AD-A281 237
JLUNT

03
5 e

Particlpants’
Proceedings
ot the

ALGEBRAIC .
METHODOLOGY
AND ELECTE
SOFTWARE .
TECHNOLOGY J”L";”%‘
June 21 - 25, 1993
WeoeTTSTIORE 7 94-20665 T
B st IR

University of Twente
Enschede, The Netherlands #

WINRIA

DTIC QUALYYY ¢ TED 3

947 6 093) "

Mathermatics well-apphed #urminates rather than confuses

- - - - - - - ® @ ‘

Participants’ Proceedings

AMAST’93

Third International Conference
on
Algebraic Methodology and Software Technology

University of Twente
The Netherlands

June 21-25, 1993

Accejion For

NTIS
viic

CRA&I
TAB

Uilam‘.O(h)ced
Justification

m—eteemternan, ..

'\
]
0
5]

EER

By .

Distribution

Dist

Al

Availability Codes

Avail and{or
ial

e ofe @

Organising Committee:
General chairman:
Programme chairman:
Publicity chairman:

Education Day chairman:
Local chairman:

Finance chairman:
Members:

Secretariat:

Programme Committee:
Martin Abadi
Egidio Astesiano
C.-B. Ben-Yelles
Mickel Bidoit
Wim Blok
Chris Brink
Pierre-Luis Curien
Kokichi Futatsugi
Steven Givant

Maurice Nivat
Giuseppe Scollo
Charles Rattray
Teodor Rus

V.S. Alagar
Hans-Jorg Kreowski
Ed Brinksma

Frans van der Avert
Mohammed Bettaz
Christine Choppy
Pierre Deransart
Arthur Fleck

Luigi Logrippo
Michael O’Donnell
Juan Quemada
Ralph Wachter

DEC, Palo Alto, USA

U. Genova, 1

USTHB, Alger, DZ
DMI/LIENS, Paris, F

U. Ilinois, Chicago, USA

U. Cape Town, ZA
DMI/LIENS, Paris, F
EL/CLS, Tokyo, J

Mills College, Oakland, USA

William S. Hatcher U. Laval, Quebec City, CDN

Douglas J. Howe AT&T, Murray Hill, USA
Bjarni Jénsson Vanderbilt U., Nashville, USA
Giancarlo Mauri U. Milano, 1

Ali Mili U. Ottawa, CDN

Invited Speakers: Hajnal Andreka

and Nldiko Sain
Hubert Comon
Rob van Glabbeek
Nicolas Halbwachs
Michael Johnson
Hans-Jorg Kreowski
Giorgio Levi
Roger D. Maddux
David L. Parnas
Jacques Printz
Steve Schneider

University of Paris VII, Paris, F
University of Twente, Enschede, NL

University of Stirling, GB

University of lowa, lowa City, USA
Concordia University, Montreal, CDN

University of Bremen, D

University of Twente, Enschede, NL
University of Twente, Enschede, NL
University of Constantine, DZ
University of Paris-Sud, LRI, Orsay, F

INRIA, Rocquencourt, F

University of lowa, Iowa City, USA
University of Ottawa, Ontario, CDN
University of Chicago, USA

University of Madrid, E

Office of Naval Research, Arlington, USA

Local Committee: Herman Balsters, Han Biumer, Pim van den Broek, Rolf de By,
Maarten Fokkinga, Pim Kars, Mark van de Voort, Job Zwiers

Michael Mislove
Ugo Montanari
Peter D. Mosses
Istvan Németi

Don Pigozzi

Don Sannella

R.K. Shyamasundar
John Staples
Andrzej Tarlecki
Frits Vaandrager
Paulo A.S. Veloso
Eric Wagner
Robert F.C. Walters
Martin Wirsing

Joke Lammerink, Alice Hoogvliet-Haverkate, Charlotte Bijron

Tulane U., New Orleans, USA
U. Pisa, 1

Aarhus U, DK

Acad. Sci., Budapest, H

Jowa State U., Ames, USA

U. Edinburgh, GB

TIFR, Bombay, IND

U. Queensiand, Brisbane, AUS
Acad. Sci., Warsaw, PL
CWI, Amsterdam, NL

PUC, Rio de Janeiro, BR
IBM, Yorktown Heights, USA
U. Sydney, AUS

U. Minchen, D

Math. Inst., Acad. Sci., Budapest, H
LRI, Université de Paris Sud, Orsay, F
Stanford University, USA

INPG, Grenoble, F

Macquarie University, Sydney, AUS
Uuniversity of Bremen, D

University of Pisa, 1

Towa State University, Ames, USA
McMaster University, Ontario, CDN
Cons. Nat. des Arts et Metiers, Paris, F
PRG, Oxford University, GB

e ofs @

Foreword

The first two AMAST conferences, respectively held in May 1989 and May 1991 at the Uni-
versity of [owa, were well received and encouraged the regular organization of further AMAST
conferences on a biennial schedule.

The goal of these conferences is to foster algebraic methodology as a foundation for software
technology, and to show that this can lead to practical mathematical alternatives to the ad-hoc
approaches commonly used in software engineering and development.

While the AMAST goal is mainly research-oriented, the relevance of adequate mathematical
education of software developers is recognized as well. In order to be effective in this direction,
the first day of the third AMAST conference is dedicated to the aforementioned special interest
topic. A summary of the opening talk by Hans-Jorg Kreowski and preliminary versions of the
two invited papers, respectively by David L. Parnas and by Jacques Printz, are included in this
proceedings. Yuri Gurevich and Istvan Németi are in charge of animating and moderating the
discussion on education.

As to the research-oriented contents of the proceedings, these consist of 8 invited papers and
32 extended abstracts of selected communications. The selection was very severe, for a record of
121 submissions were received; besides the selected communications, 14 other submissions were
judged to deserve presentation, but could not be selected because of the programme constraints.

The AMAST goal motivates the interest in showcasing software systems that are developed,
or help development, by algebraic methods, techniques and tools. The AMAST’93 programme
features seven demonstrations of such systems. Short descriptions of these systems form the
closing part of this proceedings.

While the geographical scope of AMAST has rapidly grown to encompass all continents, as
one can see from the contents of this proceedings, the fourth AMAST conference is expected to
be held at Concordia University, Montréal, in June 1995.

The financial and organizational support by the AMAST93 sponsors is gladly acknowledged.

We would like to thank Ms. Charlotte Bijron, Ms. Alice Hoogvliet-Haverkate, Ms. Joke
Lammerink, and Ms. Yvonne Rokker for their excellent taking care of the conference secretariat.

Finally, we owe special thanks to Yuri Gurevich for allowing us to open the proceedings with
the text of the intriguing banquet speech which he delivered to the second AMAST meeting.
Starting with his humour and finesse d’esprit will certainly set the third AMAST meeting in
the best mood towards the accomplishment of its goals.

AMAST’93 Organizing Committee
Enschede, June 1993

Ut

e@+ @

&

AMAST’93 Sponsors

The AMAST*93 conference is made possible by the financial and organizational support of the following
institutions:

e Commission of the European Communities, within the ESPRIT Basic Research Programme

e Office of Naval Research

o University of Twente

¢ University of Iowa

¢ University of Stirling

o Institut National de Recherche en Informatique et Automatique (INRIA)

o University of Paris VII, LITP

¢ Concordia University, Montréal

¢ University of Ottawa

¢ University of Constantine

o University of Madrid

¢ University of Chicago

The AMAST’93 conference is held under the auspices and with the cooperation of the following asso-
ciations:

o European Association for Theoretical Computer Science (EATCS)

e Association for Symbolic Logic (ASL)

e British Computer Society/Formal Aspects of Computing Science (BCS/FACS)
o ESPRIT Basic Research Working Groups COMPASS and ASMICS

Cooperation is pending with the following associations:
¢ Association for Computing Machinery (ACM), SIGACT and SIGSOFT
¢ IEEE Computer Society

W

Advance Programme

Third International Conference
on
Algebraic Methodology and Software Technology, AMAST’93

University of Twente, The Netherlands, June 21-25, 1993

The goal of the third AMAST conference to be hedld on June 21-25, 1993, at the University of
Twente, Enschede, The Netherlands, is to consolidate the trend towards using algebraic methodol-
ogy as a foundation for software technology, and to show that universal algebra provides a practical
mathematical alternative to the common, ad-hoc approaches to software engineering and development.
Academia and industry are both beneficiaries of such a formal foundation.

To achieve the goal of the conference we aim to provide a forum in which leading researchers
in mathematics, computer science, and software development, will come together to identify algebraic
methodologies that are applicable as viable alternatives to the present software development approaches
and to discuss the appropriateness of such alternatives with a view to implementation.

Education Day (Monday 21 June)

While the AMAST goal is mainly research-oriented, the relevance of education is recognized as well.
In particular, the adequacy of the mathematical education of designers, implementors, users and main-
tainers of software artifacts, is recognized as being of special interest. The evaluation of, and the
provision of recommendations about, the mathematical training of software developers is a necessary
means to achieve that adequacy. In order to be effective in this direction, the first day of the conference
will be dedicated to this special interest topic. This Education Day will start with an introductory talk
by the Education Day Chairman, setting general objectives and guidelines, and proceed with two ses-
sions; each seasion will have an Invited Speaker, talking about mathematical education of the software
engineer, and a Session Moderator, controlling and animating the subsequent open discussion.
As a preliminary indication, the Education Day should aim at answering such qrestions as:

¢ How do we educate software designers, implementors, users, maintainers?
o What should be the ideal mathematical background of a software designer, implementor, etc.?
o What do we need to add to the the conventional way of teaching mathematics to make it more

acceptable, convenient, and useful to the software designer?

The programme of the first day of the conference is thus as follows:

08:30-09:30 Registration
09:30-09:45 AMAST"93 opening address
Education Day Opening:
09:45-10:30 INVITED TALK: Hans-Jorg Kreowski Univ. of Bremen, D
Some tentative thoughts on teaching computer science
10:30-11:00 Coffee break
Morning Session MODERATOR: Yuri Gurevich Univ. of Michigan, Ann Arbor, USA
11:00-11:45 INVITED TALK: David Lorge Parnas McMaster Univ., Ontario, CDN
Mathematics of computation for (software and other) engineers
11:45-13:00 Discussion
13:00-14:30 Lunch break
Afternoon Session MODERATOR: Istvan Németi Math. Inst., Acad. Sci., Budapest, H
14:30-15:15 INVITED TALK: Jacques Printz Cons. Nat. des Arts et Metiers, Paris, F

Mathematical training for the software developpers: a practical ezperience
15:15-16:30 Discussion
16:30-17:00 Conclusions
17:00- AMAST’93 welcoming reception

c o@e ®

Tuesday 23 June

morning
09:00-09:50 INVITED TALK:
Hajnal Andreka, Istvan Németi & [diké Sain (Math. Inst., Acad. Sci., Budapest):
Applying algebraic logic to logic
09:50-10:10 Coffee break
SESSION: Algebraic metamathematics (Chair: William S. Hatcher)
10:10-10:40 D. Pigoasi, A. Salibra (Jowa SU, U. Bari):
Dimension-complemented lambda-abstraction algebras
10:40-11:10 T. Mossakowski (U. Bremen):
Parametrized recursion theory - A tool for the systematic classification of specification
methods
11:10-11:30 Coffee break
SESSION: Eztending functional languages (Chair: Chris Brink)
11:30-12:00 T. Sheard (Oregon GIST):
Adding algebraic methods to traditional functional languages by using reflection
12:00-12:30 D. Bolignano, M. Debabi (Bull France):
A coherent type inference system for a concurrent, functional and imperative programming
language
12:30-14:00 Lunch break

afternoon

14:00-14:50 INVITED TALK:
Roger D. Maddux (lowa State Univ., Dept. Math.):
Relation algebras for reasoning about time, space, and programs
14:50-15:10 Coffee break
SESSION: Relation algebra (Chair: Don Pigozzi) ,
15:10-15:40 C. Brink, K. Britz, R.A. Schmidt (U. Cape Town, MPI Saarbriicken):
Peirce algebras
15:40-16:10 R. Berghammer, A. Haeberer, G. Schmidt, P. Veloso (UB Neubiberg, PUC Rio de Janeiro):
Comparing two different approaches to products in abstract relation aigebras
16:10-16:30 Tea break
SESSION: Order-sorted algebra (Chair: Giancarlo Mauri)
16:30-17:00 M. Erwig (FU Hagen):
Specifying type systems with multi-level order-sorted algebra
17:00-17:30 P. Thiemann (U. Tibingen):

An overview of the SODA system
evening
19:30-20:30 System demonstrations
21:00-22:30 Concert (classic)
vi
- - A J 4 A J L J L

e of)e @

Wednesday 23 June

morning

09:00-09:50 INVITED TALK:
Michael Johnson and C.N.G. Dampney (Macquarie Univ., Sydney):
Category theory and information systems engineering

09:50-10:10 Coffee break

SessiON: Category theory in software engineering (Chair: Andrzej Tarlecki)
10:10-10:40 G. Hill (Imperial College, London):
Category theory for the configuration of complez systems
10:40~11:10 M. Cerioli, G. Reggio (U. Genova):
Algebraic-oriented institutions
11:10-11:30 Coffee break
SESSION: Modular system design (Chair: Egidio Astesiano)
11:30-12:00 M. Navarro, F. Orejas, A. Sanchez (UPV Sap Sebastian, UPC Barcelona):
On the correctness of modular systems
12:00-12:30 H. Ehrig, F. Parisi-Presicce (TU Berlin, U. L’Aquila):
Interaction between algebraic specification grammars and modular system design
12:30-14:00 Lunch break

afternoon
14:00-14:50 INVITED TALK:
Steve Schaeider (Oxford Univ., PRG):
Rigorous specification of real-time systems
14:50-15:10 Coffee break
SESSION: Real-time system specification (Chair: Arthur Fleck)
15:10-15:40 R.K. Shyamasundar (TIFR Bombay):
Specification of hybrid systems in CRP
15:40-16:10 A. Cornell, J. Knaack, A. Nangia, T. Rus (BYU Utah, U. Jowa):
Real-time program synthesis from specifications
16:10-16:30 Tea break
SESSION: Testing theory and applications (Chair: Christine Choppy)
16:30-17:00 E. Brinksma (U. Tweate):
On the coverage of partial validations
17:00-17:30 K. Drira, P. Azema (LAAS Toulouse):
Verifying communication protocols via testing-projection

evening
19:30-20:30 System demonstrations
21:00- Surprise event

”

¢ ofs @

Thursday 24 June

morning
09:00-09:50 INVITED TALK:

Rob J. van Glabbeek (Stanford Univ., Dept. CS):
Full abstraction and ezpressiveness in structural operational semantics

09:50-10:10 Coffee break
SESSION: Algebraic semantics of concurrency (Chair: Irene Guessarian)
10:10~10:40 P. Malacaria (LIENS Paris):

Equivalences of transition systems in an algebraic framework
10:40-11:10 E. Battiston, V. Crespi, F. De Cindio, G. Mauri (U. Milano):

Semantics frameworks for a class of modular algebraic nets
11:10~11:30 Coffee break
SESSION: Process algebras (Chair: Martin Wirsing)
11:30-12:00 D. de Frutoe-Escrig (UC Madrid):

A characterization of LOTOS representable networks of parallel processes
12:00-12:30 R. Gorrieri, M. Roccetti (U. Bologna):

Towards performance evaluation in process algebras
12:30-14:00 Lunch break

afternoon
14:00-14:50 INVITED TALK:

Nicolas Halbwachs, Fabienne Lagnier, Pascal Raymond (INPG Grenoble, Verimag Lab.):

Synchronous observers and the verification of reactive systems
14:50-15:10 Coffee break

SESSION: Modal logics and reactive systems (Chair: Robert F.C. Walters)
15:10-15:40 F. Laroussinie, S. Pinchinat, Ph. Schnoebelen (LIFIA-IMAG Grenoble):
Translation results for modal logics of reactive systems .
15:40-16:10 LN. Kaufman, S.L. Meira (UFPE Recife):

Modal action logic in a practical specification language
16:10-16:30 Tea break
SESSION: Design and refinement principles (Chair: Peter D. Mosses)
16:30-17:00 A. Mokkedem, D. Mery (CRIN Nancy):

On using a composition principle to design parallel programs
17:00-17:30 N. Sabadini, S. Vigna, R.F.C. Walters (U. Milano, U. Sydney):

A notion of refinement for automata
evening
17:30~18:30 System demonstrations
19:00-23:00 Conference dinner
- -w w - A 4 v L J

Friday 25 June

morning

09:00-09:50 INVITED TALK:
Hubert Comon (Univ. Paris Sud, LRI, Orsay):
Constraints in term algebras

09:50~10:10 Coffee break

SESSION: Object-oriented design and programming, I (Chair: Mohammed Bettaz)
10:10-10:40 E.G. Wagner (IBM Yorktown Heights):
The role of memory in object-based and object-oriented languages
10:40-11:10 R. Breu, M. Breu (TU Miinchen, Siemens Nixdorf Miinchen):
Abstract and concrete objects — An algebraic design method for object-based systems
11:10~11:30 Coffee break

SESSION: Object-oriented design and programming, II (Chair: Eric G. Wagner)
11:30-12:00 X.-M. Lu, T.S. Dillon (La Trobe U. Australia):

Towards an algebraic theory of inheritance in object oriented programming
12:00-12:30 M. Gogolla, 1. Claien (TU Braunschweig, TU Berlin):

An object-oriented design for the ACT ONE environment

12:30-14:00 Lunch break
afternoon
14:00-14:50 INVITED TALK:
Roberto Giacobazzi and Giorgio Levi (Univ. Pisa, Dept. CS) and Saumya K. Debray

(Univ. Arizona, Dept. CS):
Joining abstract and concrete computations in constraint logic programming
14:50-15:10 Coffee break
SgssioN: Eguational and logic programming (Chair: Michel Bidoit)
15:10~15:40 J.G. Martin, J.J. Moreno-Navarro (UP Madrid):
A formal definition of an abstract Prolog compiler
15:40-16:10 V. Antimirov, A. Degtyarev (Copenhagen U. (DIKU), Kiev U.):
Completeness of equational definitions over predefined algebras
16:10-16:30 Tea break

SESSION: Algebraic specification in software engineering (Chair: R. K. Shyamasundar)
16:30-17:00 G.J. Loegel, C.V. Ravishankar (U. Michigan):

An algebraic approach to modeling in object-oriented software engineering
17:00-17:30 E.A. Scott (U. Surrey):

An automated proof of the correctness of a compiling specification
17:30- Closing

evening
22:00- live music in all pubs in Enschede.

%

AMAST’91 Banquet Talk
Yuri Gurevich
May 1991, lowa City

Prologue

Tuesday, May 7, 1991. I sign the last grade sheet and smile at the spring sun. Finally the
semester is over. A message from Teo Rus arrives. “The second conference on Algebraic
Methodology and Software Technology needs a banquet speaker”, writes Teo. I am very
flattered. And scared. I recall a recent banquet talk in Ann Arbor. The man went on
and on. [left before he finished. On the other hand, the invitation is a challenge and an
opportunity. You know, sometimes we feel like philosophers if only anybody would listen.
I accept the invitation before the scare gets a hold of me.

I leave my office and meet Kevin Compton, another member of the small computer
theory group in our huge Department of Electrical Engineering and Computer Science.
“How are you?” asks Kevin. “Well, I was fine only a few minutes ago”, and I tell him about
the invitation to give a banquet talk. “I do not envy you”, says Kevin. Soon a message from
him tells me about 5 books on public speaking in the library. I thumb the books. They
have witty things on almost any subject, but do not mention algebra or software, let alone
algebraic methodology and software technology. The volumes of humor are depressing. This
is not it. Teo could find & professional joker to entertain the conference. At that time in
Iowa it could be a national politician.

After thinking it over, I decide to take a scientific approach and write a scholarly paper.
You know, another paper never hurts your vita. The scientific approach explains the use of
“we” in the sequel.

The AMAST Phenomenon

The organizing principles are given by the following observation attributed to Don Knuth:
The two most important questions about Al are: What is A and what is I?

What is the question complexity of AMAST? There are 5 letters in the word, but A
appears twice. A closer examination reveals that there are only 3 questions:

(1) What is algebraic methodology?

(2) What is software technology?

(3) What does AND mean in the AMAST context?

The third question is the toughest of the three.

Algebraic methodology

According to Webster, methodology is “a system of methods, as in any science”. Thus,
algebraic methodology is a system of methods employed in algebra. Makes sense.

e« o) @®

You may wonder how algebraic methodology is different from algebra. In algebra you
search for definitions to formalize your theorems; in algebraic methodology you search for
theorems to justify your definitions. It is clear that “algebraic methodology” sounds better
on a grant proposal; it implies also some connection to applications.

Some folks ridicule the division of algebra or anything else into pure and applied. “Con-
sider painting”, they say, “if your paintings are bought by museums then you are a pure
artist, and if your paintings are sold in a supermarket then you are an applied artist. But
what if you intended to sell your paintings in a supermarket and a museum bought them?
Are you a pure or applied artist?” We say: where do you find those clever folks? They all
are in departments like Pure Mathematics or Physics. The distinction between pure and
applied science is very important. How would DARPA know whom to support?

What is algebra?

It is clear that algebra is the essence of algebraic methodology. So let us examine what
algebra is. Etymology often is a key to the meaning. We asked a few of our learned
colleagues about the etymology of “algebra” and then consulted Webster. It turns out that
folklore and Webster disagree on the etymology of “algebra”.

Folklore: “algebra” as well as “algorithm” come from the name Al-Khowarazmi of a 9th
century mathematician.

Webster: “algebra™ comes from Arabic “al-jabr” which means the reunion of broken
parts.

The folklore explanation would be more useful to us because it connects AM with ST
in a very natural way. Nevertheless, being committed to a scholarly approach, we adapt
Webster’s explatation as more scientific and will try to find a good use for it as well.

Is algebra a part of mathematics?

Yes and no.

Why yes? This is obvious and well documented; see [Jane Doe], [Robert Roe], [John
Smith).

Why no? We give 2 proofs: By contradiction and by authority. These proofs are
specially designed to work on banquets, after a good meal with plenty of wine and before
the dessert.

The proof by contradiction. If algebra is a part of mathematics then mathematics is
broken into parts. The reunion of broken parts is algebra. Thus algebra = mathematics,
which is not true.

The proof by authority. The famous Communist prophet Vladimir Hich Lenin spoke
about the algebra of social revolution. This places algebra into a different college, let alone
a different department.

Is “yes and no” a legitimate answer? Sure. Since “AM and ST” is a legitimate title,
“yes and no” is a legitimate answer. The question of what “yes and no” means will be
discussed later on when we come to the second A of AMAST.

Algebra and logic

Logic methodology has been used in AMAST talks as much as algebraic methodology. This
is not surprising. Algebra and logic are like Michigan and Ohio. Do you know that there
was a war between Michigan and Ohio? It was about Toledo. You may think that each

e@+ @

side wanted the other one to have Toledo, but this is not true. Each side wanted Toledo for
itself. The federal government intervened and gave Toledo to Ohio. This explains the famous
Michigan slogan OH-HOW-I-HATE-OHIO-STATE. Further, the federal government gave a
portion of Wisconsin to Michigan. This is how Michigan became topologically disconnected.
The reaction of Wisconsin is not documented.

The Toledo of algebra and logic is called “universal algebra” in algebra and “model
theory” in logic. Maybe, Iran/Iraq is a better analogy because each side has its own name
for the disputed part: Persian Gulf vs. Arabian Sea.

In any case, algebra and logic have a large intersection as witnessed by numerous
AMAST talks. However we have

Theorem 1 Algebra # Logic.

Proof The proof is by contradiction and related to the Russian journal “Algebra and
Logic”. It would be silly to have a journal “Algebra and Algebra”, and the Russian Academy
would not approve such a thing. O

Logics

There are many logics in the literature. Female logic, male logic, email logic, dialectical
logic, mathematical logic, etc.

Male logic is all too known to be discussed here.

Email logic is all too painful to be discussed here.

Female logic is all too dangerous to be discussed here. The field of AMAST is dangerous
as it is. As a matter of fact, we are going to discuss the dangers of the field. But there are
prudent limits to risks taken.

Dialectical logic is sort of an art of being logical and illogical at the same time. In
the SU (which means Soviet Union and is quite different from US; concatenation is not
commutative), logic was divided into dialectical and formal. The first was always supported,
the second was forbidden for years. Why? This is a wrong question, it is a question from
a wrong logical system. A Soviet dissident logician Essenin-Volpin divided formal logical
systems into two classes: democratic and totalitarian. In a democratic system, the rules tell
you what is forbidden. By default, the rest is allowed. In a totalitarian system, the rules tell
you what is allowed. By default, the rest is forbidden. (For those of you who understand
only the language of categories, democratic and totalitarian systems are the final and initial
objects of the appropriate category.) You wouldn’t ask why Mr. A had not been allowed to
go abroad. This would be a wrong question. You might ask why Mr. B had been allowed
to go? That should have a good reason. For example, Mr. B might work for the secret
police. Now you can see why the question “Why was formal logic forbidden?” is a wrong
one. (Actually, they had a “reason” to forbid formal logic: the connection to philosophical
positivism. Is positivism so exceptionally bad? Not necessarily. But it is certainly different
from dialectical materialism, the only true philosophy.)

In the rest of this talk, logic means mathematical logic.

What is software technology?

This question is easy. We all know what hardware technology is. Software technology is
the direct opposite of hardware, except it is a little harder.

@ &

&

Boom and gloom. Software technology is booming, but it goes through a severe crisis as
well: reliability, compatibility, verifiability, etc. You name it. Some hackers do not realize
that. They happily hack and change our world. They should be explained to that there is
a severe crisis out there. The poor devils badly need guidance and organizing principles.
This is where AMAST comes in.

What does “z AND y” mean?

The third question about AMAST was about the AND of AMAST. We stumbled also upon
the meaning of “yes and no”. Let us generalize and consider a more general question: what
does “z and y” mean where z, y are arbitrary things (not statements)? QOur discussions
with learned colleagues turned up a couple of possible answers.

(1) The set {x,y}. This answer may be blatantly wrong. AM and ST = AMAST which
isn’t a set of two elements. The organizing committee, all by itself, has more than two
elements.

(2) The fact that the intersection of z and y is nonempty. That sounds a little more
convincing, but cannot be quite right because z and y are not necessarily sets.

Notice that in both answers, AND is commutative, which is not true in general. It is
well known for example that the Communist founders are Karl Marx anc Friedrich Engels,
not Friedrich Engels and Karl Marx.!

(3) “z vs. y”. This third answer is not necessarily true as well. For example, the relations
between AM and ST are not adversarial; AM loves ST, and ST couldn’t care less about
AM.

One hazard of the trade: wrong abstraction level

It is clear by now that we overabstracted our third question. A wrong abstraction level is
one of the greatest hazards of our trade.

If the abstraction level is too low, you have too many details. There are no theorems to
prove or apply.

I you abstract too much, you may find yourself in a sterile atmosphere with no theorems
(well, with only shallow theorems) to prove. Alternatively, this may be a delightful trap.
You may find yourself in a very fertile atmosphere with numerous attractive theorems but
this could be a problem too, because you may lose sight of the original question. For
example, we find it very tempting to proceed with the investigation of the meaning of “x
and y” in its full generality.

It may be in the eye of the beholder whether you abstract too much or not. For example,
define programs equivalent if they compute the same thing, and find yourself in a delightful
world of logic. Play with lambda calculus and types. (Didn’t yoa really want to be a
logician?) Ignore those silly programs that do not behave properly. The Unix kernel, for
example. What does it compute? Nothing. It doesn’t even converge. Modulo some side
effects, it is equivalent to a trivial infinite loop.

What is the right level of abstraction? This is the art of our science. That is what
AMAST is all about.

At this point during the talk, Vaughan Pratt said, “See Paris and die”.

So what does AND mean in the AMAST context?

Is it “motivated by”? There is a good precedent for this interpretation. That is what AND
often means in the famous phrase “logic and computer science”. We believe that “motivated
by” isn't the main meaning in our case. As we mentioned above, there is an implication of
{desired] applicability in the phrase “algebraic methodology”.

Is it “applied to”? Hardly.

The most appropriate meaning seems to be: To be applied to [indirectly)[eventually].
In other words, the meaning is “for”.

Another delightful trap

You dive into mathematics and ... never come back. This trap is similar to but different
from the one we discussed earlier.

For example, you write a book on Principles of Programming Languages. You have
to give some formal semantics, of course. Denotational semantics seems fun. It requires
domain theory though, and domain theory requires fixed-point theory. You explain all
this carefully. The project goes along quite nicely. Suddenly, you panic! You have to say
something about programming languages as well. A real language, like C, would be too
much detail and trouble, this is obviously too low an abstraction level. You already gave the
semantics of lambda calculus which is, all by itself, a programming language par excellence.
How about the while language? Good. This should satisfy all those imperative freaks.

More on the AND of AMAST

There are of course other cases of “z and y” where AND means FOR. But there is something
special about the AMAST use of AND. Consider, for example, the case when z = math and
y = physics. Imagine you would like to apply some beautiful mathematics to some physics
that does not quite fit your mathematics. What can you do? You can write science fiction
but you cannot change the physical world. The situation is quite different if z = AM and y
= ST. In principle, you can change ST. Why do they use those silly imperative languages
that do not fit my mathematics? They would be much better off using functional languages
or logic programming.

Future research

AMAST is in a business of changing the world of software technology. AMAST activities
are hazardous, delightful and blessed with opportunities. They are approved and supported
by the highest offices of the land like the Office of Naval Research.

Theorem 2 AMAST is A MUST.

Proof sketch At this moment, we can only give a very preliminary sketch of our proof.
The next AMAST will be in Europe. In one of the dialects of Europese, AND is UND. This
accounts for the crucial change of A to U. O

Acknowledgement I am greatly thankful to Neil Jones and Zoe Gurevich for patiently
listening to successive versions of this talk, for useful comments and for encouragement.

e o@e ®

Education Day

AMAST’93

Third International Conference
on
Algebraic Methodology and Software Technology

University of Twente
The Netherlands

Participants’ Proceedings

N

%) \!.@

S | L

Some tentative thoughts on teaching computer science

Hans-Jorg Kreowski
Universitit Bremen
Fachbereich Mathematik/Informatik
Postfach 33 04 40
D-28334 Bremen
email: kreo@informatik.uni-bremen.de

1. Most of the students of today will be among the scientists, engineers, tech-
nologists, managers, teachers, politicians, etc. of the next 30 to 40 years. Hence
teaching in universities in general and teaching computer science in particular are
challenging tasks with high responsibility. What students learn, know and think
and how they deal with it may form them to a good part and, in this way, may
influence the future of science, technology, economy, politics, society, etc. I fear
that not all university teachers are aware of this responsibility.

2. Teaching can be a hard job, in particular, if the teacher stands in front of an
audience of 50, 100 or 500 students and has got only a vague idea of the levels of
knowledge, motivation, interest and ability present. Frustration is not surprising
under such circumstances, and enthusiasm seems to be wasted. Although the
situation of teaching in universities needs a revisition (at least in Germany), there
is still the chance of success from time to time because students acknowledge the
effort of teachers as far as I can see. Teachers must try.

3. Clearly, teaching is much more than the repetition of knowledge found in
books. Knowledge is only the basic material that needs proper combination, inter-
pretation, cross references and, above all, the teacher's personal comments and
views. The aim of teaching is not just to lecture on important matters to passive
listeners, but to raise the students' interest, motivation and ability to play with, to
work on, to think about and to understand the matter at hand actively and in
their own fashion. University teachers must be good scientists and good
animators. '

4. Computer science is an engineering and scientific field in an embryonic state
that is rooted in mathematics and electrical engineering. It is assumed to provide
key technologies for the future development of economy and society (at least in
the well-developed countries). The outcome of computer science is changing the
work and life of many people. Hence teaching computer science must reflect the
whole spectrum of relevant aspects from mathematics to social sciences. But how
can this be achieved in an undeveloped field? A balance seems necessary between
the well-understood basic matters of mathematics, engineering and social science
useful in computer science and the urgent and actual questions that have got so
weak and shallow answers up to now. But what is sufficient?

5. The trouble with teaching theoretical computer science is a bit different. There
is the wealth of mathematics one can employ. There are already some fairly well-
developed theories on basic objects of interest in computer science. But most of
the students (at least those I know) do not enjoy mathematics, are not able to
understand it properly or do not try hard enough. Hence motivation is
mandatory. Unfortunately, a successful motivation is not very helpful if students
understand the value of theoretical computer science, but are still not able to
understand the matter itself.

-10 -

Mathematics of Computation for (Software and Other) Engineers

David Lorge Parnas
Communications Rescarch Laboratory

Department of Electrical and Compuier Engineering
McMaster University, Hamilton, Ontario, Canada L8S 4K1

1 Preliminary Provocation

The title of this paper implies that Software Engineers are Engineers, i.c. that “software” plays
the same role in their title that “Electrical”, “Mechanical”, or “Chemical” play in the titles of other
engineering specialities. This, in itself, would seem to be a controversial statement, since it
suggests that the model for software engineering education should be engineering education, not
science education or mathematical education. That is my opinion, and one of the assumptions
underlying this paper, but it is not the subject of this paper.

I like the term, “mathematical engineer”, which I am told is used by some Dutch Technical
Universities for software engineering. It seems to me that, just as certain areas of Electrical
Physics comprise the basic knowledge of an Electrical Engineer, certain areas of mathematics,
which includes (in my opinion) the most substantive areas of Computer Science, should be the
basic knowledge that characterises software engineering. However, we should not forget that just
as Chemical Engineers need to know much more than chemistry, Software Engineers will need to
know more than Computer Science and Mathematics. Because we cannot teach them everything
we think they should know, there might be some fundamental areas of Computer Science and
Mathematics that we don’t have time to teach them.

2 The role of mathematics in engineering

Those who do not have an engineering education themselves often fail to realise how much
mathematics engineers learn. At my university, approximately 30% of an engineer’s education is

devoted to things that are explicitly titled mathematics. There is a great deal of mathematics taught *

in the specialised engineering courses as well. This is not atypical; it is often required by
accreditation committees that control whether or not the graduates of a programme can easily be
recognised as professional engineers.

Mathematics can be said t~ be one of the things that differentiate professional engineers from
technicians. A major emphasis in engineering education is the concept of professional
responsibility. An Engineer is taught from her first day at University, that her products must be “fit
for use”. Engineering students learn that they cannot trust their intuition and “eyeballing” to be
sure that a product is “fit for use”. Their education is, in great part, devoted to learning how to do
both mathematical analysis, and carefully planned testing, of their proposed designs. They also
learn to accept, as completely normal, the fact that their work will be subject to careful analysis
and criticism, often based on mathematical analysis, by others. My own engineering education
included approximately as much mathematics as would have been taken by a mathematics major
and, at my alma mater, many of the courses were taken together with the mathematics majors.
Regrettably, it is common to find special engineering mathematics courses, and to find that the
mathematics professors who teach those courses assume that they are teaching people whose
intellectual level is not as high as that of mathematicians. Having taught both, 1 do not see

amast D. L. Pamas May 29, 1993 9:28 pm

- -

e ofs @

differences in ability, but I do see differences between the viewpoints of engineering students, and
those of students majoring in mathematics or science.

Although engineers study a lot of mathematics, an engineer’s view of mathematics is
substantially different from that of mathematicians. Roughly put, engineers can take a lot for
granted. Because their use of mathematics is always for the description and analysis of some
physical product, they simply assumec that functions have the properties that all functions
describing physical products must have. They often do not bother to state those assumptions
explicitly. This appears sloppy to many “formalists”. In most cases, the mathematics is perfectly
sound if one adds the assumptions explicitly in an environmental declaration. Because engineers
are working in situations where it is clear which symbols in their equations are variables and what
they represent, they do not see a need for explicit mathematical notations such as the lambda
notation. Because they always know the range of values for their variables, and they know what
they are trying to compute, they see little need for the quantifiers, type, and signature declarations
that logicians demand of their colleagues. Whereas mathematicians are primarily interested in
deep theorems and general properties of classes of expressions, engineers are often concerned
with “junk” theorems and detailed anaiyses of special cases. In such situations the complex and
careful habits of logicians seem quite unworkable and there is always a gap between a
mathematician’s treatment of a subject and that of an engineer who uses the same fundamental
mathematics. What one chooses to record explicitly, the other tends to assume without much
discussion. Those interested in exploring such issues further, should look at some of the writings
of N.G de Bruijn and his students who had to pay a lot of attention to the “short-cuts” used by
working mathematicians and engineers when they were developing their “Automath” system. [6]

It must also be recognised that the mathematics is often implicit, rather than explicit, in
engineering notations. When an electrical engineer notes the inductance, resistance, and
capacitance of a component, she knows that these are the parameters for a set of differential
equations, but those equations are not always written down, just used when necessary. Again, we
see that engineering notations take things for granted than a mathematician would want to see
stated explicitly.

These remarks lead me to a pair of preliminary conclusions:

* Engineers, whether software or otherwise, can be expected to make extensive use of math-
ematics in the analysis of their products, including programs. Those who refuse to do so.
are technicians, not engineers.

* When we develop mathematical methods for use by engineers, we need to respect the tradi-
tional differences between engineering mathematics and the type of mathematics promoted
by “formalists” or logicians in the style of Hilbert. If we don’t, we will be unnecessarily
frustrated and quite ineffective.;

3 The role of programming in engineering

When I was an undergraduate, programming courses were optional. Moreover, no academic
credit was given for them. The computer was considered to be a slightly enhanced version of the
mechanical calculator. There was no more thought of including a computer course in the
curriculum than we would think of including a course on the Marchand calculators that filled
some laboratories, or a course on the slide-rules that many of us carried on our belts. It was
expected that we would learn to use these “tools of our trade” on our own, or in non-credit
courses. Programming was considered to be a simple mechanical task, “laying down

amast D. L. Pamas May 29, 1993 9:28 pm

- -

&

-

instructions”, akin io wiring up a circuit. Many engineers at that time had never taken a course in
programming. When we began to offer the first credit course in programming at Carnegie Tech,
there were many who feared that it would not have intellectual content analogous to a physics or
calculus course. The Computer Science Department had to promise that they would not simply
teach a programming language, but would teach something deeper and more lasting.

Today, things have changed - both for the better and for the worse. There is no longer any
question about whether or not an engineer should have courses in programming. The computer,
and software are now ubiquitous in engineering. Many engineering products include computers
and software; many others are designed and analysed using computers. Hardly a week passes in
which we do not hear some anecdote about the failure of an engineering product being caused
cither by the software contained in it or by an error in the software used to design it. Since people
rarely talk loudly about their failures, we can assume that the anecdotes are just the “tip of the
iceberg”. Nobody questions the need for engineers to be good programmers and good at
evaluating the software that they use.

However, there is something eise that nobody questions any more: they do not question the
intellectual content of many engineering courses in computing. Nobody asks whether the
intellectual content of these courses is comparable to that of other math or science courses.
Perhaps the question is not asked because the answer would be embarrassing. The typical course
simply teaches a programming language, an artifact designed by one or more human beings. Most
of the time is spent on things that are not mathematical truths, or even lasting truths; they are just
design decisions by (often not very good) language designers. The courses are exactly equivalent
to teaching about a particular calculator, including the location of its buttons, how to turn it on,
how to change the display, etc. Many of these courses teach almost the same artifacts that were
taught 30 years ago, but that is not the real problem. The real problem is that the sybject of the
course is the artifact. You can always tell that something is wrong when there is a big debate about
which artifact to teach about. The situation is analogous to changing the lectures of a course on
electrical circuit theory because we acquired new oscilloscopes. Another sure sign that something
is wrong comes when someone defends a course by saying that they just introduced a pew artifact.

We must also recognise another difference between engineering education and the education
of scientists and mathematicians. In engineering schools there is a major emphasis on design. We
are required by our accreditation committees to identify a large part of our curriculum as design.
Design and analysis can be understood as complementary skills. Design is inherently creative and
all that we can teach are heuristics, things that don’t always work. Consequently, solid, disciplined
analysis is necessary. The mathematics is taught as part of the analysis component of these
courses, not the design. This is in sharp contrast to the attitudes taken by another famous
Dutchman in our field. E. W. Dijkstra, and his followers, like to talk about mathematical
derivations of programs from specifications. This is not the attitude taken in other areas of
engineering. Design is recognised as a very creative task, in which mathematics and science
provide essential inputs, but the primary role of the mathematics comes in the documentation and
validation of the design. Program derivation from requirements appears analogous to deriving a
bridge from a description of the river and the expected traffic. Refining a formal specification to a
program would appear to be like refining a blueprint to a produce a bridge. Engineers always
make a distinction between the product and the description of it. This seems to be lost in the
computer science literature on programming and software engineering.

Those who chose engineering as a career path are often people with fairly a pragmatic view of

amast D. L. Parnas May 29, 1993 9:28 pm

“3-

life. They appreciate mathematics that is simple and elegant but they want frequent assurance that
the i hematics is useful. It is important to show them hc.. to use a i. athematical concept, not
simply to teach them the definitions and theorems. In enginecring mathematics the emphasis has
always been more on application of theorems than on proofs.

4 The mathematics needed for professional programming

I have recently taught a new course for first year engineers of all specialities. It replaced a
course that could have been taught 30 years ago. I made two major changes:

* A large part of the course taught the basic mathematics behind programming with emphasis
on the use of mathematics to describe what a program does, or must do, without giving an
algorithm. Ali programming assignments were expressed as mathematical specifications.

* It was made very clear that the language was not the subject of the course. Students were
given a choice of two programming languages that could be used in the laboratories. Two
of the three lectures per week were taught in an algorithmic notation based on Dijkstra’s
guarded commands. The third, “laboratory”, lecture taught a “real” language.

The course emphasised both the creative steps in programming and the analytical steps needed
to confirm that one had not just created a monster.

The remainder of this section describes the mathematical contents of that course and how we
used the mathematics to teach programming.

4.1 Finite State Machines

The first step in getting students to take a professional approach to programming is to get rid
of the “giant brain” and “obedient servant” views of a computer. It is essential that students see
computers as purely mechanical devices, capable of mathematical description, Students are taught
that “remembering” or “storing” data is just a state-change, and taught to analyse simple finite
state machines to “show” that they accomplish simple recognising tasks. The Moore-Mealy model
is used.

4.2 Sets, functions, relations, composition .

We present the basics of a naive set theory in which all sets consist of a finite number of
elements from previously defined universes. We present the concept of relations (functions) as
sets, and the operation of union, intersection, negation and functional (relational) composition. It
is important to present the students with examples of the use of these concepts and exercises in the
use. We want the students to know far more than the definitions and the aigebraic laws; we ask
them to apply the concepts to provide precise models of real-world situations. We show how the
state machines that they learned about can be described by a pair of mathematical relations.

4.3 Mathematical Logic based on finite sets

In the first two sections, finite state machines, and sets have been kept not just finite, but small,
so that they could all be described by enumeration. The next step is to point out that these are
unrealistically small sets, that we cannot afford to describe most sets by enumeration, and that we
must be able to make general statements about classes of states. We then introduce an
interpretation of classical predicate logic in which all expressior denotations are finite sets and we
show them how to use predicate calculus to characterise sets, including functions and relations.
The logic that we use allows partial functions (defining all primitive predicates on undefined

amast D. L. Pamas May 29, 1993 9:28 pm

o@e @

&

values to be false). It is important to provide numerous examples in which the students use
predicate logic to characterise the states of something real. Arrays (viewed as partial functions)
provide a rich source of examples such as, “Write a predicate that is grue if array A contains a
palindrome of length 3.” Again, it is important to show the use of the mathematics to say
important things about programs, and to teach them to ysg, as contrasted to prove theorems about,
logic. The interpretation of logic that we use is described in [1].

4.4 Programs as “initial states”

We provide a brief, and unconventional, view of programming as picking the initial state of a
finite state machine. This is necessary when one wants to explain such concepts as table driven
programs, interpreters, etc. At this point, 1 point out von Neumann'’s chief insight (in the area of
computer design), the interchangeability of program and data.

4.5 Programs as descriptions of state-sequences

We then give a more conventional view of programs as descriptions of a sequence of state
changes. Each program, given an initial state, describes one or more sequences of state changes.
This concept is presented abstractly, we do not give any programming language notation for
describing the sequences.

4.6 Programs as functions from starting-state to stopping-state

After pointing out that programs can be characterised as either terminating or non-terminating
we indicate that this first course focuses on programs that are intended to terminate after
computing some useful values. We then show that the most important characteristics of programs
can be described by a mathematical relation between the starting-states and the stopping states.
The exact model used, LD-relations, is described in [2] or [3]. Here too, it is essential to provide
examples in which the students use relations to describe distinct sets of sequences that are
equivalent in the sense of having the same set of (start-state, final-state) pairs.

4.7 Tabular descriptions of functions and relations.

We extend the notation of predicate calculus by introducing 2-dimensional tableaux, which we
call simply tables, whose entries are predicate expressions or terms. We show that these are
equivalent to more conventional notation, but easier to read. Students are given many examples in
which we describe mathematical functions using these tables [7]

4.8 Teaching programming with this mathematical background.

The remainder of the course is devoted to teaching students to program. All programs are
introduced, not with a natural language description, but with a mathematical description of the
required behaviour. The simple programming notation that is used (essentially that in [3]) is
defined using the mathematical concepts above. We begin with very simple programs and
continue, always using the same discipline to cover more complex engineering problems.
Homework assignments are given using the tabular notation. Students are shown how to
systematically determine if a program in this notation covers all cases and does the right thing in
each case. Although, we never talk of “correctness proofs” we do use correctness concepts to
explain a program. For example, we usually identify an “invariant” when explaining a loop, and
use a monotonically decreasing quantity to convince students that a program will terminate.

amast D. L. Parnas May 29, 1993 9:28 pm

@

S5 The mathematics needed for software engineering

For many years | have taught courses entitled “Software Engineering” usually to students in
the third or fourth year of university. Although the course has a significant design and pragmatic
content, it has also been necessary to teach some mathematical concepts. Generally, Computer
Science students have inadequate mathematical preparation for the course; they have learned too
much theoretical computer science and too little about fundamental mathematics. However, the
preparation of my Computer Engineering students seems even worse. They have had lots of
mathematics, but the wrong mathematics. In this section, I will describe the mathematical basis of
my software engineering class. The class covers the “standard” software engineering topics and
students are ask¢ i to do practical exercises, but the basic message is that they must produce a
sequence of documents whose contents must be representations of key mathematical functions.
The approach is basically that in [4]. To get maximum benefit from the course, students should
already be familiar with the concepts described in the previous section. Usually, they have not had
the necessary exposure, and much of the course must be devoted to mathematics.

5.1 How can we document system requirements?

A critical step in documenting the requirements of a computer system is the identification of
the environmental quantities to be measured or controlled and the representation of those
quantities by mathematical variables. The environmental quantities include: physical properties
(such as temperatures and pressures), the readings on user-visible displays, administrative
information, (such as the number of people assigned to a given task), and even the wishes of a
human user. These must be denoted by mathematical variables in the way that is usual in
engineering. That association must be carefully defined, coordinate systems, signs etc. must be
unambiguously stated.

It is useful to characterise each environmental quantity as either monitored, controlled, or
both. Monitored quantities are those that the user wants the system to measure. Controlled
quantities are those whose values the system is intended to control. If needed, time can be treated
as a monitored quantity. In the sequel, we will use “m;”, “m;”, ..., “my” to denote the monitored
quantities, and “c;”, “c3”, ..., “c,” to denote the controlled ones. Because it is often the case that a
system is intended to both monitor and control certain quantities, these lists might have variables

in common.

Each of these environmental quantities has a value that can be recorded as a function of time.
When we denote a given nvironmental quantity by “v”, we will denote the time-function
describing its value by “v'”. Note that +' is a mathematical function whose domain consists of rez!
numbers; its value at time t iz denoted by “v'(1)”.

The vector of time-function (m{,m},..,m}) containing one element for each of the monitored
quantities, will be denoted by “m'”; similarly (c}, ¢}, ...c;) will be denoted by “¢'”.

5.1.1 Relation NAT

The environment, i.e. nature and previously installed systems, place constraints on the values
of environmental quantities. These restrictions may be documented by means of a relation, which
we call NAT. It is defined as follows:

» domain(NAT) is a set of vectors of time-functions containing only the instances of ' al-
lowed by the environmental constraints,

amast D. L. Pamas May 29, 1993 9:28 pm

e@- @

&

* range(NAT) is a set of vectors of time-functions containing only the instances of ¢ allowed
by the environmental constraints,

* (m',¢") € NAT if and only if the environmental constraints allow the controlled quantities
to take on the values described by ¢/, when the values of the monitored quantities are de-
scribed by w'.

NAT is not always a function; if NAT is a function the computer system will not be able to
vary the values of the controlled quantities without effecting changes in the monitored quantities.

5.12 Relation REQ

The computer system is intended to impose further constraints on the environmental quanti-
ties. The permitted values may be documented by means of a relation, which we call REQ. It is
defined as follows:

* domain(REQ) is a set of vectors of time-functions containing the instances of »' allowed
by environmental constraints,

« range(REQ) is a set of vectors of time-functions containing only those instances of ¢ con-
sidered permissible,

* (m',¢") € REQ if and only if the computer system may permit the controlled quantities to
take on the values described by ¢, when the values of the monitored quantities are de-
scribed by w'.

REQ is usually not a function because the application can tolerate “small” errors in the values
of controlled quantities.

5.1.3 Requirements feasibility

Because the requirements should specify behaviour for all cases that can arise, it should be true
that,

)] domain(NAT) & domain(REQ).
The relation REQ can be considered feasible with respect to NAT if (1) holds and
) domain(REQ N NAT) = (domain(REQ) N domain(NAT)).

Feasibility, in the above sense, means that nature (as described by NAT) allows the required
behaviour (as described by REQ); it does not mean that the functions involved are computable or
that an implementation is practical.

Note **at (1) and (2) can be reduced to:
3 domain(REQ N NAT) = domain(NAT).
5.2 How can we document system design?

During the system design two additional sets of variables are introduced: one represents the
inputs, quantities that can be read by the computers in the system; the other represents the outputs,
quantities whose values are set by the computers in question. These variables are associated with
input and output registers on the computers in the system; their values will also be described by
time-functions.

In the sequel we assume that »* and ¢* are defined as in Section 4.2.

amast D. L. Pamas May 29, 1993 9:28 pm

- P -

§.2.1 Relation IN

Let “i*” denote the vector (i}.i3, ...it) containing one element for each of the input registers.
The physical interpretation of the inputs can be specified by a relation IN, defined as follows:

* domain(IN) is a set of vectors of time-functions containing the possible instances of m',
« range(IN) is a set of vectors of time-functions containing the possible instances of ',

* (m,i") €INif and only if i describes possible values of the inputs when m* describes the
values of the monitored quantities.

IN describes the behaviour of the input devices. It is a relation rather than a function because
of imprecision in the measurements. It must be the case that,

domain(NAT) S domain(IN),
because the input device must transmit some value for every condition that can occur in nature.

522 Relation OUT

Let “o'” denote the vector (oo}, ...0f) containing one element for each of the output regis-
ters. The effects of the outputs can be specified by a relation OUT, defined as follows:

* domain(OUT) is a set of vectors of time-functions containing the possible instances of o,

* range(OUT) is a set of vectors of time-functions containing the possible instances of ¢/,

* (¢'.¢) € OUT if and only if ¢* describes possible values of the controlled quantities when
o' describes the values of the output quantities.

OUT describes the behaviour of the output devices. It is a relation rather than a f;mction be-
cause of device imperfections.
5.3 How can we document software requirements?

The software requirements are determined by the system design document and the system re-
quirements document. As mentioned earlier, the software requirements document can be seen as a
combination of those two documents. It would contain the relations NAT, REQ, IN, and OUT. -

In the sequel we assume that REQ is feasible with respect to NAT, and that »', ¢', i* and o' are
defined as in previous sections.

5.3.1 Relation SOF

The software will provide a system with input-output behaviour that can be described by a re-
lation, which we call SOF. It is defined as follows:

» domain(SOF) is a set of vectors of time-functions containing the possible instances of i',

« range(SOF) is a set of vectors of time-functions containing the possible instances of o',

* (i*, ¢') € SOF if and only if the software could produce values described by o' when the in-
puts are described by i'.

SOF will be a function if the software is deterministic.

53.2 Software acceptability
For the software to be acceptable, SOF must satisfy:

amast D. L. Pamas May 29, 1993 9:28 pm

e oo ®

¢)) Vm' Vi Vo' Ve'[IN(w' i) a SOF(i", ¢') A OUT(g", ¢) A NAT(m', ¢') = REQ(av', ¢))

Note, that if one or more of the predicates IN(m,i'), OUT(o',¢'), of NAT(m',¢') are false, then
any software behaviour will be considered acceptable. For example, if a given value of w' is not in
the domain of IN, the behaviour of acceptable software in that case is not constrained by (1).

If we assume that relations REQ, IN, OUT, and SOF are functions, we can use functional no-
tation to rewrite (2) as follows:

(1a) V' [m' € domain(NAT) = (REQ(m") = OUT(SOF(IN(m")))]

The writers of the requirements document must describe the relations NAT, REQ, IN, OUT.
The implementors determine SOF and verify (1) or (1a). A document of this type may require nat-
ural language in the description of the environmental quantities, but can otherwise be precise and
mathematical. The use of natural language in the definition of the physical interpretation of math-
ematical variables is unavoidable and quite usual in engineering.

5.4 How can we document software behaviour?

Although the software requirements document fully represents the requirements that the soft-
ware must meet, it may allow observable differences in behaviour. It will often be desirable to
specify a subset of the behaviours allowed by the requirements document for actual implementa-
tion. In this way designers will make certain decisions that might otherwise have been left for the
programmers. The relation SOF can be described in a separate document known as the software
behaviour specification. This document is especially important for multiple-computer systems be-
cause it will define the allocation of tasks to the individual computers in the system. For computer
networks, or multi-processor architectures one may see a hierarchy of software behaviour specifi-
cations with an upper level document assigning duties to a group of computers, and the lower lev-
el documents detailing the responsibilities of smaller groups of computers. The lowest level
documents would describe the behaviour of software for individual computers.

5.5 How can we document black-box module interfaces?

Most modern computer systems require software of such size and complexity that it cannot be
completed by a single person in a few weeks. For many reasons it is desirable to decompose the
software construction task into a set of smaller programming assignments. Each assignment is to
produce a group of programs (cf. Section 4.8) which we call a module. We view each module as
implementing one or more finite state machines, frequently called objects or variables. A descrip-
tion of the module interface is a black-box description of these objects.

Writing software module interface specifications is similar to documenting software require-
ments but some simplifications are possible. Many software modules are entirely internal; there
are no environmental quantities to monitor or control and all communication can be by means of
external invocation of the module’s programs. Moreover, the state set of a software module is fi-
nite, and state transitions can be treated as discrete events. For most such modules, real-time can
be neglected because only the sequence of events matters. This allows us to repiace the general
concept of time-function by a sequence describing the history in terms of discrete events; we call
these sequences traces.

! In the following the universes from which m‘, ¢, i’ and o’ are drawn are assumed to include ail vectors
of time-functions.

amast D. L. Pamas May 29, 1993 9:28 pm

We identify a finite subset of the set of possible traces, which we call canonical traces. Every
trace is equivalent? 10 a single canonical trace. Trace assertion specifications comprise three
groups of relations:

(1) Functions whose domain is a set of pairs (canonical trace, event) and whose range is a set of
canonical traces. The pair ((T,,e), T,) is in the function if and only if the canonical trace T, is
equivalent to the canonical trace T, extended with “e”. These functions are known as trace ex-
tension fuuctionsJ.

(2) Relations whose domain contains all the canonical traces and associate each canonical trace
with a set of values of output variables.

(3) Functions whose domain is the set of values of the output variables and whose values defire
the information returned by the module to the user of the module.

5.6 How can we document internal module design?

Each module has a private data structure and one or more programs. We propose to document
the design sufficiently precisely that its correctness can be verified. The internal documentation of
a module contains three types of information:

(1) A complete description of the data structure, which may include objects implemented by oth-
er modules.

(2) A function, known as the abstraction function, whose domain is a set of pairs (object name,
data state), and whose range is a set of canonical traces for objects created by the module. The
pair ((on, ds), T) is in this function if and only if a trace equivalent to T describes a sequence of
events affecting the object named on that could have resulted in the data state ds.

(3) An LD-relation [2,3], often referred to as the program function, specifying the behaviour of
each of the module’s programs in terms of mappings from data states before the program exe-
cution to data states after the execution

6 Do we need new mathematics or merely new representations?

There is something in the above that will be disturbing, perhaps even annoying, to many
people. We have managed to make precise mathematical statements about software engineering
using classical mathematical concepts. We have not used any of the relatively new “specification
languages”, which have been developed especially for software engineering applications. We
have even been able to talk about the real-time characteristics of systems without introducing any
changes in our logic for that purpose; we have dealt with real-time using the traditional
engineering approach, the use of functions whose range and domain are taken from the set of
time-functions. I have studied the new “formal methods” and simply do not see how they add
value. It seems to me that the mathematics needed by engineers to understand software is very
close to the classical mathematics that was developed before Computer Science became an
identified “discipline”. In [5] | presented some serious doubts about the direction taken by
Computer Science; this paper presents further grounds for those doubts.

On the other hand, when we tackle real software engineering problems, such as the A-7
Onboard Flight Program [8], or the Darlington Nuclear Plant [9], we find a need, not for new basic

2 Two traces are equivalent if they have the same effect on future behaviour of the object.
3 A trace extension function is sometimes calied a reduction function.

amast D. L. Pamas _ May 29, 1993 9:28 pm

¢ oo ®

concepts but for new notations. The use of conventional, one-dimensional, notation to describe
functions and relations resulted in pages of repetitive formulae that were hard to parse. It is for
this reason that we have introduced the multidimensional notations, first used in [8) and described
in [7]. If the new specification languages are new, it is only in their semantics, they have deviated
in no significant way from the one-dimensional notation that is traditional in mathematics. Our
experience suggests that the semantic issues are not the serious ones. New notation, with classical
semantics, has proven very practical.

7 Acknowledgements

These thoughts have been strongly influenced by H. D. Mills and N.G. de Bruijn. Some of the
text was taken from a paper written jointly with Prof. Jan Madey of Warsaw University ([4)).

8 References

(1] Pamas, D.L., “Predicate Logic for Software Engineering”, CRL Report 241, McMaster
University, TRIO (Telecommunications Research Institute of Ontario), February 1992,.
Accepted by IEEE Transactions on Software Engineering.

[2] Pamas, D.L, “A Generalized Control Structure and Its Formal Definition”,
Communications of the ACM, Vol. 26, No. 8, August 1983, pp. 572-581.

{3] Pamas, D.L.,, Wadge, W.W,, “Less Restrictive Constructs for Structured Programs”,
Technical Report 86-186, Queen’s, C&IS, Kingston, Ontario, Canada, October 1986,

[4] Pamas, D.L., Madey, J., “Functional Documentation for Computer Systems Engineering
(Version 2)”, CRL Report 237, McMaster University, TRIO (Telecommunications Research
Institute of Ontario), September 1991, 14 pgs

[S] Parnas, D.L., “Education for Computing Professionals”, Proceedings of International
Conference on Computing and Information, ICCI’90, Niagara Falls, Ontario, May 23-26,
1990. Published in Advances in Computing and Information, S.G. Akl, F. Fiala, W.
Koczkodaj (editors), Canadian Scholars’ Press Inc., 1990, pp. xi (ISBN 0-921627-70-X).

[6] Nederpelt, R.P, “De taal van de wiskunde”, 1987, Versluys Uitgeverij bv -

Almere, The Netherlands.

[7] Parnas, D.L., “Tabular Representation of Relations”, CRL Report 260, McMaster
University, TRIO (Telecommunications Research Institute of Ontario), October 1992

[8] Heninger, K.L., Kallander, J., Parnas, D.L., Shore, J.E., “Software Requirements for the A-
7E Aircraft”, NRL Memorandum Report 3876, United States Naval Research Laboratory,
Washington D.C., November 1978, 523 pp.

[9] Parnas, D.L., Asmis, GJ.K., Madey J., “Assessment of Safety-Critical Software in Nuclear
Power Plants”, Nuclear Safety, Vol. 32, No. 2, 1991, pp. 189-198.

amast D. L. Parnas May 29, 1993 9:28 pm

Mathematical training for the software developpers:

A practical experience

Jacques PRINTZ
SYSTAR

171 Bureaux de la Colline
92213 Saint-Cloud Cedex
France

1. Introduction

What kinds of mathematics are usefull for the software developpers raise the general
question of what is software in a quite similar way that if we ask what kinds of mathematics
are usefull for the chemists or the biologists.

Arguing on the very nature of software might rapidely become a rather academical and
artificial question without any consistent answer. Following the advice of Wittgenstein
"Don’t ask for a meaning, ask for a use!" I will prefer starting from the use.

In the case of software engineeering, the basic question is: What kind of information
systems are we trying to build today, and, inside these systems, what is the role devoted to
the software?

At the early time of J.Von Neumann and until the mid 70th's software was mainly
a problem (sometimes very difficult) of creating algorithms. Consequently the way to
express algorithms, that is to say the issue of having "good” programming languages, was
ones of the dominant questions.
The amount of software development of that time was the production of small sized staff,
often reduced to a single designer and some programmers, but with the interesting
caracteristic of having being well trained in mathematics,
o cither thru numerical analysis for practical computation problems as monte carlo
method or operations research or statistics,...
e or, more rarely, thru mathematical logic for creating sound system architecture,
computation model or systern model description including linguistic aspects,...
A good deal of mathematics has been elaborated and adapted at that time, mainly based on
the outcomes of reseach in the field of mathematical foundation accumulated in the first half
of the century. The strong connection between the early computer science and mathematical
logic has given us the foundation of theoritical computer science and the mathematics
associated with it: automata theory, formal languages, computability,... etc.
That theoritical area of knowledge has had a first direct practical application in the domain
of programming languages and their associated translators. Reliable compiler construction is
probably the most well known success and I can witness of it.

-23 =

c of)e ®

Mathematical training for the software developpers: s practical experience

Starting from the carly 80th's with the PCs revolution, the nature of software has

been progressively and completely modifyed. It is becoming massiv and is better
caracterized by a more or less depth entanglement in large or very large systems, in the
sense of General System Theory, where some parts of the system are software and some
others are devices of any types which may include human beings to perform computation
still beyond the capacity of machines (as for example complex pattern recognition) or to
take the appropriate decisions and control the system. In such systems each part influences
the others, creating the so called "strange loops® whose side effects are to exponentiate
complexity. Progressively, software is becoming "reactive” or embedded! The traditionnal
opposition between scientific or real time software, and business software, i.e. Cobol
software, is becoming meaningless with the rise of networks and graphical user interfaces.
Software is no more a solitary production and requires now large staff, sometimes several
hundredth of developpers and years of development, whose global behaviour may be far of
the elementary behaviour of its individual members in such a way that team organisation is
becoming a major issue.
Professor Lehman, in his book "System evolution: the process of software change®, has
emphazised the strange relationship and duality which exist between the system to built and
what he calls the meta-system, that is to say the software production system itself; but he
hasn't provided any real explanation of what he has observerved so that what he has called
* Law of software engineering” may only be considered as an experimental evidence. The
situation may be depicted as follow:

THE SYSTEM ITSELF

Respense Time
Reliability Avaliahility Serviceability

Logic of the System Deta Integrity and Security

SYSTEM

DEVELOPMENT OF §
Description of S
Logic of maldng the System
Consistoncy
Validation Verification Test
SOFTWARE FACTORY

AMAST93 J.Printz Dnft 05/05/93 — 24 —

- - - - L J L J

Mathematical training for the software developpers: a practical experience

It is now clear that understanding software implies necessarily to understand the
global system context, not only the architectural aspect of it but also the process to built it:
a kind of software embriology. Human aspect of software engineering is a major issue
facing the certitude that it will be much more difficult to automate than any other
engineering field such as hardware.

Again, a good deal of mathematics exists to describe the way systems behave: gnphtheoxy
operations research, theory of games, coding and information theory, modelization, etc..

Coming back to Von Neumann, I mentionned above, it is quite remarkable that in
the latest part of his life when he literaly founded the theory of automata, he was especially
interested to find practical solutions to what he considered as the three fundamental factors
limiting the engineer's ability to build powerfull computer:

o the size of elementary hardware components,

o the reliability of the elementary components,

o the lack of a theory of logical organization of complicated system of computing
clements.

Transposed in modern software terminology, we have the three basic issues:

o the size of elementary automata (as a mathematical model of programs),

o the reliability of automata (as an elementary proof of syntaxic and semantic correctness
of programs),

o the way to group automata to form very large sets of cooperative automata, or, in other
words, the way to organized them in order to be able to predict in a deterministic way,

These three issues are the hard core of main interrogations for the professionnal, or at least

mine! in order to offer a minimal warranty of the effectiveness of software engineering.

It is clear for me, and I hope for all of us, that, as in all the other engineering fields,

mathematics will play a prominent role in future software engineering. Not only “pure”
mathematical logic, but also all the mathematics mathematicians as Von Neumann, Turing,
Ulam,... considered usefull and which are even more relevant whith our day to day
problems.
It is important to note immediatly that some of the observed phenomena will deal with
rigid, all-or-none concepts, which is the caracteristic of logic and that some others are
better approximated with continuous concepts as for example reliability, serviceability and
adaptability of very large systems.

From a pedagogical point of view, an this is a fundamental issue for software
developper mathematical training, formal logic is one of the most refractory and abstract
part of mathematics as well as a very recent one; so we have to consider the role of
continuous model as an approximation of dicrete one's because continuous mathematics is
the best cultivated portion of mathematics with the most historical background which
provide us with large fields of interpretations and reformulations of classical questions. This
methodological advice of JvN formulated years ago is still applicable.

However, it is not my intention to play the historian and present the prominent role

of JVN in computer science, there is some good books on that subject. Reading master's
work is still exciting and rarely a waste of time. So, returning to our subject of

AMAST 93 J.Printz Dmnaft 05/0593 =25 —

]

[] ® ® ® ® L @ ® L J L ® .OJ
o . e« e@e @

Mathematical training for the software developpers: a practical experience

mathematical training, 1 will present briefly three problems 1 have been confront
permanently during my professionnal life and the kind of mathematics one can guess behind
them.

These three problems may be summarized as follow.

Problem # 1. We observe a great variability of the amout of programming required for
systems intuitively perceived as very similar to an other one (a range of 1 to 10 may be
casily observed). Is there anything similar in the field of mathematics and if yes, what is the
explanation? How can we explain that slight variations in the specification of a system may
create a totaly non-linear one at the programming (or automata) level in both direction,
positive or negative? Do we have models for that or is there only chaos?

Problem # 2: Very large software systems (up to several million lines of code cannot be
build from scratch. They require numerous intermediary steps before to be completed and
fully operational. The question is: what is the dynamic of growth of such software systems?
Wat is the complexity level one can manage step by step in order to avoid system
construction divergence or oscillations. What is the amount of ancillary work to provide in
order to bring the system in existence: a kind of thermodynamics second principle applied
to software engineering!

Problem # 3;: Very large systems with billions of states are far beyond our ability to
provide formal proof of syntax and/or semantic correctness. What do we call the proof of
such a system, who give us warranty that the proof is correct and much shorter than the
sytem to prove? In other word, to speak as JvN, who custodes the custodies! Thus, system
reliability becomes a matter of probability and statistics. The question is: what are the
necessary conditions to ensure that the minimal has been done and what are, if any, the
mathematical models to ensure that error effects will be kept under a minimal threshold
given in advance as for example: the system may fail, but it must restart in a correct state in
less than x second? This time this is an equivalent Shannon's second theorem which must be
set up!

2. P#1 - The variability of software system size

It is extremely difficult, even impossible, to have a practical experience of software
size variability in a classical software developper curriculum. To observ interesting
phenomena, large amount of development is required, generaly incompatible which the kind
of work which is asked to a student.

By chance, there is an interesting analogy between software development and mathematical
development so that we can use mathematical development as a substitute to program
development. The length of the proof of some theorems may vary in a wide range
according to the way the theory has been settled: kind of objects, representation of the
objects, choice of the axioms, and so on ...

A remarkable fact is that software size is weakly dependent of the programming language
but highly dependent of the architecture and organisation of the whole software system.
Similar situations exist in what mathematicians call local and global considerations in
mathematical development [see A.Lautman: Essai sur 'unité des mathématiques).

AMAST93 J.Pritz Dnaft 05/05/93 =26 —

¢ o@es @

Mathematical training for the software developpers: a practical experience

Thus, the central thesis for P#1 is that there exist a pertinent analogy between
program development and mathematical theory development so that studying the latest will
provide us with insight for a better understanding of the former.

To go deeper, a brief recall of formal system theory will be needed. Very good
books exist on formal systems and everything can be easily find.
At a first and rather intuitive level, we will consider a formal system as having 3 basic
components, as follow:

Syntax of the formal system.

Syntax of a formal system, later on aboreviated FS, is well illustrated by what is called
concrete syntax in programming language theory. This is a set of rules which explains how
basic objects and elements of the system are settled; how more complex expressions may be
built starting from the basic ones. Rules of naming - proper names and class/generic names
- (of exceptional importance in any complex system) belong to the syntax of the FS.
Semantic of the formal system

As opposed to syntax which is purely abstract, semantic deals with meaning, that is to say
how expressions may preserve properties as for example those of being true or false with
regard a given domain into which they can be interpreted or translated. Again,
programming languages allow us to illustrate simply what semantic is (but FS semantics is
far beyond programming language semantics, so beware of a limited understanding!).
Strongly related to syntax and semantic is the distinction made by the logician between
intension and extension. Intension deals with the form or syntax of an expression or a
function [see G.Frege - Begriffschrift - for a detail and precise analysis). Extension deal
with the domains associated with the function, i.e input domains, output domains, state
domains, error domains, etc...Intension and extension are in a dual relationship and are two
ways of speaking of the same thing; intension and extension consideration are of
exceptional importance in distributed systems where data and algorithms may be freely
exchanged.

Pragmatic of the formal system

Pragmatic refers to the way the FS is used by the observer. In a logical perspective it deals
with different interpretations which can be associated with the FS and how facts of the real
world may be precisely associated with abstract domains defined in the FS. Obviously only
a small subset of the facts perceived in the real world may be abstracted and associated with
classes of the FS; such facts will received proper names to be identified unambiguously.
Sciences as physic witness of the difficulty to assign meaning to abstract entities and to
identify interesting abstract entities. In the programming world, pragmatic is of utmost
importance (much more important than in mathematics) because we are interested to know
how programs or systems behave and how they can be executed on real machines because
we have to interact more and more with them. Ada language introduce a notion of pragma
which is effectively relevant to pragmatic but which is far to cover all the pragmatic aspects
associated with the program text. Difficulties of using Ada in hard real time systems with
exact time constraints is a matter of language pragmatic; deterministic or non deterministic
run time environment is an other one which is an implementation choice.

[...]
3. P2 - Pattern of growth of software systems

AMAST 93).Printz Dnft 05/0593 =/JFf—

« oo ®

Mathematical training for the software developpers: a practical experience

Understanding the way and the conditions [sufficient and/or necessary] under which
software systems can growth is a major issue for the information technology industry. It
raises immediately two fundamental questions:

1. How can we measure or estimate software size, what is the unit of size?

2. Is there any limit to the size of a software system? Are there any limitation factors? If
such factors exist, are they absolute or relative to a given maturity level of the software
industry?

In the absence of well defined unit of size (this is the case, up to now!) models which can
be built will have a strong qualitative taste and this is already an important limitation if we
compare this situation with the state of the art of other scientific engineering fields.
Once a model is defined, another important topic is the dynamic of the model. Every one
which has had the chance to work with large staff has been confront with some very strange
phenomena as oscillations or instability which may cause dramatic system regression. The
question is: what is behind? Is there anything in the software process which looks like
dynamic instability similar to what we find in chaos? What is the effect of the arrow of
time?

Thus, the central thesis for P#2 is that system dynamic is a fundamental topic of software

engineering which need to be investigated in detail - that is to say with the help of models,

even if they are qualitative - if we want to get a chance to understand factors which limit
software productivity.

To sustain the thesis, I will present 3 elementary models and will give some explanations on

how they relate to the real software world. Real word software development may de

depicted as follow:

REAL WORLD

SOFTWARE DEVELOPMENT ORGANIZATION

{

SYSTEM SOFTWARE

{ oama | | acomnmams |

AMAST93).Printz Draft 05/05/93 o~ 28 —

e« oo @

Mathematical training for the sofRware developpers: a practical experience

Parts of the real world are progressively transiated in an executable software system. We
are interested to know the efficiency of the transformation, in particular how the
productivity ratio evolve according to the system structure and to the organization of the
development.

Model ! - M1 - is simply the exponential growth model when there is no limitation to the
growth. The characteristic equation of the model is the classical one:

AS = ¢ S AT
where S is the actual size, AS the increase of the size, AT the increase of an abstract time
(approximatively the amount of effort) and € the rate of increase of S per unit of abstract
time T.

Model 2 - M2 - is the S curve (also called the logistical curve) model of paramount
importance in software engineering as in other engineering fields as chemical engineering or
population dynamic. The well known equation of the model is

AS = (e-AS)SAT
where A is a limiting factor which depend on the system structure whose effect is to
diminish the rate of increase which is no more constant. 'I‘Iuswellhownmoddlstypml
of growth in the context of limited resources.

Model 3 - M3 - is a little bit more sophisticated and take in account the organizational
environment which may also induce additional limitation. As everybody knows,
organization may become less efficient (and sometimes very badly) when they grow old.
The corresponding term, called self-infection or self-destruction term, will have the form
T
[Sw)F(u)du
into which F is a function which relates to the organization and its ability to generate noise
which will reduce its efficiency. 1 will describe that function by giving an intuitive
description of it with the help of a game theory model known as the prisonner dilemma.
The general equation of the model has now the following form
AS = (&-AS - [S(u)F(u)du) S AT

which has been studied and integrated by Volterra [see the Volterra's classic: Théorie
Mathématique de la Lutte Pour La Vie].

[...]
4. P#3 - Reliability of large software systems

It is a law of nature that reliability in a very broad sense deals with redundancy.
Human language is highly redundant and so are brain organization or mamals DNA
molecules. Hardware reliability, much more closer to us, is a supporting evidence that
desesperate situation (remember what hardware technology was at the time of JvN) can be
dominated and mastered. A prerequisite is that error phenomenon be recognized as a central
question in software development, if not THE unique one, as it has been in other field as
data transmission. To quote R.Hamming in his classic Coding and Information Theory
"Most bodies of knowledge give errors a secondary role, and recognize their existence only
in the later stages of the design. Both coding and information theory, however, give a

AMAST93 JPrintz Dmft 05/0593 =~ 29 —

@ @

@

Mathamatical training for the software developpers: a practical experience

central role to errors (noise) and are therefore of special interest, since in real life noise is
everywhere”.

Retuming to our logical model roughly describes in P#1, errors may be present in the

o syntactic level,

e semantic level,

¢ pragmatic level.

Mathematics can give us significant help for the syntactical level by providing for that level
well founded abstract object as automaton or elementary date structures which play for
information representation the same role as real numbers and functions in other engineering
fields.

Mathematics can give us some help for the semantical level by providing well founded
domain definitions to which abstract objects belong and well founded transformation rules
from one domain to an other one. Abstract monitor models as CSP or concurrency models
or programming models or normal forms in data modelling belong to that level.
Mathematics is of limited help, for not to said of no help, for the pragmatical level for
which there is no alternative to verification and validation technics. Again this situation is
rather common in all the engineering fields: there is no demonstration that the space shuttle
is bug free or that a bridge will not break. Trials must be done. Worst situations occur
when trials can't be done as for the Star War software system.

Thus, the fundamental issue is twofold:

First, the type of mathematical proofs which can be reached and in particular the
complexity of the proof itself. Proofs must be constructive; if they are not much less shorter
than the programs to prove, they are useless in the real engineering world. I consider as
very promising the kind of correctress proofs done for VLSI whose main result is to
dramatical'y reduce the simulation time to verify and validate the circuit.

Second, the management of redundancy to be added in the programs with a double
question: how much redundancy? and where to insert it in the programs? The problem is
how to reduce the time between the fault occurence and the fault detection by an observer
and how to control the program overhead in such a way that the real time behaviour be kept
under a threshold given in advance. Observer - a kind of Maxwell's deamon - gives us
information of the state of the system but also modifies and adds uncertainties to the system
behaviour as in Quantum Mechanics.

Then, the central thesis for P#3 is that redundancy management be recognized as the most
important topic of software reliability and that information theory provide a conceptual
framework to formulate clearly the very nature of information, redundancy and organization
as well as the role of the human or artificial observer.

In that paper I will only sketch a research direction, focused on elementary behaviour of
program flow (with the help of regular expressions) and on dynamic structure of the data
references associated with the program (topological relations between both). By the way,
we will see how test strategies may be make more effective.

[...]
5. Conclusion

AMAST93 J.Printz Dnft 05/0593 <« 30 -

c oo ®

Mathematical training for the software developpers: & practical experience

Among the 3 problems presented in this paper, the latest is probably the most
challenging for the future of information technology. With regard the age of software
technology we are still in the period where we can simply and modestly observ the
phenomenon. We certainly need to measure much more quantitatively what we observ and
this is a preliminary condition to any progress. Software reliability ultimate aims will
probably take much more time to be achieved than expected (as compared whith hardware
engineering for which it has taken almost S0 years). To quote JVN " The great progress in
every science came when, in the study of problems which were modest as compare with
ultimate aims, methods where developed which could be extended further and further.
The sound procedure is to obtain first utmost precision and mastery in a limited field, and
then to proceed to another, sometime wider one, and so on. The experience of more
advanced sciences, for example physics, indicates that impatience merely delays progress,
including that of treatment of the burning questions. There is no reason to assume the
existence of shortcuts®.

Retuming to the initial interrogations of usefulness of the mathematics for the
software developpers, I will insist a last time un two aspects which seems to me of equal
importance:
 First aspect is that there will be no future for software engineering without the help of

mathematical methods and especially those of the discrete mathematics.
e Second aspect is that the way mathematical development is achieved thru the history, is
of exceptional pedagogical importance.

Mathematical development has evolved thru the ages, new concepts have been

added, formulations of classical problems have been entirely reformulated in a much more
natural and elegant way, and so on. Logic is a good illustration of both aspects, although
geometry and algebra offer probably far-reaching examples but may require more
mathematical skill.
These rather aesthetical considerations seem to me of considerable importance for the
software developpers, whose programs are (or should be) populated with abstract entities
sometimes far beyond of intuitive evidence, by providing them with logical forms and
reasonning schemes which are the foundation of rational, unambiguous and explicit thinking
as well as reliable human communication.

References

[...]

AMAST93 J.Printz Dnft 05/0593 = 3% —

&

Invited Papers

AMAST’93

Third International Conference
on
Algebraic Methodology and Software Technology

University of Twente
The Netherlands

Participants’ Proceedings

@ ¢

N

APPLYING ALGEBRAIC LOGIC TO LOGIC

HAJNAL ANDREKA, ISTVAN NEMET! AND ILDIKO SAIN®
Mathematical Institute of the Hungarian Academy of Sciences
Budapest, P.O.B. 127, H-1364, Hungary

Abstract. Connections between Algebraic Logic and (ordinary) Logic. Algebraic counter-
part of model theoretic semantics, algebraic counterpart of proof theory, and their con-
nections. The class Alg(L) of algebras associated to any logic L. Equivalence theorems
stating that L has a certain logical property iff Alg(L) has a certain algebraic property.
(E.g. L admits a strongly complete Hilbert-style inference system iff Alg(L) is a finitely
axiomatizable quasivariety. Similarly, L is compact iff Alg(L) is closed under taking ul-
traproducts; L has the Craig interpolation property iff Alg(L) has the amalgamation

property, etc.)
Contents
L Introductionciieiiniiiiiiiiiii i it 1
2. General framework for studyinglogicsc.oiiiiiiiiiiiiiii e 3
2.1. Logics with satisfaction and/ormeaningocoiiiiiiiii, 9
3. Bridge between the world of logics and the world of algebras 12
3.1, BasiC CONCEPABt iiiiiiiii ittt et st i e araaes 12
32. Maintheoremsttt i e 17
3.3. Some universal algebraic tools for algebraic logic 33
3.4. Distinguished logics ...ttt 36
References it it i it i ittt .39

1. Introduction

The idea of solving problems in logic by first translating them to algebra, then using
the powerful methodology of algebra for solving them, and then translating the solution
back to logic, goes back to Leibnitz and Pascal. Papers on the history of Logic (e.g.
Anellis-Houser [AH91], Maddux {Ma#91]) point out that this method was fruitfully
applied in the 19** century not only to propositional logics but also to quantifier logics
* (De Morgan, Peirce, etc. applied it to quantifier logics too). The number of applications
grew ever since. (Though some of these remained unnoticed, e.g. the celebrated Kripke-
Lemmon completeness theorem for modal logic w.r.t. Kripke models was first proved
by Jénsson and Tarski in 1948 using algebraic logic.)

For brevity, we will refer to the above method or procedure as “applying Algebraic
Logic (AL) to Logic”. This expression might be somewhat misleading since AL itself
happens to be a part of logic, and we do not intend to deny this. We will use the
expression all the same, and hope, the reader will not misunderstand our intention.

In items (i) and (ii) below we describe two of the main motivations for applying AL
to Logic.

*We are very grateful to Agnes Kurucz for substantial contribution to both the contents and the for~
of this work.

’

¢ ofe @

1. INTRODUCTION

(i) This is the more obvious one: When working with a relatively new kind of problem,
it is often proved to be useful to “transform” the problem into a well understood and
streamlined area of mathematics, solve the problem there and translate the result back.
Examples include the method of Laplace Transform in solving differential equations (a
central tool in Electrical Engineering).

At this point we should dispell a misunderstanding: In certain circles of logicians
there seems to be a belief that AL applies only to syntactical problems of logic and
that semantical and model-theoretic problems are not treated by AL or at least not
in their original model theoretic form. Nothing can be as far from the truth as this
belief, as e.g. looking into the present work should reveal. A variant of this belief is
that the main bulk of AL is about offering a cheap pseudo semantics to Logics as a
substitute for intuitive, model theoretic semantics. Again, this is very far from being
true. (This is a particularly harmful piece of misinformation, because, this “slander” is
easy to believe if one looks only superficially into a few AL papers.) To illustrate how
far this belief is from truth, the semantical-model theoretic parts of the present work
emphasize that they start out from a logical system £ whose semantics is as intuitive
and as non-algebraic as it wants to be, and then we transform £ into algebra, paying
special attention to not distorting its semantics in the process; and anyway, finally we
translate the solutions back to the very original non-algebraic framework (including
model theoretical semantics).

In the present paper we define the algebraic counterpart Alg(L) of a logic £ together
with the algebraic counterpart Algy(L) of the semantical-model theoretical ingredients
of L. Then we prove equivalence theorems, which to essential logical properties of
L associate natural and well investigated properties of Alg(L) such that if we want to
decide whether £ has a certain property, we will know what to ask from our algebraician
colleague about Alg(L). The same devices are suitable for finding out what one has
to change in £ if we want to have a variant of £ having a desirable property (which
L lacks). To illustrate these applications we include several exercises (which deal with
various concrete Logics). For all this, first we have to define what we understand by
a logic £ in general (because otherwise it is impossible to define e.g. the function Alg
associating a class Alg(L) of algebras to each logic £.

(ii) With the rapidly growing variety of applications of logic (in diverse areas like
computer science, linguistics, Al, law, etc.) there is a growing number of new logics to be
investigated. In this situation AL offers us a tool for economy and a tool for unification
in various ways. One of these is that Alg(L) is always a class of algebras, therefore we
can apply the same machinery namely Universal Algebra to study all the new logics.
In other words we bring all the various logics to a kind of “normal form™ where they
can be studied by uniform methods. Moreover, for most choices of £, Alg(L) tends
to appear in the same “area” of Universal Algebra, hence specialized powerful methods
lend themselves to studying £. There is a fairly well understood “map” available for the
landscape of Universal Algebra. By using our algebraization process and equivalence
theorems we can project this “map” back to the (far less understood) landscape of
possible logics.

2. GENERAL FRAMEWORK FOR STUDYING LOGICS

2. General framework for studying logics

Defining a logic is an experience similar to defining a language. (This is no coincidence
if you think about the applications of logic in e.g. theoretical linguistics.) So how do we
define a language, say a programming language like Pascal. First one defines the syntaz
of Pascal. This amounts to defining the set of all Pascal programs. This definition
tells us which strings of symbols count as Pascal programs and which do not. But this
information in itself is not very useful, because having only this information enables the
user to write programs but the user will have no idea what his programs will do. (This
is more sensible if instead of Pascal we take a more esoteric language like ALGOL 68.)
Indeed, the second, and more important step in defining Pascal amounts to describing
what the various Pascal programs will do when executed. In other words we have to
define the meaning, or semantics of the language, e.g. of Pascal. Defining semantics can
be done in two steps, (i) we define the class M of possible machines that understand
Pascal, and then (ii) to each machine I and each string ¢ of symbols that counts as
a Pascal program we tell what 2 will do if we "ask” to execute ¢. In other words we
define the meaning mean(, M) of program ¢ in machine M.

The procedure remains basically the same if the language in question is not a program-
ming language but something like a natural language or a simple declarative language
like first-order logic. When teaching a foreign language e.g. German, one has to explain
which strings of symbols are German sentences and which are not (e.g. "Der Tisch ist
rot” is a German sentence while "Das Tisch ist rot” is not). This is called explaining
the syntax of German. Besides this, one has to explain what the German sentences
mean. This amounts to defining the semantics of German. If we want to formalize
the definition of semantics (for, say, a fragment of German) then one again defines a
class M of possible situations or in other words, "possible worlds” in which our German
sentences are interpreted, and then to each situation 0t and each sentence ¢ we define
the meaning or denotation mean(yp, M) of ¢ in situation (or possible world) M.

At this point we could discuss the difference between a language and a logic, but we
do not need that. It is enough to say that the two things are very-very similar.!

Soon (in Definition 2.1 below) we will define what we mean by a logic. Roughly
speaking, a logic L is a triple

L= (Fﬂv MC, m“nﬁ) 9

where
o F¢ is a set, called the set of all formulas of L,

e M. is a class, called the class of all models (or possible worlds) of L,
® mean. is a function with domain F¢ x M., called the meaning function of L.

1The philosophical minded reader might enjoy looking into the book [P88), cf. e.g. B.Partee’s paper
therein. More elementary ones are: Sain [S80/a] and [S80/b].

-3 -

c oo ®

2. GENERAL FRAMEWORK

Intuitively, F¢ is the collection of “texts” or “sentences” or “formulas” that can be
“said” in the language £. The meaning function tells us what the texts belonging to
F¢ mean in the possible worlds from M.

Often, instead of mesnc, we rather have a relation EcC M x F¢, called validity
relation. In more detail, very often from mean . the relation = is definable (and vica
versa); but in general, we may have a logic £ where |=¢ does not make sense at all.

When no confusion is likely, we omit the subscripts £ from F¢, M etc.

A typical definition of F has the following recursive form. Two sets, P and LC are
given; P is called the set of primitive or atomic formulas and LC is called the set of
logical connectives (these are operation symbols with finite or infinite ranks). Then we
require F' be the smallest set H satisfying

(1) PC H, and

(2) for every ¢i,...,¢n € H and f € LC of rank n, f(¢1,...,¢a) € H.

For example, in propositional logic, if p;, p; are propositional variables (atomic formulas
according to our terminology), then (p; A p;) is defined to be a formula (where A is a
logical connective of rank 2).

For formulas ¢ € F and models M € M, mean(p, M) is defined in a uniform way (by
some finite “schema”).

For a logic £ = (F, M, mean), F belongs to the syntactic part, while M and mean
to the semanical part of £. Figure 1. below illustrates the general pattern (“fan-
structure”) of a logic.

M
(huge) collection of
possible worlds
(or models)
J
meaning
function
e — v _J
syntax semantics
Figure 1
-3~
- - - - - » A 4

¢ oo @

2. GENERAL FRAMEWORK FOR STUDYING LOGICS

Though above we said that a logic only roughly speaking is a triple described above, in
Definition 2.1 below we call such a triple a logic. This definition of a logic is very rude.
However, we will see that it well serves the purposes of the present paper. Therefore we
do not try here to give a more refined definition of a logic.

In Definition 2.1 we give the definition of a logic with validity relation |=. We will
turn to logics with meaning functions only in section 2.1 later.

DEFINITION 2.1 (Logic):
By a logic £ we mean an ordered triple

LY (Fe,Me, 2,

where (i)-(iii) below hold.

(i) Fc (called the set of formulas) is a subset of finite sequences (called words) over
some set X (called the alphabet of £) that is,

FeCc X® g‘{(ao,...,a,._l) : n€w, (Vi<n)a € X};

(ii) Mc is a class (called the class of models);
(iii) =c (called the validity relation) is a relation between M. and F¢ that is,
FcC M xFc. <
DEFINITION 2.2 (Semantical Consequence):
Let £ = (F¢,M¢,|=c) be a logic. For every M € M., T C Fg,

MET & (Ve DMy,
Mod(Z) ¥ (Me M, : M. T).

A formula ¢ is said to be valid, in symbols f=¢ ¢, iff Modc({w}) = M..
For any L U {¢} C F,

Lkcy € Mod(E) C Mod({y}).

If £ [=¢ ¢, then we say that ¢ is a semantical consequence of T (in logic £). <«

Now we define some basic logics. Though we think the reader is familiar with classical
propositional logic, for fixing our notation, we start with the definition of it.
DEFINITION 2.3 (Propositional or Sentential Logic Ls):

Let P be an arbitrary but fixed set, and let A a binary and — a unary logical connective
(operation symbol). P is called the set of all atomic formulas (or propositional variables)
of propositional logic.

(1) The set Fs of formulas of propositional logic is defined to be the smallest set H
satisfying the following two conditions:

e PCH, and
spp€H = (pA¥)(-p)eH.

¢« ofe @®

2. GENERAL FRAMEWORK

(2) The class Ms of models of propositional logic is defined as
Ms ¥ {(W,v) : W is a non-empty set and v: P —» P(W)}.

If M = (W,v) € Ms then W is called the set of possible worlds (or states or situations)
of M.

(3) Let (W,v) € Ms, w € W, and ¢ € Fs. We define the binary relation w I+, ¢ by
recursion on the complexity of ¢ as follows:

e ifp€ Pthen (w"".(pgwe"(}’))
L if'bli'b?eFSvthen

wik, ¥ &4 wip, v
wik, vy Ay &5 wik, ¢ and w Ik, ¥s.

If w Ik, @ then we say that ¢ is true in w, or w forces .
We say that ¢ is true in (W, v), in symbols (W,v) [=s ¢ or W =5 o[v)], iff for every
weW,wlk, .

Now, propositional (or sentential) logic is defined to be the triple
def
Ls = (Fs,Ms,s). <

EXERCISE 2.1:
Let (¢ —) & ~(pA¥)andp o ¢ & ((¢ = ¥) A (¥ = ¢)). Prove that
* {vlEsy <= Es(p—¥)
* ({pY sy and (¥} Esy) <= Es(p e~ ¥). <

DEFINITION 2.4 (Modal logics S5, K; Arrow logics Larwo, LARWRL):

For each logic in this definition, first a relation I similar to the one in Definition 2.3
will be given, and the validity relation = will be defined from I exactly the same way
as in in Definition 2.3.

The set of connectives of modal logics S5 and K is {A,~, 0}.

o The set of formulas (denoted as Fgs) of S5 is defined as that of Ls together with

the following clause:
¢ € Fss => Qp € Fss.

Let Mgs def Mg. The definition of w I, ¢ is the same as in the propositional

case but we also have the case of {:
wik, Op &5 (' eW) v’ Ik, .

Now, modal logic S5 is 55 %' (Fss, Mss, I=).

-40 -

2. GENERAL FRAMEWORK FOR STUDYING LOGICS

e The formulas of logic K are those of S5: Fx %! Fs5. The models of K are
those of S5 together with a binary relation (called accessibility relation) for each
model. More precisely,

My € {((W,v),R) : (W,v) € Msand RCW x W}.
The definition of w IF, ¢ is as above, but in the case of { we require that v’ is
accessible from w that is,
wlk, Op & (3v' € W)(R(w,w') and w' IF, ¢).

Then modal logic K is K %' (Fx, Mx,).

The set of connectives of arrow logics Lorwo, LARWRL is {A, -, 0,-,Id}.

¢ The set of formulas of Lorwo (denoted as Faorwo and called arrow formulas) is
defined as follows. All sentential formulas are arrow formulas (i.e. Fs C F4rwo),
and

s ¥ € Fapwo => poy, ¢~ € Farwo
Id € Fapwo

The models are those of propositional logic Ls enriched with three accessibility
relations. That is,
Marwo = {{((W,0),€1,C3,Cs) : (W,v) € Ms,Ci CW x W x W,

: C;CWxW, Cs CW}

For sentential connectives — and A the definition of w I, ¢ is the same as in the
sentential case. For the new connectives we have:

w ik, 7] O!ﬁ {% (awl,uh € W)(Cl(w,wl,wg) & w, Ik "4 & w;y I+, l,b)
wit, o~ €3 (3w’ € W)(Ca(w,v') & W' Ik,)
wir, Jd &4 Cy(w).

Then arrow logic Larwo is Larwo = (Farwo, Marwo,).

o The formulas of LoArwry are the arrow formulas, i.e. ForwrL def Farwo. The
models are those of Lorwo with the following restriction. For every model
(W, v) € MArRwRL, W is a binary relation on some set U that is, W C U x U.
Moreover, C) is relational composition, C; is the converse relation, and Cj is the
identity on U, respectively. More precisely, for any w;, w3, w3 € W, we let

C1(w), w3, ws3) & (3u1,u2,u3 € U)(w1 = (u1,u3) &
wy = (uy,uz) & wy = (uz,ua))
Ca(wy,wz) &L (3u1,u2 € U)(wr = (u3,u3) & w2 = (u2,uy))
C(w1) &L (Fue V) w; = (u,u).
Given these restrictions, the definition of I is the same as in the previous case.

Arrow logic LARwRL i8 LARWRL o (FARWRL, MARWRL,). <«

-l -

atiiettsitttnts -

e« ofe @

2. GENERAL FRAMEWORK

EXERCISE 2.2: Try to find similarities and differences between the logics Ls, S5,
K, LArwo and LARwRL. <
EXERCISE 2.3: Consider the fragments L)pw, and L4gwr of our arrow logics
defined above which differ from the original versions only in that they do not contain
the logical connectives ~ and Id. Prove that L3 rw, is equivalent to L) gwgy in the
sense that they have the same semantical consequence relation |=.

Prove that £Arwo is not equivalent, in the above sense, to LARwrL. <
DEFINITION 2.5 (First-order Logic with n variables £,):

First-order logic with n variables is defined to be a triple

Lo ¥ (Fa, Mo, =0),

for which conditions (1)-(3) below hold.

(1) Let V dof {vo,-..,va—1} be a set, called the set of variables. Let the set P of

atomic formulas be defined as P def {ri(vo...va—1): 1 € I} for some set I. Then
the set F, of formulas is the smallest set H satisfying
e PCH
o v=w€EH foreachv,weV
o pYeEH veV = pAY, ~p, Jvp € H.
(2) The class M, of models of L, is defined by

M, def {(A,Ri)ier : A is a non—-empty set and R; C"A (i € I)}.

If M = (A, Ri)ies € M, then A is called the universe (or carrier) of M.
(3) Let M = (A, R,)ics € Mn, q € "A, and ¢ € F,. We define the ternary relation

M k= ¢[q] by induction on the complexity of ¢:

o MEri(v...vam1)g) &5 gqeR: (i€l

o M v = vjq] & gi=g¢g; (,jel)
o if Y,,¢; € Fg, then
M= ~yilg] €5 not M= v [g]
My Avalg) €5 M= Yalg) and M = yulg]
M= vl €2 (3¢’ € A)[(Vi£je)
g;=¢i & MEilq]].

If M |= ¢[q] then we say that the evaluation g satisfies ¢ in model M.
We say that Mzap iff foreveryge"AMEplg]. <«

e oo @®

2.1 LOGICS WITH SATISFACTION AND/OR MEANING

L R K J

DEFINITION 3.6 (Theory):
Let £ = (F, M,) be any logic. For any K C M let the theory of K be defined as

ThK)® {peF : ("ReK)MEy). =

Recall the notions of recursively enumerable and decidable sets (of formulas).

DEFINITION 2.7 (Decidability of Logics):
We say that a logic is decidable iff Th(Mc) is a decidable set of formulas. «

THEOREM 2.2 (Decidability of L5 and 55). Propositional logic £Ls and modal
logic S5 are decidable. |

This theorem will be proved later. We will show that, in both cases, the set of valid
formulas is recursively enumerable (r.e.) and that these logics have the finite model
property (to be defined later).

2.1. Logics with satisfaction and/or meaning

Defining a logic as (F, M, |5} with |=C M x F is an oversimplification for the following
reasons. If we look at the logics in Defs.2.3-5 (S5, La, etc.) we will notice that they
contain a richer semantical structure than just a binary relation |=C M x F. In each
case, there is a class Par of parameters and a ternery relation IFC M x Par x F which
is usually called the satisfaction relation. In the definition of S5 we should have written
(M, w) I+ ¢ or at least M, w I ¢ instead of w I+, . However, for simplicity we used the
latter, and we used the subscript "v” to indicate the presence of It. Anyway, a little
reflection reveals that the definition of S5 uses a ternary relation "M, w I ¢”, where w
was called a possible situation (world) of 2.

The same applies to LArwo, etc. Perhaps the least trivial case is that of £,,. There we
use "M, q I+ ", where M = (A,R; :i € I) and ¢ € “A. In case of L, the traditional
way of writing "M, ¢ IF ©” is "M |= [g]” and is pronounced as the evaluation g satisfies
¢ in the model M.

In each of the logics we saw so far, first (F, M,|) is defined and then the binary
velidity relation |= is derived (in some way) from the deeper, more substantial relation
Ik (in a sense, |= was always a "simplified part” of IF). In all of our examples the
following derivation of |= from I works.

(») MEp it (V€ F)Vu[(@,wiF¢) = (M,w i+ y)].

~43-

c ofe @

2. GENERAL FRAMEWORK

EXERCISE 2.1.1: Check that (+) above is true for all the logics we defined so far.
<

EXERCISE 2.1.2: Show that while |= can be derived (i.e. recovered) from IF, in most
of our logics I cannot be recovered from . <

There are ways other than () above for deriving |= from I+. E.g. (*+) below works
too (for the logics considered so far):

(»») MEy ff VYw [(m,w IF(p = @) = (Muwl+ (p)]

(cf. Exercise 2.1).

DEFINITION 2.1.1 (Logic with Satisfaction):
By a logic with satisfaction we understand a quadruple £ = (F, M, |=, '), where
(i) (F,M,[) is a logic in the sense of Def.2.1;
(ii) |= is derived from IF in a manner similar to (+) or (++) above. «

We know that item (ii) in the above definition is somewhat vague. If that would
disturb the reader, it is safe to substitute (+) for (ii).2

EXERCISE 2.1.3: Show logics (in the sense of Def.2.1) in which though |= can be
derived fr.m I in some way, neither (x) nor (++) hold. <«

Instead of the above concept of a logic with satisfaction, we will use a less ad-hoc
variant which is at least as general as the above one. The idea is the following. Given
a syntactic entity (a formula) ¢ € F, and a possible world I € M, instead of giving
a truth value (M = ¢ or M | ¢) to ¢ in M, we associate a meaning to @ in M.
Certainly, the most natural (and most general) thing a syntactic expression ¢ might
have in an environment or world M is a meaning. What that meaning will be might
depend on the kind of expression ¢ we are looking at, and the kind of Dt we are having
in mind. E.g. the meaning might be a truth value (True, False); or an element of the
set M denoted by ¢; more generally a denotation; if ¢ is a program and 9 is a machine
then the meaning of ¢ might be the function computed by ¢ in 9; or if we are in a
logic with satisfaction then it might be the set {w : M, w I+ p}.

DEFINITION 2.1.2 (Logic with Meaning):
By a logic with meaning we understand a quadruple £ = (F, M, |=, mean), where
mean is a function with domain F x M and conditions (i), (ii) below hold.

(i) (F,M [) is a logic in the sense of Def.2.1;
(ii) |= is derived from mean either by (* * *) below or by a similar definition.

) M=y iff (V¢ € F)[mean(, M) C mean(p, M)},
foraloec F, MeM.

2We wanted to keep our definition more general but that is not essential for the present work. Also
we felt that while condition (*) is not so essential to the concept of a logic as the admittedly vague
formulation of (ii).

- 4h ~

e« ofe @

2.1 LOGICS WITH SATISFACTION AND/OR MEANING

A similar remark applies to (ii) above as the one below Def.2.1.1.

EXERCISE 2.1.4: Prove that logics with satisfaction and those with meaning are
equivalent in the following sense:
(1) To every logic Lmean = (F, M, |5, mean) with meaning there is some logic £,q¢ =
(F, M, =,) with satisfaction such that they are interdefinable; and
(2) To every L,q there is an Lmeqn 8s in (1) above.
(Hint: Assume Lyeen = (... mean) is given. Let

Par &' URng(mecm) = U{mcan(cp,ﬂﬁ) o€ F, Me M}.

For w € Par define [(M,w I p) &E ve mean(p,M)]. In the other direction (i.e.

assuming L, is given first) mean(p, M) def {w: M wlk ¢}. Show that using these

definitions Limeen and L,q¢ are completely recoverable from each other.) «

EXERCISE 2.1.5: Show logics (in the sense of Def.2.1) in which though there is a
"sensible” meaning function, condition (* * *) above does not hold. (Hint: Try e.g.
many-valued logics.) <«

- 45 -

3.1. BASIC CONCEPTS

3. Bridge between the world of logics and the world of algebras

The algebraic counterpart of classical sentential logic L is the variety BA of Boolean
algebras. Why is this so important? The answer lies in the general experience that
it is usually much easier to solve a problem concerning Ls by translating it to BA,
solving the algebraic problem, and then translating the result back to £s (then solving
it directly in Ls).

In this section we extend applicability of BA to L5 to applicability of algebra in
general to logics in general. We will introduce a standard translation methcd from logic
to algebra, which to each logic £ associates a class of algebras Alg;(£). (Of course,
Alg)(Ls) will be BA.) Further, this translation method will tell us how to find the
algebraic question corresponding to a logical question. If the logical question is about £
then its algebraic equivalent will be about Alg;(L). For example, if we want to decide
whether £ has the proof theoretic property called Craig’s interpolation property, then
it is sufficient to decide whether Alg,(£) has the so called amalgamation property (for
which there are powerful methods in the literature of algebra). If the logical question
concerns connections between several logics, say between £; and £;, then the algebraic
question will be about connections between Alg,(£;) and Alg;(L2). (The latter are
quite often simpler, hence easier to investigate.)

3.1. Basic concepts

The definition of logic in section 2 is very wide. Actually, it is too wide for proving
interesting theorems about logics. Now we will define a subclass of logics which we will
call nice logics. Our notion of nice logic is wide enough to cover the logics mentioned in
the previous section, moreover, it is broad enough to cover almost all logics investigated
in the literature. (Certain quantifier logics might need a little reformulation for this,
but that reformulation does not effect the essential aspects of the logic in question as
we will see.) On the other hand, the class of nice logics is narrow enough for proving
interesting theorems about them, i.e., we will be able to establish typical logical facts
that hold for most logics studied in the literature.

Before reading Def.3.1.1 below, it might be useful to contemplate the common features
of the logics studied so far, e.g. Ls, S5, LoArRwo, Ln. When presenting this material
in class, many more logics were discussed in order to motivate the definition of a nice
logic. Some of these logics are collected in section 3.4 below. It might be a good idea
to look into 3.4 too before reading the definition below.

In all the logics studied so far (and also in 3.4), the biconditional ”«~” is available as
a derived connective. In condition (3) of Def.3.1.1 there will occur a new symbol "V”
denoting a derived connective of the logic in question. At first reading it is a good idea

c s ®

ﬂ

e e e et et e R

3. BRIDGE BETWEEN LOGICS AND ALGEBRAS

to identify V" with our old biconditional "«~". Certainly, if we replaced condition (3)
with the simpler assumption that "«" is expressible in our logic £ then all theorems
would remain true. However, at a second reading of the definition it might be useful to
observe that our condition (3) is a weaker assumption then expressibility of "«" (and
that this makes the class of nice logics broader).

We also note that the theorems of section 3.2 below (based on the next definition)
can be proved in a more general setting (cf. [ANS84]). Here we do restrictions in order
to make the methodology more transparent.

DEFINITION 3.1.1 (Nice Logic, Strongly Nice Logic):
Let (F, M, =) be a logic in the sense of Definition 2.1 (i.e. F is a set, M is a class, and
ECM x F.

We say that £ is a nice logic if conditions (1-4) below hold for £.

(1) A finite set Cn(L), called the set of logical connectives of L, is fixed. Every
¢ € Cn(L) has some rank rank(c) € w. The set of all logical connectives of rank
k is denoted by Cny(L).

There is a set P, called the set of atomic formulas (or parameters or propo-
sitional variables or ...), such that F is the smallest set satisfying conditions
(a-b) below.

(a) PCF,

(b) if c € Cny(L) and ¢y, ...,ps € F then ¢(p1,...,p:) € F.
The word-algebra generated by P using the logical connectives from Cn(L) as
algebraic operations is denoted by {‘ that is, {' = (F,¢c)cecn(c)- E is called the
formula algebra of L.

(2) We assume that a function mean is given with Dom(mean) = F x M and

meangy & (mean(@,M) : ¢ € F) is a homomorphism from F for every M

(cf. section 2.1).
(3) We assume that there are “derived” connectives ” True” (zero-ary) and "V~
(binary) of £ with the following properties: _
(i) (VI € M)(Yo,p € F)[M = (pVy) = meanm(p) = meanm(y)].
(ii) (VN € M)(Vp € F)[M = TrueVp <= M= o).
(By “derived” we mean that " True” and "V” are not necessarily members of
Cn(L). They are only “built up” from elements of Cn(L). But we do not know
from which elements of Cn(L) ” True” or V™ are built up, or how. We do not
care!)
(4) (¥, 0, ,n € F)(¥po,...2n € P)[I= $(B) = k= v(5/7),
where b = (po,...,Pn), @ = (P0,.-.,¥n), and ¥(P/F) denotes the formula that
we get from 1) after substituting ; for every occurrence of p; (0 < i < n) in ¥.
We refer to this condition as ‘L has the substitution property’.

L is called strongly nice iff it is nice and satisfies condition (5) below.
(5) (Vs € PF)(vam € M)(3N € M)(Ye(pio, - - -, pin) € F)

(+) meanm(p) = meanm (p(Pio/3(Pic)s- - - 1 Pin /3(pi)) -

-4}~

3.1. BASIC CONCEPTS

Let 5 € FF be the natural extension of s to F. Then (+) says meanm(yp) =

meana($()). U this property holds, then we say that the logic ‘L has the
semantical substituiion property’ (the model N is the substituted version of M
along substitution s). <

Recall that if % and B are two similar algebras, then Hom(%,B) denotes the set of
all homomorphisms from 2 into B.

REMARKS 3.1.1.1:
(i) An equivalent form of (+) above is the very natural condition

(Vh € Hom(F, g)) (VI € M)(3N € M) meanm = meanm o h.

Since h is just a substitution, this form makes it explicit that M is the h-
substituted version of M. Other equivalent version is the following.

(Vv € M)(Vh e Hom(F, meang({‘)))(ﬂ‘n € M) meanq = h.

(ii) Item (2) of Definition 3.1.1 above is a purely logical criterion. Namely, it is
Freége’s principle of compositionality.

