Naval Research Laboratory

Washington, DC 20375-5320

A‘D— A8 1 1 95 NRL/MR/5320--94-7456
QAR AL

=
& L]

Implementation of a Real-Time Data
Processing System for Radar Bandwidth
Extrapolation and Stretch

ATHENA R. CauL-ToskIN

Advanced Radar Systems
Radar Division

E LECTE

June 10, 1994

94—20466
T

Approved for public release; distribution uniimited. DGO QUALITE ioniin el

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

hh“cnoonimbuoonmm; ion of i lon is to age 1 hour per resp ! g the timae for reviewing ins i i isting dats sources.
mmm modnn “.nd g end reviewing the of i i vmdmlmwdmmouumyomwdm
Q this burden, (oWuqut Hcmmu:s«vk;u O and Reports, 1215 Jetferson
ommmy suu 1204 Arlmgton VA 22202-4302 a0d 10 the Office of Management and Budget. Popuwortﬂoducﬂon?rqocl (070¢~Olll) Washington, OC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 10, 1994

4. TITLE AND SUBTITLE 8, FUNDING NUMBERS

Implementation of a Real-Time Data Processing System for Radar Bandwidth Extrapolation and PE -6421IN
Stretch

6. AUTHOR(S)

Athena R. Caul-Toskin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Naval Research Laboratory
Washington, DC 20375-5320 NRL/MR/5320--94-7456
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER
Office of Naval Research

800 North Quincy Street
Arlington, VA 22217-5660

11. SUPPLEMENTARY NOTES

12s. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Meximum 200 words)

An existing system using NRL's Senrad radar is being used to demonstrate the utility of wideband waveforms in radar
surveillance. This system processes data using a stretch technique to yield high resolution range profiles of the target. To provide
some of the benefits of greater bandwidth without implementing the wideband waveforms, it was suggested to add bandwidth
extrapolation processing. The addition of this processing necessitated changes to the existing system for real-time processing. The
changes included modifying the Volume Surveillance system hardware, constructing an interface between the existing system and the
Volume Surveillance processor and modifying the stretch and bandwidth extrapolation software for a new processor. The changes
were implemented and the modified hardware operated correctly. The software modifications were tested successfully with recorded
and real-time data. The processing times met the time specifications necessary for real-time operation.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Bandwidth Extrapolation 25
Stretch 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION §20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANS! Std 239-18
i 298-102

CONTENTS

INTRODUCTIONciittiiiitenninscesesocssssnscsssonosassossnssssasasaass
BACKGROUNDciiiiiietiienecennuoisnconecaarccasnnnansanssnnannons
HARDWARE iiiiiiiiiiiiiiiiraentieesncsnesnesscancacsessnsancennnns
SOFTWAREiicctiiiienetnsaeeneencesseesssnsessansssesssannssnsennns

LRI I B A A R I R A A B B A I R R A N B I O L R R B B R I B A A R N A N I L LRI I I B N N N L R

Accesion For

NTIS CRA& g
DTIC TAB
Unannounced]
Justification

By
Dist. ibution/

Avaiability Codes

Avail and/or
Dist Special

ﬂrlt |

IMPLEMENTATION OF A REAL-TIME DATA PROCESSING SYSTEM
FOR RADAR BANDWIDTH EXTRAPOLATION AND STRETCH

Introduction

A program is underway at NRL to demonstrate the utility of wideband waveforms in
radar surveillance. Current effort has focused on the development of a demonstration system
that implements long range target recognition. The system uses NRL's Senrad radar? which
performs normal air surveillance. On targets of interest, a wideband waveform replaces a few
pulses of the normal dwell. Since the range of interest is limited, these pulses are processed
using a “stretch” technique to yield high resolution range profiles of the target. Combining
range profiles with tracking data makes it possible to classify uncooperative targets.

Usually, increased bandwidth will improve the performance of target classification.
However, in practical radar systems, the amount of available signal bandwith is limited. It has
been suggested that bandwidth extrapolation processing can provide some of the benefits of a
greater bandwidth without the problems of actually implementing the waveforms.2 Therefore,
the objective of this project was to add real-time processing for bandwidth extrapolation to a
stretch data processing system.

Background

It is necessary to explain the operation of the existing system in order to show the
necessity of this change and to explain the requirements. The existing system captures radar
data from the Senrad receiver and does the processing shown in Fig. 1 using a general purpose
Hewlett Packard (HP) computer. The scan rate of the

N Pulses 1000 Samples Range Profiles
Magnitude
A e e el pm e mm l p
101«& 1 Radial Velocity ' l
S Kt e el K et |

Fig. 1 - Block diagram of stretch data processing

antenna is approximately five seconds and the processing was just completed before data from
the next scan was available. Since bandwidth extrapolation requires substantial computation,
the system is incapable of running in real-time without some modifications. The modification
decided on was to have some of the processing done on a different processor which would
interface with the existing system. The new system would capture live data from the radar also
and perform the bandwidth extrapolation and stretch processing on this data. The results would

Manuscript Approved April 25, 1994.

be sent to the original HP computer where the processing would be finished and the results

would be displayed. The resulting processing times of both the new processor and the HP would
allow the process to run in real-time.

The changes necessary to meet this objective included translating the previous code
written in the HP Basic programming language by George Linde and his group to the C
programming language. The processing was done on a TMS320C30 (C30) digital signal
processor (DSP) IC. The introduction of the C30 was most easily achieved by interfacing with
the hardware of the Volume Surveillance project. This project is still in progress and there is
no published literature on the project to date. The processors used in this system are the same
as those used in the Point Defense system.3.4.5

The existing hardware system used to do the stretch processing consisted of a NOVA
computer, an HP computer and other hardware which will not be discussed here. The NOVA
received digitized data from the Senrad receiver and sent it to the HP for processing. The HP
performed the stretch processing on a set number of pulses, as well as some other processing,
and displayed the results. The information displayed included the range, speed, aspect angle,
length, radar cross section and identification of the target, the signal magnitudes of two pulses,
range profiles for each pulse, an average range profile, the peak level and range offset from the
profiles and the places where propeller modulation was found.

