

TECHNICAL REPORT ARCCB-TR-94014

STANDARDS FOR ORDNANCE MATERIALS; DYNAMIC FRACTURE AND ENVIRONMENTAL CRACKING APPLICATIONS

JOHN H. UNDERWOOD

AD

APRIL 1994

US ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER CLOSE COMBAT ARMAMENTS CENTER BENÉT LABORATORIES WATERVLIET, N.Y. 12189-4050

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DTIC ON STATE CONTROLS

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacturer(s) does not constitute an official indorsement or approval.

DESTRUCTION NOTICE

For classified documents, follow the procedures in DoD 5200.22-M, Industrial Security Manual, Section II-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX.

For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.

For unclassified, unlimited documents, destroy when the report is no longer needed. Do not return it to the originator.

REPORT D	OCUMENTATION P	AGE		Form Approved OMB No. 0704-0188
Public reporting burden for this collection of im gethering and maintaining the data readed, an collection of information, including subgestion Dava signitives, Suite 1204, Artingson, VA 2220	formation is estimated to average 1 hour pa al completing and revolving the collection of for reducing this burden, to Washington in -1352, and to the Office of Hanagement an	r response, including the time for r f information. Send comments requested to the services, Directorate for d Budget, Paperwork Reduction Pro-	eviewing instru- inding this burn information lect (0704-018	uctions, searching existing data sources, den estimate or any other aspect of this Operations and Reports, 1215 Jefferson B. Weshington, D.C. 20503.
1. AGENCY USE ONLY (Leave blar	k) 2. REPORT DATE	3. REPORT TYPE AN		
4. TITLE AND SUBTITLE STANDARDS FOR ORDNANCE FRACTURE AND ENVIRONMEN		Pinel	AMO	ING NUMBERS IMS No. 6111.02.H611.1 IN No. 1A11Z1CANMBJ
6. AUTHOR(S) John H. Underwood		<u></u>	1	
7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS(ES)		S. PERFC	
U.S. Anny, ARDEC Benet Laboratories, SMCAR-CCB- Watervliet, NY 12189-4050				RT NUMBER CCB-TR-94014
9. SPONSORING / MONITORING AG U.S. Army ARDEC Close Combat Armaments Center Picatinny Arsenal, NJ 07806-5000	ENCY NAME(S) AND ADDRESS(E	5)		SORING / MONITORING ICY REPORT NUMBER
11. SUPPLEMENTARY NOTES Submitted to ASTM Standardization	n News	<u> </u>	L	
12a. DISTRIBUTION / AVAILABILITY Approved for public release; distril			12b. DIS	RIBUTION CODE
13. ABSTRACT (Maximum 200 word Two difficult and very different set surprisingly similar approaches for	rvice conditions for Army ordnan	ce, dynamic fracture and e	nvironment.	ally-assisted cracking, result in
14. SUBJECT TERMS Ordnance Materials, Dynamic Frac Environral Cracking, Fracture :				15. NUMBER OF PAGES 10 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIF OF ABSTRACT UNCLASSIFIED		20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

ı

Standard Form 298 (Rev. 2-89)

- - --

TABLE OF CONTENTS

INTRODUCTION	• • • •	1
ORDNANCE APPLICATIONS - AND PROBLEMS	• • • •	1
A FRACTURE TESTING CONCEPT - CRACK ARREST	• • • •	1
RESULTS - PROBLEMS DESCRIBED, IF NOT SOLVED	• • • •	2
SUMMARY	• • • •	2
REFERENCES	• • • •	4