(iii) Item (3)(i) and (ii) of Definition 3.1.1 above give the following connection between
= and mean:

(Vo € F)[E¢ = (VD € M) meanm(p) = meanm(True)).
(iv) In the presence of (3) of Definition 3.1.1 above, semantical substitution property
((5)) implies substitution property ((4)). <«
EXERCISE 3.1.1: Show that £,, Ls, §5, Laorwo and LArwRrL are strongly nice
logics. (Hint: In each case, " is good for "V”.) «

EXERCISE 3.1.2: Show logics where "V” is not our old biconditional ”«". (E.g.,
in S5 we can also take O(®; «~ ®;) as $,VP,.) «

DEFINITION 3.1.2: (Algebraic Counterpart of a Logic)
Let £ = (F, M, |=) be a logic satisfying conditions (1),(2) of Definition 3.1.1 above.

(i) Let K C M. Then for every ¢, 9 € F
o~k &L (YD € K) meanm(p) = meanm(s).
Alg, (L) &1 {13/ ~x: KC M} .

(ii)
Algs(£) & 1{meanm(F) : M€ M},
where meangy was defined in item (2) of Definition 3.1.1, and for any homomorphism

h : A — B, h(2) is the homomorphic image of 2 along A i.e., h(%) is the smallest
subalgebra of B such that A : %A — k(). «

3. BRIDGE BETWEEN LOGICS AND ALGEBRAS

FACT 3.1.2.1: For nice logics
Algy(€) =1{F/ ~r : TCF},

where p ~r €5 (VI € M)(M =T => meanm(p) = meanm(y)).
PROOF: For every K C M f/ ~Kg= {’/ ~Ta(K), and for every ' C F F/ ~r=
{'/ ~Mod(r) hold (cf. Definitions 2.2 and 2.6). «

EXERCISE 3.1.3: Show that for any logic £ satisfying conditions (1),(2) of Definition
3.1.1

o Algz(L) C Algi(£)
) SPA"] (£) = SPAlgz(C). «

Recall the definitions of the class BA of Boolean algebras and of the class Cs; of
one-dimensional cylindric set algebras.

EXERCISE 3.1.4: Prove that
(i) A'gz(l:s) = BA
(ii) Algg(SS) =Cs;. «

The class RRA of representable relation algebras and its relativized version will be
introduced and investigated in Chapter I There we will see that Alg2(LArwRL) coincides
with the relativized version of RRA.

* % X%

Next we turn to inference systems. Inference systems (usually denoted as I) are
syntactical devices serving to recapture (or at least to approximate) the semantical
consequence relation |=¢ of the logic £. The idea is the following. Suppose T=_¢.
This means that, in the logic £, the assumptions collected in £ semantically imply the
conclusion ¢. (In any possible world 91 of £ that is, in any M € M, whenever L is
valid in M, then also ¢ is valid in M.) Then we would like to be able to reproduce
this relationship between ¥ and ¢ by purely syntactical, “finitistic’ means. That is, by
applying some formal rules of inference (and some axioms of the logic £) we would like
to be able to derive ¢ from I by using “paper and pencil” only. In particular, such
a derivation will always be a finite string of symbols. If we can do this, that will be
denoted by X I ¢.

DEFINITION 3.1.3 (Formula Scheme):
Let £ be a nice logic with the finite set Cn(L) of logical connectives (cf. (1) of
Def.3.1.1). Fix a countable set A = {4, : i < w}, called the set of formula variables.

-49 -

c oo @

3.1. BASIC CONCEPTS

The set Fmsc of formula schemes of L is the smallest set satisfying conditions (a-b)
below.

(a) AC Fms,

(b) if c € Cnx(L) and ®,,...,8s € Fmsc then o($,...,8:) € Fms,.

An instance of a formula scheme is given by substituting formulas for the formula
variables in it. <«

DEFINITION 3.1.4 (Hilbert-style Inference System):

Let £ be a nice logic. An inference rule of £ is a pair (B, ..., Ba), By), where every
B; (i < n) is a formula scheme. This inference rule will be denoted by

B,,...,B,
By '

An instance of an inference rule is given by substituting formulas for the formula
variables in the formula schemes occurring in the rule.

A Hilbert-style inference system (or calculus) for L is a finite set of formula schemes
(called aziom schemes) together with a finite set of inference rules. <«
DEFINITION 3.1.5 (Derivability):

Let £ be a nice logic and let - be a Hilbert-style inference system for £. Assume
LU {p} € F,. We say that ¢ is F-derivable (or provable) from X iff there is a finite
sequence (@1,...,¢n) of formulas (an F-proof of ¢ from T) such that ¢, is ¢ and for
every1<:<n

e piEXor
® (; is an instance of an axiom scheme (an aziom for short) of - or
e there are ji,...,ji < i, and there is an inference rule of such that ﬁu%fh is
an instance of this rule.
We write I I ¢ if ¢ is F—provable from L. (We will often identify an inference system
I with the corresponding derivability relation.) «
DEFINITION 3.1.6 (Complete and Sound Hilbert-type Inference System):
Let £ be a nice logic and let I be a Hilbert-type inference system for £. Then
e I is weakly complete for L iff

(Vo€ Fc) Ecy = Fy;
o I is finitely complete for L iff
(VECu Fe)Vo € Fe) T Ecy => Ttho

that is, we consider only finite T’s;
o | is strongly complete for L iff

(VECFc)Vo€eFc)ZEcy = Zhy;
o I is weakly sound for L iff
(Vo€ Fe) ko = Fcw;
e | is strongly sound for L iff
(VECF)Vp€Fc)Thy = Ecyp. <

c ofs @

3.2. MAIN THEOREMS

THEOREM 3.1.1 (Strong Completeness of Ls and S5). There are strongly
complete and strongly sound Hilbert-type inference systems for Ls and for S5.

We will prove this theorem in section 3.2 below, using methods of Universal Algebraic
Logic. §

We will also prove in section 3.2 that the arrow logics introduced in Def.2.4 also admit
strongly complete and strongly sound Hilbert-tyoe inference systems.

3.2. Main theorems

In Theorem 3.2.1 below, we will give a sufficent and necessary condition for a strongly
nice logic to have a finitely complete Hilbert-style inference system.

THEOREM 3.2.1. Assume £ is strongly nice. Then
Alg3(L) generates a finitely axiomatizable quasivariety
—
(3 Hilbert-style +)(\ is finitely complete and strongly sound for L£).

Proof of (=): Let ®,®,,... denote formula variables, 75,7;,... denote formula
schemes, & denote sequence of formula variables and T denote sequence of variables.
Assume that Az is a finite set of quasiequations axiomatizing the quasivariety generated
by Algz(L) and define a Hilbert-style inference system I 4, as follows:)

AXIOM SCHEME: ($oV®) (reflezivity).

INFERENCE RULES: If (13(Z) = 1(T) & -+« & 1a(F) = 7A(F)) = 70(T) = 7(T) € Az,

then
n(P)Vr] (323 ceny r,_._(_‘)Vi(}_)
10(#)V7(®)

is a rule. Other rules are:

Ve, $,Ve,
Ve,

Ve,
Ql VQo (’V’"’"“"V) ’

(trensitivity),

.V, ..., 8V,
(Ve€ Crnull)) B e Ve(@l,....&,) (comomvence)

oV True ®o
‘o ? ’uv True)

We will show that the inference system I 4. is finitely complete and strongly sound
for L.

c oo @

3. BRIDGE BETWEEN LOGICS AND ALGEBRAS
For any set T of formulas we define) ~p ¥/ &5 T 4, (¥V'). Note that, by the
definition of - 4, and by Definition 3.1.5, ~¢ is a congruence relation on F for any L.
Claim 3.3.1.1: ({'/~}:) E Az.
PROOF OF CLAIM 3.2.1.1: Let ¢ € Az. Then it has the form
(@) =1i(Z) & -+ & () = 7a(F)) = 10(F) = 75().

Let A % ({’/ ~g). We want to prove that, for every valuation k of the variables into

ma m F: q[kl'
So let k be an arbitrary valuation into . Then (Vi € w) k(zi) = ¢i/~g for some
@i € F. Assume that

b (5758) 4 (758) & - e v (3758) =1 (775).
Then

ARMm@)/ ~ =@/ ~x & - & (1 (P))/ ~z= (T2 (?))] ~z,
since ~g is a congruence on f Then

(@) ~2 11(P),- .-, Ta (P) ~z Ta (P),
that is,
Zha: i (@)V(®)s.- . ZFas 7a (@) V7o (7)
by the definition of ~x. In 4., we have the following rule (corresponding to ¢):
n(?)Vr] (3L ey r.._(‘f)Vr,’,(E)
70(®)V73(3) '
Using this rule, we obtain that T t4. 70 (%) V73 (%). Then 7o () ~x 70 (%), whence
Ak (r0(7))/ ~p= (6(%))/ ~z that is, % = 70 (¢ ~z) = 75 (¥ ~z) that is,
A |= 10(Z) = 14(Z)[k]. By this we proved Claim 3.2.1.1. §
Claim 3.2.1.2: For any formulas ©g,¢1,...,¢a

{#1...,0a} Fwo = Alga(L) = (p1 = True & --- & pp = True) = (po = True).

PROOF OF CLAIM 3.2.1.2: Assume

{P1(P1s- - Pm)s- -1 0u(P15- - - s Pm)} F p0(P1s- -, Pm)-
Let 2 € Algy(L). Then A = meana(F) for some M € M. Let k € P A be arbitrary. For

every 1 < j < m we denote k; & k(p;). Clearly for every 1 < j <m k; = meanan(7;)
for some 7; € F. Forevery 0<i<n

@ilkry- .- km]® = gilmesna(T1),. .., meanam(ym)|* = meanmx(pi(11,...,Mm)),

c o) @

3.2. MAIN THEOREMS

since meangy is & homomorphism.
Assume for every 1 <i < n that 2 |= ¢; = Truelk].

= meangm(i(11,-..,Tm)) = meang(True) (1 <i<n)

(by Def.3.1.1 (5)) => (3N) meanm(p;) = mear ;(True) (1 <i < n)

(by Def3.11(3)) &= NEyi (1<i<n)

(by our assumption) ==> N |= ¢

(by Def.3.1.1 (3)) <= meanm(o) = meanm(True)

(by Def.3.1.1 (5)) => meanam(vo(n,--.,7m)) = meana(True)
= A = po = Truelk],

proving Claim 3.2.1.2, since k was chosen arbitrarily. §

Now let T % {1,...,pn} and assume T |= po. Then, by Claim 3.2.1.2,
Alg2(L) E (p1 = True & --- & pp = True) = (po = True)
= Az | (p1 = True & - - & pu = True) = (po = True)
CZZHD (Fims) b (61 = True & -+ & po= True) = (po = True)
= [if (1 ~¢ True,...,0n ~¢ True) then po ~g True] i
4 [lf (2 Fas gp,VIhe,... ,E Faz V.VIHC) then X 4, mVTrue] (O)

By the rule rv’ff-u—e we have £ b4, 01V True,...,L b4 0aV True. Thus, by (e),

Y Faz 9oV True. Now using the rule 2'!‘17"‘-;‘ we get © b 4. o, proving the finite
completeness of - 4,.

The strong soundness of I 4, can be proved by induction on the length of the I 4.-
proof of o from {1,...,9n}. We only show one part of the induction step, namely
the case when ¢y is 'obtained’ by an inference rule corresponding to a quasiequation
g € Az. Say g has the form

(@) =n@) & - & n(Z) = 7(T)) = 7(F) = 7(3),
where T = (z1,...,Zm). Then the corresponding inference rule is

7 (®)Vr (32_,_. cey r@Vr{,(‘)
7o(®)V1y(¥F) ‘
Assume that o, is obtained by this rule by substituting the members of the sequence
¥ = (T1,--.,7m) of formulas for the members of the sequence & = (&,,...,%m) of

formula variables, i.e. ¢ has the form 7o(F) = 7(¥).
Now fix a model 2R and assume that

M = TV T, -, B = na(F)V7a(7)-

3. BRIDGE BETWEEN LOGICS AND ALGEBRAS

We have to show that B |= 7o(F)Vri(F).
Let 2 %' meanm(F) € Alga(L). and let k be a valuation of % such that for every

1<i<m k(zi) % meanam(7:). Then by Definition 3.1.1 (3)(i)

mesna (7(¥)) = munn(1@) (1<j<k)
<= ARn(E)=7(F) & --- & n(F) = 7 (F)[K]
(by Alga(L) = Az) = |= 70(F) = 7o(T)[k]
(by Def.3.1.1 (3)(i)) <=M |= 7o(F)Vre(F)-

This completes the proof of direction “=>" of Theorem 3.2.1.
Proof of (<): Let &,,...,%,, denote formula variables, 79, 71,...,7: denote formula
schemes, let & e (®1,...,Pm), and let of (21,-..,Zm) be a sequence of variables.
Assume that I is a finitely complete and strongly sound Hilbert-type inference system
for the logic £, and define the finite set Az of quasiequations as follows:
- K fo(Q) is an axiom scheme of I then let “ro(Z) = True” belong to Az.

- If:‘-i—)-h(:’;igzlsanmferencenﬂeofl-thenlet

“(1’1(2) =Drue & --- & n(F) = Truc) = 19(Z) = True” belong to Az.
- Let “(zo = z1) = (20Vz) = True)” and “(z9oVz; = True) = (2o = z1)” belong
to Azx.
We will show that Az axiomatizes the quasivariety generated by Alga(L).
Claim 3.2.1.3: Alg(£) E Az.

PROOF OF CLAIM 3.2.1.3: Alg2(L) = (zoVzy = True) & (zo = z,) obviously holds
by Definition 3.1.1 (3)

Let (n(Z) = & - & 7(T) = True) = 70(T) = True belong to Az, let
A € Algy(£) and let k be an arbitrary valuation of the variables into 2. Let 2 be such
that A = meann(F) Then for every i € w k(z;) = meana(yp;) for some p; € F.
Assume that

Ak n(Z) = True & -+ & 7a(Z) = Truelk].
Then by Definition 3.1.1 (3)

(o0) mE Ti(zl/'f’h---,zm/‘?m) (1<Lj<k).

But -'si-l:-(..s)ﬂ!l is an inference rule of F, therefore {r\(?),...,7:(®)} I 7o(®). This
implies by the strong soundness of - that {r1(%),...,Ta(¥)} k= 70(¥). Now, by (ee)

above, M k= 75(%), hence again by Definition 3.1.1 (3), % |= 1o(Z) = Truelk], which is
desired. §
Claim 3.2.1.4: For any quasiequationgofformry =1 & - & Ta=T, D> 1o =173

Alg (L) g = {nV1],...,7aVT} E 10V

c o) @

3.2. MAIN THEOREMS
PROOF OF CLAIM 3.2.1.4: Assume that for every 2% € Algz(L) and for every valuation

kePa

2A |= glk).
Let M € M such that M | {nVr,...,7,Vr.}. Then by Definitio.. 3.1.1 (3)(i)
meang(7;) = meanm(r]) for each 1 < i < n. Now let A € Algz(L) be such that
mesngy(F) = 2 and let k € 7 A be such that for each p€ P k(p) 4! means(p). Then

Ak(m=r & & ra=rH,

which implies 2 |= (7o = 7g)[k] by our assumption. This is the same as meanm(7y) =
meanm(7y), thus again by Definition 3.1.1 (3)(i), M = 7,V7j, which proves Claim
3.2.14. 8

Claim 3.2.1.5: For any formulas ¢o,¢1,...,¢n
{vl._.’vl}l‘lpo = Az}=(¢1= True & --- & Pn = m0)9(¢o= me)

PROOF OF CLAIM 3.2.1.5: It can be proved by induction on the length of the -proof
of o from {p1,...,¥a}. We only show one part of the induction step, namely the case

when ¢y is ’obtained’ by an inference rule —(—)-'(—.';'-@1, where & = (®1,...,®m). Then

there are formulas v,,...,ym such that wo = 7o(71,...,Ym) and for every 1 < i < k
{®15---,a} F 7i(F). Then by the induction hypothesis

()] Az (p1=True & - & pn=True) 2> 7(¥) (1<i<k)
By the definition of Az
(hb) Az F (Tl(i) =True & --- & Tk(f) = Truc) = -ro('f) = True.

Let B be an algebra with B |= Az and let k be any valuation of the variables into B.

Now we can define a valuation k' with k'(z;) & 7,{’:]” (1 £ 3 £ m). Then for every
0<i<k 7(Z)K)® = r:(¥)[k]®. Thus, by (}) and (bh),

B (1= Trie & - & o= True) = 7o(7) = Truell
which was desired. §
Now assume that
Al (L) = (n=1] & - & Ta=Tl) > 1 =1,
(V... TaVrl} = 7oVT

(finite completen "){-r;V'r,, ey TaVTR} F TV T
(Claim 3.2.1.5) ' '
Az | (nVr]=True & - & 1V, = True) = 10V7y = True.

(Clun 3.2.1.4)

3. BRIDGE BETWEEN LOGICS AND ALGEBRAS
But, since “2oVz, = True ¢ z¢ = z,” belongs to Az, this is equivalent to
Az (n=n & - & Ta=1.) > 10=1,
completing the proof of direction “<=" of Theorem 3.2.1. §

Having found the algebraic counterpart of “finitely complete”, let us try to char-
acterize “weakly complete”. Since weak completeness is slightly weaker than finite
completeness, we have to weaken the algebraic counterpart of finite completeness for
characterizing weak completeness. This way we obtain condition (*) below, where Eq.
and Qeq. denote the set of all equations and the set of all quasiequations, respectively,
of the language of Alg;(L).

(+) (342 Cu Qege) [(Ve € Eqc) (Alga(C) b= e = Az [o) & Alga(C) k= Az].
THEOREM 3.2.2. Assume that £ is nice. Then
(*) <= (3 Hilbert-style F)(I- is weakly complete and strongly sound for L).

In particular, if the equational theory of Alg,(L) is finitely axiomatizable, then £
admits a weakly complete Hilbert-style inference system.

Proof: It is similar to the proof of Theorem 3.2.1. The only important difference is
that Theorem 3.2.2 already holds for nice logics. However, the only part of the proof of
Theorem 3.2.1 which used the additional criterion for strong niceness (Definition 3.1.1
(5)) was Claim 3.2.1.2. Below we state the corresponding weaker claim and prove it
without using condition (5) of Definition 3.1.1.

Claim 3.2.2.2: For any formula ¢
F ¢ => Alga(L) = (¢ = True).

PROOF OF CLAIM 3.2.2.2: Assume |= @(po,.--,Pn). Let A € Algz(L). Then A =
meana(F) for some M € M. Let k € PA be arbitrary. We denote ko ' k(py),.. -,

k, & k(pn). Clearly (Vi < n)(k; = meanax(7;) for some v; € F).
‘P[k01 ceey kn]' = ‘P[m“"”(‘m)a ceey mm"’ﬂ('ﬁl)]' = meanay (‘P(707 e 77“)))
since meanay is a homomorphism.

k= ¢(Po, - - . , Pn) implies, by Definition 3.1.1.(4) (substitution property), that
k= @(70,- - - s7n)- Thus by Definition 3.1.1 (3)

meanm(P(70,- - -, Tn)) = meanm(True).
But meanm(¢(Y0,- - - s n)) = @[ko, - - - , kn]* and meana(True) = True®, thus

@lko, - - -, kn)® = True®. Thus we have 2 |= (¢ = True)[k], proving Claim 3.2.2.2, since
k was chosen arbitrarily. Thus we also proved Theorem 3.2.2. §

¢ ofe @

3.2. MAIN THEOREMS

EXERCISE 3.2.1: Give weakly complete and sound calculi for the logics £s, S5,
Larwo and LarwrL. (Hint: Use that the SP-closure of the Alg;-image of these
logics are finitely axiomatizable varieties, so () is satisfied. For the arrow logics, finite
axiomatizability of the corresponding varieties will be prcved in chapter I) «
DEFINITION 3.2.1: Let £ = (F,M,[) be a nice logic.c. We say that £ has a
deduction theorem, iff

(3(#:1A%;) € Fmsc))(VEC F)(Vo, ¢ € F)(ZU {9} F ¥ <= L [pAy),

where "pAy” denotes an instance of scheme "#,A®;”. Such a "®,A®;” is called a
deduction term for L. <

THEOREM 3.2.3. Ls and S5 have deduction terms.

Proof: It is not hard to show that "®, — &;” and "0O0¢; — O®;" (where O is the
abbreviation of ~{—) are suitable deduction terms for propositional logic and S5, re-
spectively.

The following theorem states that for any nice logic the existence of a deduction
term and that of a weakly complete Hilbert-style calculus provides a finitely complete
inference system.

THEOREM 3.2.4. Assume L has a deduction theorem, and (3 Hilbert-style)
(+ is weakly complete and strongly sound for £). Then

(3 Hilbert-style +)(I is finitely complete and strongly sound for).

First we note the following fact (its proof is straightforward by the assumptions on
A).

Fact 3.2.4.1: The inference rule modus ponens w.r.t. A (MP,) that is,

®, AV

(MPa) ¥

is strongly sound for L.
Proof of Theorem 3.2.4:
Assume that (3 Hilbert-style F)(+ is weakly complete and strongly sound for £). Let
such an inference system be fixed and let us add (MP4) to it. We denote this (extended)
inference system by |, too.

To prove finite completeness, assume {yq,...,pa} |= ¢¥. Then, applying the deduc-
tion theorem n + 1 times, we get:

{#0,--.,¢n-1} = (pal¥)
{0, -, ¢Pn=2} [(Pn-18(paA¥))

= (poA(1A... (padY)...).

W

Yo

- 53—

¢ o@s ®

3. BRIDGE BETWEEN LOGICS AND ALGEBRAS

Then 99 by weak completeness of - Then, using (MPa) n + 1 times, we get:
{wo} ¥ {90, 70} F 21A(p2A .. .(palY)...)

s

b
{ro, 1} F {p1,m} F 028(p2d...(palAY)...)
el

{@o,01,..-1¢a} F {Pa,7a} F ¥ , where v, = (pal¥).
Thus we received the following F-proof of ¥ from {p9,...,¥n}:

(701‘?0,71"P1772,¢2y co 1 Tn¥ns d’) ’

which proves Theorem 3.2.4. |
DEFINITION 3.2.2: Let £ = (F, M, =) be a logic. We say that
(1) L is satisfiability compact (sat. compact for short), if

(VT CF) [(VE Cu T') (T has a model) = (I" has a model)] , and
(ii) £ is consequence compact (cons. compact), if

Ty =0CBTCuD) Iy, foreveryTU{p}CF. «

|
EXERCISE 3.2.2: Prove that even for nice logics we have

(1) satisfiability compact 7=> consequence compact;

(2) satisfiability compact #£= consequence compact.

(Hint for (1): Let the logical connectives be V (binary), and True, ko, ..., kn,... all
zero-ary. A model M is a function M : { True, pi, ki : i € w} — {0,1}. meana(True) =
1 for every M and meaning of V is the standard meaning of the biconditional «.
Exclude those models from M in which (V i > 0) ®(k;) = 1 but M(ke) = 0. [This
logic is not strongly nice!] Observe that for M = { True,pi, ki : i € w} x {1} we have
M |= Fc. Hence sat. completeness trivially holds.)

(Hint for (2): Let £ have True and V as the only logical connectives. Exclude
the models M with M = F;. Then sat. completeness fails (we have infinitely many
propositional variables). Show that cons. completeness remains true.) <

EXERCISE 3.2.3: Find natural conditions under which “=" and/or “<=" of Ex-
ercise 3.2.2 above hold.

(1) We say that £ has weak false if (3p € Fc) such that (VI € M) M |~ ¢. Show
that under this assumption

cons. compact == sat. compact.

e« ofe @

3.2. MAIN THEOREMS
(2) We say that L has negation if
(Vo € F)(3¢ € F)(VIN € M)[M |= ¢ = M - o).
Show that under this assumption

sat. compact = cons. compact.

(3) Try to find weaker sufficient conditions.
(4) Show that for nice logics

L has weak false <= £ has negation.

For the whole matter [ANS84] might contain useful info. «

* %k

Recall that in Definition 3.1.1 above (and also in the logics studied so far), there was
a parameter P, which was the set of atomic formulas. The choice of P influenced what
the set F of formulas would be. Thus in fact, our old definition of a logic yields a family

{(FP,MP =P} : Pis a set)

of logics. The members of this family do not differ significantly except that the cardi-
nality of P matters sometimes.

DEFINITION 3.2.3: (General Logic)
A general logic is a class

LY {£* : aisa cardinal},

where for each cardinal @ L£* = (F*, M* %) is a logic in the sense of Definition 2.1
that is, F'* is a set, M® is a class, and F*C M® x F°.
L is called a (strongly) nice general logic iff conditions (1-3) below hold for L.
(1) L£* is a (strongly) nice logic (cf. Def.3.1.1) for each cardinal a.
(2) For each cardinal a the set P* of atomic formulas of the logic L is of cardinality
a. i a and) are cardinals with A < a then P* C P* (which implies that
FAC F).
(3) For all cardinals A < a

{mean)y : Me M*} = {(meangy) [F* : Me M},

(cf. item (2) of Def.3.1.1 for mean). Intuitively, this requirement says that £* is
the “natural” restriction of £L*. <«

c ofe @

3. BRIDGE BETWEEN LOGICS AND ALGEBRAS

REMARK 3.2.3.1: As a corollary of item (3) of Definiton 3.2.3 above we note that
for all cardinal a, A, if I'U {¢} € F* N F? then

TE%p & TEy. <

DEFINITION 3.2.4 (Algebraic Counterpart of a General Logic):
Let L = {£® : a is a cardinal} be a nice general logic. Then
Algi(L) ¥ | J {Algi(£?) : @ is a cardinal},
Algy(L) ¥ | J {Alg2(L®) : a is a cardinal)

(cf. Def.3.1.2). =
THEOREM 3.2.5. For strongly nice genera! logics

Alg,(L) = SPAIlga(L).

Proof: First we prove that for any nice logic £ = (F, M, |=), Alg1(£) C Algz(L). We
note that if K is a subclass of M then there is a subset K/ C K such that F/ ~g=

F ~g (this holds because F is always a set). Now let K be any subclass of M and let

K' C K has the property above. Then function h below is a one~one homomorphism
(i.e. an embedding) of F/ ~k into Pae k' meanax(F). For each p € F

h(p/ ~k) = (meanm(p) : M€ K').

Next we prove that SPAIg2(L) C Alg;(L). Assume % C Pazexmeandy(F*) for some

cardinal A and set K C M. Let a & ||, fix any bijection from the set P* of atomic
formulas of £* onto A and let A : F* —» 2 be its natural extension to a homomorphism
onto A.

Claim 3.2.5.1: For every M € K there is some M € M® such that

(Vp € P) meang(p) = h(p)m,

where h(p)m denotes the M'® member of the sequence h(p).

PROOF OF CLAIM 3.2.5.1: Fix any M € K and assume that h(p)sx = meany(1h;)
for some formula 7§, € F*. Then, by (3) of Def.3.2.3, there is some 9' € M* with
meang,(‘y;‘) = meang, (‘). Let sam : P® — F< be the substitution defined by

(o) sm(p) £ 4. %

Then condition (5) of Def.3.1.1 gives a model Nt € M® with meani(p) = meang, (vhz)- 8

c o) @®

3.2. MAIN THEOREMS

Now for each It € K we can define a nonempty class M(MM) C M® as follows.

M(D) = (Ne M® : (Vp € P*) meang(p) = h(p)m} -

Let K’ ¥ U{M(M) : M € K}.
Chim 302-5-2: Fa/ ~K'§ m-
PROOF OF CLAIM 3.2.5.2: Fix an M € K and let sax be the substitution in (e) above.

It can be proved by induction on the complexity of formulas that for any formula ¢ € F®
and for any N € M(M)

h(p)am = meangz(p(sm)) = meang(y),

where ¢(sam) is obtained from ¢ by substituting ssx(p) for each atomic formula p oc-
curring in ¢. Now h gives the required isomorphism between F®/ ~: and ¥, since for
all formulas ¢, € F® ~

h(e) = h(¥) ff ¢ ~x 9,

which proves Claim 3.2.5.2. §

Now, since F°/ ~ € Alg1(L?), the proof of Theorem 3.2.5 is completed. §

DEFINITION 3.2.5: A general logic L = {£® : a is a cardinal} is satisfiability (con-
sequence) compact if for each cardinal a the logic £* is satisfiability (consequence)
compact. <«

For an arbitrary class K of algebras,

UpK &' 1 {P.c;%:/F : F is an ultrafilter over the set I, and (Vi € I)%; € K} .

We say that K is Up—closed if UpK C K, in other words, K is Up—closed if it is closed
under taking ultraproducts.
Our next theorem gives a sufficent condition for sat. compactness of a general logic.

THEOREM 3.2.6. Assume L is a strongly nice general logic. Then

(Algi(L) is Up—closed) = (L is sat. compact).
Proof: Welet L = {£* : a is a cardinal} We give a proof for the compactness of L =
(F*,M“,[=¥). For other cardinals the proof is similar and is left to the reader. Assume

' C F* and
(VE Cu T') T has a model.

Then we may assume that I' = {©o,©¥1,...,¥ns- - }new and

(Vk € w)(3T € M¥) D Y {@o,---,1} -

3. BRIDGE BETWEEN LOGICS AND ALGEBRAS

Let such MMy's be fixed. Let mean; ' meangy . Let A & meany(F¥) € Algy(L).

Then A, € Alg (L) also holds (cf Exercise 3.1.3). Let P be the set of atomic formulas
of £¥. Then the function mean, : P¥ — A; is a valuation of the variables into UAx. Let

F be a non-principal ultrafilter over w, and let 2 df Pireo2i/F denote the ultraproduct
of algebras A, w.r.t. F. We define the function v :w — A as follows:

v(i) o (meani(pi): k€ w)/F.

See Figure 3.1 below.

(1)

meang m%‘ v

Ao A = A

Figure 3.1

By assumption, 9 * ¢; for every ¢ < k. Thus, for every ¢ < k € w, we have the
following:

W = i
{ by Definition 3.1.1 (3)(ii)
My = TrueVyp;
{ by Definition 3.1.1 (3)(i)
meany(True) = meani(p;)

1
A = (pi = True)[meany].

We derived that (Vk € w)(Vi < k) Ui | (pi = True)[meany], i.e. for every i € w,
{k € w: A = pi = True|mean]} € F. Using Loé’ theorem, we have that

(Vi € w) A k= (i = True)[v].

Since by our assumption Alg; (L) is Up—closed, A € Alg;(L). Thus (3 cardinal a > w)
(3K C M®) % = F°[~. Let iso denote this isomorphism. Let B =' F/ ~, and

let w4 isoov (i.e. w is the couuposition of v and is0). Then
(Vi € w) B = (p;i = True)[w]

that is,

3.2. MAIN THEOREMS
(Vi'€ w) @ilw(pio),- - ., w(pi.)]® = True[w]®.

Let P denote the set of atomic formulas of £®. Let s : P° — F° be such that
for all p € P¥ s(p) is an element of the congruence class w(p). For every i € w, let
i € F* be ¢i(pio/3(Pio)s- - -, Pin /3(pi,)), where all the atomic formulas (elements of
P*) occurring in ¢; are among {pi,,-.-,pi. }- Then for every : € w we have,

ils(Pis)/ ~K.-- -1 8(pin)/ ~k]® = True®
J (~k isa congruence on {"')

@i($(Pio)s - - - 1 8(Pin))/ ~x = True/ ~x
s
(1) $il ~x = Truef ~k .

Let M be any model belonging to K. Then for every i € w we have M =* ;. Then,
by (5) of Definition 3.1.1 (semantical substitution property),

(3N’ € M®)(Vi € w) meang. (v;) = meand (True).

Since True and ¢; belong to F, by (3) of Def.3.2.3, there is a model 1 € M“ such
that

(Vi € w) meanf(pi) = meang,(p;) and
meang(True) = meang, (True).

Then, by Definition 3.1.1 (3),
(Vi ew) NEY i,

which proves Theorem 3.2.6. §

Our next theorem states that the condition of Theorem 3.2.6 above is sufficient and

also necessary for cons. compactness, and so for strong completeness (cf. Theorem 3.2.8
below).

THEOREM 3.2.7. (f. [ANS84) Thm.2.8)
Assume L is a strongly nice general logic. Then

(Algi(L) is Up—closed) <= (L is cons. compact).

Proof of (=>): One can push through the proof of Theorem 3.2.6 for this case, as
follows. Now we want to prove {p; : i € w} £ ¢ from the assumption {po,...,ps} E“
y for each k € w. Change MM, in the above proof such that M =* {wo,...,ps} and
M, £ . Drag this “}“ ¢” part through the whole argument in exactly the same
style as “=* ;" was treated in the original proof. Then in line (}) of the proof above
we have (Vi € w) $i/ ~x= True/ ~x and] ~x+# True/ ~x for some class K C M®.
Now we cannot choose an arbitrary 1 € K but we can infer that there exists some
M € K such that (Vi € w) M = ¢; and M = . Thus, again by (5) of Def. 3.1.1

e o @

3. BRIDGE BETWEEN LOGICS AND ALGEBRAS

and by (3) of Def.3.2.3, there is an M € MY with M = {p; : i € w} and N £~ ¢, as
was desired. |

Proof of (¢<=): Fix any set I and assume that for each i € I 9; € Alg;(£*) for some
cardinal); that is (by Theorem 3.2.5),

A; C Pmek; muui\,‘ F‘\").

Now let A %' sup{); : i € I'} and define K C M* as

K% (e M : (3 € @AM € K) meandi = mean; [F¥}.

Then P &' Pic;%i C Pamexmeany(F*) by (2) and (3) of Def.3.2.3.

Let o & |'Bl, fix any bijection from the set P of atomic formulas of £* onto P (the
universe of B) and let h : F* —» P be its natural extension to a homomorphism onto
B. For each X C I define the congruence Rx of P as follows.

quéf{(a,b)ezP el X=b[X}.
Claim 3.2.7.1: Let h and Rx be as above. Then for any X C I there is some

Mx € M® such that

(i) (VQO,'b € Fa) [(h('P)’ h('l’)) € RX = ¢ ~Mx ¢];
(i) f X CY C I then Mx C My C M°.

PROOF OF CLAIM 3.2.7.1: Recall that ¢ C Pgexmmng‘,‘(F‘\). Fix some X C I.

Then PB/Rx = PiexU; obviously holds. Thus there is some Kx C K such that
PB/Rx C Paekx meangy(F*).

Now it can be proved (cf. Claim 3.2.5.1) that for every M € Kx there is some 91 € M
such that

(Vp € P%) meangy(p) = h(p)m,

where h(p)a denotes the ' member of the sequence h(p).
For each M € Kx we can define a nonempty class M(2) C M* as follows.

M) = (e M® : (Yp € P*) meangi(p) = h(p)m)} -

Let Mx %' {J{M(MM) : M € Kx}. Then Mx has property (ii) above by definition. It
can be proved that Mx also has (i) (cf. the proof of Claim 3.2.5.2). §

By Claim 3.2.7.1 (i) above and by Fact 3.1.2.1, for each X C I thereisaset 'x C F¢
such that

(Yo, ¥ € F°) [(h(p),h(¥)) € Rx = ¢ ~rx ¥].
Moreover, by (ii) of the above claim, for any X,Y C I,

(* XCY = TIyCTyx.

e oo @

3.2. MAIN THEOREMS

Claim 3.2.7.3: Let F be any filter on I and let T %' (J{T'x : X € F}. Then for every
@9 € F°
g~y = (AXe€F)p~ryv.

PROOF OF CLAIM 3.2.7.2:
First, assume that (3X € F) ¢ ~r, ¥. Then, since 'x C T, ¢ ~r ¢ obviously holds.
On the other hand, assume ¢ ~r %. Then I' 2 ¢ V4. Then, by the cons. compact-
ness of L%, there is some A C, T’ with A | ¢V¥. Say, A = {x0,.--,Xn-1}- Since
ACT,(Vj<n)3X; € F) x; €Tx,. Let X ¥ N{X;:j < n). Then X € F, since
F is afilter. Now ACTx,U---UTx__, C I'x holds by (#) above, thus I'x |=® ¢V,
which implies ¢ ~r, ¥. B

Now we want to prove that P/F € Alg,(L). We show that B/F = Fo/ ~p. That is,

(Vo9 € F°) [h(p) ~r h(¥) <= ¢ ~rv]
holds. Indeed,

h(p) ~5 h(¥)
= (X €F) (h(p)h¥)) € Rx

Claim 3.2.7.1 (i
"V Ax e F)pra v
Claimg 3,2.7.2
g Y ~r ¢’

which completes the proof of Theorem 3.2.7. We note that we proved that Alg,(L) is
closed under taking arbitrary reduced products (not only ultraproducts). §
THEOREM 3.2.8:
Assume L = {£® : a is a cardinal} is strongly nice general logic. Then
Alg;(L) is a finitely axiomatizable quasivariety
A=
(3 Hilbert-style F)(V cardinal a)(l- is strongly complete and strongly sound for £2).

To prove Theorem 3.2.8 we need the following claim.
Claim 3.2.8.1: For every cardinal a > w and for every quasiequation ¢

Alga(L%) g = Alg(L) g

Proof of Claim 3.2.8.1: Fix a cardinal a and a quasiequation g with Alg2(L*) = ¢.
Let A € Alga(L®) for some cariinal a. Then there is some M € M* with A =
meangy(F*).

First assume that « < a. - + (3) of Definition 3.2.3, there is an (M € M?)
meand, | F* = meang,. Then a C mun‘,',({'“) € Alga(£?), thus A [= g, since
quasiequations are preserved under taking subalgebras.

e« of)s @®

|

3. BRIDGE BETWEEN LOGICS AND ALGEBRAS

Now let a > a and assume that 2 }& g[k] for some evaluation k of the variables. Say,
let k(z;) ¥ meang(1:)) (1 < i < n), assuming that z,,...,z, are the only variables
occurring free in ¢. Assume that the atomic formulas occurring in the formulas 74, ..., va
are among p;,, ..., pi, and let s be the following substitution:

(V1<) <m) s(p;) ¥ pi,.
Then, by (5) of Definition 3.1.1,
(3N € M®)(V1 < i < n) meangy(7i) = meang(71i(Pi, /P1s- - -, Pima /[Pm))-

By (3) of Definition 3.2.3, (3N' € M?) meang;, | F* = meang,. Now, let B ef meang,

and let &'(z;) &' meang, (Yi(P1,. . ,Pm)). Then A £ g[k] implies B & g[k], which
contradicts to ‘B € Algy(L?). §

Proof of (=) of Theorem 3.2.8: Assume that Az is a finite set of quasiequations
axiomatizing Algz(L). Since Algi(L) = SPAIgy(L) (cf. Theorem 3.2.5), by Claim
3.2.8.1 above, Az also axiomatizes the quasivariety generated by Algz(L®) for each
infinite cardinal a. Thus, by Theorem 3.2.1, for each a > w there is a finitely complete
and strongly sound Hilbert-style inference system + for £=. Moreover, checking the
proof of Theorem 3.2.1 one can observe that the same inference system + works for
every a > w. We show that for any cardinal), I is strongly complete for £*. Assume
that for some FTU{p} C F* T = ¢. Then there is some a > w such that M'U{p} C F*
and I' ® ¢ (cf. Remark 3.2.3.1 above). Since quasivarieties are Up—closed, £ is cons.
compact by Theorem 3.2.7. Therefore there is a finite subset T of I" such that ¥ * ¢.
Thus, by finite completeness T - ¢, which implies I' I ¢ by the definition of derivability
(Def.3.1.5). B

Proof of (<) of Theorem 3.2.8: If - is strongly complete then it is also finitely
complete. Thus, by Theorem 3.2.1, the quasivariety generated by Alg;(L®) is finitely
axiomatizable for each cardinal a. On the other hand, strong completeness implies cons.
compactness, as follows. Assume that for some TU {9} C F* T ®¢. Then T} ¢,
which implies by Definition 3.1.5 that there is a finite subset ¥ of I such that X F ¢.
Then, by soundness, £ =" ¢. Now, by Theorem 3.2.7, Alg;(L) is Up—closed. But by
Theorem 3.2.5, it is also closed under S and P, thus it is a quasivariety. This and the
fact that the quasivarieties generated by Alg,(L£®) are finitely axiomatizable (with the
same set Az of quasiequations, as the proof of Theorem 3.2.1 shows) imply that Alg; (L)
is a finitely axiomatizable quasivariety.

EXERCISE 3.2.4: Show that Ls and S5 have strongly complete and sound Hilbert-
style inference systems. Give such calculi. (Hint: Use that the corresponding classes
of algebras (Alg;(Ls) = BA and Alga(Lgs) = Cs;) generate finitely axiomatizable

varieties.) <«

« o@s @

e

3.3. UNIVERSAL ALGEBRAIC TOOLS
3.3. Some universal algebraic tools for algebraic logic

So far we have seen that the algebraic counterparts Alg,(L) of many logics are qua-
sivarieties. However, there are logics for which Alg;(L) is nicer, it is a variety (that
is, Alg)(L) is closed not only under S and P but also H). Usually, it is a difficult
task to prove that a certain class of algebras is closed under homomorphism. Theorem
3.3.1 below gives us considerable help by proving that certain quasivarieties are already
varieties.

DEFINITION 3.3.1:

(i) A class K of algebras is said to have a discriminator term iff there is a term
7(z,y, z,u) in the language of K such that in every member of K we have

r(z,y,2,u) = {z, ifz=y,

hau)= u, otherwise.

(ii) A variety V is called a discriminator variety if the class Sir(V') of subdirectly
irreducible members of V has a discriminator term. «

EXERCISES 3.3.1:

(1) Show that if K has a discriminator term then K consists of simple algebras.

(2) Assume that the Boolean operations —,A,0,1 are available in K and that they
satisfy the Boolean axioms (i.e. every element of K is a Boolean algebra with
some further operations). This property will be referred to as ‘K has a Boolean
reduct’. Prove that K has & discriminator term iff there is a term ¢(z) in the
language of K such that

c(z)_{o, fz=0,
- 1, otherwise

in every member of K. (Hint: 7(z,y,z,u) = [(z@y) Au] V [z A —c(z B y)].
Here ® denotes symmetric difference.)

(3) Check how much simplification one can achieve in the proof of Thm.1.3.3.1 below
under assuming that K has a Boolean reduct (cf. item (2) above). =

THEOREM 3.3.1. Let K be a class of similar algebras. Assume that K has a dis-
criminator term. Then

HSP K = SPUp K.

To prove Theorem 3.3.1 we need the following lemmas.
Lemma 3.3.1.1: Assume that the class K of algebras has a discriminator term. Let I
be a set and {A; :i € I} C K. Let A C P;c/%; and let 8 € Con(A). For any a,b € A,
let Eq(a,b) ¥ {i € I : a; = b;}. Then

(1) (¥(a,b),(c,d) € 6)(3(c,) € 6) Eq(e, f) = Eq(a,b) N Eq(c,d).
(2) (Va,b,c,d € A)[((a,b) € 8 & Eq(a,b) C Eq(c,d)) = (c,d) €].

- 6F =

c of)e ®

3. BRIDGE BETWEEN LOGICS AND ALGEBRAS

Proof of Lemma 3.3.1.1: Let 7 be a discriminator term on K.

Let {a,b),(c,d) € 0, and let ¢ = 7(a,b,c,a), f = 7(a,bd,d,b). Then (e, f) € 6.

Assume i ¢ Eq(a,b) N Eq(c,d). f i ¢ Eq(a,b), then e; =a; # b, = fi. f i € Eg(a,bd),
then i ¢ Eq(c,d), thus ¢; = ¢; # di = fi. Thus s ¢ Eq(e, f), proving Eg(e, f) C
Eq(a,b) N Eq(c,d).

Assume ¢ € Eg¢(a,b) N Eq(c,d). Then ¢, = ¢; = d; = f;, thus i € Eq(e, f), proving
Eq(a,b) N Eq(c,d) C Eq(e, f). By this we have proved (1).

To see (2), assume (a,d) € 8 and Eg(a,d) C Eq(c,d). By (a,b) € 0, we have c =
7(a,a,c,d)fr(a,d,c,d) = z. We will show that z = d. If a; = b;, then ¢; = d; by
Eq(a,b) C Eq(c,d), hence z; = d;. If a; # b;, then z; = d; by the choice of r. Thus
(¢, d) € 6, proving (2). 1
Lemma 3.3.1.2: Let K, I,%;,%,8 be as in the formulation of Lemma 3.3.1.1. Then
there is a filter F over I such that

() (Ya,b € A)((a,b) € 8 < Eq(a,b) € F).

PROOF OF LEMMA 3.3.1.2: Let K, I,%;,%,6, T be as above. Let

Fy {X € I:X 2 Eqg(a,bd) for some (a,b) € 6}.

We show that F is a filter over I, as follows.

F is closed under finite intersections: X,Y € F => X NY 2 Eq(a,b) N Eg¢(c,d) for
some (a, b), (c,d) € 6. Then Eg(a,d)N Eg(c,d) = Eq(e, f) for some (e, f) € 6 by Lemma
3.3.1.1 (1). Thus X NY D Eq(e, f), for (e, f) € 6.

From the definition of F it follows that I € F and that

VWChHEXeFY2X=YeF
We have seen that F is a filter over I. It remains to show that F satisfies () above.
Eq(a,b) € F <= (I(c,d) € 0) Eg¢(c,d) C Eg(a,bd) so, by Lemma 3.3.1.1 (2), (a,b) € 6,

proving Eq(a,b) € F => (a,b) € 8. The other direction follows from the definition of
F. 8

Recall that for an arbitrary class K of algebras,

P'K E'1{Pic/%:/F : F is a filter over the set I, and (Vi € I)%; € K} .

The following is an easy fact of elementary universal algebra (cf. also e.g. Burris-
Sankappanavar [BS81] or Németi-Sain [NS81]).

Lemma 3.3.1.3: Let K be an arbitrary class of similar algebras. Then
P*K C SPUp K.

PROOF OF LEMMA 3.3.1.3: Let I be a set, {¥; : i € I} C K, F a filter over I,
AL P /N /F € PPK. Let

U % {G : G an ultrafilter over I and G D F}.

@ @

@

3.3. UNIVERSAL ALGEBRAIC TOOLS

Let h: % — P(Pic;%;/G : G € U) be defined as h(a/F) = (a/G : G € U). It is not
hard to check that A is an embedding, therefore % € SPUp K. §
Proof of Theorem 3.3.1: Let B € HSP K be arbitrary. Then there are I,%,,0,%
as in the formulation of Lemma 3.3.1.1 such that B = 2/6. By Lemma 3.3.1.2, there
is a filter F on I such that /6 C P;c/%;/F, thus B € SP* K. This shows HSP K C
SP* K. By Lemma 3.3.1.3, SP* K C SSPUp K = SPUp K, thus HSP K C SPUp K.

On the other hand, SPUp K C HSP K, by Up C HP, PH C HP, SH C HS, and
PP = P. Thus we completed the proof of Theorem 3.3.1. §
COROLLARY 3.3.1: Assume K has a discriminator term. Then

(i) K is contained in some discriminator variety.

(ii) The subdirectly irreducible members of HSP K are exactly the subdirectly irre-

ducibles of SUp K.

Proof:

(ii): Let 2 be a subdirectly irreducible member of HSP K. By Theorem 3.3.1, % €
SP(SUp K). Then 2 is a subdirect product of algebras from SUp K. By
irreducibility, then 2 € SUp K. This proves (ii).

(1): The discriminator term 7 which works for K also works for SUp K, since the
discriminator property

Vz,y,z,u ([z # y = 7(z,y,2,u) = u] A [r = y = 7(z,y,2,u) = 2])

is defined by a universal formula, thus is preserved under SUp. Thus SUp K
has a discriminator term. But by (ii) the class Sir(HSP K) of subdirectly irre-
ducibles of HSP K is in SUp K. Then by definition, HSP K is a discriminator
variety. §

- 69 —~

« e@e ®

3.4. DISTINGUISHED LOGICS

3.4. Distinguished Logics

In this section we give a brief summary of the logics defined so far and give some
further ones. Let P be an arbitrary but fixed set of atomic formulas. For each of the

logics in this section, the class of models (corresponding to P) will be a subclass of the
following one:

Modo ' {(W,v) : W is a set and v : P — P(W) is a function) .

In all our logics we will have the Boolean logical connectives and some extra-Boolean
logical connectives. According to a rather respectable (and useful) tradition an extra-
Boolean connective is called a modality iff it distributes over disjuction. This will not
be true for all of our connectives (Homework: check which ones). Thus, regrettably we
sometimes ignore this useful tradition. For this tradition cf. e.g. Venema [V92] Appendix
A (pp. 143-152). When specifying a logic £, we will discuss only its extra-Booleans,
since the Booleans are standard. For a logic £, Mod(£) is the class of models of £. For
w € W, w It ¢ means that ¢ is true at w.

(1) Ls: propositional logic (cf. Def.2.3). Mod(Ls) %' Mod,.

(2) §5: Modal logic S5 (cf. Def.2.4). Mod(S5) ' Mody. Extra-Boolean: . Its
meaning is
wikQp <= Q' eW)uw'lIFep.

(3) D: Difference logic or “Some-other-time logic”. Mod(D) 4f Mod,. Extra-
Boolean: D. Its meaning is

witDp <= (Guw' e W {w})w'lFy.

(4) Ox: x-times logic. Here x is any fixed cardinal (may be infinite). Mod({«) !
Mody. Extra-Boolean: .. Its meaning is

witQep <= BHCW)([H|=x & (Vw'eH)v'IFyp).

(5) Tw and Qn: Twice logic and n-times logic. Here Tw 4f 0, and On is Ox for

K=n<w.
(6) Lram.
Mod(Lpam) % {(W,v) € Modo : W C U x U for some set U} .
Extra-Boolean: o (binary). Its meaning is
(@) IF poyp <= 3e((ac),(ch) €W & (ac)Fyp & (ch)IF9).
(7) CreL.

Mod(CreL) 4 {(W,v) € Mod : W = U x U for some set U} .

¢ ofe @

3. BRIDGE BETWEEN LOGICS AND ALGEBRAS

The extra-Boolean and its meaning is same as in Lpar.

(8) Larrow: van Benthem's arrow logic. Mod(Larrow) & Mod(Lpam). Extra-
Booleans: o, =}, Id. Meaning of o is the same as in Lpo[R.

((ab) I+ ™" <=> ((ba) € W and (ba) I ¢)), ({ab) I Id <=>a =1).

(9) Lra: restriction of CArrow to the models of Crer. Mod(Lra) &' Mod(CreL).
Extra-Booleans and their meanings are exactly as in Lorrow.
(10) For L, cf. Def.2.5. But it is important to note that £, could be defined as

Mod(C..)dé‘ {(W,v) € Mod, : W = U for some set U} .

The extra-Booleans are “3Jv;” and “v; = v;” for i,; < n.

SUMMARY:

Ls propo<itional logic

S5 modal logic, where the accessibility relation is W x W for a set W of
“possible worlds”

D difference logic (or “some—other-time” logic)

Q2 or Tw twice logic

On n-times logic (n € w)

Ox x-times logic (x is any cardinal)

Lpar set of worlds is arbitrary W C U x U for some U, only extra-Boolean is oW

LreL set of worlds is U x U for some U, only extra-Boolean is o

Lra (logic of relation algebras) set of worlds is U x U, extra-Booleans o, ~!, Id

Larrow van Benthem’s arrow logic. Set W of worlds is as in Lpatr, extra-Booleans
are as in Lr,, but now relativized to W

Ly first-order logic restricted to the first n variables (n € w)
Low (usual) first—order logic with w many variables
Let

L = {Ls,55,D, Tw, On, Ox, LPAIR, LREL, LRA, CARROW, Ly L : 1 € w, & € Card} .

DISTINGUISHED PROPERTIES to be checked for every £ € L:
(The reason for looking at these properties is that they distinguish first-order like
logics from propositional like logics.)
dec The set of all valid formulas of £ is decidable. (Briefly: £ is decidable.)
fmp L has the finite model property (fmp).
L has the fmp EX (Vp € Fe)[Ec ¢ <= (Y € M)(IT < w == ¢)).
r.e. The set of all valid formulas of £ is recursively enumerable (r.e.). (Briefly: £ is
re.) ,

- -

c of)e @

3.4. DISTINGUISHED LOGICS

Remark: If £ is r.e. and £ has the fmp the £ is decidable.
fax Algi (L) is finitely axiomatizable (fax).
Gip £ has Godel’s incompleteness property (Gip).
L has Gip & there is a finitely axiomatizable set T of formulas of £ such
that every consistent extension of T is undecidable. That is,
(3¢ € F)(VT C F)|(¢ € T&T is consistent) = ({¢ : T |= ¢} is undecidable)].
clm The distinction between set-models and class-models counts (clm). That is:
Assume |P| < w. (P is the set of atomic formulas of £L. E.g., P is the set of
propositional variables in cases of L5 or S5 or D; and it is the set of relation
symbols [similarity type] in cases of £, or L. .)
We say that clm in the logic £ &5 (3 class-model M)
[Th(9M) is not a class (hence is not a set either, i.e., does not exist)).
unm Again assume |P| < w. (30 € M)[Th(M) is undecidable].

COMPARISON OF LOGICS IN L: (An arrow points to the place where the
property in question becomes true “moving from left to right”. Hence in principle it
should always point to a gap between two logics.)

|
D I £3
/\ Ll
Ls S5 Tw 03 I LRA Ln cuw
| (n>3)
|
|
|
|
I
1
| .
obviously obviously
propositional first-order

Figure 3.2

EXERCISES 3.4.1:

(1) Write up a detailed definition of £, as a modal logic following the hint given in
item (10) above.

(2) (Important!) Show that all the logics introduced above are nice logics. It is
especially important to do for £L,! (For L,. it is hard, needs a reformulation
of L.., and was done e.g. in Blok-Pigozzi [BP89]. C.f. also Simon [Si91] and
the references therein. It is recommended not to do this exercise for £, at this
point.)

(3) Check which claims represented on Figure 3.2 were proved in the text. Try to
prove the missing ones. <«

o@es @

@

REFERENCES

REFERENCES

[AH91] Anellis,H. and Houser,N., The nineteenth century roots of universal algebra and algebraic
logic: A critical-bibliographical guide for the contemporary logician, In: Algebraic Logic (Proc.
Conf. Budapest 1988) Collog. Math. Soc. J. Bolyai Vol 54, North-Holland, Amsterdam (1991),
1-36.

[ANS84] Andréka,H. Németi I. and Sain,l., Abstract model theoretic approach to algebraic logic,
Preprint (1984), updated in 1988, 1992, 70pp.

[BP89) Blok,W.J. and Pigozzi,D., Algebraizable logics, Memoirs Amer. Math. Soc. Vol 77,396 (1989),
vi+78 pp.

{BS81} Burris,S. and Sankappanavar,H.P., A course in universal algebra, Graduate Texts in Mathe-
matics, Springer-Verlag, New York (1981).

[BMT85) Henkin,L. Monk,J.D. and Tarski,A., Cylindric Algebras Part I, Part II, North-Holland,
Amsterdam (1985).

[Ma91] Maddux,R., The origin ..., Studia Logica Vol L, No 3/4 (1991), 421456 pp.

[M76] Monk,J.D., “Mathematical Logic,” Springer-Verlag, 1976.

[N91] Németi,l., Algebraisation of quantifier logics, an introductory overview, Studia Logica Vol 50,
No 3/4 (a special issue devoted to Algebraic Logic, eds.: W. J. Blok and D. L. Pigozzi) (1991),
485-570. (Strongly updated and expanded [e.g. with proofs] version is available from author.)

[P89] “Possible worlds in Humanities, Arts and Sciences,” W.de Gruyer, Berlin-New York, 19889, pp.
450 p.

[SN81] Sain,l. and Németi,l., Cone-implicational subcategories and some Birkhoff-type theorems,
In: Universal Algebra (Proc. Conf. Eeztergom Hungary 1877) Colloq. Math. Soc. J. Bolyai —
North-Holland Vol 29 (1981), 535-578.

[S80/a) Sain ., Dogmas on Language, Manuscript (in Hungarian), 1980.

[S80/b) Sain,1., Clognition, Learning, (Rats and) Logic, Manuscript (in Hungarian), 1980.

[Si91) Simon,A., Finite Schema Completeness for Typeless Logic and Representable Cylindric Alge-
bras, Algebraic Logic (Proc. Conf. Budapest 1988) Collog. Math. Soc. J. Bolyai Vol 54, North-
Holland, Amsterdam, 665-670.

[Si92] Simon,A., What the Finitization Problem is Not?, Banach Algebraic Logic Conference, to
appear.

[V92] Venema,Y., Many-Dimensional Modal Logic, Ph.D. Dissertation, Institute for Logic, Language
and Computation, Univ. of Amsterdam.

-3

o@e @

@

-3~

RELATION ALGEBRAS FOR REASONING ABOUT TIME, SPACE, AND
PROGRAMS

ROGER D. MADDUX

May 11, 1993

ABSTRACT. This paper presents a brief survey of relation algebras and the calculus of relations,
followed by two examples of their use in computer science: constraint satisfaction problems
for relation algebras and a relational model for Dijkstra’s axiomatic semantics for computer
programs (centered on the predicate transformers called “weakest precondition” and “weakest
liberal precondition®). The former topic is illustrated by the “interval algebrs”, a relation
algebra which arcse from Allen’s work on temporal ressoning, and by “compass algebras”,
which are designed for similar reasoning about space. It will be shown here that the constraint
satisfiability probiem is NP-compiete for almost all compass and interval algebras.

1. THE CALCULUS OF RELATIONS AND RELATION ALGEBRAS

Composition of binary relations was introduced to logic by Augustus De Morgan [34], [35]
(see [36], pp. 55-57, 208, 221, etc.). De Morgan obeerved that the syllogism “every A is a B,
every B is a C, 50 every A is a C” remains valid if the copula “is” is replaced by any transitive
relation L. De Morgan went further, noting that if LM is the composition of the relation L with
the relation M, that is, A is an LM of B just in case A is an L of an M of B, then the following
syllogism is valid: “if every Aisan L of 3 B, and every Bisan M of a C, then every Aisan LM
of a C.” De Morgan [35] (see [36), p. 222) denoted the converse of the relation L by L~! and its
contrary by not-L, and observed that these operations commute: the converse of the contrary of
L is the contrary of the converse of L. Starting with [37], Charles Sanders Peirce created algebra
from De Morgan’s logic of relations, following the model of George Boole [7], [6], who created
algebra from the logic of classes, “and after many attempts produced a good general algebra of
logic, together with another algebra specially adapted to dyadic relations (Studies in Logic, by
members of the Johns Hopkins University, 1883, Note B, 187-203). Schroder developed the last
in a systematic manner” in [42] (quotation from [32]). F. W. K. Ernst Schrider’s investigation
of the calculus laid out by Peirce [39] in 17 pages extended to 649. His book remains today
the only exhaustive treatise on the calculus of relations. For additional survey and historical
material on relation algebras see (8], (12, [16], {17], [18], (26], (27}, (28], 29], [30], [44], and [46].

Cousider an arbitrary set, called the “universe of discourse” or simply the “universe”. The
universe could, depending on the situation and purposes, contain all possible mathematical
objects, orallMofamuhine,orallrulnumbm,orjustaﬁnitentofleuen. The
fundamental operations of the calculus of relations are natural set-theoretical operations on
binary relations over the universe. In addition to the Boolean operations of union, intersection,
and complementation, there are the “relative” (as Peirce calls them), or “Peircean” (as Tarski
calls them) operations, namely the binary operation of “relative addition” (Peirce’s name), the
binary operation of “relat’ve multxphcauon (Peirce’s name) or “composition” (De Morgan’s
name) and the unary operaiion of conversion. There are also four distinguished relations, namely

Key words and phrases. relation algebras, interval algebras, compass algebras, constraint satisfaction prob-
lems, relational semantics, predicate transformers, weakest preconditions.

N

ROGER D. MADDUX

the universal relation, the empty relation, the identity relation, and the diversity relation. The
definitions of these operations and distinguished relations are listed below. In these definitions,
z and y are arbitrary binary relations on the universe. By a binary relation we simply mean a
set of ordered pairs. The ordered pair whose first element is p and whose second element is ¢ is
denoted (p, ¢q).

snionof zand y z+y={{p.q):(pe) €z or {p,g) €y}
intersectionof zandy z-y= {{p,q) : (p,q) €z and {p,q) €y}
complement of z T = {(p,q) : p,q are in the universe, but (p,q) ¢ z}

relative ssmof zandy zty = {{p,r) : for every ¢ in the universe, (p,q) € z or (q,r) € ¥}
relative prodect fz and y z;y = {{p,r) : for some g, (p,q) € z and (g, r) € y}

converse of z #={{g,p): {p.q) € =}

sniversal relation 1 = {{p,q) : p,q are in the universe}
empty relation 0o=¢

tdentity relation 1’ = {{p,p) : p is in the universe}

dsversity relation 0 = {(p,q) : p,q are in the universe, p # ¢}

We are using nineteenth century notations. Both De Morgan and Peirce denoted the compo-
sition of z and y simply by “zy”, but Schroder [42] used “z;y”, as is done here. The notation
“z|y” was used by Whitehead and Ruseell [53] and adopted by Tarski and his school [11]. Peirce
introduced the notation “#” for the converse of z. Schroder introduced “1'™ and “0’” for the
identity and diversity relations. Here are some laws in the calculus of relations. These laws hold
for every possible universe, and all possible binary relations z, y, and z.

W) (z+Y+z=z+@+2)
(i) c+y=y+z
(ili)z=Z+y+z+y
Givyz-y=F+7
(V)1=z+7F

(vi) 0=T1

(vi)) z;(y;2) = (z;9):2

(vii) z;1’ ==

(ix) (z+v);iz=2;24y;2
(x) ==

(xi) (z+yy =2+7
(xii) (z;y)" = §;%

(xiil) £,FT+Y=7

(xdv) =1

(xv) zty =%y

A relation algebra is an algebra of the form

A= <A1 + Ty 0, 1: tv ;,vy 0’, l,)]
which satisfies the identities (i)}-(xv) listed above. The first six identities say that (4,+,-,7,0,1)
is a Boolean algebra (called the Boolean part or Boolean reduct of %). One of the most significant
laws of the calculus of relations is De Morgan’s “Theorem K™ (see [36, pp. 186-7, 224] or [30,
p. 434-5]), which asserts that the following statements are equivalent:

z;iy<z 57K T<E

RELATION ALGEBRAS

After minor Boolean transformations Theorem K becomes the cycle lew, that the following
statements are equivalent:

zy-z=0 £,z-y=0 ziy-z=0

The cycle law and De Morgan’s Theorem K hold in every relation algebra because they can be
proved from axioms (i)—(xv). There are many other equivalent axiomatizations for relation alge-
bras. For example, equations {ix} {xiii) can be replaced with the cycle law or with Theorem K.

The algebra containing all binary relations on the universe U is denoted Re(U). Identities (i)~
(xv) hold in Me(U'), s0 Re(U) is a relation algebra. Relation algebras are defined by equations,
80 it follows that subalgebras, homomorphic images, and direct products of relation algebras are
again relation algebras. The algebras that can be obtained from algebras of the form Re(U) by
forming subalgebras, homomorphic images, and direct products are called representable relasion
algebras. Roger Lyndon [22] showed that not all relation algebras are representable. It follows
that the axioms (i)-(xv) are incomplete, in the sense that there are equations which hold in every
algebra of the form Me(U) but cannot be derived from (i)~(xv). J. Donald Monk [33] proved
that the equations which bold in every algebra of the form Re(U') cannot be derived from any
finite set of equations.

For a relation algebra 91, let At be the set of atoms of (the Boolean reduct of) A. (An
element z of A is an atom if z # 0 and, for every yin A, either z .y =zorz-y=10.) If 2
is an atom of %, then 8o is #. The relation algebra 2 is said to be atomic if its Boolean reduct
is atomic, that is, for every element y of %, if y # 0 then there is some atom z of A such that
z < y. Similarly, U is said to be complete if its Boolean part is complete, that is, every subset
X of U has a least upper bound 3 X and greatest lower bound [JX. It turns out that if 2 is

both complete and atomic, then the structure of 2 is entirely determined by its atoms and the
action of the relative operations on the atoms. For a precise statement of this fact, define the
atom structure of A to be MA = (AtN,C,",I), where

C = {{a,b,c):a,b,cE At and a;d>c} and I={a:a€ AtAanda<l})
For any atoms g, b, c of %, let
[a,b,¢] = {(a,b,¢), (&, c,8), (5, &,8), (8,4 8),(%,a,B),(c.},a)}.

By the cycle law, C is a union of sets of the form {a, b,c]. We refer to such sets as cycles. Then
the identity element, the converse of z, and the relative product of 2 and y can be computed
from the atom structure according to

=1 #=%{8:2>a€At%)
ziy= Y {c:forsome a,b € AtU, 2> 4a,y > b, (a,b,c) €C}

Hence to specify a complete atomic relation algebra it suffices to list its atoms, to list those atoms
which are in /, to indicate which atoms are converses of which other atoms, and, finally, to list
the cycles [a,b,c]. This is especially convenient when 2 is finite. We present several examples
of relation algebras using this method.

2. INTERVAL ALGEBRAS.

To define the interval algebra 1A [1], [2], take the universe U to be the set of all “events”,
where an event is simply a pair of real numbers, the second of which is larger than the first.
The first number in an event is its “starting time”, the second its “ending time”. (Our model

¢« ofs @

ROGER D. MADDUX

for time here is just the real numbers.) Seven binary relations on events are defined in the list
below, where z,2’,y, ¥ are real numbers and (z, z’), {y, /') are events.

identity: ' ={({z,2"),(y.¥)):z=y< 2z =y}
precedes: p= {{(z,2'),(y,¥)):z2 <2 <y <y}
duringg d= {{(z,2'), (V) : ¥y <z <2 <y}
overlaps: o= {{(z,7), (1 ¥)) : 2 <y <7 <y}
meets: m= {{{z,z'),{,¥)):z < =y <y}
starts: s={{{z,2),(n.¥N):z=y< 2 <y}
finishes: f={{(z,2'),{n,¥)):¥<z< 2’ =V}

The seven relations listed above are studied in [50] and are used in some computer programs [5],
[31], [43]). These relations generate a finite subalgebra of Me(U/), called the interval algebre, or
simply the IA. The IA has 13 atoms, namely ', p, §, d, d, 0, 3, m, th, 5, &, £, and f. (It turns
out that p alone will generate the IA, and so will each of the elements §, m, 4, o, and & [21],
{20, Theorem 4.4].) If we start with the rational numbers instead of the reals, or, in fact, any
dense linear ordering without endpoints, then the resulting algebra is isomorphic to the IA. But
if we use some other infinite linear ordering, then the relation algebra generated by 1’ p, d, o,
m, s, and f may not be finite, and the relations listed above may no longer be atoms. This
happens, for example, when we use the integers. If we start with a finite linear ordering on U,
then the subalgebra generated by ', p, d, 0, m, s, and f will be Re(U). Any relation algebra
obtained in this way will be called an interval algebra (while the 1A is the one obtained from the
reals or rationals). The IA has 75 cycles: [1',1’, 1], [1', 8, 8], 1, m, m], [V, p, 9], [1', 0,9}, [V, £, f],
(v',d,d], [s,1,3], [s, 8], [s,m,p], [s,p,p], [s,0,m)], [s,0,p], [s,0,0], [s,,d], [s,d,d], [m,1",m],
[m, s,m), [m,m,p], [m,p,p], [m,0,p), [m, f,8}, [m, f,0], [m, f,d], [m,d,s], [m,d,0], [m,d,d],
[P, l’»P]: [P) ‘)plt [pr m,P]; [Pn P:P], [P: °»P], [Pl fr ‘]i [P: !l m]v [P: fv plv tP- f) o]! [P, fv dl: [Pl d$.ls
{p.d,m], [p,d,9], [p.d, 0], [p.d,d], [0,1,0}, [0,5,0}, [0,m,p], [0,p,P], [0,0,m], [0,0,p], [0,0,0],
[0, £, 4}, [0, £, 0}, [o, £,d], [0,d,d], [0,d,0), [0,d,d), [£,1', f), [f,e,d], [f,m, m}, [f,p,p), [f,0,4)
[fp 0, 0], [fp o, dj’ U: f: .ﬂ; U} d’ d], [dr 1’) d]) [d) 8, dj: [d! m’P]» [d’ P»P]: [d) 0, ‘]’ [dy 0, m]’ [d’ o, p]!
{d, 0,0, [d,0,d], {d, f,d}, [d,d,d]. Although all relative products in the IA can be computed from
the cycles, it is convenient to also have the products listed in a table. The table of relative
products of atoms of the IA is given in two parts (see Figs. 1 and 2). To save space the + signs
are omitted, 8o, for example, pdoms = p+ d + 0+ m + 5. The table appeared first in [2]. It
not only shows relative products of atoms in the IA, but also shows containments for the Allen-
Hayes algebra [3], [4]. By the Allen-Hayes algebra we mean the direct product of “all” interval
algebras, i.c., the direct product of an indexed system of algebras containing one algebra from
each isomorphism type of interval algebras. The Allen-Hayes algebra contains the elements 1’,
2,5, d,d o, 3 m s 8 f, and f. They form a partition, i.c., they are pairwise disjoint and
1 =p+§+d+d+o+6+m+ﬁl+n+§+f+ . Finally, the relative product of any two of
them is contained in (and not necessarily equal to) the corresponding entry in the table.

3. COMPASS ALGEBRAS

Let the universe be the set of all points in the n-dimensional Euclidean space R”, where R is
the set of real numbers. Let R be the set of positive real numbers. For every vector v in R"
define two binary relations on R as follows:

Dy = {(x,y) : x,y € R" and for some r in R¥, x+ rv =y},
E,={{x,y):x,y€R"and forsome rin R, x4+ rv=y}.

Here are some easily proved properties of these relations.
Theorem 1. (i) Do=Eo=1 = {(x,x):x€R"},

c of)s @

RELATION ALGEBRAS

r P] d d 0 d
rir p # d d 0 3
Pilp p 1 pdoms P P pdoms
plp 2] Pl f P pdom f J
did p # d 1 pdoms Fddmf
d|d pdomf pdomi vddodeiff d dof ds¥
olo p pdon¥ dos pdomf pom vddodeiff
3|3 pdomf p dsf pdsms vddoselff - pom
m|m) pdoni dos P p dos
|k plomf daf / daf B
s|s p ? d pdomf pom 74
¥{¥ pdmf dsf d dof 3
flfr » P d pdomi dos Pom
flf » pdomi dos d ° dss

FIGURE 1. The interval algebra products, first part.
m h s 3 f /
r m ™h s & I f
pP| » pdoms p p pdoms p
p|pdsar B pdsnf § J]
d| »p 3 d pdsmf d pdoms
d| &of Iz dof d d¥ d
0 f ds¥ o dof dos pom
3| dof] dsf pom 3 dsx
m P l'ff m m dos P
wm| Us¥] dsf 7 h th
s P]] 'sé d pomn
il dof " Y] ¥ 3 d
fl m » d pm f vsf
fl m d3s 0 d vef f
FIGURE 2. The interval algebra products, second part.
-39~
w - - -

c oo @

ROGER D. MADDUX

(i) Dy = D_y = {(x,y) : forsomer inR*, x-rv =y},

(m) Dy;Dy = Dy,

(iv) Dy = Dyv and E, = E,, whenever r € R*, .

(V) Ev=év=Ev;Ev=Dv;bv=Dv,Dv=Dv+Dv+Do ’

(vi) Ey is an equivalence relation on R,

(vii) Dy;Dy = Dg;Dy = {{x,y) : forsome r,s in R*, x + rv + sw =y},
(viii) Ey;Ew = Eg;Ey = {{x,y) : forsomer,s iR, x +rv+sw =y},

(ix) (x,y) € E, iffy — x is in the subspace spanned by v,

(x) {x,¥) € Ey;Ew iff y — x is in the subspace spanned by v and w,

(xi) (x,¥) € Ey,;---;Ey. ify — x is in the subspace spanned by vg,...,Vpm.

For any m vectors vy, ..., ¥ € R™, let €4[vy, . . ., V] be the subalgebra of Re(R") generated
by the relations Dy,,...,Dy_. €a[v1,...,Vm] is called the n-dimensional compass algcbra de-
termined by vo, ..., ¥m. If v and w are a linearly dependent pair of nonzero vectors, then either
Dy = Dy ot Dy = Dy,. If v and w both appear in a list of vectors generating a compass algebrs,
then v can be deleted from the list, and the same compass algebra will still be obtained from the
remaining vectors. Even if the vectors are pairwise linearly independent, deleting one of them
may not result in a strictly smaller compass algebra. The structure of €,[vy,..., vm] depends
heavily on the choice of vectors. But if v;,...,Vm is a linear independent set of vectors, then
the structure of €a[vy,. .., Vm] is completely determined by m. More exactly, if v), ..., vm and
v},...,Vl, are two linearly independent sets of vectors in R" (hence m < n), then Ca[vy, - .., Vm]
is isomorphic to Cafvy],..., V]

4. EXAMPLES OF COMPASS ALGEBRAS

The 1-dimensional compass algebra €;[(1)) generated by the 1-dimensional vector (1) has
three atoms, namely D1y, D(_1), and Dyq). €1[(1)] is’known as the “Point Algebra” [19], (21],
[20], [47], [48), [49), [51], (52]. For a description of the structure of €,[(1)] in terms of atoms and
cycles, let ' = Dy, @ = Dyy), and & = D(_y). Then the cycles of ¥ are [I', 1, 1}, [v',a,a],
{a,1’,a], and [a,q, ai. The table of relative products of atoms is
I'ad
r{raeid
a|aal
d|ld1la

Every 1-dimensional vector in 1-space must determine one of the relations Dyyy, Dy_y), or Do),
80 no new 1-dimensional compass algebras are obtained by considering two or more vectors in 1-
dimensional space. However, there i; one other 1-dimensional compass algebra, namely €, [(0)]-
This algebra has two atoms, namely D(py = 1’ and Dy + Dy =0. The cycles of 2 are
r,1,1), (1,0, 0], and [0,0°,0°), and the table of relative products of atoms is

ro
riroe
Ccjo1l

By comparing this and the previous table it can be seen that €, [(0)] is isomorphic to a subalgebra
of €;[(1)], the one with atoms 1’ and a +3&. Also, €;[(0)] is isomorphic to €4 [{0)] for every integer
n.

Now we consider 2-dimensional compass algebras. Among these are particular algebras which
inspired the name “compass algebra”. We start with the compass algebrs €5[(1,0),{0,1)]. We
would get .ie same algebra with any two linearly independent vectors in R?, but these two allow
us to dub Ej; o) the “east-west” direction, while Ejo) is the “north-south” direction. Thus
C3[(0,1),(1,0)] is a “2-directional” algebra of relations. “East”, “west”, “north”, and “south”

- 30~

-

RELATION ALGEBRAS

Y a & & b ¢ & d d
[y ¢« &8 & & ¢ & d
ala a vYai b bd b d bed d
b bd b bded b 1 b abd bed abd
cle & d b d#b ¢ re& d aobd
dld bed d bedddd d dal 4 1
|8 vad & bed b d 3 4 Yad
Pib 8ed 8 1§ aab b dab Bed
Ele¢ d b ad b ver & dab d
d|d 4 ted atdbed atd & 1 d

FIGURE 3. Products for &;[(1,0), (0,1)]

are the relations Dy,), D(- 1,0)1 D(o 1), and Dyo y), respectively. In the standard Euclidean
pll.neofmdyuc;eomet.ry the points “east” oftheoriginuedlthepoinuon'.hepositive
part of the z-axis, and so on. €3[(1, 0) {0,1)] has nine atoms, namely D(o,0), D(1.0)» D(-1,0),
Dyo,1), Dto,~1y, Dyo,1): D01 Dio,1); Di-1,0)» Dio,-1):D(1,0)» a0d Dyo -1} Dio,-1)- The last four
atoms could be called “northeasterly”, “northwesterly”, “southeasterly”, and “southwesterly”,
respectively, since they do not correspond exactly with directions of the compass. The points
in the Euclidean plane which can be reached by going northeasterly from the origin are exactly
those in the first quadrant. Let

= Dyo,0y = identity

a = D(1,0) = east b = a;c = ¢;a = northeasterly

& = Dy_y o) = west b = &3 = &; = southwesterly

¢ = Dyo,1) = north d = 8;c = ¢;3 = northwesterly

&= D1y =south d = ¥a = ;&= southeasterly
Then the 33 cycles of X are (I, 1,1}, [I', 0,4}, [a, V',], [1',8,8], b, 1,8}, [, e,], [c, 1', ¢}, [1', 4,],
{d,1,d], [e,4,q}, [a,5,8], [a,¢,3), [a,d,}), [a,d,¢], [a,d,d}, [b,a,b], [b,,8], [}, c,b], [b,d,8)], [,d, c],
[4.d,d}, [c,a,8), [c,},]}, [¢, ¢, €], [¢,d,d], [d,q,b), [d,a,c], [d,a,d], [d,b,}], [d,b,¢], [d,4,d), [d,¢,d],
(d,d, d]. The relative products of atoms are given in Fig. 3.

The compass algebra €3[(1,0),(1,1),(0,1)] has 13 stoms, namely 1’, a, b, ¢, d, ¢, f, &, §,
¢, d, ¢ and f, where ' = Dyo,0), @ = D3 0), & = Di1,0):Da0): € = Diay, 8 = Diny; Doy,
e = Dyo,1), and f = Dyo,1); D(~1,0)- There aze 89 cycles, each having the form [z, y, z] with 2, y, z
in {1’,a,b,¢c,d,e, f}. The cycles are not listed, but they can be read from the table of relative
products in Fig. 4. Set:-z-&-!breveryzmtﬂ(l 0),{(1,1),(0,1)). Then I' + & = Ey),
V+é=Euyy, I'+é=Epy), etc.and I’ ,@, b, ¢ d, é and f are the atoms of s subalgebra called
the “symmetric subalgebra™ of €;[(1,0), (1 1), (0,1)). The table of products for this subalgebra
is

r @ 3 é d é f
r|ir a 3 é d é f
ala ra bedef Wdef bedef bedf bedif
b | b bedef 1 abdef adedef abedf abedéf
é| & Mef abdef ve abdef abdf abdef
d | d bedef abedef abdef 1 abedf abedef
f 1 7 bedef abodef abdef abedsf aiedf 1
w w - - - -

ROGER D. MADDUX

' a & b b ¢ H d d e & ! f
r|r a [b b ¢ & d d e P ! f
ala a Yai b Wdef b Lif bed dEf bed f bedef f
8% Yad & bedef b def b def bd 5 Wd 5 badif
b b b bedef b 1 b abdéf bed abdEf bed abf bedef abf
V1 bedef & 1 §} dessb b desab Bed gab bad fab badef
cle b def b defsd ¢ Yt d abdif d obf def abf
Ele d&f b addif ¥ v & dessb 4 gab 4 gab &f
did bded def bded defdd d defsb d 1 d abedf def abedf
d|d d&ef Wd adef bd aadef d 1 d galed d gald &f
e|le bed f bed sib 4 il 4 faled ¢ et f abedf
ile f Rd af la! adf d abedf d ver & gibid [
F | £ bedef f bedef fal def fab def fabed f giked f 1
J 17 F Wdef oabf Wedef abf def adedf dif abedf F 1 f

FIGURE 4. Products for G;[{1,0),(1,1),(0,1)]

Next we consider the 2-dimensional compass algebra €3[(1,0),(1,1),(0,1),(—1,1)). Besides
the directions “cast-west” E(, o) and “north-south™ E(g ,), this algebra has directions “northeast-
southwest” E(, ;) and “southeast-northwest® E(_, ;). There are 17 atoms, namely Do q) and
16 others, which are listed counterclockwise, starting at the z-axis: Dyy), D(1,0y; D(1.1)» Dayy,
Dy1,1y:Dyo,1y, Dyoys Dionyi Di-1,1ys Di=1,1)s D(=1,133D(=1,00 Di-1,0), D(=1,00; D(-1,-1),
Dy-1,~1)s Dy=1,-1): D¢0,-13» Dyo,~1)> Dto,-1); Da,-1y» Daa, -1y Dia,-1y: Dip 0y

The 2-di onal compass algebra €3[(1,0)] has just four atoms, namely Dio,0y, Di1,0),
Di_1,0), and F = (R? x RY) - - Dio0) + Dyn0) + Dy_y,0). Note that F is a symmetric relation,
i.c., F = F, unlike Dy o) or D(—1,0). The points of the plane which are in the relation F to the
origin are all '.ho-ewlnchliemthe upper half plane or lower half plane (i.e., not on the z-axis).
Let 1" = Doo), a= D 1,0 = D(_lo’, and b = 1' + a + 4. Then the CYCIS oftz[(l 0)]

(r, 1' v}, [I',a,d], [a,l c] [1 b,9], [a,a,a], [a,),d}, [b, 8,], and the relative products of atoms

' a d b
|jr a & &
a|a a l'ad b
d| & Yad & b
bbb b b 1

This algebra illustrates a general phenomenon. If vq,..., v, € R™ are pairwise linearly inde-
pendent but do not span R®, then €,[v,,...,v,] will have only one atom for the subspace
orthogonal to the subspace spanned by v,,v,,. Notice that this situation must arise when-
ever the number of directions is less than the number of dimensions, i.e., whenever m < n.
Now we consider 3-dimensional compass algebras. Let u = (1,0,0), v = {0,1,0), w = {1, 1,0),
x = (-1,1,0) and y = (0,0,1). The 3-dimensional compass algebra generated by a single vecior
in {u, v,w,x,y} has 4 atoms. The algebra generated by any two vectors in {u, v, w,x,y} has 10
atoms. Note that u, v, w,x all lie in the same 2-dimensional subspace. Hence any three vectors
in {n,v,w,x} generate a 3-dimensional compass algebra with 14 atoms, while €3[u, v, w,x] has
18 atoms. The vector y and any two vectors in {u, v, w, x} form a linearly independent set, and
generate a compass algebra with 27 atoms. The vector y and any three vectors in {u,v,w,x}
generate a compass algebra with 39 atoms. Finally, €sfu, v, w,x,y] has 51 atoms.
Not every compass algebra determined by a finite set of vectors is finite. Let 5 = (1,1,1).
Then ¢sfu,v,y, s} = €[(1,0,0),(0,1,0),(0,0,1},(1,1,1)] is infinite. To see this, let X, = E,,,

RELATION ALGEBRAS

Yo = Ev, 2o = Ey, and, for every integer n, Xny1 = Xn Es - Ya;Za, Yos1 = Yo Ey - Xa;Za,
and Zu41 = Zn;Ex- Xa;Yn- Then Xy, Ya, and Z, are all distinct equivalence relations for every
n. In particular,

Xo=Enon Yo=Epien 2Zo=Epoy
Xi=Epyy YN=Epey Zi=Epug
Xs3=Ea,y Ya=Enpay Z3=Eu,y
Xs=Eussy Ys=Epasy 2Zs=Eg@ay
Xe=Epssy Ya=Epssy Za=Epse

5. SOME NP-COMPLETE CONSTRAINT SATISFIABILITY PROBLEMS

Let 2 be a relation algebra. An U-mairiz is a matrix of elements of A. Suppose M is an
n-by-n A-matrix. We say M is zeroless if no entry in M is 0, and M is closed if M;; < 1,
(Mi;)" = Mji, and M;j; Mjs < M;; whenever 1 <i,j,k <n. If N is another n-by-n matrix, we
say N is a reduction of M, in symbols, N < M, if N;; < M;; whenever 1 <¢,j<n. X isa
set of elements of A, we say M is bounded by X if every entry of M is included in some element
of X.

A binary constreint malriz is a matrix of binary relations. An n-by-n binary constraint matrix
M determines an n-ary relation R(M) = {(p1,...,pn) : {pi,P;) € Mi; whenever 1 <i,j < n}.
The matrix M specifies a binary constraint problem. The solutions to this problem are the n-
tuples in R{M), and the problem is solvable if it bas a solution. Let U be the set of elements that
appear in any pair in any relation in M. Each n-tuple {p,, ..., pa) of elements of U corresponds
naturally to an n-by-n matrix N of atoms of Re(U'), where N;; = {(pi,p;)} whenever 1 <i,j5 < n.
Note that (p,, ..., p,) is a solution to M if and only if its corresponding matrix N is a reduction
of M. Furthermore, as a binary constraint problem, M has a solution just in case there is a
closed zeroless reduction of M bounded by the set of atoms of Re(U).

This last observation permits us to generalize the concept of constraint satisfaction to arbitrary
atomic relation algebras. Let 2 be an atomic relation algebra and let M be an A-matrix. We
say that M is proto-solvable over 2 if there is a closed seroless reduction of M which is bounded
by the set of atoms of . Note that if N is a closed seroless A-matrix bounded by the atoms
of A, then all the entries in N must actuslly be atoms of X. Such s matrix, whoee entries are
all atoms of U, is called stomic. So the ¥-matrix M is proto-solvable if it has a closed atomic
reduction N. Such an N is called a proto-solution. The constraint satisfiability problem for an
atomic relation algebra % is this: given an %-matrix, determine whether it has a proto-solution.

For an Re(U)-matrix M, the solutions and proto-solutions (over Re(U)) are in a one-to-one
correspondence, as observed above. But for matrices -3 atomic subalgebras of Re(U), such
a correspondence may not exist. Indeed, it is easy to find a set U, a finite subalgebra 2 of
Re(U), and an A-matrix M such that M has a proto-solution but no solution. For example, let
U = {1,2,3}, let U be the subalgebra of Re(U) with atoms 1’ and 0’ (2 is isomorphic to €:{{0}}),
r 0 00
o reco
o0 roe
N | S &
since say solution of M must be a quadruple (p1, p3, Ps, p4) With distinct entries, but there are
only three elements in U. On the other hand, M can be considered as a €; [(0)]-matrix, in which
case it does have solutions, namely all quadruples of distinct real numbers.

We have seen that proto-solutions can exist when solutions do not. It is also possible for
solutions to exist when proto-solutions do not: an infinite atomic subalgebra 2% of Re(U), where
U is a countable infinite set, and an ¥-matrix M with a solution but no proto-solution over 9.

andlet M = . Then M is a proto-solution of itself, but it has no solution,

-83—

ROGER D. MADDUX

Examples of this are more difficult to construct, but can be found in {22] and [25]. For such an
example, howevez, it is necessary that 2 be infinite [20, Theorem 5.7}

For the 1A, the situation is quite nice. An IA-matrix has a solution if and only if it has a
proto-solution [21], [20], and this is true for all isomorphic copies of the 1A which are embedded in
algebras Re(U') where U is not necessarily the set of events based on real numbers. Constraint
satisfiability for the IA is NP-complete. A sketch of a proof of this was given in [51]. The
idea of that proof is to reduce the 3-clause satisfiability problem (for propositional calculus) to
constraint satisfiability for the IA. (Additional datails for that proof are given in [52].) Another
proof is sketched in [48]. where grapb-colorability is reduced to constraint satisfiability for the
IA. Both of these proofs deal with solutions, not proto-solutions, but, in view of the remarks
made above, this makes no difference to the IA.

The NP-completeness of the constraint satisfiability problem for the 1A follows from Theo-
rem 2 below. This theorem is not restricted to the IA and indeed applies some compass algebras.
It also applies to infinite algebras, such as the Allen-Hayes algebra, and to nonrepresentable al-
gebras.

Theorem 2. Assume % is a relation algebra with elements z,y, z # 0, such that
(i) 1',z,%,y,{, z, Z are pairwise disjoint,
(i) z-z,¥=0,
(iii) y-2;9 =0,
(iv) z-z;y=0,
(v) z-2;2=0,
(Vi) y-yz= 0,
(vil) z-z;2=0,
(viii) z < z;y, 2 < 73§, y < &5z,
(ix) < z;% %z y;§-§;v-2:% 52
Then following problem is NP-complete: (R) Determine whether a matrix M over 2 has a closed
seroless reduction bounded by {1’, 2, %,y, §, z, £}.

Proof. 1t suffices to show that Graph 3-Colorability [10] is reducible to (R). Let G = (V, E) be
a graph (i.c., E is a symmetric binary relation on V that is disjoint from the identity relation on
V). We may assume without loss of generality that the set V of vertices of G is {4,...,|V]|+3},
where |V| is the cardinality of V. Let n = |V} + 3. Let M be the n-by-n %-matrix determined
by the following stipulations:
(i) Mi;=1for1<i<n,
(i) Mia=z, M= Mp=y, My =§, Mis=2,Ms1 =%,
(i) My =V+2+E M=V+z+2, M=l 42+, M=V +E4y Mis= I'4+y+2z,
and My; = I’ + §j+ ¥ whenever i € V (i.e., 4 < i< n),

(iv) Mij = Mji=z+%+y+ i+ 2+ whenever i,j €V and (I EE,

(v) in all other cases, M;; = 1.
We will show that there is a natural one-to-one correspondence between 3-colorings of the graph
G and closed zeroless reductions of M which are bounded by {1’, 2, %, y, , z, }. It follows that
M has a closed seroless reduction bounded by {1’,z,%,y, 4, z, ¥} just in case the graph G i
3-colorable.

Suppose that N is a closed zeroless reduction of M which is bounded by {1’,z,%,y, 7,2, ¥}
We will show that N determines a 3-coloring v : V — {1,2,3} of G. First, since 1,2, %,y,§, 2, Z
are pairwise disjoint, N is zeroless, and N is bounded by {1’, 2, %,y, §, 2, #}, we concluded that
if 1 € i,j < n, then exactly one of the following seven statements holds: N;; < I', N;; < z,
Nij < % Nij <y, Nij < ¥, Nij < 2, Nij <. Now we look at the possible values of N;;, Nj2,
and N;s for an arbitrary § € V, i.c., for 4 < i < n. Since N < M, we have

Ni2<z, Nis<y, Mis <2,
Ny <P +#+% Na<V+z+§, Na<l'+y+z

RELATION ALGEBRAS

K N;; <1, then

Nia S Ny;Nusliz=g,
Nis < Ny;NMsSlsz=12.
Similarly, if Nj3 < I, then
Njy < NigiNa <l';#= %,
Ny < Ng;Nps<liy=y.
Finally, if Ni3 < 1, then
Ni < Np;Nsy < 1'12=1,
Nia < N3N <1';§=4§.
From these observations it follows that N;; < 1’ for at most one k € {: 2,3}. Toshow N;; < I’
for at least one k € {1,2,3}, we assume N;; < ¥+ %, Nis <z +§, and N;s < y+ 2z, and derive
a contradiction. There are two cases. First, if Ni3 <y, then
Ni S(E+%)-Nisg;Na < (¥+2)-y;2< %,
Nip<(z+3) NN S(z+9)-vii<§
by (ii) and (iii), respectively. From these last two equations we get
Noa<j-No;Ni3<j-#z2=0
by (iv), contradicting the assumption that N is zeroless. Second, if Nis < z, then
N S(Z+%)-NisiNay S (E+3)-3;8< §,
Nia<(z+#)-Nis;Nsa<(z+9§)-5:5<z
by (v) and (vi), respectively. From these last two equations we get
Noa<z-Ng;Ni2<z-$;z=0
by (vii), again contradicting the assumption that N is seroless. This exhausts the possibilities.
Thus we have N;; < 1’ for exactly one k € {1,2,3}. This allows us to define v: V — {1,2,3}
by (i) = k iff Ny € 1, for every i € V. Now if {,5) € E, then we must have ¥(i) # v(j), for
if 7(i) = 7(j) = k, then we have N < I’ and Nj; < I’, from which we obtain
s+E+y+P+z+E=Ni < NN ST =1,
contradicting (i). Thus 7 is a 3-coloring of G.

For the other direction, if we have a 3-coloring v : V — {1,2,3} of G, we can get a closed
seroless reduction N < M which is bounded by {1’,2,%,y,§,2,%} as follows. Set Ny3 = z,
Ny =% Ny=y, Na=§, Nis= 2, Nyy = £, and Ni; = 1’ whenever 1 < i < n. For all
i,j €V, snd every & € {1,2,3}, set Niy = Nyiye, Nii = Niygi), aud Nij = Nogyy(s)- It follows
from (viii) and (ix) that this definition gives a closed seroless matzix N. Obviously, N is bounded
by {1’,2,%,u,¥,2,£). The fact that v is a 3-coloring of G is used to show that N < M. [0
Corollary 3. (i) Constraint satisfiability for C3[(1,0},(1,1},(0,1)] is NP-complete. The

same is true for the symmetric subalgebra of C:[(1,0), (1,1}, (0, 1)].
(ii) Constraint satisfiability for the the IA is NP-complete. The same is true for the Allen-

Hayes algebra.
Proof. (i): Use Theorem 2 with 2 =4, y = ¢, and z=¢.
(ii): Use Theorem 2 withz =m,y=f,andz=s. O

Theozremn 2 applies to a 3-directional compass algebrs. For 2-directional compass algebras we
need another theorem.

¢ oo @

ROGER D. MADDUX

Theorem 4. Let A be a relation algebra with nonsero elements z,y, z such that

(1) V',z,2y,1, z, 2 are pairwise disjoint,
(i) y-z;2=0,
(i) y-z;9=0,
(iv) y-y;2=0,
V) y-yiz=0,
M)y -zy=0,
(vil) y-2;2=0,
(viil) z-2;2=0,
(ix) =z z;z=0,
(x) <252, 2 <24, 2 < 32,
(x) y<viv v <vilh, y < ¥iswy
(xii) y<ziz,z< 9%, 2 < &3y,
(xiil) y < 232, 2 < y;¥, 2 < E3y,
(xiv) z< 2y, 2 < 5f, y < £,
(xv) 2 <y;z, ¥y < 238, 2 < §isz,
(xvi) s < 232, 2< 2,8, 2 < §52,
(xvil) z < 72, 2 < 28, 2 < #;2,
(xvild) I' < z;%-2;2-y;§ - ¥y - 2:%- ;2.
Then the following problem is NP-complete: (R) Determine whether a network N over 2 with
labels in {y,z + y + z, 2z + £} has a closed seroless reduction bounded by {1',z,%,y,¥, z, ¥}

Proof. As in the previous proof, we show that Graph 3-Colorability [10) is reducible to (R). Let
G = (V, E} be a graph with vertex set V = {3,...,|V|+2}, Let n = |V|+2. Let M be the n-by-n
2A-matrix determined by the following stipulations: M3 =y, My =, Miji=Mag=z+y+z
for every i € V, M;; = z 4+ ¥ whenever i,j € V and (i, j} € E, The 3-colorings of G correspond
to closed zeroless reductions of M which are bounded by {1, z, %, y, §, 2, £}

Suppose that N is a closed seroless reduction of M which is bounded by {1',z,%,y, 4, z, £}.
We show that N determines a 3-coloring v : V — {1,2,3}. First, if 1 < i,j < n, then exactly
one of the following seven statements holds: N;; < 1', Nij < z, Nij < % Nij <y, Nij < 1,
N;j € z,an0d Nj; < £. Now we look at the possible values of Ny; and Nj; for an arbitrary i € V.
We have Ny3 <y, Nii <z+4y+2, Niz <z+y+ 2. Hence there are nine cases, six of which are
ruled out because they contradict one of the hypotheses. For example, if Nj; < z and V;3 <y,
then by (iii) we have

Nua<y-Ni;Na<y-z;y=0

contradicting the assumption that N is seroless. The following table shows which cases are ruled
out by hypotheses (ii)-(vii).

Na<e Nia<y Nip<z
Ny; <z | No, by (ii). No, by (iii).
Nii <y | No, by (iv). No, by (v).
Ni<z No, by (vi). No, by (vii).

The remaining three cases are used to define v: V — {1,2,3}. Forevery i€ V,

1 if Njy<zand Nj3<=2
7@ =42 fN;<yand Na<y.
3 ifNi<zand Ni3 <z

Now we must show (i) # v(j) whenever (i,j) € E. Since N is closed and N < M,
Nij<z+% Njui<z+i

« ofe @

— —— -

RELATION ALGEBRAS

If 7() = 1 then Ni3 < z, 80 by (ix) we get

Njz < (z+y+2)- Nji;Nia
S(z+y+z)-(z2+%);2
S(z+y+3)-(z+Ez)<y+=
Therefore, either Nj; < y and ¥(j) = 2, or else Nj; < z and 7(j) = 3. Thus (i) # v(j). If
¥(5) = 2 then Nia < y, 0
Njz <(z+y+32)-Nji;Nig
S(z+y+2)-G+ 85y
SE+y+3)-(By+Hy) <242
by (vi). Thus either N;3 < z and 7(j) = 1, or else N;3 < z and ¥(j) = 3. Again, 7(§) # 2(j).
Finally, if 4(i) = 3 then Ny; < z, 00
Ny S (z+y+2)- Ny; Ny
S(+y+2)-#(z+1%)
S(z+y+2)-(z;2+2;5) <y+z.
by (viii). Either N;; < z and 7(j) = 2, or else N;; < z and ¥(j) = 1. Hence ¥(i) # 7(j). This
completes the proof that 4(5) # v(j) whenever (i, j) € E, and shows that v is a 3-coloring of G.
For the other direction, if we have a 3-coloring v : V — {1,2, 3}, we can get a closed serolees

reduction N < M which is bounded by {1',2,%,y,1j,2,¥}. Set Nja=y, Nay = jj,and Nji = V'
whenever 1 <i<n. Foralli,jeV, set

rif v(i) = 10)
Nij=4z ifAd)>0),
¥ if v(i) < 7(j)
z fy(d)=1 z ify(i)=1
Mi={y ff)=2, Np=<{y ifyi)=2,
z ify()=3 : ify()=3
¥ oifyi)=1 P oify(i) =1
Nao={yg if9(i)=2, Nyu=3p ifv(i)=2.
¥ ify(i)=3 2 fy(i)=3

It follows from (x)~(xviii) that N is closed and seroless. Obviously, N is bounded by {1’, 2, %,, #, z, ¥}

The fact that v is a 3-coloring of G is used toshow that N < M. O

To see the necessity of (x)—(xviii), consider the following example. Let G = (V, E) where
V={3,4,5}and E=0. Let v: V — {1,2,3} be the 3-coloring of G defined by (i) = i — 2 for
every i € V. The resulting N is shown below. The matrix N is closed iff (x)—(xviii) hold.

' vy 2 y =z
§y ' 2 § 2
N=}] ¥ 2z v ¥ 2
¥y v 2V X
¢ z z 270

Corollary 5. Coustraint satisfiability for C3[(1,0) , (0,1)] is NP-complete. The same is true for
any compass algebra with at least two directions.

Proof. By Theorem 4, withz=a,y=c,and z=d. O

¢ ofe @

ROGER D. MADDUX

These theorems can be extended to show that essentially all but the most trivial compass and
interval algebras have NP-hard constraint satisfaction problems.

6. RELATIONAL SEMANTICS

The results in this section are stated without proofs. For proofs and additional details see [23)
and [24)].

Let £ be a programming language which contains two disjoint classes of objects £p and
Lc, called the predicates and commands of £, respectively. The commands are of two types,
basic and compound. Among the basic commands are havoc, abort, and skip. There may be
other basic commands, ¢.g., assignment statements, but they will not be treated here. The
compound commands are closed under three formation rules, and every compound command
can be obtained in exactly one of these three ways.

4) If So,S) are commands then 8o is Sp;S;.
(ii) If S is & command and B is a predicate, then do B—Sod is a command.

(iii) If {S : ¢ € I} is a set of commands and {B; : i € I} is a set of predicates, then

if i:B;—S; fi is a command.
H{Si:ieI} = {S} and {B; : i € I} = {B} we denote ifi:B;—S; fi by simply if B—S fi.

Imagine that U is a set of machine states, that each command S has an associated “input-
output relation” rs containing all pairs of states (p, q) for which there is a terminating compu-
tation of S starting at input state p and ending at output state ¢, that each command S has a
“nontermination relation” es of the form E x U, where E is the set of states initiating nontermi-
nating (or “eternal”) computations of S, and that each predicate B has a corresponding relation
dp of the form X x U, where X is the set of states satisfying B. An element z of a relation
algebra is domain element is ;1 = 2. Thus es and dp are domain elements of Re(U), and
Re(U),1,¢,d is concrete example of an “interpretation”, called an “operational interpretation”.
The concept of interpretation is generalised from this concrete case and defined for an arbitrary
relation algebra as follows.

Definition 6. An interpretation of £ is a relation algebra % = (A,+,-,7,0,1,1,;,%,0,1') to-
gether with three maps
r:Le—A, e:Lc—A, and d:Lp— A,
such that
(i) es;1 = es for every command S € Lc,
(ii) dp;1 = dg for every predicate B€ Lr.
Each command S has its associated “weakest-liberal-precondition” and “weakest-precondition”
transformers (and their duals), defined by
(i) wips (z) =15;Z =F5}z,
(i) wps (z) =15;Z -& = (f5t2) - &5,
(iii) wip§ (2) = wlps (7) =rs;2,
(iv) wps(z) = wps(Z) = 1552 +es.
In case z is a domain element, wips (z) is called the “weakest liberal precondition guaranteeing
z”, and wps () is called the “weakest precondition guaranteeing z”.
Theorem 7. If 2 is & domain element, then wips (z) aad wps (z) are also domain elements.

We will usually apply the functions wips (-) and wps (-) only to domain elements, although
they are defined for all elements of the relation algebra . The extended definition allows the re-
covery of rs from wlps (-), since rs = wlp$ (1’). The extended definition allows something more.
Suppose we consider two commands Sy, S;, and we wish to construct from them a command S;
such that rs,;rs, <rs,. According to De Morgan’s Theorem K, this condition is equivalent to
ts, < 5,15, but F5;515, = (wlps, (15,))°, 0 we can use any S; such that rs, < (wlps, (r5,))"

c ofe @

S

RELATION ALGEBRAS

The relation Fs,;rs, is called the “weakest prespecification” of Sy and S [13, p. 684]. The
weakest prespecification was explicitly mentioned by Peirce in [38] (under a different name, of
course). The converse-dual of the weakest prespecification, namely ¥y, was already introduced
by De Morgan in {35] and called “progressive involution” by Peirce. Many algebraic laws gov-
erning this operation can be found in [42], and some of them are proved in (14] and {15] from a
different axiomatisation for relation algebras.

Theorem 8. The following laws hold for arbitrary interpretations.

(i) wps (z) = wips (2) - T5,
(i) wips (1) =1,
(iii) wps (1) =
(iv) wps () = wips (z) - wps (1),
(V) s = 'lp§ (P)r
(vi) es = wp3 (0),
(vii) wipg (-), wips (-), wp§ (-), and wps (-) are monotone (preserve inclusions),
(viii) wip$ (-) distributes over arbitrary joins,
(ix) wlps (-) distributes over arbitrary meets,
(x) wp§ (-) distributes over nonempty joias,
(xi) wps (-) distributes over nonempty meets,
(xii) wips (z) - wips (v) = wips (z - y),
(xiii) wps (2) - wps (y) = wps (z - ¥),
(xiv) wps (z) - wips (y) = wps (z-y),
(xv) If wps (0) = O then wps (z) < wip§ (z).

Definition 9 below is based on the remarks in [9, p. 137]. What is actually used as a definition
of “S is deterministic” in [9] depends on the assumption that wps(0) = 0, and appears in
Theorem 10. Determinism in the arbitrary case is characterized in Theorem 11, which says that
S is deterministic if and only if rg is a partial function, and no state initiates both a terminating
and a nonterminating computation of S, i.c., rs and es have disjoint domains. Note that a
deterministic S can still have nonterminating eompumiom.

Definition 8. A commaad S € Lc is deterministic if wip} (z) < wps (z) for all =.
Theorem 10. If wps (0) = 0, then S is deterministic iff wip§ (z) = wps (z) for all z.
Theorem 11. A command S is deterministic iff rs;rs <1’ andrs -es = 0.

Now we turn to the definition of a “correct” interpretation, one which respects the intended
meanings of the basic commands and command structures given above. The remarks following
Definition 12 are justifications for the correspondingly labeled parts of Definition 12. In moti-
vating the definition of correct mmpmmonweﬁeelyformpmwhch mcuewenededmg
with an algebra Se(U/) of all binary relations on the universe of states U, are simply unions and
certainly do exist. In the abstract definition, however, we need to know that various joins exist,
and 80, in order to avoid lengthy formulations of results, we ask that the relation algebra used
in a correct interpretation be complete.

Definition 12. An interpretation is correct if % is complete and the following conditions hold.

(i) Taavec =1 and epgeec = 0.
(ii) Toperr = 0.20d egpen = 1.
(ili) resip = 1’ and eyip = 0.
(iv) For all commands Sp, 51, Is,;s, = Is,;ts, and es,;s5, = es, +Is,i€s,.
(v) For all I-indexed sets {B; : i € I} of predicates and {S; : i € I} of commands,

tiB~s.6= 2 (dB, - 1s,), exiB—s.6= [[ds, + Y (dB, -es,).
i€l el i€l

ROGER D. MADDUX

(vi) For every predicate B and every command S,
TéeB—Sed = .%:‘ ((de-1s) ;@B 1)), esB—sea={y:y<dp-(es+r1s;¥)}-

Remarks on parts of Definition 12:

(i) Every execution of havoc terminates; upon termination the machine may be in any state.
Thus every state is connected to every other state by a terminating computation of havoc, and
havoc has no nonterminating computations.

(ii) For every initial state the execution of abort fails to terminate, that is, every state initiates
a nonterminating computation of abort, and abort has no terminating computations.

(iii) Every execution of skip is guaranteed to terminate and leaves the state of the machine
unchanged, that is, there are no nonterminating computations, and every computation has the
same final state as initial state.

(iv) The operational interpretation of Sp;5; is “first execute Sp, then execute S;”. Thus a
terminating computation of Sp;S) starts at a state that begins a terminating computation of Sp
that ends at a state that begins a terminating computation of S; that ends at the final state of
the computation of So;S). A state initiates a nonterminating computation of Sp;S; if it either
initiates a nonterminating computation of Sg, or else initiates a terminating computation of Sp
that ends at a state that begins a nonterminating computation of S;.

(v) A computation is a terminating computation of if i:B; —S; fi if, for some i € I, it is a ter-
minating computation of S; whose initial state satisfies B;. The states initiating nonterminating
computations of if i: B;—S; fi are those in which no B; is satisfied, together with those which, for
some i € I, satisfy B; and initiate a nonterminating computation of S;.

(vi) A terminating computation for do B—~+Sod is a finite sequence (possibly empty) of ter-
minating computations of if B—S fi, such that the last computation terminates at a state not
satisfying B. Consider a state p from which s nonterminating computation of do B—Sod is
poesible. First, B must hold at p, since otherwise the execution of do B—S od would termi-
nate immediately. Therefore p in the domain of dp. Since B holds, S is executed. This either
leads to a nonterminating computation of S, that is, p is in the domain of eg, or else there
is no such nonterminating computation. Therefore p must initiate a terminating computation
of S, for if not, we would have a state satisfying B from which no computation of S is pos-
sible, contradicting our assumption that p does initiate a computation of do B—Sod. Thus p
initiates no nonterminating computations of S, but does initiate a nonterminating computation
of do B—Sod, 30 at least one of the terminating computations of S must end in a state from
which a nonterminating computation of do B—S od is possible. This conclusion is equivalent to
asserting that p is in the domain of rs;e4e B 504. Putting these inclusions together, we conclude
that any state in the domain of ege . 504 must be in the domain of dp -€s +1I'5;640 B—~5 04, that
i8, Cge B~Sed < 4B - (e5 + I5;CdeB~Sed)- ThUs €4e 55 oq is a solution of y < dp - (es +15;y).
Conversely, we can argue that if y < dp - (es + rs;y) then y < €yo B—~5o¢- Indeed, a state p in
the domain of y must satisfy B, and either a nonterminating computation of S is possible from
P, in which case p initiates a nonterminating computation of do B—Seod, or else p initiates a
terminating computation of S that ends in a state p which is again in the domain of y. Either
7 initiates a nonterminating computation of S or a terminating computation of S that ends
at 8 state p” in the domain of y, and 80 on. We either eventually get into a nonterminating
computation of S, or else create an infinite sequence of terminating computations of S. Either
way we get a nonterminating computation of do B—Sod, 80 p is in the domain of ¢4 p— 5 e4-
Since ege B—Se¢ is 3 domain relation, this argument is enough to show y < egeg—~5ea- Thus
€do B~ 5 od 18, in fact, the largest solution of y < dp - (es + rs;y). Let f(y) = dp - (es +rs:(y))-
Then f is monotone, so by Tarski’s Fixed Point Theorem [45], the largest solution of y < f(y)
is {y: v < f(v)}. We therefore set ¢4 p—5e¢ = 1_{¥: ¥ < f(¢)} in Definition 12.

