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Preface

The Ninth International Conference on the Mathematical Foundations of
Programming Semantics was held on the campus of Tulane University, New Orleans,
Louisiana from April 7 to 10, 1993. The major goal of this conference series is to
bring together computer scientists who work in programming semantics and
mathematicians who work in areas which might impact programming semantics so
that they may share ideas and discuss problems of mutual interest. By letting
mathematicians see applications of their work to programming semantics and by
letting computer scientists see their ideas and intuitions expressed in pure
mathematics, the organizers have sought to improve communication among the
researchers in these areas and to establish ties between related areas of research.
With these goals in mind, the invited speakers for the conference were Peter Aczel
(University of Manchester), Pierre-Louis Curien (LIENS, Paris), Albert Meyer
(MIT), Dale Miller (University of Pennsylvania), Andrew Pitts (University of
Cambridge), and Gordon Plotkin (University of Edinburgh).

In addition, there were contributed talks by twenty-eight researchers. Some of the
contributed talks were presented in two special sessions. The first of these special
sessions was devoted to Real-Time Concurrency and was organized by G.M. Reed
and A.W. Roscoe (Oxford). The second was on Full Abstraction and was organized
by Stephen Brookes (CMU). There was also an invited address by S. Tucker Taft
(Intermetrics) on the Ada-9X project.

The Conference Chairpersons were Stephen Brookes and Michael Mislove. The
Program Committee Chairpersons were Michael Main and Austin Melton. In
addition to the Conference and Program Committee Chairpersons, the Program
Committee consisted of Samson Abramsky, Bard Bloom, Matthew Hennessy, Gary
Leavens, John Mitchell, Philip Mulry, Frank Oles, Ana Pasztor, Amir Pnueli, G.M.
Reed, Edmund Robinson, A.W. Roscoe, Robert Tennent, Glynn Winskel, Steven
Vickers, and Guo-Qiang Zhang. The editors wish to express their thanks to the other
members of the Committee for their efforts in reviewing the papers submitted for
presentation at the conference.

The conference was supported by funds from the Office of Naval Research; we
wish to thank ONR for its continuing and generous support of the conference series.

Thanks are due to the many people who helped make the conference run so
smoothly. These include John Maraist, Magnus Rothe and Han Zhang. We all owe a
special thank you to Geralyn Caradona, Administrative Associate of the Mathematics
Department of Tulane University, who managed to oversee virtually all of the small
details of running the conference and allow the rest of us to concentrate on the
meeting itself. Also we owe thanks to Kelly McLean of the Computer Science
Department at Michigan Technological University for her efforts in collecting and
organizing the papers for this proceedings.

March 1994 Stephen Brookes
Michael Main
Austin Melton

Michael Mislove
David Schmidt



Table of Contents

Final Universes of Processes 1
Peter Aczel

On the Symmetry of Sequentiality 29
Pierre-Louis Curien

Computational Adequacy via "Mixed" Inductive Definitions 72
Andrew M. Pitts

A Structural Co-Induction Theorem 83
Jan Rutten

Three Metric Domains of Processes for Bisimulation 103
Franck van Breugel

Topological Models for Higher Order Control Flow 122
J. W. de Bakker and Franck van Breugel

An Investigation into Functions as Processes 143
Davide Sangiorgi

Time Abstracted Bisimulation: Implicit Specifications and Decidability 160
Kim G. Larsen and Wang Yi

Timewise Refinement for Communicating Processes 177
Steve Schneider

Axiomatising Real-Time Processes 215
Liang Chen

A Predicative Semantics for the Refinement of Real-Time Systems 230
David Scholefield, Hussein Zedan, and He Jifeng

Compositional Process Semantics of Petri Boxes 250
Eike Best and Hans-Gainther Linde-Gders

On the Specification of Elementary Reactive Behaviour 271
G. Michele Pinna and Axel Poigne

A Chemical Abstract Machine for Graph Reduction 293
Alan Jeffrey



VIII

Lifting Theorems for Kleisli Categories 304
Philip S. Mulry

Sequential Functions on Indexed Domains and Full Abstraction
for a Sub-Language of PCF 320
Stephen Brookes and Shai Geya

Another Approach to Sequentiality: Kleene's Unimonotone Functions 333
Antonio Bucciarelli

Mechanizing Logical Relations 359
Allen Stoughton

Some Quasi-Varieties of Iteration Theories 378
Stephen L. Bloom and Zoltdn lsik

Probabilistic Power Domains, Information Systems, and Locales 410
Reinhold Heckmann

Linear Domains and Linear Maps 438
Michael Huth

Universal Quasi-Prime Algebraic Domains 454
Guo-Qiang Zhang

Holomorphic Models of Exponential Types in Linear Logic 474
R.F. Blare, Prakash Panangaden, and RA.G. Seely

A Syntax for Linear Logic 513
Philip Wadler

A Complete Axiomatisation for Trace Congruence of Finite State Behaviors 530
Alexander Rabinovich

The Asymmetric Topology of Computer Science 544
Ralph D. Kopperman and R.C. Flagg

Ultimately Periodic Words of Rational w-Languages 554
Hugues Calbrix, Maurice Nivat, and Andreas Podelski

Category of A-Functors 567
Adrian Fiech

A Categorical Interpretation of Landin's Correspondence Principle 587
Anindya Banerjee and David A. Schmidt



P • - u ~ -m -.

Ix

An Operational Semantics for TOOPLE: A Statically-Typed
Object-Oriented Programming Language 603
Kim B. Bruce, Jonathan Crabtree, and Gerald Kanapathy

On the Transformation Between Direct and Continuation Semantics 627
Olivier Danvy and John Hatclif



t-

Final Universes of Processes*

Peter Aczel
Departments of Mathematics and Computer Science

Manchester University
Manchester M13 9PL, U.K.
email: petera cs. man. ac. uk

February 16, 1994

Abstract

We describe the final universe approach to the character-
isation of semantic universes and illustrate it by giving char-
acterisations of the universes of CCS and CSP processes.
Keywords: Final Universe. Process, Coalgebra. Labelled
Transition System, CCS, CSP.

1 Introduction

1.1 Process Algebra

In the last decade and a half there has been an explosion of work
aimed at the development of a mathematical theory of concurrent
processes. One major strand of this work may perhaps be put under
the general title of 'process agebra'. The process algebra approach
originated from the seminal ideas of Milner and Hoare. They have
presented developments of their ideas in the books [51 and [6]. Other
variants of process algebra have appeared in book form, ([41,[3]) and
there have been hundreds of research papers on the topic.

*This research was partially supported by an SERC Senior Research

Fellowship.
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The aim of this paper is to describe a fairly simple approach
to the characterisation of certain kinds of mathematical structure
that seem to be fundamental to process algebra. I will illustrate the

approach by applying it to the two versions of process algebra that
appear in [51 and [6]; i.e. CCS and CSP. There are many variants of
the ideas of CCS and CSP so it should be emphasised that it is the
presentations in those books that will be used, although I shall find
it convenient to use my own notation and definitions to some extent.
These two versions of process algebra have played a central role in
the subject and it seemed natural to apply the approach to these
in the first instance. But I expect that the approach will be just

as applicable to variations of them and to other versions of process
algebra.

For a given abstract informal notion of process, the idea is to
specify a universe of abstract processes, make that universe into a
mathematical structure and characterise that structure (up to iso-
morphism). Of course we would like to find simple mathematical
structures - well, as simple as allowed by the informal notions. And
we would like to find simple characterisations of those structures.

1.2 The Final Universe approach to Semantics

There is a standard picture associated with formal semantics:-

In the picture a syntactic universe is linked to a semantic universe
by an arrow representing meaning. The picture may be viewed set
theoretically, as two sets linked by a denotation function, or more
abstractly as simply an arrow in a category, the two universes being
represented as objects in the category. One natural development of

this picture is the familiar initial algebra, compositional approach to
syntax and semantics. In this approach the forms of expression of
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the syntax determine a category of algebras, with homomorphisms
between them, in which the syntactic universe forms an initial ob-
ject; i.e. an object I with the characterising property that for every
object A in the category there is a unique map I --+ A in the cat-
egory. Now in order to give a formal semantics to the syntax it
suffices to represent the semantics as a semantic universe that is an
algebra in the category. The meaning function between syntax and
semantics is then the uniquely determined homomorphism.

This initial algebra approach is syntax led; i.e. the category cho-
sen is dictated by the syntax. There is an alternative dual approach
to syntax and semantics which is semantics led. Here it is the kind
of semantics that is being considered that determines a category in
which the semantic universe is now represented as a final object;
i.e. an object F, with the characterising property that for every
object A of the category there is a unique map A --+ F. In order
to use this semantic universe for a particular syntax it is necessary
to represent the syntax as an object in the category and once this
has been done the meaning map between syntax and semantics is
determined as the unique map between them.

These two approaches use the dual category-theoretic notions of
initial object and final object in a category and, of course, charac-
terise objects up to isomorphism. It is worth noting that the char-
acterisations are up to a unique isomorphism so that they give the
mathematically most stringent kind of characterisation.

In discussing the final universe approach it will be useful to con-
sider the two component notions that make up the notion of a final
object. An object F in a category is weakly final/strongly exten-
sional if for every object A there is at least/most one map A -+ F.
Clearly an object is final if and only if it is both weakly final and
strongly extensional.

The paper [8] is a useful complement to the present paper. It
is concerned with essentially the same idea of final semantics as
presented here. A different, but possibly related topic is 'final algebra
semantics' in the theory of abstract data types. See, for example [7]
and the references cited there. Further investigation is needed to see
what the relationships are, if any.
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1.3 Outline

The rest of this paper is organised as follows. In the next section we
review the general mathematical apparatus for final coalgebras that
has been developed in [1] and [2]. There is one new result, Theorem
2.2 that plays a useful unifying role here. This Lheory is very general,
and in section 3 we specialise to the key application for process
algebra, labelled transition systems. This speci;flised theory is then
applied in sections 4 and 5 to CCS and CSP and the paper ends
with some final remarks in section 6. The central notion of section 4
is that of a T-LTS, defined in definition 4.6. A final T-LTS is used.
in section 4.4, as the semantic universe for C' that corresponds
to the weak bisimulation congruence operational semantics of CC'S.

In section 4.5 it is shown how the CC0 combinators can be defined
on any final r-LTS. This work shows that 00.5' can be given a non-
syntartic axiomatic treatment. In section 4.6 we show that there is
a denotational semantics for CC5, assigning a denotation in a final
,r-LTS to each CCS agent. This semantics corresponds exactly to
the operational weak bisimulation congruence semantics.

Several of the results in this paper are stated without proof. It
is hoped that it should be a fairly routine matter for the reader to
find the missing proofs for themselves.

2 Coalgebras and Classes

2.1 Coalgebras

We shall work with the following general notion that is dual to the
more familiar notion of an algebra relative to an endofunctor. Given
an endofunctor F : C --* C on a category C. a coalgebra (for F) is
a pair (A, 0) such that 0 : A --* FA is a map in the category C. The
coalgebras themselves form a category, where a map (A, 9) --* (A'. 0')
is a map f : A -- A' of C such that (F.f)O = O'f; i.e. the obvious
square commutes.

L . . . . amm N ~ •lMM
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2.2 Classes

Our examples of final universes of processes will be final objects in
certain full subcategories of coalgebras for functors on the category
of classes. So we shall want to work with classes. This could be
avoided by using a universe of sets or else by using an inaccessible
cardinal or making cardinality restrictions. But for us the most nat-
ural approach is to use classes. For the most part we use a standard
axiomatic set theory approach to classes. But we will need to make
use of the following principle:-

Quotient Existence Principle for Classes: If A is a class and
R C A x A is an equivalence relation on A then there is a function
[-JR defined on A such that for all x, y E A

[XIR = [YJR < xRy.

We call [-]R a quotient of A with respect to R and call [A]R =

{[x]R I x E A} a quotient class of A with respect to R. The
subscript R will usually be omitted when there is no confusion.

This principle is an easy consequence of a global form of the
axiom of choice, and this may be the simplest perspective for the
reader to take. In fact the principle has really little to do with the
axiom of choice and an alternative approach is to depart from the
traditional approach to classes taken in axiomatic set theory and re-
define the notion of class, so that according to the new notion a class
is a pair of old classes, the second being an equivalence relation on
the first. Then the Quotient Existence Principle becomes a triv;ality
as the quotient class is simply obtained by changing the equivalence
relation. Although not traditional, this approach would seem to be
rather natural from the category- theoretic perspective.

2.3 Standard Functors

Let Class be the category of classes. This is a superlarge category.
But we shall not worry here about making our use of this rigorous.
From previous experience (e.g. see [1]) there is no serious problem
with a careful handling of it. If A is a subclass of B then the identity
map from A to B will be called an inclusion map A L B. We
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say that a functor F: Class -- Class preserves inclusion maps
if, whenever A C B then FA C FB and Fi : FA - FB, where
i : A - B. We also say that F is set continuous if for all classes
A

FA = U{Fa I a E powA},

where powA is the class of all subsets of the class A. If F both
preserves inclusion maps and is set continuous then we say that F
is standard. Note that pow can be made into a .standard functor
by defining pow on a map f : A -+ B to be powf : powA -- powB,
where

powf(x) = {fY I Y E x}

for all x E powA. In fact most naturally-defined functors on the
category of classes turn out to be standard.

A key result about the category of coalgebras for a standard
functor is:

Theorem 2.1 (Final Coalgebra Theorem) Every standardfunc-
tor on the category of classes has a final coalgebra.

A weaker result was first proved in [1], where it was assumed that
the functor preserved weak pullbacks. A slightly stronger result was
proved in [21, where it was only assumed that the functor was set-
based, a better assumption from the category-theoretic purists point
of view, but not much weaker than the assumption that the functor
is standard.

An interesting new generalisation of the above theorem will be
useful in this paper. Let F be a standard functor and let C be a
full subcategory of the category of coalgebras for F. We say that C
is image-closed if whenever A --+ B is a. surjective coalgebra map,
with A in C, then B is also in C. We also say that C is union-
closed if whenever A is a coalgebra, such that every element of A is
in some subcoalgebra of A that is in C, then A is in C.

Theorem 2.2 Let F be a standard functor and let C be an image-
closed and union-closed, full subcategory of the category of coalgebras
for F. Then C has a final object.

Proof Sketch: By the final coalgebra theorem F has a final coal-
gebra A. Let A' be the union of the subcoalgebras of A that are in
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C. As C is union closed A' is in C. As A' is a subcoalgebra of the
strongly extensional A, A' is strongly extensional. To show that A' is
also a weakly final object of C let B be in C. Then there is a unique
coalgebra map B - A. This has a factorisation B -+ B' -+ A,
"where the map B -- B' is surjective. As C is image-closed B' is in
C. As B' is a subcoalgebra of A, it must be a subcoalgebra of A' so
that we have a map B -b B' -+ A'.

"Note: If Ci is a full subcategory of the category of coalgebras
for F, for i E I, then we may form their intersection fii Ci as a
full subcategory. If each Ci is image-closed (union-closed) then so
is their intersection. This observation can be useful in applying the
above theorem.

The following further weakening of the notion of a weakly final
coalgebra will be useful. It was used in [2] when proving the Final
Coalgebra Theorem. Given a standard functor on the category of
classes, a coalgebra (A, 9) is small if A is a set. A coalgebra (A, 0)
is weakly complete if, for every small coalgebra (A', 0') there is
at least one coalgebra map (A', 0') -- (A, 0). We have the following
results from [2]:-

Proposition 2.3 Every weakly completf strongly extensional coal-
gebra is final.

Proposition 2.4 For every coalgebra there is a surjective map from
it onto a strongly extensional coalgebra.

These two results together give a construction of a final object as a
strongly extensional quotient of any weakly complete coalgebra.

3 Labelled Transition Systems

We assume given a fixed set Act of atomic actions. We define a
labelled transition system (LTS) (relative to Act) to be a coal-
gebra for the standard functor pow(Act x -). We also define the
notion of LTS-map in the obvious way by specialising the terminol-
ogy for coalgebras to this particular functor. Let A = (A, 0) be an
LTS. The map 0 : A -- pow(Act x A) is called the transition map
of A. If a, b E A we write a - b in A, or just a -2 b when there is
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no ambiguity, when (a, b) E 0(a). So an LTS associates with each
a E Act the transition relation -+. Note that the transition map can
be recovered from these transition relations by defining

O(a) ={(a,b) I a -+b} b

for all a E A.
We have the following results about LTSs that carry over from

the results about coalgebras in general.

Theorem 3.1 There is a final LTS.

Theorem 3.2 Any image-closed and union-closed, full subcategory
of the category of LTSs has a final object.

In chapter 8 of [1] I showed that any final LTS gives a universe for
the SCCS processes, up to the strong bisimulation equivalence that
is the natural one to consider for SCCS. There I also showed how

the SCCS combinators could be defined as operations on any final
LTS. It is equally clear that the same final LTS is also - niverse
for the CCS processes, again up to strong bisimulation equivalence.

3.1 Deterministic Processes

We can now briefly consider the simplest and most familiar notion
of process. The deterministic processes form subuniverses of both
the universes of CCS processes and of CSP processes. The universe
of deterministic processes has a natural construction as an LTS of
trace sets. We see below that the universe also has a natural char-
acterisation as a final deterministic LTS.

Definition 3.3 An LTS A = (A, 0) is deterministic if, for all
a E A the set of pairs O(a) C Act x A is (the graph of) a function;
i.e. if a -2 a, and a -_ a2 then a, = a2.

If dC is the full subcategory of the category of LTSs consisting
of deterministic LTSs then it is not hard to see that dC is image-
closed and union-closed and hence has a final object. This category
dC may also be defined as the category of all the coalgebras for
the standard functor Map(Act, -) that associates with each class



X the class Map(Act, X) of all partial functions f : Act - X; i.e.
functions, each defined on some subset of Act, with values in X.

As usual we let Act* be the set of strings of elements of Act. A
set X C Act* is a trace-set if it is non-empty and is prefix closed;
i.e. if aa E X, where a E Act* and a E Act then a E X. Let TR
be the set of trace-sets. We can make this into a deterministic LTS
(TR, OTR), called the trace-set-LTS, by defining

OTR(X) = { (a, {a E Act* I aa E .}) I a E X n Act},

for each X E TR. Now given any LTS A = (A, O) we can define a
function tr : A --+ TR by:

tr(a) = {a E Act* a + a' for some a'},

for all a E A, where, if a = a, ... a,, E Act* then

a -- a a==• a I-.. a,-, _24 a' for some a, . , an-.i

Theorem 3.4 If A is a deterministic LTS then tr : A -- (TR, OTR)
is the unique LTS map into the trace-set LTS. Hence the trace-set
LTS is a final object of dC.

3.2 Bisimulation on an LTS

The notion of a bisimulation relation on an LTS is fundamental.
Here we give a definition that exploits the brevity of relation algebra.
If 7?1,1Z2 are relations then their relational composition R1 72 is
defined to be the relation R where

a7?b 4=- a-?1cl"2 b for some c.

Also the inverse 7-1 of a relation 1Z is given by

aR-?b 4==* bla.

Now if 1Z is a relation on A, where A = (A, 0) is an LTS, then
for each a E Act, we can form the relational compositions 1Z _ and

1 Z? and, for a E A, let

'O(a) = {(a,x) I a? -2 x}

and
OR (a) = {(a,x) a -A R-}.
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Definition 3.5 RZ is a simulation on A if RO(a) C OR(a) for all
a E A, and a bisimulation on A if both 7? and 1?-' are simulations
on A.

Proposition 3.6 Let - be an equivalence relation on A. Then -,

is a bisimulation on A iff

a, -• a2 ==> 0~(al) = 0~(a2).

If - is a bisimulation on A and [-] A -+ [A] is a quotient of A
with respect to -, then there is a unique map

[0]: [A] --* pow(Act x [A])

such that [-] is an LTS map [-]A -- [A], where [A] is the LTS
([A], [0]).

Theorem 3.7 For any LTS A there is a maximal bismulation, -A,

on A. Moreover - A is an equivalence relation on A and is the max-
imal relation ,. on A such that for all a,, a2 E A

a, - a2 4==: 9~(al) = 0~(a,,).

A quotient [-]A: -- [A] of an LTS A with respect to its maximal
bisimulation will be called a collapse of A.

Lemma 3.8 An LTS is strongly extensional iff its maximal bisim-
ulation is the equality relation on the LTS.

Theorem 3.9 Any collapse of an LTS is strongly extensional, so
that a collapse of any weakly complete LTS is a final LTS.

3.3 Coloured LTSs

There is a simple variation on the notion of an LTS that allows each
process to have a colour so as to get a more intensional notion of
process. This will be a useful tool in dealing with CSP. Suppose
that we are given a set Col of colours.

Definition 3.10 A coloured labelled transition system (CLTS),
(relative to Act and Col) is a coalgebra for the functor
pow(Act x -) x Col on the category of classes.
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If A = (A, 0) is a CLTS then we can define maps 0: A - pow(Act x
A) and col : A -- Col so that for a E A

O(a) = (O(a),col(a)).

So we get the underlying LTS (A, 0) of the CLTS and a map that
associates with each element a of A its colour col(a). We can carry
over notation and terminology from LTSs to CLTSs. In particular
we call a CLTS deterministic if its underlying LTS is determin-
istic.

4 CCS Processes

4.1 Review of CCS

Here we want to summarise the syntax and operational semantics of
CCS, as it is presented in the book [6].

4.1.1 Syntax of CCS

We assume given a set A of names, with an associated disjoint set
A of conames, one coname, a for each name a. Each name a forms
a complementary pair with its coname a. Names and conames in
general will be called labels and, for any label 1 we will write 1 for
its complement. So if 1 = i then 1 = a and in general, for any label
1, 1 = 1. Any set L of labels will also be called a sort, and for any
sort L we let L = {l J1E L} and L# = L U L.

We will need a special silent action r. The labels, with the silent
action form the set Act of atomic actions. So Act = A# U {r}.
We call f : Act -- Act a relabelling map if f(r) = T and, for each
label 1, f(1) is a label and f(1) = f(1).

We first define the class EK of agents (agent expressions) of
CCS, relative to a class K of agent constants. Given the class K,
with typical element c, we specify the class EK, with typical element
e, in the following BNF style:-

e := c I cv.e 1 ei I C e2 I e\L I e[f]
iE1
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Here I can be any set and ei is an agent for each i E . Also L
is a sort and f is a relabelling map. In order to give the CCS
operational semantics to this language of agents it is necessary to

have an assignment of a defining equation c = e, to each agent
constant c. This can be specified by a function K : K --- EK, which
associates with each constant c the agent e, = n(c) that appears on
the right hand side of the defining equation. We will call the pair
)C = (K, r) a system of constants for CCS.

As envisioned in the book [6], constants with their defining equa-
tions can be introduced as needed. We can capture this idea of an
open language with an expanding system of constants by using a
fixed system of constants that is universal in the following sense.

Definition 4.1 A system of constants KA = (K, K) for CCS is uni-
versal if, for every small LTS (I, e,) there is 7r : I -4 K such that
for all i E I

tc ri) a. 7•.rj.-

'- 2

The following fact is easy to prove.

Proposition 4.2 There is a universal system of constants for CCS.

4.1.2 Operational Semantics of CCS

The operational semantics of CCS is given by the following clauses of
an inductive definition that is used to generate the labelled transition
relation that has a transition relation 2, for each a E Act.
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e, a-. e • j-- ,•ae- (jE•I)
aW a

c- e iEei -+ e

ele el - e

e lje2  + eje 2  elIC2  el Ae#)

I, It

e -4 +e e -%+e'

e\L -% e'\L ( L#) e[f] -_ e'[f]

The above operational semantics can be reformulated as a recursive
definition of the function 0 : EK€ --4 pow(Act x EK), where

0(e) = {(a,e') I . -2 e'}

for all e E EK. It is the 'least' function satisfying the following
equations:-

o(c) =o(e),

0(a.e) = (al 01,

0(ZI ie) =UiEIO(ei),

O(eile 2 ) = Q(el,e 2,0(ed),O(C2))

O(e\L) = {(a, e'\L) I (a, e') E O(e) & a ý L#}

O(elf]) = {(f(a), e'[f]) I (a, e') E O(e)}

In the equation for O(ejje 2) we have used an operat*ion Q, where for
el ,e 2 E EK and sets X 1,X 2 C Act x EK the set Q(el, e 2,X 1,X 2) =

{(a, el1e2) I (a,e') E XI U {(faeile) I (a, e) E X 2 }

U {(r,,e'le') 1 (1,e') E X1 & ( Ee4) • 2\'2 for some label l}
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The sense of 'least' intended here is such that, for any other function
0' satisfying the equations, O(e) C O'(e) for all e E EK. Note that
these equations can also be viewed as a compositional definition by
structural recursion on the 'syntax' of EK, combined with a least
fixed point definition of a function on the set K of constants. More
specifically, if 0 : K -+ pow(Act x EK) then we can define, by
structural recursion a function 0,p using the equations above for 0,
except that the first equation should be replaced by

O(c) = e(c).

Now let 0 be 04,, where 0 is the 'least' function such that ij,(c) = 0.(c)
for all constants c E K.

Finally we can give the CCS construction of a final LTS.

Proposition 4.3 If )C = (K, K) is a universal system of constants
for CCS then £.1 = (EK,0) is a weakly complete LTS. so that any
collapse of it is a final LTS.

4.2 Weak Bisimulation

We have seen how the syntax and operational semantics of CCS
gives rise to an LTS &C = (EN<, 0), relative to a system of constants
K1. The maximal bisimulation relation on this LTS has been called
strong bisimulation equivalence. It is a congruence with respect
to the combinators of CCS, so that these combinators induce oper-
ations on any collapse of this LTS.

But this LTS does not incorporate any special treatment of the
distinguished action r to reflect the intended intuition that T should
not be externally observable. To capture this [6] introduces relations
= on EK and uses them, instead of the relations --', to get a max-
imal bisimulation relation ;, called weak bisimulation equiva-
lence. As this equivalence relation turns out not to be a congruence
it is used to define the main equivalence relation .-c, called weak
bisimulation congruence because it is indeed a congruence with
respect to all the CCS combinators. So it is possible to take any
quotient class [EK] of EK with respect to the congruence •c and
have the combinators induce operations on [EN 1. One of the main
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aims of this paper has been to characterise an underlying LTS for
this structure that determines these operations.

The definitions of z and -' will make sense for any LTS, A,
provided we assume a distinguished atomic action T E Act. As the
latter relation is no longer sensibly called a congruence in general, we
shall call it the T-bisimulation equivalence on A and write it -_.

We first let =:> be the reflexive transitive closure (_I,)* of -_T and then,
for each a E Act we can define 4- to be the relational composition
=*-%•'. Also, for each a E Act, the relation 4 is defined to be

the relation !, except that when a = r it is =, so that 4 is the
reflexive closure of =4.

Definition 4.4 For i = 0,1,2, u,( define the LTS A = (A, Oi),
where the map Oi : A -- pow(Act x A) is given by:

Oo(a) = (a, a') I ,a a

01(a) = a') E Oo(a) a' a'},

02(a)= Oo(a)U{(r,a)}.

Note that 00 and 02 are the transition maps whose transition relations
are • and 4 for a E Act.

Definition 4.5 Given an LTS A the relation ,.• of weak bisimu-
lation equivalence on A is the maximal bismulation on the LTS
A 2 and the relation T, of T-bisimulation equivalence on A is
given by

a, -r a 2  =#ý (00)'(ai) = (Oo)'(a2).

When A is EK, for some CCS system of constants C. then P:, is the
relation ; of weak bisimulation congruence.

In [6] weak bisimulation congruence is the fundamental equiva-
lence relation for CCS. So it will be our main concern. In propo-
sition 4.14 we will give a reformulation of the definition of .•, on
certain LTSs A, as a maximal bisimulation on an associated LTS
Ar.
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Definition 4.6 Let A be an LTS. It is a T-LTS if

1. If a - b or a +- --- b then a -24 b,

2. If a' -_ a then a --' a.

A is r-transitive if I holds and weakly r-reflexive if 2 holds. If
the following strengthening of 2 holds then A is r-reflexive.

Sa -+a for all a E A.

Note that, for any LTS A, A 0 , A1 and A 2 are all r-transitive and
that A1 and A 2 are T-LTSs, with A 2 also --reflexive. The following
result will be useful.

Lemma 4.7 Let 7r :B -* -A be an LTS map. Then. for i = 0, 1,2,

7r is also an LTS map 7r : -*i - Ai. provided that when i = 1 the
LTS B is weakly r-reflexive.

4.3 Three full subcategories of LTSs

It will be useful to focus on the full subcategories Co, C1 , C 2 of the
category of LTSs. An LTS is in Co if it is T-transitive. If it is also

r-reflexive (weakly r-reflexive) then it is in C2 (C1 ). Thus C1 is the
full subcategory of T-LTSs. These subcategories are easily observed
to be image-closed and union-closed, so that we can apply theorem
3.2 to get the following result.

Theorem 4.8 For i = 0, 1, 2 there is a final object of Ci.

Proposition 4.9 Let A be any LTS. For i = 0, 1,2.

A is in Ci -=: A4=A.

Theorem 4.10 If A is a weakly complete LTS then, for i = 0, 1,2,
Ai is a weakly complete object of Ci so that any collapse of Ai is a
final object of Ci.

irw m -• m m m m mmm mml Immm mmm m d m mmm"'~
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4.4 LTSs with a T-prefix operation

Definition 4.11 A r-prefix operation on an LTS A (A,0) is
an assignment of an element a' E A to each a E A, such that

0(a-) = 0(a) U {(r,a)}.

Note that FIC always has the r--prefix operation given by aT = r.a.
The following result is a familiar fact about weak bisimulation on 91C
and will be useful below.

Lemma 4.12 Let A = (A,0) be an LTS with a r-prefix operation.
Then a ,• a' for all a E A.

Proof: It suffices to show that = {(a, b) E A x A I a= b or a
b} is a weak bisimulation relation on A. For that it suffices to show
that

(a) a' 4 x implies a R lx,

(b) a 4 x implies a7 4 lRx.

For (a), let ar 4 x. Then either aT 4. x or else a = T and a =x.

In the first case a 4 x so that a 4 Z.rix. In the second case a = T

so that a 4 aT•Za = x. In either case a 4 R..r.
For (b), if a 4 x then a ' 4 x1Zx.

Definition 4.13 Let A = (A,0) be an LTS with a T-prefix oper-
ation. Then we define the LTS AT = (A,0,), where 0, is given
by

O,(a) = {(a,bV) I a = b}
for a E A.

Proposition 4.14 The maximal bisimulation on A,. is the same as
the r-bisimulation equivalence relation z,- on A.

Proof: We need to prove the following two results:

1. _, is a bisimulation on AT,
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2. If S is a bisimulation on A, then

aSa2 ==* a, "•r a2.

1. As ;, is symmetric it suffices to show that

a T=%> x implies that there is z such that a 4 z and zT x.

By the claim below it suffices to show that if a •= x then
a 4- x. So let a , b and b =4 x. Then O(a) = O(b) and,
as b 4- x z x so that (a,x) E 0'(b), we get that (ox) E O(a)
so that a =% x.

Claim: a, - a 2 -== a, ( 2.

To prove this claim first observe that. for all a. b E A,

a'r4b a 4b,

so that for any a E A

0'(a') = {(a,x) I aT =4• x} = {(a•,) I , 4- x} = 0(a).

Now, as ; is the maximal bisimulation on A 2 ,

,- b 0=•' (a) = 0'(b)0='o(a,') 0'o(b7-)
a r r Vr.

2. Let S be a bisimulation on A T . We will successively prove the
following assertions, ending with the desired one. Note that
S-1 is also a bisimulation on AT so that whatever we prove
about S will also be true of S- 1 .

(i) xSy 4 z implies x =4> S z :,

(ii) xSy 4 z implies x 4• S • z,

(iii) a, z S - a2 implies a, a (12,

(iv) aiSa 2 implies a, ; a2,

(v) xSy =4> z implies x 4% z,

(vi) aiSa 2 implies Mý(a 2 ) _ 0'(al),

(vii) a1 Sa 2 implies a, ;t a 2.



19

Proofs:

(i) Let xS ==ý z. As S is a bisimulation on AT, x r u and
u7 Sz 7 for some u. By the lemma u - uT and ZT • z so
that x 4-_- S ; z.

(ii) If xS 4 z then either xS 4 z, in which case we may

use (i) and the fact that 4- is a subrelation of •, or else

a = r and xSz, in which case x - x - xSz - z.

(iii) By (ii) for S and also for S 1 it easily follows that - S
is a weak bisimulation on A. But - is the maximal weak
bisimulation on A.

(iv) This is an immediate consequence of (iii) because S is a
subrelation of : S -.

(v) This follows from (i) and (iv).

(vi) If alSa2 and (a,x) E O(a2) then a1S x . so that, by
(v), (ar, X,) E 00'(a,).

(vii) By (vi) for both S and S- 1 if ajSa2 then 00(a2) = 00(al);
i.e. a, ;r a 2 .

Note that when A = SC we get a maximal bisimulation charac-
teri,-ition of weak bisimulation congruence and our interest is to give
a characterisation of a collapse of A,, when K is a universal system
of constants. We will give a cha,,acterisation as a final r-LTS.

Lemma 4.15 Let [-] : A, -* [A,] be a collaps( of A,, where A is
an LTS with a r-prefix operation. Let r : 13 -* A b( an LTS map,
where B is a r-LTS. Then 7r' :8 --. [Ar] is also an LTS map. where
for b E B,

7r'(b) = [w(b)].

Theorem 4.16 If A is a weakly complete LTS, with a T-prefix op-
eration, then any collapse of AT is a final r-LTS.
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S4.5 Defining the CCS combinators on a final T-
LTS

We assume given a final r-LTS, P = (P, 0). Our purpose is to show
how to define the combinators of CCS as operations on P.

Definition 4.17 We will call a subset Y of Act x P a r-subset if

1. (a,q) EY andq-+r =. (a,,r) EY,

2. (r,q) EYandq--+r = (a,r) EY,

3. (&,q) EY ===> q --- q.

Note that 0(p) is always a r-subset for any p E P.

Proposition 4.18 If Y is a r-subset then there is a unique p E P
such that 0(p) = Y.

Proof: Choose an object • ! P and let P* = P U {*}. Extend 0 to
0* : P* -+ pow(Act x P*) by letting 0*(*) = Y. Then 7* = (P*, 0*)
is easily seen to be a r-LTS. Let 7r : -* P be the unique LTS
map. This exists because P is a final T-LTS. Then the restriction
of 7r to P is still an LTS map P --+ P. But the identity map on P
is the unique LTS map P --+ P. So r(q) = q for all q E P.

Now let p =7r(*). As 7r is an LT,5 map

0(p) = 0(7(,))
=-- {(a,7r(q))I (a,,q) E 0(*)}
={(a, q) (oq)E Y}
=Y.

The uniqueness of this p follows from the uniqueness of 7r.
01

Definition 4.19 (Summation) Given a family of elements pi E
P, for i E I, where I is a set, each O(pi) is a r-subset and therefore
so is the union Ui~EO(pi). We define EiZlpI to be the unique p E P
such that

OW)= U 0.
iEI
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We define the r-prefix operation on P using the next lemma.

Lemma 4.20 If p E P then there is a unique p' E P such that

O(p') = 0(p) U {(Tp')}.

Proof: Let p E P. Define P* = (P*,0*) as in the proof of the
previous lemma, except that we now let 0*(*) = 0(p) U {(r, *)}.
Observe that 7* is a r-LTS, so that there is a unique LTS map
7r -- P. As before ir(q) = q for q E P. Now let p' = ir(*). Then

0(p') = {(a,7r(q)) I (aq) E 0*(*)}
- {(a,q) I (a,,q) E 0(p)} U {(r,p')}

0 0(p) U {(r,p')}.

As ir is the unique LTS map P --+ P it is easy to see that p' must
be the unique element of P such that

0(p') = O(p) U {(Tp')}.

0

Definition 4.21 Given p E P u'e let T.p be the unique p' given by
the lemma. If I is a label then, Y = {(l,q) I (T,q) E O(T.q)} is a
r-subset so that there is a unique r E P such that O(r) = Y. We let
l.p be this unique r. So we hav'e dc.fined cr.p for any ca E Act and
any p E P.

In order to define the CCS parallel composition on P we first need
to define a labelled transition relation on P x P. The relations --
on P x P are given by:-
If I is a label then let

(p, q) + (p', q') *==' either (p -4 p' &k q = q') or (p = p' &- q - q').

Also let

(p, q) _-, (p,, q') • either p -' p' & q q1

or (p __p' & q = q') or (p p' k q --A q').

Having defined the -_, relations on P x P we go on to define the
relation =:, as usual, to be the relational composition ()* _' (_,)*
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for each a E Act and so can make P x P into an LTS 79' = (P, 0')
where, for (p, q) E P x P,

O'(p, q) = {(a,(p', q')) I(p, q) =4' (p', q')}.

Lemma 4.22 P1 is a r-LTS.

Definition 4.23 (Composition) The composition operation,
P x P -+ P of CCS, is defined to be the unique LTS map P1 -- P.

Definition 4.24 (Restriction) If L is a sort let PL = (P, OL) be
the LTS where, for p E P,

OL(P) = {(a, q) E O(p) I a ý L#}.

Then 'PL is a r-LTS. We let -\L: P ---* P be the unique LTS map
PL --* P.

Definition 4.25 (Relabelling) If f is a relabelling map let 'P1 =

(P, Of) where, for p E P,

Of (p) = {(f(a),q) (aq) E 0(p)

Then Pf is a r-LTS. We let -[f] P -4 P be the unique LTS map
Pf -- P.

4.6 A Denotational Semantics for CCS

We have seen how to define operations on a final r-LTS 7P, corre-
sponding to the combinators of CCS. These can be used to give
a denotational semantics for Eic; i.e we can associate a denotation
[[e]] E P tc each e E EK. To take care of the possibly recursive
definitions of the constants we first define [-] E1 , --* P. given

K - P.

Definition 4.26 Given qS: K --+ P let EK -4 P be defined
by structural recursion on the way agents in EK are built up using
the equations:-
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IcL6 = 4€(c)

MiEI eilJ = EiEl IfeII

Ielle2t,, = IeiI4 I C1

Je\L], = Icd,\L

lelfi]o = [ejV(f

Now we can define Ijei = le],0 where 0o is the 'least' map " K -P P
such that 0(c) = jej, for all constants c E K. More precisely we
have the following result and definition.

Theorem 4.27 There is a unique map 6o : K --+ P such that

1. Oo(c) = IeJO0 for all constants c E K.

2. If 0(c) = [eJO for all constants c E K then

0(Oo(c)) C 0(0(c)) for all constants c E K.

Definition 4.28 Let 1-J be - wherc Oo is given by the theorem.

Finally we spell out how this denotational semantics for CCS is
related to the familiar operational semantics.

Theorem 4.29 1-1 is the (necessarily unique) LTS-map
(E107 ---+ P. More explicitly we get 1 and therefore 2 below.

1. For 'all e E E&

0(jj) = {(a, 0(I[.e']) I e e'},

2. For all el, e2 E EC

e e.Pz: e2] [=21-
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5 CSP Processes

5.1 The notion of a CSP-system

We will give a characterisation of the CSP notion of process in terms
of CSP-systems. In [5] event names play roughly the same role for
CSP that atomic actions play in CCS. We shall assume given a
fixed set AM of event names. Earlier we formulated a coloured
version of the notion of an LTS. We now specialise to the colours
needed for the version of CSP presented in [5]. A feature of CSP is
that processes can have varying alphabets, the alphabet of a process
being the set of the event names that ever make sense for the process.
This will be one aspect of CSP colouring. Another aspect will be
the association of a refusals set to each process. Given an alphabet
£ C- M, if L C £ then a set R C pow(C) is a refusals set for L.
relative to the alphabet L, if R is non-empty and

R = {X C £ I fin(L n X) C R},

where, for any set Y, fin(Y) is the set of all finite subsets of Y. We
define the set Col of colours for CSP to be the set of those triples
(4, L, R) such that L C £ C AV and R is a refusals set for L relative
to C. Now if A = (A, q) is a CLTS, with this sct of colours, the
map col : A --+ Col determines maps alph, dom : A -- pow. and
refus: A --A pow(pow(Af)) so that for a G A

col(a) = (alph (a). domn(a). refus(a)).

Here alph(a) is the alphabet of a. dom (a) is the domain of a and
ref us(a) is the refusals set of a.

Definition 5.1 A CSP-system is a deterministic CLTS. using
the sets M" of atomic actions and Col of colout's as aboicc. such that
ifa -0- a' then a E dom(a) and alph(a') = alph(a).

Let Ccsp be the full subcategory of the category of all CLTSs,
consisting of those that are CSP-systems. It is easy to check that

Proposition 5.2 Ccsp is image and union closed and hence there
is a final CSP-system.

iL. ... il _ . .
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5.2 The CSP system of non-chaotic CSP pro-
cesses

We give the mathematical definition of the notion of CSP process
that is in [5], using our notation and terminology. We have incor-
porated an extra condition that is needed as we do not make the
simplifying assumption, made in [5], that the alphabet of a process
must be finite.

Definition 5.3 A CSP process is a triple (C, F, D) where £ C J/,
F C £* x pow(C) and DC C* such that if T = {a E C* I (a, X) E
F for some X} then

1. T is a trace-set.

2. For each o E T the set {X C C I (a, X) E F1 is a refusals set
for {fa E £ I aa E T} relative to L.

3. For each a' E D

(0, X) E F for all X C £ and o'a E D for all a E C.

There are particular processes of CSP that play a singular role in
the theory. For each alphabet £ C A' there is the chaotic process

CHAOS_ = (£, £C x pow(£), C).

These are processes to be avoided and any kind of divergence gives
rise to one of them. For our purposes it, will be convenient to leave
them out of the universe that we shall characterise. They could easily
be kept in by switching to the category of pointed classes (or sets)
where we have been using the category of classes. There may even
be conceptual reasons for feeling that they may be best not included,
although the effect is to make some of the C,qP combinators partial
rather than total.

So we want to define a CSP system P'sp = (PjsP, Ocsp), where
PjsP is the set of non-chaotic CSP processes. For p = (L, F, D) let

Ocsp(p) = (Ocsp(p),(,{Ca E £ I(a, ) E F, {X I (<,X) E F})).

Here
Ocsp(p) = {(a',p/o) I o E (,)}
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where
b(p) = {a E £ I (a, C) E F and a V D}

and, for (a,0) E F, p/a = (CF,,F,D,) where

F. ={(,X)I(aca,X) E F} and D, = {j I aa E D}.

It should be clear that PJsp is a CSP system. In fact we have the
following result.

Theorem 5.4 Pjsp is a final CSP system.

This final universe characterisation of CSP is unlikely to be the best.
It focuses on the deterministic transition relations given by the after
operations -/a, where p/a is the process that behaves like p after
p has engaged in a, provided that p can engage in o and p does
not make any internal choices. A better comparison with CCS may
be obtained by looking at the non-deterministic transition relations
that combine the external after operation with internal choice. Also
for comparison with CCS let us restrict attention to the processes
having a fixed alphabet £. Let Act = £ U { r } where r is not an event
name. Let PcCsp be the set of all the processes of CSP with alphabet
£. In CSP the relation that expresses a purely internally determined
transition is given by the following definition. If pi = (L, Fi, Di), for
i = 1,2, then

P1R P2 F= FDF2 and D,_DD 2.

Note that this relation is a complete partial order with least element
CHAOSf_. When mixing internal with external transitions we get
the following transition map pon 'p If p = (£, F, D) E Pcsp
then

sP(P)= {(a,q) j ((a,0) E F and p/o E_ q) or (a = 7 and p _E q)}.

It is easy to check that PCCsp = (Psp, 4l'CsP) is an LTS in C2 which
can be embedded in any final object of C2 and hence of any final r-
LTS, the universe of CCS processes. We end by posing the problem:
Find an elegant final universe characterisation of this LTS.
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6 Conclusion 
2

In this paper we have considered several final universe characterisa-
tions of universes of processes. We expect that other universes can
be given similar treatments. We believe that the presentations of
universes in this style will help to unify the subject. The notion of a
final universe seems particularly appropriate for process algebra, as
it captures in one idea several aspects. One aspect is the frequent use
of a general scheme of mutual recursion for defining processes. This
is captured by the weak finality property of a final universe. Another
aspect of process algebra is its abstractness. Processes of process al-
gebra are identified when they have the same abstract behaviour.
This aspect is captured by the strong extensionality property of a
final universe. A third aspect, that is really a combination of the pre-
vious two, is that the combinators of process algebra can be uniquely
defined on the final universe and (to not need to be explicitly fea-
tured in the mathematical structure that has been characterised. In
this paper we have illustrated this point for CCS. The combinators
"of CSP could be given a similar treatment. But we have left this for
another occasion where we would hope to have a better treatment
of CSP than that presented here.

We end with a final remark about CCS. We have seen that the
CCS combinators can be defined on any final r-LTS P. In fact,
conversely, the transition relations associated with P can be defined
in terms of binary sums and the prefix operations as follows.

p- q .== p + o.q = p and r.q = q
An apparently simpler approach would be to modify this definition
by leaving out the second conjunct -r.q = q. But, as far as I can see,
the resulting LTS would not be so easy to characterise. What is still
left unanswered is the intuitive status of any notion of labelled tran-
sition on abstract processes. It would be pleasing if mathematically
simple definitions could be linked to intuitively satisfying explana-
tions of the computational ideas.
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Abstract
We offer a symmetric account of sequentiality, by means of

symmetric algorithms, which are pairs of sequential functions,
mapping input data to output data, and output exploration trees to input
exploration trees, respectively. We use the framework of sequential
data structures, a reformulation of a class of Kahn-Plotkin's concrete
data structures. In sequential data structures, data are constructed by
alternating questions and answers. Sequential data structures and
symmetric algorithms are the objects and morphisms of a symmetric
monoidal closed category, which is also cartesian, and is such that the
unit is terminal. Our category is a full subcategory of categories of
games considered by Lamarche, and by Abramsky-Jagadeesan,
respectively.

Following Lamarche, we construct a comonad corresponding to
contraction. We define this comonad via an adjunction between the
category of symmetric algorithms and the "old" cartesian closed
category of sequential algorithms, defined in the late seventies by the
author and Gerard Berry. Thus sequential algorithms model not only
typed X-calculus, but also intuitionistic affine logic, with connectives ®,
1, -o, x, and T.

This work, while finding its roots in the study of sequentiality,
presents striking correspondences with game-theoretic concepts,
introduced by Blass in the early seventies in a very different context.
The aim of the present work is to offer a systematic connection between
sequentiality and games. Also, the notion of symmetric algorithm
appears to be new.
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1. Introduction

In the last fifteen years, the semantic study of sequentiality has been associated with the
full abstraction problem for sequential programming languages [CuMon, BCL,
CuSur]. And indeed, a new result of Cartwright, Curien and Felleisen, reported in

[CF, CuObs, CCF] is that the sequential model of Berry and Curien [BeCu 1, CuMon]

is fully abstract for SPCF, an extension of PCF with control operators. (PCF is a typed
%-calculus with recursion and arithmetic operations [Gun]).) In this paper, we address

the relations between sequentiality and games. Game-theoretic interpretations of proofs
have become a recent subject of interest, after Blass recently brought old work of his to
the attention of the linear logic research community [Blassl, Blass2].

We proceed directly in the definition/theorem style, trying to explain concepts as

they are introduced, both from the point of view of games and of sequentiality. The
work presented here stands as a prefix to wider efforts aiming at developing

interpretations of all or part of linear logic based on the ideas of sequential algorithms
[Laml, Lam2], and games [A12, HO].

In Section 2, we present a notion of sequential data structure, which is very close to
the notions of game in the sense of Blass, or of Abramsky-Jagadeesan (which are

themselves variants of Conway's, or Joyal's games [Con, Joy]), and to the notion of
sequential domain found in [Laml]. The definition of sequential data structure is an
appealing reformulation of the notion of filiform concrete data structure [CuMon].
Concrete data structures, introduced by Kahn and Plotkin [KP], support a general
definition of sequential function, which itself has served as a starting point to the
author's semantic investigation of sequentiality. Filiform concrete data structures were
recognized by the author as sufficient for the purpose of modelling a language like
PCF. But we had not remarked the essential symmetry of this special class of concrete
data structures, which turns out to be instrumental for an investigation of linear
(actually, affine) sequentiality.

In Section 3, we define morphisms between sequential data structures, which we
call affine sequential algorithms, in two different ways. First, as "programs" written in
*he style of the language CDS of Berry-Curien [CuMon, BeCu2]. Second, as pairs of
two functions: an input-output behaviour, and a computation strategy, respectively.
Such pairs (function, computation strategy) are already central in [BeCul, CuMon], but
these works present us with no real symmetry between the two components of the
pairs, beyond the fact that a computation strategy is roughly "going from the output to
the input". In the framework of sequential data structures, and, more importantly, in the
special case of affine sequential algorithms, a computation strategy can be formulated
as a (partial) function from output exploration trees to input exploration trees, and the
pairs (function, computation strategy) can be axiomatized in such a way that the two

functions have symmetric properties. At the best of our knowledge, this axiomatization
appears for the first time here.
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In Section 4, we define the composition of two affine algorithms as the pair of the
compositions of their two components. There is also an operational definition of the
composition of sequential algorithms, which goes back to [BeCu2, CuMon (Definition
3.5.5)], and has been elegantly reformulated by Abramsky and Jagadeesan as "parallel
composition + hiding" [AJ2]. We show that we obtain a symmetric monoidal closed,
cartesian category, where the unit of the tensor is also terminal (this is the categorical
characterization of affinity).

In Section 5, we reintroduce Berry-Curien's sequential algorithms in the framework
of sequential data structures, and define a left adjoint ! to the inclusion functor from the
category of affine sequential algorithms to the category of sequential algorithms. By
categorical reasoning, we deduce that the category of sequential algorithms can be
recast as the CoKleisli category of the comonad ! induced by this adjunction. Altogether
we have a model of affine linear logic.

On the side, following a suggestion of Streicher, we formulate yet another
characterization of sequential algorithms, a3 sequential functions that propagate and
reflect errors. Error-sensitive functions, also called observably sequential functions,
are discussed at length in [CuObs, CCFI. The new feature here is error reflection. The
explicit presence of error data in the domains allows us to witness computation
strategies extensionally, and error reflection ensures that errors serve only that purpose.

In Section 6 we collect remarks and comparisons with related work. We briefly
discuss ways of interpreting other connectives of linear logic.

Many of the proofs are only sketched, but the parts left out are mostly routine.

Notation (Paths)
Given a partial order (X,_•), we use the notation xty to denote the fact that xEX and
yEY are compatible, that is, have an upper bound. We use "glb" and "lub" as
shorthands for "greatest lower bound" and "least upper bound".

Given an alphabet A, A* denotes the set of words, called here paths over A, that is
of strings of symbols taken from A. String concatenation, and concatenation of a string
and a letter of A, are denoted by simple juxtaposition: ww', aw, wa, etc... The empty
string is written e. A path different from e is called a non-e path. The paths are ordered
by the prefix ordering: w:w' if w' = ww" for some w". This preorder is such that
every two paths are either comparable or incompatible. A path is called non-repetitive
when each symbol of A ocr-,is at most once in it. Given a subset B of A, for any word
w E A*, we define wIB as follows:

FtB=e, wdtB=wtB ifdEA\B, wdlB=(wtB)d ifdEB

We shall need the following transformation "copycat" on words, which we define as
follows:

copycat(e) = e, copycat(wd) = copycat(w)dd

Unless explicitly needed, we shall treat disjoint unions as ordinary unions.
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2. Sequential data structures
The following definition appears also in [CCF].

Definition (Sequential data structure)

A sequential data structure structure (sds for short) M-(A,D,P) is given by:

- a set A of addresses a, a1.
- a set D of data d, d1 .... (A and D are assumed disjoint),
- a collection P of non-c alternating paths over AUD that start with an address.

Thus, the paths are of the form aldi...dn-landn or of the form aldi...dn..iJ.ndnan+1.
Moreover, it is assumed that P is closed under non-c prefixes. We shall loosely call the
elements of P paths of M, or even simply paths.

We call move any element of A or of D. We use m to denote a move, and we say
that m belongs to M, which will thus also serve sometimes to denote AUD. A path
ending with a datum is called a response, and a path ending with an address is called a
query. We use p (or s, or t), q, and r to range over paths, queries, and responses,
repectivcly. We denote by Q and R the sets of queries and responses, respectively.

A 5zrwegy (a tree in the terminology of [CCF], a state in the terminology of [KP,
CuMon]) of M1 is a subset x of R that is closed under response prefixes and binary non-
e glb'sl:

r1,r2Ex, rlAr2 •c * rjAr2Ex

A counterstrategy is a non-empty subset of Q that is closed under query prefixes and
under binary glb's. We use x, y, ... and a, 1I ... to range over strategies and counter-
strategies, respectively.

Both sets of strategies and of counter-strategies are ordered by inclusion. They are
denoted by D(M) and D--(M), respectively. Notice that D(M) has always a minimum
element (the empty strategy, written 0 or 1), while D"(M) has no minimum element in
general. D(M) is called the sds domain generated by M. It is a Scott domain [GuScol,
and more precisely a dl-domain [Be, BCL], whose compact elements are the finite
strategies. We denote by D*(M) the set of finite strategies of M. The dl-domains enjoy
the property that any compact element dominates only finitely many elements. This
property, called property I, is essential in the theory of stable functions [Be] (see
Section 3). D-L(M) enjoys the same properties (except for the existence of a minimum
element), and we denote by D-1 °(M) the set of finite counter-strategies.

Among the strategies are the sets of response prefixes of a response r. By abuse of
notation we call still r the resulting strategy. It is easy to see that those r's are exactly
the (non 1) prime- elements of D(M).

'Alternatively, as for example in [AJ2I, we could have included the empty path in P, and have
imposed strategies to be non-empty.2 We recall that an element p is prime when for any upper bounded XC.D(M), (psvX - 3xEEX p-x).
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We end this definition by fixing some terminology. Let x be a strategy.

- If qdEx for some d, we say that q isfilled in x, and we write qEF(x).
- If rEx and q=rc for some c, we say that q is enabled in x.
- If q is enabled but not filled in x, we say that q is accessible from x, and we write
qEA(x).

We define likewise rEF(c) and rEA(a) for a response r and a counterstrategy c. 0

A more geometric reading of this definition is that an sds is a labelled forest, where
the ancestor relation alternates addresses and data, and where the roots are labelled by
addresses.

We give some examples of sds's (see also [CCFI). A flat domain is described as
the set of strategies of an sds with a single address ? and a collection of paths of length
not greater than 2. For example, in Figure 1, we represent the flat domain of natural
numbers.

?

90• ?n ...

Figure 1: Flat domains of natural numbers

Figure 2 represents the cartesian product Bool 2 of the boolean domain with itself
("x" and "y" stand for the "coordinates" x and y, thinking of a function f(x,y) defined

on this domain).

x y

xT xF yT yF

Figure 2: The sds Bool2

The elements, say, (T,L) and (T,F), of Bool 2 are represented by the strategies {xT}
and {xT,yF}, respectively.

A more sophisticated example is provided by the partial terms over a signature S
such as {aO,fI,g 2 }, where the superscripts are the arities. The partial terms over this
signature are the strategies of the sds shown in Figure 3, whose addresses are the
occurrences, and whose data are the function symbols.
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af g9

1 1 2

af g a f g a f g17/ I 7\/
11 11 12 11 11 12 21 21 22..

Figure 3: The sds of partial terms

In Figure 4, we show the strategy representing g(a,f(a)):

E9

2

a f

21

a

Figure 4: A strategy
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and here is a counterstrategy:

f g

1 1

a f g

11 11

Figure 5: A counterstrategy

A counterstrategy can be read as an exploration tree, or a pattern. The root is
investigated first; if the function symbol found at the root is g, then its left son is
investigated next; otherwise, if the function symbol found at the root is f, then its son is
investigated next, and the investigation goes further if the symbol found at node 1 is
either f or g.

A more geometric reading of the definitions of sds, strategy and counterstrategy is
the following:

- an sds is a forest,

- a strategy is a sub-forest which is allowed to branch only at data,
- a counterstrategy a is a non-empty sub-tree (if it contained c and d as paths of
length 1, they should contain their glb, which is e, contradicting a__P)
which is allowed to branch only at addresses.

The pairs address / datum, query / response, and strategy / counterstrategy give to
sds's a large flavour of symmetry. These pairs are related to other important dualities in
programming: Lamarche [Lam2], and Abramsky and Jagadeesan [AJ I] have pointed
out the correspondence query - input (and response - output), and the correspondence
strategy - constructor (and counterstrategy - destructor), respectively.

It is thus tempting to conceive of the counter-strategies of an sds M as the strategies
of a dual structure whose addresses are the data of M and whose data are the addresses
of M. This can be done in a number of ways. For example, Abramsky and Jagadeesan
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relax the condition that paths start with an address: in their framework, given a structure
(A,D,P) (a game, in their terminology), (D,A,P) is another game, its dual, or its linear
negation 3. More restrictively, in his second work on sequentiality and games [Lam2l,
Lamarche considers structures of either of two polarities o and ., which stand for
"address" and "datum", or "input" and "output" (in the sense of Danos-R~gnier [Dan,
MR, Reg]). The sds's are exactly Lamarche's games of polarity .. The negation of an
sds has polarity o. Lamarche represents the polarity . explicitly, by adding a root of that
polarity to the forest representation of one of our sds's 4. A generic sds viewed in this
way is represented in Figure 6.

0......

Figure 6: A game of polarity.

A representation of the negation of this generic sds is obtained by changing each
label to its dual. Lamarche's notation presents some advantages. It enhances the
symmetry of strategies and of counter-strategies. Strategies are non-empty subtrees that
branch only at nodes labelled., and counter-strategies are non-empty subtrees that
branch only at nodes labelled o. Lamarche's convention can be fixed in notation by
reformulating the definition of sds as follows: replace D by the disjoint union of D and
of a distinguished element., and require now strategies to be non-empty sets of paths.
We shall call this a Lamarchian sds. We say that the data have polarity - and that the
addresses have polarity o.

We now offer a reading of sds's as games. An sds can be considered as a game
between two persons, the opponent and the player. The data are the player's moves,
and the addresses are the opponent's moves. A player's strategy consists in having
ready answers for (some of) the opponent's moves. Counter-strategies are just
opponent's strategies. The following proposition makes the analogy more suggestive.

Proposition (Play)
Let M be an sds, x be a strategy and a be a counterstrategy of M, one of which is
finite. We define xla as the set of paths p which are such that all the response prefixes
of p are in x and all the query prefixes of p are in a. Then xia is totally ordered, and
can be confused with its maximum element, which is uniquely characterized as follows:

3 However, in [A.J21, the counter-strategies of (A,DP) are not strategies of (D,A.P): in their
framework, all the paths of a strategy start with an opponent's move. See also section 6.
4This root just corresponds to the empty path, missing in P (cf. footnote 1).
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- xlcx is the unique element of xrlA(a) if xkx is a response,

- xla is the unique element of canA(x) if xla is a query.

If xla is a response, we say that x wins against a, and we denote this predicate x<la.
If xla is a query, we say that a wins against x, and we write xt>a, thus > is the j
negation of <. To stress the winner, we often write xFacx for xlcx when a wins, and
xlkx for xlac when x wins.

Proof: Suppose that PiP2 E xla. We show that P, and P2 are comparable, by
contradiction. Thus suppose P, Ap2 < P, and pi AP2 < P2. Let q, be the largest query
prefix of PI, let r, be the largest prefix of P, which is a response or e, and let q2 and r2
be defined similarly. We show:

pIAP2 = qIAq 2 = rlAP)

One direction follows by the monotonicity of A: qlAq2 < PIAP 2. For the other
direction, we remark that by the maximality of q 1, P1 AP2 < P 1 implies p1 Ap,2 5q1 ; and,
similarly, we deduce P1 AP2, < q2, which completes the proof of pIAP2 = qlAq2. The
equality P1 AP2 = rIAr 2 is proved similarly. But by definition of a strategy and of a
counterstrategy, q1Aq2 is a query, and rIAr 2 is either a response or z. Thus the
equalities just proven imply that P1 AP2 is of both odd and even length: contradiction.
Thus xlcx is totally ordered. It has a maximum element, since the finiteness of x or ca
implies the finiteness of xkz.

To prove the rest of the statement, we first observe that xflA(cE) C_ xla and aflIA(x)
C xlcz, by definition of xkx. We next show that xnA(a) and afnA(x) have at most one
element. If P1,P2 E xnA(cz), then by the first part of the statement P, and P2 are
comparable, say p1lP2. But if p2EA(a) and Pl<P2, then plEF(a), contradicting the
assumption pIA(ca). Hence pl=P2. The proof is similar for axnA(x). Finally, if xlaC
viewed as a path is a response, then xla E x, xlcc is enabled in CE, and the maximality of

xkx implies that xlcc is not filled in ax. Hence xlx E- xnA(cx), which by what precedes
can be rephrased as xnA(a) = {xlxc}. El

The path xlcx formalizes the interplay between the player with strategy x and the
opponent with strategy ax. If xkx is a response, then the player wins since he made the
last move, and if xlcc is a query, then the opponent wins. Here is a game-theoretic
reading of xlcx. At the beginning the opponent makes a move a: its strategy determines
that move uniquely. Then either the player is unable to move (x contains no path of the
form ad), or his strategy determines a unique move. The play goes on until one of x or
ax does not have the provision to answer its opponent's move. As an example, if x and
ax are the strategy and counterstrategy of the sds of partial terms which we have drawn
in Figure 4 and Figure 5, then xlcx is the path shown in Figure 7, and the player wins.
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g

a
Figure 7: A play

The result xkx of the interplay between x and cL is reminiscent of the models of
linear logic based on linear algebra proposed by Lafont and Streicher. In this rough
comparison, x is a "vector", and a is a "form". But the "evaluation" xla does not take
its value in the reference "field", but rather either in the vector space or in its dual. Thus
in a sense, the games considered here or in the works of Blass, Abramsky-Jagadeesan
and Lamarche are richer than the models considered in [LS].

Precise connections between sequential data structures and Kahn-Plotkin's concrete
data structures are given in [CCF, appendix]. We only briefly recall the definition of
concrete data structure. A concrete data structure is specified by four components:

- a set C of cells,
- a set V of values,
- a subset E C_ CxV of events, and
- a relation I- of enabling between finite collections of events and cells.

The states of a concrete data structure are the subsets x of E that are consistent and
safe, that is, such that (c,vl),(c,v2 ) E x implies vl=v,, and such that if (c,v) E x, then
x contains an enabling of c. Sequential data structures correspond to thefiliform
concrete data structures, in which each enabling relates at most one event with a cell. In
a filiform cds, there is a hidden symmetry between an event and an enabling: (c,v)
represents "v after c", and (cl,vl) [- c represents "c after v 1". Strategies correspond to
states: safety is built-in an sds, and the consistency is the condition of closure under
binary gib's.

In [AJ2, HO], and also in [Lam2J, attention is restricted to winning strategies: in a
winning strategy the player has ready answers against any strategy of the opponent.
Winning strategies provide a notion of totality that is important to get completeness
results. We briefly come back to winning strategies in the last section.
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We end the section with a few elementary lemmas.

Lemma (x<la)
Let M be an sds, x be a strategy and a be a counterstrategy of M. The following
properties hold: j

(1) lfx<ka, then (x-lk)oa.

(2) If x<kz and xry, then y<-a and x~ka - y~lx.

(3) If x>'a and y~x, then yt>a.

Similar implications hold with the assumptions xc>a, xt>a and a<5, x~a and CaZPf,

respectively.

Proof: The properties (1) and (2) follow obviously from the characterization of xOct as

the unique element of xrlA(a). Property (3) is a consequence of (2) by contraposition.

0

Lemma (4-F)

Let M be an sds, x be a strategy and q be a query of M. The following implications

hold:

(1) qEF(x) = x.<q 5

(2) qCA(x) xt>q

(3) qEF(x), y:x and y-4q =:- qEF(y)

Similar implications hold with a counterstrategy and a response of M.

Proof: If qEF(x), then qdEx for some d, hence qd E xnA(q), which means x<2q. If

qCA(x), then q E qflA(x), which means xt>q. If qCEF(x), y_•x and ycq, let q1d, be the

unique element of ynA(q). In particular, qjsq. Suppose qj<q: then qjdj Aqd = q1 . But

since qjdt, qd CE x, their glb cannot be a query, by definition of a strategy:

contradiction. 0

Lemma (AA)
Let M - (A,D,P) be an sds, x be a strategy and let qEA(x). Then, for any rGx, q~r is E

or is a response, and thus, for any qdEP, xU{qd} is a strategy. Similarly, if Ca is a

counterstrategy and rEA(a), then, for any qax, r~q is a query.

Proof: Let qmrla. We claim:

q~r < r1

Suppose q~r A r 1. Then q~r = q since q~r < q-rla. Hence q<r, contradicting qEA(x):

this proves the claim, which in turn implies qAr = rlAr. The conclusion follows, since

by definition of a strategy rt Ar is e or is a response. 0

5 1he converse is not true: we may have x<lq=qIdI and qld2<q, with d i~d2.
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3. Affine sequential algorithns
We now turn to morphisms between sequential data structures. We first recall Kahn-
Plotkin's definition of a sequential function, which we formulate here in the framework
of sequential data structures.

Definition (Sequential function)

Let M and M' be two sds's. A function f:D(M)-.D(M') is called sequential if it is
continuous and if for any pair (x,a') E D°(M)xDW(M') such that f(x)t>c', but f(z)<Za'
for some z-.x, there exists caED±°(M), called sequentiality index of f at (x,a'), such
that xt>a and for any y>.x, f(y)Ict' implies ycla. It is an easy exercise in the
framework of sds's to show that we obtain an equivalent definition replacing a' by
q'-Q', a by qEQ, f(x)t>a' by q'EA(f(x)), and xt>a by qEA(x). It is in this form that
the definition was first given. 0

The definition is illustrated in Figure 8. A sequentiality index represents an
unavoidable computation.

f(y)

q

I Ix
y1  -

I I- - - X- --

Figure 8: Sequential function

In [BeCul, CuMon] we have shown that sequential functions do not form a
cartesian closed category. The basic idea behind Berry-Curien's sequential algorithms
is to assign to each pair (x,q') such as in Figure 8 a choice of a sequentiality index, as

suggested by the upper fat dashed arrow of Figure 8. We can best capture this idea with
examples, taken from [BeCu2, CuMon]. Consider the following function left-or,
which has a unique algorithm (also called left_or) associated with it. Its input domain is
the sds Bool 2 of Figure 2, and we take the following representation for its output
domain:

Bool - Q ?),fT,F},T?,7',?F)).

The urloue sequentiality index at (0,?) is x; at {xT}, left or outputs T, that is, 7.71 E
left_or({xT)); at {xF}, the unique sequentiality index of left-or is y; finally, IT E
left_or({xF,yT}) and ?F E left-or({xF,yF}). This can be summarized as a "program":
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left_or =
request ? valof x

is T output T
if F valof y A

is T output T
is F output F

In contrast, there are two different algorithms computing the strict version strict-or of
the disjunction function (strictor has two sequentiality indices at (0,?)):

left_strict_or = rightstrict_or =
request ? valof x request? valof y

isT valof y isT valof x

is T output T is T output T
is F output T is F output T

isF valof y isF valof x
is T output T is T output T
is F output F is F output F

These examples should serve as a guide to the following definition.

Definition (Affine exponent sds)

Let M w (A,D,P) and M' - (A',D',P') be two sds's. We define the sds M-oM' -

(A",D",P") as follows:

- A" is the disjoint union of A' and D,
- D" is the disjoint union of D' and A,

- P" consists of the alternating paths s starting with an a' EA' which are such that:

-stM'EP' and (sIM=e or stMEP),
- P" contains no path of the form saa'.

We call affine sequential algorithms (or affine algorithms) from M to M' the strategies
of M-oM'. The identity sequential algorithm idM E D(M-oM) is defined as follows
(recall the function copycat from Section 1):

- idM = {copycat(r)l r is a response of M}. 0

Remark: The. constraints of the definition also impose that P" contains no path of the
form sd'd. Suppose it does. Then, since sd'dtM E P, s contains a prefix sla such that
sd'dtM = (slatM)d. Let m be the move following s a in sd': m cannot belong to D
since sd'dtM = (satM)d, and cannot belong to A' by the definition of M--M'.

A generic strategy of M-oM' is drawn in Figure 9, with the tags "request" and "is"
for the disjoint components of A", and the tags "output" and "valof" for the disjoint
components of D".
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request a'

valof a

isd is di ... isdni I I
valof b ...

ise

output d'

request a' 1  ... request a'mI I

Figure 9: Generic affine algorithm

The constraint "no saa' "can be more informally formulated as follows: a "valof a"
which is not an end point of the algorithm must be followed by an "is d". This
constraint is the essence of sequential computation. Thinking of "valof a" as a call to a
subroutine, the principal routine cannot proceed further until it receives the result "is d"
from the subroutine.

We have framed a portion of the algorithm that is only concerned with the
exploration of the input. If the tags are removed, this portion reads as a counterstrategy
of M, and the rest of the drawing constitutes a strategy of M':

a 
a'

I I I
e ...

Thus an affine sequential algorithm appears as a "combination" of output strategies
and of input exploration trees.
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Remark: Our convention that unions are always disjoint is violated in the formula
defining idM. More appropriately, we should have used the tags: thus, say a path ad of
M becomes a path "request a valof a is d output d". Later in this section we shall give a
game-theoretic interpretation of idM.

Although the programs for leftor, leftstrictor and right-strictor have served as
a motivation for Definition Affine exponent sds, they are not examples of affine
sequential algorithms, but only of sequential algorithms, which we shall recall in
Section 5. Take for example the "path" ?xFyTT in left-or: its projection xFyT on the
input sds is not a path of that sds, but rather a sequentialization of two paths xF and yT.
This is what makes the difference between affine and general sequential algorithms. An
algorithm asks successive queries to its input, and proceeds only when it gets
responses to these queries. An affine algorithm is required to ask these queries in a
monotonous way: each new query must be an extension of the previous one. The "unit"
of resource consumption is thus a sequence of queries/responses that can be arbitrarily
large as long as it builds a path of the input sds. The disjunction algorithms are not
affine, because they may have to ask successively the queries x and y, which are not
related by the prefix ordering.

Our definition of affine exponent is the same as that given by Abramsky-
Jagadeesan. It is equivalent to that given by Lamarche in [Lam 1], restricted to what we
call here Lamarchian sds's. According to Lamarche:

- The moves of the linear exponent are pairs (m,m') of moves m in M and m' in M'
whose polarities are not in the combination (o,.).

- The moves of polarity o and those of polarity are as indicated by Table 1:
•-o * o
-0 . 0

o 0

Table 1: Polarities for -- a

- One moves only on one side at a time: if (m,m') is a move, then its successor is a
move of the form (n,m') or (m,n').

- As in our definition, it is required that the two projections of a path of M-oM' are
paths in M and M', respectively.

In Figure 10 we represent the generic algorithm of Figure 9, viewed as a
Lamarchian one.

I
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(.,.)

(a,a)

(dl,a') .. (di~a').., (dn,a')

I I I
(b,a')

(e.a)

(e,d')I I

Figure 10: A generic Lamarchian algorithm

Lamarche's table of polarities elegantly captures the constraints of our definition:
the first move after the root (.,.) must have the form (o,.) or (.,o), since only one
component moves at a time. But the combination (o,.) is forbidden; hence an algorithm
starts with a "request a' ". For the same reason, a (o,o) move can only followed by a
(.,o) move, and this enforces the constraint that a "valof a" can only be followed by an
"is d".

Table I is helpful in designing the tensor product of two sds's. Let us briefly
anticipate Section 4. By simple logical manipulations, we get the following table of
polarities for the tensor

* 0 0

0 0

Table 2: Polarities for 0

(This table is obtained through the encoding of M®M' as (M-oM'-L)L.). It is directly
suggestive of a game-theoretic interpretation: M and M' can be thought of as two
distinct boards, on which two persons, the opponent and the player, can play. The
opponent has the o moves on both boards, and the player has the • moves on both
boards. The table indicates that only the opponent has the freedom to play his next
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move on the board of his choice. Indeed, an opponent's move is either a (o,.) or a (.,o)
move; if it is a (o,-) move, this indicates that the opponent last played on the first board
and that the player has to move next on the same board. A similar analysis can be done
for a (.,.) move. In contrast, a player's move is a (.,.) move, and can be followed by
either sort of opponent's move, which indicates that the opponent can play on either
game.

With this interpretation in mind, we can read the identity algorithm idM as a "copy-
cat" counterstrategy, as it is called in [AJ2J. We first look at M-oM as (M®M-L)-L.
Hence we can describe idM as a counterstrategy of M®Mi. It is convenient to think of
the player of M®MI- as a team of two players - one on the board M, the other on the
board M-L -, who play against the opponent. Following Lafont [LS] (see also [A.2]),
we call these two players Karpov and Kasparov. We also consider M and M-L as two
copies Left and Right of the same board, with the following distribution among the
particilpants, as illustrated in Figure 11.

- Karpov plays black on Left,
- Kasparov plays white on Right,
- the opponent plays either white on Left or black on Right.

Left board Right board

3 Ef
2 1

Kasparov's moves:

Karpov's moves: I

Opponent's moves: of and ]

Figure 11: The identity algorithm

Table 2 forces Kasparov to move first (request a). The opponent immediately copies
this move on Left (valof a), leaving to Karpov the task of finding a black move on Left
as a response. If Karpov has succeeded (is d), the opponent immediately copies the
move on Right (output d), and symmetrically leaves to Kasparov the task of thinking
about the appropriate next move. It is clear that with this courageous strategy, the
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opponent is winning... The positions I through 4 in Figure 1I correspond to the four
successive steps "request a", "valof a", "is d", and "output d".

We come back to affine sequential algorithms. We state a key technical property.

Lemma (lnjectivi.y)

(1) For any affine sequential algorithm ý, the map s - (stM,srM') is an order-
isomorphism from * to its image, ordered componentwise by the prefix ordering.

(2) If two elements s1 and s 2 of 4 are such that (sIt M)A(s2IM) is either E or is a
response, and if (s, WM') and (s2OMW) are comparable, then s, and s2 are comparable.

(3) If two elements s, and s-, of ý are such that (SlItM')A(stM') is a query, and if
(st rM) and (s2,M) are comparable, then s, and s2 are comparable.

Proof: We first show that the first part of the statement is implied by the second (or the
third). It is obvious that s - (sIM,srM') is monotonous. Suppose that sI M < srM,
SM' !-< stM', and sIAs. Then s5sI by the second part of the statement, and by
monotonicity sIM < sliM, srM' < sliM'. Hence sltM = stM, sltM' = srM', and
s=sI follows, since s<sI would imply either st M < s, t M or sr M' < s, t M'.

We now prove the second part of the statement. Let t = SIAS2, which is , or is a
response, since ý is a strategy. It t=s1 , then s, < s2. Similarly, if t=s, then s, < st.
Thus we may assume for the rest of the proof that t<sI and t<s2 . If t has the form t1a,
then t<s1 and t<s2 imply that t1ad1 < s1 and tlad2 < s2 for some dland d-, which must
be different since t1a = S1^s 2 : but then (s, rM)A(s-tM) is a query, contradicting the
assumption. If t is e or has the form t1d', then t<sI and t<s, imply that ta' 1 < s, and
ta', < s-,for some a' 1 and a'2. which must be different since t = stsA-,: this contradicts
the assumption that (s, IM') and (sIM') are comparable.

The third part of the statement is proved similarly. [1

Remark: The following observation is useful: any pair (s t M,st M') in the image of
under the mapping s '-* (stM,stM') is either a pair of responses or a pair of queries. It
is a pair of responses if and only if s ends with a datum d'; it is a pair of queries if and
only if s ends with an address a.

The definition of an affine algorithm as a strategy of M-oM' is not denotational in
character. It is clearly suited to the proof of existence of an internal homset in the
category of affine algorithms, which will be carried out in the next section, but one
would wish a mere abstract functional description of the morphisms of our category.
Fortunately, there is one, which we state after some preliminaries.

First, we call a function f: D(M)--D(M')prime-continuous when it is monotonous
and satisfies the following condition:

- if r' E f(x), then there exists r E x such that r' e f(r).
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It is easy to see that, equivalently, a prime-continuous function can be defined as a
continuous function preserving lubs of pairs of compatible elements. These definitions
apply also to (partial) functions g: DL(M')-D'{M). (By a monotonous partial function
g, we mean that if c.• and g(a) is defined, then g(1) is also defined and g(a)<g(f3).)

The trace of a continuous function f: D(M)--D(M') is the relation Trace(f) C
D'(M)xD°(M') consisting of the pairs (x,x') such that x' < f(x) and x' ; f(y) for y<x.
The trace of g: D-L(M')-D-L(M) is defined likewise. The functions that we shall
consider will always be stable, which for, say, f: D(M)-4D(M') means:

- if (xl,x') E Trace(f), (x2 ,x') E Trace(f), and x, tx2 , then xl=x2.

Equivalently, and more abstractly, stability is the preservation of glbs of pairs of
compatible elements. Another equivalent definition of stability is in terms of minima:

Notation (M(fx,x'))
Let M and M' be sds's, and let f be a continuous function from D(M) to D(M'). If
xED(M), x'ED'(M'), and x'sf(x), then we denote by M(fx,x') the minimum y5x, if

t' it exists, such that x'•f(y).

If f is stable, then M(fx,x') exists: a minimal y can be found by continuity and well
foundedness, and the uniqueness follows from stability. Clearly, (M(f,x,x'),x') G
Trace(f). Conversely, the existence of all the M(f,x,x')'s implies the preservation of
glbs of pairs of compatible elements [Be, CHL, CuMon]. Also, one proves easily that
sequentiality implies stability (see [CuMon]).

We call affine a stable and prime-continuous (partial) function. The interest of this
combination of preservation properties lies in the following lemma.

Lenwna (Trace composition)
Let f and g be two composable affine functions. The composition of f and g is itself
affine, and its trace is the relation composition of the traces of f and g.

Proof: Let, say, f: D(M)--D(M') and g: D(M')-*D(M"). The first part of the statement
is obvious using the characterization of prime-continuity and stability by lub and meet
preservation properties. We show Trace(g o f) _ Trace(g) o Trace(f), without using
stability. Let (r,r") G Trace(g o f). By prime-continuity, there exists r' such that r'4f(r)
and (r',r") G Trace(g). We show (r,r') E Trace(f). If r'•f(r 0 ) for some r0 <r, then r" <
g(r') . g(f(r0 )), contradicting (r,r") G Trace(g o f). Finally, we show Trace(g) o
Trace(f) . Trace(g o f), making use of the stability of g. Let (r,r') G Trace(f) and
(r',r") E Trace(g). Since r•<f(r) and r"<g(r'), we have r"<g(f(r)). Assume
r"<g(f(r0 )) for some r0 <r, and let r' 0 be such that r'0 .•f(r0 ) and (r' 0 ,r") E Trace(g).
Then r' 0 tr' implies r' 0 =r'. But then r'=r' 0 _f(r 0) contradicts (r,r') E Trace(f). El
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We now formulate our symmetric definition of affine sequential algorithm. It relies
on a notation which is similar to the notation M(fx,x').

Notation (M(fx,ac'))

Let M and M' be sds's, and let f be a continuous function from D(M) to D(M'). If
xED(M), a'ED-L*(M'), and f(x)<Oa', then we denote by M(fx,a') the minimum y-x,
if it exists, such that f(y)<lIa'.

This notation coincides with the notation M(f,x,r') when ct'mq' and r'aq'd'Ef(x).
(This is proved thanks to statement (3) of Lemma -1-F.)

Defmition (Symmetric algorithm)

Let M - (A,D,P) and M' - (A',D',P') be two sds's. A symmetric algorithm from M to
M' is a pair (f: D(M)--D(M') , g: D-'(M')-D-L(M)) of a function and a partial function
that are both continuous and satisfy the following axioms:

(L) xED(M) A a'ED-L°(M') A f(x)'4a' = xIg(a') A (M(f,x,a') = x<og(a'))

(R) c'ED-L(M') A xED°(M) A xr>g(a') - f(x)>ta' A (M(g,CE',x) = f(x)Pa'a')

We set as a convention that for any x, and any a' such that g(a') is undefined:

x<g(a') and xclg(a') = 0

To see that this convention is natural, recall that in a Lamarchian sds, every path starts
with the initial * move. When g(a') is undefined, this initial move is the final move of
the interplay, and thus x wins. With this convention, the conclusion of (L) is simply
M(f,x,a') = 0 when g(a') is undefined. In contrast, when we write x>g(a') as in
(R), we assume that g(&') is defined.

The collection of symmetric algorithms is ordered componentwise by the pointwise
ordering:

(f1 ,g1) < (f2 ,g2 ) iff Vx f1 (x)!;f2 (x) and Va g1(a)5)g2(a) (if g (a) is defined) 0

These axioms enable us, knowing f and g, to reconstruct the traces of f and g.
Definition Symmetric algorithm is strikingly compact with respect to the definition of
abstract algorithm found in [BeCul, CuMon] (see also BuEhr]) and reformulated in
Section 5. It implies that the two functions f and g are prime-continuous and sequential.
Moreover, g allows to compute the sequentiality indices of f, and f allows to compute
the sequentiality indices of g.
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Proposition (Symmetry and sequentiality)

Let f and g be as in the previous definition. Then f and g are prime-continuous and

sequential, and they satisfy the following two axioms:

(LS) If xED(M), ct'eCD-L*(M'), f(x)1>a' and if f(y)aca' for some y>x, then

x1>g(ca') and xPg(c&') is a sequentiality index off at (x,cL').

(RS) If c'ED-i(M'), xED'(M), x'1g(a') and if xr>g(P') for some 1'>a', then

f(x)<Qa' and f(x)la' is a sequentiality index of g at (a',x).

Proof: The prime-continuity of f follows from Axiom (L), since this axiom implies that

any element M(fx,a') is a prime element. Precisely, suppose q'd'Ef(x). Then

f(x)<'q'. By (L), x<4g(q') and f(r)<4q', where r - x'°lg(q'). Let q'Id', - f(r)'4lq', and

suppose q' 1 <q'. On one hand q'Id', E A(q') implies q' 1d'j•q'. On the other hand,
since q'jd' 1 Ef(r) and r5x, we have q' 1 d', E f(x), and q'd', q'Id',Ef(x) imply
q'I d' 1 •q': contradiction. Hence q' 1 .q', and moreover d',-d' since q'd', q'd'1 Ef(x).

We have proved f(r)qq' = q'd', and a fortiori q'd'ef(r).

We now prove that Axiom (L) implies property (LS) (which itself implies the

sequentiality of 0. Suppose xED(M), ca'ED-LO(M'), f(x)l>a', and f(y)-Ia' for some
y>x. Let r, - y~Ig(a'). By (L), we have f(rj)<x', which implies rl(x since f(x)t>a'.

Let r be the largest response prefix of r, contained in x, and let ra be such that ra<r1 .We

claim:

xlg(ct') = ra

From r, C A(g(a')) and ra<r1 , we get ra E g(&'). We have rEx by construction, thus

ra is enabled in x. If ra is filled in x, it must be filled with the same datum d in x and r1,

contradicting the maximality of r. Hence ra r g(c')fA(x), which proves the claim.

The proof of (LS) is completed by observing that ra<r1, rl<y imply raýF(y). 0l

Thus the two components f and g of a symmetric algorithm (f,g) are sequential and
prime-continuous. A fortiori, they are stable, hence, affine, which entails that they are
actually strongly sequential. Strong sequentiality means that at every (xq'), there is at

most one sequentiality index) (cf. [CuMon, Exercise 2.4.11.3 (second edition)I) 6 .

One can show that any affine function f is the first component of some affine algorithm
(f,g) (a similar theorem is shown in [CuMon, Proposition 2.5.6]).

A familiar feature of stability is not apparent in Definition Symmetric algorithm: the
order is not defined as Berry's stable ordering. But the stable ordering is a derived

property. We recall a definition of the stable ordering. Let f1 ,f. EE D(M)--D(M'). We

write:

fl <s f2 when Vx Vy:.x f1 (Y) = f2(Y)Afl(x)

6Conversely, there are strongly sequentiai functions that are not affine: left_or is an erample.
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Proposition (Stable ordering)
if (fl,g 1) < (f2 ,g2) (cf. Definition Symmetric algorithm), then f, :s f2 and gl :s g2 "

Proof: We only prove f1 :5, ,, the proof being symmetrical for ga and g2. Consider x
and ygx, and assume q'd' E f2(y)Af 1 (x). Suppose q'd' 9 fl(y). We can take q'd'

minimal with this property, thus we can assume q' E A(f1(y)), which implies f1(y)t>q'
by Lemma -4-F. Since in an sds domain the glbs of compatible elements are set
intersections, we have q'd' E f2(y) and q'd' E f,(x). By (LS) applied to (f1,gl), we
have: yt>gj(q'), and rla w ylI'gl(q') is a sequentiality index of f, at (y,q'). Since g, <e
g2 (where _% denotes the pointwise ordering), we have r1 a E g2(q'). Hence by (R)
applied to (f2 ,g2 ) we get f2 (rl)t>q'. By (LS) applied to (f2 ,g2), r, >g 2 (q') and
r, ltg2(q') is a sequentiality index of f, at (rl,q'). Since rla E g2(q'), we have
rllt>g2(q') = r1a. Now:

- by sequentiality f1 (y)'.Jq' implies yclrla;
- by definition of r1a, rla E A(y), hence yt>r 1a by Lemma 4-F.

This contradiction proves q'd' E fl(y), and f1 :s f2. 0

We have to show the equivalence between the concrete and the denotational
presentations of our morphisms.

Definition (From concrete to symmetric)
Let M and M' be two sds's. Given an affine sequential algorithm * G D(M-oM'), we
define a symmetric algorithm (fg) as follows:

- f(x) = {r'f r'=st M' and s tM E x, for some s G 4},
- g(a') = {q1 q=stM and stM' G a' for some s E E}.

By convention, if for some (x' the right-hand side of the definition of g is empty, we

interpret this definitional equality as saying that g(a') is undefined. 0

The traces off and g have an easy characterization, as the following lemma shows.

Lemnm (Trace)

Let (f,g) be constructed from an affine sequential algorithm ý as above. Then:

- Trace(f) = {(r,r')l r=-stM and r'=stM', for some s E 4},
- Trace(g) = {(q',q)l q'=stM' and q=sfM, for some s G *}.

Proof: If r=-stM and q'd'-r'=stM', for some s E *, then a fortiori stM < r, thus r' E
f(r). Suppose that r' G f(r1 ) for some rj<r. Lets 1 s I be such that r'=stI M' and s I r M
s r1. Thus (stM,sttM') < (stM,stM'), which by Lemma Injectivity implies sl<s.
But by the definition of M-oM', r'=st M' implies that s ends with d', and hence sIrM'
< stM', contradicting r'=sltM'. Thus (r,r') E Trace(f). Reciprocally, if (r,r') G
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Trace(f), then let s Ea be such that r'=stM' and sOM < r. Then, by minimality of r, we

must have srM = r. The proof of the second equality is similar. 0

The definition of the function f computed by * is so compact that it may hide the

underlying operational semantics. The application of+ to a strategy x of M involves an

interplay between * and x that is very similar to the situation described in Proposition

Play. We have already suggested pictorially that an affine sequential algorithm
"contains" input counter-strategies. Figure 12, taken from [CuMon (second edition)],

illustrates the interplay between * and x. In this figure, the bold oriented path represents
the flow of control. The relation with Figures 4, 5, and 7 is as follows: the

counterstrategy "valof a ..." is matched against x, resulting in the path adibe.

This is reminiscent of Girard's geometry of interaction. We refer to [AJI, AJ2,

Lam2] for some more precise connections.

al I,- d'

M-oM' reques a'

M x

valof a a ... a,

is d1 ... i d is nd..

is e e..

ot ut d'

request a'1  ... request a'm

Figure 12: Application
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Conversely, given a symmetric algorithm (f,g), we construct a strategy # of MN-aM'

inductively, as suggested by Figure 13. The construction of a path of # is carried out as
an experiment. The experimenter is free to give addresses of M-oM', and the
specification (fg) provides corresponding data. At the beginning, the experimenter
gives an a' 1 . If a' 1 is filled in f(0), the next datum on the experimentation path is an
"output" instruction. If g(a' 1 ) contains some path a of length 1, the next datum is a
"valof" instruction. The axioms of symmetric algorithms guarantee that these two
situations are exclusive. Indeed, if a' 1 is filled in f(O), then f(O)4a' 1 , which by (L)
implies 0<4g(a'1 ), and if g(a'1 ) contains a path of length 1, then O>g(a'1 ). It is easy to
see that this argument applies all along the path constructed in Figure 13. More
precisely:

- An "output" instruction is indicated by f until an address a' is placed by the
experimenter for which g indicates a "valof' instruction. Then the next address
placed by the experimenter must be a d, (cf. the definition of affine sequential
algorithm).
- The function g keeps the hand on the shown path until an address d is placed by
the experimenter for which f indicates an "output" instruction.

The argument to which the function f or g is applied at each stage is the projection of
the path constructed so far on the appropriate sds (M for f, M' for g). It is easily seen
by construction that, collecting together all these experimentation paths, we obtain a
strategy of M-oM'.

The following definition formalizes the construction.

Definition (From symmetric to concrete)
Let M and M' be two sds's. Given a symmetric algorithm (fg) from M to M', we
construct an affine algorithm * E D(M-oM') as follows. We build the paths s of * by
induction on the length of s:

- if sE-•, if OM and sM' are responses, and if q' = (stM')a' for some a', then
sa'a E- if (s M)a E g(q')
sa'd' EG* ifq'd' E f(srM)

- if s(E-, if sfM and stM' are queries, and if r = (sOM)d for some d, then
sda EG if ra e g(q')
sdd' E * if q'd' E f(r) O
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a'

d'e (a'ld' 1 E f(0))

Th.
a , n

I,S den (a',d'l ... and'n =r' Eif(O))

a
I
a, (a, E g(r'a'))

dn-l

an (a, ... dn- an = q E g(r'a))

dn

d' (r'a'd' Ef(qdn)

Figure 13: From symmetric to concrete

This construction defines an inverse to the map s - (sOM,sOM') considered in
Lemma Injectivity.

The above transformations are inverse order-isomorphisms.

Theorem (Snymmetric/affine)

Given M and M', the above transformations define order-isomorphisms between
D(M-oM'), ordered by inclusion, and the set of symmetric algorithms from M to M',
ordered pointwise componentwise.

Proof: We limit ourselves to check that (fg) constructed as in Definition From
concrete to symmetric from an affine algorithm * satisfies (L). If xeD(M),

a 'ED--°(M') and f(x)<4c', let q'd' - f(x)4lc', and let sE+ be such that q'd' = srM'
and sfMEx. Then s ends with d'. We claim:

(i) sOM = M(f,x,ca')

(E) stM = x'alg(a')



We first prove (ii). Since stMEx, we are :A.t to show srME:A(g(CL')). Since q'd' -
f(x)'kz', we have q'd' G A(a'), hence q'E-a'. We first show chat stM is enabled in
g(a'). Let sfM a qd, and let s, be the least prefix of s such that s, W = q. We claim:

s iM' EGa'

By the definition of sj, and since s ends with d', s, is a strict prefix of s and stM' <
st M'. Hence s, t M' <q', which implies the claim. Since s, t M = q, the claim implies
qE-g(a') by definition of g, and that sfM is enabled in gtcz'). Suppose now that stM is
filled in g(a'). Then there exist a and s2E* such that (stM)a = srtM and s2fIM'Ea'.
By Lemma AA, we can apply Lemma Injectivity (part 3) to s and s2. Thus s and s,
are comparable. But since (sIM)a = s,, M we cannot have s2<s, and since s2,M' E a'

and stM' EA(a') we cannot have s"s 2 : contradiction. This completes the proof of (ii).
We now prove (i). By definition of f, we have sIM' E f(stM), hence f(sIM)-<a'.

Suppose now that y:,x and f(y)4a'. By Lemma x-<a, f(y)'Ia' = f(x)4Ia', thus q'd'
E f(y). Let s3E(50 be such that q'd' = s3 tM' and s3 1M G y. By Lemma Injectivity (part
2), s and s3 are comparable. Since s ends with d' and since s3 IM' = sIM', s3 cannot
be a proper prefix of s. Thus srs3, and this entails sIfM G y since sIM < s3 IM and
s3 IM E y. This completes the proof of (i). 0

4. A symmetric monoidal closed category
We now turn sequential data structures and symmetric algorithms into a category by
adding a notion of composition. The formulation of the morphisms as symmetric
algorithms allows us to define composition in a straightforward way.

Definition (Denotational composition)
Let M, M' and M" be sds's, and let (fg) and (f',g') be symmetric algorithms from M
to M' and from M' to M". We define their composition (f",g") from M to M" as
follows:

-f" =f' of and g" gag'.

Proposition (Denotational composition is well-defined)
The pair (f",g") in Definition Denotational composition indeed defines a symmetric
algorithm.

Proof. We only check Axiom (L). Suppose f'(f(x))<4a". By (L) applied to (f',O'), we
have f(x)4g'(a") and M(f',f(x),a") = f(x)'4lg'(a"). Since f(x)<1g'(a"), by (L)
applied to (fg), we get x.1g(g'(a")) and M(fx,g'(a")) = x'lg(g'(a")). We have to
prove M(f'ofx a") - xalg(g'(a")). We set r - x'1lg(g'(a'")). Since M(fx,g'(a")) =
r, we have f(r)<4g'(a"). We claim:

Vf'(fr))<4a"

Suppose the contrary, that is, f'(f(r))r>a". Then, by (LS) applied to (f',g') at
(r),a"), we have f(r)r>g'(a"), which contradicts our previous deduction that
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f(r)<4g'(ca"). Hence the claim holds. We are left to prove that any y.x such that
f'(f(y))<4a" is such that y-r. Since M(fx,g'(a")) = r, this second claim can be
rephrased as:

We set r' = f(x)'lg'(ca"). Since f(y)Af(x) and since M(f',f(x),a") = r', we have
r':f(y). But r'<lg'(a") by definition of r' and by property (1) of Lemma x<1u, and the
second claim follows by property (2) of Lemma x~m. 0

Definition (AFFALGO)
The category AFFALGOd, (AFFALGO for short) is defined as follows. Its
objects are the sequential data stuctures and its morphisms are the affine sequential
algorithms. If a E D(A-oA') and a' E D(A'-oA"), if (fg) and (f'g') are the symmetric
algorithms associated with * and ý', respectively, then I' o-* is the affine sequential
algorithm +" associated with (f'of, gog'). The identity morphisms are those associated
with the pairs (id,id). 0

Less formally, we shall indifferently look at morphisms as affine sequential
algorithms or as symmetric algorithms.

A closely related way of looking at the composition of affine algorithms, which is
adopted in [Lam 1], is to define the composition of algorithms as a relation composition.

Proposition (Relation composition)
Let (fg) be a symmetric algorithm. We define Trace(f,g) as follows:

- Trace(fg) = Trace(f) U {(q,q')l (q',q) Q Trace(g)}.

The following holds for any (f,g) and (f',g') as in Definition Denotational
composition:

- Trace((f',g') - (fg)) = Trace(f',g') o Trace(fg)

Proof: Immediate consequence of Lemma Trace composition. 0

Abramsky and Jagadeesan give a different definition of composition, which is
operational in flavour. This definition requires a notation.

Notation
Let M = (A,D,P), M' - (A',D',P') and M" - (A",D",P") be three sds's. We let
-(M,M',M") denote the set of words in ((AUD)U(A'UD')U(A"UD"))* such that two

consecutive symbols are not such that one is in AUD and the other is in A"UD".
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Proposition (Hiding)

Let * E D(M-M'), 4' G D(M'-oM"). Then:

,' o4@ = {stMUM"I s E LM,M',M"), stMUM' E 40 and stM'UM" E 4'}

Proof : We refer to [AJ2] for a proof that the right-hand side defines a strategy of M-
M". Then it is enough to check:

{(stM,sfM")i s EL(M,M',M"), st IMUM' E * and stM'UM" E

{(p,p")l p = s1tM, s1tM' = sJM' and p" = sitM" for some sE-, s2 "')

Obviously, the left-hand side is included in the right-hand side, taking s, = s rMUM'
and s, = sfM'UM". For the other direction we construct s from s, and S, by replacing
every a'd' in s, by the corresponding portion a'ald1 ... andnd' of sl. It is clear by
construction that s E AM,M',M"). 0l

This alternative definition of composition is convenient to establish the symmetric
monoidal structure of the category AFFALGO. It is closely related to the operational
semantics of composition in the language CDSO [CuMon, Definition 3.5.5].

The definition of tensor product is "dictated" by the equation A®B = (A-oB±)-1, as
suggested at the end of Section 3.

Definition (Tensor product)

Let M - (A,D,P) and M' = (A',D',P') be two sds's. We define the sds M®M'
(A",D",P") as follows:

- A" is the disjoint union of A and A',
- D" is the disjoint union of D and D',

- P" consists of the alternating non-s paths which are such that:

-(sOM=e orstMEP) and (sOM'=c or sOM'GP')

- P" contains no path of the form sad'. 0

As for Definition Affine exponent sds, the second constraint implies that P"
contains no path of the form sa'd.

In order to define a symmetric monoidal structure, we need to turn ® into a functor.
We follow [AJ2].

Definition (Tensor product continued)

Let M1, M2 , M' 1 and M', be four sds's, and let 41 E D(MI-oM'I) and 0_, E D(M2-

M' 2 ). We define #184•2 E D((MI®M2)-o(M'I®M',)) as follows. It consists of the
paths of M1®M2 -oM' 1®M'2 whose projections on MIUM' 1 and on M2 UM'2 are in a,

and in a.,, respectively. 0
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Proposition (Tensor product functor)

The above definitions indeed define a functor which, together with the empty sds
(0,0,0) as unit, makes AFFALGO a symmetric monoidal category.

Proof: We check the preservation of composition. Let CE D(MI-'M' ]), 12 E
D(M2 "-M'2 ), *'I E D(M'1 -oM" 1 ) and V2 E D(M' 2 -- M"2). An element of (*' VI®'2)

o(O1j®2) has the form sfM 1UM 2UM" 1UM",, where

stMiUM 2UM'IUM'2 E ý1®•2 and stM' 1UM',UM" 1UM"2 E 40'1(4'2

which is the same as

sIMIUM'1 EC -, st'M2 UM' 2 C -4, stM'IUM" 1 E ý'1 and stM'2 UM"2 E =2

Hence

sIMIUM" 1 E ,'i I I and s tM2UM"_2 eC '2 0

and thus stM 1UM 2UM"IUM"2, E(' 1 OW)®(•'2 o 2)
The symmetric monoidal structure is obvious and strict, with the convention that

disjoint unions are ordinary unions. A more standard treatment (as adopted in [CCF])
consists in building such unions with the help of tags 1 and 2 for the left and right
components. In this case, coherent isomorphisms arise: for example (x,1) in XU(YUZ)
corresponds to ((x,1),1) in (XUY)UZ. 0

Proposition (Monoidal closed)
The category AFFALGO is symmetric monoidal closed.

Proof: With our convention about disjoint unions, D((M®M')-oM") and D(M-o(M'-o
M")) coincide. Our convention stands in the way to give a rigorous justification of the
naturality condition. Loosely, given 4 ED(MI-oM), in order to turn a path s whose
projection on M 1U(M'-oM") is in a composition MI-M--*(M'-oM") into a path
whose projection on (MI®M')UM" is in the corresponding composition
(M ®M')-*(M(M')-•M", we replace every M' portion a'd' of s by a'a'd'd' (cf. the
description of the copy-cat strategy). El

The category AFFALGO is also cartesian. It is easily checked that the empty sds

(0,0,0) is a terminal object, and that the following data yield binary products.

Denrmition (Product)

Let M = (A,D,P) and M' - (A',D',P') be two sds's. We define the sds MxM'.
(A",D",P") as follows:

- A" is the disjoint union of A and A',
- D" is the disjoint union of D and D',
- P" is the disjoint union of P and P'.
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It is easily seen that D(MxM') is the set-theoretical product of D(M) and D(M'), and
that D-L(MxM') is the disjoint union of DJ-(M) and D-L(M'). The projections and

pairing functions are as follows:

- (Fst,ini), where Fst is the set-theoretical first projection and mln is the set-

theoretical injection from D.L(M) into D-(MxM'),

- (Snd,inr) (similarly),

- if (fg) E D(M-oM') and (f',g') E D(M-oM"), then <(fg),(f',g')> is defined as
(<f,f'>,[g,g']), where < , > and [ , ] denote the set-theoretical pairing and

copairing. 0

In AFFALGO, the empty sds (0,0,0) is both the unit of the tensor and a

terminal object. It is this property which makes AFFALGO a model of affine logic.
Indeed, the equations

tensor unit - I = T - terminal object

allow us to construct projections from the tensor product to its components, as follows:

A®B - A®T - A

Moreover, the assumption that the terminal object is a multiplicative unit corresponds to
the following proof transformations:

- naturality: for example, the proof (Fl-,A and F-A,A-L implies l-F,A implies
I-F,A,B) by cut and weakening is equivalent to the proof obtained by first
weakening FFA into F-F,A,B, and then applying cut;

- the logical inference rule (Fr implies ý-F,l) for _L (the negation of 1) is an
instance of weakening;

- if H is a proof of FH,O (0 is the negation of T), then I is equivalent to the proof

obtained by first cutting H with 1-T,L (an instance of the axiom I-T,F for T), then

cutting with FI- (the axiom for 1), and finally weakening (the successive

conclusions are FF-,_, FF, and F-FO).

5. Sequential algorithms

In order to obtain a model of %-calculus, we must construct a comonad accounting for
the possible "duplication" of arguments. We have already suggested a meaning for the
"unit of consumption" of inputs considered as resources. It appears most convenient in

our setting to define this comonad via an adjunction. We construct a left adjoint to the

inclusion functor of the category AFFALGO into the category ALGO of Berry-
Curien's sequential algorithms [BeCul, CuMon]. To this aim, we give yet another
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equivalent characterization of the morphisms of AFFALGO.

Definition (Affine abstract algorithms)
Let M - (A,D,P) and M' - (A',D',P') be two sds's. Recall that D*(M) denotes the set
of finite strategies of M. An affine abstract algorithm X from M to M' is a partial
function from D*(M)xQ' to QUR' which satisfies the following axioms:

(Al) X(x,q') = q =p q E A(x)

X(x,q') = r' =* r' = q'd' for some d'

(A2) X(x,q') = q, q':5q'I, xsy and q 4 F(y) =* X(y,q'I) = q

X(x,q') = r' and xs5y =- X(y~q') = r'

(A3) X(x,q') defined, yý.•x and q'1 ýq' * xdy,q'1 ) defined

(AFF) X(x,q') defined • X(x,q') = x(r,q') for some rex

The composition of two affine abstract algorithms is defined as follows. Let X be as
above, and let X' be an affine abstract algorithm from M' to an sds M". Then the
composition X" of X and X' is defined by:

- X"(x,q") = q"d" ii X'((X.x),q") = q"d"
- X"(x,q") = q if X'((%-x),q") = q' and X(x,q') = q

where x.x = {q'd'l X(x,q') = q'd'}. 0

We leave to the reader the abstract definition of the identity algorithm. The next
proposition states that affine abstract algorithms are the same objects as symmetric

algorithms.

Proposition (Symmetric/abstract)
There are order-isomorphisms between the sets of affine abstract algorithms and of
symmetric algorithms, that preserve the composition of algorithms.

Proof: We construct the inverse mappings by going from symmetric algorithms to
affine abstract algorithms , and from affine abstract algorithms to affine algorithms. To
close the circle, we use the transformation of affine algorithms into symmetric
algorithms justified in Theorem (Symmetric/affine). We call 1, 2, and 3 these
transformations:

symmetric (fg)

1 abstract X
strategy *
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Transformation 1: Let (f,g) be a symmetric algorithm. We build a functionX as
follows:

- X(x,q') = q'd' iff q'd' E f(x),

- X(x,q') = xI•g(q') iff x>g(q').

We check the axioms of Definition Affine abstract algorithms.

(AI): If X(x,q')=q, then by definition x t> g(q') and q - xl~g(q') E A(x). The second

part of (A I) is built-in in the definition of X.

(A2): If X(x,q') = q, q'•q'I, x:y and q q F(y), then xlg(q') = ylg(q'1 ), hence

X(y,q' i) = X(x,q'). The second part of (A2) is obvious by the monotonicity of f.

(A3): It is enough to prove separately that if X(x,q') is defined and q'1 d'1 <q', then

X(x,q'i) is defined, and that if (x,q') is defined and y<x, then x(y,q') is defined. We

thus concentrate first on q'ld'1 <q'. If q'd' E f(x), then a fortiori q'ld'l C f(x), hence

X(x,q'1 ) is defined. If xC>g(q'), let q'2 m M(,,q',x). In particular, x>&'g(q2). We
distinguish two cases:

- q'I - q'2: Then xl>g(q'1 ) and hence X(x,q' 1 ) = X(x,q'2) = X(x,q') is defined.

- q'! < q'2: By (R) we have q'2 = f(x)Il'q': this entails q'id', C f(x) and X(x,q' 1 )
= q'1d',-

In either case, X•x,q' 1 ) is defined.

Now we consider y<x. If q'd' E f(x), then f(x)<q'. Let r = M(f,x,q'). We
distinguish two cases:

- If r!y, then f(y)<lq'. Since f(y)<f(x) implies f(y)"'fq' = f(x)"Iq' = q'd', we have

q'd' C f(y): hence X(y,q') is defined.

- If r;y, then f(y)t>q', hence, by (LS), y>•,(q'), and X(y,q') is defined.

In either case, X(y,q') is defined. If xt>g(q'), then, by property (3) of Lemma x<la,
y-x implies yr>g(q'), and hence X(y,q') is defined. This completes the proof of (A3).

(AFF): If X(x,q') = ra, then ra = xlWg(q') by definition of X, that is, ra E A(x)Ag(q').
Then also ra E A(r)Ag(q'), hence X(r,q') = ra. The second part of (AFF) follows from
the prime continuity of f.

Transformation 2: We construct an affine algorithm ý out of an affine abstract algorithm

X from M to M'. We build the paths s of 0 by induction on the length of s (cf.
Definition From symmetric to concrete):
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- if s"-i, if sOM and stM' are responses, and if q' = (srM')a' for some a' and
x(s tM,q') is defined, then

sa'a E , ifx(stM,q') = (st M)a
sa'd' E ý ifX(stMq') = q'd'

- if s", if sfM and sfM' are queries, and if r = (stM)d for some d and
X(rs tM') is defined, then

sda E , ifX(r,stM') = ra
sdd' E * ifX(r,stM') = (stM')d'

We omit the verification that this indeed defines an affine algorithm, and the proof that
1 ; 2 ; 3 and 2 ; 3 ; 1 are identity transformations. 0

Berry-Curien's original sequential algorithms are obtained by withdrawing (AFF).

Definition (Abstract algorithms)
Let M and M' be as in Definition Affine abstract algorithms. An abstract algorithm is a
partial function Vp from D*(M)xQ' to QUR' which satisifes the axioms (A1), (A2) and
(A3). The composition of abstract algorithms is defined exactly as the composition of
affine abstract algorithms.

This definition is mutatis mutandis the one appearing in [CuMon, Definition
2.5.4], and is equivalent to it. The only difference lies in the fact that in [CuMon],we
require that if Vp is defined at (x,q'), then q' is enabled from V.x. This limitation can be
removed when the concrete data structures are sequential (see [CuMon, Definition
2.1.10, and (in the second edition) exercise 2.4.5.1]), as it is the case for sequential
data structures.

Theorem (CCC)
The category ALGOL, (4,LGO for short) of sequential data structures and (abstract)
sequential algorithms is cartesian closed.

Proof: The proof can be found in [BeCul, CuMon], in the setting of concrete data
structures. As we have seen, the product already exists in the subcategory of affine

sequential algorithms, and it is easily verified that it is still a product in the category of
sequential algorithms. The exponent M--'M' is most readily described, not as an sds,
but as a filiform concrete data structure (C",V",E",I-), defined as follows:

- C" = D*(M)xQ',
- V" = QUR',

- ((x,q'),q) G E" iff q E A(x),

((x,q'),r') G E" iff r' - q'd' for some d',
- ((x,q'),q) F- (xl,q') iff x, = xU{qd} for some d,
((x,q'),d') -(x,q' 1 ) iffq'1 = q'd'a' for some a'.
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Notice that in this description a cell (xl,q'1) may have two enablings: a "valof"
enabling ((x,ql),q) or an "output" enabling ((x 1,q'),d'). In order to turn this
description of M-'M' into an sds, one has to "split" the cell (xl,q'1 ) in as many ways
as there are to enable it. We indicate in the appendix of [CCF] how to do this. Another

less direct way of constructing M-.M' as an sds is to rely on the next theorem, and to

define M-.M' as !M-oM'. 0l

Our presentation makes it clear that the category of sds's and affine algorithms is
included in the category of sds's and sequential algorithms. The following piece of
categorical reasoning then tells us what to do.

Proposition (CoKleisli and inclusion)

Let C and C' be two categories having the same class of objects, and such that for each
pair of objects A and B, the homset C(A,B) is included in C'(A,B). If the inclusion
functor C: C--C' has a left adjoint !, then C' is isomorphic to the CoKleisli category
associated with the comonad ! o (_7 C--C (! for short). 0

Hence, in order to define a model of intuitionistic affine logic, we only have to
construct a left adjoint !: ALGO-AFFALGO to the inclusion functor. Another piece
of categorical folklore tells us that we only need to construct ! on objects, and to build
appropriate natural bijections. The following definition agrees with that given in
[Lamil].

Definition (Exponential)
Let M be an sds. We define !M - (Q,R,P,), where we recall that Q and R are the sets of

queries and responses of M, and where P, is the collection of alternating non-c and
non-repetitive paths a over QUR which satisfy the following conditions:

- every prefix oYr of cY, where r = q1d for some d, is such that oa ends with q1 ,

- every prefix olq of a, where q = r1a for some a, is such that some prefix of 01

ends with r1.

Such paths are called path sequences. 0

It is easily seen that the collection of response prefixes of a response p of !M forms
a finite strategy of M. Hence the prime elements of the domain !M represent the finite
strategies of M. This is reminiscent of the coherent semantics of linear logic, where the

tokens of the exponential !D are the finite cliques of D [GirLin]. But notice here that the
same "clique" x gives in general rise to as many "tokens" of the exponential as there are
ways to sequentialize x.
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Notation

Given a response p of !M, we denote by IlIpli the collection of response prefixes of p.

Theorem (Adjunction)

Let M and M' be two sds's. There is an order-isomorphism tMM' between the set of
abstract algorithms from M to M' and the collection of affine abstract algorithms from
!M to M'. This bijection is natural in M', that is, for any abstract algorithm +: M-*M',
and for any affine abstract algorithm V: M'--M", we have:

tM.M,,(1I o -) = V O M.M(O)

Thus ! and the collection of bijections tM,M" define a left adjoint to the inclusion
functor.

Proof: We only provide the definitions of the inverse mappings. Let V be an abstract
algorithm from M to M'. We construct an affine abstract algorithm X as follows:

- )pqr,q') can be defined only if &(p,q') is defined:

if x(p,q') = r', then X(pqr,q') = r,

if x(p,q') = ql * q, then X(pqr,q') = ql,

if x(p,q') = q, then X(pqr,q') = Vllpqrll,q').

We set t(lp) w X. Conversely, let X be an affine abstract algorithm from !M to M'. We

construct an abstract algorithm V as follows. We need to keep track of the order of

exploration of the input: V(x,q') is defined when we can successfully build a path

qr ... qn or qlrl...qnrn

of !M such that

X(O,q') = qI, rt - q1d1 E x,..., X(qjrj...,q') = qjr1 ...q. and

qn-EA(x) or

rn - qndn e x and X(qlrj... qrn,q') = r'

and we set l,(x,q') = qn or ij(x,q') = r' in the respective cases. F)

Still by categorical reasoning, the conjunction of Theorem CCC and of Theorem
Adjunction provides natural isomorphisms between (!M)®(!M') and !(MxM'). We
thus have all the ingredients for a semantics of affine intuitionisitic logic, with

connectives ®, 1, -, x, and T.
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Digression: sequential algorithms and errors
We end this section with a digression. We have described (affine) sequential algorithms
as pairs of two functions formalizing both an input-output behaviour and a computation
strategy. It turns out that an enlargement of the domains with error elements allows us
to capture the computation strategy as part of the input-output behaviour. This key
observation, due to Cartwright and Felleisen [CF], has been integrated in the
framework of concrete data structures and of sequential data structures in [CuObs,
CCFJ, where larger categories of (sequential and) error-sensitive functions are
considered.

We owe to Streicher the observation that sequential algorithms can be recast as
those error-sensitive functions that are also error-reflecting. We briefly explain these
notions and justify this claim.

Notation
We suppose that a non-empty set of error elements is given, which is disjoint from any
set of addresses used in any sds. We call this set Err, and use e to range over it. The
following definition is taken from [CCFJ.

Definition (Observable strategy)

Let M be an sds. An observable response of M is either a response of M, or a path of
the form qe where q is a query of M and where e G Err. An observable strategy of M is
a set of observable responses that is closed under response prefixes and non-c glb's. If
x is an observable strategy, F(x) denotes the set of queries q such that q* C x, for some
* G DUErr, and A(x) is as in Definition Sequential data structure. The set of

observable strategies of M is written DErt(M). 0

The following statement formalizes Streicher's suggestion.

Proposition (Errors)
Let M and M' be two sds's. There is an order-isomorphism between D(M-oM') and
the set of error-sensitive and error-reflecting continuous functions h:
DErr(M)-DErr(M'), which are defined as follows.

- Error-sensitivity: for any x and q' such that q'EA(h(x)) and q'EF(h(z)) for
some z>x, there exists qCA(x) such that

- for any y>x, q'EF(h(y)) implies qEF(y), and
- h(x U {qe}) = h(x) U {q'e}, for any e ( Err.

Such a q is called the sequentiality index of h at (x,q') (the second condition implies
the uniqueness of q).

-. Error-reflection: for any q', e, and y, if q'e e h(y), then for some x<y, h has a
sequentiality index q at (x,q'), and x U {qe} < y.
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These order-isomorphisms preserve the composition of morphisms of ALGO, thus
error-sensitive and error-reflecting continuous functions are just an alternative way of
presenting the morphisms of the category ALGO.

Proof hint: In [CuObs] and [CCF, corollary 6.211 we have shown that the error-
sensitive functions are in order-isomorphic correspondence with the observable

r strategies of M-oM'. We just have to show that the inverse functions map strategies to
error-sensitive and error-reflecting continuous functions and vice-versa, which is
almost immediate. 0

We believe that the previous statement should have a more abstract meaning than

the a priori ad hoc nature of a set of errors could induce one to believe. Errors allow us
to "reverse the flow of information" by transfering the output-directed information
contained by the component g of a (symmetric) algorithm (fg) into the input-output
function f of the algorithm.

6. Further remarks

In this section we include miscellaneous remarks. First we exhibit an intriguing self-
adjunction. Consider the following construction. Let M - (A,D,P) be an sds. We
define Mt - (DU{o},A,{opl pEP}). It is easily seen that this operation on objects
extends to a functor t: AFFALGO -a AFFALGOOP. It is also useful to observe:

- D(t(M)) - D-M)U{o},
- DlJ(t(M)) - D(M).

Proposition (Self-adjoint)

The functor t: AFFALGO -• AFFALGOOP is left adjoint to itself.

Proof: Let M and M' be two sds's. A morphism from t(M') to M in AFFALGO°P is a

morphism from M to t(M') of AFFALGO, that is,

- a pair of a function from D(M) to D(t (M')) and a partial function from D-'( t (M'))

to D-N(M),

which amounts to:

- a pair of a partial function from D(M) to D-L(M') and a partial function from

D(M') to D-t(M).

which in turn can be presented as:

-a pair of a partial function from DiL(t(M)) to D-L(M') and a function from D(M')

to D(t(M)),

that is, a morphism from M' to t (M) in AFFALGO. 0
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The construction t is linked with the separated sum construction on concrete data
structures [BeCul, CuMon]. Specifically we define:

M+ M' = ((M)×)(M'))

The resulting (Lamarchian) sds is represented in Figure 14. It is such that D(M+M') is
the separated sum of D(M) and D(M') [PloD].

M N

0

0

Figure 14: Separated sum

The above self-adjunction property was pointed out to the author by Hyland, who
also noticed:

The category of games considered in [AJ2] can be obtained out of the category

of sds's and (winning) affine sequential algorithms by an instance of Chu's

construction [Barr].

This general construction allows to get a *-autonomous category out of a cartesian,
monoidal closed category C, and is parametrized by a distinguished object of C. We
briefly describe it in the instance which interests us here, where the distinguished object
is the terminal object 1 of C ategory Chu(C, I), Chu(C) for short, has as objects
pairs (M+,M-) of two objec and as morphisms between (M+,M-) and (M'+,M'-)
pairs (a E C(M+,M'+), b E (LkM-,M-)). It is easy to check that the following yields a

monoidal closed structure on Chu(C):

- (M+,M-)o(M'+,M'-) - (M+®M'+, (M+-oM'-)x(M'+--oM-)),
- the unit is (1,1), where I is the unit of the tensor and I is terminal in C,

- (M+,M-)--o(M'+,M,-) - ((M+-oM'+)x(M'--oM-) , M+(M'-).

Moreover, taking (1,I) to be the interpretation of 1, we obtain a *-autonomous

structure, where (M+,M-)-L is (M-,M+).

It is natural to recover C as the full subcategory of objects of the form (M, 1), and
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COP as the full subcategory of objects of the form (1,M). Let us now briefly consider
the homsets in Chu(C ) corresponding to the various combinations of polarities. We
have:

- Chu(CX(M,I),(M',I)) =- C(M,M'),

- Chu(CX(M,I),(1,M')) is a singleton,

- Chu(C)(0,M),("M',) C(IM)xc(I,M'),

- Chu(CXI,M),(I,M')) C(M',M).

A more precise formulation of Hyland's observation is that the category of games
G of [AJ2] can be obtained as Chu(G+), where G+ is a category of winning affine
sequential algorithms.

A notable difference between the affine intuitionistic model considered here and the
models in [AJ2,Lam 1] is that the latter do not validate weakening. The arguments (and
the categories considered) are different in [AJ21 and [Lavn 1 .

- Abramsky-Jagadeesan: By De Morgan laws, finding a winning strategy in

AOB-oA amounts to find a winning strategy in (A-oA)V'B± (where V is the dual

of ®). Let A be an sds, and let B be the game (of polarity o) consisting of an empty
set of addresses and a single datum: B m (0,{d},{d}). Both A--oA and B1 are
sds's M and M'. Let us examine the definition of V' in G:

- (M+,M-)V(M'+,M'-) - ((M--oM'+)x(M'-oM+) , M®M'-.

When specialized to sds's (M,1) and (M',1), it amounts to:

(M,1)V&(M',I) - (M'xM, I)

(cf. Chu(C)((1,M),(M',I)) above). In other words, for this combination of
polarities, the V is ... the product.

While the copycat strategy, which is winning in A-oA, is also a strategy in
(A-oA)R'B±, it is not winning in (A-oA)*?B±. In fact, there is no winning strategy

in (A-oA)V'B±. (That is, there is no winning strategy in A®B-oA, and weakening
thus fails.) To see this, recall that winning means: winning against any
counterstrategy. Consider the counterstrategy consisting of the move d in B1 by the
opponent. The player's first move has to be in B-- since the initial move in A-oA is
an opponent's move. But since the player has no move in B1, he is stuck.

-Lamarche: Unlike us, and unlike [AJ2], Lamarche accepts both e paths and empty
strategies in his formalization of games and strategies: as a consequence, for him,
the terminal object is the empty game. On the other hand, the unit is the empty sds,
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that is, in Lamarche's terminology, the game consisting of only one move, by the
player. Thus the strong form of weakening provided by the coincidence
terminal/unit fails in Lamarche's model [Lam I].

We end this discussion of weakening by considering (a variant of) Lamarche's
polarized constructions, where, as we did in Section 2, we assume that strategies are
non-empty. We first suggest how a category ® whose objects are either sds's M" or
games M° of polarity o could be built. Its homsets could be defined by cases as follows
(the linear negation 0(-- is defined by reversing the polarities of all the nodes of the
game represented as a tree):

- @(M',M') = AFFALGO(M',M'),
- ®(MM'°) is the collection of strategies of (M*)1 V M'", where V is defined on
games o dually to the tensor product of AFFALGO,

- ®(M°,M'*) is empty,
- ®(Mo,M'o) = AFFALGO((M'o)i,(Mo)1).

These definitions are dictated by De Morgan laws and by Table 1 (cf. Section 3):
Notice that this tentative category 0 looks quite different from G in the mixed

situations of morphisms between two objects of different polarities. We do not pursue
here an investigation of®, but we limit ourselves to observing that weakening fails in
0 for yet another reason. As a counterpart of ®(MO,M'*) = 0, we have that the 7' of
two sds's is not defined, so that a fortiori there is no strategy in (A-oA)'Bl, whatever
B of polarity o is.

One lesson of the above discussion is that while the current game-theoretic
semantics of (fragments of) linear logic all roughly agree on the intuitionistic affine
fragment, they seem to be hard to compare outside this fragment. And indeed, the
models of [Lam2J on one side, and of [AJ2, HO] on the other side, lead to quite
different completeness results:

- Lamarche characterizes the winning strategies which are meanings of proofs, in a
fragment of linear logic that contains the additive connectives, via conditions that
are reminiscent of the trip conditions in proof nets;

- Abramsky and Jagadeesan define a notion of history-free strategy, and show that
any winning and history-free strategy is the meaning of a unique cut-free proof of
the multiplicative fragment of linear logic augmented with the MIX rule [Girl.
Hyland and Ong add a fairness constraint to the games, and show the same result
with respect to the multiplicative fragment of linear logic (without the MIX rule).

We end with a question. We wonder whether game-theoretic semantics can be
defined at a more abstract level. A step in this direction was already taken by Bucciarelli
and Ehrhard [BuEhr]. They have generalized the notion of sequential algorithm in a
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setting of so-called sequential structures (X.,X*), where X. and X* are two partial
orders, formalizing the idea of a space of data (or "points") and a space of questions (or
"opens"). A sequential structure is endowed with a predicate, call it ANSWER, over
X.xX*. If (xy) E ANSWER, we say that x answers question y. This is reminiscent of
the winning predicate < But in [BuEhr], as in [LS], the predicate ANSWER is not
refined to a notion of result of an interplay, as done here. We wonder whether we could
define an abstract category of games (X,,X*), equipped with a function I mapping the
elements of X.xX* to the set of primes of X. or X*. Any sds M gives rise to such a
structure (D(M), D-L(M)), with I as defined by h'oposition Play. What seems needed
to carry out this program is a good denotational interpretation of the counter-strategies
of an exponent sds.

Acknowledgements
I had useful discussions with Martin Abadi, Samson Abramsky, Antonio Bucciarelli,
Thomas Ehrhard, Martin Hyland, Radha Jagadeesan, Franqois Lamarche, Luke Ong,
and Thomas Streicher. The material of the present paper has been developed mostly
independently from the work of Abramsky-Jagadeesan [AJ2], and has been influenced
by the ideas of Lamarche [Laml. Lamarche should be credited for the affine
decomposition of the exponent in the category of sequential algorithms, which he
discovered in the autumn of 1991 in Paris. I should also thank him for comments on an
earlier, less elegant, axiomatization of symmetric algorithms.

References
[A IJ S. Abramsky, R. Jagadeesan, New foundations for the geometry of interaction,
in Proc. of Seventh Annual Symposium on Logic in Computer Science, Santa-Cruz
(1992).

[A.J21 S. Abramsky, R. Jagadeesan, Games and full completeness for multiplicative
linear logic, Technical report DoC 92/24, Imperial College (1992).

[Barr] M. Barr, *-Autonomous categories and linear logic, Mathematical Structures in
Computer Science 1 (1991).

[Be] G. Berry, Stable models of typed lambda-calculi, in Proc. 5th Int. Coll. on
Automata, Languages and Programming, Lect. Notes in Comp. Sci. 62, 72-89,
Springer (1978).

[BeCul] G. Berry, P.-L. Curien, Sequential algorithms on concrete data structures,
Theoretical Computer Science 20, 265-321 (1982).

[BeCu2j G. Berry, P.-L. Curien, Theory and practice of sequential algorithms, in
Algebraic Methods in Semantics, J. Reynolds and M. Nivat eds, Cambridge University

Press, 35-88 (1985).



70

[BCL] G. Berry, P.-L. Curien, J.-J. LUvy, Full abstraction of sequential languages: the

state of the art, in Algebraic Methods in Semantics, J. Reynolds and M. Nivat eds,

Cambridge University Press, 89-131 (1985).

[Blass]) A. Blass, Degrees of indeterminacy of games, Fundamenta Mathematicae
LXXVII, 151-166 (1972).

r [Blass2] A. Blass, A game semantics for linear logic, Annals of Pure and Applied

Logic 56, 183-220 (1992).

[BuEhr] A. Bucciarelli, T. Ehrhard, A theory of sequentiality, to appear in Theoretical
Computer Science.

[CF] R. Cartwright, M. Felleisen, Observable sequentiality and full abstraction, in
Proc. 19th ACM Symposium on Principles of Programming Languages, Albuquerque
(1992).

[CCFI R. Cartwright, P.-L. Curien, M. Felleisen, Fully abstract models of observablyI sequential languages, to appear in Information and Computation.

[Con] J.H. Conway, On numbers and games, London Mathematical Society
Monographs, vol. 6, Academic Press (1976).

[CuMon] P.-L. Curien, Categorical combinators, sequential algorithms and functional
programming, Pitman (1986), revised edition, BirkhaUser (1993).

[CuObs] P.-L. Curien, Observable algorithms on concrete data structures, in Proc.
Seventh Annual Symposium on Logic in Computer Science, Santa-Cruz (1992).

[Dan] V. Danos, Une application de ]a logique lin6aire A l'6tude des processus de

normalisation (principalement du k-calcul), These de Doctorat, Universit6 Paris VII
(1990).

[GirLin] J.-Y. Girard, Linear logic, Theoretical Computer Science 50 (1), 1-102
(1987).

[GirGI] J.-Y. Girard, Towards a geometry of interaction, in Categories in Computer
Science and Logic, J.W. Gray and A. Scedrov eds, Contemporary Mathematics 92,
69-108 (1989).

[Gun] C. Gunter, Semantics of Programming Languages, Structures and techniques,
MIT Press (1992).

[GuSco] C. Gunter, D. Scott, Semantic domains, Chapter in Handbook of Theoretical
Computer Science, Vol. B, J. van Leeuwen ed., MIT Press/Elsevier (1990).

[HO] J.M.E. Hyland, C.-H. L. Ong, Fair games and full completeness for
multiplicative linear logic without the MIX-rule, manuscript (1993).



71

(Joy] A. Joyal, Remarques sur la thdorie des jeux A deux personnes, Gazette des
Sciences Math~matiques du Quibec 1(4) (1977).

[KP] G. Kahn, G.D. Plotkin, Concrete Domains, in Boehm Festschrift, Special
Volume of Theoretical Computer Science, to appear (1993).

[KCF] R. Kanneganti, R. Cartwright, M. Felleisen, SPCF: its model, calculus, and
computational power, REX Workshop on Semantics and Concurrency, Lecture Notes
in Comput. Sci. 526, 131-151, Springer (1992).

[LS] Y. Lafont, T. Streicher, Games semantics for linear logic, in Proc. Sixth Annual
Symposium on Logic in Computer Science, Amsterdam (1991).

[Lam1]] F. Lamarche, Sequentiality, games and linear logic, manuscript (1992).

[Lam2] F. Lamarche, Games, additives and correctness criteria, manuscript (1992).

[MR] P. Malacaria, V. Regnier, Some results on the interpretation of X-calculus in
operator algebras, in Proc. Sixth Annual Symposium on Logic in Computer Science,

Amsterdam (1991).

[PloDI G.D. Plotkin, The category of complete partial orders: a tool for making
meanings, lecture notes, Universita di Pisa (1978); extended, University of Edinburgh
(1981).

[Reg] L. Rdgnier, Lambda-calcul et rdseaux, These de Doctorat, Universit6 Paris VII
(1992).



Computational Adequacy via
'Mixed' Inductive Definitions

Andrew M. Pitts*

University of Cambridge Computer Laboratory,
Pembroke Street, Cambridge CB2 3QG, England

Abstract. For programming languages whose denotational semantics
uses fixed points of domain constructors of mixed variance, proofs of
correspondence between operational and denotational semantics (or be-
tween two different denotational semantics) often depend upon the exis-
tence of relations specified as the fixed point of non-monotonic operators.
This paper describes a new approach to constructing such relations which
avoids having to delve into the detailed construction of the recursively
defined domains themselves. The method is introduced by example, by
considering the proof of computational adequacy of a denotational se-
mantics for expression evaluation in a simple, untyped functional pro-
gramming language.

1 Introduction

It is well known that various domain constructors can be extended to act on rela-
tions on domains. For example, given binary relations R and S on domains D and
E, there is a binary relation R -4 S on the domain of continuous functions D -4 E
given by: (f,g) E (R-4 S) if and only if for all (x,y) E R, (f(x),g(y)) E S. The
utility of such constructions on relations can be seen in the various applica-
tions of 'logical relations' techniques in denotational semantics, pioneered by
Milne [6], Plotkin [10, 11] and Reynolds [12]. For applications to programming
language semantics, undoubtedly the most important domain-construction tech-
nique is that of solving recursive domain equations. In general, the body of a
domain equation may involve not only positive, but also negative occurrences of
the defined domain. Traditionally, the construction of the action on relations of
such a recursively defined domain constructor has involved delving into the quite
heavy technical machinery used to establish the existence of the domain itself.

In [9] the author described a more elementary method of construction, inspired
by Freyd's recent categorical analysis of recursive types [1, 2. 3]. It makes use of
mixed inductive/co-inductive definitions. Apart from this, only quite straight-
forward domain-theoretic techniques are needed-namely fixed point induction
and the fact that the identity function on a recursively defined domain is the

Research supported by UK SERC grant GR/G53279, CEC ESPRIT project CLICS-
II and CEC SCIENCE project PL910296
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least fixed point of a certain continuous functional canonically associated with

the domain equation.
In this paper, we illustrate the use of this new method of construction of

relations on recursively defined domains by example. We consider a specific ap-
plication where such relations are needed-namely the proof of correspondence
between the denotational and operational semantics of a functional program-
ming language. Recall that a denotational semantics is called 'computationally
adequate' for an operationally defined expression evaluator provided any expres-
sion evaluates to canonical form just in case its denotation is not the bottom
element of the corresponding semantic domain. This property is important since,
combined with compositionality of the denotational semantics, it implies that

P observational equivalence of programming language expressions may be estab-
lished via equality of denotations. See Meyer [5] for a discussion of this property
Proofs of computational adequacy are non-trivial when the denotational seman-
tics of the programming language involves solving recursive domain equations
X = -P(X) in which X occurs negatively (and maybe also positively) in the
domain constructor O(X). We consider a very simple example of this - an un-
typed lambda calculus - in order not to obscure the novelty of our approach
with language-related details.

The computational adequacy property is reviewed in Sect. 2, where we recall
how it can be established via the existence of a certain recursively specified
relation of 'formal approximation' between domain elements and programs. Our
new method of construction of the formal approximation relation < is given in
Sect. 3. The method involves three steps:

- First, the negative and positive occurrences of < in the body of its recursive
specification <= 0(4) are replaced by fresh variables <- and <+ respec-
tively. This results in a new operator i',(?<-, <.+) which is monotonic in <+,
anti-monotonic in <-, and from which the original operator .0 can be ob-
tained by diagonalizing. (This separation of variables is a key feature of
Freyd's recent analysis of recursive types.)

- Secondly, the new operator V. is used to give simultaneous inductive defini-
tions of positive and negative versions of the formal approximation relation.

- Lastly, these positive and negative versions are proved equal, and so by con-
struction constitute the required relation. The proof of equality is a simple
fixed point induction argument. It makes use of a key property of recur-
sively defined domains, namely that they are 'minimal invariants' for their
associated domain constructor: see Definition 2.

Finally in Sect. 4 we indicate an important aspect of the above method of con-
struction, namely that it not only produces a suitable relation, but also charac-
terizes it via a 'universal property' (in the category-theoretic sense). It is this
universal property which gives rise to the reasoning principles established in
[8, 9].
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2 Computational adequacy

In this section we review the standard approach to proving computational ad-
equacy, using a very simple untyped functional programming language £ to
illustrate what is involved. £ is an untyped version of Plotkin's call-by-name
PCF [10]. Its expressions are given by:

M ::= x variables
n numerals
suc(M) successor
pred(M) predecessor
if M = 0 then M else Al conditional
Ax.M function abstraction
MM function application

where x runs over a fixed, infinite set of variables, and n runs over the set of
integers, Z. Function abstraction is the only variable-binding construct (occur-
rences of x in M are bound in Ax.M). We denote by M[M'/x] the result of
substituting an expression M' for all free occurrences of x in M (subject to the
usual conventions about renaming bound variables if necessary to avoid variable
capture).

Let Prog ('programs') denote the collection of closed expressions in C, i.e.
those with no free variables. We denote by Val ('values') the subset of Prog
consisting of all cancnica! forms, which here means all closed expressions that
are either numerals n or function abstractions Ax.M. An operational semantics
for £ can be given via an evaluation relation

P4V (P E Prog, V E Val)

which is the subset of Prog x Val inductively defined by the rules in Table 1.
The last rule embodies the non-strict, or 'call-by-name' scheme for evaluating
function applications.

Table 1. Rules for evaluating programs in C.

P P_ P n n+1

V4V suc(P) 1n + 1 pred(P) 4 n

P4O Q4V P4r_ R 4 V

(if P = 0 then Q else R) 4 V (if P = 0 then Q else R) 4 V

P 4 Ax.AI AI[Ql/x] 4 1
PQ 41
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Denotational semantics for expressions in C can be given using a solution to
the domain equation

D - (Z + (D -4 D)).(1)

Here we can take 'domain' to mean a partially ordered set with a least element I
and possessing least upper bounds U2i<• di of all countable chains do C_ d, C ---.
The domain on the right-hand side of (1) is the lift of the disjoint union of the
set of integers Z (discretely ordered) with the domain of continuous functions
D -4 D (ordered pointwise). Thus a domain D is a solution to (1) if it comes
equipped with continuous functions

num: Z -- + D

fun: (D-+ D) -4 D

which combine to give an order isomorphism between the disjoint union Z +
(D-4D) and {d E D I d 0 1}. Given such a D, one can assign to each £-
expression M and each environment p (a finite partial function from the set of
variables to D) whose domain of definition contains the free variables of M, an
element

[Mip E D

The definition of IM]p is by induction on the structure of M and is quite stan-
dard; for the record, we give the clauses of the definition in Table 2. The clause
for Ax.M uses the notation p[x ý-4 dj to indicate the environment mapping x to
d and otherwise acting like p.

If an environment p' extends p, then [Mlp' = [M~p. In particular for pro-
grams P E Prog, i.e. for closed expressions, [Pip is an element of D which is
independent of p, and which we write simply as IP]. The following property can
be established by induction on the derivation of the evaluation P 4 V.

Proposition 1 (Soundness). If P 4 V then [P] = [V].

Of course one cannot expect the converse of this soundness property to
hold, since function abstractions are canonical forms whether or not the body
of the abstraction is fully evaluated. For example [Ax.suc(O)]- = [Ax.11, but
Ax.suc(O) # Ax.! does not hold. However, if JPJ = [VJ, then since (from Ta-
ble 2) the denotations of canonical forms are non-bottom elements of D, one
at least has that [P] 4 1. D is called computationally adequate if for all pro-
grams P, (P] 0 _L holds (if and) only if P # V holds for some canonical form
V. The point of this property is that it permits observational equivalence of
C-expressions to be established via equality of denotations: see Meyer (5].

Whilst the soundness property of Proposition 1 holds for any domain D which
is a solution for the domain equation (1), computational adequacy only holds if D
is a suitably minimal solution. One way of expressing this minimality, essentially
due to D. Scott, is as follows.
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Table 2. Denotations of C-expressions.

[xlP = p(x)

[nap = nurn(n)

Snum(n + 1) if [MA p = num(n)
[suc(M)]p = ± n otherwise

= num(n - 1) if [Al]p = num(n)
[pred(M)lp I otherwise

[1 [1']p if [Mf]p =- numn(0)

[if M = 0 then M' else M"Ip = [Al"p if [MAlp = num(n) and n $ 0
I. otherwise

S~[Ax.M]p = fun(,\d E D.[Aljp~x 1-4 d])

fMI •(JAPI'p) if [AIJP = fun(f)
,[M Ml =I I otherwise

Definition 2 (Minimal invariant property). Let P(-) 'f (Z+(-) -4(-))±.

An invariant for P• is a domain D equipped with an order isomorphism i : D
O(D). Such an invariant is minimal if the identity function idD E (D -4 D) is the
least fixed point of the continuous function 65, : (D -* D) -4 (D -4 D) which
maps e E (D -+ D) to i-'l(e)i. Here 4P(e) : O(D) -4 4P(D) is the function
which is the identity on I and integers, and acts on functions by pre- and post-
composing with e. Thus if the isomorphisln i is described in terms of functions
num : Z -4 D and fun : (D -4 D) -4 D as above, then

I nu.n(n) if d = num(n)

6p(e)(d) = m un(e of o e) if d = fun(f) (2)
I if d= I

for all e E (D -4 D) and all d E D.

Theorem 3 (Computational Adequacy). If (D, i) is a minimal invariant
for (Z + (-) -+(-))±, then the denotational semantics of C in D is compu-
tationally adequate, i.e. for all P E Prog

3V(P 4 V),#> [P] 5 J1

The statement of this theorem appears more general than corresponding re-
sults in the literature, which refer to the computational adequacy of a particular
domain. However it is not really so general, since one can show that
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- the minimal invariant property characterizes solutions to domain equations
uniquely up to isomorphism; and

-- the solutions to domain equations D 5 O(D) (for a wide class of domain
constructors 0(-)) constructed via any of the several methods available in
the literature (such as via colimits of embedding-projection pairs: see [4,
Sect. 10.1]; or via Scott's 'information systems': see [15, Chap. 12]) yield
minimal invariants. Indeed, the minimal invariant property amounts to the
fact, familiar from the 'local' characterization of colimits of chains of embed-
dings [14, Theorem 2], that any element d of a recursively defined domain
recX.P(X) can be expressed as the least upper bound of a chain of projec-
tions of the element:

d =L] 7r (d), where S 1t(d) = _
i<W I ri+1 (d) = 4(7i) (d).

However, it seems a step forward to have an abstract criterion on solutions of
domain equations that suffices for computational adequacy. Moreover, the key
construction needed in the new proof of Theorem 3 which we give in the next
section, relies directly upon the minimal invariant property of D rather than
upon any particular concrete construction of the domain.

The classical method for proving Theorem 3 is an adaptation by Milne [6]
and Plotkin [10, 11] of Tait's use of 'computability' predicates in normalization
proofs. It relies upon the construction of a binary relation between domain ele-
ments and programs with the following properties.

Definition 4. Let D be a solution to (1). A formal approximation relation is a
binary relation < C D x Prog satisfying:

1. For all d E D and P E Prog, d <c P if and only if
either d = I_,
or d = num(n) for some n such that P 4 Li,
or d = fun(f) and P # Ax.Ai for some f and Ax.M such that for all d', P',

if d' < P' then f(d') < AI[P'/x].
2. If do E di g; d2 E_ ... is a chain in D with di < P for all i, then U_<• di < P.

Given such a formal approximation relation, for any expression Al, any envi-
ronment p whose domain of definition dorn(p) = {xi,...., x, } contains the free
variables in M, and any programs P1 , .... , P,,, it is easy to prove by induction
on the structure of M that

p(xl) < 1 P, A... A p(x,,) <g P,, I [MJp < M[P1/xi, .. . ,Pn/x•]

In particular, in case n = 0 we obtain for all programs P that

[P]•< P .
Hence if IPJ $ 1, then by the properties of < in part 1 of Definition 4, it follows
that P 4 V for some V, as required for computational adequacy.

Therefore, to complete the proof of Theorem 3 we need to demonstrate that
when D is a minimal invariant for (Z + (-) -+(-))±, there exists a relation <
as in Definition 4.
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3 A new construction of the relation <

Let us begin by pointing out why the existence of a relation <c as in Definition 4
is problematic. One can formulate the problem as one of solving a certain fixed
point equation. Let lRel be the set of all binary relations R C D x Prog which
contain {I_} x Prog and which satisfy condition 2 of Definition 4. In other words
a binary relation R is in Rel if and only if for each P E Prog, {d I (d, P) E R}
is an admissible subset of the domain D, i.e. chain-complete and containing I.
Define an operation 0 : -+el - TRel by:

O(R) " {(d, P) I d = _L V 3n(d = num(n) A P 4,-n) V
3f, Ax.M(d = fun(f) A P 4 Ax.M A

V(d', P') E R.(f(d), M[P'/x]) E R)}

Then a formal approximation relation is precisely an element <c E R'el satisfying
<c = 0(<1). It is easy to see that RZel is closed under taking intersections of
binary relations, and hence it is a complete lattice when ordered by inclusion,
C. However, q0 is not a monotonic operation for C (since the definition of O(R)
contains a negative as well as a positive occurrence of R), so we cannot appeal
to the familiar Tarski fixed point theorem to construct a fixed point for 0.

In the literature, two methods can be found for constructing relations on
recursively defined domains with certain non-monotonic fixed point properties.
One method, due to Milne, Plotkin and Reynolds, makes use of Scott's con-
struction of a recursively defined domain D • O(D) as the colimit of a chain of
embedding-projections Do -+ D1 -- + -', where the domain D, is obtained by
iterating the domain constructor P(-) n times, starting with the trivial domain
{I1}. Then <c can be constructed as an inverse limit of relations <n C D, x Prog
built up by iterating an appropriate action of P(-) on relations; see [12].

A second method, essentially due to Martin-L6f, applies only to Scott do-
mains (precluding the use of constructors like the Plotkin powerdomain) and
makes use of their presentation in terms of 'information systems' [13]. This
method hinges upon the fact that for each program P, {d I d <1 P} is in fact a
Scott-closed subset of D. Hence it suffices to construct the relation <1 only for
compact elements of D, since d <i P holds if and only if a < P holds for all com-
pact a with a _E d. Information systems provide a formal language for compact
elements of (recursively defined) Scott domains, and a <c P (a compact) can be
defined by a well-founded induction on the size of (a formal representation of)
a. See [15, Sect. 13.4].

Here we present a third method, which is more abstract than the above two
in that it relies upon the 'minimal invariant' property of Definition 2 rather
than either of the tchniques for giving concrete constructions of recursively
defined domains mentioned above. To begin with, following Freyd's recent work
on recursive types [1, 2, 3], we separate the positive and negative occurrences of
R in the definition of O(R). Thus given two relations R-, R+ E R.el, define:
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1(R-, R+) d_ {(d, P) d =I V 3n(d = num(n) A P . n) V

3f, Ax.M(d = fun(f) A P Jj Ax.M A
V(a•, P') E R-.(f (d'), M[P'Ix]) E R+)}•

Clearly 0 determines a monotonic function

R el'P x IZel -- + R el

where Rel is partially ordered via C and where ZelP has the opposite ordering.
Furthermore, € can be recovered from ip by diagonalizing:

O(R) = iP(R, R) . (3)

We remarked above that Rel is a complete lattice, with infima given by set-
theoretic intersection. Hence Re!rP x Rel is also a complete lattice. We obtain a
monotonic operator

R. elP x R el -+ Rel°P x 'Rel

on this complete lattice by 'symmetrizing' •,:

VA (R-, R+) Y (V,(R+, R-), V(R-, R+)) .

Now we can apply Tarski's fixed point theorem to obtain the least fixed point
of oi, which we will denote by (< -, <f+). Thus < - and <+ are given by simul-
taneous, inductive definitions. Using the fact that infima in Rel are given by
intersection, together with the definition of V§, these relations can be described
explicitly as follows:

< + •l{R+ E ReljI 3R E Rel(R- C O(R+, R-) A O(R-, R+) C R+)}

d-f d f{s E Rel VR-, R+E E el.

(R- C -(R+, R-) A O(R-, R+) C_ R+ * R- C S)}

All we need to know about (<-, <+) is that it is the least pre-fixed point of
0§. Writing out this least pre-fixed point property for i§ on 1Zel'P x Eel purely in
terms of 0 and Rel, we obtain the following characteristic properties of <-, <+
which have a mixed inductive/co-inductive flavour.

Lemma5. 1. <e- < (<+,-) and <,(<e-, <1+) =

2. For all R-, R+ E Rel, if

R- C_ (R+, R-) and V,(R-, R+) C R+

then
R- C <- and <+C R+

I.
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Theorem 6 (Existence of <i). When D is a minimal invariant for the domain
constructor (Z + (-) -(-))_, the relations <- and <+ are equal, and yield a
formal approximation relation as in Definition 4.

Proof. First note that by (3) and part I of Lemma 5, if <- = <+ then this
relation is a fixed point for the operation 0 and hence has the properties required
by Definition 4.

We split the equality <- = <+ into two inclusions. The inclusion <+ C <-
follows immediately from Lemma 5, since by clause 1 we may take R- =

and R+ = <- in clause 2. So it remains to prove that <- C <+.
It is only at this point that we need the minimal invariant property of D.

Recall that it says that idD is the least fixed point of the continuous function
6, : (D -+ D) -- (D -+ D) defined in (2). We introduce the following piece of
notation: given R, S E R•el and a continuous function e E (D -+ D), write

e:RCS

to mean that for all (d, P) E R, (e(d), P) E S. From the definition of 6
4, it is

straightforward to verify that

e : R C S ý 6,(e) : '(S, R) C i,(R, S)

So taking R = '-0 and S = <.+ and using part 1 of Lemma 5, we have that 4p
maps the set

{e• EJ- D I e : <i- c } (4)

into itself. Clearly this subset of D --* D is chain-closed and contains -L, because
of the admissibility condition elements of Kel satisfy. Hence by the familiar fixed
point induction principle (see [15, Sect. 10.2] for example), idD, being the least
fixed point of 60, lies in the subset (4). Thus idD : C <+. which is just to
say that -I C g.4+.

