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ABSTRACT

This thesis presents a novel pattern recognition approach, named Weighted Parzen

Windows (WPW). This technique uses a nonparametric supervised learning algorithm to

estimate the underlying density function for each set of training data. Classification is

accomplished by using the estimated density functions in a minimum risk strategy. The

proposed approach reduces the effective size of the training data without introducing

significant classification error. Furthermore, it is shown that Bayes-Gaussian, minimum

Euclidean-distance, Parzen-window, and nearest-neighbor classifiers can be viewed as

special cases of the WPW technique. Experimental results are presented to demonstrate

the performance of the WPW algorithm as compared to traditional classifiers.
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c Number of classes of multidimensional feature data.
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CHAPTER 1

INTRODUCTION

Pattern recognition techniques can be classified into three groups which are

syntactic, neural, and statistical [22:2]. Syntactical pattern recognition techniques analyze

the structure of patterns. This approach is used in such areas as model-based vision and

artificial intelligence [22:19]. Artificial Neural Networks (ANNs) are mathematical

models of biological neurons. ANNs have been employed in pattern recognition tasks

such as optical character recognition [ 11:27]. Statistical pattern recognition covers a wide

variety of algorithms whose fundamental building blocks are statistics and probability.

This thesis mainly discusses statistical techniques.

Statistical pattern recognition can be subdivided into two groups called parametric

and nonparametric. Parametric techniques assume an underlying probability density

function [5:85], [22:66]. Probability models are generally described by parameters;

therefore, when techniques make use of probability models, they are called parametric.

Nonparametric techniques, on the other hand, do not assume a probability model. They,

like parametric techniques, however, may also require parameters. Nonparametric

techniques can ignore probability models altogether, or in some cases they can be used to

esimate a probability model.

The Bayesian parametric technique is the best possible approach since its

performance is optimal [5:17], [18:45]. However, it requires a priori knowledge of the

probability model which is rarely if ever known in practical applications [5:44]. On the

other hand, nonparametric techniques do not require probability models. An advantage of

some nonparametric techniques is that they asymptotically approach the true density.

Therefore, Bayes optimal performance can be approached. But, nonparametric techniques



often require large sample sets, which, in turn, require significant storage resources

[5:122]. Reducing storage requirements without adversely affecting classification

performance is a classic problem in statistical pattern recognition. Many approaches have

been proposed in sta:istical pattern recognition literature. P. E. Hart proposed a

condensed nearest-neighbor rule in 1968 [12]. In 1972, D. L. Wilson analyzes a nearest-

neighbor rule which uses an edited data set [25]. K. Fukunaga et at, addressed the

storage problem with a nonparametric data reduction technique in 1984 [7], and they

proposed a reduced Parzen classifier in 1989 [8]. More recently, Radial Basis Function

(RBF) neural network training paradigms have been proposed to reduce the number of

training samples [3], [16], [17]. In this thesis, a novel approach is presented which allows

direct control over storage reduction via a single system parameter.

This thesis presents a pattern recognition system called Weighted Parzen Windows

(WPW). Statistical pattern recognition techniques and concepts are central to the

development and analysis of the WPW approach. Chapter 2 reviews statistical pattern

recognition. Chapter 3 presents the WPW algorithm and Chapter 4 presents analytical

results of special case training scenarios. Chapter 5 presents experimental results, and

Chapter 6 presents a summary and conclusions.
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CHAPTER 2

STATISTICAL PATTERN RECOGNITION

In this chapter, several pattern recognition concepts and techniques are reviewed.

They are fundamental to the formulation and subsequent analysis of the weighted-Parzen-

window technique. Key pattern recognition techniques such as training, classification, and

discriminant functions are discussed in the following sections. Also, traditional parametric

and nonparametric pattern recognition techniques are presented. They are the Bayes,

minimum distance, Parzen window, and k-nearest-neighbor classifiers.

Training

A typical pattern recognition system uses sensors to measure a state of nature.

Once a measurement is made, a feature extractor is used to extract features [5:2]. A

feature can be any quantity which provides a meaningful description of the state of nature.

Throughout this thesis, the data are assumed to be feature data. Feature extraction is

discussed in references [5], [9], and [ 15]. Features are organized into multidimensional

feature vectors -- x. Feature vectors are also called sample vectors. Once the feature data

is acquired, training can begin. This is a fundamental concept in pattern recognition.

Training, often referred to as learning, is the process of extracting information from a

training set of feature data. Techniques can be extremely complicated or simple. For

example, some neural paradigms may require billions of computer operations sometimes

taking hours or even days to extract information. On the other hand, some statistical

techniques may only require learning the mean of the training set. The simplest form of

learning is employed by some techniques whose training phase consists of storing a
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training set. This can be likened to rote memorization. Although there are many training

algorithms, they all perform the same task. They extract information from the training set.

This information is used to assign class membership to unlabeled samples, which is called

classification.

Classification by Discriminant Analysis

Classification is often accomplished by discriminant analysis. In a discriminant

analysis, discriminant functions are used for each class of data which are labeled coi where

= 1,..., c. Discriminant functions are scalar-valued vector functions denoted as gi(x)

where i = ... . , c. Classification is traditionally accomplished by assigning the class

label of largest valued discriminant function to an unlabeled feature vector [5:17], [18:6].

This type of analysis leads to decision boundaries where g,(x) = gj(x) for i #j. In the case

that an unlabeled sample falls on a decision boundary, it is usually assigned class

membership by some convenient and arbitrary rule. Discriminant analysis is implemented

by apattern classifier or simply a classifier.

Properties of Discriminant Functions

Since a pattern classifier compares all discriminant function outputs to find the

maximum, only their relative values are important. Therefore, equivalent changes can be

made to each discriminant function without affecting the classification results. In other

words, the decision boundaries are not changed. Some mathematical operations that do

not change classification results are multiplication or division by a positive constant,

addition or deletion of a bias, replacement of g&•z) byAgj(x)), wheref is a monotonically
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increasing function [5:17]. As long as each discriminant function is changed in the same

way, the classification results will not be changed.

The Bayes Decision Strategy

The Bayes decision strategy yields a classifier that is optimal, i.e., the classification

error rate is minimal. This concept is paramount to pattern recognition regardless of the

technique used. Therefore, a detailed discussion will follow. First, Bayes rule will be

presented. Then, the concept of conditional risk will be used to derive the optimal

classifier. Finally, the Gaussian multivariate discriminant function will be presented. The

formulation of this section follows that of Duda and Hart [5].

Bayes Rule and Conditional Risk. Let x be a d component feature vector which

obeys the class conditional probability density function p(xlci), where .Oi represents one

of c possible states of nature that are of interest, and P(oi) represents the a priori

probability that wi occurs. The conditional a posteriori probability of a state of nature can

be expressed by Bayes rule:

P( i Ix) = p(xjole)P(op ) (2.1)
p(x)

where

C

p(x) = p(x1c(0)P(O,). (2.2)

Now that the a posteriori probability function has been found by Bayes rule, the

next step is to define a suitable loss function. Given the action ai and the true state of

5



nature is (oi, the conditional loss is given by X(ctil (o). The conditional risk or expected

loss of taking the action ai is given by

p(ci IX)= X(aj jo~j)P(o3j Ix). (2.3)
j=1

The optimal decision rule is one that achieves the minimal overall conditional risk.

Such a decision rule can be achieved by taking the action that minimizes the overall risk

[5:17], [18:45], [15:188-190] as given by Equation (2.3). A commonly used loss function

that minimizes the overall risk is the symmetrical or zero-one loss function [5:16]. This

function assigns a unit loss when the action ai is taken and the actual state of nature is cOd,

if and only if i *j. Stated mathematically

X.'j i,j = 1,...,c (2.4)P•(o11 j~) *~ j

Using Equation (2.4), the optimal decision rule can be derived. The conditional risk, given

by Equation (2.3), can be simplified by substituting Equation (2.4) for the loss function.