LIST OF ILLUSTRATIONS

1.	Diagram showing cannon and projectile components undergoing dynamic or environmentally- assisted fracture as a result of manufacturing processes or cannon firing conditions
2.	Diagram showing basic concept of crack growth and arrest in a wedge-loaded test specimen as applied to dynamic cracking and environmentally-assisted cracking test methods
3.	Profile of the decrease in applied stress intensity factor, K, as crack depth increases, allowing crack arrest to occur in the wedge-loaded specimen
4.	Profile of dynamic cracking and arrest in a nickel-chromium-molybdenum steel giving a crack-arrest fracture toughness, K _{ia} , of about 55 MPa√m
5.	Profile of an A723 steel exposed to a sulfuric and phosphoric acid mixture showing an apparent arrest after 1540 hours and a threshold of environmentally-assisted cracking, K _{lunc} , of about 16 MPa√m

i

A		
Accesio	n ror	
NTIS	CRA&I	
DTIC	ТАВ	6 1
Unanno	bunced	
Justific	ation	
By Distribution /		
^	vailabilit	y Codes
Dist		and / or cial
A-1		

Page

INTRODUCTION

It is easy to appreciate that dynamic fracture is important when dealing with ordnance components and materials. To many, ordnance means cannons and projectiles, and that of course means a rapid load applied to both the cannon and the projectile. Because of this the effects of dynamic loading on ordnance materials has been of concern for a long time, literally for centuries. Much more recently, it has been realized that the chemical environments associated with the firing of a cannon create problems of comparable difficulty to those caused by rapid loading. Environmentally-assisted crack growth is a particular problem in cannons, because it is often present in combination with other severe loading and service conditions that are typical of cannon firing.

At first thought, there is no obvious interrelation between these two problem areas in ordnance, dynamic fracture and environmentally-assisted crack growth. However, surprisingly similar approaches are being used in the ASTM fracture test methods developed to characterize these apparently different types of fracture. This leads to the objective here, which is to describe the ordnance applications and some general concepts of the fracture test methods related to dynamic and environmentally-assisted fracture in ordnance. In this description, the similar approach to the two different problems will be addressed, to show how each effort complements the other.

ORDNANCE APPLICATIONS - AND PROBLEMS

The sketch and captions of Figure 1 give a summary of some of the key physical and mechanical processes in cannons and projectiles, particularly those related to difficult problems in fracture testing. During cannon manufacture, chromium is often plated on the bore to provide protection against wear, erosion, and exposure to high temperature during firing of projectiles. The plating process includes significant exposure to aggressive electropolishing and plating solutions, including sulfuric acid, which in turn has led to environmentally-assisted cracking problems. Reference 1 describes such a problem and the fracture testing approach of Wei and Novak (ref 2) used to address it.

The cannon firing process can include dynamic and environmentally-assisted fracture problems for both cannon and projectile, but repeated use of the cannon makes it the likely focus of concern. The rapid increase in pressure that accelerates the projectile also produces a rapid increase in tensile stresses in the cannon wall which can, in the worst circumstances, cause a dynamic fracture. Also, if the conditions are just "right," the hot propellant products can contain acids or even hydrogen, both recognized as among the worst possible contributors to environmentally-assisted cracking in metals. The dynamic fracture concern with cannon firing led to a recent investigation of dynamic fracture behavior in the type of steels used for cannon (ref 3). The concepts and test methods used were those (ref 4) that are the basis of the recently published ASTM Standard Test Method for Determining the Plane Strain Crack-Arrest Fracture Toughness, K_{Iav} , of Ferritic Steels (E-1221).

Finally, another class of particularly difficult fracture problems arises from the terminal phase of a cannon firing, the impact of the projectile with the target. The loading of projectile and target is extremely fast, often so fast as to be beyond the scope of the methods of dynamic fracture testing being addressed here.

A FRACTURE TESTING CONCEPT - CRACK ARREST

An important concept of fracture testing, and the basic concept that was used to develop the two, quite different test methods under discussion, is the concept of crack arrest. The sketch in Figure 2 shows the concept as applied to both dynamic and environmentally-assisted fracture testing. In both cases, a wedge-loaded specimen of the so-called compact configuration is used, where an initial crack of length "a" grows deeper into the specimen and then arrests, as indicated by the dashed lines in Figure 2. The arrested crack depth is the critical test information; it gives a measure of the resistance of the material to crack growth under the conditions of the test. A high resistance to crack growth is indicated by a relatively small amount of growth prior to arrest. This basic crack-arrest concept works equally well for the two, significantly different types of crack growth under discussion, that due to a rapidly running crack under mechanical loads only, and that due to a very slow moving crack under sustained mechanical load with assistance from a chemical environment.

