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ABSTRACT

Wavelet theory provides an attractive approach to signal and image compression. This
work investigates a new approach for wavelet Uansform coefficient selection for efficient
image compression. This approach is based on the stochatic optimization of wavelet
scale thresholds. Experimental results are compared with results from previously
published wavelet image compression strategies.

1. Introduction

Wavelets, a family of basis functions, are dilations and translations of a single initial
function exhibiting a constant shape. Wavelets originated from the analysis of seismic data
by J. Morlet. Wavelets basis sets can be orthogonal or non-orthogonal, and each wavelet
can have compact or infinite support. Orthogonal wavelets, such as the Haar and four-
coefficient Daubechies wavelets, provide the capability of decomposing images into
multiresolution representations via the wavelet transform'. Wavelets, via the wavelet
transform, provide an efficient approach for the compression of images.

Traditionally, image transform coding or compression methods, such as the discrete
cosine transform, rely on high energy compaction with an n x n passband coefficient
selection criterion. The wavelet transform generally results in poor energy compaction, so
an alternative strategy is required for wavelet coefficient selection. This paper investigates
a stochastic optimization approach for wavelet coefficient selection.

1.1. Wavelet Transform Theory

Performing the Fourier transform decomposes an image into a frequency representation
and allows an analyst to determine if a particular frequency is present, but does not provide
any spatial information. The wavelet transform, on the other hand, results in a spatial-
frequency representation that has good localization in both domains. Wavelets can be
orthogonal or overcomplete, but since we are interested in compressing the image, we do
not want to transform the image into more coefficients than necessary to completely
characterize the image. Therefore, we use an orthogonal wavelet (the Haar wavelet) in this
research.

An orthogonal wavelet is determined by specifying a lowpass filter that satisfies

H(0) = 1

IH(wAI 2 + IH(w + x" = 1 (1)
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where H(ao) represents the Fourier transform of the filter h. The corresponding highpass
filter g is defined as

G(o)) = e-'OH'(ao+ x) (2)

where H'(.) is the complex conjugate of H(.). For the classic orthogonal wavelet, the
Haar, h(O) = 1 , h(l) = 1, and h is zero everywhere else. The interpolation order of the
wavelet increases with the length of the wavelet. Wavelet selection can affect the quality of
the reconstruction. We are interested, however, in the effects of stochastically optimizing
the compression thresholds, and therefore a single wavelet basis will be used in this
investigation.

The wavelet transform filters the data and results in a lowpass, or blurred, version of
the original, and a highpass, or detailed, version. The lowpass image is then filtered to
produce a blurred and detail image of it. Because the wavelet transform we are using is
separable, the image wavelet transform can be implemented as successive one-dimensional
transforms of the row and columns. The resulting image has a horizontal detailed image, a
vertical detailed image, a diagonal detailed image, and a blurred image.

Given a signal f, the decomposition is

f,'(n) = Xh(2n - k)f,".÷ (k) (3)

ff(n) = ,g(2n - k)f B÷, (k) (4)

where fjB is the blurred version of f at scale J and f.is the detail signal at scale J. One
can reconstruct f from its projections, defined as

ff(n) = 2Ylt(n - 2k)fB_1 (k) + 2 (n - 2k)f %,_(k) (5)
A OA

where h(k) = h(-k) and i(k) = g(-k).

1.2. Wavelet Compression Techniques

Image compression after performing the wavelet transform is achieved by selecting a
set of coefficients from the wavelet representation to keep. Those coefficients not selected
are set to zero. The number selected is based on the maximum mean-squared error (MSE)
acceptable, the compression ratio needed, or a combination of both. The coefficients
selected are then coded using an entropy-based encoder that stores the value of the
coefficient and its location within the current scale.