Since the sum of the conditional probability mass functions P(wj1 x) taken over all j must

equal 1, the conditional risk can be simplified as shown:

p(aj IX) F= Xx(o, 10 jPW IX)
j=1

j=

j=1
-si

I - (Wj X).(2.5)

6



With this result it is clear that the minimal error rate can be achieved by selecting the class

i that minimizes Equation (2.5), i.e., the class with the largest a posteriori conditional

probability.

Discriminant Analysis with Bayes Rule. Equation (2.5) is especially suited for

discriminant analysis. Since the error rate is minimal when choosing the class with the

largest conditional probability, one needs only to calculate P(cDi I x) for each class i and

label the test sample according to the largest value. In other words, the optimal decision

rule with the smallest possible error [5:17] is given as:

Decide that x belongs to class o1 iff P(coj I x) > P(owj I x) for allj * i. (2.6)

The decision rule is also given by:

Decide that x belongs to class oin iff gi(x) > g,<x) for allj * i (2.7)

where, by Bayes rule

gi (x) = I,,) i = 0 (
p(x) "

which can be simplified by removing the scaling constant p(x):

,(x) = p(x Io,)P(,O) . (2.8)

The tilde notation of Equation (2.8) indicates that the discriminant function has been

changed, but the classification results remain the same.

The Bayes-Gaussian Discriminant Function. In what follows, the Bayes-

Gaussian decision rule is derived. It will be shown that the resulting discriminant function

is quadratic in the most general case and linear when certain assumptions are made.

The discriminant function is derived by first eliminating the scaling factor p(x)

from Equation (2.8) since it is common to all classes [5:17-18]. The discriminant function

is given as

gi(x) = p(x I0)P(M0). (2.9)

7



The Gaussian multivariate conditional density for the ith class in d-dimensional space is

given by

P(X j0,)= -xp - X(-,-.,)' I,-' (X,- i,) (2.10)

where ti and Zi are the mean vector and covariance matrix respectively, and I• I is the

determinant. Substituting Equation (2.10) into Equation (2.9), the discrir -inction

becomes

(2n)2 1,Ij-2

By taking the natural log of Equation (2.11), the quadratic discriminant function is

obtained. Equation (2.12) shows the general case quadratic discriminant function, which

gives the same classification results as the exponential discriminant function.

g,,=•d½lz n(, (2.12)-•x) (x - p)'Yi-'(x-.,i) -! In 27c- Illi + I ) (.2
2 '2 2

The quadratic discrimninant function can be further reduced to a linear discriminant

function when the covariance matrices are equivalent for each class (zi = E). In what

follows, the linear discriminant function is derived. First, Equation (2.12) is simplified by

removing bias terms that are present in each discriminant function. The simplified version

is given by Equation (2.13):
1

gj(x)= -- (x- p,)'-7'(x -pi)+lnP((o) (2.13)
2

Then, the quadratic term is expanded:

gi(x) = -I(xtz-lx - 2i'E-i'x + pt1-'pi) + In P(o,). (2.14)

8



Inspection of Equation (2.14) reveals that the quadratic term, in x, can be removed since it

is common to each discriminant function. The linear discriminant function is given by

gi(X) = (Y- %,i)t X - Itp.-lpj + In P(oi). (2.15)

Another linear discriminant function can be derived for the case when Zi = G2L

where I is a dxd identity matrix. In this case, the discriminant function is given by

gj(x) = IP x - 1-- p + In (O) (2.16)

This section has shown that the Bayes decision strategy is used to find an optimal

classifier. Furthermore, three Bayesian discriminant functions were derived for a Gaussian

distribution. The first of these, the arbitrary case, was shown to be quadratic (Equation

(2.12)). The decision boundaries for the quadratic case are hyperquadrics [5:30]. The

second two discriminant functions were derived for the case when covariance matrices are

identical for each class. The decision boundaries for each of these cases are hyperplanes

[5:26-30].

Minimum Distance Classification

Minimum distance classifiers are widely referenced throughout the literature [5],

[18], [20], [22]. Quite often the mean or sample mean of a class is used as a prototype.

With this type of classifier, unknown feature vectors are assigned the class membership of

the nearest mean. Two metrics are commonly used -- Mahalanobis and Euclidean. The

following reviews both of these classifiers.
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Minimum Mahalanobis-Distance. The squared Mahalanobis distance of a

feature vector x from the ith class mean is given by

M =(2.17)

where p.i and Z, are the mean vector and covariance matrix respectively. Since class

membership is assigned based on the smallest distance given by Equation (2.17), a

discriminant function can be written as

gi(x) = -(X - pi), 17,(1 -Pi). (2.18)

Equation (2.18) bears resemblance to the Bayes-Gaussian discriminant function of

Equation (2.12). In fact, the minimum Mahalanobis-distance classifier is optimal in the

case of Gaussian distributions with equal covariance matrices and equal a priori

probabilities. However, the discriminant function of (2. 18) is strictly nonparameteric.

That is to say that no underlying distribution is assumed. Therefore, the mean vector and

covariance matrices are generally found by samples. Given ni training samples from the

ith class, the sample mean [5:48] is given by

ni i-I . (2.19)
ij=1

The sample covariance matrix [5:49] is given by

1 xij - OXx - • . (2.20)

ni j=1

Minimum Euclidean-Distance. The squared Euclidean distance of a feature

vector x from the ith class mean is given by

d 2 (X, A) = (I- Pd(I-Pd) (2.21)

where pi is the mean vector. Since class membership is assigned based on the smallest

10



distance given by Equation (2.21), a discriminant function can be written as

gi (1) = -(X - ti•)' (X - P;). (2.22)

As with the Mahalanobis classifier, it can be shown that Equation (2.22) is optimal in

certain cases, i.e., when Z, = a21. However, the Euclidean classifier is generally

nonparametric since no density function is assumed. The mean vector of Equation (2.22)

is usually found by Equation (2.19). Below, it is shown that the minimum

Euclidean-distance classifier can be implemented by a linear discriminant function. First,

Equation (2.22) is expanded. This reveals that xzx is a bias term present in each

discriminant function. It is removed and the new discriminant function is denoted by the

tilde notation which indicates that classification results are not changed. Equation (2.23)

shows the final result which gives the same classification results as Equation (2.22).

gi(x) = -xtx + 2tLitx - Litt4i

gV(x) = 2L,'x - pI I'23

As can be seen by Equation (2.23), the minimum Euclidean-distance classifier is linear

in z.

The minimum Mahalanobis-distance classifier is quadratic. Therefore, its decision

boundaries are hyperquadric surfaces. It has been shown that the Euclidean distance

dassifier can be implemented as a linear discriminant function; therefore, its decision

boundaries are hyperplanes. The performance of the quadratic classifier often suffers due

to non-normality of the data; however, the linear classifier is robust to non-normality

[20:253].

11



Parzen-Window Density Estimation and Classification

This is a nonparametric technique that assumes no underlying distribution but

estimates a probability density function. In his classic paper "On Estimation of Probability

Density Function and Mode," Parzen showed that the density estimate will approach the

actual density as the number of training samples approaches infinity [ 19]. This is true for

certain easily met conditions. The density model and conditions necessary for

convergence are discussed below.

Let n be the number of samples drawn form a particular distribution p(x). The

general form of the probability density estimate p,(x) in the Parzen-window technique is

p. (x) = (..L ) , (2.24)

where h is a parameter "suitably chosen" [ 19:1066], xj is thejth training sample, and tp(y)

is the window function. Note that the notation above is for a univariate training set.