4 Further development

The method of construction of < we have given in this paper can be used quite
generally to construct recursively specified relations on recursively defined do-
mains without having to delve into the details of the construction of the domain.
Moreover, the construction applies to many different notions of 'relation' on a
domain. (Here for example, a relation on D has meant a subset of D x Prog.)
The construction can be phrased in terms of an abstract notion of 'relational
structure' on a category of domains and of the 'action' of domain constructors
on relations, due to O'Hearn and Tennent [7]. This general form of the construc-
tion is described in [9, Sect. 5]. That paper treats the case of unary relational
structures, but the method generalizes easily to n-ary relations. For example,
we believe that the recursively specified relation between two recursively defined
domains emploved by Reynolds to relate a direct and a continuation semantics



I~i 81

of an untyped functional language in [12] can be constructed by applying our
method to a suitable binary relational structure.

As pointed out in [9], the method of construction not only provides a simpler
construction of certain relations, but also characterizes these relations uniquely
via a 'universal property'. For instance, by virtue of Lemma 5 (and the fact that
<+ the formal approximation relation <1 is a 'mixed' fixed point in
the sense of the following definition.

Definition 7 (Mixed fixed point). Let (7?, <) be a partially ordered set and
let V : ROP x 1Z -+4 1 be a monotonic function. Then M E 1Z is a mixed fixed
point for tb if

A = O(M, M) (5)

and
VR, S E IZ(R < Vi,(S, R) A V!,(R, S) <5 S =ý> R <_ M < S) .(6)

Note that the mixed fixed point of V' is unique if it exists. Indeed, if R E 71
satisfies R = t(R, R), then (6) implies that R < M < R, i.e. R = M.

It is not hard to see that conditions (5) and (6) are equivalent to saying that
(M, M) is the least pre-fixed point of the monotonic operator

(R, S) -+( ,R), (!(,S))

on I7oP x R; or to saying that (Al, Al) is the greatest post-fixed point of that
operator. In fact Definition 7 is the special case for monotonic functions of the
condition on functors of mixed variance formulated by Freyd in his work on
'algebraically compact' categories [2, 3]. One can summarize the results in [9,
Sect. 5] as establishing that the a:gebraic compactness property of the category
of domains and strict continuous functions is inherited by categories of 'domains
equipped with relations' (for a very general notion of relation). As the rest of
that paper demonstrates, from the mixed fixed point property of recursively de-
fined relations it is possible to derive a number of induction and co-induction [8]
principles for reasoning about the properties of recursively defined domains.
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A Structural Co-induction Theorem
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Abstract. The Structural Induction Theorem (Lehmann and Smyth,
1981; Plotkin, 1981) characterizes initial F-algebras of locally continuous
functors P on the category of cpo's with strict and continuous maps.
Here a dual of that theorem is presented, giving a number of equivalent
characterizations of final coalgebras of such functors. In particular, final
coalgebras are order strongly-extensional (sometimes called internal full
abstractness): the order is the union of all (ordered) F-bisimulations.
(Since the initial fixed point for locally continuous functors is also final,
both theorems apply.) Further, a similar co-induction theorem is given
for a category of complete metric spaces and locally contracting functors.

1 Introduction

Consider a preorder (P, <) and a monotone function f : P --+ P. An element
q E P is a post-fixed point of f (also called f-consistent) if q :5 f(q). If the
collection of post-fixed points of f has a largest element, then this is also the
greatest fixed point of f. Defining p as the greatest post-fixed point of f is
sometimes called a co-inductive definition. (A typical example is a complete
lattice (P, g) and a monotone function f, which by Tarski's fixed-point theorem
has a greatest (post-)fixed point.) Being the greatest post-fixed point can also
be used as a proof method: in order to establish q _5 p, for q E P, it is sufficient
to prove q < f(q). This fact is sometimes called a co-induction principle.

A familiar example in computer science is the co-inductive definition of the
bisimilarity relation on a labelled transition system. It is defined as the greatest
fixed point of a monotone function on the lattice of relations on the states of
this transition system (see [Mil89]). An example of the above co-induction proof
principle can be found in [MT91], where it is used to prove the consistency of the
static and the dynamic semantics of a simple functional programming language
with recursive functions.

By generalizing preorders to categories C and monotone functions to functors
F : C --* C, a co-induction principle can be obtained for recursive data types,
which are often defined as fixed points. Post-fixed points of F are F-coalgebras
(A, a), and consist of an object A in C together with an arrow a : A -- F(A) (gen-
eralizing _<). These F-coalgebras form again a category, as the post-fixed points
of a monotonic function form a preorder. Arrows between two F-coalgebras
(A, a) and (B,/9) are arrows f : A --* B (in C) such that 63of = F(f) oc. A
greatest post-fixed point for a functor F is a final F-coalgebra (A, a): for any
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other F-coalgebra (B,13) there exists a unique arrow f : (B,i3) -+ (A,a). If
(A, a) is a final F-coalgebra then A is a fixed point of F (i.e., a is an isomor-
phism).

As will become apparent, the richer structure of categories allows for a num-
ber of different formulations of a co-induction principle for final coalgebras of
functors. For instance, let (A, a) and (B, f) be F-coalgebras, and suppose that
(A, a) is final. The following can be easily proved. For any ir : (A,a) --+ (B,'8):
if r is epi then ir is an isomorphism (cf. [Smy92]). Note that this generalizes
the fact that for an ordered set (P, •) and a monotone function f : P -, P: if
p, q E P, with p the greatest post-fixed point of f and q Ž p, then q <_ f(q) im-
plies p = q-another formulation of the co-induction principle mentioned above.

In particular, locally continuous (endo-)functors on the category of complete
partial orders will be investigated. These functors are well-known to have an
initial F-algebra (see [SP82]), which is at the same time a final F-coalgebra. A
structural co-induction theorem will be proved, giving a number of equivalent
characterizations for such final F-coalgebras. Maybe the most surprising and
interesting one is the equivalence between finality and so-called order strong-
eztensionality, stating that two elements are ordered if and only if they are
related by a so-called ordered bisimulation. Order-bisimulations generalize the
F-bisimulations of [AM89], which at their turn are categorical abstractions of
the notion of bisimulation of [Par8l, Mil89]. In the present paper, the defini-
tion of ordered bisimulation from [Fio93] is used, which generalizes the original
definition from [RT93] by the use of lax-homomorphisms.

The co-induction theorem (Section 5) is presented as and named after a dual-
ization of the structural induction theorem of [Plo8l] (but see also [LS81]), which
is repeated here in the Appendix. Part of this dualization is fairly straightfor-
ward; order strong-extensionality, however, does not arise as the dual of the
structural induction principle for w-inductive sets (clause (3) of the induction
theorem), nor do the corresponding parts of the proof. Note that because initial
algebras of locally continuous functors are also final, both the induction and the
co-induction theorem apply to them.

In Section 6, the co-induction theorem is used to extend the final semantics
approach of [RT93] (initiated in [Acz88]) to the ordered case: the unique arrow
from a coalgebra to a final coalgebra is shown to preserve and reflect the bisimu-
lation order. The paper is concluded by proving, in Section 7, a slightly adapted
version of the co-induction theorem for a category of metric spaces and locally
contracting functors, in very much the same way. This last result is illustrated
by the description of a metric hyperuniverse.

2 Preliminaries

Let C be a category and F : C --+ C be a functor from C to C. An F-coalgebra is
a pair (A, a), consisting of an object A and an arrow a : A -- F(A) in C. It is
dual to the notion of F-algebra: an F-algebra is a pair (A, a), consisting of an
object A and an arrow at: F(A) -- A in C.
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For instance, any preorder (P, <) is a category (with an arrow between two
elements if" they are order related) and post-fixed points of monotone functions
f z P --+ P are examples of f-coalgebras.

The collection of F-coalgebras constitutes a category by taking as arrows
between coalgebras (A, a) and (B, ,6) those arrows f : A -, B in C such that
/3 o f = F(f) o a; that is, the following diagram commutes:

A f B

A
1 1)B

F(A) -.- F(B)
F(f)

Such an arrow f from (A, a) to (B,,3) is called a homomorphism of F-coalgebras.
For example, a graph (N, ---), consisting of a set N of nodes and a collec-

tion ---+ of (directed) arcs between nodes can be regarded as a coalgebra of the
(covariant) powerset functor P on the category Set of sets as follows: define
child : N -+ P(N) by, for all n E N, child(n) ={m I n -- m}. Arrows between
graphs (as coalgebras) are those mappings between the sets of nodes that respect
the child relation.

Definition 1. An object A in C is called final if for any other object B in C there
exists a unique arrow from B to A. It is the dual notion of initial object (unique
arrow from the object). Final and initial objects are unique up to isomorphism.

0

The following is standard (see, e.g., [SP82]).

Proposition 2. Every final F-coalgebra (A, a) is a fixed point of F (tn- zs, a
is an isomorphism). 0

3 Coalgebras in CPO±

Let CPO± be the category with complete partial orders (D, ED) as objects and
strict and continuous functions as arrows. For any two cpo's D and E, the set
hom(D, E) of arrows between D and E is itself a cpo, with the usual order: for
all f, g E hom(D, E),

f !5 9 = E E D, f(X) 9E

Moreover composition of arrows is continuous with respect to this ordering.
Therefore the category CPO± is called an order-enriched (or 0-) category ([SP821).

The structure on hom sets can be used to characterize a class of functors.
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DefinitionS. A functor F : CPO± -. CPO±. is locally continuous if, for any
two objects D, E E CPO•, the mapping

FD,R : hom(D, E) --* hom(F(D), F(E))

is continuous. Similarly, F is locally monotonic if FD,E is monotonic. 0

Next we recall the definition of the subcategory CPOE of CPO±. If D and
D' are cpo's and jt : D -, D' and j? : D' -- D are arrows in CPO± then
(pc6, AP) is called an embedding-projection pair from D to D' provided that

Nf pPo p" = idD and pu op --<hom(D',D') idD',

Note that the one half of such a projection pair determines the other. Let CPOE
denote the subcategory of CPO± that has cpo's as objects and embedding-
projection pairs as arrows. Note that also CPOE is an order-enriched category.
The following theorem is standard (see [SP82]).

Theorem 4. Every F : CPO± --- CPO± that is locally continuous can be en-
tended to a functor FE : CPOE -, CPOE that is w-continuous (preserving
colimits of w-chains): on objects FE is identical to F; and on arrows, FE is
given by

SFS(#e A)) =_ (F (,Ie), F (A)).

A fixed point of F is obtained by constructing an initial FE-algebra D in CPOE
as the colimit of the w-chain (D,,, cn )n, given by Do E {I}, the trivial embedding
Go : Do --+ F(Do), and for all n > 0, D,+ 1 - F(Dn), an+1 =_ F(a,4). 0

This fixed point D is an initial FE-algebra (D, i-1 ) in the category CPOE.
Moreover, it can also be seen to be an initial F-algebra in CPOj : the fact that D
is a colimit (of its defining chain) in CPOE implies, by a little exercise (Exercise
4.17 from [Plo8l]-to be precise), that it is a colimit in CPO, as well; then
the 'Basic Lemma', from [SP82], immediately yields the result. By the so-called
"limit-colimit coincidence" for 0-categories, which is extensively discussed in
[SP82], the dual of these facts also holds: Let CPOP be defined as (CPOE)OP,
the opposite category of CPOE. Thus arrows in CPOP are mappings p' for
which there exists a (unique) p' such that (pa, pP) is an embedding-projection
pair. The fact that (D, i-') is an initial FE-algebra (in CPOE) implies that
(D, i) is a final FP-coalgebra in CPOP. (Here Fp is defined analogously to
FE.) Again, (D, i) is a final F-coalgebra in CPO± as well, which can be shown
by dualizing the little argument above. Summarizing, we have the following.

Theorem 5. Let F : CPO± --+ UPO± be a locally continuous functor and let
(D, i- 1 ) be the (in CPOE) initial FE-algebra as described above. Then (D, i) is
a final FP-coalgebra in CPOP as well as a final F-coalgebra in CPO1 . 0
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4 Ordered F-bisimulation

In [AM89], a categorical generalization of the notion of bisimulation of [Par8l,
Mil89] has been given in terms of coalgebras of functors on a category of classes.
In [RT931, this definition is extended to functors F on arbitrary categories, yield-
ing the notion of F-bisimulation. The order on hom sets in the category CPO±
makes the following generalization of that definition possible. Let for the rest of
this section F : CPO± - CPO± be a functor.

Definition8. Let (A,a) be an F-coalgebra and R a relation on A with pro-
jections Wr1 , W2 : R --# A. (That is, R C A x A is a cpo (R, _R) such that the
inclusion function i : R --# A x A is continuous.) Then R is called an ordered
F-bisimulation on (A, a) if there exists an arrow /3 : R -, F(R) such that

R -l A 7r R

01 > a * 1

F(R) - F(A)- F(R)
F(wri) F(7r2 )

That is, Wr2 is a homomorphism of coalgebras (satisfying F(7r2 )o/3 0= o0 2 ), and
#r1 is a so-called laz-homomorphism: it satisfies F('rl) o _ a o 7rl.

The above definition is from [Fio93] and generalizes an earlier definition of
ordered bisimulation given in [RT93], which required the existence of two coal-
gebra mappings /31,•32 : R -- F(R) such that 31 S 02 and both wit and Wr2 are
coalgebra homomorphisms. The latter can be seen to be a special instance of the
definition given above by taking/3 =_/02. (Cf. the notion of simulation in [Pit92J;
see also [Pit93], where proof principles that combine induction and co-induction
are studied.)

The following definition generalizes the notion of strong eztensionality -Ased
in [Acz88] (in the context of non-well-founded set theory). It is sometimes called
internal full abstractness (cf. [Abr91]).

Definition 7. Let (A, a) be an F-coalgebra, and let EA be the order on A. Let
C-C A x A be defined by

E= U{R C A x A R is an ordered F-bisimulation on (A, a) }.

Elements a, b E A with a _EF b are called (ordered) F-bisimilar. Now (A, a) is
called order strongly-eztensional if, for all a, b E A,

a CA b 4 a EF b.
D]
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Ezample 1. A deterministic partial transition system is a pair (S, --*) consisting
of a set S of states and a transition relation --+C S x S that is a partial function.
We assume that S contains a minimal element i-s and is otherwise discretely
ordered. Furthermore we assume that {s E S ILs--* s} = 0.

Such transition systems can be represented as coalgebras of the functor (.)±:
CPO1. -i CPO±, which maps a cpo D to its lifted version (D)1 by extending D
with a new minimal element I-new. For (S, --+), define a S -* (S)±, for s E S,
by

a(s) s if s -. s'
Si-lnew otherwise.

An ordered (.)±-bisimulation (R,/3) on (S, a),

R -___S_ W R

(R) ------- (S) _L (R)±

satisfies for all s, t E S with s R t, and for all s' E S,

if s -- s' then 3t' E S, t --- t'and s' R t'.

Two states s and t in S are bisimilar whenever the number of subsequent tran-
sition steps that can be taken from t is at least as big as the number of steps
that are possible starting from s. If,3 would be such that also W1, is a coalgebra
homomorphism, then two states are bisimilar if they can take the same number
of steps. D

Ezample 2. A nondeterministic transition system with divergence is a triple

(S,--, T)

consisting of a set S of states, a transition relation --+C S x S, and a divergence
set T9 S. (This is the-for simplicity-unlabelled version of the transition sys-
tems with divergence considered in [Abr91].) One should think of states s in T
(notation: s 1) as having the possibility of divergence. Similarly s I is used to
indicate that s converges, that is, s not in T.

As above, we assume that S has a minimal element Is, satisfying now {s E
S I-ls--- s} = 0 = {s E S I s --- Ls} (so i-s is not involved in any transitions)
and in addition IsT. We shall only consider transition systems that are finitely
branching, i.e., for all 8 E S, the set fs' E S I s --- s'} is finite.

Transition systems with divergence can be represented as coalgebras of the
functor 'P: CPO± -+ CPO1 , which takes a cpo D to the Plotkin powerdomain
of its lifted version (D)±, extended (as in [Abr91]) with the empty set. In the
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ordering of P(D), the empty set is greater than the bottom element {f-new}, and
incomparable to all other elements; non-empty sets X, Y E 'P(D) are ordered
as usual by the Egli-Milner order. For (S, -, T) define a: S P-* (S) by, for all
,E S,

ia(s) E{s' E S I s --- s'} U {f-LnewE (S).L I s TI.

An ordered P-bisimulation (R, 3) on (S, a),

SR ,6S- R
>1 a *2

'P(R) -- P (S) - -P(R)P(7r(•) P(72)

satisfies for all s,t E S with sRt, and for all s',t' E S,

if s --+ s' then 3t' E S, t --, t'and s'Rt';

ifs I then ( t I and ift --+ t' then 3s' E S, s --+ s'and s'Rt' ).

(Relations satisfying these two conditions are called partial bisimulations in
[Abr9l].) For suppose sRt and s -- s'. By the ': finition of a, s' E a(s) =
a o wi(s, t), and because of >j, also s' E P((ri)(O((s, t)). Thus there exists t' E S
with (s',t') E 6((s,t)), satisfying s'Rt'; *2 implies t' E a(t) whence t -- t'.

Next suppose s 1. Thus !newý a(s) and hence !-newý ?(iri)(1((s,i)), by
>1 and the definition of the Egli-Milner order. By the definition of P(ir1 ) it
follows that J-newV /((s, t)) (since for any X C (S)±, P(wi)(X) contains '-new
iffX does). Thus by *2, ac(t) does not contain I-new, that is, t 1. Further suppose
t -- t'. By *2, there is s' E S with (s',t') E 0((s,t)). By >_1 and the fact that
a(s) does not contain '-new (nor 1s), it follows that s' E a(s), thus s --+ s'.

Conversely, any relation R C S x S (not involving -Ls) satisfying the two
above conditions can be turned into a P-coalgebra (T,,3) by defining

T - R U ( {!-s} x S )

and/3 : T -+ P(T) by, for all sTt,

I((s,t)) =- {(s',t') E T I s -- s' and t -, t' and s'Rt'}
U {(Is,t') E TI sT and t --* '}

U {f-newE (T)± I T and t TI

It is left to the reader to verify that (T,/6) is an ordered P-bisimulation. fl
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5 A structural co-induction theorem

Next we formulate and prove the main theorem of this paper. (The definitions
of some of the categorical and order-theoretic notions used here, can be found
in the Appendix.)

Theorem 8. Let F : CPO . --* CPO. be a locally continuous functor. Let (A, at)
be an F-coalgebra. Then of the following siz statements, (1), (2), (2'), (4) and
(5) are equivalent and all imply (3). If F moreover weakly preserves ordered
kernel pairs then all statements are equivalent.

1. (A, a) is a final F-coalgebra.
2. ar is epi; and for any F-coalgebra (B,/3) and coalgebra homomorphism e

(A,a) --# (B,f3): if e is epi then it is an isomorphism:

A e B

PF(A) -- F(B)
F(e)

2' As 2., but with epi replaced by dense-epi, twice.
3. a is dense-epi and (A, a) is order strongly-eztensional; that is, if EA is the

order on A then

9;A= U{R C A x A I R is an ordered F-bisimulation on (A,a) }.

4. a is an isomorphism and IA = 14h. a- o F(h) o a (the least fized point).
5. (A, at) is mazimally-final: it is a final F-coalgebra and for any F-coalgebra

(B, /3) the unique coalgebra homomorphism e : (A, a) --+ (B, /3) is maximal
among the laz-homomorphisms between (A, a) and (B, /3); that is, for any
f : B -- A, if aof < F(f)o/3 then f < e.

Schematically:

1 # 2 * 2 €4 4* 5 > 3,

3 + F weakly preserves ordered kernel pairs =- 2 .

Proof:
(1) => (2): By Proposition 2, a is an isomorphism and hence epi. Consider an
epi e : A --+ B and suppose e : (A, a) -* (B, /3) is a coalgebra homomorphism.
Since (A, a) is final there exists a unique h : (B,/3) -. (A, a). Thus both 1 A and
h o e are arrows from (A, a) to itself. By finality h o e = IA. From

(eoh)oe = eo(hoe)

= e o IA

= IB o e
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and the fact that e is epi, it follows that e oh = hg.
(2) =• (1) First we observe that a is an isomorphism, which follows from
applying (2) to the following diagram (note that here the fact is used that a is
epi):

QA F(A)

F(A) - F(F(A))

Let (D, i-) be the initial F-algebra from Theorem 4. We saw (Theorem 5) that
(D, i) is a final FP-coalgebra (in CPOP). Since a is an isomorphism it is also a
projection, hence there exists a projection e : A -* D, which (by the construction
of D) is also an arrow of coalgebras e: (A, a) --* (D, i). Now every projection is
epi and by applying (2), e can be seen to be an isomorphism. Because (D, i) is
a final F-coalgebra in CPO.L-again by Theorem 5-and (A, a) and (D, i) are
isomorphic coalgebras, it follows that also (A, a) is a final F-coalgebra.
(1) -* (2') : Inspection of the above two implications tells us that their proofs
remain valid when epi is replaced by dense-epi.
(1) =• (4) : The finality of (A, a) implies that a is an isomorphism. Since F
is locally continuous the function Ah.a-I o F(h) o a is continuous. Define g -
ph. c- 1 o F(h) oa. It is immediate that a og = F(g) oai, thus g: (A, a) --+ (A, a).
By finality, g = 1A.
(4) =* (2) : Since a is an isomorphism it is also epi. Consider an epi e : (A, a) -*

(B,fl). We prove that e is an isomorphism. Let g - uh. a- 1 o F(h) o 3. Then
a o g = F(g) o 0, and we have the following diagram:

g eB --A e B

F(B) - F(A) --.- F(B)
F(g) F(e)

Next we show that g o e = 1A from which it follows-as in the proof of "(1) =
(2)"-that e o g = 1B, using the fact that e is epi. First we prove g o e < 1A,
using the fixed-point definition of g:

* (AbEB..LA)oe=AaEA.±A<lA.
* Suppose g o e < •A, then

a o F(g) o3oe = o- a F(g) o F(e) o a

= a 1 o F(goe) oa

< 1A
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since, by assumption, g o e < 1A, and the facts that a is an isomorphism and
F is locally (continuous and hence) monotonic.

Next we shall use IA = jh. a 1 o F(h) o a from (4) to prove IA g o e:

e AaEA.-A<_goe.
e Suppose h < g o e. Then

a- o F(h) o a < (since F is locally monotonic)

a-I o F(g o e) o a

= o1 o F(g) o F(e) o a

= a- o F(g) o,6 o e

_-1 ocaogoe

g o e.

(1) =:ý (5) : Let f: (B,fP) -+ (A,a) be a lax-homomorphism. By Proposition 2,
a is an isomorphism. Define a sequence of functions from B to A inductively by

e0 = f,

e,+ =-- a- 1 o F(en) o,6.

Then (e.). is a chain (f < a 1 o F(f) o 03 because f is a lax-homomorphism)
and its least upperbound e satisfies

e = -Uen

= U a-' o F(eC)o 0

= (by local continuity of F)

a 1 o F(Uen)o/0

= a - o F(e) o0l.

Hence e is the unique coalgebra homomorphism from (B, i3) to (A, a). It follows
from the definition of e that f < e.
(5) = (1): trivial.

(4) = (3) : The fact that a is an isomorphism implies that it is dense-epi. We
have to show that

CA= U{R C A x A I R is an ordered F-bisimulation on (A, a) }.

The inclusion from left to right follows from the fact that CA is an ordered
F-bisimulation on (A, a): First observe that CA, with the inherited order from
A x A, is a cpo. Next define A: A --+[CA by, for all a E A, A(a) -< a, a > and
,O :EA--- F(EA) by

6=- F(A) o a o 7r2.
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Then (EA, ,3) is an ordered F-bisimulation on (A, a):

€1 IF 2
CA A E_:A> )3

F(A) FA

F(wi) F(ir2 )

since

a a l = (because W1 a A = IA)

F(w, oa ) o a o w,
< F(lir) o F(A) o a 0 W2

= F(wr) ofl,

and

a a ¢2 = F(¢ 2 o A) o a a'2

= F(W 2) o.

Conversely, consider an ordered F-bisimulation (R,,/) on (A, a):

R ______ R

F(R) - F(A) - F(R)
F(iri) F(2)

We prove R C [:A or rather, equivalently, ir, _< 7r2. We use fixed-point induction
on IA (which by (4) is equal to ph. a-I o F(h) o a) to show IA 0 7r, _< 72:

e (Aa E A. ±A) o r _< 7r2.

& Suppose h o 7r, _< 2. Then

a- 1 oF(h) oa o ir< a-I o F(h) o F(ri) o0O
=a-1 o F(ho ?r) o

<(because h o 7, !5 7r"2 and F is locally monotonic)ia-1 oF(w2) o)3
=a -1o0o0 2

= 2
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(3) =* (2') : We prove this implication, from which the equivalence of (1) - (5)
follows, under the assumption that F weakly preserves ordered kernel pairs.

By assumption a is dense-epi. Consider a homomorphism of coalgebras e
(A, a) --+ (B, f) and suppose e is dense-epi. We shall prove that e is an isomor-
phism. Define

R. -{(a,a') E A x A I e(a) E_ e(a')}.

The continuity and the strictness of e imply that R. is a cpo. Below it is shown
that it can be extended to an F-coalgebra (R., -/), such that (R., y) is an ordered
F-bisimulation on (A, a). Then from the order strong-extensionality of (A, a) it
follows that R. CCA. Hence e is a strict order-monic and since e is also dense-epi,
it is an isomorphism (see the Appendix).

For the existence of an arrow - : Re --+ F(Re) the assumption that F weakly
preserves ordered kernel pairs will be used.

W2 A

ee

3- A eB

CL

F(72)
"F(Re) _ F(A) 13

F\(irl)F(e)

F(A) F(B)
F(e)

Since (R., wl, 7 2 ) is an ordered kernel pair for e, (F(R,), F(Irl), F(7 2 )) is by
"assumption a weak ordered kernel pair for F(e). Now

F(e) o a o i = /3 o e o ir,

0 o3 e o0W
oF(e) o a o 7r2 ,

from which the existence of an arrow 7 : R, -- F(R,), with a o w, _5 F(irl) o7

and a o W2 = F(v 2) 0 7 follows. Thus Re is an ordered F-bisimulation. 0

The fact that the final F-coalgebra (D, i) from Theorem 4 is order strongly-
extensional was already proved in [RT93]. (The proof given there makes explicit
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use of the way D is constructed (as the projective limit of its defining w-chain).)
The equivalence of finality and maximal-finality ((1) and (5)) is due to [Plo9l].

The main contribution of the above theorem is the proof of (3) =ý, (2),
showing-for functors that weakly preserve ordered kernel pairs-that coalge-
bras are final if they are strongly extensional. Most functors (lifting, sum and so
on) weakly preserve ordered kernel pairs.

Note that for locally continuous functors on CPO± there always exists an
arrow from any F-coalgebra to an F-coalgebra (A, a) for which a is an isomor-
phism. For such functors, therefore, a final coalgebra is completely determined
by the uniqueness part in the definition of finality. This explains why order
strong-extensionality can be shown to be equivalent to finality.

Clearly, the clauses (1), (2) and (4) are fairly straightforward dualizations
of the corresponding clauses in Plotkin's induction theorem (repeated here as
Theorem 10 in the appendix). The proofs of the equivalence of (1) and (2), and of
the implications (1) =, (4) and (4) =:> (2) are immediate from the corresponding
parts in the proof of the induction theorem. Clause (3) above cannot be seen as
a dualisation of any of the clauses of Theorem 10. For a further remark on this
poin see Section 8.

6 Ordered final semantics

Final coalgebras are furthermore characterized by the following theorem, which
shows that they present a natural way of modelling bisimulation.

Theorem 9. Let F : CPO± --* CPO± be a locally continuous functor, and
suppose that F weakly preserves ordered kernel pairs. Let (A, a) be a final F-
coalgebra and let f : (B,,3) --+ (A,a) be a coalgebra homomorphism (which is
unique by finality of (A, a)). For all b, b' E B,

b E_• V' 4 f(b) C_., f(Y').

Proof:
From left to right: consider b, b' E B with b EF b'. Let (R, -) be an ordered
F-bisimulation on (B,f/) with bRb'. From

Ir1 f f ___2

R -B.A B - A- B R

F(R) - .- F(B) -.- F(A)-.---- F(B)-.----- F(R)
F(Ti) F(f) F(f) F(7 2 )

it follows that f o r, is a lax-homomorphism from (R, y) to (A, a) and that
f 0•02 is the (by finality of (A, a)) unique coalgebra homomorphism from (R, 7)
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to (A, a). It follows from Theorem 8 (clause (5)) that f o w, < f a W2 . Thus
f(b) CA f(b').

As in the proof of (3) =:ý (2') in Theorem 8, it can be shown that the ordered
kernel pair

R1  {(b,b') E B x B I f(b) CA f(b'))

of f can be extended to an ordered F-bisimulation (Rf, -y) on (B, /3) (using the
fact that F weakly preserves ordered kernel pairs), from which the implication
from right to left follows. o

The unique arrow f : (B,f3) -+ (A,a) could be called (having in mind, e.g., a
transition system represented by (B,13)) the ordered final semantics for (B, 3).
Cf. the final semantics of [Acz88, RT931, where symmetric F-bisimulations are
used.

The above theorem can be seen as yet another characterization of final coal-
gebras, since its reverse also holds: if (A, a) is an F-coalgebra such that for all
coalgebra homomorphisms f : (B, /3) -- (A, a) and, for all b, bV E B,

b E_ bY * f(b) _A f(bY),

then (A, a) is a final F-coalgebra. Take (A, a) for (B, /3) and 1A for f to see that
(A, a) is order strongly-extensional (using in addition the fact that CA is itself
an ordered F-bisimulation); by Theorem 8, (A, a) is final.

Ezample 1, continued. Let N be the set of natural numbers with the usual order-
ing and extended with a top element w, and let 0 : N -- (N)± be the obvious iso-
morphism. Then (N, 0) is a final coalgebra of the functor (')± : CPO± --• CPO±.
For a deterministic partial transition system (S, -- ), represented as a (')±-
coalgebra (S, a), the final semantics f : (S, a) --# (N, 4) maps a state s E S
to the natural number (possibly w) corresponding to the number of transition
steps that can be taken starting in s. 0

Ezample 2, continued. The functor P : CPO± --* CPO±, which takes a cpo
D to the Plotkin powerdomain (with empty set) of (D)± is locally continuous
(see [Plo8l]) and has by Theorem 5 a final coalgebra (P, 40). By Theorem 8, we
know that (P, 0) is order strongly-extensional, thus finding back (an "unlabelled"
version of) Proposition 3.10 from [Abr9l]. Since P can be shown to preserve
weakly ordered kernel pairs, Theorem 9 applies. Thus for the final semantics
f : (S, a) --- (P, ,O) of a nondeterministic transition system (S, -- , T), represented
as the 'P-coalgebra (S, a), we have for all s, t E S,

3 c_ t ý* f(s) ECp f(t),

sometimes called the full abstractness of f. (Similar results are obtained in
[Abr9l] by means of Stone duality.) 0
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7 Metric spaces

In [AM89], bisimulations are defined as coalgebras (R,fl) (in a category of
classes) for which both projections w1 and Wr2 are coalgebra homomorphisms
(not only r 2 ). For such symmetric bisimulations, the category of complete met-
ric spaces offers a suitable framework as well. It has been studied in great detail
in [RT93]. In this section, we shall point out that the preceding co-induction
theorem also applies to metric spaces, and next use the resulting theorem to
prove some properties of a metric hyperuniverse.

Let CMS be the category with (1-bounded) complete metric spaces (D, dD)
as objects and non-expansive (non-distance-increasing) functions as arrows. (For
basic facts on metric spaces see, e.g., [Eng89].) Hom sets in CMS are themselves
complete metric spaces, using as a metric on arrows the usual pointwise exten-
sion. A functor F on CMS is locally contracting if there exists e with 0 < e < 1
such that, for all D, E, the mapping FD,E is a contraction with factor e. In
[RT93], it is shown (extending earlier results of [AR89]) that every locally con-
tracting functor F has a unique fixed point which is both an initial F-algebra
and a final F-coalgebra.

A 'metric version' of Theorem 8 is obtained by dropping-both in the formu-
lation of the theorem and in its proof-the word 'order(ed)' everywhere; consid-
ering in clause (3) only symmetric bisimulations; replacing in clause (4) the least
fixed-point characterization of IA by the statement that it is the unique fixed
point; and by dropping clause (5) (the notion of lax-homormorphism does not
make sense in a metric setting). Note that the definitions of 'weakly preserving
kernel pairs' and 'dense-epi' can be adapted straightforwardly. The proof can
be almost literally copied: the proof of (4) => (2) becomes somewhat simpler
because of the uniqueness of IA; and in the proof of (3) => (T), the kernel pair
of f should be taken rather than the ordered kernel pair.

Example 3. Let Pc, : CMS -- CMS be defined by, for all (D, dD) E CMS,

P,(D) E {X C D I X is compact (w.r.t. dD) }.

(The metric on Pc,(D) is the so-called Hausdorff metric.) For every c with
0 < c < 1, the 'shrinking' functor id, is given by, for any (D, dD),

id,((D, dD)) - (D,c. dD).

Clearly id. is locally contracting. Taking the composition 7, o id, (which we
shall by abuse of notation again denote by 7P,) yields again a locally contractive
functor. Thus there exists a fixed point

S: H

and (H, y) is a final P,-coalgebra. 0

Because the metric space H is isomorphic to the collection of its compact subsets
(note the presence of the 'metric shrinker' id,, though), it is an instance of a
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hyperuniverse. (See [FH92] for a general construction of hyperuniverses, and
[FH83] and [Acs88] for a hyperuniverse based on a non-standard collection of
axioms. Cf. [Abr88, MMO89, Rut9l].) By putting, for p,p' E H,

P' EH P p' E y(p),

H can be easily seen to contain all so-called hereditarily finite sets and their
limits (with respect to the metric on H). Note that these limits need not be
hereditarily finite themselves.

As pointed out in [Abr88], the standard axioms of set theory hold in H,
with topological versions of separation, replacement and choice. By (the metric
version of) Theorem 8, strong extensionality can be added to these axioms: two
sets in H are equal if and only if they are 7P,-bisimilar. E.g., for p, q E H with
(omitting the isomorphism -y)

p={p}, q={q},

p = q follows from the fact that {(p, q)} is a P,-bisimulation on H.

8 Conclusion

As was observed above, the characterization of final coalgebras in terms of strong
extensionality (clause (3) of Theorem 8) does not have a dual counterpart among
the clauses of the structural induction theorem (Theorem 10 in the Appendix).
However, the latter theorem can be extended with a fifth, equivalent clause
that comes close to being the dual of clause (3) of Theorem 8, as follows. An
F-congruence on an F-algebra (A, a) is an F-algebra (R, 0) with R a relation
on A such that the projections 7 1 , W2 : (R, 0) -. (A, a) are homomorphisms of
F-algebras. This definition generalizes the standard notion of a congruence on E-
algebras. Note that it is dual to the definition of symmetric bisimulation. Clauses
(1) through (4) of Theorem 10 can be shown to be equivalent to the following
statement: there exists P : F(A) -- A (with A ={(a,a') E A x A I a = a'})
such that (/,3) is the smallest F-congruence on (A, a).
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9 Appendix

Some categorical notions

Let C be a category. An arrow m : A --+ B is called monic if for any two arrows
f, g : D --+ A the equality m o f mo g implies f = g. An arrow e : A --+ B is
called epi if for any two arrows f, g : B -- D the equality f o e = g o e implies

f=g.
A kernel pair (see [Lan71]) for an arrow f : B -- C in C consists of an object

A and a pair of arrows h: A -- B and k : A -, B such that f o h f o k, and
such that for any other object A' and arrows h' : A' -- B and k' : A' --+ B with
f o h' = f o k', there exists a unique arrow e : A' -- A satisfying h' = h o e and

k' = k o e:
A'

e k

\A k B

B -C

Ordered kernel pairs

In C = CPO±, the above definition can be generalized as follows. An ordered
kernel pair for a function f: B -- C in CPO± consists of a cpo A and a pair of
functions h : A -- B and k : A -- B such that f o h < f o k, and such that for
any other cpo A' and functions h' : A' -, B and k' : A' - B with fohh' < fok',
there exists a unique arrow e : A' --# A satisfying h' = h o e and kI' = k e.

The cpo A with functions h and k is called a weak ordered kernel pair for

f if for any other cpo A' and functions h' : A' -- B and k' : A' --+ B with
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f o h' < f o V, there exists an arrow e : A' -- A (not necessarily unique)
satisfying h' < h o e (rather than h' = h o e) and k' = k o e.

A functor F : CPO±. --+ CPO±. weakly preserves ordered kernel pairs if it
transforms ordered kernel pairs for functions f into weak ordered kernel pairs
for F(f).

Some further order-theoretic notions

Let D be a cpo and consider a continuous function f : D -* D. (That is, f
preserves least upperbounds of w-chains.) Then f has a least fixed point, which
is denoted by liz. f(z).

A subset P C D is called w-inductive if every chain (X,•) in P has its least
upperbound in P.

The following is called the principle of fixed-point induction. Let f : D - D
be continuous and let P C D be w-inductive. Then

(_EP A (VxED[z EP =f()EP]) • (sa.f(x)) EP

A strict order-monic (see [Plo8l]) is a strict continuous function (in CPO.L)
m : A -+ B such that for any two arrows f, g : D -- A the inequality mof _< mog
implies f < g. It is easy to see that m is a strict order-monic if and only if, for
all a, a' E A,

a C a' ý* m(a) C m(a').

A strict continuous function e : A -- B is dense-epi if it is epi and moreover
satisfies cl(e(A)) = B, where cl(e(A)) is the least subset of B that contains e(A)
and that is closed under least upperbounds of w-chains. (In fact the condition
cl(e(A)) = B can be shown, by transfinite induction, to imply the fact that e is
epi. See [LP82] for an explanation why "Epis need not to be dense".)

If m : A --+ B is both a strict order-monic and dense-epi, then m is an
isomorphism: m(A) = cl(m(A)) since e is a strict order-monic, and cl(m(A)) =
B, since e is dense-epi. Thus e is a bijective order-embedding.

The structural induction theorem

In [Plo8l] (Theorem 4 of Chapter 5), the following theorem is proved. (See also
[LS81] for a similar result.)

Theorem 10. Let F : CPO.L --- CPO± be a locally continuous functor which
preserves inclusions. (That is, if t: A C B then F(t) : F(A) C F(B).) Let a:
F(A) -+ A be an F-algebra. Then the following four statements are equivalent:

1. (A, ci) is an initial F-algebra.
2. a is a strict order-monic, and for every strict order-monic m : B --+ A: if

there exists 0 : F(B) --+ B such that m: (B, 3) -. (A, a) is a homomorphism
of algebras (i.e., m o 63 = c o F(rn)), then m is an isomorphism.
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3. a is a strict order-monic, and for every w-inductive P C A the following
principle of structural induction holds:

(/EP A (VzEF(A)[xEF(P)#a(z)EP])) =* P=A

•. a is an isomorphism and IA = ph. a o F(h) oa-1 .

The assumption that F preserves inclusions is only used to prove the equiv-
alence of (2) and (3). This property is satisfied by most covariant functors.
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Abstract. A new metric domain of processes is presented. This do-
main is located in between two metric process domains introduced by
De Bakker and Zucker. The new process domain characterizes the col-
lection of image finite processes. This domain has as advantages over
the other process domains that no complications arise in the definitions
of operators like sequential composition and parallel composition, and
that image finite language constructions like random assignment can be
modelled in an elementary way. As in the other domains, bisimilarity
and equality coincide in this domain.
The three domains are obtained as unique (up to isometry) solutions of
equations in a category of 1-bounded complete metric spaces. ii ae case
the action set is finite, the three domains are shown to be equal (up to
isometry). For infinite action sets, e.g., equipollent to the set of natural
or real numbers, the process domains are proved not to be isometric.

Introduction

In semantics, a process is usually understood as a behaviour of a system. Labelled
transition systems have proved to be suitable for describing the behaviour (or
operational semantics) of a system (cf. [Plo8l]). A labelled transition system
can be viewed as a rooted directed graph of which the edges are labelled by
actions (cf. [BK87]), or as a tree of which the edges are labelled by actions,
which is obtained by unfolding the graph. The semantic notion of a process is
usually defined by means of a suitable behavioural equivalence over the labelled
transition systems. Bisimilarity (cf. [Par8i]) is commonly accepted as the finest
behavioural equivalence over labelled transition systems (cf. [Gla90, Gla93]).

In this paper, processes are studied from the point of view of denotational
semantics. In the literature, domains of processes are found for several mathe-
matical structures. For complete partial orders, process domains are presented
by Milne and Milner in [MM79], and Abramsky in [Abr9l]. Aczel introduces in
[Acz88] a process domain for non-well-founded sets. For complete metric spaces,

"This work was partially supported by the Netherlands Nationale Faciliteit Informa-
tica programme, project Research and Education in Concurrent Systems (REX).
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process domains are presented by De Bakker and Zucker in [BZ82, BZ83], and
Golson and Rounds in [GR83, Go184].

Aczel shows in [Acz88] that processes can be viewed as labelled transition
systems. Bisimulation relations on these labelled transition systems induce bisim-
ulation relations on the processes. A process domain is called strongly extensional
(or internally fully abstract) if bisimilarity - being the largest bisimulation re-
lation - coincides with equality, i.e. processes are bisimilar if and only if they
are equal. Abramnsky and Aczel prove that their process domains are strongly
extensional. The process domains introduced by De Bakker and Zucker in [BZ82]
and [BZ83] are shown to be strongly extensional by Van Glabbeek and Rutten
in [GR89] and [Rut92].

The metric process domains introduced by De Bakker and Zucker in [BZ821
and [BZ83], which will be denoted by P1 and P2 in the sequel, and a third r
process domain, which will be denoted by P3 , are studied in detail in this pal
Processes can be viewed as trees (both finite and infinite in depth) of which t.
edges are labelled by actions, and which are absorptive, i.e. for all nodes of a
tree the collection of subtrees of that node is a set instead of a multiset, and
commutative. For example, the tree

A a a

is not a process, and

b b b

is the process obtained by absorption. Furthermore, the processes

a b anda/ x• and 1 •

are identified by commutativity. The processes are endowed with a metric such
that the distance between processes decreases if the maximal depth at which the
truncations of the processes coincide increases. All processes considered in this
paper are closed with respect to this metric. For example, the process

"-ý .../

+- +
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including the infinite branch is closed in contrast with the process not containing
this infinite branch.

A process is called finitely branching if each node has only finitely many
outgoing edges. A process is called image finite if, for each action, each node has
only finitely many outgoing edges labelled with that action. A finitely branching
process is image finite, but an image finite process is in general not finitely
branching. For example, the process

a /i Ll aL t2 . . .

is image finite but not finitely branching.

S Il €-I I.

is an example of a general (or unrestricted) process being not finitely branching
nor image finite. The process domains P 1 , P2 , and P3 can be shown to correspond
to the collections of (finite in depth and)

9 general processes,
* finitely branching processes, and
* image finite processes.

For example, the correspondence between the process domain P3 and the col-
lection of image finite processes of finite depth will be accomplished &S follows.
First, the space of image finite processes of finite depth is completed. In this way,
a complete metric space of (finite and infinite in depth) processes is obtained.
Second, the completed space is shown to be isometric to the process domain P3 .

The three process domains can be related in the following way. The process
domain P2 can be isometrically embedded in the process domain P3 and the
process domain P3 can be isometrically embedded in the process domain P 1.
If the action set is finite, then the three process domains can be shown to be
isometric. If the action set is infinite, e.g., equipollent to the set of natural or
real numbers, then it can be demonstrated that the three process domains are
not isometric.

For Pi-processes, complications arise in the definitions of the following oper-
4 ators:

* sequential composition (cf. [BZ82, BM88]),
* parallel composition (cf, [BZ82, BM88, ABKR89, AR92]),
e trace set as defined by De Bakker et al. in [BBKM84], and
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e fairification as defined by Rutten and Zucker in [RZ92].

For example, it is not possible to give a (denotational) definition of the sequen-
tial composition of Pl-processes, which coincides with the operational definition
of the sequential composition. (Note that processes can be viewed as labelled
transition systems.) In [BM88], the sequential composition of PI-processes is
not well-defined. The definition of the sequential composition in [BZ82] is well-
defined, but does not coincide to the operational one. It can be shown that these
complications do not arise in the definitions of the operators mentioned above
on P 2- and P3-processes.

Unlike the process domain P2 , the process domain P3 makes an elementary
semantic modelling of image finite language constructions like random assign-
ment possible (cf. [Bre94]). (For a detailed overview of metric semantic models
the reader is referred to [BR92].)

Novel in the present paper are

* the process domain P3 , which can be shown to correspond to the class of
image finite processes and to be strongly extensional,

e the detailed comparison of the process domains P 1 , P2 , and P 3 showing that
the three process domains are isometric if the action set is finite and that
they are not isometric for infinite action sets, and

* the relation of the process domains P1 , P2 , and P3 with the classes of general,
finitely branching, and image finite processes, extending results concerning
the process domains P1 and P2 of [BZ82] and [BZ83I.

In the first section of this paper, some preliminaries concerning metric spaces
can be found. In the second section, the three process domains are introduced.
In the third section, the correspondence between P1 -, P2-, and P3-processes and
general, finitely branching, and image finite processes is studied. The process
domains are related as described above in the fourth section. In the fifth section,
the process domains are shown to be strongly extensional. In the sixth section,
some complications arising in the definition of the sequential composition of
P1 -processes are pinpointed. Furthermore, it is shown that these complications
do not arise in the definition of this operator on P3 -processes. The other three
operators, viz parallel composition, trace set, and fairification, are considered in
[Bre94].

In this paper, several definitions from other papers have been modified slightly
to stress the correspondence with the other definitions.

1 Metric spaces

Some preliminaries concerning metric spaces are presented. Only some nonstan-
dard notions, i.e. notions which are not found in the main text of [Eng89], are
introduced.

Contractive functions, which are called contractions, are introduced in
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Definition 1. Let (X, dx) and (X',dx,) be metric spaces. A function
f : X --+ X' is called contractive if there exists an -, with 0 < E < 1, such
that, for all x and x',

dX, (f (x), f (x')) ! 5 dx (x, x2).

These contractions play a central r6le in

Theorem 2 (Banach's theorem). Let (X, dx) be a complete metric space. If
f : X --+ X is a contraction then f has a unique fixed point fix (f). For all x,

lip f" (x) = fix (f)

where

fo (x) = x and f"+' (x) = f (f" (x)).

Proof. See Theorem II.6 of [Ban22]. 0

In this paper, several recursive definitions are presented (cf. Definition 12,
14, 15, 22, and 24). Banach's theorem can be used to prove the well-definedness
of these definitions (cf. [KR90]).

The embeddings to be introduced in Section 4 will be defined by means of
nonexpansive functions.

Definition 3. Let (X, dx) and (X', dx,) be metric spaces. A function
f : X --* X' is called nonexpansive if, for all x and x',

dx' (f (x), f (x')) !5 dx (x, x').

2 Three process domains

Three process domains are presented. These process domains are defined by
means of recursive domain equations.

In [AR,89], America and Rutten present a category theoretic technique to
solve recursive domain equations. The objects of the category are 1-bounded
complete metric spaces. With a domain equation a functor is associated. If this
functor satisfies certain conditions, then it has a unique fixed point (up to isom-
etry) which is the intended solution of the domain equation.

The recursive domain equations, by which the process domains are defined,
are built from an action set A, which is endowed with the discrete metric, and
the constructions described in

Definition 4. Let (X, dx) and (X', dx,) be 1-bounded complete metric spaces.
A metric on the Cartesian product of X and X', X x X', is defined by

dx xx' ((x, x),( , ')) = max {dx (x, t), dx, (x', £')}.

A metric on the collection of functions from X to X', X -- X', is defined by
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dx.-.x, (f, ') = sup { dx, (f (x), f' (x)) I x }.

A new metric on X is defined by

djp(x) (x, x') = ½ dx (x, x').

The Hausdorff metric on the set of closed subsets of X, Pj (X), and on the set
of compact subsets of X, P,.,, (X), is defined by

dp(x)(A,B) = max {sup{ inf { dx(x,x') Ix' E B} x xE A},
sup{inf{dx (x,x') x' E A} x E B}}

where sup 0 = 0 and inf 0 = 1.

The three process domains are introduced in

Definition 5. The process domains P1 , P2 , and P3 are defined by the recursive
domain equations

P1  P,•- (A x id 1 (Pi))
P 2 - P,7,, (A x id½(P2 ))
P 3 - A - P,,, (id½(P 3 ))

Processes as described in the introduction can be represented by elements of
these process domains. For example, the process

/\

is represented by the PI- and P2-process

{(a, 0), (b, 0)}

and by the P3-process
Ad' {Aa'" . 0} if a' = a or a' = b

a 10 otherwise

The process

/\

b

is represented by the Pi- and P2-process

{(a, {(b, 0)}), (a, 0)}
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and by the P3-process

Ad {po,p } if a' =a

a.0 otherwise

where

PO= Aall. { Aatt' . 01if a"t b

•0 otherwise

and

P1= Sal • 0.

Not every process can be represented in all three process domains. In Sec-
tion 4, we will show that the process domain P3 is located in between P1 and
P2, i.e. P2 can be isometrically embedded in P3 and P3 can be isometrically
embedded in P1 .

K.

. s............,..

Next, processes in the shaded regions of the above picture are presented. The
process

N) FA a2  . ..

is represented by the P1 -process

{(a,, 0) I n•E IN}.

However, this is not a P2-process, because the above set is closed but not com-
pact. The process is also represented by the P3-process
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A' " {,Aa" 0 0} if a' = an for some n

a 0 otherwise

The process

I I I
114j a I a2

is represented by the Pl-process

{ (a, {(an, 0)}) I n E IN }.

Again, this is not a P 2-process, because the above set is not compact. The process
can also not be represented by a P3-process. The obvious candidate

Aa'. { Pn n E IN }if a' = a
1 otherwise

where
SAa"= {Aa"'. 0} if a" = an

Ph 1t0 otherwise

is not a P3 -process, since the set

{p. I n E IN}
is not compact.

3 Finite processes

The three process domains are related to certain collections of finite (in depth)
processes. It is demonstrated that P1 -, P2 -, and P3-processes correspond to gen-
eral, finitely branching, and image finite processes, respectively.

The set of processes of finite depth is introduced in

Definition 6. The set Pj* of processes of finite depth is defined by

where

- I {0} if n = 0
SP (A x Pr-1) otherwise

Obviously, each Pj*-process is a P1-process. The P1 >-processes are endowed
with the restriction of the metric on the P1 -processes. The obtained metric space
is not complete. For example, the sequence (pn),. of Pl*-processes defined by
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f0 if n=0
pn = {(a, otherwise

is a Cauchy sequence but does not have a limit in Pj" (the sequence converges
to a process of infinite depth). The metric completion of the metric space of
P•-processes,*which is denoted by P1*, is shown to be isometric to the process
domain P1 in

Theorem 7. PT* • P1 .

Proof. See Theorem 2.11 of [BZ82]. El

The set of finitely branching processes of finite depth is introduced in the
following definition, in which 1-fi denotes the set of all finite subsets.

Definition 8. The set P2 of finitely branching processes of finite depth is defined
by

P U { P n E IN}

where

2 f {, } if n = 0
P2' = fi (A x P2-') otherwise

Similarly, the metric completion of the metric space of P2-processes is proved
to be isometric to the complete metric space of P2-processes in

Theorem 9. PF2- P2 -

Proof. See Theorem 3.2 of [BZ83]. El

The set of image finite processes of finite depth is introduced in

Definition 10. The set P* of image finite processes of finite depth is defined by

P = U I P3- I E IN

where

, I {AaO- 0} ifn=0
3P A -- Pfi (P"-1) otherwise

The process domain P3 can be shown to be isometric to the metric completion
of the metric space of P*-processes.

Theorem 11. P' -! P3 -

Proof. Similar to the proofs of the Theorems 7 and 9. Li
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4 Comparison of the process domains

The three process domains are related. It is shown that the process domain P2
can be isometrically embedded in the process domain P3 and that the process do-
main P3 can be isometrically embedded in the process domain P1. Furthermore,
if the action set A is finite, then the process domain P, can be isometrically
embedded in the process domain P2 such that the diagram

id

t'3 1>

id id

commutes. Consequently, if the action set A is finite, then the process domains
1',, P2, and P3 are isometric. If the action set A is infinite, then it can be proved
that the process domains P1, P2, and P3 are not isometric.

The embedding il from the process domain P2 to the process domain P3 is
introduced in

Definition 12. The embedding iI : P2 -" P3 is defined by

il (p) = Aa. {i, (p') I (a,p') E p}.

In order to prove the well-definedness of the above recursive definition of the
embedding il, a so-called higher-order transformation TPl, is introduced in

Definition 13. The higher-order transformation

(Pi, : (P2 -. P3 ) -" (P 2 -1 P 3 )

is defined by

Tli, (4')(p) = )ta. {V, (p') I (a,p') E p}.

In order to be well-defined, the higher-order transformation TP. is restricted
to nonexpansive functions, i.e.

lkf, E (P 2 -_1 P 3 ) -- (P 2 _1 P 3 ).

(The collection of nonexpansive functions from P2 to P3 , P2 -_' P3 , endowed
with the restriction of the metric on functions from P2 to P3 is a complete
metric space.) Although only continuity, which is implied by nonexpansiveness,
is needed in the well-definedness proof of the higher-order transformation 'Pi,
the restriction induces half of the proof that the embedding il is isometric (see
below). This higher-order transformation ýPi, can be shown to be contractive
(here the id. in the domain equation of process domain P3 is crucial). According
to Banach's theorem (cf. Theorem 2), the higher-order transformation /i, has a
unique fixed point which is the intended embedding it, i.e.

S= =fix ('10)
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Consequently, ii E P 2 _.' P 3 . To show that the embedding i, is isometric it is

left to prove that, for all p and p',

d(ii (p),ii (p')) > d(p,p').

This can be demonstrated by fixed point induction using Banach's theorem.
The embedding i 2 from the process domain P3 to the process domain P1 is

introduced in

Definition 14. The embedding i2 P3 -` P 1 is defined by

i2 (P) = {(a, i2 (p')) I p' E p(a) }.

As the embedding il, also the embedding i2 can be shown to be well-defined
and isometric.

Assume the action set A is finite. Then the process domain P1 can be isomet-
rically embedded in the process domain P2 . The embedding i3 from the process

domain Pt to the process domain P2 is introduced in

Definition 15. The embedding i 3 P 1 - P2 is defined by

i 3 (p) = { (a, i3 (p')) I (a,p') E p}.

Also this embedding can be shown to be well-defined by means of a higher-
order transformation. In the well-definedness proof of the higher-order trans-
formation the compactness of the process domain P1 is exploited. The process
domain P, is compact, since the solution of a recursive domain equation built

from 1-bounded compact metric spaces (e.g., the finite action set A endowed
with the discrete metric), P,.q, ×, and id½ is a 1-bounded compact metric space

as is proved in [BW93].
The embedding i3 can also be shown to be isometric. Furthermore, it can be

demonstrated that the above diagram commutes. For example, it can be proved
that

d(i 3 oi 2 o i,id)< .d(i 3 oi 2 oil,id)

and hence i3 o i2 oi0 = id. As a consequence, the process domains P1 , P2 , and
P3 are isometric.

Theorem 16. If A is finite, then P1 •- P 2 , P2 •- P3 , and P1 ý : P3 .

Assume the action set is infinite. More precisely, assume A is equipollent to
2 1 n, for some n, where 2 T n is defined in

Definition 17. The sets 2 T n are defined by

2 IN if n =0

2n 2T('- otherwise
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p p' if and only if p' E p (a).

Also the process domain P3 can be shown to be strongly extensional.

Theorem 21. P3 is strongly extensional.

Proof. Similar to the proofs of the Theorems 19 and 20. 111

6 Sequential composition

Some complications arising in the definition of the sequential composition of Pi-
processes are pinpointed. Furthermore, it is shown that these complications do
not arise in the definition of the sequential composition of P3-processes.

In Definition 4.4 of [BM88], the sequential composition of Pi-processes is
defined by

Definition 22. The operator; : P1 x P1 -* P, is defined by

*1 p' ifp = 0

P 1 ; {(a,p" ;p') I (a,p") E p } otherwise

This definition coincides with the operational definition of the sequential com-
position. (Note that processes can be seen as labelled transition systems.) How-
ever, the above definition is not well-defined, as Warmerdam ([War90]) showed
(cf. Appendix A).

Also in Definition 2.14 of [BZ82], the sequential composition of P1 -processes
is defined.

Definition 23. For a finite process p, p ; p' is defined as in Definition 22, and
for an infinite process p,

p; p' = lim (p [n]; p')

where p [n] denotes the truncation of process p at depth n.

This definition is well-defined. However, the above definition does not co-
incide with the operational definition of the sequential composition (cf. Ap-
pendix A).

For P3-processes, the sequential composition is defined in

Definition 24. The operator; P3 x P3 --+ P3 is defined by

P. p ' p if p = Aa .0
-\Aa. { P" ; p' I p" Ep (a) } otherwise
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The well-definedness of the above definition of the sequential composition
can be proved along the lines of the well-definedness proof of the embedding il
in the fourth section of this paper.

Also in the definitions of the operators parallel composition, trace set, and
fairification on Pl-processes similar complications arise (cf. [BK87, BBKM84,
Bre94]). These complications do not arise in the definitions of the operators on
P3 -processes (cf. [Bre94]). Also process domain P2 does not give rise to these
complications (cf. [KR90]). However, unlike process domain P3 , process domain
P2 does not allow an elementary modelling of image finite language constructions
like random assignment (cf. [Bre94]).

Concluding remarks

In this concluding section, some related work is discussed and some points for
further research are mentioned.

A fourth process domain P4 defined by the recursive domain equation
P4 L- A -* P7, (idi (P 4 )) is considered in [Bre94]. The process domain P 4 can
be shown to be isometric to the process domain P, (independent of the size of
the action set A).

An alternative metric process domain is introduced by Golson and Rounds in
[GR83, Gol84]. The processes are Milner's rigid synchronization trees endowed
with a pseudometric. The pseudometric is induced by the (strong) behavioural
equivalence relation introduced in [Mil80]. This behavioural equivalence relation
and the bisimilarity equivalence relation considered in Section 5 do not coincide
(cf. [Mil9O]). Golson and Rounds show that their process domain is isometric
to the process domain P, in case the action set is finite or countably infinite
(for the countably infinite case, the power set construction used in the domain
equation defining PI should be restricted to the collection of countable subsets).

In [Ole87], Oles defines a denotational semantics for a nonuniform language
with the so-called angelic choice operator. The mathematical domain of this de-
notational semantics is defined as the solution of a recursive domain equation
over bounded complete directed sets. For a uniform language with the conven-
tional choice operator, the mathematical domain defined by the recursive domain
equation P - A -- Pfi (P) has been suggested ([01e92]). This domain equation
shows some resemblance with the domain equation for process domain P3 .

Some topics for further research are the study of the process domains P1, P2 ,
and P3 with the action set endowed with an arbitrary complete metric instead
of the discrete metric, and process domains corresponding to general, finitely
branching, and image finite processes for complete partial orders and non-well-
founded sets.
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A Warmerdam's counterexample

Warmerdamn ([War90]) showed that the sequential composition of P 1-processes
as defined in Definition 4.4 of [BM88] (cf. Definition 22) is not well-defined by
proving that the set

{ (a,p" ; 0) 1 (a,p") E p}
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is in general not closed. Here, Warmerdam's counterexample is presented. Fur-
thermore, this counterexamnple is used to illustrate that the sequential comnposi-
tion as defined in Definition 2.14 of [BZ82] (cf. Definition 23) does not correspond
to the operational definition of the sequential composition.

Let PI-process p be defined by

p ={(a, p.) I n E IN}

where

and

-n = (b, 0) if n=O0
I(b, {b"-'}) otherwise

This P1-process p is depicted by

b aU~ ati * l 1  E
2 ... 4' Ea% a2b N l1  a .

b b

tt

Ib

This Pi-process p' is depicted by

According to Definition 4.4 of [BM88] (cf. Definition 22), the sequential compo-
sition of the PI-processes p and p' is defined by

b,; P" (b,p.) I in =OIN
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where
p" ( b ;p', (ao, p), (a•,,p'),....i

and

f (b,p') ifn = 0
bn;p P I = (b, {b'- ;p'}) otherwise

This process p; p' is depicted by

S. . .. .2...

b 40 4 2 .. b N' 41 a2. .. b a' al *

I I I I I I I I II II

However, p ; p' is not a P1 -process, since the set p ; p' is not closed. The set p; p'
contains the Cauchy sequence ((a,p")),, but not its limit (a,p") where

p" = {limbfP, (ao,p'), (a,,p'), . .

which is depicted by

I

I I I I

I *I I I
. ~b

Si I I
& C C I

+ + +
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The above counterexample also shows that the limit construction in the def-
inition of the sequential composition presented in Definition 2.14 of [BZ821 (cf.
Definition 23) adds unexpected subprocesses; the limit construction

l (p [n] p) adds subprocess (a, p"').
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Abstract. Semantic models are presented for two simple imperative
languages with higher order constructs. In the first language the inter-
esting notion is that of second order assignment z s, for x a procedure
variable and s a statement. The second language extends this idea by
a form of higher order communication, with statements c ! a and c ? x,
for c a channel. We develop operational and denotational models for
both languages, and study their relationships. Both in the definitions
and the comparisons of the semantic models, convenient use is made of
some tools from (metric) topology. The operational models are based on
(SOS-style) transition systems; the denotational definitions use domains
specified as solutions of domain equations in a category of 1-bounded
complete ultrametric spaces. In establishing the connection between the
two kinds of models, fruitful use is made of Rutten's processes as terms
technique. Another new tool consists in the use of metric transition sys-
tems, with a metric defined on the configurations of the system. In ad-
dition to higher order programming notions, we use higher order defini-
tional techniques, e.g., in defining the semantic mappings as fixed points
of (contractive) higher order operators. By Banach's theorem, such fixed
points are unique, yielding another important proof principle for our
paper.

Introduction

In recent years, the study of higher order programming notions has become a
central topic in the field of semantics. Seminal in this development have been
two schools of research, viz. that of (typed) A-calculus in the area of functional

programming (see, e.g., [Bar92] for a survey of the current situation), and that

of higher order processes in the theory of concurrency (see, e.g., [AR87, Tho9O,
MPW92]). ([LTLG92] can be used for a quick overview of much of the relevant
literature.) The aim of the present paper is to provide another perspective on
this problem area by studying higher order notions embedded in the traditional

setting of imperative languages. First, we study second order assignment: the

" This work was partially supported by the Netherlands Nationale Faciliteit Informa-

tica programme, project Research and Education in Concurrent Systems (REX).
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statement x s, for x a procedure variable and s a statement, assigns s to x.
In the operational semantics, this is modelled by storing (the syntactic entity)
s in the current 'syntactic' state. Denotationally, the (function which is the)
meaning of s is stored in the 'semantic' state. The second notion we study
is second order communication. Recall that in a CSP- or occamn-like language
value-passing communication is expressed by the two actions c! e and c ? v
occurring in two parallel components (c a channel, e some expression, and v an
individual variable), and synchronised execution of these actions results in the
transmission of the current value of e to v. A second order variant of this is the
pair of communication constructs c ! s and c ? x (c, s, and z as above). Now a
higher order value is passed at the moment of synchronised execution: in the
operational semantics, we pass s (again a syntactic object); denotationally, the
meaning of s is transmitted.

Though these notions are, we hope, conceptually quite simple, a not so simple
arsenal of semantic tools is necessary to make the ideas just sketched precise,
and to obtain a full picture of the relationships between the operational (C)
and denotational (D) models. In both kinds of models, topological techniques
play an essential r6le. More specifically, we work in a category of 1-bounded
complete ultrametric spaces, and a variety of functors on this category is used
to specify the domains we work with. (This type of domain equations originated
with [BZ82]; the general theory is due to [AR89]. See also [BR921 for many
further applications.)

For reasons of presentation, in addition to the languages with higher order as-
signment (L-, 2 ) and communication (£Co2,) we also discuss two simpler languages
with only first order assignment (C,,,) and communication (ACo), respectively.
This allows a more leisurely development of the machinery: in particular, we are
able to demonstrate in a simple setting another higher order phenomenon which
is pervasive in this paper, viz. the use of (contractive) higher order mappings in
both the definition and the comparison of semantic meaning functions. Each of
the O's or D's to be defined is obtained as (unique) fixed point of some higher
order mapping 0o or O,. By the uniqueness property, in order to establish
o = V, it suffices to show, e.g., that 0o (D) = V.

The definition of each of the O's follows the customary pattern in that it is
derived from some (SOS-style) transition system ([Plo8l]). Mostly, these systems
are finitely branching, a property on which the compactness of the resulting sets
of meanings is based. However, in the comparative study of C,02 we need a
generalisation to compactly branching transition systems. This is, in turn, based
on an extension of the metric framework consisting in the introduction of a
metric on the configurations of the transition system (rather than only having a
metric based on the standard distance between sequences of actions generated
by successive transitions).

The key idea in the semantic analysis of ,.•2 is the introduction of both syn-
tactic and semantic states, and of a suitable mapping linking the two. Whereas
the syntactic states are an immediate extension of those used for £,,, the set of
semantic states requires a system of (reflexive) domain equations for its specifi-



124

cation. Once the appropriate definitions have become available, a concise (state-
ment and) proof of the relationship between 0 and V is possible, thanks to the
rather powerful general methodology.

The first order language C,,, is a fairly typical language with imperative con-
currency. Our design of 0 for L,, exhibits only some mild variations compared
with the traditional approach. The denotational V is based on a 'branching
time' process domain P of the 'nonuniform' variety (processes have a functional
dependence on the state). It is not difficult to show (and implicit in [BZ82])
that P is strongly eztensional: with a slight adaptation of the usual definition of
bisimilarity, we have that bisimilarity on P coincides with identity. The various
semantic operators on P may as well be defined by higher order techniques. The
relationship between 0 and V for Le, involves a trace mapping from the deno-
tational 'branching time' to the operational 'linear time' domain: among others,
the branching structure is collapsed, and failing attempts at communication are
deleted (and deadlock is delivered if no 'proper' action remains).

The paper culminates in the semantic study of 40o2, bringing a synthesis of
many of the earlier techniques. The denotational domain, albeit rather complex
due to the use of three domain equations, allows an appealingly simple deno-
tational definition. This domain can also be shown to be strongly extensional
(with some higher order generalisation of the bisimilarity definition, cf., e.g.,
[AGR92, MS92]). More work is needed to link 0 and V. First, an idea already
used for C,,, viz. to design a variant of ( delivering results in the denotational
domain, is applied again. However, for 4C102 a complication arises, inducing the
appearance of 'processes as terms' ([Rut92]). Also, this is the point where, as sig-
nalled earlier, a compactly branching transition system appears, a notion which
presupposes a metric on the configurations ([Bre94]). In the final stage of the
proof relating 0 and V, a lemma relating the transitions of both the original
system (on which 0 for 402 is based) and of the extended system (in which the
configurations may involve semantic processes) provides the key technical step.

In the final section, the paper summarises the relationships between 0 and V
for the four languages considered. We see as one of the achievements of our paper
the transparency of the successive refinements, going from the simple 0 = V
result for C,., to the more elaborate theorem for C,.,,.

We conclude this introduction with some remarks on related work. The idea
to handle second order assignment x := s through the storing of a pair (x, s) in
the (syittactic) state is close to the explicit substitution (in the framework of the
A-calculus) of [Cur88, ACCL90], albeit that some stack-like nesting of states -
omitted in this paper not to overload the presentation - would be needed to allow
a full correspondence. The language £C,2 should, after some massaging of the
specific operator for parallelism, be able to at least model a key part of Thomsen's
CHOCS ([Tho89, Tho90), viz. that sublanguage which he uses to encode the
lazy A-calculus. However, a precise statement and, especially, a full proof of this
claim demands a lot of further work. Other connections to explore include the
relationships with the wr-calculus ([MPW92, Mi192]), the higher order ir-calculus
([San92, San93]), and the 7-calculus ([Bou89, BB92], cf. also [JP90]). In the 7r-
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calculus, channel names are transmitted rather than processes, so an immediate
correspondence is not to be expected. For another reason, the same holds for the
-y-calculus: the notion of sequential composition used there is essentially different
from ours.

1 A sequential language with assignment

The first language we discuss, viz. C,,,, is quite simple, and chosen especially to
illustrate the use of higher order techniques in defining and relating semantic
models. Also, it prepares the way for the more interesting language with second
order assignment considered in the next section. For C,,,, we shall define both (
(operational) and V (denotational) semantics as (unique) fixed point of a suitable
contractive mapping 1. Banach's theorem2 applies, since all spaces involved are
complete. The semantics (0 and V shall be related by showing that both are
fixed points of the same contractive mapping.

Let (v E) IVar, (x E) PVar be alphabets of individual and procedure vari-
ables. Let (e E) Exp be a class of simple expressions (syntax left unspecified).

Definition 1. The language C,., is defined by

s ::=v:= e ls; s s + s lx ix [s].

The prefix ptx binds occurrences of procedure variable x. Our semantic defini-
tions will throughout be given for closed constructs (no free procedure variables)
only. To define the operational semantics we shall use transition systems. The
configurations of the transition system are pairs of resumptions and states.

Definition 2. The class Res, of resumptions is defined by

r:: E Is: r.

The set State, of states is defined by

(or E) State1 = MVar -. Val,

for (a E) Val some set of values.

The (empty) resumption E will be used to denote termination. The state
o{a/v} has value a in v and equals a elsewhere. Let V (e)(a) denote the value
of expression e in state or. Let s{s'/x} denote syntactic substitution of statement
s' for the free occurrences of procedure variable x in statement s. The transition
system T1 is introduced in

1 Let (X,dx) and (X',dx,) be metric spaces. A function f : X - X' is called con-
tractive if there exists an e, with 0 < e < 1, such that, for all x and z',

dx, (f (x), f (x)) 5 c . dx (z, x').

2 Let (X,dx) be a complete metric space. If f : X -- X is contractive then f has a

unique fixed point fix (f) (cf. [Ban22]).
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Definition& The transition relation --+ of T1 is the smallest subset of
(Res, x State,) x (Res, x State,) satisfying the rules given below. A rule of
the form

if (ri, ot] --* [r, a,] then [r 2, a2] - [r, a]

will be abbreviated to

[r2, ff2 -o [ri, a,];

the 0-subscript indicates that we have here a zero-step transition.

(1) [v:= e: r, a -- [r, a{a/v}], where a = V (e)(a)

(2) ((SI ; 2) :r, a] -o0 (S (82: r), a]
(3) [(S, + 82): r, a) --+o [s:,r, or)
(4) [(S1 + 82): r, a] -0 [s2 r, a]

(5) [lx [s]: r, a] -• [s{px [s]/x)}: r, a]

In the operational semantics we collect successive transitions. Each resump-
tion is mapped to an element of the semantic domain P1 presented in

Definition 4. The domain P1 is defined by

(p E) P1 = State, -* P,,. (State'f).

The set (€ E) State' = State, U State' of finite and infinite sequences of
states is endowed with the 1-bounded complete ultranietric d specified by

d(,) {0 if = ';

-2` otherwise

where n is the length of the longest common prefix of ý and ;'. According to
Kuratowski's theorem3 , the set Pn, (State') of nonempty compact subsets of
State' endowed with the Hausdorff metric is a 1-bounded complete ultrametric
space.

Definition 5. The higher order mapping 00 - : (Rest I- PI) -- (Rest -- PI) is
defined by

0 0 - (0)(E) = Aa. {e}

0o- (4)(s: r) = ao. U{a'. (')(%a') I rs:r, a] - [r', a'] }

The operational semantics 0* : Res, -* P1 is defined by

0* = fix (04)

3 If (X, dx) is a 1-bounded complete ultrametric space then the set of nonempty and
compact subsets of X, P',. (X), endowed with the Hausdorff metric based on dx is
a 1-bounded complete ultrametric space (cf. [Kur56]).

I .
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In the above definition of Oo-, a' 0(r')(a') is the result of prefixing the
set of state sequences 0 (r')(a') by the state a'. The well-definedness proof of
0o- exploits the fact that Tj is finitely branching. Obviously, 0O- is contractive.
According to Banach's theorem, 01o- has a unique fixed point.

Definition 6. The operational semantics 0: C.. -- P1 is defined by

0 (s) = 0* (s: ).

In the denotational semantics, we restrict ourselves to nonexpansive mappings4

(notation -+).

Definition 7. The higher order mapping

v : (C... - P1 -1 P0) - (,C.. -- Pi -- 1 Pi)

is defined by

Ov (t0)(v :=e)(p) = Aa. (a{a/v} . p (aja/v})), where a = V (e)(a)

OV (0)(s8 ; 82)(p) = 45V (0)(Sl)(•V (0)(s2)(p))

SO' (0)(Sl + S2)(p) = Aa. (ft (0)(s)(P)(a) U •O (0)(S2)(p)(a))

-PV (0)(1X [sj)(p) = au. (au. (s{A [S]/X})(p)(a))

The denotational semantics V: : a., -P 1 __+1 P1 is defined by

V = fix (ft).

The nonexpansiveness of •o (0)(s) and the contractiveness of 0V can be
proved by structural induction. Note that this definition of D implies, e.g., that
"V (px [s])(p) = au. (a . V (s{Ax [s]/x})(p)(a)). Well-definedness of V is a conse-
quence of the contractiveness of ft (here ensured by the a-step) rather than of
a direct argument by structural induction on s.

Definition 8. The denotational semantics V* : Res, -* P1 is defined by

V* (E) =a. {E}
V* (s :r) = V (s)(V* (r))

The operational and denotational semantics are related in

Theorem 9. 0* = D*.

Proof. For this theorem, we will sketch two alternative proofs.

4 Let (X, dx) and (X',dx,) be metric spaces. A function f : X - X' is called nonex-
pansive if, for all x and z',

dx, (f (z), f (x')) _5 dx (x, x).
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1. We can prove that, for all r,

*Po- (V>*)(") = V>* (r')

by induction on the complexity of r. For example, for the resumption
(s8 ; s2): r we have that

00o- (z>')C(Sl ; 82): r')

0o- (V*)(s 1 - (82: r)) (the definition of the complexity is such

= V* (s8 (82: r)) that the induction hypothesis applies here]

V (s1 )(V (s2)(V* (r)))

= V ((s, ; 82): r).

Since 0* and 'V* are both fixed point of PC- and J)-o has a unique fixed
point, 0* and V* must be equal.

2. We can also prove that, for all r,

(0* (.-), V (r)) _< sup{d(0* (r), V* (r')) r' E Res1 }

by induction on the complexity of r. For example, for the resumption v: = e:r
we have that

d (0* (v:= e: r), V* (v:= e r))

= d (Ao-. (-{a/v} • 0* (r)(o-{/.m/v})), a. (-{,a/v}. -,* (r)(-{c!/v})))

~=[.d (0* (r), i* (r))

< [sup {d(0* (r'),V* (r')) I r' E Res }.

Consequently, for all r, d(0* (r), V* (r)) = 0. Hence 0* = V*.

The first proof follows [KR90] (cf. [BM88]), but with a substantial simplifi-
cation thanks to our avoiding procedure environments.

Corollary 10. For all s, 0 (s) = V (s)(Aa. I }).

2 A sequential lInguage with second order assignment

The central notion of this section is second order assignment, in the form of
the statement x := s, for s itself a statement. In the operational semantics,
the routine (program text) s is stored in the syntactic state a as value for x;
in the denotational semantics, the meaning V (s) is stored as value for x in
the semantic state p. The definition of 0 and V for £L,, allows a particularly
succinct (statement and) proof of the relationship between 0 and V.

Definition 11. The language C., 2 is defined by

s::= V:= e s; 8 1 + 8 X X:=s.
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The configurations of the transition system defining the operational semantics
are pairs of resumptions (defined as in the previous section, but now named Res 2)
and syntactic states, which are introduced in

Definition 12. The set SynState 2 of syntactic states is defined by

(a E) SynState 2 = (IVar - Val) x (P Var -' 'C2)"

Let, for the state a = (al,aO2), the states a-{a/v} and a-{s/x} be short for
(at {a/v}, a 2) and (a-1 , a 2 {s/x}), respectively. The transition system T2 is intro-

duced in

Definition 13. The transition relation , of T2 is the smallest subset of

(Res2 x SynState 2 ) x (Res 2 x SynState2 ) satisfying (1), (2), (3), (4) t:om Defi-
nition 3, and

(6) [x: ,-, ,a] [-- (x): r,o-,,]

(7) [x:= s: r, a] -- [r, a{s/x}]

The definitions of 0* and 0 follow those of 0* and 0 of the previous section,

but now using transition system T2 and semantic domain P 2 , which is obtained

from P1 by replacing State1 by SynState2 . We next present the (system of)
domain equations 5 for the collection of semantic states SemState2 and P3 , the
denotational d-'nain for £C., 2 -

Definition 14. The domains SemState 2 and P3 are defined by

(p E) SemState 2 - (IVar -- Val) x (P Var -, id1 (P3 -_1 P 3 ))

(p E) P 3  • SemState2 -_1 P',. (SemState')

Definition 15. The denotational semantics V : ,,., -* P 3 -*1 P 3 is defined by

ED(v := e)(p) = Ap. (p{a/v} .p (p{,/v})), where a = V (e)(p)

D(s 1 82)(p) = V (s1)(V (s2)(p))

V (s1 +52)(P) = AP (s 1 )(p)(p) U V (s2 )(p)(p))

V (x)(p) =Ap (p- p (X)(p)(p))

V (x:= s)(p) = Ap. (p{Ix/x} .p (p{k/x})), where V = D (s)

5 To solve these domain equations, we work in a category of 1-bounded complete
ultrametric spaces and apply the methodology of solving domain equations in
this category as developed in [AR89]. Functors F appearing in domain equations
X •- F(X) - or rather (X, dx) '- F(X, dx) - with S denoting isometry, may be
built from the familiar operations on 1-bounded complete ultrametric spaces such as
Cartesian product, disjoint union, (nonexpansive) function space, and (uonempty)
compact power set, and the operation idi,_ (id,1 2(X, dx) = (X, 1 • dx)), starting
from given 1-bounded complete ultrametric spaces (A, dA) and the unknown space
(X, dx). The operation id,/ 2 is used in particular to ensure contractiveness of the
functor F, which induces uniqueness of the solution up to isometry.
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The denotational semantics V closely follows the structure of the rules in
transition system T2. Consider, for example, the case that a rule [r, o] -- [r', al]
(or [r, a] --*0 [r', a']) is the sole rule for configuration [r, a] in T2. Let p and
p' denote the denotational meanings of r and r', and let p and p' be the se-
mantic states corresponding to a and a' (cf. Definition 16). Then the formula
p (p) = p' . p' (p') (or p (p) = p' (p')) expresses the denotational counterpart of
this rule. In this way the clause for V (x)(p)(p) may be understood from clause¶¶ (6) of Definition 13.

The definition of V* follows that of V* of the previous section. To each
syntactic state a corresponding semantic state is assigned by the mapping sem
introduced in

Definition 16. The mapping sem : SynState 2 -* SemState 2 is defined by

sem (aO) = (al, Ax. -Ap.V (. ))(P))

The mapping sem is extended in the natural way to a mapping from
1',c. (SynState') to Pn, (SemState'). By means of this mapping the operational
and denotational semantics are related in

Theorem 17. For all r and a, sem (Q* (r)(a)) = (r)(sem (a')).

Proof. This proof follows the second proof of Theorem 9. For example, for re-
sumption x := s: r we have that

d (sem (0* (x:= s: r)(a)), V* (x:= s: r)(sem (a)))
= d(sem a'{s/x}. 0* (r)(a'{s/x})),V (x := s)(V* (r))(sem (a)))

= d (sem (a{s/x}) . sem (0* (r)(a'{s/x})),

sem (a'){V (s)/x} - V* (r)(sem (a'){V (s)lx}))

= •.d (sem (0* (r)(a{s/x})), V* (r)(sem (a'){ (s)/lx}))
< ½. sup {d (sem (0* (r')(a')),/* (r')(sem (a")) I r' E ReS2 , a' E State2 },

since sere (a{s/x}) = sem (a){IV (s)/x}.

Corollary 18. For all s and or, sem (0 (s)(o)) = ) (s)(Ap. {je})(sem (a)).

3 A parallel language with communication

The language £C, studied here has first order communication (synchronised
transmission of simple values) as its main concept. C,, is close to a language such
as CSP ([Hoa85]); again, its main motivation in the present context is to pave
the way for the second order variant. A further simplification with respect to
the usual languages of this kind is that we assume one global state, rather than
a distribution of local states over the various parallel components. The design
of a mechanism for local states is well-understood (see, e.g., [ABKR89]), and we
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have kept it separate from the present development in order not to burden the
presentation.

Let (c E) Chan be an alphabet of channel names.

Definition 19. The language Len is defined by

e ::=e :=el!eI c?v Is; sI s+s I11 sll xIx[s]

The configurations of the transition system are pairs of resumptions and
extended states.

Definition 20. The class Res 3 of resumptions is defined by

r ::= E I S.

The set State 3 of states is defined by

(a E) State3 = State,.

The set State"' t of extended states is defined by

(77 E) State"" = State3 U (Chan x Val) U (Chan x MVar).

In the transition system, we will use the extended state (c, a) to denote
that the value a is sent on channel c, and we will use (c, v) to denote that the
value received on channel c should be assigned to the individual variable v. The
transition system T3 is introduced in

Definition21. The transition relation - of T3 is the smallest subset of
(Resa x State"') x (Res3 x State"') satisfying

(1) [v := e, a] -- [E, U{a/v}], where a = V (e)(a)

(2) [c! e, o] -* [E, (c, a)], where a = V (e)(a-)
(3) [c ? v, or] --. [E, (c, V)j

(4) [81 + 82, U] -0o [s5, 0]

(5) [s8 + $2, a] -0o [82, O]

(6) [tlx [s], a] - [s{1X [s]/x}, o]

(7) if [si, a] - [r 1 , qi] then [51 ; S2, a] -- [r, ;8S, 77]

(8) if [si, a] -• [ri, i] then [81 II 52, a] 1 -' H 82, 77]

(9) if [S2, a] -- [r2 , 77] then [s1 11 82 , ] -1 (s, II r 2 , 7]

(10) if [si, a] -. [r1 , (c, a)] and [s2 , a] -b [r2 , (c, v)]
then [si II S2, C] -* [r• 1 r2 , C{a/v}]

(11) if [si, a] -- [rl, (c,v)] and [S2, a] -- [r2 , (c,a)]
then [s1 II 82, a] - [r•I r2, {al/v}]
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In the above, we adopt the convention that E; s - E 11 S = 8 11E = s, and
E I E = E. We say that [s, a] blocks if there do not exist a resumption r and a
state (not an extended state) uo such that [s, o] -. [r, o-']. The semantic domain
for the operational semantics is introduced in

Definition 22. The domain P4 is defined by

(p E) P 4 = State3 -* ., ((State3 )'>).

The set (• E) (State3 )60 = State3 U State' U State; {b} of finite and infi-
nite sequences of states possibly ending with 6 is endowed with the ultrametric
described after Definition 4.

Definition 23. The operational semantics 0* : Res 3 -, P4 is the unique map-
ping satisfying

0* (E) =,,. {16

0* (s) = AO. {6} if [s, a] blocks

I U { ' . 0* (r)(a') I Is, a] -• [r, a'] } otherwise

The operational semantics 0 is defined as the restriction of 0* to Lv.,. It is
important to observe that 0*, and hence 0, is not compositional, i.e. there is
no semantic operator 11 satisfying 0* (s, 11 s 2 ) = 0* (s1 )II * (s2).

The semantic domain for the denotational semantics is presented in

Definition 24. The domain P5 is defined by

(p E) P5 • {E} 0 (State3 --+ (State•7t x id½(Ps))).

In the above definition, C denotes the disjoint union and P,,, the compact
power set operator. The domain P5 is a branching domain. Its core structure
is as that of a P• solving P• • "P, (State3 '' x id½(P5 )); additional structure is
provided by the nil process E and by P5 's functional dependence on arguments in
State3 . It is not difficult to define (a natural extension of) bisimilarity (notation
-) on Ps, and to show that P5 is strongly extensional, viz. Pl - P2 if and only

if P1 = P2 (cf. [RT92, Bre93]).

Definition 25. The operator; : P5 x P5 ý' P5 is the unique mapping satisfying

PI2 P2 if pl = E

P1 ;P = 1. { (, pl ; P2) 1 (7,pl) E pi (or) } otherwise

The operator + : P 5 x P5 -+1 P5 is defined by

P2 if pl = E

PI+P2= Pi if P2 = E

A.P (or) U P2 (Or)) otherwise

The operator II: P5 x Ps -1* P5 is the unique mapping satisfying
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P IIP2 =(pi P2) + (p2 pO) + (P L2) + (P2 LP )
where

P P2. ifpi = E

P1 11P2 = '(. {('i,p II p2) I (q,,p') E pi (o) } otherwise

and, for P,= E or p2 = E,

PI [p2 = E,

otherwise

P L[p2 = Aa. { (a{a/v},pl II P) I ((c,a),p) E p, (ao), ((c,v),p2) E p 2 a)}.

The above definition can be made rigorous by another appeal to higher order
techniques. For example, for the operator ; we should introduce a higher order
mapping 0 : (P 5 x P 5 -_+ P5 ) --+ (P5 X P5 -_' P.) defined by

0; (0') (P1,P2) = 4P2 if PI = E

•Ao. ((7,k (pj,p2) 1 (1,p') E pi (a) I otherwise

Definition 26. The denotational semantics V : C,. -. P 5 is the unique mapping
satisfying

(v := e) = Aa. {(a{a/V}, E)}, where a = V (e)(a)

V(c! e) = A. {((c, a), E)}, where a = V (e)(a)

V(c? v) =Aa .{((c,v),E)}

V s( ;8 2 ) =V (S); V(S 2)

V(s81 + 2) = V9(s 1 ) + V( 2 )

)(sI 1J 2 ) = V)(1i)j 1V(S 2 )
V•[]) = oAa. {•(,,V(s{jX[s]/X}))}

We now prepare the way for the statement relating 0 and V. We first de-
fine a 'hybrid' operational semantics, based on T3 but yielding elements in the
denotational domain P5 .

Definition 27. The operational semantics (9 : Res3 -A Ps is the unique map-
ping satisfying

0# (E) = E
o* (s) -- . ( (17, o* (r)) I [s, a] -, [, iv] I

Second, we extend the denotational semantics V to a denotational semantics
V# from ReS3 to P% by defining V# (E) = E.

Lemma 28. O# = V#.

Proof. Following the first proof of Theorem 9, it suffices to show that the higher
order mapping 0o• underlying Definition 27 has *D# as fixed point.

0
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Finally, we show how the operational semantics 0# and 0* are connected.
Semantic domain (P4 E) P 4 is simpler than (P5 E) P5 in three ways;

"* for all a, the branching structure of p5 (a) is collapsed, leaving in P4 (0) only
a set of paths of p5 (a),

"* failing attempts at communication (c, a) or (c, v) appear in P5 (a) but not
in p4 (a), and
SP5 (a) contains, in general, pairs (',Pb). Here p' models the continuation of

the execution after a' has been delivered. This allows that an interleaving
action of some f5 might change or' before p' is applied. However, this does
not hold for P4 (af) which contains sets of the form a' . p4 (a').

The combined effect of these simplifications is yielded by trace defined in

Definition 29. The mapping trace : P5 -+1 P4 is the unique mapping satisfying

trace (E) = Aa. {e}

trace (p) =Aa. if p(a) blocks

tU {Oa' trace (p')(a') I (o-',p') E p (or) I otherwise

where p (a) blocks if there does not exist a pair (W', p') in p (a).

The well-definedness proof of the higher order mapping Ot... underlying the
above definition relies on Michael's theorem6.

Lemma 30. 0* = trace o 0#.

Proof. Again we can follow the first proof of Theorem 9 by showing that the
higher order mapping 0o- underlying Definition 23 has trace o 0# as fixed point.

El

Theorem 31. 0 = trace o V.

4 A parallel language with second order communication

This is the culminating section of our paper, providing a synthesis of ideas from
the Sections 2 and 3. In addition, we need some novel techniques to establish
the relationship between C and V for E,,,. In particular, we use

"* the 'processes as terms' approach of [Rut92], and
"* a metric on configurations of a transition system ([Bre94]).

As in Section 2, a more realistic language could be based on local states. In
such a setting it would be meaningful to transmit a closure, a pair consisting
of a statement and a local state, rather than just a statement (as we do in the
operational model for 40,2).

6 Let (X, dx) be a metric space. If X E P,,, (P,,, (X)) then UX E P,.,, (X) (cf.

[Mic5l]).

V.



135

Definition 32. The language £,,,, is defined by

s ::= v:=e Is;s Is s+ I slIs I xlI c!sIc?x.

The configurations of the transition system are pairs of resumptions (defined
as in the previous section, but now named Res 4 ) and extended syntactic states.

Definition 33. The set SynState 4 of syntactic states is defined by

(a E) SynState 4 = (MVar -- Val) x (P Var -- ,02).

The class SynStateit of extended syntactic states is defined by

(17 E) SynState z' = SynState 4 U (Chan x C,40) U (Chan x P Var),

where Chan ={!I c E Chan}.

We introduce Chan to avoid a possible ambiguity: we distinguish between
the extended state denoting that statement x is sent on channel c - denoted by
(c, x) - and the extended state denoting that the statement received on channel
c should be assigned to procedure variable x - denoted by (4, x). The transition
system T4 is presented in

Definition34. The transition relation -- of T4 is the smallest subset of
(Res 4 x SynState"j) x (Res 4 x SynState"') satisfying (1), (4), (5), (7), (8),
(9) from Definition 21, and

(12) [x, al] -- , "(x), a]

(13) [c!s, a] -- [E, (c, s)]

(14) [c ? x, or] -- [E, (E, x)]

(15) if [s,, a'] -- [r1 , (c, s)] and [82, o'] -- [r2 , (e, x)]
then [sl II 82, a] -- (r, II r 2 , u{s/o}]

(16) if Is,, a] --+ [ri, (4, x)] and [82, Or] -- [r2 , (c, s)]
then Is- II S2, 0-] -- [r, I1 r 2 , Or{s/I}I

The definitions of 0* and 0 follow those of 0* and 0 of the previous section,
but now using transition system T4 and semantic domain P6 introduced in

Definition 35. The domain P6 is defined by

(p E) P6 = SynState4 --+ P,,, ((SynState4 )A').

Next, we define the collection of (extended) semantic states SemState 4

(SemState" t ), and the domain P7 of denotational meanings for 4,02_

Definition 36. The domains SemState4, SemState" t , and P7 are defined by

(p E) SemState4 ý- (IVar --, Val) x (PVar --+ idI(P7))

(• E) SemState' t - SemState 4 C (Chan x idI(P7 )) 0 (Chan x PVar)

(p E)P7 - {E} CJ (SemState 4 -' P,,,, (SemState "t x id (P7)))
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Note the correspondence of the definitions of the domains SemState4 ,
SemState4"z, and P1 with those of SynState4 , SynState"z', and P6 , respectively.
On domain P1 we can define (higher order) bisimilarity in several ways. Based on
these definitions, the domain can be shown to be strongly extensional. Whether
one of the bisimilarity notions gives us the 'right' equivalence needs further study.

Definition 37. The denotational semantics V : L,02 - P 7 is defined by

D (v :=e) = Ap. {(p{a/v}, E)},where a = V (e)(p)

V ( 1 ; 82) =DV(80);V(82)

V (s1 +s82) = *D(81) + V(82)
V (81 11 82) = V0901 1) li(8 2 )
V (x) = Ap. {(p,p(z))}

V (c! s) = \p . {((c, p), E)} where p=V(s)

The semantic operators used here are defined quite similarly to those of
Definition 25. For example, for the operator L we have, for p, 6 E and p2 5 E,

Pi Lp = Ap. { (p{p/x},pj 11 p2) I ((c,p),p') E pi (p), ((!,x),p) E P2 (P) }.

In order to relate 0 and V, we need various preparations. First, we want to mimic
the introduction of 0 (cf. Definition 27), delivering denotational meanings.
This requires using p's rather than a's. Clause (12) of Definition 34 then obtains
the form [x, p] -- [p (x), p]. As a consequence, semantic entities p E P4 appear
in the new T4, with respect to the extended class of resumptions introduced
in Definition 38. In Definition 39, we introduce the induced transition system.
Note that T4i is no more finitely branching, and the higher order definition of
0# based on T4i requires separate justification.

Definition 38. The class Res' is defined by

U ::- E l t

where

t : : It t + t t lt X C!t Ic? X p.

Definition 39. The transition relation --+ of T' is the smallest subset of
(Res 4 x SemState"7t ) x (Res' x SemState" t ) satisfying
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(1) [v :=e, p] -. [E, p{a/vu, where a = V (e)(p)

(2) [t1 + t 2 , p] -0o [tl, p]

(3) [tt + t2, P1 -- 0 [t2, p]

(4) [x, p] - [p(x), p]

(5) [c! t, p] [E, (c, p)], where p = # (t) (cf. Definition 43)

(6) [c z , p] -. [E, (EX)]

(7) if [tt, p] -- [ul, t] then [tt ; t2 , p] -* [ut ; t2 , •]
(8) if [ti, p] -• [,u, C] then [tI 11 t2, P] --. [, 1I t2, C]

(9) if [t2 , p] - [1U2, C] then [t1 l t2, P] -- [tII 1 U2, t]

(10) if [ti, p) - [ui, (c,p)] and [t2 , p] -b [u2, (CE, X)]
then [tl It t2, P] -- [U1 11 U2, p{P/X}]

(11) if [ti, p] -• [ul, (E,x)] and [t2 , p] -- [U2, (c,p)]
then [t1 l t2, P] -- [U1 11 U2, p{P/X}]

(12) if (t,p') Ep(p) then [p, p] - [p, ]

Definition 40. The operational semantics (# : Res'4 _1 P 7 is the unique map-
ping satisfying

o# (E) = E
0# (t) = \P. (c, 0# M•) I [t, PI -- t, ý] I

Note that the -.+1 in the above definition assumes a metric on Rest. This is
presented in

Definition 41. The metric d: Res'4 x Res'4 - [0, 1] is defined by

d(u,u') = 0

if u = u', otherwise

dp, (u, u') if u E P 7 and u' E P 7

max {d (tj,t'),d (t2 , t2)} if U t1 ; t2 and u'_- ti ;t2
d(u,u') = max{d(tj,t'),d(t2 , t2)} ifu tI + t2 and u' -t +t'

max {d(ti,t),d(t2 ,t)} if tl 11 t2 and u' 4 2t'2
d(t,t') if u-c!t and u' c! t'
1 otherwise

We shall also need the mapping S defined in

Definition 42. The mapping

S: (Res' x SemState 4) -1 P.,,, (Res' x SemState"'1 )

is defined by

S (U, p) = { [U', t] I [U, p] -. [U', C] }.
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Let 0o* be the higher order mapping associated in the natural way with the
definition of 0#. Well-definedness of Oo* follows by noting that

* S is well-defined, i.e., for all u and p, S (u, p) is compact and S is nonexpan-
sive,

* for all t and p, the set { (C, 4, (u)) I [t, pI -- [u, ] } is compact, since S
delivers compact sets and 4, is nonexpansive,

* for all t, the mapping Ap. { (C, 4, (u)) I [t, p) -- [u, •] } is nonexpansive, since
S and 4, are nonexpansive.

Second, we extend the denotational semantics V.

Definition 43. The denotational semantics V# : Rest4 -+' P7 is defined by

V# (E) E
V# (v :=e) = Ap. {(p{a/v}, E)}, where a - V (e)(p)

V# (tI;t2 ) =V# (h);D# (t)

V# (tI + t2 ) = V# (t) + V# (t2 )
Vp# (t1 l t2) = E# (t1) II v# (t2 )

V# (x) =Ap. {(p,p(x))}

V# (c! t) = ,p. {((c,p), E)}, where p = V# (t)

'V# (c ? x) =Ap {(( , X), E)}

V# (p) P

Lemma 44. 0# V#.

Proof. This proof follows the first proof of Theorem 9. For example, for re-
sumption x we have that

00# (V*#)(x)
= Ap. {(p, D# (p(x)))}

= Ap. {(p, p ())}

= VW (x).

To each extended syntactic state an extended semantic state is assigned by
the mapping sem.

Definition 45. The mapping sem: SynState" t -* SemStaterxt is defined by

sew (a) = (a,, Ax . V# (a2(x)))

sem ((Z, X)) = (E, X)
sem ((c, s)) = (c, V# (s))

The mapping sem is, again, extended in the natural way to a mapping from
P., ((SynState 4 )• ) to P,,, ((SemState 4 )'). The next lemma is the key technical
result on which the relationship between 0 and V is based. The lemma expresses
a canonical correspondence between transitions of T4 and T4.
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Lemma 46. For all s, r, u, oa, aD, and •,

if [s, or] -• [r, a-'] then [s, sem (a)] -i [u', sem (a')]
and Q# (u') = o# (r) for some u'

and

if [s, sem (a-)] -- [u, t] then [s, a] -- [r', a"]
and 0# (rW) = O# (u) and sem (ar") = t for some r' and o,".

Proof. This lemma can be proved by structural induction on s. We will only
consider the first part for statement $I s;. We distinguish two cases.

1. Assume [s1 ; 82, a] -' [82, a']. Then [si, ao] -- [E, a-]. By induction,

[st, sem (a-)] -- [u', sem (a-')] and 0# (u') = 0# (E). Consequently, u' E.
So, [s8 ; 82, sem (oa)] -* [S2, sem (a-')].

2. Assume [s1 ; 82, a-] -* [s8 ; 82, a']. Then [si, a-] --+ [s', a']. By induction,
[si, sem (a-)] -. [u', sem (a-')] and 0# (u') = (# (s'). Consequently, u' # E.
So, [s1 ; 82, sem (a)] --+ [u'; S2, sem (a')] and

O# (u' ; S2)

= 'D# (u' ; 82)

= o# (U') ; T# (82)
= 0# (8') ; V# (82)

= o# (s ; 52).

The mapping trace used for C,',,2 is obtained from Definition 29 by replacing
a's by p's:

Definition 47. The mapping trace P 7 -_1 SemState 4 -.. P, ((SemState 4 )f )
is defined by

trace (E) =p {\}

trace W = -\p f if p (p) blocks
[U { p" trace (p')(p') I (p',P') E p(p) } otherwise

The operational semantics O* and 0# are related by means of the mappings
sem and trace.

Lemma 48. For all r and a, sem (0* (r)(a)) = trace (0# (r))(sem (a-)).

Proof. We can prove this lemma by means of the proof principle exploited in
the second proof of Theorem 9 using Lemma 46.

Dl

Theorem 49. For all s and ar, sem (0 (s)(a)) = trace (V (s))(sem (a-)).
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Summary

The results from the Sections 1 to 4 relating 0 and D for the four languages
considered are summarised in the following table (putting 0 Is] = 0 (s) for each
of the four languages, V Is] = V (s)(Ar • {fe}) for C, V is] = V(s)(Ap. {c}) for
LC., and V Is] = V (s) for C,,, and LC,,,):

4C'.2 sem o 0 [s] = V Is] o sem

Leo : o [s] = (trace o V) Is]
Lo, :sem o 0 I[s = (trace a V) Is] o semr
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An Investigation into Functions as Processes
Davide Sangiorgit

Abstract. In [Mil9O] Milner examines the encoding of the A-calculus into
the i-calculus [MPW92]. The former is the universally accepted basis for
computations with functions, the latter aims at being its counterpart for
computations with processes. The primary goal of this paper is to continue
the study of Milner's encodings. We focus mainly on the lazy A-calculus
(Abr87]. We show that its encoding gives rise to a A-model, in which a
weak form of extensionality holds. However the model is not fully abstract:
To obtain full abstraction, we examine both the restrictive approach, in
which the semantic domain of processes is cut down, and the expansive
approach, in which A-calculus is enriched with constants to obtain a dir-
ect characterisation of the equivalence on A-terms induced, via the encod-
ing, by the behavioural equivalence adopted on the processes. Our results
are derived exploiting an intermediate representation of Milner's encodings
into the Higher-Order r-calculus, an w-order extension of r-calculus where
also agents may be transmitted. For this, essential use is made of the fully
abstract compilation from the Higher-Order ir-calculus to the r-calculus
studied in [San92a].

1 Introduction

In [Mil90] Milner examines the encoding of the A-calculus into the ir-calculus [MPW92];
the former is the universally accepted basis for computations with functions, the
latter aims at being its counterpart for computations with processes. More precisely,
Milner shows how the evaluation strategies of lazy A-calculus and call-by-value A-
calculus [Abr87, Plo75] can be faithfully mimicked. The characterisation of the
equivalence induced on A-terms by the encodings is left as an open problem; it also
remains to be studied which kind of A-model - if any - can be constructed from
the process terms.

The primary goal of this paper is to continue the study of Milner's encodings.
A deep comparison between a process calculus and A-calculus is interesting for sev-
eral reasons; indeed, virtually all proposals for process calculi with the capability of
treating - directly or indirectly - processes as first class objects have incorporated
attempts at embedding the A-calculus [Bou89, Tho90]. From the process calculus
point of view, it is a significant test of expressiveness, and helps in getting deeper
insight into its theory. From the A-calculus point of view, it provides the means to
study A-terms in contexts other than purely sequential ones, and with the instru-
ments developed in the process calculus. For example, an important behavioural
equivalence upon process terms gives rise to an interesting equivalence upon A-
terms. Moreover, the relevance of those A-calculus evaluation strategies which can
be efficiently encoded is strengthened. More practical motivations for describing

I Address: Department of Computer Science, University of Edinburgh, JCMB, Mayfield
road, Edinburgh EH9 3JZ, U.K. Email: sadOdcs.ed.ac.uk



144

functions as processes are to provide a semantic foundation for languages which
combine concurrent and functional programming and to develop parallel imple-
mentations of functional languages.

Our other major goal is more centered on process calculi. The paradigm on
which i-calculus is constructed is first order: Reductions cause instantiations of
names. This contrasts with what happens in A-calculus, where reductions cause
instantiations of terms. Higher-order communications are avoided in r-calculus
because of their complexity and because they can be represented at first order.
The latter is showed in [San92a] by comparing x-calculus with the Higher- Order
r-calculus (HOir), an w-order extension of i-calculus where not only names but also
processes and parametrised processes of arbitrary high order can be communicated:
A compilation from HOi to ir-calculus is defined and proved fully abstract with
respect to the semantics of the calculi. Thus, the second goal of this paper is to
illustrate the use of HOi and of the representability result of HOi into i-calculus.

Using the abstraction power of HOli, for both the lazy and the call-by-value
A-calculus we give encodings which are easier to understand and to deal with than
those available in the i-calculus. By applying the compilation from HOi to i-

calculus, we can turn them into r-calculus encodings which can then be compared
with Milner's; this is a significant test for the canonicity of the encodings involved.
In the lazy A-calculus the correspondence is exact. That is, if P and Wt are, respect-
ively, the i-calculus and HOw encodings, and C is the compilation from HOi to
i-calculus, then the following diagram commutes:

A HOgr

In consequence, since C is fully abstract, any result proved for one of the encodings
can be transferred to the other. By working with HOw, we show in this paper that
the encodings do give rise to a A-model, where conditional extensionality holds. It
is not fully abstract, though. To obtain full abstraction we follow two directions:
In the restrictive approach, based on the use of barbed bisimulation [MS92], the
semantic domain of processes is cut down; in the expansive approach A-calculus is
enriched with constants to obtain a direct characterisation of the equivalence on
A-terms induced, via the encoding, by the behavioural equivalence adopted on the
processes.

For call-by-value the situation is less sharp. In [Mil90] Milner presents two can-
didates for the encoding, and it is not obvious which one should be preferred:
The first allows easier reasoning, but the second is more efficient. Moreover, when
applied to the HOw encoding, compilation C dces not return either of them. Ap-
parently, to obtain them some code transformation has to be carried out. The
study of these transformations leads to interesting outcomes. Firstly, it suggests a
correction of the order in which some actions appear in Milner's encodings. This
rearrangement does not affect the operational correspondence between A- and w-
terms. However, it affects the behavioural equivalence on the encoding w-terms, in
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a way which makes the encoding more faithful to the encoded call-by-value discip-
line. Secondly, the study of the transformations reveals that #-reduction is not valid
in Milner's second encoding, which severely reduces its importance.' The counter-
example is fairly sophisticated and we doubt we could have obtained it without
going through HOi.

This paper is an extract from (mainly chapter 6 of) the author's Ph.D. thesis
[San92aJ; we refer to it for details and proofs of the results reported.

Acknowledgements. I wish to thank Robin Milner for discussions and sugges-
tions, and Benjamin Pierce, Peter Sewell and the anonymous referees for comments
on an earlier draft. The paper was written during my stay at INRIA-Rocquencourt;
I am grateful to Jean-Jacques Levy for having invited me.

2 The 7r-calculus and the Higher-Order w-calculus

In this section we review the syntax and semantics of i-calculus and HOr, before
moving on to the study of the representation of functions as processes, the core of
this paper.

I'
2.1 Syntax

We shall look explicitly only at the syntax and the semantics of the Higher-Order
r-calculus (HOr), since the -r-calculus is a subcalculus of it. Actually, we only
present a fragment of these languages, but one which is sufficient for the encoding
of the A-calculus. A more detailed description of the operators involved and their
meaning can be found in [San92a].

A HOr agent (or term) can be a process or an abstraction, i.e. a parametrised
process. In the following, P and Q stand for processes, F and G for abstractions, A
for agents. We use X, Y to range over the set of variables; as in A-calculus, a variable
is supposed to be instantiated with a term. The letters a, b,.. ., z, y,... stand for
names. Moreover, K stands for an agent or a name and U for a variable or a name.
We use a tilde to denote a finite (possibly empty) tuple. In the fragment of HOT we
consider, a process is built from names using the operators of parallel composition,
restriction, replication, variable application, input and output prefixing, and nil.

P::PiIP2 I vz P I !P I X(K) I x(Ui).p I -(K).p I 0

An agent is an abstraction over a process or over a partial application:

A::(U)P I (U)X(K)

Variable application X(k) is needed to provide an abstraction received as an input
with the appropriate arguments. The other process operators resemble those of the
(polyadic) ir-calculus and CCS (see [Mil9l, Mil89]); we only remind the reader that

1 The version of [Mil9O] which appeared in the Jour. of Math. Structures was written
when the results in this chapter were already known and thus presents only the first
encoding.
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the replication I P represents an unbounded number of copies of P in parallel, and
allows us to describe processes with infinite behaviour. Application has the highest
precedence; abstraction the lowest. Sometimes we abbreviate a.O as a. In the above
expressions, when a tuple is empty the surrounding brackets 0 or 0 are omitted.
Note that also a variable X is an agent, corresponding to the case in which U and
k are empty.

An abstraction is an agent which takes some arguments before becoming a
process. The typical form of an abstraction is (U)P; it is like a procedure, in

which (0) represents the parameters. For instance, F dV (Y)(P I Y) abstracts on
a process variable; F takes a process and runs it in parallel with P. We can also

abstract on abstraction variables, as in G d! (X)(P I X(Q)); then F applied to
G yields P I P I Q. The machinery can be iterated, progressively increasing the
order of the resulting abstraction. In this sense HOi is an w-order calculus: There
is no bound on the order of the agents which can be written and communicated.
In contrast, in ir-calculus abstractions and communications can only be first order,
i.e. abstractions and communications of names. Thus, in ir-calculus syntax, variable
application does not appear and tuples k and C are replaced by simple tuples of
names.

W.r.t. the language in (San92a], we have omitted the operators of matching and
summation, and recursive definitions of agents have been replaced by replication.
The latter is a limitation because while replication can be encoded using recursive
definitions, the other way round only holds if the number of recursive definitions
is finite (see [Mil9l, section 3.1]). Further, in the presented sublanguage an agent
may only have a finite number of free names. By contrast, in the full syntax in
[San92a], since infinite recursive definitions and infinite summations are allowed,
it is possible to write agents which have an infinite number of free names, like a
counter which at each step emits a signal on a different channel.

The restriction v bP, the input prefix a(U).P and the abstraction (U)P are
formal binders for names and variables in U and b; they give rise in the expected
way to the definitions of a-conversion, free names and free variables of a term. An
open agent is an agent possibly containing free variables.

It is crucial in practice to avoid disagreements in what is carried by a given name
or expected in applications; for instance we reject expressions like-d(bi, b2).Pla(z).Q
or X(b) I X(bh,b 2), due to the mismatching in the use of the names. In HOr this
need is very compelling: It is not only a question of arities, but we also have to avoid
any confusion between instantiation of names and of agents as well as instantiation
of agents of different order. To this end, Milner proposed the use of sorts [Mil9l].
Sorts have, very roughly, the flavour of types in A-calculus; however in the process
calculi not only terms are assigned a sort (or a type), but also names, the latter
depending upon the (sorts of the) objects which that name can carry. The sorting
system is also useful to understand the passage from ir-calculus to HOir: The w-
order sorts of HOw can be derived by removing certain constraints on the first-order
sort language of ir-calculus. We will not present the sorting system because it is
not essential to understand the contents of this paper. The reader should take for
granted that all agents described obey a sorting.
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It is worth pointing out that we do not lose expressiveness in our language by
having application only with variables. In fact, every "well-sorted expression" A(K)
can be put into this form by "executing" the applications it contains; for instance
from ((X)Y(X))(P), we get Y(P). This makes the definition of substitution more
elaborate, but facilitates the proofs in the calculus. However, we shall sometimes

use A(F) as metanotation; for instance, if G = (X)P, then G(F) is P{F/X}.

2.2 Operational semantics

Following Milner [Mil90, Mil9N], we give the operational semantics of the language
as a reduction system. We begin by defining structural congruence, written -, as
the smallest congruence over the class of processes which satisfies the rules below.

1. P - Q if P is a-convertible to Q;
2. abelian monoid laws for 1: PIQ - QIP, PI(QIR) E (PIQ) JR, PI0 =- P;
3. Pz0-0; zzvyP=_uyizP; (PzP)IQ-ziz(PIQ);ifz.fn(Q);
4. !P-PI!P.

The structural congruence axioms are used to act upon the structure of terms
so that processes willing to interact can be brought into contiguous positions. Then
the reduction relation can be described with a few simple rules:

COM: X(U).P I!(K).Q P{K/U} I Q PAR:
_____ __ QPlQ.-. P, P'q Q

RES: 
STRUCT:

V XP V X ,zP Q -"Q

2.3 Barbed bisimulation

Barbed bisimulation was first proposed in [MS92]. One of the motivations was
to be able to uniformly define bisimulation-based equivalences in different calculi.
This is a very important property for the kind of work conducted in this paper,
since it allows us to have the same definition of equivalence in the calculi considered
(including the A-calculus, as we shall see in Section 6).

Barbed bisimulation focuses on the reduction relation. It goes a little further
though, since the reduction relation by itself is not enough to yield the desired
discriminanting power. The choice in [San92a4 was to introduce, for each name a,
an observation predicate 4, which detects the possibility of performing a commu-
nication with the environment along a. We can check whether P 1. holds from the
syntactic form of P: There must be a prefix a(U) or d(K) which is not underneath
another prefix and not in the scope of a restriction on a. For example, if P is
(Pc)(c.b I a.d), then P I., but not P Jo, P lb or P Id.

Definition 1. Strong barbed bisimulation, written A, is the largest symmetrical
relation on the class of processes of the language such that P A Q implies:

1. whenever P -- P' then there is a Q' such that Q -- Q' and P' A Q';
2. for each name a, if P la then Q 1.. 0
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By itself, barbed bisimulation is too coarse (it is not even preserved by parallel
composition). By parametrisation over contexts, we get a finer relation.

Definition2. Two processes P and Q are strong barbed-congruent, written P Q,
if for each context C[-], it holds that C[P] A C[Q. E'l

It is important to stress that the proofs in [San92a] dealing with barbed con-
gruence use the full languages of r-calculus and HOr - as opposed to the frag-
ments presented here - in the construction of the contexts with which processes
are tested. Therefore, these contexts use matching, summation, infinite recursive
definitions and infinite free names. A challenging problem for future research is to
see whether such results can also be proved in the finitary calculus, i.e. without
infinite definitions and names.

The weak version of the equivalence, in which one abstracts away from the
length of the reductions in two matching actions, is obtained in the standard way:
Let ==* be the reflexive and transitive closure of -- and 4.a be ==*I. (the compos-
ition of the two relations). Then weak barbed bisimulation, written ;, is defined
by replacing, in definition 1, the transition Q ---+ Q' with Q == Q' and the pre-
dicate Q 1. with Q 4.I; and weak barbed congruence, written ;t, by replacing in
definition 2 L with 4. The definition of barbed congruence on abstractions and
open agents is given in the expected way, by requiring instantiation of variables
and of abstracted names with all admissible agents or names.

The discriminatory power of barbed bisimulation is tested in [San92a], by prov-
ing that in the strong and in the weak case barbed congruence coincides in CCS
and r-calculus with the ordinary bisimilarity congruences.

2.4 The compilation from HOw to 7r-calculus

We present the compilation from HOi" to i-calculus on agents which can trans-
mit only one value - a name or an abstraction - and which only use unary
abstractions. This is purely to make the definition of the compilation (and of the
operational correspondence for it) more readable - the generalisation to the cal-
culus with arbitrary arities does not introduce semantic complications. We use
(a(m).P) {m := F} to stand for Lm.r(i(m).P I ! m(U).F(U)), where U is a name
or a variable, depending upon the sort of rn.1 One should think of m as a pointer
to F and {m := F) as a "local environment" for P. We call m a name-trigger.

The compilation C from HOir to i-calculus is defined in Table 1. The idea is
that the communication of the HOir agent F should be represented at first order
by the communication of a name-trigger m which gives access to (the encoding of)
F; the name m is used by the recipient to activate the needed copies of F with
the appropriate arguments. The other delicate rules are those for application and
for variable. Consider the application X(F): When X is instantiated to an agent
G, it becomes G(F). Translating X(F), we expect to receive just a name-trigger
to G, and we are expected to use this name to activate G, providing it with the

1 When P is 0, the occurrence of I is unnecessary and hence ( I(n).0) {m : F) should
be read as Y(i(,}. m, m(U).F(U))
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x { C[(Y)X(Y)] if X a higher-order abstractiont(X l(a)X(,,)] ot,,,,w,,e{ ((m). CP) (M := C[F3) if a =i (F)

C[a.P] G a(z).C[P] if a = G(X)

Sa.C(P] otherwise
C[X(F')]1 t$ (m(,).o) (,m:= C[FI} C[x(b)] 11 *E(b).o

C[P I Q! = C[P] I C[Qj C[ua P] V a[C(P CE[! P) !C[Pj

C[(X)P" •i (z)C[Pl C[(a)PJ ( (a)C[PJ

Table 1. The compilation C

argument F. Since we cannot pass agents at first order, as in the rule for output,
this is resolved by sending a name-trigger for F. In the rule for variable an it-

conversion is employed. This is to make explicit all possible applications and hence
to introduce all necessary name-triggers; the use of full triggered forms is needed
to get the soundness of Theorem 3 below [San92a]. In this rule, the termination of
C is guaranteed by the well-sortedness hypothesis which ensures that, in (Y)X(Y),
the sort of Y is "smaller" than the sort of X. In the table, a variable X is mapped
to its lower case letter z; we assume that both this name z and the name-trigger
m are fresh, i.e. do not occur in the source agent.

As a simple example, suppose F 'V! (b)O, Y is a first-order variable of the same
sort as F, and X is a second-order variable which may take F or Y as arguments.
Then

C[(X)(X(F) I !(Y))] = (z)(I(m) {m := F} I (m) {m := (z)-(z)})

Theorem3 (full abstraction for C). For each HOi agent A, and A2 , it holds
that Al - A2 iff C[AiJ ; C[A2J 0

3 The lazy A-calculus

We take for granted the basic concepts of the A-calculus (see [Bar84J). We use A
for the class of closed pure A-terms and M, N, L to range over A. We denote by 42
the divergent term (A.xzx)(Ax.zz). In Abramsky's lazy A-calculus [Abr87], a redex
is always at the extreme left of a term: The reduction rules are those for reflexivity
and transitivity plus

(/0) (Az.M)N ==* MNl/z} (App) MN = M'N

When embedding the A-calculus into a process calculus, functional application be-
comes a particular parallel combination of two agents, the function and its argu-
ment, and / reduction a particular case of interaction. The encoding below of lazy
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A-calculus into HOt makes this idea very transparent. The translation of a A-term
is an abstraction over a name; this name will be the only access to that agent and
will be used to interact with the appropriate A-term. Thus 'H[•Z.M](p) receives at
p its A-argument and the name q which will give access to M. In the translation
of application, the restriction on q prevents interference from other processes. For
simplicity, a variable z of the A-calculus is mapped to its upper-case variable X in
HOw.

: •W[Az.M! V• (p)p(X, q).WlMl(q)

S~I"[M N] L9 (p)&, q (7j[M](q) I j(W![N], p).0)

The higher-order features of HOw allow us a simpler encoding than Milner's
into w-calculus [Mil90]. Indeed, there is a one-to-one correspondence between re-
ductions in A-terms and in their HOw counterparts. Therefore, following Boudol's
terminology [Bou89], we can claim that lazy A-calculus is a subcalculus of HOt.

Proposition 4 (operational correspondence for 7W). Let M and M' be closed
A-terms.

1. If M -+ M' then li[Ml(p) -- M'I(p),
2. the converse, i.e. ifl[M](p) Q Q then there is an M' such that M - M'

and Q =_ [M'j(p).

PROOF: Induction on the structure of M. 0

If we apply compilation C to the encoding 7W, the output is precisely Milner's
encoding P in [Mil90]; the symbol 'o' denotes function composition:

Proposition 5. C o Wi = P. 0

Consequently, by appealing to the full abstraction for C, we can freely switch
between the two encodings. We shall exploit this in Sections 5 and 6 to study them
from the point of view of the model theory of the A-calculus.

4 The Call-by-Value A-calculus

In call-by-value A-calculus, reductions may only occur when the argument is a value,
i.e. an abstraction. The reduction relation used by Milner in [Mil9O] is described
by the usual rules for reflexivity and transitivity plus the rules /6, AppL, AppR:

(,6,) (Az.M)Ay.N ==€ M{Ay.N/z} (AppL) MN = M'N

N ==N'(AppR) M = N
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We shall try to repeat for call-by-value what we did in the previous section for

lazy A-calculus: We propose an encoding into HOt and then we compare it with
Milner's into r-calculus through compilation C. The call-by-value encodings are
slightly more involved than those for the lazy A-calculus. They also lose a neat ca-
nonicity, which is implicitly confirmed by the fact that in his original work [Mil9O],
Milner presents two candidates for the encoding. Basically, the problems in the
translation of call-by-value come from the following dichotomy in the behaviour
of a A-abstraction. Take the term MN: Both M and N could reduce to an ab-
straction; but if M does, then the abstraction is destined to perform the input of a
value, whereas if N does, the abstraction represents an output value. This causes
disagreement on whether the process which encodes a A-abstraction should first
perform an input or an output.

In the encoding below into HOw, in contrast with the one for the lazy A-calculus,
the translation of an application allows the two arguments M and N to run in paral-
lel. The HOt process 7W[M](p) uses p to communicate (with an output action) that
M has reduced to a value; then the dichotomy in the behaviour of a A-abstraction
is solved by the arbiter App(p, q, r) which imposes the correct interaction between
M and N.

7WlAx.M] dl(p)p-((w)w(X, q).TWlM](q) ).O

?i[MNJ '--/(p)(fq, r)(?iIMJ(q) I ?i/N](r) J App(p, q, r))

where App t! (p, q, r)q(X).r(Y).&, v (X(v) I i(Y, p).O)

It is enlightening to relate this encoding to the one for the lazy A-calculus. In the
"above rules for abstraction and variable, the "core" is the object part of the output
at p, and it has the same format as the corresponding rule for the lazy A-calculus.
Now the rule for "call-by-value application" should become clear: The arbiter App
receives along p and r the "cores" of 7[M] and Ut[N] and then imposes on them
the "lazy application". Therefore a reduction on the A-terms is matched by three
reductions on the process side. Let us apply compilation C to W and see what we
get back.

C[7i[Az.M]] d-__(p)P(m){m := (w)v(z, q).C[?i[M]](q)I

C17[x[zl V (P) P(m) Im := (WT)•(

C[7i[MNI! dg (p) (z q,r)(C[7t[M]l(q) I C[7i[N (r) I App. (p, q,r))

where with simple algebraic manipulations, App, (p, q, r) can be written as

S~App,(p, q, ,) y(x).,(y).(• v)Y(l).(-v(m,p){m := (w)-y(w)})

In his original work [Mil9O], Milner presents two candidates for the encoding of
call-by-value A-calculus into r-calculus, which we shall call P1 and P 2 , respectively.
They only differ in the rule for the translation of a variable: In P 2 this rule is simpler,
but PI allows easier reasoning and proofs. There are two differences between the
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encoding C o 71 and Milner's A,'s. The first difference is that the order of the
actions r(y) and v v t(v) in App,.(p, q, r) is reversed. Let us call P•, i = 1, 2 the
encoding obtained from Pi by commuting such actions r(y) and to vX(v). This
action rearrangement causes a semantic difference between P•[MN] and P4[MNI
only when M and N are open. The encodings Pi's appear closer than the Pi's
to the call-by-value intuition. We justify this with an example. Consider the A- I
term Az.z£2: Since the call-by-value application z*2 has a divergent argument D2,
the term zD is supposed not to produce any visible behaviour. Consequently, we
expect that a faithful encoding of call-by-value equates Az.zD and Az.a. But this
is true only for the encodings Ply's, whereas it fails for the P.i's. In consequence, we
consider the former an improvement of the latter.

The second difference between the encoding Co'H and Milner's P•'s (everything
we shall say for the Pi's holds for their "rectified" V 's) is that the component
i(mp) {m := (w)-(w)} of App, (p, q, r) is "optimised" as 10(y,p).O in P, and P2
and, further, in P2 a similar optimisation occurs in the rule for variable, which is
translated as (p)p(z).0. We call the former optimisation 1 and the latter optim-
isation I. It can be shown that both of them are instances of the same potential
optimisation of the compilation C in the rule for output of a variable, namely

*-cra(X).Q] =-Y (,)).[

The intuitive justification for (*) would be the following. Suppose that previous
interactions have instantiated the variable X of the HOr term "(X).Q with F.
In the encoding ir-calculus terms the simulation of these interactions causes the
instantiation of the name z with a trigger, say mF, to C[F]. Now, with the rule (*)
this same trigger mF is then transmitted in the output along a. Instead, with the
original rule of Table I a new name-trigger m to the term (y)I-mF(y) is transmitted:
This just seems to introduce a further level of indirection to the activation of
C[F]. Indeed, rule (*) is often sound, and we believe that optimisation 1 is. This
would give us a factorisation for P, (or better, for its rectified P') through the
HOar encoding and the compilation C, up-to some code-optimisation. We defer the
analysis of the soundness of optimisation 1, as well as of possible other optimisations
of C, for future research.

But rule (*) is not sound in general. The problem has to do with sharing. With
rule (*) two outputs of the same variable become at first-order outputs of pointers
to the same "environment entry"; this identity can be recognised and affects the
successive behaviour. For instance, the encodings of the strongly congruent HOKr
processes (here F is any abstraction)

P 'Y_ va (S(F).O a(X).ý(X).W(X).O)

Q =t v a (W(F).0 a(X).X(F).b(F).0)
would not be equivalent. For the same reason, /-conversion is not valid for Milner's
second encoding P2, as can be shown using the terms M = (Az.(,y.z))(Az.z) and
N = A•.(Az.z): In one #-step M reduces to N; however P2 [M] 6 P 2 [N]. The
difference between them appears after a sequence of interactions with the external
environment of length at least 7 (!).
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Nevertheless, P 2 yields a precise operational correspondence between A-terms
and their process encodings and, intuitively, one "expects" 7>2 to be correct. Re-
cently, in a collaboration with Benjamin Pierce [PS93] we have studied a stronger
sorting discipline than Milner's, in which one distinguishes the ability of using chan-
nels of a given sort for performing inputs, outputs or both of them. In this system,
we have indeed been able to prove the validity of #-reduction for P 2 . It would be
interesting to see whether the adoption of such a refined sort systems would also
validate rule (*).

5 A A-model from the process terms

Having shown the exact operational correspondence between lazy A-terms and their
process images (Proposition 4), it is legitimate to ask ourselves whether the encod-
ing gives rise to a A-model, and if so, what kind of A-model it represents. We chose
the lazy A-calculus because of the simplicity of its encodings. We shall work within
HOr; therefore from now on up to the end of the paper, the word encoding and
the symbol W refer to the HOx encoding of lazy A-calculus given in Section 3. All
results can be transported onto Milner's encoding into i-calculus via Theorem 3
and Proposition 5.

There are simple syntax-free definitions of A-model (i.e. they do not mention
A-terms). However, since we already have the mapping from A to process terms, it
is more convenient to use a definition where we can use such a mapping explicitly.
A valuation is a function from the set of A-variables to the domain D of the A-
model; [d/z]p is the valuation which maps z to d and which behaves like p on the
remaining elements.

Definition6 (A-model, from [HS86]). A A-modelis a triple < D,., M >, where
D is a set with at least two elements, '.' is a mapping from D x D to D and M is a
mapping which assigns, to each A-term M and valuation p, a member M[MJP E D
such that:

1. MI[zI = p(W) 2. M[MN], = M[M],. AM[N]o
3. M[Az.M]J,. d = M[MJ[d1/],, for all d E D

4..M[MJp = M[Mio, ifp(x) = ,(z) for all z free in M
5. M[Az.M]p = M[Ay.M{y/z}J],, for y not free in M

6. if M[M][d,/]p = M[N][d1 /,p for all d E D, then M[Az.M]p = M[Az.N]J.O0

Our A-model should respect the semantic relation adopted in HO7r. So, let us
denote by [A im the equivalence class of the agent A, namely

[AI=(A' : A' is an HOx agent and A-A')
The elements of the domain D of the model will be the equivalence classes of the

closed HO-" agents with the same sort S as the agents encoding A-terms.

dYe{[FJ,., : F E HOw and F has sort S}
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The definition of application on these elements follows the translation of A-application
in X/:

[GI, .[F3. ti (p)vq(G(q)I?(Fp))]k for p,q not free in GF

Note that the definition of application is consistent: by the congruence properties
of s, the result of the application does not depend upon the representatives G
and F chosen from the equivalence classes. We are left with the definition of the
mapping MIM]J,. The valuation p maps A-variables to equivalence classes of f.
Given a valuation p, we denote by eH a substitution from HOs variables to HOr
agents s.t.

for each A-variable z, pH(71[zi) E p(z)

Therefore, p# is the "conversion" of p which operates on the HOw variable WI[zJ
and which selects a representative out of the equivalence class of p(z). Now, the
mapping M of the A-model is defined using 7 as follows:

M[M],., •'-[7Ilmie.]

Note that since s is a congruence, this definition is independent of the repres-
entatives of the equivalence classes selected by p". We denote by V be the triple
< D, -,kM > so obtained.

Theorem 7. ") is a A-modeL

PROOF: Use the definition of V plus the congruence properties of % to show that
each clause of Definition 6 is satisfied. 0

We could have tried to be more selective in the definition of the domain D, and
take as domain D* = {It[M]J. : M E A}; then D* =< D%*, M. > represents
the interior of V [HS86]. But it turns out that V* is not a A-model. Clause (6) in
Definition 6 fails. As counterexample, take the terms L, and L2 as will be defined
in Section 6. Their encodings are not equivalent, i.e. li[LI] 6 7W[L 2 ]; however, for
all closed N it holds that 7i[L1 {Nfz}j * 'U[L2 {N/z}]. Therefore D is an example
of a A-model whose interior is not a A-model; see [HL80] for two more examples.

Now that we know that V is a A-model, we can infer all properties of A-models
for it; in particular we get that

* Every provable equation of A# is valid for the encoding, up to s (where
Afi is the formal theory given by a and P conversion plus the rules of inference for
equivalence and congruence).

* < D, > is a combinatory algebra (and hence is combinatorially complete)
where the two distinguished elements k and a can be defined as k - [lt[Azy.z] ]z,
and a = [W [Azyz.zz(yz)J ],.

However model V is not extensional, i.e. it is not a Aq model. As counterexample,
take D and Aa.9z. Then 7%[Q](p) r 7W[Az.gz](p), since 7W[9](p) %t 0, whereas
'K[Az.0z](p) can perform a visible action at p. This failure is not too surprising,
since our encoding mimics the lazy A-calculus, in which the V/ rule is not valid.
However, as in the lazy A-calculus, the q rule holds if M is convergent:



155

Theorem 8 conditional eztensionality.
N[AMj(p) 3p implies €[Az.Mz] v N[M], for z V fv(M).

PROOF: Use Proposition 4 and the definition of the encoding. 0

6 Full abstraction

Full abstraction, first studied by Milner [Mil77] and Plotkin [Plo77], is the problem
of finding a denotational interpretation for a programming language such that the
resulting semantic equality coincides with a notion of operational ixidistinguishab-
ility.

Inspired by the work of Milner and Park in concurrency [Par8l, Mi189], Ab-
ramsky [Abr87] introduces an operational equivalence on the lazy A-calculus terms
called applicative bisimulation, built on the idea that convergence is the only ob-
servable property.

Definition 9. Applicative bisimulation is the largest symmetric relation = C A x A
such that if M - N and M ==* Az.M', then there is an N' such that N ==* Az.N'
and M'{L/=z} N'{L/z}, for all L E A. 0

If we take A as the only port of the A-calculus and M J#A• as meaning "M can
reduce to an abstraction", then applicative bisimulation is the A-calculus version
of weak barbed congruence. This follows from the characterisation of applicative
bisimulation in terms of "convergence in all contexts" given in [AO89].

The classical setting in which the full abstraction problem has been developed
is the simply typed A-calculus. With the introduction of the operational equival-
ence resulting from applicative bisimulation, it can be neatly transferred to the
untyped A-calculus and it has motivated elegant works by Abramsky, Ong and
Boudol ([A089, Bou9l]).

A denotational interpretation is said to be sound if it only equates operationally
equivalent terms, complete if it equates all operationally equivalent terms, and fully
abstract if it is sound and complete. Let us consider what happens with the encoding
Xi. It is sound, since ?N[M] ý 7N[N] implies M = N; this can be established using
(mainly) Proposition 4. However, N is not complete. For this, take:

L, = z(Ay.(zi21y))S L2 = z(z. SO)S.

where .F is an always-convergent term (that is, for all N, .EN J), like the term
(Az.Ay.(zz))(Az.Ay.(zz)). Terms Li and L2 are used by Abramsky and Ong [AO891
to show that their canonical model for lazy A-calculus is not fully abstract. They
show that Li and L2 are applicative bisimilar but can be distinguished using con-
vergence test, an operator which is definable in the canonical model but is not
in the pure lazy A-calculus. We also have li[LI] 9 7/[L2]; by using Theorem 3,
this follows from a similar result for the encoding into w-calculus, which Milner
obtained by implementing the convergence test as a r-process [Mil90J. In terms of
the model V of the previous section, this inequality means that L, and L2 have
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different denotations and that V is not fully abstract. Given a denotational inter-
pretation which is not fully abstract, there are two natural directions to achieve
full abstraction:

* to cut down the existing "over-generous" semantic domain (restrictive ap-
proach);

* to enrich the language (expansive approach).

These two approaches are exemplified by the solutions to the full abstraction prob-
lem for PCF (a typed A-calculus extended with fixed points, boolean and arithmetic
features) proposed by Milner [Mil77] and Plotkin [Plo77]; in the latter, PCF is aug-
mented with a 'parallel or' operator. We shall see that in our case both directions
lead to interesting constructions.

6.1 The restrictive approach

The first approach exploits the possibility of quantifying barbed bisimulation on
a particular class of contexts, which allows us to specify exactly the way in which
certain agents are supposed to be used. As A-terms are only used in A-calculus
contexts, so we can require that their encodings be used only in encodings of A-
contexts. The encoding N is extended to A-contexts by mapping the A hole to the

HOxr hole, i.e. i[[.]] J_ []. Thus, the class of contexts we are interested in is

Z = {7/[CAf-)] such that C\[.] is a A-context)

For P, Q E HOxr, we set P - Q if for every C-context C[.], the processes C[P]
and C[Q] are barbed bisimilar.

Proposition 10. For each M,N E A, it holds that M = N iff T[M] ;c 7W[N]

PROOF: By use of the operational correspondence (Proposition 4), the character-
isation of = in terms of barbed congruence, the congruence properties of =. 0

This result allows us to construct a fully abstract model for the lazy A-calculus.
Let [A I. be the equivalence class of A modulo -, '.' and M[M] as defined in
Section 5 but with in place of [ 1•, and

D' = f M EA}.

Theorem I I full abstraction. D' =< D', , > is a fully abstract model for the
lazy A-calculus.

PROOF: Full abstraction follows from Proposition 10. The proof that D' is a A-
model is analogous to the proof that V is a A-model in Theorem 7. (The proof of
Theorem 7 used the congruence properties of -; in this case, we need the congru-
ence of -c on encodings of A-contexts; that is, if C[.] is the encoding of a A-context
and WI[M] -e, 7W[N], then C[IN[M]J s C[i[N]J]). 0

Indeed, the model V' is also fully expressive: all objects of the domain of inter-
pretation are A-definable. These results show that if from ir-calculus and HOT we
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discard everything which is extraneous to the encoding, in particular adopting %
as semantic equivalence, then the structure that we get back is the "same thing" as
the lazy A-calculus. In our view, this was really the decisive test for the correctness
of the HOir and i-calculus encodings.

The domain 1Y weakens the domain D of Section 5 in two aspects: The beha-
vioural equivalence is ;z,- rather than the more discriminanting ;; and only the
interior of D is taken into account. The first restriction is necessary to get full
abstraction; the second to make the definition of application consistent. It is in-
teresting to note the relationship between the choice of the class of HOw agents
and the choice of the behavioural equivalence in the definition of the domains D
and DV. In the former, we took the class A of all admissible agents, and then in
the behavioural equivalence we had to use quantification over the class Cnt of all
admissible contexts (definition of -_); in the latter we restricted to the "interior"
of A, and then in the behavioural equivalence we had to restrict to the "interior"
of Cnt (definition of _c).

6.2 The expansive approach

We next study the equivalence induced on A-terms by the encoding, called A-
observational equivalence; it equates the A-terms M and N if 'i[M] ; 7i[N]. In
other words, we look at the effect on A-terms of the use of "richer" contexts, in
which also concurrent features may be present. To derive a direct characterisation
of A-observational equivalence (i.e. a characterisation not mentioning the encoding)
we have to enrich the A-calculus with constants. A constant is a symbol which is
added to the language without specifying any operational rule; in this sense they
are opposed to operators, for which the behavioural rules are given (examples are
convergence test and non-deterministic choice). Constants can be found in the
well-known technique of the top down specification and analysis, where a system
is developed through a series of refinement steps each representing a different level
of abstraction; a lower level implements some details which at a higher level are
left undefined. A constant c is then a high level primitive standing for some lower
level procedure K.; Now for closed terms, cM becomes a sensible normal form.
Operationally, we really can see it as the output of the tuple Mý1 along the channel
c and towards K,.

Let AC be the class of A-terms enriched with constants. When generalising
applicative bisimulation to terms in Ac, the main question is which condition
should be imposed on the equality between the terms cM and cN. According
to the above interpretation of constants, it is natural to require that the ordered
sequence of arguments represented by M and N be equivalent (clause (2) in the
following definition).

Definition 12. Applicative bisimulation over AC, written =c, is the largest sym-
metrical relation on A x A such that M =c N implies:

1. if M ==* Ax.M' then there is an N' such that
N ==* Az.N' and M'{L/z} =c N'{L/z}, for all L E Ac;

2. if M ==* cM1 ...M,, for some n > 0 and c E C, then there are N1,...Nn
such that N ==* cN ... Nn and Mi" Ni, 1<i< n.
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The proof (in (San92a]) that =c coincides with A-observational equivalence (in
particular the implication from right to left) is delicate. Milner's encoding is ex-
tended to Ac by mapping constants to a special kind of agents called triggers.
These were introduced in [San92a] to obtain a simple characterisation of barbed
congruence in HOw; it turns out that their discriminanting power is the same as
that of constants in the A-calculus.

Theorem 13 (direct characterisation of A-observ'ational equivalence).
If M, N E A, it holds that M =c N iff 7IM] s W[N] 0

Let Vc be the extension to AC of the model V of Section 5; Vc is defined as
V with Ac in place of A, and utilising the extension of 7i to Ac.

Corollary 14 (full abstraction for V). VC is a fully abstract model for the
lazy A-calculus enriched with constants. 0

Starting from these results, the study of A-observational equivalence has been
continued in [San92b]. The outcomes suggest that it is a robust equivalence. First,
it enjoys simple operational and denotational characterisations. Secondly it coin-
cides with the equivalence obtained when the A-calculus is augmented with the
whole class of well-formed operators, a fairly large class of operators whose beha-
viour depends only on the semantics - not on the syntax - of their operands;
that is to say, the encoding into i--calculus/HOwr induces maximal observational
discrimination on A-terms.
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Time Abstracted Bisimulation:
Implicit Specifications and Decidability

Kim G. Laxsen*and Wang Yit

Abstract

In the last few years a number of real-time process calculi have emerged with the pur-
pose of capturing important quantitative aspects of real-time systems. In addition, a num-
ber of process equivalences sensitive to time-quantities have been proposed, among these
the notion of timed (bisimulation) equivalence in [RR86, DS89, HR91, BB89, NRSV90,
MT90, Wan9lb].

In this paper, we introduce a time-abstracting (bisimulation) equivalence, and inves-
tigate its properties with respect to the real-time process calculus of [Wan9O]. Seemingly,
such an equivalence would yield very little information (if any) about the timing prop-
erties of a process. However, time-abstracted reasoning about a composite process may
yield important information about the relative timing-properties of the components of the
system. In fact, we show as a main theorem that such implicit reasoning will reveal all
timing aspects of a process. More precisely, we prove that two processes are interchange-
able in any context up to time-abstracted equivalence precisely if thle two processes are
themselves timed equivalent.

As our second main theorem, we prove that time-abstracted equivalence is decidable
for the calculus of [Wan90] using classical methods based on a finite-state symbolic,
structured operational semantics.

1 Introduction

During the last few years various process calculi have been extended to include real-time in order
to handle quantitative aspects of real-time systems, for instance that some critical event must
not or should happen within a certain time period. The extensions often include timed versions
of classical process equivalences, e.g. timed bisimulation equivalence, timed failure equivalence
and timed trace equivalence [RR86, DSS9, HR1 l, NRSV90, MT90, XVan91b]. Loosely speaking,
for two processes to be equivalent they should not only agree on what actions they can perform,
they must also agree on when these actions are performable. Alternatively, one can say that

an observer is assumed to be s,.ksitive to passage of time including the quantity by which time
is passing.

A fundamental problem induced by any new process calculus is that of axiomatization and
decidability of the associated process equivalence. Normally, these problems are solved in two
stages: the problems are first solved for the class of regular processes, i.e. processes with no
parallel composition, after which it is shown how to remove parallel composition through the
use of a so-called expansion theorem. However, for real-time calculi where time is represented

"Department of Mathematics and Computer Science, Institute for Electronic Systems, Aalborg University,
DK9220 Aalborg, Denmark. E-mail: kglaiesd.auc.dk. The work of this author was supported by the Danish
Natural Science Research Council project DART and partially by the ESPRIT Basic Research Action 7166,
CONCUR2.t Department of Computer Systems, Box 325, Uppsala University, S751 05, Uppsala, Sweden. E-mail:
yi~docs.uu.se. The work of this author was done during a visit to the deparment of mathematics and computer
science at Aalborg University, and supported by the Danish Natural Science Research Council project DART
and partially by the ESPRIT Basic Research Action, REACT.
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by some dense time domain (such as the non-negative reals) processes will have infinitely many
states, and it has been shown in [GL92] that no expansion theorem exists for timed bisimulation
equivalence - i.e. parallel composition can not in general be removed. This explains why
axiomatization and decidability of various equivalences between real-time processes based on
dense time domains have proven notoriously hard problems. Recent work by Nerans [192),
Chen [Che9lb] and Fokkink and Klusener [FK91] offers the first examples of decidability and
axiomatization for real-time calculi based on dense time.

In this paper we introduce a time-abstracting (bisimulation) equivalence between real-time
processes, i.e. in comparing real-time processes we shall abstract away from passage of time
'. Seemingly, such an equivalence would yield very little information (if any at all) about the
timing behaviour of a real-time system. However, if the real-time system is a combination
of real-time systems, O(P 1 ,...,P.) say, time-abstracted reasoning will at least yield some
information about the relationship between the concrete timing properties of the components
P,...,P,. In fact, as we shall prove as a main theorem of this paper, in a certain formal sense
all timing aspects of a real-time system may be revealed in this manner.

As the second main contribution of this paper, we demonstrate that the time-abstracted equiva-
lence is decidable using essentially classical methods based on a finite-state symbolic, structured
operational semantics. The symbolic semantics is based on a discrete version of the standard
(continuous) operational semantics. In order to obtain completeness it is essential that the
symbolic semantics is based on a sufficiently fine "granularity". In fact, we show that the
"granularity" required is linearly dependent on the number of parallel components.

To further motivate the usefulness of time-abstracted equivalence consider the combined system
in Figure 1 consisting of two (disposable) media A and B.

A B l -

Figure 1: A Combined Medium

Functionally, the two media are nearly identical: they accept messages on the left port passing
them on to the right port. However, taking time into account, there are important differences
between the media: after having accepted a message on port a. A is immediately able to deliver
the massage on port b. However, if the message has not been taken after a delay of t. a timeout
will occur and the massage is lost. In contrast, the medium B will never lose a message once it
has been accepted. However, a message can only be accepted on port b after some initial delay
tb. Using the timed calculus of Wang [Nkan90, \Van91b, \Wan9la] the two media A and B may
be specificed as follows:

A d_ a.(b.nil + i(t 0).r.nil)

B E~ (b).b.z.nil

It should be obvious that even from a time-abstracted point of view, the behaviour of the
combined system (A I B)\b is highly dependent on the timing parameters t. and 4. Essentially,
if t, > tb the combined system will function as a proper (disposable) medium, i.e.:

(Al B)\b - a.c.nil (1)

'This abstraction is very similar to the abstraction from internal computation iii classical process algebras.
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where % denotes our (weak) time-abstracting equivalence 2. In contrast, if tb > t., the combined
medium may not be able to successfully deliver messages; in fact the following will hold 3:

(AI B)\b 0 a.(T.nil + r.Z.nil) + r.a.Z.nil (2)

Even though, we gain information about the relationship of the timing behaviours of A and
B in both (1) and (2), we have no information about the timing behaviour of the combined
system. Obviously, in the case (1) a message can be delivered on port c after a delay of less

than tb from the acceptance of the message. Using the (weak) timed bisimulation equivalence

from [Wan9la] such properties can be specified:

( A I B)\b =z a.e(tb).Znil"

Alternatively, one can express such explicit timing properties using Timed Modal Logics, e.g.

[ACD90, HLW91, HNJ92, RH92]. However, we can also formulate explicit timing properties us-
ing time-abstracted equivalence by resorting to implicit specifications: i.e. instead of specifying
properties of S = (A I B)\b directly we specify properties of the system S in certain contexts.
Concretely, specifying that S must be able to deliver on port c after a delay of no more than d
after acceptance on port c can be expressed as follows:

(ý.(c.w.nil + c(d).r.nil) I S)\{a, c) . w.nil (3)

where w is a distinguished (success) action. Here, we are exploiting the maximal progress
property of the calculus in [Wan91aj '.

The previously announced main theorem, that all explicit timing properties can be captured
using time-abstracted equivalence, can now be made more precise: we show that implicit time-
abstracting specifications of the form (3) precisely characterizes timed bisimulation equivalence.
That is, two timed processes are timed bisimulation equivalent just in case they satisfy the same
implicit time-abstracted specifications. Thus, without any loss of discriminating power, one
may use time-abstracting bisimulation equivalence instead of timed bisimulation equivalence.

The outline of the paper is as follows: in section 2 we review the timed calculus of [Wan9O,
Wan9lb, Wan9la] together with the notion of timed bisimulation; in section 3 strong and weak
notions of time-abstracted bisimulations are introduced; in section 4 we prove as our first main
theorem that implicit tin'e-abstracting specifications are as discriminating as timed bisimula-
tion; section 5 contains our second main contribution: decidability of strong and weak time-
abstracted bisimulation equivalence. Finally, in section 6 we give some concluding remarks. To
achieve readability while maintaining credibility we enclose full proofs in the appendices.

2 Timed Processes

2.1 Syntax and Semantics

The language we use to describe timed processes is essentially, Milner's CCS extended with a
delay construct c(d).P. Informally, c(d).P means "wait for d units of time and then behave like
P", where d E R+ is a nonnegative real.

2Weak indicating that " also abstracts from internal computation.
3 The summand ... r.a.e.nil reflects that messages may successfully be delivered in case A delays sufficiently

long before accepting a messages as this will reduce the remaining delay for B.4 The displayed equivalence does in fact not hold as the delay required before the delivery depends on the
delay before the acceptance. Using time-variables as in [Wan91b] a valid equation would be: (A I B)\b
a~t-Wb - t).0.nil

SMaximal progress means that time is not allowed to pass if a system can perform internal computation.



163

As in CCS, we assume a set A = A U A with a = o for all a E A, ranged over by a,8 6
representing external actions, and a distinct symbol r representing internal actions. We use
Act to denote the set A Uf {r} ranged over by a,b representing both internal and external
actions.

Further, assume a set of process variables ranged over by X.

We adopt a two-phase syntax to describe networks of regular timed processes. First, regular
timed process expressions are generated by the following grammar:

E ::= nil I X le(d).E I a.E I E + EIX V E

We shall restrict process expressions to be well-guarded in the following sense:

Definition I X is well-guarded in E if and only if every free occurrence of X in E is within

a subexpression (a guard) of the form a.F in E.