Different sets of retained coefficients can result in drastically different image
reconstructions. The traditional method for selection is simply a passband filter of some
height and width that passes a rectangular region of the transformed data and sets the rest to
zero. The wavelet transform does not compact energy into a particular region, making the
passband approach suboptimal. DeVore et a12 show that this is indeed the case, and
present an algorithm that keeps the highest N coefficients and discards the rest. Argast et
a13 demonstrate that coefficients from lower resolution scales affect a larger part of the
image than coefficients in the high resolution scales. Argast presents an algorithm for
selecting coefficients based on a logarithmic threshold, where the threshold of each scale is
twice the threshold of the previous lower resolution scale. This compression strategy is
given as:

2
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fr J=S1to I

for each elentr k in scale J
if CR% = GOAL then stop
else

Se Cif Ic.t< 2'T
C' otherwise

where ca is a transform coefficient, CR% is the current compression percentage, T is a
constant weight factor, and J and S are respectively the current and total wavelet scales.
T is set initially at a constant (0.01 in their paper), and adjusted so that the compression
ratio can be met. While using this approach results in a lower mean-squared error in the
reconstructed images for a given compression than DeVore's algorithm, it was still not
known if it was the optimal set of thresholds. In this paper, we attempt to answer this
question by stochastically optimizing the threshold values.

1.3. Stochastic Optimization

Since the 1950's, random (or stochastic) search techniques have been used for function
optimization. Random search strategies are competitive with traditional search strategies
(such as gradient search techniques) when the cost or objective function is expensive or
difficult to compute, or when the function to be minimized has many suboptimal solutions
(local minima). Other advantages, enumerated by Karnopp4, include the ease of
programming, inexpensive realization of possible solutions, as well as flexibility in the
expression of the criterion function.

Stochastic optimization techniques are based on either a single point or multiple agent
algorithms. Single point algorithms include the random walk and the method of Soits and
Wets5. Solis and Wets 5 provide convergence proofs for single agent random search
strategies. A convergence proof for the evolutionary programming algorithm, the multiple
agent search strategy developed by Fogel 6, is given by Fogel7. Under very weak
assumptions, both Solis and Fogel respectively show that a single and a multiple agent
random search technique will probabilistically converge to a region about the minima of the
function.

To increase convergence efficiency, variants of the EP algorithm have been
developed"-9. This work imbeds the method of Solis and Wets into the traditional
evolutionary programming paradigm. The parent models not only produce a single
offspring by way of the stochastic process, but are also modified by the Solis and Wets
algorithm. This approach, in the nomenclature of Bach and Schwefel' 0 is as follows:

k = 0,
initialize: P(O) = (a1 (0),....af (0))

where a, = (x,, Vj r (I .... ni)

evaluate: P(): (P()) =....do (
mutate: a(k)=m'(a,(k)) VjE.....

evaluate P(k): O(P(k)) ={1(oak)),.... (ba(k))}

3
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modify parents: P"(k) = {a7-(k) = s'(a,(k)) Vj -r (I ...... u)

select: P(k + 1) = s{,}(P"(k)UP'(k))

k=k+l
) while (I(P(k)) - true)

The population is instantiated with p individuals a1 Vj e (L... .y). The mutation

operator m'(.) is applied to each individual, according to the random perturbation scheme

a" = a, + oi- N(0,I) (6)

ori =W (7)

where n is the dimensionality of a, and 4(.) is the criterion function.

2. Evolving Compression Strategies

The optimal wavelet compression strategy is, of course, a function of two (interacting)
aspects, the compression ratio and the image quality of. the compressed image. The
criterion function 4k(-) should measure these two aspects of the compressed image.
Measuring the compression ratio of the compressed image is straightforward. Although
image quality is a subjective facet of an image, a widely used objective measure of image
reconstructive quality is the mean-squared error between the reconstructed and original
images. Maximizing the compression ratio penalty, denoted as P,, while minimizing the
reconstructed MSE provides the foundation for the criterion function:

0l(a) =1mmYI ii - r,,+ P(8)
m1=1 ka1

To derive the form of P, experiments were conducted using threshold, linear, and
exponential functions to compute the compression penalty. In our investigation, P, was
chosen as an exponential function of the compression ratio percentage CR% and the
percentage goal (Eq. (9)). The penalty function biases the optimization algorithm to
guarantee the achievement of the desired compression.