Incidentally, Tarski’s Fixed Point Theorem [45] also asserts that 3 {y: y < f(¥)} = 1 {y:
Y = ()}, 90 €4o B—5ed is the largest fixed point of dp - (es + rs;(-)). We can also express

e ofe @

RELATION ALGEBRAS

Tée B—S o4 i8 the smallest fixed point of the function dg - 1' +dp -rs;(-), i.c., raB—5ed = [[{y:

dp -1 +dp-rs;y <y}

Definition 12 is concerned only with those language features used here. For our present
purposes, the predicates of £ need only form a nonempty set, but if the predicates of £ contain
constants trus, false, and are closed under standard connectives of propositional calculus, then
the following conditions could be added to the definition of correctness.

dine =1 distee =0
d-p=dp dpac =dp -dc
dpvc =dp +dc dp—c=dp+dc
dpmc =dp-dc +dp-dc
Correct interpretations are extremely abundant.

Theorem 13. For every language £ and every complete relation algebra U, if we assume that
(i) d is any map from predicates to domain elements of %,
(ii) +’ is any map from basic commands to elements of A such that r(havoc) = 1, ¥'(abort) =
0, and ¥'(skip) = 1’,
(iii) ¢’ is a any map from basic commands to domain elements of A such that ¢’(havoc) = 0,
¢’(abort) = 1, and ¢'(skip) = 0,
then v and ¢’ can be extended in a unique way to mapsr and e such that A,r,e,d is a correct
interpretation.
Theorem 14. The following laws hold for an arbitrary correct interpretation of C.

(i) Wipnevee (2) = 012, Wpaawe (2) = 0t 2,
(i) Wipshert (2) = 1, WPopert (2) = 0,
(iii) wlpgip (2) = 2, wpaip (z) = 2,
(iv) wips,;s, (z) = wips, (wlps, (2)),
(v) wps,;s, (2) = wps, (wps, (7)),
(vi) wipyi-B,~s.6(z) = I'II B, + wips, (2)),

(vii) wpyi.B,—s,8(2) = n (s, + wps, (2)) - Z ds,,
(viil) Wlpge p—sed(2) = .%, ((ds -rs) ; (@s - z)) = .151 (wipup-ss)’ (ds +2),

(ix) Wipge B—5ed (2) is the largest solution y of (dp + z) - (ds + wips (¥)) = v,
(X) WPdo B 5 ed (2) is the smallest solution y of (dp + z) - (dB + wps (v)) = v,
(xi) WipeB—sea(2) = L {v: (dn +2)- (d5 + wips () = v},

(xii) WpaeB—3sed(z) =[{y:(ds +2)-(ds +wps () =y}

Theorems 14 and 8 show that wip_ (-) and wp._ (-) qualify as predicate transformer semantics
according to the requirements of [9]. The requirement [9, R, p. 132] (which also appears as [9,
(0), p. 129]), tlut wips () distribute over arbitrary meets, holds by Theorem 8(ix). Note that
correctness of the interpretation is not needed for R0O. Definitions [8, (10)-(18), pp. 133-136],
which specify wips (-) and wps (-) in case S is havoc, abort, or skip, hold by Theorem 14(i)(ii)(iii).
Definitions [9, (23)-(25), p. 137], which specify the predicate transformers for the composition
of commands Sp;S;, hold by Theorem 14(iv)(v). Definitions [9, (27)-(29), p. 137], for the
slternative construct if i:B;—S; i, hold by Theorem 14(vi)(vii). Finally, Definitions {9, (1)~(2),
p. 171), for the repetitive construct do B—S od, hold by Theorem 14(ix)(x).

The equation rs;1+¢s = 1 asserts that every state initiates either a terminating or a nonter-
minating computation of S {9, p. 130]. This equation is equivalent to wpj (1) = 1 and equivalent

ROGER D. MADDUX

to wps (0) = 0. This last equation has been called the “law of the excluded miracle”. Theo-
rem 15 below shows that the basic commands havoc, abort, and skip satisfy this “law” under
any correct interpretation, and that if the other basic commands also do 8o then all commands
do so and the interpretation is “miracle-free”, i.c., wps (0) = 0 for every command S. Any
miracle-free interpretation gives rise to predicate transformers that satisfy all the requirements
of [9].

Theorem 15. (1) WPaavec (0) = Wpobert (0) = wpyip (0) = 0.
(ii) If wps, (0) = 0 and wps, (0) = 0 then wps, s, (0) = 0.
(ii) If wps, (0) = O for every i € I, then wpyi.5,—5,5(0) = 0.
(iv) If wps (0) = 0 then Wpgy 5—sed (0) = 0.
(v) If wps (0) = O for every basic command S, then wps (0) = 0 for every command S.

From their operational interpretation it is natural to expect that skip and abort should be
deterministic. It is also natural to say that havoc is not deterministic, since, in the operational
interpretation, a computation of havoc can start at any machine state and end at any other.
However, even under the operational interpretation there is one case in which havoc really is
deterministic, namely, when there is only one machine state. These ideas are expressed formally
in the following theorem.

Theorem 16. (i) skip and abort are deterministic.
(ii) havoc is deterministic if and only if % is Boolean, i.c., 1’ = 1.

Some obviously sufficient (but not necessary) conditions for determinism are given next.

Theorem 17. (i) If So and S, are deterministic, then so is 5o;5).

(ii) Assume S; is deterministic for every i € I and dp, - dp, = O whenever i # j andi,j € I.
Then ifi:B;—S; fi is deterministic.

(iii) If S is deterministic, then so is do B—Sod.

Next is a generalization of what is called “the Main Repetition Theorem” for do B—~Sod in

[9]. An informal statement of this result runs as follows. Assume
(i) P is a predicate,

(ii) if P and B hold at some state p then no nonterminating computation of S is possible
from p, _

(iii) if P and B bold at the initial state p; of a terminating computation of S, then P holds
at the final state p3, and the initial state p, is in the relation G to (is “greater than”)
the final state p3, i.c., (P1,P2) €G,

(iv) there is no infinite sequence of states such that P and B hold at every state in the
sequence, and each state is in relation G to the pext state.

It follows from these assumptions that Wpge B—. 54 (P) bholds where P does, that is, P is a
sufficient (but usually not necessary) condition for the guaranteed termination of do B—Sod
at a state satisfying P. Theorem 18 generalizes the Main Repetition Theorem in two ways.
First, it does not include the assumption that G is transitive, a possibility noted in [9, pp. 174-
5]. Second, it applies to interpretations over arbitrary complete relation algebras, not just
representable relation algebras of the form Re(U).

Theorem 18. Assume %,1,¢,d is a correct interpretation of £, S is 8 command, and B is a
predicate. For allp, g in 9, if
(i) pil=p,
(Il) P‘da'¢s=0v
(iii) p-dp-rs <99,
(iv) T{z:2<p-dp-gi(p-dn-2)} =0,

then p < Wpgs B—5 4 (P)-

-92~

c« ofe @

6.

7.

8.

10.

11.

8

X ¥R ¥

B

RELATION ALGEBRAS

REFERENCES

. Jumes F. Allen, An interval-based represenistion of temporsl knowledge, Proceedings of the Seventh Inter-

national Joint Conference on Artificial Intelligence, (LJCAI), 1981, pp. 221-226.

. e s Maintaining knowledge about tempore! intervels, Communications of the Association for Computing

Machinery 36(11) (November 1983), 832-843.
James F. Allen and Patrick J. Hayes, A commonsense theory of time, Proceedings of the International Joint
Conference on Artificial Intelligence (LICAI), 1985, pp. 528-531.

. ey Moments end points in on intervel-based temporsl logic, Toch. Report TR 180, Department of

Computer Science, University of Rochester, December 1987.

. James F. Allen and Johannes A. Koomen, Plaaning ssing & tempora! world model, Procoedings of the Eighth

International Joint Conference on Artificial Intelligence, Karisrube, W. Germany, August 1983 (IJCAI), 1883,
Pp- T41-T47.

George Boole, An investigation of the laws of thought on which ere founded the mathematical theovries of
logic and probabilitics, Walton and Maberiey, London, 1854.

+ The mathematical analysis of logic; being on essay towsrds & calcuius of doductive reasoning, B.
Blackwell, Oxford, 1948, first published in London and Cambridge, 1847.

Louise H. Chin and Alfred Tarski, Distribative and modular laws in the arithimetic of relation algebras,
University of California Publications in Mathematics, New Serios 1 (1951), 341-384.

Edsger W. Dijkstra and Carel S. Scholten, Predicate Calculus and Program Sementics, Springer-Veriag, New
York-Berlin-Heidelberg, 1960.

Michael R. Garey and David S. Johnson, Compsuters and Intractibility, A Guide to the Theory of NP-
Completeness, W. H. Froeman, New York, 1979.

Leon Henkin, J. Donald Monk, and Alfred Tarski, Cylindric Alnbm Part I, North-Holland, Amsterdam,

1971.

, Cylindric Algebras, Part I, Nosth-Holland, Amsterdam, 1985.

C. A. R. Hoare, L J. Hayes, He Jifeng, C. C. Morgan, A. W. Roscoe, J. W. Sanders, 1. H. Sorenson, J. M.
Spivey, and B. A. Sufrin, Lewe of programming, Comunications of the A. C. M. (August, September 1987),
672-686, 770.

. C. A. R. Hoare and He Jifeng, The weskest prespecification, Part I, Fundamenta Informatica 9 (1986), 51-84.
. ——uy The weskest prespecification, Part II, Fundamenta Informatica 9 (1986), 217-2532.

. Bjarni Jénsson, Varisties of relstion algebras, Algebra Universalis 15 (1962), 273-296.

. ey The theory of binary relations, Algebraic Logic (Proc. Conf. Budapest 1988) (Amsterdam)

(H. Andréka, J. D. Monk, , and L Németi, eds.), Colloq. Math. Soc. J. Bolyai, vol. 54, North-Holland,
1901, pp. 245-292.

Bjarni Jénsson and Alfred Tarski, Boolesn algebras with operstors, Pert I, Amervican Journal of Mathematics
74 (1952), 127-163.

. Peter B. Ladkin and Roger D. Maddux, Representation snd ressoning with conver time intervals, Toch.

Report KES.U.88.2, Kestrel Institute, April 1988.

. camaee, O% dinary constraint probiems, Toch. Report TR 102, Departmeiit of Computing Science and Math-

ematics, University of Stirling, April 1992, revised February 1993, to appear in the Journal of the Association
for Computing Machinery.

. ——y On binary constraint networks, Tech. Report KES.U.88.8, Kestrel Institute, November 1968.
. Roger C. Lyndon, The representation of relations! slgebras, Annals of Mathematics (series 2) 51 (1950),

707-7T29.

Roger D. Maddux, A werking relationel model: The derivation of the Dijkstra-Scholten predicate transformer
semantics from Terski’s azioms for the Peirco-Schrider calculus of relations, to appear in the South African
Computer Journal.

ey The working relationsl model for predicete transformer semantics, submitted to Theoretical Com-
puter Science.

ey Topics in Relstion Algeireas, Ph.D. thesis, University of California, Berkeley, 1978, pp. iii+241.
ey SOMe varistics containing relstion elpebras, Transactions of the American Mathematical Society
272 (1962), 501-526.

, Finite intogral relation alycbres, Universal Algebra and Lattice Theory, Springer-Verlag, 1985, Pro-
ceedings of the Southeastern Conference in Universal Algebra and Lattice Theory, Charleston, S.C., July
11-14, 1984, Lecture Notes in Mathematics 1149, pp. 175-197.

. Introductory course on velation algebves, finite-dimensions! cylindric algchras, and their intercon-
nections, Algebraic Logic (Proc. Conf. Budapest 1968) (Amsterdam) (H. Andréka, J. D. Monk, and L Németi,
eds.), Collog. Math. Soc. J. Bolyai, vol. 34, North-Holland, 1991, pp. 361-392.

, Pair-dense relation algebras, Transactions of the American Mathematical Society 328 (1991), 83—

131.
» The oerigin of relation algebras in the development and asiomatization of the calculus of relstions,
Studia Logica 50 (3/4) (1991), 421485.

gog

&

8

41.

42.

22

47.

48.

49.

50.
51.

52.

ROGER D. MADDUX

. J. Malik and T. O. Binford, Ressoning in time and space, Proceedings of the Eighth International Joint

Conference on Artificial Intelligence, Karlsruhe, W. Germany, August 1983 (LICAI), 1983, pp. 343-345.
J. M. Mastin, Dictionsry of Philosophy and Psychelogy, Macmillan & Co., New York, 1911, second edition.

. J. Donald Monk, On representeble relstion slgebras, Michigan Mathematical Journal 11 (1864), 207-210.
. Augustus De Morgan, On the symbols of logic, the theory of the syllogism, snd in perticulsr of the copula,

and the spphication of the theory of prodebilitics to some guestions in the theory of ewidence, Transactions of
the Cambridge Philosophical Society 9 (1856), T9-127, reprinked in {36].

» On the syllogiam, no. IV, and on the logic of relations, Transactions of the Cambridge Philosophical
Society 10 (1864), 331-358, reprinted in [36)].

» On the Syllogiom, and Other Logical Writings, Yale University Press, New Haven, 1968, edited, with
an Introduction by, Peter Heath.

. Charles Sanders Peirce, Description of & notation for the logic of relatives, ressiting from an emplification of

the conceptions of Boels’s calculus of logic, Mexwoirs of the American Academy of Sciences 9 (1870), 317-378,
reprinted by Welch, Bigelow and Co., Cambridge, Mass., 1870, pp. 1-63; also reprinted in [40] and [41).

. e s O% the algebra of logic, Ametican Journal of Mathematics 3 (1880), 15-57, reprinted in [40}
. e, Note B: the logic of relatives, Studies in Logic by Members of the Johns Hopkins University (Boston)

(C. S. Puirce, od.), Little, Brown, and Co., 1883, book reprinted, with an Introduction by Max H. Fisch and a
Preface by Achim Eechbach, by John Benjamins Publishing Co., Amsterdam and Philadelphia, 1983, pp. lviii,
vi+203; paper reprinted in [40], pp. 187-203.

» Collected Papers, Volume III. Harvard University Press, Cambridge, 1833, edited by Charles
Hartshorne and Paul Weiss.

, Writings of Charies S. Peirce, A Chronological Edition , Indiana University Press, Bloomington,
1984, edited by Edward C. Moore, Max H. Fisch, Christian J. W. Kloesel, Don D. Roberts, and Lynn A.
Ziegler.

F. W. K. Ernst Schroder, Vorlessngen sher dic Algchbra der Logik (ezacte Logik), Volume 3, Algebrs wend
Logik der Relative, part I, socond ed., Chelsea, Bronx, New York, 1966, first published in Leipsig, 1895.

R G. Simmons, The vs¢ of guantitative and gushtative simulations, Procecdings of Third National Conference
on Artificial Intelligence (AAAI-83) Washingtomn, D. C., August 1983, 1983.

. Alfred Tareki, On the calculus of relations, The Journal of Symbolic Logic 6 (1941), 73-89.

, A lattice-theoretical firpoint theorem and its spplications, Pacific Journal of Mathematics 3 (1958),
285-309.

. Alfred Tarski and Steven R. Givant, A Formalizstion of Set Theory without Vanables, Colloquium Publica-

tions, vol. 41, American Mathematical Society, 1987.

P. G. van Beck, Ressoning sbout guslitative temporal informsation, Proceedings of AAAL90, the Eighth
National Conference on Artificial Intelligence, AAAI Press, 1990, pp. 728-734.

P. G. van Beek and R. Cohen, Approsimation slgorithms for temporal reasoning, Proceedings of IJICAIS9, the
11th Joint Conference on Artifical Intelligence, Morgan Kaufmann, 19689, short version of [49], pp. 1291-1296.
, Ezact and approsimate reasoning sbosut temporal relations, Computational Intelligence 8 (1990),
132—1«. long version of [48].

J. F. A. K. van Benthem, The Logic of Time, Reidel, 1983.

M. Vilain and H. Kauts, Constreint propagstion slgorithms for temporal ressoning, Proceedings of AAAI-86,
Morgan Kaafmann, 1986, pp. 377-382.

M. Vilain, H. Ksuts, and P. G. van Beek, Constraint propagetion sigorithms for temporel ressoning, Readings
in Qualititative Reasoning About Physical Systems (Weld and de Kleer, ods.), Morgan Kaufmann, 1969,
revised version of [51].

53. Alfred North Whitehead and Bertrand Russell, Principis Mathematics, Volume I, Cambridge University

Press, Cambridge, England, 1910, Second edition, 1925.

DEPARTMENT OF MATHEMATICS, 400 CARVER HALL, Jowa STATE UNIVERSITY, AmMsms, Iowa $0011-2066,

U.S.A.

E-mail eddress: maddux@vincent .isstate.edu

&

T,

Category theory and information system
engineering
Michael Johnson and C.N.G. Dampney

Schoal of Mathematics and Computing, Macquarie University
AUSTRALIA

Abstract

This paper is & summary of a talk for AMAST 1993. The actual
talk coatains examples drawa from business applications which because
of confidentiality agreements cannot be published here. It is hoped that
we will obtain permission to publish the examples in the final paper.

We cutline a number of applications of category theory to information
system eagineering in major business enterprises. These applications have
led to new methodologies in ER-modelling, comstraint specification and
process modeling. They also suggest new but as yet untested techniques

Our main thesis is that dementary category theoretic notions can have
important value in the “real world” of software engineering.

1 Introduction

Thaehavebenmunytpphmofcmythwrywwmpummeemd
these have been recorded in textbooks (eg [11] {1]) and conference proceedings
(eg {3] [6]). Surprisingly few of these applications have yet filtered down to
affect software engineering methodologies, and to the authoes’ knowledge none
of them has influenced information system engineering methodologies (although
there have been several category theoretic treatments of information systems,
see (7] [10] [9] (5]). In this paper we record some elementary categorical ob-
servations about information systems and show how they have led to improved
methodologies for information system engineering. The results reported here are
essentially empirical, and are based on consultancy work that we have under-
taken for Telecom Australia and Caltex Qil Australia as well as several smaller
enterprises.

The paper is organised as follows. Section 2 briefly reviews information sys-
tems and the dominant methodology for planning information system designs

-95 ~

which is ER-modelling. In Section 3 we review the definition of a category and
indicate how an ER-model is essentially a category—the classifying cotegory or
theory for the information system. A brief analysis of this view shows that the
categories that we need to deal with are at least lextensive [2] and that the
category theoretic treatment gives a query language for free. In Section 4 we
note that the main difference between an ER-model and its classifying cate-
gory amounts to the specification of integrity constraints upon data which can
be stored in the information system. This has led to s change in the main
methodologies by giving constraint specification a much greater role in the de-
velopment of information models. We show how to treat both static constraints
and dynamic constraints (these latter are often business rules or government
regulations which may be changed during the life of the information system).
Section 5 treats process modelling which is traditionally the next stage in the
development of a system after information (ER) modelling and it shows how
the categorical treatment greatly simplifies process modelling. Finally Section 6
records implications of the category theoretic framework for developing different
user views of an information system and for the underlying architecture of the
system itself.

Overall our approach has become known as the Federated Information Sys-
tem (FIS) approach to information system engineering.

Acknowledgments: The authors gratefully acknowledge the Australian
Research Council (ARC) and Caltex Oil Australia for supporting this research.

2 Information Systems

‘There is little need to discuss the importance and pervasiveness of computer
technology in our society. Yet for those of us who work in academic institu-
tions at least, it is easy to carry a biased view of the nature of its applications.
Many of us focus on important issues such as algorithms and complexity and
we often have a background in scientific computation. Yet the great major-
ity of commercial applications require very little computation. Banks, airlines,
stock exchanges, telephone utilities and even manufacturers and distributors
use computers mostly to store, retrieve and perform simple transformations on
information. The construction and maintenance of these information systems
is the major expense item in many commercial information technology depart-
ments.

As is the case with most software engineering projects a great bulk of the
expense in information system engineering occurs after the production version
of the systern has been produced because of the need for maintenance and
modification. This expense can be subetantially reduced if sufficient effort is
expended in the planning stages to ensure that the information system is an
accurate model of the business enterprise aspects which it is intended to sup-
port, and so information system analysts have concentrated on developing good

- 96 ~

e« oo @

methodologies for information system specification and development.

One of the easiest mistakes to make in developing an information system
is to begin by considering what the organisation believes needs to be done by
the system. As business develops these needs change rapidly, and modifying a
system which bas been designed to perform a particular task can be very diffi-
cult. Instead we should focus on what information the business needs to keep,
and build a system which stores that information and which is able to utilise
it as flexibly as possible. It is empirically well established that the underlying
information model of a business changes relatively slowly and that the changes
are usually incremental rather than revolutionary.

Thus, information system engineering usually begins with the development
of an information model. There are several ways that such a model can be
represented, but by far the dominant technique is called Entity-Relationship
(ER) modelling [4].

The ER approach is a graphical modelling technique. An entity is a class of
something about which the business needs to store information. Examples might
include CUSTOMER, EMPLOYEE, ORDER, INVOICE and PRODUCT. Each en-
tity will correspond to a set of things at a particular point in time (for example
the current set of employees). The information that we store about entities
comes in two forms: there are relationships between entities (for example an
order may be for several products and a product may appear on several orders
80 there is & many-to-many relationship between PRODUCT and ORDER) and
entities have certain attributes (for example a product may have a product num-
ber and a price, an employee has a name, an address, a salary and 50 on). Often
one attribute for each entity is treated as the key stiridste 00 that for example
a product may be always accessed via its product number. Entities are usually
represented graphically as rectangular boxes, relations as lines joining the boxes
(with “crows-feet” to indicate possibly multi-valued relations when necessary),
and attributes as oval boxes. An example is shown bhere.

PRODUCT B> < ORDER

(Product N9 (Price) (Order.No) (Date)

The graphical nature of ER-models is a very important aspect of their pop-
ularity. Other specification techniques such as Z are more powerful but harder

-97 -

¢ oo @

to learn. The great value of a graphical model is that an analyst can show it
to businesspeople and with only a brief explanation they can understand and if
necessary correct the model.

There is an extensive methodology of ER-modelling including the reduction
of models to various normal forms. The details need not concern us here except
for one aspect: Many-to-many relationships can always be transformed into two
many-to-one relationships by the introduction of a new entity. For example we
can introduce an entity ORDER.LINE. One instance of this entity will be the
order of a particular product on a particular order. Thus there will be maay-
to-one relations (functions) between ORDER_LINE and PRODUCT and between
ORDER.LINE and ORDER. (This is just the usual “tabulation” of a relation.)

3 Category theory

A category consists of a collection of objects and a collection of arrows, with each
arrow having a specified source and target among the objects (this much is just
a directed graph) together with a composition of arrows, defined whenever the
arrows have a common source and target, which is associative and has identities.

Thus a category may be thought of as a directed graph together with infor-
mation about composition. This information may be expressed by giving a set
of relations (eg f composed with g is equal to A composed with k) and those

relations are often expreseed as commutative disgrams (a diagram is said to -

commute if any two composable paths of arrows in the diagram with common
start point and common end point have equal composites).

Examples of categories include the catagory set whose objects are sets and
whose arrows are functions between sets; grp whose objects are groups and
whose arrows are group homomorphisms; more generally T-alg whose objects
are algebras from some theory T and whose arrows are T-homomorphi<ms; and
numerous small categories which can be generated by drawing a directed graph,
adding identities at each vertex, snd specifying composites for composable pairs
of arrows.

One of the great advantages of category theory is that it has provided a
graphical framework for much of mathematics. Many properties that seem to be
about the internal structure of objects such as being a one element set or being
the cartesian product of two sets, can be characterised by universal properties
of arrows and these permit graphical arguments to prove theorems.

Further examples and definitions of specific universal properties such as pull-
back, terminal object and coproduct can be found in any of the basic texts [8]
1] (11).

¢ oo @

3.1 A category theoretic view of an ER-model

We aim now to show how an ER-model is essentially a category. This is moti-
vated by the categorical treatment of universal algebra above (the T-alg exam-
ple) and is treated in full in [5]. By analogy with universal algebra we will call
the category the theory or classifying category of the ER-model.

Consider an ER-model, normalised as described at the end of the preceding
section 80 that all relations are many-to-one. This model may be viewed as a
directed graph whose vertices are the entities and attributes of the model and
whose arrows are the relationships oriented from the many-valued entity to the
one-valued entity together with arrows from each entity to each of its attributes.
Notice that if the vertices of this graph are thought of as sets, and the arrows as
functions, then the intended semantics of the ER-model is still well represented
here (and this can be made formal via a functor to set in the usual way).

It remains to consider composition. Since the many-to-one relations in the
model are intended to represent real world many-to-one relations (functions)
there are real world compositions and we argue that these should be repre-
sented in the model. Many of the compositions are free in the sense that formal
composites can just be added to the model (or indeed left out since such for-
mality can be added later), but when there is a closed loop of arrows it is
important to determine, by considering the real world semantics, whether the
diagram commutes. Once this has been done for all possible composites we have
constructed a classifying category for the ER-model.

It is remarkable that extant ER-modelling methodologies have ignored this
question of commuting diagrams. Typically an analyst spends a great deal of
time and effort developing a model and eventually passes it to a programmer
to implement. Often it is important that the resultant program check the con-
straint implied by the commutativity of certain diagrams, but since the analyst
has not recorded which diagrams commute it is up to the less experienced pro-
grammer to try to reconstruct the intended semantics and to decide whether a
given diagram should commute!

In fact, in our experience, searching for commutative diagrams actually re-
sults in & better ER-model because it often clarifies the nature of relationships
and because it provides a test of the model as it is being developed. In the lec-
ture this is illustrated by examples taken from commercial modelling exercises.

We view the specification of which diagrams commute in an ER-model as an
important part of the information modelling methodology and we are developing
CASE tools to assist in this process.

8.2 Classifying categories and lextensive categories

This section uses a little more category theory than the rest of this paper in
order to accurately develop the notion of classifying category. It may be skipped
by those with little category theoretic background who are mainly interested in

~99-

¢ e@o @

our practical methodological results.

Universal algebra suggests a better version of the classifying category dis-
cussed above. Often an algebraic theory can be presented in several different
ways, but there is a single canonical classifying category (up to equivalence of
categories) obtained by taking any one of the presentations and “closing it up”
under certain basic operations like taking limits. Similarly we would expect the
classifying category of an information system to satisfy certain basic exactness
properties and the category described in Section 3.1 is just a presentation for
the canonical classifying category.

So, what basic exactness properties are required? We need a terminal object
I and arrows I — A will be used to specify instances of the entity A. We need
finite coproducts for two reasons. First, entities often have substructure which
is best indicated by coproducts (so for example in a small retail business the
entity EMPLOYEE might be the coproduct of the entities DRIVER, SALESPER-
SON, CLERICAL STAFF and MANAGEMENT). Secondly, attributes are fixed
sets (90 for example PRODUCT_NO might be the set of all four digit numbers—
of course most of these numbers won’t be used at any particular point in time,
but the relationship between PRODUCT and PRODUCT.NO allows us to see
which ones are currently valid product numbers). Thus attributes are usually
3" I for some n (n = 10000 in our product numbers example). This is tech-
pically very importaat since the injection iy : 7 — 3" I allows us to pick out
sttribute number k from which, if the attribute is a key attribute, we can obtain
information about a particular instance of the corresponding entity. Finally we
peed pullbacks, both to allow us to compose relations and to allow us to access
the entity instances with particular attribute values.

Furthermore we expect the coproducts to behave well. They should be
disjoint and universal. Thus in the presence of pullbacks and a terminal object
we expect our classifying category to be a lertensive category [2).

3.3 The query language

For use in Section 4 it is worth noting that the internal logic of the lextensive
classifying category of an information system forms a query language for that
system. Thus the standard queries arise as objects of the classifying category.

Models of the information system will be lextensive functors from its clasaify-
ing category to set. Such functors will necessarily carry the object representing
a query to the set of records which satisfy the query.

4 Constraint specification
We show by example how to model the vast majority of the integrity constraints

required in information systems by using ER-modelling with commutative di-
agrams. Some examples of the constraints which can be treated include the

c ofes @

requirement that in a database of students, courses, classes and class times, it
is required that no student have a clash between two timetabled classes; when
an order is delivered it must be delivered to the address of the customer who
placed the order; and when a contractor engages in some work involving a busi-
ness resource there must be a contract that specifies that that contractor has
the right to use that resource.

Some complicated constraints require the use of the query language outlined
above (since a constraint may apply only to a certain subeatities determined by
a deacription that can be used as a query).

In the talk we show how both permanent (static) and variable (dynamic)
constraints can be easily modelled.

5 Process modelling

Once a satisfactory ER-model has been developed it is common to work out a
process model for the business which shows the important processes carried out
by the business and how they trigger one another. The process model will be
much less general than the ER-model since it will tell us about how the business
is currently organised (and this may change).

Traditionally the process model is influenced by the ER-model, but our new
methodology for ER-modelling makes the link explicit. Consider the diagrams
in the ER-model which have been specified as commuting. Typically each of
these loops represents an individual process and reconciliation cycle. This is
because, in order to update the information system, it is usually necessary to
update an instance at each vertex of the diagram and then finally to check that
commautativity has been preserved.

Thus to develop the process model one calculates a kind of graph dual of the
ER-model in which specified commutative diagrams correspond to processes and
common vertices between such commutative diagrams correspond to triggers
between the processes.

Of course it is often the case that an analyst can further refine the process
model, but it is useful to note that the greater part of the work of developing
a process model has already been done if one has specified the commutative
diagrams in the ER-model.

Once again this point is illustrated with real world examples in the talk.

6 Views and architectural implications

The methodology that we have been describing also has some as yet untested
implications for other aspects of information system development.

One particularly difficult problem in dealing with large information systems
is the presentation of different views of the system for different users. The

e ofe @

problem is essentially one of how to partition the system so that users can see
a relatively complete view related to the aspects that are of relevance to them
without having to look at the whole system. The recognition of commuting
diagrams as processes suggests that the best partitioning would be obtained by
choosing a related group of commutative diagrams. This will be developed in
work currently in progress.

This partitioning can be carried further. The growth of very large infor-
mation systems has led to problems of complexity and context reteation which
might best be solved by allowing business units a certain autonomy with their
information systems. However, integration of such systems is necessary and
the complexity of the interaction between subsystems can be dangerous. We
propose the development of a corporate information (ER) model which can be
used to determine, via commutative diagrams how to partition the system into
subsystems. This will require duplicating entities that happen to fall into two
subsystems and providing a message passing mechanism to allow the two copies
to remain synchronised. However, if the partitioning is done well, and we believe
an analysis based on commutative diagrams will do this, then it is likely that
the interaction between subsystems will be quite manageable.

This proposed architecture for information systems is the source of the name
Federated Information Systems.

References

[1] M. Barr and C. Wells, Category theory snd computer science, Preutice Hall,
1990.

[2] A. Carboni, S. Lack and R.F.C. Walters, Introduction to extensive snd
distributive catgories, Pure Mathematics Report 92-9, University of Sydney,
1992.

[3] Category theory and computer science conferences, Springer lev.ure notes
in computer science, 240, 283 and 389

(4] P.P.S. Chen, The entity relationship model—towards a unified view of data,
ACM Transections on Database Systems, 1 (1976), 9-36.

[5] C.N.G. Dampney, M. Johnson and G.P. Monro, An illustrated mathemat-
ical foundation for ERA, in C.M 1. Rattray and R.G. Clarke (eds) The
unified compstation [sboretory, Institute of mathematics and its applica-
tions, (1992), 77-84.

[6] Durham Conference, Applications of categories in computer science, Lon-
don Methematical Society Lectare Note Series 177 (1992).

[7] C.A. Gunther, The mixed power domain, to appear in Theoretical Com-
puter Science.

c o @

[8] Saunders Mac Lane, Categories for the Working Mathematician, Graduate
Texts in Mathematics 5, Springer-Verlag, 1971.

(9] R. Rosebrugh and R.J. Wood, Relational databases and indexed categories,
Canadian Mathematical Society Conference Proceedings 13 (1992), 391-
407.

{10] S. Vickers, Geometric theories and databases, London Methematicsl Society
Lecture Notes 177 (1992), 288-314.

{11] R.F.C. Walters, Categories and computer science, Cambridge University
Press, 1992.

c of)e ®

Rigorous specification of real-time systems

Steve Schneider
May 1993

Abstract
This paper provides aa introduction to the use of timed CSP in res-
soning about real-time systems. The language of timed CSP and the
denotational timed failures model are reviewed, and the underlying the-
ory is discussed. The algebraic style of specification is discussed, followed
by the behavioural specification approach. A simple timed buffer example
is treated wsing both methods.

1 Introduction

A real-time system is one whose correct operation relies upon some consider-
ation of its quantitative timed behaviour; examples include traffic lights, gas
burners, washing machines, and nuclear power plants. Many specifications on
such systems are concerned with explicit timing properties such as response
time or delay time. To reason rigorously about them, it is necessary to be able
to capture real-time properties in a precise way, and to have some model of
computation that incorporates time.

There are a number of approaches that have been taken to provide a rig-
orous foundation for reasoning about real-time systems. One approach is to
focus attention on specifications, providing a language suitable for capturing
and reasoning about real-time requirements independent of any particular for-
malism for describing systems. Metric temporal logic [Koy89] and the duration
calculus [ZBR91] are two examples. Such specification languages are generally
supported mathematically by an underlying model, snd may be used with a
variety of system description formalisms.

The complementary approach is to begin with a way of describing procesees.
There are many ways timed systems may be described, including timed au-
tomata [AlD91], timed graphs (LyV9l], timed petri nets (e.g. [CoR85)), a
multitude of timed process algebras [BaB91, HeR91, MoT90, Che92, Wan91,
ReR86, NiS90], timed versions of LOTOS [QaF87, BoL91]

Processes or abstract programs are often used as specifications in their own
right, by treating them as descriptions of how s system is intended to behave.

In this case, another essential part of the specification is how a proposed im-
plementation should relate to the specifying process. It may be required to be
equivalent with respect to a set of axioms (as is often the case when the un-
derlying semantics is axiomatic), or bisimilar, or testing equivaleat (both with
respect to an operational semantics), or equal in some denotational model. Al-
ternatively, some notion of refinement may be preferred: a set of axioms might
define a notion of refinement, or perbaps some simulation relation should hold
between specification and implementation, or the implementation should pass
more tests, or else their meanings should be related by some refinement in a
denotational model.

In addition, the specification-oriented and the process-oriented approaches
are often combined. A programming language may be provided together with an
independent way of talking about properties. For example, timed graphs may
be related to temporal logic [ACD93); an occam-like language [Hoo91] may use
metric temporal logic as a specification language, or & process algebra may be
used in conjunction with a Hennessy-Milner style logic (HeM85). Furthermore,
any language with a denotational semantics will support specifications expressed
directly as properties on subeets of the denotational model.

This paper describes two approaches that may be taken with the process
algebra of timed Communicating Sequential Processes (CSP). It begina by re-
viewing the language, which is an extension of Hoare’s CSP [Hoa85] which in-
cludes an explicit timing construct. Its denotational semantics is then given in
terms of timed traces and timed refusals. The underlying theory is reviewed, as
it is this theory which underpins all application of CSP. Finally, two approaches
to specification are discussed. The language may be used as a specification
language in the sense above, leading to processes as ‘algebraic’ specifications.
The CSP approach to nondeterminism as underspecification leads naturally to
a refinement relationship between a specification captured as a process, and a
proposed implementation which should be at least as deterministic. The deno-
tational semantics also makes it possible to capture requirements as properties
on elements of the semantic model. This is done by specifying acceptable be-
haviour in a typical execution, and then requiring that all possible executions
of a proposed implementation meet this specification.

2 Communicating Sequential Processes

In common with other process algebras, CSP is concerned purely with the com-
munication patterns of processes, abstracting away internal state information
which may be separated from communication behaviour. This abstraction re-
mains appropriate for real-time systems since they are generally reactive, main-
taining continual interaction with their environment. underlying model.

c o@e @

Events
A process is modelled in terms of the possible interactions it can have with its
environment. These interactions are described in terms of instantaneous atomic
synchronisations, or eveats. This notion of synchronisation is considered to
be primitive: both asynchronous communication and communication by means
of shared memory may be modelled in terms of it. When a process will be
cooperating with its environment for some length of time, this is modelled in
terms of an event at the point where they agree to cooperate. For example, a
couple involved in a wedding service will be interacting for some time, yet there
is & precise instant at which they become married.
Computational model
A number of assumptions are made about the underlying model of computation.
e Maximal progress A synchronisation event occurs as soon as all par-
ticipants are ready to perform it.
o Maximal parallelism Every process has a dedicated processor; pro-
ceases do not compete for processor time.
o Finite variability No process may perform infinitely many events, or
undergo infinitely many state changes, in a finite interval of time.

¢ Real-time The time domain is taken to be the non-negative real num-
bers. Thus it is posible for events to occur at any non-negative real
time. Since the reals are deunse, our maximal parallelism assumption above
means that there is no lower bound on the time difference between two
independent events.

The language of CSP

Let T be the set of all possible events. Thet.emsofCSPa..tegivenbythe
following Backus-Naur form:

2= Stop |Skip|P;Ple—P| sequential
POP|PNP|PBP| choice
PlaPIPRP| parallel
P\A|f(P)Yf-1(P)]| abstraction
X|puXeP recursion

where ¢ is drawn from T, A is drawn from P(Z), ¢ from [0, o0), f is a function
T — T, and X is drawn from the set of process variables. CSP processes are

c ofe &

terms with no free process variables (every process varisble is bound by some u
expression), for which every recursive expression is guarded, as defined below.

The process Stop represents the deadlocked process, unable to engage in any
events or make any progress. The process Ship is the immediately terminating
process. A sequential composition P ; Q initially behaves as P, but once P
terminates, control is immediately passed, and the subsequent behaviour is that
of Q. Thus we would expect Skip ; P = P for any P, and Stop ; P = Stop, and
indeed the semantic model supports these equations.

The prefix process ¢ — P is ready initially to engage in event ¢. It will
continue to wait until its environment is also ready to perform it, at which point
it will synchronise on this event. Once the event is performed its subsequent
behaviour will be that of process P. There is no delay between the occurrence
of & and the begianing of P.

An external choice P O Q is initially ready to engage in events that either
P or Q is ready to engage in. The first event performed resolves the choice
in favour of the compounent that was able to perform it, and the subsequent
behaviour is given by this componeat. If both components were able to perform
the first event, then the choice is resolved nondeterministically.

An internal choice P N Q behaves either as P or as Q, but unlike the external
choice, the eavironment cannot influence the way the choice is resolved.

TheﬁmmtchoieePéQiniﬁdlybehtvauproeuP. If an event

is performed before time ¢, then the choice is resolved in favour of P which

continues to execute, and Q is discarded. H no such event is performed, then
the timeout occurs at time t, and the subsequent behaviour is that of Q.

The parallel combination P ,{|g Q allows P to engage in events from the
set A, and @ to engage in events from the set B. The processes P and @ must
synchronise on all events in the intersection A N B of these two interfaces, but
other events are performed independently. The asynchronous parallel combina-
tion P || Q represents the independent concurrent execution of P and @, with
no synchronisation between them on any events.

The hiding operator P \ A allows encapsulation of events in the set A; these
events are made internal to the process, and are thus removed from the control of
the environment. Since the cooperation of the environment is no longer required
for these events, the only participants will be the components of P, and so the
maximal progress assumption tells us that these internal events will occur as
soon as P is ready to perform them. Hence internal events occur as soon as
they are ready.

The interface renaming operators f(P) and f=/(P) have the effect of chang-
ing the names of events through the alphabet mapping function f.

Recursion

A recursive term X o P behaves as P, with every occurrence of X in P
representing an immediate recursive invocation. Thus we will have the usual

- 108~

law
pXeP=PuXeP/X]

We require that any recursive term of the form uX ¢ P has that P is t-
guarded for X for some t > 0. The following rules define when a timed CSP
term P is t-guarded for variable X; a full discussion of t-guardedness can be
found in [DaS93].

e Forany X and t:
1. Stop, Skip are t-guarded for X
2. X is 0-guarded for X
3. Y # X is t-guarded for X
4. pX o P is t-guarded for X
e If P is t-guarded for X:
1. e~ P, P\ A, f(P), f~*(P), snd 4 Y o P are all {-guarded for X
o If P and Q are t-guarded for X:
1. PDQ:PthP;Q)P'Q.PA“B Queall#gunrdedforx
o If P is t-guarded for X, and Q is t’-guarded for X:

1. P o Q is min{t, v+ '}-guarded for X

Derived operators

A number of derived operators may be defined. The delay process Waitt, a
timed form of Skip, which does nothing for t units of time and then terminates
successfully, may be defined by the following equivalence:

Waitt = Stop > Skip

The timeout choice waits for ¢ units of time, but the process Stop is unable to
perform any event, and so the timeout will never be resolved in its favour. Thus
at time ¢ control is passed to Skip, which then terminates immediately.

A delayed form of prefixing may then be defined:

s P = &—(Wiitt;P)

After the performance of event s, there is a delay of ¢ units of time before
control reaches P. The original version of timed CSP [ReR86, Ree88] treated
prefixing as automatically delayed, with a constant delay §. This would now be

wrimauc—‘oP.

c of)e @

T

Generalising choice to allow infinite choices is often useful. The prefix choice
8 : A —= P, is initially willing to perform any event from set A, and remains
so willing until some eveat is chosen. Its subsequent behaviour, given by P,,
is dependent upon that event. Using this operator, an input construct can be
defined, allowing the input on channel in of any item £ in a set M:

n?z: M —Q(z) = s:inM-—P,

where the set in. M = {in.m | m € M} and Piy.p = Q(m) for every me M.
The atomic synchronisation events here are of the form in.m.
Infinite nondeterministic choice may also be defined. The process I"I’.e ;B

for some indexing set J may behave as any of its arguments P;. Thus for
example a nondeterministic delay over some interval / may be defined:

Weit] = nte ! Wait t

This may delay for any time drawn from the interval I. If each of the P, is
t-guarded for X, then so is their infinite choice. Furthermore, if P is {-guarded
for X, then WaitI; P is (¢ +inf I)-guarded for X

Finally, it is straightforward to generalise recursion to mutual recursion (fi-
nite or infinite); for further details see [DaS93).

A mathematical model
Notation

The variables t and u range over R*, the set of non-negative real numbers.
Variable s ranges over (R x X)*, the finite sequences of timed events. We also
use RCR* x B,

We use the following operations on sequences: #s is the length of the se-
quence s; s; 83 denotes the concatenation of s, and sg. We define the begin-
ning and end of a sequence of timed events as follows: begin({(?,a))"6) = ¢,
end(s((t, a)) = t, and for convenience begin({)) = co and end({)) = 0. The
notation s; < sy means that s; is a subsequence of sg, and 3; < sy means that
87 is a prefix of sg. The following projections on sequences are defined by list
comprehension:

sdat = ((v,8)|(v,8) —~s,u<gt)
sqQt = ((u,8)](v,8)~s8<t)
ot = ((v,6)|(v,8) —~0s,u21)
sl = {((w,8)|(v,8) ~s5€l)
st A = ((w,6)|(v,8) ~s,8€4)
s\A = {((v,8)|(n,8)~s,6¢A)
8-t = {(v—=t,8)|(v,8) —s,u>1)
- {0~
- - e L)

Qs &

@

s+t = ((w+1,8)|(n,8)+238)
strip(s) = (s|(n,6) —3)
o(s) = {s|s] {a}#()}

We also define a number of projections on sets of timed events:

Rat = {(v,6)|(n,8)ER,u< 1}
Rot = {(w,6)](s,8)eER,s>1}
Rt A = {(v,8)|(n,8) €ER, e €A}
R-t = {(w—t,6)|(n,8) ER,>1}
o®) = {s|(v,6)€ER}

end(R) = oup{u]|(v,a) R}

We will use (s, R, w) — ¢ as an abbreviation for (s - t,R ~ ¢, maz{0, v - t}), and
end(s, R) for max{end(s), end(R)}.

Observations

To provide a denotational semantics for the CSP operators, we construct a model
of possible meanings for processes. This will be given in terms of observations
that may be made of processes as they execute. We first define a set of possible
observations OBS, and then associate with each process the set of observations
that may be made of it. Processes are considered to be the same if the associated
sets of observations are identical.

Any observation of an execution of a process must include 8 record of those
events that were performed, and the times at which they occurred. A timed trace
is a finite sequence of timed events, drawn from the set [0, 00) x I, such that
the times associated with the events appear in non-decreasing order. Formally,
we define the set T'T of all possible timed traces as

TT = {s€([0,00)x X)" | ((1:,81),(ts, 88)) X s > 1; < 15}

Timed traces provide much information concerning the possible executions
of processes. But these systems are reactive, and so we are also interested
in knowing when they will be able to interact with an environment which is
ready to perform certain events, and when they will not be able to do so.
Although this information may be deduced from the trace information in the
case of deterministic systems, trace information is not sufficient in the case of
nondeterministic systems. For example, the traces of

¢ —+ Stop and Stop N e — Stop

are the same, yet the first musi always respond in an environment in which ¢
is ready, whereas the second may not.

e of)s @

We will therefore also record timed refusal information. A timed refusal is
made up of those events (with times) which the process refused to engage in
during an execution. Qur assumption of finite variability allows us to simplify
the treatment of such sets. Since a process will continue to refuse an event
while it remains in the same state, and since only finitely many state changes
are possible in a finite time, we may consider a timed refusal as a step function
from times to sets of events, containing the information about which set of
events may be refused at which times.

Refusal information at a time t is considered to be subsequent to the events
recorded in the trace at that time. For example, in the process

& — Stop O b — Stop

the event b cannot be refused before any events have occurred. But at the
instant & occurs, the possibility of § is withdrawn and 80 it may be refused from
t onwards. Thus we consider the step function to be closed at the lower end of
a step, and open at the upper end. Observe that once a single a has occurred,
then it too may be refused from that instant onwards, since no further copies
of ¢ are possible for the process.

Refusal sets are formally defined as those sets of events which can be ex-
pressed as finite unions of refusal tokens; this captures the required step struc-
ture:

RTOK {[d,e)x A|0<b<e<ooAACE}
RSET = {|{JR|ReF(RTOK)}

A single obeervation will consist of a timed failure, made up of a trace s €
TT, a refusal set R € RSET, and a time t < oo which is the duration of the
obeervation, and must therefore be greater than or equal to all times mentioned
in s and R. The trace and refusal are both recorded duriug the same execution.
The information that (s, R, t) is an observation of P tells us that P has some
execution up to time ¢ during which the events in s were performed and the
events in R were refused. In contrast to the untimed failures model for CSP, this
refusa. sontains information concerning events that were refused before, during
and afier the performance of s, whereas an untimed refusal set contains only
information after the end of the trace.

There is also another, contrapositive, view of the information contained in
(s, R, 1): as a partial record of an experiment on the process P. We may consider
R as containing some information about what the environment of P was ready
to perform, and the trace s may be considered as the response of P in this
environment. For example, if we place the process Wait I ; ¢ — Stop in an
environment which is ready to perform a at all times between 0 and 2, then
we would expect to see the event a occur at time /. This corresponds to the
observation ({(1, s)),[0, 2) x {a}, 2). This is also expected under the previous

-

view: before time 1, the event & is not possible, and s0 it may be refused. At
time I, the event & occurs, and any further occurrences are not possible; since
the refusal at time 7 is subsequent to the trace, we allow ¢ to be refused at
time 1, and from that time onwards. Thus the event s may be refused over the
interval [0, 2) provided one copy of it is performed at time 1. The information
that & is also refused at time / simply states that the process may refuse to
engage in further copies of that event.
Our set of observations is thus given by

OBS = {(s,R,t)| end(s) < tAend(R) <t}
and processes will be associated with subeets of OBS.

The model

We identify a number of healthiness conditions, or axioms of the model TMp
which we would expect any set of observations consistent with some process to
meet. Thus the timed failures model TMp is defined to be those subeets S of

OBS satisfying the following conditions:

1. (0.{L,0)es

2. (578, N 1) ES > (s,Ra begin(s'), 1) ES

3. (s, R,OESANERSETARC R (s,N,t)ES
4

(s,R,)eS=>
AR € RSET e RCNW A(s,W,1)ES
AV(s,8)€[0,t)xEe
(s, 8) ¢N > (s a8 ((v,8)),N @ v, 8)ES
A

(s>0A~3e>0e((u—c.w)x {s} CN))
= (s s {(s,3)),h @ 5,¥)ES
5. Va,dneVs,Re(s,R,v)ES>H#s<n

6. (s,N,t)ES=>Vu>end(s,R)e(s,X,8)ES

Axiom 1 states that the empty observation must be possible. Axioms 2 and 3
state that if a particula: observation is possible, then observations containing
less information must also be possible. Axiom 4 essentially states that any event
must be possible or refusible: that there must be a ‘complete’ extension of the
obeerved refusal set such that any timed event not in the complete refusal could
have been performed. Axiom 5 enforces a speed limit on processes, which implies
finite variability. Axiom 8 states that the same traces and refusals may be
observed however long the process is watched. This last axiom implies that the
duration information is redundant; the possible durations may be deduced from
the trace and refusal information alone. However, we retain this information as
an aid to specification.

c o @®

The semantic function Fr

We provide semantics only for the basic terms of the language without free
variables; this may be lifted in the usual way {[DaS93] to the language containing

free varisbles.

The semantic function

Fr:TCSP — TMp

is defined by the following set of equations:

{(R,0)|s=()}

{L(J()»N,)| v ¢o®)}

{({(x, MR [t2420A V¢ o(Ra)}
{(sX,0) | V¢o(s) A

Frlstop] =
Friskp] =

[

FrlP; Q]

Frle — P]

Fr[p 0 Q)

Fr{pn Q]
F2[P 5 Q]

FrlP 4lis Q1

|1

n»

n

n

n»

(J,RU([O, ‘) x {\/})) € rT[P]
v
s=9p " 8g A/ ¢ 0o(sp)
A (sq, R, t) — u € FT[Q] A begin(sq) > »
A (sp (%, V), R @ s U([0, %) x {V}),») € Fr[P]}

{(0,R,)| s go(®)}

U
{{(s,8)) "8, X, 8)| sgo(Raw)A
(s,8, 1) - s € Fr[P]}

{0,/ 01 (% 1) € FrIPINFrQL}
U
{(&, R)| s # () A (s, R,) € FrIPJU FT[Q])
A
((), R @ begin(s), begin(s)) € Fr[P N F7{Q]}
Fr{PluFrlQ]

{(s,R,2) | begin(s) < w A (s,8,) € Fr[P]}

v

{(8,R,1) | begin(s) > « A ((,R @ v,¥) € Fr[F]
A
(', R, ‘)- s € }.T[Q]}

{(s,R,2) | IRp,Rg @

@0.0@1

Rl (AUB)=Rp| A)U(Re | B)
As=s| (AUB)

A(s! ARp,t) € FriP)

A(s] B,Rg, 1) € Fr[Q] }

Fr[P1Q) = {(s,X,t)|3sp,09e s€opsgA
(‘Prnv‘) € ’Tlpl A
(sq. R, t) € Fr[Q1}

where sp | 2g is the set of timed traces consisting of an intetleaving of sp and
8Q-

FrlP\A] 2 {(s\ AR, 0)|(s,RU([0,1) x A),1) € Fr[P]}
FrUPN 2 ()R 1) | (s, /7' (R), 1) € Fr{P]}
Frl~4(P] = {(aR, 1)1 (f(2). f(R),¥) € F7IP]}

The infinite choice constructs are not always well defined, since axiom 5
might be violated if there is no speed limit which applies to all of the arguments
simultaneously. We say that a set of processes R is uniformly bounded if the
union | J R C OBS meets axiom 5. In such cases, the following definitions apply:

N, Pl & |JFrlP)
i€l
{(0.x,)| Ane(®) = {}}
U{({(s,6)) "5, R, 1) |
s€EAANANO(Ra ¥)={}
A(s,R,8) - t € Fr[P(s)]}
A full treatment of these operators requires a more complex model [MRS92,
Sch92a).

In order to give a mesning to recursive constructs, the intention is that the
recursive process ;X o P should be a solution of the equation X = P. Thus
we also allow recursive equations as process definitions: the equation P = F(P)
defines P to be the process p X o F(X).

1t is by no means clear why such equations should have solutions at all, and
we must impose some structure on the model in order to guarantee that they
do. A distance function d between processes is defined:

Sas = {(s,R,)eS|t< s}
d(S;,58) = inf{2~*|S;at=S5sat}
Thus the longer S; and Sp are indistinguishable, the closer together they are
under 4. In fact, the distance function is a metric, and the space (TMr,d)is a
complete metric space [Ree88].

Frls:A—P,]

c oo @

Now define a function F(Y) to be t-constructive if
SiAu=Ssas = F(S)a(s+t)=F(Ss)a(s+1)

If a term P is t-guarded in X, it follows that the resulting function on X
corresponds to a t-constructive function F on TMp (for any instantiation of
the other process variables). But this means that F is a contraction mapping:
that is,
Ja< 1eVS;,Ssed(F(S;), F(52)) € ad(S;,8s)

where a suitable a is 2-*. Thus we conclude from Banach’s fixed point theorem
[Sut75] that the function F has a unique fixed point in the complete metric
space (TMp, d).

It is now possible to give a meaning to a recursive term of the form u X o P
for P t-guarded in X with ¢ > 0. If P contains no free variables other than X
then we have

Fr[uX e P] = The unique fixed point of the function corresponding
tolXeP

This approach may be lifted to terms P containing other free variables in the
usual way, by evaluating the recursion while the values of the other variables
remain fixed (see [DaS93]). It also extends easily to mutual recursion.

This semantic model corresponds in a natural way to an operational testing -
approach [Hen88) to identifying and distinguishing processes. An operational
semantics of the language has been given [Sch92b] in terms of & timed transition
system. A test is a CSP process T. A process P may pass a test T if there is
some execution given by the operational semaatics of (P glly T) \ T for which
T passes through a ‘success’ state. Two processes are equivalent under may
testing if the set of tests they may pass are exactly the same. Then it turns
out [Sch92b] that this notion of equivalence is the same as equivalence in the
model TMp: processes are equivalent under may testing precisely when they
have exactly the same timed failures. Thus the denotational semantics is fully
abstract with respect to the operational semantics. It follows that timed failures
equivalence is the same as untimed and timed trace congruence.

3 Specification

3.1 Process algebra specification

As observed earlier, a common approach to specification is to use procesees
themselves as descriptions of required behaviour. By considering nondetermin-
ism as underspecification, we consider an implementation or refinement of P to
be a process @ which behaves as P but which may be more deterministic; some

of the nondeterminism in P may be resolved in Q. Thus P is refined by Q if Q
has fewer behaviours than P. This is written P C Q, and defined

PCQ @ rrlQlc FriP)

A process Q meets a specification P when PC Q.
Consider for example a specification for calculating a square root of {z|:

SQRT = in?z -1 ((owt!(+/15]) — Skip) N (out!(—/]z]) — Skip))

An internal choice is made as to whether to output the positive or the negative
square root. If this specification process is suitable in a particular context, then
the following refinement that is guaranteed to output the negative square root
will also be suitable:

NSQRT = in?z -1 out!(~\/}z]) — Skip

The eavironment of the process cannot know whether the internal choice is
resolved at run-time, or st compile-time, or by the implementor of the process.

The next specification is for a one-place buffer which takes between one
second and eight seconds from inputting a message to enabling it for output.
The next input may follow output immediately, and must be possible within
five seconds of the last output.

B = in?z — Wait[l, 8]; outls — Wait[0,5); B

Thus the process @ = in?z 2. outle -2+ Q meets this specification, since it
is a refinement of B; any possible behaviour of Q is also poesible for B, and
therefore acceptable.

As a larger example we will consider the following more complicated require-
ment: we wish to specify a process modelling an n-place unordered buffer of
type T, which has certain constraints on input, output, and throughput:

o There must be at least 2 seconds between consecutive inputs;

o It must be ready to accept input no more than 10 seconds since the last
input (if not full).

o There must be at least 4 seconds between consecutive outputs;

o It should always be ready to output within 10 seconds of the last output
(if not empty).

o Any particular item must be available for output exactly 5 seconds after
it is input, subject to the other constraints.

- {i¥ -

The first two constraints impose lower and upper bounds on the times at which
the process should enable input. These are simultaneously captured by the

following process:
IN = in?7z: T — Wait[2,10];IN
Similarly, the bounds imposed by the next two constraints are captured by
OUT = owt?r:T — Weit{4,10];0UT

Obeerve that OUT is prepared to allow any event of the form owt.m; it is not

constraining the nature of the output in any way, it is only constraining the
time at which output becomes possible.
Finally, the fifth constraint may be captured for a buffer of size one as follows:

IBUFF = in?z: T > ouils — 1BUFF
An unordered buffer of sise » may be considered as a combination of = buffers
of sise 1 operating independently.
sBUFF = |||’., 1BUFF

where |||°. Pi=P; 1 Ps 1...] P.. Since the interleaving operator | is
associative (i.e. F+[(P 1 Q) | Rl = Fr[P 1 (Q [R)}), this is well defined.
The full specification may then be given as the paraliel combination of these
three specifications:
SPEC = (IN i 7lleus.7 OUT) ;o puest.Tllin. Tuent.7 SBUFF
The event set associated with each component specification consists of those
events that the specification is concerned with. The process IN imposes no

constraints upon the events in out.T, so these events do not appear in its
interface set, indicating that they can occur without the involvement of IN.

Obeerve also that it is the constraint imposed by sBUFF that prevents input

when the buffer is full, and output when empty; the processes /N and OUT are
not concerned with these aspects of the buffer’s behaviour.

The compositional nature of the denotational semaatics allows for a compo-
sitional treatment of refinement: if refinements of each of the specifications IN,
OUT, and sBUFF are independently found, then their parallel composition
will be a refinement of the entire specification SPEC. This compositionality is
essential for large-scale verification.

3.2 Behavioural specification

An alternative approach is to describe directly those observations that are ac-
ceptable, in terms of statements about traces and refusals. A specification in

c oo @

this style will be a predicate S on observations or behaviours, and a process
P will meet a specification if the predicate holds for every observation in its
semantics. In this case, we write P sat S, which is defined formally as follows:

PoatS = VY(s,N)€ Fr[P]e S

This approach allows for a variety of levels of abstraction, since the spec-
ification S may be concerned only with some aspects of behaviour, and may
ignore others. For example, an untimed safety specification associated with the
square-root specification SQRT above is that any answer given must be correct
with respect to the input:

S1 = Vr,ye((inz,out.y)) S strip(s) =>y* =12
This specification has abstracted away any timing information, and is concerned
purely with functional correctness. Timing properties are addressed by consid-
ering the times st which events occur.
52 = Vsz,p,u;5,880({(v;,in.2),(ug,00t.z)) <s)>u;+1<ng

The specification S2 states that there must be a delay of at least one second
between any input and any subsequent output.
All specifications that simply consider the trace s component of the observa-

tion are safety specifications, in Lamport’s sense that ‘nothing bad will happen”: -

a constraint is imposed on which events are permissible and at what times. A
process can fail such a specification only by performing some undesirable event.
In particular, the deadlock process Stop will meet any satisfiable specification
concerned simply with traces. A square root program could ensure it never gives
the wrong answer simply by never giving any answer.

To specify that a process should make some progress, it is necessary to
consider the refusal information. To say that the process is initially willing to
accept any input, we require that it is unable to refuse input eveats to begin
with:

§3 = s=()=>unTne®R)={}
To say that output must be available within one second of input we write
S{=Vu,zofoot(s} nTUost.T)=(s,ins)>ost.TLo(Rp> (x+1))

Recall that we also have an alternative view of refusals, as & partial record of
what the environment of the process offered. The specification 5§ may also be
interpreted as saying that if the last event observed was some input at time «,
then the environment cannot have been willing to accept output any time after
s+1. Thisis equivalent to the previous reading because of the maximal progress
property: if the environment had been willing, then all involved parties would

- 119

L SR - - - -

¢ ofe @

have been ready and the output would have occurred. Read contrapositively,
S4 states that if the environment had offered to accept output, then something
would have occurred after that last input {i.e. (w, i%.2) would not be the foot
of the trace s).

This view of refusals also supports an assumption/commitment style of spec-
ification. It is often natural to specify what a process is expected to do, and
then make explicit any sssumptions about the environment. For example, the
requirement that the three events s, §, and ¢ are performed sequentially before
time 1 is captured as follows:

Cl = t>21=({sbc)=Xstrip(aal)

If the observation lasts for at least one second, then the sequence (s, 8, c) should
appear in the trace by time 1.

No CSP process will be able to guarantee this specification unconditionally,
since it could always be placed in an uncooperstive environment which prevented
these events from happening. But such a specification is generally made with
the assumption that the events in question are under the control of the process
required to perform them. This may correspond to an assumption that the
environment is always willing to go along with the process with regard to these
three events. This assumption is expressed as AI:

Al = [0,t)x{a,b,c}CR

Then the resulting specification on a process is simply AJ => CI. This is met
by a process such as 8 —+ b — ¢ ~ Stop; observe that this process does
not meet the specification C1, since ({), {}, 1) is a possible observation of it for
which C/ fails.

As another example, consider the following specification on a buffer:

S5 = [0,t)xout. TCR>
(Ve,ze(s,inz)EsAu+I<i=>(u+1,08t2)Es)

Here the assumption about the environment is that it is always willing to accept
output: for the duration t of the observation, all output events are present in
R, indicating that the environment was willing to accept all such events. Under
this assumption, we require that for any time s at which a message z is input,
a corresponding output must appear in the trace one second later (provided the
obeervation lasts that long).

For the purposes of comparison and contrast, we return to the five require-
ments on the n-place unordered buffer. These are respectively rendered as
behavioural specifications below. We must also make the n-place requirement
explicit, in B0. Observe in Bf and B that the lower bound of the desired
response time is captured by a trace specification stating that events cannot
appear too close together; these are safety properties. The upper bound re-
quirements given by B2 and B must be captured by an assertion about the

- {20~

readiness of the process to engage in further events by a particular time, ex-
pressed in terms of refusals. We do not insist that some event must be performed
(unless we make an assumption about the environment), since a process does
not have sole coatrol over the performance of events.

Bo. O0<#(s! m.T)—#(s] omt.T)<n

Bt., Veo#(sl mTt(s,u+2))<1

BE. (#(s]! mT)-#(s}| out.T)<n)>
m.TNo(Ro end(s | n.T)+ 10) = {}

By, Vued(s| ost.T1(v,s+4))<1

Bi{. (#(s! =.T)~#(s| out.T)> 0)=>
owt.TNo(Ro> end(s | out.T)+ 10) = {}

BS. ((s435)] in.T) beforea,eu: (s | out.T)

where 2 beforeiq ou: 3’ holds if every output event owt.m in s’ has some corre-
sponding input event in.m in s. It may be defined as follows:

s beforeiy ous 8 < bag(s’ | out) C bag(s | in)

where (2 | c) is the sequence of messages m that appear in s on chaanel ¢ (i.e.
when c.m is in the trace); and bag(s | c) is the corresponding bag of messages.
This last specification illustrates a feature of the model-based approach:
that we always bhave the opportuaity to provide new definitions appropriate for
particular applications.
Thus we would expect our algebraic specification process SPEC to meet the
conjunction of these requirements:

SPEC sat BOABIAB2ABSAB|ABS
Verification
The composition nature of the denotational semantics allows for a specification

oriented proof system for establishing claims of the form P sat S. A proof
obligation on & compound process P can be reduced or factored into proof

obligations on its components.
For example, the following rule is given for lockstep parallel composition:

P; sat S;
Pg sat Sp
VRe[(AR;,RgoeR=R; URg A SR /R] A Sa[Re/R]) = 5]

P} z“,;P.llts

Thus to prove that s parallel combination meets 5, it is sufficient to find §;
and Sg which the components meet and whose combinstion implies S.

The proof system, containing a rule for each operator, is given in [DaS90}.
The soundness of the rules follows from the semantic equations. The rules
are also complete, in the sense that if the conclusion is true, then there are
specifications S; and Sp such that the antecedents are all simultanecualy true.

The rule for recursion is also straightforward:

3XeXsats
VXeo(XsatsS=>Psats)
(uXoP)sats

Its soundness follows from the fact that any predicate on processes of the form
X sat S is closed in the metric space TMp, for any specification S; and that
any contraction which maps a non-empty closed set into itself has its unique
fixed point in the closed set.

Current and future research

Although an operational and deaotational semantics for timed CSP have been
given and shown to be equivalent, there is not yet an equivalent axiomatic
semantics. There are many laws for transforming process descriptions [Ree88],
but these laws do not form a complete set. An approach similar to that taken
in [Che92] appears promising, and may complete the trinity of complementary
semantic approaches. This would give more backup to the algebraic specification
style, since the claim P C Q might then be established by equational reasoning,
a8 it is equivalent to the claim P = P N Q. Different specification styles might
be appropriate for different parts of a development, and could be used in tandem
since they are unified by the underlying model.

Specification macros [Dav93) to make behavioural specifications more palat-
able are under investigation. Specification clichés are captured at a higher level
to make requirements easier to read and understand. For example, the spec-
ification 54 stating that output should be available one second after input is
rendered in at t = out fromt + 1.

Machine assisted verification is another area of great interest, both in terms
of support for proofs that processes meet behavioural specifications, and also
mtermofthcmodel—checkm;:pptouhfordgebmupeuﬁcwom The latter
approach is based upon operational semantics, and the states of a proposed
implementation are explored and checked against corresponding states in the
specification.

Acknowledgements

This material draws on the work of many researchers involved with the timed
CSP group in Oxford. In particular it is a pleasure to acknowledge the contribu-

tions made by Bill Roscoe, Mike Reed, Tony Hoare, Jim Davies, Dave Jackson,
and Gavin Lowe.

I am also grateful to the UK Science and Engineering Research Council for
their support under research fellowship B91/RFH/312.

References

[ACD93) R. Alur, C. Courcoubetis, aad D. Dill, Model-checking in dease real-
time, Information and Computation, 1993.

{AID91] R. Alur and D. Dill, The theory of timed automata, Proceedings, Real-
Time: Theory in Practice, LNCS 600, 1991.

{BaB91]} J.C.M Baetea and J.A. Bergstra, Realtime process algebra, Formal As-
pects of Computing, 1991.

(BoL91) T. Bologaesi and F. Lucidi, Timed process algebras with urgent inter-
actions and a unigue powerful binary operator, Proceedings, Real-Time:
Theoty in Practice, LNCS 600, 1991.

[Chen] Liang Chea, Timed processes: models, axioms aad decidability, PhD
thesis, University of Edinbargh, 1992.

[CoR8S5) J.E. Coolahan and N. Roussopoulos, A timed Petri net methodalogy for
specifying real-time system timing coastraints, in “Proceedings, Inter- .
national Workshop on Timed Petri Nets,” Torino, Italy, 1985.

[DaSs0) J.W. Davies and S.A. Schaeider, Factorising proofs in Timed CSP, Pro-
ceedings of the Fiftk Workshop on the Mathematical Foundations of
Programming Laaguage Semaatics LNCS 442, 1990.

[DaS93} J.W. Davies and S.A. Schaeider, Recursion induction for real-time pro-
cesses, Formal Aspects of Computing, to appear, 1993.

[Dave3, J.W. Davies, Specification and proof in real-time CSP, Cambridge Uni-
versity Press, 1993.

[HeMss) M. Hennessy and A.J.R.G. Milner, Algebraic laws for nondeterminism
and comcurrency, Journal of ACM, 1985.

[Hens88) M. Heanessy, An algebraic theory of processes, M.L.T press, 1988.

[HeR91] M. Hemnessy and T. Regan, A process algebra for timed systems, report
5/91, University of Sussex, 1991.

[Hoas5) C.A.R. Hoare, Communicating Sequemtial Processes, Preatice-Hall,
1985.

[Boos1] J Hooman, Specification and compositional verification of real-time sy»-

FR——

tems, PhD thesis, Eindhoven University of Technology, The Netherlands,
1991.

- {23

c ofe @

(Koys9]

fLyvel]

{MoTs0]
(MRs93)

(Nisso]

[QaF87)]

[Reess]

(ReR8s)

{Sch92a}

[Sch92b)

[Sut75]

{Wan91]

(ZHR91]

R.L.C. Koymans, Specifying message passing aad time-critical systems
with temporal logic, PAD thesis, Eindhoven University of Technology,
The Netherlands, 1989.

N. Lynch aad F. Vaandrager, Forward and backward simulatioas for
timing-based systems, Proceedings, Real-Time: Theory in Practice,
LNCS 600, 1991.

F. Moller and C. Tofts, A temporal calculus of communicating systems,
Proceedings, CONCUR 1990, LNCS 458, Springer-Verlag.

M.W. Mislove, A.W. Roscoe, and S.A. Schaeider, Fixed points withont
completeness, submitted for publication, 1992.

X. Nicollin, X and J. Sifakis, The algebra of timed processes ATP: the-
ory and application, RT-C26, Projet SPECTRE, Laboratoire de Génie
Informatique de Grenohle, 1990

J. Quemads aad A. Fernandes, Introduction of quantitative relative time
into LOTOS, in “Protocol Specification, Testing and Verification VII”
North Holland, 1987.

G.M. Reed, A Uniform Mathematical Theory for Real- Time Distributed
Computing, Oxford University DPhil thesis, 1988.

G.M. Reed and A. W. Roscoe, A Timed Model for Communicating Se-
quential Processes, Proceedings of ICALP’86, LNCS 226, 1986; Theo-
retical Computer Science 58, pp 249-261, 1988.

S.A. Schneider, Unbounded noadeterminism for real-time processes, Ox-
ford University Technical Report 13-92, 1992,

S.A. Schaeider, Anr operational semantics for timed CSP, Information
and Computation, to appear. Also Oxford University Technical Report
1-92, 1992.

W.A. Sutherland, Introduction to metric and topological spaces, Oxford
University Press, 1975.

Wang Yi, A calculus of real time systems, Ph.D. Thesis, Chalmers Uni-
versity of Techrology, Sweden, 1991.

Zhou Chaochen, C.A.R. Hoare, and A.P. Rava, A caiculus of durations,
Information Processing Letters 40,5, 1991.

c ofe @

Full Abstraction and Expressiveness

in Structural Operational Semantics
(preliminary report)

R.J. van Glabbeek*
Computer Science Department, Staaford University
Staaford, CA 84305, USA.
rvglcs.stanford. edn

This paper explores the connection between semantic equivalences for concrete sequential pro-
cesses, represented by means of transition systems, and formats of transition system specifica-
tions using Plotkin’s structural approach. For several equivalences in the linear time - branching
time spectrum a format is given, as general as possible, such that this equivalence is a congru-
ence for all operators specifiable in that format. And for several formats it is determined what is
the coarsest congruence with respect to all operators in this format that is finer than partial or
completed trace equivalence. Finally for some of the formats a small language specified in this
format is provided such that any operator specifiable in that format can already be expressed
in this language.

1 Preorders and equivalences on labelled transition systems

Definition 1 A labelled transition system (LTS) is a pair (PP, —) with IP a set (of processes) and
—C P x AxP for A a set (of actions).

Notation: Write p — g for (p,a,9) €— and p— for3ge P:p —— q.

The elements of IP represent the processes we are interested in, and p — ¢ means that process p
can evolve into process q while performing the action a. By an action any activity is understood
that is considered as a conceptual entity on a chosen level of abstraction. Different activities that
are indistinguishable on the chosen level of abstraction are interpreted as occurrences of the same
action a € A. Actions may be instantaneous or durational and are not required to terminate,
but in a finite time only finitely many actions can be carried out (i.e. only discrete systems are
considered).

Below several semantic preorders and equivalences will be defined on processes represented by
means of labelled transition systems. These preorders can be defined in terms of the observations
that an experimentator could make during a session with a process.

Definition 2 The set 0, of potential observations over an action set A is defined inductively by:
T € ©4. The trivial observation, obtained by terminating the session.

ap € 0, if p € O, and a € A. The observation of an action a, followed by the observation .

X € 0, for X C A. The investigated system cannot perform further actions from the set X.

X € 0, for X C A. The investigated system can now perform any action from the set X.

Aier @i € ©4 if ¢ € O for all i € I. The systems admits each of the observations ;.

~p € 0, if ¢ € 04. (It can be observed that) ¥ cannot be observed.

*This work was supported by ONR under grant sumber N00014-92-J-1974.

- {25 -

e ofe @

Definition 3 Let (P, —) be a LTS, labelled over A. The function O, : P — P(0,) of observations
of a process is inductively defined by the clauses below.

T € O4(p)

(a) ap €O0L(P)if p— qAp€O(g)
(F) X € O.(p)if p o~ foraecX

(R) X €O04(p)if p— foraeX

(A) Nier i € Oa(p) if pi € Oqx(p)forallie I
() ~0 € 0.(p)if p & Ou(p)

As the structure of the set A of actions will play no réle of significance in this paper, the cor-
responding index will from here on be omitted. Below several sublanguages of observations are
defined.

Or ou=T|ay the (partial) trace observations
Ocr v:=T|ap|A the completed trace observations
Or ¢u=T|ap|X the failure observations
Or ¢:u=Tlay| XAy the readiness observations
Orr pu=T|ay| XAy the failure trace observations
Onr pu=T|ap | XAV |XAY the ready trace observations
Os ¢u=T|ay| A\es v the simulation observations
Ocs p:u=T |ay | 0| Aies i the completed simulation observations
Ors pu=Tlap| X | Ner % the failure simulation observations
Ops =T |ay | X | X| Ner ®i the ready simulation observations
Op ou=T|ay| N | ¥ the bisimulation observations
Ons wu=T | (¥ € Oy forsomem < n) | Ajer i | ¥ the n-nested action observations
O.r ¢ :=T|a¥| Aic) ¥i (¢i € Oy for some m < n) | ~¢ the n-nested trace observations
Ons ¢ :=T|6¥ | Aies¥i | ¥ (¥ € Ops for some m < n) the n-nested simulation observations

For each of these notions N, Ox(p) is defined to be O(p) N P(Ow).

Definition 4 Two processes p,q € P are N-equivalent, denoted p =y ¢, if On(p) = On(g)-
p is N-prequivalent to ¢, denoted p Cy g, if On(p) C On(9)-

In VAN GLABBEEK [2] the observations above and the corresponding equivalences are motivated
by means of testing scenarios, phrased in terms of ‘button pushing experiments’ on generative and
reactive machines. There it is also observed that restricted to the domain of finitely branching,
concrete, sequential processes, most semantic equivalences found in the literature ‘that can be
defined uniformly in terms of action relations’ coincide with one of the equivalences defined above.
The same can be said for preorders. Here concrete refers to the absence of internal actions (r-moves)
or internal choice. In order to facilitate the connections with other work it is worth remarking that 2-
nested trace equivalence is also known as possible-futures equivalence, and on the mentioned domain
readiness equivalence coincides with acceptance-refusal equivalence, failure equivalence coincides
with Hennessy and De Nicola’s (must) testing equivalence, failure trace equivalence coincides with
Phillips refusal (testing), and ready trace equivalence coincides with barbed equivalence and with
ezhibited behaviour equivaience. In order to clarify a few more relations, the following relational
characterizations of certain equivalences may be helpful.

Definition 5 Let (P, —) be an LTS. A ready simulation is a relation R C P x P satisfying
-pRgAp-p = 3¢:q--gApPRY
- pPRarAp - > qF

Theorem 1 p Cgs ¢ iff p Cpg ¢ iff there is a ready simulation R with pRgq.

- 126~

e e@e @®

Proof: “pCas ¢ = p Crs q” is trivial. For “p Cps ¢ = there is a ready simulation R with pRq”
it suffices to establish that Cys is a ready simulation.
- Suppose Ops(p) C Ors(q) and p = p’. I have to show that 3¢’ € P with ¢ — ¢’ and
Ors(P) € Ors(¢). Let Q be {¢ € P | q —= ¢ A3y € Ors(P) — Ors(¢)}. Then
¢ Aveq @r € Ors(p) C Ors(g), so there must be a ¢ € P with g~ ¢’ and ¢ ¢ Q.

— Let O(p) C O(q) and p 7. Then {a} € Ors(p) € Ors(q) and hence ¢ 7.
Finally I have to prove that for R a ready simulation one has pRq = (¢ € Ors(p) = ¢ € Ors(q)).
I will do so with induction on ¢.
— Suppose pRq and ap € Ops(p). Then there is a p € P with p — p’ and ¢ € Ops(p/). As
R is a ready simulation, there must be a ¢ € P with ¢ — ¢ and p’R¢’. So by induction
@ € Ors(q), and hence ap € Ogrs(q).
The cases that @ is T, X, X or Aier ¥ are straightforward. o

Definition 6 Let (P, —) be an LTS. A simulation is a relation R C P x [P satisfying
- pRgAp——p = 3¢:q——¢APR¢

A bisimulation is a symmetric simulation.

Theorem 2 p Cg g iff there is a simulation R with pRgq.
pCp q iff p=p qifl there is a bisimulation R with pRg.

2 Structural Operational Semantics

In this paper V and A are two disjoint countably infinite sets of variables and names. Many
concepts that will appear are parameterized by the choice of V and A, but as in this paper this
choice is fixed, a corresponding index is suppressed.

Definition 7 (Signatures). A function declaration is a pair (f,n) of a function symbol f € N and
an arity n € N. A function declaration (¢, 0) is also called a constant declaration. A signature is a
set of function declarations. The set W(ZT) of terms over a signature T is defined inductively by:

2 V CF(X),
e ¥{fin)eTand t,,...,t, € T(T) then f(t,...,t,) € T(Z).

A term () is often abbreviated as ¢. For t € T(Z), V() denotes the set of variables that occur in
t. T(Z) is the set of closed terms over T, i.e. the terms ¢ € W(Z) with V(t) = 0. A Z-substitution o
is a partial function from V to W(Z). If o is a substitution and S any syntactic object, then S[o]
denotes the object obtained from S by replacing, for z in the domain of o, every occurrence of z
in § by o(z). In that case S{o] is called a substitution instance of S.

Definition 8 (Transition system specifications). Let T be a signature. A positive I-literal is an
expression ¢ — ¢’ and a negative I-literal an expression ¢ 4+ with t,¢ € T(X) and a € N. For
t,¢' € T(T) the literals t — ¢’ and t -/~ are said to deny each other. A transition formula over
T is an expression of the form & with H a set of L-literals (the antecedents of the the rule) and
a a T-literal (the conclusion). A formula & with H = @ is also written a. A literal or transition
formula is closed if it contains no variables. An action rule is a transition formula with a positive
conclusion. A transition system specification (TSS) is a pair (Z, R) with I a signature and R a set
of action rules over £. A TSS is positive if all literals in the antecedents of its rules are positive.

The concept of a TSS was introduced in GROOTE & VAANDRAGER [4]; the negative premisses
were added in GROOTE [3]. The notion constitutes the first formalization of PLOTKIN’s Struc-

“tural Operational Semantics (S0S) [5] that is sufficiently general to cover most, if not all, of its

applications.

- 23-

&

Definition 9 (Proof). Let P = (I, R) be a TSS. A proof of a transition formula & from P is a
well-founded, upwardly branching tree of which the nodes are labelled by I-literals, such that:

o the root is labelled by a, and
o if 8 is the label of a node ¢ and K is the set of labels of the nodes directly above ¢, then

— either K =0and f € H,
- or ’,5- is a substitution instance of a rule from R,

If a proof of & from P exists, then £ is provable from P, notation P+ £,

Definition 10 (Transition relation). Let T be a signature. A transition relation over T is a
relation —C T(Z) X N x T(Z). Elements (t,q,?’) of a transition relation are written as t — ¢'.
Thus a transition relation over I can be regarded as a set of closed positive X-literals (transitions).

A positive TSS specifies a transition relation in a straightforward way as the set of all derivable
transitions. But as pointed out in GROOTE {3}, it is much less trivial to associate a transition
relation to a TSS with negative premisses. Several solutions are proposed in [3]) and [1]. The most
general of those is through the notion of stability. It is not difficult to show that the concept of
stability defined below is the same as that of Bol and Groote.

Definition 11 (Stable transition relation). Let P = (I, R) be a TSS and let — be a transition
relation over £. — is stable for P if:

there is a closed transition formula £ without positive antecedents

@€ © gith PF & and (t - t') €— for no (¢ %) € H and ¢ € T(E).

According to BoL & GROOTE [1] the transition relation associated to a TSS is its unique stable
transition relation if it exists. They argue that there is no satisfying way to accociate a tranition
relation to a TSS that has no or multiple stable transition relations.

3 Formats and congruence theorems

Definition 12 (ntyft/ntyzt-format). An action rule ‘—_.5.7 over a signature I is in ntyft-format if t
has the form f(z,,...,zs) for certain (f,n) € T and z,,...,2, € V, and all its positive antecedents
have the form ¢t — y with y € V - V(t). It is in ntzfi-format if t has the form z € V and all its
positive antecedents have the form ¢ — y with z # y € V. A TSS is in ntyft/ntyzt-format if all
its rules are in ntyft or ntyzt-format.

Definition 13 The bound variables of an action rule ;—_{7 over a signature ¥ are inductively

defined as the ones that occur in t or in the target s of a positive antecedent (s 2 #)eH
where s contains bound variables only. The rule is pure if all variables that occur in it are bound,
and a TSS is pure if it consists of pure rules only. A rule has no lookahead if all bound variables
in the source of its antecedents also occur in the source of its conclusion. Connectedness is the
smallest equivalence relation between the bound variables that appear in a rule such that z and y
are connected if there is an antecedent z — y.

Definition 14 A TSS is in bisimulation format if it is positive after reduction—as defined in [1}—
and in ntyft/ntyzt-format. A TSS is in nested simulation format or tyft/tyrt-format if it is positive
and in ntyft/ntyzt-format. A TSS is in ready simulation format if it is in bisimulation format and
its rules have no lookahead. A TSS is in ready trace format if it is in ready simulation format and
no two occurrences of variables in the target of a rule are connected in that rule. A TSS is in failure
format if it is positive and in ready trace format.

- 128~

Theorem 3 (Congruence). Bisimulation equivalence is a congruence for any TSS in bisimulation
format. Similarly, n-nested simulation equivalence (for any n € IN) is a congruence for any TSS
in nested simulation format, Ready simulation equivalence is a congruence for any TSS in ready
simulation simulation format, ready trace equivalence is a congruence for any TSS in ready trace
format and failure equivalence as well as trace equivalence are congruences for any TSS in failure
format.

4 Full abstraction

Definition 15 An equivalence is said to be fully abstract with respect to a set of operators L and
another equivalence ~,, if it is the coarsest congruence with respect to the operators in L that
is finer that ~,,,. An equivalence on labelled transition systems is fully abstract with respect to a
TSS-format and an equivalence ~,,, if it is the coarsest congruence with respect to all operators
specifiable by a TSS in that format that is finer that ~,.

Theorem 4 Bisimulation equivalence is fully abstract w.r.t. the bisimulation format and trace
equivalence. 2-nested simulation equivalence is fully abstract for the n-nested simulation format
and completed trace equivalence. Simulation equivalence (=1-nested simulation equivalence) is fully
abstract for the n-nested simulation format and trace equivalence. Ready simulation equivalence is
fully abstract for the ready simulation simulation format and trace equivalence, as well as for the
positive ready simulation format and completed trace equivalence. Ready trace equivalence is fully
abstract for the ready trace format and trace equivalence. And failure equivalence is fully abstract
for the failure format and completed trace equivalence.

5 Expressiveness

Robert de Simone has shown that any operator that can be specified in the failure format can
be expressed in Meije (or any equivalent process algebraic language). I show that similarly any
operator that can be specified in the positive ready simulation format can be expressed in a similar
langnage to which an operator ! has been added. A similar result (with yet another operator) will
be conjectured for the n-nested simulation format.

References

[1]) R.N. BoL & J.F. GROOTE (1991): The meaning of negative premises in transition system
specifications (eztended abstract). In J. Leach Albert, B. Monien & M. Rodriguez, editors:
Proceedings 18** ICALP, Madrid, Lecture Notes in Computer Science 510, Springer-Verlag, pp.
481-494. Full version appeared as Report CS-R9054, CWI, Amsterdam, 1990.

{2] R.J. VAN GLABBEEK (1990): The linear time -~ branching time spectrum. In J.C.M. Baeten &
J.W. Klop, editors: Proceedings CONCUR 90, Amsterdam, Lecture Notes in Computer Science
458, Springer-Verlag, pp. 278-297.

[3] J.F. GrooTE (1989): Transition system specifications with negative premises. Report CS-
R8950, CWI, Amsterdam. An extended abstract appeared in J.C.M. Baeten and J.W. Klop,
editors: Proceedings CONCUR 90, Amsterdam, LNCS 458, Springer-Verlag, 1990, pp. 332-341.

[4] J.F. GrooTE & F.W. VAANDRAGER (October 1992): Structured operational semantics and
bisimulation as a congruence. Information and Computation 100(2), pp. 202-260.

[5) G.D. PLoTkIN (1981): A structural approach to operational semantics. Report DAIMI FN-19,
Computer Science Department, Aarhus University.

- 129~

= {30 -

Synchronous observers and
the verification of reactive systems

Nicolas Halbwachs Fabienne Lagnier, Pascal Raymond
Verimag Laboratory* and Verimag Laboratory*
Stanford Universityt B.P. 53X, 38041 Grenoble Cedex, France

Invited paper at the Third International Conference
on Algebraic Methodology and Software Technology,
AMAST'S3, Twente, June 1993.

Introduction

Synchronous programming [IEE91, Hal93b] is a useful approach to design reactive systems. A
synchronous program is supposed to instantly and deterministically react to events coming from
its environment. The advantages of this approach have been pointed out elsewhere. Synchronous
languages are simple and clean, they have been given simple and precise formal semantics,
they allow especially elegant programming style. They conciliate concurrency (at least at the
description level) with determinism. They can be compiled into a very efficient sequential code,
by means of a specific compiling technique: The control structure of the object code is a finite
automaton which is synthesized by an exhaustive simulation of a finite abstraction of the program.

Concerning program verification, it has been argued [BS91, HLR92a, Pnu92] that the practical
goal, for reactive programs, is generally to verify some simple logical safety properties: By a safety
property, we mean, as usual, a property which expresses that something will never happen, and
by a simple logical property, we mean a property which depends on logical dependences between
events, rather than on complex relations between numerical values.

For the verification of such properties also, the synchronous approach has some advantages:
Since the parallel composition is synchronous, the desired properties of a program can be easily
and modularly expressed by means of an observer, i.e., another program which observes the
behavior of the first one and decides whether it is correct. Thus, the same language is used to
write the program and its desired properties. The verification then consists in checking that
the parallel composition of the program and its observer never causes the observer to complain.
This verification can often be performed by traversing the finite control automaton built by
the compiler. This automaton is generally much smaller than in the asynchronous case, where
non-deterministic interleaving of processes is likely to result in state explosion.

An observer can also be used to express known properties of the program environment. As a
reactive system is embedded into an environment with which it tightly interacts, the environment

*Verimag is a joint laboratory of CNRS, Institut National Polytechnique de Greaoble, Univers::» J. Fourier
and Verilog SA associated with IMAG.

1This work was perforraed while the fizst anthor was oa leave in Stanford University, partially supported by
the Department of the Navy, Office of the Chief of Naval Research uader Graat N00014-91-J-1901, and by a graat

from the Stanford Offce of Technology Licensing. This publication does not necessarily reflect the positioa or the
policy of the U.S. Government and 3o officisl endorsement of this work should be inferred.

e ofe @

must be strongly taken into account in program design and verification. Generally, the critical
properties of a reactive system are only required to hold provided the environment also behaves
correctly, that is, under some assumptions about the environment. In [HLR92b}, we verified
a very simple railways control system, and the most important part was the description of the
realistic behavior of the trains (they obey the signals, they do not jump from one track to another,
etc.). In [HLR92a}, we used this ability of taking the environment into account in the verification,
to propose a modular verification technique: When two processes run in parallel, each of them
is part of the other’s environment; so any property which is proved about one of them, can be
used as an assumption about the other’s environment.

So, our verification approach can be summarized by three simple ideas: (1) restriction to
safety properties; (2) expression of these properties by means of a synchronous, deterministic
observer; (3) taking into account assumptions about the environment. This paper is a survey of
our specification and verification techniques, in a very general, language independent, framework.
Section 1 introduces a simple model of synchronous input/output machines, which will be used
throughout the paper. In section 2, we show how such a machine can be designed to check
the satisfaction of a safety property, and we discuss the use of such an observer in program
verification. In section 3, we use an observer to restrict the behavior of a machine. This is the
basic way for representing assumptions about the environment. Applications to modular and
inductive verification are considered. In modular verification, one has to find, by intuition, a
property of a subprogram that be strong enough to allow the verification of the whole program
without fully considering the subprogram. In section 4, we consider the automatic synthesis of
such a property, and in section 5, we investigate the possibility of deducing the subprogram from
such a synthesized specification.

1 Synchronous I/0O machines

We first define an abstract model of synchronous reactive machines. As far as verification is
concerned, we could use a synchronous process algebra [Mil81, Mil83, AB84] as a basic formalism.
However, in the synthesis problem, we have to distinguish between inputs and outputs, since a
process controls its outputs but not its inputs. So, we prefer to use a notion of synchronous
machine where inputs and outputs do no play a symmetric role. In the following model, as in
synchronous languages, outputs are non blocking and synchronously broadcast. Moreover, we
will need an explicit notion of state, which lacks in process algebras.

1.1 Definitions

Let us consider a set S of signals, and let Es = 25 be the set of events! on S. An I/O machine
M is a 5-tuple (Qas,90M, Iar, On, 6a¢) such that

o Qus is a set of states containing g0xy, the initial state;
e Ip C S, 0p C S are the disjoint sets of input and output signals, respectively.

o b C Qum x Er, x Eo, x Qu is the transition relation. When there is no ambiguity
about the considered relation, we will often note “q ;',-bq"” instead of “(q,4,0,q") € 65"

1Eveats, with the union operation, will play the role of the monoid of actions in synchronous process algebras.

-152~

¢ o@e @

Intuitively, in response to a sequence (i),12,...,n,-..) of input events, such a machine returns a
sequence (01,03, ...,04,...) of output events, such that there exists a sequence (g0, ¢1,...,qn,.-)
of states, with go = q0ps and foralln > 1, g3 i:—oq,.. The sequence ((i;U01),(i2U02),...,(iaV

0y),...) will then be called a trace of the machine.

fr=((1Ua),(i2U03),...,(inUoy)) is a finite trace, and (go,q1,...,¢n) i8 a corresponding
sequence of states, we will note g0pr—¢.. For any state g, we will note traces(q) the set
{r | g0Op¢——q} of traces leading to ¢g. This notation is extended to sets of states: For any

X C Qu, traces(X) = U,ex traces(q).
Let us note 6}, the reaction function from Qu x Ej,, into 2E0x*@M defined by
& = A(q,9)-{(0,¢") | (,4,0,9") € éne}

A reactive machine cannot refuse a non-empty input event, and thus satisfies the following
property: Vg € Qa,ViC In, i # 0 = 63,(q,i) # 0.

A deterministic machine has at most one possible reaction to a given input event, and thus
satisfies: Vg € Qun,Vi C Inr, |63,(g,i)| < 1. For a deterministic machine, we will note §§;
(respectively 63) the function giving, for a state ¢ and an input event i, the output event o
(resp. the next state ¢’) such that (g,i,0,g’) belongs to &p.

We will use the usual precondition and postcondition functions, from 29» to 29u: For any
X CQwm,

o posty,(X) is the set of successors of states belonging to X:
posty(X) = {¢ | g € X,3i,0, ¢ ¢}

o prz,(X) is the set of states having a successor state in X:
pren(X) = {q | 3¢ € X,3i,0, ¢ S+q'}

o prep(X) is the set of states having all their successors in X:

{g | Vi,Vo,V¢' such that ¢ :+¢/, ¢’ € X}
Qu \ prep(Qne \ X)

pread(X)

1.2 Operations on I/0 machines

Projection: Let M be an 1/0 machine, and O’ C On. The projected machine M | O’ is
(Qne> 90ne, Ing, 07, &), where & = {(q,i,0Nn 0,¢) | (¢,5,0,9") € én}.

Obviously, if M is reactive (respectively, deterministic), so is M { O’.
Synchronous product: Let M; and M; be two I/O machines, with Op, N Op, = 0 2. We
define their synchronous product M;||M; to be the 1/O machine M where

3The restriction that parallel machines dom’t share common output signals is for simplicity caly. It does not
exist in Esterel [BG92) and Argos [Mar$2).

-‘s-

c ofe @

oar, o) toat, & o) m(%b)m
& o~ Nl g N = Aoy o

it q @ @ (d @) (0.4)

{a) Non determinism

@ 7]
(a.")/ }(:) ” (:.z'{)‘])(I:)
it a @

(b) Absence of reaction

Figure 1: Synchronous product

o Qum = Qar, X Qar; » 902rr = (9000, 90As;)
o In= (In, \ Oaq;) U (IM; \ Ony) » O = Op, U0,

o ((q1:92),5,0,(q1,) € b <> (@1,(iV0)NIngy,0N Oy, q) € S
and (qg,(iUo)nIu,,OnOMp%)€5u:

In other words, a transition of the product involves a transition of each machine, triggered by
the global input signals and the signals emitted by the other machine.
1.3 Causality

With this very loose definition of the synchronous product, it can happen that the product of
two deterministic (respectively reactive) machines is not deterministic (resp. reactive). This is
the well-known problem of causality paradozes in synchronous languages (BG92, Mar92}. For
instance, let Ins, = {z,y},Inp, = {2,2},0n, = {2} and Opg, = {y}. Then:

o Assume that ¢ ii;”—-q{ and ¢ %’;‘}-’q{' are the only transitions in &5, from state ¢;, and
that g2 Efl-oq; and ¢; %{»q&' are the only transitions in 65, from state g, (see Fig.1.a).
If the input event {2} occurs when the product machine M;||M; is in the state (¢1,¢2),
two different transitions can take place:

— either M; performs ¢ ﬁ-tq{' and then the emission of z forces the tramsition
' Lﬂl»‘. @ in M. So the compound transition is (¢1,¢3) g{-—»(q{',q;);

- or, conversely, M, performs ¢; {3—«5, forcing the transition ¢; ifg'l»q{ in M;, and
the resulting global transition is (q1,43) g{-.(q;,qg).

So, in that case, the product of two deterministic machines is non deterministic.

¢ Assume now that q; ‘fﬁ’nq{ and ¢ i?-oq{’ are the only transitions in 4y, from state ¢,
and that &y, is as before (Fig. 1.b). Now, if the input event {z} occurs in the state (¢1,¢2),
no global transition can occur, since:
- if M; performs ¢ g}.qq, then the emission of y forces the transition q; Lgl}!l»q; in
M,. But now, since z is emitted, M3 should not have made its transition.
-~ Conversely if M, performs ¢, L:}-oq{', since z is not emitted, M; must perform
("7 %:}-oq;' and the emission of y forbids the transition of M;.

So, in that case, the product of two reactive machines is not reactive.

An important feature of synchronous languages is that their parallel composition operator (syn-
chronous product) introduces neither non-determinism nor deadlock. Compile-time consistency
checks insure that the compound machine has a unique, minimal, reaction to each input event:
Let M, and M, be two deterministic and reactive I/O machines, let 6§ , 5%, , be their respective
output functions. When M, || M3 is in the state (¢;,¢2) and receives an input event i, the output
event o must satisfy

0= 6% (01, (iU0)N In,) U 6%, (a2, (iU 0) N Ingy)

i.e., be a fixpoint of the function Az. 6§ (@1, (U z) N Ing,) U 6§, (g2, (VU 2) N Ing,). Canusality
problems come from the fact that this function is not always monotone, and thus, may admit zero
or several minimal fixpoints. Compile-time consistency checks insure the existence and unicity
of a least fixpoint, and the synchronous product is defined by

(g1, 92)»8) = pz. 6%, (01, (U Z) N Iag) U 68, (02, (iU 2) N Ingy)

8%(q1,42)»9) = (6%, (01, (U 6°((@1, @), D) N Ingy) » 83, (02, (iU 8°((q1,02),)N Insy))
(where, as usual, z.f denotes the least fixpoint of the function Az.f).

2 Observers of safety properties

In this section, we show how a safety property can be specified by means of a synchronous
observer. Such an observer is an I/O machine, taking as inputs both the input and the output
signals of the machine under observation, and emitting an “alarm” signal as soon as the observed

signals do not satisfy the property.

2.1 Safety properties

A trace T on a set of signals S is a finite or infinite sequence of events on S. A property on §
is a set of traces on S. An I/O machine M satisfies a property P if and only if each trace of M
belongs to P. A property P on S is a safety property if and oaly if:

7 € P <= 7 € P for any finite prefix v’ of 7

In other words, a safety property is a prefix-closed (as expressed by the “==" implication above)
and limit-closed (as expressed by the “<=" implication) language on the vocabulary 2°.

c ofe @

2.2 Observer

Let P be a safety property on S. Let a (read “alarm”) be a signal not in S. An observer of P is
a deterministic and reactive I/O machine Qp = (Qq,,200,, 5, {a},éq,), returning a sequence
of empty output events as long as it receives a sequence of input events which belongs to P.
More precisely, let 7 be a finite trace on S belonging to P (notice that the empty trace belongs
to any safety property). Let ¢, be the state that p reaches after reading r (if 7 is the empty
trace, g, is the initial state of R p). Then, for any event e € 2¥,

9 ifreecP
68’(%’e)={ {a} otherwise

Let us assume also that any transition emitting a leads to a distinguished state ¢,.

Now, a machine M satisfies a safety property P if and oaly if the compound machine M||Qp
never returns any event containing a; or, equivalently, never reaches an erroneous state belonging
to Qur X {ga}. We will note Q}f the set Qs X (Qa,\{ga}) of non erroneous states of M||Qp.

A practical advantage of this approach, is that the properties are written in the same language
as the programs, and in fact, properties are programs. As such, they can be executed and tested.
An observer can be actually run with the program, thus detecting any violation of the property
(run-time checks).

Notice that this approach cannot be used with only an asynchronous composition, or at
least, that it cannot be applied modularly. For instance, consider the following property: “the
signal b is emitted at least once between every two successive emissions of the signala ™. If
this property is checked by an asynchronous observer, since the observer is not guaranteed to
catch all the signals, it can miss any occurrence of b. So, even if the property is satisfied,
the observer can emit an alarm. To check such a property of an asynchronous program, one
must add some synchronization code all along the transitions of the observed program, since
otherwise, the asynchronous product does not ensure that all the transitions will be observed.
When verifying a program, such modifications are of course harmful, since one cannot be sure
that the verified program behaves the same once the additional code is removed. This contradicts
G. Berry's “WYPIWYE” principle (“what you prove is what you ezecute”) which fully applies in
the synchronous case.

2.3 Application to program verification

The verification that a machine M satisfies a safety property P now amounts to proving that
the machine M’ = M||Qp never returns any event containing a. So, any safety property has
been translated into an énvariant. More precisely, one has to prove that the set Reach(M’) of M’
reachable states is included in the set Q) of non erroneous states of M’. Reach(M’) is classically
defined as a least fixpoint:

Reach(M') = pX {q0m} U postpg(X)
Let us list the advantages of this expression of the verification problem, according to various
verification methods:

State enumeration: For finite state systems, state enumeration techniques (enumerative
model-checking) have been widely experimented [QS82, CES86]. In general, these tech-
niques involve the construction of the whole state graph of the program, and its memo-
rization for the analysis of trace properties. Now, since the problem has been reduced to

e ofe @

the analysis of & state property (an invariant), the state graph needs only to be traversed.
Particularly efficient techniques are available (e.g., [Hol87]) for such a traversal.

Reduction techniques: The drawback of state enumeration techniques is the explosion of the
number of states, as the size of the program increases3. Other approaches [BRASV90)
consist in building a reduced state graph, according to some observation criteria. Now,
in our approach, the machine of interest is not really M||Qp, but rather (M||Qp) | a,
since we are only interested in the presence of the signal a. This is an obvious observation
criterion. So, in contrast with classic model-checking, the property is taken into account in
the state graph generation. Assume the property is satisfied, then the minimal state graph
of (M||Qp) | a has only one state (it is the “always silent” automaton). Algorithms for
generating a minimal state graph have been proposed [BFH*92, LY92]. When applied to
our simple verification problem, these algorithms amount to proving that the initial state
belongs to the greatest invariant Invar(Q}) included in Q) i.e., the greatest part of Q¥
from which the transition relation does not permit to go out. This greatest invariant is
wellknown to be a greatest fixpoint:

Invar(Q}¥) = vX.Q¥ N FRrqn,(X)

Approximate analysis: When infinite state systems are considered, approximate methods
(and, in particular, abstract interpretation techniques [CC77, CC92]) can be applied to
compute approximations of the set Reach((M||f2p)}a). If an upper approximation of this
set is included in @), this proves that the erroneous states cannot be reached (see [Hal93a}
for an application of such a method). If a lower approximation intersects the complement
of Q¥, an error is detected.

In the remainder of the paper, we will essentially consider finite state machines, so all the
considered fixpoints will be (theoretically) computable. In the following section, we will see
that property observers can also be used to take into account known properties of the program
environment.

3 Taking the environment into account

The main feature of reactive systems is that they tightly interact with their environment. As
a consequence, the properties of the environment must be carefully taken into account in the
design and verification of such a system. A reactive system is not intended to work in an arbitrary
environment. In general, system specifications contain a lot of informations about the behavior
of the environment, which are the hypotheses under which the design must take place. These
known properties about the environment can involve not only the inputs of the system, but also
its outputs, since the environment responds to the system. So, in general, among the set of
traces of an 1/0 machine, only some of them are “realistic”, i.e., satisfy the assumptions about
the environment. In this section, we show how the behavior of an I/O machine can be restricted
by a safety property, in order to take such assumptions into account in the verification process.

3Notice that the state explosion is more important in an asyachronous system, because of the aon deterministic
interleaving of asynchronous traasitions.

- ﬂ;-

3.1 Behavior restriction

Given a safety property A (assumption) of the environment of M, our goal is to define a restricted
machine M’ having exactly the same behaviors as M composed with any environment satisfying
A: the set of traces of M’ must be the intersection with A of the set of traces of M.

Restriction: Let M be an I/O machine, and 24 be an observer of a safety property A on the
set 5 = Iy U Oy of input/output signals of M. Let M' = M ||4. We define the restriction
M/Q4 to be the 1/O machine (Qms90r+, Ing, O, &), where &' = {(q,5,0,¢") € bpp: | a ¢ o}

Obviously, the restricted machine M/ 4 is generally not reactive, even if M is reactive: The
restriction takes into account a property of the environment, and thus, refuses some unrealistic
inputs. However, it can happen that in some states of the restricted machine, all the input events
are refused. So, the restricted machine deadlocks, a highly undesirable situation in reactive
systems. One can consider this as an error in the expression of the assumption A. However, we
adopt another point of view: When restricting a machine M with an assumption A, the user
intends to consider all the infinite traces of M that satisfy A. So, the machine must not enter
any path in M/, which inevitably leads to a deadlock state. We define now another restriction,
called non-blocking restriction, which has the intended behavior:

Non-blocking restriction: Let M be an I/O machine, and (4 be an observer of a safety
property A on the set § = Iy UO)q of input/output signals of M. Let M’ = M||Q4. Let us call
sink 4 the set of states of M’ leading inevitably to the violation of A:

sinkp = pX.prep((Qum X {ga})U X)

Then, if g0p+ € sink,, we define M/ Q, to be the 1/0 machine (Qaq \ sink 4, q0p, Ing, O, 8”),

where)
& Epr 0 ((Qm \ 3ink) x Ejpy, X Eo,y X Qe \ sink,))

{(q,i,o,q') € pr | ¢,¢ ¢ sink, and o ¢ 0}

One can notice that, if M is deterministic, M/ 4 = M/Qurecer(@, \sint4) SO; the property A

has been strengthened into the other property A’ = traces(Qp \ sink 4) which cannot block the

machine M: Any finite trace satisfying A’ leads to state of M which has at least one outgoing

transition preserving A’.

3.2 Application

As before, a direct use of this way of expressing assumptions by an observer, is to execute the
observer with the program, thus checking at run-time that the assumptions are satisfied. The
restriction can also be used for program testing, to use only testcases corresponding to realistic
scenarios. We consider now the use of restriction in the verification process:

Verification under assumptions: Given an I/O machine M, a safety assumption A about its
environment, and a safety property P, one can prove that M satisfies P provided the environment
satisfies A, by

1. proving that (M/ 2,) has some behaviors, i.e., that the initial state of M|/, does not
belong to sink 4. Otherwise, the assumption and the program are contradictory.

c ofe @

2. verifying that the machine ((M/24)|i2p)] {a} emits only empty events (Of course, here,
a is the alarm signal of fp).

Modular verification: Any sub-process of a compound system sees the remainder of the
system as a part of its own environment. The ability to take the environment into account
allows modular verification: Having proved a property about a sub-process, one can use this
property in the verification of the remainder of the system. More precisely, let M;, M; be two
machines, and let P be a safety property we want to prove about M,||M;. Assume another safety
property P has been proven about M; alone. Then if M/ Qp. satisfies P, so does M, ||M,. This
amounts to considering M; as the environment of M;. Of course, assumptions about the global
environment can also be taken into account. With a little additional hypothesis (see [AL89] and
the “decomposition theorem” of [KL93]), which amounts to the absence of causality problems,
one can even use a seemingly circular reasoning, which consists first in proving a property P; of
M; under the assumption that M, satisfies P, and then in proving that M, satisfies P; assuming
M, satisfies P;.

Inductive proofs: Moreover, the modular verification technique can be extended to the in-

ductive verification of regular networks of processes [WL89, HLR92a). Assume one waats to

prove a safety property P of the machine M||M||...||M for any n > 1. This can be done by
mt— pce——

n times

finding a property P’ such that
1. M satisfies P’
2. (M/[Qp.) satisfies P
3. P’ implies P

(1) proves that P’ holds for n = 1, (2) proves that, if P’ holds for n, then it holds for-n + 1. So,
P’ holds for any n, and from (3), so does P. Point (3) can be established by proving that the
machine x(I,0),Np satisfies P, where

x(1,0) = ({¢},9.1,0,{q} x Er x Eo x {q})

is the “chaos” machine which completely non deterministically returns any event of Eg whatever
be its input event from E;. Of course, as for modular verification, a crucial problem is the choice
of the property P’. It is considered in the next section.

4 Specification synthesis

Let us come back to modular verification: Given two machines My and M3, and a safety property
Pon § = I, U O U I, UOxyg,, one must find a property P’ on S3 = Ing, U Opg, such that

1. M; satisfies P/, and
2. My[Qp satisfies P

Moreover, the proof of each of the abov= points is expected to be easier than the global proof
that M, || M, satisfies P.

- {39~

This section deals with the synthesis of such a property P, satisfying the point (2} above b,
construction, when all the involved machines are finite state.

First, we need some additional definitions: Let r = (e;,e3,...,€,,...) be a trace on §. We
define the projection of T on a set §’ of signals to be the trace 7| 5’/ = (e; N 5", 2N §',...,e. N
§’,...). The projection on S of a set T of tracesis T | S’ = {r 15’ | r € T}. I T is a set
of finite traces on S, we note C(T') the set of traces on S which do not have any prefix in T.
Obviously, C(T') is a safety property.

The intuitive method to find P’ is the following: Replace M; by the “chaos” machine
X(Iag;:Om,). If My||x(Iry, Ong,) satisfies P, the machine M2 does not influence the satisfaction
of P (i.e. we can take P’ = true) and we are done. Otherwise, M;||x(/rs,,Opm,) can reach some
erroneous states, and the role of M3 is to forbid the traces leading to those states. But, for doing
so, M3 can only restrict its own signals (P’ cannot involve signals that M cannot see).