E is well-guarded if and only if every free variable in E is well-guarded in E, and for every
subexpression of the form X tf F in E, X is well-guarded in F. 0

Closed and well-guarded expressions generated by the grammar above are called regular timed

processes. Networks of regular timed processes are described by CCS parallel composition:

PAI...IP.

where Pi are regular timed processes. For simplicity, we have ignored the other CCS operators.
However, the results of this paper can be easily extended to more general types of networks
modelled by the combination of parallel composition. restriction and relabelling:

(PI [Sal..IP.[,q.])\A

P --* P,
a.P -. P p f(O).P -f- P'

p_.~ , Q__2-Q, p_ X p,

____Q a___ PAP 4

P+Q"A"P' P+Q-AQ' .V-2-•P' [.\ d_/p]

Q....Q' p..•p, p...p' QA_..Q'

PIQ ! PI(. Q--*P'IQ PIQ P'IQ'

Table 1: Action Rules for Timed Semantics.

pE~d) p,

(_)_(d) ___ ___ ___ f()p ,cd I

nil nil +(c - d).P 4(c).P •(c).P -+ p

(de(d) (dP

p,(_.dp) , Q.d Q, p_.___4- -I Ix LY-- P)
&.p ,Jla.p p + Q ,llp,+d,) d.) p

pIQ (d) Q ,' (Sortd(P) n Sortd(Q) =0

Table 2: Delay Rules for Timed Semantics.
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We will use P, Q to range over timed processes.

A timed operational semantics for the language has been developed in [\lan9O]. \Ve present
the transition rules in two groups: rules for actions in table 1 6 and rules for delays in table 2
7

Note that the side condition for the delay rule of parallel composition is to guarantee that the
parallel processes satisfy the maximal progress assumption, that is, a timed process will never
wait if it can perform an internal action r. The condition is formalized by means of Sortd(P)
defined inductively on the structure of processes P. in table 3. Intuitively, Sortd(P) includes all
external actions that P is able to perform within d time units; whereas Sortd(P)nSortd(Q) = 0

means that P and Q cannot communicate with each other within d time units.

Definition 2 Given a process P, we define Sorto(P) = 0 and Sortc(P) for c j 0 to be the
least set satisfying the equations 9 given in table 3. 03

Sort,(nil) = 0
Sort,(a.P) = {o}
Sort'(r.P) =

Sort,(e(d).P) = Sortc._d(P)

Sortc(P + Q) = Sort,(P) U Sort,(Q)

Sortc(X) = Sort,(P) [X L-d PI
Sortc(PIQ) = Sort,(P) U Sort,(Q)

Table 3: Equations for Sortc(P) .

The following properties of timed processes will be often referred in the later sections.

Proposition 1

1. (maximal progress) If P -' P' for some P', then P d) P" for no d and P".

2. (time determinism) Whenever P fd_) P' and P pd_) P" then P' = P".

3. (persistency) If P F P' and P . Q for some P' and Q, then P' -2- Q' for some Q'.

4. (time continuity) For all c,d and P", P ) P" iff P c- , P FL- P, for some P'.

We end this section with notation:

"* P stands for a network P1 I... Pý where Pi are regular timed processes.

"* Whenever P ! P', Pd stands for P' '0 : note that pd is well-defined due to time-
determinism property stated above.

• r stands for P I...IPr- for! = (x x,).

6Note that apart from the rule for f(O).P, the action rules are exactly the same as in CCS.
7

1n table 2, we use d to stand for a non-zero real; this implies that a t(O)-transition can never be inferred
by the inference rules. However, we shall apply the convention that P 0 P for all P.

$Here, Sortd(Q) is defined to be the set {( I a E Sortd(Q) I.
9 1n table 3, c-d is defined to be c - d if c > d, 0 otherwise.

'°Note that P0 stands for P following the convention that P 0 P for all P.
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Conceptually, one can imagine each component Pi of a network P to be equipped with a
private clock. All clocks proceed at the same speed and a clock-value will be reset to 0 when
the corresponding component perform a real action; r denotes the state of 5 in which the
clock-values are x, .... x,,.

2.2 Timed Bisimulation

\Ve have developed a labelled transition system: (PR, --- , C) where PR is the set of timed
processes generated by the two-phase syntax; -. is the least relation satisfying the inference
rules given in table 1 and table 2; £ is the set of labels, Act U {e(d) I d E IZ+}. To compare
timed processes, strong and weak notions of timed bisimulation have been defined based on
this transition system in [Wan90].

Definition 3 (strong timed bisimulation) A binary relation S on RR is a strong timed simula-
tion if (P, Q) E S implies that for all a E Act and d E 1?+,

1. Whenever P --- P' then, for some Q', Q -f-. Q' and (P', Q') E S

2. Whenever P 4 P' then, for some Q', Q ! Q' and (P', Q') E S

"We call such a simulation S a strong timed bisimulation if it is symmetrical. The largest strong
timed bisimulation is called strong timed equivalence, denoted '-. 0

Weak timed equivalence is defined by abstracting away from internal actions.

Definition 4

1. P =4 Q if P(--,-A)Q

2. P =9::, Q if P(--'-+)- -- (---)-Q

3. P 4 Q if P(--4)- ( (..L.)..(_ d..? (-.-+)-Q where d = .i<,di. 40

Definition 5 (weak timed bisimulation) A binary relation S on PR is a weak timed simulation
if(P, Q) E S implies that for all a E Act and d E R.+

1. Whenever P -- b P' then, for some Q', Q =* Q' and (P', Q') E S

(d)
2. Whenever P + P' then, for some Q', Q = Q' and (P', Q') E S

We call such a simulation S a weak timed bisimulation if it is symmetrical. The largest weak
timed bisimulation is called weak timed equivalence, denoted --. 0

In [Wan9la], it has been shown that - is a congruence w.r.t all CCS operators and - is a
congruence w.r.t. all the other operators except summation and recursion.

3 Time Abstracted Equivalences

In analyzing a large system, we often need to make proper abstractions according to what
properties of the system we are interested. One such example is weak timed equivalence,
which abstracts away from internal actions. In this section, we develop notions of bisimulation
abstracting away from both time delays and internal actions.



Definition 6 (abstracting away from time) 1

1. P - Q if P( C--¾)Q

2. P --- Q if P - L---e--- Q 0

For example, e(2).o.P --- * c(O.3).a.P, ... , e(2).a.P .--L o.P. Here, we simply consider a timed

transition like P !L)4 Q as an empty transition P A Q where the quantitative part i.e. d
of the transition is ignored. This assumes that the .bserver (or environment) who makes the
observation is insensitive to time-quantities. Naturally, we may identify two processes if they
can not be distinguished by any time insensitive environment.
Definition 7 (strong time abstracted equivalence) A b.aar relation S on PR is a strong time

abstracted simulation if (P,Q) E S implies that for all a E Act and d E 7Z+,

1. Whenever P F F' then, for some Q', Q --. Q' and (P',Q') E S

2. Whenever P . P' then, for some Q', Q -i-. Q' and (P', Q') E S

We call such a simulation S a strong time abstracted bisimulation if it is symmetrical. The
largest strong time abstracted bisimulation is called strong time abstracted equivalence, denoted

For example, e(2).r.nilje(1).f.nil -* r.nillI.nil -* T.t3.nil + ,3.r.nil. Note that in terms of timed
bisimulation equivalence -, there is no regular process equivalent to the parallel process.

We make a further abstraction to abstract away from internal actions.

Definition 8 (abstracting away from time and r)

1. P =:t'. Q if P(¢d-• _

2. P =:*Q Q if P = -- == Q 0

Definition 9 (weak time abstracted equivalencf) A binary relation S on VR is a weak time
abstracted simulation if(P, Q) E S implies that for all a E Act - {r) and 0 E {r} U {e(d) I d E

1. Whenever P -- 4 P' then, for some Q', Q =•o Q' and (P',Q') E S

2. Whenever P - P' then, for some Q'. Q =46 Q' and (P', Q') E S

We call such a simulation S a weak time abstracted bisimulation if it is symmetrical. The
largest weak time abstracted bisimulation is called weak time abstracted equivalence, denoted

Now, we can further simplify our example process e(2).r.niljf(l).93.nil to 3.nil by the equation:

It seems that every timed process would be time-abstracted equivalent to an untimed process

which contains no delay-construct. This is not true for .-. For instance,

(e(l).a.nilI/j.(r.nil + .. nil))\{a) 7 P,
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Figure 2: Ordering Timed and Time-Abstracted Equivalences with Strength.

for all untimed processes P.. However, it is true for weak time abstracted equivalence that for
each timed process P, there will be an untimed process P_,. such that P ;- P,,. For instance,

it is easy to prove (e(1).o.nill#.(r.nil+ &.w.nil))\{a) ; (r.a.niljf3.(r.nii + •.w.nil))\{a}.

We conclude this section with the commuting diagram shown in figure 2, which illustrates
the relationship between timed and time-abstracted equivalences. The arrow in the diagram
should be understood as set inclusion, that is: -C•*Cz and -C;Cz. The proofs of these
inclusions, that they are strict and also the only inclusions among the four equivalences are
straightforward.

4 Implicit Time Abstraction

In this section we present our first main theorem: two timed processes are strong (weak)
timed equivalent if and only if they satisfy the same strong (weak) implicit time-abstracted
specifications. Here, a strong implicit time-abstracted specification of a process P is an equation
of the form:

AIP -' B (4)

where A and B are real-time processes. That is P -,, Q if and only if P and Q satisfy the
same equations of the form (4). Alternatively. the results in this section say that - (•) is the

coarsest equivalence contained in L (•) which is preserved by the parallel composition of our
calculus t

Theorem 1 P - Q if and only if P I N -, Q I N for all NV.

Proof: Only If- As - is preserved by all operators of the calculus and since - is contained in
2-, it is obvious that this direction holds.

If.: We show that the relation:

R = {(PQ) I for all N, P\IN 2* QIN

is a strong timed bisimulation. Thus consider (P. Q) E R.

First consider an action-transition P --L P' and let {Q,. Q,,, } be the set of all a-derivatives
for Q 12.

In case m = 0 (i.e. Q has no a-transitions), P I N ý Q I N for N = -. w.nil + r.nil, where
w is a distinguished action not occurring in neither P nor Q. However, this contradicts the
assumption that (P, Q) E X.

"As -is preserved by a/l operators of the calculus, -is in fact the congruence induced by -. This fact does
not extend to the weak case, as % is not - as usual - preserved by +.

"2 We use the easily established fact, that all processes definable in our calculus are image-finite in the sense
that the set of derivatives under any action is finite.
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Thus, m > 0. Now, assume that (P', Q,) V R for all i. We shall show that this leads to a
contradiction. However, under this assumption it follows from the definition of 71 that for each
i there exists a process Nj such that P' I Ni 7' Qi I Ni. Now let:

"IV = .Na N' t •w,.g, i+ r.N'

where wi axe distinct actions not occurring in neither P nor Q. Note, that N' is a time-stopped
process (and P I N' is time-stopped for any P) in the sense that no delay-transitions can take
place. Now we claim that PIN - Q IN contradicting that (P, Q) E R?. To argue for this
consider the transition:

P IN --' P'l N' (5)

A possible match for Q I N must be of the form Q I N --. R. Due to the maximal progress
property of our calculus, and as N' (and hence Qj I N') is time-stopped, the only possible such
transitions are either of the form (a) Q I N -_-'. Q I N' or of the form (b) Q I N * Q" I N with
Q -.-. Q". Clearly, transitions of the form (b) can not match (5) as P'j N' -2 whereas
Q"I N IL. Let us thus compare behaviours of P' I N' and Qj I N': first note that with respect
to wi both possess the following unique transitions: P' I N' -'--'* P' N' and Qj I N' -"-' Qj I Ni.
Thus, ifP) N' * Qj IN' it follows that w,.(P' I Ni) '- w,.(Qi I ,A'). However, this contradicts the
assumption that P' I Ni -ý Qj I Ni and the easily established fact that whenever a.U -* a.V then
also U -* V. Thus, Q I N has no match for the transition (5) of P I N and hence P I N ;- Q I N
contradicting the assumption that (P, Q) E 7R.

Now consider a delay transition P -) P'. If Q •-) then clearly PIN ?% Q IN for N
e(d).w.nil contradicting (P, Q) E R. Otherwise assume that Q • Q' (due to time-determinism
Q' is unique). Assume (P', Q') V 7?, that is PIN' N Q'fN' for some N'. In this case
P I N ; Q I N for N = e(d).N' again violating the basic assumption that (P, Q) E 1R. 0

Example. Consider the two processes 13:

P = f(1).a Ib Q = b.f(l).a + c(l).(a I b)

It is obvious that these two processes are not strong timed equivalent, i.e. P - Q. To see this,
note that P possesses the following transition-sequence:

P !U c(.5).a I b 2--- *(.5).a I nil 1 a I nil

The only possible match Q for is the following:

Q ! b.e(1).a + c(.5).(a I b) - •(1).a • E(.5).a

However, it is clear that this is not a proper match as a I nil -s2. whereas f(.5).a 7-i. Now

using the construction of the above theorem 1 we obtain the following process:

N = €(.5).b.w1.e(.5).('i.w + T.nil)

which distinguishes P and Q, i.e. P I N ; Q I N. 0

We have a similar result for weak timed and time abstracted equivalences.

Theorem 2 P _Q if and only if PIN *. Q IN for all N.

"3 We are using the convention of dropping trailing nil's. That is, we write simply a for a.nil.
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Proof: Only if: As ; is preserved by parallel composition and since is contained in =z, it is
obvious that this direction holds.
If. We show that the relation: R = {(P, Q) I for all N. PIN ; QJN} is a weak timed bisimu-
lation. A complete proof is given in the full version of the paper [L\\'93].

5 Decidability

From the delay rules in table 2, we can easily see that the timed processes are infinite-state w.r.t.
- and also --. For example, t(1).PIQ -Le c(0.3).PIQ - ... - c- •(O.0005).PIQ -

•. PIQ. The infinite-stateness makes the decidability problem of - and -• notoriously
hard.

To achieve decidability, we shall study a particular class of processes TPv ranged over by PJ,
called integer processes in which, only naturals are allowed to occur in a delay operator f(d).
However, we should point out that the decidability result is easily extended to processes using
rational numbers in delay operators: before comparing two such processes simply multiply all
delays with a common constant, sufficiently large to make all delays integers.

In this section, we prove that strong (weak) time abstracted equivalence over integer processes
is decidable. The proof is constructed in two steps. First, we show that the state-space of a
timed process can be partitioned into equivalence classes according to the notion of time regien
due to Alur and Dill, [AD90]. Secondly, we develop a time-step semantics called k-semantics
which is parameterized with a granularity 1/k. Intuitively. the k-semantics describes how a
process shall behave in every 1/k time units. The idea is to use each state of such a time-
step semantics to represent an equivalence class of states of the timed semantics. Based on
the parameterized k-semantics we define a family of symbolic time abstracted equivalences -
which is also relativized to the granularity 1/k. It turns out that -0 +2 coincides with Z, that
is:

iP : P if and only if-P T ,+2

where n is the maximal number of components in the networks P and Q.
Since the integer processes in the (n + 2)-semant ics are finite-state. - + 2 can be checked using
the existing techniques and algorithms for bisimulation-checking, such as [KS90, SV89, PT87,
JGZ89, CPS89] and hence so can Z. Finally, we extend the results to weak time abstracted
equivalence.

5.1 Partitioning State-Space into Equivalence Classes

To illustrate the idea, we consider a simple regular process:

P def a.Q + c(l).r.R

The process may offer a before 1 and will time out at 1. Indeed it is infinite-state since
by performing an empty transition (delay) it may reach a continuum of states, {PXIx < 1).
However, P' - P" for all x,y < 1, that is, {P'Ix < 1} is an equivalence class.

Naturally, we may say that all time points such as x = 0,0.1, ... ,0.9 in the region z < I are
equivalent in the sense that they give rise to an equivalence class of states. This motivates a
notion of equivalence over time points in a multi-dimensional time vector.

Let I and y range over IV, understood as time points in the n-dimensional time vector. For
SE Rj and d E R+, we shall write2 + d for (zx + d., , + d).
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Definition 10 7 and y are equivalent, denoted by

1. Vi: Q(L,J = LyJ),

2. Vi,j : ({x,} !5 {xj} * {y,} < {y5}j) and

3. Vi: ({x = 0 4=* {y =0).

where LdJ is the lower integer part of d and {d} is the fractional part of d. The equivalence
classes of R' are called time regions. 0

The definition above is the standard one for time region, taken from [AD90]. The first clause
requires that the lower integer parts of Y and V must be equal; the second clause requires that
the fractional parts of Y and y must be ordered in the same way; the third requires that some
fractional parts of 7 are 0 if and only if the corresponding fractional parts of V are 0.

The following is an important property of 1, saying that equivalent points -which must be in
the same region-can always reach the same regions by delays.

Lemma 1 Whenever - , then for all d E R+. -Y + d 1- y + e for some e E 1Z.

Proof: It is given in the full version of the paper [LWV93]. 0

We intend to establish that for any integer parallel process P, a time region denotes an equiv-

alence class of states Pr" 14 in terms of -'. Thus, two states in a time region should agree on
what actions they can perform and then reach the same regions; they should also be able to
reach the same regions by delays.

Lemma 2 For all -P E PN, d E R+ and a E Act. whenever Y then

L. -r -L, Tr for some P and F, implies 7 2' 4 __ P7 for some • - and

2. - r . -p-+d implies rP r+c - and + d -+ e for some e E 1Z.

Proof: It is given in the full version of the paper [LW93]. 0

Now, we are ready to state the partition theorem, which asserts that the infinite state-space
of integer processes can be divided into equivalence classes according to time regions. In fact,
many of such classes belong to a large equivalence class and the number of such classes is finite.

Theorem 3 (partition) Whenever! -, then r 2, rP- for all 7P E PN.

Proof: By lemma 2, it should be obvious that the relation: s = {(P•,P-) I • -,P E -PNI is
a strong time abstracted bisimulation. 0

In the next section, we want to find a representative state for each equivalence class and then

construct a symbolic transition system in terms of the representative states. In order to do so,
we need first find a representative point for each time region of 1z.' for a given n.

Let A( denote the naturals. WVe define the set of grids with granularity I/k: Y/' = {m/k Im E
AO ranged over by g,h and the set of grid points with granularity I/k: AX' = { I 1 <
i < n,ri E AQ} ranged over by F,1. An obvious choice is to use the the grid points K,/ as
representative points for 7R.", for some fixed granularity 1/rm.
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We claim that the grid points with granularity 1/(n + 1) are enough to represent the 11-
dimensional time points R7, that is.

Lemma 3 For all " E R"+, there exists 7 E Ar%1+j such that T "= V.

Proof: It is given in the full version of the paper [L\V931. 0

Clearly, the lemma above will hold for any granularity finer than 1/(n + 1) such as 1/(n +
2), 1/(n + 3) etc. However, it doesn't hold for a granularity coarser than 1/(n + 1). To see this,
consider the case of n = 2: with the granularity 1/2 one can not find a grid point representing
(1/3,2/3).

Thus 1/(n + 1) is the coarsest granularity allowing any time region in the n-dimensional time
space to be represented up to "-. However. we need a slightly finer granularity (which is in
fact 1/(n + 2) as shown in the following lemma) in order for a region to reach all regions by
grid-valued delays, which are reachable by real-valued delays. The following lemma will be
heavily used in proving the decidability results.

Lemma 4 For all T E .+ 2 and all d E TZ+. there exist : E A1'+ and g E A.4, 2 such that

°P and +d =* 7-+g.

Proof: It is givtn in the full version of the paper [L\V93]. 0

Note that T + g E A(,4+ 2 , which will prove an essential property for the applicability of our
finitary, symbolic semantics to follow. Also, note that it is not always possible to choose r' = T.
To see this, consider the case of n = 2, -F = (3/4. 0) and d = 1/S. The only possible choices for
g is 0 and 1/4. However in both cases we see that 'F + _ T + d. However. taking? = (1/2, 0)
and g = 1/4 we obtain as desired -P 1 T and P + g T + d.

P -2-++k P
a.P -- k P C(O).P -ý-k P'

P _Lk P' Q __, Q, p ..2., P1 +

P + Q _!-+k P, P + Q kQ' X P' P Xd=P]

P _ __L+ P' Q -k Q' P --- P' Q __ Q'
PIQ -2-k PQ PIQ -- +kP'Q' PPIQ _l_ P'IQ'

Table 4: Action Rules for k-Semantics.

P •Xk p1

nil -'4k nil 0(r + k).P - .(r).P r(O).P .-- ,k P

IP k-- P,]p k___ PPp, Q _1 P,

Tabl 5P De[PIQ Rlfr_ kPIQ k_. P'IQ'

Table 5: Delay Rules for A-Semantics.
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5.2 Time-Step Semantics: Sampling

The timed semantics describes how a process will behave at every real-valued time point with
arbitrarily fine precision. This introduces the infinite-stateness of timed processes.

In practice, the "sampling" technique is often used to analyze a system. Instead of doing
experiment on the system under consideration at every time point, only certain typical time
points are chosen to capture or approximate the full system behaviour. Based on this idea,
we develop a time-step semantics called k-semantics relativized by the granularity i/k, which
describes how a process shall behave in every 1/k units of time. To achieve finer precision, we
can choose a finer granularity. However, the timed processes will be finite-state for any fixed
granularity 1/k. As we shall see latter it is possible to completely capture time abstracted
equivalences by sampling with a sufficiently fine granularity. In fact, the granularity required
turns out to be 1/(n + 2) where i is the number of parallel components.

We present the inference rules for the k-semantics in two steps: rules for real actions in table 4
and rules for delays in table 5. Note that apart from the index k associated with the arrow,
the action rules are the same as in table 1 and the delay rules are parameterized with k.

We claim that the processes PN are finite-state w.r.t. the transition relation -- k for any
non-zero natural k. This can be established based on the following facts on processes:

Figure 3: Transition Graph for c(1).a.nilj/3.nil with Granularity 1/2.

"* There is no infinite summation allowed;

"• All recursive definitions are well-guarded;

"* No parallel composition occurs within a recursion:

"* Every process P must be time-stable after some maximal delay d,,_. in the sense that

P-d Td- is for all d or r-'" ,

Example. In figure 3, we have a transition graph for c(1).c.nilIi.nil with granularity 1/2. For
clarity, we have omitted nil in the graph. 0

15
Here, -Pd- stands for pf"~ I...IPd-.
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5.3 Symbolic Time Abstracted Bisimulation

We shall use a grid state F to stand for an equivalence class of (real-valued) states. More
precisely, we define:

A class like "FM shall be called as a symbolic state (or a symbolic process). We shall use R, S
to denote symbolic states. Now, we define a symbolic transition relation -- k over symbolic
states -(classes of real-valued states) as follows:

Definition 11 For, E A'k and P,Q E PN,

2.P '
4
k VSd ifr P -~

Intuitively, if there is a real transition in the k-semantics between two grid states, then there is a
symbolic transition between the two equivalence classes they represent. Note that the definition
above contains much more information than it looks. In fact,..accordingto the definition, we

can infer a symbolic transition like TM.l .x Pril whenever 7' I•-k 75' for some grid states
P • and i "- -. However, the numbers of grid states in 1and are finite and hence,

the symbolic processes are finite-state w.r.t the symbolic transition relation '--.

Like in defining time abstracted equivalence, we now abstract away from the symbolic time
steps between symbolic states.

Definition 12

1. R -!--k S if R(•-2x k)_S

2. R -!-'o S if R - -"-k----k S 0

Definition 13 (strong symbolic k-equivalence) A binary relation S over symbolic states is a
strong k-simulation if(R,S) E S implies that for all a E Act and X,

1. Whenever R -ý-•k R' then, for some S', S -21
0k S' and (R', S') E S

2. Whenever R '-L-k R' then, for some S', S --- lok S' and (R', S') E S

We call such a simulation S a strong k-bisimulation if it is symmetrical. The largest strong
k-bisimulation is called strong syi.ibolic k-equivalence, denoted *,k.

We define P" 2, •'i whenever 1 -k ýU . ]0

Note that -* k is decidable for any fixed k because of the finite-stateness of symbolic processes.
The following i- the main result of this section.

Theorem 4 For all i,2 E P' and , E .' 2 , F .L ' if and only if- F ,+ ' i, where n

is the maximal number of components of P and ;

Proof: For the direction: Only If, we show that the relation: 1R = {J(PI, rI) Y, E A•+2 , P, i E

P, and T. i I } is a strong symbolic (n + 2)-bisimulation; for the other direction, we show

"t6 Note that we can always extend P or Q with nil-processes as auxiliary components so that they own the
same number of components.
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that the relation: S =,( E *",75nI,.E , P, E 7PN and -PH7' 0,+ 2° Qf } is a strong
time abstracted bisimulation up to -. A complete proof is given in the full version of the
paper [LW93]. 0

We extend the results to weak time abstracted equivalence.

Definition 14

1. R ==ýOk S if R('I- . U A-*,-S

2. R =* ok S if R =40 k• k =40 k S 0

Definition 15 (weak symbolic k-equitalence) A binary relation S over symbolic states is a
weak k-simulation if (R,S) E S implies that for all a E Act - {r} and 0 E {x,Tr,

1. Whenever R k-2-4h IM then, for some S', S ==ok. S' and (R', S') E S

2. Whenever R i•-.k 9' then, for some S', S ===Ok S' and (R', S') E S

We call such a simulation S a weak k-bisimulation if it is symmetrical. The largest weak
k-bisimulation is called weak symbolic k-equivalence, denoted ;k.

We define 7f i Q whenever P1r1 0,,, . 0

Finally, we achieve the decidability result for weak time abstracted equivalence.

Theorem 5 For all P,U E PN and ',3 E r2 , 7-- Q7 if and onlyj if-P' , where n
is the maximal number of components of-P and -Q.

Proof: It is similar to the proof for theorem 4. A complete proof is given in the full version of
the paper [LW93]. 0

6 Conclusion

In this paper we have introduced a notion of time-abstracting bisimulation equivalence.

As the first main result of this paper, we have demonstrated that two processes are interchange-
able in any context up to time-abstracted equivalence precisely when they are timed equivalent.
Thus, by resorting to implicit specifications - i.e. specifications of a system in contexts - we
may reveal all timing properties of a system.

As our second main result we have established the decidab of the time-abstracted equivalence
by providing a finite-state and symbolic yet structured, operational semantics of processes.
The symbolic semantics can be seen as sampling a process with a given frequency; we prove
that sufficiently frequent sampling - 1/(n + 2) where n is the number of parallel components
- yields a symbolic equivalence completely capturing the time-abstracted equivalence.

The minimization algorithm presented in [ACH92] can be seen to minimize timed graphs
[AD90 with respect to time-abstract bisimulation equivalence even though no notion of time-
abstracted bisimulation is given in the paper. Despite the purpose of the minimization effort
being to obtain more efficient model-checking algorithms with respect to a real-time temporal
logic, we believe that the results of [ACH92] can provide an alternative method for deciding
time-abstracted equivalences. However, we are of the opinion that our approach is simpler (cer-
tainly from a process algebraic point of view) as it is based directly on a traditional structured,
operational semantics.



175

Recently, we have completed a prototype implementation of a tool-set for timed and time-
abstracted bisimulation equivalences based on the methods described in this paper and in [NC92I.

In addition the tool-set applies the efficient, local checking technique described in [La92], thus
avoiding to explore the state-space more than necessary. We hope to report upon this work in
a forthcoming paper [CGL92].

References

[ACD90] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for real-time systems.
In Proceedings of the Fifth IEEE Symposium on Logic in Computer Science, 1990.

[ACH92] R. Alur, C Courcoubetis, N. Halbwachs, D. Dill, H. Wong-Toi. Minimization of Timed
Transition Systems. CONCUR92, LNCS 630, 1992.

[AD90] Rajeev Alur and David Dill. Automata for modelling real-time systems. In Automata,
Languages and Programming: Proceedings of the 17th ICALP, LNCS 443. Springer-Verlag,
1990.

[BB89] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Technical Report P8916,
University of Amsterdam, 1989.

[CGL92] K. Cerans, J.C. Godskesen, K.G. Larsen. JANUS: a tool for analyzing real-time processes,
Aalborg University, (in preparation). 1992.

[Che91b] Liang Chen. An interleaving model for real-time systems. Technical report, LFCS, Uni-
versity of Edinburgh, Scotland, 1991. Preliminary version.

[CPS89] R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench. Technical report,
LFCS, University of Edinburgh, Scotland, 1989.

[DS89] Jim Davis and Steve Schneider. An introduction to timed CSP. Technical Report PRG-75,
Oxford University Computing Laboratory. 1989.

[FK91] W.J. Fokkink and S. Klusener. Real time algebra with prefixed integration. Technical
report, CWI, Amsterdam, 1991.

[GL92] Jens Chr. Godskesen and Kim G. Larsen. Real-time calculi and expansion theorems. In
Twelfth Conference on the FST and TCS. Lecture Notes in Computer Science. Springer-
Verlag, December 1992. To appear.

[HLW91] Uno Holmer, Kim Larsen, and Yi Wang. Deci~ding properties of regular timed processes. In
the proceedings of CAV91, volume 575 of Lecture Notes in Computer Science. Springer-
Verlag, 1991.

[HNJ92] T. Henzinger, X. Nicollin, J. Sifakis. and J. Voiron. Symbolic Model Checking for Real-
Time Systems. Proceedings of the 7th IEEE Symposium on Logic in Computer Science,
1992.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[HR91] Matthew Hennessy and Tim Regan. A process algebra for timed systems. Technical Report
5/91, University of Sussex, 1991.

[Jef9lb] Allan Jeffrey. A linear time process algebra. In the proceedings of CAV91, volume 575 of
Lecture Notes r: Computer Science. Springer-Verlag. July 1991.

[JGZ89] K.G. Larsen J.C. Godskesen and M. Zeeberg. Tav - tools for automatic verification
- users manual. Technical Report R 89-19. Department of Mathematics and Computer
Science, Aalborg University, 1989. Presented at workshop on Automatic Methods for
Finite State Systems, Grenoble, France, Juni 1989.



176

[KS90] P.C. Kanellakis and S.A. Smolka, CCS Expressions, finite state processes, and three
problems of equivalence. Information and Control Vol 86, 1990.

[La92] Kim G. Larsen. Efficient Local Correctness Checking In Proceedings of CAV92, Montreal,
Canada.

[LW93] Kim G. Larsen and Wang Yi. Time Abstracted Bisimulation: Implicit Specifications and
Decidability. Tech Report, Department of Computer Systems, Uppsala University, Sweden,
1993.

[Mi189] Robin Milner. Communication and Concurrency. Series in Computer Science. Prentice-
Hall International, 1989.

[MT90] Faron Moller and Chris Tofts. A temporal calculus of communicating systems. In CON-
CUR'90, volume 458 of Lecture Notes in Computer Science. Springer-Verlag, 1990.

[NRSV90] Thomas A. Henzinger, X. Nicollin, Joseph Sifakis. and Sergio Yovine. Symbolic Model
Checking for Real-Time Systems IEEE Proc. 7th Sym. Logic in Computer Science, Cali-
fornia, June, 1992.

[NRSV9O] X. Nicollin, J.-L. Richier, Joseph Sifakis, and J. Voiron. ATP: an algebra for timed pro-
cesses. In Proceedings of the IFIP TC 2 Working Conference on Programming Concepts
and Methods, Sea of Gallilee, Israel. April 1990.

[NSY911 Xavier Nicollin, Joseph Sifakis., and Sergio Yovine. From ATP to timed graphs and hybrid
systems. In Real-Time: Theory in Practice. volume 600 of Lecture Notes in Computer
Science. Springer-Verlag, 1991.

[RH92] Rajeev Alur and T. Henzinger. Logics and Models of Real Time: a Survey. REX Workshop
on Real Time: Theory and Practice, 1991.

(RR86] G.M. Reed and A.W. Roscoe, A Timed Model for Communicating Sequential Processes.
LNCS No. 226, 1986.

[PT87] Paige and Tarian. Three partition refinement algorithms. SIAM Journal of Computing.

16(6), 1987.

[Sch9l] Steve Schneider. An operational semantics for timed CSP. April 1991.

[N92] Kgrlis Cerins. Decidability of bisimulation equivalences for processes with parallel timers.
To appear in Proceedings of CAV*92, 1992.

(SV89] R. De Simone and D. Vergamini. Aboard AUTO. Technical Report 111, INRIA, Sofia-
Antipolis, 1989.

[Wan90] Yi Wang. Real-time behaviour of asynchronous agents. In CONCUR "90, volume 458 of
Lecture Notes in Computer Science. Springer-Verlag, 1990.

[Wan9la] Yi Wang. A Calculus of Real Time Systems. PhD thesis. Chalmers University of Tech-
nology, G6teborg, Sweden, 1991.

[Wan9lb] Yi Wang. CCS + time = an interleaving model for real time systems. In ICALP91, LNCS
510. Springer-Verlag, 1991.



Timewise Refinement for
Communicating Processes

Steve Schneider

Oxford University Computing Laboratory
11 Keble Road, Oxford OXI 3QD, UK

sas~comlab. ox. ac. uk

Abstract
A theory of timewise refinement is presented. This allows the transla-

tion of specifications and proofs of correctness between semantic models,
permitting each stage in the verification of a system to take place at the
appropriate level of abstraction. The theory is presented within the con-
text of CSP. A denotational characterisation is given in terms of relations
between behaviours at different levels of abstraction, and various prop-
erties for the preservation of refinement through parallel composition are
discussed. An operational characterisation is also given in terms of timed
and untimed tests, and observed to coincide with the denotational char-
acterisation.

1 Introduction and general theory

Verification of time-critical systems requires the application of necessarily com-
plicated and detailed techniques, reflecting the complex nature of such systems
and the detailed and precise requirements upon them. Yet it is often the case
that a significant proportion of specifications on timed systems will be concerned
with logical behaviour rather than timing behaviour, and proposed implemen-
tations will often be correct with respect to these parts of the specification by
virtue of their functional properties, independently of their timing properties.

This paper proposes a way of avoiding the need to carry out the entire analysis
of a system at the most complicated level. We investigate refinement relations
between processes in different models of the CSP hierarchy [Ree88]. !t is impor-
tant to identify which properties (such as deadlock-freedom or determinism) can
be translated between models, since only for such properties can verifications be
mapped up the hierarchy. The more mature and powerful techniques available
in the more abstract models, such as model-checking, algebraic techniques, the-
ories for deadlock-freedom, and simply more abstract reasoning, may then be
used in conjunction with the more cumbersome and difficult methods required

for the more detailed aspects of the verification.

This paper investigates two refinement relations in detail, both from an untimed
to a timed model of CSP. The first untimed model is concerned only with safety
specification. The second is also able to address fairness and (untimed) liveness
requirements. 'Ine relationships between these two models and the timed infinite
model for timed CSP [Sch92, MRS92] will be presented.
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General framework

We model a process in terms of the observations that may be made of it, which
may also be considered as the behaviours it may exhibit. If we have a set 0
of all possible observations, then a process is identified with a subset of 0.
The corresponding semantic model M consists of those subsets of 0 that may
be considered to represent some process. A set of healthiness conditions, or
axioms, for M are used to characterise these subsets of 0.

A programming language £ is used for describing processes. Each program in £
is associated with an element of M, called its semantics or meaning, by means
of a semantic function Y : C -+ M. This function is compositional, in the
sense that the process associated with any particular program depends only on
the processes associated with its components, and how these components are
composed.

Specifications are given in terms of predicates upon observations. A process P
meets a specification S if all of its observations meet the corresponding predicate.
In this case, we write P sat S.

PsatS 4* Vo:0*(o0E:.[Pj)=V S

A program meets a specification when its semantics meets it.

A process P1 is refined by another process P2 when every possible behaviour of
P2 is also a possible behaviour of P1 . In this case we write P1 E P2 , and consider
P2 to be more deterministic thani P 1 , since P1 can do everything P2 can, and
possibly more. If P, E P2 , and P1 sat S, then it follows that P2 sat S; refining
a process maintains correctness with respect to specifications. This approach
also allows processes P to act as specifications: P2 meets specification P if it is
a refinement of P.
The nature of the semantic model is dependent upon the nature of the obser-
vation set 0. Observations describe executions of systems at a particular level
of abstraction. For example, the use of traces as observations provides only the
sequences of events that a system may perform; refusals provide information
about contexts -i' which a system may deadlock; and timed traces also provide
information about the times at which events may occur. The use of a particular
kind of observation depends on the kind of specification we wish to consider,
and the level of abstraction at which we need to consider the system in order to
establish correctness.

If we have two different semantic models M A and M c, based upon different sets
of observations OA and Oc respectively, then we are able to analyse systems
at two different levels of abstraction; and we may ask when a description at the
level of M.C refines a description at the level of M•A.

We firstly employ a relation AIZC9 OA X OC to relate observations at the
different levels of abstraction. The intention is that if bA ATC be then bA
and bc are both descriptions, at different levels of abstraction, of the same
execution; or alternatively, that bA is an abstract description of bc. There is
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of course no guarantee that the relation ARIC captures a useful relationship
between behaviours; this depends upon the intended application of the theory.
The refinement relation between processes from MA and processes from M c
with respect to the relation AIZC is then given by the following definition.

Definition 1.1

PAEA€CPC # AI-C- (PC) C PA

0

We consider Pc to refine PA if PA admits every abstract view of every behaviour
of Pc.
Refinement may be promoted to programs:

Definition 1.2

QA CA'C Qc * .TAiQAI CA7eC JcI[Qc]I

A verification of QA may be translated into a verification of Qc by use of the
following inference rule, whose soundness follows from the definitions above:

QA satA SA
QA -A-C Qc

Qc satc VbA * (bA AI c bc = SA)

We may thus consider the specification V bA * (bA AR C bc =:> SA) to be the
translation of SA. (Here we use bA as the free variable in SA ranging over
behaviours in OA in the sat relation; and bc similarly.)

Observe that if MA = MC, and the relation AR-C is the identity relation, then
the refinement relation CA ¢ is simply refinement under the non-deterministic
ordering; and the rule states that if a program meets a specification, then so too
does any refinement of it.

Definition 1.3 A refinement relation AR-C is said to be complete if whenever
the conclusion of the above rule holds, then there is some QA for which the two
antecedents hold. 0

Lemma 1.4 The relation AR-C is complete if and only if ARC- 1 (Q) is an
element of M A whenever Q is an element of M C 0

Proof Assume that AR-ZC (Q) is an element Of M A whenever Q is an element
of Mc. Consider the conclusion Qc satc VbA * (bA AR-C bc > SA). Then it
follows that AI-C 1 (Qc) sat SA, and also AR-C (Qc) CA'C Qc; thus the
rule is complete.
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If on the other hand there is some Q for which ARC-1 (Q) is not a process,
then given any P CA r Q P will not meet the specification bA E AZC- (Q).
This is because A -ZC- (Q) is a subset of P. so P will contain some behaviour
bA which breaks the specification. Yet the process Q meets the timed version of
that specification. 0

r Completeness of the refinement relation allows translation in the following di-

rection:

Qc sat VbA * (bA AR C bc ::€ SA)

AIZC-' (Qc) sat SA

The following weakening of the conclusion to this rule is often useful:

3 QA * QA CA1Zc Qc A QA sat SA

The discussion so far has all been on the semantic level. In order to prove that

one program refines another using the above theory, it, is necessary to calcu-
late the semantics of each program, and then check that the refinement relation
holds between them. Compositionality often plays a critical role in breaking
down verification obligations on large systems to manageable components. We
aim to exploit the compositional nature of program semantics, and so we investi-
gate when refinements established between components of abstract and concrete
systems mean that the entire abstract system is refined by the entire concrete
system.

A context CA(X) is said to be refined by another context Cc( Y) if there is a
relationship CA(QA) CAlRc Cc(Qc) whenever QA 9_A7C Qc. Our aim is to
find relationships concerning the operators of the language £ so that refinement
between contexts and programs may be established without resorting to explicit
calculation of their semantics, by reasoning at the syntactic level.

A syntactic operator (e' of £ is a refinement of operator E) if combinations of
refinements of processes refine combinations of the processes:

Definition 1.5 An operator ED' of the language £ with arity a refines operator
(E with the same arity, if

(Vi<aC P, EA7C Q,) = D ((P, Ii< a)C_A7•ZCd(Q, ji<<a)

The framework presented above is very well-known. But to go further, we must
focus on particular models, languages, and refinement relations. We are inter-
ested in conditions for refinement relations to exist between programs (which
will vary from relation to relation), and how specifications translate between
models.
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In this paper we are concerned with mapping results up the hierarchy of un-
timed and timed models for CSP. We will concentrate on two relations in detail,
both from an untimed to a timed model: one from the untimed traces model,
which is used for analysis of safety properties; and one from the untimed infi-
nite traces model [Ros88] (which also contains failures and divergences), a more
sophisticated untimed model supporting consideration of liveness issues.

2 Communicating Sequential Processes

Syntax

The language of Communicating Sequential is given by the following Backus-
Naur form:

P ::= Chaos IStop lSkiplP;PIP l>PIP 0Pla:A-A----PaI7,, EP,

I PAIIA PIP IPIP\A If(P) If-(P) IX IJpX oP

Here the set A is a subset of the universal set of events E; I is a subset of the set
of indexes 2; f is a function E -+ E; X is drawn from the set of process variables
VAR; and t is drawn from the set of times, the non-negative real numbers. The
programs of the language are those terms with no free process variables.

The constructors given by the BNF above represent respectively: the most non-
deterministic process; deadlock; successful termination; sequential composition;
timeout; external choice; prefix choice; non-deterministic choice; synchronised
parallel; interleaving parallel; interface abstraction or hiding; two forms of al-
phabet renaming; process variable; and recursion. For a more detailed discussion
of the language, the reader is referred to [DaS92b].

The following abbreviations often prove useful:

Wait t = Stop t> Skip

b----P = a:{b}-+P(a) where P(b)= P

b -- + P = b -+ Wait t ; P

P II = P EIIE
P n Q =- i{fl,2} P, where P, = P and P 2 = Q

When modelling timed processes, we must take care to ensure that recursive
calls are time guarded, so that a minimum delay must elapse between successive
recursive calls. This is achieved by ensuring that every instance of the process
variable of a recursive term should appear in the right-hand argument of a non-
zero timeout. A set of rules for determining when a term is time guarded is
detailed in (DaS92a].
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Notation

The set E is the set of visible events. Variables a, b, c are taken to range over
E. The variables t and u range over R+, the set of non-negative real numbers.
Variable tr ranges over E*, finite sequences of events from E; u ranges over E',
infinite sequences of events from E; X C E denotes a set of events; s ranges over
(R+ x E)w, the (finite and infinite) sequences of timed visible events; we use
N C R+ x E to represent a timed refusal, a set of timed visible events.

We use the following operations on (untimed and timed) sequences of events:
#w is the length of the sequence w; w, - w2 denotes the concatenation of w,
and w2 . The notation w, -< w2 means that w, is a subsequence of w2 .
The following projections are defined on untimed sequences by list comprehen-
sion:

tri A = (a a--tr,,aEA)

tr\A = (a a tr, a A)

trJ Ic = (x a 4-tr, a= c.x)

a(tr) = {a ltr r {aI#(}

For timed sequences, we define the beginning and end of a sequence in the
following way: begin(((t, p)) '-s) = t, end(s -((t, p)) = t, and for convenience
begin(()) = oo and end(()) = 0. The following projections on timed sequences
are defined by list comprehension:

s . t = ((u, a) (u, a) s, 11 < t)

si4t = ((u,a) I (u,a) - U-s,U <t)

S t ((U'a)I(u, a) -s,U=t)
st A = ((u,a) (u,a) -s, aEA)
s \A = ((u,a) (u,a) -s,a ý A)

s-t = ((u-t,a)(u,a)*-s, u>t)

strip(s) - (a I(u, a) -- s)

u(s) = {alsrI aiO}

We also define a number of projections on timed refusal sets:

X 4 t = {(u,a) (u,a)EN,u< t}

N i> t = {(u, a)I (u, a) E t, u, >_ t
Nr A = {(u,a) I(u,a)ER, aEA}

R-t J= {(u-t,a) I (u, a)E E , u > t}

o-(N) = {a I (u, a) }
end(N) = sup{u I (u,a) E N}

We will use (s, N) - t as an abbreviation for (s - t, tý - t), and end(s, N) for
max{end(s), end(N)}.
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Semantic models

The hierarchy of models presented in [Ree88] supports reasoning at a number
of levels of abstraction, allowing aspects of behaviour dependent upon refusal
information, stability information, or timing information to be included as re-
quired. In addition to Reed's hierarchy of models, we hlave the infinite timed
model M•Ti, presented in [Sch92] and [MRS92]; and ti" untimed infinite traces
model M ul of [Ros88], which is an extension of the failures-divergences model
of [BrR85]. In this paper we will focus on the three models which yield the most
general results concerning refinement: the untimed traces model M UT, and the
two infinite models. These three models are presented in full, together with their
corresponding semantic functions, in Appendix A.

MTI M TFS

M UI

M UFTS

M UPD -. M UFS

XV

MTF - MUF MUS - MTS

MUT

MTT

Figure 1: Reed's hierarchy and additional models
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The untimed traces model

Observations in the model M UT are simply finite sequences of events, or traces.
A trace of a system is a record of the events performed during some (partial)
execution of the system. Thus the observation set (OUT is defined to be E2,
where E is the universal set of events.
The model M UT is the set of nonempty prefix closed subsets S of OUT.

The untimed infinite traces model

This model is first described in [Ros88]. In other presentations, processes consist
of three components, modelling the three kinds of observation that may be made.
a failure set F C E* x P(E); a divergence set D C E*; and an infinite traces
set I C Ew. A divergence tr is a sequence of events such that after some prefix
of tr the system may perform an infinite sequence of internal actions. A failure
(tr, X) is an observation of a system if either the sequence of external events tr
may be observed during an execution, after which no further internal progress
may be made and the process refuses to engage in any event from the set X;
or else tr is a divergent trace. An infinite trace u is an infinite sequence of
actions such that either the system may perform the whole trace during a single
execution, or else some prefix of it is a divergent trace.
For the sake of uniformity within this presentation, we consider a process to
consist of a single set S of pairs, where the first component is a label from the
set {f, d, i}, and the second component is a behaviour from the corresponding
behaviour set. Thus S is a subset of

{f} x (E* x P(E)) U {d} x E* U {i} x E'

The timed infinite traces model

In this model, the times at which events are performed and refused are recorded.
This model assumes that systems are finitely variable: an infinite sequence of
internal and external actions may not be performed in a finite time. Thus the
only infinite traces that may be observed must take infinitely long to occur. Fur-
thermore, since a change in the set of events made available to the environment
is considered to correspond to an internal action, this model needs to consider
only those refusal sets which contain finitely many changes in any finite interval.
The set of traces TE' and refusal sets IRSET are adequate for capturing all
possible observations of finitely variable systems:

TE' = {fsE (R + x E)' I (( l, a,), (t2,a2)) -< s #' tl <_ t2

A #s = -Do = end(s) x)

RTOK = {[b,e)xA O<_b<e<ooAAC_ 1

RSET = {UR I R C RTOK AR is finitel

IRSET = {URIRCRTOKAVt*(UR)4 tERSET}
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Behaviours consist of (trace,refusal) pairs. In contrast to the untimed case,
the refusal is observed during the occurrence of the trace, rather than simply
afterwards.

For example, the behaviour (((3, a), (3, d), (8, b)), [0, 20) x {c}) is a record in-
dicating that the process was observed to refuse event c beginning at time 0,
that while it was continuing to do so, it performed event a and then d at time
3, and then event b at time 8. Finally, the observer stopped watching c being
refused at time 20.
As usual, a process consists of the set of possible behaviours that may be observed
of it. The model is presented in full in [Sch92, MRS92].

Example

Define the program AB as follows:
5

AB = pX o(a-4 X > b-+ Stop)

Then YUT[AB] contains both the traces (a) and (a, a, b), but not trace (b, a).
The untimed infinite semantics YUr [AB] contains failures (f, ((a, a), {a})) and
(f, ((a, b), {b, c})), but not (f, (a), {b}) or (f, (b, a), {}); it contains the infinite
trace (i, (a, a, a,... )); and it contains no divergences.

The timed behaviours FTI[ABJ include (((2, a), (9, a)), [0, 6) x {b}): the pro-
cess may perform event a at time 2, and again at time 9, while refusing to per-
form b between times 0 and 6. The behaviour (0, [0, 5) x {b} U [5, oo) x {a}) is
also possible: if no external events are performed, then b will be refused for the
first 5 units of time, after which the timeout will occur, and a will be refused
thereafter. Neither (((2, a)), [0, 1) x {a}) nor (0, [0, 10) x {b}) are possible
timed behaviours of ur j[AB].

3 Timed refinement

3.1 Trace refinement

We consider an untimed trace to be an abstract description of a timed failure
if the trace corresponds to the sequence of events in the timed trace. We thus
define the refinement relation between untimed traces OUT and timed failures
OT! as follows:

tr UTRTI (U,#) t tr = strip(u)

For a timed trace s, the sequence strip(s) is the trace s with the times removed
from the events.

Theorem 3.1 This refinement relation is complete 0
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Proof By Lemma 1.4 it is enough to show that P =UTlZT1-I (Q) is a well-
defined process for any timed process Q. But UTZTr 1- (Q) = {strip(s) I
(s,R) E Q}, and this set is clearly non-empty (since Q is) and prefix closed
(since Q is), and hence it is a well-defined process, meeting the definition in
Appendix A. 0

It turns out that all of the CSP operators preserve this refinement relation:

Theorem 3.2 Given any CSP operator E), and two vectors of processes of length

et(P) fQUTRTI (D( Q)

Proof By an analysis of the timed and untimed semantics (given in Appendix A)
of each CSP operator in turn. 0

Corollary 3.3 For any program P, P CUT. TI P 0

IUT[P] - - .TT [P]

The payoff from this result is that any trace specification may be verified of a
CSP program in the untimed traces model, and it follows immediately that its
translation into the timed model will hold for the same program on its more
complicated semantics. Also Skip C-UTZTI ltEI Wait t for any set of times
I, so arbitrary delays can be introduced into programs while still preserving
refinement, since if P C UT1TI Q, then it follows that Skip P = P EUT1TI

ntl. Wait t ; Q. Thus an untimed verification can be carried out and delays
inserted subsequently.

The translation of a specification S on traces, (with free variable tr) will be

Vtr E E * (tr UT
1 ZTI (S, R) #* S)

If S is admissible (i.e. (V tr < u * S) =:> S[u/tr]) then this is equivalent on
processes to the specification S[strip(s)/tr]. Thus admissible specifications may
be translated to timed specifications by a simple substitution of the free vari-
able. Since most safety specifications are admissible, this does not amount to a
practical limitation.
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As an example, consider the safety requirement that b should always be the last
event performed. This is given by

S = Vtro,tr1 * (tr = tro -(b) 'tri) => tri =0

A verification in the traces model that program AB satisfies this specification
would be quite straightforward. We may translate this verification to the timed
model, and conclude that AB sat S[strip(s)/tr] in that model. This may then
be used in a timed verification. For example, consider the timed specification
that event a should never be performed within 8 time units of any b:

(t, b) in s =ý) a ý o(s t(t -8, t +8))

This specification reads as follows: if (t, b) is recorded in the trace s, then a does
not appear in the set of events recorded in s during the interval (t - 8, t + 8).
Then the untimed specification tells us that a cannot occur after b, i.e. in the
interval (t, t+8), so the only cases to consider in the timed model are a occurring
before b, or at the same time, i.e. the interval (t - 8, t]. For this case, a timed
analysis on AB is required.

In general, S is translated to (#s < oo =* S[strip(s)/tr]).

3.2 Failures Refinement

We may think of a process refusing a particular set, in the untimed sense, if
it eventually reaches a state after which no event from that set is possible. In
the timed world, this corresponds to the information that there is some time
after which the set may be continuously refused. Thus for a timed behaviour
(u, R) with finite timed trace u, an abstract view of this behaviour would be an
untimed version strip(u) of the trace, and for any set X, if there is some t for
which [t, oo) x X is contained in N, then N is evidence that X may eventually
be refused forever.

Relating timed infinite traces to untimed ones, we obtain the following refinement
relation between Oui and OTI:

(f,(tr, X)) UITRT1 (u,N) <* tr = strip(u) A 3t * [t, oo) x X C N

(i, tro) uI7ZTT (u, N) ,* tro = strip(u)

Observe that there is no timed version of divergence in this model.

Theorem 3.4 This refinement relation is complete. 0

Proof We need to show that P =UIIZTI1- (Q) is a well-defined process for
any timed process Q (i.e. meets axioms 1-8 given in Appendix A).

It follows from axiom I for M Tj that u'1ZTTi- (Q) = P meets axiom 1 for
Mu r. Axiom 2 for M TJ yields axioms 2 and 6 for P; Axiom 3 yields axiom 3;
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and axioms 4,5 and 7 are trivial for P since P has no behaviours of the form
(d, tr).

We have only to establish axiom 8. Consider a behaviour (f, (s, {})) E P. Then
there must be some timed trace so such that (so, f{) E Q and strip(so) = s. Now
by axiom 4 for M4Ti there must be some process R E CC such that (so, {}) E R
and Q C- R.

Let c : P(R) -+ R be a choice function. Then define:

To= {so}

T.+i = {s-'((ta, a)) I s E T,, A a EC
{t (s{((t, a)), R} # {}
t. c({t I (s- ((t, a)), {}) E R})}

T = U,E NT

Since R is finitely variable and closed, any infinite trace in T comes from a
legitimate infinite trace in R. And since R meets axiom 3 for M TI, the set of
all events that do not extend a given finite trace in T must be refusible for all
time after the corresponding timed trace in R, since there is no time after that
timed trace at which any of those events is possible. It follows that T is a set
of traces which establishes that axiom 8 holds for P. 0

A study of the CSP operators reveals the following:

Theorem 3.5 Every CSP operator except parallel composition preserves uIlZTI

refinement E]

We again obtain that Skip E uIzTTI F tE1 Wait t for any set of times I, so

arbitrary delays can be introduced into programs while still preserving timewise
failures refinement.

Unfortunately, parallel composition does not preserve refinement in general. One
example where it fails is in the case of two processes Qi and Q2, illustrated in
Figure 3.2. They are always willing to perform an event at some time in the
future, by offering it periodically (so neither will eventually always refuse it),
but they are unable to find any time on which they can synchronise, so their
combination is able to refuse the offer forever.

Q, = pXo(a--Stop) > Wait3;X

Q2 = Wait 2 ; Q1

Each of Qi and Q2 are refinements of P = a -- + Stop, but Q, 11 Q2 is not
a refinement of P 11 P, since it may refuse a forever, as Qi and Q2 can never
synchronise on a; yet P 11P is unable initially to refuse a.

However, we do obtain the following theorem.
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Q1

Figure 2: alternating offers

Theorem 3.6 Every CSP program P has that P UIJZTI P 0

This follows from Theorem 4.2 and Theorem 4.3, presented later.

Parallel composition and refinement

The importance of the parallel operator moves us to investigate conditions under
which it does preserve refinement.

Non-Retraction

The example above illustrates one of the ways in which refinement may be lost
by parallel composition: the periodic withdrawal of offers. It seems that one
way to ensure synchronisation is to maintain offers until they are accepted.

A process which does not withdraw offers (though it may make new ones) until it
next performs a visible event is termed non-retracting. This is similar to (though
slightly weaker than) the notion of nonpre-emptive given in [CIZ92], although
that definition is given in operational terms.

Definition 3.T A process S E M TI is non-retracting if

(s,R) ES =# (s, RU{(t,a) t3' 0(u,a)E N Aend(s) < t< u)) ES

0

If an event may be refused at a time u, then it must be possible that it was
continuously refused since the occurrence of the last visible event, at time end(s).
Thus once an event is guaranteed to have been offered, it must. be continually
offered thereafter.

As expected, we obtain that parallel composition preserves refinement for non-
retracting processes:

Lemma 3.8 If P1 C-U•T1 Q, and P2 FLJTI~T Q, and Q, and Q2 are both
non-retracting, then (P1 I|P, ) -UIRZTI (Q1 11 Q0 0

Proof This is a special case of Lemma 3.10 below, with A1 = A. = E, and the
fact that non-retraction is stronger than eventual non-retraction on E. 0
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This idea of non-retraction may be generalised, so that it is concerned only with
particular events rather than all events, and with the fact that a time after which
offers should be maintained is reached eventually rather than immediately.

Definition 3.9 A process S E M TI is eventually non-retracting on A if for any
trace s there is some time t(s, S) such that i

(s,R) ES =ý, (s,RU{(t,a) JaEAAgu*(u,a) ERA t(s,S)<_ýt <u}) ES

Observe that if S is eventually non-retracting on A, and B C A, then it is also
eventually non-retracting on B.

This form of eventual non-retraction allows a period of unstable behaviour be-
fore settling down. This permits some timeout behaviour disallowed by a non-

3
retraction requirement. For example, a ---+ P t> b -4 Q is eventually non-
retracting (if P and Q are) although the offer of a will be retracted at time
3.
Lemma 3.8 may be generalised to interface parallel, by considering processes

that are non-retracting on their common interface.

Lemma 3.10 If P1 9UIR TI Q, and P2 CLUI1'T1 Q2, and Qi and Q2 are both
eventually non-retracting on A1 Il A 2 , then

(P 1 Al (A2 P 2 ) gUI'TI (Q1 A, ((A2 Q2)

0

Proof If (i, u) UIJZTI (s, R) and (sN) E TTI[Q1 A1 1A, Q21, then it follows

immediately that (i, u r A,) E YUT[Pil A (i, t [ Ao) E TFuT[P21, and hence
that (i, u) E Yru1 [P1 A , I]A2 P2]

Consider a behaviour (s, R) E TT[Q1 Al 11A, Q2•, with (f, (tr, X)) •LIRTI
(s, R). Then tr = strip(s), and 3t * [t,co) x X C R. Now by the seman-
tics of the parallel operator, there are R1 and N2 such that (s, R I) E YFTI[QII,
(SR2) E TI(Q 2 1, and R r (A UA 2 ) = (Ri t A 1 )U(N 2 r A2 ). Define

X, = {aEAIVt*aEo(Rl 1 t•t

Then X 1 U X 2 = X [ (A, U A2 ). Furthermore. by the eventual non-retraction
of Q1 and Q2, it follows that there are t1 and t2 such that

(s " A,, R, U [t1 ,oo) X X 1 )) E Y•TI[QO
(s t A 2 ,R2 U [t4,oo) x X 2)) E Y'Tr[Q21

Since each Pi is refined by the corresponding Q, it follows that

(f (strip(s) r AI,X 1 )) E .Fuj[PiJ
(f , (strip (s) [ A 2, X2)) E Yutr[P21



V

191

and so (f, (strip(s), X, U X2)) E FUI[PI1 A 1
1 A2 P 2 1 by the semantics of the

parallel operator. Hence the parallel operator preserves refinement for eventually
non-retracting processes. 0

However, if only one of the processes is non-retracting, then the refinement need
not be preserved through a parallel combination. For example, consider the
following processes, illustrated in Figure 3.2.

Q, = Wait2;pX o(O---+ Stopo Wait I ;succ(X))

Q2 = pX o (n :N Stop) t, succ(X)

0 . ..

Q1 2 ...
3 ...

0

3

Figure 3: non-synchronising offers

The process Q, makes natural numbers available, one at a time. It is non-
retracting, and it is also a refinement of P1 = n : N -* Stop; on the empty
trace, nothing may be refused forever. The process Q2 begins with all natural
numbers available, and retracts them one at a time. It is a refinement of

P 2 = [Fcfi,,N n : (N \ F) -- * Stop

for which all events are possible, and any finite set of events may eventually be
refused forever. The parallel combination Qi 11 Q2 is equivalent to Stop, since
there is no event that Q, and Q2 may cooperate on: Qi is prepared to perform
event m from time m + 2 onwards, but Q2 is not prepared to perform it beyond
time m + 1. On the other hand, P1 11 P2 is equivalent to P 2 , which is unable
to deadlock before any events have been performed. Hence Q, 1 1 Q2 is not a
refinement of P1 11 P 2 , even though Qi is non-retracting.

Promptness

The above example highlights other ways in which parallel combination can fail
to preserve refinement. If Q, had made all of its offers by some time t, then the
counterexample would not work, since the non-retraction of Q, ensure that all
of the offers, made by time t, must remain on offer until acceptance occurs.



192

We define a process to be t-prompt if it must make its offers by time t: if a set
may be refused up to time t, then it may be refused forever.

Definition 3.11 A process S E MTI is t-prompt if

(s,R) ESA[u,,u+t) x ACRAu > end(s) =, (s, RU[u, oo) x A) ES

0

We then obtain the following alternative result, which places no constraints upon
Q2:

Lemma 3.12 If P'1 C UJZTI Q, and P2 CLUJTI Q2, Qi is non-retracting and
t-prompt for some t, then (P1 11 P2 ) C-U-1ZTf (Q1 i1 Q2) 0

Proof This is a special case of Lemma 3.14 below. C1

Promptness may be generalised to apply only to a particular set of events A.

Definition 3.13 A process S E M Ti is t-prompt on A if

(s,R) ES A B CA A [u, u + t) x B C N A u > end(s)

S(s, Nu ..,oo) x B) E S

Then the condition for parallelism to preserve refinement may be correspond-
ingly generalised: if the interface between two processes may be split into two
parts, and each process is prompt and non-retracting on a different part, then
refinement will be preserved by parallel composition.

Lemma 3.14 If P1 CU/RTI Q1, tP2 C-LtITI Q2, B, U B2 = AI fl A2 , QI
is eventually non-retracting on B1 and prompt on B1 , and Q2 is eventually
non-retracting on B2 and prompt on B2 , then

(PI AIA 2 P2 ) C-U1 ?ZTI (Q1 A, IIA2 Q2)

0

Proof It is clear that infinite traces of the timed process will appear in untimed
form in the untimed process. So we need only show that

(f, (tr, X)) UIj1 Ti (s, N) A (s, N) C .TTI[Q1 A,1 1A, Q21

*:ý (f, (tr, X)) E Fui[PI A1 IA, P 21

Assume the antecedent, and consider (s, R) E .FTI[QI Al hA 2 Q2], built from

behaviours (s r AI,R1 ) E YTI[Q1] and (s r A2 ,R2 ) E YTI[Q2J, where we
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have (RI r A,) U (R2 r A2 ) = t (A, U A2 ). We have by the relation uLlZTr
that tr = strip(s), and also t > end(s) +max{t(s [ A,, QI), t(s r A 2 , Q2)) for
some t, such that [t, oo) x X C R. Now Q, is ti-prompt for some t1 , and Q2 is
t2 -prompt for some t2 . Define

x, = (( 1 r (xflAflB,)) 1> (t)

Yj = {aExnA, nB I([t 2 +t,)×X (a}C) }

X2 = '((R r (xnA2 nB 2 )) C> (t 2 + t))

Y2 = {aEXnA2 nlBI [tl +t, ,c) X{a}C 2R}

Then X1 U Y1 U X2 U Y2 = X nl (A, U A2 ). Now since Q, is eventually non-
retracting on B1 , it follows (also using subset closure of refusals for Qi ) that

(S r A,,.R, u [t, t + t6) × Xi) E .YTj[Q1

And hence it follows by promptness that

(s r A 1,R, U [t, oo) x Xj) EFTI[QJ

Also, observe that [t2 + t, 0) X Y1 C R1. Since Q, is a refinement of P1
it follows that (f, (tr [ Al, X1 U Y1)) E FuiI[PflI. Similarly we obtain that
(f, (tr r A 2 , X2 U Y 2 )) E YuI[P21. Thus from the semantics of parallel, we
obtain that (f, (tr, X)) E YuI[PI A 1 A 2 P,]], yielding the result. 01

This result is particularly useful, as it applies immediately to systems such as
those described in terms of input/output automata [LyV92] where input is al-
ways possible, and so components are always non-retracting and prompt on
input. In these systems, parallel composition connects outputs from one process
to corresponding inputs of the other. Thus the interface in a parallel composi-
tion may be partitioned into those events input by one component, and those
input by the other. The two processes will be prompt and non-retracting on
these two sets respectively.

This result may also be applied to CSP descriptions of occam programs, since
in such programs output guards are not permitted. Once a process is prepared
to perform an output, it remains ready to perform it until it occurs. Conse-
quently, processes are always non-retracting on output, so parallel composition
will preserve refinement for prompt components.

Compactness

The final condition we will present here concerns the nature of the untimed
processes P1 and P2 . A process is compact if its refusals are determined (in a
particular way) by the finite refusal sets. If the untimed processes are compact,
then it turns out that only one of the timed processes need be non-retracting for
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refinement to be preserved by the parallel operator. In the example above, P2

fails this condition; any finite subset of N may be refused, but infinite subsets
may not.

Definition 3.15 A process P in M U1 is compact if for any tr E E°, Y C E we
have

(V X Ci"n Y 9(f ,(tr, X)) EP) =:: (f ,(tr, Y)) EP

0

Lemma 3.16 If P1 C UI/TI Q1, fP2 _UIZTI Q2, Q, is eventually non-retracting
on AI n A2 , and P1 ,P2 are compact, then

(PI Al IA2 P2 ) CUI1ZTI (Q1 Al IIA2 Q2)

0

Proof It is clear that infinite traces of the timed process will appear in the
untimed process. So we need only show that

(f, (tr, X)) ujlZTj (s, N) A (s, R) E 7TIIIQ1 A, hIA2 Q21
=> (f, (tr, X)) E .T'uIP A, IA2 P21

Consider (s, R) E FTI[Q1 A1 hIA2 Q21, built from behaviours (s, lN) E YTI [Qi1

and (s,R2) E YTI[Q2], where R, [ A, U R2 [ A 2 = R t (Al U A2 ). We
have by the relation U,1 ?T1 that tr = strip(s), and also that there is some
t > end(s) + t(s r A1 , Qj) such that [t, oo) x X C N. Define

Xi = {aEXnAAI Vu*aE 0(R 1 t>u)}

X2 = {a E XfnA 2 1u e[uoo) x fa} C R2}

Since R r A1 u2r A 2 =R [ (A, U A2 ), we have that X 1 UX 2 = X. Since
Q, is eventually non-retracting, we obtain that (s, N 1 U [t, 00) x Xi ) E YTI IQ Ii.
Since P1 is refined by Qi, we have that (tr, X1 ) e YuwPI]j.

Now consider a finite set {ai, a2 ... a,,} = Y C X2 . For each a, there is a
corresponding time t4 such that [t,,cc) x {a,} C N2. Thus there is a time
to = max{t,} such that [to,oo) x Y C Ro. Since P2 is refined by Q2, it
follows that (f, (tr, Y)) E Yu,[P2 1. This is true for all finite subsets Y of
X2, so by compactness of P2 we have that (f, (tr, X2 )) E .TI P 2 1]. Hence
(V, (tr, X)) E YTUIPi A1 IA2 P2 ] as required. 0

Compactness is often easy to check, since it will be present in any process not
containing infinite non-determinism. Thus any program not containing any in-
finite choice will automatically be compact.
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Specification

In the untimed infinite traces model specifications may be considered as con-
sisting of three components, dealing with the failures, divergences and infinite
traces. In other words, for any given S(i, b) there are Sf, Sd and S, such that

SS(1, b) 4* (1 ='f A b =(tr, X)) =>Sf(tr, X)

A (1 = 'd' A b = tr) =:, Sd(tr)

A (I = 'i' A b = u) =: S,(u)

Then a specification (Sf, Sd, Si) translates to the timed specification

#u < oo A [t, oc) x X C N =, Sj(strip(u), X)

A #u = oo =:: Si(strip(u))

For example, the specification 'deadlock-free' constrains only the possible failure
set, with S1(tr, X) 4* X : E. The translation is equivalent to

#u < oo -3t * [t,,o) x E C N

which is the timed version of deadlock-freedom. Thus an untimed verification of
deadlock-freedom for a system remains valid under timewise refinement.

The untimed specification of a buffer may be given simply as a predicatc Sj:

Sf(tr, X) <* tr4. out < tr,. in
A tr out = tr in = X in = {}
A tr 4out < tr in =:> out 9. X

where tr 4 c is the sequence of messages recorded in ti on channel c.

The translation is equivalent to the following timed specification:

strip(u) 4. out < strip(u) 4. in
A strip(u) 4 out = strip(u) .in == --,3t, m * [t,oo) x {in.m} Cg R

A strip(u) 4. out < strip(u) 4. in =" - 3 t * [t, crx) x out C N

which is the specification of a timed buffer.

As an example of an application of the theory, consider Roscoe's first (untimed)
buffer law presented in [Hoa85], which tells us that the chaining together of two
buffers is again a buffer. The chaining operator is defined in terms of parallel,
hiding, and renaming (where swapab renames channel a to b and vice versa):

P1 >> P2  ' (swap.ut,c(Pi) {incl11{ot,,l swap,,,c(P2)) \ c

However, this law does not hold in general in the timed model. As we have seen,
B1 and B2 might fail to agree on a time to synchronise on their common internal
channel, resulting in their combination refusing ever to output.
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In order to establish conditions under which the law does hold, we will make use
of the fact that untimed buffers are compact (since if some input can be refused,
then so too can all possible inputs), and also of the fact that the refinement
relations in this paper are complete, which yields that every timed buffer is a
refinement of some untimed buffer. We may then obtain conditions under which
a chain of buffers again yields a bufler.

For example, if every buffer Bi is eventually non-retracting on input, then the
chain B1 >> B2 >> ... >> B,, is tgain a buffer, eventually non-retracting on
input. This follows from the fact that each B, is a refinement of some buffer
A,; that we have a condition which may be applied at every step of building
up the chain to ensure that the timed chain refined the untimed chain (in the
general parallel case, we require only non-retraction on the interface); and that
the chain A, >> A 2 >> ... >> A, is an untimed buffer (from Roscoe's law),
from which it follows that any refinement of it is a timed buffer. A similar result
holds if each Bi is non-retracting on output; or if odd (or even) numbered buffers
are non-retracting on both input and output. It follows that the combination
B1 >> COPY >> B2 ... COPY >> B,, is a buffer, for any timed buffers B,.

4 An operational view

An alternative semantic approach that is often employed in the theory of process
algebra is operational: processes are defined in terms of transitions that they
may perform and subsequent states that may be reached. Within this frame-
work, equivalence between processes may be characterised in terms of bisimula-
tion relations [Mil89], or by means of equivalence under some notion of testing
[Hen88].

In the testing approach, a test is defined to be a process T which also has the
capacity to perform a special success event w, which is considered to be distinct
from the set of synchronisation events E. An execution of a process P is a
maximal (finite or infinite) sequence of transitions starting from P. Then we
say that P may T if there is some execution of (P I1 T) \ E which passes
through a state from which w is a possible transition; and P must T if every
execution of (P II T) \ E passes through such a state. Then P is equivalent to
Q under may testing if for any test T, P may T ¢: Q may T; and P and Q
are equivalent under must testing if P must T €* Q must T for any test. T.
An operational semantics has been given for CSP in [BRW9x] and [Ros88]. Tran-

sitions are given as P -4 P', indicating that a process P may perform a it event
(i.e. an internal or visible event) and then behave as P'. In this section we will
subscript the transition with a u to indicate that this is an untimed transition.
Equivalence in the untimed traces model MUT is exactly the same as equiva-
lence under may testing using the transitions given in [Ros88]; and equivalence
in the untimed infinite traces model MA ut is exactly the same as equivalence
under must testing using those transitions. More details may be found in
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[Hen88, BRW9x, Ros88I. The important properties from our point of view is
that each trace of P predicted by the traces model corresponds to an execution
of P in which that sequence of visible events is performed (as well as possibly
some internal events); that any divergence corresponds to an execution in which
some prefix of the divergent trace is performed, followed by an infinite sequence
of internal r steps; any failure (tr, X) corresponds either to a divergence (i.e.
an infinite sequence of r steps after some prefix of the trace) or to an execution
in which the entire sequence tr of events is performed, and a state is reached
from which no internal progress can be made, and from which no event in the
refusal set X is possible; and for every infinite trace u there is an execution
which either diverges after soine prefix of u or performs the entire sequence of
events u. And converseiy, any execution given by the operational semantics is
recorded appropriately in the denotational semantics.

An operational semantics has also been provided for timed CSP in [Sch93], where

processes may undergo timed transitions: P )- P' indicates that the process
P may perform event p at time t, and subsequently behave as P'. We will
subscript timed transitions with t to distinguish them from untimed transitions.
Evolutions, or time passing transitions, were also provided in the operational
semantics. Equivalence in the infinite timed failures model MT, is the same as
equivalence under must testing using the transitions given in [Sch93]. Again,
timed failures (s, R) are present in the denotational semantics of a process P
precisely when there is some execution of P in which events are performed at
the times recorded in s, passing through states in which the events recorded in
the refusal set N were not possible.
Every CSP operator except for timeout has an untimed operational semantics.
We may also describe untimed transitions for the timeout operator. The timeout
may always be resolved by its left-hand argument performing a visible action,
but any internal progress made by that argument does not resolve the timeout.

t a TI

P>Q-4,, P -+PQ _-+UP, >Q

Furthermore, the timeout inay occur:

Thus every timed CSP process has both an untimed and a timed operational
semantics. We may then consider a test T both at the timed and at the untimed
level. Then we will say P mayu T if some execution of (P 11 T) \ E in terms of

untimed --t transitions passes through a state in which w is possible; and we
will use P must. T, P mayt T and P mustt T in a similar fashion.

A useful relationship between a timed process and an untimied one is that of
untimed/timed similarity, which essentially says that executions of the timed
process can be matched by executions of the untimed.
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Definition 4.1 Relation R is an untimed/timed similarity if whenever R(P, Q),
then

(tj) P
1. If Q -- t Q' then there is some P' such that P -+P' and R(P', Q')

2. If P -% then there is some process P', Q', and time t such that P -4. P'

and Q -*t Q' and R(P', Q').

0

We say that P and Q are untimed/timed similar if there is some untimed/timed
similarity that holds between them.

Theorem 4.2 If P and Q are untimed/timed similar, then P EUT7ZTI Q and
P rV-U TI Q. 0

Proof (sketch) This follows from the above-mentioned equivalence of the de-
notational and operational semantics in both the untimed cases and the timed
case. In the first case, if there is a timed trace s of Q, then there is some execu-
tion of Q which gives rise to this trace. But then by untimed/timed similarity,
every step of this execution can be matched by an untimed step, so there is
an equivalent untimed execution of P, which corresponds to the trace strip(s).
Since the untimed operational and denotational semantics are equivalent, the
trace strip(s) appears in the trace set of P.

In the case of failures refinement, similar reasoning shows that infinite timed
traces will be matched by infinite untimed ones; and a timed failure (s, ft, 0) x X)
with finite trace s will correspond to some execution of Q. After the trace s has
been performed there are two possibilities. The execution may contain an infinite
sequence of internal events; these can be matched by P, leading to a divergence
and the inclusion of (f, (strip(s), X)) as a failure of P. The other possibility is
that a final state is reached from which no event in X, or any further internal
progress, is possible (since X is refused from that point onwards); in this case
a corresponding untimed state in which X may be refused is reachable from P
by means of a corresponding e-xecution, and the failure (f, (strip(s), X)) again
appears as a failure of P, 0

Theorem 4.3 Every CSP process P is untimed/tinmed sinilar to itself 0

Proof Let the relation R hold between two processes if they are syntactically
identical up to the values of timeouts. A straightforward structural induction
on the structure of the untimed process shows that R is an untimed/timed
simulation. It follows that any process P is untimed/timed similar to itself.

0

In the traces model, P C Q is true exactly when V T * (Q may T =:€ P may T).
By analogy, we may characterise an operational version of timed refinement,
where if Q may pass a timed test T, then P may pass the same T considered
as an untimed test.
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Definition 4.4 P Zt Q is defined by

P ZtQ 4* V T: Q may, T=' P may T

It turns out that this notion of refinement is the same as the denotational version
of traces refinement.

Theorem 4.5 - 0Theorm 4.5P ý,tQ 4* P CUTTRTI Q

Proof "=*," Assume P • UT-T TI Q. Then there is some trace s of Q such that
strip(s) is not a trace of P. Let s = ((ti, a,). (t,, a.)). Then define the test
T by

T = al ---- • n-- •---+ Stop

Since the timed operational semantics are equivalent to the denotational seman-
tics, there is some execution of Q giving rise to trace s, so there is some execution
of (Q 11 T) \ E which reaches a state in which T can perform w. However, there
is no such execution of (P 11 T) \ E, since if there were then this would corre-
spond to P performing the events in strip(s), which would mean that strip(s) is
a trace of P, yielding a contradiction. Thus Q mayt T but --(P may. T), and
so-,(P •tQ)

"=" Assume P :UTRTI Q, and consider a test T for which Q mayt T. Then
Wthere is some execution of (Q 11 T) \ E which leads to a state in which -+t

is possible. The contribution of Q to this execution corresponds to some timed
trace s. Then strip(s) is a trace of P, so P has some execution giving rise to
strip(s). Now since T is untimed/timed similar to itself, (P 11 T) \ E has an
execution which takes T through untimed states that are untimed/timed similar
to the timed states T passed through in the successful execution of (Q II T) \ E,

so it reaches a state in which an -*, transition is possible. Thus P may, T.
C)

In the failures/divergences model, P _C Q is equivalent to P must T ' Q nmust T
for any T. Again by analogy, we characterise an operational version of timed
refinement:

Definition 4.6 P •! Q is defined by

P ýf Q ý* V T: P mus_ t T =>' Q must T

This formulation of refinement is equivalent to the denotational version of failures
refinement.
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Theorem 4.7 P Q Q P CUXT, Q 0

Proof "=." If P V ,= Q then either (1) there is some (s, [u, 0o) x X) E
.TI[Q] with (strip(sy, X) Y• F[P], or (2) there is some infinite trace s such
that (s, {}) E FTIj[Q and strip(s) V TuFw[P].

1 Let s = ((t, a,),..., (tn, an)), and let to = 0. Define

0Ti = Wait(t -t,-x);((a--4 Tj+ 1) L>w-----+Stop)) 0<i<n

T.+j = Wait(u-tn);x: X -- w--+--Stop

If (P T1 ) \ E has an execution that is not successful, then the con-
tribution from P must correspond to the failure (strip(s), X), yielding a
contradiction. Thus P mustu T1. On the other hand, Q has an execu-
tion corresponding to (s,[u,oo) x X), and so (Q 11 T) \ E does have an
unsuccessful execution, thus -'(Q mustt T).

2 Let s = ((ti, ai) .. , (t,, ai) .... ). Then let the trace during an interval
In, n + 1) be given by ((tax, anj),..., (tnm, anm)). This must be finite for
any interval, since the trace s is finitely variable, i.e. its restriction to any
finite interval is finite. Define

Tn,, = Wait (t, 2 - t,_ - )
0((an, i---+ Tn,i+l) [> W----Stop) 0< i< M

Tn,m+i = Stop

Tn = Tn,, I Wait 1 ; Tn+1

This formulation is required to ensure that each of the equations for the
Tj is 1-guarded.) Then if (P 11 To) \ E has an unsuccessful execution,
the contribution of P must correspond to strip(s), yielding a contradic-
tion; thus P must. To. However, (Q 11 To) \ E does have an unsuc-
cessful execution, driven by an execution of Q corresponding to s. Thus
-(Q mustt To).

"4-" Assume that P U Uz TI Q, and that -'(Q mustt T). It will be enough to
prove that -,(P mustu T). Consider an unsuccessful execution of (Q 11 T) \ E.
There are a number of possibilities; we consider the events that were internalised
by the \ E abstraction:

* Q 11 T performs infinitely many events from E. Then there is a correspond-
ing infinite trace s of both Q and T. Since P E I TI P, the trace strip(s)
is an infinite trace of P. If P diverges at some point along strip(s), then this
will give rise to an unsuccessful execution of (P II T) \ E. Otherwise, since
T is untimed/timed similar to itself, there is an infinite untimed execu-
tion of T performing the same events, and passing through untimed/timed
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similar states to those reached in the timed execution. Hence there is an
infinite execution of (P II T) \ E where w is not possible in any state
(since the possibility of w depends purely on the state reached by T), and
so --(P must, T).

* Q f T performs finitely many events from E:

- If T performs infinitely many timed r transitions, then it may perform
infinitely many untimed ones, passing through similar states, so if P
does not diverge (leading to an unsuccessful execution) then this will
yield an unsuccessful execution of (P II T) \ E.

- If T performs finitely many r actions, then it will to arrive in a
final state TV. Any events that T' is able to perf - blocked by
Q for all time, and so P (if it does not diverge) , each a stable
state P" in which none of those events are possible. Since T may
by untimed transitions reach a state T" untimed/timed similar to
T', T" is also unable to perform those events that T' was unable
to perform, and so P" 1 T" will be unable to progress. Thus the
execution from P 11 T to P" 11 T" is maximal, and furthermore is
unsuccessful.

0

5 A simple example

The well-known alternating bit protocol is a useful common example, since it
has been treated by so many different formalisms that it provides a means of
comparing and contrasting them. We will use it here simply to illustrate some
of the techniques presented earlier.

The untimed alternating bit protocol consists of a sender and receiver commu-
nicating over two lossy channels. The nature of a generic lossy channel may be
specified at the untimed level using the infinite traces model. The specification
SM on a medium Minot with input in and output out consists of three parts:

MI s 4 out -<s in

M2 out.M X V in.M n X={}

M3 #(u [ in) =: o # =• #(u t out) = oo

M1 simply states that the sequence of messages passed on channel out should
be a (not necessarily contiguous) subsequence of those passed on channel in, so
messages may be lost but not corrupted; M2 states that at least one of input
and output should not be refused (where X is the refusal set) ; and MS i: a
fairness condition that requires that output should not be lost infinitely often.
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The requirement we have of the entire system is that it should behave as a
(one-place) buffer. Our specification is

SPEC = s4,out< 1 s4in
A s4,out=sJ in=>in.MnX={}
A sJ out<s s in =, out.M!gX

The network used is pictured as follows:

a b

in S R ou

The basic idea of the protocol is to add an extra bit to each of the messages sent
along the lossy channels which alternates between 0 and 1. The sending process
sends multiple copies of each message until it receives an acknowledgement. As
soon as the receiving process gets a new message it sends acknowledgements of
it until the next message arrives. The two ends can always spot a new message
or acknowledgement because of the alternating bit.

The two media are described as M1 = Mab and M12 = Med, passing messages
from a to b, and from c to d

This strategy may be captured by the following CSP descriptions of the sender
S and the receiver R. We set R = R(O) and S = S(O), where for s E {0, 1}
and x in the set of messages M we define

S(s) = in?x -+ S'(s,x)

S'(s, x) = a!(s, X) -- + S'(s, X)
o d?s S(T)
o3 d?-s a!(s, x) -- 4 S'(s. x)

R(s) = (sx) -+ out!x c!s -+ R(T)
0 b?(i,.x) --- + c!-§ R(s)

The entire network consists of the parallel combination of the sender and receiver
together with the two media; and the channels a,b,c, and d are all made internal.

NETWORK = ((S I R) rEIIa,b,c,d} (Ml 1 M2)) \ {a, b, c, d}

Since the sender and receiver operate asynchronously, and the media also operate
asynchronously, their combinations may be modelled using the interleaving op-
erator 1, and the network considered as the parallel combination of the protocol
and the media.
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An analysis at the untimed level establishes that the system is livelock-free,
essentially because of the fairness of the media which cannot lose an infinite
sequence of messages. It is also deadlock-free: if S cannot make progress, then
it must be waiting for both media, which must therefore both be ready to interact
with R, and so R is able to make progress. Finally, it is straightforward to show
that it is functionally equivalent to a one-place buffer.

Timed descriptions of the alternating bit protocol commonly employ a timeout
in the description of the sender process, since the intention is that the sender
should wait for an acknowledgement and then retransmit a message if this does
not arrive within a certain interval. But in fact there is no need to withdraw
the capability of receiving a message on the acknowledgement channel simply
because a retransmission has been enabled, and so at the untimed level this
behaviour may be modelled as a choice.

To provide a timed refinement of the protocol, we wish to preserve correctness of
the system. The most general form of correctness that could be preserved by a
timewise refinement would be for timed versions of the media to meet simply the
translations of the untimed specifications with no further constraints. Thus we
prefer not to impose the restriction on the media that they are non-retracting.

A timed version TS of the sender process may be obtained simply by including
a delay t before retransmission of a message. The length of this delay will be
influenced by such factors as the length of time before an acknowledgement
would be expected to arrive, and the reluctance to send unnecessary messages.
The timed receiver process TR still behaves sequentially, and has no time-critical
behaviour.

Some small delays c are introduced to ensure that the recursive loops are time-
guarded. (These play the role of the original 8 delay enforced by event prefix in
earlier versions of timed CSP [ReR86]).

tTS(s) = in?x -+ TS'(s,x)

TS'(s, x) = Wait t ; a!(s, x) -+ TS'(s, x)
o d?s -.f S(-)
Sds --.L a!(s, x) -- S'(s, x)

R(s) = b?(s, x) .A. out!x -+ c!s -- + R(X)
o b?(-, x) -1-+ c!T-+ R(s)

Given two timed media TM1 and TM2 that meet the timed translation ot SM,
by completeness there are two untimed media M1 and M2 which meet SM and
which are refined by TM1 and TM2. Then M1 I A12 ECuifTI TM) I TM2.
Also, by Theorem 3.5, and since delays may be introduced into an untimed
description to produce a timed refinement, and no use has been made of the
synchronous parallel operator, we have that S I R C IT R TI TS I TR. Further-
more, both the sender and the receiver are non-retracting and prompt, and so
TS I TR is also non-retracting and prompt. Thus the timed network

TNETWORK = ((TS I TR) EI{,a,b,c,d) (TMI |TM2)) \ {a,b,c,d}
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is a timewise refinement of the untimed network, and so it. must be a one-place

buffer. Thus the functional correctness of the timed network may be deduced
from an untimed analysis.
Of course, to do an analysis of the timing behaviour of the network it would be
necessary to use the full power of the timed model. To consider the maximum
time between input and output it is necessary to know for how long it is neces-
sary to input messages into the media before output can be guaranteed; and to
optimise the value of the timeout t it is necessary to know the expected delay
in the media of a successfully transmitted message. The technique of timewise
refinement cannot contribute to these concerns; its role is rather to complement
them by allowing the appropriate use of more abstract methods for some anal-
ysis of aspects of a system's behaviour, even when other aspects require the use
of the more complicated timed models.

6 Discussion

I We have seen how verifications of specifications can be mapped up the CSP hi-
erarchy of models, and also an example of how general laws might be translated.
Other properties (such as deterministic or compact) do not translate in general.
For example, the deterministic untimed process a -* Stop is refined by the
non-deterministic timed process a -- Stop n 11ait 5 ; a -- + Stop, which can
perform or refuse to perform a at time 2.
There has also been some work in this area in the contexts of timed CCS and of
timed ACP. Larsen and Yi [LaY93] have proposed a notion of time-abstracting
bisimulation, which specifies when timed processes are equivalent modulo tim-
ing behaviour. Thus one process may be used to specify simply the functional
behaviour of a system by requiring that any proposed implementation should be
time-abstracting bisimilar to it. They prove that time-abstracting equivalence
is decidable for a timed CCS calculus [Wan90], in contrast to the refinement
relation presented in this paper, which is not decidable. Interestingly, they also
establish that time-abstracting congruence (i.e. equivalence in all contexts) is
standard timed bisimulation. The corresponding result for this paper is that un-
timed traces congruence for timed processes is the same as (finite) timed failures
equivalence.
Baeten and Bergstra [BaB92] have considered the embedding of untimed ACP
into real time ACP. They propose a translation of untimed ACP into the timed
setting, for example translating a to ft>o a(t): an untimed a process specifies
nothing about the time the a should occur, so it translates to the timed process
that can perform an a at any time. This is also the philosophy of this paper.
They also consider the translation of certain identities of ACP into the timed
framework; this supports reasoning at a higher (untimed) level of abstraction to
be incorporated when detailed reasoning about timing issues is also required.

Earlier work (Sch89] investigated the relationship between the untimed models
and the standard timed failures model of [Ree88]. The difficulties encountered
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in using that model to treat infinite behaviour led to the development of the
infinite failures model, which supports a more natural treatment of timewise
refinement from the untimed models.

We are also investigating other refinement relations. In particular, a relation
between the failures/divergences model and the timed failures stabilities model
that treats instability as divergence has that all CSP operators preserve re-
finement; and this refinement relation is complete for stable processes. When
stability considerations are important then this relation would be the natural
one to use. Of particular interest is the relationship between the timed models
and the timed probabilistic models for CSP developed by Lowe [Low9l]. Work
has already been initiated in this direction (see e.g. [Low92]), which it seems
should fit into the framework presented in this paper.

The underlying theory presented here is of course more general than simply
CSP, and should be applicable wherever processes are modelled in terms of the
behaviours they may exhibit. It may for example be applicable to Gerth and
Kuiper's interface refinement [GKS92]. I feel that the theory will be useful only if
refinement relations can be established at the syntactic level, since if refinement
can be shown only by examining the semantics directly, then verifying abstract
specifications of processes via refinement is unlikely to be much easier than
performing the verification directly.
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A Semantic models and functions

Tfraces

The traces model M UT is defined to be those sets of traces that are non-empty,
and closed under prefixing.
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The semantic function F"UT

The semantic function
'UT : CSP -• M UT

is defined by the following set of equations:

XUT[Chaos] {tr E E*}

YUT[Stop - {0}

• UT[Skip] {0}

YUT[P ; Q1 {tr I tr E uTP] trr { =

U

{trp'trQ I trp-'(X/) E YUT[P] A

tr r {f/} = () A trq E YuTIQJ}
.uTPto

FUT[P > Q0 = YUT[P] U uTTIQ]

FUT[P 0 Q1 - UT[PJU TUT[QJ

)rUT[a : A -4 Pj UaEA{(a)tr I tr E FJUT[PVG}

FUTi[",,EI Pi UEI YJUT[PI

XUT[P AiIB Q1 {tr E (A U B)* I tr [ A E YLTT[P] A
tr r BE YuT[Qj}

.YUT[P I QI {tr I 3 trP_ E.uT[PI, trQ E .UT[QJ*

tr interleaves (trp, trQ)}

ETUT[P \ A] {tr \ A I tr E YUT[PJ}

YU'r[f(P)l {f(tr) I tr E YLTT[PI}

.'UT[f -(P)l {tr I f(tr) E J(uT [P1}

'UT[/pX o F(X)J UEN'YUT[F"(Stop)]

A.1 Untimed infinite traces, failures, and divergences

The process axioms given in [Ros88] correspond to the following properties re-
quired of a set S for it to correspond to the set of observations of some process.
Thus the semantic model M u1 is the collection of sets

SC {f} x ( x P())U{d} x *U{i} xE
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(ordered under reverse inclusion) that meet these eight axioms.

(1) (f, (s-'t, {})) E S * (f, (s, {})) E S
(2) (f(t, X)) E S AY C- X =•(,(t, Y)) E S

(3) (f(t, X)) E S Av V a E Y f(-(){) S s > (f, (t,x X UY)) E S

(4) (d, s) E S= = (d, s't) E S

(5) (d, s) E S *: (f, (s't, X)) E S

(6) (i, s'u) E S =* (f, (s, {})) E S
(7) (d,8) E S =* (i,-',u) E S

(8) (f,(s,{}))ES=*:T*(VtE To

(f, (s-'t, {a t(a) V T})) E S A {(i, s-u) I E T} E 5)

Here T = {u E E' I Vt < u.t E T}, where T ranges over finite prefix closed
sets of finite traces.

The semantic function Fuj

The function YFu is defined in terms of three functions FLUD, TIuF, and Y/,
yielding divergences, failures, and infinite traces respectively. It is then given by

Yuj[P] = {(d, tr) Itr E JFUDD[PII

U{(f, (tr, X)) I (tr, X) E YurFI[P]I}

Ut(i, u) I u E Y.FP]}

The semantic function .FuD

The semantic function
FUD : CSP -- 4 M UD

is defined by the following set of equations:

YuDiChaos] {tr I tr•E }

9FUD[StOPI {}

YuD[SkipJ {}

FuDIP ; Q] {tr-tr' I tr E FTUD[P] A tick , u(tr) A t," E L}
U
{tr•'tr' I (tr'"(O), {}) E YuF[Pj A o, c (tr)

A tr' E FUD•LQI
9u[pto

FUD [P > QJ TUD[P UYUDI[Q1

FUD[P 03 Q] -FUD[P] U .LuD[QQ
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~uD~a: A -+ Pal U. CA{I(a) tr Itr E J7UDI[P,] I

YU ifE I PI U FIUDIP,]

YUDIP AIIB QJ {tr''tr' I (tr r A, {}) E FUF[P] A tr B E -TVDIQI
V
tr r A EYUD[P] A(tr r B,{P1)E YLTF[QJ}

YuD [P I Q1 {ýItr 13 trp E FUD IP], (trQ, 11) E YLTF [1Q1 0
tr interleaves (trp, trQ)}

{ tr 3 (trp, I}) E uFupP], trQ E F:UD[QQ 0
tr interleaves (trp, trQ)}

YuD[JP \ A] {tr \A-'tr' Itr E FTUD[PI}
U
{u \A-tr' I u E TJIPII A #(ui \A) < oc}

TUDVf(P)] If (tr) -tr' It 1 E -LD [P]

FUD~f-(P)l { tr JIf(tr) E FL!D[IP]}

The semantic function 771

The semantic function
Y, :CSP-kM

is defined by the following set of equations:

YF [Chaos] fu I u E E'}

Y, [stop] {

Y' [Skip] 4

.Fi[P ;Q1 {u I UEF,[P~jA ou(u)}

U

I{tr' u' I(tr'(0 E} Y UF [IP] A V/ a (tr)
A u' E Fi[IQl}

U

I{tr' u tr F FLTD [P; Q]I
to

FuI[PO0Q1 W, [P] UF, [ Q1

F,[a A -+P.1 UGEA{(a 't I U E FiI[PaJI}
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"'IlpAIIBQ1 (u Iu [ A E Y4PJAuIA ` [Q]E YiQI)
U
{tru I) tr E :7UDIP AIIB QI)

T[P I Q I {u13 up, uQ *(#up =ooV #uQ= oo)

A u interleaves(up, uQ)
A (uip, 1}) E YTUFL[P] V up E YF1 [PJ

A (uq, f{1) E YupIIQI V uQ E) F1[QJ}
U
f{tr''u I tr E.YuD[P I Q]}

YF [P \ A] j {\ A I u E.Pj A#(u\A)=oo}

U
{tr'u~t I tr E .FUD[P \ A])

Y 1[f(P)l {ff(u)- I u E Yi[IP
U
I{tr u Iti' E -FLDU[f(P)]1I

YxU 1'(P)I {u If(u) E.TjPI)

The semaantic function FuF

The semantic function
TrUF : CSP -- + M UF'

is defined by the following set of equations:

.FuF[ChaosI £ (tr, X) Itr E v-AX C E

XUF [StOPI I((),X) IX C- E

Yup[SkipJ { ,X)l /X)

{WO IX) I x Cý E

YUFIIP ;Q1 {(tr, X) I V ý a(tr) A
(tr. X' U f{vI) EFCF .JFPI IJ

U

fA (tr'7V), X) C YUFH

A (ti", X) E Yu4 Q]JI
U
I{(tr, X) Itr E -FUD [P ;Q1I}
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•v Pto

XUP[ > QJ XUF[Q] U {(tr, X) I (tr, X) E .FUF[PJ A tr ( }

YUF[PO 1 Q f {(U, X) 1 (0, X) E 7uF [P] n )7ufIQj}

U

{(tr, X) I tr / ( A (tr, X) E YUF[P] U Xu OQ1}

)'uF[a:A--4Pa {((,X) IX A= {}
U

U.EA{((a)(tr, X) I (tr, X) E FUF[Pa]}

YUF~fl PJ U YUF[PlP
iEI P] U~

YUF[P.IIBI q Q {(tr, Z) I (trt A,Xt A) EYUF[P]A
(tr B, Y [ B) E Fup[Q] A
(X A)u(Y r B)-=Zt AUBA
t-,= ti- (AU B)}

U

{(tr, X) I tr E .TUDVP AI1B Q1}

YUF[P I Q1 - {(tr, X) 13 trp, trQ * tr interleaves(trp, trQ)
A (trp, X) E TuF[P]

A (tQ, X) E Y•FuQl}

U

{(tr, X) I tr E -TUD[P QIII Q1

FuF[P \ A] - {(tr \ A, X) I (tr, X U A) E TuFI[P]l

U

{(tr, X) I tr E .TUD[P \ Ai}

YuF[f(P)i - {(f(tr),X) I (tr,f-(X)) E TuF [P]}

U

{(tr, X) I tr E YuDIf(P)j}

V'V-'(P)J I {(tr, X) I (f(tr),f(X)) E YLTF P]J}

The least fixed point is given by

Yul IAX o F(X)J = nfl3FujjFa(Chaos)]

where a ranges over all ordinals; and for limit ordinals Y, we define the semantics
Yuj[F"(Chaos)] to be the least upper bound in Mui of the set of processes
{fFu[Fa(Chaos)] I cr < -y}. It is established in [Ros88] that this is well-defined.
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Infinite Timed Failures

The information ordering on behaviours is defined as follows:

(s', H') (s, R) * 3s" s = s'- s" A N' C R <4 begin(s")

We formally define M TI to be those subsets S of TE- x IRSET satisfying
axioms 1-3 given below, and axiom 4 to follow.

1. (0,{}) ES

2. (s,R) E S A (s',R') _R (s,H) R (s',H') E S

3. (s, X) E S =*
3R'EIRSET. RCR'A(s,R')ESAV(t,a)ER+ xE.

(Cl) (t, a) ý R' =:> (s <1 t'(- (t, a)),N' 4 t) E S
A

(C2) (t > O A-3 - > O. ((t-e,t) x {a}C '))
=> (s I t•'((t, a)), R' < t) E S

Axioms 1 and 2 require that an element of M TJ must be a non-empty downward
closed set of behaviours. Axiom 3 requires that on every execution, timed events
must be either possible or refusible.

A set of behaviours T is finitely variable if for every time t, the set T 4 t is a
complete partial order under -_<. A set of behaviours T is closed if

T = T = {(s,H) lVt.(s,N) itET}

Let CZ be the set of finitely variable closed sets of behaviours satisfying axioms
1-3. Then axiom 4 states that

4. S=flI{QEC£ISrQ}

The semantic function -TTI

The semantic function
•TI : CSP -4 MT

is defined by the following set of equations:

YTI[Chaos] {(s, R) Is E TE' A R E IRSET}

YTi[Stop] {(,)IR E IRSET}

FTI [Skip] {(0,H) -7o(N)}
U

{(((t, v1), R) I t > 0 A o/(R f [0, t))}
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.FTI[P ; Q1 V/ {( f a) I (s) A

(s, Ru ([O, erd(s, H)) x {))E YTI[P]

V

8 = sp-sQ A c ~(sp) A
(sq, 0) - t E FYT[Q] A

(sp-'((t, \/), N 4 t U ([o, t) x IVI)) E -TTiJPJ)}

YTI[P to> QJ {(s,R) begin(s) < to A (s,R) E YTI[PJ}
U

{(s, R) begin(s) _ to A ((), N 4 to) E YTi[P]
A

(s,H) - to E .TiI[QI}

.TI ([PC] Q - {(0H, ) 1(0,H)FTiI[P] r)fYTrI[Q]}
U

{(s,R) I s €0 A (s,R) E YTIL[PI U 'TI[Q]
A
((),H .4 begin(s)) EFT4PI [flFTIT[QI}

FT' [a : A-+ Pj = {((),N) I Anl,(R){}}
u

{((,a))' (s + t), s

a E A A t> 0 A A n a(RH 4t) ={}

A (s,H - t) E YrTI4P(a)]}

YTI[nl iEI Pi] UEIrTI[PiJ

YTt[P AIIB Q] f {(s,R) 13 Rp,HQ
N [ (A UB) =(p r A) U (RQ B)
As:St (AUB)

A (s [ A, RP) E YTI [PI

A (s t B, RQ) EY-TIIQH

TIP IQJ {(I, )Q] s3EP,sQ" sESP• J SQA
(sp, ,) E .1T4IP] A

(sQ, t) E YTIIIQJ}

.FTi[P\A - {(s\A,f)I(s, RU([0,oo)x A)E•.TI[P]}

"TI If(P)] {(f(s),R) 1 (s,.f-'(N)) E .'TI[PI}

YTJI-'((P)] {(s,H) I (f(s),f( EYTI[PI}

The least fixed point is given by

YTI[pX o F(X)] = fcFTIr[F'•(Chaos)j
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where a ranges over all ordinals; and for limit ordinals -, we define the semantics
YTJ [F"(Chaos)] to be the least upper bound in M.TI of {FTII[F"(Chaos)] I a <
,y}. It is established in [MRS92] that this is well-defined.



Axiomatising Real-Timed Processes

Liang Chen*

Centre for Communications Research
University of Bristol

Queen's Building

Bristol BS8 ITR, Great Brtaini
chenOuk.ac.bristol.comnm-research

Abstract. In this paper, we present a relativised compositional proof system
for real-timed processes. The proof system allows us to derive statements of
the form A I- E = F, where processes E, F may contain free time variables
and A is a formula of the first order theory of time domain. The formula
A I- E = F means that A is a condition for process E to be bisimilar to
process F. The proof system is sound and is independent of the choice of
time domain, allowing time to be discrete or dense. It is complete for finite
terms, i.e. terms without recursion, over dense time domains. It is also shown
complete for a sublanguage over discrete time domains. We discuss how to
restrict occurrences of time variables to obtain the sublanguage. We finally
discuss extensions of the proof system for recursively defined processes.

1 Introduction

Process algebras, such as CCS [Mil8O, Mil89], CSP [Hoa85] and ACP [BK85], are
structured description languages for concurrent systems and have a variety of well
developed semantics theories and verification methods. However, none of them con-
sider temporal aspects of systems. Instead they deal with the quantitative aspects
of time of systems in a qualitative way. There are many systems and applications
for which purely qualitative specification and analysis are inadequate. The examples
are real-time systems, such as the fault tolerant systems and safety critical systems,
in which the interactions with the environments must satisfy some time constraints.

Recently there are some attempts of introducing real time in well developed
process algebras [BB91, CAM90, Che92a, MT90, RR88, Wan91]. In [Che92a], we
have proposed a timed calculus, Timed CCS, which is an extension of Milner's CCS
with time. We make no assumption about the underlying nature of time, allowing
time to be discrete or dense. The time variables in the language allow us to express
a notion of time dependency which says that time for some actions depends on the
happening time of their previous actions. For example, in process a(t)s 6 (s)15-t. nil,
the time for action b depends on the happening time of action a. For different
happening time of a, the time for b is different. In [Che9la, Klu9l], sound and
complete proof systems for Timed CCS and a restricted language of ACPpl have

* The author is supported by grant GR/G54399 of the Science and Engineering Research

Council of the UK. Most of the work was done when the author was in LFCS, University
of Edinburgh.
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been proposed. However the proof systems are based on some powerful infinite rules.
If in Timed CCS, the corresponding rule has a form

Yu.v < u < w -# E{u/t) = F{u/l}
a(t). E = a(t)'. F

Since time may be dense, the proof systems , although sound and complete, are only
of theoretical interest.

In (Che92a], we use a notation A k E -. F to represent that formula A is a
condition for process E to be bisimilar to process F. We say A is a condition for E
to be bisimilar to F if for any time instants u1,..., u,, A{ul/ti,. . . , u,/t,) implies
E{ul/tI,. .. ,u,/t,} -I F{uilti,...,un/,}/, where A, E and F contain at most
free time variables ti, '-" ,t.. In this paper, we present a relativised compositional
proof system in which we derive statements of the form A I- E = F. The formula
A F E = F means that it is provable that A is a condition for E to be bisimilar to F.
The proof system is sound and is independent of the choice of time domain, allowing
time to be discrete or dense. It is complete for finite processes over dense time
domains. It is also shown complete for a sublanguage over discrete time domains.
We discuss how to extend the proof system with some form of inductive rule for the
proofs of recursively defined processes. There is no infinite proof rule in the proof
system and therefore it is realistic and hopefully useful.

We mainly focus on the finite terms, i.e. those without recursions. In section 2, we
give a formal description of the syntax and semantics of a simple real-time calculus.
We define strong bisimulation for timed processes. In section 3, we present the proof
system and show by an example how it works. In section 4, we show soundness of
the proof system. We also show completeness of the proof system over dense time
domains and completeness for a sublanguage over discrete time domains. We discuss
how to restrict occurrences of time variables to obtain the sublanguage. Finally, we
discuss in section 5 extensions of the proof system with inductive rules for the proof
of recursively defined processes. We show by an example how an extended proof
system works for recursively defined processes.

All proofs are omitted and can be found in [Che92b].

2 The Language

We only consider here a simple timed calculus, a sublanguage of Timed CCS [Che92a].
This is done to facilitate an elegant presentation of the key ideas of the paper. There
is no difficulty in extending the ideas to include both restriction and relabelling.

2.1 The Syntax

To give a formal description of the simple timed calculus, we presuppose a set A,
ranged over by a, b, of atomic actions not containing r. Let Act = A U {r}, ranged
over by a, ft. As in CCS, A can be partitioned into F, the set of names, and F =
(a Ja E F), the set of co-names, with the provision that a = a. a and a are called
complementary actions which form the basis of communications in our language,
analogous to CCS. We also presuppose an infinite set Vt of time variables, ranged
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over by t, a, r. Let the time domain be (T U {oo), 5), where T contains a least
element 0 to represent the starting time and 5 is a linear order over T. Note that
we make no assumption about the underlying nature of time, allowing T to be H,
the set of natural numbers, or R_0, the set of the non-negative reals. We introduce
co to represent infinite time, where co % T. Our time expressions, ranged over by C,
f, g, are defined as follows:

Definition 2.1

1 for any u E T and t E Vt, u and t are time ezpreusein;
2 for every u E T and time ezpression e, u X e is a time expression; and
3 if e and f are time ezpressions, then e + f, e-f, maz(e, f) and min(e, f) are

all time ezpresuions, where - is the conditional subtraction, i.e. e'-e = e' - e
whenever e < e' and e'-e = 0 whenever e> e'.

Remark The decidability result of (Che92a] justifies our decision on the choices
of time expressions.

By convention, for any time expression e, we have e < co, oooe = oo, maz(e, oo) =
0o and min(e, oo) = e, where o is + or -. We will write e' -e in place of e'-e when-
ever e <e'.

The process expressions of the language are defined by the following BNF ex-
pressions. E ::= 6 1 nil (e)E I &(t):'. E I E + F I E I F
where e is a time expression and e' is a time expression or e' = oc.

Note that (o)E is not a process, but we allow us to write (0o)6 as syntactically
identical to nil.

Process b is a dead process which neither performs any actions, nor idles. Process
nil cannot do any action, but idles any time. Time prefix (e)E 2 will behave as process
E after a delay of time e. Action prefix o(t) . E represents the process which can
perform action a between time e and e' (inclusive), where the time variable t refer to
the happening time of action a. Time variables of the language allow us to represent
the notion of time dependency. For example, a system which can perform an action
a followed by an action b, where a can occur at any time and if a occurs after
a delay of time t then b must occur within another t time, can be expressed as a
process a(t)0. b(s)' nil of the language. Summation E-+ F represents choice between
processes E and F. The choice is made at the time of the first action of E or F, or
at time when only one process can idle. In the later case, the process which cannot
delay is dropped from the future computation. Process E I F represents the parallel
composition of processes E and F. Each of them may perform actions independently
or they may synchronise on complementary actions which represent communications
between them. Parallel composition is synchronous with respect to time proceeding,
i.e. the parallel composition E I F can delay time u only when both E and F can.

The action prefix operator cr(t)' in a(t)'. E binds all free occurrences of time
variable t in E. This gives us, in the usual sense, the notions of free and bound
occurrences of time variables. We use Jvt(E) to represent the set of all free time

2 Time prefix (e)E is a derivable operator of Timed CCS [Che92a].
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variables occurring in E. A process E is said to be an agent if fw,(E) = 0. Let V
represent the set of agents which is ranged over by P, Q, R.

2.2 The Operational Semantics

In order to define an operational semantics for the simple timed calculus, we use a
labelled transition system of the form

(', (-!. u-- la E Act A u E T))

The understanding of transition P-*-*P' is that agent P performs action a at
time u relative to the previous action and then evolves to P'. The transition P---#. P
means that agent P idles up to time u without any action and then evolves to P'.

To define the transition rules, we first define Moller and Tofts' maximal delay
time of processes before any actions (MT90].

Definition 2.2

(1) 16V = 0 (4) e(t):'. Eýf = e'
(2) Initir = co (5) IE + Fir = maz(IEkr, IFIr)
(3) l(e)EVr = e + lEfr (6) IE I Fir = min(IEir, JF-r)

Table I presents transition rules of the language. The rules are presented in
natural deduction style which are read as follows: if the transition or transitions
above the inference line can be inferred, then we can infer the transition below the
line. The operational semantics of the language is then given by the least transition
relations -. and --- +,, where a E Act and u E T, defined in Table 1.

2.3 Strong Equivalence

We do not wish to distinguish agents which, in some sense, have the same behaviours.
The notion of bisimulation between agents captures the idea of having the same
behaviours. We say two agents are not equivalent if a distinction can be detected by
an experimenter who interacts with each of them.

Definition 2.3 A binary relation S over agents is a strong T-bisimulation if(P, Q) E
S implies that for all a E Act and u E T

(1) if P -. P', then there is a q' such that Q--*-'Q' and (P', Q') E S;
(2) if Q-•-,Q', then there is a P" such that P-...,P' and (P', Q') E S; and
(3) IPIT = -IQT.

We say two agents P and q are strongly bisimilar, denoted by P -, Q, if there is a
strong T-bisimulation S such that (P, Q) E S.

Definition 2.4 For any processes E and F which contain at most time variables
t1,...,tn, we say E , F if for any ul,.-,un ET we have

E~uj/t,--, , /Q .- F(u 1/t,.. .,u.1/t)
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V:5<V < w
%it---*nit *()". E- ,E(ul/t)

( ( _ "< E--.,.).. (E{, + t/t)) "<

(,P--÷' (,,p--."pD

p---..p'p--up'Qfr~~u Q+P-0.+.P' l rt

P+Q --,. P1 +P0 P-1.

P-.up Q-.Q'
p + Q.-,.p1 + Q'

P--..P' Q--.Q' -P...p Q "-- Q,
P I Q--.P' I Q' PI r q-.,P1 IQ#

p-,.2.p' Q.--,Q' p--.,p1 Qa "-.Q,,

P I Q ----.P ' I Q ' e I Q •t .P0 I Q0

Table 1. Operational Semantics

The relation - itself is a strong T-bisimulation, the largest strong T-bisimulation.
It is an equivalence relation, called the strong equivalence. Moreover it is a congru-
ence relation.

To define a characteristic formula WC(E, F) for processes E and F, we first
introduce a notion of normal form.

Definition 2.5 A process E a-EI a,(t,)e•. E. + (e)6 is in normal form if for any
i E I, el <e and Ei is also in normal form.

We identify those formulae which are logically equivalence, i.e. two formulae A
and B are identical if A *-. B. Clearly, for any process E there is a normal form E'
such that E - E". The characteristic formula WC(E, F) of E to be bisimilar to F
is defined as follows:

Definition 2.6 For any processes E and F, let

E - E, + (e)6 and F'P = Ejj F, + (f)6
bEl w Ed

be normal forms which satisfy E ,- E' and F ,- F'. We define
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W (E, (e = f)

A(Vt(ei < tAt <e -. V (/• < tAt < fj A WC(E,{l/ti},Fj{t/s,}))))) A

jej i-p
AC's(f, _< Ag _<f -. V (e, _ ~< e'W (~/,,~/j))

jE) ,,D
iEl

It is easy to see that the characteristic formula WC(E, F) of E to be bisimilar
to F is well defined. Moreover we have the following property.

Proposition 2.7 For any processes E and F, WC(E, F) if and only if E - F.

3 A Proof System

We have shown that for any processes E and F, there is a characteristic formula
WC(E, F) such that E - F if and only if WC(E, F). We say a formula A is
a condition for E to be bisimilar to F if and only if WC(E, F)--A. We use a
notation A ý= E - F to represent that the formula A is a condition for process E
to be bisimilar to process F. In this section, we describe a relativised compositional
proof system in which we derive statements of the form A I- E = F.

To simplify the presentation of the proof system, we first introduce a notion of
time shift e >> E, which is a relative version of that of [BB91].

Definition 3.1 For any time expression e and process E, the time shift e >> E is
inductively defined as follows:

(1) e >> 6 6 (4) e >> (E+ F)=fe >> E+e >> F

(2) e >>nil fnil (5) e >> (EI F)de--- >> EIe >> F

E ) = . t))+(mag(e.f ,)-I). (E{e + tI/))

Note the subtlety in the definition for e >> (a(t)l,. E). It ensures that the lower
bound (f-e) + (maz(e, f) - f') > 0 whenever e > f'.

Table 2 contains all axioms and Table 3 contains all proof rules. The proof rules
are in the form

S, ... Sn
S

where Si,..., S,,, S are statements. The rule can be read as: if all premises S,,..., S,
can be derived, then the conclusion S can be derived.

We say A I- X = Y is derivable if it can be derived from the axioms in Table 2
by using the proof rules in Table 3. For convenience, in the sequel, we write A I-
X = Y to assert that A I- X = Y is derivable. We also write F- E = F in place of
true E =F.
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false -X = Y true - X =X

true - X = X +6 true -X =X+X

true l- X + Y = Y + X true- X+(Y+Z)=(X+Y)+Z

true I- X = (O)X true I (e)(e')6 = (e + e')6

true I- (c)(X + Y) = (e)X + (e)Y true a e(t):'. X = a(t):'. X + (max(O, e'))6

e' < e I- a(t):'. X = (max(o, e'))6

e < a <e ' ý- a(,):'. X = a(t)' X + a(t).'. X

true F- a(t):'. x = X(a)'. x{a/t) s is free for t in X

true I- (e)(a(t)f. X) = aQ) X~ t-e/t) tofv(e)

Let X -- •IE a(t,):. Xj + (e)6

and

Y JJ Fi + (f)6

be normal forms, then

true I- X I Y = EiEI GTr),, . (X,{rlt,) I r, >> Y)

+ Z3 i(")Z •(re >> X IY,;r/sj))

+ J& * r(r,•i) ,;). (Xi {(ri,/e I ' {rj /a, })

+(min(e, f))6

where for any i E I, j E J, ri, r• and rii are fresh time variables

Table 2. Axioms
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AFIX=Y A I- Y=Z
A I- X Z

AI'X=Y BD'X=Y
2 AVBBX=Y

3 B-X=Y A-B
AF-X=Y

4 AI-X=Y
A Ae = f F (e)X = (I)Y

A A e < t < e'X fv(A)

A A e = f Ae' = f' o a(t):'. X = at(,. Y

AI-FX=Y A'- X'= Y'
A6- X + X'= Y+ Y'

AI-X=Y BI-X=Z
AvBI-X+Y+Z=Y+Z

Table 3. Proof Rules

Lemma 3.2

(1) IfA F X = Y and t V fv(A), then A A (e < t < e') - or(t):'. X =a(t):. Y.

(2) If A I- X = Y and t V fv(A), then A A e = f A e' = f' a(t),'. X = a(t)f . Y.

Remark Rules (1) and (2) of Lemma 3.2 are equipotent with the proof rule 5.
In fact they were the version which I first proposed. Thanks to Faron Moiler for
suggesting the present proof rule 5.

Now we consider a simple example and show how the proof system works. In
Section 5, we will consider a more interesting example and show how the proof sys-
tem also works for recursively defined processes.

Example Let E = b(8 )1-(2" 1) 6 , F = b(8)2-2. 6 and G b(s)o. .6, we show that

F- a(t)1°. (E + F + G) = a(t)1. (F + G)
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is derivable.

I-6=6

t - (2-1t) 2t2 -2Fb(s)'- " 6 = b(°)'-.- 6 1<2-. (1- (2-1) = 21-2)0 tt < 2 t -(--t t -2

1 <_ 2 - b(s)7-(2'-1. 6 = b(s)2t-2. 6

and

1-6=6
t - (2-" t) = t F- b(s)*-(-. 6 = b(s)L,6

t b(8)o(2- ) 6- b(s). 6 b > 2 -- (t - (2-t) = t)

By rule 7F 
GBy rule_< 2V1 >21- E+F+G= F+G

and

t<2Vt>21-E-IF+G=F+G 1<t < 10-. (t <2Vt > 2)
1 <t < 10 - E+F+G= F+G

1- a(t)jl. (E + F + G) = a(t)l°. (F + G)

4 Soundness and Completeness

In this section, we show that the proof system is sound, i.e. whenever we have a
derivation of the form A 1- E = F, then formula A is a condition for E to be
bisimilar to F. The soundness is independent of the choice of time domain. We also
show that the proof system is complete for processes over dense time domains, but
only complete for a sublanguage over discrete time domains.

4.1 Soundness

The soundness of the proof system is shown by the following proposition.

Proposition 4.1 (Soundness) If A 1- E = F, then A k E , F.

Note that the side condition of rule 5 is important, as otherwise the rule is invalid.
As an example, let the formulaA be 1 < t < 5, the processes X and Y be b(s)'0°-. nil
and b(s)'. nil, respectively. Clearly we have A A 5 < t < 10 k X - Y, but Aa(t)10o X ~ a(t)51. Y.
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4.2 Completeness in Dense Time Domains

In this section, we assume time to be dense. For example, we can assume the time
domain is (->U{foo, _<). We first show that for any processes E and F, the weakest
condition for E to be bisimilar to F can be written in a disjunctive normal form.

Lemma 4.2 For any processes E and F which contain at most free time variables
,. . .,,, WC(E, F) can be written in a disjunctive normal form

Vei < t, <5 P, A ... A e',(ti,...,tn-1) _< t _5f(l..,,
,El

for some finite I, where time expressions e;(t,.. . ,tk 1 ) and f(tl,...,t,_1) (k =

1,. .,n) contain at most variables t,... I.,t-. 1 .

Remark For discrete time domains, the lemma in general does not hold. For
example, the formula 3t = 5s cannot be written in the required form. In the next
section, we will show how to restrict occurrences of time variables to retain the
lemma for discrete time domains.

Proposition 4.3 For any processes E and F, WC(E, F) F- E = F.

Corollary 4.4 A k E -• F implies A F- E = F.

Corollary 4.5 (Completeness) For any processes E and F, E .- F implies F- E =
F.

4.3 Completeness in Discrete Time Domains

In this section, we assume time to be discrete, e.g. the time domain is (HU {oo), <),
where N is the set of natural numbers.

As shown in the last section, Lemma 4.2 in general does not hold for discrete
time domains. It is not known whether the proof system is complete for processes
over discrete time domain (N U oo}, _<). Consider processes E a(t)6, b(s)j° (3s)6
and F = a(t)i b(s)1° (5t)6. Clearly we have k E - F, but I- E = F is not derivable
by using the above proposed technique. However, if we restrict the occurrences of
time variables, we can still retain the lemma.

Notation Let e be a time expression and S be a set of time expressions, e + S
represents the set {e + f I f E S) of time expressions.

Definition 4.6 For any process E, the set of time expressions Expl(E) of E is
inductively defined as follows:

Expi 16) = {O) Expi(aQ),'. E) = le, e')
Ezpi(nil) = fO} Ezpi(E + F) = Ezpl(E) U Expl(F)
Ezpl((e)E) = e + Ezpi(E)

Definition 4.7 For any process E, the sets of time expressions EXp 2(E) and Exp3(E)
of E are defined as follows:
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Ezp2(6) = 0 Exps((e)E) = Erpi((e)E) U Ezp2(E)
Ezp3(6) = 0 Ezp2(a(t)'. E) = Ezp3(E)
Ezp2 (nil) = 0 Exps(a(t):'. E) = Ezpi(a(t):'. E) U Ezp3 (E)
Ezpa(nil) = 0 Ezp 2(E + F) = Ezp2(E) U Ezp2(F)
EXP2 ((e)E) = Ezp2 (E) Ezp3 (E + F) = Ezp3(E) U Exp3 (F)

Proposition 4.8 For any normal form E, where E =- a-(tc). Ei + (e)b, we
have

Ezps(E) = U EzpS(E,) U {e + 0, e,, el i I}
iEI

For any set of time expressions S, let Basic(.5S) be the set of time expressions
resulted by eliminating max and min in S by the following procedure:

1 Let Basic(S) be S.
2 If maz(e, f) E Basic(S) or min(e, f) E Basic(S), then replace max(e, f) or

min(e, f) by e and f in Basic(S).
3 If e o maz(f, f') E Basic(S), or maz(f, f') o e E Basic(S), replace them by e o f

and eof', where o is + or -.

4 If e o min(f, f') E Basic(S), or min(f, f') o e E Basic(S), replace them by e o f
and e of', where o is + or -.

5 Repeat steps 2 to 4 until there is no occurrence of min and max in Basic(S).

For any set of time expressions S, we say S only contains time expressions which
have single occurrences of the same time variables if for any time expression e of
Basic(S), a time variable t occurs in e implies that e satisfies one of the following
conditions:

(1) e = f0t or e = t of for some time expression f, where t 0 fv(f), and o is +, -,

or .
(2) e = el a e2 for some time expressions el and e2 such that t 0 fv(e 2) and e,

satisfies one of the two conditions, or t 0 fv(el) and e2 satisfies one of the two
conditions, where o is + or -.

Let 9' be a set of all processes such that for any E E V', Basic(Exp3 (E)) only
contains time expressions which have single occurrences of the same time variables.
The sublanguage of C' is still very rich. In fact, we have the following property:

Proposition 4.9 For any processes E and F, if E, F E V' , then E + F is still in
£'. Also if {e, e'} only contains time expressions which only have a single occurrence
of the same time variables and E E V', then or(t) '. E E V.

Now we can show that for the processes of V', Lemma 4.2 of the last section still
holds.

Lemma 4.10 For any processes E and F, where E E V' and F E V', WC(E, F)
can be written in the disjunctive normal form

Vei, < t, _< f, A... A e'(t,,....,tn_,) _< in -< J'n t....,tn_,)

'El

for some n and I, where I is finite, and ei(t1,.. .,-) y (t,,...,tk_,) (t k -

1,. .,n) contain at most variables t1 ,..., tk-.1 .
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Proposition 4.11 For any processes E and F of C, WC(E, F) I- E = F.

Corollary 4.12 (Completeness) For any processes E and F of 6', if E - F, tMen
I-E=F

5 Proofs of Recursively Defined Processes

Up to now, we have only considered finite processes. However in [Che92a] we also
allow recursively defined processes. For example, pX.E represents an infinite process
defined by an equation X = E. The operational rules for process pX.E are:

E{X.E/X}.--,P E{pX.E/X}-*-.%P

pX.E-- P and pX.E-0-.uP

We say a process E is weakly guarded if every process variable of E is weakly guarded
in E, where X is weakly guarded in E if every occurrence of X is in some subterm of
form a(t),. F of E. For example, the process a(t)-". X+b(s)'. nil is weakly guarded.
However the process a(t)l°. X + X is not weakly guarded as the second occurrence
of X is not guarded in it.

In this section, we consider proofs of recursively defined processes. We show by
an example how the proof system also works for recursively defined processes. To do
so, the proof system needs to be augmented with an axiom

true I- pX.E = E(pX.E/X}

and some form of induction. We choose a very simple form of induction, namely
Unique Fispoint Induction:

true - P = E{P/X)
true F P = pX.E

The soundness of the axiom can be proved by showing an appropriate T-bisimulation.
For a weakly guarded process E, the soundness of the above inductive rule follows
from the property of unique solution of weakly guarded equations up to strong bisim-
ulation [Che92b]. However the inductive rule, in general, is not valid for a process
E which is not weakly guarded. For example, if E = X, then for any process P we
have P - XfP/X) and clearly a(t)"°. nil 76 pX.X. Also for every agent P, we have
P + a(t)0'. 6 - (a(t)0ý 6 + X){(P + a(t)10. 6)/X), but P + a(t)•.0 6 - ;,X.a(t)'0 . 6 + X
when we have P = b(s)1o° 6.

Now we consider processes
P -- X.a(t)° (F()--10 X + b(s)2'-. X + b(s). X)

and
Q -X.a(t)'. (b(S)W2. X + b(s). X)

and show how to derive
i-P=Q

in the extended proof system.
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Since Q is recursively defined and weakly guarded, by the above induction rule
we only need to show that

F P = °(o)O. (b()02'-. P + b(o)*. P)

However we have

a- P -(t)"
0 (b(s)7-(2 'I. P + b(s)2-2. P + b(a),. P)

By rule I we only need to show

°a(t)". (b(8)-(2-•;). P + b(p)'2-. p + b(,)eI P) = a(Q)r ((o)-2t-.2 P + b(,),. P)

Clearly
I-P=P

-b(s)o2 -2 P = b(a)21-. p

and
F b(a)' P = (s)' P

By rule 5, we have

t> - b(&)t-(21) p = b(,)t* p

and

i <2 I- b(s)' -(2-1). P = b(8) 21-2. p

By rule 7, we have

1 < 2 V I > 2 I- b(s)'-(2-1). P + b(s) P+b(a)= P = b(s)2t-'2 . P + b(s)t P

Since 1 <t < 10--+t <2Vt >2, by the rule 3 we have

1 < < 10 I- b()-(2-" 1) P + b(e)2ot-2. P + b(s)' P - b(a) 2t- 2. P + b(s)t P

By rule 5, we have the result

I a(t)'° (b(s)'- 2 -t). P + b(8)21'- 2 P + b(s)t P) = a(t)r* (b(s)21- 2 P + b(s)' P)

Remark Even untimed CCS is Turing-powerful [Mi189] and therefore no effective
complete proof system can exist. By adding sufficiently powerful inductive methods
for handing recursively defined processes, we would have a complete (and therefore
ineffective) proof system for reasoning about real-timed processes.
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6 Conclusion

In this paper, we propose a relativised compositional proof system for real-time
processes. The proof system is sound and is independent of the choice of time domain,
allowing time to be discrete or dense. We show that the proof system is complete for
finite processes over dense time domain, but only complete for a sublanguage over
discrete time domain. We discuss how to restrict the definition of time expressions to
get the sublanguage. Moreover, the proof system has no infinite rules and therefore
is realistic and hopefully useful.

In [ACM92], we present a timed semantics for Milner's CCS, which in fact is a
partial order or true concurrency semantics. As a result, we develop a partial order
or true concurrency semantics for CCS based on an interleaving approach. The
proof system discussed here can also be used for a partial order or true concurrency
semantics of CCS.

Although the proof system is presented for Timed CCS, the approach can also be
used for some other work. As an example, the approach can be used for the restricted
language of Baeten and Bergstra's ACPpI discussed in [Klu9l] (restricting to those
prefixed integrations and not allowing general integration). As discussed in [Che92b],
the restricted language of ACPpI just corresponds to Timed CCS.

Recently, Hennessy [Hen9l] has independently developed a proof system for rea-
soning about value-passing processes. The main idea of his proof system is to sepa-
rate reasoning about the data from reasoning about process behaviour. In his proof
system, we derive statements of the form

Ass F- P < Q

where Ass is a list of assumptions about data expressions. This statement means
that whenever these assumptions are true then the process P is semantically less
than or equal to the process Q.

There is a simple proof system pointed out by Kim Larsen which consists of a
single rule

WC(E, F)
E=F

The proof system is sound and complete for finite processes. The soundness and
completeness is independent of the choice of the time domain.

Acknowledgement: I would like to thank S. Anderson, K. Larsen, F. Moller, A.
Munro, J. Power and P. Sewell for many helpful discussions and constructive sug-
gestions. I would also like to thank anonymous referees for their helpful comments.

References

[ACM92] S. Anderson, L. Chen & F. Moiler, Observing Causality in Real- Timed Calculi,
Preliminary Draft, LFCS, University of Edinburgh, 1992

[BB91] J.C.M. Baeten & J.A. Bergstra, Real Time Process Algebra, Formal Aspects of
Computing, Vol 3, No 2, ppl 42-188, 1991

[BK8S5] J.A. Bergstra & J.W. Klop, Algebra of Communicating Processes with Abstraction,
Theoretical Computer Science 37, pp 77-12, 1985



229

(Che9la] L. Chen, Specification and Veriication of Real-Time Systems, Note, 1991
[Che9lb] L. Chen, DecidabilitV and Completeness in Real- Time Processes, Technical Re-

port ECS-LFCS-91-185, Edinburgh University, 1991
[Che92&j L. Chen, An Interleaving Model for Real-Time Systems, Proc. of Logical Foun-

dations of Computer Science, Lecture Notes in Computer Science 620, pp 81-92, 1992 ]
[Che92b] L. Chen, Timed Processes: Models, Azioms and DecidabilitV, Ph.D Thesis, Uni-

versity of Edinburgh, 1992
[Che93] L. Chen, A Modelfor Real-Time Process Algebrau, Proc. MFCS'93, Lecture Notes

in Computer Science, 1993
[CAM90] L. Chen, S. Anderson & F. Moiler, A Timed Calculus of Communicating System,

Technical Report ECS-LFCS-90-127, University of Edinburgh, 1990
[DDM89] P. Degano, R. De Nicola & U. Montanani, Partial Orderings Descriptions and

Observations of Nondeterministics Concurrent Processes, Lecture Notes in Computer
Science 354, pp 438-466, 1989

[Hen88] M. Hennessy, Aziomatising Finite Concurrent Processes, SIAM J. Comput. Vol
17, No 5, pp 997-1017, 1988

[Hen9l) M. Hennessy, A Proof System for Communicating Processes with Value-Passing,
Formal Aspects of Computing, Vol. 3, No. 4, pp 346-366, 1991

[Hoa85] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall interna-
tional, 1985

[Klu9l] A.S. Klusener, Completeness in Real Time Process Algebra, Proceedings of CON-
CUR'91, Lecture Notes in Computer Science 527, pp 96-110, 1991

[Mil80] R. Milner, A Calculus of Communicating systems, Lecture Notes in Computer
Science 92, Springer-verlag, 1980

[Mi189] R. Milner, Communication and Concurrency, Prentice-Hall international,
1989

[MT90] F. Moller & C. Tofts, A Temporal Calculus of Communicating System, Lecture
Notes in Computer Science 458, pp 401-415, 1990

[RR88] R. Reed & A. W. Roscoe, A Timed Modelfor Communicating Sequential Processes,
Theoretical Computer Science, 58, pp 249-261, 1988

[Wan91] Y. Wang, CCS + Time = an Interleaving Model for Real Time Systems, Proc. of
ICALP'91, Lecture Notes in Computer Science, 1991



A Predicative Semantics for the Refinement of
Real-Time Systems

David Scholefield, Hussein Zedan, He Jifengf

Formal Systems Research Group
Department of Computer Science

University of York, Heslington, York (UK)
tProgramming Research Group

Oxford University. Keble Road, Oxford (UK)

Abstract. A formal framework for a calculus of real-time systems is pre-
sented. Specifications and program statements are combined into a single
language called TAM (the Temporal Agent Model), that allows the user to
express both functional and timing properties. A specification-oriented se-
mantics for TAM is given, along with the definition of a refinement relation
and & calculus which is sound with respect to that relation. A simple real-time
program is also developed using the calculus.

1 Introduction

In most formal development methods there are at least two languages involved,
one for the specification task, and one for the design task (often the translation to
implementation is ignored, or considered to be trivial). However, an inherent problem
with such a 'multi language' approach is the lack of method by which suitable designs
are arrived at. A combination of experience and guess-work must be used in order to
formulate a design, and then verification - a time consuming task - is undertaken. If
the verification fails then the design task is undertaken again. This cycle is undergone
repeatedly until verification is achieved.

To overcome this problem we have developed the 'Temporal Agent Mlodel' (TAM)
which is a theory centered around a wvide-spectrum language in which both speci-
fications and executable programs can be intermixed. A real-time functional speci-
fication in TAM is transformed step-by-step into a mixed program containing both
specification fragments and executable code. Such transformations continue until
a completely executable program is produced which is guaranteed correct with re-
spect to the original specification. The program may then be analysed by run-time
schedulability and allocation tools in the usual manner, and executed.

The paper introduces extensions to first-order predicate logic to cover time. a wide
spectrum language with a specificational semantics. a refinement calculus, and an
example of program development.

2 The TAM Philosophy

TAM aims to be a realistic software development method for real-time systems. It
has striven to support a computational model which is amenable both to analysis by
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run-time execution environment software, and to efficient implementation. In doing
so, TAM has not shared any of the simplifying assumptions that other techniques
promote, e.g. the maximum parallelism hypothesis (there exist an infinite number
of resources available to the program) [7], and the instantaneous communication
assumption promoted by many real-time process algebras [4] [8].

The trade-off is that TAM can often appear complex, both in the syntax it
provides for specifications, and in the discharging of proof obligations during the
verification process. Thus the learning curve for TAM is very steep, but we believe
that the eventual pay-off is worth the extra effort: the TAM language not only
provides a method for verifying real-time and functional correctness of programs,
but also provides a language of great flexibility for discussing general issues in real-
time system design. This latter point has been demonstrated in publications by
researchers in fields which are not mainstream real-time (for example see [6]).

The TAM theory has also been designed to support a specific development
method. Many so-called formal methods only consist of a notation, and not a method
which enables the user to carry out a specific list of steps in order to arrive at a cor-

rect implementation. The TAM method can be summarised as follows:

- Step 1 - the user describes timing and functional requirements in a specifica-
tion language based upon simple extensions to first-order predicate logic. The
specification also defines the interface between the system and the environment.

- Step 2 - the TAM theory provides a set of laws which enables the user to grad-
ually replace parts of the specification with executable code which is guaranteed
to be correct with respect to the specification. This process is known as step-wise
refinement.

- Step 3 - eventually only executable code remains, and this is analysed by schedu-
lability and allocation tools, compiled. and then executed.

The executable language provides real-time syntactic constructs such as deadlines
and timeouts, as well as more conventional constructs such as assignment, loops,
concurrent composition, communication and conditionals. There is no provision of
any syntax to describe the behaviour of the resources used when the program is
executed e.g. there is no syntax to describe which processor each concurrent agent
should execute on. This is because we believe that the run-time execution support
tools such as schedulers and task allocators, and not the programmer, should provide
information such as the placement of agents: programs should be independent of such
concerns. If this were not the case then the verification process would have to deal
with much more complex issues such as scheduling correctness and task placement,
and this would prove infeasible in any realistic computational model.

The TAM software development nmethod therefore results in a number of concur-
rent agents, which are descriptions of tasks, and which include information such as
deadlines, delays, precedence constraints etc. We then expect the run-time execution
environment tools to place those agents, and decide upon their release times (within
the bounds defined by the timing information inherent in the syntactic description
of the agents) so as to make the schedulability test succeed. This approach makes
the verification manageable, but has the drawback that the scheduler may not be

able to find a schedule for the given set of agents, and the development process
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may be forced to backtrack to ensure that a different set of agents is produced. WVe
are currently investigating ways in which tools such as the scheduler can produce
guidance to the refinement process at a very early stage so as to avoid backtracking.

The TAM theory also aims to provide a language which supports the ways in
which software engineers already produce software, rather than forcing them to
change development practices to suit a particular formal approach. For this reason
we provide a wide-spectrum language which has a syntax that supports both con-
ventional real-time programming constructs (a kind of Pascal with deadlines, delays,
timeouts, and timestamps), and a specification construct in which requirements may
be written. The specification construct forms a normal part of the language and may
be freely intermixed with other code. A program may then contain assertions on what
the programmer requires, as well as algorithms which describe how requirements are
going to be met. This language directly supports the step-wise refinement process
as well as allowing for a less strict method in which some parts of systems can be
specified and refined, and some parts can be written directly in code.

The TAM theory views a real-time system as a set of concurrently executing
agents, each with deadline, release offsets, and period or release event. Agents com-
municate via shared variables called shunts. Shunts are time-stamped with the time
of the most recent write (the programmer does not have to worry about writing the
time-stamp as it is assumed that the run-time execution environment will perform
this task). Shunts may only be written to by a single agent throughout the lifetime
of the system (although they may be read by many). Shunts are assumed to be non-
blocking on reading and writing, and therefore an agent does not have to wait for
a partner in order to read or write a shunt. Agents also have local protected state.
The values found in shunts and variables at the start of the system execution are
nondeterministic. All agents are assumed to be terminating.

The use of timestamps in the shunts enables the user to reason about, the freshness
of data, and this, we believe, is one of the most important issues in real-time software
design. Timestamps also provide the basic building block of real-time requirements
specifications: we discuss this in detail in the next section.

3 The TAM Real-Time Logic

3.1 Overview

The TAM real-time logic is used both as a language in which to express requirements
specifications, and as a formalism in which to define the semantics of the wide-
spectrum language used in the TAM theory. It is constructed from conservative
extensions to first-order predicate logic, and this enables the developer to use the
standard first-order proof system. The logic formalises the notion of a timed variable
which is the notation used to represent real-time program variables and shunts. Time
is represented by positive integers, and a timing function is used to represent the
values found in variables and shunts at a specific time. Specifications are therefore
constraints on the relationship between time-stamps and values found in shunts
during the lifetime of the system. Additional free variables are also provided which
represent the release and termination time of the system; these variables may be
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predicated over in the usual way and therefore provide a mechanism for specifying
duration.

The timing function is denoted 'V', and is defined over pairs containing the name
of a variable or shunt, and a time: thus the term '{.(X, 3)' represents the value found
in the variable (shunt) X at time=3. We usually write the term with 'W as an infix

function. The projection function '.ts' and '.v' are also used to refer to the time-

stamp and and value found in a shunt respectively, so we can write s.v~t (the value

found in shunt s at t.ime=t), and s.1ts-t (the tiimestamp found in shunt s at time=t).
The two free variables t, and t, are used to denote the release time of the system,
and termination time of the system respectively.

Example
Consider a simple real-time system which within 10 time units reads the integer

value from a shunt called in, calculates the square of the number, and outputs the
value to a shunt called out. It is assumed that the behaviour of the shunt in is
constrained by the environment, but that the shunt out is entirely under the control
of the system we are specifying. The liveness and timeliness property for this system
is captured in the following formula:

-3a : /(o E [t A out.v tAt = (in.caG)- ' t,< t, + 10)

Of course it is also important that. no other value is written to the shunt out

during the execution of the system. and so we provide a safety requirement that

asserts that during the execution of the system, there is only one write to the shunt
out (we do this by counting the number of time-stamps which appear in out that

are different to the time-stamp found at time=t,):

#{nl3o. : V.(aE [t,,,t,] A out.Is~cr = n) A ,n : out.1sa.t} 1

The specification formed from the conjunction of these two formulae is much
more complex than specifications commonly written for transformational systems.
This is because we have to concern ourselves with the values found in the shunt out

during the lifetime of the system rather than just at the start and end of execution;
of course this is true of any specification language for reactive systems.

3.2 The TAM Logic Language

"The real-time TAM logic is a multi-sorted. first-order. predicate logic, and is made
up of the following symbols:

- The truth symbols true and false

- A set of variable symbols x. y, z....
- The duration symbols t, and t,
- A set of computation variables Namev
- A set of computation variable variables a. b, c...
- A set of shunt names Names !

- A set of shunt name variables s, s,
- A set of constant symbols C
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- A set of function symbols +, -, x,..
- The timing function symbol 'W' and the projection function symbols '.*sO' and

- A set of predicate symbols <, >, =. P. Q.
- The propositional connectives A and -'
- The universal quantifier V, and existential quantifier 3
- Right and left parenthesis (,

There are three sorts of terms, .,V-terms, Namet,-terms and Name,-terms. These
terms are constructed as follows:

- The constant symbols in C are terms of sort A(
- The variable symbols are terms of sort. A
- The computation variable variables form terms of sort Name,
- The shunt variables form terms of the sort Name,
- The symbols in Namev are terms of sort Name,
- The symbols in Names are terms of sort Name,
- If f is a function of arity=n and tl, .., t,. are terms of sort At then f(tl, .. , t,ý) is

a term of sort Aý
- If x is a term of sort Names and t is a term of sort N'. then Z(x. 1) is a term of

sort X
- If z is a term of sort. Name, and I is a term of sort .V;, then .Is.•(x, 1) is a term

of sort A(
- If x is a ternm of sort Name, and Iis a. term of sort A.", then vA(x'. t) is a termn

- If z is a term of sort Nain•e, and I is a term of sort A';, then• .svA(x, t) is a term

of sort K
- The duration symbols t, and t, are terms of sort .A

Formulae are defined as follows:

- If P is an arity=n predicate, and t I.... t,, are terms of the appropriate sort, then
P(ti, .. ,t,) is a formula

- If 0 and T/ are formulae, then 95 A T1 is a formula
- If 0 is a formula then -0 is a formula
- If z is a variable symbol which occurs free and of sort Namie, in 0, then Vx

Shunt(5) is a formula (similarly for exists)
- If z is a variable symbol which occurs free and of sort Nanie, in (, then Vx

Var(O) is a formula (similarly for 3)
- If z is a variable symbol which occurs free and of sort. A! in 45, then Vx : i(O)

is a formula (similarly for 3)

3.3 The Meaning of Real-Time TAM Logic Formulae

We define three sorts in our domain of interest: the set of positive integers Y, a set
of text strings Stringss and a set of strings Stringsv. Functions and predicates are
given their usual interpretation, and the terms are interpreted as follows:

- Each element in the set C is assigned an element in .. "
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- Each element in the set Names is assigned a unique text. string in Stringss
which corresponds the the symbol found in name (e.g. s E Name, is assigned
the string 's')

- Each element in the set Namhev is assigned a unique text string in Stringsv
- The duration symbols are assigned values from A".
- The function '@' is assigned a value from the function space [[StringssUStringsvx

Yl -. N1
- The functions ' .ts' and '.vt' are each assigned a value from the function space

[[Stringss x Aq - A"]

Given an interpretation I with the structure defined above, then we define satisfac-

tion (1=) as follows:

1 0 A IP iff I = 0and I = V1

II=-4 iff not I k•

2" P 0 11 .... 1,0 iff " [P ](1[111... _ '[t,,]

I= Vx : Shunt(f) iff for every element s in Stringss
we have I k P[s/l]

I • Vxr Var(fl iff for every element v in Stringsv
we have I k Ot[c/x]

I : AP(PX ) iff for every element n in A,
we have I k 5[nIx]

I" 3x T(45) iff I" k -•VX : TC-,(P)

where T is i. Shunt. or lVar

We also assume the usual shorthand notation for defining disjunction, implica-
tion, and existential quantification. We use the 'CV in infix form, and write .tsO(s, t)
as s.ts@t and similarly for '.v'•4. In addition we shall use the notation san = sam
as a shorthand notation for s.t{&,n = s.,Clm A s.ts,•.n = s.ts~m, and the notation
s@n = (x,y) for s.ts'dn = ,r A s.v•,n = y. We also assume the usual notation for
indexed (finite) conjunction and disjunction.

3.4 Axioms

Ve can rely on the fact that writing to a shunt will cause the tilnestamp in the shunt
to update appropriately.

(Freshness) Vs : Shunt(Vt :.\(s.vflt # s.rf, - 1 * s.1s't = t))



236

We can also rely on the termination time of a system to be at, or after, the release
time.

(Duration) t,, > t.

4 The TAM Language

The TAM language contains both a specification statement syntax. and a syntax for
an imperative style real-time programming language. which we shall refer to as the
concrete syntax. The major difference between the specification statement and the
concrete syntax is that variables and shunts are referred to in the concrete syntax
without reference to the timing function - the semantics are responsible for the
association between the variables and shunts at the concrete level and the timed
variables and shunts in the underlying logic. The syntax can be defined in terms of
agents by the following table:

JAgent. form n ame
vw : (P Specification

X := e _ Assignment

(X, y) - s hInput
x - s Output

A; 3 Sequence

Ugi =: Ai Conditional

AIB Concurrent
[3]A Deadline
-A/s Restriction
(x)A Local
A 6 1 Signal
litiA Iteration

Where wt is a set of shunt and variable names,. 5 is a real-time TAM logic formula,
e is some term on computation variables which evaluates to a value in YV, x and
y are terms of sort Namer, s is a term of sort Name,. A and 83 are agents, I is
some finite indexing set., gi are boolean expressions (predicates) on shunt names and
computational variable names. S is a set of values from A.", and n is a value from .

The semantics and wvell-formedness conditions can be informally described as
follows:

Specification
The user of the TAM theory is expected to keel) account of the environment of

each agent, i.e. the set of variable and shunt names which may be written to by
each agent. The frame 'it' in the specification agent denotes those variables and
shunts which are in the environment of the specification and which may have their

• SlII
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value changed by all agent which is a valid refinement of the specification. Thus, any
variable or shunt which is in the agent's environment. but which is not in the frame,
can be assumed to remain stable during the execution of the agent.

The real-time TAM logic formula 0 provides a specification of the behaviour of
the system which will eventually result. from the refinement of £v : 40. This is usually

achieved by constraining the vaIues and timestamps found in the shunts that appear
in w, and by predicating over the values of t1 and 1,.

Assignment
The expression e is a term within which variables may be referred to without ref-

erence to the timing function. This is because the application of the timing function
with the time equal to the release time of the assignment agent will be assumed.
Thus the agent form:

x := X + y

(where x and y are computation variable names) will be translated by the semantics

into the constraint:

_ct'ý = xA'ft + Yd 1o

Note that. because the variables xr and y must belong to the assignment agent, and no
concurrently executing agent can write to those variables it. does not matter when the
values are read. thus reading them at time=t, is simply a notational convenience.
The assignment statement will also take some time in which to execute, and no
assignment will be instantaneous (even assignments of the form x := x).

Input
The input statement reads the timestamp and value froml a shunt at the same

time. The timestamp is read into the left variable, and the value into the right. The
read is asynchronous i.e. it does not need a partner (doing the writing) with which
to synchronise. The reading cannot be instantaneous. The read occurs sometime
between the release and termination of the read agent. but the user can not depend
upon a particular instant (unless he constrains the reading further by deadlines and
delays etc). If there has been no write to the shunt before the read takes place then
the value and timestamp can have any value from .,V.

Output
The output. statement. writes the value given into tihe shunt.. The value can be any

positive integer constant, or the value found in a computational variable. The write
occurs sometime between the release time and termination time of the write agent,
but the user can not depend upon a specific time (unless he specifically constrains
the write with deadlines and delays etc). The run-time system is responsible for
writing the current time as a tiniestanlp into the shunt at. the same time as the
value is written. The writing is asynchronous in that the output agent, does not have
to wait for a partner (doing the reading) in order to write to the shunt. The shunt
is assumed to have been written to before the output agent terminates.

