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U ABSTRACTI
The Operator Expansion (OE) method, a new approximation introduced by Milder

V[. Acoust. Soc. Am. 89(2), 529-541, 1991] for computing wave scattering from rough
surfaces, is applied to acoustic scattering from one-dimensional randomly rough pres-
sure release (Dirichlet) surfaces. The accuracy of the OE series solution is evaluated
through comparison with exact numerical results obtained by solution of an integral
equation. Studies of scattering from moderately rough surfaces with a Gaussian spec-3 trum indicate that the first order OE solution is accurate when either small perturbation
theory or the Kirchhoff approximation is accurate. The first order OE solution is also

accurate in some cases when neither classical method is valid. In this moderate rough-
ness regime, the OE series converges rapidly over all scattering angles for a broad range
of incident angles, and numerical studies indicate that rapid convergence is always
associated with an accurate solution. As roughness is increased, the OE series solution
converges less rapidly overall but remains accurate for a wide range of scattering
regimes, including some cases just rough enough to support backscattering enhance-
ment. Studies of scattering from surfaces with a Pierson-Moskowitz spectrum used to
model the sea surface interface roughness indicate that the OE method is very rapidly
convergent over all angles for low frequency (200 Hz) acoustic scattering for wind
speeds up to at least 20 m/s, and that the OE solution is accurate for very low grazing
angle forward scattering for frequencies at least as high as 1000 Hz. The accuracy of
simpler forms of the OE solution (also proposed by Milder) is investigated; these odd-
or even-termed series are shown to be more efficient than the standard series at comput-
ing accurate solutions. The derivation of the operator series expansion is modified to
provide an alternative, more intuitive, development. The connection to the Rayleigh
hypothesis is discussed. OE estimates for the cross section are currently obtained using3 a Monte Carlo technique. The formal average for the lowest order cross section is
presented, but the resulting expression is complicated and is not deemed practical.
However, the OE method's efficiency and accuracy in one-dimensional tests suggest
that this new approximation would be very useful, even as a Monte Carlo technique, for
computing scattering from two-dimensional surfaces over a wide range of roughness

3 regimes.
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I CHAPTER 1

Introduction

1 1.1 Introductory Remarks

Many kinds of energy propagate as waves. These waves are modified by the
changes in physical properties encountered as they propagate through a medium. In par-

ticular, an interface between two different media imposes boundary conditions on the
wave field. Satisfaction of these boundary conditions is usually associated with the

generation of fields reflected by and transmitted through the boundary. Because few
physical surfaces are smooth, the interaction of waves with rough boundaries, called
scattering, is a commonly occurring phenomenon. The essence of the rough surface
scattering problem is the determination of the field scattered by a rough boundary of
known shape, given a known field incident upon it.

Rough surface scattering applications are diverse. Periodic rough surfaces have
long been used as diffraction gratings [Petit, 1980]. Roughness of the sea surface com-

plicates propagation of radio waves, and rough interfaces between different tissue types

affect the propagation of acoustic waves in biological media [Ishimaru, 1978]. Scatter-

ing from rough waveguide boundaries leads to loss of signal strength and coherence in
integrated optics [Marcuse, 19821, as well as in ocean acoustics [DeSanto, 1979].

I Many applications emphasize the solution of the inverse problem: the use of the

scattered field to extract information about the shape of the surface or the properties of

the medium beyond the surface. Examples include the use of satellite radar in remote

sensing of the polar ice caps to determine the age or thickness of the ice [Carsey, 1992];

the use of airborne radar scattering from the sea surface to infer wind speed and other

environmental conditions [Geernaert and Plant, 1990]; analysis of elastic and acoustic

wave echoes in seismic exploration to search for oil bearing structures in the earth

[Claerbout, 1985]; and the use of ultrasound to produce images of the human body to
conduct noninvasive medical examinations [Kuttruff, 19911.

I The deterministic problem treats scattering from a single surface, as for example
in computing scattering from a periodic grating (Petit, 19801. Yet in many situations an

averaged solution is preferred, in which moments of the scattered field provide a more

useful description of the scattering results. This is true for applications in which the

scattering comes from a portion of a random surface that is large compared with the

surface correlation length, and in applications that regard the surface-scattered field as
noise in imaging or navigation problems. For example, a ship-borne radar system is3 often used to locate navigation markers or other vessels. Under stormy conditions, the

I
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radar pulse scattered by the ocean surface waves can return as bright echoes that clutter I
the radar image, obscuring the desired signal. Surface scattering can become an impor-
tant source of noise in active sonar systems. The backscattered sound from the ocean
surface and bottom, called reverberation, often limits the detection performance of
these systems [Ellis et al., 1993], [McDaniel, 1993]. Understanding the physics of
scattering, and consequently gaining knowledge about the statistics of the scattered
field, may help improve signal processing schemes that seek to increase the signal-to-
noise ratio in similar imaging applications.

The exact solution of the rough surface scattering problem can only be obtained
numerically. As discussed in Chapter 2 for the acoustic case, the scattering process is
governed by integral equations that cannot be solved analytically for a general surface
profile. Exact solutions can only compute scattering from one surface at a time. Thus,
exact solutions of the stochastic scattering problem are approached by averaging
scattering results from a large number of individual realizations of the random process.
This procedure, called the Monte Carlo method, is very computationally intensive, even
for computing two-dimensional (2-D) scattering from one-dimensional (l-D) surfaces.
Most scattering applications require treating three-dimensional (3-D) scattering from
2-D surfaces. Such applications almost always result in too large a problem to solve
using exact methods.

Many approximations have been proposed to address the rough surface scattering i
problem in order to simplify the solution for scattering from a single surface or to
obtain a formally averaged solution. A formally averaged solution is one in which the
statistical properties of the surface roughness, such as the height correlation function or
the surface height spectrum, are used to determine the average properties of the scatter-
ing. Most approximate methods are restricted to treating a small range of roughness
regimes and very few methods can accurately treat scattering from surfaces that are are
rough on many scales (such multiscale surfaces commonly occur in nature) over a wide 3
range of incident and scattering angles.

Though often too computationally intensive to be practical in most applications,
exact numerical solutions have been very useful in evaluating the accuracy of approxi-
mations for scattering from 1-D surfaces. The results of such studies are often
presumed to carry over to scattering from 2-D surfaces, where the approximations are
used to interpret experimental measurements. In this dissertation we use a numerically
exact integral equation technique to study the accuracy of a new approximation called
the Operator Expansion (OE) method, introduced by Milder [1991]. The OE method is
currently only applied in a Monte Carlo technique, because the formally averaged solu-

tion is too complex to be practical (see Chapter 6), and only for the acoustic Dirichlet

I
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problem (pressure release surface). The many favorable attributes of the OE method,
which are discussed in more detail below, prompted this investigation. We find that the
method is very efficient at computing an accurate scattering solution over a wide range
of incident and scattering angles and roughness regimes. We conclude that the method
is well suited in its present form to address practical Dirichlet scattering problems such
as scattering of moderate frequency sound (up to a few kHz) from realistic 2-D ocean
surfaces. Further development of the method to treat other boundary conditions is war-
ranted.

1 1.2 Rigorous Numerical methods

Recent advances in computer technology have made computationally intensive
rigorous solutions practical, at least for scattering from 1-D surfaces. The rigorous
methods provide exact numerical solutions in the sense that no approximations have
been made in the scattering physics, but significant care must always be used in their
implementation. For example, the scattering problem is governed by integral equations
(see Sec. 2.2.4) that can be solved in coordinate space or in Fourier transform space by
discretization and subsequent solution of a large system of equations; such methods can
be limited by ill-conditioning [Garcia et al., 1978].

Exact numerical methods estimate moments of the scattered field by averaging
over a finite number of scattering experiments in a Monte Carlo method. This procedure
always results in the presence of statistical fluctuations in the solution (experimental
data has similar limitations), but these can be made very small by calculating scattering
for a large number of surfaces. However, in many cases it is not necessary to reduce the
fluctuations to exceedingly small levels in order to adequately ascertain the accuracy of
a formally averaged solution. Furthermore, the number of required surface realizations
can be quite small if the approximate method is implemented to compute scattering
from single surfaces. The fluctuations can then be reduced by taking the difference

between the exact solution and the approximate solution.

All methods using randomly rough surfaces must rely on a stochastic process to
generate the realizations. Here, a Fourier transform based method is used to generate
random phase (and amplitude) realizations consistent with a given spectrum [Thorsos,
1988], [Macaskill and Ewart, 1984]; the generated surfaces have Gaussian statistics.

The following summary of exact numerical methods is not intended to be an
exhaustive list but rather is provided as background for the tapered plane wave integral
equation method used in this dissertation. Here, the discussion is specialized to the Dir-
ichlet surface but the methods are applicable to other boundary conditions as well.I
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Extended Boundary Condition (EBC) -- T-matrix method I
The EBC method, proposed by Waterman [1975], is based on the use of an exact

integral identity derived for the scattering problem using Green's theorem (see Sec.
2.2.3, and Ishimaru [1991]). The identity, also called the extinction theorem because it
is obtained by considering field points below the surface where no real field exists, 3
places integral constraints on the surface values of the normal derivative field. The
solution was developed for scattering from finite objects or periodic surfaces, and thus
is effected in the Fourier transform domain. The method is well known to become ill- m
conditioned for sufficiently rough surfaces [Garcia et al., 1978], [Chuang and Kong,
1981]. The method has recently been applied to scattering from 2-D surfaces [Lou,
1991].

Least-Squares methods, Rayleigh-Fourier method

The least-squares method expands the surface values of the scattered field in a
truncated sum of outgoing plane waves, and solves for ir plane wave coefficients by
solving a least-squares problem. (This method does not invoke the Rayleigh hypothesis,

and works well beyond the Rayleigh hypothesis validity limit; more details are
presented in Sec. 3.5.2). Meecham [1956b] first proposed this solution, but was
unaware of the fact that the least-squares method is rigorous. Ikuno and Yasuura
[1973], Millar [1973], Petit [1980] and others developed the underlying theory.
Recently, Berman and Perkins [1990] have extended the method (in both coordinate

space and Fourier space) to fluid-fluid and fluid-solid interfaces with good results. Gen-
eraly, the least-squares method can treat rougher surfaces than the EBC method.

Finite Element Method (FEM)

Recently, a hybrid method using a finite element technique has been used to com-
pute scattering from rough surfaces [Lou et al., 1991 a]. Given a down-going incident
field, the finite element method is used to compute the scattered field in the near-surface
region and is then matched to an up-going plane wave solution on a plane a small dis-
tance above the highest point of the rough surface. This method exploits the large ratio
between surface length and surface height to provide an efficiently computable solution
for 1-D surfaces. The method could perhaps be practical in computing scattering from
2-D surfaces, though the partitioning of the 3-D volume in the near-surface region into
small elements is substantially more complicated than the corresponding process for 1-
D surfaces. The method can be extended to penetrable surfaces [Lou et al., 1991b], and
could in principle include inhomogeneities in the medium near the surface.

I
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U Integral equation iterative series

The integral equation of the second kind for the surface values of the unknown
scattered field normal derivative (Dirichlet boundary condition) provides a way of solv-
ing the scattering problem by iteration [Meecham, 1956a]. The Kirchhoff approxima-
tion arises naturally as the first term in this iterative series, which, when examined in
the high frequency limit, is shown to be a multiple scattering series [Liszka and McCoy,

1982]. The iterative method can be used to provide a numerica' 'act solution by
repeating the iteration until the changes in the normal derivati :ld are deemed
sufficiently small from one iteration to the next. The iterative technique is combined
with an efficient matrix solution in the Banded Matrix Iterative Approach (BMIA)
(Tsang et al., 1993a, 1993b] that solves the strongly coupled local interactions by
banded matrix techniques, and iterates to find the weaker, more distant interactions.

The method is very promising because of its speed in providing a rigorous snlution for a
wide range of scattering regimes.

Tapered Wave Integral Equation

I The tapered wave integral equation method [Axiline and Fung, 1980], [Thorsos,
1988] solves an integral equation governing the scattering problem. The problem is
generally nonperiodic and the solution is effected in coordinate space. The incident
field is tapered to reduce edge effects, directly leading to a trade-off between surface
length (and hence computation time) and angular resolution of the scattering results in
the far field. Though the method is appealing because realistic experimental scenarios
can easily be constructed, its usefulness comes from the great range of surface rough-
ness that can be treated without ill-conditioning. The method has been used to study
scattering from very rough surfaces that exhibit backscattering enhancement for the
Dirichlet boundary condition [Thorsos and Jackson, 1991], [Chen and Ishimaru, 1990]
and for electromagnetic scattering from metallic and dielectric surfaces [Maradudin et
al., 1990]. For the Dirichlet boundary condition, the method can be implemented for
two formally equivalent integral equations of the first and second kind [Meecham,
1956a], [Thorsos, 1988]. As with any numerical method, convergence tests (in this
case changing the number of surface partitions per acoustic wavelength) must bt per-
formed to ensure accuracy. These tests show that the two implementations converge
differently. Thus, direct comparison between the first and second kind integral equation
solutions provides a useful numerical test of the accuracy of the solution. The principal
drawback of the integral equation method is its computational expense (computation
time is proportional to the number of surface partitions cubed), practically limiting it to
I-D surfaces. Here, we use the solution for both kinds of integral equations, as

presented by Thorsos [1988], to evaluate the accuracy of approximate solutions.I
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1.3 The Classical Approximations

Two approximate methods, the small perturbation method and the Kirchhoff
approximation, have been used extensively in surface scattering. Though many applica-

tions are beyond the scope of these classical approximations, they are fundamental in
providing accurate, physically based solutions in important scattering regimes.

Perturbation theory

Introduced by Rayleigh [1945, 1907] for the case of sinusoidal surfaces and by
Rice [19511 for the case of periodic randomly rough surfaces, the perturbation theory
solution is an orderly expansion in terms of the small parameter kh, where k is the
acoustic wave number and h is the rms (root mean square) surface height. Though the
radius of convergence of the perturbation series has not been established analytically,
numerical studies have shown through comparison with exact calculations that the
method is valid in many regions of interest in low-frequency ocean acoustics [Thorsos
and Jackson, 1991], [Thorsos, 1990a], and in electromagnetic scattering [Soto-Crespo
et al., 1990]. The Rayleigh-Rice method invokes the Rayleigh hypothesis, but
nevertheless provides a solution that has been shown to be identical through fifth order
to the perturbation solution derived rigorously using the EBC [Jackson et al., 19881.
The small perturbation method is also called field perturbation when it is important to
distinguish it from the phase perturbation method, discussed in Sec. 1.4. The
Rayleigh-Rice approach is used to derive the perturbation solution for scattering from a
single surface in Sec. 2.5 and in Sec. 3.4.

The Kirchhoff approximation

The Kirchhoff approximation for rough surface scattering was studied first by Bre-
khovskikh [19521 and also by Eckart [1953] for acoustic scattering, and by Beckmann
and Spizzichino [1963] for electromagnetic scattering. Named after Kirchhoff because
of the similarity to the approximation bearing his name in the problem of light diffrac-
tion by an aperture [Born and Wolf, 1980], the Kirchhoff approximation in surface
scattering is based on the assumption that a smooth, slowly varying surface can be
locally approximated as planar;, thus, the Kirchhoff approximation is also called the
tangent plane approximation [Bass and Fuks, 1979]. It is assumed valid when the local
radius of curvature is everywhere large compared to a wavelength, and when the angles
of incidence and scattering are not so close to the surface slope angles as to cause sha- -
dowing or other multiple scattering effects. The radius of curvature criterion can be
relaxed when accuracy of the average angular distribution of the scattered intensity far
from the surface is desired; numerical comparisons to integral equation results have
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I shown that for randomly rough surfaces with a Gaussian spectrum [Thorsos, 1988], the
surface correlation length is the quantity that should be compared with the wavelength
in order to establish validity of scattering cross section calculations. The Kirchhoff
approximation is often used in computing forward scattering; numerical studies show
that for certain power law surfaces [Thorsos, 1990a) for which the local radius of curva-
ture is rarely, if ever, large compared to the acoustic wavelength, the Kirchhoff approxi-
mation is still valid for near specular scattering. The Kirchhoff approximation solution3 is developed in Sec. 2.4 for scattering from a single surface, which is convenient for
Monte Carlo studies. Like perturbation theory, the Kirchhoff approximation is readily
averaged and provides a useful solution in regimes where it is accurate.

Though these two fundamental approximations are useful in their respective
regions of validity, many cases of interest fall outside the scattering regimes in which
either the small perturbation method or the Kirchhoff approximation apply. The rough-
ness regimes for which the classical methods are accurate over all scattering angles for
450 incidence are depicted in Fig. 4.2 for surfaces with a Gaussian spectrum. For such

surfaces, the classical methods' accuracy regions do not overlap except for very small
roughness. In low frequency acoustic scattering from I-D Pierson-Moskowitz surfaces
(whose spectrum is used to model the sea surface height spectrum) the Kirchhoff
approximation is more accurate for near specular scattering whereas the perturbation
solution is more accurate for scattering in directions away from specular.

Composite roughness model

A heuristic model attempting to combine the abilities of these two fundamental
approximations was developed for particular applications in which the surface height
function can be usefully decomposed into two roughness scales: a large scale surface
for which the Kirchhoff approximation holds, and a small scale surface (on the scale of
the irradiating wavelength) for which perturbation theory applies. The composite
roughness model has long been applied to scattering of acoustic [Kur'yanov, 1963] or
electromagnetic [Guinard et al., 1971] waves from the sea surface (or both [McDaniel
and Gorman, 1982]); a rigorous derivation of the method which presents an estimate of
the contribution from neglected terms was provided by McDaniel and Gorman [1983].3 Accuracy of such a composite roughness model has been examined for low frequency
acoustic monostatic backscattering from I-D Pierson-Moskowitz surfaces [Thorsos,
1990a] and found to be good except near grazing. Comparisons for shorter wavelength
scattering have been made with data, but scattering from bubbles usually dominates the
acoustic backscattering signal above a certain wind speed [Nutzel et al., 1993],3 [McDaniel and Gorman, 1982], and the lack of complete understanding of surface
hydrodynamics and coupling of water waves to the wind (leading to an inaccurateI
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representation of the surface height) may contribute substantially to the inaccuracy of I
electromagnetic composite roughness models at lower grazing angles [Weissman et al.,
1993]. In general, the composite roughness model does not include a systematic way of
partitioning a realistic spectrum into the two spectral bands, and yet the results depend
on the choice of the partition wavenumber, principally through its effect on the slope of
the large scale surface. Furthermore, a "good" choice for the partitioning also depends I
on the angle of incidence [Thorsos, 1990a], [Dashen et al., 1990].