Parzen states that if h is chosen to satisfy a mild restriction as a function of n, the estimate

p,(x) is asymptotically u:nbiased, or in mathematical terms if

limrn h(n) = 0, (2.25)

and,

lim n.O.nh(n) = oo, (2.26)

then

lirn .,,,E[p. (x)] = p(x). (2.27)

Parzen also shows that the window function q,(y) must satisfy the following

requirements:

sup IkP(y)l < Go (2.28)

12



S(2.29)

lim JYP(Y)I = 0 (2.30)

Sp(y)dy= 1 (2.31)
--00

where . I is the absolute value.

A popular window shape is Gaussian. The density estimate for a multivariate

Gaussian window is given by

P,,(,) 2 xi)I(x xi) (2.32)
n 1-2a

where xi is the ith training sample, d is the number of dimensions, and n is the number of

training samples in the ith class. Note that a replaces h to emphasize the relation to the

Gaussian density function. Equation (2.33) shows the discriminant function form of the

Parzen estimate in a Bayes strategy.

1I[ -xI _ -\1 (2.33)

Na j [ 2  ai J

The finite sample case of the Parzen-window classifier is not generally optimal. In

these cases, selection of the h parameter, often called the smoothing parameter, greatly

affects the classifier's performance. Selection of the smoothing parameter is discussed

throughout the literature [5], [9], [19], [10], [20]. Due to the intractable nature of an

analytical solution, experimental approaches are generally used to find the appropriate

13



smoothing parameter. Reference (20:254] suggests a technique in which several

smoothing parameters are tested simultaneously to find the best choice.

The k-Nearest-Neighbor Rule

The k-Nearest-Neighbor (kNN) technique is nonparametric, assuming nothing

about the distribution of the data. Stated succinctly, this rule assigns the class membership

of an unlabeled pattern to the same class as its k-nearest training patterns. In the case that

not all the neighbors are from the same class, a voting scheme is used. Duda and Hart

[5:104] state that this rule can be viewed as an estimate of "the a posteriori probabilities

P(wj I x) from samples." Raudys and Jain [20:255] advance this interpretation by pointing

out that the kNN technique can be viewed as the "Parzen window classifier with a hyper-

rectangular window function." As with the Parzen-window technique, the kNN classifier

is more accurate as the number of training samples increases [5:105].

A special case of the kNN technique is when k = 1. This case, known as the NN

classifier, was studied in detail by Cover and Hart [4], who showed that its performance

was bounded by twice the Bayes error rate in the "large sample case." The NN rule can be

stated in discriminant function form as

gj(x) = max [-x - xj • - z0 (2.34)

where xy is thejth training sample of the class labeled woj, and x denotes the unknown test

pattern. A simplified version of this discriminant function is given by

gi(x)= max (xyx'- lxhtxijh). (2.35)
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CHAPTER 3

WEIGHTED PARZEN WINDOWS

This chapter introduces a novel nonparametric pattern recognition approach,

named Weighted Parzen Windows (WPW). First, the training and classification

algorithms are presented. Then, it is shown that the training algorithm is stepwise optimal.

Also, the computational complexity of the training and classification algorithms is

discussed. Finally, design considerations are discussed.

Weighted-Pa rzen-Window Training

Training is a parallel operation in that training for the class labeled oi is

independent of the training for the class labeled w , for i *j. Therefore, training can be

conducted in parallel. Thus, the following discussion will focus on a single class to

simplify notation. The training phase will be presented in algorithmic form followed by a

discussion of the major concepts.

Training Algorithm. Given a training set of n d-dimensional feature samples,

X = { x,.. ., xn )where x = [ xl,.. . , xd ]t the basic approach of the WPW training

algorithm is to find a set of n reference vectors', R = { r, .... , r. ), where 1 < n < n.

Since the number of samples in R can be less than the number of samples in the original

training set, some information may be lost. To compensate for lost information, a set of

in weights, w = wl,..., w, ), are found. Each scalar weight wj corresponds to the

If readers are familiar with classical Vector Quantization (VQ), they will recognize that a collection of
reference vectors is the same as a codebook. Current research has focused on pattern recognition,
although the training algorithm is directly applicable to VQ applications. Excellent treatment of classical
VQ can be found in reference I I].
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reference vector r.,j = 1. , n The role of the weights is discussed in the sequel. The

training algorithm for a single class is presented in Table 3. 1. In Table 3. 1, the estimate,

P(x), is given by Equation (3. 1)2.

nh (P( h(3.1)

Training Concepts. The WPW algorithm can be considered a second order

approximation since it is relying on the Parzen estimate and, therefore, can only be as

accurate as the Parzen estimate. As can be seen by Equation (3. 1), the WPW estimate is a

superposition of weighted Parzen windows. This estimate is a quantized version of the

Parzen estimate. Quantization occurs when two window functions that are close in vector

space are combined to create a new single weighted-window function. The new window

function is weighted by the total number of combinations that its center has undergone. In

other words, wi window functions are centered at ri which is the average vector of w,

similar training samples. This procedure allows the training algorithm to learn the densest

regions of the training set, which, in turn, allows reference vector reduction. This

reduction is offset by weight adjustments, which allow the algorithm to remember where

the densest regions occur. The training algorithm allows for quantization of the vector

space with respect to the probability space. In this technique, storage requirements are

traded-off for probability space error.

2 Neural network literature often refers to this type of equation as a radial basis function (RBF) f31, 1161,
[171. Current research has focused on statistical pattern recognition, although WPW training is directly
applicable to RBF neural network design.
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Table 3. 1: WPW training algorithm for a single class of feature data.

Step 1. Calculate and store Pn(Xk) where k = 1. n.

Step 2. Choose: h > 0, emar > 0.

Step 3. Initialize:h * +n, R*--X, w,= 1 wherei= 1...1.,

Step 4. Choose two closest 3 reference vectors ri and rj, itj.

"I Wi + rjWj
Step 5. Calculate the vector ro = + '

Wi+ Wj

Step 6. (a) update R such that { rj, ri } eR and ro GR,

(b) update the coefficient for ro, wo 1- wi + wj,

(c) update h h A - 1.

Step 7. Calculate e = [- P.(Xk -- P-xk)I ]100%.Ink=J pn•Xk)

Step 8. IF ( e < emax ) THEN,

if h = 1, then stop training, output R and w;

otherwise, go to Step 4;

ELSEIF ( e > emax) THEN

reconstruct R such that ( ri, ri ) R and ro e R,

replace coefficients for ri, rj as wi, wi,

adjust h +- h + 1,

stop training, output R and w;

ENDIF

3 The meaning of closest is not discussed in detail in this section. In general, however, the closeness of
two reference vectors should be measured with the metric that the window function uses. A detailed
discussion can be found in the section which addresses stepwise optimization.
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Combination of reference vectors is controlled by the training algorithm. An error

function is used to measure the deviation of the new estimate P(x) from the Parzen

estimate pn(x) at each of the training samples. The error function in step 7 of the training

algorithm (Equation (3.2)) is the average percent error between the two estimates at each

training sample:

e I IP,(Xk)- Xx~j 10%.(3.2)

As long as e is below emax, reference vectors will be combined according to step 5

(Equation (3.3)) of the training algorithm, and fi will continue to decrease:

ro = r!wi + rw*
Wi + Wj

ri a + W (3.3)wi + wj wj + wj r

When reference vectors are combined, weights are combined according to

wo =w+w i+j. (3.4)

(Note: the training algorithm requires that Y = n.) Clearly, the weights are a

method of counting the number of reference vectors combined into a single reference

vector, and they are integer values.

