
AD-A281 237iill I !1I ~II Ufl III ~II.•

• -* *

Participants * * *
Proceedings
of the
Third InternationalConference

ALGEBRAICI
METHODOLOGYAND )TIC

SOFTWARE ELECTE
TECHNOLOGY

June 21- 25, 1993
NIooo,¥-9 3-I-o07q 2-q

94-20665I = o,= ,o: • .=• I lilii liii 11liiil Ii
iTIhis doO.eumn hca Ibeen apiptmed

idisriuiobu is uinit0

University of Twente
Enschede, The Netherlands

W INRIA

0-DTIC QPAT ALýV 7. -:-,

94 7 6 093:•
Mathematics well-appliedl illuminates father than confuses

w -l I - -lIl ~ l •~ im ~ a - - 0 0



p

Participants' Proceedings

AMAST'93 
°

Third International Conference * S

on
Algebraic Methodology and Software Technology

0
University of Twente

The Netherlands

June 21-25, 1993 Accesion For A •
rTS CRA&l

DTIC TAB 0
U;;a,n:otpced 0

JtIQtif cation

By
onstr ibutýio q

Availability Codes

Avail and/or

Special

. . . .. . . . -- A S



S

Organizing Committee:
General chairman: Maurice Nivat University of Paris VII, Paris, F
Programme chairman: Giuseppe Scollo University of Twente, Enschede, NL
Publicity chairman: Charles Rattray University of Stirling, GB S

Teodor Rus University of Iowa, Iowa City, USA
V.S. Alagar Concordia University, Montreal, CDN

Education Day chairman: Hans-J6rg Kreowski University of Bremen, D
Local chairman: Ed Brinksma University of Twente, Enschede, NL
Finance chairman: FPans van der Avert University of Twente, Enschede, NL * 0
Members: Mohammed Bettaz University of Constantine, DZ

Christine Choppy University of Paris-Sud, LRI, Orsay, F
Pierre Deransart INRIA, Rocquencourt, F
Arthur Fleck University of Iowa, Iowa City, USA
Luigi Logrippo University of Ottawa, Ontario, CDN •
Michael O'Donnell University of Chicago, USA
Juan Quemada University of Madrid, E
Ralph Wachter Office of Naval Research, Arlington, USA

Local Committee: Herman Balsters, Han Biumer, Pim van den Broek, Rolf de By,
Maarten Fokkinga, Pim Kars, Mark van de Voort, Job Zwiers

Secretariat: Joke Lammerink, Alice Hoogvliet-Haverkate, Charlotte Bijron

Programme Committee:
Martin Abadi DEC, Palo Alto, USA Michael Mislove Tulane U., New Orleans, USA
Egidio Astesiano U. Genova, I Ugo Montanari U. Pisa, I
C.-B. Ben-Yelles USTHB, Alger, DZ Peter D. Mosses Aarhus U., DK
Michel Bidoit DMI/LIENS, Paris, F Istvan N6meti Acad. Sci., Budapest, H
Wim Blok U. Ilinois, Chicago, USA Doan Pigozzi Iowa State U., Ames, USA
Chris Brink U. Cape Town, ZA Don Sannella U. Edinburgh, GB
Pierre-Luis Curien DMI/LIENS, Paris, F R.K. Shyamasundar TIFR, Bombay, IND
Kokichi Nutatsugi EL/CLS, Tokyo, J John Staples U. Queensland, Brisbane, AUS 0
Steven Givant Mills College, Oakland, USA Andrzej Tarlecki Acad. Sci., Warsaw, PL
William S. Hatcher U. Laval, Quebec City, CDN Ftits Vaandrager CWI, Amsterdam, NL
Douglas J. Howe AT&T, Murray Hill, USA Paulo A.S. Veloso PUC, Rio de Janeiro, BR
Bjarni J6nsson Vanderbilt U., Nashville, USA Eric Wagner IBM, Yorktown Heights, USA
Giancarlo Mauri U. Milano, I Robert F.C. Walters U. Sydney, AUS
All Mill U. Ottawa, CDN Martin Wirsing U. Miinchen, D

Invited Speakers: Hajnal Andreka
and nldiko San Math. Inst., Acad. Sci., Budapest, H

Hubert Comon LRI, Universith de Paris Sud, Oray, F
Rob van Glabbeek Stanford University, USA S
Nicolas Halbwachs INPG, Grenoble, F
Michael Johnson Macquarie University, Sydney, AUS
Hans-J6rg Kreowski University of Bremen, D
Giorgio Levi University of Pisa, I
Roger D. Maddux Iowa State University, Ames, USA 0
David L. Parnas McMaster University, Ontario, CDN
Jacques Printz Cons. Nat. des Arts et Metiers, Paris, F
Steve Schneider PRG, Oxford University, GB



Foreword

The first two AMAST conferences, respectively held in May 1989 and May 1991 at the Uni- 0
versity of Iowa, were well received and encouraged the regular organization of further AMAST 0
conferences on a biennial schedule. A)

The goal of these conferences is to foster algebraic methodology as a foundation for software
technology, and to show that this can lead to practical mathematical alternatives to the ad-hoc
approaches commonly used in software engineering and development. 0

While the AMAST goal is mainly research-oriented, the relevance of adequate mathematical
education of software developers is recognized as well. In order to be effective in this direction,
the first day of the third AMAST conference is dedicated to the aforementioned special interest
topic. A summary of the opening talk by Hans-J6rg Kreowski and preliminary versions of the
two invited papers, respectively by David L. Paras and by Jacques Printz, are included in this •
proceedings. Yuri Gurevich and Istvan Nimeti are in charge of animating and moderating the
discussion on education.

As to the research-oriented contents of the proceedings, these consist of 8 invited papers and
32 extended abstracts of selected communications. The selection was very severe, for a record of
121 submissions were received; besides the selected communications, 14 other submissions were 0
judged to deserve presentation, but could not be selected because of the programme constraints.

The AMAST goal motivates the interest in showcasing software systems that are developed,
or help development, by algebraic methods, techniques and tools. The AMAST'93 programme
features seven demonstrations of such systems. Short descriptions of these systems form the
closing part of this proceedings. * 0

While the geographical scope of AMAST has rapidly grown to encompass all continents, as
one can see from the contents of this proceedings, the fourth AMAST conference is expected to
be held at Concordia University, Montrial, in June 1995.

The financial and organizational support by the AMAST'93 sponsors is gladly acknowledged.
We would like to thank Ms. Charlotte Bijron, Ms. Alice Hoogvliet-Haverkate, Ms. Joke

Lammerink, and Ms. Yvonne Rokker for their excellent taking care of the conference secretariat.

Finally, we owe special thanks to Yuri Gurevich for allowing us to open the proceedings with
the text of the intriguing banquet speech which he delivered to the second AMAST meeting.
Starting with his humour and finesse d'esprit will certainly set the thizd AMAST meeting in 0
the best mood towards the accomplishment of its goals.

AMAST'93 Organizing Committee
Enschede, June 1993

U U V =, ... w... w - 0 0



0

AMAST'93 Sponsors 0
S

The AMAST93 conference is made possible by the financial and organizational support of the following
institutions:

"* Commission of the European Communities, within the ESPRIT Basic Research Programme

"* Office of Naval Research

"* University of Twente

"* University of Iowa 0

"* University of Stirling

"* Institut National de Recherche en Tnformatique et Automatique (INRIA)

"* University of Paris VII, LITP 0

"* Concordia University, Montrial

"* University of Ottawa

"* University of Constantine * *
"* University of Madrid

"* University of Chicago

0
The AMAST'93 conference is held under the auspices and with the cooperation of the following asso-

ciations:

"* European Association for Theoretical Computer Science (EATCS) 0

"* Association for Symbolic Logic (ASL)

"* British Computer Society/Formal Aspects of Computing Science (BCS/FACS)

* ESPRIT Basic Research Working Groups COMPASS and ASMICS

Cooperation is pending with the following associations:

" Association for Computing Machinery (ACM), SIGACT and SIGSOFT 0

"* IEEE Computer Society

1.i



S

Advance Programme

Third International Conference
on 0

Algebraic Methodology and Software Technology, AMAST'93

University of Twente, The Netherlands, June 21-25, 1993

The goal of the third AMAST conference to be held on June 21-25, 1993, at the University of
Twente, Enschede, The Netherlands, is to consolidate the trend towards using algebraic methodol-
ogy as a foundation for software technology, and to show that universal algebra provides a practical
mathematical alternative to the common, ad-hoc approaches to software engineering and development.
Academia and industry are both beneficiaries of such a formal foundation.

To achieve the goal of the conference we aim to provide a forum in which leading researchers
in mathematics, computer science, and software development, will come together to identify algebraic
methodologies that are applicable as viable alternatives to the present software development approaches
and to discuss the appropriateness of such alternatives with a view to implementation.

Education Day (Monday 21 June) 0

While the AMAST goal is mainly research-oriented, the relevance of education is recognized as well.
In particular, the adequacy of the mathematical education of designers, implementors, users and main-
tainers of software artifacts, is recognized as being of special interest. The evaluation of, and the
provision of recommendations about, the mathematical training of software developers is a necessary
means to achieve that adequacy. In order to be defective in this direction, the first day of the conference * *
will be dedicated to this special interest topic. This Education Day will start with an introductory talk
by the Education Day Chairman, setting general objectives and guidelines, and proceed with two Mes-
sions; each session will have an Invited Speaker, talking about mathematical education of the software
engineer, and a Session Moderator, controlling and animating the subsequent open discussion.

As a preliminary indication, the Education Day should aim at answering such qrestions as:
"* How do we educate software designers, implementors, users, maintainers?
"* What should be the ideal mathematical background of a software designer, implementor, etc.?
"* What do we need to add to the the conventional way of teaching mathematics to make it more

acceptable, convenient, and useful to the software designer?
The programme of the first day of the conference is thus as follows:

08:30-09:30 Registration 0
09:30-09:45 AMAST93 opening address
Education Day Opening:
09:45-10:30 IjyjLzDTL. K: Hans-J6rg Kreowski Univ. of Bremen, D

Some tentatav thoughts on teaching computer scince
10:30-1.00 Coffee break 0
Morning Session MODzmO: Yuri Gurevich Univ. of Michigan, Ann Arbor, USA
11•00-11:45 1•z2rp..ITLK: David Lorge Parnas McMaster Univ., Ontario, CDN

Mathematics of computation for (software and other) engineers
11:45-13.00 Discussion
13.-0-14:30 Lunch break 0
Afternoon Session MODzaAoQ: Istvan N4meti Math. Inst., Acad. Sci., Budapest, H
14"30-15:15 Iyrr TAL: Jacques Printz Cons. Nat. des Arts et Metiers, Paris, F

Mathematicd training for the software deelppers: a practical ezperence
15:15-16:30 Discussion
16:30-17.00 Conclusions 0
17-00- AMAST'93 welcoming reception

V

w w ww w w S0



0

Tuesday 22 June

mornins 0
09:00-09:50 Ij~rp AL:

Haial Andreka, Istvaa NAmeti & B (Math. last., Acad. Sci., Budapest):
Applying algebraic logic to logi

09:50-10:10 Coffee break

SsssoN: Algebraic metamathematics (Chair: Widliam S. Hatcher) 0

10:10-10:40 D. Pigouzi, A. Salibra (Iowa SU, U. Bari):
Dimen.ion-complemented lambda-abstraction algebra

10:40-11:10 T. Mosaakowski (U. Bremen):
Pammetrized recursion theory - A tool for the systematic classifwation of specifiation 0
method.

11:10-11:30 Coffee break

SESSION Eztending functional languages (Chair: Chris Brink)
11:30-12:00 T. Sheard (Oregon GIST):

Adding algebric methods to traditional functional languages by using reflection 0
12:00-12:30 D. Bolignano, M. Debabi (Bull France):

A coherent type inference system for a concurrent, functional and imperative progmming
language

12:30-14-00 Lunch break

afternoon

14-00-14:50 IJvT5jjTAL:
Roger D. Maddux (Iowa State Univ., Dept. Math.):
Relation algebras for reasoning about time, space, and programs

14:50-15:10 Coffee break

S io Relation algebra (Chair: Dan Pigozzi)

15:10-15:40 C. Brink, K. Britz, RA. Schmidt (U. Cape Town, MPI Saarbrficken):
Peirce algebras

15:40-16:10 R. Berghammer, A. Haeberer, G. Schmidt, P. Veloso (UB Neubiberg, PUC Rio de Janueiro):
Comparing two different appruoaches to products in abstract relation algebras

16:10-16:30 Tea break

S9.si: Order-sorted algebra (Chair: Giancarlo Mauri)

16:30-17-00 M. Erwig (FU Hagen):
Speciin typ systems with multievel order-sorted algebra

17:00-17:30 P. Thiemann (U. Tibingen): 0

An overview of the SODA system

19:30-20:30 System demonstrations

21-00-22:30 Concert (classic) 0

W W 0



C

Wednesday 23 June

morsing 0
09:00-09:50 I1•. TALK:

,,iadJhnsom and C.N.G. Dampney (Macquarie Univ., Sydney):
Category theory and information systems engineering

09:50-10:10 Coffee break

Smi: Category theory in softarwe engineering (Chair: Andrzej Tarlecki)
10:10-10:40 G. Bill (Imperial College, London):

Category theory for the configratson of complex systems
10:40-11:10 M. Cerioli, G. Reggio (U. Genova):

Algebraic-oý d institutions

11:10-11:30 Coffee break

SEssio: Modular system esign (Chair: Egidio Astesiano)
11:30-12-00 M. Navaro, F. Orejas, A. Sanchez (UPV Sm Sebastian, UPC Barcelona):

On the correctness of modular systems
12:00-12:30 H. Ehrig, F. Parisi-Presicce (TU Berlin, U. L'Aquila): 0

Interaction between alpbraic specification gmmars and modular system design
12:30-14.00 Lunch break

afternoon
14.00-14:50 I iTIJ.TALK :

Stew (Oxford Univ., PRG):
Rigorous spcfictiotn of real-time systems

14:50-15:10 Coffee break

~sssoj: Real-time system specifliation (Chair: Arthur Fleck)

15:10-15:40 R.K. Shyamasundar (TIFR Bombay):
Specification of hybrid systems in CRP a

15:40-16:10 A. Cornell, J. Knack, A. Nangia, T. Rus (BYU Utah, U. Iowa):
Rea-time progrm synthes from specifications

16:10-16:30 Tea break

SssioN: Testing theory and applications (Chair: Christine Choppy)
16:30-17-00 E. Brinksma (U. Twente):

On the coverage of partial validations
17:00-17:30 K. Drirý, P. Azema (LAAS Toulouse):

Verifnng communication protocols via testing-proectio

evening
19.30-20:30 System demonstratics
21.00- Surprise event

v•0



0

Thursday 24 June

min ing0
09'0-0:50 lNXizITLK:

Rob J. vAn Glabbeek (Stanford Univ., Dept. CS):
Full abstraction and exzpreivene•s in structural operational semantics

09:50-10:10 Coffee break

Scsio: Algebraic semantic. of ancu•,enc' (Chair: Imre Guessarian)
10:10-10:40 P. Malacaris (LIENS Paris):

Equivalenes of transition pstern. in an algebraic framework
10:40-11:10 E. Battistoan, V. Crespi, F. De Cindio, G. Mauri (U. Milano):

Semantics frameworks for a class of modular algebroic nets

11:10-11:30 Coffee break

S~ssi: Procem algebras (Chair: Martin Wirsing)
11:30-12.00 D. de Frutos-Escrig (UC Madrid):

A characterization of LOTOS repmrsentable network of parallel processes
12:00-12:30 R. Gorrieri, M. Roccetti (U. Bologna): 0

Towards performance evaluation in proce algebras
12:30-14100 Lunch break

afternoon

14:00-14:50 INVITED TALK: * 0
Nicolas Halbwakh, Flbienne Lagnier, Pascal Raymond (INPG Grenoble, Verimag Lab.):
Synch venous observer s and the verilaition of reactive systemns

14:50-15:10 Coffee break

Sjssio: Modal logics and reactive pstems (Chair: Robert F.C. Walters)

15:10-15:40 F. Larousain e, S. Pinchinat, Ph. Schnoebelen (LIFIA-IMAG Grenoble): 0
Translation riesults for modal logic. of reactioe .gytems

15:40-16:10 LN. Kaufman, S.L. Meira (UFPE Recife):
Modal action logic in a practical specification language

16:10-16:30 Tea break

S jssio: Design and refinement principles (Chair: Peter D. Mosses) 0

16:30-17.00 A. Mokkedem, D. Mery (CRIN Nancy):
On using a composmtn principle to dsgn parall programs

17:00-17:30 N. Sabadini, S. Vipa, RLF.C. Walters (U. Milano, U. Sydney):
A notion of mfinement for automata

evening
17:30-18:30 System demonstratios

19:00-23.00 Conference dinner

vii

W0



0

Fhiday 25 June
mo'ning 0

09:00-09:50 DiiT&zzTAlLK:
Hubrgmgn (Univ. Paris Sud, LRI, Orsay):
Constraints in term algebrna

09:50-10:10 Coffee break
Sassio: Object-oriented design and progmming, I (Chair: Mohammed Bettaz)
10:10-10:40 E.G. Wagner (IBM Yorktown Heights):

The rol of memory in obect-bsed and object-oriented languages
10:40-11:10 R. Breu, M. Brea (TU Mfinchen, Siemens Nixdorf Miinchen):

Abstract and concrete objects - An albruic design method for object-based systems
11:10-11:30 Coffee break

Szssio: Object-oriented design and programming, II (Chair: Eric G. Wagner)
11:30-12:00 X.-M. Lu, T.S. Dillon (La Trobe U. Australia):

Towards an algebraic theory of inheritance in object oriented programming
12:00-12:30 M. Gogolla, L Clalen (TU Braunschweig, TU Berlin):

An object-oriented design for the ACT ONE environment
12:30-14.00 Lunch break

afternoon
14:00-14:50 INXC [LK&J. : : *

Roberto Giacobazzi and Giorgio Levi (Univ. Pisa, Dept. CS) and Saumya K. Debray
(Univ. Arisona, Dept. CS):
Joining abstract and concrete computations in constraint logic progmming

14:50-15:10 Coffee break

SSSE ON: Eutional and logic Eprogramming (Chair: Michel Bidoit) 0
15:10-15:40 J.G. Martin, JJ. Moreno-Navarro (UP Madrid):

A formal definition of an abstract Prolog compiler
15:40-16:10 V. Antimirov, A. Degtyarev (Copenhagen U. (DIKU), Kiev U.):

Completeness of equational definitions over predefined algebras
16:10-16:30 Tea break

S~ssoN: Algebraic specification in software engineering (Chair: RL K. Shyamasundar)
16:30-17:00 G.J. Loepi, C.V. Ravishankar (U. Michigan):

An algebraic approach to modeling in object-oriented software engineering
17:00-17:30 E.A. Scott (U. Surrey):

An automated proof of the correctness of a compiling specification
17:30- closing

22:00- live music in all pubs in Enschede.



AMAST'91 Banquet Talk

Yuri Gurevich

May 1991, Iowa City

Prologue

Tuesday, May 7, 1991. 1 sign the last grade sheet and smile at the spring sun. Finally the
semester is over. A message from Teo Rus arrives. "The second conference on Algebraic
Methodology and Software Technology needs a banquet speaker", writes Teo. I am very
flattered. And scared. I recall a recent banquet talk in Ann Arbor. The man went on
and on. I left before he finished. On the other hand, the invitation is a challenge and an 4
opportunity. You know, sometimes we feel like philosophers if only anybody would listen.
I accept the invitation before the scare gets a hold of me.

I leave my office and meet Kevin Compton, another member of the small computer
theory group in our huge Department of Electrical Engineering and Computer Science.
"How are you?" asks Kevin. "Well, I was fine only a few minutes ago", and I tell him about
the invitation to give a banquet talk. "I do not envy you', says Kevin. Soon a message from
him tells me about 5 books on public speaking in the library. I thumb the books. They
have witty things on almost any subject, but do not mention algebra or software, let alone
algebraic methodology and software technology. The volumes of humor are depressing. This
is not it. Teo could find a professional joker to entertain the conference. At that time in
Iowa it could be a national politician. 0 0

After thinking it over, I decide to take a scientific approach and write a scholarly paper.
You know, another paper never hurts your vita. The scientific approach explains the use of
"we" in the sequel.

The AMAST Phenomenon 0

The organizing principles are given by the following observation attributed to Don Knuth:
The two most important questions about Al are: What is A and what is I?

What is the question complexity of AMAST? There are 5 letters in the word, but A
appears twice. A closer examination reveals that there are only 3 questions: •

(1) What is algebraic methodology?
(2) What is software technology?
(3) What does AND mean in the AMAST context?

The third question is the toughest of the three.

Algebraic methodology

According to Webster, methodology is "a system of methods, as in any science". Thus,
algebraic methodology is a system of methods employed in algebra. Makes sense.



)

You may wonder how algebraic methodology is different from algebra. In algebra you
search for definitions to formalize your theorems; in algebraic methodology you search for
theorems to justify your definitions. It is clear that -algebraic methodology" sounds better
on a grant proposal; it implies also some connection to applications.

Some folks ridicule the division of algebra or anything else into pure and applied. "Con-
sider painting", they say, "if your paintings are bought by museums then you are a pure
artist, and if your paintings are sold in a supermarket then you are an applied artist. But
what if you intended to sell your paintings in a supermarket and a museum bought them?
Are you a pure or applied artist?" We say: where do you find those clever folks? They all
are in departments like Pure Mathematics or Physics. The distinction between pure and
applied science is very important. How would DARPA know whom to support?

What is algebra?

It is dear that algebra is the essence of algebraic methodology. So let us examine what
algebra is. Etymology often is a key to the meaning. We asked a few of our learned
colleagues about the etymology of "algebra" and then consulted Webster. It turns out that
folklore and Webster disagree on the etymology of "algebra".

Folklore: "algebra" as well as "algorithm" come from the name A1-Khowarazmi of a 9th
century mathematician.

Webster: 'algebra" comes from Arabic "al-jabr" which means the reunion of broken
parts.

The folklore explanation would be more useful to us because it connects AM with ST S
in a very natural way. Nevertheless, being committed to a scholarly approach, we adapt
Webster's explanation as more scientific and will try to find a good use for it as well.

Is algebra a part of mathematics?

Yes and no. • •
Why yes? This is obvious and well documented; see [Jane Doe], [Robert Roe], [John

Smith].
Why no? We give 2 proofs: By contradiction and by authority. These proofs are

specially designed to work on banquets, after a good meal with plenty of wine and before
the dessert. 0

The proof by contradiction. If algebra is a part of mathematics then mathematics is
broken into parts. The reunion of broken parts is algebra. Thus algebra = mathematics,
which is not true.

The proof by authority. The famous Communist prophet Vladimir lich Lenin spoke
about the algebra of social revolution. This places algebra into a different college, let alone
a different department.

Is "yes and no" a legitimate answer? Sure. Since "AM and ST" is a legitimate title,
"yes and no" is a legitimate answer. The question of what "yes and no" means will be
discussed later on when we come to the second A of AMAST.

Algebra and logic S

Logic methodology has been used in AMAST talks as much as algebraic methodology. This
is not surprising. Algebra and logic are like Michigan and Ohio. Do you know that there
was a war between Michigan and Ohio? It was about Toledo. You may think that each

W 0



side wanted the other one to have Toledo, but this is not true. Each side wanted Toledo for 0
itself. The federal government intervened and gave Toledo to Ohio. This explains the famous
Michdgan slogan OH-HOW-I-HATE-OHIO-STATE. Further, the federal government gave a
portion of Wisconsin to Michigan. This is how Michigan became topologically disconnected.
The reaction of Wisconsin is not documented.

The Toledo of algebra and logic is called "universal algebra" in algebra and "model )
theory" in logic. Maybe, Iran/Iraq is a better analogy because each side has its own name
for the disputed part: Persian Gulf vs. Arabian Sea.

In any case, algebra and logic have a large intersection as witnessed by numerous
AMAST talks. However we have

Theorem I Algebra # Logic.

Proof The proof is by contradiction and related to the Russian journal "Algebra and
Logic". It would be silly to have a journal "Algebra and Algebra", and the Russian Academy
would not approve such a thing. 03

0

Logics

There are many logics in the literature. Female logic, male logic, email logic, dialectical
logic, mathematical logic, etc.

Male logic is all too known to be discussed here.
Email logic is all too painful to be discussed here.
Female logic is all too dangerous to be discussed here. The field of AMAST is dangerous

as it is. As a matter of fact, we are going to discuss the dangers of the field. But there are
prudent limits to risks taken.

Dialectical logic is sort of an art of being logical and illogical at the same time. In
the SU (which means Soviet Union and is quite different from US; concatenation is not 0 0
commutative), logic was divided into dialectical and formal. The first was always supported,
the second was forbidden for years. Why? This is a wrong question, it is a question from
a wrong logical system. A Soviet dissident logician Essenin-Volpin divided formal logical
systems into two classes: democratic and totalitarian. In a democratic system, the rules tell
you what is forbidden. By default, the rest is allowed. In a totalitarian system, the rules tell
you what is allowed. By default, the rest is forbidden. (For those of you who understand
only the language of categories, democratic and totalitarian systems are the final and initial
objects of the appropriate category.) You wouldn't ask why Mr. A had not been allowed to
go abroad. This would be a wrong question. You might ask why Mr. B had been allowed
to go? That should have a good reason. For example, Mr. B might work for the secret
police. Now you can see why the question "Why was formal logic forbidden?" is a wrong
one. (Actually, they had a "reason" to forbid formal logic: the connection to philosophical
positivism. Is positivism so exceptionally bad? Not necessarily. But it is certainly different
from dialectical materialism, the only true philosophy.)

In the rest of this talk, logic means mathematical logic.

What is software technology?

This question is easy. We all know what hardware technology is. Software technology is
the direct opposite of hardware, except it is a little harder.

30

Sw w w w, - 0 0



Boom and gloom. Software technology is booming, but it goes through a severe crisis as
well: reliability, compatibility, verifiability, etc. You name it. Some hackers do not realize
that. They happily hack and change our world. They should be explained to that there is
a severe crisis out there. The poor devils badly need guidance and organizing principles.
This is where AMAST comes in.

What does "z AND y" mean? 0

The third question about AMAST was about the AND of AMAST. We stumbled also upon
the meaning of "yes and no". Let us generalize and consider a more general question: what
does "z and y" mean where z, y are arbitrary things (not statements)? Our discussions
with learned colleagues turned up a couple of possible answers.

(1) The set {xy}. This answer may be blatantly wrong. AM and ST = AMAST which
isn't a set of two elements. The organizing committee, all by itself, has more than two
elements.

(2) The fact that the intersection of z and y is nonempty. That sounds a little more
convincing, but cannot be quite right because z and y are not necessarily sets.

Notice that in both answers, AND is commutative, which is not true in general. It is
well known for example that the Communist founders are Karl Marx ant Friedrich Engels,
not Friedrich Engels and Karl Marx.'

(3) "z vs. V". This third answer is not necessarily true as well. For example, the relations
between AM and ST are not adversarial; AM loves ST, and ST couldn't care less about
AM. 0

One hazard of the trade: wrong abstraction level

It is clear by now that we overabstracted our third question. A wrong abstraction level is
one of the greatest hazards of our trade.

If the abstraction level is too low, you have too many details. There are no theorems to 0 0
prove or apply.

If you abstract too much, you may fid yourself in a sterile atmosphere with no theorems
(well, with only shallow theorems) to prove. Alternatively, this may be a delightful trap.
You may find yourself in a very fertile atmosphere with numerous attractive theorems but
this could be a problem too, because you may lose sight of the original question. For 0
example, we find it very tempting to proceed with the investigation of the meaning of "x
and y" in its full generality.

It may be in the eye of the beholder whether you abstract too much or not. For example,
define programs equivalent if they compute the same thing, and find yourself in a delightful
world of logic. Play with lambda calculus and types. (Didn't you really want to be a
logician?) Ignore those silly programs that do not behave properly. The Unix kernel, for
example. What does it compute? Nothing. It doesn't even converge. Modulo some side
effects, it is equivalent to a trivial infinite loop.

What is the right level of abstraction? This is the art of our science. That is what
AMAST is all about.

1At tiis point daring the talk, Vanghan Pratt maid, -See Paris and die'.

"-4--

w. w , w V V, S *



So what does AND mean in the AMAST context?

Is it "motivated by"? There is a good precedent for this interpretation. That is what AND
often means in the famous phrase "logic and computer science". We believe that "motivated
by" isn't the main meaning in our case. As we mentioned above, there is an implication of
[desired] applicability in the phrase "algebraic methodology".

Is it "applied to"? Hardly. •
The most appropriate meaning seems to be: To be applied to (indirectly][eventually].

In other words, the meaning is "for".

Another delightful trap

You dive into mathematics and ... never come back. This trap is simil to but different 0
from the one we discussed earlier.

For example, you write a book on Principles of Programming Languages. You have
to give some formal semantics, of course. Denotational semantics seems fun. It requires
domain theory though, and domain theory requires fixed-point theory. You explain all
this carefully. The project goes along quite nicely. Suddenly, you panic! You have to say 0
something about programming languages as well. A real language, like C, would be too
much detail and trouble, this is obviously too low an abstraction level. You already gave the
semantics of lambda calculus which is, all by itself, a programming language par excellence.
How about the while language? Good. This should satisfy all those imperative freaks.

More on the AND of AMAST

There are of course other cases of "t and v" where AND means FOR. But there is something
special about the AMAST use of AND. Consider, for example, the case when : = math and
y = physics. Imagine you would like to apply some beautiful mathematics to some physics
that does not quite fit your mathematics. What can you do? You can write science fiction 0 0
but you cannot change the physical world. The situation is quite different if x = AM and y
= ST. In principle, you can change ST. Why do they use those silly imperative languages
that do not fit my mathematics? They would be much better off using functional languages
or logic programming.

Future research

AMAST is in a business of changing the world of software technology. AMAST activities
are hazardous, delightful and blessed with opportunities. They are approved and supported
by the highest offices of the land like the Office of Naval Research.

Theorem 2 AMAST i8 A MUST.

Proof sketch At this moment, we can only give a very preliminary sketch of our proof.
The next AMAST will be in Europe. In one of the dialects of Europese, AND is UND. This
accounts for the crucial change of A to U. 0

Acknowledgement I am greatly thankful to Neil Jones and Zoe Gurevich for patiently
listening to successive versions of this talk, for useful comments and for encouragement.

-5-.



0

0

0

0

0

* 0

0

0

0

0

0

-6-

w W W S S S 0 0



Education Day

AMAST'93

Third International Conference
on

Algebraic Methodology and Software Technology

University of Twente * *
The Netherlands

P'

Participants' Proceedings.



0

0
4

0

0

0

0

* 0

0

0

0

0

0

w w w w e S S 5 0 0



0

Some tentative thoughts on teaching computer science

Hans-Jfrg Kmeows 0
Universitdt Bremen 0

Fachbereich Mathematik/Informatik
Posdach 33 04 40
D-2334 Bremen

email: kreo~informatik.uni-bremen.de

1. Most of the students of today will be among the scientists, engineers, tech- 0
nologists, managers, teachers, politicians, etc. of the next 30 to 40 years. Hence
teaching in universities in general and teaching computer science in particular are
challenging tasks with high responsibility. What students learn, know and think
and how they deal with it may form them to a good part and, in this way, may
influence the future of science, technology, economy, politics, society, etc. I fear 0
that not all university teachers are aware of this responsibility.

2. Teaching can be a hard job, in particular, if the teacher stands in front of an
audience of 50, 100 or 500 students and has got only a vague idea of the levels of
knowledge, motivation, interest and ability present. Frustration is not surprising 0
under such circumstances, and enthusiasm seems to be wasted. Although the
situation of teaching in universities needs a revisition (at least in Germany), there
is still the chance of success from time to time because students acknowledge the
effort of teachers as far as I can see. Teachers must try.

3. Clearly, teaching is much more than the repetition of knowledge found in 0 0
books. Knowledge is only the basic material that needs proper combination, inter-
pretation, cross references and, above all, the teacher's personal comments and
views. The aim of teaching is not just to lecture on important matters to passive
listeners, but to raise the students' interest, motivation and ability to play with, to
work on, to think about and to understand the matter at hand actively and in 0
their own fashion. University teachers must be good scientists and good
animators.

4. Computer science is an engineering and scientific field in an embryonic state
that is rooted in mathematics and electrical engineering. It is assumed to provide 0
key technologies for the future development of economy and society (at least in
the well-developed countries). The outcome of computer science is changing the
work and life of many people. Hence teaching computer science must reflect the
whole spectrum of relevant aspects from mathematics to social sciences. But how
can this be achieved in an undeveloped field? A balance seems necessary between
the well-understood basic matters of mathematics, engineering and social science 0
useful in computer science and the urgent and actual questions that have got so
weak and shallow answers up to now. But what is sufficient?

5. The trouble with teaching theoretical computer science is a bit different. There
is the wealth of mathematics one can employ. There are already some fairly well- •
developed theories on basic objects of interest in computer science. But most of
the students (at least those I know) do not enjoy mathematics, are not able to
understand it properly or do not try hard enough. Hence motivation is
mandatory. Unfortunately, a successful motivation is not very helpful if students
understand the value of theoretical computer science, but are still not able to •
understand the matter itself.

"-9-



0

0

0

0

* .

0

0

0

0

0

-10 -

w w w w -w w 0 0 0 *



Mathematics of Computation for (Software and Other) Engineers

David Lorge Parnas 0
Communications Recatach Laboratory

Department of Electrical and Compumer Engineering
McMaster University, Hamilton, Ontario, Canada LAS 4K!

1 Prenlmimay Provocatiom
The tide of this paper implies that Software Engineers are Engineers, i.e. that "software" plays

the same role in their title that "Electrical", "Mechanical", or "Chemical" play in the titles of other
engineering specialities. This, in itself, would seem to be a controversial statement, since it
suggests that the model for software engineering education should be engineering education, not
science education or mathematical education. That is my opinion, and one of the assumptions
underlying this paper, but it is not the subject of this paper.

I like the term, "mathematical engineer", which I am told is used by some Dutch Tbchnical
Universities for software engineering. It seems to me that, just as certain areas of Electrical
Physics comprise the basic knowledge of an Electrical Engineer, certain areas of mathematics, 0
which includes (in my opinion) the most substantive areas of Computer Science, should be the
basic knowledge that characterises software engineering. However, we should not forget that just
as Chemical Engineers need to know much more than chemistry, Software Engineers will need to
know more than Computer Science and Mathematics. Because we cannot teach them -everything
we think they should know, there might be some fundamental areas of Computer Science and 0 *
Mathematics that we don't have time to teach them.

2 Th7 role of mathemadcas in engineering

Those who do not have an engineering education themselves often fail to realise how much
mathematics engineers learn. At my university, approximately 30% of an engineer's education is
devoted to things that are explicitly titled mathematics. There is a great deal of mathematics taught
in the specialised engineering courses as well. This is not atypical; it is often required by
accreditation committees that control whether or not the graduates of a programme can easily be
recognised as professional engineers.

Mathematics can be said tr be one of the things that differentiate professional engineers from
technicians. A major emphasis in engineering education is the concept of professional
responsibility. An Engineer is taught from her first day at University, that her products must be "fit
for use". Engineering students learn that they cannot trust their intuition and "eyeballing" to be
sure that a product is "fit for use". Their education is, in great part, devoted to learning how to do
both mathematical analysis, and carefully planned testing, of their proposed designs. They also 0
learn to accept, as completely normal, the fact that their work will be subject to careful analysis
and criticism, often based on mathematical analysis, by others. My own engineering education
included approximately as much mathematics as would have been taken by a mathematics major
and, at my ab/a mater, many of the courses were taken together with the mathematics majors.
Regrettably, it is common to find special engineering mathematics courses, and to find that the 0

mathematics professors who teach those courses assume that they are teaching people whose
intellectual level is not as high as that of mathematicians. Having taught both, I do not see

amut D.L Parnmas May 29, 1993 9:28 pin 0



differences in ability, but I do see differences between the viewpoints of engineering students, and
those of students majoring in mathematics or science.

Although engineers study a lot of mathematics, an engineer's view of mathematics is 0
substantially different from that of mathematicians. Roughly put, engineers can take a lot for
granted. Because their use of mathematics is always for the description and analysis of some
physical product, they simply assume that functions have the properties that all functions
describing physical products must have. They often do not bother to state those assumptions
explicitly. This appears sloppy to many "formalists". In most cases, the mathematics is perfectly
sound if one adds the assumptions explicitly in an environmental declaration. Because engineers
are working in situations where it is clear which symbols in their equations are variables and what
they represent, they do not see a need for explicit mathematical notations such as the lambda
notation. Because they always know the range of values for their variables, and they know what
they are trying to compute, they see little need for the quantifiers, type, and signature declarations
that logicians demand of their colleagues. Whereas mathematicians are primarily interested in 0

deep theorems and general properties of classes of expressions, engineers are often concerned
with "junk" theorems and detailed anaiyses of special cases. In such situations the complex and
careful habits of logicians seem quite unworkable and there is always a gap between a
mathematician's treatment of a subject and that of an engineer who uses the same fundamental
mathematics. What one chooses to record explicitly, the other tends to assume without much 0

discussion. Those interested in exploring such issues further, should look at some of the writings
of N.G de Bruijn and his students who had to pay a lot of attention to the "short-cuts" used by
working mathematicians and engineers when they were developing their "Automath" system. [61

It must also be recognised that the mathematics is often implicit, rather than explicit, in
engineering notations. When an electrical engineer notes the inductance, resistance, and 0
capacitance of a component, she knows that these are the parameters for a set of differential
equations, but those equations are not always written down, just used when necessary. Again, we
see that engineering notations take things for granted than a mathematician would want to see
stated explicitly.

These remarks lead me to a pair of preliminary conclusions: 0

"* Engineers, whether software or otherwise, can be expected to make extensive use of math-
ematics in the analysis of their products, including programs. Those who refuse to do so.
are technicians, not engineers.

"* When we develop mathematical methods for use by engineers, we need to respect the tradi-
tional differences between engineering mathematics and the type of mathematics promoted
by "formalists" or logicians in the style of Hilbert. If we don't, we will be unnecessarily
frustrated and quite ineffective.;

3 The role of programming in engineering 0

When I was an undergraduate, programming courses were optional. Moreover, no academic
credit was given for them. The computer was considered to be a slightly enhanced version of the
mechanical calculator. There was no more thought of including a computer course in the
curriculum than we would think of including a course on the Marchand calculators that filled
some laboratories, or a course on the slide-rules that many of us carried on our belts. It was
expected that we would learn to use these "tools of our trade" on our own, or in non-credit
courses. Programming was considered to be a simple mechanical task, "laying down

amast D.L Pamnas May 29, 1993 9:28 pm i

S . w , 0 0



instructions", akin to wiring up a circuit. Many engineers at that time had never taken a course in
programming. When we began to offer the first credit course in programming at Carnegie Tech,
there were many who feared that it would not have intellectual content analogous to a physics or
calculus course. The Computer Science Department had to promise that they would not simply 0

teach a programming language, but would teach something deeper and more lasting.

Today, things have changed - both for the better and for the worse. There is no longer any
question about whether or not an engineer should have courses in programming. The computer,
and software are now ubiquitous in engineering. Many engineering products include computers
and software; many others are designed and analysed using computers. Hardly a week passes in 0
which we do not hear some anecdote about the failure of an engineering product being caused
either by the software contained in it or by an error in the software used to design it. Since people
rarely talk loudly about their failures, we can assume that the anecdotes are just the "tip of the
iceberg". Nobody questions the need for engineers to be good programmers and good at
evaluating the software that they use. 0

However, there is something else that nobody questions any more: they do not question the
intellectual content of many engineering courses in computing. Nobody asks whether the
intellectual content of these courses is comparable to that of other math or science courses.
Perhaps the question is not asked because the answer would be embarrassing. The typical course
simply teaches a programming language, an artifact designed by one or more human beings. Most 0
of the time is spent on things that are not mathematical truths, or even lasting truths; they are just
design decisions by (often not very good) language designers. The courses are exactly equivalent
to teaching about a particular calculator, including the location of its buttons, how to turn it on,
how to change the display, etc. Many of these courses teach almost the same artifacts that were
taught 30 years ago, but that is not the real problem. The real problem is that the aubjec of the 0 0
course is the artifact. You can always tell that something is wrong when there is a big debate about
which artifact to teach about. The situation is analogous to changing the lectures of a course on
electrical circuit theory because we acquired new oscilloscopes. Another sure sign that something
is wrong comes when someone defends a course by saying that they just introduced a new artifact.

We must also recognise another difference between engineering education and the education 0

of scientists and mathematicians. In engineering schools there is a major emphasis on design. We
are required by our accreditation committees to identify a large part of our curriculum as design.
Design and analysis can be understood as complementary skills. Design is inherently creative and
all that we can teach are heuristics, things that don't always work. Consequently, solid, disciplined
analysis is necessary. The mathematics is taught as part of the analysis component of these 0

courses, not the design. This is in sharp contrast to the attitudes taken by another famous
Dutchman in our field. E. W. Dijkstra, and his followers, like to talk about mathematical
derivations of programs from specifications. This is not the attitude taken in other areas of
engineering. Design is recognised as a very creative task, in which mathematics and science
provide essential inputs, but the primary role of the mathematics comes in the documentation and 0
validation of the design. Program derivation from requirements appears analogous to deriving a
bridge from a description of the river and the expected traffic. Refining a formal specification to a
program would appear to be like refining a blueprint to a produce a bridge. Engineers always
make a distinction between the product and the description of it. This seems to be lost in the
computer science literature on programming and software engineering. •

Those who chose engineering as a career path are often people with fairly a pragmatic view of

amast D.L Pamas May 29,1993 9:28 pn 0

S.. ....... • mdrm• .. .. .....-



life. They appreciate mathematics that is simple and elegant but they want frequent assurance that 4
the m,..ematics is useful. It is important to show them ht.. to use a i. athematical concept. not
simply to teach them the definitions and theorems. In engineering mathematics the emphasis has
always been more on application of theorems than on proofs. 0

4 TU mathematics needed for professional programming

I have recently taught a new course for first year engineers of all specialities. It replaced a
course that could have been taught 30 years ago. I made two major changes: 0

" A large part of the course taught the basic mathematics behind programming with emphasis
on the use of mathematics to describe what a program does, or must do, without giving an
algorithm. All programming assignments were expressed as mathematical specifications.

" It was made very clear that the language was not the subject of the course. Students were
given a choice of two programming languages that could be used in the laboratories. Two 0
of the three lectures per week were taught in an algorithmic notation based on Dijkstra's
guarded commands. The third, "laboratory", lecture taught a "real" language.

The course emphasised both the creative steps in programming and the analytical steps needed
to confirvn that one had not just created a monster.

The remainder of this section describes the mathematical contents of that course and how we
used the mathematics to teach programming.

4.1 Finite State Machines

The first step in getting students to take a professional approach to programming is to get rid 0 *
of the "giant brain" and "obedient servant" views of a computer. It is essential that students see
computers as purely mechanical devices, capable of mathematical description, Students are taught
that "remembering" or "storing" data is just a state-change, and taught to analyse simple finite
state machines to "show" that they accomplish simple recognising tasks. The Moore-Mealy model
is used. 0

4.2 Sets, functions, relations, composition
We present the basics of a naive set theory in which all sets consist of a finite number of

elements from previously defined universes. We present the concept of relations (functions) as
sets, and the operation of union, intersection, negation and functional (relational) composition. It
is important to present the students with examples of the use of these concepts and exercises in the 0
use. We want the students to know far more than the definitions and the algebraic laws; we ask
them to apply the concepts to provide precise models of real-world situations. We show how the
state machines that they learned about can be described by a pair of mathematical relations.

4.3 Mathematical Logic based on finite sets 0

In the first two sections, finite state machines, and sets have been kept not just finite, but small,
so that they could all be described by enumeration. The next step is to point out that these are
unrealistically small sets, that we cannot afford to describe most sets by enumeration, and that we
must be able to make general statements about classes of states. We then introduce an
interpretation of classical predicate logic in which all expression denotations are finite sets and we 0

show them how to use predicate calculus to characterise sets, including functions and relations.
The logic that we use allows partial functions (defining all primitive predicates on undefined

Mast D.L Parnas May 29,1993 9:28 pin 0

S- "-w w 0 *
~~V 0.. . .. .. . .. .... . . ...... ... ,.., . . .... ,



values to be j"a0. It is important to provide numerous examples in which the students use
predicate logic to characterise the states of something real. Arrays (viewed as partial functions)
provide a rich source of examples such as, "Write a predicate that is am if array A contains a
palindrome of length 3." Again, it is important to show the use of the mathematics to say •
important things about programs, and to teach them to UsM. as contrasted to prove theorems about,
logic. The interpretation of logic that we use is described in [I].

4.4 Programs as "Inidial states"
We provide a brief, and unconventional, view of programming as picking the initial state of a

finite state machine. This is necessary when one wants to explain such concepts as table driven
programs, interpreters, etc. At this point, I point out von Neumann's chief insight (in the area of
computer design), the interchangeability of program and data.

4.5 Programs as descriptions of state-sequences 0

We then give a more conventional view of programs as descriptions of a sequence of state
changes. Each program, given an initial state, describes one or more sequences of state changes.
This concept is presented abstractly, we do not give any programming language notation for
describing the sequences.

4.6 Programs as fuactious; from starting-state to stopping-state
After pointing out that programs can be characterised as either terminating or non-terminating

we indicate that this first course focuses on programs that are intended to terminate after
computing some useful values. We then show that the most important characteristics of programs
can be described by a mathematical relation between the starting-states and the stopping states. * 0
The exact model used, LD-relations, is described in [2] or [3]. Here too, it is essential to provide
examples in which the students use relations to describe distinct sets of sequences that are
equivalent in the sense of having the same set of (start-state, final-state) pairs.

4.7 Tabular descriptions of functions and relatIons.

We extend the notation of predicate calculus by introducing 2-dimensional tableaux, which we
call simply tables, whose entries are predicate expressions or terms. We show that these are
equivalent to more conventional notation, but easier to read. Students are given many examples in
which we describe mathematical functions using these tables [71

4.8 Teaching programming with this mathematical background. 0

The remainder of the course is devoted to teaching students to program. All programs are
introduced, not with a natural language description, but with a mathematical description of the
required behaviour. The simple programming notation that is used (essentially that in [31) is
defined using the mathematical concepts above. We begin with very simple programs and
continue, always using the same discipline to cover more complex engineering problems.
Homework assignments are given using the tabular notation. Students are shown how to
systematically determine if a program in this notation covers all cases and does the right thing in
each case. Although, we never talk of "correctness proofs" we do use correctness concepts to
explain a program. For example, we usually identify an "invariant" when explaining a loop, and
use a monotonically decreasing quantity to convince students that a program will terminate. 0

amast D. L Parnas May 29,1993 9:28 pm

SU U, w w -- 0 0



0

S The madtematics aeeded for software engineering
For many years I have taught courses entitled "Software Engineering" usually to students in

the third or fourth year of university. Although the course has a significant design and pragmatic 0
content, it has also been necessary to teach some mathematical concepts. Generally, Computer
Science students have inadequate mathematical preparation for the course; they have learned too
much theoretical computer science and too little about fundamental mathematics. However, the
preparation of my Computer Engineering students seems even worse. They have had lots of
mathematics, but the wrong mathematics. In this section, I will describe the mathematical basis of
my software engineering class. The class covers the "standard" software engineering topics and 0
students are ask( i to do practical exercises, but the basic message is that they must produce a
sequence of documents whose contents must be representations of key mathematical functions.
The approach is basically that in (4]. To get maximum benefit from the course, students should
already be familiar with the concepts described in the previous section. Usually, they have not had
the necessary exposure, and much of the course must be devoted to mathematics. 0

5.1 How can we document system requirements?

A critical step in documenting the requirements of a computer system is the identification of
the environmental quantities to be measured or controlled and the representation of those
quantities by mathematical variables. The environmental quantities include: physical properties 0
(such as temperatures and pressures), the readings on user-visible displays, administrative
information, (such as the number of people assigned to a given task), and even the wishes of a
human user. These must be denoted by mathematical variables in the way that is usual in
engineering. That association must be carefully defined, coordinate systems, signs etc. must be
unambiguously stated. 0 0

It is useful to characterise each environmental quantity as either monitored, controlled, or
both. Monitored quantities are those that the user wants the system to measure. Controlled
quantities are those whose values the system is intended to control. If needed, time can be treated
as a monitored quantity. In the sequel, we will use "min, m M2 ", -. "me" to denote the monitored
quantities, and "Cl", "c2", ... , "cq" to denote the controlled ones. Because it is often the case that a 0
system is intended to both monitor and control certain quantities, these lists might have variables
in common.

Each of these environmental quantities has a value that can be recorded as a function of time.
When we denote a given ;nvironmental quantity by "'", we will denote the time-function
describing its value by "v"'. Note that V' is a mathematical function whose domain consists of real 0
numbers; its value at time t is denoted by "v'(t)".

The vector of time-function (,,',,,, .... m,) containing one element for each of the monitored
quantities, will be denoted by "I,",; similarly (c1,c1. ... ,cq) will be denoted by "i'".

5.1.1 Relation NAT 0

The environment, i.e. nature and previously installed systems, place constraints on the values
of environmental quantities. These restrictions may be documented by means of a relation, which
we call NAT. It is defined as follows:

domain(NAT) is a set of vectors of time-functions containing only the instances of m' al- 0
lowed by the environmental constraints,

amast D.L Parnas May 29,1993 9:28 pm 0

-16-

, w 1W w 1 W W 0 S

S. . .... ... ... .... ,m al~tot*• t tmu•-.•ltm ~ tlm l mml m m lnn mul mmma m Nl ltl • _.. . ... .. . ...



0

" range(NAT) is a set of vectors of time-functions containing only the instances of F' allowed

by the environmental constraints,
" (.ON, e') E NAT if and only if the environmental constraints allow the controlled quantities

to take on the values described by c', when the values of the monitored quantities are de-
scribed by .l'.

NAT is not always a function; if NAT is a function the computer system will not be able to
vary the values of the controlled quantities without effecting changes in the monitored quantities.

5.1.2 Relation REQ
The computer system is intended to impose further constraints on the environmental quanti-

ties. The permitted values may be documented by means of a relation, which we call REQ. It is
defined as follows: 0

"* domain(REQ) is a set of vectors of time-functions containing the instances of t.' allowed
by environmental constraints,

"* range(REQ) is a set of vectors of time-functions containing only those instances of c, con-
sidered permissible, 0

* (ml'. ) E REQ if and only if the computer system may permit the controlled quantities to
take on the values described by .e, when the values of the monitored quantities are de-
scribed by to'.

REQ is usually not a function because the application can tolerate "small" errors in the values
of controlled quantities. * 0

5.13 Requirements feasibility

Because the requirements should specify behaviour for all cases that can arise, it should be true
that,

(1) domain(NAT) C domain(REQ). 0

The relation REQ can be considered feasib/e with respect to NAT if (1) holds and

(2) domain(REQ n NAT) = (domain(REQ) n domain(NAT)).

Feasibility, in the above sense, means that nature (as described by NAT) allows the required
behaviour (as described by REQ); it does not mean that the functions involved are computable or S
that an implementation is practical.

Note "'at (1) and (2) can be reduced to:

(3) domain(REQ fl NAT) = domain(NAT).

5.2 How can we document system design?

During the system design two additional sets of variables are introduced: one represents the
inputs, quantities that can be read by the computers in the system; the other represents the outputs,
quantities whose values are set by the computers in question. These variables are associated with
input and output registers on the computers in the system; their values will also be described by •
time-functions.

In the sequel we assume that ,,' and r, are defined as in Section 4.2.

amaut D. L Pamu=s May 29,1993 9:28 pm

L U " - - --- - • 0



5.2.1 Relation IN

Let ","' denote the vector (i...... , containing one element for each of the input registers.
The physical interpretation of the inputs can be specified by a relation IN, defined as follows: 0

"* domain(IN) is a set of vectors of time-functions containing the possible instances of .,',

"* range(IN) is a set of vectors of time-functions containing the possible instances of i',

S(,,. it) E IN if and only if ,. describes possible values of the inputs when m, describes the
values of the monitored quantities. 9

IN describes the behaviour of the input devices, it is a relation rather than a function because
of imprecision in the measurements. It must be the case that,

domain(NAT) C domain(IN),

because the input device must transmit some value for every condition that can occur in nature. 0

5.2.2 Relation OUT

Let "a," denote the vector (o',o'2 ..., o,) containing one element for each of the output regis-
ters. The effects of the outputs can be specified by a relation OUT, defined as follows:

" domain(OUT) is a set of vectors of time-functions containing the possible instances of o', 0

"* range(OUT) is a set of vectors of time-functions containing the possible instances of c',

* (9'.. e) E OUT if and only if e describes possible values of the controlled quantities when
o' describes the values of the output quantities.

OUT describes the behaviour of the output devices. It is a relation rather than a function be- 0 •

cause of device imperfections.

5.3 How can we document software requirements?

The software requirements are determined by the system design document and the system re-
quirements document. As mentioned earlier, the software requirements document can be seen as a 0
combination of those two documents. It would contain the relations NAT, REQ, IN, and OUT.

In the sequel we assume that REQ is feasible with respect to NAT, and that W', 5', i, and o' are
defined as in previous sections.

5.3.1 Relation SOF 0

The software will provide a system with input-output behaviour that can be described by a re-
lation, which we call SOF. It is defined as follows:

- domain(SOF) is a set of vectors of time-functions containing the possible instances of i',

e range(SOF) is a set of vectors of time-functions containing the possible instances of o', 0

- (i•', 9') E SOF if and only if the software could produce values described by o' when the in-

puts are described by ,'.

SOF will be a function if the software is deterministic.

53.2 Software acceptability 9

For the software to be acceptable, SOF must satisfy':

awnai D. L Pamas May 29, 1993 9:28 pm 0

S. .. i i.. .. . .. ....im I- n lm ll ll~ ii ml ll lm ll-....I. . ..-



(I) Va'� YV' Vc' [IN(aR'i') A SOFCi', ) A OUT(o', .€) A NAT(m#, 'ca) , REO(un'. c')]

Note, that if one or more of the predicates IN(t',,it), OUT(.o, ,), or NAT(,.',ce) are false, then
any software behaviour will be considered acceptable. For example, if a given value of n' is not in 0
the domain of IN, the behaviour of acceptable software in that case is not constrained by (1).

If we assume that relations REQ, IN, OUT, and SOF are functions, we can use functional no-
tation to rewrite (2) as follows:

(la) V.' (a' E domain(NAT) - (REQ(mi) - OUT(SOF(IN(r.'))))]

The writers of the requirements document must describe the relations NAT, REQ, IN, OUT.
The implementors determine SOF and verify (1) or (la). A document of this type may require nat-
ural language in the description of the environmental quantities, but can otherwise be precise and
mathematical. The use of natural language in the definition of the physical interpretation of math-
ematical variables is unavoidable and quite usual in engineering.

5.4 How can we document software behaviour?

Although the software requirements document fully represents the requirements that the soft-
ware must meet, it may allow observable differences in behaviour. It will often be desirable to
specify a subset of the behaviours allowed by the requirements document for actual implementa- 0
tion. In this way designers will make certain decisions that might otherwise have been left for the
programmers. The relation SOF can be described in a separate document known as the software
behaviour specification. This document is especially important for multiple-computer systems be-
cause it will define the allocation of tasks to the individual computers in the system. For computer
networks, or multi-processor architectures one may see a hierarchy of software behaviour specifi- *
cations with an upper level document assigning duties to a group of computers, and the lower lev-
el documents detailing the responsibilities of smaller groups of computers. The lowest level
documents would describe the behaviour of software for individual computers.

5.5 How can we document black-box module interfaces?
Most modem computer systems require software of such size and complexity that it cannot be 0

completed by a single person in a few weeks. For many reasons it is desirable to decompose the
software construction task into a set of smaller programming assignments. Each assignment is to
produce a group of programs (cf. Section 4.8) which we call a module. We view each module as
implementing one or more finite state machines, frequently called objects or variables. A descrip-
tion of the module interface is a black-box description of these objects. 0

Writing software module interface specifications is similar to documenting software require-
ments but some simplifications are possible. Many software modules are entirely internal; there
are no environmental quantities to monitor or control and all communication can be by means of
external invocation of the module's programs. Moreover, the state set of a software module is fi-
nite, and state transitions can be treated as discrete events. For most such modules, real-time can 0
be neglected because only the sequence of events matters. This allows us to replace the general
concept of time-function by a sequence describing the history in terms of discrete events; we call
these sequences traces.

In the following the universes from which .', .c, P and o' are drawn are assumed to include all vectors
of time-functions.

amast D. L Pamnas May 29,1993 9:28 pm

SS w 1,• - . S S



We identify a finite subset of the set of possible traces, which we call canonical traces. Every
trace is equivalent2 to a single canonical trace. Trace assertion specifications comprise three
groups of relations:

(1) Functions whose domain is a set of pairs (canonical trace, event) and whose range is a set of
canonical traces. The pair ((T,,e), T2) is in the function if and only if the canonical trace T2 is
equivalent to the canonical trace T, extended with "e". These functions are known as trace ex-
tension functions3 .

(2) Relations whose domain contains all the canonical traces and associate each canonical trace

with a set of values of output variables.

(3) Functions whose domain is the set of values of the output variables and whose values define
the information returned by the module to the user of the module.

5.6 How can we document Internal module design?

Each module has a private data structure and one or more programs. We propose to document
the design sufficiently precisely that its correctness can be verified. The internal documentation of
a module contains three types of information:

(1) A complete description of the data structure, which may include objects implemented by oth-
er modules.

(2) A function, known as the abstraction function, whose domain is a set of pairs (object name,
data state), and whose range is a set of canonical traces for objects created by the module. The
pair ((on, ds), 7) is in this function if and only if a trace equivalent to T describes a sequence of
events affecting the object named on that could have resulted in the data state ds. * *

(3) An LD-relation [2,3], often referred to as the program function, specifying the behaviour of
each of the module's programs in terms of mappings from data states before the program exe-
cution to data states after the execution

6 Do we need new mathematics or merely new representations? 0

There is something in the above that will be disturbing, perhaps even annoying, to many
people. We have managed to make precise mathematical statements about software engineering
using clasic mathematical concepts. We have not used M of the relatively new "specification
languages", which have been developed especially for software engineering applications. We
have even been able to talk about the real-time characteristics of systems without introducing any 0
changes in our logic for that purpose; we have dealt with real-time using the traditional
engineering approach, the use of functions whose range and domain are taken from the set of
time-functions. I have studied the new "formal methods" and simply do not see how they add
value. It seems to me that the mathematics needed by engineers to understand software is very
close to the classical mathematics that was developed before Computer Science became an 0
identified "discipline". In [5] I presented some serious doubts about the direction taken by
Computer Science; this paper presents further grounds for those doubts.

On the other hand, when we tackle real software engineering problems, such as the A-7
Onboard Fight Program [8], or the Darlington Nuclear Plant [9], we find a need, not for new basic

2 Two traces are equivaent if they have the same effect on future behaviour of the object.
3 A trace extension function is sometimes called a reduction function.

mast D.L Pamnas May 29,1993 9:28 pm 0

-s-'J



concepts but for new notations. The use of conventional, one-dimensional, notation to describe
functions and relations resulted in pages of repetitive formulae that were hard to parse. It is for
this reason that we have introduced the multidimensional notations, first used in [8] and described
in [7]. If the new specification languages are new, it is only in their semantics, they have deviated 0
in no significant way from the one-dimensional notation that is traditional in mathematics. Our
experience suggests that the semantic issues are not the serious ones. New notation, with classical
semantics, has proven very practical.

7 Acknowledgemeuts 0
These thoughts have been strongly influenced by H. D. Mills and N.G. de Bruijn. Some of the

text was taken from a paper written jointly with Prof. Jan Madey of Warsaw University ([4]).

8 References

[1] Parnas, D.L, "Predicate Logic for Software Engineering", CRL Report 241, McMaster
University, TRIO (Telecommunications Research Institute of Ontario), February 1992,.
Accepted by IEEE Transactions on Software Engineering.

[2] Parnas, D.L, "A Generalized Control Structure and Its Formal Definition",
Communications of theACM, Vol. 26, No. 8, August 1983, pp. 572-581. S

[3] Parnas, D.L, Wadge, W.W., "Less Restrictive Constructs for Structured Programs",
Technical Report 86-186, Queen's, C&IS, Kingston, Ontario, Canada, October 1986,

[4] Parnas, D.L., Madey, J., "Functional Documentation for Computer Systems Engineering
(Version 2)", CRL Report 237, McMaster University, TRIO (Telecommunications Research * *
Institute of Ontario), September 1991, 14 pgs

[5) Parnas, D.L., "Education for Computing Professionals", Proceedings of International
Conference on Computing and Information, ICCI'90, Niagara Falls, Ontario, May 23-26,
1990. Published in Advances in Computing and Information, S.G. Aid, F. Fiala, W.
Koczkodaj (editors), Canadian Scholars' Press Inc., 1990, pp. xi (ISBN 0-921627-70-X). 0

[6] Nederpelt, R.P., "De taal van de wiskunde", 1987, Versluys Uitgeverij by -
Almere, The Netherlands.

[7] Parnas, D.L., "Tabular Representation of Relations", CRL Report 260, McMaster
University, TRIO (Telecommunications Research Institute of Ontario), October 1992

[8] Heninger, K.L., Kallander, J., Pamas, D.L., Shore, J.E., "Software Requirements for the A- 0

7E Aircraft", NRL Memorandum Report 3876, United States Naval Research Laboratory,
Washington D.C., November 1978,523 pp.

[9] Parnas, D.L, Asmis, GJ.K., Madey J., "Assessment of Safety-Critical Software in Nuclear
Power Plants", Nuclear Safety, Vol. 32, No. 2, 1991, pp. 189-198.

anmat D. L Pamnas May 29,1993 9:28 pm

! .. V V w S ,,, 0



0

0

* 0

0

S

0@

0

0

S

0

0

-sea.

S S S S S S S 0 0



0

Mathematical training for the software developpers: 0

A practical experience

Jacques PRINTZ
SYSTAR
171 Buremux de la Colline
92213 Saint-Cloud Cedex d
France

1. Introictim

What kinds of mathematics are usefull for dhe software devdoppers raie the general
question of what is software in a quite similar way dth if we ask what kinds of mathematics
ar usefull for the chmists or the biologists.
Arguing on the very nature of software might rapidely become a rather academnical and * *
artificial question without any consistent answer. Following the advice of Wittgenstein
"Don't ask for a meaning, ask for a use!: I will prefer starting from the use.
In the case of software engmneeering, the basic question is: What kind of information
systems are we trying to build today, and, inside these systems, what is the role devoted to
the software? 0

At the early time of J.Von Neumann and until the mid 70th's software was mainly
a problem (sometimes very difficult) of creating algorithms. Consequently the way to
express algorithms, that is to say the issue of having *good" programming languages, was
ones of the dominant questions.
The amount of software development of tha time was the production of small sized staff,
often reduced to a single designer and some programmers, but with the interesting
caracteristic of having being well trained in mathematics,
"* either thru numerical analysis for practical computation problems as monte carlo

menthod or operation research or statistics,....
"• or, mo-e raey, thru -atemtia logic for creating sound system architecture,

cmrputation model or system model description including linguistic aspects,...
A good deal of madmatics has been elaborated and adapted at that time, mainly based on
the outcomes of reseach in the field of mathematc foundation accumulated in the first half
of the century. The strong connecion between the early computer science and mathematical
logic has give us the foundation of theoritical computer ence and the mathmatc
associated with it: automata theory, formal languages, computability,... etc.
That theoritical area of knowledge has had a first direct practcal application in the domain
of programming languages and their associated translators. Reliable compiler construction is
probably the most well known success and I can witness of iLt

*3 -



Maibmaoica mini•g fr the softw daelopp: a p aci perimc

Starting from the early 80th's with the PCs revolution, the nature of software has
been progressively and completely modifyed. It is becoming massiv and is better
caracterized by a more or less depth entanglement in large or very large systems, in the
sense of General System Theory, where some parts of the system are software and some
others are devices of any types which may include human beings to perform computation
still beyond the capacity of machines (as for example complex pattern recognition) or to
take the appropriate decisions and control the system. In such systems each pan influences
the others, creating the so called "strange loops" whose side effects are to exponentiate
complexity. Progressively, software is becoming "reactive* or embedded! The traditionnal
opposition between scientific or real time software, and business software, i.e. Cobol
software, is becoming meaningless with the rise of networks and graphical user interfaces.
Software is no more a solitary production and requires now large staff, sometimes several
hundredth of developpers and years of development, whose global behaviour may be far of
the elementary behaviour of its individual members in such a way that team organisation is
becoming a major issue.
Professor Lehman, in his book *System evolution: the process of software change", has
emphazised the strange relationship and duality which exist between the system to built and
what he calls the meta-system, that is to say the software production system itself; but he
hasn't provided any real explanation of what he has observerved so that what he has called
" Law of software engineering" may only be considered as an experimental evidence. The
situation may be depicted as follow:

THE SYSTEM ITSELF

Inu DEVELaMEN O utu Do In

SSOFTWARE FACTORY J V*,. mmi e

AMAS'r 93 i.Printz Dndlt 0510593 -- / --

SDaf bur M am0=0



M ba l rnaiminl kwr db sofiwm dsveloppme a pmatical *psn

It is now clear that undenrsding software implies necessarily to understand the
global system context, not only the architectural aspect of it but also the process to built it:
a kind of software embriology. Human aspect of software engineering is a major issue
facing the certitude that it will be much more difficult to automate than any other
engineering field such as hardware.
Again, a good deal of mathematics exists to describe the way systems behave: graph theory,
operations research, theory of games, coding and information theory, modelization, etc...

Coming back to Von Neumann, I mentionned above, it is quite remarkable that in
the latest part of his life when he literaly founded the theory of automata, he was especially
interested to find practical solutions to what he considered as the three fundamental factors
limiting the engineer's ability to build powerMull computer: 0
"* the size of elementary hardware components,
"* the reliability of the elementary components,
"* the lack of a theory of logical organization of complicated system of computing

elements.
Transposed in modern software terminology, we have the three basic issues:
"* the size of elementary automata (as a mathematical model of programs),
"* the reliability of automata (as an elementary proof of syntaxic and semantic correctness

Of programs),
"* the way to group automata to form very large sets of cooperative automata, or, in other

words, the way to organized them in order to be able to predict in a deterministic way, • *
thdr global behaviour and their expected global reliability.

These three issues are the hard core of main interrogations for the professionnal, or at least
mine! in order to offer a minimal warranty of the effectiveness of software engineering.

It is clear for me, and I hope for all of us, that, as in all the other engineering fields,
mathematics will play a prominent role in future software engineering. Not only *pure*
mathematical logic, but also all the mathematics mathematicians as Von Neumann, Turing,
Ulam,... considered usefull and which are even more relevant whith our day to day
problems.
It is important to note immediatly that some of the observed phenomena will deal with

rigid, all-or-none concepts, which is the caracteristic of logic and that some others are
better approximated with continuous concepts as for example reliability, serviceability and
adaptability of very large systems.

From a pedagogical point of view, an this is a fundamental issue for software
developper mathematical training, formal logic is one of the most refractory and abstract
part of mathematics as well as a very recent one; so we have to consider the role of
continuous model as an approximation of dicrete one's because continuous mathematics is
the best cultivated portion of mathematics with the most historical background which
provide us with large fields of interpretations and reformulations of classical questions. This
methodological advice of JvN formulated years ago is still applicable.

However, it is not my intention to play the historian and present the prominent role
of JvN in computer science, there is some good books on that subject. Reading master's
work is still exciting and rarely a waste of time. So, returning to our subject of

AMAST 93 J.Priaz Draft 05/059 - -

W - , W - . 0 0



MuhewsmicW lsining for db softnwu developpmu: a pccal lpeos •

mathematical training, I will present briefly three problems I have been confront
permanently during my professionnal life and the kind of mathematics one can guess behind
them.

These three problems may be summarized as follow.

P e # 1:We observe a great variability of the amout of programming required for
systems intuitively perceived as very similar to an other one (a range of I to 10 may be
easily observed). Is there anything similar in the field of mathematics and if yes, what is the
explanation? How can we explain that slight variations in the specification of a system may
create a totaly non-linear one at the programming (or automata) level in both direction,
positive or negative? Do we have models for that or is there only chaos?

Pmrble # 2. Very large software systems (up to several million lines of code cannot be
build from scratch. They require numerous intermediary steps before to be completed and
fully operational. The question is: what is the dynamic of growth of such software systems?
Wat is the complexity level one can manage step by step in order to avoid system
construction divergence or oscillations. What is the amount of ancillary work to provide in
order to bring the system in existence: a kind of thermodynamics second principle applied
to software engineering!

Problem # 3: Very large systems with billions of states are far beyond our ability to
provide formal proof of syntax and/or semantic correctness. What do we call the proof of * *
such a system, who give us warranty that the proof is correct and much shorter than the
sytem to prove? In other word, to speak as JvN, who custodes the custodies! Thus, system
reliability becomes a matter of probability and statistics. The question is: what are the
necessary conditions to ensure that the minimal has been done and what are, if any, the
mathematical models to ensure that error effects will be kept under a minimal threshold
given in advance as for example: the system may fail, but it must restart in a correct state in
less than x second? This time this is an equivalent Shannon's second theorem which must be
set up!

2. Pi - The variability of software system size 0

it is extremely difficult, even impossible, to have a practical experience of software
size variability in a classical software developper curriculum. To observ interesting
phenomena, large amount of development is required, generaly incompatible which the kind
of work which is asked to a student.
By chance, there is an interesting analogy between software development and mathematical
development so that we can use mathematical development as a substitute to program
development. The length of the proof of some theorems may vary in a wide range
according to the way the theory has been settled: kind of objects, representation of the
objects, choice of the axioms, and so on ...
A remarkable fact is that software size is weakly dependent of the programming language
but highly dependent of the architecture and organiamion of the whole software system.
Similar sitwitions exist in what mathematicians call local and global considerations in
mathematical development [see A.Lautman: Essai sur l'unitt des math6matiques].

AMAST 93 J.Priaz Dmaft 0505/93 - -

-- w w -wI w S *



MaIg iiaal Uniaing ukws a • •t•ww .dvveau: a pacw epxm

Thus, the central thesis for POI is that there exist a pertinent analogy between
program devlopment and mathematical theory development so that studying the latest will 0
provide us with insight for a better understanding of the former.

To go deeper, a brief recall of formal system theory will be needed. Very good
books edxt on formal systems and everything can be easily find.
At a first and rather intuitive level, we will consider a formal system as having 3 basic 0
components, as follow:
Syntax of the formal system.
Syntax of a formal system, later on abbreviated FS, is well illustrated by what is called
concrete syntax in programming language theory. This is a set of rules which explains how
basic objects and elements of the system are settled; how more complex expressions may be
built starting from the basic ones. Rules of naming - proper names and class/generic names
- (of exceptional importance in any complex system) belong to the syntax of the FS.
Semantic of the formal systMm
As opposed to syntax which is purely abstract, semantic deals with meaning, that is to say
how expressions may preserve properties as for example those of being tru or false with S

regard a given domain into which they can be interpreted or translated. Again,
programming languages allow us to illustrate simply what semantic is (but FS semantics is
far beyond programming language semantics, so beware of a limited understanding!).
Strongly related to syntax and semantic is the distinction made by the logician between
intension and extension. Intension deals with the form or syntax of an expression or a * *
function [see G.Frege - Begriffschrift - for a detail and precise analysis]. Extension deal
with the domains associated with the function, i.e input domains, output domains, state
domains, error domains, etc.. .Intension and extension are in a dual relationship and are two
ways of speaking of the same thing; intension and extension consideraion are of
exceptional importance in distributed systems where data and algorithms may be freely 0
exchanged.
Pramatic of the formal system
Pragmatic refers to the way the FS is used by the observer. In a logical perspective it deals
with different interpretations which can be associated with the FS and how facts of the real
world may be precisely associated with abstract domains defined in the FS. Obviously only 0
a small subset of the facts perceived in the real world may be abstracted and associated with
classes of the FS; such facts will received proper names to be identified unambiguously.
Sciences as physic witness of the difficulty to assign meaning to abstract entities and to
identify interesting abstract entities. In the programming world, pragmatic is of utmost
importance (much more important than in mathematics) because we are interested to know 0
how programs or systems behave and how they can be executed on real machines because
we have to interact more and more with them. Ada language introduce a notion of pragma
which is effectively relevant to pragmatic but which is far to cover all the pragmatic aspects
associated with the program text. Difficulties of using Ada in hard real time systems with
exact time constraints is a matter of language pragmatic; deterministic or non deterministic 0
run time environment is an other one which is an implementation choice.

3. P2 - Pattern of growth of software systems

AMAS 93 J.Puintz Dyaft 05/05/93 -- -

U U W w -, - 0 0



MadmmmIba traing for te msofwam drekopa: a pactical exp 0

Understanding the way and the conditions [sufficient and/or necessary] under which
software systems can growth is a major issue for the information technology industry. It
raises immediately two fundamental questions:
1. How can we measure or estimate software size, what is the unit of size?
2. h there any limit to the size of a software system? Are there any limitation factors? If

such factors exist, are they absolute or relative to a given maturity level of the software
industry? 0

In the absence of well defined unit of size (this is the case, up to now!) models which can
be built will have a strong qualitative taste and this is already an important limitation if we
compare this situation with the state of the art of other scientific engineering fields.
Once a model is defined, another important topic is the dynamic of the model. Every one
which has had the chance to work with large staff has been confront with some very strange 0
phenomena as oscillations or instability which may cause dramatic system regression. The
question is: what is behind? Is there anything in the software process which looks like
dynamic instability similar to what we find in chaos? What is the effect of the arrow of
time?
Thus, the central thesis for P#2 is that system dynamic is a fundamental topic of software 0
engineering which need to be investigated in detail - that is to say with the help of models,
even if they are qualitative - if we want to get a chance to understand factors which limit
software productivity.
To sustain the thesis, I will present 3 elementary models and will give some explanations on
how they relate to the real software world. Real word software development may de * *
depicted as follow:

--- R' REAL WORLD• 0

SOFTWARE DEVELOPMENT ORGANIZATIOh

S.

SYSTEM SOFT WARE

AMAST 93 J.Printz Draft 05/05193 - -

-mu w wi W•M a Mil m- ~ m 11 .... 0 "



MehbsambW bauunng far tbs uoft~wm drv.Iappu a prctwWa exsim

Parts of the real world are progressively translated in an executable software system. We
me interested to know the efficiency of the transformation, in particular how the
productivity ratio evolve according to the system structure and to the organization of the

Model I - M1 - is simply the exponential growth model when there is no limitation to the
growth. The characteristic equation of the model is the classical one:

AS -eSAT
where S is the actual size, AS the increase of the size, AT the increase of an abstract time
(approximatively the amount of effort) and e the rate of increase of S per unit of abstract
time T.

Model 2 - M2 - is the S curve (also called the logistical curve) model of paramounti
importance in software engineering as in other engineering fields as chemical engineering or
population dynamic. The well known equation of the model is

AS = (e- -L S) S AT
where X. is a limiting factor which depend on the system structure whose effect is to
diminish the rate of increase which is no more constanL This well known model is typical 0
of growth in the context of limited resources.

Model 3 - M3 - is a little bit more sophisticated and take in account the organizational
environment which may also induce additional limitation. As everybody knows,
organization may become less efficient (and sometimes very badly) when they grow old. * *
The corrspoding term, called self-infection or self-destruction term, will have the form

LS(u)F(u)du
into which F is a function which relates to the organization and its ability to generate noise
which will reduce its efficiency. I will describe that function by giving an intuitive
description of it with the help of a game theory model known as the prisonner dilemma.
The general equation of the model has now the following formT

AS = (6 - ) S - ES(u)F(u)du ) S AT

which has been studied and integrated by Volterra [see the Volterra's classic: Thdorie
Mathdmatique de la Lutte Pour La Vie]. 0

[...]

4. PO - Reliability of large software systems

It is a law of nature that reliability in a very broad sense deals with redundancy.
Human language is highly redundant and so are brain organization or mamals DNA
molecules. Hardware reliability, much more closer to us, is a supporting evidence that
desesperate situation (remember what hardware technology was at the time of JvN) can be
dominated and mastered. A prerequisite is that error phenomenon be recognized as a central 0
question in software development, if not THE unique one, as it has been in other field as
data transmission. To quote R.Hamming in his classic Coding and Information Theory
"Most bodies of knowledge give errors a secondary role, and recognize their existence only
in the later stages of the design. Both coding and information theory, however, give a

AMAS 93 J.Puinz Dnaft 05/05/93 -



Madwiim baimu8 1w d.a asoftme dadapper, a pmrame.zp r 0

central role to errors (noise) and are therefore of special interest, since in real life noise is

everywhere".0

Returning to our logical model roughly describes in P#1, errors may be present in the
* syntactic level,
* semantic level,
• pragmatic level.
Mathmatics can give us significant help for the syntactical level by providing for that level
well founded abstract object as automaton or elementary date structures which play for
information representation the same role as real numbers and functions in other engineering
fields.
Mathematics can give us some help for the semantical level by providing well founded
domain definitions to which abstract objects belong and well founded transformation rules
from one domain to an other one. Abstract monitor models as CSP or concurrency models
or programming models or normal forms in data modelling belong to that level.
Mathematics is of limited help, for not to said of no help, for the pragmatical level for
which there is no alternative to verification and validation technics. Again this situation is
rather common in all the engineering fields: there is no demonstration that the space shuttle
is bug free or that a bridge will not break. Trials must be done. Worst situations occur
when trials can't be done as for the Star War software system.

Thus, the fundamental issue is twofold:
First, the type of mathematical proofs which can be reached and in particular the * *
complexity of the proof itself. Proofs must be consructive; if they are not much less shorter
than the programs to prove, they are useless in the real engineering world. I consider as
very promising the kind of correctness proofs done for VLSI whose main result is to
dramatically reduce the simulation time to verify and validate the circuit.
Second, the management of redundancy to be added in the programs with a double
question: how much redundancy? and where to insert it in the programs? The problem is
how to reduce the time between the fault occurence and the fault detection by an observer
and how to control the program overhead in such a way that the real time behaviour be kept
under a threshold given in advance. Observer - a kind of Maxwell's deamon - gives us
information of the state of the system but also modifies and adds uncertainties to the system
behaviour as in Quantum Mechanics.
Then, the central thesis for P#3 is that redundancy management be recognized as the most
important topic of software reliability and that information theory provide a conceptual
framework to formulate clearly the very nature of information, redundancy and organization
as well as the role of the human or artificial observer.
In that paper I will only sketch a research direction, focused on elementary behaviour of
program flow (with the help of regular expressions) and on dynamic structure of the data
references associated with the program (topological relations between both). By the way,
we will see how test strategies may be make more effective.

5. Conclusion

AMAST 93 J.Priatz Draft 05/05/93 - 30 -

- ,ww...w w w I 0 0



Mamad . batnmmg for " softwe developpsm: a practical expenoe 0

Among the 3 problems presented in this paper, the latest is probably the most
challenging for the future of information technology. With regard the age of software
technology we are still in the period where we can simply and modestly observ the
phenomenon. We certainly need to measure much more quantitatively what we observ and
this is a preliminary condition to any progress. Software reliability ultimate aims will
probably take much more time to be achieved than expected (as compared whith hardware
engineering for which it has taken almost 50 years). To quote JvN " The great progress in
every science came when, in the study of problems which were modest as compare with
ultimate aims, methods where developed which could be extended further and further ....
The sound procedure is to obtain first utmost precision and mastery in a limited field, and
then to proceed to another, sometime wider one, and so on ..... The experience of more
advanced sciences, for example physics, indicates that impatience merely delays progress,
including that of treatment of the burning questions. There is no reason to assume the
existence of shortcuts".

Returning to the initial interrogations of usefulness of the mathematics for the
software developpers, I will insist a last time on two aspects which seems to me of equal
importance: S
"* First aspect is that there will be no future for software engineering without the help of

mathematical methods and especially those of the discrete mathematics.
"* Second aspect is that the way mathematical development is achieved thru the history, is

of exceptional pedagogical importance.

Mathematical development has evolved thru the ages, new concepts have been
added, formulations of classical problems have been entirely reformulated in a much more
natural and elegant way, and so on. Logic is a good illustration of both aspects, although
geometry and algebra offer probably far-reaching examples but may require more
mathematical skill. 0
These rather aesthetical considerations seem to me of considerable importance for the
software developpers, whose programs are (or should be) populated with abstract entities
sometimes far beyond of intuitive evidence, by providing them with logical forms and
reasonning schemes which are the foundation of rational, unambiguous and explicit thinkdng
as well as reliable human communication.

References

t...]

A'MAST 93 J.Printz Draf 05/05193 -- 31 --

, w, w, w w ,. -.. 0 0



S

0

0

0

0

* 0

0

0

S

0

0

w S S W S S S 0 0



0

Invited Papers

AMAST'93

Third International Conference
on 0

Algebraic Methodology and Software Technology

University of Twente . *

The Netherlands

Participants' Proceedings

-33-

w wW - - 0 *



S
0

0

0

0

* 0

0

0

S

0

*

-34-

w U S S W V 5 0 S



0

APPLYING ALGEBRAIC LOGIC TO LOGIC *
HAJNAL ANDRtKA, ISTVAN NiMETI AND ILDIK6 SAIN*

Mathematical Institute of the Hungarian Academy of Sciences
Budapest, P.O.B. 127, H-1364, Hungary

Abstract. Connections between Algebraic Logic and (ordinary) Logic. Algebraic counter-
part of model theoretic semantics, algebraic counterpart of proof theory, and their con-
nection.. The clam Alg(L) of algebras amociated to any logic L. Equivalence theorems
stating that L has a certain logical property iff AIg(L) has a certain algebraic property.
(E.g. L admits a strongly complete Hilbert-style inference system iff AIg(L) is a finitely
axiomatizable quasivariety. Similarly, L is compact iff AIg(L) is closed under taking ul-
traproducts; L has the Craig interpolation property iff AIg(L) has the amalgamation
property, etc.)

Contents
1. Introduction ...................................................................... 1
2. General framework for studying logics ........................ 3

2.1. Logics with satisfaction and/or meaning ....................................... 9
3. Bridge between the world of logics and the world of algebras ...................... 12

3.1. Basic concepts ............................................................... 12
3.2. M ain theorems .............................................................. 17
3.3. Some universal algebraic tools for algebraic logic ............................. 33
3.4. Distinguished logics .......................................................... 36

References ......................................................................... 39 * *

1. Introduction

The idea of solving problems in logic by first translating them to algebra, then using
the powerful methodology of algebra for solving them, and then translating the solution
back to logic, goes back to Leibnitz and Pascal. Papers on the history of Logic (e.g.
Anellis-Houser [AH91], Maddux [Ma9l]) point out that this method was fruitfully
applied in the 19tb century not only to propositional logics but also to quantifier logics 0
(De Morgan, Peirce, etc. applied it to quantifier logics too). The number of applications
grew ever since. (Though some of these remained unnoticed, e.g. the celebrated Kripke-
Lemmon completeness theorem for modal logic w.r.t. Kripke models was first proved
by J6nsson and Tarski in 1948 using algebraic logic.)

For brevity, we will refer to the above method or procedure as "applying Algebraic •
Logic (AL) to Logic". This expression might be somewhat misleading since AL itself
happens to be a part of logic, and we do not intend to deny this. We will use the
expression all the same, and hope, the reader will not misunderstand our intention.

In items (i) and (ii) below we describe two of the main motivations for applying AL
to Logic. 0

"We are very grateful to Agnes Kurucz for substantial contribution to both the contents and the for-
of this work.

-35-
U V W - - 3 - -S *



1. INTRODUCTION

(i) This is the more obvious one: When working with a relatively new kind of problem,
it is often proved to be useful to "transform" the problem into a well understood and
streamlined area of mathematics, solve the problem there and translate the result back. S
Examples include the method of Laplace Transform in solving differential equations (a
central tool in Electrical Engineering).

At this point we should dispell a misunderstanding: In certain circles of logicians
there seems to be a belief that AL applies only to syntactical problems of logic and
that semantical and model-theoretic problems are not treated by AL or at least not 0
in their original model theoretic form. Nothing can be as far from the truth as this
belief, as e.g. looking into the present work should reveal. A variant of this belief is
that the main bulk of AL is about offering a cheap pseudo semantics to Logics as a
substitute for intuitive, model theoretic semantics. Again, this is very far from being
true. (This is a particularly harmful piece of misinformation, because, this "slander" is •
easy to believe if one looks only superficially into a few AL papers.) To illustrate how
far this belief is from truth, the semantical-model theoretic parts of the present work
emphasize that they start out from a logical system Z whose semantics is as intuitive
and as non-algebraic as it wants to be, and then we transform C into algebra, paying
special attention to not distorting its semantics in the process; and anyway, finally we
translate the solutions back to the very original non-algebraic framework (including
model theoretical semantics).

In the present paper we define the algebraic counterpart Alg(Z) of a logic £ together
with the algebraic counterpart Alg 2(C) of the semantical-model theoretical ingredients
of £. Then we prove equivalence theorems, which to essential logical properties of * 0
£ associate natural and well investigated properties of Alg(£) such that if we want to
decide whether £ has a certain property, we will know what to ask from our algebraician
colleague about Alg(C). The same devices are suitable for finding out what one has
to change in £ if we want to have a variant of C having a desirable property (which
C lacks). To illustrate these applications we include several exercises (which deal with
various concrete Logics). For all this, first we have to define what we understand by
a logic C in general (because otherwise it is impossible to define e.g. the function Alg
associating a class Alg(C) of algebras to each logic C.

(iH) With the rapidly growing variety of applications of logic (in diverse areas like
computer science, linguistics, AI, law, etc.) there is a growing number of new logics to be S
investigated. In this situation AL offers us a tool for economy and a tool for unification
in various ways. One of these is that AIg(C) is always a class of algebras, therefore we
can apply the same machinery namely Universal Algebra to study all the new logics.
In other words we bring all the various logics to a kind of "normal form" where they
can be studied by uniform methods. Moreover, for most choices of £, Alg(£) tends
to appear in the same "area" of Universal Algebra, hence specialized powerful methods
lend themselves to studying Z. There is a fairly well understood "map" available for the
landscape of Universal Algebra. By using our algebraization process and equivalence
theorems we can project this "map" back to the (far less understood) landscape of
possible logics.

-36-

_ W, W W, Wq w W 0 0



2. GENERAL FRAMEWORK FOR STUDYING LOGICS

2. General framework for studying logics

Defining a logic is an experience simil to defining a language. (This is no oincidence
if you think about the applications of logic in e.g. theoretical linguistics.) So how do we
define a language, say a programming language like Pascal. First one defines the ayntaz 0
of Pascal. This amounts to defining the set of all Pascal programs. This definition
tells us which strings of symbols count as Pascal programs and which do not. But this
information in itself is not very useful, because having only this information enables the
user to write programs but the user will have no idea what his programs will do. (This
is more sensible if instead of Pascal we take a more esoteric language like ALGOL 68.) 0
Indeed, the second, and more important step in defining Pascal amounts to describing
what the various Pascal programs will do when executed. In other words we have to
define the meaning, or semantics of the language, e.g. of Pascal. Defining semantics can
be done in two steps, (i) we define the class M of pousible machines that understand
Pascal, and then (ii) to each machine Xt and each string V of symbols that counts as •
a Pascal program we tell what RR will do if we "ask" to execute io. In other words we
define the meaning mean(W, MI) of program ip in machine 9R.

The procedure remains basically the same if the language in question is not a program-
mring language but something like a natural language or a simple declarative language
like first-order logic. When teaching a foreign language e.g. German, one has to explain * 0
which strings of symbols are German sentences and which are not (e.g. "Der Tisch ist
rot" is a German sentence while "Das Tisch ist rot" is not). This is called explaining
the syntax of German. Besides this, one has to explain what the German sentences
mean. This amounts to defining the semantics of German. If we want to formalize
the definition of semantics (for, say, a fragment of German) then one again defines a 0
class M of possible situations or in other words, "possible worlds" in which our German
sentences are interpreted, and then to each situation Xt and each sentence V we define
the meaning or denotation mean(,p, MI) of ip in situation (or possible world) Wt.

At this point we could discuss the difference between a language and a logic, but we
do not need that. It is enough to say that the two things are very-very similar.1  0

Soon (in Definition 2.1 below) we will define what we mean by a logic. Roughly
speaking, a logic C is a triple

Z = (FL, Me, meanc), 0

where

"* Ft is a set, called the set of afl form••au of Z,
"* Mc is a class, called the class of all model (or possibe worlds) of £,
"• meanz is a function with domain F, x Mc, called the meaning function of Z. 0

,The philoeophical minded reader might enjoy looking into the book [P189, cf. e.g. B.Partee's paper
therein. More elementary ones are: Sain [S80/a] and [SSO/b].

-3;-

.. , w w , w



2. GENERAL FRAMEWORK

Intuitively, FC is the collection of "texts" or "sentences" or "formulas" that can be
"said" in the language 4. The meaning function tells us what the texts belonging to
Ft mean in the possible worlds from Mg. 0

Often, instead of men,-, we rather have a relation ý=,- Mc x Fr, called udiditp
reation. In more detail, very often from menC the relation £C is definable (and vica
versa); but in general, we may have a logic Z where =,c does not make sense at all.

When no confusion is likely, we omit the subscripts C from Ft, Mt etc.
A typical definition of F has the following recursive form. Two sets, P and LC are 0

given; P is called the set of primitive or atomic formulas and LC is called the set of
logical connectives (these are operation symbols with finite or infinite ranks). Then we
require F be the smallest set H satisfing

(1) P C H, and
(2) for every Vi, -.. E H and f E LC orank n, f(0j, E H.

For example, in propositional logic, if pl, p2 are propositional variables (atomic formulas
according to our terminology), then (p, A p2) is defined to be a formula (where A is a
logical connective of rank 2).

For formulas w E F and models XT E M, mean(V, !T) is defined in a uniform way (by
some finite "schema"). 0

For a logic C = (F, M, mean), F belongs to the syntactic part, while M and mean
to the semanical part of C. Figure 1. below illustrates the general pattern ("fan-
structure") of a logic.

F*•

M
(huge) collection of

possible worlds
(or models)0

meaning

function

V0

syntax semantics

Figure I

-38-



S!
2. GENERAL FRAMEWORK FOR STUDYING LOGICS

Though above we said that a logic only roughly peaking is a triple described above, in
Definition 2.1 below we call such a triple a logic. This definition of a logic is very rude. 0
However, we will see that it well serves the purposes of the present paper. Therefore we
do not try here to give a more refined definition of a logic.

In Definition 2.1 we give the definition of a logic with validity relation H. We will
turn to logics with meaning functions only in section 2.1 later.

DEFINITION 2.1 (Logic):
By a logic Z we mean an ordered triple

Cr (Ft, M.,1,

where (i)-(iii) below hold.

(i) Ft (called the set of formldas) is a subset of finite sequences (called words) over
some set X (called the alphabet of C) that is,

Fc 9_ X" 4f {(a,... ,a._•) : n e W, (Vi < n) aie X);

(ii) Mt- is a class (called the class of models);
(iii) IHt (called the validity relation) is a relation between Mt and Ft that is,

DEFINITION 2.2 (Semantical Consequence): * *
Let £ = (Ft, Mr, kt:) be a logic. For every W E Mt, E C Ft,

Modt(E) d=' { E Mc : 1t HI=, E}.

A formula V is said to be valid, in symbols 1-t V, if Modc({4}) = MC.
For any E U {lp} 5. Ft,

E I t d 44 Mod(E) _ Mod({fp}).

If E t," ip, then we say that ip is a semanticea consequence of E (in logic C). -4

Now we define some basic logics. Though we think the reader is familiar with classical
propositional logic, for fixing our notation, we start with the definition of it.

DEFINITION 2.3 (Propositional or Sentential Logic Cs):
Let P be an arbitrary but fixed set, and let A a binary and -, a unary logical connective

(operation symbol). P is called the set of all atomic formulas (or propositional variables)
of propositional logic.

(1) The set Fs of formulas of propositional logic is defined to be the smallest set H 0
satisfying the following two conditions:

". P H, and
" P, sEH * (•A^E),(-V) H.

irS



2. GENERAL FRAMEWORK 4

(2) The class Ms of models of propositional logic is defined as

Ms -- {(W,v) : W is a non-empty set and v : P --# '(W)). 0

IfR = (W,v) Ms then W is called the set of possible worlds (or states or situations)

(3) Let (W, V) E Ms, wo E W, and Vo E Fs. We define the binary relation wo IF. Wo by
recursion on the complexity of Wo as follows:

• i p EP then (w IF. W wE p)
* if 01, 02 E Fs, then

w IF, 0,1 A 02 .0 w IF-. 0, and w IF-. 02.

If w IF. V then we say that V is true in w, or w forces W.
We say that Vo is true in (W, v), in symbols (W, v) ý=s W or W $s W[v), iff for every

w E W, w IF. W.

Now, propositional (or sentential) logic is defined to be the triple

C ,, (Fs, Ms, ks).£S 0

EXERCISE 2.1:
Let (W0 -- 0) -0 "-(V A -0V) and W "- 0, 0 ( -*) A (0b. •) Prove that

S{i) ý=s 0 4' * ýs (W -. 0)
* ({f) ý=s 0 and {f)} I=s W) 4-- •s (W +-' ). 0

DEFINITION 2.4 (Modal logics S5, K; Arrow logics 4 ARWO, CARWRL): 0
For each logic in this definition, first a relation IF similar to the one in Definition 2.3

will be given, and the validity relation • will be defined from IF exactly the same way
as in in Definition 2.3.

The set of connectives of modal logics S5 and K is {A, , 0}.

* The set of formulas (denoted as Fss) of S5 is defined as that of 4s together with
the following clause:

WoEFss == Owe Fss.

Let Ms5 5 U= Ms. The definition of w IFH, ý is the same as in the propositional
case but we also have the case of 0:

Now, modal logic S5 is S5 4e (Fss, Mss,1).

-40-

- w WW W VV S



2. GENERAL FRAMEWORK FOR STUDYING LOGICS -

e The formulas of logic K are those of S: FK =~f Fss. The models of K are
those of S5 together with a binary relation (called accessibihity relation) for each
model. More precisely, 0

MK d4---' {((W,v),R): (W,,v) E Ms and R C W x W}.

The definition of w IF. cp is as above, but in the case of 0 we require that w' is
accessible from w that is,

w IF, 0j 44 (3w' E W)(R(w, w') and w' I,, V).

Then modal logic K is K 4- (FK, MK,I).

The set of connectives of arrow lo1gcS CARWO, CARWRL is {A,-,o, -, Id}.
"* The set of formulas of LARWO (denoted as FARWo and called arrow formutu) is

defined as follows. All sentential formulas are arrow formulas (i.e. FS C FARWO),

and

(p, 0 E FARWo := jP o , V- E FARWo
Id E FARWo

The models are those of propositional logic ts enriched with three accessibility
relations. That is,

MARW04df {((WV),C1,C 2, G) : (W,v) E Ms, C, C_ W x W x W,

C2 CW x W, C3 _w}. W

For sentential connectives -, and A the definition of w IF, V is the same as in the
sentential case. For the new connectives we have:

wo IF-, jp 0 4%J (3 wv,,W2 E W) (Ci *W1, Wi 2 ) & w,1 IF-, V~ & W2 IF-, 0b
wo IIF. V' J+ (3w' 6 W)(C 2(w,,w') & W, IF. 'P)

,IF-, L J C3(W).

Then arrow logic CARWO is ZARWO 4d (FARWO, MARWO, 0).

"* The formulas of £ARWRL are the arrow formulas, i.e. FARWRL 4--' FARMw. The
models are those of LARWO with the following restriction. For every model
(W,v) E MARWRL, W is a binary relation on some set U that is, W C_ U x U.
Moreover, C1 is relational composition, C 2 is the converse relation, and C3 is the
identity on U, respectively. More precisely, for any W1 , W2 , W3s W, we let

C2(wi,W2,tV3) (3uj,U2,,U3 E U)(wi = (U1,U3) &

W02 = (Uh U2 ) & W3 = (U2 , U3))

C2(w,,w 2) ,• (3u,,U2 E U)(w, = (u1,,,) & W02 = (U2,Ul))

Cs(wi) 4 (3u E U) wi = (u,u).

Given these restrictions, the definition of II- is the same as in the previous case.

Arrow logic CARWRL is CARWRL 4 (FARWRL, MARWRL, P). 4

U V W W - w! -



2. GENERAL FRAMEWORK

EXERCISE 2.2: Try to find similarities and differences between the logics £s, S5,
K, CARWO and CARWRL. 4 0
EXERCISE 2.3: Consider the fragments £ARWO and £ARWRL of our arrow logics 0
defined above which differ from the original versions only in that they do not contain
the logical connectives and Id. Prove that CLAw 0 is equivalent to CARWRL in the
sense that they have the same semantical consequence relation ý=.

Prove that CARWO is not equivalent, in the above sense, to £ARWRL. 4

DEFINITION 2.5 (First-order Logic with n variables .): 0
First-order logic with n variablej is defined to be a triple

£. d4_" (F., M.,,),

for which conditions (1)-(3) below hold.

(1) Let V L* Jv0,... ,v-..} be a set, called the set of variables. Let the set P of

atomic formulas be defined as P 4f {ri(vo ... vU-) : i E I} for some set I. Then
the set F. of formulas is the smallest set H satisfying

.PCH
* v=wEH foreachv,wEV
* WoOEH,vEV = •oA•,-wo,3vwoEH.

(2) The class M. of models of 4. is defined by

M. = f {(A,Ri)ilI : A is a non-empty set and Ri C_ "A (i E)J. I )

If Wt = (A, R,),4I E M. then A is called the universe (or carrier) of M.
(3) Let Wt = (A, Rj)jEI E M,, q E nA, and V E F,. We define the ternary relation

W? V o[q] by induction on the complexity of V: •

* •l irC(vo...vVn_1)[q] M qE A (iEI)

v I =v= [q] 4% q,=qj (ij E)
* if 0, 0 E•Fs, then

Wt , [q] 44 not Wt k,[q]

Wt ^ 1 A 2[q] 44 W J 01 [, ]and W f=02 [q]

91fl=3,vj&[qJ 44 (3q'E"A)[(Vi:AjEI)
qj' = 1&=t, - 0 • [q']].

If Wt1 • [q] then we say that the evaluation q satisfies Wo in model 9W.
We say that Wt Vn iff for every q E "A Wt i [q]. 4

-41-



2.1 LOGICS WITH SATISFACTION AND/OR MEANING -

DEFINITION 3.6 (Theory):
Let (F, M, J=) be any logic. For any K C M let the theor of K be defined as

Tk(K)={LF :(VM EK)4 0

Recall the notions of recursively enumerable and decidable sets (of formulas).

DEFINITION 2.7 (Decidability of Logics):
We say that a logic is decidable iff Th(M.) is a decidable set of formulas. 4

THEOREM 2.2 (Decidability of CS and S5). Propositional logic Cs and modal
logic S5 are decidable. l

This theorem will be proved later. We will show that, in both cases, the set of valid
formulas is recursively enumerable (r.e.) and that these logics have the finite model
property (to be defined later).

@ 0
2.1. Logics with satisfaction and/or meaning

Defining alogic as (F, M, -) with ýgM x F isan oversimpifiation for the following
reasons. If we look at the logics in Defs.2.3-5 (S5, Z., etc.) we will notice that they
contain a richer semantical structure than just a binary relation 1C_ M x F. In each
case, there is a class Par of parameters and a ternar relation 11-C M x Par x F which
is usually called the satisfaction relation. In the definition of S5 we should have written
(Wt, w) IF- or at least t, w IF- V instead of w IF-, i. However, for simplicity we used the
latter, and we used the subscript "v" to indicate the presence of Wt. Anyway, a little
reflection reveals that the definition of S5 uses a ternary relation "Wt, w IF- W9', where w
was called a possible situation (world) of Wt.

The same applies to ZARWO, etc. Perhaps the least trivial case is that of Z.. There we
use "Wt, q -IF0", where t = (A,R, : i E1) and q E *A. In case of Z., the traditional
way of writing "0, q II- W" is "Wit j= W[q]" and is pronounced as the evaluation q satisfies 0
W in the model Wt.

In each of the logics we saw so far, first (F, M, IF) is defined and then the binary
validity relation • is derived (in some way) from the deeper, more substantial relation
IF- (in a sense, ~=was always a "simplified part" of IF-). In all of our examples the
following derivation of fi from IF. works.

(*) l iff (VOEF)Vw[(3wIF-) = (!DwIF-p)J.

43 0

1- qW W W0W



0

2. GENERAL FRAMEWORK

EXERCISE 2.1.1: Check that (*) above is true for all the logics we defined so far.

EXERCISE 2.1.2: Show that while • can be derived (i.e. recovered) from IF, in most 0
of our logics IF cannot be recovered from ý=. 4-

There are ways other than (*) above for deriving • from IF. E.g. (**) below works
too (for the logics considered so far):

(Wt) if Vwt[(Wt,w IF- (.p "-. V)) (0,tw IF-

(cf. Exercise 2.1).
DEFINITION 2.1.1 (Logic with Satisfaction):

By a logic twith satisfaction we understand a quadruple £ = (F, M, IF, I), where •
(i) (F, M, ý=) is a logic in the sense of Def.2.1;

(ii) f= is derived from II- in a manner similar to (*) or (**) above. 4

We know that item (ii) in the above definition is somewhat vague. If that would
disturb the reader, it is safe to substitute (*) for (ii).2

EXERCISE 2.1.3: Show logics (in the sense of Def.2.1) in which though t= can be
derived frmn IF in some way, neither (*) nor (**) hold. 4

Instead of the above concept of a logic with satisfaction, we will use a less ad-hoc
variant which is at least as general as the above one. The idea is the following. Given
"a syntactic entity (a formula) Vp E F, and a possible world Wt E M, instead of giving
"a truth value (Wt I-- V or 2R1 & V) to Vp in Wt, we associate a meaning to V in Wt.
Certainly, the most natural (and most general) thing a syntactic expression 'p might 0
have in an environment or world Wt1 is a meaning. What that meaning will be might
depend on the kind of expression 'p we are looking at, and the kind of Wt1 we are having
in mind. E.g. the meaning might be a truth value (Tiue, False); or an element of the
set 911 denoted by W; more generally a denotation; if 'p is a program and 911 is a machine
then the meaning of 'p might be the function computed by ' in 911; or if we are in a
logic with satisfaction then it might be the set {fw : 0, w IF- .

DEFINITION 2.1.2 (Logic with Meaning):
By a logic with meaning we understand a quadruple C = (F, M, k, mean), where

mean is a function with domain F x M and conditions (i), (ii) below hold.
(i) (F,M 1=) is a logic in the sense of Def.2.1; 0

(ii) p is derived from mean either by (* * *) below or by a similar definition.

, • ,) 91= 'p ii (V, E F)[mean(O, Wt) C_ mean(ip, Wt)],

for allO E F, Wt E M. 4 0

2We wanted to keep our definition more general but that is not emential for the present work. Also
we felt that while condition (,) is not so ementiai to the concept of a logic as the admittedly vague
formulation of (ii).

- 4-

w m - - Wmmdm m ma al~mm m W - .. . . w 0



2.1 LOGICS WITH SATISFACTION AND/OR MEANING

A similar remark applies to (ii) above as the one below Def.2.1.1.

EXERCISE 2.1.4: Prove that logics with satisfaction and those with meaning are
equivalent in the following sense: 0

(1) To every logic Z.... = (F, M, 1=, mean) with meaning there is some logic .. t =
(F, M, -, II-) with satisfaction such that they are interdefinable; and

(2) To every C..t there is an Cm... as in (1) above.

(Hint: Assume Cmean = (... mean) is given. Let

Par 4fURng(mean) = U mean(W, W) : W E F, 1 E M}.

For w E Par define [(WT, w IF W) 44 w E memn(jo, T3)]. In the other direction (i.e.

assuming 4,.t is given first) mean(p, Ml) 4de1 {w : Pl, w IF- W}. Show that using these
definitions £,,.,e and 4,, are completely recoverable from each other.) -4
EXERCISE 2.1.5: Show logics (in the sense of Def.2.1) in which though there is a
"sensible" meaning function, condition (. •) above does not hold. (Hint: Try e.g.
many-valued logics.) 4

-45-

, 0



S

3.1. BASIC CONCEPTS

0

3. Bridge between the world of logics and the world of algebras

The algebraic counterpart of classical sentential logic Cs is the variety BA of Boolean
algebras. Why is this so important? The answer lies in the general experience that
it is usually much easier to solve a problem concerning Cs by translating it to BA,
solving the algebraic problem, and then translating the result back to Cs (then solving
it directly in 4s).

In this section we extend applicability of BA to i-s to applicability of algebra in
general to logics in general. We will introduce a standard translation method from logic
to algebra, which to each logic Z associates a class of algebras Algj(£C). (Of course,
Alg l (4s) will be BA.) Further, this translation method will tell us how to find the
algebraic question corresponding to a logical question. If the logical question is about £
then its algebraic equivalent will be about Algj(,C). For example, if we want to decide
whether ZC has the proof theoretic property called Craig's interpolation property, then
it is sufficient to decide whether Algj(C) has the so called amalgamation property (for
which there are powerful methods in the literature of algebra). If the logical question
concerns connections between several logics, say between £I and £2, then the algebraic
question will be about connections between Alg 1 (C1) and Alg 1 (C2). (The latter are
quite often simpler, hence easier to investigate.)

3.1. Basic concepts

0

The definition of logic in section 2 is very wide. Actually, it is too wide for proving
interesting theorems about logics. Now we will define a subclass of logics which we will
call nice logics. Our notion of nice logic is wide enough to cover the logics mentioned in
the previous section, moreover, it is broad enough to cover almost all logics investigated 0
in the literature. (Certain quantifier logics might need a little reformulation for this,
but that reformulation does not effect the essential aspects of the logic in question as
we will see.) On the other hand, the class of nice logics is narrow enough for proving
interesting theorems about them, i.e., we will be able to establish typical logical facts
that hold for most logics studied in the literature.

Before reading Def.3.1.1 below, it might be useful to contemplate the common features S
of the logics studied so far, e.g. 4s, S5, LARWO, Z.- When presenting this material
in class, many more logics were discussed in order to motivate the definition of a nice
logic. Some of these logics are collected in section 3.4 below. It might be a good idea
to look into 3.4 too before reading the definition below. 0

In all the logics studied so far (and also in 3.4), the biconditional "4-#" is available as
a derived connective. In condition (3) of Def.3.1.1 there will occur a new symbol "V"
denoting a derived connective of the logic in question. At first reading it is a good idea

w,1 w, 0,wI 0



0

3. BRIDGE BETWEEN LOGICS AND ALGEBRAS

to identify "V" with our old biconditional "%'. Certainly, if we replaced condition (3)
with the simpler assumption that """ is expressible in our logic C then all theorems
would remain true. However, at a second reading of the definition it might be useful to
observe that our condition (3) is a weaker assumption then expressibility of "4-f" (and
that this makes the class of nice logics broader).

We also note that the theorems of section 3.2 below (based on the next definition)
can be proved in a more general setting (d. [ANS84]). Here we do restrictions in order
to make the methodology more transparent. 0
DEFINITION 3.1.1 (Nice Logic, Strongly Nice Logic):
Let (F, M, 1=) be a logic in the sense of Definition 2.1 (i.e. F is a set, M is a class, and
= M xF.

We say that C is a nice logic if conditions (1-4) below hold for C.
(1) A finite set Cn(,C), called the set of logical connectives of C, is fixed. Every

c E Cn(.C) has some rank rank(c) E w. The set of all logical connectives of rank
k is denoted by Cnk( 1).

There is a set P, called the set of atomic formulas (or parameters or propo-
sitional variables or ... ), such that F is the smallest set satisfying conditions
(a-b) below.

(a) P C F,
(b) if cE Cnk(12) and V'I,... ,i E F then c(Wl,.. .,(p) E F.

The word-algebra generated by P using the logical connectives from Cn(C) as
algebraic operations is denoted by F that is, F = (F, c)cEc.(C). F is called the
formula algebra of 1.

(2) We assume that a function mean is given with Dom(mean) = F x M and
means If (mean(Vp,X1I) : V E F) is a homomorphism from F for every M1l

(cf. section 2.1).
(3) We assume that there are "derived" connectives "True" (zero-ary) and "V"

(binary) of C with the following properties:
(i) (VWZ E M)(VW, , E F)[MJ-- (VVV) 4=* mean(&') = meanwt(O)].
(ii) (VM? E M)(Vpo E F) [RRt J TrueVjp 4==• MI J- V].

(By "derived" we mean that "True" and "V" are not necessarily members of
Cn(Z). They are only "built up" from elements of Cn(,2). But we do not know 0
from which elements of Cn(12) "True" or "V" are built up, or how. We do not
care!)

(4) (VO, w0, w.., E F)(Vp0,. P.., E P)[p¢• = =¢p•]

where = (po,...,p.), ? = (cpo,... ,IV), and 0(5/i) denotes the formula that
we get from 0 after substituting V, for every occurrence of pi (0 ( i < n) in •.
We refer to this condition as '12 has the substitution property'.