Great effort has been directed at finding a systematic approximation that has pro- I
perties of both classical methods in their respective regions of validity (while retaining
computational efficiency!) so as to be useful in treating scattering from a broad class of
2-D surfaces. We now turn to a brief description of some of the most notable modem
approximations. The following list is by no means complete; for a review of many
other methods see Winebrenner [ 1985].

1.4 Recent Approximate Methods I

Phase perturbation method I
The phase perturbation method, developed by Winebrenner and Ishimaru [1985a,

1985b] from an earlier suggestiont by Shen and Maradudin [1980], expands a quantity
related to the phase of the unknown surface field in a power series in kh. (The standard
perturbation method expands the field itself in a series in kh.) Each term of the phase 3
perturbation series solution contains a partial sum of higher order terms in the field per-
turbation series; this resummation leads to improved convergence over the standard

field perturbation solution, and consequently to accuracy over a greater range of nor- I
malized surface height kh than possible with field perturbation. Indeed, Winebrenner
and Ishimaru [1985b] showed that the (second order in kh ) backscattering cross section
reduces to each of the classical approximation solutions in their respective limits; this
appears to be the first systematic theory to have this important property. The phase per-
turbation solution was compared in detail to the classical approximations [Broschat et I
al., 1987] and to an exact numerical solution [Broschat et al., 1989] for scattering from
surfaces with a Gaussian spectrum. The method is accurate when the Kirchhoff
approximation and perturbation method are accurate, and for some roughness regimes
beyond the reach of the classical approximations. The phase perturbation method has I
also been tested in scattering from Pierson-Moskowitz surfaces [Broschat, 1993] and

1 Shen and Mardudin [1980] followed their initial phase expansion by an expansion of the com-
plete exponential terms, limiting the resulting solution to the height perturbation regime.

I
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U has typically been found, for a wind speed of 20 m/s and incident grazing angles

between 10U and 200, to be accurate for all scattering angles except those closer than
100 from grazing. The phase perturbation solution developed by Winebrenner and
Ishimaru [1985a, 1985b] has one theoretical drawback in that it is not reciprocal. A
heuristic algorithm which combines the phase perturbation solution and its "reversed
phase" formulation to provide a reciprocal solution has been proposed, and is found to
be somewhat more accurate than the original solution [Broschat et al., 1990].

U Bahar's "Full-Wave" method

In a series of papers, Bahar developed a technique for computing scattering called
the "full-wave" method [e.g., Bahar, 1980, 1991]. Though the method's name has not
changed, the full-wave solution has actually appeared in several different forms [Thor-
sos and Winebrenner, 1991], [Thompson and Chapman, 1993]: one form before 1980
[e.g., Bahar, 1978], a second between 1980 and 1991 [e.g., Bahar, 1980], and a third
form [Bahar, 1991]. In general, the method attempts to provide an approximation
which reduces to both classical approximations in their appropriate limits, and Bahar
has repeatedly made the claim that the (1980) full-wave solution has this property
[Bahar, 1980, 1981, 1987]. However, it has been shown [Thorsos and Winebrenner,
1991] that for scattering from I-D Dirichlet surfaces the 1980 full-wave solution does
not reduce to first order perturbation theory when the latter is known to be valid;
instead, calculations of the cross section show that the full-wave solution agrees closely
with the Kirchhoff approximation result (which is inaccurate in the regime examined).
These results, in direct contradiction to Bahar's conclusions, are supported by the work
of others [Thompson and Chapman, 1993]. The third form of the full-wave solution
[Bahar, 1991] has yet to be fully discussed by other investigators.

Kirchhoff iterate

The integral equation iterative method discussed in Sec. 1.2 can be used to provide
a numerically exact solution. Several investigators have examined the accuracy of the
solution which uses just the first two terms in the series, the Kirchhoff approximation
and the first iterate. Holliday [1987] showed that the Kirchhoff plus first iterate solution
reduces to the first order perturbation solution for backscattering when roughness is
small, and Thorsos and Jackson [1991] show numerically that this reduction occurs for
bistatic scattering when kh is sufficiently small. The first iterate solution has also been
investigated in scattering from very rough surfaces where enhanced backscatter is
observed [Thorsos and Jackson, 1991], [Chen and lshimaru, 1990], [Ishimaru and Chen,
1990], and has been shown to contribute an essential part of the enhancement mechan-
ism, thus providing an approximation which may be useful over a wide range of

U
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roughness regimes. However, Thorsos and Jackson [ 1991] have shown that the scatter- I
ing cross section obtained from the first iterate depends on surface length; higher order
iterations are required to cancel this dependence, but a shadowing function may be used
instead to approximate the effects of the higher order terms [Ishimaru and Chen, 1990].

Unified perturbation method I
The unified perturbation method [Rodriguez and Kim, 1992] is another method

which seeks to systematically treat scattering from surfaces rough on many scales. The
method evolved from a perturbation treatment in which the small parameter is the
momentum transfer in the horizontal direction [Rodriguez, 1989]; for near vertical
incidence, this can be interpreted as an expansion about the specular direction. The
small momentum transfer expansion leads formally to a series which has the Kirchhoff
approximation as its first term, and a curvature dependent correction at next order. I
Nevertheless, the relation between this series and the integral equation iterative series
which also has the Kirchhoff approximation as its first term is not obvious [Rodriguez
and Kim, 1992]. Rodriguez [1989] states that the small momentum transfer method is
not applicable for incident angles which are close to grazing because of the singular
behavior of a geometric factor at grazing incidence. The accuracy of the unified pertur- U
bation method has been tested for certain power law surfaces using an exact numerical
method (method of moments, or, integral equation method), and inaccuracies (error > 1
dB) of the first and second order solutions appear for scattering angles further than
about 650 from vertical, for several surface roughnesses, even when the incident angle
is less than or equal to 500 from vertical [Rodriguez and Kim, 1992].

Small-slope approximation

The small-slope approximation was developed by Voronovich [1985] with the
objective of finding an approximation which could treat scattering from multiscale sur-
faces without having to appeal to a composite roughness model. In performing the
small slope expansion of the scattering amplitude, Voronovich succeeded in deriving a
systematic series solution which is constrained to reduce to the perturbation solution for I
small height, and yet is valid for arbitrary surface height so long as the surface slope
remains small. Furthermore, the solution is manifestly reciprocal. The first two terms
in the series solution for the cross section have been investigated numerically [Broschat
and Thorsos, 1991], [Berman, 1991], and further studies indicate that it may indeed be a
very accurate formally averaged theory [Thorsos, 1993a].

I
I
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I Dashen's method

3 In a series of papers, Dashen and Wurmser [1991a, 1991b, 1991c] and Dashen,
Henyey, and Wurmser [1990] describe an approximation which is constructed to be
manifestly reciprocal, and which is obtained by examining a perturbation (variation)
about a known reference surface solution. This reference surface need not be fiat;
indeed, a slowly varying reference surface leads to a series solution expanded in the
radius of curvature. At lowest order, that is, when neglecting curvature dependent
terms, the solution is constrained to "reproduce the traditional composite model"
(Dashen and Wurmser, 1991b], in the following sense. The lowest order solution for
the scattering amplitude is expressed as a single integral over a product of exponential
functions of the surface height and a function of slope; this function of slope is deter-
mined such that the lowest order solution reduces to the perturbation and Kirchhoff
approximation solutions in the appropriate limits. At lowest order, both the small slope
approximation (Voronovich) and Dashen's solution are "local" approximations, result-
ing in single integral forms for the scattering amplitude. In contrast, the operator
expansion method described below is a nonlocal solution even at lowest order.I
1.5 The Operator Expansion method

U The operator expansion method is a new formalism for computing scattering from
Dirichlet rough surfaces (Milder, 1991], and is based on an approximation used in sur-
face wave hydrodynamics [Milder, 1990]. Similar surface scattering approximations
were introduced long ago by Lysanov [1956] and also by Meecham [1956c], and further
examined by Urusovskii [1960]. In these approaches, an approximate solution to the
integral equation for the surface field was developed for rough surfaces with small slope
and small height and was written in terms of Fourier transforms. Much later, Vorono-
vich [1987] developed a small slope series solution for nonlocal vertical derivative
operator (denoted Z by Voronovich and D by Milder and in this dissertation), an
approach which subsequently led to a different approximation called the Small Slope
Approximation (SSA) [Voronovich, 1985].? We do not examine any of these related
approximations here, nor do we compare the above methods to the operator expansion
method though such a study would likely prove valuable.

t In a personal communication, Voronovich clarified the evolution of the work on the SSA:

though the two papers were published in reverse chronological order, the submission dates reflect
the order of development. The two papers have similar titles but the methods themselves are quite
different, the SSA lending itself much more readily to formal averaging than the vertical deriva-
tive operator method. Similarly, the OE method does not easily lead to a practical formal average;
see Chapter 6.

I
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The OE method has several attributes of a promising technique:

"Milder [1991] showed that the OE solution reduces analytically to the classical solu-
tions to the surface scattering problem in their respective asymptotic limits, that is, to
the perturbation solution in the limit of small rms surface height, and to the Kirchhoff
approximation (plus a curvature dependent correction term) in the limit of very
smooth surfaces varying slowly on the scale of the acoustic wavelength. This funda-
mental analytical property of reduction to both classical theories in their respective
regions of validity indicates that the operator expansion solution might well be valid I
over a wide range of scattering regimes. Indeed, this reduction to both classical solu-
tions must be a property of any method which can accurately treat scattering from
multiscale surfaces, yet has historically been very difficult to achieve.

" The operator expansion solution is presented as a systematic series of terms contain-
ing powers of an integral operator, from which the method derives its name. Numer-
ical tests presented in Chapters 4 and 5 indicate that the convergence of the series
(observed by examination of the rate of decay of these terms) is useful in determining
the accuracy of the OE solution at any given order.

" Milder [1991] indicated that the solution is reciprocal at each order in its expansion
(analytically verified in our work through third order). Reciprocity is a physical pro-
perty of the scattering problem which is not always easy to retain in an approxima-
tion; in the case of the OE, reciprocity is a natural consequence of the construction of
the expansion and is not "forced" in any way.

" The OE solution is implemented using Fast Fourier Transforms (FFTs) and is
extremely fast to compute for scattering from I-D surfaces, making it practical for
3-D scattering from 2-D surfaces. For example, for a 1-D surface divided into only
400 intervals, the second order solution for the surface field is about two orders of
magnitude faster than the corresponding integral equation calculation.

These features make the OE method a very promising approximation and have
motivated the current study of its accuracy. Milder tested the method for scattering I
from l-D sinusoidal surfaces and wedge shaped gratings [Milder, 1991], and from 2-D
sinusoidal surfaces [Milder and Sharp, 1992], and found that the method proved to be
both fast and accurate for those surface types. We examine the method in computing
scattering from randomly rough surfaces. In particular, the application to scattering
from multiscale surfaces, such as those encountered in scattering of sound from the I
ocean surface, is of great interest. In this study, accuracy of the OE method is deter-
mined through comparison to the exact solution obtained by an integral equation

HI
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technique; as discussed above, this solution is practically limited to treating scattering
from 1-D surfaces. Our study was performed for 2-D scattering from 1-D surfaces, but

the results are expected to carry over to 3-D scattering from 2-D surfaces.

1.6 Overview of the dissertation

The basic equations governing the scattering problem, and the two classical3 approximations used to solve it, are presented in Chapter 2. Specializing the problem to
the 1-D Dirichlet boundary, Green's theorem is used to develop the scattering integrals
and other important integral identities relating the incident, scattered, or total fields, and
their normal derivatives, on the rough surface boundary. The scattering results in sub-
sequent chapters are presented in the far field of the scattering surface; the scattering
amplitude and the scattering cross section are defined and examined for series solutions.
Numerical results presented in later chapters indicate that the operator expansion solu-
tion for the cross section does not require consistency in the surface field expansion
parameter to maintain accuracy. Consequently, the computational efficiency of the
method can be increased by making use of an "inconsistent" series solution. The
Kirchhoff approximation and the small perturbation method are presented as "Monte

Carlo" methods, to assist in comparing them to the operator expansion solution in later
chapters.

The broad range of accuracy of the operator expansion, observed in numerical
tests presented in Chapters 4 and 5, prompted a closer look at the derivation of the
method. We find that insight into the method's accuracy can be gained by examining
the construction of the operator solution; this construction is performed in Chapter 3 in
a somewhat less rigorous but more intuitive manner than in Milder's derivation. (The
expression for an additional order (third) in the operator expansion beyond that given
by Milder is also included.) The decomposition of the fundamental nonlocal operator
into its component operators is carried a little further than necessary to obtain the actual
series expansion, so that the role of the various components can be examined. A com-
parison between the Monte Carlo perturbation method and a method based on one of
the operator component solutions brings to light some of the similarities and some of
the differences between the OE and the perturbation method, and hints at why the OE
method has a much broader range of validity than the standard perturbation expansion:
the perturbation expansion can be viewed as a one-way analytic continuation from the
rough surface to a plane, whereas the OE makes use of a two-way continuation (to a

plane and then back to the rough surface) which greatly reduces the height dependence
of the solution.

I
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Numerical implementation notes also appear in Chapter 3, and include a descrip- I
tior. of the tapered plane wave incident field, use of the FFT in the solution, factoring of
operator terms for increased efficiency, surface height tapering requirements, and other 3
details pertaining to the difficulties associated with evaluating the third order term.

An extensive discussion of the two principal differences between Milder's deriva-
don and our own appear at the end of Chapter 3. The first has to do with the method of
findihg the operator series expansion. Milder uses a variational technique, obviating the
need to find an explicit series representation for one of the operator components, I
whereas we employ a backsubstitution technique used in similar derivations [West et
al., 1987]. We present an expanded version of Milder's variational method for com-
pleteness, and because of its elegance in solving for the operator series expansion. The
second difference concerns the application of the Rayleigh Hypothesis (RH) in deriving
the OE solution. In performing the derivation, we explicitly assume that the RH holds, I
and rely on numerical tests to evaluate the impact of this assumption on the accuracy of
the solution in cases where the RH is invalid. Milder attempted to avoid making the
RH assumption by using a transformation of the extended boundary condition (extinc-
tion theoremv) integral theorem. We find that in his derivation, the RH is imposed on an
arbitrary down-going plane wave which, by analogy with the scattering problem, is
equivalent to imposing the RH on the scattered field. Thus we show that all available
derivations of the operator expansion invoke the Rayleigh hypothesis. A careful exami-
nation of this subtle issue is presented in the concluding section of Chapter 3, along
with a review of some of the most relevant work of other investigators regarding the
Rayleigh hypothesis and the use of up-going wave expansions in providing rigorous
solutions to the scattering problem.

The cornerstone of the dissertation is the extensive numerical testing of the opera-
tor expansion solution through comparisons with a numerically exact integral equation
solution. Without such tests, the accuracy of the OE method in roughness regimes
where classical solutions are no longer accurate is largely a matter of speculation, par-
ticularly when questions about the method's formal validity arise in connection with the
Rayleigh hypothesis. However, numerical experiments have shown that the operator I
expansion method is indeed accurate over a wide range of scattering parameters. These
results are reported in Chapters 4 and 5, which treat scattering from randomly rough 1-
D Dirichlet surfaces with Gaussian and Pierson-Moskowitz spectra, respectively.

The study of scattering from surfaces with a Gaussian spectrum (Chapter 4) is
guided by the use of a single "slope-height" roughness parameter khs, which was sug-
gested by Milder [1991] as a general indicator of the OE method's roughness regime.

Milder and Sharp [1992] find that the OE method is generally applicable if khs < 1.

I
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I Here, numerical examples are chosen on contours of constant khs which appear as
straight lines in the (log-log) kl-kh plane (see Fig. 4.2). The classical methods are3 known to be accurate in certain regions of the kl-kh plane, broadly corresponding to
khs < 0.25. Thus, the first series of tests examines the reduction to the classical approx-
imations numerically, and indicates that when khs = 0.15 the first order OE solution is
generally accurate when the Kirchhoff approximation and perturbation methods are
accurate, and is also accurate for some cases when the classical methods are not. When
k/s = 0.15, the GE series solution is found to converge very rapidly over all scattering
angles. As the value of khs is increased to well beyond the range of roughnesses which
can be treated accurately by the classical methods, the operator expansion solution still
provides an accurate solution for many situations. In general, the rapid convergence of

the series is associated with an accurate solution; this self-consistent property is hoped
to be very useful in applying the method to scattering from 2-D surfaces for which
exact solutions are very costly.

I Tests have been carried out for values of khs < 10, but the highest value reported
is khs = 3.5, for an example which is just rough enough to support backscattering
enhancement. The OE method is able to accurately compute scattering for this case
(for an incident grazing angle of 600) for all scattering angles more than 40' from graz-
ing; the backscattering enhancement peak is clearly visible and accurately computed.
However, this example is near the limit of the maximum roughness for which the OE
method can accurately compute scattering.

I The OE method is applied to scattering from a form of multi-scale surface used to

model the ocean surface (Pierson-Moskowitz spectrum) in Chapter 5. Scattering is con-

sidered for surface roughness due to wind speeds up to 20 m/s and for acoustic frequen-
cies up to 1000 Hz. The low frequency tests (200 Hz) are conducted over all scattering

angles for incident grazing angles from 10' to 900 using the integral equation technique,
and the OE method is found to converge rapidly over nearly all scattering angles lead-
ing to an accurate solution over those same angles. The higher frequency examples are

examined using a recently developed parabolic equation integral equation method
[Thorsos, 1993b] which can accurately compute forward scattering (within about 450 of
grazing) for surfaces partitioned into a number of intervals an order of magnitude

I greater than possible with the Helmholtz equation method. For incident angles as low
as 50, for a 15 m/s surface and 1 kHz scattering requiring 20,000 surface intervals, the
OE method is accurate over all forward scattering angles examined. The OE method is
thus seen to be very promising in computing scattering from realistic 2-D ocean sur-
faces at moderate frequencies, even at very low grazing angles.

I
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Milder [1991] showed that the OE solution could be simplified by taking advan-
tage of an inversion symmetry of the solution with respect to the surface height func-
tion. The resulting series solutions contain only odd or only even terms from the origi-
nal operator series expansion. We examine the accuracy of these "short" forms for both
types of surface height spectra and find that they provide a more efficient solution than
the standard series. In the case of Pierson-Moskowitz surfaces, the improvement in
accuracy for solutions computed to the same order in the surface field is quite dramatic;
the short forms almost get "an order for free".