Referring to Fig. 1, a set number of pulses consisting of 1000 samples each is digitized.
A complex multiply between the first and last pulse of the data and an FFT are completed. The
range offset between these pulses is then determined. The digitized data is also amplitude
weighted and phase compensated. An FFT is taken and the range offset found previously is
applied to each puilse to time align all of the pulses. To complete the processing, the magnitude
average, peaks and any propeller modulation in the range profiles are found. The logarithm of
the range profiles is taken and displayed.

Hardware

The hardware for this project consisted basically of three parts: the Volume
Surveillance system, the interface and the existing HP system. The Volume Surveillance
hardware included a Sun computer, the SP (signal processing) boards and the A/D (analog to
digital) converters. The existing HP hardware included the HP computer, NOVA computer and
other components which were needed in the existing system but will not be discussed here. Each
of the parts will be discussed in turn.

In the Volume Surveillance system, the SP boards (only one of which is used) each
contain two SP nodes and a transputer. Each SP node contains one C30. The transputer has four
bi-directional communication links and is responsible for routing the data from and to the C30s
on the SP board. A separate network of transputers is configured to route data between the Sun
computer and the SP boards. The block diagram of the modified Volume Surveillance hardware
is shown in Fig. #2. The blocks marked SR (server) are the available SP boards. Only one SP
board was used since only one C30 was needed for processing. The blocks marked RT (router)
and CS (console) are part of the network of routing transputers.

Part.8

_-%p-%-iﬁ-%-%-«%.'

FL_FL T 7
BALS
33

SR
: Bo14(B41S
SR Sloté
2 CO11_CMD
SR -
T
SR [o
T Differential Link
SR Single-ended Link
¥
SR

bad

Fig. 2 - Block diagram of modified Volume Surveillance hardware

Some other modifications to the Volume Surveillance hardware were necessary in order
to capture the digitized data. The program of the Xilinx field programmable gate array (FPGA)
IC on the one SP board used was modified by Mike Livingston. This IC expected an external
trigger for each pulse when the radar data was valid. When one of these triggers was received,
the Xilinx IC collected and stored 1024 digitized samples from the A/D converters. When the
data for all the pulses was ready, the software discussed below was able to directly access the
data.

The second modification was a new A/D interface board which was also completed by Mike
Livingston. This board buffered the digitized | and Q channel data from the radar and converted
it to a 32 bit data format. The hardware used to reset the SP boards was also placed on this
board as well as some circuitry to supply the correct clocks to the system.

The interface between the modified Volume Surveiilance and the HP hardware consisted
of an SBus to IEEE488 (GPIB or HPIB) bus converter installed in the Sun. This converter
allowed for direct connection of the Sun and the buiit-in HPIB bus of the HP through a cable.
The HP was set up to be the Controller-in-Charge (CIC) of the bus and, therefore, conftrolled
the data transfer from the Sun. The GPIB bus transfers data at a maximum rate of 1 Mbyte/sec.

The HP still received digitized and other data from the NOVA. Since the C30 only
received the digitized data, it could only do a portion of the processing. Therefore, the HP
completed the remaining processing. After the C30 completed its processing, it passed the data
to be displayed and other data necessary to complete the processing to the HP.

Software

Although the original Basic code was translated to C, some modifications were made for
readability, efficiency and to correct for differences between the two languages. Where
possible, variables, algorithms and subroutine names were kept the same as in the Basic code.
There were also several versions of the software. The only versions covered here will be the
original translation and the final working version.

The original bandwidth extrapolation processing translation consisted of two
subroutines. The first subroutine is CalcCoeff which calculates the complex filter coefficients.
The second subroutine is Lnpred which linearly extends the data in the forward and backward
direction to the number of data points needed in the extended waveform. The FFT code used was
not a part of the code translated from Basic to C. Two subroutines written by Jim Evins and

Russell Scott in C performed the FFT and were used in this processing as well as the stretch
processing.

The processing times of the C code routines were found using the C30 emulator. The

times for the original bandwidth extrapolation C code translation, which do not include time for
data input and output, were as follows:

CalcCoeff 233 ms
Lnpred 164 ms
FFT 4497 ms
Total Time 4015 ms

The processing times for the original bandwidth extrapolation code written in Basic were
approximately 5 seconds and 3 seconds for the subroutines CalcCoeff and LnPred respectively.
Therefore, a substantial improvement was made by the change in hardware and the C language
conversion.

The original strech data processing translation consisted of eight subroutines. The list
of subroutines along with a description of what the subroutine does is as follows:

1. Initialize - This subroutine initializes some constants, sets default values and
calculates the phase compensation values.

2. Get_File - This subroutine gets the digitized pulse data, performs amplitude
weighting and phase compensation on the data and calculates the values of other
variables.

3. Signal_Mag - This subroutine calculates the magnitude of two pulses of digitized data
and sends this data out to be displayed.

4. Rmotion_Calc - This subroutine performs a complex multiply between the first and
last pulse and determines the range offset.

5. Stretch - This subroutine uses the compensated data from Get_File. An FFT is
performed on the data and the resulting range profiles are time aligned using the

4

previously determined range offset. An average range profile is found by magnitude
averaging the range profiles of each pulse.
6. Range_Profile - This subroutine sends the logarithm of the range profiles and average
profile out to be displayed.
7. Locate_Pmods - This subroutine calculates a threshold used to determine where
propeller modulation occurs.