Classification Algorithm

Once the reference vectors and weights are found for each category, a discriminant

analysis approach can be used. For the reference vectors Ri and the weights wi, the

discriminant function for the ith category is given by
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g, (x) = ( .) E x(-,, W (3.5)
nik (j= x hi ).

where P((oi) is the a priori probability of the class labeled o0, ni is the number of training

samples in the ith class, A i is the number of reference vectors in the ith class, ry is thejth

reference vector of the ith class, w1 is thejth coefficient corresponding to ry, p( • ) is the

window function, and hi is the parameter that controls the window width for the ith

category. Equation (3.5) is simply Equation (3.1) weighted by the a priori probability of a

given class. This ensures that a Bayes-optimal solution can be approached (see Equation

(2.7)). Equation (3.5) is written in a compact form below to show its similarity to the

optimal Bayes strategy of Equation (2.8).

g() = PA(xroP(aI. (3.6)

Pattern classification of multidimensional feature data can be achieved by first training

with the algorithm in Table 3.1, then using Equation (3.6) for testing by discriminant

function analysis.

Stepwise Optimization

The WPW training algorithm quantizes vector space is based on a probability

space error criterion. Quantization causes the WPW estimate to deviate from the Parzen

estimate, thereby introducing error between the two. Once this error, as measured by

Equation (3.2), exceeds a predetermined value, emax, training is halted. Since the

objective of the training algorithm is to reduce the number of reference vectors without

introducing error into the density estimate, it makes sense to minimize error for each

training step. One way to minimize stepwise error is to minimize quantization error.

Quantization error is introduced in each step of the training algorithm as a result of
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combining two reference vectors. In what follows, it will be proven that the WPW

training algorithm minimizes quantization error for each step.

Consider combining two reference vectors ri and rj whose weights are w, and wj

respectively. The resulting reference vector ro is given by Equation (3.3), and its weight is

given by wo = wi + wj (see Equation (3.4)). On the kth training step, r i and rj are the

center of two weighted window functions w•p( ) and wj•p( • ), which contribute to the

density given by Equation (3. 1). On the k + Ist step, after combination, their contribution

is a single weighted window function, wofp(• ), centered at ro. The quantization error

introduced by this combination is defined in terms of the three above mentioned weighted

window functions. The volume enclosed by each of these weighted windows is denoted

by Vj,Vj, and V0. Given a vector space 91, the region within Vo is denoted as 91o. The

regions of intersection (V n Vo) and (Vj n Vo) are denoted as 91i and 9?j respectively.

The quantzation error integral is defined as

eq x-ri + W f j

wj + wj 9o hh

but proper selection of the Parzen-window function, ýp(. ), requires that its volume equal

1, so the quantization error is

Wi+ .jj-W fVXhr Wj f ,0 h

w1+: j wi I- f ( X.r j + wj[ I- f ({-jJi . (3.7)
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Maximum quantization error occurs when the integrals of Equation (3.7) are both equal to

0 and results in a quantization error of 1. This is the worse case scenario when (Vi n Vo)

and (Vj n Vo) are equal to zero. Clearly, the minimum quantization error occurs when the

integral terms are equal to 1, which results in a quantization error of 0. Equation (3.7) is

exactly 0 if and only if 91i and 91? are completely enclosed within 910. But, 91i and 9i

can only be completely enclosed within 90 if and only if wi(p( ) and wjp(. ) are

completely enclosed within wop(. ). Geometrically, this is only true if each window

function shares the same center, i.e., when

ri = rj = ro. (3.8)

The best procedure to follow when deciding which two vectors to combine is to

select the vectors whose associated regions 9Ri and 9Rj are the largest. To maximize 9?,

and 9ij, Step 4 of the training algorithm selects the two closest reference vectors as the

two to be combined. The distance measure used should be the same as the measure used

by the Parzen-window function. The closest two reference vectors are defined as the two

vectors ri and rj that are closest to their corresponding ro. Since Equation (3.3) is a

convex combination of two vectors, the two reference vectors which are closest to their

corresponding ro are simply the two closest vectors ri and rj, where i *j.

Returning to the proof of stepwise optimality, it can be stated that when deciding

which two vectors to combine, one should select the two closest as measured by

Equation (3.9). By selecting the two closest vectors, the quantization error for a given

step is minimized. Or, mathematically

lim dw(r,rj)_,Oeq = 0 (3.9)

where dw is the distance measure used by the window function. Since the WPW training

algorithm uses this procedure, it is stepwise optimal.
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Computational Complexity

In this section, the computational complexity of the WPW technique is discussed.

As can be seen by the training and classification algorithms, distance calculations require

the bulk of processing resources. Therefore, the following analysis will determine the

order of magnitude of the distance calculations for a single class of data. The following

analysis is based on serial computation.

Training Complexity. Distance calculations are required in three of the WPW

training steps. As shown in Table 3.1, distance calculations are required in

Steps 1, 3, and 7. In Step 1, n probability calculations are required, each with n distance

calculations. Therefore, the number of distance calculations, vI, in Step I is given by

v1 n 2. (3.10)

The number of distance calculations necessary in Step 3 of the training phase is

related to the number of reference vectors. On thejth training step, there are k reference

vectors bounded by h-I k < n. The lower limit of k is given by f -I because the training

algorithm always combines two reference vectors before the error function is calculated.

In the case of A- = 1, the training algorithm terminates, so no distance calculations are

performed (refer to Step 8 of the training algorithm). Step 3 of the training algorithm

requires the calculation of k(k-1) distance measures for thejth step. The total number of

calculations for this step over the entire training phase is given by

v2 = " k(k- 1). (3.11)
A=ai-I

Equation (3.11) can be used to calculate the worse case serial requirements. In the worse

case, when A = 1, V2max is given by
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v2  =± k(k - 1)
&=0

=±k 2 -±k
1t-1 1=I

[n= + 1)(2n + 01) - I-n(n + 1)
6 2

1 (n, -• n). (3.12)

3

The distance calculations required in Step 7 of the training algorithm are

dependent on the value of ni. During this step, there are n probability calculations. Each

probability calculation requires k distance calculations where h -1 < k . n. As explained

for Equation (3.11), the lower limit of k is given by fi-1. The total distance computations

necessary for Step 7 are given by

y, =n ±k. (3.13)

In the worse case, v3max is given by

V3.,= n'k
h=O

= n'" k
A=1

= n2(n + 1)
2
1 3 )2-(n +n). (3.14)

Combining Equations (3.10), (3.12) and (3.14), the total number of distance calculations

during training, for the worse case, is given by

Vtrain = 0(n3). (3.15)
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Classification Complexity. The number of distance calculations required by a

single discriminant function is h for each test made. The largest h can be is n. The upper

bound on the number of distance calculations necessary for a single discriminant function

is given by

vt 0 - O(n). (3.16)

The computational complexity of the WPW training algorithm requires

significantly more distance calculations than the classification algorithm. The number of

distance calculations for a single class of data is O(n3). The number of calculations for all

training classes is still O(n3 ) because the number of classes is generally much smaller

than n. Although calculations of this order can be severe, it must be noted that the above

analysis is for worse case serial computation. Possible refinements can be made when

finding the two closest vectors in Step 4 of the training algorithm, e.g., preprocessing the

reference vectors and recursively updating them on every step. Several quick search

routines are available to programmers [6], [9], [23], [26]. It may be possible to modify

such a routine for the WPW training algorithm. Also, it may be possible to store the

WPW density estimate in a table updating it recursively on each training step to reduce the

calculations necessary on Step 7 of training algorithm. Finally, the power of parallel

computation can be invoked making WPW training nearly trivial since all distance

calculations can be calculated simultaneously. Regardless of the possible shortcuts, the

analysis of the training algorithm shows that it will terminate after a finite number of

training steps and is at worst 0(n3). The classification algorithm on the other hand is at

worst O(n).
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Designing the Weighted-Parzen-Window Classifier

Selecting the Window Shape. When selecting a window shape, those suitable for

the Parzen density estimate should be chosen. Any window shape satisfying the

conditions as established by Parzen [I19] are sufficient, and they should be used for both

the Parzen,,pn(x) and WPW estimates, ,(z). Several window shapes can be found in

references [5] and [19]. The mostly widely referenced window function is Gaussian.