One fundamental and practical requirement of a crack-arrest test is that the crack must stop before it grows completely through the test specimen. It must arrest! Arrest is favored for the wedge-loaded compact specimen, because the driving force for the crack, the stress intensity factor, K, decreases as the crack grows. This is shown in Figure 3 for a given wedge opening, 0.3 mm, and specimen width, W = 50 mm, for two types of test specimen. Although the two specimens have somewhat different loading arm depths, H, relative to specimen width, W, the K for each specimen constantly decreases. This allows the crack to arrest at the critical minimum value of K, which is the fracture toughness of the material for the particular test conditions. The basic arrest condition is that the applied K equal the critical K for the material, $K_{upplind} = K_{unmini}$. For dynamic conditions a crack-arrest fracture toughness, K_{ta} , is measured for the material following the procedures of ASTM Method E-1221. For environmental conditions, a wedge-loaded standard test for the threshold K value for environmentally-assisted cracking, K_{tas} , is now being considered by the new ASTM Committee E-8 on Fatigue and Fracture, the recent combination of the former committees E-9 on Fatigue and E-24 on Fracture Testing.

RESULTS - PROBLEMS DESCRIBED, IF NOT SOLVED

Perhaps the best way to further illustrate the crack-arrest concept as applied to K_{1a} and K_{lose} tests, and to show the similarity of the tests, is with typical results. K_{1a} results, addressing dynamic fracture, and K_{lose} results, addressing environmentally-assisted cracking, were taken from References 3 and 1, respectively, and are shown in Figures 4 and 5. Each set of results was obtained from wedge-loaded specimens with the features already discussed, the principal feature being a decreasing applied K with increasing crack growth. Because of this decreasing applied K, the general trend in each type of test is a high value of applied K to begin crack growth, followed by a much lower applied K after some crack growth and arrest have occurred.

Note first, in the dynamic fracture results of Figure 4, that the initial static K value applied to the specimen varies from about 90 to 150 MPa \sqrt{m} , and that following dynamic crack growth and arrest, the applied K is about 50 to 60 MPa \sqrt{m} shown by the line. This lower and much narrower range of K provides a useful measure of the resistance to dynamic fracture for this steel, the crack-arrest fracture toughness, $Y_{\rm o}$.

In Figure 5 a similar high-to-low progression of applied K is observed as the tests proceed, but note that K is plotted versus exposure time, as is usual for environmentally-assisted cracking tests. At the end of the test, after 1540 hours of exposure, the crack in both specimens had grown to a relative crack depth, a/W, of more than 0.9 and had apparently arrested. The values of applied K at arrest for the two samples, 16 and 19 MPa \sqrt{m} , are a measure of the threshold resistance of the material to environmentally-assisted cracking, K_{tex} .

SUMMARY

This brief description of ordnance fracture testing applications concentrated on dynamic and environmentally-assisted fracture testing and the key concept of crack arrest that is common to these two types of testing. Some general summary statements and conclusions can be noted, based on the work briefly described and supported by the research publications given as references.

1. Fracture problems of cannons and projectiles that are in need of attention are the potential dynamic fracture of cannon or projectile parts during cannon firing and the environmentally-assisted cracking of cannon components exposed to acid or hydrogen-bearing hot propellant products.

2. The wedge-loaded compact specimen has an inherent decrease in applied K as the crack grows, the basic requirement for the crack growth and arrest fracture tests discussed here - the crack-arrest fracture toughness test of ASTM Method E-1221 that addresses dynamic fracture, and the threshold for environmentally-assisted cracking test being considered by Committee E-8 on Fatigue and Fracture.