8. Decision - This subroutine is called within Locate_Pmods and produces a target class

The processing times for the original stretch processing C code translation, which do not
include time for data input and output, were as follows:

Initialize 26.88 ms
Get_File 4556 ms
Signal_Mag 4.852 ms
Rmotion_Calc 1199 ms
Stretch 9465 ms
Range_Prof 3385 ms
Locate_Pmaods 4.728 ms
Total Time 1.190 s

The processing time for the original stretch processing code written in Basic, which inciuded
the eight subroutines listed earlier and other processing, was approximately 5 seconds.

The final version of this software included performing the bandwidth extrapolation on
each pulse of data and then the stretch processing on the group of extrapolated puises. A copy of
this software appears in Appendix 1. To meet the time specifications, the processing on each
group of pulses must be completed within the time taken for one scan of the radar which is
approximately five seconds. For the case of seven pulses, the time taken for processing is equal
to (7 * 0.4015 s) + 1.190 s = 4.0005 s.

As mentioned in the hardware section of this report, the C30 only did a portion of the
processing. Therefore, some subroutines and code from the original translation are omitted in
the final version of the software. Since the C30 does not receive data from the NOVA, some
needed data was assumed constant by the C30. The data that was assumed constant was stored in
two files, one for all the variables and one for the phase compensation data. These files can be
edited on the Sun computer to change the constants. Any changes made to items 1 through 6 or
the number of phase compensation values will also necessitate changes within the code. The data
and its constant value was as follows:

1. Number of points selected from full waveform 333
2. Number of filter coefficients 150
3. Number of points in extended waveform 1000
4. Number of pulses 7
5. Number of samples per pulse 1000
6. Number of points in FFT 4096
7. Sampling rate (MHz) 10
8. Bandwidth 200
9. Pulse width 100

10. Phase compensation data (1000 fioating point numbers)

The final version of the bandwidth extrapolation code did not include taking the FFT. The
final version of the stretch processing code did not include any of the code relating to variables
that were not available to the C30. The subroutines Locate_Pmods and Decision were removed
also. Data was converted to 16 bit two's complement integers before being sent to the displaying
HP as a stream of integers. Floating point humbers were converted to integers by multiplying
by a scaling factor and truncating the fractional portion of the numbers. The data sent to the HP

and the number of integers it was composed of, in parentheses, appears below in the order in
which it was sent:

. Signal magnitudes of two pulses (1000 per puise = 2000) - scaling factor of 32.

. Range profile of each pulse (2000 per pulse = 14000) - scaling factor of 32768.
(linear data)

. Average range profile (2000) - scaling factor of 32768. (linear data)

. Velocity (1) - scaling factor of 100.

. Magnitude sum of one pulse (1) - scaling factor of 100.

. Range offset (variable name Pk_at) (1).

. Peak dwell (1).

N -~

NOOeAe W

Notes:

- Each array (1, 2 and 3) are sent from the lowest to the highest index. The indices for the
signal magnitudes are 1 to 1000. The indices for the range profiles and average profile are
-999 to 1000.

- Arrays marked as linear data are not ready to be displayed immediately; the logarithm of
the array is displayed.

Due to hardware specifications and the method of transmitting data, pairs of 16 bit
integers were packed into 32 bit words in the C30. A byte reversal also was performed on the
data since the transputer uses “little endian™ byte ordering and the HP uses “big endian® byte
storage. In other words, the transputer stores the most significant byte of a word in a higher
memory address than the least significant byte whereas the HP stores the most significant byte
in a lower memory address. During transmission, one byte at a time was sent starting with the
most significant byte. Therefore, the receiving system waited to receive two bytes for each
integer. The software responsible for transmitting the data across the |EEE 488 bus was run on
the Sun. When all of the data was received by the Sun and ready to be sent, the Service Request
(SRQ) I'ne was asserted. The HP responded by allowing the Sun to send the data over the bus.

The remaining software to be discussed is the code running on the transputers and the
main program to control the processing on the C30. A console program running on the
transputer resident in the Sun was responsible for reading the data from the files and sending it
out to the C30. Several transputers along the network were responsible for passing the data in
the correct path to reach the transputer on the SP board or to pass the data to the GPIB bus
converter for transmission to the HP. The main program on the C30 was responsible for
waiting to receive the data read from the data files. The C30 polled one of its ports for an
indication that the digitized data for the group of pulses was ready. After receiving the digitized
data, the bandwidth extrapolation and stretch processing occurred and the necessary data was
sent out. The process started again with the C30 waiting for digitized data to be ready and
repeats until interrupted externally.

Status

Due to time limitations, this real-time processing system was not fully implemented.
The software was fully translated from the Basic language to the C language and was tested for
correct performance. The software was ported to the final system located at the Chesapeake Bay
Detachment of NRL from the testing site at NRL Washington. The modified Volume Surveillance
hardware successfully received digitized data from the Senrad receiver which was routed to the
C30 processor. The C30 correctly performed the processing necessary within the time
specifications and sent data to the Sun computer to be relayed to the HP computer. Some
communication between the Sun and HP computer across the IEEE 488 bus was implemented but
was not fully functional. The only remaining task is to modily software on the HP computer
which would correct the problems with the interface.

Summary

An existing system using NRL's Senrad radar is being used to demonstrate the utility of
wideband waveforms in radar surveillance. This system processes data using a stretch
technique to yield high resolution range profiles of the target. To provide some of the benefits of
greater bandwidth without implementing the wideband waveforms, it was suggested to add
bandwidth extrapolation processing. The addition of this processing necessitated changes to the
existing system for real-time processing. The changes included modifying the Volume
Surveillance system hardware, constructing an interface between the existing system and the
Volume Surveillance processor and modifying the stretch and bandwidth extrapolation software
for a new processor. The changes were implemented and the modified hardware operated
correctly. The software modifications were tested successfully with recorded and real-time
data. The processing times met the time specifications necessary for real-time operation.