The operator expansion method is currently developed as a numerical technique,
that is, it computes scattering from one surface at a time. While this makes comparis-
ons with the exact integral equation solution particularly convenient, the OE method
can only be used to compute moments of the scattered field using the Monte Carlo
method. Most other approximations are formally averaged, that is, the statistical pro-
perties of the randomly rough surface height are used to analytically evaluate the
moments of the scattered field. The demonstrated accuracy of the OE method is further
incentive to find an averaged solution. An attempt at formally averaging the lowest
order operator expansion solution (even series solution EV0) is presented in Chapter 6;
the resulting expression for the scattering cross section is not simple enough to be prac-
tical. The nonlocal nature of the OE solution, in great part responsible for the method's
broad range of accuracy, leads to an expression for the scattering amplitude with
several integrals over the transverse coordinate and its Fourier conjugate variable (the
transverse wavenumber), even at lowest order.

A detailed summary of the results of each chapter appears in Chapter 7; sum- i
maries do not appear at the end of each chapter for' the sake of brevity. The final
chapter concludes with a few suggestions for future work on this promising method,
which include extending the technique to other boundary conditions and examining the
method's behavior in 3-D scattering from 2-D surfaces. The operator expansion
method is currently seen as a very efficient numerical method providing an accurate
solution to the Dirichlet surface scattering problem over a very broad range of scatter-
ing regimes, far broader than possible with the classical approximations. The OE solu- 3
tion is much faster to compute than the exact integral equation solution and is practical
for computing scattering from realistic 2-D surfaces, even when applied in a Monte
Carlo approach.

I
I
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I CHAPTER 2

Basic Equations for Rough Surface Scattering

U 2.1 Introduction to Chapter 2

In this chapter we present the fundamental equations governing the rough surface
scattering problem which we address throughout this dissertation. We consider the
scattering of acoustic waves from surfaces rough in one dimension only. The methods
themselves are not restricted to this dimensionality, but computer limitations arise in
calculating the exact solution to the problem of scattering from a single surface,
obtained by solving an integral equation. Use of this exact solution is central to the
determination of the accuracy of various approximate methods considered here; for
consistency and simplicity we will develop all equations for two-dimensional (2-D)
scattering from one-dimensional (l-D) surfaces. The operator expansion method has not
yet been extended beyond the scalar Dirichlet scattering problemt, while the perturba-
tion method, Kirchhoff approximation, and the integral equation technique have all

I been developed for more complicated environments, and for vector fields. We will only
treat the scalar case here, specializing many of the equations to the Dirichlet boundary
condition.

2.2 Fundamental Integral Relations

2.2.1 The surface scattering problem

I The geometry for 2-D scattering from a 1-D surface is sketched in Fig. 2.1, where
we consider the acoustic pressure field p (r) in region V 1 bounded by the physical rough
surface S and by the hemisphere H. The time-harmonic ( e" ) sources P of acoustic
pressure p are confined to a finite space V3 within V 1. The problem is to determine the
field p (r) in region V I given the sources P (r), the shape of the rough surface S, and the

physical boundary condition on S.

The acoustic field p (r) satisfies the inhomogeneous Helmholtz Equation (HE)

IV2 + k2]P W = - P(r) , rr V 1  (2.1)

tMilder [1991] presented some formal equations for the Neumann boundary condition, but certain
practical aspects of the Neumann solution which are fundamentally different from those encoun-
tered in the Dirichlet case were not addressed.

I
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Fipre 2.1 Geometry for 2-D scattering from a I-D rough surface. The sources of the field incident
on surface S are distributed in volume V3. The field scattered by the rough surface is to be deter-
mined at various points r. Hemisphere H is a mathematical surface closing volume V 1 above S.

for all points r in V 1, where k = co/c is the acoustic wavenumber, Co is the angular fre- I
quency, and c is the sound velocity in V 1. The field p also satisfies a boundary condi-

tion on S which will be used below. The free space Green function for the HE satisfies
the inhomogeneous equation with a point source at point r':

IV2 + k2] G 0(r,r') = - 8(r-r'). (2.2)

For two-dimensional problems, the free space Green function for outgoing waves is

Gi(rr) = ± HS¶)(kIr-r'I) (2.3)

where H Sl) is the zero order Hankel function of the first kind.

2.2.2 Green's theorem - Helmholtz-Kirchhoff scattering integrals

Green's theorem allows us to express the relation between a field and its sources,
which can be distributed in volumes or on surfaces. Continuous source distributions

can be constructed by superposition of singularities of the field (such as the point source
term 8(r-r')), which are understood to be points at which the field or one of its first or

second partial derivatives is discontinuous [Baker and Copson, 1950, p. 23]. Surface I
source distributions have no discontinuity along the surface, but are discontinuous

across the surface; indeed, they can be interpreted as surface distributions of monopole

and dipole sources [Jackson, 1975, p. 41] giving rise to a field in the manner of

I
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Huygens' principle [Baker and Copson, 1950]. In this dissertation we shall refer to dis-
tributed volume sources or to point singularities of the field simply as sources of the
field. The word surface will always be attached to surface source distributions.

I To obtain an equation relating a field to its sources, subject to the presence of the
physical boundary S, consider two scalar fields * and Nt defined in a closed volume V
bounded by the surface Z. Green's theorem for * and y is given by

J[4VV - i~fV2o] dv [W 0 24
I a n n(2.4)

where a/an a Ai.V is the normal derivative along the inward surface normal, that is, into
volume V. If we apply Green's theorem to fields p (r) and Gv( r, r'), defined as in (2.1)
and (2.2) but for a general volume V in which Gv( r, r') is a Green function, we obtain

fP (r') 8(r-r') dv' = P (r') Gv( r, r) dv "

I V

Through specification of the volume of integration V (and hence its bounding surface I
and Green function Gv( r, r')) and choice of field point location r, this general form
[Wolf, 1973] allows us to generate several important integral relationships, and in so
doing, gain useful insights regarding the behavior of field integrals. For volume V = V1

and field point r in V 1, (2.5) becomes

I p(r)= f P(r') G 0(r,r')dv'
V3

S+ f [p (r) W 0 ( r, r) _ G 0 (r, r') an (r]ds' , rr V,, (2.6)
S+H ~ an'anI S$+H

which we write as p (r) = pi (r) + p.(r) (total = incident + scattered), where the volume
integral is identified as the direct incident field pi (r) at point r due to the sources inside

V 3. This direct field is also incident on the physical surface S and on the mathematical
surface H. The surface integral Ps (r) expresses the contribution to the total field due to
the scattering of the incident field by S, and any contribution due to the integral over H.

Isatrn yS nyt nerloe
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The conventional way of demonstrating that the integral over hemisphere H is
zero consists of taking H to "infinity" (such that I r'l >>~ L and I r'l > I r I ) and recog-
nizing that the integral is zero in this far-field limit. The far-field evaluation of the large
argument form of the Hankel function f iW

HS')(k I r-r I) -~ m-ý \I-1je '~e (2.7a)

leads to the evaluation of the integral (with ds' -+ r' de0')I

f ;7[ p r,- (r'(2kr'- ) ekr e -i ?rd ' . (2.7b)I

If the scattered energy comes from a finite region of length L, then for r' >> L (the far
field) the field p behaves as an outgoing cylindricalt wave on H:

lim p(r')= e rF(9), and lim apar' I -FW (2.7c)
-'L-" r/L -* an' [,:r I I (

where F is the scattering amplitude which only depends on the angle 0' defined in Fig.
2.2. Using (2.7c) in (2.7b) shows that the integral over H vanishes in the far field.

A V,

Figure 2.2 Far-filed geometry for scattering from an ensonified region of length L. Here,
lrI rlýoL and Ilr'l >> I r .

An argument can also be constructed using the radiation condition and (2.5) to
show that the surface closing V 1 above S need not be in the far field to give zero

I The field p is said to satisfy the Sommerfeld radiation condition, which is usually stated as
lim r' (2_- AP) =0, for 3-D mroagation where the field behaves as exp(ikr Ir' for r'/L--->-.

p'.-p- .3r I
(Sommerfeld, Vol. IV, 1954], [Jackson, 1975], (Courant and Hilbert, Vol. 11, 1962].)



I 21

H contribution to the field at point r; indeed, it is instructive to see that it can be of arbi-
trary shape and location as long as it lies above the sources in V3 and the field point r.
Consider enclosing volume V I by the original boundary S and an arbitrary surface S'
depicted in Fig. 2.3. We now define V0 to be the region above V1 enclosed by S' and
the hemisphere H which is taken to "infinity" as before. For points r in VI we integrate
(2.5) over volume V0 to find:

0 = 5 [p(r')G(rr) -G(r,r r') I ds' (2.8)
S'+H an' an'

I Since the H integral is zero as before, the integral over S' must be zero as well. This
result shows that the S' surface integral is zero as long as, from the point of view of an
observer at r in V 1, there are no incoming fields traversing S', that is, when there are no
field sources in volume V0. The integral over S' will only contribute to the field at r if
there are sources beyond (and therefore "visible" through) S'. We now return to the use
of H to denote that surface which closes V I above sources P and field point r, with the
understanding that H can be of arbitrary shape. We remark that the infinitely long sur-
face S divides all of space into two closed regions, VI above S and V2 below S, and
that to use Green's theorem it suffices to integrate over S alone because the surface
integrals over either of the closing surfaces above or below do not contribute to the field
at any point inside them.

I C
I SV

V2

I

Filure 2.3: Diagram of surfaces and volumes used in the application of Green's theorem to the
iMfinite (mean horizontal) rough surface scattering problem.

I
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One further consideration arises in the case of scattering from an infinitely long
(zero mean) rough surface, in contrast to the problem of scattering from a finite body.
To ensure that no incoming waves traverse H, we require that the sources of field p be
confined to a finite volume. Thus, pi only effectively ensonifies a limited portion of the
surface. This theoretical restriction is only rigorously necessary because the hemisphere
can never enclose the entire infinitely long rough surface. The idea is to reduce the scat- 3
tered energy coming back from S through H (as illustrated in Fig. 2.4) to arbitrarily
small levels. Strictly speaking, pi can not be a single plane wave. The case of plane

wave incidence, commonly used in scattering work, can be reached in the limit of a
process which always takes the diameter of H to be sufficiently greater than the extent
of the surface region over which most of the incident energy is concentrated; see Fig.
2.2 for a schematic view of one such configuration. Alternatively, to ensure that no
energy returns back through H, the surface S can be made flat outside surface H, but in
this case as well the incident field should be tapered to reduce any edge effects.

3 H

V2

Figure 2.4 : Diagram of possible paths for incident and scattered energy. The paths with white ar-
rowheads lead to surface contributions from S only, whereas the path with black arrowheads gives
rise to (unwanted) contributions from H as well.

2.2.3 Integral forms using scattered or incident fields

The boundary S reverses part or all of the downward energy incident upon it, giv-
ing rise to a scattered field whose sources are distributed over the surface S, but which
appears to emanate from image sources below S (see Fig. 3.2). These "virtual" sources
of the scattered field can in principle be located by continuing the scattered field below
the surface. The boundary condition ensures that all of the real surface sources of p, lie

on S. Alternatively, all of the image sources lie below the surface S; thus, p, is homo-
geneous in V 1. A mathematical statement of this fact can be obtained by applying (2.5)
(a direct consequence of Green's theorem) to the scattered field, setting V = V1 and
placing field point r in V2 to obtain
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aps aG o(r, r')
0- [Go(rr') ap(r') ps(r') Gnr ] ds' , r e V 2 . (2.9)

S a
This is the scattered field form of the extinction theorem (2.12) discussed below; the
extinction theorem is an integral relation used as an "extended" boundary condition to
solve scattering problems [Ishimaru, 1991]. We can also apply (2.5) to the scattered
field in volume V1 for r in V1, recognizing that p, satisfies the homogeneous HE in V1,
to obtain

p. (r) f - I Go( r,r) ap5(r') aG0(rr') I ds' ,
pn' p8(r') d' , r e Van(2.10)

which expresses the scattered field above S in terms of the surface sources of p5 on S.
This expression, as well as the surface integral over S in (2.6), is the Helmholtz integral
(or the Helmholtz-Kirchhoff integral) for the scattered field.

I Applying Green's theorem over volume V1 to the incident field pi(r) for field
points r in volume V 1 , with pi satisfying the same inhomogeneous HE (2.1) as total

field p but without a boundary condition on S, we obtain

Ii W =! +f G(,,0 api(r') (r')aG0(r'r') , orP1(r) ff P8(r) + [ (r , r__"___P_(__n

I 0' a 'pi 1(r') a '' ds'a, o

0 = f G°(rr') 6an" - pi(r') aG0 (r, r' r e V 1, (2.11)
san' an'

which reflects the fact that the incident field has no sources below S, a statement analo-
gous to relation (2.9) for the scattered field. It is interesting to note that because of
identity (2.11), the scattered field surface integral can either be written in terms of the

total field (2.6), or equivalently, in terms of the scattered field (2.10).

Finally, by applying (2.5) to the total field p and integrating over volume V = V1

for r e V2, we obtain the integral identity known as the (Ewald-Oseen) extinction
theorem:

[='( s aG°(r'r') -Go(r,r) an' ] ds' ,r e V 2 . (2.12)I o Ir)+ [ r) an

Wolf [1973] exposed the commonly held misconception that the scattered field "extin-
guishes" the incident field below S. As we can see from (2.9), there is no surface
integral contribution to the scattered field in V2. Rather, the surface integral over the

I
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incident field itself cancels the incident field (obtained from the volume integral) belowS.

2.2.4 Dirichlet boundary condition

If we now restrict ourselves to the Dirichlet boundary condition (pressure release
surface) for which the total field on the surface is zero, then p. ( r')=- pi ( r') , for
r'e S, and the scattered field integral from (2.6) becomes

p,(r)=-JGo(rr) ap(r) ds fG (r,r') rapi(r) + ap3(r'] (2.13)
fan' an' an'

S S

where the only unknown component under the integral is the normal derivative of the
scattered field on the rough surface. An exact numerical solution can be obtained by

solving the following integral equation [Thorsos, 1988], which is derived by taking
field point r to the rough surface S in (2.13) and usingps = -pi on S:

pG(r) = J G 0(r,r') ap (r) ds', r, r'e S. (2.14)
ic o b ant '

The numerical solution by matrix inversion of this integral equation of the first kind (or
the solution of an equivalent integral equation of the second kind [Thorsos, 1988]) is
used in later chapters to evaluate the accuracy of various approximations.

Another integral equation of the first kind can be derived from scattered field
forms (2.9) or (2.10) by taking point r to the surface S:

Ip,(r) - p,(r') aG ) ds' = J G0(r,r') an' r,r'e S. (2.15)

It is worth remarking that taking r to the surface requires special care in evaluating con-
tributions from the (integrable) singularity in the Green function (or its normal deriva-
tive) at r = r'. The results are summarized as follows, for an inward (+ 2 directed) sur-
face normal. Setting

At, i fS)krr')~~ (2.16a)34 S

2 1 = A" (k I r-r' ) v(r')ds', (2.16b)
S

i j"•)H~)(kl-r'I
12 =•" )n' ~ r' ds' (216b
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I then
limra 1 =]1(re S) , 

(2.17a)
r-rS

Iliml12=I 2(r eS ). + V(r) , liml12=I12(r r=)- 14t(r) , (2.17b)

where the limiting process (left hand side of (2.17)) takes r arbitrarily close to the sur-
face but not on the surface, and the notation I (r e S ) on the right indicates that the
point r is on the surface. The singular contributions for r e S are obtained by integrat-

Sing the small argument expansion of the Hankel function (or its normal derivative) over
a small interval centered on the singular point r = r'. The subscript i on ri in (2.17b)
indicates the region Vi from which r approaches the surface. Note that because the
singularity in the Hankel function (or its normal derivative) is integrable, the integrals
in (2.16) are written in the same way whether r is on or off the surface; however, the
result of performing the integrals in (2.17b) shows that the "limit of the integral" is not
the same as the "integral of the limit" in the case of 12.

It is clear from (2.15) that specifying the scattered field on the surface S (by relat-
ing it to the incident field through the Dirichlet boundary condition) suffices to deter-
mine the normal derivative 3p,/an: the scattered field normal derivative can be
obtained by solving the integral equation.t While (2.15) is somewhat less convenient to
solve numerically than (2.14) because of the additional integral evaluation in the left
hand side, it does serve to relate the surface values of the normal derivative of the scat-
tered field to the scattered field evaluated on the rough surface alone, that is, without
any direct knowledge of P, in the neighborhood of S. This relationship is inherently
nonlocal; the values of the scattered field over the entire surface influence the value of
the normal derivative field at each point on the surface. The operator expansion method
seeks to approximate ap/.an by retaining only the most important elements of this non-
local character, thereby providing a much quicker evaluation than is possible by solving
the integral equation itself. This is accomplished by using a plane wave representation
of the scattered field, approximately obtained from its surface values in a manner
closely related to the "spectral" solution for a flat surface. In the latter case the decom-
position into plane waves can be simply and exactly obtained by Fourier transform. As
we shall see in the next chapter, a key to understanding the operator expansion method
lies in the relationship between this flat surface solution and the rough surface scatter-
ing problem.

I The Neumann condition ties apIan to api Ian on the surface, leading to an integral equation of

the second kind for p,. It is also possible to derive an integral equation of the second kind,
equivalent to (2.15), for the Dirichlet problem, but we will not pursue that here.I

I
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2.3 The scattering cross section and related far field quantities

The integral relations in the preceding section indicate how the scattered field (and
hence the total field) is related to the shape of the boundary S and the field pi incident
upon it. Of particular interest in many scattering problems is the evaluation of the scat- I
tered field far from the scattering region. Most of the comparisons between exact
integral equation solutions and approximate solutions in later chapters will be per-
formed using far field quantities. Such studies can be done for a single surface, or by
averaging results for several different random surfaces chosen from a stochastic ensem-
ble. We will present results in terms of the scattering strength, defined by
SS = 10 log a(01 ,O), where a is the dimensionless scattering cross section per unit
scattering angle per unit surface length. An estimate for a can be obtained by averag-
ing over the far field scattered intensity s( r,6O) which contains both coherent and
incoherent energy; an average over surface realizations is denoted by < Is ( r,0i) >. For
1-D surfaces ensonified by a plane wave we recall the definition of the cross section

(Kei < Is > r < 1, > r sin0/ 2.8a(ei'es) = l*c r = E (2.18) I
lim L Ef

where r = I r I is the (far-field) distance from the surface of length L, and where Ef is
the incident energy flux through the surface. The expression on the right is the I
appropriate generalization when the incident field is not a plane wave. Using the large
argument form for H A) (k I r-r'l ) we write the scattering integral (2.13) in the far field 3
of the surface as

p5 (r) - b 8 i exp[-iks-r' -]e dr F(k5 ) (2.19)

where the scattered field wave vector k, = k rir, and where we have defined the scatter-
ing amplitude F for the 2-D scattering geometry; p, and F are implicitly dependent on
the incident field. The averaged far-field scattered intensity is then

<Is> = < I 2 > (2.20)
2pc r'

where pc is the acoustic impedance of the medium, and where the factor of two results
from taking a time average.