3. Wedge-loaded tests of dynamic cracking and arrest in a nickel-chromium-molybdenum steel gave a good measure of crack-arrest fracture roughness, K_{ta} . Wedge-loaded tests of an A723 steel exposed to acid resulted in arrest after 1500 hours and provided a useful measure of the threshold for environmentally-assisted cracking, K_{tac} .

REFERENCES

- 1. J.H. Underwood, VJ. Olmstead, J.C. Askew, A.A. Kapusta, and G.A. Young, "Environmentally-Controlled Fracture of an Overstrained A723 Steel Thick-Walled Cylinder," *Fracture Mechanics: Twenty-Third Symposium, ASTM STP 1189*, Ravinder Chona, Ed., American Society for Testing and Materials, Philadelphia, 1993, pp. 443-460.
- 2. R.P. Wei and S.R. Novak, "Interlaboratory Evaluation of K_{isss} and da/dt Determination Procedures for High-Strength Steels," *Journal of Testing and Evaluation*, Vol. 15, No. 1, January 1987, pp. 38-75.
- 3. J.H. Underwood, I.A. Burch, and J.C. Ritter, "Crack-Arrest and Static Fracture Toughness Tests of a Ship Plate Steel," *Rapid Load Fracture Testing, ASTM STP 1130*, Ravinder Chona and William R. Corwin, Eds., American Society for Testing and Materials, Philadelphia, 1992, pp. 147-160.
- A.R. Rosenfield, P.N. Mincer, C.W. Marschall, and A.J. Markworth, "Recent Advances in Crack-Arrest Technology," Fracture Mechanics: Fifteenth Symposium, ASTM STP 833, R.J. Sanford, Ed., American Society for Testing and Materials, Philadelphia, 1984, pp. 149-164.

Figure 1. Diagram showing cannon and projectife components undergoing dynamic or environmentally-assisted fracture as a result of manufacturing processes or cannon firing conditions.

Figure 4. Profile of dynamic cracking and arrest in a nickel-chromium-molybdenum steel giving a crack-arrest fracture toughness, K_{a} , of about 55 MPaVm.

8

TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

	NO. OF <u>COPIES</u>
CHIEF, DEVELOPMENT ENGINEERING DIVISION	
ATTN: SMCAR-CCB-DA	1
-DC	1
-DI	1
-DR	1
-DS (SYSTEMS)	1
CHIEF, ENGINEERING DIVISION	
ATTN: SMCAR-CCB-S	1
-SD	1
-SE	1
CHIEF, RESEARCH DIVISION	
ATTN: SMCAR-CCB-R	2
·RA	1
-RE	1
-RM	1
-RP	1
-RT	1
TECHNICAL LIBRARY	
ATTN: SMCAR-CCB-TL	5
TECHNICAL PUBLICATIONS & EDITING SECTION	3
ATTN: SMCAR-CCB-TL	3
OPERATIONS DIRECTORATE	
ATTN: SMCWV-ODP-P	1
DIRECTOR, PROCUREMENT & CONTRACTING DIRECTORATE	
ATTN: SMCWV-PP	1
	-
DIRECTOR, PRODUCT ASSURANCE & TEST DIRECTORATE	
ATTN: SMCWV-QA	1

NOTE: PLEASE NOTIFY DIRECTOR, BENÉT LABORATORIES, ATTN: SMCAR-CCB-TL OF ADDRESS CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

.

.

4

.