Acknowledgements

The author would like to credit those involved in this project as mentioned in this
report: George Linde and Mike Livingston as well as Carl Platis and Jim Evins. Carl Platis
maintained the original Senrad hardware and made the necessary modifications for the

implementation of the real-time system. Special appreciation is due Jim Evins for his
continuous technical support.

References

1. Linde, G.J.: The Senrad Experiment System (U), NAL Report 8615, Naval Research
Laboratory, Washington, D.C. , Sept. 28, 1982.

2. Bowling, S.B., Group 35: Linear Prediction and Maximum Entropy Spectral Analysis for

Radar Applications, S.B. Bowling, Group 35; MIT Lincoln Laboratory, Project Report
RMP-122, May 24, 1977.

3. Alter, J.J., Evins, J.B., Davis, J.L. and D.L. Rooney: A Programmable Radar Signal
Processor Architecture, 1991 IEEE National Radar Conference, March 1991.

4. Evins, J.B., Alter, J.J. and J.P. Letellier: NRL FLEX Processor for Radar Signal

Processing, SPIE’s 1991 International Symposium on Optical Applied Science and
Engineering, July 1991,

5. Alter, J.J., Evins, J.B., Popick, G.L., Scott, R.A. and J.P. Letellier: NRL FLEX Radar
Signal Processing Architecture - An Update, SPIE’s 1992 International Symposium
on Optical Applied Science and Engineering, July 1992,

Appendix A

Bandwidth Extrapolation and
Stretch Data Processing Software

str.c Mon Apr 4 12351152 1994 1

/*i********iti*******Q*ﬁ*'i***t***t**t******ﬁ***t***t*********tt******i******

* Title: Stretch Program

> File Name: str.c

* Date: 7/28/93

*

* Purpose: To do stretch processing on some number of pulses of
* 1000 samples each. (See block diagram)

*

* Target HW: TMS320C30 Signal Processor Nodes

*

* Author(s): George Linde

* Athena Caul (rewrote Basic program in C) 7/28/93
*

*

Revisgion: Test code reading Chan data from files.
****i************************t**t****tt*t****0**************t*tt**********t*/
/* Note: This version has arrays numbered starting from 0.
To be used for creating C30 code */

#include <stdlib.h>
#include <math.h>
#include *hw_sp.h*
#include "dmsg.h*
#include *msg.h"
#include "dp.h*
#include *"dpprint.h*
#include “"complex.mac*
/* includes declaration: struct { float i, q; } complex; */
#include “£fft.h"
#include *"xilinx.h"
#include "radar.h’

/*******ii*ii***** DEFAULT VALUES AND CONSTENTS ****************Q****t**/

#define NPTS 333 /* # of points selected from full waveform*/
#define NCOEFF 150 /* % of filter coefficients */
#define NEXT 1000 /* # of points of extended array */
#define NPTFFT 4096 /* & of points in FFT */

#define NPULSES 7 /* Default # of pulses */

#define NSAMP 1000 /* & of samples */

#define BW 200 /* signal bandwidth */

#define PW 100 /* radar pulse width */

#define SAMPRT 1.E7 /* sampling rate in Hertz */
#define FORWARD 0 /* Direct Fourier Transform */
#define REVERSE 1 /* Inverse Fourier Transform */

/ftttfi*tt#'* GLOBAL VARIABLES (222222 22X R X222 282222 X222 2222222t Xl dds s

* defined global for use of external functions without these being placed
* on stack (don‘t need to pass, initialized to zero)
*'ti**".'Q**ttttt**t*ttttttttt*’t*t'*.****tt*ti*****'t.'*tQ**t*it**t***'*tt/
int Chan_1(8}{1000), Chan_2{8]([1000];

float Phase{1000], Spar([12];

float Si[1000], Co[1000], I_data[8]([1000], Q data[8][1000];

int M, N, Ns, Np, Pk_at, Pk_dwell;

float P2, Pv, Mag_sum, Vel:;

10

str.c Mon Apr 4 12:51:52 19594

/iﬁt*********it***********t*********ti*'*'*i*t***'it*t'itt't***fi***t*****

static void CalcCoeff (int Npts,

{

* CalcCoeff calculates the complex filter coefficients.

* Inputs are: NPTS, NCOEFF, Xill.

******tt**t**tﬁ**************t*****i**i****fﬁi***t***tii***t******ﬁ*t**ﬁ*/

complex X[], complex A{]})

complex *Aa
complex *Bl
complex *B2
complex Xnom, Temp, Temp2;
int It, M, Mml, Nmm, Nml;
float Power, Den;

*Po = 0.0;
for (It = 0; It < Npts; It++)
*Po += (CMAG2(X[It]));
*Po /= Npts;
Nml = Npts - 1;
B1[0] = X{O0]):;
B2{Nml - 1] = X[Nml}:
for (It = 1; It < Nml; It++) {
Bl[It] = X[It]:;
B2{It - 1] = X{It}:;
}
for (M = 1; M <= Ncoeff; M++) {
Mml =M - 1;
Nmm = Npts - M;
if (M !'=1) (
for (It = 1; It <= Mml; Yt++)
Aa[It-1] = A[It-1);
for (It = 1; It <= Nmm; It++) {
CONJ(Aa[Mml-1l]), Temp2);
CMULT(Temp2, B2[It-1), Temp):
CSUB(B1{It-1}, Temp, B1[It - 1]):
CMULT(Aa[Mml-1], Bi{It), Temp):;
CSUB(B2[It]}, Temp, B2[It-1}):
}
}
Xnom.i = Xnom.q = Den = 0.0;
for (It = 1; It <= Nmm; It++) {
CONJ(B1[It-1], Temp2);
‘CMULT(B2[It-1], Temp2, Temp):;
CADD(Xnom, Temp, Xnom);