1 is called strongly nice iff it is nice and satisfies condition (5) below.

(5) (Vs E PF)(V!f E M)(391 E M)(VWo(pi,,... ,pi.) E F)

(+) mean=i((p) meanwt(,p(p 1 */s(p,0),.. ,p,./s(p1 ))).

U V V - - - S-



0

3.1. BASIC CONCEPTS

Let S E FF be the natural extension of s to F. Then (+) says mean%(%o) - 0
meanm(i(tp)). If this property holds, then we say that the logic ',C Aa the
semantical substituiion property' (the model M is the substituted version of Z 0
along substitution a). 4

Recall that if 2 and M are two similar algebras, then Hom(, !B) denotes the set of
all homomorphisms from 2 into W.

REMARKS 3.1.1.1:

(i) An equivalent form of (+) above is the very natural condition

(h E Hom(F, F)) (VDII E M)(391 E M) meangi = meangl o h.

Since h is just a substitution, this form makes it explicit that 91 is the h-
substituted version of 9R. Other equivalent version is the following.

(Vmt E M)(Vh E Hom(F, meanm(F))) (391 M) mean% = h.

(ii) Item (2) of Definition 3.1.1 above is a purely logical criterion. Namely, it is
Fr~ge's principle of compositionality.

(iii) Item (3)(i) and (ii) of Definition 3.1.1 above give the following connection between
Sand mean:

*0
(VVo E F)[= W == (VRR E M) meanu(ip) = mean(7(True)].

(iv) In the presence of (3) of Definition 3.1.1 above, semantical substitution property
((5)) implies substitution property ((4)). 4

EXERCISE 3.1.1: Show that 4n, CS, S5, CARWO and £ARWRL are strongly nice
logics. (Hint: In each case, "+-+" is good for "V".) 4
EXERCISE 3.1.2: Show logics where "V" is not our old biconditional "'-". (E.g.,
in S5 we can also take 0(11 +-+ $2) as $1 V7 2 .) 4

DEFINITION 3.1.2: (Algebraic Counterpart of a Logic) 0
Let £ = (F, M, 1=) be a logic satisfying conditions (1),(2) of Definition 3.1.1 above.

(i) Let K C M. Then for every w, 0 E F

W~ -K = (VWZ E K) me-n3(ip) = meanst(O).

Atd) I{/~:K M}.

(ii) d'g(Z LI meF (FK : K • MI.

A lg 2 ( Z ) 4 -' 1 ( e n ( F ? E M

where meang was defined in item (2) of Definition 3.1.1, and for any homomorphism
h : 1 -- 9B, h(21) is the homomorphic image of Qi along h i.e., h(%) is the smallest
subalgebra of !8 such that h : - h(%). 4

- -



3. BRIDGE BETWEEN LOGICS AND ALGEBRAS

FACT 3.1.2.1: For nice logics

AIg,(£C)=I{F/-r: r CF}, 0

where c p-r A4 (V E M)(M p r = mest(ip)=mevi.(4)).

PROOF: For every K C M F/1 -K= FF/ -T(K), and for every r C F F/1~r=

F/1 Mo(r) hold (d. Definitions 2.2 and 2.6). 4

EXERCISE 3.1.3: Show that for any logic £ satisfying conditions (1),(2) of Definition
3.1.1

"* Alg 2(C) _ Algi(C)
"* SPAIgi(C) = SPAIg2(C). 4 0

Recall the definitions of the class BA of Boolean algebras and of the class Cs1 of
one-dimensional cylindric set algebras.

EXERCISE 3.1.4: Prove that 0

(i) AIg2(Cs) = BA
(ii) AIg2(S5) = Cs 1. 4

The class RRA of representable relation algebras and its relativized version will be
introduced and investigated in Chapter I There we will see that AIg2(£ARWRL) coincides
with the relativized version of RRA.

Next we turn to inference syjtems. Inference systems (usually denoted as I-) are
syntactical devices serving to recapture (or at least to approximate) the semantical
consequence relation •e of the logic C. The idea is the following. Suppose Eý=&.
This means that, in the logic £, the assumptions collected in E semantically imply the
conclusion tp. (In any possible world Df of Z that is, in any Mt E Mz, whenever E is
valid in M1, then also V is valid in IR.) Then we would like to be able to reproduce
this relationship between E and p by purely syntactical, "finitistic" means. That is, by •
applying some formal rules of inference (and some axioms of the logic £) we would like
to be able to derive po from E by using "paper and pencil" only. In particular, such
a derivation will always be a finite string of symbols. If we can do this, that will be
denoted by E F- V.
DEFINITION 3.1.3 (Formula Scheme):

Let £ be a nice logic with the finite set Cn(£) of logical connectives (d. (1) of
Def.3.1.1). Fix a countable set A {A, : i < w}, called the set of formula variables.

- 49 -

• =V m m r l V V -w w 0 0



3.1. BASIC CONCEPTS

The set FMwL of formula schemes of C is the smallest set satisfying conditions (&-b)
below. (a) A C_ Fm, , 0

(b) if c E Cnj,(Z) and 41,..., O E Fm.u then c(4 1 ,...,. O) E Fmiz.
An instance of a formula scheme is given by substituting formulas for the formula fi

variables in it. 4
DEFINITION 3.1.4 (HUbert-style Inference System):

Lett, be a nice logic. An inference rule of Z is a pair ((B,,... ,B.),Bo), where every 0
B, (i <_ n) is a formula scheme. This inference rule will be denoted by

B1,... ,B.

Bo
An instance of an inference rule is given by substituting formulas for the formula 0

variables in the formula schemes occurring in the rule.
A Hilbert-style inference system (or calculus) for C is a finite set of formula schemes

(called aziom schemes) together with a finite set of inference rules. 4
DEFINITION 3.1.5 (Derivability):

Let C be a nice logic and let I- be a Hilbert-style inference system for C. Assume 0
E U {•W) C FP. We say that W is F--deriiable (or provable) from E iff there is a finite
sequence (n,..., ,,) of formulas (an F-proof of o from E) such that W. is tp and for
every 1 <i <n

"* j. E E or
" Vi is an instance of an axiom scheme (an axiom for short) of F-or 0 0
"* there are jl, ... ,jk < i, and there is an inference rule of F- such that "'.. is

an instance of this rule.
We write E F- #, if jp is F-provable from E. (We will often identify an inference system
F with the corresponding derivability relation.) -4
DEFINITION 3.1.6 (Complete and Sound HUbert-type Inference System):

Let Z be a nice logic and let F- be a Hilbert-type inference system for L. Then
"* F" is weakly complete for £ iff

(VpE Fr) ý= ==*F -p; 0
"* F- is finitely complete for C iff

(VE_-F)(VipE ) EI=, E F W

that is, we consider only finite E's;
"* F is strongly complete for Z iff •

(VE!9FPr)(Yip E c) E1-=cO W FW

"* F is weaky sound for t iff

(Vip E Fc) F jP SP

"* F is strogly sound for C iff
(VE F)(VipEF)• E F .

w W-W W V 0 0



32. MAIN THEOREMS 0

THEOREM 3.1.1 (Strong Completeness of Zs and S5). There are strongly
complete and strongly sound Hilbert-type inference systems for Cs and for S5.

We will prove this theorem in section 3.2 below, using methods of Universal Algebraic
Logic. j

We will also prove in section 3.2 that the arrow logics introduced in Def.2.4 also admit
strongly complete and strongly sound Hilbert-tyoe inference systems.

3.2. Main theorems
0

In Theorem 3.2.1 below, we will give a sufficeut and necessary condition for a strongly
nice logic to have a finitely complete Hilbert-style inference system.

THEOREM 3.2.1. AssumeC is strongly nice. Then
A&g2(C) generates a finitely axomatiuble quasivariety

(3 Hilbert-style F-)( is finitely complete and strongly sound for C).

Proof of (==*): Let 40,*@,... denote formula variables, r0,rj,... denote formula * *
schemes, T denote sequence of formula variables and Y denote sequence of variables.
Assume that Ax is a finite set of quasiequations axiomatizing the quasivariety generated
by Alg 2(C) and define a Hilbert-style inference system F'A as follows:
AxioM SCHEME: (0oV40) (jeflezuvity).
INFERENCE RULES: If (ri(Y) =-- ,(7) r - 1.() = T" (Y)) o "0(Y) = •(7) E Az,
then

•0Tv(T)V . T

is a rule. Other rules are:

40VOI, *1V42  (trasitimvit),

#0V#2

4 V... (symmetry),

(V c E C n k ( C- ) ) . .1, V , , • • • , n c c )

*0VTme to0
sO0 *OV True "

We will show that the inference system F-A. is finitely complete and strongly sound
for C.



0

3. BRIDGE BETWEEN LOGICS AND ALGEBRAS

For any set E of formulas we define 0 - 0' 04 E l-A, (OVO'). Note that, by the

definition Of l-A and by Definition 3.1.5, -E is a congruence relation on F for any E.

Claim 3.2.1.1: (Fl-E) ý= Ax. -

PROOF OF CLAIM 3.2.1.1: Let q E Az. Then it has the form

(r (M) = 4(7) & ... & T.() =r,'(!)) *0ro(y) = TO(R).

Let 2 lef (F1 -E). We want to prove that, for every valuation k of the variables into

So let k be an arbitrary valuation into 2. Then (Vs E w) k(x.) = 'i/-E for some
Vi E F. Assume that

Then

21 (,7107)) / ~-E= (71 (7)) / -E & . (T. (iW)) / ~-E= (r' . ( -) E ~,

since -E is a congruence on F. Then

that is, 7 7

by the definition of -E. In F'AZ, we have the following rule (corresponding to q):

Using this rule, we obtain that E F-AZ r (;) VT'• (7). Then ro (7) -E T (7), whence

=(70 / '~-E = (ra / -E that is, 2a - ro(VIE) =) that is,
21 ro(Y) = -- (7)[k]. By this we proved Claim 3.2.1.1. m 0

Claim 3.2.1.2: For any formulas Vo, Wj,... ,•',

IV .. . = p * l() - w = Tru V& ~=T u) ,(po = True).

PROOF OF CLAIM 3.2.1.2: Assume 0

f SAM ,.. , -I ),..., ,,p(Pi,..., - ,,,)} i= wo(pi,...,p,' ).

Let 2 E Alg&(L). Then 2 = meana(F) for some Mt? E M. Let k E PA be arbitrary. For
every 1_jmwedenote k = k(pi). Clearly for every 1 _5 j _5 m ki = meant(7j)

for some Y,•EF. For every O < i < n

Vjdkj,---, k- I= •p4mean.(7),..., me&nwt(y-)]" = neanqr(,p,(?6,..., ?-)),

. .,m ,•I, mm •0



3.2. MAIN THEOREMS 9

since means is a homomorphism. 0
Assume for every 1 <i n that 2I• •o= Truefk]. 0

(by ef (5)) meR(•(,.. . ,, -mesnv(Triie) (1 _5 i < n)

(by D.3.1.1 (5))ff (3M) med,•(w,) = me•t, I(Trve) (1< i <n)
(by Def.3.1.1 (3)) ,ffi W fi •,(I i _< n)

(by our assumption) 91 W o

(by Def.3.1.1 (3)) i mesug(ipo) = mezqt( 'e)

(by Def.3.1.1 (5)) fi mees (jo(-yT,. . . , -Y.)) = mcAn.(True)
2 ý=, Wt•o = 7ý-[k],

proving Claim 3.2.1.2, since k was chosen arbitrarily. I 0

Now let E IMF {fo,...,jp.} and assume E V ao. Then, by Claim 3.2.1.2,

AIg2(C) k= (VI = True t & & w. = True) =: (oo = True)
SAz • (Pi= Trie & ... & o = Trvc)*•(•po = Thtsc)

=C . /~) (A'( = Trite & & T r ffiee) * ((Wo = Tre)

S[if (W - T•Ue,... , -E True) then wo -E True]

f [if (E FA, W, V True,..., E FA. W.V True) then E FA. WoV True] (e). 0

By the rule we have E -A, jpIVTr7ue,...,E FA. jp3 VTrue. Thus, by (e),

E FA. W'oV Tre. Now using the rule 2"Ve we get E FA. WO, proving the finite
completeness of F-A.. 0

The strong soundness of FA. can be proved by induction on the length of the -A.-
proof of wo from f o],. . .,,}. We only show one part of the induction step, namely
the case when (po is 'obtained' by an inference rule corresponding to a quasiequation
q EAz. Say q has the form

(,r(z)= =r(Y) & ... & irh(T) = r(7)) 'ro(Y) = 1(7)

where 7 = (z 1,... , z,). Then the corresponding inference rule is

Assume that jpo is obtained by this rule by substituting the members of the sequence
S= (VII,.-., 7.) of form ulas for the m em bers of the sequence ; = , of

formula variables, i.e. Vo has the form To(j) = ir•(1). S
Now fix a model SR and assume that

r Wt j,•W().., = rk(2)Vrk(;).

-63-



3. BRIDGE BETWEEN LOGICS AND ALGEBRAS

We have to show that WI T to(')Vr"(•).

Let 2 4-- mmnea(F) E AIg(C). and let k be a valuation of 2 such that for every

1 <i <_ m k(zi) = mesnim(y). Then by Definition 3.1.1 (3)(i)

ino(i(7)= mesni&.rn ) 1< k)0

k= =r T(7) = r7(Y) & ... & rk(Y) = r()k
(by Alg2(f() I- Ax) =* 1 r0(Y) = r•(Y)[k] 0

(by Def.3.1.1 (3)(i)) *WI j= 0(J-)V•(-y).

This completes the proof of direction "=*" of Theorem 3.2.1.

Proof of (4-): Let #,,... ,*. denote formula variables, ro, -i,.., & denote formula •

schemes, let T de1 (0 .... le), and let . .. .,m) be a sequence of variables.
Assume that I- is a finitely complete and strongly sound Hilbert-type inference system
for the logic Z, and define the finite set Ax of quasiequations as follows:

- If ro(I) is an axiom scheme of F then let "ro(Y) = True" belong to Ax.
- If . is an inference rule of F- then let

"(r(Y) = True & ... & rk(Y) = True) * r0(Y) = 7Trie" belong to Ax.
- Let "(xo = xl) =o- (0zoxl = True)" and "(:0V:Z = True) =* (to = xz)" belong

to Ax.

We will show that Ax axiomatizes the quasivariety generated by A1g 2(0). 0 0

Claim 3.2.1.3: AIg 2(Z) • Ax.

PROOF OF CLAIM 3.2.1.3: Alg&(C) - (zoVxl = Trie) * (zo = xj) obviously holds
by Definition 3.1.1 (3).

Let (71(7) = True & ... & ,'r(Y) = True) =* ro(Y) = Trtue belong to Ax, let 0
21 E Alg 2(C) and let k be an arbitrary valuation of the variables into M1. Let i? be such
that 2•= me=an 3 (F). Then for every i E w k(z,) = means(Vi) for some vi E F.

Assume that
2 1 r1(Y) =T ... & rk(!) = True[k].

Then by Definition 3.1.1 (3)

But t(w),...,_&(iL) is an inference rule of F, therefore {fri(),. .. ,(7)) F -o(0). This

implies by the strong soundness of F- that {'ri(7),.... ,r.(7)} • 70(W). Now, by (0e)
above, I t 7o(W), hence again by Definition 3.1.1 (3), OL k 7o(-) = Truellk, which is
desired. i
Claim 3.2.1.4: For any quasiequation q of form = ri & "' " & r.= r' . =• ro = r'

A-2,() I- q WVr0, ... ,.0.Vr.) =oVr'l.



32. MAIN THEOREMS

PRoOF OF CLAIM 3.2.1.4: Assume that for every 2 E Alg 2(L) and for every valuation
kE PAO

2I= q[kJ. 0

Let W E M such that DR • {'r VrV,..... Tr.Vr•}. Then by Definiti,. 3.1.1 (3)(i) lit
mesam(r,) - mesam(ri') for each 1 :< i <- n. Now let 2 E A152(L) be such that

mesan(F) = and let k EPA be such that for each p E P k(p) 41• mesna(p). Then

which implies 2 1- (ro = r'4)[k] by our assumption. This is the same as meanjn(ro) =
measnm(r"), thus again by Definition 3.1.1 (3)(i), RI- - ro0Vr", which proves Claim
3.2.1.4. i 1
Claim 3.2.1.5: For any formulas Wo, W, ... , 1,

{ ... ,.} j) ý-o = Azx ý ( = True W. = 2ýpue) : (Wo = True).

PROOF OF CLAIm 3.2.1.5: It can be proved by induction on the length of the i--proof
of o0 from {•,...,o}. We only show one part of the induction step, namely the case

when •o0 is 'obtained' by an inference rule '(T)I...,•r,(,) wheref= ( 4i,-., m). Then

there are formulas yj,-...,..y. such that Wo = r0(,yl,..., -y) and for every 1 < i < k
{f•,...... p,) F n(7). Then by the induction hypothesis 0 0

W ~ Ax I--(w,= True & . &j 3 =ie) *ýri(7y) (1 : i:5k).

By the definition of Ax

(0h) A (-ri(Y)= =Tr & ..- rk(Y =)= T :) ro('f)•= True.

Let !8 be an algebra with ! 1 Ax and let k be any valuation of the variables into B.

Now we can define a valuation k' with k'(xj) 4fy1j[k]' (1 <_j m<). Then for every
0o5 i < k rj(T)[k']3 - r(V)[k1]. Thus, by (h) and (hh),

! H (w, = True & ... & = .True) =,ro(-y)= Tr•k,],

which was desired. I

Now assume that

AIg2( 4C) =(r,=r &r. ) =I-. ro =r.
(Clam 3.2.1.4),1 i--,= V

(fiit c Tt'v•i. .- 'r), I- 70'oV'

(C "'Ax I-- (,-V = Tue & ... V r,-.v- True) * -oV,- True.

- - ...- - -- -- "



3. BRIDGE BETWEEN LOGICS AND ALGEBRAS

But, since "x.Vz: = Tre 4* o = xi" belongs to Ax, this is equivalent to

Axzk (r, =i- . & r. =,-') = r,,o = . 0

completing the proof of direction "=" of Theorem 3.2.1. 1 k.)

Having found the algebraic counterpart of "finitely complete", let us try to char-
acterize "weakly complete". Since weak completeness is slightly weaker than finite
completeness, we have to weaken the algebraic counterpart of finite completeness for
characterizing weak completeness. This way we obtain condition (*) below, where Eqt
and Qeqt denote the set of all equations and the set of all quasiequations, respectively,
of the language of AI12(0).

(*) (3Az C., Qeqc) [(Ve E Bqc)(AIg 2 (C) • e === Ax ý= e) & AIg 2(C) • Az].

THEOREM 3.2.2. Assume that £ is nice. Then

(*) 4=* (3 Hilbert-style l-)I- is weakly complete and strongly sound for £). 0

In particular, if the equational theory of AIg 2(C) is finitely axiomatizable, then £
admits a weakly complete Hilbert-style inference system.

Proof: It is similar to the proof of Theorem 3.2.1. The only important difference is
that Theorem 3.2.2 already holds for nice logics. However, the only part of the proof of * *
Theorem 3.2.1 which used the additional criterion for strong niceness (Definition 3.1.1
(5)) was Claim 3.2.1.2. Below we state the corresponding weaker claim and prove it
without using condition (5) of Definition 3.1.1.

Claim 3.2.2.2: For any formula V 0

•=, Ag 2 (£) * ( = True).

PROOF OF CLAIM 3.2.2.2: Assume - V(po,... ,p,). Let 2 E AIg 2(L). Then 2 =

mean,(F) for some W1 E M. Let k E PA be arbitrary. We denote k0 = k(po),..

k. 4 k(p.). Clearly (Vi _5 n) (ki = meanS(,yi) for some -Yi E F).

w[o,..., k,1' = p[meanix(-yo),..., meanw(-,,)J" = meanvt (,p(-yo,..., -y,)),

since meang is a homomorphism.
P .(p0,... ,pn) implies, by Definition 3.1.1.(4) (substitution property), that

k•o ( .... ,y.,). Thus by Definition 3.1.1 (3)

mean3(-y('o0,... ,f,.)) = menu(True).

But meanwt(V(-o,. .. ,-y.)) = •[ko,..., k.]1 and meCanh(True) = TrueK, thus
V0[ko,..., k,]* = True*. Thus we have 1 p (jp = True)[k], proving Claim 3.2.2.2, since
k was chosen arbitrarily. Thus we also proved Theorem 3.2.2. 1

-~~~ W



3.2. MAIN THEOREMS

EXERCISE 3.2.1: Give weakly complete and sound calculi for the logics Cs, S5,
CARWO and CARWRL- (Hint: Use that the SP-closure of the AIg2-image of these
logics are finitely axiomatizable varieties, so (*) is satisfied. For the arrow logics, finite
axiomatisability of the corresponding varieties will be preved in chapter 1) 4

DEFINITION 3.2.1: Let £ = (F,M, I) be a nice logic. We say that £ has a
deductiou theorem, iff

(3(4 1 A4 2 ) E Fmsc)) (VEJ F)(VVp, b E F) (E U{} E ý=wO

where "WAOA&" denotes an instance of scheme "C 1 A02". Such a "#1 A* 2" is called a
deduction term for C. 4

THEOREM 3.2.3. Ls and S5 have deduction terms. •

Proof: It is not hard to show that "#I --+ 42" and "041 --+ '02" (where 0 is the
abbreviation of -0-) are suitable deduction terms for propositional logic and S5, re-
spectively. I

The following theorem states that for any nice logic the existence of a deduction 0
term and that of a weakly complete Hilbert-style calculus provides a finitely complete
inference system.

THEOREM 3.2.4. Assume C has a deduction theorem, and (3 Hilbert-style F)
(- is weakly complete and strongly sound for C). Then * *

(3 Hilbert-style F-)(- is finitely complete and strongly sound for C).

First we note the following fact (its proof is straightforward by the assumptions on
A).

Fact 3.2.4.1: The inference rule modni ponens ur.t. A (MP&) that is,

(MPA) 4, 4A*

is strongly sound for C. U
Proof of Theorem 3.2.4:
Assume that (3 Hilbert-style F)Q- is weakly complete and strongly sound for L). Let
such an inference system be fixed and let us add (MP,&) to it. We denote this (extended)
inference system by F-, too.

To prove finite completeness, assume {foo,...), • &. Then, applying the deduc- 0
tion theorem n + 1 times, we get:

"Y00

- 5?-

-... w 6w.- 0 0



0
3. BRIDGE BETWEEN LOGICS AND ALGEBRAS

Then 7- 0 by weak completeness of - Then, using (MPA) n + 1 times, we get:

fspo) '- {po,'Yo) W-~~A(V 2 A... ('.o .. 0

h~'(i -- . ipa {~~70) F , where y,, M (6o.AO).

Thus we received the following I--proof of 0, from f o..... ,p.):

which proves Theorem 3.2.4. 1

DEFINITION 3.2.2: Let Z = (F, M, I-) be a logic. We say that

(i) £ is eafiabiity compact (sat. compact for short), if

(vr F)[(VEr c,, r)(E has a model) ==* (r has a model)], and

(ii) Z is consequence compact (cons. compact), if

r (3E g,. r) E I=,, for every ru{w) 9CF. 4

4

EXERCISE 3.2.2: Prove that even for nice logics we have

(1) satisfiability compact $= consequence compact; 0
(2) satisfiability compact $== consequence compact.

(Hint for (1): Let the logical connectives be V (binary), and True, k,..., k,,... all
zero-ary. A model Mt is a function ju : {True,pi,ki : i E w} - (0, 1). meansn(True) =
1 for every M and meaning of V is the standard meaning of the biconditional 4-+.

Exclude those models from M in which (V i > 0) jut(k,) = 1 but MI(ko) = 0. [This
logic is not strongly nice!] Observe that for TZ = True,pi,k : i E wj x f1} we have
T 1= FC. Hence sat. completeness trivially holds.)

(Hint for (2): Let £ have True and V as the only logical connectives. Exclude
the models Tt with T? 1= Ft. Then sat. completeness fails (we have infinitely many
propositional variables). Show that cons. completeness remains true.) 4

EXERCISE 3.2.3: Find natural conditions under which "==*" and/or "4-=" of Ex-
ercise 3.2.2 above hold.

(1) We say that f has weak false if (3V E Ft) such that (VM E M) T1 K - . Show
that under this assumption 0

cons. compact =* sat. compact.

• ... • -0



3.2. MAIN THEOREMS

(2) We say that £ has negation if

(VV E F)(30 E F)(VfJ E M)[£IW • 0 4=* X T S

Show that under this assumption

sat. compact ==* cons. compact.

(3) Try to find weaker sufficient conditions.
(4) Show that for nice logics

.C has weak false 4=-* Z has negation.

For the whole matter [ANS84] might contain useful info. 4

Recall that in Definition 3.1.1 above (and also in the logics studied so far), there was
a parameter P, which was the set of atomic formulas. The choice of P influenced what
the set F of formulas would be. Thus in fact, our old definition of a logic yields a family

f{(FP, MP,=P) : P is a set)

of logics. The members of this family do not differ significantly except that the cardi-
nality of P matters sometimes.

DEFINITION 3.2.3: (General Logic)
A general logic is a class

L {£C : oaisacardinal),

where for each cardinal a L* = (Fa, MW, 1-=) is a logic in the sense of Definition 2.1
that is, F* is a set, M* is a class, and ý=C_ M" x F*.

L is called a (strongly) nice general logic if conditions (1-3) below hold for L.

(1) C* is a (strongly) nice logic (d. Def.3.1.1) for each cardinal a.
(2) For each cardinal a the set P* of atomic formulas of the logic C* is of cardinality 0

a. If a and A are cardinals withA• < a then PA C P* (which implies that
FA C FO).

(3) For all cardinals A< a

{meanA : 1 E MA} {(mean4t) r FA : WE M },

(d. item (2) of Def.3.1.1 for mean). Intuitively, this requirement says that LV is
the "natural" restriction of V%. 4

U U w w w w, w - 0 0



3. BRIDGE BETWEEN LOGICS AND ALGEBRAS

REMARK 3.2.3.1: As a corollary of item (3) of Definiton 3.2.3 above we note that
for all cardinal a, A, ifU{•} r _ F* n FA then

DEFINITION 3.2.4 (Algebraic Counterpart of a General Logic):
Let L = {It : a is a cardinal) be a nice general logic. Then

Ag =(L) 48f{Alg(C) a is a cardinal),

AIg2(L) t_.f U {AIg2(£C) a is a cardinal)

(cf. Def.3.1.2). 4 0

THEOREM 3.2.5. For strongly nice genera! logics

AIg 1(L) = SPAIg 2(L).

Proof: First we prove that for any nice logic Z = (F,M,I), Aig1 (Z) _ AIg 2(0). We
note that if K is a subclass of M then there is a subset K' C K such that F/ -K=

F/"K' (this holds because F is always a set). Now let K be any subclass of M and let

K' C K has the property above. Then function h below is a one-one homomorphism
(i.e. an embedding) of F1 -K into PUEK' meanst(F). For each 'p E F

h (V/ -K) d (MCangl(iP) : M E K').

Next we prove that SPAIg2(L) _ AIgi(L). Assume 2 _ P!MEKmea4nV(FA) for some

cardinal \ and set K C M'. Let a -f 1, fix any bijection from the set P0 of atomic
formulas of £C onto A and let h : F* --o 2 be its natural extension to a homomorphism

onto 2.

Claim 3.2.5.1: For every fiR E K there is some 91 E M' such that

(Vp E P*) mean(p) = h(p)w,

where h(p)= denotes the Wtth member of the sequence h(p).

PROOF OF CLAIM 3.2.5.1: Fix any WR E K and assume that h(p) 3 = mean4(-yE)
for some formula -?a E FP. Then, by (3) of Def.3.2.3, there is some 91' E Mo with
mean9AX(7t) = mean",(',&). Let so: PO --+ F0 be the substitution defined by

(.) 53(p) 4e,

Then condition (5) of Def.3.1.1 gives a model%9 E M* with mean&(p) = mean;,(-). I



3.2. MAIN THEOREMS

Now for each Ol E K we can define a nonempty class M(MR) _ Ma as follows.

M(t) =f {1 E M° : (Vp E P*) mean* (p) = h(p)3 }. 0

Let K' t U {M(Tt) : W E K).

Claim 3.2.5.2: F/ -.K'25 2.

PROOF OF CLAIM 3.2.5.2: Fix an WI E K and let six be the substitution in (e) above.
It can be proved by induction on the complexity of formulas that for any formula (P E FO
and for any 91 E M(Wt)

h(W)w =mean,'&p(s=)) = ma,,(9,),

where (p(su) is obtained from V by substituting s,(p) for each atomic formula p oc-
curring in W. Now h gives the required isomorphism between F 0 1 'K' and 21, since for

all formulas W, ' E F0

h(cp) =h(tb) if!• ~9"K'~, ,

which proves Claim 3.2.5.2. 1

Now, since F 0 1 -K, E Aig1 (1C°), the proof of Theorem 3.2.5 is completed. I

DEFINITION 3.2.5: A general logic L = {iZ : a is a cardinal) is satiufiability (con. • *
sequence) compact if for each cardinal a the logic Z0 is satisfiability (consequence)
compact. 4

For an arbitrary class K of algebras,

UpK L_ I {PiEI1i/F: IF is an ultrafilter over the set I, and (Vi E I)QZi E K).

We say that K is Up-closed if UpK C K, in other words, K is Up-closed if it is closed
under taking ultraproducts.

Our next theorem gives a sufficent condition for sat. compactness of a general logic. 0

THEOREM 3.2.6. Assume L is a strongly nice general logic. Then

(AIgi(L) is Up-dosed) == (L is sat. compact).

Proof: We let L = f ZO : a is a cardinal) We give a proof for the compactness of Z' =
(FW, M", 1="'). For other cardinals the proof is similar and is left to the reader. Assume
r c F- and

(vE g., r) E has amodel.

Then we may assume that r = o, .. ,W,... ).nE and 0

(V E w)3= E M' w -- o - - 0 PA



3. BRIDGE BETWEEN LOGICS AND ALGEBRAS
def de O~2 ()

Let such Tl&'s be fixed. Let meani = mean,. Let %tk - meant;(F') E Alg(L).

Then Mtj E Alg 1(L) also holds (df Exercise 3.1.3). Let P1' be the set of atomic formulas 0
of £". Then the function mean k : P" -- + A, is a valuation of the variables into %k,. Let

F be a non-principal ultrafilter over w, and let 21 = PkE,,2ik/Y denote the ultraproduct
of algebras 21k w.r.t. Y. We define the function v : w -- + A as follows:

v( _•) (mean k (p,) : k E w)/ /.

See Figure 3.1 below.

meano meang 
V

2Lo ..... 26

Figure 3.1 6

By assumption, tk v pi for every i < k. Thus, for every i < k E w, we have the
following:

Sby Definition 3.1.1 (3)(ii)

Ok =" TrU-eVi

Sby Definition 3.1.1 (3)(i)

meank( True) =meank(%o,)

%1k 1 (V, = True)[,mean]. 0

We derived that (Vk E w)(Vi < k) %A: 1= (Vi = True)[mean,,], i.e. for every i E w,
{k E w : %A: k i = True [meank,]} E F. Using Loh' theorem, we have that

(Vi E w) 2L H (pi, = True)[vj.

Since by our assumption Alg 1(L) is Up-closed, 21 E Alg 1(L). Thus (3 cardinal a > w)

(3K _ M*) 2 ! F*! •'K. Let iso denote this isomorphism. Let M le_. F 0 / K,, and

let w dl io o v (i.e. w is the cosposition of v and iso). Then

(Vi E w) ý= ((,= i ,Tre)[w]

that is,

. • m..,•• •p• •0

- wd d~~hmdIl t m•mmmmmNm•m• W - w w 0 0



3.2. MAIN THEOREMS

(ViE W) •P[W(pi.),... ,W(p,.j) = Tru,[w]',•.

Let PO denote the set of atomic formulas of C*. Let a : P ---o F0 be such that 0
for all p E P" s(p) is an element of the congruence class w(p). For every i E w, let
•i E F0 be 'Pd(p,./i(pi.),... ,p,./a(pj.)), where all the atomic formulas (elements of
P') occurring in Vi are among {p..,... ,pi}. Then for every i E w we have,

W[s(p,. )/~ •. .(. )/ ~-K] = T'ee S
U- (~K isacongruenceon];')

'P,(S(P,.),... ,A(p,,.))/ -K = -Ki,,/ ~g

(t) il = 'K Dre/ -K. •

Let Wi be any model belonging to K. Then for every i E w we have W1 O i,. Then,
by (5) of Definition 3.1.1 (semantical substitution property),

(391' E M*)(Vi E w) mean*,(Wo,) = mean*,(True). 0

Since True and Vi belong to F", by (3) of Def.3.2.3, there is a model 91 E M' such
that

(Vi E w) mesn'((j) = mean;,('P) and S 0
mean' (True) = men,(True).

Then, by Definition 3.1.1 (3),
(Vi E w) 91 • 1

which proves Theorem 3.2.6.1

Our next theorem states that the condition of Theorem 3.2.6 above is sufficient and
also necessary for cons. compactness, and so for strong completeness (cf. Theorem 3.2.8
below).

THEOREM 3.2.7. (cf .ANS84J Thm.2.8)
Assume L is a strongly nice general logic. Then

(Algi (L) is Up-dosed) 4-fi (L is cons. compact).

Proof of (==): One can pu;sh through the proof of Theorem 3.2.6 for this case, as
follows. Now we want to prove (Vi : i E w) 1061 0 from the assumption {.o0.... , ok} V=-

0 for each k E w. Change Wfl in the above proof such that Wt "fi " po0,.... 'o } and
W Y =' 0. Drag this "•=" 0" part through the whole argument in exactly the same
style as "•k "'Pk was treated in the original proof. Then in line (t) of the proof above
we have (Vi E w) $i/ -K= Trve/ -K and b/ -K96 TrIe /~K for some class K C M*.
Now we cannot choose an arbitrary W? E K but we can infer that there exists some
SE K such that (Vi E w) R1R l' Wi and W1 ¢=* 0. Thus, again by (5) of Def. 3.1.1

ww "w ... w, w -. 0 0



3. BRIDGE BETWEEN LOGICS AND ALGEBRAS

and by (3) of 0ef.3.2.3, there i an 91 E M' with I: i E W) and 9114' 0, as
was desired.I 0

Proof of (=): Fix any set I and assume that for each i E I %j E A1g5 (C,') for some 0
cardinal A, that is (by Theorem 3.2.5),

Now let A 4=f sup{Ai : i E I} and define K C_ MA as

4K (1 {YEMWA (3i EI)(3IOI E K,)mean%'= mea4 [F Ai}

Then Pi•li . PmlEKimen(FP) by (2) and (3) of Def.3.2.3. 0
def

Let a = 1, fix any bijection from the set P0 of atomic formulas of C* onto P (the
universe of q) and let h : F• -* q3 be its natural extension to a homomorphism onto

q3. For each X 9 1 define the congruence Rx of q3 as follows.

Rxlef{(a,b)EP : arX=brX}.

Claim 3.2.7.1: Let h and Rx be as above. Then for any X g I there is some
Mx C Mo such that

(i) (VW, 0E F") [(h(j),h(b)) E Rx 4-* 'p ~ux 0];
(ii) ifXCYCIthenMxMy CM_ .

PROOF OF CLAIM 3.2.7.1: Recall that IV3 C P.EKmeanX(FA). Fix some X C I.

Then q3/Rx a5 Pirxmi obviously holds. Thus there is some Kx C K such that
I/Rx Cg PtEKx mearng(FA).

Now it can be proved (cf. Claim 3.2.5.1) that for every !IR E Kx there is some 91 E M*
such that

(Vp E P*) mean*(p) = a(p)w,

where h(p)u denotes the UYhth member of the sequence h(p).
For each U•n Kx we can define a nonempty class M(!lR) _ M* as follows.

M(Xt) = {91 E M' : (Vp E P*) mean;(p) =h(p)w}.

Let Mx d_! U {M(•t) : Wt E Kxl. Then Mic has property (ii) above by definition. It
can be proved that Mx also has (i) (cf. the proof of Claim 3.2.5.2). 1

By Claim 3.2.7.1 (i) above and by Fact 3.1.2.1, for each X C I there is a set rx g F*
such that

(Vpq, E Fa) [(h(,p), h(O)) E Rx 4-'* ~rx ]

Moreover, by (ii) of the above claim, for any X, Y 9 I,

(M) XcY = ryc-rx.

-- •t-0



3.2. MAIN THEOREMS 0

Claim 3.2.7.2: Let Y be any filter on I and let re u 1 rx : X E Fr). Then for every

•,~ = (3X .F) • r• ,. 0

PROOF OF CLAIM 3.2.7.2:
First, assume that (3X E Y) p -r, 0. Then, since rx g r, p -r , obviously holds.
On the other hand, assume --r 0'. Then r w •pV4,. Then, by the cons. compact-

newS of C, there is some A g, r with A ý=a ,oV4. Say, A = {xo,..., X,-1). Since 9
A c- r, (vj < n)(3Xi E F) xi E rx,. LetX f l{X : j < n}. Then X E F, since
Y is a filter. Now A rx. u.. u rx._, g rx holds by (.) above, thus rx H- v4o,
which implies p ~r x  . I

Now we want to prove that TP/- E Alg 1(L). We show that 3/7 Q5 F*/ -r. That is, 0

(VSP, E F") [h(v) ~•r h(O) €= p - r 0]

holds. Indeed, 0

h(p) -F h(O)

S(3X E *) (h(jo), h(4 )) E R x

Clim 3.2.7.1 (i)
~* (3X EY) p -.rx4*

which completes the proof of Theorem 3.2.7. We note that we proved that Algl(L) is
closed under taking arbitrary reduced products (not only ultraproducts). I
THEOREM 3.2.8: 0

Assume L = {LC* : a•is a cardinal} is strongly nice general logic. Then
Alg1 (L) is a finitely axiomatizable quasivariety

4==b

(3 Hilbert-style I-)(V cardinal a)(- is strongly complete and strongly sound for C*).

To provt Theorem 3.2.8 we need the following claim.

Claim 3.2.8.1: For every cardinal a _> w and for every quasiequation q

AIg 2(Za) 1= q :€ AIg 2(L) ý= q. 0

Proof of Claim 3.2.8.1: Fix a cardinal a and a quasiequation q with A1g 2 (CV) ý= q.
Let 2 E AIgCo) for some cai;,1a a. Then there is some lO E M* with A =
mesn&(Fa).

First assume that a <5 a. (3) of Definition 3.2.3, there is an (91 E M*) 0
mean, r F = meawn&. Then -A C menW(F) E Alg 2(.C), thus 2( q, since
quasiequations are preserved under taking subalgebras.

U U U 'U • w w. ,. 0 0



|0

3. BRIDGE BETWEEN LOGICS AND ALGEBRAS

Now let a > a and assume that 2 & q~k] for some evaluation k of the variables. Say,
let k(xz) =-f mesn*=(-yi)) (1 < i < n), assuming that z,. .. ,x. are the only variables 0
occurring free in q. Assume that the atomic formulas occurring in the formulas -y, ..... j,
are among pi..... Pi, and let s be the following substitution:

(V j <m) 8(p) =pi.

Then, by (5) of Definition 3.1.1, S

(3 M°)(Vl _< i < n) ,,e.a,&(-f,) = men,-y~ pl,./. i p.)).

By (3) of Definition 3.2.3, (39r' E M*) mean r F0 = mean,. Now, let • me 4n;,

and let k'(x,) d=i , .,p,,,)). Then 2I K q[kJ implies 9 16 q[k'], which
contradicts to !8 E AIK2 (£C). 3I

Proof of (=:fi) of Theorem 3.2.8: Assume that Az is a finite set of quasiequations
axiomatizing AIg2(L). Since Alg 1(L) = SPAIg 2(L) (d. Theorem 3.2.5), by Claim
3.2.8.1 above, Ax also axiomatizes the quasivariety generated by A1g 2(£C) for each
infinite cardinal a. Thus, by Theorem 3.2.1, for each a > w there is a finitely complete
and strongly sound Hilbert-style inference system I- for f-. Moreover, checking the
proof of Theorem 3.2.1 one can observe that the same inference system F- works for
every a 2> w. We show that for any cardinal A, F is strongly complete for £.. Assume
thatforsomerU{tw} gFA rkA• . Thenthereissomea>_wsuchthatru l{} _F* 0
and r •a Vp (d. Remark 3.2.3.1 above). Since quasivarieties are Up-closed, £C is cons.
compact by Theorem 3.2.7. Therefore there is a finite subset E of r such that E Ia V.
Thus, by finite completeness E I- p, which implies r F Ip by the definition of derivability
(Def.3.1.5). I1
Proof of (==) of Theorem 3.2.8: If F- is strongly complete then it is also finitely
complete. Thus, by Theorem 3.2.1, the quasivariety generated by A1g 2 (CC) is finitely
axiomatizable for each cardinal a. On the other hand, strong completeness implies cons.
compactness, as follows. Assume that for some r U {fi} C_ F0  r •a *. Then r I- F,
which implies by Definition 3.1.5 that there is a finite subset E of r such that E F.
Then, by soundness, E f=* V. Now, by Theorem 3.2.7, Alg 1(L) is Up-closed. But by
Theorem 3.2.5, it is also closed under S and P, thus it is a quasivariety. This and the
fact that the quasivarieties generated by AIg 2(C,) are finitely axiomatizable (with the
same set Ax of quasiequations, as the proof of Theorem 3.2.1 shows) imply that Algi (L)
is a finitely axiomatizable quasivariety. I
EXERCISE 3.2.4: Show thatts and S5 have strongly complete and sound Hilbert-
style inference systems. Give such calculi. (Hint: Use that the corresponding classes
of algebras (Ag12(Ls) = BA and Alg 2(Lss) - Cs1 ) generate finitely axiomatizable
varieties.) 4

-66-

W0



S

3.3. UNIVERSAL ALGEBRAIC TOOLS

3.3. Some uniersal algebraic tools for algebraic kic
0

So far we have seen that the algebraic counterparts AIgi(L) of many logics are qua-
sivarieties. However, there are logics for which Alg 1(L) is nicer, it is a variety (that
is, Alg 1(•) is dosed not only under S and P but also H). Usually, it is a difficult
task to prove that a certain class of algebras is closed under homomorphism. Theorem
3.3.1 below gives us considerable help by proving that certain quasivarieties are already
varieties.

DEFINITION 3.3.1:
(i) A class K of algebras is said to/hae a discriminator term iff there is a term

r(z, y, z, u) in the language of K such that in every member of K we have 0

Z, if -= Y,
u, otherwise.

(ii) A variety V is called a dicriminator varitdy if the class Sir(V) of subdirectly 0

irreducible members of V has a discriminator term. 4

EXERCISES 3.3.1:
(1) Show that if K has a discriminator term then K consists of simple algebras.
(2) Assume that the Boolean operations -, A, 0,1 are available in K and that they

satisfy the Boolean axioms (i.e. every element of K is a Boolean algebra with
some further operations). This property will be referred to as 'K Assa Boolean
reduct'. Prove that K has a discriminator term if there is a term c(x) in the
language of K such that

c(z) = ifz =O, 0

1, otherwise

in every member of K. (Hint: r(z, y, z, u) = [c(z E y) A u] V [z A -c(z E y)].
Here D denotes symmetric difference.)

(3) Check how much simplification one can achieve in the proof of Thm.1.3.3.1 below
under assuming that K has a Boolean reduct (cf. item (2) above). 4

THEOREM 3.3.1. Let K be a class of similar algebras. Assume that K has a dis-
criminator term. Then

HSP K = SPUp K. 0

To prove Theorem 3.3.1 we need the following lemmas.
Lemma 3.3.1.1: Assume that the class K of algebras has a discriminator term. Let I
be a set and { : i E I) CK. Let 2 9 Pier%- and let 0 E Con(%). For any a, b E A, 0
let Eq(ab) V= {fi E I: a= bi}. Then

(1) (V(a,b), (c,d) E 0)(3(e,f) E 9) Eq(e,f) = Eq(ab) n Eq(c,d).
(2) (Va, b,c,d E A)[((a,b) E 9 & Eq(a,b) _ Eq(cd)) * (c,d) EG ].

-- M-

S ... .. . l~ldnmmsm m- = rmmlil- -6?-mmm m B



3. BRIDGE BETWEEN LOGICS AND ALGEBRAS

Proof of Lemma 3.3.1.1: Let r be a discriminator term on K.
Let (a, b), (c,d) E 0, and let e = r(a, b,c,a), f = -r(a, b, d, b). Then (e, f) E 19.
Assume i fB q(a, b) n Eq(c, d). If i f Eq(a, b), then e, = a, : b, = fi. If i E Eq(a, b),

then i f Bq(c,d), thus e1 = ci : di = f,. Thus i f Eq(e, f), proving Eq(e,f) f
Eq(a, b) n Eq(c, d).

Assume i E Rq(a, b) n Eq(c, d). Then ei = ci = di= f, thus i E Eq(e, f), proving
Eq(a,b) nl Rq(c,d) 9 Rq(e,f). By this we have proved (1).

To see (2), assume (a, b) E 9 and Eq(a, b) g Eq(c, d). By (a, b) E 9, we have c - 0
T(a, a, c, d)•r(a, b, c, d) = x. We will show that z = d. If ai = bi, then ci = di by
Bq(a, b) _ Eq(c, d), hence zi = di. If ai 6 bi, then zi = di by the choice of r. Thus
(c, d) E 0, proving (2). I
Lemma 3.3.1.2: Let K,I, ,i,,,0 be as in the formulation of Lemma 3.3.1.1. Then
there is a filter " over I such that 0

(*) (Va, b E A)((a,b) E 9 4== Eq(a,b) E F).

PROOF OF LEMMA 3.3.1.2: Let K, I,j, ,6,r be as above. Let

F te {X C I: X D Eq(a, b) for some (a, b) E 0).

We show that F is a filter over I, as follows.
J" is closed under finite intersections: X, Y E " ==* X n Y ;? Eq(a, b) n Eq(c, d) for

some (a, b), (c, d) E 0. Then Eq(a, b) n Eq(c, d) = Eq(e, f) for some (e, f) E 0 by Lemma
3.3.1.1 (1). Thus X n Y D Eq(e, f), for (e, f) E 0.

From the definition of F it follows that I E Y and that

(VY C- I)(3X E)[Y X=* Y EF].

We have seen that Fr is a filter over I. It remains to show that F satisfies (*) above. 0
Eq(a,b) E F *=; (3(c,d) E 0) Eq(c,d) C Eq(a,b) so, by Lemma 3.3.1.1 (2), (a,b) E 9,
proving Eq(a, b) E -" ==F (a, b) E 9. The other direction follows from the definition of
F'.[

Recall that for an arbitrary class K of algebras, 0

PrK 4*I{Pd1Ef,2/F: .F is a filter over the set I, and (Vi E I)%- E K).

The following is an easy fact of elementary universal algebra (d. also e.g. Burris-
Sankappanavar [BS81I or Nkneti-Sain [NS811).
Lemma 3.3.1.3: Let K be an arbitrary class of similar algebras. Then

Pt K C SPUp K.

PROOF OF LEMMA 3.3.1.3: Let I be a set, { i : iI . K, F a flter over I,
= 4ff• pP . E PK. Let

U •! {f : an ultrafilter over I and ;? F}.



0

3.3. UNIVERSAL ALGEBRAIC TOOLS

Let h: 2 ---+ P(PjE~/G : C E U) be defined as h(a/F) d4d (a/C: C E U). It is not
hard to check that h is an embedding, therefore 2 E SPUp K. |

Proof of Theorem 3.3.1: Let !3 E HSP K be arbitrary. Then there are I,%-, 0, 2
as in the formulation of Lemma 3.3.1.1 such that ! = 2t/0. By Lemma 3.3.1.2, there
is a filter 7 on I such that 21/0 C_ PieJ/9 .I/, thus M E SP' K. This shows HSP K g
SP' K. By Lemma 3.3.1.3, SPr K 9 SSPUp K = SPUp K, thus HSP K C SPUp K.

On the other hand, SPUp K C_ HSP K, by Up g HP, PH g HP, SH g HS, and
PP = P. Thus we completed the proof of Theorem 3.3.1. U 0

COROLLARY 3.3.1: Assume K has a discriminator term. Then
(i) K is contained in some discriminator variety.

(ii) The subdirectly irreducible members of HSP K are exactly the subdirectly irre-
ducibles of SUp K. 0

Proof:
(ii): Let 2 be a subdirectly irreducible member of HSP K. By Theorem 3.3.1, 2 E

SP(SUp K). Then gi is a subdirect product of algebras from SUp K. By
irreducibility, then 2t E SUp K. This proves (ii). 0

(i): The discriminator term r which works for K also works for SUp K, since the
discriminator property

V21y,z,,u ([z-# y : T(z, y, z,,u) = ,u]^ [A = * 'r(z, y, z,u) = Z])

is defined by a universal formula, thus is preserved under SUp. Thus SUp K 0 0
has a discriminator term. But by (ii) the class Sir(HSP K) of subdirectly irre-
ducibles of HSP K is in SUp K. Then by definition, HSP K is a discriminator
variety. l

........ ~~~ ~ -- ....- . -I,." - - I- , ...V U U ,U --w, - 0 0



n

3.4. DISTINGUISHED LOGICS

3.4. Distinguished Logics
0

In this section we give a brief summary of the logics defined so far and give some
further ones. Let P be an arbitrary but fixed set of atomic formulas. For each of the
logics in this section, the class of models (corresponding to P) will be a subclass of the
following one:

Mod• = {(W,v) : W is a set and v : P ---. P(W) is a function).

In all our logics we will have the Boolean logical connectives and some extra-Boolean
logical connectives. According to a rather respectable (and useful) tradition an extra-
Boolean connective is called a modality iff it distributes over disjuction. This will not 0
be true for all of our connectives (Homework: check which ones). Thus, regrettably we
sometimes ignore this useful tradition. For this tradition d. e.g. Venema [V92] Appendix
A (pp. 143-152). When specifying a logic C, we will discuss only its extra-Booleans,
since the Booleans are standard. For a logic £, Mod(C) is the class of models of Z. For
w E W, w IF Wo means that p is true at w. 0

df
(1) Zs: propositional logic (cf. Def.2.3). Mod(Cs) d=* Modo.
(2) S5: Modal logic S5 (d. Def.2.4). Mod(S5) 4' Modo. Extra-Boolean: 0. Its

meaning is
w, IF 0p *=* (3w' E W) w' IF •

(3) D: Difference logic or "Some-otker-time logic". Mod(D) 4-e Mod.. Extra-
Boolean: D. Its meaning is

w ,IF DW 4-=, (3w' E W -, {w}) w' IF W. 0
(4) 0.: re-times logic. Here r. is any fixed cardinal (may be infinite). Mod(O,) 4*f

Modo. Extra-Boolean: 0.. Its meaning is

to IF 0. 4=* (3H C w)(IHI = r. & (Vw'E H) w'IF,).

(5) Tw and 0.: Twice logic and n-times logic. Here Tw = 02 and 0. is 0. for
Ic = n <w.

(6) CPAuR.

Mod(Apxm) I_!.! {(W,v) E Modo : W C U x U for some set U).

Extra-Boolean: o (binary). Its meaning is

(ab) IF p o 3c((ac),(cb) E W & (ac) IF & (cb) IF,0).

(7) -REL,.

Mod(LREL) 1__ {(W,v) E Modo : W =U x U for some set U).

"fO0-

-w



S

3. BRIDGE BETWEEN LOGICS AND ALGEBRAS

The extra-Boolean and its meaning is same as in 4 pA0t.
(8) CARROW: van Benthem's arrow logic. Mod(:AlUtOW) = Mod(:PAmR). Extra-

Booleans: o, -, Id. Meaning of o is the same as in £PAR. 0
((ab) IF ip-1 4-fi* ((a) E W and (ha) IF- V)), ((ab) IF- Id 4=* a =b).

(9) f-RA: restriction ofCARJIOW to the models of £REL - Mod(4.,A) V Mod(EOL).
Extra-Booleans and their meanings awe exactly as in CARROW.

(10) For Z, f. Def.2.5. But it is important to note that C. could be defined as

Mod(4,) 4-0-f {(W,v) E Modo : W = U for some set U).

The extra-Booleans are "3v." and "vi = vj" for i, < n.

SUMMARY:
/:s propo'itional logic
S5 modal logic, where the accessibility relation is W x W for a set W of S

"possible worlds"
D difference logic (or "some-other-time" logic)
02 or Tw twice logic
0,. n-times logic (n E w)
0. r-times logic (sc is any cardinal) • 0
£CPAIR set of worlds is arbitrary W C_ U x U for some U, only extra-Boolean is ow
,CREL set of worlds is U x U for some U, only extra-Boolean is o
f-RA (logic of relation algebras) set of worlds is U x U, extra-Booleans o, -, Id
LCARROW van Benthem's arrow logic. Set W of worlds is as in f£PAI, extra-Booleans

are as in f-RA, but now relativized to W
4,, first-order logic restricted to the first n variables (n E w)
L" (usual) first-order logic with w many variables

Let

L =e {fCS, S5,D, TW, 0., 0,4PAMr,, 4EL,4CRA, fARROW,L., L4 ,, : n E w,K E Card). 0

DISTINGUISHED PROPERTIES to be checked for every £ E L:
(The reason for looking at these properties is that they distinguish first-order like

logics from propositional like logics.)
dec The set of all valid formulas of C is decidable. (Briefly: 'C is decidable.)

fmp C has the finite model property (fmp).
Chasthe fip 4F)[I=, (V l M)(I I < w ,9)].

r.e. The set of all valid formulas of £ is recursively enumerable (r.e.). (Briefly: C- is
r.e.) S

Sw . w ... ? 0 0



3.4. DISTINGUISHED LOGICS

Remark: If C is r.e. and £ has the fmp the Z is decidable.

fax Algi (C) is finitely axiomatizable (fax).
Gip C has G&iel's incompleteness property (Gip).

C has Gip & there is a finitely axiomatizable set T of formulas of £ such
that every consistent extension of T is undecidable. That is,
(3,P E F)(VT _ F)[(v, E T&T is consistent) =* ({r: T 1 0) is undecidable)].

cdm The distinction between set-models and class-models counts (cdm). That is:
Assume IPI < w. (P is the set of atomic formulas of L. E.g., P is the set of
propositional variables in cases of Cs or S5 or D; and it is the set of relation
symbols [similarity type] in cases of Z. or C,.)
We say that elm in the logic £ -4 (3 class-model MUI)
[Th(Mi) is not a clas (hence is not a set either, i.e., does not exist)].

unin Again assume IPI < w. (39R E Mc)[Th(M) is undecidable].

COMPARISON OF LOGICS IN L: (An arrow points to the place where the
property in question becomes true "moving from left to right". Hence in principle it
should always point to a gap between two logics.)

D IC$

Cs S5 Tw 03 ... 0, .,. £LPAI £REL RA L. £ C .,

Obviously obtnowly
propositional Fiue32first-order

EXERCISES 3.4.1:

(1) Write up a detailed definition of L. as a modal logic following the hint given in
item (10) above.

(2) (Important.ý Show that all the logics introduced above are nice logics. It is
especially important to do for Ln! (For L,, it is hard, needs a reformulation
of Z,,• and was done e.g. in Blok-Pigozzi [BP89]. C1f also Simon [Si91] and
the references therein. It is recommended not to do this exercise for £, at thispoint.)if

(3) Check which claims represented on Figure 3.2 were proved in the text. T to
prove the missing ones. t 4

ofuIsn £u lmm a~ und"a i wasdon eg in Blo-Piozz 1.. 9.C. ..asoSio [Sl and



REFERENCES
REFERENCES

[AH91 Anellis,H. and Houser,N., The nineteenth century roots of universal algebra and algebraic
Logic: A critical-bibliographical goid for the contemporary logician, In: Algebraic Logic (Proc.
Conf. Budapest 1988) Colloq. Math. Soc. J. Bolyai Vol 84, North-Holland, Amsterdam (1991),
1-36.

[ANS84] Andrika,H. Nimetl. and Sinj,., Abstract model theoretic approach to algebraic logic,
Preprint (1984), updated in 1988, 1992, 70pp.

[BP89] Blok,W.J. and Pigoszi,D., Algebraixable logics, Memoirs Amer. Math. Soc. Vol 77,396 (1989), 5
vi+78 pp.

[BS81] BurnsS. and Sankappanavar,H.P., A course in uniwersal algebra, Graduate Texts in Mathe-
matics, Springer-Verlag, New York (1981).

[HMTS5j Henkin,L. Monk,J.D. and Tarski,A., Cylindric Algebra# Part I, Part 11, North-Holiand,
Amsterdam (1985).

[M&S9] Maddux,R., The origin..., Studia Logic& Vol L, No 3/4 (1991), 421-456 pp. 0
[M76] Monk,J.D., -Mathematical Logic," Springer-Verlag, 1976.
[N91] Nimetij., Algebraization of quantijier logics, an introductory overview, Studia Logica Vol 50,

No 3/4 (a special issue devoted to Algebraic Logic, eds.: W. J. Blok and D. L. Pigozzi) (1991),
485-570. (Strongly updated and expanded [e.g. with proofs] version is available from author.)

[P89] "Poasible worlds in Humanities, Arts and Sciences," W.de Gruyer, Berlin-New York, 1989, pp.
450 p.

[SN81] Sain,l. and NimetiI., Cone-implicational subcategories and some Birkhoff-type theorems,
In: Universal Algebra (Proc. Conf. Easztergom Hungary 1977) Colloq. Math. Soc. J. Bolyam -
North-Holland Vol 29 (1981), 535-578.

[S80/a] Sain,l., Dogmas on Language, Manuscript (in Hungarian), 1980.
[S80/b] Sain,l., Cognition, Learning, (Rats and) Logic, Manuscript (in Hungarian), 1980.
[Si91] Simon,A., Finite Schema Completeness for 7peless Logic and Representable Cylindric Alge- *

bras, Algebraic Logic (Proc. Conf. Budapest 1988) Colloq. Math. Soc. J. Bolyai Vol 54, North-
Holland, Amsterdam, 665-670.

[Si92] Simon,A., What the Finitization Problem is Not?., Baach Algebraic Logic Conference, to
appear.

[V92] Venema,Y., Many-Dimensional Modal Logic, Ph.D. Dissertation, Institute for Logic, Language
and Computation, Univ. of Amsterdam. 5

W0



0

0
0

0

0

0

* 0

0

0

0

0

0

w W w w 0 0



RELATION ALGEBRAS FOR REASONING ABOUT TIME, SPACE, AND
PROGRAMS

ROGER D. MADDUX

May 11, 1993

A5raACT. This paparprou.s ta bretsf .vey otralationalgabrasand the calculusafrelstions,
followed by two examples df their use in campele science: constraint satidactiou problemos
for relation, algebras and & relational iociel for Dijkstra's aziomatc guniantcs for comaputer
progaint (centered an the predicate tzansfornemm called 'weakest precoudiuo' sand "weakest
liberal precondition7). The foua tooic is illustrated by the "interval algeba, a relation
aler whidi aros fian Allan's work an tanporal ressoning, and by "comipass algebras",
which ane designed for sumilar reasoning about q~ace. It will be shown here that the constraint
asatidaility problem is NP-complete for almost all Compass and interval algebras.

I. T=E CALCULUS OF RELATIONS AND RELATION ALGEBRAS

Composition of binary relations was introduced to logic by Augustus De Morgan [341, [351* 0
(am [38], pp. 55-57, 208, 221, etc.). De Morgan observed that the syllogism "every A is a B,
every B is a C, so every A is a C" remains valid if the copula "is is replaced by any transitive
relation L. De Morgan went further, noting that if LM is the composition of the relation L with
the relationMJ, that is, Ais anLM of Bjust incan A isan Lof an Mof B,then thefollowing
syllogism is valid: "if every A inan Lof aB, and every Bis an Mof aC, then every Ais an LM
of aC." De Morgan [351 (am [3 81, p. 222) denoted the converse of the relation L byL-' and it&
contrary by not-L, and observed that these operations commute: the converse of the contrary of
L is the contrary of the converse of L. Starting with [37], Charles Sanders Peirce created algebra
from De Morgan's logic of relations, foWowing the model of George Boole [7], [8], who created
algebra from the logic of clase, "and after many attempts produced a good general algebra of
logic, together with another algebra. specially adapted to dyadic relations (Studies in Lopic, by
members of the Johns Hopkins University, 1883, Note B, 187-203). Sclar6der developed the last
in a systematic manner" in (42] (quotaton from [321). F. W. K. Ernst Schr~ler's investigation
of the calculus laid out by Peirce[(391in17 pages extended to 649. H6sbook remains today
the only exhaustive treatise on the calculus of relations. For additional survey and historical
material on relation algebras see (81, [12], [181, [171, [18], [28], [27, [28], [29], [30], [44], and [48.

Consider an arbitrary met, called the "universe of discoure" or simply the "universe". The
universe could, depending on the situation and purposes, contain all possible mathematical
object., or all states of a machine, or all real numbers, or just a finite set of letters. The
fundamental operations of the calculus of relations are natural set-theoretical operations on
binary relations over the universe. In addition to the Boolean operations of union, intersection,
and complementation, there are the "relative" (as Peirce calls them), or 'Peircean" (as Taraki
calls them) operations, namely the binary operation of -relative addition" (Peirce's name), the
binary operation of "relat've multiplication" (Peirce's name) or "composition" (Ne Morgan's
name) and the unary operwaton of conversion. There are also four distinguished relations, namely

Key words ead phtuas. relation algebras, interval algebras, conpas algebras, constraint satidaction prob-
Isse, "daionAl semanitics, -mca granfougis weakest preconditions.

W-1



0

ROGER D. MADDUX

the universal relation, the empty relation, the identity relation, and the diversity relation. The
definitions of thebe operations and distinguished relations are listed below. In theme definitions,
z and y are arbitrary binary relations on the universe. By a binary relation we simply mean a
set of ordered pairs. The ordered pair whose first element is p and whose second element is q is
denoted (p, q).

uion of z and z + Y = (p,q) :(p,q) E z or (p,q) E y)
,itersecton of z and y z- Y = {(p, q) :(p, q) E * and (p, q) E y)
complement of x Y = {(p, q) :p, q are in the universe, but (p, q) f z)
relative sum of z and y ztV={(p,r):foreveryqintheuniverse, (p,q)Ezor(q,r)Ey}

relatie product of: and y x;y = {(p,r): for some q, (p,q) E r and (q,r) E y}
con-erse of C= (q,p): (p,q) Ez}
universal relation = {(p, q) p, q are in the universe}
empty relation 0 = S

ilentity relation 1' = {(p,p) p is in the universe)
diversity relation W' = {(p,q) p,q are in the universe, p i q) •

We are using nineteenth century notations. Both De Morgan and Peirce denoted the compo-
sition of z and y simply by "zy", but Schr6der [421 used "z;y", as is done here. The notation
"6clY" was used by Whitehead and Rumell [53] and adopted by Tarski and his school [11]. Peirce
introduced the notation "I" for the converse of z. Schr6der introduced "1'" and "0'" for the
identity and diversity relations. Here are some laws in the calculus of relations. These laws hold
for every possible universe, and all possible binary relations z, y, and z.

(i) (z+y)+z=z+(Y+z)
(ii) z+Y=y+z

(iv)z C V= 1171
(v) 1=z++
(vi) 0=1
(vii) z;(y;z) = (z;y);z

(viii) z;l' = z
(ix) (+ y);z = Z;z+y;z
(x) * = z
(xi) (z+ r)" ='+i

(Ii) (z;y) = 0;*
(xiii) 1;,'_7+j=
(xiv) 0' = F
(xv) xty = -

A relation algebra is an algebra of the form 0

a = (A, +,.-,-, 0,, 1, W,,, I')

which satisfies the identities (i)-(xv) listed above. The first six identities say that (A, +, 0, ,O,1)
is a Boolean algebra (called the Boolean part or Boolean redsct of 2). One of the most significant
laws of the calculus of relations is De Morgan's "Theorem K" (am [36, pp. 186-7, 224] or [30,
p. 434-5]), which amerts that the following staternents are equivalent:

Z;vpSz 1;7z< 7;j:5

- w W, w V, S 0 0



0

RELATION ALGEBRAS

After minor Boolean transformations Theorem K becomes the cycle law, that the following

statements are equivalent:

;y-z=O *;zsV=O z;-rz=O

The cycle law and De Morgan's Theorem K hold in every relation algebra because they can be
proved from axioms (iHxv). There ame many other equivalent axio for relation al
bras. For example, equationsx- (x-iii) can be replaced with the cycle law or with Theorem K.

The algebra containing all binary relations on the universe U is denoted gk(U). Identities (i)-
(xv) hold in 9U(U), so 9•(U) is a relation algebra. Relation algebras are defined by equations,
so it follows that subalgebras, homomorphic images, and direct products of relation algebras are
again relation algebras. The algebras that can be obtained from algebras of the form 9te(U) by
forming subalgebras, homomorphic images, and direct products are called reprejestable relation 0
algebras. Roger Lyndon [22] showed that not all relation algebras are representable. It follows
that the axioms (i)-(xv) are incomplete, in the sense that there are equations which hold in every
algebra of the form 91(U) but cannot be derived from (i)-(xv). J. Donald Monk [33] proved
that the equations which hold in every algebra of the form 9e(U) cannot be derived from any
finite set of equations.

For a relation algebra 9, let At% be the set of atoms of (the Boolean reduct of) 2. (An 0
element z of 2 is an atom if a # 0 and, for every y in 2, either z - y = z or z- V = 0.) If z
is an atom of 2, then so is t. The relation algebra 9 is said to be atomic if its Boolean reduct
is atomic, that is, for every element y of 2, if y # 0 then there is some atom r of 9 such that
z < y. Similarly, 2 is said to be complete if its Boolean part is complete, that is, every subset
X of 2 has a least upper bound E X and greatest lower bound f X. It turns out that if 2 is

both complete and atomic, then the structure of 2 is entirely determined by its atoms and the
action of the relative operations on the atoms. For a precise statement of this fact, define the
atom structure of 9 to be Ott% = (At%, C,', I), where

C={(a,b,c):a,b,cEAtanda;b>c} and I={a:aEAt2anda<1'}.

For any atoms a, b, c of 2L, let 0

[a,b, c] = { (a,b,c), {,(¢,b) ,(b,•, a), {,a,•,(,,) e a}

By the cycle law, C is a union of sets of the form [a,b,c]. We refer to such sets as cycles. Then
the identity element, the converse of z, and the relative product of z and y can be computed
from the atom structure according to 0

1'= EI I= {a r>aEAtm}

z;y = E{c : for some a, & E At%, z > a, y >_ b, (a, b, c) E C)

Hence to specif a complete atomic relation algebra it suffices to list its atoms, to list those atoms 0
which are in 1, to indicate which atoms are converses of which other atoms, and, finally, to list
the cycles [a, b, c]. This is especially convenient when 2 is finite. We present several examples
of relation algebras using this method.

2. IN•TRVAL ALGEBRAS. 0

To define the interval algebra IA [1], [2], take the universe U to be the set of all "events",
where an event is simply a pair of real numbers, the second of which is larger than the first.
The first number in an event is its "starting time", the second its "ending time". (Our model

0



0

ROGER D. MADDUX

for time here is just the real numbers.) Seven binary relations on events are defined in the list
below, where z, c, y, y' are real numbers and (z, '), (y, V') are events.

identity: '= {((z,z'), (y' )): z = y < z' = V)
precedes: p = {((,,'),(y')):, < <p <y'}

during: d =((z,z'),(y, ')): y < z < z' <U')
overlaps: o WS(( ,'), (Y,0')): < Y< < y'
meet: m = {((z,z'), (py,)) :. < z' = v < if}
starts: = {((z, '), (, '): = Y < ' < 1}

finishes: f = {(z, '), (y,')) :)y < z < Z' = 30

The seven relations listed above are studied in [50] and are used in some computer programs 5],
[31], [43]. These relations generate a finite subalgebra of 9,R(U), called the interval algebr, or
simply the IA. The IA has 13 atoms, namely 1', p, P, d, J, o, 5, m, th, s, 5, f, and 1. (It turns
out that p alone will generate the IA, and so will each of the elements P, m, a, o, and 5 [21],
[20, Theorem 4.4].) If we start with the rational numbers instead of the reals, or, in fact, any
dense linear ordering without endpoints, then the resulting algebra is isomorphic to the IA. But
if we use some other infinite linear ordering, then the relation algebra generated by 1', p, d, o,
m, a, and f may not be finite, and the relations listed above may no longer be atoms. This
happens, for example, when we use the integers. If we start with a finite lin ordering on U,
then the subalgebra generated by 1', p, d, o, m, s, and f will be 91e(U). Any relation algebra
obtained in this way will be called an interval algebra (while the IA is the one obtained from the
reals or rationals). The IA has 75 cycles: [1', 1', 1'], [1', s, s], [', m, m], [', p,p], [1', o, o, [1', f, *,
[I',d,dJ, [s,rV,.], [s,.,.], [a,m,p], [s,p,p], [s,o,m], [a,o, p], [s,o,o], [.,f,dJ, [s,d,al, [m, V, m],
[M,.,m], [mm, pl, [m,p,p], [m,o,p], [m, f, s], [m,f,o], [m,f,d], [m,d,s], [m,d,o], [m,d,d],
L[, ',p], [ps,,p, [p,m,pl, [pp,p], [p,o,p], [p,f,.], ([p,,m], [p,fpl, [p,f,ol, [p,fdi, [p,d•,],
[p,d,m], [p,d,p], [p,d,o], [pdd], [o,',o], [oo8,so, [o'm'p], [op)p], [0,0A, [0,041 o, o0,o
[o,f,.), [o,f,o], [o,fd], [o,d,s], [o,d,o], [o,d,d], (1,1',!], [fsd, [,[m,m], [fLpp], V,0o,8
[fo,o], [fo,ad, [f,ff, ffd,dJ, [d,1',dJ, [d,, [d^,m,p], [d,p,p], [d,o,,], [fd,o,m], [do,p],
[d, o, o], [d, o, d], [d, f, cq, [d, d, d]. Although all relative products in the IA can be computed from
the cycles, it is convenient to also have the products listed in a table. The table of relative
products of atoms of the IA is given in two parts (see Fip. I and 2). To save space the + signs
are omitted, so, for example, pdoma = p + d + o + m + s. The table appeared first in [2]. It
not only shows relative products of atoms in the IA, but also shows containments for the Allen-
Hayes algebra [3), [4]. By the Alle-Hspes alyebr we mean the direct product of "all" interval
algebras, i.e., the direct product of an indexed system of algebras containing one algebra from
each isomorphism type of interval algebras. The Allen-Hayes algebra contains the elements 1',
p,, d, o, 6, m &sI, f, ,,and 1. They form apartition, i.e., they are pairwise disjoint and

= p+P+d++o+5;+ m+,t++Is+ + 1+f. Finally, the relative product ofany two of
them is contained in (and not necessarily equal to) the corresponding entry in the table.

3. COMPASS ALGEBRAS

Let the universe be the set of all points in the n-dimensional Euclidean space R", where R is
the set of real numbers. Let R+ be the set of positive real numbers. For every vector v in R"
define two binary relations on R' as follows:

D. = {(x,y) : x,y E R" and for some r in R+, x+ rv = y),
E, = {(x,y): x,y E R" and for some r in l, x + rv = y}.

Here are some easily proved properties of these relations.

Theorgem . (i) Do=E = = { (x,x): xER ),

0!

-.. . 'w . . . - . .. . ... . . . . . .=. . . . .. .W W wI - - 0 . ..



RELATION ALGEBRAS

1' pp d .1 0

r' p p d .1 o

p p 1 I pdaumi p P AI p

d d p P d 1 pdowa Pd&~f
'1 . p.cmf P"s~ I'dLoldfj . J01 a"5

0 0 pP Jz&s dos p.1cmf pomm i'd"oIff
a 5 p.1cm! P d51 P"MA i'd"Ifdf PMA
m m p 0"MI dos p p dos

ihihpjomf 0 d5f P dSf 0
* a p 0 d Ajm/ porn d4f

I5 I jomf p d51 j1 01J 6
f f p P d gSA) do. P"A

11 p PJS5M do. a1 a &I5

Fiauaz 1. The interval algebra products, first part.

in #a 8 f
1' m 1% a f

p p pdemu p p pdorm. p
P Pd&%! P Pd5&J P P P
d p 0 d PdSf d pdom.

m p i'fj m mn dos p
Ah 1'1 0 d5f f A Ah
* p Ah 8 i'd d porn

f i P d P"0 I i'll
m in Is 0 r.1 I'J .

FIGURE 2. The interval algebra product.s, second paut.



@

ROGER D. MADDUX

(ii) &--D-. - { (x,y) : r'somer i R+, x- rv = y), •
(ii) D. AD, = D,,
(iv) D, = Dv and Ev = Ev whenever r E R+,
(v) E, = t. = Ev;Ev=Dv 9;b% = b ,,Dv = D. + b. + Do,
(vi) E, is an equivalence relation on ",
(vii) D.;D = D.;Dv= {(x,y) : for some r, sin R+, x+ rV+ sw =y),
(viii) E;Ew, = E. ;Ev= {(x,y) :for somne r, s in R,x +rv+ sw = y),

(ix) (x,y) E iff y-xi in the subspace spanned byv,
(x) (x,y) E&;F, iffy- x iinthe ubpacespanned by v and w,
(xi) (x, y) E Ev. ... ;E,. iffy - x is in the subepace spanned by vo,..., vn.

For anym Vecto VL -..., vm E Rt, let ,m[vl,..., vm] be the subalgebra ofW(RO) Sgenerated
by the relations Dv,,...,D.. X_ [vI,...,v.] is called the n-dimessionol compass salebrs de-
termined bY v0,. .,v,. If v and w are a linearly dependent pair of nonzero vectors, then either
X = D. or Dv = b,.. Ifv and w both appear in a list of vectors generating a compass algebra,
then v can be deleted from the list, and the same compass algebra will still be obtained from the
remaining vectors. Even if the vectors are pairwise linearly independent, deleting one of them
may not result in a strictly smaller compass algebra. The structure of 4.,[v, .... , v,] depends
heavily on the choice of vectors. But if vl,...,v,. is a linear independent set of vectors, then
the structure of Q,[vj,...,. v.] is completely determined by m. More exactly, ifv,.... vm and 0
vi,..., v.' are two linearly independent sets of vectors in RO (hence m < n), then Ct.[vi, v,]

is isomorphic to QV,[, ... , ,v,].

4. EXAMPLES OF COMPASS ALGEBRAS

The 1-dimensional compass algebra It[(l)] generated by the 1-dimensional vector (1) has * *
three atoms, namely D(I), D(-.), and D(0). C,[(1)] is'known as the "Point Algebra" [19], [21],
[201, [471, [48], [491, [51], [52]. For a description of the structure of C,[(I)] in terms of atoms and
cycles, let V' - D(o), a - D(I), and 6 = D(-_1). Then the cycles of are [1',1',1']), [1',a,a],
[a, 1', a], and [a, a, aJ. The table of relative products of atoms is

a1, a a•

a all

Every 1-dimensional vector in 1-space must determine one of the relations D(J), D(_.), or D(O),
so no new 1-dimensional compsm algebras are obtained by considering two or more vectors in I-
dimensional space. However, there i one other 1-dimensional compass algebra, namely CI[(O)]. 0
This algebra has two atoms, namely D(o) = 1' and D(I) + D(-I} = 0'. The cycles of 2 are
[1', 1', 1'], [1', 0', 0'], and [0',0', 0'],and the table of relative products of atoms is

1' j '

0,0

By comparing this and the previous table it can be seen that C [(0)] is isomorphic to a subalgebra
of tj[0()], the one with autm 1' and a+A. Also, Ci[(0)] is isomorphicto (,[(O)] for every integer

nl.

Now we consider 2-dimensionA compass algebras. Among theme are particular algebras which
inspired the name "compass alebra. We start with the compass algebra C2[(1, 0), (0, 1)]. We
would get :we sme algebra with any two linearly independent vectors in R2, but these two allow
us to dub E(io) the "east-west" direction, while E(0,1) is the "north-south" direction. Thus
C2[(O, 1), (1,0)] is a "2-directional" algebra of relations. "Ea", "west", -north", and -outh"

- lj0-

-so-

w W W w 0



0

RELATION ALGEBRAS

V' a b c 6 d J
F ' B b 4 E d J

a l'bI b bed J
& & 4 bcd & 1 b iaQbebd bJ

c c b d b A; c 1'd d 41
d d bed d 4cdW4 d dil d 1 I
a ArVaA a bed I d S d W&

I W I I Al &54. I A; W

FiRu=. 3. Products for C2[(i, 0), (0,1)]

are the relations D(1,o), D(-.l,o), D(o,1), and D(0,-0}, respectively. In the standard Euclidean
plane of analytic geometry, the points "eastg" of the origin are all the points on the positive
part of the z-axis, and so on. (2[(1,0), (0, 1)] has nine atoms, namely D(0,o), D(1 ,o0, D(- 1,o),
D(o,l), D(o,.-I), D(0,1);D(l,o), D(o,l);D(-.,o), D(o,-.l);D(l,o), and D(o,-);D(o,-.). The last four 0
atoms could be called "northeasterly-, "northwesterly", -southeasterly-, and "outhwesterly",
respectively, sKnce they do not carrespond exactly with directions of the compass. The points
in the Euclidean plane which can be reached by going northeasterly from the orgin are exactly
those in the first quadrant. Let

1' = D(o,o) = identity 0 0
a= D(,o)= east b= = "; = northeasterly

A = D(-Io = wast S = e;a = a;e = southwesterly
c = D(o,j) = north d = i;c = a ;c = northwestely

6 = D(o.,-) = south J = 6;a = a;e = southeasterly
Then th 33 cycle of ar [11, 11, 11, [1',a, a], [a, 1',a], [1',b, b], [b, r', ], [11, , c], [c, 1', c], [11, d,al,.
K[1, al, [a,a, a], [a, b, b), [a, c, 6], [q, d, 6, [a, d, c], [a, d, 61, [6, a, b], [b, 4, b], [b, c, b], [b, d, 6], [b, d, c],-
[b, d, al, [c,,, b], [cb, )], [c, c, c, [c, d,da, [d,a,4b, [d,a, c] , K , a, [l , ,4], [d,4 ,c, Id, ,da, [d,a,•,
(d, d, dl. The relative products of atoms ae given in Fig. 3.

The compam algebra 2[(I, 0), (1,1), (0, i)] has 13 atoms, namely 1', a, b, c, d, e, I, a, 5,
E, I, 1, and 1, where 1' = D(o,o), a = D(i,o), b = D(%,o);D(l,i), c = D(1,), d = D(j,j);D(oj), 0
e = D(o,1), and f = D(oj);D(-..o). The we 89cycles, eac having the form [z, , z] with z, ,z
in {1', ,b, c, d,e, f). The cycles are not listed, but they can be read from the table of relative
products in Fig. 4. Seti = z + I for every z in [(, 0), (1, 1), (0, 1)]. Then ' + i = E(I,o),
F+a = E(,1 , 1'+i = E(o,), ec. and ,,e, , j,i,and ethe atoms ofasubalgebra, called
the "symmetric subalgebra" of 2•[(1, 0), (1, 1), (0, 1)]. The table of products for this subalgebra
is 0

-" Uf-

re a I l a wi
a a ra A W!&a ai! wi &add

I Ialaa~aaj&Wa I , aiawaj
&W AW "-al Wl raw aw



0
ROGER D. MADDUX

V a bI 1 c
1' I' a a 6 c z d J c f
a a a 1.a b W11J Li i bed 9d bed I bcdef I
A A I'aa a bcdef I del S l &I , I Xd I f W f I
& 416 bcdf 4 1 b abdt bed .[1, bed ab1 bcdef ab0

; "I ;s 1 9 defA4I5 de,&SW f&lW f&I &J
c c w def b d I&S copa i rad .(,j d ), de0 1) B
? h i s •- t a , Id Pe E ., ths fla a d As &I -
dodt bed def bed defA- d detl" d 1 d a ed/ mdef abcdj
J J 411W sb&IJWaJbdiJJ 1 diLJ f IJak J Ii
e oebed i bed o os d l., dDAL,0e ;'Dl.fda ed/

1 1 W abl J L bd . J abcd/ J i'd I fAWE I
fflbcdef fbedef lf&Sedefeft f fkfl lfaJiS f 1

IJI k&JlI bi kAllabf J11 bed/ld11 obdJI 1 I

FIGURE 4. Products for C,; ((,-0), (1,-1), (0, 1);)J

Next we consider the 2-dimensional compass algebra C2[(1, 0), (1, 1), (0, 1), (-1, 1)). Besides
the directions "east-west" E0l,D) and "north-.outh" E(o,i), this algebra has directions 'northeast-
southwest" E(1.1) and "southeast-northwest" E(-1.,1). There ame 17 atoms, namely D(o,o) and
16 others, which are listed counterclockwise, starting at the x-axis: D(1,o), D(io) ;D(l,i), D(1,1),

The 2-dimensional compass algebra C2[(1,0)] has just four atoms, namely D(o,o), D(i,o),
D-,,o), and F = (X2 x R3). D•0,0• + D(i,.o -+ De-,o). Note that F is a symmetric relation,
i.e., F = F, unlike D(1,0) or D(-.Io). The points of the plane which are in the relation F to the
origin are all those which lie in the upper half plane or lower half plane (i.e., not on the x-axis).
Let I' = D(o,o), a = D(,,o), A = D(-I,o0, and b = V' +a+ A. Then the cycles of C2[(1,0)] are
[1', ', 1'], [1',a,a], [a, 1',a], [1',b, hi, [a,a,a], [a,b,b), [b,b,b], and the relative products of atoms
are:

1' a a 1 b
I' 1 a a 6
a a a Via ba a l•a a b4
b b b b I

This algebra illustrates a general phenomenon. If vE,... ,vR, E are pairwise linearly inde-
pendent but do not span R", then ([vi,...,.m will have only one atom for the subspace
orthogonal to the subspace spanned by vi- ., v,. Notice that this situation must arise when-
ever the number of directions is Iess than the number of dimensions, i.e., whenever m < n.

Now we consider 3-dimensional compa salgebras. Let u = (1, 0, 0), v = (0,1, 0), w = (1,1, 0),
x = (- 1, 1, 0) and y = (0, 0, 1). The 3-dimensional compaSs algebra generated by a single vector
in {u, v, w, x, y} has 4 atoms. The algebra generated by any two vectors in {u, v, w, x, y) has 10
atoms. Note that u, v, w, x all lie in the same 2-dimensional subspace. Hence any three vectors
in {u, v, w, x) generate a 3-dimensional compass algebra with 14 atoms, while Ca[u, v, w, x] has
18 atoms. The vector y and any two vectors in (u, v, w, x) form a "inearly independent set, and
generate a compass algebra with 27 atoms. The vector y and any three vectors in {u,v,w,x)
generate a compsm algebra with 39 atoms. Finally, Ca[u, v, w, x, y] has 51 atoms.

Not every compass algebra determined by a finite set of vectors is finite. Let s = (1,1,1).
Then .[u,v,y,s] = Cg[(1, 0, 0), (0,1, 0), (0,0,1), (1,1,1)] is infnite. Toee this, let Xo = E.,

- sz-



0

RELATION ALGEBRAS 0
Yo = EV, Zo = Ey, and, for every integer n, X61l = X.;Es .Y.;Z,, Y$+l = Y.;E.X.;ZZ., 0
and Z,,+i = Zn,;Es- X.;Y.. Then X., Y., and Z. a all distinct equivalence relations for every
n. In particular,

X0 = E(1,0.o) Yo = E(oio) Zo = E(o~o, )

X1 = E(o, 1,1) Y1 = E(1,o.1) Z, = E(1,1,o)

X2 = E(2,1,1) Y2 = E(1,2.1) Z2 = E(I.L,2
X3 = IE(2,3M Y3 = E(s,2.3) Zs = E(3.3,V

X4 = E(6,u) Y4 = E(sos) Z4 = E(s~s,)

5. Somm NP-COMPLETE CONSTRAINT SATISFIABILITY PROBLEMS

Let 2 be a relation algebra. An 2-matrit is a matrix of elements of 2. Suppose M is an
n-by-n %-matrix- We say M is zeolesi if no entry in M is O, ad M is closed if M.. 1',
(Mii Y = M,,, and Mii;Mi, < M1 5 whenever 1 < i,j, & < n. If N is another n-by-n matrix, we
say N is a reducti of M, n symbols, N _ M, if Nj :_ M4 whenever 1 < i, j <_ n. If X is a
set of elements of 2, we say M is bou•dedby X if every entry of M is included in some element
of X.

A binary contraint mtri is a matrix of binary relations. An n-by-n binary constraint matrix
M determines an n-sly relation R(M) = {(pi .... ,) : (p,p,) M•,• whenever I <- i,, _< n}.
The matrix M specifies a binary consfraist problem. The solutions to this problem are the n-
tuples in R(M), and the problem is solvsabe if it has a solution. Let U be the met of elements that
appear iu any pair in any relation in M. Each n-tuple (p1 .... , p,) of elements of U corresponds
naturally to an n-by-n matrixN ofatomsof ls(U), where Nq = {(pi,pi)} whenever I < i,j i n.
Note that (pi,...,N) is asolution to M if and only if its coresponding matrix N is a reduction
of M. Furthermore, as a binary constraint problem, M has a solution just in case there is a
dosed zeroless reduction of M bounded by the set of atoms of 9te(U).

This last observation permits us to generalize the concept of constraint satisfaction to arbitrary
atomic relation algebras. Let 2 be an atomic relation algebra and let M be an 2-matrix. We
say that M is prote-soluble over 2 if there is a dosed seroless reduction of M which is bounded
by the set of atoms of S. Note that if N is a dosed seroleus %-matrix bounded by the atoms
of 2, then all the entries in N must actually be atoms of 2. Such a matrix, whose entries are
all atoms of 2, is called atomic. So the W-matrix M is proto-solvable if it has a dosed atomic
reduction N. Such an N is called a protu-solstion. The constraint satisfiability problem for an
atomic relation algbra 2 is this: given an ¶1-matrix, determine whether it has a proto-solution. 0

For an 9!(U)-matrix M, the solutions and proto-solutions (over 9te(U)) are in a one-to-one
correspondence, as observed above. But for matrices . 3r atomic subalgebras of 9Ue(U), such
a correspondence may not exist. Indeed, it is easy to find a set U, a finite subalgebra 2 of
9!ReU), and an %-matrix M such that M has a proto-solution but no solution. For example, let

U = {1, 2, 3), let 2 be the subalgebra oft•9(U) with atoms 1' and 0' (2 is isomorphic to C1[(0)]),

and let M = O' 1 0' Then M isn proto-solution of itself, but it has no solution,

0' 0' 01 1'
since any solution of M must be a quadruple (p1,p2,ps,p4) with distinct entries, but there are
only three elements in U. On the other hand, M can be considered as a C [(0)J-matrix, in which
case it does have solutions, namely all quadruples of distinct real numbers.

We have seen that protosolutions can exist when solutions do not. It is also possible for
solutions to exist when proto-solutions do not: an infinite atomic subalgebra 2 of 9(U), where
U is a countable infinite set, and an 2r-matrix M with a solution but no proto-solution over S.

-S3-

V Vww



ROGER D. MADDUX 0
Examples of this are more difficult to construct, but can be found in [22] and [25]. For such an
example, however, it is necessary that 2 be infinite [20, Theorem 5.7].

For the IA, the situation is quite nice. An IA-matrix has a solution if and only if it has a
proto-solution [21], [20], and this is true for all isomorphic copies of the IA which are embedded in
algebras 9U(U) where U is not necessarily the set of events based on reld numbers. Constraint
satisfiability for the IA is NP-complete. A sketch of a proof of this was given in [511. The
idea of that proof is to reduce the 3-clause satisfiability problem (for propositional calculus) to
constraint satisfiability for the IA. (Additinnai dotails for that proof are given in [52].) Another
proof is sketched in [481. where graph-colorability is reduced to constraint satisfiability for the
LA. Both of these proofs deal with solutions, not proto-solutions, but, in view of the remarks
made above, this makes no difference to the IA.

The NP-completeness of the constraint satisfiability problem for the IA follows from Theo-
rem 2 below. This theorem is not restricted to the IA and indeed applies some compass algebras.
It also applies to infinite algebras, such as the Allen-Hayes algebra, and to nonrepresentable al-
gebras.

Theorem 2. Assume 2 is a relation algebra with elements z, y, z A 0, such that

(i) ',z,I,y,9,,z, 1arepairwise diqjoint,
(ii) z.Z;Y= 0,

(iii) Y z;= 0,
(iv) z- z;y= 0,
(v) z-z;z= 0,
(vi) V- -;: = 0,

(vii) z- ;z= 0,
(viii) z < Z;(, z;9, Y _-*;z,

(ix) 1' _< z;1 **;z -Y;4 C;y z; --;z.
Then foliowingproblem is NP-complete: (R) Determine whether a matrix M over 21 has a dosed
,erolew reduction bounded by {1', z, f, y, #,z, ,}.

Proof It suffices to show that Graph 3-Colorability [10] is reducible to (R). Let G = (V, E) be
a graph (i.e., E is a symmetric binary relation on V that is disjoint from the identity relation on
V). We may assume without lows of generality that the set V of vertices of G is {4,.. ., IVI + 3), 0
where IVI is the cardinality of V. Let n = IV/ + 3. Let M be the n-by-n W-matrix determined
by the following stipulations:

(i) M, = 1' for I < i < n,
(ii) M12 = z, M21 = C, M23 = y, M32 = 1, 34s = z, M31 = 1,
(iii) Ml = 1'+ +1, M 1, = 1'+z+z, Mi 2 = 1'+X+, , M= V'+-+Y, MOs '+Y+z,

and Ma. = 1' + #+ I whenever i E V (i.e., 4 < i < n),
(iv) Mi, = Mi = z++++ z+f whenever i,jE V and (i,j) EE,
(v) in all other cases, M,, = 1.

We will show that there is a natural one-to-one correspondence between 3-colorings of the graph
G and closed seroless reductions of M which are bounded by {l',z,*,y,P, z,i}. It follows that
M has a closed seroless reduction bounded by {1',X,-,y,9,z,J) just in case the graph G '

3-colorable. •
Suppose that N is a dosed seroless reduction of M which is bounded by {I',z,&,Y,9,z,).

We will show that N determines a 3-coloringy : V -. { 1, 2,31 of G. First, since 1', z,., y, v, z,
are pairwise disjoint, N is seroless, and N is bounded by {1',z,.,y,,,z,*), we concluded that
if 1 < ij < n, then exactly one of the following seven statements holds: N, _5 1', N, _5 z,
NO5 <f, N, <5y, N, :5 g, N,, 5 z, N,, :_ . Now we look at the possible values of Nli, NM,
and Nis for an arbitrary i E V, i.e., for 4 < i < n. Since N < M, we have •

N12 :5 Z, N1' + Y, N13 < z,

Ni 5 V, & -, , w w X 0



RELATION ALGEBRAS

IfNil _< 1', then

Nj2 < N1 1 ;NI2 5 1';z = z,

NM3 I<;NA< l';z =Z.

Similarly, if Nj 2 < 1', then

Nj5 <MN:;N2a l 1';-* = , 0

Ma _ Ni2;Naa < l';v = y.

Finally, if Nd3_< 1', then

M,2< N;N3 a_ 1'; 0-= . 0

Ftom theneobservation*jtfoMowsathatNil, :51' for at Most One k EI 2,3). To show Nib 5 1'
for at least one k E f1,2,3), we assume Nil :_ 1 + 1, Ni•2 :5 z + , and Ms 5 Y + z, and derive
a contradiction. There are two case. First, if NMs V p, then

Nil _5 (1  + ( ). Ni 3 ;N3 < (I + 1). y; I < •,

by (ii) and (iii), rspectively. From these last two equation we get

NM2 5 j -NIA2N5 j -*;Z =0
by (iv), contradicting the amumption that N is seroless. Second, if N. 5< 9, then

Nil: 1 ~(+ ) -Nis;aIV3 (5*0+1):-SX; 15 0,
NM <5 (z + 1) -N3;Na <5 (z + 9) . z;1< z

by (v) and (vi), respectively. ROM thes last two equations we got

NM2 5 -Ni1 ;N12 !5 C -I;Z = 0

by (vii), again contradicting the maumption that N is aeroless. This exhausts the possibilities.
Thus we have Nib 5 1' for exactly one k E {1,2,3}. This allows us to define : V - {1,2,3)
by i) = k iff Nik5 1', for every i E V. Now if (ij) E, then we must have v()s 7), for
if -'(i) = -y(j) = k, then we have i, <1' and Nib < 1', from which we obtain

x + *+vy+ j+ z+ I= N1, < Nct;Nki : Vi;Y P1,

contradicting (i). Thus - is a 3-coloring of G. 0
For the other direction, if we have a 3-coloring : V -o {1,2,3) of G, we can get a dosed

seroless reduction N < M which is bounded by {1',z,*,V, ,,z, ) as follows. Set N12 = Z,
N21 = 1, NU = p, N32 = 9, N13 = z, N31 = 1, and N1. = 1' whenever 1 < i < n. For all
i,j E V, and every k e {1,2,3), set Ni = N7(i0y, Nbi = Nbl), and NM = N,(0.,O). It follows
from (viii) and (ix) that this definition gives a dosed seroless matrix N. Obviously, N is bounded
by {l',a,*,y,,z,N}. The fact that - is a•3-coloring of G is used to show that N < M. 03 0

Corollary 3.(i) Constraint satiability for C2[(l, 0), (1, 1), (0, 1)] isf NP-coinplete. The
same is rue for symmetric subagebra ofC2[(1, 0), (1, 1), (0,1)].

(ii) Censtran satisfiabi/ity for the the LA is NP-compkte. The same is true for the Allen-
Hqye algebma

Proof. (i): Use Theosn 2 with r = a, V = 6, and z = i. 0
(ii): Use Theorem 2 with x = m, p = f, and z s. 0

Theorem 2 applies to a 3-directional compass algebra. For 2-directional compass algebras we
need another theorem.



0ROGER D. MADDUX

Theorem 4. Let 2t be a relation algebra with nonzero elements z, y, z such that

(i) V, ,*,Vx, I are pairwime diqjoint,
(ii) V -z;z=O,
(iii) y Z;y 0,
(iv) y. ;Z= O,
(v) .y;z O,
(vi) y. -;Y= 0,
(vii) Y - ;z= 0,

(viii) z2-z;= 0,
(ix)z z;Z=0,
(x) _< Z;p, Z < Z;i, X < I;,,

(xi) Y < z;Y, r : <_ zCY,
(xiii) X < Y;z, < y;,, _ ;,

(xiv) Z < z;p, < z;jZ,, p, < ;:,
(xv) Z < y;r, y< Z;, r < Z;Z,
(xvi) Z <;Z, z z;I, z < J;Z,

(xvii) z <z;Z, z < ;I', Z Z< 1;,
(xviii) 1' < X;S. *;x- Y;" -;" -;- ;Z.

Then the following problem is NP-complete: (R) Determine whether a network N over 2 with
labels in {y,z + y + z, z + 1} has a dosed seoless reductior bounded by {1', z, k, Y, •,z,• }-

Proof. As in the previous proof, we show that Graph 3-Colorability [10] is reducible to (R). Let
G = (V, E9) be a graph with vertex set V = {3,..., IVI+2}, Let n = IVI+2. Let M be the n-by-n
11-matrix determined by the following stipulations: M12 = y, M 21 = #, M1, = M2 = z + V + z
for every i E V, M, = z + I whenever i, j E V and (i, j) E E, The 3-coloriags of G correspond
to closed seroles reductions of M which are bounded by {l', z, 1, y, P, z, i}.

Suppose that N is a dosed erolens reduction of M which is bounded by {1',z, f,1,,,z,i}.
We show that N determines a 3-coloring 7 : V - {1,2,3}. First, if I < i,j :5 n, then exactly
one of the following seven statements holds: N. < 1', N, 5 z, N, <5 f, Nq <5 y, N, < 9,
Nq _< z, and N, <_ !. Now we look at the possible values of Ni, and NO for an arbitrary i E V. 0
We have Ni2 s y, Nji <_ z+x+z, N, < z+y+z. Hence there are nine cases, six of which are
ruled out because they contradict one of the hypotheses. For example, if N1, _< z and NV,2 :5
then by (iii) we have

N12  Y -N1 .;N.2  Y --z;y = 0
contradicting the assumption that N is serolen. The following table show. which cam are ruled
out by hypotheses (ii)-(vii).

MN, 2 z NX 2 5V NOSz
N, <__ z No, by (ii). No, by (iii).
N1 , _<p No, by (iv). No, by (v).
Nii _< Z No, by (vi). No, by (vii).

The remaining three cases are used to define -: V -- {1,2,3). For every iE V,

1 if Nj <_ z and Nj2 5 z
7(i) = 2ifN 1, <_andN 2: <.

if Nii 5 v and NM2 < x

Now we must show t(i) # 7(j) whenever (i,j) 6 E. Since N is closed and N < M,

N<:Sz+!, Ni,<_z+I.

Is Is WW



RELATION ALGEBRAS 0
0

If -t(i) = 1 then N32 :5 z, so by (ix) we get
Nj2 <_ (z,+ V + z).-Nj,;N,

+ (z++z)-(:;z+1;z)<y+z.

Therefore, either N ,2 :5 V and 7(j) = 2, or ele Nj < z and 7)=3. Thus -(i) #7(j). If
1(i) = 2 then N,2 :5 y, so

Nj2, (z + y+z) -N,,; N.2
_< ( + V +Z) -(z + P);Y
<(z + V+ Z)" (z;v+ I;y) 5 z+z.

by (vi). Thus either Nj2, 5z and 7(j) = 1, or else Ni2 !5 z and 7J) = 3. Again, y(i) # (j).
Finaly, if -(i) = 3 then N1 < z, so

Ni:, (z + y+ z)- Nu,; N,

_< (C + Y + Z). ;(: + 1)
<(C+y+)Z) )(;z+Z;I) 5y+Z.

by (viii). Either N,2 < z and 7(j) = 2, or else Nj 2•5 z and f(j) = 1. Hence t(i) # 7(J). This
completes the proof that 7 (i) # 7U) whenever (i,j) E E, and shows that -f is a 3-coloring of G.

For the other direction, if we have a 3-coloring 'y: V -. 41,2,3), we can get a dosed seroless
reduction N < M which is bounded by {1',z,1, 1,9,z, ). Set N12 = y, N21 = 9, and NM = V'
whenever 1< i < n. For al i, j 4E V, set

Njj= 1'if T('I=()

z if (i) > 7"j),

= if 7(t) =, No= if Yi) =2,

Nl = yif7() = 2, No = y if(O = 2.lzif y•s = 3 if *f(0 =3
1 1 i -f~i = I) if y(i)=

It follows from (x)-(xviii) that N is closed and seralos. Obviously, N is bounded by 41', c,*, y,, z, N).
The fact that 7 is a 3-coloring of G is aed to show that N < M. D

To see the necessity of (xHxviii), consider the following example. Let G = (V, E) where
V= {3,4,5} and E =. Let 7 : V - {1,2,3) be the 3-coloring of G defined by 7() = i- 2 for
every i E V. The resulting N is shown below. The matrix N is dosed if (x)-(xvW) hold.

N=( •' I
CorOllaa S. Constaint satisbi•ity fixr C[(l, 0),(0,1)] is NP-complete. The same is true for
any compass algebra with at least two directions.

Proof. By Theorem 4, with z a, I =c, and z = d. 0"

- |;..



0

ROGER D. MADDUX

These theorems can be extended to show that essentially all but the most trivial compass and
interval algebras have NP-hard constraint satisfaction problems.

6. RELATIONAL SEMANTICS

The results in this section are stated without proofs. For proofs and additional details see [23]
and [24].

Let C be a programmin language which contains two disjoint dames of objects £p and 0
Zc, called the predicates and commands of C, respectively. The commands are of two types,
basic and compound. Among the basic commands are havoc, abort, and skip. There may be
other basic commands, e.g., assignment statements, but they will not be treated here. The
compound commands are dosed under three formation rules, and every compound command
can be obtained in exactly one of these three ways.

"(i) If So, S1 are commands then so is So;S 1. 0
(ii) IfS is a command and B is a predicate, then doB--,Sod is a command.

(iii) If{ S : / E I) is a set of commands and {B, : i e I) is a set of predicates, then
if i:B'-4$i fi is a command.

If {JS : i E I} = {S} and {BA : i E I} = {B) we denote ifi:B.-.Sifi by simply ifB-.-Sfi.
Imagine that U is a set of machine states, that each command S has an associated "input- 0

output relation" rs containing all pairs of states (p, q) for which there is a terminating compu-
tation of S starting at input state p and ending at output state q, that each command S has a
"nontermination relation" es of the form E x U, where E is the set of states initiating nontermi-
nating (or "eternal") computations of S, and that each predicate B has a corresponding relation
dB of the form X x U, where X is the set of "tate satisfying B. An element z of a relation
algebra is domain dement is z;1 = z. Thus es and dB are domain elements of !R&(U), and
9t(U), r, e, d is concrete example of an "interpretation", called an "operational interpretation".
The concept of interpretation is generalized from this concrete case and defined for an arbitrary
relation algebra as follows.
Definition 6. An interpretation of Z is a relation algebra = (A,+, 0,1, t,;,', ',1') to-
gether with three maps

r:£c--.A, e:£c--oA, and d:Cp-*A, 0

such that
(i) es; I = es for every command S E Zc,
(ii) d,; I = do for every predicate B eC-L£

Each command S has its associated "weakest-liberal-precondition" and "weakest-precondition"
transformers (and their duals), defined by •

(i) wlps (z) = F = U~tz,
04i wps.(a) F7 • -a=(Fstz)-a-•,

(iii) wlp$ (z) = wlps (7) = rs;z,
(iv) w (a) = s() = rs;a + es.
In case z is a domain element, wlps (r) is called the "weakest liberal precondition guaranteeing 0

z", and wps (z) is called the "weakest precondition guaranteeing e".

Theorem 7. H z is a domain eiement, then wlps (r) and wps (c) are also domain elements.

We will usually apply the functions wlps (-) and wps (-) only to doman elements, although
they are defined for all elements of the relation algebra S. The extended definition allows the re-
covery of ri from wlps (-), since ri = wlps (1'). The extended definition allows something more. 0
Suppose we consider two commands So, S1, and we wish to construct from them a command S2
such that is ;rs, <r•. According to De Morgan's Theorem K, this condition is equivalent to
rs, _ rK*;ri,, but s-1;ri, = (wlps, (rW.)A , so we can use any S2 such that rs. 5 (wlps. (ro.)Y .

-, w w V U 0



RELATION ALGEBRAS

The relation rs-;rg, is called the "weakest prespecification" of So and S, [13, p. 684]. The 0
weakest prespecification was explicitly mentioned by Peirce in [38] (under a different name, of
course). The convers-dual of the weakest prespecification, namely F--', was already introduced
by De Morgan in [35] and called "progressive involution" by Peirce. Many algebraic laws gov-

erning this operation can be found in [421, and some of them are proved in (141 and (151 from a
different axiomatisation for relation algebras.

Themorm S. The followiag laws hold for arbitrary interpretations. 0

(i) wps (z) = wtps (r) -U,
(ii) wlps (1) =1,

(iii) wps (1) L-5,
(iv) wps (z) wips (z)- wps (1),
(v) t$ = wlp* (1'),
(vi) es = wp. (0),

(vii) wlp; (-), wlps (-), wp*5 (-), and wps (-) are monotone (preserve inclusions),
(viii) wlip (-) distributes over arbitrary joins,

(ix) wlps (-) distributes over arbitrary meets,
(x) wp; (-) distributes over nonempty joins,
(xi) wps (-) distributes over nonempty meets,

(xii) wlps (z) -wips (Y) = wlps (z. V),
(xiii) wps (r) w ps (u) = wps (C- 1),
(xiv) wps (Z) . wlps (y) = wps (C .Y),
(xv) If wps (0) = 0 then wps (r) < wlpj (a).

Definition 9 below is based on the remarks in [9, p. 137]. What is actually used as a definition
of "S is deterministic in [9] depends on the assumption that wps (0) = 0, and appears in •
Theorem 10. Determinism in the arbitrary case is characterized in Theorem 11, which says that
S is deterministic if and only if rs is a partial function, and no state initiates both a terminating
and a nonterminating computation of S, i.e., rs and es have disjoint domains. Note that a
deterministic S can still have nonterminating computations.

Definitiom 9. A command S ECc is deterministic ifwlp* (z)5 _wps (z)for alaz.

Theorem 10. Ifwps (0) = 0, then S is determiistic iffwlp () = wps (z) for allz.

Theorem 11. A commandS is detministic iff es;rs_ 1' andrs .es = O.

Now we turn to the definition of a "correct" interpretation, one which respects the intended
meanings of the basic commands and command structures given above. The remarks following
Definition 12 an justifications for the correspondingly labeled prts of Definition 12. In moti-
vating the definition of correct interpretation we fredy form joins which, in case we are dealing
with an algebra MKU) of ail binary relations on the universe of states U, are simply unions and
certainly do exist. In the abstract definition, however, we need to know that various joins exist,
and so, in order to avoid lengthy formulations of results, we ask that the relation algebra used
in a correct interpretation be complete.

Deflnition 12. An interpretation is correct iff is complete and the following conditions hold.

(i) rbm. = 1 ande. = 0.00i rb.t = 0. and eb= 1.
(iii) rdi =1' and e* = 0.
(iv) For all commands So, Si, rso;s, = rs.;rs, and es,;s, = es. + rs.;es,.
(v) For all I-indexed sets {B• : i e oI predicates and S$ :i E I) of commands,

rimD.-s. s E ' (dD, -rs.), e-di.3,-sja 11 1 To-. + E (dD, .es.).

iel tel iEl

-59-



0

ROGER D. MADDUX
0

(vi) For every predicate B and every command S,

rd.-B- s ((d -"rs)'; (TD- -')), en-sd. El:.d -•v -(es +-rs;y)}.

Remarks on parts of Definition 12:
(i) Every execution of havoc terminates; upon termination the machine may be in any state.

Thus every state is connected to every other state by a terminating computation of havoc, and
havoc has no nonterminating computations.

(ii) For every initial state the execution of abort fails to terminate, that is, every state initiates
a nonterminating computation of abort, and abort has no terminating computations.

(iii) Every execution of skip is guaranteed to terminate and leaves the state of the machine
unchanged, that is, there are no nonterminating computations, and every computation has the
same final state as initial state.

(iv) The operational interpretation of So;S is "first execute So, then execute S". Thus a
terminating computation of So S, starts at a state that begins a terminating computation of So
that ends at a state that begins a terminating computation of S, that ends at the final state of
the computation of S0 ;Si. A state initiates a nonterminating computation of So ;S, if it either
initiates a nonterminating computition of So, or else initiate a terminating computation of So
that ends at a state that begins a nonterminating computation of S1 .

(v) A computation is a terminating computation of ifi:B--Si fi if, for some i E I, it is ater-
minating computation of S, whose initial state satisfies B,. The states initiating nonterminating
computations of if i:B,-Si fi are those in which no Bi is satisfied, together with those which, for
some i E I, satisfy BA and initiate a nonterminating computation of Si.

(vi) A terminating computation for do B-Sod is a finite sequence (possibly empty) of ter-
minating computations of ifB-*Sfi, such that the las computation terminates at a state not
stisfWying B. Consider a state p from which a nonterminating computation of do B-S od is 0
possible. First, B must hold at p, since otherwise the execution of doEB---Sod would termi-
nate immediately. Thereore p in the domain of ds. Since B holds, S is executed. This either
leads to a nonterminsting computation of S, that is, p is in the domain of es, or else there
is no such nonterminating computation. Therefore p must initiate a terminating computation
of S, for if not, we would have a state satisfying B from which no computation of S is pos-
sible, contradicting our amumption that p does initiate a computation of do B-Sod. Thus p 0
initiates no nonterminating computations of S, but does initiate a nonterminating computation
of do B-..Sod, so at least one of the terminating computations of S must end in a state from
which a nonterminating computation of do B-S od is possible. This conclusion is equivalent to
asserting that p is in the domain of rs;e4.B-ses.d. Putting these inclusions together, we conclude
that any state in the domain of ed,&Bs. must be in the domain of d9 -es +rs;e4s*-sed, that
is, e& --s, <5 d- (es + rs;e&.B-s.w). Thus e4.n-s. is a solution of y:5 di- (es + rs;y). -
Conversely, we can argue that if/y:5 dB. (es + rs;y) then y:5 ed.a-sw. Indeed, a state p in
the domain of V must satisfy B, and either a nonterminating computation of S is possible from
p, in which case p initiates a nonterminating computation of doB--*Sod, or else p initiates a
terminating computation of S that ends in a state p' which is again in the domain of y. Either
pf initiats a nonterminating computation of S or a terminating computation of S that ends
at a state p in the domain of V, and so on. We either eventually get into a nonterminating 0
computation of 5, or else create an infinite sequence of terminating computations of S. Either
way we get a nonterminating computation of doB-Sod, so p is in the domain of eC.a-s.d.
Since e4.g-s" is a domain relation, this argument is enough to show y < e ..- sd. Thus
eC.E..-s.. is, in fact, the largest solution of y 5 dB - (es + rs;y). Let f(y) = do. (es + rs;(y)).
Then f is monotone, so by Tarski's Fixed Point Theorem [45], the largest solution of y <1(y)
is r{' : y5< J(y)). We therefore met e•Bs-s" = '{ly: V 5 f(y)) in Definition 12.