5
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Sequence
The termination time of the first. agent becomes the release time of tile second.

Thus sequencing defines a precedence relation not a physical operation, and the
transfer of control is assumed to occur instantaneously. The final instant of the first
agent is also the first instant of the second, and this initially suggests the scheduling
problem of the 'dangling drop' (i.e. the extreme case where the first task is pre-
empted at the point where it has actually completed all of its computation, but has
not yet told the run-time system; technically the deadline of the first task may be
missed even though it has completed all of its useful work). This however is not a
problem as an idle delay tick may be inserted at the release time of the second agent.
This is consistent with the semantics: no agent may do any communication on its
release instant and so it, can be assumed to idle.

Conditional
Each of the boolean expressions are evaluated, and the agent corresponding to a

true value will be executed immediately. The expressions can be any predicate (with
shunts and variable names occurring untimed). If none of the boolean expressions
are true then the agent terminates immediately. and if more than one is true then
a non-deterministic choice is made between them. The semantics do not assume
that the evaluation of the conditionals requires any computational resources, and
this enables the user to encode idle polling. However. care needs to be taken during
refinement to ensure that computationally expensive evaluation is not constrained
into an infeasibly small interval: this is discussed in more detail in section 6. As
with the assignment, the \?alues at. the release time of the agent are used (i.e. shunt
values at the release time of the conditional agent are used - this must also be taken
into account when conditional evaluation is considered). We use the notation g =, A
when only one conditional is present.

Concurrency
Concurrency is distributed and so the concurrent composition terminates w'hen

both agents have terminated. Concurrent agents should not write to the same shunt,
and should not refer to the same computation variables. An attempt to do so may
result in the system aborting wit-h unpredictable results. We use the shorthand no-

tation r-IAi for indexed concurrency. Concurrency should be seen as a declaration
of the lack of precedence constraints between two agents: if those agents are repre-
senting tasks then the concurrency operator declares that those two tasks can be
independently scheduled.

Deadline
It is assumed that the duration of the agent (the difference between release

and termination time) is equal to one of the values found in the set S. Thus the
deadline agent forms a constraint upon the run-time execution environment that
the refinement calculus and the system developer can depend upon being met.

Restriction
The shunt in the restriction becomes -hidden' from the rest of the system and

may only be written and read by the agent specified. This operator becomes useful
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when program equivalence is being proven: it is possible to prove that a program
which uses a number of concurrently executing agents. communicating via hidden
shunts, is equivalent to an agent with no apparent internal structure.

Local
The variable in the local declaration becomes 'hidden' and the rest of the system

(i.e. the sequential agents which follow the agent with the hidden variable) may not
read it or write to it. We use the shorthand notation (x, y)A in place of (x)(y)A etc.
for clarity.

Signal
The given shunt is treated as a signal, and is monitored from the release time for

the number of time units specified. If the shunt is written to in that interval then
the agent on the right is released with a release time equal to that of the first write
to the shunt., otherwise the agent on the left is released at the end of the interval.

Iteration

The specified agent will be executed in sequence the given number of times. This
agent is simply used as a shorthand for long sequences of task executions.

4.1 Semantics

We start by defining some useful predicates oii shunts and -variables. The predicate
'stable' asserts that the shunt s will not. be changed( during the given interval:

Definition Stable (shunts) stablf (s, ., m) = A rr•. . .. (r - 1)

Similarly for variables:

Definition Stable (variables) sfable(x. n, m) =,.f .X Q?)m = X cii

In addition, the definitions for stable are extended to sets of variables or shunts.

The predicate w'rite asserts that a given value is written to a shunt within an interval,
and that the shunt, remains stable at all other times within the interval:

Definition Write i'rite(x. s. n. in) =dM.

V .sable(e, f?.(T- 1) A s -da = (7..r4in) A stable(s.CT. in)
a E (71 M]I

We also define an operator for dividing formulae into time consecutive subformulae:

Definition Chop. Given two timed logic formulae A and B. then,

A-8 =<,f 3,. : .V(,,I [1(, 1] A A[,i/t.] A B•{,1 0 ])

The semantics of an agent are now given by a timed logic formula. The specifica-
tion statement. is defined in this manner also. giving a natural interpretation for a
refinement relation. Note that we use the notation 6- to denote those variables and
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shunts which are owned by the specification agent, but which do not appear in the
frame, and the notation IL to denote the agent 0 : flue (a particularly useful agent).
Figure 1 gives the definition of the semantics. We also assume that the set of vari-
ables and shunts owned by the agent AI6 is partitioned into disjoint environments
for A4 and B; the identification of environments with agents is informal, and it is the
responsibility of the refiner to decide upon suitable partitions'.

[W : 0 =dej' Stabic(d'. ,to,t) A IP I :=f =dsj [fX) t < I., A X*~i~ a et,

[P - 8 def [ (3) : u'riff (Z. a, 1ý. tý )D [4/sJ =d~f 3x Shan(IIAD~x/.sI)

[(•,p) - $ =d.j [{X} :Y) < t.

A^31n : V01 E (1_, 1,.] A x,f'tf. = SJ81d17 A yC ,• = 8xIC'rn)]

[(x).A] =d.f 3y : Var([.4][y/x))

* [[S]AJI =d'.f [A A t+ -- 1o E S [d: [A =], t [-4• I-E

U i * Aj =d~I ~((A -g,1 A V] V 1,A [IA,])

[A•, tB] =dý.j Nowrite-[I4 V hpnI t-IBI

[i#,.+•Aj =def (QA])-[,,.-] [l,0.4 =,,q J-11

Nowrite =d,! [•: 1, = ,t + n A s.ts1.t,• < t,1 A Rfablc(s. 1. t_,)]

Input =def [0: t.. E [t.. 1, + n] A s.s.l'(A., = I., A Vm ll[EI., t.)(sqni = s~if 0

Fig. 1. TAM Semantics

5 Standard Agent Definitions

In a number of TAM publications, definitions for agents which capture real-time
behaviour succinctly have been proposed, these definitions have been syntactic sugar
for complex concrete agent forms. In this section we define the standard agent forms
for periods, delays, finding the current time (within bounds). and managing mutual
exclusion.

1The partitioning is almost always obvious as the frame of any specification agent dictates

the minimum contents of the specification agent's environment. Those variables or shunts
which are not changed by either of the two concurrently executing agents may appear in

either environment.
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5.1 Mininuiin Delays

A delay agent. does not change any variable or shunt value, and guarantees not to
terminate for a minimum duration (i.e. models an idle delay). Given a duration

1n E A(, then we define the delay agent as:

611 =d! 0 : t-..> t, +n7

A specific length delay (which might be used to model task offsets for instance)

can be defined by:

-/? =d~f•f[b])

This agent will guarantee to terminate at. exactly n time units after release.

5.2 The Current Time

Consider the following agent which writes to a private shunt and then reads the
timestamp which was just written:

(0- s; (is..x) - s)/s;A

The value found in the variable Is wvill provide a lower bound only on the current
time. This is because the agent may have been pre-emnpted between the writing of
the shunt and the reading, or between the reading and the use of the timestamp in
agent A.

However, consider the following agent which performs the same task, but within
"a tight deadline:

[]((o -- s: (Is, .j - s: A)/s)

The user knows that in the agent .,. the value found in the variable Is will have
"a bound on freshness, i.e. he will know that the current time is somewhere between
is and is + ni.

5.3 Specific Deadlines

We overload the deadline operator to define a more restricted deadline. We use
the notation [I]A (where 7? is a single positive integer value) to denote the agent

[0..n] )A.

5.4 Periodic Agents

The periodic agent. can now be defined. Given an agent. A. a period=T, a deadline=D,
and a number of periods=n. then:

Period(A, T. D. n) = it,, ([T]([D]A!,ST))

In this definition we assume that D < T. if we remove this constraint then we
have a more general periodic agent.:
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Period(A, T, D.n) - , (T x i); [D]A

But note that in overlapping agents we have to consider certain constraints on
the possibility in the overlap of writing to the same shunt, this is discussed in more
detail in section 7.

5.5 Critical Sections

Consider the case when two (or more) agents wish to write to the same shunt (i.e.
share the same resource), and the system has to enforce mutual exclusion. We can
model this by attaching a semaphore-dispatch agent to the shared shunt which com-
municates to the requesting tasks via three sets of shunts: Req,. Req(2 are written to
by the requesting agents when they require exclusive access to the shunt. Gntl, Gnt 2
are used to grant access (the semaphore-dispatch agent writes to the shunt of the
agent requesting access), and Rell, Rel, are used to release the semaphore and are
written by the requesting agent when it has finished. We also assume a priority
of agent 1 over agent 2 if two requests for access are made at. the same time. The
semaphore-dispatch agent is assumed to grant up to n semaiphores (or ticks for which
the semaphore is not granted) before it. removes the resource from the system. We
also place a bound on the waiting time for the release Signal of i7 tinme units (in case
an agent 'hangs' without releasing): this is acceptable only if we choose an m which
is greater than the deadline of both requesting agents.

We can write the semaphore-dispatch agent as follows:

p ((A1 >q [1)(0 - G,,l,,); R(2)) 0 [1)(0 - - n1): R(1))

R(n) =def AOM"%.O

The behaviour of this agent can be read as follows. The first signal to be tested
is that for Req, (the request for access from agent 1). the test will only be for a
single instant in time. If the agent is signalling then the grant shunt. will be written
to within one tick. and the semaphore-dispatch agent then behaves like R(1) which
is waiting for the release from agent 1. When the release comes (or the signal times
out) the semaphore-dispatch agent returns to the waiting state. If the signal from
agent 1 is not written then the signal from agent 2 is tested, if it is being written
then the same behaviour occurs as for agent 1. if it is not being written then the
semaphore-dispatcher waits for the next tick and starts the signal monitoring again.
Note that semaphore requests which occur during the wait for a release signal will be
ignored, and thus signalling must be repeated by the requesting agent periodically.
Also, the grant signal time is bounded by the deadline oil the grant write (in this
instance this is a single tick).

Note that this senmaphore-dispatcher method of dealing with mutual exclusion
is only one of a possible number of solutions t.o the problem. Consider the solution
whereby requests are not lost., and are guaranteed to be serviced when the resource
next becomes free. This is achieved by the semaphore-dispatcher updating local
variables rt, and ft., with the timestamp of the most recent request of each agent:
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(z, , ,q. % )([1]((ri 1, x) -- Req, I(Ot_, y) --Req.,):
p,, ( Reqj.ts > rt, => P(l)

U
Req 2.. s > 0t2 => P(2)
U
Reqj.1s = rtl A Req.,.ts = 712 = -l

P(I) =def [1]((rtl, x) - Reql); [1](0- Grit1 ); (/O_ R11 -10)
P(2) =def [1]((r1.•, y) - Req2 ); [1](0 - Grt2 ); ((AO , .30)

In this solution there is idle waiting on the release signals, and on the request
signals (in this special instance - where the conditions are expressions on shunt
timestamps- we can assume that a conditional agent which does nothing but execute
an idle delay is implemented by an agent which idles until the condition holds). Note
that again, the deadlines on grant signals could be slackened if necessary.

6 The Refinement Calculus

The aim of a refinement calculus is to provide a set of syntact ic rewrite rules which
enables the software developer to tiansforni a requirements specification into an
executable program. The calculus must. ensure that any program resulting from
the application of laws must be correct wifh respect to the original specification.
Correctness is defined in terms of a refinement relation, and individual refinement
laws are proven sound with respect to this relation.

We define a refinement relation as follows:

Definiitioni Refinement. Given two agents .4 and S, then S refines A (written A _: B)
exactly when IS1] =:: []-.

Refinement can be seen as a lessening of nondeterminism, i.e. given a specification
which lists a number of acceptable alternatives (which might be inherent in the
underspecification of a system). then a program which guarantees at least one of
those alternatives is a valid refinement.

It is clear that the refinement relation is a partial order (a property inherited
from the implication connective), and this will allow us to perform refinement steps
of any granularity without affecting the resulting program.

If we return to our early example of a system specification. we are now in a
position t.o prove the refinement:

{out) :3oa : A'(a E [t,.t,.] A ouf.vll,. = (ill., _Gb) 2 A I, < 1t + 10)
A#{nl3r E V(A0 E [t,. .1] A out,.Is ýr a ,,) A ,, ou_.ts4 .,} = 1

E (X. )[o]((0.Y) - i,,::- - ot)
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The proof sketch is as follows:

(x, y)[10]((x, y) - inlyl - oiut)]
= 3x, y : Ilar(

3m :.V(w E [t 0 ,t•] V (xlt., = in.ts('Qa' A ylttt ini.ioa)
Astable (out, to, il)

Awurite(y m-2 , out, in. t.) At, < t, + 10)

We can see that:

stable(out, t, in) A "rite(yCim2 011u,.in. t)

#{nl3oa : E(a E [t,,, tQ,] A out.ts@A = n) A n 0 oidt.tsýitt, = 1

by the definition of stable and write. The liveness property is guaranteed by the
theorem:

3x, y : Var(31n : •A(71 E [t,. t,]A V (retC in.ts tta A !/it,. = a•.ngo)oE(t. in]'

Azuridf(yi i-'2 . oul. il. t,) A tl <_ t, + 10)

3o B : Ar(0 E [t,,t,.] A out , (=n.uh,) A t, < t1, + 10) 0

It would be infeasible to prove refinements of any reasonable sized program in this
manner, the comlplexity of such a task would ensure that mistakes would be made.
Instead we provide a calculus of refinement laws whirh have inuch simpler proof
obligations. We define a subset of these laws bolow, each law is labeled so that it,
can be referred to in refinement proofs.

We start, with a refinement law schema which arises from the semantic definitions.

RS (refinement schema) If JAI =de.f 0 then 4, E. A

We now define the laws of the calculus by construct. we use the equality symbol '='
to denote that refinement, is valid in both directions.

Specification

SR.1 w : = w : x[fx t,/x:'t,,j (if x V ir)

SR.2 w : =w : t /[xZ_,/a'.&t,] (if.r x ir)

SR.3 wU {s) : 5 A stablh(s.t,,t,.t) = it - s:

(if s not in P)

SR.4w:@ C_ w:0'(if45'---_4)
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Restriction

For any variable x:

VR.I (x)A = A (if x not in A)

VR.2 (x)((y)A) = (y)((x)A)

VR.3 u: (3 y: al,(-P)) = (r)(I U {Ir} :4[x/y)) (if x w , )

VR.4 w : 0 C (x)t U { } :

(if x is new unique computational variable)

Sequential

SE.1 P:(Q:R) = (P;Q);R

Deadline

DE.1 [S]A C [S']A (if S. C S)

Delay

DL.1 6n: nm = bn + in DL.2 .2-u: -3m = -In + 01

DL.3 -,An: U = i DL.U A0 = IL

Concurrent

CR.1 AJL = BIA Cr.2AI(j1C) = (.41t)IC

Conditional

GR.1 Ai = A; C- Aj (if qj = Irie)

Signal

For any shint s and time n:

TR..1 (A c,, S)( I(C> :P) = (.4A:) , (SID'P)

TR..2At>',,+I" = (A r>; ) >-* 8

TR.3 A >,, (C r,61) -A cS
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Iteration

IR.1p.+1 A = A:p,,A;IL = p.A;A;11

Of course there are many such useful rules, and the reader can probably think of
many more. The refinement, calculus needs to be proven sound with respect to the
definition of the refinement relation, and the proof is presented in [10]. In addition,
the refinement relation needs to be proven monotonic, i.e.

Monotonicity Given that A C L, then for any context C[_], we have C[A] _E C[8].

This property enables the user of the calculus to remove an agent from its context,
refine it isolation, and replace the refined agent back into the same context without
requiring them to proving that the new composed ag-ent remains a valid refinement.

: The proof of this theorem is given in [9].

Q 7 Postscript: A Few Notes on 'Sensible' Refinem-ents

It is possible to refine ally agent by the specification i. : fal.sf (for any frame w),
this is because:

[w : false] = stabl (e.. 1,. t, ) A fols•
= false
=> [A] (any A) 0

The specification u' : false is often referred to a, the miraculous specification
(see [5] for example). aund cusally arises a. a result of an inconsistent specification
at an earlier stage in refinement. However.other kinds of refinement can result in
undesired agents as well. Consider the following refinement:

lout) : irritc(l,o1t.tI,,tI-)

Cg {out} : u'rite(l. out. t, 1.) A i'rih (I. out. 1,.. .) (by trengthen')
C {out} : 3m : ."(mn E [t.,. t. A 'rih (1. out. 10. i)A slabl (out. i,.

A 31: A.'1 E [11. t ,) A t, /)A ,tablr (out. /. 1,.))
(by "strengt hen1)

C_ lout } : 'rilE(1. out. 10. I..)j { out : ,,ite (1. out. t,. t..) (by RS)
C 1-outI I-- Out (by RS)

In the final concurrent agent we expect that an implementation would be able to
write the value to the shunt out twice, and inIepenefienvly - but the semantics of the
agent dictate that the two agents imust write at tlhe same instant in time (otherwise
the stability constraints inherent in the definition of the predicate write would be
contradicted). It is ilniportall to realise that the refitement is not incorroct, but that
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in this case tie informal understanding of thie meaning of the concurrent agent is
not supported by the actual semantics 2 .

In order to make sure that our informal view is supported as much as is feasible
by the refinement calculus we can introduce a number of heuristics. For example we
can assert. the following heuristic rule:

Separation Constraint The refinement .' 5 C WA : . 0A IU' : 013 is acceptable
only when UA U U'S = u; and when u' n uv, =0

This heuristic would have enabled the developer to reject the above refinement in
favour of a more sensible' alternative. Of course we could have defined the original
refinement law for concurrency with this constraint enforced, but we believe that
the underlying theory should be as flexible as possible, and that such high-level
pragmatics should be defined at. as late a stage as possible.

Another instance of a 'sensible* refinement heuristic is that of allowing time for
the evaluation of conditionals. The semantics do not. assume that the conditionals
require evaluation time, and this enables the user to define programs which block
on events. Consider the following agent:

I = 1 A s.v : 1 = .1)

This agent is waiting for the value in the shunt s to be set to -1': if the value is
not currently set to "1' then the agent idle waits for one tick and then tries again.
When the value is set. to 1 the agent A will be released. Note that. if the owner of
the shunt s does not change the value in s Ihen the agent A might be released many
times (although they will be precedence cotist rained).

WVe can see that one of the properties of this agent is that if the shunt. s at the
release time does not have the value 1. and thie shunt r,'rnains .-ýt able. then the agent
will reduce to an idle delay. i.e. we can assert the theorem:

p,,(s.v = 1 ., A U s.r 0 1 :, -3l) C 6t (if s.eit., •: 1 A stable(s. 1,t" + n1))

Proof (by induction)

(Base case where n=0)

(1) pO(s.v = 1 • A U s.v 5 I =, -Al) = Th (by def Iteration)
(2) = 60 (by DL.4)

(Inductive step)

Ifpn(s.v = 1 =AUs.v# 1 =U -.1M) C bn

then p,, + I(s. I= 1 . A Us.c 1 =I J) C 6 n+1

2 This is an excellent example of why it is important that any compiler for TAM - or any

other formal development language - miust. also be proved correct: it is not good enough
that we believe tiat the compiler supports our informal understanding of the semantics
of the language.
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(1) pu, + l(sxc= I = A Us.rj• I z' W
= pn(s.v = I =! AU sX j I =:-WI( I.X = I =:' AU,. I -il O' 1IU(b IR.1)

(2) 6n + 1 = 6n: 61 (by DIL. )
(3) (s.v =1 A AU s~r 54 1 =* -1) g -11 (b~y def Condlitional andl tability constraint)
(4) (s-v I A U sx 94 1 :: -11): Uh C -1: IL (I)% inoniotoilicily
(5) -11 J-I C6 1 (by 1.3J and DL.3)

and so by monolonicity. Ithe inductive .step holds 0

Thus the implemental ion would be sensible. However, it would be difficult to im1-
plement a conditional which relied on computation. and also relied onl a very short
deadline. Consider the agent:

wvhich gives a deadline of in timle Units. all of which is requlired for tlie exectition
of the agent A: thus. the conditional must be evaluated instantaneotia-ly. N This may
be implenientable by using some of the time given to thle agent .4. but this cert ainli'
should not be relied upon.

8 Conclusion

TANI is unique in providing a wide-.,pecr un I'lel opi.n III ~.ia 6-r real-timle
systemns in which a bstria ct !peu-i ica rion s call ho refillo' td olln zlo OCI, 1(, oculIable
programns. Wide-spectrum languages, for i ion rl-iicyteIl a\. I en ,stlldiedl
extensively, for example in tlie SETL I. laiuape 11]. mi d the ('11)poi [3]. wide-
spectrum languages ba~edl upon jprecliea t log ic ;ire 11 1 ii.11ii ji - which
allow refinement in a maniner s5imilar to TANI.l

The utility of a wide-specitrum Iamn"l- cmle iI I -w clerl ill lll veinement.
method used by Morgan in his calciilu., (5]. In this Iwag iiui. the. coiicite svintax
is provided by an extenuded versioii of liktt (.wini cd C omimand Laniguage [2].
The abstract. sperificat ion sti-itax Is provtdud ]-,. a taiiitform11:

u, [pt'e,post]

where 'wv' (called the -frame' ) define., the scopo of thle spe(cification. [~c. tho~se state
variables which may be chang-ed by)N the behavion r dir ned byv t ho speciflicat ion. an
'pr'e' and 'post' are first-order l-)redlicate logic formlae114 which dlescri be Itie relation-
ship betwveen the program state before thle *execultion' ol the specificat ici statement.
and after the termination of the specification stateimenlt respect 'sd~. Thle specifica-
tion statement can therefore be vsiewved as a deý,riptioii of tihe IlliIInuIIIII r. 1uiremlenits
on the behaviour of any coincrete statemetit which nri y replace it duiring refiniement.

Similarly, in Back and Wright'*s w ide-spectriti hn Iguage [1]. thle :oncrete code
is a version of Dijkstra's Guarded Conuimaiid Laiigiiage and a srtitement, called
an assert. statement, is denoted {b} . where b) is a formunla onl tile local state. The
asert statement will terminate correctlyv if the local ým ate satisfifs the formulae when
'executed', and will abort otherwise.
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The common factor of both Morgan and Back and Wright's languages is that
they are transformational: they. describe computations which have all input data
available at the start of execution. and provide the result at the time of termination.
This restriction provides the basis for the 'shape* of Morgan's specification statement
- it describes a relationship between initial and final states. In real-time systems we
are interested in reaction. i.e. input and output during the execution of an agent. In
addition, we are interested in the time at which the inputs and outputs occur; our
specification statement for real-time systems reflects these requirements.

Clearly there are many facets of the language yet to investigate, both in the
existing constraints of the theory, and in the possibility of extending the theory to
deal wiith issues such as non-termination, and type refinement, etc. The standard

offered in this paper should provide a firm foundation for these experiments.
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Compositional Process Semantics
of Petri Boxes'

Eike Best 2 and Hans-Giinther Linde-Goers 2

Abstract
The Petri Box algebra defines a linear notation to express a structured
class of Petri nets which can be seen as a modification and generalisation
of Milner's CCS. The calculus has been designed as an intermediate stage
in the compositional translation of higher level concurrent programming
notations into Petri nets. This paper defines the notion of a 'Box process'
intended to capture the (Petri net) partial order semantics of the Box
algebra. The main result is the equivalence of the direct compositional
semantics so defined, and the indirect non-compositional semantics which
uses processes of Petri nets, for a class of expressions.

1 Introduction

The Petri Box Calculus (PBC [5)), which has been developed in the Esprit Basic
Research Action DEMON, is a blend which is partially derived from existing
calculi (notably, Miiner's CCS [23]) and is partially novel. It was designed
to satisfy two requirements. Firstly, it should be firmly based on a Petri net
semantics, and secondly, it should be oriented towards easing the compositional
definition of the semantics of various concurrent programming languages such as
occam [211, including all data aspects; it has been discussed in [6, 18] how this
can be achieved.

Compared with CCS, the PBC features a different synchronisation operator
and a refinement operator. Moreover, the PBC is not prefix-driven but, on
the contrary, treats entry and exit points of processes symmetrically. As a
consequence, the sequence operator is basic and the recursion operator is much
more general and not limited to tail-end recursion.
Up to the present time, there have been various developments concerning the
Box calculus; they have been chiefly oriented towards its static aspects. In [5],
a number of static equivalences that can be derived as a consequence of the
static semantics have been established; in [41, static (denotational) definitions
have been given for refinement and recursion; in [12], the S-invariant covering of
Boxes has been investigated.
This present paper and its companion papers [7, 201, by contrast, address the
dynamic aspects of Box expressions. The aim of the present paper is to make
a domain out of the set of (Petri net) processes and to define a compositional

'Work done within the Esprit Basic Research Action 3148 DEMON (Design Methods Based
on Nets) and the Working Group 6067 CALIBAN (Causal Calculi Based on Nets).

2 lnstitut ffir Informatik, Universitit Hildesheim, Marienburger Platz 22, D-31141
Hildesheim, {e.best,lindel informatik.uni-hildesheim.de
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process semantics of Box expressions on this domain. The ground set is defined
as the sets of (equivalence classes of) processes, denoting all possible concurrent
runs of an expression. The operations on the domain mirror the Box expres-
sion operators. The main result establishes the consistency of the Box process
semantics (the 'direct' semantics) and the set of processes that can be obtained
indirectly by first deriving the Box of an expression and then the processes of this
Box using the standard net theoretical notion 13, 171 (the 'indirect' semantics).

The operations we shall define on Box processes have been inspired by prior work
such as that of Cherkasova and Kotov [10] and Pratt [25]. The specific form of
our operations, which significantly differ from the ones used in the cited papers,
has been motivated by [5] and other work on the Box Calculus. This work is
also pertinent to a large body of recent work on giving Petri net semantics
of existing process calculi such as CCS, CSP [19] or ACP [1] (for instance,
[2, 9, 10, 11, 14, 15, 22, 24, 261).
The organisation is as follows. Section 2 explains the syntactic domain of Box
expressions. Section 3 defines the basic elements of the semantic domains we
are going to consider: labelled nets, labelled causal nets, Petri Boxes and Box
processes. Section 4 defines the first semantic domain, namely the domain of
Box processes. Section 5 describes the second semantic domain, the domain of
Petri Boxes. Section 6 deals with consistency between the direct semantics and
the indirect semantics. The main result of section 6 establishes the equivalence
of these two notions. Section 7 contains concluding remarks.

2 The Syntactic Domain: Box Expressions

Action names and variable names are the basic constituents of the Box expression
algebra. We assume a set of action names, A, to be given. On A, we assume
a conjugation bijection to be defined: ^: A -. A with &t a and a = a for all
a E A. The set £ of finite multisets over A is called the set of communication
labels. Elements a of the set L may serve as the labels of transitions and
events. The function ^ can be extended to any multiset is over A by element-wise
application. When a is a singleton set {a}, we omit the enclosing set brackets
if unambiguity is ensured. We use capital letters X, Y etc. to denote Box
expression variables which are used for refinement and recursion. Let V denote
the set of such variable names. Elements of V may also serve as transition or
event labels.

Using these conventions, Table 1 defines the Box expression syntax which we
consider in this paper - which is the full syntax considered in [5] except for
scoping and relabelling. Scoping is a derived operator from synchronisation and
restriction (and its semantics follows accordingly). Relabelling is omitted here
since its treatment complicates the formalism but presents no specific difficulties.
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E {Basic Box Expression} g I multiaction

{Sequential Constructs) E; E I sequence
EOEI choice
(E*E*E] iteration

{Concurrent Constructs} EIIE I concurrent composition
"E sy a I synchronisation
"E rs a I restriction

{Hierarchical Constructs) X I vasiable
E[ X 4-- E]I refinement
JAX.E recursion

Table 1: The (slightly) reduced Box expression syntax

3 Basic Semantic Definitions

3.1 Labelled nets and renaming equivalence

A labelled Petri net is a quadruple E = (S, T, W, A), where (S, T, W) is an arc-
weighted Petri net with places S, transitions T, weight

W: ((S x T) U (T x S)) --+ N,

place labelling A: S --+ {e, 0, x} and transition labelling A: T -- £ U V. The pre-
set (post-set) of an element x E S U T is defined by *x = {y I W(y, x) > 0}
(respectively, x* = {y I W(x, y) > 0)).
We require T-restrictedness, i.e., Vt E T: °t 0 # t°.

The labellings indicate the interfaces of nets, which are relevant for their com-
position. The places s with A(s) = e are called entry places and denoted by "•.
The places with x E A(s) are called exit places and denoted by E°. All places
with label A(s) = 0 are called internal. Similarly, all transitions t with A(t) = 0
are called internal or silent. The transitions t with A(t) ý6 0 are called inter-
face transitions. There are two types of interface transitions: communication
transitions (A(t) E £\{0}) and hierarchical transitions (A(t) E V).

A labelled causal Petri net 77 = (B, E, F, A') is a labelled net which satisfies
1°b1 < 1 > Ib°[ for all b E B and F:((B x E) U(Ex B)) -+ {0,1}. F can
equivalently3 be viewed as a relation F 9 ((B x E) U (E x B)). Elements of B
and E are called conditions and events, respectively. A B-cut of 'q is a maximal
set of mutually incomparable elements of B, with respect to the partial order
-.<= F+.

Figure I(i) shows a causal net with four places (named 1, 2, 3, and an unnamed
one) labelled, respectively, by e, 0, 0, and x; and two (unnamed) transitions
labelled by X (E V) and {a} (E £), respectively.

3 With F(x,y) = 0 (reap. 1) iff (x, y) • (reap. E)F.
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x x
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(i) A labelled causal net (ii) A labelled net which is p-equivalent to (i)

Figure 1: Illustration of the basic definitions

The names of places and transitions are only interesting for the level of basic
operations on causal nets. For the semantics of Box expressions, they are irrel-

evant because on this level, only the interface expressed by the labellings and
the interconnection structure expressed by the underlying net matters. For the

latter purpose, we can call two net elements equivalent if they have the same
labels and the same environments.

Two places s and s' in a labelled net duplicate each other if A(s) = A(s') and
for all t E T, both W(s,t) = W(s',t) and W(t, s) = W(t, s'). The duplication of
transitions is defined similarly. In a labelled causal net two different duplicating
elements are conditions; this follows from the fact that no condition may be
branched. Two labelled nets E1 = (S 1,T 1,W 1 ,A,) and E2 = (S 2 , T2 , W,, 2)
will be called renaming equivalent iff there is a sort-preserving relation p C
(Sl x S 2 ) U (T1 x T2) such that p is (both ways) surjective on places; p is (both
ways) surjective on transitions; p is arc-(weight-)preserving; p is label-preserving;
and p is bijective on hierarchical transitions. Figure l(ii) shows a labelled net
which is p-equivalent to the one shown in Figure 1(i). As a consequence of the
non-branching of conditions, any two p-equivalent labelled causal nets have the
same number, or cardinality, of events.

3.2 Boxes and Box processes

Definition 3.1 Boxes

A Petri Box B is a p-equivalence class B = [E], such that E = (S, T, W, A)
is a labelled net satisfying:

(i) At least one entry place: *F E 0.

(ii) At least one exit place: E° : 0.

(iii) No arcs into entry places: Vs E *E Vt E T: W(t, s) = 0.



IV

254

(iv) No arcs out of exit places: Vs E E° Vt E T:W(s,t) -0. E 3.1

Since the properties (i)-(iv) are independent of the choice of a representative of
[s], this definition is good. In fact, similar properties of representative inde-
pendence hold for all the subsequent definitions whenever they involve Boxes.
We shall refrain from mentioning this explicitly; but as a consequence, we may
allow ourselves some freedom in referring to Boxes and their representatives, not
always making a clear distinction (for instance, 'the transition t of a Box B' is
nominally not defined, but can be understood as referring to the transition t of
some representative of B).

Definition 3.2 Box Processes

A Box process is an equivalence class 7r = [4?], where renaming equivalence
is restricted to labelled causal nets, such that q = (B, E, F, A') is a labelled
causal net satisfying4 :

(a) Min(q7 ) is a B-cut.

(b) For all b E B: A'(b) = e iff b E Min(sq).

(c) For all b E B: A'(b) = x =- b E Max(i).

7r is, moreover, called complete if q7 satisfies:

(d) Max(1q) is a B-cut and Vb E Max(i7): A'(b) = x. 3.2

The reason for the asymmetry in clauses (b,c) is that we allow nonterminating
processes; terminating ones are captured by clause (d) which restores the sym-
metry of the definition. For the same reason, we do not require property (ii) of
Boxes. The properties (i), (iii) and (iv) of Boxes are automatically satisfied by
(a,b,c) and the special properties of labelled causal nets; property (ii) is addi-
tionally satisfied if (d) holds. It is not hard to see that properties (a)-(d) are
robust with respect to p-equivalence; thus this definition is again good. We say
that 7r is finite if the representatives of ir have finitely many events; according
to the above remark, if this is true for one representative then it is true for all
of them, so that the notion is well-defined.

4 Domain 1: the Box Process Algebra

We define the Box process algebra by giving its domain, i.e., the set of possible
elements (section 4.1); its basic elements (section 4.1); and the operations on the
domain (section 4.2). In section 4.3, we use this algebra to define the process
semantics of Box expressions.

4The Minima and Maxima being defined with respect to the partial order -4 = F+.
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4.1 The domain SB? and its basic elements
The elements of the Box process algebra are sets of Box processes (called SBPs

in the sequel):

[ = {ir I 7r is a Box process and if ir is complete then it is finite}.

The interpretation will be that each SBP represents a set of possible executions
of a Box expression. Let SBP denote the domain of all SBPs.

We need one basic SBP for every finite communication label a E C, namely
Ha = {JIM), [i7i}, where i/o = ({b}, 0, 0,A') and r? = (bi, 11), {el}, F1, ')
with A'(b) = e, A)(bl) = e, A\(b',) = x, A)(el) = a and F1 = {(bl,el), (el,b')}.
Thus, i/o is the initial process that describes 'no action as yet', while iq1 is the
process that corresponds to a complete execution of a. For every variable X, we
need a similar set of two processes called Hix and defined as above, except that
A'(el) = X.

4.2 Operations on Box process sets

In this section - the core of this paper - we define set union, constituent union,
concatenation, iteration, synchronisation, restriction, refinement and recursion
on the domain SBP. This relies on a few auxiliary Petri net changing operations:
(D denotes the addition (with the correct connections, which will always be clear
from the context) of a set of places or transitions, the labellings of which have
to be given as a parameter to the (D operation; ® is defined between subsets of
the elements of two nets and denotes the formation of the symmetric Cartesian
product yielding sets {1, I} where x is from the first subset and y is from the
second subset; e denotes the removal of places or transitions together with their
interconnections.

The domain SBP has been defined in such a way that all its complete elements
are finite. This necessitates a proof of the fact that none of the operations we
are about to define lead out of that domain. In [81 these proofs are given.

4.2.1 Union of SBPs

The first operation we define is plain set union; it is binary and creates a new
SBP H11 UH 2 out of two given SBPs HiI and H2 . Being a set theoretical operation,
it can be extended straightforwardly to more than two arguments, yielding the
union U:: 1 f1i for a set of arguments {HI1,H12,. .. }

4.2.2 Disjoint union of constituents of SBPs

The second operation we define is disjoint union (or juxtaposition) of con-
stituents. Let II1 and H12 be SBPs. Then

INAlr 2 = {irilIir21r11 E IH1 A 7r2 E 12 },
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where for 7r, = [171], Wr2 = [•J (and qI and 7N are w.l.o.g. disjoint 5) we define:

lrlI 11 2 = [IM U q2]

where U denotes the union of labelled causal nets. Since the operation 11 differs
from the set union of SBPs and will be used to describe concurrent composition,
we have used the symbol 11 instead of U or U.

4.2.3 Concatenation of SBPs

The third operation we define is concatenation. For an SBP H let IIc denote
the set of complete elements of H. H. will denote the set of processes of H such
that all x-labels of conditions are changed into 0-labels.

Let III and 112 be two SBPs. We define

1; 112 = (n1)_• U {Url;7r2 I 7 E HI 7r2 E 12}.

SFor 7rI = [71], iW2 = [172] (171 and r w.l.o.g. disjoint) we put 7rl;7r2 = [171;7721
t and

ni; rn = (7 L i ) @ (Max(t7i) ® Nin(3), 1) E (Max('1l) U Min(7n))

where /({bl,b 2 }) = 0 for any {bI,b 2} E Max(i7l) 9 Min(7).

The formula for '1l; M means that 171 and r1 are first juxtaposed (171 U177, together
with their disjointness); the exit conditions of 171 (the same as Max(i11 ) because of
the completeness of q11) are multiplied with the entry conditions of in, yielding
a new set of places that are connected in the appropriate way; and the exit
conditions of qI as well as the entry conditions of rn are removed. The new
places get the 0 label. This construction - which for the finite case coincides
with that in [10] - reappears later when refinement is defined; we shall give an
example at that point.

In general, 7rl; ?r2 is complete iff 7r2 is complete [8]. One may define a natural
prefix relation -< on labelled causal nets: i71 - rh if there is a cut (a maximal
set of concurrent elements) in ,n such that /17 lies below or equal that cut. In
particular, for all i > 1, i7 1;...;i7i e Max('i) -< i17;...; i7; 7+ 1. Also, ; is an
associative operation [8]. Therefore, the infinite sequence

00

Irl; 72; 3; .... U ('71;... ;ni E Max(V))i=1

is well defined.
5 'W.i.o.g.' because of renaming equivalence.
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4.2.4 Iteration of SBPs

The iterative construct [El * E2• • E3] has the meaning that El is an initial Box
expression that may be executed once, after which zero or more repetitions of
the body E,2 may occur, after which exactly one execution of E3 , the terminal
expression, can complete the execution of the entire expression; but 'once El
and then infinitely often E2' is also possible.

Using union and concatenation, we may now define an iteration operator on
SBPs. Let HI, 112 and fl3 be SBPs.

[1) = HII
fI(i+i) = H-(H); 1 2 (for i > 1)

n* = U 0 (1(i);n)

rlW = lrl;7r2 ; rs; ... I 7rl EI ,l 7rjE 2,3 >_ 21

Hl**H2 *H13  = HI* IUH .

4.2.5 Synchronisation of SBPs

Synchronisation of a Box expression does what is often viewed as an integral
feature of concurrent composition, that of effecting the synchronisation over
labels. In terms of the Box process semantics, it adds processes to the already
existing ones according to certain criteria related to the communication labels of
events. In terms of the Box semantics, it adds transitions to an already existing
Box according to the same criteria applied to the labels of transitions, rather
than events.

The main idea is a 'repetition' of the basic CCS idea, which calls for the synchro-
nisation of sets of transitions over pairs (a, a) of labels; to take away the labels
that effect the synchronisation; and to keep all the other labels. Due to the pres-
ence of multisets of labels, the transitions resulting from a synchronisation may
carry labels that can continue to lead to further synchronisations. In general,
as explained in (51, the multisets of transitions that may synchronise have an
underlying tree formed by pairs (a, t). In CCS, this tree always contains only
two nodes and a single arc since the multisets considered there are either empty
(r-action) or singletons; but in the Box expression algebra, the synchlonisation
tree may be arbitrary.

For instance, consider the expression ({a}1l{a, a}11{a}) sy a, a representative of
whose Box is shown in Figure 2(ii) (derived from the Box in 2(i)). The idea in

this example is that the first subexpression {a} can synchronise with the second
subexpression (t, a} (through sy a, using one of the a's that exist in the second
subexpression) and the second subexpression can also synchronise with the third
subexpression {a} (through sy a, using the other a of the second subexpression),
yielding a 3-way 0-labelled synchronisation. The set of transitions describing
this synchronisation is r = {1, 2, 3). The fact that this set of transitions can be
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synchronised together, can be described by the formula c(r) Ž_ JrJ -1 where c(r)
counts the minimum number of a's and a's in r [5).

)2

(i) Boxr({a1IId,a)fl{a}) (ii) Boz(({a}1J{d, a)Ji{)}) sy a)

Figure 2: An example of multi-way synchronisation

The next definition translates the synchronisation operation just described into
an operation on Box process sets. Let I be an SBP and a E A an action name.
We define fsya= U rsya.

y sa rEI I

For the definition of 7r sy a, assume that 7r [•] with il = (B, E, F, A'). Let Ea
be the set of events of ,1 that carry an a or an a in their label. Let -r C El be some
finite nonempty set of events of Ea. Define c('r) as the minimum of the sum of a
names and the sum of a names in A'(ir). Now, let C C {r C_ E2 I c(r) _! Inr - 1}
be some set of subsets of El, called a synchronisation set of events. With this
we define

nsyca == 17 ) e (UT)
"TrE

where L(T) comprises the multiset sum of the labels in r, minus ITI - 1 times the
pair {a, al (because that is just the set of pairs that have effected the synchroni-
sation). The net q syca may not be a causal net, because the constituent events
of the sets 7- may form a cycle. Therefore, we restrict the synchronisation sets
under consideration and define

7r sy a = {[1 syca] 19 is a synchronisation set of events such that
ql syca is a causal net).

This definition guarantees that II sy a is indeed an SBP. In general, synchro-
nisation is conservative on complete processes; i.e., 7r sy a is complete iff r is
complete [81

4.2.6 Restriction of SBPs

Restriction of an SBP over an action name a removes those processes that contain
an event labelled with a or a. Let IH be an SBP and a an action name. Moreover

.f. let E' be the set of events of a causal net i- = (B, E, F, AY) that contain an a or
an a in their label. We define

H rsa =H\ {[(B,E,F,A')] E 1Ie #Ea
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4.2.7 Refinement of SBPs

4

(i) A complete process of E2 = (cfd)

+Q X

(ii) Refining X in 1(i) by (i) (iii) A non-complete process of E-2 (cud)

4 0

X C 0

(iv) Another concrete process of E1 = (v) Refining X in (iv) by (iii)
X; (allb)

Figure 3: Illustration of the definition of refinement

We define the processes of 1I[X '- 112] by taking the processes of H1 and
refining all X-labelled events in them by processes of 112. Figures 1(i) and 3
depict one of the possible pitfalls in this approach. The example concerns the
Box expression E1 [X -- E 2 ], with E1 = X; (allb) and E2 = (cild). Figure
l(i' *ts a representative process of El, Figure 3(i) shows a process of E 2
anc 7 -e 3(ii) the result of refining the event labelled X in the first process
by the second process. If the refining process is complete, the definition is
straightforward. However, it makes no sense to allow the X in 1(i) to be refined
by the non-complete process shown in Figure 3(iii), since the occurrence of event
a shows that X has been 'completed'. By contrast, in Figure 3(iv) - another
process of E1 - we will have to allow the refinement of the X-labelled event into
the process of 3(iii), yielding the result shown in Figure 3(v); otherwise, not all
processes of the refined expression would be generated in this compositional way.
It is not hard to characterise the events that may be refined by non-complete
processes: they are the maximal ones; in Figure 1(i), the X-labelled event is
not maximal while in 3(iv), it is. The definition is structured accordingly. Let
HI and 112 be two SBPs. Let rW E 11 1,7r2 E 112 and ri = 17711,7r2 1172]. For
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t) (Bi, El, F1 ,A1 ) we define

E', = {eeEl Ai(e)=Xandeismaximal}
EX = {eEEiAi(e)=X}.

In the following, (a) determines the proper relationship between e of 17 and
n for a refinement of the former by the latter to be possible, and also gives
the definition; (b) appeals to [41 to generalise this definition to simultaneous
refinement; (c), finally, gives the general definition of III[X 4- HI2 ].

(a) This assumes that if e E Ej,\ Ej' then th is complete. We define

a ('euo''iug)e {e

S~where l(jbj,b2j) = Xtjbj) for new conditions {bl,b2) with b, E B1.

(b) We now appeal to the results of [4] which show that the refinement of e

by q2 and the refinement of e' by rA (both e and e' being different events
of the same process -91) commute; and, more generally still, that one may
extend the whole definition to the simultaneous refinement

,7,[e(i) 4-.- ,92(i), i E ]
of a whole (possibly empty6 or possibly infinite) set of events

{e(') I i E I} C EX - provided each individual refinement 71[ e(') --- 1i)

is valid according to (a).

(c) Finally, we define generally:

n,1[,X-112] = { [C,[•+) ,- •+),iEI]J {e(')IiEI}= Ex and
[i•j] E IH, and 147•)] is some element of H12 }

That is, we require that all X-labelled events of 77 be replaced by processes
from H-2 . This may introduce new X-labelled events if the processes from
Hr2 contain such events.

4.2.8 Recursion of SBPs

In accordance with one of the central ideas behind the Petri Box semantics,
we shall interpret recursion as the limit of successive refinements. In the static
Box semantics, the Box associated to, say, 1AX.(a; X; b) is symmetric in a and
b; it has as many a-labelled transitions as it has b-labelled transitions even
though only the former, but not the latter, can be executed. In the Box process
semantics, this symmetry must be broken: the processes of pX.(a; X; b) may

6 1n which case the refinement changes nothing.
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contain arbitrarily many a-labelled events, but none of them may contain any
b-labelled event. The if. .. then premise of part (a) of the definition of refinement
is the technical means by which this is achieved.

Let HI be an SBP. Define a sequence of SBPs as follows':

no = - [- o)

fl3 +l = f-uX -- H]
PXH = {[UJ70j~oljjtoM.ý1-<...[17j] IEj}.

Note first that none of the processes in Hj, and hence none of the processes in
IsX.HI either, may contain any X-labelled events.
Figure 4 illustrates this definitions. The process [t/o] is in Ho by definition. The
other processes arise out of each other as follows:

72 =72[eC4-17],M =72[e -- n],

and the infinite process arises as the union of the finite ones. Note that the
X-labelled event in -y3 cannot be refined at all, because none of the processes in
IIj is complete.
Other interesting expressions on which this definition can be checked are jAX.X
and jsX.(ajjX) and jzX.(a0 alIX). The process set HI(pX.X) has only one pro-
cess with an e-labelled condition9 . The second process set HI(I&X.(atIX)) has
an isolated e-labelled condition in every process. It also has an infinite process
with an isolated e-labelled condition, which can be obtained as a sequence of
prefix-related processes all of which (including the very first one) have infinitely
many isolated e-labelled conditions. In this way, the definition is consistent with
the one (on Boxes) given in [4]. The third process set II(pX.(a [1 aliX)) has
infinitely many terminating finite processes, but again no infinite terminating
process; this comes from the fact that in the definition we use prefix ordering
(rather than the weaker relation of net inclusion, which is also a partial order
on labelled causal nets).

4.3 Process semantics of Box expressions

For each term E of the Box algebra defined in section 2, we are now able to define
a function IH such that H1(E) gives the set of partial executions (Box processes)
of E. Let E, El, E 2, E3 be Box expressions, a E A an action name and a a
communication label.

?The net iio consists of an isolated e-labelled condition, as defined in section 4.1.
5In parts (i) and (il) of this figure, the semantics of section 4.3 is used.
9While the Box of pX.X (section 5) consists of two isolated conditions, one of which is

e-Iabelled and one of which is x-labelled.
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x b a b 0

(i) The Box associated to the expression pX.(a; X; b)

* a 0 a g

(ii) A process of the Box shown in (i)

0 X a6

q12 O..0-j'OO*fJ-O-mIý -f2
6 a g a a0 3 g x a b X

* a U la

(iii) An application of the definition to obtain the process (ii)

Figure 4: Illustration of the definition of recursion
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H(EI; E2 ) = H(Ei);f(E 2 )
H(E1 0 E2 ) = H(EI) U I(E2)
fl([•E * •E2 E3 ]) = r(E)* ),(E 2) ,r(E 3 )
rl(E~iJIF) = n(E0)lin(E)
n(E sy a) = (n(E))sy a
HI(E rs a) = (fl(E)) aa
nl(X) = nx
fl(E[X '- E']) = H(E)[X 4- fl(E')]
fl(LX.Eo) = pX.(I(E0)).

5 Domain 2: the Box Algebra

We may define the Box algebra in a similar manner as before by defining its
domain and its basic elements (section 5.1); and its operations (section 5.2).
We apply the approach of [4] which allows us to be relatively brief, because
many operations can be based on refinement. However, we can only outline the
definitions; for details, the reader is referred to [4, 5].

5.1 The domain B and its basic elements

The elements of the Box algebra are the Petri Boxes B = [E]. Let B denote
the set of Boxes. Let a E L. The Box Box(a) which offers the communi-
cation possibilities of a in a single transition is defined as follows: Box(a) =
[({SIS 2 },{t},{(sIt),(t, s 2 )},\)] with A(sl) = e, A\(s 2 ) = x and A(t) = a. A
special case is Box(O), which is analogous to CCS's silent action r. The Box
Box(X), for a variable X, is defined similarly.

5.2 Operations on Boxes

5.2.1 Refinement

Let E[X 4-- E'] be a Box expression with refinement. Let B = Box(E) and
B' = Box(E'). Any representative of B may contain transitions with labels X.
The natural semantics of the operator E[X +- E'] corresponds to the refinement
of such transitions.
The basic idea behind transition refinement is as follows [4, 16]. Let t be an
X-labelled transition in some representative E of a Box B, and let E' be a
representative of a Box B such that t is to be refined by V'. By our basic
properties of labelled nets and of Boxes, we have that t has at least one pre-
place and E' has at least one e-labelled place. Hence the product *t ® * E' is not
empty and can be used in the refined system; a similar remark is true for the
post-places t' of t and the exit places of El.
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This basic idea works directly if there is a single X-labelled transition t whose
pre-places and post-places are disjoint. [41 describes a significantly generalised
construction which works if there are arbitrarily many X-labelled transitions
(including the case of infinitely many); if X-labelled transitions are contained
in side conditions; for simultaneous refinement B[X *-- B', Y +- B"] (mean-
ing: refine all X-labelled transitions by B', and simultaneously, all Y-labelled
transitions by B"), and generalisations thereof.

5.2.2 Sequence, choice, concurrent composition and iteration

These Box operations may be based on simultaneous refinement. Let Bi, B 2
and B3 be Boxes. We define

B; B2 - B;[X -- B1,Y4-B 2]
Bi[IB2  B'[X+-B1 ,Y4-B 2 ]
B 1 1B2  Bii[X -- Bl,Y.-B 2 ]
[BI*B 2 *B3] =- B.[X.-Bi,Y--B 2,Z-B3],

where B;, B 0 , B11 and B. are the Boxes shown in Figure 5.

x
x

B; , B 1 B 11  B Z

Figure 5: The basic Boxes for sequence, choice, composition and iteration

The translation of iteration using the Box B* shown in Figure 5 ensures, by the
results of [12], that the semantics is 1-safe. An alternative translation that may
come to mind (an X-labelled transition followed by a side transition labelled Y
followed by a Z-labelled transition) violates 1-safeness in cases like [a* (bIlc) *d].

Indeed, under this alternative translation, the main result of section 6.2 becomes
wrong.

5.2.3 Recursion

Let pX.E be a recursive expression. The intended meaning is that at the free

X's, 'E is called recursively'. Corresponding to the fact that a particular kind of
syntactic substitution is the natural way of describing this recursive call [1, 23],
at the semantic level the semantics translates into a succession of refinements.
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Since refinements define a function on labelled nets, the whole approach leads
to the employment of fixpoints [41.

The basic idea is the following. First, we construct some representative E of
Box(E), the Box associated with the body of the recursive expression. Next, we
define an initial Box representative E0 with a nonempty set of entry places and a
nonempty set of exit places and nothing else (no internal places, no transitions);
the equivalence class of EO is called a stop Box, as it cannot terminate (and
cannot, in fact, change its initial state). Then, we iterate as follows:

E+1 = E[X - Ed.

As an example, we derive the Box shown in Figure 4(i) which corresponds to the
expression jiX.(a; X; b). First, a three-transition representative E of the body
Box(a; X; b) may be constructed. Then, as the zero'th approximation, we may
define a stop representative with only two places, one entry place and one exit
place. The X-transition of E may be refined by this latter net, yielding the first
approximation with 2 transitions. The X-transition of E may be refined again
by the result, yielding the second approximation with 4 transitions, and so forth.
The limit yields the representative shown in Figure 4(i).

5.2.4 Synchronisation and restriction

The effect of the synchronisation operation B sy a has already been described
in section 4.2.5. The formal definition consists of adding transitions which cor-
respond to multisets of existing transitions such that the minimum-formula is
satisfied, which is a criterion for the multiset in question to be a valid synchro-
nisation set. Restriction B rs a has an opposite effect; it removes all transitions
that have an a or a a in their label.
Notice that these operations are quite different from those of sections 4.2.5 and
4.2.6; here, they add (or remove) transitions whilst there, they add (or remove)
processes.

5.3 Box semantics of Box expressions

With these definitions, the Box semantics Box(E) of a Box expression E can
be given by a homomorphism that maps expressions and their operators into
Boxes and their operations. The table giving this definition is analogous to that
of section 4.3 and will be omitted here.

6 Consistency

Let B = Box(E) be a Box with a representative E = (S, T, W, A). The standard
initial marking of E is the marking that puts one token on each e-labelled place of
E and zero tokens on all other places; let us denote by ST(E) the place/transition
system so defined. The results of 112] imply that ST(E) is a 1-safe marked net 1°,

1OBecause B derives from an expression; otherwise 1-safeness is not guaranteed.
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Standard Petri net theory [3, 17] allows us to associate a set of processes (causal
nets labelled with places from S and transitions from T, and hence, by proxy,
also with elements of {e, 0, x} U £ U V) to ST(E).

Two questions arise naturally: (1) If E and E' are two representatives of B,
what is the relation (if any) between their processes? (2) What (if any) is ther relation between the processes of representatives of B and the Box processes of
B defined in section 4?

6.1 Representative independence of processes

We investigate two labelled nets El = (S1,T 1 ,W 1 ,A 1 ) with standard initial
marking M1e and E2 = (S2, 2, W2, A2) with standard initial marking M 2e which
are p-related. The first step is to lift the relation p from the places of the two nets
to their markings. This relies on the observation that all markings (the initial
ones and the reachable ones) are duplicate respecting, meaning that duplicate
places always carry the same number of tokens. This allows to turn p into a
bijection on the two reachability graphs of ST(ET) and ST(E 2 ).

t The second step is to consider any two labelled causal nets r7 and rn which are
renaming equivalent by means of a relation p'. Then p defines a bijection both
between the events of irr, M and between their reachable B-cuts (the process
equivalent of reachable markings).

The third step is to consider a process r,1 = (B 1 , El, F1 ,p1 ) of ST(E1 ) with a
function pl: B1 U E1 -' S1 U T1 which describes which conditions are holdings
of which places, and which events are occurrences of which transitions. We may
associate to i, a labelled causal net i7(,.1) = (Bi, El, Fhpl o A1) (p, o A1 is the
'by proxy' labelling of nj inherited from El). The first main theorem shows
that re is p'-equivalent to some process K2 of E2, completing a diagram that
commutes both in terms of events/transitions and in terms of B-cuts/markings.

Theorem-6.1 Representative independence

With the notation as above, there exists a process x2 = (B2 , E 2 , F2 , P2) of
ST(E2) and a relation p' such that

(a) the labelled causal nets i7(oc1), 77(K2) associated to ic1 and (similarly) to
1C2 , respectively, are p'-related.

(b) For all el E E1 and e2 E E2 : if e2 E p'(el) then (Pl(el),p 2 (e2)) E p.

(c) For all reachable B-cuts cl of icl and c2 Of r2: if c2 = p'(cl) then
P2(c2) = P(PI(Cl)).

In part (c) of the theorem, we use the notation p(c) to denote the marking
corresponding to c via p. Parts (b) and (c) relate back to the fact that p' (by
part (a)) defines a bijection on events and on B-cuts. This result has a number
of corollaries. We state some of them.
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Corollary 6.2

For every occurrence sequence of ST(E1 ) (Mie = Mo) there exists a corre-
sponding occurrence sequence of ST(W2 ) (M2. M6).
The event pomsets of ST(Ei) and the event pomsets of ST(E2 ) are isomor-
phic to each other.
If El and E2 are two representatives of the same Box B then

{[7r.()[ I n is a process of ST(EI)} = {[rt(x')j I ic' is a process ofST(EO)}

where [r(n)] denotes the Box process associated with 77(r) (Definition 3.2).
N 6.2

The last part of this corollary allows us to associate a set of Box processes 11(B)
uniquely to any Box B, by choosing an arbitrary concrete representative E of B,
evaluating its processes re, the associated labelled causal nets i1(n) and forming
their p-equivalence classes. In particular, we may thus associate a set of Box
processes rl(Box(E)) uniquely to every Box expression E, which may or may
not be different from the set 1-(E); by the next result, it is not.

6.2 Consistency between the indirect and the composi-

tional semantics

Theorem 6.3

Let E be a Box expression. Then I1(E) H= (Box(E)), wher- 11(E) is defined
in section 4.3 and II(Box(E)) is defined following corollary 6.2.

I 'he proof is by structural induction on the syntax of Box expressions [8].

7 Concluding Remarks

Figure 6 summarises the main ideas and results of this paper. Starting from an
expression E one may define its processes II(E) directly (first vertical line). One
may also define them indirectly (first horizontal line; second and third vertical
line). The atxilia results of section Sct.6.1 state that the indirect definition
is representative independent. The main result of section Sct.6.2 states that the
diagram commutes.

The paper [201 extends the framework, the definitions and the results of this
paper to the compositional construction of the branching processes [13] of a Box
expression. Work is furthermore in progress to use the process semantics and the
branching process semantics in order to define and compare various behavioural
equivalence notions that may be defined on the Box expression algebra.

Although the operations we have defined on Box processes have been inspired by

prior work such as that of Cherkasova and Kotov (10] and Pratt [251, there are
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Sct. 5

Sct.2 E Box(E)

Sct. 3

Sct.4 Sct.6. 1

Processes Processes

of ST(E) of ST(V')

I I t '6 "1

H(E) - n(Boz(E))

Sct.6.2

Figure 6: Summary of the main results

substantial differences. The paper by Cherkasova and Kotov does not deal with
iteration or recursion. Pratt's pomsets are event-based rather than process-
based, whence his framework does not lend itself to our purposes. Moreover,
our operators are partly different, and the type of result we have aimed for
(consistency with standard Petri net semantics) has not been investigated by
Pratt. A more extensive discussion of the relationship between our approach
and other work can be found in [5].
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Abstract

The paper addresses the specification of reactive behaviour for
event-based models. We are concerned with a framework for such
specification rather than with a particular style of specifications.
Our main observation is that a logic of events is needed as well as
a logic of actions. The former prescribes in fine detail how compu-
tations proceed while the latter provides generic scripts for events
to happen. The analogy is that of procedures and procedure calls
at runtime (= events). We claim that both logics are inherently
interrelated, in particular, if "true concurrency" is to be specified.

In order to specify reactive behaviours we propose a logic of
actions on top of a new model called event automata, focusing on
the ingredients that such a specification method should provide.

1 Introduction

A reactive system constantly interacts with its environment by reacting
to incoming stimuli that may arrive at any stage of the computation.
In this paper, we discuss the minimal ingredients to be provided by a
specification methodology which is based on "true concurrency" models.
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The choice of the basic model is crucial. We have introduced event
automata as a very basic model of reactive behaviour [121. This model
subsumes familiar event-based models such as prime event structures, flow
event structures, general event stri;ctures as well as geometric automata.
These can be accommodated compositionally, meaning that, for instance,
synchronization operators can be defined which exactly correspond to
those defined for the other models.

The definition of event automata is simple if compared with other
event-based models. This is achieved by focusing on behaviour only.
Other models present behaviour, with behaviour typically being given
in terms of configuration spaces. Let us review our basic definition.

Definition 1 An event automaton £ = (E, 5t, I-, ev) consists of

"* a set E of events,

"* a set St of states such that ev(s) C E for all s E St, and

"* a transition relation s F- s' such that ev(s') = ev(s) IW {e}l for some
event e E E.

Usually, we assume ev(s) to be finite.

A state of an event automaton represents a (possibly partial) com-
putation of a concurrent system and a transition relation between states
describes how computations proceed. 2 As a minimal requirement, we
keep track of the events which have occurred so far. These are recorded
by the set ev(s) for every state s. Moreover, every transition corresponds
to the occurrence of some event. The definition implies that an event
can occur only once in a trace of the system. Throughout the paper we
maintain the basic assumption of event-based systems that events are
instantaneous and indivisible, and that they occur only once in a compu-
tation. We do not subscribe to the other requirement of event structures
that an event can only occur once in all computations. An example may
highlight the difference.

The automaton in figure 1 cannot be a family of configurations [18]
of an event structure: both the events a and b are enabled without pre-
conditions, i.e. F- a and F- b. Hence, by the monotonicity axiom 'Y F a

'We use the notation X W {e} to state that X U {e} is a disjoint union of X and
{e }.

2 As a remark, reachable states are generated by initial states. We consider as

reachable states those s E St such that st, I-* s, where I-* is the transitive and
reflexive closure of I- and si,, is an initial state. Of course we have first to say which
states are initial. Reach(C) denotes the subautomaton of reachable states.

I. . . .. -
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f b} {a,b)O'N{b}

Figure 1: An example where reachability is not monotonic

whenever X F- a and X C Y' inherent in all definitions of event struc-
tures, there should be a move {b} --* {a,b}, which one may want to
avoid. Inclusion coincides with transition in event structures because of
the monotonicity rule. In consequence, every event can occur only once
in all computations. Pragmatically, we may say that a and b are in asym-
metric conflict.

In order to specify reactive behaviour, the following appears to be a
minimal set of properties to be captured:

@ Consistency. A set of events is consistent if and only if all the
events in this set may coexist together. Inconsistencies may arise
if we try to extend a computation with an event which is in con-
flict with another present in the computation. We can then specify
c%! .'icts by means of an irreflexive relation3 .

Dependency between events. Dependency between events is
usually identified with causality: an event e' causally depends on an
event e if and only if every computation containing e' contains also e.
Since the definition refers to the overall behaviour, causality appears
to be more a matter of observation a posteriori than a matter of
specification a priori. For specification, the notion of enabling is
more appropriate: the notation 0 F- e states that an event e may
occur if the formula 0 holds.

Specification only in terms of events is often too fine-grained: if we
type 20 'a's on a typewriter, we have 20 different events, namely 'typing
the i-th a', but all events correspond to the same action 'typing an a'. A
system should be specified in terms of actions which we consider as being
generic scripts for determining the evolution of the system.

The question arises of how to associate events to actions, actions being
used for specification while the actual behaviour of a system is defined in

3 Usually the conflict relation is also symmetric, but then we have problems in spec-
ifying a situation where, though the events are in conflict, they may occur in the same
computation, provided that a certain order is respected.
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terms of events. The nature of an answer depends on the specific com-
putational model, e.g. states having a memory and actions changing the
memory with concurrent processes sharing the memory, or communica-
tion being achieved by synchronization of events. The variety of models
envisaged suggest to look for a framework for specification rather than
for a specific style of specification. We propose conditions for such a
framework in section 4.

We should, however, keep in mind that we ultimately want to specify
event-based behaviour. A logic of actions should map down to a logic of
events. Section 3 will analyze the ingredients of the latter. Specifically,
we investigate the compositionality of 'event specification' with regard to
synchronization operators.

Section 2 restates some results about "pure event automata", and
some preliminary conclusions are stated in section 5.

2 Synchronization of Pure Event Automata

A 'logic of events' refers to behaviour only in terms of events. Hence we
restrict our attention to eveat automata the states of which are sets of
events.

Definition 2 A pure event automaton C = (E, St, ý-) consists of

* a set E of events,

* a set St of states such that, for all X E St, X is a finite subset of
E, and

* a transition relation X F- Y such that Y = X L9 {e}.

It is well known that synchronization operators can be defined in

terms of partially synchronous products and restriction4 [19]. We recall
the definitions and results of [12, 13].

Definition 3 A (partially synchronous) homomorphism h : $- 0' of
event automata consists of a partial mapping h : E -- E' on events such
that all the infrastructure is preserved, i.e.

* h(X) E St' if X E St,

* h is injective on all states, meaning that, for all x, y E X E St, if

h(x) and h(y) are defined, and h(x) = h(y), then x =- y, and

4If the events are labeled, then the relabeling operation plays a major r6le.



-_ _ _ _ _ -- --- -

275

* h(X) F h(X)U {h(e)} if X I- X Wf {e}, and if h(e) is defined,

where h(X) = {h(x) E E': x E X and h(x) is defined}.

Injectivity on states guarantees that every transition coincides with an
event, and that h(X) F- h(X) U {h(e)) = h(X) W {h(e)). Pure event
automata and their morphisms form a category.

The partially synchronous product of two event automata is defined
by:

Definition 4 The product £1 I' £2 of event automata £E and £2 is defined
by (E, St, F) where

"* E = E1 x.E 2 = E1 U(E1 x E 2)UE 2, and the projections ri : E - Ei
are partial mapping defined by ri(el,e 2) = ei, Wri(ei) = ei if ei E Ei
for i = 1,2.

"* X E St iff ri(X) E St1 and 7r2(X) E St 2 , and if7r, and 7r2 restricted
to states are injective,

" X F- X U {e} iff X is a state, and if ri(X) F 7ir(X) t {fra(e)}
whenever rI(e) is defined, and if Tr2(X) F- r 2(X)WI{r 2(e)} whenever
7r2(e) is defined.

Proposition 5 [12, 13] The product of two pure event automata is a
categorical product.

The restriction operator is defined by5

Definition 6 Let £ be an event automaton and let h : E' -, E be a
partial mapping. Then we can construct an event automaton h*(£)
(E', St', F') by

"* S' = {X C E': h(X) E St and h is injective on X}, and

" -X F' X {e} if h(e) is undefined, or if h(X) F- h(X) Li± {h(e)}
otherwise.

Note that h : h*(£) -- £ is an homomorphism of event automata.
Synchronization operations are obtained by a combination of product

and restriction. The use of restriction avoids a more complicated direct
definition (see [18]).

sThe definition is slightly more general than necessary in that one usually restricts
attention to inclusions.



276

Definition 7 Let C, and C2 be two event automata and let A C El x E 2

be a set (the synchronization set). Define C, IIA C2 = AV*(1 11 (2) where
A : A U (E1 \ A 1) U (E 2 \ A2) --* E x×. E 2 denotes the embedding with
Ai = 7rir(A) for i = 1, 2.

The definitions naturally subsume those for (prime, flow) event struc-
tures as demonstrated in [13] but as well allow to define synchronization
of trace automata (here an admissible state is the set of prefixes of a
trace) or Mazurkiewicz traces [7].

3 A Logic of Events

The basic ingredients of a pure event automaton to be specified are the
states and the transition relation.

Properties of states may be stated in terms of a simple logic with
atomic predicates e which assert that an event e has occurred: a state X
satisfies the predicate e, notation X k e, if e is an element of X. Then
a state can be characterized by a (finite) conjunction of such atomic
formulas where a conjunction is defined by the usual scheme. We may
easily introduce more logical infrastructure, for instance c €€ -,e', which

states that e and e' are inconsistent. A candidate for such a log. may be
the geometric logic introduced in [4].

Similarly, atomic predicates of the form 4 I- e may be used to specify
enabling of the event e in that X I- X U {e} whenever X k 4 and e V X.
We are here not so much concerned with details in style but to stress
the distinction between specifications and the automata which satisfy a
specification.

Definition 8 e We assume the existence of some appropriate "logic
of events" which allows the statement that a finite set X C E of
events satisfies a formula 4, in short X k 0. The formulas are
"typed" by E in that the respective set of events is well understood.

"* A specification Spec over events E consists of a set of state formulas
.0, and a set of event declarations c, - where (ý, V' are of type E,
and where e E E.

"* Let C = (E, St, F') be an event automaton. Then

(i) C k 0 if, for all states X E St, X H 0, and

(ii) .,i,0 k e if, for all states X E St, X I- X tJ {e} whenever

X k V and e X.
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E satisfies a specification Spec, notation C k Spec, if £ E 4) for the
state formulas 4 in Spec, and if E, V7 k e for all event declarations
lb - e in Spec.

This definition is parametric in the "logic" used. We concentrate
on the structure of the specification and on the satisfaction of a given
specification, rather then trying to capture all these notions in a logic.
The choice of a specific logic is dependent on the nature of the problem
to be analyzed.

In general there might be more than one automaton which satisfies a
given specification, quite in contrast to the usual approach where "reach-
able" automata are considered. Enabling, however, provides a certain
degree of "liveness" for every automaton satisfying a specification in that
an event can happen if it is enabled.

Proposition 9 For every specification Spec of type E there exists a min-
imal reachable automaton Min(Spec) of type E such that MiAn(Spec) k
Spec.

More precisely, for every automaton ( such that E • Spec there exists
a unique homomorphism t : Min(Spec) - Reach(&). Aiin(Spec) is
constructed thus: If 0 K 4k, then this is the empty automaton. Otherwise
it is generated by (1) 0 is a state, and (2) whenever X is a state. and there
exists some event declaration V) F- e such that X • •, and X U {e} e ¢,
then X W {e} is a state, and X F- X W {e}.

Some compositionality results may be achieved even on this level of
abstraction, provided we add to the logic.

Definition 10 Let 0 be a formula of type E', and let h: E - E' be a
partial mapping. Then h*4) is a formula of type E, and, for all X C E.
let X I h*O iff h(X) 1 4 and h is injective on X.

Proposition 11 For all event automata (' of type E', and for all partial
mappings h : E - V,

(i) h*(C') k h*¢ if V' • €, and

(ii) h*(&'), h*V, [ e if 9', 4 k h(e), provided that h(e) is defined.

If h is surjective on states, the converse statements hold.

Corollary 12 * Let h*Spec denote the specification with state formu-
las h*0 and event declarations h*V, F- e such that 4) and 4, F h(e),
if h(e) is defined, are in Spec. Then h*($') • h*Spec whenever
E H Spec.
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9 If E = h*Spec then h(C) is well-defined, and h(C) ý= Spec, where
h(t) has states h(X) with X being a state of C, and transitions
h(X) F- h(Y) if X F Y in C.

Proposition 13 Let X k 4) A 0 if X k 4) and X k tP. Define the
specification Spec, I- Spec 2 to consist of the state formulas [r1 1^, A [7r2102

and the event declarations
[7r~]qh F e if mi(e) is defined, 7 2(e) is not defined, and 01 r1(e) is

in Spec,
[ar2]02 - e if 7r2(e) is defined, irl(e) is not defined, and 4)2 F ir2(e) is

in Spec2
[r 1]4)a A [172]4) 2 F- e if both ri(e) and ir2(e) are defined, and Oi F- iri(e)

is in Speci for i = 1, 2.
Then

(i) C1 HI C2 [ Spec, H Spec2 iff C1 ý= Spec, and E2 1= Spee2, and

(ii) If C ý= Speci H- Spec2 then irl(E) ý= Spec, and ir 2(9) 1= Spec2.

The results support modular specifications involving synchronization
operators provided the "logic" satisfies the requirements for X 1= 0.

In designing a concrete logic, a possible choice may be thus: for every
event e E E, let, ambiguously, e denote a predicate such that X F- e iff
e E X.6 We may as well add negation by X )= -,0 iff X K 0). Then we
can specify inconsistency of events, e #> -,e', or asymmetric conflicts as
mentioned in the introduction: -'e F- e' implie, that an occurrence of e
prohibits the one of e' (but not vice versa).

As an example we consider a protocol, which is informally specified by
the figure 2. Two agents, namely "A" and "B" communicate by means of
a channel "K". C stands for "connect", D for "data" and R for "release".
The agent "A" may request a connection (GCeq). The agent "B" responds
by events ( Cind and Crap), and "A" receives an acknowledgment (Cý, 1 ).
The same procedure applies for release. Moreover, the agent "B" may
send a data packet (Dreq), or not, which is received by A (Dind). The
data packet should be received by A before the release of the connection
is confirmed (R,,,f).

We give the specification of the agents and of the channel:
6 1n combination with conjunction, this allows us to specify the enabling relation of

arbitrary event structures.
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A B

Creq AB

Crap

C.n Dreq

Rreq

Rind
Dind Rrsp

Rcn/

Figure 2: A communication protocol

Agent A Agent B Channel K
Declarations Declarations Declarations

H Crýq H Cind H Creq
Creg H- Cetij Cind H- Crap Creq FH Cind

Cdfnf A -'Rcnf F- Dind Crp A -"Rind F Drq F Crp
Co.! H- Rrq Crap - Rind Crap H Cmn!
Rreq F Ren! Rind RrPp H- Dreq

Dreq H- Dind
F Rreq

Rreq H- Rind
F Rrsp

R,.,p F- Rcn f

the negation is used to specify that an asymmetric conflict between the
sending (receiving) of a data and the release of the connection exists.

We can now synchronize the corresponding events of agent A and the
channel K, and then compose with agent B to obtain (modulo renaming)
the specification
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Protocol
Declarations

F- CreqC K q ý_ C,.d
tB F- C
Cin d •.-'rsp

C A K ý ý.req r anp

CB A RPnd F- Dreq
CA A DK A -RA DiF d

Cni req eni m

en! req

rp A Req Rind
Rind Rrsp

RrA,, A R,, F- Rcnf

The following notational conventions are used: the superscripts of the
predicates indicate the origin, e.g. C;aq refers to the event Creq of A. 7

Since only events with the same names are synchronized, we replace e.g.
(Creq,Creq) by Creq. The injectivity conditions for transformed predi-
cates are trivially satisfied. Actually, one might strip off the superscripts
altogether because of this specific nature of the example.

Another, more sophisticated example, is Hoare's trace logic L5]. Let A
be a set of actions. Formulas of Hoare's logic state properties of traces w E
A*. E.g. for the famous vending machine, the formilla #chocs < #coins
states that always more coins are inserted than chocolates delivered in an
admissible trace (= computation). Traces are events in our terminology.8

The corresponding event (trace) automata have states Pref(w) being the
set of prefixes of the trace w (we refrain from capturing this by a state
formula). Trace formulas implicitly define an enabling relation in that
w F- wa whenever wa is an admissible trace. The "formula" u, in w F wa
checks for presence of the trace w as maximal trac'2 in a set of events. 9

We claim no elegance in this translation; one should stick to Hoare's
style. But a detail is noteworthy after all: Ho,.re's logic refers to events
and not to actions as basic semantic entities. In fact, more elaborate
versions of his logics using refusal sets [5] or ready sets [9] mix references
to events and actions. The "ready set semantics", in particular, compares
well to our framework in that 0 I- a can be used to declare the action a

"7CAq abbreviates the formula [syn2][r1][syn1][ri]Crq where [synil] denotes the
transformation synchronizing A and K, and [syn 2] synchronizes the synchronized prod-
uct of A and K with B. The projection in the middle being used for the construction
of the product. The example is extensively discussed in [13].

SNote the compliance with the stipulation of events occurring only once in a
computation.

gConcerning synchronization operators, there are a lot of subtleties involved, which
we comment on further below.
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to be "ready" if the formula 4 holds. We resume this theme in the next
section.

4 Towards a Logic of Action?

4.1 A Taxonomy of Actions

Specification in terms of events is somewhat limited in that events occur
only once in a computation. One would prefer think in terms of actions
which may occur repeatedly during a run of a system. For instance, if
we slightly modify the protocol example to allow several data packets to
be sent, we have to introduce two events Dind and D,,q for data packets,
though the events are indistinguishable from an external point of view.
Actions relate to events as, for instance, procedures do to run-time calls;
actions are generic scripts which, when activated, determine the (next
step of) behaviour depending on the present state and, maybe, parame-
ters.

There is little difficulty to add actions. We supply event automata
with a labeling mapping A : E --. A which associate events to the ac-
tions they represent. Similarly, we turn the logic of events into a logic of
actions: we use 4) F a to stipulate that an event automaton has a move
X F X U {e} if X 1= 4 and if there exists an event e ý X such that
A(e) = a, a being an action. Again, the definition is parameterized by
satisfaction s k 4. All this, however, is formal manipulation. The logic
needs more sophistication.

Let us consider the behaviour of a stack. There are two actions to
modify the stack, a push and a pop action, and there are some predicates,
like top = i or isempty. We are allowed to push whenever we are in a
legal state, and pop if the stack is not empty. A tentative specification is
then given by the following table:

Stack
I States Declarations

legal F push(i)
"-lisempty F pop

The state formula legal asserts that in any feasible computation a push
action is performed at least as many times as a pop action.

We need a more complex notion of satisfaction than just the statement
that some event has occurred in order to capture the intended effects
of the operations. Let [aNO state that "the observation 4 holds after
execution of the action a" [3]. Then
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[push(i)]top = i

appears as reasonable but we have to "implement" the predicate top = i.
Even if we label events with actions, we do not keep track of the ordering
in which the events have occurred, which is a necessary prerequisite to
compute the proper top of the stack.

We may use traces A* giving up "true concurrency". In order to
define top = i, we then apply the equalities top(v.push(i)) = i and
top(v.push(i).pop.v) = top(v.w) to the longest trace, i.e. the last event.

As an alternative, one might enrich a state by an additional com-
ponent, a stack of the usual data type variety. If we use an "stack" to
refer to this additional component, the behaviour of a stack is fairly well
reflected by the formulas

stack = s =* [push(i)]stack = push(s, i)
stack = push(s, i) =• [pop]stack = s

One wonders about the distinction between, for instance, the action
push and the operation push. There is very little, if we are only concerned
with the behaviour of one stack. But we could try to capture the well
known theorem that two stacks plus finite control can be used to simulate
a Turing machine10 . Then the push and top actions of the two stacks need
to be synchronized, e.g.

top1 = 0 F- pop, Ijpush2 1)

may be used to write a symbol on the Turing tape where II is a syn-
chronization operator on actions (1 denotes a symbol, 0 a blank). We
note: actions may synchronize or, more generally, may be visible to other
processes, hence are the ingredients of reactive behaviour, while opera-
tions are just functions on some data. By the way, the data type stack
"freezes" computation history in a rather obvious sense.

There is an asynchronous variant using the communication primitives
c !v and cx of process algebra:

-iisemptyl; write?x F- pop,; ready - to - write!x
ready - to - write?x I- push 2(x)

Here the finite control issues the write command. x may either be 0
or 1.

"See, for instance, [6].
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The example may be sufficient to demonstrate that additional struc-
ture is required to support the semantics of actions. Tentatively, there
are two types of extensions, namely to enrich the events by some or-
der relation mimicking dependence or temporal precedence, and to add a
data component to states. Actions might be classified with regard to the
nature and conditions of the changes caused:

"" Imperative actions11 the effect of which is independent of whatever
has happened beforehand, but the data component of states is af-
fected,

"* History-dependent actions the effect of which to some extent de-
pends on previous behaviour, and

"* Declarative actions which do not affect the data component.

In the first variant of our example the action pop is clearly history
dependent, whereas the action push is imperative. The order on events
reflects the history. Given an additional data component ("a frozen his-
tory"), history-dependent actions may be turned into imperative ones.
Communication primitives like c?x are declarative since neither a change
of a data component is involved nor are they relevant for history if exe-
cuted. This crude taxonomy is complemented by an orthogonal distinc-
tion between

* hidden actions which change a local state, i.e. the effects can be
observed only locally within a process, and

* visible actions the occurrence of which are known to other processes
which, for instance, can decide or are forced to synchronize.

Whether actions are hidden or visible depends on the specific design.
For instance, we may choose to consider only communication primitives
as visible, then synchronizations such as popillpush2(1) are excluded.

All these distinctions should be supported by a logic of actions.

4.2 A Framework for Dealing with Actions

We do not venture to propose a "definitive" methodology for the specifi-
cation of reactive behaviour. We rather ask for conditions for a logic of
actions which are consistent with the logic of events.

"Called Markovian in [2].
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We distinguish between states s and the underlying set ev(s) of events
as in the definition of event automata as stated in the introduction, for evi-
dent reasons. Moreover, we assume existence of some appropriate "logic"
where s q• states that s E St satisfies the formula -0. All data are
"typed" by A, i.e. for each set of actions A, we assume a set of events
Ev(A), a set of states St(A), and a set Form(A) of formulas to be given,
as well as total mappings eva : St(A) - Ev(A) and AA : Ev(A) --* A
such that ev(s) RFin Ev(A) for every s E St(A).

Furthermore, we assume that every partial mapping a: A - A' in-
duces partial mappings aEv: Ev(A) -- Ev(A') and ast : St(A) -- St(A'),
and a total mapping a*: Form(A') --+ Form(A). These mappings are
supposed to satisfy the following requirements:

"* OrE,,(eVA(s)) = evA,(aSt(S)) provided orst(s) is defined,

e for every e E Ev(A), a(AA(e) = AA'(aEv(e)) provided aE,(s) is
defined, and

"* s [- a*0 iff ast(s) 1 €.

We refer to such a setup as a "frame" (for sake of a better term). We
recast our main definitions.

Definition 14 An event automaton £ of type A (henceforth) consists of

"* a set St C St(A) of states with set ev(s) C Fin(E) of events for
every s E St,

"* a transition relation s P- s', where s, s' E St(A), such that ev(s') =
ev(s) WJ{e} for some event e E Ev(A), and

A partially synchronous homomorphism consists of a partial mapping a:
A -- A' such that

* for all s E St, ast(s) E St',

0 apE,, is injective on evA(s), and

0 ast(s) P. ast if s F s,

We restate the constructions on event automata with minor changes.

Definition 15 The (asynchronous) product £E rl £2 of event automata
C1 and £2 of type A 1 and A2, respectively, is an event automata of type
A = A, x. A2 defined by (St, P) where
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* (sI,s 2,X) E St if i

- si E St 1 , S2 E St 2 , and X C Ev(A),

- for all e E X, 7r1 E(e) E evA, (S) and r2,E,(e) E eVA2(02), and

- irl, and %r2E are injective on X,

(s1,s 2 ,X) I- (s', s, XI W{e}) if

- (sI,s 2 ,X) and (s',,s',X W {e}) are states, and

- Sl "- s' or S2 F_ S,

Definition 16 Given an event automaton £ of type A, and given a par-
tial mapping a : A' -+ A, then the restriction of £ to A', notation
.[(a : A' --+ A), is the event automata (St', F-') of type A' where

. (s,a,X) E St' if

"- s E St, and X C Ev(A'),

- for all e E X, a'E,(e) E evA(s), and

- aE,, is injective on X,

* (s,a,X)FP'(s',a,XIWJ{e}) if

- (s, or, X) and (s', a, X Wf {e}) are states, and

- s Fs'.

Finally we introduce a relabeling operation.

Definition 17 Given an event automaton C = (St, F-) of type A and a
relabeling mapping a : A --- A', the relabeling of F, notation C[a], is the
event automata 9 = (St', P') such that

"* aSt(s) E St' iff s E S, and

"* ast(s) F- ast(s') if s F- s' and if ast(e) for e E ev(s') \ ev(s).

As such, the definitions make little sense (except for relabeling). Noth-
ing guarantees existence of the respective data. We commit the usual
fraud to claim existence of what is needed. For instance, given a partial
mapping h: A --* A', for all states s' E St(A') and all sets X C Ev(A),
we claim existence of exactly one state s of type A such that such that
ev(s) = X and Ast(s) = s'. If we use (s, A, X) to denote such a state,

A.-4
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restriction is well-defined in a given frame. The requirement is sound in
that states (s, A, X) should differ only in terms of events e, the images of
which are undefined w.r.t. hE11. Similarly, additional requirements can
be imposed to recover the definition of products.

Proposition 18 Assume that, for every pair of states 31 E St(Ai) and
82 E St(A2), and every set X C Ev(Al x. A2), there exists a unique
state (s 1,s 2 ,X) such that r1E,(s1,s2,X) = st, 7r2s(S,s2,X) = S2, and
ev(si,s2, X) = X. Then the construction in 15 defines a (categorical)
product of event automata in such a frame.

Pure event automata satisfy the conditions trivially if we consider
events as actions.

Interleaving semantics in terms of traces provides another example.
Given a set of labels A let Ev(A) = A* be the set of traces on this
alphabet. We define St(A) = {Pref(w)Iw E A*} as being the prefix-
closure of traces. The evA is the identity map, and AA(wa) - a. We leave
open which formulas may be used.

The asynchronous product of two sets T1 g A* and 72 _ A2 of traces
is given by a set T C (A1 x. A2)* such that w E T iff •r(w) E Ti and
the projections ri are injective on T. The projection mappings are the
canonical extension of those on actions to traces. Various synchronization
operators can be defined restricting to suitable sets of labels, for instance
the usual CSP operator is obtained as restriction to labels (a, a) in the
product alphabet.

The conditions for the asynchronous product of traces match exactly
those for states used in the definition of product automata. The condition
on the moves is trivially satisfied.

Similarly, we can set up a frame of synchronization trees [8], or a
frame of Mazurkiewicz traces [7]. Other choices, are to enrich the set of
events evA(s) of a state by a partial order representing dependency (as
a generalization of traces [17]), or to extend a state by data components
in that we allow to access internal data by means of attributes s.a. In
the latter case, definitions should be given relative to a signature which
comprises actions as well as attributes. The mathematics of this more
general setup will be investigated in [14].

We turn our attention to specifications. We follow the pattern of
section 3.

Definition 19 An elementary specification Spec over actions A consists
of



287

e a set of state formulas 4,, and

* a set of action declarations 0 P- a where ?p, 4 are of type A, and
where a E A.

All formulas are of type A.

Definition 20 Let Spec be a specification and C be an event automaton
of type A. Then £ satisfies Spec, notation E ý= Spec, if

(i) £ 4, for all state formulas 4, of Spec, i.e. , for all states s E St,

a 0,
(ii) .,, = H a for all action declarations 4' F- a, i.e., for all states s E St

such that s j 4', there is some state s' E St such that s F- s' and

\(e) = a (notation s I- s').

Proposition 21 Assuming that all definitions are properly translated we
have:

* £'r(A : A -+ A') k \*Spec whenever £ J= Spec,

* 61 li [I2 ý= Spec1 fl Spec2 iff .1 1 Spec, and £2 J= Spec2, and

* If £ • Specl "ISpec2 then \ 1(£) ý= Speci and A2(C) H Spec 2.

We refer to such specifications as elementary since they are concerned
only with states and with enabling.

4.3 Relating Events and Actions

Every style of specification of reactive behaviour is probably a compromise
between specifying in terms of actions and in terms of events. Hoare-style
trace logics may serve as a witness. Not surprisingly, most styles of spec-
ification make implicit assumptions about the nature of events. Traces or
synchronization trees are the structures commonly used for representing
events, while equivalences on top determine their nature. The preference
is justified. Traces and trees are natural structures to generate from ac-
tions, both are well understood, and we have the convenience that the
last event (maximal trace, tree) encodes all the history.12 However, traces
or trees do not support "true concurrency" in terms of an operator as, for
instance, the gluing of synchronization trees supports "alternative". We

"12hence support history-dependent actions, according to our taxonomy.
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should keep in mind here that the presentation of the semantic concepts
in terms of operators is crucial for logics (at least for those with linear
notation).

The absence of a "concurrency" operator of handy nature caused the
genesis of a long line of true concurrency models, the first being Petri's
[10]. Partial orders have been used very early to model causality [11, 16],
or, if you want, generalize the sequentiality of traces, with independence,
or concurrency, being a derived notion, but not an algebraic kind of oper-
ator. These models do not support "alternative". Event structures com-
bine the three aspects of "sequence", "alternative", and "concurrency",
as do Mazurkiewicz traces where sequence and independence are the ba-
sic concepts. So the short historical survey takes us right back to the
starting point.

To be fair, Vaughn Pratt addressed the question of how to generate
partial orders [16], as does recent work based on categorical structures13

[1]. Still, the work does not provide a logic which is as easy to use and
as natural as Hoare's trace logic or the various brands of temporal logics
[15], nor does it cover aspects such as history-dependence.

Maybe it is worth considering the communication protocol specified
in terms of of events. If more than one data packet is exchanged, then we
have several events corresponding to the "actions" Dreq and Dind. The
"action specification" D,,, I- Dind is quite useless. We have to relate each
event of sending of a data package to its arrival while the "specification"
at best states that some sending of a data package corresponds to some
arrival. We may refer to respective events by indexing, in that we consider
events {Dreq, li > 0} and {Dind,I i > 0}. Then the declaration Dreq, I-
Dindi, for all i, will achieve the desired result but we are back on the level
of events. We can, however, use the additional information by restricting
states to those such that the number of events labeled by Dreq is greater
or equal to the number of events labeled by Dind. If we stipulate that
the (action) formula Dreq holds if the number of Dreq events is greater
than the number of Dind events. The action Dind then enables any of the
still missing arrival events. If we want be sure that the channel works
in FIFO mode, we need a more structured set of events as well as of
states: we assume events to be ordered, for instance by nind, < nindj,
if i < j and require that the events in a state respect this order. The
latter can be achieved as well by sacrificing auto-concurrency 4; working

"13The latter seems to support imperative actions only, according to our nomencla-
ture. This is inherent in the bipartiteness of Petri nets. A marking does not record
the events which have previously occurred

"14meaning that there are concurrent events labeled by the same action.
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on Mazurkiewicz traces, we may say that (an action) formula Dreq ;s

satisfied if the "last" Dreq is not followed by a Did (with regard to the
order on the traces).

Without exhausting all the possible variations, the example should
demonstrate that a precise understanding of the relationship of events and
actions is crucial and that there is a variety of choices if true concurrency
is taken into account. Hence no universal procedure for relating events
and actions can be stated, but some requirements can. Given a set of
actions A the corresponding notions of events and states have to be fixed
as well as satisfaction. Our logic of actions is based on this infrastructure.
Moreover, for every action declaration 0 F- a, the effect of the action a
must be exactly known, namely which event is triggered, and how it
relates to the past history.

Formally, for every action declaration

0 I- a,

a logic of actions must determine a set of event declarations

', -a

such that, for all states s E St(A) in the given frame,

s= ifs

and

A(e) = a.

Moreover

a*0p if ajo.

should hold for the respective O's. This guarantees compatibility of the
synchronization operators for specifications on the level of actions and of
events. This condition completes our requirements for a frame.

The trace logic is an obvious example for a frame. If a trace w sat-
isfies the formula 4, then 0 F- a enables a transition to wa. Similarly,
Mazurkiewicz traces define a frame though they do not support auto-
concurrency. Auto-concurrency is well known to be a major problem.

Our taxonomy of actions further suggests that data components are
needed, for instance, for modeling shared memory. Data components
might be accessed using attributes for observation separating data and
events. Then a data logic can be designed quite independently, or rather,
a logic of actions may be parameterized by a logic for data.

L,
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5 Conclusions

We may summarize as follows:

* There is an elementary style of specification in terms of events which
is compositional with regard to synchronization operators.

# Similar results may be achieved for a logic of actions, but

* a framework for specification must clearly state how to relate actions
and events.

# Conditions are given for frameworks such that the logics interact
appropriately.

* Compositionality of specifications with regard to synchronization
operators is established.

We consider our setup as a first step. More work needs to be done:
the basic model should be enriched in order to support the various kinds
of actions of our taxonomy (which is currently worked out in [14]), and
more logical infrastructure must be provided. There are various lines of
thought for the latter. For instance, one may introduce formulas 0a and
extend satisfaction to (s, s') = (p to specify 'one-step' behaviour. The
framework is easily extended to cope with such "static semantics". The
situation is more complicated with "dynamic" varieties of logic.

Let us use a formula of the form [a]O (where q E Form(A)) with
a

satisfaction being defined by: E, s j= [a]V if, for all moves s F- s', 5' .

Then we can prove by a straightforward argument

Proposition 22 For a partial mapping A: A -+ A', an automaton C of
type A', and a formula 0 E St(A'), we have that A*('), s k [a]A*0 iff
C', A(s) 1= [A(a)], provided that A(a) is defined.

Indeed, the definition of these formulas expressing the "dynamic" of
the system strongly depends on the taxonomy we have introduced before.

There may be more dynamic operators, and similar results should
hold for them. Since satisfaction depends on the given automata, there
seems little hope to give a uniform translation scheme but we note that
the pattern for the "dynamic" enabling relation and the "predicate trans-
formation" above is of striking similarity.
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Abstract. Graph reduction is an implementation technique for the lazy X-calculus. It has been used to
implement many non-strict functional languages, such as lazy ML, Gofer and Miranda. Parallel graph reduction
allows for concurrent evaluation. In this paper, we present parallel graph reduction as a Chemical Abstract
Machine, and show that the resulting testing semantics is adequate wn testing equivalence for the lazy I-
calculus. We also present a 3r-calculus implementation of the graph reduction machine, and show that the
resulting testing semantics is also adequate.

1 Introduction
The lazy reduction strategy for the .-calculus investigated by ABRAMSKY (1989) has only

two reduction rules:
E-' E'

(),x.E)F ---> E[l/x] EF E'F

This can be compared with the full evaluation strategy of BARENDREGT (1984):

E - E' F -+ F E E'
(Xx.E)F -+. E[F/x] EF -- E'F EF -- ) EF' Xx.E -- Xx.E'

If the full evaluation strategy can terminate, then the lazy evaluation strategy will. For
example, if we define:

K = Xxy.x

I = Xx.x
Y = Xx.((Xy.x(yy))(Xy.x(yy)))

then YI --*0 but KI(YI) 7400 , whereas KI(YI) -. •>- . However, the lazy evaluation
strategy is very inefficient, since it may duplicate arguments when applying a function.
For example, if we define:

E=1

Ei+1 = (X.x.xx)Ei

Then Ei -... I2i [but Ei --- 2i+--2 I, that is the lazy strategy can be exponentially worse than
the full strategy. Thus, the early functional languages, such as LISP (MCCARTHY et al.,
1962) used a strict reduction scheme rather than the lazy reduction scheme.

Graph reduction was introduced by WADSWORTH (1971) as a means of efficiently
implementing the lazy reduction strategy. Rather than reducing syntax trees, we reduce
syntax graphs which allows a more efficient representation of sharing. For example, we
can represent the reduction of Ei+1 as:

Copyright Q 1992 Alan Jeffrey.
This work was supported by SERC project GR/! 16537.
Miranda is a trademark of Research Software Limited.
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Graph reduction has been used to implement non-strict functional languages such as
JOHNSSON'S lazy ML (1984), JONES's Gofer (1992) and TURNER's Miranda (1985). It is
discussed in PEYTON JONES'S textbook (1987).

However, there has been little work in the formal semantics nf graph reduction. BAREN-
DREGT et al. (1987) have shown that graph reduction is sound and complete with respect
to term reduction. LESTER (1989) has shown that the G-machine of AUGUSTSSON (1984)
and JOHNSSON (1984) is adequate wrt a denotational model of the lazy X-calculus. In this
paper, we provide an alternative presentation of graph reduction, as a Chemical Abstract
Machine (CHAM), in the style of BERRY and BOUDOL (1990).I The CHAM was introduced as a way of presenting the operational semantics of parallel

t languages in a clean fashion. It has been used to give a semantics for MILNER'S CCS (1989)
and MLNER, PARROW and WALKER'S 7r-calculus (1989).

Here, we shall give a semantics for parallel graph reduction with blocking, as described
by PEYTON JONES (1987). We will show that this is an adequate semantics for the lazy
1-calculus, and that it can be implemented in a variant of the ;r-calculus.

2 The lazy lambda-calculus

The A-calculus, introduced by CHURCH (1941), has the following syntax:

E ::=x I EE I Xx.E

where x ranges over an infinite set of variables. This can be given a number of operational
semantics, but we shall only look at two of these. We shall call these the lazy semantics:

E E'

(Xx.E)F --+ E[F/x] EF - E'F

and the full semantics:
E -*- E' F - F' E - E'

(Ax.E)F -* E[F/x] EF -* E'F EF -- Ert Xx.E X Ax.E'

Here, E[F/x] is E, with every free occurrence ofx replaced by F, up to the usual renaming
of bound variables. We can define a variant of MORRIS's testing pre-order (BARENDREGT,
1984, Exercise 16.5.5):

E r- F iff VC. C[F] . = C[E]

We can also define a variant of the .-calculus with recursive declarations and strictness
annotations:

M ::=x xy I Xx.M I re•x := D in M
D :=?M I !M
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Here:

" recx := ?M in N declares x recursively to be M in the context N. For example, a
fixed point of f is recx := ?f in recy := ?xy in y.

"* recx := !M in N is the same, except that x is strict in N, and so evaluation of M can
be sparked off as a parallel computation.

We shall let bound variables be a-converted. The free variables of M are fv M:

fvx = {x)
fv(xy) = {x, y)

fv()x.M) = fv M \ {x)
fv(recx := D in M) = (fv D U fv M) \ {x)

fv(!M) = fv M

fv(?M) = fv M

There is a translation I from the X-calculus to the X-calculus with rec:

lxI -x
IEFI recx := !IEI in recy := ?IFI inxy

lXx.EI ),x.IEI

Note that in the translation of EF, we know that E will be used, and so it can be evaluated
strictly. On the other hand, we do not know if F will be used or not, so it cannot be
annotated.

3 The chemical abstract machine

The Chemical Abstract Machine (CHAM) of BERRY and BOUDOL (1990) is a way of
presenting the operational semantics of parallel systems. We shall use it to give a semantics
for parallel graph reduction of the X-calculus with rec.

A CHAM gives reductions between solutions, which are multisets (or bags) of molecules.
The definition of molecules is specific to each CHAM, but a solution can always be re-
garded as a molecule. In a solution min 1,..., in, D}, the multiset brackets -... I} are called
a memrbrane. Let S range over solutions, and let S WJ S' be the multiset union of S and S'.
Each CHAM has three types of reduction:

"* Heating rules, of the form S - S'.
"• Cooling rules, of the form S -, S'.
"* Reaction rules, of the form S t-+ S'.

Heating and cooling rules are always given in pairs S -V- S', whereas reaction rules are
irreversible. We shall write -* for the transitive, reflexive, symmetric closure of -, write
-+ for -- *+-*, and let =• range over -- , - and i-+. All CHAMs have the following
structural rules, where m [.] is a molecule containing precisely one hole:

S =.S' S= S'

S W S" =• S' W S" im[S]!) W Om[S'ID

In addition, the CHAMs we shall consider in this paper allow the outermost membrane
of any solution to be ignored. This allows us to write mm ..., m, = mi, ... in.', forOre, ... . 0,, Im,n ... ,i'.. m',:
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ISD #5

The molecules and reduction rules are specific to each CHAM. In the case of the graph
reduction CHAM, molecules are defined:

m ::=x := D I S I vx.S

The free variables of in are fv in:

fv(x := D) = {x) U fv D
fv m1 .... m.D = fvm1 U...Ufvmn.

fv(vx.S) = fv S \ {x)
The defined variables of m are dv in:

dv(x := D) = {x)

dvml .. rn = dvml U...U dvm,

dv(vx.S) = dv S \ [x}

We shall only consider solutions which do not define any variables twice, so in any
solution u m1  ..... mn0, the defined variables of each rin are distinct. For example, we
do not allow solutions such as vx.Ox := !Lkw.M, x := !Xw.N, y := !xwjR which could
reduce nondeterministically to jy := !MW or to ly := !ND. If i = x, ..., x,, then we
can write vx.m for vx.imO and vir.m for vxi...Vxn.m. Define:

"* a molecule is a positive ion with valency x iff it is x := ?M or x := !ky.M.
* a molecule is a negative ion with valency y iff it is x := !y or x := !yz.
"* a molecule is ionic iff it is a positive or negative ion.
"" a solution is plasmic iff it is I vS.Jin 1, mn,,, R or grina, ...,. mD wherv each mi is

ionic. A plasma is positive (negative) iff it contains only positive (negative) ions.

Plasmas can be regarded as graphs, for example the graph reduction:

z z
z z I@I @ !@M V \

!Xw ?lE11 / '% / \ -7i !V ?V
IV ?V IV ?V

\ U/ / !Xx
/e \ ?IEjI !IEjj I.

!w ?w !x

z z z

I@ IV IV z

•.x ?V ?V IV .1,

!X L~x !xX L~xX I X

!X !x !x

is represented by the CHAm reduction:
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vxy.jz =xy, y := ?JE 1 , x := !.w.ww[i
--- vuvy.jz :=!uv, y := ?IE.I, v := ?y, u := !yD

--i- vuuy.fz := !uv, y := !JEII, vi ?y, u !yD

SvuVy.jz = !uv, y :-= till, v :-= ?y, u := !ll
vvy.jz :=IV, y : !1ll, v := yl}

Svvy.Oz : v, y := !Il, v : !yD

vv.-z := Iv, v := tlllO
1+z := !lIa

In these diagrams:

"* Tagged nodes x !M are labelled with a!.
a Untagged nodes x := ?M are labelled with a ?.
"* Application nodes x yz are labelled with a @.
"* Indirection nodes x := y are labelled with a y, if y is free, and with V otherwise.
"* Function nodes x := Xy.M are labelled with a ky, and have the graph for Oz :=!MO

drawn beneath them, for some fresh variable z.

The most important heating rule allows recursive declarations to become part of a solution,
whilst hiding the bound variable. This is only valid when it would not cause the free
variable x to become bound by y, which we can achieve by cr-converting y first.

x:=(!recy:=DinM) vy.jjx:=!M,y:=-DD (x -Ay)
The scope of a hidden variable can migrate, as long as this does not result in variable
capture:

m, Vx.m' # vx. Jm, mr'I (x V fv m)

Hidden variables may be cr-converted, exchanged and evaporated:

vx.m # Vy.(m[y/x]) (y i fv ")
vxy.m • vyX.m
vx.DD fO0

Finally, we can perform garbage collection on positive plasmas, since a hidden positive
plasma can never make any reductions:

V.i.jOi := bil -Ir j a (v. := ba} is a positive plama.)

We shall sometimes write -,y for this thermal action, and #•, for any other thermal

action. For example, the graph reduction:

i "

can be derived:
vyx.jx := 1l, y :? ?l, z := !xyD

i iyx.§x := !I, y :- z :=!Y
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- vyx.x := H, fy :I, z := !yO 0
.Vy.1vx.Jx HU!, ly := ?l, z := !y5 a

"-- vy.fy :=?, z := !YD I

rVy.Oy :I, z := !YD

A reaction can occur whenever one positive and one negative ion with the same valency
exist in a solution. Since there are two kinds of positive ion and two kinds of negative ion,
there are four reaction rules. The first two allow untagged molecules to become tagged:

x := !y, y := ?M - x !y, y := !M

x := !yz, y ?M x !yz, y := !M

These can be drawn:

ISO :# S
x:=!recy:=DinM: vy.flx:=!M,y:=DO (x y)

m, vx.m' - vx.Am,m'O (x V fvm)

vxy.m •- lyx.m

i'x.f0 • O

v-..0i:= DO 1 1i (11 := bi is apositive plasma)
x :=!y, y:= M x :=!y, y:=!M

x :!yz. y :=?M x :=!y y :--!M
x := !y, y:--- !).w.M x :=!1.tv.M, y:---!I.w.M

x :=!yz, y:= !w.M i x:= IM[z/w], y= !.w.M

Table 1. Stmnay o toe graph rduchon•CHAu

This models the first phase of graph reduction-we search along the spine of a graph,
tagging nodes for evaluation. Note that strict reactions do not occur:

x := !yz, z := ?M V+ x := !yz, z := !M

If a tagged indirection node points to a function, we can just copy the function. The
SKIM (STOYE et al., 1984) and G-machine (JOHNNSON, 1984) use this as a method of
eliminating indirection nodes. It was shown by LESTER (1989) to be adequate:

x := !y, y := 11w.M i x := !X•w.M, y :=!w.M

This can be drawn: l! I I!wM

I4I-I
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If an application node points to a function, it can be a-reduced:

x := !yz, y := !Iw.M i-* x := !M[z/w], y := !).w.M

This can be drawn:
Vt M

!Xw N !Xw V ... V

M M N

SW ... W IW ... UP

We shall sometimes write i-+# for this reaction, and i-*# for any other reaction. This
CHAM is summarized in Table 1.

This cHAM implements the algorithm for parallel graph reduction described by PEYTON
JONES (1987). A process is assigned to evaluating a node, which is tagged. It then searches
along the spine, tagging each node as it passes. If it reaches a function node which can
be a-reduced, it does so. If it reaches a function node which cannot be fl-reduced, this is
returned as the result. If it reaches a previously tagged application or indirection node, it
is blocked until the tagged node is evaluated. For example, in the graph:

x

IV @
i !V I•@

"?M ?N

only one process will evaluate M. This is mirrored in the CHAM by the fact that M
will only be reduced once. However, this algorithm produces some surprising results
with cyclic graphs. The solution jy := 1 recx := !x in xD heats to become the plasma
j vx.]y := !x, x := !xU I and the graph:

IrV

LTJ
This has no reductions, because it is negative. This is mirrored in the parallel graph
reduction algorithm, since the process evaluating y will discover that the indirection node
at x has already been tagged. Thus, it is possible for evaluations to deadlock, when a
sequential algorithm would diverge.

Our translation of the A-calculus will not produce cyclic graphs, although it can
still produce divergent terms. For example, the translation of (.Xx.xx)(Xx.xx) has the
reductions:
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z z z

)`x Xx Ix Xx

!@ @ !@ !@
V\ /\ / /

X X X X X X IX X

Since I EI is an acydic graph, we will be able to show that the CHAM semantics for the
X-calculus is adequate. To do this, we define the testing preorder on molecules:

m C_ m' iff VC. C[m'] --) ==' C[m] --*

and show that the CHAM semantics is adequate, that is if (x := ?IEI) g (x := ?jFI) then
E C F.

Theorem 1 (adequacy). If(x := ?EI) g (x := ?IFI) then E C F.

Proof. Given in (JEFFREY, 1992). 0]

However, it is not fully abstract.

Theorem2. E C_ F does not imply (x := ?IEI) _ (x := ?IFp).

Proof. Given in (JEFFREY, 1992). 0

It is an open problem as to whether the CHAM semantics is fully abstract wrt ABRAM-
SKY'S (1989) X-calculus with C, and as to whether the canonical semantics for the lazy
X-calculus D = (D -+ D)± is adequate wrt the CHAM semantics.

4 The asynchronous pi-calculus

The 7r-calculus, introduced by MILNER, PARROW and WALKER (1989) is a process alge-
bra in which scope is considered important. MMNER has shown that it can be used to
model pointer-structures (1991) and the lazy X-calculus (1992), which has been further
investigated by SANGIORGI (1991).

Since the x-calculus was designed with pointer structures and the k-calculus in mind,
it seems natural to use it to encode a parallel graph reduction algorithm. We shall consider
a variant of BOUDOL'S asynchronous 7r-calculus (1992). This has the syntax:

P ::= 1[yz] I x(yz).P I P I P I vx.P I [x = y]P I [x $ y]P I A(Q)

Here:

"* 1yz] is the process which outputs the pair (y, z) along channel x.
"* x(yz).P is the process which inputs a pair (y', z') along channel x, then behaves like

P[x'/x, y'/y].
"* P I Q places P and Q in parallel.
"* vx.P creates a new channel x for use in P.
"* [x = y]P acts like P whenever x = y, and deadlocks otherwise.
"* [x $ y]P acts like P whenever x 9 y, and deadlocks otherwise.
"* A(!) is a recursive definition, in the style of MILNER (1989). We shall assume an

environment of definitions A (1) •= P, where fv P C_: i.
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The CHAM for this variant of the asynchronous x -calculus is given in Table 2, and is very
similar to BOUDOL's CHAM for the asynchronous ir-calculus (1992). The only new rules
are:

"* ISO •- S, which is missing from BOUDOL's paper. This rule is required to prove the
result that for any solution S there is a process P such that S -* Q P11. For example,
we cannot show 0Ij[yz]D 0 •-" 17[yz]l without this rule.

"* [x = x]P #- P and [x 9 y]P •- P whenever x 0 y, which gives semantics for the
conditional operators missing from BOUDOL'S paper.

"* A(i) -- P[./fI whenever A(ý) •= P, which gives semantics for recursive definitions
which were not used in BOUDOL'S paper.

We can define much of the same vocabulary for this CHAM as we did for the graph reduction
CHAM.

OsO :# S

vx.P • vx.lPD

m, vx.m' • vx.1m, m'D (x V fvm)

Vx.m - vy.(mty/xl) (y i fv m)
vxy.m • vyx.m
vxx.m # vx.m

[x = x]P • P

Ex 96y]P ±P (x 9 y)
A(1) •-P[Ircl] (AG•) !- P

-Y[yzl, x(VW).P P[y/V, z/w]

Tabl2. cwAir"n-cabdus

"* A molecule is a positive ion with valency x iff it is x(yz).P.
"* A molecule is a negative ion with valency x iff it is 3F[yz].
"* A molecule is ionic iff it is a positive or negative ion.
"* A solution is plasmic iffit is jvu. IP1, ... , P,n 0fi or IP1, ... , Pn. and each P- is ionic.

A plasma is positive (negative) iff it contains only positive (negative) ions.

We can give a translation of each molecule of the graph reduction CHAM into the 7r-
calculus. This uses a special variable *, which we shall use to represent a function which
is being evaluated, but which has not (yet) been given an argument. The semantics for
terms is:

jxiz x-[*z]
Ixy]z = [yz]

IXx.Mjz = !z(xy).([x = *][)•x.Mly I [x A *,]M]y)
[recx := D in MRz - vx([DJx I [M~z) (x . z)

where MILiER's (1991) replication operator is defined:

!P P I P

Note that the definition of [Xx.M] is recursive, which is why we are taking recursion to be
primitive, rather than replication. It is not obvious whether one could define a semantics

IS
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using replication for which there would be a one-to-one correspondence between CHAM

reductions and 7r-calculus reductions. Note also that [recx := D in Miz is defined
only when x 6 z, but we can use a-conversion on x to assure this. The semantics for
declarations is:

[!M]z [• M]z

1?MIz = z(xy).(4-xyI I [MIz)

The semantics for molecules is:

[jx := D] =M ID]x

z

Table 3. A sample graph reduction in the ,r-calciius

!I[Xx~m] "= jx.[m

This semantics can be drawn with flow graphs. For example, if we draw:
• for I[DIjz

z z
()for Itx]Iz ()for I[?x]Iz

x x
z z(• for I[xyIz f for IxyIz

x y x y
Then the reduction of Ei given in section 1 can be drawn (with some extraneous processes
removed to account for garbage collection) in Table 3. This is exactly the same reduction
as given in Section 3.

In general, we can show that each CHAM reduction is matched by exactly one Kr-

calculus reduction, and thus that the ;-calculus semantics is adequate wrt the CHAM

semantics for graph reduction (and so wrt the .-calculus).

Theorem 3 (adequacy). If [S] C_ [S'l then S E_ S'.
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Proof. Given in (JEFFREY, 1992). 0

However, it is not fully abstract.

"Theorem 4. m C in' does not imply [mi] E_ [I']

Proof. Given in (JEFFREY, 1992). 0

SANGIORGI (1991) has investigated X-calculi semantics for which MnLNER's 7r-calculus

translation is fully abstract. It is an open problem as to whether similar results can be

shown for the CHAM for graph reduction.
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Abstract

Monads, comonads and categories of algebras have become
increasingly important tools in formulating and interpret-
ing concepts in programming language semantics. A nat-
ural question that arises is how various categories of alge-
bras for different monads relate functorially. In this paper
we investigate when functors between categories with mon-
ads or comonads can be lifted to their corresponding Kleisli
categories. Determining when adjoint pairs of functors can
be lifted or inherited is of particular interest. The results
lead naturally to various applications in both extensional and
intensional semantics, including work on partial maps and
data types and the work of Brookes/Geva on computational
comonads.

1 Introduction

Monads, comonads and categories of algebras have become increas-
ingly important tools in formulating and interpreting concepts in

*•This research was partially supported by NSF Grants CCR-9002251, CCR-
9203106, INT-9113406 and a Colgate University Picker Fellowship.
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programming language semantics. The existence of reflections and
coreflections on various categories of cpos and domains, for example,
has proven to be a special case of comparison functors between Kleisli
and Eilenberg-Moore categories of algebras while initial algebras for
various monads are routinely used to interpret recursive data types.
Final coalgebras and invariant objects have also played important
roles, such as describing PER semantics, algebraic completeness and
fixed point semantics [CP], [F], [FMRS], [Mull, [Mu2].

In refining such work the particular role played by special mon-
ads has been profitably emphasized. For example the existence of
partial map classifier(pmc) monads in more general settings than
a topos was addressed in [Mu3] in order to connect the notions of
pmc and partial cartesian closed category(pccc). Additionally Kleisli
categories for strong monads have been utilized in providing a gen-
eral interpretation for abstract programming languages [Mo]. In a
different direction Kleisli categories of comonads, particularly com-
putational comonads, have been used to describe an intensional se-
mantics in which comonads represent different possible notions of
computation[[BG]. Despite the success in utilizing different monads
and comonads in separate semantic contexts, little work to date has
examined how the corresponding categories of algebras might relate
functorially and what effect this has on the associated semantics.

In this paper we address this question by considering when func-
torial processes on categories with associated monads can be lifted
to their corresponding Kleisli categories. We also investigate con-
ditions under which adjoints may be either lifted or inherited. A
key step is the observation that the presence of a lifting is equiva-
lent to the existence of a natural transformation satisfying certain
equations. Equally important are the wide variety of examples that
arise in this setting. We also find that some timely issues gain a
new perspective when examined from this viewpoint. For example
the notion of monadic strength, which plays an important role in
calculations for computational lambda calculi, is a special case of
the required existence of a natural transformation. Conditions en-
abling cartesian closure for semantic categories also naturally arise
through the lifting of adjoints as do interpretations of partial data
types. Examples such as Moggi's extension construction 0, as well
as Brookes and Geva's foundational work on intensional semantics
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can be interpreted and generalized in this setting as well.
Some acknowledgements are in order. It would be amiss if I did

not mention the hospitality of LFCS, Edinburgh, where much of
the early work on this paper was completed. I would like to thank
Martin Hyland whose perceptive questions on a visit to Cambridge
helped motivate part of this enquiry. The work in [J] for the case of
Eilenberg-Moore algebras had a significant effect on both the expo-
sition and content of the basic mathematical results. Thanks also to
Ernie Manes for some useful comments and suggestions.

2 Lifting Theorems

We begin by considering monads (H, 77, t) and (K, p, v) on categories
C and D respectively. Let T be a functor T : C -4 D. We are inter-
ested in determining when T can be extended to a functor between
the corresponding Kleisli categories. We start with a definition mak-
ing this notion precise. Let iH denote the inclusion functor from C
to CH.

Definition 2.1 A funcor TC OH -4 DK is a lifting of T if To iff -

iK o T or equivalently that the following diagram commutes.

CH ,DK

iHt iKt

c C

We wish to specify when a given functor T has a lifting. The next
result produces such conditions. For similar results in the algebra
case see [A],J],[Ma].

Theorem 2.2 For C, D, H, K, T as above, functors T : CH -+ DK
which axe liftings are in 1-1 correspondence with natural transfor-
mations of the form A : TH -4 KT that satisfy the following

1) AoTq = pr

2) Tr o KA oA H = A o TA.
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Proof : Given A: TH -+ KT and : A -+ B an arrow in CH t

(i.e. map A -* HB in C), Tf is defined as AB o Tf : TA -+ KTB.
Some diagram chasing ensures that T is well defined and generates
the desired commutative diagram. For example T(idA) = AA o TqlA:
TA -+ KTA = PTA = idTA in DK.

Conversely suppose a lifting T of T exists. We denote the right
adjoints to iH and iK by GH, GK respectively. First define the
natural transformation A : T o GH -+ GK o T as the transpose of
Tr : TiHGH -+ T where iK o T o Gtf = To iH o GHf. Composing by

iH gives the desired natural transformation A = A 0 iH. Once again
some diagram chasing shows A satisfies the required equations. 0

The existence of a natural transformation A for monads H and
K satisfying the equations of 2.2 is not that unusual. In fact several
well known examples such as tensorial strength and units of a monad
are special cases of A as the next few examples illustrate.

Example 2.3 Let category C be cartesian with nmonad H and endo-
functor T= _xB for B an object in C. The functor T has R lifting iff
there exists a natural transformation AA,B : HA x 1? -4 H(A x B)
satisfying

1) AA,B 0 77A X B = TIAxB

2) 11AXB o HAA,B o \HA,B = AA,B 0 AA x B.
These are precisely the equations corresponding to tensorial strength
and the notion of strong monad [K]. Recall a monad H is strong if
there -xists a natural transformation AA,B satisfying 1) and 2). See
[Mu2] for details. It is an easy matter to make A natural in both A
and B by considering the monad H x H on C x C, letting T be the
functor - x -, and utilizing the unit of the monad. Thus tensorial
strength is a special case of the existence of a natural transformation
for a lifting.

Corollary 2.4 Tensorial strength exists for monad H on cartesian
category C iff products in C lift to CH.
Proof : The result is immediate from Theorem 2.2 and Example
2.3. 0

Example 2.5 Suppose C and D agree, C has the trivial identity
monad and K becomes H. Then for a given endofunctor T of C,
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the natural transformation T : T -4 HT satisfies the equations of
Theorem 2.2 and so a lifting T: C -+ CH exists. Conversely if T
exists then T = iH o T and so A must be Wn.. In particular when T
is the identity, A is just the unit of the monad H, i,, and T H = i.

Example 2.6 Suppose C and D agree, K is the trivial identity monad
and T is the monad H itself on C. In this case H has a lifting and the
corresponding natural transformation is just ti: A : H 2 -+ H. The
equations of Theorem 2.2 hold and reduce to the identities / o Hr- =
idH and p o0jH = /. o HI. The lifting F" is the right adjoint to iH,
namely GH.

Lemma 2.7 Lifting distributes over composition, i.e. 3- o T = "T.
Proof: Let H, K, J be monads on CQ D, E respectively with func-
tors T : C -+ D and S : D -+ E. Suppose that T and S have
liftings T, 3 respectively where A': TH -+ KT and A" : SK -- JS
are the natural transformations corresponding to T and 3 satisfying
the equations of Theorem 2.2. There then exists a natural trans-
formation A = A";T o SA' : STH -+ JST. A little diagram chasing
will readily show that A satisfies the appropriate equations and thus
produces a lifting 3T of ST. However since T and '9 are liftings, the
composition 7 o T is also a lifting of ST. For f : A -+ HB an arrow
in CH, 3 oT(f) = A o SA' o ST(f) and thus the lifting 3o T agrees
with MT. 0

If we were not interested in providing a formula for A in the
above proof, one could easily prove the lemma by composing the
two commutative squares. We also note that it need not be true that
id = id as Example 2.5 illustrates. This point will be emphasized in
the next section.

Corollary 2.8 Let monad (H, -i, p) be a monad on C. The comonad
associated to H can be generated as a lifting.
Proof : Given monad (H, Y1,, ) we have the adjunction iH -i GH.
The comonad formed by the adjunction is simply H* =iH o GH.
Let C, D and E agree, T be the monad functor H, K - S be the
identity functor on C, and J = H. By Example 2.6, A' associated to
T is just p and the lifting of T is exactly GH. By Example 2.5, A"
associated to S is iq and the lifting ' is iH. Thus by Lenmna 2.7 the
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natural transformation A = j7H o /p satisfies the equations of Theorem
2.2 and corresponds to the lifting 7i = ig o GH = H*. 0

We wish to examine how adjunctions on liftings relate to adjunc-
tions on the original functors. The theorems that follow address this
question.

Theorem 2.9 Let T, T, A. H, K be as in Theorem 2.2. If K is a
cartesian monad and C has equalizers of coreflexive pairs, then T
has a right adjoint implies so does T.
Proof : Because K is cartesian, any object X, in D is an equalizer

-4

of a coreflexive pair of the form KX -4 KKX. In fact the equal-
izer is just the unit of the monad, px. Since GH and GK are right
adjoints and adjoints are unique up to iso, if R exists we must have
RGK ý- GHR. Thus we know what R is on cofree objects but by tile
above every object in D is an equalizer of cofree objects. Since R
must preserve equalizers, we expect RX to be the equalizer of a pair

I

of maps fig , GHR -4 Gff77. We construct the maps f, g in C as
follows. The map f is just GH7(iKpx). For g, first take the compos-
ite iKGK'EiKX --KANiKX wihere E is tile counit of the adjunction T, 77
and A_ refers to the natural transformation of Theorem 2.2. Taking
the transpose once gives iHGH-RiKX -+ R7,KKX and a second time
gives GH77iKX -4 GH-iKKX. Some diagram chasing shows that
the constructed maps f, g do the job. 0

In [Mull it is shown that every ccc C with a pmc generaLes a
pccc which is equivalent to its associated Kleisli category CH. The
next result gives a partial converse to this result. An alternative
approach can be found in [Mu3].

Corollary 2.10 Let pC be a pccc where C has equalizers of coreflexive
pairs, then C is a ccc.
Proof : Since pC is a pccc, it has a pmc K which is a cartesian
"monad and for which pC is equivalent to CK(see [Mu3]). If T de-
notes the endofunctor .xB : C -+ C, then there exists a lifting
T: C -+ CK where the monad H is the identity and A ,, just the
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unit natural transformation pT. Since pC is a pccc, T has a right
adjoint fl and thus by Theorem 2.9 so does T and we are done. 03

Example 2.11 Let C be a model of the computational lambda cal-
culus, A, in the sense of [Mo] where monad T is cartesian. If C has
equalizers of coreflexive pairs then C is a ccc. The proof is essentially I
the same as in Corollary 2.10.

Example 2.12 Let C be either category pDOM or pCPO. It is well
known that these categories are pcccs. Although neither DOM nor
CPO is closed under equalizers of even coreflexive pairs, they do
have equalizers for the coreflective pair f, g generated by Theorem
2.9. If K is the pmc lift monad associated to pC and T is the functor
-.xB, then in this case f and g are just (Px)B and (px 1.)B respectively
for X in C, where p is the unit of the lift monad 0

Theorem 2.13 Let C, D. H,K,T,T be as in Theorem 2.2. The
natural transformation A is an iso iff GKT 4 TGH.
Proof : Suppose A : TH -* KT is an isomorphism. In the proof of
Theorem 2.2 it was shown that A = A o iff. If A is an iso it follows
easily that A is also iso and thus GKT ý- TGH. Conversely suppose
that we have an isomorphism GKT a5 TGH. Since T is a lifting we
have an isomorphism TH = TGHiH a- GKTiH = GKiKT = KT.
It is easily checked that the isomorphism satisfies the conditions of
Theorem 2.2 and thus must be A. 0

Corollary 2.14 Let C, D, H,K,T,T be as in Theorem 2.2. If T
is a full embedding and A is an iso then the lifting T is also a full
embedding.
Proof : Let f, g be arrows in CH and suppose T(f) = T(g). Then
A o T(f) = A o T(g). Since A is mono, T(f) = T(g) and T an
embedding implies that f = g and so T is faithful. Now suppose
h : T(A) -4 T(B) is a map in DK, i.e. h : T(A) -+ KT(B) is
a map in D. Since T is a lifting and T is full, there exists a map
k A -4 H(B) in C so that T(k) = A-1 o h. But k is a map in CH
and so T(k) = A o T(k) = h. Thus T is also full and we are done. 0

Example 2.15 Let C have a pmc monad H. In [Mu3] it is shown that
H must be the restriction of a pmc ()p in the presheaf category C over
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C, i.e. there exists a natural transformation which is an isomorphism
YH - ()O,Y, where Y is the Yoneda embedding. What's more the
isomorphism satisfies the equations of Theorem 2.2. By Theorem t
2.13 then there exists a lifting V7 of Y and by Corollary 2.14, V7 is
also an embedding. The following diagram then commutes where
the vertical pairs form adjoint pairs.

CH

i GH

The lifting of Y in the previous example is different from the ex-

tension construction (, found in [Mo]. There () is computed using

Kan extensions and is applied directly to monads, though the con-
struction can be readily related to the present context as Example
2.17 shows. The results of the last example also can be utilized to
describe how pcccs can be incorporated inside the setting of Kleisli
categories of pmc monads on cartesian closed categories.

Corollary 2.16 Every pccc pC can be fully embedded inside the
Kleisli category of a cartesian closed category.
Proof : Since pC is a pccc, C has a pmc monad H for which pC
is equivalent to CH (see[Mu3j). By the previous example H is the
restriction of a pmc ()p in C and thus the Yoneda embedding has a
lifting to pC which is again a full embedding. 0

Example 2.17The () construction on monads found in [Mo] fits nicely
in the general context of the results above. For a given monad H
on C, the existence of an extension (Ht) simply provides a trivial
natural transformation which is just an identity A : YH = (Ht)Y.
Likewise the corresponding equations trivialize. Although there is
no mention of this in [Mo], by Theorem 2.2 there is also a lifting of
Y, V7 : CH -4 CIf to the Kleisli categories. The other properties
listed there, such as preservation of strength, follow immediately as
a consequence of Corollary 2.14.
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We include the next result for completeness. Although we do
not use it now, the dual result plays an important role in comonadic
computation. See Theorem 3.5 below.

Theorem 2.18 Let C, D. H,K,T, T be as in Theorem 2.13. If T has
a left adjoint then so does T.
Proof : The proof follows the approach in [J]. Suppose L -i T
exists. Since GKT S- TGH, if a left adjoint T to T exists it must
satisfy iH o L 0 ig. Thus T is a lifting of L and can be defined
by specifying a natural transformation 0 : LK -+ HL. Defining
6 = cHL o LA-'L o LKu where u and c denote the unit and the
counit respectively of the adjunction L -i T, provides the necessary
natural transformation. Some diagram chasing shows that 6 satisfies
the equations of Theorem 2.2. 0

3 An Application using Duality

The past section dealt with lifting theorems for Kleisli categories
of monads and various applications. In this section we examine
an application that exploits the dual results to those presented in
section 2, namely we consider how lifting theorems for comonads
can be utilized to model intensional semantics in the sense of [BG].

In [BG], a categorical approach to intensional semantics is devel-
oped. If the extensional meaning of a program is represented by a
map in category C, then for a suitable choice of comonad H on C,
HA can be viewed as an object of computations over A, for any ob-
ject A in C. The intensional meaning of a program is then interpreted
as a map from computations to values, i.e. a map in the Kleisli cat-
egory of the comonad H. By defining a computational comonad in
[BG], an extensional equivalence relation on algorithms is obtained
thereby allowing reasoning at different levels of abstraction.

We consider comonads (H, c, 6) and (K, a,,3) on categories C and
D respectively. T is a functor T : C -+ D and again we are interested
in determining when T can be lifted to a functor T : CH -+ DK
between the corresponding Kleisli categories for the comonads. As
before the lifting of T satisfies T o iff = iK o T where iH is the usual
functor C -+ CH with adjoint Gif. Now the functor iH is a right
adjoint.

p_ -
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Theorem 3. 1 For C, D, H, K, T as above, functors T: CH -* DK
which are liftings are in 1-1 correspondence with natural transforma-
tions of the form a : KT -ý TH that satisfy the following equations.

1) Teo a = 0 rT
2) ow o Ka o N = T6o o,.

Proof : This is just the dual of Theorem 2.2. 03

Example 3.2 Let (H, c, ) be a comonad on C. In [BGJ a comonad is
called computational if there exists a natural transformation
y : id -+ H satisfying

1) • o =id

2) 6 07= o fo

It is then shown that a computational comonad produces functors
alg and fun and an extensional equivalence of maps is achieved. The
functors aig and fun are just special cases of the lifting construction.
Specifically, let C = D, H be the identity comonad, and K = H in
the setup of Theorem 3.1. If T is the identity functor on C then
by the dual to Example 2.5, T : C -+ CH is just ifH which is just
aig and the natural transformation a generated by the lifting is just
the counit of the comonad H, namely c. Reversing the direction of
the lifting where T is still the identity, the existence of a lifting T :
CH -ý C corresponds to the existence of a natural transformation
a : KT - TH satisfying the equations of theorem 3.1. In this case
a becomes y : id -+ H and the equations reduce to those above
defining a computational comonad. Further the lifting T: CH -+ C
is exactly fun where being a lifting forces fun to satisfy fun o aig =
idc as required. Since aig and fun are both liftings it also follows
immediately that aig o fun = id which is not idcH but rather only
the identity up to the equivalence relation generated by fun. It
should be remarked that the equivalence relation defined on fun
in [BG] is a special case of a more general construction described
in Example 3.4 below. So y exists iff fun exists and is a lifting.
Thus proposition 4.2 in [BG] should actually be an equivalence. For
completeness we state the result formally.
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Theorem 3.3 Let (H, c, 6) be a comonad on C. H is computational
iff the functor fun : CH -4 C with the appropriate identities exists
iff the lifting of the identity functor on C, 7t: CH -4 C exists. 0 i

Example 3.4 Let F : C -+ D be a functor. We can always define an
equivalence relation R on C as follows: for any two arrows f and g
in C, f R g iff F(f) = F(g). It follows from functorality that R is a
congruence relation(respects composition) and the quotient category
C/R is nothing more than the category generated by the image of
F. Since E = algofun in Example 3.2 is a split idempotent factoring
through C, it follows immediately that the quotient category of CH

via E is isomorphic to C and that alg o fun is the identity up to the
equivalence relation. The extensional collapse found in [BG] then
follows directly from the above remarks.

If C has products then for comonad H on C it is easy to show
that CH also has products. In [BGI it is shown that the existence
of such products implies the existence of a natural transformation
satisfying certain equations. In the case of T the product functor,
these equations coincide with those of Theorem 3.1. More however
can be said as the converse is also true. The following corollary
provides a different proof while showing that the conditions are in
fact equivalent.

Corollary 3.5 Let C be a cartesian category with comonad H. Prod-
ucts in CH which lift products from C correspond to the existence
of natural transformations a:H(_ x _ ) H - x H_ satisfying the
following equations

1) CA X CB 0 Or = CAXB

2) 6 A X 6B 0 a = aHA,HB o Ha o 6 AxB

Proof : Immediate from Theorem 3.1 where K = H and
T =_x _. E0

We note that a third equation appears in [BG] which is present
because of the assumption of a computational monad. The details
axe explained next.

Example 3.6 The third equation referred to above is a o =

y x -y. It arises by changing the codomain of the lifting from CH
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to C. Specifically the equation can be derived by utilizing the dual
to lemma 2.7. Namely letting T = - x - and S be the identity on
C, we generate two corresponding natural transformations which are ¶
precisely o and 7 respectively. The natural transformation generated
by the composition ST is, by the dual to Lemma 2.7, aO7fT or aofyx-
but is also equal to T7 or (- X 7) by the dual to Example 2.5.

Theorem 3.7 Let T, T', A,H,K be as in Theorem 3.1. If K is a
cocaxtesian comonad and C has coequalizers of reflexive pairs then
T has a left adjoint implies so does T.
Proof : This is just the dual of Theorem 2.9. 0

Theorem 3.8 Let C, D, H, K, T,T be as in Theorem 3.1. The natural
transformation a is an iso iff GKT a TGH.
Proof : This is just the dual of Theorem 2.13. 0

In [BG], the issue of exponentiation is raised. There the dual
concern to that raised in section 2 emerges, namely given that C is
a ccc, when is CH? A known sufficient condition is that T preserve
products(see Corollary 3.10 below). In section 2 we were able to
exploit the dual of theorem 3.7. Now we turn to the dual of theorem
2.18 which produces a general result which can be easily applied to
the above remarks.

Theorem 3.9 Let C, D, H,K,T, T be as in Theorem 3.8. If T has a
right adjoint then so does T.
Proof : This is just the dual of Theorem 2.18. 0

The last theorem now gives us an easy proof of the following well
known result.

Corollary 3.10 Suppose C is a ccc and H is a comonad on C that
preserves products. Then CH is a ccc also.
Proof : Since C is cartesian, both T and a exist by Theorem 3.3
(where T - x - ). Since H preserves products, a is an isomorphism
and also since C is a ccc. T has a right adjoint. By Theorem 3.9 T
also has a right adjoint and we are done. 0

"Example 3.11 Corollary 3.10 gives sufficient conditions for CH to be
a ccc. As pointed out in [BG], the increasing paths comonad H on
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Scott domains provides an example of corollary 3.10 since H pre-
serves products. Since many interesting comonads do not preserve
products, the weaker notion of a computational pairing is introduced
in [BGJ. This consists of a pair of natural transformations

split: H( - x .) -- H(.) x H(_).
merge: H(_) x H(.) - H(_ x _)

and six identities. We now show how these ideas fit our general
setup. Consider the setup of Corollary 3.5 so K = H and
T = - x - . The transformation split is just the usual natural
transformation r : KT - TH of Theorem 3.1 and merge is a
transformation, \ : TH - KT, in the reverse direction so that
the diagrams generated by a remain commutative with \ inserted.
While split then is just the transformation guaranteed by the lift-
ing of T, merge is an approximation of the natural transforma-
tion necessary to induce a lifting of T with respect to GH and
GK . Since merge is not generally a-', by Theorem 3.8 it does
not satisfy T o GH = GK o T. There is sufficient structure how-
ever so that for any map f : HA -+ B in CH and for any T,
mergeB o TGH(f) = GKT(f) o mergeA holds. Continuing in this
way allows one to produce a weaker version of Theorem 3.9 for a
weaker notion of right adjoint. In the case at hand one produces a
weak form of exponentiation as described in [BG]. Of course when
merge is the inverse of split, o- 1 is an iso and we have Theorem
3.9. More generally the existence of A allows for the existence of a
lifting of the right adjoint to T. This lifting however is not generally
a right adjoint to T.

As is correctly pointed out in [BG], the Kleisli category is inde-
pendent of the choice of natural transformations split and merge.
There is hicwever far more variation present in our setup. Not only do
the natural transformations change for different choices of comonad
H , but they can also change for different liftings of a fixed H. Fur-
ther one is not restricted to generating these transformations for a
fixed functor T: = x - but rather for arbitrary functors T : C -+ D.
Many more applications of these results thus seem possible.

Generalizations of the results in this paper are certainly possi-
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ble. For example one can combine the intensional and extensional
approaches by considering the monadic and comonadic approach to-
gether. Work in that direction will appear elsewhere. We end this
section with a different example of how the extensional semantics of
section 2 and the intensional semantics of this section can be neatly !
combined. We consider comonad (H, c, 6) and monad (K, p, v) on
categories C and D respectively. If T is a functor T : C -+ D we
wish to determine when T can be lifted to a functor T: CH -ý DK
from the Kleisli category on comonad H to the Kleisli category on
monad K. If f is an arrow HA -ý B in C then T(f) should be an
arrow TA -+ KTB in D. We have the following result.

Theorem 3.12 Let (H, c, ) be a comonad on C. If H is a compu-
tational comonad then for any monad (K, p, vi) on any category D,
and any functor T: C -ý D, a lifting T* • CH -+ DK exists.
Proof : Suppose H is a computational comonad. By example 3.2,
there exists a lifting id : CH -+ C which generates the natural
transformation -f: id -4 H. If T : C -4 D and monad (K, p. v) are
arbitrary then by an analogous argument to that found in Example
2.5, T = iK o T exists, and T* = T o Td- defines a lifting where for
f : HA -+ B in C, T*(f) = 0rBT(f)T7A. 0

A converse to the above theorem is trivial by the discussion in
example 3.2.

4 Conclusion

In this paper we have considered the general categorical question of
when functorial processes may be lifted to corresponding Kleisli cat-
egories. A key theme is the recognition of the relationship between
such extension results and the existence of natural transformations
satisfying certain sets of equations. Particular attention was paid to
finding conditions that ensured that adjoint pairs of functors could
be lifted or inherited. This led naturally to various applications in
both extensional and intensional semantics.

Much remains to be done. Special cases of the paper's results may
be of interest. For example when categories C and D agree one can
enumerate conditions when a particular endofunctor on C extends
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from a computational calculus generated by one monad to a compu-
tational calculus generated by another. This extension process need
not be unique as more than one mediating natural transformation
may be present. In light of the recent interest in the use of monads
there should be many fruitful examples to explore, particularly for j
categories used to model semantics.

In a different direction the investigations in this paper have proved
useful in formulating and describing results in sheaf semantics(see
[Mu4J). In fact it was the analysis of certain technical conditions
in this area that first motivated the questions raised in this paper.
The methods have come into play by helping define and compare in-
trinsic orderings on objects in categories such as partial equivalence
relations, building towards an axiomatic domain theory.

It is also hoped this paper will help contribute to our understand-
ing of the algebraic relationships that exist between various semantic
categories that implicitly or explicitly utilize monadic structure. De-
spite the huge volume of work to date in this area we still don't have
a firm grasp of many of the fundamental algebraic mechanisms at
play; mechanisms for example that determine which closure proper-
ties and evaluation strategies are definable or inherited when moving
from one semantic setting to another.
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Abstract

We present a general semantic framework of sequential functions on domains equipped
with a parameterized notion of incremental sequential computation. Under the sim-
plifying assumption that computation over function spaces proceeds by successive ap-
plication to constants, we construct a sequential semantic model for a non-trivial sub-
language of PCF with a corresponding syntactic restriction - that variables of function
type may only be applied to closed terms. We show that the model is fully abstract for
the sub-language, with respect to the usual notion of program behavior.

1 Introduction

A semantics for a programming language is fully abstract with respect to a given notion of program
behavior iff the semantics distinguishes between two terms exactly when there is a program context
in which the terms induce different behavior. Intuitively, a fully abstract semantics is at precisely
the right level of abstraction to support compositional reasoning about behavior. It has turned
out to be surprisingly difficult to give natural (i.e., language-independent) constructions of fully
abstract semantic models for sequential languages such as PCF [Plo77, BCL851. The constructions
of fully abstract models for PCF given by Milner, Berry and Mulmuley [Mil77, Ber78, Mul87] are
not natural, Yet there are natural fully abstract models for an extension of PCF with parallel
facilities [P1o771 and, more recently, with control facilities [CF92, Cur92].

The first definitions of sequential functions, given by Milner [Mi177] and Vuillemin [Vui73], were
limited to functions on products of flat domains. Sazonov's definition of sequential functions [Saz75]
is also of limited scope. Kahn and Plotkin [KP78] introduced concrete data structures and con-
crete domains, and defined sequential functions between concrete domains. However, the sequential
functions between two concrete domains do not form a concrete domain (under either the pointwise
or stable orders). Berry introduced dI-domains. stable functions and the stable ordering [Ber78];
the stable functions between two dl-domains, ordered stably, form a dI-domain. However, the
stable functions do not provide the desired notion of sequential functions, since some stable func-
tions are not sequential. Berry and Curien JBC82, Cur86) defined sequential algorithms between
concrete domains, and obtained a sequential intensional model from which one may recover the
Kahn-Plotkin sequential functions by taking an extensional quotient. More recently, Bucciarelli
and Ehrhard [BE9l] introduced a notion of strongly stable functions between qualitative domains
equipped with a coherence structure (QDC's), generalizing the Kahn-Plotkin definition. In earlier
work [BG92] we defined sequential functions on Scott domains that generalized Kahn and Plotkin's
sequential functions, and we obtained several closure results under the sequential function space.

We continue here the investigation of sequentiality. We present a framework of indexed domains,
domains equipped with a parameterized notion of incremental sequential computation, formulated
as an index structure. We give a general definition of sequential functions between indexed domains,

This research was supported in part by National Science Foundation grant CCR-9006064.
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as continuous functions that, essentially, respect the index structure. WVe define an indexed domain
product, and show closure of indexed domains under the sequential function space, for both the
pointwise and the stable orderings (with different classes of underlying domains). Indexed domains
are closely related to Bucciarelli and Ehrhard's domains with coherence structures; we discuss this
relationship in the conclusion.

Our earlier definition of sequential functions [BG92] arises when all domains are equipped with
a particular data-index structure, which imposes a notion of incremental computation adequate for
domains of data. This is the index structure which is (implicitly) present in Kahn and Plotkin's,
Milner's and Vuillemin's definitions of sequentiality, as well as in Berry and Curien's sequential

algorithms over concrete data structures and the language CDSO [BC85, Cur86]; it is also used by

Bucciarelli and Ehrhard for defining sequentiality at first-order. In PCF, however, computation

over function spaces proceeds in an inherently different manner, and thus the use of data-indices
is not always appropriate; a suitable higher-order notion of incremental computation is called for.

The framework of indexed domains and sequential functions is not adequate to provide a fully
abstract model for PCF, since function application fails to be sequential according to our defini-
tions. Nevertheless, application of a sequential function to fixed arguments is a sequential function
in our sense. We introduce a new higher-order notion of constant-applicative sequentiality, 'n which

computation over function spaces proceeds by successive application to constants. We alsu intro-

duce a sub-language of PCF, which we call ca-PCF, obtained by imposing a corresponding syntactic

constraint on uses of application: variables of function type may only be applied to closed terms.

We show that a sequential model employing data sequentiality at ground types and the pointwise

order and constant-applicative sequentiality at arrow types is fully abstract for ca-PCF, with re-

spect to the usual notion of program behavior. We have not yet found a completely satisfactory
highier-order notion of sequentiality, since the lack of sequentiality of application prevents us from

'btaining a cartesian closed category.

2 Preliminaries

We assume conventioral iomain-theoretic definitions and notations. The original definitions of sta-

bility are due to Berry [Ber78], and Zhang [Zha9l] gave a generalized topological characterization.
We generalized Zhang's definitions to Scott domains and to the pointwise order in [BG92], where

a full development may be found.
A Scott domain is a directed-complete, bounded-complete, w-algebraic poset with a least ele-

ment. We write x r y to indicate that x and y are bounded (consistent). We write K(D) for the
set of isolated (finite, compact) elements of D; when X C D we also write K(X) for X n K(D). A

dl-domain is a distributive Scott domain with property (1), i.e., such that every isolated element

dominates finitely many elements. A (non-empty) subset X of a poset is filtered iff every pair of
elements of X has a lower bound in X. The covering relation is defined by setting x -< y iff x < y
and the set {z I x < z & z < y} is empty. We define the upper set of x e D by T x = {z E D I x _< z}.

For u C D let T u = U {f Tx I x E u}. A set u is up-closed iff u = T u. Similarly the lower set of x is
Ix.

An arithmetic domain [GHK+80] is a Scott domain with the finite meet property (FM): the
meet of each pair (or equivalently, every non-empty finite set) of isolated elements is itself isolated.
Arithmetic domains are a proper intermediate class of domains between dl-domains and Scott
domains.

In an algebraic poset, a subset p C_ D is Scott open iff p = T K(p), and it is stable open if, in
addition, it is closed under bounded meets, i.e., 'f x 1 ,x 2 E p and x, 1 x2 then x, A X2 E p. Write

Sc D for the set of Scott opens of D and St ) for the set of stable opens of D. For eve,'y z E K(D),

I x is Scott open and stable open. The Scott opens and the stable opens of a domain D have To
separation, i.e., for every x, Y E D, x = y iff {p E Sc D I X E p} = {p E Sc D I Y E p}, and likewise for
stable opens.

Scott opens define the Scott topology. Stable opens do not form a true topology, but may be
regarded as a generalized topology. Every stable open may be decomposed into a disjoint union of
lobes, which are Scott open filters. In a dI-domain every lobe has a least element. Stable opens of
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a dI-domain are therefore upper sets of pairwise inconsistent sets of isolated elements, coinciding
with Zhang's stable neighborhoods [Zha9l].

A function f : D -, D' is Scott continuous, or just continuous, iff f -q e ScD for every
q e Sc DV. Equivalently, f is continuous iff it is monotone and preserves directed lubs. A function
f : D -- D' is stable continuous, or just stable, iff f -q E St D for every q E St D'. Equivalently, f is
stable iff f is continuous and preserves bounded meets, i.e., if x, fIt Z then f(x 1 A X2 ) = flx A fx 2 .

For continuous functions f,g : D -- D', we define the pointwise ordering by f _< g iff fx < gx
for every z 4 D or, equivalently, f-tq g g-lq for every q E Sc D'. We write VP F for the pointwise
lub of a family F of functions, defined, if it exists, by (VP F)x = V {fx I f E F}.

Scott domains and arithmetic domains are closed under the pointwise-ordered continuous func-
tion space. All existing lubs in the pointwise-ordered continuous function space are taken pointwise.
Function application is continuous, and the category of Scott domains and continuous functions is
cartesian closed, with a full sub-ccc of arithmetic domains and continuous functions.

For z e K(D) and y E K(D'), define the step function [x=•y] : D - D' by setting [x=•y] x' = y
if z' e Tx, and [(=týy] x' = I otherwise. The notation [z=:-] will imply that x and y are isolated.
The isolated elements of the pointwise-ordered continuous function space are those functions which
are the pointwise lubs of finitely many step functions.

3 Sequentiality

3.1 Sequential Functions on Indexed Domains

In order to model sequential computation, we equip domains with a parameterized notion of indices,
intended to formalize incremental steps of a computation. Let an index function for a domain D
be a function I : D -. P(St D) such that the following properties hold, for every x E D:

* True increment: For every r E Ix, X 9 r.

* Separation: If x < y then there exists r E Ix such that y E r.

* Upwards motion: If x < y, r E Ix and y 0 r then r E ly.

e Finite origin: If r e I(V X) and X is a directed set then there exists xc e X such that r e Ixo.
Equivalently, in an algebraic poset, if r E Ix then there exists some isolated z0 _ X such that
r e Ixo.

* Definiteness: For every r a Ix, r = T(min r) for the set min r of minimal elements of r.

(This is always the case for every stable open of a dI-domain.)

An indexed domain E is a pair E = (D, I) of a domain D and an index function I for D. When
convenient we blur the distinction between an indexed domain and its underlying domain.

For x e E and a C T1", we call r e Ix an index ofs at x iff s C r. We write I(x,s) for the set
of indices of a at x, I(x, s) = {r r: Ix I a C r} .

Operationally, if the current approximation of a value v being computed is x then an index
r e Ix is intended to represent a possible next step in the computation, resulting in an improved
approximation by selecting among the alternatives that the index offers. A sequential computation
over a domain may then be seen as a sequence of choices among alternatives posed by indices
at an increasing sequence of approximations. The index function determines which sequences of
approximations may be computable. It may help to think of v as an input value to a program, with
the program improving its approximation x to v by a process of incremental approximation, until
it has sufficient information to determine its output on input v. One may also think of a program
computing a sequence of ascending approximations to some target output value.

A stable open r represents a choice between its lobes. Since an index r a Ix is definite, i.e.,
r = T(minr), the choice is represented even more concretely as a choice between the elements of
min r, which may be seen as competing alternative approximations to the target value v. The ¶
increment in information will be to x V y, where y is the element of min r approximating v. Since r
is stable open, its minimal elements are isolated and pairwise inconsistent, so that y will be unique,
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if it exists. The true increment property guarantees that z j r, and thus z < z v y. If v j r, then the
computation step represented by r may be said to diverge; a program that attempts to take step
r at z is undefined for input v, in the input scenario, or may not output v, in the output scenario.
An index r e I(x, s) of a at z may be seen as an incremental step from current approximation z
towards a choice represented by ., in that it guarantees non-divergence for v E 1 .9.