Selecting the Smoothing Parameter. The smoothing parameter should be the

same as that used for Parzen estimate, pn(x). Choosing the smoothing parameter is a

critical step in the classifier design. Selection of the smoothing parameter is discussed

throughout the literature [5]. [9], [10], [19], [20]. Due to the intractable nature of an

analytical solution, experimental approaches are generally used to find the appropriate

smoothing parameter. Reference [20:254] suggests a technique in which several

smoothing parameters are tested simultaneously to find the best choice. Although the

training and classification algorithms allow for selection of different smoothing parameters

for each class of data, it is recommended to use a single value for all classes [20:254].

Selecting the Maximum Allowable Error. The value em,, is used to control the

training algorithm's aggressiveness. That is to say, if e.. is small then the number of

vectors in R will be nearly n; otherwise, if e.. is large, then i << n. Equation (3.20)

shows how n^ is affected by ema, in the limit.

lim h
=im n^ n (3.20.a)emax -- 0

lim A
Cm = 1 (3.20.b)

25



The relationships of Equation (3.20) are helpful in understanding the effects of emar. The

value en= can be selected by specification or engineering judgment. In either case,

Equation (3.2) allows for intuitive choices of emax. For example, if emax is chosen as

15%, then the training algorithm will stop when the average variation between the two

estimates exceeds that value. The value of ema, is in general the same for each category;

however, it can be selected individually for each class. When designing the classifier, the

recommended procedure is shown in Table 3.2.

Table 3.2: Weighted-Parzen-window classifier design steps.

1. Select emar = 0, and determine the smoothing parameters that minimize

classification error4.

a. If the training set is small, use the leave-one-out method to estimate the

error rate [5:76].

b. If the training set is large, partition the data into two disjoint sets for

training and testing to estimate the error rate [5:76].

2. Choose the value of emax based on design specifications or reduction.

3. Train and evaluate the performance. If performance is satisfactory, implement the

device; otherwise go to step 2.

4 By choosing e.. - 0, the WPW classifier is equivalent to the Parzen-window classifier (this is proven
in Chapter 4). Therefore, the techniques for choosing the smoothing parameter as outlined in references
[51, [91, [191, and 1201 are valid and should be used. Although the training and classification algorithms
allow for selection of different smoothing parameters for each class of data, it is recommended to use a
single value for all classes 120:2541.
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CHAPTER 4

ANALYTICAL RESULTS

The Gaussian distribution function is prominent throughout pattern recognition

literature because of its analytical tractability [5:22]. The well-known properties of the

Gaussian distribution are extremely helpful when analyzing the WPW classifier. In this

chapter, it is shown that the performance of several well-known classifiers can be learned

by varying the two system parameters. In particular, the Bayes-Gaussian, minimum

Euclidean-distance, Parzen-window, and nearest-neighbor classifiers are derived.

Using Gaussian Windows

To use Gaussian windows, Equation (3.5) is written as

gi (X): = ()dIep[ X-)'(x -r) w 41
n .1 E11 [ i 4

"(2 2a

whereir is thejth reference vector ith class and wy is the corresponding weight, d is the

number of dimensions, and h j is the number of reference vectors for the ith class. Note it

is customary to replace hi with ao to emphasize the relation of Equation (4. 1) to the

Gaussian distribution.

Special Case Training Results

This section will show that proper selection of the system parameters a and e,,,a,

will resut in several well-known classifiers. In what follows, the training algorithm is
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shown to be capable of learning Bayes-Gaussian, minimum Euclidean-distance, Parzen-

window, and nearest-neighbor performance.

Case 1: Bayes-Gaussian Classifier. Given a set of training data for c classes

labeled (oi, i = 1, . . . , c. Choose ema -- oo, and ao as some suitable number. In this case,

a, can be different for each class. Consider the effect of emar. Since all error of the

training phase is tolerated, a single reference vector will be used to represent each

category upon completion of training. Because of the Equation (3.3) used in Step 5 of the

training algorithm, the reference vector of each category is exactly the sample mean vector

of each category ji. Consider Equation (4.2) on the final step of training for the ith

category:

Pif =lWilI + Pi2 Wi 2 (4.2)
wi+ + Wi2

Since this is the combination of the two final reference vectors, wiI + wi2 = n, where ni is

the number of reference vectors at the beginning of training, or equivalently,

wi2 = ni - wiI, Equation (4.2) can be rewritten as

n, 0.
?h Wi1 + Pt2 (n - wit) = - =. (4.3)

wit ,+ (n, - wi) - i

Upon the completion of training, the final reference vector is the sample mean of the

training data, Aj, its weight is wif = ni, and n^i- 1. With this in mind, Equation (4.1) can

be rewritten as

9i(X P'Wa exp -L( - Pti) (x -i Ad i (4.4)

"i j-1 (2 (~i2)- 22i2

which simplifies to
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gW=P((O ) 1 exp[-y -(x.-Aiii(x-4)] (4.5)
L,,a1-

By using ai2I, where I is the identity matrix, as the covariance matrix of a Gaussian

distribution function, Equation (4.5) can be rearranged as shown in Equation (4.6).

( 2 =1d I exp - (X - i)'(i21)-'(X-Aid P((oi) (4.6)

Equation (4.6) is the familiar Bayes-Gaussian classifier (see Equation (2.11)) for a class-

conditionally independent normal multivariate distribution xjo, M4N[i,Oi 2fI. Decision

surfaces that result from discriminant analysis are hyperquadric. In the cases that Ai and

a1 accurately reflect the training data, the WPW classifier is optimal.

Case 2: Minimum Euclidean-Distance Classifier. Given a set training data for c

classes labeled Co,, i = 1, . . . , c. Choose em., = oo, ai = a, and P(CO,) = P((O) = I/c for

all i. Since all error of the training phase is tolerated, a single reference vector will be

used to represent each category upon completion of training. Case I shows that the

resulting discriminant function is given by

g1(x)= P(O) 1d exp - (x - ^ii)(x - Ai)]. (4.7)

(2 ,t2) )

Given the conditions stated above, this classifier behaves exactly as the minimum

Euchdean-distance classifier of Equation (2.22). Furthermore, the decision boundaries are

hyperplanes. The following analysis shows why this is true. First, the natural logarithm

of Equation (4.7) is written as

,()= ,7(x -4,)'(x -A,) + In P(o0)-dIn27 - dlnc . (4.8)
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Since all of the bias terms that are the same in each category, Equation (4.8) can be

rewritten as

gi(x) 2( - '- Ad

2a

which can be scaled by 202 giving

V(x) = - Ai)'(x - Ai). (4.9)

Note that the tilde notation indicates that the discriminant function has been changed, but

the classification results have not. Equation (4.9) is the minimum Euclidean-distance

classifier as given by Equation (2.22). As shown by Equation (2.23), this case of the

WPW classifier results in decision boundaries that are hyperplanes.