Incidentally, Taraki's Fixed Point Theorem [45] also asserts that E{l : y :5_ ()) = E{ "

y = f(y)), so e4.a-s.. is the largest fixed point of dB - (es + rs;(-)). We can also express

-- gO-

S.. .. .... . .. . .. .. .. . ........ . ... ~ m . .-g o - SM . . . .. . ..



RELATION ALGEBRAS 0
rd.5g-s.d is the smallest fixed point of the function a'. 1' + d.- rs ;(-), i.e., r.3.-S.d = fl{y: 0

Definition 12 is concerned only with those language features used here. For our present
purposes, the predicates of Z need only form a nonempty set, but if the predicates of Z contain
constants true, fake, and are closed under standard connectives of propositional calculus, then
the following conditions could be added to the definition of correctness.

d-,B = Ts- =dBdac -d cd

davc = d, + dc dB-c = B + dc

ds.- = d -dc + -aW ";]S 0

Correct interpretations are extremely abundant.

Theorem 13. For every language £ and every complete relation alebra 2Z, if we assume that

(i) d is any map from predicates to domain elements of 2,
(ii) r' is any map fiom basic commands to elements of2 such that r'(havoc) = 1, r'(abort) =

0, and ,-'(u ) = 1', 0
(iii) e' in sy map from basic commands to domain elements of 2such that e'(havoc) = 0,

e'(abort) = 1, and e'(skip) = 0,

then r' and e' can be extended in a unique way to maps r and e such that 2, r,e, d is a correct
interprtation.

Theorem 14. The following laws hold for an arbitrary correct interpretation of C'. '
(i) wlpM.. (z) = Ott, wpb.- (z) = Ots,
(ii) WI..., (Z) = 1, -p.,., (2) = 0,(ii) wlpa. (2) = X, wpa* (r) = Z,

(iv) wlps.;S (z) = wipS. (wlpS. (z)),
(v) wps.;s. (2) = wps. (wpS')),
(vi) wlp:g8..-s, a (2) = l9 (. + wlps. (z)), 0

mE!

(vii) wpv~g.-.Is, (Z) = l - + wps. (a))- d,
iel tel

(viii) wlpd.-s. (z) E ((dB- rs)' ; (T" -x)) = li (wlpwD-sj)'(dB + z),
JEw iEw

(ix) wlp&g-s.w (z) is the largert solution y of(d, + z)- (TB__+ wlps (p)) = r, 0
(x) wpwj.-sw (s) is the smallest molution of (dB + z)- (d- + wps (y)) = y,
(xi) wlp%,gB.. , (a) = E(V : (dv + r)- (e + wips (y)) = y},

(xii=)wpi.s" (s) = n{ip: (d + a) -(s + wps (y)) = Yi}.

Theorems 14 and 8 show that wlp. (-) and wp. (-) qualify a predicate transformer semantics
according to the requirements of [9]. The requirement [9, RO, p. 132] (which also appears as [9, 0

(0), p. 129]), that wlps (-) distribute over arbitrary meets, holds by Theorem 8(ix). Note that
correctns of the interpretation is not needed for R0. Definitions [9, (1O)-(18), pp. 133-136],
which specify wlps (-) and wps (-) in cu S is havoc, abort, or s"p, hold by Theorem 14(i)(iiXiii).
Definitions [9, (23)-(25), p. 137], which specify the predicate transformers for the composition
of commands So;S, hold by Theorem 14(iv)(v). Definitions 9, (27)-(29), p. 137], for the
alternative construct if i:--Sý fi, hold by Theorem 14(viXvii). Finally, Definitions (9, (1)-(2), 0

p. 171), for the repetitive construct doB-.*Sod, hold by Theorem 14(ix)(x).
The equation rs ; I +es = I asserts that every state initiates either a terminating or a nonter-

minating computation of S [9, p. 1301. This equation is equivalent to wps (1) =1 and equivalent

- 9f-



ROGER D. MADDUX

to wps (0) = 0. This last equation has been called the "law of the excluded miracle". Theo-
rem 15 below shows that the basic commands havoc, abort, and skip satisfy this "law" under
any correct interpretation, and that if the other basic commands also do so then all commands
do so and the interpretation is "miracle-free", i.e., wps (0) = 0 for every command S. Any
miracle-free interpretation gives rise to predicate transformers that satisfy all the requirements
of [9].
Theorem 15. (i) WP. (0) = wp.bt (0) = wp,* (0) = 0. 0

(ii) If wps(0)=0andwps, (0) = 0 thenwps.;s, (0) = O.
(iii) If wps, (0) = 0 for every i E I, then wpwu.s,-s,s (0) = 0.
(iv) /fwps (0) = 0 then wpd--sd (0) = 0.
(v) f wps (0) = 0 for every basic command S, then wps (0) = 0 for every command S.

From their operational interpretation it is natural to expect that skip and abort should be 0
deterministic. It is also natural to say that havoc is not deterministic, since, in the operational
interpretation, a computation of havoc can start at any machine state and end at any other.
However, even under the operational interpretation there is one cae in which havoc really U
deterministic, namely, when there is only one machine state. These ideas are expressed formally
in the following theorem.

Theorem 16. (i) skip and abort are deterministic. 0

(ii) havoc is deterministic ifand only if2 is Booean, i.e., ' = 1.

Some obviously sufficient (but not necessary) conditions for determinism are given next.

Theorem 17. (i) If So and St ame deterministic, then so is So; St.
(ii) Amume Si is deterministic for every i E I and dg,-d&, = 0 whenever i jandi, jEI.

Then if i:&--eS fi is deterministic.
(iii) If S is deterministic, thenm so isdo B-Sod.

Next is a generalization of what is called "the Main Repetition Theorem" for do B-Sod in
[9]. An informal statement of this result runs as follows. Assume

(i) P is a predicate,
(ii) if P and B hold at some state p then no nonterminating computation of S is possible 0

from p,
(iii) if P and B hold at the initial state pi of a terminating computation of S, then P holds

at the final state p2, and the initial state pi is in the relation G to (is "greater than")
the final state ft, i.e., (pi,p2) E G,

(iv) there is no infinite sequence of states such that P and B hold at every state in the
sequence, and each state is in relation G to the next state. 0

It follows from these assumptions that wpdB--S.d (P) holds where P does, that is, P is a
sufficient (but usually not necemary) condition for the guaranteed termination of do B-S•od
at a state stWying P. Theorem 18 generalizes the Main Repetition Theorem in two ways.
First, it does not include the assumption that G is transitive, a possibility noted in [9, pp. 174-
51. Second, it applies to interpretatins ovm arbitrary complete relation algebras, not just
representable relation algebras of the form 91(U). 0

Theorem 16. Assume £ý,r,e,d is a correct interpretation o(f, S is a command, and B is a
predicate. For alp, # in t, if

(i) p;1 = p,
(ii) p -do es = 0,

(ii) p- di -rs _5 g- P, 0
(iv) E{z : z < p. da- g;(p -d" - --1= 0,

then p < wpa.as.i (p).

- 9,2-

,. , V W W w V Vp 0 0



RELATION ALGEBRAS

RErFERZNCES0

I1. James F. AD.os. As interval-Used representative of temporal ksewledge, Proceedings of the Seventh Inter-
national Joint Ckmisrenee an Artificial Intelligence, (IJCAI), 1961, pp. 221-226.

2. -. MAkstaisiag msowludge akest temporal intervals, Cvomnkanicim of the Association for Computing
Maebines 36(11) (November 1963).9832-602.

3.James F. All=. and Patuick J. Hayes A commoseeuse theory of time, Proceedings of the Internationaal Joint
Comiwreac an Artdkal intelligmnce (UCAI), 1966, pp 6283-31.

4. -, Umostos and peamt. is on isterv.l-based temporal logic, Tech. Report TR 1o0, Department of
Campus. Scienice, University of Rochster, December 1967.

3. James F. All=n and Jaohansen A. Koomen, Pleasinusi sng a temporel world moedel, Proceedings of the Eighth
Intemnational Joint Ciomlervoacean Artilicel Intelligence, Karleruhe, W. Germany, August 1963 (U1CAI), 1963,
pp. 741-747.

6. George Boole, As inestigation of the last of thought em wkich eve founded tic matksemtcasl tieories of
logic and prokabilitaes, Walton sad Mabosley, Ioudes, 1864.

7. -, noe mcthcsmetiea asaksam of togic, beisj on "say towards a calcslus of deductive reasoning, B.
Blackwell, Oxford. 1948, Lest publishled in London cud Cambridge, 1647.

8.Louise H. Chat and Alfred Iheeki, Distributive and moedular laws re the arsihmetic of rekctis clgeirsu,
University of California Publications in Mathematica, Now Series 1 (1961), 341-364.

9. Edsger W. Dbjkears and Carol S. Schalt., Predicate Calculus .ind Progress Seeiatice, Spsmnger.Vorlag, New
Yark.Borlin-Iteiddlbog, 19m.

10. Micoael R. Gamy sad David S. Johnson, Computers and Istractiiilty, A Guide to the Tie"r of NP-
Conipletesess, W. H. Freeman, New York, 1979.0

It. Lemn Henkin. J. Donald Mank, end Alfre Taruki, Coaidric Algeiras, Part 1, North-Holland, Amsterdam,
1971.

12...-., Cylindric Algess, Part II, North-Holland. Amsterdam, 196.
13& C. A. R. Howe,, L J. Hae&. Ila Jilleug, C. C. Morgan, A. W. Roecoe, J. W. Sanders, 1. H. Saomson. J. MI.

Spmvey, and B. A.. Sufrmn, Lowse of progvesimisg, Connanicatiouas of the A. C. M. (August, September 1967),

14. C. A. K. Howve and He Jifaug, nhe weakest preepocification, Part 1, Fodamanuta Infomatics 9 (1936), 61-64k.*
16. - , nhe weaklest Praeict osPrt II, Flmdam InAfrmatics 9 (1966). 217-252.
16. Bjarni Jdnmoa, Varietes of reolation algebra., Algebra Uniyeraslis 15 (1962), 273-296.
17. -. The themr of bUnary relatioss, Algebraic Logic (Proc. Conf. Budapest 1968) (Amsterdam)

(H. Andr~k, 5. D. Monk, , and L N~aeti, eds.), CAloq. Math.. Soc. J. Balysi, vol. K4 Narth-Holland,
1931, pp. 245-292.

18. Bjarni 3d.... and Alired Tarii, Boolean algebras with operetore, Part ft, American Journsl of Mathemwatics
T4 (1962), 127-162.

19. Peter B. Ladhin and Roger D. Maddux, Representation and roesasisg useti couver time intervals, Teck.
Report KES.U.88.2, Kestrel Institute, April196S.

20. -... , 0s binary cosetruist problems, Tech. Report TR 102, Departmakt of Comnputing Science and Math-
esnatica, Uniuersity of Stirling, AprAIM10, revised Mwbuaa7 1993, to appear in the Journal of the Association
for Computing Machinery.

21. -, Os kinary cosetruist setworks, Tech. Repart KES.U.886, Kestrel Institute, November19I6.
22. Roger C. Lyndion, Tho rpersesatiets of reastiosal algebras, Annals of Mathematics (ei.2) &1 (19m0),

23. Roger D. Maddox, Awwerlin# relativona mia. Thederiestios sf the Dihtru.Sckoktem predicate transfor~mer
semastic* firew Teroh'. ama.. for the Poires-Sehrider calcules of relations, to appear in the South African
Copue JamuoLa

24. -, nhe worldsn relational moedl for predicate tran.sfr~mer @*mastic@, .dxonitted to Theoretical Camk-
peter Scince.

26. -,Topics in A"**is Algebras, Pk.D. thesis, University of Califarnia, Barboekyr 1976, pp. mi+241.
26. -,Soms varieties containing relctis alg~ebrs, Traosactioue of the Americant Mathematical Society

2M (1962), 801-626L
27.....-..., Finite integral .iatis algebra., Universal Algebra and Lattice Theory, Sprange-Verlsg, 1966, Pro.-

ceediuga of the Southsesaste Cooferesom in Universal Algebra and Lattic Theasy, Carleton S.C., July
11-14, 19B4, Lecture Notes in Matmoatlcs 1109, pp. 173--197.

2L. -, Istradactsry cow*s# on relative algebra., Ainiteidiuenisal cylindric algebra., asi their wstercon-
seetios. Algebraic Logic (Proc. Cani. Budapest 196) (Amsterdam) (H. Azsdrib, J. D. Mank, and L Ndmeti,
ads.), Colloq. Math. Soc. J. Botyai, wo& K4 North.-Hog"nd 1991, pp. 361-M9.

29. -, Pair-domes relation algebra, Mramsactions of the Americant Mathemsatical Society 328 (1991), 83-
131.

3o. -, The origin @I relation algebra. in the development sad acismetixaties sf the calculus of relations,
StudiaLoom" 6 (3/4) (1991), 421-433.

-930

IF 'w-



ROGER D. MADDUX

31. J. Mali1k and T. 0. Diniard, Rowsisoss in time and s*"ce, Proceedings of the Eighth International Joint0
Cionfavace an Ar~tifiaalIntefligence, Karleruhe, W. Gmnnammy, August 19693 (LICAI), 1963, pp. 343-343.

32. J. M4. Martin, Dictiesan of Philosophy &sd Psycholsgp, Macmiflan& Co., New York, 1911, second edition.
33. J. Donald Monk, 0% vepressst"sil relative siehsose, Michigan Mathesuatical Journal, 11 (1964),3207-210.
34. Augustus Do TM organ, O% the symbokl of logic, the thsem of the syllogism, sad is particular of tic Coptic.

ead the applications 01 the theory of p'ehhilitius to somne ueutioeso in tic themi of nevdesce, 7kansactions of
the Cambridge Philosophical Society 9 (18B6), 791-127, reprinted in [363.

35. -......., 0s the syllogism, ao. IV, ead as the logic of relativess, Transcionsof the Cambreidge Philiosopbical0
Society 10 (1864), 331-358, reprinted in [361.

36. -, On the Sylloispm, &ad Othev Logical Wvitisgs, Yak University Prows New Haven, 1966, edited, with
an Introduction by, Peter Heeth.

37. Chmarls Sanders, Peirce, Description ofja %station fer the logic of reastive. veeelis# fromsits ampkfijaiestu of
the cesesptien. of Booe's Calculus of lapic, Memoirs of the American Academy of Sciences 9 (1870), 3174378,
reprinted by WOWch Bigelow and Co., CAmluidge, Mai.. 1870, pp. 1-62; also reprinted in [40) and [411.

38. -,On the elgebra of logic, Amneuican Journal of Mathematics 3 (1860), 15-37, reprinted in (M0.
39. -,Note D: the logic of relatives, Studies in Logic by Members of the Johns Hopakina University (Boston)

(C. S. Psh c, ed.), WOWt, D.O.D. and Co., 1863, book reprinted, with an Introduction by Max H. Flas and a
Prodeaceby AchunEschbada, by Jobs Benjoamin.Publishing Co., Amusterdasnand Philadelphia, 1963, pp. lviii,
vi+203-, paper reprinted in [40], pp. 187-203.

40. -, Collected Papers, Volumeg III Harvard University Proes, Cambridge, 1933, edited by Charles
Hartshoren and Paul Wagss.

41. - , Writings of Charles S. Peive., A Chveeelogisea EditionInin University Pres@, Bioosningtonk,
1964, edited by Edward C. Moore, Max H. Fiasch, Chrisia J. W. KloeseL, Don D. Roberts. and Lynn A.
Ziear.

42. F. W. K. Erast Schrider, Vorilesnsge ikev die Algebra der Legik (mexte Logih), Volume 3, Algol'sa *ad
Logik der Relative, pert 1L second ad., Chelsea, Broes, New Yorah, 1966, first published in Leipeig, 1696.

43. R (G. Simmons 7%e wse of gsastitative asd qualtative osiuulatious, Proceedingaof Third National Coefafece
an Artificia Intelligence (AAAI-8S) Washington. D. C., August 1963,1963.

44. Alfred Tarshi, Os the Calculus of relatioss, The Journa~lof Symbolic Logic 6 (1941), 73-09.
45. - , A lmttice-theeretical "opist theorems &ad its applicatiouss Paciic Journal of Mathematics 5 (1955), .

283-30.
46. Affred Tareki and Steve R. Givent, A Fee'msalstios of Set Tkeev without arisaies, Comlloium Publica-

tione, vol. 41, American Mathemastical Society, 1967.
47. P. G. van Beek, Resseeis# sheet qualitative temsporal injermation, Proceedings of AAA]-90, the Eighth

National Cioeaeresce an Artificial Intelligence, AAAI Press, 1990, pp. 728-734.
48. P. G. van Boek and R. Cohen, Approximation algorithmss for temporal eessosisg, Proceedings of JCA198, the

11th Joint ConfeemncenArtilical Ineflignce, Moran Kauhn-ann 1969, sh uoterionof [493, pp. 1291-1296.
49. -, Exact oad appresemoate rossonisg sheet temporal re1.tioss, Computational Intelligence 6 (1990),

132-144, long version of M48.
50. J. F. A. K. van Benthemn, The Logic of Time, RaideL, 1963.
51. M4. Vilain and H. Kautz. Ceestraist propagation algorithm* for temporal ressosisg, Proceedings of AAAI-66,

Morgan Kaufmann. 1966, pp. 3774382.
52. M. Vilain, H. Kauts, and P. (G. van Beek, Coastrasit propagatios algovithms for temporsl reasoing, Rteadings

in Qualititative Reasoming About Physical Syst-m (Weld and do Kiser, ads.), Morgan Kaufmann, 1969,
revised version of 5161.

53& Alfred North Whitehead and Bertrand RumsE Pwiscipis Mathematics, Volume I, Cambridge University
Press, CAnaheidge, England, 191, Second edition, 1925.

DePAMI43WW or MATHUIATma, 400 CARVE~ HALL, ICOWA STATR UMIVESMn, Aiim, IOWrA 50011-2046,
U.S.A.

E-mail address: madduz~vinc.ientAnte"odu

W0



Category theory and information system
engineering

Mfichae Johnson and C.N.G. Dampney

SchoWolfa Mathematmc and Competing, Macqua~w Uaivewty0
AUSTRALIA

Abstract

T7his paper is a sammary of a talk for AMAST 19M. The actual
talk contains eramplas draw, from businem applicatioms whitih because
of owalidestiaty apemaeats cannot be publihled here It is hoped that
we will obtain pernsummam to pubblsh the amaspbs in the 1nad paper.

We outlin a aumber of apgdications of category theory to inforntation
"aistm engineeing is major business enterptises. These appklcatos have
led to new mnethodologis in E~nodding, constraint specification and
proce maddling. They also suggest new but as yet untested techniques0 0
for Wbisforaion systemt partitiaming and arditecture.

Oar mnain thesis a tha demetary category theoretic notioms can have
important Value in the 'redl world of saftware engineering.

1 Introduction

There have been many applications of category theory to computer science and
these have been recorded in textbooks (eg fill11]) and conferenice proceedings
(eg [3] [6]). Surprisingly few of these applications have yet filtered down to
afect software engineering mnethodologies, and to the authors' knowledge nn
of them has infleueced information system engineering methodologies (althoughi
there have been several category theoretic treatments of informtation systems,
aee (7] [10] [9] [6]). In this paper we record some elementary categorical ob-
servations about infomatin systems and show how they have led to umproved
methodologies for infomation system engineering. The results reported here are
essentially empirical, and are based on cousultancy work that we have under-
taken for Telecom Australia and Caltez Oil Australia, as well as several smaller
enterprises.

The paper is organised as follows. Section 2 briefly reviews informatIon aye-
tarm and the dominant methodology for planning ninfrmation system designs

IMP



00
S

which is ER-modelling. In Section 3 we review the definition of a category and
indicate how an ER-model is essentially a category-the elsuifin, category or
tkeory for the information system. A brief analysis of this view shows that the
cateories that we need to deal with are at lag lextensive [2) and that the
category theoretic treatment gives a query language for free. In Section 4 we 0
note that the main diffierence between an ER-model and its classifying cate-
gory amounts to the specification of integrity constraints upon data which can
be stored in the information system. This has led to a change in the main
methodologies by giving constraint specification a much greater role in the de-
velopment of information models. We show how to treat both static constraints
and dynamic constraints (these latter ar often business rules or govertnent
regulations which may be changed during the life of the information system).
Section 5 treas proem modelling which is traditionally the next stage in the
development of a system after information (ER) modelling and it shows how
the categorical treatment greatly simplifies process modelling. Finally Section 6
records implications of the category theoretic framework for developing different
Ius views of an information system and for the underlying architecture of the 0
system itself.

Overall our approach has become known as the Federated Information Sys-
tem (FIS) approach to information system engineering.

Acknowledgments: The authors gratefully acknowledge the Australian
Research Council (ARC) and Caltex Oil Australia for supporting this research.

* .
2 Information Systems

There is little need to discuss the importance and pervasiveness of computer
technology in our society. Yet for those of us who work in academic institu-
tions at least, it is easy to carry a biased view of the nature of its applications.
Many of us focus on important issues such as algorithms and complexity and
we often have a background in sciaentific computation. Yet the great major-
ity of commercial applications require very little computation. Banks, airlines,
stock exchanges, telephone utilities and even manufacturers and distributors
use computers mostly to store, retrieve and perform simple transformations on
information. The construction and maintenance of these miformaton Systems
is the major expense item in many commercial information technology depart-
ments.

As is the cae with most software engineering projects a great bulk of the
expense in information system engineering occurs after the production version
of the system has been produced because of the need for maintenance and
modification. This expense can be substantially reduced if sufficient effort is
expended in the planning stages to ensure that the information system is an 5
accurate model of the business enterprise aspects which it is intended to sup-
port, and so information system analysts have concentrated on developing good

-- 96--

w mm w ...,w 0 m 0



C
0

methodologies for information system specification and development.
One of the easiest mistakes to make in developing an information system

is to begin by considering what the organization believes needs to be dome by
the system. As business develops theme needs change rapidly, and modifying a
system which has been designed to perform a particular task can be very di•
cult. Lutead we should focus on what information the busnem needs to keep,
and build a system which stores that information and which is able to utilise
it as fiexibly as possible. It is empirically well established that the underlying
insformation med! of a business changes relatively slowly and that the changes
are usually incremental rather than revolutionary.

Thus, information system engineering usually begins with the development
of an information model. There are several ways that such a model can be
represented, but by far the dominant technique is called Etitiy-Reatiouskep
(ER) moxrellia [4].

The ER approach is a graphical modelling technique. An eutity ia a dam of
something about which the business needs to stoe information. Examples might
include CUSTOMER. EMPLOYEE. ORDER. INVOICE and PRODUCT. Each en-
tity will correspond to a set of things at a particular point in time (for example
the current st of employees). The infornation that we store about entities
comes in two form: there are reshtiouskipa between entities (for example an
order may be for several products and a product may appear on several orders
so there is a many-to-many relationship between PRODUCT and ORDER) and
entities have certain uffributes (for example a product may have a product num- 0 0
ber and a price, an employee has a name, an address, a salary and so on). Often
one attribute for each entity is treated as the key satribute so that for example
a product may be always accessed via its product number. Entities are usually
represented graphically as rectangular boxes, relations as lines joining the boxes
(with "crows-feet" to indicate possibly multi-valued relations when necessary),
and attributes as oval boxes. An example is shown here. 0

The graphical nature of ER-modls is a very important aspect of their pop-
ularity. Other specification techniques such as Z are more powerful but harder

- -



0

to learn. The great value of a graphical model is that an analyst can show it
to busainpeople and with only a brief explanation they can understand and if
necemary correct the model.

There is an extensive methodoloM of ER-modelling including the reduction
of models to various normal forms. The details need not concern us here except
for one aspect: Many-to-many relationship, can always be transformed into two
many-to-one relationships by the introduction of a new entity. For example we
can introduce an entity ORDER.LINE. One instance of this entity will be the
order of a particular product on a particular order. Thus there will be many-
to-one relations (functions) between ORDER-LINE and P.RODUCT and between
ORDER.LINE and ORDER. (This is just the usual "tabulation" of a relation.)

3 Category theory

A category consists of a collection of oeects and a collection of arrows, with each
arrow having a specified source and target among the objects (this much is just 0
a directed graph) together with a compostion of arrows, defined whenever the
arrows have a common source and target, which is associative and has identities.

Thus a category may be thought of as a directed graph together with infor-
mation about composition. This information may be expressed by giving a set
of relations (eg f composed with # is equal to h composed with k) and those
relations are often expressed as cemmutatieu disgrsms (a diagram is said to
commute if any two composable paths of arrows in the diagram with common 0
start point and common end point have equal composites).

Examples of categories include the category set whose objects are sets and
whose arrows are functions between sets; grp whose objects are groups and
whose arrows are group homomorphims; more generally T-alg whose objects
are algebras from some theory T and whose arrows are T-homomorphim-s; and
numerous small categories which can be generated by drawing a directed graph, 0
adding identities at each vertex, bad specifying composites for composable pairs
of arrows.

One of the great advantages of category theory is that it has provided a
graphical framework for much of mathematics. Many properties that seem to be
about the internal structure of objects such as being a one element set or being
the cartesian product of two sets, can be characterised by universal properties 0
of arrows and these permit graphical arguments to prove theorems.

Further examples and definitions of specific universal properties such as pull-
back, terminal object and coproduct can be found in any of the basic texts [8]
[1] [11].

I, m,--- m mw •0



O

0

3.1 A category theoretic view of an ER-model

We aim now to show how an ER-model is essentially a category. This is moti-
vated by the categorical treatment of universal algebra above (the T-alg exam-
ple) and is treated in full in [5]. By anlog y with universal algebra we will call
the category the theary or dclesifa,# catqeory of the ER-model.

Consider an ER-model, normalised as described at the end of the preceding
section so that all relations are many-to-one. This model may be viewed as a
directed graph whose vertices are the entities and attributes of the model and
whose arrows ae the relationships oriented from the many-valued entity to the
one-valued entity together with arrows from each entity to each of its attributes.
Notice that if the vertices of this graph are thought of as sets, and the arrow. as
functions, then the intended semantics of the ER-model is still well represented
here (and this can be made formal via a functor to set in the usual way).

It remains to consider composition. Since the many-to-one relations in the
model are intended to represent real world many-to-one relations (functions)
there are real world compositions and we argue that these should be repre-
seanted in the model. Many of the compositions are free in the sense that formal
composites can just be added to the model (or indeed left out since such for-
mality can be added later), but when there is a dosed loop of arrows it is
important to determine, by considering the real world semantics, whether the
diagram commutes. Once this has been done for all possible composites we have
constructed a classifying category for the ER-model.

It is remarkable that extant ER-moddling methodologies have ignored this
question of commuting diagrams. Typically an analyst spends a great deal of
time and effort developing a model and eventually passes it to a programmer
to implement. Often it is important that the resultant program check the con-
straint implied by the commutativity of certain diagrams, but since the analyst
has not recorded which diagrams commute it is up to the les experienced pro-
grammer to try to reconstruct the intended semantics and to decide whethera a
given diagram should commute!

In fact, in our experience, searching for commutative diagrams actually re-
sults in a better ER-model because it often clarifies the nature of relationships
and because it provides a test of the model as it is being developed. In the lec-
ture this is illustrated by examples taken from commercial modelling exercises.

We view the specification of which diagrams commute in an ER-model as an 0
important part of the information modelling methodology and we are developing
CASE tools to assist in this process.

3.2 Classifying categories and lextensive categories

This section uses a little more category theory than the rest of this paper in 0
order to accurately develop the notion of classifying category. It may be skipped
by those with little category theoretic background who are mainly interested in

0

I, I I, , •. . •0

S • ,iuni • dl im maimW/hn umM a.•m M i | M i ia .. .,,-•.



uS

0

our practical methodological results.
Universal algebra suggests a better version of the classifying category dis-

cussed above. Often an algebraic theory can be presented in several different
ways, but there is a single canonical classifying category (up to equivalence of
categories) obtained by taking any one of the presentations and "closing it up"
under certain basic operations like taking limits. Similarly we would expect the
classifying category of an information system to satisfy certain basic exactness
properties and the category described in Section 3.1 is just a presentation for
the canonical classifying category.

So, what basic exactness properties are required? We need a terminal object
I and arrows I -- A will be used to specify instances of the entity A. We need
finite coproducts for two reasons. First, entities often have substructure which
is best indicated by coproducts (so for example in a small retail business the
entity EMPLOYEE might be the coproduct of the entities DRIVER, SALESPER-
SON, CLERICAL-STAFF and MANAGEMENT). Secondly, attributes are fixed
sets (so for example PRODUCT-NO might be the set of all four digit numbers-
of course most of these numbers won't be used at any particular point in time, 0
but the relationship between PRODUCT and PRODUCT-NO allows us to see
which ones are currently valid product numbers). Thus attributes are usually
J" I for some n (n -- 10000 in our product numbers example). This is tech-
nically very important since the injection ib : I - r" I allows us to pick out
attribute number k from which, if the attribute is a key attribute, we can obtain
information about a particular instance of the corresponding entity. Finally we * *
need pullbacks, both to allow us to compose relations and to allow us to access
the entity instances with particular attribute values.

Furthermore we expect the coproducts to behave well. They should be
disjoint and universal. Thus in the presence of pullbacks and a terminal object
we expect our classifying category to be a Ie-"tenuve cateyowT [2].

3.3 The query language

For use in Section 4 it is worth noting that the internal logic of the lextensive
classifying category of an information system forms a query language for that
system. Thus the standard queries arise as objects of the clmifying category.

Models of the information system will be lextensive functors from its clmify-
ing category to set. Such functors will necessaily carry the object representing 0
a query to the set of records which satify the query.

4 Constraint specification

We show by example how to model the vast majority of the integrity constraints 0
required in infomnation systems by using ER-modelling with commutative di-
agrams. Some examples of the constraints which can be treated include the

0|

foo -0

w w U S 0



0

0
0

requirement that in a database of students, courses, clases and claw times, it
is required that no student have a dash between two timetabled classes; when
an order is delivered it must be delivered to the address of the customer who
placed the order; and when a contractor engage in some work involving a busi-
anm resource there must be a contract that specifies that that contractor has S
the right to use that resource.

Some complicated constraints require the use of the query language outlined
shove (mince a constraint may apply only to a certain subentities determined by
a description that can be used as a query).

In the talk we show how both permanent (statc) and variable (dynamic)
constraints can be easily modelled.

5 Process modelling

Once a satisfactory ER-model has been developed it is common to work out a
procei model for the business which shows the important processes carried out
by the business and how they trigger one another. The proem model will be
much less genersl than the ER-model since it will tell us about how the business
is currently organised (and this may change).

Traditionally the proces model is influenced by the ER-model, but our new
methodology for ER-modelling makes the link explicit. Consider the diagrams
in the ER-model which have been specified as commuting. Typically each of * *
these loops represents an individual process and reconciliation cycle. This is
because, in order to update the information system, it is usually necessary to
update an instance at each vertex of the diagram and then finally to check that
commutativity has been preserved.

Thus to develop the process model one calculates a kind of graph dual of the
ER-model in which specified commutative diagram correspond to processes and
common vertices between such commutative diagrams correspond to triggers
between the processes.

Of course it is often the case that an analyst can further refine the process
model, but it is useful to note that the greater part of the work of developing
a process model has already been done if one has specified the commutative
diagrams in the ER-model.

Once again this point is illustratied with reel world examples in the talk.0

6 Views and architectural implications

The methodology that we have been describing also has some as yet untested
implications for other aspects of information system development. 0

One particularly difficult problem in deaing with large information systems
is the presentation of different views of the system for different users. The

-W,



S

0
0

problem is ementially one of how to partition the system so that users can see
a relatively complete view related to the aspects that are of relevance to them
without having to look at the whole system. The recognition of commuting
diagrams as procrm Suggests that the bat partitioning would be obtained by
choosing a related group of commutative diagrams. This will be developed in 9
work currently in progrem.

This partitioning can be carried further. The growth of very large infor-
mation systems has led to problems of complexity and context retention which
might best be solved by allowing business units a certain autonomy with their
information systems. However, integration of such systems is necessary and
the complexity of the interaction between subsystems can be dangerous. We 0
propose the development of a corporate information (ER) model which can be
used to determine, via commutative diagrams how to partition the system into
subsystems. This will require duplicating entities that happen to fall into two
subsystms and providing a message passing mechanism to allow the two copies
to remain synchronised. However, if the partitioning is done well, and we believe
an analysis based on commutative diagrams will do this, then it is likely that
the interaction between subsystems will be quite manageable.

This proposed architecture for information systems is the source of the name
Federated Information Systems.

References * *
[1] M. Barr and C. Wells, Csteory theory and computer science, Prentice Hall,

1990.

[2] A. Carboni, S. Lack and P.F.C. Walters, Introduction to extensive and
distributive catgories, Pure Mathematics Report 92-9, University of Sydney,
1992.

[3] Category theory and computer science conferences, Springer lI.ure notes
in computer science, 240, 263 and 389

[4] P.P.S. Chen, The entity relationship model-towards a unified view of data,
ACM 7rausactious on Database S 1stems, 1 (1976), 9-36.

[5] C.N.G. Dampney, M. Johnson and G.P. Monro, An illustrated mathemat-
ical foundation for ERA, in C.M.I. Rattray and ,.G. Clarke (eds) The
unified computation laboratory, Institute of mathematics and its applics-
tions, (1992), 77-84.

[6] Durham Conference, Applications of categories in computer science, Lon-
don Mathematical Socie Lecture Note Series 177 (1992).

[7] C.A. Gunther, The mixed power domain, to appear in Theoretical Com-
puter Science.

f02

w~ W Ww W 0



0

[8] Seundera Mac Lane, Catelores for the Work•ng Mstemtitsan Graduate
Texts in Mathematics 5, Springer-Veelq, 1971.

(9] R. Rosebrugh and R.J. Wood, Relational databmes and indexed categorim,
Canadian Mathematical Societ Confemece Proceeding 13 (1992), 391-
407.

[10] S. Vickers, Geometric theories and databases, London Mathematical Society
Lecture Notes 177 (1992), 288-314.

(11] ILF.C. Walters, Categories and computer science, Cambridge University
Press, 1992.

@

*



0

0

0

0

0

00

0

0

0

0

0

-406-

S w S - -��W S S S 0 0



0

0

Rigorous specification of real-time systems

Steve Schneider

May 1993

Abshmtrc
This paper provides an introduction to the ase of timed CSP in rea-

soning about real-time system. The lgae of timed CSP and the
desotatioual timed failures modd awe reviewd, ad the undedying tke-
ory is discussed. The a4gbraic style of specicfic is discussed, folowed
by the behavioura spedicatia approaci. A simpie timed buffer exa-
a treated muing both methods.

1 Introduction

A real-time system is one whose correct operation relies upon some consider-
ation of its quantitative timed behaviour; examples include traffic lights, gas S
burners, washing machines, and nuclear power plants. Many speifications on
such systems are concerned with explicit tuning properties ach as response
time or delay time. To reason figoroasy about them, it is necessary to be able
to capture real-time properties in a precise way, and to have some model of
computation that incorporates time.

There are a number of approaches that have been taken to provide a rig-
orous foundation for reasoning about real-time systems. One approach is to
focus attention on specifications, providing a language suitable for capturing
and reasoning about real-time requirements independent of any particular for-
malism for describing system. Metric temporal logic [Koy89j and the duration
calculus [ZHR91I] are two examples. Such specification languages are gemerally
supported mathematically by an underlying model, and may be used with a
variety of system description formalisms.

The complementary approach is to begn with a way of describing proemes.
There are many ways timed systems may be described, including timed an-
tomata (AID9l], timed graphs (LyV91J, timed petri nets (e-g. [CoR8SJ), a
multitude of timed proems algebras [BaB91, HeOl, MoT90, Che92, Wa=9l,
ReRSO, NiSOO], timed vesiow of LOTOS [Qa-S7, DoL91]

Proces or abstract programs anre often used as specifications in their own
right, by treating them as descriptions of how a system is intended to behave.

0



0

O

In this cae, another essential part of the specificatioa is how a proposed im-
plementation should relate to the specifying process. It may be required to be
equivalent with respect to a set of axioms (as is often the case when the un-
derlying semantics is axiomatic), or bisimilar, or testing equivalent (both with
respect to an operational semantics), or equal in some denotational model. Al-
ternatively, iome notion of refinement may be preferred: a set of axioms might
define a notion of refinement, or perhaps some simulation relation should hold
between specification and implementation, or the implementation should pass
more tests, or else their meanings should be related by some refinement in a
denotational model.

In addition, the specification-oriented and the process-oriented approaches
are often combined. A progamming language may be provided together with an
independent way of talking about properties. Foe example, timed graphs may
be rated to temporal logic [ACD93]; an occam-like language [Hool] may use
metric temporal logic as a secification language, or a process algebra may be
used in conjunction with a Hennessy-Milner style logic (HeM851. Furthermore,
any language with a denotational semantics will support specifications expressed 0
directly a properties on subsets of the denotational model.

This paper describes two approaches that may be taken with the process
algebra of timed Communicating Sequential Processes (CSP). It begins by re-
viewing the languag, which is an extension of Hoare's CSP [Hoa85] which in-
dudes an explicit timing construct. Its denotational semantics is then given in
terms of timed traces and timed refusals. The underlying theory is reviewed, as* *
it is this theory which underpins all application of CSP. Finally, two approaches
to specification are discussed. The language may be used as a specification
language in the sense above, leading to processes as 'algebraic' specifications.
The CSP approach to nondeterminium as underspecification leads naturally to
a refinement relationship between a specification captured as a process, and a
proposed implementation which should be at least as deterministic. The deno-
tational semantics also makes it possible to capture requirements as properties 0
on elements of the semantic model. Thi is done by specifying acceptable be-
haviour in a typical execution, and then requiring that all possible executions
of a proposed implementation meet this specification.

2 Communicating Sequential Processes

In common with other proein algebras, CSP is concerned purely with the com-
munication patterns of processes, abstracting away internal state information
which may be separated from communication behaviour. This abstraction re-
mains appropriate for real-time systems since they are generally reactive, main-
taining continual interaction with their environment, underlying model. 0

0

0



0

0
0

Events

A pram am modelled in terms of the pm.ible interactiom it can have with its
environment. Then interactions are described in terms of instantaneous atomic
synchronimatioes, or events. This notion of synchronisation is considered to
be primitive: both asynchzoaous communication and communication by means
of shared memory may be modelled in terms of it. When a process will be
cooperating with its environment for morn length of time, this as modelled in
tern of an event at the point where they agrse to cooperate. For example, a
couple involved in a wedding service will be interacting for some time, yet there
is a precise instant at which they become martied.

Computational model

A number of assumptions are made about the underlying model of computation.

* MaxImal paugress A synchronisation event occurs as soon as all par-
ticipante are toady to perform it. S

* Maximal perallmlism Every Prom has a dedicated procenor; pro-
-en do not compete for processor time.

* FInite varIability No piocen may perform infinitely many events, or
undergo infinitely many state changes, in a finite interval of time.

* 0
* Real-tIme The time domain is taken to be the non-negative real num-

bees. Thus it is possible for events to occur at any non-negative real
time. Since the reals are dense, our maximal parallelism mumption above
means that there is no lower bound on the time difference between two
independent events.

6
The language of CSP
LetEbethesetofalipossibleevents. ThetermsofCSP are pven by the
following Backus-Naiar form:

SteISkip IP;PIs-PI sequential

P0P1PflP1P1.PI choice

�AIIA�I�U�I parallel
P\AI!(P)IP'(P)I abstraction
XIpXOP recursion

0
where mis drawn from E, A is dim from P(E), I from [9, oc), I is a function
Z -. E, and X is drawn from the met of prom variables. CSP prociner are

0

0

- 40#-

w us w us w w w 0 0



@

0
0

terms with no free proems variables (every proem variable is bound by some p
expression), for which every recursive expression is guarded, as defined below.

The procem Stop represents the deadlocked process, unable to engage in any
events or make any program The procem Sbp is the immediately terminatng
proe• . A sequntial composition P ; Q initially behaves as P, but once P 0
tentinatem, control is immediately passed, and the subsequent behaviour is that
of q. Thus we would expect Ski ; P = P for any P, and Stop ; P = Stop, and
indeed the semantic model supports these equations.

The prefix procem a -- ,, P is ready initially to engage in event a. It will
continue to wait until its environment is also ready to perform it, at which point
it will synchronise on this event. Once the event is performed its subsequent
behaviour will be that of process P. There is no delay between the occurrence
of a and the begianing of P.

An external choice P OQ is initially ready to engage in events that either
P or Q is ready to engage in. The flst event performed remolve the choice
in favour of the component that was able to perform it, and the subsequent
behaviour is given by this component. If both components were able to perform
the first event, thea the choice is resolved nondeterinistically.

An interna choice P nl Q behaves either as P or ms Q, but unlike the external
choice, the environment cannot infuence the way the choice is resolved.

The timeout choice P ti Q initially behaves as procem P. If an event
is performed before time t, then the choice is resolved in favour of P which
continue to execute, and Q is discarded. If no such event is performed, then * *
the timeout occurs at time t, and the subsequent behaviour is that of Q.

The parallel combination P AIIB Q allows P to engage in events from the
met A, and q to engage in events rom the at B. The procees P and Qmust
synchronase on all events in the intersection A n B of these two interfaces, but
other events are performed independently. The asynchronous parallel combina-
tion P I Q represents the independent concurrent execution of P and Q, with
no synchroniation between them on any events.

The hiding operator P \ A allows encaepulaUion of events in the set A; these
events are made internal to the process, and are thus removed from the control of
the environment. Since the cooperation of the environment is no longer required
for these events, the only participants will be the components of P, and so the
maximal progre amumption tells us that these internal events will occur as
soon as P is ready to perform them. Hence internal events occur as soon as

they are ready.
The interface renaming operaUo f(P) and -fI (P) have the effect of chang-

ing the names of events through the alphabet mapping function f.

Recursion

A recursive term p X * P behaves as P, with every occurrence of X in P
representing an immediate recursive invocation. Thus we will have the usual

1W-

.- 1. ~ ~ 10.8- m•



0

0
SX 0 P = P[LUX * P/X]

We require that any recursive term of the form p X o P has that P is t-
guarded fo X for some t > 0. The followig rules defne when a timed CSP
term P is t-guarded for variable X; a full discussion of t-guardedmu can be
found in [DaS93].

"* For any X and t:

1. Stop, Skip are t-guarded for X

2. X is O-guarded for X

3. Y X is t-guarded for X
4. X P is t-guarded for X

" f P is f-guaded for X:

1. s -. P, P \ A, f f-:(f( P), and Y . P areall t-guarded foX

"* IfPand Qm t-guardedfor X:

1. P O Q, P n Q, P; Q, P I Q, P AIIB Q are all t-guarded for X

" If P is t-guarded for X, and Q is t'-guarded for X:

1. P a Q is mi , a+t'-guarded forX

Derived operators

A number of derived operators may be defined. The delay proem West t, a
timed form of Skip, which does nothing for t units of time and then terminates
succesfully, may be defined by the following equivalence: 0

MW.,t = Stop C,-Skip

The timeout choice waits for t units of time, but the procem Stop is unable to
perorm any event, and so the timeout will never be reolved in its favour. Thus
at time t cont is paosed to Skip, which then terninate immediately. S

A delayed form of prefixing may then be defined:

a .- P = s-(W- utt;P)

Afka the performance of event a, there is a delay of t units of time beioe
control reaches P. The original version of timed CSP [eIth, Rne881 treated 0
prefixin as automatically delayed, with a constant delay 6. This would now be
written m -- P.

0

-40-



0

0

Generaliuing choice to allow infinite choices is often useful. The prefix choice
a : A ---* P. is initially willing to perform any event from set A, and remains
so willing until some event is chosen. Ita subsequent behaviour, given by P.,
is dependent upon that event. Using this operator, an input construct can be
defined, allowing the input on channel it of any item t in a set M:

iz :M----Q(z) = a: .M---P.

where the set is.M = {n.m I m E M} and PA.., = Q(m) for every m E M.
The atomic synchronisation events here are of the form m.m.

Infinite nondeterministic choice may also be defined. The process fl P)
for some indexing set J may behave as any of its arguments P). Thus for 0
example a nondeterministic delay over some interval I may be defined:

Weit I = nE, Wait I

This may delay for any time drawn from the interval I. If each of the P. is
t-guarded for X, then so is their infinite choice. Furthermore, if P is t-guarded
forX, then Wait I; P is (t + inf l)-guarded for X

Finally, it is straightforward to gneralise recursion to mutual recursion (fi-
nite or infinite); for further details see [D.89$].

A mathematical model
Notatiom

The variables t and a range over R+, the set of non-negative real numbers.
Variable a range over (R+ x E)', the finite sequences of timed events. We also
use R_ E R+ x E.

We use the following operations on sequences: #a is the length of the se-
quence a; as l's denotes the concatenation of s, and ss. We define the begin- 0
ning and end of a sequence of timed events as follows: begi(((t, a))-&) = t,
ead(s'((t, a)) = t, and for convenience b*uia(O) = oc and e"d(()) = 0. The
notation a: :• ss means that s, is a subsequence of s., and sa : as means that
sa is a prefix of is. The following projections on sequences are defined by list
comprehension:

S ý4t 0 (, .) 1 (a, 4) 8- , V < t •
.*o = ((.,s ) l(,, ) *S, a < t)

S = ((t , ) ( (,s ) -- , a )
# 1! = (. ) 1 (*, 8) .- , ,, IE
.s , = ((a, a) (%, a) -, a E A)
s\A = ((a, ) l(u, i) s-a, a A)

= (( - t, ,) 1 (a, ).-, > t)

000

"- w... w S 0 O



0

0
S = (utal~a..

.trMA() = (a 1(8, ) - )
a(#) = Is I # a 8)00

We also define a number of projections on sets of timed events:

IN a(,) I(a,6) E a > f}
It A = {us) I(a, i) E asE A)
It -t -{-t, 9)1(a, 6) E I,s a>t)
Ou(k) = {.(a, 4)E it

Cud(K) "Wt .~ I (a, )E R)

We Will use (8, I, v) - t as an abbreviation for (s H tl- t, ,nmf 0, a t )), and
ead(s, kt) for max{ esd(s), ead(R)).

0
Observations

To provide a denotational semantics for the CSp operators, we constructsa model
of possible meanings for proesses. This will be given in terms of observations
that may be mae& of proceses as they execute. We first define a set of possible
observations8 OBS, and then associate with each procem the set of observations* *
that may be mae& of it. Processes are considered to be the same if the asociate
sets of observations are identical.

Any observation of an execution of a procem must include a record of tOse
events that were performed, and the times at which they occurred. A timed trac
is a finite sequencet of timed events, drawn from the set [0, oo) x E, such that
the times associated with the events appear in non-decreasing order. Formally,
we define the set TT of all possible timed trace as

TT = I [~ox! (, ,,(s s)~a*t s

Timed traces provide much information concerning the possible executions
of processes. But these systems are reactive, and so we are also interested
in knowing when they will be able to interact with an environment which is 0
ready to perform certain events, sand when they will not be able to do so.
Although this information may be deduced firom the trace information in the
case of deterministic systems, trace information is not sufficient in the case of
nondeterministic systems. For example, the traces of

as-Stop and Stopfnla -.*Stop

are the same, yet the first must always respond in an environment in which a

in ready, whereas the second may not.

0

0

-In-



O

0

We will therefore also record timed refusal information. A timed refusal is
made up of those events (with times) which the process refused to engage in
during an execution. Our assumption of finite variability allows us to simplify
the treatment of such sets. Since a process will continue to refuse an event
while it remains in the same state, and since only finitely many state changes
are possible in a finite time, we may consider a timed refusal as a step function
from times to sets of events, containing the information about which set of
events may be refused at which times.

Refusal information at a time t is considered to be subsequent to the events
recorded in the trace at that time. For example, in the process

a - Stop 0 b - Stop 0

the event b cannot be refused before any events have occurred. But at the
instant a occurs, the possibility of b is withdrawn and so it may be refused from
t onwards. Thus we consider the step function to be closed at the lower end of
a step, and open at the upper end. Observe that once a single a has occurred,
then it too may be refused from that instant onwards, since no further copies 0
of a are possible for the procss.

Refusal sets are formally defined as those sets of events which can be ex-
pressed as finite unions of refusal tokens; this captures the required step struc-
ture:

ETOK = {[b,e)xAIO<b<e<ooAACE} • S
RSET = {URIREF(RTOK)}

A single observation will consist of a timed failure, made up of a trace s E
TT, a refusal set R e RSET, and a time t < oo which is the duration of the
observation, and must therefore be greater than or equal to all times mentioned
in s and M. The trace and refusal are both recorded during the same execution. 0
The information that (s,R, t) is an observation of P tells us that P has some
execution up to time t during which the events in s were performed and the
events in N were refused. In contrast to the untimed failures model for CSP, this
refus& zontains information concerning events that were refused before, during
and after the performance of a, whereas an untimed refusal set contains only
information after the end of the trace.

There is also another, contrapositive, view of the information contained in
(s, M, t): as a partial record of an experiment on the process P. We may consider
R as containing some information about what the environment of P was ready
to perform, and the trace a may be considered as the response of P in this
environment. For example, if we place the process Wait I ; a - Stop in an
environment which is ready to perform a at all times between 0 and 2, then 0
we would expect to see the event a occur at time I. This corresponds to the
observation (((I, a)), [0, 2) x {(}, 2). This is also expected under the previous

-- q W w w W qP 0 0



0

S

view: before time 1, the event a is not possible, and so it may be refused. At
time 1, the event a occurs, and any further occurrences are not possible; since
the refusal at time I is subsequent to the trace, we allow a to be refused at
time 1, and from that time onwards. Thus the event a may be refused over the
interval 10,2) provided one copy ofit is performed at time 1. The information 0
that a is also refused at time I simply states that the proem may refuse to
engage in further copies of that event.

Our set of observations is thus given by

OBS = {(s, R, t) I end(s) _<t 1 A (R) _5 t)

and processes will be associated with subsets of OBS.

The model

We identify a number of healthiness conditions, or axioms of the model TMr
which we would expect any set of observations consistent with some process to
meet. Thus the timed failures model TM, is defined to be those subsets S of
OBS satisfying the following conditions:

I. ( 0,{)E S
S. ( M., t, E S =: (s, Rt 40 b (s'), t) E S

3. (s,kt,t)ESAWERSETAWCRf(s,W,t)ES
4. (9, H,0tC-S . 0

3WERSETo KgCWA(s,W,t)ES
A V(s,a) E [0, )x E.

(a,.) *(s 4 u'((us)),W ss) * S
A
(a > 0 A -. 3e > 0 ((-.)x {} W))

R. (s, E ,S*Ya> end(s,,R) = (, R,)ES

Axiom 1 states that the empty observation must be possible. Axioms 2 and 3
state that if a particula: observation is possible, then obsrvations containing
less information must also be possible. Axiom 4 essentially states that any event
must be possible or refusible: that there must be a 'complete' extension of the
observed refusal set such that any timed event not in the complete refusal could
have been performed. Axiom 5 enforces a speed limit on proceins, which implies
finte variability. Axio 6 states that the same traces and refusals may be
observed however long the proes is watched. This last axiom implies that the
duration information is redundant; the possible durations may be deduced from
the trace and refusal information alone. However, we retain this information as
an aid to specification.



O
0

The semantic function YT

We provide semantics only for the basic term of the language without free
variables; this may be lifted in the usual way [DaSO3 to the language containing
free variables.

The semantic function

FT : TCSP -- TMp

is defined by the following set of equations:

T-StorI U(S, K, t 1 S = 0)I

U

•TP;0 =(((., vlt, t) I t/ >r. a^ ,Rý )
YdTP;Q] S {(s,R, t) V/f (s) A

(., it U (CO, ) x to)) .rT.[(]
V

8 = spS'Q A ,/• 0(0p)
A (sq, R, ,) - a EY JT[Q A b•e•"(sQ) > a

A (sp'((,, v K , U ([0, a) x {f ), a) E .T[PI)
@ 0

Y T[s - P] 1 (,* )I•••()

U
{(((,, s))'s, R, t) I a o,( (0 a) A

(8, M, t) - a E Y [PJ)

YdTIP a Q ((, R, t) I (0, ,, t) E .rTIP] n. T'[Q}

U
f(s, R, t) I si () A (s,.R, t) 4E YTIPJ] U• T[Q]

A
(0, Itý bqia(o), b*"(s)) IE FT[P] n YrT[Qj}

YT[p n Q] S YT[(P u [ TIQI

FrT[P X Q1 f {(Si, t) I ko"(a) < s A (St, t) E •YrT(P)
U
(s, It,,t) I Sepia(s) A (0, M -4., %) E•YT[][

A(S.k, •t,)-. a 6.'T(0]}

Y"T[PAIIaOQ • f(S,,t,)I Itp, .qn

0

- --- w 0 0



0

)! (A UB)=()tpf A) U(tq•t B)
As=st (AUB)
A(S r A,Kp,t) EY•z[Pj
A(Sr B, Qt) E YT[QI)

.YT[PIQIJ {(aK,t)j3Sp,Sq* ScEp #IQA
(sp,t, t) E Y'I[P] A
(sq, kt) 0 •TI[O]

where ep I sq is the set of timed traces consisting of an interleaving of sp and

.FT[P\ A] S 2 (( \A,kt,t) I(s, u ([0,)x A),t)E.YT[P]}

YrTL(P)] a {(f((). ,t)) I (s.1t-(a),t).ETTIP]

irTi-'(P)I {(,l,. t)I (1(1)./(t). ") E T[P])

The infinite choice constructs we not always well defined, since asiom. 5
might be violated if there is no speed limit which applies to all of the arguments
simultaneouuy. We say that a set of process R is uniformly bounded if the
union U R C OBS meets axiom 5. In such cam, the following definitions apply:

YT[fn,l Pi, a U T[P1,

T[g:A- P.] = {(O,la,t)IAfu(kt)=={}}
0{(. ))S,. It, t) I

se A Anor(R4).M)= fl
A (s, R, a) - t E YT[P(a)j)

A full treatment of them operators requires a more complex model [MRS92, 0
Sch9u].

In order to give a meaning to recursive constructs, the intention is that the
recursive proem p X 9 P should be a solution of the equation X = P. Thus
we also allow recursive equations as proem definitions: the equation P = F(P)
defines P to be the proem i X * F(X).

It is by no means cleaw why such equations should have solutions at all, and
we must impose some structure on the model in order to guarantee that they
do. A distance function d between process is defined:

Ss = :((,R,t),•Slt<8)
d(SjSs) = iufI{-'IS4t=Sj.1  )

Thus the longra S Sad SO a indistiguishble, the closer together they are 0
under d. In fat, the distance function is a metric, and the @Pace (TMp, d) is a
complete metric space [ReeSS].

0



Now defin a function F(Y) to be t-constructive if

S, - a= Ssu -aa *o F(SI,) (a +t) =F(Ss) -o(a +t)

If a term P is 9-puuded in X, it follows that the resulting function on X
corresponds to a t-constrctive function F on TMp (for any instantiation of
the other process variables). But this morna that F is a contraction mapping:
that is,

3* < I *.VSI, St * d(F(Sj), F(Ss)) 5 ad(SI, Ss)

where a suitable a is I-'. Thus we conclude haom Banach's fixed point theorem
[Sut75l that the function F has a unique fixed point in the complete metric
space (TM,, d).

It isnow possible to give amesining to arecursive term of the formp X * P
for P t-guarded in X with t >#- If P contains no free variables other than X
then we have

.7T[, X * P] = The unique fixed point of the function corresponding
to A X 0 P

This approach may be lifted to terms P containing other free variables in the
usual way, by evaluating the recursion while the values of the other variables
remain fiod (see [DaS93J). It also extends easily to mutual recursion.

This semantic model corresponds in a natural way to an operational testing.
approach [Hon88] to identifying and distinguishing processes. An operational0 0
semantics of the language has been given (Sch92bJ in terms of a timed transition
system. A test is aCSPproces T. A proem P may pawasatest T if there is
some execution given by the operational semantics of (P zjj T) \ E for which
T palm through a 'success' state. Two processes are equivalent under may
testing if the set of tests they may pass are exactly the same. Then it turns
out [Sch92b] that this notion of equivalence is the same as equivalence in the 0
model TMp: processes are equivalent under may testing precisely when they
have exactly the same timed failures. Thus the denotational semantics is fully
abstract with roespc to the operational semantics. It follows that timed failures
equivalence is the sawe as untimed and timed trace congruence.

3 Specification 0

3.1 Process algebra specification
As observed earlier, a common approach to specification is to um procss
themselves as descriptions of required behaviour. By considering nondetermin-
ism as ndpeicaon we consider an imleen atino refinement of P to 0
be a process Q which behaeves as P but which way be more deterministic; sme

M0



0

0

of the I in P my be resolved in .Thus P is refned by Q if Q
has fewer behaviours than P. This is written P 1 Q, and defined

P Q Q * FT[I (; YT[Pi

A procem Q meets a specification P when P Q Q. 0
Consider for example a specification for calculating a square root of i:t:

SQAT = ,a?x J ((ouf!(+÷AzI) -- Skip) n (out!(-,lzj) - Skip))

An internal choice is made as to whether to output the positive or the negative
square root. If this specification process is suitable in a particular context, then
the following refinement that is guaranteed to output the negative square root
will also be suitable:

NSQRT = ia?r IL .ut!(-i/IrI) - Skip

The environment of the process cannot know whether the internal choice is 0
resolved at run-time, or at compile-time, or by the implementor of the process.

The next specification is for a one-place buffer which takes between one
second and eight seconds from inputting a mmqe to enabling it for output.
The next input may follow output immediately, and must be possible within
five seconds of the last output.

B = iaz -. Wsit [1, 8]; O! --. Wei [0, 5);B B 0

Thus the proeim Q = is?: S 0 Ct!: A Q meets this specification, since it
is a refinement of B; any possible behaviour of Q is also possible for B, and
therefore acceptable.

As a larger example we will consider the following more complicated require-
ment: we wish to specify a proces modelling an a-place unordered buffer of
type T, which has certain constraints on input, output, and throughput:

"* There must be at least 2 seconds between consecutive inputs;

"* It must be ready to accept input no more than 10 seconds since the last
input (if not fun).

"* There must be at least 4 seconds between consecutive outputs;

"* It should always be ready to output within 10 seconds of the last output
(if not empty).

"* Any particular item must be available far output exactly 5 seconds after
it is input, subject to the other constraints.

IN f-



0

0

The first two constraints impose lower and upper bounds on the times at which
the process should enable input. These are simultaneously captured by the
following process:

IN = mn?z:T--.WA (tV,I9J;IN

Similarly, the bounds imposed by the next two constraints me captured by

OUT = oet?z: T-. Wt[4,II]; OUT

Obsea that OUT is prepared to allow any event of the form out.m; it is not
constraining the nature of the output in any way, it is only constraining the
time at which output becomes possible.

Finally, the fifth constraint may be captured for a buffer of mue one as follows:

IBUFF = ,at: T 5 out! -* IBUFF

An unordered buffer of mse a may be considered as a combination of a buffers
of sime 1 operating independently.

sBUFF - i IBUFF

where PIl., 1 = P, P ... P.. Since theinterleavingoperatori
associative (i.e. IT[(P Q Q) I A] = 77 [P I (Q I R)]), this is well defined.

The full specification may then be given as the parallel combination of thrse m e
three speoicaiosi:

SPEC = (IN m.TII.,i.T OUT) i..TU.g.T.l..?U.u.T %BUFF

The event set associated with each component specification consists of those
events that the specification is concerned with. The process IN imposes no
constraints upon the events in ost.T, so these events do not appear in its
interface set, indicating that they can occur without the involvement of IN.
Observe also that it is the constraint imposed by *BUFF that prevents input
when the buffer is full, and output when empty; the processes IN and OUT are
not concerned with these aspects of the buffer's behaviour.

The compositional nature of the denotational semantics allows for a compo-
sitional treatment of refinement: if refinements of each of the specifications IN,
OUT, and *BUFF are independently found, then their parallel composition
will be a refinement of the entire specification SPEC. This compositionality is
essential for largeocale verification.

3.2 Behavioural specification

An alternative approach is to describe directly those obmrvfaons that are ac-
ceptable, in terms of statements about traces and refusals. A specification in



0

this style will be a predicate S on observations or behaviours, sad a proemss
P will meet a specification if the predicate holds for every observation in its
semantics. In this cm, we write P sat S, which is defined formally as foowS:

P satS = V(s,,t)E,) Tr[P] e S

This approach allows for a variety of levels of abstraction, since the spec-
ification S may be concerned only with some aspects of behaviour, sad may
ioe othem For example, sa untimed sdety specification a• . iated with the
square-root specification SQRT above is that any answer given must be correct
with respect to the input:

S I = Y x , 1 * ( ( i s. :, e t . v }) _ i ft yV ( s ) *• • = r

This specification has abstracted away say timing information, sad is concerned
purely with functional correctas. Timing properties are addremed by consid-
snag the times at which events occur.

So = 
0z,isuuse(((aj,,.z),(usest.:))_.)*si+1_us

The specification SO states that there must be a delay of at least one second
between any input sad say subsequent output.

All specifications that simply consider the trace s component of the observa-
tion ar safety specifications, in Lamport's sense that 'nothing bad will happen':
a constraint is imposed on which events are permimible sad at what times. A 0 0
procas can fadi such a specification only by performing some undesirable event.
In particular, the deadlock procem Stop will meet say satisfiable specification
concerned imply with trame. A square root program could ensure it never gives
the wrong answer simply by never giving any answer.

To specify that a proms should make some progrm, it is necemsary to
consider the refusal inforantion. To say that the procem is initially willing to 0
accept say input, we require that it is unable to refuse input events to begin
with:

SS = s=Oiso.Tin.T(n)={( }

To say that output must be available within one second of input we write 0

$4 = V., x .l.t(r(.- T U out. T) = (u, ss..) =s out. T . Q()t > (s + 1))

Recall that we also have an alternative view of refusals, as a partial record of
what the environment of the proein offered. The specification S4 may also be
interpreted as saying that if the last event observed was some input at time s,
th•n the environment cannot have ben willing to accept output any time after 0
v+1. This is equivalent to the previous reading becase of the maximsa progrem
property: if the environment had been willing, then all involved parties would

-

- 11V



0

have been ready and the output would have occurred. Road contrapouitively,
S4 states that if the environment had offered to accept output, then something
would have occurred after that last input (i.e. (a, mrn) would not be the foot
of the truce a).

This view of refusals also supports an assumption/commitment style of spec-
ification. It is often natural to specify what a proein is expected to do, and
then make explicit any assumptions about the environment. For example, the
requirement that the three events a, k, and c are performed sequentially before
time I is captured as follows:

C1 = t > = (s,b,c) -Isrip(& -0 I)

If the observation lasts for a least one second, then the sequence (a, b, c) should
appear in the trace by time 1.

No CSP proess will be able to guarantee this specification unconditionally,
since it could always be placed in an uncooperative environment which prevented
these events from happening. But such a specification is generally made with
the assumption that the events in question are under the control of the proce s
required to perform them. This may correspond to an assumption that the
environment is always willing to go along with the pro• s with regard to these
three events. This assumption is expressed as Al:

Al = [#,t)xas,b,c)_R

Then the resulting specification on a procem is imply Al ] Cl. This is met • O
by a process such as a - b - c --- Stop; observe that this proces does
not meet the specification C1, since (0, {), 1) is a possible observation of it for
which C1 fails.

As another example, consider the following specification on a buffer:

S5 = [0, 1) x out.T C R =1

(V ,a (s, i.z)E s Au + I < t =I (a + 1, out.z) E) 8

Here the assumption about the environment is that it is always willing to accept
output: for the duration t of the observation, all output events are present in
M, indicating that the environment was willing to accept all such events. Under
this amumption, we require that for any time s at which a message z is input,
a corresponding output must appear in the trace one second Iter (provided the 0
observation lasts that long).

For the purposes of comparison and contrast, we return to the five require-
ments on the a-place unordered buffer. These are respectively rendered as
behavioural specifications below. We must also make the n-place requirement
explicit, in B9. Observe in BI and BS that the lower bound of the desired
response time is captured by a trace specificatio stating that events cannot 0
appear too close together; thee are safety properties. The upper bound re-
quirements given by B- and B4 must be captured by an asertion about the

- fLO-



* 0

0

readinm of the procm to engage in further events by a particular time, ex-
presed in terms ofreMusk. We do sot insist that aome event mus be performed
(ualm we make an asumption about the environment), mice a proem does
not have oak Cotral over the performance of events.

D0. 0 <#( . .T)- #(, I *.. T) <
B1. Vso#(st iTt(s,,,+2))<:5

DO. (#(st ia.T)-*#(sr oi.T)<%)*
mi.T no(M Kc'm(or Ii.T)+ 10)--

B3. Va.#(ar T.TT(a,a+4))< I

54. (#(,ot i,.T)-#(,et eW.T)>D)*=P
ou.TTn vt b, ead(# r out.T)+ 10)=)

B5•. ((s + 5) r in-.T) beIWorem,.w (s I' out.T)

where s bldbrj,,ow a' holds if every output event out.m in #' has some corre-

sponding input event in.m in a. It may be defined as follow:

s belorej.,, a' * ils(&' 4 out) g &a#(. I is)

where (. I c) is the sequence of meage@ n that appear in s on channel c (i.e.
when c.m is in the trace); and beg(. I c) is the corresponding bag of mesages.

This last specifica•on illustates a feature of the model-based approach:
that we always have the opportunity to provide nw definitions appropriate for
particular applications.

Thus we would expect our algebraic specification proem SPEC to meet the
conunction of thee requirements:

SPEC sat BO ABI AB2 ABSAB4A B5

Vewif L..tios

The composition nature of the denotational semantics allows for a specification
oriented proof system for establishing laims of the form P sat S. A proof 0
obligation on a compound proem P can be reduced or factored into proof
obligations on its components.

For example, the following rule is given for lockatep parallel composition:

P sant Sj
Pa sat Sa 0
YK * [(3RK,,K o K = Kj UKt A S,(K,/KJ A S,(K,/KJl) *P S]
P, M16 Ps sat S

0

V V~ w I . 0-



O

0

Thus to prove that a parallel combination meets S, it is sufficient to find S oil
and S3 which the components meet and whose combination implies S.

The proof system, containing a rule for each operator, is given in [DaS90].
The soundnem of the rule follow= from the semantic equations. The rules
are also complete, in the sense that if the conclusion is true, then there are S
specifications S, and S. such that the antecedents ae all simultaneously true.

The rule for recursion is also straightfxrward.:

3X*X sat S
VX * (X mat S =* P sat S)

(pX * P) sat S 0

Its soundnem follows from the fact that any predicate on processes of the form
X sat S is closed in the metric space TMp, for any specification S; and that
any contraction which maps a non-empty closed set into itself has its unique
fixed point in the dosed st.

Current and future research S

Although an operational and denotational semantics for timed CSP have been
given and shown to be equivalent, there is not yet an equivalent axiomatic
semUtics. There are many laws for trandorming process descriptions [Rme88J,
but thes laws do not form a complete set. An approach similar to that taken
in [Che9 appears promising, and may complete the trinity of complementary 0
semantic approachem This would give more backup to the algebraic specification
style, since the claim P C Q might then be established by equational reasoning,
as it is equivalent to the claim P = P n Q. Different specification styles might
be appropriate for different parts of a development, and could be used in tandem
since they ar unified by the underlying model.

Specification macros [Dav93] to make behavioural specifications more palat- 0
able are under investigation. Specification clichis are captured at a higher level
to make requirements easier to read and understand. For example, the spec-
ification S4 stating that output should be available one second after input is
rendered in att * out foam t + I.

Machine assited verification is another ar of great interest, both in terms
of support for proof that processes meet behavioural specifications, and also 0
in tem of the model-checking approach for algebraic specifications. The latter
approach is based upon operational semantics, and the states of a proposed
implementation are explored and checked against corresponding states in the
specification.

Acknowledgements 0

This material drws on the work of many researchers involved with the timed
CSP group in Oxford. In particular it is a pleasure to acknowledge the contribu-

,.
0J



tion mae& by Bill Roscoe, Mike Reed, Tony Romre, Jim Davies, Dave Jackaoa,
and Gavin Lowe.

I am also patoful to the UK Science and Engineering Research Council for
their support under research fellwship B91/RFH/312.

References
fACD93] L Alar, C. Courcoubetis, and D. DMl Model-chckiag in dease real-

time, Inoreoatiost and Computation, 1993.

JAID911 L Alur sand D. Dill. The theory of timed automata, Proceedings, Real-
TMaw Theoay in Practice, LNCS Go0, 1991.

(BaB911 J.C.M Bastin and L.A. Bargairn, Real-time proce algebra, Formal A*.-
pacts of Computing, 1991.

(DoL9il T. Dolognum& sad F. Lucudi, 71med proem algebras with ugrget inter-
actions and a unique powerfid binary operator, Proceedings, Real-Time:
Theory in Practice, LNCS 6W0,1991.

(Che92J Luang Chow, Timed procemw: nmodel ausomas and decidability, PhD
thesia, University of Edsianbug. 199.

[CR85J L.E. Coolahan and N. Rouasopoulos, A timed Petri net methodaloV for
speca~wn real-time system timing camstzaunts. in -Proceedang, Iater-.
national Workshop, on TMoed Petr Nets Torino, Italy, 1965.* 0

[DaS9OJ J.W. Davins and S.A. Schneider, Factorielag proofs in Timed CSP, Pro-
coedings of the Fifth Workshop on the Mathematical Foundations, of
Programming Language Semantics LNCS 442, 1990.

[DaS93J 3. ,V. Davins and S.A. Schneider, Recurvitin induction far real-time pro-
caes, Formal Aspects of Computing, to appear, 1993. 0

(Dav93, J.W. Davins, Speaication and proof in real-time CS?. Cambridge Uni-
versity Press, 199.

[HeUSI] M. Runaway sand A.J.R.G. Mimr, Alebraic laws for aoadeterminism

and concurrency, Journal of ACM, 1965.

(ReaM]8 U1. Hunnway, An algebraic theory of processes, MLLT prime, 1988.

[ReRM)1 M. Runaway and T. Regain, A procow algbra for timed systems, report
5/91, University of Sussex, 1991.

[RoaS5J C.A.R. Booze, Communicating Sequential Processes, Prentice-Rall,
1965.

[Hoo9l] J Hooman, Speci~cation and compositional veriicatio. of real-time sys-
tems, PhD theisi, Ehinhwoae University of Technology, The Netherlands,



0

(KoySI RLLC. Kaymmaa, Spocivia memae paining end time-czitical systems
with temporal logic, PkD dwiis, Eiadkomg Universiy of Technoogy,
The. Nethulaads, 1969.

[LyV91] N. Lynck and F. Veandrager, Forward and backward -umuakims for
timag-bamd system, Proceedings. Real-Timie Theory is Practice,
LNCS 600, 1"1.

(MoTW01 F. Mollr and C. Tafit, A temporal calculus of communcaing systems,
Proceedings, CONCUR 1990, LNCS 458, Springet-Ve•a.

[MRS92] M.W. Mkuoe, A.W. Roscoe, and S.A. Schneider, Fixed points witkout
completiese, submitted for publication, 1992. •

(NiS9O] X. Nicoffin, X &ad J. Sif , T.e aalebra of timed procems ATP: the-
o0y and appicatics, RT-C26, Projet SPECTRE, Laboratoire de Gdnie
Informatique de Grenoble, 1990

[(QFS7] J. Quemada and A. Fernades, Introduction o•ua,,ita1fti relative time
into LOTOS, in -Protocol Specacntioa, Testing and Verilcadios VIP3

North Holand, 1987.

[Rae88] G.M. Reed, A Uniom Matkematical Theosy for Real-Time Diotsibuted
Computing, Oxford Uaivermity DPhil thesis, 19S.

V*R1R6] G.M. Read and A. W. Roscoe, A Timed Model for CoammunicntiM Se-
quetial Processes, Proceedings of ICALP'S8, LNCS 226, 1966; Tko •
retical Computer Scimce 58, pp 249-261, 1968.

(Sch92aj S.A. Schneider, Unbounded zaodeterminism for sea-time procame, Ox-
ford University Technical Report 13-92, 1992.

[Sck92b] S.A. Scbnoder, An operational semaatic for timed CSP, Informabioa
and Computation, to appear. Abo Oxford University Technical Report
1-92, 1 .92.

[Sat7$] W.A. Sutkerland, Introduction to metric and topological space,• Oxford
University Proes, 1975.

[W&&911 Wang Yi, A caakuls at rea time systems, Ph.D. Thesis, Chalmers Uni-
veaity of Technology, Sweden, 1991.

[ZHR911 Zhou Chaocken, C.A.IL Roar, and A.P. Ravi, A calculus olduraties,
Inkrmation Procesing Lettes 40,3, 1991.

1--. -.



0

Full Abstraction and Expressiveness
in Structural Operational Semantics 0

(preliminary report)

R.J. van Glabbeek"
Compauter S,•me cepartinest, Stanford Univermity

Stamford, CA 9iOM, USA. 0
rvcw , st. f erd. eft

This paper explores the connection between semantic equivalences for concrete sequential pro-
cemes, represented by mesas of transition systems, sad formats of transition system specifica-
tions using Plothin's structural approach. For several equivalences in the linear time - branching 0
time spectrum a format is given, as general as possible, such that this equivalence is a congru-
ence for all operators specifiable in that format. And for several formats it is determined what is
the coarsest congruence with respect to all operators in this format that is finer than partial or
completed trace equivalence. Finally for some of the formaAs a small language specified in this
format is provided such that any operator specifiable in that format can already be expressed
in this language. 0

1 Preorders and equivalences on labelled transition systems *

Definition 1 A labelled tmnsition system (LTS) is a pair (F, -- o-) with P a set (of procese) and
--- #gC P A x P for A a set (of actions).

Notation: Write p -- q for (pa,q) E --- and p -" for 3q E P : p "- q.

The elements of P represent the processes we are interested in, and p --" q means that process p 0

can evolve into process q while performing the action a. By an action any activity is understood
that is considered as a conceptual entity on a chosen level of abstraction. Different activities that
are indistinguishable on the chosen level of abstraction are interpreted as occurrences of the same
action a E A. Actions may be instantaneous or durational and are not required to terminate,
but in a finite time only finitely many actions can be carried out (i.e. only discrete systems are 0

considered).
Below several semantic preorders and equivalences will be defined on processes represented by

means of labelled transition systems. These preotdern can be defined in terms of the observations
that an experimentator could make during a session with a process.

Definition 2 The set GA of potential obmetatiors over an action set A is defined inductively by: 0

T C OA. The trivial observation, obtained by terminating the session.

aio E •A if•V E OA and a E A. The observation of an action a, followed by the observation io.

X E GA for X . A. The investigated system cannot perform further actions from the set X.
X E GA for X • A. The investigated system can now perform any action from the set X. 0

&/ ' oE GA if eo E GA for all i E I. The systems admits each of the observations W*.
-Y E•AO if • A• 'E*. (It can be observed that) 1 cannot be observed.

"*This work was sapported by ONR under grpat number N00014-92-J-1974.

-R5 -



Definition 3 Let (F, -) be a LTS, labelled over A. The function OA :P -- P(A) of observations
of a process is inductively defined by the clauses below.

(T) T E OA(p)
(a) 4,p E Ap fp q A
(F) EOA(p)if p- for aEX
(R) X E OA(p) if p-- for aEX

(A) Aw, (, E OA(P) if W, E OA(p) for all i E I
(-H -Po E OA(P) if V 0 OA (P)

As the structure of the set A of actions will play no r6le of significance in this paper, the cor-
responding index will from here on be omitted. Below several sublanguages of observations are
defined.

OT W,::= T ao the (partial) trace observations
OcT w ::= T &0 A the completed trace observations
Op (p::= T ao iX the failure observations 0

Oi W::= T aik ft A Y the readiness observations
Orr W,::= T wao, C A the failure trace observations
0 m e W::= T aO X A v I X A io the ready trace observations

Os w::= T Ia I '•t Wo the simulation observations
Ocs (p::= T aP 0 1 A..1 wo the completed simulation observations

OCrs w ::= T aO I fI X ]Aej, V the failure simulation observations
Ons j ::= T aO I I X I &.E (pi the ready simulation observations

, w T::=T a O/ IAt (p, I - the bisimulation observations
OA•0 (p T aO (0 E O.A for some m < n) I Aiev (Pi I the n-nested action observations * •
O :T w TI atP I Ae i ((oi E )mT for some m < n) I "• the n-nest trace observations
O.,s (p T I ai' I A., ipi 1 -0 (0 E Oms for some m < n) the n-neted simulation observations

For each of these notions N, Or(p) is defined to be O(p) A P(ON).

Definition 4 Two processes p, q E P are N-equivalent, denoted P =N q, if ON(p) = Or(q). 0
p is N-prequivalent to q, denoted p QN q, if ON(P) C_ ON(q).

In VAN GLAD REEK [2] the observations above and the corresponding equivalences are motivated
by means of testing scenarios, phrased in terms of 'button pushing experiments' on generative and
reactive machines. There it is also observed that restricted to the domain of finitely branching,
concrete, sequential processes, most semantic equivalences found in the literature 'that can be
defined uniformly in terms of action relations' coincide with one of the equivalences defined above.
The same can be said for preorders. Here concrete refers to the absence of internal actions (r-moves)
or internal choice. In order to facilitate the connections with other work it is worth remarking that 2-
nested trace equivalence is also known as possible-futures equivalence, and on the mentioned domain
readiness equivalence coincides with acceptance-refusal equivalence, failure equivalence coincides
with Hennessy and De Nicoa's (must) testing equivalence, failure trace equivalence coincides with
Phillips refusal (testing), and ready trace equivalence coincides with barbed equivalence and with
ezhibited behaviour equivalence. In order to clarify a few more relations, the following relational
chamcterimtions of certain equivalences may be helpful

Definition 5 Let (F, ---+) be an LTS. A ready simulation is a relation R g P x F satisfying
-pRqAp - If -p 3q' :q -- q' A IjRq

- pRqAp 4- , q -.

Theorem 1 p Cs q iff p Cps q iff there is a ready simulation R with pRq.

- 16-

vw W ... ' 0 *



0
Proof: "p gits q =P p -Fs q" is trivial. For "p --Fs q =: there is a ready simulation R with pRq"
it sufices to establish that C'_rs is a ready simulation.

- Suppose OFs(p) _ Ojs(q) and p -" p'. I have to show that 3q' E V with q -6 q' and
OFs(p') _; Ors(f). Let Q be {q' E P I q -'- q' A I,' E Ors(P') - Ors(q)}. Then
a N 5 Q' P,. E OFs(P) g Qrs(q), so there must be a q' E IP with q -= q'and q' g Q. 0

- Let 0(p) 9 O(q) and p -4.. Then (a} E OFs(P) C- Ops(q) and hence q 4.
Finally I have to prove that for R a ready simulation one has pRq -* (9o E Ons(p) * P E 0,ts(q)).
I will do so with induction on W.

- Suppose pRq and alp E Ops(p). Then there is a jf E P with p ---# 9 and w E Os(p9). As

R is a ready simulation, there must be a q' E IP with q -- q' and pRq'. So by induction 0
wO E Oas(q'), and hence ap E Ojts(q).

The cases that W is T, XC, X or AiEi Wi are straightforward. 0

Definition 6 Let (P, -- ,) be an LTS. A simulation is a relation R C P x P satisfying

- pRq Ap -a- pI=- 3q: q -' q' A p'Rq~ 0
A bisimulation is a symmetric simulation.

Theorem 2 p C-s q iff there is a simulation R with pRq.

p _,g q iff p =, q iff there is a bisimulation R with pRq.

2 Structural Operational Semantics

In this paper V and Ar are two disjoint countably infinite sets of variables and names. Many
concepts that will appear are parameterized by the choice of V and Ar, but as in this paper this
choice is fixed, a corresponding index is suppressed. * *

Definition T (Signatures). A function declaration is a pair (f, n) of a function symbol f E AK and
an arity n E IN. A function declaration (c, 0) is also called a constant declaration. A signature is a
set of function declarations. The set T(E) of terns over a signature E is defined inductively by:

* V ,C T(E), 0

* (f,n) E E and ti,...,t. E T(E) then f(ti,...,t,) E T(E).

A term c() is often abbreviated as c. For t E T(E), V(t) denotes the set of variables that occur in
t. T(E) is the set of closed terms over E, i.e. the terms t E T(E) with V(t) = 0. A E-substitution a
is a partial function from V to T(E). If a is a substitution and S any syntactic object, then S[a] 0
denotes the object obtained from S by replacing, for z in the domain of o, every occurrence of z
in S by a(z). In that case S[o] is called a substitution instance of S.

Definition 8 (Transition system specifioctions). Let E2 be a signature. A positive E-literml is an
expression t -- t' and a negative E-literal an expression t -4 with t, e E T(E) and a E AK. For
t, t E T(.) the literals t -'-+ t' and t -4k are said to deny each other. A transition formula over 0
E is an expression of the form f with H a set of E-literals (the antecedents of the the rule) and
a a E-literal (the conclusion). A formula ! with H = @ is also written a. A literal or transition
formula is closed if it contains no variables. An action rule is a transition formula with a positive
conclusion. A transition system specification (TSS) is a pair (E, R) with E a signature and R a set
of action rules over E. A TSS is positive if all literals in the antecedents of its rules are positive. 0

The concept of a TSS was introduced in GaOOTE & VAANDR.AGEIL [4]; the negative premisses
were added in GiROOTE [3]. The notion constitutes the first formalization of PLOTKIN'S Struc-
tural Operational Semantics (5505) [51 that is sufficiently general to cover most, if not all, of its
applications.

- - - 0 e 1



S

Definition 9 (Proof). Let P = (E, R) be a TSS. A pro of a transition formula ! from P is a
well-founded, upwardly branching tree of which the nodes are labelled by E-literals, such that:

* the root is labelled by a, and

0 if 0 is the label of a node q and K is the set of labels of the nodes directly above q, then

- either K = sand 0 E H, k

- or K is a substitution instance of a rule from R,
p

If a proof of f from P exists, then f is promble from P, notation P I- .

Definition 10 (Transition relation). Let E be a signature. A transition relation over E is a
relation --. C T(E) x N x T(E). Elements (t,a, t) of a transition relation are written as t --a t'.
Thus a transition relation over E can be regarded as a set of dosed positive E-literals (transitions).

A positive TSS specifies a transition relation in a straightforward way as the set of all derivable
transitions. But as pointed out in GILOOTE (3], it is much less trivial to associate a transition
relation to a TSS with negative premisses. Several solutions are proposed in [3] and [1]. The most
general of those is through the notion of stability. It is not difficult to show that the concept of
stability defined below is the same as that of Bol and Groote.

Definition 11 (Stable transition relation). Let P = (E, R) be a TSS and let ---- be a transition •
relation over E. -- is stable for P if-

there is a dosed transition formula f without positive antecedents
with P - f and (t -!- t) E----# for no (t -7•) E H and t' E T(E).

According to BOL & GILOOTE [1] the transition relation associated to a TSS is its unique stable • 0
transition relation if it exists. They argue that there is no satisfying way to accociate a tranition
relation to a TSS that has no or multiple stable transition relations.

3 Formats and congruence theorems
Definition 12 (ntyft/ntyzt-format). An action rule t-v over a signature E is in ntyft-format if t

has the form f(zi,...,:,) for certain (f,n) E E and zi, ..., z. E V, and all its positive antecedents
have the form t -•-a y with y E V - V(t). It is in ntrft-format if t has the form X E V and all its
positive antecedents have the form t --& y with z 6 y E V. A TSS is in ntyft/ntyxt-format if all
its rules are in ntyft or ntyzt-format. 0

Definition 13 The bound variables of an action rule - over a signature E are inductively

defined as the ones that occur in t or in the target s' of a positive antecedent (s --'-+ s) E H
where contains bound variables only. The rule is pure if all variables that occur in it are bound,
and a TSS is pure if it consists of pure rules only. A rule has nolookahead if all bound variables 0
in the source of its antecedents also occur in the source of its conclusion. Connectedness is the
smallest equivalence relation between the bound variables that appear in a rule such that z and V
are connected if there is an antecedent z -fe y.

Definition 14 A TSS is in bisimulation format if it is positive after reduction-as defined in [1]-
and in ntdft/ntypt-format. A TSS is in nested simulation format or ttit/tyIt-format if it is positive •

and in ntyft/nty•zt-fornat. A TSS is in ready simulation format if it is in bisimulation format and
its rules have no lookahead. A TSS is in ready trace format if it is in ready simulation format and
no two occurrences of variables in the target of a rule are connected in that rule. A TSS is in failure
format if it is positive and in ready trace format.

- Ar.-

Swi iwii ii W _



0

Theorem 3 (Congruence). Bisimulation equivalence is a congruence for any TSS in bisimulation
format. Similarly, n-nested simulation equivalence (for any n E IN) is a congruence for any TSS
in nested simulation format, Ready simulation equivalence is a congruence for any TSS in ready
simulation simulation format, ready trace equivalence is a congruence for any TSS in ready trace
format and failure equivalence as well as trace equivalence are congruences for any TSS in failure
format.

4 Full abstraction

Definition 15 An equivalence is said to be fully ab ct with respect to a set of operators L and
another equivalence -. 4 if it is the coarsest congruence with respect to the operators in L that
is finer that .,t. An equivalence on labelled transition systems is fully abstract with respect to a
TSS-format and an equivalence "•,b, if it is the coarsest congruence with respect to all operators
specifiable by a TSS in that format that is finer that -. b..

Theorem 4 Bisimulation equivalence is fully abstract w~r.t. the bisimulation format and trace 0

equivalence. 2-nested simulation equivalence is fully abstract for the n-nested simulation format
and completed trace equivalence. Simulation equivalence (=1-nested simulation equivalence) is fully
abstract for the n-nested simulation format and trace equivalence. Ready simulation equivalence is
fully abstract for the ready simulation simulation format and trace equivalence, as well as for the
positive ready simulation format and completed trace equivalence. Ready trace equivalence is fully 0
abstract for the ready trace format and trace equivalence. And failure equivalence is fully abstract
for the failure format and completed trace equivalence.

5 Expressiveness

Robert de Simone has shown that any operator that can be specified in the failure format can
be expressed in Meije (or any equivalent process algebraic language). I show that similarly any
operator that can be specified in the positive ready simulation format can be expressed in a similar
language to which an operator ! has been added. A simil result (with yet another operator) will
be conjectured for the n-nested simulation format. 0

References

[1] R.N. BOL & J.F. GROOTE (1991): The meaning of negative premises in transition system
specifications (extended abstract). In J. Leach Albert, B. Momien & M. Rodriguez, editors: 0
Proceedings 18's ICALP, Madrid, Lecture Notes in Computer Science 510, Springer-Verlag, pp.
481-494. FAMl version appeared as Report CS-R9054, CWI, Amsterdam, 1990.

[2] R.J. VAN GLABBEEK (1990): The linear time - branching time spectrum. In J.C.M. Baeten &
J.W. Klop, editors: Proceedings CONCUR 90, Amsterdam, Lecture Notes in Computer Science
458, Springer-Verlag, pp. 278-297. •

[3] J.F. GILOOTE (1989): Transition system specifications with negative premises. Report CS-
R8950, CWI, Amsterdam. An extended abstract appeared in J.C.M. Baeten and J.W. KMop,
editors: Proceedings CONCUR 90, Amsterdam, LNCS 458, Springer-Verlag, 1990, pp. 332-341.

[4] J.F. GiROOTE & F.W. VAAND1LAGEI (October 1992): Structured operational semantics and •
binmulation as a congruence. Information and Computation 100(2), pp. 202-260.

[5] G.D. PLOTKIN (1981): A structural approach to operational semantics. Report DAIMI FN-19,
Computer Science Department, Aarhus University.

- fip-



0

0

* 0

0

S

0

0

0

-430-

w w W W W 0 0



0

Synchronous observers and
the verification of reactive systems

Nicolas Halbwachs Fabienne Lagnier, Pascal Raymond
Verimag Laboratory* and Verimag Laboratory

Stanford Universityt B.P. 53X, 38041 Grenoble Cedex, France

Invited papr as the Third nlamtasoal Ca.Iu
an AAgebri Methodolog and Saftwa, Technoal,
AMASTV3, Twente, June 1i.

Introduction
Synchronous programming [IEE91, Hal93b] is a useful approach to design reactive systems. A
synchronous program is supposed to instantly and deterministically react to events coming from * *
its environment. The advantages of this approach have been pointed out elsewhere. Synchronous
languages are simple and clean, they have been given simple and precise formal semantics,
they allow especially elegant programming style. They conciliate concurrency (at least at the
description level) with determinism. They can be compiled into a very efficient sequential code,
by means of a specific compiling technique: The control structure of the object code is a finite
automaton which is synthesized by an exhaustive simulation of a finite abstraction of the program.

Concerning program verification, it has been argued [BS91, HLR92a, Pnu92] that the practical
goal, for reactive programs, is generally to verify some simple logical safety properties: By a safety
property, we mean, as usual, a property which expresses that something will never happen, and
by a simpe Mgical property, we mean a property which depends on logical dependences between
events, rather than on complex relations between numerical values. 0

For the verification of such properties also, the synchronous approach has some advantages:
Since the parallel composition is synchronous, the desired properties of a program can be easily
and modularly expressed by means of an observer, i.e., another program which observes the
behavior of the first one and decides whether it is correct. Thus, the same language is used to
write the program and its desired properties. The verification then consists in checking that
the parallel composition of the program and its observer never causes the observer to complain.
This verification can often be performed by traversing the finite control automaton built by
the compiler. This automaton is generally much smaller than in the asynchronous case, where
non-deterministic interleaving of processes is likely to result in state explosion.

An observer can also be used to express known properties of the program environment. As a
reactive system is embedded into an environment with which it tightly interacts, the environment 0

"Veuimag is ajint laboratory f CNRS, Intitut National Palytechnique de Gremoble, Uaiverý. J. Fourier
&ad Vedlog SA rncdated with IMAG.

tThio work we performed while the le satbor wm o leave in Stamfwd Univeonty, putally supported by
the Departnest of the Navy, Office of the Claid of Naval Reark aunder Grat N0014-91-J-1901, mad by a great
from the Stanford Ofice of Tecknoby Liceasing. "hs publbaba dora not aecemuuily fect the poitM or the
policy d the U.S. Government and no 0fia eadoaemenst of this work skould be imioned.

S... . .. w w -



0

0
0

must be strongly taken into account in program design and verification. Generally, the critical
properties of a reactive system are only required to hold provided the environment also behaves
correctly, that is, under some assumptions about the environment. In [HLR92b], we verified
a very simple railways control system, and the most important part was the description of the 0
realistic behavior of the trains (they obey the signals, they do not jump from one track to another,
etc.). In [HLR92a], we used this ability of taking the environment into account in the verification,
to propose a modular verification technique: When two processes run in parallel, each of them
is part of the other's environment; so any property which is proved about one of them, can be
used as an assumption about the other's environment. •

So, our verification approach can be summarized by three simple ideas: (1) restriction to
safety properties; (2) expression of these properties by means of a synchronous, deterministic
observer; (3) taking into account assumptions about the environment. This paper is a survey of
our specification and verification techniques, in a very general, language independent, framework.
Section 1 introduces a simple model of synchronous input/output machines, which will be used
throughout the paper. In section 2, we show how such a machine can be designed to check 0
the satisfaction of a safety property, and we discuss the use of such an observer in program
verification. In section 3, we use an observer to restrict the behavior of a machine. This is the
basic way for representing assumptions about the environment. Applications to modular and
inductive verification are considered. In modular verification, one has to find, by intuition, a
property of a subprogram that be strong enough to allow the verification of the whole program 0 0
without fully considering the subprogram. In section 4, we consider the automatic synthesis of
such a property, and in section 5, we investigate the possibility of deducing the subprogram from
such a synthesized specification.

I Synchronous I/O machines 0

We first define an abstract model of synchronous reactive machines. As far as verification is
concerned, we could use a synchronous process algebra [IMi81, Mi183, AB841 as a basic formalism.
However, in the synthesis problem, we have to distinguish between inputs and outputs, since a
process controls its outputs but not its inputs. So, we prefer to use a notion of synchronous 0
machine where inputs and outputs do no play a symmetric role. In the following model, as in
synchronous languages, outputs are non blocking and synchronously broadcast. Moreover, we
will need an explicit notion of state, which lacks in process algebras.

1.1 Definitions 0

Let us consider a set S of signals, and let Es = 2S be the set of events' on S. An I/O machine
M is a 5-tuple (QM, qOM, IM, Om, M) such that

"* QM is a set of states containing qOm, the initial state;

"* Ig C S, OU C S are the disjoint sets of input and output signals, respectively. •

"* 6M C QiU x El. x E.o x QU is the transition relation. When there is no ambiguity

about the considered relation, we will often note "q •-ql'" instead of "(q, i, o, q') E 6M".

1 EVMte, with the ekMma opeWWtia, will play the role a( the ,moud ofo actiow in synckrosouo proen algebra.

-- ,w ... W • V 0 0 ]



•T-

Intuitively, in response to a sequence (i, i2 ... ,si,...) of input events, such a machine returns a
sequence (o., o02,.. .,on,.. .) of output events, such that there exists a sequence (qo,q, • . -)
of states, with q0 = q0M and for alln _> 1, q.- 1 -*"-q. The sequence (IU o), (i2 U0o2),...,(i.U

on),...) will then be called a trace of the machine. 0

If T = ((it U ol), (i2 U o2),..., (in U On)) is a finite trace, and (qoqi,..., q,) is a corresponding
sequence of states, we will note qOjj--q,. For any state q, we will note traces(q) the set
f r I qOwm-'rq} of traces leading to q. This notation is extended to sets of states: For any
X 9 QM, traei(X) = UCX tlwe(q).

Let us note 6, the reaction function from QM x El. into 2 EomXQm, defined by

FM = A(q,i).{(o,q') I (q,i,o,') qE 6M}

A reactive machine cannot refuse a non-empty input event, and thus satisfies the following
property: Vq E QM,Yi C IM, i $ 0 = 64(q,i) #. S

A deterministic machine has at most one possible reaction to a given input event, and thus
satisfies: Vq E QM,Vi C_ IM, 161(q,i)l --< 1. For a deterministic machine, we will note 6?
(respectively 6Q ) the function giving, for a state q and an input event i, the output event o
(resp. the next state q) such that (q, i, o, q) belongs to 6m.

We will use the usual precondition and postcondition functions, from 2Qm to 2 Q9: For any
XE-QM,

"* postM(X) is the set of successors of states belonging to X:

postM(X) = q' I 3q E X, 3i,o, q -'-+q)

"* pr•.,W(X) is the set of states having a successor state in X:

00
prm(x) = {q I 3' e X, 3i, o, q -.€}q'

"* PM(X) is the set of states having a/ their successors in X:

PfM(X) = {q I Vi,Vo, Vq' such that q .-'+q, q' E X)

= QM\ PMM(QM\X)

1.2 Operations on I/O machines

Projection: Let M be an I1/0 machine, and O' OM. The projected machine M 1O' is
(Qm,qOMiM,O',,), where 6' = ((q,i,on 0',q1) I (q,i,oq) E 6M}.

Obviously, if M is reactive (reswptively, deterministic), so is M 10'. 0

Synchronous product: Let MI and M2 be two I/0 machines, with O,, n OAg2 2. We
define their synchronous product M1IIM 2 to be the I/O machine M where

"2Tie noutkiiam that praflhL muacm doat ana mumm n atpumt sgmalis m I emniciaty only. It does not

ia in Faumi 1G921 m]d Azgi [m&].

•1 3.3-



qIq2 (qI, q2)

1,p 41114-) ua)
S(qfq) (qqf) )

(a) Non determinism

qjI q" qý q;

(b) Absence of reaction

Figure 1: Synchronous product

* QM = QM, x QM•, qOM = (qO,.,,OM) * *
SIM= (IM \OM.)U (JM, \O0M), OM = OM, UOM2

* ((qj9 2),i,o,(q', q2)) E 6 4- (qi,(iu o) nIm,,onOn,,q) E 6 .,
and (q2,(iuo)n IM2,onfOm ,q) E 6m,

In other words, a transition of the product involves a transition of each machine, triggered by 0
the global input signals and the signals emitted by the other machine.

1.3 Causality

With this very loose definition of the synchronous product, it can happen that the product of
two deterministic (respectively reactive) machines is not deterministic (resp. reactive). This is 0
the well-known problem of causality paradozes in synchronous languages [BG92, Mar92]. For
instance, let IM, = {z,y},IM2 = {Z,z},OM, = (z} and Om, = {(}. Then:

* Assume that •q, and t qf are the only transitions in 6M, from state q1 , and
that �9�2� kL and q2 L- are the only transitions in 6m from state q2 (see Fig.1.a).

If the input event (z) occurs when the product machine MIJIM 2 is in the state (q9,92),

two different transitions can take place:

- either M, performs q, •-*•t and then the emission of z forces the transition

92 kol-g; in M 2. So the compound transition is (q, 92) 4.(ql,} q();

- or coverely At pefors 9 '-Lq;, forcing the transition q, k.Iq in At1, and

the resulting global transition is (q9,f) L-(q,)

-'34-.

w w .... ,w 1 V V 0 0



0

So, in that case, the product of two deterministic machines is non deterministic.

e Assume now that qI ""-qý and q, kl-qf are the only transitions in 6 u, from state qj,

and that 6m2 is as before (Fig. 1.b). Now, if the input event {z} occurs in the state (q1,q9), 0
no global transition can occur, since:

- if M 2 performs h2-r , then the emission of y forces the transition q, I•--q- in

Mi. But now, since z is emitted, M2 should not have made its transition.

- Conversely if MI performs q 9r -. •, since z is not emitted, M 2 must perform

-2 and the emission of y forbids the transition of Mi.

So, in that case, the product of two reactive machines is not reactive.

An important feature of synchronous languages is that their parallel composition operator (syn-
chronous product) introduces neither non-determinism nor deadlock. Compile-time consistency
checks insure that the compound machine has a uninq, r•m1&, reaction to each input event:
Let MI and M2 be two deterministic and reactive I/O machines, let 6%, 6%, be their respective
output functions. When MI I M2 is in the state (q1,92) and receives an input event i, the output
event o must satisfy

o= 6% (qi,(i uo) n Im.)u 6°,(q2,(,uo)fi u ) n *
i.e., be a ixpoint of the function Ax. 6 (qj,(i U z) n IN,) u 6,(q2,(i U z) n Im,). Causality
problems come from the fact that this function is not always monotone, and thus, may admit zero
or several minimal fixpoints. Compile-time consistency checks insure the existence and unicity
of a least fixpoint, and the synchronous product is defined by

60((ql, q2), i) = g,:. 6,(qi, (i u z) n I,) u 6,(q2, (i u z) n Im.)

6Q((q1, q2), ') = (6Q (, (i u 60 ((ql, q2), )) nl IM1), M (q2 , (i U 60 ((ql, 92), i)) n I•,))

(where, as usual, ps.f denotes the least lixpoint of the function Az.f).

2 Observers of safety properties

In this section, we show how a safety property can be specified by means of a synchronous
observer. Such an observer is an I/0 machine, taking as inputs both the input and the output
signals of the machine under observation, and emitting an "alarm" signal as soon as the observed 0
signals do not satisfy the property.

2.1 Safety properties

A tracem rn a set of signals S is a finite or ininite sequence of events on S. A propert on S
is a set of traces on S. An I/O machine M satidses a property P if and only if each trace of M

belongs to P. A property P on S is a safety property if and only if:

r P 4* r' e P for any finite prefix r'ofr

In other words, a safety property is a prefx-closed (as expressed by the "=" implication above)

sad limit-cdosed (as expressed by the "04-" implication) language on the vocabulary 2S. •

V)I V .... w w ... w w 0 0



0

0

2.2 Observer

Let P be a safety property on S. Let a (read "alarm") be a signal not in S. An observer of P is
a determinisic and reactive I/0 machine Op = (QPI qOoP, S, {a}, 60P), returning a sequence
of empty output events as long as it receives a sequence of input events which belongs to P.
More precisely, let r be a finite trace on S belonging to P (notice that the empty trace belongs
to any safety property). Let q, be the state that Ip reaches after reading r (if r is the empty
trace, q, is the initial state of Op). Then, for any event e E 25,

60 [~r e) if eE P
* fa) otherwise

Let us assume also that any transition emitting a leads to a distinguished state q0.
Now, a machine M satisfies a safety property P if and only if the compound machine M1I1p

never returns any event containing a; or, equivalently, never reaches an erroneous state belonging
to QM x {qf}. We will note QY the set QM x (Qoa\{qj}) of non erroneous states of MI Ofp. 0

A practical advantage of this approach, is that the properties are written in the same language
as the programs, and in fact, properties are programs. As such, they can be executed and tested.
An observer can be actually run with the program, thus detecting any violation of the property
(run-time checks).

Notice that this approach cannot be used with only an asynchronous composition, or at * *
least, that it cannot be applied modularly. For instance, consider the following property: "the
sina b ias emitted at least once between every two successive emissions of the signal a ". If
this property is checked by an asynchronous observer, since the observer is not guaranteed to
catch all the signals, it can miss any occurrence of b. So, even if the property is satisfied,
the observer can emit an alarm. To check such a property of an asynchronous program, one
must add some synchronization code all along the transitions of the observed program, since
otherwise, the asynchronous product does not ensure that all the transitions will be observed.
When verifying a program, such modifications are of course harmful, since one cannot be sure
that the verified program behaves the same once the additional code is removed. This contradicts
G. Berry's "wyPiWYz" principle ("what you prove is what you ezecute") which fully applies in
the synchronous case. 0

2.3 Application to program verification

The verification that a machine M satisfies a safety property P now amounts to proving that
the machine M' = M1llp never returns any event containing a. So, any safety property has
been translated into an invariant. More precisely, one has to prove that the set Reach(M') of M' 0
reachable states is included in the set Qf of non erroneous states of M'. Reach(M') is classically
defined as a least fixpoint:

Reach(M') = AX.{qOM,} U postMu(X)

Let us list the advantages of this expression of the verification problem, according to various S
verification methods:

State enumeration: For finite state systems, state enumeration techniques (enumerative
model-checking) have been widely experimented [QS82, CES861. In general, these tech-
niques involve the construction of the whole state graph of the program, and its memo-
rization for the analysis of tgra properties Now, since the problem has been reduced to 0

-U-W



0

0

the analysis of a state property (an invariant), the state graph needs only to be troversevL

Particularly efficient techniques are available (e.g., [Hol87]) for such a traversal.

Reduction techniques: The drawback of state enumeration techniques is the explosion of the 0
number of states, as the size of the program increases 3 . Other approaches [BRdSV90]
consist in building a reduced state graph, according to some observation criteria. Now,
in our approach, the machine of interest is not really Milfip, but rather (MIflp) I a,
since we are only interested in the presence of the signal a. This is an obvious observation
criterion. So, in contrast with classic model-checking, the property is taken into account in
the state graph generation. Assume the property is satisfied, then the minimal state graph
of (MIlflp) I a has only one state (it is the "always silent" automaton). Algorithms for
generating a minimal state graph have been proposed [BFH+92, LY92]. When applied to
our simple verification problem, these algorithms amount to proving that the initial state
belongs to the greatest invariant Invar(Q ) included in Qj, i.e., the greatest part of QY
from which the transition relation does not permit to go out. This greatest invariant is •
wellknown to be a greatest fixpoint:

Invar(Q'W) = PX.Qm fmllMgn(X)

Approximate analysis: When infinite state systems are considered, approximate -methods * *
(and, in particular, aetted interpretation techniques [CC77, CC92]) can be applied to
compute approximations of the set Reach((Mjjflp) I a). If an upper approximation of this
set is included in Q%, this proves that the erroneous states cannot be reached (see [Hal93a1
for an application of such a method). If a lower approximation intersects the complement
of QM, an error is detected.

In the remainder of the paper, we will essentially consider finite state machines, so all the
considered fixpoints will be (theoretically) computable. In the following section, we will see
that property observers can also be used to take into account known properties of the program
environment.

3 Taking the environment into account

The main feature of reactive systems is that they tightly interact with their environment. As
a consequence, the properties of the ,environment must be carefully taken into account in the
design and verification of such a system. A reactive system is not intended to work in an arbitrary 0
environment. In general, system specifications contain a lot of informations about the behavior
of the environment, which are the hypotheses under which the design must take place. These
known properties about the environment can involve not only the inputs of the system, but also
its outputs, since the environment responds to the system. So, in general, among the set of
traces of an I/0 machine, only some of them are "realistic", i.e., satisfy the assumptions about
the environment. In this section, we show how the behavior of an I/0 machine can be restricted
by a safety property, in order to take such assumptions into account in the verification process.

'NatS e that the state el is mon important in a= yaduhanu system, becase of the son determint
intedeaving of asyschtonous ftaasitic".s



3.1 Behavior restriction

Given a safety property A (assumption) of the environment of M, our goal is to define a restricted
machine MI having exactly the same behaviors as M composed with any environment satisfying
A: the set of traces of M' must be the intersection with A of the set of traces of M.

Restriction: Let M be an I/O machine, and HA be an observer of a safety property A on the
set S = IM U OM of input/output signals of M. Let M' = MIIaA. We define the restriction
M/MA to be the I/O machine (QM,,qOM,,IM, OM,6'), where 6' = {(q, ,o,q') E 6M, I a 0 0)

Obviously, the restricted machine M/flA is generally not reactive, even if M is reactive: The
restriction takes into account a property of the environment, and thus, refuses some unrealistic
inputs. However, it can happen that in some states of the restricted machine, all the input events
are refused. So, the restricted machine deadlocks, a highly undesirable situation in reactive
systems. One can consider this as an error in the expression of the assumption A. However, we
adopt another point of view: When restricting a machine M with an assumption A, the user
intends to consider all the infinite traces of M that satisfy A. So, the machine must not enter
any path in MI/A which inetitab1 leads to a deadlock state. We define now another restriction,
called non-blocking restriction, which has the intended behavior:

Non-blocking restriction: Let M be an I/0 machine, and fIA be an observer of a safety S
property A on the set S = IMU OM of input/output signals of M. Let M' = MIIflA. Let us call
sinkA the set of states of At' leading inevitably to the violation of A:

ssnkA = IAX.VM,((QM x {q.}) U X)

Then, if q0M, 0 sinkA, we define M/fIA to be the I/O machine (Q', \ sinkA, q0M,, IM, Ou, 6"), 0
where

6" = 6m, n ((Qm, \ SnkA) X Elm x Eou x (QM, \ SinkA))
= {(q,i,o,q') E 6M, 1 q,q' V sinkA and a V o}

One can notice that, if M is deterministic, ML/A = Mt/fltvi9Cgg(qj,,\m&A). So, the property A
has been strengthened into the other property A' = tra.e(Q N' \ sinkA) which cannot block the
machine M: Any finite trace satisfying A' leads to state of M which has at least one outgoing
transition preserving A'.

3.2 Application

As before, a direct use of this way of expressing assumptions by an observer, is to execute the
observer with the program, thus checking at run-time that the assumptions are satisfied. The
restriction can also be used for program testing, to use only testcases corresponding to realistic
scenarios. We consider now the use of restriction in the verification process:

Verification under assumptions: Given an I/O machine M, a safety assumption A about its
environment, and a safety property P, one can prove that M satisfies P provided the environment
satisfies A, by

1. proving that (Ml..A) has some behaviors, i.e., that the initial state of MIPflA does not
belong to sinkA. Otherwise, the assumption and the program are contradictory. S

-5 -
w .... i ...-.. .... ...... li .. . . . . .. .. .. ,0 ..



S

00
0

2. verifying that the machine ((M,.f1A)I Ilp) I {a} emits only empty events (Of course, here,
a is the alarm signal of 11p).

Modular verflcation: Any sub-process of a compound system sees the remainder of the 0

system as a part of its own environment. The ability to take the environment into account
allows modular verification: Having proved a property about a sub-process, one can use this
property in the verification of the remainder of the system. More precisely, let MI, M2 be two
machines, and let P be a safety property we want to prove about MI I M2 . Assume another safety
property P1 has been proven about M 2 alone. Then if MPflp, satisfies P, so does M, fIM2 . This 0
amounts to considering M 2 as the environment of MI. Of course, assumptions about the global
environment can also be taken into account. With a little additional hypothesis (see [AL89] and
the "decomposition theorem" of [KL93]), which amounts to the absence of causality problems,
one can even use a seemingly circular reasoning, which consists first in proving a property P 2 of
M 2 under the assumption that MP satisfies P1 , and then in proving that MP satisfies P1 assuming 0
M2 satisfies P2.

Inductive proofs: Moreover, the modular verification technique can be extended to the in-
ductive verification of regular networks of processes [WL89, HLR92a). Assume one wants to
prove a safety property P of the machine MIIMI[ ... JIM for any n _> 1. This can be done by * *
finding a property P' such that

1. M satisfies P'

2. (M/lflp) satisfies P'

3. P implies P

(1) proves that P' holds for n = 1, (2) proves that, if P' holds for n, then it holds for n + 1. So,
P' holds for any n, and from (3), so does P. Point (3) can be established by proving that the
machine X(I, O0)(p, satisfies P, where

X(I,O) = ({q},q,1,O,{q} X El X Eo 0 {qX)

is the "chaos" machine which completely non deterministically returns any event of E0 whatever
be its input event from Er. Of course, as for modular verification, a crucial problem is the choice
of the property P'. It is considered in the next section.