A subset p _ E is sequential open iff it is Scott open and, for every x E E, either z e p or every
finite . g prn Tz has some index at x, i.e., I(z,s) i 0. Write Sq E for the collection of sequential
opens of E, ordered by set inclusion. A function f : E - E' is sequential iff f-Iq e Sq E for every
q e Sq E'. Let E -*q E' be the sequential function space between E and E', ordered pointwise.
Thanks to the generalized topological definition, it is trivial to check that the identity functions are
sequential and that composition preserves sequentiality. so that indexed domains and sequential
functions form a category (for any underlying class of domains).

3.2 Sequentiality in Terms of Critical Sets

By the separation property of indices, I(x, s) is non-empty whenever x < As, so it is only interesting
to ask if I(z,s) is empty in the case where x = As. This gives rise to a definition of critical sets,
which provide convenient alternative characterizations of sequentiality.

A critical set of an indexed domain E = (D,I) is a non-empty finite subset s C E that has
no index at its meet, i.e., such that I(As,s) = 0. The fundamental properties of critical sets are
developed in [BG92]. The following proposition summarizes the most important results.

Proposition 3.1

(1) Every finite set s with a least element, and, in particular, every singleton, is critical.

(2) A set p is sequential open iff it is Scott open and closed under critical meets. For every
z e K(E), I z is sequential open. Sequential opens have the To separation property.

(3) A finite set a is critical iff every sequential open that contains it also contains its meet As.

(4) A function f : E -- E' is sequential iff it is continuous and it preserves criticality and
meets of critical sets, i.e., for every critical set s of E, fs = {fx I z E s} is critical, and
f(As) = A(fs).

(5) Every finite bounded set is critical. Every sequential open is stable open. Every sequential
function is stable.

3.3 Product of indexed domains

It seems reasonable to assume that an incremental step of a sequential computation in a product
domain D, x D 2 corresponds to an increment in one of the components, but not both. This leads us
to define the indexed domain product of El = (DI, I,) and E 2 = (D 2 , 42) to be the indexed domain
El x E2 = (D1 x D 2,Ix), where D, x D 2 is the usual domain product, ordered componentwise,
and I. is defined by

1x(Z,y) = {rx(Tz) lrE1 1x &Z•I: (y)}U
{(t z) x r r e 12y & z e K(I x)).

It is easy to check that I. is an index function.

Proposition 3.2 A finite set s C E1 x E2 is critical iff both 7r, s and 7r2 S are critical.

An indexed domain product is, in fact, a categorical product in the category of indexed domains
and sequential functions (for any underlying class of domains closed under product).

Proposition 3.3 Indexed domain product is a categorical product.
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Proof. It is sufficient and easy to show that the projections ri : El x E2 - E. are sequential, for

i = 1,2, and that for sequential functions f, : E - Ei, i = 1,2, the mediating morphism

Axe E. (f 1x,f 2x) is a sequential function from E to E, x F2. *

A sequential function on an indexed domain product remains sequential when one of its argu-

ments is fixed.

Proposition 5.4 For every sequential function f : E, x E2 - E' and every x C El, the function

curry fx = Ay e E2 . f(x, y) is a sequential function from E2 to E'.

3.4 Ordering the sequential function space

An adaptation of the development in [BG92] shows that arithmetic domains are closed under the
pointwise-ordered sequential function space. In other words, if E and E' are indexed arithmetic
domains then the sequential function space E ..- s E', equipped with the pointwise order, is an
arithmetic domain. Property FM is essential for this. An even simpler development shows that
di-domains are dosed in the same sense under the stably-ordered function space - this is an easy
corollary of the downwards closure of sequential functions in the stably-ordered stable function
space. The following proposition summarizes these results; proofs may be found in [BG92].

Proposition 3.5 Arithmetic domains are closed under the pointwise-ordered sequential function
space, regardless of the index structures used. Directed lubs and finite meets are taken pointwise,
and the isolated elements are the sequential functions thot are lth pointwise lubs of finitely many
step functions.

3.5 Application is not sequential

Function application app : (E -sq E'I) x E - E' is not sequential, no matter which index
function I is used, and whether we employ the pointwise or stable orders. This also establishes
that uncurrying does not preserve sequentiality, since function application is the uncurrying of an
identity function. It is perhaps not surprising that uncurrying does not preserve sequentiality:
the uncurried form of a function has a more complicated domain of definition, where more subtle
interactions are possible that would prevent the uncurried form from being sequential.

The counter-example relies on the product structure and on the index domain axioms, and in
particular on the criticality of a set with a least element, a corollary of the true increment property.
Let 8ool be the domain of booleans, with elements I < T,F. Consider the application function
app : (8oo3 -- 3• 1ool) X Bool

3 
- Bool, and the sets

s = {([(T,F,-L)=*.T]V[xze.T],x)IxEt}
t = {(T,F,±.),(.L,T,F),(F,.LT)}.

r, a has least element [(T,F,.L)=sT] in both the pointwise and stable orderings on the function
space, and w2 s = t is critical, since its projection on any of its three components has a least
element L. Thus s is critical. But app(As) = [(T. F, .)t T](.L, 1, 1) = I j T = A {T) = A(app s),
so that app fails to preserve a critical meet, and is therefore not sequential.

This negative result implies that we cannot use the framework presented here - the category
IDOM of indexed arithmetic domains and sequential functions - to give a sequential model for
all of PCF, since application is definable in PCF (up to currying). Nevertheless, we will be able to
give a sequential model for an appropriately restricted subset of PCF.

4 Interpreting types as indexed domains

We look now at ways of instantiating the index structure to obtain type interpretations in the
category IDOM. We consider the simple type system generated by the grammar a ::= p I a a 'Y,
where p ranges over a set of ground types.

We assume given a flat domain .Alp] for each ground type p. We need to choose an index
function for each such Alp] in order to interpret p as an indexed domain. We then intend to
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interpret an arrow type a -- a' as the sequential function space between the indexed domains

representing a and a', ordered pointwise, with a suitably chosen index structure on the function
space. This raises the question of what kind of index function is appropriate for a sequential
function space.

4.1 Data sequentiality

At first-order types like a -* a', where a and a' are ground, the notion of sequential function
defined in [BG92] is adequate. This notion of sequentiality, which we will call data sequentiality,
coincides with the Kahn-Plotkin sequential functions when a and a' are restricted to concrete
domains [KP78, Cur86j, and coincides with the Milner and Vuillemin notions of sequentiality when
the types are restricted to products of flat domains [Mi177, Vui73].

Data sequentiality is characterized in terms of index functions as follows. Although we only
need to use the definitions here when D is a flat domain (since ground types are fiat), it is easy to
give a more general definition for dl-domains.

For a dl-domain D we define the data-index function Id at x E D by setting

Dz= r ESt D I z r & Vy e min r. (. fr y =* x -< xVy)}.

The data-index function Id is easily seen to be an index function for a dl-domain D.
This definition of data sequentiality requires atomicity of the increment represented by an

index, so that successive approximations to an input will form a covering chain. If atomicity is not
imposed, say, if we used IDx = {r E St D I x g r) then one could, for instance, check in a single
step whether an input in Bool3 is in I{(TF,.±),(1.,T.F),(F, I,T)1. This would clearly not be
appropriate for computation in a sequential language.

Data sequentiality interacts nicely with indexed domain product. By atomicity, progress cannot
be made simultaneously in different components of a product, since (x,y) -< (x',y') iff either
x -< z' and y = y', or z = x' and y -< y'; this corresponds exactly to the reasoning behind
the definition of product. Therefore, the index function for the product of data-indexed domains
coincides with the data-index function for the product, i.e.,

(Di x D2,l2 Dd, ,)- (Di,4 1 )x (D2, 2).

In [BG92] we attempted to use data sequentiality uniformly for all domains, i.e., to construct a
sequential model in which each type is interpreted as a data-indexed domain. This corresponds to
an operational assumption that incremental computation over a function space proceeds in the same
way as incremental computation over data. This assumption is reasonable in some frameworks, such
as concrete domains and sequential algorithms, and the language CDSO [BC85, Cur86]. However,
this operational assumption is not appropriate for PCF. where information about a functional
argument is essentially incremented by applying it. We thus perceive the need to employ a different,
higher-order, notion of sequentiality over the functional domains, that would correspond better to
PCF's operational assumptions. (See [BG92] for further discussion.)

4.2 Constant-applicative sequentiality

In order to arrive at a higher-order notion of sequentiality more closely matching PCF's operational
character, we analyze the way in which information about functional inputs is obtained in PCF.
This is ultimately done by applying such an argument as a PCF variable, say f, to an argument
of appropriate type, say, a term Al, with the result of the application fM conveying information
about the input represented by f. Call Al the prompter off.

For example, consider the following PCF term MO:

Mo = Af : Bool - Bool -- Bool.
if(f T fQ)&(i F T)&-(f F F) then T else SQ,

where 5) is a divergent constant of type Bool, and & is the PCF term for the left-strict-and function
written in infix notation. When M0 is applied to a term M of type Bool - Bool - Bool, M0 may
be seen as successively increasing its information about its input. The result of the application is
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T precisely when the sequence of approximations is

I, [(T, .L)=* T], [(T, L)=: T] V [(F,T)=* T], [(T, L)=> T] V [(F,T)=* T] V [(F,F)= F]

(up to currying). Each step of the computation corresponds to an application of f to some prompter.
Divergence of any step would imply divergence of the entire computation. The term M0 uses only
closed prompters: each application of f is to "constant- arguments.

Consider next the prompters in the following PCF terms,

Mf = Af:,--a'.Ax:o.fx,
M2 = Af:Bool--Bool---Bool.

if(f(fTfl)(fflT))&(fTF)&(f FT)k-(f F F) then T else Q.

In the first case, M1 denotes the identity function on the type a - a', or, up to curry-
ing, the corresponding application function. It is not strict in the input x. but it is strict in
the input f. The prompter x of f may be said to be input-dependfnt. in that it involves an
input other than f. In the second case. 312 denotes the least functional that maps the left-
strict-or function ior = [(T, iL)=* T] V [(F,T)=* T] V [(F. F)=> F] and the right-strict-or function ror =
[(-L,T)=*T]V[(T,F)=*T]V[(F,F)=>F] to T. It is defined using inlbication [BCL85, p. 129]; the
prompter fTfl may be said to be sdf-deptxdcnt. since it uses the input f about which information
is being sought.

We are not yet able to give a satisfactory treatment of dependent prompters. Instead, in this
paper we make the simplifying assumption that prompters must be constant, i.e., independent
of the input. On the syntactic side, we will impose a restriction on the use of application so
that we need only consider PCF terms using closed prompters. The terms M1 and M 2 are thus
excluded from consideration. On the semantic side. we assume that a computation of a value f
over a function space E .- q E' proceeds at each step by determining the result of applying f to a
constant element in E. This gives rise to the notion of constant-applicative sequentiality.

Corresponding to a value z E K(E) and a -residual" index r' in E', we define a ca-index [x=;r']
in the pointwise-ordered sequential function space E -- 4 E' between E and E' to be the stable
open

[z=*,r'] = T {[z=,y] I y e K(r')} = 1 {[x=>y] I y e min r'}

of E -- q E'; and we define the ca-index function 1•E, on E sq E' by:

I,,,f = {[x=,r'] I x E K(E) & r' E 'F(fx)}.

It is easy to check that 'E,E' is an index function for E -sq E'. From this point on, we will assume
that the sequential function space is equipped with the ca-index function; the following results
depend on this choice.

Proposition 4.1 A finite set s C E ýSq E' is critical iff for all x E K(E), sx = {fX I f e s} is
critical.

Proposition 4.2 Currying preserves sequentiality, i.e., iff: Ei x E2 - E' is a sequential function
then curry f : El - (El ",5 q E') is a sequential function.

Application of a fixed sequential function f E E -- q E', i.e., the function Az i£ E. fz, coincides

with f and is therefore sequential. More importantly, application to a fixed argument is sequential.

Proposition 4.3 For every z E E, the function Af E E _sq E' . fz is sequential.

Proof: If s is a critical set of E -sq E' then sz is critical, and A(sz) = (As)z.

4.3 Maximal uncurrying

As we have indicated, the meaning [o -- a'] of an arrow type in the model will essentially be taken
to be the sequential function space between [a] and [a']. A further refinement is still needed. Type
interpretations are usually defined in ccc's, where there is an isomorphism

l
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I] - (1021 - O'") -5 ((Oll x [21) - lo'0

via currying and uncurrying. In that case, it doesn't really matter which of the two is taken to
define (ali - (o2 -- oa'). This is not so in our case, since uncurrying does not preserve sequentiality.

The question now arises whether a function that is sequential in its curried form, but not in
it, uncurried form, should be included in the sequential model. For example consider the parallel-
or function, por = [(T,i.)=*T]V[(J_,T)•T]Vf(F.F)=*F]. Its curried form, currypor : Bool -

(Boo1 - Bool), is sequential because of the trivial index structure of Bool. However, por itself, of
type Bool x Bool -- Boo1, is not sequential: por' {T} = T {(T..L). (1.,T)) is not sequential open.
Moreover, parallel-or is not definable in PCF, and it is therefore desirable to exclude it from any
sequential model. Thus, we will regard as -truly" sequential only those functions whose maximally
uncurried form is sequential. To build a model including only such functions we will interpret arrow
types in their maximally uncurried form.

4.4 The sequential type interpretation

We now define the sequential type interpretation C[-], mapping each type c to an indexed domain

, For a ground type p, C[p] is the flat domain A(p]. equipped with the standard data-index
structure.

* Each arrow type a can be written uniquely in the form a( .....I -- p. where n > 1 and
p is ground. We define Cjo] to be the sequential function space Cal]] x x.. x C[aj -5q C[p],
ordered pointwise, with the standard constant-applicative index structure.

We assume that we have at least ground types Bool and Nat, corresponding to the the usual fiat
domains of truth values and natural numbers respectively.

5 A sub-language of PCF

5.1 The ca-PCF typing system and semantics

Raw (untyped) terms are built from a given set of constants. identifiers, application and abstraction
in the usual way, as in PCF. We define axioms and inference rules for judgements of the form
r I- M : a,, to be read as: the term M has type a in type context r. A type context is a finite
ordered list of identifier-type pairs, and we write r, v : a for the type context obtained by extending
P with the binding v : a. Identifiers may occur more than once in a type environment, and the
rightmost occurrence always takes precedence. The essential restriction imposed by our typing
system is that a variable of functional type may only be applied to closed terms. This captures
the simplifying assumption that prompters cannot depend on the input. For convenience we also
require that a variable of functional type be applied successively to as many arguments as needed
to obtain a result of ground type; this restriction is less important.

The terms of ca-PCF are those terms At for which a judgement r F A-l : a is derivable. We
use L to range over terms, and K to range over closed terms. A term K is closed iff it has no free
identifiers; equivalently, if I- K : a is derivable for some a.

We define a semantic function C[-J for judgements r I- Al : a by induction on the proof of the
judgement. Throughout we assume that r has form 'l : jlý ..... : 1. and that a is written in
the form a, --- ... - a,, - p, where p is ground. The meaning of rF M : a will be

c[r F-M:oJ CE y -.... - -- a]
= C(, 1 X ... X C(b X Cio,] X ... X Co,,J -' C[p].

Note that the environment is "blended into" the semantic domains; this is necessary, since all
functions in the model, including the meanings of terms, are to be fully uncurried.

We assume a semantic function .A[-] for constants such that A(cJ e A[oa for each constant c
of type a. As in PCF we assume at least the following constants with their usual interpretations.
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"* A constant of type p for each element of each ground type p. In particular,

- A numeral of type Nat for each natural number.

- Constants T and F of type 8ool, denoting the corresponding truth values.

- For each ground type p a constant QP of that type. denoting the least element of AlpI.

"* For each ground type p, a constant Wff of type Bool - p - p - p such that

Alif'] = V ([(rx, x-):*z], [(F, 1, x)=] I X E A4pJ} .

"* Arithmetic constants: (+ 1) and (-1) of type Nat - Nat. (=0) of type Nat - Bool, denoting
the successor and predecessor functions and the equal-to-zero predicate, respectively. As in
PCF, A[(-1)JO = ±.

"* Basic operations on ground types other than Bool and Nat are left unspecified. We will later
assume existence of constants necessary for definability.

The following are the axioms and inference rules for the typing system. together with the
definition of the semantic function C•-].

"* Constants:

constF'I-c:a

clr I- c : aj = A(X, E c[Y ..... X E C c , C Ed C [ ..... Yn E C(a,])
AIc](yi..... y.)

for every constant c of type a.

"* Variables:

F-K:, ... -
ca-var

r - vK1 ... K, : p

c[r - vKj,...K, : p] = .\(X••E C[TJ,...,X- mE[,t]i) .
x ,(Cý- K, : a,!.C..c Kn : O,,)

provided i is the rightmost position in r of an occurrence of v, and a = 7y.

For a variable of ground type, n = 0, this specializes to the familiar variable introduction
rule:

var 0

r F t : p

cfr b v : pl = A(.X, E c[-y ....C.zx E , c[-]),. Xi

provided i is the rightmost position in r of an occurrence of v. and p = 71.

"* Application:

rF L : ao - a r i- Lo : ao
app

r I- LLo : a

cr F LLO: a] = Me ci...Z ie C[v,,y, E C[ao,J.... w e C[.an).
c[rF- L : ao - aJ(zx.... I XM,f(xl,... -X), Y,.,. Yn,)
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where oa=n a,' ..... -- po and

f = A(ZI ECIbi.... ,,mEC[',,]J).

X(zi e•ClPO'].... Z,, E Clao'°) clri -Lo: oo(xi . x., ,.. .',).

e Abstraction:

r,r - Loa'

r - (Av:a. L): -- oa'

clr l- (Av :. L) : , - a') = C(F, v :,a - L :,']

Proposition 5.1 Every term has a unique type: if r F- L : a and r F. L : a' are both derivable
then a = a'.

The semantic function C[-] is well-defined, and for erery dcrivable judgement r l- L :a.

C[r ý- L : a] e CI-y .... ý. - ai,

where r = v :71.  : .

5.2 Definability of isolated elements

The link between the syntactic restrictions of ca-PCF and the semantic assumptions of the sequen-
tial model is formulated as a full abstraction result.

Proposition 5.2 For every type a and each isolated x e C[a] there exists a closed term Def, such
that C(F Def, o:] x.

Moreover, for every ground type p', k > 0 and each finite sequence X = xl,....xk of isolated
elements of C(a], if T X is an index at z then there is a closed term SeIX such that

C[I Selx : a - (p,)k __. p,] =
A(z EC[a),Y1 e•C[p'l,...,yt E ClpJ) . (VP {[x=:-y1] Ii < k})z.

We call such a term a selector for X.

Proof: By type induction on a.

If a is a ground type we have already assumed the existence of the relevant defining constants.

We can choose for SelT,F : Bool - p' - p' - p' the constant if,". For other selectors over
Bool use the obvious variations.

For Sel,,,...., : Nat -- (p,)k - p' take

Sel= ......., Az : Nat. Ayl : p' .... Ayk : p' •
if z = 0 then Mo else

if z = I then A1 l else

if z = k' then Aih, else

where k' = max {xl,.... zk}, and for 0 < j _<k'., z = j is short for (=0)((- 1)3 z), and Mj = yj
if there exists i such that j = xi, and MA = Q1 otherwise1 .

For other ground types we need to assume the existence of appropriately interpreted constants
to a~t'w a similar definition of selector terms.

'This term tests z against the values 0..., k' in increasing order, to avoid attempting to subtract 1 from 0.
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If a is not ground, assume that a = a, - - -a. - p, and let f be an isolated sequential
function in Clay. Since f is isolated, it is the lub of a finite set of step functions. Choose a
minimal set F of step functions such that f = VF, say F = {[t'*yi] I i < l}, where each

-- (.,... ,z'). By minimality of 1, none of the y,'s is -L. Continue now by induction on 1.

Ifl= 0 then f = , so we can let Def = 0fl = Avi : a .... Av, : a. . SIP.

If = 1 then f = [(x' . .)*yl]. By the induction hypothesis there are closed terms Deft,,
and selectors Sely for each j. We can take

Defy = Av : a"1 .... .- v, :a, . Sel.a vl(... (Sel,-, v,(Def,))...).

If I > 1, let s = {fi j i < 1). Clearly, Ts = f-'(C[p] \ {.L)). By minimality of F, s has no
least element, or else f would be a single step function, given that C[p] is a flat domain.

Therefore As 0 T s. By sequentiality of f, T s is sequential open, so that s is not critical. It
has an index at As in the product Clai] x -.- x C[la], which is derived from an index in
one of the components; assume without loss of generality that it is derived from an index
in the m'th component, so that there is an r e I(A(7,nS), it,,s). If we take a minimal r
(with respect to number of lobes) it will have at most I lobes, by minimality, but at least 2

lobes, since As % r = I(minr), using definiteness. Let P' be the number of lobes of r, so that
r = T {zi I j <_I'). This now lets us split F into corresponding collections of step functions,
each with less than I elements, that may be distinguished on the basis of r. More formally,
for j < 1', let fi = V Fj, where F, = {[ti=*y.] I i _< I & zj _ x!"}. Since each fi is the lub of
less than I step functions, it is definable, by the induction hypothesis. We are now able to
define f:

Defy = Av1 a: . . .. Av. : a,, . Sel,,.-.-:1 vm (Defy! vi ... v). ... (Defy,, v1 ... v.).

We now show definability of Selj, ...,f. in the functional case. If I {f I i < k} is an index at
I in Cioy then there must exist 2o = (o...) such that fi = [-O=yj], and {3jy I i < k)
is an index at fio in C[p]. We are therefore able to transform the selection problem in the
function space into a selection problem in the ground case, which has already been solved.
We thus obtain:

Self.,..., f = Af : a. vl : p' .... Avk : p'
Sel5 ,., (f Defi .... , Def. ,)vl ... vk.

Note that f is applied to closed arguments, so this is a valid term.

The essential difference between this definability proof and Plotkin's proof for the parallel
extension of PCF [Plo77, lemma 4.5] is in the synthesis of the defining term for arrow type with
I > 1, in the above terminology. Plotkin's proof uses the parallel conditional facility to combine a
defining term for the lub of I step functions with an additional step function to obtain a defining
term for the lub of I + 1 step functions; we rely instead on the existence of an index that partitions
the set of step functions into smaller sets.

Full abstraction - both inequational and equational - follows by standard arguments from
the definability of all isolated elements [Mil77, StoS8].

Proposition 5.3 The semantics C[-j is inequationally fully abstract with respect to itself as a
notion of program behavior. That is, for any pair of derirable judgements r H- L : a and r F L' : a,

clr H L : a] < cr F- L' : a]

iff, for every appropriate 2program context P[-] of type p,

C[" PIL] : p] <C [C- P[L'J : p].

2Since we do not associate fixed types with variables we must assign to holes in program contexts a type context
r which they provide, as well as the type of the term that they expect in the hole.
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To link up this result with the standard notion of behavior for PCF programs, we verify that
CQ-1 agrees with the usual operational semantics for PCF, as presented in [Plo77].

Proposition 5.4 The program behaviors induced by the semantics C[-| and the operational se-
mantics coincide. That is, for every closed term P of ground type p, C|I- P : p] = z 0 L. iff P
evaluates to (the constant denoting) z, and C[I- P : p] = J. iff the evaluation of P diverges.

In summary, the semantics C[-] is fully abstract for ca-PCF with respect to the usual notion
of program behavior.

5.3 Recursive definitions

Since the flixpoint operator is continuous but not sequential in our framework, we cannot simply
add the usual fixpoint constants Y to the language ca-PCF. Nevertheless, any particular sequential
function on an arithmetic domain D has a least fixed point in D. We may therefore add p-
abstraction to ca-PCF: for each ca-PCF term Al of type r - r the term pf : a. Mf of type r is
equivalent to YM. To permit non-trivial uses of recursion, such as

(x2) = pf : Nat - Nat . Ax : Nat . ifx = Othen 0else(f(x - 1) + 2),

in which the recursively defined variable f has an input-dependent prompter x - 1, we then need
to relax the term-forming syntactic constraints of ca-PCF to allow p-bound variables to be applied
to input arguments inside the body Al. The meaning of every term is in the right semantic domain
when supplied with appropriate values for its free p-bound variables.

6 Conclusion

We have introduced a notion of indexed domain and shown that it permits a general definition
of sequential function enjoying certain domain-theoretic properties. In particular, we obtain a
class of indexed domains containing the flat domains, closed under product, and closed under
the pointwise-ordered sequential function space. We have shown that a particular kind of index
structure on function spaces gives rise to a fully abstract semantics for a non-trivial sub-language
of PCF. Nevertheless, unrestricted application is not a sequential function in our model, and it
remains to be seen if we can find a yet more sophisticated notion of index structure that would cope
satisfactorily with full PCF. This would have to deal with the complications caused by imbrication
and what we have called input- or self-dependent prompters. The generalized indices should, like
the indices presented here, have a firm operational grounding, and they should carry information
that can be used for showing definability of the sequential functions in the generalized framework.

There are interesting connections and significant differences with the work of Bucciarelli and
Ehrhard [BE91]. The critical sets of an indexed domain always form a coherence structure in
the sense of Bucciarelli and Ehrhard (and the sequential functions in our model correspond to
their strongly stable functions). The converse is not true, because our requirements on index
structures are stronger, so as to build in the ability to model incremental computation. Buccia-
relli and Ehrhard also use data sequentiality at ground types, and essentially the same product.
They obtained a cartesian closed category of strongly stable functions between qualitative domains
equipped with coherence structure, using the stable ordering on function spaces; in particular, in
their model application is sequential with respect to the stable ordering. However, the coherence
structures that they use on function types do not correspond to index structures, and apparently do
not convey enough operational information to model incremental sequential computation. More-
over, the pointwise ordering is of primary relevance for the PCF full abstraction problem, since
it corresponds to the operational pre-order on terms of function type, and therefore we are more
concerned to find a notion of sequential function space using the pointwise order.
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Abstract

We show that Kleene's theory of unimonotone functions strictly re-
lates to the theory of sequentiality originated by the full abstraction
problem for PCF. Unimonotone functions are defined via a class of ora-
cles, which turn out to be alternative descriptions of a subclass of Berry-
Curien's sequential algorithms.

1 Introduction

In the late seventies, in order to define models of (simply typed) functional
programming languages which were closer than Scott models to the opera-
tional semantics of such languages, the notions of sequentiality ([6, 4]) and
stability ([1]) were introduced and studied. These works originated from the
problem of full abstraction, raised in [12], which can be formulated as follows:
find a model of PCF (a simply typed A-calculus with recursion, taken in this
framework as paradigm of functional languages) in which any (finite) element
is the denotation of some term. Clearly this (still open) problem is strictly
related to the characterization of the expressivity of PCF at higer types.

Quite in the same period S. C. Kleene, revisiting some of his earlier works
on generalized recursion theory, attacked the problem of "generating a class of
functions which shall coincide with all the partial functions which are "com-
putable" or "effectively decidable", so that Church's 1936 thesis will apply
with the higer types included" ([8] 1.2). His starting point was the definition
of a list of schemata for the definition of partial recursive functionals. Compu-
tations in this framework are represented by trees: an expression E is defined
(under a given assignment of values to free variables) if and only if the prin-
cipal branch of the computation tree rooted in E ends with a value (a natural
number).

This operational semantics allowed one to recover at higher types most of
the basic results of classical recursion theory (enumeration theorem, substitu-
tion principle, recursion theorems) (see [8, 7]). The next point of Kleene's pro-
gram ([9, 10]) consisted of providing a denotational semantics for his "type-j
objects", i. e. in characterizing the class of functions and functionals definable
by the schemata.
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Thus Kleene and people interested in the problem of full abstractiun fr,-
PCF began to work, independently, on two very related subjects: tie defin-
ability problem for calculi based on recursive equations and A-calculus.

People working on PCF aimed to define models of the full calculus by
means of cartesian closed categories of domains and "sequential" morphisms,
whereas Kleene focused his attention on finite types up to type three in a
hierarchy starting from natural numbers (type 0).

As for the first approach, the notion of sequential function between concrete
data structures ([6]) provided a complete characterization of PCF-definability
at first order, but failed to give rise to cartesian closed categories. This notion
suggested two main developments. The first one consisted in weakening se-
quentiality in a property extendable to higher orders, and this is what G. Berry
[1] -lid introducing stable semantics. The second one, carried out by Berry and
P.- L. Curien (see [2]) was to stick firmly to the notion of sequentiality, but
the price to pay was the impossibility of keeping functions as morphisms; they
were obliged to switch to sequential algorithms.

Kleene's approach to the problem of definability is based on the notion
of unimonotone functions. The interesting fact is that the two clauses of
the definition of unimonotonicity correspond to stability and sequentiality
respectively.1

We establish the bridge between the theories of sequential algorithms and
unimonotone functions. We want to stress that these theories are based on the
same idea of computability at higher types, by showing that any unimonotone
function is computed by some sequential algorithm. The converse does not
hold, essentially because in order to get cartesian closedness, it is necessary to
take into account sequential algorithms which do not compute any (monotone)
function.

This is actually the main difference between the two approaches to the
definability problem: in the Berry-Curien's model algorithms are first class
objects, whereas Kleene uses algorithms (that he calls oracles) only to de-
fine the notion of unimonotonicity. The objects of his model are functions,
obtained by an eztensional quotient on oracles.

The same kind of quotient is used by Curien in [5, 4] to build the model
of eztensional algorithms. Hence Kleene's construction may be regarded ("a
posteriori") as an attempt of collapsing in a single step the Berry-Curien's

construction:
sequential functions -- sequential algorithms - extensional algorithms

In this paper we do not tell the whole story, contenting ourselves with
studying the relation between oracles and sequential algorithms. We show
that oracles may be simulated by algorithms at any type and we give a simple
full abstraction result of unimonotone functions at type 2.

'A puzzling point is that unimonotone functions are not required to be Scott-continuous.
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In example 9 we s2.ow how the nesting of function calls in PCF (and in
Kleene's schemata) makes the use of intensional descriptions of computations
necessary to approach the problem of higher-order definability.

2 Concrete Data Structures (CDSs) and sequential
algorithms

We first recall the basic definitions of CDSs as they can be found in [4].

Definition 1 A CDS M = (CM,VM,EMf,h-f) is given by three sets CM, VM
and EM of cells, values and events such that

EM C CM X VM and Vc E CM 3v E Vs (c, v) E EM

and a relation F-M, called an accessibility relation between finite parts of EM
and elements of CM. A set {ei,..., en} is an enabling of c if {ej,..., e,} 1

-M C.

CM and VM are assumed countable.

We will omitt the subscript M whenever possible. Given a CDS M, a state of
M is subset x of EMf which is conflict-free (any cell is filled with at most one
value) and safe (any filled cell is enabled):

Definition 2 A state of M is a subset x of E5 1 such that

1) (c, V,), (C, v2) E x =ý 'v = v 2

2) If (c, v) E x, then there exists a sequence of events eo, ... , en = (c, v)
such that ei = (cI vi) E x and {ej I j < i} contains an enabling of c, for
all i < n.

The eet of states of a CDS M ordered by inclusion is a partially ordered

set denoted by D(M).

We define now the CDS's whose associated domains are (isomorphic to) the
two points Siepinsky space (_1 < T) and the flat domain of boolean values
respectively.

example 1:
0 = ({,},{T}, {(*, T)},0I- 0 )

{(*,T)}

D(O)=

0
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example 2:

B = ({*}, {true, false}, {(*, true), (,false)},tjiI- I)

II

{(*, true)} {(,false)}

Last we give useful notations:

Definition 3 Let x E D(M) for a CDS Al. A cell c is

* filled in z iff3v (c,v) E x (F(x) will denote the set of filled cells)

* enabled in z iff x contains an enabling of c (E(x) will denote the set of
enabled cells)

* accessible from x iff it is enabled but not filled in x. (A(x) will denote
the set of accessible cells)

In both the examples above the cell * is accessible from the empty state. Cells
having this property are called initials.

Definition 4 If M, M' are CDSs, the CDS of sequential algorithms from M
to M' is noted [M -+ M'] and defined by

C[M-M'] = D(M)o x CM,

where D(M)o denotes the finite states of Al.

V[MM,] = {valof c I c E CM} U{output v' I v' E VM,}

E[M-M,) = {((x, c'), valof c) I c E A(x)} U{((x, c'), output v') I (c', v') E EM,}

((x, c'), valof c) ý- (y, c') if 3v E VM y = x U (c, v)

((zX, c'), output v'), ((x 2, c'2), output v2),. .. ,((X, c'), output v') - (X, c')

if z = U<i<, ,1x and (c', vc),..., (c', v') c'

nt n u m m 1 ll l l rm n i nl-h-
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Given a sequential algorithm a E [M -- M'], the function fa D(M)
D(M') associated to a is defined by fa(x) = {(c, v') I 3y 5 x ((y, c), output v') E
a} (actually f2 is well defined only if M, M' are stable CDS's (see [4]); this
will be always the case in what follows).

3 Unimonotone functions and Oracles

Let us begin by defining the types we are interested in: type 0 is the flat domain
of natural numbers, and, for i < 2, type i + 1 is the set of unimonotone partial
functions from type i to type 0, ordered extensionally (i.e. f < g if for all x
f(x) = n -- g(x) = n). Unimonotone means MONOTONE with a UNique
and Intrinsically determined basis.

Kleene gives the definition of unimonotone function in two steps: the first
one (uniqueness of the basis) consists in requiring that, if f(x) is defined, and
hence f(x) = n for some n E w, then there exists x' < x such that f(x') = n
and for any x" < x, if f(x") = n then x' < x". Such x' is called the basis for x
with respect to f. The Scott-continuous functions f of type i such that for any
x E i - 1, if f(x) is defined then there exists a basis for x with respect to f are
exactly the stable functions. However in this framework Scott continuity is not
required. The second step of the definition consists in requiring that the basis
for x with respect to f, when x ranges in the domain of f (i.e. in type i - 1 if f
is of type i), be intrinsically determined. Actually a big part of Kleene's work
is devoted to explaining what "intrinsic determination of bases" means, by the
definition of a class of oracles which compute unimonotone functions. Our aim
is to show that these oracles are a particular kind of sequential algorithms, and
hence that unimonotone functions are sequential in the sense of Kahn-Plotkin
2

Since any sequential function is stable, the first clause of the definition of
unimonotone function (uniqueness of bases) is subsumed by the second one
(intrinsical determination of bases). In what follows we focus on this second
requirement: a function is unimonotone if it is computed by an oracle of the
form that we axe going to define.

From now on let fi and 0' range over the classes of type i unimonotone
functions and type i oracles respectively. An oracle 0' is described by her (we
follow Kleene's indications about sex of oracles) behaviour when presented
with an envelope containing a i - 1 oracle (a type 0 oracle being simply an
element of type 0).

2Actually, since sequential functions are continuous, only continuous and unimonotone
functions are sequential.
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3.1 Type 1 oracles

Type 1 oracles compute unimonotone functions from type 0 to type 0. When
presented with an envelope containing an element of type 0 (the envelope being
empty if this element is undefined), a type 1 oracle 01 behaves in one of the
following ways:

case 1.1 She does nothing. In this case 01 computes the completely undefined
function Ax.i.. Such an oracle will be called the empty type 1 oracle and
noted u1 .

case 1.2 Without opening the envelope, she prounounces that the result of the
computation is the integer n. In this case 01 computes the nonstrict
constant function ).n.

case 1.3 She opens the envelope, so declaring that the function she computes is
strict. If the envelope is empty (i.e. if we have presented her with the
bottom element of type 0), she stands mute, if it contains an integer
n, she may either stand mute or give an integer m as result, depend-
ing on n. In this case 01 computes the function the graph of which
is {(nj, mi),..., (n, ink),... }, a pair (ni, mi) belonging to this graph
if and only if 01 gives mi as result when presented with an envelope
containing ni.

Functions computed by type 1 oracles are clearly monotone, and it is easy to
see that any monotone function from type 0 to type 0 is computed by some
oracle. Actually any function other than \x.-L is computed by exactly one
oracle. The function \x.-L is computed by ul (case 1.1) and by the oracle
(operating under case 1.3) which opens envelopes but never gives a result.

3.2 Type 2 oracles

Type 2 oracles compute unimonotone functions from type 1 to type 0. When
presented with an envelope containing a type 1 oracle 01 which computes 11,
a type 2 oracle 02 (computing f 2 ) behaves in one of the following ways:

case 2.1 She does nothing. In this case 02 computes the completely undefined
function f 2 = Afl..i. Such an oracle will be called the empty type 2
oracle and noted u2 .

case 2.2 Without opening the envelope, she pronounces that the result of the
computation is the integer n. In this case 02 computes the nonstrict
constant function f2 = Afl .n.

case 2.3 She opens the envelope, so revealing that she wants information about

01 before deciding whether to give a result. To obtain such information,

she begins to question 01 by passing her an empty envelope ("there
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is nothing lost by our supposing that the a 2- oracle starts with the
preliminary question "a'(a0 )?" using an empty envelope"[9]. Actually,
as we shall see, this is the only possible choice in the CDS framework).
According to the behaviour of 0Q, three cases are possible:

case 2.3.1 01 stands mute (she operates under case 1.1). In this case 02

stands mute too (any type 2 oracle operating under case 2.3 defines
a strict functional).

case 2.3.2 01 gives the result n without opening the envelope (she operates
under case 1.2). Observing this, 02 may either stand mute or give
an integer m as result, depending on n. In any case 02 cannot con-
tinue to question 01, since she knows everything about fl (namely
that fP = \x.n).

case 2.3.3 01 opens the envelope (she operates under case 1.3). Observing this
02 may either stand mute, or pose a first non-preliminary question
r0 E N. Questioned with r0 , 01 will either stand mute or give an
integer result no. In the former case 02 stands mute, in the latter
she can either stand mute, thus deciding that the information so
far recorded about 01 (namely that 01 opens envelopes and that
she gives no as result when presented with ro) is sufficient to rule
out that f 2 (f1) be defined, or give a result m E N (declaring that
f 2 (fI) = m), or query 01 with another integer rl. In general in
this subcase 2.3.3, a series of questions (possibly extending into the
transfinite) will be asked to 0' by 02 with distinct numbers

r0, rj,..., rk,...

and will be answered by 01 with numbers

no0, ntl,. • • nk. • •

where n -= fI(ri) and ri is determined by 02 from only the infor-
mation that 01 opens envelopes and f'(rj) = nj for j < i. This
continues until either, for a given ordinal r, 01 does not answer to
r,, which makes f 2(f') undefined, or 02 decides that the informa-
tion so far collected about 01 makes f 2 (fl) undefined, or finally
(only after at least one non-preliminary question has been posed)
that it is sufficient to give m as result (f 2(f1) = M).

We have to prove that any type 2 oracle computes a monotone function of
type 2. Firstly we have to show that, when we apply an oracle 02 to an oracle
01 computing f' (i.e. when we present 02 with an envelope containing 01),

the result of the computation (if any) depends only on fl. This is trivially 4

the case if f 11 A4._L, since in this case, as remarked in the section devoted
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to type 1 oracles, there is a unique 01 which computes f 1 . If f1 = Az. _L, it
is sufficient to remark that, if 02 gives a result, she must operate under case
2.2, and hence the result does not depend at all on 01.

Next we have to prove that the function computed by 02 is monotone. Let
f 1 , g' be unimonotone type 1 functions computed by 01 and P1 respectively,
and such that fl < g' (i.e. such that for any x 6f type 0, fl(x) = m --*
g1(x) = m). We have to show that if 02 gives a result when applied to 01
than she gives the same result when applied to P1 . This holds trivially if 02
operates under cases 2.1 or 2.2. Suppose that 02 operates under case 2.3:
if both 01 and P1 come under case 1.2, then f' = g'; if both 01 and P1

come under case 1.3, then 02 will ask 0' the same questions r0 ,..., rk,...
and receive the same answers no,. .. , nk,.., from 01 as from P', and hence
will give the same result. Moreover it is impossible that 0' comes under case
1.2 and P' under case 1.3 (since f' < g') and that either 0' or P1 come
under case 1.1, since we are supposing that 02 gives a result when applied to
01. The only case left is that 01 comes under case 1.3 and P' under case 1.2,
that is g' is the non-strict constant Ax.m for somen m E N and fI has graph
{(ni, m), (n 2 , m),. .. ,(nk, m),. .. where {n,, n 2,. .. ,nk,... } C N. Actually
in this case 02 could give value n on 0' and value 1 $ n (or no value at
all) on P1 , violating monotonicity. In this case the monotonicity is assured
by stipulating that a type 2 oracle which gives result n in subcase 2.3.3 on
the basis of knowing that f'(rk) = m for all k less then a given ordinal T,

must give the same result in case 2.3.2 on the oracle computing the non-strict
constant Ax.m. This assumption makes the function computed by a type 2
oracle monotone.

For any type 2 function f 2 other than a non-strict constant f2 = Afl.m,
there exist infinitely many type 2 oracles computing it. This is essentially
due to the fact that when operating under case 2.3, an oracle 02 may query
arbitrary sequences of unuseful questions, a sequence being unuseful if, no
matter what is answered by Q1, 02 never gives a result.

In the following examples (borrowed from [9]) we show two functions from
type 1 to type 0 which can not be computed by type 2 oracle. The first one
does not respect the "unicity of bases" requirement, the second one has unique
bases, but they are not intrinsically determined. The interesting fact is that
these functions are the reformulation in the framework of Kleene's types of
the parallel-or function and of Berry's example of a stable and non-sequential
function [1].

example 3: Let fi', i = 1,2, be the type 1 functions defined by the following
graphs:

' = {(0, 0)} 12 = {(1,1)}

and let f 2 be such that f 2 (f 1 ) - 0 if there exists i < 2 such that f1 _5 f', and
be undefined otherwise. The function g9 = {(0, 0), (1, 1)) has no basis with
respect to f 2 . An oracle for f 2 should operate under case 2.3, and, in subcase

1'_
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2.3.3, she should pick up a r0 E N such that, for i < 2, f,'(ro) be defined, but
such a r0 does not exist. *

example 4: Let fi, i = 1, 2,3 be the type 1 functions defined by the following
graphs:

f= { (1,),(2,1)}

f= {(0,1), (2,1)}
S= {(0,0),(l,1) }

and let f2 be such that f 2(f1) = 0 if there exists i < 3 such that f' < f1, and
be undefined otherwise. An oracle for f 2 should operate under case 2.3, and,
in subcase 2.3.3, she should pick up a r0 E N such that, for i < 3, fl(r0 ) be
defined, but such a r0 does not exist.

3.3 Tree-representation of type 2 oracles

Type 2 oracles may be represented by trees, as in [10]. A non-trivial oracle
02 (i.e. an oracle operating under case 2.3), is represented by a tree of the
following kind:

e Non-leaf nodes represent the queries of 02 (the root containing the pre-
liminary empty query).

* Arcs are labelled by answers provided by the argument oracle 0'.

* Leaves represent the result given by 02 when presented with the 01
(partially) described by the corresponding branch.

Such a tree describes only "useful" computations of 02, i.e. computations at
the end of which 02 gives a result.

example 5: The following (linear) tree represents a type 2 oracle computing
the (non-Scott-continuous) functional f 2 defined as follows:

f 2(fl) = 0 if and only if f1 is the identity function on N

0? o-oPn,,. 0? '-- 1?---- 2 ? ... n? - n + 1? 0

The functional f2 of the example above is not Scott-continuous since the
oracle computing it gets an infinite amount of information about her argument
before giving a result; the following easy result relates continuity to finiteness
of trees:

Proposition 1 A unimonotone function f 2 computed by 02 is Scott-continuous
if and only if the tree representing 02 has no infinite branch.
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example 6: The following tree represents an oracle computing the functional
f 2 defined as follows:

0 iff 1 = Ax.1 or {(O,3),(1,0)} _C/ or {(0,0)) _ f1
f2(fl) = 1 if fI = Az.2 or {(0, 3), (1, 1)} C_ f or ((0, 27), (2,3)) :_ f1{undefined otherwise

17• ~0

0? without opening, 0' says 0 (Ax.O) 0 2? 3 1

z:.2 0

1

The extensionality constraint which assures the monotonicity of functions com-
puted by type 2 oracles imposes a global condition on trees. In the example
above, for instance, if we remove the branch labelled "without opening, 01
says 0" we lose monotonicity (because of the branch labelled "01 opens" and
"0"). Note that the condition f 2(Ax.0) = 0 is not explicitly stated in the
definition of f 2 , since it is subsumed by f2({(0, 0)}) = 0, by monotonicity of
f 2 .

In the last example we show how branchings can be infinite:

example 7: The following tree represent an oracle computing the functional

f2 defined as follows:

f 2(fl) = 1 if and only if f'(0) is defined
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1

/ 1 1
2

0? 0?

nn

n+I

An interesting remark about type 2 oracles, in view of the comparison with
sequential algorithms, is that the tree

0? 01 opens 0

which would represent an oracle that gives result 0 on the basis of the fact
that his argument 01 opens envelopes (i.e. that 01 computes a strict function)
is not allowed, since in case 2.3.3, if 02 gives a result, she must do so after
having asked at least one non-preliminary question.

4 Concrete data structures for Kleene's finite types

We define the concrete data structure we need to compare unimonotone func-
tions and sequential algorithms: NO is the cds of natural number, and, for
j = 0, 1,2, Ni+' is the cds of sequential algorithms from Nj to NO (actually
N' will not be trated in this section, see the last section).

No = ({*},w, {(*, n) I n E w}, {I- *})

A state of No is either the empty set or the singleton {(*, n)} for some n E W,
simply noted by n.

The cells of the cds N 1 are elements of the cartesian product D(N0 ) x CNo,

i.e.
CNI = {(0, ,)} U{(",*) I -E w}
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The values of N 1 are defined by

VN, = {valof *} U{output n I n E w)

and its events by

ENX = {(initl, valof *)} U{(initi, output n) I n E w} U{((n, *), output m) n, m E w}

The cell (0, *) is initial (and we call it initi), and any other cell is enabled

by the event (initm, valof *), the enabling being of type "valof" (see definition

4). We remark that in the cds's Ni, j= 1,2,3, enablings of type "output" cannot

occur, since the unique cell of the target cds NO is initial. Hence nonempty

and finite states of N1 are either of the form

{(initi,output n)} n E w

(the function computed by this algorithm being the nonstrict constant Am.n)

or of the form

{(initl, valof *)((ni,*), output MI),.. ., ((n. *), output Mk)}

fork >- 0, and for 1 < i < j < k ni 0 nj (the function computed by this

algorithm being {(ni, m),. . ., (nl, ink)}).

In the latter case and for k = 0, we get the "purely intensional" algorithm

{(initt, valof *)}, which is extensionally equivalent to the empty algorithm,

but plays a major role in the definition of type N 2 . For making more readable

the treatment of higher types, let us introduce some abbreviation for the finite

states of N':
{(initi, output n)} will be noted Ai.n

{(initi, valof *)((n,, *), output m)..., ((nk, *), output mk)} for k > 0, will be

noted {(ni,,m),. .. ,(nk, Mk)) (note that the algorithm {(n 1 , m),. .. ,(nk, mk)}

for k = 0 is not the empty algorithm, since it contains the event (initI, valof *).

Let us now pass to N': its cells are obtained by coupling finite elements

of N1 with the unique cell of NO:

CN, = {(0, *)} U{(Ai.n, *)} U{((n, , (nk, ik)},

for n,k, ni,mi E w, k > 0 and 1 < i < j < k ni $ nj. As for N1 , the unique

initial cell of N 2 is (0, *), which we call init2 -.

The values of N 2 are defined by:

VN2= -valof c c Ec ,} U{output n I n E w=

= {valof initl} U{valof (n, *) In E w} U{output n I n E w}
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Let us see which "valof events" are legal in N' (a "valof event" is one of the
form (c, valof c)). Recall that in a functional cds an event (xc', valof c) is
legal if and only if c E A(x), hence the valof events in N 2 are the following:

{(init 2, valof initl)) UT(((nl, ml),..., (nk, mk)}, *), valof (n,*)) Vi < k n, # n}

On the other hand any couple (c, v) where c E CN2 and v is an output value
of N2 (i.e. v = output n) is an output event of N ' (this is always the case
when the target cds is flat). Let us describe now the enabling relation in N2 :
as already remarked init2 is the unique initial cell; moreover

9 (init2 , valof init) F- (Ai.n, *) n E w

* (init, valof init1 ) F" ((initi, valof ,), *)

* (({(ni, mi),..., (nt, mk)}, *), valof(n, *)) - ({(ni, rin),..., (ne, mk), (n, m)),*)
mEow

We can describe a state A of N 2 by means of the step-by-step process which,
starting from the empty state, leads to the construction of A. At each stage
of this process cells enabled at the previous stage may be filled, and if they
are filled by valof values, new cells are enabled, as described above. At the
initial stage 0, the unique enabled cell is init2-.

stage 0 init2 is enabled. It can be filled either by an output value output n (in
this case no more cells are enabled and the functional defined by A is the
constant Af.n) or it is filled by valof initl. In this latter case infinitely
many cells axe enabled, namely those of the form (AiM.n, *) n E w and the
cell ((initl, valof *), *).

stage 1 Any cell (Ai.n, *) may be filled by an output value output m, mean-
ing that the functional defined by A gives rn as result when applied to
the nonstrict constant n. The cell ((init1 , valof *), *) may be filled ei-
ther by an output value, meaning that the strictness of its argument
is sufficient for A to give a result, or by a value valof (no, *). In this
latter case infinitely many cell are enabled, namely those of the form

((o, m)}, *) m E w.

stage i + 1 i > 0 At stage i a (possibly empty) set of cells of the form

Q{(no, m0), (ni, mj),..., (n,_1, mj-1)}, *)

have been enabled. Any of these cells may be filled either by an output

value, producing the event

(({(no, m 0 ), (ni, mi),..., (ni- 1, mi-,}, *), output k)
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or by a value valof ni such that ni 6 nj for j < i, producing the event

(({(no, in0 ), (n,, ml),..., (n.-1, m,_,), *), valof (n,, .))

In this latter case the cells

Q fr ({(no, ion),..., ( m,-1, m,(n, m)}, *)

for m E w are enabled.

It is easy to see that

A U U { the events produced at stage i}
iEW

is a state of N 2, and that any state of N 2 may be constructed in this way.

5 From oracles to sequential algorithms

In this section we show that any (Scott-continuous and) unimonotone function
is computed by some sequential algorithm. Since unimonotone functions are
defined via oracles, it is sufficient to provide, for any given oracle, a sequential
algorithm which simulates it. We begin by treating the rather simple case of
type 1 oracles, proceeding by cases according to the definition of type 1 oracle
given in section 3.1. For a given oracle 01 we define a sequential algorithm
A' = Alg(0) which defines the same function as 0' (we take for granted the
obvious isomorphism between type 0 and NO).

case 1.1 01 = u1 . In this case Alg(O1) is the empty algorithm.

case 1.2 01 is the oracle that, without opening envelopes, answers n. In this case
Alg(O') = {(initi, output n)}.

case 1.3 01 is the envelope-opening oracle that gives values M1 , M 2 ,..., ink,...
on arguments ni, n 2, ... , nk,.... In this case

Alg(O') = { (initl, valof *), ((nl, *), output mj),..., ((nk, *), output Mk),...}

It is dearly the case that 0' and Alg(O') define the same type 1 function.
Actually Alg defines a bijection between type 1 oracles and algorithms.

We pass now to type 2: we should define, for a given type 2 oracle comput-
ing f 2 , a sequential algorithm Alg(0 2) such that, for any given type 1 oracle 01
computing fl, Alg(0 2)(Alg(0')) = f 2(f')). This cannot be done in general
since, as showed in example 5, there exist oracles computing non-continuous
functionals, and we know that sequential algorithms axe continuous. So we
consider only continuous oracles, i.e. oracles represented by trees with no in-
finite branch (proposition 1). Again we proceed by cases on the definition of
type 2 oracles:
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case 2.1 01 - U2. In this case Alg(0 2) is the empty algorithm.

case 2.2 02 is the oracle that, without opening envelopes, answers n. In this case
Alg(0 2 ) = {(inith, output n)}.

case 2.3 This is the principal case. We define, for any tree T representing a type 2
oracle 02 (in the sense defined in the section devoted to type 2 oracles),
an algorithm Alg(0 2) which computes the same functional as 02. This
can be done by exploring T in a breadth-first manner: to each node q of T
will correspond an event (c, v) of N 2, such that c describes the behaviour
of the type 1 algorithm so far explored in the branch of q (remind that
a cell c of N 2 is essentially a finite type 1 algorithm), and v describes
the (valof or output) action performed by 02 on such an algorithm,
contained in q. Any event produced in this way will be enabled by the
event corresponding to the predecessor of q in T, the event corresponding
to the root of T (0?) being always (init 2, valof initl), enabled by the
empty set.

Before giving the general definition of Alg(0 2) in this last case, we show the
sequential algorithms corresponding to the oracles of examples 6 and 7. We
keep the tree-structure of oracles. Nodes contain events and arcs enablings (for
typographical reasons the arcs axe not explicitly given, but they can easily be
reconstructed from the corresponding oracles). However it is worth noticing
that the tree structure, essential in the tree description of oracles, is no more
necessary for sequential algorithms, since all the information contained in the
branch of the ancestors of any node q is supplied by the cell of the event
corresponding to q.

We show how to produce the sequential algorithm Alg(O 2 ) when 02 is the
oracle of the example 6, represented by the tree T, in a stepwise manner. At
step i we produce an algorithm which simulates T up to level i (i.e. which
simulate branches of depth less or equal than i). In this example we use the
above introduced abbreviation for type 1 algorithms, namely

{ (initi, valof *)((n 1 , *), output rnl),..., ((nk, *), output mk)}

for k > 0, will be noted {(ni,mj),...,(nk,mk)}. At step 0 we produce the
(initial) event (init, valof initl) which correspond to the root of T. This event
enables infinitely many cells, and in particular those we need for simulating
depth-1 branches, as showed in the following algorithm (step 1):

(({(initi, valof ,)}, ,), valof 0)
(iit 2, valof initl)

(({(initi, output 0)}, *), output 0)

(({(initi, output 1)}, *),output 1)

(({(initi, output 2)}, *),output 1)
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The event (({(initi, valor ,)}, ,), valof 0) enables the cells ({(0, 3)}, *), ({(0, 0 *)
and ({(0,27)},*) that we fill at step 2 in the following way:

(({(O, 3)},*), valof (1, *))

(({(initl,valof *)},*),valof 0) ((Q(0,0)},*),output 0)
(init2 valorinitl)(({(0, 27)}, ,), valor (2,*)

(ini 2, valof initi)

(({(initI, output 0)}, *),output 0)

(({(initl, output 1)},*), output 1)

(({(initi, output 2)}, *),output 1)

The final step 3 produces Alg(0 2) completely (for typographical reasons we
omit this stage).

The following algorithm corresponds to the third (and final) step in the
construction of Alg(0 2 ), where 02 is the oracle of example 7.

(({(0, 0)},), output 1)

((W(O, 1)}, ),output 1)

(({(0, 2)), *), output 1)

(init2, valof initl) (({(initi, valof *)1,.),valof 0) :

(({(0, n)}, *), output 1)

(({(0, n + 1)}, *), output 1)

We can now give a procedure for constructing Alg(0 2) for a type 2 oracleoperating under case 2.3, described by a tree T: let Alg°(0 2) be the algorithm
{(init2 , valof initl)} (step 0).

* step 1

For any depth-1 branch of T of the form

0? ni
without opening 02 says mi (A: rn,)

we produce the event (({(initi, output mi)), *), output ni).
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If T contains the depth-i branch:

0? 02 opens r°?

(remark that T contains at most one branch of this kind, by unicity of the
first non-preliminary question r0 asked to envelopes-opening arguments),
we produce the event (({(initi, valof ,)},,),valof r0 }). Let Alg'(0 2)
be the algorithm

Ag91(0 2) = Alg°(0 2) U{ all the events produced at step 1}

(remark that any cell filled in step 1 is enabled by AIg°(0 2 ))

* step i + 1, i > 0

For any depth-i + 1 branch

0? -1opn -o r1? ".. ri- 1? - ri?

we produce the event

(({ro no), (r,, ni), ... , (rj_,, n,_,)}, *), valof (ri,,)

and for any depthi + 1 branch of the form

? O opens tO o r? " " ri-l? hi 1 k

we produce the event

(({(ro, no), (r, nl), ... , (ri-1, hi-,)}, *), output k)

Remark that any cell filled at this step is enabled by the event previously
produced for the depth-i branch:

0? Oj opens rO? n r1 ? ".. ri-1 ?

Let Algi+1(0 2) be the algorithm

Alg'+1 (O2 ) = Alg'(O) U{ all the events produced at step i + 1}

Finally define
Alg(0 2 ) = U Alg'(0 2)

i<depth(T)

Once again it ,s clear that if T has infinite branches, as in example 5, then
Alg(0 2) can not be defined (it could be defined if infinite cells were admitted
in N 2)
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Proposition 2 If 02 is a continuous type 2 oracle , then Alg(0 2) is a se-
quential algorithm such that, for any type 1 oracle 01,

Alg(0 2)(Alg(O)) = 02(01)

Proof: Alg(0 2 ) is a sequential algorithm, i.e. a state of N 2 , since at any step
we fill only cells enabled in the previous step or initial cells (at step 0) and
clearly any cell is filled with at most one value. Let us prove that if, for a given
01, 02(01) = n, then Alg(0 2)(Alg(0')) = n. If 02 operates under cases 2.1
or 2.2, then this is trivially the case. Let 02 operate under case 3.3 and T
"be the corresponding tree. In this case we reason by cases on the branch b of
T that is followed in the computation 02(01). By hypothesis such a branch
ends with "n". Two cases are possible for b:

0? n
without opening 0' says m (Ar.m)

In this case Alg(0 2) contains the event

(({(initl, output m)}, *),output n)

Moreover we know that 01 is the oracle that, without opening envelopes,
gives result m, hence

Alg(O') = {(initi, output m)}

Hence we get Alg(0 2 )(Alg(0 1 )) = n

0? ',opens r0 ? no ri? -.. r,. 1 ? .- 1 n

in this case Alg(0 2 ) contains the event

(({(ro, no), (ri, ni),.. ., (r1 - 1, n,_-)}, *),output n)

Moreover 01 open envelopes and, for j < i - 1, 0' gives result nj when
presented with rj. Hence we get

{ (to, no), (ri, ni),..., (ri- 1, n,-.)} C Alg(O)

and hence Alg(0 2)(Alg(01)) = n

Similarly one can prove that, if Alg(0 2)(Alg(0 1 )) = n, than 02(01) = n 0
We have seen that any (continuous) oracle may be simulated by an algorithm.
The converse does not hold essentially because sequential algorithms may use
intensional features of arguments in order to give a result. Consider for in-
stance the following type 2 sequential algorithm

-d duN mm mm m i m m
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Strictness - tester = {(init 2 , valof initi)(({(initi, valof ,)},*),output 0)}

The algorithm Strictness - tester, when applied to a type 1 algorithm A,
gives value 0 if and only if the function computed by A is strict. Clearly
Strictness-tester does not define a monotone functional, and hence it cannot
be simulated by an oracle. Actually the tree representing an oracle simulating
this algorithm should be

0? 0t opens 0

Such a tree, as remarked at the end of the section devoted to oracles, is not
legal since it violates the condition "at least one non preliminary question is
asked" of case 2.3.3 of the type 2 oracles definition.

We end this section by showing that any finite type-2 unimonotone function
(i.e. any type-2 unimonotone function computed by a finite tree) is PCF-
definable. The argument is very simple, and we content ourselves with showing
its application to the tree T of exemple 6: let f 2 be the functional computed
by (the oracle associated to) T. We aim to define a PCF-term F defining f 2 .
It is clear that, for any type 1 function fl, if f 2 (fl) has to be defined then
f'(0) has to be defined. We can hence safely construct a prefix of F of the

form "AfI case f'(0)... ". The only interesting case is f '(0) E {3,0, 27}. If,
for instance, f1(0) = 3, we can safely branch on a " case f1(1)...", the only
interesting case this time being f1(1) E {0, 1}. If, for instance, f (1) = 0, we
end the branching operation by "... then 0". We simply follow the branches
of T, constructing a case subterm for each branching. This is enough for
simulating the subtree of T rooted in 0?. As for the branches labelled by
"without opening, 01 says i " ending in a leaf mr, it is enough to add in each
"case " branching the alternative " else if f1(1) = i... then ri".

Proposition 3 Any finite type 2 unimonotone functional is PCF-definable.

6 Type 3 oracles and algorithms

In [10] a complete description of type 3 oracles is given. Once again (con-
tinuous) type 3 oracles can be simulated by sequential algorithms. A first
observation about the intensional behaviour of a type 3 oracle 03 (i. e. about
the interactions between this oracle and her type 2 argument 02) is that in the
principal case, the one in which both 01 and 02 are strict (open envelopes),
0' cannot simply present 02 with a first non-preliminary question 0', as it
was the case at lower types. Actually this simplistic approach had been fol-
lowed by Kleene until a counter-example by D. Kierstead (reported in [9, page
27]) showed that it does not work in general. Kierstead's example involves
non-continuous type 2 functions; we propose here an alternative example.
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example 8: Consider the functions f', f2 N -- N defined in example 3, and
let Fl', FP be PCF-terms defining them (for instance, F,' = An if n = 0 then 0).
Consider now the type 2 functionals fl, f2 defined as follows:

f12 fi .O

It is easy to see that f2 and f2 are actually unimonotone, and that they
can be defined by terms FI"s as follows (we use a PCF-like syntax, but we
could have used Kleene's schemata for recursive functionals as well):

F3 = \f' if f'(O) = 0 then 0

F2 = \f' if f'(1) = 1 then 0

Consider now the type 3 functional f3 defined by:

f3: f>2•-•0 for 1<i<2

Such a functional is defined by the following term:

F= Af 2 f 2(An if n = 0 then f2(FI') else (if n = 1 then f 2(F2 ))

and hence f 3 should be unimonotone. Suppose now that 03 be an oracle for
f': when presented with an envelopes-opening type 2 oracle 02, 03 cannot
simply pass to 02 a type 1 oracle 01 and wait for an answer of 02. 03 must
act in a more subtle way, taking into account the intensional behaviour of 02.

Let us see how an oracle 03 computing f 3 has to behave when applied to
02 computing f2: having checked that 02 works under case 2.3 (i.e. that f 2

is strict), 03 questions 02 with the type 1 oracle 0' which opens envelopes
but never gives a result (corresponding to the type 1 sequential algorithm
{(0,*), valof *}). If f 2 = fl, then 02 will question 01 with valof (0,*), if
f2 = f 2 , then 02 will question 01 with valof (1, *). In the former case the
following question of 0' will be fl' (i.e. 03 will present 02 with an oracle
computing fl') in the latter it .Aill be f2. In both cases 03 uses her knowledge
of the intensional behaviour of 02 (i.e. of the question that 02 has asked to
01) for formulating the following question to 02.

In the following diagram we show stage by stage the interaction between 03
and 02 (computing a type 2 function f 2 ). At even stages 03 has the control,
and she can either question 02 with a type 1 oracle, or give a final answer.
At odd stages 02 can either question the 0' she has been presented with, or
give a final answer (answers are boxed in the diagram). We assume that at
stage 0 03 has already learnt that 02 behaves under case 2.3. We represent
type 1 oracles by (corresponding) sequential algorithms. In this example 02

computes f2.
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03 02 What 03 knows about 02

02 opens envelopes

o valof {(0, *), valof *I*

1 valof (0, *) 02 needs the value of 0' on 0

2 valof {(0,0)}*

3 output 0 f2 > f2

4 output 01
The crucial stage is stage 1, in which 03 learns that she can safely question

02 with (an oracle for) f•.
The interaction described by this diagram may be seen as an unfolding of

the A-term F. Actually, in F the formal parameter f- is applied to a type 1
function which is f1l if f 2 = f?, and f• if f2 = f22, getting in any case the right
result.

Here is an alternative example:
example 9: Consider the functions fl', f 2

1, f3 : N -+ N defined in example 4,
and let F, F' F3F be PCF-terms defining them (for instance, F' = An if n =

1 then 0 else if n = 2 then 1). Consider now the type 2 functionals fB, f3, f•
defined as follows:

f,: fl.- 0 fh-+l

ff3 2 f2 •-• f 3•-

It is easy to see that the fl's are actually unimonotone, and that they can be
defined by terms F• 's as follows

f'(2) = 1 if f'(1) = 0 then 0
F2 = Af' case

f'(2)=O if f'(O)= 1 then 1

f'(0) = 1 if f'(2) = 0 then 0
F2= Af' case

f'(0) = 0 if f'(1) = 1 then I
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f'(1)=1 iff1(0)--0then0

F32 -- I case
f'(1)=0 if fl(2). -1 then 1

Consider now the type 3 functional f 3 defined by:

f3: f2-.0 forl<i<3

Such a functional is defined by the following term:

n = 0 f 2(F )
F = Af 2f 2(An case n = 1 f 2(F•)

n = 2 f 2(F2)

and hence f 3 should be unimonotone. Suppose now that 03 be an oracle for
f3: when presented with an envelopes-opening type 2 oracle 02, 03 cannot
simply pass to 02 a type 1 oracle 01 and wait for an answer of 02, since for
any type 1 function f' there exists i < 3 such that fl(f') is not defined. m

We can now describe, following [10], the behaviour of a type 3 oracle 03

presented with an envelope containing a type 2 oracle 02. As for lower types,
there axe three cases:

case 3.1 03 stands mute. It computes the totally undefined functions Af 2 i_.

case 3.2 Without opening the envelope, 03 gives result n. It computes the non-
strict constant Af 2 n.

case 3.3 03 opens the envelope, revealing that she will require some information
about 02. To obtain such information, she begins by questioning 02 with
the preliminary question 01 = u'. Three cases are possible, according
to the behaviour of O:

case 3.3.1 02 does not open the envelope and stands mute. In this case 03

stands mute too.

case 3.3.2 Without opening, 02 gives resuit n. Depending on n, 0' may either
stand mute or give result m.

case 3.3.3 02 opens the envelope. Observing this 0' may either stand mute
or embark on a program of further systematic questioning of 02:

the goal of such questioning is to construct (a part of) the tree
associated to 02. To begin with, 03 may choose the first non-
preliminary question 0' according to one of the following options:

option 1 01 is the non-strict constant n0 , for some n E w. Questioned
with 01, 02 will either stand mute (and the questioning falters)
or give m 0 as result.
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option 2 0' is the oracle which opens envelopes but never gives a re-
sult. Questioned with 01, 02 will either stand mute (and the
questioning falters) or question 01 with ro E w.

Under either option, if the questioning has not faltered, 0' records
what she has thus far learned about 02, namely:

option 1 option 2

0? Az.no 0? o1opens r0?

Option 1 may be reused abitrarily many times, with different con-
stants, whereas option 2 may be used at most one time. At any
further stage of the questioning, 03 may either use option 1 with a
new constant or option 2 (if it has not been already used) or finally
behave following the option we describe below.

option 3 0' picks an already explored branch of the form

r • r - -• rj -. ... rTk? , rk+h ?

where rk+i is not necessarily a leaf) and answer the ques-
tion rk+l by n•+k (if rk+l is not a leaf, nk+l has to be dif-
ferent from the answers previously provided) . That is 0'
questions 02 with the type 1 oracle computing the function
{(r 0, no), (ri, ni),... , , nk+1)}. 02 may either stand mute
(and the questioning falters), or ask for rk+2 or finally give an-
,wer m. According hich of the two last possibilities occurs
the branch that h, choosed is completed, giving rise to

0?o,- ro? - r1 ? -n- rk? Tk+? t1+ rk+2?

or to

O•o--r-peno . rL.?-57-- rk+l?n- -m

A stage of the questioning is final if no branch of the tree con-
structed by 0' is ended by a question r?. At any stage 0' may
decide to stop the questioning without giving any answer, or to pose
a new question (following one of the described options) or finally
(only if the stage is final) to give a global answer m on 02.
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This gives a complete description of type 3 oracles 3 but is far from assuring
that these oracles actually compute type 3 monotone functions. The following
requirement is needed: if 02 and p 2 are oracles computing f 2 and g 2 , and
f 2 < g2, then if 03(02) = n, also 0 3 (p 2 ) - n. We can now see how a type 3
oracles 03 may be simulated by a sequential algorithms Alg(0 3). We follow
the description above, and, in order to avoid the proliferation of brackets, we
note cells of the form (z, *) by z* (x being a type 1 or 2 algorithm):

case 3.1 Alg(O3 ) is the empty algorithm.

case 3.2
Alg(O) = {(02*, output n)}

(we index empty algorithms by their type)

case 3.3
Alg(0 3) = {02*, valof 01*)}

case 3.3.1 Nothing to say.

case 3.3.2

Alg(0 3) = {(02*, valof 01*),({(•1*, output n)}*, output m)}

(the other case being trivial)

case 3.3.3

Alg(0 3) = {(02*, valof 0j*),({(0,*, valof 00*)}*, valor QUESTION)}

The value of "QUESTION" depends on the option choosen by 03,

namely:

option 1
QUESTION = {(0o*, output no)}*

In this case cells of the form

{(01*, valof 0o*),({(Oo*, output no)}*, output mo)}*

are enabled. If 02 under option 1 gives answer m0 , this cell
will be filled by a question arising from a next stage of the
questioning.

option 2
QUESTION = {(Oo*, valof ,)},

In this case cells of the form

3Actually in Kleene's approach there exists a further option, related to the fact that the
tree associated to a type 2 oracle may contain infinite branches. Since we are interested in
unimonotone and continuous functions, we skip it.
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{(0@*, valof @o*),({(video*, valof .)}., valof ro*)}*

are enabled. These cells may be filled by values

valof {(00*, valof *)(ro*, output no)}*

and they will be actually filled and added to Alg(0 3 ) if neces-
sary, following the third option described below.

option 3 By induction on the number of stages so far performed, we get
that the cell

C = {(01., valof Oo*), ({(.o*, valof *)}*, valof ro*),...,

({(00*, val*),(ro*, output no), ... , (rk*, output nk)}*, valof r&+,*1*

is enabled. Option 3 is simulated by adding the event

(C, valof {(00., val*),(ro*, output no),...

• .. , (rk*, output nLk), (rk+, output nk+i)}*)

to Alg(0 3).

When a final stage in which 03 gives a global answer m on 02

is reached, 03 has explored a subtree 7 of 02. Hence the cell
Alg(-')* is enabled by Alg(O3 ) constructed so far, and it can be
filled by output m, completing the translation.

Proving that Alg(0 3 ) computes the same type 3 function as 03 is straightfor-
ward, using the same arguments as in proposition 2, but the complication of
notations makes the proof longer and less understandable.

7 Conclusion

We have seen that any (continuous and) unimonotone function is computed by
some sequential algorithm, and that the converse does not hold. It would be
interesting to compare unimonotone functions and the extensional sequential
algorithms defined in [5] (the algorithm Strictness - tester at the end of
section 5, that cannot be simulated by an oracle is not extensional).

It is natural to ask whether or not any finite unimonotone function is PCF-
definable. By rearranging Curien's examples of sequential and non-definable
functionals [4, page 2691) one can show that there exist type 3 continuous
and unimonotone functionals which are non-definable. At type 2 the converse
does hold, the A-term defining a continuous and unimonotone type 2 functional
being easily constructed from the finite tree associated to (an oracle for) f 2 .
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Mechanizing Logical Relations
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Abstract. We give an algorithm for deciding whether there exists a de-
finable element of a finite model of an applied typed lambda calculus that
passes certain tests, in the special case when all the constants and test
arguments are of order at most one. When there is such an element, the
algorithm outputs a term that passes the tests; otherwise, the algorithm
outputs a logical relation that demonstrates the nonexistence of such an
element. Several example applications of the C' implementation of this
algorithm are considered.

1 Introduction

Given a model of an applied typed lambda calculus, it is natural to consider
the problem of determining whether an element of that model is definable by a

term, or, more generally, of determining whether there exists a definable element
of the model that passes certain tests. One approach to settling such questions
makes use of so-called "logical relations" (Plo8O].

Building on recent work on logical relations by Sieber [Sie92], we give an
algorithm for deciding whether there exists a definable element of a finite model
that passes certain tests, in the special case when all the constants and test
arguments are of order at most one. When there is such an element, the algo-
rithm outputs a term that passes the tests; otherwise, the algorithm outputs a
logical relation that demonstrates the nonexistence of such an element. Loader's
recent proof of the undecidability of the lambda definability problem [Loa94]
shows that the restriction to constants and test arguments of order at most one
is necessary. (Specifically, Loader shows the undecidability of the problem of
determining the definability of order-three elements of the full type hierarchy
over a seven element set.)

The algorithm was first implemented in Standard ML and used to find an
interesting non-definability proof (see Lemma 4.16 of [JS93]). An efficient im-
plementation of the algorithm in ANSI C has now been written and applied
to various definability problems, some examples of which are described below.
A copy of this program, lambda, along with supporting documentation and a
number of example lambda definability problems, can be obtained by anony-
mous ftp. Connect to Itp. cis. ksu. edu, login as anonymous, change directory
to pub/CIS/Stoughton/lambda, retrieve the file README, and follow the instruc-
tions given in that file.

*The research reported here was partially supported by ESPRIT project CLICS-II and was
performed while the author was on the faculty of the School of Cognitive and Computing
Sciences of the University of Sussex.
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2 The typed lambda calculus

This section consists of the mostly standard definitions concerning the syntax
and semantics of the typed lambda calculus that will be required in the sequel.
An introduction to the typed lambda calculus can be found, e.g., in [Mit90].

The set of types T is least such that
(i) I E T,

(ii) o. - r E T if a E T and r E T.
We let --* associate to the right. The order ord or E w of a type ao E T is defined
by ord & = 0 and ord(a --* r) = the maximum of 1 + ord ao and ord r. The arity
ar or E w of a type o, is defined by art = 0and ar(o.-- r) = 1 + arr. Thus, if n > 0
and ai E T for all i E n, then ord(o -- ... - o, 1 -I t) = 1 + the maximum of
{ordai IiE n} and ar(o0o-....o'n---* ) = n.

Define a'o, for n E w, by: oro = cr and oa'+l = a - o,". Thus, for all n E w,
ar orn = n + ar o. and ord oe" is ord o,, if n = 0, and is 1 + ord o,, otherwise. It is
easy to see that or has order at most. one just when it is of the form tn for some
n E w.

Many operations and concepts extend naturally from sets to T-indexed fam-
ilies of sets, in a pointwise manner. For example, given an ordinal a, an a-ary
relation R(-) over a T-indexed family of sets A(-) is a T-indexed family of a-
ary relations R, over A,. We will make use of this and other such extensions
without explicit comment. We sometimes confuse a T-indexed family of sets A
with U"ET A,-

V is a T-indexed family of disjoint, denumerable sets of variables. A family of
constants C is a T-indexed family of disjoint sets. We say that such a C is finite
iff ULOET CG is finite, and that C is infinite otherwise. The order ord C E wU{oo}
of C is the greatest element of { ord o, 1 01 E T and C, # 01 if it exists, and oo
otherwise.

The family A(C) of typed A-terms over a family of constants C is least such
that

(i) c E A(C), if c E CG,
(ii) x E A(C), if x E V0 ,
(iii) M N E A(C), if M E A(C),_• and N E A(C)0 ,
(iv) Ax. M E A(C),-.r if x E V, and M E A(C),.

We call a term M N an application and a term Ax. M an abstraction. We
let application associate to the left, and abbreviate Axo....Ax,,_ 1 .M to
Axo ... Xn-i.M. (When n = 0, Axo...x,- Al = M.) The set of free vari-
ables fvM E PU(UET V,) of a term M E A(C) is defined by fvc = 0, fvx = {x},
fv(MN) = fvM UfvN and fv(Ax. Al) = fvAl - {x}. A term Al E A(C) is
closed iff fv M = 0, and open otherwise.

We write F(C) for the family of A-free terms over C: r(C), = { M E A(C), I
M is A-free }. The depth depth Al E w of a A-free term Al is defined by depth c =
depth x = 0 and depth(M N) = the maximum of depth MA and 1 + depth N.
The size size M E w of a A-free term Al is defined by size c = size x = 1 and
size(M N) = size M + size N. Thus, if n > 0, ai E T for all i E n, Mi E F(C)0,
for all i E n and d is a constant or variable of type o0 ..... I,- - t,
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then depth(dMo .-. = 1 + the maximum of {depthMi I i E n} and
size(d Mo -.. M.-. 1) = 1 + size Mo +.-. + size Mn- 1 .

We write f a for the application of a function f to an argument a, and let
function application associate to the left. The set of all functions from a set A
to a set B is denoted by A --* B, and -- associates to the right..

A type frame A is a T-indexed set such that A, 4 0 and A,- C A, -- AT
for all o, r E T. We say that such an A is finite iff A, is finite, and that A is
infinite otherwise. The set EnVA (or just Env) of environments over A consists
of the set of all type-respecting functions from UWET V1 to U0eT A,. If p E Env,
a E A, and z E V0, then p[a/z] E Env is the environment that sends x to a, and
sends all y # z to p y. We write SemA (or just Sem) for the T-indexed family of
sets defined by Sem,, = Env --# A,.

A A(C)-model A consists of a type frame A, together with an element CA E
A, for each c E C,, such that the following recursive definition of the meaning
[MI E Sem, of a term M E A(C), is well-defined:

[CJp = CA

[XJp = pX
[M N]p = (JIMlp)([N~p)

[Ax. M]J p a = [Aljp[a/xJ.

When M is closed, we often write [M] for [A']p, where p E Env is arbitrary. An
element a E A, is definable iff there exists a closed term Al E A(C), such that
a = [MI. We say that A is finite iff A is finite, and that A is infinite otherwise.

Our example model in the sequel will be the monolone finnclion model of Finitary
PCF: the restriction of PCF [Plo77] to the booleans. We write FPCF for the
family of constants such that FPCF, = IQ, tt, if}, FPCF,3 = If. and FPCF, -- 0
for all other 0 E T, and define a finite A(FPCF)-model Y7 as follows. F, is the
poset {f-, tt, ff}, where -L is C_ the incomparable elements tt and if, and F0,-
is the set of all monotonic functions from F, to F7, ordered pointwise (f C g iff
f a C ga for all a). We then set = -L, tty = tt, fly = ff and define If- by

-_L ifx= I,
If.FXYZ= y if X= tt.,

z ifX = ff.

One shows that the meaning function for Y is well-defined by ordering EnvF
pointwise and showing by induction on .l that [AI] is both well-defined and
monotonic.

3 Definability

We now consider the problem of determining whether an element of a A(C)-
model is definable, or, more generally, of determining whether there exists a
definable element of a A(C)-model that passes certain tests. For example, we can
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ask whether the "parallel or" operation of the A(FPCF)-model 7, is definable,
i.e., whether there exists a closed term M of type 42 such that

[M] tt -L = tt

[M] _l tt = tt

[M] ff ff = f.

One approach to settling such questions makes use of so-called "logical re-
lations" [Plo8O]. It is easier to say what logical relations are if we first extend
function application from elements of type frames to tuples of elements of type
frames, in a componentwise manner. Suppose A is a type frame, a is an ordinal
and o,r E T. If X = (z% E A, I A E a) and Y = (Y\ E A,, \ E a),
then we define the application XY of X to Y to be (x\ y\ E A, f A E a),
and let X Y associate to the left. Given an a E An, we sometimes write a for
(a I \ Ea) E A"'.

An a-ary logical relation R over a type fralne A is an o-ary relation over A
such that X E R,_, iff XY E R, for all Y E R,. We say that an a-tuple
X E A* satisfies such an R iff X E R,. An o-ary logical relation R over a
A(C)-model A is an a-ary logical relation over A such that CA satisfies R for all
cEC.

The following theorem and its corollary show why logical relations are useful
for showing non-definability results.

Theorem 3.1 (Plotkin) If R is an a-ary logical relation over a A(C)-model
A, then [M] satisfies R for all closed Al E A(C).

Proof. An easy induction on A(C) shows that, for all Al E A(C), and
Px EEnv forall AEa, if(p\x I AEa) E R, forallxEfvMfnlV and rET,
then ([M]pA I A E a) E R,. The result then follows immediately. 0

Corollary 3.2 Let A be a A(C)-model, Ai E A' for all i E m, X E A' and
R be an a-ary logical relation over A. for ni E w and an ordinal a. If R is
satisfied by A, for all i E 7n but is not satisfied by X. then there is no definable
a E A~o ..... *=--,such that aA 0 ... A,-, = X.

Proof. Immediate from Theorem 3.1. 0

We can, e.g., use Corollary 3.2 to prove Plotkin's result [Plo77] that parallel
or is not definable in Finitary PCF. (Although the following proof is due to
Plotkin, he never published it. It was recently rediscovered by Sieber [Sie92].)
Define argument tuples Ai E F,' for all i E 2 and a result tuple X E F,3 by taking
A0 = (tt, 1, ff) (the first argument column of the display at the beginning of
this section), A1 = (1, tt, if) (the second argument column of that display) and
X = (tt, tt, if) (the result column of that display). Let R be the ternary logical
relation over F such that (x, y, z) E R, iff x = y = - or one of x or y is -L. It is
easy to show that R is satisfied by the interpretations of Q2, tt, ff and If. But R
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is satisfied by A0 and A, but not by X, allowing us to conclude that there is no
definable f E F,2 such that fA A, = X.

Loader's recent proof of the undecidability of the lambda definability prob-
lem [Loa94] shows that Corollary 3.2 fails to provide a complete method for
showing non-definability (and thus definability) results. However, a slight gen-
eralization of Theorem 4.1 of [Sie92] shows that it does provide a complete
method in the special case where the orders of C and the ci's are at most one
(cf., Theorem 1 of [Plo80] and Theorem 5 of [JT93]).

Definition 3.3 Suppose A is a A(C)-model and A = (Ai E Al I i E m),
for m E w and an ordinal a and where C and the ci's have order at most
one. Then, R(A) is the a-ary logical relation over A such that X E R(A), iff
aAO ... Am..l = X for some definable a E Ao... _O -,.

Lemma 3.4 (Sieber) Suppose A is a A(C)-model and A (Ai E A" I i E
m), for m E w and an ordinal a and uhere C and the oi 's have order at most
one. Then, R(A) is an a-ary logical relation over A that is satisfied by Ai for
all i E m.

Proof. Suppose tha: c E C,-. If Y0,..., Yn-I E R(A),, then there are closed
terms Mo,..., M-, 1 of type co .- ,,,_ I .t such that PIMj A0
1' for all j E n. Then, the term

M = Axo .Xml. C (M 0 xo x,,- 1) ... (Mi-i :C ... x,..-i)

of type 0o UP. 1_ - t is such that

[M] A( -- AM1 = CA Y' ... -1,

showing that CA YO "' Y, 1- E R(A), Thus CA satisfies R(A). The proof that
Ai satisfies R(A) for all i C- m is almost identical (xi is used in the term M
instead of c). 0

Theorem 3.5 (Sieber) Suppose A is a A(C)-model, A = (Ai E A, i E m)
and X E A', for mn E w and an ordunal a and where C and the oai 's have order
at most one. Then, a Ao ... ,m-1 = X for some definable a E A,,,-. -,7_ ,
iff every a-ary logical relation over A that is satisfied by Ai for all i E in is also
satisfied by X.

Proof. Immediate from Corollary 3.2 and Lemma 3.4. 0

Although Theorem 3.5 gives a characterization of R(A),, the fact that this
characterization involves the universal quantification over all a-ary logical rela-
tions over A that are satisfied by the A, limits its practical utility. It turns out,
however, that we can give a much more direct (''racterization of R(A),.

Definition 3.6 Suppose A is a A(C)-model aid A = (Ai G A', I i Ei),
for m c w and an ordinal a and where C and the ai's have order at, most one.
Then, L(A) is the a-ary logical relation over A such that L(A), is the least a-ary
relation over A, that is closed under CA, for all c E C, and Ai, for all i E m,
where the CA's and Ai's are viewed as operations over A' in the obvious way.
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Lemma 3.7 Suppose A is a A(C)-model and A = (Ai E AO, I i E in), for
m E w and an ordinal a and where C and the oi 's have order at most one. Let
zi E V1,. for all i E m be distinct variables.

(i) Suppose that c E C,-, Yo,.. .,Yn- 1 E A' and Mo.. M,-i E r(C),.
If fvMj C9{xo,...,Xm.-.l} and

[AX 0 " "Xm--I. MA'1j] AO ... Am.- 1 = Y,

for all j E n, then the A-free term. M = cMo A0 • A1,- 1 of type t is such that
fvM C {Zo,...,xmi) and

[AXo '...Xm-1. MI AO "" Am-1 = CA YO ... 4 -l-

(ii) Suppose that i E m, Yo,. -Yar-,-1 E .4' and A10. .. - IAar,,-1 E
r(C),. If fvM, C {xo, ... , x,- 1 } and

••O "... Xm_1. Mj] AO ... Am-,,,_ 1 = YJ

for all j E ar oi, then the A-free term M= X, 10... of type t is such
that fvM C {xo,...,x,-1} and

•Axo ... x,-1. MI Ao A,,,-1 = Ai 1' ..."'" 7,-,-

(iii) For all X E L(A),, there is an Al E [(C), such that fv M C
{Zo,.. ., m-1} and

[Axo0... Xm-1. AIl Ao A,,,_I = X.

Proof. (i) and (ii) are immediate, and (iii) follows from (i) and (ii) by induction
on L(A),. 0

Lemma 3.8 Suppose A is a A(C)-model and A = (Ai E A' I i E m.), for
m E w and an ordinal ca and where C and the ai's have order at most one.
Then, L(A) = R(A).

Proof. L(A) is clearly an a-ary logical relation over A that is satisfied by
Ai for all i E m, and L(A), C R(A), follows from Lemma 3.7 (iii). For the
opposite inclusion, if X ý L(A),, then there is no definable a E A such that
aAO -.. Am.. = X, by Corollary 3.2, and thus X • R(A),. [0

Theorem 3.9 Suppose A is a A(C)-inodel. A = (Ai E A4,, I i E m) and
X E A', for m E w and an ordinal a and where C' and the cri's have order at
most one. Then, aAo .. .  X= for some definable a G A -....
iff X E L(A),.

Proof. Immediate from Lemma 3.8. 0

Theorem 3.9 and Lemma 3.7 suggest the following algorithm schema.
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Algorithm Schema 3.10 Inputs. A finite family of constants C of order at
most one, m, a E w, types Oo, , O'm- 1 of order at most one, a finite, nonempty

set A,, CA E A,. for each CE CL-, A = (Ai E A, I i Em) and XE A', where
we extend A, ,o a type frame A by taking A,.- to be the set of all functions
from A, to A, for all o, r E T.

Initialization. Pick distinct variables xi E V,, for all i E m. Initialize the stage
kEw toO. Let ZCU be

{ (CA, c) I c cE } u { (A, zT) I i E m and =, = ,

where U is set of all pairs (Y, M) such that Y E A*, M E F(C), and fv M C
{ZO,. . ., -- Initialize the state S C U to a subset of Z that is a function
with domain dom Z. (The particular subset chosen is left unspecified, as is the
method used to compute that subset; it need not involve the construction of
Z.) If (X, M) E S for some term Al. then terminate with k and the term

Loop. Let Z = Z 1 U Z2 , where Z1 C U is the set of all

(CA Yo ... I';,-1. cA10 ... A,,- 1)

such that c E C,., n. > 0 and (Y), Mj) E S for all j E n, and Z2 C U is the set
of all

A Y.. ara, -1, X•i A10 Mr,-1

such that i E m, arai > 0 and (YM,1j) E S for all j E ar aj. Pick a subset S' of
Z such that S' is a function with domain dom Z - dom S and (t) (Y, M) E S'
implies that size M < size N for all N that are paired with Y in Z. (The
particular subset chosen is left unspecified, as is the method used to compute
that subset; it need not involve the construction of Z, Z1 or Z2 .) If S' = 0,
then terminate with k and domS. Otherwise, increment k by one and add the
elements of S' to S. (++) If (X, M) E S for some term Al, then terminate with k
and the term Axo ... - MA. Otherwise, repeat.

An instance of Algorithm Schema 3.10 is an algorithm formed from the
schema by specifying the details that, were left open. Condition (t) is included
since experience suggests that this will ensure that instances of the schema will
generate good quality terms. Theorem 3.11 doesn't depend upon (t) being in-
cluded, however.

Theorem 3.11 If we supply the required inputs to an instance of Algorithm
Schema 3.10, then one of the following statements holds.

(i) The algorithm terminates with a stage I and a closed term of the form
Azo ... x-I.M, for distinct variables xi E V,. and a A-free term M of type
t and depth 1. Let B be any A(C)-model such that B, = A,. CL; = CA for all
c E C, and Ai E BO for all i E in. Then, [Axn... x,, Al A0... A,- 1 =
X. Furthermore, if N E F(C), is such that fvN C {xo ..... x,,,i and
[A0xo"."m. N Ao.." A -1 = N. then depth Al < depth N.



366

(ii) The algorithm terminates with a stage I and an a-ary relation Q over
A, such that X V Q. If B is a A(C)-model with the above properties, then
Q = L(A),, so that there is no definable b E B such that bA o ... A,,= X.

Proof. Let So be the initial value of S, and Si, for I > 1, be S's value when
point (t) is reached for the lth time (at which point k's value will be 1; Si is
undefined if the algorithm terminates before (Q) has been executed I times).
Then, the following properties hold (for (d)-(f), B is a A(C)-model with the
properties specified in the theorem's statement):

(a) If S, is defined, then S, is a function.
(b) If S1+1 is defined, ther it is a proper superset of S1.
(c) If S, is defined, (Y, AM) E S1 and either I = 0 or Y ý doin S_ 1, then

depth M = 1.
(d) If St is defined, then domSj C L(A),.
(e) If S, is defined and (Y, M) E Si, then [Aro... ',,, -1.1] AO... Am-, 1 =

Y.
(f) If Si is defined, m c F(C),, fvAi C {xo ...... r . 1} and depth Al = 1,

then [AzO ... x•m-1-. MI A 0 ... A,,,_i E dora St.
The proofs of properties (a), (d) and (e) are by induction on 1, and

Lemma 3.7 (i) and (ii) are used in (e)'s proof. The proof of (b) is obvious.
For (c), we use a course of values induction on I. WVe consider the

case where M has the form c A ... M,,-, (the case where Al has the form
Zi M0 ... Al2ar,- is similar). If 1 = 0, then t = 0, and thus depth Al =
depthc = 0. So, suppose that l > 0, so that Y q dom St 1. Then, n > 0
and there are Yj E A~' for all j E - such that ("J, Aj) E St-i for all j E n and
Y = CA YO Y.. 1.Y . Let the stages pj < I for all j E n be such that ?¾ E dora Sp,
and either pj = 0 or Yj ý dom Sp,_ 1. Then, depth 2AIj = pj for all j E n, by the
inductive hypotheses for the pj's, so that depth Al < 1. But, there must be a
j E n such that pj = i - 1, since otherwise Y E domSj_1 . Thus, depth M = 1.

The proof of (f) also proceeds by course of values induction on 1, and, again,
we consider the case where M has the form cA110 .. ,,-. If 1 = 0, then

n = 0, and thus [A 0 " ... m-.21l]AO."Am-1 = CA E dom.Sj. So, sup-
pose that I > 0, so that n > 0. Let pj < l and Y' E Az', for all j E n, be
depthMj and [AxO ... mx.-.. MjI A0 ..' Ap-h, respectively. Then, by the in-
ductive hypotheses for the pj 's, we have that Y- E dom Sp, for all j E it, so that
CA YO ".. Yn- 1 E domSi. But [)xo. "x-,. A] Ao0 ... Am-I = CA YO "' Yn-1,
by Lemma 3.7 (i), and thus we are done.

From (a) and (b) and the fact that there are only finitely many o-tuples over
& we can conclude that there is a largest 1 such that S1 is defined.

Suppose (X, AM) E S1 for some A1M, so that either 1 = 0 or X ý dom Sj_ 1
(otherwise, Si would be undefined). Then, the algorithm terminates with
a stage of 1 and the closed term Ax0 .. x,,, 1 .A1, and depth Al = I follows
by (c). Let B be a A(C)-model satisfying the specified conditions. Then,
[Axo0... XmI. MJ Ao ... Ami_ = X by (e). Furthermore, if N E [(C), is
such that fvN C {z0O....,-1} and [ 0 . x,,,-i. Nl Ao ... A,,, X = N, then
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Figure 1: Lambda definability problems

problem -. ,iota.sect funs.sect cons-sect tests-sect

iota4sect -- iota Elem { Elem }
funs-sect -: functions {fun }

fun -* Fun clause { clause }
clause -- pat { pat } = result

pat -- Elem j Var -

result - Elem Var

cons-sect - constants { con

con -. Elem I Fun

tests-sect - tests test { lest }
test - { test.arg } test-resull

test-arg - Elem I Fun

test-result - Elem

depth M < depth N, since otherwise (f) would imply that X E dom St, for some
' < 1.

Otherwise, X ý dor SI, and thus the algorithm terminates with a stage of l
and domS1 . Let 8 be a A(C)-model satisfying the specified conditions. By (d)
and the fact that S1+1 is undefined, we have that domS, = L(A),. Thus, there
is no definable b E B such that b A0 ... A,,-, = X, by Theorem 3.9. 0

Although instances of Algorithm Schema 3.10 always produce terms of min-
imal depth, they often fail to produce terms of minimal size. In fact, it is not
hard to find an example of a pair of terms with identical depth and meaning,
where the first term is produced by a schema instance and the second has strictly
smaller size than the first (see the lambda definability problem size. lam that
is included with lambda's distribution).

4 Implementation

In this section, we describe an implementation, lambda, of an instance of Algo-
rithm Schema 3.10, and give several examples of its use. Lambda doesn't carry
out the algorithm's steps itself. Instead, it takes in a lambda definability prob-
lem, representing the algorithm's input data, and generates a C program that
solves this problem, producing the algorithm's output.

The grammar in Figre 1 describes the syntax of lambda definability problems.
In this grammar, curly brackets are used to denote repetition (zero or more
occurrences of the phrases they surround). An element name, Elem, consists of
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a single upper case letter or digit. A function name, Fun, consists of an upper
case letter, followed by one or more letters or digits. A variable name, Var,
consists of a lower case letter, followed by zero or more lower case letters or
digits. As usual, white space characters and comments (which begin with # and
continue until end of line) separate tokens but are otherwise ignored.

A lambda definability problem has four sections. The iota section lists the .
elements of the set A,-the elements that exist at type i.

The functions section defines zero or more first-order functions, using ML-
style pattern matching. Each function definition consists of the function's name
followed by a sequence of clauses, each of which must have the same number of
patterns in its left hand side. A given variable may not appear twice in the left
hand side of the same clause, and, if the right hand side of a clause is a variable,
then that variable must appear in the left hand side of that clause.

Suppose that the body of a given function definition has the form

0 . . 0 0)Po ... pOi = ,.

pn-I n--1 n-

A clause j matches a sequence of argument, elements a0 . ai iff, for all
i E m, the pattern pi is the wildcard - or is a variable or is equal to ai. The
function definition must be completely specified in the sense that it has at least
one clause that matches any given sequence of arguments. Furthermore, each
of its clauses must be non-redundant in the sense that the clause matches some
sequence of elements that isn't matched by any preceding clause in the definition.
The function defined by the function definition is the element of A,_ that sends
a sequence of arguments ao, •- ., arn- I to ,"i, if clause j is the first clause that
matches the argument sequence and rJ is an element, and sends the argument
sequence to aj, if clause j is the first clause that matches the argument sequence,
Yj is a variable and pi. = rJ.

The constants section specifies the family of constants C. and thus the func-
tions CA for c E C.

Finally, the tests section must. have the form

0 ... ? -1

It implicitly specifies the natural numbers in and a. the types ( 0T .... , O,,i 1, the
argument tuples A0 E A , A,,- 1 E A"_ and the result tuple X E Ac.
The number of tests, a, is required to be non-zero, since otherwise a method of
explicitly specifying the types ai would have to be devised.

Lambda is written in ANSI C, with the exception of its lexical analyzer
and parser, which are written in lex and yacc source, respectively. It. uses one
UNIX System V system call. The C programs that it generates also conform to
the ANSI standard; they use several UNIX System V system calls in ordei to
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implement checkpointing. The programs generated by lambda make no use of
dynamic storage allocation (except during their initialization phases).

A program generated by lambda codes tuples of elements as integers, and
represents the algorithm's state as an array indexed by those codes. An element
of this array records (among other things) whether the tuple coded by its index
has been found. If it has, the way in which it was constructed from previously
produced tuples is also recorded; implicit in this information is a term that
computes the tuple from the argument tuples. When a new tuple is found
during a given stage of the closure process, its element of the array is updated to
record this fact, but new tuples are distinguished from existing tuples until the
stage's end. New tuples are produced by n nested for loops over the tuple codes,
where n is the greatest number of arguments that. any constant or argument
tuple expects. When a given new tuple can be formed in multiple ways, the first
way found whose implicit term has minimal size is selected.

Figure 2 contains our first example lambda definability problem (in the left
column), along with its solution (in the right column). The comment indicates
that this problem is contained in the file porl.lam that is included as part of
lambda's distribution. We think of B, T and F as standing for the elements 1,
tt and if, respectively, of the monotone function model 17 of Finitary PCF. The
occurrence of B in the constants section stands for the constant Q of Finitary
PCF, which is interpreted as _L in F. The problem is to determine whether
parallel or is definable in models of Finitary PCF that, consist of {1, tt, if} at
type i and in which the constants are interpreted in the same way as in Y (it
will either be definable in all or no models of this sort).

Applying lambda to porl. lam gt..., t.es a C program that carries out the
algorithm's closure process, producing the relation listed in the figure. The stage
of one indicates that it took only one stage of this process for the relation to
stabilize, and it is easy to see that this relation is the one used to show the non-
definability of parallel or in the preceding section. (A triple (xr, y, z) is in the
relation iff x = y = z or x = I or y = 1.) Note that the result triple (tt, tt, ff)
is in the complement of the relation.

Figure 3 shows that parallel or remains non-definable when parallel conver-
gence is added to Finitary PCF (the original proof of this result can be found
in [Abr90]). This time the C program produced by lambda was run in verbose
mode, with the consequence that the elements of the resulting relation are la-
beled with the stages at which they were found. The relation contains two more
triples than does the relation of Figure 2: (tt., tt. _) (found at stage 2) and
(if, if, 1) (found at stage 3).

Figure 4 shows how a non-definability result from Proposition 4.4.2 of [Cur93]
can be proved using logical relations. The resulting relation consists of those
triples (x, y, z) such that x = y = z or one of x, y or z is I. Oddly, it can be
formed by adding two triples to the relation of Figure 3.

Figure 5 shows how the Berry-Plotkin function (cf., Exercise 4.1.18.2
of [Cur93]) can be used to separate Curien's A,. .4, and A3 . This time, the
program produced by lambda was run in both ordinary (middle column) and
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Figure 2: Non-definability of parallel or

0 porl.la porl

iota Stage: I

B T F Relation (17 elements):

functions <B B B>
<B SB T>

If B __=B <B B F>

T x x <B T B>
F _y =y <B T T>

<B T F>
constants <B F B>

<B F T>
8 T F It <B F F>

<T B B>
tests <T B T>

<T B F>
T B a T <T T T>
B T a T <F B B>
F F a F <F B T>

<F B F>
<F F F>

Relation complement (10 elements):

<T T B>
<T T F>
<T F B>
<T F T>
<T F F>
<F T B>
<F T T>
<F T F>
<F F B>
<F F T>
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Figure 3: Parallel or is not definable using parallel convergence

S por2.lam por2

iota Stage: 3

3 T F Relation (19 elements):

functions <B B B> 0
<B T> 1

If 8_ B <B B F> I
T x x <B T B> 1
F - y y <B T T> 1

QB T F> 0
PConv B B B <B F B> 1

T <B F T> 1
<B F F> 1

constants <T B B> 1
<T B T> 1

B T F If PConv <T B F> 0
<T T B> 2

tests <T T T> 0
<F B B> 1

T B - T <F B T> I
B T - T <F B F> 1
F F = F <F F B> 3

<F F F> 0

Relation complement (8 elements):

<T T F>
<T F B>
<T F T>
<T F F>
<F T B>
<F T T>
<F T F>
<F F T>
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Figure 4: The impossibility of separating Curien's A,, A2 and A3.

9 curieat.lan curient

iota Stage: 2

8 T F Relation (21 elements).

functions <B B B>
<B a T>
<B B F>

T x . : x <B T B>
Fy y <B T T>

<B T F>
Al T F - - T <B F B>

F _T F <B F T>
<B F F>
<T B B>

A2 T F - T <T B T>
T F - -F <T B F>

-_ B <T T B>
<T T T>

A3 F T = T <T F B>
T F = F <F B B>

- . B <F B T>
<F B F>

constants <F T B>

<F F B>
B T F If <F FF>

tests Relation complement (6 elements):

Al - T <T T F>
A2 - F <T F T>
A3 - F <T F F>

<F T T>
<F T F>
<F F T>
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Figure 5: The Berry-Plotkin function can be used to separate A1,. 42 and A 3 .

S curien3.lam curien3 curien3

iota Stage: 2 Stage: 2

B T F Term: Term:

functions lambda xO. lambda xO.
BP BP <T F F>

It B_ B xO xO <B T F>
T x . x B B <B B B>
F _ y M y T T <T T T>

F F <F F F>
Al T F . a T xO xO <T F B>

F T = F T T <T T T>
_ B F F <F F F>

B B <B B B>
A2 T F - T xO xO <F B T>

T F = F F F <F F F>
a B B B <B B B>

T T <T T T>
A3 F T a T

.T F aF
=B

BP T F F
_TFnT

FT=F

constants

B T F If BP

tests

Al = T
A2 - F
A3 = F
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verbose (right column) modes. The output indicates that the term

H = Axo. BP (xo 0 tt ff) (xo tt ff 0) (xo ffQ tt)

(the l's have been replaced by fO's) was found after two stages of the closure
process. The verbose version of the program's output shows that the result triple
(tt, if, if) became paired with the body of H at stage 2 of the closure process
since

(tt, if, if) = BP (_1, tt, if) (tt, if, _1_) (if, 1l, tt)

and the triples (1, tt, ff), (tt, ff, 1) and (ff, 1, tt) were paired with the terms
x0flttff, x0ttff Q and zx0fffQtt, respectively, at stage 1. Similarly, the triple
(1, tt, if) is paired with the term xo 0? tt ff at stage 1 since

(1J, tt, if) = (Ai, A,., A3) (1L, 1, J_) (t t, tt, tit) (if, if, if)

and the constantly 1, tt and ff triples were paired with the terms Q, tt and ff
at stage 0.

As a final example, we consider the problem of determining whether there is
a definable element of type d _ t of the monotone function model F of Finitary
PCF that sends an argument x to tt, if x _1 A, for some i, and sends x to 1 ,
otherwise. Since there are many elements of F,3 that don't dominate any of the
Ai's, lambda can't be used in a purely mechanical way to solve this problem.

One can, however, use lambda to solve lambda definability problems that
specify that certain hand-picked functions must be sent to 1. A bit of exper-
imentation (see curien4.lam and curiexS.lam in lambda's distribution) lead
to the problem of Figure 6, which specifies that. parallel or, parallel and, and
their "negations" should be sent to 1. Running the program generated from
this problem by lambda takes a considerable amount of time (about eight hours
of cpu time on a Sun 690MP) and produces the term Ax0. G. where

G = x 0 LAIN

L = IfZ(IfYQff)(IfXt tt Q)

m = IfX(ifZQff)(IfYtt Q)
N = IfY(IfX Qff)(IfZttQ)

X = x0 ttff 9

Y = xoQt.tff

Z = x0 ffQtt.

By considering the possible values of X, Y and Z, it is straightforward to show
that G produces tt iff x0 dominates one of the Ai's or is the constantly tt
function. Furthermore, the term Axo. H, where

H = x1 N L,

is produced as the solution of the variation of this problem (called curien7. lam
in lambda's distribution) that specifies that the A 's should be sent to ff rather
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Figure 6: Synthesis of a term sending the A's to tt and parallel or, parallel and,
and their negations to I.

# curien6.1am PAnd T T T T

iota F F
F=F

BTF =B

functions NPAnd T T T = F

F _ =T
It B_ = B _F_ =T

Tx x - F=T
F-y=y =B

Al T F - = T constants

=B BTF If

A2 T F T tests
TF- F

=B Al =T
A2 = T

A3 F T = T A3 = T
T F = F POr = B

= B NPOr = B
PAnd = B

POr F F F F NPAnd = B
T _=T

T T
T=T

-B

NPOr F F F = T
T _=

T _=F
T= F

-B
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than to tt, and H produces ff iff xo dominates one of the Ai's or is the constantly
ff function. Thus, it is easy to see that the term

Q = Axo. If G(If H~tt)Q

solves the problem of sending an argument to tt, when it dominates one of the
Ai's, and sending the argument to 1, otherwise.

Interestingly, I wasn't able to generate such a term as the solution to a single
lambda definability problem. One obstacle to my doing so was the necessity of
employing at most seven tests, since it would take weeks rather than hours to
solve a problem with eight tests. Ili any event, there is no chalice of producing
Q itself in such a way, since its body has depth six and there is another known
solution to the problem whose body has depth five.
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Abstract

All kntown structures invo~lving a constnru(t~ively obtaiinable. fixed point (or it.-
fTat10fl) oJ)tTationl satisfy tilt! equationtal laws de4fining iteratint thteories. HenuCe..
there secias to he a general eqiantioual thjeory o~f iteratioli. This p~ape(r providas
evidence that. there. is no general iimplicatiouaL theory of iteration. Inl particular.
tire (ju1asi-varicty generauted by the (olitii~tlalts ordered to iell Win ich fixed point.
equations have. least.sltiok.i incomparable with the qtiasi-'variety genera.Uted by
tithe pintedl iterative th wi'.iWhch fixedi poinit (. eIationls have. 1liique solutions.

1 Introduction

Iteration theories were introduced in 1980 hy Bloom, Elgot anid W~right, and indepen-
dently by Z. Etsik, in order to formalize. the equational properties of the stepuise. behiavior
of flowchart algorithms and to provide a calciilus for solving systems of fixed point equa-
tions. Iteration theories, which are (La~wvere) algebraic theories enriched by a fixed
point operation, have basic operations which, in the flowchart. setting, denote compo-
sition, a case statement and a looping or iteration operation. It now appears that the
equational Jaws of iteration theories are quite comprehensive. It has been shown that in
all structures that have been used as- semantic models, the equational properties of the
fixed point, operation atre. captured by the axioms describing iteration theories. These.
structures include

* the (equivalence classes) of the flowc~hart, schemes themselves

* w-continuious algebras

* theories of partial functions

*Partially snpported by a joint grant from the NSF and the Hnngarian Acadiemy ofScience
tPartially suipported by a grant from flip National Fouindation fro Scientific Resewarch of Hungary and

a joint grant from the NSF and the Hungarian Academy of Science
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9 finitary and infinitary regular languages

* trees and synchronization trees

* the continuous functors involved in the specification of circular data types

and others. j
Thus, the notion of iteration theory appears to be a unifying concept in many areas of
theoretical computer science. WVe think it is important therefore to investigate various
aspects of this notion. Equational axioms for iteration theories were given in 113, 14, 21,
22, 9, 161. All of these sets of axioms involve a complicated equation scheme that we
call the commutative identity. For example, in [131, other than the commutative identity,
there ae. three equational schemes: the left and right 7ero identities and the pairing
identity (see below).

Most of the known examples of iteration theories which are closely related to natural
models of computation satisfy a simple implication scheme, the functorial dagger im-
plication, which is much easier to establish than the commutative identity and which
in fact implies the commutative identity. The quasi-variety FD of structures which are
models of the functorial dagger implication, the zero identities, and the pairing identity,
has the property that the least equational class containing FD is the class of all iteration
theories. This fact is closely related to the fact, recently discovered independently by
K.B. Arkhangelskii and P.V. Gorshkov [1], D. Kozen [181 and D. Krob [19] that the reg-
Wlar sets have simple finite implicational axiomatizations, although they have no finite
equational axiomatization.

One might ask whether there is a general implicational theory of iteration, as general a-s
the equational axioms determining the variety of iteration theories. In order to answer
this question, we investigated the implicational theories of a number of quasi-varieties
which are subclasses of the class of all iteration theories. Many of these qua.si-varieties are
of interest in themselves. Further, each has the property that the least variety it generates
is either the variety of all iteration theories or the variety of all iteration theories with a
unique morphism 1 -- 0. As is shown below, apparently there is no general implicational
theory applicable to all of our examples. In particular, the quasi-vrariety fl in which
systems of fixed point equations have least solutions, and the quaisi-variety P1 in which
(nontrivial) systems of fixed point equations have unique solutions, have incomparable
implicational theories.

2 Preliminaries

In this section, we give the precise definitions needed to understand the later results.
Familiarity with 17] or 18] would he helpfid. We will use the following notation. For
n > 0, the set [n] is

In]J=1,2,...,).

In any category, the composite of morphisms f X -Y 1" and g :Y Z is written
f'g:-X Z.
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We prefer the following definition of an algebraic theory.

Definition 2.1 An algebraic theory is a category T whose objects are the nonnegative
integers n, n > 0. For each n _> 0. there are n distinguished morphisms

,,: 1 --* n

with the following coproduct property. For any family of morphism.s f :1 -I I for i E I[n]
there is a unique morphism f : n -4 p such that

il = i, (1)
for each i E In). A morphism of algebraic theories ;: T --+ T' is a functor which
preserves objects and distinguished morphisms. i.e.. nr = n and i,,V = i,,. for all n > 0
and all i E In].

The morphism f determined by (1) is called the source tupling of the morphisms fi, and
is written

f = (f.. f.).

In the case that n = 0, the condition (1) amounts to the requirement that there is a
unique morphism 0P : 0 - p, for each p. When n = 1, we always assume that fj = (fl).
For any n > 0, the identity morphism n --* n will he denoted using boldface by 1,.. Note
that L,, = (1,,, 2.,,,..., ,n,,).

Suppose that T is an algebraic theory. For each (set theoretic) function f : In] + [p],
there is a "base morphism" f : n -- p defined as the source tupling of the distinguished
morphisms (if), : 1 -. p, i E In]. When T is nontrivial, i.e., when there. are at least
2 morphisms 1 --+ 2 in T, the map from functions to base morphisms is injective. We
will usually identify base morphisms n -* p with functions In] ---+ [p]. A base morphism
is called surjective or a permutation, etc., when the corresponding function has that
property-

The coproduct properties of theories imply that for any pair of morphisms f : - p and
g:m - p in T, thereis a unique morphism (f,g) : n+m -p such that f-(f,g) = f and
A.(f,g) = g, where K : n --- n+m and X : m -s n+m are base morphisms corresponding
to the inclusion and translated inclusion functions. The morphism (f, g) : n + m -4 p is
called the source pairing of f, g.

For any pair of morphisms f : n -- p and g : n -o q, we write f + g for the morphism
(f" ., g .A) : n + m - p + q,, where now r, : p -4 p + q and A: q -- p + q. The morphism
f -s g is called the separated sum of f, g.

Definition 2.2 A preiteration theory T is an algebraic theory enriched by an iter.
ation operation f "-. ft, where f : n -- n + p and ft : n --* p. A morphism of
preiteration theories p : T -, T' is a theory morphism which. preseres the iteration
operation., i.e.. ft = (fi)t* for all f : n -, n + p in T.

The operation t need not satisfy any properties.
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Definition 2.3 An iteration theory ia a preiteration theorj in which the iteration
operation t•atisfies the following four identitie.s: (mee [13/)

"* LEFT ZERO IDENTITY

(o,,÷f)t = /

all0 : n --* p

"* RIGHT ZER.O IDENTITY

(+ O,)t = 1+0

all :n-..-n +p.

"* PAIRING IDENTITY

(f,.9)t = (ft.(ht,l,), lht)

all f : n -- 4 n + in + p, g in -- n + m + p. where

h := /"(ft, 1t,.+,,).

" COMMIUTATIVE IDENTITY

('.,,.p.f.(p, +lb),...,m,,. p fip.(,+l,,))t = P.(f.(p+l))t

all f : n --4 m. +p, surjectie base p :n --- n, and base pi in ý in, i E [m], such

that Pi " P = P.

The above four identities imply the following two:

"* FIXED POINT IDENTITY

all f : n-- n+p.

"* PERMIUTATION IDENTITY

(r,!.(-' l,,)t= •r.ft,

for all f : n --+ n + p and all base permutations ,r: n --+ n.

The commutative identity is the axiom which is most difficult to verify (and to under-
stand!). By replacing it with certain implications, we will obtain some quasi-varieties
which generate the class of all iteration theories.

First, we give a name to a simpler group of identities.
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Definition 2.4 A Conway theory is a preiterntion theory which satisfies the zero iden-
tities, the pairing identity and the permutation identity.

The term Conway theory is due to the fact that in matrix preiteration theories, an
eqtiivalent set of identities is given by the familiar star sum and product identities which
were studied by Conway (101. See also 122, 5, 6].

(a+b) =

(b) = 1+ 7(ba)*h

In any Conway theory we define I := l1 t : 1 - 0 and 1L,,,J (I. 0,,,..., _L - 0•,). It
follows from the Conway theory axioms that

for all n, p > 0.

Now we describe two implication schemes.

* FUNCTORIAL DAGGER. IMPLICATION

f . (p + l,) = P " 9 =:- ft = p. gt

for all f : n - n + p, g : m - n + p and surjective base p n m. (When
the implication holds for all morphisms p in some class C, we say that the theory
satisfies the functorial dagger for C.)

* THR GA-IMPTICATION

ftt1 = 9tt =0' (g"'~,,) - (tt

for all f,g : 1 -- 2 + p.

Note that both the fu nctorial dagger implication and the GA-implication in fart consist
of infinitely many implications. The GA-implication was introduced in the setting of
matrix theories in [1] to give a set of implicational axioms for the regular sets.

It is easy to verify the following fact.

Proposition 2.5 [13] If T is a preiteration theorj which satisfies the functorial dagger
implication, then T satisfies the commutative identity. Hence any Conway theory which
satisfie.i the fjnctorial dagger implication is an iteration theory. 0

The next proposition was proved in 18].

Proposition 2.6 If T is a Conway theory which satisfies the GA-implication, then T
alqo satisfies the finctorial dagger implication. 0
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The first class of iteration theories we describe is a class of ordered theories.

Definition 2.7 * An ordered algebraic theory T is an algebraic theory such that
for each pair n,p of nonnegative integers, the set T(n ,p) is equipped with a partial
order. The order on T(n,p) will be written f <_ 9 : n . p. The theorj operations
respect the ordering: if f, :_ f'j : n --+ p and g1 <g- 96 : p" q then

hI "91 <5 f'2 " gj.

Ftsrther. if f <g : 1 -* p. for each i E In], then

(. ý,...,Ifl.) <5 (9,,..., ,)

* A pointed ordered theory is an ordered theorj which is pointed: i.e.. there is a
distinguished morphism -L : 1 - 0: as usual, we define -Li,, as -L .r0, for all p _ 0..
and -L,,, as (.I,,.... 1,,), for n i 1. Furthermore, the morphisms ..L,,, are the

lea-st elements in T(n,p). Note that composition in pointed theories is left strict:

,, "f = .1,,,I,

for all f : p -• q.

* A pointed ordered theory T is i-continuous if each hom-set T(n,p) is an w-
complete poset and if composition is also w-continuous:

(sup f.) "g = sup f,, "g

f -(supg,,) = sipf.g,,,
ft Ut

for w-chains (f,, (9,,), where f,, : m - p and 9,, : p " q, n > 0.. and for
f:m p, 9:" - q.

(The importance of certain kinds of ordered theories for semantics, in particular the w-
continuous theories, was emphasized 1y the ADJ group (J. Goguen, J. Thatcher, E.G.
Wagner and J. Wright) in a number of papers [24, 17, 23].) In 18] it is shown that each
w-continuous theory is an iteration theory, where for f : n -- n + p,

f t  := sup/k (,,,,. 1,,).
k

The powers f h of f are defined as follows:

f 1 := 1,+o,, (2)
f k + l : --- f . f 1( ).f+•0 ,, 1 ,) . ( 3 )

Thus, in w-continnous theories, ft is the least solution to the iteration equation for f:

C = f. (c

Now we recall a class of theories first introduced hy Elgot (11].
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Definition 2.8 An ideal theory is an algebraic theory T with the property that each
morphism 1 --- p in T is either a distinguished morphism i, or is ideal. An ideal
morphism f : 1 -- p is a morphism with the property that for each g : p " q, the
composite f • 9: 1 -- # q is not disiinguished. An iterative theory is an ideal theory
such that for each ideal morphism f : 1 1 +-p, there is a unique morphism ft: 1 -+ p
such that

ft = f. (ft 1,,).

Proposition 2.9 [31 If to : 1 -- 0 is any morphism in an iterative theory T, there. is
a unique extenAion of the operation t from the ideal morphisms to all morphisms such
that T becomes an iteration theory satisfying 1 t = to. The resulting iteration theory is
denoted (T, IIt = to). 10

An iteration theory (T, lit = to), where T is an iterative theory, is called a pointed
iterative theory. In 18], it is shown that any pointed iterative theory satisfies the
GA-implication.

Tree theories are examples of pointed iterative theories as well as w-contintious theories.

Example 2.10 Tlherics of trevs. Let S Is' a . tiYUt01,t. i.e.! E = U.> 4 1 E is the litioij of the

plairuse disjoint sets E.. Stlppose the set V - ... ... ) is disjoint, fronn E. hi the theory
ETR, a utorphiiti 1 -- p is a S-t-rce t :1 - p. (A S-t'reV t : 1 - p is a partidl functiont
whose dolltailt is a lliolleupty prefix closed stlhiset of tlt(e set [W]* of finite setqllclicn.is of positive
integers. The target of t is the(! set S U {ri.... ,r},). Fu•rther, if it E doliit and! ut E E. then
1i E doiat iff i E [it]; also, if ut E Et. U f:r.ix... ,rp}, tl). t h is a hvafi i.e... i is sot in loin t.
for awy i > 0. See [12] for a thorough stuily of the algebraic theory of treCe.) 'We it•tntify the
wvrible Xi with the partial fitectitim defined! ondy (il the cempty word A with valuc :r,. Similarly.
we itdltify r E E. with the partial fiunetion dhefileld oul A anltd tihe( length one seq•eaNce 1...,it
as follows: A , := Y; iel := xi. i E H.

If u i 1. a inorphisiu it -- p ill TR is ant n-tiple (t,... ) of niorlphisis I -- p. The
composite of t :1 -' p with.- = (sj, ..... .,,) : p -- q is the tree, obtained by attachting the tree
s. to clich leaf of t labeled x,. i E [,]. IN'lmen n ilk 1 the col~lIosite of t - (t,.. ) - p
with v : p -- q is dehfined as

t .. : ., t. ..

Thtl distinguislhedl norphism i. is the treei J- 1 -I a. for echl4 i E [a].

N.ote that if f : 1 -4 1 + p is klly tree other than 11+1. thi're is a lullique treet : 1 - p slat
that

ft f . (f 1 )

Thus. E TR is an iterative theory.

If . is a letter it ot ill thi set •, let E., dcliotw tie sigumatire obtainetd by adding _. to v,. The(
4oi1t.i iterative theory

(•'±TR. lit = 3-)

is ala w-colttilnlnfons ordleredI theory, wln're the orderilng calt be (lesc:ribed as follows: f : g if g can
hbe obtainied from f by replacing sonic occuirrenl'e of 1. by other tr'es. • it fact., (E. TR. t 1 )
is the free w-itmthtois theory onl S (see 124. 171).
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A tree theory is a pointed iterative theory

(S± TR, 1, = _1),

where the "point" I is the new atomic letter of rank 0. This theory is usually written

E± TR, for short..

We will occasionally make use of the subiteration theory Str of S 1 Tft, which consists

of the regular trees. Recall that a tree t 1 --4 p is regular if it has a finite number

of subtrees. When t : n -- p, for some n • 1, t is regular if the components i,, - t are

regular, for all i E [n]. According to the definition in [3, 41 that Str can he characterized

as the iteration theory freely generated by S.

We mention two other important classes of w-continiolrs theories.

Example 2.11 The theory Relk has as torphistiis - p all relaticns

A xial - AxiI.

COil)ositioli in thi thlieoiy is composition of relations. Mhcntifyiiig A with A x [1], the distin-

gulislled morphism i.: 1 - i, is the fimmctiou., consider-d as a relation.

A -. A x [il

The t.upliig f (f, . .. ) of the mzorphisans fI : I -. p is th., rehation

Axi[lt • Ax U,]
(,,) f (-',j) D n f, (-,'-j).

With tit(! standard ordciing of relations, for any relation f : A x [nJ - .4 x [n + p,, there is a
least relation ft : A x [al -- A x [pj which satisfies

ft = f. -(fti,,).

The theory Reli is also an .- continnous theory. Theii morphisii .1 , in Rel1 is the eumpty
r(lation it - p.

The theory Pfni is the snhtheory of Rel.i whose nmorl)hisins i -- p are the partial functions
A x [of --- A x UpJ. The distingutished morphisis amud tIhe theory amd iteration operations are
the samue as those in RelA.

The notion of an iteration term is defined in the expected way as a formal expression
which denotes a morphism in a (pre)iteration theory. These terms are constructed from

an infinite set of variables for morphisms n - 1), for each n,p 2 0, constants for each
of the distinguished morphisms, and the operation symbols for composition, tupling and
dagger. (Source pairing and separated sum are under.stood as abbreviations.)

For our purposes, an implication or quapii-identity is an expression of the form

s, = t,1 A •... A s,, = •t,,= •,+ t,+l,

where n > 0 and si, ti are iteration terms. Note that when n = 0. an implication is an
equation. Each instance of the functorial dagger or GA-implication is an implication. We
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unders-tand an implication to be satisfied by, or true or valid in a preiteration theory
T if the implication is true for any interpretation of the variables as, morphismvs in T with
the appropriate source and target.

If K is any class of preiteration theories, let Imp(K) denote the collection of all impli-
cations valid in each theory in K. For any set I of implications, let Mod(I) denote all
preiteration theories in which each implication in I is true.

Suppose that K is a cla.ss of iteration theories.

Definition 2.12 The quasi-variety generated by K. in symboLs Q:,(K), i the class
Mod(IImp(K)), the class of all iteration theories which sati.qfyi all implications valid in all
theories in K. K is a quasi-variety if K = Qv(K).

Note that if K C K', then Qv(K) g Qr(K'). If I is some set of implications, then the
class of all models of I is a quasi-variety.

3 Some Quasi-Varieties of Iteration Theories

Aside from IT, the variety of all iteration theories, we will be considering the following
quasi-vaxieties.

* 1%, the quasi-variety generated by the class of tree theories.

* V,, the quasi-variety generated by the class of theories

('ETRt, I, to)

* PI, the quasi-variety generated by all pointed iterative theories.

* PFN, the quasi-variety generated by the theories Pfn.1 .

* REL, the quasi-variety generated by the theories Reli.

* Ql, the quasi-variety generated by the class of all j.-continuoms theories.

* f)(,, the quasi-variety generated by all w-continuous theories with a unique mor-

phism 1 --+ 0.

* MAT, the quasi-variety generated by all mnatrix iteration theories [8, 5].

* GA, the collection of Conway theories which satisfy the GA-implication.

* FD, the collection of Conway theories which satisfy the functorial dagger implica-
tion.

e Manes [20] has called a morphism h : n ---+ p in a preiteration theory pure if
h. ,1t %ot. Note that any base morphism is piire. Let FD,, denote the collection
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IT

FD.-

FD,.

FD

MAT FD,

RELi /
PFN V*

Figure 1: The Quasi-Variety Poset

of Conway theories which satisfy the finctorial dagger implication for the class of
all pure morphisms, namely, the implication

. 1t =1,,t A f.(h+1,,)=h.g • ft =h.gt,

for all f : n - n +p, g: in - in +p. and h : n1 M.

* Lastly, we let FD, denote the quasi-variety of all Conway theories which satisfy the
functorial dagger implication for the class of all morphisms.

4 The Results

We will prove that if the quasi-varieties are ordered by set inclusion, they form a poset
whose structure is indicated in Figure 1.

Each of the inclusions is strict. If there is no chain of inclusions from one quasi-variety to
another, the two are incomparable with respect to inclusion. Thus, we have a complete
description of the poset of these classes.

Further, the variety of iteration theories generated by V?, and all of the qua.si-varieties
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above it, is IT. The variety generated Iy PFN, REL, f), FD_. and MAT is the variety
of all iteration theories with a unique morphism 1 - 0.

In addition, we will show that there is an infinite chain of quaLsi-varieties

FD C ... C FD. C FD-2 C FDI = IT

between FD and IT. FD,, is the quasi-variety of all iteration theories which satisfy the
functorial dagger implication for the class of base morphisms k - 1, for 1 < k < n.

5 Inclusions

It is clear that the following inclusions hold:
_ V C PI

YI -

FD C FD,, C FD
PFN C REL C Q4, C .Q.

aand each class is contained in the class IT of all iteration theories. The inclusions

PI C GA C FD

.Q0 C F D.
REL C_ MAT

axe proved in [8], and thec inclusion

is known from [24]. We will show now that each of the inclusions indicated in Figure 1,
page 11, is proper, and that two quasi-varieties are incomparable unless there is a chain
of inclusions from one to the other. It was proved in [15] that FD $0 IT. We will give
two new independent arguments for this fact below.

The organization of the argument follows the shape of Figure 1. We proceed first. up the
right side, and continue to the left.

5.1 lit C 1'79

We need show only that V, # V, . Consider the following implication.

f. 1t f ft = 1,t, all f:lI-- l, g:l--÷ 0. (4)

This implication is valid in all tree theories, since in the tree theory

(S.L TR, lit -= I),

the tree 11 t is the atomic tree -L. Thuts, if f - g = .L, then either f = 11 (and 9 = -L) or
f = -L • 01. However, if S contains a letter f E E, and a letter 9 in Eo, the implication
fails in the theory

(_LiTR, lit f"g).
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5.2 V9 cPI

The inclusion V7 C PI holds since every theory (STR, lIt = tl) is a pointed iterative
theory. Also the following implication is valid in the.e theories:

f.f=g.g 1=g, f,g:0---1. (5)

But we show that (5) is not valid in an iterative theory TTFx of timed terminal functions
on X [11]. Indeed, writing N for the set of nonnegative integers, let X = {a,b} and let
f,g : X x N - X x N be the timed terminal functions defined hy-

(a,n)f (b,n+1)
(b,n)f (a,n +1)

(x.,)g :=- (3, n + 1). x' E {a, b}.

Then (aY, n)f' = (a, n)g2 = (.r, n + 2). Nut. f # g.

5.3 PI c GA

It was shown in 181 that PI C GA. In order to show the inclusion is strict, we will show
that the following implication is valid in PI.

p-q = 11 = , (1. x), 1) .) = 12, (6)

where p • 1 ---4 2, q : 2 -+ 1 and where - := (O + 11,11 + 01) is the nontrivial base

permutation 2 --+ 2. Indeed, in any ideal theory, if p : 1 - 2 and if p • q = 11 for some
q: 2 - 1, then eitherp = 1, +01 orp = Of +11. Hence f := (p, p. .- ) is either 12 or
In either case f . f = 12.

If S is any semiring, Mats is the theory whose morphisms n - p are the n by p matrices
with entries in S, matrix multiplication is the theory composition. For other details, see.
15, 8]. When S is the semiring of regular subsets of A%. we denote the corresponding
matrix theory by Reg•i. Now suppose that T = Reg. I, and that p and q are the following
matrices:

p := 0

where x is some nonempty regular subset of A*. Then p.q = 1. However if f = (p, p-),
then

f ~ . 1+x X

f"f! = r. 1+x.2

It is known from 11] that. Reg,, satisfies the GA-implication. Hence, Reg.% is in GA- PI.
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Remark 5.1 W oe note Ihr that ththe colh:tio of all poiititl iitentivc tht-ories doc not forui a
qinasi-vairicty since this colhl'tiou is not, clos],l uhdcr hinary ln'odiitts. For the swam rmason.t the

collec'tion of tree tleories or theories (E. TR. 1 1 t = t1) is nlot it quasi-Vaict.y.

5.4 GA C FD

r It was shown in [8] that GA C FD. In order to show that the inclusion is strict, we apply
the following extension of the Zero Congruence Lemma [8].

Lemma 5.2 If 9 is a zero congritence on the free iteration theory Str, then the theory
Str/G satisfies the functorial dagger implication.

We give a proof of this fact, together with a concrete description of 0, in the Appendix.

Now define N as the signature ha'ing only two symbols f, g of rank 2. Let 9 be the zero
congruence generated by

ftt q9 gtt.

In the Appendix (Theorem 8.2) it. is shown that two regular trees 1 -- + p are related

by 0 if one can be obtained from the other by replacing some subtrees of the form f t t
by g t t , and some subtrees gtt by f tt. The theory Str/9 satisfies the functorial dagger
implication, by the lemma, but does not satisfy the GA-implication. Indeed, if

h := gf.(1t1,),

then it is not the case that ht 0 fit, since ht has no subtrees of the form f t t or gt t .

5.5 V C FDP

First, we prove the following lemma.

Lemma 5.3 Suppose that
T: (VTR, ~11 = t0 ).

Then T E FDTT.

We write _1 for l1 t, as usual, rather than to. In [4] it was shown that for any f : n n+p
in T, ft is given by a metric limit:

ft = lim fk . (l,,, 1,,),

where f was defined in (2) and (3) above. Now, suppose that h : n • n and that

f . (h+l,,) = h -g,
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where 9: m m +p. Then it follows that for each k > 1,

f&.(h+1,,) = h.. 9.

Hence, if h is pure, ¶
f (.L,,1 + 1,,) . (h 1,,)

- h- g•• (h.,, + 1,,).

The result follows from the fact that

lir h. 9 . (.,,,, ± 1,,) = + (lirn 9 k (J,,... 1,,))

= h.gt. 0

Corollary 5.4 V; g FDI,. 0

To show that the inclusion V.. C FDj, is proper. note that the theory TTF- of timed
terminal functions in section 5.2 is in PFN as well as in PI, and hence in FDL,. It was
shown in that section that TTFx is not in V,1 .

5.6 FDp c FD

We now find an iteration theory which satisfies the functorial dagger implication for all
base morphisms hut not for all pure morphisms. Let S be a signature which has just
two symbols f, r in S1, and which is empty otherwise. WVe define an iteration theory
congruence - on •i TR as follows. For any trees f, g : 1 - p1, f - g iff

"* both trees have a leaf labeled by some variable x;, i E n], amid the set of all labels
of all of the vertices of f are the same as those of g, or

* neither has leaf labeled by a variable, and both symbols ff, r occur infinitely often
in both f and g, or

"* neither tree has a leaf labeled by a variable, and neither tree has both symbols ty, r
occurring infinitely often as vertex labels.

Of course, if 1f,9 : n ---+ p, where n > 1, then f - g iff i,, • f - i,, • g, for all i E In]. Let
T denote the quotient theory S± TR/ -. Then the morphisms 1 --4 0 in T are the two
congruence classes

S[.] and [(f * r)t].

When p Ž 1, the morphisms 1 --+ p in T are the 4pi + 2 equivalence classes

11-. 0,,],P -" r)t. o,1 0" ,], l ,.i,,, I- "b 1 i,,1 If-" " i,,
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for i E [p]. It is easy to check that T satisfies the functorial dagger implication for any
base p with target 1. It follows from [16], that T satisfies the functorial dagger implication
for all base morphisms. Since

lM'i-L = [±]' ,

[uJ] :1 1--+ is pure. Also,

I 1-IffTJ[] ffn'J.Ir].

But (rt] = [.LJ, so that
[(rr)t] :l 1

= Ii]"[(rt].

Hence T is in FD - FDI,.

5.7 It c Q

Again, we need show only that V- i .Q. Consider the implication

f tlt *: 1f.1f=1.f allf:I-,1. (7)

This implication is clearly valid in all tree theories, since in S 1 TR, if f 1 1 and
ft = L, then either f = 1, or f = .L. 01.

We show that if A is a set with at least 2 elements, the iml" .:ation does not hold in
PfnAt. Indeed, let f he a nontrivial permutation of A of order two. Then, since there is
a unique morphism 1 --4 0 in Pfn,%, ft = lit. But f . f i f.

5.8 Q c FD

Using an argument just like that given above for Lemma 5.3, replacing lim& with sups,
it can be shown that Q C FD,,.

Now we show that the two quasi-varieties are distinct. The implication

f.g=1 =* ft=-l, all f:1--+.1 9:1-40, (8)

holds in Q. Indeed, in any w-continuous theory, if f. g = 1,

_< f...L

Hence f _LJ = -L, which in turn implies f .L = J1, all n > 1. Thus ft = sup,, f". = f .

However, the implication (8) fails in the theory

T := (S TR, 1 It = to)

when E, contains the letter if say, and So contains the letter 6 and to := 6 •. But
T E FDA,, by Corollary 5.4. Thus T E FDI, - .
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5.9 9 c QC

This follows immediately from the fact that there ae. theories in .Q with more than one
morphism 1 ---* 0, e.g. tree theories.

5.10 FD. C FDp

Since it is clear that FDý q FD,, we show that there is a theory in FD,, - FD,. Indeed,
choose any theory T in V, with at least two morphisms I --* 0. Then T cannot he in FD,,
since any such theory has a unique morphism 1 - 0 (for a proof, see (8), € inple.)

5.11 PFN C REL

Since each partial function A x [ni --, A x [1] is a relation, PFN C REL. We show the
inclusion is strict.

For any morphism p : 1 -+ 2 in a preiteration theory, define the two morphisms Pr, P F
1 --. 1 a;s follows:

PT p -" (11 + -L)

pF p.(-4 11).

The following implication is valid in PFN:

p.(,1) PT -PF'P=-L11.1.9

Indeed, if p : A --+ A x [2] is a partial function, then if p- (11,11) = 11, then for each
a E A, either ap = (a, 1) or ap = (a,2). If op = (a, 1) then ap)p is undefined, aPT is
defined, and apT = a. If ap = (a, 2), then aPT is undefined and app = a. In either case,
apT. ' pp is undefined. Thus, p7- •pp = 11.

To see that this implication (9) is not valid in REL, let A := {.} and suppose that
p: 1 ---+ 2 is the relation satisfying Yp = {(.r, 1), (.r, 2)}. Then p. (11, 11) = 11 = Pr "Pr.

5.12 REL C 9.o

Note that the following implication is valid in REL.

p'(11,11)=11 A pT'Pr'pr= l1
=* p.(P+P)=1,.(11+-02+ZI,), (10)

where p : 1 -- 2. The morphisms PT,P" : 1 ---+ 1 are defined above in section 5.11.
Indeed, if the equation p. (11, 11) = 11 holds in Rel.j, then for each a E A., a p (a, 1) or
a p (a, 2), or both. The second equation guarantees that at most one of these conditions
can hold, so that in fact, p is a total function A .4 x [21 which takes a E A to

4l
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either (a, 1) or (a,2). It follows that if the hypotheses of (10) hold in RelA, so does the
conclusion.

But let D be the three element chain ROT < a < TOP. Consider the least subtheory T of
Pow,, the theory of all finctions on D, containing the constant function ROT and the
meet function z A Vi. A morphism f : 1 --+ p in T is either the constant function DP --+ D
with value ROT or f(zi,...,x,,) = A{xl : i E I), for some nonempty I C [p]. Thus, the
unique morphism 1.: 1 --* 0 in T has the value ROT. It follows that T is a subiteration
theory of the theory of all continuious functions D" --. D". Hence T is in fi, and

f': V f" (±L +1,),

for f : 1 --- 1 +-p. But T does not satisfy the implication (10). Indeed, let p(, 1,x 2 ) =
x, Ax 2 . Then

p(x,•,) = X,

131'pF(7) = XAROT

However,

p.(p+p) = p(p(..,y),p(,,.,))
= x AyAuAv

= v(xiv) = x A i.

5.13 Qo C FD.

In each theory in fl., every morphism is pure. Since .Q C FD1 ,, it follows that fl C_ FD..

We will use the folloming implication, which holds in f11:

f.(.l.,l,11,)=11 Af.(11,,11)= 11 = f t 1,,

where f : 1 - 2. Indeed, note that if the hypotheses of the implication hold for f, then
J"f (±1,1,) = 11, for all n > 1.

Now consider the three element idempotent star semiring Si = {0, 1, 1}, with the star
defined by

" := 1" otherwise.

This semiring is w-complete, when any infinite sum with infinitely many nonzero sum-
mands is defined to be I*. It follows that the matrix theory Mats, is an iteration theory
(see 18]). The iterattion operation applied to any n by n + p matrix f = [ ) b] (where a
is n by n and b is n by p), yields

ft := 'k,

where a* = a".



395

Now if T Mats and if S is any w-complete semiring, then T is in FD. 15, 8). But in
Mats0 , let f 11 1]. Then

.f.J-,,, ,) = [1 1] 0

= f" (i,,l,)
= 11 1 01

= 1

but t = 1V. Hence T E FD. - Q,.

5.14 REL C MAT

It is known from 18] that REL C MAAT. The theory T Mats,, in the previos section
do"s not. belong to Sl,,, and hence does not belong to REL.

5.15 MATc IT

This follows immediately from the fact that. all theories in JAL4T have a unique morphism
1---0.

6 Incomparable Quasi-Varieties

It is obvious that V, - FD, and lV - MAT are nonempty, since all theories in FD. and
MAT have a unique morphism 1 -- 0. Thus, by inspecting Figure 1, page 11, it will be.
seen that all of the incomparability results will follow once we can prove that each of the
following classes is nonempty:

PFN- GA, PI- FD,,, FD, - fl, Q,, - MLAT, MAT- FD.. (11)

Indeed, for example, if PFN C X and Y Cg GA, for some quasi-tarieties X, Y, then it
follows from the fact that PFN - GA is nonempty that X - Y i #0.

We now proceed to prove the statements in (11).

6.1 PFN-GA#0

Let A := {a,b} and let f,9: A - A x (3] be the following (tota) functions.

of := (b, 1)
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bf (b,3)
ag : (A,3)

bg (a,2)

Then

of tit = ft = agtt = bIgtt = (b, 1).

Hence jtf = gtt is the total function A -- A with value b. Now if the GA-implication
were trie in Pfnh,

itt = it,

where h := f. (9t, 11). But note that

oh - Agt
=(n.,1),

so that At is not defined on a.

6.2 PI- FDp 3#4

Let E consist of two letters {g, h} of rank 1, and let T he the quotient theory of the free
iteration theory Str wvith respect to the smallest iteration theory congruence 0 such that

9"h=- (mod0), 9-I=--L (mod8), gt =-L (mod 9).

The morphisms 1 --4 1 in T are thee congruence classes of the following trees:

"* h".g".ht.0 1, q#O

", At -0,

* h" • g".

The theory T is ideal, and for any ideal r : 1 -- 1, the fixed point equation x = r- x has
a unique solution. Indeed, consider the equation x = h" • 9 x - x, where x : 1--+ 0. If

m 6 0, the iuique solution is h" • I. When in = 0 bitt P) $ 0, the unique solution is ht.
Thus T is in P1.

But T is not. in FD,. Indeed,

1i1g g - h (mod 0),

and 9 is pure, hut

it= - g"ht (mod ).
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6.3 FD - n 960

This fact follows immediately from the faWt that FD. - no 4 0, proved above in Section

5.13.

6.4 Ao-MAT#6 0,

The example in Section 5.13 shows that there is some theory in MAT- 00. We now show

that there is a theory in flu - MAT.

Let T he the lea.-t subiteration theory of the iteration theory of all order preserving

functions on the 3 element chain ROT < a < TOP containing the constant function ROT

and the function

(y if x = ROT

f(x,,) : ROT ify=R OT

TOP otherwise.

We note thatI t(3 .) = .,)
jROT ifX=ROT

TOP otherwise

ftt =ROT.

Since T has a unique morphism 1 -1 0. T is in -Qu.

The following implication is valid in MAT. For all f, 9: 1 --- 2, if

f.(11,_,) g.(1 1,,1-,) and

then

f =g

Indeed, write f = [a, b], 9 = le. d]. Then the first equation says a = c and the second

says b = d.

Now in the above theory T, let g = 01 + 11; i.e., 9(x, y) := y. Then

f" (-1 1t,,11 ) = f(nOT,.)

= q(ROT, x);

f.(li,,Lu) 1 f(.,ROT)

= ROT

9(X, ROT).

But f 6 9, since, e.g., f(a,a) = TOP and g(a.a) = a.

L
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6.5 MAT- FD 2

We will construct a matrix theory T over a semiring which is a quotient of the semiring
of regular subsets of E*, where S = {a, b, c, d). The congruence is the least "-semniring
congruence which identifies the sets {a, b} and {c, d}.

Recall, that for any language L C E*, the set of factors of L is defined as follows.

facL v {E' : urv E L, some u, t E }.

An n-state nondeterministic finite automaton (nfa) over S is a triple M = (1, A, ?),
where A is an n x n matrix whose entries are subsets of S. and where e : 1 --+ n and

:n -n 1 are 0-1 matrices. The behavior of (k, A, ý) is the regular language

JJIl := aA-.

The states of Ail are the integers in In]; there is an edge (i,j) with source i and target j
in M if A.j is nonempty, in which case a label of such an edge is any letter in the set Ajtj.
(Equivalently, one might say there is one edge from i to j for each letter in Aij.) For
states j,j', a path from j to j' is a sequence of states j = i,, i I,... , i,., = j', such that
(ik,ik+l) is an edge, for each k < in; a label of such a path is any word r, ... X,,, E r".
such that xk E A;,_•,.i, for 0 < k < in. The initial states of 1l are those states i such
that a ji = 1: the final states axe those states j such that , = 1. The accessible
states are those on paths whose source is an initial state; the coaccessible states are
those on paths whose target is a final state.

It may easily be shown that the. behavior of (a, A, 4) is the set of all words which label
paths from an initial state to a final state, since A* = Uk_>o A".

Thus, if L is the behavior of some nfa Af, v E facL iff v is a label of some path in M
whose source is an accessible state and whose target is a coaccessible state.

For a positive integer K, say that a language is K-bounded if for all words u, and all
nonnegative integers m,

(u(a + b))" .C farL = in < K, and (12)

(u(c+ d))" C facL = in < K. (13)

L is bounded if L is K-bounded, for some integer K. 'Note that for any L, u, n, in, if

(u(c + d))"' ' C farL

then
(u(c + d))" C facL.

Example 6.1 The laigmige
(a + b +: + d)"

is not homuhmed, and
(a + 1d4c:)" (1 + br)

is 2-1,hid~l. 0
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Let M = (t, A, -y) and M' = (a, B, y) he two n-state finite automata, with the same

initial and final states. We write ,il - M' if there is an edge (ij) of M, with Aij =
{a, b) U Z and Bij = {c, d} or if AUj = {c, d} U Z and Bi. = {o, b). (Here, in the first

case Z is some subset of {c, d} and in the second, Z is a subset of {a, b).) Thus, 1 - M'
if it is possible to obtain 3' by changing the set of labels of one edge of M by replacing

{a, b} by {e, d) or vice versa. Note that the set of accessible or coarcessihle states in if

are exactly those in Mi.

Theorem 6.2 Suppose that If = (a, A, 'y) and 11' = (a, B, ?) are automata with 3l f.

M'. If L = IMI is K-bounded, then R = IJAII is 2K-bounded.

Proof. Let e = (ij) he the edge in Al whose label is changed in order to obtain M'.

Suppose that L is K-bounded, and in order to produce a contradiction, suppose that the

implication

VuVmI(,(c+d))." C farR * in < 2K].

is false. Then there is a word u and some integer in > 2K such that

(u(c + d))'" C farR.

As noted above, it then follows that

(1.(c+d))," C facR and

(,,(c+d))K C facR.

Since L is K-hounded, there is some word w, in (u(c + d))h with the property that

there is no path labeled w in AJl whose source is an accessible state and whose target is

coaccessible. But there is such a path in Ji', so this path muist use the edge e whose label
wan changed. Similarly, there is a path in 3P' whose source is accessible, whose target is

coaccessible, and whose label is uuww, since wil E (u(c + d)) 2 'K. Thus, this second path

must use the edge e twice, showing that the edge e lies on a cycle all of whose vertices
are both accessible and coaccessible. If v : j ---, i is a label of the rest of the cycle, then v

is a label of a path j ---+ i in both 31 and M', and if a, b E Ai.,, then (v(a + b))". C fac L,

for all m, contradicting the hypothesis. (Similarly if r, d E Aij, then (v(c + d))." C fac L.

all in.)

The same argument shows that the implication

VuVml (u(a+ b))." C_ facR *. in < 2K]

holds ans well. Thus, R is 2K-bounded. 0

For language. L, L', say L - L' if there are automata 1-. ,1' with 1l - 1l', where L is
the behavior of M and L' is the behavior of 11'.

Definition 6.3 For languages L, R. say L : R if either L = R or there is a finite

seluence L,L.•,...,L, of lanquage.4 such that L = L1 . R = L,, and Li " L;+I, for

<n.
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We omit the proof of the following theorem, which makes use of some of the constnrctions
in Chapter 9, Section 4 of 181.

Theorem 6.4 The relation - is the least congruence relation on the -.semiring of reV-
uler subsets of "* such that {a, b} _-{c, d}

Corollary 6.5 Suppose that L _- R and L is bounded. Then R is bounded.

Proof. This follows immediately from Theorem 6.2. 0

Now let T = Mat..;, where S is the quotient of the regular subsets of S* by m. Define
A: 2 -- 2 as the matrix

Sd "

Then, if p : 2 --+ 1 is the base morphism, we have

A.p = p.j{A,b.,d}j

in T, since {a, b} z {e, d} ;{a, b, c, d}. If T satisfies the functorial dagger implication

for the base morphism with source 2, then

A* p = p{o.,l.c,d}.

But

A' (a+ bd'r)" (a +bd-c)'bd"(d+cahb)*ca* (d+ca'b) "

Letting L denote the sum of the first two entries of A*, we see that L is hounded.
But {a,b,c,d}* is not (see Example 6.1). Hence A* . p $ p . {ab,c,d}* in T. Thus
T E MAT- FD.. 0

Note that T is an example of an iteration theory not satisfying the functorial dagger
implication.