More precisely: Compute Rea(M;||Qp). If it does not intersect Qas, X {ga}, let P’ = true.
Otherwise let Torr = traces(Qum, X {ga}) be the set of erroneous traces. The following proposition
states that C(Ter | S3) is a necessary and sufficient property that M, must satisfy so that M, || M,
satisfies P:

Proposition: Let P’ = C(Tee 1 S2). Then My = P <= My||M; = P.

Proof: Let r[n] denote the nth prefix of a trace r.

(=>): If M; = P, then every trace r of M1||M?2 satisfies 7 | §3 € C(Teer | S2). So, Vn,(r]
52)[n] € Ter L S2, and since (7| S2)[n] = (7[n]| S2), Vn, 7[n] € Tery- This means that r € P.
(<=): Assume M; does not satisfy P’, and let r be a trace of M; not belonging to P’. Then,
there exists n such that 7{n] € (Ter | 52), and there exists a trace 7/ € Ter such that rin] =
(v'[n]) 1 (S2). So, the finite trace r'[n] is compatible with both M, and M; and leads to the
violation of P. O

Remark: P’ = C(Terr | S2) is stronger than P” = C(Tey) | S2. A trace r of Mz can be the
common projection of two traces v’ and r of M,||M;, with 7’ € C(Ter) and 7" ¢ C(Tegr). In
that case, T belongs to P” (as the projection of r') and not to P’

Stronger specifications: However, the necessary and sufficient property P! = C(Terr | S7) is
sometimes too complicated to be interesting: As a matter of fact, an observer of P’ can be as
complicated as M,||Qp. In that case the proof that M; satisfies P/ is not easier than the proof
that M,]|M; satisfies P, so nothing is gained with modular proof. Now, any stronger property
than P’ can be tried. Such a stronger property P” will still ensure that M,/ Qp~ satisfies P,
but, since it is no longer a necessary property, one cannot conclude that M;|| M does not satisfy
P if M; does not satisfy P” .

The basic technique to build such a stronger property P” is the following: Let us note avoid
the function AT.C(T'| S3). Thus, P’ = avoid(Tery). Then, for any set T of traces containing Ter
(i.e., for any upper approximation of Tey), avoid(T) is stronger than P’'.

5 Module synthesis

In the preceding section, we have outlined a method to find a property P’ such that, for any
machine M, satisfying P, M,||M; satisfies P. P’ has been only deduced from M; and P, so,
it could be built even before M; is designed. So, the next question is: can M, be synthesized

-m-

e« ofes @

from P, considered as a specification? In the finite state case, this is theoretically possible:
The specification must be strengthened to become ezecutable. P’ has been constructed so as to
concern only the input/output signals of M;. Now, an additional constraint is that M; must
preserve P’ by controlling only its output signals. In each reachuble state, and whatever be the
received input event (possibly satisfying an input assumption), M3 must be able to perform a
transition preserving P’.

Executability: A property P on a set of signals § = TUO is ezecutable with respect to (/,0),
if and only if for any finite trace r € P, for any input event i € E;, there exists an output event
0 € Eg such that r.(iU o) € P. For any safety property P, there exists a weakest executable
safety property, implying P. It will be noted £(P).

Relative precondition: Let P be a safety property on J U O and 2p be an observer of P.
For any X C Qq,, we define

preh(X) = {q1V¥iC 1,30 C 0,63 (¢:iU0) € X}

In other words, pref, ,(X) is the set of states which can lead into X (in one step) whatever be
the input event received in these states.

Executable strengthening: Let Eze = vX.pref, (X)\{ga}. Then Eze does not contain the
erroneous state ¢,, and

VYq € Eze, Vi C I, 30 C O, such that GSP(q,iUo) € Eze

Moreover, Eze is the largest set of states satisfying this property. As a consequence, a restriction
of Qp which detects any trace going out of Eze is an observer of £(P). Another consequence is
that x(0,I)/Qgp) is the most general reactive machine satisfying P. Notice that Eze can be
empty, which means that P is not realizable in the sense of [ALW89]: There is no machine on
(1,0) preserving P against any environment.

Conclusion

Many ideas that have been presented are specializations and simplifications of previous works.
For instance:

o The specification of properties by means of a synchronous observer is very close to the
approach of COSPAN [Kur89], which takes also into account liveness, both in the program
and the properties.

o Several verification approaches take into account the environment, e.g., [Jos87] [AL89)
[J0e92], and some of them propose modular methods. The “don’t care sets” considered in
hardware design and verification [BBH +88, DD92] are also a way of expressing assumptionz
about the environment.

o The synthesis problems considered in Sections 4 and 5 have been dealt with in several papers
— both in Control theory [RW87, RW89, HWT92], and in computer ecience [PR89, ALW89]
— and often extended to cope with liveness properties.

- 4=

c ofs @

Our simplifications consist in considering safety properties of synchronous systems. They are
suggested by the application field we have in mind: The synchronous model has been shown to
be very convenient for the design of reactive systems. In general, most liveness properties are
introduced for one of the following reasons:

e To abstract a real-time constraint: For instance, one replace a deadline property by the
requirement that something “eventually occurs”. Now, in reactive systems, such real-time
constraints may not be abstracted, in general: the constraint “an alarm must be sent within
2 milliseconds after the detection of a dangerous situation” may not be replaced by “the
alarm must eventually occur™!

e To restrict the asynchronous semantics: In asynchronous models, concurrency is modelled
by non-deterministic interleaving, and this non-determinism must be restricted by fair-
ness constraints. Obviously, this problem does not exist in the synchronous model. In
asynchronous systems, compositionality is also achieved by allowing arbitrary (but fair)
“stuttering” of processes. The synchronous model is obviously compositional thanks to
zero-time, simultaneous, reactions.

Now, these simplifications are certainly fruitful, from a practical point of view. They increase
the performances of the automatic tools: For instance, for finite state methods, the synchronous
model drastically reduces the size of the considered state graphs; safety properties can be checked
by a graph traversal, without storing any path. To specify a safety property by means of an
observer, one doesn’t need to use — and to learn — any other language than the programming
language used to write the program. All these ideas are under implementation in the LUSTRE-
SAGA software development system [HCRP91], and actual industrial experimentations are going
on.

References

[AB84] D. Austry and G. Boudol. Algébre de processus et synchronisation. TCS, 30, April 1984.

[AL89) M. Abdi and L. Lamport. Composing specifications. In J.W. de Bakker, W.-P. de Roever,
and G. Rogemberg, editors, REX Workshop on Stepwise Refinement of Distributed Systems,
Models, Formalisms, Correciness. LNCS 430, Springer Verlag, May 1989.

{ALWS89] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable specifications of reactive
systems. In G. Ausiello, M. Dezani-Ciancaglini, and S. Ronchi Della Rocca, editors, 16th
ICALP, pages 1-17. LNCS 372, Springer Verlag, July 1989.

[BBE*88] K. A. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, R. Rudell, A. Sangiovanni-
Vincentelli, and A. Wang. Multilevel logic minimization using implicit don’t cares. IEEE
Transactions on CAD/ICAS, CAD-7(6):723-739, June 1988.

(BFH+92] A. Bouajjani, J. C. Fernandes, N. Halbwachs, P. Raymond, and C. Ratel. Minimal state
graph generation. Science of Compster Programming, 18:247-269, 1992.

[BG92] G. Berry and G. Gonthier. The Esterel synchronous programming language: Design, seman-
tics, implementation. Science Of Compster Programming, 19(2):87-152, 1992.

(BRASV90] G. Boudol, V. Roy, R. de Simone, and D. Vergamini. Process calculi, from theory to practice:
Verification tools. In International Workshop on Automstic Verification Methods for Finite
State Systems, Gremoble. LNCS 407, Springer Verlag, 1990.

- f42=

{BS91]

{ccm)
[CCo2]

[CESs6]

[DD92]

(Hal93a)

[Hal93b)
[HCRP91]

[BLR92a]

[HLR92b]

[Hol87]
[BWT92]

[IEES])
[J0e87]

[J0e92]
[KL93]

[Kurgg)

{LY92]
[Mar92]

Mis1)

F. Boussinot and R. de Simone. The ESTEREL language. Proceedings of the IEEE, 79(9):1293~
1304, September 1991.

P. Cousot and R. Cousot. Abetract interpretation: s unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In fth ACM Symposizxm on
Principles of Programming Languages, January 1977.

P. Cousot and R. Cousot. Abstract interpretation and application to logic programs. Research
Report LIX/RR/92/08, Ecole Polytechnique, March 1992. (to appear in the Journal of Logic
Programming, special issue on Abstract Interpretation).

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM TOPLAS, 8(2), 1986.

M. Damiani and G. DeMicheli. Don’t care set specifications in combinational and synchronous

logic circuits. Technical Report CSL-TR-92-531, Computer Systems Laboratory, Stanford
University, 1992.

N. Halbwachs. Delay analysis in synchronous programs. In Fifth Int. Workshop or Computer
Aided Verification, Elounds (Crete), July 1993.

N. Halbwachs. Synchromoxs programming of reactive systems. Kluwer Academic Pub., 1993.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous datafiow programming
language LUSTRE. Proceedings of the IEEE, 79(9):1305-1320, September 1991.

N. Halbwachs, F. Lagnier, and C. Ratel. An experience in proving regular networks of
processes by modular model checking. Acts Informatice, 29(6/7), 1992.

N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-time systems by
means of the synchronous data-flow programming language LUSTRE. JEEE Trensactions on
Sofiware Engincering, Special Issue on the Specification and Analysis of Real-Time Systems,
September 1992.

G. J. Holzmann. Automated protocol validation in ARGOS : Assertion proving and scatter
searching. JEEE Trans. on Softwere Ingineering, SE-13(6):683-696, June 1987.

G. Hoffmann and H. Wong-Toi. Symbolic synthesis of supervisory controllers. In Americen
Control Conference, Chicego, June 1992.

Another look at real-time programming. Special Section of the Proceedings of the IEEE,
79(9):1293-1304, September 1991.

B. Josko. MCTL - An extension of CTL for modular verification of concurrent systems. In
Workshop on Temporal Logic in Specification, Menchester. LNCS 398, Springer Verlag, 1987.

M. B. Josephs. Receptive process theory. Acts Informatica, 29, February 1992.

R. P. Kurshan and L. Lamport. Verification of a multiplier: 64 bits and beyond. In Fifth Int.
Workshop on Computer Aided Verification, Elounds (Crete), July 1993.

R. P. Kurshan. Analysis of discrete event coordination. In J.W. de Bakker, W.-P. de Roever,
and G. Rosemberg, editors, REX Workshop on Stepwise Refinement of Distributed Systems,
Models, Formalisms, Correctness. LNCS 430, Springer Verlag, May 1989.

D. Lee and M. Yanakakis. Online minimization of transition systems. In i2{th ACM Symp.
on the Theory of Computing, STOC’92, Vancouver, B.C., 1992.

F. Maraninchi. Operational and compasitional semantics of synchronous automaton compo-
sitions. In CONCUR 92, Stony Brook. LNCS 630, Springer Verlag, August 1992.

R. Milner. On relating synchrony and asynchrony. Technical Report CSR-75-80, Computer
Science Dept., Edimburgh Univ., 1981.

- {43~

{Mils3)
(Poug2]

(PR3]
[Qss2]
[RW7)
[RWs9]
[WL89]

R. Milner. Calculi for synchrony and asynchrony. TCS, 25(3), July 1983.

A. Paueli. How vital is livenesa? Verifying timing properties of reactive and hybrid systems.
In CONCUR 92, Stony Brook. LNCS 630, Springer Verlag, August 1992.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In 16tA Conference on
Principles of Programming Lenguages. ACM, 1989.

J. P. Queille and J. Sifakis. Specification and verification of concurrent systems in CESAR.
In Internationa! Symposium on Programming. LNCS 137, Springer Verlag, April 1982.

P.J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event processes.
SIAM J. Conirol and Optimizatson, 25(1), January 1987.

P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Proceedings of
the IEEE, 77(1), January 1989.

P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with network
invariants. In Internationsl Workshop on Astomatic Verification Methods for Fintte State
Systems, Grenoble. LNCS 407, Springer Verlag, 1989.

Contraints in Term Algebras
(Short Survey)

Hubert Comon*
May 16, 1993

Unification, which consists in solving equations in the (free) term algebra, is known to be a fun-
damental operation in many areas of computer science and, in particular, in logic programming. Dis-
unification, which consists in solving more complex formulae in the (free) term algebra, also revealed
to be a fundamental operation (see {24, 11] for surveys on unification and disunification respectively).
Recently, these computations have been seen as constraint solving in term algebras and this point of
view is actually fruitful. Let us first make clear what we mean by “constraint”.

1 Constraints: a definition

A constraint system is defined by a logical language C (which is in general a fragment of a first-order
language), a structure M in which the formulae of C are interpreted and an algorithm which decides,
for every ¢ € C, whether ¢ is satisfiable in M or not. There are many examples: C can be a full
first-order language, in which case, the third condition implies the decidability of the (first-order)
theory of M. For example, the constraint system could correspond to Presburger arithmetic or the
theory of real numbers. It could also be the theory of finite trees, since this theory has been shown
decidable {30, 29, 15]. Many other examples will be given later.

Now constraints can be (and have been) studied for their own mathematical interest. But, they
can also be used to constrain other formulae. More precisely, given a logical language £, a class of
structures M and a satisfaction relation |= on one hand, and a constraint system (C, M,®) on the
other hand, given in addition, for each structure S in M, an application Hg from the domain D of M
into the domain Ds of the structure S, the constrained logic consists in

e the language of pairs of formulae (called constrained formulae) ¢|C where ¢ € L and C € C

¢ a satisfaction relation defined as follows. Given an assignment o of the free variables of C into
D and an assignment @ of the free variables of ¢ into Dy,

. [MEC
0,0’5"-'“0 iff { H3(0)000y5#¢

where Hg(c) is the assignment which associates each variable z in the domain of o with Hg(z0).

This definition is a bit complicated (and is not satisfactory in many respects), but everything
collapses when we consider constraints in term structures (also called symbolic constraints). Indeed,
assuming that M is a term structure and that terms of C are also terms of £, Hs can be (and will

°*CNRS and LRI, Bat. 490, Université de Paris Sud, 91405 ORSAY cedex, Fraace. E-mail comonOlri.lri.fr

- 145 -

¢ ofe @

be) chasen as the interpretation defined by §. This means that we do no longer need M to define the
meaning of a constrained formula:

$|C represents {40 |0, M | C}

a constrained formula is a shorthand for the (infinite) set of its instances corresponding to assignments
of its free variables which satisfy the constraint. For example, P(z,y)|z # y could represent the set
of all formulae P(t,,1;) where ¢, and ¢ are two distinct terms. This justifies the use of the symbol
| which can be read “such that™: its use here does not differ from its use in set definitions (in the
comprehensive axiom).

Let us conclude these definitions with two remarks: first, this notion of “constraints” is coherent
with what is used in practice in logic programming or artificial intelligence, but is quite different from
the “constraints” which are used in the algebraic specification community. Secondly, let us emphasize
that the constraints are different from what is usually called a “condition”; consider for example the

system
f(z)=ala=b
a=b

where a,b are two distinct constants. Considering these formulae as constrained ones, in which the
equality symbol is freely interpreted, the first constrained formula represeats the set {f(z)o = ac |0 |
a = b}. But a = b is unsatisfiable in the free algebra since a and b are distinct. Hence, this set is empty
and the system collapses to the single equation @ = b. On the contrary, if | is seen as an implication
«—, then it is possible to prove a = b using the second equation, and hence, using a cut, we prove that

f(z) =a.
2 On the use of constraints

It should be quite clear from the definition that (symbolic) constraints can enhance the expressiveness
of a logical language, since they allow for a schematization of a possibly infinite sets of formulae. This
ability has been used in many situations:

¢ in constraint logic programming (e.g. [23])
e in order to construct (counter)models [6]

to forbid particular instances [25)

o to express control strategies in the formulae themselves [34]

to avoid the combinatorial explosion of semantic unification (e.g. [18])

Constraints might also be used in order to clearly separate irrelevant (from the computational
point of view) parts of a formula. This is the case for equational constraints and the so-called basic
strategy (see [2, 33] for recent developments).

Finally, everybody knows that even if, according to Church’s thesis, every programming language
has the same expressive power, there are some languages that are better suited than others to the
implementation of some algorithms. Similarly, depending on the problem, some logical languages are
better suited than others. Constraints provide with the desired flexibility since they are use combined
with a logical language; it is therefore possible to use any adequate language to express properties of
a particular domain.

- 446~

3 Examples of symbolic constraints

3.1 Equations

The most well-known example of symbalic constraints is unification problems. In such a constraint
system, the logical language consists of (disjunction of existentially quantified) conjunctions of equa-
tions between terms. The equations are interpreted in the free term algebra T'(F) (this is the classical
interpretation) or in some quotients T(F)/=, by a finitely generated congruence =g. Using these
constraints in logic programs or automated deductions prevents applying substitutions which may be
an expensive operation in case of duplications. That is why they are used since the very beginning in
logic programming. In case of interpretations in quotient algebras, equations are also more relevant
than unifiers since there might be a very large minimal complete set of unifiers (doubly exponential
w.r.t. the size of the equations, in the case of associative-commutative function symbols), whereas the
satisfiability of an equation system is much simpler (NP-complete in the case of AC symbols) [27]. We
cannot survey all equational theories =g for which unification is decidable. See [24) instead.

3.2 Equational formulae

More generally, equational formulae are arbitrary first-order formulae over an alphabet F of function
symbols and the equality predicate symbol. Assuming that they are interpreted in the free term
algebra, there are several decision techniques which lead to complete axiomatizations of the algebra of
finite trees (see {30, 28, 29, 15, 31} and others). This axiomatization differs, depending on the finiteness
of F: when F is finite, the complete axiomatization consists of what is known as “Clark’s axioms of
equality” plus the domain closure aziom

vz, \/ 327.z = f(a73).
JEF
Equational formulae can be generalized in various directions. One of them consists in adding sort
constraints, i.e. an (infinite) family of membership predicate symbols € (which are interpreted as
recognizable subsets of the term algebra T'(F). The satisfiability of equational formulae remains
decidable with this additional construction [8]. These formulae have been used for solving problems
in rewriting theory (e.g. “sufficient completeness” and “inductive reducibility” [11, 8]), and as a
constraint system in automated theorem proving [6]. Other applications are described in [11].

The first-order theory of a quotient algebra T'(F)/=, quickly becomes undecidable: a single as-
sociative symbol suffice [35], or an associative-commutative symbol [37]. Decidability results include
the case where E is a set of flat permutative axioms [30], ground axioms [10] and E is a set of shallow
equations, a class which encompasses the two previous ones [14].

3.3 Ordering constraints

We already mentioned ordering contraints as a mean for expressing ordered strategies. Here, the
logical language consists of purely existential formulae, using a set of function symbols F' and the two
predicate symbols = and >. Several interpretations of the ordering have been considered:

o Venkataraman in [38] interprets > as a subterm ordering, showing the decidability of the sys-
tem (and undecidability of the first-order theory). However, such an ordering is useless for
applications in rewriting theory, since it is not compatible with the term algebra structure.

o The adequate orderings for the applications in automated deduction are the reduction orderings
(see [16]) which are total on ground terms. A typical example of such an ordering is the lezico-
graphic path ordering extending a total precedence, whose existential fragment has been shown

- ¥ ~

e o@e ®

decidable [9]. This result has been extended to other total recursive path (quasi- Jorderings [26].
The decidability of the full first-order theory of these orderings is an open question (problem 24
in [17)).

o The theory of partial recursive path orderings appears to be even more difficuit; the £, fragment
has been shown undecidable [37]. The decidability of the existential fragment of any such
ordering is open. The only hint for this problem is the recent result of {5]: the positive existential
fragment of the theory of tree embedding is decidable. (Tree embedding is the most simple
recursive path ordering: it is the intersection of all simplification orderings).

o Interpreting > as encompassment (a term ¢ encompasses u if there is an instance of u which
is a subterm of t), it is possible to express some properties such as inductive reducibility or
(sometimes) sufficient completeness using first order formulae (see [7]). The first-order theory
of a finite number of unary predicate symbols of the form > ¢t; has been shown decidable in 7).

3.4 Set constraints

Many other symbolic constraints have been studied. But it is a too long work to list all of them.
Let us conclude with set constraints for which many recent beautiful results have been obtained.
(And there is still some work to do!). A set expression is built from a finite alphabet of function
symbols, set variables and the intersection, union an complement symbaols. Then, set constraints are
finite conjunctions of formulae e C ¢ where e, ¢’ are set expressions. These formulae are interpreted
assigning set variables to subsets of the term algebra T(F).

Such constraints have been used for the analysis of logic and functional programs (see [21, 1, 19}).
The case of definite constraints has been solved in [21) and the general case has been further studied
by quite different means in [1, 3, 20). There are two extensions which are still under investigation:
adding negative constraints of the form ¢ Z ¢’ and adding the projection construction, which consists
roughly of the inverse of applying a function symbol (see [21]). These extensions have been conjectured
decidable.

4 Constraint solving

To solve a constraint not only means to decide its satisfiability. More precisely, a constraint solving
algorithm is specified by:

o the constraint system (C, M, ®)
o a subset S of C called the set of solved forms

S has to fulfill some requirements (see [11)), in particular, every formula of C should be equivalent (in
M) to a solved form, and every solved form should be trivially satisfiable or trivially unsatisfiable.
However, there is still some room for choosing the solved forms. For example, in the case of unification
(in free algebras), one can choose tree solved forms or DAG solved forms as explained in [24].

Once solved forms have been specified, we systematically designed constraint solving algorithms
using rewriting techniques; we give a set of rewrite rules on formulae, prove their correctness (every
formula in C is rewritten to an equivalent formula w.r.t. M), termination (any rewriting sequence is
finite) and completeness (every irreducible formula is a solved form). There are several advantages for
this method:

¢ The rules can be redundant (and this is actually a desirable property). Then the termination
proof might be complex, but it “factorizes” the termination proof for all algorithms obtained

- 148~

¢ ofe @

by determinizing the control. For example (as we will see below) tree solved forms (Robinson’s
unification algorithm |36, 22]) and DAG solved i rms (corresponding to Martelli and Montanari’s
unification algorithm [32]) are obtained by strug.’ ~ning the control on the same set of rules.

o There is a feed-back on the theory, since the rew: = rules are actually an axiomatization of M
(see [11])

o the constraint solving algorithms are automatically incremental in the following sense: in order
to solve ¢ A ¢, it is possible to use the result of solving ¥.

o We expect to use rewriting tools for proving termination of the constraint solving rules, as we
try to show in the following example.

A toy example

We consider the classical unification problems: formulae are conjunctions of equations between terms;
they are interpreted in the free term algebra T'(F, X). The equality symbol is considered as symmetric
(i.e. there is no difference between s = ¢ and ¢ =).

Given a conjunction of equations ¢, the occur-check relation >, is the relation on the free variables
of ¢ defined as the smallest reflexive-transitive relation which contains z >4 y as soon as there is an
equation z = t[y) in ¢. (See [16] for the notations on terms and equations that are used here). A
variable is solved in ¢ if it has only one occurrence, as a member of an equation of ¢. Let U(¢) be the
set of unsolved variables of ¢.

Now consider the scheme of rules for unification given below:

Decompose f(81,....8n)=f(l1,...,8a) — 8B1=UA...A8qa=1,

Coalesce z=yAd — z=yAd{z—y} Uz#yand z,y € U(d)

Clash f(s1,....8x)=g(t1,...,tm) ~ L Uiy

Eliminate z2=8AP — z=sAP{zr3s)} Hfz€Var(P), zgVar(s) and s g X
Check* =tz A Az =tn),, — L If there is an s such that p, # A
Trivial s=8 — T

Merge z=sAz=t — z=sAs=l

If Decompose, Check® do not apply and z is maximal w.r.t. >4 among the variables occuring at least twice as a
member of an equation

Note that in these rules, we relax the classical condition on the sizes in the merge rule (see [24])
and put instead a coudition of maximality on z and assume the system decomposed. Whether these
conditions can be relaxed without loosing termination was stated as open problem 39 in [17]. We also
assume here that there are structural rules for A: L AP —L1, TAP — Pand PA P — P. Moreover
A is assumed to be associative and commutative.

The rule system is terminating (modulo the associativity-commutativity of A and the commuta-
tivity of =). For, consider the associative path ordering [4] on formulae, extending the precedence on
F U X defined by:

o every variable! is larger than any function symbol
e every function symbal is larger than = which is in turn larger than A
o variables are compared according to the occur check relation

1Be careful that variables of the unification problem are seen as constants in the rewriting process! Ouly the logical
variables cann be instaaciated.

- 49—

e« ofe @

This last statement has to be precised since the occur-check relation actually depends on the formula
which is considered. In fact, we consider the (maybe infinite) union of all occur-check relations at any
step in the computation. This definition depends on the transformation, but it does not depend on
a particular formula ¢, and we don’t need to effectively compute this relation. It may bhappen that
variables are equivalent w.r.t. this relation, in which case, they are considered as identical from the
associative path ordering point of view.

Note that the associative path ordering has the subterm property and it is monotonic (see [4]).
Hence, for proving the termination, we only have to prove that every left hand side of a rule is (strictly)
larger than the corresponding right hand side:

o For the structural rules and for Trivial, Check® and Clash the decreasingness is obvious.

o Decompose is strictly decreasing because => A in the precedence and

f(81,-y80) = f(t1,.. . ta) Dapo Si = Ui
by monotoaicity and the subterm property.

¢ Eliminate is strictly decreasing because z is strictly larger than the variables of s (it is larger by
definition, and it cannot be equivalent to any variable of s since z becomes solved after applying
the rule, hence no rule can produce an equation with z in its right hand side). Moreover,
variables are larger than function symbols in the precedence, which shows that z >gp, s.

o Merge is strictly decreasing, for the same roason as above: since z is assumed to be maximal
in the decomposed system, it cannot be smaller than any variable of s or ¢, even after further
transformations.

o Coalesce keeps the problem equivalent w.r.t. >4, since z and y are equivalent in the precedence.
However, it can only be applied a finite number of times. Hence we can reason modulo this rule,
i.e. modulo the strict equivalence on variables.

Now, the system is terminating. If we remove the Merge rule, the system is complete w.r.t.
tree solved forms and we can find as an instance Robinson’s unification algorithm. If we remove the
Eliminate rule, the system is complete w.r.t. DAG solved forms and we can find an instance of
Martelli and Montanari’s unification algorithm.

Similar techniques have been applied for the termination proofs of more powerful constraint systems
[13, 12).

References

[1) A. Aiken and E. Wimmers. Solving systems of set constraints. In Proc. 7th IEEE Symp. on Logic
in Computer Science, Santa Cruz, CA, 1992.

[2] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodulation and superposition.
In D. Kapur, editor, Proc. 11th Int. Conf. on Automated Deduction, Saratoga Springs, NY, LNCS
607. Springer-Verlag, June 1992.

[3] L. Bachmair, harald Ganzinger, and U. Waldmann. Set constraints are the monadic class. In
Proc. 8th IEEE Symp. Logic in Computer Science, Montréal, 1993.

[4] L. Bachmair and D. A. Plaisted. Termination orderings for associative-commutative rewriting
systems. Journal of Symbolic Computation, 1(4):329-349, Dec. 1985.

« ofs @

[5] A. Boudet and H. Comon. About the theory of tree embedding. In Proc. CAAP 93, 1993. LNCS
668.

[6] R. Caferra and N. Zabel. A method for simultaneous search for ref: 'ations and models by
equational constraint solving. Journal of Symbolic Computation, 13(6):u.3-642, June 1992.

[7] A.-C. Caron, J.-L. Coquidé, and M. Dauchet. Encompassment properties and automata with
constraints. In Proc. RTA 93, 1993.

[8] H. Comon. Equational formulas in order-sorted algebras. In Proc. 17th Int. Coll. on Automata,
Languages and Programming, Warwick, LNCS {43, Warwick, July 1990. Springer- Verlag.

[9] H. Comon. Solving symbolic ordering constraints. International Journal of Foundations of Com-
puter Science, 1(4):387-411, 1990.

{10] H. Comon. Complete axiomatizations of some quotient term algebras. In Proc. 18th Int. Coll.
on Automata, Languages and Programming, Madrid, LNCS 510, July 1991.

[11] H. Comon. Disunification: a survey. In J.-L. Lassez and G. Plotkin, editors, Computational Logic:
Essays in Honor of Alan Robinson. MIT Press, 1991.

{12] H. Comon. Completion of rewrite systems with membership constraints. In W. Kuich, editor,
Proc. 19th Int. Coll. on Automata, Languages and Programming, LNCS 623, Vienna, 1992. Sprin-
ger-Verlag. An extended version is available as LRI Research Report number 699, Sept. 1991.

{13] H. Comon and C. Delor. Equational formulas with membership constraints. Technical report,
Laboratoire de Recherche en informatique, Mar. 1991. To appear in Information and Computa-
tion.

{14] H. Comon, M. Haberstrau, and J.-P. Jouannaud. Decidable properties of shallow equational
theories. In Proc. 7th IEEE Symp. Logic in Computer Science, Santa Cruz, 1992. Also Research
Report 718, Dec. 1991, Laboratoire de Recherche en Informatique, Orsay, France.

[15] H. Comon and P. Lescanne. Equational problems and disunification. Journal of Symbolic Com-
putation, 7:371-425, 1989.

[16] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 243-309. North-Holland, 1990.

{17} N. Dershowitz, J.-P. Jouannaud, and J. W. Klop. Open problems in rewriting. Technical report,
CWI, Amsterdam, Feb. 1991.

[18] E. Domenjoud. AC unification through order-sorted AC1 unification. Journal of Symbolic Com-
putation, 14(6):537-556, Dec. 1992.

[19] T. Frihwirth, E. Shapiro, M. Vardi, and E. Yardeni. Logic programs as types for logic programs.
In Proc. 6th IEEE Symp. Logic in Computer Science, Amsterdam, pages 300-309, 1991.

[20] R. Gilleron, S. Tison, and M. Tommasi. Solving systems of set constraints using tree automata.
In Proc. 10th Symposium on Theoretical Aspects of Computer Science, Wirzburg, LNCS, 1993.

[21] N. Heintze and J. Jaffar. A decision procedure for a class of set constraints. In Proc. 5th IEEE
Symp. Logic in Computer Science, Philadelphia, June 1990.

[22] J. Herbrand. Recherches sur la théorie de la démonstration. Thése d’Etat, Univ. Paris, 1930.
Also in: Ecrits logiques de Jacques Herbrand, PUF, Paris, 1968.

- {5(=

c of)s @

[23] J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proc. 14th ACM Symp. Principles
of Programming Languages, Munich, 1987.

[24] J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: A rule-based survey
of unification. In J.-L. Lassez and G. Plotkin, editors, Computational Logic: Essays in Honor of
Alan Robinson. MIT-Press, 1991.

[25] J.-P. Jouannaud and C. Marché. Termination and completion modulo associativity, commutativ-
ity and identity. Theoretical Comput. Sci., 104:29-51, 1992.

[26] J.-P. Jouannaud and M. Okada. Satisfiability of systems of ordinal notations with the subterm
property is decidable. In Proc. 18th Int. Coll. on Automata, Languages and Programming, Madrid,
LNCS 510, 1991.

[27] C. Kirchner, H. Kirchner, and M. Rusinowitch. Deduction with symbolic constraints. Revue
Frangaise d’Intelligence Artificielle, 4(3):9-52, 1990. Special issue on automatic deduction.

[28] K. Kunen. Negation in logic programming. Journal of Logic Programming, 4:289-308, 1987.

(29] M. J. Maher. Complete axiomatizations of the algebras of finite, rational and infinite trees. In
Proc. 3rd IEEE Symp. Logic in Computer Science, Edinburgh, pages 348-357, July 1988.

{30] A. I. Mal’cev. Axiomatizable classes of locally free algebras of various types. In The Meta-
mathematics of Algebraic Systems. Collected Papers. 1936-1967, pages 262-289. North-Holland,
1971.

[31] G. Marongiu and S. Tulipani. Decidability results for term algebras. Preprint 9, AILA, 1991.

[32] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions on Pro-
gramming Languages and Systems, 4(2):258-282, Apr. 1982.

[33] R. Nieuwenhuis and A. Rubio. Basic superposition is complete. In B. Krieg-Bruckner, editor, Proc.
European Symp. on Programming, LNCS 582, pages 371-389, Rennes, 1992. Springer-Verlag.

{34] R. Nieuwenhuis and A. Rubio. Theorem proving with ordering constrained clauses. In D. Kapur,
editor, Proc. 11th Int. Conf. on Automated Deduction, Saratoga Springs, NY, LNCS 607. Sprin-
ger-Verlag, June 1992.

{35] W. V. Quine. Concatenation as a basis for arithmetic. Journal of Symbolic Logic, 11(4), 1946.

[36] J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12(1):23-41,
1965.

[37] R. Treinen. A new method for undecidability proofs of first order theories. Journal of Symbolic
Computation, 14(5):437-458, Nov. 1992.

[38] K. N. Venkataraman. Decidability of the purely existential fragment of the theory of term algebras.
J. ACM, 34(2):492-510, 1987.

-152-

c ofe G

Joining Abstract and Concrete Computations in
Constraint Logic Programming *

ROBERTO GIACOBAZ2ZI AND GIORGIO LEVI

Dipartimento di Informatica, Unsversitd di Pisa
Corso Halia 40, 56125 Pise, Haly
{giaco,levi}edi unipi.it

AND
SauMmya K. DEBRAY

Department of Computer Science, The University of Arizona
Tucson, AZ 85721
debray€cs.arizona.edu

Abstract

In this paper we show how noun-standard semantics for constraint-based logic programs
(CLP) can be formally specified by means of the same techniques used to define standard
semantics. In particular abstract interpretation of constraint logic programs can be viewed as
an instance of the CLP framework iteslf. The use of standard instances of the CL P framework
(e.g. CLP(Bool) and CLP(R)) for non-standard interpretations, weakens the distinction be-
tween concrete and abstract computations in semantics and analysis. We formalize this idea
by applying the well known approximation techniques (e.g. the standard theory of closure op-
erators) in conjunction with a generalized notion of constraint system, supporting any program
evaluation. The “generalized semantics” resulting from this process, abstracts away from stan-
dard semantic objects, by focusing on the general properties of any (possibly non-standard)
semantic definition. In constraint logic programming, this corresponds to a suitable definition
of the constraint system supporting the semantic definition. Both top-down and a bottom-up
semantics are considered.

1 Introduction

Constraint logic programming (C L P) is a generalization of the pure logic programming paradigm,
having similar model- theoretic, declarative and operational semantics [23]. CLP is then a general
programming paradigm which may be instantiated on various semantic domains. The fundamental
linguistic aspect of constraint logic programming is the ability of computing constraints by means

*The work of R. Giacobaasi and G. Levi was supported by the Esprit Basic Research Action 3012 - Compulog
and by “Progetto Finalissato Sistemi Informatici e Calcolo Parallelo™ of C.N.R. under grants no. 9100880.PF69.
The work of S. Debray was supported in part by the National Science Foundation under graats CCR-8901283 and

CCR-9123520.

- {53~

e ofe &

of Horn-like rules. Since this aspect can be separated from the details specific to particular
constraint systems, it seems natural to parameterize the semantics of CLP languages with respect
to the underlying constraint system. We refer to such a semantics as generalized semantics [19).
It turns out that the generalized semantics provides a powerful tool for dealing with a variety of
applications relating to the semantics of CLP programs. For example, by considering a domain of
“abstract constraints” instead of the “concrete constraints” that are actually manipulated during
program execution, we obtain for free a formal treatment of abstract interpretation.

In this paper we show how abstract and concrete interpretations for logic-based languages can
be joined into the unifying framework of constraint logic programming. We apply the generalized
semantics introduced in [19), intended to generalize the notion of constraint logic programs as
firstly introduced in [23]. The algebraic approach we take to constraint interpretation makes it
easy to identify a suitable set of operators which can be instantiated in different ways to obt.in
both standard and non-standard interpretations, relying on some simple axioms to ensure that
desirable semantic properties are satisfied. This work has a main technical contributions: to show
how a wide class of analysis techniques developed for pure and constraint-based logic programs
can themselves be viewed as instances of the constraint logic programming paradigm. This is
obtained by considering a general notion of constraint systems which is weak enough to have
general applicability and at the same time strong enough to ensure that relevant properties of the
standard semantics construction for logic programs are preserved.

The approximation of the meaning of programs by means of relations among the variables
involved in the computation is a well known technique to specify a space of approximate asser-
tions for program analysis [15,14]. We argue that the ability of the constraint logic programming
paradigm to handle relations on a variety of semantic domains (e.g. real arithmetics, boolean al-
gebras, etc.) allows this paradigm to be used in the field of program analysis both as a tool for the
formal specification of abstract domains of approximate relations and for the rapid prototyping
of static analysis systems. This approach has some interesting practical applications, such as the
ability to compile the data-flow analysis directly to an abstract machine for constraint logic pro-
grams. This approach, which is a logical extension of the “abstract compilation” scheme discussed
in [21), removes the overhead of program interpretation incurred by keeping separate abstract and
concrete interpretations, and leads to significant improvements in the speed of analysis {21,32].
Our approach also makes it possible to close the gap that often exists between the formalization
of data-flow analyses in terms of abstract interpretation and the realization of efficient imple-
mentations by means of appropriate data-structures and efficient algorithms. Applications of our
framework to systematically derive efficient algorithms for data-flow analysis (e.g. by means of
constraint propagation techniques for constraint solving) have been recently studied in 3].

The paper is structured as follows: in Section 2 we introduce the basic mathematical nota-
tions used throughout the paper. Section 3 introduces the main results in [19], thus providing
an incremental step-by-step algebraic specification for constraint systems and a top-down and
a bottom-up semantics for constraint logic programs which are parametric with respect to the
underlying constraint system. In Section 4 we consider generalized semantics for constraint logic
programs as a framework for semantics-based analyses for constraint logic programs. An example,
namely ground dependency analysis, is considered associating boolean constraints with standard
equations on terms. Some results on approximating constraints by means of upper closure opera-
tors on constraint systems are also given. This approach points out how some well-known program
analysis techniques can be obtained by evaluating an abstract program into a variation of some
existing CLP systems, such as CLP(Bool) for ground dependency analysis; and, as shown in

- {54 ~

Section 5: CLP(R)!, where a weaker notion of constraint system supporting program analysis is
introduced. This is accomplished by focusing on two distinct applications of constraint program-
ming to data-flow analysis, namely: linear relationships analysis and future redundant constraint
analysis. They associate linear constraints with standard equations on terms and range-intervals
with linear constraints on real numbers, respectively. Section 6 contains a survey of the most
important related works. Section 7 concludes.

2 Preliminaries

Throughout the paper we will assume familiarity with the basic notions of lattice theory
(Birkhoff’s text [6] provides the necessary background) and abstract interpretation [12,14]. In
the following we recall some basic mathematical notations used in the next sections.

The set of natural numbers, integers, and reals are denoted by A/, Z and R respectively. Given
sets A and B, A\ B denotes the set A where the elements in B have been removed. The powerset
of a set § is denoted by p(S). The class of finite (possibly empty) subsets of a set § is denoted
p/(5). Let T be a possibly infinite set of symbols. We denote by £* the family of finite-length
strings (sequences) from symbols in X, including the empty string A. Sequences are typically
denoted by (ay,...,as) or simply a;,...,a, for a;’s symbols in L. The length of s sequence s is
denoted |s|. The set of objects a; indexed on a set of symbols X s denoted {a;};cx. The set of
n-tuples of symbols in T is denoted £®. When the length of sequences is fixed, sequences and
tuples will be often considered equivalent notions. Let R C A x A be a binary transitive relation
on A, then the transitive closure of R is denoted by R*. Syntactic identity is denoted =.

A partial ordering is a binary relation that is reflexive, transitive and antisymmetric. A set
P equipped with a partial order < is said to be partially ordered, and sometimes written (P, <).
A chain is a (possibly empty) subset X of a partially ordered set P such that for all z,z' € X:
z < 2’ or 2 < z. Given a partially ordered set (P,<) and X C P, y € P is an upper bound for
X iff z € y for each z € X. An upper bound y for X is the least upper bound iff for every upper
bound y': y < y'; lower bounds and greatest lower bounds are defined dually. A compiete lattice in
a partially ordered set L such that every subset of L has a least upper bound and a greatest lower
bound. A complete lattice L with partial ordering <, least upper bound V, greatest lowe: bound
A, least element L = V@ = AL, and greatest element T = A® = VL, is denoted (L, <, L, T,V,A).
Given partially ordered sets (A, <4) and (B, <p), a function f : A — B is monotonic if for all
z,7' € A: z <4 2’ implies f(z) <p f(z'). f is continuous iff for each non-empty chain X C A:
f(UaX) = upf(X). A function f is additive iff the previous condition are satisfied for each
non-empty set X C A (f is also called complete join-morphism). An upper closure operator on
a partially ordered set (A, <) is a function p : A — A that is idempotent, i.e., p(p(c)) = p(c);
extensive, i.e., ¢ < p(¢); and monotonic.

To specify function parameters in function definitions we often make use of Church’s lambda
notation. We write f : A — B to mean that f is a total function of Ainto B. Let f: A — Bbea
mapping, for each C C A we denote by f(C) the image of C by f: {f(z) | z € C}. Functions from
a get to the same set are usually called operators. The identity operator Az.z is often denoted id.
Let (L,<,L1,T,V,A) be a non-empty complete lattice. Let f: L — L be a function. The upper
ordinal powers of f are defined as follows: f10(X)= X, fTa(X) = f(fT(a - 1)(X)) for every
successor ordinal a; and f{a(X) =6\</° f18(X) for every limit ordinal a. The first limit ordinal

1CLP(R) denotes the CLP(R) (constraint logic programs on the domain of real numbers) implementation
described in [24).

equipotent with the set of natural numbers is denoted by w.

An algebraic structure [20) is a pair (C, Q) where C is a non-empty set, called the universe
of the structure and Q is a function ranging over a (possibly infinite non-denumerable) index
set T such that for each i € Z, Q; are finitary operations on and to elements of C. Algebraic
structures are also denoted as (C, Qi)iez- In addition to Q; operations, some special symbols
(eg. @, @, 0,...) will be used to denote algebraic operations, including constants. With an
abuse of notation, we will often denote distinguished elements of C as constant operations Q; on
C. Given algebraic structures (A, @4) and (B, Qp) with universes A and B and provided with
a common set of basic operators Q, a (homo)morphism o from (A, Q4) to (B, @g), denoted by
o : (A,Q4) — (B,Qp) is a function 0 : A — B such that: o(f4) = fp for each constant
symbol in Q and o(fa(ay,...,as)) = fe(0(ay),...,0(a,)) for each n-ary operation f in Q and
a1...an € A. Let (A,Q4) and (B,Qp) as above. Given partially ordered sets (A4, <,4) and
(B, <B), a semimorphism is a function ¢ : A — B such that o(f4) <p fB, for each constant
symbol f in Q, and o(fa(@1,...,2s)) <B fB(0(a1),...,0(an)), for each n-ary operation symbol f
in Q.

3 Generalized Semantics

As defined in 23], the semantics of constraints is given in terms of an algebraic structure which
interprets constraint formulas, while the semantics of a constraint logic program is given in terms
of the well known fixpoint, model-theoretic and operational characterizations. In this section we
recall some of the basic results on the generalized semantics in [19].

3.1 Term Systems

A term system is an algebra of terms provided with a binary operator which realizes substitutions
[8]. We are interested in term systems where every term depends only on a finite number of
variables (also called finitary term systems). They represent the first basic definition in the
semantic construction.

Definition 3.1 [term systems (8]}

A term system 7 is an algebraic structure (7,5, V) where we refer to the elements of r as r-terms
(terms for short); V is a countable set? of 7-variables (variables, for short) in 7; S is a countable
set of binary operations on T, indexed by V; and the following conditions are satisfied, for all
z,y€Vand t,t' t"€r:

Ty. s:(t,z) =1, identity
T2. 8:(t,y) =y, where z # g, annihilation
Ts. sz(t,8(y,t')) = s:(y,t') where z # y, renaming

Ty sz(t,8,(t",1)) = 8,(82(t',1"),8:(t',1)) where z # y and y ind ¢’ independent composition

where a 7-term ¢t is independent on the 7-variable z, denoted by “z ind t”, if s¢(t',t) = t for any
' € 7. We say that a variable v occurs in a term t if ~(z ind t). We denote the set of variables
occurring in a term ¢ as var(t). 1

2 A more general definition that considers sets of arbitrary cardinalities is given in [8]: for our purposes, it suffices
to consider countable sets.

- 456~

Intuitively, s.(1,t') denotes the operation “substitute ¢ for every occurrence of the variable
z in t"." For notational convenience, we often denote s;(t,t') as [t/z]t’. This notation can be
extended to substitutions on multiple variables. Notice that, by T3, for each z,y € V: z ind y
iff z # y. The condition that terms depend on a finite number of variables can be formalized by
imposing that the dimension set [8]:

{zGVI [t/z]t # ¢t for some t € T }

is finite for every t' € 7. A renamingof a variable z in a term t is [y/z] ¢ for some y # z. Standard
properties of term systems and substitutions, such as the properties of composition, can be found
in [8].

Example 3.1 Let £ be a finite collection of function symbols. The standard term system
vy = (T(E,V),5ub,V) is a term system provided that substitutions in Sub perform stan-
dard substitutions. In this case v ind t iff the variable v does not occur in t. o

Notice that the substitution operators in S do not perform in general idempotent substitutions.

Definition 3.2
Let II be a finite collection of predicate symbols and 7 be a term system. A (7,II)-atom has the
form p(ty,...,t,) where pe lTand t; € 7, Vi=1,...,n.]

When clear from the context, we sometimes denote by o both a tuple and a set of syntactic
objects o (terms, atoms, etc.). In particular we denote by Z a tuple (set) of distinct variables.
Let 6 = (o1, ...,0,) and &' = (0}, ..., 0}) be tuples (sets) of syntactic objects. We write 6 # &' to
denote o; # o) for each i, j.

The following example shows a non-standard instance of the term system algebraic structure.

Example 3.2 Let T be a finite set of symbols. Let ¢ = (p’(2), S,), where S is the family of
basic operators s,, for ¢ € T, such that for each A;, A; € p/(E):

_ (A2\{e}Hu A, ifoeA,
%(A1,4) = { A, otherwise

In this case, for each o € T and finite set A C : o ind A iff 0 € A. 7% is a term system. <

3.2 Constraint Systems

We give now a formal algebraic specification for the language of constraints on a given term system.
It allows to identify those structures which have to be considered in any non-standard semantic
definition. The process of building constraints in any fixpoint evaluation of a given CLP program
is mainly based on set-union and conjunction. We want to give an algebraic characterization of
this process in order to provide a framework for generalized interpretations of constraint logic

programs.

Definition 3.3 [closed semirings [1]]
A Closed Semiring is an algebraic structure (C,®, @, 1, 0) satisfying the following:

1. (C,®,1) and (C,®, 0) are monoids.

2. & is commutative and idempotent.

3. 0 is an annihilator for ® , i.e.,forevery c€C,c®0=0Qc=0.
4

. for any countable sequence of elements @,,...,a4,...InC: a; B as®---Da, P -- exists and
is unique. Moreover associativity, commutativity and idempotence of @ apply to countably
infinite as well as to finite applications of &.

5. @ is left- and right-distributive over finite and countably infinite applications of @, i.e.,
if C = {a1,...,8q,...} is a countable sequence of elements in C and ¢ € C, then ¢ ®
(6C) = d({c®c | € C}) and (BC)Q®c = ®({¢' ®c | ¢ € C}), where ®C denotes
696 - Ba,d---

loannides and Wong show that the class of relational operators form a closed semiring [22],
thus providing a formalization of recursion in the database context. In logic programming, closed
semirings summarize, in an algebraic framework, all the aspects dealing with composition of terms
like unification and set union. The idea is that of finding the (possibly infinite) set of all paths
in the semantic construction. From a semantic viewpoint in fact, each path is a sequence of
constraints between vertices in the proof tree. Idempotence, associativity and commutativity are
the least set of properties necessary to allow @ to model, in the general context of standard as well
as non-standard semantics, the “merging” together of information via set union. The operator ®
corresponds to conjunction of constraints and plays the important role of collecting information
during computation. Distributivity allows the representation of constraints as possibly infinite
joins of finite meets (also called simple constraints). Distributivity plays a fundamental role in
the equivalence between the bottom-up and the top-down semantic constructions. Closure or
countable sequences of elements in C is necessary to admit constraints that are infinite joins of
constraints (this is important in the fixpoint semantic development). A weaker structure, namely
a non-distributive closed semiring, will be considered in Section 5.

A semantic definition necessarily implies some notion of “observable behavior”: programs that
have the same semantics are considered to not be observably different. Modeling the semantics
of constraint logic programs in terms of answer constraints corresponds to considering answer
constraints as the appropriate observable property [16]. Thus, the notion of solution for a given
answer constraint has to be restricted (projected) to the variables of the corresponding query
(output variables). Closed semirings are too weak to capture the notion of variable projection.
We handle this notion by -reans of a family of “hiding” operators on the underlying algebra, as in
[31). Cylindric algebras, formed by enhancing Boolean algebras with a family of unary operations
called cylindrifications [20), provide a suitable framework for this. The intuition here is that given
a constraint ¢, the cylindrification operation 35(c) yields the constraint obtained by “projecting
out” information about the variables in § from c. Diagonal elements [20] are considered as a way
to provide parameter passing [31]. In constraint logic programming the equality symbol “=" is
assumed to provide term unification in any constraint system. However, cylindric algebras, which

are oriented to first-order languages without function symbols, are not adequate as an algebraic
semantic framework for general constraint logic programs, so we extend diagonal elements to deal
with generic terms, following the approach in [8]. Finally, for each variable z and term ¢, a unary
operator 8! extends the substitution operation to idempotent substitutions on constraints.

Definition 3.4 [constraint systems]

A constraint system A is an algebraic structure (C,®,®,1,0, BA,Bi.d,.,'){,)'Agy;,_,.e, where C is
a set of A-constraints generated by a given set of atomic constrasnts, and is called the universe of
A; V is a countable set of variables; r is a term system; 0, 1, d; .+ are distinct (atomic) elements of
C,for each t,t € 7; {a}acv and {8} }:eviier are unary operations on C the latter being defined
for z ind t; @, @ are binary operations on C; such that the following postulates are satisfied for
anye,l/ €C;A,¥CVandt,t',t"cr:

R,. the structure (C,®,®,1,0) is a closed semiring;
Ci. ¢e®3ac=3ac;

Cz. 3a(e®3ac) = 3a(3a¢® ') = 35¢® 3ac';

Ci. 3adec = 3aunc:

Cy4. 34 distributes over finite and countably infinite joins;

D]. dg'g = 1;
D;. 3(5)dre =1
Das. dt.t‘ = dt'.t;

$1. Gz(c) = 3(z)(d=1 ® ©);
Sa. 8:-(‘11'#') = d[t/z]z'.[t/z]:";
S3. 3(c®@) =8 c®dic.

With an abuse of notation, when clear from the context, we denote 9%(c) as [t/z]c. The
meaning of cylindrification is given by the axioms from C) to Cy, while diagonal elements and
substitutions are specified by the axioms from D, to S3. Notice that Axiom §; and §; relate
the notion of substitution in the term system r with diagonal elements of C (which intuitively
correspond to the notion of equality constraints) in the expected way. Recursively, a simple
constraint is any atomic constraint, or the cylindrification (substitution) of a simple constraint, or
a finite conjunction (meet) of simple constraints. The notions of “independence” and “occurrence”
of variables extend in the obvious way from terms in 7 to constraints in C. Letc€Candz € V:
z ind c iff 8ic = c for any t € 7 such that z ind t. A variable z is bound in c iff it is existentially
quantified in ¢. A variable z is free in ¢ iff z € var(c) and z is not bound in c. The set of free
variablesin a constraint c is denoted by FV(c). A renaming of ¢ with respect to z is the constraint
8¥c such that z # y. It is renamed apart if also y ind c. Let {z1,...,z,} C V, in the following
we will denote 3,4r(c)\{z,....2a}C» i-¢. hiding from all the variables in ¢ except {Z1y-.-1Za}, as

- {59~

e ofs @

3(¢)(sy....sa)- We often omit brackets in cylindrifications on sets of variables. We also denote by
disy,...ta)(15t5) the element dy, 0 ® ... ® dy, 1, Where 8y,.... 85, ty,....t;, € 7, and denote A an
arbitrary constraint system (C,®,6,1,0, 3A,8;,d.',-){,} AcVitrer- €1 S ¢z denotes the relation
1 B ez = €3, for ¢3,¢9 € C. C is partially ordered by 4, and forms a complete lattice.

A number of important properties are shared by constraint systems. In particular, for each
A C V, 3, defines an additive upper closure operator on C3, while the substitution operator on
constraints defines an additive retraction on C*. Notice that the substitution is not, in general,
extensive. Moreover, if z is bound in ¢ then z ind ¢, and if ¢ is a renaming apart of ¢/ with
respect to z, then z ind ¢; and if A ind ¢ then 345(c ® ') = ¢ ® I5¢’. An important property on
the relation between cylindrification and renaming (with fresh variables) allows us to extend the
standard approach to the semantic construction of logic programs to constraint-based programs:
¢ ® 3zpc = I,)(c ® &) where y ind ¢,¢', y # z and & = JYc.

Example 3.3 [CLP(M)] Let £ = {a,b,...,f,g,...} be a finite collection of function symbols.
Atomic constraints are (one-sorted) equations on the term system 7y v) (see Example 3.1). The
Herbrand constraint system Ay, is the quotient algebra

(P(g'n), AU, true, IGISC, 3X1 8:,-9 {t = t'})(:),xgv;t,t'ef(,;,v,/"‘EQ,
where:

o £ is the set of any finite conjunctions of equations over 7(z v).

e M is intended to represent the Herbrand interpretation structure, interpreting diagonal
elements as unification [23]. A solution 8 for a possibly quantified finite conjunction (set) of
equations 3xE = 3x{s; = t,..., 8, = 1} is a grounding substitution for the free variables
in E such that there exists a grounding substitution for the bounded variables X: o, and
8100 = 1,00 ,..., 3,00 = t,00. H = E8 denotes that 8 is a solution for E 5. We extend
this definition to deal with possibly infinite joins: 8 is a solution for -'LeJI E, iff there exists

i € I such that 8 is a solution for E;S.

¢ 3is the existential quantification which is assumed to be distributive (as well as conjunction)
over arbitrary joins: if X C V, 8 is a solution for SX(-E; E;) iff 8 is a solution for 3x E; for
t

some i€ [.
e For each ¢; =, GUI E; and ¢, =.é,l’ E! denoting possibly infinite joins of (finite) quantified
t€ iy ciz
sets of atomic constraints (equations) E; and E}:

¢y ~EQ €3 iff .-é’,,{"l"”:E"’ }=‘€uh 9| H k= El9 }.

3An upper closure operator p on a partiall- ordered set (A, <) is a monotonic, idempotent and extensive (i.e.
p(z) > z) operator.

‘A retraction on a partially ordered set (A, <) is an operator g that is idempotent and menotonic.

$This corresponds to the intuitive notion: “a solution assigns values to the free variables of the constraint in such
a way that there exists an assignment to the existentially quantified variables such that the constraint is validated”
[10].

“Thus, in order to handle possibly infinite disjunctions of (finite) sets of equations, we interpret disjunction as
set union.

--'“—

¢ true denotes any constraint having every grounding substitution as a solution while false
denotes any constraint having an empty set of solutions.

e 8, for z not occurring in ¢, performs idempotent substitutions on constraints, by extending
in the obvious way the term substitution notion to constraints.

¢

Example 3.4 [CLP(R,)] This example formalizes CLP(R) as an instance of our framework. In
the following Z = (z,...2,) is a vector (point) in R and z; is its i-th element. A hyperplane is the
set of points ¥ € R™ satisfying a,z; +...+an2n = b, with not all a’s equal to zero. Any hyperplane
defines two halfspaces in the obvious way. A convez polyhedron is the (possibly unbounded) set
of points constituting the intersection of a finite number of halfspaces. Let ¢ be a polyhedron of
dimension n, and HS be a halfspace defined by a hyperplane H. If f = ¢N HS C H then f is
called a face of P. A facet is a face of dimension n — 1. For any finite n, the constraint system
of n-dimension linear constraints (the non-linear case is a straightforward extension), denoted
by Ra, is: (P,N,U,R",0,8,34,[t1 = t2])(z).ACVait it ta€7map Where Vo = {21,...,24a) is a set
of n variables, Tgs, is a term system of linear expressions on V, (a formalization of 7., is in
Section 5.1) and P is the set of all space regions in R" defined as possibly infinite unions of convez
polyhedra (each constraint ¢ € P can be represented as a possibly infinite set of finite conjunctions
of linear equations and disequations on V,,). The variable restriction operation 3 is performed by
cylindrification parallel to an azis [20]: if c is a constraint in R and i < n, we define:

3,,c={ieﬂ"ly,-=z,~ JorT€candj#i }

3;,c is the cylinder generated by moving the point set ¢ parallel to the z; axis. For any two linear
expressions t,t’ € Tg;, and R € {=, >, <, >, <} we define:

€= (Cl,..., Cn),
[t R t’] = e " og' = [el/zls ...,C”/tn] ’
6st R 6:

The substitution cperator is: & = Ac.é{,)([z = t]Nc). R, is a constraint system. o

3.3 Operational Semantics

Constraint logic programming was defined by Jaffar and Lassez to specify relations on a constraint
language by means of constraint-based Horn clauses. We follow the approach in [19] by defining

Horn-like clauses on const::. ' systems. Constraint logic programs are defined in the usual way:
let A be a constraint sys: “ae term system 7 and II be a finite set of predicate symbols. An
A-goal is a formula ¢ O . 1, With n > 0, where ¢ is a simple .4-constraint and B, ..., B, is
a sequence of (7,Ml)-atoms. . A-clause is a formula of the form ‘H :— ¢ O By, ..., B,’ where

H (the head) is a (v,II)-atom and ¢ O B, ..., B, (the body) is an A-goal. If the body is empty,
the clause is a unit clause. A (generalized) constraint logic program, also called A-program, is a
finite set of clauses. For notational simplicity, we will sometimes omit the superscript from the
various semantic functions where the constraint system under consideration is obvious from the

context. The family of A-programs is denoted by CLP(A). Finally, the renamings of variables in
constraints and terms extend their meaning in the obvious way to any syntactic object (atoms,
goals, clauses, programs etc.); as well as the notion of independence.

Let A be a constraint system and P € CLP(A). Define ~~p (an A-derivation step) to be the
least relation on .A-goals such that G ~p G’ iff

[] G =0 a] Pl(t-l)s "‘1?'!({1!)‘

o there exists a renamed version of a clause in P: p1(Z;) :— ¢, O By, such that
var(G)Nvar(B,U%,) =0,

¢ G'= c©® dzl,f, ® a(cl)t,uwr(al) o Bl!h({2)9 ---,Pn(ia)’

An A-derivation from an A-goal G is a finite or infinite sequence of .A-goals such that every goal is
obtained from the previous one by means of a single .A-derivation step. A successful derivation is a
finite sequence whose last element has an empty body. The operational semantics is then defined
in terms of the success set, namely the set of successful computations specified by the transitive
closure of the transition relation on atomic .A-goals, where ¢ denotes the empty sequence of goals:

0‘(P)={p(f) - @3@),[10 p(z)~pcOe }

The top-down semantics, defined by the previous transition system, characterizes the descendant
(partial) constraints of the initial goal. This semantirs provides information about call-patterns
regardless of whether they succeed, finitely fail or do not terminate.

Goal dependent success set semantics is defined in terms of a function Jp that yields the
computed answer constraint for any A-goal, such that 7p(G) = ®{3(¢)uar(c) | G ~p ¢ O }. The
following lemma proves the AND-compositionality for the operational semantics of constraint

logic programs.

Theorem 3.1 ([19)])

Let G = ¢ O py(1),...,Pn(fn) be an A-goal and P € CLP(A). JTp(G) = c iff there ez-
ist p;(%;) :~ ¢; € OA(P), such that z; ind G and ; # Z; for1 < 4,j <n i # j; and
c=3(co®dy, 7, ®c1...® dz, 5, ® Cn)var(G)-

Since a constraint system can be non-meet-commutative, it is straightforward to notice that
the independence on the selection rule does not hold in general in these semantic characterizations.
For this reason we have assumed a left-to-right selection rule.

3.4 Fixpoint Semantics

In this section we define a fixpoint bottom-up semantics which is proved to be equivalent to the
operational semantics. We allow constrained atoms into the base of interpretations as suggested
in [17). Each constrained atom ‘p(Z) :— c’ represents the set of instances p(Z)¥, where 9 is a
solution of the constraint c. We assume FV(c) C var(A).

It can be shown that the unfolding of a clause is independent on the variable names used in
constrained atoms. This can be expressed in the semantics by a relation ~ that captures the
notion of equivalence upto renaming on constrained atoms:

-2

¢« o @

Definition 3.5

Let B2 be the set of constrained atoms of a constraint system A. Define the binary relation ~
on B4 as follows: given A; = ‘p(Z)) :- ¢;’ and A; = ‘p(F3) : - 3’ in BA, A, ~ A; if and only
if there exist “renaming apart™ variables 7, i.e. such that i’ # %, and ' # #, (' ind ¢, c3); and
8%,c1 = 8%, ¢3. The A-base of interpretations is BA/~.]

In the remainder of the paper we will be concerned primarily with the quotient structure
B#/~, and for notational simplicity, denote this by BA. Moreover, given a syntactic object o,
we denote by p(Z) :~ ¢ €, I a constrained atom p(Z) :— ¢ such that [p(Z) :— ¢]. € I and
ind 0. We extend this to specify tuples of renamed apart syntactic objects.

Just as @ expresses the notion of “merging together” the information present in two con-
straints, the operator Ui captures the notion of merging together the information present in two
sets of constrained atoms; i.e. the operator U : p(B) x p(B) — p(B) is defined as follows:

hul;={[p(z) :— ®{8}c|p(3') :- ¢ < hUL}).} for any I}, 1; € p(B).

The relation C, expressing the notion of a set of constrained atoms containing less information
than another, is defined as follows: for any I), [, € o(B), h,E L it Lul, = I,.

Definition 3.6
The set of A-interpretations 4 C p(B*) is the collection of sets of constrained atoms / such
that Te QA if Tud=0url=1 !

(84, C) is a complete lattice. Let p(£) : @;ew ¢;j be elements of I, for some fixed (possibly
infinite) set of indexes W. For each j € W, c; represents the set of admissible (i.e., computable in
the program) solutions for the predicate symbol p, on the variables . As the set of indexes W can
be infinite, infinite joins of constraints are allowed in constrained atoms. This “closure” property
is modeled by the closure of C on infinite joins, as assumed in any constraint system. Notice
that it cannot be specified by first-order formulas. The fixpoint semantics of a program P over a
constraint system A, FA(P), is defined in terms of a continuous immediate consequence operator
in the style of [33), i.e. FA(P) = Ufp(7#) = T# 1 w(P), where the mapping 7' : 94 — Q4. is
defined as follows:

C : p(t) - ¢0 Pl(t-l)i ...,p,.(t‘,.),n 2 07
ZindC and foreachi=1..n:
72D = | { P3) :- 3Dl pi(Z) :— ci€cxy.2,, I, Ti# 2
CeP ¢ =dy ; ®c,
E'—’d,J@C@C’l@...@C;

The fixpoint semantics construction requires, potentially, only a finite set of variables. This
follows from the elementary properties of cylindrification with respect to substitution. Intuitively,
the hiding allows to define “local environments” which cannot be influenced by substitution. As a
consequence, any hidden variable in each of the c; can be (re)used outside the scope of the hiding,
thus making applicable renamings by means of the same variables. The number of variables
needed to compute the semantics depends from the program structure.

- 63—

¢ ofe &

Example 3.5 Consider the following program over the Herbrand constraint system:

z) - z=|}
pz) - z=[hly)Opy).

The fixpoint computation for 7p returns the following interpretation for p (we denote by , and ;
conjunction and disjunction (set-union) of constraints):

nz) - z=[;
a‘l-vﬂ"(: = [h'V]v y = zlv :’ = []);
Inyor(z = [hly),y= 2", 3y (2" = [Alg)y = 2’2 =)
zT= [hly]vy = 2',
Iy Iz z' = (hly}y = 2, ’
YN Bhyr (" = gy =22 =)
etc....

The set of variables needed to compute the fixpoint is ;z,z’,z", h,y}. <

The following result states the equivalence between the operational and the fixpoint semantics,
for any constraint system .A. We need that V is a denumerable set of variables.

Theorem 3.2 ([19])
Let A be a constraint systerm and P € CLP(A), then F(P) = O(P)/~.

4 Abstract Constraint Systems

The definition of an abstract constraint system, which specifies a non-standard semantics for a
constraint programming language, is performed in two steps: term abstraction and constraint
abstraction. In the first step new syntactic objects are introduced to represent concrete terms. In
the second one, constraints on the abstracted term system are defined.

In general, a constraint system is an interpretation (in a closed semiring) for constraint formu-
las. To relate constraint systems, we follow the approach to “static semantics correctness” in [5).
Correctness of non-standard semantic specifications can be handled in an algebraic way through
the notion of morphism. However, the algebraic notion of morphism can be made less restrictive
by assuming that the carriers of the algebras involved are partially ordered sets. We use a weaker
notion of morphism between algebraic structures, capturing the approximation possibly induced
by abstract interpretations or by any approximate semantics defined in the framework.

A morphism of term systems, x : T — 7/, is a function mapping terms of T to terms
of v’ such that Vt;,2; € r and z € V: x(s:(t1,12)) = 3;(:)(K(11),K(12)), where s and o
are the substitution operators in 7 and 7’ respectively. Let A and A’ be constraint systems
(A= (C, 0,8, 1,0,3,,01.d, ,,){z).ACVit.t1.t26+) be constraint systems. There exists a semi-
morphism a : A ~= A’ iff there exists a morphism of term systems « : 7 =, 7' such that for
each c,¢1,c2 € C,C CC, {z},A C V and t,1,,t; € 7 such that z ind t, the following hold:

a(0) =0
a(1)Q’1

- {64 =

¢ ofe @

a(®C) 9’ &'a(C)

a(3ac) Q' 3,4 ale)

a(c; ® ¢3) 9' alc;) ® alez)
a(dih‘n)& d’!(h).“(‘:)

Semimorphisms of constraint systems will be often denoted as a,. Notice that a(dic)<’ ;'(‘(;))o(c).

Definition 4.1

Let A and A’ be constraint systems with universes C and C’ and term systems 7 and 7’ respectively.
A’ is correct with respect to A iff there exists a semimorphism a, (x : 7 — r’ and a : A = A')
which is a surjective and additive mapping of (C, Q) into (C’, Q’).]

Additivity and surjectivity allow the semimorphism to associate the “best” approximating
constraint in A’ with any concrete constraint in A. As usual, this is captured by the notion of
Galois insertion, as specified by the following, where a pair of functions (@, v) is a Galois insertion
of (C’, Q') into (C, Q) iff @ and 7y are monotonic, a(y(c’)) = ¢’ and ¢ 9 y(a(c)) for each ¢ € C and
d €C' [12,14). i A’ is correct with respect to A by means of a semimorphism a,, there exists a
Galois insertion of (C’, 4’) into (C,4).

In the framework of abstract interpretation, correctness of fixpoint approximations require
in addition some conditions on correctness of the non-standard semantics operators [12]. With
the assumption of additivity, semimorphisms are adequate to specify both Galois insertions, and
correctness of constraint systems. Let A’ be a constraint system which is correct with respect
to .A, by means of a semimorphism a.. Let P = {C},...,Cn} be a program in CLP(A). The
corresponding program on A’ is a set of clauses {C},...,CL} such that for each ¢ = 1,...,m if
Ci= p() :— ¢Q py(f1), -, Pu(fn) then C! = p(x()) := a(c) O p1(n(1)), .-, Pa(K(in)) Where
x extends in the obvious way on tuples of terms. The following theorem relates the semantics of
a program with the (non-standard) semantics of the corresponding program defined on a correct
constraint system.

Theorem 4.1
Let P € CLP(A) and P' € CLP(A') be the corresponding program on A’. Assume A’ be correct
with respect to A. There ezists §: 34 — 94" such that f(FA(P)) C' FA'(P').

Given a (fixpoint) concrete semantics, data-flow analysis usually requires computing the limit
of Kleene chains. Convergence to the least fixpoint can either be obtained by forcing the abstract
domain to satisfy the ascending chain condition or to use widening and narrowing operators to
accelerate convergence for fixpoint approximations, as suggested in [12]. In the following we con-
sider the conditions on the constraint system that ensure the resulting abstract domain to satisfy
the ascending chain condition. We introduce the ascending chain condition on constraint systems
and we show how this condition ensures finiteness in fixpoint computations. This approach is
more related with the constraint system structure than the widening/narrowing one, which is in
turn more related with the fixpoint computation.

A set of constraints {e1y-esny -} is said to be free-variable bounded iff there exists a finite set
of variables V such that FV(c;) C V for each i > 1. The following definition is important for
abstract interpretation purposes:

¢ ofe &

Definition 4.2
A constraint system A is Noetherian iff its universe C does not contain any infinite chain of
free-variable bounded constraints.]

The free-variable-boundedness condition here is crucial, for otherwise any constraint system with
a denumerable set of variables is not Noetherian. To see this, consider the constraints ¢; =
X3 V-V X;: the set of constraints {c; | 1 > 1}, ordered by entailment, forms an infinite
ascending chain even on a two-valued boolean interpretation. However, it is easy to see that
this set is not free-variable-bounded. Given a Noetherian constraint system A, the domain S4 is
Noetherian, and F4(P) can be computed by iterating 7 a finite number of times.

Different semantic characterizations lead to different abstract evaluation strategies. Top-down
abstract interpretation corresponds to the abstraction of the standard operational semantics.
Bottom-up abstract interpretation instead allows to compute a finite abstract approximation of
the fixpoint semantics associated with a given constraint logic program. Goal-independence is an
attractive feature of bottom-up evaluations. Global program analysis, especially useful in type
inference, can then be specified as a bottom-up evaluation in a suitable constraint system. In the
following we will concentrate on bottom-up (fixpoint-based) abstract interpretations only. This
because the possibility of using only a finite set of variables on which renamings are performed is
attractive for proving that a constraint system is Noetherian (see for instance Section 5.1).

We illustrate the previous idea by means of a simple example of data-flow analysis for ground
dependences in pure logic programs [4,11].

Consider the (concrete) term system 7(z v) being defined over a finite set of variables V. Let
us consider the term system 7y as defined in Example 3.2. Terms are finite sets of variables.
Ground terms are denoted with the empty set of variables. It is straightforward to notice that
var is a morphism of term systems.

Marriott and Sendergaard have proposed an elegant domain, named Prop, to represent
ground dependences among arguments in atoms. This domain can be expressed as an instance
of our framework using the algebra of propositional formulas with disjunction. Let Aprop =
(Propy, A, V, true, false,3x, 0%, A(t) = A(t'))(s},xcvitrervuls) e the algebra of possibly exis-
tentially quantified disjunctions of formulas, defined on the term system rv, by the connectives
A and «; where, for each finite set of variables {z;,...,zZm} € Tv: A({Z1,.-,Zm}) = Z1 A ... A Zpm,
and A(0) = true.

Intuitively, the formula ZAyAz «— wAv represents an equation t = ¢’ where var(t) = {z,y, z}
and var(t') = {w,v}; z A y represents a term whose groundness depends upon variables z and
y; while z V y represents a set of terms whose groundness depends upon variables z or y. Local
variables are hidden by existential quantification, projecting away non-global variables in the
computation. Since z ~ true is equivalent to z, a variable z instantiated with ground term is
denoted z (i.e. the expression z denotes that z is rigid). Substitution is defined in the obvious
way. It is easy to prove that, because of the finiteness of V, Apyop/ «~ is a finite (and then
noetherian) constraint system.

We associate with each equational constraint in A, a boolean expression specifying ground-
ness relationships among variables in predicates. The following example shows this technique.

Example 4.1 Consider the following program to reverse a list:

arev((, ().
arev([HI{L), R) :- nrev(L, L1), append(L1, [H], R).

append((d, L, L).
append([HIY), X2, [HIZ]) :- append(Y, X2, 2).

The corresponding Prop program for groundness analysis is:

nrev(z,23) :— 3 Az).
nrev(z),23) :— z; ~ (AAl) Q nrev(l,rl), append(ry,h,r).

append(:;,zg, 1:3) = T3 AZ3 - 23.
append(zy,22,23) :— Ty = (AAy)A z3 ~ (h A z) O append(y, 23, z).

The reader may verify that the abstract semantics for append and nrev can be derived by eval-
uating the modified program in CLP(Aprop) (Which corresponds to the standard CLP(Bool)).
They are given by:

{ append(z1,23,23) 1~ z3 = (21 A23)}; and
{ nrev(zy,23) : = 7y ~ z3}.

which correspond precisely with the behavious of the program with respect to groundness: in
append the third argument is ground iff the first two is ground, while in nrev the first argument
is ground iff the second is ground. <

4.1 The Approximation Operator on Constraint Systems

The space of approximate constraints can be specified using upper closure operators, which formal-
ize the idea of approximation [14]. Idempotence can be interpreted as the fact that al! information
is lost at once in the abstraction process; extensivity captures the essence of approximation as
weakening, while monotonicity of the closure states that approximation is order preserving.

In the following we introduce the basic properties of upper closure operators on a constraint
system. These properties allow the resulting algebraic structure to be a constraint system as well.
The following results extend the classical ones on closure operators [14] to constraint systems.
In particular we characterize the approximation induced when a, behaves as a morphism of
constraint systems. Following this approach, we can extend most of the well known techniques
for abstract domain specification to constraint systems.

Definition 4.3
Let A be a constraint system with universe C. A compatible upper closure operator p on A is an
upper closure operator on (C, d) satisfying the following properties: for each ¢,c’ € C:

1. p(3a¢) = 3ap(Iac); (3-quasi closure)
2. p(e® ') = p(p(c) ® p(c')). (®-quasi morphism)
1

- 467~

c ofes @

Since a compatible upper closure operator is a closure operator, it maps each constraint to
one that approximates it. In addition, ®-quasi morphism relates meets of abstract constraints
with meets of concrete constraints (recall that an upper closure operator is also a quasi-complete
join-morphism, namely for each D C C, p(@.cp¢) = p(@.ep £(¢))). Finally, the 3-quasi closure
property ensures that the approximation of a constraint which is hidden on a set of variables, is
still hidden on the same set of variables. From this condition we can prove that p satisfies the 3
and 9-quasi morphism condition (i.e. p(3ac) = p(3ap(c)) and p(dic) = p(8:p(c)), for each ¢ € C,
{z},A C V and t € 7 such that z ind t) and that p o 34 is an upper closure operator.

Notice that 34 o p is not idempotent, unless 35 and p commute. This is in accordance with
a classical result of closure theory saying that any composition of two upper closure operators is
an upper closure operator iff they commute [30].

Let A=(C,8,8,1,0,34,9;,d;, 0,)z}, ACVit.4y €+ D€ a constraint system and p be a compat-
ible upper closure operator on A. We define:

P(.A) = (O(C’, @9 és 1, P(o)! gA’ éz‘-v p(dh,tz)){z},A(_:V:t.h.tzér

where p(C) = {c € C | ¢ = p(c)}, for each ¢, ¢y, 63 € p(C), {z},A C V and t € 7 such that z ind t:
a1ez = p(e1 @ €2), (1@¢z = p(er ® c2), 3ac = p(3ac) and Bic = p(dic).

Theorem 4.2
Let p be a compatible upper closure operator on the constraint system A. p(A) is a constraint
system.

Example 4.2 Cylindrifications are monotonic operators, while idempotence and extensivity are
specified by axioms C4 and C, respectively. Moreover, cylindrifications commute thus, if A and ¥
are sets of variables and c is a constraint: 353935¢c = 353wc. However, for each set of variables
A: 34, is not a compatible upper closure operator on the constraint system because it does not
satisfy the ®-quasi morphism condition (see Axiom C,). <

By ®/&®-quasi morphism, p(A) is correct with respect to A by means of the morphism p;4.

As observed in [14), any Galois insertion (a,v) defines an upper closure operator p = yo a on
the corresponding (concrete) complete lattice.

Corollary 4.3

Let A® be a constraint system which is correct with respect to a constraint system A by means of
a surjective and additive morphism a,.. Let v = Ac®*. @ {c| a(c) 9° c®} and p = Yo a. p(C) is
isomorphic to C°.

Let A be a constraint system and .A* be correct with respect to .A by means of a surjective
and additive morphism a.. Let y = Ac®. & {c|a(c)d°c*}and p= 7o a.

Theorem 4.4
Let ACV andc,c1,¢2 € C. Then 3ap(3ac) = p(3ac) and p(p(c1) ® p(c2)) = pler ® c2).

In the following we study some sufficient conditions on .4 and a, to let the interpretation of @,
3 and 8 operators be not affected by the closure p = 7 o a (i.e. the closure becomes a morphism
of ®, 3 and §).

Theorem 4.5
Let c1,¢3 € C: ple1) ® p(ca) 9 pley @ c3). If A is @-idempotent and 1 is the annihilator for &,
then p(c1 ® c3) = p(c1) ® p(ea).

The following theorem gives a sufficient condition on A® such that the composition of 3 and
p is a closure (i.e. 3 and p commute).

Theorem 4.6
Let ¢, € C and A C V. 3ap(c) 4 p(3ac). If a(3a¢c) = a(3ac’) = a(c) = a(c'), then
p(3ac) = 3ap(c)

Notice that the previous condition: a(3ac) = a(3ac’) = a(c) = a(c') state the injectivity
of cylindrification in the abstract constraint system.

Theorem 4.7
Let A be g constraint system and p be an upper closure operator on C which commutes with 3, it
is @ ®-morphism and for each t,t’ € 7: p(dyy) = dyy. Then 8%p(c) = p(8ic).

We finally give a representation result for abstract constraint systems. Recall that given a
partially ordered set (P, <), § C P is convez iff for each ¢,c” € S, ¢’ € Psuch that c < ¢/ < "
then ¢ € §. It turns out that any (compatible) upper closure approximation of a constraint
system defines a partition of the universe of constraints into convex sets of constraints:

Proposition 4.8
Let A be a constraint system and p be ar upper closure operator on its universe of constraints C
For each c € C the set ¢® = {¢' € C | p(c) = p(c')} is convez.

As a consequence, the closure of a constraint system .4 under a given upper closure operator
p (i.e. p(A)) is the algebraic structure of “abstract” constraints each representing a convex space
of “concrete” solutions. The axioms for compatible closure operators (i.e. axioms 1 and 2) ensure
that p(.A) is a constraint system.

5 Non-distributive Analysis

Our framework is not appropriate to formalize an interesting class of constraint systems which
are proved to be useful for program analysis (e.g. see linear relationships analysis below).

Let us consider a (possibly non-compatible) upper closure operator. For the family of con-
straint systems where ® is idempotent and commutative, and 1 is annihilator for @, any meet
of closed constraints is still closed, i.e., p(¢;) ® p(c2) = p(p(c1) ® p(c2)). Thus, any compatible
upper closure operator is a ® morphism (see Theorem 4.5). This assumption is too strong for
a wide class of closure operators useful in program analysis. For any upper closure operator p:
ple1®¢2) < p(c1) ® p(c3). The converse does not hold in general. In the following we will consider
®-idempotent and commutative constrai~* systems where 1 is annihilator for @.

Definition 5.1

A weakly compatible upper closure operator on a constraint system A, with universe of constraints
C, is an upper closure operator on C such that: p(0) = 0, p(d; /) = d; s and po 34 = 4 0 p. for
any term ¢,t’ and set of variables A.]

Theorem §.1

Let A= (C,8,6,1,0,3,5,8,d,, .,)(z).ACVit b1 126~ b€ @ constraint system and p be a weakly com-
patible upper closure operator on A. p(A) = (P(C),®,8,1,0,34,8:,dy, 1,){z}.aCVitt1 126+ Where
® = AC.p(®C), is a non-distributive constraint system.

Assume a constraint system A where the axiom of distributivity is replaced by the weaker
relation: ¢ ® (¢; @ ¢2) D (c® ¢1) ® (¢ ® ¢2). Distributivity has been assumed to prove the equiva-
lence results between fixpoint and operational semantics. The second one in fact is a kind of “all
solutions” semantics, where the join is taken at the end of all the possible computations, while
in the fixpoint case, the semantic construction applies the join operator at each partial compu-
tation step (an equivalent operational semantics can be easily defined: this would correspond to
the bottom-up execution strategy of deductive databases rather than the standard operational
interpretation of logic programs [28]). In this case, as the constraint system is not distributive any
more, we can only have a further approximation level by applying bottom-up instead of top-down,
i.e. O(P) C F(P). In the following we study this class of constraint systems by means of an
example.

Example 5.1 The problem of future redundant constraints in CLP(R) has been studied in the
context of compiler optimization [25]. Intuitively, a constraint in a clause is future redundant if,
after testing the constraint for satisfiability, adding or not the constraint to the current computed
constraint (also named store) does not contribute to the answer constraint. This because, in
the computation, stronger constraints are added to the store. This information can be used for
a variety of optimizations [25]. In this example we sketch a formalization of this analysis as a
non-standard CLP computation using a slightly different notion of redundancy. Consider the
constraint system R, of Example 3.4. Let P € CLP(R,) and p be some extensive operator
on R, (upper closure operators are appropriate to this purpose). Assume p be a predicate
symbol defined in P and let C = p(f) :— €nc' O B € P be a clause defining p. Let P' =
(P\{CHu{p(}) :-= ¢ O B}. Hp(Z) :- ¢, is in F(P’),i.e., ¢, is the answer constraint for p in
the modified program, c, N # @ (i.e. ¢, A € is solvable) and for each convex polyhedron c € ¢p:
p(c) C € (i.e. €is weaker than p(c)), then € is future redundant in C. To prove this claim we just
note that by p-extensivity, for each constraint ¢: ¢ C p(c).

A suitable choice of an extensive operator on R, is provided by approximating any convex
polyhedron with a hypercube, which is a polyhedron whose facets are parallel to the axes (similar
techniques have been used for static array bound checking [12]). For any set of polyhedra ¢ € P,
define boz(c) as the least hypercube containing c. boz is clearly an upper closure operator on
the domain of convex polyhedras ordered by set inclusion. To provide parameter passing, we
allow diagonal elements in the abstract domain of constraints. The approximation of diagonal
elements by their least hypercubes should correspond in fact to associate the whole space region
R" with each equation, thus making the parameter passing useless. Thus, if c is a hyperplane,
boz(c) = c. Moreover boz() = @ and for each 6 C V,;: boz(3ac) = Jaboz(c) (i.e. Az.boz(z)is
weakly compatible).

- {#0~

The universe of abstract constraints box(P) contains hypercubes and hyperplanes as con-
straints. Thus, future redundant constraints can be handled in the simpler non-distributive ab-
stract constraint system boz(R,). Since boz(R,) is not Noetherian, termination conditions, such
as the widening/narrowing techniques proposed in [12], have to be applied in the abstract fixpoint
evaluations.

Better results can be obtained by keeping separated the answers for each clause in the program,
with a less abstract semantic construction.

Recently, several studies have been devoted to “implement” interval arithmetics in the con-
straint logic programming paradigm. In (2] bounding boz spatial approximations in constraint
logic programs over finite domains are specified as an instance of our framework. In [27], the use
of intervals has been presented to absorbe floating-point errors in CLP(R) computations. They
present an implementation based on a meta-interpreter executed by an existing CLP(R) system
{24]. Both of these approaches can be used for future redundant constraint detection. o

§.1 Linear Relationships Analysis

In this section we study the applicability of non-distributive constraint systems by modifying
the ground dependency analysis technique to cope with linear relationships among predicate’s
arguments in CLP(M).

A number of data-flow analyses in imperative languages are included in the determination of
linear relations among variables, like compile-time overflow, integer subrange and array bound
checking [15]. A very useful analysis on the relationships among variables of a program can be
specified in our framework by linear relationships analysis [15,26,18,34], which provides useful
information for proving termination, compile-time overflow, mutual exclusion, program debug-
ging etc. The problem of discovering linear equality relations by abstract interpretation in logic
programs has been studied in [34].

The automatic derivation technique in [34] for linear size relations among variables in logic
programs can be suitably specified as a constraint computation. In the following we will show
how this technique can be viewed as an instance of our framework, thus making explicit the
strong relation between automatic detection of linear relationships among variables and CLP(R)
computations.

Let 7(s,v) be defined as in Example 3.1, over a finite set of variables V. Let |..J¢ be a (semi-
linear) norm ([7]) on the term system 7(zy)’. We define a term system 7.y of linear expres-
sions where terms are first order terms in the language {+,0,1,V} (i.e. terms in 744 0.1).v))
Substitutions are performed as standard substitutions. In the following we represent the term
X+X+Y+141+4+1a52X +Y +3. 7y is a term system.

The mapping Ezp¢ : T(x,v) — TEzp associates a linear expression with each terms in 7(zv), as
follows [34):

"A norm | - | is said to be semiiinearif it is of the form

=4 0 if t is a variable
Itl= c+Z_ewlt.-| ift=f(t,...,ts), wherec > 0and W C {1,...,n}.

- ¥~

e@os ©

@&

1 if t is a variable
Ezpc(t) = { co+ j)_; Ezp.(f(t)) otherwise
€F:

Example 5.2 With length and size norms:

[tliengts = 0 if t is a variable,

|thiengen = 0 if ¢ = [],

Jthiengea = 1 + tailliengen if t = [hitail],
(this norm measures the length of a list)

|tlsize = 1if t is a variable or a constant,

m”’u =1+ |tl|n'xea ooy ‘tnlniu ift= f(t, -"vtn)s
(this norm measures the size of a term as the size of its subterms)

we have: Ezpiengin([X[elZ]]) = 1+1+ 2Z and Ezp,i;e([X[a|Z]]) = 1+ X + 1+ Z respectively.
o

A constraint system of affine relationships (i.e. linear equalities of the form ¢ = ¢, X; +
.« + €aXy) can be defined by specifying intersection, disjunction and cylindrification (variable
restriction) as given in [34). Intuitively, an affine subspace is a point, line, plane, etc., possibly
not including the origin. A linear subspace is an affine subspace containing the origin. Recall
that an affine transformation T : R® — K™ maps affine subspaces to affine subspaces; its kernel is
the set of elements mapped to the origin, and is itself an affine subspace. Linear relations can be
represented as n-tuples of real numbers (geometrically as sets of points in a n-dimensional space).
These sets are approximated by affine subspaces or linear varieties [26,34). A scheme for the finite
representation of these (possibly infinite) spaces is provided by representing the space as the
kernel of an affine transformation from R" to R™ for appropriate m [26]. Affine transformations
from R" to R™ can be represented as an m x n matrix A together with an m x 1 column matrix
(vector) c. The corresponding transformation maps z € ®® to Az — ¢ € R™. The affine subspace
can be found by solving the non-homogeneous system A X = c. Several different matrix-vector
pairs may represent the same set of relationships. Elementary linear algebra fortunately provides
us a “canonical form”™ for this problem. This canonical form can be obtained by reducing the
augmented matrix [Alc] in a row-echelon form 8. Standard algorithms can be used to reduce any
matrix in row-echelon form.

Consider the domain of affine subspaces K on a fixed n-dimensional space and the following basic
operations, as given in [34]:

intersection (N): The intersection of two affine subspaces [A;]c;] and [A2|c;] is still an affine

subspace. Such an intersection can be obtained by reducing the augmented matrix ﬁ;}g]
to a row-echelon form. If the two affine subspaces have different dimension: m and m + k,
we extend the one of lower dimension m to m + k by adding k columns of 0’s to the matrix
and k rows of 0’s to the corresponding vector.

$ A matrix A is in row-echelon form iff every row has at least one non-zero entry, the first non-zero entry of each
row is 1, for any row i if jo is the first column with a non-zero entry of the row, then for all i > 4o, 5 < jo: Ai, =0
and forall i < ip, Ay, =0 [26]

- -

union (&): The union of two affine subspaces is not, in general, an affine subspace. We consider
instead the smallest affine subspace [A|c] containing [A;]c1] and [Az]ez], namely if [A;]c;),
[Aa]es) and [Ac] specify linear transformations Ty, T3 and T then kernel(T') is isomorphic
to kernel(Ty) + kernel(T;). In [26] an efficient algorithm to compute linear disjunctions has
been introduced. Examples are shown in [34).

cylindrification (3): The variable restriction operation is performed by cylindrification parallel
to an axis. By definition, the cylindrification of an affine subspace is still an affine subspace.
In [34] the cylindrification operation is defined as a matrix transformation.

substitution (5): Let S be an affine subspace and z € V, t € Tg;,. Substitution of z with ¢t in
S is defined as the affine subspace 3;,)(z =t] 0 §).

Variables are assumed to be finite ®: V = V,, = {z,,...,24}. If the relations are contradictory,
then the subspace is the empty set @ (it cannot be represented as a pair matrix-vector). If there
are no affine relations, the corresponding subspace is the entire space ®". Diagonal elements are
(single) equations on the term system 7gg,. In the following, for each equation t; = t2, we denote
by [t; = t3] C R" the corresponding affine subspace. As before, this notation simplifies somewhat
the presentation.

Proposition 5.2
(K,n,$,R",0,34,0%, [t = ']){z}.acVait.ers,, 18 @ non-distributive, N-idempotent and commuta-
tive constraint system, where R" is annihilator for §.

As pointed out in {26}, there are no infinitely ascending chains of free-variable bounded constraints
(i.e. bounded dimension affine spaces), otherwise in any properly ascending chain of subspaces:
U,QU,94... the subspaces U; must have a dimension of at least one greater than U;-,. The
resulting constraint system is then Noetherian.

A linear equation is associated with each equation on terms. The following example shows the
length relationships among the arguments of the append predicate. The solution can be obtained
in a R3 dimension space.

Example 8.8 Consider the logic program defining the predicate append in Example 4.1, together
with the semilinear norm length. The corresponding abstract program is:

append(z1,22,73) :— 71 = 0,72 = Z3.
append(z1,22,23) :— 21 =1+ ¥,Z3 =1+ z O append(y, 22, 2).

The abstract semantics is:

7510(0)=0
T,'a‘T 1(0) = {append(zy,22,23) :— 7 = 0,23 = 23} [e]

9As we are interested in relations (those defined in the program) having finite arity, we can always represent
any aaswer constraiit as a constraint on the finite dimensional space of its free variables. Moreover, the use of a
bottom-up semantic construction does not require any infinite set of variables for renamings.

- {73

e« oo @

2y =0,z2=12z;3

T5 12(9) = {append(z1,23,23) : - & } [e |
y=1l,z3=14 22
= {append(zy,23,23) 1~ 71 + 23 = 23} (fixpoint)

Let us denote A, and A; the augmented matrices associated with the constraints ¢; and ¢,
respectively (on the 3 + 1-dimensioned space z,,23,z3,z4). Applying the algorithm in [26] we
have:

10 00 [1r0 01 <. L
A‘—[O -1 1 0] Az—[o -1 1 1] = A]@Ag—[l 1 -1 0]

The affine subspace z,+z2 = z3 specifies the affine relationship among the length of the arguments
of the predicate append in the expected way. o

6 Related Work

Abstract interpretation of constraint logic programs is considered by Marriott and Sendergaard
[29]. Their treatment is based on abstracting a denotational semantics for constraint logic pro-
grams. A meta-language based on the typed A-calculus is used to specify the semantics of logic
languages in a denotational style, and both the standard and non-standard semantics are viewed
as instances of the meta-language specification. In our case, instead of defining a meta-language
for data-flow analysis, we consider the constraint specification on which the CLP paradigm is
defined. Non-standard semantics for a given constraint-based program can thus be obtained by
appropriately modifying the underlying constraint system. In this way, data-low analyses of
logic-based languages can be specified as a standard constraint computation. No difference is
introduced between the concrete programming language and the abstract one. They both derive
from the same general specification of the CLP paradigm.

A related approach is also considered by Codognet and File, who give an algebraic definition
of constraint systems and consider abstract interpretation of constraint logic programs [9]. How-
ever, the algebraic structure considered by these authors is very different: only ®-composition is
considered. The notion of “computation system” is introduced but the underlying structure is
not provided with a join operator. Because of this construction, mainly based on a generalization
of the top-down SLD semantics, a loop-checker consisting in a “tabled” interpreter is needed.
In our framework, by contrast, extraneous devices such as loop checking and tabulation are not
considered. Instead, finiteness is treated simply as a property of the constraint system, expressed
in terms of <d-chains. This allows non-standard computations to be specified as standard CLP
computations over an appropriate (abstract) constraint system.

7 Conclusions

Weaker constraint systems can be considered, where for example distributivity does not hold.
The distributivity restriction is not applicable to a wide class of static analysis problems including
linear relationships, as shown in Section 5.1, and range variable analysis, based on an abstract
lattice of intervals specifying the range of program variables [2]. Non-distributive constraint
systems can be studied as a more general framework for constraint-based program analysis. A
classification of the different constraint systems useful in data-flow analysis can be based on the
set of properties they hold. A comparison with our framework can be useful to systematically

c ofe @

derive those properties of the semantic construction that may be affected by a different constraint
system definition.

Another aspect of the semantic construction is the use of variable hiding operators (such as
cylindrifications) in the Tp definition. Technically, this allows the use of only finite sets of variables
on which to perform renamings; thus simplifying the construction of finite upper approximations
to the semantics, such as in the case of linear relationships analysis, where the finiteness is strongly
related with the (finite) dimension of the space of solutions.

Acknowledgments

The stimulating discussions with Roberto Bagnara, Roberto Barbuti, Suzanne Dietrich, Maur-
izio Gabbrielli, Michael Maher, Nino Salibra, Gert Smolka, and David S. Warren are gratefully
acknowledged.

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms. Addison
Wesley Publishing Company, 1974.

{2] R. Bagnara, R. Giacobassi, and G. Levi. Static Analysis of CLP Programs over Numeric Domains.
In Actes Workshop on Static Analysis, WSA’92, number 81-82 in Bigre, pages 43-50, 1992.

[3] R. Bagnara, R. Giacobazsi, and G. Levi. An Application of Constraint Propagation to Data-flow
Analysis. In Proc of Ninth IEEE Conference on Al Applications, pages 270-276. IEEE Computer
Society Press, 1993.

{4] R. Barbuti, R. Giacobazzi, and G. Levi. A Genera! Framework for Semantics-based Bottom-up Ab-
stract Interpretation of Logic Programs. ACM Trensactions on Programming Languages and Systems,
15(1):133-181, 1993.

[5] R. Barbuti and A. Martelli. A Structured Approach to Semantics Correctness. Science of Computer
Programming, 3:279-311, 1983.

[6] G. Birkhoff. Lattice Theory. In AMS Colloguium Publication, third ed., 1967.

{7] A. Bossi, N. Cocco, and M. Fabris. Proving Termination of Logic Programs by Exploiting Term
Properties. In S. Abrams® , -1 'T.S.E. Maibaum, editors, Proc. TAPSOFT 91, volume 494 of Lecture
Notes in Computer Science, pages 153-180. Springer-Verlag, Berlin, 1991.

[8] J. Cirulis. An Algebraization of First Order Logic with Terms. Colloguia Mathematica Societatis
Janos Bolyai, 54:125-146, 1991.

[9] P. Codognet and G. File. Computations, Abstractions and Constraints. Technical Report 13, Dipar-
timento di Matematica Pura e Applicata, Universita di Padova, Italy, 1991.

(10] H. Comon and P. Lescanne. Equational Problems and Disunification. Journal of Symbolic Computa-
tion, 7:371-425, 1989.

{11] A. Cortesi, G. Filé, and W. Winsborough. Prop revisited: Propositional Formula as Abstract Domain
for Groundness Analysis. In Proc. Sizth IEEE Symp. on Logic In Computer Science, pages 322-327.
IEEE Computer Society Press, 1991.

{12] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. In Proc. Fourth ACM Symp. Principles of
Programming Lenguages, pages 238-252, 1977.

[13] P. Cousot and R. Cousot. A constructive characterization of the lattices of all retracts, pre-closure,
quasi-closure and closure operators on a complete lattice. Portsgalie Mathematice, 38(2):185-198,
1979.

- {35 -

e ofs @

(14) P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks. In Proc. Sizth ACM
Symp. Principles of Programming Languages, pages 269-282, 1979.

[15] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints Among Variables of a Program.
In Proc. Fifth ACM Symp. Principles of Progremming Languages, pages 84-96, 1978.

[16] M. Gabbrielli and G. Levi. Modeling Answer Constraints in Constraint Logic Programs. In K. Fu-
rukawa, editor, Proc. Eighth Int’l Conf on Logic Programming, pages 238- 252. The MIT Press,
Cambridge, Mass., 1991.

[17] M. Gabbrielii and G. Levi. A soived form algorithm for ask and tell Herbrand constraints. In
S. Abramsky and T. Maibaum, editors, Proc. TAPSOFT’91, volume 493 of Lecture Notes 1a Computer
Science. Springer-Verlag, Berlin, 1991.

{18] A. Van Gelder. Deriving Constraints Among Argument Sizes in Logic Programs. In Proc. of the
eleventhk ACM Conference on Principles of Database Systems, pages 47-60. ACM, 1990.

(19] R. Giacobazai, S. K. Debray, and G. Levi. A Generalized Semantics for Constraint Logic Programs.

In Proceedings of the International Conference on Fifth Generation Computer Systems 1992, pages
581-591, 1992.

[20] L. Heukin, J.D. Monk, and A. Tarski. Cylindric Algebras. Part [and II. North-Holland, Amsterdam,
1971.

[21] M. HBermenegildo, R. Warren, and S.K. Debray. Global flow analysis as a practical compilation tool.
Journal of Logic Programming, 13(4):349-366, 1992.

[22] Y.E. Ioannidis and E. Wong. An Algebraic Approach to Recursive Inference. In L. Kerschberg, editor,
Proc. First Int. Conf. Ezpert Database Systems - Charleston SC, pages 295-309, 1987.

(23] J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proc. Fourteenth Annual ACM Symp.
on Principles of Programming Languages, pages 111-119. ACM, 1987.

{24] 3. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R) Language and System. ACM Transac.-
tions on Programming Languages and Systems, 14(3):339-395, 1992.

{25]) N. Jorgensen, K. Marriot, and S. Michaylov. Some Global Compile-Time Optimizations for CLP(R).
In Proc. 1991 Int’l Symposium on Logic Programming, pages 420—434, 1991.

[26] M. Karr. Affine Relationships Among Variables of a Progrum. Acte Informatica, 6:133-151, 1976.

[27] J. H. M. Lee and M. H. van Emden. Adapting CLP(R) to Floating-Point Arithmetic. In Proceedings
of the International Couference on Fifth Generation Computer Systems 1992, pages 9961003, 1992.

{28] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987. Second edition.

[29] K. Marriott and H. Sendergaard. Analysis of Constraint Logic Programs. In S. K. Debray and
M. Hermenegildo, editors, Proc. North American Conf on Logic Programming’90, pages 531-547.
The MIT Press, Cambridge, Mass., 1990.

[30] Oystein Ore. Combinations of Closure Relations. Annals of Mathematics, 44(3):514-533, 1943.
[31] V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic Foundation of Concurrent Constraint

Programming. In Proc. Eighteenth Annwal ACM Symp. on Principles of Programming Languages,
pages 333-353. ACM, 1991.

[32] Jichang Tan and I-Peng Lin. Compiling Dataflow Analysis of Logic Programs. In ACM Programming
Language Design and Implementation, volume 27 of SIGPLAN Notices, pages 106-115. ACM Press,
1992.

[33) M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a programming language.
Journal ~ the ACM, 23(4):733-742, 1976.

[34) K. Verschaetee and D. De Schreye. Derivation of Linear Size Relations by abstract interpretation. In
M. Bruynooghe and M. Wirsing, editors, Proc. of PLILP’92, volume 631 of Lecture Notes 1n Computer
Science, pages 296-310. Springer-Verlag, Berlin, 1992.

-6~

&

Communications

AMAST’93

Third International Conference
on
Algebraic Methodology and Software Technology

University of Twente
The Netherlands

Participants’ Proceedings

-1

N

Dimension-Complemented Lambda Abstraction Algebras
Don Pigozzi and Antonino Salibra
Iowa State University and University of Ban

The untyped lambda calculus is formalized as a theory of equations, but it is not an
equational theory in the usual algebraic sense because the equations, unlike the associa-
tive and commutative laws for example, are not always preserved when arbitrary terms are
substituted for variables. Consequently the general methods that have been developed in
universal algebra and category theory, for defining the semantics of an arbitrary algebraic
theory for example, are not directly applicable. There have been several attempts to re-
formulate the lambda calculus as a purely algebraic theory. The earliest and best known,
although apparently not motivated by these considerations, is the combinatory logic of
Curry. More recently, several purely algebraic theories of the lambda calculus within the
context of category theory have been developed: Obtulowicz and Wieger [9] via the algebraic
theories of Lawvere; Adachi (1] via monads; Curien [3] via categorical combinators.

In [10] we proposed an alternative approach in the context of universal algebra. We
introduced the notion of a lambda abstraction algebra (LAA for short), which is intended to
provide a purely algebraic theory of the lambda calculus in the same way Boolean algebras
constitute an algebraic theory of classical propositional logic and, more to the point, cylin-
dric and polyadic Boolean algebras an algebraic theory of first-order predicate logic. In all
algebraic theories of the lambda calculus the role of the variables is suppressed to varying
degrees and the notion of substituting terms for the free variables of a term is abstracted.
In LAA’s this is effected by “inverting” (3)-conversion to obtain a definition of substitution
in terms of the primitive notions of application and lambda abstraction.

The natural models of lambda abstraction theory are algebras of functions of possibly

infinite arity, while models of the lambda calculus consist exclusively of unary functions.
LAA’s of functions of finite arity can be reduced to models of the lambda calculus by the
well known method of Schonfinkel and Curry, but this is not possible in general. Conse-
quently, there are functional LAA’s with elements that cannot be represented by any term
of the lamba calculus that is constructed from lambda variables and constants denoting the
elements of some combinatory algebra. The dimension-complemented LAA's are the widest
subclass of such algebras that are known to have a natural intrinsic characterization. In
the present paper we prove that every dimension-complemented LAA is isomorphic to a
point-relativized functional LAA.

The two primitive notions of the lambda calculus are application of a function to its
argument (expressed as the juxtaposition of terms) and lambda (functional) abstraction, the
process of forming a function from the “rule” that defines it. The connection between them
is formalized in (8)-conversion: (Az.t)s = t[s/z]. Here t and s are terms and t[s/z] is the
result of substituting s for all free occurrences of z in ¢, with the restriction that s must be
“free for z in t”.

A lambda abstraction algebra is an algebra of the form

A= (A, "y Az,, 4\23, ceey TpyT2gee .),

where A is a nonempty set, - is a binary operation (corresponding to application), Az, Az,, ...

is an infinite system of unary operations on A, and z,,z,, ... a corresponding system of dis-

- {¥3-

¢ ofs @

tinguished elements of A called lambda variables. Substitution is abstracted as a system of
term-defined, binary operations ~[-/z;} on A. The algebraic reformulation of (3)-conversion
becomes the definition of abstract substitution:

bla/z;] ::= (Azi(a))-bd, foralla,be A.

An element a of a LAA is said to be algebraically dependent on z; if a[z,/z:] # a for
some j # i. A LAA is locally finite-dimensional if every element algebraically depends on
only a finite number of z;; it is dimension-complemented if, for each element g, there is at
least one z; on which q fails to depend. ;From the axioms of LAA’s given below it can be
proved that a is in fact independent of an infinite number of z;.

The equational axioms of LAA’s reflect (a)-conversion and Curry’s recursive axiomati-
zation of substitution in the lambda calculus. They take the following form where Aa is
the set of all 2; such that a is algebraically dependent on z;.

(By) zils/z) =a; (By) zila/z) =2, #4 (Bs)elzi/zi] = a;
(B4) Azi(b)[a/zi] = Azi(b); (Bs) (b-c)la/z} = bla/zi] - cla/z:];
(Bs) z; ¢ Aa = Az;(d)la/zi] = Az;(da/z)), 5 # 4
(a) z; ¢ Aa = Azi(a) = Azj(alz;/2:]).

Axioms (8s) and (a) can be replaced by identities, so the class of LAA’s forms a variety.
The basic theory of LAA is developed in [10]. A closely related notion, lambda term systems,
has recently been introduced by Diskin {4].

Theorem 1 Let A be a dimension-complemented LAA. Then Aa,U...UAa, is coinfinite
for any finite set a,,...,a, of elements of A.

The “intended” models of the theory are the functional lambda abstraction algebras.

Let V = (V, -V, AY) be a structure where V' is a nonempty set, -V is a binary operation
on V, and AV : VVoV is a partial function assigning elements of V to certain functions
from V into itself. V is called a functional domain if, for every f in the domain of AY,
(W) =QY(f) Vv, forallveV.

Let V = (V,-Y,AV) be a functional domain and let V,, = {f : f:V¥o—V '}, where
w = {1,2,3,...}. By the w-coordinatization of V we mean the algebra

V. V. V. V., .V,
Vw=(va' ,Atl ,AZ; geees Ty Y3 Xy ,...),

where Ve, /\z.-v", and z,y' are defined as follows: (for all p € V¥, v € V, and
p(v/i) € V* is defined as follows: p(v/i); = v if j = i; p(v/i); = p; otherwise).
e (a-Y-b)(p) = a(p)-Y b(p), provided a(p) and b(p) are both defined; otherwise
(a -V~ b)(p) is undefined.

o 2z;Y(a)(p) = AV({a(p(v/i)) : v € V)), provided (a(p(v/i)) : v € V) is in the
domain of AV (note this implies a(p(v/i)) is defined for all v € V); otherwise
Az;V~(a)(p) is undefined.

- {30~

.

&

@+ &

-

Sllands

° 3?"(1’) =pi.

A subalgebra A of total functions of V,, i.e., a subalgebra such that a(p) is defined
for all a € A and p € V¥, is called a functional lambda abstraction algebra. Locally finite-
dimensional functional LAA’s are similar to the functional models of the lambda calculus
developed in Krivine [6].

The locally finite-dimensional LAA’s correspond most closely to the other algebraic mod-
els of the lambda calculus that have appeared in the literature, for instance the term lambda
algebras ([7]) and syntactical models ([2]) of combinatory logic and the Curry theories of [9).
On the other hand functionai LAA’s correspond the environment models ([7]) and lambda
models ([2]) of combinatory logic and the functional Curry theories in [9].

The following is the main result in [10}.

Theorem 2 Every locally finite-dimensional LAA is isomorpt:c to a functional LAA with
the property that each function in the domain of the algebra depends on only a finite number
of arguments.

This theorem corresponds to the completeness theorem for the lambda calculus ([7]):
every lambda theory consists of precisely the equations valid in some environment modet.
It is modeled on the representation theorem for locally finite-dimensional cylindric algebras
([5), Part I, Thm. 3.2.11(i)), which corresponds to the completeness theorem for first-order
predicate logic (cf. the Forward of [5}, Part I).

The representation of dimension-complemented LAA’s requires a slightly more general
notion of functional algebra

Let "." be a functional domain. Let ¢ € V“ such that £(¢) = z; for all i € w, and let V¥
be the set of all p € V*“ that differ from ¢ at only finitely many positions, i.e.,

Ve={peV:l{p#z}I<w}
Let V,, . be the set of all partial functions f : Vo= V. The (I, ¢)-coordinatization of V,
vw,l = (Vw,n _V.,_.’ Azlv.'.’ Azzv"', sy zlv'.‘v z2v-"9 .. ‘)9

is defined just as V,, except that all functions are required to be in V.
A subalgebra A of V. of total functions is called a point-relativized functional lambda
abstraction algebra.