J" = 1OOe°'Y" if CR%<Goal (9)
0 if CR% >Goal

The algorithm used to zero coefficients is given as

for J = lto S
for eachelement kin J

0 if k'. I< T(J)

Set ckJ = ckli otherwise

where T(J) is the stochastically determined threshold for the wavelet transform's J th
scale. Each vector T therefore represents a wavelet compression strategy, and the
determination of the optimal strategy is the goal of the stochastic optimization process.

4
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3. Results

Images where selected from the Georgia Tech. University image library at gatechedu.
Wavelet compression strategies were evolved for three contrast-enhanced 512 x 512 gray
scale images, each with eight bits per pixel. Contrast stretching was performed on each
image before analysis. For each image, the compression ratio was set to 50:1
(GOAL = .02). Figure 1 displays the MSE and compression value of the best strategies
for the first 100 iterations of the optimization process.

For all images, the number of parent strategies in the stochastic optimization process
was set to five. Although five is low for the typical stochastic optimization problem, the
number proved to be more than adequate for determining the image compression strategies.
This does not mean that the solution space was a simple well, as local minima were
discovered in the experimental process. By adjusting the value for the maximum allowable
standard deviation in the Solis and Wets algorithm, all local minima encountered were
escaped by the stochastic optimization process. For all images tested, the stochastic
optimization process converged to a solution within 500 iterations.

The threshold values of the optimal strategy (the optimal T vector) after 500 iterations
are respectively graphed and tabulated in Figure 2 and Table 1. It is imnportant to note that
the values for the lower scales (scales 0 through 3) are below all Ctefficients in those
scales, and therefore very few, if any, coefficients in these scales are zeroed. It is
interesting that, for the higher scales, each scale value is approximately double the value of
the previous scale for all images tested.
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Figure 1. Stochastic optimizing behavior for first 100 iterations for each image.
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Table 1. Thresholds for evolved sumaey
Ih 0 I1I 2 3 4 5 6 7 1 8 9

ho l1 4.9358 1.6176 0.2637 0.5912 1.7359 3.1925 6.5342 12.707 25.924: 50.522
IImage 2 I5.13731 3.02831 0.3044]I 0.40551 0.4272 1.12911 2.01261 4.13801 8.74901 16.5 '191

bnw3 44.780 0.9408 1.6479 1.4099 0.5161 2.1493 4.4556 9.7358 20.457: 32.6d21

A comparison of the stochastically determined compression strategy obtained for
normal and contrast versions of a single image is shown in Table 2. The same between-
scale relationship of the threshold values found in the enhanced images is displayed in the
non-enhanced image.

Table 2. Com parisons of thrsold values for samege
IcW 0 1l 2 13 14 15 16 17 8 9
Nurnal I3.95901 3.862811.61421 0.71821 0.584011.57411 4.16661 9.2286 16.7751 36.951

Enmwmed 4.935811.617610.263710.591211.735913.192516.5342112.707125.924 50.522J

For each image, a comparison of the MSE of the reconstructed images using the
evolved compression strategy and the algorithms of DeVore and Argast was performed.
The results are shown in Table 3. As shown, for all images compressed and restored, the
stochastic strategy outperforms the deterministic algorithms.

Table 3. MSE Copaisn for Cmr Ssn St r~a wteies
Compression Alkorihm Image I ImaRe 2 Imake 3
DeVore (alsorizhm b 586.187 59.997 277.525
Aramst 247.282 33.582 160.840
Stodastic 221.339 28.786 150.938
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5. Conclusions

These results demonstrate that a stochastic optimization technique can produce optimal
threshold-based strategies for wavelet-based image compression. For all images tested, the
resulting strategies produce results exceeding present deterministic algorithms. More
importantly, a stochastic approach can provide insight into the relationship between
compression coding and the information content of the wavelet scales.

Future research in stochastic optimization of wavelet compression algorithms exists in
the determination of the general relationship between the energy of the image and the
threshold values required for optimal compression, and the statistical properties of the
threshold values and their interscale relationship. Another independent area of research is
the stochastic optimization of the wavelet basis function selected for the compression and
reconstruction of an image. Our future work will address both these areas of research.
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