7 A Chain of Quasi-Varieties

In this section we prove that there is an infinite number of quasi-varieties of iteration
theories between FD and IT. It was shown in 113] that if a Conway theory T has a
functorial dagger for the base morphism n --- 1, where n > I is any integer, then T has a
functorial dagger for all (surjective) base morphisms n -- in. The following proposition
can be proved in straightforward way.

Proposition 7.1 If a Coniway theory has a fitnctorial dagger for the base morphis.m
n -.- 1. where n > 1 is a gimen integer, then it has a functorial dagger for all base
morphisms in --- 1, m E (n]. 0
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Let n > 1 be an integer. Recall that FD,, denotes the quasi-variety of iteration theories
satisfying the quasi-identity

f'(P"+fl,,) = Pfg : ft = p.gt, (14)

where f n 7% n +p, 9: 1 -- I +p, an-d where p denotes the hase nmophism a -ý 1. Thus

FDI = IT and FD is the intersection of the quasi-varieties FD,,. By Proposition 7.1, we

have
FD,, C FD,,-,

for all n > 2. Below we show that each inclusion is proper.

We assnme that n > 2 is a fixed integer. We will he considering trees in SLTR, where

E,& = {,.... ,}. and SA = 0. for k i n. We let XY := {Ix1.... .r,,} he the set of the

first p variables.

Definition T.2 Suppose f :1 -- p. We cay that f is perfect if f 5 -. 0,, and the

following conditions hold for all u E If]*-

"* If hi E domf, for some i E in]. then f(0i) = aj or f(0i) E X,,.

"* If f(ul),..., f(un) are all in X,,, then not all values are the same variable.

A tree n -- + p is perfect if each i,, . f is perfect. for all i E 11].

Thus there are n perfect trees 1 -- 0.

Definition 7.3 Suppose that f,g :1 -1 p. We define f -, g iff f = 9 or neither f nor

g is perfect. When f,g : n -- p. for some n 6 1. then f - g iff i,, . f i,, .-g. for all

i E nI].

Thus all non-perfect scalar trees 1 --* p are identified. We list. some elementary conse-

quences of the definition.

1. If a tree t : 1 --4 p has a non-perfect snhtree, then t is not perfect.

2. If f is not perfect then f • g is not perfect.

3. If f is not perfect then f t is not perfect.

4. If f is perfect, x. occurs in f, and if the i-th component of 9 is not perfect or has

root labeled ,rj for some j A i. then f -g is not perfect.

Proposition 7.4 The relation - is an iteration. theory congruence on trees.

Proof. This follows from the above facts. 0

Note that each perfect tree 1 --4 p forms a singleton -,-congrtuence class. For the rest of

this section we let T:= S±TR/-.

6-



402

Proposition 7.5 The theory T is contained in FD,,-, - FD,,.

Proof. Suppose that
.f. (p+ 1,,) ,-P-, g.,

where f : k -- # k + p, g: 1 - 1 + p are trees, and where p is the base morphism k

Suppose that 1 <- k < n. AVP will show that ft , . 9t.

Case 1: 9 is perfect. Then f is perfect and

f.-(p + ,,) = p -g.

Thus,

-f = p.gf

since S±TR has a functorial dagger.

Case 2: g is not perfect. Then for each i E [kI. either iL. • f is "not perfect or i, • f is
perfect hNt has a stultree of the form

where a E S and the zj's are variables in Xk. If iL • f is not perfect, then

i. -fT = iL. f .(ft, 1,,)

is not perfect. If ik • f has a suhtree of the form at(z 1,... o,,), then, since k < n, at least
two of 'he zi's must he the same. Suppose that : 1 = z:2 , say. But then

i&.f i&.f.(fti,,) = i -.-f.(f.(ft,1,,1,,)

has a subtree of the form
eT(t.t,t ,••. t,,)

where none of the trees t, t3? .... t,, is a variable. Again, it follows that i, • f.t is not
perfect.

Thus T is in FD,,-,. To prove that T is not in FD,,, consider the tree

f := tT, ... ,):, n . .

If p denotes the base morphism n -+ 1 then

f .p,-,p.-.p,

but

1,, ft 76 (tT. p)t,

since the tree 1,, • ft is perfect and (a, • p)" is nor. 0

Any theory in FD,.-. - FD,, is another example of an iteration thel•iy which does not
satisfy the functorial dagger implication. Thus, we have infinitely many examples of such
theories.

L
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8 Appendix

Suppose that T is any theory. A zero congruence 0 on T is a theory congruence which
is generated by an equiv-alence relation 9j, on the morphisms with target 0; i.e., ) is the
smallest congruence on T such that 0i g 0. Zero congruences were first considered in
[2], where it was shown that the smallest zero congruence on any iteration theory is in
fact an iteration theory congruence. In [8], this result was extended to show that in any
preiteration theory satisfying the parameter identity, namely

(f.(l,,+g))t = ft.g, allf:n-n.+p, g:p-.q,

any zero congruence preserves the dagger operation.

We prove here the following theorem.

Theorem 8.1 Suppose that 0 is a zero congruence on a free iteration theory Etr gen-
erated by an equivalence relation Oi on the morphim.rn .with target 0. Then for any
f,g : n ---+ p in Etr. f 0 g iff for some F : n -- + pp+ k, and some r,:k-- 0.

f = F.(1,,+ n-)

g = F.(1, ,3) and

.3 (mod 0o)

Corollary 8.2 With the notation of Theorem. 8.1. let T denote the quotient theory
Etr/0. Then the functorial dagger implication holh.s in T.

The following proposition, the Zero Congruence Lemma, is known from 12]. See also
[8] for further refinements.

Proposition 8.3 For any theory T. the least theory congruence 0 containing Oj is the
transitive closure of the following relation -: for f,g : n -4 p. f - g iff for some

F : n - p + k. and some or, .3 : k .. ,

f = F.(1 +o.)

g = F-(1,+±d) and

a --- . (rood 04). 0

WVe will show that in Etr, the relation f - g just defined coincides with the relation 0.

We make use of the following leninia, proved in the nex-t section.

Lemma 8.4 Suppose that F. (1i, +,3) = 0. (1, ,+ ) for some F : n - p + k, G : n
p + k, 3l : k -0, ' : " 0 in Str. Then for some integer in > 0. there, are trees
H: n . p + in and Q: in -- k. Q' : m , k' in Etr such that

F = H.(1,,+Q)

S=H.(I,,±Q')

Q" Q .
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Corollary 8.5 The relation.s .. of Prmpo.ition 8.3 and E) are. the same.

Proof. We need show only that - is transitive, since 0 is the transitive closure of .

Assume that f 9, and 9 - h, where f, g, h : n --- p in Str. Then

f = F.(1,, + &)

9 = . (1 :

for some F: n -p + k, some a, 3 : k -0 with aY 0(1 3. Also,

•' 9A --- G.(1,,•6).Sh G=

for some G : n - p + k', some y./. 6 k' 0 with -,, 0(.

Since g.= F. (1,•+.3) = G (1,, + -), then, by the lemma, for some trees H, Q, Q' in Str,
F= H. (1,+Q), G H - (1,,+Q') and Q./, = Q'. -. But then

"= H.(1,,4d(Q. ro))

h = H. (1,,+Q') (1,,+b)

= H-(1,,+ (Q' 6))

Also,
Q. Q.3 = Q'., Q'. -b (rood 8,,).

Thus, Q. Q'. 6 (mod 6n), showing f h. 0

Proof of Corollary 8.2. It is enough to prove that the implication

f.(p+l,,)~p.q = ftp-9t

holds, when f : n -- + n + p. g : 1 - 1 + p in Str and when p : n -- 1 is the unique base
morphism. Thus, suppose that

f . (p+•l,)• p . 9.

By definition, then, there is some F :n 1 + p + k, some o., .3 : k --4 0 in Str with

f -(p + ,,) F -.(11..,,+,a)

pg = F.(1 1 ,,+,..3), and
n: 3 (md 09).

Write F = (F,,..., F,,). Since p- 9g F. (11+1, A.3), it follows that

9 = - (I +

for each i E in]. We will define the tree G; :1 -* + p + k for each i E [n], such that if

* .. .~ i -~it+ 1) + k
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then

f = -.(1,.+,) +
F = -.(p+,,

Indeed, for each i E [n], let Gj he obtained from F; by relabeling any leaf vertex u of Fi
labeled x, by u(i,,. f) and by relabeling any leaf tr of Fi labeled rl+j, j E [p + k], by
x,,+j. (Necessarily u(i,, , f) = xj, for some j e in].)

Note the following facts.

f.(p~l,,)= .p l,,)
P9 = 0 G . (p + I, +. a).

We will prove that

Gt= p.9t. (15)

Indeed,

G. ( +, 3). (p + = p. -,

and since the functorial dagger implication is ,alid in Str. it follows that (15) holds. But
then, by the paramneter identity,

/t=Gt -(1,3•)
_ ,Gt. (1,,/)

p*9t. 0

One application of these results was given in Section 5.4 above. Assume that f, g E S2,
and let 0 be the zero congruence on Etr generated by the least equivalence such that
ftt - gt t . Since both ftt and gtt are morphisms 1 ---* 0. the theory Etr/E) satisfies the
functorial dagger implication, by Corollary 8.2. Note that the tree ftt is the complete
binary tree with each vertex labeled f. If h : 1 - 1 is the tree

h g.(ft,11)

then it is not the case that

ht f itt (mod 0),

by Theorem 8.1. since ht has no sihtree equal to either It or to ytt. Thus, the GA-
implication fails in T.

It remains to prove Lemma 8.4.
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8.1 Proof of the Lemma 4

We call a vertex u of f a zero vertex if the subtree f,, of f rooted at u is a zero subtree,
i.e., f,, is t. 0,, for some t : 1 - 0 in -tr. A tree with no zero vertices is oacreassible.
A minimal zero vertex of f is a zero vertex of f which has no proper prefix which is
also a zero vertex. WVe let MZ(f) denote the set of minimal zero vertices of f.

Suppose that f = F- (1, ) : I -- p, where F:1 p + k and r :k --- 0.

1. If f has no zero vertices, then F factors through p, i.e., F = F' + 0&, for some
F' : 1 -- p, and F' is roaccessible. If the empty word is a zero vertex, then F
factors outside of p, i.e., F = 0,, F', for some F': 1 - k.

2. If u is a zero vertex of f and ux E dom f , then ut' is also a zero vertex of f.

3. If u is a minimal zero vertex of f, then u E dora F. Indeed, otherwise u =m',

where rF = x,,.j and vI E dom n-j. But then v is also a zero vertex of f . showing
u is not minimal.

4. Since f is regular, the collection of trees {f,, : 1- 01 u E MZ(f)} is finite.

Now ausume that f = F.(1,,+.3) = G.(1,,+ '). Let Xb e the (regular) set of all minimal
zero vertices u of f such that F,, or G,, contains a leaf labeled by some variable (which
is necessarily x,,+j, for some j > 0.) Note that if u E X, then u E dom F n domG, and
if v is any leaf of F,,, then the label of v is a',+ 1 for some j > 0. Indeed, otherwise, u
would not be a zero vertex of f. Similarly, if v is a leaf of G,, labeled by a variable, its
label is x,,+j for some j > 0.

NVe let H he f "cut off" at. X. Assume there are rn trees h,-...., 1,,1 of the form f,, : u E X.

Definition 8.6 The tree H : 1 -- * p + in is defined a.s follows. The domain of H is the
regular set consisting of X together with the set of all vertices of f having no prefix in
X. For u E don H,.

u .f if u hm.a no prefix in X

u-H : p+i if u E X and f,, = i
undefined otherwise.

Remark 8.7 The tr(e. H is regular. If the set X is enipty. t.hae 11 = 0.

Now we define the trees Q : in - k, Q' : in -- k'. Suppose that u E X and f,, =i.
Then ' E dora F nl dom G, by item 3. above.

Definition 8.8

i viF,, if vF,, is not a variable
"j if viF,, =.Tl,+j.

{ vG,, if vG,, is not a variablevQ• := if IvG,, = .r,,+j.
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Then, by construction, for u E X and f,, =

f,, = Q = Q".

It follows that.

Q.3 = Q,
Further,

F = H.(1,,+Q)

G = - (1,,+Q').

When n > 1 and f = (fl,... , f,) : n -1 p can bhe written in two ways as

(F,,..,F,).(,,÷ ,•) = (GI,.... ,C;,,) (11,,+ )

we use the same procedure; we now let X; be the set of minimal zero vertices u in the
tree fi, such that (Fj). or (Gi),, contains a leaf labeled x,,+j. Let in he the nunber of
all subtrees (fj),,,u E Xj, i E [n]. Define the domain of the tree H; : 1 -- p + m, i E [n]
as the set of vertices in Xi together wiith those vertices in the domain of f; having no
prefix in Xj; the values of Hi are as above. The trees Q, Q' are defined exactly as before.
We omit the remaining details. 0

8.2 A Generalization

The proof of Theorem 8.2 suggests that the following notion may be of interest. Suppose
that T is any theory.

Definition 8.9 T has the lifting property if for any rmorphisms f : n ... + p.
F: n- -* 1 +p + k and r : k --- 0 in T. if

fi'p÷l,) = -I+,•)

where p : n -- , 1 is the unique base morphism. then there is some G : n - n + p + k
such that

f = ., + n)
F =

It was shown above that Str has the lifting property. We state without proof the following
"facts.

Proposition 8.10 Each matricial theory f1l. 8] h.•s the lifting prolperty, as does each
theory Pfni and RelA. 10

Proposition 8.11 Suppose that T is an iteration theory "which has the lifting property.
Then if T satisfies the functorial dagger implication, so does T/O. where 0 is any zero
congruence on T. 0
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Abstract

The probabilistic power domain construction of Jones and Plotkin [6, 7] is
defined by a construction on dcpo's. We present alternative definitions in terms
of information systems k la Vickers [12], and in terms of locales. On continuous
domains, all three definitions coincide.

1 Introduction

To model probabilistic and randomized algorithms in the semantic framework of
dcpo's and Scott continuous functions, Jones and Plotkin introduce in [6, 7] the
probabilistic power domain construction PD. It forms a computational monad in the
sense of [8] in the category of dcpo's and continuous functions and various of its
subcategories of 'domains'. Every probabilistic powerdomain PDX is equipped with
a family of binary operations +p indexed by a real number p between 0 and 1 such
that A+p B denotes the result of choosing A with probability p and B with probability
I-p.

Other applications of PD were found in [1]. The probabilistic powerdomain of the
upper power space [10] of a second countable locally compact Hausdorff space X can
be used for an effective treatment of probability measures on X, and thus for the study
of coloured fractals on X, where the colour is modeled by a probability distribution.
For these applications, a description of PD in terms of information systems would be
useful.

*This paper was written while the author was visiting Imperial College of Science, Technol-
ogy and Medicine in London, England. This visit was made possible by a grant of the Deutsche
Forshungsgen-.shaft.
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In (6, 7], it is shown that PD preserves (w-)continuity of dcpo's. On the other hand,
it does not preserve algebraicity: even the power domain of the one-point domain is
not algebraic. Thus, PD cannot be described by the more conventional information

systems, which are only suited for certain classes of algebraic domains, as for instance

the information systems of [91 for the class of bounded complete algebraic domains

(Scott Domains). The information systems of [3, 4] present bounded complete con-

tinuous domains, but this is still not sufficient, since PD does not preserve bounded
completeness as shown in (6, Section 4.5].

In [12], Vickers introduced a kind of information systems (infosyses) suitable to cover
all continuous domains. In the paper at hand, we show that PD can be described in
terms of these infosyses. This was already conjectured by Vickers at the end of his
paper. We also looked for a localic description of the power construction. Starting

from the frame of opens of a continuous base domain, we show how the frame of opens
of the power domain may be constructed in terms of generators and relations.

The paper is organized as follows: in Section 2, we sketch the theoretical background
and introduce the probabilistic power domain construction PD. It can be applied to
all topological systems producing a dcpo. In Section 3, we introduce the probabilistic

power locale construction PL. It can be applied to all topological systems producing
a locale. We show that for all topological systems, power domain and power locale

have the same points.

In Section 4, we show how to construct a probabilistic power infosys PID for every
infosys D. In Section 5, we prove that for continuous domains X, the power infosys
of an infosys for X has the same opens as the power locale of X. The proof uses a
hard lemma, which is postponed to Section 6. The two properties that power domain

and power locale have the same points, and power infosys and power locale have the
same opens imply that all three of PD, P1 , and PL agree on continuous domains.

2 The Background

In this section, we introduce the background of the theory in this paper. We assume

the reader to be familiar with the basic notions of dcpo, continuous dcpo, continuous
function between dcpo's, and the frames and locales of [51 or [11]. We denote the least
element of a frame by 0 or F standing for 'false', and the greatest element by T for
'true', never 1. We use 'domain' as synonym for 'dcpo', in particular when speaking

of continuous dcpo's.

In Subsection 2.1, we recall the topological systems of [11]. In Subsection 2.2, we

review the definition and properties of infosyses from [12]. Then we present an
infosys for the unit interval of the real line in Subsection 2.3. In Subsection 2.4,

we introduce the construction PD of [6, 71.
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2.1 Topological Systems

In [11], Vickers introduced topological systems as a common generalization of topo-
logical spaces and locales. In analogy to his abbreviation 'infosys' for 'information

system', we shall abbreviate 'topological system' by 'topsys'. A topsys is a pair
X = (pt X, fOX) of a set of 'points' pt X and a frame of 'opens' QX together with a
relation '1=' between points and opens, which respects the frame operations: for every
index set I, x \ VjE, ui iff there is i in I with z 1 uj; and for every finite index set I,
x P- •E,4 u, iff for all i in I, z t= ui.

A topological space X induces a topsys, where pt X is the underlying set of X, fOX is
the frame of open sets of X, and x a u iff x E u. This in particular applies to dcpo's
with their Scott topology.

A locale X is defined by a frame f(X. It becomes a topsys by taking pt X as the set
of frame homomorphisms from fOX to 2 = {F, T}, with x I u iff zu = T.

A continuous function f : X -+ Y between topsyses has two components, pt f
pt X -* pt Y and O)f : O --+ OX, where O2f is a frame homnomorphism and pt fx • v
iff 1= flfv for all x in pt X and v in (?Y. In case of topological spaces, these are the

usual continuous functions, and f is determined by pt f. In case of locales, these are
frame homomorphisms in the opposite direction, and f is determined by fOf.

2.2 Vickers Inforniation Systems (Infosyses)

In this subsection, we briefly review the theory of infosyses as given in [12].

An infosys is a pair (D, <) of a set of tokens D and a binary relation '<' on D
which is transitive - a < b and b < c implies a < c - and interpolalive - if a < c,
then there is a token b with a < 6 and b < c. In contrast to the more conventional
preorders, reflexivity is not required.

We need several notions and notations: for a set A C D, TA = {b E D I 3a E A
a < b) is the upper set of A. We use the abbreviation ta for T{a}.1 The operator

'T' is monotonic - A C B implies TA C_ TB - and idempotent - T(TA) = TA. In
posets, there is an additional property A C TA, which is a consequence of reflexivity

and thus not true for general infosyses.

The set of upper bounds of a token set A is ub A = {b E D I Va E A : a < b}.

A point of an infosys is a subset x of D with properties analogous to those of ideals:
if a < b and b E x, then a E x; and for a,, ... , a,, in x, there is b in x with
al, .... , a < b. For the second condition, cases n = 0 (x is not empty) and n = 2
are enough. The points of an infosys D ordered by inclusion form a continuous dcpo
pt D. This is the continuous domain represented by the infosys D.

Vickers has no such abbreviations.
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Conversely, for every continuous dcpo X, there is an infosys I with pt I X X, namely
I = (X, <), where '<' is the way-below relation on X. In general, there are many
other infosyses I with pt I a! X.

If the dcpo X is even algebraic, then there is an infosys I with reflexive order, i.e., a
poset, with pt I -2 X, namely the basis of X.

An opea of an infosys is a subset u of D with Tu = u. Ordered by inclusion, the opens
of D form a frame SID. The joins of this frame are simply given by union, whereas the
meets are not given by intersection: u A v is T(u n v). The mapping w : O .D 2 Pt D

with wu = (z E pt D I z n u 6 0) provides an isomorphism between the frame fQD
and the frame f0(pt D) of Scott open sets of the continuous domain pt D. Thus, the
topsys induced by the dcpo pt D is isomorphic to (pt D, fPD) with p P u iff p n u $ 0.
We call the latter topsys [D]. Two infosyses D and E are equivalent iff [D] -5 [E].
Equivalent infosyses may look quite different, for instance one may be finite and the
other one infinite.

The frame flD of an infosys D can be presented by generators and relations: Gen-
erators are #a for a in D, and the relations are Aacs ta = Vbeubs Sb for every finite
subset S of D. This one relation can be equivalently replaced by three:

(1) Monotonicity: If a < b, then Oa >_ b;

(2) All tokens: VaED 0a = T;

(3) Meets: ga A #b < V,>0 ,b 0c.

Here, (1) corresponds to '>' in the single relation scheme, (2) to '<' with empty S,
and (3) to '<' with S - {a, b}.

2.3 The Unit Interval

The unit interval of the real line plays a major role in the theory of the probabilistic
power construction. In this paper, we denote the usual order on real numbers by 'C-'
instead of '<', and accordingly its strict variant (x _C y and x 5 y) by 'c' instead of
'<'. This is done to avoid confusion with the infosys order introduced below.

By these conventions, the unit interval is I =- {r E R I 0 C r C 1} ordered by 'C'.
It forms a continuous domain, which can be described by many different information
systems. As pQinted out above, one of these is (I, <), where '<' is the way-below
relation of I, namely z < y if" z C- y or z = y = 0. Another one with less tokens is
Q• = {q E Q I 0 C q C- 1) with the same order 'Z'.

In the sequel, we list some arithmetic properties of this non-standard order. All these
properties are thought of to be quantified over the non-negative reals (r _1 0). In
contrast to 'C', a < b does not imply a+c < b+c (take a = b = 0 and c $ 0). On the
other hand, a, < b1 and ... and a. < b,, implies "•=0 ai < E-=o bi even in the case
n = 0; and a < b implies a -c < b -c even if c = 0. Furthermore, if a > b, then there
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is some rational q with a > q > b, and there is some rational r < 1 with r • a > b.
The latter can be extended to any finite number of relations: if al > b, and ... and
a. > b., then there is one rational r < 1 with r • ai > bi for all i.

The frame f1Q1 III can be presented by generators gq for q in Q01 with the three
relations at the end of Subsection 2.2. By special properties of Q1, namely linearity

and existence of joins of tokens, these relations can be simplified to

(1) Rational zero: 10 = T;

(2) Rational continuity: Vr>q Or = #q.

The case q = 0 of rational continuity is redundant, since it follows from rational zero
"and 0> 0.

2.4 Probabilistic Power Domains

For given dcpo X, the probabilistic power domain PDX is defined in [6, 7] as PDX =

[nX T1 I], the dcpo of continuous evaluations from QX to I with the pointwise
order. A function p from a frame to I is an evaluation if it satisfies the zero law

p(0) = 0 and the modular law p(a V b) + p(a A b) = pa + pb.

Since the definition of PDX only refers to •QX, it can be applied to any topsys
X producing a dcpo and thus a topsys. Similarly, the probabilistic power locale
construction PL soon to be introduced only relies on QX and thus can be applied to
any topsys. We shall prove (Theorem 3.2):

(1) For every topsys X, ptPDX and ptPLX are isomorphic posets (in fact dcpo's).

In Section 4, we shall introduce the probabilistic power infosys construction V1 map-
ping infosyses to infosyses. We shall prove (Theorem 5.2):

(2) For every infosys D, fTPID and QPL[D] are isomorphic frames.

Since the topsyses described by infosyses are continuous domains and thus localic
(sober), (2) suffices to conclude:

(3) For every infosys D, [PID] and PL[D] are isomorphic topsyses.

First, we can conclude from this that Pj preserves equivalence of infosyses, which
would not be obvious a priori. Second, we can conclude that for every continuous
domain X, PLX is a continuous domain again, and thus a dcpo. The topsyses induced
by dcpo's are spatial, whence (1) suffices to conclude

(4) For every continuous domain X, PDX and PLX are isomorphic topsyses (in fact
continuous domains).

This is our main result: on continuous domains, PD, PL, and P1 coincide.

Li -...............
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3 A Probabilistic Power Locale

In this section, we introduce the probabilistic power locale construction PL and show
that its power locales have the same points as Jones's power domains.

3.1 The Generators

In this subsection, we motivate our choice for the generators of fJPLX. Let us first

analyze the probabilistic power domain construction PDX = [flX _o I] for dcpo's
X. It can be dismantled into two consecutive steps: first mapping the dcpo X into

its frame of opens fQX, and then applying a construction D : F *-- [F ,-od I] mapping
"frames into dcpo's. In investigating D, we may assume that it is applied to arbitrary
frames, not just those frames arising from the Scott. topology of a dcpo.

Analogously, we shall define a construction L mapping frames into locales, and then
let PLX = L(SIX). The locale L(F) to a frame F should be close to the dcpo

D(F) = [F Iod 1). Ideally, SIL(F) would be the frame of Scott open sets of D(F),
but this frame is difficult to axiomatize. Instead, we shall consider the pointwise
topology on the function space [F -- I]. Its subbasic opens are F(u, v) for members
u of F and opens v in 0I, where F(u, v) = {p : F - I I pu E v). Instead of all opens
in 01, it suffices to consider the basic opens #q for q in Q'. Thus, the frame QL(F)
will have generators (u,q) with u in F and q in Q1, where the intended meaning of
"(u,q) is p I > q}.

Now, our goal is to find suitable relations on these generators such that the posets
pt D(F) and pt L(F) become isomorphic. Indeed, we shall prove a little bit more:

Theorem 3.1 For every frame F, there is a continuous function f : D(F) -

L(F), whose points part ptf : pt D(F) - pt L(F) is an isomorphism.

We shall prove this theorem by first comparing the dcpo Do of all functions from F
to I with a certain locale Lo, and then gradually introducing more restrictions on the
functions of Do as well as more relations on the frame of L 0 .

3.2 Arbitrary Functions

For our fixed frame F, we define Do to be the dcpo of all (not even necessarily
monotonic) functions from F to I. For the corresponding locale L0 , we present the
frame QLO by the generators (u, q) for u in F and q in Q1 with two relations which
are directly motivated by the two relations on SQQ of Subsection 2.3:

* Rational zero: (u, 0) = T for all u in F.

* Rational continuity: V>,>(u, r) = (u, q) for all u in F and q in Q.01
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The second relation implies that (u, r) :_ (u, q) whenever r > q. Notice that '>' here
is meant to refer to (the dual of) the infosys relation of Subsection 2.3, which differs
from the usual meaning of'<' by the additional relationship 0 < 0.

Now, we define a continuous function f : Do -- L0 by defining fOf : fLO - S2D0 with

Ofl(u,q) = {p:F-,Ipu>q}

and pt f : pt Do -* pt Lo = Frame(fOLo, 2) with

ptfp(u,q) = [pu>q]

where [pu > q] = T if pu > q, and = F otherwise.

To show that this makes sense, we have to check several things. First {1 I Pu > q0
is indeed Scott open in Do.
Second, pt f and f2f fit together, i.e., for all p in pt Do and U in SILo, p I fOfU iff
pt fp 1 U. It suffices to show this for generators, and p = Qf (u,q) iff pu > q iff
ptfp • (u, q) holds indeed.
Third, £if and pt fp preserve the two relations: for rational zero, pu > 0 holds for
every p in Do; for rational continuity, note that pu > q iff there is a rational r with
pu> r> q.

In the sequel, we show that pt f : pt Do - pt Lo is an isomorphism. The proof
becomes simpler if I is considered as the set of ideals pt Q' of the infosys Q'. The
dcpo's I and pt Q0 are isomorphic, and directed join in I corresponds to directed
union in pt Q1. The definition of pt f then becomes

ptfp(u,q) = [qEpu].

We claim that the inverse of pt f is -y : pt L0 - pt Do with

7pU = {q E Q• I p(u,q) = T)

for p in pt Lo and u in F. If r in -ypu and r > q, then q is in ypu since (u, r) !< (u, q).
If q is in ypu, then there is r > q with r in "ypu by rational continuity. 0 is always in
7pu by rational zero. These facts suffice to show that "ypu is a point (a directed lower
set) because Q1 is linearly ordered. Thus, ypu is in pt Q1j as required.

Next, we show that - is the inverse of pt f. One direction is easy:

q E -(ptfp)u iff ptfp(u,q) = T iff q E pu.

Conversely, we claim pt f(-yp) = p for all p in pt L0 . It suffices to show that both
sides c-;ncide on generators. The statement pt f(yp)(u, q) = T is by definition of pt f
equivalent to q E ypu, which in turn is equivalent to p(u, q) = T.

3.3 Restricted Functions

We carry on by comparing various subdcpo's of Do defined by restrictions on the
functions with sublocales of Lo defined by additional relations. This neither affects
the definitions of Olf, pt f, and 7, nor the proof that pt f and -y are inverse to each
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other. We only have to show in any case that f~f and pt fp preserve the additional
relations and that -yp satisfies the restrictions. For all but modularity, these proofs
are quite obvious and omitted.

Monotonicity: Restriction: If u < v, then pu < piv.

Relations: If u < v, then (u, q) < (v, q).

Continuity: Restriction: Ifli C F is directed, then p(VlU) = VuuE u.
Relations: IfU C F is directed, then (VU,q) = V. u(u,q).

Zero law: Restriction: p(0) = 0.
Relations: If q $ 0, then (0, q) = F.

By the rational zero relation, (0,0) = T holds. All these relations look quite
contradictory in presence of Vr>O(O, r) = (0, 0), but remember 0 > 0.

Modularity: Restriction: For all u and v, jitt + pv = p(u V v) + p(u A v).
To find the corresponding relations, we have to check when pu + p't, > q holds.

It is the case iff there are rational numbers r and s with pu > r, pv > s, and
r + s = q. This suggests the following
Relations: For all rational numbers q with 0 C q C- 2,

V{(u,r) A (v,s) I r, s E Qo, r+ s = q} =

V{(u V v,r) A (u A v,s) lr,sE Q', r+s = q}.

fOf preserves the relations by the reasoning above. To show that yp is modular,
we perform the following computation, where q always ranges over the rationals
with 0 C q C 2:

p(V{(u,r) A (v,s)I r,s E Q1, r+s = q})= T

iff V{p(u, r) A p(v, s) I r, s e Q0L 7- + s = q} = T (p is homomorphism)

iff 3r, s E Q : r + s = q, p(u, r) = T, p(v, s) = T (p maps to {F, T})

iff 3r,sEQ r: +s = q, /pu > r, -,pi) > s

iff 7pu + -ypv > q.

An analogous computation may be performed for s = yp(iu V v) + yp(u A v), and
the relations assure that s > q iff 'fpis + ypv > q, whence s = 7pu + Ypv.

This completes the proof of Theorem 3.1. Summarizing, we obtain:

Theorem 3.2 For every topsys X, let PDX be the dcpo [QX T-Od I], and PLX
be the locale, whose frame of opens QPLX is presen ted by:

Generators: (u, q) with u in PX and q in QO,

Relations: Rational zero: (u, 0) = T for all u in fQX;

Rational continuity: V,>q (u, r) = (u, q) for all u in OX and q in Q1;

Continuity: If U C fIX is directed, then (VU, q) = Vucli(ut, q);

Zero law: If q $ 0, then (0, q) = 0;
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Modularity: For all rational q with 0 C q r- 2, and all u, v in QX,

V{(u,r)A(v,s) I r,sE 0Q, r+s=q} : j
V{(uVv, r) A(uAv,s)lr, saE QO, r+s= q).

Then there is a continuous function f : PDX --* PLX defined by

11f(u, q) = fi SX ý u>q

such that ptf : ptPDX -+ ptPLX is a poset isomorphism. 0

4 The Power Construction on Infosyses

In this section, we define the probabilistic construction P1 on infosyses. Subsection 4.1
deals with the tokens of the power infosyses, and Subsection 4.2 with their order.

4.1 The Tokens of the Power Infosys

Ii In this subsection, we define the tokens of the power infosys PD of some given infosys
D. We then investigate two different ways to interpret such power tokens as functions
from the frame lD to I. These functions will be used in the next subsection to define
the order on the power tokens.

The power tokens may be thought of as formal convex combinations E'- ri- ai with
ai in D and ri in Q1 such that E" I ri < 1. This is formalized in the following
definition, which was already conjectured in [12].

Definition 4.1 The tokens of ?ID are finite bags A of pairs (r, a) from Q1 x D

with J:Vr I (r, a) E AD < 1.

Bags or multi-sets are similar to sets, but elements may occur more than once in them.
Notationally, we use fl.j for bags in contrast to f.} for sets, but keep on using W', 'E',
and 'C' as for sets. The bag union of two bags is denoted by '+', e.g., fl1I1 + {I1, 2[a =

11, 1, 2D. Bags will be manipulated by means of bag abstractioms, whose meaning
is analogous to that of set abstractions, but keeping different occurrences of the
same element apart. Thus, for instance Z{Ir I (,r, a) E {l(0.2,b), (0.2,b), (0.2,c)R[J =

El00.2, 0.2, 0.2a = 0.6.
The power infosys of a finite infosys need not be finite because of the rational numbers
involved. On the other hand, countability of infosyses is preserved by the power infosys
operation.

In the sequel, we need some notions and notations concerning power tokens.

Definition 4.2 For power tokens A in ?ID, let set A = {a I (r, a) E A} be the set

of D-tokens occurring in A, and numA = fr I (r, a) E AD be the bag of numbers
in A.
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For power tokens A in PID and opens u in flD, let Apu = E{lr I (r, a) E A, a E uD
and A.u - Efjr I (r, a) E A, Ia C u}.

We use the indices p and o to indicate that in the first case, the token a is considered
as a point of the open u, whereas in the latter case, it codes for the open Ia. If the
infosys D is reflexive, i.e., in the algebraic case, the conditions a E u and Ia C u are
equivalent, whence Ap -= A. for all power tokens A. This is not valid in the general
case.

In the sequel, we look at the elementary properties of the two functional interpreta-
tions Ap,A. f:D - Q1 . I.

Proposition 4.3 For all A in PID:

(1) For all u in fID: 0 < Apu l A.u C E num A < 1.

(2) Ap is continuous, and A. is monotonic.

(3) Ap satisfies the zero law: Ap0 = 0.

(4) For all u in OD: Opu = Oou = 0.

Unfortunately, neither Ap nor Au can be expected to be modular. Since joins in
QD are unions, 'a E u V v iff a E u or a E v' holds, but since meets are in general
not intersections, 'a E u A v iff a E u and a E v' does not hold in general. Dually,
'#a C u A v iff Ia C u and Ia C v' holds by the very nature of meets, but since ga is not
a single token, 'ga C u V v iff Ia C u or 4a C W' does not hold in general. Fortunately,

Ap and A. satisfy some kind of modularity in co-operation.

Proposition 4.4
For all A in PID and u, v in SID, Apu+Apv C Ap(uV v)"+A.(uAv) C Aou+Aov.

Proof: For a in D and u in fOD, let [a E u] be 1 or 0 depending on if a is in u or
not. Then Apu = Z. r. [a E u] I (r, a) E AR}, and Aou = J-f{Ir. [ta C u] I (r, a) E AD
with an analogous notation. Thus, the statement of the proposition can be derived
from the more basic statement

[a Eu] + [a Ev] C [aE u V v] + [C u A vE [ C ] + [a Cv],

which can be shown by case analysis. 0

4.2 The Order of the Power Infosys

So far, we only defined the tokens of PID. For the order, we shall establish several

equivalent definitions in this subsection.

Definition 4.5 For two functions f and g from QD to I, we define f < g iff for
all u in SID, fu < gu holds. For two tokens A and B in PID, we define A < B iff
A, < B. holds.
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So far, the token order is not quite effective because of the potentially infinite quan-
tification over all opens. We shall soon derive effective characterizations.

The definition above has the virtue that transitivity can be shown easily: from A < B
and B < C, Au < Bpu C B~u < Cu for all opens u, whence A < C. Also, 0 is
readily seen to be the least power token: 0*,u = 0 < Bpu holds for all opens u. For
interpolation however, some hard work is needed. Before doing it, we derive two
effective characterizations.
Proposition 4.6 For a token A inl P1 D and a monotonic function p : fD- I,

the following three statements are equivalent:

(1) A. <pu, i.e., for all u in f2D, Aou < pu holds.

(2) A~u < pu holds for all u in U(A) = {TsetS I S C A).

(3) For all subbags S of A, Z num S < p(Tset S) holds.

In (3), one may also quantify 'for all non-empty subbags'.

Notice how the universal quantification of (1) is reduced to the finite quantifications
in (2) and (3).

Proof:

(1) :o- (2) : Trivial; U(A) is a subset of QD.

(2) # (3) Let u = Iset S, which is in lI(A). If (r, a) is in S, then a is in setS,
whence ja C u. Thus,

F"numS = Ej0rI (r, a)E S5 C_ 1{Ir I (r, a) E A, ýOa C uR = A,,u < pu.

(3) *:: (1) : For given u, let S = {1(r, a) E A I 4a C u,. Then Tset S C u, whence with
monotonicity of p, Au Z numS <p(Tset S) C pit.

The empty subbag need not be included in (3), since F num 0 = 0 < s always holds.O

The proposition applies in particular to the case p = B. needed for A < B:

Corollary 4.7
For two tokens A and B in PID, B > .4 iff for all S C A, Bp(Tset S) > F num S.

The corollary shows that the order on P1 D is decidable, if the order on D is decidable:
A < B can be checked by performing a finite number of comparisons of rational
numbers

E numS= I~jr I (r, a) E SR and

Bp(TsetS) = fJ• s I (s, b) E B, 3(r, a) E S : b > a},
which can be computed with a finite number of comparisons in D and additions of

rationals.

The intuitions of Vickers in [12] suggest a quite different definition of the order on
the tokens. A token A is below a token B iff every element (r, a) can be split into
some (ri, a) with , ri = r, then grown by enlarging both the rational number and
the ground token, then recombined again to obtain some (not necessarily all) of the
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elements of B. A formalization of these intuitions is provided by Lemma 4.13 of [6],
which handles the more concrete problem of comparing convex combinations of point
evaluations. This leads to the following theorem:

Theorem 4.8 Let A = J(r, a,), ... , (r., an)D and B = j(sl, bl), ... , (s, bm)ID
be two power tokens with a fixed order to enumerate their elements, and let
I = (1, ... , n} and J = {l, ... , in}. Then the following are equivalent:

(1) A < B, i.e., for all opens u, Aou < Bpu;

(2) there are numbers tij in I for every i in I and j in J, such that ti 0 0 implies
ai <bj, jEiJ tij = ri for every i in I, and Ei•r tij < sy for every j in J.

(3) as (2), but the tij are in Q1, and Ej 6 tj4 > ri.

Proof:

(1) =. (2) : This is essentially the proof of the Splitting Lemma 4.10 of [6] or
Lemma 9.2 of [7]. It applies the Max-Flow Min-Cut Theorem 5.1 of [2]. In
our case, it is applied to a graph with nodes .1_ (source), 1, ... , n, 1', .. ., m,
and T (sink), and edges from I to i with capacities ri, from i to j' with capac-
ities 1 if ai < bj and 0 otherwise, and from j' to T with capacities p- si, where
p is a previously chosen rational number with E num S < p • Bp(Tset S) for all
subbags S of A. The remainder of the proof is in analogy to [6, 7] and thus
omitted.

(2) =• (3) : Choose a (rational) 0 i p < 1 with still I[iEl tij < p - sj for all j in J.
For every i in I and j in J, choose a rational tý with tij < tý < tij -p- 1 . The
numbers tý- do the job for (3).

(3) =* (1) : We use Cor. 4.7 to prove A < B. Let S be a subbag of A, F a corre-
sponding subset of I, and J' = {j E J I bi E Tset S}. We start with

nunS = EZri <ZE tiij
ie~l ieII jE]

We only need to sum those t,, with tij 0 0. For these, ai < bj holds. Thus it
suffices to consider those j with bj E Tset S, and we may cont.inue

E E E E ti < Z Si = B (TsetS)
WEI'WEJ' j1J' WEl jEJ' 0

The last statement of Theorem 4.8 enables us to prove interpolation. Let A and B as
in the theorem with A < B, and let ti be the numbers of its last statement. For every
i in I and j in J with ai < bI we choose a ground token cij with ai < cii < bj, and
construct the bag C of pairs (tij, cij). Then A < C < B holds, as is easily verified
using parts (2) or (3) of Theorem 4.8.
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5 Comparing Power Infosys and Power Locale

In this section, we show - as announced in the beginning - that the frames of opens
of the power infosys and the power locale are isomorphic.

5.1 The Two Frames

In this subsection, we present the two frames to be compared. Let D be some fixed
infosys. The frame F1 is Q•PD, which can be presented as shown in Section 2.2. The
frame F2 is fIPL(D]. It is defined in terms of P[D], which is isomorphic to fQD. Thus,
we arrive at the following presentations:

* Generators for F1 : OA for A in PID.

* Relations:

(1) Monotonicity: If A < B, then 4A >_ B;

(2) All tokens: VAePID OA = T;

(3) Meets: OA A JB 5 VC>A,B :C.

With monotonicity, one obtains '=' in (3). There is also the special case
A = B of this, which yields

(4) #A = VC>A OC.

9 Generators for F2 : (u, q) with it in QD and q in Q10,

* Relations:

(1) (u,0) = T;

(2) V.>,(u,,") = (u,q);

(3) If U C SIX is directed, then (V U, q) = V. 1 (u, q);

(4) If q # 0, then (0, q) = 0;

(5) For all rational q with 0 E q C 2, V{(u, r) A (v, s) I r, s E QO0, r + s = q} =

V{(u V v, r) A (u A v, s) I r, s E Q0 -r + s = q}.

In case of F2 , relation (1) makes the cases q = 0 of (2), (3), and (5) redundant; we
may assume q $ 0 in (2) through (5).

5.2 A Homomorphism from F2 to F,

In view of the 'intended meaning' of the generators (u, q), we define V : F!, - F, by

p(u, q) = Vf #A I Apu > q}
We have to show that this definition preserves the relations of F2.

(1) p(u,O) = V{#A IApu > 0) = V{IA I A E PID} = T by relation (2) of F1 .

(2) V>qi(u,,r) = V,>qV{fA I At, > r} = V{(M I 3r > q : .Au > r}. By
transitivity and interpolation in Q', the latter equals V{OA I Apu > q} = V(u, q).
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(3) Here, we need continuity of A. (Prop. 4.3 (2)). Let. (ui)iE be a directed family

in OID.

p(ViEr u,, q) = V{#A I Ap(Vil ui) > q)
= V{AI3iEI:A~ui>q)
= VV{MA I Ap,,, > q)
= VE,1 (u,,q)

r (4) By Prop. 4.3 (3), ApO = 0 holds. Thus, w(O, q) = V{9A j 4p0 > q} is an empty

join if q 0 0.

(5) For modularity, we compute

V,+,=,j (u, r) A Vo(v, s) = V,+,=,(Va I Alpu > r) A (V{•B I Bpv > 4})
= VAA^ I r+s =q, Apu> r, Bv >s)

With the '=' version of relation (3) of F1 , we obtain

V{Jc I C > A, B, Au + Bv >q}.

Applying relation (4) of F1 yieldsI V{#D I D > C > A, B, Ajt + Bpv > q}.
In this situation, A.pu + Bpv > q implies Cpu + Cpv > q. Conversely, if D > C
and Cpu + Cpv > q, then we can interpolate a new C' between D and C and let
A = B = C. Thus, the join above equals

x = V{fD I D > C,,u + Cpt, > q}.

Analogously, the other side of the modularity relation becomes

y = V{•DID>C,Cv(uV v)+c(ttA tA)>q}.

We have to show x = y. For this, we use Prop. 4.4. It states

cpu + cp, G,(u V v) + Co(, A v) g_ Cou + Cv.

For x < y, we interpolate D > C to D > C' > C. Then Ci > C0 g Cp, whence

cuVv)+c'(uAv) ;? Cp(,, v ) + C(u A v) Q cu + cv > q.

The other relation z > y is shown analogously.

Now, we have shown that p preserves all relations of F,. Thus, it extends to a frame

homomorphism 9: F2 - Fl.

5.3 A Homomorphism from F1 to F 2

To establish a frame homomorphism 0 : F1 - F2 , we have to specify V'(04) for A
in P',D. Here, we refer to Prop. 4.6, which says A. < p iff for all subbags S of A,
SnumS < p(Tset S). This motivates the following definition:

0(#A)= A 7s where yS = (TsetS, 1numS),

SgA
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which involves a finite meet by finiteness of A. We have to prove that 0 preserves the

relations of Fl.

For monotonicity, we have to show that A < B implies Ob(JA) >_ b(#B), or ASCA 7 S >

AT.B -T. To prove this, it is sufficient to show that for each S C A, there is T C B
with -IS _> T. For S C A, let T = {j(r, b) E BIb E TsetSa. Then setT C TsetS,
whence TsetT < TsetS. Moreover, rnumT = Bp(TsetS) > FnumS holds by

B > A and Cor. 4.7. Since the generators of F 2 are monotonic in the first and
anti-monotonic in the second argument, these facts imply 7 T < yS.

For the all-tokens relation, we have to show V{J,(#A) I A E P1 D} = T. This equality
holds, since vk(16) =-y# = (6,0) = T by relation (1) of F 2 .

Finally, for the meets relation, we have to show 0b(#A)A '(OB) _5 VC>A,B O(NC). This
turns out to be difficult and is postponed until later. For the moment, we assume
that it has been shown, so that 0: F1 --- F2 is a well defined frame homomorphism.

5.4 The Homomorphisms are Inverse

Now, we show that the two frame homomorphisms o : F2 --+ F1 and 0 : F1 - F 2 are

inverse to each other. It suffices to apply 90 and 0 to generators.

First, we show 9o(0(#lA)) = #A for all A in 1P'D.

io(b(#A)) = AScAP(TsetS,ZnumS)

= ASCA Vf B I Bp(Tset S) > E num S}
We have to show that this equals OA. For this, we do not use the presentation of F1

by generators and relations, but the concrete form of F1 as consisting of the 'open'

subsets of PID, with join being union, meet being intersection followed by 'T', and

JA = {B I B > A).

First, let D be in the meet above. Then D > C for some C such that for all S C A,

S> Es for some Bs with BS(TsetS) > EnumS. By C > Bs, for all S C A,

Cp(Tset S) > F num S holds. By Cor. 4.7, this just means C > A. Thus, D > C > A,

whence D is in IA.

Conversely, let D be in #A. By interpolation, let D > C > B > A. By Cor. 4.7, B > A

means Bp(set S) > E numrS for all S C A. By C > B, C is in V{#B I Bp(TsetS) >

SnumS) for all S C A. Thus, c is in •sCA.... and because of D > C, D is in

ASCA ..
Next, we compute 0b(,(u,q)) = Ot(V{4A I Ap > q)) = V{AsCA 75 I Apu > q}.

First, we show that this is below (u, q). For this, it suffices to show that for every A
with Au > q, there is some S C A with -yS ! (u, q). Given A with Apu > q, let S =

9(r, a) E A I a E uD. Then set S C u, whence Tset S < u; and E num S = Apu > q.
By monotonicity of the generators of F2 in the first argument and anti-monotonicity

in the second, -tS = (Tset S, E num S) 5 (u, q) holds.

s,.m m m m m llm IIl|l ll m m m mm i ]I
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The final thing to show is 0(p(tu, q)) > (u, q). Again, this turns out to be difficult,
and we postpone it until later. Except for the two postponed statements, the proof

of F, 9! F2 is now completed.

5.5 The Missing Relations

Let us now analyze the two relations, whose proofs were postponed. The meet relation
is

0(IA) A ¢(#B) _< V b(•C)
C>A,B

or

A A RA yTic> A,B<1
RCA SgB TgC

By Cor. 4.7, the condition C > A may be replaced by CP(Tset R) > _ num R for all
R C A, and analogously for C > B.

After renaming the bound variables, the missing part of the inverse relations is

(u,q)_5 V{ A 7TICpu > q}.
TCC

Written this way, the two postponed relations reveal a common structure. On the
left, there is a finite meet of generators (ui, q,), and the join on the right is quantified
over those C with Gpu, > qi for all i. Thus, both relations may be derived from a
more general critical lemma:

Lemma 5.1 For every infosys D, for every finite index set I and all families
(ui)deI in fID and (qX)iel in Q0,

A(u,,q,) < V A (TsetS,'nun mS) I C E P1 D, Cpu, > qi Vi E I}
iEl scC

holds in F2 = 11PL [D].

Because of the complexity of our proof of the critical lemma, we devote the whole
next section to it. Summarizing the results of this section, we have shown - modulo
a proof of the critical lemma - the following theorem:

Theorem 5.2 For every infosys D, the frames QTP1D and QPL [D] are isomorphic.

6 Proof of the Critical Lemma

In this section, the critical lemma will be proved. The very basic idea of the proof is
taken from the proof of Lemma 5.3 in [6] or Lemma 8.3 in [71, which state a vaguely
similar property involving points and concrete open sets. The added difficulty in our
proof is due to the fact that we have to work pointless, because the spatiality of the
locale of F2 is a priori unknown. (A posteriori, it follows from Theorem 5.2.)
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6.1 Outline of the Proof

The above mentioned proof of Jones employs so-called crescents, which are set dif-
ferences of two concrete open sets. To mimic this, we set up a new frame F3 in
Subsection 6.3 with generators (u, v, q), whose intended spatial meaning is the set of
all p with p(u \ v) > q, or pu - p(u A v) > q. With an appropriate choice of relations
for F3, the obvious assignment (u, q) 1-- (u, 0, q) becomes a frame homomorphism
a : F 2 --* Fs.

Let the critical lemma be L < R in F2. The added possibilities of F3 allow proving
aL < aR in Fa in vague analogy to Jones's proof of the Lemmas mentioned above
(Subsection 6.4). After having managed this, we only have to show that a is an order
embedding; then aL < oR in F3 implies L < R in F2 .

By the Corollary in paragraph II, 2.6 of [5, page 53], F2 can be embedded by a
frame homomorphism q into a complete Boolean algebra G. Given 1 and G, we
are able to define a (non-trivial) frame homomorphism 63: Fs -* G with 8 o a =
(Subsection 6.6). Then a is an embedding, since j? is an embedding.

The remaining subsections 6.2 and 6.5 introduce auxiliary notation to master the
complexities of the proofs.

6.2 Real Valued Functions I

Before we present F3 and prove the a-image of the critical lemma in F3 , we introduce
some pieces of auxiliary notation, which allows for replacing complex join-and-meet
expressions by simple arithmetically looking expressions with familiar laws.
Let F be an arbitrary frame and X the locale with f)X = F. Then continuous func-
tions f : X - RI" with values in the positive reals (including 0 and oo) correspond
to frame homomorphisms f&f : MgR' -- F. Analogously to the infosys Q1 for I, an
infosys for R8* is given by the positive rationals Q+ (including 0, but not oo), with
order '<' which is the usual order 'c' plus the one additional relationship 0 < 0. Like
fQQ, the frame R ; fIQ+ can be presented by generators Iq for q in Q+ and the
two relations of rational zero and rational continuity. Thus, frame homomorphisms
from QRo* to F correspond to functions defined on the generators #q satisfying the
two relations.

To obtain a real notational benefit, we now forget about X, write f for f2f, and q for
Iq. Thus, we define:

Definition 6.1 For every frame F, let 7ZF be the set of all functions f from Q+
to F'satisfying the two properties

(1) fO = T;
(2) V,>9 fr = fq (and thus r > q implies fr < fq).

A function f is bounded iff there is q with fq = F.
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We now define several operations of 7RF. For every operation, satisfaction of the two

conditions for RF has to be shown. We shall omit most of these proofs.

The members of RF are ordered pointwise: f < g iff for all q, fq < gq holds. Obvi-
ously, if f 5 g and g is bounded, then f is bounded.

Non-empty joins may be defined pointwise: (Vie, fi)q = Vel(fiq).
The empty join 0 or F is given by 0(0) = T and 0(q) = F for q # 0. It is not given
pointwise, since 0(0) is T instead of F.

Finite meets (including the empty meet T) are given pointwise: (Ai!, fi)q =

I•'•(Jlq). With these joins and meets, XF becomes a frame.

We define a special member 1 of RF by 1(q) = T for q E" 1 and F otherwise. In
spatial intuitions, this corresponds to the function with constant real value 1. Thus,
functions from the locale of F to I exactly correspond to those f in 1F with f < 1,
or equivalently fI = F.

For two reals z and y, z + y > q holds iff z > r and y > s for some rationals r and s

with r + s = q. Thus, we define

(f+g)q = V frAgs.
r,s:r+s=q

(This is the same kind of expression as used in the modularity relation.) It is easy to
show that (PF, +, 0) forms a commutative monoid.

Because they are given pointwise, addition preserves non-empty joins: f + Vie =

Viel(f + gi). In particular, it is continuous and thus monotonic. By monotonicity,
f = f + 0 < f + g always holds, whence f V g < f + g. Addition does not preserve
the empty join, since f + 0 = f holds instead of f + 0 = 0.
Because of their pointwise nature, finite joins and non-empty meets of bounded func-
tions are bounded. Also the sum of two bounded functions is bounded: if fro = F

and gso = F, then (f + g)(ro + so) = F, since r + s = ro + so implies r _ r 0 or s _1 so.

The benefit of the new notations becomes obvious when we consider the frame F 2 .
For every u in OID, the assignment q '-* (u, q) for q C 1 and q --* F for q -3 1 becomes
a function in RF 2 by the relations of rational zero and rational continuity. We call

this function [u]. Abstracting out the q's in the generators, we reach at a formal
'presentation' of RZF 2 with 'generators' [u] for u in SD and 'relations'

* Bounded by one: [u] < 1;

* Continuity: for directed families (ui)icj, [VNie Ui] = ViEl[U'];

o Zero law: [0] = 0;

* Modularity: ju V v] + [u A v] = [u] + [v].

We do not claim that this 'presentation' presents anything directly, although it could

be probably achieved by some more work, but we consider it as notational shorthand

for our presentation of F 2 . Intuitively and informally, [u] can be best understood
as the size or area of the 'region' u; the relations above then get a quite appealing

interpretation.
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6.3 The Frame F 3

We now present the frame F3 by giving a 'presentation' of XF 3: it has generators

[u, v] for every u, v in SID, whose intuitive meaning is the size or area of the 'region'
u \ v, and relations

(1) Bounded by one: [u, v] < 1;

(RC) Restricted Continuity: for directed families (ui)iE1 and v with v < ui for all i,

[V, e Ui, A = Velui Vl;
(0) Zero law: (0, 0) = 0;

(A) Meet law: [u, v] = [u, u A v];

(V) Join law: [u, v] = [u V v, v];

(S) Split law: if u > v > w, then [u, w] = [u, v] + [v, w].

Again, this should not be understood as an actual presentation of anything, but as
shorthand for a presentation of Fa, which results by adding q's. Thus, the generators

for F3 are (u, v, q) = [u, v](q), and the split law for instance becomes: if u > v > w,
then for all q, (u, w, q) = Vr,,:.+.=q (u, V, r) A (v, u, s).

A frame homomorphism a : F2 -- F3 is specified by o(u, q) = (u, 0, q), or in shorthand
a[u] = [u, 0]. (Actually, it should be a o [u] = [u, 0], but we drop 'o'.) Preservation of
the relations of F2 is immediate except for modularity. In the sequel, we shall take the
relations for 7RF 3 as axioms and derive a host of conclusions, including modularity,
needed for the proof of the a-image of the critical lemma.

(C) Full Continuity: for directed families (ui)ie and arbitrary v, [Vi5 ui,v =

Proof: Applying the join law on both sides yields [Vi•5 ui V v, v] Vi5 [ui V v],

which holds by restricted continuity (RC). 0

(Ml) Monotonicity: if u < u', then [u, vJ _ [u', v].

Proof: Directly from full continuity (C), or from the split law like (M2) below. 0

(M2) Anti-Monotonicity: if v < V, then [u, v] > [u, V)].

Proof: [u,v] - [u, uAv] - [u, u A v'] + [u A v', u A v] Ž> [u, u A v']- [u,v']. 0

(V') Extended join law: if v' < v, then [u V v', v) = [u, vJ.
M1 M1

Proof: [u, v] < [u Vv', v] < [u V v, v] =V [u, v]. 0

(A') Extended meet law: if u' > u, then [u, W' A v] = [u, v].
M2 A12 A

Proof: [u, v] < [u, u'A v] < [u,u v] [u,v]. A0

(E) Extinction: if u < v, then [u, v) = 0.

Proof: [u, vl=[0Vu, v]=[0,v][0,0]--. 0
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The next property is the a-image of modularity.

(Mod) [u V v, 01 + [u A v, 0] = [u, 0] + [v, 0].

Proof:

[u V v,O] + [uA v,0] 1 [uV v,v] + [v, O] + [uA v, 0]

v^ [u,u A v] + [u A v,O] + [v, 0]

[u, 0] + [V, 0 0

The following properties are auxiliary lemmas needed in the proof of the a-image of
the critical lemma. The first statement shows how to partition [u, v] into parts inside

and outside some w.

(1) [u,v] = [uAwv] +[u,vVw].

Proof: By (V) and split, (u,vj = [uVv, v] = [uVv,(u Aw)'Vv1+[(uAw)Vv,vl. By
(V), the second summand equals [u A w, v]. By (V'), the first becomes [u, (u A w) V v].
By two applications of (A), this equals [u, uw V v]. 0

Next, we generalize (1) to a finite number of w's.

(2) If W is a finite set of opens, then fu, vJ = ETCW[U AA T, v V V(W \ T)J.

Proof: The proof is performed by induction on IVI. For W = 0, the sum just

equals [u,v]. For W #0 , let w be a member of W and W' = W \ {w}. By (1), [u,v]
is [u A w, v] + [u, v V w]. By induction hypothesis, we obtain

[uAw,v]= E [uAwAAT, vVV(W'\T)]
TCW'

Replacing T by T U {w), this becomes

E [uAAT, vVV(W\T)J
T: wETCW

The cther summand is treated similarly:

[u,vVw] = ETCW,[uAATvVwvV(I'\T)]

= ET:,w¢TCW[uAAT, vVV(V\T)] 0

For the actual proof of the critical lemma, we need a slight variant of (2):

(3) Let U be a finite set of opens. For all u in U: [u, 01 -- =-T: [ T, V(U \T)].

Proof: Apply (2) to [u, 0] with W = U \ {u}. 0

The next statement shows how to transform a join into a sum.

(4) [u V u',,v] = [u, v] + [u', u Vv].
Proof. Applying (1) with w = u, we obtain [uVu',v] = [(uVu')Au, v]+[uVu', vVu].
The first summand is [u, v], and with (V'), the second becomes [u', u V v]. 0

The next step is the generalization of (4) to arbitrary finite joins.

(5) [Vi I',= V ] = ESLI u,, v V Vill ]
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Proof: For n = 0, the equation is [0, v] = 0, which is true by (E). For n > 0, we
compute:

-=,v V\ U-1] + ["n, V V"-
[ n -V V n -
L uV,,= ti] +[ts, Vu,;, =u,,o]

_= [V il UlV]

The next statement is another form of modularity.

(7) If ul > vi and U2 > V2, then [Ul,v:]+[u2 ,v2] = [UI Vu 2 ,v1 VIv2]+[u^Au2,vAv 2].

Proof: By (1) with W = v2 , [ul, vi] = [u, A v 2, v1] + [ul, v, V vs].
By (1) with w = u1, [u 2 , V21 = [ul A U2, v1s] + [Ut2, uI V Vu1.

We show that the right hand side can be partitioned into the same four summands.
By (4), fil V U2, Vi V V2] = [ul, v 1 V v2] + [u.2, Ul V V1 V t,2] holds. By ul > v1 , the
second summand simplifies to [u2, UI V V21.

By (1) with w = V2, [u, A u2, v, A v2] = [ul A us A v2, t'l A V.2] + [u, A u2, (vl A v2) V v2].
By Us2 > V2 , the first summand simplifies to [ui A V.2, ti A v2], which by (A') equals
[u, A v2, v1]. 0

Our next goal is to show that the sum of the areas of a finite number of disjoint regions
is bounded by the area of a region that covers them all. To formalize disjointness
in our framework, consider proper sets. The intersection of A \ B and A' \ B' is
(A n A') \ (B U B'); it is empty iff A n A' C B U B'.

(8) Let ul, ... , u,, and v1, ... , v,, be opens with uiAuj < vtiVvj for i A j (disjointness

condition). Then EI=Iui,n Vi) : 5Vi,=' fti, 01.

Proof: Applying (A), we may replace vi by ui A vi. The disjointness condition then
still holds. Thus, we may assume without restriction vi > vi for all i.

Before proving the statement by induction on n, we consider the effect of one applica-
tion of (7) from left to right to two summands of Z"[ui, vi]. By simple computations, it
can be checked that such a rewriting step keeps the number of summands and the join
V ui invariant, and preserves the conditions ui > vi and the disjointness condition.

For n = 0, 0 < [0, 0] holds. For the case of n + 1, consider [uo, vo] + [ul, vii + -- " +
[Un, vn]. We rewrite this expression n times by (7), going from left to right:

[uo, Vol + [Ul, V•] + .-. .+ [Ut,. V.]
= [uoAul,voAv^]+[uoVul,voVv]+]+[uv;]+ ... +[u.,v,,]

= [uo A u,, vo A v:J + [(uo V ux) A u2 ,(2 v) A v2 ]

+ [UO V U1 V U2, VO V V1 V V2] + [1s1, v31 +... + [U,, V,]

The final outcome is E ['4, v]+[u, v], where ui t=0)Au, vý vj)Avi,u~ ~~~ = (V i= I jO=0 •^,
u =0 ui, and v = Vi=0 vi. As indicated above, the rewriting steps preserve the

disjointness condition. Thus, the induction hypothesis may be used to show that
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the sum is bounded by [u, v] + [V",= u, 0. Using the disjointness condition, we may
compute:

i-I i-1

" = V(uj•A u,) < V(,•, viV ) < v
j=O j=O

Thus,
n M[-, V1 + [V Uý, 0] :5_ [., v] + [V, 0] =S [U, 0]

i=1
which is the required result. 0

Next, we proof that summands as occurring in (3) satisfy the disjointness condition
of (8).

(9) Let U be a finite set of opens, and let T vary over the subsets of U. The families
UT = AT and VT = V(U \ T) satisfy the disjointness condition of (8).

Proof: If T # T', then without restriction, there is u in T with u not in T'. Then
UT A UT' < AT< u < V(U \T') < vT V vT'. "

For the last auxiliary statement, opens have to be considered as token sets, to which
set difference and subset relation can be applied.

(10) [u, v) = VFcfiu\V[TF, v); this join is directed.

Proof: The join is directed by monotonicity of 'T'. Thus, continuity (C) can be
applied, and we have to show [u, v] = [Vrcfi.u\U TF, v]. The relation '>' directly

follows from monotonicity (MI). For '<', we show u <v V VFC tF, and then

apply (M1) and (v). Let a be in u. If a is in v, we are done. Otherwise, let a > b E u.
Token b is not in v, since a is not in v. Thus, a is in T {b} where {b} C u \ v. 0

"For the application of the statements above, it is useful to note how statements
involving sums may be turned into statements involving meets. If fl, ... , f,, are
functions in 1ZF for some frame F and we know "=l1 fi <_ g, then A"=l fiqi :_

g(E"7= qi) follows, since the meet on the left is just one join component of the
expanded form of (Ei fi)(Ti qi).

6.4 The Critical Lemma in the Frame F3

With the auxiliary statements collected in the previous subsection, we are now able
to prove the a-image of the critical lemma. The statement to be shown is:

A (ui, 0, qi) - V{ A (Tset S, 0, F num S) I A E PID, Apui > qi Vi E I}
iE1 SCA

for finite families ul, ... , un and q , -. qn

For n = 0, the statement holds, since A = 0 is then involved in the join on the right,
and Asc.(Tset S, 0, E num S) = T.
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For n i 0, our strategy is to break up the left hand side into a huge join, and
then show that every component of this join is below the right hand side. Without
restriction, we may assume that the ui are pairwise different; for the left, this is since
(u, 0, q) A (u, 0, q') = (u, 0, q U q'), and on the right, since Apu > q and Apu > q' iff
Apu > q U q9'. Thus, we may assume in the sequel that the index set I coincides with

S{u1, ... , Un}.

By rational continuity, (ui, 0, qi) is join of (ui, 0, qý) with qý > q,. Applying (3) to
(ui, 0, qý), we see that this generator is a join of components AT.iETCI(uT, vT, qT),
where UT = AjET u" and VT = VjEI\T Uj, and the numbers (qT)T:iETC_ are some
numbers with ET:iETCI J = qi > 9i

By the step just performed, the left hand side is a meet of joins of meets. Applying
distributivity, it can be rewritten into a join of more meets. For a fixed T C I,
the meet of all (uT, VT, qT) with i in T can be contracted into (uT, vT, qT), where

qT = maxiET JT. Thus, we reach at a join of components AT:O•TCI(U T , V T , qJ) with
UT and VT as above, and some numbers JT such that for all i in C. -T:iETCI qT > qi.
If we index something over T in the sequel, this should be always understood as
indexed over {T 1 0 .T C I}.
There are two kinds of components AT(uT, VT, qT): those with q := ET qT < 1 and

those with q > 1. We treat the latter first. The component AT(UT, vT, qT) is just
one join component of (ELT[UT, vT])(q). By (9), the opens uT and vT satisfy the
disjointness condition of (8), whence (ET[[T, vT])(q) is below [VT uT, 0](q). If q >_ 1,
the latter is F by the 'below 1' condition of RIF 3 . Thus, components AT (UT, VT, qT)
with ET qT > 1 equal F and deserve no further attention.

Using (10), the remaining components AT(uT, VT, qT) can be written as a join of

AT (TFT, VT, qT), where FT is some finite subset of uT\vT. Let FT = {aT, ... , aT,}.
Using (5), we can write AT(TF T , vT, qT) as a join of components

mT j-1

A A\ •aT\' V va rT) for some numbers ," with = qT.

T j=1 k=1

For every such component z, we shall now construct a power token A with two
properties: it is in the set on the right of the critical lemma, and the join component z
is below AsCA(TsetSOZnurnS). We define A = ZT{I(rT, a[), ... , (l.T,, aTrT)D.

This is a legal power token since ET Ej rT = ETqT < 1.

"First, we verify Apu1 > q, for every i in I. We may compute Apui = 'flrT I aT E uiI.

We know aT E FT C_ T = AIET U1 : ui if i is in T. Thus, i in T implies aTl I ui,

whence Apui > ZrT I i E Ta = ET9 9T > qi.

Second, we have to show
rn'~ j--i

A (aTVj ta'v~f A (Tset S, 0,ZFnum S)AM V < kA
T j=1 k=1 SCA
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Let S be a fixed subbag of A. For every T, let ST be the part of S consisting of pairs
(rT, aT) only. Then we obtain with (M2):

mT j-i
AA(#aT V OafV VT , rT)AA(a, V gaT V VT, rT)
T j=1 k=1 T jEST kEST7k<j

By (5), the latter is below AT(TsetST,VTZnumST). It remains to show that
this is below (TsetS,0,FnumS). This is true by (8), since the opens TsetST C
UT and vT satisfy the disjointness condition by (9), and VT Tset ST = 1set S and
ET E num ST = E num S hold.
This concludes the proof of the critical lemma in F3.

6.5 Real Valued Functions II

As announced in Subsection 6.1, we want to construct a frame homomorphism :
F3 --+ G for complete Boolean algebras with il : F:. - G such that 3 o a = 17. Before
we do so, we investigate which additional properties the 'real valued functions' 1ZG
have if G is not just a frame, but a complete Boolean algebra. We shall show that
the cBa structure allows defining a partial operation of subtraction on TZG.

Given two positive reals x and y with z D y and a positive rational q (all possibly
being 0), when is z - y > q? If q = 0, the answer is always, because our order even
satisfies0 < 0. For q $ 0, x-y > q iff there is r > q with x > r_: q+y. With
s = r - q, this is equivalent to: there is s $ 0 with z > q + s and y g; s, i.e., not
y > s. In this existential statement, the case s = 0 may be included without harm
since 'not y > 0' is always false.

This derivation motivates the following definition of subtraction in TZG for a complete
Boolean algebra G:

Definition 6.2 For f, g in PG with f > g, let

Tf-g)(q)= if q = 0

TV,6Q+f(q+s)A-gs ifq0=

The first thing to verify is that f - g is a legal member of 7?.G. The condition
(f - g)(0) = T is part of the definition, and Vq,>q(f - g)(q') = (f - g)(q) holds for
q =A 0, since the argument q occurs positively in the definition of f - g.
In the sequel, we state and prove some properties of subtraction.

SO: '-' preserves non-empty joins in its first argument (but not in the second); thus,
in particular it is continuous there.

Proof: Non-empty joins are given pointwise, and f occurs positively in the
definition. 0

Si: For allf, f-0=f.
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Proof: For q $ 0, (f-0)(q) = V, f(q+s)A-O(s) = V* 0 I0(q+e) = fq by rational
continuity. 0

S2: For all f, f - f = 0.

Proof: For q 0 0, (f - f)(q) = V, f(q + s) A -fs. By q + s Q s, this is below

V, fI A-fs = F. o

The next statement prepares the following mixed associativity law.

S3: If g >_ h and h is bounded, then (f + g) - h > f.

Proof: For q # 0, we obtain

((f + g) - h)(q) = V fql A gq2 A -hs
8,41,92: q1+-•=9+*

We have to show that this is above fq = Vr>q fr. For fixed r > q, consider fr.
Fixing q, = r, we obtain

((f + g) - h)(q) >_ fr A V gq2 A -hs
8,•2: r+q2=f+.

We show that the big join in this expression equals T. With d = r - q, it becomes

V12 gq2 A -"h(q2 + d). Using g _> h and restricting to multiples of d, the latter join is
above VweN 0 h(n . d) A -'h((n + 1) -d). Since h is bounded and d j) 0, there is some
m with h((m + 1) . d) = F. Thus, the join equals (T A -,hd) V (hd A -,h(2d)) V ... V
(h(m . d) A -,F), which can be contracted to T. 0

The next statement is the important mixed associativity law.

S4: If g > h and h is bounded, then f + (g - h) = (f + g) - h.

Proof: For q :0 0, we have (f + (g - h))(q) = V,,+92=, fql A (g - h)(q2 ). Here,
we must single out the case q2 = 0, i.e., q = q. It yields a single join component fq.

Thus,

Lq = fq V V fql A g(q 2 + s) A -hs
ql,92,8: q2*O,q, +q2=q

The right hand side yields
Rq V qA gq A ̂-hs

* ,qa ,9a: ql~ +q:=q+s

For Lq : Rq, fq :_ Rq holds by (S3). The remaining part of Lq is below Rq, as can

be seen by letting q' = q1 and q = q2 + s. For Rq :_ Lq, we have to differentiate two
cases. The R-components with q' - s are below Lq, as can be seen by letting qi = qj
and q2 = q' - s. If q' C_ s, then q' g q, whence fq' A gq• A "hs < fq' :_ fq :_ Lq. 03

The next two statements show that subtraction inverts addition.

S5: If g is bounded, then (f + g) - g = f.

Proof: By (S4), (f + g) - g = f + (g - g), which is f by (S2). 0

S6: If f >_ g and g is bounded, then (f - g) + g = f, and thus f Ž f - g.
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Proof: By (S4) and commutativity of addition, (f - g) +g = (f + 9) - g, which

equals f by (S5). 0

S7: If f _! g _g h and g is bounded, then (f - g) + (g - h) = f - h.

Proof: Since g is bounded, h is bounded, too, and by (S6), g - h is also bounded.

By (S4), (f - g) + (g - h) = ((f - g) + g) - h, which by (S6) equals f - h. 0

S8: Let f _> f', 9 >_ g', and f', g' be bounded. Then f-ff = g-g' iff f-+-g' = f'+g.

Proof: Add / subtract f' and g' and apply (54), (S5), and (S6). 0

6.6 A Frame Homomorphism from F3 to G

Now we come to the final step of the proof of the critical lemma: given a frame

embedding q from F 2 to a complete Boolean algebra G, define a frame homomorphism

ft : F3 --+ G with 6 o a = q. According to the spatial intuition that (u, v, q) be the

set of evaluations p with p(u \ v) > q, or pu - p(u A v) > q, we define 13(u, v, q) =

(q o [u] - q o [u A v])q using the difference operator of the previous subsection.

In the sequel, we shall not explicitly write down j?, and abstract out the q-argument.

Thus, we obtain the concise definition 13[u, v] - [u]- [uAv]. We have to show foa = 17

and the preservation of the relations of F3 by ,t. In doing so, we may use all properties

of subtraction, since all the functions [u] are bounded: [u](1) = F.

For the composition, we compute fl(a[u]) 0 13[u, 01 = [u] - [u A 0). By the zero law of

F2 , [u A 01 = [0] = 0, and by (SI), [u] - 0 - [u] holds. Since this actually stands for

17o [u], we have shown 8 o a = q.

For restricted continuity, let (ui)iE, be a directed family of opens, and v an open with

ui 2 v for all i. We have to show fl[Vie! ui, v] = Vci, /3[ui, v], or

[V u] - [V u ^Av = V([ui] - [, Av]).
iEI iEI iEl

By the condition ui ! v, this simplifies to [Vi,: ui] - [v] = Vist([ui] - [v]), which is

a valid statement by the continuity relation in F_, and the continuity of subtraction

in its first argument.

The zero relation [0, 01 = 0 becomes [0] - [0 A 0] = 0, which is true since [0] = 0 by

the zero relation of F2, and 0 - 0 = 0 by (S) or (S2).

The meet relation [u, v] = [u, u A vJ becomes [it] - [u A v] = [u] - [u A (u A v)], which

is obviously true.

The join relation [u, v] = [u V v, v] translates into [u] - [u A v] = [u V t] - [v]. By (S8),

this is equivalent to [u] + [v] = [u V v] + [u A v], which is just the modularity relation

of F2 .

Finally, the split relation states [u, w] = [u, v] + [v, w] if u > v > w. By fi, this

becomes [u) - [w] = ([u] - [v)) + ([v] - [wJ) - a valid statement by (S7).
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7 Conclusion and Future Work

In [6, 7], a probabilistic power construction PD is defined for dcpo's. In this paper, we
define a construction Pj for infosyses in the sense of Vickers [121, and a construction 'S
PL for locales, and prove that PD, P1, and PL are equivalent when restricted to
continuous domains. In particular, the infosys construction is effective: given a
countable infosys D with decidable order, the power infosys PID is again countable

with decidable order.

The dcpo construction PD is part of a monad on dcpo's, as shown in [6]. One might

also wish to make PI and PL into monads with operations equivalent to those of
Jones. This is a non-trivial task, since Jones's definition of the multiplication of
the monad PD involves Lebesgue integration (of Scott continuous functions w.r.t.
continuous evaluations). For PL, we were already successful in defining the monad
operations, but this a topic for a different paper.

Another interesting problem is to work out the theory of 'R'°-frames' that may hide
behind the auxiliary notations of Subsection 6.2. With a proper axioinatization of
R11-frames or of I-frames, one would obtain a theory of locales that does not rely on
the Sierpinski space 2 as usual, but on the positive reals R' or the unit interval I.
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Abstract. We study the symmetric monoidal closed category LIN of
linear domains. Its objects are inverse limits of finite, bounded com-
plete posets with respect to projection-embedding pairs preserving all
suprema. The full reflective subcategory LL of linear lattices is a de-
notational model of linear logic; the negation is A - A0' and !(A) is
the lattice of all Scott-closed sets of A. The Scott-continuous function
space [A -- B] models intuitionistic implication. Prime-algebraic lattices
are linear and p equals D for these lattices; in general, p : 0 in LL.
Distributive, linear domains are exactly the prime-algebraic ones.

1 Introduction

One of the most frequently used cartesian closed categories in Denotational
Semantics is that of Scott-domains and Scott-continuous maps [221. If A and B
are Scott-domains, then the exponential object. [A - B] is the Scott-domain of
all Scott-continuous functions f: A - B. ordered pointwise. The product A&B
is the order-theoretic product of A and B and curry and apply are defined as in
the cartesian closed category SET of sets and (total) functions.

In (8], we find a finer universe of types which can be used to build up a
cartesian closed category: the symmetric monoidal closed category of coherence
spaces with stable maps in the stable order is a denotational semantics of linear
logic equipped with linear types. Such types are finer than exponentiation and
product in the sense that they decompose the exponential object into !(A) -oB.
Intuitively, f E A-oB is the denotation of a proof that 'A implies B' such
that the proof uses the hypothesis A only once. The construct !(A) allows us to
use A finitely many times, so g E !(A)-oB is the denotation of a proof of the
intuitionistic implication 'A implies B'.

The goal of this paper is to specify a symmetric monoidal closed category
of Scott-domains LIN with an internal horn --o and a modality !() such that
!(A)--oB is isomorphic to the function space [.4 - B] of all Scott-continuous
maps, ordered pointwise. We will also obtain the other linear types: a dualizing
object 1, a contravariant functor ()-L on LIN modeling negation, a tensor product
0 modeling parallel conjunction and its De Morgan dual p; further, we will have
the De Morgan dual ?() of !() and the additive operations ( and &.

Intuitively, the objects of such a category should encompass all finite Scott-
domains and this category should be closed under inverse limits of projection-
embedding pairs.
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As a methodological strategy, we will take on this task in the wider universe
of bounded complete domains [14]. For these objects, we will specify the required
morphisms and type constructors and we are 'only' left with the problem of
finding a universe of Scott-domains in which algebraicity is preserved by all
linear types; note that a bounded complete domain is a Scott-domain iff it is
algebraic [15].

Assuming that we have already constructed this category of bounded com-
plete domains, there are at least three conceptual questions to ask:

- Is algebraicity preserved under all the linear type constructors,
- and if not, are there at least subcategories of Scott-domains which are closed

under all linear types and
- do we have maximal such categories?

In [14], a similar project has been successfully completed in the distributive
setting. There, we studied the category BC of bounded complete domains with
maps preserving all suprema. The full subcategory of prime-algebraic domains
[27, 29] PRIME C BC is such that

- every object in PRIME is distributive and algebraic,
- PRIME is closed under the linear types in [14] and
- if C is a full subcategory of BC closed under the negation ()- such that

every object in C is distributive and algebraic, then C is a full subcategory
of PRIME [14, Theorem 3.5].

The full subcategory PAL C PRIME of prime-algebraic lattices is a degen-
erate model of linear logic as we have D ý_ p in PAL [14, Proposition 5.9]. Thus,
we could add two further specifications for the category LIN.

- Every prime-algebraic domain should be linear and ® and p should be dif-
ferent type operations in LIN.

The fundamental questions in the 'design' of such a category are

- what is the Scott-domain 1 and
- how can we characterize the Scott-domain A-oB in terms of set-theoretic

functions f: A -- B?

These questions will be dealt with first. By definition, 1 will have to be
a Scott-domain. If .I = {*} is a singleton domain, then A"L S- A-o.L could
only be 1 again if the category LL is concrete, i.e. if morphisms in LL(A, B)
correspond to set-theoretic functions f: A - B. But then AiL -_ .1.' -_ I
demonstrates the impossibility of having ( )- as an involution on Scott-domains
other than 1. If ± has at least two elements, it is easily seen that the cardinality
of [[A -- 1] - _L] exceeds that of A for all non-trivial, finite Scott-domains
A. So while ± := {0 < 1) seems to be the only reasonable candidate for a
dualizing object in LIN, the cardinality problem persists since I has more than
one element.
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The mismatch in size stems from allowing all Scott-continuous functions
f E [A -. 1_]. Note that [A -- 1] is nothing but an isomorphic copy of the lattice
of Scott-open sets o'(A) [7, 15], and there are simply more Scott-open sets of A
than there are points a E A. What we need is that every set f-'(0), f E A--*l,
is Scott-closed and corresponds to a point in A. To show f-(0) = 1(a) for some t
a E A, we need that f-1(0) is bounded in A and that then f- 1 (0) has a maximal
element. For a Scott-domain with top, this is guaranteed if f: A - I preserves
all suprema.

Alternatively, we are lead to the same choice of morphisms if we consider the
desired isomorphism [A -- B] -5 !(A)--*B for Scott-domains A and B assuming
that B has a top. If p,(A) denotes the lower power domain of A [12] (which has
a topological representation as the lattice of all non-empty Scott-closed subsets
of A, ordered by inclusion), then rTJ := Aa.IA(a): A -- pi(A) is Scott-continuous
and is universal in the following sense: for all f E [A - B], there exists a unique
f: pi(A) - B preserving all non-empty suprema such that f o rIA = f. If !(A)
denotes the lattice of all Scott-closed subsets of A, ordered by inclusion, then
there exists a unique f: !(A) -, B preserving all suprema with foup,,, (A) 

0alA = f,

for i has to map 0 to 0, and behaves like f otherwise: up(.,: pt(A) - !(A) is
the natural inclusion.

This discussion not only strengthens the justification for the choice of A-*B
as the space of functions preserving all suprema, ordered point~wise, it also sug-
gests the mathematical nature of !(A) as the lifted lower power domain of A.

We briefly review the linear types for bounded complete domains as presented
in [14].

Definition 1 A set-theoretic function f: A - B between bounded complete do-
mains A and B preserves all suprema iff for all X C A bounded in A, the set
f(X) C B is bounded in B and f(UAX) = UIf(X). Let A-*B denote the poset
of all maps f: A - B preserving all suprema, ordered in the pointwise order:

f E_ g ff f(a) E_ g (a) for all a E A. (1)

Define

A' := Al--0/. (2)

Let BC be the category with all bounded complete domains as objects and maps
preserving all suprema as morphisms. Let SCOTT denote the full subcategory of
BC which has all Scott-domains as objects. Let SUP be the full subcategory of
BC which has as objects all complete (sup)lattices. 0

Let us point out that --- and [ - ] are well-defined operations on ob(BC).

Lemma 1 Let A and B be objects in BC. Then A--oB and [A - B] are objects
in BC, and the supremum operation in A-oB and [A - B] is the pointwise one.
In particular, the inclusion map A--oB - [A - B] preserves all suprema. 0
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The tensor product ® is uniquely determined up to isomorphism if

A D B--oC ý- A--o(B--oC) (3) 4

is a natural isomorphism in BC; this is a consequence of basic category theory
[16]. We want to motivate the tensor product by a universal property which
appeals to our thinking in terms of functional programming. For objects A, B

and C in BC, we can consider A-o(B--oC) as a subset of (CB)A as BC is a
concrete [2] category. The category SET of sets and set-theoretic functions is
cartesian closed (161 and the functions

curry: C'AXB - (CB)A, curry:= Af.Aa.Ab.f (a, b) (4)

uncurry: (CB)A , CAxB, uncurry:= Ag.A(a, b).g(a)(b)

are mutually inverse bijections. This provides us with the concept of bilinearity
if we characterize the set uncurry(A-o(B---C)) in C"AB.

Definition 2 For objects A, B and C iM BC, a set-theoretic ftinction f of type
f: A x B - C is bilinear iff

Va EA Ab.f(a,b): B - C is linear (5)

Vb E B : Aa.f(a, b): A - C is linear.

We denote by Bil(A x B, C) the doinain of all bilinfar functions f: A x B -- C
in the pointwise order. 0

Note that Bil(A x B, C) is indeed an object in BC and that, a bilinear map
f: Ax B - C need not be a morphism in BC. nor is a map g E A x B-oC bilinear
in general [14]. If we restrict the maps curry and uncurry to Bil(A x B, C)
and A--o(B--oC), we get a natural order-isomorphism between Bil(A x B, C)
and A--*(B--oC) [14, Lemma 2.6). Therefore, we obtain the natural isomorphism
A 0 B-oC "• A--o(B-oC) by showing

Bil(A x B, C) • A54 0 B-oC. (6)

For that, it is sufficient to have a domain A 0 B in BC and a bilinear map
(: A x B -* A ® B which is universal among all bilinear maps of type f: A x
B - C: for all such f, there exists a unique map f: A 0 B - C preserving all
suprema such that f o ® = f. The isomorphism is then verified by sending f to
f [14, Theorem 2.9]. This situation is quite common in a category with universal
bimorphisms [3].

To construct the domain A4 C, B and the bilinear map ,D: A x B - A ® B,
let A+ be the domain A \ {OA} for an object- A in BC. Note that A+ is not an
object in BC in general.

k-!
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For a poser P, let Lb(P) be the domain of all lower sets L C- P such that L
Sis bounded in P. Then, +
S~A * B:= Lb(A+ ×B+ (7)

can be shown to be an object in BC [14, Lemma 2.8]. But A * B is not a tensor
product since

(a,b) ' IA+(a) x I +(b):A x B - AA* B (8)

is not a bilinear map. Therefore, we have to consider A 9 B, the domain of all

T C_ A * B satisfying the following condition:

VO0 $X x Y C T bounded in A * B: (UX, UY) E T. (9)

The domain A ® B is an object in BC [14, Lemma 2.8] and the map 0: A x
B --- A ® B defined by

A(a,b). if (a= 0a or b= 0,) then 0 else 1((a,b)) (10)

is a universal bilinear map with A x B as a source [14, Theorem 2.9].
The unary operation ()- is not quite an involution on objects in BC. This

is the very reason why we had to construct 0 explicitly; otherwise, A 0 B -5
(A-•B.)-.L would follow from the general theory of *-autonomous categories [4]
and could be viewed as a definition of 0.

The forgetful functor SUP - BC has a left adjoint where Aa.Af.f(a): A -
A1-'- is the front adjunction. In particular, we have A' • A-L - for all objects
in BC [14, Lemma 4.3]. In [14, Lemma 4.3], we also find:

Remark 1 For every object A in SUP. we have A-'- - (A)"•. For a domain B
in BC, we have B--L -- B iff B is an object ii SUP. D

We let A+ B denote the coalesced sum [12, 20] of A and B which is a catego-
rical coproduct in BC [14, Lemma 4.5]. Since SUP is a full reflective subcategory
of BC, the operation A E B := (A + B)±'- is a categorical coproduct in SUP.

The category BC is seen to be symmetric monoidal closed and SUP is a
model of linear logic [14]. Of course, our enterprise would be trivial if SCOTT
were indeed closed under the type constructors of linear logic in BC.

Proposition 1 SCOTT is not closed under the negation ()1 in BC.

Since SCOTT cannot be a category we are looking for, we should formalize
what our desired category should satisfy.

Definition 3 A full subcategory C of SCOTT has linear types iff

- C is closed under (), 0,!() and + and
- C is closed under inverse limits of projection-embedding in BC. 0

We can focus on just the operations ()-L, .D!() and D, for we can define the
remaining linear types in terms of these-at least for those objects satisfying
A A- A', i.e. complete lattices.

The last condition imposed on a category of Scott-domains with linear types
ensures that we can build sufficiently many objects. Intuitively, such a. category

should be 'determined' by all its objects of finite size.



443

al

0

Fig. 1. A Scott-domain A1 such that A1 i (A1l)* is not a Scott-domain

2 Linear Domains

Recall that a bounded complete domain A is algebraic iff it can be written
as the inverse limit of finite, bounded complete posets under Scott-continuous
projection-embedding pairs [15, 19]. This has also a well-known internal descrip-
tion [10, 15, 19] in terms of Scott-continuous idempol(O deflations on A.

Proposition 2 For a bounded complete domain. A, the following are equivalent:

1. A is algebraic.
2. There exists a directed set P in [A - A] such that for all d E V, we have

dd = d, ir(d) is finite and UP = id,.
0

If we now view the equivalence in Proposition 2 as a defin ition of algebraicity
in the category BC, we have seen in Figure 1 that this definition does not respect
the operation ()- on BC. A cheap escape route might be to consider bialgebraic
lattices [7], i.e. lattices A such that A and (A)°' are algebraic. The class of
bialgebraic lattices is by definition closed under ()- as then A' -_ (A)°'; but one
can raise a fatal objection against such an approach. If A and B are bialgebraic
lattices, then A®B is not bialgebraic in general. To see why that is true, let A2 be
the domain shown in Figure 2. This is a bialgebraic lattice with A2k I- (A2 )*' t-
A 2. IfA 2 ®A 2 were bialgebraic, then (A2 ® A2 )°' 25 (A,) (DA2 )"L ¢• (A 2 L ® A2 )±
would have to be algebraic as well. The isomorphism [8, 14]

(Awoul te Ae)nc Cpac .4,--A*2 (11)
would then ensure that the function space .42--ok2 is algebraic.
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<~0

Fig. 2. A Scott-domain A2 such that A2 ---0A 2 is not a Scott-dontain

Proposition 3 The function space A2 -o.4, is not algebraic. 0

In particular, the full subcategory of bialgebraic lattices in BC is not a cat-
egory of Scott-domains with linear types. Looking again at. the criterion of al-
gebraicity in Proposition 2, we could ask what, changes if w,- assume all maps
d E V to preserve all suprerna not, just directed ones?

Definition 4 For an object .4 in BC set

£(A) := {d E A-oA I dd = d E id1. ini(d) finite}. (12)

We call A linear iff there exists a directed set V in £(A) such that UD = idA
holds in A--oA. Let LIN denote the full subcatcgory of BC which has all linear
domains as objects. Let LL be the full subcategory of BC which has all linear
lattices as objects. 0

We want to show that LIN and LL are categories of Scott-domains with linear
types.

Theorem 1 1. LIN contains all finifte obj(cts in BC and LL contains allfinite
objects in SUP,

2. every object in LIN is algebraic,

3. not every object in LIN, respectively LL. is distributive.
4. LIN, respectively LL, is closed under inverse limits of projection-embedding

pairs in BC, respectively SUP,

5. LIN, respectively LL, is closed under -o,

6. LIN, respectively LL, is closed under - ].

7. LIN, respectively LL, is closed under -..

0
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It can be shown that PRIME is a proper subc'ategory of LIN; because of
Theorem 1.3, we only need to show that every prime-algebraic domain is lineuir-
The intuition behind a prime-algebraic domain A is that every element a E A is
the supremum of complete primes below it.

Definition 5 Let A be a bounded complete domain. An element p E A is called a
complete prime of A iff for all bounded sets X C A the relaton p C tJAX implies
p C x for some X E X. Let Pr(A) denote the poset of all complete primes of a
bounded complete domain A. The domain A is prime-algebraic iff the supremum
of 1(a) n Pr(A) equals a for all a E A. Let PRIME be the full subcategory of BC
with all prime-algebraic domains as objects. Let PAL be !h( full subcategory of
BC with all prime-algebraic lattices as objects. 0

The condition for p E Pr(A) reads like the criterion for being a finite element,
p E K(A), except. that we now quantify over all bounded sets N, not, only directed
ones.

Proposition 4 Every prime-algebraic domaini is linear: iM particular, PRIME
is a full subcategory of LIN and PAL is a full subcategory of LL. 0

Theorem 1 has a corresponding version for the categories PRIME and PAL.

Theorem 2 1. PRIME con tans all finite. distributtri objct.f in BC and PAL
contains all finite, distributive objects in SUP.

2. every object in PRIME is algebraic.
3. every object in PRIME is distributiVe.
4. PRIME, respectively PAL. is closed under inverse lindis of projection-em-

bedding pairs in BC, respeclively SlUP.
5. PRIME, respectively PAL, is closed under --o.
6. PRIME, respectively PAL, is closed under
7. PRIME, respectively PAL. is closed uwder 0.

0

The category LL is also closed under the additive type constructors of SUP,
introduced in [14].

Definition 6 Let A and B be objects iM BC. Then de.fine

- A + B to be the coalesced sum [12. 18. 20] of .4 aiid B.
- AEDB to be (A+ B)"L
- A&B to be the order-theoretic product of A and B and
- p to be the De AMorgan Dual of (I:

Aý)B :=(A' -, B')'. (13)

0]
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Proposition 5 1. If A and B are linear domains, then so are A + B, A D B,
A&B and ApB. a

2. If A and B are linear lattices, then so are A E B, A&B and ApB.
0

Note that + is the categorical product in BC and LIN, whereas + is the
categorical biproduct in SUP and LL [14, Lemma4.5 & 4.10]; also, A + B is a
lattice iff A or B is a singleton domain. Since LIN and LL are closed under &
and [ -* ], we obtain:

Corollary 1 The category LIN"', respectively LL ", of linear domains, respec-
tively linear lattices, and Scott-continuous maps as morphisms is cartesian closed.

0

3 Linear Lattices modeling Linear Logic

We have shown that LL is closed under () -, ,, -o, + and &. We define the
four domains modeling the constants of classical linear logic to be

S:={0 < 1} (14)
1 :=._± L

T := {,}

0*- T± • T.

Since SUP and BC are symmetric monoidal closed categories [14] and LL
and LIN are closed under all the constructions discussed so far in SUP and BC,
we conclude that LL and LIN are symmetric monoidal closed categories as well.

Theorem 3 LIN and LL are symmetric inoioidal closed categories. 0

The category LL gives us a model of linear logic in the standard fashion of
[23]. Moreover, we have a natural isomorphism A + B • A&B in SUP and LL
[14, Lemma4.10]. Therefore, the category LL can give us only an incomplete
semantics of classical linear logic: we have inorphisnms f E (A + B)--o(Ak B) but
(A @ B)--o(A&B) is not a theorem of classical linear logic [25].

In the introduction, we already gave good categorical reason for the choice
of !(A) as the lattice of all Scott-closed subsets of A, ordered by inclusion.

Definition 7 For an object A in SCOTT and any poset P, define

- L(P) to be the poset of lower sets of P ordered by i~chlusion.
- pi(A) to be L(K(A) \ {O(}),
- CA:A, p1 (A) byeC := Aa..I(a) n(K(A.)\{O.,I),
- !(A) as the lattice of all Scott-closed s.ubsets of A,. ordered by inclusion and
- ?(A) as (!(A'))'. 0

11 _
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We realize ?(A) as the Scott-topology on Al.

Proposition 6 Let A be an object in SCOTT. Then we hate the following:

1. (pt(A), cA) is a lower power domain for A,
2. pd(A) 'S L(K(A)) ' '(A),
3. L(K(A)) is an object in PAL with Pr(L(Kh(A))) ,
4. !(A) 25 u(A)' and
5. ?(A) -5 o,(A-L).

0

The isomorphism L(K(A)) _5 !(A) had been stated in the non-lifted version
in [26]. We still have to ensure that !(A) and ?(A) are linear for a linear domain
A.

Proposition 7 The categories PRIME. PAL. LIN and LL are closed under !()
and ?(. 0

The functor !() transforms products into tensor products.

Theorem 4 1. For objects A and B in a category C of Scott-domains with
linear types, we have

!(A&B) t !(A), !(B) (15)

2. and for lattices A and B in C. we have

[A - B] ! !(4)-oB. (16)

0

Let us sunmmarize what we have demonstrated so far.

Theorem 5 The categories of Scott-domains PRIME. LIN, PAL and LL have
linear types and PRIME C LIN. 0

Since all objects in PRIME, respectively LIN, are isomorphic to inverse limits
of finite objects in PRIME, respectively LIN, the category PRIME, respectively
LIN, is 'determined' by its class of objects of finite size. For PRIME, the con-
straint on a finite domain is the distributivity axiom, for LIN, we allow all finite
domains in BC. The situation is similar for PAL and LL. One might ask whether
this is typical for categories of Scott-domains with linear types.

In [14, Proposition 5.9], we showed the natural isomorphisml

.4A, B - .4AvB (17)

for objects A and B in PAL. Therefore, PAL is a coinpact closed category. The
situation changes if we consider the larger category LL. The example of two
finite lattices where p differs from, is due to Michael Barr [4, page 100].
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Theorem 6 1. For all categories C of Scoti-domains with top with linear types
such that every object in C is distributive, we have a natural isoniorphism
A® B 25 ApB.

2. There exist linear lattices C and D such that C C' D j CVD.
0

Theorem 6 states that the distributivity in a category C of Scott-domains
with top with linear types implies that p equals ®. One might wonder how strong
the link between distributivity of all objects in C and the compact closedness of
such a category is; and what about the existence of categories of Scott-domains
with linear types other than PRIME, PAL, LIN and LL?

Question 1 Given a compact closed category C of Scott-domains with top with
linear types, is every object in C distributite? 0

Question 2 Are there categories C of Scott-domains with linuear types other than
PRIME, PAL, LIN and LL: if so. is every suech catfgory C in BC contained in
LIN? 0

4 Quasi-prime Algebraic Domains

In this section, we want to show that a linear domain is distributive iff it is prime-
algebraic. In this sense, linear domains constitute a generalization of prime-
algebraic domains by abandoning the distributivity axiom but at. the same time
preserving the richness of the available type structure. The proof of that, requires
the notion of a completely sup-irreduciblk element [7] and of quasi-prime algebraic
domains introduced by Guo-Qiang Zhang in [30].

In [303, it was noted that each p E Pr(A) has a unique element p* < p in A
such that a C p* for all a < p in A. Guo-Qiang Zhang calls elements p which
have such a p* quasi-primes and defines a quasi-prime algebraic domain A to be
a Scott-domain, in which each element is the suprenmum of quasi-primes below
it. Clearly, p E A is quasi-prime iff for all X C I (p) the relation p C_ UX implies
p C_ x for some x E X.

Comparing this to the definition of a complete prime, has lead Guo-Qiang
Zhang to the name quasi-prime, for one quantifies only over all bounded sets X
in J(p), not in all of A. Such elements have also been studied in lattice theory
[5, 7].

Definition 8 Let A be a bounded complete domain. An element q E A is called
a completely sup-irreducible element of A iff for all bounded X C A the (quation
q = UAX implies q E X. Let Si(A) denote the poset of completely sup-irreducible
elements of A. Let SI be the full subcategory of BC with objects all A such that
the supremum of l(a)fnlSi(A) equals a for 0a/ a E A. 0

The next lemma compares the notions of quasi-primes, complete primes and
completely sup-irreducible elements. It, had been shown in [30] for Scott-domains.
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Lemma 2 Let A be an object in BC and p E A. Then, the following are equiti-
alent:

1. p is a completely sup-irreducible element in A,
2. p is a quasi-prime in A and
3. p is a complete prime in [(p).

Since Pr(A) C K(A) holds for all objects A in BC, and since finite suprema
of finite elements are finite (7], we know that every prime-algebraic domain A is
also a Scott-domain. Moreover, k E A is then finite in A iff k is the supremum
of a finite set F C Pr(A) in A. This does not hold if we replace Pr(A) by Si(A).
In Figure 1, the lattice A 1, is readily seen to be an object, in SI with

Si(.41') = {a,, I,9 > 1 U {b}. (18)

but A, I is not algebraic. In particular. b is an element of Si(.41 A)\K(A1 '). For
objects in SI, the absence of such elements is equivalent to the algebraicity of
the domain.

Proposition 8 Let A be an object in SI. Then

1. A is algebraic iff Si(A) C K(A) and
2. if A is algebraic, then k E A is finite in A iff k is the supr(inuin of a finite

set F C Si(A) in A.
0

It is time to define quasi-prime algebraic domains as a category. Also, we
need a name for the category of all distributive domains in BC.

Definition 9 Let QP be the full subcategory of SI which has all Scott-domains
in SI as objects. Let dBC be the full subcategory of BC which has all distributive
domains in BC as objects. 11

Note that the objects in QP are exactly Guo-Qiang Zhang's quasi-prime
algebraic domains [30]. By definition, QP is contained in SI, yet., All is an
object in SI but not in QP, for it. is not an algebraic domain. Since

Si(Ai) = {a,, In > 0} U{b} (1n)

we see that A1 is an object in QP.

Remark 2 The category QP is not closc.d under ()' in BC: QP is not a category
of Scott-domains with linear types. 0

In [30], one obtains a symmetric monoidal closed category with finite products
such that its class of objects equals the class of objects in QP (=all quasi-prime
algebraic domains). The approach differs from the one taken in this paper, for
Guo-Qiang Zhang considers quasi-lhiear miaps, a special class of Scott-continuous
functions, as elements of the internal horn [30].
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This is interesting as most models of intuitionistic logic rest on the notion
of a function preserving all suprema. The technical price being paid, however, is
the absence of a dualizing object [30]. But another point in favor of working with
non-linear functions is the possibility of representing all objects as information
systems [30].

For linear domains, this seems only possible after one has established all
order-theoretic axiomatization of the posets K(A) for linear domains A; such an
axiomatization has been given for SFP-objects [19] and bifinite domains [10, 15].
We have been unable to suggest such an axiomatization in the linear setting. If
such a logical description of linear domains can be found, it is likely not to
be a first-order theory on posets K(A). It would be of interest to investigate,
whether there is a greatest category of Scott-domains with linear types which
has a first-order axiomatization-see [11] for the situation of Scott-continuous
maps.

We pointed out that QP does not support the linear types in BC; but. every
category of Scott-domains with linear types is contained in QP.

Theorem 7 Let C be a category of Scott-doin s uritb In, ear types. Then C is
a full subcategory of QP. 0

This theorem uses only the fact that all objects in C are algebraic and that C
is closed under ()0 in BC. Theorem 7 is not. a vacuous statement, for there exist
Scott-domains which are not quasi-prime algebraic. Before we give an example,
let us draw a conclusion for linear domains.

Corollary 2 The category LIN is a full subcategory of QP. 0

Note that our example of a Scott-domnain A 3 , which is not, quasi-prime alge-
braic, must be infinite; otherwise, A 3 would be linear and therefore an object in
QP. Consider the lifted, full binary tree with its root. as top element as depicted
in Figure 3. This describes a Scott-domain A43 with

Si(A3) = O, (20)

so A3 is not quasi-prime algebraic-this example is due to Guo-Qiang Zhang [30].
Since A 3 ± 15 (A 3 ) o is not algebraic, we conclude that A3 --.oA3 is not algebraic,
for there exists a canonical closure-embedding pair (c, e): A3 --0A3 - (A3 )°' in
BC and the image of a Scott-continuous closure operator of an algebraic domain
is algebraic [7]. The same reasoning applies to the Scott-domain At.

Now, we are in a position to prove that. distributivity and prime-algebraicity
are the same concept in LIN and in QP.

Lemma 3 For A in BC, we have

1. Pr(A) C Si(A) and
2. if A is distributive and algebraic, theni Si(A) C Pr(.4).

0

Theorem 8 The categories PRIME. dBCnLLV and dBCnQP are equal. 0



451

Fig. 3. A Scott-domain A3 which is not quasi-prime algebraic

5 Conclusion

We have developed the concept of a category of Scott-domains with linear
types as a subcategory of Scott-domains of BC which supports the type op-
erations of linear logic in BC such that it. is closed under inverse limits of
projection-embedding pairs in BC. We gave four examples of such categories:
prime-algebraic , I ins, prime-algebraic lattices, linear domains and linear lat-
tices.

We showed .,very prime-algebraic domain is linear (and distributive)
and that every distributive linear domain is prime-algebraic. In this sense, linear
domains can be viewed as a generali:alion of prime-algebraic domains.

Every linear lattice is bialgebraic and bialgebraic lattices are ill-behaved un-
der the linear type constructors if they are not linear [Proposition 3]. Hence, we
can construe linear lattices as a buign subcategory of the full subcategory of
bialgebraic lattices in SUP.

6 Future Work

The questions stated in this article form the ground on which future work should
take off. We did not discuss linear domains .4 with a countable basis K(A). It
can be shown that all the type constructors presented in this paper preserve
countability of the basis K(A).
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We also did not include an analysis of the fine structure of linear domains.
This will be done in a subsequent piece of work. Further, it would be interesting
to investigate linear, stable domains A which are obtained by assuming that all
maps in Definition 4 are stable as well and that the directed sets are directed
with respect to the stable order in [9].
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1 INTRODUCTION

Quasi-prime algebraic domains are a class of cpos within the Scott

domains. They are introduced by the author in [11] as a new domain-

theoretic model for linear logic. Quasi-prime algebraic domains with

quasi-linear functions form a monoidal closed category. The unique
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characteristic of the category is that the morphisms are not 'linear',

as the term 'quasi-linear' suggests. This is a bit surprising, since all

other known domain theoretic linear categories all use linear func-

tions as morphisms [11].

However, how robust and useful the concept of quasi-prime al-

gebraic domains is depends on whether or not they have other nice

domain theoretic properties. One of the desirable properties is the

existence of a universal (or even saturated) domain [4] in a certain

category. The other related property to have is a framework for

solving domain equations by fixed point construction, as in [5, 8].

It is the purpose of the paper to establish these results for quasi-

prime generated information systems which represent quasi-prime

algebraic domains.

One of the most useful results on universal domains is given in the

work of Droste and G6bel [1], who introduced the Fraiss6-J6nsson

theorem in model theory into the area of domain theory. This makes

it much easier to show the existence of certain universal domains be-

1' cause it reduces the existence of a saturated structure to the amal-

gamation property of the finite objects of a certain category.

We apply the result of Droste and G6bel for showing the exis-

tence of a saturated (universal, homogeneous) quasi-prime algebraic

domain. Our main definition here is the notion of q-embeddings

for quasi-prime algebraic domains. The appropriate notion of em-

beddings for Scott domains (call them s-embeddings) [5, 2] and for

dI-domains (call them r-embeddings - 'r' for rigid) [8] are well-known

However, none of the these embeddings works for quasi-prime al-

gebraic domains, for the following reasons:

e The s-embeddings are too general: under this embedding the

colimit of an w-chain of finite Scott domains (which are quasi-

prime algebraic) need not be quasi-prime algebraic, because

any Scott domain can be seen as a colimit of this kind.
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* The r-embeddings are too specific: there are certain quasi-

prime algebraic domains which cannot be represented as a 4

colimit of any chain of finite Scott domains, although the r-
embeddings are suitable for the I-domains (dI-domains without

axiom d).

With q-embeddings we get the desired algebroidal category of

quasi-prime generated information systems. The finite objects of

the category are shown to have the amalgamation property. This

implies the existence of a saturated quasi-prime algebraic domain.
Based on the notion of q-embeddings, we will also introduce a

cpo of quasi-prime generated information systems on which various

constructions are shown to induce continuous functions. This implies
the existence of recursively defined quasi-prime generated informa-

tion" systems.

Here is the outline of the structure of the paper. In Section 2

we introduce the notions of quasi-primes and quasi-prime algebraic

domains. In Section 3 we represent quasi-prime algebraic domains

as information systems. This will bring technical convenience to the

rest of the paper. Section 4 recalls the result of Droste and Gobel

on the existence of universal domains. Section 5 presents a category

of quasi-prime algebraic information system with q-embeddings as

the morphisms. Section 6 verifies the amalgamation property of the

finite objects of the category introduced in Section 5. In the final
section, we introduce a cpo of quasi-prime generated information

systems and the continuity of various constructions on this cpo.

2 QUASI-PRIME ALGEBRAIC DOMAINS

In a Scott domain D, an element p is called a complete prime if

pE CUX=.3xEX. pCx.
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On the other hand, an element q is called a quasi-prime if

q=UX # 3x E X. p = x.

A Scott domain is prime algebraic if every element is the least upper

bound of complete primes below (less than or equal to) it. Simi-
laxly, a Scott domain is quasi-prime algebraic if every element is the

lenst upper bound of quasi-primes below it. As far as functions are
concerned, for prime algebraic domains, a function f is linear if and

only if

p C f(x) =•, 3r E x. p E f(r), where p, r are complete primes.

For quasi-prime algebraic domains, a function f is quasi-linear if and

only if

q E f(x) =:, 3s C x. q E f(s), where q, s are quasi-primes.

The following table summarizes the relationships between com-

plete primes and quasi-primes, linear functions and quasi-linear func-
tions. For comparison, we also include isolated elements and contin-

uous functions.

Definition

Isolated Elements d E U X =• 3x E X. d E x

(X directed)

Complete Primes p E UX =€, 3x E X. p x
(X bounded)

Quasi-Primes q = UX =:> 3x E X. p x

Continuous Functions f(UX) = U{f(x) I x E X}

(X directed)

Linear Functions f(UX) = U{f(x) I x E X}

(X bounded)

Quasi-Linear Functions q E f(x) =* 3s E x. q C_ f(s)
(q, s quasi-primes)
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It is helpful to note that all finite Scott domains are quasi-prime
algebraic (we need the next theorem for this). Of course not all finite
Scott domains are prime algebraic. Moreover, not all Scott domains
are quasi-prime algebraic. The following theorem can help as find
such an example. This theorem is extremely helpful in identifying

quasi-primes. This, I believe, is also the key advantage of working

with quasi-prime algebraic domains.

Theorem 2.1 Let D be a Scott domain. An element q E D is a

quasi-prime iff there is a unique element q< immediately below q:

x C q =*- xCq"'.

It is worth pointing out that, as a consequence of the theorem, if
x has a unique element immediately below it, then x is an isolated

element. Bottoms are never quasi-primes.
It is now easy to see that, if one turns the complete binary tree up-

side down and adjoining a bottom element, one gets a Scott domain

which is not quasi-prime algebraic, since there is no quasi-primes
in this domain. Also note that it is easy to show, by mathematical
induction on the number of elements below an isolated element, that
finite Scott domains are quasi-prime algebraic.

We end this section by remarking that a dual concept of quasi-
primes was mentioned in [3] (pages 92-93), called the completely
irreducible elements. Quasi-primes were introduced in [11] as a by-

product of studying quasi-prime algebraic domains. Therefore, our
motivation, objectives, and results are, in any case, totally different
from that of [3]. More important, we have gone far beyond a par-

ticular class of elements. We consider domains generated by these
elements, and we consider categories of quasi-prime algebraic do-
mains. We have introduced quasi-linear functions (detail presented
in a forthcoming paper) which are the corresponding morphisms for
quasi-primes.
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3 QUASI-PRIME GENERATED INFORMATION

SYSTEMS

This section introduces a representation of quasi-prime algebraic do-

mains as information systems. This will bring technical convenience

for the presentation of the rest of the paper.
An information system [6] is a structure A = (A, Con, I ) where

"* A is a countable set of propositions (tokens),
"* Com is a collection of finite subsets of A (the consistent sets),

* H C Con - {0} x A, the entailment relation,

which satisfy

*(X C_ Y & Y E Con) = X E Con,

* a E A =' { a } E Con,

* (X H a & X E Con) =. X U { a } E Con,
* (a EX&X E Con) -> X- Ha,

*(X H Y & Y F c) •* X H c.

Here X H Y is the abbreviation for X I- b for every b E Y. Thus
X F- 0 is vacuously true. Note that the information systems we
consider here are not exactly the same as those introduced by Scott.

We do not assume a distinguished element A, standing for true.
To compensate for this, we require that X is non-empty when we
write X H a. This has the effect that the bottom element of the
corresponding domain is always the empty set.

The elements I A 1, of information system A = (A, Con, H )
consists of subsets x of propositions which are

* consistent: X Cf"i x =* X E Con, and

9 deductively closed: X C x & X H a =• a E x.

Let X -I+ Y be the abbreviation for X H- Y and Y F X. For
technical convenience, we only consider information systems which
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are antisymmetric in this paper:

Va, bE A [{a} -+ {b} a = b].

Definition 3.1 Let A = (A, Con, F-) be an information system. A

token a E A is a quasi-prime token if

X -+1- a = a E X.

We write A7 for the set of quasi-prime tokens of A. The information

system is called quasi-prime generated iff for each a E A, there is a

finite set X C mq such that X -+H {a}.

Let S stand for the deductive closure of any token set S, i.e.

S= {a I 3X Cfn S.X }.

We first show that for each quasi-prime token a, a is a quasi-prime

element. For this purpose, let y = i- {a' I a' H- a}. Then y is

again an ideal element. This is because from the assumption that

"a is a quasi-prime token we know that for any X C~fin y (therefore

"a I- X), X I- a implies b = a. Now let z E- i be an ideal element.

It is clear that a V z. Therefore z E y, and y is the unique element

immediately below i. By Theorem 2.1, - is a quasi-prime.

Suppose x is a quasi-prime in the domain determined by a quasi-

prime generated information system. That means there is a unique

element y covered by x. Let a E x - y. Clearly I C x. If W 5 x, we

must have U C y, since y is the unique element immediately below

x, and every element strictly below x must therefore below y. This
would lead to a E y, contradicting our assumption a E x - y. The

only alternative is - = x. Let X C x be such that X F- a. We can

also assume that propositions in X does not entail each other unless

they are the same. If for each b E X, b C x, then b C y for each

b E X, and U{b I b E X} C y. This is impossible because X I- a.

1 .
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Therefore b = • for some b E X, which means, by antisymmetry,

b =a.
The above two paragraphs show that an ideal element x of an

information system is a quasi-prime if and only if x = i for some

r quasi-prime token a.

In general, we have the following theorem, whose proof can be

found in [11].

Theorem 3.1 For each quasi-prime generated information system
Ay

(I A I,C)
is a quasi-prime algebraic domain. On the other hand, for any quasi-

prime algebraic domain D, there is a quasi-prime generated infor-

mation system A such that D " A I

We remark that this representation theorem can be put in a

stronger form: we can require every token of a quasi-prime generated
information system to be a quasi-prime.

4 UNIVERSALITY AND AMALGAMATION

A unified theory of universal objects can be found in [3]. The ba-

sic theorem is that in any algebroidal category in which all mor-

phisms are monic, the existence of a universal, homogeneous object

is equivalent to the amalgamation property of the (finite objects of
the) category. For reference purposes we recall some of the relevant

definitions.

Let C be a category where all the morphisms are monic (corre-
sponding to the intuitive notion of one-to-one). Let Cf be the finite

objects of C. An object U of C is universal in C (or, C-universal)

if for any object A in C, there is an arrow f A -4 U. U is ho-

mogeneous (or, Cf-homogeneous) if for any finite object A with a
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pair of arrows f,g A - U, there is an isomorphism h U -- U
such that f = h o g. U is saturated if for any A, B of Cf and arrows

f: A -- U, g: A -- B, there is an h: B -+ U such that h og=f.

A category C is said to have the amalgamation property if for ]

any arrows f, : A -+ B 1 , f2 : A -+ B 2 in C, there are arrows

g, : B, -- B, g2 : B 2 -+ B in C such that the following diagram

commute.

A B 1

f2 91 g

B 2  92 B

The result of Droste and G6bel is based on the notion of an

algebroidal category.

Definition 4.1 An algebroidal category is one which has the follow-

ing properties:

It has an initial object,

Every object of the category is a colimit of an w-chain of finite

objects,

Every w-chain of finite objects has a colimit, and

The number of (up to isomorphism) finite objects is countable.

Theorem 4.1 (Droste and G6bel) Let C be an algebroidal category

with all morphisms monic. Let C1 be the full subcategory of finite

objects of C. The existence of a C-universal, Cj-homogeneous object

is equivalent to the amalgamation property of C1 , which is in turn

equivalent to the existence of a Cf saturated object.

Note that in various categories of information systems, finite ob-

jects are often exactly those with a finite token set.
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5 Q-EMBEDDINGS

To be able to apply Theorem 4.1, we need to introduce an alge-
broidal category of quasi-prime generated information systems. The

morphisms for this category are q-embeddings.

Definition 5.1 Let A = (A, ConA, FA), R = (B, COnB, I-B) be quasi-

prime generated information systems. A function f : A ---+ B is a

q-embedding of A into B if

1. f is one-to-one;

2. VX C AVa E A

X E COnA 4=* f(X) E ConE,
X [-A a 4== f(X) I-B f(a);

3. f(Aq) C Bq.

We remark that given a q-embedding from A to B, if f(a) is a
quasi-prime for some a E A, then a itself must be a quasi-prime.
Indeed, suppose X -if-A a. Then f(X) _*-B f(a). But f(a) is a
quasi-prime; so f(a) E f(X), which means a E X for f is one-one.

It is informative to show an example which is a usual embedding
on information systems (i.e., that satisfies conditions 1, 2 above)

[5, 21 but not a q-embedding.
Example. Let

A = ({1,3},GonA, -A)

where ConA includes {1, 3}, and 3 F-A 1, and let

R = ({1,2,3},ConB,4-B)

where ConB includes {1,2,3}, and 3 1-B 1, 3 I-B 2, and {1,2} FIB 3.
It is clear that A embeds (by identity) into B in the usual sense,
but not in the sense of a q-embedding. This is because 3 E Aq, but

3 q.
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Proposition 5.1 Quasi-prime generated information systems with

q-embeddings form a category, written as Q.

We now present several propositions leading to the main conclu-

sion that Q is algebroidal.

Proposition 5.2 Colimits exist in Q for w-chains of finite infor-

mation systems.

Proposition 5.3 Every quasi-prime generated information system

is the colimit of an w-chain of finite information systems in Q.

The above propositions, together with the observation that the
empty information system is initial, implies the following.

Theorem 5.1 Quasi-prime generated information systems with

q-embeddings form an algebroidal category.

It is easy to see that, corresponding to q-embeddings, there is

a notion of embedding-projection pairs on quasi-prime algebraic do-
mains. These are just the usual embedding-projection pairs with the

additional requirement that they preserve quasi-primes.

6 EXISTENCE OF A SATURATED

QUASI-PRIME ALGEBRAIC DOMAIN

The purpose of this section is to show that the finite objects of the

category Q have the amalgamation property. in light of Theorem
4.1 and Theorem 5.1, this means there exists a saturated quasi-prime

generated information system. Note that our proof below follows the

style of [2].
Let

A = (A, ConA, I-A),
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B = (

and

B2 = (B2, Con 2,1-2 )

be finite quasi-prime generated information systems such that f:
A -+ _B and f2 : A -+ B 2 are q-embeddings. By renaming the
tokens, it is enough to consider the case where fi's are inclusions

(partial identities) and A = BI n B2.

Definition 6.1 We construct the information system

B = (B, Con, F)

from B1 and B 2, where

* B=B1 UB 2;

0 X E Con ;* and only if

3Z3Y D X f B 1. [Y F-1 Z 1-2 X n B 2] or

3Z3Y D X n B2 . [Y I- 2 Z 1. X n B1 ];

* 1.= Uj>o I-', where F'-"s are specified as follows:

F-o={(X,a)IXECon& either Bx nXF-1 a

or B 2 nX F-2 a},
I 1-+'= {(X,a) I 3Y. X 1-i Y F-i a}.

Before getting into technical details, we would like to give the

reader an intuitive feeling of what is going on. B, and B 2 are two

given structures sharing a common substructure A. The question is
whether B 1 and B2 can both be seen living in a larger structure.

T The larger structure must respect the already-existing relationships
between B 1, B 2, and A. In particular, A serves as a "bridge" between
B 1 and B 2, so some X from B, may entail some Y from A, which

p__
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JG A B21

Figure 1: A acting as a bridge between / 1 and B2

may in turn entail some Z in B 2. Entailment must be transitive;

therefore, in the larger structure we should have X entail Z (see

Figure 1). That is why our cGnstruction for I- is a kind of transitive

closure.

The consistency predicate Con, however, must come before -

can be defined: the [- relation is only defined on consistent sets.

On the surface, it may look that there can be several choices for

specifying Con. Letting X E Con if and only if X n B1 E Con1 and

X n B2 E Con2 , for example, may seem to be a reasonable choice. A

second thought, however, reveals that this is not the case.

Example. Let A = {1, 2}, with a trivial consistency predicate

and a trivial entailment relation. Let B1 = {a, 1,21, with a F-j 1,

and let B2 = {1,2,a,b} such that {a,b} _ Con 2, and {1,2} F-2 b,

a F-2 2. It is easy to check that we have three quasi-prime generated

information systems in this way, and A q-embeds into B1 and B 2. In

the bigger system to be constructed, do we want to have {Ia, a} E Con

because {a} E Con, and {a} E Con 2? The answer is no: the given

conditions a F-1 1, a [-2 2, and {1,2} F-2 b would imply {a,a} a
{a, b}, which must be inconsistent.

0



467

Our original specification in Definition 6.1 seems to be the only
right choice. We now check that B is indeed a quasi-prime gener-

ated information system which makes the diagram required by the

amalgamation commute. This is achieved by a sequence of lemmas.

Lemma 6.1 The structure B given in Definition 6.1 is an informa-

tion system.

Our next lemma is the key to the proofs of various results later.

Lemma 6.2 For the information system B given in Definition 6.1,

X C B1 and X F- Y imply

X- 1 YflB 1 and

3Z CA. XI- 1 ZI- 2 YnB2 .

There are a couple of ways Lemma 6.2 can be interpreted. It

says that for X's from B 1, I- is the same as P-1. This means when X

is restricted to B 1, X I- Y if and only if X I-1 Y. It also says that

X C_ B & X t- Y =€ 3X'. X X'H- 0 Y,

by taking X' to be (Y n BI) U Z. These corollaries are sometimes

more handy to use.

Lemma 6.3 For X C B1 and a E B1 ,

X E Con 1 #ý, X E Con and X F-, a #ý X h- a.

We now come to another important lemma which deals with

quasi-primes. It shows that quasi-primes in _B or B2 remain to
be quasi-primes in B.
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Lemma 6.4 Let B be the information system specified in Defini-

tion 6.1. Then every quasi-prime of its component remains to be a

quasi-prime, i.e.,
B9 U Bq C_ B9. ,

Note that the equality B q U B• = B9 follows easily from this

lemma.

As a corollary of the previous lemmas, we have

Theorem 6.1 B is a quasi-prime generated information system.

Moreover, both Bi and B2 q-embed into B.

In summary, we have proved

Theorem 6.2 The finite objects of the category Q has the amalga-

mation property.

As a consequence, we have shown the following.

Theorem 6.3 There exists a saturated quasi-prime algebraic do-

main.

7 A CPO OF QUASI-PRIME GENERATED

INFORMATION SYSTEMS

One of the purposes of a universal domain is to ensure the existence
of solutions to domain equations for denotational semantics of pro-

gramming languages. Another way to achieve the same goal is to
introduce a cpo of quasi-prime generated information systems using

a substructure relation. Various constructions on information sys-

tems can be shown to induce continuous functions on the cpo. The

existence of the least fixed point for continuous functions then guar-

antees the existence of solution to domain equations. The advantage
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of this approach is that the solution is up to equality, rather than

up to an isomorphism. We describe this approach now, which uses

the idea first introduced in [5].

Definition 7.1 Let A = (A, GonA, I-A) and B = (B, ConB, I-B)

be quasi-prime generated information systems. A <1 B if

1. ACB

2. X E ConA t== X C A & X E ConB,

3.IX -Aa 4==, XU {a} A&X 1-Ba, and
4. Aq c Bq.

When A <1 B we call A a subsystem of B. Our definition of
subsystem is similar to that of Larsen and Winskel (5], with item
4 the only extra requirement. Note that for quasi-prime generated

information system A and B, if A = B and A <1 B, then A = B.

The relation <1 is a complete partial order on the class of quasi-

prime generated information systems.

Theorem 7.1 The relation <I is a partial order with the least ele-

ment

If AoLI AI <. Ai:... is an increasing chain of stable information

systems where A_ = (Ai, Coni, F-i ), then their least upper bound is

U i U j oi, Ui-

Write CPO for the class of quasi-prime generated information
systems under <1. CPO is not a cpo in the usual sense simply

because they are not a set but a class. The subsystem relation _I
can be easily extended to n-tuples in the same way as described in

[8]. A useful observation is that a unary operation F is continuous
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iff it is monotonic with respect to <3 and continuous on proposition
sets, i.e. for any w-chain

A1:9! A2 ... < Ai <l..

each proposition of F ( Ui A1 ) is a proposition of Uj F (Ai).

Many constructions can be introduced on quasi-prime generated
information systems such as sum, product, lifting, function space,
and even quasi-linear function space.

In the rest of the section we illustrate that function space --

corresponds to a continuous operation

CPO 2 --_ COP.

Other constructions can be shown, in a similar way, to induce con-
tinuous operations on CPO.

The function space construction is given as follows.

A -+ B = (GonA x Bq, GOnA-B, -A-.B), where

X E ConA..- iff U rA(X) E CofaA (X) E COnB,

X FA.B (u,b) iff {b' I 3u'.u 1 A u & (k J) E X} F1 B b

Note that -- preserves quasi-prime generated information sys-
tems. --- is monotonic in its first argument. Suppose A < A'. Write

C = (C, Con, -) = [A -- _B]

and

C--= (C', Con', I-') = [A' --+ B].

We check condition 4 in Definition 7.1, to show that C<i C'. However,
this is trivial because every token of the function space is a quasi-

prime.

Let
i A0 A,_ < ... :9 Ai 9 ...
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be a chain of quasi-prime generated information systems. Let (u, a)

be a token of [( Ui A_) -B /]- Then clearly (u,a) is a token of

[A_ -- B] for some j, and thus is a token of UJA1i --+ B]. ZFrom
this we can deduce that -- is continuous in its first argument. By

a similar but easier proof we get that -+ is continuous in its second

argument hence it is continuous.

As an application, we illustrate how to find a solution to the

equation

XXr--, X

within quasi-prime generated information systems. Here ( )1 is the

lifting construction specified as follows. Its use here makes sure that

I a non-trivial solution is obtained.
Let A = (A, Con, H-) be a quasi-prime generated information sys-

tem. Define the lift of A to be A, = (A', P'), where

.A'=({0 } A)U{O},

X W-'Y't*[0 E Y or {c 1(0, c) E X} F-A {b 1(0, b) E Y]

It is easy to show that lifting preserves quasi-prime generated

systems. It is an operation which, given a structure, produces a new

one by joining a new token weaker than all the old ones. One can

easily check that it gives a continuous operation.

Since the composition of continuous functions remains continu-
ous, and any continuous function F(x, y) of two variables gives rise

to a continuous function F(x, x) of one variable, the operation

X D- [X) --* X]

is a continuous operation on quasi-prime generated information sys-
tems. It has a least fixed point

A =At --+A.

This can be used as a model for the un-typed lambda calculus.
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0 Introduction

Linear logic was introduced by Girard [G87] as a consequence of his anal-
ysis of the traditional connectives of logic into more primitive connectives.
The resulting logic is more resource sensitive; this is achieved by placing
strict control over the structural rules of contraction and weakening, in-
troducing a new "modal" operator OF COURSE (denoted ! ) to indicate
when a formula may be used in a resource-insensitive manner-i.e. when
a resource is renewable. Without the ! operator, the essence of linear
logic is carried by the multiplicative connectives; at its most basic level,
linear logic is a logic of monoidal-closed categories (in much the same way
that intuitionistic logic is a logic of cartesian-closed categories). In mod-
elling linear logic, one begins with a monoidal-closed category, and then
adds appropriate structure to model linear logic's additional features. To
model linear negation, one passes to the *-autonomous categories of Barr
[B79]. To model the additive connectives, one then adds products and
coproducts. Finally, to model the exponentials, and so regain the expres-
sive strength of traditional logic, one adds a triple and cotriple, satisfying
properties to be outlined below. This program was first outlined by Seely
in [Se89J.

Linear logic bears strong resemblance to linear algebra (from which it
derives its name), but one significant difference is the difficulty in mod-
elling !. The category of vector spaces over an arbitrary field is a sym-
metric monoidal closed category, indeed in some sense the prototypical
monoidal category, and as such provides a model of the intuitionistic vari-
ant of multiplicative linear logic. Furthermore, this category has finite
products and coproducts with which to model the additive connectives. It
thus makes sense to look for models of various fragments of linear logic in
categories of vector spaces. However, modelling the exponentials is more
problematic. It is the primary purpose of this paper to present methods of
modelling exponential types in categories arising from linear algebra. We
study models of the exponential connectives in categories of linear spaces
which have monoidal (but generally not monoidal-closed) structure. (We
shall also include a model in finite-dimensional vector spaces.)

To model the finer distinctions achieved by linear logic, one ought to
consider vector spaces enriched with appropriate additional structure. For
example, to model linear negation, one considers vector spaces enriched
with an additional topological structure. These are the linear topologies
of Lefschetz and Barr (Le4l, B76a]. The relationship to linear logic is
discussed in [Bl93a]. To model the noncommutative [Ab9l] or braided
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[B193b] variants of linear logic, one considers the linear representations
of certain Hopf algebras [B193a]. Finally, to model the exponentials, it is
necessary to consider normed vector spaces.

Vector spaces are inherently finitary structures in the sense that every
vector is a finite sum of multiples of basis vectors, and one is allowed only
to take finite sums of vectors. To model the notion of infinitely renewable
resources, one would like to be able to take infinite sums of vectors. But to
do this, one needs a notion of convergence, and to define convergence one
needs a notion of topology. The most heavily studied topological vector
spaces are Hilbert and Banach spaces which derive their topologies from a
norm; either defined indirectly via an inner product, as in Hilbert spaces,
or directly, as in Banach spaces. Once a vector space is normed, then all
of the familiar notions from analysis, such as limit and Cauchy sequence
can be defined. What we wish to suggest in this paper is that while the
multiplicative and additive fragment MALL of linear logic corresponds to
the linear structure of a vector space, the exponentials correspond to its
analytic structure.

We begin by introducing the two main notions of complete normed
vector space, Banach spaces and Hilbert spaces. The construction which
will be used to model the exponential formulas ! A arose originally in
quantum field theory, and is known as Fock space. It was designed as
a framework in which to consider many particle states. The key point
of departure for quantum field theory was the realization that so-called
"elementary" particles are created and destroyed in physical processes
and that the mathematical formalism of ordinary quantum mechanics
needs to be revised to take this into account. The physical intuitions
behind the Fock construction will be sketched in the penultimate section.
The formula for Fock space will also be familiar to mathematicians in
that it corresponds to the free symmetric algebra on a space. As a free
construction, Fock induces a pair of adjoint functors, and hence a cotriple.
It is this cotriple which will be used to model !. It should be noted
that this category of algebras inherits the monoidal structure from the
underlying category of spaces but there is no hope that this category
could have a monoidal-closed structure.

While Fock space has an abstract representation in terms of an infinite
direct sum, physicists such as Ashtekar, Bargmann, Segal and others,
see [AM-A80, Ba6l, S62] have analyzed concrete representations of Fock
space as certain classes of holomorphic functions on the base space. Thus,
these models further the intuition that the exponentials correspond to
the analytic properties of the space. In fact, there is a clear sense in
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which morphisms in the Kliesli category for the cotriple can be viewed
as generalized holomorphic functions. Thus, there should be ani analogy
to coherence spaces where the Kliesli category corresponds to the stable
maps.

Fock space also has two additional features which correspond to ad-
ditional structure, not expressible in the syntax of linear logic. These
are the annihilation and creation operators, which are used to model the
annihilation and creation of particles in a field. These may give a tighter
control of resources not expressible in the pure linear logic. Thus, these
models may be closer to the bounded linear logic of Girard, Scedrov and
Scott [GSS91].

The results of this paper suggest that analyticity may provide new
insights into computability not captured by the traditional notions of
continuity. Continuity has been enormously successful in capturing the
idea that computable functions process information a finite piece at a
time. On the other hand, there are many continuous functions that are
not computable. Despite the tremendous clarifications brought about by
Scott's ideas, a precise characterization of computability still appeals to
notions of encoding from classical recursion theory. With the notion of
analytic function one has the notion of convergent power series which
represents the function. This is nothing more than an encoding of a
continuous function with a discrete string. Thus the notion of encoding
may be captured by analyticity. Of course, we are far from offering any
such theory yet.

Another possible application of this work is that the refined connec-
tives of linear logic may lend insight into certain aspects of quantum field
theory. For example, there are two distinct methods of combining par-
ticle states. One can superimpose two states onto a single particle, or
one can have two particles coexisting. The former seems to correspond to
additive conjunction and the latter to the multiplicative. This physical
imagery is missing in quantum mechanics, which was specially designed
to handle a single particle; it only shows up in quantum field theory.

In this paper, we begin by reviewing the categorical structure neces-
sary to model linear logic, and specifically exponential types. We then
give the relevant definitions pertaining to normed vector spaces, as well
as a number of examples. We also discuss the monoidal structure of these
categories. Then, the various ingredients which go into the construction
of Fock space are presented and the resulting adjointness is described. Fi-
nally, the holomorphic function representation of Fock space is presented,
and a brief description of its physical interpretation is given.
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1 Linear Logic and Monoidal Categories

We shall begin with a few preliminaries concerning hnear logic. We shall
not reproduce the formal syntax of linear logic, nor the usual discussion of
its intuitive interpretation or utility-for this the reader is referred to the
standard references, such as [G87]. We do recall [Se89] that a categorical
semantics for linear logic may be based on Barr's notion of *-autonomous
categories [B791. If only to establish notation, here is the definition.

Definition 1 A category C is *-autonomous if it satisfies the following:

1. C is symmetric monoidal closed; that is, C has a tensor product
A 9 B and an internal horn A -o B which is adjoint to the tensor
in the second variable

Hom(A ® B, C) - Hom(B, A -o C)

2. C has a dualizing object ±; that is, the functor ( )-±:CO-P C
defined by A-- = A -o 1 is an involution (viz. the canonical mor-
phism A -- ((A -o J-) -o -) is an isomorphism).

In addition various coherence conditions must hold-a good account of
these may be found in [M-OM89]. Coherence theorems may be found
in [BCST, B191, B1921. An equivalent characterization of *-autonomous
categories is given in [CS91], based on the notion of weakly distributive
categories. That characterization is useful in contexts where it is easier
to see how to model the tensor 0, the "par" 7g and linear negation, and
the coherence conditions may be expressed in terms of those operations.

The structure of a *-autonomous category models the evident epony-
mous structure of linear logic: the categorical tensor ® is the linear mul-
tiplicative ® and the internal horn -o is linear implication. The dualizing
object _L is the unit for linear "par" 2g, or equivalently, is the dual of the
unit I for the tensor1.

There are a number of variants of linear logic whose categorical seman-
tics is based on this. First is full "classical" linear logic, which includes
the additive operations. These correspond to requiring that the category

'In other papers we have used the notation T for the unit for ®, and (® instead of
27. Here we shall try to avoid controversy by using notation traditional in the context

of Banach spaces, and by generally ignoring the "par". So in this paper, E means
direct sum, which coincides with Girard's notation. We use x for cartesian product,
corresponding to Girard's &. And we shall use the usual notation for the appropriate
spaces when referring to the units.
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C have products and coproducts. (If C is *-autonomous, one of these will
imply the other by de Morgan duality.) There is also Girard's notion

of "intuitionistic" linear logic [GL87], which omits linear negation and
"par"-this corresponds to merely requiring that C be autonomous, that

is to say, symmetric monoidal closed (with or without products and co-

products, depending on whether or not the additives are wanted). There
is an intermediate notion, "full intuitionistic linear logic" due to de Paiva

[dP89], in which the morphism A ) A±J" need not be an isomorphism.

And as mentioned above, there is the notion of weakly distributive cate-

gory [CS91, BCST], where negation and internal hom are not required.

One classically important class of *-autonomous categories are the

compact categories [KL80] where the tensor is self-dual: (A 0 B)' 2

A-L ® B-. Linear logicians often regard with derision those models in
which "tensor" and "par" coincide, but from some mathematical points
of view these are very natural.

In this paper we shall model various fragments of linear logic; we

shall describe the fragments in terms of the categorical structure present,
without explicitly identifying the fragments.

Finally, in order to be able to recapture the full strength of classical

(or intuitionistic) logic, one must add the "exponential" ! (and its de

Morgan dual ?). (All our structures will model !.) We saw in [Se891
that this amounts to the following.

Definition 2 A monoidal category C with finite products admits (Girard)

storage if there is a cotriple ! : C -- C (with the usual structure maps

A 4- ! 5A-) 1! A), satisfying the following:

1. for each object A E C, !A carries (naturally) the structure of a
'A dA

(cocommutative) 0-comonoid T ý- ! A -- ! A ® ! A (and the
coalgebra maps are comonoid maps), and

2. there are natural comonoidal isomorphisms

I -- !1 and !AG!B-- !(AxB).

Some remarks: First, it is not hard to see that the first condition above

is redundant, the comonoidal structure on ! A being induced by the iso-
morphisms of the second condition. However, the first condition is really

the key point here, as may be seen from several generalizations of this def-

inition, to the intuitionistic case without finite products in [BBPH], and

to the weakly distributive case, again without finite products, [BCS93].
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The main point here is that without products one replaces the second
condition with the requirement that the cotriple ! (and the natural trans-
formations c, 6) be comonoidal. And second, one ought not drown in the
categorical terminology-terms like "comonoidal" in essence refer to var-
ious coherence (or commutativity) conditions which may be looked up
when needed. Readers not interested in coherence questions can follow
the discussion by just noting the existence of appropriate maps, and be-
lieve that all the "right" diagrams will commute. They can regard it as
somebody else's business to ensure that this is indeed the case.

In the mid-1980's, Girard studied coherence spaces as a model of sys-
tem F, and realized the following fact, which led directly to the creation of
linear logic. Of course Girard did not put the matter in these categorical
terms at the time, but the essential content remains the same-ordinary
implication factors through linear implication via the cotriple ! . (An-
other way of expressing this is to say that a model of full classical linear
logic induces an interpretation of the typed A-calculus.)

Theorem 1 If C is a *-autonomous category with finite products admit-
ting Girard storage !, then the Kleisli category C! is cartesian closed.

This result is virtually folklore, but a proof may be found in [Se89].
One of the problems with finding models of linear logic comes from

the difficulty of finding well-behaved (in the above sense) cotriples on
*-autonomous categories. For example, one of the main problems with
vector spaces as a model of linear logic is the lack of any natural interpre-
tation of !. (We shall soon return to this point, and indeed, in a sense
this is the main point of this paper.) This question seems closely bound
up with questions of completeness. Barr [B91] has shown how in certain
cases one can get appropriate cotriples (via cofree coalgebras) from a sub-
category of the Chu construction [B79]. One case where this route works
out fairly naturally is if the *-autonomous category is compact: in that
case, one can construct coffee coalgebras by the familiar formula

!A = T x A x (A®, A) x (A® 8 A®, A) x ..

(where the tensors ®, are the symmetric tensor powers). We shall see an
echo of this construction in the Fock space construction below.

2 Normed Vector Spaces

As discussed in the introduction, we will be primarily working in normed
vector spaces. Normed spaces seem necessary to capture correctly the
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intuition behind Girard's exponentials. Vector spaces are, in some sense,
intrinsically finitary structures. Every vector is a finite sum of multiples
of basis vectors, and one is only allowed to take finite sums of arbitrary
vectors. It seems likely that to correctly model ! and ?, one should
be able to take infinite sums of vectors, thereby capturing the idea of
infinitely renewable resource. However, to do this, one needs a notion
of convergence. And to define convergence, one needs a notion of norm.
Once a space is normed, then it is possible to define limits and Cauchy
sequences, and so on. Normed vector spaces, which are the principal ob-
jects of study in functional analysis, should be considered as the meeting
ground of concepts from linear algebra and analysis. They are also an
ideal place to model linear logic.

We will now briefly review the basic concepts of the subject. For more
complete discussions, see [KR83, C90, CLM79].

Henceforth all vector spaces are assumed to be over the complex num-
bers and are allowed to be infinite-dimensional. We will use Greek letters
for complex numbers and lower-case Latin letters from the end of the
alphabet for vectors.

Definition 3 A norm on a vector space V is a function, usually written
11, from V to R, the real numbers, which satisfies

1. II v 1j 1 0 for all v E V,

2. I1 v 1 =O iff v = 0,
3. 11 av = Ia III v 11,

4. IIv+wl1•<-Ivl+llwII.
For finite dimensional vector spaces the norm usually used is the fa-

miliar Euclidean norm. As soon as one has a norm one obtains a metric
by the equation d(u, v) = 11 u - v 11. One can ask whether the resulting
space is complete or not as a metric space. It turns out that the spaces
that are complete play a central role in functional analysis.

2.1 Banach Spaces

Definition 4 A Banach space is a complete, normed vector space.

Example 1 Consider the space of sequences of complex numbers. We
write a for such a sequence, a = {a,}=1 and we write a l for the
supremum of the ai

oc={a : IIaI < oo}
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This is a Banach space with 11 a 11, as the norm.
Another norm is obtained on sequences as follows. Define:

Then let:

11 = {a: 1 a III < ao}

More generally, if p > 0, we may define:

lp = {a: II a 11P =- (riI I a IP)1/P < oo}

All of these will be examples of Banach spaces. Furthermore, these can
be defined not only for sequences of complex numbers, but for sequences
obtained from any Banach space.

Example 2 Let X be a compact Hausdorff space. The vector space of
complex-valued continuous functions on X is generally denoted C(X).
Since X is compact, such functions must have a supremum, and from
this it is straightforward to obtain a norm. Now convergence in this
norm is the familiar notion of uniform convergence. As is well known
from elementary analysis, sequences of uniformly bounded, continuous
functions converge to a bounded continuous function. Thus, we have a
Banach space. On the other hand if we looked at functions that vanish
outside some closed, bounded interval (the functions of compact support)
then we do not get a Banach space since these could converge to a function
that does not have compact support.

The following theorem shows one common way in which Banach spaces
arise. First we need a definition.

Definition 5 Suppose that B 1, B2 are Banach spaces and that T is a

linear map from B 1 to B 2 . We say that T is bounded if sup.oT

exists. We define the norm of T, written 11 T 11, to be this number.

If T is indeed bounded, then a standard argument [KR83], establishes

Lemma 2 supl.1j1=111 Tx 11 = I T 11.

Thus one can use vectors of unit norm to calculate the norm of a linear
function rather than having to look for the sup over all nonzero vectors.
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Linear maps from a Banach space to itself are traditionally called opera-
tors, and the norm of such maps is called the operator norm.

Since a Banach space is also a metric space under the induced metric
described above, one can also ask to characterize which linear maps are
also continuous. In this regard, we have the following result.

Lemma 3 A linear map from f : A -- B is continuous if and only if it
is bounded.

The following theorem shows that the category of Banach spaces and
bounded linear maps is enriched over itself.

Theorem 4 If A is a normed vector space and B is a Banach space then
the space of bounded linear maps with the norm above is a Banach space.

We will denote this space A --o B.
There are several possible categories of interest with Banach spaces

as the objects. The most obvious one is the category with bounded linear
maps as the morphisms. However, it turns out that the category with con-
tractive maps2 is of greater interest and has nicer categorical properties.
These properties are discussed in [B76a] and below.

Definition 6 A contractive map, T, from A to B is a bounded linear
map satisfying the condition, 11 Tx 11 < 11x 11. Equivalently, the contrac-
tive maps are those of norm less than or equal to 1.

We will write BAA/COAf for the category of Banach spaces and contrac-
tive maps and BAA/A Cl-I for the category of Banach spaces and bounded
linear maps. While BAA/C(OA has a richer categorical structure, for the
purposes of modelling the exponential types of linear logic, we will be
forced to work in BAA/A CH-I.

2.2 Monoidal Structure of BAA/.ACTR

We first point out that BAA/-A Cl-Ihas a canonical symmetric monoidal
closed structure. We begin by constructing a tensor product. Let A and
B be objects in BAA/A Cl-I. Begin by forming the tensor of A and B,
A ®C B, as complex vector spaces. We first define a partial norm for
elements of the form a 0 b by the equation:

a 0 b II = a 111 II

'Strictly speaking, they should be called "non-expansive" maps.
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We would like to extend this partial norm to a norm on all of A ®C B.
Such a norm is called a cross norm. It turns out that there are many
such cross norms, a number of which were discovered by Grothendieck.
The one we will use in this paper is called the projective cross norm. It
is in some sense the least such. A detailed discussion of these issues is
contained in [T79]. The projective cross norm is defined for an arbitrary
element, x, of A OC B by the following formula:

II x 11 = inf{f1 a 1I1 b 11 suich that Xr = Ea ,0 b}

One can verify that this is in fact a cross norm on A OC B. Now, the
resulting normed space will not be complete in general, so one obtains a
Banach space by completing it. This will act as the tensor product in the
category BAA/AC-. It will be denoted simply by A 0 B. Furthermore,
we have the following adjunction in t3A.X/AC'.

Lemma 5 The functor B 0 ( ) is left adjoint to B -o ().

Corollary 6 BAAfA C7/ is a symmetric monoidal closed category.

Analogously, BAACOAf is also a monoidal closed category. Note that
although one only uses contractive maps in this category, the internal hom
is still given by all bounded linear maps.

As such, they are models of (at least) the multiplicative fragment
of intuitionistic linear logic. To obtain a model of the classical linear
logic, one possibility is the topological construction of Barr in [B76a].
See also (B193a]. The idea is to add an additional topological structure to
the space, and then only consider maps which are also continuous with
respect to this topology. If the topology is chosen carefully, one obtains a
large class of reflexive objects, i.e. objects which are isomorphic to their
double dual space. Such objects can be used to model the negation of
classical linear logic.

2.3 Completeness Properties of BAA/COA. and BAA/ACT-

The main advantage of studying the category of contractions is in its
completeness properties. While BAA/ACl-I has very weak completeness
properties, BAA/CO. is complete and cocomplete. These constructions
exist in BAA/A CH- but some lose the universal property. We will describe
some of these universal properties. We begin with finite coproducts.

Definition 7 Let A and B be Banach spaces. The direct sum, A @ B, is
the Cartesian product equipped with the norm 11 a e b H = H a H + H b H.
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Then we have the distributivity property of 0 over e.

Proposition 7 A ® (B E B') -! (A 0 B) ED (A 0 B').

We now discuss finite products.

Definition 8 The product of two Banach spaces, A x B, has as its un-
derlying space A ED B, but now with norm given by:

II a E b II = max{ll a II, II b 1}

As a category of vector spaces, BAAPCO.V is fairly unique in this
respect. While most such categories model the additive fragment of linear
logic, they invariably equate the two connectives, since finite products
and coproducts coincide. In other words, BA.VCOA' does not share the
familiar property of being an additive category.

We now present countably infinite products and coproducts.

Definition 9 Let {A,}i*l be a sequence of Banach spaces. Define fI(Ai)
to be those sequences which converge in the 1, norm. i.e. bounded se-
quences equipped with the obvious norm.

Define E(Ai) to be all sequences which converge in the 11 norm.
This gives countable products and coproducts in BAA/COA!. Similar

constructions can be applied for uncountable products and coproducts.

Equalizers in BAA/COAf correspond to equalizers in the underlying
category of vector spaces. The fact that bounded maps are continuous
implies that the subspace will be complete. Coequalizers are obtained as
a quotient, with the induced norm being the infimum of the norms of the
elements of the equivalence class. See [C90] for a discussion of quotients
of Banach spaces.

Theorem 1 BAA/COAf is complete and cocomplete.