Some approximate methods (for example, perturbation theory and the operator
expansion) provide a series solution for the surface values of the normal derivative
field, and hence a series for the scattering amplitude as well. We can write these series
as

II
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-- 0n ,• 1+P + ý + ""'(2.21a)

a~n a~n an aN
F =F 0 + F1 + F 2 + (2.21b)

-- where the order is determined by the power of an implicit expansion parameter. Trun-
cating the series for ap Ian to a given order results in a solution for F to the same order.
Then, the terms in the series for the scattered intensity constructed from the product of
truncated series for F are

1o0 IF 0 12 , (2.22a)

11 cc 1o + 2Re(FoF•) + IF,1 2 , (2.22b)

12 - i1 + 2Re(FOF*) + 2Re(F 1F*) + IF 2 12 , (2.22c)

13 ' 12 + 2Re(FoF ) + 2Re(F 1F ) + 2Re(F 2F ) + IF3 12 , (2.22d)

in which the proportionality symbol indicates that factors which cancel in the expres-

sion for the cross section have been suppressed. (The s subscript was dropped from Is
for simplicity, and an asterisk denotes complex conjugation.)

I The "truncated series" scattered intensity terms are formed using all possible pro-
ducts from the scattering amplitude computed to a given order. However, one can also
construct the scattered intensity series in consistent orders of the series expansion
parameter by only including cross terms FnF. for which the sum of indices n+m is

less than or equal to the given order:

1(0) - IF012, (2.23a)

I I() - 1(°) + 2Re(FoF*), (2.23b)

1(2) . I) + IF 1 12 + 2Re(FoF), (2.23c)

1 (3) ic(2) + 2Re(F 1F2) + 2Re(FoF3), (2.23d)

S1(4 i(3) + IF 2 12 + 2Re(FIF;) + 2Re(FoF•), (2.23e)

Terms in both series (2.22) and (2.23) are indexed by the highest order of the surface
field included in the solution. Examples in chapters 4 and 5 illustrate that, in the case of
the operator expansion method, the In "truncated" series (2.22) often makes better use
of the n 'th order surface field than does the I1() "consistent" series (2.23). In particu-
lar, we compare the accuracy of the 1,, 1(2), and 12 solutions and find that, in general,
consistently including terms of like powers is not required in order to maintain

"I= . lII II
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accuracy, in contrast to standard perturbation theory [Thorsos, 1990a]. There it was
shown that a major cancellation between terms containing fourth powers of the pertur- I
bation expansion parameter kh requires careful computation of both terms at that order,

r22 and 013, necessitating calculation of the second and third order fields to obtain the

second term in the series for the incoherent cross section a04 ) t

To evaluate the cross section one must first solve for the surface sources of Ps dis-

tributed on S. As was discussed above, this can be done exactly by numerically solving
an integral equation. This is a computationally intensive solution, practically limited to
scattering from I-D surfaces. Furthermore, it requires computing scattering from one I
surface realization at a time, since no formally averaged solution is possible. The
Kirchhoff Approximation (KA) and perturbation theory are two classical approxima-
tions which have been used extensively, and we briefly review them here because of
their usefulness in computing scattering in complementary roughness regimes, and
because of their analytical ties to the much newer operator expansion method. Though I
these classical approximations do lend themselves to formal averaging, we develop
them here as numerical techniques in order to make comparisons to the exact integral
equation result and to the operator expansion solution more straightforward. We begin
with the Kirchhoff approximation.

2.4 Kirchhoff approximation

In the Kirchhoff approximation, the unknown normal derivative in (2.13) is set to
the value it would have for reflection from the locally tangent plane

= , r') S . (2.24)an' an'

Using the integral identity (2.11) for the incident field we can write the Kirchhoff solu-
tion for the scattered field in three equivalent ways:

rS 0pi(r')ds
ps(r) = -2 Go(r,r') n ' (2.25a)

S= - 2 fpi(r') ~r ' ds" (2.25b)
S an'

t In the operator expansion solution, term F0 contains incoherent energy, whereas in perturbation
theory it does not. In the perturbation method all F0 terms drop out in the series for the incoherent
intensity, as do all odd order terms such as F IF;. I

I
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------ ap -' + P G(r 0  rn' ds'. (2.25c)

To illustrate the symmetry of these forms in the far field, we choose the incident field to
be a single plane wave for clarity. Setting pi(r) = exp[ik i 'r], the scattering amplitude
(2.19) is proportional to:

FKA (k,) - -i Jf exp[i(k/-k,)-r'] 2k/-ii"ds' (2.26a)I S

= -i f exp[i (ki-ks)-rl (-2k,)-" nds' (2.26b)
S

U= -z f exp[i (k 5- k).r(ki - k)ids'.(
S

Though the integrands of these three forms are not the same at any given surface point
r', the scattering amplitudes are rigorously identical. These three expressions seem to
give different results in part because of the apparent lack of reciprocity in (2.26a) and
(2.26b) - this property has led to erroneous statements in the past; for example, see
DeSanto and Brown [1986, Sec. 3.3].

2.5 Rayleigh-Rice perturbation theory

There are many ways to present a derivation of Rayleigh-Rice perturbation theory,

but we will choose one which leads directly to a Monte Carlo solution. This formula-
tion is compared to a component of the operator expansion solution in chapter 3. The
approach taken here follows that outlined by Thorsos and Jackson [1989], which was in
turn motivated by the development of Harper and Labianca [1975a, 1975b].

The Rayleigh-Rice perturbation method can be interpreted as a transformation of

the scattering problem from one posed on the rough surface z = ý(x) with the Dirichlet
boundary condition, to one posed on the mean plane z = 0 with a new set of boundary

conditions determined by the small perturbation method. In other words, the complex-
ity of the original boundary shape, on which is specified a simple boundary condition, is

exchanged for complexity of a new set of boundary conditions specified on a simple

boundary. The connection between the two problems is established by continuation of
the total field between the mean plane and the rough surface. Because the field is writ-
ten as an expansion in a power series in small roughness parameter kh, where k is the

I
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acoustic wavenumber and h is the rms surface height, the original Dirichlet boundary
condition on the rough surface can be enforced order by order. The solution requires
analytic continuation of the field in the entire region between surface extrema, and
invokes the Rayleigh hypothesis on the scattered field to perform that continuation.

We write the expression for the total field as in (2.6), but assume that the scatter-
ing comes from a flat surface with a set of boundary conditions to be determined. Thus,

p (r) = P (r') G o(r, r')dv'
V3f

+ J [p 0( a r') - GO(r, r) ] dx' (2.27)
z=O

where the normal derivatives are vertical derivatives. In general, both terms (field and
normal derivative of the field) are present in the surface integral. However, the surface
integral can be simplified by choosing the Green function which is zero on the mean
planet:

GI(r,r') = G0(r,r') - G0(r,r") , (2.28)

where point r" in V 2 is the image of r' in V1 reflected in the z = 0 plane. The total field

is written as a perturbation about the flat plane solution

p(r) = p 0(r) + psi(r) , (2.29)

where p 0 is the flat surface solution, and psi is the scattered field due to the roughness

of the original surface as follows. (Note that psi *p, defined by (2.6) and (2.10). The
scattered field p, includes the reflected field Pr, defined below.) The volume integral in
(2.27) becomes

P0 (r) = f P(r')GI(rr')dv' = pi(r) + pr(r) , (2.30)
V3

where Pr is the up-going field due to a flat surface reflection of the incident field. Using
G I( r, r') in the surface integral in (2.27) gives the scattered field psi due to the rough-

ness alone: r aG 1 (r,r,)

Psi (r) = p(r) jzr dx (2.31)
z=O

) This procedure can be interpreted as finding the image sources of the scattered field due to a

point source above the surface, thereby solving the scattering problem; hence, G 1( r, r') is often
called the image Green function. However, G I is only readily available for a flat surface.
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which contains all the incoherent scattered field but also includes coherent components
of the scattered field. These coherent components are small corrections to the reflected
field p, for small surface roughness, but effectively cancel the reflected field for very

Srough surfaces. We recognize that

3 - 2 J,-_o (2.32)

which has a far-field limit easily obtained from (3.48).

I In order to connect the flat surface values of the total field to its values on the
rough surface (where the original boundary condition sets p (x, ý(x)) = 0), we write the

Stotal field in the neighborhood of the mean plane as a Taylor expansion about the z =0
plane, and evaluate this expansion on the rough surface z = ý(x):

p (r) +(x) Zp-(r) + j2(x) -2p (r) + ] (2.33)P ~ ~ ~ ~ a + (X I 2! lz 2  .. ]=

We also write the total field in a power series in small roughness parameter kh as

p(r) = po(r) + (kh)pI(r) + --. P2(r) + (2.34)

and substitute (2.34) into (2.33) to obtain: 2!

p p(ri = po(r) + elp 1(r) + C2P 2(r) + E3 P3(r)
ap' 0(r) + 1 • ~p 1(r) + •p 2(r)

+ a 2p 0(r) ++ 
EA 2 (r) (2.35)

S+2!• 2 2 ! az 2

+ 3a~po(r) + 0 (E4)
3! az 3 =

where E (kh )n and ý - 4(x)
In ! '

Using the Dirichlet boundary condition on the rough surface p (x, z =(x)) =0, and col-
lecting like powers of kh (organized by column in (2.35)), we obtain a new series of
boundary conditions for the total field organized by order in kh. Through third order
these are:

I po(x,O) = 0, (2.36a)

E p-(XO)= ap°(r) 12=0 (2.36b)

I



E2 P 2(X O ) = , p az ]z =O 
(2 .36c)

= - PP 2 (r) )- =_E2r -- - Epo(r) ] " (2.36d)
3(,) a Z 2! az 2  3! Iz3  J2=o

This set of boundary conditions must now be solved for the total field (2.34) to a given
order, and used in (2.31) to find the scattered field p3, to the same order. The Dirichlet
boundary condition on the rough surface and the perturbation analysis lead to
P 0(x,O) =0; this is simply a restatement of the fact that the rough surface scattering
solution is obtained by perturbation about the flat surface reflection from a Dirichlet
boundary. The zeroth order total field p 0 is zero on the mean plane; because p 0 is the
sum of incident and reflected fields it can easily be shown that all even order z -
derivatives of p 0 evaluated on the plane z = 0 are also zero. The (nonzero) derivative
ip 0/az = 2 ip i /az is readily obtained analytically for a given incident field. Beca,-se
the vertical derivatives are sought on the plane z = 0, they can also be computed by
Fourier transform [Thorsos and Jackson, 1989]. This transform technique will be used
extensively in the operator expansion method, and is discussed in detail in chapter 3.

I
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I CHAPTER 3

* The Operator Expansion Method

1 3.1 Introduction to Chapter 3

The operator expansion is a new approximation for computing scattering from
rough surfaces. Proposed by Milder [1991], it is based on a technique used by Milder
[1990] and colleagues [West et al., 1987] in surface wave hydrodynamics. The Diri-
chlet (pressure release) scattering problem is solved using a nonlocal operator which
computes the normal derivative of the scattered field given only the boundary values of
the scattered field; these are tied to the incident field through the boundary condition.
The nonlocal normal derivative operator which performs this transformation is
expressed in a systematic series expansion whose terms contain powers of the surface
height function and powers of a Fourier integral operator. In this chapter we derive the
expansion and show how it is used to solve the Dirichlet scattering problem. Our
presentation differs from that given by Milder in two fundamental respects. First, we
derive and apply the operator expansion assuming that the scattered field satisfies the
Rayleigh hypothesis. Second, the series expansion itself is obtained in a more straight-

forward but less rigorous way. Though this approach seems to make unnecessarily res-
trictive assumptions, the solution thus obtained is identical to Milder's and provides an
alternative way of deriving the expansion which we feel is simpler. We discuss

Milder's approach in Sec. 3.5 and contrast it with our own.

The operator expansion method attempts to solve the rough surface scattering
problem much more efficiently than possible with a rigorous integral equation method
by retaining only the most important parts of the nonlocal relationship (embodied in the
integral relationships (2.9) or (2.15)) between the surface values of scattered field and
the surface values of its normal derivative. This is accomplished using a plane wave
representation of the scattered field, approximately obtained from its surface values in a

manner closely related to the spectral solution for a flat surface, described in Sec. 3.2.1.

In that unique situation, the decomposition into plane waves can be simply and exactly
obtained by Fourier transform. Once the plane wave representation for the exact field is
known, the field or any of its derivatives can be evaluated anywhere the representation
is valid, namely above the flat surface. The rough surface scattering problem then

reduces to finding an approximate plane wave representation for the scattered field, the
latter being specified only on the rough surface. To this end, the scattered field is first

continued to a flat plane. There, the vertical derivative is obtained by Fourier transform

and then is continued back to the rough surface where it is related to the desired normal

U
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derivative using the known tangential derivative of the surface field. The analytic con- I
tinuation steps are expressed as Taylor series, leading to a series expansion for the nor-
mal derivative operator. Though the plane wave coefficients for the scattered field are
never explicitly solved for, the representation of surface fields in up-going waves under-
lies the entire derivation as we shall see below.

3.2 Derivation of the Operator Expansion Series

3.2.1 Spectral solution for a flat surface

In this section we solve the problem of reflection from a flat Dirichlet surface dep-
icted in Fig. 3.1 by a method which we later extend to the rough surface case. While

we know the solution for the normal derivative of the scattered field in this simple case
to be

ap3 (r) Dpi (r) (3.1)

at every point on the surface, a "local" relationship, we do not make use of the normal
derivative of the incident field. Rather, the solution is obtained by using just the surface
values of the incident field itself, the latter chosen because it is directly tied to the scat-

tered field via the boundary condition. (Conversely, in the Neumann problem one
would use just the surface values of the normal derivative of the incident field.)

ZI

\ki /ks

S~I
S : Z-Z0

Figure 3.1 : Reflection of an incident field by a flat surface at height z = z0.

Considering reflection of down-going incident energy (which we take to be more
general than a single plane wave) by a flat surface located at height z 0 it is clear that,

even very close to the surface, all scattered energy propagates upward. The scattered
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I field can then be written as a sum of upward directed plane waves, both propagating
and evanescent,

Ps(r)= f expJikx ]expfikzz l/j,(k,) dkz, (3.2)

where for up-going waves we have k, = + -,k 2_ k2 and Im(k,)> 0, and where the
I j,( k(k) are the complex plane wave coefficients given by a Fourier transform over the
values of the scattered field specified on any horizontal surface, and in particular on the
flat reflecting surface located at z = z o

P,( kX) = exp[-ikz 1 exp[-akxx'Ips(x',zo) dx" (3.3)

Note that as defined by (3.3) the coefficients j.( k,) are independent of z0. We also
refer to (3.2) as the spectral representation of the fieldW.

Once the complex amplitudes fis( k,) are known, the scattering problem is solved
because the scattered field, or any of its derivatives, can be computed anywhere in the
scattering region for z ý zo. To make use of the scattering integral (2.13) we require
the normal (vertical) derivative on z = z 0. The vertical derivative of the field is easily
obtained by differentiating (3.2) and evaluating for z = z 0 :

""IaP (r)IZ = dkx exp[ikx x] (ik,) J exp[-ikx'"] p, (x',z o)SZ =20fO

IA
Q Ps (X',Z 0) • (3.4)

H Equation (3.4) defines the Fourier integral operator Q which, when applied to the scat-
tered field on the surface z = z 0, yields the vertical (normal) derivative of the scattered
field on the flat surface directly usable in (2.13) as

I P r) G r[ ap1 ((r r ') L 1 I

p. (r) G -r rJ - Q Pi.~~xao)] x (3.5)

Mtwe plane wave coefficients j,(k 2 ) are equivalent to the elements of the transition or T-matrix
[Thorsos and Jackson, 1989] when the incident field is a plane wave; here, we consider more gen-
eral forms of the incident field.

I



36

where we have used the Dirichlet boundary condition p, = -pi.

In the fiat surface example above we show how the nonlocal Fourier integral
operator Q is used to solve the scattering problem from surface values of p, alone.
(Note that Q is related to q used by Milder by Q a iqA.) It is straightforward to show,
using equations (3.2) and (3.3) written for the incident field in terms of down-going
waves, (3.4), and the Dirichlet boundary condition, that the solution (3.1) is recovered.
We note that applying Q to fiat surface values of entirely down-ping fields produces
the negative of the normal derivative; indeed, while the effect of Q on p5 is to produce
apfiz, when applied to pi it produces --apilaz. Consequently, when applied to a field
which is a mixture of up- and down-going energy, Q does not produce the normal
derivative, as can be trivially illustrated by operating on the total field: Qp = 0. In gen-
eral, operator Q is unsuitable for computing the normal derivative of a fiat surface field
resulting from an arbitrary combination of up- and down-going waves. All up-going
wave operators we define have similar limitations but may nevertheless provide useful
approximations in situations where both up-going and down-going waves are present.

In order to compute the normal derivative of the scattered field on the rough sur-

face we apply up-going wave operators like Q to the surface values of the scattered
field, under the assumption that the scattered field can be represented by strictly upward
directed waves at the surface. This up-going wave assumption becomes important in
the rough surface case when, because of multiple scattering, the scattered field may also
contain down-going energy in the neighborhood of the surface. Stepping back to con-
sider the case of an arbitrary field traversing a mathematical surface, it is clear that one
cannot determine from the surface values of the field alone which way the field is pro-
pagating; because the field could have sources on either side of the surface, the normal
derivative is required to sort out the partitioning of up-going and down-going energy.
However, if the field is known to be homogeneous on one side of the surface, as is the
case for the scattered field which has no sources in the scattering region, then the
integral equation (2.6) shows that the normal derivative can be obtained from the field
on the surface, and therefore contains no independent information, in spite of the mix of
upward and downward traveling energy inside the wells of the surface. The solution of U
the integral equation makes no assumption about the plane wave representation of the
scattered field, and for this reason will likely be more robust (as surface roughness
increases) than an up-going wave operator solution. The up-going wave representation
raises questions about the connection between the operator expansion method and the
Rayleigh hypothesis; this topic is discussed in greater detail in Sec. 3.5.
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U 3.2.2 Extension of the spectral solution to the rough surface problem

The scattering problem posed on a rough surface immediately becomes more
difficult; the spectral solution method is complicated by the phase term containing the
x -dependent surface height function. The field can still be expressed as an expansion in
up-going plane waves

Sp,(x, C(x))= f dkx exp[ikxx] exp[ik2z (x)]j 55 ( kx) (3.6)

but in this case the spectral coefficients ,5, ( k.) are no longer simply related to the boun-
dary field ps (x, ý(x)) through a Fourier transform. While the solution for the flat surface
problem does not require the machinery of the Fourier integral operator, a similar
approach for the rough surface problem would be a welcome simplification. Following
Milder [1991], and by analogy to the definition of Q in (3.4), we define the rough boun-
dary normal derivative operator Nb by its effect on the scattered field:

[ ap, (r)1UNb Ps (X, (X) -an JZ=0 (3.7)

In order to arrive at a Fourier integral operator expression for Nb we extend the

methodology used in the flat surface case to the rough surface case by using an up-
going plane wave representation of the scattered field to solve for the normal derivative.
As before, the plane wave coefficients are obtained from the rough surface values of the
scattered field, but the coefficients can only be computed by Fourier transform if the
scattered field is known on a flat plane; therefore, we continue the scattered field from
the rough surface to a reference flat surface. For reasons discussed later (see Sec. 3.4),
the spectral form thus obtained is not directly used to evaluate the normal derivative
apslDn on the rough surface; rather, the vertical derivative field apfilh is evaluated onI Athe reference plane using Q and is then continued back to the rough surface S, where it

is finally related to the normal derivative. Because the reference plane is only used as an

intermediary in the estimation of apsl/n, its location is arbitrary. For example, it could
be placed entirely above the rough surface, or, it could be placed on the mean plane
z = 0; in fact, specification of its location is not required in the operator expansion.
Nevertheless, we will see that continuation of the scattered field is required into some
regions below the rough surface S and therefore beyond the acoustic medium, where no
real fields exist.