4 Specification synthesis

Let us come back to modular verification: Given two machines Mi and M2, and a safety property
P on S = IM, U OU, U I'M U Om2, one must find a property P' on S2 = IM, U Om, such that

1. M2 satisfies P1, and

2. MP1 0p, satisfies P

Moreover, the proof of each of the ahoyo points is expected to be easier than the global proof

that MPd1 IAM2 satisfies P.

W . . w w - 5 0



0

This section deals with the synthesis of such a property P', satisfying the point (2) above b
construction, when all the involved machines are fivite state.

First, we need some additional definitions: Let r = (eI,e2,...,e,,...) be a trace on S. We
define the projecton of r on a set S' of signals to be the trace rIS' = (el n S',e2 n S',... , Cn n
S',...). The projection on S' of a set T of traces is T I S' = {r I S' I r E T}. If T is a set
of finite traces on S, we note C(T) the set of traces on S which do not have any prefix in T.
Obviously, C(T) is a safety property.

The intuitive method to find P' is the following: Replace M 2 by the "chaos" machine
x(h., OM.). If MiIIX(IM2, OM2 ) satisfies P, the machine M 2 does not influence the satisfaction
of P (i.e. we can take P' = true) and we are done. Otherwise, MI IIx(Ipj,,Om2) can reach some
erroneous states, and the role of M 2 is to forbid the traces leading to those states. But, for doing
so, M 2 can only restrict its own signals (P' cannot involve signals that M 2 cannot see).

More precisely: Compute Rea(MliII1p). If it does not intersect QM, x {qa}, let P' = true.
Otherwise let T.,e = trace(QMw, x {qa}) be the set of erroneous traces. The following proposition
states that C(T.T .1 S2) is a necessary and sufficient property that M 2 must satisfy so that MIIIM 2
satisfies P:

Proposition: Let P" = C(T..,,IS 2). Then M2 J= PI 4* MAIIIAM2 • P.

Proof. Let rf[n] denote the nth prefix of a trace r.
(==): If M 2 • P', then every trace r of Ml1lM2 satisfies r IS 2 E C(ThsI S2). So, Vn,(r I, 0
S2 )[n] V T.,, IS 2 , and since (rJIS 2)[n] = (r[n]IS2), Vn, r[n] V Tl.. This means that r E P.
(4-=): Assume M2 does not satisfy PI, and let 7 be a trace of M2 not belonging to P'. Then,
there exists n such that r[n] E (T.,r I S2), and there exists a trace r' E T.. such that r[n] =
(i[n]) I (S2). So, the finite trace r'[n] is compatible with both MI and M2 and leads to the
violation of P. 03

Remark: P' = C(T2r I S2) is stronger than P" = C(T.,) I S2. A trace r of M2 can be the
common projection of two traces r' and r' of MAIIIAM2, with r' E C(T..,) and r" V C(T.1 ,). In
that case, r belongs to P" (as the projection of r') and not to P'.

Stronger specifications: However, the necessary and sufficient property P' = C(T .., S2) is
sometimes too complicated to be interesting: As a matter of fact, an observer of P' can be as
complicated as Millflp. In that case the proof that M 2 satisfies P' is not easier than the proof
that Ml I IM2 satisfies P, so nothing is gained with modular proof. Now, any stronger property
than PF can be tried. Such a stronger property P" will still ensure that MIflp,, satisfies P,
but, since it is no longer a necessary property, one cannot conclude that MI I IM2 does not satisfy
P if M 2 does not satisfy P".

The basic technique to build such a stronger property J" is the following: Let us note avoid
the function AT.C(TI S2 ). Thus, PF = avoid(Thff). Then, for any set T of traces containing T.,
(i.e., for any upper approximation of T.), avoid(T) is stronger than P'.

5 Module synthesis

In the preceding section, we have outlined a method to find a property P' such that, for any
machine M2 satisfying PF, MI[M 2 satisfies P. P, has been only deduced from MA and P, so,
it could be built even before M2 is designed. So, the next question is: can M 2 be snthesized 0

- w -w w ww 0



0

0

from P', considered as a specification? In the finite state case, this is theoretically possible:
The specification must be strengthened to become ezecutable. P' has been constructed so as to
concern only the input/output signals of M2 . Now, an additional constraint is that M 2 must
preserve P' by controlling only its output signals. In each reachable state, and whatever be the 0
received input event (possibly satisfying an input assumption), M 2 must be able to perform a
transition preserving P'.

Executabiity: A property P on a set of signalsS = IUO is ezecutable with respect to (1,O),
if and only if for any finite trace r E P, for any input event i E El, there exists an output event
0 E Eo such that r.(i U 0) E P. For any safety property P, there exists a weakest executable
safety property, implying P. It will be noted C(P).

Relative precondition: Let P be a safety property on I U 0 and Olp be an observer of P.

For any X 9 Qoa,, we define 0

p (X) = q I Vi C ,3o ,6 (q, iu o) EX}

In other words, prefhp(X) is the set of states which can lead into X (in one step) whatever be
the input event received in these states.

Executable strengthening: Let Eu = vX.prefi,(X)\{qa}. Then Eue does not contain the
erroneou. state q,, and

Vq E Eze, Vi g I, 3o C 0, such that 69 (q, iU o) E Etc

Moreover, Eze is the largest set of states satisfying this property. As a consequence, a restriction 0
of 11p which detects any trace going out of Eze is an observer of C(P). Another consequence is
that x(OI)/11 2(p) is the most general reactive machine satisfying P. Notice that Ese can be
empty, which means that P is not realizable in the sense of [ALW89]: There is no machine on
(1, 0) preserving P against any environment.

Conclusion

Many ideas that have been presented are specializations and simplifications of previous works.
For instance:

"* The specification of properties by means of a synchronous observer is very close to the •

approach of COSPAN [Kur89], which takes also into account liveness, both in the program
and the properties.

"* Several verification approaches take into account the environment, e.g., [Jos87] [AL89]
[Jos92], and some of them propose modular methods. The "don't care sets" considered in 0
hardware design and verification [BBH+88, DD92] are also a way of expressing assumptiona
about the environment.

"* The synthesis problems considered in Sections 4 and 5 have been dealt with in several papers
- both in Control theory [RW87, RW89, HWT92], and in computer science [PR89, ALW89!
- and often extended to cope with liveness properties. 0

- wW -



S7

0

Our simplifications consist in considering safety properties of synchronous systems. They are
suggested by the application field we have in mind: The synchronous model has been shown to
be very convenient for the design of reactive systems. In general, most liveness properties are
introduced for one of the following reasons: 0

" To abstract a real-time constraint: For instance, one replace a deadline property by the
requirement that something "eventually occurs". Now, in reactive systems, such real-time
constraints may not be abstracted, in general: the constraint "an alarm must be sent within

2 milliseconds after the detection of a dangerous situation" may not be replaced by "the 0
alarm must eventually occur"!

" To restrict the asynchronous semantics: In asynchronous models, concurrency is modelled
by non-deterministic interleaving, and this non-determinism must be restricted by fair-
ness constraints. Obviously, this problem does not exist in the synchronous model. In
asynchronous systems, compositionality is also achieved by allowing arbitrary (but fair) 0
"stuttering" of processes. The synchronous model is obviously compositional thanks to
zero-time, simultaneous, reactions.

Now, these simplifications are certainly fruitful, from a practical point of view. They increase
the performances of the automatic tools: For instance, for finite state methods, the synchronous
model drastically reduces the size of the considered state graphs; safety properties can be checked 0
by a graph traversal, without storing any path. To specify a safety property by means of an
observer, one doesn't need to use - and to learn - any other language than the programming
language used to write the program. All these ideas are under implementation in the LUSTRE-

SAGA software development system [HCRP91], and actual industrial experimentations are going
On. 0

References

[AB84] D. Austry and G. Boudol. Algibre de processus et synchronisation. TCS, 30, April 1984.

[AL89] M. Abdi and L. Lamport. Composing specifications. In J.W. de Bakker, W.-P. de Roever, 0
and G. Roaemberg, editors, REX Workhop on Stepuise Refinement of Distributed Systems,
Models, Formalioms, Correctneu. LNCS 430, Springer Verlag, May 1989.

[ALW89] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable specifications of reactive
systems. In G. Ausiello, M. Dezani-Ciancaglini, and S. Ronchi Della Rocca, editors, 16th
ICALP, pages 1-17. LNCS 372, Springer Verlag, July 1989. •

[BBH+88] K. A. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, R. Rudell, A. Sangiovanni-
Vincentelli, and A. Wang. Multilevel logic minimization using implicit don't cares. IEEE
Transactions on CAD/ICAS, CAD-7(6):723-739, June 1988.

[BFH+92I A. Bouasjani, J. C. Fernandez, N. Halbwach., P. Raymond, and C. Ratel. Minimal state
graph generation. Science of Computer Programmial, 18:247-269, 1992. •

[BG92] G. Berry and G. Gonthier. The Esterel synchronous programming language: Design, seman-
tics, implementation. Science Of Computer Progrummml, 19(2):87-152, 1992.

{BRdSV90j G. Boudol, V. Roy, IL. de Simone, sad D. Vergamini. Process calculi, from theory to practice:
Verification took. In Internstional Workshop to Automatic Verification Methods for Finite
State Systems, Grenoble. LNCS 407, Springer Verlag, 1990.

- -

L _ _ . . . . . . .. . . .. . . . . .. . ... . .. . .. . . .. . .. . .. . .. . . . . . . ... . .. . .. . .



O

0

[BS91] F. Boussinot and R. de Simone. The ESTEREL language. Proceedings of the IEEE, 79(9):1293-
1304, September 1991.

[CC??] P. Canot and &t Couot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In 4th A CM Sympomsum on
Principles of Progrummmg Langusges, January 1977.

[CC92] P. Cousot and R. Cousot. Abstract interpretation and application to logic programs. Research
Report LIX/RR/92/08, Ecole Polytechnigue, March 1992. (to appear in the Journal of Logic
Programming, special issue on Abstract Interpretation).

(CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM TOPLAS, 8(2), 1988.

[DD92] M. Damiani and G. DeMicheli. Don't care set specifications in combinational and synchronous
logic circuits. Technical Report CSL-TR-92-531, Computer Systems Laboratory, Stanford
University, 1992.

[(a193a] N. Halbwachs. Delay analysis in synchronous programs. In Fifth Int. Workshop on Computer
Aided Verification, Elounda (Crete), July 1993.

[Hal93b] N. Halbwachs. Synchronous programming of reactive systems. Kluwer Academic Pub., 1993.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow programming
language LusTmn. Proceedings of the IEEE, 79(9):1305-1320, September 1991. * *

[HLR92a] N. Halbwachs, F. Lagnier, and C. Ratel. An experience in proving regular networks of
processes by modular model checking. Acts Informotics, 29(6/7), 1992.

[HLR92b] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-time systems by
means of the synchronous data-flow programming language LUSTRE. IEEE Transactions on
Software Engineermg, Special Issue on the Specification and Analysis of Res.-Time Slstem,
September 1992.

[(ol87] G. J. Holzmann. Automated protocol validation in ARGOS : Assertion proving and scatter
searching. IEEE Trans. on Software Isgneerng, SE-13(6).83-696, June 1987.

[HWT92] G. Hoffnann and H. Wong-Toi. Symbolic synthesis of supervisory controllers. In American
Control Conference, Chicsgo, June 1992.

[IEE91] Another look at real-time programming. Special Section of the Proceedings of the IEEE,
79(9):1293-1304, September 1991.

[Jos87] B. Josko. MCTL - An extension of CTL for modular verification of concurrent systems. In
Workshop on Temporsl Logic in Specification, Manchester. LNCS 398, Springer Verlag, 1987.

[Jos92] M. B. Josephs. Receptive process theory. Ads Informatics, 29, February 1992.

[KL93] Rt. P. Kurshan and L. Lamport. Verification of a multiplier: 64 bits and beyond. In Fifth Int.
Workshop on Computer Aided Verifca•tion, Elounds (Crete), July 1993.

[Kur89] 1& P. Kurshan. Analysis of discrete event coordination. In J.W. de Bakker, W.-P. de Roever,
and G. Rosemberg, editors, REX Workshop on Stepwise Refinement of Distributed Sysiems,
MAodes, Formalisms, Corctnes• . LNCS 430, Springer Verlag, May 1989.

[LY92] D. Lee and M. Yanaltakis. Online minimiation of transition systems. In i,4th ACM Smp.

on the Tkeory of Computing, STOC'9*, Vancouver, B.C., 1992.

[Mar92] F. Maraninchi. Operational and compositional semantics of synchronous automaton compo-
sitions. In CONCUR'92, Stony Brook. LNCS 630, Springer Verlag, August 1992.

[Mi"S1] I. Milner. On relating synchrony and asynchrony. Technical Report CSR-75-80, Computer
Science Dept., Edimburgh Univ., 1981.

-"--A



So

0

[MilS] R. Miler. Calculi for synchrony and asynchrony. TCS, 25(3), July 1983. 0
(Pnu92] A. Pnueli. How vital is livene.? Verifying tuming properties of reactive and hybrid systems.

In CONCUR •f, Stonl Brook LNCS 630, Springer Verlag, August 1992.

(PRUS] A. Pnueli and R. Rower. On the synthesis of a reactive module. In 16th Conference oR
Prnciples of Progrmminm Ls, gusaes. ACM, 1989.

[QS82] J. P. Queille and J. Sifakis. Specification and verification of concurrent systenis in CESAR.
In Interuationl Smposium on N Progrmmin. LNCS 137, Springer Verlag, April 1982.

[RW87] P.J. Ramadge and W. M. Wonharn. Supervisory control of a class of discrete event processes. 0
SIAM J. Control &ad Opti.ization, 25(1), January 1987.

[RW89] P. J. Rainadge and W. M. Wonham. The control of discrete event system. Proceedings of
the IEEE, 77(1), January 1989.

[WL89] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with network
invariants. In Internastionl Workshop on Automatic Verification Metkods for Finite State S
Systems, Grenoble. LNCS 407, Springer Verlag, 1989.

0

-1 -

L



Contraints in Term Algebras
(Short Survey)

Hubert Comon"

May 16, 1993

Unij cation, which consists in solving equations in the (free) term algebra, is known to be a fun-
damental operation in many areas of computer science and, in particular, in logic programming. Dis- 0
unification, which consists in solving more complex formulae in the (free) term algebra, also revealed
to be a fundamental operation (see [24, 11] for surveys on unification and disunification respectively).
Recently, these computations have been seen as constraint solving in term algebras and this point of
view is actually fruitful. Let us first make clear what we mean by "constraint".

1 Constraints: a definition

A constraint system is defined by a logical language C (which is in general a fragment of a first-order
language), a structure M in which the formulae of C are interpreted and an algorithm which decides,
for every 0 E C, whether 0 is satisfiable in M or not. There are many examples: C can be a full * *
first-order language, in which case, the third condition implies the decidability of the (first-order)
theory of M. For example, the constraint system could correspond to Presburger arithmetic or the
theory of real numbers. It could also be the theory of finite trees, since this theory has been shown
decidable [30, 29, 15]. Many other examples will be given later.

Now constraints can be (and have been) studied for their own mathematical interest. But, they
can also be used to constrain other formulae. More precisely, given a logical language Z, a class of 0
structures M and a satisfaction relation I= on one hand, and a constraint system (C, M, 0) on the
other hand, given in addition, for each structure S in M, an application Hs from the domain D of M
into the domain Ds of the structure S, the constrained logic consists in

"* the language of pairs of formulae (called constrained formulae) OIC where 0 E Z and C E C 0

"* a satisfaction relation defined as follows. Given an assignment a of the free variables of C into
D and an assignment 9 of the free variables of 4 into Ds,

u,9, SI~iH o! 0 S, S •

where Hs(a) is the assignment which associates each variable z in the domain of a with H$(zv).

This definition is a bit complicated (and is not satisfactory in many respects), but everything
collapses when we cossider constraints in term structures (also called symbolic constraints). Indeed,
assuming that M is a term structure and that terms of C are also terms of £, Hs can be (and will S

"CNRS &ad LRI, Bat. 490, Usivendti de Pads Sud, 91405 ORSAY code&, Frace. E-mail comoaObilrLfr

-. 145-.



0

be) chosen as the interpretation defined by S. This means that we do no longer need M to define the
meaning of a constrained formula:

0,C represents { I , M C})

a constrained formula is a shorthand for the (infinite) set of its instances corresponding to assignments
of its free variables which satisfy the constraint. For example, P(z, y)Iz # y could represent the set
of all formulae P(e1 ,t 2) where t, and 92 are two distinct terms. This justifies the use of the symbol
I which can be read "such that": its use here does not differ from its use in set definitions (in the
comprehensive axiom).

Let us conclude these definitions with two remarks: first, this notion of "constraints" is coherent
with what is used in practice in logic programming or artificial intelligence, but is quite different from
the "constraints" which are used in the algebraic specification community. Secondly, let us emphasize
that the constraints are different from what is usually called a "condition"; consider for example the
system

f(z) = a I a = b
a=b

where a, b are two distinct constants. Considering these formulae as constrained ones, in which the
equality symbol is freely interpreted, the first constrained formula represents the set {f(z)o = aa I a' ý
a = b). But a = b is unsatisfiable in the free algebra since a and b are distinct. Hence, this set is empty
and the system collapses to the single equation a = b. On the contrary, if I is seen as an implication
• -, then it is possible to prove a = b using the second equation, and hence, using a cut, we prove that
f(z) = a.

2 On the use of constraints 0 0

It should be quite clear from the definition that (symbolic) constraints can enhance the expressiveness
of a logical language, since they allow for a schematization of a possibly infinite sets of formulae. This
ability has been used in many situations:

"* in constraint logic programming (e.g. [23]) 0

"* in order to construct (counter)models [6]

"* to forbid particular instances [25]

"* to express control strategies in the formulae themselves [341 0

"* to avoid the combinatorial explosion of semantic unification (e.g. [18])

Constraints might also be used in order to dearly separate irrelevant (from the computational
point of view) parts of a formula. This is the case for equational constraints and the so-called basic
strategy (see [2, 33] for recent developments). 0

Finally, everybody knows that even if, according to Church's thesis, every programming langunage
has the same expressive power, there are some languages that are better suited than others to the
implementation of some algorithms. Similarly, depending on the problem, some logical languages are
better suited than others. Constraints provide with the desired flexibility since they are use combined
with a logical language; it is therefore possible to use any adequate language to express properties of
a particular domain.

'-4"t-.

-- • w w w 0 0



3 Examples of symbolic constraints

3.1 Equations

The most well-known example of symbolic constraints is unification problems. In such a constraint
system, the logical language consists of (disjunction of existentially quantified) conjunctions of equa-
tions between terms. The equations are interpreted in the free term algebra T(F) (this is the classical
interpretation) or in some quotients T(F)/.,, by a finitely generated congruence =Z. Using these
constraints in logic programs or automated deductions prevents applying substitutions which may be
an expensive operation in case of duplications. That is why they are used since the very beginning in
logic programming. In case of interpretations in quotient algebras, equations are also more relevant
than unifiers since there might be a very large minimal complete set of unifiers (doubly exponential
w.r.t. the size of the equations, in the case of associative-commutative function symbols), whereas the
satisfiability of an equation system is much simpler (NP-complete in the case of AC symbols) (27]. We
cannot survey all equational theories =E for which unification is decidable. See [24] instead.

3.2 Equational formulae

More generally, equational formulae are arbitrary first-order formulae over an alphabet F of function
symbols and the equality predicate symbol. Assuming that they are interpreted in the free term
algebra, there are several decision techniques which lead to complete axiomatizations of the algebra of 0
finite trees (see [30,28,29, 15, 31] and others). This axiomatiza=in differs, depending on the finiteness
of F: when F is finite, the complete axiomatization consists of what is known as "Clark's axioms of
equality" plus the domain closure aziom

VY, V • = fli').*
IEF

Equational formulae can be generalized in various directions. One of them consists in adding sort
constraints, i.e. an (infinite) family of membership predicate symbols E C which are interpreted as
recognizable subsets of the term algebra T(F). The satisfiability of equational formulae remains
decidable with this additional construction [8]. These formulae have been used for solving problems
in rewriting theory (e.g. "sufficient completeness" and "inductive reducibility" [11, 8]), and as a
constraint system in automated theorem proving [6]. Other applications are described in [11].

The first-order theory of a quotient algebra T(F)/=3 quickly becomes undecidable: a single as-
sociative symbol suffice [351, or an associative-commutative symbol [371. Decidability results include
the case where E is a set of flat permutative axioms [30], ground axioms [101 and E is a set of shallow
equations, a class which encompasses the two previous ones [14].

3.3 Ordering constraints

We already mentioned ordering contraints as a mean for expressing ordered strategies. Here, the
logical language consists of purely existential formulae, using a set of function symbols F and the two
predicate symbols = and >. Several interpretations of the ordering have been considered:

"* Venkataraman in [38] interprets > as a subterm ordering, showing the decidability of the sys-
tem (and undecidability of the first-order theory). However, such an ordering is useless for
applications in rewriting theory, since it is not compatible with the term algebra structure.

"* The adequate orderings for the applications in automated deduction are the reduction orderings
(see [16]) which are total on ground terms. A typical example of such an ordering is the lezxico-
graphic path ordering extending a total precedence, whose existential fragment has been shown

100

U U U - wi -



0

decidable [9]. This result has been extended to other total recursive path (quasi-)orderings [26).
The decidability of the full first-order theory of these orderings is an open question (problem 24
in [17]).

" The theory of partial recursive path orderings appears to be even more difficult; the E4 fragment
has been shown undecidable (37]. The decidability of the existential fragment of any such
ordering is open. The only hint for this problem is the recent result of [51: the positive existential
fragment of the theory of tree embedding is decidable. (Tree embedding is the most simple
recursive path ordering: it is the intersection of all simplification orderings).

" Interpreting ' as encompassment (a term t encompasses u if there is an instance of u which
is a subterm of t), it is possible to express some properties such as inductive reducibility or
(sometimes) sufficient completeness using first order formulae (see [7). The first-order theory
of a finite number of unary predicate symbols of the form 2! ti has been shown decidable in f7].

3.4 Set constraints

Many other symbolic constraints have been studied. But it is a too long work to list all of them.
Let us conclude with set construints for which many recent beautiful results have been obtained.
(And there is still some work to do!). A set expresion is built from a finite alphabet of function
symbols, set variables and the intersection, union an complement symbols. Then, set constraints are
finite conjunctions of formulae e C_ e' where e, e' are set expressions. These formulae are interpreted
assigning set variables to subsets of the term algebra T(F).

Such constraints have been used for the analysis of logic and functional programs (see (21, 1, 19]).
The case of definite constraints has been solved in [21] and the general case has been further studied
by quite different means in [1, 3, 20]. There are two extensions which are still under investigation: • 0
adding negative constraints of the form e q e' and adding the projection construction, which consists
roughly of the inverse of applying a function symbol (see [21]). These extensions have been conjectured
decidable.

4 Constraint solving •
To solve a constraint not only means to decide its satisfiability. More precisely, a constraint solving

algorithm is specified by:

"* the constraint system (C, M, 0)

"* a subset S of C called the set of solved forms

S has to fulfill some requirements (see [11]), in particular, every formula of C should be equivalent (in
M) to a solved form, and every solved form should be trivially satisfiable or trivially unsatisfiable.
However, there is still some room for choosing the solved forms. For example, in the case of unification
(in free algebras), one can choose tree solved forms or DAG solved feorms as explained in [24].

Once solved forms have been specified, we systematically designed constraint solving algorithms
using rewriting techniques; we give a set of rewrite rules on formulae, prove their correctness (every
formula in C is rewritten to an equivalent formula w.r.t. M), termination (any rewriting sequence is
finite) and completeness (every irreducible formula is a solved form). There are several advantages for
this method:

* The rules can be redundant (and this is actually a desirable property). Then the termination
proof might be complex, but it "factorizes" the termination proof for all algorithms obtained

0w



0

by determinizing the control. For example (as we will see below) tree solved forms (Robinson's
unification algorithm [36,22]) and DAG solved il rms (corresponding to Martelli and Montanari's
unilfcation algorithm [321) are obtained by strmg,' -ning the control on the same set of rules.

" There is a feed-back on the theory, since the rew, -e rules are actually an axiomatization of M
(see PLI])

" the constraint solving algorithms are automatically incremental in the following sense: in order
to solve # A 0, it is possible to use the result of solving 0.

" We expect to use rewriting tools for proving termination of the constraint solving rules, as we
try to show in the following example.

A toy example

We consider the classical unification problems: formulae are conjunctions of equations between terms;
they are interpreted in the free term algebra T(F, X). The equality symbol is considered as symmetric
(i.e. there is no difference between a s t and t = a).

Given a conjunction of equations €, the owur-check relation ?:# is the relation on the free variables
of # defined an the smallest reflexive-transitive relation which contains z p_# V as soon as there is an
equation x = t[y] in 4. (See [16] for the notations on terms and equations that are used here). A 6
variable is solved in 0 if it has only one occurrence, as a member of an equation of 0. Let U(O) be the
set of unsolved variables of 0.

Now consider the scheme of rules for unification given below:

Doeompose .fisl.... so) =(ts,...,tn) --. 91tA...AS.
Coalesce z=yAO -- z=yA Ozf- /) Ifz#1andz,y EU(O) * 0
Clash I(Ai, .... .). = ,...,tm) -0. Iff #
iminate z=sAP -- zx sAP{zA -Js) IfxEV v(P),r Ver() andsaX

Check* zS = tfz 2l,, A... A z. = tfz. I-. - If there isam i sucthat p. #
Trivial s.= -* T
Merge z=aAz=t -- z~sA=t
If Decompose, Check* do not apply and z is maximal w.r.t. _># among the variables occuring at least twice as a

member of an equation

Note that in these rules, we relax the classical condition on the sizes in the merge rule (see [24])
and put instead a condition of maximality on z and assume the system decomposed. Whether these
conditions can be relaxed without loosing termination was stated as open problem 39 in [17]. We also
assume here that there are structural rules for A: 1. AP -1., T A P -. P and P A P -* P. Moreover
A is assumed to be associative and commutative.

The rule system is terminating (modulo the associativity-commutativity of A and the commuta-
tivity of =). For, consider the associative path ordering [4] on formulae, extending the precedence on
FUX defined by:

e every variable1 is larger than any function symbol

e every function symbol is larger than = which is in turn larger than A

* variables are compared according to the occur check relation

'Be careful that variables of the unilication problem are seen as constants in the rewriting procemi! Only the logmica
variables cua be instanciated.

AS0



0

This last statement has to be precised since the occur-check relation actually depends on the formula
which is considered. In fact, we consider the (maybe infinite) union of all occur-check relations at any
step in the computation. This definition depends on the transformation, but it does not depend on
a particular formula 0, and we don't need to effectively compute this relation. It may happen that
variables are equivalent w.r.t. this relation, in which case, they are considered as identical from the
associative path ordering point of view.

Note that the associative path ordering has the subterm property and it is monotonic (see [4]).
Hence, for proving the termination, we only have to prove that every left hand side of a rule is (strictly)
larger than the corresponding right hand side:

"* For the structural rules and for Trivial, Check* and Clash the decreasingness is obvious.

"* Decompose is strictly decreasing because => A in the precedence and

f(A1,.. .,s) = f(ti,. .. ,t, ) >0,5 si = t, i

by monotonicity and the subterm property.

" Eliminate is strictly decreasing because z is strictly larger than the variables of a (it is larger by
definition, and it cannot be equivalent to any variable of a since z becomes solved after applying
the rule, hence no rule can produce an equation with x in its right hand side). Moreover, 0
variables are larger than function symbols in the precedence, which shows that z >.p. s.

" Merge is strictly decreasing, for the same rason as above: since z is assumed to be maximal
in the decomposed system, it cannot be smaller than any variable of a or t, even after further
transformations.

"• Coalesce keeps the problem equivalent w.r.t. 2!.0p since z and y are equivalent in the precedence.
However, it can only be applied a finite number of times. Hence we can reason modulo this rule,
i.e. modulo the strict equivalence on variables.

Now, the system is terminating. If we remove the Merge rule, the system is complete w.r.t.
tree solved forms and we can find as an instance Robinson's unification algorithm. If we remove the •
Eliminate rule, the system is complete w.r.t. DAG solved forms and we can find an instance of
Martelli and Montanari's unification algorithm.

Similar techniques have been applied for the termination proofs of more powerful constraint systems
[13, 12].

References

[1] A. Aiken and E. Wimmers. Solving systems of set constraints. In Proc. 7th IEEE Sprnp. on Logic
in Computer Science, Santa Cruz, CA, 1992.

[2] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodulation and superposition.
In D. Kapur, editor, Proc. 11th Int. Conf. on Automated Deduction, Saratoga Springs, NY, LNCS
607. Springer-Verlag, June 1992.

[3] L. Bachmair, harald Ganzinger, and U. Waldmann. Set constraints are the monadic class. In
Proc. 8th IEEE Symp. Logic in Computer Science, Montrial, 1993.

[4] L. Bachmair and D. A. Plaisted. Termination orderings for associative-commutative rewriting
systems. Journal of Syrnbolic Computation, 1(4):329-349, Dec. 1985.

-~ W W



9

[5] A. Boudet and H. Comon. About the theory of tree embedding. In Proc. CAAP 93, 1993. LNCS
668.

j6] R. Calferra and N. Zabel. A method for simultaneous search for ref ations and models by 0
equational constraint solving. Journal of Symbolic Computation, 13(6):uj-642, June 1992.

(7] A.-C. Caron, J.-L. Coquidi, and M. Dauchet. Encompassment properties and automata with
constraints. In Proc. RTA 93, 1993.

[8] H. Comon. Equational formulas in order-sorted algebras. In Proc. 17th Int. Coll. on Automata, 0
Languages and Programming, Warwick, LNCS 443, Warwick, July 1990. Springer-Verlag.

[9] H. Comon. Solving symbolic ordering constraints. International Journal of Foundations of Com.
puter Science, 1(4):387-411, 1990.

[10] H. Comon. Complete axiomatizations of some quotient term algebras. In Proc. 18th Int. Coll. 0
on Automata, Languages and Programming, Madrid, LNCS 510, July 1991.

[11] H. Comou. Disunification: a survey. In J.-L. Lassez and G. Plotkin, editors, Computational Logic:
Essays in Honor of Alan Robinson. MIT Press, 1991.

[12] H. Comon. Completion of rewrite systems with membership constraints. In W. Kuich, editor, •
Proc. 19th Int. Coll. on Automata, Languages and Programming, LNCS 623, Vienna, 1992. Sprin-
ger-Verlag. An extended version is available as LRI Research Report number 699, Sept. 1991.

[13] H. Comon and C. Delor. Equational formulas with membership constraints. Technical report,
Laboratoire de Recherche en informatique, Mar. 1991. To appear in Information and Computa-
tion. * 0

[14] H. Comon, M. Haberstrau, and J.-P. Jouannaud. Decidable properties of shallow equational
theories. In Proc. 7th IEEE Symp. Logic in Computer Science, Santa Cruz, 1992. Also Research
Report 718, Dec. 1991, Laboratoire de Recherche en Informatique, Orsay, France.

[15] H. Comon and P. Lescanne. Equational problems and disunilication. Journal of Symbolic Com- 0
putation, 7:371-425, 1989.

[16] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 243-309. North-Holland, 1990.

[17] N. Dershowitz, J.-P. Jouannaud, and J. W. Klop. Open problems in rewriting. Technical report, 0
CWI, Amsterdam, Feb. 1991.

(18] E. Domenjoud. AC unification through order-sorted ACI unification. Journal of Symbolic Com-
putation, 14(6):537-556, Dec. 1992.

[19] T. Friihwirth, E. Shapiro, M. Vardi, and E. Yardeni. Logic programs as types for logic programs.
In Proc. 6th IEEE Symp. Logic in Computer Science, Amsterdam, pages 300-309,1991.

[20] R. Gilleron, S. Tison, and M. Tommasi. Solving s-,stems of set constraints using tree automata.
In Proc. 10th Symposium on Theoretical Aspects of Computer Science, Wirzburg, LNCS, 1993.

[21] N. Heintze and J. Jaffar. A decision procedure for a class of set constraints. In Proc. 5th IEEE
Symp. Logic in Computer Science, Philadelphia, June 1990. 0

[22] J. Herbrand. Recherches sur la th~orie de la d-monstration. Thse d'Etat, Univ. Paris, 1930.
Also in: Ecrits logiques de Jacques Herbrand, PUF, Paris, 1968.

WS

w, w - w -w w 9, , 0



0

1231 J. Ja"ar and J.-L. Lassez. Constraint logic programming. In Proc. 14th ACM Symp. Principles
of PraMmming Languages, Munich, 1987.

[24] J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: A rule-based survey

of unilcation. In J.-L. Lassi and G. Plotkin, editors, Computational Logic: Essays in Honor of
Alan Robinson. MIT-Press, 1991.

[25] J.-P. Jouannaud and C. Marchi. Termination and completion modulo associativity, commutativ-
ity and identity. Theoretical Comput. Sci., 104:29-51, 1992. 0

126] J.-P. Jouannaud and M. Okada. Satisfiability of systems of ordinal notations with the subterm
property is decidable. In Proc. 18th Int. Coil. on Automata, Languages and Programming, Madrid,
LNCS 510, 1991.

[27] C. Kirchner, H. Kirchner, and M. Rusinowitch. Deduction with symbolic constraints. Revue •
Frangaise d'Intelligence Artificielle, 4(3):9-52, 1990. Special issue on automatic deduction.

1281 K. Kunen. Negation in logic programming. Journal of Logic Programming, 4:289-308, 1987.

(291 M. J. Maher. Complete axiomatizations of the algebras of finite, rational and infinite trees. In
Proc. 3rd IEEE Syrnp. Logic in Computer Science, Edinburgh, pages 348-357, July 1988. 0

[30] A. I. Mal'cev. Axiomatizable classes of locally free algebras of various types. In The Meta-
mathematics of Algebraic Systems. Collected Papers. 1936-1967, pages 262-289. North-Holland,
1971.

[31] G. Marongiu and S. Tulipani. Decidability results for term algebras. Preprint 9, AILA, 1991. * *
[32] A. Martelli and U. Montaari. An efficient unification algorithm. ACM Transactions on Pro-

gramming Languages and Systems, 4(2):258-282, Apr. 1982.

[33] R. Nieuwenhuis and A. Rubio. Basic superposition is complete. In B. Krieg-Bruckner, editor, Proc.
European Symp. on Programming, LNCS 582, pages 371-389, Rennes, 1992. Springer-Verlag. 0

[34] R. Nieuwenhuis and A. Rubio. Theorem proving with ordering constrained clauses. In D. Kapur,
editor, Proc. 11th Int. Conf. on Automated Deduction, Saratoga Springs, NY, LNCS 607. Sprin-
ger-Verlag, June 1992.

[35] W. V. Quine. Concatenation as a basis for arithmetic. Journal of Symbolic Logic, 11(4), 1946.

[36] J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12(1):23-41,
1965.

[37] R. Treinen. A new method for undecidability proofs of first order theories. Journal of Symbolic
Computation, 14(5):437-458, Nov. 1992. •

[38] K. N. Venkataraman. Decidability of the purely existential fragmen, of the theory of term algebras.
J. ACM, 34(2):492-510, 1987.

020



@1

Joining Abstract and Concrete Computations in
Constraint Logic Programming *

ROBERTo GIACOBAZZI AND GIORGIo LEVI 0

Dipsrlimento A Isformrshca, UniversetA di Pis
Corso Italia 40, 56125 Pisa, t199

(giaco, levi)Udi. unipi. it

0
AND

SAUMYA K. DEBRAY

Deperimeut of Computer Science, Tie University of Arizon.

Tucson, AZ 85721
debrayec .arizona. .du

* 0
Abstract

In this paper we show how non-standard semantics for constraint-based logic programs
(CLP) can be formally specified by means of the same techniques used to define standard
semantics. In particular abstract interpretation of constraint logic programs can be viewed as
an instance of the CLP framework itealf. The use of standard instances of the CLP framework 0
(e.g. CLP(Bool) and CLP(R)) for non-standard interpretations, weakens the distinction be-
tween concrete and abstract computations in semantics and analysis. We formalize this idea
by applying the well known approximation techniques (e.g. the standard theory of closure op-
erators) in conjunction with a generalized notion of constraint system, supporting any program
evaluation. The "generalized semantics" resulting from this process, abstracts away from stan-
dard semantic objects, by focusing on the general properties of any (possibly non-standard) 0
semantic definition. In constraint logic programming, this corresponds to a suitable definition
of the constraint system supporting the semantic definition. Both top-down and a bottom-up
semantics are considered.

I Introduction
0

Constraint logic programming (CLP) is a generalization of the pure logic programming paradigm,
having similar model-theoretic, declarative and operational semantics [23]. CLP is then a general
programming paradigm which may be instantiated on various semantic domains. The fundamental
linguistic aspect of constraint logic programming is the ability of computing constraints by means

*The work of R- Giacobasti and G. Levi was supported by the Esprit Basc Research Action 3012 - Compulog
aad by OProgetto Finalizsato Sistemi Informatici e Caolo Parlelo of C.N.R. under grants no. 9100880.PF69.
The work of S. Debray was supported in part by the National Science Foundation under grants CCR-8901283 and
CCR-9123520.

-- 45-

w w w w S



0

of Horn-like rules. Since this aspect can be separated from the details specific to particular 0
constraint systems, it seems natural to parameterize the semantics of CLP languages with respect 0
to the underlying constraint system. We refer to such a semantics as generalized semantics [19].
It turns out that the generalized semantics provides a powerful tool for dealing with a variety of lp
applicationb relating to the semantics of CLP programs. For example, by considering a domain of
"abstract constraints" instead of the "concrete constraints" that are actually manipulated during
program execution, we obtain for free a formal treatment of abstract interpretation. •

In this paper we show how abstract and concrete interpretations for logic-based languages can
be joined into the unifying framework of constraint logic programming. We apply the generalized
semantics introduced in [19], intended to generalize the notion of constraint logic programs as
firstly introduced in [23]. The algebraic approach we take to constraint interpretation makes it
easy to identify a suitable set of operators which can be instantiated in different ways to obt .in
both standard and non-standard interpretations, relying on some simple axioms to ensure that
desirable semantic properties are satisfied. This work has a main technical contributions: to show
how a wide class of analysis techniques developed for pure and constraint-based logic programs
can themselves be viewed as instances of the constraint logic programming paradigm. This is
obtained by considering a general notion of constraint systems which is weak enough to have
general applicability and at the same time strong enough to ensure that relevant properties of the
standard semantics construction for logic programs are preserved.

The approximation of the meaning of programs by means of relations among the variables
involved in the computation is a well known technique to specify a space of approximate asser-
tions for program analysis [15,14]. We argue that the ability of the constraint logic programming • *
paradigm to handle relations on a variety of semantic domains (e.g. real arithmetics, boolean al-
gebras, etc.) allows this paradigm to be used in the field of program analysis both as a tool for the
formal specification of abstract domains of approximate relations and for the rapid prototyping
of static analysis systems. This approach has some interesting practical applications, such as the
ability to compile the data-fBow analysis directly to an abstract machine for constraint logic pro-
grams. This approach, which is a logical extension of the "abstract compilation" scheme discussed 0

in [21], removes the overhead of program interpretation incurred by keeping separate abstract and
concrete interpretations, and leads to significant improvements in the speed of analysis [21,32).
Our approach also makes it possible to close the gap that often exists between the formalization
of data-flow analyses in terms of abstract interpretation and the realization of efficient imple-
mentations by means of appropriate data-structures and efficient algorithms. Applications of our •
framework to systematically derive efficient algorithms for data-flow analysis (e.g. by means of
constraint propagation techniques for constraint solving) have been recently studied in [3].

The paper is structured as follows: in Section 2 we introduce the basic mathematical nota-
tions used throughout the paper. Section 3 introduces the main results in [19], thus providing
an incremental step-by-step algebraic specification for constraint systems and a top-down and •

a bottom-up semantics for constraint logic programs which are parametric with respect to the
underlying constraint system. In Section 4 we consider generalized semantics for constraint logic

programs as a framework for semantics-based analyses for constraint logic programs. An example,
namely ground dependency analysis, is considered associating boolean constraints with standard

equations on terms. Some results on approximating constraints by means of upper closure opera- 0
tors on constraint systems are also given. This approach points out how some well-known program
analysis techniques can be obtained by evaluating an abstract program into a variation of some

existing CLP systems, such as CLP(Bool) for ground dependency analysis; and, as shown in

0

"-|54"-

S... - w w w 0 0



Section 5: CLP(1Z)l, where a weaker notion of constraint system supporting program analysis is
introduced. This is accomplished by focusing on two distinct applications of constraint program- 0
ming to data-flow analysis, namely: linear relationships analysis and future redundant constraint
analysis. They associate linear constraints with standard equations on terms and range-intervals
with linear constraints on real numbers, respectively. Section 6 contains a survey of the most
important related works. Section 7 concludes.

2 Preliminaries

Throughout the paper we will assume familiarity with the basic notions of lattice theory
(Birkhoff's text [6] provides the necessary background) and abstract interpretation [12,14]. In
the following we recall some basic mathematical notations used in the next sections.

The set of natural numbers, integers, and reals are denoted by Ar, 2 and R respectively. Given •

sets A and B, A\B denotes the set A where the elements in B have been removed. The powerset
of a set S is denoted by p(S). The class of finite (possibly empty) subsets of a set S is denoted
pf(S). Let E be a possibly infinite set of symbols. We denote by E' the family of finite-length
strings (sequences) from symbols in E, including the empty string A. Sequences are typically
denoted by (a, ... , a.) or simply a1 , ... , a,, for a i 's symbols in E. The length of s sequence a is 0
denoted Is[. The set of objects ai indexed on a set of symbols E is denoted {ai}IEE. The set of
n-tuples of symbols in E is denoted E". When the length of sequences is fixed, sequences and
tuples will be often considered equivalent notions. Let R C A x A be a binary transitive relation
on A, then the transitive closure of R is denoted by R*. Syntactic identity is denoted -.

A partial ordering is a binary relation that is reflexive, transitive and antisymmetric. A set 0 0
P equipped with a partial order !< is said to be partially ordered, and sometimes written (P, 5).
A chain is a (possibly empty) subset X of a partially ordered set P such that for all z, z' E X:
z < z' or z' < z. Given a partially ordered set (P, 5) and X C P, y E P is an upper bound for
X i" z _< y for each z E X. An upper bound y for X is the least upper bound ift for every upper
bound y': y < y'; lower bounds and greatest lower bounds are defined dually. A complete lattice in 0
a partially ordered set L such that every subset of L has a least upper bound and a greatest lower
bound. A complete lattice L with partial ordering _<, least upper bound v, greatest lowet+ bound
A, least element .I. = VO = AL, and greatest element T = A0 = VL, is denoted (L, <, .I, T, V, A).
Given partially ordered sets (A, 5A) and (B, -B), a function f : A --* B is monotonic if for all
Z,Z' E A: X <A Z' implies f(z) 5-B f(X'), f is continuous if for each non-empty chain X C A:
f(UAX) = UBf(X). A function f is additive iff the previous condition are satisfied for each 0
non-empty set X g A (f is also called complete join-morphism). An upper closure operator on
a partially ordered set (A, 5) is a function p : A -- A that is idempotent, i.e., p(p(c)) = p(c);
extensive, i.e., c < p(c); and monotonic.

To specify function parameters in function definitions we often make use of Church's lambda •
notation. We write f : A -. B to mean that f is a total function of A into B. Let f : A -- B be a

mapping, for each C 9 A we denote by f(C) the image of C by f: {f(z) I z E C1. Functions from
a set to the same set are usually called operators. The identity operator Ax.: is often denoted id.

Let (L, _, I, T, V, A) be a non-empty complete lattice. Let f : L -- L be a function. The upper

ordinal powers of f are defined as follows: fT0(X) = X, f To(X) = f(1T (a - 1)(X)) for every
successor ordinal a; and fTa(X) = V f1I6(X) for every limit ordinal a. The first limit ordinal

6<0
1CLP(R) denotes the CLP(R) (constraint logic programs on the domain of real numbers) implementation

described in [24l.



equipotent with the set of natural numbers is denoted by W.

An algebraic structure [20] is a pair (C, Q) where C is a non-empty set, called the universe
of the structure and Q is a function ranging over a (possibly infinite non-denumerable) index
set I such that for each i E 1, Qi are finitary operations on and to elements of C. Algebraic
structures are also denoted as (C, Q,)IEZ. In addition to Q, operations, some special symbols
(e.g. 0, E, 0,...) will be used to denote algebraic operations, including constants. With an
abuse of notation, we will often denote distinguished elements of C as constant operations Qj on
C. Given algebraic structures (A, QA) and (B, Qa) with universes A and B and provided with
a common set of basic operators Q, a (homo)morphism a from (A, QA) to (B, QB), denoted by
o (A, QA) - (B, QB) is a function a : A - B such that: a(fA) = fB for each constant
symbol in Q and v(fA(aj,...,a,,)) = fa(a(ai),.... (a,)) for each n-ary operation f in Q and
al...an E A. Let (A,QA) and (B,QB) as above. Given partially ordered sets (A,<-A) and •
(B, S8), a semimorphism is a function a' : A -- B such that a(fA) 58 f1, for each constant
symbol f in Q, and v(fA(a1,...,an)) 5-B fB(o(ai),...,u(a.)), for each n-ary operation symbol f
in Q.

3 Generalized Semantics

As defined in (23], the semantics of constraints is given in terms of an algebraic structure which
interprets constraint formulas, while the semantics of a constraint logic program is given in terms
of the well known fixpoint, model-theoretic and operational characterizations. In this section we
recall some of the basic results on the generalized semantics in [19].

3.1 Term Systems 0

A term system is an algebra of terms provided with a binary operator which realizes substitutions
[8]. We are interested in term systems where every term depends only on a finite number of
variables (also called finitary term systems). They represent the first basic definition in the
semantic construction.

Definition 3.1 [term systems [8]]
A term system r is an algebraic structure (r, S, V) where we refer to the elements of r as r- terms
(terms for short); V is a countable set 2 of T-variables (variables, for short) in r; S is a countable
set of binary operations on r, indexed by V; and the following conditions are satisfied, for all
z,yE V and t,t',t"E r:

T1. s.(t, z) = t, identity

7'2. s.(t, y) = y, where z 0 y, annihilation

T3. s(t,s,(y,t')) = s.(y,t') where x $ y, renaming

T4 . s.(t, ss(i",t)) = s,(s.(t, t"),sz(e,t)) where z 6 y and y ind t' independent composition

where a r-term t is independent on the r-variable x, denoted by "z ind t", if s.(t', t) = t for any

t' E r. We say that a variable v occurs in a term t if -,(z ind t). We denote the set of variables 0
occurring in a term t as var(t). I

2 A more general definition that considers sets of arbitrary cardinalities is given in [8]: for our purposes, it suffices

to consider countable sets.

-- f6-

w I WI w W 0 0



0

Intuitively, s,(t, t') denotes the operation "substitute t for every occurrence of the variable 0
z in e." For notational convenience, we often denote e_(t, t') as [tlz] t'. This notation can be 0
extended to substitutions on multiple variables. Notice that, by T2, for each z, y E V: x inad y
iff z iO y. The condition that terms depend on a finite number of variables can be formalized by
imposing that the dimension set [8]:

x EVI [t/z) t'#,t' for somet }

is finite for every te E r. A renaming of a variable x in a term t is [y/z] t for some y 6 z. Standard
properties of term systems and substitutions, such as the properties of composition, can be found
in 18].

Example 3.1 Let E be a finite collection of function symbols. The standard term system
r(.,v) = (T(E, V), Sub, V) is a term system provided that substitutions in Sub perform stan-
dard substitutions. In this case v ind t iff the variable v does not occur in t. C

Notice that the substitution operators in S do not perform in general idempotent substitutions.

Definition 3.2
Let 11 be a finite collection of predicate symbols and r be a term system. A (,r, 11)-atom has the
form p(tl, ... t,,) where p E 11 and ti E ", Vii= 1, ..., n. • 0

When clear from the context, we sometimes denote by 6 both a tuple and a set of syntactic
objects o (terms, atoms, etc.). In particular we denote by t a tuple (set) of distinct variables.
Let 6 = (ol ... , on) and a' = (o,....ol) be tuples (sets) of syntactic objects. We write 6 # 6' to
denote oi 0 oj for each i, j.

The following example shows a non-standard instance of the term system algebraic structure.

Example 3.2 Let E be a finite set of symbols. Let ri = (p 1 (E), S, E), where S is the family of
basic operators s., for o E E, such that for each Al, A3 E pf(M):

M A (A2 \ {o})Ul if o E A 2
A•2 otherwise

In this case, for each a E E and finite set A Cg : o ind A iff o V A. rE is a term system. 0> 0

3.2 Constraint Systems

We give now a formal algebraic specification for the language of constraints on a given term system.
It allows to identify those structures which have to be considered in any non-standard semantic 0
definition. The process of building constraints in any fixpoint evaluation of a given CLP program
is mainly based on set-union and conjunction. We want to give an algebraic characterization of
this process in order to provide a framework for generalized interpretations of constraint logic
programs.

W0 -- IfP-

w. . w m mua'mu i w w 0 N 0•



S

Denition 3.3 [closed semirings [1]] 0
A Closed Semiring is an algebraic structure (C, ®, $, 1, 0) satisfying the following: 0

1. (C,®,1) and (C,E,0) are monoids.

2. a is commutative and idempotent.

3. 0 is an annihilator for ® , i.e., for every c E C, c ® 0 = 0 ® c = 0. 0

4. for any countable sequence of elements a,,...., an, ... in C: a, E a 2 )... E an ED-- exists and
is unique. Moreover associativity, commutativity and idempotence of @ apply to countably
infinite as well as to finite applications of E.

5. 0 is left- and right-distributive over finite and countably infinite applications of @, i.e.,
if C = {a, ... a,,...) is a countable sequence of elements in C and c E C, then c &
(SC) = @({c ® c' c' E C}) and (@C) ® c = e({c' ® c j c' E C)), where @C denotes
a, ED a2 (D ... "E an (""

loannides and Wong show that the class of relational operators form a dosed semiring [22],
thus providing a formalization of recursion in the database context. In logic programming, closed
semirings summarize, in an algebraic framework, all the aspects dealing with composition of terms *
like unification and set union. The idea is that of finding the (possibly infinite) set of all paths
in the semantic construction. From a semantic viewpoint in fact, each path is a sequence of
constraints between vertices in the proof tree. Idempotence, associativity and commutativity are
the least set of properties necessary to allow E to model, in the general context of standard as well
as non-standard semantics, the "merging" together of information via set union. The operator 0
corresponds to conjunction of constraints and plays the important role of collecting information 0
during computation. Distributivity allows the representation of constraints as possibly infinite
joins of finite meets (also called simple constraints). Distributivity plays a fundamental role in
the equivalence between the bottom-up and the top-down semantic constructions. Closure on
countable sequences of elements in C is necessary to admit constraints that are infinite joins of
constraints (this is important in the fixpoint semantic development). A weaker structure, namely
a non-distributive dosed semiring, will be considered in Section 5.

A semantic definition necessarily implies some notion of "observable behavior": programs that
have the same semantics are considered to not be observably different. Modeling the semantics
of constraint logic programs in terms of answer constraints corresponds to considering answer
constraints as the appropriate observable property [16]. Thus, the notion of solution for a given 0
answer constraint has to be restricted (projected) to the variables of the corresponding query
(output variables). Closed semirings are too weak to capture the notion of variable projection.
We handle this notion by i'eans of a family of "hiding" operators on the underlying algebra, as in
(31]. Cylindric algebras, formed by enhancing Boolean algebras with a family of unary operations
called cylindrifications [20], provide a suitable framework for this. The intuition here is that given

a constraint c, the cylindrification operation 3s(c) yields the constraint obtained by "projecting
out" information about the variables in S from c. Diagonal elements [201 are considered as a way
to provide parameter passing [31]. In constraint logic programming the equality symbol "=" is
assumed to provide term unification in any constraint system. However, cylindric algebras, which

0

L0



0

are oriented to first-order languages without function symbols, are not adequate as an algebraic 0
semantic framework for general constraint logic programs, so we extend diagonal elements to deal 0
with generic terms, following the approach in [8]. Finally, for each variable z and term t, a unary
operator #, extends the substitution operation to idempotent substitutions on constraints.

Definition 3.4 [constraint systems]
A constraint system A is an algebraic structure (C, ®, D, 1,0, 3&, Otz, dt,u,){*),ACV;ttE- where C is 0
a set of A-constraints generated by a given set of atomic constraints, and is called the universe of
A; V is a countable set of variables; r is a term system; 0,1, dg,g, are distinct (atomic) elements of
C, for each t,*e E r; {3 }A}Cv and {8.)lEv;tEi' are unary operations on C the latter being defined
for z ind t; ®, E are binary operations on C; such that the following postulates are satisfied for
any c,c' E C; A, 9 C V and t,t ,t" E r:

R1. the structure (C, ®, 0, 1, 0) is a dosed semiring;

Ci. e c 3ac = 3 Ac;

C2. 3A(c ® 3ac') = 3,(3Ac ® c') = 3&c c 3&e;

C 3 . 3A 3 9c = 3 (aue)c;

C 4 . 3,& distributes over finite and countably infinite joins;

Di. d,,t = 1; 0

D 2. 3{1)dx,t = 1;

D3 . dt,t, = d.,;

S1. 8.(c) = 3d•.,(d.,t 0 c);

S2. 8.t(dt,,t_) =

53-4.t 8( C(9C) = aOt C@80,Cl~'.

With an abuse of notation, when clear from the context, we denote Xt(c) as [t/z] c. The
meaning of cylindrification is given by the axioms from C1 to C4, while diagonal elements and
substitutions are specified by the axioms from D, to 53. Notice that Axiom S, and S2 relate
the notion of substitution in the term system r with diagonal elements of C (which intuitively
correspond to the notion of equality constraints) in the expected way. Recursively, a simple
constraint is any atomic constraint, or the cylindrification (substitution) of a simple constraint, or
a finite conjunction (meet) of simple constraints. The notions of "independence" and "occurrence"
of variables extend in the obvious way from terms in r to constraints in C. Let c E C and z E V:
z ind c iff c•c = c for any t E r such that z ind t. A variable z is bound in c iff it is existentially
quantified in c. A variable z is free in c iff z E var(c) and z is not bound in c. The set of free
variables in a constraint c is denoted by FV(c). A renaming of c with respect to z is the constraint
a•c such that z 9 y. It is renamed apart if also y ind c. Let {z, .... ,zn} Cg V, in the following
we will denote 3,,(,)\j. ..... ,)c, i.e. hiding from all the variables in c except {:X,.. . , Zn, as

w w L , w , w 0 0



0

3(c)(. .,.... ,,.We often omit brackets in cylindrifications on sets of variables. We also denote by 0
d(, . .. , ... 1 the element dt,,; ® ® d,, where t E r, and denote A an
arbitrary constraint system (C, ®, C, 1,0, 3&, 8, dt,t,){Z},Av;t~tE. ci < e2 denotes the relation
C1 = c2, for C1,C2 E C. C is partially ordered by _5, and forms a complete lattice.

A number of important properties are shared by constraint systems. In particular, for each
A g V, 3 A defines an additive upper closure operator on C3, while the substitution operator on
constraints defines an additive retraction on C4. Notice that the substitution is not, in general,
extensive. Moreover, if z is bound in c then z ind c, and if c is a renaming apart of c' with
respect to z, then z ind c; and if A ind c then 3 A(c® c') = c ® 3 Ac'. An important property on
the relation between cylindrification and renaming (with fresh variables) allows us to extend the
standard approach to the semantic construction of logic programs to constraint-based programs:
c® 3{.}c = 3{,)(c 0 e') where y ind ec', y i z and e = 8c'.

Example 3.3 [CLP(7i)] Let E = {a, b, ..., f, g, ... } be a finite collection of function symbols.
Atomic constraints are (one-6orted) equations on the term system T (rEv) (see Example 3.1). The
Herbrand constraint system Ali, is the quotient algebra 0

(p( t ?), A, U, true, false, 3 x, il, {t = t'}){zI XCVg* (rr v)1hEQ,

where:

* 61 is the set of any finite conjunctions of equations over r(Ev).

* i? is intended to represent the Herbrand interpretation structure, interpreting diagonal
elements as unification [23]. A solution 0 for a possibly quantified finite conjunction (set) of
equations 3xE = 3 x{fs = t1 , ...,sn = tn} is a grounding substitution for the free variables
in E such that there exists a grounding substitution for the bounded variables X: a, and 0
slaO a t1o, ...I-, soo =_ tO. 71 ý= E6 denotes that 0 is a solution for E 5. We extend
this definition to deal with possibly infinite joins: 0 is a solution for U Ei iff there exists

iEl
i E I such that 0 is a solution for Es.

* 3 is the existential quantification which is assumed to be distributive (as well as conjunction)
over arbitrary joins: if X C V, 0 is a solution for 3x( u Ei) iff 0 is a solution for 3xE, for •

iel
some i E I.

* For each cl = u Ei and C2 =- U Eý denoting possibly infinite joins of (finite) quantified
'Eli SC-12

sets of atomic constraints (equations) Ei and E': •

C1'EQ C2 iff U - iOiEl E12

3An upper closure operator p on a partial- ordered set (A, <) is a monotonic, idempotent and extensive (i.e.
p(s) > z) operator.

'A retraction on a partially ordered set (A, <) is an operator # that is idempotent and monotonic.
'This corresponds to the intuitive notion. "a solution assigns values to the free variables of the constraint in such

a way that there exists an assignment to the existentially quantified variables such that the constraint is validated"
[101.

6Thus, in order to handle possibly infinite disjunctions of (finite) sets of equations, we interpret disjunction as
set union.

-- 160-



0

e true denotes any constraint having every grounding substitution as a solution while false
denotes any constraint having an empty set of solutions. •

e &, for : not occurring in t, performs idempotent substitutions on constraints, by extending
in the obvious way the term substitution notion to constraints.

Example 3.4 [CLP(4.)] This example formalizes CLP(R) as an instance of our framework. In
the foWowing Y = (z,...zx.) is a vector (point) in R* and zi is its i-th element. A hyperplane is the
set of points I E W" satisfying a4zi +...+a~z. = b, with not all a's equal to zero. Any hyperplane
defines two halfspaces in the obvious way. A convez polyhedron is the (possibly unbounded) set 0
of points constituting the intersection of a finite number of halfspaces. Let c be a polyhedron of
dimension n, and HS be a halfspace defined by a hyperplane H. If f = c n HS C H then f is
called a face of P. A facet is a face of dimension n - 1. For any finite n, the constraint system
of n-dimension linear constraints (the non-linear case is a straightforward extension), denoted
by R4, is: (P,nu ",0, tgO,8,3A,[t, = t2l)(.Z}ACv.;t,tterz.,, where V,, = { x",.....R) is a set
of n variables, r.,p is a term system of linear expressions on Vn (a formalization of rE.,p is in
Section 5.1) and P is the set of all space regions in W" defined as possibly infinite unions of convez
polyhedra (each constraint c E P can be represented as a possibly infinite set of finite conjunctions
of linear equations and disequations on V.). The variable restriction operation 3 is performed by
cylindrification parallel to an axis [20]: if c is a constraint in R" and i < n, we define: * 0

,C ={Is7E Rn Iy, =zj for iE cand j 96i}I

3j,c is the cylinder generated by moving the point set c parallel to the z, axis. For any two linear
expressions t,t' E rEzp and R E {, >, _<,>, <) we define:

[t Rt']= F. nIOF=[l/i .., e,e/x.], .

The substitution operator is: O = Ac.3t•)([x - t] n c). R, is a constraint system. 0

3.3 Operational Semantics

Constraint logic programming was defined by Jaffar and Lassez to specify relations on a constraint S
language by means of constraint-based Horn clauses. We follow the approach in [19] by defining
Horn-like clauses on const4 systems. Constraint logic programs are defined in the usual way:
let A be a constraint sysý ne term system r and 1I be a finite set of predicate symbols. An
A-goal is a formula c 0 •, with n > 0, where c is a simple A-constraint and B 1 , ... , B, is
a sequence of (r, U)-atoms. 1 A-clause is a formula of the form 'H :- c 0 Bl, ... , Bn' where
H (the head) is a (T, H)-atom and c 0 Bl,...,BA (the body) is an A-goal. If the body is empty,
the clause is a unit clause. A (generalized) constraint logic program, also called A-program, is a
finite set of clauses. For notational simplicity, we will sometimes omit the superscript from the
various semantic functions where the constraint system under consideration is obvious from the

- W-1



I0

context. The family of A-programs is denoted by CLP(A). Finally, the renamings of variables in 0
constraints and terms extend their meaning in the obvious way to any syntactic object (atoms, 0
goals, clauses, programs etc.); as well as the notion of independence.

Let A be a constraint system and P E CLP(A). Define -..p (an A-derivation step) to be the
least relation on A-goals such that G -.-,p G' iff

G = co 0( .... ()

* there exists a renamed version of a clause in P: p (.it) - cl 0 B1 , such that
var(G) n var(B1 U il) = 0,

0 G'= co® 9df,., 0 3(c1),t,u,r(8,) 0 B10P2 (i 2 ), -,pNO(i.),

An A-derivation from an A-goal G is a finite or infinite sequence of A-goals such that every goal is
obtained from the previous one by means of a single A-derivation step. A successful derivation is a
finite sequence whose last element has an empty body. The operational semantics is then defined
in terms of the success set, namely the set of successful computations specified by the transitive
closure of the transition relation on atomic A-goals, where e denotes the empty sequence of goals: .

0 A(p) = { p(-) :-()3(c).tI 1 0 p(.*) -.. ,c0 rE

The top-down semantics, defined by the previous transition system, characterizes the descendant
(partial) constraints of the initial goal. This semantirs provides information about call-patterns 0 0
regardless of whether they succeed, finitely fail or do not terminate.

Goal dependent success set semantics is defined in terms of a function J7p that yields the
computed answer constraint for any A-goal, such that 3'p(G) = B{3(c).,(G) I G -, c 0 ). The
following lemma proves the AND-compositionality for the operational semantics of constraint
logic programs.

Theorem 3.1 ([19])
Let G = co 0 pi(ti),...,p,#(4) be an A-goal and P E CLP(A). ZJp(G) = c iff there ez-
ist pi(ti) :- ci E OA(P), such that ti ind G and ýki i tj for 1 _ i, j : n, i 0 j; and
c = 3(co 4 df,1, 0 cl... 0 d.,j. ® Cn)t,,(G). 0

Since a constraint system can be non-meet-commutative, it is straightforward to notice that
the independence on the selection rule does not hold in general in these semantic characterizations.
For this reason we have assumed a left-to-right selection rule.

3.4 Fixpoint Semantics

In this section we define a fixpoint bottom-up semantics which is proved to be equivalent to the
operational semantics. We allow constrained atoms into the base of interpretations as suggested
in [17]. Each constrained atom 'p(f) :- c' represents the set of instances p(i)O, where 0 is a
solution of the constraint c. We assume FV(c) g var(A).

It can be shown that the unfolding of a clause is independent on the variable names used in
constrained atoms. This can be expressed in the semantics by a relation -. that captures the
notion of equivalence upto renaming on constrained atoms:

- ftL-



Definition 3.5
Let 5-4 be the set of constrained atoms of a constraint system A. Define the binary relation - 0
on BA as follows: given A, a 'p(i1 ) :- el' and A2  'p( 2 ) - C2 ' in BA, A, - A2 if and only
if there exist "renaming apart" variables V', i.e. such that V' 0 t, and V' 0 z- (V' ind c, c2); and
02. c, = 8efc2 . The A-/roe of interpretations is B-41 .

In the remainder of the paper we will be concerned primarily with the quotient structure 0
BA"/,-, and for notational simplicity, denote this by SA. Moreover, given a syntactic object o,
we denote by p(i) :- c -c I a constrained atom p(i) :- c such that [p(f) .c] E I and
I ind o. We extend this to specify tuples of renamed apart syntactic objects.

Just as (D expresses the notion of "merging together" the information present in two con-
straints, the operator U captures the notion of merging together the information present in two
sets of constrained atoms; i.e. the operator U : p(B) x p(B) - p(B) is defined as follows:

h U 12 = {jp(t) ED{,ct I p(i') :- < I, U 12) ]-) for any 11,12 E p(B).

The relation C, expressing the notion of a set of constrained atoms containing less information
than another, is defined as follows: for any 11,12 E p(B),Ii C_ 12 iff I, U 12 =/2.

Definition 3.6
The set of A-interpretations !A C_ p(B") is the collection of sets of constrained atoms I such * *
that I E •A iff I U 0=O I= = I

(!A, C) is a complete lattice. Let p(f) : - jw c be elements of I, for some fixed (possibly
infinite) set of indexes W. For each j E W, ci represents the set of admissible (i.e., computable in
the program) solutions for the predicate symbol p, on the variables 2. As the set of indexes W can 0
be infinite, infinite joins of constraints are allowed in constrained atoms. This "closure" property
is modeled by the closure of C on infinite joins, as assumed in any constraint system. Notice
that it cannot be specified by first-order formulas. The fixpoint semantics of a program P over a
constraint system A, YA(P), is defined in terms of a continuous immediate consequence operator
in the style of [33], i.e. •A(P) = lfp(TI) - TA tw(O), where the mapping TA : ! - Z', is

defined as follows:

C: PQ) :- cO (i1 ,..~ (i4),n Ž:0,
Sind C and for each i = 1...n :T.A(I) U 3(I : t- :-2 #i •Ct ,2

CeP = dt,,I. ® ci, r
The fixpoint semantics construction requires, potentially, only a finite set of variables. This

follows from the elementary properties of cylindrification with respect to substitution. Intuitively,
the hiding allows to define "local environments" which cannot be influenced by substitution. As a 0
consequence, any hidden variable in each of the Cj can be (re)used outside the scope of the hiding,
thus making applicable renamings by means of the same variables. The number of variables
needed to compute the semantics depends from the program structure.

-f3-



Example 3.5 Consider the following program over the Herbrand constraint system: I

p(z) z =D.
pAz) z = [hIp] 0 MY).

The fixpoint computation for Tp returns the following interpretation for p (we denote by , and;
conjunction and disjunction (set-union) of constraints):

p•z) :- z=O;
= [hl], = z', Z' = 0);

3 =.,.-( - [hly], = z", = [hip], p z', z' [0));-T = NY , y ,, =[l],=
3h,.•, /z' =[hI ,y],- Z",

( 3h..y'(( = = [hlh],Jy = z','= )/

etc....

The set of variables needed to compute the fixpoint is 'z, z', z", h, y). 0

The following result states the equivalence between the operational and the fixpoint semantics,
for any constraint system A. We need that V is a denumerable set of variables.

Theorem 3.2 ([19]) * *
Let A be a constraint system and P E CLP(A), then .F(P) = O(P)/~.

4 Abstract Constraint Systems

The definition of an abstract constraint system, which specifies a non-standard semantics for a
constraint programming language, is performed in two steps: term abstraction and constraint 0
abstraction. In the first step new syntactic objects are introduced to represent concrete terms. In
the second one, constraints on the abstracted term system are defined.

In general, a constraint system is an interpretation (in a closed semiring) for constraint formu-
las. To relate constraint systems, we follow the approach to "static semantics correctness" in [5].
Correctness of non-standard semantic specifications can be handled in an algebraic way through 0

the notion of morphism. However, the algebraic notion of morphism can be made less restrictive
by assuming that the carriers of the algebras involved are partially ordered sets. We use a weaker
notion of morphism between algebraic structures, capturing the approximation possibly induced
by abstract interpretations or by any approximate semantics defined in the framework.

A morphism of term systems, r : r - T', is a function mapping terms of r to terms
of T' such that VtI,t 2 E "" and z E V: 0(4z(t4,t2)) = 5•(:)(K(tm),K(t2)), where a and a'
are the substitution operators in r and r' respectively. Let A and A' be constraint systems
(A4' = (C', @', @', 1',O', 3'A, 8•A, O,,X)).A(v';t,9I t4,m') be constraint systems. There exists a semi-
morphism a : A A--, A' iff there exists a morphism of term systems I : r _24 r' such that for
each c, ci,c 2 E C, C C C, {z},A g V and t, tI,t 2 E r such that z ind t, the following hold: 0

a(O) = 0'

..- , , w W 1 0 0



0

a(sc) _' V'a(c) 0a(3&c) •_' 3"(,)a(c)
aOC, 0 C2)•_' 0(CI) O' &(C2) ,

Semimorphisms of constraint systems will be often denoted as a,.. Notice that a(&,c) S3'o08",(c).

Ddnition 4.1
Let A and A' be constraint systems with universes C and C' and term systems r and r' respectively.
A' isw c with respect to A iff there exists a semimorphism a, (r : r !! r' and o : A ._ A')
which is a surjective and additive mapping of (C, 9) into (C', 4'). I

Additivity and surjectivity allow the semimorphism to associate the "best" approximating
constraint in A' with any concrete constraint in A. As usual, this is captured by the notion of
GaLois insertion, as specified by the following, where a pair of functions (a, y) is a Galois insertion
of (C', 9') into (C, 9) iff a and y are monotonic, a(-y(c)) = c and c _4 -y(a(c)) for each c E C and 0
c' E C' [12,14]. If A' is correct with respect to A by means of a semimorphism a,, there exists a
Galois insertion of (C', 9') into (C, :).

In the framework of abstract interpretation, correctness of fixpoint approximations require
in addition some conditions on correctness of the non-standard semantics operators [12]. With
the assumption of additivity, semimorphisms are adequate to specify both Galois insertions, and * *
correctness of constraint systems. Let A' be a constraint system which is correct with respect
to A, by means of a semimorphism a.. Let P = {C1,...,Cm} be a program in CLP(A). The
corresponding program on A' is a set of clauses {C•,...,C j such that for each i = 1,...,m if
C, = p() :- c 0 p,(t 1) .... p,(t,) then C f = p(oc(i)) :- a(c) 0 pi( M(t))...,N(K(tR)) where
sc extends in the obvious way on tuples of terms. The following theorem relates the semantics of 0
a program with the (non-standard) semantics of the corresponding program defined on a correct
constraint system.

Theorem 4.1
Let P E CLP(A) and P' E CLP(A') be the corresponding program on A'. Assume A' be correct

with respect to A. There exiats j: !- -. Q' such that 6(.Y 4(P)) _r' .'(P').

Given a (fixpoint) concrete semantics, data-flow analysis usually requires computing the limit

of Kleene chains. Convergence to the least fixpoint can either be obtained by forcing the abstract

domain to satisfy the ascending chain condition or to use widening and narrowing operators to

accelerate convergence for fixpoint approximations, as suggested in [12]. In the following we con-

sider the conditions on the constraint system that ensure the resulting abstract domain to satisfy

the ascending chain condition. We introduce the ascending chain condition on constraint systems

and we show how this condition ensures finiteness in fixpoint computations. This approach is

more related with the constraint system structure than the widening/narrowing one, which is in

turn more related with the fixpoint computation. 0

A set of constraints {c, .... ca, ..}is said to be free-vriable bounded iff there exists a finite set

of variables fl such that FV(cj) 9 V for each i > 1. The following definition is important for
abstract interpretation purposes:

U V V~ V Ww -0-



0

Ddnition 4.2
A constraint system A is Noetherian if" its universe C does not contain any infinite chain of
free-variable bounded constraints. I

The free-variable-boundedness condition here is crucial, for otherwise any constraint system with
a denumerable set of variables is not Noetherian. To see this, consider the constraints =, -
X, V ... V Xi: the set of constraints (ci I i > 1), ordered by entailment, forms an infinite
ascending chain even on a two-valued boolean interpretation. However, it is easy to see that
this set is not free-variable-bounded. Given a Noetherian constraint system A, the domain Q)' is
Noetherian, and YA(P) can be computed by iterating Tp a finite number of times.

Different semantic characterizations lead to different abstract evaluation strategies. Top-down
abstract interpretation corresponds to the abstraction of the standard operational semantics.
Bottom-up abstract interpretation instead allows to compute a finite abstract approximation of
the fixpoint semantics associated with a given constraint logic program. Goal-independence is an
attractive feature of bottom-up evaluations. Global program analysis, especially useful in type
inference, can then be specified as a bottom-up evaluation in a suitable constraint system. In the
following we will concentrate on bottom-up (fixpoint-based) abstract interpretations only. This 0
because the possibility of using only a finite set of variables on which renamings are performed is
attractive for proving that a constraint system is Noetherian (see for instance Section 5.1).

We illustrate the previous idea by means of a simple example of data-flow analysis for ground
dependences in pure logic programs [4,11]. *

Consider the (concrete) term system r(.,V) being defined over a finite set of variables V. Let
us consider the term system rV as defined in Example 3.2. Terms are finite sets of variables.
Ground terms are denoted with the empty set of variables. It is straightforward to notice that
var is a morphism of term systems.

Marriott and Sondergaard have proposed an elegant domain, named Prop, to represent 0

ground dependences among arguments in atoms. This domain can be expressed as an instance
of our framework using the algebra of propositional formulas with disjunction. Let Ap,.P =
(Propv, A, V, true, false, 3 x, 0.', A(t) A- (t'))(Z).XCV;t,t,IEvu{} be the algebra of possibly exis-
tentially quantified disjunctions of formulas, defined on the term system rv, by the connectives
A and +-*; where, for each finite set of variables {as, ...,Zml E rV: A({xj, ... , zm)) = Z, A ... A xn, 0

and A(O) = true.

Intuitively, the formula z A y A z - w A v represents an equation t = t' where var(t) = {z, y, z}

and var(e) = {w, v); z A y represents a term whose groundness depends upon variables z and
g; while z V y represents a set of terms whose groundness depends upon variables x or y. Local
variables are hidden by existential quantification, projecting away non-global variables in the
computation. Since z .-* true is equivalent to z, a variable z instantiated with ground term is
denoted z (i.e. the expression z denotes that z is rigid). Substitution is defined in the obvious
way. It is easy to prove that, because of the finiteness of V, Ap,.l/ - is a finite (and then
noetherian) constraint system.

We associate with each equational constraint in An, a boolean expression specifying ground-
ness relationships among variables in predicates. The following example shows this technique.

Example 4.1 Consider the following program to reverse a list:

-166-

- w--W



O

aovreiCO 0).O

nrevC[HILJ. R) nrov(L. LU). append(L1, CH]. R). 0

append(C]. L, L).
app•nd([RIY]. 12. [NIZI) :- append(Y. X2. Z).

The corresponding Prop program for groundness analysis is: 0

nrev(zl,z 2) :- X1 A Z2.
nrev(z 1, z2 )- - xi (h A 1) 0 nrev(l, rl), append(ri, h, r).

0ppend(z, X2 , z 3 ) -- I A z2 - Z3. 0
GoPPnd(zn, Z2 , Z3 ) -- , - (h A V) A z 3 - (h A z) 0 append(y, z 2 , z).

The reader may verify that the abstract semantics for append and nrev can be derived by eval-
uating the :vidified program in CLP(Aprp) (which corresponds to the standard CLP(Bool)).
They are given by:

{ append(zI,z 2 ,z3 ) :- X3 4-. (z A^z2)); and
{ nrev(z,, Z 2 ) : - -, 32).

which correspond precisely with the behavious of the program with respect to groundness: in
append the third argument is ground iff the first two is ground, while in nrev the first argument
is ground iff the second is ground. 0

4.1 The Approximation Operator on Constraint Systems

The space of approximate constraints can be specified using upper closure operators, which formal- 0
ize the idea of approximation (14]. Idempotence can be interpreted as the fact that all information
is lost at once in the abstraction process; extensivity captures the essence of approximation as
weakening, while monotonicity of the closure states that approximation is order preserving.

In the following we introduce the basic properties of upper closure operators on a constraint
system. These properties allow the resulting algebraic structure to be a constraint system as well. 0

The following results extend the classical ones on closure operators [14] to constraint systems.
In particular we characterize the approximation induced when a•, behaves as a morphism of
constraint systems. Following this approach, we can extend most of the well known techniques
for abstract domain specification to constraint systems.

Definition 4.3
Let A be a constraint system with universe C. A compatible upper closure operator p on A is an
upper closure operator on (C, 9) satisfying the following properties: for each c, c' E C:

1. p( 3Ac) = 3 &p(3Ac); (3-quasi closure) •

2. p(c@ tc) = p(p(c)0 p(L')). (O-quasi morphism)

WU



Since a compatible upper closure operator is a closure operator, it maps each constraint to
one that approximates it. In addition, ®-quasi morphism relates meets of abstract constraints
with meets of concrete constraints (recall that an upper closure operator is also a quasi-complete
join-morphism, namely for each D C_ C, P(@cED c) = P($cE.D p(c))). Finally, the 3 -quasi closure
property ensures that the approximation of a constraint which is hidden on a set of variables, is
still hidden on the same set of variables. From this condition we can prove that p satisfies the 3
and 8-quasi morphism condition (i.e. p(34c) = p(3,p(c)) and p(&,c) = p(8,p(c)), for each c E C, 0
{z},A C V and t E r such that z ind t) and that p o 3& is an upper closure operator.

Notice that 3 A o p is not idempotent, unless 3 & and p commute. This is in accordance with
a classical result of closure theory saying that any composition of two upper closure operators is
an upper closure operator iff they commute [30J.

Let A = (C, ®, a, 1,0, 3a, 8z, dl,12 )(z,_ACV;t,91,t 2Er be a constraint system and p be a compat-
ible upper closure operator on A. We define:

p(A) ...(P(C), 6, tý, 1, p(0), ja, k, p(dj,,t2,)JX).AC~v•,..

where p(C) = {c E C I c = p(c)), for each c, ci,c 2 E p(C), {z),A C- V and t E r such that z ind t:
eldC2 = p~cl E C2 ), C16C2 = p(cj ® C2), 2ac = p(3&c) and 8.,c = p(8.c).

Theorem 4.2
Let p be a compatible upper closure operator on the constraint system A. p(A) is a constraint 0 0
system.

Example 4.2 Cylindrifications are monotonic operators, while idempotence and extensivity are
specified by axioms C 4 and C, respectively. Moreover, cylindrifications commute thus, if A and V
are sets of variables and c is a constraint: 3&3*3&c = 3 &3 *c. However, for each set of variables 0
A: 3&, is not a compatible upper closure operator on the constraint system because it does not
satisfy the ®-quasi morphism condition (see Axiom C2 ).

By ®/&-quasi morphism, p(A) is correct with respect to A by means of the morphism pid.

As observed in [14], any Galois insertion (a, -) defines an upper closure operator p = -Y 0 a on
the corresponding (concrete) complete lattice.

Corollary 4.3
Let Al be a constraint system which is correct with respect to a constraint system A by means of 0
a surjective and additive morphism a.. Let -y = Ac*. q {c I a(c) g' c2} and p = -' o a. p(C) is
isomorphic to C*.

Let A be a constraint system and A* be correct with respect to A by means of a surjective
and additive morphism a,. Let - = Ac). I{ a(c) g 1ca} and p= o a. 0

Theorem 4.4
Let A £ V and c,c 1 ,c 2 E C. Then 3 Ap( 3Ac) = p(3 Ac) and p(p(cO) ® p(c2)) = p(c1 ® c2 ).



0

0
In the following we study some sufficient conditions on A and a. to let the interpretation of ®,

3 and 8 operators be not affected by the closure p = -y o a (i.e. the closure becomes a morphism 0
of ®, 3 and 8).

Theorem 4.5
Let c1,C2 E C: P(c)® p(c 2) :_ p(C1 ®0c 2 ). If A is 0-idempotent and I is the annihilator for ED,
then p(eC 0 c2 ) = p(cO) 9 p(c 2). 0

The following theorem gives a sufficient condition on A' such that the composition of 3 and
p is a closure (i.e. 3 and p commute).

Theorem 4.6 0
Let c,d E C and A C V. 3 &p(c) 5 p( 3 Ac). If a(3&c) = a( 3 Ac') =: a(c) = a(c'), then
p( 3 ac) = 3 &p(c)

Notice that the previous condition: a(3&c) = a( 3 Ac') = o(c) = a(c') state the injectivity
of cylindrification in the abstract constraint system. 0

Theorem 4.7
Let A be a constraint system and p be an upper closure operator on C which commutes with 3, it
is a 0- morphism and for each t,t' E 7": p(dt,to) = di,,'. Then &8,p(c) = p(8.c).

We finally give a representation result for abstract constraint systems. Recall that given a
partially ordered set (P, 5), S g P is convez iff for each c,c" E S, C' E P such that c < c' < c"
then c' E S. It turns out that any (compatible) upper closure approximation of a constraint
system defines a partition of the universe of constraints into convex sets of constraints:

Proposition 4.8
Let A be a constraint system and p be an upper closure operator on its universe of constraints C
For each c E C the set cP = fc' E C I p(c) = p(c')} is convez.

As a consequence, the closure of a constraint system A under a given upper closure operator 0
p (i.e. p(A)) is the algebraic structure of "abstract" constraints each representing a convex space
of "concrete" solutions. The axioms for compatible closure operators (i.e. axioms 1 and 2) ensure
that p(A) is a constraint system.

5 Non-distributive Analysis

Our framework is not appropriate to formalize an interesting class of constraint systems which 0

are proved to be useful for program analysis (e.g. see linear relationships analysis below).

Let us consider a (possibly non-compatible) upper closure operator. For the family of con-
straint systems where 0 is idempotent and commutative, and 1 is annihilator for $, any meet
of dosed constraints is still dosed, i.e., p(Ce) 0 p(c2) = p(p(cO) 0 p(c&)). Thus, any compatible 0
upper closure operator is a 0 morphism (see Theorem 4.5). This assumption is too strong for
a wide class of closure operators useful in program analysis. For any upper closure operator p:
p(c, ®c2 ) _ p(cl) p(c2 ). The converse does not hold in general. In the following we will consider
0-idempotent and commutative constrair' systems where 1 is annihilator for E.

U U ,U1 w w wi 1 0 0



0

Definition 5.1
A weakly compatible upper closure operator on a constraint system A, with universe of constraints 0
C, is an upper closure operator on C such that: p(O) = 0, p(dg,t,) = dt,t and p o 34 = 3A o p, for
any term t,t' and set of variables a. I

Theorem 5.1
Let A = (C, ®, 0, 1, O, 3A,8  , dtl,d2 )X),A;V;t~t1,t 2ET be a onstraint system and p be a wea'ly cor.
patible upper closure operator on A. p(A) = (p(C),0, ,I,0,3 A, i 3adtt 2 ){Z)ACV;tJ1t2 E? Where
d = AC.p(EDC), is a non-distributive constraint system.

Assume a constraint system A where the axiom of distributivity is replaced by the weaker
relation: c ® (cl E c2 ) ! (® c ) C (D ®C 2 ). Distributivity has been assumed to prove the equiva-
lence results between fixpoint and operational semantics. The second one in fact is a kind of "all
solutions" semantics, where the join is taken at the end of all the possible computations, while
in the fixpoint case, the semantic construction applies the join operator at each partial compu-
tation step (an equivalent operational semantics can be easily defined: this would correspond to
the bottom-up execution strategy of deductive databases rather than the standard operational 0
interpretation of logic programs [28)). In this case, as the constraint system is not distributive any
more, we can only have a further approximation level by applying bottom-up instead of top-down,
i.e. O(P) C_ F(P). In the following we study this class of constraint systems by means of an
example.

Example 5.1 The problem of future redundant constraints in CLP(1Z) has been studied in the
context of compiler optimization [25]. Intuitively, a constraint in a clause is future redundant if,
after testing the constraint for satisfiability, adding or not the constraint to the current computed
constraint (also named store) does not contribute to the answer constraint. This because, in
the computation, stronger constraints are added to the store. This information can be used for •
a variety of optimizations (25]. In this example we sketch a formalization of this analysis as a
non-standard CLP computation using a slightly different notion of redundancy. Consider the
constraint system 7R, of Example 3.4. Let P E CLP(7RU) and p be some extensive operator
on 7Z,, (upper closure operators are appropriate to this purpose). Assume p be a predicate
symbol defined in P and let C = p(i) :- F ncl 0 B E P be a clause defining p. Let P' =
(P\ {C})u {pU(i) :- c' 13 B). If p(i) :- cp is in Y(P), i.e., cp is the answer constraint for p in
the modified program, cp n F 0 0 (i.e. cp A F is solvable) and for each convex polyhedron c E cp:
p(c) C F (i.e. F is weaker than p(c)), then F is future redundant in C. To prove this claim we just
note that by p-extensivity, for each constraint c: c C p(c).

A suitable choice of an extensive operator on R, is provided by approximating any convex 0
polyhedron with a hypercube, which is a polyhedron whose facets are parallel to the axes (similar
techniques have been used for static array bound checking [12]). For any set of polyhedra c E P,
define boz(c) as the least hypercube containing c. boa is clearly an upper closure operator on
the domain of convex polyhedras ordered by set inclusion. To provide parameter passing, we
allow diagonal elements in the abstract domain of constraints. The approximation of diagonal
elements by their least hypercubes should correspond in fact to associate the whole space region
Rn with each equation, thus making the parameter passing useless. Thus, if c is a hyperplane,
boz(c) = c. Moreover boz(@) = 0 and for each b g V.: boz(3Ac) = 3abox(c) (i.e. Az.boz(x) is
weakly compatible).

fl W0o-



The universe of abstract constraints box(P) contains hypercubes and hyperplanes as con- 0
straints. Thus, future redundant constraints can be handled in the simpler non-distributive ab-
stract constraint system box(R,). Since boz(PR.) is not Noetherian, termination conditions, such
as the widening/narrowing techniques proposed in [12], have to be applied in the abstract fixpoint
evaluations.

Better results can be obtained by keeping separated the answers for each clause in the program,
with a less abstract semantic construction.

Recently, several studies have been devoted to "implement" interval arithmetics in the con-
straint logic programming paradigm. In (21 bounding box spatial approximations in constraint
logic programs over finite domains are specified as an instance of our framework. In [27], the use
of intervals has been presented to absorbe floating-point errors in CLP(7Z) computations. They 0
present an implementation based on a meta-interpreter executed by an existing CLP(7R) system
[24]. Both of these approaches can be used for future redundant constraint detection. 0

5.1 Linear Relationships Analysis

In this section we study the applicability of non-distributive constraint systems by modifying

the ground dependency analysis technique to cope with linear relationships among predicate's
arguments in CLP('T).

A number of data-flow analyses in imperative languages are included in the determination of
linear relations among variables, like compile-time overflow, integer subrange and array bound • 0
checking [15]. A very useful analysis on the relationships among variables of a program can be
specified in our framework by linear relationships analysis [15,26,18,34], which provides useful
information for proving termination, compile-time overflow, mutual exclusion, program debug-
ging etc. The problem of discovering linear equality relations by abstract interpretation in logic
programs has been studied in [34]. •

The automatic derivation technique in [34] for linear size relations among variables in logic
programs can be suitably specified as a constraint computation. In the following we will show
how this technique can be viewed as an instance of our framework, thus making explicit the
strong relation between automatic detection of linear relationships among variables and CLP(7Z)
computations. 0

Let r(E,v) be defined as in Example 3.1, over a finite set of variables V. Let I-..C be a (semi-
linear) norm ([7]) on the term system r(Ev) 7 . We define a term system rjz, of linear expres-
sions where terms are first order terms in the language {+, 0, 1, V} (i.e. terms in
Substitutions are performed as standard substitutions. In the following we represent the term
X+X+Y+1+1+las2X+Y+3. r"£p is a term system. 0

The mapping ExpC : r(E:v) -- rEx associates a linear expression with each terms in r(E,v), as
follows [34]:

7A norm I• is said to be semihneareif it is of the form

I 0 if t is a variable 0M= C+E.E, Iti if t =f(t,..t.), where c> 0 and WC 41..

-ft-

-Wf



0

t if t is a variable 0
Expc(t)= co+ • ExpC(f(t)) otherwise 0

Example 5.2 With length and size norms:

ItliestA = 0 if t is a variable, 9
Itln hth = 0 if t = [],
Itlu~ngh = I + Jtaillgt,,,gA if t = [hItail],
(this norm measures the length of a list)

Itl.i, = 1 if t is a variable or a constant,
Itlize -- I +- Itils~ie ..... itnlsise if t = fi tl 9.... vtn),

(this norm measures the size of a term as the size of its subterms)

we have: EZpte.,,,g([X[aJZJ]) = I + I + Z and Expi,5 ,([X[aIZ]]) = I + X + 1 + Z respectively.

A constraint system of affine relationships (i.e. linear equalities of the form co = c1X 1 +
• + cnXn) can be defined by specifying intersection, disjunction and cylindrification (variable
restriction) as given in [34]. Intuitively, an affine subspace is a point, line, plane, etc., possibly
not including the origin. A linear subspace is an affine subspace containing the origin. Recall
that an affine transformation T: 3n - R- maps affine subspaces to affine subspaces; its kernel is 0 0
the set of elements mapped to the origin, and is itself an affine subspace. Linear relations can be
represented as n-tuples of real numbers (geometrically as sets of points in a n-dimensional space).
These sets are approximated by affine subspaces or linear varieties [26,34]. A scheme for the finite
representation of these (possibly infinite) spaces is provided by representing the space as the
kernel of an affine transformation from R" to R" for appropriate m [26]. Affine transformations 0
from 3n to R' can be represented as an m x n matrix A together with an m x 1 column matrix
(vector) c. The corresponding transformation maps x E R" to Ax - c E R. The affine subspace
can be found by solving the non-homogeneous system A X = c. Several different matrix-vector
pairs may represent the same set of relationships. Elementary linear algebra fortunately provides
us a "canonical form" for this problem. This canonical form can be obtained by reducing the
augmented matrix [Alc] in a row-echelon form 8. Standard algorithms can be used to reduce any 0

matrix in row-echelon form.

Consider the domain of affine subspaces X on a fixed n-dimensional space and the following basic
operations, as given in [341:

intersection (n): The intersection of two aine subspaces [Alcil and [A21c2] is still an affine

subspace. Such an intersection can be obtained by reducing the augmented matrix [ A, Ici
A2 1c2

to a row-echelon form. If the two affine subspaces have different dimension: m and m + k,
we extend the one of lower dimension m to m + k by adding k columns of O's to the matrix
and k rows of O's to the corresponding vector. 0

8A matrix A is in row-echelon form iff every row has at least one non-zero entry, the first non-zero entry of each
row in , for any tow io if jo is the first column with a non-zero entry of the row, then for all i > 10, j 5 Jo: A.., = 0
and for all i < io, A,,. . 0 [26].

-0



union (4): The union of two affine subspaces is not, in general, an affine subspace. We consider
instead the smallest afline subspace [Alc] containing [Aljcl] and [A2lC21, namely if [AlIcl], 9
[A2 c2] and [A c] specify linear transformations T1 , T2 and T then kernel(T) is isomorphic
to kernel(T ) + kernel(T 2 ). In [261 an efficient algorithm to compute linear disjunctions has
been introduced. Examples are shown in [34].

cylindrification (j): The variable restriction operation is performed by cylindrification parallel
to an axis. By definition, the cylindrification of an affine subspace is still an affine subspace.
In [34] the cylindrification operation is defined as a matrix transformation.

substitution (6): Let S be an affine subspace and z E V, t E rExp. Substitution of z with t in

S is defined as the affine subspace 3}(r)(z = t] r) S).

Variables are assumed to be finite 9: V = VI, = {z, .... z,}. If the relations are contradictory,
then the subspace is the empty set 0 (it cannot be represented as a pair matrix-vector). If there
are no affine relations, the corresponding subspace is the entire space R 1 . Diagonal elements are
(single) equations on the term system rExp. In the following, for each equation t1 = t2, we denote
by (it = t21 C Rn the corresponding affine subspace. As before, this notation simplifies somewhat
the presentation.

Proposition 5.2
(X, n, ", R-, 0, , 6ý, [t = t']){?},Cv,;tET is a non-distributive, n-idempotent and commuta-
tive constraint system, where W" is annihilator for ). • •

As pointed out in [26], there are no infinitely ascending chains of free-variable bounded constraints
(i.e. bounded dimension afline spaces), otherwise in any properly ascending chain of subspaces:
UaU21 -a... the subspaces U, must have a dimension of at least one greater than U,- 1 . The
resulting constraint system is then Noetherian. 0

A linear equation is associated with each equation on terms. The following example shows the
length relationships among the arguments of the append predicate. The solution can be obtained
in a R 3 dimension space.

Example 5.3 Consider the logic program defining the predicate append in Example 4.1, together
with the semilinear norm length. The corresponding abstract program is:

append(z 1 ,Z 2 ,X 3 ) :- Zi = 0,22 = 23.

append(zl,Z2,z3) :- = 1 + Y,X3 = I + z 0 append(y, z 2,z).

The abstract semantics is:

STo(0) = 0
7p T 1(0) = {append(z 1 , z 2, X 3 ) : X- z = 0, 2 =3 [ X3 ]

'As we are interested in relations (those defined in the program) having finite arity, we can always represent
any answer constraint as a constraint on the finite dimensional space of its free variables. Moreover, the use of a
bottom-up semantic construction does not require any infinite set of variables for renamings.

0- t



( z= O,X 2 =Z3

TpT2(0)- =append(zi,z 2 ,z 3 ) :- 1C3 ] •
Szl= 1,X3 = 1 + Z2 )

- (append(z 1,z 2 ,X3 ) X z + z 2 = Z3 (fixpoint)

Let us denote A, and A2 the augmented matrices associated with the constraints cl and c2

respectively (on the 3 + 1-dimensioned space z1 ,z 2 ,z 3 ,z 4 ). Applying the algorithm in [26] we
have:

Al 1 0- 1 0 1 2 10- 1 1 AItbA2={ -1 0.

The affine subspace z1 +X 2 = Z3 specifies the affine relationship among the length of the arguments
of the predicate append in the expected way. C

6 Related Work

Abstract interpretation of constraint logic programs is considered by Marriott and Sondergaard
(29]. Their treatment is based on abstracting a denotational semantics for constraint logic pro-
grams. A meta-language based on the typed A-calculus is used to specify the semantics of logic
languages in a denotational style, and both the standard and non-standard semantics are viewed
as instances of the meta-language specification. In our case, instead of defining a meta-language * *
for data-flow analysis, we consider the constraint specification on which the CLP paradigm is
defined. Non-standard semantics for a given constraint-based program can thus be obtained by
appropriately modifying the underlying constraint system. In this way, data-flow analyses of
logic-based languages can be specified as a standard constraint computation. No difference is
introduced between the concrete programming language and the abstract one. They both derive
from the same general specification of the CLP paradigm. 0

A related approach is also considered by Codognet and Fili, who give an algebraic definition
of constraint systems and consider abstract interpretation of constraint logic programs [9]. How-
ever, the algebraic structure considered by these authors is very different: only 0-composition is
considered. The notion of "computation system" is introduced but the underlying structure is
not provided with a join operator. Because of this construction, mainly based on a generalization 0
of the top-down SLD semantics, a loop-checker consisting in a "tabled" interpreter is needed.
In our framework, by contrast, extraneous devices such as loop checking and tabulation are not
considered. Instead, finiteness is treated simply as a property of the constraint system, expressed
in terms of < -chains. This allows non-standard computations to be specified as standard CLP
computations over an appropriate (abstract) constraint system. 0

7 Conclusions

Weaker constraint systems can be considered, where for example distributivity does not hold.
The distributivity restriction is not applicable to a wide class of static analysis problems including
linear relationships, as shown in Section 5.1, and range variable analysis, based on an abstract 0
lattice of intervals specifying the range of program variables [2]. Non-distributive constraint
systems can be studied as a more general framework for constraint-based program analysis. A
classification of the different constraint systems useful in data-flow analysis can be based on the
set of properties they hold. A comparison with our framework can be useful to systematically

-S

- w W V V 0 0



0

derive those properties of the semantic construction that may be affected by a different constraint
system definition.

Another aspect of the semantic construction is the use of variable hiding operators (such as
cylindrifications) in the Tp definition. Technically, this allows the use of only finite sets of variables
on which to perform renamings; thus simplifying the construction of finite upper approximations
to the semantics, such as in the case of linear relationships analysis, where the finiteness is strongly
related with the (finite) dimension of the space of solutions.

Acknowledgments

The stimulating discussions with Roberto Bagnara, Roberto Barbuti, Suzanne Dietrich, Maur-
izio Gabbrielli, Michael Maher, Nino Salibra, Gert Smolka, and David S. Warren are gratefully
acknowledged.

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Desijg and Analysis of Computer Algorithms. Addison
Wesley Publishing Company, 1974.

(21 R. Bagnara, R. Giacobassi, and G. Levi. Static Analysis of CLP Programs over Numeric Domains.
In Actes Workshop on Static Analysu, WSA '92, number 81-82 in Bigre, pages 43-50, 1992.

[3] R. Bagnara, R. Giacobazzi, and G. Levi. An Application of Constraint Propagation to Data-flow
Analysis. In Proc of Ninth IEEE Conference on Al Applications, pages 270-276. IEEE Computer
Society Press, 1993.

[4] R. Barbuti, R. Giacobazzi, and G. Levi. A General Framework for Semantics-based Bottom-up Ab-
stract Interpretation of Logic Programs. A CM Transactions on Programming Lan#uages and Systems,
15(1):133-181, 1993.

[5] R. Barbuti and A. Martelli. A Structured Approach to Semantics Correctness. Science of Computer
Programming, 3:279-311, 1983.

[6] G. Birkhoff. Lattice Theory. In AMS Colloquium Publication, third ed., 1967. 0

[7] A. Bossi, N. Cocco, and M. Fabris. Proving Termination of Logic Programs by Exploiting Term
Properties. In S. Abrams , --I T.S.E. Maibaum, editors, Proc. TAPSOFT'91, volume 494 of Lecture
Notes in Computer Science, piges 153-180. Springer-Verlag, Berlin, 1991.

[8] J. Cirulis. An Algebraization of First Order Logic with Terms. Colloquia Mathematics Societatis
Jinos Bolysi, 54:125-146, 1991.

[9] P. Codognet and G. Fili. Computations, Abstractions and Constraints. Technical Report 13, Dipar-
timento di Matematica Pura e Applicata, Universiti di Padova, Italy, 1991.

[10] H. Comon and P. Lescanne. Equational Problems and Disunification. Journal of Symbolic Computa-
tion, 7:371-425, 1989.

[11] A. Cortesi, G. Fili, and W. Winsborough. Prop revisited: Propositional Formula as Abstract Domain
for Groundness Analysis. In Proc. Sixth IEEE Symp. on Lolic In Computer Science, pages 322-327.
IEEE Computer Society Press, 1991.

[12] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. In Proc. Fourth ACM Symnp. Principles of
Progumming Languages, pages 238-252, 1977.

[13] P. Cousot and R. Cousot. A constructive characterization of the lattices of all retracts. pre-closure,
quasi-closure and closure operators on a complete lattice. Portugahir Mathematics, 38(2):185--198,
1979.

w w~ - w w- -S-



O

[14] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks. In Proc. Sixth ACM
pmp. Principles of Programming Languages, pages 269-282, 1979.

[15] P. Coumot and N. Halbwachs. Automatic Discovery of Linear Restraints Among Variables of a Program.
In Proc. Fifth ACM Syrp. Prmciples of Programming Languages, pages 84-96, 1978.

[16] M. Gabbrielli and G. Levi. Modeling Answer Constraints in Constraint Logic Programs. In K. Fu-
rukawa, editor, Proc. Eighth 131' Con/. on Logic Prograummng, pages 238- 252. The MIT Press,
Cambridge, Mam., 1991. 0

[17] M. Gabbrielli and G. Levi. A solved form algorithm for ask and tell Herbrand constraints. In
S. Abramaky and T. Maibaum, editors, Proc. TAPSOFT'91, volume 493 of Lecture Notes si Computer
Science. Springer-Verlag, Berlin, 1991.

[18] A. Van Gelder. Deriving Constraints Among Argument Sizes in Logic Programs. In Proc. of the
eleventh ACM Conference on Principles of Database Systems, pages 47-60. ACM, 1990. 0

[19] R. Giacobazzi, S. K. Debray, and G. Levi. A Generalized Semantics for Constraint Logic Programs.
In Proceedings of the International Conference on Fifth Generation Computer Systems 1992, pages
581-591,1992.

[20] L. Henkin, J.D. Monk, and A. Tarski. Cyliadric Algebras. Part I and II. North-Holland, Amsterdam,
1971.

[21] M. Hermenegildo, R. Warren, and S.K. Debray. Global flow analysis as a practical compilation tool.
Journal of Logic Programming, 13(4):349-366, 1992.

(22] Y.E. loannidis and E. Wong. An Algebraic Approach to Recursive Inference. In L. Kerschberg, editor,
Proc. First ist. Cou.. Expert Database Systems - Charleston SC, pages 295-309, 1987.

[23] J. Jaofar and J.-L. Lasses. Constraint Logic Programming. In Proc. Fourteenth Annual ACM Spmp. * *
on Principles of Programming Languages, pages 111-119. ACM, 1987.

[24] J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R) Language and System. ACM Transas-
tions on Programming Languages and Systems, 14(3):339-395, 1992.

[25] N. Jorgensen, K. Marriot, and S. Michaylov. Some Global Compile-Time Optimizations for CLP(1Z).
In Proc. 1991 Int'l Symposium on Logic Programming, pages 420-434, 1991.

[26) M. Karr. Affine Relationships Among Variables of a Program. Aca Informatica, 6:133-151, 1976.

[27] J. H. M. Lee and M. H. van Emden. Adapting CLP(2) to Floating-Point Arithmetic. In Proceedings
of the International Coisference on Fifth Generation Computer Systems 1992, pages 996-1003, 1992.

[28] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987. Second edition.

[29] K. Marriott and H. Sendergaard. Analysis of Constraint Logic Programs. In S. K. Debray and
M. Hermenegildo, editors, Proc. North American Conf. on Logic Programming'90, pages 531-547.
The MIT Press, Cambridge, Mass., 1990.

[30] Oystein Ore. Combinations of Closure Relations. Annals of Mathematics, 44(3):514-533, 1943.

[31] V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic Foundation of Concurrent Constraint
Programming. In Proc. Eighteenth Annual ACM Symp, on Principles of Programming Languages,
pages 333-353. ACM, 1991.

[32] Jichang Tan and 1-Peng Lin. Compiling Dataflow Analysis of Logic Programs. In ACM Programming
Language Design and Implementation, volume 27 of SIGPLAN Notices, pages 106-115. ACM Press,
1992.

[33] M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a programming language.
Journal -I the ACM, 23(4):733-742, 1976.

[34] K. Verschaetse and D. De Schreye. Derivation of Linear Size Relations by abstract interpretation. In
M. Bruynooghe and M. Wirsing, editors, Proc. of PLILP'92, volume 631 of Lecture Notes In Computer
Science, pages 296-310. Springer-Verlag, Berlin, 1992.

,0



0

Communications

AMAST'93

Third International Conference
on 0

Algebraic Methodology and Software Technology

University of Twente . *

The Netherlands

0

Participants' Proceedings

Of w-



t)

0
0

dt;

0

S

S

* .

S

S

S

S

S

-In-

- 0 0 W V V V S *



Dimension-Complemented Lambda Abstraction Algebras
Don Pigozzi and Antonino Salibra

Iowa State University and University of Bari

The untyped lambda calculus is formalized as a theory of equations, but it is not an
equational theory in the usual algebraic sense because the equations, unlike the associa-
tive and commutative laws for example, are not always preserved when arbitrary terms are 9
substituted for variables. Consequently the general methods that have been developed in
universal algebra and category theory, for defining the semantics of an arbitrary algebraic
theory for example, are not directly applicable. There have been several attempts to re-
formulate the lambda calculus as a purely algebraic theory. The earliest and best known,
although apparently not motivated by these considerations, is the combinatory logic of
Curry. More recently, several purely algebraic theories of the lambda calculus within the
context of category theory have been developed: Obtulowicz and Wieger [9] via the algebraic
theories of Lawvere; Adachi [1] via monads; Curien (31 via categorical combinators.

In [10] we proposed an alternative approach in the context of universal algebra. We
introduced the notion of a lambda abstraction algebra (LAA for short), which is intended to
provide a purely algebraic theory of the lambda calculus in the same way Boolean algebras 0
constitute an algebraic theory of classical propositional logic and, more to the point, cylin-
dric and polyadic Boolean algebras an algebraic theory of first-order predicate logic. In all
algebraic theories of the lambda calculus the role of the variables is suppressed to varying
degrees and the notion of substituting terms for the free variables of a term is abstracted.
In LAA's this is effected by "inverting" (#)-conversion to obtain a definition of substitution * *
in terms of the primitive notions of application and lambda abstraction.

The natural models of lambda abstraction theory are algebras of functions of possibly
infinite arity, while models of the lambda calculus consist exclusively of unary functions.
LAA's of functions of finite arity can be reduced to models of the lambda calculus by the
well known method of Sch6nfinkel and Curry, but this is not possible in general. Conse-
quently, there are functional LAA's with elements that cannot be represented by any term
of the lamba calculus that is constructed from lambda variables and constants denoting the
elements of some combinatory algebra. The dimension-complemented LAA's are the widest
subclass of such algebras that are known to have a natural intrinsic characterization. In
the present paper we prove that every dimension-complemented LAA is isomorphic to a
point-relativized functional LAA.

The two primitive notions of the lambda calculus are application of a function to its
argument (expressed as the juxtaposition of terms) and lambda (functional) abstraction, the
process of forming a function from the "rule" that defines it. The connection between them
is formalized in (3)-conversion: (Az.t)s = t[s/z]. Here t and a are terms and t[a/x] is the
result of substituting a for all free occurrences of z in t, with the restriction that a must be
"free for z in t".

A lambda abstraction algebra is an algebra of the form

A = (A,-, A41, Az2,..., XIX2,

where A is a nonempty set, -is a binary operation (corresponding to application), AXI, A2,...
is an infinite system of unary operations on A, and zi, z2,... a corresponding system of dis-

-W



0

tinguished elements of A called lambda variables. Substitution is abstracted as a system of
term-defined, binary operations -[-/zI] on A. The algebraic reformulation of (o)-conversion 0
becomes the definition of abstract substitution: 0

ba/zj, ::= (Azi(a)) - b, for all a,b E A.

An element a of a LAA is said to be algebraically dependent on zi if a[z,/zj] 6 a for
some j 0 i. A LAA is locally finite-dimensional if every element algebraically depends on
only a finite number of z,; it is dimension-complemented if, for each element a, there is at
least one z, on which a fails to depend. ZFrom the axioms of LAA's given below it can be
proved that a is in fact independent of an infinite number of zi.

The equational axioms of LAA's reflect (a)-conversion and Curry's recursive axiomati-
zation of substitution in the lambda calculus. They take the following form where Aa is
the set of all zi such that a is algebraically dependent on zi. 0

(0j) _, la/zj, = a; (02) zila/z,= -- j ;, j j i; (,33) a[zi/zJ = a;

(#4) \zj(b)[a/zj = •zj(b); (05) (b . c)1a/z•J = b[a/xl-. c1•lz!i;

(#e) z, V Aa =, Axi(b)[alzi, = Az. (ba/lz,l), j 6 i; 0

(a) xj f Aa =:, Az.(a) = Ax, (a[zi/xJ).

Axioms (06) and (a) can be replaced by identities, so the class of LAA's forms a variety.
The basic theory of LAA is developed in [10]. A closely related notion, lambda term systems,
has recently been introduced by Diskin [4]. 0 0

Theorem I Let A be a dimension-complemented LAA. Then &a, U. . .U ,a,, is coinfinite
for any finite set a,,..., a,, of elements of A.

The "intended" models of the theory are the functional lambda abstraction algebras.
Let V = (V, .Y, •V) be a structure where V is a nonempty set, .Y is a binary operation 0

on V, and Av : VVo--V is a partial function assigning elements of V to certain functions
from V into itself. V is called a functional domain if, for every f in the domain of Av,
f(v) = (AV(f)) V v, for all v E V.

Let V = (V, .v, Av) be a functional domain and let V, = {f : f: V'o--V }, where
w = {1,2,3,...}. By the w-coordinatization of V we mean the algebra 0

V., - (V,, , Xvz v, , A V... Xz ,

where .V., \zjV., and zv are defined as follows: (for all p E V0, v E V, and
p(v/i) E V" is defined as follows: p(v/i), = v if i = i; p(v/i), = pi otherwise).

"* (a .v- b)(p) = a(p) .v b(p), provided a(p) and b(p) are both defined; otherwise
(a .V- b)(p) is undefined.

"* Azjv'(a)(p) = Av((a(p(v/i)) : v E V)), provided (a(p(v/i)) : v E V) is in the
domain of Av (note this implies a(p(v/i)) is defined for all v E V); otherwise
Azv'(a)(p) is undefined. •

000
- 130o-

ww, ,w V S 0 0



• v(p) = pi .

A subalgebra A of total functions of V,, i.e., a subalgebra such that a(p) is defined
for all a E A and p E V", is called a functional lambda abstraction algebra. Locally finite-
dimensional functional LAA's are similar to the functional models of the lambda calculus
developed in Krivine [6].