Case 3: Parzen- Window Classifier. Given a set training data for c classes labeled

(oi, i = 1, ..., c. Choose emar = 0, and a as some suitable number. Consider the affect of

e..l. Since no error can be tolerated during training, there will be no reduction in the

reference vector set R1, therefore, it is equal to the training set XA. Upon the completion of

training for the ith category, ni reference vectors remain, each of which has a coefficient of

1. Therefore, wy = 1, forj = 1,... , ni, and h i = ni. With this in mind, Equation (4.1)

can be rewritten as

1 I
N.j=i (2nai2)2 2ai2 U~

J II I (4.10)

Equation (4.10) is the same as Equation (2.33), which is the Parzen-window discriminant

function. Another important characteristic of this form of the WPW system is that as
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n -+ ao, Equation (4.10) approaches the Bayes-optimal classifier. This is a property of

the Parzen-window approach coupled with a Bayes strategy. (In this case, it has been

assumed that no two reference vectors are identical. If they were identical, they would be

combined without introducing error. Therefore, the WPW classifier would still be

identical to the Parzen-window classifier, but it would be difficult to analyze.)

Case 4: Nearest-Neighbor Classifier. Given a set training data for c classes

labeled coi, i 1,..., c. Choose e,m = 0, a1 = a, which is very small, and

P((o,) = P(ro) = 1/c for all i. In this case, as in the above case, reference vector

combinations are completely inhibited, and the set of reference vectors Ri is exactly the

training set X,. The discriminant function for this case is given by

g(x) = 1 1 j d exp - - x#)(x-x01. (4.11)
c fl8 j=, (,a2)7 i -2aj

In this case the classifier may not necessarily become optimal as the number of training

samples approaches infinity. In fact, the best that one may hope to achieve in this case is

known performance. By choosing the value of a to be very small, the window function

becomes very narrow, and only the nearest neighbors of a test sample affect the

discriminant function values. In this case, Equation (4.11) approaches the nearest-

neighbor (NN) classifier [20:254], but the Parzen-window classifier is still being

employed. This approach to NN pattern classification brings to light a very interesting

situation. Cover and Hart showed that the NN classifier's error rate can be no worse than

twice the Bayes error rate [4] in the large sample case, i.e., as ni -+ oo. But, remember as

nj -+ w the Parzen estimate approaches the true estimate. So, Equation (4.11) becomes

optimal if and only if the a priori probabifities of each class are each I1c. According to

Cover and Hart, the optimal error rate can only occur in "the extreme cases of complete
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certainty and complete uncertainty" [4:24]. Therefore, Equation (4.11) is optimal for

complete certainty or complete uncertainty; otherwise, it must be strictly greater than the

Bayes rate but less than or equal to twice the Bayes rate. Since Equation (4.10) will

always provide an optimal classifier in the large sample case, Equation (4.11) would only

be used when the number of samples is small and NN classification is desired.

The above analysis showed that several well-known classifiers could be learned by

using Gaussian window shapes and selecting the system parameters correctly. The first

two derivations rely on the way reference vectors are combined during training and the

window function properties. The last two derivations rely on the properties of the Parzen

window technique and the error criterion function, i.e., no vectors are combined. Since

the WPW algorithm is generally used to reduce the effective size of the training set, i.e.,

the storage requirements, it should be noted that Cases 3 and 4 are primarily of theoretical

importance and are used to bolster the credibility of the algorithm. By making use of the

properties of the Gaussian distribution and the Parzen-window classifier, it has been

shown that Bayes-Gaussian, minimum Euclidean-distance, Parzen-window, and nearest-

neighbor classification can be learned by the WPW algorithm. This is especially useful

when the WPW approach is thought of as a black box. In this case, known performance

classifiers can always be achieved with a single black box by simply tweaking the system

parameters. In this sense, these classifiers can be viewed as special cases of the WPW

algorithm. The derivations above are for extreme cases of training, i.e., when a single

reference vector remains for each class and when all of the reference vectors remain after

training. Other cases are analytically intractable, so it becomes necessary to determine

results experimentally.
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CHAPTER 5

EXPERIMENTAL RESULTS

The performance of the WPW classifier is described analytically in Chapter 4.

There, analyses are applied to special case training scenarios. The capabilities of the

WPW technique are difficult to demonstrate analytically when the number of reference

vectors is neither 1 nor n. Therefore, the experimental results are used to demonstrate the

effectiveness of the WPW classifier for a variety of system parameter choices. This

chapter describes the experimental procedure used and results obtained. First, thk: data is

discussed. Then, experimental training results are demonstrated by graphical portraits of

its clustering tendencies. Classification results are also presented in the form of decision

boundaries and decision error curves. Specifically, the WPW algorithm is compared with

those of the Bayes-Gaussian, kNN, and Parzen-window classifiers. Finally, to

demonstrate the effects of the two system parameters, a design curve is presented.

The Data

The data used to demonstrate the capabilities of the WPW algorithm was

synthesized to be challenging, but also to allow the analytical determination of the

Bayesian error rate. Two-dimensional data are used so that the properties may be

explored visually, however the WPW algorithm can be used for data of any dimension. An

independent Gaussian random variable in two dimensions with unit variance was used to

create a two category data set. The first category is bimodal while the second is unimodal
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centered between the modes of the first one. The conditional densities are given by

Equation 5.1:

p(Ax 1 1)=- 1 {1 -exp[-1(x ")'(- - _+ Iexp[ (X - - P12)]}(S. La)

and

p(x I2) = •-exp 1-2 (x - P)(x - P2)] (5.1.b)

where

11l = 110.0 0.0 ]t

112 = [5.0 5.0 ]t

i92  [ 2.5 2.5 f

Figure 5.1 shows the data where Class I is represented by squares while Class II is

represented by triangles. The Bayesian error rate, determined analytically, is

approximately 5.00/a. In all experiments, the a priori probability was assumed to be equal

for each category, i.e., P(co)0 = P((o2) = 0.5. Figure 5.1 shows a subset of the synthesized

samples.
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Figure 5.1: Two category sample data.
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Training Results

A data set containing 100 samples in each category is used to show the clustering

tendencies of the training algorithm as the design parameters vary. In all experiments, the

same value of emax and a is used for each class. The value of c was selected as outlined

'in Table 3.2 Step (L.a). Figure 5.2 shows the average error rate for the Parzen-window

classifier as a function of a. Based on Figure 5.2, a was selected as 1.0 for the following

experiments. Figures 5.3-6 show the reference vectors after training for ema. equal

to 2.5%, 5.0%, 15.0%, and 60.0% respectively. The vectors are shown with their size

proportional to their corresponding weights w. Table 5. 1 lists the number of reference

vectors that resulted after training. It can be seen that whenever the given samples formed

compact clusters, they were collapsed into a single vector. On the other hand, those

samples that were relatively isolated were preserved. Note that in Figure 5.6, the

reference vectors represent the sample mean of each of the modes.
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Table 5.1: Effect of em. on the number of reference vectors (a = 1.0).

n_

n emar = 2.5% em= = 5.0% emax - 15% em4X = 60%

Class 100 32 25 10 2

Class I1 100 24 10 6 1

37



8

' 0 a
0

0 0 a

C* a

o41

-4 -2 0 2 4.

Feeture I

Figure 5.3: Reference vectors after training (e.a. 2.5%, a 1.0).

0 *

U n

-2

-41

04 -2 0 4 6 8

Feture 1

Figure 5.4: Reference vectors after training (e,.- = .05%, a - 1.0).

38



8

6
0

-2

-4

-4 -2 0 2 4 6 8

Feature I

Figure 5.5: Reference vectors after training (emax 15.061, a 1.0).

U

4-4

A
a2

0 0

-2

-41

-4 -2 0 2 4 6 1
Feature I

Figure 5.6: Reference vectors after training (e.. = 60.0%, a = 1.0).
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Classification Results

Decision boundary graphics provide an excellent tool for visual analysis of

classifier performance. The WPW algorithm was compared to the Bayes-Gaussian,

Parzen-window, and k-nearest-neighbor classifiers.