To visualize the continuation process we imagine extending the acoustic medium
below the surface S, and consider the surface sources of the scattered field (i.e.,
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scattered field and normal derivative values) to be "secondary" sources in the sense of U
Huygens' principle; see Fig. 3.2. In other words, the physical boundary between the
acoustic medium and vacuum is replaced by a mathematical contour (of same shape
z = -(x)) embedded in the extended acoustic medium, on which are present the same
values of the scattered field and of the scattered field normal derivative as before.
Above the contour S, the scattered field given by the scattering integral (2.10) is there-m
fore the same. Below S lies the continued scattered field; the continuation is straight-
forward so long as no sources are encountered, yet studies of the validity of the Ray-
leigh hypothesis indicate that singularities of the continued scattered field do exist
below the rough surface [Millar, 1973], [van den Berg and Fokkema, 19801. It is possi-
ble to continue the scattered field numerically and thereby "image" the virtual sources
of the scattered field. One such technique first solves for the unknown normal derivative
using an exact method, and then computes the scattered field on a plane just above the
highest point on the surface using (2.10). The spectral coefficients /s( k4) are obtained
by Fourier transforming those scattered field values using (3.3), and the field is contin-
ued below the plane and below the rough surface using (3.2). It is important not to con--
fuse the continued field given by the upward wave representation (3.2) (nonzero below
S) with the field given by the Helmholtz surface integral over S (2.9), which is always
zero below S. Such an error was the cause of some of the controversy over the validity
of the Rayleigh hypothesis [Millar, 1971].

I

Ss ... ..................... ...... ....... ... ........
S.......0 ....... ............ !

3.2a 3.2b i

Figure 3.2: Replacing a surface distribution of sources by a volume distribution of image sources.
In the depiction of the real scattering process on the left, all of the energy incident upon the Di-
richlet surface S (a physical boundary) is ultimately scattered upward; all scattered field sources
are distributed on the surface S, and there is no scattered field below S (3.2a). Alternatively, the
scattered field above the surface S can be thought of as emanating from image sources distributed I
in the continued acoustic medium below the now mathematical surface S (3.2b).

I
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U For the purpose of the derivation, we assume that all singularities of the continued
scattered field lie below the plane passing through the lowest point on the rough surfaceIZ = • . This assumption is equivalent to making the Rayleigh hypothesis and allows
the continuation of p. throughout the region between surface extrema. The operator
expansion solution obtained in this way is identical to Milder's, though Milder tried to

avoid making the Rayleigh hypothesis on p, by using an integral identity derived from
(2.9), an exact relation obtained using Green's theorem. It turns out that Milder's
approach still assumes that the Rayleigh hypothesis is valid; we discuss his argument in
Sec. 3.5.

I The details of the continuation procedure and the development of a series expan-
sion for Nb are given in the following sections; here we wish to outline our derivation

of the operator expansion solution. The mathematical formulation presented in this
work is occasionally identical to Milder's [ 1991]. However, we provide an expanded
discussion and an alternative interpretation of the derivation in the hope that it will be
easier to follow. We develop the expansion for Nb for strictly up-going fields whichA

satisfy the Rayleigh hypothesis. We then assume that Nb can be applied to Ps (x, ý(x))
and investigate the usefulness of this solution numerically in Chapters 4 and 5.

Beginning with the scattered field known on the rough surface through the Di-
richlet boundary condition (ps = -pi), the operation embodied by the symbol Nb can be
conceptually decomposed into four separate steps which are schematically illustrated in
Fig. 3.3:

1. Continuation of the scattered field from the rough surface z = ((x) to a reference
plane located at z = z 0 .

2. Evaluation of the vertical derivative of the scattered field on the reference plane
using the flat surface vertical derivative operator Q.

3. Continuation of the vertical derivative field from the flat surface z = z 0 back to the
rough surface z = (x).

4. Evaluation of the normal derivative field on the rough surface using the newly3 determined vertical derivative and the known tangential derivative fields.

Steps 1 and 3 are inverse procedures (though the fields being continued are not the
same); indeed, these operations correspond to Milder's operators Z and Z, respec-
Stively. As we shall see, operator Z has a series representation that is straightforward to

'A

obtain, whereas Z - does not; consequently, we will treat step 3 before step 1. An
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tI I

Z ,= _ __ _ __

Figure 3.3: Diagram illustrating the four operations which are combined in operator Nb.

A

expansion for the operator Nb is obtained as a series of terms containing powers of the

Fourier integral operator Q and the surface height function C(x). We now turn to the
details of the derivation, beginning with the treatment of step 3.

3.2.3 Continuation of a field from a flat surface to an arbitrary contour I

The continuation of fields is fundamental to the operator expansion method.
Operators for field continuation between the rough surface and a reference plane are
developed as Taylor series expansions, leading to a series for normal derivative opera-
tor Nb. Truncation of the series for Nb is directly interpretable as an approximation of
the continuation operations, and consequently, as an approximation of the plane wave
coefficients/T ks,). Examples in Chapters 4 and 5 illustrate that the series for Nb con-
verges rapidly for many problems of interest. Retaining just a few terms in the series
leads to an accurate solution for the surface values of the normal derivative field, and
hence for the scattering cross section as well.

Like differentiation of fields, continuation of fields in the operator expansion

method also relies on a field representation in terms of up-going plane waves; the idea
is simply that an up-going field can be evaluated anywhere above its sources given its
plane wave coefficients. We assume that an entirely up-going field p + is known on a
flat surface picked for convenience to be the plane z 0 = 0, and recall that its spectral
representation can be obtained as in (3.3). There are two reasons for not simply using
(3.6) to perform the continuation. First, we wish to develop a series form for the con-
tinuation operator which can be used to find a series for its inverse. Second, the series
is cast in terms of Fourier transforms which are convenient and efficient to evaluate
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U numerically. To find a series representation for the field p +(x, ý(x)) which has been

continued up to the mathematical surface z = ý(x) > 0, we first write (3.6) for p , and
expand the height dependent exponential, and then interchange the order of integration
and summation:

A c . +__-kx (ikz ý(X))n ( x
p x,+•(x)) = Jdkxexpixx] -

Y•= n " f dk. exp[ikxx] (ik1 )" i+(k.) • (3.8)

The convergence of the series in (3.8) and the validity of the interchange of the order of
operations are both dependent on the condition that the plane z0 =0 lie above all singu-
larities (sources) of the field p +. For the purpose of this derivation we shall restrict our-
selves to such a case. Nevertheless, we shall apply the resulting expressions to situa-
tions in which the location of the singularities is unknown and could violate the stated
assumption, and rely on numerical tests to assess the accuracy of the solution obtained
in this way.

The remaining integral in (3.8) is a spectral representation of the n 'th vertical
derivative of the field evaluated on the flat surface z =0, as can be verified by repeated
differentiation of (3.2) written for p+. Using (3.4), we see that these derivatives can

also be written as the operator Q operating n times on field p + so that

P+(X, (x))= Y ! I p+(x,z) Z

= n Qp+x,0). , (3.9)
n=O "

Equation (3.9) is a Taylor series expansion of the field about the horizontal refer-
ence surface using nonlocally computed vertical derivatives, and provides a continua-
tion of the field from the surface z =-0 to an arbitrary surface z = C(x). Following
Milder, we designate this continuation operation on up-going flat surface fields by
operator Z:

Z p+(x,O) = exp[-ikzz01 Z p+(x,zo) M p+(x, C(x)). (3.10)
The definition for Z remains essentially unchanged in the generalization to an arbitrary

location of the flat surface on which the field is specified, except for a simple z 0 depen-
dent phase term; the formal restriction is simply that both z0 and Cmin (the height of the
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lowest point on the rough surface) be above all singularities of the continued field. In
other words, Z is an exact continuation operator only for entirely up-going fields. In
developing the expansion for Nb, operator Z is applied to the vertical derivative of the
scattered field apl/az (step 3). We shall see that the height z0 does not appear in the
expansion for the operator Nb because of the two-way continuation. (See the algebraic
property of commutators in the expansion for D in (3.74).) Thus, the location of the flat
plane is truly arbitrary in the operator expansion solution. However, the location of the
fiat plane does matter for a single continuation step, and appears in the expressions for
fields continued using Z or Z alone.

3.2.4 Continuation of the rough surface scattered field to a reference flat surface

In sketching out the construction of the expansion for Nb, the first step is to con-
tinue the scattered field from the rough surface to a reference plane. The difficulty with
performing this step using a plane wave decomposition is that the latter is obviously
unknown. However, we recognize that the desired continuation operator is the inverse
of Z defined above. Indeed, if we define operator Z by

z Z - = 1, (3.11)

then we have defined an operator which takes an up-going field specified on the rough
surface z = 4(x) and produces the values of the field on the flat surface z = 0

Z p+(x, ý(x)) = p+(x,O) (3.12)

We can see that by applying Z -to the rough surface scattered field we would
hope to obtain the scattered field evaluated on the reference plane z = 0 where its plane
wave coefficients can easily be found. In principle, these coefficients could then be used
to evaluate the desired scattered field normal derivative on the rough surface, or, they
could be used to find the far field scattered field directly, and hence, the scattering cross
sectionl. Instead, in the operator expansion method the vertical derivative of the con-
tinued scattered field is computed on the reference plane by applying operator Q to I
p,(x,O), and then operator Z is used to continue the vertical derivative ap1 /az to the

rough surface. Thus, Milder defines a nonlocal vertical derivative operator D operating 1
on up-going rough surface fields such that

A)~r¶~ A A A-. [p1rD (3.13) I
T'his approach is outlined in Sec. 3A, and numerically examined in Sec. 4.6. It is shown to be in-

ferior to the operator expansion solution in terms of rate of convergence and domain of validity.

Nevertheless, it is an improvement over standard perturbation theory which it closely resembles. I
I
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Under the assumption that the scattered field is up-going at the rough surface, D pro-
vides a means of obtaining the needed information regarding the behavior of the scat-
tered field in the neighborhood of the surface, and thus can be related to the normal
derivative operator Nb (see the following section). Here we wish to solve for the
expansion for D using a method which, though less rigorous than the variational
approach used by Milder [1990] and [1991], is simple and still provides the same solu-

A -1 A A -1

tion. A series representation for Z is obtained by expanding Z and Z in (3.11) in
series and solving for the terms in Z by successive substitution, following the method
outlined by Watson and West [1975], discussed in more detail by West et al. [1987],
and reviewed by Milder [19901. As Milder [1991] pointed out, the convergence of this
expansion is not well established, and in Chapter 4 we demonstrate numerically that it
is not as good as the convergence of the expansion for Nk. The strength of Milder's
variational approach is to show that a series expansion for Z is not required to find the

series expansion for D (and hence for Nb); existence of operator Z is all that is
A --needed. Nevertheless, the series for Z formed by backsubstitution leads to exactly the

same series for D and provides an independent, if not rigorous, method of obtaining the
terms of the operator expansion.

A--|

We write operators Z and Z as series in powers of ý and Q. When using opera-

tor notation the fields being operated on are often omitted for the sake of brevity, but in
all cases it is understood that the operator symbols operate on fields to their right. We
multiply the series for Z and Z -, given by

A A A

Z= Z with Z,, 2- Q' (3.14)
n=O 

n!

and

- Z0n (3.15)

n=O

to obtain the identity operator
(A A A A A Al

Z0 +z I+ Z 2 + 0 J IT Z +Z2 + = ,(3.16)

then expand, collect orders, and backsubstitute to find to third order:
A -

m 0= 1, (3.17a)

Z = -Q (3.17b)

262 6 (3.17d)

I
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I
Manipulations involving operators are not commutative. For example, ý Q Q ý when
ý(x) * 0, as can be verified byoperating on a test function; in operator ýQ, • only acts I
as a local factor, whereas in Q ý it enters nonlocally through a convolution. The com-
mutator of ý and Q, denoted by

R *Q I W - Q, (3.18)

is a fundamental component of the operator expansion, and the use of this notation
simplifies the expansion forD (3.20) and N (3.28) below.

Though ý and Q do not commute in general, we note that the terms for Z.-, are
OM AA-... A...=1 I. Ithe same whether obtained from zz = or from Z =1.

3.2.5 The series expansion for vertical derivative operator D
A A-

The series for Z and Z can now be combined to find the terms in the series for
D D, using D =ZQZ (3.13). To third order we find:

A A

D)o= , Q (3.19a)
A A2 A~

/ A• Q, (3.19b)

D2 .0W Q 2Q t62_•. W %Q +L2Q3 31c
-D 3' = "- 6QWý Q2 Qý Q CQý2Q + Q3C29dC

These terms can be written more compactly using the commutator notation. In particu-
lar, applying the variational method used by Milder leads directly to an elegant recur-
sive form [Milder, 1990] for the terms in the expansion for D:

n-i

D•n = C ,/D,] !-,n--i, n~l, (3.20)

WithD 0 = Q andD =) D 0+ DI +/D 2 + ""-This expression (and (3.26) for N) is use-

ful for generating terms in the operator expansion to arbitrary order. We present the

variational approach in Sec. 3.5. 1.

3.2.6 The expansion for normal derivative operator N

The essential part of the operator expansion solution is the expansion for the non-
local vertical derivative operator D. It provides information about the behavior of the
scattered field in the neighborhood of the surface given only the values of the field on
the surface. The vertical derivative can be combined with the linearly independent
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tangential derivative along the surface to construct the desired normal derivative (see
step 4 in Fig. 3.3). The tangential derivative of the scattered field is known in the sense
that the field is given on the boundary by the negative of the incident field. In numeri-
cal implementations, this field is sampled at many points along the surface, and the
tangential derivative could be obtained by a finite difference method; here, we use an
FFT technique. Formally, the normal and tangential derivatives are given by

a = n-Vp,(r) + -L p.(r) ,(3.21a)

Sap, (r)
=' + CX Vz p. (r)' (3.21b)

where C,, d C(x)/dx is the surface slope at each point, and INr'1, = ds Idx is the
required normalization factor. The normal derivative can then be written using the
tangential and vertical derivatives as

[-a. r-] p.p(r) + - 2ýi.- ps(r) . (3.22)

It proves convenient to define the nonlocal operator N without the normalization
factor (ds/dx)-1 because of a change of variables in the surface integrals from surface
coordinate s to transverse coordinate x. We define the "scaled" normal derivative
(indicated by a prime) of the scattered field

p,'(r) dx = an ds ( (3.23)

Recalling definition,(3.7) and using (3.22), we write the expression for scaled normal
I derivative operator N as

I ~~_ds Nb-sX4X)-L (1+261]sX•x),(.4

N p,(x, l(x)) = -, = A+ (+ýX)D p, (x), (3.24)

A

where we use D to evaluate the vertical derivative M/az, and use an FFT to evaluate the
Sx -derivative of the complex function p5 (x, C(x)). (Note that this is not the x -derivative

of the scattered field, which is then evaluated on the rough surface; to obtain that quan-
tity would require a nonlocal operator analogous to D.) Operator D is an approxima-
tion of the vertical derivative if Ps does not satisfy the Rayleigh hypothesis, and to the
extent that the series for D is truncated. It is important to recognize that to evaluate
(3.22) the scattered field must be known in the neighborhood of the surface, whereas

(3.24) only requires knowledge of the field on the rough surface itself.I
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AA

Operator D is written as a series expansion in powers of ý and Q (3.19), such that
at n'th order the terms contain V" and " Milder [1991] showed that the slope U
squared 1 can be expanded in terms of ý and Q as a second order term:

_- 2 + ^% ±^2 = _1_L[ A 211 (3.25)

With this in mindthe terms of Eq. (3.24) are grouped by order to provide the expansion
for operator N =N 0 +N 1 +N 2 + .. as I

AA

N 0 =D 0 , (3.26a)
N A d (3.26b) UN1 = - ,

A A A

N -n n + Dn-2 , for n>2. (3.26c)

AA

Useful expressions for the numerical implementation of eachqn~ can be obtained

by substituting the forms for D in (3.19) into (3.26). Milder showed that by making use
of (3.25) and

A2 _2 22 a2
Q - ax2  (3.27)

A

the first three terms of N can be cast into a symmetrical form at each order in the U
expansion. (An operator is symmetrical when the operations it represents are the same
carried out from right to left or from left to right. Milder [1991] showed that symmetry
of the operator implies reciprocity of the operator expansion solution.) This symmetry
is not directly apparent when using commutator notation, but becomes so upon expan-
sion of the commutators; up to second order, the resulting forms lead to a more efficient I
numerical implementation as well. At third order, considerable effort is required to
show that the term N 3 is indeed symmetric; this can be done by addition of terms which

taken in combination with those in (3.28d) result in a manifestly symmetric expression,
and new residual terms which can be shown to be symmetric after further manipulation
using (3.25) and (3.27). However, this approach does not lead to a more compact form. I
The terms of N are given below as compact symmetric forms to second order, and as
the "standard" form obtained from (3.19) and (3.26) for third order:
A A

AA A A

A 4^2 12C2 ~ iQ [ C, [,Q]]N2 2 Q Q Q Q k2Q (3.28b)0I
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I A AAAA I2. 2I,,A2. A2, AA
N 3 = QQQ 2Q Q 2QQ Q 2 QQ

+ ,A Cr2;A __ A;3 ^3~ + L A2 C2A2_ I C2 A Z 2C^ A+ 4
2Q Q 6Q 2 2 Q +6  Q (3.28d)

The use of these expressions in computing scattering from a 1-D Dirichlet surface is
addressed in the next section, along with a brief description of the numerical implemen-
tation of the method.