The locally finite-dimensional LAA's correspond most closely to the other algebraic mod-
els of the lambda calculus that have appeared in the literature, for instance the term lambda
algebras ([71) and syntactical models ([2]) of combinatory logic and the Curry theories of [9].
On the other hand functional LAA's correspond the environment models ([71) and lambda
models ([2]) of combinatory logic and the functional Curry theories in [9].

The following is the main result in [101.

Theorem 2 Every locally finite-dimensional LAA is isomorph c to a functional LAA with •
the property that each function in the domain of the algebra depends on only a finite number
of arguments.

This theorem corresponds to the completeness theorem for the lambda calculus ([7]):
every lambda theory consists of precisely the equations valid in some environment modet. 0
It is modeled on the representation theorem for locally finite-dimensional cylindric algebras
([5], Part II, Thm. 3.2.11(i)), which corresponds to the completeness theorem for first-order
predicate logic (cf. the Forward of [5], Part I).

The representation of dimension-complemented LAA's requires a slightly more general
notion of functional algebra

Let "/" be a functional domain. Let e E V- such that E(i) = zi for all i E w, and let V,10
be the set of all p E V" that differ from - at only finitely many positions, i.e.,

V.' = {pE V" : I(p,# z, }I < w}.

Let V,, be the set of all partial functions f : V,-o-V. The (I,c)-coordinatization of V, 0

V., = (V.,,, *V.,., %zV vAdLz2 v .. , ,-...

is defined just as V,. except that all functions are required to be in V,,,.
A subalgebra A of V.,, of total functions is called a point-relativized functional lambda

abstraction algebra. 0

Theorem 3 Every dimension-complemented lambda abstraction algebra is isomorphic to a
point-relativized functional LAA.

Outline of proof: Let A be an arbitrary LAA. The functional domain V = (V, .,•A"v)
associated with A is defined as follows: V = A and v = A. The domain ofA V : Vvo.V
is ((a[v/zi] : v E V) : aEAandiEw), and for each function in this set we define
Av((a[v/zJ : v E V)) := Azi.a. It can be shown that (a[v/zi] : v E V) = (b[v/zj] : v E V)
implies Azi.a = Azi.b. Thus AV is well defined. It is easily checked that V is a functional
domain.

0

- 151 -

w, wI , w w, - 0 0



0

Let A be dimension-complemented and let V be its associated functional domain. For 0
each p E V,,, there exist lambda variables yl ... , y. and elements vl,..., v. of V such that
p = E(v1 /yi,...,v,./y,)). Define a mapping # : A -- V,, as follows: for all a E A •

4r(a)(e(v/yi, .... , v,/y,,)) = azi/yiI ... [z./y.J1v1/ziJ ... Iv,./z,,],

for all lambda variables yP,. . .,y y and all v .... , v. E V and any set of lambda variables
zl,...,zý, such that a, y1 .... y,,v 1,.. .,V, axe all independent of each of the z,. It can be
shown that % is well definded and an isomorphism between A and a total subalgebra of 0
V., '

It can be shown that the class of point-relativized functional LAA's (and their isomor-
phic images) form a variety. It coincides with the varieties generated by each of the classes
of locally finite-dimensional, dimension-complemented, and functional LAA's. It is an open
problem if functiona LAA's form a variety and hence coincide (up to isomorphism) with •
point-relativized functional LAA's. Since the point-relativized functional LAA's form a vari-
ety they are axiomatized by some set of identities by Birkhoff's theorem. It is conjectured
that they are finitely axiomatizable and, moreover, that the equational axioms for lambda
algebras ([2], p. 94) together with those of LAA's are sufficient for this purpose. In contrast
the representable cylindric algebras are not finitely axiomatizable. 0

Dimension-complemented LAA's have a direct analogue in the theory of cylindric al-
gebras. Our representation theorem can be compared with the representation theory for
dimension-complemented cylindric algebras; see [5], Part 11, Thin. 3.2.11(ii). For a detailed
survey of recent results in cylindric and related algebras see [8].

[11 T. Adachi, A categorical characterization of lambda calculus models, Research Report • 0
No. C-49, Dept. of Information Sciences, Tokyo Institute of Technology, January 1983.

[21 H.P. Barendregt, The lambda calculus. Its syntaz and semantics, Revised edition, Stud-
ies in Logic and the Foundations of Mathematics, Vol. 103, North-Holland, Amsterdam,
1985.

[3] P.-L. Curien, Categorical combinators, sequential algorithms and functional program-

ming, Pitman, 1986.

[41 Z.B. Diskin, Lambda term systems, preprint, 1990.

[5] L. Henkin, J.D. Monk and A. Tarski, Cylindric algebras, Parts land II, North-Holland,
Amsterdam, 1971, 1985. 0

[6] J.L. Krivine, Lambda-Calcul, types et modeles, Masson, Paris, 1990.

[7] A.R. Meyer, What is a model of the lambda calculus?, Inform. Control. 52(1982), 87-
122.

[81 1. Nimeti, Algebraizations of quantifier logics. An introductory overuiew, Studia Logica,
50(1991), 485-569. 0

[9] A. Obtulowicz and A. Wiweger, Categorical, functorial, and algebraic aspects of the
type-free lambda calculus, in: Universal Algebra and Applications, Banach Center
Pub., vol. 9, Warsaw, 1982.

[10] D. Pigozzi and A. Salibra, An introduction to lambda abstraction algebras, to appear. 0

. . , . , w •0



0

Parametrized Recursion Theory - A Tool for the Systematic 0
Classification of Specification Methods

Till Mossakowski
University of Bremen

Department of Computer Science
P.O.Box 33 04 40

D-2800 Bremen 33
Fax: +49-421-218-4322

E-mail: el3p~alf.zfn.uni-bremen.de

Abstract

Parametrized recursion theory allows to characterize the power of parametrization in various specification
methods. In particular, for the computation of the target algebra, the role of nondeterminism and the degree of
availability of the parameter algebra can be studied.

0
Today, many different methods for the algebraic specification of abstract data types (ADTs) are proposed. They
differ in their syntactical, semantical and categorical properties.
When you have a particular abstract data type in mind, which method should be used to specify it? If a certain
method is not powerful enough, you have to choose a more general one. The other way round: if you use a too
general method, then the available tools and proof techniques may become weaker. So it is very useful to know
about which ADTs can be specified with the various methods at all. 0 0

1 Five Specification Methods

We compare five methods with increasing expressiveness: 0

1. total algebras with equations (see [EM85])

2. total algebras with equations and subsorting (see [Gog78])

3. total algebras with implications i

4. total algebras with relations and implications (Horn Clause Theories, see [GM86, Pad88]) and finally

5. partial algebras with relations and implications built from existence-equations (algebraic systems in [Bur82]).

We use signatures E = (S, OP, POP, REL) consisting of sort, total operation, partial operation and relation sym-
bols. For simplicity, subsorting is coded by injection functions, so the second approach has special axioms inj op 0
available, which specify an operation op to be injective. This can be expressed a op(z) = op(y) -, z = y in the
third approach, so the approaches actually have increasing expressiveness.

Bergstra and Tucker [BTS-7 classify various specification methods with respect to recursion theoretic expressiveness
of initial algebra semantics. 0
For designing modular specifications, parametrized specifications and data types are useful. We only consider
parametrized data types (PADTs) which are specifiable with hidden sorts, operations and/or relations. That is.
specifiable PADTs are composites of free and forgetful functors in the corresponding institution. In order to perform
classifications with respect to PADTs, we first need a notion of computability over (parameter) algebras.

0

- .3-

S.. . . . .. . . . lo l. . . . . . . . . . . . . . • . . . .. . . .. ' ". . . . . . .. ' Il i - iwI Il I .. . . . . . . .0.. . . . . . . . I I I l~ . . . .I i



2 Computability over Abstract Algebras

In the literature, there are various approaches to define computability over an algebra.

Reichel (Rei87] defines T-algorithms for a theory T by using persistent extensions. This is no algorithmical or
recursion theoretical concept, since it depends already on a particular specification method.
Kapheugst [Kap81] characterizes operations specifiable by free persistent extensions using effective numberings. But
his characterization is not uniform: the extension of the parameter theory dependes on the parameter algebra.
llupbach [Hup80o considers abstract implementations and characterizes specifiable functors by certain "uniform
rules". This conies closer to our intention. The problem here is that "uniformity" is defined very technically during
the proof of the characterization.
Bergstra and Klop [BK82] give an interesting characterization of specifiable functors with minimal total parameter
algebras. For non-minimal algebras, they again have to incorporate some specification machinery and inital semantics
in their notion of computable PADT (see [BK83]).

For parametrized recursion theory, we want a notion of uniform algorithm over abstract algebras, which is both
algorithmic (hence does not rely on algebraic specification methods) and uniform, that is, independent of the partic-
ular representation of the parameter algebra (this corresponds to the "information hiding" principle). Moechovakis's
prime and search computability [Mos69I fits into these requirements (see Ershov [Ers8l] for an overview over the
various approaches).

Natural numbers of ordinary recursion theory have to be replaced by another domain with pairing. Let E =
(S, OP, POP, REL) be a signature and A a E-algebra. The set SE:pr(A) of S-expressions over A is defined
inductively: It contains nil, atom-s(a) for s E S, a E A, and cons(t, u) for t, u E SEzpr(A). The set SEzpr is the
subset of S-expressions containing no atoms. Like in LISP, we can consider natural numbers and lists of S-expressions 0
again as S-expressions, and have first and rest as inverses of cons.

Moschovakis's approach also captures nondeterminism. He considers many-valued partial maps .A: SEzpr(A)n -

SEzpr(A), such that for PE SEzpr(A)", the values z with YA(i) - z form a (possibly empty) subset of SErpr(A).
.FA(1) = GA(1) means YAA(1) - u if and only if GA() "- u.

Definition 2.1 (Moschovakis) Let E = (S, OP, POP, REL) be a signature and code: OPUPOPUREL - IV 0
some numbering. We define inductively the set of E-algorithms f as subset of SExpr.

defintion scheme S-expression f
COa. f(Y, yI..... yn) = op(T) (0,n + m, code(op)) op:-.-s E OP
COb. f(l, Yi ... ym). , poP(!) (0, n + m, code(pop)) op: W- s E POP
C0c. f[R,yl ..-. y.m] nil (0, n + m, code(R)) R:3 E REL 0
Cl. f(Y) = nil (1, n)
C2. f(y,I) = y (2,n+ 1)C3. f(t, u. 7) = (tLu) (3, n + 2)

C4a. f(. z) = first(z) (4, n + 1,0)
C4b. f(J),gz) = rest(z) (4,n + 1, 1)
C5. f(,) = g(h(r),)) (5,(n,mg, h)C 6 . J(n il,7 ) = -g(T ) (6 , n + 1,g , h 1, ... h. .,k ) S = s , .. s ,m

f(atorn-sj(y,),Y) =- hiatom-si(y),T) (i =1. . .m )
f((t.u), Z) = k(f(t, Y), f(u, T), t, u, 7)

C7. f(T) =- 9(Zj+l, z XI, .- ,Zj, Zj+2 ..... , ) (7, n, j,g)
C 8. f(e,'E, y .....-- YM ) = -(e)(7) (8, n + mr + 1,n)

C9. f(J) =- ry(g(, 1) - nil) (9, n, g)

Definition 2.2 A S-algorithm f has as semantics a faility of many-valued partial maps {f}A: SExpr(A)" -

SEzpr(A) indexed by E-algebras A. The semantical relation {f}A(.) z is defined as the minimal relation
satisfying the following conditions:

'We abbreviate ti. tn by ,j,z . Zn by r and so on S

S-I8W-



Scheme f
COc. I E RA =* {f}A(atom'•.J(f), U. . Un) - nil (0.n+ na, code(R)) R :YG REL
C5. 3u (h(I) - u A {g)A(U, ) - v) =: {}A(M) - ' (5, n,g,h)
C8. {e1'(T) -' v =* {f " (e,l u ..... u ) t (8,n+m + 1,n) 1
C9. {g}A(uJ) - nil = {f)A( 0) _ U (9, n. g)

(For the other cases, the definition schemes are translated to semantical conditions similarly.) 0

Schemes CO to C7 allow to express primitive recursiveness, schemes CO to C8 prime computabihlty and schemes CO
to C9 search computability (with the &,-operator, an unordered, nondeterministic search is possible). Both prime and
search computability reduce to partial recursiveness when S is empty. 0

Since the equality relation is not necessarily search computable, we have to add explicitly, if necessary, relation
symbols EQ-s : s a for s E S to parameter signatures E. The resulting signature is denoted by EQ(E), and EQ(A)
interprets EQ-s as equality on A,.

Definition 2.3 We call a familiy R = (RA)AgAts(S) of relations (RA C SEzpr(A)") primitively recursive (semr-
search computable), if there is a primitively recursive (search computable) E-algorithm f with

I E IA iff {f}A(I)_nil

for all A E Alg(S),I E SExpr(A)'. We call I primitively recursively enumerable, if there is a primitively recursive
E-algorithm f with

range({f}A) = A

for all A E Alg(E). 0

The computational model allows to make explicit the kind of nondeterminism and parallelism inherent in algebraic
specification methods. Only semi-search computable families of relations are closed under unbounded search and
existential quantification; and nondeterminism resp. OR-parallelism and full access to the parameter are available. 0 0
Relations from primitively recursive and primitively recursively enumerable families are independent of the parameter
operations and relations (see [Mos92])! That is, only the data sets can be used, but not equality or other relations and
operations on the data. So primitively recursively enumerable families of relations are just closed under existential
quantification. Primitive recursive families of relations are not even closed under existential quantification (this is
well-known from ordinary recursion theory).

3 Computable PADTs

With the computational model of Moschovakis, we can generalize the notion of semi-computable algebra (see [BT87])
to the parametrized case.

Definition 3.1 Let E C El be a parametrized signature (E = (S, OP, POP, REL), E1 = (SI, OP1, POPI, RELI)).
An algorithm p for a semi-search computable (E, EI)-PADT is a quintuple p = ((C,),GsI, (eq.),esi, (',p).rEopl,

(Zpop)poipGPOP1, (*R)RERBL1), where X, and ti (reap eq.) are EQ(E)-algorithms for unary (resp. binary) semi-
search computable families of relations, the #., (resp. E,,) are EQ(E)-algorithms for primitively recursive (resp.
search computable) families of maps of appropriate arity, such that for each E-algebra A

1. ({eq })Q(A)).,ES has the formal properties of a closed congruence relation (see [Bur86]).

2. Image({4(#.)EQA)) C {X.}1 Q(A)

3. For s E S we have: { atom-s(a) I a E A,) _ {x,)ZQ{A)

4. For pop:J- s E POP and I C dom pOpA we have atom-s(popA(ff)) {eq,)E•(A) J pop)EQ(A)(atorn-.(3)), •
and analogously for op E OP and R E REL. [

US --

IMF V5



Deetnitiou 3.2 Let S C S. be a parametrized signature and p an algorithm for a semi-search computable (!. EI)-
PADT. The semantics of p is the PADT I p) = (ij, F) with q: ld-41(E) - Vv o F 2 and for each A4 E Ag(E)

=,:= jeq,)EQ(A) s E S1
(FA), := {=,(A/ •, 3 E Si 0
OPPA([fla) = [{, }EQ(AV)]. op:1-s E OPl

POPFA(PiS,) = [{-po.pEQ(A)]l.. pop: -s _ E POPI
(fl, E RFA iff {f*R1}EQ(A)(i) - nil R E RELI
rlA.,(a):= [atoin-s(a)j], s E S

0 0

4 The characterization

Theorem 4.1 Let T C TI be a parametrized theory in method i (i = 1 ... 5) and (qi, F) a persistent 3 PADT
with F: Alg(T) - Alg(TI), q: IdAlg(r) - VT o F. Then the follwoing are equivalent

(1) (17, F) is computable by an algorithm p according to row i in the table below.

(2) (q, F) is specifiable with method i. That is, there is a theory 72 with T C T1 C 72 such that for each
T-algebra A,

VT1 F(.TT2)A 2! F A4

and 77A is the parameter embedding of A into F(T,T2 ) A.

Moreover, T2 can be computed effectively from p and vice versa (up to some emptyness problems, which are ignored
here but can be solved, see [Mos92]). 0 0

Method Recursion theory Categorical Example
data congruence subsorts relations partial property PADT

X8 on data (range OR operations of model separating
eq- -.) POP categories the methods

1 pr. p.e. - - - equivalences lists, trees etc. over •
(see [MR77]) have some data
quotients

2 pr. p.e. p.e. - - coequalizers factorization over
commute with the image of some
subobjects function

3 pr. s.c.c. p.e. - - regular epts are making •
pullback stable some Abelian group

torsion free
4 pr. s.c.c. p.e. s.c.c. - (reg epi,mono)- transitive closure of

factorizations exist some relation
5 s.c.c s.c.c. s.c.c. s.c.c. s.c. locally finitely pre- set of paths over

sentable category some graph

In the table, a "pr." means primitive recursiveness, an "(s.)s.c." means (semi-)search computability and a "p.e."
means primitively recursive enumerability.
The total operations 4., always can be chosen primitively recursive. 0

2 V2 yehbds the E-reduct of a El-algebra
3that is. q is a naural iooý en
4F(2 . "f) is the free construction corresponding to the parametrized thory T C_ T2

L . . . . . . m , . . . . . . ... , , • .. . . . ,t ... . . .a to ll m i d r m i =: =- - =0



Interestingly, many differences shown in the table vanish in the unparametrized case. For example. both primitively
recursive enumerability and semi-search computability then reduce to recursive enumerability. If uniformity con-
siderations are ignored, the last four methods all have the same power (with initial semantics, and relations and
(graphs of) partial functions possibly represented as subsorts), though the properties of the model categories differ.
If you switch over to the parametrized case, then the recursion theoretical properties (of free constructions) get into •
a narrow correspondence with categorical properties (of loose semantics), especially concerning the behaviour of
quotients. Thus, in a sense, parametrized recursion theory reconciles recursion theory with category theory.

The above results only hold for persistent parametrized data types. In the non-persistent case. the computational
model has to be modified by some construction using inductive limits. This sheds some light on well-known difficulties
with non-persistent parametrizations. See [Nlos92]. 0

References

[BK82J J A. Bergstra and J,.W. Klop. Algebraic specifications for parametrized data types with minimal parameter
and target algebras. In Proc ICALP 1982, volume 140 of SLNCS, pages 23-34. Springer Verlag, 1982. •

[BK83] J.A. Bergstra and J.W. Klop. Initial algebra specifications for parametrized data types. Elektronasche
Informationsverarbedung und 'ybernetik, 19:17-32, 1983.

[BT87] J.A. Bergstra and J.V. Tucker. Algebraic specifications of computable and semicomputable data types.
TCS, 50:137-181, 1987.

[Bur82I P. Burmeister. Partial algebras - survey of a unifying approach towards a two-valued model theory for

partial algebras. Algebra Universalis, 15:306-358, 1982.

[Bur86] P. Burmeister. A model theoretic approach to partial algebras. Akademie Verlag, Berlin, 1986.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. Springer Verlag, Heidelberg, 1985.

[ErslJ A.P. Ershov. Abstract computability on algebraic structures. In A.P. Ershov and D.E. Knuth, editors, 0

Algorithms in Modern Mathematics and Computer Science, volume 122 of SLNCS, pages 397-420. Springer
Verlag, 1981.

[GM86] J. A. Goguen and J. Meseguer. Eqlog: Equality, types, and generic modules for logic programming. In
D. DeGroot and G. Lindstrom, editors, Logic Programming. Functions, Relations and Equations, pages
295-363. Prentice-Hall, Englewood Cliffs, New Jersey, 1986. 0

[Gog78] J. A. Goguen. Order sorted algebras: Exceptions, error sorts, coercion and overloaded operators. Semantics
and theory of computation report no. 14, University of California, Los Angeles., 1978.

[Hup80] U.L. Hupbach. Abstract implementation of abstract data types. In P. Dembitiski, editor, Proc. MFCS
1980, volume 88 of SLNCS, pages 291-304. Springer Verlag, 1980. 0

[Kap8l] H. Kaphengst. What is computable for abstract data types? In Proc. FCT 1981, volume 117 of SLNCS,

pages 173-181. Springer Verlag, 1981.

[Mos69] Y.N. Moschovakis. Abstract first order computability 1. Transactions of the AMS, 138:427-464, 1969.

[Mos92] T. Mossakowski. Spezifizierbarkeit und Berechenbarkeit parametrischer partieller Datentypen. Diploma 0
thesis, Universitit Bremen, 1992.

[MR771 M. Makkai and G.E. Reyes. First Order Categorical Logic. Springer Lecture Notes in Mathematics 611.
1977.

[Pad88] P. Padawitz. Computing in Horn Clause Theories. Springer Verlag, Heidelberg, 1988.

[Rei87] H. Reichel. Initial Computability, Algebraic Specifications and Partial Algebras. Oxford Science Publica- 0

tions, 1987.

- IS; -



0

0

0

0

0

* 0

0

S

0

0

0

-f58--

- e V V



0

0
0

Adding Algebraic Methods to Traditional Functional Languages
by Using Reflection* 0

Tim Sheard
Oregon Graduate Institute of Science & Technology

sheard~cse.oi.edu

Recent work by Malcom (7], Meiier, Fokkinga, and Paterson [8], and Cockett with the program-
ming language Charity [1, 2] has suggsted a high level of modularity and abstraction may be obtained
by the use of generic control structures that capture patterns of recursion for a large class of algebraic
types in a uniform way. This is important for several reasons.

" Abstraction. It allows the specification of algorithms independent of the type of data structures 0
they are to operate on, since the control structure of the algorithm is generated for each datatype.

" Genericity. It allows the statement, proof, and use of type parametric theorems independant
of any particular type.

" Structure. Functional programs are often the target of transformation and optimization. These
techniques generally search for patterns of structure in programs to satisfy hypothesis of partic- 0 0
ular transformations. If structure is explicit, rather than implicit, the job of the transformation
system is made easier.

Unfortunately it is hard to reap these benefits when using a traditional functional programming
language as there is no mechanism for defining type parametric abstractions, which are the heart of
many algebraic methods. This shortcomming can be overcome by the use of reflection in a typed 0
language.

A programming language supports reflection if it has a distinguished class of values that correspond
to syntactic fragments of the language and operations to manipulate these representation as data or
programs, either by computing over them, evaluating them or injecting them into the value space.
Typically these operations are called reify : value - rep, reflect : rep - value, and eval : rep - rep.
We are going to concentrate on the uses of reflect. 0

Reflection is classified as either "compile time" or "run time" depending on when the semantic
actions are expected to take place. Semantically, compile time reflection is the most straightforward
since every compile time reflective program has the same meaning as a program that does not use
reflection which is obtained by executing all of the reflection operations.

1 Type Parametric Combinators •

Algebraic methods can be added to traditional functional languages by the disciplined use of compile-
time reflection. Algebraic operators like fold can be created by computing over the representations of
type declarations to build the representation of operators for these types, then reflecting over these
representations to obtain the actual operators. For example, this could be done in the following way. 0
Consider sum-of-products types defined by using recursive equations of the form:

T(ai .... ap) = C1(t1i,...t, 1.) I "I C-(t-,i. t..n.)

"Tim Sheard is supported in pAt by a pant from OACIS and Tektromix

. w. V .. I , w .. 0 0



0

where ci,-.., oa denote type variables, the C, are names of value constructor functions, and t,., are 0
either type variables (in the set a1 .1 . ) or instances of sum-of-products types, including the type
T(a 1 .... ap) itself.

Functions manipulating values of these types will use a pattern of recursion related to the pattern of
recursion in the type definitions. Algebraic methods often capture these patterns using the categorical
notion of a functor. The functor, ET,[5, 1, 14] defined below, is the morphism part of a categorical
functor. There exists an ET for each the type T. Category theorists would say that T is defined in 0
terms of the fix point of ET . Functional programmers are used to defining types by the use of recursive
equations, so we follow this path.

Using ET it is possible to describe the generalized fold (catarnorphism [8]) operator for any simple
sum-of-products type by defining a set of recursive equations, one for each constructor, C,:

fold T(h) o C, = hi o Er(id1 ...... id, foldT(h))

where X = (h . hn) and for each index j, idj is the identity function.
To make this definition precise we must provide a definition of ET in terms of the data type

equation defining T. The functor ET is constructed from the n-fold sum of functors, Er,. Each, E, is
a (p + l)-adic functor * associated with the corresponding constructor, C, : (t,1 ... , tim,) - T(6).

ET(7, gsac) = (KT(1)7, gR.c, ta,]... ' [J, gR. t,.,) 0
where T(N) = T(&z,..., a,), and 7 = .o _ fe., and the notation (h. h.) represents a function
with the property that (h1 ..... h.)(zi, ...z,) = (h, :.. It zr.) and K is the type parametric
combinator:

KT(M)[f, go] = f
KT()[fg, T(5)] = g 9

KT(5)[_f,g,S(t 1 .  tq)] = maps (KT(l)[f,g, tl].. Krof)[1,g,t])
KT('&)[7g~tl x ... x t.] = (K T t1)[1'g' t1)Z1'..I, T(N)[jg9 in] X)

KTt•S)[7, g, Uv] = Ah. Kr('•)[-,g. vJohoKt.K (17, g,u]
KT(6)[7,g,()] = id

We may also use ES to generate the the morphism part of the categorical functor, often called
the map for S:

(mapS(fa,....f,))oCi = Cio(ES(f1 .... fp,mapS(f1 ..... fp)))

2 Compile-time Reflection

Language tools usually consist of an object language in which the programs which are being manipu-
lated are expressed, and a meta language which is used to describe the manipulation. A compile time
reflective language has features that allow it to be its own meta-language. We have built an imple-
mentation of compile-time reflection for a subset of ML we call CRML (Compile-time Reflective ML).
In CRML the object language is -encoded" (represented) in an ML datatype. There is a datatype
for each syntactic feature of ML. Object language manipulations are described by manipulations of •
this "representation" datatype. CRML contains syntactic sugar (object brackets << >>, and escape ')
for constructing and pattern matching program representations which mirror the corresponding actual
programs. Thus, meta programs manipulating object programs may either be expressed directly with
the explicit constructors of the representation type or with this "object-language" extension to ML's
syntax. Text within the object-language brackets (<< >>) is parsed but not compiled. Its representa-
tion is returned as the value. Meta-language expressions may be included in the object-language text 0
by "escaping" them with a backquote character ('). Samples of this feature are illustrated in the table
below.

"*Where p is the number of univerally quantified type variables in the left hand side of T's type equation.

-f9-



Concrete syntax I Constructor based Object bracke based

x d""Id "x" << >>
f x iApp(Id "f".d "z") << f y >>

App(S, y) < Is
(1.7) Tuple C Id "I". Id "y" << (x~y) >>

[ Tuple Na, y1 _.<< _______y >_ _ _

By using reflection, generic operators, such as -nap and fold, have straightforward implementations
by computing over the representations of datatype declarations. In CRML a template defines a function
which, when invoked, is mapped over all the constructors (and their corresponding types) of a datatype
declaration, constructing the object language value for the representation of a function declaration. For
example the template below defines a function sapf which generates the representation of a function
declaration from a string (representing the name of a type constructor).

fun template mapf T =
sap I ((Ci of d -> r) xbar) = 'Ci ('(K r <<f>> <<nap f>> d) 'ibar);

The expression in the cons3tructor position of the function definition, ((Ci of d -> r) xbar), is
treated as a pattern. Thus upon invocation of the template the variables in this pattern will be bound
to object language values particular to each constructor. Ci is bound to an object language expression •
for the constructor function, Obur to an object language tuple expression (of the appropriate -shape-
to be Ci's argument), d to the object language type of Ci's domain, and r to the object language type
of Ci's range (which is the type T).

The rest of the expression is taken literally to compute one of the equations defining a function,
except that escaped expressions are evaluated at invocation time and "spliced" into the equation.

While an escape character inside object brackets or a template definition allows the results of meta * *
computations to be "spliced" into object programs, an unbracketed, escaped expression is a simple
interface to compile-time reflection. It indicates that the escaped expression should be evaluated (at
compile-time) to compute the expression (or type, pattern, declaration, etc.) that replaces the escaped
expression (much like macro expansion).

Thus, using the inapf meta program the program below calculates and defines the map for list.

val maplist = let '(mapf "list") in map end;

as if the user had typed the following instead:

v.1 naplist = let fun sap f U = 0
I nap f (al::a2) = Cons(f ai,map f a2)

in nap and

3 Monadic Composition

We have used similar methods in automating the generation of polymorphic functions to realize the
monadic structure of datatype declarations [6]. Moggi has shown that monads can be used to structure
semantics [9]. Other researchers, including Wadler [13] and our group [6] have explored the use of
monads to structure specifications and programs. Many algorithms may be expressed solely in terms
of the monadic operations. When this can be done, changes to the details of the data type do not
require changes in the specification of the algorithms. They also support a very powerful notion
of composition that allows programs to be decomposed into more easily understood and maintained
modules.

For example, let the type constructor Maybe be defined by Maybe(6 ) = Nothing I Just(r).
Spivey[l1] has used this type to model exceptionai computations. Maybe has the structure of a
monad[12, 61. The binary product distribution for Maybe, with type (Maybe(a) x Maube(b))
Maybe(a x b), can be defined as:

r~u"b(ZI, X2) = { (41, a2) a, - ri; a2 -- Z2'.Vbj

- - w0J



Using the usual translation[12] for monad comprehenaions we get: 0

rfONb(zl, Z2) = multM'V (mapM4y" (A al.(mapluybe (A a.,.(al,. a2)) Z.)) Zr)

let the type T(a) = S(Maybe(a)), where S is any sum-of-products type. Then T has the
structure of a monad[5]. The the distribution function sAM.yt, : S(Maaybe(o)) - Maybe(S(o)) can

be given in terms of the operator folds,

$wm,,b. z = folds (fz...f.)r

where f, is an accumulating function for each data constructor, C, : (o, ... e,) - S. If(', isa nullary
constructor, C., then f, () = unitMa'e C.. If C, is not a nullary constructor, then the corresponding
accumulating function, fi, can be defined as

f. = (mapM'fa C,) Q o 7M1 Je o HS(unitMGY e, ad. ad) •

where Hs can be defined in a manner similiar to ET as follows:

H~s(fnoj.,fa,fr.) = (K'[ui]xi,..... K[Urn,]•m,)

and " is the type parametric combinator:

K[t]= f, when neither a nor S(o) occurs in t
K[a] =
K[S(a,... a,)] = IRE:
,'[U'(t1 . .... ,)] = mapU ('[t] .. .. K[t,])

K[t, x ... x t,,] = A(zI ..... Z,).(•'[t]Zi,.... Kft.Z.,)
For example, the type composition distribution function, Lis a function with type List( Moybe(o )) - 0

"Maylbe" is afucinwttyeLs Aabo)

Maybe(List(o)), and can be defined as follows:
Z it foList (fi,t fCon.)X

where fco,(xz) = map" /A1ae Cons ( .ýabe (z, zs))
f fNa() = unit'WYbeNil = Just(Nil)

This function, which can be generated for any datatype, S, allows us to lift a function, f : a -
Maybe(3) to a function, g : S(o) - Maybe(S(3)).

g = Ts a o(maps )

Using other type parametric combinators we have implemented algebraic generators for structural
equality, and unification over data structures which represent abstract terms. 0

In addition we have defined an normali:ation algorithm [3, 4, 10] which automatically calculates
improvements to programs whose only contol structures are folds. It reduces these programs to a
canonical form. Based upon a generic promotion theorem [7, 8], the algorithm is facilitated by the
explicit structure of fold programs rather than using an analysis phase to search for implicit structure.
Canonical programs are minimal in the sense that they contain the fewest number of fold operations.
Because of this property the improvement algorithm has important applications in program transfor-
mation, optimization, and theorem proving.

4 Conclusion

A compile-time reflective programming environment is an appropriate choice when computations over
programs is necessary. Meta-programs can access the types of objects in the environment, retrieve •
representations of types or functions as data, generate representations of the derivative functions for
types, or apply optimizations or transformations to functions, and then submit these representations
to the compiler. This allows the incremental expansion of traditional functional languages to include

algebraic methodoiogies based upon formal foundations in a straight forward manner.

- ISL-

-... w --- • 0



s0

9

References
[1) J. Cockett and D. Spencer. Strong Categorical Datatypes I In R. Seely, editor, International

Meeting on Category Theory 1991, Canadian Mathematical Society Proceedings, Vol. 13. pp 141-
169. AMS, Montreal, 1992.

(2] J1. Cockett and T. Fukushima. About Charity The University of Calgary, "'partment of Computer
Science, Research Report No. 92/480/18. June 1992.

(31 L. Fegaras. A Transformational Approach to Database System Implementaton. PhD thesis.
Department of Computer Science, University of Massachusetts, Amherst, February 1993. Also
appeared as CMPSCI Technical Report 92-68.

[4] L. Fegaras, T. Sheard, and D. Stemple. Uniform Traversal Combinators: Definition, Use and •
Properties. In Proceedings of the 11th International Conference on Automated Deduction (CADDL.
11), Saratoga Springs, New York, pp 148-162. Springer-Verlag, June 1992.

[51 T. Hagino. A Categorical Programming Language. Ph.D. thesis, University of Edinburgh, 1987.

[6] James Hook, Richard Kieburtz, and Tim Sheard, Generating Programs by Reflection. Oregon
Graduate Institute Technical Report 92-015, submitted to Journal of Functional Programming.

[7] G. Malcolm. Homomorphisms and Promotability. In Mathematics of Program Construction, pp
335-347. Springer-Verlag, June 1989.

[8] E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Bananas, Lenses, En-
velopes and Barbed Wire. In Proceedings of the 5th ACM Conference on Functional Programming •
Languages and Computer Architecture, Cambridge, Massachusetts, pp 124- 144, August 1991.

[9] Eugenio Moggi. Notions of computations and monads. Information and Computation, 93(1):55
92, July 1991.

[10] T. Sheard. and L. Fegaras. A Fold for All Seasons. To appear: Functional Programming Languages
and Computer Architecture, Copenhagen, June 1993. 0

[111 M. Spivey. A Functional Theory of Exceptions. In Science of Computer Programming, 14:25-42,
1990.

[12] P. Wadler. Comprehending Monads. In Proc. 1990 ACM Conference on Lisp and Functional
Programming, pp 61-78, 1990.

[13) Philip Wadler. The essence of functional programming. In Conference Record of the Nineteenth
Annual ACM Symposium on Principles of Programming Languages. ACM Press, January 1992.

[14] G. C. Wraith. A note on categorical datatypes. In D. H. Pitt, D. E. Rydeheard, P. Dybjer, A. M.
Pitts, and A. Poigni, editors, Category Theory and Computer Science, volume 389 of Lecture
Notes in Computer Science, pages 118,127. Springer-Verlag, 1989.

f150



0 a
0

0

0

0

* 0

0

0

0

0

S

-f9L�-

w w w w w e 0 0



0

0

A Coherent Type Inference System for a Concurrent, Functional

and Imperative Programming Language

D. Bolignano M. Debabi 0

Bull Corporate Research Center
Rue Jean Jaures,

78340 Les Clayes-Sous-Bois
FRANCE

bolignano~frcl.bull.fr, debabiOfrd.bull.fr

ABSTRACT The starting point is the design of an implic-
itly type,;, polymorphic, concurrent and func-
tional programming language. Axioms are then

The type and effect discipline is a recent added in the signatures and structures as in Ex-
framework for typing expressions in implic- tended ML. The resulting specification language
itly, strongly typed, polymorphic functional han- is thus highly expressive though it embodies a
guages with imperative extensions. In addition restricted number of concepts. More concisely
to the automatic reconstruction of the principal our language can be viewed a sugared Yer-
types, this discipline computes the minimal side sion of typed A-calculus that safely incorporates
effects of expressions. The main objective of this imperative and concurrent extensions.
work is to present a generalization of this disci- The intent of this paper is to foc on the the-
pline to concurrent, functional and imperative oretic foundations of the underlyiig program-
languages. Accordingly, we present an effect- ming language. The latter unifies three compa-
based static semantics as well as an operational tationar paradigms which we refer to as concur-
semantics for a language that unifies the previ- rent, functional and imperative programming. A
ously mentioned computational styles. The pro- great deal of interest has been expressed in each
posed type system is applied to a concurrent of these programming styles and the underlying
ML-like language. It computes in addition to foundatios have been deeply investigated, al-
the type of expressions, their side and commu- beit generally separately.
nication effects. Furthermore, an operational se- Concurrency models have been a focus of in-
mantics of the language is presented. The latter Conurren umoel hv beeafcus oi-
is based on an extension of the Hennessy's o teres thfor gave nue of researchers. Ac-
erational semantics of the VPLA (Value-Passing ordingly, this s ave rise to plenty of calculiLanguage with Assignment) language. Thati and models. Prominent calculi are those that
whynourge dnich Asemmnti) cangubge.vieweas correspond to process algebra such as: CCSwhy our dynamic seman~tics csan be viewed as (Cluu rCmuiaigSses M•O
an extension of the work on CCS without r's (Calculus for Communicating Systems) [MiP89] sDr Ncolaand ennesy. and CSP (Communicating Sequential Processes)
proposed initially by De Niola and Hennessy. [Hoale] for which mathematically well-behaved
A significant goal of this paper is to prove that mode have been advanced. One can cite the
the static and the dynamic semantics are consis- failure-sets model of Brooks, Howe and Roscoe
tently relate. [BHR&4] or the acceptance-trees model of Hen-

Keywords- Typing; Side and Communication nessy [Hen85J. However, in spite of the large
Effects; Static and Dynamic Semantics; Concur- activity of the concurrency community, it re-
rent, Functional and Imperative Programming; mains that formalisms and techniques devised
Process Algebra; Consistency of Typing. for concurrent and distributed systems are gen-

erally relevant to pure processes, in other words,
they focus on control aspects rather than data
aspects. Thus, in such frameworks, there is no
data, no communication, no states,...etc. These

I Moelvati. and B nmoud J simplifications are generally adopted in order to 0
put the emphasis on the difficulties inherent to
concurrent systems, for instance, nondetermin-

The ultimate goal of this work is the delini- ism, the semantics of combinators,...etc.
tion of a wide-spectrum specification language On the other hand, functional programming
that supports both data and concurrency de- has been extensively studied. Consequently,
scuiptions. The design of this specification Ian- many powerful, general-purpose programming
guage, folowed the same approach as the one languages emerged such as ML dialects. The lat- 0
used in the desig of Extended ML [ST85]. ter rests on secure theoretical foundations that

0 0A



0

4
are exemplified by the lirge body of results on beling function types accordingly. •
pure and typed A-calculus. Generally, functional Later, in [TJ92], the type and effect disci-
languages are endowed with imperative features pline is introduced. The latter yields as a re-
for efficiency reasons. Also programming with- sult of the static evaluation of an expression, not
out such facilities becomes quickly tedious and only its principal type, but also all the minimal
cumbersome in many situations. side elects. A decidable and consistent typing

The language described here supports poly- system w.r.t. the operational semantics of the
morphic types. It supports also both functional considered language, is advanced [TJ92]. No- 0
and process abstractions as in CML (Repgl] tice, that the inference typing system was de-
and FACILE [GMP89]: functions may be used vised for an ML-Iike language, of course with
to describe internal computations of concurrent imperative constructs. It should be noted that
processes. Functions, processes, references and the idea of considering the elects as part of the
communication channels ae first-clas values static evaluation of an expression, has been sug-
and thus can be pawed along channels. Con- Sested in [LucS7] and adopted in the FX project
sequently, the mobility of these values is sup- [GJLS87, LGS8]. 0
ported. As we pointed out before, one of the aims ad-

At the theoretical level, we will present the dressed here, is to propose a dynamic seman-
static semantics of this language as well as the tics for our language. Notice that elaborat-
dynamic semantics. The type inference system is ing a dynamic semantics for such languages is
based on an extension of the type and effect dis- somewhat complicated. The reasons for this
cipline: a new approach to implicit typing that are that we have to deal with various aspects
can be viewed as an extension of the ML-style of the language (concurrent, functional and im-
type discipline. In addition to that, as shown perative). Another source of complication is
in [T392], effect-based type disciplines are more the integration of all these aspects. Most of
appropriate for integrating safely and efficiently the dynamic semantics proposed for these lan-
functional and imperative programming. The guages (Concurrent ML-like) are operational.
dynamic semantics presented here is operational. For instance, CML and FACILE are endowed
It is based on an extension of VPLA (Value with an operational semantics reported respec-
Passing Language with Assignment) of Hennessy tively in [BMT92, Repgl] and [GMP89]. An-
[H190, B1911. Thus, the presented model can be other description of FACILE semantics has been
viewed as a CCS without r's version. developed using the CHAMs [B191] (CHemical

Abstract Machines) framework [LT92]. In this
paper, we present an operational semantics of

2 Related Work our language that can be viewed as an exten-
sion of the VPLA operational semantics. No-

Recently, some modern languages have been tice that a denotational model have been de-
proposed that reconcile the functional, concur- vised for our language. The model is briefly dis- 0
rent and imperative styles. For instance one cussed in[BD93], its foundations are investigated
can cite CML [Rep91], FACILE [GMP89] and in [BD92].
LCS [Ber89]. All the three languages emerged Our concern in this paper is:
from the idea of combining an SML-like lan-
guage [MTH90] as a functional and imperative To propose a new inference typing system
core, with a CCS or CSP-like process algebra (implicit typing)that computes in addition
for process abstraction. They support polymor- to the principal types of expressions and 0
phism, functional and process abstractions, dy- their side efects, the minimal communi-
namic behaviors and higher order objects. cation elects generated by the concurrent

The static semantics (typing semantics) in constructs.
CML, FACILE and LCS rests on the type infer-
ence discipline. It is well known that this disci- * To propose an adequate operational seman-
pline, is problematic in the presence of non refer- tics for our language (Concurrent ML-like).
entially transparent constructs. More precisely,
the problem is relevant to type generalization in * To prove that our typing system is coanis-
the presence of mutable data. Therefore, many tent w.r.t. the static semantics. Notice that
extensions of the initial work of Milner [Mi17] this issue is one of the most interesting re-
have been proposed. salts of this work.

The classical way to deal with this issue, is
the imperative type discipline (To/87]. An ex- 3 Wfannol premsetatha
tension of this approach has been used in the im-
plementation of Standard ML of New Jersey. It The syntactic constructions allowed in our lan- 0
is based on weak type variables: these type vari- guage are dose to those allowed in CML and
able. have an attached strength information, de- FACILE. The set of expressions includes:
noting the number of applications needed to get
a non trivial effect. In [LW9l], another method a Literals such as integers, booleans true and
is proposed that consists in detecting some so false, a distinguished value 0, a constant
called dangerous type variables (the ones occur- skip which models an expression that im-
ring in the types of imperative objects), and I&- mediately terminates successfully. 0

- w -" w w 0"



S

0
"* Three binding operations that are the ab- a One of the main and the most motivat-

straction, the recursion and the let defini- ing reasons for us is purely technical and
tion. is relevant to the foundations of the deno-

tational model. More accurately, CML-like" Imperative aspects are supported through languaes in general and the language de-
the notion of reference. Expressions of the scribed here in particular are quite expres-
form ref (E) stands for the allocation of a sive For instance higher order processes are
new reference and assigns to it the value ob- allowed i.e processes are values and can be
tained by evaluating the expression E. We communicated along channels. Then if we
will use the unary operator ! for dereferenc- attempt naively to construct the process do-
ing and the binary operator := for assin- main, this will lead to reflexive domain def-
meat. inition that have no solutions. In order to

" Expressions may communicate through get round this difficulty, the technique con-
channels. The expression channel() means sidered in this work makes a dependence be-
allocate a new channel. The expression tween the static and the dynamic semantics 0
EIE' means: evaluate E', evaluate E and by typing the dynamic domains by the hkier-
send then the result of E' evaluation on the archy laid down by the static domains. At
channel resulting from the evaluation of E. this level we need to know exactly the type,
The whole expression evaluates then to 0. the communication and the store effects of
The expression L? evaluates to any value the language expressions. This issue is dis-
received on the channel resulting from the cussed in details in the next section.
evaluation of E. Notice that the commu-
nications are synchronized as in CCS and The reader should notice that the type and
CSP. efect discipline reported in fTJ92] does not sup-

port communication eflects. Thus the work re-
"* Three concurrency combinators: ported hereafter is an extension of this discipline.

We define the following static domains:_.fl- Nondeterministic choice between two

expressions (also called internal The domain of Reference regons The no-
chokce). tion of reference regions is introduced to ab-

-O- External choice between two expres- stract the memory locations. Every data
sdons. structure corresponds to a region. Two val-

.4P- Parallel composition of two expres- u"s are in the same region if they may share
,dons. some memory locations. The domain con-

sists in the disjoint union of a countable set
"* A sequencing operator: t.4.:. of constants and variables noted -r. We will

More formally the BNF syntax of our lan- e , P .... to represent reference regions. 0

guage is: * The domain of Reference effects: Reference

E::= () I true I false I Number, n ident z I skIp I effects abstracts the memory side-elects.
Az.E I E E I E fEJ E OE I EIIE E;E I We defne the following basic elects: 0 for
ref E I !E I E:= E I channel() I V'. I E!E I the absence of effect, c for a reference elect
If EthenEelseE lletz=EInEI variable, ,int(p,r1) for the reference alloca-
rec zo E tion, read(p) for reading in the region p and 0

In the following, we will use 71 to stand for moite(p) for assignments of values to refer-
the finite powerset, A w B for the set of all finite ences in the region p. We introduce also a

mappings (maps for short) from A to B. union operator U for effects.

4 Statitc sesint5s , ::= fi(Iinit(p, r)lvred(p)Iurite(p)fu ir

As we pointed out before, we have adopted the We will write a 0 a' * 3u" a u = a' u u".
type and elect discipline in order to give a static Equality on reference effects is modulo ACI
semantics to our language. This choice is moti- (Associativity, Commutativity and Idempo-
vated by the following resons: tence) with 0 as the neutral element.

" As shown in [TJ92J, the type and elfect dis-
cipline is more appropriate than the other Analogousy, we introduce the following static
type systems [Tof87, LW911 in integrating domuains:

efficiently functional and imperative pro- The domain of Channelre.on. As with
paiming. The reader should refer to sThdoanfCane eosAswt

T92] for a full omparison of the type and reference regions, channel regions are in-
electV-a discipl wompith n oe other typr e andtended to abstract channels. Their domaineffect discipline with the other approaches. consists in the disjoint union of a countable

"* A more efficient type generalization in let set of constants and variables noted 6. We
expressions by the ue of the elect informa- win s X, .... to represent values drawn
tion and the observation criterion, from this domain.

-43?



"n The domain of Channel effectr: It is defined • if V, V' E V, then (p, v') E V.
inductively by:

i bf a is an environment, then the closure[.eL, rjEv.
::= wulcha(x, vr)lI,(x)lout(x)l Ua

Let us denote by R the set of references and
We will use il to stand for a channel ef- by K the set of channels. Now, we need to
fect variable. The basic channel effect define the notion of store. The set of possible S
cham(X, r) represents the creation of a chan- stores Store is made of store actions. The latter
ael of type r in the channel region X. in(X) stands for both the current associations of the
denotes the effect resulting from an input references and values, and also for the different
on a channel of the channel region X while actions on the store (read, write operations and
out(X) denotes an output on the channel the channel creations). The formal definition is:
of the region X. We will write x; _ x' *
30 * x = a' U ". Equality on dects is Store = P,(Store.Action)
modulo ACI with I as the neutral element. StoreActiom =minit(r, V) I r E R and v E V)U

('end(,) I r r R)u
" The domain of tWes It is inductively de- {write(r) I r E R)U

fined by: Ichan(c) I c E K)

r ::= Unitl.Booll,,tlol The store action init(r. v) means that the ref-
refp(r)lchanx(r)lr -rA 7  erence r is bounded to the value v. The store 0

actions read(r) and write(r) model respectively
a read and a write operation on the reference r.

Unit is a type with only one element (0, Finally, the store action chas(c), corresponds to
a a type variable, ref•(r) in the type of ref- the creation of a channel c. We will write a, s',...
erences in the region p to values of type r, to denote stores drawn from the set Store. We
chane(r) is the type of channels in the com- write s, to denote the store s excluding store
munication region X that are intended to be actions of the form isit(r, V). We say that 8 is
mediums for values of type r, r -w. r' in included in s', or a' extends a, noted a 4 s', if
the type of functions that take parameters and only if there exists s" such that s' = a U s".
of type t to values of type r' with a tatent We note dom(s) = fr I 3vo init(r,v) E s) the
reference eflect a and a latent channel efect domain of store s.
x. We mean by latent effect, the effect Len- We note LV the set of expressions and corn-
erated when the corresponding expression is putable values. We will use v, v'.... to represent
evaluated, values drawn from V, t, t'.... to represert '-rJ-

neu drawn from £V and E, E,,... to r.prt, t 6
We also define type schemes of the form expressions.

.v,, 0? where v, can be type, reference Our operational semantics is based on the evo-
region, channel region, reference effect and Chan- lution of special configuratons defined hereafter.
nel efect variable. A type r' is an instance of First, we distinguish the set of basic (initial) con-
Vv-... v. * r noted r' -< Vv, .... 9 n r, if there figurations:
exists a substitution 0 defined over vj,..., v, such Definition 5.2 The set of basic configurations
that r, = Or'. Wi eie s

Our static semantics contain sequents of the BC s defined a:
form: WC = {s,))ItEEVA s astore)

t I- E : r, 6, x Definition 5.3 The set of configurations, C, is

which state that under some typing environ- defined as the least set, which satifies:

ment £ the expresion E has a type r, a reference 1. B•C C
effect a and a channel elect x. Notice that type
environments f map identifiers to type schemes. 2. a 6 C implies ref a, a .!a EC

5 3. 1 , 0 E C inplies a op E C where: op=n.50
In this section we present theoperational seman- 4. aEC implies o; E, .o, E := a, E a zC
tics. We wil use the same style as [H10](H1911. S
For that, let us introduce first the notion of com- 5. a E C implies a!v, a:= , a v e
potable values of the language. 6. a, 0 e C ipes080 alll i ls, *lla', E'llella E C

Definition 5.1 The set V of computable values 7. a E C implies [ Aid : r * a, r v c-C
is defined as the least set which satisfies:

8. a E C iraplies:
9 V contains literal. such as O, true, false,

integers, or references, or channels. (a) let z = a In E E C

-nlI.

w w V WW wIMP



0

0
0

(b) Ifa then A1 else 40 E C Theorem 6.1 (Consistency)
Let a be a configuraton, suppose that S, K ,

wheve E,Ej,,E denote expresions,, s' de- store(a) ; a,x and store(a) : a,,•,S.K X r
note stores and v denote a computable value. r : t. If t I- expr(a) : r , r.' and r F

We will use a, a' ..... P, A'. to denote config- a-a then, provided that whenever o s an in-
urations drawn from C. put event its value a conform to the type of the

The operational semantics is presented in the involved channel (i.e. whenever o = (?, c, v, 8)
usual way, by dfning a labeled transition sys- for some channel c and some value w, then
tern on configurations. There are two kinds of # : ,x,$S,K I v : and s : a,iS,, X c :
events, ranged over respectively by a and e: chae .C)(r)), there existS' and K' extendingS

"and K, and unoibervable effects a" and x" i.e.e Visible events: They consst in inpt events O rve(£, r, a") = 6 and Obseere($, r, x") =
of the form (?, c, 9, s) and output events of # s that:
the form (!, c, v, S) where c is a channel and
v is a value in V and u is the current op- * fezp(a') U a waue then:
erational dynamic store. We will use the
notation A to denote the complement ac- 1. S',K' • store(*') : frUUr'Uo", JU'U
tion of a. For instance, the complement of X" and,
(?,c,v,s) is (!,c,v,s). Notice also that I is 2. store(&') : a U a' U a",K U u ' U
4. x", S', K' 1= ezpr(a') : rand,

"* A silent event noted c that is used to denote 3. K,ý= 0o:' UXe"
internal moves such as syschromatios on a E t e a and a, such that:
complementary actions. I

We will use o,o', as events drawn from the &I U `r2 = a' and
set of visible and invisible events. We will write ms U x = u' eand

a to denote the evolution of a into 8 ater S', K' I= store(a') : dr U a U a", x U x , U "

performing the event o. and K' ý=o: K' U 0 nd
The transition relation is defined as the small- C l- ezpr(a') : •v2,x and'0

eat relation satisfying the axioms and rules given stare(a') : a U a U a,",
in the figures 2 and 3. x Ui UK ",'" K' i= r :

6 Consistency Theerawn Furthermore if o is an output event, its value

is conform to the type of the involved channel.
In this section the intention is to prove that the
static semantics is consistent w.r.t. the dynamic 7 CaoihMisaa
semantics. The primary objective underlying
the consistency theorem is to ensure that an ex- We have reported in this paper the complete def-
preion and the value it evaluates into, have the inition of an implicitly strongly typed polymor-
"same type. Its enures also that the evaluation phic concurrent and functional language that
of an expression only leads to observable effects supports data accepting in-place modification.
of the store that are compatible with that of its We have presented a complete static semantics
original static effect. But we have also to handle that rests on an extension of the type and ef- 0
some additional problems: fect discipline to handle communication effects.

Afterwards we have presented an operational se-
" An expression does not, due the presence mantics of the language that rests on an exten-

of the recursion operator, necessarily termi- sion of VPLA operational semantics. The con-
nate, and does thus not necessarily evolve sistency of the typing system w.r.t. the opera-
into a value. We want the consistency the- tional semantics have been established.
orem to establish consistency in theme cases As a future research, we plan to investigate re-
too. finement issues as well as structuring and mod-

ularity mechanisms. We are particularly inter-" We also want to treat communication of- ested in experimenting some new approaches
fects. We thus want to ensure that the in modularity from the algebraic specifcation
evaluation of an expressi only leads to workd such as the loom stratified semantics pro-
observable communication effects that we posed by (BidS9J. Another important research
Compatible with that of its original static interest for us is to develop an axiomatic seman-
effect. tics of our language as well as its mechanization S

" We finally have, due to communication, to in order to prow program properties.
handle open systems that will potentially
receive values from the outside, and send REFERENCES
values to the outside. We thus have to con-
sider only correctly typed inputing values, [BB91] G. Berry and G. Boudol. The chem-
and verify that outputing values are con- ical abstract machine. In Proeaedings
form to the channel types. of the seventeenth ACM Symposium

w w w - w 0-



on Principles of Pgraemm 9ng Lan- [LG88] J.M. Lucassen and D.K. Giford.
uages, 1991. Polymorphic efect systems. In

Proceedings of the ACM Srmposium
[BD92] D. Bolignano and M. Debabi. Higher on Principles of Programming Lan-

order communicating processes with g 1988.
value-pausing, assignment and return
of results. In Proceedings of the (LT92] L. Leth and B. Thomsen. Some Facile
ISAAC'99 Conference, LNCS 650. chemistry. Technical Report ECRC- 0
Springer Verlag, December 1992. 92-14, European Computer-Industry

Research Center, 1992.
[BD93] D. Bolignano and M. Debabi. A de-

notational model for the integration Luace7] J.M. Lucassen. Tpe and Effects:
of concurrent fu onal and impera- Towards an Intgration of Functional
tire programming. In Proceedings of and Imperative Programming. PhD
the ICCI'93. IEEE, May 1993. thesis, Laboratory of Computer Sci-

[Ber89] B. Berthomieu. Implementing CCS, MIT, 1987.

the LCS experiment. Technical Re- [LW9I] X. Lemy and P. Weis. Polymorphic
port 89425, LAAS CNRS, 1989. type inference and assignment. In

Proceeding. of the seventeenth ACM
[BHR84] S.D. Brooks, C.A.R. Hoare, and A.W. Symposium on Principles of Program.

Roscoe. A theory of communi- ming Languages, 1991.
cating sequential processes. ACM, 0
31(3):560-599, July 1984. [MiW78] A.J.R.G. Milner. A theory of type

polymorphism in programming. Comn-
[Bid89] M. Bidoit. PLUSS, un Langage puter and systems sciences, 17:348-

pour le Ddieloppement de Spicijica. 375, 1978.
tions Algb4nques Modulaires. PhD
thesis, Paris Sud, July 1989. [Mil89] A.J.ILG. Milner. Communication and

[BMT92] D. Berry, A.J.ILG. Milner, and Concurrency. Prentice-Hall, 1989.

D. Turner. A semantics for ML con- (MTH90 A.J.R.G. Milner, M. Tofte, and
currency primitives. In Proc. 17th R. Harper. The Definition of Stan.
ACM Symposium on Principles of dard ML. MIT Press, 1990.
Programming Languages, 192. (Rep9l] J.H Reppy. An operational semantics

[GJLS87] D.K. Gifford, P. Jouvelot, J.M. Lu- of first-class synchronous operations.
cassen, and M.A. Sheldon. Fx- Technical Report TH. 91-1232, De-
87 reference manual. Technical Re- partment of Computer Science, Cor-
port MIT/LCS/TR-407, MIT Labo- nell University, August 1991.
ratory for Computer Science, Septem- [ST85] D. n and A. Tarechi. Pro-
ber 1987.

gram specification and development
(GMP89] A. Giacalone, P. Mishra, and in standard ML. In Proc. ith ACM

S. Prasad. Facile: A symmetric inte- Symposium on Principles of Program-
gration of concurrent and functional ming Languages, 1985. 0
programming. lnternational Journal
of Parallel Programming, 18(2):121- [TJ92] J. Talpin and P. Jouvelot. The type

160, April 1989. and efect discipline. In Proc. Logic in
Computer Science, 1992.

[Hen85] M. Hennessy. Acceptance trees.ACM, 32:896-928, October 1985. . [TIotSt] Pd. Tofte. Operational semantics and
polymorphic type inference. PhD the-

[1190] M. Hennessy and A. IngNlfsd6ttir. sis, Department of Computer Science, 0
A theory of communicating proesses University of Edinburgh, 1987.
with value passing. In Proc. 17th In-
ternational Colloquium on Automata, A Lypasix
Languages and Programming, LNCS.
Springer Verlag, 1990.

[1191] M. Hennessy and A. Ingdlsd1tir.
Communicating processes with value-
passing and assignments. Technical
report, University of Sussex - Draft,
June 1991.

[Hoa65] C.A.R. Hoare. Communicating Se.
quential Processes. Prentice-Hail,
1985.

- -.. w V 0 0



(unlt) CI-O):Uitf.f. d4

(true) Itý-tru.:BooJ,0,0 fa. I-E: E ate E :tw.p)E

(fake) f I- ftlne: Boot, 0, (can I ha0( c~xv,~huXi

(sum) tLI- Number n: Init , 0 LtE :chaE).a A

(Whp) f 1- .hp. UnitO,#, (out)LIE ku()uaL-:TDD
CLI- E1E' Unit, 0U a', itU ot'U ut(x)0 0

'Valo vC' c

LI- £ t~e~a Li- E *~.',I' I-KE: t'ea atf..Gue'aL('Ii : .~
(app) CI- pE': r u'pv' " Cua ':,~ LIkz IEv0~'

I-K) A e. (rot)
(rt I- rfE o : j,r1,e Uvtn C - etx F n :,t)..,xU

Tabl 1: The static was-fice

&Of

qp IMF



r i. (amip, o)- (o.~ o__________

F ~ o op(Z ap PPl. &-to'L4
r 3w33Ml op E2. )(B,)eP(B2,S) r o.. a;-& 0l,

r t~a, (s, a) I(.(a) 0

IuagvaaZ Choic.: r ((.az)- )

F 1al r I. .o

R3trn Choice:

ro.F o- (As * , s).f.(I As * , r,.

Do. a' r P- (El x 2.s) LEI (z2.a

r .LL4 , I- I.
r ooo. -g *'D r a

p3 r i.. E (w,ao)-(B e)

r (-,$)Do. ± ..

r 8-0 1 WSI2 a)~B~~lUB) L -( sBF a .. x B..'1

r-±.Re ' r__As_ r,_As__E__ a)._r__ v

r o-~Ml -c a laiD r o-I Asoa, r,1 9.11 Ase.,*1, r3I.

r, o-IA0 .r 1w9ja

-0-7

r alaI(w,as') I *Iis r =I.m2 S

r I- &.I&, r

F ,8N .11. - 0,'lala 
a

T"b 2: Operatimal semantcs. Patt I

F.02p0

IF I02-



Nf azprmwld 
mpm

rS.(it s ubmBl sim s3) r i-(sosIa.e) -'Ems, s.)
It (H..8) ahe81am* dm 2

r o 0-e'- -r '

r I. tR.) a e &ba E abe 52

0' A &boo E) *bem S52 0(2.,__ _ _ _ _

*curialms r (4c..)h ('s

r I- (!E,as) w(E,es)

ch.. C"OaCema

0,-
r s)-'va I.. ~ r

r I- ~ jb,~e)

rabmae Cm-9m "wa0 s zs, )g8 z(2

p ~ ~ ~ ~ w nfrv G a . (r, I-..(,. &I ,.er) itr.

r' E- -mt() .4, s5,. a):

0,I.

r La *e.-.E a wte.~ 95 =5,)!

F .r e (C' a)e? , 8 (iiur.) fore~) S.i~r 0:)).5:

input 3:OetoW eut



0
0

0

0

0O

0

0

0

S

0

- zOA-

- w w 0 0



Peirce Algebras* S

Chris Briukt Katarina Britzt

Renate A. Schmidt"l

t Department of MatAematics, University of Cape Town,
Rondebosch 7700, Sough Africa

§ Maz-Planck-lnsuitst fir lnformagik, Im Stadiwaid,
W-6600 Saarbricken 11, Germany

In its modern form the algebra of relations has been under investigation by mathemati-
cians since Tarski's seminal (1941) paper. The main line of development has been the
study of a class of algebras called relation algebras (Chin and Tarski 1951, J6nsson 1982),
in parallel with developments such as Boolean algebras with operators (J6nsson and Tarski
1951/1952) and cylindric algebras (Henkin, Monk and Tarski 1985). Since the early sev-
enties the algebra of relations has increasingly become of interest to computer scientists.
Just as the notion of a partial function provides a natural model for deterministic pro-
grams, so the more general notion of a (binary) relation provides a natural model for
nondeterministic programs. This idea has been exploited by various authors. For ex-
ample, it is evident in Floyd-Hoare logic for program verification, it has been extended
to specification in Hoare and He, Jifeng (1987), it figures in logics of programs such as • 0
dynamic logic (Parikh 1981, Harel 1984), and it was used in the early seventies to model
recursive procedures (de Bakker and de Roever 1973, Hitchcock and Park 1972). Recently
the algebra of relations has been extensively used in a graph-theoretic approach to pro-
grams by Schmidt and Str6hlein (1991). In modal logic, relation algebra features strongly
in the Dutch-Hungarian cooperation on van Benthem's (1991) new arrow logic (see Logic
at Work, Proceedings of the Applied Logic Conference (1992)). Venema (1992) is another
interdisciplinary study of relation algebra and multi-modal logic. The proof theory of
relations is also of interest to computer scientists, and several relational inference systems
are available (Wadge 1975, Hennessy 1980, Maddux 1983, Orlowska 1991).

In many applications it has become clear that we need, not just an algebra of relations
as distinct from an algebra of sets, but an algebra of relations interacting with sets. (For
example, if we view a program as effecting a transition on a state space, we may wish to
model this by a binary relation acting on a set of states.) Such an algebra was presented
in Brink (1981) under the name of Boolean modules. A Boolean module is defined (Brink
1988) as a two-sorted algebra M = (B, IZ,:), where B is a Boolean algebra, R is a
relation algebra and : is a mapping P. x B -- B written r : a such that for any r, s E 'R
and Q, 6 E B:

Ml r:(a+b)=r:a+r:b
M2 (r+s):a=r:a+s:a
M3 r:(s:a) =(r;s):a
M4 e:a=a
M5 O:a=0
M6 r- :(r:a)'< a.

"*To appear in Formal Aspects of Computing.

-205 -

w... . . . w . . Iw.. .. i r. . . . . . . " . . . . .. . . . . . .. .. .. w.. . . . III- . . .I I II . . . .. . I I I l . . . . ia ii ilS . . .



S

a
The symbols +, :. c, € 0, - ' and < respectively denote join. Peirce product. relational
composition, identity, zero, converse, complernentation and the usual partial ordering. Let 0
A be any subset of some non-empty set UT and let R. S be any binary relations over 1'.
In the standard models (i.e.. in proper Boolean modults,) the join is set-theoretic union.
The Peirce product R: A is the set of elements x related by R to some element y in A.
The relational composition R ; S is the set of pairs (x, y) for which there is a z such that
(X,z) E R and (z,y) E S. The identity is the identity relation over 1'. The zero is the
empty set. The converse of a relation R is the set R- of pairs (y, x) for which (cr. y) E R.
Complementation of sets (respectively relations) is with respect to U (respectively V x U).
And, < is interpreted as the subset relation.

Though independent of the computer science context, Boolean modules are very sin-
ilar to dynamic algebras, introduced by Kozen (1980) as the algebraic version of dynamnic
logic. And both of these are quite similar to the extended relation algebras introduced by 0
Suppes (1976) in a linguistic context. However, Boolean modules and dynamic algebras
both have the drawback of not treating relations (programs) and sets equally: there is
a set-forming operator on relations, but no relation-forming operator on sets. Extended
relation algebras do not have this drawback, but they do have the drawback of being as
yet uniormalized as algebras. 0

We present here a two-sorted algebra, called a Peirce algebra, of relations and sets
interacting with each other. In a Peirce algebra, sets (or rather, the variables representing
sets) can combine with each other as in a Boolean algebra, relations can combine with
each other as in a relation algebra, and in addition we have both a set-forming operator
on relations and a relation-forming operator on sets. The former is the Peirce product 0
used in Boolean modules; the latter is the operation of cylindrification. Peirce algebras
thus present a natural next step after Boolean algebras, relation algebras and Boolean

modules.
Formally, we define a Peirce algebra to be a Boolean module (B, R, :) enriched with

an operation c from the underlying Boolean algebra B to the underlying relation algebra
R such that for every a E B and r E R: 0

PI aC:l =a
P2 (r:l)C=r;l.

In the standard models (i.e., in proper Peirce algebras) applying the cylindrification op-
eration to a set A yields the relation Ac given by the Cartesian product A x U. An
example of a Peirce algebra is any extended relation algebra. Another example is any
relation algebra. We show that the underlying Boolean algebra B of any Peirce algebra
can be embedded in its underlying relation algebra R in two ways: as the Boolean alge-
bra of so-called right ideal elements in R, and as the Boolean algebra of elements below
the identity of R. These results reiterate the point made by Maddux (1990) that Peirce
algebra is not a mathematical requisite for modelling interactions between relations and 0
sets, in the sense that these can be modelled in relation algebras (as interactions with
right ideal elements, for example). However, we argue that Peirce algebra provides a more
natural framework for doing so. In a Peirce algebra one can actually manipulate both
sets and relations simultaneously. From an applications-oriented point of view this is an
advantage, and we present two (sets of) sample applications to substantiate this point. •

The first shows how three programming constructs in the calculus of weakest prespec-
ification of Hoare and He, Jifeng (1987) can be modelled naturally in Peirce algebras.
This comes about through the isomorphism in any Peirce algebra (B, "R, :, C) between the

-- •060



0

Boolean algebra B and the Boolean algebra of right ideal elements of the relation algebra
7Z and the isoniorphism between 8 and the Boolean algebra of identity elements in R.
First, Hoare and He, Jifeng (1997) use right ideal elements to model conditional state-
ments in logics representing programs as binary relations. Second. subsets of the identity
relation are used to model a test operation (Parikh 1991). Third. left ideal elements can
be used to model the initialization of abstract data types as defined in Hoare. He. Jifeng
and Sanders (1997).

The second application points out that the so-called tcrmznological logics arising
in knowledge representation based on the system KL-ONE (Woods and Schmolze 1992)
have evolved a semantics best described as a calculus of relations interacting with sets.
Brink and Schmidt (1992) show that the terminological representation language ACC of
Schmidt-SchaufB and Smolka (1991) can be captured in the context of Boolean modules.
In this paper we extend this idea and use Peirce algebra to accommodate terminological 0
representation languages even more expressive than Af-.

Terminological representation languages have two syntactic primitives, called concepts
and roles. Concepts are usually interpreted as sets and roles as binary relations. As sets
and relations have simple calculi that can be presented, respectively, in the context of
Boolean algebra and relation algebra, concepts can be modelled in Boolean algebra and •
roles in relation algebra. Concepts and roles also interact in certain ways, and these
can be modelled as interactions between relations and sets. More specifically, concept-
forming operations on roles can be interpreted as variants of Peirce product (with two
exceptions), and an algebraic characterization for such interactions are Boolean modules.
(The exceptions involve numerical quantification.) Role-forming operators on concepts •
can be interpreted in terms of cylindrification. A natural algebraic presentation for such
interactions is then Peirce algebra. The advantages for doing so are: First, Peirce algebra
provides a formal mathematical framework for KL-ONE-based knowledge representation,
the development of which has, by and large, been implementation-driven and rather ad
hoc. Second, Peirce algebra provides a natural (equational) axiomatization for reasoning
about information represented in a terminological language. Third, terminological repre-
sentation can be linked to other areas of application of Peirce algebra. Schmidt (1993), for
example, exploits the link between Peirce algebra and extended relation algebra and shows
how terminological representation can benefit from Suppes' (i976) linguistic analysis of
English language sentences.

References

Brink, C. (1981), Boolean modules, Journal of Algebra 71(2), 291-313.

Brink, C. (1988), On the application of relations, S. Afr. J. Philos. 7(2), 105-112.

Brink, C. and Schmidt, R. A. (1992), Subsumption computed algebraically, Computers and Math- 0
ematics with Applications 23(2-9), 329-342.

Chin, L. H. and Tarski, A. (1951), Distributive and modular laws in the arithmetic of relation
algebras, Univ. Calif. Publ. Math. 1(9), 341-384.

de Bakker, J. W. and de Roever, W. P. (1973), A calculus for recursive program schemes, in
M. Nivat (ed.), Sgumipossum on Automata, Formal Languages and Programming, North Hol-
land, Amsterdam.

Harei, D. (1984), Dynamic logic, in D. Gabbay and F. Guenther (eds), Handbook of Philosophical
Logic, Vol. i1, Reidel Publ. Co., Dordrecht, Holland, pp. 497-604.

200

SI, w.... • ., 1-Z. v-

. - ~ . . . . . . . .. . . . 0 0



llenkii. L., Monk, J. D. and Tarski. A. (1985), Cylindric Algebras. Part I1, Vol 11.5 of Studi.e ini
Logic and the Foundations of Mathematics, North-Holland. Amsterdam.

Hennessy, M. C. B. (1980), A proof-system for the first-order relational calculus. Journal of
('omputer and System Sciences 20, 96-110.

Hitchcock, P. and Park, D. (1972). Induction rules and termination proofs. in M. Nivat (ed.).
Automata, Languages and Programming, North-Holland, Amsterdam.

Hoare, C. A. R. and He, Jifeng (1987), The weakest prespecification, Information Processing S
Letters 24, 127-132.

Hoare, C. A. R., He, Jifeng and Sanders, J. W. (1987), Prespecification in data refinement,
Informatwn Processing Letters 25, 71-76.

J6nsson, B. (1982), Varieties of relation algebras, Algebra Universah1s 15(3). 273-298.

J6nsson, B. and Tarski, A. (1951/1952), Boolean algebras with operator,, Part I/!1, American
Journal of Mathematics 73/74, 891-939/127-162.

Kozen D. (1980), A representation theorem for models of *-free PDL, in J. De Bakker and J. van
Leeuwen (eds), Automata, Languages and Programming, Vol. 85 of Lecture Notes in Con putcr
Science, Springer-Verlag, Berlin, pp. 351-362.

Logic at Work, Proceedings of the Applied Logic Conference (1992), University of Amsterdam, 0
Amsterdam. Preprint. To appear.

Maddux, R. D. (1983), A sequent calculus for relation algebras, Annals of Pure and Applied Logic
25, 73-101.

Maddux, R. D. (1990). Personal communication with C. Brink.

Orlowska, E. (1991), Relational interpretation of modal logic, in H. Andr4ka, J. D. Monk and •
1. Nimeti (eds), Algebraic Logic, Vol. 54 of Colloquia Mathematica Societatis Jdnos Bolyau.
North-Holland, Amsterdam, pp. 443-471.

Parikh, D. (1981), Propositional dynamic logic of programs: A survey, in E. Engeler (ed.), Logic of
Programs, Vol. 125 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 102-
144.

Schmidt, G. and Str6hlein, T. (1991), Relations and Graphs, Springer-Verlag, Berlin.

Schmidt, R. A. (1993), Terminological representation, natural language & relation algebra, in
H. J. Ohlbach (ed.), Proceedings of the sixteenth German AI Conference (GWAI-92), Vol.
671 of Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin, pp. 357-371.

Schmidt-SchauB, M. and Smolka, G. (1991), Attributive concept description with complements,
Artificial Intelligence 48, 1-26.

Suppes, P. (1976), Elimination of quantifiers in the semantics of natural language by use of ex-
tended relation algebras, Rev. Int. de Philosophie 30(3-4), 243-259.

Tarski, A. (1941), On the calculus of relations, Journal of Symbolic Logic 6(3), 73-89.

van Benthem, J. (1991), Logic and the flow of information, Technical Report, ILLC Prepublica- S
tion Sernes for Logic, Semantics and Philosophy of Language LP-92-l1, Institute for Logic,
Language and Computation, University of Amsterdam, Amsterdam. To appear.

Venema, Y. (1992), Many-Dimensional Modal Logic, PhD thesis, University of Amsterdam, Am-
sterdam.

Wadge, W. W. (1975), A complete natural deduction system for the relational calculus, Theory
of Computation Report 5, University of Warwick.

Woods, W. A. and Schmolze, J. G. (1992), The KL-ONE family, Computers and Mathematics with
Applications 23(2-5), 133-177.

-zoo-
- w - w 0 -



Comparing Two Different Approaches to Products
in Abstract Relation Algebras 0

R. Berghanimer" A. Haeberert G. Schifidt" P. Velosot

1 Introduction

The study of relation algebras has its roots in the second half of the XIX century with the
pioneering work of Boole and de Morgan. Later on, Peirce in a series of papers developed 0
the algebra of relations, and by he end of the century Schr6der definitively set the basis of
modern relation algebra in his tgnum opus. The modern development of the topic starts
with the fundamental work of Tarski and his co-workers (see e.g., [13, 5, 8]). In the early 70's
relations and relational calculi began to be used for formal programming by de Bakker and
de Roever. In the following decade, Hoare and He related the work of Birkhoff on residuals 0
with Dijkstra's weakest precondition approach to programming. Recently, M61ler used n-ary
higher-order relations between nested tuples as elements of a language in which to specify and
develop programs and Backhouse et al. developed a theory of data types based on the calculus
of relations.

D)uring the development of relation algebras as a formal programming tool, the need of some • *
forin of "categorical product" of relations became apparent, whether as a type or as an operation.
This need was motivated by the lack of variables over individuals, which by itself is one of the
main advantages of functional and abstract relational approaches to program development. Two
approaches to this kind of extension arouse in the late 70's and the early 80's, which will be
referred to as the "Munich approach" [10, 3] and the "Rio approach" [7, 15]. Both of them rely on
relation algebras as presented by Chin and Tarski [5]. The former uses heterogeneous relations
and undertakes the "product-extension" as being a data type by axiomatically introducing two
projections 7r and p and defining the product in terms of them. The latter uses homogeneous
relations and introduces axioms for a fork operation V, thus extending relation algebra in the
saine way .1J6usson and Tarski in [8] extended a Boolean algebra by means of operators in order
to obtain a relation algebra. The introduction of V induces a free groupoid structure in the basic 0
set of the relation standard model of relation algebra, which by allowing the internalization of
relations p% ies some interesting representability questions [1].

The Munich group started from giving relational semantics to programming language con-
structs and constructing semantic domains by relation algebraic means. They worked with
heterogeneous relation algebras [12], introduced the point axiom [11] for these and discussed 0
how representability depends on it. Defining the symmetric quotient [2, 16] made it possible to
handle set and function comprehension.

The Rio approach, motivated mainly by the development of a relational programming calculus
not bounded by lack of expressiveness, first tackled the problem - posed in [13) and formally
treated in [9] - of the impossibility of expressing first-order formulae with four or more variables 0
ini abstract relation algebra. As it was shown in [14], the expressive power of the Boolean algebra
with operators resulting from the extension of relation algebra with the V-operation encompasses

*Fak. firr Informatik, Universitit der Bundeswehr, Werner-Heisenberg-Weg 39, D-85577 Neubiberg (Germany)
IDep. de Informatica, Pontificia Univ. Cat6lica, R. Marques de S. Vicente 225, Rio de Janeiro, RI 22453

(Brazil)

-Zo9-

--W - 0



0
that of first-order logic. In using this calculus, they developed various case studies on formal
program construction, see e.g., [15]. Some interesting work has been done concerning the problem
of the smooth transformation by calculation of expressions universally quantified by means of the
construction 7'F (the complement of the relational composition RS). Among other techniques
under study, this was accomplished by the use of residuals in other ways than a straightforward
solution X of inclusions of the form XR C S, which lead to a weakest precondition style of
program construction.

This paper reports research work under joint development by the two groups. In this extended
abstract we only compare the two relational approaches to products. The full paper also deals
with some further topics like the formal construction of programs using abstract relation algebra.

2 The Munich Approach to Direct Products

Most operations occuring in real life involve several arguments and several sorts. Using relation
algebra as a programming calculus, therefore, requires a means to deal with direct products and
n-ary operations. In the following, the Munich approach to direct products is presented in a
short manner. Also the monomorphy of the product is investigated.

In the Munich approach, direct products are characterized by means of natural projections,
see (3, 2]. Then, one obtains the following specification (where I denotes the identity relation
and L is the universal relation). 0

Definition. Given two relations ir and p, we call the pair (r,p) a direct product, if

(1) 7rT7r=l (2) pTp_=] (3) rT n'pT=1 (4) irTp=L

In this setting, lr and p are called the natural projections. 0

It is easy to verify that the projections from a Cartesian product X x Y to the components X 0
and Y (considered as heterogeneous relations) are a model of (1) through (4). In this standard
model we have: From (1) and (2) we get that the projections are univalent and surjective.
Inclusion C of the third axiom ensures that there is at most one pair with given images in X
and Y; the other inclusion means that •r and p are total, i.e., there are no "unprojected" pairs.
And, finally, condition (4) describes the fact that for every x E X and Y E Y the pair (x,y) is 0
indeed contained in X x Y.

We now investigate the question of how unique the direct product is determined by these
rules. To this end, we need the following notions. Let R and S be two relations and consider a
pair R := (4,, T) of functions. 7R is called a homomorphism from R to S if R C .S 9 T holds.
If, in addition, the pair (OT, 9 T) is a homomorphism from S to R, then Wt is said to be an
isomorphisin between R and S. Therefore, an isomorphism (4b, 9) between R and S is a pair of
bijective functions 40 and *I, which satisfies the condition R* = *S.

By purely relation-algebraic reasoning, now, it can be shown that the direct product is
uniquely characterized up to isomorphism:

Theorem 1. Assume that two direct products Or, p) and (r',p') are given together with two 0
bijective functions *P1 and '2 such that the products 1r*91 r? and p*2piT are defined. Then
the pair (4#,*1), is an isomorphism between 7r and ir' and the pair (.6,*2), is an isomorphism
between p and p', where the bijective function 0 is defined as 0 := 'k1 2 1 'T n p9 2PIT. 0

3 The Rio Approach to Direct Products 0

Now, we sketch the Rio approach to products. This approach is based on homogeneous relations
and a fork-operation V extending a relation algebra. The axioms of fork are as follows:

(5) RVS = R(IVL) n S(LVI) (6) (RVS)(PVQ) T = RPT n SQT.

-- L --



It is a classical result that (homogeneous) relation algebra is inferior in expressive power to
predicate logic. However, homogeneous relation algebra extended with a product using the
operator V and axioms (5) and (6) has the same expressive power as predicate logic [14]. 0
4 Comparison 0

We are now going to compare the product axiomatization of the two approaches. In particular,
we present a cross-derivation of either approach using the axiomatic presentation of the other.
This is a little bit complicated as it means a comparison of results in a homogeneous and in a
heterogeneous relation algebra. So we cannot in all cases expect textually identical results when 0
simulating one feature in the other type of algebra.

First, we express 7r and p via V. To this end, let a V-extended homogeneous relation algebra
be given. We consider partial identities, i.e., relations contained in the identity relation I. In the
case of a relation on a set X each partial identity 6 C X x X describes a subset of X, viz. the set
IT E X : (z, x) E 6). It is easy to prove that partial identities are invariant under transposition 0
and that composition of a partial identity with itself is idempotent. Thus, we are able to prove
the following theorem defining the two projections in terms of the operation V.

Theorem 2. Let three partial identities 6 x, 6b, and 6 be given satisfying the property

6 = (bxVL)T(bxVL) n (LVby)T(LVby). 0

Then it is possible to define two relations r := (6xVL)T and p := (LVby)T such that the
intentions of the above definition are met in the following form:

7rT r = 6X pTp = by 77r T nppT = 6 TTp = b6xL n L6y. 0*

Now we deal with the other direction, i.e., the description of V via the two projections.
Therefore, we assume a heterogeneous relation algebra. Then we are able to prove:

Theorem 3. Let a direct product (r, p) be given. We define for this product an operation V
(in infix notation) by RVS := RrT n SpT. Then we obtain the equation 0

RVS = R(VL) n S(LVI).

If the point axiom (see [I 1]) holds, i.e., the relation algebra is representable, then we also have

(RVS)(PVQ) T = RPT n SQT. 0 o

One might ask whether the second statement of this theorem (of which "C" is rather trivial)
could also proven without assuming the additional condition. Over the years we have tried
very hard to solve this "unsharpness-problem". For example, in [3, 16] some weaker conditions
than the point axiom can be found. Today, we believe that a proof of inclusion "D" without
conditions is not possible, i.e., that there are models of the axioms of a heterogeneous relation •

algebra in which "#" holds.

We have shown that one approach may more or less directly simulate the other; so either
one could be taken, the Rio approach with partial identities, as well as the Munich approach
using heterogeneous relations. It should be mentioned that the major part of the proofs of
the theorems were developed with RALF, a relation-algebraic formula manipulation system and 0
proof checker developed in Munich [4] and re-implemented on a different hardware-software basis
by the Rio group.

Finally, let us shortly discuss some advantages and disadvantages of the two approaches.
While using partial identities, there are no problems with the applicability of operations. How-
ever, when nonfitting relations are multiplied, the result will often be the null relation. On the 0

all1 -
- w --.- - 0--



ottier hand, a supporting -.jm piter system such as RALF or RELVIEW should refuse to operate
on nonfitting relations. Heterogeneous relations fit neatly into the way of thinking with sorts
or types in Computer Science. Working with matrices and vectors might even let engineers feel
comfortable since they are accustomed to them. A second difference between the two approaches
ih with respect to the existence of models. In the heterogeneous case, one can work with small 0
models that certainly exist, such as the set of all boolean n x n, m x in, n x m, m x n-matrices.
In contrast, already the very first examples in the other case is burdened with the question of
whether the base set of all the partial identities is free of set-theoretical antinomnies. There is also
another important difference. When working with relations R C X x Y between sorts and types,
one has the possibility of distinguishing the categorical object X from the domain RL where the
relation is "defined". This difference, to which computer scientists are very much accustomed
is usually hidden when using partial identities, since then one would have to manipulate two

partial identities to fully handle R. In [6], pp. 334-354, however, a new kind of objects, called
problems is studied taking this into account.

References

[l] G. Baum, A. Haeberer, P. Veloso: On the representability of the abstract relational algebra,
I(;PL Newsletter 1, 3 (September 1992) European Foundation for Logic, Language and
Information Interest Group on Programming Logic

[2] R. Berghammer, G. Schmidt, H. Zierer: Symmetric quotients and domain constructions. S

Inform. Proc. Letters 33, 3, 163-168 (1989/90)

[3] R. Berghammer, H. Zierer: Relational algebraic semantics of deterministic and nondeter-
ministic programs. TCS 43, 123-147 (1986)

[4] R. Brethauer: Ein Formelmanipulationssystem zur computergestiitzten Beweisfiihrung in
(der Relationenalgebra, Universitit der Bundeswehr Mfinchen, Diplomarbeit (1991) • 0

[5] L. Chin, A. Tarski: Distributive and modular laws in the arithmetic of relation algebras.
University of California Publications in Mathematics (new series) 1 (1951)

[6] A. Haeberer, P. Veloso: Partial relations for program derivation: Adequacy, Inevitability
and expressiveness. In: B. Moller (ed.), Constructing programs from specifications, North-
Holland, 319-371 (1991)

[7] A. Haeberer, P. Veloso, P. Elustondo: Towards a relational calculus for software construc-
tion. Meeting of IFIP WG 2.1, Chester, England (1990)

[8] B. J6nsson, A. Tarski: Boolean algebras with operators, Part I1. Amer. J. Math. 74, 127-167
(1952)

[9] R. Maddux: A sequent calculus for relation algebras. Ann. of Pure and Applied Logic 25,
73-101 (1983)

[10] G. Schmidt: Programs as partial graphs I: Flow equivalence and correctness. TCS 15, 1-25
(1981)

[II] G. Schmidt, T. Strbhlein: Relation algebras: Concept of points and representability. Dis- •
crete Math. 54, 83-92 (1985)

[12] G. Schmidt, T. Strbhlein: Relations and graphs. EATCS Monographs in CS, Springer (1993)

[13] A. Tarski: On the calculus of relations. J. Symbolic Logic 6, 73-89 (1941)

[14] P. Veloso, A. Haeberer: A finitary relational algebra for classical first-order logic. Bull. of 0
the Section on Logic of the Polish Academy of Sciences 20, 52-62 (1991)

[15] P. Veloso, A. Haeberer, G. Baum: Formal program construction within an extended calculus
of binary relations. J. Symbolic Comp. (to appear)

[16] H. Zierer: Relation algebraic domain constructions. TCS 87, 163-188 (1991)

-LZ-



0

Specifying Type Systems with Multi-Level Order-Sorted Algebra

Martin Erwig" 0

We show how to use order-sorted algebras on multiple levels to describe type system. sad languages,
in particular, data models and query languages. It is demonstrated that even advanced aspects can be
modeled, including, parametric polymorphism, relationships between different sorts of an operation's
rank, the specification of a variable number of parameters for operations, sad type constructors using
values (sad not only types) as arguments.

0

1 Main Idea

The concept of multi-level algebra was initiated from our work on extending data models by new data
types [2]. Although many-sorted algebra can be conveniently used to describe non-standard data mod-
els many important aspects remain unformalised. Even the generalization to order-sorted algebra [4],
though nicely expressing subtypes and the notions of inheritance sad overloading, is not able to model 0
fundamental concepts, such as, parametric polymorphism. Parametric order-sorted algebra [3] offers a
partial solution, but there are still dependencies that cannot be expressed. For example, it is not clear,
in geneal, how to define a parametric module that is not allowed to accept an instance of itself as
parameter, which is needed, for instance, to define unnested sequences.

In contrast, this is possible with two levels of order-sorted algebra. The idea (in the two-level case)
is to use a signature to describe a type system (or, language of types) where sorts denote sets of type 0
names and operations denote type constructors. The values of an algebra for such a signature are then
used as sorts of another signature now describing a language having the previously defined type system.
This approach is not limited to two levels, and there are indeed reasonable applications of three-level
algebras.

2 Kinds: Describing Ad Hoc and Subtype-Polymorphism * 0

Suppose we have to define an operation "<" on numbers and strings (and possibly several other sorts).
One approach is to give each signature entry separately. This becomes tedious as the number of data
types for which "<" is defined grows. So it is much more convenient to group all the sorts in a kind [1],
for example, ORD = {nat, int, str), and then to define all signature entries by a type scheme:

V ordE ORD. <: ord x ord -. bol

Apart from saving space, this notation is more descriptive w.r.t. the language.being defined since the ad
hoc polymorphism of "<" is not "scattered" over different places in the signature.

Subtype-polymorphism, too, can be specified using kinds: First, define for each sort & (having sub-
sorts) a kind SUB, containing s and all subsorts of s. Then introduce for each operation f: s - t a
specification:

V , E SUB,. f: o -. t

3 Two-Level Algebra: Type Constructors and Parametric Poly-
morphism

A type constructor takes one or more types as arguments and produces a new type as result. The sequence

constructor (seq), for example, takes a type, say, int, and produces the type containing all sequences
of integers. Of course, seq may be applied to other types as well, but in some languages where nested
sequences are not allowed (for instance, database languages) it must not be applied to sequence types.
In that case, the argument types for seq are a proper subset of all types and can be grouped into an
appropriate kind. Similarly, the result types form a kind, too.

Now we can regard kinds and type constructors as sorts and operations, respectively, of an order- 0
sorted signature. The example of unnested sequences can then be expressed as:

"FernUniveuuatit 14gen, Ptaktkcde Inhdafnn IV, Psta& 9440. Mso Hag-, G---y, ewis'hrmna-hapn~e

W V 0
U U U W - w w 0-



typesysteM UNNrsTrD
kinds ARO, SEQ
teons int, str, hoof: - ARG

sq: ARG -. SEQ

In the sequel we shall presume the variable quantifications "V seq E SEQ" and "V erg E ARG". Now we
can specify opeations on sequences as follows.

langUage LISTS
types from UNNESTrU)
IVus nil: - seq

cons: ary x seq(sar) -, seq(srf)
hd: seq(sar) -.- erg
ti: seq(,r,) - seq(avg)
length: seq -int

Note that "V seq F SEQ. sej denotes the same types as "V ary e ARG. seq(arg)'. Thus, we can use seq
in the type specifications for nil and length since we do not need to refer to the argument type of the 0
respective sequences.

The signature UNNESTED defines merely the typing of type constructors. The semantics usually
consists of two parts: On the one hand, algebraic properties of type constructors can be specified by
equations (for instance, associativity of a product operator). The set of sorts is then taken modulo
such a specification (in our example this was not necessary). On the other hand, the effects of type
constructors on the carrie sets need to be given by additional functions. Formally, we can capture this
by the following definition.

Definition (Multi-Level Algebra) An order-sorted signature is a I'-lesl signatre, and an order-
sorted algebra is a l"-level sigbc . Given an nth-level signature (S, 5, E) and an nU-level E-algebra B,
an order sorted signature (S', <', ') is an n + l*-Iee! sipsatre depending on E and B if S' = Ues sao"
A V'-algebra A is an n + l't-level algebra if for each a,,,. E E there is a function of, (called tre
constructor) and if for each a 6 S' such that s = 0.,(t1 .... t.) (with w = Se... S. and t, E si for S 0
1 < i < n) we have s4 = o,,(tAi, ... .,t). The functions 4,. define the constructor semantics for E,
and A depends on (the higher level) B and the constructor semantics for E. 0

Note that the individual algebra levels are denoted by counting backwards (with regard to the construc-
tion history). That is, an n + l-level algebra A (or, A,) depending on the n 1-level algebra B (or, A2 )
is said to be on the first level whereas 0 is said to be on second level, and so on. In particular, when E
is used to describe types, we also say that E is on type level and E' is on language level.

The constructor semantics for the seq constructor is defined by:

seq(s)A = seq (r') = (rA)"

4 Lifting

According to our definition, type constructors are working exclusively on type.. But there are constructors
that are also based on values. The array constructor, for example, takes in addition to its component
type two values of an ordered type. Similarly, the string constructor takes a number n and denotes the
set of strings of length n.

In order to retain the clear separation of the kind/type/value levels Cardelli [1] proposes to "lift"
values onto the type level (and the corresponding types onto the kind level). With regard to the two
examples, this means to introduce for meah value n E nat a new type Ri with the carrier being V = fn).

Moreover, we create a new kind, Qt, with ; = {I I n e nat0). Then array and string can be used
exclusively on the type level, as in array(T,9, bool) or string(03).

Let EL denote the subset of type constructors that need lifted types. In order to specify a type system
and language using types constructed by operations of EL the following steps have to be performed (for
a two-level algebra):

(i) Define the type system without EL. Call the signature Eo.
(ii) Define E-, the part of the language not needing types constructed by EL.

(iii) Perform liting of Eo and -, and add EL to , that is, define E =Eo U EL.

(iv) Finally, define E' with regard to E.

- ZUI--

w w W .. ,V V 0 0



If theta afe constructors that use values of a type that is built by a constructor of EL we have to repeat
the Imst two dope. If only one lifting is necessary, we can specify EL together with Eo in one step. Thus,
array can be defined by (we do not list lifted kinds explicitly):

typeOyatem AR"YS
kinds ANY
tcons nat, str, bool: -. ANY

array: mat x oat x ANY -. ANY

Since sorts constructed by arry are of kind ANY nested arrays are allowed by this definition - compare
this to the definition of seq from above. (The same effect can be achieved by exploiting the poperties of 0
order-sorted algebra and defining a kind ARR with ARR < ANY.) The constructor semantics are given
by:

-ay(fi, 1%,t)A = mray (fi, rn, t) = rr•y•({n,)},IMA) M n. ... m) - tA

Operations on arrays can be defined by (assume quantifications "V any E ANY" and "V R, r, E n&i"):

types from ARYS
funs newarray: nat x nat x any -. array(fi, i, san)

select: array(fi, i, say) x nat - any
update: array(i, ra, say) x nat x any -. array(fi, i, any)

Note that with the above definition range checking (for select/update) is not expressible on the type level,
for example, an expression select(newarray(l, 9, true), 15) is type correct w.r.t. to the above signature.
By introducing a third algebra-level range checking will become possible. (Then arrays can be defined
in a more general fashion based on a class of subrange types.)

5 Three-Level Algebras

Consider the function [ for constructing sequences, which is defined for an arbitrary number of argu- * 0
menta. The signature entries ae:

[]: - seqary .,- se(.ny)
[ r# x or -. seq(arl)

To denote these signature entries we need for each argument type 9 a kind containing all product types
over t. This can be achieved as follows: We define a kind coutruder list (this is an operation on level
three with the same semantics as seq). Now, list(K) denotes for a kind K all sequences of sorts from K.
If, for example, K,5 = {nat)}, the quantification "V erg E list(Kn.Z)" binds the sequences (), (nat),
(nat, nat), ... to erg. The desired product types can be obtained by "inserting" a "x" type constructor
between each two adjacent types in a sort sequence. This is achieved by the higher order function fold:

foldK(-, O) = C
fold'(a,()) = t,
foldE:(o, (ti,ts,...,t,)) - (t 1,fold'(f,(t3, . .. t,)))

Now the type of [ (for natsequences only) can be specified by:

I ]: fold(x, list(Kin)) - seq(nat) 0

A more precise account of this kind of specification requires higher order algebras [8, 9] and a more
elaborate treatment of lifting. Finally, for the convenient specification of multi-level algebras we need a
language that allows for the oue of terms of all levels in the definition of operations' ranks. This will be
covered by the full paper.

6 Conclusions and Related Work
Data models are still an area of ongoing research. Some reasons for this may be the constant identification
of new applications for database systems and the desire for improving existing models. AlU the more

Kau canmbe abedil- byMg.

W 1-



it is surprising that no general framework is used, though, to describe the large variety of models. By
using multi-level algebra we can describe different models within the same formalism. In the first place, 0
this helps exhibiting relationships and differences which is necessary to fully understand and judge
data models. Possibly, this could be used for implementations of one model by means of another or
for investigations in the integration of heterogeneous database settings. If nothing else, the presented
framework reveals the high complexity of seemingly simple data models, for example, the description of
the relational model needs the full range of concepts indicated above (that is, lifting, three levels, higher
order algebra).

In fact, two-level algebras were already used in [12] to specify categories with certain properties for
theoretical investigation ad in [17 for the formalization of the composition of specifications. In contrast,
our concern is the specification of type systems, more specifically, the formal description of data models
and query languages. In this respect, the work of [5] is similar, although more directed towards the
description of a specific system architecture. Particular differences are that [5] does not consider lifting,
that no specification language exists, and that the approach (like [12, 7]) is limited to two levels. Another
difference between [12, 71 and our work is that we employ more than only one sort on level two. In [2]
many applications of multi-level algebra can be found. This includes the formalization of graph types, 0
heterogeneous sequences, and some operations with a variable number of arguments. In the full version
of this paper we will give a specification of the relational model and an NF' model.

Finally, let us summarize some points counting in favor of using multi-level algebra and exhibiting
its primary scope.

- Parametric polymorphism is expressible.

- All kinds of polymorphism (subtype, ad hoc, parametric) are describable within one formalism.

- Type systems can be easily extended by new structures (graphs, heterogeneous sequences). This is
important to meet changing requirements of new applications.

- The definition of properties of type constructors (for example, associativity) is separated from the
constructor semantics.

- Recently, fairly general approaches to the type checking of languages defined by many-level signa- 0 0
tures have become available [10, 6, 11]. In many cases, these methods are directly applicable to
languages defined by multi-level algebra.

References
[1] Cardelli, L.: Types for Data Oriented Languages, Conf. on Eztending Database Techology, 1968, LNCS 0

303, pp. 1-15.

[2] Erwig, M., Giting, PH.: Explicit Graphs in a Functional Model for Spatial Databases, Report 110, Ferns-
Universitit Hagen, 1991.

[3] Goguen, J.A.: Higher-Order Functions Considered Unnecessary for Higher-Order Programming, in: David
Turner (ed.) Research Topics in Functional Programming, Addison-Wesley, 1990, pp. 309-352.

[41 Goguen, J.A., Meseguer, J.: Order-Sorted Algebra 1, Report SRI International, 1989. 0

[51 Giting, R.I.: Secoad-Order Signature: A Tool for Specifying Data Models, Query Processing, and Opti-
mization, ACM SIGMOD Con/. on Management of Data, 1993, to appear.

[6] Kaes, S.: Type Inference in the Presence of Overloading, Subtyping sad Recursive Types, ACM Conf. on
Lisp and FnctinW Progrommeng, 1992, pp. 193-204.

[7] Lesczylowski, J., Wir'ng, M.: Polymorphism, Parameterizatios and Typing: An Algebraic Specification
Perspective, Spmp. on Theoretical Aspects o Computer Science, 1991, LNCS 480, pp. 1-15. 0

[8] Meinke, K.: Universal Algebra in Higher Types, 7th Workshop on Specifcation of A&stract Data T7ýe, 1990,
LNCS 534, pp. 185-203.

[9) Ml611er, B.: Algebraic Specifications with Higher-Order Operations, in: L.G.L.T. Meerteas (ed.) Program
$ t and T esujormation, Elevier Science Publishers, 1987, pp. 367-398.

1101 Niphow, T., Prehofer, C.: Type Checking Type Classes, t0th ACM Symp. on Principles of Programming
Languages, 1993, pp. 409-418.

[11f Niphow, T., Snelting, G.: Type Classes and Overloading Resolution via Order-Sorted Unification, ACM
Conf. oan Functional Programming and Computer Architecturw, 1991, LNCS 523, pp. 1-14.

[12) Poigni, A.: On Specifications, Theories, sad Models with Higher Types, Information and Control 68,1986,
pp. 1-46.

-- Zi40



0

An Overview of the SODA System (Extended Abstract)
Peter Thiemanzin

Wilhelm-Schickard-Institut, Univerrntit Thbingen, Sand 13, D-W7400 Tfibingen, Germany

1 Introduction

We propose a system for software development which is aimed at merging the advantages of using methods from
algebraic specification with features known from object-orientmd systems, namely rapid prototyping, evolution-
ary programming, and reusability. Our proposal is a refinement of earlier work where we proposed to access 0
functionally specified abstract data types from imperative modules [5].

A project is composed from modules with the usual operations of import, parametrization, and renaming.
Ther are three kinds of modules. Modules can be either functional, state machine, or imperative.

Functional modules ae specified in the executable first-order specification language SODA (specification in
order-sorted data algebras). Data algebra are initial algebru of a modest extension of order-sorted algebra [2]
by sort constructor and parametric polymorphism (61. Derived functions are defined by recursive definitions 0
as a conservative extension of the data algebra.

The other kinds of modules (state machin and imperative) describe the non-functional parts of a project
(e.g., interaction, database acce). Their operations can not be used from functional modules. A state machine
module defines a state and operations to manipulate the state and/or provide information about the state to
the outside.

Imperative modules play an important r6le for our system to be interesting for real world projects. At any
point of the design procem the implementation of a functional or state machine module can be replaced by an
imperative module. Of course there is the requirement that replacements of functional modules remain side
effect free.

2 Foundation 0

The foundation of the data algebra for functional and state machine modules is an extension of order-sorted
algebra (OSA). While ordinary OSA employs a partial order of sorts and provides parameterization only through
module instantiations, we follow Hanue [3J by extending OSA with parametric polymorphic sort constructors
and with a mechanism similar to record extensions as proposed by Wirth for the language Oberon (9, 101. While 0
Hanus defines a two-level semantics for polymorphic structures, we give a different (one-level) semantics as an
algebra that employs truly polymorphic data values.

2.1 Preliminaries

pift(M) denotes the set of finite subsets of M. For a function I: A - B and A' C A PA' denotes the restriction 0
off to A'. We write irk for the k-tuple (a,...,e•).

A ranked alphabet e is a finite set of symbols with a total function a: -. IN denoting the arity of the symbol,
x E e(") abbreviates x 6 0 and a(x) = k. The set Te(V) of 6-terms over a set of variables V is the smallest
set T where V U (0) C T and for all k e IN, X e (8), tl,..... t e T it holds that x(ti,..., ti) E T. If V = I
we write To. The set of all variables occurring in term t is var(t). A substitution is a function o: V -- To(V) 0
where ov # v only for finitely many Y E V. Denote the set of substitutions over Tq(V) by Subst(e, V). A
substitution a is extended to a function &: T*(TV) --* TO(TV) by &iv = 6, irlo() = id, and for x E e(h) and
t,.....taG Te(TV) d(x~i....ta)) = x(dti.... ta). For convenience we write or instead of &. A renaming is
a substitution that permutes the variables. Renaming. induce an equivalence relation u• Te(V)I.

- w. W w~~ *t--*w



S

2.2 Sorts and signatures
A polymorphic order-sorted signature E = (8, 4) consists of a ranked alphabet 0 of sort construclors
and a finite set A of operator symbols with a total function a: 4- p/(UJ,N, D,) \ 46) where D. =
{(rv ... ro,mC) I T E Te(TV),C E C) denoting the arity of the symbol. C is the set of constraint sets:
C = pli"(TV x T,(TV)); if C E C and a E TV there is at most one pair of the form (a, r) E C, furthermore 0
C can be linearly ordered to {(al, ). (a,,,rm)j so that aj, occurs in rj only if i < j.

A polymorphic data structure declaration (PDSD) simultaneously defines a relation < on T9, sort terms
without variables, and the arity of the data constructors. A PDSD is a system of equations of the form
)t(N') = ... +r+ ... +( ... , cd .... ) where % E 0(), a, E TV, and r,; E Te({oj..., at}). A counsrsclor
declaralton cd ::= c I c(Y) declares the arity of c E A to be a(c) = {(r1 ... ,x(N),0).

The sort graph of a PDSD is the directed graph with vertices 0 and edges (X - x') if there is an equation
%(Ni) = x'(TY) + .... Call a PDSD well-formed if its sort graph is acyclic.

For a well-formed PDSD define a rewrite relation >-C Te(TV)2 by X(rl,.... n) >- r' if there is an equation
x(••D = r + ... and r' = r[ri/a,]. > denotes the reflexive, transitive, and 6-compatible closure of >-.

Define <C T@ x T9 by tj :5 92 if either tjl= X(rl..., r), t2= X(r ..... k) and r. _<5 for I < i < k, or
t2 >- 92 and 9L _< t'. The relation < is a partial order. < can be extended to Te(TV) by adding the rules a _< a
for all a E TV and defining t _<' t2 if 3'2 t2 such that t < t12*.

Call a well-formed PDSD coherent if < is a type order, i.e., < is a partial order and if there is an upper
(lower) bound of rl, r2 E To(TV) then there is a least upper (greatest lower) bound denoted by rT U r2 (r, n r 2).
For technical reasons we require all PDSDs to be coherent.

2.3 Algebras 0

A polymorphic order-sorted algebra (A, &) with signature E = (e, A) consists of

"* a family A = JA" Ir E Te(TV)j of carrier sets indexed by (equivalence classes of) sort terms where for
all r, TI E T.(TV)A" K A if r < r' and also for all a E Subst(O, TV) it holds that A" C A", and

"* a total function t: 4 - Ope(A) (an interpretation) where Ops(A) = U,,{f4: A" x ... x A"' -. A"o n, E *
Te(TV)) and & maps f:(r, ... r.,r7, C) E A to an element of l{A•'• x ... x A'" -. A7 I , E

Subst(6, TV),a_< r E C ta < r, > ri').

2.4 Terms

During the formation of terms we are given a value v of sort r and want to apply operation f : (ri, ro, Cf) E 4. 0
f is applicable to v if there is a substitution or such that CTr < or, and the inequations uC! are satisfied. We
give a non-deterministic procedure SOLVE that is an adaption of the algorithm MATCH of (1] to our situation
combined with some simplification rules. The procedure is given a set Co of inequations on sort terms as input.
Upon termination it either yields a substitution a that satisfies Co or fails if no such a, exists. The following
deduction rules are applied to the initial set of inequations C1 U {Ir < r) and the identity substitution id.

C't- < In:5r ..... n < r,'J,,, Or C .U ,- "},. a•(2

CUo<a),o, aETV (2.3) CUja<'6),u a0flETV (2.4)
C, o C[al,/, uo fP a]

Cut < { nT<lTI, o fail, if a Tr n r (2.5) CUir < a, r< a, fail, if Tr U r (2.6)
C U i a< r, n r'}, aCUIrU '<ae

CU{r<a',<< },a, a va(r)U var(r) (2.7)C cUu< ,-r <,a),. au,<,
CT/] (r o a--, aT 0 var(T) (2.8) CT/e],&<o. [orT a 0 var(T) (2.9)

The rules are applied according to the following plan. First rule (2.1) is applied as often as possible. If now
rule (2.2) is applicable we apply it by non-deterministically choosing a rewrite step and fall back to rule (2.1).
If rule (2.2) was no+t applicable but there is still an inequation r < rT where r and rT 0 TV the procedure

-W W -



signals failure and backtracks to the last application of rule (2.2) where there is an alternative left. Otherwise
rules (2.3) and (2.4) are repeatedly applied. Now rules (2.5) and (2.6) are iterated. Failure at these rules is not
handled with backtracking. Now all inequations have the form a _< r or r < a and for each variable a there
is at most one inequation a < r and at most one inequation r < a. Rule (2.7) deals with the case that both
inequations are present for a given variable a. After its application the procedure must fall back to rule (2.1).

At this stage we have at most one inequation for every variable and it either has the form a < r or r < a.
The resulting substitution is built with rules (2.8) and (2.9).

The procedure SOLVE has type Pf`(Te(TV)2 ) - Subst(e, TV). On input C it runs the rule system as
outlined above on the initial configuration C, id. If the rules terminate successfully with configuration 0, a then
o is output, otherwise failure is signalled.

For a signature E = (0, A) define the term sets 7"* for r E Te(TV) as the smallest solution of

"* if:(c,?",S)EA then f E7T ,

" ifIf:(n ... r,,ro, C) E A and t. E T' for I < i < n and o, = SOLVE({Q <i r I1 < i <_ n}UC) then

A(t, t,) E T`7. (var(r,)n var(ri) = S can be assumed.)

The term algebra is defined as (T, &) where the carrier T = {r , r E Te(TV)} and Tr = UIT" I r'T
r" A 30, E Subst(6, TV) : or" = r}. The interpretation i is defined for f: (c, r, 0) E A by &(f) = f and for 0

f : (ri ... r,ro, C) and 9i Er : by 4(f )(tj ..... t,.) = f(t ,...., t.) if SOLVE({ri' < r I 1 < i < n) U C) succeeds.
At this stage homomorphisms can be defined and the initiality of the term algebra can be proved. A semantics

for the derived functions can be obtained in several ways. Either the principle of structural induction is used
to define total functions on initial polymorphic OSAs (as proposed by Klaeren for many sorted algebras [4]), or
monotone algebras are used to give a fixpoint semantics for general recursive functions.

3 Methodology

In the following subsections we briefly review the specification and programming facilities that may be used
in the different kinds of modules. In order not to lose referential transparency we do not allow arbitrary calls
between modules: imperative modules may call any function that is desired, state machine modules cannot call 0 0
functions from imperative modules, and functional modules must only access functions from functional modules.
This concept (confined to functional and imperative modules) originates from [5].

3.1 Functional modules

Functional modules are composed of an interface, a local declarations, and a function definitions. The interface 6
provides means to import and combine signatures and sort structures from other modules. Parts of imported
signatures can be projected and renamed. Imported and locally declared entities can be declared visible for
export. Nothing is exported by default. The local declarations extend the combined imported signatures by
providing PDSDs as described in 2.2 and declaring operator symbols. Function definitions are mutually recursive
definitions of locally declared operator symbols. Let E = (0, A) denote the signature formed by imports and
local declarations. The form of a definition is r(zi,..... z 0 ) = e where f: (r" ... . To, C) E A is locally declared S
and e E EE((zl,...,x..,)"nc under the assumption that z, E ETEc. The set of right hand side expressions EE
is an extension of TE by the constructions let v = e in e' and case eo of ... c,(vu,. : ej ....