NO. OF	NO. OF
<u>COPIES</u>	COPIES
ASST SEC OF THE ARMY RESEARCH AND DEVELOPMENT ATTN: DEPT FOR SCI AND TECH 1 THE PENTAGON WASHINGTON, D.C. 20310-0103	COMMANDER ROCK ISLAND ARSENAL ATTN: SMCRI-ENM 1 ROCK ISLAND, IL 61299-5000
ADMINISTRATOR	MIAC/CINDAS
DEFENSE TECHNICAL INFO CENTER 12	PURDUE UNIVERSITY
ATTN: DTIC-FDAC	P.O. BOX 2634 1
CAMERON STATION	WEST LAFAYETTE, IN 47906
ALEXANDRIA, VA 22304-6145 COMMANDER U.S. ARMY ARDEC	COMMANDER U.S. ARMY TANK-AUTMV R&D COMMAND ATTN: AMSTA-DDL (TECH LIBRARY) 1 WARREN, MI 48397-5000
ATTN: SMCAR-AEE 1 SMCAR-AES, BLDG. 321 1 SMCAR-AET-O, BLDG. 351N 1 SMCAR-CC 1 SMCAR-FSA 1 SMCAR-FSA 1	COMMANDER U.S. MILITARY ACADEMY ATTN: DEPARTMENT OF MECHANICS 1 WEST POINT, NY 10966-1792
SMCAR-FSM-E 1	U.S. ARMY MISSILE COMMAND
SMCAR-FSS-D, BLDG. 94 1	REDSTONE SCIENTIFIC INFO CENTER 2
SMCAR-IMI-L, (STINFO) BLDG. 59 2	ATTN: DOCUMENTS SECTION, BLDG. 4484
PICATINNY ARSENAL, NJ 07806-5000	REDSTONE ARSENAL, AL 35898-5241
DIRECTOR	COMMANDER
U.S. ARMY RESEARCH LABORATORY	U.S. ARMY FOREIGN SCI & TECH CENTER
ATTN: AMSRL-DD-T, BLDG. 305 1	ATTN: DRXST-SD 1
ABERDEEN PROVING GROUND, MD	220 7TH STREET, N.E.
21005-5066	CHARLOTTESVILLE, VA 22901
DIRECTOR	COMMANDER
U.S. ARMY RESEARCH LABORATORY	U.S. ARMY LABCOM
ATTN: AMSRL-WT-PD (DR. B. BURNS) 1	MATERIALS TECHNOLOGY LABORATORY
ABERDEEN PROVING GROUND, MD	ATTN: SLCMT-IML (TECH LIBRARY) 2
21005-5066	WATERTOWN, MA 02172-0001
DIRECTOR	COMMANDER
U.S. MATERIEL SYSTEMS ANALYSIS ACTV	U.S. ARMY LABCOM, ISA
ATTN: AMXSY-MP 1	ATTN: SLCIS-IM-TL 1
ABERDEEN PROVING GROUND, MD	2800 POWER MILL ROAD
21005-5071	ADELPHI, MD 20783-1145

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER, U.S. ARMY AMCCOM, ATTN: BENÉT LABORATORIES, SMCAR-CCB-TL, WATERVLIET, NY 12189-4050 OF ADDRESS CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

NO. OF COPIES NO. OF COPIES

COMMANDER	
U.S. ARMY RESEARCH OFFICE	
ATTN: CHIEF, IPO	1
P.O. BOX 12211	
RESEARCH TRIANGLE PARK, NC 27709-221	1
DIRECTOR	
U.S. NAVAL RESEARCH LABORATORY	
ATTN: MATERIALS SCI & TECH DIV	1

	•
CODE 26-27 (DOC LIBRARY)	1
WASHINGTON, D.C. 20375	

COMMANDER AIR FORCE ARMAMENT LABORATORY ATTN: AFATL/MN 1 EGLIN AFB, FL 32542-5434

COMMANDER AIR FORCE ARMAMENT LABORATORY ATTN: AFATL/MNF 1 EGLIN AFB, FL 32542-5434

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER, U.S. ARMY AMCCOM, ATTN: BENÉT LABORATORIES, SMCAR-CCB-TL, WATERVLIET, NY 12189-4050 OF ADDRESS CHANGES.