1 3.3 Numerical Implementation of the Monte Carlo Method

The scattering cross section for the operator expansion, the integral equation, and
other methods are obtained using a Monte Carlo technique. Scattering calculations are
performed for single surface realizations and are then averaged to provide estimates of

I the cross section. The rough surface profiles used in this work are random realizations

generated by a spectral method [Thorsos, 1988], [Macascill and Ewart, 1984]. The
method produces periodic surfaces; here a nonperiodic subset of each generated surface
is retained. For each surface realization and incident angle 8j, the incident field pi and

its scaled normal derivative pi' are evaluated on the rough surface. Then p' is computed3 by the operator expansion (or by any other means) and used to compute the total scat-
tered intensity in the far field of the scattering region. The intensity is then averaged

over realizations to provide an estimate of the cross section, and then of the scattering
strength, defined in Sec. 2.3. The following sections outline the procedure in more
detail, with particular emphasis given to the operator expansion method.

1 3.3.1 Using N in the scattering integral
A AI Operator/N is used in the scattering integral in the same way operator Q was used

in the flat surface problem described in Sec. 3.2.1. Essentially, the surface values of the
normal derivative of the scattered field are estimated by applying N to the surfaceU values of the negative incident field. Writing scattering integral (2.13) over transverse
coordinate x, the scattered field above the rough surface is given by

ps(r) f - JGo(r, r') p"(x', '(x')) dx' . (3.29)

The rough surface values of the scaled normal derivative of the total field are expressedSas the sum of the incident and scattered field derivatives as p' =Pi' + PS,, where N is

used to estimate p,':
A A

ps'(X, ý(x)) = N ps(x, t(x)) = -Npi(x, ý(x)) . (3.30)
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The series expansion for N leads to a series solution for p'"

A A AI

P, - Pi'-(N 0 +NI+N 2 + "')Pi = Po'+Pi'+P2'+" (3.31)

Once p' is determined, the scattered field can be evaluated anywhere above the rough
surface using (3.29) and (2.3). In the far field of the surface, we use the scattering
amplitude F defined in (2.19)

'S I
F (ks) f- exp[-i k, -rr p '(r') dx' (3.32)

to find the cross section (combining (2.18) and (2.20)) given by

a(0i,0s) = <IF 12 > sin0i (3.33)

When the series (3.31) for p' is evaluated to a given order, the procedure outlined I
above leads to the "truncated" series solution for the cross section given by (2.22). To
obtain the "consistent" series (2.23), p.' is evaluated at each order n separately, and
then used in (3.32) to find each F. term in the scattering amplitude series
F = Fo + F I + "'" + Fn + " "'. Finally, the product terms are computed and summed
as given by (2.23). The procedure required to evaluate series (2.23) is much less i
efficient than the procedure for (2.22), and is only used to assess the importance of the
higher order cross terms which distinguish the two series. Fortunately, it turns out that
the trmcated series (2.22) often makes better use of the n'th order surface field in the
operator expansion method; see Sec. 4.4 (Gaussian spectrum) and Sec. 5.3 (Pierson-
Moskowitz spectrum).

3.3.2 Tapered plane wave incident field

The incident field for the infinite randomly rough surface problem can be quite
general, with the single restriction that it ensonify a limited portion of the surface, as
discussed in Sec. 2.2. This restriction is compatible with numerical simulations which
must use a finite surface length. Following Thorsos [ 19881 we use a modified Gaussian

tapered plane wave given by i
pi(r) = exp(ikir[l+w(r)] - b2(r)/g 2 ), (3.34a)

w(r) = [ 2b 2(r)/g2 _I] / (kg sinGi) 2 , b(r) = x--zcotGi, (3.34b)

where ki = kiX" + kai is the mean incident wave vector, and where the taper parameter

g determines the width of the tapered wave. By adjusting the ratio L 1g, where L is the

I
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length of the surface, the incident field at the ends of the surface can be made very
small in order to reduce edge effects to a negligible level. Then, the incident flux Ef
for the tapered plane wave (3.34) is

I E I - 2(kgsni29] (3.35a)
sinO__ _.p• 2t (I+2cst20i)

In some cases it is useful to study scattering using less tapering to obtain better angular
resolution in the far field. In general, the flux also depends on the surface length L:

sin0i A [1 (1+2cot 20i) (0-2c=t20d) A exp(-A 2)
E - g eft(A)2-(kg sinei) 2  2(kgsin8i) 2 4x-erf(A) (335b)

with A =and ,adwhere erf is the error function.

The incident field form (3.34) leads to the following expression for the scaled nor-
mal derivative of the incident field on the rough surface z = ý(x):

pj'r)=j~r i~~w~)](ýxkx~kz) 2(r) (C,4cote 5)(l - 2iki-r 2) (.3.36)
+ 2 (kg sinO, )2

The surface slope first enters into the expression for N at first order. For consistency,5 C dependent terms in (3.36) are not included when computing the zeroth order estimate
ofp' in (3.31).

I 3.3.3 Even (inversion symmetric) and odd (inversion antisymmetric) series

The derivation of the expansion for N has been performed for the scattering

geometry of Fig. 3.4 (see also Fig. 2.1 and Fig. 4.1), in which down-going incident
energy is scattered into up-going waves. Milder [1991] showed that inverting the
scattering geometry leads to a useful symmetry property which significantly simplifies
the operator expansion solution. We arrive at the same result by deriving the expansion

Afor the down-going wave operator N _ for the current geometry, redrawn in Fig. 3.4. In

this section, we denote the up-going wave operator N N + for clarity.

Operator N - computes the scaled normal derivative of down-going fields; weI A Awrite N _p _ = p _'. The expansion for N - is obtained by writing (3.2) for p - in a down-

ward wave expansion, with k, =4k2 - 0 and lm(k2 ) <0, and following the stepsI Ataken in the derivation of N +. For example, the z -derivative of down-going field p - on
a flat surface isI

I
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i Figure 3.4 : Scattering geometry used in the derivation of the operator expansion.

[" •z pr ]z|=,•. = - Q p_(x~zo) , (3.37)

with Q defined in (3.4) for positive k, (up-going waves). This negative sign carries

thr-ough to the expansion for N_.., which we write using the terms in the expansion for

A

N+ given by (3.28):

S= -0+/I -/2+/3 ... ,(3.38)

since the n 'th term in the series (3.28) forN+ contains n+l powers of Q.
This expression can be used to generate two alternative forms of the OE solution.

The down-going operator applied to the incident field P1 simply evaluates the scaled

normal derivative of the incident field on the rough surface

r A~ A Ar A

N-pi =Pi" P=> (N 0 -N) +N 2 -N 3 + ")pi +pi'=0 .(3.39)

Then, by add ig or subtracting (3.39) from (3.31), which we now denote as the "stan-
dard" solution Pd, the scaled normal derivative of the total field can be written using

three different series:

AA AA

P~d * Pi - N~lp 1  = pi-(~oll~•+'')pi , (3.40) I

Po n 2 pi" - (N~ +-N._) pi = 2p1
1-2(N 1l+N 3 + "") Pi , (3.41)

p, = -(N++N._)pi = -2(N+3- 2 +-)pi (3.42)

Note that in (3.41) all of pt ' expressed in (3.36) is included at first order, and no zeroth

A A A
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order component of pi" appears in the even series solution (3.42). We recognize that
2 pi' is the Kirchhoff solution, and that the odd series operator applied to -pi provides a
correction to the standard Kirchhoff approximation. These even and odd series solu-
tionst are obviously simpler to evaluate than the standard series (3.31) to any given
order. Yet, the short series (3.41) and (3.42) provide solutions which are similar in

accuracy to that of the standard series, and typically prove to be nearly as accurate as
the standard solution taken to next higher order. Further details are presented in
Chapters 4 and 5, where numerical examples illustrate that use of these shorter forms
results in a reduction in computational expense while retaining, or, particularly in the
case of Pierson-Moskowitz surfaces, improving upon the accuracy of the standard series
solution evaluated at a given order.

3.3.4 Evaluating Npi using the Fast Fourier Transform (FFT)
A

The series for N is written as a sequence of operations involving products with the
surface height function ý(x) and nonlocal operations by Q. Each term in the expansion
for N in (3.28) can be factored for a more efficient evaluation. For example, N 2 can be
written as

N2 Q. (3.43)

I A
Operator Q (3.4) (and higher powers of Q as well) is straightforwardly imple-

mented as a subroutine using a sequence of Fast Fourier Transform (FF1) operations,
with an intermediate product by a complex function of transverse wavenumber. The
usual FFT requirement of 2r points leads to minor modifications for a scattering prob-
lem posed on a surface divided into an arbitrary number of partition intervals. The sur-
face height, slope, and complex arrays used in the computation of OE terms are
extended by zero-padding to a power of two. Thus the computational surface length
used in evaluating the operator expansion solution is typically longer than the original
rough surface length. The incident field taper effectively reduces all field quantities to3 zero at the original surface extremities, making additional tapering of these quantities

unnecessary. Nevertheless, when the surface is not periodic, the discontinuity in the
rough surface height (and slope) at the original surface endpoints can introduce error

I into the results because the operator expansion solution is evaluated by repeated convo-
lution with the Fourier transform of the surface height. Before extending surface height

H Milder refers to (3.41) as the inversion antisymmetric solution, and to (3.42) as the inversion
symmetric solution. We call Eqs. (3.41) and (3A2) the short forms, collectively, and even and
odd solutions, respectively.

I
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and slope arrays it is preferable to apply a taper to the height function at the ends of the I
rough surface where the incident energy is very small; this procedure does not require
renormalizing the surface height spectrum since the tapered portion of the surface does
not contribute significantly to the scattering. We use a cosine taper, typically applied to
10% of the surface length at each end. Such tapering improves the third order operator
expansion estimates of the surface field and hence of the scattering cross section (espe-
cially for low grazing angles when scattering levels are low) but has almost no effect on
lower order terms.

The surface sampling density (number of points per wavelength) requirements of
the operator expansion method depend on the order to which the solution is computed.
In general, convergence studies in which the surface profile sampling density is
increased until no significant change in the scattering results are obtained indicate that
through second order the operator expansion requires about the same surface partition
density as the integral equation method. However, third order computations often
require more points per wavelength for comparable accuracy; in general, it is con-
venient to use twice the density for third order calculations because of the use of FFTs
in the implementation. A table of parameter values for the numerical examples
presented in this dissertation is included in the Appendix.

The use of a finite surface, here determined by the tapered incident field, leads to
finite angular resolution in the scattering results which is coarsest within a few degrees
of grazing. Thus, the scattering cross section obtained for a finite surface will not van-
ish at grazing as it must for the infinite surface. Tests in which the surface length is
increased confirm that the accuracy statements made for shorter surfaces are consistent
with results for longer surfaces with better angular resolution, with one exception. For
all cases examined, the operator expansion solution requires more care in a small range
of angles (less than about 30) near grazing, especially for computing scattering at graz-
ing (00 and 1800). This near-grazing behavior is not a consequence of the finite angular
resolution discussed above, but rather is related to a need for greater wavenumber
domain sampling density to achieve the same degree of accuracy obtained for other
scattering angles. The wavenumber domain sampling density is proportional to the
length of the computational surface used in the FFT. Tests in which the computational
surface is lengthened (in powers of two) by zero padding show that, for any given
order, the near-grazing operator expansion solution converges more slowly with
increasing computational surface length than the solution in other angular directions.
Extending the computational surface by zero padding does not change the scattering
problem itself, because both the rough surface profile and the incident field remain
unchanged; the integral equation solution for the unpadded surface is still the exact
result. Simply extending the number of intervals in the computational surface to the
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I nearest power of two may not provide sufficiently accurate results near grazing, in some
cases giving scattering strength errors of up to 3 dB at grazing. In such cases, doubling
that number of computational intervals usually reduces the errors at grazing to about 0.5
dB, but convergence tests in which the computational surface is successively
lengthened ae the only reliable way of determining the best solution obtainable by the
operator expansion for any given problem. The surfaces in the computations in this
thesis have not, in general, been extended beyond the nearest power of two. One exam-
pie presented in Fig. 5.10 for surfaces with a Pierson-Moskowitz height spectrum illus-
trates typical results obtained using different computational surface lengths.I
3.4 The Mean Plane Methods

U 3.4.1 Introduction

The operator expansion solution is constructed in Sec. 3.2 as a sequence of opera-
tions on the scattered field. First, the scattered field is continued from the rough surface
to a reference plane, chosen for convenience to be the mean plane z = 0. There the
vertical derivative of the scattered field is evaluated, and this vertical derivative field is
then continued back to the rough surface where it is related to the normal derivative
field through the known tangential derivative of the scattered field along the surface.
The entire procedure relies on an upward directed plane wave representation of the
scattered field which becomes available after the first continuation step by Fourier
transforming the scattered field expressed on the mean plane. One may wonder why
that plane wave representation is not directly used to solve for the far-field scattered
field needed in the determination of the scattering cross section. In this section we out-
line an algorithm that computes the scattering amplitude directly from the values of
p. (x,O) = Z p, (x, ý(x)). In Sec. 4.6 we examine the accuracy of this method, and find
that the solution performs better than the standard field perturbation series in kh; the
Z solution converges more rapidly, and better matches the statistical fluctuations of
the exact solution for an average over a finite set of surface realizations. However, theI ~A -1.solution does not converge as rapidly as the N solution, nor is it as accurate for

larger kh values, including some cases when the Kirchhoff approximation is accurate.
A

In building the expansion for N, Milder used a second continuation step; the continua-
tion back to the rough surface (by application of Z) improves the solution by reducing
its dependence on the normalized height kh. Though the solution based on the use of
AU_|

Z alone is not as widely accurate as the N solution, we examine it because of its con-
nection to standard perturbation theory, and because it plays an important role as a
building block of the operator expansion solution.

I
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A second variant on the OE method which takes explicit advantage of the plane
wave reprsentation of the scattered field effectively replaces the truncated continuation
operator Z with the exact expression (3.6). This solution directly evaluates the normal
derivative on the rough surface using the spectral representation; consequently, it can-
not be fully implemented using FFrs. This solution method is presented in Sec. 3.4.3.

3.4.2 Direct evaluation of the scattering amplitude using Z

Knowing the scattered field on a plane enables computation of the field anywhere
above the plane, and in particular in the far-field of the scattering surface. Choosing the
reference plane to be the mean plane z 0 = 0, we apply the continuation operator Z to
the rough surface values of the scattered field to obtain an estimate of the scattered field

on the mean plane as

pS(x,O) = Z p3(x, (x)) . (3.44)

The Helmholtz-Kirchhoff integral (2.10) on the mean plane is written as
p.(r) =- I Go (r,r) ap,(r') Go0(r,r') dx'. (3.45)IL G(rr' , -Ps(r') •- x. (.5

2=0

The scattered field satisfies an unknown boundary condition on this surface, but theA
vertical derivative is easily obtained from the values of ps(x,O) using operator Q

defined in (3.4):

r a~p, (r) 1 A

=Q p(x,0) (3.46)

Using the large argument form for the Hankel function we write

im, Go(r r') r) e expl-ik kr (3.47)I
and

anZG 0( r, re) e, i x/4

,i," -) (-ikez) exp[-ik,'r']. (3.48)

Thus, we write the scattering amplitude as I
F(ks) = - 8.Z, exp[-iksx'] ( Q + iksz ) p,(x',O) dx'. (3.49)z=O

Expanding Q using the definition (3.4) we find

F (k,) = (-2ik.) e i" J exp[-ikx x'] p,(x',O) dx'
787f I

I
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- (-2ik.) e ,,(k), (3.50)

where we see the direct relationship between the scattering amplitude F and the plane
wave coefficients /i evaluated from the mean plane field. It is important to emphasize
that the scattering amplitude F evaluated using the mean plane method, that is, using
Z alone, is not equivalent to the OE solution for F (3.32), nor is the estimate for the
plane wave amplitudes PI(k.) the same in the two methods, though the notation in

(3.50) does not distinguish between the two solutions. We note that (3.50) can also be
obtained using the "image" Green function G I( r, r') (which is zero on the mean plane)
in (3.45), following the Rayleigh-Rice perturbation development in Sec. 2.5.

3.4.3 Using Z to compute the rough surface normal derivative field

The plane wave coefficients js(k k) defined in Sec. 3.4.2 can also be used to
directly solve for the normal derivative of the scattered field on the rough surface in a

A

different way than is done using N. We replace steps 2, 3, and 4 in Fig. 3.3 by applying
the scaled normal derivative to the plane wave representation (3.2) and then evaluating
the field on the rough surface:

Ps'(X, (x))= [I-V Ps(r)]I =;(X)

SA.dk exp[ikxxI exp[ik. (x)] (-Ix ikx + ik, )Ps(k.) • (3.51)

I Recall that P,( k,) is found using Zg U

Is ( (kx) = ! dx"expI-ikxx'Z 1[-pg(x,C(x))] . (3.52)

The surface field p,' in (3.51) could be used instead of Nps in (3.29) to compute the

scattered field above the surface. This solution may also reduce the height dependence
of the •,( k) representation by taking the solution back to the rough surface, but the
effect of the higher order terms included in (3.51) is unknown. Only numerical tests can
determine the relative accuracy of the solution given by (3.51) compared with the stan-
dard OE solution using N, but this has not been done. The integral in (3.51) cannot be
evaluated using an FFT because of the exponentiated surface height. Therefore, the
solution (3.51) is much slower to evaluate numerically.

I
I
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3.4.4 Comparing the Z method to the Rayleigh-Rice perturbation method

The solution produced by simply applying the operator Z to p,(x, ý(x)) is very
similar to the perturbation theory solution, but is not a consistent expansion in powers
of kh, as we'll see below. Numerical tests indicate that this difference results in I
improved convergence and accuracy over the standard perturbation solution. Neverthe-
less, the Z solution still retains a fundamental dependence on kh which limits its
applicabilit to surfaces with small height, even when the rms surface slope is small.
(Thus, the Z solution is not as useful as the OE solution using .) To compare the Zsl
solution with the perturbation solution we must develop the perturbation method using I
the scattered field instead of the total field as done in Sec. 2.5.