Theorem 3 Every dimension-complemented lambda abstraction algebra is isomorphic to a
point-relativized functional LAA.

Outline of proof: Let A be an arbitrary LAA. The functional domain V = (V,.V,AV)
associated with A is defined as follows: V = A and ¥ = -A. The domain of AY : VYoV
is {(a[v/z;] : v € V) : a€ Aand i € w}, and for each function in this set we define
AV¥((a[v/z]] : v € V)) := Az;.a. It can be shown that (a[v/z;] : v € V) = (b[v/z;] : v € V)
implies Az;.a = Az;.b. Thus AY is well defined. It is easily checked that V is a functional
domain.

- i8f -

-

e@e &

3

Let A be dimension-complemented and let V be its associated functional domain. For
each p € V, , there exist lambda variables y,,...,y, and elements v,,...,v, of V such that
P=€(v/%,-..,Vn/Yn)). Define a mapping ¥ : A — V,, as follows: forall a € A

W(a)(e(vl/yh ey vn/yn)) = “[21/111] . -lzn/ynllvl/zll .. 'lvn/znlv

for all lambda variabies y,,...,y, and all v,...,v, € V and any set of lambda variables
21y...,2, such that a,y;,...,Yn, v1,..., Vs are all independent of each of the z;. It can be
shown that ¥ is well definded and an isomorphism between A and a total subalgebra of
Ve

It can be shown that the class of point-relativized functional LAA’s (and their isomor-
phic images) form a variety. It coincides with the varieties generated by each of the classes
of locally finite-dimensional, dimension-complemented, and functional LAA’s. It is an open
problem if functional LAA’s form a variety and hence coincide (up to isomorphism) with
point-relativized functional LAA’s. Since the point-relativized functional LAA’s form a vari-
ety they are axiomatized by some set of identities by Birkhoff’s theorem. It is conjectured
that they are finitely axiomatizable and, moreover, that the equational axioms for lambda
algebras ([2], p. 94) together with those of LAA’s are sufficient for this purpose. In contrast
the representable cylindric algebras are not finitely axiomatizable.

Dimension-complemented LAA’s have a direct analogue in the theory of cylindric al-
gebras. Our representation theorem can be comparad with the representation theory for
dimension-complemented cylindric algebras; see [5], Part II, Thm. 3.2.11(ii). For a detailed
survey of recent results in cylindric and related algebras see [8].

(1] T. Adachi, A categorical characterization of lambda calculus models, Research Report
No. C-49, Dept. of Information Sciences, Tokyo Institute of Technology, January 1983.

[2] H.P. Barendregt, The lambda calculus. Its syntaz and semantics, Revised edition, Stud-
ies in Logic and the Foundations of Mathematics, Vol. 103, North-Holland, Amsterdam,
1985.

[3] P.-L. Curien, Categorical combinators, sequential algorithms and functional program-
ming, Pitman, 1986.

{4] Z.B. Diskin, Lambda term systems, preprint, 1990.

[5] L. Henkin, J.D. Monk and A. Tarski, Cylindric algebras, Parts I and II, North-Holland,
Amsterdam, 1971, 1985.

[6] J.L. Krivine, Lambda-Calcul, types et modeles, Masson, Paris, 1990.

[7] A.R. Meyer, What is a model of the lambda calculus?, Inform. Control. 52(1982), 87~
122.

(8] 1. Németi, Algebraizations of quantifier logics. An introductory overview, Studia Logica,
50(1991), 485-569.

[9] A. Obtulowicz and A. Wiweger, Categorical, functorial, and algebraic aspects of the
type-free lambda calcwlus, in: Universal Algebra and Applications, Banach Center
Pub., vol. 9, Warsaw, 1982.

[10) D. Pigozzi and A. Salibra, An introduction to lambda abstraction algebras, to appear.

- {82~

Parametrized Recursion Theory - A Tool for the Systematic
Classification of Specification Methods

Till Mossakowski
University of Bremen
Department of Computer Science
P.O.Box 33 04 40
D-2800 Bremen 33
Fax: +49-421-218-4322
E-mail: el3p@alf.zfn.uni-bremen.de

. Abstract

Parametrized recursion theory allows to characterize the power of parametrization in various specification
methods. In particular, for the computation of the target algebra, the role of nondeterminism and the degree of
availability of the parameter aigebra can be studied.

Today, many different methods for the algebraic specification of abstract data types (ADTs) are proposed. They
differ in their syntactical, semantical and categorical properties.

When you have a particular abstract data type in mind, which method should be used to specify it? If a certain
method is not powerful enough, you have to choose a more general one. The other way round: if you use a too
general method, then the available tools and proof techniques may become weaker. So it is very useful to know
about which ADTSs can be specified with the various methods at all.

1 Five Specification Methods

We compare five methods with increasing expressiveness:

total algebras with equations (see [EM85])
total algebras with equations and subsorting (see [Gog78])

1.

2.

3. total algebras with implications

4. total algebras with relations and implications (Horn Clause Theories, see [GM86, Pad88]) and finally
5.

partial algebras with relations and implications built from existence-equations (algebraic systems in [Bur82]).

We use signatures T = (S, OP, POP, REL) consisting of sort, total operation, partial operation and relation sym-
bols. For simplicity, subsorting is coded by injection functions, so the second approach has special axioms inj op
available, which specify an operation op to be injective. This can be expressed as op{z) = op(y) — z = y in the
third approach, so the approaches actually have increasing expressiveness.

Bergstra and Tucker [BT87) classify various specification methods with respect to recursion theoretic expressiveness
of initial algebra semantics.

For designing modular specifications, parametrized specifications and data types are useful. We only consider
parametrized data types (PADTs) which are specifiable with hidden sorts, operations and/or relations. That is.
specifiable PADT's are composites of free and forgetful functors in the corresponding institution. In order to perform
classifications with respect to PADTs, we first need a notion of computability over (parameter) algebras.

e e@o @
)

2 Computability over Abstract Algebras

In the literature. there are various approaches to define computability over an algebra.

Reichel {Rei87] defines T-algorithms for a theory T by using persistent extensions. This is no algorithmical or
recursion theoretical concept, since it depends already on a particular specification method.

Kaphengst [Kap81] characterizes operations specifiable by {ree persistent extensions using effective numberings. But
his characterization is not uniform: the extension of the parameter theory dependes on the parameter algebra.
Hupbach {Hup80] considers abstract implementations and characterizes specifiable functors by certain “uniform
rules”. This comes closer to our intention. The problem here is that “uniformity” is defined very technically during
the proof of the characterization.

Bergstra and Klop [BK82] give an interesting characterization of specifiable functors with minimal total parameter
algebras. For non-minimal algebras, they again have to incorporate some specification machinery and inital semantics
in their notion of computable PADT (see [BK83)).

For parametrized recursion theory, we want a notion of uniform algorithm over abstract algebras, which is both
algorithmic (hence does not rely on algebraic specification methods) and uniform, that is, independent of the partic-
ular representation of the parameter algebra (this corresponds to the “information hiding” principle). Moschovakis's
prime and search computability {Mos69} fits into these requirements (see Ershov [Ers81] for an overview over the
various approaches).

Natural numbers of ordinary recursion theory have to be replaced by another domain with pairing. Let & =
(S,OP,POP,REL) be a signature and A a I-aigebra. The set SEzpr(A) of S-expressions over A is defined
inductively: It contains nil, atom-s(a) for s € S, a € A, and cons(t, u) for t,u € SEzpr(A). The set SEzpr is the
subset of S-expressions containing no atoms. Like in LISP, we can consider natural numbers and lists of S-expressions
again as S-expressions, and have first and rest as inverses of cons.

Moschovakis’s approach also captures nondeterminism. He considers many-valued partial maps F4: SEzpr(A)® —
SEzpr(A), such that for '€ SEzpr(A)", the values z with F4(f) — z form a (possibly empty) subset of SEzpr(4).
Fa(l) =~ Ga(l) means Fa(¥) — u if and only if G4(I) — u.

Definition 2.1 (Moschovakis) Let £ = (S,0P, POP, REL) be a signature and code: OPUPOPUREL — N
some numbering. We define inductively the set of L-algorithms f as subset of SEzpr.

defintion scheme S-expression f

Coa. f(F,y1.....ym) = op(%) (0, n + m, code(op)) op:§—s€ OP

COb. f(F.v,ym) =~ pop(F) (0, n + m, code(pop)) op:3—s € POP

Coc. f[R.w1, ... ym} = nil (0,n + m, code(R)) R:3€REL

Cl. f(T)=nil (1,n)

C2. fly.F)~y (2,n+1)

C3. f{t,u.T)=(l.u) 3,n+2)

Cda. f(§.z) = first(z) (4n+1,0)

C4b. f(¥,z) = rest(z) : (4n+1,1)

C5. f(®) = g(h(Z),7) (5,n,9,h)

C6. f(nil, T) =~ g(F) 6,n+1,9,hy,... ,hm,k) S={s,...,5m}
f(atom-5;(y),) ~ h;(atom-5;(y),T) (i=1,...,m)
f((t.u),®) x B(f(t,), f(u,2),1, 4, %)

C7. f(X)=g(zj41:21, - .- +%j;Zj42, --- 1Zn) (7,n,4,9)

C8. f(e.F,pn,--..¥m) = {e}(T) B,n+m+1,n)

C9. f(Z) = vyl9(y %) — nil) (9,n,9) o

Definition 2.2 A S-algorithm f has as semantics a familiy of many-valued partial maps {f}4: SEzpr(4)" —
SEzpr(A) indexed by E-algebras A. The semantical relation {f}4(f) — z is defined as the minimal relation
satisfying the following conditions:

! We abbreviatet;, ... ,ta by i, 23,Zn by Zand so on

Scheme f=
Clc. @€ Ry= {f}*(atom-34(W).uy,um) — nil {(0.n+ m,code(R)) R:3€REL
C5. Su(h() —un{g}tul)—v)= {11 —v (3.n,9.h)
Cs. {e}* D) — v {f1Me.luy,um) —v {(8.n+m+1,n)
Co. (g} uD)y—nil = {f}* () ~u (9.n.9)
(For the other cases, the definition schemes are trauslated to semantical conditions similarly.) a

Schemes C0 to C7 allow to express primitive recursiveness, schemes C0 to C8 prime computability and schemes CO
to C9 search computability (with the v-operator, an unordered. nondeterministic search is possible). Both pritne and
search computability reduce to partial recursiveness when £ is empty.

Since the equality relation is not necessarily search computable, we have to add explicitly, if necessary, relation
symbols EQ-s : s s for s € S to parameter signatures ©. The resulting signature is denoted by EQ(L), and EQ(A4)
interprets EQ-s as equality on 4,.

Defiunition 2.3 We cali a familiy R = (Ra)aeaigs) of relations (R4 € SEzpr(A)") primitively recursive (semi-
search computable), if there is a primitively recursive (search computable) E-algorithm f with

TeR, iff {/}AF) — nil

for all A € Alg(T), € SEzpr(A)". We call R primitively recursively enumerable, if there is a primitively recursive
Z-algorithm f with

range({f}*4) = Ra
for all A € Alg(Z). a

The computational model allows to make explicit the kind of nondeterminism and parallelism inherent in algebraic
specification methods. Only semi-search computable families of relations are closed under unbounded search and
existential quantification; and nondeterminism resp. OR-parallelism and full access to the parameter are available.
Relations from primitively recursive and primitively recursively enumerable families are independent of the parameter
operations and relations (see [Mo0s92])! That is, only the data sets can be used, but not equality or other relations and
operations on the data. So primitively recursively enumerable families of relations are just closed under existential
quantification. Primitive recursive families of relations are not even closed under existential quantification (this is
well-known from ordinary recursion theory).

3 Computable PADTs

With the computational model of Moschovakis, we can generalize the notion of semi-computable algebra (see [BT87])
to the parametrized case.

Defiuition 3.1 Let £ C E1 be a parametrized signature (£ = (S,0P, POP, REL), £1 = (S1,0P1, POP1, REL1)).

An algorithm p for a semi-search computable (E,T1)-PADT is a quintuple p = ((X.)ses1. (€9)ses1, (®oplopeopr,
(Zpop)popepop1, (¥R)ReREL1), Where x, and ¥R (resp eq,) are EQ(X)-algorithms for unary (resp. binary) semi-
search computable families of relations, the &,, (resp. =,,,) are EQ(Z)-algorithms for primitively recursive (resp.
search computable) families of maps of appropriate arity, such that for each L-algebra 4

. ({eqs}E94)),¢s1 has the formal properties of a closed congruence relation (see [Bur86)).

. Image({®4}5AN) C {x,}E9W

. For 5 € S we have: {atom-s(a) |a € A, } C {x,}E9)

. For pop:3— s € POP and @ € dom pops we have atom-s(popa(3)) {eg,}EUA) {Z,,,}EQA4)(atom-3(7)),
and analogously for op € OP and R € REL. (]

W N e

- 85—

« oo @

Definition 3.2 Let £ C T1 be a parametrized signature and p an algorithm for a semi-search computable (T, £1)-
PADT. The semantics of p is the PADT {p} = (n, F) with n: Id 4145, — V= o F? and for each A € Alg(T)

=,:= {eq,) FHD s€S1

(FA), = {x,)F94) =, s€ Sl

oprallle;) = [{®}EXN(D)]g, op:§—s € OP1
poprallls;) = [{Spop} EQ VD)}a, pop:3—s € POPI
(la, € Rra iff {WR}EXANT) —nil Re RELL

Na.»{8) := [atom-s(a)]y, SES

4 The characterization

Theorem 4.1 Let T C T1 be a parametrized theory in method i (i = 1, ...,5) and (n, F) a persistent> PADT
with F: Alg(T)~— Alg(T1), n: Id atg(ry —— Vir © F. Then the follwoing are equivalent

(1) (n, F) is computable by an algorithm p according to row i in the table below.

{2) (n, F) is specifiable with method i. That is, there is a theory T2 with T G T1 C T2 such that for each
T-algebra A,
Vo Firry A= F A

and 7, is the parameter embedding of A into Fr 13)A.

Moreover, T2 can be computed eflectively from p and vice versa (up to some emptyness problems, which are ignored
here but can be solved, see [M0s92]).

Method Recursion theory Categorical Example
data congruence subsorts relations partial property PADT
Xs on data (range ¥r operations of model separating
eqs Qin;) Zpop categories the methods
1 pr. p.e. - - - equivalences lists, trees etc. over
(see [MR77]) have some data
quotients
2 pr. p.e. p-e. - - coequalizers factorization over
commute with the image of some
subobjects function
3 pr. s.c.c. p-e. - - regular epis are making
puliback stable some Abelian group
torsion free
4 pr. s.c.C. p.e. s.c.c. - (reg epi,mono)- transitive closure of
factorizations exist some relation
5 s.c.C s.c.c. s.c.C. s.c.c. s.c. locally finitely pre- set of paths over
) sentable category some graph

In the table, a "pr.” means primitive recursiveness, an "(s.)s.c.” means (semi-)search computability and a "p.e.

means primitively recursive enumerability.

»

The total operations ®,, always can be chosen primitively recursive. (]
2yyp yields the I-reduct of a T1-algebra
3that is, n is & natural isomorphism
Fi1.72) is the free construction corresponding to the parametrized theory T C T2
- m -
- - = 4 - w -
- ~ L ,

Interestingly. many differences shown in the table vanish in the unparametrized case. For example. both primutively
recursive enumerability and semi-search computability then reduce to recursive enumerability. If uniformity con-
siderations are ignored. the last four methods all have the same power (with initial semantics. and relations and
(graphs of) partial functions possibly represented as subsorts). though the properties of the model categories Jiffer.
If you switch over to the parametrized case, then the recursion theoretical properties (of free constructions) get into
a narrow correspondence with categorical properties (of loose semantics). especially concerning the behaviour of
quotients. Thus, in a sense, parametrized recursion theory reconciles recursion theory with category theory.

The above results ouly hold for persistent parametrized data types. In the non-persistent case. the computational
model has to be modified by sone construction using inductive limits. This sheds some light on well-known difficulties
with non-persistent parametrizations. See [Mos92].

References
[BK82] J.A. Bergstra and J.W. Klop. Algebraic specifications for parametrized data types with minimal parameter
and target algebras. In Proc ICALP 1982, volume 140 of SLNCS, pages 23-34. Springer Verlag, 1982.

{BK83] J.A. Bergstra and J.W. Klop. Initial algebra specifications for parametrized data types. Elektromische
Informationsverarbeitung und R'ybernetik, 19:17-32, 1983.

(BT87] J.A. Bergstra and J.V. Tucker. Algebraic specifications of computable and semicomputable data types.
TCS. 50:137-181, 1987.

[Bur82] P. Burmeister. Partial algebras — survey of a unifying approach towards a two-valued model theory for
partial algebras. Algebra Universalis, 15:306-358, 1982.

[Bur86] P. Burmeister. A model theoretic approach to partial algebras. Akademie Verlag, Berlin, 1986.
[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. Springer Verlag, Heidelberg, 1985.

(Ers81] A.P. Ershov. Abstract computability on aigebraic structures. In A.P. Ershov and D.E. Knuth, editors,
Algorithms in Modern Mathematics and Computer Science, volume 122 of SLNCS, pages 397-420. Springer
Verlag, 1981.

[GMS86] . A. Goguen and J. Meseguer. Eglog: Equality, types, and generic modules for logic programming. In
D. DeGroot and G. Lindstrom, editors, Logic Programming. Functions, Relations and Equations, pages
295-363. Prentice-Hall, Englewood Clifls, New Jersey, 1986.

[Gog78] J. A. Goguen. Order sorted algebras: Exceptions, error sorts, coercion and overloaded operators. Semantics
and theory of computation report no. 14, University of California, Los Angeles., 1978.

{Hup80] U.L. Hupbach. Abstract implementation of abstract data types. In P. Dembiriski, editor, Proc. MFCS
1980, volume 88 of SLNCS, pages 291-304. Springer Verlag, 1980.

[Kap81] H. Kaphengst. What is computable for abstract data types? In Proc. FCT 1981, volume 117 of SLNCS,
pages 173-181. Springer Verlag, 1981.

[Mos69] Y.N. Moschovakis. Abstract first order computability 1. Transactions of the AMS, 138:427-464, 1969.

[Mos92) T. Mossakowski. Spezifizierbarkeit und Berechenbarkeit parametrischer partieller Datentypen. Diploma
thesis, Universitit Bremen, 1992.

[MR77] M. Makkai and G.E. Reyes. First Order Categorical Logic. Springer Lecture Notes in Mathematics 611.
1977.
[Pad88] P. Padawitz. Computing in Horn Clause Theories. Springer Verlag, Heidelberg, 1988.

[Rei87] H. Reichel. Initial Computability, Algebraic Specifications and Partial Algebras. Oxford Science Publica-
tions, 1987.

- 183~

@

Adding Algebraic Methods to Traditional Functional Languages
by Using Reflection®

Tim Sheard
Oregon Graduate Institute of Science & Technology
sheardOcse.ogi.edu

Recent work by Malcom [7], Meiier, Fokkinga, and Paterson [8], and Cockett with the program-
ming language Charity [1, 2} has suggesied a high level of modularity and abstraction may be obtained
by the use of generic control structures that capture patterns of recursion for a large class of algebraic
types in a uniform way. This is important for several reasons.

e Abstraction. It allows the specification of algorithms independent of the type of data structures
they are to operate on, since the control structure of the algorithm is generated for each datatype.

¢ Genericity. It allows the statement, proof, and use of type parametric theorems independant
of any particular type.

e Structure. Functional programs are often the target of transformation and optimization. These
techniques generally search for patterns of structure in programs to satisfy hypothesis of partic-
ular transformations. If structure is explicit, rather than implicit, the job of the transformation
system is made easier.

Unfortunately it is hard to reap these benefits when using a traditional functional programming
language as there is no mechanism for defining type parametric abstractions, which are the heart of
many algebraic methods. This shortcomming can be overcome by the use of reflection in a typed
language.

A programming language supports reflection if it has a distinguished class of values that correspond
to syntactic fragments of the language and operations to manipulate these representation as data or
programs, either by computing over them, evaluating them or injecting them into the value space.
Typically these operations are called reify : value — rep, reflect : rep — value, and eval : rep — rep.
We are going to concentrate on the uses of reflect.

Reflection is classified as either “compile time” or “run time” depending on when the semantic
actions are expected to take place. Semantically, compile time reflection is the most straightforward
since every compile time reflective program has the same meaning as a program that does not use
reflection which is obtained by executing all of the reflection operations.

1 Type Parametric Combinators

Algebraic methods can be added to traditional functional languages by the disciplined use of compile-
time reflection. Algebraic operators like fold can be created by computing over the representations of
type declarations to build the representation of operators for these types, then reflecting over these
representations to obtain the actual operators. For example, this could be done in the following way.
Consider sum-of-products types defined by using recursive equations of the form:

T(a;.....a,) = Ciltia,-- - l1m,) | - | Caltan..- . tam.)
*Tim Sheard is supported in part by a grant from OACIS and Tektronix

-89 -

e ofs @

where a;,...,ap denote type variables, the C, are names of value constructor functions, and ¢, ; are
either type variables (in the set a;, ap) or instances of sum-of-products types, including the type
T(ay, ..., ap) itself.

Functions manipulating values of these types will use a pattern of recursion related to the pattern of
recursion in the type definitions. Algebraic methods often capture these patterns using the categorical
notion of a functor. The functor, E7 (5, 1, 14] defined below, is the morphism part of a categorical
functor. There exists an E7 for each the type T. Category theorists would say that T is defined in
terms of the fix point of ET. Functional programmers are used to defining types by the use of recursive
equations, so we follow this path.

Using ET it is possible to describe the generalized fold (catamorphism (8]) operator for any simple
sum-of-products type by defining a set of recursive equations, one for each constructor, C;:

fold"(R) o Ci = h; 0 ET (id,, . . ., idp. foldT (R))

where & = (A,,..., h,) and for each index j, id; is the identity function.
To make this definition precise we must provide a definition of ET in terms of the data type
equation defining 7. The functor E7 is constructed from the n-fold sum of functors, E7 . Each, ET is

a (p + 1)-adic functor * associated with the corresponding constructor, C; : (t;.1....,tim,) — T(@).
E?(]v GRec) = (KT(E)[7- 9Rec- ti,l]- Tee KT(E)[T‘ JRee. t:.m.])
where (@) = T(a,,...,ap), and f= fa,+. -1 Ja, and the notation (h,,....h,) represents a function

with the property that {(hy,....h.)}(21,...24) = (hy 2,....,h, 2,) and K is the type parametric
combinator:

KT(E)[Tvgvak]
RKT®[} g, T(a))
KT®[f g,5(ty.....t,)]
KT®[f g.t; x ... x tn)
RT3)f g u—v]
KT®[F.9.0)

We may also use E° to generate the the morphism part of the categorical functor, often called
the map for S:

fau

[

map® (KT®([f.g.t))...., KT(f,g.1,])
(KT(E)[f' g:_tl] ry,-.., I\'T(E)[f' 9 t"] :n)
Mh. KT®(f g.v]0 ho KTF)(f,g.u]

i

(mapS(fi.,....fp))oCi = Cio(ES(fr,....fp.mapS(fr..... J,)))

2 Compile-time Reflection

Language tools usually consist of an object language in which the programs which are being manipu-
lated are expressed, and a meta language which is used to describe the manipulation. A compile time
reflective language has features that allow it to be its own meta-language. We have built an imple-
mentation of compile-time reflection for a subset of ML we call CRML (Compile-time Reflective ML).
In CRML the object language is “encoded™ (represented) in an ML datatype. There is a datatype
for each syntactic feature of ML. Object language manipulations are described by manipulations of
this “representation” datatype. CRML contains syntactic sugar (object brackets << >>, and escape *)
for constructing and pattern matching program representations which mirror the corresponding actual
programs. Thus, meta programs manipulating object programs may either be expressed directly with
the explicit constructors of the representation type or with this “object-language” extension to ML's
syntax. Text within the object-language brackets (<< >>) is parsed but not compiled. Its representa-
tion is returned as the vajue. Meta-language expressions may be included in the object-language text
by “escaping” them with a backquote character (‘). Samples of this feature are illustrated in the table
below.

*Where p is the number of universally quantified type variables in the left hand side of T's type equation.

- {90~

¢ oo @

' Concrete syntax | Constructor based 1 Object bracket based | -
x | Id “x* [<< x> 1
fx i App(Id “£",1d “z") IREEED ‘
1 A T <]
Y pp(g.y) (<< g 'y > ‘
(x,y) | Tuple [Id “x", Id "y*] | << (x,y) >)
| Tuple [x, y] T<< 'z e 'y >> |

By using reflection, generic operators, such as map and fold, have straightforward implementations
by computing over the representations of datatype declarations. In CRML a template defines a function
which, when invoked, is mapped over all the constructors (and their corresponding types) of a datatype
declaration, constructing the object language value for the representation of a function declaration. For
example the template below defines a function mapf which generates the representation of a function
declaration from a string (representing the name of a type constructor).

fun template mapf T =
map £ ((Ci of d -> r) xbar) = ‘Ci (‘(K r <<I>> <<map 1>> d) ‘xbar);

The expression in the constructor position of the function definition, ((Ci of 4 -> r) zbar), is
treated as a pattern. Thus upon invocation of the template the variables in this pattern will be bound
to object language values particular to each constructor. Ci is bound to an object language expression
for the constructor function, xbar to an object language tuple expression (of the apptropriate “shape”
to be Ci's argument), d to the object language type of Ci's domain, and r to the object language type
of Ci’s range (which is the type T).

The rest of the expression is taken literally to compute one of the equations defining a function,
except that escaped expressions are evaluated at invocation time and “spliced” into the equation.

While an escape character inside object brackets or a template definition allows the resuits of meta
computations to be “spliced” into object programs, an unbracketed. escaped expression is a simple
interface to compile-time reflection. It indicates that the escaped expression should be evaluated (at
compile-time) to compute the expression (or type, pattern, declaration, etc.) that replaces the escaped
expression {much like macro expansion).

Thus, using the mapt meta program the program below calculates and defines the map for list.

val maplist = let ‘(mapf "liat") in map end;
as if the user had typed the following instead:

val maplist = let funmap f 1 = OO
| map ¢ (a1::a2) = Cons(f ai,map t a2)
in map end

3 Monadic Composition

We have used similar methods in automating the generation of polymorphic functions to realize the
monadic structure of datatype declarations [6]. Moggi has shown that monads can be used to structure
semantics [9). Other researchers, including Wadler [13] and our group [6] have explored the use of
monads to structure specifications and programs. Many algorithms may be expressed solely in terms
of the monadic operations. When this can be done, changes to the details of the data type do not
require changes in the specification of the algorithms. They also support a very powerful notion
of composition that allows programs to be decomposed into more easily understood and maintained
modules.

For example, let the type constructor Maybe be defined by Maybe(z) = Nothing | Just(z).
Spivey[11] has used this type to model exceptionai computations. AMaybe has the structure of a
monad{12, 6]. The binary product distribution for Maybe, with type (Maybe(a) x Mavube(b)) —
Maybe(a x b), can be defined as:

-@""“’(1’1‘ z2) = {(a1,as) |a; — 215 @ — zz}Mnybe

- {91~

.-

e@e @

&

Using the usual transiation{12] for monad comprehensions we get.
W2y, 22) = multM (mapM W (A a, (map¥ M (Aaz(a).02)) 22)) 71)

let the type T(a) = S(Maybe(a)). where S is any sum-of-products type. Then T has the
structure of a monad[6]. The the distribution function 73,,,, = S(Maybe{a)) — Maybe(S(a)) can

be given in terms of the operator fold®,
*flnyh z = f°lds (,l - fn) T

where f; is an accumulating function for each data constructor, C; : (0) .. .0m,)} — S. If Ci is a nullary
constructor, C,, then f; () = unit™e¥¥ C_ If C; is not a nullary constructor. then the corresponding
accumulating function, f;, can be defined as

fi = (mapM b €,y o tMovbe o HS(unitM vt 4 id)
where HY can be defined in a manner similiar to ET as follows:
His(fnm, Jar free) = (K[G‘x]lx, e K[Um,]lm,)

and R is the type parametric combinator:

]\[l] = faon when neither a nor S(a) occurs in t
K[a] = fo
R [5(01 ey Op)] = fnec

K{U(ty,....t,)]
Rty x ... x t,]

map? (K[t]... 1,1&'[8,])
/\(I;, .. .,.ln). (l\.klltl. RN ,1\'[‘"] l‘n)

For example, the type composition distribution function, rf};‘",, is a function with type List(Maybe{a)) —
Maybe(List(a)), and can be defined as follows:

Tz = fold"™ (fni, foons) £

where { Jcons(z,28) = map™ V¥ Cons (rM¥%(2, 25))
Nit() = unitMovbe Nl = Just(Nil)

This function, which can be generated for any datatype, S, allows us to lff a function, f : 0 —
Maybe(3) to a function, g : S(a) — Maybe(S(3)).)

g= wfuvh ° (maps h

Using other type parametric combinators we have implemented algebraic generators for structural
equality, and unification over data structures which represent abstract terms.

In addition we have defined an normalization algorithm {3, 4, 10} which automatically calculates
improvements to programs whose only contol structures are folds. It reduces these programs to a
canonical form. Based upon a generic promotion theorem [7, 8], the algorithm is facilitated by the
explicit structure of fold programs rather than using an analysis phase to search for implicit structure.
Canonical programs are minimal in the sense that they contain the fewest number of fold operations.
Because of this property the improvement algorithm has important applications in program transfor-
mation, optimization, and theorem proving.

4 Conclusion

A compile-time reflective programming environment is an appropriate choice when computations over
programs is necessary. Meta-programs can access the types of objects in the environment, retrieve
representations of types or functions as data, generate representations of the derivative functions for
types, or apply optimizations or transformations to functions, and then submit these representations
to the compiler. This allows the incremental expansion of traditional functional languages to include
algebraic methodoiogies based upon formal foundations in a straight forward manner.

- 192 -

References

{1} J. Cockett and D. Spencer. Strong Categorical Datatypes I. In R. Seely, editor. International
Meeting on Category Theory 1991, Canadian Mathematical Society Proceedings, Vol. 13. pp 141-
169. AMS, Montreal, 1992.

[2] J. Cockett and T. Fukushima. About Charity The University of Calgary, I ‘partment of Computer
Science, Research Report No. 92/480/18. June 1992.

(3] L. Fegaras. A Transformational Approack to Databdase System Implementation. PhD thesis.
Department of Computer Science, University of Massachusetts, Amherst. February 1993. Also
appeared as CMPSCI Technical Report 92-68.

[4] L. Fegaras, T. Sheard, and D. Stemple. Uniform Traversal Combinators: Definition, Use and
Properties. In Proceedings of the 11th International Conference on Automated Deductron (CADE-
11), Saratoga Springs, New York, pp 148-162. Springer-Verlag, June 1992.

{8] T. Hagino. A Categorical Programming Language. Ph.D. thesis, University of Edinburgh, 1987

[6] James Hook, Richard Kieburtz, and Tim Sheard, Generating Programs by Reflection. Oregon
Graduate Institute Technical Report 92-015, submitted to Journal of Functional Programming.

{71 G. Malcolm. Homomorphisms and Promotability. In Mathematics of Program Consiruction, pp
335-347. Springer-Verlag, June 1989.

[8] E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Bananas, Lenses, En-
velopes and Barbed Wire. In Proceedings of the 5th ACM Conference on Functional Programming
Languages and Computer Architecture, Cambridge, Massachusetts, pp 124- 144, August 1991.

[9] Eugenio Moggi. Notions of computations and monads. Information and Computation, 93(1):55
92, July 1991.

[10] T. Sheard. and L. Fegaras. A Fold for All Seasons. To appear: Functional Programming Languages
and Computer Architecture, Copenhagen, June 1993.

{11] M. Spivey. A Functional Theory of Exceptions. In Sctence of Computer Programming, 14:25-42,
1990.

{12] P. Wadler. Comprehending Monads. In Proc. 1990 ACM Conference on Lisp and Functional
Programmung, pp 61-78, 1990.

[13]) Philip Wadler. The essence of functional programming. In Conference Record of the Nineteenth
Annual ACM Symposium on Principles of Programming Languages. ACM Press, January 1992.

(14] G. C. Wraith. A note on categorical datatypes. In D. H. Pitt, D. E. Rydeheard, P. Dybjer, A. M.
Pitis, and A. Poigné, editors, Category Theory and Compsuter Sctence, volume 389 of Lecture
Notes in Computer Science, pages 118,127. Springer-Verlag, 1989.

-9~

e« ofe @

- {94~

A Coherent Type Inference System for a Concurrent, Functional
and Imperative Programming Language *

D. Bolignrano

M. Debabi

Bull Corporate Research Center
Rue Jean Jaures,
78340 Les Clayes-Sous-Bois
FRANCE

bolignano@frcl.bull.fr, debabi@frcl.bull.fr

ABSTRACT

The type and effect discipline is a recent
framework for typing expressions in implic-
itly, strongly typed, polymorphic fanctional lan-
guages with imperative extensions. In addition
to the antomatic reconstruction of the principal
types, this discipline computes the minimal side
effects of expressions. The main objective of this
work is to present a generalization of this disci-
pline to concurrent, fanctional and imperative
languages. Accordingly, we present an effect-
based static semantics as well as an operational
semantics for a language that unifies the previ-
ously mentioned computational styles. The pro-
posed type system is applied to a concurrent
ML-like language. It computes in addition to
the type of expressions, their side and commu-
nication effects. Furthermore, an operational se-
mantics of the language is presented. The latter
is based on an extension of the Hennessy’s op-
erational semantics of the VPLA (Value-Passing
Language with Assignment) language. That is
why our dynamic semantics can be viewed as
an extension of the work on CCS without r’s
proposed initially by De Nicola and Hennessy.
A significant goal of this paper is to prove that
the static and the dynamic semantics are consis-
tently related.

Keywords: Typing; Side and Communication
Effects; Static and Dynamic Semantics; Concur-
rent, I'\u\ctlon.l and Imperative Programming;
Process Algebra; Counsistency of Typing.

1 Maotivation and Background

The uitimate goal of this work is the defini-
tion of a wide-spectrum specification language
that supports both data and concurrency de-
scriptions. The design of this specification lan-
guage, followed the same approach as the one
wsed in the design of Extended ML [ST8S5].

The starting point is the design of an implic-
itly typeu, polymorphc concurrent and func-

tional programming language. Axioms are then
added in the signatures and structures as in Ex-
tended ML. The resulting specification language
is thus highly expressive though it embodies a
restricted number of concepts. More concisely
our language can be viewed as a sugared ver-
sion of typed A-calculus that safely incorporates
imperative and concurrent extensioas.

The intent of this paper is to focn: on the the-
oretic foundations of the underlyiag program-
ming language. The latter unifies three compu-
tational paradigms which we refer to as concur-
rent, functional and imperative programming. A
great deal of interest has been expressed in each
of these programming styles and the underlying
foundations have been deeply investigated, al-
beit generally separately.

Concurrency models have been a focus of in-
terest for & grut number of researchers. Ac-
cordingly, this gave rise to plenty of calculi
and models. Prominent calculi are those that
correspond to process algebra such as: CCS
(Calculus for Communicating Systems) [Mil89}]
and CSP (Commanicating Sequential Processes)
{Hoa8S) for which mathematically well-behaved
models have been advanced. One can cite the
failure-sets model of Brooks, Hoare and Roscoe
[BHRS84) or the acceptance-trees model of Hen-
nessy {Hen85]. However, in spite of the large
activity of the concurrency community, it re-
mains that formalisms and techniques devised
for copcurrent and distributed systems are gen-
erally relevant to pure processes, in other words,
they focus on control aspects rather than data
aspects. Thus, in such frameworks, there is no
data, no communication, no states,...etc. These
simplifications are generally adopted in order to
put the emphasis on the difficulties inherent to
concurrent systems, for instance, nondetermin-
ism, the semantics of combinators,...etc.

On the other hand, functional programming
has been extensively studied. Consequently,
many powerful, general-purpose programming
languages emerged such as ML dialects. The lat-
ter rests or secure theoretical foundations that

QP+ ®

are exemplified by the large body of results on
pure and typed A-calculus. Generally, functional
languages are endowed with imperative features
for efficiency reasons. Also programming with-
out such facilities becomes quickly tedious and
cumbersome in many situations.

The language described here supports poly-
morphic types. It supports also both functional
and process abstractions as in CML [Rep91]
and FACILE [GMP89]: functions may be used
to describe internal computations of concurrent
processes. Functions, processes, references and
communication channels are first-class values
and thus can be passed along channels. Con-
sequently, the mobility of these values is sup-
ported.

At the theoretical level, we will present the
static semantics of this language as well as the
dynamic semantics. The type inference system is
based on an extension of the type and effect dis-
cipline: a new approach to implicit typing that
can be viewed as an extension of the ML-style
type discipline. In addition to that, as shown
in [T192), effect-based type disciplines are more
appropriate for integrating safely and efficiently
functional and imperative programming. The
dynamic semantics presented here is operational.
It is based on an extension of VPLA (Value

ing Language with Assignment) of Hennessy
[H190, H191). Thus, the presented model can be
viewed as a CCS without r’s version.

2 Related Work

Recently, some modern languages have been
proposed that reconcile the functional, concur-
rent and imperative styles. For instance one
can cite CML [Rep91), FACILE [GMP89] and
LCS [Ber89). All the three languages emerged
from the idea of combining an SML-like lan-
guage [MTHS0] as a functional and imperative
core, with a CCS or CSP-like process algebra
for process abstraction. They support polymor-
phism, functional and process abstractions, dy-
namic behaviors and higher order objects.

The static semantics (typing semantics) in
CML, FACILE and LCS rests on the type infer-
ence discipline. It is well known that this disci-
pline, is problematic in the presence of non refer-
entially transparent constructs. More precisely,
the problem is relevant to type generalization in
the presence of mutable data. Therefore, many
extensions of the initial work of Milner [Mil78)
have been proposed.

The classical way to deal with this issue, is
the imperative type discipline [Tof87]. An ex-
tension of this approach has been used in the im-
plementation of Standard ML of New Jersey. It
is based on weak type variables: these type vari-
ables have an attached strength information, de-
noting the number of applications needed to get
a non trivial effect. In {LW91], another method
is proposed that consists in detecting some so
called dangerous type variables (the ones occur-
ring in the types of imperative objects), and la-

- ‘“—

beling function types accordingly.

Later, in [TJ92), the type and effect disci-
pline is introduced. The latter yields as a re-
sult of the static evaluation of an expression, not
only its principal type, but also all the minimal
side effects. A decidable and consistent typing
system w.r.t. the operational semantics of the
considered language, is advanced [TJ92).
tice, that the inference typing system was de-
vised for an ML-like language, of course with
imperative constructs. It should be noted that
the idea of considering the effects as part of the
static evaluation of an expression, has been sug-
gested in [Luc87) and adopted in the FX project
{GILS87, LG88].

As we pointed out before, one of the aims ad-
dressed here, is to propose & dynamic seman-
tics for our language. Notice that elaborat-
ing a dynamic semantics for such languages is
somewhat complicated. The reasons for this
are that we have to deal with various aspects
of the language (concurrent, functional and im-
perative). Another source of complication is
the integration of all these aspects. Most of
the dynamic semantics proposed for these lan-
guages (Concurrent ML-like) are operational.
For instance, CML and FACILE are endowed
with an operational semantics reported respec
tively in [BMT92, Rep91] and [GMPSQ] An-
other description of FACILE semantics has been
developed using the CHAMs [BB91] (CHemical
Abstract Machines) framework [LT92]. In this
paper, we present an operational semaatics of
our language that can be viewed as an exten-
sion of the VPLA operational semantics. No-
tice that a denotational model have been de-
vised for our language. The model is briefly dis-
cussed in[BD93), its foundations are investigated
in {BD92}.

Our concern in this paper is:

o To propose a new :inference typing system
(implicit typing)that computes in addition
to the principal types of expressions and
their side effects, the minimal communi-
cation effects generated by the concurrent
constructs.

o To propose an adequate operational seman-
tics for our language (Concurrent ML-like).

o To prove that our typing system is consis-
tent w.r.t. the static semantics. Notice that
this issue is one of the most interesting re-
sults of this work.

3 informal presentation

The syntactic constructions allowed in our lan-
guage are close to those allowed in CML and
FACILE. The set of expressions includes:

o Literals such as integers, booleans true and
false, a distinguished value (), a constant
skip which models an expression that im-
mediately terminates successfully.

o Three binding operations that are the ab-
straction, the recursion and the let defini-
tion.

o Imperative aspects are supported through
the notion of reference. Expressions of the
form ref (E) stands for the allocation of a
mew reference and assigns to it the value ob-
tained by evaluating the expression E. We
will use the unary operator ! for dereferenc-
ing and the binary operator := for assign-
ment.

¢ Expressions may communicate through
channels. The expression channel() means
allocate a new channel. The expression
E'E’ means: evaluate E’, evaluate E and
send then the result of E’ evaluation on the
channel resulting from the evaluation of E.
The whole expression evaluates then to ().
The expression E? evaluates to any value
received on the chaanel resulting from the
evaluation of E. Notice that the commu-
g;tiou are synchronized as in CCS and

o Three concurrency combinators:

-1t Nondeterministic choice between two
expressions (also called internal
choice).

-[— External choice between two expres-
sions.

<||l-= Paraliel composition of two expres-
sions.

o A sequencing operator: [.:).

More formally the BNF syntax of our lan-
guage is:

In the following, we will use P; to stand for
the finite powerset, A w B for the set of all finite
mappings (maps for short) from A to B.

4 Static semantics

As we pointed out before, we have adopted the
type and effect discipline in order to give a static
semantics to our language. This choice is moti-
vated by the following reasons:

o As shown in [TJ92), the type and effect dis-
cipline is more appropriate than the other
type systems [Tof87, LW91] in integrating
eﬁciently functional and imperative pro-

ming. The reader should refer to
["‘mz] for a full comparison of the type aad
effect discipline with the other approaches.

e A more efficient type geaeralization in let
expressions by the use of the effect informa-
tion and the observation criterion.

e One of the main and the most motivat-
ing reasons for us is purely technical and
is relevant to the foundations of the deno-
tational model. More accurately, CML-like
languages in general and the language de-
scribed here in particular are quite expres-
sive. For instance higher order processes are
allowed i.e procesees are values and can be
commaunicated along channels. Then if we
attempt maively 1o construct the process do-
main, this will lead to reflexive domain def-
initions that have no solutions. In order to
get round this difficulty, the technique con-
sidered in this work makes a dependence be-
tween the static and the dynamic semantics
by typing the dynamic domains by the hier-
archy laid down by the static domains. At
this level we need to know exactly the type,
the communication and the store effects of
the language expressions. This issue is dis-
cussed in details in the next section.

The reader should notice that the type and
effect discipline reported in {TJ92] does not sup-
port communication effects. Thus the work re-
ported hereafter is an extension of this discipline.
We define the following static domains:

o The domain of Reference regions: The no-
tion of reference regions is introduced to ab-
stract the memory locations. Every data
structure corresponds to a region. Two val-
ues are in the same region if they may share
some memory locations. The domain con-
sists in the disjoint union of a countable set
of constants and variables noted 4. We will
use p,p’, ... to represent reference regions.

¢ The domain of Reference effects: Reference
effects abstracts the memory side-effects.
We define the following basic effects: § for
the absence of effect, ¢ for a reference effect
variable, init(p, r) for the reference alloca-
tion, read(p) for reading in the region p and
write(p) for assignments of values to refer-
ences in the region p. We introduce also a
anion operator U for effects.

o ::= fclinit(p, r)|read(p)lwrite(p)lc U o

We will write 0 Do’ & 30" e0 =0'Uo".
Equality on reference effects is modulo ACI
(Associativity, Commutativity and Idempo-
tence) with § as the neutral element.

Analogously, we introduce the following static
domains:

o The domain of Channel regions: As with
reference regions, channel regions are in-
tended to abstract channels. Their domain
consists in the disjoint union of a countable
oetofcoutnundvmblu noted §. We
will use x.x. . to represent values drawn
from this dom

e The domain of Channel effects: 1t is defined
inductively by:

& == Bnjchan(x, r)lin{x)lowt(x)|x U x

We will use 5 to stand for a channel ef-
fect variable. The basic channel effect
chan(y, T) represents the creation of a chan-
nel of type 7 in the channel region x. in(x)
denotes the effect resuiting from an input
on a channel of the channel region x while
out{x) denotes an output on the channel
of the region x. We will write x J «’ @
Ix” e x = «' U x". Equality on effects is
modulo ACI with § as the neutral element.

¢ The domain of types: It is inductively de-
fined by:

r ::= Unit|BoollInt|al
refy(r)|chany (7)|r 2%y

Unst is a type with only one element ()",
a a type variable, ref,(r) is the type of ref-
erences in the region p to values of type r,
chan, () is the type of channels in the com-
munication region x that are intended to be
mediums for values of type r, r =5 ¢’ is
the type of functions that take parameters
of type 7 to values of type r' with a latent
reference effect o and a latent channel effect
&. We mean by latent effect, the effect gen-
erated when the corresponding expression is
evaluated.

We also define type schemes of the form
¥Yv;,...,un 8 T where v, can be type, refereace
region, channel region, reference effect and chan-
nel effect variable. A type r’ is an instance of
¥Yv1,...,Un ¢ T noted 7’ < Yu;,...,0n @ 7, if there
exists a substitution @ defined over vy, ..., v, such
that v’ =0r.

Our static semantics contain sequents of the
form:

EV-E: 10,8

which state that under some typing environ-
ment £ the expression E has a type 7, a reference
effect o and a channe] effect x. Notice that type
environments £ map identifiers to type schemes.

5 Operational semantics

In this section we present the operational seman-
tics. We will use the same style as (HI90){HI91}.
For that, let us introduce first the notion of com-
putable values of the language.

Definition 5.1 The set V of computable values
is defined as the least set which satisfies:

e V contains literals such as (], true, false,
integers, or references, or channels.

o ifv,v' €YV, then (v,v') € V.

o If T is an environment, then the closure
[AazeE, T]eV.

Let us denote by R the set of references and
by K the set of channels. Now, we need to
define the notion of store. The set of possible
stares Store is made of store actions. The latter
stands for both the current associations of the
references and values, and also for the different
actions on the store (read, write operations and
the channel creations). The formal definition is:

Store = Py(Store_Action)
Store_Action ={init(r,v) | r € R and v € V}U
read(r) | r € RJU
{write(r) | r € R}U
{chan(c) | c € K}

The store action inst(r, v) means that the ref-
erence r is bounded to the value v. The store
actions read(r) and write(r) model respectively
a read and a write operation on the reference r.
Finally, the store action chan(c), corresponds to
the creation of a channel c. We will write s, s', ...
to denote stores drawn from the set Store. We
write s, to denote the store s excluding store
actions of the form inst(r,v). We say that s is
included in o', or o’ extends s, noted s C o', if
and only if there exists s” such that s’ = sUs".
We note dom(s) = {r | 3v e init(r,v) € s} the
domain of store s.

We note £V the set of expressions and com-
putable values. We will use v,v’,... to represent
values drawn from V, t,t’,... to represert -~al-
ues drawn from £V and E, E.,... to repre. -t
expressions.

Our operational semantics is based on the evo-
lution of special configurationsdefined hereafter.
First, we distinguish the set of basic (initial) con-
figurations:

Definition 8.2 The set of basic configurations
BC is defined as:

BC = {(t,s) |t €EV A sa store}

Definition 5.3 The set of configurations, C, is
defined as the least set, which satisfies:

1. BCCC
2 a €C impliesref a,af, fa €C
3. a,B € C impliesa op f € C where: op =

.a€C implieso; E, EB'a, E:=a, Ea€C
. a €C impliesalv, a:=v,av EC
. @, € C implics aljs)|f, alls]ls’, s'ljslla € C
. a €C implies[Aid: rea,TJveEC
. a € C implies:

(a)letz=aln E€C

W N O ot

¢ ofe @®

(3) if a then E, else E; € C

where E, E,, E; denote expressions, 5,5’ de-
note stores and v denote a computable value.

We will use a,a’,..., 58,8, ... to denote config-
urations drawa from C.

The operational semantics is presented in the
usual way, by defining a labeled transition sys-
tem on configurations. There are two kinds of
events, ranged over respectively by a and ¢:

o Visible events: They consist in input events
of the form (?, ¢, v, s) and output events of
the form (!, c, v, s) where ¢ is a channel and
v is a value in V and s is the current op-
erational dynamic store. We will use the
notation & to denote the complement ac-
tion of a. For instance, the complement of
{?.c,v,8) is (!,c,v,8). Notice also that & is
a.

o A silent event noted ¢ that is used to denote
internal moves such as synchronisations on
complementary actioas.

We will use ¢,¢,... as events drawn from the
-eg of visible and invisible events. We will write
a-—+§ to denote the evolution of a into S after
performing the event o.

The transition relation is defined as the small-
est relation satisfying the axioms and rules given
in the figures 2 and 3.

6 Consistency Theorem

In this section the intention is to prove that the
static semantics is consistent w.r.t. the dynamic
semantics. The primary objective underlying
the consistency theorem is to ensure that an ex-
pression and the value it evaluates into, have the
same type. Its ensures also that the evaluation
of an expression only leads to observable effects
of the store that are compatible with that of its
original static effect. But we have also to handle
some additional problems:

o An expression does not, due the presence
of the recursion operator, necessarily termi-
nate, and does thus not necessarily evolve
into a value. We want the consistency the-
orem to establish consistency in these cases
too.

o We also want to treat commaunicaticn ef-
fects. We thus want to emsure that the
evaluation of an expression only leads to
observable communication effects that are
:_mpuible with that of its original static

ect.

o We finally have, due to communication, to
handle open systems that will potentially
receive values from the outside, and send
values to the outside. We thus have to con-
sider only correctly typed inputing values,
and verify that outputing values are com-
form to the channel types.

- {93~

Theorem 6.1 (Consistency)

Let o be a configuration, suppose that S, K =
store(a) : o, and store(a) : 0,%5,8.K =
r: & If€F erpria) : r,0',x' and T F

aa' then, provided that whenever o is an in-
put event ils value is conform to the type of the
involved channel (i.c. whenever o = (?,¢,v,3)
for some channel ¢ and some value v, then
s: 0,88 KEv:rnands:o.x,SKmc:
chany . \(n1)), there exist S’ and K’ estendingS
and K, and unobservable effects 0" and " i.c.
Observe(£,7,0") = § and Observe(€,7,x") =
9, such that:

o Ifezp(a’) is a value then:

1. §',K' |= store(a’) : oUO'U”, xUK'U
" and,

2 store(a’) : oUd UG KUK U
", 8 K'|zezpr(a’): r and,

L K Eo:x'ux”
o Else there esist o}, 03, x| and x3, such that:

aiUey =0 and

K1 Ux; =x' and

8, K' |= store(a’): 0V V", k UK] UK”
and K' =0 : s} Ux"” and

£+ ezpr(a’) : 7,03, 5) and

store(a’) : 60Uy UO",

KUK UK". S K'=T: €

Furthermore if o is an output event, ils value
is conform to the type of the involved channel.

7 Conclusion

We have reported in this paper the complete def-
inition of an implicitly strongly typed polymor-
phic concurrent and functional language that
supports data accepting in-place modification.
We have presented a complete static semantics
that rests on an extension of the type and ef-
fect discipline to handle communication effects.
Afterwards we have presented an operational se-
mantics of the language that rests on an exten-
sion of VPLA operational semantics. The con-
sistency of the typing system w.r.t. the opera-
tional semantics have been established.

As a future research, we plan to investigate re-
finement issues as well as structuring and mod-
ularity mechanisms. We are particularly inter-
ested in experimenting some new approaches
in modularity from the algebraic specification
world such as the loose stratified semantics pro-
posed by [Bid89). Another important research
interest for us is to develop an axiomatic seman-
tics of our language as well as its mechanisation
in order to prove program properties.

REFERENCES

{(BB91] G. Berry and G. Boudol. The chem-
ical abstract machine. In Proceedings
of the seventeenth ACM Symposium

¢ oo @

(BD93)

(BDs3)

[Ber89)

[BHRS4)

(Bid8g)

[BMT92)

on Principles of Programming Lon-
guages, 1991.

D. Bolignano and M. Debabi. Higher
order communicating processes with
value-passing, assignment and return
of results. In Proceedings of the
ISAAC’92 Conference, LNCS 650.
Springer Verlag, December 1992.

D. Boligaano and M. Debabi. A de-
notational model for the integration
of coacurrent functional and impera-
tive programming. In Proceedings of
the ICCI’93. IEEE, May 1993.

B. Berthomieun. Implementing CCS,
the LCS experiment. Technical Re-
port 89425, LAAS CNRS, 1989.

S.D. Brooks, C.A.R. Hoare, and A.W.
Roscoe. A theory of communi-
cating sequential processes. ACM,
31(3):560-599, July 1984.

M. Bidoit. PLUSS, un Langage
pour le Développement de Spécifica-
tions Algébriqgues Modulaires. PhD
thesis, Paris Sud, July 1989.

D. Berry, A.J.R.G. Milner, and
D. Turner. A semantics for ML con-
currency primitives. In Proc. 17th
ACM Symposium on Principles of
Programming Languages, 1992.

[GILS87]) D.K. Gifford, P. Jouvelot, J.M. Lu-

[GMPsg]

[Hen85)
[H1s0]

(HI91)

[Hoass)

cassen, and M.A. Sheldon. Fx-
87 reference manual. Technical Re-
port MIT/LCS/TR-407, MIT Labo-
ratory for Computer Science, Septem-
ber 1987.

A. Giacalone, P. Mishra, and
S. Prasad. Facile: A symmetric inte-
gration of concurrent and functional
programming. International Journal
of Parallel Programming, 18(2):121-
160, April 1989.

M. Hennessy. Acceptance trees.
ACM, 32:896-928, October 1985.

M. Hennessy and A. Ingélfsdéttis.
A theory of communicating processes
with value passing. In Proc. 17th In-
ternational Colloguium on Automala,
Languages and Programming, LNCS.
Springer Verlag, 1990.

M. Hennessy and A. Ingdlfsdéttir.
Communicating processes with value-
passing and assignments. Techaical
report, University of Sussex - Draft,
June 1991.

C.A.R. Hoare. Communicatling Se-
guential Processes. Prentice-Hall,
1985.

- 200 =~

[LGss)

(LT92)

(Luct?]

[LW91)

[Mil7e)

[Milss)

[MTHs0]

(Rep91]

(ST8s)

(Ti92)

[Tofs?)

J.M. Lucassen and D.K. Gifford.
Polymorphic effect systems. In
Proceedings of the ACM Symposium
on Principles of Programming Lan-
guages, 1988.

L. Leth and B. Thomsen. Some Facile
chemistry. Technical Report ECRC-
92-14, European Computer-Industry
Research Center, 1992.

J.M. Lucassen. Type and Effects:
Towards an Integration of Functional
and Imperative Programming. PhD
thesis, Laboratory of Computer Sa-
ence, MIT, 1987.

X. Leroy and P. Weis. Polymorphic
type inference and assignment. In
Proceedings of the seventeenth ACM
Symposium on Principles of Program-
ming Languages, 1991.

A.J.R.G. Milner. A theory of type
polymorphism in programming. Com-
puter and systems sciences, 17:348-
378, 1978.

A.J.R.G. Milner. Communication and
Concurrency. Prentice-Hall, 1989.

A.JRG. Milner, M. Tofte, and
R. Harper. The Definition of Stan-
dard ML. MIT Press, 1990.

J.H Reppy. An operational semantics
of first-class synchronous operations.
Technical Report TR 91-1232, De-
partment of Computer Science, Cor-
nell University, August 1991.

D. Sannella and A. Tarlecki. Pro-
gram specification and development
in standard ML. In Proc. 12th ACM
Symposium on Principles of Program-
ming Languages, 198S.

J. Talpin and P. Jouvelot. The type
and efect discipline. In Proc. Logic in
Computer Science, 1992.

M. Tofte. Operational semantics and
polymorphic type inference. PhD the-
sis, Department of Computer Science,
University of Edinburgh, 1987.

8 Appendix

c ofs G

(umit) EF():Unit, 0.0

(true) £ true: Bool,$,8

(false) £+ false : Bool,8,9

(aum) £+ Number n:Int, 0,0

(skip) £V skip: Unit, 0,0

<&
(var) T::r.,,
(abe) Estfz—r]FE:1,0,x

EhhoE:r'ﬂr.l,l

EFE 725 ¢ o'.x' EFE:1.0"r"
TN 4 PP TY T A TP LA
(29P) “F T EEY

woUe Ve ,aUR UKk

ErE:v0x EVE :1.0 . x

(op) SPE”E':‘r,ouo'.RUs'

where: op=], /||

E-E:r0.n
(ref) = srefolr), 0 Usnst(p, 7).

ErE :refo(r),o,n
T, OUT PR

(deref)

ErE:vefo(r),o.x EVE :v.0 .«
FE: = E :Unit,ouo' Uwrite(p),nuUx’

(ass)
(chan) £ chamnel() : chany(r),0,chan(x,*)

EF E : chany(r),0,n
(in) EFP.:r.v,nuhxi

Er E :chany(r),0,.x EFE':1.0'.x"
EFEBIE :Unit,oUue,nuUx Uost(x)

(out)

ErE:ro.xn EFE :7o x'

(seq) ErE; E’:r',cUc’.sUn‘

(if)
EVE:Boolo,x EVE':1r0'.x' EFE":7.0" x"
ErHEthes E elne B 17,005 U . nUR UA"

(let)

ErE:to'\n & I!s- Gen(o' . x',E)(r)|F E: 10,8
Flet z = iroeUo,RUR

E. 7] E:1,0,8

(vec) Teczo Lk :7,0,x
(obs)
ErE:1,0,8 OLEO g.r.0) % JO (AN

EFE: v, x

Table 1: The static semantics

-20{ =

c ofe @

Constants:

—_—
T F (skip,s}={0.)

Comfigurstion Pork:
9

T+ (Ey op Ea,0)=(By,s)op(Es.0)
1d Evaluation:

Q
Ttls = o}k (5, 5)>(v.s)
Internal Choice:

_

TCrallp - a
L
External Choice:

:l'.“

T rafls a'
80a a’

g
e
-t

L +asg’
Fraflp - o'fp
plle = Ao’
g
T F(v,s)fe LA (v, 9)
all{v,s) A {v.9)
Parallel Composition:

o]
T F (B2,) =(Ey, s)lsl{E2, #)
L +aSa’, T rplp
L raeld & a'felp’
Bliska ' e’

i=

L oS

T Faleld > o'fols
Ploka = Bllsle’

i

T Falsliv,s') = alels’
(v.oNosla = ololla
L +aa

T +affafls’ — a'fsffs’
Sholle = Shsfe’

- I

0=

Sequenciag:

Q
T+ (By: B2, o) (By,0): B2

no a’
I'raBE=a',E

(v,9); E={E,s)
0

T+ ((v.3), B)~(v.(E.9))
o

I+ (v, a)=(v,a’)
Punction:

o]
T F (Ase E,s)={[Ase E.T }.0)

[« R
T+ (E) By 0) =B, (E3.9)

:l _go
r+Eo2Ed

S - B
T'FE({v,s)~{E s)v
_0. [

Frav=a'v
B

T rH{{ieeE, N)4) v-‘-[Az o (E, o),)

) t[e = o]+ a0’
r l-[Ascc.l‘,]t-oo[Azea' Ty] v

Ty t[s = o] > afv’,o
P +[Asea, T Jo=(v',s)

Let Expressions:

o
Frilets=E inE;,0) =
et 2= (B),s)in B3

L.k a>a’
FrletszalnE—~letz=a'ln E
(]

r hlotcs('.c)hli(ﬂv/.).a)

T = {v,s")olls’ LA {v,merge(s, o', s"))
¢

o'Bolllv, 5"}

{v.merge(s,s’.s"))

Table 2: Operational semantics: Part I

¢ ofe @

If Expressicas:

o]
[+ (it E thea E; oloe 53 ,0) —
if (E,s) than E; oloe B,

Ltag
T Fifathen E; alee E; —
if o’ then E; oloe B

Q
T * if {true,s) then E; elee E; —(E;.+)

]
T + If (false, s} then E, slss B; = (53.s)

Recursion:

Q
T F(recseB, a)—'-(‘(m z o E/s),9)

Cheanel Creation:

8. chan(e) € »
T r {chanmel(), s)—{¢, » U {chanic)}))
Reference Creation:

[«]
T F (ref(E), s)ovef (E,¢)

L+ I_°. ’
I' - refa=ref o’
g
T+ ref (v,s)=(r.s U {init(r,v)})

Bvoinit(rv) € o

Input:

_°. ’
T k a?=a’?
8
T F{c .)?""L:"’)(t.pu‘(l'.l,o))

Output:
[«]
T v (E1'E). 0} =~EyY(E2.)

L
-

[F EBla=Ele’

_—
T+ EY{v,2)=(E, s)v

o

..Lr_n;‘:n_

I * alv=a't
]

(':e.0,0)

T F(ea)v™ " ="{(),0)
Deveferencing:

—_—
T+ ('E,8)%YE, o)
L]

Lhaga

T * to=ta’

o]
T+ Yr, 0} (v, s U {read(r)})

Ascligament:

init(r.v) €

Q
T+ (B = B3, o) =B = (B3,9)

L
-,

r+Eca=E:=a
<]
T+ E:=(v0)={EN=v

o
o,

FCrazsea' =v

rr{rs):= v-fo((),o,u {write(r), init(r,v)})

Table 3: Operational Semaatics

v - ﬁ" 0N A w

c oo @

Sorp g v

Peirce Algebras*

Chris Brink! Katarina Britz!
Renate A. Schmidt'®

" Department of Mathematics, University of Cape Town,
Rondebosch 7700, South Africa
$ Maz- Planck-Institat fir Informatik, Im Stadiwald,
W-6600 Saardricken 11, Germany

In its modern form the algebra of relations has been under investigation by mathemati-
cians since Tarski’s seminal (1941) paper. The main line of development has been the
study of a class of algebras called relation algebras (Chin and Tarski 1951, Jonsson 1982),
in parallel with developments such as Boolean algebras with operators (Jénsson and Tarski
1951/1952) and cylindric algebras (Henkin, Monk and Tarski 1985). Since the early sev-
enties the algebra of relations has increasingly become of interest to computer scientists.
Just as the notion of a partial function provides a natural model for deterministic pro-
grams, so the more general notion of a (binary) relation provides a natural model for
nondeterministic programs. This idea has been exploited by various authors. For ex-
ample, it is evident in Floyd-Hoare logic for program verification, it has been extended
to specification in Hoare and He, Jifeng (1987), it figures in logics of programs such as
dynamic logic (Parikh 1981, Harel] 1984), and it was used in the early seventies to model
recursive procedures (de Bakker and de Roever 1973, Hitchcock and Park 1972). Recently
the algebra of relations has been extensively used in a graph-theoretic approach to pro-
grams by Schmidt and Stréhlein (1991). In modal logic, relation algebra features strongly
in the Dutch-Hungarian cooperation on van Benthem’s (1991) new arrow logic (see Logic
at Work, Proceedings of the Applied Logic Conference (1992)). Venema (1992) is another
interdisciplinary study of relation algebra and multi-modal logic. The proof theory of
relations is also of interest to computer scientists, and several relational inference systems
are available (Wadge 1975, Hennessy 1980, Maddux 1983, Orlowska 1991).

In many applications it has become clear that we need, not just an algebra of relations
as distinct from an algebra of sets, but an algebra of relations interacting with sets. (For
example, if we view a program as effecting a transition on a state space, we may wish to
model this by a binary relation acting on a set of states.) Such an algebra was presented
in Brink (1981) under the name of Boolean modules. A Boolean module is defined (Brink
1988) as a two-sorted algebra M = (B, R,:), where B is a Boolean algebra, R is a
relation algebra and : is a mapping R X B — B written r:a such that forany r,s € R
and a,b € B:

Ml r:(a+b)=r:a+r:b
M2 (r+s):a=r:a+s:a
M3 r:(s:a)=(r;s):a
M4 e:g=a

M5 0:a=0

M6 r~:(r:a) <d.

*To appear in Formal Aspects of Computing.

- 205 -

c ofs @

The svmbols +, :. ;.¢.0, ~."and < respectively denote join. Peirce product. relational
composition. identity, zero, converse, compleruentation and the usual partial ordering. Let
A be any subset of some non-empty set I and let R. S be any binary relations over [,
In the standard models (i.e.. in proper Boolean modules) the join is set-theoretic union.
The Peirce product R: A is the set of elements r related by R to some element y in A.
The relational composition R ;.S is the set of pairs (z,y) for which there is a = such that
(z,2) € R and (z,y) € S. The identity is the identity relation over I’. The zero is the
empty set. The converse of a relation R is the set R~ of pairs (y, z) for which (r.y) € R.
Cowplementation of sets (respectively relations) is with respect to {" (respectively {" x ").
And, < is interpreted as the subset relation.

Though independent of the computer science context, Boolean modules are very sim-
ilar to dynamic algebras, introduced by Kozen (1980) as the algebraic version of dvnamic
logic. And both of these are quite similar to the eztended relation algebras introduced by
Suppes (1976) in a linguistic context. However, Boolean modules and dynamic algebras
both have the drawback of not treating relations (programs) and sets equally: there is
a set-forming operator on relations, but no relation-forming operator on sets. Extended
relation algebras do not have this drawback, but they do have the drawback of being as
yet uniormalized as algebras.

We present here a two-sorted algebra, called a Peirce algebra, of relations and sets
interacting with each other. In a Peirce algebra, sets (or rather, the variables representing
sets) can combine with each other as in a Boolean algebra, relations can combine with
each other as in a relation algebra, and in addition we have both a set-forming operator
on relations and a relation-forming operator on sets. The former is the Peirce product
used in Boolean modules; the latter is the operation of cylindrification. Peirce algebras
thus present a natural next step after Boolean algebras, relation algebras and Boolean
modules.

Formally, we define a Peirce algebra to be a Boolean module (B, R, :) enriched with
an operation from the underlying Boolean algebra B to the underlying relation algebra
R such that foreverya€e Band r € R:

Pl a‘:1=a

P2 (r:1)=r;1.

In the standard models (i.e., in proper Peirce algebras) applying the cylindrification op-
eration to a set A yields the relation A° given by the Cartesian product A x U. An
example of a Peirce algebra is any extended relation algebra. Another example is any
relation algebra. We show that the underlying Boolean algebra B of any Peirce algebra
can be embedded in its underlying relation algebra R in two ways: as the Boolean alge-
bra of so-called right ideal elements in R, and as the Boolean algebra of elements below
the identity of R. These results reiterate the point made by Maddux (1990) that Peirce
algebra is not a mathematical requisite for modelling interactions between relations and
sets, in the sense that these can be modelled in relation algebras (as interactions with
right ideal elements, for example). However, we argue that Peirce algebra provides a more
natural framework for doing so. In a Peirce algebra one can actually manipulate both
sets and relations simultaneously. From an applications-oriented point of view this is an
advantage, and we present two (sets of) sample applications to substantiate this point.

The first shows how three programming constructs in the calculus of weakest prespec-
ification of Hoare and He, Jifeng (1987) can be modelled naturally in Peirce algebras.
This comes about through the isomorphism in any Peirce algebra (B, R, :,) between the

Boolean algebra B and the Boolean algebra of right ideal elements of the relation algebra
R and the isomorphism between B and the Hoolean algebra of identity elements in R.
First, Hoare and He, Jifeng (1987) use right ideal elements to model conditional state-
ments in logics representing prograis as binary relations. Second. subsets of the identity
relation are used to model a test operation (Parikh 19%1). Third. left ideal elements can
be used to model the initialization of abstract data types as defined in Hoare, He. Jifeng
and Sanders (1987).

The second application points out that the so-called terminological logics arising
in knowledge representation based on the system KL-ONE (Woods and Schmolze 1992)
have evolved a semantics best described as a calculus of relations interacting with sets.
Brink and Schmidt (1992) show that the terminological representation language ALC of
Schmidt-SchauB and Smolka (1991) can be captured in the context of Boolean modules.
In this paper we extend this idea and use Peirce algebra to accommodate terminological
representation languages even more expressive than ALC.

Terminological representation languages have two syntactic primitives, called concepts
and roles. Concepts are usually interpreted as sets and roles as binary relations. As sets
and relations have simple calculi that can be presented, respectively, in the context of
Boolean algebra and relation algebra, concepts can be modelled in Boolean algebra and
roles in relation algebra. Concepts and roles also interact in certain ways, and these
can be modelled as interactions between relations and sets. More specifically, concept-
forming operations on roles can be interpreted as variants of Peirce product (with two
exceptions), and an algebraic characterization for such interactions are Boolean modules.
(The exceptions involve numerical quantification.) Role-forming operators on concepts
can be interpreted in terms of cylindrification. A natural algebraic presentation for such
interactions is then Peirce algebra. The advantages for doing so are: First, Peirce algebra
provides a forinal mathematical framework for KL-ONE-based knowledge representation,
the development of which has, by and large, been implementation-driven and rather ad
hoc. Second, Peirce algebra provides a natural (equational) axiomatization for reasoning
about information represented in a terminological language. Third, terminological repre-
sentation can be linked to other areas of application of Peirce algebra. Schmidt (1993), for
example, exploits the link between Peirce algebra and extended relation algebra and shows
how terminological representation can benefit from Suppes’ (1976) linguistic analysis of
English language sentences.

References

Brink, C. (1981), Boolean modules, Journal of Algebra 71(2), 291-313.
Brink, C. (1988), On the application of relations, S. Afr. J. Philos. 7(2), 105-112.

Brink, C. and Schmidt, R. A. (1992), Subsumption computed algebraically, Computers and Math-
ematics with Applications 23(2-9), 329-342.

Chin, L. B. and Tarski, A. (1951), Distributive and modular laws in the arithmetic of relation
algebras, Univ. Calif. Publ. Math. 1(9), 341-384.

de Bakker, J. W. and de Roever, W. P. (1973), A calculus for recursive program schemes, in
M. Nivat (ed.), Symposium on Automata, Formal Languages and Programming, North Hol-
land, Amsterdam.

Harel, D. (1984), Dynamic logic, in D. Gabbay and F. Guenther (eds), Handbook of Philesophical
Logic, Vol. 11, Reidel Publ. Co., Dordrecht, Holland, pp. 497-604.

- 20§ ~

«@s @

&

Henkin. L., Monk, J. D. and Tarski. A. (19853), Cylindric Algebras: Part I1. Vol 115 of Studies
Logic and the Foundations of Mathematics, North-Holland. Amsterdam.

Hennessy, M. (. B. (1980), A proof-system for the first-order relational calculus. Journal of
Computer and System Sciences 20, 96-110.

Hitchcock, P. and Park, D. (1972). Induction rules and termination proofs. in M. Nivat (ed).
Automata, Languages and Programmang, North-Holland, Amsterdam.

Hoare, (. A. R. and He, Jifeng (1987), The weakest prespecification, Information Processing
Letters 24, 127-132.

Hoare, (. A. R., He, Jifeng and Sanders, J. W. (1987), Prespecification in data refinement,
Information Processing Letters 25, 71-76.

Jonsson, B. (1982), Varieties of relation algebras, Algebra Universalis 15(3). 273-298.

Jonsson, B. and Tarski, A. (1951/1952), Boolean algebras with operators, Part I/l1, American
Journal of Mathematics 73/74, 891-939/127-162.

Kozen D. (1980), A representation theorem for models of »-free PDL, in J. De Bakker and J. van
Leeuwen (eds), Aulomata, Languages and Programmang. Vol. 85 of Lecture Notes in Computcr
Science, Springer-Verlag, Berlin, pp. 351-362.

Logic at Work, Proceedings of the Applied Logic Conference (1992), University of Amsterdam,
Amsterdam. Preprint. To appear.

Maddux, R. D. (1983), A sequent calculus for relation algebras, Annals of Pure and Applied Logic
25, 73-101.

Maddux, R. D. (1990). Personal communication with C. Brink.

Orlowska, E. (1991), Relational interpretation of modal logic, 1n H. Andréka, J. D. Monk and
1. Németi (eds), Algebraic Logic, Vol. 54 of Colloquia Mathematica Societatss Jinos Bolyar.
North-Holland, Amsterdam, pp. 443-471.

Parikh, D. (1981), Propositional dynamic logic of programs: A survey, in E. Engeler (ed.). Logic of
Programs. Vol. 125 of Lecture Noles in Computler Science, Springer-Verlag, Berlin, pp. 102-
144.

Schmidt, ;. and Strohlein, T. (1991), Relations and Graphs, Springet-Verlag, Berlin.

Schmidt, R. A. (1993), Terminological representation, natural language & relation algebra, in
H. J. Ohlbach (ed.), Proceedings of the sizteenth German Al Conference (GWAI-92), Vol.
671 of Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin, pp. 357-371.

Schmidt-Schaufi, M. and Smolka, G. (1991), Attributive concept description with complements,
Artificial Intelligence 48, 1-26.

Suppes, P. (1976), Elimination of quantifiers in the semantics of natural language by use of ex-
tended relation algebras, Rev. Int. de Philosophie 30(3-4), 243-259.

Tarski, A. (1941), On the calculus of relations, Journal of Symbolic Logic 6(3), 73-89.

van Benthem, J. (1991), Logic and the flow of information, Technical Report, ILLC Prepublica-
tion Serics for Logic, Semantics and Philosophy of Language LP-92-11, lInstitute for Logic,
Language and Computation, University of Amsterdam, Amsterdam. To appear.

Venema, Y. (1992), Many-Dimensional Modal Logic, PhD thesis, University of Amsterdam, Am-
sterdam.

Wadge, W. W. (1975), A complete natural deduction system for the relational calculus, Theory
of Computation Report 5, University of Warwick.

Woods, W. A. and Schmolze, J. (5. (1992), The KL-ONE family, Computers and Mathematics with
Applications 23(2-5), 133-177.

-208 -

®

o

&

Comparing Two Different Approaches to Products
in Abstract Relation Algebras

R. Berghammer® A. Haeberer! G. Schmidt® P. Veloso!

1 Introduction

The study of relation algebras has its roots in the second half of the XIX century with the
pioneering work of Boole and de Morgan. Later on, Peirce in a series of papers developed
the algebra of relations, and by "he end of the century Schroder definitively set the basis of
wodern relation algebra in his : ignum opus. The modern development of the topic starts
with the fundamental work of Tarski and his co-workers (see e.g., [13, 5, 8]). In the early 70’s
relations and relational calculi began to be used for formal programming by de Bakker and
de Roever. In the following decade, Hoare and He related the work of Birkhoff on residuals
with Dijkstra’s weakest precondition approach to programming. Recently, M&ller used n-ary
higher-order relations between nested tuples as elements of a language in which to specify and
develop programs and Backhouse et al. developed a theory of data types based on the calculus
of relations.

During the development of relation algebras as a formal programming tool, the need of some
furw of “categorical product” of relations became apparent, whether as a type or as an operation.
This need was motivated by the lack of variables over individuals, which by itself is one of the
main advantages of functional and abstract relational approaches to program development. Two
approaches to this kind of extension arouse in the late 70’s and the early 80’s, which will be
referred to as the “Munich approach* [10, 3] and the “Rio approach” (7, 15]. Both of them rely on
relation algebras as presented by Chin and Tarski [5]. The former uses heterogeneous relations
and undertakes the “product-extension” as being a data type by axiomatically introducing two
projections 7 and p and defining the product in terms of them. The latter uses homogeneous
relations and introduces axioms for a fork operation V, thus extending relation algebra in the
same way Jonsson and Tarski in [8] extended a Boolean algebra by means of operators in order
to obtain a relation algebra. The introduction of V induces a free groupoid structure in the basic
set of the relation standard model of relation algebra, which by allowing the internalization of
relations p: ses some interesting representability questions [1].

The Munich group started from giving relational semantics to programming language con-
structs and constructing semantic domains by relation algebraic means. They worked with
heterogeneous relation algebras [12], introduced the point axiom [11] for these and discussed
how representability depends on it. Defining the symmetric quotient [2, 16] made it possible to
handle set and function comprehension.

The Rio approach, motivated mainly by the development of a relational programming calculus
not bounded by lack of expressiveness, first tackled the problem — posed in [13) and formally
treated in [9) — of the impossibility of expressing first-order formulae with four or more variables
in abstract relation algebra. As it was shown in [14], the expressive power of the Boolean algebra
with operators resulting from the extension of relation algebra with the V-operation encompasses

*Fak. fir Informatik, Universitit der Bundeswehr, Werner-Heisenberg-Weg 39, D-85577 Neubiberg (Germany)
'Dep. de Informatica, Pontificia Univ. Catélica, R. Marqués de S. Vicente 225, Rio de Janeiro, RJ 22453
(Brazil)

c e@e @®

that of first-order logic. In using this calculus, they developed various case studies on formal
program construction, see e.g., [15]. Some interesting work has been done concerning the problem
of the smooth transformation by calculation of expressions universally quantified by means of the
construction RS (the complement of the relational composition RS). Among other techniques
under study, this was accomplished by the use of residuals in other ways than a straightforward
solution X of inclusions of the form X R C §, which lead to a weakest precondition style of
program construction.

This paper reports research work under joint development by the two groups. In this extended
abstract we only compare the two relational approaches to products. The full paper also deals
with some further topics like the formal construction of programs using abstract relation algebra.

2 The Munich Approach to Direct Products

Most operations occuring in real life involve several arguments and several sorts. Using relation
algebra as a programming calculus, therefore, requires a means to deal with direct products and
n-ary operations. In the following, the Munich approach to direct products is presented in a
short manner. Also the monomorphy of the product is investigated.

In the Munich approach, direct products are characterized by means of natural projections,
see (3, 2]. Then, one obtains the following specification (where I denotes the identity relation
and L is the universal relation).

Definition. Given two relations = and p, we call the pair (7, p) a direct product, if
(1) xTr =1 (2) pTp=1 (3) »xTnppT =1 4) =Tp=L.
In this setting, * and p are called the natural projections. 0

It is easy to verify that the projections from a Cartesian product X xY to the components X
and Y (considered as heterogeneous relations) are a model of (1) through (4). In this standard
model we have: From (1) and (2) we get that the projections are univalent and surjective.
Inclusion C of the third axiom ensures that there is at most one pair with given images in X
and Y; the other inclusion means that = and p are total, i.e., there are no “unprojected” pairs.
And, finally, condition (4) describes the fact that for every z € X and y € Y the pair (z,y) is
indeed contained in X x Y.

We now investigate the question of how unique the direct product is determined by these
rules. To this end, we need the following notions. Let R and $ be two relations and consider a
pair H := ($,¥) of functions. H is called a homomorphism from R to S if R C ®S¥T holds.
If. in addition, the pair (#7,¥T) is a homomorphism from § to R, then H is said to be an
isomorphism between R and S. Therefore, an isomorphism ($, ¥) between R and S is a pair of
bijective functions ® and ¥, which satisfies the condition R¥ = &85.

By purely relation-algebraic reasoning, now, it can be shown that the direct product is
uniquely characterized up to isomorphism:

Theorem 1. Assume that two direct products (m,p) and (n’, p') are given together with two
bijective functions ¥, and ¥, such that the products #¥;#'T and p¥;p'T are defined. Then
the pair (®, ¥,), is an isomorphism between x and =’ and the pair (®, ¥3), is an isomorphism
between p and p’, where the bijective function & is defined as & := 7¥,7'T N p¥,p'T. o

3 The Rio Approach to Direct Products

Now, we sketch the Rio approach to products. This approach is based on homogeneous relations
and a fork-operation V extending a relation algebra. The axioms of fork are as follows:

(5) RVS = R(IVL)NS(LVI) (6) (RVS)(PVQ)T = RPTnSQT.

- 210 -~

@+ &

®

m

It is a classical result that (homogeneous) relation algebra is inferior in expressive power to
predicate logic. However, homogeneous relation algebra extended with a product using the
operator V and axioms (5) and (6) has the same expressive power as predicate logic [14].

4 Comparison

We are now going to compare the product axiomatization of the two approaches. In particular,
we present a cross-derivation of either approach using the axiomatic presentation of the other.
This is a little bit complicated as it means a comparison of results in a homogeneous and in a
heterogeneous relation algebra. So we cannot in all cases expect textually identical results when
simulating one feature in the other type of algebra.

First, we express 7 and p via V. To this end, let a V-extended homogeneous relation aigebra
be given. We consider partial identities, i.e., relations contained in the identity relation 1. In the
case of a relation on a set X each partial identity § C X x X describes a subset of X, viz. the set
{z € X : (z,z) € §}. It is easy to prove that partial identities are invariant under transposition
and that composition of a partial identity with itself is idempotent. Thus, we are able to prove
the following theorem defining the two projections in terms of the operation V.

Theorem 2. Let three partial identities éx, 8y, and § be given satisfying the property
6 = (5xVL)T(8x VL)Y N (LVéy)T(LVéy).

Then it is possible to define two relations 7 := (6xVL)T and p := (LVéy)T such that the
intentions of the above definition are met in the following form:

Tr = 6x pTp = by T nppl =6 xTp = éxLNLéy. a

r
Now we deal with the other direction, i.e., the description of V via the two projections.
Therefore, we assume a heterogeneous relation algebra. Then we are able to prove:

Theorem 3. Let a direct product (7, p) be given. We define for this product an operation V
(in infix notation) by RVS := RxT N SpT. Then we obtain the equation

RVS = R(IVL)n S(LVI).
If the point axiom (see [11}) holds, i.e., the relation algebra is representable, then we also have
(RVSYPVQ)T = RPTnSQT. o

One might ask whether the second statement of this theorem (of which “C” is rather trivial)
could also proven without assuming the additional condition. Over the years we have tried
very hard to solve this “unsharpness-problem”. For example, in [3, 16] some weaker conditions
than the point axiom can be found. Today, we believe that a proof of inclusion “2” without
conditions is not possible, i.e., that there are models of the axioms of a heterogeneous relation
algebra in which “#” holds.

We have shown that one approach may more or less directly simulate the other; so either
one could be taken, the Rio approach with partial identities, as well as the Munich approach
using heterogeneous relations. It should be mentioned that the major part of the proofs of
the theorems were developed with RALF, a relation-algebraic formula manipulation system and
proof checker developed in Munich 4] and re-implemented on a different hardware-software basis
by the Rio group.

Finally, let us shortly discuss some advantages and disadvantages of the two approaches.
While using partial identities, there are no problems with the applicability of operations. How-
ever, when nonfitting relations are multiplied, the result will often be the null relation. On the

-2t =

e« ofe G

other hand, a supporting ror:pnter system such as RALF or RELVIEW should refuse to operate
on nonfitting relations. Heterogeneous relations fit neatly into the way of thinking with sorts
or types in Computer Science. Working with matrices and vectors might even let engineers feel
comfortable since they are accustomed to them. A second difference between the two approaches
is with respect to the existence of models. In the heterogeneous case, one can work with small
models that certainly exist, such as the set of all boolean n x n,m x m,n x m, m x n-matrices.
In contrast, already the very first examples in the other case is burdened with the question of
whether the base set of all the partial identities is free of set-theoretical antinomies. There is also
another important difference. When working with relations R C X x Y between sorts and types,
oue has the possibility of distinguishing the categorical object X from the domain RL where the
relation is “defined”. This difference, to which computer scientists are very much accustomed
is usually hidden when using partial identities, since then one would have to manipulate two
partial identities to fully handle R. In [6], pp. 334-354, however, a new kind of objects, called
problems is studied taking this into account.

References

{1] (. Baum, A. Haeberer, P. Veloso: On the representability of the abstract relational algebra,
IGPL Newsletter 1, 3 (September 1992) European Foundation for Logic, Language and
Information Interest Group on Programming Logic

[2] R. Berghammer, G. Schmidt, H. Zierer: Symmetric quotients and domain constructions.
Inform. Proc. Letters 33, 3, 163-168 (1989/90)

(3] R. Berghammer, H. Zierer: Relational algebraic semantics of deterministic and nondeter-
ministic programs. TCS 43, 123-147 (1986)

{4] R. Brethauer: Ein Formelmanipulationssystem zur computergestiitzten Beweisfithrung in
der Relationenalgebra, Universitit der Bundeswehr Miinchen, Diplomarbeit (1991)

[3] L. Chin, A. Tarski: Distributive and modular laws in the arithmetic of relation algebras.
University of California Publications in Mathematics (new series) 1 (1951)

[6] A. Haeberer, P. Veloso: Partial relations for program derivation: Adequacy, Inevitability
and expressiveness. In: B. Moller (ed.), Constructing programs from specifications, North-
Holland, 319-371 (1991)

[7] A. Haeberer, P. Veloso, P. Elustondo: Towards a relational calculus for software construc-
tion. Meeting of IFIP WG 2.1, Chester, England (1990)

[R] B. Jénsson, A. Tarski: Boolean algebras with operators, Part II. Amer. J. Math. 74, 127-167
(1952)

[9] R. Maddux: A sequent calculus for relation algebras. Ann. of Pure and Applied Logic 25,
73-101 (1983)

[10] G. Schmidt: Programs as partial graphs I: Flow equivalence and correctness. TCS 15, 1-25
(1981)

[11] G. Schmidt, T. Stroéhlein: Relation algebras: Concept of points and representability. Dis-
crete Math. 54, 83-92 (1985)

[12] G.Schmidt, T. Strohlein: Relations and graphs. EATCS Monographsin CS, Springer (1993)
[13] A. Tarski: On the calculus of relations. J. Symbolic Logic 6, 73-89 (1941)

(14] P. Veloso, A. Haeberer: A finitary relational algebra for classical first-order logic. Bull. of
the Section on Logic of the Polish Academy of Sciences 20, 52-62 (1991)

[15] P. Veloso, A. Haeberer, G. Baum: Formal program construction within an extended calculus
of binary relations. J. Symbolic Comp. (to appear)

[16] H. Zierer: Relation algebraic domain constructions. TCS 87, 163-188 (1991)

¢ o@e @

Specifying Type Systems with Multi-Level Order-Sorted Algebra
Martin Erwig®

We show how to use order-sorted algebras on multiple levels to describe type systems and languages,
in particular, data models and query languages. It is demonstrated that even advanced aspects can be
modeled, including, parametric polymorphism, relationships between different sorts of an operation’s
rank, the specification of a variable number of parameters for operations, and type constructors using
values (and not only types) as arguments.

1 Main Idea

The concept of multi-level algebra was initiated from our work on extending data models by new data
types [2]. Although many-sorted algebra can be conveniently used to describe non-standard data mod-
els many important aspects remain unformalized. Even the generalisation to order-sorted aigebra [4],
though nicely expressing subtypes and the notions of inheritance and overloading, is not able to model
fundamental concepta, such as, parametric polymorphism. Parametric order-sorted algebra [3] offers a
partial solution, but there are still dependencies that cannot be expressed. For example, it is not clear,
in general, how to define a parametric module that is not allowed to accept an instance of itself as
parameter, which is needed, for instance, to define unnested sequences.

In contrast, this is possible with two levels of order-sorted algebra. The idea (in the two-level case)
is to use a signature to describe a type system (or, language of types) where sorts denote sets of type
names and operations denote type constructors. The values of an algebra for such a signature are then
used as sorts of another signature now describing a language having the previously defined type system.
This approach is not limited to two levels, and there are indeed reasonable applications of three-level
algebras.

2 Kinds: Describing Ad Hoc and Subtype-Polymorphism

Suppose we have to define an operation “<” on numbers and strings (and possibly several other sorts).
One approach is to give each signature entry separately. This becomes tedious as the number of data
types for which “<” is defined grows. So it is much more convenient to group all the sorts in a kind (1],
for example, ORD = {nat, int,str}, and then to define all signature entries by a type scheme:

V ord € ORD. <: ord x ord — bool

Apart from saving space, this notation is more descriptive w.r.t. the language.being defined since the ad
hoc polymorphism of “<” is not “scattered” over different places in the signature.

Subtype-polymorphism, too, can be specified using kinds: First, define for each sort s (having sub-
sorts) a kind SUB, containing s and all subsorts of s. Then introduce for each operation f: s — t a
specification:

VoeeSUB,. fioc—t

3 Two-Level Algebra: Type Constructors and Parametric Poly-

morphism

A type constructor takes one or more types as arguments and produces a new type as result. The sequence
constructor (seq), for example, takes a type, say, int, and produces the type containing all sequences
of integers. Of course, seq may be applied to other types as well, but in some languages where nested
sequences are not allowed (for instance, database languages) it must not be applied to sequence types.
In that case, the argument types for seq are a proper subeet of all types and can be grouped into an
appropriate kind. Similarly, the result types form a kind, too.

Now we can regard kinds and type constructors as sorts and operations, respectively, of an order-
sorted signature. The example of unnested sequences can then be expressed as:

*FernUniversiti: Hagen, Praktische Informatik IV, Postfach 940, 5800 Hagen, Germany, erwig@fernuni-hagen.de

- 23~

ystem UNNESTED
kinds ARG, SEQ
tconms int, str, bool: — ARG
seq: ARG — SEQ

In the sequel we shall presume the variable quantifications “V seq € SEQ” and “¥ arg € ARG". Now we
can specify operations on sequences as follows.

language LiSTS
types from UNNESTED

funs nil: — seq

cons: ary x seq(arg) — seq(ary)

hd: seq(ary) — ary

tl: seq(ary) — seq(ery)

length: seg — int
Note that “V seq € SEQ. seq” denotes the same types as “¥V arg € ARG. seq(ary)”. Thus, we can use seq
in the type specifications for nil and length since we do not need to refer to the argument type of the
respective sequences.

The signature UNNESTED defines merely the typing of type constructors. The semantics usually
consists of two parts: On the one hand, algebraic properties of type constructors can be specified by
equations (for instance, associativity of a product operator). The set of sorts is then taken modulo
such a specification (in our example this was not necessary). On the other hand, the effects of type
constructors on the carrier sets need to be given by additional functions. Formally, we can capture this
by the following definition.

Definition (Multi-Level Algebra) An order-sorted signature is 8 1%-level signature, and an order-
sorted algebra is a 1%-level algebra. Given an n*t-level signature (S, <, L) and an n*®-level E-algebra B,
an order sorted signature (S', <',I') is an n + 1%-level signature depending on E and Bif §' = |J,¢s #°-
A T'-algebra A is an n + 1%.level algebra if for each oo, € L there is a function oX, (called type
constructor) and if for each s € S' such that s = 05 ,(t1,...,ts) (With w = 4, ...8, and &; € s for
1 € i < n) we have 84 = ¥ ,(¢{,...,t2). The functions of, define the constructor sementics for £,
and A depends on (the higher level) B and the constructor semantics for L. o

Note that the individual algebra levels are denoted by counting backwards (with regard to the construc-
tion history). That is, an n + 1%-level algebra A (or, A,) depending on the n'-level algebra B (or, A3)
is said to be on the first level whereas B is said to be on second level, and s0 on. In particular, when £
is used to describe types, we also say that T is on type level and I’ is on language level.

The constructor semantics for the seq constructor is defined by:

seq(s)* = seq®(s4) = (s4)"

4 Lifting

According to our definition, type constructors are working exclusively on types. But there are constructors
that are also based on values. The arrsy constructor, for example, takes in addition to its component
type two values of an ordered type. Similarly, the string constructor takes a number n and denotes the
set of strings of length n.

In order to retain the clear separation of the kind/type/value levels Cardelli [1) proposes to “lift”
values onto the type level (and the corresponding types onto the kind level). With regard to the two
mmpla,thhmemtointrodueeforeuhvﬂmnénﬂamtypeﬁwiththewrierbeingﬁ‘ = {n}.
Mm.ncmtetnewkind,ﬁ,withi?t’:{ﬁlnem‘}.'l'henunymdltringcmbemed
exclusively on the type level, as in array(1,9, bool) or string(23).

Let Iz, denote the subset of type constructors that need lifted types. In order to specify a type system
and language using types constructed by operations of T, the following steps have to be performed (for
a two-level algebra):

(i) Define the type system without E;. Call the signature Eo.

(ii) Define I}, the part of the language not needing types constructed by Z..
(iii) Perform lifting of Lo and T, and add T to Eo, that is, define £ = EqUE;.
(iv) Finally, define £’ with regard to I.

- 24~

c ofs @

=

e e e e T

rem——

If there are constructors that use values of & type that is built by a constructor of £ we have to repeat
the last two steps. If only one lifting is necessary, we can specify I; together with T, in one step. Thus,
array can be defined by (we do not list lifted kinds explicitly):

typeosystem ARRAYS
kinds ANY
tcons nat, str, bool: ANY
m.y:ﬁ x nat x ANY — ANY

Since sorts constructed by array are of kind ANY nested arrays are allowed by this definition — compare
this to the definition of seq from above. (The same effect can be achieved by exploiting the poperties of
order-sorted algebra and defining a kind ARR with ARR < ANY.) The constructor semantics are given
by:

array(R, i,)4 = array (A4, 4, t4) = array®({n}, {m},t4) = {n,...,m} — ¢4
Operations on arrays can be defined by (assume quantifications “v eny € ANY” and “V @, 7a € nat”):

types from ARRAYS
funs newarray: nat x nat x any — array(fn, m, any)
select: array(f, i, any) x nat — any
update: array(fi, i, eny) x nat x any — array(fi, m, any)

Note that with the above definition range checking (for select/update) is not expressible on the type level,
for example, an expression select(newarray(1,9, true), 15) is type correct w.r.t. to the above signature.
By introducing a third algebra-level range checking will become possible. (Then arrays can be defined
in a more general fashion based on a class of subrange types.)

5 Three-Level Algebras

Consider the function [] for constructing sequences, which is defined for an arbitrary number of argu-
ments. The signature entries are:

[J: = seq
H: ary — seq(ery)
: arg x arg — seq(ery)

To denote these signature entries we need for each argument type t a kind containing all product types
over t. This can be achieved as follows: We define a kind constructor list (this is an operation on level
three with the same semantics as seq). Now, list(K) denotes for a kind K all sequences of sorts from K.
If, for example, Kna:® = {nat})!, the quantification “¥ erg € list(Kna:)” binds the sequences (), (nat),
(nat, nat), ... to sry. The desired product types can be obtained by “inserting” a “x” type constructor
between each two adjacent types in a sort sequence. This is achieved by the higher order function fold:

fold*(e, () =
fold® (e, (t,)) =1
fold“(0, {t1, 13, .. ., ta)) = o(t1,f0ld"(£, {ta, .. ., ta)))

Now the type of [] (for nat-sequences only) can be specified by:
[]: fold(x, list(Kaat)) — seq(nat)

A more precise account of this kind of specification requires higher order algebras [8, 9] and a more
elaborate treatment of lifting. Finally, for the convenient specification of multi-level algebras we need a
language that aliows for the use of terms of all levels in the definition of operations’ ranks. This will be
covered by the full paper.

6 Conclusions and Related Work

Data models are still an area of ongoing research. Some reasons for this may be the constant identification
of new applications for database systems and the desire for improving existing models. All the more

3 K uas can be obtained by lifting.

- 25~

c ofs @]

it is surprising that no general framework is used, though, to describe the large variety of models. By
using multi-level algebra we can describe different models within the same formalism. In the first place,
this helps exhibiting relationships and differences which is necessary to fully understand and judge
data models. Possibly, this could be used for implementations of one model by means of another or
for investigations in the integration of heterogeneous database settings. If nothing else, the presented
framework reveals the high complexity of seemingly simple data models, for example, the description of
the relational model needs the full range of concepts indicated above (that is, lifting, three levels, higher
order algebra).

In fact, two-level algebras were already used in {12] to specify categories with certain properties for
theoretical investigation and in {7] for the formalization of the composition of specifications. In contrast,
our concern is the specification of type systems, more lpeciﬁully. the formal description of data models
and query languages. In this respect, the work of [5] is similar, although more directed towards the
description of a specific system architecture. Particular differences are that [5] does not consider lifting,
that no specification language exists, and that the approach (like [12, 7]) is limited to two levels. Another
difference between [12, 7] and our work is that we employ more than only one sort on level two. In {2]
many applications of multi-level algebra can be found. This includes the formalization of graph types,
heterogeneous sequences, and some operations with a variable number of ar ’gumenu In the full version
of this paper we will give a specification of the relational model and an NF* model.

Finally, let us summarize some points counting in favor of using multi-level algebra and exhibiting
its primary scope.

- Parametric polymorphism is expressible.

~ All kinds of polymorphism (subtype, ad hoc, parametric) are describable within one formalism.

- Type systems can be easily extended by new structures (graphs, heterogeneous sequences). This is
important to meet changing requirements of new applications.

- The definition of properties of type constructors (for example, associativity) is separated from the
constructor semantics.

~ Recently, fairly general approaches to the type checking of languages defined by many-level signa-
tures have become available (10, 6, 11). In many cases, these methods are directly applicable to
languages defined by multi-level algebra.

References

[1] Cardelli, L.: Types for Data Oriented Languases, Conf. on Ertending Database Technology, 1988, LNCS
303, pp. 1-15.

[2) Erwig, M., Giting, R.H.: Explicit Graphs in a Functional Model for Spatial Databases, Report 110, Fern-
Universitit Hagen, 1991.

[3] Goguen, J.A.: Higher-Order Functions Considered Unnecessary for Higher-Order Programming, in: David
Turner (ed.) Research Topics in Functional Programming, Addison-Wesley, 1990, pp. 309-352.

[4) Goguen, J.A., Meseguer, J.: Order-Sorted Algebra I, Report SRI International, 1989.

[5) Giiting, R.B.: Second-Order Signature: A Tool for Specifying Data Models, Query Processing, and Opti-
mization, ACM SIGMOD Conf. on Management of Data, 1993, to appeas.

[6) Kaes, S.: Type Infereace in the Presence of Overloading, Subtyping and Recursive Types, ACM Conf. on
Lisp and Functional Programming, 1992, pp. 193-204.

{7} Lessczylowski, J., Wirsing, M.: Polymorphism, Parameterization and Typing: An Algebraic Specification
Perspective, Symp. on Theoretical Aspects of Computer Science, 1991, LNCS 480, pp. 1-15.

[8] Meiake, K.: Universal Algebra in Higher Types, 7th Workshop on Specification of Abstract Data Types, 1990,
LNCS 334, pp. 185-203.

(9] Maller, B.: Algebraic Specifications with Higher-Order Operations, in: L.G.L.T. Meertens (ed.) Program

Specification and Transformation, Elsevier Science Publishers, 1987, pp. 367-398.

[10} Nipkow, T., Prehofer, C.: Type Checking Type Classes, 20th ACM Symp. on Principles of Programming

Languages, 1993, pp. 409-418.

{11] Nipkow, T., Sneiting, G.: Type Classes and Overloading Resolution via Order-Sorted Unification, ACM
Conf. on Fuuchonal Programming and Computer Architecture, 1991, LNCS 523, pp. 1-14.

{12) Poigné, A.: On Specifications, Theories, and Models with Higher Types, Information and Control 68, 1986,
PP- 146.

-2t6 -

e o @

An Overview of the SODA System (Extended Abstract)

Peter Thiemann
Wilhelm-Schickard-Institut, Universitat Tibingen, Sand 13, D-W7400 Tibingen, Germany

1 Introduction

We propose a system for software development which is aimed at merging the advantages of using methods from
algebraic specification with features known from object-oriented systems, namely rapid prototyping, evolution-
ary programming, and reusability. Our proposal is a refinement of earlier work where we proposed to access
functionally specified abstract data types from imperative modules [5)].

A project is composed from modules with the usual operations of import, parametrization, and renaming.
There are three kinds of modules. Modules can be either functional, state machine, or imperative.

Functional modules are specified in the executable first-order specification language SODA (specification in
order-sorted data algebras). Data algebras are initial algebras of a modest extension of order-sorted algebra [2]
by sort constructors and parametric polymorphism {6]. Derived functions are defined by recursive definitions
a8 & conservative extension of the data algebra.

The other kinds of modules (state machine and imperative) describe the non-functional parts of a project
(e.g., interaction, database access). Their operations can not be used from functional modules. A state machine
module defines » state and operations to manipulate the state and/or provide information about the state to
the outside.

Imperative modules play an important réle for our system to be interesting for real world projects. At any
point of the design process the implementation of a functional or state machine module can be replaced by an
imperative module. Of course there is the requirement that replacements of functional modules remain side
effect free.

2 Foundation

The foundation of the data algebra for functional and state machine modules is an extension of order-sorted
algebra (OSA). While ordinary OSA employs a partial order of sorts and provides parameterisation only through
module instantiations, we follow Hanus [3] by extending OSA with parametric polymorphic sort constructors
and with & mechanism similar to record extensions as proposed by Wirth for the language Oberon [9, 10]. While
Hanus defines a two-level semantics for polymorphic structures, we give a different (one-level) semantics as an
algebra that employs truly polymorphic data values.

2.1 Preliminaries

#/" (M) denotes the set of finite subsets of M. For a function f: A — B and A’ C A f|4+ denotes the restriction
of f to A’. We write &7 for the k-tuple (ay,...,as).

A ranked alphabet © is s finite set of symbols with a total function a: @ — IN denoting the arity of the symbol,
x € ©®) abbreviates x € © and a(x) = k. The set Tg(V) of O-terms over a set of variables V is the smallest
set T where VUG C T andforallk € N, x € 0, ¢;,...,4; € T it holds that x(t;,....t2) €ET. fV =0
we write Te. The eet of all variables occurring in term ¢ is var(t). A substitution is a function : V — Te(V)
where ov # v only for finitely many v € V. Denote the set of substitutions over To(V) by Subst(6,V). A
substitution ¢ is extended to a function &: Te(TV) — Te(TV) by élv = 0, dlew = id, and for x € 6*) and
t1,...,ts € To(TV) &(x(ts, . .., ta)) = x(¢11, . ..,0s). For convenience we write o instead of 5. A renaming is
a substitution that permutes the variables. Renamings induce an equivalence relation =C Te(V)?.

-2¥—-

c ofe @

2.2 Sorts and signatures

A polymorphic order-sorted signature I = (6,A) consists of a ranked alphabet © of sort comstructors
and a finite set A of operator symbols with a total function a:A — E/**(|J,en Da) \ {§) where D, =
{(n ... 7a,1,C) | i € Te(TV),C € C} denoting the arity of the symbol. C is the set of constraint sets:
C = p/"™(TV x Te(TV)): if C € C and a € TV there is at most one pair of the form (a, r) € C, furthermore
C can be linearly ordered to {(a;,71)....,(am, Tm)} 80 that a; occurs in 7; only if i < j.

A polymorphic data structure declaration (PDSD) simultaneously defines a relation < on Te, sort terms
without variables, and the arity of the data constructors. A PDSD is a system of equations of the form
x(@)=...+47+...+(...,cd,...) where x € 8V, a; € TV, and 7,7, € Te({a1,...,a1}). A constructor
declaration cd ::= ¢ | ¢(T%) declares the arity of ¢ € A to be a(c) = {(, ... 7, x(@1), 9)}.

The sort graph of a PDSD is the directed graph with vertices © and edges (x — x') if there is an equation
x(@7) = X' (%) + Call a PDSD well-formed if its sort graph is acyclic.

For a well-formed PDSD define a rewrite relation »C To(TV)? by x(r,...,n) > 7 if there is an equation
x(@)=r+... and 7 = 7[ri/ai). > denotes the reflexive, transitive, and ©-compatible closure of ».

Define <C Te x Tg by ¢, < 13 if either t; = x(1,,...,), ta=x(r],...,7i)and i </ for 1 <i <k, or
ta > t3 and t; < t;. The relation < is a partial order. < can be extended to Tg(7TV) by adding the rules a < a
for all @ € TV and defining t; <’ t3 if 33 = t2 such that t; < t).

Call a well-formed PDSD coherent if < is a type order, i.e., < is a partial order and if there is an upper
(lower) bound of 7|, 13 € Te(T'V') then there is a least upper (greatest lower) bound denoted by U {1, N 73).
For technical reasons we require all PDSDs to be coherent.

2.3 Algebras
A polymorphic order-sorted algebra (A,) with signature £ = (6, A) consists of

e afamily A= {A" |r€ TgI(TV)} of carrier sets indexed by (equivalence classes of) sort terms where for
all 7,7 € Tg(TV) A” C A" if r < r’ and also for all & € Subst(0,TV) it hoids that A™ C A°”, and

e a total function ¢: A — Ops(A) (an interpretation) where Ops(A) = | J,en{f: A" x ... x A™ — A™ | 7, €
Te(TV)} and ¢« maps f:(1y...7y,7,C) € A to an element of ﬂ{A"(X...X AT — A’ | o €
Subst(0,TV),a<r€C=>0asnT > 7l}.

2.4 Terms

During the formation of terms we are given a value v of sort r and want to apply operation f:(71,m,Cy) € 8.
f is applicable to v if there is a substitution o such that ot < o7, and the inequations ¢C; are satisfied. We
give a non-deterministic procedure SOLVE that is an adaption of the algorithm MATCH of (1] to our situation
combined with some simplification rules. The procedure is given a set Cp of inequations on sort terms as input.
Upon termination it either yields a substitution ¢ that satisfies C, or fails if no such & exists. The following
deduction rules are applied to the initial set of inequations Cy U {r < 71} and the identity substitution id.

Cpmodle o St sv a
Ufn<<n,..,n<n},o < ,

Cu{a<a)l,e a€TV Cuf{a<Ble a#BETV

C,U (23) _ﬂa/ ’aow”ar (24)

Cufa<r,a<r}e - CU{r<a,7”<a},o -
CU{a<rnr)o fail, if ArNr’ (2.5) Culrur <e).e fail, if Arur’ (2.6)

Cu{r<a,a<r}eo
Olrerreals °%va(nuvr) 27)

Sy e (9) CEEtE o agadn (9)

The rules are applied according to the following plan. First rule (2.1) is applied as often as possible. If now
rule (2.2) is applicable we apply it by non-deterministically choosing a rewrite step and fall back to rule (2.1).
If rule (2.2) was n:t applicable but there is still an inequation r < 7’ where 7 and 7 € TV the procedure

- 28—

¢ ofs @

signals failure and backtracks to the last application of rule (2.2) where there is an alternative left. Otherwise
rules (2.3) and (2.4) are repeatedly applied. Now rules (2.5) and (2.6) are iterated. Failure at these rules is not
handled with backtracking. Now all inequations have the form a < r or 7 < a and for each variable a there
is at most one inequation a < r and at most one inequation r < a. Rule (2.7) deals with the case that both
inequations are present for a given variable a. After its application the procedure must fall back to rule (2.1).

At this stage we have at most one inequation for every variable and it either has the forma < ror r < a.
The resulting substitution is built with rules (2.8) and (2.9).

The procedure SOLVE has type p/**(Te(TV)?) — Subst(©,TV). On input C it runs the rule system as
outlined above on the initial configuration C, 1d. If the rules terminate successfully with configuration @, o then
o is output, otherwise failure is signalled.

For a signature £ = (8, A) define the term sets T" for r € Te(TV) as the smallest solution of

e if f:(c,70,8) € A then f € T™,
oif fi(r.. .Ta,7,C)EAandt; €T for1 <i<nando=SOLVE({r/ <7 |1<i<n}uC)then
J(ty,....ta) € TO™. (var(r;) Nvar(7!) = @ can be assumed.)

The term algebra is defined as (T,:) where the carrier T = {T |7 € To(TV)} and T = U{T" |7 >
" A 30 € Subst(0,TV) : ar:’ = r}. The interpretation ¢ is defined for f:(¢,7,8) € A by «(f) = [and for
filn. ..t m0,Cland t; €T by «(f)(t1, ... ta) = f(t1,...,ta) if SOLVE({*! < 7 | 1 < i < n} UC) succeeds.

At this stage homomorphisms can be defined and the initiality of the term algebra can be proved. A semantics
for the derived functions can be obtained in several ways. Either the principle of structural induction is used
to define total functions on initial polymorphic OSAs (as proposed by Klaeren for many sorted algebras [4]), or
monotone algebras are used to give a fixpoint semantics for general recursive functions.