Modules can be parameterized with respect to a signature. A parameter signature is specified by declarations
of operator symbols and by PDSDs without constructor declarations. Parameter instantiation is provided as an
extension to the import facility in the interface section. Proper instantiation is checked by matching signatures.

3.2 State machine modules

A state machine module can be regarded as the definition of an object class. It has interface and local declara-
tions in the same way as functional modules. Additionally it declares a specific sort to be the state. The state
sort can also be an extension of a supersort. This means that the arities of all constructors of the supersort are
extended with identical additional components. Thus we can have multiple inheritance statically by means of
OSA and single inheritance dynamically by means of the constructor extensions. State machine entities can be
created dynamically and each entity has its own local state which is initialized at creation time.

Furthermore, a state machine module contains definitions of operations that take the state as implicit argu-
ment and may update it destructively. Operations may invoke other operations, and they can return values.

- - 0-



An operation f is defined by f(z t .. z) = let ri;n...; m return e, e E EE, where each n4 E ME, i.e.,
it is either an expression m _= e E EE, or an assignment m =_ v = e for e E EE, or a case decomposition
Mal case e ot ...C(V .. ,v) : M..., E Mi.

3.3 Imperative modules

In imperative modules we use the algebraic data structures as a type system for an ordinary imperative ian-
guage. The programming language Oberon already has a record extension mechanism similar to our proposed
constructor extensions.

4 Conclusion

The concept outlined above appears promising since it combines a specification method for abstract data types
with clean handling of state. The restrictions that we impose on inter-module calls allow for an efficient
implementation since it is possible to take advantage of the referential transparency in the implementation
of functional modules. Most of these advantages carry over to state machine modules since side effects are
restricted to updating the state. The imperative modules are provided as a last resort, for example for system
level operations.

By using an order-sorted framework we gain flexibility compared to our earlier work which builds on many-
sorted algebras and does not have the concept of state machine modules [5]. The improved flexibility entails
better reusability and the possibility for evolutionary program design.

We have a functional language implementation toolkit around an implementation technique that we have
developed in earlier work [8, 7]. We are currently preparing an implementation of the front end for the functional
part of SODA in this environment. Furthermore we investigate the extensions needed to implement the state
machine modules. For the imperative part we consider an extension of the programming language Oberon [9]
with algebraic datatypes and overloading.

References * 0
[1] Y.-C. Fuh and P. Mishra. Type inference with subtypes. In H. Ganzinger, editor, ESOP 1988, pages

94-114, 1988. LNCS 300.

[2] J. A. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for multiple inheritance,
overloading, exceptions and partial operations. Technical Report SRI-CSL-89-10, SRI International, Menlo
Park, CA, July 1987.

[3] M. Hanus. Parametric order-sorted types in logic programming. In Proc. TAPSOFT 1991, pages 181-200,
1991. LNCS394.

[4] H. Klaeren. A constructive method for abstract algebraic software specification. Tkeoretical Comput. Sci.,
30:139-204, 1984.

[5] H. Klaeren and P. Thiemann. A clean Modula-2 interface to abstract data types. Structured Programming,

11:69-77, Apr. 1990.

[6] R. Milner. A theory of type polymorphism in programming. J. Comput. Syat. Sci., 17:348-375, 1978.

[7] P. Thiemann. LaToKi: A language toolkit for bottom-up evaluation of functional programs. In
M. Bruynooghe and M. Wirsing, editors, Proc. PULP '92, page 481f, Leuven Belgium, Aug. 1992. Springer.
LNCS 631.

[8] P. Thiemann. Efficient implementation of structural recursive programs. Journal of Programming Lan-
guaes, 1(1):41-70, Mar. 1993.

[9] N. Wirth. The programming language Oberon. Software, Practice and Ezperience, 18(7):671-690, July
1988.

[10] N. Wirth. Type extensions. ACM Trans. Prog. Lang. Syst., 10(2):204-214, Apr. 1988.

Lao w-



0

Category Theory for the Configuration of Complex Systems

Gillian Hill°

The abstract framework of category theory is shown to provide a precise semantics for the config-
uration of complex systems from their component parts. Diagrams, defined as functors between
categories, express configuration by representing the operations of combinators on recursively de-
fined system components. Although modularity has been described as an essential property of 0
complex systems, no clear and simple definition of a module has emerged at this general level. In
this paper a new module concept is defined to represent reusable system components, at any level
of development. The semantics of system configuration is given by the construction of colimit
diagrams.

A category theoretic semantics was given in [BG77] for putting theories together to make specifi-
cations. The activity of specification was viewed as theory-building in [TM87, Vel86] and interpre-
tation between theories was formalized in a categorial framework in [MF90]. Category theory was
used to define an abstract specification theory for refining specifications in [UGg0I. In this paper
these ideas are extended to provide a precise semantics for both structuring and implementing
system components to configure a final executable system.

A language for configuration, designed in [Hi192], is at a meta-level to a specification language and 0
describes the operations of combinators on the specifications and modules that represent the system
components. High-level combinators express the horizontal structuring of both specifications and
modules by extension and parameterization; and also the vertical development, which is part of
the design proces, by implementation. The relationships between the component parts of systems
have been identified at an intuitive level in order to choose appropriate high-level combinators for
configuration. The high-level combinators have then been defined formally in terms of the more * 0
primitive combinators: interpretation, extension and conservative extension. A logical system
includes the configuration theory and the application theories, to be configured. The logic for
configuration must possess the strong Craig interpolation property in order to preserve conservative
extensions of structured specifications under interpretation.

The aim of this paper is to present a logical framework for the configuration of modular systems
that is independent of any particular specification approach, design methodology or programming
paradigm. First-order logic is chosen to express new operations for horizontal structuring and
vertical implementation within a conceptual framework that is both simple and natural for engi-
neers to use. System components are represented in a uniform development space by recursively
defined objects with sorts in the set {spccification, module). In [HiI92] specifications are presented
as objects in textual form that record the history of configuration as a sequence of operations
by the combinators on recursively defined objects. In this paper the abstract category-theoretic
semantics is functional with the primitive combinators represented by natural transformations
between recursively defined diagrams.

We define a diagram as a functor from the category of graphs to the category Conf of configured
objects when the limit of the functor exists in Conf. The functor labels a graph, which has a
only a shape, by the specifications or modules, as the objects, at the nodes and by the morphisms
between the objects as the arrows. The natural transformations that join objects, represented
by diagrams, to form more structured diagrams become the morphisms between objects in the
diagrams of the more structured objects. The semantics of the high-level combinators is given by
the construction of colimit diagrams that express the joining together of structured objects that
may share common parts. Morphisms representing conservative extensions are shown to be crucial
for completing the construction of these colimit diagrams. Our definition of a diagram is based
on that in fGMU88J but we change their presentation of the structured specifications. In addition
we provide a more concrete semantics for our configuration language. This is given by a set of
well-formed diagrams, that name both the objects at the nodes and the primitive combinators

"Department of Computing, Imperial College of Science Techuology, London. SW7 2BZ, gah~docicac.uk

1--W W . W 0



that operate on these objects. These more concrete diagrams are the elements in the models for
the configuration language and represent the structured objects.

Our new module concept is proposed as an aid to managing the complexity of large systems by
focusing on building systems from reusable components at any stage in system development. A
module is created by a combinator from the textual specification of an object, and the semantics
of module creation is based on the construction of a colimit for the diagram of that structured S
specification. Any number of uniquely named module instances can be created from a specification
at any stage in system configuration. Modules may be created from primitive specifications before
they are structured, or alternatively from complex specifications at the end of the structuring pro-
ces. Similarly modules may be created from abstract specifications before they are implemented,
or alternatively they may be created from concrete specifications at the end of the refinement
process. •

As a simple example, obj one-roomediiouse, structured as spec house[module rooml], may be
instantiated to spec house -..., [module bedroom]. Alternatively, obj two-roomed.bungalow
may be instantiated to spec house ..-. ,. ... ,.,.[., (module kitchen, module bedroom]. Mod-
ule instances, uniquely named, may then be created for each of these structured specifications by
an operation which is safer than low-level copying. The module instance of the house with one
room as a bedroom will be structurally identical to the module instance of spec house .-.. - [spec
bedroom]. Their textual specifications would record different histories of specification, however:
the first with instantiation by a module; the second by a specification. In the abstract semantics
instantiation by a module is represented by interpretation between diagrams whose single nodes
are colimit objects; instantiation by a specification is by interpretation between structured dia-
grams. To configure a house with three living rooms and three bedrooms we would structure a
house parameterized by two types of room, spec house[spec room 1, spec room2!. Three modules 0
created from each of the specifications for a room could then be instantiated to the actual room
required, such as lounge or guest bedroom.

Our approach is intended to be loose and flexible. The engineer is able to choose, at each stage in
building a system, between building from specifications or modules. The final configured object of
a software system will be a structured object that is implemented and in the form of an executable
module. In addition to this flexibility the engineer is able to express explicitly the sharing or non-
sharing of system components. Flexibility is also provided within our theory of configuration by
the commutative properties of the high-level conubinators. We characterize these properties as the
axioms for our theory of configuration in the style of the algebraic calculus of [BHK1]0.

References
1BG77] R. M. Burstall and J. A. Goguen. Putting theories together to make specifications. In Proceedings of

the Sth. International Joint Conference an Artificial Intelligenee, pages 1045-1058, Cambridge, Mass.,
1977.

IBHK90 J. A. Bergstra. J. Heering, and P. Klnt. Module algebra. Journal of tIe ACM, 37(2).335-372. April
1990.

[GMU88] T. Gergely, T. Maibaum, and L. Ury. Modularization: Structuring specifications. Technical Report Vl.0,
Applied Logic Laboratory, SZAMALK, Budapest and Imperial College, November 1988.

[Hi1921 Gillian Hill. A L•guage for System ConJigurstion. PhD thesis, Department of Computing, Imperial
College, University of London, 1992. draft.

[MF9OJ T. Maibaum and J. Fiadeiro. Stepwise program development in n institutions. Tedinic•l report, Imperial
College, November 1990. with Martin Sadler.

[TrMST Wladyslaw M. Turski and Thomas S. E. Maibaum. Tie Specification of Computer Progrnem. Intema-
tional Computer Science Series. Addison Wesley, 1987.

[UGg90 LAesah( ry and TamAs Gergely. A constructive specification theory. In G. David, R. T. Boute, and B. D.
Shriver, editors, Declarsatie Systems. Elsevier Science Publishers B. V. (North Holland) IFIP. 1990.

[VeISS Paulo A. S. Veloeo. Program development as theory manipulations. Technical report, PUC/RJ Departw-
mento de Informatica, Rio de Janeiro, Brazil, May 1985. Series: Monografas em Ciencia da Computacao
No4/s5.

, w , W, .,a ,



0

Algebraic-Oriented Institutions
Extended Abstract*

M. Cerioli and G. Reggio.
Dipartimento di Informatica e Sciense dell'lnformazione, Universith di Genova

Viale Benedetto XV, 3 - 16132 Genova - Italy

e-mail: {cerioli, reggio}lOdisi.unige.it
0

In many recent applications of the algebraic paradigm to formal specification
methodologies, already known algebraic frameworks (onesorted/many-sorted/order-
sorted total/partial/non-strict/generalized algebras with/without predicates equipped
by equational/conditional/Horn-Clause./first-order logic) are endowed with fea-
tures, tailored for special purposes, in order to improve software development; for
example think of higher-order functions and, in the field of concurrency, dynamic
elements, temporal logic combinators, or event logic combinators (am e.g. [1, 4, 7,
8, 9, 10]).

Although it is often the case that the new features are in a sense orthogonal
to the underlying algebraic framework and that the same construction applies to
any sufficiently expressive formalism, in the practice ad koc theories are developed, S 0
neglecting the parametric definition such theories are instances of. This lack of
generality is conflicting with the ability of changing the basic formalism, and hence
with the reuse of methodologies, seen as high-level theoretical tools for the software
develpment.

In any real application two steps can be distinguished in the process of getting
the most sui~oble algebraic formalism: the choice of the most appropriate basic
algetraic formalism (i.e. sufficiently powerful for the problem, but non-overcomplex)
and the addition of the features needed in the particular case (e.g. entities for
structured parallelism or higher-order functions for functional programming). Thus
here we propose a modular construction of algebraic frameworks, formalized by
means of operations on institutions, used as a synonym for logical formalism, in
order to build richer institutions by adding one feature at a time.

Many constructions used in the practice have meaning only for those institutions
that represent "algebraic formalisms". In order to give sound foundations for the
treatment of such operations, a preliminary step is the formal definition of which
institutions correspond to algebraic frameworks. Here we propose a first attempt at
the definition of algebraic-oriested institutions, that includes all interesting cases.

Technically algebraic-oriented institutions are described by (standard) algebraic
specifications, so that both theoretical and software tools are at hand to help in the
building proces; moreover algebraic specification users already have the know-how
to understand and manipulate metaoperations building algebraic formalisms.

Using this definition of algebraic-oriented institutions, we formally define some
operations adding features to basic algebraic frameworks and show that

the result of such operations applied to any algebraic-oriented institution is an
algebraic-oriented institution, too; so that the result can be used as input for other

-This work ha been partially supported by Esprit-BRA W.G. n.6112 Compa, Progetto Final-
insato Sistomi ]norntati e Cakolo Paraslndoof C.N.R. (Italy), MURST-40% Mo&elW e Specifidie
di SiSLW Caicogvoni

0

-ZZ-



operations, building in such way a formalism as rich as needed by the application.

What is an algebraic-oriented institution Let us give some hints of the basic
characteristics of algebraic-oriented institutions.

Analyzing the algebraic formalisms present in literature it appears that signa-
tures consist in all frameworks basically of a (possibly singleton) set of sorts, a
(possibly empty) family of typed functions and a (possibly empty) family of typed
predicates. Then these ingredients can be structured by means of (meta)functions,
like higher-order functional sort or product sort constructors and accordingly built-
in projection functions, or (meta)predicates, like the subsort relation for order-
sorted signatures, or the observability property on sorts. This leads to characterize
the alfebruic-erieated signatures as subcategories of models of any partial alge-
braic specification including a standard part, sketched in the sequel, consisting of
the (meta)sorta S, F and P together with the obvious sarty total (meta)functions
and the auxiliary subspecification Streams(sorts S) defining the sort S.Stream of
streams on S.

epec T&s. =
enrich Streama(sorts S) by
orts F,P P

opUs
arity: F -. S.Stramr
P..orit: P - S-Strvam
resdi.: F -- S

axioms
totaJ(arity)* *
total(P.,rity)
total(vretdtJwe)

Thus, using this powerful internalization, the usual algebraic machinery is at
hand in order to modularly define the requirements on the syntax, even using rapid
prototyping tools.

Consider as an example of application the definition of order-sorted signatures,
see e.g. [6], where the standard part is enriched by an extra sort to denote the names
of functions, so that overloading can be allowed, keeping distinct the operations from
the names used in the language to denote them, and a binary predicate of subsort
on sorts. Axioms to make the subsort relation a partial order are imposed, too.

SPeC SIZOoA = 0

enrich Taw by
sorts Op.Namea
opus

name: F - Op.Names
prods

.<_:S xS
-.< - S.tvm x SStrearn

axioms
total(narme)

#_<*'^#'_< s •=s'
8 <_' Al' < s a a< _"

A <* A
w ýý in"A s 5 O'D - W < a'- W
neame(f) = naMe(g) A ari;p(f) 5* aritV(g) D realtitVPe(f)5 ,ialtfJYPe(f)

- overoding prawra stbsorting

- ZZIA-

wW W, ... V V 3 5 0



Theme axioms define the minimal requirements that any order-sorted signature
should satisfy; note that more sofisticated restrictions can be imposed as well,
like replarsty and cokerenuc, using first-order axioms. Note also that morphim•s
between the models of this specification coincide with order-sorted signature mor-
phisms.

Accordingly with signatures, models and sentences have to be restricted. Roughly
speaking models should be some kind of algebras, i.e. they should interpret the el-
ements of sort S by sets, the elements of sort F by (possibly partial or non-strict)
functions with the correct arity and the elements of sort P by (possibly non-strict)
predicates. In particular all "algebras" used in practice, like many-sorted, partial,
order-sorted, non-strict, etc., can be easily seen in the above way.

Analogously to the choice made for signatures, sentences are defined as term
algebras on uniform enrichments of their signatures by the Var, Term, Atom and
Sen (meta)sorts and the obvious constructors for such sorts, together with the
needed connectives, depending on the application that is intended to be faced, like
first-order operators, temporal logic operators and so on.

An example of operation on algebraic-oriented institutions As an exam-
ple of the operations supported by algebraic-oriented institutions, let us consider 0
the introduction of elementary features for handling concurrency in any algebraic
formalism. The intuitive idea is that some sorts classify dynamic elements and
hence for any of those sorts a labelled transition system is introduced. Using the
algebraic-oriented framework, this can be formalized by an operation dyu that on an
algebraic-oriented institution AO = (AOSign, AOSea, AOMod, ý=Ao), whose sig-
nature category AOSign is the model category of a (partial) specification TAosiS.
enriching T.1g, gives as output the algebraic-oriented institution dyn(AO), whose 0 0
signature category dyn(AOSign) is the model category of the following (partial)
specification:

spec T,*(Aosig.) =
enrich TAOs5is by
opus label: S -. S

trans: S-P -
preds Dyn: S
axioms P-arity(trans()) = s- label(s), s

Dy*() s D(tran(a))
- trans i defined only for dynamic sorts

Dyn(s) * D(label(s))
- label is defned only for dynamic sorts

As the signature category dyn(AOSign) is a (full) subcategory of AOSign, models
and sentences for dyn(AO) are simply the restrictions respectively of AOMod and
AOSen to dyn(AOSign).

Several instances of this construction have been independently developed in
applicative projects starting from different basic algebraic formalisms (see e.g. [1, 21).
Note that, as dyn(AO) is an algebraic-oriented institution too, it can be used as 0
argument for further operations, adding a feature at a time, e.g. temporal logic
combinators, in a modular way.

Relationships with other approaches This work continues and adds to [3],
where some operations on institutions were proposed in order to deal with some
uniform enrichment of logical formalisms, that, although arisen in the field of con- 9
currency, have a general character

and can be defined on any institution (and on algebraic-oriented institutions
result in algebraic-oriented institutions, too).

W IM5 P

S...... • m'--"ml mm•' • mmwm mmi, -, z2 . ..5 -"I



Algebraic-oriented institutions differ from the abstract algebraic institutions by
Tarlecki (see e.g. [11]) not only in purposes, since algebraic-oriented institutions are •
designed to support the definition of operations among several institutions more
than constructions on the models of one institution, but also from the technical
point of view. Indeed using only the categorical characteristics of institutions (as
in [11]) we cannot add the features of interest, since they explicitly involve the
components of syntax and the elements of the algebraic models.

Although algebraic-oriented institutions share with parchments (see [5]) the in-
tuition of using usual algebraic machinery to deal with institution ingredients, the
aim of parchments is to define institutions starting from some basic syntactic ele-
ment. in a canonical way.

References
[11 E. Astesiano and G. Reggio. SMoLCS-driven concurrent calculi. In Prec.

TAPSOFT'87, Vol. 1, number 249 in L.N.C.S., Berlin, 1987. Springer Verlag.

[2] E. Aetesiano and G. Reggio. A structural approach to the formal modelization
and specification of concurrent systems. Technical Report PDISI-92-01, DISI,
Universiti di Genova, Italy, 1992.

[3] M. Cerioli and G. Reggio. Institutions for very abstract specifications. Sub-
mitted, 1992.

[4] G. Costa and G. Reggio. Abstract dynamic data types: a temporal logic
approach. In Proc. MFCS'9I, number 520 in L.N.C.S., Berlin, 1991. Springer * *
Verlag.

[5] J. Goguen and R. Burstall. A study in the foundations of programming
methodology: Specifications, institutions, charter and parchments. In D. Pitt,
S. Abramsky, A. Poigni, and D. Rydehard, editors, Proceedings of Summer
Workshep on Category Theory and Computer Programming, number 240 in
L.N.C.S., pages 313-333, Berlin, 1986. Springer Verlag. 0

[6] J. Goguen and R. Diaconescu. A survey of order sorted algebra. Draft, 1992.

[71 K. Meinke. Universal algebra in higher types. Theoretical Computer Science,
100(2), 1992.

[8] B. M611er, A. Tarlecki, and M. Wirsing. Algebraic specification with built-in 0
domain constructions. In Proc. of CAAP'88, number 299 in L.N.C.S., Berlin,
1988. Springer Verlag.

[9] G. Reggio. Entities: an istitution for dynamic systems. In Recent Trends in
Data Type Speciication, number 534 in L.N.C.S., Berlin, 1991. Springer Verlag.

[10] G. Reggio. Event logic for specifying abstract dynamic data types. In Re- S
cent Trends in Data Type Specification, number 655 in L.N.C.S., Berlin, 1992.
Springer Verlag.

[11] A. Tarlecki. Quasi-varieties in abstract algebraic institutions. J. of Comp. and
Syst. Science, 33, 1986.

- AP-

- V V0 0



0

0

On the Correctness of Modular Systems 0

(Extended Abstract)

Marisa Navarrot

Fernando Orejas"
Ana Sinchezt

In the design and implementation of a large system modularity is a critical issue. Large systems need to
be divided into blocks so that system development becomes more manageable, clear, modifiable and
reusable. "hese blocks, known as modules, are self-contained entities with individual meaning that are 0
connected among them in such a way that their interconnections define the intended software system.
System design involves both the construction of the module structure at the specification level and the
implementation of each module. Since implementation only appears at the level of each module, it would
be desirable to ensure that the correct implementation of each module should guarantee the correct
implementation of the whole software system.

In this paper. we study the correctness of modular systems in a simple framework, including both 0

specification design and implementation. This framework may be described as follows:

We consider two institutions. SPEC and PROG, underlying the specification and programming
languages, respectively. For simplicity, we assume that both institutions share the same category of
signatures and the same model functor. i.e. they differ in the Sent functor and on the satisfaction
relation. Additionally we assume that both institutions are semlexact. i.e. they have pushouts and * *
amalgamations [EBCO 91], and are equipped with an inclusion system [DUS 91].

A module M is assumed to be a pair of specifications. M-(IMPX). with lMZPEXP. where IMP and
EXP denote, respectively, the import and export specifications of M. The results obtained can be

generalized to more complex forms of modules, such as [EM 89, ST 89]. Its meaning is given by an

associated constructor VM: Mod(IMP) -+ 2MOd(EXP) [ONS 911. If MI=(IMPI,EXPl) and

M2=(IMP2,EXP2) and f: IMPI --* EXP2 is a specification morphism then we define the composition 0
MI Of M2 as (IMP2.EXP2'), where EXP2 is defined by the following pushout diagram:

IMPI - p EXPI

P2 s- EX72 T'

t Deto. L•ng. y SisL lnformakica Umiveridad dd Pas Vasco. San Sebalian, Spain

"Depto. LeAng. y SisL lafoanificos. Univeraidd Poildcu•ic de CatsluAh. Barcelona, Spain

0

w w~ - -. 0-



S

0
At the model level, the constructor associated to MI Of M2 is defined by lc.KM2, where ic is the 0
extension of iMI with respect to the above pushout diagram.

A software system S is assumed to be a triple (SP. MSPEC, MPROG), where SP is a requirements
specification, including the signature of the whole system and the global properties that must be
satisfied. MSPEC and MPROG are, respectively. (finite) sets of specification and program modules
whose signatures are included in the signature of SP. In general, we assume that systems may be
a'utjiish. For instance, the signature of SP may not necessarily be the "union" of all the signatures of
the modules In MSPEC, i.e. some components of the system may be not specified yet.. Also, every
module in MPROG is the translation of a module in MSPEC (its implementation in the given
programming language) but there may be some modules in MSPEC whose translation is not in MPROG
(i.e. modules not yet implemented).

In order to define the semantics of a system S - (SP. MSFEC, MPROG) we consider the modules as 0
"constraints" that must be satisfied by the given models: an SP-model A "satisfies" or "include" a
module M = (IMP, EXP), AP-M iff AiEXp = iCM(AIIMP), i.e. if the EXP-part of A is the result of
applying i to the corresponding IMP-pat. If S is finished in the above sense, then its meaning can
also be defined in terms of the composition of all the modules in MSPEC. Both semantics can be proved
compatible (see [OSC 89] for a special case). In the latter case, the semantics can also be defined
equivalently in terms of the composition of all the modules in MPROG.

We consider three basic operations for system development: adding a new specification module to the
given system; adding a new program module "translating" a specification module in the system, and.
finally, specifying a simulation impiementation [ONS 91). In the latter operation, we assume that given
two specification modules MI = (IMPI, EXPI) and M2 a (IMPI, EXP2) in the system, such that M2
can not be directly translated into the programming language, if we find out that a new specification
module M3 is an implementation of M2 using M I (with respect to some suitable notion of behavioural
equivalence [Rei 81, ONS 911 in the given institutions), i.e.

VA GMOd(IMPI) XM3eMl(A)uBleh q2(A)

then we can substitute M2 by M3 in the system. For instance, if M2 is a module specifying sets, MI is a
module specifying strings and M3 is a module enriching strings with set operations such that the result
of forgetting the string operations in the module M3 0 MI is behaviourally equivalent to M2 then we can
substitute the set specification by the two modules MI and M3.

Unfortunately, it may be shown that the latter operation, in general, does not preserve the consistency of
a system, as the following counter-example shows. Let SPI, SP2 and SP3 be the following
specifications:

SPI a NAT+ sorts s SP2 -sorts nat, s SP2 n SP2 + opus g: s -nat
opns a~b: s opus A: s eqns g(a) f(a)
eqns a-b

f(x) a 0

where NAT denotes the specification of the natural numbers. Now let S be the system formed by the
modules MI = (0, NAT), M2 = (NAT, SPI) and M3 = (SP2, SP3), then it can be easily shown that the •
algebra A defined Anat = N, As (a), aA - bA -a and fA(a) a 0, gA(a) = 0 satisfies the three modules
(assuming that the constructor associated to a module coincides with the associated free construction).
Now, let SK4 be the following specification

- 22-

- , W, w -Wq V U 0 0



SPI'-NAT+ sorts s
opus a~b: s

f: s -4 nat
eq.. I(X) -0

and let MT be tae module (NATSPl'). Now. assuming that nat is an observable soft and s is non1-
obsevable. M2 is a correct simulation implementation of M2. However, there does not exist any
algebra satisfying MI. W2 and M3.

This seems to be against the principle of modularity. However. let us assume that the given
programming langu~ is stable in the following sense (related notions of stability (Sch S7. ST 391 are
essentially equivalent)

Given a program module M = (IMP, EXCP) if A is behaviourally equivalent to A', with A, A'e Mod(SP)
for a specification (or program) SP including IMP, and if the amalgamated sums A+AOAI and
A'+AorA1 can be built (i.e. the language allows the pushout associated to these amalgamations), where
AO - AIIMP, AO*-AIIMp. Alm iKM(AO) and Al' - KM(A(Y) then A+AOAI and A*+AO*AI are
behaviourally equivalent.

Then, the problems shown in the above counter-example are not really important. In particular, if S, is
a finished system, obtained after a series of correct development steps from a system S, then the
meaning of the composition of all the modules in NMPOG is a realization of S, even if somec
"intermediate" systems were inconsistent.

Theorem 0 0
Let S a (SP. MSPEC, MPROG) be a consistent system and let V'a (SP, MSPEC, MPROG), with
SP r. SP be a finished system obtained after applying a sequence of translation and implementation
steps over S, then Sem(S') - jAe Mod(SP)I VM e MPROG Aim M) * 0.and, in addition.
VAe Sem(S') 3Be Sem(S) such that

Al~p *Beh B

ACKNOWLED-LEMENTS

This work has been partially supported by ESPRrr Basic Research Working Groups CCL (Ref. 6026)
and COMPASS (Ref. 6112).

References

[BH 93) M. Bidoit, R. Hennicker A general framework for modular implementations of modular
system specifications, in Prc. TAPSOFr 93 (Orsay, Prance), Springer LNCS. 1993.0

[DOS 911 R. Disconescu, J. Goguen, P. Stefaneas: Logical support for modularisation, PRO Oxford
University, August 1991.



0

0

[EBCO9911 H. Ehrig, M. Baldamus. F. Cornelius. F. Orejas: Theory of algebraic module 0
specifications including behavioural semantics and constraints. Proc. AMAST 91. to
appear in Springer.

(EM 651 H. EMI. B. MaWr FundamntaJs of Algebraic Specrkidcios 1. Springer i 985.

[EM 891 H. Ehrig. B. Mahr: Fundamentals ofAlgebraic SpecJirations 2. Springer 1989.

[GO 84] JA. Goguen, R.M. Burstall: Introducing institutions. Proc. Logics of Programming
Workshop, Carnegie-Mellon. Springer LNCS 164,221-256 (1984).

[ONS 91] F. Orejas. M. Navarro, A. Sinchez: Implementations and behavioural equivalence: a
survey. Invited Lecture. 8th Workshop on Specification of Abstract Data Types (Dourdan.
1991). To appear in Springer LNCS.

[OSC 89] F. Orejas, V. Sacristan. S. Cltrici: Development of algebraic specifications with
constraints. Proc. Workshop on Categorical Methods in Computer Science with Aspects
from Topology. Springer LNCS 393, 102-123 (1989).

[Ret 81] H. Reichel: Behavioural equivalence - a unifying concept for initial and final specification
methods. Proc. 3rd. Hungarian Comp. Sci. Cooherence, 27-39 (1981). 0

[Sch 87] 0. Schoett: Data Abstraction and the Correctness of Modular Programming. Ph.D. thesis;
Report CST.42-87. Dept. of Computer Science, Univ. of Edinburgh (1997).

(ST 881 D.T. Sannella. A. Tarlecki: Toward formal development of programs from algebraic
specifications: implementations revisited. Extended abstract in : Proc. Joint conf on
Theory and Practice of Software Development, Pisa. Springer LNCS 249,96-110 (1987); 0 0
full version in Acta Informatica 25, 233-281 (1988).

IST 89) D.T. Sannedla. A. Tarlecki: Toward formal development of ML programs foundations and
methodology. LRCS Report Series Department of Computer Science, University of
Edinburgh ECS-LFCS-89-71(1989).

0

0

0

0

0

-p2)0i

,- w W, ... 0 , 0



0

0
INTERACTION BETWEEN ALGEBRAIC 0

SPECIFICATION GRAMMARS AND
MODULAR SYSTEM DESIGN

Hartmut Ehrig1 and Frtancesco Psrisi-Presicce2

' Fadcberech Iformatik
Teckache Univeusitit Berlin

D-100 Berin 10 Grmasy
2 Doiamto di Matematic. Par ad Applicata

Uaiversiti dein Studi L'Aquila
67100 L'Aquia Italy 0

For the last 20 years, abstract data types have been (usefully) described using
algebraic specifications, within different frameworks including equational institu-
tions, and with diverse emantics, from initial to loose to stratified to behavioral.
An extension of the original formulation which allows to isolate a waisle part (thus
generalizing parametrised specifications) sad to Aide details of the specification fromn
the outside has been defined in (9, 1, 5]. A module specification in such a framework
consist, of four parts : an export interface EXP specifying what the module specifi-
cation produces, an import interface IMP describing what the module specification
consumes or needs, a body part BOD describing how the module specification uses
the imported items to construct the exported ones, and a parameter part PAR which
can be adulized by different actual specifications and which is left unchanged by
the semantics of the module specification, which is a functorial transformation from
the category of models of IMP to the category of models of EXP. The different parts
are related by four specification morphisms (usually inclusions) as in the following
diagram

e

PAR EXP

IMP BOD

The items not in the image of v are to be considered hidden and thus not visi- 0
ble from other modules. Each module is seen a a self-contained unit which can be
developped independently and interconnected with other modules. Three basic in-
terconnection mechanism have been defined to construct complex systems: a union
MODI +oDo MOD2 where each part is the union of the corresponding ones in
MODI and MOD2, identifying the MODO part; an stulizotion ad&(PS, MOD),
where a parametrized specification PS is substituted via the specification morphism
h for PAR in each component of MOD; and a composition MOD1 ot MOD2, where
the import IMPI is matched via h with the export EXP2. Each interconnection can
be viewed as an operation on module specifications which preserves correctness and

- zS(-



which produces a module specification whose semantics can be expressed in terms
of those of the operands.

Given a library LIB of module specifications, an important problem is to de-
termiae whether there is a way to interconnect a subset of LIB so that the im-
port and export interfaces of the overall system are some given specifications BASE
and GOAL. This problem has been tackled in [11, 12, 13] by considering the vis-
ible part of MOD, i.e., the specifications PAR, IMP and EXP, as a production 0
p : IMP - PAR -- EXP similar to those of the algebraic theory of graph gram-
mars [2]. A direct derivation p : SPEC * SPEC' with such a production p is a
double pushout diagram

IMP - PAR - EXP

I I 10

SPEC - CON - SPEC'

where CON is the context specification unchanged by the trasfor•natios. Denote
as usual by :* the reflexive and transitive closure of :*. 0

It has been shown in [12, 13] that, given a library LIB of module specifications
represented by their interfaces PRO = {pj : IMP, .- PAR, - EXP,, i E I),
then BASE =** GOAL using PRO if and onli if there exists an interconnection,
using only actualization and composition with identity, of (some of) the module
specifications of LIB such that BASE and GOAL are the overall import and export
interfaces, respectively. This result can be seen as a way to construct a prototype S 0
of a system which, given a (built-in) realization of BASE, provides a realization of
GOAL (which can be used to test the adequacy of the specification) since there is
a systematic way of translating a derivation sequence BASE =** GOAL into the
appropriate combination of the interconnections.

The initial item BASE and the set of productions PRO define a grammar, an
algebraic specification grammar [6] which generates a language.C(BASE,PRO) 0
whose membership problem corresponds to the realizability of GOAL.

This solution is not satisfactory for two reasons : the first one is that not every
interconnection can be obtained from a derivation sequence (in particular, general
compositions with non-identity matching morphism IMPl - EXP2) ; the sec-
ond one is that an occurrence morphism IMP -. SPEC does not guarantee the
applicability of the production [11], while it should be possible to use only part 0
(namely h(IMP)) of SPEC as input of MOD. This suggests the notion of restricting
derivation sequences SPO > SPn with

SPO .- SP1 =*. SPI' +- SP2 =* ... .- SPn
where, having generated SP0, we can generate SPI' provided that there exist SP1
and a specification morphism SP1 -- SPO such that SPI :o SPl'. We then have

Theorem 1. BASE > GOAL ma the productions PRO 0

if and only if
there ezists an intercoanectioa withk eseral composition and actualizstion using LIB
with overall interftces BASE and GOAL.

0

0

- w w wME-



0

It is direct to show that if SP =** SP', then SP > SP but not necessarily
vicever sad it has been shown [14] that the immediate extension of restricting
derivation sequences to graphs is more expressive than the single pushout approach
to graph transformations [101.

The approach can be extended is a straigthforward manner to High Level Re-
placement Systems [3]. Such systems have been defined to generalize, in an axiomatic
way to arbitrary categories, the Parallelism Theorem, the Concurrency Theorem and 0
other similar results typical of the algebraic theory of graph grammars [2]. By se-
lecting a distinguished subset M of morphisms to be used in the productions, High
Level Replacement Systems can be clasified (at least) as HLRO, HLRO.5, HLR0.5*,
HLRI and HLRI* depending on which set of generic properties on the underlying
category they satisfy sad which are sufficient to guarantee properties such as local
confluency of independent derivations (Church-Romaer property) or replacing a se-
quence pi o p2 of independent derivations with one step using their disjoint union
Pi + p2 (Parallelism Theorem).

Recently [41, results on canonical derivation sequences for graph grammars have
been extended to HLR systems. It has been shown that canonical derivations exist
for HLRO.5 systems and are unique for HLRI* systems. A canonical derivation is a
derivation which does not contain two steps p, : GO =: GI and p + p2 : G1 =0 G3
where pi : GO =o G1 and p : GI • G02 are sequentially independent. For non
canonical derivations in which such a situation occurs, the application of p could
be shifted earier to obtain the equivalent derivation sequence p + pt : G00 * G2,
p2 : G2 =o G3 which increases the leftmost parallelism. Equivalence of derivations is
defined as the reflexive, symmetric and transitive closure of the shift relation.

Of the three possible ways of defining the category of algebraic specifications
considered [6, 41 only the one which allows to distinguish, through labels, equations
between terms is the one which guarantees unique canonical derivations, while if
the specification morphisms I : SPECI --# SPEC2 are such that I#(EI) is either
derivable or contained in E2, then every derivation has an equivalent canonical one,
which is not necessarily unique.

Canonical derivation sequences can be used to check the equivalence of modular 0
systems. There are several ways of defining equivalence between modular systems,
among which:

- SlequivfaS2 if the flattened versions obtained by applying as operations the in-
terconnections have isomorphic interfaces

- S1equivS2 if, in addition, the corresponding semantical functors are naturally
isomorphic

- SlequivMS2 if the flattened versions are isomorphic

Having the possibility of defining a unique canonical equivalent structuring of a
system allows the testing for the equivalence of two arbitrary systems by comparing
their canonical forms. By using equivi as our notion of equivalence and by limiting
the systems to using only disjoint union, actualization and identity composition and •

the most restrictive form of specification morphism. (called SPEC3 in [71) we have

Theorem 2. Every modlar system Ass a uSifue ce1i5Ca equivalent one

- Z33-

w w w ~W 0 0



0F

We expect to be able to extend this result to eqtuvalence according to equiv3 0
and to systems built using general composition.

References

1. E.K.Blum, H.Ehrig, F.Pauini-Presicce: Algebraic Speciications of Modules and their
Basic Interconnections. J. Comput. Syst. Sd.. 34 (1987) 293-339

2. H.Ehrig: Introduction to the Algebraic Theory of Graph Grammars. First International
Workshop on Graph Grammars, Springer Lecture Notes in Computer Science 73 (1979)
1469

3. H.Ekrig, A.RabeLR.-J.KrewuksF.Parisi-Presicce: Parallelism and Coacurrency in
High Level Replacement System. Math. Stract~in Comp. Science 1 (1991) 361-406

4. H.Ehrig,H.-J.Kreowski, G.Tsantser: Canonical Derivations for High-level Replacement
Systems. Techn.Report 6/92, Univ. Bremen, FB Mathematik and Informatik, Dec 1992

5. H.Ehrig, B.Mahr: Fundamentals of Algebraic Specification 2.Module Speciications and
Constraints. EATCS Monograph on Theoretical Computer Sieace,vol 21,Springer Ver-
lag 1990

6. H.Ehrig, F.Parim-Presicce Algebraic Specification Grammars: A Junction between
Module Speciications and Graph Grammars. Proc. 4th hInt. Workshop on Graph Gram-
mars, Springer Lecture Notes in Computer Science 532 (1991) 292-310

7. H.Ehrig, F.Parusi-Presicce: H~igh Level Replacement Systems for Equational Algebraic
Specifications. Proc. 3rd lat. Coal. on Algebraic and Logic Programming, Springer
Lecture Notes in Computer Science 632 (1992) 3-20.

S. H.Ehrig, M.Pfender, H.J.Sckneider: Graph Grammars : an algebraic approach. Proc.
IEEE ConL SWAT 73, Iowa City (1973) 167-180

9. H.Ehrig H.Weber: Algebraic Specification of Modules. in 'Formal Models in Program-0 0
mine (E.J.Nenhold and G.Chrouist, eds.), North-Hoiland (1985) 231-258

10. M.Lowe: Extended Algebraic Graph Trandormation. Doctoral Dissertation, Techniache
Universitat Berlin Feb 1991, 180 pages

11. F.Pauisi-Preuicce: Modular System Design applying Graph Grammar Techniques. Proc.
ICALP 89, Springer Lecture Notes in Computer Science 372 (1989) 621-636

12. F.Parisi-Presicce: A Rule Based Approach to Modular System Design. Proc. 12th In-
ternat. CoaL. Soft. Engin. (1990) 202-211

13. F.Parimi-Pre~scce: Foundations of Rule-Based Design of Modular Systems. Theoret.
Comp. Sci. 63 (1991) 131-155

14. F.Parisi-Presicce: Single vs. Double Pushout Derivations of Graphs. Proc. 18th hIt.
Workshop on Graph Theoretic Concepts in Comp. Sci. Springer Lecture Notes in Com-
puter Science 657 (199) 248-262

Thmisartice was processed usnag the DA'~g macro package with LLNCS style



0
0

Specification of Hybrid Systems in CP

R.K. Shyamasundar
Tata Institute of Fundamental Research S

Homi Bhabha Road, Bombay 400 005, India
e-mail: shyamOtifrvax.bitnet

Abstract

Concurrent languages can be broadly categorized into:

1. Asynchronous: A program is a set of loosely coupled independent execution
units or processes, each process evolving at its own pace. Interprocess com-
munication is done by mechanisms such as message passing. Communication
as a whole is asiychronovus in the sense that an arbitrary amount of time can
pass between the desire of communication and its actual completion. This class
includes languages such as Ada, Occam, CSP etc.

2. Synchronous: Here, programs are thought of as reacting instantaneously to
its inputs by producing the required outputs. Statements evolve in a tightly
coupled input-driven way and communication is done by instantaneously broad-
casting, the receiver receiving a message exactly at the time it is sent. Languages
such as Esterel [BeGo 92], Lustre, Signal, Statecharts belong to this category. 0

Recently, we have proposed [BeRaSh 93] a new programming paradigm called Com-
municating Reactive Processes (CRP) [BeRaSh 93] that unifies the capabilities of
asynchronous and synchronous concurrent programming languages with a view to
specify complex reactive systems which usually have both synchronous and asyn-
chronous features. A CRP consists of a network of Esterel programs where each 0
node can be considered to be reactively driving a part of a complex network that

is handled globally by the network. The central idea of establishing asynchronous
communication between nodes lies in extending the asynchronous interaction into a
communication primitive. The usual send and receive asynchronous operations are
represented by particular tasks that handle the communication. A spectrum of mes-
sage passing types such as non-blocking send for full asynchrony, or CSP-like send
and receive primitives etc. are possible' through CRP.

In this paper, we show that

9 CRP can model asynchronous systems operating in dense real-time domains, 0
and

'In the M pape, we will discou the above dassilMction in the contet of cooperation-
synchronism and communication-synchronism and the expruuivity of CRP with rference to such a
d"OasMation.

- Z3S-



S

* CRP can model "continuous" computations and thus, provides a convenient
formalism for specifying hybrid systems.

A broad structure of the paper is given in the following.

1 Hybrid Systems

Hybrid systems are systems that combine discrete and continuous computations. To
represent continuous computations, hybrid system model contains activities that mod-
ify their variables continuously over intervals of positive duration, in addition to the
familiar transitions that change the values of variables instantaneously, representing
the discrete components. It should be obvious that many systems that interact with
a physical environment such as a digital module controlling a process or a manu-
facturing plant, a digital-analog guidance of transport systems, a control of a robot
etc., can benefit from the more detailed modeling proposed by the comprehensive
framework of the hybrid model. Various abstract models for systems for handling
real-time and "continuous" computations have been proposed recently in [KePn92,
MaPn92, NSY92]. There have been several definitions of hybrid systems. One of 0

the definitions corresponds to specifying behaviour sequences explicitly denoting the
absence/prLsence of signals at the timed transitions. Our notion of hybrid systems
corresponds to the one defined in [KePn92j based on hybrid traces. In this paper, we
adapt the CRP [BeRaSh 93] formalism for the specification of hybrid systems and
show that it provides a convenient vehicle for specifying hybrid systems. In addition 0 0
to the implementation of CRP on top of Esterel, the tools and environment of Esterel
can be effectively used for the development and verification of CRP programs.

2 Behavioural Specification of Clocked CRP Pro- 0
grams

We start with the addition of the tick signal in the behaviour specification of pro-
grams as in the case of semantics for the hardware implementation of Esterel [Be 92].
Due to the limited space, we will highlight informally the main features. A brief look S

at the execution history of a CRP program provides some understanding of the main
aspects of CRP and hybrid computations.

A history (Esterel or CRP node) is a sequence of events El, E2 , ... , E.,...; for
convenience, we denote Ei by Ij.Oi where Ii and Oi denote the input and the output
events in the ith instant respectively. In a clocked CRP program every instant consists
of the input signal tick.

A history is said to be CRP valid if it satisfies the following properties:

1. The history satisfies all the declared exclusion relations.

2. Vi, tick E Ii.
Every input instant contains the special signal tick.

* When programming digital circuits it will naturally denote clock ticks
(which corresponds to integer domain of time).

- 2z36-

-. w. W-. w • 0



Aii

e For dense-domains for time,

- we consider the signal tick with values. For instance, the signal 0
tick(v) in I. could indicate an elapse of v E R7 units of time from
the last occurrence of tick.

- further, the sequence of tick's with values forms a progressive se-
quence; that is, it does not form a Zeno sequence.

3. Asynchronous signals satisfy:

e An event is received only after requested.

* The start- and receive- of an asynchronous request cannot happen in the
same instant.

4. Vi, 1i + 1olj < oo. That is, it satisfies the property of finite variability,
namely, the state changes only finitely often throughout any finite interval of
time. That is, between any two consecutive input instants containing tick
there can be only a finite sequence of events.

We adapt the clocked CRP behavioral specification for hybrid system specifica-
tion and establish that CRP provides a convenient description for hybrid systems
permitting the use of verification tools for Esterel/CRP by:

1. Restricting the behaviour specification for progressive systems, i.e., systems that
do not admit Zeno sequences.

2. Relating the asynchronous signals with a finite set of continuous activities.

3. Relating the behaviour specification of clocked CRP to the two broad types of
computations based on hybrid traces (cf. [MaPn 92]):

(a) Sampling computations having the signature N ý-+ E x R+ where each
natural number, j, is mapped to a pair consisting of a state s, and a real-
time stamp tj.

(b) Super-dense computations 2 having the signature R+ x N 1--. E; that is, it
maps each pair < t,i >, where t E R+ and i E N, to a state a E E and the
step numbers correspond to the transitions that are taken at time instant
t.

4. Relating causally correct clocked CRP programs to timed graphs and finitely
satisfiable TCTL formulas.

3 Illustrative Examples

We illustrate specification of hybrid systems through clocked CRP by the following 0
examples:

3The advantages/disadvantages of super-dense computation semantics and sampling computation
semantics will be discussed in the full paper.

- w - w3 -



0

1. We describe the Cat and Mouse problem (cf. [MaPn 92]) and show, how the

CRP formalism provides a convenient description including the priority for the
Mouse (or the cat) when they reach the target/destination simultaneously.

2. Next, we consider the specification of a controller for controlling the flight path
of a communication satellite. Due to various uncertainties at the various stages
(due to energy and other motor characteristics) of the launch, it is not possible
to pro-program the flight-path of the rocket so as to result in the desired end-
conditions within the specified tolerances. Thus, there is a need to determine
the flight path from instant to instant to keep the flight path within the specified
tolerance limits. Hence, the control needs to be asynchronous (where events can
happen arbitrarily close to each other). We show that clocked CRP provides a
convenient formalism for specifying such hybrid systems.

The paper concludes with a discussion of the relative comparison of the formalisms
for hybrid specifications such as variants of Statecharts and other formalisms, and also
the use of Esterel tools in the development of CRP programs.

Acknowledgment

It is a pleasure to thank Professor Amir Pnueli whose lectures on hybrid systems at
TIFR clarified various subtle aspects of hybrid system specification.

References

[Be 92] G. Berry (1992), A hardware implementation of pure Eaterel, SAD-
HANA: Special Issue on Real Time edited by RK Shyamasundar, •
Academy Proceedings in Engineering Sciences, Indian Academy of Sci-
ences, 17 (1):95-139, 1992.

[BeGo 92] G. Berry and G. Gonthier (1988), The Esterel synchronous programming
language: Design, semantics, Implementation, Rapport de Recherche
842, INRIA 1988, Science of Computer Programming, Vol. 19, No.2, 0
Nov. 92, pp. 87-152.

[BeRaSh 93] G. Berry, S. Ramesh and R.K. Shyamasundar, Communicating Reac-
tive Processes, 20th Acm Symposium on Principles pf Programming
Languages, South Carolina, Jan. 1993. 0

[KePn 92] Y. Kesten and A. Pnueli, Timed and hybrid Statecharts and their teztual
presentation, LNCS 571, pp. 591-619, 1992.

[MaPn 92] Z. Manna and A. Pnueli, Models for Reactivity, TR, Stanford, 1992 (an
earlier version presented at the 25th Anniversary of INRIA).. 0

[NSY 92] X. Nicollin, J. Sifakis, and S. Yovine, From ATP to timed graphs and
hybrid systems, LNCS 600, pp. 549-572, 1992

- w w w W-W 0-



0

Real-Time Program Synthesis from Specifications

Aurel Cornellt, John Knaackt, Amitabh Nangia t , Teodor Rust 0
t Brigham Young University, Department of Computer Science, Provo, Utah
The University of Iowa, Department of Computer Science, Iowa City, IA 52242

1 Introduction 0

Real-time systems are characterized by their umbilical connection to the environment [Wirt77].
They are most often modeled as event driven systems where the occurrence of events dictates a
timed response by the system [Dasa85, Jaff91]. Such a behavior is naturally described by a state
transition diagram [Best9l]. The goal of this paper is to initiate the development of an algebraic
methodology for real-time program development that is convenient for the programmer and allows •
easy proof of the correctness of real-time programs. This methodology is algebraic in nature in the
sense that program development is closer to the development of algebraic computations rather than
to the development of programs using conventional languages. Following this methodology a real-
time program is developed in two steps: first the behavior of a real-time system is specified using a
real-time system specification language and then, this behavior is automatically transformed into a •
semantic driven automaton [Rus9l, Knaa92] that implements the real-time program. Consequently,
no programming activity in the usual sense is involved. A similar approach for real-time program
development is described in [Nico92]. The difference is that our real-time system specification
language is a regular language on the alphabet of conditional-actions similar to guarded-commands
[Dijk75] while in [Nico92] a language of timed processes [Nico91] is used. In addition, the abstract * *
time used to model the time is different in the two approaches.

2 Real-Time System Specification by Regular Expressions

We consider that any specification language must be provided with a capability for abstraction 0
manipulation that consists of: a mechanism for type definition, a mechanism for object declaration,
and a mechanism for application specification. We propose a language capable of specifying the
behavior of a real-time application where each specification contains two sections: a declaration
section which specifies the types and variables of those types that will be used, and a behavior
specification section which specifies the application in terms of the declared variables, as seen
below. The declaration section specifies the state of the system seen as the interpretation of the
collection of names used in the real-time system, a : Names - Values. Let E be the collection of
states of a given real time system. The behavior of the system is stepwise specified in terms of two
well-understood constructions:

"* State transitions, r : E -* E, expressed by named conditional actions of the form r :
(Condition - Action) interpreted as "when Condition holds the Action is performed".

"* Composition of state transitions using regular operators. That is, if a and b are state tran-
sitions then (1) the concatenation of a and b denoted a b, (2) the choice of a or b denoted
alb, and (3) the repetition of a state transition a known as Kleene star and denoted by a* are
state transitions.

- 23g-

w w w w ... wi -• 0 0



2.1 Declaration Section

The real-time system specification language discussed here allows one to express the behavior of
the real-time system as a continuous interaction between the system and its environment. During
this interaction the system receives data from the environment that determines the system state
transitions; during the state transition the system may receive or send data in the environment
affecting it as well as change the state. This behavior is accomplished by considering the environ-
ment as a collection of typed communication channels. The basic typed channels are abstract and
predefined and are represented by the usual types boolean, integer, character, string, etc.,
whereas the channels specific to the real-time applications are defined in the application and their
objects are constructed in terms of the basic type objects. For each channel a and variable z of
type a the following operations may be defined: send(z, a) that sends the value of z on the channel
a, receive(z, a) that assigns to r the current value on the channel a, and set(z, t) that sets the
value of the variable z to a value t of type a, denoted by z := t. The constructed types specific to 0
real-time applications considered here are:

Time: In this paper time is an algebraic structure T = (T, 0, +, :) as in [Nico92] where

1. (T,0, +) is a commutative monoid such that Vt1,t2 E T [t1 + t2 = t1] implies t2 = 0.

2. :< is a total order on T such that Vt1, t2 E T [t, _< t2] - 3ts E T [t, + t3 = t2].

Practically, time is implemented by a channel on which time is continuously ticking. That is, at
any inst.ance a receive operation on this channel returns an object of type time that represents the
real-time elapsed from the starting of the application until the moment when the receive operation
has been executed. Note that send(z,time) is not defined. If z is of type Time where Time is a 0 0
channel of type time then set(z, t) assign the value t of type time to z and z = receive(Time)
sets z to the value t + 6 where 6 is the real time elapsed since the last set of z to the time t. The
functioning model of a real-time system in this paper is considered as taking place in real time
and independently of the time. That is, while state transitions of the real-time system take place
as described by the equations specifying the system, the time continuously ticks independently. 0
The time becomes visible only when a variable z of type Time is checked by an z := get(Time)
operation.

Text: An object of type text is a string.

Analog: This type describes analog devices that are controlled by the real-time system, or that
are used to sense the real world. A get operation on an analog channel returns an analog value that
represents the current measured quantity as sensed by the device, such as temperature, density,
speed, etc. A send operation on an analog channel may activate a device such as a stepping motor
or audible tone generator.

Digital: This type describes digital devices used to sense the environment, or to be controlled
by the environment. A digital input channel may be a switch whose status can be read and that is
operated by a human, and a digital output channel may be a control which starts a fan, turns on
a heating element, etc.

The variable in terms of which system behavior is specified are of the types of channels defining
the system. The variable declarations in a real-time system are analogous to variable specifications

- Z40 -

- ' W w W 0



S

in a conventional language, i.e. variables are defined over several types (some of them unique to
real-time systems). Since all these types are predefined, we need merely to declare a variable of
one of these types by specifying a name representing an instantiation of the type. 0

2.2 Behavior Specification Section It

The behavior of the real-time application is represented by a system of conditional equations
[Knaa92, Rus92] specifying a semantic driven automaton, denoted by SDA. Since the primary •
behavior of an SDA depends on the content of the data it receives from its environment, the SDA
must check conditions on these data in order to know when to move from one state of the real-time
application machine to the next and also what actions to perform as it changes state. That is, a
state transition is a description of the conditions that allow a move from one state to another. The
description consists of a test of the real-world conditions in the application's environment, and of 0
the actions to perform while changing state.

A cowdition is a predicate which tests properties of a message from a channel. For example, let
Temperature be a channel and Temp be a variable of type Temperature. Then if the SDA must per-
form some action if the temperature exceeds 350 degrees, it must perform Test = get(Temperature)
and then if Temp > 350 the SDA will change state performing some specified action, such as shut-
ting off a heating element, as it does so. Conditional expressions [Knaa92] consist of either single
conditions or conditions connected by logical operators and, or and not. Thus, information from
multiple channels can be tested in the same conditional expression.

The primitive actions performed by an SDA are:

1. send data z to the channel a, send(z, a). 0 0

2. receive data z from a channel a, z := receive(a).

3. Do nothing, denoted by idle. This action never terminates. The only way to get out of it is
through a preempt operation [Kest92]. 0

4. Skip action denoted by skip. This action does nothing and terminates in a single execution.

5. Wait for a condition C to be satisfied denoted by wait(C). This action terminates only when
C becomes true.

6. Assignment action denoted by z := E where z is a variable, E is an expression (possibly 0
including a function call) and the type of z is the same as the type of E.

A transition has two parts:

1. A conditional expression which is a predicate over the language of conditions on variables of
the types defining the real-time system. An empty condition is interpreted as always true.

2. A list of actions to perform when the condition is satisfied. This can be a (possibly empty)
list of send, receive, and assignment statements which can modify the value of variables.

- ZAI -

.,m . .. . .. . . ... . . . . r, , .. . .. . ll U, ml Idlll il lt +- ... . . . . .



0

A transition in this language has the form id : (condition - actionlist) where id is a transition
name, condition is a conditional expression as defined above, and actionlist is a list of actions which
actually control the channels making up the real-time system. In this manner each transition defined •
is represented by a name. The collection of transition names used in a real-time specification is
called the alphabet of transitions.

The specification of a real-time system consists of a set of conditional equations over the alphabet
of transitions. The equations are of the form id = regular expression where id is either a transition
name, one of the names "Start", "Stop", or "Error", denoting the start state, terminate state, and *

calling an error manager, respectively, or the left-hand side of a previously defined equation. The
regWar ez•tesion utilizes the usual regular operations of concatenation, choice and Kleene star
over the set of transition names to specify a finite-state machine.

A complete example follows. It is provided by the set of equations that specifies the behavior
of an oven [Corn92]. The environment is specified by the following table:

Channels Type Names JValues
Time time Timer, Update Integers denoting seconds
Temperature analog Temp Integers denoting centigrades
Commands digital Cmd, Heat, Cool Integers denoting booleans
Predefined integer Hyst, SetP, Integer numbers
Text Message Ml, M2 Text of messages

The transition equations describing the oven behavior are:

T, (--. Heat := 0; Timer := 0; Hyst := 1; SetP := 100; Update:= 1) * 0

T2 : (Timer = O and Cmd = I - skip)
T3 : (Temp < SetP - Hyst - send(M1,Tezt); Heat:= 1;Cool:= 0)

T4 : (Heat = 1 -* Cool := 0; Timer := Update; Heat := 1; M1 := receive(Tezt))
Ts5 : (Heat = 0 - Cool 0; Heat := 1;send(M2, Tezt))

T6 (Temp Ž SetP + Hyst -. Cool := 1; Heat :=0; send(M1, Text); Timer:= Update) 6

T7 : (Cool = 1 -- Cool := 0; Heat := 0; Timer Update; M1: receive(Tezt))

Ts (Cool = 0 - Cool := 1; Heat := 0; send(M2,Tezt))

T9 :(Timer = 0 and Cmd = 0 -- Heat := 0; Cool := 0; Timer := 0; send(Ml, Tezt))

7"G = (Ts(T4 (T2IT,))I(Ts(TMIT4)))
T1 = (TS(TFT2)I(Ts(T 7IT9)))

Start = (T1(T2(TioITiIT.))I(T,(T2 IT.)))"

3 Expressive Power of Semantic-Driven Automata

A semantic driven automaton is controlled by the properties of the tokens it recognizes instead
of being controlled by their syntax. The semantic driven automaton that recognizes transition
equations specifying the real-time system is described by a two-level transition table [Knaa92] and

- 24L-



is equivalent to the program controlling the real-time application. Since time is a type of a real-time
system, variables of type time can be defined and initialized in the systems specification part. These
variables can be set, their values can be tested and used in various conditions defining the transitions 0
of the real-time application. Therefore, a semantic driven automaton that uses time-conditions in
its transitions is a timed-automaton (Nico92]. However, any kind of real-time device and condition
can be easily integrated in the real-time specification language defined in this paper. Therefore,
the semantic driven automata provide a unifying mechanism for real-time program synthesis from
specification.

In order to show the expressive power of semantic driven automata we will sketch here the proof
that if a computation can be expressed using a conventional language then that computation can
be expressed by conditional equations specifying a semantic driven automaton. For that we will
consider the statement as the unit of computation specified by conventional languages and will show
that any construct expressing control-flow on statements can be expressed by regular expressions •
using conditional expressions.

Let S and S2 be statement labels and E be a boolean expression. Then we have:

1. The concatenation of S1 ; S2 is a regular expression S1 S2.

2. The branching statement if E th,-nS1 elseS2 can be expressed by the regular expression 0
S' : (E -* SI), S" : (-E -• S2), S = S' S".

3. The while loop while E do S1 can be expressed by the regular expression S : (E -- 5),
S' = So.

We used here only regular operators to express conditional equations due to their well un- * 0
derstood semantics and well-known methodology of mapping regular expressions into programs.
However, the approach we use to implement semantic driven automata allows us to use other op-
erators than the regular ones and therefore we can easily generalize introducing equations of the
form S = S1I1S2 where 11 denotes the parallel composition of S1 and S2 thus obtaining a mechanism
for parallel program synthesis from specifications. 0

The major advantages of this methodology for program synthesis from specifications are:

1. It allows stepwise program development in terms of simple actions, well-understood by pro-
grammers, and their automatic composition through the mechanism of transforming regular
expressions in programs. 0

2. It allows formal proof of the program correctness by first proving the correctness of the
simple actions making up the program and by automatically preserving this correctness by
the translator mapping regular expressions in programs.

3. The automatic mapping of regular expressions in efficient programs is feasible and well-
understood.

4. It unifies the methodology of program synthesis from specification, and open new field of
research.

- 243-

w w w , w ,-- 0 0



0

References

[Bst91] Bestavros, A., "Specification and Verification of Real-Time Embedded Systems using
Time Constrained Reactive Automatae, Proceedings IEEE 12th Re•l-Time Systems
Symposium, Dec 4-6 1991, San Antonio, Texas, 244-253.

[Corn92] Cornell, A., "Oven", Research Report 7, CS Department, Brigham Young University,
1992.

[DasaBS] Dasarathy, B., "Timing Constraints of Real-Time Systems", IEEE Tinnsactiona on
Sofftwre Engineering, Volume 11, Number 1, 1985,80-86.

[Dijk75] Dijkstra, E.W., "Guarded Commands, Nondeterminacy, and Formal Derivation of Pro-
grams", Communications of the ACM, Volume 18, Number 8,1975,453-457.

[JaMg91 Jafe, M. S. et al, "Software Requirements Analysis for Real-Time Process-Control
Systems", IEEE Transactions on Software Engineering, Volume 17, Number 3, 1991,
241-257.

[Kest92] Kesten, Y., Pnueli, A., "Timed and Hybrid Statecharts and their Textual Represent&-
tions", Formal Techniques in Real-Time and Fault-Tolerant Systems, Lecture Notes in
Computer Science 571, 1992, 591-619.

[Knaa92] Knaack, J. and T. Rus, "TwoLev: A Two Level Scanner", Proceedings of AMAST'91,
Workshops in Computing Series, Springer Verlag 1992, 264-276.

[Nico9l] Nicollin, X., Sifakis, J., "An Overview and Synthesis on Timed Process Algebra:, Pro-
ceedings Third Workshop on Computer-Aided Verification, Alborg, Denmark, July 1991,
1-21.

[Nico92] Nicollin, X., Sifakis, J., Yovine, S., "Compiling Real-Tune Specifications into Extended
Automatae, IEEE Thrnsactions on Software Engineering, Volume 18, Number 9, 1992,
794-804.

[IRus9l] Rus, T., "Algebraic Construction of Compilers", Theoretical Computer Science, Volume
90, 1991, 271-308.

[Rus92] fus, T., "Computation SpecificatiMn by Semantic Driven Automata' Unpublished Pa-
per, The University of Iowa, Department of Computer Science, Iowa City, IA 52242,
1992.

[Shaw92] Shaw, A. C., "Communicating Real-Tune State Machines", IEEE Transactions on Soft-
ware Engineering, Volume 18, Number 9, 1992, 805-816.

[Sifa92J Sifakis, J. et al, •Compiling Real-Time Specifications into Extended Automata', IEEE
Transactions on Software Engineering, Volume 18, Number 9, 1992, 794-804.

[Wirt77] Wirth, N., "Toward a Discipline of Real-time Programming", Communications of the
ACM, Volume 20, Number 8,1977,577-583. 0

-- 2•0

S... . . . . ." • I lll I Il ll --



0

On the coverage of partial validations

Ed Brinkama ' 0
Tele-Informatics and Open Systems Group,

University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
brinksm&Gcs.utwente.nl

Extended Abstract

1 Introduction

It is widely recognized that a completely rigourous treatment of the correctness of designs of
realistic information-processing systems is beyond the scope of the formal methods currently
at our disposal. While for some aspects of this predicament improvements can be expected
through the development and use of more powerful formalisms, theories, and supporting soft-
ware tools, there are structural problems related to managing the combinatorial complexity
of correctness proofs for large systems. The investment done to prove correctness should also 0 0
be measured against the remaining possibility that errors are introduced in the ultimate re-
alization phase of the design, where formal methods may no longer be applicable (e.g. silicon
compilation). As a result in practice mostly methods that deal with approzimate correctness
criteria are used, such as testing and the verification of particular properties. This should also
be seen against the background that complete correctness of systems in not required in most 0
cam: in reality one tries to make the occurrence of important errors sufficiently unlikely.
In recent years there has been also a growing theoretical interest in the question of partial
validation, which has led to much new work on topics like model checking and testing theory,
e.g. [9, 5, 3, 2]. This has given rise to new algorithms for the validation of given properties and
for the generation of tests, whereas the related question concerning the coverage of partial 0
validation methods, i.e. how much the validation of a particular property contributes to the
overall correctness the design, has received considerably less attention. Such measures are
needed to guide the selection of properties that should be validated, and can be used to
quantify the quality of a validation procedure, and, indirectly, of the implementations that
succeed in passing them. Unfortunately, it is not straightforward how to obtain such measures.
In the literature it has been proposed to use the probability of the occurrence of an error as
a guiding principle for partial validations, vix. by ignoring improbable errors (see e.g. [7]).
This would seem to suggest that the coverage of such a partial validation method could be
calculated as a sum of the probabilities of independent errors that are exposed by the method.
This approach has the drawback that often it may be the absence of less frequent errors that
determines the quality of a design. Moreover, the appreciation of the role of a particular error
may depend more on the application of a system than on its specified abstract functionality.
The occurrence of the same software bug in a computer game and in the operating system

"~ ZAS-
w - w w 45

L W1



0

of a nuclear plant could be of a radically different importance, and this should preferably be
reflected in a coverage measure.

In an earlier paper we have therefore proposed that coverage should be based on so-called
valuations that assign weights to error classes corresponding to their gravity [4]. Probability
distributions over error classes being special instances of valuations, this yielded a generaliza-
tion of the probability induced notion of coverage. This approach has the drawback, however,
that it was not clear how, in view of their subjective nature, such valuations could be obtained
or approximated for given applications. For the probability induced notion of coverage there
exists at least the wealth of statistical methodology to estimate the distributions involved.

In the full version of this paper we refine our idea of valuations. Measurements of the probabil-
ity of error occurrences in implementations can be used to improve our estimates of valuations,
while still maintaining a possibility to account for the difference between the probability and
the gravity of an error. We follow a measure-theoretic approach in which an exogenous cost
function (quantifying the effect of certain properties in an implementation) is integrated over
a measure that is induced by the probability of error occurrences. In this way, in fact, we do
not only obtain a notion of coverage, but a general way of assigning measures to specification
theories in the context of a given class of implementation structures.

2 Main formalizations

The correctness of an implementation I with respect to a specification S is usually formalized • *
by means of an implementation or refinement relation R such that I is a correct implemen-
tation of S iff (I, S) E R. We will in fact assume that this relation R can be formalized in
terms of the satisfaction of a logical theory, viz. R = ((I, S) I I • Th(S)}, where Th(S) is
the theory in some logical language C specified by S and I denotes a satisfaction relation.
Many implementation relations can in fact be characterized in this way, including those using 0
constructive specification formalisms (see e.g. [8]).

As indicated above we view the design process as a stochastic experiment that produces an
implementation I on the basis of a given specification S. In order to model this correctly
we need to define a Borel space in which I takes its value (see e.g. [1]). Let I be the set of
all potential implementations of S, and 9

L the set of formulae in C then we are particularly 0
interested in the sets

V#.- E{IeII 71- for 0 C- O'C (1)

We say that 2 has the Borel property w.r.t. £ iff V =, {V IV 1 C_ 4f} is a Borel set for I,
i.e. (i) 0 E V, and (ii) V is closed under arbitrary unions and complementation (w.r.t. 1).
Requirement (i) is easily fulfilled, viz. if C is sufficiently rich to allow for inconsistent theories •
0, as that implies VO = 0. The closure property w.r.t. complementation is more involved as
for each 0 C Oc there need not exist a 0' _ 4). such that V., = - {I E 1 I I k 4)}. As
the latter set could be characterized by the disjunction over the negations of all ; E 0, one
solution would be to work with languages that have either explicit generalized disjunctions,
such as e.g. 4 1 [61, or implicit ones, e.g. in the form of fixpoint constructions [8]. Another
option is to restrict the class of implementations I. In practice, for example, one can often 0

restrict the attention to a finite set 1 where each I e I is completely characterized by a finite
theory 01 g Oc. In that case ordinary negation and disjunction suffice to warrant the closure

0

- z2'6-

S.. .. . . . . . . .A .. .



0
C

properties.

Assuming that I has the Borel property w.r.t. C we can now introduce for each c -ification
S a measure P$ over 2, viz. by putting

Ps(V#) =# Pr{I E V-} (2)

i.e. assigning V# the probability that the implementation satisfies 4. 9

As we have observed above we wish to modify this measure by also taking into account the cost
of errors. We assume therefore there exists a function k : P(0,') -, R>0 that determines the
cost k(f) of satisfying the properties of 4. This function has to satisfy the intuitive property
that cost increases with logical strength, i.e. 0 9z * implies that k(f) _> k(9), where 4 • r VP
means that for all I 4E I 1 implies I • i. If we put Th(1) =€ {w E -O I I • ýp} then
we can overload k to include a function of type I -- R>0 by putting k(I) =q k( Th(I)). It
can be shown quite easily that this function is integrable w.r.t. each measure Ps. This result
allows us to define the valuation measure js on V as the measure-theoretic integral

pS( V) = (I) dPs for aU V V (3)

Note that in order to calculate ps(V) we integrate the cost of its complement V. This can be
understood by realizing that once we have established, by (partial) validation, that I • 4, or
equivalently that I E V#, it follows that I i V so that the cost related to implementations
in V# has been avoided. This seems a natural way to measure the value of having established * *
4'. Another way of looking at it is that Ps must increase with logical strength, as k does: if
4 Jffz 9 then 4 contains more information than 9, and should consequently have a higher
valuation. This follows as 4 •z 9 implies V. 5_ V9 implies Vp- Q V#W implies ps(Vt) :5 ps(Vt).
Because of the non-continuous nature of I the integral in (3) will in practice be evaluated
as a, possibly infinite, summation. Nevertheless, equation (3) gives us the most compact 0
representation of the definition of the measure in full generality.

Having established the measure As for given specifications S it is now straightforward to
produce the definition of the coverage of a partial validation w.r.t. S as a normalization of
'•s. Let 4• _ Th(S) then a procedure for establishing that I • 4 has a coverage a, with
0o< a < 1, iff ;A(V) Ž a.Ms(VTh(s)) (4) 0

We also say that an implementation I is a-correct, or, alternatively, has an margin of error
of 1 - a, iff there exists a 4 C_ Th(S) with I E V# for which equation (4) holds. Note that
1-correctness does not necessarily coincide with total correctness in the classical sense, as
errors with measure 0 are ignored if the measure that is used admits their existence. •
It should be noted that the above definition of coverage applies even in the pathological case
where ps(VTh(s)) = 0, by (4) trivially yielding coverage 1 for any 4D. In the normal case,
i.e. when ps(VTh~s)) # 0, the normalisation can be applied directly to the definition of the
measure itself by putting

AM(V) =q ps(V)/Ps(VTA(s)) (5) 0
In this way IA has become insensitive to the absolute value of applications of the cost func-
tion k, taking only its proportional variation into account. Inequality (4) then simplifies to
A;(VN) Ž a

S> =.

-- w 0



0

In the full paper we give an elaborated example of the application of our theory, which is an 0
extension of the probabilistic example in [4]. Of course, an important point in the application
of this theory is how to obtain reliable estimates of Pr{j E V# }. The solution here probably
lies in measuring error distributions that result from the application of individual design steps
that are applied sufficiently often to obtain statistical significance, as opposed to complete
design procedures for entire systems, which are often specific for the particular system that 0
is designed. By calculating the cumulative effect of the applied design steps still a reasonable
error distribution estimate could be obtained. Not surprisingly reliable coverage measures are
thus tied to the application of well-understood design methods. Of course, the theory can
be used also to give coverage assessments under the hypothesis of given error distributions.
By making such assumptions explicit more precision is given to the coverage claims that are 0
made.

References

[1] H. Bauer, Probability Theory and Elements of Measure Theory, Holt, Rinehart, and 0

Winston.

[2] G. Bernot, Testing against formal specifications: a theoretical view. In: S. Abramsky and
T.S.E. Maibaum (eds.), TAPSOFT'91, Volume 2, 99-119. LNCS 494, Springer-Verlag,
1991. * *

[3] E. Brinksma, A Theory for the derivation of tests. In: S.Aggarwal and K. Sabnani (eds.),
Protocol Specification, Testing, and Verification VIII, 63-74, North-Holland, 1988.

[4] E. Brinksma, J. Tretmans, and L. Verhaard, A framework for test selection. In: B. Jon-
sson, J. Parrow, and B. Pehrson (eds.), Protocol Specification, Testing, and Verification 0
XI, 233-248, North-Holland, 1991.

[5] P. Godefroid and P. Wolper, Using Partial orders for the Efficient Verification of Deadlock
Freedom and Safety Properties. In: K.G. Larsen and A. Skou (eds.), Computer Aided
Verification '91, 332-342. LNCS 575, Springer-Verlag, 1992.

[6] H.J. Keisler, Model Theory for Infinitary Logic, North-Holland. 0

[7] N.F. Maxemchuk and K. Sabnani, Probabilistic Verification of Communication Protocols.
In: H. Rudin and C. West (eds.), Protocol Specification, Testing, and Verification VII,
North-Holland, 1987.

[8] C. Stirling, Modal and Temporal Logics for Processes, LFCS Report Series, ECS-LFCS- 0

92-221, Dept. of Computer Science, University of Edinburgh, 1992.

[9] A. Valmari, Error detection by reduced reachability graph generation. In: Proc. 10th
Internmtional Conference on Application and Theory of Petri Nets, volume 2, 1-22, Bonn,
1989.

*4

-2sI

S.... . . .. •"' - I -II1 I II I I * I. "



0

Verifying communication protocols via
testing-projection

Khalil DRIRA, Pierre AZEMA
e-mail: {khall,zema•)Olaua.laas.fr 0

LAAS-CNRS, 7 avenue du Colonel Roche F-31077 Toulouse Cedex

1 Introduction vatiiona equivalence) [6, $). Projection of LTS ac-
cording to this equivalence produces a minimal LTS

Protocol projection is an efficient approach for the in the ense that it contains no biimilar distinct 0
analysis of communication protocola. It consists of states. The miae of the so-reduced system can be
deriving from an initial automaton the minimal one, such that it is still not possible to analyse it. Cur-
while preserving specific equivalence relations. Ac- rently, this problem is solved by substituting trace
cording to the OSI model, the basic architecture equivalence (known also as language equivalence in
consists of two protocol entities communicating via the automata theory) for observational equivalence.
an underlying service. The global service, the pro- The projection supplies a deterministic LTS (with 0
tocol provides, corresponds to the behaviour as ob- only observable events) which is minimized w.r.t.
served from both Service Acce-s Points only. Using the bisimulation equivalence (see Fig. 1). Unfortu-
LOTOS notations, this service can be described by nately, the size reduction is accompanied by a loss
the following expremion where SAPI are the ser- of preserved prperties: the only preserved proper-
vice access points, and r, designates the interaction ties are those concerning event ordering. That is the
point that synchronizes entity i and the communi- reduced system accepts the same strings (sequences 0 0
cation medium: of events) as the initial system.

We propose here a tradeoff between the complex-
ity of the reduced system and the properties this

service[SAPI, SAP2] = hide rl, F 2 in system preserves. We propose to define a new pro-
((entity[SAPI, r1] III eti[SAP2 , r2]) jection relying on another equivalence. This equiv-

I[ri,r 2llmedium[ri,r2]) alence is known as testing equivalence ( IS ) in 0
Brinkima's testing theory for LOTOS [1] and is

Compiling such expression produces a Labeled a smplUiao of No"'s failure equivalence used
Trasition System (LTS) which describes the for CSP [5]. This equivalence is Ies discriminat-
vice. This LTS is generally so complex that it is ing than observational equivalence but more dis-
very difficult for the designer to decide whether this criminating than trace equivalence. It psemrvm the
service is the expected one for the specied proto- traces and the failures of a system, that is proper-
Col. ties dealing with the possibilities of deadlock with

Verifying a protocol specification can be carried out the system environment.

by using an equivalence relation. The specification
is correct when the provided service is equivalent
to the expected one. This equivalence-based ver- Weft pNI
ification approach is well known (see for example •

In practice, it is not always possible to have a ref-

erence model (the so-called expected service). This
is due to the difficulty to describe this service in a
monolithic style where composition operator is not
used. Projection is then a convenient alternative to Figure 1: ITuce, Ose etiON4l @Rd £UhiSg i113ec-
protocol verification. It coMsts of furnishing re- t~i. Tte closd LTS is obtained J1 considerin#
duced model of the protocol service while preserving =-±"
some properties: the more the properties are strong
the more the reduced model is complex. Unlike bisimulation-based equivalences it is incor-
Such a reduced model can be obtained using equiv- ret to minimize the system by identifying testing
alence induced by the weak busimulation (the obeer- equivaleat states. This is always the case for non-

- w ww -0-m ,m m m, . ,249-



O

bsimulation-based equivalences. We propose here Using LTS, we recall now the formal definition of
to sove this difficulty for the testing equivalence. conformance introduced in the testing theory of LO-
For t purpose a transformation (designated as TOS [11
nrmad fitu for testing equivalence) of LIS is de-
fined. This transformation simplifie, an LTS and Deihatiua 1 (tenting equivalence [11) Two

preserve the testing equivalence. This transform.- LTSs Pi = (&,E, Ai, Pj) / = 1,2 are said to be

tion is defined using recursive algebraic definitions. tuti't* cqid'est (noted PA 1 Ph) when
This makes it support rigorous and simple proofs of (1) Tr(Pj) = T(PW)
crctness. (2) Va E E-, VA C_ E

This paper is composed of this introduction and 3P', AP 4 PI' and Va E A,(3P1", PI' = PI") iff 0

four other sections. The next section recalls stan- , PA PA' and Va E A-,(3PA", Pý' A$ P2")

dard definitions related to LTSs and testing equiv- 0

alence. The testing projection is then introduced.
Before conclusions, we compare the three projec-
tions on a small simple example. 3 The testing projection

The testing projection of LTS S is an m-minimised

2 Basic definitions normal form of this system: (nf(S)),., where s is
the bisimulation equivalence.

Labeled Transition Systems (shortly LTS) are the The resulting system verifies the following expected

basic structure commonly used to represent dy- properties: 0
namic behavior of communicating systems. * A projection of an LTS is testing equivalent to

A Labeled Transition System can be viewed ms & this LIS: (Wi(S)). te S
set of processes (5) executing actions in E. The
behavior of a proem8a E S is specified by the set of * Two testing-equivalent LTSs have the same

actions it can perform. The behavior following an projection. In other words testing equivalence

action is specified by the met of transitions A. is an isomorphism over the subset of LMeS * *
A finite Labeled Transition System (LTS) is a which are r-minimal normal forms.

quadruple: S = (5, E, A, so) where: Definition 2 (LTSs in normal form) An LTM,

* S is a finite set of states, and so, so E S, is the S = (S, L, A, so), ias said to be in normal form for
initial state of S. the teatina-equialence if

* E is a finite set of visible actions, or labels (i) its initial state so verifies the following equation:

*ACSx(EU{r))xS: thetransitionsset, rg 0E (E T; E a;f,(I)) [I ; M;f(a)
is called internal or invisible ction. An element X

(z,p,y) E A is denoted: z-y (Pxf,) ,1),t(,)\x &en.,,.)X
Another transition relation, {4)M,}EIu{I is defined Where R(s) is a (non-erupti) set of sbeet.

in a standard way by: out() wkick eerifiu tke following misimality

SA,': s = s or s _-- a1 -. " .-- . 7 8': this (w.r.t. cardinalit) propertl: S
means that internal moves of a system cannot be
distinguished. VX, Y E R(s): (Y C_ X) , (X = Y). (P2)

*s a a' : a A, a, 4 • a: this means that
observable moves are not distinguished by internal (ii) Tke states, f.(s) et f,(a), specified in eCP-
moves that encapsulate them. tife P1 verify also (i) et (ii). 0

The output of a state & denotes the set of visible 0
actions that can be performed by the sstem at the The Loton operators ";" and -[]- designate re-

state s. Formally out(*) = {a E E JI s ,. spectively action prefix and choice. The Lotos

This relation is extended to sequences (i.e. words exprasion A,.. Pi denotes the expremion

or strings over E: a, E uE) by: Pi[]PA[]... []P.. Semantic of theme operators is de-

*if r is the sequence al-.-a. write a 4a' when fined by the following rules:

8 -3i1 A9 ...O .I U8 V ii 4E I, J% PI0
Theemptysequene isdenoted e. Asinthecaseofa EEu{.-} (i) (i-)

mate output, "traces ofastate" refer to the set ofall a;P--I P P

sequences of (visible) actions, a E E-, that can be The following proposition shows that testing equiv-

performed from this state: Tr(s) =- -o E I a 4). alence and observational equivalence (i.e. weak
By convention, the traces of LTS are those of its bisimulation equivalence) are identical over LTSs in

initial state: Ta(S) = T o(so). normal form.

-Z250--

- - wus usus 0



Proposition 3 IfS. et S2 are in normalform 0
(d•f.g ) then(Site82)*•(S:St v) • *

Note that the parameterised bisimulation of 12] can
Delnition 4 (Refusal Graph) A refusal grsph, be used to provide a decision procedure for testing

denoted RG, U sa ilakded Irmph represented b a equivalence using bisimulation over refusal graphs.

5.tuple (G, E, A,go, Ref) where: Bisimulation over refusal graphs is an interesting

e (G, E, A,0) is a determini'sic LTS. That is which question in its own right and will not be further

verfies: Vs E G, Va C E; 3 at the most one I' E G explored in this paper.

sutch that (g,a, g') C A. Tius succeuor can then be

noted f.(g) which means that the set of transitions Definition 7 ("nf" transformation) The nor-

is desribed usiana family of functions if. : G - mal form of an LTS S is the LT$ nf(S) derive
GR.E E -- fr/( ) s n • pi==o h ore the refusal 1rupA of5, that is rg(S), by using

*Ref : G - P (E)) is an application whach tr'ansformation Its. That is : n/(S) = Its(rg(S)).

defines for each state, tie sets of actions that may c

be refused after the sequence leading to this state. 0

To avoid redundancy, refusal sets must be minimal Remark: In the case of strongly convergent (i.e.

w.r.t. set inclusion: V9 E G, VX, Y C- Ref(g) : when no loop is created by internal transitions), the

(Y C X) =' (X = Y). 'nf" transformation is identical to the tranforma-

And to avoid describing imaginary systems, the fol- tion described in 17].

lowing hypotheses is imposed on the refusal graph

structure: VX E Ref(g), X C 0ou(g). Only refused Theorem a Every LTS is testing-euivalent to its 0

parts of the output set are considered. normal form: S te nf(S). U

Let S be the transition system (S, E, A, so) and the

two following applications, whose domain is the set The next proposition can be deduced from the

of subsets V'(S), proposition 3 and the theorem 8. It provides an
alternative (to the il-bisimulation of [21) of verifica-

M.(P) U 6.(p) and out(P) = U out(p) tion of testing equivalence allowing (weak) bisimu- * *
peP pep lation equivalence over standard LTSs to be used.

where P is a subset of S, and Vs ES, 6.(s) = s' E Proposition 9 S1 te 82 * nf(SI) 0 nf(S-) U

Sis:&S').

Definition 5 ("rg" transformation) Proposition 10 For every LTS, we have:

The refusal graph rg($), associated with transition S w S.. And

system S = (S, E, A, so) is defined by the 5-tuple 1 om o2 iS ) over -T•.. Wher U.O denotes the

S= (G, E,•', Ref, go), where Uomorhism over MS. 0

* go = 6M(s0) = {is I so 4. s) Finally, using the fact that m is compatible with

S(G g P(S), E,A' C G x E x G) is the labeled it (i.e. suc IS ) and using the standard results of

grph rg(._o), where for al G S, rG g) is re- propositionlO, we deduce from proposition 9 •

cursively defined by the following Lotos ez•pres- Proposition 11 For every LTS, we have:

Sion : S ft (nf(S)).. And

r#(g) = a; rg(b.(g)) S 82 iff (nh(S1)).. (nf(JS)).f. Where :-

• E.-i') denotes the iaomorpk•sm over LTSs. U

* and for all 9 6 G, Ref(g) = {out(g) \ 0

ou(s),& E g) \ {X Ref(1),3Y ReAf(g) : 4 Example
(X _ Y and X# Y))

O Figure 2 presents an example of the three former
projections. Observational projection does not re-

Definition 6 ("Its" transformation) From duce the initial LTS. This is due to the fact that

a refusal graph go, an LTS lts(go) may be derived states s2 and &3 are not observationally equiva-

according to the following recursive definition: lent because their behaviours are respectively of the

g); a; lt.(f.(g)) form r; (PUQ)or; P and r; PGQ which are not ob-
t()= ; E iservationally equivalent.

X•R.S(a) fout(t)\x The system depicted by these LTSs can be viewed

[] _ b;its,(f )) as the local service provided by a data transfer
connection-oriented protocol which locally uses a

w w w~- w -w --



0

om "Al , o 6ALPRACof the LTS.

The minimization pat of the testing-projection
can be conducted by means of strong bisimulation 0
equivalence. This Provides easier minimization and
is possible by slightly modifying (the definition of
the normal form and) the "Its" tranformation.

This technique has been experimented on several
communication protocols, namely MMS and OSI.
TP. These experiences showed that in the first de-

ThAsO Ulsioagno sn steps the so-reduced system is useful for spec-
ification error detection and correction.

D •)ndq/References

[1] E. Brinkuma, G. Scollo, and C. Steenbergen.
Lotos Specifications, their implementations and
their tests. In B. Sarikaya and G.V. Bochmann,

Figure 2: ttiang projection provides LTS less re- editors, Protocol Specification Testing and Veri.

duced than trace projection and more reduced than fication, volume VI. Elsevier Science Publishers
observation projection B.V., North-Holland, 1987.

[2J R. Cleaveland and M. Hennessy. Testing

rendex-vous communication between a protocol en- Equivalence as Bisimulation Equivalence. In
tity (i.e., service provider) and its user. The trace J. Sifakis, editor, Automatic Verification Meth-
projection shows that initially the system can al- ods or Finite State Systema, number 407 in Lec-

locate a connection (ConReq), and then transmit ture Notes in Computer Science, pages 11-23, 0 0
data (DataReq) or accepts disconnection (DisReq). Grenoble-france, June 1989. Springer-Verlag.
The testing projection shows that, after connection, [3] K. Drira, P. Aadna, B. Soulas, and A.M.
data transmission is not always possible. This is due Chemali. Testability ofa communicating system
to the presence of an internal transition (p2 -T ps) thugh an environment. In Pr. 4ct Internm-

that system may execute without communicating tional Join Conference on the Theroy and Prc.•
with its environment compelling the latter to stop rice of Soft wre Development. TAPSOFT'93 0
data transfer. Abstraction made by this projection (LNCS 668), ORSAY, FRANCE, April 1993.
consists of ignoring the origin of this internal tran-
sition. It can either represent a remote or a local [4] Jean-Claude Fernandez, Hubert Garavel, Lau-

disconnection decision. rent Mounier, Anne Ruse, Carlos Rodriguez,
and Joseph Sifakis. A toolbox for the verifica-
tion of lotos programs. In Lori A. Clarke, edi- 0

5 Conclusion tor, Proceeding. of the 14t International Con-
ference on Software Engineering ICSE'W4 (Mel-

The underlying idea of the testing-projection can bourne, Australia), New-York, May 1992. ACM.
6e summarized by the following: [5] C.A.R. Re. Communicating Sequential Pro-

"* we characterize a particular family of LTS ceases. Prentice-Hall, 1985. 0
called ITS in normal form. For this family we
prove that (weak) bisimulation equivalence is [6] R_ Milner. Communication and Concurrearc.
identical to testing equivalence. Prentice-Hall, 1989.

"* we provide a transformation of an LTS to a [7] R. De Nicola and M.C.B. Hennemy. Testing
testing equivalent LTS which is in normal form. equivalences for processes. TAeoretical Coin-
This transformation relies on an abstract struc- puter Science, 34:83-133, 1984. 0
ture (we refr to as Refusal graph [3]) that elim-
inates redundancy related to information that [8] D. Park. Concurrency and automata on infinite

does not concern trace and deadlock proper- sequences. In Lecture Notes in Computer Sci-

ties. ence, volume 104. Springer-Verlag, Berlin Hei-
delberg, 1981.

"* 0-minimization of this normal form preserves
testing equivalence and reduce the state space

,- - wv W 0 *



0

0
0

Equivalences of transition systems in an algebraic framework

Pasquale Malacaria"

In this paper we study simulation and bisimulation equivalences for transition systems
from an algebraic point of view. For the simulation equivalence, the algebras are the free
algebras of a monad on the category of transition systems. These algebras are however
"concrete" because they are an "algebraic completion" of a system. A more interesting
category of algebras seems to be the one we will propose for studying bisimulation; being
related to the category of transition systems by a Stone duality it is in some sense canonical.
Here by canonical we mean that the algebra associated to a transition system is as close
as possible to the structure of the system (roughly speaking it is the space of ultrafilters
on the systems). Stone duality makes it possible to establish an equivalence between
categories having a very different structure, for example between categories of algebras 0
and categories of topological spaces [5] or between categories of domains and categories of
algebras and logics [1, 3]. The Stone duality we present in this paper relates the category
of transition systems to a category of algebras underlying a generalised Hennessy-Milner
logic [41, that is algebras which contain Lindembaum algebras of this logic. As a test for
the validity of abstract reasoning (i.e. algebraic tools) about transition systems, we will * *
prove the equivalence of the notions of subalgebra and bisimulation relation, that is we
will prove that two systems are in bisimulation if and only if they have an isomorphic
subalgebra. It will follow then that the minimal subalgebra of the algebra of a system T
corresponds by duality to the smallest transition system (w.r.t. number of states) which
is in bisimulation with T. 0

1 Categories of action algebras and transition systems

A complete atomic Boolean algebra ( CBA for short) is a Boolean algebra A in which the
g.l.b. and l.u.b. operations are defined for all subsets of A and such that there exists a
subset At(A)_A such that A = p(At(A)) (the power set of At(A)).

Let CBA denote the category whose objects are complete atomic Boolean algebras
and whose arrows are the structure preserving maps. Note that if 4): A--A' is an arrow
in CBA , then there exists a unique set theoretical map

e : At(A')--At(A) 0

such that (under the isomorphism A = p(At(A))) we have (0*)-' = 4. The map 0* is the
underlying map for 4.

Let A be a CBA and X a set; a linear action of X on A is given by a map a : X xA-A
(we write z.v instead of o(z, v)) such that:

* z.O = 0,

"LIENS, Ecole Normale Supereure, Paris, France and Imperial College, London, UK.
e-mailpasquale4dai .ns. ftr

- 253--

w, w w W, 0_,,, 0



0

q z. V V = V.<v(x.v).
The category of actions of X over complete atomic boolean algebras (category denote as

At) has as objects pairs (A,a) (lets call such a pair an action algebra) where A is a CBA
and a is a linear action of X over A. An arrows o : (A.a)- (A',a') is CBA morphisms
between A and A' which satisfy the inequality:

A transition system is a pair T = (S,T) (we use the same letter T to indicate the set of
transitions and the transition system) where S is the set of states and TCSxXxS is the
set o' transitions whose elements we denote as s -t s'. A transition system map f from
(S,T) to (S',T') is a set theoretic map f : S-S' such that

s 'E T =:: f (a) •-L fs') E T

Let TS denote the category of transition systems over a set of action X.
The categories TS and AC are related by two contravariant functors Ts : AC-TS and
Ac : TS-AC.

* The functor Ts is defined as follows: 0

Ts(A,a) = (At(A), TA) where a, ý- a 2 E TA iff a, _< z.a2

Ts(O) = 0* (the underlying map before defined)

* The functor Ac is defined in the following way:

Ac(T) = (p(S),a) where a(z,v) = {si E SI132 E v such that sa 4 s2} * *
Ac(f) = f-'

Proposition 1 The categories TS and AC are duals (i.e. T.S ACPO)

Indeed the duality between TS and AC is a Stone duality : Roughly speaking this
means that there exists an action algebra 14C and a transition system %-s such that the
functor Ts is naturally isomorphic to the Hom enriched 1 functor AC(-, fl.C) and that
the functor Ac is naturally isomorphic to the Hobm enriched functor TS(-, ftrs).

For example the transition system flTS is shown in the following picture:

That is fits = ({O, 1}, {5s - s2131,S2 E {O,10},x X})
The action algebra flAL is pictured as follows:

1 0

That is AC." = ({,1), a) where a is defined by z.a = 0 for a E {0, 1}

'By "enriched" we mean that the functor AZ(-,nA1C) associates to an action algebra A the set
HOMAc(A, f1Ac) equipped with a transition system structure

-- W-



Proposition 2 * The functors Ac and TS(-, Qls ) are naturally isomorphic.

* The functors Ts and .AC( -, RlAC) are naturally isomorphic.

2 Simulation equivalence and Kleisli category

Given two transition systems T = (S,T),T' = (S',T') a simulation between T and T' is a 0
relation RCSxS' such that:

(1): For any 8 E S there exists s' E S' such that (s,s') E R.
(2): For any s, 8 s2 E T if (si,8') E R then there exists s'2 E S' such that s', - s'2 E

T' and (82, s'2) E R.
A bisimulation between T and T' is a simulation 1Z between T and T' such that 7-

is a simulation between T' and T. 0

Let consider the functor Sm : TS--TS, defined on objects by Sm(S.T) = (p+(S),T+)
where :

"* p+(S) is the set of non empty subset of states of S

"* V1 -' V2 E T+ iff for any s1 E V1 there exists s 2 E V 2 such that s, s 2 E T. 0

Sm is defined on arrows by Sm(f) = f+, f+ being the extension of f : (S,T)-(S',T')
to the subsets of S. Intuitively the functor Sm maps a transition system T in the space
of all possible simulations on T.

The functor Sm has a natural structure of monad (Sm, i?, p) so that we can consider * *
the Kleisli category of Sm on TS, noted as TSs,. We characterise then simulation
equivalence as follows:

Proposition 3 Let T, T' two transition systems. Then there ezists a simulation between
T and T' iff there ezists an arrow between T and T' in Tqsi.

3 Action algebras and Bisimulation

A subalgebra A' of an action algebra (A, a) is given by a subset of elements of A which is
closed under the operations. By using the isomorphism between A and p(At(A)), we can
consider set theoretic operations on atoms of A; hence we define a subalgebra of (A, a) as •
a subset A' of elements of A such that: For any v E VCA' and for any X E X the elements
0, A,U V, n V," -v, a(z, v) are in A'
We can prove then:

Theorem 1 Two transition systems T, T° are in bisimulation iff Ac(T), Ac(T') have an
isomorphic subalgebra. 0

The subalgebras of a given algebra are closed under arbritary intersections; in particu-
lar the intersection of all subalgebras of A is a subalgebra which is the smallest (w.r.t.
inclusion) subalgebra of A. This minimal subalgebra has a very interesting property:

Theorem 2 Let T be a transition system and let AO be the minimal subalgebras of Ac(T). 0

Then the smallest transition system (w.r.t. number of states) which is in bisimulation with
T is the transition system Ts(Ao)

.. •$0

Si -i li lunmmm mm mmii iimli-.. . . ..-



0

4 Skeleton of an action algebra

Note that in the case of a CBA the notion of minimal subalgebra is trivial, the latter
always being the algebra {0, 1}. The presence of actions in the category A." makes this
notion not trivial since for any z E X the element z.1 (which in general is not 0) must be
in the minimal algebra. Hence we are looking for a set EA, the skeleton of the algebra A.
that is the smallest subset of A containing 1 and dosed under linear actions.

EA is included in the minimal subalgebra of A and has moreover a natural structure
of transition system (note that EA is a rooted transitions system, the root being the 1 of
the algebra).

We define then a skeleton homomorphism between two skeletons S, S' as a transition
systems morphism which preserve the root and investigate the equivalence induced by
skeleton isomorphism which we note =E. This is a rather weak equivalence. Indeed we 0
have:

Proposition 4 Let T and T' be two transition systems such that for any s E S there
exists a trace-equivalent state s' E S' and for any a' E S' there ezists a trace equivalent
state a E S: Then T =E T'.

References

[1] S. Abramsky. Domain theory in logical form. Proceedings of the 2nd annual
symposium on Logic in Computer Science, 1987.

[2] A.Arnold. Systemes de transitions finis et semantique des processus comunicants.

Masson, 1992.

[3] T.Ehrhard, P.Malacaria. Stone duality for stable functions Proceedings of Cate-
gory Theory in Computer Science, L.N.C.S. 530.

[4] M.Hennessy, R.Milner. Algebraic laws for nondeterminism and concurrency
Journal of A C M., vol 32, 1985.

[5] P. Johnstone. Stone Spaces. Cambridge University Press 1982.

W0
-- :,0

. . .1, Ii, •0



|0

Semantics frameworks for
a class of modular algebraic nets S

E. Battiston, V. Crespi, F. De Cindio, G. Mauri

Dipartimento di Scienze dellInformanone - Universiti degli Studi di Milano
email: decindio@hermes.unimi.it

Among the various proposals for an 'Algebraic Specification of Concurrency' (AR],
OBJSA Nets [BDMa] are a class of algebraic high-level nets which combine Superposed
Automata (SA) nets, a modular class of Petri nets, and the algebraic specification
language OBJ. OBJSA Nets together with their support environment ONE (OBJSA Net
Environment), constitute a specification language for distributed systems which is called 0
OBJSAN as each OBJSAN specification is mapped by ONE into an OBJSA Net
[BDMb].

To enhance specification modularity and reusability, an OBJSAN specification is obtained
by composing, via transition fusion (i.e., superposition), some OBJSAN (open)
components. An OBJSAN component is a couple which consists of a net and an OBJ
module. The net part expresses the control of the system to be specified and the OBJ part
describes data modification through occurrence of events modelled by net transitions. An
OBJSAN component is either closed, if all of its transitions are closed, or open if it
contains at least one open transition, Le., a transition which is only partially extensionally
specified, since couples of its input/output places have to be identified through
superposition of the transition itself with other transition(s). Open transitions represent the
interface of the component toward other components, and are specified by non executable
modules (in OBJ called theories), while closed transitions are specified by executable
modules (in OBJ called theories).

With the aim of defining a formal semantics for this class of algebraic high-level Petri
nets, two operators have been defined in [BDMR]: Spec(-) and Unf_. They map an
OBJSAN closed component (in the following called OBJSAN system) C respectively to 0
an OBJ module Spec(C) called the Speciflcadion module (by translation of the net scheme
into conditional equations and operators) and to a 1-safe SA labelled pure net Unf(C) (an
Elementary Net system) called the Unfolding net (by translation of the OBJ specification
into net elements).
While Unf(. well supports concurrency since it produces Elementary Net (EN) systems,
whose categorical semantics has been defined in [DKPS], Spec(-) is less satisfactory
because of the loss of concurrency due to the OBJ3 sequential semantics. The idea is
therefore to turn on the specification language MAUDE.
Let us recall that MAUDE is a specification language syntactically similar to OBJ3 whose
operational and denotational semantics were defined by Meseguer in [MESa]. In MAUDE
there exist essentially two kinds of modules: functional modules (whose syntax is entirely
identical to OBJ3) and system modules. While operational semantics is concurrent
rewriting for both of kinds of modules, denotational semantics is different. For the
functional modules it is the usual initial algebra associated to the equational specification
(so MAUDE has OBJ3 as sublan4 .,. For the system modules it is a categorical model
which describes the system who i xhaviour is specified by the rewriting rules.

More precisely let us consider a case mat will be useful in the following. Suppose to have •
a MAUDE system module M which imports a functional module M'. M codes a rewrite

theory R = (L E, L, R) while M' codes a rewrite theory R' = (I', E', L', R') where I

(resp., E') is an equational signature, E (resp., E) is a set of I-equations, L (resp., L')
is a set of labels, R (resp., R') is a set of conditional rewriting rules of the type

- Z5•-

ww w w V W - - • 0



0

1: [t]E -4 [tfE if Cond, with le L and [tle TZ.E(X) (resp. for R'). The operational
semantics of the global specification is given by a categorical model in which objects arm

the elements of Ty -, E.(X) and arrows are all the possible sequents I[tEUE, --

[t']EjE, inductively generated by the rewriting logic inference rules starting from RuR'.

In practice this means that we have concurrent rewriting modulo EuE' on terms
Ty .4X) by using RuR' as rewriting rules [Mesa], i.e. concurrent rewriting in both the
system module (called supermodule in the following) and the functional module (called
submodule).
The denotational semantics is given by a categorical model in which the objects are the
elements TyuEYEE,uUn1abe1(R,)(X) and arrows are all the possible sequents

[t]EuEjuUnpIbe(IR,) -4 [t']EuEjuUnlabed(R) inductively generated by the rewriting logic
inference rules starting from R. So the denotational semantics treats the rewriting rules in
the functional module as equations whose semantics is the initial algebra. Then only the
rewriting rules in the system supermodule are interpreted as arrows (class of closed 0
arrows) of the categorical model.

According to these considertaions, here we redefine SpecL) as the operator which maps
an OBJSAN system C=(N,A) to a MAUDE system module which imports functional
modules: a (conditional) rewriting rule in the system module is associated with each

transition te T, while the functional submodules contains the coded specification of the 0
data structure of C (the information in A).

As we are now able to associate a MAUDE module Spec(C) and an EN system Unf(C)
with each OBJSAN system C, to give it a semantics we consider the categorical models
developed for MAUDE modules (by Meseguer [Mesa], see above) and for Petri nets (by
Meseguer&Montanari [MM]) and we verify the isomorphism between the two semantics. 40
As we shall see, both of the categorical semantics result to be redundant. The reason is
that OBJSAN systems introduce, for modelling purposes, constraints on the marking:
tokens are couples <a-name;some-data>, where the name represents the token identity
which cannot change by transition occurrence and is unique in each elementary subnet of
an OBJSAN system. Therefore, the net markings are multisets of tokens without
multiplicity (i.e., sets) and the UnfL) operation maps an OBJSAN system C to a contact- 0
free EN system (while proper multisets at the higher level would require a P/T system at
the lower level).

MAUDE] m lt: W(2) Conditional (6) Full subcategory of tR obtained

Spec(C) - rewriting • constrainig logic rewriting 0
or theory Rc inference rules.

( l Lemma I

C=(N,A)'< (3) InstantiationI • Lemna 2 theorem.

(5) Lmma 2

(4) Ground (7) Partial commutative monoid
Unf(C) rewritig on a category.

ENsse system Tc

fig 1

The relationship between Spec. and UnfL) is stated by a theorem that we call
'instantiation theorem' as it proves that by instantiating the rewriting rules of the system

iiiI5I -" -



0

part of Spec(C) with ground terms and considering only those rules whose predicates are 6
reduced t true (representing transitions with a chance of occurring), we get the
transitions of Unf(C).

More formally, let C=(N,A) be an OBJSAN system and let us derive its MAUDE
Specification module Spec(C) and its Unfolding net Unf(C) (arrows I and 5 in fig.l).
As we have seen, Spec(C) codes two rewrite theories R-(J. E, L, R) and R'=(Y', E',
L', R'), respectively associated with the system module and with the functional
submodules. The rewriting theory Rc=(ZujZ', EuE'uUnlabel(R'), L, R) (arrow 2)
gives the denotational semantics of Spec(C), according to [MESa].
According to the constraction given in [DKPS] which specializes the
Mesegue&Montnari work for P/T nets to EN systems, Unf(C) can be translated into a
set of ground rewriting rules which we name Tc (arrow 4). For example, a transition t in
an EN system is translated in the rewriting rule Sl9..9sn - s'19..9s'm

[commutativity, associativity, identity: )L] where ot=(sj,..,sn) and t,={s'1,...S'm). Tc 0
gives the denotational semantics of Unf(C), according to [DKPS].
Then, the instantiation theorem (arrow 3) states that by instantiating the open
(conditional) rewriting rules in Rc with ground terms and considering only the
conditional equations whose predicates am reduced to true we get Tc. In the following we
sketch its proof, whose kernel consists of three constructive lemmas related as shown in
fig.2. 9

,:CjitmYiv*..*Cintmyjn --,
ClitmY'll (mdm ())@..OCintmY'in(mdm 0)

if tpr(md,())
Sm :Try.-Y T .~spW.c 0

typ,.1 sp.1 nmTy

tsjz~ai

tpr L&MMwA1
ty j ibi I

sejii,bi

WyiI s'ji,1

9 : Ty -4 TMSPEC>, i:l..n.
nem: Cji8m(tmY)Oe..*CqO~m(tmYjn)

Cjlty'1 l (O,(mdmo)))-.-Cjntmy'jn(Om(mdm()))

tO: O(tYi.1 0)..e(tYjnan)) "-
tY'll ,(B(mdo))O..@ty'in.bn(e(mdO)) 0

with mdmO - mode(tYpj,..,tmyj), md()=mod*(tY1 .1 ,..,tY1n~d).

fig 2

Taken a transition te T of an OBJSAN system C and a ground substitution 0 of the input
arc inscriptions (representing an occurrence mode enabling t in a certain marking) we get,
via lemma 1, a conditional rewriting rule rt with a corresponding ground substitution em

- 253--



for var(rt) and, via lemma 2, a ground rewriting rule tO. Lemma 3 closes the cycle: by

instantiating rt with Om we get tO.
The rewriting system Tc is obtained directly by applying lemma 2 to the transitions of C.
The rewrite rules in Rc=(Y-.I El, L1, RI) are obtained directly by applying lemma 1 to
the transitions of C, while the equations E, concern the data part of C. As we have said,
the MAUDE functional modules specify data, i.e., the tokens carriers, the occurrence
predicates tmpr and the arc inscriptions containing variables troy and operators tmY'O. In
fact the carriers of tokens together with the operations defined on them are abstract data
types. We instead use system modules to specify control, i.e., local transitions.
The idea is that concurrent term rewriting in system modules captures the concurrency
expressed by the control part of the net, while concurrent term rewriting in functional
modules performs the parallel computation of the operators ty'. Lemma 3 proves the
semantic equivalence between Spec(C) and Unf(C), namely between the concurrency
expressed by the system module, captured by Rc, and the concurrency expressed by the
Unfolding EN system, captured by Tc. Besides, the lemma proves that the concurrent •
application of two conditional rewriting rules in Rc rl and :2 to a marking term s (with
substitutions 0 m, and 0m2) represents the concurrent occurrence of the two
corresponding low level transitions rIO 1 and r202 in Tc in the marking represented by s.

Let us now discuss the redundancy of the two categorical moC"ls due to the constraints
which characterize OBJSAN systems.
a) The categorical model proposed by Meseguer, when applied to our case (Rc), is
redundant because the inductive process generation of the category (by rewriting logic
inference rules) would produce arrows without corresponding net computations. We get
the correct model constraining the logic rewriting inference rules. What we obtain is a full
subcategory of the Meseguer' original model in which objects are associated with * *
admissibles net states only (arrow 6). Such states are denoted by terms not containing two
or mome identical tokens: this is because OBJSAN system markings do not allow multisets
of tokens with multiplicity. From the operational point of view, proofs in this modified
Meseguer formal system, represent the simultaneous application of several rewrite rules in
Rc to a correct marking term, so that the concurrent term rewriting models concurrent
transition occurrence. In practice, since we can consider only marking terms s without
multiplicity then it is possible to concurrently apply two or more rewriting rules ri of Rc to
s if and only if the corresponding matching substitutions 0mi do not share any token (i.e.,
the occurrence modes are disjoint).
b) The categorical model for P/T nets defined in [MM] is redundant when applied to EN
systems, as shown in [DKPS]. The redundancy is eliminated by reducing the parallel sum
carrier, leading to a partial commutative monoid on a category (arrow 7) (cf. in [DKPS]
the EN category).

By removing the constraints characterizing OBJSAN systems we fall in the more general
class of SPEC-inscribed nets [REI] to which UnfU and Spec.) can be extended: in that
case the Meseguer and Meseguer&Montanari categorical models would not be redundant.
Nevertheless, as a counterpart, SPEC-inscribed nets do not support modularity and
therefore they have not a notion of parameterized open component. Indeed, our current
effort is extending the approach to OBJSAN open components semantics towards using
the categorical frameworks presented here for characterizing concurrent object-oriented
languages (cf. [BCDM] and [MESb]).

-260-



0

Aekowledgements

This work has been supported by the ESPRIT Working Groups CALIBAN and
ASMICS2 and by the CNR-Progetto Finalizzato "Sistemi Informatici e Calcolo 0
Parallelo", sottoprogetto 4, LRC LAMBRUSCO.

[AR] E. Astesiano, G. Reggio, Algebraic Snecification of Concurrency. In: Proc 8th 0

WADT, Dourdan (F), LNCS, Springer-Verlag (to appear).

[BCDR] E. Battiston, P. Consolaro, F. De Cindio, L. Rapanotti. POTS. POLS. OBJSA
Nets: from obiect-based to class-based net formalisms. CNR-Progetto Finalizzato
"Sistemi Informatici e Calcolo Parallelo", Tech. Rep.n.° i/4/59, 1992. 0

[BDMaj E. Battiston, F. De Cindio, G. Mauri. A class of high level nets having objects
s dmains In: G. Rozenberg (ed.), Advances in Petri nets. LNCS 340, Springer-

Verlag, 1988.