Following the procedure of Sec. 2.5, we write the scattered field integral (2.10) on I
the mean plane and use the image Green function G 1 to obtain

p 5 (r)= f p3 (x,,0) rr)d, (p.' (r'S-) a, d (3.53)

z=0

recognizing that the reflected field p, is included in this formulation. Note that the n
incident field ý,urface integral is not zero when using the image Green function, as can
be seen by developing (2.27) for the incident field: n

pi(r)= f P(r')Go(r, rjdv' + f pi(x',0) -Ga(r'r')
V3  

z=0 
lz

I
p p(r) + p,(r) + f =0 lG(x',0) (3.54)

Therefore,

J Pi (x',0) G =(r, -p,(r) I(3.55)
z=0 p

The integral (2.31) for the field ps is then decomposed as

Psi(r) = p(r) (r, r' dx
z=0

psi(r) = J p3 (x',0) aG1 (r,r) dx" + Pi(x',O) G(rr') dx"
z=0 2=0

- P(X"'0) dx' -pr(r) (3.56)
z=0

which clarifies the relation between p. and Psi

I
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To develop the scattered field perturbation solution we write the Taylor series for
the scattered field about the fiat surface, evaluate it on the rough surface, and use opera-
tor Q to denote the vertical derivative on the mean plane (set z 0 = 0 in (3.4)):

P5(,(X)Iý) + Q+! 2 jPS (X 0) .(3.57)' 2

We write the scattered field as a power series in kh, absorbing the factors of (kh)"/In!
into the terms as in (2.21),

ps (r) = pso(r) + ps I(r) + Ps 2(r) + (3.58)

and substitute this expansion into the Taylor series (3.57) to obtain the following set of3 boundary conditions for the field:

Ps0(X,0) =PS0(X, (x)) ,

I &A =psi(x, (x)) - CQp5 o(xo) , (3.59)

Ps(XO)=P2(, W)- W p',(X ,0) -Lý !~Q~pox

Backsubstitution yields to third order:

Pso(X,0) = Ps0(x,(x)) = -Pi(x,0) , (3.60a)

, (' = -, A~,V) ,(O (3.60b)

AA I 2A 2) p' 0(X ,0)p, 2(x,O) = p. 2(x, V(x)) + -Q 2Qo-xO)Q (3.60c)

ps3(X,O) = p, 3(X, Q(x) + (- t6 t6 tQ + ½•Q •2Q + ½•Q 2 6 - -QQ 2) QoQ 2,o Q)

U (3.60d)

In contrast to the total field formulation, the Dirichlet boundary condition on the scat-
tered field ps (x, C(x)) =-pi (x, ý(x)) gives nonzero contributions at all orders; in par-
ticular, because p, 0(x,0) * 0, even order derivatives (Q ) are not zero.

I A direct comparison can now be made between solutions; inspection of the series
(3.17) for Z shows that the operations are the same as those in the perturbation

A-1
method (3.60). However, the operator Z is applied to the complete rough surface field
(hence all orders of Z are applied to the complete rough surface field), whereas the
perturbation method requires expanding all rough surface fields in powers of kh and

A-14

combining orders consistently. One consequence of this difference is that the Z solu-
tion (and also the N solution) contains incoherent energy at lowest order where the per-

5 turbation solution does not. It turns out that this results in faster convergence of the

I
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operator expansion solution and better matching of the statistical fluctuations for a finite
number of surface realizations. (See Sec. 4.6 for numerical examples.)

3.5 Comments on Milder's derivation 1
Our derivation of the operator expansion solution differs from that of Milder's in

two fundamental respects:

A- Milder used a variational differentiation technique to solve for the expansion for I
D , obviating the need to find an explicit series for operator Z . However, the

backsubstitution method used in Sec. 3.2.4 is a very straightforward approach and
provides an alternative path to the same solution. We review Milder's technique
in Sec. 3.5.1 for completeness, and because of its elegance in solving for the
operator expansion.

B- To avoid making the Rayleigh hypothesis Milder did not apply the (scaled) normal
derivative operator N to the scattered field directly, but as we'll see in Sec. 3.5.2
his approach is no less restrictive. On the other hand, in transforming an exact
integral identity, Milder does show how the usual Rayleigh assumption can be
relaxed. Some theoretical questions regarding convergence of the operator expan-
sion series do remain, but numerical results in Chapters 4 and 5 indicate that for
many practical problems of interest the operator expansion series converges 3
rapidly to an accurate solution.

We now examine each of these points in turn.

3.5.1 Deriving the expansion for D using variational differentiation

A

Operator D is the essential component of the nonlocal operator solution to theA AA_

scattering problem. In Sec. 3.2 the series for D = ZQZ was obtained using the series
for Z and Z which are both written in terms of powers of operator Q and surface

height ((x). Operator Z is defined using a Taylor series expansion of an up-going field

about the mean plane. In an analogous way, operator D can be defined using an I
"operator Taylor series" about the flat surface solution for the vertical derivative opera-
tor. 3

The operators used in the operator expansion method all map functions of
transverse coordinate x to other functions of x. These operators (like functionals)
depend on functions of x; each operator Z, Z , D, and N, depends on the particular

choice of rough surface height ý(x). We can express these properties mathematically

U
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AI by defining an operator A by its action on complex functions of x:

A 4f (x)] = g W)

Operator A depends on function 4(x) (which we later equate with surface height ý(x))
and operating on f (x) produces g (x). To understand how A depends on 4 we examine
the notion of variational derivative and the variational Taylor series. The familiar Tay-
lor series of a function p (x) expanded in the neighborhood of the point x 0 is given by

Ppx 1X0 + (AX) 2 [2p(x) ] + " (3.61
_xaxx)) = 0 ax + 2! ax2  =xo

By analogy, and by extending the concept of a functional Taylor series [Ishimaru, Vol.
II, App. 20B, 1978], we define the operator Taylor series for A, where we suppress the
argument function f (x) for clarity, and now denote the functional dependence of A in

A A A

braces as A 4 aA ({). Here, A is expanded for a variational (functional) excursion AtI about the function 40:
A A &A6A (40oAu
• (to+ At) = A [[o) + f84A [4,At) + 2! + . (3.62)

A A

The term Al {• is simply the operator A evaluated for function t. The term
A BAthvaitoadeiaieoAi84 ,A ItA) 8A represents the variational derivative of A with respect to function

4(x) evaluated at k(x), for an excursion At(x), just as the term fax (x )/a,
i represents the derivative of p with respect to x evaluated at point x0 , for an excursion

Ax. (The effect of the "product" with At is implicit in the notation of (3.62).) Functions
E&, , and At are all independent functions of x. Here, 4 represents the general func-I A

tional dependence of operator A , E is the particular choice of 4 about which to expand

A, and At is the variational excursion about 4 leading to the first variation SA.

In the scattering problem, we choose to expand the operators about their flat sur-
face expressions which are well known. In other words, we choose k3(x) = 0 for all x.
Furthermore, we choose the excursion At to be the particular rough surface height
profile for the problem: At = ý. Thus, the surface height enters naturally into the vari-
ous operator expansions which have the exact flat surface solution as their zeroth order
terms. We can then write the operator series for the scattering problem as

A• =•(0) + a0,1 + -82ý (0,}+ ..+ (3.63)

which we simply denote by the series
A A A AIA = A 0 + A I+A 2 + .(3.64)

We are particularly interested in the series for operator D which we first write in its

I
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general form:

D) (to + At) = D {0)+ 84D+ 2! + ""g + (3.65)

We know that the flat surface solution for the vertical dervative operator is

D (t0=0) = Q , but we need to evaluate the higher order terms in the series by solving
A A A ^-

for the variation 8!) given the representation (3.13), D = ZQZ -. We use the form
DZ = ZQ for simplicityt. A small change in function 4 induces a variation in D and in
Z. For example, we write (3.65) to first order as D (t+A A) =D 0 +8/D. Recalling
that Q does not depend on k, we find to first order:

(D0 +8D)(Z 0 +8Z) = (O8)

<=> D 0Z 0 +D 0 8Z +8D Z0 +8D8Z = Z0 Q+8Z Q

=> = 8 (3.66)
reonzn ta Z=A A A AI

recognizing that/oZ 6Z O=Z0Q, and neglecting the second order term 8D 8Z. There-
A Afore, the first variation of D in terms of a variation in Z is given by

S= 8•Z o1 - DoSZ ZZ 1  (3.67)

It is important to recognize that the symbols D 0 and Z o1 in (3.67) are understood to be
the operators D and Z evaluated using function 0.

Equation (3.67) can also be obtained using the usual rules of differentiation, bear-
ing in mind that the operator terms do not commute. In this case, we must remember to
defer evaluation of the operators at t until after all differentiation operations are com-
pleted.

A A
8(DZ) 8 (ZQ)

A A A A A A A

<=>8DZ D8Z 8Q
=>SD • =•QZO o -D 08 ZZ- 1  (3.68)

The variation 8Z is computed using (3.9) written in terms of • as follows:

& = n!:
n=OI
+6n (St)gn-1 A

n=1

' This form ia psed to avoid cogpputing& -&Z, Out the variation of Z- can easily be obtained by

evaluating 8(ZZ- = 1) to find 8Z- = -Z -Z Z-'.

U
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*~~~~~ - ~ ~ ~PJ n-i

* -8VQ .(3.69)

By definition, 84 m A4, and substituting expression (3.69) into (3.67) gives the first vari-
ation ,D (having deferred the evaluation of D at • in anticipation of a second differen-
tiation with respect to 4 to follow below):

A A . A.

8D = (,gZQ )QZ D AZQ)A
A A 2  A A

= AgZQ 2 -DAt D

A~2 _DAtD3 = [At, A D o, (3.70)

using the commutator to simplify the notation. We continue the process to find the
second variation of D:

8213 8(8A) = (At -13 At) A + [A4,b A18A

At 8D -( 1 -8D At) + [At, D 2D

=([At.(t[A~~]1 ] + [At, ]2]1 A (3.71)

where we recall that the excursion At is independent of t, and thus is not differentiated.

I The general series (3.65) forD (E4+At) is now specialized to the scattering prob-
lem; setting t = 0 and At = • the series for D is formally written as

ID134) =D (01 + 8D3O ],4) + _- 0, +
A A A

D = 0 + D 1 +/D2 + . (3.72)
A

Evaluating operator D at • = 0 in (3.70) and (3.71) we find to second order:
A

D 0 =Q , (3.73a)

D Q ] ,Q (3.73b)

I D 2  [ + [ ]2 )•Q . (3.73c)2

Expanding the commutators and with some rearrangement of terms, these expressions
can be written as in (3.19) which was obtained by backsubstitution.

I
I
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The commutator notation is compact, and becomes convenient once some simple
algebraic properties are observed. For example, for any constant a, the commutator I

AAA A AA

[ý+a,Q] = (ý+a)Q -Q( +a) = ýQ -Q +aQ -Qa = [ý,Q] (3.74)

is independent of a because constants and operators commute. Thus, we see that a shift
in the mean value of the surface height produces no change in the expansion for D.
This property of D (and hence of N) is directly related to the fact that the location of
the fiat plane to which the scattered field is continued (Sec. 3.2.2) is arbitrary, indicating
that the solution is predominantly dependent on derivatives of the surface height func-
tion (rather than the surface height itself). I

A

The series for/D is an operator (variational) Taylor series in which the n'th term is

simply denoted
15= n ! WD (3.75)n

where the 8" represents the n'th order variational derivative with respect to the surface
height function. Applying 8 to a commutator form results in a "product rule" property,
illustrated by taking the variational derivative of D I to find D 2:

(2!)D 2 =82Do-'8( o)&D) -8([D,Do]Do)= DoD (3.76) I
Application of the product rule to find higher order terms quickly reveals the elegant
recursive pattern (3.20), which provides a convenient way of expanding the series for D

(and hence N) to any desired order.

3.5.2 The operator expansion method and the Rayleigh hypothesis

In the derivation of the operator expansion in Sec. 3.2 we assumed outright that
the (scaled) normal derivative of the scattered field p,' could be obtained by applying
operator N to the rough surface values of the scattered field ps. Operator N, derived

here (and by Milder [1991]) for any field which satisfies the Rayleigh hypothesis, com-
putes the normal derivative of such a field using an upward directed plane wave

representation (3.2). In our derivation, that representation is assumed to exist for the
scattered field, and moreover, can be obtained by Fourier transforming the values of the
scattered field continued to a flat surface (3.3). This continuation is performed using an
operator whose power series expansion is explicit (3.17), or which is implicitlyAI
included in operator D whose power series can be found using the method of varia-
tional differentiation used by Milder [19911 and reviewed in the preceding section.

It is well known, however, that the cý d scattered field has singularities
below the rough surface, and when these appe4  the region above the plane z =

nI
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the Rayleigh hypothesis is invalid, and the Rayleigh series (upward plane wave expan-
sion (3.90) for the field scattered from a periodic surface) diverges for points below the
height of the singularities. This fact would seem to place a validity limit on the operator
expansion method closely linked to the validity of the Rayleigh hypothesis. However,
theoretical work in functional analysis by a number of investigators has led to the
surprising result that, even when the infinite Rayleigh series diverges, it is possible to
approximate the boundary field with a finite sum of upward directed plane waves to
arbitrary accuracy. It has been demonstrated that the up-going plane waves form a com-
plete basis, and as such are able to repm-sent (though not necessarily efficiently) the
scattered field in the wells of the surface, where it may contain down-going com-
ponents. Therefore, methods using upward wave expansions for the surface field are
not fundamentally limited, but will have different ranges of applicability depending on
the technique used to find the plane wave coefficients. We summarize some of these
findings at the end of this section, but begin with a historical review of important
developments in the study of the validity of the Rayleigh hypothesis, then discuss
Milder's contribution to the question, and conclude with a discussion on the complete-
ness of upward waves, accompanied by a few essential equations.

3 The Rayleigh hypothesis and singularities of the field

The Rayleigh Hypothesis (RH) is named after an approximation introduced by
Rayleigh [1907, 1945] in his study of scattering by a sinusoidal surface grating, in
which he assumed that the up-going plane wave representation for the scattered field,
valid in the region entirely above the rough surface, can be extended all the way down

to the surfact ; ayleigh made no attempt to justify his assumption, or to examine its
validity.) Thý lif-4culty with this approximation has long been appreciated because of
the apparent existence of down-going scattered waves inside the wells of the surface
[Lippmann, 1953], but its effect was not understood until the validity of the hypothesis
was tied to the location of singularities of the continued scattered field in the region

below the rough surface.

The first significant step in this regard was taken by Petit and Cadilhac [1966],
who were able to show that, for Dirichlet surfaces with a sinusoidal shape, the Rayleigh
hypothesis is invalid for surfaces whose maximum slope exceeds the value
SSmax > 0.448. This result was obtained by analytic continuation of the boundary condi-

tion into the complex plane. Further progress was made by Millar [1969], who showed
for periodic surfaces that the Rayleigh plane wave representation (infinite sum of
upward directed plane waves) for the scattered field could be analytically continued
from above the highest points on the surface into the wells and across the boundary
(into the region below the surface) as far as the horizontal plane passing through the

I
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uppermost singularities of the solution. The RH was thus shown to be valid if and only
if these singularities lie beneath the lowest points of the surface. This investigation was i
conducted for arbitrary periodic surfaces whose shape is given by an analytic function;
specialized to the sinusoidal profile, all singularities lie below the lowest surface points
when the slope is given by sp < 0.448. Observing that the condition for validity is
independent of frequency, Millar showed that the (uppermost) singularities can be
located by treating the simpler potential problem, that is, the solution of the Laplace I
equation with the same boundary conditions (which is the Helmholtz equation special-
ized to the zero frequency case). This he solved using a conformal mapping between
the original potential problem posed on a periodic surface and one posed on a closed
cylinder. In a series of subsequent papers [Millar, 1971, and references therein] Millar
refined and extended the technique to locate singularities of solutions to the Helmholtz
equation for arbitrary analytic periodic profiles; when applied to sinusoidal surfaces, the
results corroborated earlier findings.

Several investigators found simpler ways of determining the validity of the Ray-
leigh hypothesis for surface scattering, all based on examining the convergence of the
upward plane wave series representation for the scattered field in the region between
surface extrema (also called the selvedge region). Hill and Celli [19781 used an asymp-
totic (steepest descent) technique to examine the behavior of the plane wave 3
coefficients ("diffracted order amplitudes") in the limit of large horizontal wave
numbers (highly evanescent modes). A more detailed analysis by van den Berg and
Fokkema [1979a, 1979b, 1980] resulted in a condition for the validity of the Rayleigh
hypothesis by locating singularities of the scattered field analytically continued below
the surface, for periodic gratings, closed cylinders, and for arbitrary nonperiodic ana- 3
lytic surfaces, respectively. They recovered the maximum slope validity condition of
Petit and Cadilhac [1966] for sinusoidal surfaces. DeSanto [1981] also used a combina-
tion of analytic continuation and asymptotic analysis to examine the convergence of the
up-going plane wave expansion inside the wells of an arbitrary periodic profile. Some
nonanalytic (discontinuous derivatives) surfaces were examined, and earlier findings of
Neviere and Cadilhac [1970] indicating that surfaces with corners pointed upward never
allow satisfaction of the RH were confirmed. DeSanto's representation for the surface
values of the Dirichlet scattered field differed from other approaches in that he used a
plane wave expansion modified (multiplied) by the Kirchhoff approximation for the
normal derivative, from which the usual Rayleigh plane wave coefficients for the scat- i
tered field could be determined. This approach reportedly "enhances numerical accu-
racy" [Whitman et al., 1980], but the analysis produced equivalent conditions for the
validity of the RH to those of Hill and Celli [1978] and van den Berg and Fokkema i
[1980]. I

i
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The singularities of the continued field are generally distributed in a complicated
manner, they can be thought of as image sources of the scattered field as discussed in
Sec. 3.2.2, although imaging techniques have not commonly been used to locate them.
Nevertheless, their location is of considerable importance since the existence of singu-
larities (sources) in the region above z = inn leads to down-going scattered wave com-
ponents at surface points below these singularities (and divergence of the Rayleigh
series for such points), thus invalidating the Rayleigh hypothesis and casting doubt on
the continuation procedure implicitly performed in the OE. The operator expansion is
tied to the Rayleigh hypothesis question because a representation in up-going waves
uniformly valid in the region above the plane passing through the lowest point on the
surface underlies all aspects of the method. Fortunately, the impact of this restriction on
the accuracy and applicability of the operator expansion method, in which only the
leading orders are used, is readily investigated numerically. Numerical results seem to5 indicate that the series for N gives asymptotically convergent solutions for some cases
in which the complete series might diverge, presumably when the Rayleigh hypothesis
is invalid and when continuation is attempted through a singularity. Indeed, examples
are presented in Sec. 4.5 for which the operator expansion solution for leading orders is
quite accurate, though clearly beginning to diverge, in some situations for which the5 Rayleigh hypothesis is not valid.