Figures 5.7 shows the decision boundaries for the Bayesian classifier. Figures

5.8-5.11 show the decision boundaries that result from the Parzen-window classifier when

the smoothing parameter is 0. 1, 0.5, 1.0, and 2.0 respectively. These figures demonstrate

the effect of the smoothing parameter. When ; is small, the decision boundaries are much

like the NN classifier. As a increases, the decision boundaries change from complex

undulating lines to very straight lines. Figures 5.12-5.15 show the decision boundaries for

the 1, 3, 7, and 21 nearest-neighbor rules respectively. Note that the NN decision rule

results in a decision boundary that is jagged and very specific to the training data.

However, when the 3NN and 7NN rules are used, the decision boundary becomes

smoother and more general. The 2INN rule's decision boundary is smoothest, resulting in

the most general of the nearest-neighbor classifiers shown.
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To demonstrate the WPW classifier graphically, decision boundaries were plotted.

The classifier was designed for a = 1.0 and varying e,,,,,,. The WPW decision rule

produced the decision boundaries shown in Figures 5.16-5.19 for ema" = 2.5%, 5.0%,

15.0%, and 60.0% respectively. The decision boundaries are nearly the same as those

produced by the Parzen-window decision rule shown in Figure 5.10 and similar to the

decision boundaries of the 2 INN rule shown in Figure 5.15. The close relationship to the

Parzen-window decision boundaries of Figure 5. 10 is expected since the WPW algorithm

tries to maintain the Parzen estimate while reducing the effective size of the training set.

Note that the decision boundaries are very similar to those of Figure 5. 10 even though the

reference vectors represent only 28%, 17.5%, 8.0%, and 1. 5% of the original training

samples. This represents a significant storage reduction while maintaining excellent

performance. Note that the decision boundaries of Figure 5.19 are nearly optimal. The

above analysis presents a visual comparison of several classifiers. The Bayes classifier is

optimal, but requires knowledge of the data's structure a priori. On the other hand, the

nonparametric classifiers do not require this knowledge but may require excessive storage

and computation time during the classification stage. As seen by the figures, the

nonparametric classifiers were capable of achieving excellent results. In particular, the

WPW classifier performed as well as the others with the bonus of requiring fewer

reference vectors and hence less memory and computational time during classification.

To compare the WPW algorithm another way, the total error rate as a function of

the data set size was calculated for the Parzen-window, k-nearest-neighbor, and WPW

classifiers. In this case, the number of training samples was as large as the number of test

samples. Figures 5.20, 5.21, and 5.22 show the error rates. The error shown was

calculated by training and then testing with different but equal size sets. The curves show

that the WPW's performance is excellent when compared to the others.
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Parameter Design Curve

The selection of the parameters ema, and a have a direct impact on the

performance of the system. The effect of their different values is summarized in the curves

given by Figure 5.23. These curves were constructed by training the system with 100

-samples of each class for different values of emax and a. For each of these training

phases, the average error rate and average total of the reference vectors, hwal, were

obtained by using the leave-one-out technique [5:76]. Thus, a point in a curve of Figure

5.23 corresponds to a pair of values (em., a), and it is given by the corresponding error

rate in the classification stage and no1a1. For the data used in this experiment, it was

observed that as the allowed error emar increased, the number reference vectors decreased

and the classification error increased. Therefore, in this case, there is a trade-off between

the classification error rate and the total number of reference vectors. However, given a

desired level of performance (in terms of the desired classification rate and time and

memory requirements) the curves in Figure 5.22 provide the required values of the

parameters emar and m. This experiment required significant computing resources.

However, if they are available, the WPW system can easily be designed by creating curves

such as those in Figure 5.23 for many values of a. Once the curves are plotted, the

designer simply chooses the parameters that provide the smallest error rate and the

smallest required reference vectors. Such a design scheme can be implemented by the

algorithm shown in Table 5.2. Note that WPW classifier design is deterministic if

sufficient computing resources are available, i.e., the system parameters can be found that

yield the desired performance.
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Table 5.2: Deterministic weighted-Parzen-window classifier design.

Initialize a=[ 1l, ... , ]Jit , wherej can be any reasonable positive integer,

initialize k = 1, where 1 < k <j, and choose A very small. (The smoothing

parameter and emar are assumed the same for each class to simplify this procedure.

See reference [20:254] for selection of the smoothing parameter.)

2. Initialize emar = 0.0 and select ok.

3. Use the parameters (emae, ok) for WPW training.

4. Estimate and store the total error rate and total number of reference vectors for all

classes, niotat.

a. If the training set is small, use the leave-one-out method when estimating

the error rate [5:76] and find the average number of reference vectors.

b. If the training set is large, partition the data into two disjoint sets for

training and testing to estimate the error rate [5:76] and find hiotal.

5. IF( 1i> I for anyi) THEN

emx 4-- emax + A

go to Step 3

ELSEIF ( fi i = 1 for all i ) THEN

k,--k+ I

go to Step 2

ELSE (k >j) Then

stop

END.

6. Plot classification error vs. /itoaland choose the parameters (ok, emax) that meet

or exceed design specifications for storage and classification error.
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CHAPTER 6

CONCLUSION

In this chapter, a summary of the thesis is presented. Then, future research goals

are discussed. Finally, key research results are highlighted.

Summary

This thesis presents a novel pattern recognition approach, named Weighted Parzen

Windows (WPW). In Chapter 2, several pattern recognition concepts and techniques are

discussed. They are fundamental to the formulation and analysis of the WPW technique.

Techniques discussed in Chapter 2 are the Bayes, minimum Euclidean-distance, Parzen-

window, and nearest-neighbor classifiers. It is shown that Bayes-Gaussian classifier is

quadratic in the general case and linear when the covariance matrices are equal for each

class. Two minimum distance classifiers are presented in Chapter 2. It is shown that the

Mahalanobis-distance classifier is quadratic, and the Euclidean-distance classifier is linear.

These classifiers are the first of the nonparametric techniques reviewed, i.e., the techniques

that do not require a priori knowledge of the density. The next technique is the Parzen-

window density estimate. This technique is used to estimate a density function. The

Parzen-window classifier is asymptotically optimal when used in a Bayes strategy. The

final technique presented in Chapter 2 is the k-nearest-neighbor (kNN). In Chapter 3, The

weighted-Parzen-window (WPW) utbnique is presented. This technique uses a

nonparametric supervised learning algorithm to estimate the underlying density function

for each set of training data. The WPW training algorithm quantizes vector space based

on a probability space error criterion. It is a second order approximation since it is an

54



estimate of the Parzen estimate. Classification is accomplished by using the WPW density

estimate in a Bayes strategy. In Chapter 3, it is proven that the WPW training algorithm is

stepwise optimal. Also, it is shown that the number of distance calculations required is

O(n3) for training and 0(n) for classification. Also, an algorithm for WPW classifier

design is presented. In Chapter 4, it is shown that several well-known classifiers can be

learned by using Gaussian window shapes and selecting the system parameters correctly.

By making use of the training algorithm properties, it is shown that Bayes-Gaussian,

minimum Euclidean-distance, Parzen-window, and nearest-neighbor classification can be

learned by the WPW algorithm. Analytical results are for the cases when a single

reference vector remains after training or when all reference vectors remain after training.

Other cases are analytically intractable so it was necessary to determine results

experimentally. In Chapter 5, experimental results are reported to demonstrate the

performance of the WPW algorithm as compared to traditional classifiers.

Future Research Efforts

This research has focused on the development and analysis of the WPW approach

as a statistical classifier. Therefore, statistical pattern recognition techniques and

philosophies have been paramount to the development and analysis of the novel approach.