[BDMb] E. Battiston, F.De Cindio, G.Mauri: SRecifving concurrent systems with 0
OBJSA Nets. CNR-Progetto Finalizzato "Sistemi Informatici e Calcolo Parallelo",
Tech. Rep.n.* i/4/'72, 1992.

[BDMR] E.Battiston, F.De Cindio, G.Mauri, L.Rapanotti. Morohisms and Minimal
Models for OBJSA Nets. In: Proc.12th Int. Conference on Application and Theory of
Petri nets, Gjem ( DK) June 1991. * *

[DKPS] C.Diamantini, S.Kasangian, L.Pomello, C.Simone. Elementary Nets and 2-
CateggueL CNR-Progetto Finalizzato "Sistemi Informatici e Calcolo Parallelo", Tech.
Rep. n.0 i/4/29, March 1991.

[MESa] J. Meseguer. Conditional rewriting logic deduction, models and concurrency. 0
In: S.Kaplan and M.Okada, (eds.), Conditional and Typed Rewriting Systems, LNCS
510, Springer-Verlag, 1991.

[MESb] J. Meseguer. Multiparadigm logic nor, ammin,. In: H. Kirchner and G. Levi
(eds), Algebraic and Logic Programming, LNCS 632, Springer-Verlag, 1992.

[MM] J. Meseguer, U. Montanari. Petri nets are monoids. In: Information and 0

Computation, Volume 88, fascicolo 2, 1990.

[REI] W. Reisig. Petri Nets and Algebraic Snecifications. In K. Jensen and G.
Rozemberg (eds), High-Level Petri Nats. Theory and Applications, Springer-Verlag,
1991.



0

0
00

0

0

0

-- Z* 0



0

A Characterization of LOTOS representable Networks of Parallel 0
Processes *

David de Frutos-Escrig
Departamento de Informatica y Automatica

Facultad de Ciencias Matemiticas - Universidad Complutense
28040 Madrid, Spain

Introduction

We compare in this paper graphic and algebraic representations of parallel networks of processes. More exactly 0
we characterize the clas of graphically definable networks that can be represented in LOTOS, that is to say
by means of a LOTOS expression which combines the processes in the network by instances of the LOTOS
parallel operator.

Unfortunately the obtained characterization is far from trivial, and due to its complexity, even someone
could think that it shoulk ce not named in such a way. Thus, instead of a characterization we could say that
what we have obtained is an efficient algorithm to decide if a given network is representable. But if finally 0
we have decided to insist on the use of the word ckersctenzamton, it is mainly to emphasize the efficiency of
the obtained algorithm. Due to the finite nature of the considered problem it is obvious that it is decidable;
but at the same time, its combinatorial flavour makes reasonable to expect an exponential complexity, and
even to conjecture that the problem was NP-complete. As a matter of fact we thought for a long time that
this was the case, once we proved that several, more and more sophisticated, natnral algorithms to solve the
question were not correct. * 0

The work was motivated by our joint work with T. Bolognesi in [3,2], exploring the (partial) associativity
properties of the LOTOS parallel operator. First results on the subject, obtained by our colleague, were
presented in (1]. Another contribution to the study of the subject is [4], where a simple example proving
that no every parallel network is LOTOS representable was presented, but no characterization of the set of
representable networks was there presented.

We consider that the work is interesting for several reasons. First it compares two different formal methods 0
for defining concurrent systems: a graphical approach, that we formalize using some basic graph notions;
and an algebraic approach, mainly the LOTOS language (or equivalently CSP with its generalized parallel
operator.) Characterizing the kind of networks that are LOTOS representable, we show at which extend
this kind of graphical representations can be used to specify systems, when we want to use the algebraic
framework to analize, or to transform, the obtained specifications. On the other hand, if we focus on the
algebraic formalism, we show which are the exact limits of the expressing power of the (LOTOS) parallel 0
operator.

Besides, we consider that the proof of the characterization is rather interesting by itself, showing an
application of many different techniques for showing properties of algebraically defined systems. The use of
operational semantics, induction, normal forms, reductions of difficult instances of the problem to more simple
ones, and some others, are illustrated.

Definitions

In the following we will sketch the main definitions and results to be extended in the full paper.

Definition 1 A general process-gate net GPGN is an undirected bipartite graph (P,G,E), where P is a set of
so called process-nodes, G is a set of gate-nodes, and E is a set of arcs E C P x G. 0

Definition 2 A labelled process-gate net LPGN is a triple (GN,GL,AL) where GN = (P,GE) is a GPGN,
GL : G -* Gages is a labelling function, and AL : P - rt(Gates) is a function defining the (maximal) alphabet

*This work has been p•rtiafly supported by ESPRIT Project 2304: LOTOSPHERE

-Z65-



S

of the processes to be associated to each process node, such that V(P,,g) E E GL(g) E AL(P,,), and

VP, E P Va E AL(P,) 3g E G 3e = (PA,g) E El GL(g) = a

0 0

Rmark: The last condition in the previous definition is included in order to give a chance to be executed to
any appearance of an action in the process labelling each node.

Definition 3 A concrete process-gate net CPGN is an instantiated GPGN, which means a pair (LN,PL) where
LN = (GN,GL,AL), with GN = (P,G,E), is a LPGN, and PL: P - Proc, with Alphabel(PL(P.)) g AL(P,),
for each PA E P. 0

This definition is more general that the one given in [3], where GL had to be injective, and each process
had to be connected with any gate-node labelled by any of its gates. This restriction was there included (and
also in [1]) in order to formalize the so called mazirmal cooperulaon prnciple, which oblidges to any process
including a gate in its alphabet, to cooperate to execute the corresponding action. We have dropped this
restriction, what have already been done (although in a different framework), in [2].

Definition 4 (Operational semantics of CPGN's)
Let CPGN = (LN,PL) a concrete process-gate net with LN = (GN,GL,AL) and GN = (P,G,E). For each

g E G, if all the processes B, labelling process-nodes connected with g can execute the action GL(g), evolving
into B•, then CPGN can also execute that action, evolving into CPGN' = (LN,PL'), where PL' is defined as

PL, but taking PL'(Pi) = B' , for each process node P, connected with g. 0 0

We want to decide if for a given LPGN we can construct an equivalent LOTOS representation LRep(LN),
which means a parallel expression combining the process variables in P, by parallel operators 1[S]I, with
S C Gates, such that for any concrete instance of LN, CN = (LN,PL), we have CN - LRep(LN)[PL(P,)/PjJ,
where by [B,/Pi] we denote the substitution of all the appearances of the variables Pi by the corresponding
processes B,. .

We apply a constructive method to answer the question, so that whenever there exists any LOTOS ex-
pression representing the given network, we obtain one of them.

The algorithms to check LOTOS-representability of a network

To solve the problem we have followed a three steps procedure, generalizing at each step the kind of networks S
that can appear as input.

In the first step we consider the case in which the given network has a single gate. This simple case is
studied, just because to solve the general case we have first to solve each of the problems corresponding to
the projection of the network over each one of its gates, and then to check if all the obtained solutions are
somehow compatible each other.

But this reduction of the problem to a family of problems corresponding to single gates, only works •

whenever all the alphabets of the process nodes of the network are the same, and thus for each process-node p

and gate a there is some gate-node g labelled with a connected with p. This is the case that we have studied

in the second step of our procedure.
Our first idea in order to solve the general case was to try to reduce it to that particular case. But that

showed us to be not possible, since the fact that any process appearing in the expressions computed along the

application of the algorithm, could eventually execute some action through any of the gates of the network, 0
was crucial in order to prove the correctness of the algorithm.

Therefore we had to change our approach to the question, looking directly for the appropiate generalization
of the algorithm to solve the general instance of our problem. If finally we have decided to include in this

paper the solution for the previous (partial) case, it is mainly for pedagogical reasons, since both the general

algorithm and its correctness proof are absolutely inspired by the corresponding ones for that particular case.

First Case: Networks with a single gate

We consider in this section the particular case in which the system has a single gate, that is to say I GL(G)I = 1.

In such a case the kind of parallel expressions in which we are interested, can be represented, as already

suggested by T. Bolognesi in [21, as arithmetic expressions, rewriting III into + and I[alI into*.

- 264-

-- W V 0 0



0

We can translate the definition of the operational semantics of LOTOS to this arithmetic framework,
obtaining the following rules

E_ , _ E, E2 E2 E -- E,• 2 - E2.

E1 +E 2  Ei EI+E 2  E1 +E E 2 -- E++E2 El-E 2 f El.E2

Besides, the commutativity of Loth operators and the distributive axiom (E1 +E 2). E3 = (E- E2 )+(E1 .E3)
are also correct in this framework. Then our problem reduces to prove if that expression can be rewritten into
another (equivalent) one with a single occurren(., of each process variable, by application of the commutativity
of both operators, and of the distributive axiom in the right to left way.

In order to check that property, we concentrate on the root operator of the (present state of the) expression
to be reduced. If it is a product, then there cannot be any common process variable in its two arguments, and
thus the probiem can be reduced to the simplification of both arguments. Otherwise we select any process
variable with more than a single occurrence in the expression, and we try to elliminate its repeated occurrences
by application of the distributive axiom. If it is not possible, then the algorithm fads, concluding that the
original network is not LOTOS representable. Otherwise we iterate the process until there will be no variable 0
occuring more than one time in the expression. Since there is no necessity of any backtracking along the
application of the procedure, it is easy to check that using the adequate data structures to represent the
involved expressions, the cost of the algorithm is (in the worst case) cuadratic on the size of the network.

An important auxiliary result, which besides is rather interesting by itself, to prove the correctness of
this algorithm, is the one telling us that two essentially different (up to commutativity and associativity)
expressions with single appearances of each process variable, are not equivalent. This result could seem to be 0
trivial, what it is somehow disproved by the (relative) complexity of its formal proof. As a matter of fact the
correctness proof of our algorithm (which, at least in our opinion, is far from obvious) is nearly immediate
once one can use for it this auxiliary result.

Second Case: All the process nodes have a common alphabet

The second step covers the case in which all the process nodes have the same alphabet, which implies that for
any process-node p and gate a there is some gate-node g labelled with a and connected with p.

In this case the procedure begins by the application of the algorithm corresponding to the previous case
to the projection of the given network over each one of its gates. If any of them is not LOTOS representable,
neither the full network is. Otherwise we have to check if all the obtained expressions are compatible each
other. This means that they can be obtained by projecting over each gate the LOTOS expression that we are
searching. Thus we have to check if the hterar-hical relations between the process variables, induced by the
expressions corresponding to each gat, of the network, are not contradictory.

For we use the fact that for each set of gates A, the corresponding parallel operator I[A] is associative.
Then we can write the expressions involved in the process, in what we call normal form, which is formally
defined by

Definition 5 a) If P1 .... Pn are process variables and A C Gates, then the expression E = [[AJI(P1 .... P.)
is in normal form, and we will say that the set A is its root synchronization set, which we will denote by
rss(E).
b) If El,..., E5 are expressions in normal form, with rss(E,) = A,, and A C Gates verifies A $ Ai, for each
i E {1. k), then the expression E = I[A]I(E 1 ,. . Ek) is also in normal form, and we take rss(E) = A. -0

Then, in order to check the cotsistency of two expressions in normal form, E = I[AII(El .... En) and F =
I[B]I(F, .-. . , F), we first study if its common set of process variables can be partitioned in a family of subsets
pi,..., P', in such a way that for each i E {l).... t) either exists some j E {f1 ..... ml with Processes(E,) =

P' and some K C {1-. , n) with UkEK Processes(F5 ) = P', or there exists some j E { n.. ) with
Processes(Fj) = P and some K C {1,..., m) with UkEK Processes(Ek) = P' . If this is the case our problem
reduces to a family of instances of the same problem, with an instance for each i E {1,..., t} ; otherwise the
given expressions are not consistent. Those instances of the problem are defined in the following way:

"* If 3 ji E {I .. m) 3j2 E (1,...,n) I Processes(Ej,) = Processes(Fi,) = P', we check the consistency
of Ej, and Fj2 .

"* Ifj E{1 . m} 3K C { ._ n) I IKI > IAP1 sses(E^) = UkcxProcesses(Fs) = P', we check
the consistency of Zj, and I[B]Iscx(Fs).

-- 265-



* If3jE •{,...,.n3KC (I . m) I IKI > I A Processes(F,) = UkEA" Processes(Ek) = P', we check the
consistency of I[AI&EkK(Ei) and F,.

If all these tests are passed then the given expressions are consistent; if this is the case, we also obtain the
expression D which combines the structures of both expressions. Otherwise, they are not consistent, and thus 0
they cannot be combined into a single expression.

The cost of this algorithm is cuadratic on the size of the given expressions, and thus the cost of the
presented algorithm to test LOTOS-representability in this second case, is less than cubic on the size of the
given network.

The General Case 0
As in the previous case we begin by solving the problems corresponding to each gate in isolation. But in this
case, when considering the subproblem corresponding to a gate g, the process nodes which do not contain that
gate in its alphabet, are not considered when applying the algorithm described in our first step. Nevertheless.
once we have the corresponding solution, we add those processes as new sons of the root of the solution.

It is clear that whenever J[g][ is the operator labelling the root of the expression, we obtain an impossible 0
synchronization, since g is not a gate of any of the added processes. But the key idea in order to guarantee
the correctness of the algorithm, is that such LOTOS expressions are not interpreted by our algorithm in the
ordinary way; instead it uses a modified version of the semantics of the parallel operator, which considers that
if we have an expression E = f[All(E 1 ,..., EJ), and we want to execute some a E A, only those processes P,
including a in their alphabets will have to cooperate to do it.

This change implies that the hierarchical structure induced by an expression is no more unique, since the S
processes which do not contain the corresponding action in its alphabet, could have been added anywhere, and
not just below the root of the expression, obtaining a set of different expressions, which however are equivalent
with respect to that modified semantics.

This implies that when we check the compatibility of two expressions, we have to let the processes no
containing the corresponding gates, to move down into any argument of the corresponding expression, if that
is necessary in order to match the structure induced by the other expression. * 0

In order to generalize this idea, to apply it when we have to compare two expreosions which have been
obtained by composing the solutions corresponding to several gates, we introduce the notion of independency,
for sets of expressions. We say that the elements of a set of expressions are independent iff their alphabets are
disjoint each other. Then, whenever we are comparing two such expressions, and we have inside any of them
the parallel composition of a family of independent subexpressions, we can put all together obtaining a single
subexpression, if that is necessary in order to match the structure induced by the other expression.

Thus, the second step of the algorithm for this general case is obtained from the corresponding step of the
algorithm for the previous case, by relaxing the condition which imposes that for each set P' in the considered
partition, we have either to find some single subexpression Ej (or F,) with Processes(Ei) = P' (or equivalently
for Fj), allowing now to have instead a family {Ej I i E J} (or equivalently for F's), of independent processes.
When we use that possibility, and for each j E J we have E, = I[Aj]I(E, _.. Ej,,) then the expression to be
compared in the instance of the problem corresponding to P' , will be that given by I[Aj]Jj. .... ,m,)(Ejk) • 0

Finally, if the algorithm succeeds, those impossible synchronizations remaining in the obtained solution are
removed, since they were only added as a consequence of a technical trick, to obtain an algorithm as similar
as possible to that corresponding to the second case. By removing them we recover the ordinary semantics
for the parallel operator, and thus the obtained expression is indeed the representation of the given network.

References 0

[1] T. Bolognesi A Graphical Composition Theorem for Networks of LOTOS Processes in Proceedings of the
10th International Conference on Distributed Computing Systems, IEEE Computer Society Press, 1990.

[2] T. Bolognesi (Ed.) Catalogue of LOTOS Correctness Preserving Transformations LOTOSPHERE Task
1.2 Final Deliverable Lo/WP1/T1.2/N0045 ESPRIT 2304: LOTOSPHERE (1992)

[3] T. Bolognesi, D. de Frutos, Y.Ortega Graphical Composition Theorems for Parallel and Hiding Operators
in Formal Description Tecniques III, (Procs. FORTE'90) North Holland (1991)

[4] J. Hinterplattner, H. Nirschl, H. Saria Process Topology Diagrams in Formal Description Tecniques II,
(Procs. FORTE'90) North Holland (1991)

- i . .. . W . .



Towards Performance Evaluation in Process Algebras *

Roberto Gorrieri Marco Roccetti

Universiti di Bologna, Dipartimento di Matematica
Piasza di Port& San Donato 5, I - 40127 Bologna (Italy)

e-mail:{gorrieri,roccetti)@cs.unibo.it

Process algebras, such as ACP, CCS, CSP and LOTOS, are widely accepted formalisms for the
"functional" specification of concurrent systems, where functional means that a process term
specifies what actions the system should do. Bisimulation is a standard tool for the definition of
a behavioural equivalence on process terms which, besides the actions, considers the structure of
the alternative choices (branching-time semantics).
Another, not less relevant, aspect of a system specification is its "performance", i.e., the measure
of the time consumed for execution. It may be argued that performance is only a matter of efficient
implementation. This is untrue: For applications whose functionality is performance-dependent
(i.e., it can be altered by the flow of time like, e.g., in presence of time-outs), it is reasonable 0
to require that a specification does not allow implementations which do not have an adequate
performance.
Our work gives a contribution in the direction of integrating the two needs by presenting a new
bisimulation-based semantics, called performance equivalence, for a simple process algebra where
systems are equated if they perform the same actions in the same time (i.e., they have the same * 0
functional and performance behaviour).
The basic assumptions on which this semantics relies are the following. Any action a has a
duration - a natural number f(a) - which represents the time units needed for its execution.
Every sequential subsystem is equipped with a dock, whose elapsing is set only by the execution
of actions. To be more precise, whenever an action a is executed by a sequential subcomponent
P, the value n of the local clock of P is incremented to n + f(a), whilst the local clocks of those 0
sequential components not involved in the execution of a are unaffected. Hence, if P is idle during
a transition, its local clock value cannot increase. In other words, each sequential subsystem is
always eager to perform an executable action (or dually "actions are urgent"): the time value is
incremented locally only when the executable action is performed. The only exception is concerned
with synchronization. Two processes can synchronize when they perform the same action at the 0
same time; if one of the two is able to execute such an action before the other one, then a form
of "busy waiting" is allowed. This fact shows that the local docks are indeed locally replicated,
possibly inconsistent, versions of the unique physical global time. Indeed, the time is the same
for all the sequential components; the only point is that we do not pretend that all the local
views be consistent during the simulation. This assumption is rather natural if we are interested •
in performance evaluation only. In a simulation there is no need of having a tight agreement
between the time of execution (i.e., the number attached to the executed actions) and the time
of observation (i.e., the time of "generatioL" of the action during the simulation).
A simple example may be helpful in clarifying the basic idea. Consider the term E = a.g.nil
b.nil. Since the clock is set to 0 befc. e starting the execution of E, the initial state of the
transition system is (0 =* a.g.nil) 11 (0 * b.nil), where the auxiliary operator n *, P means that

"This work has been partially supported by Esprit Basic Research project BROADCAST n.6360 and by Italian
CNR, grant n. 92.00069.CT12.115.25585.

W W W w w ww0 0



0

the execution of P starts exactly after n time units of the global clock. One of the two transitions
out of it is labelled (a, f(a)) and reaches (f(a) * g.nil) 110 =* b.nil. By executing b, we reach
the state f(a) * g.nil 11 f(b) * nil; finally the execution of g produces a transition labelled
(g, f(a) + f(g)) with target state (f(a) + f (g) = nil) II f(b) => nil. It is immediate observing
that the time needed for the complete execution of the system is maz{f(a) + f(g), f(b)} and
that bisimulation equivalence over this labelled transition system is more discriminating than
interleaving bisimulation. Indeed, the equation a.nil 11 b.nil = a.b.nil + b.a.nil does not hold

0 = a.nil 110 => b.nil aI_ý f(a) * nil 1 0 =o b.jil -1 f(a) =* nil 11 f(b) =*. nil

0 =* a.b.nil + b.a.nil 1(a) = b.nil ((--c+' M) f(a) + f(b) = nil

as the execution of b after a in the left-hand-side term is performed with a higher dock value.
Notice that, if f(a) > f(b), then the execution of a before b in a.nil 11 b.nil generates two
transitions where the dock value is decreased in the second transition. This phenomenon has
been criticized in real-time literature (e.g., [2]), because in this context the time of execution and
the time of observation are required to agree tightly; however, a recent report [1] shows that this
view can be reasonably accepted also in real-time applications, provided that those "ill-timed"
traces are "well-caused", as we do here.
The simple process algebra £ we study has operators borrowed from CCS and TCSP:

E ::= nl I a.E I E + E IE11A E I E[l]

where, for the sake of simplicity, we assume that 4 relabels actions with the same duration, i.e.,
f(a) = f(f(a)) must hold for any a. L is equipped with an SOS semantics in terms of labelled
transition systems. The states are terms generated by the following syntax:

s ::= n =* nil I n =* a.E I1 +S 13 IA sj1f[] *
where E denotes any (finite) C term. When prefixing a term E with a clock value n, n =* E, we
mean that n distributes over the operators, till to the sequential components. Formally:

n*(E+ E') - (n= E)+(n== E')
n. (E IIA E') (n* = E) IA (n E')

na *o (E['IJ) (n *> E)[4']

Hence, a =* E is (canonically) reduced to a state. Each transition is labelled by (a, n) * w: the
observable part is (a, n), meaning that action a has been completed exactly after n time units,
while the location part w is a term pointing out which sequential subagents have been involved in
the execution of action a itself. The latter part, irrelevant from an observational viewpoint (and
thus omitted in the previous examples), is used to guarantee a correct updating of the local clock
values in steps of synchronization. Locations are generated as follows:

W : 0 "1 I LW I W 1I W

where * (one place) means "sequential", while wJ (•w) means that the system is composed of
two main parts and that w comes from the left (right) part; the operator 11 is a form of (disjoint)
union of locations. The rules for prefixing, sum, relabelling and parallel composition (where the
obvious symmetric rules are omitted) are:

k = n + f(a) 8
n => a.E •"L"k => E [] *)--".[,]

- 26S--

-- - ,w V 0 •



sl • l s• if a €A

$1 +82 38 $1 11A 832J 11~A 32

s3 -- 8 82 - s2 ifaEAadn 'an2

81 11A S2 3,1 )(w 11A2)8k (ij~w.,lsi9

where the auxiliary time-update operator (n1 ,w•] applied to s in the synchronisation rule increases
to nj the clock value of the sequential components of s' singled out by w 2. Indeed, two sequential
subsystems can synchronize via the same action a performed during the same time interval; hence, S

if one of the two is ready before the other one, it must wait. Formally, some of the equations
defining the time-update operator are:

[n,,](m * a.E) = n a.E
[n,wj'Jl(s I1A $2) = ([,w]sj) 11A 82

[rw 1 II W21(s8 I1A ) = ([n,w 1lsl) 11A ([n,W2]s2 )

Finally, we introduce an auxiliary operator which forgets about the additional location part on
the labels. The "forgetful" operator, F(s), is defined as follows:

F(s) -* F(s) 0

We say that two £ terms E, and E2 are performance equivalent, E -1, E2 , if and only if
F(O =* E1 ) is bisimilar to F(O =*. E2 ).
Performance equivalence is preserved by all the operators, except parallel composition (the
counter-example is the same proposed by A. Rabinovich to show that partial ordering bisim- * *
ulation is not a congruence). A complete proof system for performance equivalence can be easily
provided with the help of some auxiliary operators. Two terms El and E2 are performance equiv-
alent if and only if F(O =o E1 ) is proved equal to F(O =* E2 ), according to the following axioms.
Besides the usual laws for bisimulation (+ is a commuative, nil absorbent monoid), the distribu-
tive axioms on states and the axioms for the time-update operator listed above, there are axioms
which transform each state in a tree labelled also with the location part, and some more axioms 0
that, taken such a tree, forgets this location part. Some of them are reported below:

n =: a.E =((a,k)**).(k•* E) for k = n+f(a)

s9 IIA 92 = 91JA92 + 81sLA2 + 81 IA 82

((a,n)*.3.1)JAs$2 = ((a,n)*wJ).(s, 11A, 2) if aVA

F((a, n) * w.s) = (a, n).F(s)

Hence, the procedure for checking if two terms are performance bisimilar is as follows: first, 0
generate a tree out of a state; second, forget the location part; third, check their equivalence
according to the axioms of strong bisimulation.
Performance equivalence is a non-interleaving semantics which is based on the notion of time-
consumption. It is interesting to see what is the rank of this equivalence in the large spectrum
of non-interleaving semantics proposed in the literature. It can be proved that partial ordering
bisimulation [41, -. °, is finer than -,. This is quite obvious as causality gives enough information 0

to recover the time needed for execution. The reverse does not hold in general; however, it can
be proved that if the two systems are time-deterministic (there are no reachable states with two
outgoing transitions labelled by the same action at the same time), then performance equivalence

- 0 S 0 - 5 00 --



0

induces a semantics which is even finer than -,,. Let us consider ST semantics [7]. Performance
equivalence is strictly finer than ST bisimulation semantics. The counterexample is easy: consider
the two terms a.nil 11 b.nil and ((a.c.nil 11, (b.nil + c.nil))['/,]. These are ST bisimilar but not G
performance bisimilar, as in the latter system, action b can be completed also after f(a) + f(b) 0
time units. This example may also help in clarifying in which sense our semantics is not "real-
time", according to some papers in the literature (see, e.g., [8]). A different operational semantics
for synchronisation, which is claimed "real-time", requires that both agents are ready to perform
the same action at the same time, without any busy-waiting. This solution, proposed in, e.g.,
(11, forbids several executions that we prefer to keep; for instance, the synchronisation over c in
the example above. Indeed, our treatment of nondeterminism is similar to an internal choice:
first, each local component decides (with zero delay) which action it wants to execute, then it
tries to export the action to the top level, possibly delayed by synchronisations. If successful, the
execution takes exactly the right amount of time; otherwise, the action is not executed at all. As
all the local choices are to be taken into account, all the possible executions are represented. (Our
view is shared by other researchers, proposing similar ideas in different contexts [3, 5].) 0
This semantics is a priori of timed calculi (no specific operators have been proposed to this
aim) and real-time is not an issue of this paper. Nonetheless, we feel that our approach to time
in system executions can be helpful for a formal description of time-dependent programming
constructs such as timeout, watchdog, and so on. In conclusion, the aim of our study is to provide
an approach able to incorporate time into formal specifications, in order to capture functional •
and performance behaviour of distributed and parallel systems. Nevertheless we are aware that,
because of the ineherent random nature of the investigated problems, the concepts of random
variables and stochastic processes represent the unique well-founded discipline able to describe
performance aspects of computer systems. Thus, even if other alternative (or complementary)
approaches can be studied (e. g. Stochastic Petri Net models), our next purpose will be to replace
specific, deterministic time duration values with time probabilistic distribution duration functions, 0
in order to provide a uniform integration of the theories of process algebras and performance
evaluation (see, e.g., [6] for a preliminary study). This justifies the title of the paper.

Acknowledgements

We are grateful to Luca Aceto and the anonymous referees for their useful comments. •

References
[1) L. Aceto, D. Murphy, On the Ill-timed but Well-caused, to appear in Proc. CONCUR'93, LNCS,

Springer, 1993. •

[2] J. Baeten, J.A. Bergatra, Real Time Process Algebra, Formal Aspects of Computing 3(2):142-188,1991.

[3] E. Best, Weighted basic Petri Nets, in Concurrency'88, LNCS 335, Springer, 257-276, 1988.

[4] P. Degano, R. De Nicola, U. Montanari, Observational Equivalences for Concurrency Models, in Formal
Description of Programming Concepts II, North-Holland, 105-132, 1987.

[5] G.L. Ferrari, U. Montanari, Observing Time-Complexity of Concurrent Programs, submitted for pub-
lication.

[6] N. Gotz, U. Hernog, M. Rettelbach, TIPP- Introduction and Application to Protocol Performance
Analysis, to appear in Tutorial Proceedings of Performance '93, October 1993.

[7] R.J. van Glabbeek, F. Vaandrager, Petri Net Models for Algebraic Theories of Concurrency, in Proc.
PARLE II, LNCS 259, Springer, 224-242,1987.

[8] W. Vogler, Timed Tuting of Concurrent Systems, to appear in Proc. ICALP'93, LNCS, Springer, July
1993.

- w W"- W 0 -



7

Translation Results for Modal Logics of Reactive Systems *

F. Laroussinie, S. Pinchinat tand Ph. Schnoebelen"
LIFIA-IMAG, Grenoble, France

and University of Sussex, Brighton, UK

Modal logics are an important tool in the analysis, spec- 1 Backward modalities
ification and verification of reactive systems. Among many
other applications, logics like HML have been used as a We consider a fixed set A = la, b, ... } of labels. A labeled
benchmark for semantic equivalences [8], as the specifica- tansition syitem (LTS) is an edge-labeled graph (Q, -)
tion language used in model checking tools [11, and as a where Q = {p, .... ) is a set of statcs and --*C Q x A x Q
language in which to explain why two systems are not we- is the trnssaiw relatioW. We assume a fixed LTS S.
mantically equivalent [10]. HML6, is HML with past-tense modalities' and has

Regarding modal characterizations of semantic equiva- the following grammar:
lences, the classical result is the adequacy theorem of Hen- HML&! - f,g :.= T I f I f A 9 1 (a)f I (a-f
nessy and Milner who showed that two states in a (finitely
brauching) transition system are bisimilar, written p_-,q, iff where a is any action from A. (HML is the fragment 0
they satisfy the same HML formulas, written P ----ML q, of HMLb! where the (a) operators are not allowed.)

where pL q VE L ( .... denote HML formulas and we use the
wHere we are mostly interested in modal logs wt pt )standard abbreviations: f V g, 1, [alo for -(a)--f, ...
Here we are mostly interested in modal logics with past- A modal logic with backward modalities states proper-

time (backward) operators. A few exist. They have been
used (among other applications) to capture non-continuous ties of a run v = [qo !-4 q91 •-- q.] of S, that is, of state

properties of geaeralized transitions systems (JT in [9]), to q with a given history (or past). We write v A r' when

capture history-preserving bisimulation in causality-based run r' is a with a transition q. - q.+, added. For a run

models (Lp in f21) and to capture branching bisimulatimn w and an HML1 ! formula f, we define v fr f by induction

by mimicking back-and-forth r-bisimulation (LB in [5]). on the structure of f:

In this paper we give three non-trivial transla- v wf (a)f iff there is a" r-* rs.t. r' f,
tion theorems of the generic form L :ý L' showing, given r" J= (a)f iff there is a r' -4 r s.t. r' f .-
any formula f from some modal logic L, how to build an
equivalent f' E L'. This kind of problem has not received (the other clauses are obvious.) Then, for a state q e Q,
much attention in modal logics of reactive systems -z-1 the the derived notionq ý f is given byq Jf W 1%[q] ý f,
existing results in temporal logics mostly deal with !.-. r- [5] mention that p -SML., q iff p-q because (strong)
time logics. bisimulation coincides with (strong) back-and-forth bisim-

Our translations are defined by rewrite rules (to apply ulation [3]. This entails p =--ML q ifp --ENML., q.
with a given strategy) over formulas. A consequence is We are looking for a more detailed comparison of the ex-
that, once discovered, the translations are easy to imple- prasive power of HML and HML&I. We consider whether
ment. Our motivations are not only theoretical. For ex- formulas of HML.! can be translated into HML. This re-
ample, by showing how to translate HML&! (HML with quires some definitions:
past-time connectives) into its future-time fragment HML, Definition 1 Two formal"s are globally equivalent, writ-
we show how to easily expand the input language of any ten f es f, if r k- f * r fr r for all runs im all
software tool (e.g. a verifier) handling HML properties. LTS's.

Tkey are initially equivalent, written f mi r, if q J
f * q = fr for all states m all TS'a.
Clearly, f =- f implies f =- r but the converse is not
true. a. is a congruence: when f m r with f a subfor-

"*LIFIA-IDAG, 46 Av. Faiz Vi'flet, F-SSO30 Grenoble, mula of g then g m. gYf'/N . This does not hold for =- i
FRANCE. E.aiI:{framoc,pbI}OIifuaimsg* which is only a congruence w.r.t. boolean contexts.

tScbAo f .1 Computing& Cognitive Scincm, Univewsity at stex,
Falmer. Brigiho,. BNI QH. UK. Emisau'8•g .u .s _ It was intoduced in [5] for systm with r's (but note that
author supported by an INRIA rant. HMLi1 is a subset of JT defined in [9).)

- - - - --



0

DefAtition 2 A lore L can be translated (reap. ,ai,.dl, 2 T-moves, from Lu to LBF
trsoslted) into L', uwrite L -<s L' (resp. L -< L'), uff for
any i E L Mhere u ar E L' wti f as f' (resp. f i r.). For transition systems labeled over A. f A U {r), [5]

introduces Lu and L8 p, two modal logics characterizingL ,< L' implies EL, 9 -EL but the converse it not true in branching bisimulat .n.

general. LOp is a version of HMLb/ adapted to systems with

silent moves. Its grammar isTheorem 1 HMLtj •_ HML.La fg:= J ffAI()I(k f0

The proof uses three steps.

* Say a formula is restricted if it has the form (a)f, -(/!%f, haW("• o "•"•, wthjr r~tile count, ~e • po-f where k i any label from A, =__ A U it). We use [[kn]f

(a)! or -'(7a), with f a restricted conjunct, i.e. a (pos- and 0& as standard abbreviations. The semantics of the

sibly empty) conjunction of restricted formulas. (We use new modalities is given by:
V, ii.... to denote restricted formulas.) Then

Lemma 1 Any f is equivalent to a disjouctioe of rr- se.((a))f iffthereisar.aArs.t.1'

stricted conjuncts. z k ((c))f if there is a r z- i s.t. r' ý= f.

a Say a formula is separated if no backward modality occurs where -4 is the reflexive and transitive closure of - The

in the scope of a forward modality 2 (and write H ML 7 clauses for (•k)) are just like for ((k)), only backward.

for the fragment of HMLb, that contains only separated Lu has no backward modalities but it has a so-called

formulas). "until" operator which is more powerful that the simple
future-time operator of LBF. The grammar of Lu is

Lemma 2 Anyi restricted V is equinvlemt to a separated
formula. Lu 9I, ::f T I f A I f(k)g

Proof Rewrite W into a separated formula using: with k C A,. The semantics is given by
S.1. ifa~~b, •rJ=/g~agiff3n>O, zrox0 i..1,i-*"'•n-t"'r

1 .1 ifba 4 b, r f(a)g iff3n >. 0, x = -r - ""1"0rn,
(a) (, A 7bp) Ss.t. in I-- g and vi ý- f for i < n,

WO()W ifa b, s.t. w. kg and v, r f for i < n.
(a)(0A- 1 -yA W0 if a b. For technical reasons, we introduce LBU (11[, a logic

Any restricted non-separated formula can be rewritten ac- built by combining all modalities of Lu and of LBF, so that

cording to one of these equations. Applying an outer- both LgF and Lu aee fragments of a common superset:

most strategy guarantees that non-separated subformulas L
remain restricted conjuncts. Termination is clear. 0 u f/i ::- T -, I f^i ((k))f I ((k))f j f(k)g

with k E A,. In LBu, the ((k)) is not really needed becauseProposition 1 (Se parastion Lemma)

((k))f =, T(k)(T(e)f) (2) 0
HM,j _5, HM-L7 (1)

Considering that M--u and EL., coincide [5], a natural

is the immediate corollary. (Observe that (1) does not hold question is whether Lu or LBa can be translated into the

for Gabbay's definition of separated formulas.) other. At a certain time, the authors of (5] tried to simply

Now we conclude the proof of Theorem I with embed Lu into Lap (see Theorem 2.19 in [41) but later

found a mistake in their proof. A translation exists but it

Proposition 2 HML7 •_, HML. is not trivial:

Proof Use 'a)f - .L to eliminate (modulo -- ) any past- Theorem 2 Lu "5# Lap.

time modality which is not in the scope of a future-time Proof We show how to eliminate the until modalities

modality, 0 from an Lu formula I.

2Note that (6, 71 ue a tifmat, lea gnral, definition of saps Consider a formula f having the general form: 0
rated formus: my a formua is puntsat-re if it does not comtain
past-timse operator, is pure-peat if it does vot conain~ future-time
operater, andis #aspaite (in Geabp's sesee) if it is &boolemancom- f= (V (A (fki,]k.3 A A ((ki))ip)) (k) 0' (3)
bunation of pure-past and pure-fturfm m., jEfrmEa"

__- . w w S 0



0

for which we int-oduce the following amplifying abbrevi*. 3 From LBF to LU

Theorem 3 Lov 5ýj Lu.

iJE. This problem was considered in [11] where a partial solu-

The top modality of f is an until with a n-ary disjunction tion is proposed. Our approach was developed indepen-
in the left-hand side. dently and uses our separation techniques. Write L" for
* First, consider the simpler case where n = 1 in f. Then the set of separated L3 ,u formulas, i.e. of formulas with no
if k = a E A we have backward modality under the scope of a forward (or until)

"Ms [a,] A ((a))(ffNAna ! (a')) modality. We show how to rewrite any Lau formula into
an equivalent separated formula. The most difficult part

while if k e we have here is to find a strategy which ensures termination. For
this we use an approach inspired from [6].

f ss 0 V L(] [I 1f)YA ne i10 V (ckU)J) Lemmia 3 Any LBU formula f with only one samhfarusui
* Now in the general n-ary case with n > 1, we show how of Me form ((k))O, wkere fP Ass so modaity, is eipslest
to rewrite (3) into a formula where the until is eliminated to a separated formula. (Note: f may contain several
by introducing new until-formulas having n - I-ary di.- occurmeles of ((k))*.)
junctions in their let-hand sides.

If k = a E A we have The basic transformation removes a modality ((k)) from
the scope of an until modality. First of all, we need not 0

Slei) A ( ((a)) consider disjunctions in the right-hand side of an until be-
V ((c)) (O, A ntIe(, V (a:))) ) ) cause

where wp(k)(01 V 02) =- jp(k)*k V i(k)0

, 4 ( V [(l] A (a')) (c)o (for any i E 1) Then conjunctions in the right-hand side can be dealt with
by using 0 0

are the new until-formulas containing only n - I members a(a) A ) (a)(0 A P)
in the disjunction.

Similarly, if k = e, we have a(a) A 6) &(a)(-Nio Aft)

f filA(e)(0 e iV *'))a(a) (_((b))o Ap) L, __ if a b,0

* Now, with a sound strategy, these two transformations =s (a(,)(0 A o(a).)) V (((A)W' o(Aa))f a = b.

can be used to rewrite an arbitrary f from Lu into LDF: a(a)( ^)._ A(a)0 if a A b,

1. Observe that f in (3) is a quite general until formula = A-((c))0A(oA-0)(o) if a = b.
except that it has no backward combinator (immedi-
ately) in the left-hand side of the until. Say an FB- a(A)(((c))v ^A)0
formaul is any Lau formula where (i) no until is in
the scope of a backward modality, and (ii) where every -g (((e) A a(e)p) V a(c)(. A a(4)
backward modality is (immediately, but disregarding
boolean combinators) under a forward LBp modality. Aaa)( A-0)(-f A -__-- '-((e)),V A (a A -,,')(c)(O A -'i)

2. Then if I in (3) is an FD-formula, our tansformations _

give in all caes a formula equivalent to f which is still a(e)) 0 A ) go (-bq• A o(c)#
FB: all the backward combinatorm we introduce have
no until in their scope and are immediately undera o(c)("'((--)V A •) a 9 "'(-&) A atc)#
forward LBa modality.

3. Now given any formula in Lu, we just have to work which are correct without any hypothesis on a, 0 and 0.
by picking the innermost untils first and by writing To remove ((k))- in the left-hand sides of until-formulas, 0
their left-hand sides in disjunctive normal form. We we only consider the general form:

eventually obtain an LaB formula. Q ( (((k) A •) V ("-'(-k))V A 5o') V ,•) (k')a (4)

- ,.3-

L - ------ -



We use e by investigating complexity issues (not dealt with in

(TM0A ) V (-'( A V) V P) (k)a this introductory paper),

ES ((t)),O A (, V P)(k)a * by simplifying our proofs that our rewriting strategies
V -~((t))VO A (-0v A (WI V 0)) (k)a termtinate,
V -a((n))iA(-,A ('VP))(e)( A(• V )(k)a) ,. d especially by considering other richer logics:

_ A ) HML with recursion, logics for "truly parallel" mod-
~ V -'(b))~A ~) V J (~caels, ...

as W A (w V 0)(k)a) V (--((4)). A (W' V 0)(k)a) This last point seems promising. For example, F. Cherief,

Wehveno room heretoshowtherulesforthegenral F. Laroussinie and S. Pinchinat proved that the logic LpcWes wheve o roo uers in bhowthe sides fof the un hey from [21 can be translated into a variant of HML,1 withcases where W(k--• occurs in both sides of the until. They (p) modalities for pomseta p.

are often dealt with by a combination of the previous trans-
formations, and in some cases by new transformations in
the same spirit. References 0

Once this basic step is established we just have to offer
a strategy ensuring termination: (1] R. Cleaeland, J. Parrow, and B. Steffen. The concurrency

workbench: A semtatico-based tool for the verifcation of
Lemma 4 Any Lau formula f with only n subformual. of concurrnt systems. ACM Transactions on Programi.ng
the form (074 0., where Oi hAs so modality, u etuivuleat Langunges and Systems, 15(l):36-72, January 1993.
to a separated Jformual. [2] R. De Nicola sad G. L. Ferrari. Observational logics ad

Proof Use Lemma 3 on each ((k-))O, in turn. Q concurrency models. In Proc. loth Conl. Found. of Soft-
ware Techno•ogl and Theor. Comp. Scs. Bangalore, In.

Lenuna 5 Any Lau formula f with only n subformulas of dia, LNCS 4 7f, pages 301-315. Springer-Verlag, December
the form ((kTk,, where j hA" onip backward modalities, 1990.
is equivalent to a separated formula. (31 R_ De Nicola, U. Moatanari, and F. Vaadrager. Back and
Proof Use Lemma 3 to extract the ((ki)-- 0i. This may forth binimu•ation. Ia Proc. CONCUR'90, Amstenlam, • *
introduce new ((k.,))Oij in the (immediate) scope of some LNC$ 458 pmes 152-165. Springr-Veru, August 1990.

untils, but these were subformulas of the Oi so that the [4] P. De Nicola and F. Vatadrager. Three logics for branch-
height of the maximal nesting of backward modalities is ing bimsistios. Research Report CS-R9012, CWI, 1990.
decreased. [5)] R_ De Nicola and F. Vasadrager. Three logics for branch-

ing bisimalation (extended abatract). In Proc. 5th IEEE
Le • 6 Any Lau formula fr us etialeat tosa separated Symp. Logic in Computer Science, Philoadelphia, PA, pages
formula. 118-129, June 1990.

Proof Applying Lemma 5 to subformulas ((k))o dimin- (6] D. Gabbay. The dedarative past and imperative future:
ishes the multiset of alternation heights of backward and Executable temporal logic for interactive systems. In Proc.
forward modalities. Temporal Logic in Specificalion, Altrincham, UK, LNCS398, pages 409-448. Springer-Verlag, April 1987.
Proposition 3 (Separation Lemma) [7] D. Gabbay, A. Puseli, S. Shelkh, and J. Stavi. On the

Lau 5O L'P temporal analysis of fairness. In Proc. 7th ACM Strp.
Du •#Principles of Programnming Languages, Las Vegas, Nevada,

is the immediate corollary which combines with pages 163-173, January 1980.
Proposition 4 Ls'* Lu. [8] M. Heanessy and R. Milner. Algebraic laws for nondeter-

-U minism and concurreacy. Journal of the ACM, 32(1):137-

(same as Proposition 2) to complete the proof of Theo- 161, January 1985.

rem 3. [9] M. Hensemy sad C. Stirling. The power of the future
periect in program logics. Information and Control, 67:23-

Conclusion 52, 1985.

[10] M. Hilerstr6m. Veriication of CCS processes. M.Sc. The-

Translations between modal logics have not been investi- si, Aalborg University, 1987.

gated in the literature. Our three theorems clearly show [nI] F. Vasadrager. Translating back and forth logic to HML
that many interesting results can be found when modal log- with until operator. Unpublished note, 1992.

ics with backward modalities are considered. We intend to
pursue this line of research

w W W~ - W WU U*-



0

Modal Action Logic in a Practical Specification Language 0

Ismar Neumann Kaufman Silvio Lemos Meira
ink~di.ufpe.br srlm•.di.ufpe.br

Department of Informatics - Federal University of Pernambuco
P.O. BOX 7851 - 50732-970, Recife-PE, Brazil

1. Introduction a very comprehensive and expressive linguistic

The need for formal specification languages in the framework. In particular, MAL's object struc-

requirements phase of software engineering has tured version is very adequate for the purpose in 0
been recognized by scientists and practitioners a- hand and is described below.
like. The Z language [121, particularly, is widely This article reports on the way to incorporate
accepted as a medium to express software require- MAL in object oriented Z and shows that the ap-
ments, with its schemas providing modularity to proach may be a general way to enrich model based
build new specifications by composition of elements specification languages with stronger semantics.
already defined. Z has been tested in a number of
industrial projects. 2. Object structured modal action logic

Nevertheless. schemas are a means of functional The application of modal and temporal logics in the
decomposition; the last few years have shown that specification of software systems has been advocat-
object oriented decomposition is more suitable for ed for more than a decade [1, 2, 11, 10]. The logic * *
the development of large software systems. Object shown herein, MAL, is adapted from the work of
oriented software tends to be more stable through Fiadeiro and Maibaum [5, 41.
time and enforces extendibility and reusability. A- A MAL specification is a set of related object
mong other ways to bring object orientation to Z descriptions, each one being a pair (9,4) where 9
[13], MooZ [8, 9] was proposed and experimented, is an object signature and 0 is a set of formulas over

MooZ has many new features, but "respects" 9. If an object description is viewed as a theory,
Z semantics - based on set theory and first-order the signature and the formulas are the language
predicate calculus - making its application restrict- and the axiomatic of the theory, respectively.
ed. since properties like temporal ordering of events An object signature contains a universal signa-
and concurrency are not easy to describe within ture (a usual algebraic signature with a special
such formalisms. The problem gets worse if the sort for events) and families of attribute and action 0
language is used for the logical design of software, symbols. The rigid and non-rigid symbols are syn-
when we augment the problem universe with ele- tactically distinguished, the former coming from
ments of the chosen solution. Temporal and con- the universal signature and the latter from the at-
currency properties appear more often in the solu- tributes and actions. If S is the set of sorts, then
tion than in the requirement space. every function symbol from the universal algebra

On the other hand, if we want formalism to per- and every attribute is S- x S-indexed; every action
meate software development, we need to extend its is S'-indexed.
application from the requirements phase to latter Terms include variables (introduced via classifi-
steps of the software life cycle. A practical ap- cations), function application (either from universe
proach to formal logical design, based upon the functions or attributes) and modal qualification of
MooZ (and Z) experience, capable of treating time other terms. This last and unusual construction
and concurrence, among other properties. is the was introduced in [6], in order to make formulas
key issue of this work. more intuitive, because very often one needs to ex-

The semantic foundation is given by MAL [5. 41. press the changes in individual entities, not in w-

- -



0

0
hole formulas. Languages like VDM and Z have _

similar features. The translation of our language to Class (Class-Name)
MAL is easier with modal qualification of terms. givensets (type-names-lst) l

To express change. there are also action terms
resulting from the application of action symbols to superclasses (class-references-hst)

arguments. Formulas are relations between state (auxiliarydefinitions)

propositions. private (definitzon -names-hst)

The semantics of an object signature 0 = or
(E,o,F) is given by an interpretation structure public (definuiton-names-hst)

(A J, P, O), where: constants

U U is a E-algebra such that Eu (the interpre- (dwomatic-descriptions-fist)
tation of E, the sort of events, in U ) is not (auxuliary definitions)

empty. state
(anonymo us-schema) or (constraint)

* J maps: initialstates
(schema)

- f E o(...),, in (auxiliary-definitions) 0
.1(f): slu x ... x su x Eu" -a operations

- g E [(, ..... .,) in (definitions)
J(g) : Slu x ... x su x Ex ' - P( ) EndClass (Class-Name).

* P and 0 are relations over Eu x E'. * *
The relations P and 0 state in which event an Figure 1: General structure of a class.

action is permitted or obligatory. Sequences of ac-
tions make trajectories, which can be safe and/or relation -=, by which reasoning about information
live. following a deontic style of specification that in a state is possible. There is another consequence
does not prescribe behavior. Separating norma- relation (=*,o) intended to reason about the conse-
tiveness from inconsistency is richer than the pure quences of a specification: an assertion (F =*a f)
temporal logic approach, since it allows the speci- is valid iff every 0-6bject that makes every formula
fication of error recovery, punishment, etc. [mple- of F true also makes f true.
mentations are either normative or else treat non- Object descriptions are related to each other by
normative traces explicitly. morphisms that map pairs of signatures and axiom-

We may define special interpretation structures s. Particularly, morphisms must preserve locality, 0
that guarantee locality. Events that respect local- to allow for compositional development.
ity are called local events. We call O-locus an in-
terpretation structure where every non-local event 3. The new language: MaMooZ

in every trace (finite sequence of events) does not Modular object oriented Z (MooZ) [91 en,
affect any attribute. Locality plays a very impor- Z with object-oriented concepts (classes and ii.
tant role, assuring that encapsulation of informa- itance) keeping the syntax as near as possible tu

tion will be part of the theory presentation. The that of Z. Like Z. MooZ semantics is based on set
semantics of modal qualification of terms and state theory and classical first-order logic. The language
propositions are given over traces, constituting a does not allow for definitions outside classes, so
Kripke semantics. where traces are the -possible that any relation between classes must be either
worlds". clientship or inheritance. The general format of a

Satisfaction of propositions is defined in terms MooZ class is shown in fig. 1.
of an interpretation structure, an assignment and MaMooZ[7] is a modal logic enrichment of MooZ.
a trace. The truth-value of formulas is defined by a where the syntax is close to the latter's but the se-

-- 26--



mantics is given in terms of MAL. The translation The two deontic predicates Per and Obl are 0
method is given in [7, Ch.5J. present in MaMuoZ. Per(at . a,) means that

A method may be defined by a schema or by a se- some of the methods a1 . a, may happen in the
mantic operation (an axiomatic description which next event observed by the object. i.e.. that the
involves state components). The definition of a methods in the list have permission to occur.
method in a MaMooZ class means an action that The predicate Obl(al..... a.) establishes that in 0

can be performed by an object in an event. The future events the methods a1 . a, will occur.
events occur cnstantly and eternally: there is a There is no restriction about how many events will
global event sequence, called trace, unique for all fill the trace between the setting of an obligation
the system. Operationally, we can think of events and its satisfaction. The semantics of an obliga-
as clock ticks heard by all objects. In some tick- tion is analogous to that of the operator 0 (or F)
s some objects do something, like communicating in temporal logic: the o 'igation will be eventually
with other objects or altering their private memory. discharged by the occurrence of the method.
These actions are specified by the methods.

The methods of an object occur in some subset Both for Per and Obi there is no relation between
of the event set. This subset may contain events the several methods listed as arguments: they are
dispersed throughout the trace. Two methods oc- grouped only for brevity and the order is unim- •
curring in the same event are simultaneous; if they portant. So Per(aj ... a,) is an abbreviation for
come from distinct objects there is a synchroniza- Per(aj) A ... A Per(a.).
tion between the objects, maybe with information Besides Per and Obl, some few words are intro-
exchange. duced in the language to name special sorts. The

Objects can be modified iff one of their methods methods in a class, whether defined or inherited. * *
occur in a given event, otherwise, the event is silent have sort Method. This sort has "local" meaning.
in relation to that object and not observed by it. its elements being distinct in each context. At-

In MooZ, a method takes in account the objec- tribute is the sort of a class' state compo~ients and
t's current state (say s) and the next (s'). This is Event is the (global) sort of events.
still valid in MaMooZ: the translation of a decorat-
ed component is the component modally qualified A construct like object Method could be used to 0
by the event in which the method occurs, mean- obtain a set with the names of the methods of a

ing the value of the component after the method's class. The same holds for attributes. All these

occurrence. constructs are well founded in MAL and, as far as

For example, consider the following method def- possible. compatible with Z (and MooZ) style.

inition, specifying a semantic operation that in- MaMooZ specifications are organized in docu- 0
creases the value of a state component. Suppose ments and chapters (coarse grain modules) and
that a is a component (attribute, in MAL termi- classes (fine grain). Operations in the classes may
nology) of the class (object description, in MAL). be defined by schemas and axiomatic description-

Increases s. The predicates defining an operation may use
a.a' :N deontic predicates (permission and obligation) in

-a' > order to deal with time and concurrence, but there

The MAL translation of this operation is: is no explicit modal qualification of terms, since
this is the resource used in the semantics to map

cE Acomponents of the operations representing "next

where E stands for the sort of events. This propo- state values".
sition could be read as: In the full article, we describe the operation of a

When Increases occurs in an event x, phone box to show how the ; esources brought from
the value of a after the event is greater MAL increase the expressive power af the basic
than the value of a before the event, specification language.

- 27-

- Iw/ I .. . .



O

4. Conclusion [5] J. Fiadeiro and T. Maibaum. Towards Ob- •

Other approaches to incorporate modal logics in ject Calculi. In IS-C'ORE Wiorkshop. London.

Z are restricted to temporal logics [3]. Richer lan- 1990.

guages. like MAL. may be used too, without many [6] J. Fiadeiro and A. Sernadas. Logics of Modal
changes to the syntax, with the semantics given by Terms for Systems Specification. Journal of
translational approach, instead of ZF theory. Logic and Computation. 1(2):187-227. 1990.

There are many open problems to deal with: the
calculus j5] proposed for MAL should be -upgrad- [7] 1. N. Kaufman. On the Application of For-
ed" to MaMooZ. to cater for a more abstract syn- mal Specification to the Logical Design of Soft-
tactical and semantical discourse. ware. Master's thesis. Universidade Federal de

The adoption of explicit temporal operators Pernambuco. Recife-PE. Brazil. August 1992.

should be studied, but care must be taken to avoid In Portuguese.

conflicts between the deontic and temporal facets. [8] S. R. L. Meira and A. L. C. ('avalcanti. Modu-
In special. modal qualification of temporal oper- lar Object-Oriented Z Specifications. In Prof.
ators is impossible and should be refrained frorl. C. J. van Rijsbergen. editor. Workshop on
Surely, the two tasks are connected: if temporai Computing Serics, pages 173 - 192. Oxford -
operators are used, so the calculus must be refined Inglaterra, December 1990. Springer-Ver'ag.
to deal with them.

[9] S. R. L. Meira and A. L. C. Cavalcanti. The
MooZ Specification Language. Technical re-

References port, Universidade Federal de Pernambuco,
Departamento de Informitica. Recife - PE. O

[1] H. Barringer. The use of temporal logic in 1992.
the compositional specification of concurrent
systems. In A. Galton, editor, Temporal Log- [10] A. Pnueli. The temporal logic of programs.

ics And Their Applications. Academic Press, In Proc. 18th Ann. Symp. on Foundations of

1987. Computer Science. pages 46-57. 1977.

[2] MI. Danelutto and A. Masini. A temporal log- [11] G. Saake and U.W. Lipeck. Using finite-linear
ic] M.pDanechtto specifyMand. proeproperts lof- temporal logic for specifying database dynam-ic approach to specify and prove properties of ics. In E. Borger. i.K. Buning. and M.M.

finite state concurrent systems. In E. B6rger, Richter, editors. Proc. CSL "88 2nd Workshop

H.K. Biining. and M.M. Richter, editors, Proc. onc oter Sci ence Loc. L etr n oteshin

C.L '88 2nd Workshop on Computer Science Computer Science 1988.

Logic, Lecture Notes in Computer Science,

1988. [12] J. M. Spivey. Understanding Z: A Specification
Language and Its Formal Scmantics. C. A. R.

[3] R. Duke, P. King, G. Rose, and G. Smith. The Hoare. Series Editor. Prentice Hall. 1988.
Object-Z Specification Language. Technical 0
Report 91 - 1. SVRC - Software Verification [13] S. Stepney. R. Barden, and D. Cooper, edi-

Centre. The University of Queensland, May tors. Object Orientation in Z. Workshops in

1991. Computing. Springer-Verlag, 1q92.

[4] J. Fiadeiro and T. Maibaum. Describing,
structuring and implementing objects. In
School/Workshop on Foundations of Object-
Oricntcd Languages. REX/FOOL. Holanda.
1990.

- W W - w V 5-



On using a Composition Principle to Design Parallel Programs 0

- Extended Abstract -

A. MOKKEDEM and D. MERY*

C3.JN-CNbRS & INRIA-Lorraine, BP239 0
54506 Van dceuvre-R&.Nancy Cedex, France
email:{(mokkedem~loria~fr,mery~loria.frI

Abstract are in general more difficult to preserve whenever we want
to define the proof rule, according to a composition prim-
cipl. But such a principle in of a preat importance when

We very brielly present a rigorous and modular method, we want to adopt both the modular verijication and step-
we are developing to deamg ractive systems starting fromi wis refinement concepts in the concurrency setting. Given
their desired properties. This method un based on a mab the correctnes proofs of some small modules, composition
animation of Manna-Punchl's modular validity concept and prnociples allow the verifier to establish the corrctness of
on a modular temporal language in which properties we in- bigger modules. Conversely, given the specification of a
variant under stutt ering [1]. A compositional proof system big mjodule to be implemented, composition principle. al-
is established to support both specification veuificatios, and lo thedeigne to reduce the implementation problem to 0
modular program construction. Each program* Po the subiproblems of implementing smailer modules.
together with the proof that it weet" its specilcation. A Traditiounaly, composition principles for both spefilca,-
refinement relation is defined by using rule in backward, tion, verification and refinemenat of concurrent systems are
while the proof is constructed by using th5ame rules in considered hard to obtain. Howeve, previous work [4, 5, 17]
forward. constrained by a limited space, we hope to focus have shown that this difficulty mainly lies in the formula-
attention on the underlying concepts and leave a complete tion of a compositional rule for parallel composition. Now,
presentation of the proof system (soundness, relative com- inorpnoifnewtsofrmleacmoiinl 0
pleteness, modular completeness, and adaptation complette- n four opareicnoiion, ifoewnsthe fomlthe acrstositepisonbe
aes) in a future paper. We give some results in this short careful at the stage of the definition of the specification
pape omiting proofs, a full version will include the mos language semantics. Especially, we believe that mnvarianc

resuts wth poob.under stuttering of properties' is one of the hey require-
ments needed for parallel composition to be conjunction
and to be able to implement a coarser-prained program by
a lener-prained one in the setting of the temporal logic (2]. 0

1 Introductioni

The temporal logic as presented in [12, 13J provides a power- 2Thloi
fu tool for globdalpecification &and a -omo itoaverifi- The full purpose of this work is to provide a complete
cation of ezswtng concurrent programs. However, this logi methodology for the compositional specification, verifica-
offers a very poor support for sustematic design of concur- tion and development of reactive programs. For we Anrt in-
rent programs because of lack of modularity. More recently toueapormigntto 1L o ocretmd
new concepts have been introduced in order to make the taduoco a progamming sy otematddeione a forpuaconuat mod-l

prougeof sytempmorel l~sogicimoemodla a2 ,] nd the teporesen to represent semantics of modules. The obtained semantics
wrork wysem e mpore thompoewtconpsand w2,91nte present ais- compositional in the sense that the semantics of a com-

wok e xpor tewne oneps ndweprseta mei$ posits reactive systems is computed from a formal relation
1ev specification method together with acmotinle- between semantics of its sub-imodules. We then define the
poral proof system. We show how our logic offen a niora temporal logic MTL and derive from it a specification Ian-
support for the systematic design of concurrent programs. gauge by establishing a closed connection, between compw- 0

Our logic aims to provide a mixed verification and devel- tations of IPL program anid models of MTL formuats. Our
opmeat strategy (top down and bottom. up) of concurent logic is state-based oriented. A system may be specified
programs. Proof rules should (1) preserve some desired at many leve of abstraction; higest-level properties are
properties (safety sand certain livenas properties), (2) be described in terms of stuttering invariant temporal formu-
compositional, and (3) be possibly mechianisahie. The list Ise, While implementations are programs in an intermediate
feature aims to guarantee that whenever the starting ab- progriiamming language that we call IPL. A highest-level
stract specilcation expects the system to operate accord- specification must talk about only the extpected behaviour S

ing to some safey properties (partial correctness, deadlock of the system, while avoidig references to efficiency or ar-
freedomn, mutual exclusion, ... ) then so behaves the de- critectural details of its implementation. Such details can
rived implementation. We show that liveness properties be introduced only in the last stage of the design process

when a parallel algorithimic solution is already built.

.on sabbatical leave at the depmttmeat afCeimputing Science Use- 1A propeit P is said to be invran under s~tateing if weee
verityof tilin unertheDmwpen Siene nduma.Pprogramme a model * satisfes P then every mo~de r, stuttering equivalent (thu

Royal Sockety- CMRScea wil be defne blow ) to a satisfies P.



O

2.1 A proesemmlng netotation ( reactive systems in lIi consistent with their types.

Reactive systems awe coded nsint the language IPL. This T7M [eraltlods]s: these Conit of 0
lanuage a sigt mod atios or=the lnueintroduced (1) the transitions rs ae ocmated with statements S in thein (14]. The modjications we have introduced ai to reac..h body of Pd, (2) the idin transition rl represented by the P

a compositioaal semantics for programs written in IPL. For
instance, usual laws, commatativity and asociativity o transition relation p" : true; it represents the stuttering
concatenation and paralel constructs are conserved. The steps in Abadi-Lamport's terminology [1] which character-
central notion of IPL is the one of module statement. Here Ise interna] transitions executed by the environment, (3)
is an excerpt of the syntax. A module statement has the the environment receiving transitioa ?16", i.e. the trassi-
form M :: [module; interface; bay] where, tions specied by the formula (Ibl > 0) A (b' = 9(b)) for S

interface -::= (modes l)" uay comam channel b E CM (4) the environment sending
moSer ::= flat d OUtl onsums extecll)+ transition , i.e. the transitions specified by the formula
"body ::=f oc l del; Istmtement 3s. (c' - c a a) for any external channel c E CM. r1 S
del ::= {uariable I channel}+ : tvpe [where : int] and r-tq represent the observable transitions executed by
stetement ::= action I statemunt; statement I the environment. We denote, for a module M, the environ-

IF 1•r lgmrd -. statement Fl I meat transitions by 7k and by R all the other ones.
DOr., guard - statement ODe,, (Initial condltlon]: oa s of eM = (z=') A •,

11bl Jtetementf: laben j ~Wcnio) osit fe m( s p
action skip I assitgment I send I receive where is represents the where parts of the declarations of
rrd : eression I receive out channels and local variables (to is the initial location
send ::=chann/lpre~co of the module Md). The initial value of external channels
receive :: channe• eiable in coltroled by the environment.

A reactive system Net has the following syntax: FirnMes: J• contains just transitions, i.e. transitions
Net ::= M I NetlINet I we. Net I Net[d/c] which cannot be continually enabled but tachen only finitely S

many times. This consists of all the (internal) transitions
Concurrent modules communicate by asynchronous re.- associated with local statements of M. FJM contains fair
sage pasing via unbounded channels. Each module transitions i.e. transitions which cannot be infinitely often
should communicate with the environment (other modules) enabled but taken only finitely many times. This consists
through its interface according to the modes assigned to of all the (observable) transitions associated with comma-
channels. Local variables are not visle outside, thus all nication statements of M. Environment transitions such as
variables of a module are implicitly hidden. Throughout ri, r , a d rsS ae contained in neither JjM nor FA. 0
the remainder of thin paper we assume the syntactic me- Behaviours: A behaviour of a module M is a set of com-
striction that variables in diferent modules are distinct, putation structures which represent its possible executions.
while we give more attention to channels. Riding of chab- A (possible) computation of M is an infinite sequence of
nels must be done explicitly using the binder v. We define states u : so,as ... such that (1) o satisfies the initial con-
the viewed channels of a module M (by the environment) dition eu, (2) for each i > 0, r(i,,si+i) for some r E T M,
to be channels that are not hidden. Net(d/cJ represents (3) a satislies justice and fairnes requirements imposed by
channel renaming of c into d. Let c be a channel declared the sets _'M and FM•. Two computations a, r are said to be 4
in M, a statement of M may have reading (-esp. writing) stuttering equivalent (in notation v = r) if they are equal
reference to c only if c is declared with the mode In (rasp. modido stuttering steps. We recall that in such a seman-
out). A statement in a module parallel to M may have a tic model, finite computations are represented by infinite
reading (resp. writing) reference to c only if c is viewed %d sequences by adding an infinite number of stuttering steps
declared (in M) with the mode conunum (reap. exterýt 1). (rn) which takes the halting state into itself.

Definition 2.1 (Interface compatibility) Let M, and The semantics of a reactive system NSi... ON. is a air
M2 be two modules, we say that M, and M2 are interface transition system resulting from a fair composition of tran-
compatible (we denote by Mi compeLa4ith M2) if the deda- sition systems asociated with module. 2 N,, in notation,
ration for any channel c that is declared as viewed in both Sma I..-IN. w SN 40"... Sv.. Executions in SMII...IN. are
MP and MIS SatiSf the following requiremenft: the types of represented as interleavingconcurrent actions in the difer-
c in both declarations match, the conjunction of the where eat modules under fairnes constraints.
clauses (supposed true when is not specified) is consistent,
and if one of the declarations specifies an out (reps. in) Definition 2.2 Let M, and M2 be two channel-hiding free
mode, the other specifie* an external (rap. consum) mode. modules (i.e., modules in which the binder v does not oc- 0

cur). We define int.mo&de(c) (re"p. aus.mode,(c)) to be
the set of modes in fja1D•) (re•p. in {consum external)

Semnantes. The basic computational model we ue assined to the channelc in the module Md, and mode,(c) =
to asign sematics to reactive program is that of fair int.mnodi(c) U aazsmodei(c). We denote by T&-nmode(c),
transition system (FTS for short). We associate with for a shared channel c, the set of modes m such that
each IPL module M a fair transition system SM = m E (saz.model(c) U auz.mode2(c)) \ (aue.modei(c) n
(uM,EM,7,TM,OM,IM,.rm) which consists of the follow- as..madea(c)).
ing components :

Definition 2.3
UIM [State variablea: (= (rMt)U Cs.U Yu) wm is acor- Let sm, = (,,M,,M,,TM.,eM,,,uiM,, a,),, i E (1, 2) be

trol variable, it ranges over Lar where LM denotes the set the Fl'S associated with modules M, and M2 . The FTS
of locatioas in M. CM denotes the set of channels declaed associated with the composed module MP NM2 is defined as
in the interface of M. Y, denotes local (daet) variable. in
M. 2Altbough compaents N, we arbitrnry reactive systemi we callthem modulm; smaenticaft we cowider a mectie sytet =-am no
Em [States]: All the possible interpretations of variables. * seatd modyten

- - S A



follows: 2.2 A stuttering invereiant tomw*r" language
Sum.um (flm, Eu, Tv.em, Jw,Yu) such that0

1. fum = flu, U flu3 whern, (i) /or every asn-shared We are convinced that we mint be careful at the desig
channele (i.e. cis doelred in M, only for i iE 11,2)), decision stage when we want to define a temporal logic for
,neda(c) - made, (c), and (ii) for avery shared channel reactive programs which should be compmoatoal. Linear
c (i.e. cE flJi, niIM9 ), iaLmude(c) = int-maude 1(c)U discrete temporal logic has been perceived to be an appro-
snt..maeda(c) and asus..mods(c) = auzsjmoda(c) n ptiata tool for both description of semantics of concurrent
Ouzxm*&a(c). (and sequential) programs and reasoning about them. Thus

relies on the fact that concurrent program behaviour can
L. Em = (s: flu - Dulslu,, E Eumaud lUM 2 C- beecamely modelled by all possibleinterleavinge of the dis

Eu 2) crete, linear, execution sequences aruing fromo the separate
SS 'sequential' processes of the concurrent programs (interleav-

S. Iuin (TMIUTuj)\W!Src 4E flu, flluAqxtsEMlE ing semantics). hn [3] Barringer at al. proposed a compo-
m..-made(e)) u (rcsKIc 4E 12m, nl nw A consen e miomal temuporal logic for the specilicatioa and verificataon
UUY..m1ida(c)) of concurrent systems. They use a floating version of the

linear temporal loWi with the ixposat operators and still0
4. em - em, A ew.j (consistency is guaranteed by the reprsent actions by the classical Newt operatos 0. How-

interifece compatibility requi~tiremet) eae, such a logic has been strongly criticized from difter.
5. J - Yu, 3', an Fs -ys, ~eat points of view. Our study of a refined temporal logic,
5- J W U, JW, nd FAI = J~j Jr93namely MTL, starts from a list of valid ca-ims made by the

pinesof the temporal logic:
We complete the definitio given above by th folwn la [M Lamport objects the ame of the Next operator to
laws to deal with hiding and renaming of channels. b h rgno oetobei btatowihfre

M, N'c.M m~c.(M NM) ifc fchauMi)too much irrelevant detai to be present in the semantic de-
MIflac.Ma in vd.(MuIMJ2 [dlc]) if c ez chan(M,), where d is scription. It appears that the lowest level of atomicity is
a fresh channel vaibe forced to be vusible, which a properly abstract semantics
Now let M an arbitrary module whose the associated FT5 shoul not make. He provided a strong evidence that all
"(1)u S.. m -,(Osm, Ems, Yu), ejlt7)wihWthe properties one wishes to express for asynchronous eye-
(I) \.~ p,Ri -.1) (fuMu8,Ju ih* tems do not require thin operator.
(2S 4=uudc (rnmn is extende dd to -'-le in -Still for abstraction, quantilicatio over state variables 0
the =~ ~udc wiay turned out to be very useful [11], and has been shown to

Definition 2.4 (comrpatible computations) Le ,rb be necessary for attaining compositional completeness.
two comaputation. of Sm1 , and Sm. respectively (m, and Ma - Manna and Pnueli [10] argued the addition of the pest
atm expected to be executed in parallel, so they am nerfac fragment to the f~utu temporal logic to contribute to the
comspatible). we say that a and r ame compatible (ar 64 r) utility of the temporal language; while it is not mor expres.
iff all transitions in a and r involving shared chnesa ave the full language is found to be more convenient. In
observableby each other (a fonual definition is givenin the [III they gave some pomts of disstsfcion of the fall logic
full paper). presented in (10] due to the floating interpretation which

does not assign any special significance to the initial state
Proposition 2.1 77&e relation compat.with satisfies th so that satisability and validity are evaluated at all po-
following properties: ations in the computations. This interpretation needs the
Ni Let MI and M2 be two modules, of M1s compatwith Af2 generalizatio rule in the proof system which violates the
then Ma compat-with Af1 , dleduction rule (a powerful tool in the predicate calculus)
(ii) Let MI and M2 he two compatible modules. M co and, in the Other heand, requires the notw Closure property
pat-with [M1IIM2] iff M compaLwith M1 and Mf corm- far the set of computations when one needs to interprete
pat-.uith M2 formulas ame comuputations of a given program. In fact,

they presented an anchored temporal logic in [III in which
Proposition 2.2 Let M = [Mi J1MMmi ad Su the FFS as- they consider that a formula fpis defined to be valid (rasp.
sociated with M according to the relaton Sme = Sm~, OSu., satisfiable) ove a set of sequences C, if it holds at position
the two following propositions are equivalent: 0 of sawy (romp. some) sequence of C.
(1) there exist& a comsputation of Smr such that 'Irn, Our present contribution is concerned with the investig.
ors and ffl, = W32 tio of such remarhs and the proposition of a relined future.
(2) al and ft ame two compatible computations of Sm, od temporal logic 11TL in which (1) we consider the anchored
Si,,' rsetivaly. interpretationt, (2) quantifiation over state variables, and

(3) actions are formulated in terms of a new Next opera-

Another important consequence of the definition 2.3 in th tor which is insensitive to "ite stuttering and sensitivity
reaching of the usual laws of parallel cosrut to infinite stuttering. The resulting logic has the -am ex-

pressiilty power than the full temporal logic (14], does not
Proposition& 2.2 Let M,, M2, Mft be three inerface cown require sq&~ closure of program computations, and gum:-
patabl m"dules, antees ineeriance under stuttering of properties. it thus
M,3M02 On M2NMI providen a good abstraction for compositional specification
(MI02IM)3M W MaI(MIRUJ11) and verilication of concumrnt systems and also oden a good

3Two programo N1 and N2ar sem st~ *vamI support for Systematic desig of concurrent programn.
eassocated 1755 Smr, end SM3 ean aquivalsat; what we winle N, si The new and central concept in the definition of UTL con-
N2. sits in introducing a new kind of Neut operator, denote



*(and its deal, denoted 19.. An important feature It specifies the initial state of the system, its safety proper-
of b. is being mnaewsitiue to fiie w-stuttering mad ses- tim and its livesesa properties. The information that should
salvor to infinite rn-stuttering (with respect to a given se contain the interface is especially essential for the complete.
of variables w), while its dual, is insensitive to both use of the specification module. For this purpose, Lamport
finite and infinite rn-stutterimg.%e then define the other arue in 18) that the interface must be specified at the im-
temporal operators (until, unless, etc.) in terms of 0 ia pleenstation level. Indeed a complete specification should
order to obtain a temporal logic that will unmable semantic elimiaste the need for say communication between the user
descriptions which ane ingionent under fiite w-stuttering. of the module and its implementor. Thereby the interface
This is one of the majo result. to ensure a derd ee of part will be a low-level specification (IPL), while the body
abstraction necessary for modular specification and compo- a highest-level specification (temporal language).
sational verification of concurrent sytm Defitaitlosa 2.5 (Module spoeclftcation) A module spse.-

ification is an objiect ol the form [inter; war; p.] where inter
2.3 Properties of 1101 programs decare#, shared woriables (chiannel.) and ver declare& local

varisble. v is aT fnormula wihich apace jiea the espected
In order to relate a specification presented by a formula in IhAsWour of the module within the whole ayatem.. Th1e prop.
the logic to the program it is supposed to specify, it is necws erty 4. has to le satisfied independently of the contest in
sauy that the computations of a program can serve as mod.. which the module operates.
ala (in the logical seans) hic the formula, which means that
we can evaluate the formul&aon each of these comopstat one Defila 2.6 (Modular validity 1141) A formula 4. as
and find whether it holds onthe comiputatioa. Then, we say defined to le modulary vldW for a module M1 (on nota-
that the program satisfie (or implement.) the specification tion, Mi >- 4.) if4 p s valid over the p ogram M111IM2 for
given by the formula j4 . if p holds over each of the compu- any module M3, mnterlac eo..atbble with M3, (in notation,
tation of its behaviour. For we magment the MTL logic by MI HM2 4)
some program specific predicates and functions, referring
to the additional IPL constructs needed to fully describe Usama 2.1 If Mi Dm p and M2 compat-with Mi then
a state in the computation of a reactive program, for in- [MI I~M21 D- 4.1.
stance, the control-predicates like at(M), efter(M). and the

modepreicaes lke ut~), -outc),im~)............Ovetview. The proof system provides a collection of comn-
One of the most important classifications of properties position proof rules which, on the one hand, given the

of reactive systems, as their partition into safety and live- correctness proofs of some small modules, allow the veri-
ness properties (8]. The advantage of this partition is to fier to establish the correctness of bigger modules. Con-
provide a way to recognize some incompleteness aspects of versey, given the specification of a big module to be un-
specifications. For example, it insanw well known that no plemented, allow the designer to decompose (or refine) the
specification of a systemi can be complete without contain- big specification into less abstact (or more strong in the
ing some safety properties and some fiernia. properties In logical sense) ones whom implementations could be found
most case all the safety properties can be trivially satifed more easy. More precisely, from a design point of view,
by a program that does nothing. We may view one of the starting from the specification of the reactive system, the
roles of liveness properties as ensuring that safety propertes method will amsis the damerine to refine it into more ele-0
are not implemented by a 'do-nothing' program. They are mentary (but modular) ones. Th1s arises to specifications
hence intented to discard trivial solution during the dampg such that when we put their implementations together (in
process. A property of an IPL program is of the form: parallel) we will obtain a parallel implementation for the

first specification. Refinement is carried out together with
p -W q =. Ou.(p * , ) a proof methodology. Once a refinement step is done, one
p unless w f=yp A -9-wpV I can makesum that it preserves the set of solutions of the
atable,.(p =-V p mInk - false first specification. There are two hinds of proofs we have to
invariant. (p) =,q p A stalile.(p) make during a refinement: a consistency proof which checks
p -- 9 -- O,,(p MDC',*-) whether a specification is mathematically consistent, and a

refinement proof which verifies a refinement to be consis-
2A A0odular spcfcto tent with the specification from which it is refined. Thie el-

ementary specifications can be refined again according the
Large systems are built up of several components (modules) samet principle. This refinement proces proceeds until im-
and a separate specification as given for each component plementations (modules in the IPL) should be obviously
specifying its desired behaviour in the whole system. For derived. Now program texts are difficult to derive directly
specifying concurrnt modules we explore Lampart's mod-. from wenk eventuality so that no program can be extracted
uarm specification method [6, 8] and similar notions intro- while the specification contains weak eventuality. We first
duced in [14]. We should be a"l to separately specify c**- transformn weak eventuality to srng eventuality preserving
current program modules in a convenient way as in wok of invariants. Axioms in the proof system represent the basic
Lamport (6, 8]. We emphasise, in particular, the relevance laws of the refinement which (in our study) aillow to derive
to complement a specification module by the specification atomic actions in a module from its local strong eventual-
of the interface-the mechanism by which the module com ity properties. The rules for comsposition and refinement
municates with its environment. The interface spcfcto of complex specificntions are formulated as sound inference
of a module stipulates the constrains the envirotnment mut ruin.
satisfy for a correct communication with this module . Thus
a specification module consists of two part: The first part, 3 A .. u sIpe
namely interface, specifies constraints on the interaction of
the system with its enviroument. The second part, namely We look for a program ?M (maybe a parallel one) that
body, specifies the computation expected from the system. implements the specification modle [Inter; hoc;3.. I A



S A L) whete, is as 1c, a.,,), and concurrent pr~orms to be vrailed bet not to be developed.
it also suafer from anefliciency when dealing with proramsa

Inga Ajc) E C eIN (interface tate" funCtios) of a realistic sie.
to aU t(A)IN . vC I o~ca iss ( amatiscodio) We intend to improve the current version of CROCOS by

5 -u=jmj". AVW U VUI A implementing the principles and the l~oic we have reported
cejas c 9 nt Ca1 A sit-O, is(aft~)a this paper. This should permit out prototype to support

L a al(M)-... ajter(AI) (lii-es) the veuiicaDa. as well as the detavatiom of lawg reactive
systems. Thean experiments and can studias with the mew

So the Starting goal is ?Ml Di [Iter; toe 37.! I A S A L). CROCOS will he conducted isn 'rde to explore the pomibil
It we apply the composition rule we ina bi u-oml ity of defining other composition principles to the setting
which satisfy the proof obligations associated with this tale. of our logic.

Let ip =. I AS AL and vi , m j IA Si A Li.
(1) M. Abdi sand L. Lampert. Tb. existeneof 01 reemeet may.

(Proof obligatime: popg. In Thserd Annal Symposium on Lept Is Computer
UsDnvtr;olWj 0 A W2 110 V Sieneues pages 1411-117, Bdiaburgh, JulY IM.
Ah 1- -9200;V2 iter, compat-with imOTS2  123 M. Abe& mand L. Lsmpert. Composing specificatinos. In J.- W.

later as iuter, 4D iuter2 do DBaer, W. P. ds Roever. and G. Rosaesbug, editors. Step.
(Al 1 I((A21 Di (lute,; I-, is] c to bois lotJ Oi out Rejlasemseat ofDistributedSystems: Modesa, Pormaheins,I.VeQoc1 ) n Varyocz) as Cortretness. Springer VwIIa6 1960. LNCS 420.

31H. Berringer. Tb. me of temporal logic ma the comptintiomal
Al Di linter; £cq V.1 epecilematio of cosicurrent systems. In A. Gamito., edtor, Tons-

interas inter e97 petal top*@ and their opplimeehess, pages U3-00, Leo"d, 13617-
v7. U 3- [lister; oc; 3,.. v.) Academic Pam

possble oluton s: (here1 -~, £, ~,~))[4) HI. Derringer. It. Kuiper, sod A. Pea"i. Now you may composem
A posibl soutio is: (were ol m fc cl c3,u))temporal logic specification. In Smitten"t ACM Smposeima

interl U k*DL(c, c,) A jfE1j(c3) Ac E WIN A C1 G IN* A c2 E INuo Theory of Cimpost.en, pages 61-43. April 1964. ACM.
5.e~U a (5) L. Lampost. Tb. 'Homer Logic' of cocurrent programs. Acts1oc *a(laA=tc.c U I Information, 14:21-37,9150.

S1 5(w=OAczz$ACj =e)md~u,,(um:OAcimsAci =109) (6] L. Lamport. Specifyingconcurrent pogram-modles- ACMW
A(aaOACe#Ac2=le)fnigu,,,(uelAcumeAo2=) 27'amssel4.a On Programming Limsopsa And Systems,
AN InlA c e) ules sx(v a IA Cm:I * 6A afte,(Al)) 2()10-2,pril 1953*.

LI (M1)-.,, elter(Al 1) (1L. Liipt Who good is temporal logic? peges "17-477-

with a symmetrical solution for if (with a skligt diferenice j L, Lamprt- A smple aproc to specifying cooacurra aYe.
that c does mot appeal in ift where (eiscti) in in are tams. Commsasessiona of ACM 1(32)M2-46, Jamsary 1IM.
replaced by 19,,c2, cl) and wi is replaced by va which. is 1 L. Lamsport. Tb. temporal ls&ogif actions. Toclbaical repot.
equal to (cjc2,v). DEC Palo Alto, December 1991.

We cn no aply aothe rues ad/oraxims t md wo (101 0. Licltemstei.. A. Pa"ui mand L. Zuck. Tb. glory of tb. pest.We an ow ppl anthe rues nd/r aiomto ad woIa Lopese of Programms. pagem 196-214. Spinger Verlg, 1IM.possible modules MI and M2 which must satisfy the two ijCII 1in.
new specification modules. This leads to a final (possible) 1111 z. Mýn d A. Psai T. sadorad vemio 01k temtupora
solution AM me PCs, ca. [Mu M 2 ] with framework. In J.W. do Dallher, W.P. rim Roever, said 0. Ress..

berg, editors, Limos, Time, Branching Time sad Psatusl Or-.
is, an Loese sand Medols for Ceucaeareny, pegem 201-2641 New York, los1. Ipi~e Verlg. LNC3 364.

external In c2 channelI (..I of W"Wgg (121 Z. Meass mmd A. Puam&. Variicatiom of covicurrent programme
(LI~ tfhtgrAemporal ~ ysems.In 49 School on Advanced Pr.9 ,....

Mi1(13) Z. Meanss ad A. Powesll Verdicsiatmo.f0 concurrent programs:
12 [ W INi; ]item, Corct@ Problem to Coompater scenues, pages 216-
12 L ic~l M 7, London. 1IM. Academic Pram.
and 1143 Z. Measn mad A. Poweul. The Temporal Logic o ci Rteaie endr ~.uJ., 1Concurrent Systems. Upriagsr.Verlng. 1991. ISBN 0-467-97664.

external in ci channel (I..] of Integer.
consaln oult C2 :channel [1..1 of Intew (1r D. Miry mad A. Mobbedem A prod enwuromment Ow a sb

Ml2:: local 9: lntegarWhore.= *9 asUoDL. In 0. Yourgemmad mmd R. Reed, editors, Filh SDL

1 ~:c~ 16) D. Miry mand A. ak m.Con:A fertdnv-~
G. Dodlimami, editor, Ceoupiste,.Aidd Ver~lstiea Pressed-

Ptogra Ping-Pong iap. Springear Verlag, 1992.
1173 X. Owicki mad D. Grim. Ank aulomatc ~ro teochiique far per-

4 Din~ de programs 1. Acts lI.,wmasteee 4319-340, 134.
(161 L. Paubiom ead T' Nlphowv. Isaball tatoriaJ asd Iess au

Tabmiical reort, Univeivity 01 Cambridge, Coimputer Labor..Our previous work has concetned the verilicadoio of con- 1"o.
current Programs Milng a linear temporal logic in which we
consideted the glba validity notion [15, 16]. This led to
a non-compouitional proof system we have encoded into Is.
ablde [13). The resulting protoype, called CROCOS, aillows

- w -S - S5 03



0

0

*

0

0

* 0

0

*

0

S

S

-254-

w w w w w U 0 0



Anotion of refinement for automata 0
N. Sabadini, S. Vigna

Dipartimento di Sciense deli'lnjormazsone,

Urnveresit do Milano, Via Comelico 39/41, 1-50135 Milano MI, Italy

FAX: +39-2-5500676; e-mail: sabadinijiaitcca.cei.uniai. it, vignaghost.dsi.uniii. it

R.F.C. Walters

School of Mathematics and Statistics, University of Sydney, N.S. W. 2006, Australia

e.aail: walterabJAmaths, mu. oz. au

1. Introduction

In this paper we discuss a notion of morphism of automata which seems particularly appropriate
for the study of concurrency and distributed processing. It has close connections with notions of
morphism introduced in [MM90] and [Knu73].

We are following the automata-theoretic calculus for concurrency based on distributive categories
introduced by Sabadini and Walters in [SW93], which we recall briefly below. * *

We concentrate attention here in particular on refinement. Our notion differs markedly from
existing notions of refinement in process calculi [DGRI, and Petri nets [BGV91], which were in-
troduced with a view to top-down design; hence, in these approaches it is considered desirable
that that the behaviour and the properties of a refined system are deducible from the unrefined
one. For example, two equivalent systems (with respect to a given notion of equivalence) must
be equivalent even after refinement. As a consequence, no new information is being introduced S
by a refinement. On the contrary, in our approach, the refined system may have a much richer
structure than the unrefined one: thus, we can study such issues as efficiency in time and resources.
This implies that at each stage of refinement it is necessary to prove that desired properties are
preserved by refinement. This is not unreasonable, because the desired properties are properties
of the final object of these refinement process, and at an earlier stage it may happen that it is not
even possible to define them. This approach is advocated, for instance, by Chandy and Misra in
[CM88].

Formally, our definition is based on considering the automata as categories of transitions, and
then a morphism is a functor between transition categories, and a refinement is an embedding of
the category of one automaton in another one. The elementary categorical concepts used in this
paper may be found in Mac Lane [Mac7l] or Walters [Wall. S

In future papers we will show how the morphisms introduced here can be used to prove properties
of distributed systems.

This work has been supported by the Australian Research Council, Esprit BRA ASMICS, Italian
MURST 40%, and the Italian CNR, contract 92.00529.CTO1.

2. Distributive Automata

In the model of concurrency introduced in (SW93J, sytems are represented by particular determin-
istic automata called distributive automata.

- 0



Distributive automata are automata constructed from a given family of sets and function (data
types and data operations) using the operations of a distributive category. That is, the alphabet
and state space of a distributive automaton is formed by the operations of sum and product from
some basic sets. The actions of a distributive automaton are formed from basic functions by
composition, sum, and product of functions, projections, injections, the diagonal and codiagonal, lip)
and the distributive isomorphism X x (Y + Z) !I X x Y + X x Z. Thus, the alphabets have a rich
structure reflecting parallel or conflicting, synchronous or asynchronous actions.

There is one further operation. A distibutive automaton whose alphabet is one letter and whose
state space is of the form X + U + Y may compute by iteration a (total) function from X to Y;
such automata we call pseudofunctions. In the construction distributive automata we may use the
function computed by a pseudofunction. This operation allows hiding of state, and encapsulation
of iteration. Notice that the notion of pseudofunction has a precursor in Elgot's iteration theories
[Elg75] and Heller's work on recursion categories [Hel90]. A similar definition can also be found in
(Knu73], and [Mil7l].

3. Refinement of automata

Definition 3.1. Suppose M is a monoid and X an M-automaton; that is, a set X together with
an action of M on X, M x X - X : (m, z) o-- m -z; the action is required to satisfy the usual
axioms m, - (M 2 • z) = (MIm 2 ) • z and 1 • r = x. Define the category Trans(X) (the transition 0
category of X) as follows:

(i) objects are states (that is, elements) of X;
(ii) arrows from z to y are state transitions; that is, elements m E M such that m- z = y;
(iii) composition is monoid multiplication.

A morphism of automata, or, in short, a mapping from X to Y, is a functor from Trans(X) to * *
Trans(Y), where Y is an N-automaton for a monoid N.

An abstraction from X to Y is a functor Trans(X) to Trams(Y) which is surjective on objects
and arrows.

A refinement of X in Y is an inclusion, as a full subcategory, of Trans(X) in Trans(Y).

In other words, in order to give a refinement of X one has to specify a bigger system Y which
has a restriction to a system isomorphic to X.

Notice that each arrow in 7Tans(X) is determined by an element m E M and a domain and
a codomain z, y E X. Hence many distinct arrows will be labelled with the same element of the
monoid.

In what follows, we will be concerned with free monoids on the structured alphabets we discussed.
If M = A* and N = B, a functor F from Trans(X) to Tamns(Y) is given by a function F : X - Y 0
and a function F : X x A - B" satisfying the condition that if a E A and a : z - z' in 7eans(X),
then F(a) : F(z) -- F(y) in Trans(Y). For a refinement there is the further requirement that
the function induced by F between Hor(z, z') and Hom(F(z), F(z')) is a bijection, and that
the function between the state spaces in injective. (Morphisms of distributive automata should be
defined by functions X - Y constructed using the operations of a distributive category, and by 0
functions A x X - B" constructed using the operations of a countably extensive category with
products [KWW], but this requirement is not necessary for the purposes of the present paper.)

Notice that the usual notion of substitution in language theory is a morphism which assigns to a
letter a word or a language, but the latter ones are fixed once for all, and not dependent on state.
Note also that not all full subcategories of Y induce a refinement.

We can give also the following, weaker 0

Definition 3.2. An ezpansive mapping is an inclusion F of Trans(X) in Trans(Y) such that

whenever F(z --- z') = F(z) ---. F(z'), where ar E A and s E B, then there are no z" E X,

s' E B" such that s' is a proper prefix of s and F(z)--..F(z")

286

- - w - 0A



When an atomic action is refined by an expansive mapping, the set of states spawned by the

string it is mapped to lies entirely outside of the image of X, except for the initial and final states
(which are the image of the domain and of the codomain of the atomic action). We can indeed 0
restate Definition 3.2 as follows:

(i) Y = X + U for some set U;
(ii)if F(z,a) = bi ... b,, E B*, then bi ... b, . z EU fork= 1,2-. n- I.

Expansiveness and fullness are related by the following proposition:

Proposition 3.1. Let X and Y be A* and B" automata, respectively. If a mapping F : X - Y 0
is a refinement, then it is expansive.

Proof. Suppose there are z" and a' as in Definition 3.2. Then s factors as s's", and F(z") -- F(z').

But because of faithfulness and fullness, there has to exist strings t', t" E A, such that z t-..z" and

z1----*z'. By composition, we get 9't" = a. Thus, either t' = a and t" = t, or t' and t" = a.
In both cases, s' is not a proper prefix of s. Ll 0

This proposition cannot be reversed. Take A = B = {a,#), X = {*) and Y = {0, 1). Let the
action of a be the identity on Y, and the action of 6 be n - I - n. The mapping sending the
unique state of X into 0, a to a and 0 to 6# is expansive, but not full.

There is however a relevant case in which we can reverse Proposition 3.1:

Proposition 3.2. Let X and Y be A* and B" automata, with A = B = 4r). If a mapping 0

F : X - Y is expansive, then it is a refinement.

Proof. If F is not a refinement, consider states z, y E X and an arrow F(z) -"F(y) which is
not image of an arrow from z to y. Assume without loss of generality that k is minimal. Let

F(z) T. F(z) be the image through F of z .-7z. If k > n, then necessarily F(z) -7-'F(ji) is not
in the image of X, which contradicts the minimality of k. Then n > k. But this contradicts 0 0
expansiveness. 0

Example 3.1. When M = N = 4r)* then refinement takes a particularly simple form. Such an
automaton can be analyzed by considering the orbits, that is, sequences of states produced by

the action of r starting from a given initial state. A rejinement of an automaton X is another
automaton Y with state space of the form Y = X + U such that the orbits of Y, when restricted
to X, correspond exactly to orbits of X.

Remark 3.1. It is clear that refinements form a category Refine, and that abstractions form a
category Abstract. However, both refinement and abstraction can be looked at in the opposite

direction, i.e., the domain of a refinement can be seen as a system in which space and time have
been hidden, while the domain of an abstraction can be seen as a system with finer state space and 0
actions (this is closely related to [Lyn87]). Formally, this correspond to the study of the categories
Refine" and Abstract".

The notion of transition category induces a notion of behaviour which is state dependent: for

each pair of states z, y we can build the set of arrows between z and y, i.e., the hom-set between

the objects x and y. Formally, 0

Definition 3.3. The functor behaviour

Behaviour: Refine-. Cat/Sets

is defined by

X " Horn : Trs(X)"P x Trans(X) -. Sets

on objects, and by
F -FO x F

on morphisms.

-.

i w l l l l i I l ' l l i wi i W w w - 0 .... ....



Note that F"P x F commutes with Horn up to isomorphisms exactly because F is a refinement.
Note also that F"* x F is a morphism in Cat/Sets; this expresses the fact that the behaviour of
X is a restriction of the behaviour of Y along the refinement.

4. Examples

4.1. Mutual ezclusaon

Other theories of refinements often require that all the steps in the refinements of two conflicting -
action (systems) are conflicting. This seems to be reasonable when the word "conflict" means
"irrevocable choice", but not when, as usual in applications, conflict comes from access to a common
resource (in our setting, this means that two letters use the same part of the state space). Here,
we can easily model the situation where the conflict may occur at only one step in the refinement.

4.2. Independent actions are not necessarily parallel

In considering a refinement F : X - Y we can think of X as the specification of a program and
F as the implementation of X in a system Y (in a later paper we will discuss a more general
notion of specification in this setting). It is then possible to consider questions of resources. We
can make the distinction between actions of X being "independent" and being "parallel". Actions 0
are independent if they are specified as parallel, i.e., they are parallel in X. Actions are parallel if
they are parallel in the implementation, i.e., in Y.

The following example can be expressed by saying that independent actions in a specification
may not be parallel in the implementation.

Given two automata X, Y, both with alphabet r, suppose that there are refinements of X to X'
and Y to Y', where X' = X + U and Y' = Y + U, the meaning being that the set U is the state
space of some temporarily used (and reset after use) resource like a scratch pad, or printer. Then
the synchronous parallel product X x Y of X and Y may be refined to an automaton in which
there is only one resource U whose use is scheduled between X and Y. The state space would
be Z = XY + UY + XY + XU, and the only letter acting on it would first apply (7, 1) until it
lands in the third summand of the state space. Then, it would apply (1, r) until it gets back to
the first summand. The injection of XY as first summand of Z would then define a refinement,
which would schedule the parallel action (, ir) to a sequence of actions of the form (r, 1) or (1, r).

4.3. Shutdown

Consider a refined description of a system in which a new, destructive action can happen. This is 0

a typical case of a sudden shutdown. We expect that the system can, at any time, be shut down,
thus moving into a state which was impossible to reach before. In this case, the refinement space
is formed by adding a single element, and a new letter to the alphabet; it sends to the new state
any other state. The behaviour of the machine, if we ignore the shutdown state, is unmodified,
which is exactly reflected in our definition of refinement. 0

4.4. Choice

Our refinement being a functor assigns to each action of the unrefined system a precise refinement.
Hence it is not possible in our model to replace an action by two alternative actions even if two
alternative actions may exist in the refined machine (such a thing would correspond to two different 0
refinements). This accords with our view that machines, even asynchronous ones, are deterministic;
the introduction of a choice in refinement is a non-determinism at the level of morphism. However,
different choices can be identified by an abstraction morphism.

.. .- ..... I, , I •0



5. Comparisons 6
As we remarked in the introduction, our notion of refinement differs markedly from notions cur-
rently being considered in Petri nets and process algebra; rather, it is in the spirit of fCM88, AL87]. 0

The definition which is conceptually closest to our approach is the broader definition of Petri
net morphism given in [MM9O], where a single Petri net transition can be mapped to an entire K',

computation, possibly composed by many parallel steps. However, due to the freedom with respect
to the monoidal product, the mapping is not dependent on the global state of the net.

In contrast to the situation in action refinement ([CvGG],[DGR]), in our model it is not at all
necessary that a refinement of two parallel processors be parallel (14.2) (and hence we can discuss
scheduling of resources), or a refinement of conflicting processors be conflicting in all steps (Q4. 1)
(and hence we can discuss refinements which limit non-parallelism to exactly those points where
common resources are needed).

In contrast to Petri nets refinement ([BGV91]), we are unable to introduce a choice (14.4) between
actions to refine an action. This limitation simplifies considerably the theory but does not restrict 0
its expressiveness.

References

[AL87] M. Abadi and L. Lamport. Composing specifications. In Stepwmse Refinement of Dis-
tributed Systems, number 430 in LNCS, pages 1-41, 1987.

[BGV91] W. Brauer, R. Gold, and W. Vogler. A survey of behaviour and equivalence preserving
refinement of Petri nets. In G. Rosenberg, editor, Advances in Petri Nets 1990, number
483 in LNCS, 1991.

[CM88] K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,
1988. * 0

[CvGG] 1. Czaja, R. von Glabbeek, and U. Golz. Interleaving semantics and action refinement
with atomic choice. Preprint.

[DGR] P. Degano, R. Gorrieri, and G. Rosolini. A categorical view of process refinement. In
Semantics: Foundations and Applications, number 666 in LNCS.

[Elg75] C. Elgot. Monadic computation and iterative algebraic theories. Studies in Logic and the
Foundations of Mathematics, 80:175-230, 1975. 0

[Hel90] A. Heller. An existence theorem for recursion categories. Journal of Symbolic Logic,
55(3):1252-1268, 1990.

[Knu73] D.E. Knuth. The Art of Computer Programming. Addison-Wesley, 1973.
[KWW] W. Khalil, E.G. Wagner, and R.F.C. Walters. Fixed-point semantics for programs in

distributive categories. In preparation. •
[Lyn87] N.A. Lynch. Multivalued possibility mappings. In Stepuwse Refinement of Distributed

Systems, number 430 in LNCS, pages 519-543, 1987.
[Mac7l] S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, 1971.
[MilT1] R. Milner. An algebraic definition of simulation between programs. In Proc. of the 2nd

Joint Conference on Artificial Intelligence, pages 481-489. BCS, 1971.
[MM90] J. Meseguer and U. Montanari. Petri nets are monoids. Info. and Co., 88:105-155,1990. 0

[SW93] N. Sabadini and R.F.C. Walters. On functions and processors: an automata theoretic ap-
proach to concurrency through distributive categories. Mathematics Report 93-7, Sydney
University, 1993. Available by anonymous ftp at ghost. dsi. unizi. it in the directory
pub2/pap•zra/sabadini.

[Wall R.F.C. Walters. Categories and Computer Science. Carslaw Publications (1991), Cam- 0
bridge University Press (1992).

SI

- .w w - w g-0



a
0

90
0

0

0

0

S

* 0

0

0

0

0

0

-230-

- w S S W W 0 0



S

The role of Memory in Object-Based
and Object-Oriented Languages 0

Eric G. Wagner
Wagner Mathematics

Old Albany Post Road
R I Box 445

Garrison, NY 10524 / USA
CSNET: Wagner~watson.ibm.com

Abstract 0

This paper introduces a algebraic memory model appropriate for programming lan-
guages with both ground types and objects, and related to an elementary inheritance,
overloading, and dame specification.

This paper reports on some t-'-e recent theoretical and practical results on program- 0
ming constructs that came about as part of the continuing project to design, implement,
and extend the programming language LDs (=Language for Data Directed Design) that I
introduced at the first AMAST conference [4].

The main idea that I want to promote in this paper is that the proper context for talking
about object-oriented and object-based programming is imperative rather than functional.
That is, I will show why it is advantageous to view objects as parts of a state rather than 0 0
as things-in-themselves. In particular I will show how this approach makes for rich variety
of objects (or classes) and a simple approaches to inheritance and overloading.

Much of the theoretical work currently being done on OOL and OBL, e.g. [3, 1, 2],
is done in a functional context wherein a method is viewed as a function on objects. In
this paper we take we take a different approach based on a "memory" model, wherein the 0
execution of a method both changes the state and returns a value. I first enunciated this
approach in [5] where it was applied to produce a semantics for LD 3 . The paper generalizes
the treatment given there and examines some of its ramifications. This abstract gives only
the first part of the story, a precise description of a particular form of inheritance - the full
paper will also explore the role of overloading. •

For any set K let SStrK denote the free distributive category generated by K (the
notation comes from the fact that this is also the category of strings-of-strings over K - see
[4].

Definition 0.1 Let K be a finite set, then K-state & is given by the following data

I. = (4.(k) k k E K), a K-indexed family of sets. •

V, = (V•,(k) I E g K), a K-indexed family of sets.

S- (;&(k) :,(k) -. Vp(k) I k E K), a K indexed family of mappings.



0

If we view I4 and V,, as functors from the discrete category K to the category Set of
sets and functions, then is p is a natural transformation.

Given K-states p and p' we define a morphism i? : p - i' to be a pair of injectivenatural transformations, (a : I,, -* 1,,, 0 : V,, -- V,,,) such that u' 9 a = 3 * p. Here a •

injective means ak is injective for every k E K. Let STK denote a category of K-states. 03

The rough intuition is that in a K-state p = (4, V,,p) what is specified is a K-indexed
set I4 of entities (locations, objects) each entity having a value in the K-indexed set V, as
specified by the K-indexed family of functions p. More specifically, the entities belonging
to class k E K are the elements of the set l4(k), their possible values are the elements of the
set V.(k) and there specific values in the state are given by the mapping L. : 4,(k) -* V,(k).
The morphisms in the category STK capture the notion of "substate".

The next definition extends the idea of "entities" with values by extending each set I,(k)
to include an additional entity without a value. We shall call the additional entity of class
k the null-entity of class k. Such null-entities provide a means for dealing with constructs
as such as null-pointers. •

Definition 0.2 From. 1 we define a functor 0, : K -. Set, k I.- I(k)+ 1. Given a natural
transformation a : I, - I4, we extend it to a natural transformation from al : 0, - 0"
by taking a'. = ak + 1 for all k E K. It what follows we shall generally omit the" 1 "and
use the same notation for both natural transformations. 0

Since SStrK is the free distributive category generated by K it follows that for any state 0
p, the functors I,, V. and 0, extend, canonically, to (respective functors I., fV. and 0,)
from SStrK into Set. We will generally omit the " -" in future uses of these functors.

Definition 0.3 For each v E (K')" define U' : STK -. Set, p t- 0,(v) and (a,#3) - a,.
to be the functor with the above indicated object- and morphism-parts. 03

Definition 0.4 For each v E K* we define a category Ok with, as objects, all pairs (p, e)
where p is a state and e E U'(pu) = 0,(v), and, as morphisms from (p,,e) to (p', e'), those
morphisms :; --- p' such that U' (q)(e) = e' (so, if 1- = (a,#) then N (e) = e').

For v E K%, let 11 = R" : 0" -, STK, (1A, e) ,-- 1A and ? ,--- q/.

Definition 0.5 Let F : 0" - 0' be a partial functor, then for each k E K define

T : Ov -* Set, (u,e) 1- 0,(k), and (a,#) i-- a&. Observe that, Tk = UM) 0 11W 0 F. 0

Definition 0.6 By an STK-operation of arity (v, w) E (K*)* x (K*)" we mean a partial
functor F : Ok -- 0 equipped with an injective natural transformation tk :f -* T
for each k E K, where 1k denotes the identity functor on O(). 0

The idea here is that an STK-operation, F, of arity (u, v) is a possible semantics for
"functions" with formal parameters specified by the string u and returning results specified
by the string v where "side-effects" are allowed, i.e., execution of a "function" can result in
a change of state as well as the return of a value.

The functorality of F captures a somewhat more subtle point, mainly the intuitive idea
that if a "function" is defined for a given state p and input e and p' is an "extension"
of p then the function is also defined for p' and e and, indeed, does essentially the same
thing then as it did before. The mathematics makes a slightly weaker, but more precise
statement.

- 29z-

w W w w 0



The requirement that we have an injective natural transformation tr,, : Tk _ Tk for
each k E K can be interpreted as saying that the execution of F "preserves entities", i.e.,
that if F((p,e)) = (;',e') then, roughly speaking, 10 (k) C_ I.,(k) for every k E K. 4
Definition 0.7 Given STx-operations (F, Lt) : OOK - Oc and (G, t0 ) : Ov -. O, we
define their composite, (G, iG) * (F, tr) : O -- 0' to be (G * F, sGF) where, for each k E K, 0
and (Ae) E Obj(OfK), t. = L (S ) 0

Proposition 0.8 The STK-operations form a category, OPK, with the above defined com-
position and with the identity morphism, id,: O: -. O being (lol, (1,v, O:,(k) -•

0.(k) I k E KA E STK)).

Definition 0.9 Let k, k' E K, then by the replacement function for k and k' we mean the
function rk,&, : K -- K such that rk,k,(j) = k if j = k' and rk,k,(j) = j otherwise.

0

Definition 0.10 A smooth coercion from k' to k is a natural transformation c : U(k') -
U(h). 0

Proposition 0.11 If k, k' E K, u, v E K" such that r,,k u = v and c is a smooth coercion
from U(k') to U(M) then there is a functor F: Ou -- OIg such that for all (A, e) E Obj(Ou ),
'Ic(,e)) -= (p,e') (no change in the state!) where e'i = c(e 1 )iif ui = k', and e) = e, if 6
uj A k'. Furthermore, this functor F is an STK-opelution when equipped with the identity
natural transformation Tk -- ' for each k E K.

Proposition 0.12 If k, k' E K, u, v E K* such that ri,, *.u = v and c is a smooth coercion
from U(k') to U(k) then there is an induced mapping

OPK(V, W) -- OpK(U, w)

We now apply these ideas in a more concrete setting.

Definition 0.13 A class-system is specified by the following data:

G, called the set of names for ground classes.

D, called the set of names for defined classes. Let K =def G + D.

t : D -* (K*)*, called the form function.

G, a G-sorted algebra, called the algebra of ground operations with some signature r.

Given a class-system C = (G, D,t, G) a basic state, p, for X consists of

I, : K -* Set. For our current purposes let us assume that for each k E K l4(k) =

{(j, k) I j = 1,. ..., nk}for some nk > 0.

Let V, : K -- Set such that g #-, G, and d j.--,(&(d)).

u : I -. V, a natural transformation.

Finally, we restrict ourselves to morphisms (a, #) : p -- p' between states in which, for
each d E D, O3 = a,(d), and, for each g E G, Pg = 0 0

- 29.3-



Now let us restrict our attention to STK-operations (F, &F) in which the t are incu-

sion mappings. We can show that there are more than encugh such operations to form a
programming language (see the LDI papers).

0
Proposition 0.14 Let k,k' E K, then if there exist ts,v E (K*)" and an isomorphism
p t(k') - ((k) xu) + v then there exists a corresponding smooth coercion c, : U(k') _ U(k).

1. There is always a trivial example: Take u = 0, the empty string-of-strings, and take
v = (k'), then (because, for any u and v, u x 0 = 0, and 0 + v = v) we trivially have
iota(k') 5_ ((k)x0)+ &(k'). I claim that the corresponding smooth coercion is the one
which, for each state p is given by the mapping 0

0 -.k) 0o(k)
(j,k') (0, k).

2. Assume t : D -- (K*)" is such that, for every d E D, t(d) =(kk," ... k..,,.), i.e. it 0
consists of a single string of length nk. This is the case in object oriented languages
where the state is given by the values of a set of instance variables. When this is the
case, it is easy to see that, if d E D and k E K such that (k') =(kk,,I ... kh,,,,, )and
k = kk,.i for some i, then we have an isomorphism

i , : &(k ') V ( M ×x (k &, ,. .""" k r,.i- l • k k,.i+ l"" "k ,,,,,)

The desired smooth coercion here the one which for each state U is given by the
mapping O(k') -. O(k) taking x E 1,(kW) to p(x),.

3. We claim that the archtypical example of inheritance - the inheritance of the move * 0
operation on the class dots by the "subclass" colored-dots - is an example of just
such a smooth coercion. We will give a fuller treatment this, and other examples, in
the full paper.

References 0

[11 Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and poly-
morphism. Computing Surveys, 4:471-522, 1985.

[2] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for overloaded
functions with subtyping. Technical Report LIENS - 92 -4, LIENS, Laboratoire 0
d'Informatique de l'Ecole Normale Superiure, February 1992.

[3] John C. Mitchell. Toward a typed foundation for method specialization and inheritance.
In Proceedings of the 17th POPL, pages 109-124. ACM, 1990.

[4] Eric G Wagner. An algebraically specified language for data directed design. Theoretical 0
Computer Science, 77:195-219, 1990.