(complex *) malloc (550 * sizeof (complex)
(complex *) malloc { 550 * sizeof (complex)
(complex *) malloc (550 * sizeof (complex)

int Ncoeff, float Pm{]}, float *Po,

): /*work array*/
); /*work array*/
): /*work array*/

Den += (CMAG2(B1[It-1)) + CMAG2(B2[It-1]))):; /*CADD(Den,Temp,Den)*/
}
if (Den == 0.0)
A[Mml}.i = AfMml]l.qg = 0.0;
else {
CDIVS(Xnom, Den, Temp):
A{Mml].i = 2.0 * Temp.i; /* CMULT(Two, Temp, A[Mml]); */
A[Mmll.g = 2.0 * Temp.q:;
}
Power = *Po;
if (M>1)
Power = Pm[M - 2];
Pm{Mml] = Power * (1.0 - CMAG2(A[Mml]));

if (M 1=1)
for (It = 1; It <= Mml; It++) |
CONJ(Aa[Mml - It), Temp2):;
CMULT(A[Mml], Temp2, Temp):
CSUB(AalIt-1], Temp, A[It-1] }:
}

str.c Mon Apr 4 12:151:52 1994

}

free (Aa):
free (Bl);
free (B2);

12

IllIlIIIIIIllIlIIIIllIIIllllllIIIllllIIIIIlllIl-lllIIllIIIllIllllllIlIlIIIIIIIIIIII------T

str.c Mon Apr 4 12:51:52 1994 4

/*i***ti********i*********i*i**#**t*tit**t*i***iﬁi*tti*t*t*tit**tﬁ'tti**ti

* Lnpred linearly extends the complex data X from N1 points to N2
points. The original data positioned in the first N1 elements of
array X, are shifted to the middle of X. Forward and backward
predictions are done until the total # of data points is N2.

Note: the N2 points contain the original N1 points.

***************************************t*************t***t*t*t*'*t*****t*/
static void Lnpred(int N1, int N2, int Ncoeff, complex X[], complex A[])
|

* % % *

int I, J, K, L1, L2, N3;
complex Temp, Temp2;

Ll = N2/2 - N1/2; /* set up limits for loops */
L2 = N2/2 + N1/2;
if ((N1 & 2) ==1) {

L1 += 1;

L2 += 1;

0; I <Nl; I++) { /* shift original data to middle of X[] */

~ v 2

N3 = N2 - L2; /* Do forward predictir:. '/

K < Ncoeff; K++) {
K], X{J-K-1], Temp):
CADD(X[J], Temp, X[J])):

iJ].q = 0.0;
[

; I <L
- 1;
J]l.q

K

1; I++) (/* Do backward prediction */

= 0.0;

< Ncoeff; K++) {
CONJ(A[K], Temp2);

CMULT(Temp2, X[J+K+1], Temp):;
CADD(X([J], Temp, X([J]):

13

—f

str.c Mon Apr 4 12:51:52 1994 L

/*i***f*"**i*********tt***t*t*ii**Q*itiitii*t*i*ittt*t*tiiii.t*t'**t*ttit
* Initialize
t*i**t*t**t******t***t*i**tt**'i**i#*****tt**i*f"tiﬁi**tititti't.tttt*ti/

void Initialize()

{

float K, S1, Y¥s, Y1, Phr, G(4]:;
double logl0(), sin(), cos();

Np = NPULSES; /* Number of pulses */

Ns = NSAMP; /* Number of samples */

Sl = BW / PW; /* Chirp slope */

P2 = (SAMPRT / S1) /2033.4; /* Scale in feet */

M = (int) (loglO((float) NPTFFT) / logl0(2.0) + 0.5);

N =1<< M; /* N = points in FPT = 2°M %/
G[1l] = 0.29265; /* phase compensation */

G[2] = ~-0.0157838;

G([3] = 0.00218104;

for (J = 0; J < Ns; J++) { /* read in backwards */
K = ((float)d - ({(float) Ns)/2.) / ((float) Ns):;

Ys = 0.0;
Ys = G[1] * cos(K*2*M_PI) + G[2] * cos(K*4*M_PI) + G[3] * cos(K*6*M_PI);
Y1 =0.6+ 1.2 * Ys;

Phr = (- Phase(J)) * M_PI / 720.0; /* (-tp)/4 in radians */
si(J] sin(Phr) * Yl1;
Col[J} cos(Phr) * Y1;

}
}

/**************t*'************************t***fi****it***t**tttf**t***'fﬂ*

* Get_File gets the stretch data and performs amplitude weighting

* and phase compensation (using values calculated in Initialize).
t******************t******i***t******t******ﬁ**tt*tt'*tttttt*it***tti/

void Get_File()

{
int I, J, tpl, tp2;
float S, S1l, Bw, Pw;
double sqgrt():;

Np = Spar{3]:

Ns = Spar[4]:

N = Spar{5]:

S = Spar(6}; /* sampling rate in MHz */
Bw = Spar(7]:

Pw = Spar(8]:

P2 = S * 1000000; /* sampling rate in Hz */
Sl = Bw / Pw; /* chirp slope */

P2 = (P2 / S1) / 2033.4; /* scale in feet */

for (I =0; I < Np; I++) { /* read all pulses in dwell */
for (J = 0; J < Ns; J++) { /* read in backwards to correct error */
tpl = Chan_1(I]([J] / 28.;

tp2 = Chan_2[I][J) / 28.;
Chan_1({I}[J]} tpl;
Chan_2(I) (J] tp2;

I_data([I][J)
Q data(I])[J]

nnanan

(((float)tpl) * Si[J) + Co{J] * ((float)tp2))/1000.0;
{ ((float)tp2) * Si[J]) - ColJ] * ((float)tpl))/1000.0;