3 Methodology

In the following subsections we briefly review the specification and programming facilities that may be used
in the different kinds of modules. In order not to lose referential transparency we do not allow arbitrary calls
between modules: imperative modules may call any function that is desired, state machine modules cannot call
functions from imperative modules, and functional modules must only access functions from functional modules.
This concept (confined to functional and imperative modules) originates from [5).

3.1 Functional modules

Functional modules are composed of an interface, a local declarations, and a function definitions. The interface
provides means to import and combine signatures and sort structures from other modules. Parts of imported
signatures can be projected and renamed. Imported and locally declared entities can be declared visible for
export. Nothing is exported by defauit. The local declarations extend the combined imported signatures by
providing PDSDs as described in 2.2 and declaring operator symbols. Function definitions are mutually recursive
definitions of locally declared operator symbols. Let £ = (©,A) denote the signature formed by imports and
local declarations. The form of a definition is f(z;,...,24) = ¢ where f:(r,...7,7,C) € A is locally declared
and ¢ € Eg({z1,...,2a})"™C under the assumption that z; € E™C. The set of right hand side expressions Ex
is an extension of Tx by the constructions let v = ¢ ine¢’ and case eg of ... cj(v1,..., %) ¢ ...

Modules can be parameterized with respect to a signature. A parameter signature is specified by declarations
of operator symbols and by PDSDs without constructor declarations. Parameter instantiation is provided as an
extension to the import facility in the interface section. Proper instantiation is checked by matching signatures.

3.2 State machine modules

A state machine module can be regarded as the definition of an object class. It has interface and local declara-
tions in the same way as functional modules. Additionally it declares a specific sort to be the state. The state
sort can also be an extension of a supersort. This means that the arities of all constructors of the supersort are
extended with identical additional components. Thus we can have multiple inheritance statically by means of
OSA and single inheritance dynamically by means of the constructor extensions. State machine entities can be
created dynamically and each entity has its own local state which is initialized at creation time.

Furthermore, a state machine module contains definitions of operations that take the state as implicit argu-
ment and may update it destructively. Operations may invoke other operations, and they can return values.

-219~

2

:An operation [is defined by f(z,,...,z,) = let my;...;m; return ¢, ¢ € Ex, where each m; € Mg, i.c.,
it is either an expression m = ¢ € Eg, or an assignment m = v = ¢ for ¢ € Eyx, or a case decomposition
mEcasecot ...cj(vy,...,w) .. Me Mg

3.3 Imperative modules

In imperative modules we use the algebraic data structures as a type system for an ordinary imperative lan-
guage. The programming language Oberon already has a record extension mechaniam similar to our proposed
constructor extensions.

4 Conclusion

The concept outlined above appears promising since it combines a specification method for abstract data types
with clean handling of state. The restrictions that we impose on inter-module calls allow for an efficient
implementation since it is possible to take advantage of the referential transparency in the implementation
of functional modules. Most of these advantages carry over to state machine modules since side effects are
restricted to updating the state. The imperative modules are provided as a last resort, for example for system
level operations.

By using an order-sorted framework we gain flexibility compared to our earlier work which builds on many-
sorted algebras and does not have the concept of state machine modules [5]. The improved flexibility entails
better reusability and the possibility for evolutionary program design.

We have a functional language implementation toolkit around an implementation technique that we have
developed in earlier work [8, 7]. We are currently preparing an implementation of the front end for the functional
part of SODA in this environment. Furthermore we investigate the extensions needed to implement the state
machine modules. For the imperative part we consider an extension of the programming language Oberon [9)
with algebraic datatypes and overloading.

References

[1] Y.-C. Fuh and P. Mishra. Type inference with subtypes. In H. Gansinger, editor, ESOP 1988, pages
94-114, 1988. LNCS 300.

[2]) 3. A. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for multiple inheritance,
overloading, exceptions and partial operations. Technical Report SRI-CSL-89-10, SRI International, Menlo
Park, CA, July 1987.

[3] M. Hanus. Parametric order-sorted types in logic programming. In Proc. TAPSOFT 1991, pages 181-200,
1991. LNCS394.

[4] H. Klaeren. A constructive method for abstract algebraic software specification. Theoretical Comput. Sci.,
30:139-204, 1984.

{5] H. Klaeren and P. Thiemann. A clean Modula-2 interface to abstract data types. Structsred Programming,
11:69-77, Apr. 1990. .

{6] R. Milner. A theory of type polymorphism in programming. J. Comput. Syst. Sci., 17:348-375, 1978.

[7] P. Thiemann. LaToKi: A language toolkit for bottom-up evaluation of functional programs. In
M. Bruynooghe and M. Wirsing, editors, Proc. PLILP '9%, page 481f, Leuven Belgium, Aug. 1992. Springer.
LNCS 631.

[8) P. Thiemann. Efficient implementation of structural recursive programs. Josrnal of Programming Len-
guages, 1{(1):41-70, Mar. 1993.

[9] N. Wirth. The programming language Oberon. Sofiware, Practice and Ezperience, 18(7):671-690, July
1988.

{10) N. Wirth. Type extensions. ACM Trens. Prog. Lang. Syst., 10(2):204-214, Apr. 1988.

- 220~

e ofe @

Category Theory for the Configuration of Complex Systems

Gillian Hill

The abstract framework of category theory is shown to provide a precise semantics for the config-
uration of complex systems from their component parts. Diagrams, defined as functors between
categories, express configuration by representing the operations of combinators on recursively de-
fined system components. Although modularity has been described as an essential property of
complex systems, no clear and simple definition of a module has emerged at this general level. In
this paper a new module concept is defined to represent reusable system components, at any level
of development. The semantics of system configuration is given by the construction of colimit
diagrams.

A category theoretic semantics was given in [BG77] for putting theories together to make specifi-
cations. The activity of specification was viewed as theory-building in [TM87, Vel85] and interpre-
tation between theories was formalized in a categorial framework in [MF90). Category theory was
used to define an abstract specification theory for refining specifications in [UG90]. In this paper
these ideas are extended to provide a precise semantics for both structuring and implementing
system components to configure a final executable system.

A language for configuration, designed in [Hil92], is at a meta-level to a specification language and
describes the operations of combinators on the specifications and modules that represent the system
components. High-level combinators express the horizontal structuring of both specifications and
modules by extension and parameterization; and also the vertical development, which is part of
the design process, by implementation. The relationships between the component parts of systems
have been identified at an intuitive level in order to choose appropriate high-level combinators for
configuration. The high-level combinators have then been defined formally in terms of the more
primitive combinators: interpretation, extension and conservative extension. A logical system
includes the configuration theory and the application theories, to be configured. The logic for
configuration must possess the strong Craig interpolation property in order to preserve conservative
extensions of structured specifications under interpretation.

The aim of this paper is to present a logical framework for the configuration of modular systems
that is independent of any particular specification approach, design methodology or programming
paradigm. First-order logic is chosen to express new operations for horizontal structuring and
vertical implementation within a conceptual framework that is both simple and natural for engi-
neers to use. System components are represented in a uniform development space by recursively
defined objects with sorts in the set {specification, module}. In [Hil92] specifications are presented
as objects in textual form that record the history of configuration as a sequence of operations
by the combinators on recursively defined objects. In this paper the abstract category-theoretic
semantics is functional with the primitive combinators represented by natural transformations
between recursively defined diagrams.

We define a diagram as a functor from the category of graphs to the category Conf of configured
objects when the limit of the functor exists in Conf. The functor iabels a graph, which has a
only a shape, by the specifications or modules, as the objects, at the nodes and by the morphisms
between the objects as the arrows. The natural transformations that join objects, represented
by diagrams, to form more structured diagrams become the morphisms between objects in the
diagrams of the more structured objects. The semantics of the high-level combinators is given by
the construction of colimit diagrams that express the joining together of structured objects that
may share common parts. Morphisms representing conservative extensions are shown to be crucial
for completing the construction of these colimit diagrams. Our definition of a diagram is based
on that in [GMUSS) but we change their presentation of the structured specifications. In addition
we provide a more concrete semantics for our configuration language. This is given by a set of
well-formed diagrams, that name both the objects at the nodes and the primitive combinators

*Department of Computing, Imperial College of Science Technology, London, SW? 2BZ, gah@doc.ic.ac.uk

dad: Dapartmest of Gampdler Siiomcn, City Unversity , Londan Ect VNG, qatb@ cs. cily, 2c. K

e o @

that operate on these objects. These more concrete diagrams are the elements in the models for
the configuration language and represent the structured objects.

Our new module concept is proposed as an aid to managing the complexity of large systems by
focusing on building systems {rom reusable components at any stage in system development. A
module is created by a combinator from the textual specification of an object, and the semantics
of module creation is based on the construction of a colimit for the diagram of that structured
specification. Any number of uniquely named module instances can be created from a specification
at any stage in system configuration. Modules may be created from primitive specifications before
they are structured, or alternatively from complex specifications at the end of the structuring pro-
cess. Similarly modules may be created from abstract specifications before they are implemented,
or alternatively they may be created from ccncerete specifications at the end of the refinement
process.

As a simple example, obj one_roomed_house, structured as spec house{module room1)], may be
instantiated to spec house . ,..1c wemi [Module bedroom]. Alternatively, obj two_roomed bungalow
may be instantiated L0 SPEC hOUSE rmeqrie woal,medsio vt [Odule kitchen, module bedroom). Mod-
ule instances, uniquely named, may then be created for each of these structured specifications by
an operation which is safer than low-level copying. The module instance of the house with one
room as a bedroom will be structurally identical to the module instance of spec house ,,.. ... [spec
bedroom]. Their textual specifications would record different histories of specification, however:
the first with instantiation by a module; the second by a specification. In the abstract semantics
instantiation by a module is represented by interpretation between diagrams whose single nodes
are colimit objects; instantiation by a specification is by interpretation between structured dia-
grams. To configure a house with three living rooms and three bedrooms we wouid structure a
house parameterized by two types of room, spec house[spec room1, spec room2]. Three modules
created from each of the specifications for a room could then be instantiated to the actual room
required, such as lounge or guest bedroom.

Our approach is intended to be loose and flexible. The engineer is able to choose, at each stage in
building a system, between building from specifications or modules. The final configured object of
a software system will be a structured object that is implemented and in the form of an executable
module. In addition to this flexibility the engineer is able to express explicitly the sharing or non-
sharing of system components. Flexibility is also provided within our theory of configuration by
the commutative properties of the high-level combinators. We characterize these properties as the
axioms for our theory of configuration in the style of the algebraic calculus of [BHK90].

References

[BG77) R. M. Burstall and J. A. Goguen. Putting theories together to make specifications. In Proceedings of
the 5th. International Joint Conference on Artificial Intelligence, pages 1045-1058, Cambridge, Mass.,
1977.

{BHKS90] J. A. Bergstra, J. Heering, and P. Klint. Module algebra. Journal of the ACM, 37(2):335-372, April
1990.

[GMU88] T. Gergely, T. Maibaum, and L Ury. Modularization: Structuring specifications. Technical Report V1.0,
Applied Logic Laboratory, SZAMALK, Budapest and Imperial College, November 1968.

[Hil92] Gillian Hill. A Lenguage for System Configuration. PhD thesis, Department of Computing, Imperial
College, University of London, 1992. draft.

[MF80] T.Maibaum and J. Fiadeiro. Stepwise program development in I institutions. Technical report, Imperial
College, November 1990. with Martin Sadler.

[TM87] Wladyslaw M. Turski and Th S. E. Maibaum. TAe Specification of Compster Programs. Interna-
tional Computer Science Series. Addison Wesley, 1987.

[UGS0] Lasz16 Ury and Tamis Gergely. A constructive specification theory. In G. David, R. T. Boute, and B. D.
Shriver, editors, Declerative Systems. Elsevier Science Publishers B. V. (North Holland) IFIP, 1990.

[Velss) Paulo A. S. Veloso. Program development as theory manipulations. Technical report, PUC/RJ Departa-
mento de Informatica, Rio de Janeiro, Brazil, May 1985. Series: Monografias em Ciencia da Computacac
No4/85.

- g2~

e oo @

Algebraic-Oriented Institutions
Extended Abstract*

M. Cerioli and G. Reggio.
Dipartimento di Informatica e Sciense dell’Informasione, Universita di Genova
Viale Benedetto XV, 3 - 16132 Genova - Italy

e-mail: {cerioli, reggio}Odisi.unige.it

In many recent applications of the algebraic paradigm to formal specification
methodologies, already known algebraic frameworks (one-sorted /many-sorted /order-

sorted total/partial /non-strict/generalized algebras with/without predicates equipped

by equational/conditional/Horn-Clauses/first-order logic) are endowed with fea-
tures, tailored for special purposees, in order to improve software development; for
example think of higher-order functions and, in the field of concurrency, dynamic
elements, temporal logic combinators, or event logic combinators (see e.g. [1, 4, 7,
8, 9, 10]).

Although it is often the case that the new features are in a sense orthogonal
to the underlying algebraic framework and that the same construction applies to
any sufficiently expressive formalism, in the practice ad Aoc theories are developed,
neglecting the parametric definition such theories are instances of. This lack of
generality is conflicting with the ability of changing the basic formalism, and hence
with the reuse of methodologies, seen as high-level theoretical tools for the software
develonment.

In any real application two steps can be distinguished in the process of getting
the most suiindle algebraic formalism: the choice of the most appropriate basic
algetraic formalism (i.e. sufficiently powerful for the problem, but non-overcomplex)
and the addition of the features needed in the particular case (e.g. entities for
structured parallelism or higher-order functions for functional programming). Thus
here we propose a modular construction of algebraic frameworks, formalized by
means of operations on institutions, used as a synonym for logical formalism, in
order to build richer institutions by adding one feature at a time.

Many constructions used in the practice have meaning only for thoee institutions
that represent “algebraic formalisms”. In order to give sound foundations for the
treatment of such operations, a preliminary step is the formal definition of which
institutions correspond to algebraic frameworks. Here we propose a first attempt at
the definition of algebraic-oriented institutions, that includes all interesting cases.

Technically algebraic-oriented institutions are deacribed by (standard) algebraic
specifications, so that both theoretical and software tools are at hand to help in the
building process; moreover algebraic specification users already have the know-how
to understand and manipulate metaoperations building algebraic formalisms.

Using this definition of algebraic-oriented institutions, we formally define some
operations adding features to basic algebraic frameworks and show that

the result of such operations applied to any algebraic-oriented institution is an
algebraic-oriented institution, too; so that the result can be used as input for other

*This work has been partially supported by Eeprit-BRA W.G. n.6112 Compass, Progetto Final-
insato Sistemi Informatici e Calcolo Parallelo of C.N.R. (Italy), MURST-40% Modelli ¢ Specifiche
di Sistemi Concorrenti

c ofs @

operations, building in such way a formalism as rich as needed by the application.

What is an algebraic-oriented institution Let us give some hints of the basic
characteristics of algebraic-oriented institutions.

Analyzing the algebraic formalisms present in literature it appears that signa-
tures consist in all frameworks basically of a (possibly singleton) set of sorts, a
(possibly empty) family of typed functions and a (possibly empty) family of typed
predicates. Then these ingredients can be structured by means of (meta)functions,
like higher-order functional sort or product sort constructors and accordingly built-
in projection functions, or (meta)predicates, like the subsort relation for order-
sorted signatures, or the observability property on sorts. This leads to characterize
the algebraic-oriented signatures as subcategories of models of any partial alge-
braic specification including a standard part, sketched in the sequel, consisting of
the (meta)eorts S, F and P together with the obvious srity total (meta)functions
and the auxiliary subspecification Streams(sorts S) defining the sort 5_Stream of
streams on S.

spec Tugn =
enrich Streams(sorts S) by
sorts F,P
opns
arity: F — S _Stream
P_arity: P — S_Stream
result type: F — §
axioms
total(arity)
total(P_arity)
total(result type)

Thus, using this powerful internalization, the usual algebraic machinery is at
hand in order to modularly defire the requirements on the syntax, even using rapid
prototyping tools.

Consider as an example of application the definition of order-sorted signatures,
see e.g. [6], where the standard part is enriched by an extra sort to denote the names
of functions, so that overloading can be allowed, keeping distinct the operations from
the names used in the language to denote them, and a binary predicate of subsort
on sorts. Axioms to make the subsort relation a partial order are imposed, too.

opns
name: F — Op_Names
preds
-.£=28Sx8
- <" : S_Stream x S _Stream
axioms
total(name)
s<s
8<F’NS<8Da=s
s<’AS <" D"
A<S*A
w<" WAILH D w<*s v
name(f) = name(g) A arity(f) <* arity(9) D result_type(f) < result_type(g)
- overloding preserves subsorting

- 4=

These axioms define the minimal requirements that any order-sorted signature
should satisfy; note that more sofisticated restrictions can be imposed as well,
like regularity and cokerency, using first-order axioms. Note also that morphisms
between the models of this specification coincide with order-sorted signature mor-
phisms.

Accordingly with signatures, models and sentences have to be restricted. Roughly
speaking models should be some kind of algebras, i.e. they should interpret the el-
ements of sort S by sets, the elements of sort F by (poesibly partial or non-strict)
functions with the correct arity and the elements of sort P by (possibly non-strict)
predicates. In particular all “algebras® used in practice, like many-sorted, partial,
order-sorted, non-strict, etc., can be easily seen in the above way.

Analogously to the choice made for signatures, sentences are defined as term
algebras on uniform enrichments of their signatures by the Var, Term, Atom and
Sen (meta)sorts and the obvious constructors for such sotts, together with the
needed connectives, depending on the application that is intended to be faced, like
first-order operators, temporal logic operators and so on.

An example of operation on algebraic-oriented institutions As an exam-
ple of the operations supported by algebraic-oriented institutions, let us consider
the introduction of elementary features for handling concurrency in any algebraic
formalism. The intuitive idea is that some sorts classify dynamic elements and
hence for any of those sorts a labelled transition system is introduced. Using the
algebraic-oriented framework, this can be formalized by an operation gyn that on an
algebraic-oriented institution AQ = (AOSign, AOSen, AOMod, =A°), whose sig-
nature category AOSign is the model category of a (partial) specification Taosign
enriching Tyign, gives as output the algebraic-oriented institution dyn(.AO), whoee
signature category dyn(AOSign) is the model category of the following (partial)
specification:

spec Tem(ao8ign) =

enrich Taosiga by

opns label:S— S
trans:S — P

preds Dyn:S

axioms P_arity(trans(s)) = s-label(s) s
Dyn(s) ¢« D(srans(s))

- trans is defined only for dynamic sorts
Dyn(s) < D(label(s))

- label is defined only for dynamic sorts

As the signature category dyn(AOSign) is a (full) subcategory of AOSign, models
and sentences for dyn(.AQ) are simply the restrictions respectively of AOMod and
AOSen to dyn(AOSign).

Several instances of this construction have been independently developed in
applicative projects starting from different basic algebraic formalisms (see e.g. [1, 2}).
Note that, as dyn(.AQ) is an algebraic-oriented institution too, it can be used as
argument for further operations, adding a feature at a time, e.g. temporal logic
combinators, in a modular way.

Relationships with other approaches This work continues and adds to (3],
where some operations on institutions were proposed in order to deal with some
uniform earichment of logical formalisms, that, although arisen in the field of con-
currency, have a general character

and can be defined on any institution (and on algebraic-oriented institutions
resujt in algebraic-oriented institutions, t00).

- 225 -

Algebraic-oriented institutions differ from the abstract algebraic institutions by
Tarlecki (see e.g. [11]) not only in purposes, since algebraic-oriented institutions are
designed to support the definition of operations among several institutions more
than constructious on the models of one institution, but also from the technical
point of view. Indeed using only the categorical characteristics of institutions (as
in [11]) we cannot add the features of interest, since they explicitly involve the
components of syntax and the elements of the algebraic models.

Although algebraic-oriented institutions share with parchments (see [5]) the in-
tuition of using usual algebraic machinery to deal with institution ingredients, the
aim of parchments is to define institutions starting from some basic syntactic ele-
ments in a canonical way.

References

[1] E. Astesiano aed G. Reggio. SMoLCS-driven concurrent calculi. In Proc.
TAPSOFT'87, Vol. 1, number 249 in L.N.C.S., Berlin, 1987. Springer Verlag.

[2] E. Astesiano and G. Reggio. A structural approach to the formal modelization
and specification of concurrent systems. Technical Report PDISI-92-01, DISI,
Universita di Genova, Italy, 1992.

[3] M. Cerioli and G. Reggio. Institutions for very abstract specifications. Sub-
mitted, 1992.

[4] G. Costa and G. Reggio. Abstract dynamic data types: a temporal logic
approach. In Proc. MFCS’91, number 520 in L.N.C.S., Berlin, 1991. Springer
Verlag.

[5) 3. Goguen and R. Burstall. A study in the foundations of programming
methodology: Specifications, institutions, charter and parchments. In D. Pitt,
S. Abramsky, A. Poigné, and D. Rydehard, editors, Proceedings of Summer
Workshop on Category Theory and Computer Programming, number 240 in
L.N.C.S., pages 313-333, Berlin, 1986. Springer Verlag.

[6) 3. Goguen and R. Diaconescu. A survey of order sorted algebra. Draft, 1992.

[7] K. Meinke. Universal algebra in higher types. Theoretical Computer Science,
100(2), 1992.

[8) B. Méaller, A. Tarlecki, and M. Wirsing. Algebraic specification with built-in
domain constructions. In Proc. of CAAP’88, number 299 in L.N.C.S., Berlin,
1988. Springer Verlag.

[9] G. Reggio. Entities: an istitution for dynamic systems. In Recent Trends in
Data Type Specification, number 534 in L.N.C.S., Berlin, 1991. Springer Verlag.

[10] G. Reggio. Event logic for specifying abstract dynamic data types. In Re-
cen? Trends in Data Type Specification, number 655 in L.N.C.S., Berlin, 1992.
Springer Verlag.

[11] A. Tarlecki. Quasi-varieties in abstract algebraic institutions. J. of Comp. and
Syst. Science, 33, 1986.

- 226~

On the Correctness of Modular Systems
(Extended Abstract)

Marisa Navarro?
Fernando Ovejas®
Ana Sénchezt

In the design and implementation of a large system modularity is a critical issue. Large systems need 10
be divided into blocks so that system development becomes more manageable, clear, modifiable and
reusable. These blocks, known as modules, are self-contained entities with individual meaning that are
connected among them in such a way that their interconnections define the intended software sysiem.
System design involves both the construction of the module structure at the specification level and the
implementation of cach module. Since implementation only appears at the level of each module, it would
be desirable to ensure that the correct implementation of each module should guarantee the correct
implementation of the whole sofiware system.

In this paper, we study the correctness of modular systems in a simple framework, including both
specification design and implementation. This framework may be described as follows:

We consider two institutions, SPEC and PROG, underlying the specification and programming
languages, respectively. For simplicity, we assume that both institutions share the same category of
signatures and the same mode! functor, i.c. they differ in the Sent functor and on the satisfaction
relation. Additionally we assume that both institutions are semiexact, i.c. they have pushouts and
amalgamations [EBCO 91), and are equipped with an inclusion system [DGS 91].

A module M is assumed 1o be a pair of specifications, M=(IMP,EXP), with IMPCEXP, where IMP and
EXP denote, respectively, the import and export specifications of M. The results obtained can be
generalized to more complex forms of modules, such as [EM 89, ST 89). Its meaning is given by an
associated constructor xp: Mod(IMP) ~» 2MOd(EXP) [ONS 91]. If M1=(IMP1,EXP1) and
M2=(IMP2,EXP2) and f: IMP1 — EXP2 is a specification morphism then we define the composition
M1 o¢ M2 as (IMP2,EXP2’), where EXP2' is defined by the following pushout diagram:

IMP| ~————= EXP1

f PO

IMP2 ————eeeeppr EXP2 =m———> EXP2'

t Depto. Leng. y Sist. Informsicos. Universidad del Pais Vasco. San Sebastian, Spain

* Depio. Leng. y Sist. Informsticos. Universidad Politécnica de Catalufis. Barcclona, Spain

-3~

Al the model level, the constructor associated to M1 ef M2 is defined by x-xM2, where x is the
extension of XM with respect to the above pushout diagram.

A sofiware system S is assumed to be a triple (SP, MSPEC, MPROG), where SP is a requirements
specification, including the signature of the whole system and the global properties that must be
satisfied. MSPEC and MPROG are, respectively, (finite) sets of specification and program modules
whose signatures are inciuded in the signawure of SP. In general, we assume that systems may be
unfinished. For instance, the signature of SP may not necessarily be the “union” of all the signatures of
the modules in MSPEC, i.c. some components of the system may be not specified yet.. Also, every
module in MPRQG is the transiation of a module in MSPEC (its implementation in the given
programming language) but there may be some modules in MSPEC whose translation is not in MPROG
(i.c. modules not yet implemented).

In order to define the semantics of a system S = (SP, MSPEC, MPROG) we consider the modules as
"constraints™ that must be satisfied by the given models: an SP-model A "salisfies” or “include™ a
module M = (IMP, EXP), A=M iff AIEXP = xM(Al}MP), i.¢. if the EXP-part of A is the result of
applying xM to the corresponding IMP-part. If S is finished in the above sense, then its meaning can
also be defined in terms of the composition of all the modules in MSPEC. Both semantics can be proved
compatible (see [OSC 89] for a special case). In the latter case, the semantics can also be defined
equivalently in terms of the composition of ail the modules in MPROG.

We consider three basic operations for system development: adding a new specification module to the
given system; adding a new program module "translating”™ a specification module in the sysiem, and,
finally, specifying a simulation implementation [ONS 91). In the latter operation, we assume thal given
two specification modules M1 = (IMP1, EXP1) and M2 = (IMP1, EXP2) in the system, such that M2
can not be directly translated into the programming language, if we find out that a new specification
module M3 is an implementation of M2 using M1 (with respect to some suitable notion of behavioural
equivalence [Rei 81, ONS 91] in the given institutions), i.c.

VA eMod(IMP1) xM3eMI(A) mBeh XM2(A)

then we can substitule M2 by M3 in the system. For instance, if M2 is a module specifying sets, M1 is a
module specifying strings and M3 is a module enriching strings with set operations such that the result
of forgetting the string operations in the module M3 @ M1 is behaviourally eqmvalem to M2 then we can
substitute the set specification by the two modules M1 and M3.

Unfortunately, it may be shown that the latter operation, in general, does not preserve the consistency of
a system, as the following counter-example shows. Let SP1, SP2 and SP3 be the following
specifications:

SP1 = NAT + sorts s SP2 = sorts nat, s SP2 = SP2 + opus g:s— nat
opns ab:s opns as eqns g(a) = f(a)
eqns a=b

fix)=0

where NAT denotes the specification of the natural numbers. Now let S be the system formed by the
modules M1 = (@, NAT), M2 = (NAT, SP1) and M3 = (SP2, SP3), then it can be easily shown that the
algebra A defined Apar = N, Ag = {a), aA =bA =2 and fA(3) = 0, gA(a) = O satisfies the three modules
(assuming that the constructor associated to a module coincides with the associated free construction).
Now, let SP4 be the following specification

-228~

c of)e @

G ima e v e

SPI' = NAT + sorts s
opas ab:s
f:s —nat
eqns f(x)=0

and let M2’ be the module (NAT,SP1’). Now, assuming that nat is an observable sort and s is non-
observable, M2' is a correct simulation implementation of M2. However, there does not exist any
algebra satisfying M1, M2' and M3.

This seems to be against the principle of modularity. However, let us assume that the given
programming language is stabie in the following sense (related notions of stability [Sch 87, ST 89] are
essentially equivalent):

Given a program module M = (IMP, EXP) if A is behaviourally equivalent (0 A', with A, A'e Mod(SP),
for a specification (or program) SP including IMP, and if the amalgamated sums A+AQAl and
A'+AQAl can be built (i.c. the language allows the pushout associated to these amalgamations), where
A0 = AlfMP, A0'sAIIMP, Al= XM(A0D) and Al' = xM(AQ') then A+AQA] and A'+AQ'AL’ are
behaviourally equivalent.

Then, the problems shown in the above counter-example are not really important, In particular, if $'is
a finished system, obtained after a series of correct development steps from a system S, then the
meaning of the composition of all the modules in MPROG is a realization of S, even if some
“intermediate” systems were inconsistent.

Theorem

Let S = (SP, MSPEC, MPROG) be a consistent system and let $' = (SP, MSPEC', MPROG'), with
SP ¢ SP be a finished system obtained afier applying a sequence of translation and implementation
steps over S, then Sem(S') = {Ae Mod(SPY VM € MPROG' Ar M) # @.and, in addition,
VAe Sem(S') 3Be Sem(S) such that

AlSp=Beh B

ACKNOWLEDC EMENTS

This work has been partially supported by ESPRIT Basic Research Working Groups CCL (Ref. 6026)
and COMPASS (Ref. 6112).

References

[BH 93) M. Bidoit, R. Hennicker A general framework for modular implementations of modular
system specifications, in Prc. TAPSOFT 93 (Orsay, France), Springer LNCS, 1993,

[DGS 91] R. Diaconescu, J. Goguen, P. Stefaneas: Logical suppont for modularisation, PRG Oxford
University, August 1991,

- 29~

[EBCO9i] H. Ehrig. M. Baldamus, F. Cornelius, F. Orejas: Theory of algebraic module

(EM 85]
[EM 89)
[GB 84)

[ONS 91)

(OSC 89]

{Rei 81}

{Sch 87]

(ST 88}

[ST 89]

specifications including behavioural semantics and constraints, Proc. AMAST 91, to
appear in Springer.

H. Ehrig, B. Mahr: Fundamentals of Algebraic Specifications 1, Springer 1985.
H. Enrig. B. Mahr: Fundamentals of Algebraic Specifications 2, Springer 1989.

J.A. Goguen, R.M. Burstall: Introducing institutions. Proc. Logics of Programming
Workshop, Carnegie-Mellon. Springer LNCS 164, 221-256 (1984).

F. Orejas, M. Navarro, A. Sinchez: Implementations and behavioural equivalence: a
survey. Invited Lecture. 8th Workshop on Specification of Abstract Data Types (Dourdan,
1991). To appear in Springer LNCS.

F. Orejas, V. Sacristan, S. Clérici: Development of algebraic specificalions with
constraints. Proc. Workshop on Categorical Methods in Computer Science with Aspects
Jrom Topology. Springer LNCS 393, 102-123 (1989).

H. Reichel: Behavioural equivalence - a unifying concept for initial and final specification
methods. Proc. 3rd. Hungarian Comp. Sci. Conference, 27-39 (1981).

O. Schoett: Data Abstraction and the Comrectness of Modular Programming. Ph.D. thesis;
Report CST-42-87, Dept. of Computer Science, Univ. of Edinburgh (1987).

D.T. Sannella, A. Tarlecki: Toward formal development of programs from algebraic
specifications: implementations revisited. Extended abstract in : Proc. Joint Conf. on
Theory and Practice of Software Development, Pisa, Springer LNCS 249, 96-110 (1987);
full version in Acta Informatica 25, 233-281 (1988).

D.T. Sannella, A. Tarlecki: Toward formal development of ML programs: foundations and
methodology. LFCS Repornt Series Department of Computer Science, University of
Edinburgh ECS-LFCS-89-71(1989).

INTERACTION BETWEEN ALGEBRAIC
SPECIFICATION GRAMMARS AND
MODULAR SYSTEM DESIGN

Hartmut Ebrig' and Francesco Parisi-Presicce?

! Fachbereich Informatik
Technische Universitit Berlin
D-100 Betlin 10 Germany
? Dipartimento di Matematica Pura ed Applicata
Universitd degli Studi L'Aquila
67100 L’Aquila Italy

For the last 20 years, abstract data types have been (usefully) described using
algebraic specifications, within different frameworks including equational institu-
tions, and with diverse semaatics, from initial to loose to stratified to behavioral.
An extension of the original formulation which allows to isolate a variable part (thus
generalizing parametrized specifications) and to Aide details of the specification from
the outside has been defined in (9, 1, 5]. A module specification in such a framework
consists of four parts : an export interface EXP specifying what the module specifi-
cation produces, an import interface IMP describing what the module specification
consumes or needs, a body part BOD describing how the module specification uses
the imported items to construct the exported ones, and a parameter part PAR which
can be actuslized by different actual specifications and which is left unchanged by
the semantics of the module specification, which is a functorial transformation from
the category of models of IMP to the category of models of EXP. The different parts
are related by four specification morphisms (usually inclusions) as in the following
diagram

e

PAR EXP

i v

IMP BOD

The items not in the image of v are to be considered hidden and thus not visi-
ble from other modules. Each module is seen as a self-contained unit which can be
developped independently and interconnected with other modules. Three basic in-
terconnection mechanisms have been defined to construct complex systems : a snion
MOD1 4x0p0 MOD?2 where each part is the union of the corresponding ones in
MOD1 and MOD?2, identifying the MODO part; an sctuslizetion acty(PS, MOD),
where a parametrised specification PS is substituted via the specification morphism
h for PAR in each component of MOD; and a composition MODI o, MOD?2, where
the import IMP] is matched via h with the export EXP2. Each interconnection can
be viewed as an operation on module specifications which preserves correctness and

- 23~

c« of)e @

which produces a module specification whose semantics can be expressed in terms
of those of the operands.

Given a library LIB of module specifications, an important problem is to de-
termige whether there is a way to interconnect & subset of LIB so that the im-
port and export interfaces of the overall system are some given specifications BASE
and GOAL. This problem has been tackled in [11, 12, 13] by considering the vis-
ible part of MOD, i.e., the specifications PAR, IMP and EXP, as a production
p:IMP — PAR — EXP similar to those of the algebraic theoty of graph gram-
mars [2]. A direct derivation p : SPEC = SPEC’ with such a production p is a
double pushout diagram

IMP PAR EXP
SPEC «——— CON SPEC’

where CON is the context specification unchanged by the transformation. Denote
as usual by =* the reflexive and transitive closure of =.

It has been shown in [12, 13] that, given a library LIB of module specifications
represented by their interfaces PRO = {p; : IMP, — PAR; — EXP,,i € I},
then BASE =* GOAL using PRO if end only if there exists an interconnection,
using only actualisation and composition with identity, of (some of) the module
specifications of LIB such that BASE and GOAL are the overall import and export
interfaces, respectively. This result can be seen as a way to construct a prototype
of a system which, given a (built-in) realisation of BASE, provides a realization of
GOAL (which can be used to test the adequacy of the specification) since there is
a systematic way of transiating a derivation sequence BASE =>* GOAL into the
appropriate combination of the interconnections.

The tnritial item BASE and the set of productions PRO define a grammar, an
algebraic specification grammar [6] which generates a language L(BASE,PRO)
whose membership problem cotresponds to the realizability of GOAL.

This solution is not satisfactory for two reasons : the first one is that not every
interconnection can be obtained from a derivation sequence (in particular, general
compositions with non-identity matching morphism IMP1 — EXP2) ; the sec-
ond one is that an occurrence morphism IMP — SPEC does not guarantee the
applicability of the production {11], while it should be poesible to use only part
(namely A(IM P)) of SPEC as input of MOD. This suggests the notion of restricting
derivation sequences SP0 3> SPn with

SP0 — SP1=SP1' —~SP2=...~SPn
where, having generated SPO, we can generate SP1’ provided that there exist SP1
and a specification morphism SP1 — SPO such that SP1 = SP1’. We then have

Theorem 1. BASE » GOAL via the productions PRO

if and only if

there exists an interconnection with general composition and actualization wsing LIB
with overall interfaces BASE and GOAL.

- 232 =

¢ o@e @

It is direct to show that if SP =* S, then SP » SP’ but not necessarily
viceversa and it has been shown [14] that the immediate extension of restricting
derivation sequences to graphs is more expressive than the single pushout approach
to graph transformations {10].

The approach caa be extended is a straigthforward manner to High Level Re-
placement Systems [3]. Such systems have been defined to generalize, in an axiomatic
way to arbitrary categoties, the Parallelism Theorem, the Concurrency Theorem and
other similar results typical of the algebraic theory of graph grammars [2]. By se-
lecting a distinguished subset M of morphisms to be used in the productions, High
Level Replacement Systems can be classified (at least) as HLRO, HLR0.5, HLR0.5%,
HLR] and HLR1* depending on which set of generic properties on the underlying
category they satisfy and which are sufficient to guarantee properties such as local
confluency of independent derivations (Church-Rosser property) or replacing a se-
quence p; o p; of independent derivations with one step using their disjoint union
p1 + p2 (Parallelism Theorem).

Receatly (4], results on canonical derivation sequences for graph grammars have
been extended to HLR systems. It has been shown that canonical derivations exist
for HLRO.5 systems and are unique for HLR1* systems. A canonical derivation is a
derivation which does not contain two steps p, : G0 = Gl and p+ p2 : G1 = G3
where p; : GO = Gl and p : G1 = G2 are sequentially independent. For non
canonical derivations in which such a situation occurs, the application of p could
be shifted eariier to obtain the equivalent derivation sequence p + py : G0 = G2,
P21 : G2 => G3 which increases the leftmost paralleliam. Equivalence of derivations is
defined as the reflexive, symmetric and transitive closure of the shift relation.

Of the three possible ways of defining the category of algebraic specifications
considered {6, 4] only the one which allows to distinguish, through labels, equations
between terms is the one which guarantees unique canonical derivations, while if
the specification morphisms f : SPEC1 — SPEC?2 are such that f#(E1) is either
derivable or contained in E2, then every derivation has an equivalent canonical one,
which is not necessarily unique.

Canonical derivation sequences can be used to check the equivalence of modular
systems. There are several ways of defining equivalence between modular systems,
among which: :

— Slequiv; S2 if the flatiened versions obtained by applying as operations the in-
terconnections have isomorphic interfaces
— Slequiv;S2 if, in addition, the corresponding semantical functors are naturally
isomorphic
— SlequivsS2 if the flattened versions are isomorphic
Having the possibility of defining & unique canonical equivalent structuring of a
system allows the testing for the equivalence of two arbitrary systems by comparing
their canonical forms. By using equiv; as our notion of equivalence and by limiting
the systems to using only disjoint union, actualisation and identity composition and
the most restrictive form of specification morphisms (called SPEC3 in {7]) we have

Theorem 2. Every modular system hos e unigue canonical equivalent one

-2~

e of)e @

We expect to be able to extend this result to equivalence according Lo equivy

and to systems built using general composition.

References

1.

2.

10.

11.

12.

13.

14.

E.K.Blum, H.Ehrig, F.Parisi-Presicce: Algebraic Specifications of Modules and their
Basic Interconnections. J. Comput. Syst. Sci. 34 (1987) 293-339

H.Ehrig: Introduction to the Algebraic Theory of Graph Grammars. First [nternational
Workshop on Graph Grammars, Springer Lecture Notes in Computer Science 73 (1979)
1-69

. H.Ehrig, A.Habel H.-J Kreowski F Parisi-Presicce: Paralldism and Comcurrency in

High Level Replacement Systems. Math. Struct.in Comp. Science 1 (1991) 361-406

. H.Ehrig,H.-J. Kreowski, G.Taentser: Canonical Derivations for High-level Replacement

Systems. Techn.Report 6/92, Univ. Bremen, FB Mathematik und Informatik, Dec 1992

. H.Ehrig, B.Mahr: Fundamentals of Algebraic Specification 2.Module Specifications and

Coastraints. EATCS Monograph on Theoretical Computer Sdence,vol 21,Springer Ver-
lag 1990

. H.Ehrig, F.Parisi-Presicce: Algebraic Specification Grammars: A Junction between

Module Specifications and Graph Grammars. Proc. 4th Int. Workshop on Graph Gram-
mars, Springer Lecture Notes in Computer Science 532 (1991) 292-310

. H.Ehrig, F.Parisi-Presicce: High Level Replacement Systems for Equational Algebraic

Specifications. Proc. 3rd Int. Conf. on Algebraic and Logic Programming, Springer
Lecture Notes in Compater Science 632 (1992) 3-20.

. H.Ehrig, M.Pfender, H.J.Schneider: Graph Grammars : an algebraic approach. Proc.

IEEE Conf. SWAT 73, lowa City (1973) 167-180

. H.Ehrig H.Weber: Algebraic Specification of Modules. in *Formal Models in Program-

ming” (E.J.Neuhold and G.Chronist, eds.), North-Holland (1985) 231-258

M.Lowe: Extended Algebraic Graph Transformation. Doctoral Dissertation, Technische
Universitat Berlin Feb 1991, 180 pages

F.Parisi-Presicce: Modular System Design applying Graph Grammar Techniques. Proc.
ICALP 89, Springer Lecture Notes in Computer Science 372 (1989) 621-636
F.Parisi-Presicce: A Rule Based Approack to Modular System Design. Proc. 12th In-
ternat. Conf. Soft. Engin. (1990) 202-211

F.Parisi-Presicce: Foundations of Rule-Based Design of Modular Systems. Theoret.
Comp. Sci. 83 (1991) 131-155 :

F.Parisi-Presicce: Single vs. Double Pushout Derivations of Graphs. Proc. 18th Int.
Workshop on Graph Theoretic Concepts in Comp. Sci. Springer Lecture Notes in Com-
puter Science 657 (1993) 248-262

This article was processed using the IXTEX macro package with LLNCS style

-234~

« of)e @

Specification of Hybrid Systems in CRP

R.K. Shyamasundar
Tata Institute of Fundamental Research
Homi Bhabha Road, Bombay 400 005, India
e-mail: shyam@tifrvax.bitnet

Abstract

Concurrent languages can be broadly categorized into:

1. Asynchronous: A program is a set of loosely coupled independent execution
units or processes, each process evolving at its own pace. Interprocess com-
munication is done by mechanisms such as message passing. Communication
as a whole is asynchronous in the sense that an arbitrary amount of time can
pass between the desire of communication and its actual completion. This class
includes languages such as Ada, Occam, CSP etc.

2. Synchronous: Here, programs are thought of as reacting instantaneously to
its inputs by producing the required outputs. Statements evolve in a tightly
coupled input-driven way and communication is done by instantaneously broad-
casting, the receiver receiving a message exactly at the time it is sent. Languages
such as Esterel [BeGo 92}, Lustre, Signal, Statecharts belong to this category.

Receatly, we have proposed [BeRaSh 93] a new programming paradigm called Com-
municating Reactive Processes (CRP) [BeRaSh 93] that unifies the capabilities of
asynchronous and synchronous concurrent programming languages with a view to
specify complex reactive systems which usually have both synchronous and asyn-
chronous features. A CRP consists of a network of Esterel programs where each
node can be considered to be reactively driving a part of a complex network that
is handled globally by the network. The central idea of establishing asynchronous
communication between nodes lies in extending the asynchronous interaction into a
communication primitive. The usual send and receive asynchronous operations are
represented by particular tasks that handle the communication. A spectrum of mes-
sage passing types such as non-blocking send for full asynchrony, or CSP-like send
and receive primitives etc. are possible! through CRP.
In this paper, we show that

o CRP can model asynchronous systems operating in dense real-time domains,
and
lIn the full paper, we will discuss the above classification in the context of cooperation-
synchronism and communication-synchronism and the expressivity of CRP with reference to such s
classification.

-235-

¢ ofe @

e CRP can model "continuous” computations and thus, provides a convenient
formalism for specifying hybrid systems.

A broad structure of the paper is given in the following.

1 Hybrid Systems

Hybrid systems are systems that combine discrete and continuous computations. To
represent continuous computations, hybrid system model contains activities that mod-
ify their variables continuously over intervals of positive duration, in addition to the
familiar transitions that change the values of variables instantaneously, representing
the discrete components. It should be obvious that many systems that interact with
a physical environment such as a digital module controlling a process or a manu-
facturing plant, a digital-analoy guidance of transport systems, a control of a robot
etc., can benefit from the more detailed modeling proposed by the comprehensive
framework of the hybrid model. Various abstract models for systems for handling
real-time and ”continuous” computations have been proposed recently in [KePn92,
MaPn92, NSY92]. There have been several definitions of hybrid systems. One of
the definitions corresponds to specifying behaviour sequences explicitly denoting the
absence/presence of signals at the timed transitions. Our notion of hybrid systems
corresponds to the one defined in [KePn92] based on hybrid traces. In this paper, we
adapt the CRP [BeRaSh 93] formalism for the specification of hybrid systems and
show that it provides a convenient vehicle for specifying hybrid systems. In addition
to the implementation of CRP on top of Esterel, the tools and environment of Esterel
can be effectively used for the development and verification of CRP programs.

2 Behavioural Specification of Clocked CRP Pro-
grams

We start with the addition of the tick signal in the behaviour specification of pro-
grams as in the case of semantics for the hardware implementation of Esterel [Be 92].
Due to the limited space, we will highlight informally the main features. A brief look
at the execution history of a CRP program provides some understanding of the main
aspects of CRP and hybrid computations.

A history (Esterel or CRP node) is a sequence of events E,, Ej,---,E,,---; for
convenience, we denote E; by I,.0; where I; and O; denote the input and the output
events in the ith instant respectively. In a clocked CRP program every instant consists

of the input signal tick.
A history is said to be CRP valid if it satisfies the following properties:

1. The history satisfies all the declared exclusion relations.

2. Vi, tick € I.
Every input instant contains the special signal tick.

o When programming digital circuits it will naturally denote clock ticks
(which corresponds to integer domain of time).

- 236~

o For dense-domains for time,

- we consider the signal tick with values. For instance, the signal
tick(v) in I, could indicate an elapse of v € R units of time from
the last occurrence of tick.

— further, the sequence of tick's with values forms a progressive se-
quence; that is, it does not form a Zeno sequence.

3. Asynchronous signals satisfy:

o An event is received only after requested.

o The start- and receive- of an asynchronous request cannot happen in the
same instant.

4. Vi, || 4+ |0:] < oo. That is, it satisfies the property of finite variability,
namely, the state changes only finitely often throughout any finite interval of
time. That is, between any two consecutive input instants containing tick
there can be only 2 finite sequence of events.

We adapt the clocked CRP behavioral specification for hybrid system specifica-
tion and establish that CRP provides a convenient description for hybrid systems
permitting the use of verification tools for Esterel/CRP by:

1. Restricting the behaviour specification for progressive systems, i.e., systems that
do not admit Zeno sequences.

2. Relating the asynchronous signals with a finite set of continuous activities.

3. Relating the behaviour specification of clocked CRP to the two broad types of
computations based on hybrid traces (cf. [MaPn 92}):

(a) Sampling computations having the signature N — ¥ x R* where each
natural number, j, is mapped to a pair consisting of a state s; and a real-
time stamp ¢;.

(b) Super-dense computations? having the signature R* x N ~+ I; that is, it
maps each pair < ¢,i >, wheret € R* and ¢ € N, to a state s € ¥ and the
step numbers correspond to the transitions that are taken at time instant
t.

4. Relating causally correct clocked CRP programs to timed graphs and finitely
satisfiable TCTL formulas.

3 Illustrative Examples

We illustrate specification of hybrid systems through clocked CRP by the following
examples:

3The advantages/disadvantages of super-dense computation semantics and sampling computation
semantics will be discussed in the full paper.

-23F -

1. We describe the Cat and Mouse problem (cf. [MaPn 92]) and show, how the
CRP formalism provides a convenient description including the priority for the
Mouse (or the cat) when they reach the target/destination simultaneously.

2. Next, we consider the specification of a controller for controlling the flight path
of a communication satellite. Due to various uncertainties at the various stages
(due to energy and other motor characteristics) of the launch, it is not possible
to pre-progranm the flight-path of the rocket so as to result in the desired end-
conditions within the specified tolerances. Thus, there is a need to determine
the flight path from instant to instant to keep the flight path within the specified
tolerance limits. Hence, the control needs to be asynchronous (where events can
happen arbitrarily close to each other). We show that clocked CRP provides a
convenient formalism for specifying such hybrid systems.

The paper concludes with a discussion of the relative comparison of the formalisms
for hybrid specifications such as variants of Statecharts and other formalisms, and also
the use of Esterel tools in the development of CRP programs.

Acknowledgment

It is a pleasure to thank Professor Amir Pnueli whose lectures on hybrid systems at
TIFR clarified various subtle aspects of hybrid system specification.

References

[Be 92] G. Berry (1992), A hardware implementation of pure Esterel, SAD-
HANA: Special Issue on Real Time edited by RK Shyamasundar,
Academy Proceedings in Engineering Sciences, Indian Academy of Sci-
ences, 17 (1):95-139, 1992.

[BeGo 92] G. Berry and G. Gonthier (1988), The Esterel synchronous programming
language: Design, semantics, Implementation, Rapport de Recherche
842, INRIA 1988, Science of Computer Programming, Vol. 19, No.2,
Nov. 92, pp. 87-152.

[BeRaSh 93] G. Berry, S. Ramesh and R.K. Shyamasundar, Communicating Reac-
tive Processes, 20th Acm Symposium on Principles pf Programming
Languages, South Carolina, Jan. 1993.

[KePn 92] Y. Kesten and A. Pnueli, Timed and hybrid Statecharts and their teztual
presentation, LNCS 571, pp. 591-619, 1992.

[MaPn 92] Z. Manna and A. Pnueli, Models for Reactivity, TR, Stanford, 1992 (an
earlier version presented at the 25th Anniversary of INRIA)..

[NSY 92] X. Nicollin, J. Sifakis, and S. Yovine, From ATP to timed graphs and
hybrid systems, LNCS 600, pp. 549-572, 1992

- 238 -~

. TR o - W

Real-Time Program Synthesis from Specifications

Aurel Cornell!, John Knaack!, Amitabh Nangja!, Teodor Rust
t Brigham Young University, Department of Computer Science, Provo, Utah
! The University of Jowa, Department of Computer Science, lowa City, IA 52242

1 Introduction

Real-time systems are characterized by their umbilical connection to the environment [Wirt77).
They are most often modeled as event driven systems where the occurrence of events dictates a
timed response by the system [Dasa85, Jaff91). Such a behavior is naturally described by a state
transition diagram [Best91]. The goal of this paper is to initiate the development of an algebraic
methodology for real-time program development that is convenient for the programmer and allows
easy proof of the correctness of real-time programs. This methodology is algebraic in nature in the
sense that program development is closer to the development of algebraic computations rather than
to the development of programs using conventional languages. Following this methodology a real-
time program is developed in two steps: first the behavior of a real-time system is specified using a
real-time system specification language and then, this behavior is automatically transformed into a
semantic driven antomaton [Rus91, Knaa92] that implements the real-time program. Consequently,
no programming activity in the usual sense is involved. A similar approach for real-time program
development is described in [Nico92]. The difference is that our real-time system specification
language is a regular language on the alphabet of conditional-actions similar to guarded-commands
[Dijk75] while in [Nico92] a language of timed processes [Nico91] is used. In addition, the abstract
time used to model the time is different in the two approaches.

2 Real-Time System Specification by Regular Expressions

We consider that any specification language must be provided with a capability for abstraction
manipulation that consists of: a mechanism for type definition, a mechanism for object declaration,
and a mechanism for application specification. We propose a language capable of specifying the
behavior of a real-time application where each specification contains two sections: a declaration
section which specifies the types and variables of those types that will be used, and a behavior
specification section which specifies the application in terms of the declared variables, as seen
below. The declaration section specifies the state of the system seen as the interpretation of the
collection of names used in the real-time system, o : Names — Values. Let T be the collection of
states of a given real time system. The behavior of the system is stepwise specified in terms of two
well-understood constructions:

e State transitions, 7 : & — I, expressed by named conditional actions of the form 7 :
{(Condition — Action) interpreted as “when Condition holds the Action is performed”.

o Composition of state transitions using regular operators. That is, if a and b are state tran-
sitions then (1) the concatenation of ¢ and b denoted a b, (2) the choice of a or b denoted
ajb, and (3) the repetition of a state transition a known as Kleene star and denoted by a* are
state transitions.

- 239~

@ @

@&

2.1 Declaration Section

The real-time system specification language discussed here allows one to express the behavior of
the real-time system as a continuous interaction between the system and its environment. During
this interaction the system receives data from the environment that determines the system state
transitions; during the state transition the system may receive or send data in the environment
affecting it as well as change the state. This behavior is accomplished by considering the environ-
ment as a collection of typed communication channels. The basic typed channels are abstract and
predefined and are represented by the usual types boolean, integer, character, string, etc.,
whereas the channels specific to the real-time applications are defined in the application and their
objects are constructed in terms of the basic type objects. For each channel a and variable z of
type a the following operations may be defined: send(z, a) that sends the value of z on the channel
a, receive(z,a) that assigns to z the current value on the channel a, and set(z,t) that sets the
value of the variable z to a value t of type a, denoted by z := t. The constructed types specific to
real-time applications considered here are:

Time: In this paper time is an algebraic structure T = (T, 0, +, <) as in [Nico92] where
1. (T,0,+) is a commutative monoid such that Vt,,t; € T {t, + t; = t;] implies ¢, = 0.
2. <is a total order on T such that ¥¢;,t € T [t, < t3] =33 €T [ty +t3 = t3].

Practically, time is implemented by a channel on which time is continuously ticking. That is, at
any insiance a receive operation on this channel returns an object of type time that represents the
real-time elapsed from the starting of the application until the moment when the receive operation
has been executed. Note that send(z,time) is not defined. If z is of type Time where Time is a
channel of type time then set(z,t) assign the value t of type time to z and z := receive(Time)
sets z to the value t 4+ § where § is the real time elapsed since the last set of z to the time ¢t. The
functioning model of a real-time system in this paper is considered as taking place in real time
and independently of the time. That is, while state transitions of the real-time system take place
as described by the equations specifying the system, the time continuously ticks independently.
The time becomes visible only when a variable z of type Time is checked by an z := get(Time)
operation.

Text: An object of type text is a string.

Analog: This type describes analog devices that are controlled by the real-time system, or that
are used to sense the real world. A get operation on an analog channel returns an analog value that
represents the current measured quantity as sensed by the device, such as temperature, density,
speed, etc. A send operation on an analog channel may activate a device such as a stepping motor
or audible tone generator.

Digital: This type describes digital devices used to sense the environment, or to be controlled
by the environment. A digital input channel may be a switch whose status can be read and that is
operated by a human, and a digital output channel may be a control which starts a fan, turns on
a heating element, etc.

The variable in terms of which system behavior is specified are of the types of channels defining
the system. The variable declarations in a real-time system are analogous to variable specifications

- 240 -

« e@o @

in a conventional language, i.e. variables are defined over several types (some of them unique to
real-time systems). Since all these types are predefined, we need merely to declare a variable of
one of these types by specifying a name representing an instantiation of the type.

2.2 Behavior Specification Section

The behavior of the real-time application is represented by a system of conditional equations
[Knaa92, Rus92] specifying a semantic driven automaton, denoted by SDA. Since the primary
behavior of an SDA depends on the content of the data it receives from its environment, the SDA
maust check conditions on these data in order to know when to move from one state of the real-time
application machine to the next and aiso what actions to perform as it changes state. That is, a
state transition is a description of the conditions that allow a move from one state to another. The
description consists of a test of the real-world conditions in the application’s environment, and of
the actions to perform while changing state.

A condition is a predicate which tests properties of a message from a channel. For example, let
Temperature be a channel and Temp be a variable of type Temperature. Then if the SDA must per-
form some action if the temperature exceeds 350 degrees, it must perform Test = get(Temperature)
and then if Temp > 350 the SDA will change state performing some specified action, such as shut-
ting off a heating element, as it does so. Conditional expressions [Knaa92] consist of either single
conditions or conditions connected by logical operators and, or and not. Thus, information from
multiple channels can be tested in the same conditional expression.

The primitive actions performed by an SDA are:

1. send data z to the channel a, send(z, a).
2. receive data z from a channel a, z := receive(a).

3. Do nothing, denoted by idle. This action never terminates. The only way to get out of it is
through a preempt operation [Kest92).

4. Skip action denoted by skip. This action does nothing and terminates in a single execution.

5. Wait for a condition C to be satisfied denoted by wait(C). This action terminates only when
C becomes true.

6. Assignment action denoted by z := E where z is a variable, E is an expression (possibly
including a function call) and the type of z is the same as the type of E.

A transition has two parts:

1. A conditional expression which is a predicate over the language of conditions on variables of
the types defining the real-time system. An empty condition is interpreted as always true.

2. A list of actions to perform when the condition is satisfied. This can be a (possibly empty)
list of send, receive, and assignment statements which can modify the value of variables.

-2t -

A transition in this language has the form id : (condition — actionlist) where id is a transition
name, condition is a conditional expression as defined above, and actionlist is a list of actions which
actually control the channels making up the real-time system. In this manner each transition defined
is represented by a name. The collection of transition names used in a real-time specification is
called the alphabet of transitions.

The specification of a real-time system consists of a set of conditional equations over the alphabet
of transitions. The equations are of the form id = regular expression where id is either a transition
name, one of the names “Start”, “Stop”, or “Error”, denoting the start state, terminate state, and
calling an error manager, respectively, or the left-hand side of a previously defined equation. The
regular ezpression utilizes the usual regular operations of concatenation, choice and Kleene star
over the set of transition names to specify a finite-state machine.

A complete example follows. It is provided by the set of equations that specifies the behavior
of an oven [Corn92]. The environment is specified by the following table:

Channels [Type [Names
| Time time Timer, Update Integers denoting seconds

Temperature | analog | Temp Integers denoting centigrades

Commands | digital | Cmd, Heat, Cool | Integers denoting booleans
ggeﬁned integer | Hyst, SetP, Integer numbers

Text Message | M1, M2 Text of messages

The transition equations describing the oven behavior are:

T\ : (— Heat:=0;Timer :=0; Hyst := 1; SetP := 100; Update := 1)

T; : (Timer=0and Cmd=1— skip)

Ts : (Temp< SetP — Hyst — send(M1,Tezxt); Heat := 1;Cool := 0)

Ty : {(Heat=1— Cool:= 0;Timer := Update; Heat := 1; M1 := receive(Tezt))

Ty : (Heat=0— Cool :=0; Heat := 1; send(M2, Tezt))

Te : (Temp> SetP + Hyst — Cool := 1; Heat := 0; send(M1,Tezt); Timer := Update)
T; : (Cool=1— Cool:=0; Heat := 0; Timer := Update; M1 := receive(Tezt))

Ts : {(Cool =0 — Cool := 1; Heat := 0; send(M2, Tezt))

Ts : (Timer =0 and Cmd =0 — Heat := 0; Cool := 0; Timer := 0; send(M1,Tezt))
Tio = (Ts(T(TITo)Ts(T5IT4)))

Tu (To(T2T2)|(To(T+IT5)))

Start = (T(Ta(ToolTu|)T T2IT5)))"

]

3 Expressive Power of Semantic-Driven Automata
A semantic driven automaton is controlled by the properties of the tokens it recognizes instead

of being controlled by their syntax. The semantic driven automaton that recognizes transition
equations specifying the real-time system is described by a two-level transition table (Knaa92] and

- z‘z-

e« ofe @

——

is equivalent to the program controlling the real-time application. Since time is a type of a real-time
system, variables of type time can be defined and initialized in the systems specification part. These
variables can be set, their values can be tested and used in various conditions defining the transitions
of the real-time application. Therefore, a semantic driven automaton that uses time-conditions in
its transitions is a timed-automaton [Nico92]. However, any kind of real-time device and condition
can be easily integrated in the real-time specification language defined in this paper. Therefore,
the semantic driven automata provide a unifying mechanism for real-time program synthesis from
specification.

In order to show the expressive power of semantic driven automata we will sketch here the proof
that if a computation can be expressed using a conventional language then that computation can
be expressed by conditional equations specifying a semantic driven automaton. For that we will
consider the statement as the unit of computation specified by conventional languages and will show
that any construct expressing control-flow on statements can be expressed by regular expressions
using conditional expressions.

Let S, and S; be statement labels and E be a boolean expression. Then we have:

1. The concatenation of S,; S, is a regular expression S; 5;.

2. The branching statement if E thcnS, elseS; can be expressed by the regular expression
S:(E—5),8":(~E—~S5),5=825".

3. The while loop while E do S, can be expressed by the regular expression § : (E — §,),
S'=2S5".

We used here only regular operators to express conditional equations due to their well un-
derstood semantics and well-known methodology of mapping regular expressions into programs.
However, the approach we use to implement semantic driven automata allows us to use other op-
erators than the regular ones and therefore we can easily generalize introducing equations of the
form § = 5,||S; where || denotes the parallel composition of S; and S; thus obtaining a mechanism
for parallel program synthesis from specifications.

The major advantages of this methodology for program synthesis from specifications are:

1. It allows stepwise program development in terms of simple actions, well-understood by pro-
grammers, and their automatic composition through the mechanism of transforming regular
expressions in programs.

2. It allows formal proof of the program correctness by first proving the correctness of the
simple actions making up the program and by automatically preserving this correctness by
the translator mapping regular expressions in programs.

3. The automatic mapping of regular expressions in efficient programs is feasible and well-

understood.
4. It unifies the methodology of program synthesis from specification, and open new field of
research.
- 243~
A 4 - - - - -

@+ @

&

References

[Besto1]

[Corn92)
[Dasag5)

[Dijk75)

(Jaffol]

[Kest92)

[Knaa92]

[Nico91]

[Nico92]

{Rus91]

[Rus92]

[Shaw92]
[Sifa92]

(Wirt77]

Bestavros, A., “Specification and Verification of Real-Time Embedded Systems using
Time Constrained Reactive Automata”, Proceedings IEEE 12th Real-Time Systemns
Symposium, Dec 4-6 1991, San Antonio, Texas, 244-253.

Cornell, A., “Oven”, Research Report 7, CS Department, Brigham Young University,
1992.

Dasarathy, B., “Timing Constraints of Real-Time Systems”, IEEE Transactions on
Software Engineering, Volume 11, Number 1, 1985, 80-86.

Dijkstra, E.W., “Guarded Commands, Nondeterminacy, and Formal Derivation of Pro-
grams”, Communications of the ACM, Volume 18, Number 8, 1975, 453-457.

Jaffe, M. S. et al, “Software Requirements Analysis for Real-Time Process-Control
Systems”, IEEE Transactions on Software Engineering, Volume 17, Number 3, 1991,
241-257.

Kesten, Y., Pnueli, A., “Timed and Hybrid Statecharts and their Textual Representa-
tions”, Formal Techniques in Real-Time and Fault-Tolerant Systems, Lecture Notes in
Computer Science 571, 1992, 591-619.

Knaack, J. and T. Rus, “TwoLev: A Two Level Scanner”, Proceedings of AMAST 91,
Workshops in Computing Series, Springer Verlag 1992, 264-276.

Nicollin, X., Sifakis, J., “An Overview and Synthesis on Timed Process Algel;n”, Pro-
ceedings Third Workshop on Computer-Aided Verification, Alborg, Denmark, July 1991,
1-21.

Nicollin, X., Sifakis, J., Yovine, S., “Compiling Real-Time Specifications into Extended
Automata”, IEEE Transactions on Software Engineering, Volume 18, Number 9, 1992,
794-804.

Rus, T., “Algebraic Construction of Compilers”, Theoretical Computer Science, Volume
90, 1991, 271-308.

Rus, T., “Computation Specification by Semantic Driven Automata” Unpublished Pa-
per, The University of Iowa, Department of Computer Science, Iowa City, IA 52242,
1992.

Shaw, A. C., “Communicating Real-Time State Machines”, IEEE Transactions on Soft-
ware Engineering, Volume 18, Number 9, 1992, 805-816.

Sifakis, J. et al, “Compiling Real-Time Specifications into Extended Automata”, IEEE
Transactions on Software Engineering, Volume 18, Number 9, 1992, 794-804.

Wirth, N., “Toward a Discipline of Real-time Programming”, Communications of the
ACM, Volume 20, Number 8, 1977, 577-583.

- 26k ~

On the coverage of partial validations

Ed Brinksma
Tele-Informatics and Open Systems Group,
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
brinksma@cs.utwente.nl

Extended Absatract

1 Introduction

It is widely recognized that a completely rigourous treatment of the correctness of designs of
realistic information-processing systems is beyond the scope of the formal methods currently
at our disposal. While for some aspects of this predicament improvements can be expected
through the development and use of more powerful formalisms, theories, and supporting soft-
ware tools, there are structural problems related to managing the combinatorial complexity
of correctness proofs for large systems. The investment done to prove correctness should also
be measured against the remaining possibility that errors are introduced in the ultimate re-
alization phase of the design, where formal methods may no longer be applicable (e.g. silicon
compilation). As a result in practice mostly methods that deal with approzimate correctness
criteria are used, such as testing and the verification of particular properties. This should also
be seen against the background that complete correctness of systems in not required in most
cases: in reality one tries to make the occurrence of important errors sufficiently unlikely.

In recent years there has been also a growing theoretical interest in the question of partial
validation, which has led to much new work on topics like model checking and testing theory,
e.g. [9, 5, 3, 2]. This has grven rise to new algorithms for the validation of given properties and
for the generation of tests, whereas the related question concerning the coverage of partial
validation methods, i.e. how much the validation of a particular property contributes to the
overall correctness the design, has received considerably less attention. Such measures are
needed to guide the selection of properties that should be validated, and can be used to
quantify the quality of a validation procedure, and, indirectly, of the implementations that
succeed in passing them. Unfortunately, it is not straightforward how to obtain such measures.

In the literature it has been proposed to use the probability of the occurrence of an error as
a guiding principle for partial validations, viz. by ignoring improbable errors (see e.g. [7)).
This would seem to suggest that the coverage of such a partial validation method could be
calculated as a sum of the probabilities of independent errors that are exposed by the method.
This approach has the drawback that often it may be the absence of less frequent errors that
determines the quality of a design. Moreover, the appreciation of the role of a particular error
may depend more on the application of a system than on its specified abstract functionality.
The occurrence of the same software bug in a computer game and in the operating system

of a nuclear plant could be of a radically different importance, and this should preferably be
reflected in a coverage measure.

In an earlier paper we have therefore proposed that coverage should be based on so-called
valuations that assign weights to error classes corresponding to their gravity [4]. Probability
distributions over error classes being special instances of valuations, this yielded a generaliza-
tion of the probability induced notion of coverage. This approach has the drawback, however,
that it was not clear how, in view of their subjective nature, such valuations could be obtained
or approximated for given applications. For the probability induced notion of coverage there
exists at least the wealth of statistical methodology to estimate the distributions involved.

In the full version of this paper we refine our idea of valuations. Measurements of the probabil-
ity of error occurrences in implementations can be used to improve our estimates of valuations,
while still maintaining a possibility to account for the difference between the probability and
the gravity of an error. We follow a measure-theoretic approach in which an exogenous cost
function (quantifying the effect of certain properties in an implementation) is integrated over
a measure that is induced by the probability of error occurrences. In this way, in fact, we do
not only obtain a notion of coverage, but a general way of assigning measures to specification
theories in the context of a given class of implementation structures.

2 Main formalizations

The correctness of an implementation / with respect to a specification S is usually formalized
by means of an implementation or refinement relation R such that J is a correct implemen-
tation of S iff (I,S) € R. We will in fact assume that this relation R can be formalized in
terms of the satisfaction of a logical theory, viz. R = {{I,S) | I | Th(S)}, where Th(S) is
the theory in some logical language £ specified by S and |= denotes a satisfaction relation.
Many implementation relations can in fact be characterized in this way, including those using
constructive specification formalisms (see e.g. [8]).

As indicated above we view the design process as a stochastic experiment that produces an
implementation I on the basis of a given specification S. In order to model this correctly
we need to define a Borel space in which I takes its value (see e.g. [1]). Let T be the set of
all potential implementations of S, and ®. the set of formulae in £ then we are particularly
interested in the sets

Vo=g{I€TI|I=®} fordC &, (1)

We say that T has the Borel property w.r.t. L iff V=4 {Vo | ® C ®.} is a Borel set for Z,
i.e. (i) @ € V, and (ii) V is closed under arbitrary unions and complementation (w.r.t. I).
Requirement (1) is easily fulfilled, viz. if £ is sufficiently rich to allow for inconsistent theories
®, as that implies Vy = 0. The closure property w.r.t. complementation is more involved as
for each & C &, there need not exist a &' C &, such that V. = Vo = {J € T | I | ®}. As
the latter set could be characterized by the disjunction over the negations of all ¢ € ®, one
solution would be to work with languages that have either explicit generalized disjunctions,
such as e.g. L., [6], or implicit ones, e.g. in the form of fixpoint constructions [8]. Another
option is to restrict the class of implementations Z. In practice, for example, one can often
restrict the attention to a finite set 7 where each I € 7 is completely characterized by a finite
theory ®; C ®.. In that case ordinary negation and disjunction suffice to warrant the closure

- 246~

c ofe @

properties.

Assuming that 7 has the Borel property w.r.t. £ we can now introduce for each . cification
S a measure Pg over I, viz. by putting

Ps(Ve) =¢ Pr{l€Ve} (2)

i.e. assigning V, the probability that the implementation satisfies $.

As we have observed above we wish to modify this measure by also taking into account the cost
of errors. We assume therefore there exists a function k : P(®.) — Ry that determines the
cost k(®) of satisfying the properties of ®. This function has to satisfy the intuitive property
that cost increases with logical strength, i.e. ® |=r ¥ implies that k(®) > k(¥), where ® =7 ¥
means that for all / € 7 = & implies] |= ¥. If we put Th(I) =4 {v € ®¢ | I = ¢} then
we can overload k to include a function of type T — Ry, by putting k(I) =4 k(Th(I)). It
can be shown quite easily that this function is integrable w.r.t. each measure Ps. This result
allows us to define the valuation measure x5 on V as the measure-theoretic integral

us(V) =q /; k() dPs forall V € V (3)

Note that in order to calculate us(V) we integrate the cost of its complement V. This can be
understood by realizing that once we have established, by (partial) validation, that I |= @, or
equivalently that I € V,, it follows that I ¢ V4 so that the cost related to implementations
in Vo has been avoided. This seems a natural way to measure the value of having established
®. Another way of looking at it is that us must increase with logical strength, as k does: if
® |=7 ¥ then ® contains more information than ¥, and should consequently have a higher
valuation. This follows as ® =1 ¥ implies Vo C V4 implies Vo C Vg implies ug(Ve) < us(Va)-
Because of the non-continuous nature of Z the integral in (3) will in practice be evaluated

as a, possibly infinite, summation. Nevertheless, equation (3) gives us the most compact
representation of the definition of the measure in full generality.

Having established the measure us for given specifications S it is now straightforward to
produce the definition of the coverage of a partial validation w.r.t. S as a normalization of
us. Let & C Th(S) then a procedure for establishing that I = ® has a coverage a, with
0<a<l,iff

us(Va) 2 a.us(Vrus) (4)

We also say that an implementation I is a-correct, or, alternatively, has an margin of error
of 1 — a, iff there exists a ® C Th(S) with I € V} for which equation (4) holds. Note that
1-correctness does not necessarily coincide with total correctness in the classical sense, as
errors with measure 0 are ignored if the measure that is used admits their existence.

It should be noted that the above definition of coverage applies even in the pathological case
where pg(Vrasy) = 0, by (4) trivially yielding coverage 1 for any ®. In the normal case,
i.e. when pug(Vracs)) # 0, the normalisation can be applied directly to the definition of the

measure itself by putting
us(V) =4 #s(V)/us(Vras) (5)

In this way ug has become insensitive to the absolute value of applications of the cost func-
tion k, taking only its proportional variation into account. Inequality (4) then simplifies to
s3(Ve) 2 a

¢ oo @

In the full paper we give an elaborated example of the application of our theory, which is an
extension of the probabilistic example in [4]. Of course, an important point in the application
of this theory is how to obtain reliable estimates of Pr{l € V4}. The solution here probably
lies in measuring error distributions that result from the application of individual design steps
that are applied sufficiently often to obtain statistical significance, as opposed tc complete
design procedures for entire systems, which are often specific for the particular system that
is designed. By calculating the cumulative effect of the applied design steps still a reasonable
error distribution estimate could be obtained. Not surprisingly reliable coverage measures are
thus tied to the application of well-understood design methods. Of course, the theory can
be used also to give coverage assessments under the hypothesis of given error distributions.
By making such assumptions explicit more precision is given to the coverage claims that are
made.

References

[1] H. Bauer, Probability Theory and Elements of Measure Theory, Holt, Rinehart, and
Winston.

[2] G. Bernot, Testing against formal specifications: a theoretical view. In: S. Abramsky and
T.S.E. Maibaum (eds.), TAPSOFT’91, Volume 2, 99-119. LNCS 494, Springer-Verlag,
1991.

[3] E. Brinksma, A Theory for the derivation of tests. In: S.Aggarwal and K. Sabnani (eds.),
Protocol Specification, Testing, and Verification VIII, 63-74, North-Holland, 1988.

[4] E. Brinksma, J. Tretmans, and L. Verhaard, A framework for test selection. In: B. Jon-
sson, J. Parrow, and B. Pehrson (eds.), Protocol Specification, Testing, and Verification
X1, 233-248, North-Holland, 1991.

[5] P. Godefroid and P. Wolper, Using Partial orders for the Efficient Verification of Deadlock
Freedom and Safety Properties. In: K.G. Larsen and A. Skou (eds.), Computer Aided
Verification ’91, 332-342. LNCS 575, Springer-Verlag, 1992.

[6] H.J. Keisler, Model Theory for Infinitary Logic, North-Holland.

[7) N.F. Maxemchuk and K. Sabnani, Probabilistic Verification of Communication Protocols.
In: H. Rudin and C. West (eds.), Protocol Specification, Testing, and Verification VII,
North-Holland, 1987.

(8] C. Stirling, Modal and Temporal Logics for Processes, LFCS Report Series, ECS-LFCS-
92-221, Dept. of Computer Science, University of Edinburgh, 1992.

[9] A. Valmari, Error detection by reduced reachability graph generation. In: Proc. 10th
International Conference on Application and Theory of Petri Nets, volume 2, 1-22, Bonn,
1989.

-248 -

« oo @

e

Verifying communication protocols via
testing-projection

Khalil DRIRA,

Pierre AZEMA

e-mail: {khalil,azema}Qlaas.laas.fr
LAAS-CNRS, 7 avenue du Colonel Roche F-31077 Toulouse Cedex

1 Introduction

Protocol projection is an efficient approach for the
analysis of communication protocols. It consists of
deriving from an initial automaton the minimal one,
while preserving specific equivalence relations. Ac-
cording to the OS] model, the basic architecture
consists of two protocol entities communicating via
an underlying service. The global service, the pro-
tocol provides, corresponds to the behaviour as ob-
served from both Service Access Points only. Using
LOTOS notations, this service can be described by
the following expression where SAP; are the ser-
vice access points, and I'; designates the interaction
point that synchronises entity i and the communi-
cation medium:

service[SAP,,SAP;} = hideT,,I'; in
((entity[SAP,,Ty] ||| entity{SAP,, T4))
"rl ’ r’]lmd"‘m[rh r’])

Compiling such expression produces a Labeled
Transition System (LTS) which describes the ser-
vice. This LTS is generally so complex that it is
very difficult for the designer to decide whether this
service is the expected one for the specified proto-
col.

Verifying a protocol specification can be carried out
by using an equivalence relation. The specification
is correct when the provided service is equivalent
to the expected one. This equivalence-based ver-
ification approach is well known (see for example
[4).

In practice, it is not always possible to have a ref-
erence model (the so-called expected service). This
is due to the difficulty to describe this service in a
monolithic style where composition operator is not
used. Projection is then a convenient alternative to
protocol verification. It consists of furnishing a re-
duced model of the protocol service while preserving
some properties: the more the properties are strong
the more the reduced model is complex.

Such a reduced model can be obtained using equiv-
alence induced by the weak bisimulation (the obeer-

vational equivalence) (6, 8]. Projection of LTS ac-
cording to this equivalence produces a minimal LTS
in the sense that it contains no bisimilar distinct
states. The sise of the so-reduced system can be
such that it is still not possible to analyse it. Cur-
rently, this problem is solved by substituting trace
equivalence (known also as language equivalence in
the automata theory) for observational equivalence.
The projection supplies a deterministic LTS (with
only observable events) which is minimised w.r.t.
the bisimulation equivalence (see Fig. 1). Unfortu-
nately, the size reduction is accompanied by a loss
of preserved properties: the only preserved proper-
ties are those concerning event ordering. That is the
reduced system accepts the same strings (sequences |
of events) as the initial system.

We propose here a tradeofl between the complex-
ity of the reduced system and the properties this
system preserves. We propose to define a new pro-
Jection relying on another equivalence. This equiv-
alcnccisknownututingequivdenee(}g)in
Brinksma’s testing theory for LOTOS [1] and is
a simplification of Hoare’s failure equivalence used
for CSP [5). This equivalence is less discriminat-
ing than obeervational equivalence but more dis-
criminating than trace equivalence. It preserves the
traces and the failures of a system, that is proper-
ties dealing with the possibilities of deadlock with
the systemn environment.

Figure 1: Trace, observational and testing projec-
tions. The closed LTS is oblained by considering

gorier
Unlike bisimulation-based equivalences it is incor-
rect to minimize the system by identifying testing
equivalent states. This is always the case for non-

- 29~

bisimulation-based equivalences. We propose here
to solve this difficulty for the testing equivalence.
For this purpose a transformation (designated as
nermal form for testing equivalence) of LTS is de-
fined. This transformation simplifies an LTS and
preserves the testing equivalence. This transforma-
tion is defined using recursive algebraic definitions.
This makes it support rigorous and simple proofs of
correctness.

This paper is composed of this introduction and
four other sections. The next section recalls stan-
dard definitions related to LTSe and testing equiv-
alence. The testing projection is then introduced.
Before conclusions, we compare the three projec-
tions on a small simple example.

2 Basic definitions

Labeled Transition Systems (shortly LTS) are the
basic structure commonly used to represent dy-
namic behavior of communicating systems.

A Labeled Transition System can be viewed as a
set of processes (S) executing actions in L. The
behavior of a process s € S is specified by the set of
actions it can perform. The behavior following an
action is specified by the set of transitions A.

A finite Labeled Transition System (LTS) is a
quadruple: $ = (5,L, A, 8) where:

o S is a finite set of states, and sg, 80 € S, is the
initial state of S.

o I is a finite set of visible actions, or labels

¢ AC Sx(EU{r})x S: the transitions set, r g T
is called internal or invisible - ction. An element
(z,p4,y) € A is denoted: z & y

Another transition relation, {3} ,eguqc) is defined
in a standard way by:

esS g :s=dors2s ---D s, o this
means that internal moves of a system cannot be
distinguished.

es D d: 83 5 2 53 S #: this means that
observable moves are not distinguished by internal
moves that encapsulate them.

The output of a state s denotes the set of visible
actions that can be performed by the at the
state s. Formally out(s) = {a € L | s 3).

This relation is extended to sequences (i.c. words
or strings over I: ¢ € Z°) by:

oif o is the sequence a; ---a, write s => &' when
$848...°5,,_,3y¢

The empty sequence is denoted ¢. As in the case of a
state output, “traces of a state” refer to the set of all
sequences of (visible) actions, ¢ € L°, that can be
performed from this state: Tr(s) = {¢ € T° | s).
By convention, the traces of LTS are those of its
initial state: Tr(S) = Tr(so).

R

Using LTS, we recall now the formal definition of
conformance introduced in the testing theory of LO-
TOS (1]

Definition 1 (testing equivalence [1]) Two
LTSs P, = (Si,L,Ai,P)) i = 1,2 arc ssid to be
lesting equivalent (noted P, te Py) when
(1) Tr(P) = Tr(FRy)
(2)Vo e ,VACL
3P/,P, S P’ snd Va € A-(3P,", P\’ 3 P\") iff
IR, S B andYa € ASAR", Py 3 RY)

(@]

3 The testing projection

The testing projection of LTS S is an a~minimised
normal form of this system: (nf(S))s, where s is
the bisimulation equivalence.
The resulting system verifies the following expected
properties:
o A projection of an LTS is testing equivalent to
this LTS: (nf(S))u te S

e Two testing-equivalent LTSs have the same
projection. In other words testing equivalence
is an isomorphism over the subset of LTSs
which are s&~-minimal normal forms.

Definition 2 (LTSs in normal form) As LTS,
S =(S,L,A,s), is said to be in normal form for
the testing-equivalence if

(i) its initial state so verifies the following equation:

e=(L n Y sl Y bfie)
X€R(s) s€out(s)\X € e enc X
(P1)
Where R(s) is e (non-empty) set of subsets
of out(s) whick verifies the following minimality
(v.r.1. cardinality) property:

VX,YER(s):(YCX)=(X=Y). (P2)

(ii) The states, f,(s) et fi(s), specified in cque-
tion P1 verify also (i) et (ii). o

The Lotos operators “;” and “(]” designate re-
spectively action prefix and choice. The Lotos
expression 2‘5,,{,’,__',,) P; denotes the expression
Py[]Ps[]- - -[)Pa. Semantic of these operators is de-

fined by the following rules:

. . k€I, P 2 P
Va € Zu{- <
eesut) Oo7ap BFTap

The following proposition shows that testing equiv-
alence and observational equivalence (i.e. weak
bisimulation equivalence) are identical over LTSs in
normal form.

- 250 -

@+ @

€

—_—_—

Proposition 3 If S: et S; are in normal form
(def. 2) then (S: te) & (51 % 52) .

Definition 4 (Refusal Grapb) A refussl greph,
denoted RG, is « bilabeled graph represested by a
5-tuple (G,Z, A, go, Ref) where:

¢(G,L, A, go) is a deterministic LTS. That is which
verifies : V9 € G, Va € X; I st the mostone g’ € G
such thet (9,0,9’) € A. This successor can then be
noted fo(g) which means that the set of trensitions
ia described wsing & family of functions {fs : G —
G}ce!:-

e Ref : G — P(P(T)) is an epplication which
defines for each siate, the sets of actions that may
be refused afier the sequence leading to this state. O

To avoid redundancy, refusal sets must be minimal
w.rt. set inclusion: Vg € G,YX,Y € Ref(g) :
YcX)y=>(X=Y)

And to avoid describing imaginary systems, the fol-
lowing bypotheses is imposed on the refusal graph
structure: VX € Ref(g), X C out(g). Only refused
parts of the output set are considered.

Let S be the transition system (S, T, A, s9) and the
two following applications, whose domain is the set
of subeets P(S),

6u(P) = | ba(p) and out(P)= | out(p)
pEP pEP

where Pisasubset of S, and Vs € S, 8,(s) = {s' €
Spse S #).
Definition 5 (“rg” transformation)
The refusal grapk rg(S), associated with transition
system S = (S,I,A, s) is defined by the 5-tuple
G = (G,ZT,A’, Ref, go), where

o go = 8:(s0) = {5 | 80 > s}

o (G C P(S),L,A' C G x I xG) is the labeled
graph rg(go), where for all g C S, rg(g) is re-
cursively defined by the following Lotos expres-
siom :

rge) = Y. a;re(ba(9)

a€out(y)

o and for all g € G, Ref(g) = {out(g) \
out(s),s € g} \ {X € Ref(9),3Y € Ref(3) :
(XCYand X £Y)}

(s}
Definition 6 (“Its” transformation) From

a refussl graph go, en LTS lts(go) mey be derived
according o the following recursive definition :

lis(g) = 2 T; 2 a; lts(fa(9))
X€Ref(s) eaEemt(g\X

0 Y hlte(fe)
e\ xgmeri X

=]

Note that the parameterised bisimulation of [2] can
be used to provide a decision procedure for testing
equivalence using bisimulation over refusal graphs.
Bisimulation over refusal graphs is an interesting
question in its own right and will not be further
explored in this paper.

Definition 7 (“nf™” transformation) The nor-
mal form of an LTS S is the LTS nf(S) derived
from the refusal graph of S, that is rg(S), by wsing
transformation lts. That is : nf(S) = lts(rg(S)).
[n]

Remark: In the case of strongly convergent (i.e.
when no loop is created by internal transitions), the
“nf” transformation is identical to the transforms-
tion described in (7).

Theorem 8 Every LTS is testing-equivalent o ils
normal form: S te nf(S).]

The next proposition can be deduced from the
proposition 3 and the theorem 8. It provides an
alternative (to the II-bisimulation of [2]) of verifica-
tion of testing equivalence allowing (weak) bisimu-
lation equivalence over standard LTSs to be used.

Proposition 9 S) te $; & nf(S))xnf(S;) 8

Proposition 10 For every LTS, we have:

S S, And

S1 % Sz iff (Si)m ~ (S2)m. Where «— denotes the
isomorphism over LTSs. |

Finally, using the fact that = is compatible with
te (i.e. =C te) and using the standard results of
proposition10, we deduce from proposition 9

Proposition 11 For every LTS, we heve:

S te (nf(S)n- And
Sy te S iff ("f(SI))- — (nf(S2)n- Where —
denotes the isomorphism over LTSs. []
4 Example

Figure 2 presents an example of the three former
projections. Obeervational projection does not re-
duce the initial LTS. This is due to the fact that
states s2 and &3 are not obeervationally equiva-
lent because their behaviours are respectively of the
form 7;(PJQ)[7; P and r; P|Q which are not ob-
servationally equivalent.

The system depicted by these LTSs can be viewed
as the local service provided by a data transfer
connection-oriented protocol which locally uses a

- 251 -

Figure 2: testing projection provides LTS less re-
duced than trace projection and more reduced than
observation projection

rendez-vous communication between a protocol en-
tity (i.e., service provider) and its user. The trace
projection shows that initially the system can al-
locate a connection (ConReq), and then transmit
data (DataReq) or accepts disconnection (DisReq).
The testing projection shows that, after connection,
data transmission is not always possible. This is due
to the presence of an internal transition (p; — ps)
that system may execute without communicating
with its environment compelling the latter to stop
data transfer. Abstraction made by this projection
consists of ignoring the origin of this internal tran-
sition. It can either represent a remote or a local
disconnection decision.

5 Conclusion

The underlying idea of the testing-projection can
be summarised by the following:

o we characterise a particular family of LTS
called LTS in normal form. For this family we
prove that (weak) bisimulation equivalence is
identical to testing equivalence.

e we provide a transformation of an LTS to a
testing equivalent LTS which is in normal form.
This transformation relies on an abstract struc-
ture (we refer to as Refusal graph {3]) that elim-
inates redundancy related to information that
does not concern trace and deadlock proper-
ties.

o =-minimization of this normal form preserves
testing equivalence and reduce the state space

of the LTS.

The minimization part of the testing-projection
can be conducted by means of strong bisimulation
equivalence. This provides easier minimization and
is possible by slightly modifying (the definition of
the normal form and) the “Its® transformation.
This technique has been experimented on several
communication protocols, namely MMS and OSI-
TP. These experiences showed that in the first de-
sign steps the so-reduced system is useful for spec-
ification error detection and correction.

References

(1) E. Brinksma, G. Scollo, and C. Steenbergen.
Lotos Specifications, their implementations and
their tests. In B. Sarikaya and G.V. Bochmann,
editors, Protocol Specification Testing and Veri-
fication, volume VI. Elsevier Science Publishers
B.V., North-Holland, 1987.

[2] R. Cleaveland and M. Hennessy. Testing
Equivalence as Bisimulation Equivalence. In
J. Sifakis, editor, Automatic Verification Meth-
ods for Finite State Systems, number 407 in Lec-
ture Notes in Computer Science, pages 11-23,
Grenoble-france, June 1989. Springer-Verlag.

[3] K. Drira, P. Azéma, B. Soulas, and A.M.
Chemali. Testability of 8 communicating system
through an environment. In Proc. {th Interns-
tional Joir Conference on the Theroy and Prec-
tice of Software Development. TAPSOFT’93
{LNCS 668), ORSAY, FRANCE, April 1993.

[4] Jean-Claude Fernandez, Hubert Garavel, Lau-
rent Mounier, Anne Rasse, Carlos Rodrigues,
and Joseph Sifakis. A toolbox for the verifica-
tion of lotos programs. In Lori A. Clarke, edi-
tor, Proceedings of the 1{th Internationsl Con-
ference on Software Enginecering ICSE'14 (Mel-
bourne, Australis), New-York, May 1992. ACM.

[5] C.A.R. Hoare. Commaunicsting Sequential Pro-
cesses. Prentice-Hall, 1985.

[6] R. Milner. Commaunication and Concurrescy.
Preatice-Hall, 1989.

[7] R. De Nicols and M.C.B. Hennessy. Testing
equivalences for processes. Theoretical Com-
puler Science, 34:83-133, 1984.

[8] D. Park. Concurrency and automata on infinite
sequences. In Lecture Notes in Compster Sci-
ence, volume 104. Springer-Verlag, Berlin Hei-
delberg, 1981.

- 2852~

e oo @

Equivalences of transition systems in an algebraic framework

Pasquale Malacaria®

In this paper we study simulation and bisimulation equivalences for transition systems
from an algebraic point of view. For the simulation equivalence, the algebras are the free
algebras of a monad on the category of transition systems. These aigebras are however
“concrete” because they are an “algebraic completion™ of a system. A more interesting
category of algebras seems to be the one we will propose for studying bisimulation; being
related to the category of transition systems by a Stone duality it is in some sense canonical.
Here by canonical we mean that the algebra associated to a transition system is as close
as possible to the structure of the system (roughly speaking it is the space of ultrafilters
on the systems). Stone duality makes it possible to establish an equivalence between
categories having a very different structure, for example between categories of algebras
and categories of topological spaces [5] or between categories of domains and categories of
algebras and logics [1, 3]. The Stone duality we present in this paper relates the category
of transition systems to a category of algebras underlying a generalised Hennessy-Milner
logic [4], that is algebras which contain Lindembaum algebras of this logic. As a test for
the validity of abstract reasoning (i.e. algebraic tools) about transition systems, we will
prove the equivalence of the notions of subalgebra and bisimulation relation, that is we
will prove that two systems are in bisimulation if and only if they have an isomorphic
subalgebra. It will follow then that the minimal subalgebra of the algebra of a system T
corresponds by duality to the smallest transition system (w.r.t. number of states) which
is in bisimulation with T.

1 Categories of action algebras and transition systems

A complete atomic Boolean algebra (CBA for short) is a Boolean algebra A in which the
gl.b. and l.u.b. operations are defined for all subsets of A and such that there exists a
subset At(A)C A such that A ~ p(At(A)) (the power set of At(A)).

Let CBA denote the category whose objects are complete atomic Boolean algebras
and whose arrows are the structure preserving maps. Note that if ¢ : A~ A’ is an arrow
in CBA , then there exists a unique set theoretical map

¢ : At(A')—At(A)

such that (under the isomorphism A ~ p(At(A))) we have (¢°)~! = ¢. The map ¢" is the
underlying map for ¢.

Let Abe a CBA and X aset; a linear action of X on A is given by amapa: X xA—A
{we write z.v instead of a(z,v)) such that:

e z.0=0,

*LIENS, Ecole Normale Superieure, Paris, France and Imperial College, London, UK.
e-mailpasqualefdni.ens. fr

c o ®

e z.VV =V, (z0)

The category of actions of X over complete atomic boolean algebras (category denote as
AL) has as objects pairs (A, a) (lets call such a pair an action algebra) where A4 is a CBA
and a is a linear action of X over A. Ap arrows ¢ : (A.a)—(A',0’) is CBA morphisms
between A and A’ which satisfy the inequality:

z.¢(v) < ¢(z.v)

A transition system is a pair T = (5,T) (we use the same letter T to indicate the set of
transitions and the transition system) where S is the set of states and TCSx X xS is the
set o’ transitions whose elements we denote as s = s'. A transition system map f from
(S,T) to (S',T') is a set theoretic map f : §—S8' such that

s=seT = f(s)= f(s)eT

Let TS denote the category of transition systems over a set of action X .
The categories 7S and AL are related by two contravariant functors Ts : AC—TS and
Ac: TS—AL.
o The functor Ts is defined as follows:
Ts(A,a) = (At(A),T,) where a; = a, € T, iff a; < 7.0,
Ts(¢) = ¢° (the underlying map before defined)

¢ The functor Ac is defined in the following way:
Ac(T) = (p(S),a) where a(z,v) = {s, € §|3s; € v such that s; = s,}
Ac(f) = f!

Proposition 1 The categories TS and AL are duals (i.e. TS ~ ALOP)

Indeed the duality between 7S and AL is a Stone duality : Roughly speaking this
means that there exists an action algebra Q4 and a transition system 275 such that the
functor Ts is naturally isomorphic to the Hom enriched ! functor AL(-,,.) and that
the functor Ac is naturally isomorphic to the Hom enriched functor 78(—,rs).

For example the transition system §0rs is shown in the following picture:

X X
Q)/X/X\Q
That is QTS = ({0’ 1}7{31 = 32"’1132 € {0,1},2 € X})

The action algebra 4 is pictured as follows:

1

X
X

0
That is Q¢ = ({0,1}, @) where a is defined by z.a = 0 for a € {0,1}

!By “enriched” we mean that the functor AL(—,flac) associates to an action algebra A the set
BOM 4c(A, Q2 4c) equipped with a transition system structure

- 254~

Proposition 2 e The functors Ac and TS(-,Qrs) are naturally isomorphic.

o The functors Ts and AL{—,Q.c) are naturally isomorphic.

2 Simulation equivalence and Kleisli category

Given two transition systems T = (§,T), T’ = (§’,T') a simulation between T and T' is a
relation RCSx S’ such that:

(1): For any s € S there exists s’ € §' such that (s,s') € R.

(2): For any s, = s, € T if (s;,8,) € R then there exists s} € §' such that s, = s> €
T’ and (s;,8%) € R.

A bisimulation between T and T" is a simulation R between T and T’ such that R™!
is a simulation between T’ and T'.
Let consider the functor Sm : TS—7TS, defined on objects by Sm(S,T) = (p*(5).T*)
where :

e p*(S)is the set of non empty subset of states of §
e V; & V, € T+ iff for any s, € V, there exists s, € V; such that s, = s, € T.

Sm is defined on arrows by Sm(f) = f*, f* being the extension of f : (5, T)—(5'.T")
to the subsets of S. Intuitively the functor Sm maps a transition system T in the space
of all possible simulations on T.

The functor Sm has a natural structure of monad (Sm, 7,) so that we can consider
the Kleisli category of Sm on 7S, noted as TSg,- We characterise then simulation
equivalence as follows:

Proposition 8 Let T, T' two transition systems. Then there exists a simulation between
T and T' iff there erists an arrow between T and T’ in TSgn,.

3 Action algebras and Bisimulation

A subalgebra A’ of an action algebra (A4, a) is given by a subset of elements of A which is
closed under the operations. By using the isomorphism between A and p(At(A)), we can
consider set theoretic operations on atoms of A; hence we define a subalgebra of (4,a) as
a subset A’ of elements of A such that: For any v € VC A’ and for any z € X the elements
0.A,UV,NV,~v,a(z,v) are in A’

We can prove then:

Theorem 1 Two transition systems T, T’ are in bisimulation iff Ac(T), Ac(T') have an
isomorphic subalgebra.

The subalgebras of a given algebra are closed under arbritary intersections; in particu-
lar the intersection of all subalgebras of A is a subalgebra which is the smallest (w.r.t.
inclusion) subalgebra of A. This minimal subalgebra has a very interesting property:

Theorem 2 Let T be a transition system and let A, be the minimal subalgebras of Ac(T).
Then the smallest transition system (w.r.t. number of states) which is in bisimulation with
T is the transition system Ts(Ao)

c ofs @

4 Skeleton of an action algebra

Note that in the case of a CBA the notion of minimal subalgebra is trivial, the latter
always being the algebra {0,1}. The presence of actions in the category AL makes this
notion not trivial since for any z € X the element z.1 (which in general is not 0) must be
in the minimal algebra. Hence we are looking for a set T, the skeleton of the algebra A.
that is the smallest subset of A containing 1 and closed under linear actions.

X4 is included in the minimal subalgebra of A and has moreover a natural structure
of transition system (note that £, is a rooted transitions system, the root being the 1 of
the algebra).

We define then a skeleton homomorphism between two skeletons T, X' as a transition
systems morphism which preserve the root and investigate the equivalence induced by
skeleton isomorphism which we note ~g. This is a rather weak equivalence. Indeed we
have:

Proposition 4 Let T and T’ be two transition systems such that for any s € S there
€ezists a trace-equivalent state s’ € S’ and for any &' € §' there ezists a trace equivalent
state s€ S: Then T =~ T".

References

[1] S. Abramsky. Domain theory in logical form. Proceedings of the 2nd annual
symposium on Logic in Computer Science, 1987.

[2] A.Amold. Systemes de transitions finis et semantique des processus comunicants.
Masson, 1992.

[3] T.Ehrhard, P.Malacaria. Stone duality for stable functions Proceedings of Cate-
gory Theory in Computer Science, L.N.C.S. 530.

{4] M.Hennessy, R.Milner. Algebraic laws for nondeterminism and concurrency
Journal of A C M., vol 32, 1985.)

[5] P. Johnstone. Stone Spaces. Cambridge University Press 1982.

- 286~

Semantics frameworks for
a class of modular algebraic nets

E. Battiston, V. Crespi, F. De Cindio, G. Mauri

Dipartimento di Scienze dell'Informazione - Universita degli Studi di Milano
email: decindio@hermes.unimi.it

Among the various proposals for an ‘Algebraic Specification of Concurrency’ (AR],
OBIJSA Nets [BDMa] are a class of algebraic high-level nets which combine Superposed
Automata (SA) nets, a modular class of Petri nets, and the algebraic specification
language OBJ. OBJSA Nets together with their su environment ONE (OBJSA Net
Environment), constitute a specification language for distributed systems which is called
[OBBlgI%I%fI as each OBJSAN specification is mapped by ONE into an OBJSA Net

To enhance specification modularity and reusability, an OBISAN specification is obtained
by composing, via transition fusion (i.e., superposition), some OBJSAN (open)
components. An OBJSAN component is a couple which consists of a net and an OBJ
module. The net part expresses the control of the system to be specified and the OBJ pan
describes data modification through occurrence of events modelled by net transitions. An
OBJSAN component is either closed, if all of its transitions are closed, or open if it
contains at least one open transition, i.c., a transition which is only partially extensionally
specified, since couples of its input/output places have to be identified through
superposition of the transition itself with other transition(s). Open transitions represent the
interface of the component toward other components, and are specified by non executable
modules (in OBJ called theories), while closed transitions are specified by executable
modules (in OBJ called theories).

With the aim of defining a formal semantics for this class of algebraic high—level Petri
nets, two operators have been defined in [BDMR]: Spec(_) and Unf(_). They map an
OBJSAN closed component (in the following called OBJSAN system) C respectively to
an OBJ module Spec(C) called the Specification module (by translation of the net scheme
into conditional equations and operators) and to a 1-safe SA labelled pure net Unf(C) (an
Elementary Net system) called the Unfolding net (by translation of the OBJ specification
into net elements).

While Unf(_) well supports concurrency since it produces Elementary Net (EN) systems,
whose categorical semantics has been defined in [DKPS), Spec(_) is less satisfactory
because of the loss of concurrency due to the OBJ3 sequential semantics. The idea is
therefore to turn on the specification language MAUDE.

Let us recall that MAUDE is a specification language syntactically similar to OBJ3 whose
operational and denotational semantics were defined by Meseguer in [MESa]. In MAUDE
there exist essentially two kinds of modules: functional modules (whose syntax is entirely
identical to OBJ3) and system modules. While operational semantics is concurrent
rewriting for both of kinds of modules, denotational semantics is different. For the
functional modules it is the usual inirial algebra associated to the equational specification
(so MAUDE has OBJ3 as sublan;;-..,. For the system modules it is a categorical model
which describes the system who~- ~z =ehaviour is specified by the rewriting rules.

More precisely let us consider a case that will be useful in the following. Suppose to have
a MAUDE system module M which imports a functional module M'. M codes a rewrite
theory R = (T, E, L, R) while M codes a rewrite theory R’ = (2, E', L', R') where ¥

(resp., X)) is an equational signature, E (resp., E') is a set of ¥_equations, L (resp., L)
is a set of labels, R (resp., R’) is a set of conditional rewriting rules of the type

- 5%~

c ofe @

1: [)g = [t')g if Cond, with le L and [tle Ty g(X) (resp. for R’). The operational
semantics of the global specification is given by a categorical model in which objects are

the elements of Ty y' EUE(X) and arrows are all the possible sequents [t g —
[t)g_E inductively generated by the rewriting logic inference rules starting from RUR'.
In practice this means that we have concurrent rewriting modulo EUE' on terms

Ty Uz (X) by using RUR' as rewriting rules [Mesa], i.e. concurrent rewriting in both the
system module (called supermodule in the following) and the functional module (called
submodule).

The denotational semantics is given by a categorical model in which the objects are the
elements Ty ¥ EUE'UUnlabel(R')(X) and arrows are all the possible sequents

[YEUE'UUNLabel®) — [YIEUE'UUnlabel(R?) inductively generated by the rewriting logic
inference rules starting from R. So the $nomﬁonal semantics treats the rewriting rules in
the functional module as equations whose semantics is the initial algebra. Then only the
rewriting rules in the system supermodule are interpreted as arrows (class of closed
arrows) of the categorical model.

According to these considertaions, here we redefine Spec(_) as the operator which maps
an OBJSAN system C=(N,A) to a MAUDE system module which imports functional
modules: a (conditional) rewriting rule in the system module is associated with each

transition te T, while the functional submodules contains the coded specification of the
data structure of C (the information in A).

As we are now able to associate a MAUDE module Spec(C) and an EN system Unf(C)
with each OBJSAN system C, to give it a semantics we consider the categorical models
developed for MAUDE modules (by Meseguer [Mesa], see above) and for Petri nets (by
Meseguer&Montanari [MM]) and we verify the isomorphism between the two semantics.
As we shall see, both of the categorical semantics result to be redundant. The reason is
that OBJSAN systems introduce, for modelling purposes, constraints on the marking:
tokens are couples <a_name;some_data>, where the name represents the token identity
which cannot change by transition occurrence and is unique in each elementary subnet of
an OBJSAN system. Therefore, the net markings are multisets of tokens without
muitiplicity (i.e., sets) and the Unf(_) operation maps an OBJSAN system C to a contact-
free EN system (while proper multisets at the higher level would require a P/T system at
the lower level).

MAUDE module: i
Spec(C) ——— rewriting ——— »= Constrainig logic rewriting
1
0 . /Lemma1
c=N.A) (3) Instantiation
N theorem.
) “~ L:mma 2
Y A
4) Ground @ Partial commutative monoid
Unf(C) ———— rewriing =~ ———— on a category.
ENsystem system Te
fig 1

The relationship between Spec(_) and Unf() is stated by a thcorem that we call
‘instantiation theorem' as it proves that by instantiating the rewriting rules of the system

- 258~

part of Spec(C) with ground terms and considering only those rules whose predicates are
reduced to true (representing transitions with a chance of occurring), we get the
transitions of Unf(C).

More formally, let C=(N,A) be an OBJSAN system and let us derive its MAUDE
Specification module Spec(C) and its Unfolding net Unf(C) (arrows 1 and 5 in fig.1).

As we have seen, Spec(C) codes two rewrite theories R=(Z, E, L, R) and R'=(Z', E,
L', R'), respectively associated with the system module and with the functional

submodules. The rewriting theory Rc=(ZuUX', EVUE'UUnlabel(R'), L, R) (arrow 2)
gives the denotational semantics of Spec(C), according to [MESa].

According to the constraction given in [DKPS] which specializes the
Meseguer&Montanari work for P/T nets to EN systems, Unf(C) can be translated into a
set of ground rewriting rules which we name Tc (arrow 4). For example, a transition tin
an EN system is translated in the rewriting rule 5,®..®&s, = §'19..8s5',;

[commutativity, associativity, identity: A] where et=(s,,..,s,} and te={s";,...s'n}. Tc

gives the denotational semantics of Unf(C), according to [DKPS]).

Then, the instantiation theorem (arrow 3) states that by instantiating the open

(conditional) rewriting rules in Rc with ground terms and considering only the

conditional equations whose predicates are reduced to true we get Tc. In the following we

:_ketzch its proof, whose kemel consists of three constructive lemmas related as shown in
ig.2.

n: C,,t,,,y"O..OCintmyh -
CjrtmY 11 (MAp)8..0C ptm (M ()
i t,pr(md,,())
O : To¥ = Trespecs

0: Ty -—d TMSPEC>' |:1 N
c"tmy'l,(o,,,(mdm()))e..ec,,,t,,,y"n(om(md,,,()))

19: 8(1y}y 1)®..@0(ty}, on)) —
1¥'}1,1(8(md()))@..@ty ', pa(6(md()))

with mdm() - moa.(lmy",...tmyh), M()-mm(!y" J,...ty,“'.n).
fig 2
Taken a transition teT of an OBJSAN system C and a ground substitution 6 of the input

arc inscriptions (representing an occurrence mode enabling t in a certain marking) we get,
via lemma 1, a conditional rewriting rule rt with a corresponding ground substitution 6y,

- 299 —-

&

for var(rt) and, via lemma 2, a ground rewriting rule t0. Lemma 3 closes the cycle: by

instantiating rt with 6, we get t0.

The rewriting system Tc is obtained directly by applying lemma 2 to the ransitions of C.
The rewrite rules in Re=(2, E), L,, R)) are obtained directly by applying lemma 1 to
the transitions of C, while the equations E; concern the data part of C. As we have said,
the MAUDE functional modules specify data, i.e., the tokens carriers, the occurrence
predicates tp,pr and the arc inscriptions containing variables t,y and operators tg,y'(). In
fact the carriers of tokens together with the operations defined on them are abstract data
types. We instead use system modules to specify control, i.c., local transitions.

The idea is that concurrent term rewriting in system modules captures the concurrency
expressed by the control part of the net, while concurrent term rewriting in functional
modules performs the parallel computation of the operators ty'. Lemma 3 proves the
semantic equivalence between Spec(C) and Unf(C), namely between the concurrency
expressed by the system module, captured by Re, and the concurrency expressed by the
Unfolding EN system, captured by Tc. Besides, the lemma proves that the concurrent
application of two conditional rewriting rules in Rc rl and :2 to a marking term s (with

substitutions 6, and Op,7) represents the concurrent occurrence of the two
corresponding low level transitions r10; and r26, in Tc in the marking represented by s.

Let us now discuss the redundancy of the two categorical mo(zls due to the constraints
which characterize OBJSAN systems.

a) The categorical model proposed by Meseguer, when applied to our case (Rc), is
redundant because the inductive process generation of the category (by rewriting logic
inference rules) would produce arrows without corresponding net computations. We get
the correct model constraining the logic rewriting inference rules. What we obtain is a full
subcategory of the Meseguer' original model in which objects are associated with
admissibles net states only (arrow 6). Such states are denoted by terms not containing two
or more identical tokens: this is because OBJSAN system markings do not allow multisets
of tokens with multiplicity. From the operational point of view, proofs in this modified
Meseguer formal system, represent the simultaneous application of several rewrite rules in
R¢ to a correct marking term, so that the concurrent term rewriting models concurrent
transition occurrence. In practice, since we can consider only marking terms s without
multiplicity then it is possible to concurrently apply two or more rewriting rules ri of Rc to

s if and only if the corresponding matching substitutions 8,,; do not share any token (i.e.,
the occurrence modes are disjoint).

b) The categorical model for P/T nets defined in [MM] is redundant when applied to EN
systems, as shown in [DKPS]. The redundancy is eliminated by reducing the parallel sum
carrier, leading to a partial commutative monoid on a category (arrow 7) (cf. in [DKPS]
the EN category).

By removing the constraints characterizing OBJSAN systems we fall in the more general
class of SPEC-inscribed nets [REI] to which Unf(_) and Spec(_) can be extended: in that
case the Meseguer and Meseguer&Montanari categorical models would not be redundant.
Nevertheless, as a counterpart, SPEC-inscribed nets do not support modularity and
therefore they have not a notion of 8arameteriud open component. Indeed, our current
effort is extending the approach to OBJSAN open components semantics towards using
the categorical frameworks presented here for characterizing concurrent object-oriented
languages (cf. [BCDM] and [MESb]).

- 260 -

@ @

Ackowledgements

This work has been supported by the ESPRIT Working Groups CALIBAN and
ASMICS2 and by the CNR-Progetto Finalizzato "Sistemi Informatici e Calcolo
Parallelo”, sottoprogetto 4, LRC LAMBRUSCO.