[5] Eric G. Wagner. Generic classes in an object-based language. In Recent Trends in Data
Tyjpe Specification, pages 330 - 344. LNCS 655, Springer Verlag, 1992.

-294-



Absbra and Concrete Objects- S
0

An Algebraic Design Method for Object-Based Systems

Ruth Breu 1, Michael Breu 2

This paper demonstrates the design of an object-based system using algebraic specification
techniques. The flexibility of algebraic specifications allows the system to be described at any
stage of the design - starting from a descriptive specification and ending at a constructive
specification. The latter one is a specification at the level of a progriam comprising concrete data
repretation and machime-executable algorithms.

Since we are developing an object-based system, the algebraic target specification in particular
is a specification of objects. In our framework objects are entities with a unique identity and an
evolving internal state which can be manipulated by the outside through a set of ope' -ýns
(commonly called methods). In this paper we are restricting ourselves to environme
exactly one active object at a time. Hence, the resulting specification can be easily transL 0
a typed sequential object-oiented program such as an Eiffel or C++ program.

In our opinion, the notion of objects is too concrete to be the basis for the whole design. In
particular, object states, object sharing and side effects of methods are facilities which are
tightly connected with the notion of objects but encounter aspects of abstractness and * *
implementation independence.

Therefore, we suggest a design method which is based on a two-tiered paradigm of object
specification. The early stages of the design rely on a notion of abstract objects. Abstract
objects are stateless values on which a set of functions can be applied yielding other abstract
objects. The specification of abstract objects is based on an external view, stating the behaviour
of the functions. In particular, abstract objects are independent of data representations and do
not have states.

In later stages of the design. abstract objects are implemented by a state based object
description. These sta dependent objects are called concrete objects. Concrete objects exist in
obj.ct envwonments in which one object may refer to other concrete objects.

During the transition from abstract to concrete objects, a formal notion of implementation has to
ensure that the correctness of the system description is preserved. We take the approach of
[Bmu R 91] and relate abstract and concrete objects by abstraction functions mapping each state 0
of a concrete object to an abstract object. While in [Breu R 911 abstraction functions connect
algelbnic specifications with object-oriented programs in a model based theory, in this paper the
axiomatic framework is not left. Following the idea of [Breu M 901, the abstraction functions

Tedacke Univerilt Mmnche. Institut flit Informatik. Poeffach 20 24 20, D - 8000 MUnchen 2

2 SieMes Naxdorf lnfoinatiohm)yIeme AG, Elupem hodolog and System Center,

Otf-Jmhn-Riq 6. D - 8000 Manclen 83

- Zg$-



0

arm part of the algebraic specification and hence enable reasoning at the level of a formal
calculus.

Our approach goes beyond related approaches since it supports the specification of both abstract 0
and concrete objects. In this respect, our framework can be considered as an extension of
approaches which pursue the specification of concrete objects ([Goguen, Meseguer 871,
[America, de Boer 901). A similar separation into state dependent and state independent objects
together with abstraction functions can be found in [Wing 871 and [America 901. Unlike these
approaches, our framework is based on a uniform logic environment in which both abstract and
concrete objects ar specified and proofs are performed.

As syntactic and semantic framework, we rely on the algebraic specification language
SPECTRUM ([Broy et al. 911). This specification language provides facilities like the
specification of partial functions and higher-order functions, admitting formulas of a general
predicate logic.

We will illustrate our ideas by the common example of binary trees. The full version of this
paper will contain a larger case study. This case study deals with the implementation of the
most general unifier of terms based on an object structure which relies on a shared

representation of terms, i.e. a representation by dags.

The Specification of Abstract Objects

A primary goal in the first stage of our design method is the identification of abstract objects * *
together with the abstract specification of their behaviour. We model abstract objects by values
of some sort (called the object sort) in an algebraic specification.

Abstract objects in our example are binary trees (of object sort Tree). Binary trees are as usually
attached with two constructors e: Tree and node: Tree x Nat x Tree -- Tree. Moreover, eft, 0
right: Tree -. Tree and label: Tree -Nat denote the projections to the first and second subtree
and to the label of the root, respectively. The related specification is straightforward. It can be
found for instance in [Wirsing 90].

The Specification of Concrete Objects 0

Each concrete object consists of

"* a unique identity

"* an evolving state which may refer to other concrete objects.

Concrete objects thus do not exist in an isolated setting, but in an object environment. Object

environments are collections of concrete objects which are connected by a network of
references. This includes the facility of references to common subobjects (object sharing).

In our example, we implement the abstract tree objects by concrete objects which form a dag
structure. Figure I depicts an environment of two objects representing the abstract tree 0

node(node(e. 2,e). 1. node(e. 2. s)).

w - w-- - 0-



0

Figure I

In object-oriented languages object environments and object identities are implicitly given. In a
framework in which properties are proved formally, an explicit modelling is advantageous in
order to keep the logic ample.

We model concrete objects of object sort s by an algebraic specification containing the
following features.

"* A sort Ids describes the set of object identities.

"* A sort States describes the set of object states.

"* A sort Env describes the set of object environments. This set is characterised by
associations of object identities with object gates

"* Methods are modelled by functionsf.: Env -. Env on object environments. Additional
puameters may refer to concrete objects in the environment or to basic values.

It has to be noted that the specification of object identifiers and environments does not
necessarily be a specification of a low-level pointer structure. More abstractly, object identifiers
can be conceived as identifying keys and object environments as databases relating keys with
object states. * 0

The Tramski from Abstract to Cmacrete Objects

We relate abstract and concrete objects by abstraction functions. Each abstraction represents a
particular state in the lifetime of a concrete object by a stateless value. Formally, the abstraction 0
is a function abstr mapping environments and object identities to values of the abstract object
sort. An application of the abstraction function abstr in our example of binary trees is sketched
in figure Z Object identities (of sort IdTra) ar indicated by an arrow in the given environment.

p

abst(A o)c~~21IZI1I~a- node(nodef. , Z 4. 1. ,zodems 2. E))

Figure 2
An important property which we require of an abstraction function absir is its compatibility with
the functional behaviour of objects. This homomorphism property is characterised in the

following diagram.

0!

-- * *



0

asr object abstrat object

f0

The above diagram commutes for any operatonfon abstract objects corresponding to a method

f i on concrete objects. Thus, abstraction functions between concrete and abstract objects are

homomorphisms augmented by a notion of states. These extended homomorphisms have been

called state based homomorphisms in [Breu R 911. 0

More precisely, the implementation of abstract objects of object sort s consists of the following

four steps. We assume that a specification of object environments (of sort Env), object

identities (of sort Ids) and object states (of sort States) is already given.

11. Implementation of the fractions auocilted with abstrmt objects * 0

Each function f in the abstract specification is implemented by a method f i working on

environments. Each occurrence of sort s in the arity off corresponds to the sort Ids in the arity
off i. In this way, we obtain for instance the arities node_i: Env x IdTre x Nat x IdTree - Env

x Idre and leftJi: Env x ldTr-e - Env x IdTree in our example of binary trees. 0

Related axioms describe the behaviour of these functions. In our example, r.i and nodei are

methods which create new objects, leftj, right-i and label i do not change the given

environment, i.e. are constant on the first argument

12. Abstract specifieation of the abstraction fumntoio 0

In this step we introduce the abstraction function

abstr: Env x Ids -- s

together with axioms specifying the homomorphism properties. Since, in general, these
properties are too strong to be valid in the set of all object environments, we introduce a

constraint on environments

1: Env -. Bool.

For each function f. s - s on abstract objects we introduce the axiom

-- ABS _RAX -- Vp: Env,; x: 14, in 1(p) -. absr(fi(p, x)M = fJabstrrp, x)).

Axioms related with functions with general arity f: sl x ... x sn -s so are obtained in an

analogous way.

-- •.gS

•, um~u.. . .. .s-



S

Additional axioms may describe abstractly the side effect of the functionsf i on the argument
objects based on the abstraction function. Note that at this stage the boolean function I does not
have related axioms, i.e. it is totally loose.

13. Construetive specilcatin of the abstraction functiom

The axioms in step 12 describe the function asmr in a non-constructive way. In step 13, axioms
have to be introduced which define this function explicitly based on the structure of object
environments and object states. Moreover, the loose specification o" the constraint function I on
environments has to be concreted. The specification of this function is deferred to this stage
since it is tightly connected with the idea of the implementation of the abstraction function.

In our example, the abstract tree object related with a concrete tree object is obtained by
collecting the node information along the trace of references in the environment. The constraint 0
1(p) holds if the environment p forms a dag structure, i.e. does not contain cyclic networks of
objects

14. Proofs of correctness

In the last step, the soundness of step 1 with respect to the abstract axioms of step 12 has to be
proved. This means that the homomorphism axioms ABSTRAX have to be converted into
theorems in the theory of the specification of step 13.

After the elimination of the non-constructive axioms of step 2 the developed target specification
should contain axioms which describe algorithms related with

"* the functionsfi on concrete objects and

"* the abstraction function abstr.

At this stage, the development has reached a level at which the transition to a machine- 0
executable program does not change the level of abstraction.

Conclusion

A main advantage of our design method is the gain of abstractness compared to approaches
which are based on the specification of state dependent objects. In particular, our approach 0
supports the separated development of algorithms and data representations.

A second main advantage of our approach is the uniform logic framework of the design.
Through the explicit specification of object identifiers and object environments, the simple logic
calculus of the functional framework can be applied. Nevertheless, it has to be stressed that the S
explicit modelling of these state based features does neither have effects on the style nor on the
expressiveness of object specifications.

,-•J--

SI, • •• , , •0



0

Rdefrnie
0

(America 901 P. America Designn•g an object-oriented prograniing language i4th behaviowtil s .aii•ypig. In:

J.W. de Bakker ct aL. (ads.): Foundations of Object-Oriented Languages. Proc. REX School/Workshop, The

Netherlands, May/June 1990. Lacture Notes in Computer Science 439, Sprnger. 1991, 60-90

(America, de Boer 901 P. America, F. de Boer A Proof System/or Process Creation. In: Proc. IFIPTC 2

Working Confetence on Programming Concepts and Methods, April 1990

[Breu M 901 M. Breu Deweitpmen oof lneenewatdios. In: PROV=m Development by SPECification and

TRAnsortinatio, Volume I. Esrit Project 390 PROSPECTRA, Report M2.2.34 - R - 11.0, 1990 (to

appear in the sines of Springer I.ecture Notes in Computer Science)

[Breu R 911 R. Breu Algebraic Specifcation Techniques in Object Oriemed Programtwig Eiromwnews.

Lecture Notes in Computer Science $2, Springer, 1991

[Broy et al. 911 M. Broy, C. Facchi, R. Gromu, R. Hetler, H. Hussmann, D. Nazareth, F. Regensburger, K.

Stelen: The Requirement and Design Specification Language SPECTRUM - An Informal Introduction.

Version 03. Report TUM-19140, Technische Univefsitl± Mbnchen, 1991

tGoguen. Mesew r 871 J.A. Goguem. J. Meseper. Uninyg Functdionl Object-Ori•ntedwal Refatwnal
Progranmijg with Logical Semantics. In: B. Siriver, P. Wegner (eds.): Research Directions in Object-

Oriented Programming. MIT Press, 1987,417-477

[Wing 871 J. 54. Wing- Writing Larch Inwerfce Lanm ge Specications. ACM Tranctions on P .ogra ming

Languages and Systems *1. 1-24(1987) 0
[Wimig 901 M. Wimng. Algebraic Specij•-ion. In: J. van LAeuwen (ad.): Handbook of Theoretical Computer

Science. Elsevier Science Publishefs, 1990

*

S

-. 3•00.-



0

Towards an Algebraic Theory of Inheritance

in Object Oriented Programming

Xue-Miao Lu and Tharam S. Dillon
Department of Computer Science and Computer Engineering,
La Trobe University Bundoora Victoria AUSTRALIA 3083

Email: {lu, tharam}@latcsl.iat.oz.au

Abstract
In this paper an approach is proposed to the algebraic specification of classes and inheritance

in object oriented programming, using the notion of algebraic implementation of abstract data
types

1 Introduction
Application of the algebraic theories to computer science and software technology has been widely

studied. As the object oriented paradigm[3,5,9,1$,15 has become increasingly important as a new
software engineering methodology, attempts have been made to give a rigorous mathematical foun-
dation for object oriented systems using the algebraic theoris(e.g.,[l,4,6,7,10,11]). In particular,
algebraic models of inheritance have been proposed, e.g.,[4]. However, the existing models use
conventional notions such as ssgsature morpkim and thus are not wide enough to provide the
representation of incremental inheritance. 0

In object oriented programming, the central concept is oiject. An object has an identifier,
attributes and methods. An important feature in object oriented programming is cLaifiAction,
incorporating the notion of encapslatiosn. Classification organizes objects into d ase. Attributes
and methods of an object are defined in the class. Inheritance is an important feature of object
oriented systems, providing a mechanism for defining attributes and methods for a new (sub)claw
from definitions of in (super)clm. In a class specification, there is an interface part which, by 0
providing the attributes and methods, designates how to build and manipulate objects of the
clas[9,13,15j. This interface is an (abstract) object type specification[121. For some classes, this
part characterizes all the features of a clan. For others, however, it does not fully characterize a
class and another part is used that concerns implementation of the current type[9,13,15). We call
this the implementation part. Then two parts form an implemeattion epecifictson in terms of
algebraic data types.

Because of lack of space, we only discuss some basic ideas in this paper and refer to [12]
for further details. Attributes and methods (functions) in a clan are grouped into kinds: meta-
methods, instaace attributes, instance methods, eis" attrute, cis" methods, and shered inance
attributes15,91. Here we only consider the first three features of them. Higher types are used for
specications of. object type..Inheritance is considered on two levels: on types and on clam".
Generally, inheritance supports inscremenatl modoicsiash, renammug, etierridiaq, and specieliustion;
and inheritance can be single or multiple. In this paper, we only discuss single inheritance support- 0
ing incremental modification, assuming that an inherited component has the same name as in the
source. The loose approach has been shown in 112) to be especially appropriate for the semantics
of inheritance, including the significant point that an object of an inheriting type is also an object
of its super type.

2 Object Types and Inheritance 0

We assume familiarity with the basic notions from the equational algebraic specification. An object
We -= O(k, : e A,...,k : a) consists of pairs k, : a, which we will call components of the object

type. Denote K' = {k- : -,...,k, : as). /KI is divided into two disjoint subsets, K: and K°,,
with •K& = {•k:.,...,: ), 1 < m < , such that (1) for ea h method in , it coarity is
exactly a. In particular, there can be a c etuction method tup' C- KL with w = s, x... x .0

-30f-



O

and a constant operation symbol create±--'; and (2) for each method in Kul%) at least one of its
argument types, or the coarity, is an attribute type in KI . Components in KL are meta-methods,
and those in Kl are instance attributes and instance methods. A component k. : s, has a name k,
and a type si. When an object type r inherits o, we write u -," r.

A typed signature E is an S-sorted signature E = (S, E) such that for each object type o, A)
every method name k, in o is an operation symbol, and for each k, E Ki',, there is a unary named
projection operation symbol k. E E,,,,; and if an inheritance relation or -, r exists, then for each
meta-method a : s& x... x s, -- a for a, there is L meta-method # : s ×x... x s, x... x sp - r for r,
p 2! q, and P is said to be compatible with a. A typed specification HTSP=(E, E) consists of a typed 0
signature E and a set E of axioms. A typed specification HTSP is also written HTSP=(S, E, E).

An algebra A for a typed specification HTSP=(S, E, E) is a specification algebra, with a carrier
&A for each sort a E S, such that for each method name k, of type t, there is a uniquely assigned
method in tA, denoted by ký, or simply k.; and such that for every inheritance relation a • r,
each component k : s in K&, kA : rA --* #A is also a projection operation. In either of the cases, •
we say that k is inherited, and or is said to be (wieakly) inherited by r.

Let ' -. r in HTSP. For an HTSP-algebra A and meta-method P compatible with a as men-
tioned above. a is said to be inherited to 0 in A if for ai E O, 1 _5 i < p,/k(P(al,.. ,a.,.., ,%)) =
k,((ai,... ,a,)) for each instance component name k,. or is said to be strongly inherited by r in A
if each meta-method k, in a is inherited in A. In this case, a can be compatibly adapted to r in Aby defining a(a1,... ,a,) # (al,.,a•c... .,c)for fixed elements cl E sA-., q < j < p. 0

Proposition 2.1 Let a , r in the typed specification HTSP. Assume that a is not an attribute
type for any other object type in HTSP. For any HTSP-algebra A, let B be obtained from A by
replacing SA by oA u rA, then B is an HTSP.algebra. I
Proposition 2.2 With the conditions above, for any HTSP.algebru A in which a is strongly in- *
herited by r, let B be obtained from A by replacing SA by rA, then B is an HTSP-algebra after
compatibly adapting a to r in A. I

In both propositions, B being an HTSP-algebra means that objects of type r are objects of or.
This is an important feature in the object oriented framework.

3 Implementation of Object Types 0

In this section we briefly discuss the notion of implementation. We utilize existing notions of
implementation in the literature[2,8,141 and integrate the distinctness of object orientation.

Let HTSP and SPEC=(S, E, E) be the typed specifications of a and r, respectively. The basic
idea of implementing or by r (or HTSP by SPEC) is to use the features in SPEC to describe those
in HTSP. In case several sorts, e,... ,s, in SPEC are used to describe one sort t in HTSP, we
denote the sequence of sorts by < &I,..., sp > and call it a joint sort, and it is essentially a product
type. Each s, in a joint sort is associated with a fixed attribute of type s,. Two or more attributes,
kr,..., in SPEC can be used to describe one attribute k in HTSP, and we denote this sequence
by < kI,... ,- .4 > and call it a joint attribute. Moreover, methods are needed for manipulating
thee joint attributes. We will call these methods compound methods. A compound method involves
one or more existing methods in SPEC and consists of terms (t1 ,t 2 ,... ,t,,) of appropriate types 0
from TE(X). This is an ordered sequence and the effect is equivalent to the sequential actions of
these component terms as operations. With the introduction of a joint sort s =< *i,... ,ls >, a
meta-method whose argument types include all the types in s can be rewritten by substituting s
for the occurrences of si,...,s•.

A joint sort or a joint attribute exists only functionally, that is, it is not a component in a
specification. Instead, a joint sort means that several existing sorts will be involved for a single 0
action by a (compound) method. Similarly, a joint attribute of a joint type means that several
attributes will be involved in an action by a (compound) method. In contrast, a compound method
is a component of the object type. A compound method can be defined on a joint attribute and
thereby it may access the attributes or change the values of the attributes involved in the joint
attribute when the compound method is invoked.

To implement HTSP by SPEC, we follow the three stages, synthesis, restriction, and identi- 0
fication in [8]. The first stage is to enrich SPEC to EnSP. An enrichment of SPEC is a typed

- WW WW V 0



0

specification EnSP obtained from SPEC by adding attributes of the existing types (rather than a)
in SPEC, defining a set of joint sorts and a set of joint attributes to SPEC, adding a number of
compound methods, and accordingly the operations for the new components. We do not use the
sort implementing operations, rather we use the implementation morphism, in a similar manner
to [14]. In the second stage, EnSP is restricted to EnSP,., by deleting the methods which are
not used directly in simulation. Finally representatives are selected from a given EnSP,,i0-algebra
A using a congruence, to simulate an HTSP-algebra. In what follows, we always assume that
HTSP, HTSPI, SPEC and SPECI are typed specifications of a, o,, r and rl, respectively, and
HTSP=(S, E, E) and HTSPI=(Si, El, El). 0

An implementation morphism from HTSP to HTSP1 is an injective mapping h from E to El
such that h(s) = al; and for any operation symbol a : 8l x ... x a. -, s, if a is a meta-method
for a, then h(a) is of the form h(sl) x ... x (s,) x ti... x t. -- a 1, otherwise, h(o) is of type
h(sl) x ... x (s.) -. h(s). If h(s) = s for each a #er that is not a meta-method sort in o, we call h
an inheritance morphism.

An implementation morphism is a generalization of a signature morphism in the conventional •
sense since it does not necessarily preserve the meta-methods. The implementation morphism imp1
maps each sort s of HTSP to a sort or to a joint sort in EnSP, an attribute to an attribute or a
joint attribute, and a method to a method or a compound method.

An implementation of HTSP=(E, E) of a on SPEC of r is given by an enriched specification
EnSP of SPEC and an implementation morphism impl from HTSP to EnSP, and denoted by (HTSP,
impi, EnSP, SPEC). A model M of the implementation (HTSPimpl,EnSP,SPEC) is quadruple 0
(A, impiM, B,-q,j) consisting of an HTSP-algebra A, an EnSPi,,-algebra B and an injective
homomorphism imptM from A to a congruence B/ ms,, 1 of B, where EnSP.,.o is the typed
specification obtained from EnSP by deleting the methods un EnSP which are not within the image
of imp(.

The definition of implementation is a partial one in the sense that we do not require that every
HTSP-algebra can be represented by an EnSPi,,0-algebra. If EnSP=SPEC in (HTSP, imp/, EnSP, 0 •
SPEC), we say that HTSP is implemented by SPEC, and denote it by (HTSP, impi, SPEC). There
can be multiple ways for implementing an object type on (by) another in that a compound method
may be composed using a different set of terms. In addition, an implementation can have many
models. It is easy to see that if SPECI is an enrichment of SPEC and SPEC2 an enrichment of
SPECI, then SPEC2 is an enrichment of SPEC; and if impt is an implementation morphism from
HTSP to SPECI and impl, an implementation morphism from SPECI to SPEC2, then impiloimpt
is an implementation morphism from HTSP to SPEC2. 0

Proposition 3.1 (Composition of Implementations) If (HTSPimpl,EnHT1,HTSP1) and (HTSP1,
impi4,EnSP,SPEC) are implementations, then (HTSP,impej o impl,EnEnSP,SPEC) is an imple-
mentation and the diagram in Figure 1(g) commutes on K2,, i.e., for k E K•, Ii o impll(k) =
impl' o g(k), where EnEnSP is an enrichment of EnSP constructed in a natural way along the
construction of EnHT1 from HTSP1, and impil is an eztension of impll; and for impl(t) =<
ti, --... t9 > with im pil(t.) = < ti'l,... Itoa, > , im pe~l oim pl(t) "-`< t1~ ,..9 , Itl • ,)... It9, I... ItI.,, > -

Moreover, (EnHT1I,.O,imp4'2,EnEnSPSPEC) is an implementation of EnHTi,,. on SPEC,
where impl' is the restriction of impll on EnHTI•,,O. And if (A, impl, B,-=.O) is a model
for (HTSP, impl, EnHT1, HTSPI) and (B,impP2,C, is a model for (EnHTTi,.*, impl'2 ,
EnEnSP, SPEC), then (A, impt' o impl, C, . o = i a model for (HTSP, impl; o impl, 0
EnEnSP, SPEC), where C o(ma - .O)=(C/ s I

(a) HTSPI 9 6 EnHT1 v RTSP (b) HTSP - HTSPI

SPEC 0- EnS? I EnVnSP I SPEC -* ýEnSP -- ý EnSPI

Flgure 1.

Proposition 3.2 Let HTSP and HTSPi be two typed epecifications of a and al, respectively, and
e -,+ or,. If both HTSP and HTSP1 can be implemented on SPEC, then there are enrichments EnSP
and EnSPI of SPEC, and implementations (HTSP, impl, EnSP) and (HTSP1, impli, EnSPi), 0
such that diagram in Figure I(b) commutes on K', where h is an inheritance morphism. 3

l liMillill • II...-3 0-



0

4 Complex Classes and Their Inheritance

In this section we formalize the concept of complex class and inheritance on these classes in the
framework of implementation studied in the last section.

A ceomplex class specification for a type HTSPis an implementation CL=(HTSP, imp, SPEC) of
HTSP by SPEC. A model M of a clas CL=(HTSP,impl,SPEC) is a model of the implementation.
An object of type u in CL is a pair (a,b) for a E dA and b an object ofp with imp/(a) = 6, where
; is the post including b in the congruence. Given two typed specifications HTSP and HTSPI
of e and €i, respectively, and two classes, CL=(HTSP, impl, SPEC) and CLI=(HTSPI, impil,
SPECI), we said that CLI is an inheritance extension of CL if SPECI is an enrichment of SPEC;
and if for each instance component k E KO, h o impl(k) e impl1 (KI'), where h is the inclusion
morphism from Kf to K1, and for each meta-method a in K', there is a meta-method f in K"
such that impl(#) is compatible with impi(o).

Proposition 4.1 Let class CL1=(HTSP1,imp41,SPEC1) be an inheritance extension of class CL •
=(HTSP,simpl,SPEC). For a model M=(A, impl, B, E) of CLU, let N=(A', impl', B', S') be obtained
from M by replacing utA by oA U atl and replacing p5 by p5 U pf, then N is model of CL1, where,
p and Pl are the central sorts in SPE4,, and SPEC1•.0, respectively. I

Proposition 4.2 With the conditions above, let N=(A', impl', B', W') be obtained from M by re-
placing cA by uj and replacing pD by pf. If o is strongly inherited by a, in A, then N is a model
of CLU after compatibly adapting a to r in A. I

Similarly, these properties mean that objects of an inheriting clas are objects of the inherited
class.

References • *
11 E. Astesiano, A. Giovini, G. Reggio, and E. Zucca. An integrated algebraic approach to the specification

of data types, processes, and objects. In M. Wirsing and J. A. Bergatra, editors, Algebraic Methods 1:
Theory, Tools and Applications, pages 91-116, 1989. L14CS 394.

121 C. Beierle and A. Vo#. Implementation specifications. In H. Kreowali, editor, Recent Trends in Data
npe Specification: 3rd Workshop on Theory and Applications of Abstract Data Types, pages 39-53,
1985. Informatik-Fachberichte 116.

13] G. Blair, Gallagher, D. Hutchison, and Shepherd, editors. Object-Oriented Languages, Systems and
Applications. Pitman, London, 1991.

141 1L. Bren. Algebraic Specification Techniques in Object Oriented Progrimming Envmronments. Springer-
Verlag, 1991. LNCS 562.

151 T. S. Dillon and P. L. Tan. Object Oriented Conceptual Modeling. To be published by Prentice-Hall
International, 1993.

16] H. Ehrich, J. A. Goguen, and A. Sernadas. A categorical theory of objects as observed processes. 0
In J. W. de Bakker, W. P. de Roever, and G. Rosenberg, editors, Foundations of Object-Oriented
Languages, pages 203-228, 1991. LNCS 489.

171 H. Ehrich and A. Sernadas. Algebraic implementation of objects over objects. In J. W. de Bakker,
W. P. de Roever, and G. Rosenberg, editors, Ste$pwuw Refinement of Distributed Systems, Models,
Formalism, Correctness, pages 203-228, 1989. LNCS 430.

[8] H. Ehrig, H. Kreowski, B. Mahr, and P. Padawits. Algebraic implementation of abstract data types.
TCS, 20:209263, 1982.

19] A. Goldberg and D. Robson. Smalltalk-80: The Lantgge. Addison-Wesley, Reading, Mas., 1989.
1101 M. Gro~e-Rhode. Towards object oriented algebraic specifications. In H. Ebrig, K. P. Jantke, F. Orejas,

and H. Reichel, editors, Recent Trends in Data Tpe Specification, 7th workshop on specification of
ADTs, pages 98-116, 1991. LNCS 534.

[11I X.-M. Lu and T. S. Dillon. An algebraic theory for object oriented systems. 1991. Accepted for
publication in IEEE Transactions on Knowledge and Data Engineering. S

1121 X.-M. Lu and T. S. Dillon. Towards an algebraic theory of inheritance in object oriented programming.
In preparation.

1131 B. Meyer. Object Oriented Software Construction. Prentice-Hall International, 1988.
[141 A. Poign and J. Vos. On the implementation of abstract data types by programming language

constructs. JCSS, 34(2/3):340-376, 1987.
1151 B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, MA, 1986.

-304-



0

An Object-Oriented Design for the ACT ONE
Environment*

Martin Gogolla Ingo Claflen 0

TU Braunschweig TU Berlin
Informatik, Abt. Datenbanken Fachbereich 20

Postfach 3329 Franklinstr. 28/29
W-3300 Braunschweig W-1000 Berlin 10

gogollaQidb. cs. tu-bs. de ingotopal cs. tu-berlin. de

1 Introduction

The overall aim of this paper is to stabilize and strengthen the algebraic specification
method to software engineering and development. We do not introduce new theoret- 0 0
ical results, but define a conceptual model, i.e., an information system schema, for
the well-established algebraic specification language ACT ONE and its accompanying
specification environment. Existing specification systems like ASSPEGIQUE [BC85],
RAP [Hus85], ACT [Han87], OBJ3 [GW88] or OBSCURE [LW91] provide mecha-
nisms to store and retrieve specifications and to- operate on them. But in general
(the OBSCURE system seems to be an exception) they employ no systematic ap-
proach to information administration. Usually they rely on storage facilities of the
underlying programming language and file system. A solution to the information
handling problem is the use of information systems or more specific databases. They
are already accepted as being important components of software development sys-
tems, and, since specification systems can be regarded as parts of general software
development systems, the same arguments apply to them.

2 Applying Database Technology to Algebraic
Specifications

The application of databases to construct systems for specification languages leads
to certain requirements: (1) Since specifications are structured entities, the database
must be capable to deal with complex objects in a coherent way. This requirement
suggests not to employ relational technology. (2) Since the specification task has an
interactive nature, the system must be capable to deal with incomplete information.

-Work reported here hau been partially supported by the CEC under Grant No. 6112 (COM-
PASS) and BMFT under Grant No. 01 IS 203 D (KoaSo). 0



C

It must support different degrees of incompleteness and should enable mechanisms 0
for automatic tool invocation if the state of completeness changes.

In our approach, we apply know-how of the database field in the area of aigebraic
specifications. The development of algebraic specifications describing software sys-
tems of practical relevance usually results in large sets of related specification units.
These units arise from the decomposition of complex specifications into smaller pieces
by means of the structuring mechanisms provided by specification languages. Addi-
tionally algebraic methods and especially specification languages give rise to a bulk S
of information like proofs, formal transformation steps, formal relations like signature
morphisms, etc., which have to be stored to be accessible by various tools.

Here we show how a concrete data model, namely the object-oriented data model of
TROLL light (CGH92], can be used to support the algebraic specification language
ACT ONE. However, the concepts used are general enough to support other speci- 0
fication languages as well. Therefore, we feel the design of a conceptual schema for
ACT ONE is mainly a case study in employing a semantic data model for database
support of specification or programming languages. The approach chosen is gener-
al and can be used for other languages as well. It is therefore a proposal for the
consolidation of environments for algebraic specification languages. The definition 0
of the database schema is done by means of TROLL light, a specification language
for objects developed recently within the KoRSo Project. TROLL light, a dialect of
TROLL [JSHS91], allows to represent structure and behavior of conceptual objects.
It is designed to describe the universe of discourse as a system of concurrently exist-
ing and interacting objects. As in TROLL object descriptions are called templates 0 0
in TROLL light. Because of their pure intensional meaning templates may be com-
pared with the notion of class found in object-oriented programming languages. In
the context of databases however, classes are also associated with class extensions so
that we settled on a fresh designation. Templates show the following structure.

TEMPLATE name of the template
DATA TYPES data types used in current template
TEMPLATES other templates used in current template
SUBOBJECTS slots for sub-objects
ATTRIBUTES slots for attributes
EVENTS event generators
CONSTRAINTS restricting conditions on object states
VALUATION effect of event occurrences on attributes
DERIVATION rules for derived attributes
INTERACTION synchronization of events in different objects
BEHAVIOR description of object behavior by event-driven sequential machines

END TEMPLATE

3 ACT ONE Types Described by TROLL light
Templates

We cannot go into the details of our design of the ACT ONE environment or into the
details explaining how TROLL light can be translated to the object-oriented database
system [LLOW91] used in the Braunschweig KORSO project. But in order to give a

w W W W W3060



0

feeling how the design looks like we concentrate on ACT ONE types. An ACT ONE
type is represented in TROLL light by a template (or object type) characterizing its
static and dynamic properties. 0

The template Type given below has the following attributes: Name - Name of the type.
Text - Textual representation of the type provided by some editor. UsedNames - List
of used type names. CfCorrect - Indicates whether the textual representation has
been checked syntactically, i.e., whether it is context free correct, and a syntax tree
has been built. Complete - Indicates whether all types in the UsedNames list are in 0
the database. Flattable - Indicates whether a flat representation of the type can be
computed. IsFlat - Indicates that a flat representation is available. UsedTypes - Set
of used and actually existing types. Syntax - Object-valued attribute describing the
syntactical appearance of the corresponding type. This attribute may be undefined
and will be defined after successful context free analysis. Flat - This attribute 0
describes the fiat representation of types. It may be undefined and will be defined
after successful context sensitive analysis.

In contrast to the attribute UsedNames which contains a list of type names necessary
for context sensitive analysis, but which may not be already existing, the set- and
object-valued attribute UsedTypes refers only to those types which are currently 0
existing.
TEMPLATE Type

DATA TYPES String, Bool;
TEMPLATES Type, Typeexpr, Papec; * *
ATTRIBUTES Name:string; Text:string;

UsedNames:LIST(string); CfCorrect:bool;
DERIVED Complete:bool; DERIVED Flattable:bool;
IsFlat:bool; UsedTypes:SET(type);
Syntax:typeexpr; Flat:pspec;

EVENTS BIRTH create(InitName:string,InitText:string);
changeText (Neve t:t string);

DEATH destroy;
CONSTRAINTS DEF(Name); DEF(Text); -- (RI)

CfCorrect IMPLIES
(DEF(Syntax) AND DEF(UsedNames)); -- (R2)

VALUATION [create(NT)] Name-N, Text-T;

DERIVATION Complete =
CfCorrect AND
(FORALL (N:LTS (UsedNames))

(EXISTS (T:UsedTypes)
(Name(T)=N AND CfCorrect(T)))); -- CR3)

Flattable =
Complete AND
(FORALL (T:UsedTypes) IsFlat(T)); -- (R4)

BEHAVIOR
END TEMPLATE;

--301r - S..... •0



0

In the template certain requirements concerning ACT ONE types are formulated as
constrants and derivation rules: (RI) A type must have at least a name and a textual
representation. (R2) If a type has been checked syntactically its syntax tree and use
list must be available. (P.3) A type is complete if all used types are already existing.
(R4) A type is flattable if all its used types are already flat. Please note that arbitrary
events are possible in our approach. We could even have events like contextFree-
Analysis, contextSensitive.Aalysis, or couputeFlatltepresentation.

4 Conclusion

Although our approach was inspired by [BCC9O] and we tried to describe the same
problems, our approach is quite different. In [BCC90 the design of the specification 0
database of the ASSPEGIQUE environment is described by means of the algebraic
specification language PLUSS. They employed a general specification language and
presented a rather long specification describing certain states of incompleteness of
specifications. Because we employ a powerful data model we are able to describe the
same affair in fewer lines. S

References
[BC85] M. Bidoit and C. Choppy. ASSPEGIQUE: An Integrated Environment for

Algebraic Specifications. In H.Ehrig, C. Floyd, M. Nivat, and J. Thatcher,
editors, Proc. Int. Joint Conference on Theory and Practice of Software
Development (TAPSOFT'85), pages 246-260. Springer, LNCS 186, 1985.

[BCC90 M. Bidoit, F. Capy, and C. Choppy. The Design and Specification of
the ASSPEGIQUE Database. In A. Miola, editor, Proc. 1st Int. Sympo-
sium on Design and Implementation of Symbolic Computation Systems
(DISCO'90), pages 205-214. Springer, LNCS 429, 1990.

[CGH92] S. Conrad, M. Gogolla, and R. Herzig. TROLL light: A Core Language
for Specifying Objects. Informatik-Bericht 92-02, Technische Universitit
Braunschweig, 1992.

[GW88] J.A. Goguen and T. Winlder. Introducing OBJ3. Research Report SRI-
CSL-88-9, SRI International, 1988.

[Han87J H. Hansen. The ACT-System: Experiences and Future Enhancements.
In D.T. Sannella and A. Tarlecki, editors, Recent Trends in Data Type
Specification (WADT'87), pages 113-130. Springer, LNCS 332, 1987.

[Hus85] H. Hussmann. Rapid Prototyping for Algebraic Specifications - RAP- S
System User's Manual. Technical Report MIP 8505, Computer Science
Department, University of Passau, 1985.

[JSHS91] R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas. Object-Oriented
Specification of Information Systems: The TROLL Language. Informatik-
Bericht 91-04, Technische Universitit Braunschweig, 1991.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreib. The ObjectStore
Database System. Communications of the ACM, 34(10):50-63, 1991.

[LW91] J. Loeckx and M. Wolf. The OBSCURE Manual. Technical Report 91/03,
Computer Science Department, University of Saabrficken, 1991.

-- 3O8-



A Formal Definition of an Abstract Prolog Compiler

Julio Garda-Martfn Juan Jo*6 Moreno-Navarro
Universidad Politdcnica de Madrid "

1 Motivation and related work
In the last years, the importance of logic programming languages has been increased. For logic languages we could
understand not only PROLOG but also several languages that uses logical components (deductive inference as opera-
tional semantics, unification, backtracking, etc.). Probably, the development of efficient implement n techniques for
PROLOG (the canonical element of these kind of languages) is an important component of their success.

The contribution of Warrenh [Wa3] with the design of an abstract machine points out the possibility of compiling
PROLOG and getting efficient code. Most of current PROLOG systems are based on the resulting machine, usually
called the WAM (Warren Abstract Machine).

Even though there are formal descriptions of the WAM (se [KuS],Ru92 and, specially, [BR92]) the explanations (for
instance [GLLO85], [MWa8], and, best of all [AK91]) do not seem to approximate the reader to a good understandable
view.

For our point of view, we think that it is possible and necessary to reinvent the WAM. This claim can be easily
justified with the following words: a new and more clear view must be offered about compilation of PROLOG, but it
must not be & collection of instructions being executed on an memory stack.

In this paper we present an abstract view of the WAM by a formal description. For an abstract WAM we understand
a description of the WAM focused in how: a) it implements SLD-resolution with backtracking and b) the main elements
of PROLOG (unification and backtracking) can be compiled. We are not interested in implementation details and
optimisations.

The components of an abstract machine are the following:.

"* the data arem which defines the convi a of the machine;

"* the instruction set and a semanti function for each of its elements (defining the changes on the configuration after * *
executing an instruction);

"* the traition function between an initial and a final configuration which is guided by the semantic function of the
instruction being currently executed; and

"* the translation fnaction which compiles a program into machine code.

Abstract data types (ADTs) can be used to describe these components, while the semantic function is defined in terms
of the operations of the ADTs.

Furthermore, this definition is the middle point of a more ambitious project: The abstract WAM can be derived
from SLD-resolution, the operational semantics of PROLOG, by stepwise refinement. Furthermore, the whole WAM
can be derived from the abstract WAM by supplying efficient ADT implementations. Notice that the framework allows
to manage both steps, by refining the data area (in the first step) or by refining ADTs implementation.

An executable and visualisable formal specification would point out the success of the design decisions taken by
Warren in the compilation of PROLOG and could made them applicable to other logic languages.

2 The Abstract WAM

2.1 Data Area 0

This section informally describes the abstract WAM. We are using an OBJ-like language for the specification with some
simple modifications in order to make it closer to the object oriented approach and to simplify the specification. For
instance, if an ADT a is just the aggregation of some different ADTs ft, ..., a. (what is very often) we allow to use
operations of a. as operations of a without writing them in a's specification. We also allow the use of operations as
arguments of other operations. Due to the lack of space we will only present some examples of the formalization. Figure
1 shows the basic ADTs SET and STACK used later.

As shown in figure 2 the data area is formed by the WAM-program, or-stack, the argument registers and the heap.
Lt. us discuss each element with some detail.

* The program contents a label-indexed army of WAM-instructions and a program counter, which is & label.

•Depmwtom LsUs, Vacuad da Infmdha•, Cmwu do B, Doewl dd Memo. N5Uo MUd1:, Span, ma •

-303-

. w w w, w,, . - 0 0



aft 53T PC : bmo is ad$ STACK PE : einmil is

OIWU Rmt Os ms: s0" d~mm ad stOpesausa PUsh: sage& 461= - sac
opersesta e :~ setm a* heel *pnauatl Pop: OWaN& - @tao&
Opsmea 0 a: - a"s oepatatis hffmty : @&a& -. heel
epeisti.. .LJ.: W9t sWt -. mpematle Top : stack doont

opaustlea Mod..Tep: stack(& um. elmma) - t

Von ij : 41t= axiasms
Var S "k er 5: stac

vsan AD: nk vr 6: Glen=
VW 1: OWN" - samat

humt (husnt (S.04,j - Just (Ineaut(5,j).i Ifs <> j
ftmy (buset (5,44J) - Ras-e (5,j) Its MM~ j UNt 1 (Raaptv -Wc() - bus
Rinws- (Imm (S.i),j) - h-"u (R-mev(S.J),i) Kifs>! Unnety (Push Me~)) = salies
Romve"(O,s)m =0pep (mtstaw~ (S. 6)) ero
j E aaset(5.0 =(0s-j) or( IE S) If(i <>) Po(P'ah (5S.)) MS
-4 G Top (Pub (S. -)) =
i G(AUB) (AEG ) r (BDei) M-d..2p (Pusk5,sJ-- Ps ,(S.y))

eadadt eadait

Figure 1: The ADTs SET and STACK

Al PrOW

#A=1

HEAP I~

OR-WrACK WAM-PROGRAM

0
Figure 2: The Abstract WAM componenta

"* The argument registers are collected in an armay of heasp pointers. It is used for parameter passing during claus
application. The ADT argument register is a simple instance of the basic ADT ARRAY.

"* A stack (called or-stack) is used to traverse the resolution tree with a depth first strategy. The or-stack is defined 0
by inheritance after instantiating the ADT stack with choice point as components.

"* Choice points are used to store the information needed for applying any clause to & predicate call. There are
several applicable clauses, so this information could he reused several times. The ADT choice point contents a
copy of the argument registers (arguments of the predicate call), the local trail (used to record variable bindings
in order too undo them after backtracking), the program address of the next claus and one and-stack.

"* A trail is a set of variable -nams as shown in figure 3.'

"* As before, we get the and-stack after an instantiation and inheritanc from STACK with environments as elements
(see figure 3).

"* An environment is used to perform the application of a given clause to a predicate call. For this purpose, it
contains the continuation label (beginning of the code of the next predicate call) and the variables of the clause.

"* The ADT variable is defined together with the ADT heap. A variable is a pair (variable name, heap pointer). The
heap is used to represent PROLOG terms in claum and goals. A heap is a table with a pointer as key and each
element is a term: a constant, a constructor with some heasp pointers as arguments or a variable name.

1 F-tlc tha the implesatisam of the trai wa sack ins an ptimissm detal. 0

-310me

L



aft TRAIL b
andeteda53 ALAU C11~.CP (Create (Sara. CP)) aC

COWh.cp (biadify.C (E, CP)) - CP
sit NNIWNRONJUN is C..mea-Var (Cnab. (sue.. CP)) w Unbound
son mwi~ Ca.saft.Ver (Modhiy..Ve (B, itX)) w X

epesetige Uodify.CP ivzntpmsgaddr -. sawiemoe adt AND-STACK Is
epeestlem Coftault" : myiraA oxteadlag STCKINVUWNMBNTJ amdmata&
ePeestim M~ifY..VW: SUMUvhRS0%MaM met M wi ýI GUTUmyIEmNVA eads& it
*pmatioe CoafL-vr: anvb=r ama - uaaia"

exisme edt ORJTACK Is
Vane aim. a: a" azteading STACK (CHOZCBJ andjga&a
VON 3: 1yr.~ 1uei 0
Vet CP Preug..ad*
vat X : wari"h

Figure 3: The ADTs ENVIRONMENT, TRAIL, AND-STACK and OR-STACK

2.2 Semantic Function

We will not give the complete instruction aet, but one can found (a part of) it in the next section where the translation
function is discused.

The semantic function in a mapping betweeni a WAM-instruction and a data area into a data areat, i.e. speciie
the modification in the data area after mecuting a given instruction. The specification is the composition of several
operations of the data ame componenits. Figure 4 shows the specification of the semantic function of a couple of
instmuctions. For instance, the try.ms.se instruction rewinds the trail of the most recent choice point (by using an
operation of the ADT or-stack), stam the label of the next alternative, initialises the choice point for the next clams
application and increments the progrem counter.

WAM..P,.grem = gaashuaw (COAL) SIL Waamouustdow, x Wans.Stua -. WacaState 0
r-&-uu (PROC (p1))

p.;;.a (ROC (p.)) 21 1byinmsbah (L)3 uaustat. =
'Poewaslv Proceim - Wam.cdai

(Pink (w-A
pe..*..a (PROC (p) = C1 )) := .auad,.m (C) ceu~ison

(R@&&-~ (-=sexaek). (L).
pu-duuu(PROC (p)in{C1 ,.... Co))m O.i- -tu))

iry-mbeh (m4 (label)) 31 babrvmAhe PL 4 -matau
.hwfe... (CI) P-- as- -

(Wabel): vewy--ab Phubo) -T rA"

(labels): PM w~ae. ())

aiaa. (TOC,.)Ae)

"Pbow (lp wn4)a

b~ (at. sin, (0))

(-bu . 1 ( a. . Sti...r ) II I mLjeb ZXuna t oewe -
ml (..).5*~.) INexthuaiem (SetLVal (wm~atAGu

dmlue~~~~s C..di..Var (TOP (TOP (maaa)a)

Figur 4. Tkmnlti and Semantic Function

w0



2.3 Translation Function
The translation function specifies how PROLOG code a compiled into WAM code. It is dscribed by usi" some

auxiliary functions, Figure 4 describes the compilation of a PROLOG program as the compilation of the goal and
the procedures (clauses for a given predicate). A procedure needs some code for the management of backtracking
(try..me , to" me - and trustame instructions) and the compilation of clauses. Clases we translated by using
the uea se and trasuferi'sa schemes and particular instructions.

3 Conclusion

Although it is not the main goal of the paper, let us say something about our derivation of the WAM. It is carried out in
two big steps. The first step is the demets of Mhe mum e/ements of tie WAM. We have not space enough to describe
all the refinement step. So, we would only mention some important points.

The preliminary machine is a stack based description of SLD.remolution solving literals from left to right and using 0
the clauses in textual order. The stack stores resolution steps containing the current goal (a list of literal starting with
a predicate call p), the substitution of the step and the next clause of p to be used. These resolution steps are called
choice points.

Now, code could be used to codify goals. The goals in the choice points are replaced by some arguments registers
and the continuation program label. A program label replaces the next clanue.

Next step is the compilation of substitutions. The heap allows to represent substitutions as a set of pairs (variable •
name, heap pointer). The set includes the variables bound during the resolution step (choice point).

One could notice that the number of variables bound in a resolution step is unknown in advance. However, it is
possible to give names to the local variables of the clause during the compilation process. The choice point could be
responsible of collecting the bindings of the local variables. Nonlocal variable bindings ame remembered' into a local
trail. From the point of view of SLD-resolution the trail helps in the reconstruction of the step substitution. From the
machine viewpoint, it is needed to rewind variable bindings after backtracking. 0

Furthermore, in the case that a predicate has only one clause, a full choice point could suppose a waste of memory.
It can be simplified in an environment with only local variables and the continuation label. The and-stack keeps all the
environments belonging to a choice point.

As a final step, term representation into the heap and the parameter passing mechanism could be remined by using
specialized machine instructions. These instructions have the responsibility of constructing or unifying terms (constant,
functor or variable). 0 0

With this derivation we obtain the Abstract WAM described before. The result enhances the abstract behaviour of
the WAM without knowing implementation details. The data area is configured with some abstract data types that are
not fully implemented but the implementation must fulfil some axoms.

As a second big step, we can make the 0ptimisati•n of this machine. The optimisations are performed in the same
framework. Some optimisations arise from further refinement of the data area (for instance using a global trail instead
of a local one). Other ones from the concrete implementation of the abstract data types: implementation of the heap •
as a stack, optimal memory allocation of the data area as contiguous memory areas, etc. Finally, the semantics of the
instructions could also be optimized as in the last call optimisation, the environment trimming and so on. As a result
we get a formal description of the WAM as described in [AK91].

The derivation and the Abstract WAm could help to understand the compilation of PROLOG. Moreover, they are
useful to modify the machine design to implement new -logic languages' (in a general sense). The WAM have been used

as a basis for the implementation of several declarative languages and symbolic computation systems: integration of 0
functional and logic programming, constraint logic programming, logic programming with types, modules and contextual

information, etc. The designer of a new machine could diverge from the WAM in any point of the derivation where the

new language is different. The step by step specification has another advantage. The verification of the correctness of

the WAM is simply obtained by proving equivalence between every machine and the following.
The Abstract WAM (or a similar abstract machine) is easy to implement and test. In this sense we also plan to

make a computer visualization of all the process. A first prototype [GM92] is ready and we expect to complete it soon. 0

References
[AI91] H. Ait-Kaci: The WAM: A (Real) Tutorial, The MiT Prem, 1991
(DR92] S. BUerser, D. Rosenzweig. The WAm - Ddnitioa and Compiler Correctness, Technical Report TR 14/92, Dipurta-

mesto di aforsmaticn, Univerith di Pism, Italy, 1992.
[GLLOU5] J. Gabriel, T. Liadholm, E.L. Lus, R.A. Overbeck A Tutorial for the WAM for Computational Logic, ANL-64-4, 0

Argonse Nat. Lab., 19M
[GM92] J. Garca-Martan, J.J.Moreso-Navarro: Friedly-WAM An Interactive Tool to Understand the Compilation of PRO-

LOG, Proc. LPAR 92, Springer LNCS 100,S1M
(KuI9] P. Krsmwe: How to Invent a PROLOG Machine, New Generation Comp., 5, 1989.
[MW8J D. Maier, D.S. Waren: Computing with Logic: Logic Programming with PROLOG, Ed. Benjamin Cummin-, 1958

[Ru92] D.M. RumsinoI: A Verilled PROLOG Compiler far the Warren Abstract Machine, 3. of Logic Programming, 1992.
[WaS3] D.H.D. Warren: An Abstract PKOLOG Instfuction Set, Tec. Note U09, SRI International, Menlo Pak, California,

32 wS-



0

Completeness of Equational Definitions over
Predefined Algebras *

Valentin Antimirov'I and Anatoli Degtyarev2

Computer Science Departmeat, Copenhagen University, 2100 Copenhagen, Denmark
email: antiOdiku.dk; fax: (+45) 353-21401; tel.: (+45) 353-21400

' Department of Cybernetics, Kiev University, 252127, Kiev, Ukraine
email : capkedra9dlOlScybtiiev.ua

1 Introduction
The notion of equational defaibotu over predefaned letbras (EDPA) was introduced
in [3] in order to formalise the following rather widespread situation: given a data
type D with a set of (predefined) functions Z, a set of new (possibly partial) functions
F on D is specified by a set R of "recursive equations" of the form

MI•..... t.) = t()

wherel EFandti,...,t.,t are terns over the signature I+F.
The construction covers a variety of known particular cses from both mathema.

tics and computer science. First-order functional programs over predefined (built-in
or "abstract') data types form a particular class of functional EDPA - in this case
R is am F-indexed family of equatios (1) where tl,...,. ,is just a list of distinct
variables. One can also recollect partial recursive definitions of arithmetic functions
(over the algebra of natural numbers), term-rewriting systems over built-in algebras
[1], or another EDPA of a more general form. E.g., the following two equational
definitions over the algebra N of natural numbers with usual operations are intended
to define (a) the greatest common divisor and (b) the integer division: 0

(a) gcd(Oa) a a; gcd(a.n) = gcd(•.a); gcd(~n+,n) a gcd(.n).
(b) dtv(s.asf+1) - 0 ; div(uen.n) a I + div(u.z).

Here gcd is presumably total, while di.v seems to be partial, but it is a matter of
semantics to say precisely which functions on N are defined by these equations.

In [2,3] we have been developing algebraic semantics3 of EDPA in order to make 0
it possible to use equational logic with induction and corresponding term rewriting
techniques for reasoning about functions defined in this way. A natural approach
to this task is to represent the equational definition (1) as an enrichment (consis-
tent, but not necessarily complete) of some algebraic specification SP of D. The
main point here is to ensure that any correct specification of D provides the some
semantics for a given set of equations R. To meet this natural requirement, we have
introduced in [3] a flexible kind of algebraic presentations which leads to a so-cafled
safe semantics of EDPA. In the next section we briefly reproduce this construction
and then turn to the subject of completeness of EDPA.

"Short vernion
"•On leave from V.M.Glushkov Institute of Cybernetics, Kiev, Ukraine
3 w. denotational one 0

- 313 -



2 Algebraic Presentations and Safe Semantics of EDPA

In what follows, A denotes a (predefined) Eo-algebra over an S-sorted signature 0o,
Co + F is a (signature) enrichment, and R is a set of Z0 + F-rewrite rules (oriented
equations) of the form (1). Then the quadruple (Zo, A, F, R) (denoted also (F, R))
forms an efutional definition (of F by R) over A.

To define semantics of EDPA means to set a correspondence between the quadru-
ples and basic interpretationas of F - sets of partial functions

FA =(IJ4A:A. ZA. IIEF..., w ES, aE S) (2)

which is to be in a proper logical relation to to the set of equations R.
To do this, we use algebraic specifications in a slightly generalized many-sorted

language where the set X of variables used in axioms contains a distinguished subset
X+ of safe variables (then the variables in X\X+ are called unsae). We write E(X+)
and SP(X+) to reflect the fact that some of variables in the set of axioms E of the
specification SP are safe.4 "

DefinitionI. Let SP(X+) = (CE(X+)) be an algebraic specification (called a
basic one) of A in the sense that Z is a finite enrichment (or extension) of Eo and
the Eo-reduct of the initial model I(SP) is isomorphic to As. Then

- the enrichment SP'(X+) = SP(X+) + (F, R) is called an algebraic presentaties
(wit safe variables) of the EDPA (F, R)A; 0

- a C + F-substitution 9 : X -- Tr+p(X) is called safe if O(X+) C Tz(X+);
- a retricted congruence =sR on the ground term algebra Tr+p is the least one

generated in a standard way by the set of equations E(X÷) U R using only safe
substitutions;

- the quotient TSp'(x+) = TX+F/=.,5 is a (standard) modelof SP'(X+);
- the presentation (enrichment) SPI(X+) is called S 0

" safe-consistent if the E-reduct of its standard model contains a subalgebra
isomorphic to I(SP) (i.e., to A);

"* safe-complete if each congruence claws Itj:n of TsP-(X.) ctasins some E-
term;

"* safe-persisteat if it is both sae-consistent and sae-complete.

Proposition 2 (cf. 13]). If the presentation SP'(X+) is safe-consutent, then there
exists the basic interpretation FA(SP) ofF on I(SP) (and so on A) defined as follows
for each f E F:

fl(SP)( [ils. ... [ftJ.) = f f(tl,..., tm,) ]_:f n T" (3)

for all tuples t, .... , t of ground C-term, of appropriate sorts provided the right-
hand side is not empty, otherwise fl(SP) is undefined on the arguments. Moreover,
the enrichment of I(SP) with FO(SP) forms a partial subalgebro of Tsp,(X.). 0

4 The presence of safe variables in E doesn't change standard algebraic semantics (and
logic) of Sp.

s For the sake of simplicity, we shall identify the predefined algebra A with the initial
algebra I(SP) - forgetting about a possible difference between their signatures. 0

-314-

L -- --



An important problem coming from this construction is to characterize syntac-
tically a dcas of basic specifications providing safe-consistent presentations (and so
algebraic semantics) for any functional EDPA.6 The following sufficient condition is
a generalization of our previous results on this topic. 7

Theorem 3. An algebraic presentation SP(X+) + (F, R) of the functional EDPA
(F,R)4 is safe.couasutent if each azxom I = r of SP(X+) satisfies the following
condition: any variable occurring non-linear in I or r is safe. 0

It is worth noting that presentations of this kind (with safe non.niiearet) allow to
use safely inductive equational theorems' of SP for proving theorems about new
functions, because the basic interpretation (3) is consistent with all such equations
valid in the predefined algebra A.

Now we to turn to the safe-completeness property in order to investigate a class
of (safe-consistent) EDPA defining total functions.

3 Safe Completeness and Persistency of EDPA •

A complete EDPA is supposed to define a total basic interpretation F4 (i.e., con-
sisting of total functions fA). Regarding algebraic presentations with safe variables,
one can check that the basic interpretation defined by (3) is total if SP'(X+) is
safe-persistent. Combining this with Theorem 3, we obtain the following corollary
for the class of presentations SP'(X+) with safe non-linearity of functional EDPA:
the basic interpretation Fp(SP) is total iff SP'(X+) is safe-complete.

To go further, one can vary the set of safe variables in SP'(X+) to obtain a
spectrum of restricted congruences -E:R:, models Tsp,(X+), and basic interpretations
FJ(SP). In the extreme case when X+ = 6, the presentation SP' becomes just
a many-sorted enrichment and Def. I yields the usual "unrestricted" or "unsafe" V *
notions of the least congruence =a.+.R, consistency, completeness, and persistency.
In general, =E:R is weaker than =R+R, so consistency implies safe-consistency and
safe-completeness implies completeness, but not vice versa. We have proved the
following facts about the relations between these safe and unsafe properties.

Theorem 4. If the presentation SP'(X+) is safe-persistent, then its unsafe version
SP' (with X+ = 6) is persistent and defines the same (total) basic interpretation
as we first one. In particular case of functional EDPA, safe-completeness of the
presentations with safe non-linearity implies persistency of SP'. l

However, the coverse is not true:

Proposition 5. There ezists a functional EDPA and its (safe-consistent) presenta- 0

tion SP'(X+) with safe non-linearity such that the latter is not safe-complete, but
becomes persistent when X+ = 0. ri

' because any functional euational definition admits well-defined denotational senmantics.
7 cf. Theorems 10, 11 in [3].
5 whose non-linear variables are also safe.

0

-3', -

w,, w,, w., ,, 0 0



0

This mesas that sometimes the safe non-linearity requirement is still too strong and
gives rise to a partial basic interpretation when it could be total - if all the variables
were made unsafe. However, the following proposition demonstrates the opposite
effect: 0

0
Proposition 6. There exists a fmnctional EDPA (F, R)A With a safe-consisutt and
not safe-complete presentation SP'(X+) sucA ctat its unsafe vermon SP, is complete
and inconsistent (so can't provide asn basic interpretation F 4 ). 0

To put another words, junk can be the reason of confusion - if one doesn't protect
somehow basic axioms from it. The results of this paper show that the safe non- 0
linearity condition is sufficient to provide such a protection for functional EDPA,
but still is not always necessary. It is an interesting open problem to find a proper
weakening of the condition which would hold any SP'(X+) safe-persistent whenever
SP' is persistent.

4 Related Work 0

A simple and elegant approach to partial algebras within the usual framework of
many-sorted (total) ones has been suggested in [4] in terms of based specifications.
Our Def. 1 and Prop. 2 would give essentially the same semantics if we restricted
ourselves with only unsafe presentations (with X+ = 0). But this would give rise
to the problem with consistency pointed out in Prop. 6 (cf. also the "instructive 0
example" in [3]).

Algebraic specifications with built-in algebras introduced in [1] are very similar to
EDPA, but their semantics was defined through "completely protected" presenta-
tions SP(X+) with X+ = X (cf. also stratified specifications in [5]). This is another
extreme case which captures only predefined algebras with strict operations and
gives rise to certain problems with completeness (Prop.5). It would be interesting to 0 0
try to extend the term rewriting theory presented in [1] to the more general class of
presentations with safe non-linearity.

References

1. Avenhans J., Becker K.: Conditional rewriting modulo a built-in algebra. Technical 0
report (SEKI Report SR-92-11), 1992, 23p.

2. Antimirov V., Degtyarev A. Consistency of equational enrichments. In A. Voronkov,
editor, Logic Programming and Automated Reasoning. International Conference LPAR
'92. LNCS 624, pp. 393-402, Springer-Verlag, 1992.

3. Antimirov V., Degtyarev A. Semantics and consistency of equational definitions. In
M. Rusinowitch, J.L.Rimy, eds. Conditional Term Rewriting Systems, Third Interna.
tional Workshop, CTRS.g9, Proceedings. LNCS 656, pp. 67-81, Springer-Verlag, 1993.

4. Kreowski H.-J. Partial algebras flow from algebraic specifications. In ICALP'87, Proc.
Int. CoIl. on Automata, Languages, and Programming, LNCS 267, pp. 521-530,
Springer-Verlag, 1987.

5. Smolka J., Nutt W., Goguen J., Meseguer J. Order-sorted equational computation. In
H.Alt-Kai and M.Nivat, editors, Resolution of Equations in Algebraic Structures, pp.
297-367, Academic Press, New-York, 1989.

-316-



An Algebraic Approach to Modeling in
Object-Oriented Software Engineering "

George J. Loegel"
Chinya V. Ravishankar

Electrical Engineering and Computer Science Department 0
University of Michigan

Ann Arbor, Michigan USA

1 Universal Algebras, Model- phase to provide design and implementation infor-

ing and Software Engineer- mation. We show evidence that this paradigm for 0
development as good and useful. Our work develope a

ing general, algebraic model-based implementation tech-
nology. We believe theme step. provide advantages for

Our research uses universal algebras in a model- software engineering and define a viable alternative to
based approach to the software engineering process. present software engineering technology.
We organize the analysis, design and implementas - 0
tion of software systems by combining the paradigms
of mathematical modeling and universal algebras. 2 Mathematical Modeling and
Models based on mathematical modeling principles
and represented using universal algebras provide a the Software Development
practical alternative to both the common, ad ko¢ Process
approaches to the software engineering process and 0
other object-oriented methods. We have used umver- The fundamental principle underlying our work is the
sal algebra models to support the development phases idea of a model in both the epistemological sense of
of the software engineering process. Algebraic models Minsky [Min68] and Naur [Nau85a] and the system
unify many of the current object-oriented p modeling sense of Zeigler [Zei76] and Casti [Ca&89].
as well as defining another paradigni for object- The purpose of a model is to represent information
oriented software engineering. Our results support about a system. The model uses a formal notation 0
using algebraic methods as a foundation for the soft- t represent the information internalized by a pro-
ware engineering process. grunmer about the system. In our case, we use uni-

In this paper, we first describe the similarities be- versal algebras as the formal notation for our model.
tween mathematical modeling and the software engi- We agree with Naur [Nau8,a] that all systems are
neer's task, and then describe how to use these simi- understood by programmers in terms of some inter-
larities to develop s software Men eing procem that nalized model but represented in some externalized, 0
starts with algebraic models of the real-world system. formal notation. As Nanr points out in [Nau86b] and
We define the software engineering process n the re- [Nau89], good notation encourages the internalization
finement of these models. We show how these umver- process The ability of a programmer to answer new
sal algebra models are developed during the analysis questions about the model demonstrates that infor-
phase, refined during the design phase, and used dur- mation has been internalized. We recast the software
ing the implementation phase of a software project. engineering problem as the development and trans- 0
Our models are also used during the maintenance mission of algebraic models with their accompanying

*Cuf Addrm S Super C notation from one group to another.

rMOM, 25so Beddeymemae Avenue, D-n--, TX 75237 USA An important advantage of employing algebraic
.h toq cxI"4ae vic models is the ability to use the theory of modeling

31T-

S-0u m " •sm • " : " " •" ' "f•.'.u,,,m • . '-.., ,- -w W 6 . .. 0.. .. .. .



0

0

as in Zeigler [Zei76] to develop and define terminol- concrete data structures and algorithms. This refine-
ogy and use the theory of universal algebras as in ment is a homomorphic transformation of the anal-
[Meh90] to describe the development process. We ysis model. The implementation phase converts the
use Zeigler's approach for model development as the data structures and algorithms in our design model
starting point for our work. Zeigler defines the model into statements in a programming language. Our en-
building process as a series of fi-e steps: tire process can be characterized in terms of universal

algebra models and the universal algebra gives us a
1. identify the components; uniform notation for each step in the process.

2. identify the interactions between the compo-
nents; 4 Case Studies 0

3. simplify the model; We have used this algebraic approach in several sys-

Sbuild a computer simulation of the model; and tems. The first, described in the 1984 POPL [Mil84],
used an algebraic description of attribute grammars

5. validate the model to generate Pcode from Pascal. We produced a
more compact and understandable description of the S

Zeigler's approach, by focusing on the objects visi- Pascal-to-Pcode translation than the corresponding
ble to the modeler, embodies the fundamental ideas compiler from ETH Zurich [Nor76I. Although the
of object-oriented software engineering. Further, the underlying system, Paulson's Compiler Generator
use of universal algebras to represent the models pro- (PCG) [Pau82a] limited us to a fixed set of primi-
vides us with a notation that is both concise and tives for building the algebra, we were able to de-
flexible enough to describe various software systems. fine domains and operations on those domains. Also, 0 0
Even computer languages like SIMULA67 [Dah72], PCG was a declarative system in that we only speci-
developed for modeling, use the concepts of univer- fled local rules and PCG determined the sequence for
sal algebras to describe abst:iact data types as de- applying those rules. This project showed a means of
fined by the ADJ Group [Gou78] and Zilles [Zil80]. prototyping a language using a direct implementation
The relationship between the theory of modeling and of the algebraically described semantics.
software engineering allows us to unify many of the A second system, the Capture Storage Element 0
model-based object-oriented software engineering ap- (CSE) of the Optical Digital Image Storage System
proaches. (ODISS), showed how we used an algebraic model to

develop a system originally specified using another
notation. ODISS also shows how the objects seen

3 Software Engineering with in the system by the customer are beneficial during
development. That is, the software should reflectUniversal Algebras the way in which the customer perceives the tasks.

We now describe the steps in our algebraic sftw ODISS is a distributed document storage system orig-We nw dscrie te stps n ou alebrac sftwaeinally specified using a data flow diagrams. The CSE
engineering process and then apply these steps to de- p ecifed ingeamdata fow diarms TefCSeveloping a software system. We relate the steps in provided intermediate storage for documents before
our process to the steps in the mathematical model- they were written to optical disk. ODISS was devel-

oped by Systems Development Corporation' to digi- 0ing process and show how we can use the interpre- tize and store Civil War documents for the National
tation of universal models to describe the process at Archives and Records Administration (NARA) of the
each step. United States.

Our initial or analysis model uses the customer's The algebraic model developed for the CSE was
description of the components to produce a system based on documents, unlike the other subsystems in
specification using a universal algebra. Tse's disserta- ODISS which were based on pages. The algebraic •
tion [Tse9l] shows how we can use a diagram to com- description provided the basis for the user documen-
municate with ".e customer and represent all of the tation and the implementation (t 17,000 lines of C).
information in a universal algebra. The design phase During the fifteen months of development and inte-
refines the analysie model by introducing new objects
and using the resources available to determine the 1Now Paramua, a subsidiary of Uniys

30-
-- 318-

,, ., .. -. .. _ .,. 0 0



0

gration, only one integration error occurred due to ing Super Collider (SSC) Laboratory, a high-energy
misunderstanding the notation and only one serious physics project being built near Dallas, Texas. The
error was found after delivery. Further, being able to SSC will be the largest scientific instrument ever
examine the state of documents became a major tool built. The proposed design for the control system
during the integration phase of the project. After de- has much in common with our algebraic models. The
livery, one of the first requests from the user was the GACS will be based on EPICS2 , a control system de-
ability to query document status, and this capability signed at Los Alamos National Laboratory. EPICS
was easily added. has many of the features present in our other mod-

Since C is not object-oriented, the algebraic de- els. For example, the primitive objects in EPICS are
scription became a key reference document during classified based on the type of signal processed (bi-
the development and permitted a ready assessment nary, analog) and the update frequency. This means •
of the state of the implementation. Our experience that physicists using EPICS do not need expertise in
with ODISS shows how an model-based algebraic de- writing device drivers or working with real-time ker-
sign, derived from another notation, for defining the nels. The physicists sees a model of the accelerator
interface and guiding the implementation of a soft- described in terms familiar to the physicists. This is
ware system. analogous to ODISS where &e %rchivist sees a system

The third system we developed was a code opti- that organizes pages as documents which is the same 0
miser for a portable compiler, where we demonstrated way the archivist organizes pages.
how modeling produced a working system faster than EPICS currently provides a control system for
other approaches. This work was done as part of small accelerators throughout the United States. Just
an advanced course in compiler construction. The as in the BCPL optimizer project, the accelerator
class divided into three teams. One team started model provided by EPICS must become more so-
with Peter Bird's CoGG system [Bir82], another team phisticated to support the additional complexities of * 0
used a simple parser-based technique, and we used the SSC. We have proposed the same kind of alge-
modeling and simulation. Each team started with braic modeling approach used in the BCPL optimizer
the portable BCPL compiler [Ric80] which had re- project as a viable means to expand the capabilities
cently been ported to a Motorola 68000 system using of EPICS to meet the requirements of the SSC.
3 simple version of the macro expansion technique These systems show four applications of algebraic
describ.J in Strachey's GPM [Str65]. software engineering, all of which started with a 0

The eCPL complier produces an intermediate code model of the application described using a univer-
(cilied OCODE) for a stack-based virtual machine. sal algebra. Each of these systems used algebraic
The intermediate code changes the code generation descriptions to develop the design and implementa-
problem from one of mapping a high-level language tion,and performed well with respect to various mena-
to machine code into mapping a low-level intermedi- sures.
ate code to machine code. One technique for code 0
generation particularly suited for mapping OCODE References
to a target machine is simulation. We used the sim-
pie code generator as the starting point for our code (Bir82] Bird, P. L. "An Implementation of a Code
generation model and used a universal algebra to de- Generator Specification Language for Table
scribe the simulation process. We used different sig- Driven Code Generators, in Proceedings SIG-
natures for the universal algebra to define different PLAN82 Symposium on Compiler Construc- 0
optimizations. The implementations differed in the tion, ACM SIGPLAN Notices, v. 17, no. 6,
amount of state information carried in objects in the 1982, pp. 44-50
system. Out of the three teams, each of which started
with a working compiler, we were the only ones to [Cas89] Casti, J. Alternate Realities: Mathematical
have a working compiler at the end of the course. Our Models of Nature and Man, Wiley-Interscience,
exploitation of the original code generation model by 1989 0
expanding its simple signature played an important [Dah72] Dahl, O.-J. and Hoare, C. A. R. "Hierar-
part in our success.part n ou sucess.chical Program Structures", in Structured Pro-

Our current work-in-progress is the Global Accel-
erator Control System (GACS) for the Superconduct- 2 Experimental Physics and Industrial Control System



0

0
00

gramming, DahI, O.-J., Dijkstra, E. W. and [Pau82a] Paulson, L. A Compiler Generator for Se-
Hoare, C. A. R., Academic Press, 1972 mantic Grammars, Ph.D. dissertation. Stan-

ford University, 1982
[Gou78] Gougen, J. A. Thatcher, J. W. and Wag- f

ner, E. G. "An Initial Algebra Approach to the [Ric80] Richards, M. and Whitby-Strevens, C. BCPL
Specification, Correctness, and Implementation - The language and its compiler, Cambridge
of Abstract Data Types" in Current 7Yends in University Press, 1980
Programming Methodology IV: Data Structur-
ing, Yeh, R. (ed.), Prentice-Hall, pp. 80-144, [Str65] Strachey, C. "A general purpose macrogener-

1978 ator", The Computer Journal, V. 8 1965, pp.
225-241

[Meh90] Mehlhorn, K. and Tsakaldis, A. "Data
Structures" in Handbook of Theoretical Corn- [Tse9ll Te, T. H. A Unifying Framework for Struc-

puter Science Volume A: Algorithms and Com- tired Analysis and Design Models: An Ap-

plezity (J. van Leeuwen, Editor), Elsevier Sci- proach using Initial Algebra Semantics and

ence Publishers B.V., pp. 300-341, 1990 Category Theory, Cambridge University Press,
1991 0

[Mil84] Milos, D. Pleban, U. and Loegel, G. "Di- [Van89] Van Horebeck, I. and Lewi, J. Algebraic
rect Implementation of compiler specifications, Speifcaio inSor twec e Enganeei, : AgrIc

or: The Pascal P-compiler revisited", Confer- Specification in Software Engineerng : An In-
ence Record of the 11th Annual ACM SIG- troduction, Springer-Verlag, 1989
PLAN/SIGACT Symposium on Principles of [Wei76] Weisenbaum, J. Computer Power and Hu-
Programming Languages, 1984, pp. 196-207 man Reason: From Judgement to Calculation, 0

[Min68] Minaky, M. "Matter, mind and models", W. H. Freeman, 1976

in Semantic Information Processing, M.I.T. (Zei761 Zeigler, B. P. Theory of Modelling land Simr-
Press, 1968 lation, Wiley-Interscience, 1976

[Nau8Sa] Naur, P. "Programming as Theory Build- [Zei9O] Zeigler, B. P. Object-Oriented Simulation
ing", Microprocessing and Microprogramming, with Hierarchical, Modular Models; Intelligent
v. 15, 1985, pp. 253-261 (also in [Nau92]) Agents and Endomorphic Systems, Academic

[Nau85b] Naur, P. "Intuition in Software Develop- Press, 1990

ment" in Formal Methods and Software Devel- [Zil80] Zilles, S. N. "An Introduction to Data Al-
opment, v. 2, Ehrig, H. Floyd, C. Nivat, M and gebras", in Abstract Software Specifications,
Thatcher, J. (eds.), Lecture Notes in Computer Goos, G. and Hartmanis, J. (eds.), Lecture 0

Science 186, pp. 60-79 (also in [Nau92]) Notes in Computer Science no. 86, Springer-

[Nau89] Naur, P. "The Place of Strictly Defined No- Verlag, 1980

tation in Human Insight", in Proceedings of the
Workshop on Programming Logic, Dybjer, P.
Hallnis, L. Nordstr6m, B. Petersson, K. and 0
Smith, M. J. (eds.) Report 54, Progrumming
Methodology Group, University of G6tenborg,
May 1989, pp. 429-423

[Nau92] Naur, P. Computing: A Human Activity,
Addison-Wesley, 1992 0

(Nor76] Nori, K. V., Ammann, U., Jensen, K.,
Nageli, H. H., Jacobi, C. The Pascal (P)-
Compiler : Implementation Notes (Revised
Edition), ETH Zurich, Institut fur Informatik,
1976 0

320-

.,.



An Automated Proof of the Correctness of a
Compiling Specification

E.A. Scott, Mathematics and Computational Sciences, University of Surrey, U.K.

In this paper we discuss an automated proof of the correctness of a compiler. The source language

for the compiler is PL0 [81, a subset of OCCAN2 15]. The target language, MLO, is based on the machine

language for the transputer [6]. Since the early work of Cohn [2] in the LCF system, compiler proofs

have attracted a lot of attention as test cases for automated theorem provers, see for example [11] and

1121. Recently Broy III has used the Larch Theorem Prover to verify a code generator for a functional
language. Our work differs from earlier studies in that we start with a detailed hand proof of compiler

correctness and attempt to use a theorem prover to verify the proof.

The Languages PLO And MLO

Intuitively, we expect to call a compiler correct if for all programs p, p and its compiled version have the

same meaning. However, to give any kind of formal proof we must first formally define the semantics of

the source and target languages. We use the approach that was developed in [9] and [7]. The basic idea

is to begin by defining an extension PL+ of PL0 . The syntax of PL+ is given in standard BNF fashion.

A refinement relation C is defined on PL+ which captures enough of the semantics of the language to

prove the results. Since PL0 is a subset of PL+ its semantics are inherited directly. The key aspect of

this approach to compiler correctness, which was developed in [4], is that the necessary properties of

the semantics of MLo are also defined in terms of PL+. There is given a function I from ML 0 to PL+,

and the meaning of process m in the language is defined to be the meaning of I(m) in PL0. This allows

a direct comparison of the meanings of elements of PLO and ML 0 . 0

The function I is the composition of two functions rntrans and Interp. The function rattans takes

MLO instructions and translates them into transputer code. The function Interp takes lists of transputer

code and returns PL+ processes.

PLO C MLoln traaputer 0
code

identity 
Interp

The main objection to this approach states that the semantics of a machine language cannot be

defined in this way because there will be a prescribed semantics given naturally by the induced machine

behaviour. In [71 this issue is not addressed, it is assumed that the semantics are defined by PL+.

If we were to begin with prescribed semantics for MLO it would be necessary to prove the properties

which in this work are defined by the function I, i.e. we would have to prove the correctness of I. This 0

should be possible provided that the prescribed semantics are sufficiently explicit, for the properties

assumed in this work are all explicitly stated in the LP specification of PL+. An alternative approach

is to consider the interpretation I as providing a specification for the target language. Then we have
(partial) specifications for source languages, target languages and compilers together with a proof that

the compiling specification is correct for all languages satisfying the language specifications. As the aim 0

of our work is to study the automation of the proofs given in [7], we shall take this view.

0

-3Z1-

w - w ... 0 *



0

An advantage of the refinement relation approach is that proofs carried out are valid for any

language which has the properties described by C-. Thus if PLO, and hence PL+, are later extended to

richer languages the proofs discussed in this work will remain valid provided the properties required for

the proofs still hold. Thus it is important that all the properties used in the proofs are explicitly stated

so that it is clear what must be preserved in future extensions.

Compiler Correctness

For a given compiler C we cannot expect to be able to prove that p and J(C(p)) are equal. The compiled

version of a program will contain identifiers, corresponding to things such as the program pointer and

error flag, for which there will be no analogous identifiers in the original program. Thus we have to

consider a PL+ process Qp that renanmes the identifiers in I(C(p)) and ends the scope of those identifiers

introduced for machine purposes. It is reasonable to assert that SEQ(Q,, p) has the same meaning as

p, where SEQ is concatenation of PL+ processes. Thus we formally define a compiler C to be correct 0
if, for all PLO processes p, we have that

SEQ(Qp,p) C_ SEQ(I(C(p)),Qp).

In [7] there are given sets of conditions 4 on ML0 programs, and theorems of the form

If m satisfies Cp then SEQ(Q,,p) C SEQ(I(m),Qp).

The theorems show that for a correct compiler C it is sufficient to take C(p) be any sequence of code

m which satisfies Cp. Thus the set of all the 4 can be thought of as a compiling specification and the

theorems prove that this specification is correct. These theorems are proved by hand in [7]. This work

is an attempt to give automated proofs. The theorem prover used is the Larch Prover (LP) [3].

Automating The Proofs 0 0
When automating an existing hand proof there are two aspects to be considered:

(i) Can the system in which the proof is to be carried out be specified in the logic of the theorem

prover?

(ii) Are the proof techniques of the theorem prover able to prove the results? 0
In this study (i) is equivalent to 'can we specify PL+ in the logic of LP?' Answering this question

turned out to be a major project in its own right, see [10]. In this paper we concentrate on (ii), using

LP to prove the theorems within the specification of PL+ which was developed in [10].

It is our experience that if a system can be specified in the logic of LP but an original hand proof

cannot be reproduced using LP then this is because the original proof contained mistakes. There are

two kinds of mistakes: those that can be corrected and those that cannot. A mistake is correctable if

there exits a correct proof the result and uncorrectable if the result can not be proved. In the case of

correctable mistakes we have been able to find a correct proof using the theorem prover. Uncorrectable

mistakes can arise in two ways: either a misunderstanding of an implicit assumption led to the mistaken •

belief that a result should be true, or the original specification does not have the properties that were

intended. In the first case once the misunderstandings were identified we were able to produce revised,

provable versions of the results. In the second case the specification was modified to allow the proof of

the results. Such modifications usually involved 'tightening up' implicit assumptions.

We have automated proofs of the correctness theorems for SKIP, STOP, assignment and the oper-

ator SEQ, together with the correctness of expression compilation for identifiers, integers and sums of



expressions. We have not proved all the correctness theorems, they are not all proved in 17], however we

have proved a sufficiently wide range to show that all the theorems could be proved by LP if the effort

were considered to be worthwhile.

The Larch Theorem Prover

The Larch Prover is an equational reasoning theorem prover developed at MIT by S. Garland and J.

Guttag [3]. It is intended primarily as an interactive proof assistant or debugger, and it is in this

capacity that we have used it. LP is a theorem prover for a subset of multisorted first-order logic with

equality. Equations are asserted by the user then ordered by LP into a rewrite system which can be

used to prove other equations. The logic also contains deduction rules, statements of the form

When [(FORALL zl, .. ., z.)] (hypotheses) Yield (conclusions)

where zi are variables, and where (hypotheses) and (conclusions) are sequences of equations. A specifi-

cation in the LP logic can be axiomatized with induction rules. The statement

assert sort generated by operators

ensures that the only elements of sort are those that can be constructed using the specified operators.

Results are proved by term rewriting; the rules are used to simplify both sides of an equation until

a known equality is obtained. LP also supports proofs by induction, cases, and contradiction, and 0

equations can be proved by performing critical pair calculations. See [3] for a full description of LP.

Results

As a consequence of the attempt to automate the proofs we discovered both correctable and uncorrectable

mistakes. In the case of correctable mistakes the proofs were easily modified and we only mention these 0 0
in passing. The discovery of uncorrectable mistakes lead to the need to modify both the specification

of PL+ and the formal definition of complier correctness to allow the results to be proved.

Modifications to the specification of PL+ were necessary because there were not enough laws given

in the original specification to prove the theorems. In particular we have had to add extra propertie,

to the specification of identifiers and assignment, and we have had to give a more precise definition

of the function Interp. The addition of extra properties is not a serious problem because the original

specification was never intended to be complete. Rather it was just meant to be detailed enough to allow

the proofs of the theorems, see [7]. So we merely added the necessary extra laws to the specification.

The problems with the definition of Interp were correctable errors in the above sense. Essentially all 0

that was involved was the addition of some assignments which ensured that the proofs followed from

the specific laws stated and did not rely on any implicit assumptions.

A more serious problem was that the definition of the correctness of expression compilation given

in [71 could never be satisfied by any compiler. This is an example of a mistake where the incorrect-

ness of the result was unnoticed because some assumptions about the original specification were only

made implicitly. Once these assumptions were identified we were able to reformulate the definition of

correctness so that the result was true.

We also found that the theorems in [7] were not sufficient to prove that C(p) would be correct for

all p. The argument that the theorems prove the correctness is an inductive one: (7 (p) is proved to

be correct for all basic processes p, and then complex processes are dealt with under the assumption

3U0



0

that all subprocesa are known to be correct. For example, C(SEQ(p, q)) is proved correct under the

assumption that C(p) and C(q) are known to be correct. However, when r = SEQ(p, q), we need

SEQ(Q,,p) C SEQ(I(m),Q,)

to prove that C(r) = m is correct. Thus we needed to prove stronger theorems of the form:

If m satisfies C4 then SEQ(Q,,p) C SEQ(I(m), Q,), for any process r that has p as a subprocess.

After correcting these and other minor errors, we were able to use LP to produce automated proofs

of the specification theorems.

The pragmatic conclusions that can be drawn from this work are that the (modified) compiler

specification is correct, and that there already exist automated theorem provers capable of showing this.

Furthermore, the compiling specification was developed independently of the automation, so this is a

good test of the capabilities of the theorem prover used. However, perhaps the most powerful conclusion

to be drawn from this study is the importance of automated theorem provers in the detection of mistakes 0
in implicit aspects of a hand proof. It is in the implicit assumptions of a hand proof that errors most

often occur and remain undetected (by human checkers). Automated proofs require implicit aspects to

be made explicit thus exposing such errors.

References

1. M.Broy, Experiences with machine supported software and system specification& and verification using

LP, the Larch proof assistant, preprint, October 1992.

2. A.Cohn, Machine assisted proofs of recursion implementation, Ph.D. Thesis, Dept. of Comp. Sci.,

University of Edinburgh, 1979. * *
3. S.J.Garland, J.V.Guttag, An overview of LP, the Larch Prover, In: N. Dershowitz, ed, Proc. 3rd

International Conf. Rewriting Techniques And Applications, Lecture Notes In Computing Science 355

137-151, Springer-Verlag, 1989.

4. C.A.R. Hoare, He Jifeng, Refinement algebra proves correctness of compilation, preprint, 1990.

5. INMOS Ltd, Occam 2 reference manual, Series In Computing Science, Prentice-Hall, 1988.

6. INMOS Ltd, Transputer instruction set: a compiler writers guide, Prentice-Hall, 1988.

7. He Jifeng, P. Pandya, J. Bowen, Compiling specification for ProCos level 0 language, Procos Technical

Report [OU HJF 4], 1990.

8. H.H. Lovengreen, K.M. Jensen, Definition of the ProCoS programming language level 0, Procos

Technical Report [ID/DTH HHI 2], 1989.

9. A.W. Roscoe, C.A.R. Hoare, The laws of occam programming, Theoretical Computer Science 60,

177-229, 1988.

10. E.A. Scott, K.J.Norrie, A study of PL+ using the Larch Prover, to appear in: Proceedings of the

1st International Workshop on Larch, Workshops in Computer Science Series, Springer, 1993.

11. D. Weber-Wulff, Proof movie, Proving the Add-Assign Compiler with the Boyer-Moore Prover, to

appear in: Formal Aspects Of Computing.

12. W.D.Young, A mechanically verified code generator, Journal of Automated Reasoning, 5, 1989.

0I

--3Z4- w



.U)

System Demonstrations

AMAST'93

Third International Conference
on 0

Algebraic Methodology and Software Technology

University of Twente * *

The Netherlands

* 4

Participants' Proceedings

-a 0-



0
*7�

S

4

0

0

0

* 0

6

0

S

0

0

-326-

- w e C w 0 0 0 0



m

RELVIEW - A Computer System For
the Manipulation of Relations

Rudolf Berghammer and Gunther Schmidt 0
Fakultit fir Informatik, Universitit der Bundeswehr Miinchen 0

Werner-Heisenberg-Weg 39, D-85577 Neubiberg

People working with relations (e.g., in the theory of partial orderings, lattice theory, or graph
theory) very often a use greater or smaller example and manipulate it with pencil and paper
in order to prove or disprove some property. For supporting such a task by machine (and also 0
since manipulation by hand is no more feasible with bigger examples), the RELVIEW system
([Berghammer Schmidt 91]) has been constructed at the Bundeswehr-University at Munich. The
system is written in C and is currently available for Sun workstations with American National
Standard C and Sunview 4.0.

RELVIEW is a totally interactive and completely video-oriented computer system for the 0
manipulation of concrete relations which are considered as Boolean matrices. Its screen is
divided into two parts. The left part is the drawing-window; here matrices can be drawn and
manipulated using a mouse. The right part contains the command buttons and the scrollbars.
The scrollbars can be used for showing a part of a relation the size of which exceeds the maximal
window size. Also textual input (e.g., dimensions or names of relations) and output (e.g., results •
of tests, error messages) is requested and shown, respectively, in this part.

One relation, the so-called working copy, is displayed on the screen for editing. A whole
collection of relations can be kept in the working memory during a working session. Such a
collection may also be saved on permanent memory, e.g., on a hard disk. If a stored relation
from the memory is displayed into the drawing-window for editing, a duplicate working copy is
created. Editing with the mouse does only affect the working copy and thus does not change S 0
the original. To overwrite the original by the working copy, a specific RELVIEW command has
to be used.

Execution of system commands is possible by clicking on command buttons. If a command
requires arguments, then execution starts not before the last argument is given. Thus, if the
user inadvertently has chosen a wrong button, undo consists in choosing the correct button - 0
provided the argument input has not been finished. Besides some management commands, first,
the system provides commands implementing the basic operations on relations. Furthermore,
we have commands for residuals, quotients, and closures, for certain tests on relations, and
commands which implement the operations important in relation-algebraic domain description
(compare [Berghammer et al. 89, Zierer 91]). And, finally, RELVIEW allows the user to define 0
and apply its own functionals on relations, where in the case of a unary functional with identical
domain and range also repeated application is possible. A useful fact in applications is that
the latter command can be used to compute fixpoint of monotone functionals. For instance, if
the homogeneous relation I is contained in the working memory and one declares a RELVIEW
functional i

initia -(a, -%

where % stands ior the variable, * means multiplication, and - means negation, then a repeated
application of this functional to the empty vector yields the vector of the points from which
only paths of finite length emerge. (Compare the definition of the initial part of a graph in
[Schmidt Str6hlein 89], Section 6.3.) 0

A detailed description of how to draw on the drawing-window, how to use the scrollbars,
and how to execute a command (inclusive parameter passing and result delivery) is given in
[Abold-Thalmann et al. 89] and [Berghammer 92]. The first report also presents some imple-
mentation details, e.g., the internal representation of relations, and outlines fast algorithms
for computing products, symmetric quotients, and residuals of relations. In the second report,

3V0



also an example for prototyping using RELVIEW is presented, viz. the computation of the cut 0
completion of a partially ordered set.

In the meantime, a lot of other studies have been performed with the RELVIEW system
including further graph- and order-theoretic questions resp. algorithms, DAG-languages, domain
constructions, relational specifications, and relational semantics. Of course, computation with 0
RELVIEW is limited in space and time. The limit, however, depends heavily on the type of 0
problem handled. As an example, we mention again the computation of the initial part. On our
installation (SUN SPARCstation 10), we have treated, e.g., graphs with up to 5 000 points.

Let us dose with a few remarks on further developments on RELVIEW. It turns out that
the system is a good tool for the interactive manipulation of relations. However, experience has
shown that for some tasks certain additional features will be very helpful. A main improvement 0
is possible in the layout. The present Boolean matrix visualization of relations is well-suited for
many tasks, in particular, if the intention is to get insight into an "abstract" relational problem.
However, if the system is used to solve concrete problems on graphs or related structures by
relational methods, then it seems better to visualize homogeneous relations as directed graphs.
Therefore, for the future we plan the incorporation of commands realizing a transition between
Boolean matrices and graphs. Especially, it should be possible to edit a relation as a graph. For
a visualization of results, furthermore, the user should be given the option to display a relation
on the screen as a directed graph and to emphasize a specific subset of the nodes described by
a vector.

Besides this main extension, we plan also some minor extensions of RELVIEW. E.g., we
are concerned with interfaces to other systems. The ability for producing scientific papers on
relations which mix text and drawings of Boolean matrices and graphs, respectively, can be
obtained by interfacing the RELVIEW system with some typesetting systems. Furthermore, an
interface to the relational formula manipulation system and proof checker RALF (also developed
at Bundeswehr-University Munich [Brethaner 91]) is planned.

References

[Abold-Thalmamn et al. 89] Abold-Thalmann H., Berghammer R., Schmidt G.: Manipulation
of concrete relations: The RELVIEW-system. Report Nr. 8905, Fakultat fir Informatik,
Universitit der Bundeswehr Miinchen (1989)

[Berghammer 92] Berghammer R.: Computing the cut completion of a partially ordered set -
An example for the use of the RELVIEW-system. Report Nr. 9205, Fakult&t fuir Informatik,
Universitit der Bundeswehr Minchen (1992)

[Berghammer Schmidt 91] Berghammer, R., Schmidt, G.: The RELVIEW-system. In: Choffrut 0
C., Jantzen M. (eds.): Proc. STACS '91, LNCS 480, Springer, 535-536 (1991)

[Berghammer et al. 89] Berghammer R., Schmidt G., Zierer H.: Symmetric quotients and do-
main constructions. Inform. Proc. Letters 33, 3, 163-168 (1989/90)

[Brethauer 91] Brethauer R.: Ein Formelmanipulationssystem zur computergestuitzten Beweis-
fiihrung in der Relationenalgebra. Diplomarbeit, Fakultit fir Informatik, Universitit der
Bundeswehr Miinchen (1991)

[Schmidt Str6hlein 89] Schmidt G., Str1hlein T.: Relationen und Graphen. Springer (1989);
English version: Relations and graphs. Discrete Mathematics for Computer Scientists,
EATCS Monographs on Comput. Sci., Springer (1993)

[Zierer 91] Zierer H.: Relation algebraic domain constructions. Theoret. Comput. Sci. 87, 163-
188 (1991)

- 3Z3 -



v

@

Towards an Integrated Environment for Concurrent programs

Development
(Proposal for a Demonstration)

Naima BROWN and Dominique MERY•
CRIN-CNRS & INRIA Lorraine, BP 239
54506 Vandwuvre-16s-Nancy, France.

FAX: 33 83 41 30 79.
email: brownOloria.fr, meryOloria.fr

Formal methods comprise two aspects, namely formal specijcation and verified design. The
methodolgy underlying these methods is first to specify precisely the behaviour of a piece of
software, then to write this software and finally to prove whether or not that actual Implemen-
tation meets its specification. This final aspect of formal methods Is known as verified desinw.
Unity [CM88, M02, KnaD0], as the actio systems approach [BS91), is a formal method that
attempts to decouple a program from its implementation. Therefore, Unity separates logical
behaviour from implementation, provides predicates for specifications, and proof rules to derive
specifications directly from the program text. This type of proof strategy is often clearer and
more succinct than arguing about a program's operational behaviour.

Our research fits into Unity's methodology. Its aim is to develop a proof environment suitable 0 0
for mechanical proof of concurrent programs [BM93]. This proof is based on Unity [CM88], and
may be used to specify and verify both safety and liveness properties. Our verification method
is based on theorem proving, so that an axiomatization of the operational semantics is needed.
We use Dijkstra's wp-calculus to formalise the Unity logic, so we can always derive a sound
relationship between the operational semantics of a given Unity specification and the axiomatic
one from which theorems in our logic will be derived. In a mechanically verified proof, all
proof steps are validated by a computer program called a theorem prover. Hence, whether a
mechanically verified proof is correct is really a question of whether the theorem prover is sound.
The theorem prover used in our research is B- Tool [CL91c, CL9lb, CL9la]. B provides a platform
for solving the problem specification and correct construction of software systems. It is a flexible
inference engine which forms the basis of a computer-aided system for the formal construction
of provably correct software. Using a mechanized theorem prover to validate a proof presents
an additional burden for the use, since machine validated proofs ae longer and more difficult
to produce. However, if one trusts the theorem prover, one may then focus attention on the
specification that was proved. This analysis may be facilitated by consulting the mechanized
proof script.

The design of the programming environment consists in several steps that are either auto-
matic, or semi-automatic (Figure 1). The first step consists in writing a MsTAL specification of
the Unity language. This specification defines the concrete syntax, the abstract syntax and the
rules of trees formation that express the correspondence between abstract and concrete syntax.
The MwrU.-PTIL generates tables and programs used to generate a parser from this specification.
The generation of a parser is not completely automatic and the user has to supply some files
names along with those generated by MaTAL-PnnL. The semantics of the language is handled by
the TypoL environment. The second step writes the PwmL specification of correctness the rules
of textual representation (or unparsing) for the Unity formalism from its abstract syntax. The
unparser for the Unity formalism is generated using the compile command of the M&TAL-PPML

"on sabbatical leave at the department of Computing Science University of Stirling under the European
Science Exchange Programmne Royal Society - CNRS

Tt1i division is taken from Jones (Systematic Software Development Using VDM, 1990)

30 -



0

mU let oft@aitma

Figure 1 The Proof Environment

NO

environment. The Unit environment comprises two kin"s of editors: textual and structural.
The user can easily write a Unity program in a textual form. A parser checks it. If the program
is syntactically correct, the parser generates the internal representation. The user can run an
interface to the theorem prover that allows him to prove the correctness of the Unity program
using the set of its actions (statements). The interface ensures the interaction between the Unit
environment and the proof system implemented under B. The interface operates on the internal
representation.

The prover is designed according to the enrichment pwnciple. A basic layer represents the
Dijktrn's wp-calculus [DiQ76]. This is success aively enriched with other theories for reasoning
on Unity programs. To wip-theor, we have supplied another layer for derivingsafety properties
which we denote by unesthy. Ensures-thy and leads-to-thy define the most interesting progress •
propertie (Figure 2)_

eas oh e-to:ty: 3 toory eflalaq

Figure 1: t he Proof E Svromete

0

Kenvionmet.Th AUntote tenorempoig onmetorriestokndy, ofpdrogrs: textuiaiand strucual.sc

T usean, eaily, wrTel at or. A r checsinMg the Betrofwits actions (aMe .ts). T iro fa En suresnm te intea ctonbtwe te Unt

environ entadithe proof Syeimpleimene uprnder Ve.lThe intefac To peresr onteitra
repres ent atio.J.R. Woo s.

Th prover isMdesigned acnrding. toothe , editos R nment Worshop. A ba e rprenter-

Dkstra's N.cal owanduu y [D19. Tirs AS succEssiv onrichep dn Cowt uroertheoi freamso.In
on U .progrmsiTgs •MEor yweosiav Sppiner aner layer fo appe pro

w Ich we de otegyanls-h.Ew -ly and J..LWoccenditorts, 4dRefinemeth mostitresting Sprongeres-
pro erties (Figure y 2). C-A ,WrsosinCmuig

330d-t

-~ by hey a .m



[CL91aJ BP Innovation Centre and Edinburgh Portable Compilers Ltd. B-Tool Ver- 0
sionl.1, Reference Manu4 1991.

[CL91b] BP Innovation Centre and Edinburgh Portable Compilers Ltd. B-Tool Ver-
sioul.I, Tutoria4, 1991.

[CL91c] BP Innovation Centre and Edinburgh Portable Compilers Ltd. B-Tool Ver-
sionl.1, User ManuAl, 1991. 0

[CM88] K.M. Chandy and J. Misra. Parallel Program Design A Foundation. Addison-
Wesley Publishing Company, 1988. ISBN 0-201-05866-9.

[Dij76] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976. 0
[Kna&O] E. Knapp. An Exercise in the Formal Derivation of Parallel Programs: Maxi-

mum Flows in Graphs. Transactions On Programming Languages and Systems,
12(2):203-223, 1990.

(MO2] D. M6ry. The \nl System as a Development System for Concurrent Programs:
6\n. tea, 94(2):311 - 334, march 1992. 0

3-- I*



0

0

0

0

* 0

0

S

S

0

S

-33Z-

- - - - - 0 0



The ASF+SDF Meta-environment

A. van Deursen, T.B. Dinesh, and E A. van der Meulen 0

CWI - P.O. Box 4079, 1009 AB Amsterdam, Thke Nether ads.

Email: {ake,dinesxh,emma} Ocwina

System Demonstration AMAST'93 •

Introduction In addition to facilitating formal reasoning about software, algebraic spec-
ifications provide means for rapid prototyping [1]. In particular, this can be applied to
specifications of various aspects of programming languages, thus obtaining tools that can
be part of a programming environment for the language specified. In Amsterdam, at CWI
and UvA, the GIPE' group has been studying these topics. Thus far, this has resulted in:

"* An algebraic specification formalism, ASF+SDF, especially designed for defining the
syntax and semantics of programming languages [1, 4];

"* The ASF+SDF tool generator, deriving parsers and term rewriting machines from
algebraic specifications [5];

"* The ASF.SDF Meta-environment, giving support when developing ASF+SDF spec-
ifications [5]

The ASF.SDF formalism and system are especially designed to support easy spec-
ification of all relevant properties of programming languages: syntax, static semantics,
dynamic semantics, transformations, and so on.

The ASF+SDF Formalism The ASF+SDF formalism is the result of the "marriage"
of ASF [1] with SDF [4]. ASF is an Algebraic Specification Formalism, supporting many- 0

sorted first-order signatures, (conditional) equations, and modularization. SDF is a Syntax
Definition Formalism, defining lexical, concrete, and abstract syntax all at once. Each SDF
rule corresponds both to a context-free grammar production, and a function declaration
in a signature.

The ASF÷SDF System Prom an SDF definition, a parser can be derived, which in turn
can be used to derive a syntax-directed editor. The equations of an ASF+SDF module can
be executed as term rewriting systems. Both the parsers and the term rewriting systems
are generated incrementally, so small updates in the specifications lead to adaptations
rather than regenerations from scratch.

'Partial support has been received from the European Communitim under ESPRIT project 217T (Gen-

eration of Interactive Progrpmmi- Environments II - GIPE I1) and from the Netherlands Organization

for Sientific Research - NWO, project Incremental Program Generetora

-,333..



The ASF+SDF system and formalism have been used succesfully for the derivation of 0
environments for (subsets of) A-calculus,Eiffel, Action Semantics, modelling of financial
products, Pascal, Lotos and so on. k)

Current Research Current research activities include incremental rewriting (small
changes in the initial term cause adaptations of the normal form rather than recomputa- 0
tion from scratch) [7]; origin tracking (automatically maintaining relations between initial
term and normal form, with applications to the generation of error handlers and run-time
animators from specifications of static or dynamic semantics of programming languages)
[21; generation of C-code from algebraic specifications; customizable user-interface for gen-
erated environments [6]; and experiments with the use of an abstract-interpretation style 0
for specifictaion and generation of type checkers [31.

More Information More information on the ASF.SDF system can be obtained by
anonymous ftp: get file abstracts.ps.Z from ftp.cwi.nl in directory pub/gipe.

References

[1] BEIGSTILA, J., HEEKING, J., AND KLINT, P., Eds. Algebraic Specification. ACM
Press Frontier Series. The ACM Press in co-operation with Addison-Wesley, 1989.

[2] DEURSEN, A. v., KLINT, P., AND Tip, F. Origin tracking. Tech. Rep. CS-119230, • 0
Centrum voor Wiskunde en Informatica (CWI), Amsterdam, 1992. To appear in the
Journal of Symbolic Computation, special issue on Automatic Programming, 1993.
Available by ftp from ftp.cwi.nl:/pub/gipe.

[3] DINESH, T. Type checking revisited: Modular error handling. Tech. Rep. CS-R93xx,
Centrum voor Wiskunde en Informatica (CWI), Amsterdam, 1993. To appear.

[4] HEERING, J., HENDIIKS, P., KLINT, P., AND REKERS, J. The syntax definition
formalism SDF - reference manual. SIGPLAN Notices 24, 11 (1989), 43-75.

[5] KLINT, P. A meta-environment for generating programming environments. ACM
7Tunsactions on Software Engineering Methodology 2, 2 (1993). To appear. Prelimi- 0

nary version in J.A. Bergstra and L.M.G. Feijs, editors, Proceedings of the METEOR
workshop on Methods Based on Formal Specification, LNCS 490, 1991.

[6] KooIN, J. Connecting semantic tools to a syntax-directed user-interface. Report
P9222, Programming Research Group, University of Amsterdam, 1992.

[7] MEULEN, E. V. D. Deriving incremental implementations from algebraic specifica-
tions. Report CS-R9072, Centrum voor Wiskunde en Informatica (CWI), Amsterdam,
1990. Extended abstract in M. Nivat, C. Rattray, T. lus and G. Scollo, editors, Alge-
braic Methodology and Software Technology (AMAST'D1), Workshops in Computing,
Springer-Verlag, London (1992) 277-286. 0

-34-



0

Executing Action Semantic Descriptions using ASF+SDF

Arie van Deursen
C%7 - P.O. Box 407V, 1009 AB Amsterdam, The Netherlands

Email: arke~cwial

Peter D. Mosses
Computer Science Department, Aarkas Uaivewiy DK-8000 Aarhas C, Denmark

Emaik pmmdm.&aan.dk

System Demonstration AMAST'93

0

Introduction Action Semantics is a framework for describing the semantics of progra i
languages [Mor92]. It is based on:

"* Action Notation, used for expressing so-called actions, which represent the semantics of ,
programming constructs; and

", Unified Algebra, used for specifying the data processed by actions, as well as for defining
the abstract syntax and semantic functions for particular programming languages, and the
symbols used in Action Notation.

CIuently, only little tool support for action semantics exists. Tool support, however, becomes 0

more and more important, now that an increasing number of researchers and practitioners
start using action semantics. Having simple tools that perform parsing, editing, checking or
interpretation of action semantic descriptions is essential when writing large specifications.

In order to obtain these tools, the ASF*SDF 1 [BHK89, Kli93] approach to tool generation
from algebraic specifications of programming languages came to mind. The syntax of a language d
is described using the Syntax Definition Formalism SDF, which defines context-free syntax and
signature at the same time. Functions operating on terms over such a signature are defined using
(conditional) equations. Typical functions describe type checking, interpreting, compiling, etc.
of programs. These functions are executed by interpreting the algebraic specifications as term
rewriting systems. Moreover, from SDF definitions parsers can be generated, which in turn are
used for the generation of syntax-directed editors2.

The MetaNotation Unified Algebra definitions are written in the MetiNotation. A syntax
of the MetaNotation has been given in AMos9D Appendix F], which we have transformed into
an SDF definition. Although the MetaNotation supports a great deal of syntactic freedom, a
context-free grammar could be given by choosing a liberal syntax for symbols and terms. This
automatically resulted in a generated syntax-directed editor for the MetaNotation.

'ASF÷SDF n. am abbreviatios for AIgebtrak Specifcation Formalism + Syntax Ddntiona Formalism
2Dminm AMAST'93, a separate demoastration of ASF+SDF is gim as wed [DDM].

3U0

-335-



0

Checking MetaNotation Modules In the MetaNotation, symbols can be introduced and
given functionalities, and then be used in formulae (equations). With the ASF.SDF parser
generator at hand, an easy way to check consistency between definition and use, is to derive
SDF rules from functionality declarations, and to use these rules to try to parse the formulae.
Thus we have written, in ASF÷SDF, a translator taking a MetaNotation module as input and
producing SDF rules from each functionality declaration in that module.

Executing MetaNotation Modules Though the formulae allowed in the MetaNotation can
be very general, a substantial number of equations in it (in particular, the equations defining
semantic functions) can be interpreted as rewrite rules. Thus, we have written a translation
function in the ASF*SDF formalism, taking a MetaNotation module as input and producing
ASF equations.

Tool Summary In summary, we have given algebraic specifications of(1) the abstract syntax
of the MetaNotation, (2) a function translating MetaNotation function declarations to many-
sorted signatures, and (3) a function mapping MetaNotation equations to rewrite rules. Using
the ASF.SDF Meta-environment to execute these specifications has resulted in the following
tools:

"* Parsing and syntax-directed editing of MetaNotation descriptions; 0 0

"* Checks on use of sorts for functions introduced in MetaNotation descriptions;

"* Translation of MetaNotation modules to corresponding ASF+SDF modules, allowing, e.g.,
execution of MetaNotation descriptions as term rewriting systems, as well as generation
of parsers from grammar definitions given in MetaNotation. 0

In the demonstration, we will illustrate the use of these tools by showing the action semantic
description of a small imperative language called Pico. We will see syntax-directed editing of
this definition, incremental generation of ASF*SDF modules from it, syntax-directed editing
of Pico programs based on the generated SDF definition, and translation of Pico programs to
ActionNotation by interpreting the semantic equations as rewrite rules. 0

References

[BHK89] J.A. Bergatra, J. Heering, and P. Klint, editors. Algebraic Specification. ACM Press
Frontier Series. The ACM Press in co-operation with Addison-Wesley, 1989. 0

[DDM] A. van Deursen, T.B. Dinesh, and E.A. van der Meulen. The ASF+SDF meta-
environment. System Demonstration AMAST'93.

[Kli93] P. IMint. A meta-environment for generating programming environments. ACM 2Tans-
actions on Software Engineering Methodolog, 2(2), 1993. 0

[Moe921 P.D. Mosses. Action Semantics, volume 26 of Cambridge Tvucts in Theoretical Com-
puter Science. Cambridge University Press, 1992.

-



0

The LOTOS Toolbox

Thony van der Vloedt
Information Technology Architecture B. V.

Institutentoeg 1
7521 PH Enschede
The Netherlands

Phone: +31 53 309682
Far: +31 53 309669

email: vdloedt~ita.nl

The LOTOS toolbox is a coherent set of tools in support of the ISO standard 0
(8807) Formal Description Technique LOTOS. This language is theoretically
based on process algebra. For data typing the Abstract Data Type language
ACT-ONE is used. LOTOS finds it main application in the area of distiibuted
systems and data communications.

One of the initial goals of the language was to be able to specify in a precise, yet
implementation free way, the OSI data communication standard services and
protocols. Currently, for many OSI standards related Working Papers exist in
which the protocol or service is formally specified in LOTOS.

LOTOS can also be utilized to aid in the design of distributed systems. The * *
advantages of usage of LOTOS in design include increased precision in the com-
munication between designers mutually, and between designers and future users
of the system, improved quality of the system through tool supported validation
and testing, and animation and prototyping allowing early assessment of the
system to be built.

Tool overview

The LOTOS toolbox contains a number of cooperating tools supporting the
specification and implementation of LOTOS specifications. The toolset includes
the following tools:

" the TOPO front-end syntax checking and static semantic checking, 0
This tools produces a LOTOS specification in Common Representation
(CR) format which is used as input by other tools,

" the structure editor CRIE
The structure editor guides the user in the correct use of LOTOS and
provides syntax and static semantic checking on the fly. It also produces
CR format specifications.

" the system validator SMILE,
provides symbolic execution of LOTOS. SMILE allows the user to dynam-
ically analyse the behaviour of his specification (CR format) by stepping
through allowable events,

"* the graphical browser GLOW,

- 33?-



I®

transforms a textual LOTOS speciication (CR format) in a graphical 0
representation according to the graphical LOTOS standard, ,

. the TOPO back-end C-code generator,
"compiles" an implementation oriented LOTOS specification into a pro-
totype which can be used for early evaluation of the designed system

Available platforms:

Sun 3,Sun 4, SunOS 16Mb memory, 35 Mb disk
HP, HP Unix, 16Mb memory, 35Mb disk

The tools are commercially available.

-- * 0