14

str.c Mon Apr 4 12:51:52 1994 6

/ii'tt'ﬁﬁ.iQitt**ti*'Q"'ti*"tt'.t'*Q'*.fiﬁ"'t."ii"ﬁ..t.ttt'i'i*t*i'tt

*

Signal_Mag calculates the signal magnitude of the I and Q data
* and plots it to a file.

ltt'**t**"******i*t.ﬁt'Qt..ﬁ*i.itiﬁ.*'ti'ﬁ.*'ti'tt"‘Q.t'*.i'ttt*'titﬁ.t/

void Signal_Mag(dmsg)
DMsg *dmsg;

{
int I, Yt, Yp, Y, cnt;
float *Magl = (float *) malloc (1000 * sizeof (float)):
float *Mag2 = (float *) malloc (1000 * sizeof (float));
double aqrt();

for (I = 0; I < Ns; I++) {

Yt = Chan_2[3]}(I];

Yp = Chan_1(3)([I]);

Magl(I] = (float) (sqrt((float) (Yt*Yt + Yp*Yp)) * 1.41);

Yt = Chan_2([Np-11(I];

Yp = Chan_1[Np-1](I];

Mag2([I] = (float) (sqrt((float) (Yt*Yt + Yp*Yp)) * 1.41);

if (I < 20)

DP_Printf (" Magl([%d] = $d\n*, I, (int) (Magl([I] * 32);

}

cnt = 0;
for (I =0; T <Ns; I=1I+2) {
Y = (int) (Magl[I] * 32);
Yt = ((Y << 8) & OxFFO00) | { (Y >> 8) & 0x00FF);
Y = (int) (Magl([I+l] * 32);
Yp = ((Y << 8) & OxFFO00) | ((Y >> 8) & 0x00FF);
dmsg->sigmag.magicnt++] = { (¥p << 16)] (Yt & OxFFFF));
}
for (I =0; I <Ns; I=1I+2) {
Y = (int) (Mag2{I] * 32);
Yt = ((Y << 8) & OXFF00) | ((Y >> 8) & OxO0FF);
Y = (int) (Mag2[I+1] * 32);
Yp = ((Y << 8) & OXFF00) | ((Y >> 8) & OxO00FF);
dmsg->sigmag.mag[cnt++] = ((Yp << 16) | (Yt & OxXFFFF));
if (I > 996)

DP_Printf (“sigmag[%d]=%4 sigmag[8d}=%d\n", I, (int) (Mag2({1I]*32),

I+, {int) (Mag2{I+1] * 32));
}
DP_WriteOut (DMSG_TYPE_SIGMAG_DATA,
' sizeof (DMsg_SigmagData), (Msg *)dmsg);

Mag_sum = 0.0;

for (I = 0; I < Ns; I++)
Mag_sum += Magl(I];

Mag sum /= ((float) Ns):

free(Magl);

free(Mag2);

15

str.c Mon Apr 4 12:151:52 1994 7

/it"*t"**#Q*'*i**"t**tt*ﬁiﬁ'*i*'ti*ifi.t.&i'ttfﬁt*t'tii**.'ttit*t*f*t'*

*

Rmotion_Calc finds the product of two pulses and determines the

* range offset.
ti**i*ttt.titi*tt*ﬁ'ttt**ﬁ'**i'ttﬁ.'*t"tttt*ﬁtt"t'*it.****'*tt*'tt'*t*i/

void Rmotion_Calc()

{

int I, J, M, Lmi:
/* Subscript of Yr is actually -128 to 127 so subtract 128 */
float Yoffset, Pvf, X1, X2, Y1, Y2, Tim;
float *Yr = (float *) malloc (257 * sizeof(float) }:
complex *tbl = (complex *) malloc (2050 * sizeof (complex)):;
/* Chan is R_float and I_float */
complex *Chan = (complex *) malloc (4096 * sizeof (complex));
double logl0({), sqgrt():

for (I =0; I < 4096; I++)
Chan{(I]).i = Chan[I]l.q = 0.0;
for (I =3; I < 997; I++) {

X1 = ((float)Chan_1{0](I]}) / 1000.;

X2 = ((float)Chan_1[Np-1}{I}) / 1000.;
Y1l = ((float)Chan_2{0][I]) / 1000.;

Y2 = ((float)Chan_2(Np-1][I]) / (-1000.);
Chan{I}).i = X1*X2 - Y1*Y2;

Chan[I].q X2*Y1l + X1*Y2;
}
M= 12; /* N = 2“M points in the FFT = 4096 */
I =1<<M;
fft_init(I, FORWARD, tbl); /* FFT_Floating(); */

/* complex array Chan is used for both input and output */
fft2(Chan, I, FORWARD, tbl):

for (I = 128; I <= 255; I++) /* from Q to 127 */

Yr{I) = 20.0 * ((float) loglO0(CMAG(Chan[I-128]) + 1.0E-1S));
for (I =0; I <= 127; I++) /* from -128 to -1 */

Yr{I) = 20.0 * ((float) logl0(CMAG(Chan[3968+I]) + 1.0E-15));
Lmi = 0; /* £ind maximum in Yr[] */
Yoffset = Yr[0];
for (I =1; I <= 255; I++) /* from -128 to 127 */

if (Yr[I] > Yoffset) {
Yoffset = Yr(I1):;

Lmi = I;

}
Tim = (Np - 1) * 0.0031284;
i€ ((Lmi > 255) || {Lmi < 2))

Lmi = 128;
X1l = Yrilmi-1) - Yoffset;
X2 = Yr[Lmi+l) - Yoffset;
Yl = Yr{lmi] - Yoffset;
Pv = ((float)Lmi)-128. + 0.5 * (X1 - X2) / (X1 + X2 - 2*Y1l);

Pvf = Pv * P2 / N;

Vel = Pvf 7/ Tim * 3600. / 6076.1155; /* round this to two digits */
free(Yr);

free(tbl);

free(Chan);

16

str.c Mon Apr 4 12:51:52 1994 8

/**'i.'iii***i****i*******‘Q'ifii*t*ittt*itt."iii*i*i**ttitttﬁ****ttt*i**

- Stretch uses the compensated data from Get_file. Stretch performs an
FFT, time alignment using values from Rmotion_Calc and does a
magnitude average on the range profile.

