTN: DO. RICHARD MAYER
DEPT INDUSTRIAL ENGINEERING
TE"AS A&M
COLLEGE STATE TX 77843

MITRE CORP
ATTN: CATHERINE MCCOLLUM
7525 COLSHIRE DRIVE
MCLEAN VA 22101-3481

SECURE COMPUTING CORPORATION
ATTN: CORNELIA MURPHY
1210 WEST COUNTY RD E
SUITE 100
ARDEN HILLS MN 55112

MITRE CORP
ATTN: LOUANNA NOTARGIACOMO
7525 COLSHIRE DR
MCLEAN VA 22102-3481

UNISYS CORPORATION
ATTN: HANS W. POLZER
1201G SUNRISE VALLEY DR
RESTON VA 22091

DL-9

HONEYWELL (MS 2350)
ATTN: SATYA PPAR"AKER
3660 TECHNOLOGY DRIVE
MINNEAPOLIS YON 55418

US ARMY CECOM
ATTN: JOHN PREUSSE
AMSEL-RD-C 3-! S-P
FT MOMMOUTH NJ 07703

MITRE CORP
ATTN: MYRA JEAN PRELLE
BURLINGTON RD
BEDF)RD MIA 01730

US ARMY CECO"
ATTN: JOHN RUSHMEYER
AMS EL-RD-C3-C C-A
FT MON14OTH NJ 07703

UNIVERSITY OF MARYLAND
ATTN: KEY SALEM
INST. FOR ADVANCED CCMPUTER STUDIES
DEPT OF COMPUTER SCIENCE
COLLEGE PARK MD 20742

DIR, NSA/R23
ATTN: O.SAMI SAYDJARI
9800 SAVAGE RD
FT MEADE MD 20755-6000

SRI INTERNATIONAL
ATTN: LOUS C. SCHREIER
333 RAVENSWOOD AVE
MENLO PARK CA 94025-3493

TRUSTED INFORMATION SYSTEMSP INC.
ATTN: JOHN SEBES
444 CASTRO STREET, SUITE 800
MOUNTAIN VIEW CA 94041

ORA CORPORATION
ATTN: NAUREENN STILLMAN
301A HARRIS Ft. DATES DRIVE
!THACA NY 14850-1313

OL-1O

GE AEROSPACE
ATTN: MIKE SUTTEN
RT 38 SLOG 145
MOORESTOWN CORPORATE CENTER
MOORESTOWN NJ 06057

INFOSYSTEMS TECHNOLOGY
ATTN: DR. CHAPLES TESTA
6303 IVY LANE
GREENBELT MD 20770

UNIVERSITY OF MINNESOTA
ATTN: ANAND TRIPATHI
DEPT OF COMPUTER SCIENCE
MINNEAPOLIS MN 55455

TRUSTED INFORMATION SYSTEMS INC.
ATTN: STEPHEN T. WALKER
3G60 WASH RD (CT 97)
GLENWOOD MD 21738

DIRNSA
ATTN: MICHAEL R. WARE
DOD, NSA/CSS (923)
FT. GEORGE G. MEADE MD 20755-6000

DL-11

MISSION

OF

ROME LABORA TORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readines.a, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