References,

[AR] E. Astesiano, G. Reggio, Algebraic_Specification of Concurrency. In: Proc 8th
WADT, Dourdan (F), LNCS, Springer-Verlag (to appear).

[BCDR] E. Battiston, P. Consolaro, F. De Cindio, L. Rapanotti. POTS, POLS. OBJSA
Nets: from object-based to class-based net formalisms. CNR-Progetio Finalizzato
"Sistemi Informatici e Calcolo Parallelo”, Tech. Rep.n.® i/4/59, 1992.

[BDMa] E. Battiston, F. De Cindio, G. Mauri. A class of high Jevel pets having obijects
as domains. In: G. Rozenberg (ed.), Advances in Petri nets. LNCS 340, Springer-
Verlag, 1988.

[BDMb] E. Battiston, F.De Cindio, G.Mauri: Specifving concurrent svstems with
CNR-Pro etto Finalizzato "Sistemi Informatici ¢ Calcolo Parallelo”,
Tech. Rep.n.° i/4/72, 1

[BDMR] E.Battiston, F.De Cindio, G.Mauri, L.Rapanotti. Morphisms and Minimal
Maodels for OBISA Nets. In: Proc.12th Int. Conference on Application and Theory of
Petri nets, Gjern (DK) June 1991.

[DKPS] C.Diamantini, S.Kasangian, L.Pomello, C.Simone. Elementary Nets and 2-
Categories. CNR-Progetto Finalizzato "Sistemi Informatici ¢ Calcolo Parallelo”, Tech.
Rep. n.° i/4/29, March 1991.

[MESa) J. Meseguer. Conditional rewriting logic. deduction, models and concurrency,
In: S.Kaplan and M.Okada, (eds.), Conditional and Typed Rewntmg Systems, LNCS
510, Springer-Verlag, 1991.

[MESb] J. Meseguer. Multiparadigm logic programming. In: H. Kirchner and G. Levi
(eds), Algebraic and Logic Programming, LNCS 632, Springer-Verlag, 1992.

[MM] J. Meseguer, U. Montanari. Petri nets are monojds. In: Information and
Computation, Volume 88, fascicolo 2, 1990.

[REI} W. Reisig. Petri Nets and Algebraic Specifications. In K. Jensen and G.
Rozemberg (eds), High-Level Petri Nets. Theory and Applications, Springer-Verlag,
1991.

« ofe G

® ofe »

T

- 262~

A Characterization of LOTOS representable Networks of Parallel
Processes *

David de Frutos-Escrig
Departamento de Informatica y Automatica
Facultad de Ciencias Matematicas - Universidad Complutense
28040 Madrid, Spain

Introduction

We compare in this paper graphic and algebraic representations of parallel networks of processes. More exactly
we characterise the class of graphically definable networks that can be represented in LOTOS, that is to say
by means of a LOTOS expression which combines the processes in the network by instances of the LOTOS
parallel operator.

Unfortunately the obtained characterization is far from trivial, and due to its complexity, even someone
could think that it shoulc oc not named in such a way. Thus, instead of a characterization we could say that
what we have obtained is an efficient algorithm to decide if a given network is representable. But if finally
we have decided to insist on the use of the word characterization, it is mainly to emphasize the efficiency of
the obtained algorithm. Due to the finite nature of the considered problem it is obvious that it is decidable;
but at the same time, its combinatorial flavour makes reasonable to expect an exponential complexity, and
even to conjecture that the problem was NP-complete. As a matter of fact we thought for a long time that
this was the case, once we proved that several, more and more sophisticated, natural algorithms to solve the
question were not correct.

The work was motivated by our joint work with T. Bolognesi in [3,2], exploring the (partial) associativity
properties of the LOTOS parallel operator. First results on the subject, obtained by our colleague, were
presented in {1). Another contribution to the study of the subject is [4], where a simple example proving
that no every parallel network is LOTOS representable was presented, but no characterization of the set of
representable networks was there presented.

We consider that the work is interesting for several reasons. First it compares two different formal methods
for defining concurrent systems: a graphical approach, that we formalize using some basic graph notions;
and an algebraic approach, mainly the LOTOS language (or equivalently CSP with its generalized parallel
operator.) Characterizing the kind of networks that are LOTOS represeniable, we show at which extend
this kind of graphical representations can be used to specify systems, when we want to use the algebraic
framework to analize, or to transform, the obtained specifications. On the other hand, if we focus on the
algebraic formalism, we show which are the exact limits of the expressing power of the (LOTOS) parallel
operator.

Besides, we consider that the proof of the characterization is rather interesting by itself, showing an
application of many different techniques for showing properties of algebraically defined systems. The use of
operational semantics, induction, normal forms, reductions of difficult instances of the problem to more simple
ones, and some others, are illustrated.

Definitions

In the following we will sketch the main definitions and results to be extended in the full paper.

Definition 1 A general process-gate net GPGN is an undirected bipartite graph (P,G,E), where P is a set of
s0 called process-nodes, G is a set of gate-nodes, and Eisaset ofarcs EC Px G. D

Definition 2 A labelled process-gate net LPGN is a triple (GN,GL,AL) where GN = (P,G.E) is a GPGN,
GL : G — Gates is a labelling function, and AL : P — F(Gales) is a function defining the (maximal) alphabet

*This work has been partially supported by ESPRIT Project 2304: LOTOSPHERE

-263~-

—lm.'“._.-_, ——— T ———

of the processes to be associated to each process node, such that V(P,,g) € E GL(g) € AL(F,), and
VP, € PVYVa€ AL(P,) g€ G3e=(Pi,g) € E|GlLig)=a
s}

Remark: The last condition in the previous definition is included in order to give a chance to be executed to
any appearance of an action in the process labelling each node.

Definition 3 A concrete process-gate net CPGN is an instantiated GPGN, which means a pair (LN,PL) where
LN = (GN,GL,AL), with GN = (P,G.E), is a LPGN, and PL : P — Proc, with Alphabdet(PL(F;})) C AL(F;),
foreach € P. O

This definition is more general that the one given in (3], where GL had to be injective, and each process
had to be connected with any gate-node labelled by any of its gates. This restriction was there included (and
also in [1}) in order to formalize the so called mazimal cooperation principle, which oblidges to any process
including a gate in its alphabet, to cooperate to execute the corresponding action. We have dropped this
restriction, what have already been done (although in a different framework), in [2].

Definition 4 (Operational semantics of CPGN’s)

Let CPGN = (LN,PL) a concrete process-gate net with LN = (GN,GL.AL) and GN = (P,G,E). For each
¢ € G, if all the processes B; labelling process-nodes connected with g can execute the action GL(g), evolving
into B!, then CPGN can also execute that action, evolving into CPGN’ = (LN,PL’), where PL’ is defined as
PL, but taking PL'(P;) = B!, for each process node P, connected with g. O

We want to decide if for a given LPGN we can construct an equivalent LOTOS representation LRep(LN),
which means a parallel expression combining the process variables in P, by parallel operators |[S]], with
S C Gates, such that for any concrete instance of LN, CN = (LN,PL), we have CN ~ LRep(LN){PL(F;)/Fi],
where by [B;/P;] we denote the substitution of all the appearances of the variables P; by the corresponding
processes B; .

We apply a constructive method to answer the question, so that whenever there exists any LOTOS ex-
pression representing the given network, we obtain one of them.

The algorithms to check LOTOS-representability of a network

To solve the problem we have followed a three steps procedure, generalizing at each step the kind of networks
that can appear as input.

In the first step we consider the case in which the given network has a single gate. This simple case is
studied, just because to solve the general case we have first to solve each of the problems corresponding to
the projection of the network over each one of its gates, and then to check if il the obtained solutions are
somehow compatible each other.

But this reduction of the problem to a family of problems corresponding to single gates, only works
whenever all the alphabets of the process nodes of the network are the same, and thus for each process-node p
and gate a there is some gate-node g labelled with a connected with p. This is the case that we have studied
in the second step of our procedure.

Our first idea in order to solve the general case was to try to reduce it to that particular case. But that

showed us to be not possible, siice the fact that any process appearing in the expressions computed along the
application of the algorithm, could eventually execute some action through any of the gates of the network,
was crucial in order to prove the correctness of the algorithm.

Therefore we had to change our approach to the question, looking directly for the appropiate generalization
of the algorithm to solve the general instance of our problem. If finally we have decided to include in this
paper the solution for the previous (partial) case, it is mainly for pedagogical reasons, since both the general
algorithm and its correctness proof are absolutely inspired by the corresponding ones for that particular case.

First Case: Networks with a single gate

We consider in this section the particular case in which the system has a single gate, that is to say |GL(G)| = 1.
In such a case the kind of paralle] expressions in which we are interested, can be represented, as already
suggested by T. Bolognesi in [2], as arithmetic expressions, rewriting)1l into + and |{a}| into -.

- 264~

-

&

@ ©

We can translate the definition of the operational semantics of LOTOS to this arithmetic framework,
obtaining the following rules

E, — E; E, 2. E} E, -~ E| E; >~ E
E\+E; = E{+E; E\+E;- E +E, E,-E; =~ E| - Ej

Besides, the commutativity of \oth operators and the distributive axiom (E; + E;)-E3 = (E, - E2)+(E, Ej)
are also correct in this framework. Then our problem reduces to prove if that expression can be rewritten into
another (equivalent) one with a single occurrence of each process variable, by application of the commutativity
of both operators, and of the distributive axiom in the right to left way.

In order to check that property, we concentrate on the root operator of the (present state of the) expression
to be reduced. If it is a product, then there cannot be any common process variable in its two arguments, and
thus the probiem can be reduced to the simplification of both arguments. Otherwise we select any process
variable with more than a single occurrence in the expression, and we try to elliminate its repeated occurrences
by application of the distributive axiom. If it is not possible, then the algorithm fails, concluding that the
original network is not LOTOS representable. Otherwise we iterate the process until there will be no variable
occuring more than one time in the expression. Since there is no necessity of any backtracking along the
application of the procedure, it is easy to check that using the adequate data structures to represent the
involved expressions, the cost of the algorithm is (in the worst case) cuadratic on the size of the network.

An important auxiliary result, which besides is rather interesting by itself, to prove the correctness of
this algorithm, is the one telling us that two essentially different (up to commutativity and associativity)
expressions with single appearances of each process variable, are not equivalent. This resuit could seem to be
trivial, what it is somehow disproved by the (relative) complexity of its formal proof. As a matter of fact the
correctness proof of our algorithm (which, at least in our opinion, is far from obvious) is nearly immediate
once one can use for it this auxiliary result.

Second Case: All the process nodes have a common alphabet

The second step covers the case in which all the process nodes have the same alphabet, which implies that for
any process-node p and gate a there is some gate-node g labelled with a and connected with p.

In this case the procedure begins by the application of the algorithm corresponding to the previous case
to the projection of the given network over each one of its gates. If any of them is not LOTOS representable,
neither the full network is. Otherwise we have to check if all the obtained expressions are compatible each
other. This means that they can be obtained by projecting over each gate the LOTOS expression that we are
searching. Thus we have to check if the hierar_hical relations between the process variables, induced by the
expressions corresponding to each gate of the network, are not contradictory.

For we use the fact that for each set of gates A, the corresponding parallel operator {[A]] is associative.

Then we can write the expressions involved in the process, in what we call normal form, which is formally
defined by

Definition 5 a) If Py, ..., P, are process variables and A C Gates, then the expression E = |(A]|(P, ..., P,)
is in normal form, and we will say that the set A is its root synchronization set, which we will denote by
rss(E).)

b) If E;, ..., Ep are expressions in normal form, with rss(E;) = A, , and A C Gates verifies A # A, , for each
1 € {1,...,k}, then the expression E = |[A]|{(E}, ..., Ei) is also in normal form, and we take rss(E) = A. O

Then, in order to check the cousistency of two expressions in normal form, E = |[A}|(E),...,Em) and F =
I[BYI(Fy, - .-, Fa), we first study if its common set of process variables can be partitioned in a family of subsets
P!, ..., P', in such a way that for each i € {1,...,t} either exists some j € {1,...,m]} with Processes(E;) =

P’ and some K c {1....,n} with {J,ex Processes(Fy) = Pi, or there exists some j € {1,...,n} with
Processes(F;) = P* and some K C {1,...,m} with |J,¢x Processes(E;) = P*. If this is the case our problem
reduces to a family of instances of the same problem, with an instance for each i € {1,...,t}; otherwise the
given expressions are not consistent. Thoee instances of the problem are defined in the following way:

o If 3j; € {1,...,m)} 3j, € {1,...,n} | Processes(E;,) = Processes(Fj,) = P*, we check the consistency
of E,‘, and Fj, -

elf3je{l,...m}3K C(l,....n} | IK| > 1A P -sses(Ej) = Upex Processes(Fi) = P*, we check
the consistency of =;, and |[B}leex(Fi).

- 265~

e If3j€{l,....n}3RK C{l,....m} | |N| > 1 A Processes(F;) = | J, ¢ x Processes(Ec) = P', we check the
consistency of |[A]ltex(Es) and F, .

If all these tests are passed then the given expressions are consistent; if this is the case, we also obtain the
expression D which combines the structures of both expressions. Otherwise, they are not consistent, and thus
they cannot be combined into a single expression.

The coet of this algorithm is cuadratic on the size of the given expressions, and thus the cost of the
presented algorithm to test LOTOS-representability in this second case, is less than cubic on the size of the
given network.

The General Case

As in the previous case we begin by solving the problems corresponding to each gate in isolation. But in this
case, when considering the subproblem corresponding to a gate g, the process nodes which do not contain that
gate in its alphabet, are not considered when applying the algorithm described in our first step. Nevertheless,
once we have the corresponding solution, we add those processes as new sons of the root of the solution.

It is clear that whenever |{g]} is the operator labelling the root of the expression, we obtain an impossible
synchronization, since g is not a gate of any of the added processes. But the key idea in order to guarantee
the correctness of the algorithm, is that such LOTOS expressions are not interpreted by our algorithm in the
ordinary way; instead it uses a modified version of the semantics of the parallel operator, which considers that
if we have an expression E = {[A]|(E}, ..., E,), and we want to execute some a € A, only those processes P,
including a in their alphabets will have to cooperate to do it.

This change implies that the hierarchical structure induced by an expression is no more unique, since the
processes which do not contain the corresponding action in its alphabet, could have been added anywhere, and
not just below the root of the expression, obtaining a set of different expressions, which however are equivalent
with respect to that modified semantics.

This implies that when we check the compatibility of two expressions, we have to let the processes no
containing the corresponding gates, to move down into any argument of the corresponding expression, if that
is necessary in order to match the structure induced by the other expression.

In order to generalize this idea, to apply it when we have to compare two expressions which have been
obtained by composing the solutions corresponding to several gates, we introduce the notion of independency,
for sets of expressions. We say that the elements of a set of expressions are independent iff their alphabets are
disjoint each other. Then, whenever we are comparing two such expressions, and we have inside any of them
the parallel composition of a family of independent subexpressions, we can put all together obtaining a single
subexpression, if that is necessary in order to match the structure induced by the other expression.

Thus, the second step of the algorithm for this general case is obtained from the corresponding step of the
algorithm for the previous case, by relaxing the condition which imposes that for each set P' in the considered
partition, we have either to find some single subexpression E; (or F;) with Processes(E;) = P (or equivalently
for Fj), allowing now to have instead a family {E; | j € J} (or equivalently for F’s), of independent processes.
When we use that possibility, and for each j € J we have E; = |[A;]I(Ej1, E;m,) then the expression to be
compared in the instance of the problem corresponding to P*, will be that given by |[A;]l;esxeq1,...m,}(Ejk) -

Finally, if the algorithm succeeds, those impossible synchronizations remaining in the obtained solution are
removed, since they were only added as a consequence of a technical trick, to obtain an algorithm as similar
as possible to that corresponding to the second case. By removing them we recover the ordinary semantics
for the parallel operator, and thus the obtained expression is indeed the representation of the given network.

References

{1] T. Bolognesi A Graphical Composition Theorem for Networks of LOTOS Processes in Proceedings of the
10th International Conference on Distributed Computing Systems, IEEE Computer Society Press, 1990.

{2] T. Bolognesi (Ed.) Catalogue of LOTOS Correciness Preserving Transformations LOTOSPHERE Task
1.2 Final Deliverable Lo/WP1/T1.2/N0045 ESPRIT 2304: LOTOSPHERE (1992)

{3] T. Bolognesi, D. de Frutos, Y.Ortega Graphical Composstion Theorems for Parallel and Hiding Operators
in Formal Description Tecniques III, (Procs. FORTE’90) North Holland (1991)

(4] J. Hinterplattner, H. Nirschl, H. Saria Process Topology Diagrams in Formal Description Tecniques III,
(Procs. FORTE’90) North Holland (1991)

- 266 =

e@e @

&

Towards Performance Evaluation in Process Algebras *

Roberto Gorrieri Marco Roccetti

Universita di Bologna, Dipartimento di Matematica
Piazza di Porta San Donato 5, I - 40127 Bologna (Italy)
e-mail:{gotrieri,roccetti}@cs.unibo.it

Process algebras, such as ACP, CCS, CSP and LOTOS, are widely accepted formalisms for the
“functional” specification of concurrent systems, where functional means that a process term
specifies what actions the system should do. Bisimulation is a standard tool for the definition of
a behavioural equivalence on process terms which, besides the actions, considers the structure of
the alternative choices (branching-time semantics).

Another, not less relevant, aspect of a system specification is its “performance”, i.e., the measure
of the time consumed for execution. It may be argued that performance is only a matter of efficient
implementation. This is untrue: For applications whose functionality is performance-dependent
(i.e., it can be altered by the flow of time like, e.g., in presence of time-outs), it is reasonable
to require that a specification does not allow implementations which do not have an adequate
performance.

Our work gives a contribution in the direction of integrating the two needs by presenting a new
bisimulation-based semantics, called performance equivalence, for a simple process algebra where
systems are equated if they perform the same actions in the same time (i.e., they have the same
functional and performance behaviour).

The basic assumptions on which this semantics relies are the following. Any action @ has a
duration — a natural number f(a) — which represents the time units needed for its execution.
Every sequential subsystem is equipped with a clock, whose elapsing is set only by the execution
of actions. To be more precise, whenever an action a is executed by a sequential subcomponent
P, the value n of the local clock of P is incremented to n + f(a), whilst the local clocks of those
sequential components not involved in the execution of a are unaffected. Hence, if P is idle during
a transition, its local clock value cannot increase. In other words, each sequential subsystem is
always eager to perform an executable action (or dually “actions are urgent”): the time value is
incremented locally only when the executable action is performed. The only exception is concerned
with synchronization. Two processes can synchronize when they perform the same action at the
same time; if one of the two is able to execute such an action before the other one, then a form
of “busy waiting” is allowed. This fact shows that the local clocks are indeed locally replicated,
possibly inconsistent, versions of the unique physical global time. Indeed, the time is the same
for all the sequential components; the only point is that we do not pretend that all the local
views be consistent during the simulation. This assumption is rather natural if we are interested
in performance evaluation only. In a simulation there is no need of having a tight agreement
between the time of ezecution (i.e., the number attached to the executed actions) and the time
of observation (i.e., the time of “generatior” of the action during the simulation).

A simple example may be helpful in clarifying the basic idea. Consider the term E = a.g.nil ||
b.nil. Since the clock is set to 0 befc.2 starting the execution of E, the initial state of the
transition system is (0 = a.g.nil) || (0 = b.nil), where the auxiliary operator n = P means that

*This work has been partially supported by Esprit Basic Research project BROADCAST n.6360 and by Italian
CNR, grant n. 92.00069.CT12.115.25585.

- 26} -

the execution of P starts exactly after n time units of the global clock. One of the two transitions
out of it is labelled (a, f(a)) and reaches (f(a) = g.nil) || 0 = b.nil. By executing b, we reach
the state f(a) = g.nil || f(b) = nil; finally the execution of g produces a transition labelled
(9, f(a) + f(g)) with target state (f(a) + f(g) = nil) || f(b) = nil. It is immediate observing
that the time needed for the complete execution of the system is maz{f(a) + f(g), f(b)} and
that bisimulation equivalence over this labelled transition system is more discriminating than
interleaving bisimulation. Indeed, the equation a.nil || b.nil = a.b.nil + b.a.nil does not hold

0 = a.nil |0 = bnil L% f(a) = nil || 0 = bnil “22 f(a) = nil || f(b) = nil

0 = a.b.nil + ba.nil L f(a) = bonit L £6) 4 £(b) = il

as the execution of b after a in the left-hand-side term is performed with a higher clock value.
Notice that, if f(a) > f(b), then the execution of a before b in a.nil || b.nil generates two
transitions where the clock value is decreased in the second transition. This phenomenon has
been criticized in real-time literature (e.g., [2]), because in this context the time of execution and
the time of observation are required to agree tightly; however, a recent report [1] shows that this
view can be reasonably accepted also in real-time applications, provided that those “ill-timed”
traces are “well-caused”, as we do here.

The simple process algebra £ we study has operators borrowed from CCS and TCSP:

E:x=nil|a.E|E+ E|E |4 E| E[®)
where, for the sake of simplicity, we assume that ® relabels actions with the same duration, i.e.,

f(a) = f(®(a)) must hold for any a. L is equipped with an SOS semantics in terms of labelled
transition systems. The states are terms generated by the following syntax:

su=n=>nil|n=>aE|s+38]|siss]|s®)

where E denotes any (finite) £ term. When prefixing a term E with a clock value n, n = E, we
mean that n distributes over the operators, till to the sequential components. Formally:

n=>(E+E) = (n=E)+(n=>E)
n=>(E|LE) = (n=>E)|a(n=>E)
n=(E[®)) = (n= E)¥)

Hence, n = E is (canonically) reduced to a state. Each transition is labelled by (a,n} »w: the
observable part is (a,n), meaning that action a has been completed exactly after n time units,
while the location part w is a term pointing out which sequential subagents have been invoived in
the execution of action a itself. The latter part, irrelevant from an observational viewpoint (and
thus omitted in the previous examples), is used to guarantee a correct updating of the local clock
values in steps of synchronization. Locations are generated as follows:

wiz e |lwl | |lw|wllw

where o (one place) means “sequential”, while w| (|w) means that the system is composed of
two main parts and that w comes from the left (right) part; the operator || is a form of (disjoint)
union of locations. The rules for prefixing, sum, relabelling and parallel composition (where the
obvious symmetric rules are omitted) are:

k=n+ f(a) e
=n [
n=>aE“N ko E s[®) (He)nhe 1)
- 268~
- - - - L L J L

(s.n)ew s (‘.':l.“ ,

A= 3 3 ifag A
8 + 82 el sy 8 lla 82 (@.deleh 8 lla 2
(0.111:-" - {a.n3)wws s
1 1 2 2 :
(@i pw(wiflwa) , ifa€Aandn, 2n,
81 {la 52 i 81 la ([n1,wa)83)

where the auxiliary time-update operator [n,,w,] applied to s} in the synchronisation rule increases
to i, the clock value of the sequential components of s; singled out by w;. Indeed, two sequential
subsystems can synchronize via the same action a performed during the same time interval; hence,
if one of the two is ready before the other one, it must wait. Formally, some of the equations
defining the time-update operator are:

[n,®)(m = a.E)

[n,w]](s1 lla 32)
[n,w || ws)(sy la 82)

n=>aF
([n,w]s1) {4 32
([n,w1]s1) lla ([n,w2]s,)

nanu

Finally, we introduce an auxiliary operator which forgets about the additional location part on
the labels. The “forgetful” operator, F(s), is defined as follows:

s (b s
F(s) 2 F()

We say that two L terms E, and E, are performance equivalent, E, ~, E,, if and only if
F(0 = E,) is bisimilar to F(0 = E,).

Performance equivalence is preserved by all the operators, except parallel composition (the
counter-example is the same proposed by A. Rabinovich to show that partial ordering bisim-
ulation is not a congruence). A complete proof system for performance equivalence can be easily
provided with the help of some auxiliary operators. Two terms E; and E; are performance equiv-
alent if and only if F(0 = E,) is proved equal to F(0 = E,), according to the following axioms.
Besides the usual laws for bisimulation (+ is a commuative, nil absorbent monoid), the distribu-
tive axioms on states and the axioms for the time-update operator listed above, there are axioms
which transform each state in a tree labelled also with the location part, and some more axioms
that, taken such a tree, forgets this location part. Some of them are reported below:

n=>aE=((ak)xe)(k=>E) fork=n+ f(a)
sillasa=s1)ass+salass+silas
((a,n) xw.s1)| 482 = ((a,n) xw]).(81 |la 82) ifag A

F({(a,n) *w.s) = (a,n).F(s)

Hence, the procedure for checking if two terms are performance bisimilar is as follows: first,
generate a tree out of a state; second, forget the location part; third, check their equivalence
according to the axioms of strong bisimulation.

Performance equivalence is a non-interleaving semantics which is based on the notion of time-
consumption. It is interesting to see what is the rank of this equivalence in the large spectrum
of non-interleaving semantics proposed in the literature. It can be proved that partial ordering
bisimulation [4], ~p,, is finer than ~,. This is quite obvious as causality gives enough information
to recover the time needed for execution. The reverse does not hold in general; however, it can
be proved that if the two systems are time-deterministic (there are no reachable states with two
outgoing transitions labelled by the same action at the same time), then performance equivalence

-269—

induces a semantics which is even finer than ~,,. Let us consider ST semantics {7]. Performance
equivalence is strictly finer than ST bisimulation semantics. The counterexample is easy: consider
the two terms a.nil || b.nil and ((a.c.nil ||, (b.nil + c.nil))[*/.]. These are ST bisimilar but not
performance bisimilar, as in the latter system, action b can be completed also after f(a) + f(b)
time units. This example may also help in clarifying in which sense our semantics is not “real-
time”, according to some papers in the literature (see, e.g., [8]). A different operational semantics
for synchronisation, which is claimed “real-time”, requires that both agents are ready to perform
the same action at the same time, without any busy-waiting. This solution, proposed in, e.g.,
(1], forbids several executions that we prefer to keep; for instance, the synchronisation over ¢ in
the example above. Indeed, our treatment of nondeterminism is similar to an internal choice:
first, each local component decides (with zero delay) which action it wants to execute, then it
tries to export the action to the top level, possibly delayed by synchronisations. If successful, the
execution takes exactly the right amount of time; otherwise, the action is not executed at all. As
all the local choices are to be taken into account, all the possible executions are represented. (Qur
view is shared by other researchers, proposing similar ideas in different contexts (3, 5].)

This semantics is @ priori of timed calculi (no specific operators have been proposed to this
aim) and real-time is not an issue of this paper. Nonetheless, we feel that our approach to time
in system executions can be helpful for a formal description of time-dependent programming
constructs such as timeout, watchdog, and so on. In conclusion, the aim of our study is to provide
an approach able to incorporate time into formal specifications, in order to capture functional
and performance behaviour of distributed and parallel systems. Nevertheless we are aware that,
because of the ineherent random nature of the investigated problems, the concepts of random
variables and stochastic processes represent the unique well-founded discipline able to describe
performance aspects of computer systems. Thus, even if other alternative (or complementary)
approaches can be studied (e. g. Stochastic Petri Net models), our next purpose will be to replace
specific, deterministic time duration values with time probabilistic distribution duration functions,
in order to provide a uniform integration of the theories of process algebras and performance
evaluation (see, e.g., [6] for a preliminary study). This justifies the title of the paper.

Acknowledgements

We are grateful to Luca Aceto and the anonymous referees for their useful comments.

References

(1} L. Aceto, D. Murphy, On the Ill-timed but Well-caused, to appear in Proc. CONCUR’93, LNCS,
Springer, 1993.

(2] 3. Baeten, J.A. Bergstra, Real Time Process Algebra, Formal Aspects of Computing 3(2):142-188,1991.

[3] E. Best, Weighted basic Petri Nets, in Concurrency’88, LNCS 335, Springer, 257-276, 1988.

[4] P. Degano, R. De Nicola, U. Montanari, Observational Equivalences for Concurrency Models, in Formal
Description of Programming Concepts III, North-Holland, 105-132, 1987.

(5] G.L. Ferrari, U. Montanari, Observing Time-Complezity of Concurrent Programs, submitted for pub-
lication.

[6] N. Gotz, U. Hersog, M. Rettelbach, TIPP- Introduction and Application to Protocol Performance
Analysis, to appear in Tutorial Proceedings of Performance '93, October 1993.

{7] R.J. van Glabbeek, F. Vaandrager, Petri Net Models for Algedraic Theories of Concurrency, in Proc.
PARLE II, LNCS 259, Springer, 224-242, 1987.

[8] W. Vogler, Timed Testing of Concsrrent Systems, to appear in Proc. ICALP’93, LNCS, Springer, July
1993.

-~2¥0 ~

Translation Results for Modal Logics of Reactive Systems

F. Laroussinie’ S. Pinchinat!and Ph. Schnoebelen®
LIFIA-IMAG, Grenoble, France
and University of Sussex, Brighton, UK

Modal logics are an important tool in the analysis, spec-
ification and verification of reactive systems. Among many
other applications, logics like HAM L have been used as a
benchmark for semantic equivalences [8], as the specifica-
tion language used in model chesking tools [1}, and as a
language in which to explain why two systems are not se-
mantically equivalent [10].

Regarding modal characterizations of semantic equiva-
lences, the classical resuit ia the adequacy theorem of Hen-
nessy and Milner who showed that two states in a (finitely
brauching) transition system are bisimilar, written pag, iff
they satisfy the same H M L formulas, written p =guy ¢,

where p= ¢ Ve Lk © ¢

Here we are mostly interested in modal logics with past-
time (backward) operators. A few exist. They have been
used (among other applications) to capture non-continuous
properties of generalized transitions systems (Jr in [9]), to
capture history-preserving bisimulation in causality-based
models (Lp in [2]) and to capture branching bisimulstion
by mimicking back-and-forth r-bisimulation (Lg in [5)).

In this paper we give three noun-trivial transla-
tion theorems of the generic form L < L' showing, given
any formula f from some modal logic L, how to build an
equivalent f’ € L’. This kind of problem has not received
much attention in modal logics of reactive systems ~<- the
existing results in temporal logics mostly deal with i.-. z-
time logics.

Our translations are defined by rewrite rules (to apply
with a given strategy) over formulas. A consequence is
that, once discovered, the translations are easy to imple-
ment. Our motivations are not only theoretical. For ex-
ample, by showing how to translate HM Ly (HML with
past-time connectives) into its future-time fragment ML,
we show how to easily expand the input language of any
software tool (e.g. a verifier) handling HM L properties.

*LIFIA-IMAG, 46 Av. Félix Viallet, F-38000 Grenoble,
FRANCE. Email: {francois phe) @lifia. imag fr

1School of Computing & Cognitive Sciences, University of Sussex,
Falmer, Brigiton, BN1 9QH, UK. Email:sp@cogs.sussex.ac.uk. This
author is supported by an INRIA grant.

1 Backward modalities

We consider a fixed set A = {a,b,...} of labels. A labeled
transition system (LTS) is an edge-labeled graph (Q,—)
where Q = {p,q,...} is a set of states and ~C Q@ x A xQ
is the trensition relation. We assume a fixed LTS S.

HMLy; is HML with past-tense modalities’ and has
the following grammar:

HMLy 3 f,g == T | ~f [fAg | (a)f | (a}Sf
where a is any action from A. (HML is the fragment
of HML,; where the {a) operators are not allowed.)
f.9.0,8,¢,9,... denote HML formulas and we use the
standard abbreviations: fV g, L, {a]f for ~(a)-f, ...

A modal logic with backward modalities states proper-
ties of a run x = [go 23 ¢; --- =3 ¢n] of S, that is, of state
¢n Wwith a given history (or past). We write x — »’ when
run « is x with a transition ¢, — gn41 added. For a run
» and an H M L;; formula f, we define ¥ |= f by induction
on the structure of f:

%[(a)f iffthereisax = w'st. ¥ = f,
xE={@)f ifithereisar S xst. ¥ f.

(the other clauses are obvious.) Then, for a state ¢ € Q,

the derived notion ¢ |= fis given by ¢ = f ‘g‘ lgE T

[5] mention that p =gai,, ¢ iff p—¢ because (strong)
bisimulation coincides with (strong) back-and-forth bisim-
ulation [3]. This entails p =yur ¢ iff p =gms,, 9-

We are looking for a more detailed comparison of the ex-
pressive power of HM L and HM Lyy. We consider whether
formulas of HM L;; can be translated into HM L. This re-
quires some definitions:

Definition 1 Two formulas ere globally equivalent, writ-
tenf=,f, iffsef & = [forall runs in all
LTS’s.

They are initially equivalent, written f =; f', iff ¢ E

J & qEJ for all states in all LTS’s.
Clearly, f =, f implies f =; f’ but the converse is not
true. =, is » congruence: when f =, f’ with f a subfor-
muls of g then g =, g[f'/f]. This does not hold for =;
which is only a congruence w.r.t. boolean contexts.

't was introduced in [§] for systems with 7's (but note that
HMLy, is a subset of Jr defined in [9].)

Definition 2 A logic L can be transiated (resp. initially
translated) into L', written L <, L' (resp. L =<, L'), iff for
anyfE€ELl thereisa P EL with f=, [' (resp. [=i [').

L =<; L' implies =;. C =1 but the converse is not true in
general.

Theorem 1 HMLy; < HML.

The proof uses three steps.

o Say a formula is restricted if it has the form {(a}f, ~{2}f,
{a}f or ~(a}f, with f a restricted comjunct, i.e. a (pos-
sibly empty) conjunction of restricted formulas. (We use
#,¥,... to denote restricted formulas.) Then

Lemma 1 Any [is cquivelent o o disjunction of re-
stricted comjuncis.

o Say a formula is separated if no backward modality occurs
in the scope of a forward modality ? (and write HML;;"
for the fragment of HM L,; that contains only separated
formulas).

Lemma 2 Any resiricted o is equiveleal lo s separaied
formula.

Proof Rewrite ¢ into a separated formula using:

(@)(vallly) = {:/\(GW’ :::i:’
@A) = { M Held

Any restricted non-separated formula can be rewritten ac-
cording to one of these equations. Applying an outer-
most strategy guarantees that non-separated subformulas
remain restricted conjuncts. Termination is clear. O

Proposition 1 (Separation Lemma)
HMLy <, HML:;’ (1)

is the immediate corollary. (Observe that (1) does not hold
for Gabbay’s definition of separated formulas.)
Now we conclude the proof of Theorem 1 with

Proposition 2 HML,;? <; HML.

Proof Use (a)f =i L to eliminate (modulo =;) any past-
time modality which is not in the scope of a future-time
modality.

2Note that (6, 7] use a different, less general, definition of seps-
rated formulas: say a formula is pure-future if it does mot contain
past-time operator, is pure-past if it does not contain future-time
operator, and is separated (in Geblay’s sense) if it is & boolean com-
bination of pure-past and pure-future formulas.

2 7-moves, from Ly to Lpr

For transition systems labeled over A, df 4y {r). 15

introduces Ly and Lgr, two modal logics characterising
branching bisimulation.

Lpr is a version of HMLy; adapted to systems with
silent moves. Its grammar is

Ler3fig == T | ~f | fAg | ((B)f | ((ED)S

where k is any label from A, 4T AU {¢}. We use [[£])S
and [[E]lf as standard abbreviations. The semantics of the
new modalities is given by:

v ((a))f ifithereisar 33 ot ¥ [f,
= ((¢))f iffthereisarS st v/

where = is the reflexive and transitive closure of =. The
clauses for ({k)) are just like for ((k)), only backward.

Ly has no backward modalities but it has a so-called
“until” operator which is more powerful that the simple
future-time operator of Lpr. The grammar of Ly is

Lu3fg =T I~f | fAg] flk)g
with k € A.. The semantics is given by

=k fla)g fTIN>0,x=m S m = Facl — Tn
st.a,Egand x| ffori<nm,

x k= fle)g iﬁBﬂZO.t:ro-'-nL---t,.-llot..
st. 7, Egand x| ffori<n.

For technical reasons, we introduce Lgy [11], & logic
built by combining all modalities of Ly and of Lpr, 8o that
both Lpr and Ly ace fragments of a8 common supersey:

Loy 3fig == T ~f | FAg | () | TENS | £(k)g
with k € A,. In Lpy, the ({k)) is not really needed because

((E) S = T(E)T{e)S) 2

Considering that =, and =L ,, coincide {5], a natural
question is whether Ly or Lpr can be translated into the
other. At a certain time, the authors of [5] tried to simply
embed Ly into Lgr (see Theorem 2.19 in [4]) but later
found a mistake in their proof. A translation exists but it
is not trivial:

Theorem 2 Ly X, Lar.

Proof We show how to eliminate the until modalities
from an Ly formula f.
o Consider a formula f having the general form:

= [V (/\[["-'illvij A /\((’ffj))vi,-)](k)'b (3
i €

izl..n j€J,

- 28~

H

= T T

for which we introduce the following simplifying abbrevia-
tions:

[o] & A kD (o) & A (k)
jed, jeJ;
The top modality of f is an until with a n-ary disjunction
in the left-hand side.
o First, consider the simpler case where n = 1 in f. Then
ifk=a € A we have

2=, la] A (@) ([[w ATlalle))

while if & = ¢ we have
r=0wv [l) (v AT v (ai)]

o Now in the general n-ary case with n > 1, we show how
to rewrite (3) into a formula where the until is eliminated
by introducing new until-formulas having n — l-ary dis-
junctions in their left-hand sides.

i k=a€ A we have

f=V [lml A (v ff))))((p/]f Ifn(n;ng'@»))]

izl.n

where
o E (V] a o))y

hal...a
g

are the new until-formulas containing only n — 1 members
in the disjunction.
Similarly, if £ = ¢, we have

r20v V (lodnten(wATow v @ip))

i=l.n

(for any i € I)

o Now, with a sound strategy, these two transformations
can be used to rewrite an arbitrary f from Ly into Lpr:

1. Observe that f in (3) is a quite general until formula
except that it has no backward combinator (immedi-
ately) in the left-hand side of the until. Say an FB-
formule is any Lpy formula where (i) no until is in
the scope of a backward modality, and (ii) where every
backward modality is (immediately, but disregarding
boolean combinators) under a forward Lgr modality.

2. Then if f in (3) is sn FB-formula, our transformations
give in all cases a formula equivalent to f which is still
FB: all the backward combinators we introduce have
no until in their scope and are immediately under a
forward Lgy modality.

3. Now given any formula in Ly, we just have to work
by picking the innermost untils first and by writing
their left-hand sides in disjunctive normal form. We
eventually obtain an Lgyr formula. D

3 From Lgr to Ly
Theorem 3 Lps < Ly.

This problem was considered in {11} where a partial solu-
tion is proposed. Our approach was developed indepen-
dently and uses our separation techniques. Write L3}, for
the set of separated Lpy formulas, i.e. of formulas with no
backward modality under the scope of a forward (or until)
modality. We show how to rewrite any Lpy formula into
an equivalent separated formuls. The most difficult part
here is to find a strategy which ensures termination. For
this we use an approach inspired from [6)].

Lemma 3 Any Lgy formule f with only one subformule
of the form {(k))¢, where ¢ has no modality, is equivalent
{0 a scparated formula. (Note: f may contain several
occerrences of ({k))v.)

The basic transformation removes a modality {(£)) from
the scope of an until modality. First of all, we need not
consider disjunctions in the right-hand side of an until be-
cause

(k) (V1 V ¥2) =, p(k)¥1 V p(k)¥s

Then conjunctions in the right-hand side can be dealt with
by using

a(a)({((N¥AB) =, ala)(vAB)
a(a)(~{{)v A B) =, ala)(~vAp)

a(a)((twAs) =4 ifa#b,
=, (a(e)(¥ A ala)B8) Vv (v A a(a)f)fa =b.
a(a)(~{N¥ AB) =, ala)8 ifa#b,
=, ~{(e))vA(an~¥)a)8 ifa=b
a(e)({{eN¥ A B)
=, (¥ Aa(e)B) v ale)(¥ A (o))
al)(~{{Nwrs)

=, ()Y A (a A-¥))BAY)
al)([was) =, {BeAralgs
a(e}(~({BR¥ A B) =, ~((wAale)s
which are correct without any hypothesis on a, 8 and ¥.

To remove ((k))¥ in the left-hand sides of until-formulas,
we only consider the general form:

(@ Ae) v (TENY AL VB) () (4)

- 2¥3~

We use

(@Nwre) v (TR Aw) V8] ka
&, ()Y A (e V A)k)a

v ~{(e))e A ?“’ AV ﬁ); (k)

V =) A (- A (¢ V() (¥ AV B)(k)a)

(@@ A o) v (<TBNY A @) v 8] (h)a
=, (0% A (o v B)k)a) v (~TBNW A (¢ V B)(k)a)

We have no room here to show the rules for the general
cases where ({k}}¥ occurs in both sides of the until. They
are often dealt with by a combination of the previous trans-
formations, and in some cases by new transformations in
the same spirit.

Once this basic step is established we just have to offer
a strategy ensuring termination:
Lemma 4 Any Ly formula f with only n subformulas of
the form {(k:))¥:, where ¥; has no modality, is cquivalent
to & separsied formula.

Proof Use Lemma 3 on each ({E;)); in turn. a

Lemma 5 Any Ly formule f with only n ssbformulas of
the form ((k;;; i, where ¥; has only backwerd modalities,
15 equivalent 1o a separeted formuls.

Proof Use Lemma 3 to extract the ((k;))¥;. This may
introduce new ({(k;;))¥;; in the (immediate) scope of some
untils, but these were subformulas of the ¥; so that the
height of the maximal nesting of backward modalities is
decreased. 0O

Lemma 6 Any Ly formula f is equivelent to e separated
formula.

Proof Applying Lemma 5 to subformulas {(k)}¥ dimin-
ishes the multiset of alternation heights of backward and
forward modalities. 0O

Proposition 3 (Separation Lemma)

Lpy %4 Lgp
is the immediate corollary which combines with
Proposition 4 Lp} < Lu.

(same as Proposition 2) to complete the proof of Theo-
rem 3.

Conclusion

Translations between modal logics have not been investi-
gated in the literature. Our three theorems clearly show
that many interesting results can be found when modal log-
ics with backward modalities are considered. We intend to
pursue this line of research

e by investigating complexity issues (not deait with in
this introductory paper),

o by simplifying our proofs that our rewriting strategies
terminate,

e and especially by considering other richer logics:
H ML with recursion, logics for “truly parallel” mod-
els, ...

This last point seems promising. For example, F. Cherief,
F. Laroussinie and S. Pinchinat proved that the logic Lp
from [2] can be translated into a variant of HM Ly, with
{p) modalities for pomsetas p.

References

(1} R. Cleaveland, J. Parrow, and B. Steflen. The concurreacy
wotkbench: A semantics-based tool for the verification of
concurrent systems. ACM Transactions on Programming
Languages and Systemas, 15(1):36-72, January 1993.

(2] R. De Nicola aad G. L. Ferrari. Observational logics and
coacurrency models. In Proc. 10th Conf. Found. of Soft-
ware Technology and Theor. Comp. Sci. Bangalore, In-
dia, LNCS 472, pages 301-315. Springer-Verlag, December
1990.

[3] R. De Nicola, U. Montanari, and F. Vaandrager. Back and
forth bisimulations. In Proc. CONCUR’90, Amsterdam,
LNCS 458, pages 152-165. Springer-Verlag, August 1990.

[4] R. De Nicola and F. Vaandrager. Three logics for branch-
ing bisimulation. Research Report CS-R9012, CWI, 1990.

[5] R. De Nicola and F. Vaandrager. Three logics for branch-
ing bisimulation (extended abstract). In Proc. 5th IEEE
Symp. Logic in Computer Science, Philadelphia, PA, pages
118-129, June 1990.

(6] D. Gabbay. The declarative past and imperative future:
Executable temporal logic for interactive systems. In Proc.
Temporal Logic in Specification, Altrincham, UK, LNCS
398, pages 409—448. Springer-Verlag, April 1987.

[7) D. Gabbay, A. Puueli, S. Shelah, and J. Stavi. On the
temporal analysis of fairness. In Proc. 7th ACM Symp.
Principles of Programming Languages, Las Vegas, Nevada,
pages 163-173, January 1980.

{8] M. Heanessy and R. Milner. Algebraic laws for noadeter-
minism and concurrency. Journal of the ACM, 32(1):137-
161, January 1985.

{9]) M. Hennessy and C. Stirling. The power of the future
perfect in program logics. Information and Control, 67:23-
52, 198S5.

[10) M. Hillerstrom. Verification of CCS processes. M.Sc. The-
sis, Aalborg University, 1987.

[11] F. Vaandrager. Translating back and forth logic to HML
with until operator. Unpublished note, 1992.

-2~

c ofe @

Modal Action Logic in a Practical Specification Language

Ismar Neumann Kaufman

ink@di.ufpe.br

Silvio Lemos Meira
stlm@di.ufpe.br

Department of Informatics - Federal University of Pernambuco

P.0. BOX 7831 - 30732-970,

1. Introduction

The need for formal specification languages in the
requirements phase of software engineering has
been recognized by scientists and practitioners a-
like. The Z language [12], particularly, is widely
accepted as a medium to express software require-
ments, with its schemas providing modularity to
build new specifications by composition of elements
already defined. Z has been tested in a number of
industrial projects.

Nevertheless. schemas are a means of functional
decomposition; the last few years have shown that
object oriented decomposition is more suitable for
the development of large software systems. Object
oriented software tends to be more stable through
time and enforces extendibility and reusability. A-
mong other ways to bring object orientation to Z
[13], MooZ [8, 9] was proposed and experimented.

MooZ has many new features, but “respects”
Z semantics — based on set theory and first-order
predicate calculus — making its application restrict-
ed, since properties like temporal ordering of events
and concurrency are not easy to describe within
such formalisms, The problem gets worse if the
language is used for the logical design of software,
when we augment the problem universe with ele-
ments of the chosen solution. Temporal and con-
currency properties appear more often in the solu-
tion than in the requirement space.

On the other hand, if we want formalism to per-
meate software development, we need to extend its
application from the requirements phase to latter
steps of the software life cycle. A practical ap-
proach to formal logical design, based upon the
MooZ (and Z) experience, capable of treating time
and concurrence, among other properties. is the
key issue of this work.

The semantic foundation is given by MAL [5. 4].

-5~

Recife-PE, Brazil

a very comprehensive and expressive linguistic
framework. In particular, MAL’s object struc-
tured version is very adequate for the purpose in
hand and is described below.

This article reports on the way to incorporate
MAL in object oriented Z and shows that the ap-
proach may be a general way to enrich model based
specification languages with stronger semantics.

2. Object structured modal action logic

The application of modal and temporal logics in the
specification of software systems has been advocat-
ed for more than a decade [1, 2, 11, 10]. The logic
shown herein, MAL, is adapted from the work of
Fiadeiro and Maibaum (3, 4].

A MAL specification is a set of related object
descriptions, each one being a pair (8, ®) where 6
is an object signature and ® is a set of formulas over
0. If an object description is viewed as a theory,
the signature and the formulas are the language
and the axiomatic of the theory, respectively.

An object signature contains a universal signa-
ture (a usual algebraic signature with a special
sort for events) and families of attribute and action
symbols. The rigid and non-rigid symbols are syn-
tactically distinguished, the former coming from
the universal signature and the latter from the at-
tributes and actions. If S is the set of sorts, then
every function symbol from the universal algebra
and every attribute is S~ x S-indexed; every action
is S=-indexed.

Terms include variables (introduced via classifi-
cations), function application (either from universe
functions or attributes) and modal qualification of
other terms. This last and unusual construction
was introduced in [6], in order to make formulas
more intuitive, because very often one needs to ex-
press the changes in individual entities, not in w-

hole formulas. Languages like VDM and Z have
similar features. The translation of our language to
MAL is easier with modal qualification of terms.

To express change. there are also action terms
resulting from the application of action symbols to
arguments. Formulas are relations between state
propositions.

The semantics of an object signature § =

(X,a,I) is given by an interpretation structure
Uu,7,pP,0), where:

e U is a T-algebra such that E; (the interpre-
tation of E, the sort of events, in I/) is not
empty.

e J maps:

- f € Q(yy.....00).8 in

~ g€T . 4a)in
J(9) s X ... X say X By” — p(Ey)

o P and O are relations over Fyy x Ey".

The relations P and O state in which event an
action is permitted or obligatory. Sequences of ac-
tions make trajectories, which can be safe and/or
live. following a deontic style of specification that
does not prescribe behavior. Separating norma-
tiveness from inconsistency is richer than the pure
temporal logic approach, since it allows the speci-
fication of error recovery, punishment, etc. Imple-
mentations are either normative or else treat non-
normative traces explicitly.

We may define special interpretation structures
that guarantee locality. Events that respect local-
ity are called local events. We call #-locus an in-
terpretation structure where every non-local event
in every trace (finite sequence of events) does not
affect any attribute. Locality plays a very impor-
tant role, assuring that encapsulation of informa-
tion will be part of the theory presentation. The
semantics of modal qualification of terms and state
propositions are given over traces, constituting a
Kripke semantics. where traces are the “possible
worlds”.

Satisfaction of propositions is defined in terms
of an interpretation structure, an assignment and
a trace. The truth-value of formulas is defined by a

- 2%~

Class (Class_Name)
:’ givensets |type_names_list)

. superclasses {class_references_hist)
(auzihary_definitions)

private (definttion_names_list)

ot

public (definttion_names_list)

constants

(aztomatic_descriptions_list)
{auzthary_definitions)

state
(anonymous_schema) or (constramnt)
initialstates

(schema)
(auzihary_definttions)

operations
(definitions)
EndClass (Class_Name).

Figure 1: General structure of a class.

relation —=, by which reasoning about information
in a state is possible. There is another consequence
relation (=) intended to reason about the conse-
quences of a specification: an assertion (F =9 f)
is valid iff every 6-object that makes every formula
of F true also makes f true.

Object descriptions are related to each other by
morphisms that map pairs of signatures and axiom-
s. Particularly, morphisms mus® preserve locality,
to allow for compositional development.

3. The new language: MaMooZ

Modular object oriented Z (MooZ) [9} en:
Z with object-oriented concepts (classes and ii.
itance) keeping the syntax as near as possible tu
that of Z. Like Z, MooZ semantics is based on set
theory and classical first-order logic. The language
does not allow for definitions outside classes. so
that any relation between classes must be either
clientship or inheritance. The general format of a
MooZ class is shown in fig. 1.

MaMooZ[7] is 2 modal logic enrichment of MooZ,
where the syntax is close to the latter’s but the se-

« o@s @

mantics is given in terms of MAL. The translation
method is given in [7, Ch.3}.

A method may be defined by a schema or by a se-
mantic operation (an axiomatic description which
involves state components}. The definition of a
method in a MaMooZ class means an action that
can be performed by an object in an event. The
events occur constantly and eternally: there is a
global event sequence, called trace, unique for all
the system. Operationally, we can think of events
as clock ticks heard by all objects. In some tick-
s some objects do something, like communicating
with other ob jects or altering their private memory.
These actions are specified by the methods.

The methods of an object occur in some subset
of the event set. This subset may contain events
dispersed throughout the trace. Two methods oc-
curring in the same event are simultaneous; if they
come from distinct objects there is a synchroniza-
tion between the objects, maybe with information
exchange.

Objects can be modified iff one of their methods
occur in a given event, atherwise, the event is silent
in relation to that object and not observed by it.

In MooZ, a method takes in account the objec-
t's current state (say s) and the next (s’). This is
still valid in MaMooZ: the translation of a decorat-
ed component is the component modally qualified
by the event in which the method occurs, mean-
ing the value of the component after the method’s
occurrence.

For example, consider the following method def-
inition, specifying a semantic operation that in-
creases the value of a state component. Suppose
that a is a component (attribute, in MAL termi-
nology) of the class (object description, in MAL).
__ Increases

a.a’:N
[a" > a
The MAL translation of this operation is:

pIncreases(z) A ([z]a) > a

where E stands for the sort of events. This propo-
sition could be read as:

When Increases occurs in an event z,
the value of a after the event is greater
than the valuc of a before the event.

- 2¥F -

The two deontic predicates Per and Obl are
present in MaMuoZ. Per(a;,....as) means that
some of the methods ay..... a, may happen in the
next event observed by the object. i.e.. that the
methods in the list have permission to occur.

The predicate Obl(a,,....a,) establishes that in
future events the methods a;..... a, will occur.
There is no restriction about how many events will
fill the trace between the setting of an obligation
and its satisfaction. The semantics of an obliga-
tion is analogous to that of the operator ¢ (or F)
in temporal logic: the o'!igation will be eventually
discharged by the occurrence of the method.

Both for Per and Obl there is no relation between
the several methods listed as arguments: they are
grouped only for brevity and the order is unim-
portant. So Per(a;,....a,) is an abbreviation for
Per(a)) A ... A Per(a,).

Besides Per and Obl. some few words are intro-
duced in the language to name special sorts. The
methods in a class. whether defined or inherited,
have sort Method. This sort has “local” meaning.
its elements being distinct in each context. At-
tribute is the sort of a class’ state compoaents and
Event is the (global) sort of events.

A construct like odject Method could be used to
obtain a set with the names of the methods of a
class. The same holds for attributes. All these
constructs are well founded in MAL and, as far as
possible. compatible with Z (and MooZ) style.

MaMooZ specifications are organized in docu-
ments and chapters (coarse grain modules) and
classes (fine grain). Operations in the classes may
be defined by schemas and axiomatic description-
s. The predicates defining an operation may use
deontic predicates (permission and obligation) in
order to deal with time and concurrence. but there
is no explicit modal qualification of terms, since
this is the resource used in the semantics to map
components of the operations representing “next
state values™.

In the full article, we describe the operation of a
phone box to show how the ; esources brought from
MAL increase the expressive power of the basic
specification language.

-

&

e@s @

4. Conclusion

Other approaches to incorporate modal logics in
Z are restricted to temporal logics [3]. Richer lan-
guages, like MAL, may be used too, without many
changes to the syntax, with the semantics given by
translational approach, instead of ZF theory.

There are many open problems tu deal with: the
calculus {3] proposed for MAL should be “upgrad-
ed” to MaMooZ. to cater for a more abstract syn-
tactical and semantical discourse.

The adoption of explicit temporal operators
should be studied. but care must be taken to avoid
conflicts between the deontic and temporal facets.
In special. modal qualification of temporal oper-
ators is impossible and should be refrained from.
Surely, the two tasks are connected: if temporai
operators are used, so the calculus must be refined
to deal with them.

References

(1] H. Barringer. The use of temporal logic in
the compositional specification of concurrent
systems. In A. Galton, editor, Temporal Log-
ics And Their Applications. Academic Press,
1987.

{2] M. Danelutto and A. Masini. A temporal log-
ic approach to specify and prove properties of
finite state concurrent systems. In E. Borger,
H.K. Biining. and M.M. Richter, editors, Proc.
CSL’88 2nd Workshop on Computer Science
Logic, Lecture Notes in Computer Science,
1988.

[3] R. Duke, P. King. G. Rose, and G. Smith. The
Object-Z Specification Language. Technical
Report 91 - 1. SVRC - Software Verification
Centre, The University of Queensland. May
1991.

(4] J. Fiadeiro and T. Maibaum. Describing.
structuring and implementing objects. In
School/Workshop on Foundations of Object-
Oricnted Languages. REX/FOQL. Holanda,
1990.

[5] J. Fiadeiro and T. Maibaum. Towards Ob-
ject Caleuli. In IS-CORE Workshop. London.
1990.

[6] J. Fiadeiro and A. Sernadas. Logics of Modal
Terms for Svstems Specification. Journal of
Logic and Computation. 1(2):187-227. 1990.

[7} 1. N. Kaufman. On the Application of For-
mal Specification to the Logical Design of Soft-
ware. Master’s thesis. Universidade Federal de
Pernambuco. Recife-PE. Brazil. August 1992.
In Portuguese.

(8] S. R. L. Meira and A. L. C. Cavalcanti. Modu-
lar Object-Oriented Z Specifications. In Prof.
C. J. van Rijsbergen. editor. Workshop on
Computing Series, pages 173 - 192, Oxford -
Inglaterra, December 1990. Springer-Ver'ag,.

[9] S. R. L. Meira and A. L. C. Cavalcanti. The
MooZ Specification Language. Technical re-
port, Universidade Federal de Pernambuco,
Departamento de Informatica. Recife - PE.
1992.

[10] A. Pnueli. The temporal logic of programs.
In Proc. 18th Ann. Symp. on Foundations of
Computer Science, pages 46-37. 1977.

[11] G. Saake and U.W. Lipeck. Using finite-lirear
temporal logic for specifving database dynam-
ics. In E. Borger. H.K. Biining. and M.M.
Richter, editors. Proc. CSL 88 2nd Workshop
on Computer Science Logic. Lecture Notes in
Computer Science, 1988.

[12] J. M. Spivey. Understanding Z: A Specification
Language and Its Formal Semantics. (. A. R.
Hoare. Series Editor. Prentice Hall. 1988.

[13] S. Stepney. R. Barden, and D. Cooper, edi-
tors. Object Orientation in Z. Workshops in
Computing. Springer-Verlag, 1992.

On using a Composition Principle to Design Parallel Programs
- Extended Abstract -

A. MOKKEDEM and D. MERY"

CRIN-CNRS & INRIA-Lorraine, BP239
54506 Vandceuvre-lés-Nancy Cedex, France
email:{mokkedem@loria.fr,meryQloria.fr}

Abstract

We very briefly preseat a rigorous and modular method,
we are developing to desiga reactive systems starting from
their desired properties. This method is based oa a mech-
anization of Maana-Paueli’'s modular validity concept and
on a modular temporal language in which properties are in-
variant under stuitering [1]. A compositional proof system
is established to support both specification verification and
modular program construction. Each program is developed
together with the proof that it meets its specification. A
refinement relation is defined by wsing rules in backward,
while the proof is constructed by using the same rules in
forward. Constrained by a limited space, we hope to focus
atteation on the underlying concepts and leave a complete
presentation of the proof system (soundaess, relative com-
pleteness, modular completeness, and adaptation complete-
ness) in a future paper. We give some results in this short
paper omiting proofs, a full version will include the most
results with proofs.

1 latroduction

The temporal logic as presented in (12, 13] provides a power-
ful tool for globalspecification and non-compositional verifi-
cation of esisting concurrent programs. However, this logic
offers a very poor support for systematic design of concur-
rent programs because of lack of modularity. More receatly
new concepts have been introduced in order to make the
language of temporal logic more moduler and the temporal
proof system more compositional [2, 4, 9]. In the present
work we explore these aew concepts and we presest s mody-
lar specification method together with a compositional tem-
poral proof system. We show how our logic offers a rigorous
support for the systematic design of concurreat programs.
Our logic aims to provide a mixed verification and devel-
opment strategy (top down and bottom wp) of comcurreat
programs. Proof rules should (1) preserve some desired
properties (safety and certain liveness properties), (2) be
compositional, and (3) be possibly mechasisable. The first
feature aims to guaraatee that whenever the starting ab-
stract specification expects the system to operate accord-
ing to some safety properties (partial correctness,
freedom, mutual exciusion, ...) then so behaves the de-
tived implementation. We show that livencss properties

* on sabbaticsl leave at the department of Computing Science Uni-
mammmmmmm
Royal Society - CNRS

are in general more difficalt to preserve whenever we want
to define the proof rules according to a composition prin-
ciple. But such a principle is of a great importance when
we waat to adopt both the modular verification and step-
wise refinement concepis in the concurrency setting. Given
the correctaess proofs of some amall modules, composition
principles allow the verifier to establish the correctness of
bigger modules. Conversely, given the specification of a
big module to be implemented, composition principles al-
Jow the designer to reduce the implementation problem to
the subproblems of implementing smaller modules.
Traditionally, composition principles for both specifica-
tioa, verification aad refinement of concurrent systems are
coasidered hard to obtain. However, previous work (4, 5, 17]
have shown that this difficulty mainly Les in the formula-
tion of a compositional rule for paralle! composition. Now,
in our opinion, if one wants to formulate a compositional
rule for parallel composition, then the first step is to be
carefol at the stage of the definition of the specification
language semaatics. Especially, we believe that invariance
under stuttering of properties’ is ome of the key require-
ments needed for parallel composition to be conjunction
and to be able to implement a coarser-grained program by
a finer-grained one in the setting of the temporal logic {2].

2 The logic

The full purpose of this work is to provide a complete
methodology for the compositional specification, verifica-
tion and development of reactive programs. For we first in-
troduce a programming notatioa (IPL) for concurreat mod-
ules of a reactive system and define a computational model
to represeat semantics of modules. The obtained semantics
is compositional in the sense that the semantics of a com-
posite reactive systems is compauted from a formal relation
betweea semantics of its sub-modules. We then define the
temporal logic MTL and derive from it a specification lan-
guage by establishing a closed comnection betweea compu-
tations of IPL program aad models of MTL formulas. Our
logic is stete-based orieated. A system may be specified
at many level of abstraction; highest-level properties are
described in terms of stuttering invariaat temporal formu-
lae, while implementations are programs in an intermediate
programming language that we call IPL. A highest-level

ification must talk about oaly the expected behaviour
of the system, while avoiding references to efficiency or ar-
chitectural details of its implementation. Such details can
be introduced oaly in the last stage of the design process
when a parallel algorithmic solution is already bailt.

1 A property P is said to be invariant under stuttering if wh
s model ¢ satisfies P then every modal 7, stuttering equivalent (this
concept will be defined below) to @ satisfies P.

&

e ofe

- 239~

2.1 Amwﬁuhmlﬂm

Reactive systems m coded | the language IPL. This

wage is a 5 the language introduced

in (14]. The m cnlou we hvc introdeced aim to reach
s componhoad semaatics for programs written in IPL. For
instance, usual laws, commutativity aad l-ocuuvlty
concatenation and allel comstructs are coaserved e
central notioa of IPL is the one of module statement. Here
is an exi of the syatax. A module statement has the
form M : [module; interface; body] where,

inter face u= (modu ded}*
modes ::= {in| out| consum| external)+
body == [l del;] statement
del := {variable | channel}* : type (where : init]
statement = action | statement; statement |
IF: ,gutd —+ statement FI |
y guard — statement OD |
[label Tstetment[ladel]
action = skip | assip t | send |
guard := expression | receive
send :x channellecpression
receive = channel?variable

A reactive system Net has the following syntax:
Net ::= M | Net||Net | vc. Net | Net[d/c]

Concurrent modules communicate by asynchronous mes-
sage passing via unbounded chanmels. Each module
should communicate with the environment (other modules)
through its interface according to the modes assigned to
channels. Local variables are not visible outside, thus all
variables of a module are implicitly hidden. Throughout
the remainder of this paper we assume the syntactic re-
striction that variables in differeat modules are distinct,
while we give more attention to channels. Hiding of chan-
nels must be done explicitly using the binder ». We define
the viewed channels of a module M (by the environment)
to be channels that are mot hidden. Net{d/c] represents
channel renaming of ¢ into d. Let ¢ be a channel declared
in M, a statement of M may have reading (vesp. writing)
reference to ¢ only if c is declared with the mode in (resp.
out). A statement in a module parallel to M may have a
reading (resp. writing) reference to c only if ¢ is viewed and
declared (in M) with the mode consum (resp. exter:: 1).

Definition 2.1 (Interface compatibility) Let M; and
M; be two modules, we say that M, and M; are interfoce
compatible (we denote by M) compat.with M;) if the decla-
ration for any channel ¢ that is declared as viewed in both
M, and M3 satisfy the following requirements: the types of
¢ in both declarations match, the conjunction of the where
clauses (supposed true when is not specified) is consistent,
ond if one of the declarations specifies an out (reps. in)
mode, the other specifies an external (resp. consum) mode.

Semantics. The basic computational model we use
to assiga semantics to reactive programs is that of fair
transition system (FTS for short). We associate with
each IPL module A a fair tramsition system Sy =
(s, Ear, Tar, One, Tae, Far) which consista of the follow-
ing compoaents :

N [State variables): (= (xa} UCn UYr) 7ar is & con-
trol variable, it ranges over Ly where Ly denotes the set
of locations in M. Ca denotes the set of chanaels declared
in the interface of M. Yis denotes local (data) variables in
M.

I [States]: All the possible interpretations of variables

- 280-

in [a comsistent with their types.

T [Transitions): these coasist of

(1) the transitions rs associated with statements S in the
body of M, (2) the idling transition r; represented by the
transition relation g, : true; it represents the stuitering
steps in Abadi-Lamport’s terminology [1) which character-
ise internal transitions executed by the eaviroament, (3)
the environment receiving transition &~ i.e. the tramsi-
tions specified by the formula (|§] > 0) A (§' = ti(})) for
any consum channel b € Cys (4) the environment sending
transition r5% j.c. the traasitions specified by the formula
3u. (¢’ = c o s) for any esternal channel ¢ € Cur. r5°
and +*® represent the observable transitions execated by
the eavironment. We denote, for a module M, the environ-
ment transitions by 7% aad by 73, all the other ones.

O [Initial condition): consists of Ou = (v =kb) Ay,
where o represeats the where parts of the declarations of
out channels and local variables (& is the initial location
of the module). The initial value of external channels
is controled by the eavironment.

Fairness: Ju comtains just tramsitions, i.e. tramsitions
which cannot be continually eanabled but tacken only finitely
many times. This coasists of all the (internal) transitions
associated with local statements of M. F), contains fair
transitions i.e. transitions which cannot be infinitely often
enabled but taken only finitely many times. This consiats
of all the (observable) transitions aseociated with comme-
nication statements of M. Environment traasitions such as
r1,7*R_and r¥5 are contained in neither Jy nor Fu.

Bebaviours: A behaviour of a module M is a set of com-
putation structures which represent its possible executions.
A (possible) compatation of M is an infinite sequence of
states o : s0,81,... such that (1) so satisfies the initial con-
dition Oy, (2) for each s > 0, r(s;, 8i41) for some r € Ty,
(3) o satisfies justice and foirness requirements imposed by
the sets Jur and Fy. Two computations o, r are said to be
stuttering equivalent (in motation ¢ = r) if they are equal
modulo stuttering steps. We recall that in such a seman-
tic model, finite computations are represented by infinite
sequences by adding an infinite mumber of stuttering steps
(1) which takes the halting state into itself.

The semantics of a reactive system Niff...[|Nn is a fasr
traasition system resulting from a fair composition of tran-
sition systems associated with modules? Ni, in notation,
SNy)..aN. = SN, @ ... ® SN,. Executions in Sn,y._yn, are
represented as interleaving concurrent actioas in the differ-
eat modules under fairness constraints.

Definition 2.2 Let M, and M; be two channel-hiding free
modules (i.c., modules in which the binder v does not oc-
cur). We define int_modei(c) (resp. auz_modei(c)) to be
the set of modes in {in, out) (resp. in {consum, ezternal})
sssigned to the channel ¢ in the module M;, and modei(c) =
int.modei(c) U suz.modei(c). We denote by TE.mode(c),
Jor o shared channel ¢, the set of modes m such that
m € (ssz_mode;(c) U suzmodes(c)) \ (suz_modes(c) N
suz.modei(c)).

Definition 2.3

Let SH.' = (nu.-,zu.-.Tu.-.eouu.-.fu.-). i € {102) be
the FTS associated with modules M, and M3. The FTS
associated with the composed module My || M, is defined as

’MWWM are arbitrary resctive systems we call
them modules; semantically we consider & resctive system 28 & new
composed module.

Jollows:
su].“: = (uutzuvTu|OUnJM.’H) such that

1. Oy = Mag, U Mpy, where, (i) for every non-shared
channelc (i.c. c is declared in M, only fori € {1,2}),
mode(c) = mode,(c), and (ii) for every shared channel
¢ (i.e. ¢ € Il Ny,), intmode(c) = int_mode, (c)U
inl.modes(c) and suz_mode(c) = aus.moder(c) N
auz.mode;(c).

2 La = {o: Oy — Du/lln.,‘ € Ly end l||:|.’ €
Zu,)

3. T = (T, UTU:)\‘L S/c € Ma, Nl Aggterngl €
TWE.mode(c)} U {r& " fc € Ny, NMag, A comgym €
TWT_mode(c)})

4. Oy = Oy, A Oy, (consistency is guaranteed by the
interface compatibility requirement)

5. T = Ty, U T, and Fag = Fpq, U F g,

We complete the definition pmlbovebythe(ollowiu
laws to deal with hiding and renaming of channels.

M|lve. Mz sPve.(M||Ms) if ¢ & chen(M,)

M ||ve. M 55 vd.(M, lle()l/c]) if ¢ € chen(M)), where d is
a fresh chaanel variable.

Now let M aa arbitrary module whose the associated FT'S
is (n~08~|1~,e~’JUt-r~)’

(1) Sve. m 8 (nu Ta0, Tn, 0%, Tne, Fua) with 0} =
O\ {rEN, o5

(2) Samayg = Su[d/c] (remaming is exteaded to tuples in
the uu{

Definition 2.4 (compatible computations) Lete,r be
two computations of Sy, and Sn, respectively (M; end M,
are espected to be ezecuted in parallel, so they are interface
compatible), we say that o and r are compatible (o M)
iff all transitions in o and v involving shared channels are
observable by each other (a formal definition is given in the
Jull paper).

Proposition 2.1 The relation compat-with satisfies the
Jollowing properties:

(i) Let My and M3 be two modules, if My compat_with M,
then M, compat_with M,,

(is) Let My and M, be two compatible modules. M com-
potwith [M,||M2) iff M compatwith M; and M com-
patwith M3

Proposition 2.2 Let M = [M)||M3) end Sx the FTS os-
sociated with M according to the relation Sy = Sy, @ Sna,,
the two following propositions are egquivalent:

(1) there ezists 8 computation of Su such thet oln, ~
o end oln, > 03

(2) o1 and 02 are two compatible computations of Sx, end
S, respectively.

Another important consequence of the definition 2.3 is the
reaching of the usual laws of parallel comstruction.

Proposition 3.3 Let My, My, M be three intevface com-

patible modules,
M, ”"z =~ ”zlux
(M| M2)AMs == My (M2l M)

3Two programs N; snd N3 are semantically equivalent if their
sssocisted FTSs Sy, and Sy, are equivalent; what we write N; &
Na.

-28 ~

2.2 A stuttering invariont temporal language

We are convinced that we must be careful at the design
decision stage whea we waat to define a temporal logic for
reactive programs which should be compositional. Linear
discrete temporal logic has been perceived to be an appro-
priate tool for both description of semantics of concurrent
(and sequential) programs and reasoning about them. This
relies o the fact that concurrest program behaviour can
be casely modelled by all possible intetieaviags of the dis-
crete, linear, execution sequences arisiag from the sepazate
‘sequential’ processes of the coacurreat programs (interleav-
ing semaatics). In [3] Bamuer et ol. proposed a compo-
sitional temporal logic for the specification aad verification
of concurreat systems. They wee a flosting version of the
linear temporal logic with the fixpoint operators aad still
represent actions by the classical Nest operator . How-
ever, such a logic has been strongly criticizsed from differ-
ent points of view. Our study of a refined temporal logic,
namely MTL, starts from a list of valid claims made by the
pioneers of the temporal logic:

- In {7] Lamport objects the use of the Nest operator to
be the origia of some trouble in abstraction, which forces
too much irrelevant detail to be preseat in the semaatic de-
scription. It appears that the Jowest level of atomicity is
forced to be visible, which a properly abstract semanatics
should mot make. He provided a strong evideace that all
the properties one wishes to express for asynchronous sys-
tems do not require this operator.

- Still for abstraction, quantification over state variables
turned out tc be very useful [11], and has been shown to
be necessary for attaining compositional completeness.

- Manza and Paueli [10] argued the addition of the past
fragmesat to the future temporal logic to contribute to the
utility of the temporal language; while it is a0t more expres-
sive the full language is found to be more convenieat. In
[11] they gave some poiats of dissatisfaction of the full logic
preseated in [10] due to the flosting interpretation which
does not assign aay special significance to the initial state
s0 that satisfiability and validity are evaluated at oll po-
sitions in the computations. This interpretation needs the
generalisation rule in the proof system which violates the
deduction rule (a powerful tool in the predicate calculus)
and, in the other hand, requires the suffis closure property
for the set of computations when one needs to interprete
formulas over computations of a given program. In fact,
they preseated aa enchored temporal logic in [11] in which
they consider that a formula ¢ is defined to be valid (resp.
satisfioble) over a set of sequences C, if it holds at position
0 of svery (resp. some) sequence of C.
Ovur preseat coatributioa is concerned with the investiga-
tion of such remarks and the proposition of a refined future-
temporal logic MTL in which (1) we consider the enchored
interpretation, (2) quastification over state variables, and
(3) actions are formulated in terms of a new Nest opera-
tor which is insensitive to finite stuttering and sensitivity
to infinite stuttering. The resulting logic has the same ex-
prossibility power thaa the full temporal logic (14}, does aot
require suffiz closure of program computations, aad guar-
antees inveriance under stullering of properties. lttlu
provides a good abetraction for compositional
and verificatioa of concurreat systems and also offers a good
support for systematic design of concurrent programs.

The new and ceatral concept in the definition of MTL con-
sists in introducing a mew kind of Nest operator, demoted

&

(and its dual, denoted B_). An impartant feature
of b_ is being insensitive to finite w-stuttering and sen-
sitive to infinite w-stuttering (With respect to a given set
of variables w), while ita dual, , is insengitive 10 both
finite and infinite w-stuttering. We then define the other
temporal operators (until, wnless, etc.) in terms of @ in
order to obtain a temporal logic that will enable semantic
desacriptions which are invariont under finite w-stuttering.
This is oae of the major results to ensure a desired level of
sitional verification of concurreat systems.

2.3 Properties of IPL pregrams

In order to relate a specification presented by a formula in
the logic to the program it is supposed to specify, it is neces-
sary that the computatioas of a program caa serve as mod-
els (in the logical sense) for the formula, which means that
we car evaluate the formula on each of these computations
and find whether it holds on the computation. Then, we say
that the program satisfies (or implements) the specification
given by the formula ¢ if ¢ holds over each of the compa-
tation of its behaviour. For we augment the MTL logic by
some program predicates and functions, referring
to the additional IPL comstructs needed to fully describe
a state in the computation of a reactive program, for in-
stance, the controlpredicates like at(M), after(M), and the
mode-predicates like out(c), c-out(c),sn(c),

Ogne of the most important classifications of properties
of reactive systems, is their partition into safety and live-
ness properties [8]. The advantage of this partition is to
provide a way to recognise some incompleteness aspects of
specifications. For example, it is now well known that no
'peuﬁauon of & system can be complete without contain-
ing some safety properties and some liveness properties. In
most cases all the safety properties can be trivially satisfied
by a program that does mothing. We may view one of the
roles of liveness properties as ensuring that safety properties
are not implemented by a “do-nothing” program. They are
hence intented to discard trivial solution during the design
process. A property of an IPL program is of the form:

P —wi=4 D.(’Q@ 9
punless o g =g PA~ —wPVy
stablew(p) =4 p ynless o false
inverianty, (p) =4 p Astables(p)
P~e =4 Ou(p = Oug)

2.4 Modular specification

Large systems are built up of several components (modules)
aad a separate specification is given for each component
specifying its desired behaviour in the whole system. For
cpeaiyug concurrent modules we explore Lamport’s mod-

cation method [6, 8] aad similar notions intro-
d-ced in [14]. We should be able to separately specify con-
curreat program modules in a convenient way as in work of
Lamport [6, 8). We emphasise, in particular, the relevance
to complement a specification module by the specification
of the interface—the mechanism by which the module com-
municates with its environment. The interface specification
of a module stipalates the constrains the eavironmeat must
satisfy for a correct communication with this module. Thus
a specification madule consists of two parts: The first part,
namely interface, specifies constraints on the interactioa of
the system with its environment. The second part, namely
body, specifies the computation expected from the system.

-282~-

It specifies the initial state of the system, its safety proper-
ties aad its liveneas properties. The information that shouid
contaia the interface is especially essential for the complete-
ness of the specification module. For this purpose, Lamport
argued in (8] that the interface must be specified at the im-
plementation level. Indeed a complete specification should
eliminate the need for aay communication between the user
of the module and its implementor. Thereby the interface
part will be a low-level specification (IPL), while the body
a highest-leve! specification (temporal language).

Definition 2.5 (Module specification) A module spec-
ification is an object of the form [inter; var; p] where inter
declares shared variables (channels) and vasr declares local
variables. ¢ is ¢ MTL formula which specifies the espected
behaviour of the module within the whole system. The prop-
erty ¢ has to be satisfied independently of the contest in
which the module operates.

Deflnition 2.6 (Modular validity [14]) A formula ¢ is
defined to be modularly valid for a module M, (in nota-
tion, My D= ¢) if ¢ is valid over the program M,||M; for
any module M, interface compatible with M, (in notation,
MM b=).

Lemma 2.1 If My D= ¢1 and M; compat_with M, then
[Mil|M;] D= 4.

Overview. The proof system provides a collectioa of com-
position proof rules which, os the ome hand, givea the
correctaess proofs of some small modules, allow the veri-
fier to establish the correctness of bigger modules. Con-
versely, given the specification of a big module to be im-
plemented, allow the desigaer to decompase (or nﬁu) the
big specification into less sbstact (or more strong in the
logical sense) ones whose implementations could be found
more easy. More precisely, from a design point of view,
starting from the specification of the reactive system, the
method will assist the designer to refine it into more ele-
mentary (but modular) ones. This arises to specifications
such that when we put their implementations together (in
parallel) we will obtain a parallel implementation for the
first specification. Refinement is carried out together with
a proof methodology. Once a refinement step is done, one
can make sure that it preserves the set of solutions of the
first specification. There are two kinds of proofs we have to
make during a refinement: a consistency proof which checks
whether a specification is mathematically coasistent, aad a
refinemeat proof which verifies a refinement to be consis-
teat with the specification from which it is refined. The el-
ementary specifications can be refined again according the
same principle. This refinemeat process proceeds until im-
plementations (modules in the IPL) should be obviously
derived. Now program texts are difficult to derive directly
from weak eveatuality so that no program caa be extracted
while the specification contains weak eveatuality. We first
transform weak eventuality to strong eveatuality preserviag
iavariaats. Axioms in the proof system represeat the basic
laws of the refinement which (in our study) allow to derive
atomic actions in a module from its local strong eveatunal-
ity properties. The rules for composition and refinement
of complex specifications are formulated as sound inference
rules.

3 A small example

We lock for a program 7M (maybe a parallel ome) that
implements the specification (...:he (I:::r loc; 3.% IA

S A L) where, w = {c, v, v}, and

Inter @ ¢) Ac € IN® (interface state functions)
loccEw€ENAVEN (local state functions)
ITHat(M)AumOAvEOAC=¢ (imitial condition)
SEuxOynlggp wu=x1Av=0 v = 1A

c:cm.calou\-!miu’i (safety)
L % at(M) ~+y sfter(M) (liveness)

So the starting goal is 7M D= [Inter;loc; 2. IASAL).

If we apply the composition rule we must find sub-formulae
which satisfy the proof obligations associated with this rule.

Letpumyg IANSALand g =g iAS; AL,

Proof obligations :
A2y

inter; compat.with inter;
Inter = inter; @ inters

loc = locy @ locy

Var(locy) NVar(locy) =

My D= [intery;locy:
= fintery;locy;

(M1 ||A62] D= [Inter; loc: o)

M O [inter;lociww]
vZ. M Ox [Inter;loc; 34T. wu)]
A possible solution is : (where wy = {c,c1,60,%})

{ Inter = inter © ¢

inter; !zm(e.c:)l\m(a)t\cel*‘/\q EN*AgeEN’

locy Ev €
L :nl(Aﬁ)Au:OAcacl\qsc

S;E(w=0Ac=sAc; =) ynless v (¥ =0AcmesAC =10¢)

AMu=0Ac=ecAca=10c)ynless o, (s =1AcmcAy =0)
A(s:lAc:c)m-,(u-lAcs 1egAafter(M))
Ly = at(My) ~u, after(M,)

with a symmetrical solution for 3 (with a slight difference

that ¢ does mot appear in ;) where {u,c1,c3) in 1 are
replaced by {v,c2,c1} and w, is replaced by w; which is
equal to {c1,c2,v}.

We can now apply another rules and/or axioms to find two
possible modules M1 and M2 which must satisfy the two
new specification modules. This leads to a final (possible)
solution M = vay, c2. (M| M3] with

" module

external in c; : channel [1..] of integer
consum out ¢;, ¢ : channel {1..] of integer
M1: localu:inhger'hms:o

b:ell;
h:els;
L h:ell

[medule

external in c; : channel {1..] of integer
consum out ¢; : channel [1..] of integer
M2: | local v : Integer where v = 0

mo : a1 ?v;
m; : o'l
Program Ping-Pong

4 Discusslion

Our previous work has concerned the verification of cos-
curreat programs using a linear temporal logic in which we
coasidered the global validity motioa [15, 16]. This led to
a non-compositional proof systemm we have encoded into Is-
abelle [18]). The resulting prototype, called CROCOS, allows

- 283~

coacurreat programs to be verified but not to be developed.
It aleo suflers from inefficiency when dealing with programs
of a realistic sise.

We intead to improve the curreat versioa of CROCOS by
implementiag the principles and the logic we have reported
in this paper. This should permit our prototype to support
the verification as well as the derivatioa of large reactive
systems. Then experiments and case studies with the new
CROCOS will be conducted in order to explore the possibil-
ity of defining other composition principles in the setting
of our logic.

References

[1] M. Abedi and L. Lamport. The existence of refinement map-
pings. In Third Annvel Sympe. mnl.o"cl-Cmnur
Secience, pages 165-17T, Bdinburgh, July 1988.

D]MAMMLI.‘-M Composing specifications. In J. W.

de Bakher, W. P. de Roever, and G. , editors, Step-
wise Refinement of Distridutoed Systems: lh‘ch Formaksms,
Cerrectness. Springer Veriag, 1990. LNCS 430.
B)Hw Thmdwmnmmnnl
of concurrent systems. In A. Galton, editor, Tem-
Wh’scamunr»phmu.m-twm 1987,
Academic Press.

{4] H. Barringer, R. Kuiper, and A. Paueli. Now you may compose
logic specifications. In Sisteenth AC‘(Sympesium
on Thoory of Computing, pages $1-63, April 1964. ACM.
(5] L. Lamport. The ‘Hoare Logic’ of concurrent programs. Acte
Informetics, 14:31-37, 1960.
[6] L. Lamport. Specifying comcurrent

Trensactions On Progremming Lenguages And Systems,
2(8):190-222, april 1963.

mll.r.lx;.,m. What good is temporal logic? pages 657-677.
8] L. Lamport. A simple approach to specifying concurrent sys-
tame. Communications of ACM, 1(32):32-48, January 1989.

[9] L. Lamport. The temporal logic of actions. Technical report,

DEC Palo Alto, December 199).
{10] O. Lichtenstein, A. Pnueli, and L. Zuck. The giory of the past.
lal.qiea ol Pregrams, pages 196-218. Spinger Veriag, 1985.

[Il]zmMAM The anchored version of teh temporal
framework. In J.W. de Bakber, W-Pdelocur and G. Rosen-
berg, editors, Linesr Time, Bmcm hucu‘?cmd Or-
der in Logics and Modals for Concurvency, pages 201-284,
New York, 1981. Spinger Veriag. LNCS 354.

[12) 2. Manns and A. Paueli. Verification of concurrent programs
A temporal proof system. lnul.l‘elnlnadnnedfw
ming, pages 183-288, June 1982.

{13} Z. Manns and A. Pnusli. Verificstion of concurrent programs:
The temporal framework. In R.S. Boyer and J.S. Moore, od-
itors, Cerveciness Problem in Computer science, pagm 218~
373, London, 1982. Academic Press.

{14] Z. Manna and A. Paweli. The Tempeoral Logic of Resctive end
7nm Systems. Speinger-Veriag, 1991. ISBN 0-387-97664-

{15]) D. Méry and A. Mokbedem. A proof environment for & subset
of SDL. In O. and R. Reed, oditors, MNfth SDL
Porum Evelving methods. North-Holland, 1991.

{16 D. Miry and A. Mokkedem. Crocos: An integrated emvi-
ronment for i rons.

{17] 8. Owicki and D. Gries. An axiomatic proof technique for par-
allel programs 1. Acte Infermatica, 6:319-340, 1976.

{18) L. Paulson and T. Nipkow. lsabelle tutarial and users's manual.
Technical report, University of Cambridge, Computer Labore-
tory, 1990.

A notion of refinement for automata

N. Sabadini, S. Vigna

Dipartimento di Scienze dell’Informazione,

Universita di Milano, Via Comelico 39/41, 1-20135 Milano M1, Italy

FAX: +39-2-55006276; c.mail: sabadini®imiucca.csi.unini.it, vignalghost.dsi.unimi. it

R.F.C. Walters
School of Mathematics and Statistics, University of Sydney, N.S.W. 2006, Ausiralia

e.mail: valters bémaths.su.oz.au

1. Introduction

In this paper we discuss a notion of morphism of automata which seems particularly appropriate
for the study of concurrency and distributed processing. It has close connections with notions of
morphism introduced in [MM90] and [Knu73].

We are following the automata-theoretic calculus for concurrency based on distributive categories
introduced by Sabadini and Walters in [SW93], which we recall briefly below. ’

We concentrate attention here in particular on refinement. Our notion differs markedly from
existing notions of refinement in process calculi {DGR], and Petri nets [BGV91), which were in-
troduced with a view to top-down design; hence, in these approaches it is considered desirable
that that the behaviour and the properties of a refined system are deducible from the unrefined
one. For example, two equivalent systems (with respect to a given notion of equivalence) must
be equivalent even after refinement. As a consequence, no new information is being introduced
by a refinement. On the contrary, in our approach, the refined system may have a much richer
structure than the unrefined one: thus, we can study such issues as efficiency in time and resources.
This implies that at each stage of refinement it is necessary to prove that desired properties are
preserved by refinement. This is not unreasonable, because the desired properties are properties
of the final object of these refinement process, and at an earlier stage it may happen that it is not
even possible to define them. This approach is advocated, for instance, by Chandy and Misra in
[CM88].

Formally, our definition is based on considering the automata as categories of transitions, and
then a morphism is a functor between transition categories, and a refinement is an embedding of
the category of one automaton in another one. The elementary categorical concepts used in this
paper may be found in Mac Lane [Mac71]} or Walters [Wal].

In future papers we will show how the morphisms introduced here can be used to prove properties
of distributed systems.

This work has been supported by the Australian Research Council, Esprit BRA ASMICS, Italian
MURST 40%, and the Italian CNR, contract 92.00529.CT01.

2. Distributive Automata

In the model of concurrency introduced in [SW93], sytems are represented by particular determin-
istic automata called distributive automata.

- 285~

e@+ &

&

Distributive automata are automata constructed from a given family of sets and function (data
types and data operations) using the operations of a distributive category. That is, the alphabet
and state space of a distributive automaton is formed by the operations of sum and product from
some basic sets. The actions of a distributive automaton are formed from basic functions by
composition, sum, and product of functions, projections, injections, the diagonal and codiagonal,
and the distributive isomorphism X x (Y + Z) 2 X x Y + X x Z. Thus, the aiphabets have a rich
structure reflecting parallel or conflicting, synchronous or asynchronous actions.

There is one further operation. A distibutive automaton whose alphabet is one letter and whose
state space is of the form X + U + Y may compute by iteration a (total) function from X to Y;
such automata we call pseudofunctions. In the construction distributive automata we may use the
function computed by a pseudofunction. This operation allows hiding of state, and encapsulation
of iteration. Notice that the notion of pseudofunction has a precursor in Elgot’s iteration theories
(Elg75] and Heller’s work on recursion categories [Hel90]. A similar definition can also be found in
{Knu73], and [Mil71}.

3. Refinement of automata

Definition 3.1. Suppose M is a monoid and X an M-automaton; that is, a set X together with
an actionof M on X, M x X — X : (m,z) — m - z; the action is required to satisfy the usual
axioms m; - (mz -z} = (mym;) -z and 1 -z = z. Define the category Trans(X) (the transition
category of X) as follows:

(i) objects are states (that is, elements) of X;
(i1) arrows from z to y are state transitions; that is, elements m € M such that m -z = y;
(ii1) composition is monoid multiplication.
A morphism of automata, or, in short, a mapping from X to Y, is a functor from Trens(X) to
Trans(Y), where Y is an N-automaton for a monoid N.
An abstraction from X to Y is a functor Trans(X) to Trans(Y) which is surjective on objects
and arrows.
A refinement of X in Y is an inclusion, as a full subcategory, of Trans(X) in Trans(Y).

In other words, in order to give a refinement of X one has to specify a bigger system Y which
has a restriction to a system isomorphic to X.

Notice that each arrow in Trans(X) is determined by an element m € M and a domain and
a codomain z,y € X. Hence many distinct arrows will be labelled with the same element of the
monoid.

In what follows, we will be concerned with free monoids on the structured alphabets we discussed.
If M = A® and N = B*, a functor F from Trans(X) to Trans(Y) is given by a function F : X — Y
and a function F : X x A — B* satisfying the condition that if a € Aand a : z — 2’ in Trans(X),
then F(a) : F(z) — F(y) in Trans(Y). For a refinement there is the further requirement that
the function induced by F between Hom(z,z') and Hom(F(z), F(z')) is a bijection, and that
the function between the state spaces in injective. (Morphisms of distributive automata should be
defined by functions X — Y constructed using the operations of a distributive category, and by
functions A x X — B" constructed using the operations of a countably extensive category with
products [KWW), but this requirement is not necessary for the purposes of the present paper.)

Notice that the usual notion of substitution in language theory is a morphism which assigns to a
letter a word or a language, but the latter ones are fixed once for all, and not dependent on state.
Note also that not all full subcategories of Y induce a refinement.

We can give also the following, weaker

Definition 3.2. An ezpansive mapping is an inclusion F of Trans(X) in Trans(Y) such that
whenever F(z-2+z') = F(z)——F(z'), where a € A and s € B", then there are no z” € X,

&' € B" such that &' is a proper prefix of s and F(z)ivF(z”)

&

When an atomic action is refined by an expansive mapping, the set of states spawned by the
string it is mapped to lies entirely outside of the image of X, except for the initial and final states
(which are the image of the domain and of the codomain of the atomic action). We can indeed
restate Definition 3.2 as follows:

(1) Y = X + U for some set U;

(i)if F(z,a)=b;-- by € B, thend; - by - zeUfork=12...,n-1

Expansiveness and fullness are related by the following proposition:

Proposition 3.1. Let X and Y be A® and B* automata, respectively. If a mapping F : X — Y
is a refinement, then it is expansive.

Proof. Suppose there are 2’ and o’ as in Definition 3.2. Then s factors as &'s”, and F (z")'—qu(z’).
But because of faithfulness and fullness, there has to exist strings t’,t” € A* such that z-X.z" and
z”'—"-'z‘. By composition, we get t't” = a. Thus, either ' = a and t”" = ¢,or t' = ¢ and ¢ = a.
In both cases, s’ is not a proper prefix of s. 8]

This proposition cannot be reversed. Take A = B = {a,8), X = {s} and Y = {0,1}. Let the
action of o be the identity on Y, and the action of be n — 1 — n. The mapping sending the
unique state of X into 0, a to a and 3 to 38 is expansive, but not full.

There is however a relevant case in which we can reverse Proposition 3.1:

Proposition 3.2. Let X and Y be A® and B* automata, with A = B = {r}. If a mapping
F : X — Y is expansive, then it is a refinement.

Proof. If F is not a refinement, consider states z,y € X and an arrow F (z)-'-.-oF (y) which is
not image of an arrow from z to y. Assume without loss of generality that k is minimal. Let
™ . r . k- .
F(z)—F(z) be the image through F of z—z. If k > n, then necessarily F(z)— F(y) is not
in the image of X, which contradicts the minimality of k. Then n > k. But this contradicts
expansiveness. o

Example 3.1. When M = N = {r}* then refinement takes a particularly simple form. Such an
automaton can be analyzed by considering the ordits, that is, sequences of states produced by
the action of r starting from a given initial state. A refinement of an automaton X is another
automaton Y with state space of the form Y = X + U such that the orbits of Y, when restricted
to X, correspond exactly to orbits of X.
Remark 3.1. It is clear that refinements form a category Refine, and that abstractions form a
category Abstract. However, both refinement and abstraction can be looked at in the opposite
direction, i.e., the domain of a refinement can be seen as a system in which space and time have
been hidden, while the domain of an abstraction can be seen as a system with finer state space and
actions (this is closely related to [Lyn87]). Formally, this correspond to the study of the categories
Refine” and Abstract™.

The notion of transition category induces a notion of dehaviowr which is state dependent: for
each pair of states z, y we can build the set of arrows between z and y, i.e., the hom-set between
the objects z and y. Formally,

Definition 3.3. The functor behaviour
Behaviour : Refine — Cat/Sets
is defined by
X ~ Hom : Trens(X)” x Trans(X) — Sets

on objects, and by
F—F?xF

on morphisms.

&

Note that F°? x F commutes with Hom up to isomorphisms exactly because F is a refinement.
Note also that F°? x F is a morphism in Cat/Sets; this expresses the fact that the behaviour of
X is a restriction of the behaviour of Y along the refinement.

4. Examples
4.1. Mutual exclusion

Other theories of refinements often require that all the steps in the refinements of two conflicting
action (systems) are conflicting. This seems to be reasonable when the word “conflict”™ means
“irrevocable choice”, but not when, as usual in applications, conflict comes from access to a common
resource (in our setting, this means that two letters use the same part of the state space). Here,
we can easily model the situation where the conflict may occur at only one step in the refinement.

4.2. Independent actions are not necessarily parallel

In considering a refinement F : X — Y we can think of X as the specification of a program and
F as the implementation of X in a system Y (in a later paper we will discuss a more general
notion of specification in this setting). It is then possible to consider questions of resources. We
can make the distinction between actions of X being “independent” and being “parallel”. Actions
are independent if they are specified as parallel, i.c., they are parallel in X. Actions are paralle! if
they are parallel in the implementation, i.e., in Y.

The following example can be expressed by saying that independent actions in a specification
may not be parallel in the implementation.

Given two automata X, Y, both with alphabet 7, suppose that there are refinements of X to X’
and Y to Y’, where X' = X + U and Y’ = Y + U, the meaning being that the set U is the state
space of some temporarily used (and reset after use) resource like a scratch pad, or printer. Then
the synchronous parallel product X x Y of X and Y may be refined to an automaton in which
there is only one resource U whose use is scheduled between X and Y. The state space would
be Z = XY +UY + XY + XU, and the only letter acting on it would first apply (7, 1) until it
lands in the third summand of the state space. Then, it would apply (1, 7) until it gets back to
the first summand. The injection of XY as first summand of Z would then define a refinement,
which would schedule the parallel action (7, 7) to a sequence of actions of the form (r,1) or (1, 7).

4.3. Shutdouwn

Consider a refined description of a system in which a new, destructive action can happen. This is
a typical case of a sudden shutdown. We expect that the system can, at any time, be shut down,
thus moving into a state which was impossible to reach before. In this case, the refinement space
is formed by adding a single element, and a new letter to the alphabet; it sends to the new state
any other state. The behaviour of the machine, if we ignore the shutdown state, is unmodified,
which is exactly reflected in our definition of refinement.

4.4. Choice

Our refinement being a functor assigns to each action of the unrefined system a precise refinement.
Hence it is not possible in our model to replace an action by two alternative actions even if two
alternative actions may exist in the refined machine (such a thing would correspond to two different
refinements). This accords with our view that machines, even asynchronous ones, are deterministic;
the introduction of a choice in refinement is a non-determinism at the level of morphism. However,
different choices can be identified by an abstraction morphism.

5. Comparisons

As we remarked in the introduction, our notion of refinement differs markedly from notions cur-
rently being considered in Petri nets and process algebra; rather, it is in the spirit of {CM88, AL8T].

The definition which is conceptually closest to our approach is the broader definition of Petri
net morphism given in [MM90], where a single Petri net transition can be mapped to an entire
computation, possibly composed by many parallel steps. However, due to the freedom with respect
to the monoidal product, the mapping is not dependent on the global state of the net.

In contrast to the situation in action refinement ([CvGG],[DGRY)), in our model it is not at all
necessary that a refinement of two parallel processors be parallel (§4.2) (and hence we can discuss
scheduling of resources). or a refinement of conflicting processors be conflicting in all steps (§4.1)
(and hence we can discuss refinements which limit non-parallelism to exactly those points where
common resources are needed).

In contrast to Petri nets refinement ({BGV91]), we are unable to introduce a choice (§4.4) between
actions to refine an action. This limitation simplifies considerably the theory but does not restrict
its expressiveness.

References

(AL87] M. Abadi and L. Lamport. Composing specifications. In Stepwise Refinement of Dis-
tributed Systems, number 430 in LNCS, pages 1-41, 1987.

[BGV91]) W. Brauer, R. Gold, and W. Vogler. A survey of behaviour and equivalence preserving
refinement of Petri nets. In G. Rozenberg, editor, Advances in Petri Nets 1990, number
483 in LNCS, 1991.

[CM88] K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,
1988.

[CvGG] 1. Czaja, R. von Glabbeek, and U. Golz. Interleaving semantics and action refinement
with atomic choice. Preprint.

[DGR} P. Degano, R. Gorrieri, and G. Rosolini. A categorical view of process refinement. In
Semantics: Foundations and Applications, number 666 in LNCS.

[Elg75] C. Elgot. Monadic computation and iterative algebraic theories. Studies in Logic and the
Foundations of Mathematics, 80:175-230, 1975.

[Hel90] A. Heller. An existence theorem for recursion categories. Journal of Symbolic Logic,
55(3):1252-1268, 1990.

[Knu73] D.E. Knuth. The Art of Computer Programming. Addison-Wesley, 1973.

[KWW} W. Khalil, E.G. Wagner, and R.F.C. Walters. Fixed-point semantics for programs in
distributive categories. In preparation.

[Lyn87] N.A. Lynch. Multivalued possibility mappings. In Stepwise Refinement of Distributed
Systems, number 430 in LNCS, pages 519-543, 1987.

[Mac71] S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, 1971.

[Mil71] R. Milner. An algebraic definition of simulation between programs. In Proc. of the 2nd
Joint Conference on Artificial Intelligence, pages 481-489. BCS, 1971.

[MM90] J. Meseguer and U. Montanari. Petri nets are monoids. Info. and Co., 88:105-155, 1990.

[SW93] N. Sabadini and R.F.C. Walters. On functions and processors: an automata theoretic ap-
proach to concurrency through distributive categories. Mathematics Report 93-7, Sydney
University, 1993. Available by anonymous £tp at ghost.dsi.unimi. it in the directory
pub2/papers/sabadini.

(Wal] R.F.C. Walters. Categories and Computer Science. Carslaw Publications (1991), Cam-
bridge University Press (1992).

- 289 -

-2%0 ~

The role of Memory in Object-Based
and Object-Oriented Languages

Eric G. Wagner
Wagner Mathematics
Old Albany Post Road
R 1 Box 445
Garrison, NY 10524 / USA
CSNET: Wagner@watson.ibm.com

Abstract

This paper introduces a algebraic memory model appropriate for programming lan-
guages with both ground types and objects, and related to an elementary inheritance,
overloading, and class specification.

This paper reports on some tle recent theoretical and practical results on program-
ming constructs that came about as part of the continuing project to design, implement,
and extend the programming language LD® (=Language for Data Directed Design) that I
introduced at the first AMAST conference [4].

The main idea that I want to promote in this paper is that the proper context for talking
about object-oriented and object-based programming is imperative rather than functional.
That is, I will show why it is advantageous to view objects as parts of a state rather than
as things-in-themselves. In particular I will show how this approach makes for rich variety
of objects (or classes) and a simple approaches to inheritance and overloading.

Much of the theoretical work currently being done on OOL and OBL, e.g. (3, 1, 2},
is done in a functional context wherein a method is viewed as a fanction on objects. In
this paper we take we take a different approach based on 2 “memory” model, wherein the
execution of a method both changes the state and returns a value. I first enunciated this
approach in [5] where it was applied to produce a semantics for LD3. The paper generalizes
the treatment given there and examines some of its ramifications. This abstract gives only
the first part of the story, a precise description of a particular form of inheritance ~ the full
paper will also explore the role of overloading.

For any set K let SStrx denote the free distributive category generated by K (the
notation comes from the fact that this is also the category of strings-of-strings over K - see

[4].
Definition 0.1 Let K be a finite set, then K-state u is given by the following data

I, = (I,(k) | k € K}, a K-indexed family of sets.
V, = (V,(k) | k € K}, a K-indexed family of sets.
p = (u(k) : I,(k) = Vu(k) | k € K), a K indexed family of mappings.

If we view I, and V, as functors from the discrete category A" to the category Set of
sets and functions, then is g is a natural transformation.

Given K-states u and u’ we define a morphism n : u — 4’ to be a pair of injective
natural transformations, (& : I, — I, 8:V, — V,.) such that 4’ ea = B e u. Here a
injective means a; is injective for every k € K. Let STk denote a category of K-states. O

The rough intuition is that in a K-state u = (I,,,V,, u) what is specified is a K-indexed
set [, of entities (locations, objects) each entity having a value in the A-indexed set V, as
specified by the K-indexed family of functions 4. More specifically, the entities belonging
to class k € K are the elements of the set I, (k), their possible values are the elements of the
set V,(k) and there specific values in the state are given by the mapping y; : I, (k) — V,(k).
The morphisms in the category STk capture the notion of “substate”.

The next definition extends the idea of “entities” with values by extending each set I,,(k)
to include an additional entity without a value. We shall call the additional entity of class
k the null-entity of class k. Such null-entities provide a means for dealing with constructs
as such as null-pointers.

Definition 0.2 From I, we define a functor O, : K — Set, k ~— I,(k)+1. Given a natural
tra.nsformatlon a: I, — I, we extend it to a natural transformation from o! : O, — O,

by taking o} = a, +1 for all k € K. It what follows we shall generally omit the “ ‘i and
use the same notation for both natural transformations. o

Since SStry is the free distributive category generated by K it follows that for any state
#, the functors I, V, and O, extend, canonically, to (respective functors I,, V, and 0,)
from SStry into Set. We will generally omit the “~ ™ in future uses of these functors.

Definition 0.3 For each v € (K*)* define U* : STx — Set, y — O,(v) and (a,ﬂ) - a,.
to be the functor with the above indicated object- and morphism-parts. o

Definition 0.4 For each v € K* we define a category OY with, as objects, all pairs (u, €)
where u is a state and e € U*(u) = O,(v), and, as morphisms from (u,e) to (i, €'}, those
morphisms 7 : u — u’ such that Uv(n)(e) = € (so, if n = (a, 3) then o,(e) = ¢).

Forve K*,le¢e I =1I' : O% — ST, (u,€) — i and 5~ . (m]

Definition 0.5 Let F : O — OY be a partial functor, then for each k¥ € K define
F, : 0% — Set, (u,€) — O,(k), and (a,B) — a;. Observe that, F, = UM eMI*e F. O

Definition 0.6 By an STx-operation of arity (v,w) € (K*)* x (K*)" we mean a partial
functor F : O% — O} equipped with an injective natural transformation £t : I, — F,
for each k € K, where 1, denotes the identity functor on OS:). o

The idea here is that an STk-operation, F', of arity (u,v) is a possible semantics for
“functions” with formal parameters specified by the string u and returning results specified
by the string v where “side-effects” are allowed, i.e., execution of a “function” can result in
a change of state as well as the return of a value.

The functorality of F' captures a somewhat more subtle point, mainly the intuitive idea
that if a “function” is defined for a given state u and input e and u’ is an “extension”
of u then the function is also defined for u’ and e and, indeed, does essentially the same
thing then as it did before. The mathematics makes a slightly weaker, but more precise
statement.

-2~

m.@

The requirement that we have an injective natural transformation ¢F* : 1, — F, for ®
each k € K can be interpreted as saying that the execution of F “preserves entities”, i.e.,
that if F((u,e)) = (i, ¢) then, roughly speaking, I, (k) C I, (k) for every k € K. .
Definition 0.7 Given STx-operations (F,:F) : O% — O% and (G,:¢) : O — O%, we ®
define their composite, (G, :C)e(F,:F) : O}'l‘i — O to be (G F,.5F) where, foreach k € K, e
and (u,e) € Obj(O%), 5F* = ‘gi:u.c)) ol u]

&

Proposition 0.8 The ST x-operations form a category, Op, with the above defined com-
position and with the identity morphism, id, : O — Of being (loy, (li, : Ou(k) — .
O.(k) | k € K,u € STk)). . °®

Definition 0.8 Let k,k’' € K, then by the replacement function for k and &’ we mean the
function ry 4 : K — K such that r, ,(j) = k if j = ¥’ and 14 4(j) = j otherwise.

0
Definition 0.10 A smooth coercion from k' to k is a natural transformation ¢ : U¢*") — ®
U, u}

Proposition 0.11 Ifk,k' € K, u,v € K* such that r,. , eu = v and c is a smooth coercion

from U®) to U™ then there is a functor &: O% — OY% such that for all (u,e) € 0bj(OY%),

&{p,e)) = (u,€) (no change in the state!) where €, = c(e;)if u; = k', and €}) = ¢; if ®
u; # k’. Furthermore, this functor € is an ST x-operation when equipped with the identity

natural transformation 1, — & for each k € K.

Proposition 0.12 Ifk,k’' € K, u,v € K* such that r,. , eu = v and ¢ is a smooth coercion
from UG) to U®) then there is an induced mapping

Opk(v,w) — Opg(u,w)
S Jeoél.

We now apply these ideas in a more concrete setting.
Definition 0.13 A class-system is specified by the following data: PY
G, called the set of names for ground classes.
D, called the set of names for defined classes. Let K =4, G + D.
t: D — (K*)*, called the form function.
G, a G-sorted algebra, called the algebra of ground operations with some signature I'.
Given a class-system K = (G, D,:,G) a basic state, u, for K consists of

I, : K — Set. For our current purposes let us assume that for each k € K I, (k) =
{(,k) |5 = 1,...,n }or some n, > 0. .

Let V, : K — Set such that ¢ — G, and d — O,(¢(d)).
p: I, = V, a natural transformation.

Finally, we restrict ourseives to morphisms (a,3) : u — p’ between states in which, for

each d € D, 84 = a4, and, for each g € G, §, = 1g,.] ®
®
- 293~

Now let us restrict our attention to ST x-operations {F,F) in which the :5* are inclu-
p (u.0)

sion mappings. We can show that there are more than encugh such operations to form a
programming language (see the LD?* papers).

Proposition 0.14 Let k,k' € K, then if there ezist u,v € (K*)* and an isomorphism
p: (k') = ((k)xu)+ v then there ezists a corresponding smooth coercion c,, : U*) — U®),

1. There'is always a trivial example: Take u = 0, the empty string-of-strings, and take
v = ¢(k’), then (because, for any 4 and v, ¥ X 0 = 0, and 0 + v = v) we trivially have
tota(k’') = ((k) x0) + «(k’). I claim that the corresponding smooth coercion is the one
which, for each state u is given by the mapping

0,(F) — 0,(k)
(j, K'Y = (0, k).

2. Assume ¢ : D — (K*)* is such that, for every d € D, «(d) =Cky ;- -kin,), ice. it
consists of a single string of length n,. This is the case in object oriented languages
where the state is given by the values of a set of instance variables. When this is the
case, it is easy to see that, if d € D and k € K such that (k') =(k;.; - -kyn,,)and
k = ky ; for some i, then we have an isomorphism

iy 2 o(K) 2O X Ry Ry - Karian - Riymy,)
The desired smooth coercion here the one which for each state u is given by the
mapping O, (k') — O,(k) taking z € I,(F) to u(z):.

3. We claim that the archtypical example of inheritance - the inheritance of the move
operation on the class dots by the “subclass” colored_dots — is an example of just
such a smooth coercion. We will give a fuller treatment this, and other examples, in
the full paper.

References

{1] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and poly-
morphism. Computing Surveys, 4:471-522, 1985.