*t***Q********it**i****tQ***t*tt******.*i****tﬁ*iiiﬁ*tii*tit*i***t*tttt**/
void Stretch(R_profile, Profile_avg)

float R _profile[](2401], Profile_avgll]:;
(

int I, J, L, M, Last_dwell, Vel _offset, T offset;

float max, Dwell_mag, sum, X;

float *R_tmp = (float *) malloc (4096 * sizeof(float)):;

complex *tbl = (complex *) malloc (2050 * sizeof (complex)):

/* data is R_float and I_float */

complex *data = (complex *) malloc (4096 * sizeof (complex));

double sqrt(), loglo():

w
*

Last_dwell = 0;

for (I =0; I < Np; I++) {
for (J = 0; J < Ns8; J++) {
data(J].i = Q datal(I][J):
data(J).q = I_data[I]([J):

q
for (J = Ng; J < 4096; J++)
data(J].i = data[J)l.q = 0.0;

M= 12; /* N = 2°M points in the FFT = 4096 */
L =1<<M;
fft_init(L, FORWARD, tbl); /* FFT _Floating(); */

/* complex array data is used for both input and output */
fft2(data, L, FORWARD, tbl);

/* data[0-4095] = R_tmp[2048-4095,0-2047] originally {[1-2048,-2047-0] */
for (J = 0; J < 2048; J++)

R_tmp[J+2048] = CMAG(datalJ]): /* from 2048 to 4095 */
for (J = 2048; J < 4096; J++)

R_tmp[J-2048] = CMAG(data([J]): /* from 0 to 2047 */

if (I ==0) { /* locate peak & velocity offset */
X =0;
max = R_tmp[0]; /* locate max R_tmp value */
for (J = 1; J <= 4095; J++) /* from -2047 to 2048 */
if (R_tmplJd] > max) {
max = R_tmp{J]:
X =J;
}
Pk_at = X - 2047;
}
Vel_offset = (int) (0.5 + Pv / 6. * (I+1l)):
T offset = 0;
T offset = Vel_offset + Pk_at;
if (I ==)

DP_Printf("- Str - Voff %d Pk_at $d\n",Vel_offset, Pk_at);

for (J = 0; J <= 2400; J++)
R profile[I1{J] = R_tmp[847+T offset+J]); /* offset data array */
Dwell_mag = 0.0;
for (J = 0; J <= 4095; J++)
Dwell_mag += R_tmp(J]:
if (Dwell_mag > Last_dwell) { /* save dwell # of peak dwell to */
Last_dwell = Dwell_mag:; /* use in rcs measurement */
Pk_dwell = I;
}

} 17

str.c Mon Apr 4 12151152 1994 9

free(R_tmp);
free(tbl);
free(data);

/* averaged - sum total of profiles divided by number of pulses */
for (J = 0; J <= 2400; J++) {

sum = 0.0;

for (I = 0; I < Np; I++)

sum += R _profile(I)[J]);

Profile_avg(J] = sum / ((float) Np):

}
}

18

str.c Mon Apr 4 12:151:52 1994 10

/

LA AR LA SRR SRS Al il R 2222222222 LI Y LYY T Y ey g

* Range_Profile plots the range profile for each pulse separately

* and the profile average of all the pulses.
'ﬁi*t'*it*t**ﬁ**t'*'t*#*Q*'t*t**tttt**ttt*ti't'tii*t*t"ti.fi.t'tttl

void Range_Profile(R_profile, Profile_avyg, dmsg)

{

}
/

float R_profile(][{2401), Profile_avgl[]:
DMsg *dmsg;

int I, J, a,b,c.d;
float X, Y;
double logl0():;

DP_Printf ("PEAK LEVEL : $6.1f dB\n", (float) (20.*log10(Profile_avg(1200])));
DP_Printf (*RANGE OFFSET : %5d FT\n®, (int) (((float)Pk_at) * 0.6));

d = 0;
for (I = 0; I < Np; I++)
for (J = -999; J <=1000; I =J + 2) {
c = (int) (R_profile[I][J+1200] * 32768);
a=((c << 8) & OxFF00) | ((c >> 8) & 0xO00FF);
¢ = (int) (R_profile{I]){J+1201] * 32768);
b=((c <<8) & OXFF00) | ((c >> 8) & OxO0FF);

dmsg->rgprof.rgl(d++] = ((b << 16) | (a & OxFFFF));

DP_WriteOut (DMSG_TYPE_RGPROF_DATA,
sizeof (DMsg_RgprofData), (Msg *)dmsg):

d =0;
for (3 = -999; J <= 1000; J =J + 2) {
c = (int) (Profile_awvg[J+1200] * 32768):
a=((c << 8) & OXFF00) | ((c >> 8) & OxO0FF);:
c = (int) (Profile_avg{J+1201] * 32768):
b=((c<<8) & OXFFOO) | ((c >> 8) & Ox00FF);

dmsg->avgprofpl.avg{d++] = ((b << 16) | (a & OXFFFF));
}

LA AR AL AL ARl AR Al 222 22222222 222222222 212223232 2 Yy R

* ¢30_init is copied from /home/volume/src/c30/main.c

* This function removes wait states and enables the cache
tit*t*****i**f*t**tt****tttttttttttt*.***titi*ii*ii*t**t't*Qt*tttt/

static void c30_init()