All of the above constructions exist in BAA/A CI-, but some of them
will lose their universal property. BAA/ACHi is an additive category,
with sums and products given by the coproducts in BAA/COAf. (Note
that the two spaces A x B and A & B are isomorphic in BAA/AACII,
but not in BAA/CCOXf.) In BAA/ACJH, the above infinite products and
coproducts exist, but do not share the universal property. They only have
this property for bounded families of maps. Equalizers and coequalizers
are as in BAAMCOAf.
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2.4 Hilbert Spaces

An alternate approach to defining a norm on a vector space is via an inner
product. An inner product has the property that it induces a norm on A
the underlying space.

Definition 10 Given a complex vector space, V, an inner product for
V is a function from V x V to the complex numbers which is conjugate
linear in its first argument and linear in its second argument. This is
"written (ulv).

Furthermore, an inner product must have the following properties.

* (xix)> 0

* (xly)= (ylx)

* if (xlx) = 0, then x=O

Here, Z- refers to complex conjugation. Real Hilbert spaces are defined
analogously, with conjugation being taken to be the identity.

Given an inner product we immediately get a norm by I x II = ((xlx))1/ 2 .
As with Banach space what turns out to be crucial is the property of
being complete.

Definition 11 A Hilbert space is a vector space equipped with an inner
product such that the vector space is complete in the induced norm.

Example 3 The space 12 of all sequences of complex numbers such that:

a2<

One defines an inner product by:

(xly) = EiýlXiyi

Every finite dimensional complex vector space is a Hilbert space with
the usual inner product.

The category of Hilbert spaces and bounded linear maps will be de-
noted by R-ICB£1ZT. This category has a tensor product which can be
constructed in a manner analogous to the construction for Banach spaces.
7"ILBEIZT also has finite products and coproducts, in both cases these
are given by direct sum, with the evident inner product. H-ILBE7ZT does
not have very many infinite limits or colimits.
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3 Symmetric and Antisymmetric Tensors

We introduce two further constructions in the category BAA/A CR. These
will be quotients of the tensor product. Since the category has coequal-
izers such quotients will be well-defined.

3.1 Symmetric Tensor Products

First, we introduce the symmetric tensor product of a Banach space with
itself.

Definition 12 Let A be a Banach space. The Banach space A 0, A is
defined to be the following coequalizer:

id
A®A AGA - A12 A

Note that 7- is the twist map, a 0 b ý-- b 0 a.

This is the general definition of symmetrized tensor. It turns out that
in categories of vector spaces, this quotient is canonically isomorphic to
the equalizer of these two maps, and that this equalizer is split by the
map:

1
a®b•-- -(a®b+ bCa)

2
We will frequently use this representation in the sequel.

The nth symmetric power is defined analogously. The Banach space
®• A has n! canonical endomorphisms, and the Banach space ®&' is the
coequalizer of all of these. Again, it is isomorphic to the equalizer, and
there is a splitting, as above. A good way to view the symmetrized tensor
is to observe that the symmetric group acts on the space &'• A, and that
the symmetrized tensor is the invariant subspace. As such, an appropriate
notation for the symmetrized tensor is:

n!

We will also freely use this representation, as well.

3.2 Antisymmetric Tensor Products

This will be defined in a similar fashion. Again, we first define the an-
tisymmetric tensor of a Banach space B with itself. It will be denoted
B ®A B. It is the coequalizer of the following diagram:
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id
B ®B B__B®B - BBOAB

-T

Here, -r is the map a ® b t-+ -b ® a.
Members of this space can canonically viewed as elements of the or-

dinary tensor product, of the form:

x = a 0 b - b 0 a

The nth antisymmetric power is defined analogously.

4 Fock space and categories of algebras

4.1 Fock space

We are now ready to define the Fock spaces. They are traditionally
defined in -IL2BE&•7-; we will, however, define them in BAKV4AC)-.
Definition 13 Let B be a Banach space. The symmetric Fock space

of B is the infinite direct sum of the spaces ®&' B, where, when n is zero
we use the complex numbers. The antisymmetric Fock s- ,ce of B is
the infinite direct sum of the spaces &'7 B.

.77(B) =C ff B (B "'gnB (D ..

YA(B)= C D B (D . Be

Since Fock is defined using infinite direct sums and coequalizers it is clear

that Fock defines a functor.

We can think of an element of .F(B) as an infinite sequence (c, v1 , v,..
where c is a complex number and vi E Bi.

Now we check that the Fock space actually satisfies all the properties
that need to be satisfied by an OF COURSE type, i.e. satisfies the proper-
ties of [Se89J, discussed in Section 1. This consists of two parts, verifying
that Fock spaces form a cotriple on the category of Banach algebras and
verifying the so-called exponential law, viz. ! (A x B) ' I A ® ! B. We
check the former by displaying a suitable adjunction in the next subsec-
tion.

Proposition 8 Let A and B be Banach spaces.

SF(A x B) t- 17(A) 0 Y(B).
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Here the product is what is called the direct sum by analysts. The iso-
morphism is in the category BAXAO CX.
Proof- We need to exhibit maps in both directions and show that all the
conditions required for an isomorphism are satisfied. The isomorphism is
based on the following "formal calculation".

.F(A x B) = Y(A ED B)

= CE(AEB)EF!((AcbB)( 8 (A(DB))...

= CE AGBEI(A ®A) e½(B 08 B)e (AC 0B)

= Y(A) ®Y'(B).

The rigorous argument is as follows. We call an element of .F(B) a pure
tensor if it is of the form (0, 0,..., v, 0, 0,...) and a finite-rank tensor if
it is of the form (vo, vi,..., vn, 0, 0,...); i.e. zero after some finite stage.
Now the pure tensors form a basis for .T(B). In order to define the iso
from .F(A x B) to F(A) ® Y(B) we need only specify the map on the
pure tensors. A pure tensor, p, in .F(A x B) looks like p = Ex1 ®... 0 xn
where xi = Yi + zi, yi E A, zi E B. Using distributivity of & over + we
have

P =- E[(Yl +t ZI) ®.. (Yn +I Zn)]

=l1 ... @Y® +Yl0..0Yk Zl0...®Ozj, +- +Zi(..(Dn

The last expression is a sum of elements of .F(A) 0 .F(B). The iso in
the other direction is obtained by viewing the pure elements of .F(A) and
F(B) as polynomials and carrying out polynomial multiplication. I

The units are easily identified.

Lemma 9 The complex numbers, C, viewed as a Banach space form a
unit for tensor product. The one point space, written 0, is the unit for
the direct sum.

The effect of Y on the units is given below. The proofs are immediate
from the definitions. Equality means isomorphism in BAA/A CH.

Lemma 10 1. F(O) = C.

2. .T(C) = 1I.

Proof - The proof of the first assertion is immediate. For the second
assertion, note that, since C is the unit for tensor all the terms in the
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infinite direct sum are just C. Thus we have infinite sequences of members
of C with the same convergence criterion as for 11.1

This lemma shows that one cannot use this construction in categories
of finite-dimensional spaces.

Now we consider the antisymmetrized Fock space3 . It turns out j
that one gets a model of the exponential types in the category of finite-
dimensional vector spaces using the antisymmetrized Fock space.

Proposition 11 If V is a finite-dimensional vector space of dimension
n, then .FA(V) is also a finite-dimensional vector space with dimension
2n.

Proof- Consider the vector space ®& V with p > n. We claim that this
space is the zero vector space. Since @ is adjoint to internal hom in VCCfd,
the space ®& V is isomorphic to the space of completely antisymmetric
p-linear maps from V to the scalars. Let f denote such a map. Since V
is only n-dimensional one cannot have p linearly independent arguments
to such maps. Thus one of the arguments must be a linear combination
of the others. Thus on any arguments f becomes a combination of terms
of the form f(..., u,..., u,...) where two arguments must be equal. But
antisymmetry makes such a term zero. Thus f is the zero vector and the
vector space OP V is the one-point space. Thus the infinite direct sum
becomes a finite direct sum. Now consider p < n. It is clear that one
can only choose Cn sets of p linearly independent vectors given a basis.
Thus the dimensionality of the space ®&' V is C•n and hence, adding the
dimensions to get the dimension of the direct sum, we conclude that the
dimension of FA(V) is 2n. I

The exponential law for the antisymmetric case can be argued simi-
larly. The detailed verification can be found in [BSZ92] in Section 3.2 on
exponential laws.

4.2 Categories of algebras

In this section we shall review some basic facts about categories of alge-
bras, and see in particular how these fit into the current context. (See
[M71] for a review of the basic categorical facts, and [L65] for the basic
algebra, for instance.) For reference, we do give the following definition
here.

'The arguments below are well-known to differential geometers. Prakash Pananag-
den would like to thank Steve Vickers for reminding him about these facts.
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Definition 14 A triple consists of a functor F: B -- B, together with
natural transformations q: id -- F and p: FF - F, such that pi oiF =
p o Fvj = id and p o pT = p o Tp.

One simple point to recall is that categories of algebras and of coalge-
bras are closely connected to the existence of triples and cotriples. Given
a triple F: B -) B, (with structure morphisms 77, p), an F-algebra is an
object B and a morphism h: F(B) ) B (subject to two commutativity
conditions, corresponding to the associative and unit laws). (This notion
can be generalized to arbitrary functors.) There is a canonical category
of such algebras, the Eilenberg-Moore category CF, and an adjunction
C • CF. Any adjunction canonically induces a triple, and this one
canonically induces the original triple. The category of free F-algebras is
the Kleisli category CF of the triple; again, there is a canonical adjunc-
tion C + CF which induces the original triple. Of course this dualizes for
cotriples, with the corresponding notion of coalgebras. (We shall avoid
the unpleasant use of terms like "coEilenberg- Moore" and "coKleisli".)

Usually mathematicians have been more interested in the Eilenberg-
Moore category of a triple (or cotriple) than in the Kleisli category; al-
though there has been some interest in Kleisli categories recently (for
instance in the context of linear logic, as mentioned earlier in this pa-
per), we shall follow this tradition and shall work in Eilenberg-Moore
categories. Indeed, it is there that we shall find some of our models.
One reason for this is quite practical: it is often simpler to recognize
the category of algebras and so derive the triple (similarly, once one has a
candidate for a triple, it is often simpler to construct the category of alge-
bras and verify the adjunction than to directly show the original functor
is a triple). But there is another reason: we want to show that the Fock
space functor is a cotriple (so as to model ! ), but on the categories of
spaces we consider, this is not the case-rather it is a triple. By passing
to the algebras, we can fix this, because of the following fact:

F
Fact Given an adjunction C V D, F -i U, the composite UF is a

U
triple on C, and so (dually) the composite FU is a cotriple on V.

So we obtain our model of ! on the category of algebras.

I|
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4.2.1 Algebras for the symmetric (bosonic) Fock space con-
struction

We begin with a more traditional notion of algebra; the connection be-
tween these comes via the triple induced by the adjunction given by the

free algebra construction, as outlined above. In other words, the category
of (traditional) algebras is equivalent to the category of UF algebras.

Definition 15 An algebra A is a space A equipped with morphisms

m: A ® A - A and i:C -C A

satisfying

A®A®A m Ox id A 1> A

id 0mj77

A®A m A

C®A ipid AQA id®i AOC

M.4

A

Here we are supposing the base field to be C; otherwise replace C with
the base field k. If in addition the following diagram commutes, then the
algebra A is said to be symmetric or commutative. (7 is the canonical
"twist" morphism.)

AOA A --- ,-A A

A

i
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An example of such an algebra comes from the Fock space of a Banach
space: the multiplication m is defined by "multiplication of series" in an
evident manner. The use of the symmetrized tensor in the definition of
Fock space guarantees that this will indeed be a symmetric algebra, and
it is standard that this description gives the free such algebra. In other
words, we have the following proposition.

Proposition 12 Given a Banach space B, the Fock space .F(B) canoni-
cally carries an algebra structure, and indeed is the free symmetric algebra
generated by B.

It follows from this (or rather from the adjunction B3AjVC"OAf -
SAC9) that we have a cotriple on the category SACG of symmetric
algebras, given by taking the Fock algebra on the underlying space of an
algebra. As the details of this are both standard and similar to the case
of the antisymmetric Fock space construction, which we shall discuss in
more detail next, we shall leave the details here to the reader.

4.3 Algebras for the antisymmetric (fermionic) Fock space
construction

Recall that we work in the context of VFCfd finite dimensional vector
spaces when considering the antisymmetric Fock construction. This cat-
egory is self-dual, and is compact with biproducts: the product and co-
product coincide. This duality also implies that a triple is also a cotriple,
so we can model ! in the category of spaces. However, to show that the
Fock space construction defines a triple (or cotriple), it is again simpler to
consider the category of algebras. Although we are not familiar with any
previous consideration of this category of algebras as such, the context
is familiar: the antisymmetric Fock space construction is usually called
(when thought of as an algebra) the Grassman algebra, or the "alter-
nating" or "interior" algebra; the multiplication defined on it is called
the "wedge product" (a term derived from the usual notation for this
product).

Definition 16 An alternating algebra A is a graded algebra A (with unit)
whose multiplication map satisfies the property that, if x, y are of degree
m,n respectively, then xy = (-1)nm yx (which by the grading must be of
degree n + m).

Note that the unit must be of degree 0. Morphisms of alternating algebras
are just homomorphisms as algebras.

I
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Proposition 13 There is a canonical alternating algebra structure on
.FA(V), for any finite dimensional vector space V. The antisymmetric

Fock construction is left adjoint to the forgetful functor U: V2 CCfd d
U

AAIA£, where AAC£G is the category of alternating algebras. As a conse-
quence, YA defines a triple (and so cotriple) on VCf d.

Proof- (Sketch) The multiplication on .TA(V) is the standard "wedge"
product [L65], which to elements X' (A ... rA Xn, Yi (A . . 'GA Ym gives
the product xI OA ... OA X, (A YI OA ... GA Ym. Here X OA Y means
the equivalence class of x 0 y in A OA A. (Essentially this is the same
"multiplication of power series" we had in the symmetric case, with the
alternating product used in place of the usual tensor.) For a vector space
V, define ql: V % U.FA(V) as the canonical injection. Given an alter-
nating algebra A, define e: .FA(UA) ý A by "adding the terms of the
series": (x0 , x1 ,z 4 A 4X,...) - i(xo) + x + m,(x4,4) +*..., where i,m

are the algebra maps.
To verify that we have an adjunction we must show the following

commute:

-FA (V) .4F4(UvyA(V))

TA•(v)

UA 'Lu U.FA(UA)

UA

hi
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The second diagram is obvious; to verify the first, notice that FA(q(x))
maps i

(xO, XI, X' A X2,..) (XO, !

(0,o0, X2,o0,...)&A (0, 0, X2, 0,...),

)

and it is clear that "adding up this series" just returns the original term.

It now follows that we can model ! in VECCfd with FA, via the formula
V = (YA(V')) 1 .

5 The Holomorphic-Function Representation
of Fock Space

A possible reaction to the results of the last section is that the Fock
space construction works purely fortuitously, in the sense that the proper
notions of tensor products and infinite direct-sums happen to exist and
conspire to make the construction of internal comonoids possible. In the
present section we argue that in fact this construction is linked to much
deeper mathematics. The symmetrized Fock space on a Banach space B,
turns out to be a space of holomorphic functions (analytic functions) on
B, properly defined. This hints at possible deeper connections between
analyticity and computability which need to be explored.

The ideas here stem from early work by Bargmann [Ba6l] on Hilbert
spaces of analytic functions in quantum mechanics. This was extended
by Segal [S62, BSZ92] to quantum field theory and Segal's extension was
used by Ashtekar and Magnon [AM-A80] to develop quantum field theory
in curved spacetimes. (A brief summary of the ideas is contained in an
appendix to [P80] and in [P79].) The latter work involved making sense of
the familiar Cauchy-Riemann conditions on infinite-dimensional spaces.

We quickly recapitulate the basic notion of analytic function in terms
of one complex variable before presenting the infinite-dimensional case.
A very good elementary reference is Complex Analysis by Ahlfors [Ah66].
Given the complex plane, C, one can define functions from C to C. Let
z be a complex variable; we can think of it as x + iy and thus one can
think of functions from C to C as functions from R2 to R2. An analytic
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or holomorphic function is one that is everywhere differentiable. In the
notion of differentiation, the limit being computed, viz.

lim f(x + h) - fx)
h-0 h

allows h to be an arbitrary complex number and hence this limit is re-
quired to exist no matter in what direction h approaches 0. This much
more stringent requirement makes complex differentiability much stronger
than the usual notion of differentiability. If a complex function is differ-
entiable at a point it can be represented by a convergent power series in
a suitable open region about the point. If one uses the fact that h can
approach zero along either axis one can derive the Cauchy-Riemann equa-
tions for a complex valued function f = u(x, y) + iv(x, y) of the complex
variable z = x + iy,

du dv du O

Ox 4y ' 4y Ox

What is remarkable about complex functions is that this definition
of analyticity yields the result that a complex-analytic function can be
expressed by a convergent power-series in a region of the complex plane.
This is remarkable because only one derivative is involved in the Cauchy-
Riemann equations whereas the statement that a power-series represen-
tation exists is stronger, for real-valued functions, even than requiring
infinite differentiability. In real analysis one has examples of functions
that are infinitely differentiable at a point, but do not have a power series
representation in any neighbourhood of that point. A function may have
a power series representation that is valid everywhere, a so-called entire
holomorphic function; the complex exponential function is an example.

There is a formal perspective, due to Wierstrass, that is rather more
illuminating. Think of a complex variable z = x + iy and its conjugate

= x - iy as being, formally, independent variables. A function could
depend on z and on its complex conjugate, 7, for example, the function
that maps each z to z7 + iz-2. An analytic or holomorphic function is one
which has no dependance on T. This is expressed formally by df/d- = 0.
When expressed in terms of the real and imaginary parts of f and z, this
equation becomes the familiar Cauchy-Riemann equations. Thus this
reinforces the view that a holomorphic function is properly thought of as
a single complex-valued function of a single variable rather than as two
real-valued functions of two real variables.

The theory of functions of finitely many complex variables is a non-
trivial extension of the theory of functions of a single complex variable.
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Entirely new phenomena occur, which have no analogues in the theory of
a single complex variable. An excellent recent text is the three volume
treatise by Gunning [Gu90]. For our purposes we need only the barest
beginnings of the theory. Given C', we can have functions from C' to C.
One can introduce complex coordinates on Cn, Zl, ... z-. One can define
a holomorphic function here as one having a convergent power-series ex-
pansion in zj,..., zn. The key lemma that allows one to mimic some of
the results of the one-dimensional case is Osgood's lemma4 .

Lemma 14 If a complex-valued function is continuous in an open sub-
set D of Cn and is holomorphic in each variable seperately, then it is
holomorphic in D.

From this one can conclude that a holomorphic function in n variables
satisfies the Cauchy-Riemann equations 2L = 0. One is free to take either
one of (a) satisfying Cauchy-Riemann equations or (b) having convergent
power-series representations as the definition of holomorphicity.

Now we describe how to define holomorphic functions on infinite-
dimensional, complex, Banach spaces. The basic intuition may be sum-
marized thus. One starts with subspaces of finite codimension. Thus the
quotient spaces are isomorphic to some Cn. One can define what is meant
by a holomorphic function on these quotient spaces as in the preceding
paragraph. By composing a holomorphic function with the canonical
surjection from the original Banach space to the quotient space we get a
function on the original Banach space. These functions can all be taken
to be holomorphic.

B

B1~ = Cn C

Intuitively these are the functions that are constant along all but
finitely many directions, and holomorphic in the directions along which
they do vary. These functions are called cylindric holomorphic func-
tions. Because the sequence of coefficients of a power-series is absolutely
convergent, we can define an 11 norm on these functions in terms of the
power-series. Finally the collection of all holomorphic funcitons is defined
by taking the 11-norm completion of the cylindric holoinorphic functions.

4There is a considerably harder theorem, called Hartog's theorem, which drops the
requirement of continuity.
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Given a Banach space B, let U be a subspace with finite codimension
n, i.e. the quotient space B/U is an n complex-dimensional vector space.
The space B/U is isomorphic to Cn. Let 0 : B/U --+ Cn be an isomor-
phism; such a map defines a choice of complex coordinates on B/U. Let
iru be the canonical surjection from B to B/U.

Definition 1 A cylindric holomorphic function on B is a function of
the form f o o ru, where U, lru and 4 are as above and f is a holomorphic
function from Cn to C.

We need to argue that the choice of coordinates does not make a real
difference. Of course which functions get called holomorphic does depend
on the choice of coordinates, but the space of holomorphic functions has
the same structure'. Suppose that U and V are both subspaces of B and
that U is included in V. Suppose that both these spaces are spaces of
finite codimension, say n and m respectively. Clearly n > m. Now we
have a linear map 7ruv : B/U - B/V given by x + U F-* x + V; clearly
this is a surjection. Now given coordinate functions 4 : B/U -* C'
and 0 : B/V ---* C we can define a function a : Cn -U Ci, given by
0 o •rv o 4-1, which makes the diagram commute. Thus we do not have
to impose "coherence" conditions on the choice of coordinates, we can
always translate back and forth between different coordinate systems.

We will suppress these translation functions in what follows and as-
sume that the coordinates have been serendipitously chosen to make the
form of the functions simple. In other words, we can fix a family of sub-
spaces {W, dn E N} with Wn having codimension n and WIn+ C Wn.
The coordinates can be chosen so that the space B/Wa, has coordinates
zi, •..., Zn.

Suppose that f is a cylindric holomorphic function on B. This means
that there is a finite-codimensional subspace W, and a holomorphic func-
tion fw, from W to C, such that f = fw o lrw. The function fw regarded
as a function of n complex variables has a power-series representation

f (Z n : lý..i ý ....

and furthermore we have the following convergence condition

E~lail ... jl < oc.

5This happens even in the one dimensional case. The function T is considered anti-
holomorphic traditionally, but one could have called it holomorphic by interchanging
the role of z and T.
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Thus with each such cylindric holomorphic function we can define the sum
of the absolute values of the coefficients in the power-series expansion as
the norm of the function. Viewing the sequences of coefficients as the
elements of a complex vector space, we have an l1 norm. We write 11 f f1
for this norm of a cylindric holomorphic function.

Definition 2 An ll-holomorphic function on B is the limit of a se-
quence of cylindric holomorphic function in the above norm.

The 11 emphasizes that the holomorphic functions are obtained by a par-
ticular norm completion. In the corresponding theory of holomorphic
functions on Hilbert spaces, one uses the inner-product to define polyno-
mials and then perform a completion in the L2 norm. A key difference
is that our norm is defiied on the sequence of coefficients whereas in the
Hilbert space case, one uses the L 2 norm which is defined in terms of
integration.

In the resulting Banach space there are several formal entities that
were adjoined as part of the norm-completion process. We need to discuss
in what sense these formally-defined entities can be regarded as bona-fide
functions. Let W 1,...,W ,... be an infinite sequence of subspaces of
B, each embedded in the previous. Assume, in addition, th,,,t all these
spaces have finite codimension. Now assume that there is a sequence of
cylindric holomorphic functions, f,, on B obtained from a holomorphic
function, f(n) on each of the quotient spaces B/Wi. Finally, assume that
the sequence 11 fn 11 of (real) numbers is convergent. Such a sequence
of c) indric holomorphic functions defines a holomorphic function on B.
We call this function f. We need to exhibit f as a map from B to C.
Accordingly, let x be a point of 6. For each of the functions f, we
have If.(x)m • IN f. 11. Since the sequence of norms converges we have
the sequence fn(x) converges absolutely and hence converges. Thus the
function f qua function is given at each x of B by lim,__+• fj(x). However,
in order to use the word "function" we need to show that the power-series
has a domain of convergence. Unfortunately, it may not have a non-trivial
domain of convergence but, in a sense to be made precise, it comes close
to having a non-trivial domain of convergence.

The power-series representation of the function f is given as follows.
It depends, in general, on infinitely many variables but each term in the
power series will be a monomial in finitely many variables. Consider
the coefficient of z... zj in the expansion of f. In all but finitelyI"' iA;

many of the fA all the indicated variables will appear in their power-
series expansions. Consider the coefficients of this term in each power
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series; this forms a sequence of complex numbers a,, where a,, is 0 if
there is no such term in the expansion of f,,. Since Van[ < I1 f• 11 the
sequence a, converges absolutely and hence converges to, say, a. This is
the coefficient of ... zjk in the power-series expansion of f.

Consider the coordinates zl,...,zn. This defines an n-dimensional
subspace of the Banach space, which we call U-n. Now consider the power-

series for f. It defines a family of holomorphic functions ff where f'
is defined on the subspace Un and is obtained by retaining only those
terms in the power-series expansion of f which involve variables among
z1,..., zn. These are analytic functions on the Un and, as such, have
non-trivial domains of convergence. However, as n increases the radii of
convergence could tend to 0. So we have the slightly weaker statement
than the usual finite-dimensional notion; instead of having a non-zero
radius of convergence in the Baiiach space we have a non-zero radius
of convergence on every finite-dimensional subspace. If one uses entire
functions, rather than analytic functions, at the starting point of the
construction, then one can show that the resulting functions are entire;

see page 67, theorem 1.13, of the book by Baez, Segal and Zhou [BSZ92].
Unfortunately when using the representation of elements of Fock space
one may carry out simple operations that do not produce entire functions
so we cannot just choose to work with entire functions. Nevertheless,
many common functions, most notably the exponential, are entire.

Given a bona fide holomorphic function one can express it as a power
series. The coefficients are calculated in the usual way, viz. by using
Taylor's theorem

f = Enfli+..+ik=n i 1! .. ( 0nilZ, a )z k

Since the mixed partial derivatives commute (the functions are holomor-
phic and hence certainly differentiable enough) the partial derivatives
are, concretely speaking, symmetric arrays. Abstractly speaking this just
means that they are elements of the symmetrized tensor product.

We can write this as follows.

Theorem 15 A holomorphic function can be represented by its power-
series expansion where the nth term in the power-series expansion is a
symmetrized nth derivative:

f = E(1/k!)D(k)f

where the notation D(k)f means symmetrized kth derivative of f.
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The symmetrized derivatives live in the symmetrized tensor products
of B with itself. One thus has a correspondence with the standard Fock
representation and the notion of holomorphic function since in each case
one has a string of symmetrized vectors.

5.1 A Digression on Complex Structures

This section can be skipped on a first reading 6; however, the reader who
feels queasy about all the explicit coordinate dependence in the definitions
so far may find this section comforting. There is no need to start with
complex vector spaces. One could have used real vector spaces from the
outset. In order to sketch this briefly we begin with the notion of a
complex structure on a vector space.

Definition 17 Let V be a real vector space. A complex structure is a
linear operator J : V --+ V such that J2  -I.

An example of a complex structure on R2 is(01
-1 0

It is immediate that V must be even-dimensional or infinite-dimensional
if a complex structure exists on it. A given vector space may have several
different complex structures defined on it.

One can go back and forth between real vector spaces equipped with
complex structures and complex vector spaces in the following way. Sup-
pose that (V, J) is a real vector space equipped with a complex struc-
ture. Now we can formally define the "complexification" of V as a vector
space VC = V' E V" where V' and V" are copies of V and multiplication
by complex numbers is given by (x + iy) * (a, b) = (xa - by, xb + ay).
Now we can define a linear operator P on VC by the formula P(a, b) =
(1/2)(a + Jb, b - Ja). It is easy to verify that P defines a projection op-
erator on VC. It defines a subspace of VC, which is, as a real vector space,
isomorphic to V. Similarly, given a complex vector space W we can con-
struct a real vector space which is isomorphic to W, as a real vector space,
and equip it with a complex structure which will give us back W when we
apply the construction above to it. We first form the direct sum W E W.
Now we define a complex structure on this space by J(a, b) = /"t, -ib). It
is easy to check the claims made. The upshot is that one cai. talk about

6and every subsequent reading as well.
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real vector spaces equipped with complex structures or about complex
vector spaces interchangably.

The final piece of mathematics that we need is the Lie derivative from
classical differential geometry. Developing the definitions from scratch
would involve a long digression. Fortunately the ideas are simple so we
will give an intuitive account. In what follows the word "smooth" is
meant to signify infinitely differentiable. Consider a smooth manifold;
a curved surface is an excellent model to keep in mind. Suppose that
one has a smooth vector field on this manifold; that is to say a smooth
assignment of a vector at every point on the manifold. Classical results
from differential equations say that there is a family of nonintersecting
curves that fill the manifold and such that the curves are everywhere
tangent to the given vector field. Now these curves are all parametrized
by a real parameter say t. If we fix a value for t, we can define a smooth
bijective map 'Pt of the manifold to itself (a so-called "diffeomorphism")
which is defined by moving each point t units along the unique curve
passing through it. We can make the map VPt act on functions defined on
V as follows: tpt(f) = f o 'Pt, for f a complex-valued function defined on
V. We can now define the Lie derivative of f along the vector field u at
the point p as the limit

Xv = lim V'P(f)(P)- f(p)
týo t

This gives another function from V to the complex numbers. Intuitively
we imagine that the given vector field, u, defines a flowing fluid. The
vector at each point defines the velocity of the fluid locally and the stream-
lines of the fluid give the family of curves mentioned above. The Lie
derivative measures changes that an observer flowing with the fluid would
see.

For us the Lie derivative tells us how to define changes seen "when
travelling along the direction defined by a vector field". Now recall what is
meant by an analytic function in ordinary complex analysis. A complex-
valued function of two real variables, x and y, is analytic if it depends
only on the complex variable z = x + iy and not on the conjugate variable
S= x - iy. The Cauchy-Riemann equations say this precisely. The Lie
derivative is what we need in order to do this in the infinite-dimensional
case.

Definition 18 Let B be a Banach space over the complex numbers. Now
let J be a complex structure on this space. We call a vector v holomor-
phic if Jv = iv and anti-holomorphic if Jv = -iv. If we have a
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real vector space V, equipped with a complex structure, we can define a
holomorphic or an anti-holomorphic vector in the same way.

A holomorphic vector plays roughly the role of a complex variable while
an anti-holomorphic vector plays the role of a complex-conjugate vari-
able. Now we can state the infinite-dimensional analogue of the Cauchy-
Riemann conditions.

Definition 19 A function f : V -- C is holomorphic if (i) it is dif-
ferentiable and (ii) for every anti-holomorphic vector field v we have
C,,f = 0. An equivalent condition is Xjvf = iXf for holomorphic vector
fields v.

It is easy to check that the latter form of the second condition gives the
usual Cauchy-Riemaun equations in the one-dimensional case by choosing
the vector fields appropriately.

6 The Physical Origin of Fock Space

The Fock space constructions described in the previous sections were in-
dependently invented by physicists and mathematicians. The symmetric
Fock space (called the bosonic Fock space by physicists) is well known
to mathematicians as the symmetric tensor algebra whereas the antisym-
metric Fock space (fermionic Fock space) was invented by Grassman, at
least in the finite-dimensional case, under the name of exterior algebra or
alternating algebra. In this section we describe the role of Fock space in
quantum field theory. In order to prevent intolerable regress in definitions
we assume that the reader has an at least intuitive grasp of differential
equations, the definition of a smooth manifold and associated concepts
like that of a smooth vector field'

We begin with a brief discussion of quantum mechanics and classical
mechanics. In classical mechanics one has systems which vary in time.
The role of theory is to describe the temporal evolution of systems. Such
tempcy'pd evolution is governed by a differential equation. The fact that
one uses differential equations says something fundamental about the lo-
cal nature of the dynamics of physical systems, at least according to con-
ventional classical mechanics. In dealing with differential equations one
has to distinguish between quantities that are determined and quantities
that may be freely specified: the so called "initial conditions". Exper-
iment tells one that systems are described by second-order differential

7Remarks requiring a more sophisticated vocabulary will appear as footnotes.
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equations and hence that the functions being described and their first
derivatives, at a given point of time, are part of the initial conditions.
The space of all possible initial conditions is called the space of possible
states or "phase" space, and is the kinematical arena on which dynamical
evolution occurs'. A fundamental mathematical assumption is that the
phase space is a 2n dimensional smooth manifold 9 . The points of phase
space axe called states. If the system is a collection of, say 7, particles, the
states will correspond to the 42 numbers required to specify the positions
and the velocities of each of the particles in three-dimensional space.

Through each point in phase space is a vector giving rise to a smooth
vector field called the Hamiltonian vector field. One can draw a family of
curves such that at every point there is exactly one curve passing through
that point and the Hamiltonian is tangent to the curve at that point.
Roughly speaking, the vector field defines a differential equation and the
curves represent the family of solutions where each point represents a
possible specification of initial conditions. An observable is a physical
quantity that is determined by the state. As such it corresponds to a
real-valued function on phase space. A typical example is the total energy
of a system. Most of experimental mechanics is aimed at determining the
Hamiltonian. In the formal development of analytical mechanics there is
a special antisymmetric 2-form called the symplectic form which plays a
fundamental mathematical role but is hard to describe in an intuitive or
purely physical way.

In quantum mechanics, the above picture changes in the following
fundamental ways. The observables become the fundamental physical
entities. These are defined to form a particular subalgebra of an alge-
braic structure called a C*-algebra. The key point is that this algebra
is not commutative, unlike the algebra of smooth functions on a mani-
fold. Furthermore, the failure of commutativity is directly linked to the
symplectic form; this was Dirac's contribution to the theory of quan-
tum mechanics. Thus, structures available at the classical level provide
guidance as to what the "correct" C*-algebra should be.

There is a representation of this algebra as the algebra of operators on
a Hilbert space. The space of states acquires the structure of a Hilbert
space and becomes the carrier of the representation of the C*-algebra.
One presentation of this abstract Hilbert space is as the space of square-

SSometimes one has a more complicated situation in which the phase space is con-
strained in such a way that it cannot be simply defined as a manifold. These are called
non-holonomic constraints and correspond to such familiar situations as skating and
rolling.

'Actually it has the structure of the cotangent bundle of a smooth n-manifold.
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integrable complex-valued functions on a suitable underlying space; for
example the space of possible configurations of a system. The space of
states has acquired linear structure; this means that one can add states
reflecting the intuition that in quantum mechanics a system can be in
the superposition of two (or more) states. The inner product measures
the extent to which two states resemble each other. Finally the fact that
one has complex functions is strongly suggested by the observation of
interference phenomena in nature.

An observable is a self-adjoint operator. The link between the math-
ematics and experiment is the following. If one attempts to measure the
observable 0 for a system in state 0' one will obtain an eigenvalue of 0.
Self-adjoint operators have real eigenvalues so we will get a real-valued re-
sult. If ip is an eigenvector with eigenvalue a, then, with no indeterminacy
or uncertainty, one will obtain the value a. If 4' is not an eigenvector,
one can express 4' as a linear combination of eigenvectors in the form
4' = Eaaiti where the 4'i are assumed to be eigenvectors with eigenvalues
ai. The result of measuring 0 will be ai with probability laiJ2 . It is
important to keep in mind that the absolute squares of the ai correspond
to probabilities but it is the ai themselves that enter into the linear com-
binations of states. This interplay between the complex coefficients and
the interpretation of their squares as probabilities is what distinguishes
the probabilistic aspects of quantum mechanics from statistical mechanics
which also has a probabilistic aspect but where one directly manipulates
probabilities.

The dynamics of systems is described by a first-order differential equa-
tion called Schroedinger's equation. Thus, the evolution of states in quan-
tum mechanics is determinate, just as in classical mechanics. The inde-
terminacy usually associated with quantum mechanics appears in the fact
that the state of a system may not be an eigenstate of the observable being
measured so the outcome of the measurement may be indeterminate.

Quantum mechanics is designed to handle systems in which the num-
ber of interacting entities (usually called "particles") is fixed. On the
other hand, experiment tells us that at sufficiently high energies parti-
cles may be created or destroyed. Quantum field theory was invented to
account for such processes. The original formulations of this theory due
to Dirac, Heisenberg, Fock, Jordan, Pauli, Wigner and many others was
quite heuristic. Now a reasonably rigourous theory is available; see the
book by Baez, Segal and Zhou [BSZ921 for a recent exposition of quantum
field theory.

The first need in a many-particle theory is a space of states which can
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describe variable numbers of particles; this is what Fock space is [Ge85I.
The second ingredient is the availability of operators that can describe
the creation and annihilation of particles. Of course, there is much more
that needs to be said in order to see how all this formalism translates into
calculations of realistic physical processes but that would require a very
thick book which, in any case, has been written many times over.

Given a Hilbert space H in quantum mechanics representing the states
of a single particle one can construct a many-particle Hilbert space as
.F(H). Suppose that ip, 0 E H; one interprets the element 0/ 0, q of
other in the state 40. Similarly for the other summands of .F(H). The

reason for the symmetrization is that one is dealing with indistinguishable
particles so that the n-particle states have to carry representations of
the permutation group. Thus one could have particle states that were
symmetric or antisymmetric under interchange leading to the bosonic or
fermionic Fock spaces respectively. It is a remarkable fact that both types
of particles are observed in nature. Notice that V/, A tb is identically zero
hence one cannot have many-particle states in the antisymmetric Fock
space in which both particles are in the same one-particle state. This
is observed in nature as the exclusion principle. Fock space is the space
of states for quantum field theory and is constructed from the space of
states for quantum mechanics.

The following interesting operators are defined on Fock space. Let
b = (b0, 01, 02,....• ... ) be an element of Y(H). Now let a be an

element of H. We define the operator C(a) by

Q~a)o = (0,, 0a, V2 +1 0,, o ..... )r n(sa .

This operator creates a particle in the state a. There is an analogous
operator A(a) which destroys a particle in state a. These two operators
are adjoint to each other. The fundamental algebraic relation between
them is A(a)C(a))-C(a)A(cr) = I where I is the identity operator. From
these two we can define the operator N(a) = C(o)A(a). Let vn be a state
with n particles in the state ar and with no other particles. For the rest
of the paragraph we drop explicit mention of or. Now A v, = Vfii vn- 1

and Cvn = Vrn+1 v,+,, hence we have Nvn = nvn. Thus v, is an
eigenstate of N with eigenvalue n; for this reason N is called the number
operator. Now we also have NA vn = (AC - I)A vn = A(CA - I)v, =
A(N - I)vn = (n - 1)A vn. In other words, A v, is also an eigenstate of N
with eigenvalue (n - 1). This justifies the name "annihilation" operator.
A similar calculation can be done for the creation operator. If we are
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successful in developing a theory of reduction of proof nets in terms of
operator algebras, in the sense of Girard's geometry of interaction, we will
have the A and C operators available. We hope that these can be used to
give a quantitative handle on resource consumption during computation.

The presentation of Fock space above emphasized the concept of
many-particle states. Mathematically, however, F(H) is just a Hilbert
space and can be presented differently. As we have shown in the last
section, it can be presented as the space of holomorphic functions of a
Hilbert space (the details are somewhat different from the Banach space
case but the ideas are essentially the same). The space of holomorphic
functions has as its inner product

(g,f) = Tk..Jf(z)g()Ie-&zdzd.

(See [IZ80] page 435, for example.) What do the creation and annihilation
operators look like from this perspective? For simplicity, let us look at
power series in a single variable z. This amounts to only looking at the
many-particle states of the form or tensored with itself. The creation
operator is just z • (.) while the annihilation operator is just d(.)/dz. One
can easily check that (AC - CA)f = d(z * f)/dz - z * df/dz = f; in
other words the basic algebraic relation holds. Furthermore one can ask
what the eigenstates of A and C look like. Clearly the eigenstate of C
is just the zero vector. The eigenstate of A is the state represented by
the holomorphic function eZ. These states actually exist in nature and
are called "coherent" states; they occur, for example, in lasers. The key
point about coherent states is that they "look classical"; one can remove
a particle without changing the state. As such they bear a superficial
resemblance to the role of ! formulas in linear logic.

7 Conclusion

To summarize the results we have claimed in this paper, we have pro-
duced models of the following fragments of linear logic. First, in finite-
dimensional vector spaces we have a complete model of classical linear
logic, albeit with a compact category, so that the tensor and par are
identified, as are ! and ?. In the category of symmetric Banach alge-
bras we have a model of the ®, x, E, ! fragment. This category cannot
be endowed with closed structure, since Hom(X, 1') = Hom( I ® X, Y) =

Hom( I, X -o Y); in this category the unit I for ® is also the initial object
so the last hom set would have to be a singleton, clearly not the case for
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arbitrary X, Y. The closely related B&ANCCOA has several very pleasant
features as a model of the multiplicative and additive fragment of linear
logic-it is a rare example of a category of linear spaces which is neither
additive nor compact-but unfortunately it is not possible to extend this
to a model of ! on the algebra category as we did with BANA C7W as
the exponential isomorphism fails there. In ?1-B£C'7ZT we get results *1
analagous to those with B.AJ.A.CH, modelling the ®, x, ED, ! fragment in
the category of algebras. In addition to producing these models, we have
described a mathematical representation for ! using holomorphic func-
tions which suggests that one might profitably think of computability in
terms of analyticity rather than continuity. Furthermore the mathemat-
ical structures described in this paper arise from quantum field theory
and are suggestive of links with that subject.

It is crucial that one appreciate the differences between our work and
that of Girard in [G89]. He has also used Banach algebras but all proofs
are represented in a single Banach algebra, whereas we model formulas
as individual algebras, with proofs as algebra homomorphisms. That is
to say, we work in the category of Banach algebras, rather than inside a
particular algebra. His major achievement is modelling cut elimination
in terms of operator algebras. We on the other hand model provability
in the appropriate fragment of linear logic.

Our next goal is to model the proof theory of linear logic in the spirit
of Geometry of Interaction. Rather than following Girard, we will be
guided by the following intuitions which are suggested by the physical
interpretation of Fock space. We think of formulas as representing states,
that is to say elements of a Fock space; a proof represents the process of
interaction between particles in the initial state resulting in the particles
observed in the final state. Mathematically the process is described by a
combination of creation and annihilation operators. Proof normalization
transforms processes into "observably equivalent" processes. In partic-
ular, we hope that our version of such a theory will permit a sharper
analysis of complexity of computations.
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Abstract. There is a standard syntax for Girard's linear logic, due to
Abramsky, and a standard semantics, due to Seely. Alas, the former is
incoherent with the latter: different derivations of the same syntax may
be assigned different semantics. This paper reviews the standard syntax
and semantics, and discusses the problem that arises and a standard
approach to its solution. A new solution is proposed, based on idea.,
taken from Girard's Logic of Unity. The new syntax is based on pattern
matching, allowing for concise expression of programs.

1. Introduction

Somewhere inside linear logic, there is a programming language struggling to
get cut. We wish to define an analogue of lambda calculus to solve the following
equation

lambda calculus
intuitionistic logic - linear logic

What does this language look like?
One would think the answer should be straightforward by now. There is the

linear logic of Girard [Gir87], there is the syntax of Abramsky [Abr90], and there
is the semantics of Seely (See89]. Each of these has become a standard.

Abramsky was inspired by the earlier work of Lafont (Laf88I and Holmstr6m
[Hol88], and in turn inspired related systems by Chirimar, Gunter, and Riecke
[CGR92], Lincoln and Mitchell [LM92], Mackie [Mac9l], Troelstra [Tro92], and
Wadler [Wad9O, Wad91].

Seely provided a categorical model, that subsumes other models such as
coherence spaces [Gir87], event spaces [Pra9l], games [LS91], and the Geometry
of Interaction [AJ92].

Unfortunately, Abramsky's syntax is incoherent with Seely's semantics: dif-
ferent derivations of the same term may yield different semantics. The basic
problem is that Promotion does not commute with substitution. All of the above
syntaxes suffer from a similar problem in one form or another, meaning that it is
difficult to assign them a meaning in any of the above models. (While the above
rightly credits Abramsky's influence, it would be wrong to burden him with too
much blame. His syntax is coherent with the operational model he uses.)

This difficulty was spotted previously by myself [Wad92]. Other researchers
have not only observed the problem, but also proposed a solution in the form of
a syntax that 'boxes' the Promotion rule, in much the same way that boxes are
used in proof nets. Notable in this regard is the work of Benton, Bierman, de
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Paiva, and Hyland [BBdPH92], which provides a thorough introduction to nat-
ural deduction and sequent versions of linear logic, their categorical semantics,
and the associated proof theory.

This paper presents a new syntax for linear logic that resolves the Promotion
problem. The new syntax follows naturally from the idea of using patterns in
sequents to represent destructors. It is closely related to Girard's Logic of Unity,
LU (though without the polarities) [Gir9l]. Indeed, the syntax presented here
is based on a suggestion from Jean-Yves Girard, who pointed out to me that
the problems I had noted with the standard syntax are resolved in the syntax of
LU. The syntax also bears a passing resemblance to Moggi's calculus for monads
[Mog89].

The syntax has been expressed in a way such that Dereliction and Promotion
are made explicit, but Contraction and Weakening are left implicit. Even though
linear logic is a 'resource conscious' logic, it seems adequate to be conscious of
Dereliction and Promotion alone. The semantics introduces sufficient coherence
properties so that the precise order in which Contraction and Weakening is
applied is irrelevant. Such details may safely be omitted from the programme,
yielding a more economic mode of expression. For those who truly desire to
control all the details, a variant syntax that makes Contraction and Weakening
explicit is given at the end.

Another approach to giving a syntax for linear logic based on LU appears
in more recent work [Wad93]. That paper presents a more tutorial introduction:
it is based on natural deduction rather than sequent calculus, so it takes less
advantage of pattern matching, and it stresses the syntactic aspects of proof
reduction while ignoring the semantics.

The remainder of this paper is organised as follows. Section 2 presents
Abramsky's syntax. Section 3 presents Seely's semantics. Section 4 presents the
new syntax. Section 5 compares the new syntax with Girard's Logic of Unity.
Section 6 sketches some variations on the new syntax.

2 Old syntax

For simplicity, we restrict ourself to the connectives ® (tensor product), -o
(linear implication), & (product), and ! (of course). A type (or proposition) is
built from these connectives and base types.

A,B, C ::= X I (A ® B) I (A-o B) I (A & B) I !A

Let A, B, C range over types, and X range over base types.
For each of these types, there are terms to construct and destruct values of

that type.

t, u ::= z (t, u) I (let (x, y) = t in u) I (Ax. t) I (t u) I
(t,e u I (let (x, o)v=t in u)tIe(let (d Xy) = t in u)y
!t I (let !x = t in u) I (let (x@y) = t in u) I (let _ = t in u)
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Let 1, i range over terms, and f, z, y, z range over variables. The use here of
'let (z, y) = t in u' in comparison with Abramsky's 'let t be z ® y in u' merely
reflects a preference for the traditional notation, not any significant difference.

An assumption has the form zi : A, ... , x, : A. where all the variables
are distinct, and n > 0. Let F and A range over assumptions. Write r, A for !
the catenation of two assumptions; whenever this appears it is assumed that the
variables of r and A are disjoint. Finally, a judgement has the form r I- t : A. i

The rules for this version of linear logic are shown in Figure 1. Each rule has
zero or more hypotheses above the horizontal line, and a conclusion below. There
is one rule for each term form, with the exception of the two rules Exchange and
Cut. The Exchange rule expresses that the order of assumptions is irrelevant.
The Cut rule uses the notation ut[/z] to stand for the term derived from u by
substituting t for all occurrences of x.

Id A :A Exchange F,x:,A, y:B,A-t: C

uFit:A x:A, A-Fu:B

r, A F u[t/-x7: B

rFt -t:A F-u:B r,x:A, y1:B -t:C
r,'•- (t,u):(A(&B) -r,z:(AOB)F-(let(x,y)=zin t):C

--oR rx,z:A- t:B L Fl-t:A y:B, AI-u:C
r r (Ax. t) : (A --o B) r, f: (A -o B), 4 P- u[( t)/y]:C

rF-t:A FFu:BrF-(t,u):(A& B)

&-L r,z:AI-t: C r, y: BI-t: C
F, z: (A& B) F-(let (z,_) = z in t): C F, z: (A & B)F(let (_, y) = z in t): C

Promotion z,:!A,, ... ,z:!A,,F-t:B Dereliction 1, x: A F- t: B
S: !A,, ... , x.:!A. F- ete:!B F, z: !A I- (let!z = z in t): B

F,z:!A I-:(let( y) t:B Weakening F, z:!Al-(let =zin t):B

Fig. 1. Old syntax

The rules are given in sequent calculus style, so constructors are represented
by rules (such as &-R) where the connective appears in the consequent of the
conclusion (to the right of F-), and destructors are represented by rules (such as
&-L) where the connective appears in the antaceedent of the conclusion (to the
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left of I-). Promotion constructs a term with 'of course' type: it is a !-R rule.
Dereliction uses a variable with 'of course' type once, Contraction duplicates it,
and Weakening discards it: we refer to these collectively as !-L rules.

The --o-L rule only allows one to apply a variable to a term. Readers may be
more familiar with the application rule of Natural Deduction, which allows one
to apply a term to a term.

-o-EF't:(A-oB) AI-u:A
r, A F-(tu) : B

This rule is derived as follows.

Id
A -u :A y :B -y :B

F'-t:(A-oB) A,f:(A-oB)-(fu) :B Cut
r, A - (t u) : B

Note the central role played here by Cut. Sequent and natural deduction versions
of linear calculus are presented and shown equivalent by Lincoln and Mitchell
[LM92]. Various mixtures of the two systems have been used by various re-
searchers [BBdPH92, CGR92, Wad90, Wad9l].

Here are a few example judgements.

i-(Az.A\y.let _ = yin x) :A-o!B-oA
- (,r. \s. Ax. let !f = r in let !g = s in let (y@z) = x in f y !(g z))

!(!A -o !B -o C) -0!QA -o B) -o -- C
F (Ax. let (y, z) = x in

!(let !r=y inlet _ =zin r,let !s= zinlet_=xin s))
(!A ® !B) -o !(A & B)

Because of the Cut rule, an unnerving property of this system is that terms
do not uniquely encode derivations. For example, the judgement

z : !!A F- !(let !x = z in x) : !!A

has the derivation

Id
z : !A F x :!A

(*) z :!!A I- (let !x = z in x) :!A Dereliction

Promotion
z : !!A F- !(let !z = z in x) :!!A

and also the derivation Id Id
x : !A F- x : Ay:A - :A

Dereliction y y Promotion
z z:!!A F(let !=zinx):!A y:!A -!y:!!A Cut

z : !!A F- !(let !x = z in x) : !!A.
At first this may seem vaguely disturbing. We shall see shortly that it is pro-
foundly disturbing, because each of these derivations is attached to a different
semantics.
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3 Semantics

This section presents Seely's model of linear logic, restricted to the case of in-
tuitionistic linear logic. Seely's model is normally thought of as deriving from
*-autonomous categories, but the dualising object * is only required to model
classical linear logic.

Anticipating that objects will model types and assumptions, and that arrows
will model terms, let A, B, C and F, A range over objects, and t, u, v range over
arrows.

A model of intuitionistic linear logic is provided by a category with the
following structure.

- It is symmetric monoidal closed, with unit object 1, tensor ®, and internal
hom --0. The transpose of t : F ® A --* B is curry(t) :F -* (A -o B), and
the counit is apply : (A -o B) ® A --* B.

- It possesses finite products, with terminal T and product &. The unique
arrow to the terminal is () F --* T, the mediating morphism of t F -* A
and u : F --+ B is (t, u) : F --* A&B, and the projections are fst : A&B -- A
and snd : A& B -- B.

- It possesses a comonad L. The Kleisli operator of t : !A --* B is kleisli(t)
!A -- !B, and the counit is counit : !A -* A.

- There are isomorphisms 1 _ !T and !A ® !B t_ !(A & B). These induce a
comonoid structure on each object !A that is natural in A, given by

discard
!A - 1 = 1A -IT L_ 1,

!A duplicate I !(id,id)!A -fIA ® IA = IA -f I(A & A) • !A ® IA.

A categorical model is obtained by associating with each base type an object
in our category, inducing a map from types to objects. Write A for both a
type and its corresponding object. Each assumption F = zi : A,, ... , Tn : An
possesses a corresponding object F = A, ® ... ® An; the empty assumption
corresponds to the unit object 1.

Each judgement F I- I : A corresponds to an arrow t F --+ A. Fi8,ire 2
shows how each derivation induces an arrow which is its semantics.

Since a given judgement may have more than one derivation, we must verify
that all possible derivations of a judgement assign it the same semantics. This
property is called coherence, and its importance was noted by Breazu-Tannen,
Coquand, Gunter and Scedrov [BCGS91]. In our case, two derivations of a judge-
ment can differ only in their use of the Exchange or Cut rules, since uses of all
other rules are encoded in the term. Coherence is guaranteed for Exchange by
the fact that ® is symmetric monoidal.

Unfortunately, the Cut rule does indeed introduce incoherence, when used
in conjunction with Promotion. The derivation (*) given previously induces the
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Id T Exchange A
A-A FrB®A®4 _F®A®B®A-1 C

CutF-.A AOA-B
tFA A ®A - Bt~it

S I. tF-*A A--B ___ A__B-*___
-R r -AAB -1, FAB-C

FA- A®B F®(A®B)•-F•AB- C

-o-R F®A-B

F - (A -o B)

F-A B®A--Cdt~sd@id cpjiF® (A -o B) ® A ------ A® (A -o B) 0 A 4 (A -o B) 0 A ® A- B® A -- C

t

F--A F-B
&-R F (A & B)

F®A--*C F B--*C
Fz- (9o A C r (& B - * c

F®(A&B)-----*F®A- C F®(A&B) -0., B-C

!A, ® " .. (!A. =--!(A, & ... & A.) '- B
Promotion kA(,)is(f)

!A A.)• ----- B

Dereliction F®A B
id! - oa~nt r(A tB

F(&!A F!A .B

Contraction idOdupIik.-tB
F® !A F® (!A ®(!A) = F® !A 0!A - B

t
F -- B

Weakening F-B
F !A - I= F- B

Fig. 2. Semantics
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"semantics
Id

Dereliction(*) -i••'t!

Promotion!!A klesohqcount)• *1.
The derivation (**) given previously induces the semantics

Id Idid i!A ---1 !A !A -_d!A
Dereliction Promotion(**) counat kiesls( ,d)

!!A ---- !A !A - !!A
Cut

counit 
kleish(sd) )

U 1!A - f !!A.

These are not necessarily equal. The arrow for (*) is necessarily the identity, but
the arrow for (**) is not. We thus have the following.

Counterexample. The syntax of Figure 1 is not coherent with the se-
mantics of Figure 2.

This problem arises only with the Promotion rule.

Theorem. The syntax of Figure 1 is coherent with the semantics of
Figure 2 if Promotion is not used. If a term does not contain ! as a
constructor, then all derivations of it will have the same semantics, even
if they use Cut.

The proof is by examination of overlapping rules.
All of the variations of Abramsky's syntax cited above suffer from this prob-

lem in one form or another. In a natural deduction system, this problem reveals
itself in a failure of the Substitution Lemma: substitution does not commute with
Promotion [Wad92]. The same difficulty is at the root of problems that Lincoln
and Mitchell [LM92] and Chirimar, Gunter, and Riecke [CGR92] encountered
with Subject Reduction theorems, forcing them to be restricted in various ways.

One way to fix the problems is to restrict the class of categorical models. In an
earlier paper [Wad92], it was shown that substitution commutes with Promotion
if and only if the categorical model satisfies counit; kleisli(id) = id. This is not
very satisfactory, as none of the models cited at the beginning of this paper
satisfy this restriction. Nonetheless, similar restrictions appears in the work of
O'Hearn [O'He9l] and Filinski [Fil92], and this may explain why.

Another fix is to revise the syntax of Promotion, so that it records explicitly
what substitutions have occured. This suggestion has been made by Benton,
Bierman, de Paiva, and Hyland [BBdPH92] and by Reddy [Red91]. The syntax
of promotion is changed so that the term !t is replaced by ![Ul/,X1, .. /,.]t,
where zr,... , zn are all the free variables of t. Here the square brackets are

Lam a a ma I ~ ll l
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concrete syntax; this concrete syntax is chosen to resemble the meta-syntax for
substitution, since the roles are similar. The revised Promotion rule is as follows.

Promotion' z: !A,..., :!A - t : B

ZI : !Al, ... , z,, : !A. F ![zj/zj,..., z,,/r,]tB

After promotion, the free variables of the term are z1 ,. . ., zn, and any substitu-
tions for these variables will be explicit in the term. By acting as a barrier to
substitution, the new syntax performs much the same role that boxing does in
proof nets [Gir87j. It is possible to show that this 'boxed' syntax is coherent: all
derivations of a term have the same semantics.

Returning to our example, the first derivation becomes

Id
z:!A F z:!A

(*) y : !!A F (let !x = in z) :!A Dereliction

Promotion'
z : !!A F- ![z/y](let !x = y in z) :!!A

and the second becomes
Id Id

z: !A -x: !A y : !A I-y : !A
(**) z:!!AF(let !z=zinz):!A Dereliction w: !A F !(w/y]y: !!A Promotion'

Cut
z : !!A F !!(let !z = z in x)/y#]y : M!A.

Now the terms are different, so it is not a problem that they are assigned different
semantics.

The key idea here is that there is a barrier around Promotion indicating what
substitutions occur. The next section will reveal a different syntax that erects a
similar barrier.

4 New syntax

The new syntax makes three significant changes. First, it introduces a notion of
pattern. Whereas previously assumptions paired variables with types, now they
will pair patterns with types. Second, the various instances of 'let' that appeared
previously, associated with the O-L, &-L, and !-L rules, are now all consolidated
into a single 'let'. Third, there is no explicit indication of Contraction or Weak-
ening in the terms. (This third change is convenient but not essential, and we
will see how to undo it in the next section.)

For each type, there is now a term to construct values of that type, and a
pattern to destruct values of that type. The exception is -o, which has terms for
both construction and destruction. There is also a 'let' term.

p, q ::= x (p, q) I (p,-) I ( q) I !x
1,u ::=z 1(t,u)I (Ap.t) I(u) I (t,u) 1!1t (letp= tin u)

Let p, q range over patterns, t, u range over terms, and f, I, y, z range over
variables. Note that patterns for the types ® and & may be nested, but patterns
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for the type I may not. We will see below that this system guarantees coherent
semantics, but that if nested ! patterns were allowed then coherence would again
be lost.

An essumption now has the form p, : A,,...,p,, : A where n > 0 and no
variable appears more than once in all of the patterns combined. Again, let I, A
range over assumptions, and judgements have the form F I- t: A.

The rules for this version of linear logic are shown in Figure 3. With the I
exception of the new rule Let, there is a one-to-one correspondence between

rules in the old syntax and rules in the new syntax. The O-L, &-L, and !-L rules
now all introduce patterns rather than 'let' terms. The introduction of 'let' terms
has been factored out into a separate Let rule. The three !-L rules all introduce
the same pattern, so there is no explicit indication of Contraction or Weakening.
The appearance of ! patterns in Contraction helps to explain the restriction to
variables, since this makes the substitution associated with Contraction easier
to express. Promotion is changed so that in addition to requiring that all types
in the assumption begin with a !, all patterns in the assumption must also do
so.

This last change is the critical step - the ! patterns will act as a barrier to
substitution, just as the 'boxed' syntax at the end of the last section did. What
was written ![u,/i, . .. , u./x,]It in the boxed syntax is here written

let !yl = ul in ... let !y. = u,, in t[!y1/xi,...,!y,?/xn].

Note that ![ui/zi]t is concrete syntax, whereas t[!yi/l,] is meta-syntax for sub-
stitution. Although here the new syntax appears less compact than the boxed
syntax, in practice the new syntax will often be more compact because of pattern
matching, and because Contraction and Weakening are not explicitly indicated.

The Let rule has no logical content, as erasing the terms from the hypothesis
or the conclusion gives the same logical judgement, r, A I- B. Indeed, the Let
rule can be simply considered a convenient abbreviation, as it can be derived
from the -o rules and Cut.

Id Id
Fr,p:AI'u:B -- o-R x:AFz:A y:B'y:B o.L

"F F l-(Ap. u) : (A --0 B) f : (A --o B), x : A F- (f x) : B CuCut
r, z A - ((Ap. u)z): B

Thus, we can take (let p = x in u) as an abbreviation for ((Ap. u) z).
The rules in Figure 2 for assigning a semantics to the derivation of a term still

apply. The Let rule assigns the judgement in the conclusion the same semantics
as the judgement in the hypothesis.

Theorem. The syntax of Figure 3 is coherent with the semantics of
Figure 2.

The proof is by examining the possible overlaps between rules.

S• •: i N mmmim am a m m H l i i
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Id Exchane r, p: A, q: B,A I- t: C
z:AI-z:A r, q:B,p: A,AI F-t: C

Cut rFt:A z:A,d 1-u:B r, p:AF-u:BCut r,, - [tlz]: B Letr, z: A I- (let p = u in.):B ]
o F~t:A dF- u: B OL r, p : A, ' 9:BBF t: C •

r,4F-(t,u):(A®B) r, 1(p,'): (A) B), -'t: C

-o-R F,p:AI-t:B -o-L rI-t:A y:B,4 I-u:C
r i- (Ap. t) : (A -o B) r, f: (A -o B),A I- U[( t)/]):C

&-R rI-t:A rI-u:BrF (t,u): (A&B)

&-L r,p:AI-t:C r,q:BI-t:C
F, (p,_): (A& B) F t: C F, (,q): (A& B) ý- t: C

Promotion !x# :!A ,..., !x,:!A i- t: B Dereliction r, z: A i- t: B
1z : ... , 'x :!A I!t:!B F,!z:!A F t: B

r, !x: A,!y: AIF t: B n r-t:B
Contraction F, !z : A - t[z/x,z/y] : B Weakening F,!z:!A I- t : B

Fig. 3. New syntax

"Here are the example judgements of Section 2 revisited.

F- (At. M•y. z) : A -0 !B -o A
I- (f. A!g. A!x.f !x !(g !z)) :!(!A -o!B -o C) -0!(!A -o B) -0!A -o C
F-((!r, !s). !(r, s)): (!A ® !B) -0 !(A & B)

The new syntax is considerably more compact.

Returning to our main example, the first derivation becomes

Id
z :!A -z :!A

(*) !z :!!A!-z:!A Dereliction

Promotion' !z : UAF- !z :!!A.

The second derivation is no longer valid. The Promotion rule no longer ap-
plies, because it contains patterns not in the proper form. In order to obtain the
same semantics as previously, the derivation must be rewritten. The old use of
the Id rule, which yielded z : !A, is replaced with a use of Id, Dereliction,
and Promotion, which yields !y : !A I- !y: !A. Both derivations have the same
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semantics (the identity arrow), but further promotion is only possible for the
latter.

Id
z:AI'z:A

Dereliction!z!A I- :A
Promotion!z:!A I- !z :!

(**) Id Promotion
z :!A - z :!A !: !A F- !!x M

Dereliction Let
!z !!A- z :!A w :!AFlet !z= win !!z:!!ACut

!z : !!A F- (let !x = z in !!z) : !!A.

The new (*) and (**) have the same semantics as the old. As with the boxed
semantics, we now have distinct terms yielding distinct semantics. Every old
derivation carries into a new derivation with the same semantics; the only change
needed may be to replace some uses of Id with Id, Dereliction, and Promotion,
as above; and to add some uses of Let.

If nested ! patterns were allowed, the coherence property would again be lost.
Consider the (illegal) judgement !!z : !!A F- !z : !A. There are two different proof
trees that yield this judgement. The first applies rules in the order Id, Derelict,
Promote, Derelict and has semantics couait; kleisli(counit), which simplifies to
counit. The second applies rules in the order Id, Derelict, Derelict, Promote and
has semantics kleisli(counit; counit), which does not simplify to counit. Hence
the restriction that ! patterns cannot be nested. There is no similar problem for
0 or & patterns.

Since there are no longer explicit terms for Contraction and Weakening, these
must be checked for coherence. Coherence here is guaranteed by the fact that
discard and duplicate form a comonoid: duplicating and then discarding is the
same as the identity; two duplications in different orders have the same meaning,
and so on. The situation is very similar to that for Exchange, and indeed there
appears to be no more reason for textually indicating each use of Contraction
or Weakening than there is for indicating each use of Exchange.

The new syntax satisfies a pleasing number of equivalences. In the case where
the 'let' is simply binding a variable, it can be replaced by substitution. Further,
whenever a constructor meets a corresponding destructor, it can be substituted
out. Finally, 'let' satisfies a pair of familiar laws. All these points are summarised
in the following.
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Theorem. The following equations hold for the syntax of Figure 3 with
the semantics of Figure 2.

(1) (let z = tin u) = u[t/z]
(2) (let (p,q) = (t,u) in v) = (let p = t in (let q = u in v))
(3) ((Ap. u) t) = (let p = t in u)
(4) (let (p,J) = (t, u) in v) = (let p = t in v)
(5) (let (_, q) = (t, u) in v) = (let q = u in v)
(6) (let !z = !t in u) = u[t/z]
(7) (let p =t in p) = t
(8) (let q=(letp=tinu)in v)=(letp= t in(let q=uinv))

These laws assume no collision of bound variables; e.g., in law (2), the
free variables of u must not be bound in p.

Law (1) is immediate from coherence. Laws (2)-(6) and (8) follow immediately
from the categorical semantics. Law (7) is proved by induction on the pattern.

Here are equations (6)-(8) again, with the last two instantiated to the special
case of ! patterns.

(let !x = !t in u) = u[1/x]
(let !x=t in!x)=t

(let !y = (let !x = t in u) in v) = (let !x = t in (let !y = u in v))

These are reminiscent of the three equations satisfied by Moggi's calculus for
monads [Mog89]. For our syntax the first equation depends on the right counit
law for comonads and the second equation depends on the left counit law for
comonads; while for Moggi's calculus the first equation depends on the left unit
law for monads, and the second equation depends on the right unit law for
monads. However, the analogy goes awry with the third equation. Moggi's last
equation depends on the associative law for monads, while our last equation has
nothing to do with the associative law for comonads. (However, the associative
laws for comonads is important in verifying the coherence of the new syntax.)

5 Logic of Unity

The system described here is closely related to Girard's Logic of Unity (LU)
[Gir9l]. Indeed, it was inspired by it: the trick that avoids coherence problems
was stolen from LU. To clarify the relation, this section present an appropriately
simplified version of LU. Major differences from Girard's LU are that this version
is restricted to the intuitionistic fragment, and there are no polarities.

In this variant of LU, there are two sorts of assumptions, linear and intu-
itionistic. Linear assumptions pair patterns with types, so they have the form
Pi : A 1 , ... p. : A., while intuitionistic assumptions pair variables with types,
so they have the form r, : A 1,...x, : A,,. Linear assumptions may not be
contracted or weakened, while intuitionistic assumptions may. The Contraction
rule is much more neatly expressed in terms of variables because it involves
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substitution, which partly explains the restriction to variables in intuitionistic
assumptions. Let F, A range over linear assumptions, and 0, T, range over intu-
itionistic assumptions. A judgement has the form F; F- i : A, where the linear
and intuitionistic assumptions are separated by a semicolon.

The rules for this variant of LU are shown in Figure 4. There is a close
correspondence with our new syntax of Figure 3, here called LL for short. The
previous Id rule is split into two rules, Id and Id-Int, the first dealing with a
linear assumption and the second dealing with an intuitionistic one. Similarly,
the previous Exchange rule is split into Exchange and Exchange-Int. The logical
rules for 0 and -o deal with linear assumptions. Promotion and Deriliction are
logical rules of ! and deal with the relation between the two sorts of assumptions,
"while Contraction and Weakening have metamorphosed from logical rules of ! to
structural rules dealing with intuitionistic assumptions.

SId Id-Int

s:A; F-x:A ; x:A•x-:A

Exchange F, p: A, q: B, A; 0- t: C Exchange-Int T; 0, z: A, y : B, I F t: CF,q B,p:A,d; 01t-t C F;0,-y :.B, x: A, ý-Ft: C

Cut F; t:A z:A,d; P-u:B Let F,p:A; 0-u:BCu , .6; 0, WP F u[t/x]: B Le , x: At 0 F- (let p = z in u): B

0-R r; 0 t:A A; TFI-u:B F,p:A,q:B;0F-t:Cr, A3; 0, T, F- (t, u) : (A 0 B) r- , (p, q) : (A 0 B); -)0 t t: C

--o-R F, p:A;0Ft-t: B - -o-L r;;0 Ft: A y: B,d; T, Fu: C
r; 0 F (Ap. t) : (A -o B) - r,f: (A -o B), A; ,TF- t4(f t)/y]): C

&-R F; 0 Ft: A r;;0Fu: B
;; 0F-(t, u) :((At&)B)

&-L rp:A; OF-t:C F,q:AB; 0-t:C_r,(p,_): (A& B); OF-t: C r,(_, q) :(A &B); 0-Ft: C

Promotion OF t !:B Dereliction r; !z A, 4O kt: B
OF~t! T z: , 0F; t: B

Contraction F; 0, z : A I- tjz/z,z/y]: B Weakening r; OA t: B

Fig. 4. A version of the Logic of Unity

It is possible to translate LU into LL. A judgement of the form F; 0- F
t A in LU corresponds to a judgement F, !0 F t: A in LL, where if 0 is

i.
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v: A,, ... , z,, A,, then !0 is !r, : !A 1, ., !z, :!A .

Each rule in LU corresponds to the rule of the same name in LL, with Lwo
spectacular exceptions. Id-Int in LU translates to a combination of Id and Deret
liction in LL.

Id
Id-lnt A A z: A - x : A

;d-Tn __:_A__-___:_ADereliction

!z !A I-z : A

On the other hand, both the hypothesis and conclusion of the Dereliction rule
of LU translate to the same judgement of LL.

F, !z !A; OF - t: B
Dereliction F z:A,l-t:B *-* F,!z:!A,!OF -t:B

Thus Id-Int in LU corresponds to Dereliction in LL, while Dereliction in LU
corresponds to nothing at all!

The translation induces the obvious semantics: the semantics of a judgement
in LU is the the same as the semantics of the corresponding judgement in LL.
Analogues of the theorems of Section 4 hold.

There are a number of rules which one would expect of LU, which can be
derived from the rules given here. The most important of these is Cut-Int.

Cut-Int ; 0 F_- _:_A A; x:A,_P_-u:_ B

,A; P, /' I- (let !x = !t in u) : B

This rule is derived as follows.

A; x :A, T1 F- u :B
Dereliction

;•-:A A, !z :!A; gPl- u:BPromotion 
Let

; #- 4:!A A,y:!A; !T/-let!x=yinu:B

A; ', L - (let !x = ! in u) : B

Observe that the semantics of (let !x = !I in u) is identical to the semantics of
uit/x], which may offer further scope for simplification.

6 Variations

Many programmers are unfamiliar with the -o-L rule of the sequent calculus, and
may find the -o-E rule of natural deduction more natural. On the other hand,
the use of sequent calculus seems to naturally capture the pattern matching in
the ® and & rules, so there may be some value in exploring a hybrid of the two
systems. One variation would simply replace the --o-L rule by -o-E. This might
be easier for programmers to follow, though important logical properties such as
cut-elimination would be lost.
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The work presented here extends straightforwardly to handle sums.

FFt:A Fl- u:B
r F F(inlt) (A eB) Ft- (inr u) (A EB)

rFF-z:(AEB) 6,p:AI-t:C A,q:BI-u:C C
:DL rF, A - (casezof{inlp -- t;inrq -* u}): C

These rules do not exploit the power of pattern matching as thoroughly as one
might hope; for instance, patterns of the form (inl p) and (inr q) cannot appear
nested inside other patterns. An open question is whether there is a different
approach that allows for such nested patterns. One path in this direction is
indicated by the work of Breazu-Tannen, Kesner, and Puel [BTKP93).

Another variation is to include patterns to indicate Contraction and Weak-
ening. The grammar of patterns is divided into patterns and of-course patterns,
the former being a superset of the latter.

p, q x I (p, q) I (p,_) (-, q) I o
o, r (o r) I -

Let p, q range over patterns, and o, r range over of-course patterns. The new
rules are as follows.

Promotion o:!A 1,..., o :!A -t :B Dereliction F, z:AI-t :B
ol !A•,.., o. !A,,• !t :!B T, !z :!A ý- t : B

Contraction F,o:A,r AF-t B W i t B

Dereliction, Contraction, and Weakening introduce the three different sorts of
of-course pattern, while Promotion allows any of-course pattern. This variation
is inciuded simply to illustrate that the approach used here does not preclude
the use of specific patterns to indicate Contraction and Weakening. However,
in practice there does not seem to be much value in including such detailed
information.

Acknowledgements. I am grateful to Jean-Yves Girard, Samson Abramsky,
Robert Seely, Martin Hyland, Valeria de Paiva, and Uday Reddy for their in-
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1 Introduction

Salomaa in [4] presented a complete axioniatisation for language equivalence of regular expres-

sions. In [2] Milner proposed a complete proof system for bisimulation equivalence over finite

state behaviors. Bisimulation equivalence is a very discriminating equivalence. Later, a weaker

equivalence, called observational congruence, was considered by Milner and its complete ax-

iomatisation was provided in [3]. Unlike language equivalence, both bisimulation equivalence
and observational congruence distinguish between finite state behaviors on the basis of their

branching structure.

In this paper trace congruence is considered. Trace congruence ignores branching structure
and is close to language equivalence of classical automata theory. We provide a complete proof

system for trace congruence over finite state behaviors presented as p-expressions.

The paper is organized as follows: In Section 2 finite state behaviors are described as p-

expressions. Section 3 introduces trace equivalence. Unfortunately, trace equivalence is not
substitutive. Section 3 provides a characterization of the fully abstract refinement of trace

equivalence which we call trace congruence. A proof system for trace congruence is presented
in section 4. The proof of its completeness is given in section 6. Section 5 contains some
definitions which are helpful for the completeness proof.

In section 7 we comment about the relationship between our axiomatisation and Salomaa's
classical axiomatisation of language equivalence for regular expressions. One of the open ques-
tions mentioned in [2] is to find an axiomatisation of bisimulation equivalence for finite state

behaviors presented as regular expressions. We provide such an axiomatisation for a variant of
regular expressions. Two appendixes contain the proofs of technical lemmas.

2 p-Expressions

We are dealing in this paper with finite state behaviors presented as p-expressions. Let us first

recall some definitions and facts about p-expressions and their behaviors. The presentation is

based on [2, 3].
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We presuppose two fixed sets

Act l {a, a,... b, b],...} the actions

Var = {X,X .... Y, 1', .} the variables.

pA-expressions are defined by the following grammar:

E ::= OIXIaEIE + EjI.X.E, where X E Var, a E Act.

p stands for recursion (binding the variable which follows it). The notions of free and bound
occurrences of a variable in an expression are defined as usual. An occurrence of X is guarded
in E if it occurs within subexpression aF of E. A variable is guarded in E if all its occurrences
in E are guarded.

We write E{EI/X,,. . . EI./X,} for the expression obtained by simultaneous substitution of Ei
for each free occurrence of Xj in E, renaming bound variables as necessary. The definition is
standard and is omitted.

An expression can evolve to another expression by performing an action. We write E .- E'
if E can evolve to E' by performing action a. The definition of the transition relation a is
provided by the following inference rules:

Definition 1 E -a E' if it can be shown by the following inference rules:

1. aE -- E

E,+E---E2  E+E1 --- E2

8 E. .X.ElX) -E,
jX.E --+Ej

Charts generalize automata and are defined as follows:

Definition 2 A chart C is a quadruple < Q, s, D, E > where:

Q is a nonemply set (the nodes)

s E Q (the initial state)

D C Q x Act x Q (the derivations)
Ex C Q x Var (the extensions)

C is finite if Q, D, Ex are finite.

With A-expression E the chart (notations Chart(E)) is associated as follows:

Nodes: all A-expressions.

The initial node: E.
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(Ei, a, E2) E D if El a E 2 .

(E, X) E Ex if there is a free occurrence of X in E, which is not guarded.

Let a be an action and s, s' be states of chart C; we shall write .s A s' if (s, a, s') E D.

Charts are too concrete objects. Usually a behavior equivalence -. is introduced on charts
and the objects are -- equivalences classes of charts. One of the most important equivalences
studied in concurrency is bisimulation equivalence "-bi,. Milner showed

Fact 2.1 (p-expressions represent finite behaviors)

1. For every finite chart C there exists an expression E such that Chart(E) "6biz C.

2. For every expression E there exists a finite chart C such that Chart(E) -bi, C.

Bisimulation equivalence is a very discriminating equivalence and most equivalences studied

in the literature are coarser than it. Clearly, fact 2.1 holds when -bis is replaced by any

equivalence which is coarser than bisimulation. All these justify the use of an adjective 'finite

state behavior' with p-expressions.

3 Trace Equivalence and Trace Congruence

In this section we define trace equivalence on charts. Then, we find a fully abstract refinement

of trace equivalence wrt the operations: sum, prefixing, substitution and recursion.

Definition 3 (Traces and generalized traces.) Let C be a chart and so be its initial state.

a A trace of C is a sequence al ... a,,n of actions such that there exist nodes s1 ... as in C

and siI 14. s.i fori= 1...n.

9 A generalized trace of chart C is a pair consisting of a sequence al ... an of action and

a variable X such that there exist nodes s, ... sn in C. and si-I 2 si for i = I...n and

X E Ez(sn).

Remark: (1) The set of traces of chart C is a subset of Act'; the set of generalized traces of C

is a subset of Act* x Var. (2) The set of traces of C is prefix closed. i.e.. if a, ... an is a trace of

C then for every m < n its prefix a, ... am is a trace of C. In particular. every chart contains

the empty trace e.

We say that expressions E and E' are trace equivalent if their corresponding charts have the

same set of traces. For an expression E, we denote by trace(E) the set of traces of the corre-

sponding chart.
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Lemma 3.1 (Operations on traces)

1. trace(O) = fe) - the empty string.

L. trace(X) = {e} - the empty string.

S. trace(E + E') = trace(E) U trace(E').

4. trace(aE) = {as : s E trace(E)j.

Unfortunately, trace equivalence is not a congruence wrt substitution and the p operator. For
example, 0 and X have the same traces, but O{aO/X) and X{aO/X) have different traces. We
are looking for the maximal equivalence which refines trace equivalence and is a congruence wrt
prefixing, sum, substitution and fixed point. Such an equivalence is called the fully abstract
refinement of traces wrt the above operations.

Theorem 3.2 (Full abstractness.) The fully abstract refinement of trace equivalence with re-
spect to sum, prefizing, substitution and recursion is characterized as follows: E and E' are

equivalent iff they have the same set of traces and the same set of generalized traces.

We will use the term 'trace congruence' (notation -t~o,) for this fully abstract equivalence.

Proof: The proof that this equivalence is a congruence is quite straightforward and is omitted.

To show that it is fully abstract, assume that the set of variables which are free in E and E' is
a subset of {XI,....X,.}. Let a,.. .a, be different actions which do not appear in E, E'. Then
E{a:O/XI ... aO/X.j and E'{aO/X1 ... a,O/X,,} are trace equivalent only if E and E' have

the same set of generalized traces. Therefore, if E and E' are related by a congruence •- which
refines trace equivalence, they have the same set of generalized traces. Since -. refines trace

equivalence, E and E' should also have the same set of traces.

To summarize, -trace is a congruence and any congruence - which refines trace equivalence
should refine -trace. Therefore, -trace is the fully abstract refinement of trace equivalence. 3

Remark: (1) Trace congruence is also the fully abstract refinement of trace equivalence wrt
to the operation prefix, sum and recursion. (2) If every node of charts C., C' has the empty
extension, then C and C' are trace congruent iff they are trace equivalent. In particular, trace
congruence and trace equivalence coincide for /i-expressions without free variables.

4 Proof System

Our proof system for trace congruence in addition to the standard equivalence and congruence
inference rules has the following axioms and fixed point inference rule.

Axioms
SI E + F = F + E
S2 (E + F) + G E + (F + G)

S3 E + E =E
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S4 E +0= E
Ri pX. E = pY.(E{Y/X}), Y not free in E

R2 pX. E = EfpX. EIX})

RS pX. E = pX. (E + X)

P1 aX + aY = a(X + Y)

Fixed point Inference Rule
R4 From E = F{E/X), X guarded in F, infer E = pX. F.

The set of axioms S1-S4 is sound and complete for bisimulation equivalence over the recursive
free subset of p-expressions [1]. It is well known that by augmenting this set by P1 a sound and

complete system is obtained for trace equivalence over the variable free subset of p-expressions.
Moreover, it is not difficult to check that S1-S4, P1 are also sound and complete for trace
congruence over the recursive free subset of p-expressions.

The main result of [2] is that the set of axioms SJ-S4, RI-R3 and fixed point inference rule

R4 is a sound and complete system for bisimulation equivalence. Our system is obtained by
augmenting this set by P]; we will show that it is sound and complete for trace congruence.

Notations: We write F- E = E' if E = E' is provable in our system. We write I-t E = E' if
E = E' is provable without using axiom P1. i.e. it is provable in Milner's system.

5 Systems of Equations

This section contains some definitions which are needed for the completeness proof given in the
next section.

Definition 4 (an (.t; f') system of equations) Let . = {X 1.  X,}, 1" = { 1, ... Y)} be
different variables and = {F ... F,,} erpressions with free variables in AT U 1'. A sequence of

formal equations Sys :=< X 1 = F1 .... X,, = F, > is called an (.k;: 1) system of equations; AT
are called the bound variables of the system and X, is the principxil variable of the system.

Definition 5 (Guarded, standard and deterministic systems)

"* An (fC; f') system is guarded if all AT variablks are guarded in the expressions F, of the

system.

"* A system is standard if all Fi are of the form 'jli, aijXf(1.j) + ZjE-K* 1 9(iij)"

"* A standard system is called deterministic if aj = ai*j, implies that j = j'.

Note that standard and deterministic systems of equations are guarded.

Definition 6 (Solutions of a system) Consider an (N 1 . .. ,:... .m I YM) system Sys with equa-
tions T= Fi, for i =1...n.
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e A sequence Ej, E2,.. .E, of expressions is a solution of Sys iff for every i

AE ,t•1. F,{E 1/X 1 ,... E,/X,}; expression El is called a principal solution of the system.

* El, E2,... E. is an Af-provable solution of Sys iff ý-k E, = F.{E 1/X 1,... EU/XIS for

every i; expression El is called a principal At-provable solution of the system.

* El, E2,...E,, is a provable solution of Sys iff - E, = F,(EI/X1 .... EI/X. for every i;

expression El is called a principal provable solution of the system.

6 Soundness and Completeness

Theorem 6.1 (Soundness) The axioms and the inference rules are sound for trace congruence.

As usual, the proof of soundness theorem is simple and we concentrate here on the complete-

ness proof. Our completeness proof is based on Milner's completeness proof for bisimulation

equivalence [2]. Many of our arguments are modifications of his ideas.

The following theorem was proved by Milner (theorem 5.7 in [21).

Theorem 6.2 (Unique Al-provable solution of equations.) Every guarded (XC; 1P) system of

equations Sys has a unique AM-provable solution, i.e.. Sys has an il-provable solution and if

both El . . 4E, and E' - E . are Al provable solutions of Sys then F-M%! Ej = E! for i = 1,..., n.

In [2] it was shown (theorem 5.8)

Theorem 6.3 (Equational characterization of p-expressions.) Every p-expression is a princi-

pal M-provable solution of a standard system of equations.

M-provable equations are provable, therefore,

Corollary 6.4 Every j4-expression is a principal provable solution of a standard system of

equations.

We strengthen the corollary and show

Theorem 6.5 Every pt-expression is a princilgol provable solution of a deterministic system of

equations.

Proof: The proof is given in appendix A. 0

Our proof of the completeness theorem uses the following

Claim 6.6 Assume (I) E "•trace (2) E is a provable principal solution of deterministic

system of equations Sys (3) E' is a provable principal solution of deterministic system of equa-
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tions Sys'. Then there ezists a guarded system Sys" such that both E and E' are its principal

provable solutions.

Proof: The proof is given in appendix B. 0

Theorem 6.T (Completeness) If E " E' then l- E E'.

Proof: Actually, Milner's proof of theorem 6.2 also gives the unique provable solution theorem:

every guarded system of equations has a unique provable solution.

Now, by theorem 6.5 there exist deterministic systems of equations Sys and Sys' such that E
and E' are principal provable solutions of Sys and Sys' respectively.

Therefore, by claim 6.6, there exists a guarded system of equations Sys" such that both E and

V are its principal provable solutions. Therefore. by the unique provable solution theorem,

- E =E'. 0

7 Relationship to Salornaa's axiomatisation

In [4] Salomaa presented a complete axiom system for language equivalence over regular ex-
pressions. Trace congruence is conceptually close to language equivalence. Our proof has the

same structure as Salomaa's (unique provable solution theorem. equational characterization

theorem), but in many technical arguments it is closer to Milner's proof for bisimulation equiv-

alence and surprisingly, we were unable to adopt Salonaa's proof for a complete axiomatisation

of trace congruence.

The main obstacle for extending Salomaa's proof lies in the fact that the empty language is

present explicitly in his axiomatisation and plays a very important role there. However, for trace

congruence there is no expression which 'corresponds' to the empty language. In particular,

unlike the language law bO = 0 = 4o. there exists no expression E for which aE is trace

congruent to bE.

In the rest of this section we consider an interesting subset of regular expressions. Adopting

Salomaa's results, we provide an axiomatisation of bisimulation equivalence and an axiomati-

sation of trace congruence over this subset. The proofs are omitted and will be given in the full

paper.

7.1 #-Expressions

In remark 5 of [4] it is explained how to axiomatise 'regular expressions' without the empty

language.

More exactly, Salomaa considers expressions constructed from an alphabet by the following

operations: concatenation, sum and positive iteration # (.4# = A + AA + AAA + ... ). Let
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us call such expressions - #-expressions. It is claimed there that the following proof system is

complete for #-expressions:

Axioms:

AI: Associativity of sum.

A2: Associativity of concatenation.

A3: Commutativity of sum.

A4: A(B + C) = AB + AC.

AS: (A + B)C = AB + AC.

A6: A+ A = A.

A'10: A# = A + AA#

Inference rules:

RI: Usual Congruence rules.

R2: A = BA + C implies A = B#C + C.

7.2 Embedding of #-expressions into ,-expressions

Similar to Milner's [2] embedding of the standard regular expressions into p-expressions one

can embed #-expressions into p-expressions.

Let X be a distinguished variable. Define:

1. Em(a) = aX for every action a.

2. Em(A + B) = Em(A) + Em(B).

3. Em(AB) = Em(A){Em(B)/X}.

4. Em(A#) = pY.A + A{Y/.X}

Remark 1. In the chart of Em(A) the nodes may have either an extension X or the empty

extension. From every node, a node with extension X is reachable. The initial node has the

empty extension. Such a chart can be considered as an automaton whose accepting states are

the nodes with extension X. The language accepted by this automaton coincides with the

language defined by expression A.

Remark 2. (Axiomatisation of trace congruence over #-expressions.) This embedding is

adequate for trace congruence, i.e., A = B is provable in Salomaa's axiomatisation iff Em(A) =

Em(B) is provable in our axiomatisation of trace congruence.

7.3 Axiomatisation of #-expression wrt bisimulation

Bisimulation equivalence, due to Milner and Park. is one of the most fundamental equivalences

that has emerged in concurrency. Its definition is omitted here, but let us note that axiom A'10

holds even for bisimulation equivalence, i.e. Ein( A#) is bisimilar to Em(A) + Em(A)Em(A#).
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It is also easy to see that the axioms Al, A2, A3, A.5, A6 and the inference rules Ri, R2 are

valid for bisimulation, but axiom A4 fails.

We do not know whether the set Al, A2, A3. AS, A6. A'10, RI, R2 is complete for bisimulation

equivalence over #-expressions. One can show that there exists no #-expression which solves
equation Y =bi. aY + b. We do not know how to characterize the systems of equations with I
the solutions bisimilar to #-expressions.

However, we can prove that a complete proof system for bisimulation equivalence is obtained

when R2 is replaced by the following inference rule:

R3: Every system of equations of the form 1Y = E"a.jYf.j}. + Ebi.. has at most one solution.

8 Further Results

(a) Axiomatisation of trace approximation - straightforward.

(b) r -action. The addition of axiom E = rE provides a complete axiomatisation of trace

congruence with unobservable action r.

(c) Divergence. Trace congruence identifies expressions 0 and ItX. X. We can introduce the no-
tion of divergence and provide a complete axiomatisation for the refinement of trace congruence

which properly takes into account divergence.
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Appendix

The appendix contains two sections. In section A theorem 6.5 is proved: in section B claim 6.6

is proved.
i

A Determinization

In this appendix we show that every expression is a principal provable solution of a deterministic

system of equations. This fact follows immediately from the corollary 6.4 and the following

Claim A.1 If El is a principal provable solution of a standard system of equations, then El
is a principal provable solution of a deterministic system of equations.

First, we introduce some notations which are helpful in the proof of the claim.

Let Xi = J•'jEJ ajjXf(ij) + EkEK, Yq(i,k) be an equation.

Define

S(i) = :aij :E J} - successor actions of Xi.

D(i,a) = {r: aX, is a summand of the equation} - a-derivatives of X;.

Ex(i) = {r : Y, is a summand of the equation} - extensions of Xi.

Extend point-wise these functions to the subsets of {1 .... p), i.e.

S(Q) = Ui•qS(i),

D(Q, a) = UjEQD(i, a),

Ex(Q) = UiEQEx(i).

Now, if Xi = jE aijXf(YJ) + kE'K, 1'9(i.k) is an equation in our system, it can be easily

shown, by the axioms for sum, that

l'M E
2

jEJ, aijXf(iJ) + "kEK' lg(i.k) ý aoES(i)(ErED(i,a) atX) + '-eEx(i) Yr.

Therefore, every standard system of equations is I-,• equivalent to a system with equations of

the form Xi = E S(i)(•Er(j.a) aXr) + 2
.EE•Xi) "r. From now on. we will only consider such

systems.

Now we are ready to start the proof of claim A.1.

Since E1 is a principal provable solution of a standard system of equations there exist E2,... E.
and a system of equations:

Z,
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X1 1:aES(1)(F-ED(1,a) aX,.) + ErEEx(1) 1'r

Ss Xi = E(,TD .aX,) + Z,'EE'('? "I

XP = .ES(P)(TrED(p~a) aXr) + Z,.EExG,)h 3.

such that for every i

lE,= ~(~ E,) + _ (1)
GES() ,ED(i.a) rEEx(i)

We are going to define a deterministic system of equations Sys' and to show that El is its
principal solution. The bound variables of Sys' are indexed by the subsets of {l,...p); X, is
its principal variable. For a set Q C {1,...p} the equation for XQ is:

XQ = EOES(Q)aXD(Q..) + •,EEr(Q) Y,

It is clear that this is a deterministic system.

Define Eq -- &EQ E,. We claim that i- Eq = &ES(Qj IED(QOJ) + ZEEX(QJ )'"

Note that

b EQ, + EQ2 = EQIUQ 2  (2)

Recall that by the assumption of the claim

F-E, = 1: ( F ,,E,) + F Y, (3)
aES(i) rED(i.a) rEExfi)

Therefore, adding the equations for i E Q

.EQ iEQ OES(M rED(iýa) EXi

The left-hand side is EQ by the definition of EQ. The right-hand side can be rearranged. by
the axioms for +, and gives

GEU,EQS(i) ýEU,EQD(i.O) rEU,EQE(vi)

By the idempotence of +, and the fact that S, D. Ex are extended point-wi,3e to sets we obtain:

1EQ= F ( Y ,,E)+ F Yr (6)
aES(Q) rED(Q.a) rEEx(Q)

Now applying the prefix axiom, aX + aY = a(X + Y). we derive

F-Q= E + Y E,+ 3 1 (7)
aES(Q) rED(Q.a) rEE.r(Q)

By the definition, ED(Qa) F•iED(Q,O) E1 , therefore
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I-EQ a aED~q.)+ y ': (8.S)
aES(Q) rEEr(Q)

Hence, the equations obtained by substitution of EQ for XQ in the equations of Sys' are
provable. In particular, E1 is a principal provable solution of Sys'.

B Proof of Claim 6.6

In this section we prove claim 6.6. We recall claim 6.6.

Claim B.1 Assume (1) E1 "trace Ei' (2) El is a provablk principod sohlion of deterministic
system of equations Sys (3) Ei is a prorvble principal solution of dterminiistc system of
equations Sys'. Then there exists a guarded systtni S.y." such that both E 1 and El are its
principal provable solutions.

The proof is based on

Lemma B.2 Assume that (1) E "-,•rce G (2) E "t E•il alE, + -Eh Y' and (3) G .

E21 jdbjGj + F'mEAI Z-, where ai are diffeent actions and bI arc different actions. Then
(a) {Yk : k E K} = {Z, : m E M}: (b) III = IJI and there exists a one-one junction
h : I - J such that ai = bh5 i) and El -,,ace Gh(j). (c) G -,race F;E1j aGhj) + EkEK Yk and

2 
'J.Ej bjGi + -•mEMf Zrn = EiEI aiGh(,) + EkEl'h )"k--

Proof: The initial node so of the chart for Ei~t ajE, + .kEJk Yk has the extension {JY1 : k E
K} and its set of successor actions is {,i : i E I). The initial node so of the chart for
EjEjbjJGj + 'mEA1 Zg.. has the extension {Z,, : m E MI} and its set of successor actions is
{bi : j E J}. In equal charts the initial nodes have the same extension and the same set of
successor actions, therefore {Vj. : k E K) {Z,, : ?n E M} and {ai: i E I = {b, : j E J).
Moreover, since all ai are different and all bj are different the relation R(i. j) =def at = bj is
a graph of a one-one function h between sets I and .1. In particular, using associativity and
commutativity of +, the equation for G can be rewritten into G "I,.cE • •ajiGh(,)+E,,,E Zm
and F 'jEJ bjGj + Em-Af Zm = ZiEl aiG,() + ,kEK' Y"

In the case when all actions ai are different., it can be easily shown that (ai.s. X) is a generalized
trace of Zi~laiEi + k-'. Yk iff (s,. X) is a generalized trace of E,. Similarly, (ais, X) is a
generalized trace of EiEI aiGh(i) + E)kiK "k iff (s, X) is a generalized trace of Gh(i). Since

EiEl a"Ei + "kEK I'k and EiEl aGh, + EkEK Y) have the same set of generalized traces, it
follows that Ei and Gh(i) have the same set of generalized traces. Similar arguments show that
Ei and Gh(s) have the same set of traces. Hence Ei -frace Gh(i). 0

Now we proceed with the proof of claim B.i. Let El .... Ep be a provable solution of a deter-

ministic system of equations:

" Ei = E f F- Y (ij) i = 1, .... p. (9)
.mJ, jNK,
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Let El,... E,. be a provable solution of deterministic system of equations:

F E ,.jE( +,.j) + 11 i' = 1,.. m. (10)

All provable equations are valid, therefore in the above equations = can be replaced by -tact.

Define set R = {(i, i') : E1 i"race El,}. R is not emply, because (1, 1) E R.

For (i,i') E R, all the assumptions of lemma B.2 hold. therefore there exists a one-one function

hi,i' : Ji "- J', such that aij = bih.,(j) and Epiij) -trce Ef'(i,h,,(,))"

Consider the following system Sys" of equations with bound variables indexed by the elements

of R. The equation for Xi,i, is:

Xij,i aijXf(i.J),j(i',h,_,,(j)) + E 1Yg(i.j) (11)

JEJ, jEK,

Note that all bound variables in this system are indexed by elements of R. Indeed E f(ij)race

E I,(i.hj..,(j)) by the conclusion (c) of lemma B.2. Therefore, the pair (f(i.j), f'(i',hjj,(j))) is

Sin R.

Define a sequence of expressions indexed by elements of R: E~i, E i. We claim that when

Ei~i, are substituted for Xi.i, in Sys", then the resulting equations are provable. Indeed, after

substitution, equations (i, i') become

Ej.j, = E a jjEfj..).f,(,' ,.j,(.))+ ( 1st., (2)
jEJv jEK,

and by the definition of Ei,j it is equivalent to

=j ij aEf tijt + F 3;i~ (13)
jEJ. jEIK,

which by our assumption is provable. Therefore (12) is also provable.

Now define another sequence of expressions indexed by elements of R: E•.i, = E•,. Again we

claim that when E•,i, are substituted for Xj.j, in Sys" then the resulting equations are provable.

Indeed, after substitution, the equations for Xi.i, become

,= E ai,,E(,J),$(ih.,,(J)) + E 1' (14)
jEJ, jEK.,

and by the definition of E',i it is provable iff

- E•, = 3 a. t(i,.h.,,(j)) + y ) (15)
jEJv jEK.

By (c) of the lemma F .:, b,.E,(i'.j)+ K,, 19(,J) .= jEJ, i.E,,,.,.)) + , 1 (i

therefore (14) is provable iff the following is provable:

- E!, = bE,(i,.j) + 2.Y' utij) i' ...... (16)
jEJ,, :,K:,
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However, this is provable by our assumption (see equation (10) above). Hence, both E1,1 and
E, are principal provable solutions of Sys4". But., by the definition E1.1 = El and E;, -= E,.

Therefore El and E' are principal provable solutions of Sys".

Finally, note that Sys" is a guarded system and its size is polynomial in the sizes of Sys and
SYS'.
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r 1. Continuity Spaces and Asymmetric Topology

Computer science tends to need analysis of "topological" situations in which orderings
and generalized metrics, both symmetric and asymmetric, play a role. Many of its natural
topologies are not T, (for definition see a text, such as [Ke]), for example:

the lower and Scott topologies on a continuous lattice and
the topology of digital n-space.

In fact, these spaces fail to satisfy the weak symmetry axiom:
x E cl{y} =* y E cl{x}.

Here, as often in mathematics, the lack of symmetry leads to a straightforward duality.
Some examples elsewhere in mathematics include:

For noncommutative rings and algebras, define R* = (R, +, o), where aob = ba, (the
same works for monoids and categories),

for partial orders P* = (P, <-1),
for quasimetrics, d*(x, y) = d(y, x),
for quasiuniformities, Q* = {Q-1 I Q E Q}.

The case of distances came to our attention because every topology is in a natural sense
a generalized metric topology. Our generalized metric spaces, called continuity spaces, are
given a leisurely, elementary discussion in [Kp). For our use, the following will suffice:

1. Definition. M = (X, d, A, P) is a continuity space if X is any set, A a value semigroup

(a generalization of [0, oo], defined in [Kp]), P a set of positives on A (generalizing (0, oo] C
[0, oo]), and d : X x X -- A satisfies:

(ml) d(x,x) = 0,
(m2) d(x, z) • d(z, y) + d(y, z).

The dual of d is d*, defined by d*(x,y) = d(y,x); that of M is M* = (X,d*,A,P). The
symmetrization of d is ds = d V d*; that of M is Ms = (X, ds, A, P).

The closed ball of radius a is N, 'r) = {y I d(x, y) < a}, the topology induced by M is
Tm = {T I x E T =* (3r E P)(Nr(x) C T)}.

A continuity space is co if d(x, y) + d(y, x) = 0 => x = y; it is ci if d(x, y) = 0 =;. x = y,
and it is symmetric if for each x,y, d(x,y) = d(y,x) (equivalently, if d = d*). Finally, a
continuity space is Boolean if for each a E A, a = a + a.

The precise result is:

2. Theorem. [Kp]: Each continuity space yields a topology, and every topology arises
from some continuity space.

This result was improved in [Fl], where it was shown that it suffices to consider certain
special value semigroups called value quantales. Since the latter are cocontinuous lattices,
they are complete and allow a straightforward completion theory for their continuity spaces;
for these, the positives can be defined as the elements way above 0. We use only these
restricted continuity spaces in section 2, when completeness becomes an issue, and for a
fixed such value quantale V, denote M = (X, dx) (since V, P are fixed).
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Of course, by the notation introduced in 1, TM. denotes the topology induced by the
dual of M, and Tms that arising from the symmetrization. We call them the dual and
symmetrization topologies, and below we use the simple-to-establish equation: TMs =
TM V TM..

Certainly, a metric space is a symmetric co continuity space in which A = 10,001, P =
(0, oo] and d(z, y) is never oo. For such, the induced topology is routinely seen to be a the
usual metric topology.

The co assumption is equivalent to the requirement that the induced topology be To.
Another equivalent condition is that the symmetrization topology is Hausdorff, and thus
that symmetrically convergent nets (or filters) have unique limits. These are desirable
properties, and in section 2 many of our continuity spaces will be co. The cl assumption
is equivalent to the requirement that the induced topology be T7. This requirement is not
satisfied by many spaces that interest us below, thus is not made.

For two reasons, a consideration of bitopological spaces is needed for an understanding
of topological duality which provides a context for the above, and on which we base our
approach (see [Ko], or, for alternate viewpoints, see [Lw], [Sm]):

(a) Bitopological spaces have an obvious duality: (X, T, T*)* = (X, T*, T). Further,
there is a natural identification of a topological space (X, T) with the self-dual bitopological
space (X, T, T). This self-duality means that many bitopological theorems involving this
duality look like topological theorems.

(b) Any dual, T*, of a topology, T, on the same set, X, must be recognized by its
relationship with the original, and this relationship can certainly be stated as a property
of a bitopological space.

Many useful such relationships "look like" separation axioms, or are related to com-
pactness. Indeed, for each usual topological separation axiom Ti (see [Ke]) there is a
duality-motivated bitopological separation axiom (see [Ko] or [Ky]).

For these, as usual: Ti, * Tj if j < i.
Further, a topological space (X, T) satisfies T, iff (X, T, T) does.
In addition, there is a comPactness-related axiom in whose presence some of these

implications are reversed (see [Ko]):

3. Definition. A bitopological space X=(X,T,T*) is:

-stable if each proper *-closed set is quasicompact,
quasicompact if so with respect to T,
joincompact if X, X* are both quasicompact, stable and T22.

A topological space (X¥, T) is acompact (,short for as.ymmetrically compact Haumsdorff)
if for some topology T* on X, (X, T, T*) is joincompact (this T* is unique).

4. Fact. (a) The lower and the Scott topology on a continuous lattice, are acompact,
and the dual of each is the other. (Some of this can be found in [G&]; the rest in [Ko] and
[H&].)

(b) If X is joincompact, then (X, T V T*) is a compact Hausdorff space. (That the
Lawson topology is compact T2 is a special case of (a).)

(c) A topology is compact T2 4*

it is acompact and T, *ý
it is acompact, To and self-dual (T' = 7T).
(d) For a To bitopological space X:
both X and X* are T3.s 4*

there is a continuity space M for which 7T is T M, and T = TM..
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Remark: Each joincompact space is T3 .5 , thus a continuity space exists as in (d).
Lawson, in [Lal asserted that for each continuous lattice L, there is a continuity space M
valued in that lattice (that is, A = L), for which the lower topology is T m and the Scott
topology is T M..

Such a continuity space is Boolean. As a result, its symmetrization topology must be
0-dimensional (its Ns(z) are simultaneously closed and open by [Kp], proposition 10).

But in this case, Tm s = Tm V TM.. must be the Lawson topology, which is often not
0-dimensional (eg., on the unit interval), a contradiction. In [FK] we show that the Lawson
assertion (and his proof) holds for algebraic cpo's, and give a related characterization for
all continuous cpo's.

2. Examples of Categories of Domains

In the remainder of this paper we investigate how continuity spaces can be used
to construct 'convenient categories for denotational semantics'. By exploiting the possible
asymmetry of the distance function on a continuity space, we are able to include important
aspects of both the metric space and cpo approaches to denotational semantics. Moreover,
we provide new examples which may be suitable for modelling language constructs that
occur in concurrent and probabilistic programming. There are a number of important
issues still to be resolved before the theory presented here can be considered satisfactory.

By a net in X we understand a family of elements (xA)AEA of X indexed by a directed
set (A, <). A net (XX),EA is Cauchy if for every e >> 0 there exists a A0 such that for all
p, v > \o, e -: d(x.,x,,). X is complete if every Cauchy net has a limit in the symmetric
topology on X.0)

For Cauchy nets (xA)%EA, (Y),XAc, we need the equation:

dS(lim x\, lim yA) = lim dS(xx, y,\).

The right-hand side requires the existence of well-behaved limits in the value semigroup,
so henceforth we restrict ourselves to a class of value semigroups introduced in [Fl].

5. Definition. A value quantale < V, 5, + > is a complete distributive lattice < V, _<>
together with a binary operation + such that the following conditions are satisfied:

(vql) < V, +,0 > is a commutative monoid;
(vq2) forallpE V and all S CV, p+AS= Acs(p+s);
(vq3) for allpEV, p=A{qEVIq>- p}.

In (vq3) we have written q >> p to indicate that q is way above p; that is, for any
subset W C V, if p _ A W, then for some finite F g TV, q _> A F. Thus (vq3) is equivalent
to the requirement that V*P be a continuous lattice.

Now let < V,:5, + > be a value quantale. By a V-continuity space, (X, dx) we mean a
continuity space (X, dx, A, P) for which A = V and P = V+ = {p E V I p >> 0). A value
quantale V can itself be regarded as a complete V-continuity space, with dv(x, y) = x " y,
where x - y = A{z I x <: y + z} (see [Fl]). (Notice that by this definition, - left adjoint
to +: that is, a -' c < b *• a < b+c.) We call X a V-domain if X = (X, dx) is a complete,
co V-continuity space.

Each V-continuity space X has a completion; that is, there is a V-domain X- and an
isometric map t : X --i X - with the following universal property: for any V-domain Y and

( For each e >> 0, let D = <x,y >E X x X j >> dS(x,y) }. The family {D,}E>>o
is a base for a uniformity, Vs, on X and the uniform topology generated by Vs is the
symmetric topology on X. X is complete in the sense just described iff the uniform space
(X, VS) is complete.
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any nonexpansive mapping f : X -- Y there is a unique nonexpansive map X - Y
such that f = f- o t. Notice that t is one-one iff N is co; in general, t(x) - &(y) 4*
d(z, y) + d(y, x) = 0. X- has a number of additional properties that we will need below.

(11) for every a E X-, there is a Cauchy net (r,),>>o in X such that a = limr, &(x).
(12) For a,,8 E X-, if a = 4rn4 t(x.) and 0 = lim r (y.), then (d(xz, y,)), is a Cauchy

net in V and d~(a, f) = lir, d(x,, yt).

Let V-Dm denote the category with objects the V-domains and morphisms the non-
expansive maps between such.

SOME EXAMPLES

Scott Domains. In the classical approach to domain theory, introduced by Scott and
Strachey [SSt], a domain is a certain type of complete partially ordered set (cpo). We
illustrate how this approach can be included in our general theory by considering two
examples: algebraic cpoAs and continuous cpo's.

Let K be a set. Then the power set of K, P(K), is a value quantale with + = U. We
make a cpo A into a *P(K)-continuity space A, = (A, d,), where K is the set of compact
elementsof A, by defining d,(x, y) = (I (x) n K) \ (I (y) n( K), for x,y E A.

6. Theorem. ([FK]) Assume A is an algebraic cpo. Then A-, is co, the induced topology
on A, is the Scott topology on A, the dual topology on .A, is the lower topology on A,
and the symmetric topology on A, is the Lawson topology on A.

Notice that ?(K)+ = {r I r is a cofinite subset of K). As a result, the continuity
space A, is totally bounded; that is, for all e >> 0 there is a finite subset fa 1,a 2,... an)
of A such that A = N:(al) U N*(a2 ) U ... U N:(an). Thus A, is an P(K)-domain iff
the Lawson topology on A is compact. This condition is equivalent to the requirement
that A be a '2/3-SFP' domain (see [P1]). This is the case if A is bounded complete. In
particular, for a Scott domain (i.e., an w-algebraic, bounded complete cpo) A, A, is an
P(K)-domain.

Note that a Scott continuous map f : A --+ A need not be nonexpansive from A, to
A,. It is an open problem to provide a construction from Scott domains to continuity
spaces which will send a wide class of continuous maps to nonexpansive ones.

Continuous Cyo's. For a general continuous cpo, where the Lawson topology may not be
zero-dimensional, we give a "fuzzy" version of the above construction; that is, we replace
the two point set {0, 1) by the u, irval.

A character on a CPO A is mn k: A --1 [0, 1] which preserves directed suprema
and has a left-adjrint. This is a i. generalization of compact element, since k E A is
compact iff the characteristic function ,vT(k) : A --+ (0, 1} preserves directed suprema and
has a left-adjoint.

Assume A is a cpo and let K be the set of characters on A. [0, 1]K is a value quantale
with the component wise ordering and operation of addition. Define d1 : A x A -+ [0, 1 ]J by
dx(x, y)(k) = k(z) - k(y), for x, Y E A, k E K. Then Ar = (A, dzr) is a [0,1]<K-continuity
space.
7. Theorem. ([FK]) Assume A is a continuous cpo. Then Ar is co, the induced topology
on Ax is the Scott topology on A, the dual topology on Ar is the lower topology on A,
and the symmetric topology on Ar is the Lawson topology on A.

Again, the continuity space Ar is totally bounded and so is an 1(K)-domain iff the
Lawson topology on A is compact. This condition is equivalent to the requirement that
A be supersober (cf., [G&] p. 310). Thus if A is bounded complete, then Az is an "(K)-
domain.
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Metric Spaces. In much of the work concerned with modelling concurrent processes, com-
plete metric spaces ([dZ], [AR]) have proved to be a useful tool. This example is easily
captured in the present framework. Let 1 be the extended nonnegative reals [0, eo] with
the usual ordering and the standard operation of addition. Then 7R is a value quantale,
which we call the value quantale of ditances. A symmetric 7R-domain is a complete metric
space. The induced topology on a symmetric R-domain is, of course, the usual metrictopology-
Probabilistic Domains. Neither domains of cpo's nor complete metric spaces seem adequate

to model, in a natural way, languages which involve probabilistic constructs. We consider
in this example a value quantale whose corresponding notion of semantic domain may be
more adequate for this purpose.

Let M be the set of monotone maps from [0, oo) to [0,1], ordered pointwise. We
call F E M a distance distribution function (d.d.f.) iff F is left-continuous: for all x E
[0, eo), sup,<. F(y) = F(z). Let A be the collection of all d.d.f.'s with the opposite of the
pointwise ordering. Since the sup of d.d.f's is still a d.d.f., A is a complete lattice. The
operation + : A x A -* A, defined by (F + G)(x) = sup.+.=, rmin {F(u),G(v)}, makes
A a value quantale. A symmetric A-domain is a complete probabilistic quasimetric space
[SSk]. Moreover the induced topology on a symmetric A-domain X is the strong topology
on X.

3. Closure of Categories of Domains under Elementary Operations

The category V-DIn is closed under a number of basic operations, which are needed
to build up complex data types from primitive ones.

Products. There are two natural notions of the product of two V-continuity spaces A =

(A,d) and B = (B,d): the Cartesian product, A x 13 = (A x B,d.), where

dx(< xi, y, >, < X2, Y2 >) = d(zi, X2) V d(YI, Y2),

and the tensor product, A® 0B = (A ® B, do), where A ® B = A x B and

do(< xi, y, >, < X2, Y2 >) = d(XI, X2) + d(t], Y2)-

A x B has the familiar universal property of the Cartesian product. A ® B also satisfies
a natural universal property. Call a map f : A x B --+ C separately nonezpansive if for
each a E A, the function b -, f(a, b) is nonexpansive from B to C and for each b E B,
the function a --+ f(a, b) is nonexpansive from A to C. The indentity map I : A x B --+
A ® B is clearly separately nonexpansive. Moreover for any separately nonexpansive map
f : A x B --+ C there is a unique nonexpansive map f : A ® B --+ C (namely, f itself) such

that f = f o I. If V is Boolean, then these two notions of product are identical.
It should be noted here for use in the power domain discussion later, that +, V, A

(V, dv) 0 (V, dv) -* (V, dv) and - : (V, dv) ® (Vd,) --+ (V,dv) are all nonexpansive
functions. The required inequalities can be shown in a straightforward manner using the
adjointness which holds between -- and +.

Coproducts. For V-continuity spaces A = (A, d) and B = (B, d), their coproduct is A(e =

(AOB, d4), where AJB is disjoint union and for x, y E ACIB,

(dA(x,y) if x,y yE A
d9(z,y)= dB(X,Y) ifx.yEB

100 otherwise.

Function Spaces. The function space [A -- , B] consists of all nonexpansive maps from A
to B, where for f,g E [A -+ B], d[A-B](f,g) = V{du(f(x),g(x)) I x E X}. For each
V-domain A, the functor A ® - is left-adjoint to [A -- -]. Thus, if V is Boolean, then
V-Din is Cartesian closed, in general, V-DIn is a symmetric monoidal closed category.
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Power Domains. To model nondeterminism, in addition to the above domain constructors,

we also need a form of power domain. The standard constructions of the lower, upper, and

convex power domains can easily be adapted to the continuity space setting.

For a V-continuity space (A, d), let P'(.4) denote the set of finite nonempty subsets
of A and define the three functions du, de, dc: P'P(A) x -(A)- V by

du(U, V)= V A d(u.v),

dr(U,V) = V A d(uv), and
WEET ,c'E

dc(U, V) = du(U, V) V dc(U, V).

It is easy to show that (P7' (A),du), (P,' (A),dc), and (Pf(A),dc) are V-continuity spaces

(although they are not necessarily co). The upper power space, Au, is the completion of

(P7• (A), du), the lower power space, A", is the completion of (P71,(A), dc), and the convez

power space, Ac, is the completion of (P/'(A), dc). We consider the universal property of
the convex power space in detail and indicate briefly how to modify the discussion for the

other two cases.

8. Lemma. The union operation U : Pf(A) x Pf4(A) -- P>(A) is nonexpansive (with
respect to du,dc, or dc).

9. Definition. A convez V-algebra is a. V-domain E together with a nonexpansive binary
operation *: E x E -- E which is

(1) associative: (x * y) * z = x * (y * z);
(2) commutative: z * y = y * x; and
(3) idempotent: z * z = x.

A homomorphism from the convex V-algebra El to the convex V-algebra E2 is a nonex-
pansive map h :EEl -, E• such that for all x,Y E El, h(x *y) = h(x)* h(y).

Let &c : P1,(A) -4 Ac be the canonical isometric mapping from P,(A) to Ac. For

c,13 E Ac choose (U,). and (VY), Cauchy nets in P,(A) such that

a=limtCU and )3=lirtCV,.
4 4

It follows at once from Lemma 8 that (U, U V,). is also a Cauchy net. Let

SUc3 lim tC(u, U V,).

a Uc is well-defined by Lemma 8 and co.

10. Lemma. (AC, UC) is a convex V-algebra. Moreover, for all U, V E "P' (A),

LC(U U V) = 'C(U) UC C(V).

PROOF.

Let aa',1, E Ac. Choose (U,),, (U,),, (V,),, (V.'), Cauchy nets in Pý,(A) so that

a! lim, tCu,, & ' - lim, tcU, / = lim, 1%v,, and 13 = lim, tCv1.

Then by (12), Lemma 8 and the nonexpansiveness (thus continuity) of V, we get

dc(a uc a', UC 0') = lidc(U, U U,, V. U V)

i5 __m(de(V, V V,))
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- lim dc(U., V.) V lim dc(U,, V.)

= dc(a,13) V dc,(a,3').

Q. E. D.

We write {z}c for Lc({x}), where x E A. Clearly, {}f : A --+ A c is an isometric

embedding.

In the proof of the main theorem below, we need the following consequence of the

distributivity of V: for any finite family {xij I i E I, j E J } of elements of V,

V A ,,j= A VXi).
ieiEjE 0:l•J iEl

11. Theorem. Assume A is a V-domain, (E,*) is a convex V-algebra, and f: A -- E is

nonexpansive. Then there is a unique homomorphism fC : Ac _-* E such that f = fCo {oC.

PROOF.

Ezistence.

Define f : Pf (A) -* E by

/Pfz X... X.}) = fRXI) A.. /(.).

Then for all U,V E P"W(A),f'(U U V) = f'(U) * f'(V), and f' o {} = f.

CLAIM 1. f' : Pf'(A) -* E is nonexpansive.

Let U = {ul,- .u. u,} and V = {fv,...,v,.} be finite subsets of A. Then for any

functions 46: {1,2,...,m} --. {1,2...,n} and t,: {1,2,...,n} -. {1,2,....M1

dE(f(U), f(V)) = dE(f(ul ) *... * f(U.), f(vA ) *... * f(Vm))

= dE(f(ul) * *f(ZI -) * f(uO)) * .. )),

fA voml) * .. * f vý(t, -( )) * fA V l) *.. * f v m))

5- V dE(f(ui),f(vV•'(i)))V V dE(f(u0(j))Jf(vJ))

I<i<_n 1 <j<<

<5 V d(u,z,,,,.•))v V d(uo•,ovi)
<_i<_n <_j•_m

Hence

dg(f(U), f(V)) < A V d(ui, vr()) vA V d(uj(j), vj)
"0, i 0 j

= V A d(t,, ,) VV A d(zi,, ,)
i .i i i

= dc(U, V).

Claim 1 follows.
Let fc : Ac --+ E be the unique nonexpansive extension of f'.

CLAIM 2. fc is a homomorphism.
Let a,,6 E Ac and choose (U,), and (V,), Cauchy nets in ? (A) such that

a = lim 1Cuy and 3 = lim tc.

E

U
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SThenTefC(a U11') = fC(lim I,(u, U v1))

= lim &CC(u. U v1.)

= limf'(U.) U V.)

= lira f'(U.), -i f'(V')
= li f'U()*/f'(¾,)

f'C(a)*-fe (0).

Claim 2 follows.
Since fc o I)' (f' o ic) o {=f' o f} f f, f'e is the required homomorphism.

Uniqueness.

Since fO is required to be a homomorphism, its restriction to Pf'(A) must be equal to

f. This determines fc uniquely.

Q.E.D.

Thus Ac is the free convex V-algebra on the V-domain A. Corresponding results
hold for AU and A4. For Au the notion of convex V-algebra is replaced by that of upper
V-algebra, which is obtained by adding the axiom (4 u) d(x * y, x) = 0. For Ac, the axiom
(4,) d(g, x * y) = 0 is added to the definition of convex V-algebra yielding the notion of
lower V-algebra.

4. Fixed Points

FIXED POINTS OF MORPHISMS

In denotational semantics the meanings of many language constructs are given as
solutions of equational specifications. The existence of such solutions depends on the
existence of fixed points of certain morphisms. To specify such a class of morphisms for
V-Dmn, we assume additional structure on V.

12. Definition. An action on V is a monotone map, 0D: [0, cc] x V -- V satisfying the
following conditions for all a, / E [0, oo] and p, q E V:

(a) 1 G p = p;
(b) (afi) G p = a (D0 (D 0 p); and
(c) (a +6)Dp= ap+#,6p.

On the value quantale of distances, ordinary multiplication is an action. This is, of
course, the motivating example. Another important example is provided by the value
quantale of distance distribution functions. For a E [0, 00] and F E A, a - F is defined by
(a (DF)(-) = F(l).

13. Definition. Assume X is a V-continuity space and f : X --+ X. Then f is a
contraction mapping if there is an a E [0. 1) such that for all x 1 , 2 E X, a (D d(x1 ,x2) X>

d(f(x1 ), f(z2)).
To adapt the standard proof of Banach's Fixed Point Theorem to the continuity space

setting, we need one more notion. An element p E V is 0D-finite if A 0o(f 0D p) = 0. In the
two examples mentioned above, being finite can be characterized in familiar terms. An
element p E R is finite iff p < co. An element F E A is finite iff it is the distribution of a
random variable; that is, iff lim.-. F(x) = 1.

Fixed-Point Theorem for Contraction Mappings. Assume X is a V-domain and f : X --+ X
is a contraction mapping. If there is an element x in X such that ds(x, f(z)) is finite, then
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f has a fixed point; that is, there is an element x.0 E X such that f(x.) x,,.. Moreover,
if x1 and x2 are fixed points of f and ds(x, zX2 ) is finite, then xj = •2.

In the two examples mentioned above, this theorem specializes to the Banach Fixed
Point Theorem and a version of Sherwood's fixed point theorem for probabilistic metric
spaces [Sh].

SOLUTIONS TO REFLEXIVE DOMAIN EQUATIONS

Many data types are also naturally specified using fixed points. For example to model
the A-calculus, one needs a solution to the equation: D 2 At (9 [D --* D]. Equations
of this type are called reflexive domain equations and can generally be reduced to fixed
point equations of the form F(D) ý- D, where F is an endofunctor on the category of
domains. The presence of an action on V allows us to define a notion of contractive
functor for which fixed-points can be found, using the construction of [AR] for solving
reflexive domain equations in categories of metric spaces. In this approach, the standard
notion of projection pair is replaced by that of retraction pair together with a measure of
how close such a pair is to an isometry. Precisely, if X1 and X2 are V-domains, then a
retraction pair from X, to X 2 is a pair (f, g) of nonexpansive maps f : X, -" X2 and
g :X2 --+ X, such that gof = Idx,. The norm of (f,g) is I(f,g)l = dlx,-x 2 1(fog, Idx,).

14. Definition. If F: V -Dn --, V - Dn is a functor, then F is contractive if there is
an a E [0,1) such that for all retraction pairs (f, g) : D -- D'. a G J(f, g)) - I(F(f), F(g))J.
Fized-Point Theorem for Contractive Functors. Assume F : V - Drn-- V - Dmn is a

contractive functor and there is a retraction pair (f,g) : D --+ F(D) such that I(f,g)l
is finite. Then F has a fixed point; that is, there is a V-domain DO, such that Doo is
isomorphic to F(Doo) in V - Dmn.

We have stated this theorem in its simplest form. To solve domain equations such
as D ý- At ED [D -- DI, where D appears both covariantly and contravariantly, certain
modifications must be made; however, this presents no real difficulties.
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Ultimately Periodic Words of Rational w-Languages

Hugues Calbrix * Maurice Nivat Andreas Podelski t

Abstract

In this paper we initiate the following program: Associate sets of
finite words to Biichi-recognizable sets of infinite words, and reduce
algorithmic problems on Biichi automata to simpler ones on automata
on finite words. We know that the set of ultimately periodic words
UP(L) of a rational language of infinite words L is sufficient to char-
acterize L, since UP(LI) = UP(L2) implies L1 = L2 . We can use this
fact as a test, for example, of the equivalence of two given Biichi au-
tomata. The main technical result in this paper is the construction of
an automaton which recognizes the set of all finite words u . S . v which
naturally represent the ultimately periodic words of the form u. v- in
the language of infinite words recognized by a given Biichi automaton.

1 Introduction

Biichi automata recognizing sets of infinite words appear as a major tool
in modelizing the behavior of a number of computing systems including
distributed and real-time systems and circuits. The standard theoretical
results about the decidability of the equivalence of two Biichi automata
do not lead to efficient algorithms for equality test or optimisation of such
automata, see e.g. Safra[5] or Sistla, Vardi and Volper [6] (a question about
which almost nothing is known). The basic idea underlying the present
paper is that a set of infinite words recognized by a Biichi automaton is
entirely known when we know the subset of ultimately periodic words (of
the form u.vw ) it contains, and we prove that this set is finitely representable
since the set of finite words u. $- v corresponding to all the u. vW is rational,
i.e. recognizable by a finite automaton. This fact brings the hope that a
number of constructions which are presently outwardly performed on Biichi
automata can be performed on simple dfa's. This is already the case for the
SIS logic (see [7]) for which this method brings an described in [2].

Two main theorems are proved in this paper. The first one states the
rationality of LS, the language of finite representations of ultimately peri-

"LITP, Universiti de Paris 7, 2,place Jussieu ,75251 Paris Cedex 05, France. e-mail:
{calbrix,tcsmn}Olitp.ibp.fr

tDigital PRL, 85, avenue Victor Hugo, 92563 Rueil-Malmaison, France. e-mail:
podelskiOprl.dec.com
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odic words of an arbitrary rational w-language L, and its proof brings a
construction of an automaton that recognizes L$. The second one states a
nice characterization of the languages K that are Ls for a given rational w-
language L and also brings a construction of a Biichi automaton recognizing
L.

Section 3 describes informally the first construction and two representa-
tive examples are shown. The formal proof of the first result lies in Section
4. In Section 5, we study the determinisation of the previous construction
and we give an upper bound of its number of states. Section 6 is devoted
to the proof of the second theorem and also gives a bound to the number
of states of the second construction. In Section 7, we raise some questions
about rational languages contained in A* •$ • A+ and the set of ultimately
periodic words that they represent. Section 8 concludes this paper.

2 Basic Definitions

Let A be a finite set called the alphabet. We denote A* the set of finite words
on A - finite sequence of elements of A. We note c the empty sequence,
which is called the empty word. We denote A+ the set of non-empty words,
i.e. A+ = A* \ {E}. Let u be a finite word. We denote by Jul the length of
the sequence u. The length of the empty word c is thus 0. We denote by
A' the set of infinite words on A - infinite sequences of elements of A. A
language is a subset M of A*, and w-language a subset L of A'.

A finite automaton A is a tuple (Q, I, D, E) made of a finite set Q, the
elements of which are the states of the automaton, a subset I of Q of initial
states, a subset D of Q of distinguished states, and a subset E of Q x A x Q,
the elements of which are the edges of the automaton. It will be convenient
to number the elements of Q. We will then write Q = {ql,...q, .

Let u = u(1)- . ... u(k) be a finite word. A word c = c(0) -... c(k + 1)

of Q+ is a calculus of A on u if (c(i), u(i), c(i + 1)) E E for each i such that
1 < i < k. This calculus is successful if c(O) E I and c(k + 1) E D. We
denote L(A) the language of finite words u such that there is a successful
calculus of A on u. In this case, the elements of D are called final states
and D is denoted F. The set of language- L(A) for some automaton A, is
denoted lZat(A*), and its elements are ca I rational languages.

Let A be a finite automaton and v E A+ a non-empty finite word. When
there exists a calculus c E Q+ of A on v such that c = p. c'- q, we will write
p V )q. When in addition c1 • q contains a distinguished state, we will write

A
p -*-+ q, and on the other hand, when c'. q contains no distinguished state,

tI

we will write p -•-- q.
A
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Let a = a(O). a(1) ... be an infinite word. A word x = x(O)- X(1)
of QW is a calculus of A on a if (x(i), a(i), x(i + 1)) E E for each integer i.
This calculus is successful if X(O) E I and if there exists a distinguished state
q of D such that x(k) = q for infinitely many integers k. We denote Lw(A)
the w-language of infinite words a such that there is a successful calculus of ¶
A on a. In this case, the elements of D are called repeated states and D
is denoted R and A is called a Biichi automaton. The set of w-languages
LW(A) for some automaton A is denoted TZat(AW) and its elements are called
rational w-languages.

We denote UP(AW) the set {u- vw I (u, v) E A* x A+}, the elements of
which are the ultimately periodic words. Let L be an w-language, we denote
UP(L) the set L n UP(AW) of all ultimately periodic words of L. Let a be
an ultimaltely periodic word of A'. A word v E A+ is a period of a if there
exists a word u E A* such that a = u -vw. Similarly, a word u E A* is a
prefix of a if there is a period v of a such that a = u. vW. This definition of
a prefix is thus more restrictive than the usual one. Indeed, a isn't a prefix
of aa. b', for there is no word v E A+ such that aa • b' = a • vw.

Fact 1 Let L1 and L2 be two rational w-languages such that UP(LI) =

UP(L 2 ), then L1 = L 2.

Proof The w-language (L1 U L2) \ (LI n L2) does not contain any
ultimately periodic word and it is a rational w-language, because the set
lRat(AW) is closed under boolean combinations. However, every non-empty
rational w-language contains at least one ultimately periodic word. Thus
(L1 U L2 ) \ (L 1 n L2 ) is the empty set and L1 = L 2 . 0

The set of ultimately periodic words of a rational w-language is thus
characteristic of this w-language. The ultimately periodic word u- v' on the
alphabet A may be represented by the finite word u • $ • v on the alphabet
A U $, where $ is a dummy symbol which is not already in A. Let L be a
rational w-language. We define the language L$ = {u.$-vI u.vw E L} on the
alphabet AU$, to be the set of all the finite words which represent ultimately
periodic words of L. The Fact 1 allows us to say that LS characterizes the
rational w-language L.

3 Finite Words

Let L be a rational w-language and A = (Q, I, R, E) a Biichi automaton
which recognizes it (we set Q = {ql,..,qr}.) For each r such that 1 <
r < m, we set M, = {u E A* I 3q E I, q- -uqr} = L(Q,I,{qr},E) and
N, = {v E A+ I vw E L-(Q, {qf,}, R, E)}. It is clear that for each pair of
words (u, v) E Mr x Nr, u . vw E L, because a successful calculus of A on

U -V may be built from a calculus of (Q, I, {q,}, E) on u leading to qr and

p
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a successful calculus of (Q, {qr}, R, E) on v'. Moreover, for each ultimately
periodic word u .vw E L, there exists a q, E Q such that u E M, and v E N'.
This q, is the state reached after the reading of u in a successful calculus of
A on u. vO. We may decompose the previously defined language LS, using
the languages M, and N, in the following way.

L$= UMr.$.Nr()
r-O

Languages M, are made of prefixes of ultimately periodic words of L
and these languages are rational, because they are recognized by automata
(Q, I, {qr), E). Languages N, are made of periods of ultimately periodic
words of L. We will build automata which recognize languages N, to show
that they are rational too. The rationality of L$ will follow from this fact.

It might be noticed that there are various ways to show the rationality
of Ls. We can show that the syntactic congruence of L$ and Arnold's con-
gruence of L (defined in [1]) are the same on the set A+ (see [3]). Then
the syntactic congruence of L$ is of finite index and LS is thus rational. It
is also possible to use the equivalence between SIS-logical definability and
rationality for w-languages (see e.g. [7]) to construct an automaton recog-
nizing LS from a logical formula defining L (this procedure is described in
[2]). However, the direct construction of an automaton is the most efficient
way to produce a recognizing device for L$.

I b

figure 1

A word v' is recognized by the automaton (Q, {qr), R, E) if there is a
successful calculus of this automaton on vw. This calculus runs along one or
several loops-i.e. cyclic sequences of states-which contains repeated states
of R. For exemple, let L = (aba + bab)w be the language recognized by the
automaton of the Figure 1. The word (aba)w is recognized, and the infinite
sequence of states (123)w is a successful calculus of the automaton on (aba)w.
This calculus defines a loop-1231-which runs through a repeated state-1.
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The word aba is in the language N1 of periods of ultimately periodic words
of L recognized from the state 1, and we just need to know the calculus of
the automaton on the word aba to find the loop 1231. This is not always
the case, as the next example will show it. The word (ab)w is recognized
too, the infinite sequence of states ( 12 3 14 5 )w is a successful calculus of the
automaton on this word and the loop found here is the sequence 1231451.
The word ab is member of the language N1 but the calculus of the automaton
on the word ab doesn't permit us to find the loop, which only appears in
the calculus of (ab) 3.

a b

• a

figure 2

Another example is given by the language L = ab+ (a+b)w, recognized
by the automaton of the Figure 2. The word (ab)w is recognized by this
automaton and the infinite sequence of states 123 (45 )- is a successful cal-
culus of the automaton on the word (ab)w. The word ab is element of the
language N1 of the periods of L which can be read from the state 1 of the
automaton, but a calculus on ababab is necessary to find a loop-here 545.
It becomes clear with this example that the first state of the calculus isn't
necessarily involved in the loop found in this calculus.

The principle of the construction that we are going to describe is to
simulate calculi of the automaton A which recognize the language L, starting
from each state of the automaton A. This simulation leads to a vector-state
which contains as components ends of simulated calculi with an element of
the set {0, 1) which is 1 if and only if the simulated calculus contains a
repeated state. Final states are those from which a loop of A containing
a repeated state can be built. For the first example, the calculus of the
automaton recognizing N1 on the word ab may be-the state denoted 0 is
added to A to make it complete

4,0 5,01,1

5, 0) El1



559

From this calculus, we can build the following calculi of the automaton A
on the word ab, Sb C6 Cab

1--+3, 3--o--+4 and 4--o--,1,
A A A

which permit us to find a loop containing a repeated state in a calculus of
A on the word (ab)w. Moreover, we can make the calculus begin with the
state 1, 3 or 4, which shows that the word ab is element of N 1, N 3 and N4 .

4 First Construction

Formally, let L be an w-language recognized by an automaton A = (Q, I, R, E)
such that Q = {qj,. . ., q%}. We suppose without loss of generality that the
automaton A is complete, i.e. that {q I (p, a, q) E E} $ 0 for each pair
(q, a) E Q x A. For each state q. of the automaton A, we will build an
automaton AN, which recognizes the language N7 previously defined.

The automaton AN, is built from the set of states (Q x {O, 1})IQI. The ini-
tial state is the vector-state 4j = ((ql, 0),..., (qm, 0)). The tuple (f, a,f')-
with f = ((pi,fA),...,(P(p.,f.)) and y' = ((pl,,ff),...,(p,', fm))- is an
edge of AN, if, for each i such that 1 < i < m, (pi, a,p•) E E and if p E R
then fi' = 1 else fi = f,. A state ir = ((Pl,fi),...,(pm.,f.)) is a final state
if the following condition is verified. Let (ik)l<k<m be the finite sequence of
integers defined by the relation pk = qi,, and (jk)k>o be the infinite sequence
defined recursively by jo = r and jk+l = iik for each k > 0. This sequence
ranges only over a finite set of values. Let thus s be the smallest integer
satisfying j. E {jk 1 0 •5 k < s} and s' the only integer such that s' < s and
30, = j,. Then, the state fis final if and only if 1 E {fik I s' < k <k s.

The following lemma states the fundamental property of the automaton
AN,. A calculus of AN, begining with fo on a word v contains for each state
q, a calculus of the automaton A begining with qj on the word v. Moreover,
a state of the automaton AN, reached by the reading of v from the state jo
can be built from the calculi of A on v starting from each state of A.

Lemma 2 Letv E A* and g= ((pifi),.. .,(p, fm)) be a state of AN,.
Then qo v P if and only if, for each i such that 1 < i < m, q, - pi if

AN,. A
$1

f = 0 andqi -o pi if fi 1.
A

Proof Let v E A* and ff a state of AN,. We will show the lemma with
an induction on the len•,th of the word v. If v = c, then the lemma trivially
is true. Thus, we assume that v i c and we set v = u a with u E A* and
aEA.
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Let us assume that 4"o p. Let if' a state of AN, such that qo .-t g' and.AN, N

f' -2- ifi. We set fi' = ((pj, fl),..., (PX, f,)). We deduce from the induction
AN,.

hypothesis, that q, u & p• for each i such that 1 < i < mi. Since (if', a, if) is

an edge of AN,., we deduce from the definition of AN,. that (p', a,pi) is an
edge of A, and that qi -- pi, for each i such that 1 < i < m. Moreover, if

A

fi = 1 then f! = 1 and in this case qi --Cu- pý, or f =0 and in that case pi is
A 

S

a repeated state. In both cases, we get that qj - p pi. To conclude, if fA = 0
A

then f,' = 0, and we deduce from induction hypothesis that q, --- p. The
A

state pi isn't a repeated state and thus qi -- pi.
UA

Let us now assume that qi --- + pi for each i such that fi = 0 and that
A

qj-o pi for each i such that fi = 1. For each i such that 1 < i < m,

there is a state p• from Q such that qj u-) p• and (p•, a, pi) is an edge of
A

A. Moreover, if fi = 1 and pi isn't a repeated state, then we can choose p•
U

such that qi -o- pý', and we set then 1,' =1. If fi = 1 and pi is a repeated
A

state, we set f• = 0 if q, p and f = 1 in the other case. If fi = 0, we

can choose p' such that qi -u p', and we simply set f"f = 0. We deduce
A

from the induction hypothesis that the state ff' = ((P, I ),I (P'4, fn1))
thus defined is such that u , f'. Then, we see from the definition of the

AN,.
automaton AN, that (fir, a, p-) is an edge of AN,.. Thus, we conclude that

It remains to show the equality between N, and L(AN,). So, let v be
a word of L(AN,.), let gf = ((pi, fl),.. .,(pm, f,)) be a final state of AN,
such that fo -' p, and let sequences (ik)l<k<, and (jk)k>o and integers s

and s' be defined as previously. From the previous lemma, we deduce the
existence of calculi bj,..., b,, of the automaton A on the word v such that
bk = qk" b- Pk for each k such that 1 < k < m (we set ck = qr • b.) From
the definitions of sequences (ik)l<k_<m and (jk)k>o, we deduce the equalities

PjA =q'jk = qJk+" The infinite word cio .. ... cj, ,_• (cL,..... .cj_,)w of Q, is
thus a calculus of A on the infinite word vWO. Moreover, f is a final state of
AN,, then fji = 1 for an integer k such that s' < k < s, and we deduce from
the Lemma 2 that Clk ' qjk+l contains a repeated state. Because the first
state of the previous infinite calculus is qi0 = q,, this is a successful calculus
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of the automaton (Q, {q,.}, R, E) on the infinite word vW. The inclusion
L(AN,) C N, is thus proved.

Conversely, let v be a word of N,. If A isn't deterministic, there exist
non-regular calculus of A on vw. However, we will show in the next lemma
the existence of a particular ultimately periodic calculus of A on v' which
can be used to build a successful calculus of AN,. on v.

Lemma 3 Let v E N,-i.e. such that v` E LW(Q, {q,}, R, E). Then,
there is a successful calculus 7r E Qw of the automaton (Q, {q,}, R, E) on vW
which satisfy the following property. There is two integers s and s', s' < s,
and some words co,...,c,_1 E Q* such that Ickl = Ivi, Ck = Pk •c 'k with
Ph E Q and pk i pi for each pair of integers k, I such that 0 < k, 1 < s and
k 0 1 and ihese words verify r = co* ... , cS, * (cS, * -. .

Proof Let v E N, and X = co . cl ... be a successful calculus of
(Q,f{q,},R,E) on v"0 with IckL = lvi for each integer k > 0. This calcu-
lus isn't necessarily ultimately periodic because A can be non-deterministic.
For each integer k > 0, we set ck = P, - c•, with pk E Q. Let then s be
the least integer satisfying P. E {ph 1 0 <_ k < s}-such an integer exists
because Q is a finite set-and s' be the integer such that s' < s and pj, = pa.
There are two possibilities. In the first case, the word ca,' c..c-I contains
a repeated state and then co. - :-; • (cS, ... c-1)w is a successful calculus of
(Q, {q,.}, R, E) on v"' which satisfy hypothesis of the lemma. In the other
case, X = co.... c8., 1 • c. * ... is a successful calculus of (Q, {qi-}, R, E)
on v'. Then we repeat the whole process with X' until we are in the first
case. Because we're removing a non-empty factor of X at each step and X is
successful, we are sure that the process will stop in a finite number of steps.

Then, let r be a calculus of A on v' satisfying the hypothesis of Lemma
3. We can set q, = Po,..., q8 = P,-1 without loss of generality, the other
states of Q are numbered arbitrarily, and we also set P, = p,5 . For all k such
that 1 < k < s, the word ck-1 "pk is a calculus of A on v, and thus qk V - Pk-

A
On the other hand, A is complete, and then for all k such that s < k < m,
there is a state Ph such that qk ---' Ph. For each k such that 1 < k < s,

A_
we set fk = 1 if clk- 1 • ph contains a repeated state, fk = 0 otherwise. For

each k such that s < k < m, we set fk = 0 if q -vpk, and f=1

otherwise. The state f = ((P1, fl),... (p,(P, fn)) thus defined is such that
fo - ) if- For this state, the sequence (jk)k>o is defined by jo = 1, A = k + 1

for all k < s, and jik = Jk-(-.') for all k > s. s is the least integer verifying

)j, E {jk 1 :X < s} ands'is such that s' < s andj=j. Moreover,
ir is successful caen fk = 1 for an integer k such that s' < k < s. This
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shows that -f is a final state of AN, and finishes the proof of the inclusion
N, C L(AN,_ .

The languages N, are recognized by the automata AN, and are thus
rational. From the equality (1), we deduce that the language Ls is rational
too. Finally, we have shown the following proposition.

Proposition 4 Let L be a rational w-language on the alphabet A and
let Ls be the language of finite words on the alphabet A U $, defined by
Ls = {u. $. v I u.- v E LQ. Then Ls is rational.

It is easy to construct an automaton recognizing L, from the automata
A and AN,. Indeed, let As be the disjoint union of automata A and AN,,
for each r, to which we're adding the edges (q,, $, fo,)-ifo, is the initial state
of AN,. The initial states of As are those of A and the final states of AS
are those of all AN,. Then obviously L(A$) = Ls.

5 Determinising As

The automaton As that we built in the previous paragraph isn't determin-
istic. One reason for this is that it contains A, which itself is not generally
deterministic. However, accessible states of the subset automata built from
As have a particular shape, which provides a simple representation of these
states and a bound to its number.

We first build for each state p, of A the subset automaton P(AN,) of
the automaton AN,. Its initial state is the singleton 1Q, and we denote 6
its transition function. Let P be an accessible state of P(AN,) and v a word
of A* such that 6({$}, v) = P. Let ff and #' two states of AN,,, members of

P -p= ((pi,fO),...,(p., fr.)), ff' = ((Pf "(,f.))- Then, each
state 9" = ((p',ff),. . .,(pr,f")) such that (Pk, fk) E {(Pk, fk), (Pk, fj)}

for each k such that 1 < k < m is a member of P. This is a direct con-
sequence of Lemma 2. The state P is thus entirely defined by the sets
Pk = {(pk,fk) I ff = ((Pi,fl),.. .,(P., fm)) E P), i.e. P is the set of
states ff = ((pi,fl),...,((pn,frn)) such that (Pk, fk) E Pk for each k such
that 1 < k < m. The set of states of the subset automaton is in bijective
correspondence with the set (P(Q x {0, 1}))m, which contains 2 2, 2 elements.

The automata AN,, and thus P(AN4), have the same stucture - the
only thing that changes is final states - and there is a straightfoward con-
struction to build a deterministic automaton recognizing a language such as
N = U•fNi,, the union of languages N,. This automaton is isomorphic to
the common structure of P(AN,), and its set of final states is the union of
the final states of automata P(AN,..).

Now we build a deterministic automaton that recognizes Ls. This au-
tomaton is the disjoint union of P(A), the subset automaton of the automa-
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ton A, and of automata that we built previously recognizing each language
N, the union of the languages NT to which we add edges (P, $, qfp), where
fop is the initial state of the automaton recognizing the language UEpN,..
The automaton we have built is deterministic and recognizes the language
Ls. There are at most 2 1 states in P(A), and there are at most 2m unions of
languages N,, which are recognized by automata with at most 2 2m 2 states.

Finally, there are at most 2 ' + 2 2m 2 +m states in this automaton.

6 Infinite Words and Second Construction

Let L be a rational w-language and Ls the rational language defined in the
previous paragraphs. Let u. $ - v be a word in Ls and u'. $ • v' a word in
A* • $ • A+ such that u - vW = u. v"'. It is then clear that u' • $ • v' is an

element of Ls. Let us define the equivalence relation on the language
A* • $ A+ in the following way.

UP U tU e
u.$-V - -$v' if and only if u-v'=u' v

Then, Ls is saturated by
Let K be a rational language of (A U $)* contained in A* - $ • A+. A

necessary condition for K to be LS for a rational w-language L is that K is
UP

saturated by -. We will show that this condition is sufficient too, and we
will construct an automaton that recognizes L. We first need the following
lemma.

Lemma 5 Let M and N be two languages of A* such that M . N* = M
and N+ = N. Then, for each infinite word a E A', a E UP(M . N') if and
only if there ezist two words u E M and v E N such that u . vW = a.

Proof It is clear that for each words u E M and v E N, u.v' E M.N'.

Conversely, let a = u - v1 be a ultimately periodic word of M - NW, and
uo, ul,... a sequence of words such that uo E M, ui E N for each i > 0 and
u0 l -.. =l u- v". We set I = Ivl, li = lu" uil for each integer i, and

P = {li I i E N}. P is an infinite subset of N, thus there is an integer k
such that P n (IN + k) is infinite. Let ni and n2 be two integers such that
0 < ni < n 2 , ln, > Jl, and ln, is in IN + k for j = 1 and 2. We can then
find two words v, and v2 such that v = VI • V2, and two integers k, and k2

such that uo-.. .u, = u. vk • -vi and u +1 . U• 2 =- v2 .vk2 - vi. The two
ultimately periodic words u. ifv and Uo... .. un, (un+1 U+. .. '2)W are equal.
We deduce from the hypothesis on languages M and N that uO... un, E M
and u,+ ... un, E N, and this ends the proof.
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Let then K C A* • $ - A+ be a rational language saturated by --. Let

A = (Q, I, F, E) a deterministic automaton which recognizes K. We denote
by 6 the transition function of the automaton A and let qo be its initial
state. We set Qd = {q E Q I 3u . $ v E K,q = 6(qo, u)}. For each state ¶
q E Qd we denote by M. the language of words u such that 6(qo, u) = q, and
we denote by Nq the language of words v such that 6(q, v) if a final state.
M. and Nq are rational languages and K = UqEQdMq .$- Nq because K is
a subset of A* $ - A+.

The language Nq is recognized by the automaton A. = (Q, {6(q, $)}, F, E),
and for each final state qf, we let the rational language Nq,qj be the set of
words v such that 6(q, v) = q and 6(q, $ . v) = q/= 6(qf, v). This language
is composed of words v of Nq that loop on both q and qf, the final state of
the calculus of Aq on v. Finally, we define the w-rational language L by

L= U Mq.Ng" (2)
(q,qf)EQdxF

The languages M,, and Nq,q, satisfy the hypothesis of Lemma 5, i.e. N+9q =
Nq,qf and Mq • Nq,qf = M.. Each ultimately periodic word a which is an
element of Mqg Nq'9, is equal to u • v with u E Mq and v E Nq,qj. Then,

u. . v E K and we deduce from the saturation of K by - that all words
u • $ v such that a = u v" are elements of K. We have thus shown the
inclusion LS C K.

Conversely, let u $. v be a word of K. For each integer k, words u. $- v
and u. vk -$ - v represent the same ultimately periodic word. K is saturatedUP v

by = thus, u - . $ . v E K and b(qoU . vk) E Qd. Let the sequence of
states pk E Qd be defined by Pk = 6(qo, u. vk). Qd is finite, so we can find
two integers r and m such that m > 1, pr = Pr+m and for each integer
k < r + m, Ph 0 {po,...,pk- }. We may show by a simple induction that
Pk+m = Pk for each integer k > r. We set r = sm + r', with 0 < r' < m,
and ki = r + m - r' = (s + 1)m. Then, we get P2k, = Pkl+(s+1)m = Pk,,

u-vkI 
vkj

because k, > r, and then q0 u-+ Pkh -+ Pk,. We set q = Pk,. With a similar
A A

argument on the sequence of final states pk defined by pk = b(q, $. (vk' )k),
A.•k k2  Pk 2  We

we show that there exists an integer k2 such that p -A Pk2 V42

set q! = pk2 . We have thus showed that u . v' E Mq . Nq, because

u- vW = u . vkj . (vklk2)w and the words u. vk, and vkk2 are in Mq and in
Ng,qf, respectively . The infinite word u- v" is in L, and this proves the set
inclusion K C Ls. Finaly, we have showed the following proposition.