[2] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for overloaded
functions with subtyping. Technical Report LIENS - 92 -4, LIENS, Laboratoire
d’Informatique de I’Ecole Normale Superiure, February 1992,

[3] John C. Mitchell. Toward a typed foundation for method specialization and inheritance.
In Proceedings of the 17th POPL, pages 109-124. ACM, 1990.

(4] Eric G Wagner. An algebraically specified language for data directed design. Theoretical
Computer Science, 77:195-219, 1990.

[5] Eric G. Wagner. Generic classes in an object-based language. In Recent Trends in Data
Type Specification, pages 330 — 344. LNCS 655, Springer Verlag, 1992.

-29 ~

&

Abstract and Concrete Objects —-
An Algebraic Design Method for Object-Based Systems

Ruth Breu !, Michael Breu 2

This paper demonstrates the design of an object-based system using algebraic specification
techniques. The flexibility of algebraic specifications allows the system to be described at any
stage of the design - starting from a descriptive specification and ending at a constructive
specification. The latter one is a specification at the level of a program, comprising concrete data
representations and machine-executable algorithms.

Since we are developing an object-based system, the algebraic target specification in particular
is a specification of objects. In our framework objects are entities with a unique identity and an
evolving internal state which can be manipulated by the outside through a set of ope~i~ns
(commonly called methods). In this paper we are restricting ourselves to environme

exactly one active object at a time. Hence, the resulting specification can be easily transi.

a typed sequential object-oriented program such as an Eiffel or C++ program.

In our opinion, the notion of objects is too concrete to be the basis for the whole design. In
particular, object states, object sharing and side effects of methods are facilities which are
tightly connected with the notion of objects but encounter aspects of abstractness and
implementation independence.

Therefore, we suggest a design method which is based on a two-tiered paradigm of object
specification. The early stages of the design rely on a notion of abstract objects. Abstract
objects are stateless values on which a set of functions can be applied yielding other abstract
objects. The specification of abstract objects is based on an external view, stating the behaviour
of the functions. In particular, abstract objects are independent of data representations and do
not have states.

In later stages of the design, abstract objects are implemented by a state based object
description. These state dependent objects are called concrete objects. Concrete objects exist in
object environments in which one object may refer to other concrete objects.

During the transition from abstract to concrete objects, a formal notion of implementation has to
ensure that the correctness of the system description is preserved. We take the approach of
[Breu R 91] and relate abstract and concrete objects by abstraction functions mapping each state
of a concrete object to an abstract object. While in [Breu R 91] abstraction functions connect
algebnaic specifications with object-oriented programs in a model based theory, in this paper the
axiomatic framework is not left. Following the idea of [Breu M 90}, the abstraction functions

1 Technische Universitiit Miinchen, Institut fiir Informatik, Postfach 20 24 20, D - 8000 Milnchen 2

2 Siemens Nixdorf Informationssysteme AG, European Methodology and System Center,
Ouo-Hahn-Ring 6, D - 8000 Munchen 83

- 295~

e@e @

@

are part of the algebraic specification and hence cnable reasoning at the level of a formal
calculus.

Our approach goes beyond related approaches since it supports the specification of both abstract
and concrete objects. In this respect, our framework can be considered as an extension of
approaches which pursue the specification of concrete objects ([Goguen, Meseguer 87,
[America, de Boer 90]). A similar separation into state dependent and state independent objects
together with abstraction functions can be found in {Wing 87] and [America 90]. Unlike these
approaches, our framework is based on a uniform logic environment in which both abstract and
concrete objects are specified and proofs are performed.

As syntactic and semantic framework, we rely on the algebraic specification language
SPECTRUM ([Broy et al. 91]). This specification language provides facilities like the
specification of partial functions and higher-order functions, admitting formulas of a general
predicate logic.

We will illustrate our ideas by the common example of binary trees. The full version of this
paper will contain a larger case study. This case study deals with the implementation of the
most general unifier of terms based on an object structure which relies on a shared
representation of terms, i.c. a representation by dags.

The Specification of Abstract Objects

A primary goal in the first stage of our design method is the identification of abstract objects
together with the abstract specification of their behaviour. We model abstract objects by values
of some sort (called the object sort) in an algebraic specification.

Abstract objects in our example are binary trees (of object sort Tree). Binary trees are as usually
attached with two constructors ¢: Tree and node: Tree x Nat x Tree — Tree. Moreover, left,
right: Tree —» Tree and label: Tree —» Nat denote the projections to the first and second subtree
and to the label of the root, respectively. The related specification is straightforward. It can be
found for instance in {Wirsing 90].

The Specification of Concrete Objects
Each concrete object consists of
* a unique identity
* an evolving state which may refer to other concrete objects.

Concrete objects thus do not exist in an isolated setting, but in an object environment. Object
environments are collections of concrete objects which are connected by a network of
references. This includes the facility of references to common subobjects (object sharing).

In our example, we implement the abstract tree objects by concrete objects which form a dag
structure. Figure 1 depicts an environment of two objects representing the abstract tree

node(node(e, 2, £), 1, node(e, 2, t)).

- 296~

Figure |
In object-oriented languages object environments and object identities are implicitly given. Ina
framework in which properties are proved formally, an explicit modelling is advantageous in
order to keep the logic simple.
We model concrete objects of object sort s by an algebraic specification containing the
following features.

* A sort Id; describes the set of object identities.

* A sort State; describes the set of object states.

* A sort Env describes the set of object environments. This set is characterised by
associations of object identities with object states.

* Methods are modelled by functions f: Env — Env on object environments. Additional
parameters may refer to concrete objects in the environment or to basic values.

It has to be noted that the specification of object identifiers and eavironments does not
necessarily be a specification of a low-level pointer structure. More abstractly, object identifiers
can be conceived as identifying keys and object environments as databases relating keys with
object states.

The Traumsition from Abstract te Concrete Objects

We relate abstract and concrete objects by abstraction functions. Each abstraction represents a
particular state in the lifetime of a concrete object by a stateless value. Formally, the abstraction
is a function abstr mapping environments and object identities to values of the abstract object
sort. An application of the abstraction function abstr in our example of binary trees is sketched
in figure 2. Object identities (of sort /dyyee) are indicated by an arrow in the given environment.

P
[
abstr(p o)
@ ——————— node(nodets, 2, €). 1, nodets, 2. ¢))

Figure 2
An important property which we require of an abstraction function abstr is its compatibility with
the functional behaviour of objects. This homomorphism property is characterised in the
following diagram.

-293% -

c o @

e —

absir

concrete objects concrete objects

The above diagram commutes for any operation f on abstract objects corresponding to a method
/i on concrete objects. Thus, abstraction functions between concrete and abstract objects are
homomorphisms augmented by a notion of states. These extended homomorphisms have been
called state based homomorphisms in [Breu R 91].

More precisely, the implementation of abstract objects of object sort s consists of the following
four steps. We assume that a specification of object environments (of sort Env), object
identities (of sort Id;) and object states (of sort Stare;) is already given.

I1. Implementation of the faunctions associated with abstract objects

Each function f in the abstract specification is implemented by a method f_i working on
environments. Each occurrence of sort s in the arity of fcorresponds to the sort Id; in the arity
of f_i. In this way, we obtain for instance the arities node_i: Env x Id1ree x Nat x ldypee — Env
x IdTree and left_i: Env x Idtyee — Env x Idyye, in our example of binary trees.

Related axioms describe the behaviour of these functions. In our example, ¢_i and node_i are
methods which create new objects, left_i, right_i and label_i do not change the given
environment, i.c. are constant on the first argument.

12. Abstract specification of the abstraction fanction
In this step we introduce the abstraction function

abstr: Env x lds —» s
together with axioms specifying the homomorphism properties. Since, in general, these
properties are too strong to be valid in the set of all object environments, we introduce a
constraint on environments

I: Env — Bool.
For each function f: s —» s on abstract objects we introduce the axiom

-- ABSTR_AX -- Vp:Env:x:lds in Kp) — abstr(f_i(p, x)) = flabstr(p, x)).
Axioms related with functions with general arity f: s; x ... x 55 — 5, are obtained in an
analogous way.

- 298~

Additional axioms may describe abstractly the side effect of the functions f_i on the argument
objects based on the abstraction function. Note that at this stage the boolean function / does not
have related axioms, i.e. it is totally loose.

I3. Constructive specification of the abstraction function

The axioms in step [2 describe the function absir in a non-constructive way. In step I3, axioms
have to be introduced which define this function explicitly based on the structure of object
environments and object states. Moreover, the loose specification of the constraint function / on
environments has to be concreted. The specification of this function is deferred to this stage
since it is tightly connected with the idea of the implementation of the abstraction functios.
In our example, the abstract tree object related with a concrete tree object is obtained by
collecting the node information along the trace of references in the environment. The constraint
K p) bolds if the environment p forms a dag structure, i.e. does not contain cyclic networks of
Obiixm.
14. Prools of correctmess
In the last step, the soundness of step I3 with respect to the abstract axioms of step 12 has to be
proved. This means that the homomorphism axioms ABSTR_AX have to be converted into
theorems in the theory of the specification of step I3.
After the elimination of the non-coustructive axioms of step 2, the developed target specification
should contain axioms which describe algorithms related with

e the functions f_i on concrete objects and

o the abstraction function abstr.

At this stage, the development has reached a level at which the transition to a machine-
executable program does not change the level of abstraction.

Coaclusion

A main advantage of our design method is the gain of abstractness compared to approaches
which are based on the specification of state dependent objects. In perticular, our approach
supports the separated development of algorithms and data representations.

A second main advantage of our approach is the uniform logic framework of the design.
Through the explicit specification of object identifiers and object environments, the simple logic
calculus of the functional framework can be applied. Nevertheless, it has to be stressed that the
explicit modelling of these state based features does neither have effects on the style nor on the
expressiveness of object specifications.

&

References

{America 90} P. America: Designing an object-oriented programming language with bekavioural subtyping. In:
J.W. de Bakker et al. (eds.): Foundations of Object-Orniented Languages, Proc. REX School/Workshop, The
Netheriands, May/June 1990. Lecture Notes in Computer Science 489, Spninger, 1991, 60-90

{Amenica, de Boer 90] P. America, F. de Boer: A Proof Sysiem for Process Creation. In: Proc. IFIP TC 2
Working Conference on Programming Concepts and Methods, April 1990

{Breu M 90] M. Breu: Development of Implementations. In: PROgram Development by SPECification and
TRAnsformation, Volume |. Esprit Project 390 PROSPECTRA, Report M2.2.84 - R - 11.0, 1990 (10
appear in the series of Springer Lecture Notes in Computer Science)

{Breu R 91] R. Breu: Algebraic Specification Techniques in Object Oriented Programming Environments.
Lecture Notes in Computer Science 562, Springer, 199

[Broy et al. 91] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hussmann, D. Nazareth, F. Regensburger, K.
Stplen: The Requirement and Design Specification Language SPECTRUM - An Informal Introduction,
Version 0.3. Report TUM-19140, Technische Universitit Miinchen, 1991

[Goguen, Meseguer 87] J.A. Goguen, J. Meseguer: Unifying Functional, Object-Oriented and Relational
Programming with Logical Semantics. In: B. Shriver, P. Wegner (eds.): Research Directions in Object-
Oriented Programming. MIT Press, 1987, 417-477

[Wing 87] J. M. Wing: Writing Larch Interface Language Specifications. ACM Transactions on Programming
Languages and Systems 9:1, 1-24 (1987)

[Wirsing 90] M. Wirsing: Algebraic Specification. In: J. van Leeuwen (ed.): Handbook of Theoretical Computer
Science. Elsevier Science Publishers, 1990

Qs @

o

Towards an Algebraic Theory of Inheritance
in Object Oriented Programming

Xue-Miao Lu and Tharam S. Dillon
Department of Computer Science and Comzut.er Engineering,
La Trobe University, Bundoora, Victoria USTRAEIA 308

Email: {lu, tharam}Qlatcsl.lat.oz.au

Abstract
In this paper an approach is proposed to the algebraic specification of clasees and inheritance
in object oriented programming, using the notion of algebraic implementation of abstract data

1 Introduction

Application of the algebraic theories to computer science and software technology has been widely
studied. As the object oriented paradigm(3,5,9,13,15] has become increasingly important as a new
software engineering methodology, attempts have been made to give a rigorous mathematical foun-
dation for object oriented systems using the algebraic theories(e.g.,{1,4,6,7,10,11]). In particular,
algebraic models of inheritance have been proposed, e.g.,[4]. However, the existing models use
conventional notions such as signature morphism and thus are not wide enough to provide the
representation of incremental inheritance.

In object oriented programming, the central concept is object. An object has an identifier,
attributes and methods. An important feature in object oriented programming is classsfication,
incorporating the notion of encepsulation. Classification organises objects into classes. Attributes
and methods of an object are defined in the class. Inheritance is an important feature of object
oriented systems, providing a mechanism for defining attributes and methods for a new (sub)class
from definitions of in (super)class. In a class specification, there is an interface part which, by
providing the attributes and methods, designates how to build and manipulate objects of the
class[9,13,15]. This interface is an Scbntmt object type specification[12]. For some classes, this
part characterizses all the features of a class. For others, however, it does not fully characterize a
class and another part is used that concerns implementation of the current type[9,13,15]. We call
this the smplementation part. These two parts form an implementation specification in terms of
algebraic data types.

Because of lack of space, we only discuss some basic ideas in this paper and refer to [12]
for further details. Attributes and methods (functions) in a class are grouped into kinds: meta-
methods, instance atiributes, instance methods, class attributes, class methods, and shared instance
attributes|5,9]. Here we only consider the first three features of them. Higher types are used for
specifications of object types. Inheritance is considered on two levels: on types and on classes.
Generally, inheritance supports incremental modification, renaming, overriding, and specialization;
and inheritance can be single or multiple. In this paper, we only discuss single inheritance support-
ing incremental modification, assuming that an inherited component has the same name as in the
source. The loose approach has been shown in [12] to be especially appropriate for the semantics
og inheritance, including the significant point that an object of an inheriting type is also an object
of its super type.

2 Object Types and Inheritance

We assume familiarity with the basic notions from the equational algebraic specification. An object
type o = O(ky : 8y,...,kn : 8) consists of pairs k; : s;, which we will call components of the object
type. Denote K° = {k; : 81,...,kn : 85}. K is divided into two disjoint subeets, K, and K7,
with K2, = {km : m,---,kn : 8a}, 1 < m < n, such that (1) for each method in K7, its coarity is
exactly o. In particular, there can be a construction method tup®™* € K3, with w = sy X ... X 8o

e oo @

and a constant operation symbol create—?; and (2) for each method in K2,, at least one of its
argument types, or the coarity, is an attribute type in KJ,. Components in K:: are meta-methods,
and those in K? are instance attributes and instance methods. A component k; : s; has a name k,
and a type ;. When an object type r inherits o, we write o ~ r.

A typed signature T is an S-sorted signature T = (S,XT) such that for each object type o,
every method name k; in o is an operation symbol, and for each k; € K7,, there is a unary named
projection operation symbol k; € I, ,;; and if an inheritance relation o ~+ r exists, then for each
meta-method o : 8; X ... X 8, — o for o, there is & meta-method B : 83 x ... x8gx...x 8, — 7 for v,
P 2 ¢, and f is said to be compatible with a. A typed specification HTSP=(Z, E)) consists of a typed
signature T and a set E of axioms. A typed specification HTSP is also written HTSP=(S, %, E).

An algebra A for a typed specification HTSP=(S, L, E) is a specification algebra, with a carrier
s* for each sort s € S, such that for each method name k; of type t, there is a uniquely assigned
method in ¢4, denoted by kA, or simply k;; and such that for every inheritance relation o ~ T,
each component k : s in K7, k4 : r4 — 44 is also a projection operation. In either of the cases,
we say that k is inkerited, and o is said to be (weakly) inherited by r.

Let o ~ r in HTSP. For an HTSP-algebra A and meta-method # compatible with a as men-
tioned above. a is said to be inherited to fin A if for a; € 82,1 < i < p, ki(B(ay,. .- ,a,...,8p)) =
ki(a(ay,...,aq)) for each instance component name k;. o is said to be strongly snherited by r in A
if each meta-method k; in o is inherited in A. In this case, a can be compatibly adapted to r in A
by defining a(ay,...,a;) = B(ay,...,aq,cq41,...,¢p) for fixed elements c; € s,9<j<p

Proposition 2.1 Let 0 ~» 1 in the typed specification HTSP. Assume that o is not an attribute
type for any other object type in HTSP. For any HTSP-algebra A, let B be obtained from A by

replacing 04 by oA U rA, then B is an HTSP-algebra. |

Proposition 2.2 With the conditions above, for any HTSP-algebra A in which o is strongly in-
herited by 1, let B be obtained from A by replacing oA by rA, then B is an HTSP-algebra after
compatibly adapting o to v in A.

In both propositions, B beinian HTSP-algebra means that objects of type r are objects of .
his is an important feature in the object oriented framework.

3 Implementation of Object Types

In this section we briefly discuss the notion of implementation. We utilize existing notions of
implementation in the literature[2,8,14] and integrate the distinctness of object orientation.

Let HTSP and SPEC=(S, I, E) be the typed specifications of & and r, respectively. The basic
idea of implementing o by r (or HTSP by SPEC) is to use the features in SPEC to describe those
in HTSP. In case several sorts, s;,...,8,, in SPEC are used to describe one sort t in HTSP, we
denote the sequence of sorts by < s;,...,8, > and call it a joint sort, and it is essentially a product
type. Each s; in a joint sort is associated with a fixed attribute of type s;. Two or more attributes,
ky,...,kp in SPEC can be used to describe one attribute k in HTSP, and we denote this sequence
by < ki,...,k, > and call it a joint attribute. Moreover, methods are needed for manipulating
these joint attributes. We will call these methods compound methods. A compound method involves
one or more existing methods in SPEC and consists of terms (t,,2;,...,t,) of appropriate types
from Tg(X). This is an ordered sequence and the effect is equivalent to the sequential actions of
these component terms as operations. With the introduction of a joint sort s =< #,,...,5, >, a
meta-method whose argument types inclnde all the types in s can be rewritten by substituting s
for the occurrences of &,. .., 8.

A joint sort or a joint attribute exists only functionally, that is, it is not a component in a
specification. Instead, a joint sort means that several existing sorts will be involved for a single
action by a (compound) method. Similarly, a joint attribute of a joint type means that several
attributes will be involved in an action by a (compound) method. In contrast, a compound method
is a component of the object type. A compound method can be defined on a joint attribute and
thereby it may access the attributes or change the values of the attributes involved in the joint
attribute when the compound method is invoked.

To implement HTSP by SPEC, we follow the three stages, synthestis, restriction, and idents-
fication in [8]. The first stage is to enrich SPEC to EnSP. An enrichment of SPEC is a typed

specification EnSP obtained from SPEC by adding attributes of the existing types (rather than ¢)
in SPEC, defining a set of joint sorts and a set of joint attributes to SPEC, adding a number of
compound methods, and accordingly the operations for the new components. We do not use the
sort implementing operations, rather we use the implementation morphism, in a similar manner
to [14). In the second stage, EnSP is restricted to EnSP;,,, by deleting the methods which are
not used directly in simulation. Finally representatives are selected from a given EnSP,my;-algebra
A using a congruence, to simulate an HTSP-algebra. In what follows, we always assume that
HTSP, HTSP1, SPEC and SPEC]1 are typed specifications of 0, 0, r and), respectively, and
HTSP=(S,Z,E) and HTSPI:(SI,EI,EIY.

An smplementation morphism from HTSP to HTSP1 is an injective mapping A from I to X1
such that A(¢) = 0;; and for any operation symbol a : 8; X ... X 8y — &, if & is a meta-method
for o, then A(a) is of the form h(s;) x ... x (8) x ¢;... x t, — a), otherwise, h(a) is of type
h(s,) x ... x (8g) — h(s). If h(s) = s for each s # o that is not a meta-method sort in o, we call
an inheritance morphism.

An implementation morphism is a generalisation of a signature morphism in the conventional
sense since it does not necessarily preserve the meta-methods. The implementation morphism smpl
maps each sort s of HTSP to a sort or to a joint sort in EnSP, an attribute to an attribute or a
joint attribute, and a method to a method or a compound method.

An implementation of HTSP=(Z, E) of 0 on SPEC of r is given by an enriched specification
EnSP of SPEC and an implementation morphism smp! from HTSP to EnSP, and denoted by (HTSP,
impl, EnSP, SPEC). A model M of the implementation (HTSP,imp!,EnSP,SPEC) is quadruple
(A,implM, B, =;pp) consisting of an HTSP-algebra A, an EnSP;n-algebra B and an injective
homomorphism impl™ from A to a congruence B/ =mg of B, where EnSP;my is the typed
sgepiﬁpc;:tion obtained from EnSP by deleting the methods 1n EnSP which are not within the image
of impl.

The definition of implementation is a partial one in the sense that we do not require that every
HTSP-algebra can be represented by an EnSP;my;-algebra. If EnSP=SPEC in (HTSP, smpl, EnSP,
SPEC), we say that HTSP is implemented by SPEC, and denote it by (HTSP, smpl!, SPEC). There
can be multiple ways for implementing an object type on (by) another in that a compound method
may be composed using a different set of terms. In addition, an implementation can have many
models. It is easy to see that if SPECI is an enrichment of SPEC and SPEC2 an enrichment of
SPEC]1, then SPEC?2 is an enrichment of SPEC; and if simp! is an implementation morphism from
HTSP to SPEC] and smpl, an implementation morphism from SPEC1 to SPEC2, then smpl; oimpl
is an implementation morphism from HTSP to SPEC2.

Proposition 3.1 (Composition of Implementations) If (HTSP,impl,EnHT1,HTSP1) and (HTSP1,
imply, EnSP,SPEC) are implementations, then (HTSP,imply o impl,EnEnSP,SPEC) is an imple-
mentation and the diagram in Figure 1(a) commutes on K(}, i.c., for k € K}, fy o imply(k) =
impl} o g(k), where EnEnSP is an enrichment of EnSP constructed in a natural way along the
construction of EnHT1 from HTSP1, and impl| is an eztension of imply; and for impl(t) =<
t1,...,0q > withimply(t;) =< tiy,...,tip; >, simplioimpl(t) =< t11,...,t15,,-- s lg,1s- - t1p, >-

Moreover, (EnHTlimp,smply, EnEnSP,SPEC) s an smplementation of EnHTlimp on SPEC,
where implhy is the restriction of imply on EnHTlimy. And if (A,smpl, B,=imp1) is a model
for (HTSP, impl, EnHT1, HTSP1) and (B,impl},C, =impl}) is @ model for (EnHT1ipmp, imply,
EnEnSP, SPEC), then (A,impl} o impl,C,Zimpt © Simpt,) is a model for (HTSP, impl} o impl,
EnEnSP, SPEC), where C/(=impt © Zimpts,)=(C/ Zimpi}) Simpt- 1

(a) HTSP1 —9+ Eaim1 <P mrsp | ® HTSP —s HTSP1
l imply l impl! l impl l imply
! h ! h
SPEC —— EnSP ———» EaEnSP SPEC—14EaSP ——2 - EnSPI
Pigure 1.

Proposition 3.3 Let HTSP and HTSP1 be two typed specifications of o end 0y, respectively, and
o ~+ 0y. If both HTSP and HTSP1 can be implemented on SPEC, then there are enrichments EnSP

and EnSP1 of SPEC, and implementations (HTSP, impl, EnSP) and (HTSP1, impl,, EnSP1),
such that diagram in Figure 1(b) commutes on K,, where h is an inheritance morphism. |

-w-

el

4 Complex Classes and Their Inheritance

In this section we formalize the concept of complex class and inheritance on these classes in the
framework of implementation studied in the last section.

A complez class specification for a type HTSPis an implementation CL=(HTSP, smp, SPEC) of
HTSP by SPEC. A model M of a class CL=(HTSP,impl,SPEC) is a model of the implementation.
An object of type o in CL is a pair (a,}) for a € o4 and b an object of p with impl(a) = §, where
b is the poset including b in the congruence. Given two typed specifications HTSP and HTSP1
of ¢ and o, respectively, and two classes, CL=(HTSP, impl, SPEC) and CL1=(HTSP1, impl,,
SPEC1), we said that CL1 is an inkeritance eztension of CL if SPECI is an enrichment of SPEC;
and if for each instance component k € K, h o impl(k) € impl;(K°), where h is the inclusion
morphism from K' to K™, and for each meta-method in K7, there is a meta-method 4 in K
such that impl,(8) is compatible with impl(a).

Proposition 4.1 Let class CL1=(HTSP1,impl,,SPEC1) be an inheritance eztension of class CL
=(HTSP,impl,SPEC). For a model M=(A,impl, B,=) of CL1, let N=(A',impl', B',.=') be obtained
from M by replacing o4 by oA U o2 and replacing pP by Pu pf, then N 13 model of CL1, where,
p and py are the central sorts in S}’EC.-,.,; and SPECIimgpi,, respectively. |

Proposition 4.2 With the conditions above, let N=(A',impl', B',=') be obtained from M by re-
placing o4 by of* and replacing pP by p2. If o is strongly inherited by o, in A, then N «s a model
of CL1 after compatibly adapting a to r tn A.

d Similarly, these properties mean that objects of an inheriting class are objects of the inherited
ass.

References

{1] E. Astesiano, A. Giovini, G. Reggio, and E. Zucca. An integrated algebraic approach to the specification
of data , processes, and objects. In M. Wirsing and J. A. Bergstra, editors, Algebrasc Methods 1:
Theory, Tools and Applications, pages 91-116, 1989. LNCS 394.

{2] C. Beierle and A. VofS. Implementation specifications. In H. Kreowski, editor, Recent Trends in Data
Type Specification: $rd Workshop on Theory and Applications of Abstract Data Types, pages 39-53,
1985. Informatik-Fachberichte 116.

|3] G. Blair, Gallagher, D. Hutchison, and Shepherd, editors. Object-Oriented Languages, Systems and
Applications. Pitman, London, 1991.

{4] K. Breu. Algebraic Specification Technigues in Object Oriented Programming Environments. Springer-
Verlag, 1991. LNCS 562.

[5) T. S. Dillon and P. L. Tan. Object Oriented Conceptual Modeling. To be published by Prentice-Hall
International, 1993.

|6] H. Ehrich, J. A. Goguen, and A. Sernadas. A categorical theory of objects as observed processes.
In J. W. de Bakker, W. P. de Roever, and G. Rosenberg, editors, Foundations of Object-Oriented
Languages, pages 203-228, 1991. LNCS 489.

|7) H. Ebrich and A. Sernadas. Algebraic implementation of objects over objects. In J. W. de Bakker,
W. P. de Roever, and G. Rosenberg, editors, Stepwisw Refinement of Distributed Systems, Models,
Formalism, Correctness, pages 203-228, 1989. LNCS 430.

[8] H. Ehrig, H. Kreowski, B. Mahr, and P. Padawits. Algebraic implementation of abstract data types.
TCS, 20:209-263, 1982.

[9] A. Goldberg and D. Robson. Smalitalk-80: The Language. Addison-Wesley, Reading, Mass., 1989.

[10] M. Grofe-Rhode. Towards object oriented algebraic specifications. In H. Ehrig, K. P. Jantke, F. Orejas,
and H. Reichel, editors, Recent Trends sn Data Type Specification, 7th workshop on specification of
ADTs, pages 98-116, 1991. LNCS 534.

(11] X.-M. Lu and T. S. Dillon. An algebraic theory for object oriented systems. 1991. Accepted for
publication in JEEE Transactions on KXnowledge and Data Engineering.

[12] X.-M. Lu and T. S. Dillon. Towards an algebraic theory of inheritance in object oriented programming.
In preparation.

{13] B. Meyer. Object Oriented Software Construction. Prentice-Hall International, 1988.

[14] A. Poigné and J. Voss. On the implementation of abstract data types by programming language
constructs. JCSS, 34(2/3):340-376, 1987.

[15] B. Stroustrup. The C++ Programming Langsage. Addison-Wesley, Reading, MA, 1986.

e@e @&

&

An Object-Oriented Design for the ACT ONE

Environment*
Martin Gogolla Ingo Claflen
TU Braunschweig TU Berlin
Informatik, Abt. Datenbanken Fachbereich 20
Postfach 3329 Franklinstr. 28/29
W-3300 Braunschweig W-1000 Berlin 10

gogolla@idb.cs.tu-bs.de ingoQopal.cs.tu~berlin.de

1 Introduction

The overall aim of this paper is to stabilize and strengthen the algebraic specification
method to software engineering and development. We do not introduce new theoret-
ical results, but define a conceptual model, i.e., an information system schema, for
the well-established algebraic specification language ACT ONE and its accompanying
specification environment. Existing specification systems like ASSPEGIQUE [BC85),
RAP [Hus85], ACT [Han87], OBJ3 [GW88] or OBSCURE [LW91] provide mecha-
nisms to store and retrieve specifications and t~ operate on them. But in general
(the OBSCURE system seems to be an exception) they employ no systematic ap-
proach to information administration. Usually they rely on storage facilities of the
underlying programming language and file system. A solution to the information
handling problem is the use of information systems or more specific databases. They
are already accepted as being important components of software development sys-
tems, and, since specification systems can be regarded as parts of general software
development systems, the same arguments apply to them.

2 Applying Database Technology to Algebraic
Specifications

The application of databases to construct systems for specification languages leads
to certain requirements: (1) Since specifications are structured entities, the database
must be capable to deal with complex objects in a coherent way. This requirement
suggests not to employ relational technology. (2) Since the specification task has an
interactive nature, the system must be capable to deal with incomplete information.

*Work reported here has been partially supported by the CEC under Grant No. 6112 (COM-
PASS) and BMFT under Grant No. 01 IS 203 D (KorSo).

It must support different degrees of incompleteness and should enable mechanisms
for automatic tool invocation if the state of completeness changes.

In our approach, we apply know-how of the database field in the area of aigebraic
specifications. The development of algebraic specifications describing software sys-
tems of practical relevance usually results in large sets of related specification units.
These units arise from the decomposition of complex specifications into smaller pieces
by means of the structuring mechanisms provided by specification languages. Addi-
tionally algebraic methods and especially specification languages give rise to a bulk
of information like proofs, formal transformation steps, formal relations like signature
morphisms, etc., which have to be stored to be accessible by various tools.

Here we show how a concrete data model, namely the object-oriented data model of
TROLL light [CGH92], can be used to support the algebraic specification language
ACT ONE. However, the concepts used are general enough to support other speci-
fication languages as well. Therefore, we feel the design of a conceptual schema for
ACT ONE is mainly a case study in employing a semantic data model for database
support of specification or programming languages. The approach chosen is gener-
al and can be used for other languages as well. It is therefore a proposal for the
consolidation of environments for algebraic specification languages. The definition
of the database schema is done by means of TROLL light, a specification language
for objects developed recently within the KORS0 Project. TROLL light, a dialect of
TROLL [JSHS91], allows to represent structure and behavior of conceptual objects.
It is designed to describe the universe of discourse as a system of concurrently exist-
ing and interacting objects. As in TROLL object descriptions are called templates
in TROLL light. Because of their pure intensional meaning templates may be com-
pared with the notion of class found in object-oriented programming languages. In
the context of databases however, classes are also associated with class extensions so
that we settled on a fresh designation. Templates show the following structure.

TEMPLATE name of the template
DATA TYPES data types used in current template
TEMPLATES other templates used in current template
SUBOBJECTS slots for sub-objects
ATTRIBUTES slots for attributes
EVENTS event generators
CONSTRAINTS restricting conditions on object states
VALUATION effect of event occurrences on attributes
DERIVATION rules for derived attributes
INTERACTION synchronization of events in different objects

BEHAVIOR description of object behavior by event-driven sequential machines

END TEMPLATE

3 ACT ONE Types Described by TROLL light
Templates
We cannot go into the details of our design of the ACT ONE environment or into the

details explaining how TROLL light can be translated to the object-oriented database
system [LLOW91] used in the Braunschweig KORSO project. But in order to give a

o@e @®

&

. o]

®
feeling how the design looks like we concentrate on ACT ONE types. An ACT ONE .
type is represented in TROLL light by a template (or object type) characterizing its ®
static and dynamic properties. °

The template Type given below has the following attributes: Name - Name of the type.

Text — Textual representation of the type provided by some editor. UsedNames - List

of used type names. CfCorrect - Indicates whether the textual representation has

been checked syntactically, i.e., whether it is context free correct, and a syntax tree .

has been built. Complete - Indicates whether all types in the UsedNames list are in .)
the database. Flattable - Indicates whether a flat representation of the type can be

computed. IsFlat - Indicates that a flat representation is available. UsedTypes — Set

of used and actually existing types. Syntax - Object-valued attribute describing the

syntactical appearance of the corresponding type. This attribute may be undefined

and will be defined after successful context free analysis. Flat — This attribute)
describes the flat representation of types. It may be undefined and will be defined

after successful context sensitive analysis.

&

In contrast to the attribute UsedNames which contains a list of type names necessary
for context sensitive analysis, but which may not be already existing, the set- and
object-valued attribute UsedTypes refers only to those types which are currently
existing.
TEMPLATE Type
DATA TYPES String, Bool;
TEMPLATES Type, Typeexpr, Pspec; °® ®
ATTRIBUTES Name:string; Text:string;
UsedNames:LIST(string); CfCorrect:bool;
DERIVED Complete:bool; DERIVED Flattable:bool;
IsFlat:bool; UsedTypes:SET(type);
Syntax:typeexpr; Flat:pspec; ®
EVENTS BIRTH create(InitName:string,InitText:string);
changeText (NewText:string) ;

DEATH destroy;
CONSTRAINTS DEF(Name); DEF(Text); -
CfCorrect IMPLIES
(DEF(Syntax) AND DEF(UsedNames)); -- (R2)
VALUATION {create(N,T)] Name=N, Text=T;

(R1)

DERIVATION Complete = ®
CfCorrect AND
(FORALL (N:LTS(UsedNames))
(EXISTS (T:UsedTypes)
(Name(T)=N AND CfCorrect(T)))); (R3)
Flattable = °
Complete AND
(FORALL (T:UsedTypes) IsFlat(T)); -- (R4)

BEHAVIOR
END TEMPLATE;

In the template certain requirements concerning ACT ONE types are formulated as
constraints and derivation rules: (R1) A type must have at least a name and a textual
representation. (R2) If a type has been checked syntactically its syntax trze and use
list must be available. (R3) A type is complete if all used types are already existing.
(R4) A type is flattable if all its used types are already flat. Please note that arbitrary
events are possible in our approach. We could even have events like contextFree-
Analysis, contextSensitiveAnalysis, or computeFlatRepresentation.

4 Conclusion

Although our approach was inspired by [BCC90] and we tried to describe the same
problems, our approach is quite different. In [BCC90} the design of the specification
database of the ASSPEGIQUE environment is described by means of the algebraic
specification language PLUSS. They employed a general specification language and
presented a rather long specification describing certain states of incompleteness of
specifications. Because we employ a powerful data model we are able to describe the
same affair in fewer lines.

References

[BCS8S) M. Bidoit and C. Choppy. ASSPEGIQUE: An Integrated Environment for
Algebraic Specifications. In H.Ehrig, C. Floyd, M. Nivat, and J. Thatcher,
editors, Proc. Int. Joint Conference on Theory and Practice of Software
Development (TAPSOFT’85), pages 246-260. Springer, LNCS 186, 1985.

[BCC90] M. Bidoit, F. Capy, and C. Choppy. The Design and Specification of
the ASSPEGIQUE Database. In A. Miola, editor, Proc. 1st Int. Sympo-
sium on Design and Implementation of Symbolic Computation Systems
(DISCO’90), pages 205-214. Springer, LNCS 429, 1990.

[CGH92] S. Conrad, M. Gogolla, and R. Herzig. TROLL light: A Core Language
for Specifying Objects. Informatik-Bericht 92-02, Technische Universitat
Braunschweig, 1992.

[GW88] J.A. Goguen and T. Winkler. Introducing OBJ3. Research Report SRI-
CSL-88-9, SRI International, 1988.

[Han87] H. Hansen. The ACT-System: Experiences and Future Enhancements.
In D.T. Sannella and A. Tarlecki, editors, Recent Trends in Data Type
Specification (WADT’87), pages 113-130. Springer, LNCS 332, 1987.

[Hus85] H. Hussmann. Rapid Prototyping for Algebraic Specifications - RAP-
System User’s Manual. Technical Report MIP 8505, Computer Science
Department, University of Passau, 1985.

[JSHS91] R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas. Object-Oriented
Specification of Information Systems: The TROLL Language. Informatik-
Bericht 91-04, Technische Universitit Braunschweig, 1991.

[LLOWS91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreib. The ObjectStore
Database System. Communications of the ACM, 34(10):50-63, 1991.

[LW91] J. Loeckx and M. Wolf. The OBSCURE Manual. Technical Report 91/03,
Computer Science Department, University of Saabriicken, 1991.

A Formal Definition of an Abstract Prolog Compiler

Julio Garcia-Martin Juan José Moreno-Navarro
Universidad Politécnica de Madrid *
1 Motivation and related work

In the last years, the importance of logic programming languages has been increased. For logic languages we could
understand not only PROLOG but also several languages that uses logical components (deductive inference as opera-
tional semantics, unification, backtracking, etc.). Probably, the development of efficient implementation techniques for
PROLOG (the canonical element of these kind of languages) is an important component of their success.

The contribution of Warren [Wa83] with the design of an abstract machine points out the possibility of compiling
PROLOG and getting efficient code. Most of current PROLOG systems are based on the resulting machine, usually
called the WAM (Warren Abstract Machine).

Even though there are formal descriptions of the WAM (see [Ku89],Ru92 and, specially, [BR92]) the explanations (for
instance [GLLO8S], [MW88), and, best of all [AK91]) do not seem to approximate the reader to a good understandable
view.
For our point of view, we think that it is possible and necessary to reinvent the WAM. This claim can be ecasily
justified with the following words: a new and more clear view must be offered about compilation of PROLOG, but it
must not be a collection of instructions being executed on an memory stack.

In this paper we present an abstract view of the WAM by a formal description. For an abstract WAM we understand
a description of the WAM focused in how: a) it implements SLD-resolution with backtracking and b) the main elements
of PROLOG (unification and backtracking) can be compiled. We are not interested in implementation details and
optimisations.

The components of an abstract machine are the following:

o the data ares which defines the configuration of the machine;

o the insiruction set and & semantic function for each of its elements (defining the changes on the configuration after
executing an instruction);

o the transition function between an initial and a final configuration which is guided by the semantic function of the
instruction being currently executed; and

o the irenslation function which compiles a program into machine code.

Abstract data types (ADTs) can be used to describe these components, while the semantic function is defined in terms
of the operations of the ADTs.

Furthermore, this definition is the middle point of a more ambitious project: The abstract WAM can be derived
from SLD-resolution, the operational semantics of PROLOG, by stepwise refinement. Furthermore, the whole WAM
can be derived from the abstract WAM by supplying efficient ADT implementations. Notice that the framework allows
to manage both steps, by refining the data ares (in the first step) or by refining ADTs implementation.

An executable and visualisable formal specification would point out the success of the design decisions taken by
Warren in the compilation of PROLOG and could made them applicable to other logic languages.

2 The Abstract WAM

2.1 Data Area

This section informally describes the abstract WAM. We are using an OBJ-like language for the specification with some
simple modifications in order to make it closer to the object oriented approach and to simplify the specification. For
instance, if an ADT & is just the aggregation of some different ADTs 4, ..., &y (what is very often) we allow to use
operations of a; as operations of a without writing them in a’s specification. We also allow the use of operations as
arguments of other operations. Due to the lack of space we will only present some examples of the formalisation. Figure

1 shows the basic ADTs SET and STACK used later.
As shown in figure 2 the data area is formed by the WAM-program, or-stack, the argument registers and the heap.

1<t us discuss each element with some detail.
» The program contents a label-indexed array of WAM-instructions and a program counter, which is a label.

—“WN.W&MW&W.MNM.MMSﬂ.m&

- 308 -

["- - - - - - - -

e@- @

&

ey T P ey - e — T T ' g —
0
4

]
;
3
3,

adt SBT [X : clement) io adt STACK (X : clement] is
sort est sert stack

oparation Insert : oot clamant — oot operation EmptyStack : — stack

operetion Ramove : est clamant — oot operatioa Push : stack clemant — stack

oparation € : dement set — bool operatioa Pop : stack — stack

opesation § : — et operation LEmpty : stack — bool

opearation L. : set set — st operation Top : stack — slemant

operation Mod.Top : stack (clement — slemaent) — stack

axioms
vare i,j : element axioms
var S : set var § : stack
vars 4,5 : st var s : clement
var f : cement — clement
Tnsert (Ineert (S, 1),) = Insert (Insert(S,j), i) Hi<>;
Remove (Ineert (8,5),5) = Remove (S, J) Hi=zx; IsBupty (EmpiyStack()) = trus
Remove (Inswrt (S,5),5) = insert (Remove(S, 5),5) #i <> 5 EsBmpty (Push (8,0)) = false
Remove (0,4) = § Pop (EmptySiack (S, ¢)) = error
JEDsert (Ss) = (i ==j)or (€ S) #(i <>3j) Pop (Push (S,¢)) = S
~ED Top (Push (S,8)) = o
i€(AuB)=(A€i)or(Be€i) Mod.Top (Push (5, ¢), f) = Push (5, f(s}))
t endadt

Figure 1: The ADTs SET and STACK

ri;f W[=) i =)
™ ' @ -
/- i d
. ot AN
_.@Eg'z'“; = -
EL_JL _.J I:I_
Asgamont
=

OR_STACK WAM_PROGRAM
—

Figure 2: The Abstract WAM components

o The argument registers are collected in an array of heap pointers. It is used for parameter passing during clause
application. The ADT argument registers is a simple instance of the basic ADT ARRAY.

o A stack (called or-stack) is used to traverse the resolution tree with a depth first strategy. The or-stack is defined
by inheritance after instantiating the ADT stack with choice point as components.

e Choice points are used to store the information needed for applying any clause to a predicate call. There are
several applicable clauses, so this information could be reused several times. The ADT choice point contents a
copy of the argument registers (arguments of the predicate call), the local trail (used to record variable bindings
in order to undo them after backtracking), the program address of the next clause and one and-stack.

o A trail is a set of variable names, as shown in figure 3.2

o As before, we get the and-stack after an instantiation and inheritance from STACK with environments as elements
(vee figure 3).

e An environment is used to perform the application of a given clause to a predicate call. For this purpose, it
contains the continuation label (beginning of the code of the next predicate call) and the variables of the clause.

o The ADT variable is defined together with the ADT heap. A variable is & pair (variable name, heap pointer). The
heap is used to represent PROLOG terms in clauses and goals. A heap is a table with a pointer as key and cach
element is a term: a constant, a constructor with some heap pointers as arguments or a variable name.

!Notice that the implementation of the trail as & stack is an optimisetion detall.

c of)e @

Comsult CP (Create (sise, CP)) = CP

Consult CP (Modify CP (E,CP)) = CP

Comsult Var (Create (#ise, CP)) = Unbound

Consult Var (Modify Var (BE,n, X)) = X
endadt

®
adt ANDSTACK s
exteading STACK [ENVIRONMENT] and.stack
eadadt
operation Comsult.Var : environment nat — variable
axioms adt ORSTACK Is
vare siss,n : aat extending STACK [CHOICE] and.stack
var B : euvircament endadt : L
var CP : prog.addr
var X : variable
Figure 3: The ADTs ENVIRONMENT, TRAIL, AND-STACK and OR-STACK
®

2.2 Semantic Function

We will not give the complete instruction set, but one can found (a part of) it in the next section where the translation
function is discussed.

The semantic function is a mapping between a WAM-instruction and a data area into a data area, i.c. specifies
the modification in the data ares after executing a given instruction. The specification is the compasition of several
operations of the data ares components. Figure 4 shows the specification of the semantic function of a couple of o
instructions. For instance, the try_me_ elee instruction rewinds the trail of the most recent choice point (by using an
operation of the ADT or-stack), stores the labsl of the next alternative, initialises the choice point for the next clause
application and increments the program counter.

WAM.Progrem := geslirans (GOAL) S1: Wem Instruction x Wam.State — Wam.State ® ®
prectrans (PROC (m))
precirens (PROC (pn)) 81 [try me.slee (L)] wam state :=
precivens: Procedure — Wam.Code Next_Instruction
(Pech (WPM
ROC = {C,}) := clousetrens (C
prectrens (PROC (p) = {C1}) © (Registers (wam_state), (L), o
prectrens (PROC (p) = {Cy,..., Ca)}) 1= Consult CP Program (wam.state))))
try.me.ales (n, (label;)) NM“(L)QIMz
clousetrens (C,) NeztInst _Progrem
(label;): retry.ms.siee (labely) (Rewind Treil_Top.Or-Stack
clonsetrans (Cy) (Next Llause TopOr-Stack
(labely): - (wam_state, (L))
(Qabely-1): trustame]
clsusstrans (Ca)
$1 [eliocete n] weam. state :=
Nest Instruction
clousctrens: Clavsss ~ Wem.Code (Mod-Top (wam.state
Push (Top (wam.state),
() e Create Eavironment
Sk 7 L o A (o, Conecls OP (wemmstete))) °
unifytvenes (t)
call ({)-J;‘{‘T)’(.» S1 [precesd] wam. state :=
ortrons (on, vam 28, &1)) Next Jnstruction (Sot.P (wam_state, Consult CP (wam.stats))
ool (), asity (@)
m;(;........‘....)) ST fost.value X} —.n.(t;.-:v.l(°
), (S Noxt Jnats ComsultVar (Top (Top (wam.state))n)))
Figure 4: Translation and Semantic Function
®
-3ff=
- - - - - - - - - ® o

3.3 Translation Function

The translation function specifies how PROLOG code is compiled into WAM code. It is described by using some
suxiliary functions. PFigure 4 describes the compilation of 8 PROLOG program as the compilation of the goal and
the procedures (clauses for a given predicate). A procedure needs some code for the management of backtracking
(try.me.slse, retry_me_sise and trust.ne instructions) and the compilation of clauses. Clauses are translated by using
the unifytrans and transferivens schemes and particular instructions.

8 Conclusion

Although it is not the main goal of the paper, let us say something about our derivation of the WAM. It is carried out in
two big steps. The first step is the derivation of the main elements of the WAM. We bave not space enough to describe
all the refinement steps. So, we would only mention some important points.

The preliminary machine is a stack based description of SLD-resolution solving literals from left to right and using
the clauses in textual order. The stack stores resolution steps containing the current goal (a list of literal starting with
a predicate call p), the substitution of the step and the next clause of p to be used. These resolution steps are called
choice pointa.

Now, code could be used to codify goals. The goals in the choice points are replaced by some arguments registers
and the continuation program label. A program label replaces the next clause.

Next step is the compilation of substitutions. The heap allows to represent substitutions as a set of pairs (variable
name, heap pointer). The set includes the variables bound during the resolution step (choice point).

One could notice that the number of variables bound in a resolution step is unknown in advance. However, it is
possible to give names to the local variables of the clause during the compilation process. The choice point could be
responsible of collecting the bindings of the local variables. Nonlocal variable bindings are “remembered” into a local
trail. From the point of view of SLD-resolution the trail helps in the reconstruction of the step substitution. From the
machine viewpoint, it is needed to rewind variable bindings after backtracking.

Furthermore, in the case that a predicate has only one clause, a full choice point could suppose a waste of memory.
It can be simplified in an environment with only local variables and the continuation label. The and-stack keeps all the
environments belonging to a choice point.

As a final step, term representation into the heap and the parameter passing mechanism could be refined by using
specialised machine instructions. These instructions have the responsibility of constructing or unifying terms (constant,
functor or variable).

With this derivation we obtain the Abstract WAM described before. The result enhances the abstract behaviour of
the WAM without knowing implementation details. The data area is configured with some abstract data types that are
not fully implemented but the implementation must fulfil some axioms.

As a second big step, we can make the optimizstion of this machine. The optimisations are performed in the same
framework. Some optimisations arise from further refinement of the data area (for instance using a global trail instead
of a local one). Other ones from the concrete implementation of the abstract data types: implementation of the heap
as a stack, optimal memory allocation of the data area as contiguous memory areas, etc. Finally, the semantics of the
instructions could also be optimised as in the last call optimisation, the environment trimming and so on. As a result
we get a formal description of the WAM as described in [AK91].

The derivation and the Abstract WAM could help to understand the compilation of PROLOG. Moreover, they are
useful to modify the machine design to implement new "logic languages” (in a general sense). The WAM have been used
as a basis for the implementation of several declarative languages and symbolic computation systems: integration of
functional and logic programming, constraint logic programming, logic programming with types, modules and contextual
information, etc. The designer of a new machine could diverge from the WAM in any point of the derivation where the
new language is different. The step by step specification has another advantage. The verification of the correctness of
the WAM is simply obtained by proving equivalence between every machine and the following.

The Abstract WAM (or a similar abstract machine) is easy to implement and test. In this sense we also plan to
make a computer visualisation of all the process. A first prototype [GM92] is ready and we expect to complete it soon.

References

[AK91) H. Ait-Kaci: The WAM: A (Real) Tutorial, The MIT Press, 1991

(BR92] E. Boerger, D. Roseasweig: The WAM - Deftnition and Compiler Correctaess, Technical Report TR 14/92, Diparts-
mento di Informatica, Universitd di Pisa, Italy, 1992.

[GLLOSS] J. Gubriel, T. Liadholm, E.L. Lusk, R.A. Overbeck: A Tutorial for the WAM for Computational Logic, ANL-64-84,
Argonne Nat. Lab., 1985

[GM92] J. Gescia-Martin, J.J.Moreno-Navarro: Priendly-WAM An Interactive Tocl to Understand the Compilation of PRO-
LOG, Proc. LPAR 92, Springer LNCS 500, 1992

(Ku89) P. Kursawe: How to Invent s PROLOG Machine, New Generation Comp., 5, 1989.

(MWes) D. Maier, D.S. Warren: Compating with Logic: Logic Programming with PROLOG, Ed. Benjamin Cummings, 1988

(Re92] D.M. Russinoff: A Verified PROLOG Compiler for the Warren Abstract Machine, J. of Logic Programming, 1992.

(Wat3] D.H.D. Warren: An Abstract PROLOG Instruction Set, Tec. Note 309, SRI International, Mealo Pazk, California,
Ortnher 1088

- 32~

BESRSEE PR

Completeness of Equational Definitions over
Predefined Algebras *

Valentin Antimirov! ™ and Anatoli Degtyarev?

! Computer Science Department, Copenhagen University, 2100 Copenhagen, Denmark
email: anti@diku.dk; fax: (+45) 353-21401; tel.: (+43) 353-21400
? Department of Cybernetics, Kiev University, 252127, Kiev, Ukraine
email : caphedra%d105.icyb.kiev.ua

1 Introduction

The notion of equational definitions over predefined algebras (EDPA) was introduced
in [3] in order to formalise the following rather widespread situation: given a data
type D with a set of (predefined) functions L, a set of new (possibly partial) functions
F on D is specified by a set R of “recursive equations” of the form

Jh,....ta) = ¢ (1)

where f € F and t;,...,1s,t are terms over the signature X + F.

The construction covers a variety of known particular cases from both mathema-
tics and computer science. First-order functional programs over predefined (built-in
or “abstract”) data types form a particular class of functional EDPA - in this case
R is an F-indexed family of equations (1) where ¢,...,t, is just a list of distinct
variables. One can also recollect partial recursive definitions of arithmetic functions
(over the algebra of natural numbers), term-rewriting systems over built-in algebras
[1), or another EDPA of a more general form. E.g., the following two equational
definitions over the algebra N of natural numbers with usual operations are intended
to define (a) the greatest common divisor and (b) the integer division:

(a) ged(0,n) = n; gcd(m,n) = ged(n,m); gecd(men,n) = ged(m,n).
(b) div(m,m+n+1) = 0 ; div(m+n,n) = 1 + div(m,n).

Here gecd is presumably total, while div seems to be partial, but it is a matter of
semantics to say precisely which functions on N are defined by these equations.

In [2,3] we have been developing algebraic semantics® of EDPA in order to make
it possible to use equational logic with induction and corresponding term rewriting
techniques for reasoning about functions defined in this way. A natural approach
to this task is to represent the equational definition (1) as an enrichment (cousis-
tent, but not necessarily complete) of some algebraic specification SP of D. The
main point here is to ensure that any correct specification of D provides the same
semantics for a given set of equations R. To meet this natural requirement, we have
introduced in [3] a flexible kind of algebraic presentations which leads to a so-called
safe semantics of EDPA. In the next section we briefly reproduce this construction
and then turn to the subject of completeness of EDPA.

* Short version
** On Jeave from V.M.Glushkov Institute of Cybernetics, Kiev, Ukraine
3 vs. denotational one

- 313~

2 Algebraic Presentations and Safe Semantics of EDPA

In what follows, A denotes a (predefined) Zo-algebra over an S-sorted signature X,
Zo + F is a (signature) enrichment, and R is a set of Iy 4 F-rewrite rules (oriented
equations) of the form (1). Then the quadruple (Zy, A, F, R) (denoted also (F, R).4)
forms an equational definition (of F by R} over A.

To define semantics of EDPA means to set a correspondence between the quadru-
ples and basic interpretations of F - sets of partial functions

FA={f* Ay = A |f€Fu, weS s€S) 2

which is to be in a proper logical relation to to the set of equations R.

To do this, we use algebraic specifications in a slightly generalized many-sorted
language where the set X of variables used in axioms contsins a distinguished subset
X+ of sefe variables (then the variablesin X\ X * are called unsafe). We write E(X+)
and SP(X*) to reflect the fact that some of variables in the set of axioms E of the
specification SP are safe.

Definition 1. Let SP(X*) = (L, E(X*)) be an algebraic specification (called a
dasic one) of A in the sense that I is a finite enrichment (or extension) of X and
the Lo-reduct of the initial model I(SP) is isomorphic to A®. Then

~ the enrichment SP/(X+) = SP(X*)+ (F, R) is called an algebraic presentation
(with safe variables) of the EDPA (F, R)4;

- a £ + F-substitution § : X — T, p(X) is called safe if (X+) C Tp(Xt);

— a resiricted congreence =g.g on the ground term algebra T,y is the least one
generated in a standard way by the set of equations E(X*+)U R using only safe
substitutions;

~ the quotient Tspi(x+) = Tr4F/=g.x i8 8 (standerd) modelof SP'(X*);

— the presentation (enrichment) SP/(X*) is called

o safe-consistent if the Z-reduct of its standard model contains a subalgebra
isomorphic to I(SP) (ie., to A);
o sefe-complete if each congruence class {tjg.p of Tsp:(x+) contains some I-
term,;
o safe-persistent if it is both safe-consistent and safe-complete.
Proposition 2 (cf. [3]). If the presentation SP'(X*) is safe-consistent, then there

ezisis the basic interpretation FI(5P) of F on I(SP) (and so on A) defined as follows
for each fE€F:

PSP (e, ltmle) = [f(t1,., tm) JERN TS @)

for all tuples ty,...,t,, of ground I-terms of appropriate sorts provided the right-
Aand side is not empty, otherwise f/(SP) is undefined on the arguments. Moreover,
the enrickment of I(SP) with FI(SP) forms a partial subalgebra of Tspi(x+). O

¢ The presence of safe variables in E doesn’t change standard algebraic semantics (and
logic) of SP.

5 For the sake of simplicity, we shall identify the predefined algebra A with the initial
algebra I{SP) - forgetting about a possible difference between their signatures.

An important problem coming from this construction is to characterize syntac-
tically a class of basic specifications providing safe-consistent presentations (and so
algebraic semantics) for any functional EDPA ¢ The following sufficient condition is
a generalization of our previous results on this topic.”

Theorem 3. An algebraic presentation SP(X*) + (F, R) of the functional EDPA
(F,R)4 is sefe-consistent if each aziom | = r of SP(X™) satisfies the following
condition: any variable occerring non-linear in [or r is ssfe. (8]

It is worth noting that presentations of this kind (with sefe non-linearity) allow to
use safely inductive equational theorems® of SP for proving theorems about new
functions, because the basic interpretation (3) is consistent with all such equations
valid in the predefined algebra A.

Now we to turn to the safe-completeness property in order to investigate a class
of (safe-consistent) EDPA defining totel functions.

3 Safe Completeness and Persistency of EDPA

A complete EDPA is supposed to define a fotal basic interpretation F4 (i.e., con-
sisting of total functions f4). Regarding algebraic presentations with safe variables,
one can check that the basic interpretation defined by (3) is total iff SP/(X*) is
safe-persistent. Combining this with Theorem 3, we obtain the following corollary
for the class of presentations SP/(X*) with safe non-linearity of functional EDPA:
the basic interpretation F/(SP) is total iff SP/(X*) is safe-complete.

To go further, one can vary the set of safe variables in SP/(X*) to obtain a
spectrum of restricted congruences =g.g, models Tsp(x+), and basic interpretations
FIGSP) In the extreme case when X+ = @, the presentation SP’ becomes just
a many-sorted enrichment and Def. 1 yields the usual “unrestricted” or “unsafe”
notions of the least congruence =g, g, consistency, completeness, and persistency.
In general, =g.g is weaker than =g, r, so consistency implies safe-consistency and
safe-completeness implies completeness, but not vice versa. We have proved the
following facts about the relations between these safe and unsafe properties.

Theorem 4. If the presentation SP/(X*) is safe-persistent, then its unsafe version
SP’ (with X* = @) is persistent and defines the same (total) dasic interpretation
as e first one. In particular case of funclional EDPA, safe-completeness of the
presentations with safe non-linearily implies persistency of SP'. u]

However, the coverse is not true:
Proposition 5. There erisis a functional EDPA and its (safe-consistent) presents-

tion SP'(X*) with sefe non-linearity such that the latter is not safe-complete, but
becomes persistent when X+ = §. a]

¢ because any functional euational definition admits well-defined denotational senmantics.
T of. Theorems 10, 11 in [3].
® whose non-linear variables are also safe.

-315 -

This means that sometimes the safe non-linearity requirement is still too strong and
gives rise to a partial basic interpretation when it could be total - if all the variables
were made unsafe. However, the following proposition demonstrates the opposite
effect:

Proposition 6. There exists ¢ functional EDPA (F, R)4 with & safe-consistent and
not safe-complete presentation SP'(X*) such that ils unsefe version SP’ is complete
and inconsistent (so can’t provide any dasic interprefation F4). 0

To put another words, junk can be the reason of confusion - if one doesn’t protect
somehow basic axioms from it. The results of this paper show that the safe non-
linearity condition is sufficient to provide such a protection for functional EDPA,
but still is not always necessary. It is an interesting open problem to find a proper
weakening of the condition which would hold any SP/(X*) safe-persistent whenever
SP’ is persistent.

4 Related Work

A simple and elegant approach to partial algebras within the usual framework of
many-sorted (total) ones has been suggested in 4] in terms of based specifications.
Our Def. 1 and Prop. 2 would give essentially the same semantics if we restricted
ourselves with only unsafe presentations (with X+ = @). But this would give rise
to the problem with consistency pointed out in Prop. 6 (cf. also the “instructive
example” in [3]).

Algebraic specifications with buill-in algebras introduced in [1] are very similar to
EDPA, but their semantics was defined through “completely protected” presenta-
tions SP(X*) with X+ = X (cf. also stratified specifications in [5]). This is another
extreme case Which captures only predefined algebras with strict operations and
gives rise to certain problems with completeness (Prop.5). It would be interesting to
try to extend the term rewriting theory presented in [1] to the more general class of
presentations with safe non-linearity.

References

1. Avenhaus J., Becker K.: Conditional rewriting modulo a built-in algebra. Technical
report (SEKI Report SR-92-11), 1992, 23p.

2. Antimirov V., Degtyarev A. Consistency of equational enrichments. In A. Voronkov,
editor, Logic Programming and Automated Reasoning. International Conference LPAR
’92. LNCS 624, pp. 393-402, Springer-Verlag, 1992.

3. Antimirov V., Degtyarev A. Semantics and consistency of equational definitions. In
M. Rusinowitch, J.L.Rémy, eds. Conditional Term Rewriting Systems, Third Interna-
tional Workshop, CTRS-92, Proceedings. LNCS 658, pp. 67-81, Springer-Verlag, 1993.

4. Kreowski H.-J. Partial algebras flow from algebraic specifications. In JCALP’87, Proc.
Int. Coll. on Automata, Languages, and Programming, LNCS 267, pp. 521-530,
Springer-Verlag, 1987.

S. Smolka J., Nutt W., Goguen J., Meseguer J. Order-sorted equational computation. In
H.Alt-Kaci and M.Nivat, editors, Resolution of Equations in Algebraic Structures, pp.
297-367, Academic Press, New-York, 1989.

- 316~

c ofe @

An Algebraic Approach to Modeling in
Object-Oriented Software Engineering

George J. Loegel*
Chinya V. Ravishankar
Electrical Engineering and Computer Science Department
University of Michigan
Ann Arbor, Michigan USA

1 Universal Algebras, Model-
ing and Software Engineer-
ing

Our research uses universal algebm in a model-
based npproach to the software engineering process.
We organise the analysis, design and implementa-
tion of software systems by combining the paradigms
of mathematical modeling and universal algebras.
Models based on mathematical modeling principles
and represented using universal algebras provide a
practical alternative to both the common, ed &oc
approaches to the software engineering process and
other object-oriented methods. We have used univer-
sal algebra models to support the development phases
of the software engineering process. Algebraic models
unify many of the current object-oriented paradigms
as well as defining another paradigmi for object-
oriented software engineering. Our results support
using algebraic methods as a foundation for the soft-
ware engineering process.

In this paper, we first describe the similarities be-
tween mathematical modeling and the software engi-
neer’s task, and then describe how to use these simi-
larities to develop a software engineering process that
starts with algebraic models of the real-world system.
We define the software engineering process as the re-
finement of these models. We show how these univer-
sal algebra models are developed during the analysis
phase, refined during the design phase, and used dur-
ing the implementation phase of a software project.
Our models are also used during the maintenance

*Current Address: Superconducting Super Collider Labo-
ratory, 2530 Beckleymeade Avenue, Dallas, TX 73237 USA
email:loegel@secvx] suc.gov

phase to provide design and implementation infor-
mation. We show evidence that this paradigm for
development is good and useful. Our work develops a
general, algebraic model-based implementation tech-
nology. We believe these steps provide advantages for
software engineering and define a viable alternative to
present software engineering technology.

2 Mathematical Modeling and
the Software Development
Process

The fundamental principle underlying our work is the
idea of a model in both the epistemological sense of
Minsky [Min68) and Naur [Nau85a] and the system
modeling sense of Zeigler [Zei76] and Casti [Cas89).
The purpose of a model is to represent information
about a systemn. The model uses a formal notation
to represent the information internalized by a pro-
grammer about the system. In our case, we use uni-
versal algebras as the formal notation for our model.
We agree with Naur (Nau85a] that all systems are
understood by programmers in terms of some inter-
nalized model but represented in some externalized,
formal notation. As Naur points out in [Nau85b] and
[Nau89], good notation encourages the internalisation
process The ability of a programmer to answer new
questions about the model demonstrates that infor-
mation has been internalized. We recast the software
engineering problem as the development and trans-
mission of algebraic models with their accompanying
notation from one group to another.

An important advantage of employing algebraic
models is the ability to use the theory of modeling

-3F -

- S e g b e -

as in Zeigler {Zei76] to develop and define terminol-
ogy and use the theory of universal algebras as in
[Meh90} to describe the development process. We
use Zeigler’s approach for model development as the
starting point for our work. Zeiglar defines the model
building process as a series of five steps:

1. identify the components;

2. identify the interactions between the compo-
nents;

3. simplify the model;
4. build a computer simulation of the model; and
5. validate the model

Zeigler’s approach, by focusing on the objects visi-
ble to the modeler, embodies the fundamental ideas
of object-oriented software engineering. Further, the
use of universal algebras to represent the models pro-
vides us with a notation that is both concise and
flexible enough to describe various software systems.
Even computer languages like SIMULAG7 [Dah72],
developed for modeling, use the concepts of univer-
sal algebras to describe abatract data types as de-
fined by the ADJ Group [Gou78] and Zilles [Zil80).
The relationship between the theory of modeling and
software engineering allows us to unify many of the
model-based object-oriented software engineering ap-
proaches.

3 Software Engineering with
Universal Algebras

We now describe the steps in our algebraic software
engineering process and then apply these steps to de-
veloping a software systern. We relate the steps in
our process to the steps in the mathematical model-
ing process and show how we can use the interpre-
tation of universal models to describe the process at
each step.

Our initial or analysis model uses the customer’s
description of the components to produce a system
specification using a universal algebra. Tse’s disserta-
tion [Tse91)] shows how we can use a diagram to com-
municate with ‘e customer and represent all of the
information in a universal algebra. The design phase
refines the analysis model by introducing new objects
and using the resources available to determine the

concrete data structures and algorithms. This refine-
ment is a homomorphic transformation of the anal-
ysis model. The implementation phase converts the
data structures and algorithms in our design model
into statements in a programming language. Our en-
tire process can be characterized in terms of universal
algebra models and the universal algebra gives us a
uniform notation for each step in the process.

4 Case Studies

We have used this algebraic approach in several sys-
tems. The first, described in the 1984 POPL [Mil84],
used an algebraic description of attribute grammars
to generate Pcode from Pascal. We produced a
more compact and understandable description of the
Pascal-to-Pcode translation than the corresponding
compiler from ETH Zurich [Nor76]. Although the
underlying system, Paulson’s Compiler Generator
(PCG) [Pau82a] limited us to a fixed set of primi-
tives for building the algebra, we were able to de-
fine domains and operations on those domains. Also,
PCG was a declaralive system in that we only speci-
fied local rules and PCG determined the sequence for
applying those rules. This project showed a means of
prototyping a language using a direct implementation
of the algebraicaliy described semantics.

A second system, the Capture Storage Element
(CSE) of the Optical Digital Image Storage System
(ODISS), showed how we used an algebraic model to
develop a system originally specified using another
notation. ODISS also shows how the objects seen
in the system by the customer are beneficial during
development. That is, the software should reflect
the way in which the customer perceives the tasks.
ODISS is a distributed document storage system orig-
inally specified using a data flow diagrams. The CSE
provided intermediate storage for documents before
they were written to optical disk. ODISS was devel-
oped by Systems Development Corporation® to digi-
tize and store Civil War documents for the National
Archives and Records Administration (NARA) of the
United States.

The algebraic model developed for the CSE was
based on documents, unlike the other subsystems in
ODISS which were based on pages. The algebraic
description provided the basis for the user documen-
tation and the implementation (= 17,000 lines of C).
During the fifteen months of development and inte-

'Now Paramax, a subsidiary of Unisys

- 313~

gration, only one integration error occurred due to
misunderstanding the notation and only one serious
error was found after delivery. Further, being able to
examine the state of documents became a major tool
during the integration phase of the project. After de-
livery, one of the first requests from the user was the
ability to query document status, and this capability
was easily added.

Since C is not object-oriented, the algebraic de-
scription became a key reference document during
the development and permitted a ready assessment
of the state of the implementation. Our experience
with ODISS shows how an model-based algebraic de-
sign, derived from another notation, for defining the
interface and guiding the implementation of a soft-
ware system.

The third system we developed was a code opti-
mizer for a portable compiler, where we demonstrated
how modeling produced a working system faster than
other approaches. This work was done as part of
an acdvanced course in compiler construction. The
class divided into three teams. One team started
with Peter Bird's CoGG system [Bir82], another team
used a simple parser-based technique, and we used
modeling and simulation. Each team started with
the portable BCPL compiler {Ric80] which had re-
cently been ported to a Motorola 68000 system using
a simple version of the macro expansion technique
vescribed in Strachey’s GPM [Str65].

The BCPL complier produces an intermediate code
(calied OCODE) for a stack-based virtual machine.
The intermediate code changes the code generation
problem from one of mapping a high-level language
to machine code into mapping a low-level intermedi-
ate code to machine code. One technique for code
generation particularly suited for mapping QCODE
to a target machine is simulation. We used the sim-
ple code generator as the starting point for our code
generation model and used a universal algebra to de-
scribe the simulation process. We used different sig-
natures for the universal aigebra to define different
optimizations. The implementations differed in the
amount of state information carried in objects in the
system. Out of the three teams, each of which started
with & working compiler, we were the only ones to
have a working compiler at the end of the course. Our
exploitation of the original code generation model by
expanding its simple signature played an important
part in our success.

Our current work-in-progress is the Global Accel-
erator Control System (GACS) for the Superconduct-

ing Super Collider (SSC) Laboratory, a high-energy
physics project being built near Dallas, Texas. The
SSC will be the largest scientific instrument ever
built. The proposed design for the control system
has much in common with our algebraic models. The
GACS will be based on EPICS?, a control system de-
signed at Los Alamos National Laboratory. EPICS
has many of the features present in our other mod-
els. For example, the primitive objects in EPICS are
classified based on the type of signal processed (bi-
nary, analog) and the update frequency. This means
that physicists using EPICS do not need expertise in
writing device drivers or working with real-time ker-
nels. The physicists sees a model of the accelerator
described in terms familiar to the physicists. This is
analogous to ODISS where ac trchivist sees a system
that organises pages as documents which is the same
way the archivist organizes pages.

EPICS currently provides a control system for
small accelerators throughout the United States. Just
as in the BCPL optimizer project, the accelerator
model provided by EPICS must become more so-
phisticated to support the additional complexities of
the SSC. We have proposed the same kind of alge-
braic modeling approach used in the BCPL optimizer
project as a viable means to expand the capabilities
of EPICS to meet the requirements of the SSC.

These systems show four applications of algebraic
software engineering, all of which started with a
model of the application described using a univer-
sal algebra. Each of these systems used algebraic
descriptions to develop the design and implementa-
tion,and performed well with respect to various mea-
sures.

References

(Bir82] Bird, P. L. “An Implementation of a Code
Generator Specification Language for Table
Driven Code Generators”, in Proceedings SIG-
PLANS2 Symposium on Compiler Construc-
tion, ACM SIGPLAN Notices, v. 17, no. 6,
1982, pp. 44-50

{CasB9] Casti, J. Alternate Realities: Mathematical
Models of Nature and Man, Wiley-Interscience,
1989

[Dah72) Dahl, O.-]J. and Hoare, C. A. R. “Hierar-
chical Program Structures”, in Structured Pro-

2Experimental Physics and Industrial Control System

¢ e@es @

=

gramming, Dahl, O.-]., Dijkstra, E. W. and
Hoare, C. A. R., Academic Press, 1972

{Gou?8] Gougen, 1. A. Thatcher, J. W. and Wag-
ner, E. G. “An Initial Algebra Approach to the
Specification, Correctness, and Implementation
of Abstract Data Types” in Current Trends in
Programming Methodology IV: Data Structur-
ing, Yeh, R. (ed.), Prentice-Hall, pp. 80-144,
1978

{Meh90] Mehiborn, K. and Tsakaldis, A. “Data
Structures” in Handbook of Theoretical Com-
puter Science Volume A: Algorithms and Com-
plezity (J. van Leeuwen, Editor), Elsevier Sci-
ence Publishers B.V., pp. 300-341, 1990

[Mil84] Milos, D. Pleban, U. and Loegel, G. “Di-
rect Implementation of compiler specifications,
or: The Pascal P-compiler revisited”, Confer-
ence Record of the 11th Annual ACM SIG-
PLAN/SIGACT Symposium on Principles of
Programming Languages, 1984, pp. 196-207

[Min68] Minsky, M. “Matter, mind and models”,
in Semantic Information Processing, M.LT.
Press, 1968

[Nau85a] Naur, P. “Programming as Theory Build-
ing”, Microprocessing and Microprogramming,
v. 15, 1985, pp. 253-261 (also in [Nau92])

[Nau85b} Naur, P. “Intuition in Software Develop-
ment” in Formal Methods and Software Devel-
opment, v. 2, Ehrig, H. Floyd, C. Nivat, M and
Thatcher, J. (eds.), Lecture Notes in Computer
Science 186, pp. 60-79 (also in [Nau92])

[Nau89] Naur, P. “The Place of Strictly Defined No-
tation in HBuman Insight”, in Proceedings of the
Workshop on Programming Logic, Dybjer, P.
Hallnas, L. Nordstrém, B. Petersson, K. and
Smith, M. J. (eds.) Report 54, Programming
Methodology Group, University of Gotenborg,
May 1989, pp. 429-423

[Nau92] Naur, P. Computing: A Human Activity,
Addison-Wesley, 1992

[Nor76] Nori, K. V., Ammann, U., Jensen, K,
Nageli, H. H., Jacobi, C. The Pascal (P)-
Compiler : Implementation Notes (Revised
Edition), ETH Zurich, Institut fur Informatik,
1976

[Pau82a] Paulson, L. A Compiler Generator for Se-
maniic Grammars, Ph.D. dissertation. Stan-
ford University, 1982

[Ric80]) Richards, M. and Whitby-Strevens, C. BCPL
- The language and its compiler, Cambridge
University Press, 1980

[Str65] Strachey, C. “A general purpose macrogener-
ator”, The Computer Journal, V. 8 1965, pp.
225-241

[Tse91] Tse, T. H. A Unifysng Framework for Struc-
tured Analysis and Design Models: An Ap-
proach using Initial Algebra Semantics and
Category Theory, Cambridge University Press,
1991

[Van89] Van Horebeck, I. and Lewi, J. Algebraic
Specification in Software Engineering : An In-
troduction, Springer-Verlag, 1989

[Wei76] Weisenbaum, J. Computer Power and Hu.
man Reason: From Judgement to Calculation,
W. H. Freeman, 1976

(Zei76] Zeigler, B. P. Theory of Modelling and Simu-
lation, Wiley-Interscience, 1976

[2i90] Zeigler, B. P. Object-Oriented Simulation
with Hierarchsical, Modular Models; Intelligent
Agents and Endomorphic Systems, Academic
Press, 1990

[Zil80] Zilles, S. N. “An Introduction to Data Al-
gebras”, in Absiract Software Specifications,
Goos, G. and Hartmanis, J. (eds.), Lecture
Notes in Computer Science no. 86, Springer-
Verlag, 1980

c ofs @

An Automated Proof of the Correctness of a
Compiling Specification
E.A. Scott, Mathematics and Computational Sciences, University of Surrey, U K.

In this paper we discuss an automated proof of the correctness of a compiler. The source language
for the compiler is PL¢ 8], a subset of 0CCAN2 [5]. The target language, MLy, is based on the machine
language for the transputer [6]. Since the early work of Cohn [2] in the LCF system, compiler proofs
have attracted a lot of attention as test cases for automated theorem provers, see for example [11] and
[12]. Recently Broy [1] has used the Larch Theorem Prover to verify a code generator for a functional
language. Our work differs from earlier studies in that we start with a detailed hand proof of compiler

correctness and attempt to use a theorem prover to verify the proof.

The Languages PLy; And ML,
Intuitively, we expect to call a compiler correct if for all programs p, p and its compiled version have the
same meaning. However, to give any kind of formal proof we must first formally define the semantics of
the source and target languages. We use the approach that was developed in [9] and [7]. The basic idea
is to begin by defining an extension PL} of PLy. The syntax of PL} is given in standard BNF fashion.
A refinement relation C is defined on PL} which captures enough of the semantics of the language to
prove the results. Since PLy is a subset of PL] its semantics are inherited directly. The key aspect of
this approach to compiler correctness, which was developed in [4], is that the necessary properties of
the semantics of ML, are also defined in terms of PL}. There is given a function I from ML, to PL{,
and the meaning of process m in the language is defined to be the meaning of I(m) in PLY. This allows
a direct comparison of the meanings of elements of PLy and MLg.

The function] is the compaosition of two functions mtrans and Interp. The function mirans takes
ML, instructions and translates them into transputer code. The function Interp takes lists of transputer
code and returns PL{ processes.

(o4 mirans
PLo ML, ————, :::‘P““’

identity
Interp

PL?

The main objection to this approach states that the semantics of a machine language cannot be
defined in this way because there will be a prescribed semantics given naturally by the induced machine
behaviour. In [7] this issue is not addressed, it is assumed that the semantics are defined by PL{.
If we were to begin with prescribed semantics for MLg it would be necessary to prove the properties
which in this work are defined by the function I, i.e. we would have to prove the correctness of 1. This
should be possible provided that the prescribed semantics are sufficiently explicit, for the properties
assumed in this work are all explicitly stated in the LP specification of PLJ. An alternative approach
is to consider the interpretation I as providing a specification for the target language. Then we have
(partial) specifications for source languages, target languages and compilers together with a proof that
the compiling specification is correct for all languages satisfying the language specifications. As the aim
of our work is to study the automation of the proofs given in [7], we shall take this view.

-321-

An advantage of the refinement relation approach is that proofs carried out are valid for any
language which has the properties described by C. Thus if PLo, and hence PL}, are later extended to
richer languages the proofs discussed in this work will remain valid provided the properties required for
the proofs still hold. Thus it is important that all the properties used in the proofs are explicitly stated
so that it is clear what must be preserved in future extensions.

Compiler Correctness
For a given compiler C we cannot expect to be able to prove that p and I(C(p)) are equal. The compiled
version of a program will contain identifiers, corresponding to things such as the program pointer and
error flag, for which there will be no analogous identifiers in the original program. Thus we have to
consider a PL$ process Q, that renan:es the identifiers in I(C(p)) and ends the scope of those identifiers
introduced for machine purposes. It is reasonable to assert that SEQ(Q,, p) has the same meaning as
p. where SEQ is concatenation of PL} processes. Thus we formally define a compiler C to be correct
if, for all PLy processes p, we have that
SEQ(Qp,p) T SEQUI(C(p)) Q)
In [7] there are given sets of conditions Cp on ML; programs, and theorems of the form
If m satisfies C, then SEQ(Qp.p) C SEQ(I(m), Qp).
The theorems show that for a correct compiler C it is sufficient to take C(p) be any sequence of code
m which satisfies C,. Thus the set of all the C, can be thought of as a compiling specification and the
theorems prove that this specification is correct. These theorems are proved by hand in [7]. This work
is an attempt to give automated proofs. The theorem prover used is the Larch Prover (LP) [3].

Automating The Proofs
When automating an existing hand proof there are two aspects to be considered:
(1) Can the system in which the proof is to be carried out be specified in the logic of the theorem
prover?
(i1) Are the proof techniques of the theorem prover able to prove the results?

In this study (i) is equivalent to ‘can we specify PLY in the logic of LP?’ Answering this question
turned out to be a major project in its own right, see [10]. In this paper we concentrate on (ii), using
LP to prove the theorems within the specification of PL} which was developed in [10].

It is our experience that if a system can be specified in the logic of LP but an original hand proof
cannot be reproduced using LP then this is because the original proof contained mistakes. There are
two kinds of mistakes: those that can be corrected and those that cannot. A mistake is correctable if
there exits a correct proof the result and suncorrectable if the result can not be proved. In the case of
correctable mistakes we have been able to find a correct proof using the theorem prover. Uncorrectable
mistakes can arise in two ways: either a misunderstanding of an implicit assumption led to the mistaken
belief that a result should be true, or the original specification does not have the properties that were
intended. In the first case once the misunderstandings were identified we were able to produce revised,
provable versions of the results. In the second case the specification was modified to allow the proof of
the results. Such modifications usually involved ‘tightening up’ implicit assumptions.

We have automated proofs of the correctness theorems for SKIP, STOP, assignment and the oper-
ator SEQ, together with the correctness of expression compilation for identifiers, integers and sums of

-322-

expressions. We have not proved all the correctness theorems, they are not all proved in [7], however we
have proved a sufficiently wide range to show that all the theorems could be proved by LP if the effort

were considered to be worthwhile.

The Larch Theorem Prover

The Larch Prover is an equational reasoning theorem prover developed at MIT by S. Garland and J.
Guttag {3]. It is intended primarily as an interactive proof assistant or debugger, and it is in this
capacity that we have used it. LP is a theorem prover for a subset of multisorted first-order logic with
equality. Equations are asserted by the user then ordered by LP into a rewrite system which can be
used to prove other equations. The logic also contains deduction rules, statements of the form

When [(FORALL z,,...,z,)] (hypotheses) Yield (conclusions)

where z; are variables, and where (hypotheses) and (conclusions) are sequences of equations. A specifi-
cation in the LP logic can be axiomatized with induction rules. The statement

assert sort generated by operators
ensures that the only elements of sort are those that can be constructed using the specified operators.
Results are proved by term rewriting; the rules are used to simplify both sides of an equation until
a known equality is obtained. LP also supports proofs by induction, cases, and contradiction, and
equations can be proved by performing critical pair calculations. See [3] for a full description of LP.

Results

As a consequence of the attempt to automate the proofs we discovered both correctable and uncorrectable
mistakes. In the case of correctable mistakes the proofs were easily modified and we only mention these
in passing. The discovery of uncorrectable mistakes lead to the need to modify both the specification
of PL} and the formal definition of complier correctness to allow the results to be proved.

Modifications to the specification of PL} were necessary because there were not enough laws given
in the original specification to prove the theorems. In particular we have had to add extra properties
to the specification of identifiers and assignment, and we have had to give a more precise definition
of the function Interp. The addition of extra properties is not a serious problem because the original
specification was never intended to be complete. Rather it was just meant to be detailed enough to allow
the proofs of the theorems, see [7]. So we merely added the necessary extra laws to the specification.
The problems with the definition of Interp were correctable errors in the above sense. Essentially all
that was involved was the addition of some assignments which ensured that the proofs followed from
the specific laws stated and did not rely on any implicit assumptions.

A more serious problem was that the definition of the correctness of expression compilation given
in [7] could never be satisfied by any compiler. This is an example of a mistake where the incorrect-
ness of the result was unnoticed because some assumptions about the original specification were only
made implicitly. Once these assumptions were identified we were able to reformulate the definition of
correctness so that the result was true.

We also found that the theorems in [7] were not sufficient to prove that C(p) would be correct for
all p. The argument that the theorems prove the correctness is an inductive one: C(p) is proved to
be correct for all basic processes p, and then complex processes are dealt with under the assumption

¢« of)s @

that all subprocess are known to be correct. For example, C(SEQ(p, q)) is proved correct under the
assumption that C(p) and C(q) are known to be correct. However, when r = SEQ(p, ¢), we need
SEQ(Q-.p) C SEQ(I(m). Q")
to prove that C(r) = m is correct. Thus we needed to prove stronger theorems of the form:
If m satisfies C, then SEQ(Q,,p) C SEQ(I(m), Q.), for any process r that has p as a subprocess.

After correcting these and other minor errors, we were able to use LP to produce automated proofs
of the specification theorems.

The pragmatic conclusions that can be drawn from this work are that the (modified) compiler
specification is correct, and that there already exist automated theorem provers capable of showing this.
Furthermore, the compiling specification was developed independently of the automation, so this is a
good test of the capabilities of the theorem prover used. However, perhaps the most powerful conclusion
to be drawn from this study is the importance of automated theorem provers in the detection of mistakes
in implicit aspects of a hand proof. It is in the implicit assumptions of a hand proof that errors most
often occur and remain undetected (by human checkers). Automated proofs require implicit aspects to
be made explicit thus exposing such errors.

References
1. M.Broy, Ezperiences with machine supported software and system specifications and verification using
LP, the Larch proof assistant, preprint, October 1992.

2. A.Cohn, Machine assisted proofs of recursion implementation, Ph.D. Thesis, Dept. of Comp. Sci.,
University of Edinburgh, 1979.

3. S.J.Garland, J.V.Guttag, An overview of LP, the Larch Prover, In: N. Dershowitz, ed, Proc. 3rd
International Conf. Rewriting Techniques And Applications, Lecture Notes In Computing Science 355
137-151, Springer—Verlag, 1989.

4. C.A.R. Hoare, He Jifeng, Refinement algebra proves correctness of compilation, preprint, 1990.

5. INMOS Ltd, Occam 2 reference manual, Series In Computing Science, Prentice-Hall, 1988.

6. INMOS Ltd, Transputer instruction set: a compiler writers guide, Prentice-Hall, 1988.

7. He Jifeng, P. Pandya, J. Bowen, Compiling specification for ProCos level 0 language, Procos Technical
Report [OU HIF 4], 1990.

8. H.H. Lovengreen, K.M. Jensen, Definition of the ProCoS programming language level 0, Procos
Technical Report [ID/DTH HHI 2], 1989.

9. A.W. Roscoe, C.A.R. Hoare, The laws of occam programming, Theoretical Computer Science 60,
177-229, 1988.

10. E.A. Scott, K.J.Norrie, A study of PL} using the Larch Prover, to appear in: Proceedings of the
1st International Workshop on Larch, Workshops in Computer Science Series, Springer, 1993.

11. D. Weber-Wulff, Proof movie, Proving the Add-Assign Compiler with the Boyer-Moore Prover, to
appear in: Formal Aspects Of Computing.

12. W.D.Young, A mechanically verified code generator, Journal of Automated Reasoning, 5, 1989.

System Demonstrations

AMAST 93

Third International Conference
on
Algebraic Methodology and Software Technology

University of Twente
The Netherlands

Participants’ Proceedings

-325-

RELVIEW - A Computer System For
the Manipulation of Relations

Rudolf Berghammer and Gunther Schmidt
Fakultat fir Informatik, Universitit der Bundeswehr Miinchen
Werner-Heisenberg-Weg 39, D-85577 Neubiberg

People working with relations (e.g., in the theory of partial orderings, lattice theory, or graph
theory) very often a use greater or smaller example and manipulate it with pencil and paper
in order to prove or disprove some property. For supporting such a task by machine (and also
since manipulation by hand is no more feasible with bigger examples), the RELVIEW system
([Berghammer Schmidt 91]) has been constructed at the Bundeswehr-University at Munich. The
system is written in C and is currently available for Sun workstations with American National
Standard C and Sunview 4.0.

RELVIEW is a totally interactive and completely video-oriented computer system for the
manipulation of concrete relations which are considered as Boolean matrices. Its screen is
divided into two parts. The left part is the drawing-window; here matrices can be drawn and
manipulated using a mouse. The right part contains the command buttons and the scrollbars.
The scrollbars can be used for showing a part of a relation the size of which exceeds the maximal
window size. Also textual input (e.g., dimensions or names of relations) and output (e.g., results
of tests, error messages) is requested and shown, respectively, in this part.

One relation, the so-called working copy, is displayed on the screen for editing. A whole
collection of relations can be kept in the working memory during a working session. Such a
collection may also be saved on permanent memory, e.g., on a hard disk. If a stored relation
from the memory is displayed into the drawing-window for editing, a duplicate working copy is
created. Editing with the mouse does only affect the working copy and thus does not change
the original. To overwrite the original by the working copy, a specific RELVIEW command has
to be used.

Execution of system commands is possible by clicking on command buttons. If a command
requires arguments, then execution starts not before the last argument is given. Thus, if the
user inadvertently has chosen a wrong button, undo consists in choosing the correct button -
provided the argument input has not been finished. Besides some management commands, first,
the system provides commands implementing the basic operations on relations. Furthermore,
we have commands for residuals, quotients, and closures, for certain tests on relations, and
commands which implement the operations important in relation-algebraic domain description
(compare [Berghammer et al. 89, Zierer 91]). And, finally, RELVIEW allows the user to define
and apply its own functionals on relations, where in the case of a unary functional with identical
domain and range also repeated application is possible. A useful fact in applications is that
the latter command can be used to compute fixpoint of monotone functionals. For instance, if
the homogeneous relation R is contained in the working memory and one declares a RELVIEW
functional

initial ~(R*-%),

where % stands for the variable, » means multiplication, and — means negation, then a repeated
application of this functional to the empty vector yields the vector of the points from which
only paths of finite length emerge. (Compare the definition of the initial part of a graph in
[Schmidt Strohlein 89), Section 6.3.)

A detailed description of how to draw on the drawing-window, how to use the scrollbars,
and how to execute a command (inclusive parameter passing and result delivery) is given in
[Abold-Thalmann et al. 89] and [Berghammer 92]. The first report also presents some imple-
mentation details, e.g., the internal representation of relations, and outlines fast algorithms
for computing products, symmetric quotients, and residuals of relations. In the second report,

~323-

@ &

*

also an example for prototyping using RELVIEW is presented, viz. the computation of the cut
completion of a partially ordered set.

In the meantime, a lot of other studies have been performed with the RELVIEW system
including further graph- and order-theoretic questions resp. algorithms, DAG-languages, domain
constructions, relational specifications, and relational semantics. Of course, computation with
RELVIEW is limited in space and time. The limit, however, depends heavily on the type of
problem handled. As an example, we mention again the computation of the initial part. On our
installation (SUN SPARCstation 10), we have treated, e.g., graphs with up to 5000 points.

Let us close with a few remarks on further developments on RELVIEW. It turns out that
the system is a good tool for the interactive manipulation of relations. However, experience has
shown that for some tasks certain additional features will be very helpful. A main improvement
is possible in the layout. The present Boolean matrix visualization of relations is well-suited for
many tasks, in particular, if the intention is to get insight into an “abstract” relational problem.
However, if the system is used to solve concrete problems on graphs or related structures by
relational methods, then it seems better to visualize homogeneous relations as directed graphs.
Therefore, for the future we plan the incorporation of commands realizing a transition between
Boolean matrices and graphs. Especially, it should be possible to edit a relation as a graph. For
a visualization of results, furthermore, the user should be given the option to display a relation
on the screen as a directed graph and to emphasize a specific subset of the nodes described by
a vector.

Besides this main extension, we plan also some minor extensions of RELVIEW. E.g., we
are concerned with interfaces to other systems. The ability for producing scientific papers on
relations which mix text and drawings of Boolean matrices and graphs, respectively, can be
obtained by interfacing the RELVIEW system with some typesetting systems. Furthermore, an
interface to the relational formula manipulation system and proof checker RALF (also developed
at Bundeswehr-University Munich [Brethauer 91)) is planned. ,

References

[Abold-Thalmann et al. 89] Abold-Thalmann H., Berghammer R., Schmidt G.: Manipulation
of concrete relations: The RELVIEW-system. Report Nr. 8905, Fakultit fiir Informatik,
Universitit der Bundeswehr Miinchen (1989)

[Berghammer 92] Berghammer R.: Computing the cut completion of a partially ordered set —
An example for the use of the RELVIEW-system. Report Nr. 9205, Fakultit fir Informatik,
Universitit der Bundeswehr Miinchen (1992)

[Berghammer Schmidt 91] Berghammer, R., Schmidt, G.: The RELVIEW-system. In: Choffrut
C., Jantzen M. (eds.): Proc. STACS 91, LNCS 480, Springer, 535-536 (1991)

[Berghammer et al. 89) Berghammer R., Schmidt G., Zierer H.: Symmetric quotients and do-
main constructions. Inform. Proc. Letters 33, 3, 163-168 (1989/90)

[Brethauer 91] Brethauer R.: Ein Formelmanipulationssystem zur computergestiitzten Beweis-
fihrung in der Relationenalgebra. Diplomarbeit, Fakultit fir Informatik, Universitat der
Bundeswehr Miinchen (1991)

[Schmidt Strohlein 89] Schmidt G., Strohlein T.: Relationen und Graphen. Springer (1989);
English version: Relations and graphs. Discrete Mathematics for Computer Scientists,
EATCS Monographs on Comput. Sci., Springer (1993)

(Zierer 91] Zierer H.: Relation algebraic domain constructions. Theoret. Comput. Sdi. 87, 163
188 (1991)

-328~

S/

Towards an Integrated Environment for Concurrent programs
Development
(Proposal for a Demonstration)

Naima BROWN and Dominique MERY*
CRIN-CNRS & INRIA Lorraine, BP 239
54506 Vandceuvre-les-Nancy, France.
FAX: 33 83 41 30 79.
email: brownOloria.fr, meryQloria.fr

Formal methods comprise two aspects, namely formal specification and verified design. The
methodology underlying these methods is first to specify precisely the behaviour of a piece of
software, then to write this software and finally to prove whether or not that actual implemen-
tation meets its specification. This final aspect of formal methods is known as verified design'.
Unity [CM88, M92, Kna90], as the action systems approach [BS91], is a formal method that
attempts to decouple a program from its implementation. Therefore, Unity separates logical
behaviour from implementation, provides predicates for specifications, and proof rules to derive
specifications directly from the program text. This type of proof strategy is often clearer and
more succinct than arguing about a program’s operational behaviour.

Qur research fits into Unity's methodology. Its aim is to develop a proof environment suitable
for mechanical proof of concurrent programs [BM93]. This proof is based on Unity [CM88], and
may be used to specify and verify both safety and liveness properties. OQur verification method
is based on theorem proving, so that an axiomatization of the operational semantics is needed.
We use Dijkstra’s wp-calculus to formalise the Unity logic, so we can always derive a sound
relationship between the operational semantics of a given Unity specification and the axiomatic
one from which theorems in our logic will be derived. In a mechanically verified proof, all
proof steps are validated by a computer program called a theorem prover. Hence, whether a
mechanically verified proof is correct is really a question of whether the theorem prover is sound.
The theorem prover used in our research is B-Tool [CL91¢, CL91b, CL91a). Bprovides a platform
for solving the problem specification and correct construction of software systems. It is a flexible
inference engine which forms the basis of a computer-aided system for the formal construction
of provably correct software. Using a mechanized theorem prover to validate a proof presents
an additional burden for the user, since machine validated proofs are longer and more difficult
to produce. However, if one trusts the theorem prover, one may then focus attention on the
specification that was proved. This analysis may be facilitated by consulting the mechanized
proof script. ‘

The design of the programming environment coasists in several steps that are either auto-
matic, or semi-automatic (Figure 1). The first step consists in writing a MstaL specification of
the Unity language. This specification defines the concrete syntax, the abstract syntax and the
rules of trees formation that express the correspondence between abstract and concrete syntax.
The MstaL-PruL generates tables and programs used to generate a parser from this specification.
The generation of a parser is not completely automatic and the user has to supply some files
names along with those generated by Msrar-Prui. The semantics of the language is handled by
the TyroL environment. The second step writes the Pra specification of correctness the rules
of textual representation (or unparsing) for the Unity formalism from its abstract syntax. The
unparser for the Unity formalism is generated using the compile command of the Mstar-Prue

*on sabbatical leave at the department of Computing Science University of Stirling under the European
Science Exchange Programme Royal Society - CNRS
"Thig division is taken from Jones (Systematic Software Development Using VDM, 1990)

-39~

*JUSWUOIJAUZ JOOId

Figure 1: The Proof Environment

environment. The Unity environment comprises two kinds of editors: textual and structural.
The user can easily write a Unity program in a textual form. A parser checks it. If the program
is syntactically correct, the parser generates the internal representation. The user can run an
interface to the theorem prover that allows him to prove the correctness of the Unity program
using the set of its actions (statements). The interface ensures the interaction between the Unity
environment and the proof system implemented under B. The interface operates on the internal
representation.

The prover is designed according to the enrichment principle. A basic layer represents the
Dijkstra’s wp-calculus [Dij76]. This is successively enriched with other theories for réeasoning
on Unity programs. To wp-theory, we have supplied another layer for deriving safety properties
which we denote by unless-thy. Ensures-thy and leads-to-thy define the most interesting progress

properties (Figure 2).

.p\\““‘\m\\\\)

\ lesds-to_thy: B theory definisg

\\ the predicate
& lesds-to.

leads-to_thy

Ensures_thy: B Theory defiaing the
4 predicate ensures.

Onlese_thy: B Theory defining the
predicate unless.

X wp_tbeory: B Theory definiag
4 wp_calculus.

Figure 2: Structure of the Proof System

Keywords: Automated theorem proving, concurrency, program verification, formal spec-
ifications, Unity, B-Tool.

References

[BM93] N. Brown and D. Méry. A Proof Environment for Concurrent Programs . In
Proceedings FME93 Symposium. Springer Verlag, 1993. To appear.

{BS91] R.J.R.Back and K. Sere. Deriving an Occam Implementation of Action Systems.
In C. Morgan and J.C.P. Woodcock, editors, {rd Refinement Workshop. Springer-
Verlag, January 1991. BCS-FACS, Workshops in Computing.

e« oo @®

{CL91a] BP Innovation Centre and Edinburgh Portable Compilers Ltd. B-Tool Ver-
sionl.1, Reference Manual, 1991.

[CL91b] BP Innovation Centre and Edinburgh Portable Compilers Ltd. B-Tool Ver-
sionl.1, Tutorial, 1991.

[CL91c] BP Innovation Centre and Edinburgh Portable Compilers Ltd. B-Tool Ver-
sionl.1, User Manual, 1991.

{[CM88] K.M. Chandy and J. Misra. Parallel Program Design A Foundation. Addison-
Wesley Publishing Company, 1988. ISBN 0-201-05866-9.

[Dij76]) E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[Knag0] E. Knapp. An Exercise in the Formal Derivation of Parallel Programs: Maxi-
mum Flows in Graphs. Transactions On Programming Languages and Systems,
12(2):203-223, 1990.

[M$2] D. Méry. The \" System as a Development System for Concurrent Programs:
6\N. tes, 94(2):311 - 334, march 1992.

- 33—

@+ @

@

- 332~

The ASF+SDF Meta-environment

A. van Deursen, T.B. Dinesh, and E A. van der Meulen

CWI - P.O. Box 4079, 1009 AB Amsterdam, The Netherlands.
Email: {arie,dinesh,emma}Gcwi.nl

System Demonstration AMAST’93

Introduction In addition to facilitating formal reasoning about software, algebraic spec-
ifications provide means for rapid prototyping [1]. In particular, this can be applied to
specifications of various aspects of programming languages, thus obtaining tools that can
be part of a programming environment for the language specified. In Amsterdam, at CWI
and UvA, the GIPE! group has been studying these topics. Thus far, this has resulted in:

e An algebraic specification formalism, ASF+SDF, especially designed for defining the
syntax and semantics of programming languages [1, 4];

o The ASF+SDF tool generator, deriving parsers and term rewriting machines- from
algebraic specifications [5};

e The ASF+SDF Meta-environment, giving support when developing ASF+SDF spec-
ifications [5]

The ASF+SDF formalism and system are especially designed to support easy spec-
ification of all relevant properties of programming languages: syntax, static semantics,
dynamic semantics, transformations, and so on.

The ASF+SDF Formalism The ASF+SDF formalism is the result of the “marriage”
of ASF [1] with SDF [4]. ASF is an Algebraic Specification Formalism, supporting many-
sorted first-order signatures, (conditional) equations, and modularization. SDF is a Syntax
Definition Formalism, defining lexical, concrete, and abstract syntax all at once. Each SDF
rule corresponds both to a context-free grammar production, and a function declaration
in a signature.

The ASF+SDF System From an SDF definition, a parser can be derived, which in turn
can be used to derive a syntax-directed editor. The equations of an ASF+SDF module can
be executed as term rewriting systems. Both the parsers and the term rewriting systems
are generated incrementally, so small updates in the specifications lead to adaptations
rather than regenerations from scratch.

1 Partial support has been received from the European Communities under ESPRIT project 2177 {Gen-
eration of Interactive Programming Environments II - GIPE II) and from the Netherlands Organization
for Scientific Research - NWO, project Incremental Program Generaiors

c of)e @

The ASF+SDF system and formalism have been used succesfully for the derivation of
environments for (subsets of) A-calculus,Eiffel, Action Semantics, modelling of financial
products, Pascal, Lotos and so on.

Current Research Current research activities include incremental rewriting (small
changes in the initial term cause adaptations of the normal form rather than recomputa-
tion from scratch) {7); origin tracking (automatically maintaining relations between initial
term and normal form, with applications to the generation of error handlers and run-time
animators from specifications of static or dynamic semantics of programming languages)
[2]; generation of C-code from algebraic specifications; customizable user-interface for gen-
erated environments [6]; and experiments with the use of an abstract-interpretation style
for specifictaion and generation of type checkers [3].

More Information More information on the ASF+SDF system can be obtained by
anonymous ftp: get file abstracts.ps.Z from ftp.cwi.nl in directory pub/gipe.

References

[1] BERGSTRA, J., HEERING, J., AND KLINT, P., Eds. Algebraic Specification. ACM
Press Frontier Series. The ACM Press in co-operation with Addison-Wesley, 1989.

[2] DEURSEN, A. V., KLINT, P., AND TiP, F. Origin tracking. Tech. Rep. CS-R9230,
Centrum voor Wiskunde en Informatica (CWT), Amsterdam, 1992. To appear in the
Journal of Symbolic Computation, special issue on Automatic Programming, 1993.
Available by ftp from ftp.cwi.nl:/pub/gipe.

[3] DinesH, T. Type checking revisited: Modular error handling. Tech. Rep. CS-R93xx,
Centrum voor Wiskunde en Informatica (CWI), Amsterdam, 1993. To appear.

[4) HEERING, J., HENDRIKS, P., KLINT, P., AND REKERS, J. The syntax definition
formalism SDF - reference manual. SIGPLAN Notices 24, 11 (1989), 43-75.

[5] KLINT, P. A meta-environment for generating programming environmeants. ACM
Transactions on Software Engineering Methodology 2, 2 (1993). To appear. Prelimi-
nary version in J.A. Bergstra and L.M.G. Feijs, editors, Proceedings of the METEOR
workshop on Methods Based on Formal Specification, LNCS 490, 1991.

[6] KoorN, J. Connecting semantic tools to a syntax-directed user-interface. Report
P9222, Programming Research Group, University of Amsterdam, 1992.

[7) MEULEN, E. v. D. Deriving incremental implementations from algebraic specifica-
tions. Report CS-R9072, Centrum voor Wiskunde en Informatica (CWI), Amsterdam,
1990. Extended abstract in M. Nivat, C. Rattray, T. Rus and G. Scollo, editors, Alge-
braic Methodology and Software Technology (AMAST’91), Workshops in Computing,
Springer-Verlag, London (1992) 277-286.

- 334~

Executing Action Semantic Descriptions using ASF+SDF

Arie van Deursen
CWT - P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
Email: arie@cwi.nl

Peter D. Mosses
Computer Science Department, Aarkus University DK-8000 Aarkus C, Deamark
Email: pdmosses@daimi.aaun.dk

System Demonstration AMAST’ 93

Introduction Action Semantics is a framework for describing the semantics of programming
languages [Mo0s92). It is based on:

o Action Notation, used for expressing so-called actions, which represent the semantics of
programming constructs; and

o Unified Algebras, used for specifying the data processed by actions, as well as for defining
the abstract syntax and semantic functions for particular programming languages, and the
symbols used in Action Notation.

Currently, only little tool support for action semantics exists. Tool support, however, becomes
more and more important, now that an increasing number of researchers and practitioners
start using action semantics. Having simple tools that perform parsing, editing, checking or
interpretation of action semantic descriptions is essential when writing large specifications.

In order to obtain these tools, the ASF+SDF' [BHK89, Kli93] approach to tool generation
from algebraic specifications of programming languages came to mind. The syntax of a language
is described using the Syntax Definition Formalism SDF, which defines context-free syntax and
signature at the same time. Functions operating on terms over such a signature are defined using
(conditional) equations. Typical functions describe type checking, interpreting, compiling, etc.
of programs. These functions are executed by interpreting the algebraic specifications as term
rewriting systems. Moreover, from SDF definitions parsers can be generated, which in turn are
used for the generation of syntax-directed editors?.

The MetaNotation Unified Algebra definitions are written in the MetaNotation. A syntax
of the MetaNotation has been given in [Moe92, Appendix F], which we have transformed into
an SDF definition. Although the MetaNotation supports a great deal of syntactic freedom, a
context-free grammar could be given by choosing a liberal syntax for symbols and terms. This
automatically resulted in a generated syntax-directed editor for the MetaNotation.

1 ASF+SDF is an abbreviation for Algebraic Specification Formalism + Syntax Definition Formalism
3During AMAST"93, a separate demonstration of ASF+SDF is given as well [DDM).

Checking MetaNotation Modules In the MetaNotation, symbols can be introduced and
given functionalities, and then be used in formulae (equations). With the ASF+SDF parser
generator at hand, an easy way to check consistency between definition and use, is to derive
SDF rules from functionality declarations, and to use these rules to try to parse the formulae.
Thus we have written, in ASF+SDF, a translator taking a MetaNotation module as input and
producing SDF rules from each functionality declaration in that module.

Executing MetaNotation Modules Though the formulae allowed in the MetaNotation can
be very general, a substantial number of equations in it (in particular, the equations defining
semantic functions) can be interpreted as rewrite rules. Thus, we have written a translation
function in the ASF+SDF formalism, taking a MetaNotation module as input and producing
ASF equations.

Tool Summary In summary, we have given algebraic specifications of (1) the abstract syntax
of the MetaNotation, (2) a function translating MetaNotation function declarations to many-
sorted signatures, and (3) a function mapping MetaNotation equations to rewrite rules. Using
the ASF+SDF Meta-environment to execute these specifications has resuited in the following
tools:

¢ Parsing and syntax-directed editing of MetaNotation descriptions;
e Checks on use of sorts for functions introduced in MetaNotation descriptions;

o Translation of MetaNotation modules to corresponding ASF+SDF modules, allowing, e.g.,
execution of MetaNotation descriptions as term rewriting systems, as well as generation
of parsers from grammar definitions given in MetaNotation.

In the demonstration, we will illustrate the use of these tools by showing the action semantic
description of a small imperative language called Pico. We will see syntax-directed editing of
this definition, incremental generation of ASF+SDF modules from it, syntax-directed editing
of Pico programs based on the generated SDF definition, and translation of Pico programs to
ActionNotation by interpreting the semantic equations as rewrite rules.

References

[BHKS9] J.A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specification. ACM Press
Frontier Series. The ACM Press in co-operation with Addison-Wesley, 1989.

[DDM] A. van Deursen, T.B. Dinesh, and E.A. van der Meulen. The ASF+SDF meta-
environment. System Demonstration AMAST’93.

[K1i93] P.Klint. A meta-environment for generating programming environmeats. ACM Trans-
actions on Software Engineering Methodology, 2(2), 1993.

{Moe92] P.D. Mosses. Action Semantics, volume 26 of Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, 1992.

- 336~

c ofe @

The LOTOS Toolbox

Thony van der Vioedt
Information Technology Architecture B.V.
Institutenweg 1
7521 PH Enschede
The Netherlands
Phone: +31 53 S09682
Faz: +31 58 309669
email: vdvloedt@ita.nl

The LOTOS toolbox is a coherent set of tools in support of the ISO standard
(8807) Formal Description Technique LOTOS. This language is theoretically
based on process algebra. For data typing the Abstract Data Type langunage
ACT-ONE is used. LOTOS finds it main application in the area of distributed
systems and data communications.

One of the initial goals of the language was to be able to specify in a precise, yet
implementation free way, the OS] data communication standard services and
protocols. Currently, for many OSI standards related Working Papers exist in
which the protocol or service is formally specified in LOTOS.

LOTOS can also be utilized to aid in the design of distributed systems. The
advantages of usage of LOTOS in design include increased precision in the com-
munication between designers mutually, and between designers and future users
of the system, improved quality of the system through tool supported validation
and testing, and animation and prototyping allowing early assessment of the
system to be built.

Tool overview

The LOTOS toolbox contains a number of cooperating tools supporting the
specification and implementation of LOTOS specifications. The toolset includes
the following tools:

o the TOPO front-end syntax checking and static semantic checking,
This tools produces a LOTOS specification in Common Representation
(CR) format which is used as input by other tools,

¢ the structure editor CRIE
The structure editor guides the user in the correct use of LOTOS and
provides syntax and static semantic checking on the fly. It also produces
CR format specifications.

o the system validator SMILE,
provides symbolic execution of LOTOS. SMILE allows the user to dynam-
ically analyse the behaviour of his specification (CR format) by stepping
through allowable events,

e the graphical browser GLOW,

-33F-

c ofs @

transforms a textnal LOTOS specification (CR format) in a graphical
representation according to the graphical LOTOS standard,

o the TOPO back-end C-code generator,
"compiles” an implementation oriented LOTOS specification into a pro-
totype which can be used for early evaluation of the designed system

Available platforms:

Sun 3,Sun 4, SunOS 16Mb memory, 35 Mb disk
HP, HP Unix, 16Mb memory, 35Mb disk

The tools are commercially available.

c ofe @