{

PRIMARY_CTL &= 0x00001€£1€; / force 0 wait states P.Bus */
PRIMARY_CTL &= 0x000000fE; / No bank switching */
EXPANSION_BUS &= 0X0000001f; / force 0 wait states E.Bus */
ADDR_S1_XMIT_CNTL_REG = 0x2; / Disable Ext Rom, enable Ram */

asm(* or 800h, st®):; /* enable cache */

19

str.c Mon Apr 4 12:51:152 1994 11

main()

{

static complex Xi[1250]);

static float Pm(S550]); /*array of updated error power®*/
static float Po; /*real variance of the data*/
static complex A[550]; /*array containing filter coefficients*/

static int J, N1, Ncoeff, N2, Of,a,b,c;

static int I, ctl, ct2, ct3, count, cnt;

static int k, 1, i_sample, q sample, *intptr;
static float Profile_avg[2401], R_profile[9)[2401};
static Radar_CaptureBuffer *rcb;

DMsg *dmsg = (DMsg *) malloc(sizeof(DMsg)):
Msg_Length length:

Msg_Type type:

c30_init():
Xilinx_Init(): /* Initialize Xilinx interface */

I =ct2 = count = 0;
ctl = ct3 = 999;
*ADDR_LED_PORT = ~0x03;

for(::) (
switch (type = DP_ReadIn(&length, (Msg *)dmsg)) {

case DMSG_TYPE_XILINX:
handle_xilinx ((DMsg_Xilinx *) dmsg):

rcb = Radar_Init(); /* Initiliaze DMA interface */
DP_Printf("SP: INFO: Xilinx program received and handled.\n"):
break;

case DMSG_TYPE_PHASE_DATA:
Phase{ctl--] = dmsg->phdata.p; /* read in backwards temp */
*ADDR_LED_PORT = ~(++count);
if (ctl < 0)
break;

case DMSG_TYPE_SPAR_DATA:
Spar{ct2++}] = dmsg->spdata.sp;
*ADDR_LED_PORT = ~(count++);
if (ct2 == 9) {
Np = Spar(3];
Ns = Spar(4]:
DP_Printf("All of the Spar data received\n"):;
}

break;

case DMSG_TYPE_CHAN_DATA:
Chan_1[{I)([ct3] = dmsg->chdata.one; /* read in backwards temp */
Chan_2([I)[ct3--] = dmsg->chdata.two;
*ADDR_LED_PORT = ~(count++);
if ((ct3 < 0) && (I < Np)) {
I++;
ct3 = 999;
}

if ((ctl < 0) && (ct2 == 9) && (I == Np)) {

N1 = Spar[0]: /* Pick middle N1 points */
Ncoeff = Spar(l):
N2 = Spar{2]: /* & of points of extended array */

DP_Printf ("The number of data points is %d\n",NPTS);
DP_Printf ("The number of coefficients is $d\n\n®,NCOEFF);

20

str.c Mon Apr 4 12:51:152 1994 12

for (cnt = 0; ent < 1; cnt++) { /* infinite loop eventually */

for (I = 0; I < Np; I++) {

Po = 0.0;
Of = N1 / 2;
if ((N1 &% 2) ==1)
of -= 2; /* To match original waveform location */

for (J =0; J < N1; J++) {
Xi{J}.1 (float) (Chan_1[I][N2/2 - Of + J 1]);
Xi{J].q (€loat) (Chan_2{I}{ N2/2 - Of + J]);
}

CalcCoeff (NPTS, NCOEFF, Pm, &Po, Xi, A):
Lnpred(N1, N2, NCOEFF, Xi, A);

for (J =0; J < Ns; J++) {
Chan_1([I][J) = (int) (Xi[J).i);
Chan_2[I]{J] = (int) (Xi[J].q):

}
}

Initialize();

Get_File():

Signal_Mag(dmsg):

Rmotion_Calc();

Stretch(R_profile, Profile_avg):
Range_Profile(R_profile, Profile _avg, dmsg):

(int) (Vel * 100);

({(c << 8) & OxFFO00) |
{(int) { Mag_sum * 100);
((c << B) & OxFF00) | ((c >> 8) & OxO00FF);
dmsg->avgprofpl.velmag = ((b << 16) | (a & OXFFFF));

{ (¢ >> 8) & OxO00FF);

gama

a ((Pk_at << 8) & OxFF00) | ((Pk_at >> 8) & OxO00FF);
b = ((Pk_dwell << 8) & OxFF00) | ((Pk_dwell >> 8) & OxO00FF);
dmsg->avgprofpl.peaks = ((b << 16) | (a & OxXFFFF)):
*ADDR_LED_PORT = ~0x55;
DP_WriteOut(DMSG_TYPE_AVGPROF_PL_DATA,

sizeof (DMesg_AvgprofPlusData), (Msg *)dmsg);

DP_Printf("\nVel = %8.2f as int $d\n®*, Vel, (int) (Vel*100)):
DP_Printf(*Mag_sum = $8.2f as int %d4d\n",Mag_sum,
(int) (Mag_sum * 100)):
DP_Printf("Pk_at = %d\n*, Pk_at):;
DP_Printf (*Pk_dwell = %d\n", Pk_dwell):;
}
}
break;

default:
DP_Printf (" ERROR: Bad message type received (t=%02x 1=%d).\n*,
type, length):;
break;

static void handle_xilinx(DMsg_Xilinx *xilinx_ptr)
{
int 1.

if (1Xilinx_start()) /* Start configuration xfr mode */
21

str.c Mon Apr 4 12:51:52 1994 13
DP_Printf(*SP: ERROR: FPailed xilinx start.\n");

Led_Print(OxFl1);

/* Send configuration data */

for (i =0; i < xilinx_ptr->n; i++)
Xilinx _Write(xilinx_ptr->word(i});

Led_Print(0xF2);
/* Make sure xilinx chip is fully configured */
if (1Xilinx _Done())

DP_Printf(*SP: ERROR: Failed xilinx done.\n*");
Led_Print(OxFO);

22