Proposition 6 Let K C A* • $ • A+ a rational language. Then, there
exists a rational w-language L such that K = LS if and only if K is saturated

UPby the equivalence -
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We can build directly from A an automaton recognizing the w-language
L. The set Qd can be effectively computed. For each state q E Qd, the
language Mq is recognized by the automaton (Q, I, {q}, E), which have m
states. For each final state qf, the language Nq,qf is the intersection of the
tree languages L(Q, {q}, (q), E), L(Q, {6(q, $)}, {q'j}, E) and L(Q, {qj}, {qt}, E),
and this language is recognized by an automaton with m3 states. Each W-
language Mq- Nw'q is thus recognized by an automaton with m + m 3 states.
There axe at most m 2 pairs (q, qj) E Qd x F, and then the w-language L is
recognized by an automaton which has at most m 3 + m 5 states.

7 Remarks

The set k = u .v I u. $ . v E K} of ultimately periodic words corresponding
to a rational set K of finite words in A*. $ . A+ needs not be equal to UP(M)
for any rational language M E 1?at(AW). In fact, there exists Al E Rat(A')
such that k = UP(M) if and only if the smallest language containing K

UP.
saturated by is rational, and this is not always the case.

For example, K = $ • A+ is a rational set of finite words include in
A*-$. A+. k is the set of periodic words on the alphabet A and (k')3 is not
a rational set if A has more than one letter. In fact, if a and b are distinct
letters of A, $- a-b E K for each n E N and then a-b $ . a b E (k)$
for each integer n. But for each integer n', n' < n, a- bn' $ • a • (K1)$
because the word a .bnl .(a. Pbf), is not periodic. The language (k)$ may not
be rational because it does not even satisfy pumping lemma conclusions.

8 Conclusion

We have solved in principle the problem of building an effective one-to-one
correspondance between Biichi automata and dfa's recognizing the languages
UP(M)S. This raises two immediate natural questions. How can we decide

efficiently that a rational language K C A* - $ • A+ is saturated by
How can we decide that (fC)$ is rational ? More generally, the question is
raised to derive from canonical forms of the dfa's recognizing the UP(M)$
canonical forms for the Biichi automata recognizing the M's and hopefully
efficient practical algorithms for the manipulation of Biichi automata.
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Abstract:

We define the category FuncA with functors F:DF- SCOTT

(DECPO) as objects and pairs (f:DF-*D, GI:F--Gof) as

morphisms (TI is a natural transformation). We show that this

category is closed under the common domain theoretical

operations +,x,I and --. The category FuncA is an 0-category

and all the operations we define on it are continuous functors, so

we will be able to solve recursive equations in FuncA. We also

show that if we restrict FuncA to functors that preserve directed

colimits then the category is not closed under the -- operation.

The category FuncA is a basis for a model of second-order lambda

calculus with subtyping.

0 Introduction
The category of A-Functors is motivated by John Reynolds' work

on category-sorted algebras [Reynolds 1980]. Reynolds' work

addresses the problem of treatment of coercions between types.

The key idea in category-sorted algebras can be expressed with

the help of the following figure (see next page):
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real \

The cpo D contains the type names and the functor Z maps type

names to corresponding cpos. The fact that int is a subtype of

real is described by the mapping Z[int g real I from the set of natural
numbers into the set of real numbers. The meaning of a

polymorphic operator like succ, which takes an element x from
int or real and returns x+1 (for all other types it returns error),

can be expressed as a natural transformation between the functors

Z and ofu,, where fý.,J(int)=int, fu~c,(real)= real and ft.uj(d)=ns

otherwise. This approach can be generalized by allowing recursive

definition of the domain D, e.g. D a-B+D - D, where B is the set

of base types. The function fuc can now be treated as a type

name and can be included in the domain D. This allows the

polymorphic operators, like id or succ to be higher order and to

self apply, which is of importance to models for lambda calculi.
The cpo corresponding to the type name fsc should be the cpo of

natural transformations Z --*of•. This generalization of

Reynolds' work was introduced by David Schmidt [Schmidt 19901.

As the functor Z is now defined recursively we must be able to

solve recursive equations in a category FunccPo of functors

F:DF.-- CPO. The category FunccPo is closed under the

counterparts to domain theoretical operations +, x, I, -- and

all these operations are continuous functors on Funccpo [Schmidt
1990]. We can use the ideas developed by Schmidt to give a
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CPO

real ,l

The cpo D contains the type names and the functor I maps type

names to corresponding cpos. The fact that int is a subtype of

real is described by the mapping Z"[int r real I from the set of natural

numbers into the set of real numbers. The meaning of a
polymorphic operator like succ, which takes an element x from
int or real and returns x+1 (for all other types it returns error),
can be expressed as a natural transformation between the functors

Z and Ztuc, where f,,uc(int)-=int, fsj(real)=real and f8ujc(d)=ns
otherwise. This approach can be generalized by allowing recursive
definition of the domain D, e.g. D -B1+D -- D, where B is the set
of base types. The function f•,, can now be treated as a type
name and can be included in the domain D. This allows the

polymorphic operators, like id or succ to be higher order and to

self apply, which is of importance to models for lambda calculi.
The cpo corresponding to the type name fsuc, should be the cpo of

natural transformations Z --'-*fZ ,. This generalization of
Reynolds' work was introduced by David Schmidt [Schmidt 19901.

As the functor Z is now defined recursively we must be able to

solve recursive equations in a category Funccpo of functors

F:DF--* CPO. The category FunccPo is closed under the
counterparts to domain theoretical operations +, x, _L, -- and

all these operations are continuous functors on Funcp [Schmidt
19901. We can use the ideas developed by Schmidt to give a
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model for polymorphic X2-calculus with subtyping [Fiech 1993;
Fiech, Schmidt 19931. Algebraic domains play an important role

in domain theory and the X2-calculus model benefits if we can

work only with algebraic cpos. Motivated by this, we define the

category FuncA with functors F :DF -- SCOTT as objects and make
sure that this category is closed under the previously mentioned

operations. Most of the problems are caused by the -- operator.
In general the new functor F-G:[DF--D]-CPO, with

F --- G[f]: =F -- Gof (the cpo of natural transformations) doesn't
produce an algebraic cpo. In part we can resolve this by requiring
that F[dkrd1] preserves finite elements and G[dkid1] preserves
nonempty infimas [Fiech, Huth 1991]. Although now F - G[f] is

a Scott-domain, the category of such functors is still not closed
under the - operation as F --, G[fi-fJ] doesn't necessary preserve
finite elements. We can solve this problem if we require that for

all Fe FuncA, F[dkrd ] is a lower embedding (p.4). From all the
domain-theoretical operations on FlincA only the definition of
the P--operator (powerdomain constructor) isn't immediately clear.
We define the P'-operator and give a justification for our choice.

Another interesting question about the category FuncA is if we
can require that all functors in it preserve directed colimits (lubs
of directed sets). The answer to this question is unfortunately no,
as again the functor F -- G may not preserve directed colimits.
This negative result holds for any category of functors F:DF -- C,
where C is a subcategory of CPO which contains the one- and

two- element cpos.
The framework discussed in this paper also generalizes the
functor-category semantics described by Oles, Reynolds, O'Hearn

and Tennent [Oles 1982,1985; Reynolds 1980; O'Hearn and
Tennent 1993].
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1 Basic domain and category theory
This section is a brief review of the necessary definitions in domain

and category theory.
A partial order (D, ) is a set D and a binary relation r on D,
which is reflexive, antisymmetric and transitive. For a subset

M CD an element xED is called an upper bound of M if for all
mEM, mrx. An element xED is called least upper bound (lub)

of M, LIM if it is an upper bound of M and if for all upper
bounds x" of M x r x*. Analogously we can define lower bound

and greatest lower bound In. The lower set of X, 4X is defined as
4X := {dEDId x for some XEXJ (analogously IX). A subset
M c- D is directed if for every finite subset M' c M there exists an

upper bound meM for M'. A complete partial order (cpo) is a

poset (D, r), st. every directed subset M C D has a least upper

bound LIM e D. For a subset M of a cpo X, the LIclosure of M is

defined as the smallest subset M* of X that contains M, st. for
every directed N C- M*, LIN E M*. A function f :A --, B between

two posets A and B is continuous if for any directed set M c- A,
f(M) is also directed and f(LIM) = LI~f(m) I m cMN whenever LJM

exists. A continuous function e:D -- E is an embedding if there
exists a continuous function p:E -- D, st. poe=idD and eopridE.
We call p a projection and denote it by e'. If e(D) is a lower set in

E (e(D)= Je(D)) then e is a lower embedding. An element x e (D, c-)
is finite if for all directed sets M with x r LJM there exists some

element mEM, st. x r m. We denote the set of all finite elements

in D as K(D). The cpo (D, r) is algebraic if for all xED the set

M={aEK(D)Iarxl is directed and x=LJM. (D,r) is bounded
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complete if every nonempty, bounded subset X _ D has a lub in
D. A Scott domain is a bounded complete, algebraic cpo. A subset
U C D is called Scott-open if U= t U and if for every directed set j
M, LIM U =* m E U for some m E M. For two nonempty subsets
A,BCD ArRB if for every aEA and every Scott-open set U with
a-U there exists some bEBnU. A wRB iff ArRB and Br.RA. For a
nonempty set AcD we define the equivalence class
[A]: ={B _D (B - RAt. The relational powerdomain (PR(D), CR) is

the cpo of the nonempty subsets of the elements in D quotiented
by the relation WR and partialy ordered by rR. If D is algebraic
then PR(D) is a Scott-domain. For any A gD there is a canonical
representation of [A] which is UA*.IAIA* E- [A]. For this canonical
A, A= 4A holds and A is closed under lubs of directed sets. If
f:D --- E is a continuous function then f' :TR(D) -- •R(E) defined as

f+(A): =[Uf(a) I a c A}l, is also continuous.

A caltgory ft is a quadruple -=(O,hom,id,o) where (i) 0 is a

class whose members are Q-objects (ii) for each pair (A,B) of
Q-objects hom(AB) is a set whose members are called
S2-morphism from A to B (iii) for each Qt-object A idA:A - A is
the A-identity (iv) o is a composition operator assigning to each
pair of morphism f:A-- B, g:B--*C the composite morphism
gof:A -- C. We also require that fo(goh)=(fog)oh (h:C -- D) and

idAof=f, goids=g. The class 0 is usually denoted by Ob(Q) and
the class of f-morphisms Mor(Q) is defined as the disjoint union
of all the sets hom(A,B) in Q. The category C.PO has as objects
complete partial orders and as morphisms continuous functions.
In CPO1 all cpos have a least element -. In the category SCOTT

the objects are Scott-domains.

i!
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Let ,W be categories. A fumctor F: -- 4) is a function that assigns
to each 92-object A a 4D-object F(A) and to each Q-morphism
f:A - B a 0)-morphism F(f):F(A) - F(B), st. F(fog)=F(f)oF(g) and

F(idA)=idF(A).

Let F,G:Q -- 4) be functors. A natural transformation r: F -,- G is
a function that assigns to each Q-object A a 0-morphism

zA:FA --* GA, st. for each Q-morphism f A - B G(f)orA=¶=oF(f). If
F,G : D -* CPO are two functors then F -so G, the set of natural

transformations from F into G together with the ordering •ir.
, VdED:T1dr4dis a cpo.

"A sink in a category 92 is a pair ((fI)Q ,A) consisting of an object
"AEOb(Q) and a family of morphism fi:Ai -- A in Q2. If F: 9--*D
is a functor then an 4)-sink (F[i] -6 A)io ) is natural for F if for
each Q-morphism d : i - j, fioF[d]=fi. A colimit of F is a natural
sink (F[i] -6 C)Qjob), st. for any other natural sink (F[i] -'. A)io)

there exists a unique morphism h:C-- A with hofi=g& for all
i E Ob(Q). A category 4) is cocomplete if every functor F from a
small category 9 into 4) has a colimit in 4D. The category CPO is
cocomplete (but CPO. is not).

2 The category Funccp
The category Funccpo was first introduced by David Schmidt

[Schmidt 1990]. The category FuncA is based on the definitions
given by Schmidt. The difference between this two categories is

that the functors in Func• map elements in D into Scott-domains
instead into arbitrary cpos. This restriction causes many problems

when we want to close Funcq under the operations +,,x,.L,-
and P. A solution to this problems will be given in the next
section. In this section we adapt the definitions for Funccpo and
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the operations +,x,.L, --. given by Schmidt. We also define the
powerset-operator P on Funccp.

Definition 2.1

The category Funccpo has as objects pairs (DFEOb(CPO,),
F:DF - CPO, ), st. F is a functor, F[drd'] is a strict function for

all d r d' E DF and F[.L] a {_L). The morphisms between two objects
F and G are pairs (f,11), where f is a strict function from DF into

DG and TI is a natural transformation in F -L Gof. Composition on
morphisms (f : DF-DcG, TI : F -*•Gof) and (g: DG-*DH,
y : G -'1 Hog) is defined as (gof, Xd ciDF.yf(d)od).

The category Funccpo is closed under the common

domain-theoretical operations which are defined in the following.

Deflnition 2.2

Let F1,F2 EOb(Funccm).

a) The bottom functor
I : FunccpO --- FunccpO

is defined as (we write F, instead of .L(F))

Fl : DI --* CPO

FJ[±] = .II the one element cpo

FJdED] = F[d]

FJ[ r d] = Xx. -LFidi

Fjdlr~d2] = F[d1 rdj
±(f :D1 -D 2, * :F1 -**F2of)

= (.x.fx, XdED1 L.if d=.L then Xx..L else TI(d))

b) The product functor
x Funccpo x Funccp -- FunccpO

is defined as
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F~xF2 :D~xD2 -CPO

FIXF2[(d1 ,d2)] F,[d,]xFjdj

FIxF2[(d r ~d1',d 2r.d2')I (F1[d1 r ~d1']F2[d2gd2'1)

X((f 11v11),(f2,I12)) =(fIXf2, T)IXi 2)/ where
ThXY12: =X(d1 ,d2)EDxcD 2.T11 (dd)X1l2(d2)

c) The sum functor
+ :Funccp x Funccpo- Funccp

is defined as

FF2:D 1+D2 --*CPO

F1+F2 [LLI = IJ-)

F1+F2[(1,ddl] = Fj[d1]

F1÷F211(2,d 2)I = F2[d 2I
F,+F 2[-L r.(i,d)] = XX- -1 Fj1d1

F,+F2[(i,d 1 )r.(id 2)I = Fi[d, r.d2

+((,,ll)(fyl))= (f1+f211- 1 1+T12), where
r+r:=XX ED1+D2.cases x of

±-. ,x.±- I (1,d) -.i1(d) I (2,d)-- 11(d

e) The exponentiation functor
-*:Funccpo' x Funccp --* Funccpo

is defined as

F1 *F 2 :[D I-- D2I--,CPO

F1 -~F2f] = IF, --, F2of the cpo of natural transformations

F1--* F21fl gf2I = )XijEF1 -L,, F2ofl.(XtEDI.F 2[flt cf2t]-(1n,))
- (01TIIO2%))= (XgE[D1,. -- 0211.2-gof1 , 111 -'ni 2 ) Where

1q --*T = kgE[D1 -. D 2 1.4 EF -L*Fpog . 12p~v I
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Proposition 2.3 [Schmidt 1990]

The category Funccp is an 0-category and the functors +,x,±,
are locally continuous.

UA

The only remaining operation we have to define is the

powerset-operator P.
Lets consider a simple functor G: { * 1-- CPO with G[ * ] =Y. When
we apply •P to G, as a result we would expect a functor G' from

{I * =R({ a }) into CPO, where GP[ * ]=R(Y). Let now F:DF - CPO
be an arbitrary functor in FunccPo. The functor FP should be from
TR(DF) into CPO. But what should the cpo FP[A] be, where
A E PR(DF)? We should look at the union of all elements in F[a],
aEA. We can find all elements xc UaAF[a] in the colimit of the
functor F. This colimit (F[i] -6 X)joFexists in CPO [Fiech 1992]
and as f1(±) is the least element in X it also exists in CPO.. In the
colimit cpo X, elements which are essentially equal (like 2 E int
and 2ereal) are identified. We can define the poset
XA: =U.,aAf(F[a]) and then take for FP[A] the relational powerset
domain on XA* (the LI-closure of XA in X), FP[A]: =TR(XA*). When
applying this to the functor G:{ t * - CPO we get the expected
functor GP. Because A E RB 4 A C B we have XA* c XB* and therefore

there exists the obvious inclusion function L: XA* V-X. For
FP[A RBA we can take the function L'. It is clear that Fv preserves
identities and composition, so FP is indeed a functor. The functor
': FunccpO - FunccPo still has to be defined on morphisms (p ,t).

P[(pTl)] must be a pair (p÷,Tj÷), where p+:PR(DF)-* PR(DC) and
Tl÷:~fP -* GPop'. It is obvious what the function p+ should be
(p÷(A)=[{p(a) I aEA)I). To define the natural transformation 71+
we use the following figure (see next page):
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XY k

f/ ,j h, 4Q]
0 g Polb 0' 0 Gjx]O 0 F0] T1, 0 GlpO)]

Flil Fol Gip(i)0 G [p(i)]

If A E TR(DF) then nA :F'[A] - G'[p+(A)]. We have the two colimits
(F[i] -6 X)L•DF and (G[i] - DcY)iE- We can construct the natural sink

(F[i] - Y)iEDF' where h.: =gFp0(i-) As X is the colimit for F we get a

unique function k : X -- Y which makes the diagrams commute:

kof1=hi for all iEDF. Now we can define the function
q.: XA* - Yp'(A)* aS the restriction of k to XA* : qA:=klxA.. We can
extend qA in the obvious way into a continuous function from
TR(XA*) into PR(Yp÷(A)*). The natural transformation r+ can be
defined now as ini: =qA* It is clear that 1 + is indeed a natural
transformation. It is easy to check that P preserves identities and
composition. Now we can formally define the P-functor.

Defindtion 2.4

Let F: DF --- CPO, G: Dc --- CPO be functors and let (F[i] - X)jD

resp. (G[i] z Y)ie D, be the colimits for F resp. G.
"The powerset functor

P: Funccro - FunccPo

is defined as (we write FP instead of i(F))
FP": PR(DF) -- CPO

FP[A] = PR(XA*)

FP[A rRB] = L' where L is the inclusion from XA* into XB*

(p : DF--, DG, T1 : F -&* Gop) = (p", KAEPR(DF).(k I xA))
where k is the unique morphism from X into Y with kofj=g,(i)o%.
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Lemma 2.5

The functor P: FunccPo - Funccpo is locally continuous.

Proof

Let F:DF--CPO and G:Dc--*CPO be functors and let

(pn:DF-"D;, -in:F- -Gop), be a chain in the set hom(F,G) with

(U{p)},U{I}) the lub of this chain. We have to show that

p[(U(pn1,Urni1)] = U{p[(p",,in)]!.
P[(Ufp'}, U{+i"})] =((Utp"})+,XA EPR(DF).(kU 1,,,.)+)=(Ul(P")+I, k.A

E!PR(DF).(ku I,_.)+) as ( _ )+ is a continuous operation [Plotkin 1976].
ku is the mediating morphisms from X into Y with
kUofi=gut¢(ioU{(Tl")i}. Also knofi=gri)o11 i. It is clear that
U~g1 p i)oy}ni=gul¢(iXoU{(rjn)i}. Therefore we have kU=UIk"} and
(kUIXA.)+ = UI(knlx,.)+I. So p[(Utp"I,Utl'n")] = (U{(pn)+}
, LJIXAePR(DF).(k-IxA.)+I) = UI(pn)+,(kAC4ePR(DF).(k'Ix.))x A
UIp[(p",TI")]}.

3 A-Functors
Algebraic cpos play an important role in domain theory. Also
the model for polymorphic X2-calculus mentioned in the
introduction [Fiech 1993; Fiech,Schmidt 1993] benefits if we can

work only with algebraic cpos. For these reasons wo define the
category FuncA which has as objects functors F:DF - SCOTT. We

have to make sure that FuncA is closed under the operations defined
in the previous section. It is easy to see that +,x and I don't

cause any problems. A different situation emerges when we
consider the --, functor. The new functor F -- G must map any

function fE DF-- Dc into an algebraic cpo. So F -- Gof must be
algebraic. But this won't hold in general.
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Example 3.1

Let F: DF - SCOTT and G :Dc SCOTT be two functors where

DF= DG= a

Define F[a]=F[b]=F[c]={_LrT} and G[a], G[b], G[c] as in the

following figure:

Q? 7 Gfc]

(3A)I~~
[1.21 3

S[3,4] 4

Fil0 "0 I @4
[Ff2] I G[a] G[b,] 0(

Consider the identity function on DF. The cpo F-• Goid is

isomorphic to the nonalgebraic cpo

Ow
I3,4If

11,2]@

0
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We can solve this problem if we require that all the functors in

FuncA preserve finite elements and nonempty infimas.

Theorem 3.2 [Fiech, Huth 1991]

Let F,G: 9 - SCOTT be two functors with a small category as

source, st. for all morphisms fe (- the map F[if] preserves finite
elements and G[f] preserves nonempty f-'s. If F -, G is nonempty

then F -j G is a Scott-domain.

As embeddings preserve finite elements, functors with F[dk; dl]
an embedding for all dkidl would be good candidates for our
category. But this isn't enough as again F -- G[fi f). may not be
an embedding.

Example 3.3

We define two functors F:DF-- CPO and G: DG--, CPO.

DF=DG = a

F maps all elements in DF to the one element cpo I±}. G[a] and
G[b] are the cpos of even resp. odd numbers and G[c] is the cpo
of all natural numbers (with the natural ordering on integers).
G[a c- c] and G[b c c] are the obvious embedding mappings. The
functions f, f2 E [DF-e DG] are defined as fl: =id and f2: =Xx.c (see
next page).
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i iif 1(c)c f2(c) l

Thecpofnaura tanformation ----- -Goff ha ol tolmet

and F 4 -,Go.s iso(a)mcpf 2(a)jtfG)]Flc P1 N I F '
SWI

Fa(GofD F l FW GIf 2

1,

F,,

It is clear that F --- G[f1 ;f2] is not an embedding and that the
category of functors with embedding morphisms is not closed
under the -. operation.

What could we change in this example? All the involved cpos are
Scott-domains and the mappings are embeddings which preserve

nonempty infimas. This doesn't leave much room for

improvement. The only additional requirement we may impose
seems to be that all the morphisms are lower embeddings.
Fortunatelly thi isi also enough as we will see in the rest of this

section. We require that the category FuncA has as objects funtors
from a domain D into the category of Scott-domains, st. all Fpdr e s]
are lower embeddings.



581

Notice that if e:D -- E is a lower embedding then e preserves
finite elements, arbitrary UI's and nonempty fl's.

Next we have to make sure that F - G[fl -f2] is also a lower
embedding. What is the projection mapping to
F--. G[f1 r f2]~n = F -', Gof1 .d eDF.G[fl(d)r f2(d)]old? The obvious
guess might be that F--* G[f1 f2]R

X •EF-'* Gof2.XdEDF.G[f,(d)rf 2(d)]Rood. But this map doesn't

always produce a natural transformation.

Example 3.4

In F -'- Gof2 we have the natural transformation 4, with •=kl.2
and 02=kiL.2. But T1 defined by T11 :=G[f1 (1)rf2 (1)]Ro••,I 112:=G[f1(2)gf 2(2)]Ro%2 is not a natural transformation as the
diagrams don't commute.

G[f 12)J GJf 2 (2)]

F[210 t +--"2
!FIII GtlIGt)

SGlt (1)J GlIjI )]

In the above example the function F --. GIf 1 _c f2] is an embedding
although the projection map is different from our guess. So we
need a different way of defining the corresponding projection.
But first we show that F -- G[fl- f2](F -- Gof1) is a lower set in
F -* Gof 2.

Lemma 3.5

Let F: DF-- CPO, G:DG -CPO be functors, st. for all di d c- E DG,

G[Qdd. is a lower embedding. Then for the functor
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F -G: [DF-* DG] -CPO, F -G[f, r f2](F -•Gof 1) is a lower set in
F -- G[f2J.

Proof
Let -eF - Gof1 and rF -- G[fIrf 2](il)=:71*. It is easy to see that
**:-- XdEDPG[fl(d)rf 2(d)]'R4j is a natural transformation. The
diagrams commute as all Gid._d_]'s are lower embeddings (For
any xEF[dj1, G[fj(di)cf 2(d.)] o G[f1 (dj)•f 2(dj)]R (4),(x)) = 0(x)
because +•(X)(x rd(X)). It is clear that F -- G[f,1 f2](4*)= .

Lemma 3.6.

Let E be an algebraic cpo and e :D -- E a continuous function, st.
e(D) is a lower set in E. If there exists a monotone function p: E -- D,
st. poe=idD and eop ridE then p is also continuous and therefore e
is an embedding.
Proof
Let w= lwi in E. E is algebraic, so there exists a directed set
QgK(E) with UQ'-e(p((o))1n. Because e(D) is a lower set in E
we must have Llp(qj)=p(e(p(w))))=p(o0). For all q, EQ there must
exist some wo with q •rwi. As p is monotone we get p(qj)rp(w0)
and therefore every upper bound for {p(wj)} must also be an
upper bound for {p(q1)I. Hence p(o)= L{p(q%)}jr {p(wi)} and

trivially Ll{p(oi)1 c p(oi). So p(c0)= U{p(w•)j and p is continuous.

At this point we are ready to define the corresponding projection
"mapping to F -- G[f1 r f2].

, oposiion 3.7

Let F:DF--* SCOTT, G:DG --* SCOTT be two functors, st. for all
dad1 inDG, G[d, c L is a lower embedding. For the functor F -- G
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and for any frf, in [DF--DCI, F--G[fkfl] is also a lower
embedding.

Proof
First we show that for any qE:F--,Goff the set

Q: =JEF -P GoffkIF-. krG ff]()) (o)} has a maximum element. For

every dEDF the set {q(d) I F--G[fkrfl](4)r.) is bounded by the

function G[fk(d)rf,(d)]RoJn(d). Because F[dl]-. G[d] is bounded

complete we have a lub for the set {q(d) IF -- G[fkrfI](ý)ri}I. All

G[dd). are embeddings and thus preserve arbitrary lubs.

Therefore we can define the natural transformation V* as

*(d): =W(d) I F -- G[fkr f1l (0) r=1 I. The diagrams obviously

commute and F --* G[fk r flI(0*) -1.

Now we can define the corresponding projection mapping

F --* G[fkrfl]R: = U{JEEF --- GofkI F - G[fk-gf](ý))-1. Obviously

(F - G[fkrfI]R)o(F - G[fkrfI])=idF I Gofk a n d
(F - G[fkc fI])o(F --o G[fkcf,1R)cidF..GofI. It is clear that F -' G[fk r. fJR

is monotone. From Lemma 3.6 we can conclude that F -- G[fkr fI]

is an embedding. Together with Lemma 3.5 we get that F -- G[fk r f,]
is a lower embedding.

Q

Now we are ready to define the category FuncA.

Definition 3.8

A functor F:DF -. CPO, is called a A-functor if F[d] c SCOTT for

all dEDF and F[dkcdij is a lower embedding for all dkcd•cDF.

We also require that F[.L]=1.1

Definition 3.9

The category Func, has as objects A-functors. Morphisms in FuncA
and operations + ,x,L, - on FuncA are defined as in the case of

Funccpo.
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Another interesting question is if we can restrict Func, only to
functors which preserve directed colimits (lubs of directed sets).

Under these conditions if we assume that DF and D, are both

Scott-domains then any natural transformation i E F -* G is

uniquely determined by the set of functions
{fi.:F[a] -- G[a] IaEK(DF)}. Also given a set of functions

%4,:F[a] -- G[a] I aEK(DF)I, st. the corresponding diagrams

commute, G[ar.b-bo=4ýoF[arb) for all a,bEK(DF), we can always

complete this set (in a unique way) into a natural transforma
* F -& G. Again we have to check if this new FuncA is clo,.

under --. A related problem is the preservation of colimits on
function spaces. Given a functor F :DF -* CPO with the colimit

(F[i] -4 X)iE D, for any cpo Y we can construct the functor

Fy:DF --I*CPO where Fy[d]: =Y - F[d] and

F[dj r dj]: =Xf.F[dl • d2]°f. We may expect now that the cpo [Y --* X]
is the colimit for Fy, but this is not the case in general. In this

special case [Y -- X] is the colimit if DF is directed and all fi's are

embeddings. But in the case of A-functors and the --, operation
on Funca the result is negative.

Example 3.10

We define the functor FB : B -- CPO as:

ns

In

&;o .
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The functor F,- FB: [B.BI --*CPO, with FB FBfIQ=FB- FBof

maps functions in [B --* B] into cpos of natural transformations.
Next we define the functions f, :B -. B as f,(4L=1, fi(ns)=ns, f,(k)=ns
for k E 1, ... ,iI and f1(k)=L for k E i +1,. Obviously f1 r.fi, 1 and
LJ~ifl= Ax.ns. In all the cpos FB-.- F,,of we have only one natural
transformation Ti'~ with (i~X..But in F. -to F~o(LItf,1) there

are two natural transformations Yj and 1Tj with (~Tl),id -So
FB --j FB[Ltlfi] is not the colimit of the cpos FB - FB[f1].

FR F,,of F11 f2  Fj oUf.
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A Categorical Interpretation of Landin's
Correspondence Principle

Anindya Banerjee and David A. Schmidt
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Abstract

Many programming languages can be studied by desugaring them into
an intermediate language, namely, the simply-typed X- calculus. In this
manner Landin and Tennent discovered a "correspondence" between the
semantics of definition bindings and parameter bindings such that the se-
mantics of free identifiers becomes independent of their mode of definition.

In this paper we consider programming languages with modules and we
desugar modules into records. A categorical model for the simply-typed
A- calculus with records is then freely generated. The record construction
becomes a tensor product, the lambda abstraction construction becomes a
function space, and if the language satisfies the correspondence principle,
then the categorical exponentiation diagram commutes. A converse result
is also proved. The framework for defining the model is of interest because
it defines a hierarchy of call-by-value X-calculi, of which call-by-name is
the weakest form of call-by-value calculus.

Applications to compiling are given.

1 Introduction

In his seminal paper on the next 700 programming languages [91, Landin sug-
gested that a programming language might satisfy a correspondence in the se-
mantics of its definition and parameter constructions. That is, the semantics of
binding a body, U, to a name, i, as seen in:

define i - U in V

should be the same as that of binding an actual parameter, U, to a formal pa-
rameter, i, as seen in:

define j(i) - V in call j(U)

where j is fresh.

*Manhattan, Kansas 66506, USA. Part of this work was supported by NSF under grant
CCR-9102625.

o I.... . .



588

Tennent [23] titled this the correspondence principle and suggested that it be
used as a design guide for programming languages. The primary benefit from
the correspondence principle is that a program phrase containing free identifiers
can be understood without concern as to whether the identifiers were bound
by definitions or parameters. For example, ... A ... means the same whether it
appears in:

define A - 4 in ... A...

or in:

define G(A) - ... A ... in G(4)

1.1 Correspondence in higher order, modular languages

The importance of the correspondence principle increases when a programming
language is higher-order, that is, abstractions can be arguments and results of
other abstractions. Consider the following example:

function g(a) - (function f(b) - .. ..... b... in return f)

A call to g(sonevalue) returns f with a binding to a. The semantics of f is
explained as: define a - sonevalue in function f(b) W ..a...b.... For this
explanation to make sense, correspondence must hold.

Finally, languages with modules need correspondence to ensure proper be-
havior: a module, in the sense of Ada and Standard ML, is a set of definitions.
Modules can be built hierarchically, one module importing another (cf. SML's
"functors" [11, 1r•i):

nodule a - (define i - something)
in module n(x) (use x; define j - .. A...
in ... use n(m)...

or they can be written "fla.":

module n - (define i - something; define j i .. ..
in ... use n...

Correspondence ensures that the semantics of a hierarchical module equals the
semantics of a flat one with the same set of definitions. For example, if the
"something" in the above example was a looping expression, and module param-
eters like a were evaluated eagerly but module importations like use n were done
lazily, then hierarchical module construction would be a futile endeavor.

1.2 This paper

We show that Landin's correspondence principle, as it arises in the above exam-
pies, can be formalized in Category Theory: a language's definition construct
defines a tensor product construction, its parameter construct defines a function
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space construction, and correspondence ensures that the exponentiation diagram
commutes. That is, the category freely generated by a programming language
with correspondence has an associative, commutative tensor product (with a
unit) and it has weak categorical exponentiation (the fill-in morphism might not
be unique). Hence, it is a symmetric monoidal weakly closed category. The sig-
nificance is that the tensor product ensures that sets of bindings (i.e., modules)
behave like sets, and exponentiation ensures that definition bindings behave like
parameter bindings. Both properties are crucial to properly designed, modular,
higher-order programming languages. We also show a converse result: if the se-
mantics of a programming language fits a "usual" format, weak exponentiation
in the model implies correspondence.

In this way, a fundamental intuitive programming language criterion is char-
acterized as a fundamental categorical one. This fits within Reynolds' program
of "Semantics ... [as] applied mathematics; it seeks profound definitions rather
than difficult theorems ... the application of such concepts directly reveals reg-
ularity in linguistic behaviour and strengthens and objectifies our intuitions of
simplicity and uniformity." ([25], page 3).

A programming language with correspondence can use call-by-name or call-
by-value binding, so the framework for our proof must accommodate both. For
this reason, we prove the result for a hierarchy of call-by-value A-calculi, of which
call-by-name is the weakest call-by-value calculus. In this light, our result can be
viewed as a generalization of the cartesian closedness of models for call-by-name,
simply-typed A-calculus [7] to monoidal closedness for call-by-value A-calculi.
Our result also reveals that the reason why categorical exponentiation holds is
because the form of binding defined by a product construction corresponds with
the form of binding defined by the function space construction.

In the rest of this paper, we define our metalanguage, outline the proof of
the correspondence theorem, and state an application to compiling.

2 The Metalanguage

One way to obtain correspondence is to force it upon a language. Landin [8],
Reynolds [18, 19], and Tennent [23, 24] observed that correspondence must hold
if both definition binding and parameter binding are desugared purely into A-
abstractions:

define i = U in V desugars to (A i .V)U
define j(i) - V in j(U) desugars to define j - A i. V in j (U) which

desugars to (A i . V) U, when A i . V is copied for j

Thus, the semantics of A-abstraction - whether it be call-by-name or call-
by-value semantics - defines the semantics of both definition and parameter
binding. An example like:

(1) const k - 0, alias x - locationi
in procedure p(y:int) = f:f *x+y

in x:- k; p(k)
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is desugared into:

((Ak:int.Ax:intioc.(Ap:int-+comm.x :- k; (p k))(Ay:int.x := x+y)O)locationl

We work with statically typed languages. For simplicity, we use alias defi-
nitions here rather than var declarations. A var declaration is a binding of an
identifier to a location with the side effect of allocating the location in storage.
One might desugar var x: intloc in e by new(Ax : intloc. e), where new is a stor-
age allocation operator [4, 13, '4, 191. Also, the a symbol denotes dereferencing.
Notice that compound declarations, like const k - 0, alias x = locationi, are
desugared into curried bindings.

Since the desugaring pattern is regular and simple, Tennent [23] derived an
abstraction principle, stating that a definition construction (e.g., constant, alias,
function, procedure, module, ... ) can be introduced for each of a language's syn-
tax domains (e.g., numerals, locations, expressions, commands, declarations, ... ).
Each definition construct is desugared into a A-abstraction. Similarly, Schmidt
[22] proposed a parameterization principle, stating that parameter constructions
(e.g., numeral parameters, location parameters, expression parameters, com-
mand parameters, declaration parameters, ...) can be introduced for each of a
language's syntax domains. Again, each formal parameter construct is desug-
ared into a A-abstraction. Properly applied, the two principles extend systemati-
cally a core programming language into a language for programming in-the-large
[1, 21, 24, 26].

2.1 The need for records

Desugaring both definitions and parameters into purely A-abstractions confuses
definitions with parameters, which is problematic when a Pascal-like language is
studied. Indeed, for the correspondence principle to be of value as a language de-
sign criterion, it must be possible for it to fail. More importantly, the desugaring
of Ada/Standard ML-style modules, which are sets of bindings, as in:

(2) begin module a - (const k = 0, alias x = locationl)
in begin use a, function f(a:integer) = a + 2

in x := k + f(dx) end end

can not be modelled easily by simply-typed A-abstractions if at all. The prob-
lem is that modules are "packages of bindings," which are not A-abstraction-like.
For these reasons, we will maintain the integrity of definitions and parameters
by desugaring them into records and A-abstractions, respectively. The meta-
language we use is defined in Figure 1. The metalanguage is reminiscent of
the one in Lambek and Scott [7] in its extension of the simply-typed A-calculus
by a product construction, but here we use records rather than tuples. Unlike
Lambek and Scott's construction, however, the records are motivated by the
pragmatic reasons stated above, not by an explicit desire to discover cartesian
closedness.
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r E Type-expression
L E Primitive-type (for core language constructs)
r E Type-assignment
e E Expression
i E Identifier

op E Core-language-operator

r ::- 1 -- 2 I'K

T ::= {i : TiIt, where Iis a finite set of distinct identifiers
e::= i Ai:r.e I (ele 2) I op(el,...,en) I {i=e} I withel doe 2  el,e2

ir l-i: r where (i : r) E 7c+ (i: T-) Ie : T2

7r I- A i : rl. e : r --+r2

.7rF-eI:7l--*r2 7ke2 :ri

7r I- (e, e2 ) : T2

lr - el : t, ... 7r F en :in 7r'F e :r

rý- op (e I, ... , en ): Lr -{i = e}: {i: 7}

ir t- e l { r i } i E I ir + ( i j : -r j) + ... + ( i n : r ,,) ý" e 2 : r w e e I ( j n
7r F- with el do e2 : T

r -el :{i:TribEl 7r ý- e2 : {j : rj Ji where InJ =0
r F- el,e 2 : {k : r}k}tEuj

Note: r+ (i: r) = (r - {(i:')(i : r') E T}) U {i : r}
{il = l, i2 = e 2 , ... , in = en} abbreviates

{i1 = el}, {i2 = e2 }, ... , {in = en}

Figure 1: Meta-language

By convention, we refer to that part of the programming language consisting
of primitive arithmetic, logical, and storage operators as the language's core; in
Figure 1, op(el, ... , e,) represents those operators. Definitions and parameters
are extensions to the core. Definitions are modelled by records, which are sets of
identifier-expression bindings (2]: {i = e} is a one field record, el, e2 is record
append, and with el do C2 makes visible to e2 the bindings in el. The example
programs (1) and (2) stated above are desugared respectively into:

with {k = 0, x = locationl} do

with {p=Ay:int. x :=ox+y} do
x : k; (p k)

and
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with {fu= {k = 0, x = location1}} do

with a, {f = a: int . a + 2) do
x : k + (f (4 x))

This makes clear that binding by definitions, as modelled by records, is inherently
different from binding by parameters, as handled by A-abstraction. In particu-
lar, modules are revealed to be records, and importing a module is achieved by
a with expression.

Records are product-like, and A-abstractions are exponentiation-like. This
"leads us to explore their categorical relationship.

3 The Correspondence Theorem

3.1 Computation Rules

Say that a programming language is desugared into the language of Figure 1.
The computation rules for the core language constructs are preserved, but the
computation rules for definition and parameter binding must desugar into the
computation rules for application and with, respectively. In a call-by-name cal-
culus, the computation rules for application and with have strikingly similar
forms:

Definition 1 (Call-by-name reduction)
/3-name: ((A i : r. el) e2 ) t [e2 /i]el
p-name: with {il = el, ... , in = en} do e t> [eil/i, ... , en/in]e

where [el/il, ... , en/i,]e is parallel substitution.'

Both treat binding as substitution. Indeed, the semantics of the two forms of
binding correspond in Landin's sense. In a call-by-value language, the compu-
tation rules correspond again: 2

Definition 2 (Call-by-value reduction)
/3-value: ((Ai : r.ei) e2) t> [e2/i]ei, where e 2 is a value
p-value: with {il = el, ... , in = e,} do e t> [el/il, ... , en/in]e,

where el, ... , e, are values and the notion of value is predefined, e.g., [17].

But say that the language uses a /-name rule and a p-value rule-correspondence
fails.

1The definition of parallel substitution is the usual one, but note that:

[ei/i]sEz(uith ei do e2) = with [ei/i],i~e1 do ([ei/ilE1-j)e2

where r I- el: : : "ri}jEj, and [ei/i]iE,_J is [ed/i]hEI less those substitutions e3 j/, where
j E J. This demands that we work only with well-typed programs and computation rules that
preserve typing.

2 Rather than view call-by-value reduction as the application of the call-by-name 3p-rules
with a fixed reduction strategy, we follow [17J and restrict the Op-rules. This leads to a pleasant
equational theory.
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Correspondence is aesthetically pleasing, but there is also theoretical justi-
fication for it: when it holds, regardless of the binding strategy employed, the
category freely generated from the programming language and its computation
rules is a symmetric monoidal weakly closed category, that is, the category has
an a sociative, commutative tensor product (with unit) and it has weak expo-
nentiation. These categorical properties formally ensure that records behave
correctly (order of construction of subrecords and order of fields are unimpor-
tant) and A-abstractions behave correctly (parameter binding is the same as
definition binding).

3.2 The Value set

Let us now summarize the proof of the "correspondence theorem" stated in the
previous paragraph. We begin by assuming that the correspondence principle
is characterized by the 13p-value computation rules of Definition 2, where the
notion of "value" can be varied, depending on the desired binding strategy. For
example, in the call-by-name calculus, all expressions are values. In a call-by-
value calculus, only some proper subset of the expressions are values.

The set of expressions termed as "values" must satisfy the following condi-
tions:

Definition 3 (Value) Let Value C Expression; Value is well-defined if the
following conditions hold:

(i) for all e E Expression, A i : r. e E Value;

(ii) for all ei E Expression, 1 < i < n
if all ei r Value, then {il = el, -- , In, i= ej E Value;

(iii) if e E Value, then for all visible subexpressions, e' wilhin e, e' E Value. (A
subexpression, e', within e, is visible if it is not contained inside eo of some
(A i : r .eo) and it is not contained inside e2 of some (with e1 do e2 ).)

The intuition behind Definition 3 goes as follows. All call-by-value calculi treat
A-abstractions as closures, hence Clause (i). If an expression, e, is a value, then
packaging it inside a record, {i = e}, should preserve its value-ness, hence Clause
(ii). Clause (iii) is the converse, generalized, of Clause (ii).

We say that an expression, e, is a value if e E Value; e has a value if
e = e' and e' is a value; else e has no value. ( e = e' means that e is con-
vertible to e' by the computation rules, t>.) Also, we assume that, the com-
putation rules for the core language operators have the form: op (el, ... , en) t>
e, where el, ..., en are values. Given the above terminology, we add this last
clause to Definition 3:

(iv) if r F- e : {i : Tj}iEj and e has a value, then, for all i E I, e I i has a value.
(e I i abbreviates (with e do i)).

This clause, a minor addition, is needed to gain the main result.

4'••:
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For (closed) expressions el and e2 , such that F el : r and F- e2 : r, el ,t e2 iff
el %,. e2 , where: el _,. e2 if el and e2 have no value, or else:

el ;, e2 if el and e2 have values, and el = e2

el %-,r-2 e2 if el and e2 have values, and for all a and b such that a ý-., b,
(eI a) -7 2 (e 2 b)

el '{si:ri.ilE e2 if el and e2 have values, and for all i E I, el I i -,, e2 I i,

Figure 2: Equivalence relation

When all the well-defined Value sets for Expression are ordered by subset
inclusion, they form a complete lattice, where the bottom element is formed by
the inductive closure over clauses (i) and (ii) (this is the usual call-by-value cal-
culus, except that no core language expressions are values), and the top element
is Expression itself (this is the usual call-by-name calculus). From here on, we
work with only those A-calculi whose Value sets are well-defined.

3.3 The equivalence relation and category

Our intention is to freely generate a category, C, from the language in Figure
1. (We assume acquaintance with elementary category theory [16].) The tech-
nique resembles that of Lambek and Scott [7]: objects of C are the elements of
Type-expression; morphisms in hom(r1, r 2) are equivalence classes of (closed)
A-abstractions, A i : rl. e, where F- A i :rl. e : 71 -- r 2 holds, with respect to the
equivalence relation, •, defined in Figure 2.

For open terms, 7r F el : 7 and 7r F e2 : 7, el • e2 iff for all (i : r") E 7r,
for all F- ai : 7i and F ri, : r such that ai •., bi, [a/i]eil ;.r [b,/i]e 2, that is,
substitution of equivalent closed terms for free variables yields equivalent closed
terms.

Proposition 1

For ir F el : 7 and ir F- e2 : r,

(i) ;z is an equivalence relation;

(ii) el =- e2 implies el _-" e2;

(iii) a ;< b and el ' e2 imply [a/x]el • [b/x]e2 , where 7r' =

7 - x: '}

(iv) A x : r'. eI ,e' A y : T. [ylx]ei, where r' = r - {x r'};

(v) if e has a value, then so do all its visible subexpressions;
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The proofs are routine, although clauses (i) and (ii) must be proved simultane
ously: e s e with (e =- e2 implies el ;'s e2). Proposition 1 implies:

((A i : r. e) e') • with {i = e'} do e

which is the traditional statement of correspondence.
For convenience, we write a morphism, [A i : T1" . e]% E homn(r 1 , r2), as just

A i : rl. e. For an object, r, the identity morphism, id,, is A i : r . i. For mor-
phisms f = (A ii : T1". el) E hom(ri, r2 ) and g = (A i2 : T2 .e 2) E hom(T2 , r3),
their composition, g of E r• --*r3, is Ail : ri .((Ai 2 : r2 .e2 ) e1). With Proposi-
tion 1 in hand, we can prove that these definitions give a category.

3.4 Correspondence implies exponentiation

The next, natural, step is to try to show that the category has a categorical
product, r, x r2 = {fst : rl, snd :r 2 }; where 7rj =A i : {fst : rl, sad : r2}. i I j,
for j E {fst, snd}; and (f, g) = Ai : 7. {fst= (f i), snd = (g i)}. But the
projection laws fail in the case when there is a phrase in the language that has
no value. For example, let f = A z : int. 0, g = y : int. Q, and say that 0 is a
value but Q has no value. Then, lrfst o (f, g) • f. 3 Instead, we define a tensor
product:

ri® O2 = {fst : ri, snd : 72}

f 0 g = Ai : rT On. {fst = f(i I fst), sad = g(i I snd)}

for f E ri-- r 2 , g E r3- r4

Proposition 2 ® is a bifunctor on C.

Next, we define the families of functions:

a,,,,, : (ri ® (r2 ® T)) -- ((Ti ® T2) 0 T3 )

Crir2 : (TI ® r2) -+ (2 ® 9i)

for all TlT 2, r 3 and show that they are natural isomorphisms. If desired, a new
type expression, {}, can be added to the language, and ?r F- 0: {} can be stated
as a new axiom. The natural isomorphism:

i, : (Q} 0 r) ---+,r

completes the collection: ® is associative, commutative, has a unit, and satisfies
the MacLane-Kelly coherence conditions [10], hence C is a symmetric monoidal
category.

3 Recall that ail phrases- eveng - in a call-by-name calculus are values, so {ist 7-1, snd: T2}
is categorical product in this case.



596

The final step is the validation that C is closed, that is, it has categorical
exponentiation. With the obvious definitions:

T1 =>72 = Tl--T2
apply = Ai:{fst:rl=r 2,snd:ri}.((i fst)(i snd))
closure(f) = Ail :r T. Ai 2 :r2.f{fst = il, snd =i2},

V f : {fst : Ti, snd : r2)}---r3

we can show the commutativity of the exponentiation diagram:

f ; apply o (closure(f) ® id) (1)

for all f E hom(Tr, r2). This gives us weak exponentiation.

Theorem 1 The category freely generated by Figures 1 and 2 is a symmetric
monoidal weakly closed category.

We use the term "freely generated" in the theorem, because the extensionality
conditions in Figure 2 are for all practical purposes necessary to make morphism
composition associative and ® a functor. (Indeed, we could formalize the pre-
vious remark by a suitable proof of initiality, but that is secondary to our goals
here).

We would like to show that the exponentiation is "strong," that is, the choice
of closure(f) is unique. But this can fail when there are phrases of function type
that have no value. For example, say that there is a family of phrases, Q, for all
types T, and no Q,. has a value. Then, closure(A r : {fst : T, 1 , snd : r12}. Q, 2 )
could be either (A a : rlI . A b : 712 . 0 2 ) or (A a : Ti1 . rl-. 72), but (Ab :
T12 -. 2) 0 flr12-2, since the former has a value and the latter does not. If
all phrases of function type have values, however, strong exponentiation holds.
This is the case in the call-by-name calculus, and also in those call-by-value
calculi that possess a lifting type, (r)±, where I represents those phrases that
have no value. Then, I- f~1.-2 : (rT -* r2)±

3.5 Exponentiation implies correspondence

Under restrictive conditions, the existence of weak exponentiation in a lan-
guage's semantics definition implies that correspondence holds. Say that the
category underlying the semantics definition has the weak exponentiation prop-
erty as in Figure 3. That is, el ; apply o (closure(el) ® id). The usual
reading of the property is that el can be given one of its inputs (the one
of type 7r) and then be packaged into a closure. When the closure is un-
packaged and applied to its other input, the result is exactly the same as
el applied to both its inputs. Now suppose that a programming language is
written in desugared form and its semantics matches the pattern in Figure 4.
Then the reading that is appropriate to Figure 3 goes a.- follows: el is a code
fragment that requires definitions of it- and ro-typed , Atues. (7r denotes the
type of the nonlocal definitions; ro is the type of the local definition.) Just
the ir-definitions can be supplied, giving a code fragment, closure(el), which
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"is

id o eo closure(el) id (To = i) o

1apply

rl

Figure 3: Weak Exponentiation

Assume that p is an environment compatible with r [25].

[r I- A i: ri . e : rl -- r2]p = closure[wr + (i: ri) F e: r2]p
[r I- (el eo) : -r2p = apply{fst = [ir H el : r - r2]p, snd = [r F e0 : Tirp}
[r I- {i = e) : {i: r}Jp = {i = [w F- e rip}
[r i- with eo do e, : rip = [r + (i: To) F- e : rl](p ® ([r I- eo: {i 7o}p)),

where (p f{i=v}) = {fst =p, snd=v}
[r F- i rlp = p(deBruijn-index-of(i))

Figure 4: Environment Semantics

requires a ro-typed parameter. When the parameter is supplied, the result
is the same as el with all its definitions for ir and rO. Figure 3 tells us:
[r F with {i = eo} do el : •2]p = [7r H- ((A a : ri . el) e0): 721p. Since the seman-
tics in Figure 4 preserves meaning under substitution: [r I- [e1 /i]e 2 : 721p =
[r + (i : ri) H e2 : r21(p ( (i = [w H- el : Tip)), for ei E Value, then we imme-
diately derive the soundness of the /3-val and the p-val reduction rules - corre-
spondence holds. The format in Figure 4 matches that used for lazy imperative
languages and functional languages. Of course, a programming language can
have correspondence even if its semantics does not match the format in the
figure.

3.6 Extensions

Say there is a phrase, Q, of primitive type that has no value. This implies that
phrases without value exist for all types r: (, is ((A a : t. e) Q2,), for a closed
phrase, e0 , of type T. This phenomenon prevents a proof of categorical product
and strong exponentiation. On the positive side, it means that addition of higher
order constants, like fix, do not impact the results already proved. We can add
a family of binary fix operators, with the computation rule:

fix (i: )e > [(fir (i:r) e)/i]e

Although our proof does not require it, in practice, the definition of Value
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should be "monotonic" with respect to substitution and computation in the
sense that: (i) if ei, e2 E Value, then [el/i]e 2 E Value; and (ii) if e E Value and
e t> e', then e' E Value as well. A consequence is that, if the computation rules
are orthogonal [6], the rule set possesses the closure property and is confluent
[5, 6, 15].

Finally, the computation rules we use can be restricted so that they perform
weak reduction, that is, an expression is a redex it if is visible and it matches the
left-hand side of a computation rule. The proofs of the previous results carry

through unaltered, since the reasoning in the proofs is extensional in nature.
(But note that the previous remarks regarding confluence do not hold [3].)

4 Applications to Compiling

The obvious impact of correspondence on an implementation of a programming
language is that the same implementation of binding can be used for both defini-
tions and parameters. But the framework used to produce the results in Section
3 is of significance in itself because Definition 3 and the /p-value rules provide
a natural style of compilation of a program. The idea is simple but important,
because virtually all compilers exploit it: the binding of an identifier, i, to an
expression, e E Value, can be performed at compile-time. Indeed, this activ-
ity might be considered the essence of compiling [20, 27]. Here is an initial,
significant example: regardless of a language's binding strategy, a collection of
declarations of parameterized subroutines can be processed at compile-time be-
cause they form a record of A-abstractions, which must be a value, by Definition
3. For example, regardless of binding strategy, the code segment:

begin module = { procedure p(a:int) - x :- a }
in begin use a, function f(b:int) - b + 2

in call p(f(fx)) end end

which desugars to:
with {m= {p=Aa : int.x :=a}} do

with m, {f = A b: int. b + 2} do (p (f (@ x)))
can be evaluated by a compiler to: ((A a : int . z := a) ((A b : int . b + 2) (@ x))).
This matches the usual compile-time processing. (Of course, a compiler copies
addresses to the code for p and f, rather than the code itself. If a compiler is
given additional information, e.g., that numerals are values, then definitions like
cons. a - 2 can also be evaluated at compile-time.

4.1 Commands as values

If commands are also values, then unparameterized procedures can be evaluated
at compile-time, as in the following example:

begin const a - 2
in begin procedure p = x :- f + a

in call p; call p end end
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This desugars to: with {a = 2} do with {f = z =f + a} do p; p and evaluates j
at compile-time to: z f + 2; z := f + 2. A corresponding example with a

* command parameter would read:

begin const a - 2 in
begin procedure p - Ux :- f + a) , procedure q(r:comu) - (r; r)

in call q(call p) end end

This desugars to:

with {a = 2} do with {p = (z:= f + a), q = (Ar : comm.r; r)} do (q p)

and evaluates at compile-time to z := f + 2; z := f + 2 as well. Commands, like
x: - f+a, are values in imperative-style call-by-name languages like Algol-60 as
well as in imperative-style call-by-value languages like Pascal. The latter point
is often overlooked by Pascal programmers, but a Pascal compiler is well aware
of it.

Finctional-style call-by-value languages like Scheme and SML usually disal-
low commands as values. An SML-like program fragment such as:

begin function f(a:com) - 2 in x:- 0; f(x:-Ox+l) end

is desugared to with {f = Aa : comm. 2} do z := 0; f(z := @z + 1) and is
compile-time evaluated to x := 0; (Aa : comm. 2)(z := @z + 1), but the ac-
tual parameter, which is not a value, can not be bound to the formal parameter
until run-time. Only when the run-time storage vector is available can the com-
mand be evaluated to a value. (In SML, the resulting "value" is 0.) Thus, the
compiler must generate object code for making the run-time binding.

4.2 Expressions as values

A related situation arises with arithmetic expressions. In a call-by-name lan-
guage, all expressions are values, and the examples:

begin function f - Qx + I in x :-f ; x :-f end

begin procedure p(f:int) - (x :f f ; z :- f) in call p(Cx+1) end

both compile to x := @z + 1; z := ©x+ 1. This is an example of the
classic Algol-60 copy rule in action. In contrast, in a typical call-by-value
language, numerals are values, but compound arithmetic expressions, like
Oz + 1, are not. The best a compiler can do with the previous examples is:
with {f =@z+1} do z:=f; z:=f and (Af :int. x :=f; z :=f)(@x+1),
respectively. The compiler can not copy the body of f for its invocations. The
reason should be clear: the evaluation of Gx+t to a numeral fixes f's value for
all its subsequent uses. Since *x+t requires the run-time store for its evaluation,
the compiler must generate object code to evaluate the expression and bind its
result into (a cell for) f.

The above example should not be read as suggesting necessarily that call-by-
name is inherently better than call-by-value, but it is different. One should note
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from the example, however, that confusion easily arises when the semantics of
expression definitions (i.e., functions) does not correspond to the semantics of
expression parameters.

A compiler that folds constants can evaluate arithmetic expressions like 1+2
to values like 3 and copy the results at compile-time.

4.3 Declarations as values

Modules are declarations that are records, and Clauses (ii) and (iii) of Defini-
tion 3 ensure that a module is a value exactly when all its components are. The
consequences are straightforward. But in imperative languages, variable decla-
"rations in modules can affect sharing. Say that a declaration, var x, is desugared
to alias x- allocate, where allocate needs the run-time store to evaluate. The
sharing of variable x by modules n and p in:

begin nodule a { var x }
nodule n(a:{x:intloc}) - begin use a in

{ procedure p - x:0 }
end ,

nodule p(b:{x:intloc}) = begin use b in
{ procedure q = x:=ex+l }

end
in use n(n) , use p(n)
end

is directly dependent upon whether or not the allocate operation is a value. This
example makes clear why compilers typically "evaluate" allocate to a relative
address.

5 Conclusion

We have shown the importance of the correspondence principle to modular,
higher-order programming languages, and we have validated correspondence by
proving it is weak exponentiation in a symmetric monodial closed category. A
simple perspective to the main result, the correspondence theorem (Theorem
1), is that the theorem is the natural generalization of the cartesian closedness
property for the call-by-name simply-typed A-calculus [7] to monoidal closedness
for call-by-value A-calculi. But it is only because of the correspondence between
product and function space that the generalization is possible. The variety of
correspondence (i.e., which variant of call-by-value) is unimportant-what is
important is the correspondence principle itself.
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Abstract

In this paper we present an operational semantics for the language TOOPLE, a statically-
typed functional object-oriented programming language which has a number of desirable proper-
ties. The operational semantics, given in the form of a natural semantics, is significantly simpler
than the previous denotational semantics for the language. A "subject reduction" theorem for
the natural semantics provides a proof that the language is type-safe. We also show that the
natural semantics is consistent with the denotational semantics of the language.
Computing Review categories: D3.2 Object Oriented Languages, F3.2 Operational Semantics,
F3.3 Type structure.

1 Introduction

Object-oriented languages promise to provide support for reusability and modularity of
program code. Reusability is achieved by inheritance, which allows subclasses to be
created easily from classes, and by subtyping, which allows elements of a subtype to be
used in contexts which expect elements of the supertype. Modularity is achieved by the
encapsulation of methods, which gives programs independence from the implementation
details of the classes they use.

Static typing has dear advantages for programming languages as long as it does not
interfere with expressibility in the language. Unfortunately, most extant statically-typed
object-oriented languages are either type-unsafe or are unduly restrictive in the programs
accepted by the type checker. For example, the holes in the type system for Eiffel are well-
known, while C++, Object Pascal, and Modula-3 are unduly restrictive in not allowing
chaz.ges in the types of methods in subclasses (derived classes). The design of the language
TOOPLE1 (see [Bru93a, Bru93b]) represents progress in solving both of these problems

"*This research was partially supported by NSF grant CCR - 9121778.
t Current address: Department of Computer and Information Science, University of Pennsylvania.
tCurrent address: Department of Computer Science, Rice University.

'TOOPLE is a minor modification of TOOPL (Typed Object-Oriented Programming Language) in
which class terms are required to include slightly more typing information as part of their syntax. This
change was necessary in order to provide an algorithm for type-checking terms and ensure that each term

0* has a minimal type.
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by ensuring type-safety while providing greater expressibility than other statically-typed
object-oriented languages which are type-safe. The introduction to [Bru93b] includes an
extensive comparison with other statically-typed object-oriented programming languages.
We simply remark here that a key to the combination of safety and greater expressibility
in TOOPLE is the separation of the subclass and subtype hierarchies, as suggested in
[CHC9O]. j

An important design goal of TOOPLE was to provide a modular type-checking system
for the language. In most current object-oriented languages, the inheritance mechanism
creates problems for the type checker. While a program that merely uses a class can
be written and checked independently of the class code (assuming that an interface and
corresponding type specification are given), to type check a class which inherits from
another class, one often needs to go back and repeat the process of type checking the
bodies of inherited methods from the superclass. This is necessary in order to ensure that
overriding other methods from the superclass (in particular, changing their types) does
not affect the types 'of inherited methods.

In an ideal object-oriented language, the inheritance mechanism itself will be modular.
That is, one should be able to write and check programs, and find errors, looking only
at the types of the superclass and the code of the modifications. For instance, a type-
checking mechanism with these properties will be necessary if vendors are to be able
to distribute libraries in compiled form only. The type-checking rules for TOOPLE do
provide this modularity. The user need only know the type of a class in order to define
and type check any subclass of that class.

We can summarize these important properties of TOOPLE as follows:

s Type safety: If a term has a type, r, then the result of evaluating that term will
be an element of type r. In particular, no error messages of the form "message not
understood" will arise during the evaluation of a well-typed term.

* Modularity of type-checking: If a class has a type, then methods inherited in a
subclass continue to have the types specified in the superclass. Moreover, in order
to type-check a subclass we need not have access to the bodies of methods inherited
from the superclass. Only the types of the inherited methods are needed from the
superclass.

Earlier papers on TOOPL provided a denotational semantics of the language. Build-
ing on earlier work of Cook et al. ([CHC90]) and Mitchell ([Mit90]) on the semantics
of inheritance in typed programming languages, the denotational semantics is based on
a higher-order extension of F<, the bounded second-order lambda calculus. The deno-
tational semantics involves fixed points at both the element and type level, making the
semantics more complex than might be desired.

For some purposes, such as implementation or program verification, a natural seman-
tics is more useful. Thus, in this paper, we present an operational semantics for the

language. This semantics is significantly less complex than the denotational semantics,
as it involves no higher order concepts and no fixed points. The operational semantics
is given in the form of a natural semantics (see [NN92] or [Gun92] for more details on
natural semantics).

0ý In [Bru93a, Bru93b], the first author showed that the language is type-safe by showing
that the meaning of a term is included in the set of values corresponding to its type. Here
we provide an alternative proof of this fact by proving a "subject reduction" theorem for
the operational semantics. This theorem states that if a term has a type, then the term
which results from fully reducing (evaluating) the original term also has the same type.
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Of course when one provides a different style of semantics for a language, one is in
danger of creating a semantics which is no longer consistent with the original one. Thus we
prove that the operational semantics is consistent with the earlier denotational semantics.
In particular if a term c reduces to a term v in the operational semantics, we show that
e and v have the same denotational semantics.

In section 2 of this paper, we provide a very brief description of the syntax of TOOPLE,
along with a few simple sample programs. In section 3, we present the operational and
denotational semantics of TOOPLE as well as some preliminary lemmas which are nec-
essary for the results in the rest of the paper. This includes a statement of the minimal
typing theorem for TOOPLE, which was proved in [BCD+93]. In section 4, the subject
reduction theorem is proved. As noted above, this leads to an alternative proof of the
type safety of the language. In section 5, the natural semantics of TOOPLE is shown to
be consistent with the denotational semantics of the language. Finally, in the last two
sections we provide a brief comparison with other attempts at modeling object-oriented
programming languages, and conclude with a discussion of other results on TOOPLE.

Because of space restrictions, this version of the paper only discusses the restriction
of TOOPLE to a language in which classes have no instance variables.

2 A brief introduction to TOOPLE
TOOPLE is a statically-typed functional object-oriented programming language. It of-
fers full support for object-oriented features including objects, classes, methods, hid-
den instance variables, dynamic method invocation, subclasses, and subtypes. Moreover,
TOOPLE provides mechanisms to allow the programmer to refer to the current object
(self), its type (MyType), and the record of methods of its superclass (super). We pre-
sume the reader is familiar with the fundamental concepts of object-oriented languages,
though they are described briefly below.

Objects consist of a collection of instance vaJriables, representing the state of the object,
and a collection of methods, which are routines for manipulating the object. When a
message is sent to an object, the corresponding method of the object is executed. Classes
are extensible templates for creating objects. In particular, classes contain initial values
for instance variables and the bodies for methods. All objects generated from the same
class share the same methods, but may contain different values for their instance variables.
A subclass may be defined from a class by either adding to or modifying the methods and
instance variables of the original class. (Restrictions on the modification of the types
of methods and instance variables in subclasses are necessary in order to preserve type-
safety.) Methods which are not modified in subclasses are said to be inherited from their
superclass.

All terms of the language, including both classes and objects, have associated types.
We say type T is a subtype of U if a value of type T can be used in any context in which
a value of type U is expected. Note that subtyping depends only on the type of values,
while subclasses and inheritance depends upon their implementations. It was pointed out
in [CHC90] that if one class is a subclass of another, the type of the objects generated by
the subclass need not be a subtype of the type of the objects generated by the original
class.

A bound variable, usually written as self, may be used in methods as a name for the
current object. Since our language is statically typed, it will be necessary to assign a type
to all occurrences of self. Because the meaning of self will change when methods are
inherited in subclasses, its type will change as well. Thus we will use a bound variable,
usually written as MyType, as the type of self.

....................... *--

I
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Finally, when new definitions are given to methods in a subclass, it is useful to be
able to refer to the methods of the superclass. For instance, one often wishes to apply
the method body from the superclass and then perform a few more operations before
returning from the redefined method. We provide a bound variable, usually written as
super, to refer to the record of methods of the superclass.

We note that instance variables are omitted in this conference paper to keep the
language as simple as possible. The addition of instance variables raises no serious com-
plications in the development of the technical results.

The types for TOOPLE axe defined as follows:

Definition 2.1 Let VTP be an infinite collection of type variables, 4 be an infinite col-
lection of labels, and CT, be a collection of type constants which includes at least the type
constants Bool and Num. The type expressions with respect to VTp and CT, are defined
as follows:

1. If t E VTP U CTP then t is a type expression.

2. If o, and r are type expressions, then so is o --+ r.

3. If m1 ,...,m. E C and 7-1,...,r, are type expressions, then {m, :7-1;...;m, : r,} is
a (record) type expression.

4. If r is a record type expression and MyType E VT,, then ObjectType(MyType)r and
ClassType(MyType)r are type expressions. MyType is considered to be a bound
variable in these two type expressions, and binds all free occurrences of MyType in
T.

Types of the form a --* r represent function spaces. Object types are written in the
form ObjectType(MyTjpe)r, where r is the type of the record of methods of the object.
Similarly, class types are of the form Class Type(MyType)r.

Definition 2.2 The pre-terms of TOOPLE are as follows:

M::= x IifBthenMelse NI fun(v:o')MIMNIM =NIe.m I
Min = e 1,... .,m, = en} I class(self : MyType <_,th Object Type(MyType) r)e I

new c I o t= m I obj(self : MyType <m.th ObjectType(MyType)r)e I
update c by(self : MyTye <•,_nh ObjectjType(MyType)r'; super){m, = e')}
extend c with(self : MyType <mth ObjectType(MyType)r'; super){mn+I = e,+,).

In the above grammar, B, M, N, c, o, e, and the various ei refer to pre-terms.

Most of the pre-terms should be self-explanatory. A pre-term of the form class(self:
MyType S-5.1h Object Type(MyType)-r)e represents a class whose method bodies are con-
tained in the record e with type r.2 As discussed earlier, self can be used in the body
of a method to refer to the object executing the method. MyType represents the type of
self.

A pre-term of the form obj(self : MyType •m,,a Object Type(MyType)r)e represents
an object with method bodies in e.3 If c is a class then new c represents an object

2The addition of <re.th Object T7e(MyTiTpe)r after MNT7pe in class definitions is necessary in order to
obtain a minimal type for all terms of TOOPLE. This addition for class, update, and extend terms is the
only difference between the language TOOPL described in previous papers and the language presented
here.

30bj terms are not actually in the source language. However they are used as an intermediate form
of a term in the natural semantics. As a result, we include them here.
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generated from c. "Update" and "extend" pre-terms provide ways of modifying or adding
new methods to a class. A pre-term of the form o 4:: m represents sending the message
m to object o. Sample TOOPLE code is given at the end of this section.

Aside from the subtyping relation (<) discussed above, we need another ordering on
object types which is related to types obtained via subclasses. This ordering, <Cth, is
a pointwise ordering on method types. If o is an object of type Object Type(MyType)r,
generated from class c, and Object Type(MyType)T' is the type of an object generated from
a subdass of c, then Object Tpe(MyType)r' <-m,th ObjectType(MyType)r. The axioms
and rules for < and <meih are given in Appendix A. The subtyping rules and axioms
are given with respect to a collection, C, of simple type constraints of the form t <
r and t <,_.th r. See [Bru93b] or [Bru93a] for further explanation. Note that C F-
Object Type(MyType)r' <meth Object Type(My7We)r iff C F- r' < r.

Most rules should be familiar with the possible exception of the subtyping rule, for
object types. This rule arises from the fact that object types are defined recursively (in
order for MyType to stand for the type of the object in its type definition).

The actual terms of TOOPLE are those which can be type checked with respect to
a collection, C, of simple type constraints, and an assignment, E, of types to variables.
The type-checking rules for TOOPLE can be found in [Bru93b] or [Bru93a], where they
are explained in some detail. Note that it is possible to redefine a method in a subclass
in such a way that the type of the new method is a subtype of the type in the superclass.

The following restrictions on type constraint systems will allow us to show that each
term has a minimum type.4

Definition 2.3 Let C be a type constraint system. We say that C is manageable if the
following conditions hold, where s and t range over type variables:

1. If (t <mnth Object Type(MyType)r) E C, then there is no term of the form (s < t) E
C.

2. There are no terms of the form (t < Object Type(MyType)r) E C.

These two rules essentially disallow introducing a type variable which is a subtype of
an object type.

A collection of type-checking rules for computing the minimal types of terms of
TOOPLE can be found in Appendix B. These rules represent an algorithm for com-
puting the minimal type of a term of TOOPLE as long as C is a manageable type con-
straint system. Note that there are two rules for each of function application (MAppl
and MAppl'), record field extraction (MProj and MProj), and message passing (MMsg
and MMsg). These are necessary since these operations may be applied to items whose
minimum types are cype variables. The most important place where this arises is when a
message is sent to self, whose type is My Type.

The following taeorem from [BCD+93] gives the relation between the type-checking
rules given in [Bru93a, Bru93b] and the minimal typing rules given in Appendix B.

Theorem 2.4 Suppose that C is manageable. Then C, E F- e : r according to the type-
checking rules in [Brug3b] or [Bru93a] iff there is a type r' such that C, E F-Al e : r' and
C F-T' <Tr.

As a result, it will be sufficient to use the rules for deriving minimum types given in
Appendix B. This will be useful later in the paper after we have introduced the natural

'in IBCD+93] we restiict type constraints systems even further. However the definition of manageable
type constraints given here is sufficient to prove minimum types for terms.

, uUI, ~ nm --m- l I I I I I I I
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(operational) semantics of TOOPLE. We will show that the minimum types of terms
generated in the evaluation of a TOOPLE term are all subtypes of the minimum type of
the original term.

We end this brief introduction with the inclusion of a few examples of terms and their
types from [Bru93b].

PointClass =
class(self : MyType <megh Object Type(MyType){x,y : Int; eq: MyType -+ Bool})

{x = 0, y = 0, eq = fun(p: MyType)((self 4- x) = (p * x))&((self 4 y) = (p < y))}

has type PointClassType = ClassType(MyType){x,y : Int; eq : MyType --* Bool}, and
represents points with x, V, and eq methods.

PtObj = new PointClass is an object generated from PointClass. Its type is

PointType = ObjectType(MyType){x,y: lnt; eq : MyType -- Bool}.

Let

ColorPoint Type = Object Type(MyType){x, y : Int; c: ColorType; eq : MyType --+ Bool}.

We can add a color method to PointClass using the "extend" term:

ColorPointClass =
extendPointClass by (self :My Type <ý,eh ColorPoint Type; super) {c = Red)

Tf we wish to change the method eq so that it now also checks the color components
of twc records, we define

NuCnlv,'PtUiass = update ColorPointClass with (self :MyType <m,,th ColorPointType;
super) (eq = fun(p:MyType) super.eq(p) & ((self<- c) = (p <- c)) }.

Notice the use of super in the updated eq method to perform the old eq body, before
testing the equality of colors.

Finally we note that by rule (MMsg) the term PtObject 4-= eq has type PointType
Bool. On the other hand, if ColorPtObject is an object generated from NuColorPointClass
having type ColorPointType, then ColorPtObject -- eq has type ColorPointType --+ Bool.
This illustrates the flexibility obtained by the use of self and its type MyType.

3 Semantic definitions and preliminary lemmas

In this section we present some fundamental definitions and lemmas which will be useful
in the proofs in the following sections. We also present the natural and denotational
semantics for TOOPLE. We begin with a description of some of our notation.

Definition 3.1 We write a = b to denote that a and b are syntactically identical, up to
renaming of bound variables.

Definition 3.2 We write e[a/xJ to denote the substitution of a for x in e, where we first
rename bound variables as necessary to avoid capture of free variables.

The natural semantics and denotational semantirs for terms of TOOPLE can be found
in Appendices C and D. In the natural semantics we will use C, E I- e : r I v as an
abbreviation for C, E t- e : r, and e I v. We read this as e is a term with type r which
reduces to v, which is an irreducible term.
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The irreductible terms are constants, function abstractions, records, classes, and ob-
jects. Most rules for non-object-oriented features should be familiar. By RRecord, RClass,
RAppl, and RNew, the evaluation strategy is "lazy." That is, subterms are not evaluated
until necessary.

The most interesting rule is RMsg, for sending a message to an object. When a term
of the form o 4-= m is evaluated, o is reduced to a term of the form, o' = obj(self :
MyType <_.•et 7')e, where e is its record of methods. Then self is replaced by o' and
MyType by -y' in e, which is then evaluated to a record term. Finally, the record component
corresponding to m is evaluated and returned as the final answer.

While self is an irreducible value, it should be noted that when a message is sent to
an object, all occurrences of self are replaced by the object, so self no longer occurs in
the method body when it is actually evaluated.

The subject reduction theorem, presented in section 4, will show that the reduced
term, v, will have a minimal type that is a subtype of the type of the original term e. It
follows that, in the original typing system, if C, E k- e : r I v, then C, E F v : r.

The substitution lemma for types is necessary to prove the subject reduction theorem.
It ensures that substitution is a well-behaved operation with respect to the subtyping
relation. More formally:

I Lemma 3.3 Let C be manageable and let x be a variable. Assume that there exist terms
and types such that C, E F-M e : r, C, E FM x a. C, E Fif a : a', and C F a' < a. Then

there exists some r' such that C, E FM e[a/x] : r' and C F T' < r. Furthermore, if T is a
class type, then r' = r.

Proof. The proof is by induction on the proof of minimum typing. The base case is
straightforward. We present only a few of the inductive cases.

Inductive assumption. For all C, E, if C, E FM e' : p in fewer than n steps and x and
a are as described above, then there exists some p' such that C, E FMf e'[a/x] : p', where
C F p' _ p. Furthermore, if p is a ClassType type, then p' = p.

MClass. C, E FM class(self : My Type <.,eth ObjectType(MyType)r)e:
Class Type(MyType)r.

Case 1: x = self. In this case the expression is unchanged by the substitution as
self is a bound variable of the term. As a result the type of the term is unchanged by the
substitution.

Case 2: x j self. Thus, (class(self : MyType <-,eth ObjectType (MyType)r)e)[a/z]
- class(self : MyType <,eth ObjectType(MyType)r)e', where e' = efa/zJ. By induction,
C, E 1-M e' : T', where C F r' < T. Since classes have unique types, the class typing rule al-
lows us to prove that C, E FM (class(self : MylType <_,,h ObjectType(MyType)r)e)[a/x]:
ClassType(MyType)r.

MMsg. C,E FM o = mi : ri[-y/MyType].
We may assume that C, E F-M o: -y, where -y = Object Type(MyType){... ;rmt : "i;...

by the typing rules. By induction, C, E FM o[a/x] : 7', where -y' = Object Type(MyType)
{...;mi : ri;...1, and C F 3 < -Y . Note that the minimum type of o[a/x] must be an
ObjectType type, since, by the second part of the definition of manageability, there can
be no expressions of the form (t < Object Type(My Type)r) E C. By the object subtyping
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rule, CU{s _< t} F- {...;m, i: ';...}[s/Mype] !5 {. ... ;m, : ,,;.. .}[t/MyType], and
it follows that C U {s <_ t) I- r/[s/MyType] < ri[t/MyType]. Finally, because s and t
do not occur in C, substitution of the types of the 7' and -y for s and t gives us that
C F- ry'['lMyT7,e] 5 _r,[7/MyType],.

MMsg'. C,E FM o t= m, : ,,[t/MIy, e].
C, E FM o : t, where t is a type variable. Thus (t <,eth Object Type(MyType){... ;mi :

ri; ... )) E C. Note that (o 4= mi)[a/x] =_ o[a/x] o in,. Now, by induction, C,E Fm
o[a/xJ : t', where C F t' < t. But the first part of the definition of C being manageable
asserts that there can be nothing of the form (r <_ t) E C, and, since t is a variable, no
other proof can exist which shows that t' is a subtype of t. Therefore, t = t', and so
C, E FM o[a/x] <-- m, : r,[tlMyType].

MUpdate. C, E F-M update c by (self: MyType <.,,h Object Type(MyType)'Y'; super)
{mi = e'} : ClassType(My Yje) .7'

where 7' = {m 1 : r,; m 2 : r 2;... ; m. : r,}.
By the observations in the (MClass) case, we may assume that x $ self, as no change

will take place otherwise. Now note that

(update c by (self : MyType <..Sh Object Type(MyType) -I'; super){m, = e'})[a/x]
update c[a/xJ by (self : MyType <-mt Object Type(My Type) -y"; super)

{m, = e•[a/z]}).

By the typing rules, c has some Class Type type, and so by induction, c[a/z] must have
the same type. Thus C, E FM c[aix]: Class Type(MyType){m 1 : ..-... ; m,. : r,}. Also, by
induction, C, E F-M e'fa/x] : Tr', where C F- T1' < T,. Thus we can use (MUpdate) to prove
that C, E F-M update c[a/x] by (self : MyType <..ih ObjectType(MyTYpe)-y'; super){mi =
e'[a/x]}) : ClassType -'. Thus the update expression after performing substitution has
exactly the same type as it did before the substitution. M

4 Subject reduction theorem

The subject reduction theorem shows that types are preserved under the reductions of
our natural semantics. This can be used to show that TOOPLE is type-safe, since no
computation on a well-typed term can ever result in a term which is ill-typed.

Theorem 4.1 Subject Reduction Theorem Assume that C, E F-M e : r 4 e'. Then
there is a type r' such that C, E FM e' : r', where C F r' <_ r. Furthermore, if r is a class
type then r' T r.

Proof. The proof is by induction on the number of steps used in the reduction.

Base case. If any of the rules RAbs, RConst, RRecord, RClass, or RObj apply, then
e' =- e, so the theorem holds trivially.

Inductive cases. Suppose that for all C, E, and for all e' such that e' I e" in fewer
than n steps, if C, E F-M e' : r' I e" then there is some r" such that C, E I-M e" : 7" and
C F- T" < r'. Furthermore, if r' is a class type then r' M I".

The proof proceeds by cases on the last semantic rule applied. In each case we assume
that e is typable and that there is some v such that e I v, in n steps. We begin each case
by specifying the form of e and the minimum type of e.
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We include only a few interesting cases in this conference paper. We note that Lemma
3.3 is needed in the (omitted) case for function application.

RNew. C, E FM new c: ObjectType(MyType)T.
By the typing rules, C, E F-M c: Class Type(MyType)r, and by the semantic rule, c 4

class(self : MyTpe <-,,th ObjectType(MyType)r)e'. By induction, C, E FM class(self
MyType <-,.eh ObjectjType(MyType)T)e': ClassType(MyType)r, as the types of classes are
invariant. By the semantic rule v =- obj(self : MyType <,.,th Object Type (My Type)Tr)e',
and we can prove that C, E FM obj(self : MyType <-.th ObjectType(MyType)i)e'
Object Ye ((MyWpe)Tr.

RMsg. C, E FM o 4 mi :ri[/MyType].
It is clear that o is typable, as the entire expression is typable, and we proceed by

cases on the last rule of the proof of minimum type for o 4= mi .

MMsg. C,EFM o: ObjectType(MyType){...;mi,:ri;...).
Note that -y = Object Type(MyType)(... ;mi : Ti;...}. Since o J. obj(self : MyType <_,,h

7')e for I' = Object Type {.. . ; mi : r;.. .}, then, by induction,

C, E FM obj(self : MyType <_,,eh -y')e: ObjectType(MyType)y', (1)

where C F -f' _ -. (2)

By the subtyping rules, the only way (2) could hold is if CU {s < t) F r"'[s/MyType] <
Ti[t/MyType]. It follows that

C F r'/[-Y'/MyType) < ,[-/MyITYpe]. (3)

By (1) and our typing rule for obj terms,

C U {MyType 5_,eia y'}, E {self: MyType} FM e {.;..;m, : rT";...}, (4)
where

C U {MyType -< ,h -'} - -' < r' (5)

Let e' = elobj(self: MyType ,,eth -/')e/self , Y'lMy Type]. By Lemma 3.3, it follows that

C,E FM e': {...;m, : i";...} (6)

where C F ri' -< r-"[y'/MyType].
By (5), it follows that

C F -r6 '[-y'/Myye] <_ 4[y'/MyType]. (7)

Furthermore, since e' I {...., mi = ei,... .}, it follows by induction that C, E F-M e, : p,
where

Since ei I v, by induction, F (8)

C, E F-M v: p', where C F p' < p _ 4" <_ 4r'[-y'/My Type]. (9)

Thus, by (3), (7), (9), and transitivity,

C F- p' < r,[y1MyType].
In summary, if (e -= mi) I. v, where C,E F5 , e 4-- mi : r'i[-//MyType], then C,E FM

v: p', with C F p' < ri[-y/MyType], as desired.
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MMsg'. C, E FM o: t, where t is a type variable.
Note that -y = t. The other hypothesis of the (MMsg') rule must be

(t <_,mh ObjectType(My Type){... ;m, : r;...}) E C.

By the semantic rule (RMsg), o J obj(self : MyType _<S,,h( ... ;r, ';...)e. Thus, by
induction, C,E FM obj(self : MyType <meth {...;mi : r;....})e : t', where C F- t' < t.
However, any proof of minimum type for an obj expression must end in the (MObj) typing
rule. Thus t'is of the form ObjectType(MyType)r, and so C F Object Type(MyTType)r < t.
But this implies something of the form (r _ t) E C, which is impossible due to the first
part of the definition of manageability. Thus it cannot be the case that C, E F-M e : t,
where t is a type variable. 0

The subject reduction theorem ensures that our programming language is type-safe,
by showing that all intermediate terms in a computation can be typed (with a subtype
of the type of the original term). In particular, this implies that no term of the form f(e)
occurs in the computation of a well-typed term if the types of f and e do not match.
Similarly no object will be sent a message that it cannot handle in a computation on a
well-typed term (since such a subterm would be ill-typed).

Thus, if we begin with a term with no free variables, a computation will proceed in a
type-safe way to a value or may loop. However, it will never become stuck at a non-value
since each well-typed term corresponds to a computation rule in the natural semantics.

5 Consistency of the natural semantics with the de-
notational semantics

The theoretical results about TOOPL in [Bru93a] are given in terms of the denotational
semantics presented in Appendix D. Of course, we would like to be able to claim that any
results using the natural semantics presented here actually refer to the same language as
the one Bruce described.

We will prove that the natural semantics presented in appendix C is sound with
respect to the denotational semantics. To do this, we must show that, whenever a term
M reduces to a term v in the natural semantics, their meanings are the same according
to the denotational semantics.

We first need the following substitution lemma for terms.

Lemma 5.1 Suppose s is not free in C or E, C U {s < r},E U {x : s} F- M
C,E F a: a, and C F- a < r. Then

1. C, E F- M[alx, ols] : -y[ol/s], and

2. [C U {s < r}, E U {x: s}F - M: -ylp[IC, E a: alp/x, o]jp/s]=
[C, E F M[a/x, a/s]: [/ls]p.

We now prove the correctness of the natural semantics with respect to the denotational
semantics.

Theorem 5.2 If C, E l- AI : r J v, then IC, E l- M : rjp = JC, E F- v : rTp

Proof. We will prove the natural semantics correct by induction on the number of steps
in the reduction.

Base Cases. For terms that can be reduced by one of the rules RAbs, RConst, RRecord,
RClass, or RObj, the theorem is clearly true, since each of these rules states that M I A1.
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Inductive Cases. We prove the consistency of the natural semantics for all terms whose
reduction is of length n, where n > 1, assuming that the semantics are correct for all terms
whose reductions are of length less than n. We provide only a few of the more interesting
cases.

Function application. The natural semantics rule for function application is RAppl,
which gives us, by the induction hypothesis, that

[C,E -e:a-*.rjp =[C,EI-Ax:a.M:a--* rip

= AdE A¶[C,EU1 {x: a} F M: rjp[d/xI.

'rhen

[C,E -ee':-rip =([C,EF-e:--.,T]p)([C,EF-e':ujp)
= (Ad E Ae.[C, Eu {z: :a 1- M: rlp[d/z])([C, E - e': alp)
= IC, E U {x: a) F M : rlp[[C, E F e' : alp/x|
= [C, E H M[e'/x] : rip

where the final step follows from Lemma 5.1, part 2.
Because C, E - M[e'/x] : r I v by induction, we obtain

[C, E H- M[e'/x] : Tip = [C, E F- v: rip.

Thus
[C, E F- e e': rjp = IC, E F v: 7-p.

Objects. The rule for creation of an object from a class is RNew. The corresponding
denotational rule is:

[C, E F- new c: Object Type(MyType)r+p =
FIX(([C, E - c: ClassType(MyType)TIp)(IObjectType(MyType)r7p)).

Now, by the induction hypothesis,

[C, E H- c: Class Tpe(MyType)rIp -
IC, E H class(self : MyType)e: Class Type(MyType)TIp.

Substituting and using the semantics of objects we get:

[C, E H new c: ObjectType(MMyType)rjp
= FIX(([C, E H class(self : MyType)e : ClassType(MyType)r]p)

([ Object Type(My Type)r, p))
= [C, E H- obj(self : MyType)e: Object Type(MyType)rip.

Message passing. The next case to consider is an expression that sends a message to
an object. The natural semantics rule for this is RMsg. Without loss of generality we
presume that C, E FM 0 4-= mn : •[y/MyType]. We proceed by cases on the last typing
rule applied:
Casei C,E M o: - for -t = Object Type(MyType){mI : rl;... ;m : T.

The denotational definition for message passing is Msg:

iC, E F o 4- m : r,[-y/MyType]Jp =

(convert[[{m, : r,}Ip[dl/My Type]] [[i•p][C, E - ti: p) (mi,).
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By the convert rules for records in [BL9OJ, if a 5A [131 : 011; -.. , Sk : ek; ... ; S : 0n)Jp

and r E A140, then

(convert[[{si: a ; ... ; 'l.q ]G.)( (convert[[{sk o'k}p][ai7)(sk).

By the semantics of object types,

[l'=[(in1 : ri; ..; rn.: .Jp~[JJp/My7ype].

Thus,

(convert[[{m. r~}Ipf-y~p/My Type]] [[-yp][C, E F- o:~' (Yni)
= (convertll{ml rx; .. ; in. r. T,}pff-ylp/fy Type]] 11-yj p][C, E F- o -Yip) (n'.)
= (convert[[IIpI[[Iyp][C, E F- o: -yjp) (min)
= [C, ElF o : -&(mj).

Hence [C, E F o -#= mi T.[yt/My7tVpe]Jp = [C, E F- o: i'Ip(in,).
Since o 4--= m, I. v, if follows that

o I. obj(self :MyTyrpe <_a '-Y')e (10)

for some -y' = Object Type (MyType)r', and some record e such that

e= efobj(self : MyjType •<,,,eh -y')e/self,-y'/MyTypeJ I1 (min = ei_, in = ek), (11)

and
e. Iv. (12)

By the su.bject-reduction theorem and (10), C F -y' !5 -.
Let C'= CU{(My2Vpc •meg.h Object Type (My Type) T'} and E' = EU Iself : MyType}.

By the denotational rule for objects, ObJ,

[C, E F obj(self : MyType)e : y']p
=FIX(([C,E£F class(self: MyType)e: Class Type (My Type),r'Jp)[y'Jp)).
=FIX((Af~ : [r'Jp[C/MyTypeJIAo E A.[C', E' F- e : Tr'Jp[ý/MyTqpe, o/self])([ylp))
=FIX(Ao E AI-lI'.[C', E' F e: r']pJp'-yJp/My Type, o/self]).

Therefore,

[C, EF- obj(self : MyType)e : y']p
=[C', E' F e : T'Jp[(v'Ip/MyType, [C, £ I- obj(self :MyType)e :-y'Jp/self],

= [C, El- e': r'[f7'lMy 7ypel]p, by Lemma 5. 1.
=[C E F (In1 = ei.m, = e3, .... ,m. = en) : '[-y'/MYType]Ip, by induction.

Because C F -y' -5 -y and both are object types, it follows that C F- T'[-y'/MyType] <5

(MI Ti;. ... ;M : TO r,[y/lMy Type]. By induction, (10) and the above expansion of
[objaecf: MYTYPeAeP,

(C, El- 0: vip = [C,E EF (in, = el,. .. , in. =e.)} : T[-y/MyTVpe]Ip,

([CICE F- o: -tp)(mi) = [C,El- e,: Ti[-I/MyType]Jp = (C,El- v : Ti[-jr/MyTypeljp

by the Rcc rule and the induction hypothesis, respectively. We conclude, then, that

[C,E F o 4= mi : ;t'r/MyTypellp = [C,E F v: -r,-y/My7ypeJIp.
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C C, E FM o: y for t a type variable.
By assumption, o I obj(self : My7ype :meth -y')e where -' (which is also the type of

the object expression) is an object type. By the subject reduction theorem, C F Y<_ t.
However, by the definition of manageable type constraint system, a type variable may not
be shown to be a subtype of an object type. Thus this case will never arise!

Class update. Classes are updated according to the rule RUpdate.
Let r = {(m : rl;...;m,,: -,} and r' = (mI : T';m 2 :* 2;...,m; : T.). The

denotational rule, Update, is:

[C, E H- update c by (self : MyTtjpe <_meh Object Type(My Type)T'; super){m, - e•)
ClaqsType(MyTYpe)r']p = Af :_ jr'Jp[ /IMyTTpe].Ao E A t .f,

where
C' = C U (MyType !<mth Object Type(MyType)r'},
El = EU (self : My Type},
dom(f) = {mI, .. , .},

f(mi) = [C', E' I- e' : rl'p[ý/MyType, o/self , s/super],
f(mj) = s(m,),Vj:2<jSn,
s = IC, E H- c: ClassType(MyType)-rp(ý)(o).

Since

C, E H" c: ClassType(MyType)r I, class(self : MyType <math Object Type(MyType)r)e,

it follows by induction and the semantics of classes that

s = [C',E' F e : rlp(. /MyTpe,o/self1.

Let e' = imn e'', m2  e.m 2 ,. . ., m,= e.m,}, where e" = e'[e/superl. By Class:
IC, E H class(self My Type <megh Class Type(MyType)r'; super)e' : Class Type(My TYpe)r'lp

= ,Af<_ [-'Ip[f/MyTypeJ.Ao E AI.[C'. E' - e': T'lpflIMyT•pe, olself

To complete the proof we must show that

f(m,) = ([C', E' H- e': T'Jp[fMlMyjType. o/self J)(m,)

for all ( _ [r']P[t/MyT•pe],o E AX, and i from 1 to ii.

Case: i = 1. We can say, by the denotational rule for records, Proj, that

([C', E' H e': r'lp[f/MyType, o/self])(ml)
- [C', E' H e": rlp[t/MyType, olself]
= [C', E' H e'1 T 1p[f/MyType, ofself, s/super]
-- f(mi).

Case: i 2! 2. By the definition of f above,

f(mi)= [C', E H c: ClassType(MyType)rjp(t)(o)(mi)
- ([C, E H- class(self : MyTjpe _:5.h ObjectType(MyType)r)e:

ClassTYpe(MyType)r1p)(#)(o)(mj) by induction
([C+,E' H- : erp[]/MyTtrpe,o/selfJ)(m,) by Class

= ([C', E' - e': r']p[ý/MyType, o/selfJ)(mi) by Rec.

where C+ C U (MyType <,..Ih ObjectjType(MyType)r}.
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Thus, the two functions are equal for all mi in either domain. Since the functions were
equal to the denotational meanings of the respective expressions, we can say that the two
are equivalent.

The case for class extensions is similar. M

6 Comparison with previous work

As indicated earlier, the work on TOOPLE grew out of work in ICHC90] and IMit901
on the semantics of inheritance in typed object-oriented languages. We have also been
greatly influenced by the work of Luca Cardelli.

The most interesting comparable work to ours is that of Cardelli and of Benjamin
Pierce. In their papers, both alone and with collaborators (see [Car88a, CW85, Car88b,
CL91, CM90, Car92] and [PT93, PT92, PH92]), both authors have been striving to find
a core language which can be used to model all of the common features of object-oriented
programming languages. Each uses extensions of F<, the bounded second-order lambda
calculus. While we have preferred to use the F-bounded second-order lambda calculus (see
[CCH+891) as a basis for the denotational semantics of our language, they have preferred
a different variant which involves taking fixed points of higher order functions from types
to types. As indicated by [Aba92], these extensions of F< are essentially identical.

A major difference between both Cardelli and Pierce and our work is that they adopt
a mainly syntactic point of view of translating object-oriented features into extensions of
the second-order lambda calculus. We have adopted a more semantic approach, originally
giving the denotational semantics of TOOPLE in a model of the second-order lambda
calculus. We have continued this approach here, treating our object-oriented programming
language features as primitive and providing an operational semantics in terms of these
constructs.

Pierce's approach eliminates the need for fixed points at the type level in his language
(though they are still required at the element level to model objects). The price to
be paid for this is not being able to express classes with binary methods like eq which
take parameters of type MyType, as in PointClass in section 2. While our denotational
semantics for TOOPLE requires fixed points at both the term and type levels, the natural
semantics provided here is significantly simpler.

Castagna, Ghelli, and Longo (see [CGL92]) have proposed an interesting new approach
to providing the features of object-oriented programming languages. They propose replac-
ing inheritance by a disciplined use of overloading of operations. When combined with
subtyping, the resulting language has many interesting features, including a mechanism
for dealing with multi-methods, methods whose execution depends on the types of several
parameters rather than just the type of the receiver of the message, as in most object-
oriented programming languages.

Each of these approaches to modeling object-oriented programming languages has its
strengths and weaknesses, many of which will be apparent only with time and experience.
It is already clear that each of these approaches represents significant progress toward the
ultimate understanding of object-oriented programming languages.

bT Summary and further work on TOOPLE

In this paper we presented a natural semantics (a form of operational semantics) for the
statically-typed, functional, object-oriented language, TOOPLE, The natural semantics
has the advantage of being easier to understand than the denotational semantics, since
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the denotational semantics requires fixed points at both the element and type levels.
The major results in the paper were proofs of a subject reduction theorem for the natural
semantics, and a consistency theorem for the natural semantics relative to the denotational
semantics.

The language presented in this conference paper does not include instance variables.
The language with only methods is extremely limited in expressibility, but we decided that
"it was much easier to present this simpler language in the limited space available here. We
urge the reader to see IBru93a] for a full discussion of TOOPLE with instance variables.
The natural semantics presented here can be extended easily to the full language, and the
theorems and proofs carry over fairly directly to this more complex language.

The subject reduction theorem shows that the natural semantics preserves the type
system for the language. Thus a well-typed term can never go "wrong". In particular,
it shows that a well-typed term will never result in a computation in which a message
is sent to an object which cannot handle it. The earlier papers [Bru93b] and [Bru93a]
included other results with respect to a denotational semantics which indicated that the
language was type-safe.

The proofs of the subject reduction theorem and the type safety of the denotational
semantics helped us discover and eliminate errors in the type-checking rules that might
have remained had we not built the language on this theoretical base. It is our hope
that this deeper understanding of object-oriented programming languages will provide
the basis for a careful analysis of the pros and cons of each of their individual features.
This should lead to the design of safe languages which are easy to reason about, and whose
expressiveness is similar to that found in today's popular object-oriented languages.

Since earlier papers presented the semantics of the language as a denotational seman-
tics, we showed here that the natural semantics is consistent with those earlier semantics.

The paper, [BCD+93], presents further results on TOOPLE. It shows that type check-
ing TOOPLE is decidable and that every term of TOOPLE has a minimal type. The
decidability of type checking was in some doubt since Pierce [Pie92] showed that type
checking F< was undecidable and the denotational semantics of TOOPLE is expressed in
an extension of F<.

R. van Gent at Williams College has built a TOOPLE type checker and interpreter
which is based on the type-checking algorithm presented in [BCD+93] and the natural
semantics presented in this paper. More recently, Bruce and van Gent [vG93, BvG93] have
designed an imperative language, TOIL, with a type system extending that of TOOPLE.
Similar results about the safety and decidability of type-checking hold for TOIL. An
interpreter has been written which is being used to further investigate the language.
Work is currently proceeding on extending the type system of TOIL to include explicit
polymorphism. We are also investigating the development of proof axioms and rules for
reasoning about TOOPLE and TOIL programs.

While TOOPLE is missing many of the important features necessary to provide a
truly useful language, we believe that TOOPLE can serve as the core of a statically-typed
object-oriented language which combines type-safety with expressiveness approaching or
even exceeding that of languages which fail to be strongly typed.

As this paper was going to press, we learned of the development of the language
Strongtalk [BG93], which has adopted essentially the typing rules for TOOPLE (along
with a few extensions) in order to type check a subset of Smalltalk. We look forward to
learning of the efficacy of this typing system in large programming projects.

Wi

L
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A Subtyping Rules for TOOPLE
SRefl

SVar

CU {t <- 4 - t < r

STrans

C I-- < r,

C-o<r
CI-y'rr
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SAbs
C •I-' _ a',

C I- r : r*'

SRec C F ai < r,,Vj: 1 <_j k < n

C I- {m I :a;...; M k O'k;... ; nI .: a.)} _ ( "1 1 : TI: ... ;m k: Tk

SObj C U s !5 t T- r[s/MyType] 5 r'[t/MyType]

C -- ObjectType(MyType)r • Object Type(MyType)r'

IRefi

C F- ObjectType(MyType)T <_e,,h Object Type(MyType)r

IVar

C u {t <.eth r} F- t •<mth r

ITrans

"C F- j' •_neth Object Type(MyType)T,
C-r < T'

"C F- F S_.gh Object Tye(My Type)r'

B Minimum Typing Rules for TOOPLE

Definition B.1 The following are used in the minimum typing rules and azioms below.

1. (Fzrom [CC9fJ) We write Cl- t «< r, if t is a type variable, and Cl- t < is

provable using only (SiVar) and (STrans).

2. The type lub(.", r') is the least upper bound of r and r' according to the subtyping

ordering. The least upper bound of two types ezists as long as they have any upper

bound. See [BCD+ 93] for details.

MVar

C, E I-M x: , if E(x) = r

Mcond C, E l-5f B: p,

C F- p <_ Bool,
C, E F-M M :
C, E l-M N:

C,E l-M if B then M else N lub(r', r"7

MAbs

C, Eu(v : a' l-Af A: r

C, ElM fun(v : a) M : a -- 1
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MAppi

C, E F-M A'! : 0' T,
C, E ýNFM N:c'

C F c'5c

C, E M 3 A, : r

MAppIP

C, E FM 3l: t
C, E Fm N: ai',
CFý t <t a -1-+,r

C I- o' < a
C. E7 FM M N: T

MEq?

C, E -M Al:
C, E F-M N:
C F- -r < Num,
C F T-':5 Num

C, E FMA Al = N : Boo]

MRec

C, E F-M ei, :rVi: 1 < i < n
C, E F-M {mni = ei,..... ,n. e.)} : {r-ni :1 Ti...; m.~:r,

MProj

C, E Fm e : {mi T1I;. m. T,.}

C,E F-M e.mi, :r,,vi:1 < i < n

MProjl

C, E F-me

C, E Fm e.mi :. Ti,Vi: 1 < i < n

MClass

C U {MyType •meth ObjectType(MydType)-r}, E u self :MyTjpe) F-Af e: TI,

C U {MYTYPe •m-eth Object Type (My Type)r} F- T' < T
C,E Fm coass(self : MyjType:•meth Object Type (My Type)'r)e : Class Type (My Type) r

MObj

CU {My7~,pe •mc,,th ObJectType(MyType)r},E£U {self : MyTypel} F-Af e: 7'
C U {MiType <.,t Object Type (MyType)'r F- ýT' < T

C, E F-m obj(self :MyjType Sme,,th ObjectType(MyType)'i-)e: Object Type (My Type) r
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MNew

C, E FI-A C: ClassType(MyType)r
C, EFM new c: Object Type(MyType)r

MMsg

C,E FM o: ObjectType(MyType){ni: r7;...;m, : r,}
C, E FM o 4- m, : .[ObjectType(MyType){nmI : T1;... 7n,: r,,}/MyType]

MMsg'

C, E F-M o: t,
(t <mth Object Type(MyType){mi: T,;... ;Mn : r}) E C

C, E FM o . m : -,[t/MyType]

MUpdate

C, E FM c : Class Type(MyType)r,
C F- r1 < r1,

C U {MyType <,,mth Object Type(MyType)r'}, E U {self : MyType, super: r} FM e, T,,

C U {MyType -<.,h ObjectType(MyType)r'} F rT' < 71

C, E FM update c by (self : MyType <,Ih ObjectType(MyType)r', super){mrn = e, }
Class Type (My Type) r'

where r = {mI: rI;...;m,: r,} and r'= {MI: r;;...;m,: r,}.

MExtend

C, E F-M C: Class Type(MyType)r,
C U {MyType <mth Object Type(MyType)T'},

EU (self : MyType. super : r} FM1 e,+ 1 : T+J,
C U {MyType <-mdh ObjectType(MyType)r'} F rT+41 _< -- +1

C, E FM extend c with (self : MyType <_,,,Ih ObjectType(MyType)rT', super)
{nz+t = e,+,} : Class Type(MyType)rT'

where r = {m1 : rT;...; m. : r,} and T' = {mI : T1;...; 71+ : T,+,}.

C Natural Semantics for TOOPLE
RAbs

C,E F fun(x : a) M: a --- T 1 fun(x :,7) M

RConst

C, E F true: Bool I true,

C, E F- false : Bool I false,

C, E F n : Num I n,if n is a constant of type Num
C, E F self: MyType I self
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RRecord
C, E F- {r,-= e,..., r. =ý •.}: { 7: ;...; r.: r.) Jr e= , ..... r. = •} •

RClass

C, E class(self : MyType Sc,th ObjectType(MyType)r)e: ClassType(MyType)T r
class(self : My Type <_,uh Object Type (MyType)r)e

RObj

C, E F obj(self : MyType --mnah Object Type(MyType)r)e : ObjectType(MyType)r 4
obj(self: MyType <,.eth Object Type(MyType) r)e

REq

C,E el : Num I v,
C, EF e2 : Num I v

C, E Fe =e 2 : Bool I true

RNeq

C, E F- el : Num 4 v1 ,
C, E F- e2 : Num V r2 ,

V1 0 V2

C, E F ei = e 2 : Bool I false

RTrue

C,E F B : Bool I tmre,
C, EFel:r T v,

C, E F e2 : r
C, EF if B then el else e2 :r I v

RFalse

C, E - B : Bool I false,
C, EFe 2 :r I v,

C, E F- e: T

C, E F- if B then el else e2 : 74 1 v

RAppI

C, EFe:a.-- r 4 fun(x:a) M,
C, E F- M[e'/x] : r I v

C, EFee':r T v

RProj

C, EF- e:,r r {r= el,...,ri ei, ... ,Irn=en,,

C, EFei:; i v

C, E F- e.ri : i v
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RNew

C, E I- c: Class7ype(My7Wje)r I
Cda"SCef :MYTYPe <.t Object Type (MyType)r)e

C, E F- new c: Object Type (MyType)Tr 4
obj(self -MyType <SmdIh Object Type (My Type) r) e

RMsg

C, E F- o :-y I obj(self :MyType <,-mt~h -y')e,

C, E F- (e[obj(self :MyType <meth Object Type (My Type)r-)e/ self, Y'/MyTypel:

{mj : TI; ... ; Mn rTn))[Y'MyType] I {m1 = es,. ... =~ en}
C, E F- ei: 7-[Y'/MyType] I v

C, E -o <= mi:T -rfYIMyType I 4v

where 1 < i -<n, and -y' = Object Type (My Type){min r1;. ...;m, : ,,}

RUpdate

C, E F- c: ClssType (My Type)r T4 clasqs(self : My Type Smeth Object Type (My Type)r) e

C, E F- update c by (self: My~ype 5meth Object Type (My Type)-r', super){fm1 = e'l}:
Class Type (MyType) 7' 4

cla~ss(self : My2~jpe Smedh Object Type(MyType)r'){m 1 = e", mn2 = e....... -, in, = e-m,,}

where e'1 = e'[e/superJ,,r = {rni :I r... ; Mn, : r,.}, and 7-' ={ml : r,; . .. ;m, : T)

RExtend

C, E F- c: Class Type (My Type)T 4 class(self : MyType &-,,ih Object Type (My Type)T)e

C, E F- update c by (self : MyType 5meth Object Type (My Type) T', super){m,+i = e,,+1}

Class Type (My Type)r' 4
class(self : My Type •meth Object Type (MyType) T')

{ in = e.ml,..., in,. = e.m,,,m,.+, el,

where e4+1 = e,,+1 [e/super], T = {m1, : T. ... ;771. : Ti
and T' ={Imi :7T1 ;... ; M+i :,r+)

D Denotational Semantics for TOOPL

ObjectType
[Object Type (My Type)r]1p = FIX (Aý.Ji]p[ý My Type]

ClassType

[Class Type(My Type)Tlp fi (C -* [r~p[C/MyTypel)

Var 
f5~1RMTx

[C, EF- x : rjp =p(x)



625

Cond

S[C,E - el: :Tp, if [C,E I- B: Boolp = true
[C, E F if B then el else e2  P = C, E F : :ip, if [C, E " B : Boolp =false

-L, otherwise

Abs

[C, E F fun(x : a) M: a -- rip = Ad E A¶.IC, E F M : rip[d/x]

Appi

[C, El - e e': Tip = ([C, E F e : a --+ nlp)([C, E F e': alp)

Eq?

[C, E F el = e2 : Boollp = ufalse,ifo[C,E I- e1 : ip = [C,oE -e 2i: rp

Rec

[C,E•F{ = el,...,rn = en} :rp= f,

where
dom(f) =

Vi:l<_i<_n,f(ri) = [C,EF ei:Tlp

Proj

[C, E F e.ri: nip= (C, E F e: Tlp)(r1 )

Class

[C, E F class(self :MyType <mth Object Type(My Type)r)e: ClassType(MyType)r]p =
Aý • [Jp[./IMy Type].Ao E A.C U {(MyType <_,,h Object Type(MyType)r},

EU {self: MyType} F e: r]jp[ý/MyType,o/self]

New

[C, E F- new c: Object Type(MyType)r~p =
FIX(([C, E F c: Class Type(MyType)rip)(IObjectType(MyType)rTp))

Obj

[C, E F obj(self : MyType •<_,th Object Type(MyType)r)e : Object Type(MyType)rjp =
FIX(([C, E F class(self : MyType <,,mt Object Type(My Type)-r)e :

Class Type(My Type)r]p) ( [Object Type(My Type)T]p))

Msg

[C, E F o 4 mi: ri['/MyType]]p
= (convert[[(mi : r,}]p[[-yJp/MyType]] [1yp] IC, E F o: y]p) (mi)
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Update

[C,EH- update c by (self: MyTyjpe <meth Object Tyjpe (My Type)r, super) (min = e,)
Class Type(Myj7tje)T']P = AC: [r'jp[.ýMY7ype].Ao E AC.f,

where

dom(f) = {m.
f(m 1 ) = [C U {MY7TYPC •meth Object Type (MyType) T'),

E U (self :MyType} H- e, : rjp[~/MyType, o/ self , s/super],
f(m,) = s(m,),Vj:2<j~n,
s = ([C,EF-c: ClassType(MyType)rn1 :ri; ... ;m, : tau,,}Jp)(ý)(o).

Extend

[C, E H- extend c with (self :MynTpe •mdh Object Type (My Type)T, super)
inl= e,,+I} Class Type (My Type)r'Jp = A<5I~r'Jp[C1MyType].Ao E Aý.f,

where

dom(f) = II ,M~)
f(Mn+l) = [Cu U{MyType •meth Object Type (My Type)r'},

E U f(self : MyType} H- e,,+1 : T-n+ I p[ý/My Type, olself, s/super],
f(min) = s(m,),Vj:1<j~n,
s = ([C, E c: Class Tipe(MyType){i 1 : T1 :; in.. :n tau.jjp)(.4)(o).



On the Transformation Between Direct and
Continuation Semantics *

Olivier Danvy and John Hatcliff

Aarhus University * and Kansas State University

Abstract. Proving the congruence between a direct semantics and
a continuation semantics is often surprisingly complicated consider-
ing that direct-style A-terms can be transformed into continuation
style automatically. However, transforming the representation of a
direct-style semantics into continuation style usually does not yield
the expected representation of a continuation-style semantics (i.e.,
one written by hand).
The goal of our work is to automate the transformation between
textual representations of direct semantics and of continuation se-
mantics. Essentially, we identify properties of a direct-style repre-
sentation (e.g., totality), and we generalize the transformation into
continuation style accordingly. As a result, we can produce the ex-
pected representation of a continuation semantics, automatically.
It is important to understand the transformation between represen-
tations of direct and of continuation semantics because it is these
representations that get processed in any kind of semantics-based
program manipulation (e.g., compiling, compiler generation, and
partial evaluation). A tool producing a variety of continuation-style
representations is a valuable new one in a programming-language
workbench.

• 9th Conference on Mathematical Foundations of Programming Semantics. New Or-

leans, Louisiana, April 1993.
Department of Computer Science, Ny Munkegade, 8000 Aarhus C, Denmark. E-
mail: danvyOdaimi.aau.dk - This work was initiated at Kansas State University,
continued at Carnegie Mellon University, and completed at Aarhus University. It was
partly supported by NSF under grant CCR-9102625.
Department of Computing and Information Sciences, Manhattan, Kansas 66506,
USA. E-mail: hatcliff~cis.ksu.edu

1' __ammmm ammimm ml mmll•a • al



t 6528

1 Introduction

Proving the congruence between a denotational-semantics specification in di-
rect style and a denotational-semantics specification in continuation style is not
trivial [26, 28, 31]. Yet,

- both direct-style and continuation-style specifications can be represented as
typed A-terms: semantic domains are represented with types, and valuation
functions with A-terms [22, 281;

- typed A-terms can be transformed into continuation style automatically using
Plotkin's continuation-passing-style (CPS) transformation [9, 15, 24].

We have transformed the representation of several direct-style specifications
into continuation style. Since the meta-language of denotational semantics obeys
normal order [28], we have used the call-by-name CPS transformation. The result
is not the expected representation of a continuation-style semantics (i.e., one

1.1 An example

It is sufficient to look at types to see where a mismatch occurs.

Cd[l': Envd -- Comd where Comdn= Store - Store

C,.]: Envc -* Come where Come = Store - (Store - Ans) - Ans

Fig. 1. Types of valuation functions for a simple imperative language

Figure 1 gives the types of two valuation functions for a simple imperative
language. Cd['] is a direct-style valuation function and C,[-] is a continuation-
style valuation function.

Figure 2 displays Plotkin's call-by-name CPS transformation C,, for typed
terms [9, 24]. t represents a base type.

Transforming the types of the direct-style valuation function Cd[.] does not
yield the types of the continuation-style valuation function C&[.J. For example,
the transformation of the function space EnVd -- Comd yields

((Cn(EnVd) --, Ans) -- Ans) -- (Cn(Comd) -- Ans) --+ Ans

which does not match the type of the corresponding function space

Env, -~ Comc

in C[.]. Essentially, C, introduces too many continuations.
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Cu {s) = i

C.(,) =,
C. (Ai : CCe) =AI.c (Ai : C. (t).C. (t))

C (to CJ) AfC.Ca(to) (Avo.(Vo C. (ei)) 06)

-. Ans) & ~ A

C.(to -. th) = C.(to*) - C(t 1 )
C.(t) = (C.(t) -. A,,s) -. A.s

Fig. 2. Transformation of call-by-name \-terms into continuation style

This mismatch is significant because it shows that a continuation seman-
tics is not just a direct semantics with continuations. For another example, in
a continuation semantics, environments (represented as functions) usually are
expressed in direct style, i.e., they are not passed any continuation [28, 31].

1.2 A choice

At this point we have a choice:

- We could establish the relationship between the result of CPS-transforming
[the representation of] a direct-style semantics and [the representation of] a
continuation-style semantics that one would write by hand, and maybe map
one into the other.

- We could devise a new CPS transformation that would transform [the rep-
resentation of] a direct-style semantics into [the representation of] a realistic
continuation-style semantics. By a "realistic" continuation-style semantics,
we mean "one that a professional denotational-sernanticist would write".

We choose the latter option.

1.3 On the transformation between direct and continuation
semantics

The goal of our work is to automate the transformation between textual represen-
tations of direct semantics and of continuation semantics. Essentially, we identify
properties of a direct-style representation (e.g., totality), and we generalize the
call-by-name CPS transformation accordingly. As a result, we can produce the
expected representation of a realistic continuation semantics, automatically.

It is important to understand the transformation between representations of
direct and of continuation semantics for at least three reasons.

1. It is these representations that get processed in any kind of semantics-based
program manipulation (e.g., compiling, compiler generation, and partial
evaluation).



2. The properties of [the representation of] the direct-style semantics should
give precious insights to establishing the congruence relation between the
direct semantics and the continuation semantics.

3. The properties of the transformation should give guidelines for proving the
congruence between the direct semantics and the continuation semantics.

1.4 Issues

The tools used in this paper are interesting in their own right.

1. The generalized call-by-name CPS transformation is based on a system of
annotations capturing reduction properties such as partiality and totality.
Using these annotations, we extend Reynolds's classification of trivial and
serious A-terms4 to serious and trivial functions. The extended classification
gives a finer scheme for describing termination properties of terms - unlike
Reynolds's original scheme, it allows us to state that e.g., some applications
are actually trivial.

2. The annotations are obtained by an automatic control-flow analysis that
extends Mycroft's b termination analysis to higher-order programs [20, 21].
This tool has applications in other areas such as compiling and partial eval-
uation.

3. Retaining Reynolds's method of introducing continuations in serious terms
yields a transformation that introduces continuations only when necessary
to achieve evaluation-order independence. Thus, this new transformation
generalizes the call-by-name CPS transformation (should all functions be
serious) and the identity transformation (should all functions be trivial). In
an earlier work, we reported a CPS transformation after strictness analysis
that generalizes the call-by-value CPS transformation (should all constructs
be strict) and the call-by-name CPS transformation (should all constructs
be non-strict) [5]. Tools producing a variety of continuation-style represen-
tations are valuable new ones in a programming-language workbench.

1.5 Organization

The rest of this paper is organized as follows. Section 2 presents an example
language and two semantic definitions, one in direct style and one in continua-
tion style. Section 3 describes how these semantic definitions can be represented
as typed A-terms. In Section 4, we generalize Reynolds's notion of trivial and
serious terms. In Section 5, we extend the transformation into continuation style
to handle terms with annotations describing trivial and serious properties. In
Section 6, we examine the properties of the representation of the direct-style
semantics of Section 2 and we annotate this representation. In Section 7, we

4 Reducing a trivial A-term always terminates whereas reducing a serious A-term may
not terminate [25]. Reynolds's notion of trivial A-term coincides with Plotkin's notion
of value [24].
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z E Program I E Location
c E Command m E Ident[num]
e E Expression p E Ident[proc]
a E Numeral f E Ident[fun)

z::=procp(m)=cinz I funf(m)=einz I c.
c::=skip I C2;C2 I 1:=e I if e then c elsec 2 I while edo c callp(e)
e::=n I m I succe I prede I derefi I apply f(e)

Fig. 3. Abstract syntax of the simple imperative language

transform this annotated representation into continuation style and we obtain
the expected representation of a continuation semantics. Finally, Section 8 con-
cludes and puts this work into percpective.

2 Example Denotational Definitions

Figure 3 presents the abstract syntax of a simple imperative language with
global and non-recursive first-order procedures. Figures 4 and 5 give a direct
semantics and a continuation semantics for the simple imperative language. The
functionality of the semantic algebras for stores, environments, and natural num-
bers are the usual ones and the specifications are omitted.

Proposition 1. The semantics of Figures 4 and 5 define the same language,
that is, they are congruent [31, page 340]. 0

3 Representing Denotational Definitions as Typed
X-terms

Denotational definitions are usually implemented by treating the semantic no-
tation as a "machine language" [28, Section 10.1]. A common notation of deno-
tational semantics is the A-calculus. Thus, domains are mapped into types and
domain constructors into type constructors, valuation functions are mapped into
A-expressions, and semantic-algebra operations into 6-rules. Figure 6 presents the
syntax of an extended A-calculus used to represent denotational definitions as
typed terms. The typing rules are the usual ones and are omitted. When e has
type t under type assumptions ir we write 7 I- e : t. Each element of the set of
type assumptions 7r is of the form i : t. To simplify substitution, and without
loss of generality, we assume that all identifiers are unique.

Let us summarize how the example denotational definitions of Figure 4 and
5 are represented by the typed terms of Figure 6.
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Valuation Functions: Semantic Domains:

Z[Program] Env -- Corn Corn = Store -- Storej.
C[Command] Env -* Corn Exp = Store -- Nat

C[Expression] Env -- Exp Proc = Nat -- Corn
.M[Numeral] Nat Fun = Nat - Exp
£[Location] Loc

Programs:

Z[procp(m) = cin z] = Ap.Aor.Z[zJ(extpp(Ai.C[cJ (extpm i)))pm

Z[fun f (m) = e in p] = Ap.Aa.Z[z] (ext p f (AiE[e] (ext p m i))) a

Z[c.. = Ap.Ao.C[cp o0

Commands:

C[skip] = Ap.A•.or
CIcI ; C21 = Ap.Aor.let or' = C[cj p or in C[C2 p a'

C[l:= el = Ap. A,.upd a, £[i (t[e] p oa)

C[if e then ci else c21 = Ap.Aor.if iszero? (E[e] p or) then (C[ci] p ao) else (C[c2] p 0r)

C[while e do c] = Ap.A,. letrec w = Aou. if iszero? (&[e] p a)
then let a' = C[c] p or in w a,'
else a,

in wer

C[call p (e)] = Ap.A.(Iookup p p) (t[el p a) o,

Expressions:

E[n] = Ap..XoAV[nl

£[m] = Ap.Aoa.lookup p m

c[succ el = Ap.Ao.succ (E[e] p a)

E[pred ej = Ap.Ao.pred (C[e] pa)

C[deref /] = Ap.Aa.fetch a £[iJ
C[apply f (e)] = )Ap.ao.(Iookup p f) (<[e] p•a) o,

Fig. 4. Direct semantics of the simple imperative language
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Valuation Functions: Semantic Domains:

Z[Program] Env -~ Corn Corn = Store -. (Store -. Ans) -Ans

C[ComniandJ: Env -. Corn Esp = Store -. Nat

C [Expression] Env -. Esp Proc = Nat -~ Corn

fLILocation] Loc

Programs:

Z[proc p(n)=c in zJ= Ap.Aa.Aioc.Z[zJ (ext pp (Ai.C~cJ (ext pm i))) ric

Z[fun f (mn) =e in z] = Ap.Aoa.Ar..Z[zJ (ext p f (Ai.t[e] (ext p m i))) a, )c

Z[c.] = Ap.AaU.A.CjcJpooc

Commands:

C[skip] = Ap.Aa.Ax.,K a,

C[CI ; C21 = Ap.AOa.AK.CCI1lPff(AOr'.(Cc 21poa'r)

C~l := e] = Ap.Ao.AKc.o (upd a £[l] (C[e] p o,))

C[if e then c2 else c21 = Ap.Aa.Ao. if iszero? (C[eJ pao) then (C[ciJ p a K)
else (C[C2 J paoKr)

Clwhile e do c] = Ap.Aa.Ai. let rec w = Aoa.AK'. if iszero? (6[eJ p a)
then C[c] pao (ALT'.w af'K')
else K,'a

in w or K

C[call p (e)] = Ap.Aa. Ai. (lookup p p) (E[e] pao) a Kc

Expressions:

£6[n] = Ap.AaW'f[nJ

t[m] = Ap.Aoa.Iookup pm,

,6[succ el = )ip. Ao.succ (C[e] p a)

E[pred e] = p.Aar.pred (tC[eJ pao)

C[deref 1] = Ap.Ao~fetch a.C111

£6[apply f (e)] = \p-.\o.(Iookup p f1) (Ce]e p a) ar

Fig. 5. Continuation semantics of the simple imperative language
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C E A.eZp a E A-abs r E 6-rule

c ::=i I a I co el I if c, then C2 ele f3 1 let i =o in ci I letrec i =a in r
a Ai : t.c
roP 0 I ON C I "P2 C1C2I

t E Thpe
t::= &I to- t-

Fig. 6. Abstract syntax for an extended typed A-calculus

The primitive domains Store, Env, and Ide form the base types and the
semantic-algebra operations such as upd and fetch become 6-rules.

The valuation functions become typed A-terms. A key point in this step
is that operational notions such as non-termination and recursion (represented
explicitly in the denotational semantics by the special element _L and least fixed-
point operations over cpo's) must be captured implicitly in the reduction prop-
erties of the A-terms.

Following Schmidt [28], let expressions used in the direct semantics of Figure
4 include a strictness check over some lifted domain A 1 . They are defined as
follows.

leti=enei ( if eo
tn (Ai.el)eo otherwise

So each let expression is represented with an eager binding construct. The op-
erational behavior of the binding construct (i.e., call-by-value) captures the ap-
propriate termination properties [24].

Similarly, letrec is defined by the usual desugaring into the fixed-point op-
erator. So each letrec expression is represented with the usual recursive binding
construct. Its operational behavior approximates the computation of the least
fixed-point of a function.

4 Analyzing the Representation of a Direct-Style

Definition

As pointed out in Section 1.1, transforming the A-representation of a direct se-
mantics into continuation style using a call-by-name transformation does not
yield the A-representation of a realistic continuation semantics. Essentially, the
transformation introduces more continuations than are needed.5 In this section,

5 For example, in Figure 5, £ is expressed in direct style even though it is part of a
continuation semantics. We aim to clarify why £ does not need any continuation,
and to establish conditions that allow one to transform the text of Figure 4 into the
text of Figure 5, automatically.
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we go back to the source [25] and investigate where continuations are really
necessary.

4.1 Reynolds's notion of trivial and serious terms

Originally, Reynolds distinguished between "trivial" terms (whose evaluvtion
never diverges) and "serious" terms (whose evaluation might diverge) [25]. Triv-
ial terms correspond to Plotkin's notion of "value" [241. Since introducing con-
tinuations aims at obtaining evaluation-order independence, only serious terms
need to be transformed into continuation style. As an approximation, Reynolds
decided that all applications are serious terms and thus they all need a contin-
uation - forcing each function to be passed a continuation.

Considering the particular case of denotational semantics, this approximation
often is too coarse. For example, valuation functions are usually curried. Most
of the time, the result of applying a valuation function to an abstract-syntax
tree is a A-abstraction. In fact, this is the case for P, C, and C in Figure 4. Since
"a A-abstraction is a trivial term, applying a valuation function does not yield
"a serious term. Thus it is too conservative to approximate all applications as
serious terms.

6

4.2 Trivial and serious functions

In a denotational-semantics specification, a function is defined textually as a
A-abstraction.

- If the body of this A-abstraction is trivial, the function is obviously total.
Since evaluating the body does not require a continuation, the function does
not need a continuation either.

- Conversely, if the body of a A-abstraction is serious, the corresponding func-
tion may be partial. Since evaluating the body requires a continuation, the
function needs to be passed this continuation.

We refer to such A-abstractions as "trivial functions" and "serious functions",
respectively.

Let us now turn to the arguments of these functions. Denotational specifica-
tions are customarily higher-order, so it is not obvious which expression occurs
as the argument of which A-abstraction. However following Reynolds again [25],
we can enumerate the A-abstractions that may occur in each higher-order ap-
plication. This enumeration is achieved by control-flow analysis (a.k.a. closure
analysis) [29, 301.

6 This is probably why Reynolds's definitional interpreters are uncurried [25].
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4.3 Call-by-value and call-by-name functions

A A-abstraction can be applied to a trivial argument or to a serious one. Again,
trivial arguments do not need to be computed with a continuation. Conversely,
serious arguments need to be computed with a continuation. We approximate
this situation by stating that if a A-abstraction is always applied to trivial ar-
guments, we can pass the arguments as they are, and that if a function may be
applied to a serious argument, then all arguments are computed with a contin-
uation. By analogy with the fact that evaluating a trivial expression must yield
a value, we refer to the former A-abstractions as "call-by-value functions" and
to the latter as "call-by-name functions". So let us consider the four cases of
A-abstractions:

1. trivial call-by-value functions (i.e., A-abstractions whose bodies are trivial
and that are applied to trivial arguments);

2. trivial call-by-name functions (i.e., A-abstractions whose bodies are trivial
and that are applied to serious arguments);

3. serious call-by-value functions (i.e., A-abstractions whose bodies are serious
and that are applied to trivial arguments);

4. serious call-by-name functions (i.e., A-abstraction whose bodies are serious
and that are applied to serious arguments).

Correspondingly, a variable declared in a call-by-value (resp. call-by-name) func-
tion is a trivial (resp. serious) expression.

In the following section, we describe how to annotate A-abstractions and
applications to account for their triviality and their seriousness, and for their
mode of parameter passing.

5 Annotating the Representation of a Direct-Style

Definition

Figure 7 presents the syntax of the annotated A-calculus. Essentially, we in-
troduce the explicit infix notation "W" in applications, and we tag the constructs
and types that depart from standard call-by-name. 7

Constructs and types associated with trivial functions are annotated with
"t". Constructs and types associated with call-by-value are annotated with "v".
Constructs and types associated with both are annotated with "tv". For exam-
ple, A\x.e denotes a call-by-value trivial A-abstraction. y is a variable declared
in a call-by-name A-abstraction. z, is a variable declared in a call-by-value A-
abstraction. e0 @ el denotes the application of a call-by-name serious function to
an argument. e' @t e' denotes the application of a call-by-name trivial function
to an argument.

We also use the annotations trivial and serious to tag trivial and serious
expressions. The annotation tags form a partially ordered set (AnnTag, C) where

7 This follows the spirit of the diacritical convention: only the terms whose meaning
is farthest to the original meaning (i.e., call-by-name) are annotated [16, 31].
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C E Ann-.\-ezp a E Ann-A-abs r E 6-rule

c::i.t a co Ob, ei co 0.C el co (0, c, co 0ci
I ifElthene 2 else3 C leti=eoin1  [ letreci=ainc I

a::=A•5 i:r.c I \,,i:r..c Ati: I Ai:r.e
r::=oP0 I OPIf I °P 2 1C2

r E AnnType

r: ro--- ri I ro- i I I O- i

ca E AnnTag

a ::= trivial I serious

Fig. 7. Abstract syntax for the annotated typed A-calculus

trivial E serious. They will contribute to characterizing reduction properties of
individual terms.

Figure 8 presents type-annotation rules for the annotated A-calculus. Each
term is associated with a pair (r, a). The first component r E AnnType is an
annotated type. The second component a E AnnTag indicates whether the term
is trivial or serious. r is a set of type assumptions where each element is of the
form i : r. For simplicity, we assume that all identifier names are unique, and
that the algebraic operators cannot diverge.

The other binding constructs also warrant explanation. In the let construct,
the actual parameter el may be either trivial or serious. However, due to the ea-
ger evaluation of ei, i always binds to a value and thus is annotated as trivial. Of
course, binding may not occur at all due to the diverging evaluation of a serious
el. This is captured by the fact that a serious el causes the entire construct to
be classified as serious. In the letrec construct, the declared identifier f always
binds to a A-abstraction and is thus annotated as trivial.

Note that there is redundancy in the given annotation scheme. In partic-
ular, annotation pairs (T, a) are sufficient for our purposes.' Annotations on
terms have been included to simplify the presentation of the transformation into
continuation style in Section 5.2.

5.1 Correct assignment of annotations

To formalize the correctness of the annotation rules, let us introduce the following
notation. #,n and $, respectively denote the relations defined by a call-by-name

SThe annotation scheme can also be phrased more elegantly in terms of Moggi's

computational metalanguage [17] - serious terms are typed as computations, trivial
terms are typed as values. This point is developed elsewhere [10, 11].
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Identifiers:

FU {i: r) li: (r, serious) FU {i,:r -i. : (r, trivial)

Primitive Operators:

F F.op0 : (,trivial) Fl-. el :(, a) F -F.ejF: (t,2ai ) F (-. e 2 : (t, a2)1"F- ~ = rva) F" I-, op, ei : (t, ot ) /"1 p e 2:(, 01 t.C 2)

Conditional:
Fl-=ei :(L,crl) Fl-o ei:(r,a2) FI-°e 3 :(r,a3)

F i-. if el then e2 else C3 : (r, a C ( a2 U V3)

Eager Binding:

F F. eo : (ro, ao) r U {iý: ro} F- C, : (ri , 01
F F. let i eo in el : (r, ao U l )

Recursive Binding:

F u {i.: ro i-. a :(ro ,trivial) F U {iv: ro}- e :(ri, c)
F F-. letreci = a in e : (ri , a)

Abstractions:

F {if: j"o} F. e : (rT, trivial) Fu {i To} -. e (r, ,serious)

l -. At i :ro.e : (To -- t ri , trivial) F -0 Ai : ro.e : (To - rl , trivial)

F U{ i :oI i-. e: (r , trivial) Fu {i,, :to} -. e: (rT, serious)
F i-F \wi : ro.e : (To -t- rl , trivial) F i-F A)i : ro. : (To -- ,,l , trivial)

Applications:
F l- 0 eo : (ro -- w r", a) Fr -° el : (ro, trivial)

FFi- eo @t, el : (ri, a)

F - eo : ("o -- t r ,a ) Fr l- el : (ro, serious)

Fr -. eo @t el : (rT , a)

r I-0 eo : (To -* rl, a) F i-a el : (To, trivial)

F F-a eoC@, e : (ri , serious)

F -. eo: (o -T r , a) Fi-. el : (to, serious)
F i-F o (ei :(rT , serious)

Generalization:
F i-a : (r, trivial)
F i-a e : (r, serious)

Fig. 8. Type-checking rules for the annotated \-calculus
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and call-by-value operational semantics for the non-annotated A-calculus (A-ezp)
of Figure 6. For either reduction relation, e L v (read "e halts at value v") denotes
the reduction of some type-correct closed term e E A-exp to a value v (i.e., a
constant or a A-abstraction). Similarly, e 4 (read "e halts") denotes the reduction
of some type-correct closed term e to an unspecified value.

Let A : A-exp -- Ann-A-exp denote an annotation-assigning function. A is
cor ,idered to be correct if and only if it satisfies both of the following properties.

Property 1 (Soundness) An annotation function A is sound iff for all type-
correct closed terms e E A-exp, A[e] = e' : (r, trivial) implies e 4n - that is,r the evaluation of e terminates under call-by-name reduction.

Property 2 (Consistency) An annotation function A is consistent iff for all
type-correct closed terms e E A-erp, A4[e] = e' : (r, a ) implies I-a e' : (r, a).

The process of assigning annotations can be automated using the techniques
of abstract interpretation or of type inference. The abstract interpretation ap-
proach is summarized as follows. As a first step, the application sites of each
abstraction are enumerated using a control-flow analysis [30]. The enumera-
tion of application sites allows a straightforward generalization of Mycroft's t
termination analysis to our higher-order language [20]. The correctness of the
termination analysis establishes the required soundness property (Property 1).
Based on the results of the termination analysis, terms are assigned annotations
via our type-annotation rules of Figure 8. At this step, the Generalization rule of
Figure 8 needs to be used to establish the consistency requirement (Property 2).
For example, if an abstraction is applied to both trivial and serious arguments,
all trivial arguments are generalized to serious terms.

Note that the Generalization rule may lead to more than one correct assign-
ment of annotations to a particular term. However, no semantic ambiguity results
since the transformation Ca is correct for all correct annotation assignments A
(see Proposition 3).

5.2 A transformation for the annotated A-calculus

Figure 9 displays the extend. ,1 transformation into continuation style. The trans-
formation Ca'] is used over both serious and trivial terms and dispatches to
either Ca(.) or Ca,-D.

- Ca(.) transforms trivial terms. No continuations are introduced in the trans-
formed terms.

- Ca.4. transforms serious terms. Continuations are introduced in each trans-
formed term.
Figure 9 displays the transformation Ca on types as well. Ca is extended to

type assumptions by defining

Ca[1...,i ... ,i'V .-A = I.... i: Call - -... i': CaW ) ---I
The following proposition states the relationship between the types of anno-

tated terms and the types of terms in the image of Ca.
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General Transformation: C[ r ar

Caje :(r, trivial)] Aoc.r.C.(e)

C8[e :(r, serious)] Cs(e)

Trivial Terms: C.(e :(r, trivial)) C.(T)

C.(i.) =

C,&(*Op) =op0

C.(op1 el) =op1 C.(ei}

C-(OP2 el e2) =op2 C.(ei) C.(e2)

Ca(if eo then el else e2) =if Ca(eo) then C.(ei) else Ca(e2)

C.(let i = eo in el) =let i = C.(eo) in Ca(ei)

C, (letrec i a in e) =let rec i = C. (a) in C,(e)

.(\ir.e) =Ai .rC(e

C,(At r~= Ai C.(r).Ca(e)

C.(A.i: r.e) =Ai C.(r).C.A(e)

C,(Ai r.C) =Ai Ca.[ij.C&De

C.(eo Owv el) C.(eo) C.(el)

C.(eo Ot el) =C 3 (eo)C Mel)

Serious Terms:
C&( (r, seriotus)D C.(Jr)

M~OP, el) AK.Ca[CiJ(Avl-K(Op, VO))

C-4OP2 Cl e2) =AIC.Ca[C11 (AVIC.Ca[21 (AV2I.K (op 2 VI V2)))

C~if Co then Cl else e2) =Ax.C&[eoJ (Avo.if t'o then C,[CIJJ r else CaIC2J #C)

C.let j C o ifl el) AK-.CaIIoJ (Ai.Ca[Cj Kc)

C.(letrec i = a in e) Ax.letrec i = Ca(a) in C.[e1K

C.(eo Oe, el) = \A..C.[eo] (Avo.K (vo C1(ei)))

M~eo Ot Cl) =AKc.Ca[eoJ (Avo.tc(vo Ca(eD)) K

C.l(eo 0 el) = Ar.-C.[CoJ (Avo.(vo C&4e)) K)

Types: C. (ro - wri ) = C. (ro) -C. Ti)
C.[r] C. Car) Ca(Tov .r2) = Ca(rO) -C.471)
C.1r) (C.(r) -* Ans) -. Ans C.(roitil) = CMrd - C.(rI)

C.(t Ca(ro-ti) = Ca(To) - C.(TID

Fig. 9. Transformation of annotated A-terms into continuation style
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Proposition 2.

- If r- 4 e: (r,a ) then c[rI" CjeJ: Ca[rI.
- if r - e (r, serious) then carl] I- C(e): C.1r7
- If r F-. e (r, trivial) then Carl] F C.(e) : C.(r)

The correctness of Ca is stated as follows. (The notation "e 4n r" is defined in
Section 5.1.)

Proposition3. For all type-correct closed terms e of base type and for all correct
annotation-assigning functions A,

e #n r 4=:. (Ca o A[e])(Ai : i.i) 4n r ý=* (Ca o A[e])(Ai : t.i) 4, r

Proof. See [10].

5.3 Assessment

Restricting the new transformation Ca (see Figure 9) to call-by-name serious A-
terms yields the call-by-name transformation into continuation style (see Figure
2). Conversely, restricting Ca to call-by-value trivial A-terms yields the identity
transformation - no continuations are needed at all (e.g., the denotational se-
mantics of a strongly-normalizing language or of the language of Figure 3 without
the "while" statement). Thus, Ca generalizes both the call-by-name transforma-
tion into continuation style and the identity transformation.

6 Some Properties of the Direct-Style Definition of the

Simple Imperative Language (Figure 4)

Property 3 Z[Program], C[Command], and $[Expression] are trivial and call-
by-value.

Proof. Each is call-by-value because it is not possible for an argument expression
of type Env to diverge. Each is trivial because a A-abstraction (a value) is always
returned.

Property 4 The function type Corn is call-by-value and serious.

Proof. Due to the eager binding of the let construct, each command is passed
a reduced store value. Therefore, the function type can be classified as call-by-
value. Commands are serious because looping may occur in the while construct
(this was accounted for by the lifting of the codomain of Corn).

Property 5 The function type Exp is call-by-value and trivial.

4 Proof. Due to call-by-value property of commands, each expression is passed
a reduced store value. Therefore, the function type can be classified as call-by-
value. No expression contains components which may loop. Therefore expressions
are trivial.
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Property 6 Proc and Fun are call-by-value and trivial.

Proof. The arguments to procedures and functions originate from the evaluation
of expressions which can never loop. Therefore, the function spaces are classified
as call-by-value. They are trivial because they both return A-abstractions.

Figure 10 presents an annotated representation of the direct semantics of
Figure 4.9 Any reasonable implementation of A as outlined in Section 5.1 would
assign such annotations automatically. Let us now transform the annotated terms
into continuation style.

7 Transforming the Representation of a Direct-Style
Definition

Fact 1 Transforming the annotated A)-representation of the direct semantics in
Figure 10 into continuation style does yield the A-representation of the continu-
ation semantics in Figure 5, after administrative reductions.

Further, we now have the ability to specify any kind of continuation seman-
tics. For example, we could classify Erp to be serious (this would happen if recur-
sive functions were allowed in the simple imperative language). This classification
suffices to construct a continuation semantics where the valuation functions for
both commands and expressions are in continuation style, automatically.

8 Conclusion, Issues, and Future Work

We have tried to contribute to the study of the relation between direct and
continuation semantics [26] by connecting it to the transformation of A-terms
into continuation style. To this end, we have described how to construct the
representation of a realistic continuation semantics automatically, given the rep-
resentation of a direct *antics. (Again, by "realistic", we mean "that could
have been written by The situation is summarized by the diagram below.

DS semantics t CS semantics

Ca 0 A
DS A-terms CS A-terms

9 Note that non-termination - represented explicitly via lifting (e.g., Store±.) in the
semantics definition of Figure 4 - is captured implicitly in the reduction properties
of terms in Figure 10. This was accounted for in Property 4: Corn has a serious
function type.
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Valuation Functions: Semantic Domains:

Z[Program]: Env -w Com Com = Store-.- Store
C[Command] Env-&, Com Exp = Store -. w, Nat
C[Expression] Env -w, Ezp Proc = Nat -w Com

A'[Numerall Nat Fun = Nat-, Exp

C[Location) Loc

Programs:

Z[procp (m) = cin z] = Atjp.At,u.Z[zJO] (ext p. p (Ai.C[cJ]v (ext p. m i,)))Ot, a',

Z[fun f (m) = e in z] = Aat,p.Aao'.Z[zJQg,(ext p, f (Awi.[e]J•,(ext p, m i.))) O, a.

Z[C.J = Atp.A.0,.C[cJOt, , Ot, '.,

Commands:

C[skip] = Awp.Ata.a.

C[CI ; C21 = AI.tP.Aa-oletv a" = CI]Ow, pt, @, 0o't in CIc2J Owtt, pt, Ot,

C[I:= el = Ap.Ata.upd a, £4[1 (.Ce] Ot. p,, O or.t)

C[if e then cl else c2] = Atp.Ata. if iszero? (t[e] Oft, P Oav •, .,)
then (C[c, ] Ow pt 0t a,,)
else (C[c2 ] at. p. . a,,)

C[while e do c] = Atp.Ata. letrec, w = Ata. if iszero? (C[e] Gov, p Oft, a,)
then letv a' = C[c]JOw p. at 0t

in w, Ot, o,,
else 0t.

in w. Ot av

C[call p (e)] = A,,p.At,-.(Iookup p. p) Ow, ("[, tl @,,, p,,, t,,) Ot, a.,

Expressions:

.[n] = A,p.Awta..g[-

C[m] = Awp.Ator.Iookup p, m

C[succe] = AWtPwa.succ (C[el at. p" aw a")

£[pred el = Ap.to.pred (t[e]Owt, p Gt a.)

£[deref 1 = Avp.At,.fetch otr C[l]

-f[apply f (e)] = A.. p.Awa. U(lookup pt, f) Ow, (E~e] Oatv pt, Ow Ut,) 0., Ut,

Fig. 10. Annotated representation of the direct semantics in Figure 4
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Based on the annotations produced by A, the transformation Ca introduces
just enough continuations to preserve call-by-name meaning under both call-by-
name and call-by-value reduction. C. generalizes both the call-by-name continua-
tion transformation (should all terms be serious) and the identity transformation
(should all terms be trivial).

8.1 A shortcoming?

One might criticize one shortcoming of this approach: it only produces the rep-
resentation of a continuation semantics, not the continuation semantics itself.
One answer to this criticism goes as follows.

Why would one want a continuation semantics when one already has a brave
and honest direct semantics? 10 Not for the love of mathematics alone, but for
implementation purposes [16, 18]! But then one does not need the continuation
semantics, but its representation - which is precisely what our new transfor-
mation produces automatically. Therefore our approach enables the language
developer to stay with one mathematical model - the direct semantics - and
to derive the continuation semantics as part of the implementation work.

8.2 An alternative?

One could transform the direct semantics into continuation style and then sim-
plify the result into a manageable continuation semantics. We believe that our
approach is more natural since most of the work operates over the original di-
rect semantics and the rest is automatic. (A worthwhile property considering
how counter-intuitive continuation-style specifications may look.)

8.3 Applications

Semantics-directed compiler-generation systems often work on continuation se-
mantics [13, 14, 16, 18], thus forcing one to write a continuation semantics and
to prove its congruence with the direct one. Our new transformation allows one
to produce the representation of a continuation semantics automatically.

Partial evaluators work better on continuation-passing programs, but again
not all continuations are always necessary [2, 3]. Our extended transformation
into continuation style makes it possible to reduce the occurrences of contin-
uations in a source program. In addition, it also enables partial evaluation of
call-by-name programs (after evaluation-order analysis - be it for strictness or
termination) with a regular partial evaluator for call-by-value programs.

10 Of course, the situation is different if the source language includes some form of

jump. But then one has no direct semantics and thus starts with a continuation
semantics.
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8.4 Variations

Denotational definitions are written in various fashions. We briefly mention how
the present work can be adapted to other fashions.

Partial functions are often used in place of total functions and lifted domains
when modeling non-terminating computations [23, 34]. Our explanation of to-
tality and partiality in terms of trivial and serious functions naturally applies to
denotational specifications based on partial functions.

Strict functions are often used to model the strictness properties associated
with eager (i.e., call-by-value) functions [23, 281. For simplicity of presentation,
we have expressed strictness properties using let constructs only. Just as let
expressions are represented using eager binding constructs, strict functions are
represented using eager applications. Thus, a traihsformation of an annotated
language including both eager and normal-order application generalizes both
the call-by-value and the call-by-name transformation into continuation style.
We have presented a formalization of such a mixed transformation elsewhere [5].

Continuation semantics of imperative languages often express the meaning of
commands as "continuation transformers" [28, 34]. Specifically, the functionality¶ of Corn is given as

(Store -+ Ans) -- Store -* Ans.

It is very simple to specify a transformation into continuation style that "puts
continuations first", as in Fischer's original transformation [7, 27]. Such a trans-
formation would naturally yield the functionality above.

Finally, our work has relied on denotational definitions being stated using a
simply-typed meta-language. This meta-language is sufficient for defining sim-
ple imperative languages and simply-typed languages such as Algol 60, Pascal,
and PCF. We are currently investigating how the results presented here can be
extended to a meta-language with recursive types. This would be necessary for
defining untyped languages such as Scheme.

8.5 Generalization

The work presented here can be generalized to other styles than continuation
style. Alternatively, one could define a core meta-language and parameterize it
with the style of the interpretation. This approach is reminiscent of Mosses and
Watt's Action Semantics [19, 35], of the Nielsons's two-level meta-language [23],
and of Moggi's computational A-calculus [17]. We investigate it elsewhere [11].

8.6 Transforming the representation of a continuation semantics
into direct style

The transformation from continuation style to direct style has been investigated
recently [4, 6, 12, 27], and enables one to transform the representation of a contin-
uation semantics into direct style. Of course, we can only produce the represen-
tation of a direct semantics from a continuation semantics where continuations
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are second-class [31] - for example, we could not produce a direct semantics for
a language with jumps [32], not without adding some kind of control operator
to the A-calculus [6]. Syntactic conditions over a continuation-passing A-term to
ensure that continuations are second-class can be found elsewhere [4]. Overall
we leave this transformation for future work.

8.7 Continuation style and evaluation-order independence

It is interesting to compare the structure of the terms produced by our trans-
formation Ca with the structure of the terms produced by e.g., Plotkin's
continuation-style transformations [24]. In addition to satisfying his Simulation,
Indifference, and Translation theorems, Plotkin's continuation-style terms have
two additional properties that are often utilized for implementation purposes:

- all function calls are in "tail" position; 11

- all intermediate values are given names.

In contrast, Ca inserts just enough continuations to preserve call-by-name mean-
ing under both call-by-name and call-by-value reduction. Thus, Ca satisfies
Plotkin's Simulation, Indifference, and Translation theorems [10], but the two
additional properties above are lost because some applications may be trivial.

- Trivial applications may occur as function arguments - not a "tail" position.
- Trivial applications yield intermediate values that are not named - since

trivial functions are not passed any continuation.

In other words, our transformation Ca does not produce "Continuation-Passing
Style" terms (!) but it does produce terms that are independent of the evaluation
order.
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