However, statistical pattern recognition is only one possible use of the WPW technique. It

has been designed with other uses in mind. Other applications of the WPW include

Artifical Neural Networks (ANNs) and Vector Quantization (VQ). Future research

efforts will be directed towards formalizing doctrine for these uses. Also, future research

will explore WPW training algorithm refinement.
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The WPWas an Artificial Neural Network. The WPW technique can be used in

many neural applications. The WPW structure, training algorithm, and performance make

it very appealing for Artificial Neural Network (ANN) applications.

The structure of the WPW classifier, in general, is similar to Radial Basis Function

(RBF) networks [3], [16], [17]. The WPW classifier with Gaussian windows is a RBF as

defined by current literature. However, the RBF training paradigms are theoretically and

-fundamentally different from the WPW. The training algorithm of the WPW is designed

to estimate the density of each class. Therefore, a Bayes approach can always be

employed. In general, RBFs do not estimate class densities. The Probabilistic Neural

Network (PNN) [24] does try to estimate class densities, however, there are no provisions

for reducing the storage requirements.

Many different learning paradigms exist for ANN training. Training usually

involves iteratively updating synaptic weights. One such ANN is the error-back-

propagation (EBP) technique of D. E. Rumelhart et al. [21]. Until recently, the structure

of many ANNs were designed using ad hoc techniques [2]. However, N. K. Bose et al.,

have presented a technique by which the structure and weights are trained simultaneously

[2]. In this technique, Voronoi diagrams (VoDs) are used to design the weights and

structure of a feed-forward network. This classifier is trained without the use of

parameters. The WPW classifier also trains both the weights and the structure of a feed-

forward network. In the WPW technique, the number of reference vectors, i.e., the

structure, and values of the weights are determined by selection of two parameters.

Self-organizing maps (SOMs) are popular among neural techniques because of

-their self-organizing properties. However, they are not generally used directly for pattern

classification. Recently, J. A. Kangas et al., reported that SOMs can be used as a

preprocessing step for ANNs [13]. Specifically, SOMs can be used to generate
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codebooks for Learning Vector Quantization (LVQ) techniques. The WPW algorithm can

also be used in this capacity, i.e., it can preprocess the neurons.

The WPW technique can be used for many neural applications; therefore, future

research will emphasize these applications. In particular, the neural structure for training

will be developed. Also, comparisons will be made with various ANNs. In particular,

comparisons will be made with the following techniques: VoD-based classifier [2], EBP

[21], LVQ [14], [15], LVQ2 [14], [15], and the PNN [24]. Comparisons will be made

with the structure, philosophy, and performance of each of these techniques.

The WPWas a Vector Quantizer. Vector Quantization (VQ) is used for speech

and image data compression. Data are compressed and transmitted serially to a receiver

where they are decompressed. Compression is accomplished by using a codebook to map

the transmission data into one of the codebook vectors. This mapping quantizes the

transmission data. Reference [1] is an excellent source for further details if necessary.

Generation of a good codebook is the main problem in VQ. The WPW training algorithm

is directly applicable to codebook generation. Image codebooks can be generated by the

WPW algorithm for gray-level and color images. Future research will be directed towards

mapping the WPW training algorithm into a parallel structure. Also, experiments will be

run to test the effectiveness of the WPW algorithm as compared to traditional codebook

generation techniques. (Note: in codebook generation, the required number of

calculations can be severe with the WPW technique. Calculation reduction refinements

are discussed in the following section.)

WPWRefinements. Research efforts to this point have been focused on the

introduction of the WPW technique. Mainly, research has been concerned with the

fundamental theory of the technique and its validity. Future research, however, will

concentrate on refinements that will ensure efficient practical application. This means
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reducing the number of calculations required during training and developing the

* adaptability of the classifier.

The training algorithm was shown to be 0(n3), therefore, an obvious refinement is

to decrease the serial calculations necessary. Possible refinements can be made when

finding the two closest vectors in Step 4 of the training algorithm, e.g., preprocessing the

reference vectors and recursively updating them on every step. Several quick search

routines are available to programmers [6], [9], [23], [26]. It may be possible to modify

such a routine for the WPW training algorithm. Also, it may be possible to store the

WPW density estimate in a table and updating it recursively on each training step to

reduce the calculations necessary in Step 7 of the training algorithm. Parallel computation

approaches will be explored. The classifier is highly parallel in structure, therefore, future

research will involve mapping the classifier into a parallel architecture. With a parallel

approach, WPW training is nearly trivial since all distance calculations can be made

simultaneously.

The classifier structure must be enhanced by providing a technique to incorporate

new exemplars after training, i.e., develop a mechanism for updating. Future research will

focus on a technique that simply includes new exemplars with a single window function.

Tentatively, this approach will store all new exemplars until the storage capabilities can no

longer accommodate them. At which point, the training algorithm can be invoked to

combine vectors where possible. Again, this is a tentative plan which must be further

developed.
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Conclusions

In this thesis, the WPW classifier was introduced. The WPW classifier is a

nonparametric supervised learning technique for pattern recognition. This technique

assumes nothing about the underlying density function, but approximates the density

function. Since the approach of the WPW is to estimate the density of each class, training

can be conducted separately, which means that training can be conducted in parallel. This

is an important advantage for parallel processing and hardware implementation. Density

estimation is an important concept, because the classifier is designed to approximate the

minimum risk Bayes classifier. This is the fundamental underlying philosophy of the

approach. However, it is often difficult to store all of the training samples available for the

Bayesian nonparametric approach. This is why the WPW technique has been developed.

The WPW technique of training set reduction is unique in that it employs two distortion

measures. The first is a vector space distortion measure; the second is a probability space

distortion measure. This approach quantizes vector space with respect to probability

space. The author is unaware of any techniques of this type. Furthermore, the WPW

technique was developed and analyzed with traditional statistical techniques. In

Chapter 3, it is proven that the WPW training algorithm is stepwise optimal. Also, the

computational complexity is discussed. In Chapter 4, the WPW is shown to be

functiowffly equivalent to several well-known classifiers. Chapter 5 gives experimental

results.

In Chapter 3, two important results were developed--stepwise optimization and

computational complexity. The training algorithm of the WPW is stepwise optimal. This

means that each training step introduces the smallest quantization error possible. Also, in

Chapter 3, computational complexity is derived. It is shown that the serial distance
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calculations necessary are O(113) for training and are O(n) for classification. Although the

training algorithm is 0(n3), the classification algorithm is very fast, O(n). Furthermore,

the training algorithm will converge to a solution after a finite number of training steps.

This is an important result when considering that some neural techniques may never

converge to a solution.

Chapter 4 presents several important analytical results. In this chapter, it is shown

that Bayes-Gaussian, minimum Euclidean-distance. Parzen-window, and nearest-neighbor

classification can be learned by the WPW algorithm. This is especially useful when the

WPW approach is thought of as a black box. In this case, known performance classifiers

can always be achieved with a single black box by simply tweaking the system parameters.

In this sense, the above traditional classifiers can be viewed as special cases of the WPW

algorithm. Chapter 4 also shows that Bayes performance can be achieved in certain

cases. This is of fundamental importance because the Bayes error rate is the theoretical

bound.

In chapter 5, experimental results show that the WPW classifier is comparable if

not superior to some traditional techniques. Decision boundary graphics and error curves

were used to show that the WPW approach reduces the effective size of the training data

without introducing significant classification error.

The WPW technique is a very powerful statistical pattern recognition approach.

Excellent performance was demonstrated theoretically and experimentally. The WPW

technique encompasses many important concepts from statistical pattern recognition.

However, the use of the WPW technique should not be limited to statistical pattern

recognition. The WPW can be used in neural applications as well as codebook generation

for vector quantization. These applications are the subject of current and future research.
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