Applying N directly to p, forces making assumptions on the scattered field which
are equivalent to imposing the Rayleigh hypothesis on p. However, Milder did not
apply N directly to p5 in order to avoid making such assumptions. Moreover, Milder
sought to demonstrate a general equivalence between an exact solution derived from
what is known as the extinction theorem (or the Extended Boundary Condition (EBC)
embodied in the integral theorem (2.9)) and the upward wave solution to the scattering
problem given by the operator expansion. We find that general equivalence of these
solutions is not assured, because convergence of (the complete series for) N has not

been demonstrated for cases in which the Rayleigh hypothesis is not satisfied. How-
ever, a rigorous solution using an upward wave expansion for the scattered field can be
obtained (even when the RH fails) because of the existence of a completeness theorem3 for up-going waves; we rely on the work of others for this result, and summarize their
findings below. The identity derived by Milder indicates the sense in which the EBC
solution and the rigorous upward wave solution are equivalent, but does not serve to
show that the operator expansion method is formally exact. Nevertheless, as we shall
show numerically in the following chapters, the operator expansion solution evaluated
for leading orders is more widely valid than the Rayleigh hypothesis itself. We now
discuss Milder's argument.

I
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Milder's transformation of the extinction theorem I
The scattered field above therough surface is given by (3.29), and in the far field

of the surface the scattering amplitude is given by (3.32). We first expand the total field
scaled normal derivative p' = pi'+ Ps' and write the scattering amplitude as two com-
ponents

F(k,)= e:x.. F1(k,) + F,(k,) , (3.77)

where only the integral over the scattered field derivative is unknown:

F5 (k3 ) = f exp[-i ks r'] ps'(r') dr' s f gr(r')p(r') dx' (3.78)
S S

Milder develops an integral identity which allows solving for Fs(ks) without using
operator N directly on p5 ( r'). The exact integral identity (2.9) is transformed and used
in (3.78) as follows.

We recall the scattered field form of the extinction theorem (2.9):
fs~ ~ ~~~a OP~' s-f~~' G(r",r') I"

fG (r" r') an' ds' f p(r') an' ds' , r'e S, r"e V2 . (3.79)
S S

In order to transform this identity into one over functions of surface points r' r S alone,
(3.79) is multiplied by a function u (x) specified on a plane z = z 0 < ý,nn entirely below
S, and integrated over all points on that plane:

& U (xI f ds'Go(r",' f dx " uG o( r", r')
f an' uax)df drr)n'

Z0S ZaS

(3.80)

The function u (x) is continuous and differentiable in x but otherwise arbitrary; we
interchange orders of integration to obtain:

&J ap5( r') f') A,,' = ( PJ) oG o(r",r')n

f an'f f~ an'S o S Zo0

(3.81)

The integral

f dA"u(x")Go(r",r') =- U(r') , r'e S , (3.82)2o,
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results in a function U (x, ý(x)),t which can be interpreted as the rough surface values

of a field U (r) whose sources are a distribution u (x) of monopoles on the plane z = z

The second integral over the z = z0 plane in (3.81) simply gives the normal derivative
of field U(r), evaluated on the rough surface S:

u aG o( r", r) a au (r')Jdx" = " J ) u (x") Go(r",r')= an' (3.83)
TOI 20

Note that the field U(r) is generated by a monopole layer alone; there are no dipole
sources of U on the plane z = z 0. The usual Helmholtz integral for a field U (r) in

terms of surface values of U and its normal derivative is

1 U(r) = J [U(r') aG 0(r,r') G o, (r' ) ds' (3.84)
an' an'

and contains two terms; however, evaluating (3.84) on z = z0 and comparing with

(3.82), we see that on the plane z = z0 , U(x,z 0) = 0 and au(xzo)/az = - u(x).

The exact integral identity (3.79) has thus been transformed without approxima-

tion into

rap(r') aU(r') ds" (3.85)
an' ds' = p,(r) an'

I It is important to recognize that the function U (x, ý(x)) is not arbitrary; it is obtained
from U(r) which is by construction a purely up-going field for all points above the
plane z = z 0. In fact, field U (r) is guaranteed to satisfy the Rayleigh hypothesis since

all of its sources are below the lowest point of the rough surface. Given the arbitrary

source function u(x,z 0), it is straightforward to compute the normal derivative

au (r)/an; however, because U (r) is purely up-going in the entire region between sur-
face extrema, the normal derivative can be computed using N without knowledge of u,
and without direct knowledge of the field U (r) in the neighborhood of S. Thus, we
have the following exact integral identity

J U(r)p, 1 (r') dx'= Jps(r')N [U(r')] dx' (3.86)
S S

Milder used this integral relation by replacing U (r') in (3.86) with the plane wave
g, (r') = exp[-i k,-r'I from (3.78) to find:

tMilder denoted function U by the symbol F which we reserve for the scattering amplitude.

I
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F, (k,) = f g, (r')p3
1 (r') dx' =f p,(r') NA [g,(r')] dx' .(3.87)

S SI
However, we find that this equality is not rigorous, as discussed below.

Shortcomings of Milder's argument

In the steps above, the scattering problem appears to have been solved exactly
without placing any restrictions on the scattered field. However, given the restrictions
imposed on U, substituting g, for U in (3.86) requires further justification. The func-
tion g, (r') = exp[ -i k,-r'] is the expression of a single down-going plane wave (recall I
that k. > 0) on the rough surface S, and therefore applying N to g, is not fundamen-
tally different from applying N to p3 . Indeed, this problem is equivalent to the scatter-
ing problem itself, in which the surface values of a down-going incident wave are to be
interpreted as the surface values of an up-going (scattered) field whose normal deriva-

yive is sought on the rough surface. Operator N can no more be used to operate on
g, (r') = exp[-i k,-r"] than on p, (r') = - exp[ +i ki-r'] without apparently imposing the
Rayleigh hypothesis on the problem, because both functions are arbitrary single down-
going plane waves evaluated on the rough surface. While N is constructed to produce
the correct (scaled) normal derivative of function U, it is not guaranteed to converge
for a function which violates the Rayleigh hypothesis; and if p, violates the RH, then so I
will g&. Thus it seems that little is gained by trying to avoid applying N directly to the
surface values of the scattered field; in fact, we can approximate F, by evaluating either
of the two forms:

F,(ks) = f gs(r')N [ps(r')] dc'= f ps(r') N [g,(r') ] dx' (3.88) U
S S

Equality of the two integrals is a consequence of the left-right symmetry of N, which is
itself a consequence of the fact that the operator expansion preserves reciprocity of the
scattering solution [Milder, 1991].

It should be mentioned that the difficulty arising above can be foreseen by a
simpler procedure than the one involving u (x). Another way of removing the r"
dependence in (3.79) is to examine the EBC integral theorem in the far field of the sur-
face; after all, the desired scattering amplitude is also a far-field quantity. Taking the
limit I r" I >> I r'l for points r" far below the surface, we obtain after canceling com- I
mon factors I

f exp[-ik,-r']p,'(r') dx = (-nu'.ik,)exp[-ik,-r']p,(r')dx' , (3.89)
S S

[
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where the wavevector k, = ka i + kai has k. < 0 for propagating waves. After factor-

ing out (and canceling) the predominant downward component exp [ikr"I /4"7;7. the
residual phase exp [-i k1 -rl corresponds to the surface values of an up-going plane
wave, which is not the desired down-going plane wave g,(r') appearing in (3.78). The
similarity between (3.89) and (3.85) is evident because the field U in (3.85) is a combi-
nation of up-going plane waves; neither of these equations is directly applicable to
(3.78).IA

Though N does not appear in the earlier equation (3.85), substituting g,(r') for
U(r') there would also require justification. Equation (3.85) can be quickly verifiedt by
applying Green's theorem (2.4) to two fields which satisfy the homogeneous Helmholtz
equation in volume V1 (such as p, and U); however, a down-going plane wave has
sources above surface S, and it is not appropriate to make the above substitution
without a guarantee that a representation for g,(r') exists in terms of homogeneous
solutions, such as up-going plane waves. However, if the theorem of completeness of
up-going waves is invoked, then substitution of g, (r') = exp[-i k,-r'] for U (r') in (3.85)
follows naturally because a representation for the boundary values of the down-going
plane wave g,(r') in terms of up-going waves does exist (and can be found by the
least-squares method described below) even if the Rayleigh hypothesis does not hold.
Because of the up-going wave restrictions placed on U, the normal derivative in the

right hand side of (3.85) is understood to operate on the up-going representation for
U(r')=g,(r'), which we note is not the same as evaluating i'.V(exp[-ik,-r']).
IMilder's transformation of the EBC shows the sense in which the upward wave solution
and the exact solution are related: only integrals over the surface fields are required to
be equal; the surface fields themselves are not required to match at every point. As we
shall see below, the theorem of completeness of up-going waves also indicates that the
true boundary field can only be matched in an integrated least-square sense by the
upward wave expansion.

In summary, the completeness of up-going waves justifies substituting gs(r') for
U(r') in (3.85) with the understanding that the normal derivative is to operate on the
correct upward wave representation for g,(r'); in that case, (3.85) written for g,(r') is
exact. Operator N may be used to perform the normal derivative operation as in (3.87)

I and (3.88), but because there is no reason to assume that the upward wave representa-
tion used by N is the same as the one obtained by the rigorous least-squares methodlt,
the result is always going to be approximate when the Rayleigh hypothesis is not valid.

* Milder [1991, Eq. (56)] made a similar observation in his discussion on reciprocity and self-
adjointness of the normal derivative operator under integration over surface values of homogene-
ous fields.
tt No detailed comparison between the plane wave coefficients k,(,k) internally used by N and
those obtained by the rigorous least-squares method has been performed, but the operator expan-

I
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(N is rigorous when the RH is valid.) Nevertheless, numerical studies in Chapters 4 and
5 indicate that the far-field solutions obtained using leading orders of N are accurate
well beyond the limits of validity of the Rayleigh hypothesis, and are far more rapidly I
computed than by any rigorous method. We now conclude this section with a brief dis-
cussion on the completeness theorem for upward directed plane waves and on the asso-
ciated least-squares method of finding the series expansion.

Completeness of up-going waves - Least-squares convergence I
We present equations in this section for periodic surfaces following most of the

literature on this topic. We assume, following Millar [1973], that the extension of the
theory to nonperiodic surfaces presents no fundamental problems. By analogy to (3.2),
we write the field scattered from a surface of period A = 2xIK as an infinite sum of

upward directed plane waves (Rayleigh series), only a finite number of which are pro-
pagating waves, the remainder being evanescent:

p.ýn  (r) (3.90)
n =-a*

where the An are the complex plane wave coefficients, and the On are the upward

directed plane waves

Mr) = exp[ict, x +i Pnz] , n =0, ±1, ±2, (3.91) I
with ac, = kx + nK, P3. = + N4k-_ --7 , and lm (On) > 0 for upward decaying evanescent

waves. The series representation (3.90) is always convergent everywhere above the I
highest point on the surface z = Cmax; indeed, the evanescent waves decay rapidly away
from the surface. The Rayleigh hypothesis consists of assuming that the same represen-
tation is also valid in the wells of the surface, all the way down onto the surface itself.
From the work of Millar and others described earlier, we know that the Rayleigh series

(3.90) is convergent for all surface points when the Rayleigh hypothesis is valid, that is I
when all singularities of the solution (3.90) lie below the lowest points of the surface.
In this case, the unknown coefficients A. can be found by a number of methods, the

simplest of which sets up a system of linear equations by truncating the series to
J = 2M + 1 terms and using the boundary condition to specify the surface field at J
points in one surface period interval. This is called the Point Matching Method (PMM). 1
The Fourier Series Method (FSM) consists of a similar procedure, but is implemented
in Fourier space; since the true boundary field and the truncated series field evaluated
on the boundary are both periodic functions, their Fourier series coefficients can be
equated.

sion coefficients are not obtained by least-squares optimization.
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When the Rayleigh hypothesis is not valid, the series (3.90) does not converge for
* Isurface points below the height of the singularities of the continued field, and the suc-

cess of such numerical solutions is no longer assured. However, the desired upward
wave coefficients A. can still be approximated to arbitrary accuracy, providing an arbi-

trarily accurate representation of the scattered field at any point above the surface,
including in the wells. This assertion rests on a theorem of completeness of the set of
upward directed plane waves (0.) which guarantees that there exists a linear combina-
tion of J = 2M + 1 elements of the set that converges on the boundary to the values
prescribed by the boundary condition as M -- -*, in the mean-square sense [Millar,
1973). To explain the sense of this convergence, we define a sequence of truncated
expansions for the scattered field, with the M 'th term in the sequence written as

+M

U pS(M)(r) = (B(M)4S(r) (3.92)
n =-M

The plane wave coefficients B,(M) for each series representation of p,(M)(r) in the

sequence are chosen in such a way as to minimize the integrated squared error in
matching the boundary condition with the truncated expansion (3.92). For those
optimal coefficients

1 JIps(rI)- -p(M)(r')!2ds, = ' (3.93)
A

In general, the coefficients B (M) which minimize e(g) depend on the value of M.

It can be shown [Millar, 1973] that the sequence of truncated series expansions
S(3.92) evaluated on the rough surface converges to the true surface field ps(r') as

M -- **in the mean-square sense, that is,

lim e =0 . (3.94)
M --*t 00mi 

3.4

The least-squares truncated series representation for the surface field ps(M)(r') does not,

in general, converge unif -nly to the true boundary field with respect to position along
the surface because (3.94) is an integral result. However, because the scattered field
above the surface is given by an integration over surface values, (3.94) implies that the

sequence of solutions p5 (M)( r) evaluated for points r in closed regions above the sur-

face S converges uniformly to the exact scattered field [Millar, 1973]. We must bear in3 mind that these properties hold even when the Rayleigh hypothesis is not valid, that is,

when the infinite series (3.90) diverges for some points on (or above) the surface. Mil-
lar [1973] points out that a similar completeness theorem exists for the normal deriva-
tive of elements of the set (On)1, and therefore the Neumann problem can be treated in
the same way.I

I
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The completeness theorem is a powerful theoretical result, but it also leads to a
rigorous numerical solution of the scattering problem in which the coefficients 8 ,(M)

are found by least-squares to minimize the error in satisfying the boundary condition. It
turns out that these coefficients converge to the Rayleigh coefficients

lir BgM) = An , (3.95) I
M -.40

even when the Rayleigh coefficients A. do not lead to a convergent series expansion on
the surface, and therefore cannot be found directly from (3.90) and the boundary condi-
tion. A least-squares method was first proposed by Meecham [1956b] to solve the prob-
lem of scattering from an echelette grating (he called it a variational method).
Apparently Meecham was unaware that the solution obtained in this way converged
uniformly to the exact field above the surface. The completeness theorem was first
developed for surface scattering by Yasuura [19711, and Yasuura and Ikuno [1971],
who also compared the PMM with a numerical method based on the least-squares
approach which they called Improved Point Matching Method (IPMM) [Ikuno and
Yasuura, 1973]. They show that the IPMM reduces to the PMM when the number of
surface points I used in evaluating the boundary condition is equal to the number of
basis functions J = 2M + 1. When I > 2 J they found that the IPMM has much broader
validity than the PMM.

The completeness theorem was revisited and discussed with great clarity by Millar1
[1973], and reviewed by Petit [1980], Cadilhac [1980], and also by Hugonin, Petit, and
Cadilhac [1981] who evaluated the performance of several numerical methods based on 3
upward wave expansions: PMM, FSM, and LSAM (Least-Squares Approximation
Method, which is very similar to the IPMM). Much of our discussion is guided by the
insightful presentation of Hugonin et al. [1981], as well as by the work of Millar [1973]. I
Recently, Berman and Perkins [1990] have extended the least-squares approach, which
they implemented both in coordinate space ("least-squares point matching") and Fourier
space ("Rayleigh-Fourier method"), to fluid-fluid and fluid-solid interfaces with good
results.

The coefficients B,(M) generally depend on the value of M because the plane
waves evaluated on the rough surface do not form an orthogonal set of basis functions.
It is possible to form a new orthogonal basis whose elements are linear combinations of I
the original plane waves; this approach was taken by Meecham [1956b], and further
discussed by Millar [1973]. The B1 (M) coefficients thus obtained do not depend on the
number of basis functions used in the expansion, but there is no guarantee that such an
expansion is as efficient (requires as few terms) as the series (3.92). Of course, any
upward wave representation is not likely to be as efficient as a modal representation (an
expansion in up- and down-going waves) for a field containing significant amounts of
down-going energy, such as a field whose singularities are well above the lowest 3

I!
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surface points.

* Summary

The validity of the operator expansion method seems to be constrained by the vali-
dity of the Rayleigh hypothesis because N is rigorously defined for fields which satisfy
the RH - convergence of N is not assured when it is applied to the surface values of a
field which does not satisfy the RH. However, the fact that N relies on an upward wave
representation to represent the surface values of the scattered field is not in and of itself
a fundamental limitation. Theoretical work in functional analysis demonstrates that
upward directed plane waves form a complete basis, that is, a truncated expansion in
up-going waves can represent the boundary values of the scattered field to arbitrary
accuracy, in the mean-square sense. Such a representation can approximate the scat-
tered field at any point above the surface to arbitrary accuracy, even in the wells of the
surface when the Rayleigh hypothesis is invalid. A subtle but important distinction
between the least-squares sequence approach and the (infinite) Rayleigh series methods
is that the sequence of truncated least-squares series (3.92) converges to the exact scat-
tered field (off the boundary) even when the infinite series (3.90) diverges. The
difficulty with methods based on upward wave representations lies in finding the series
coefficients for scattering problems over a wide range of scattering regimes.

The completeness theorem leads to a rigorous numerical method based on minim-
izing the error in matching the boundary condition. The operator expansion method

* uses a completely different method of estimating the plane wave coefficients; in fact,
the coefficients are never explicitly evaluated. Though direct comparisons between the
rigorously derived coefficients and those used internally by N have not been made,
there is no theoretical reason to assume that these coefficients are the same, and hence
no theoretical reason to believe that the operator expansion method is rigorous when the
RH is not valid. However, numerical tests have shown that when the operator expan-
sion solution converges rapidly for leading orders it always converges to the exact
result without regard to the validity of the RH, and that in other cases where the series

begins to diverge lower order solutions still provide useful results, indicating that the
OE series is occasionally asymptotically convergent. Indeed, calculations for
sinusoidal surfaces [Milder, 1991] [Milder and Sharp, 1992], and for randomly rough
surfaces discussed in the next two chapters, show that many scattering problems which
are well beyond the validity limits of the Rayleigh hypothesis are treated accurately by

leading order operator expansion solutions.

I
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CHAPTER 4

Accuracy of the Operator Expansion for Surfaces
with a Gaussian Spectrum

4.1 Introduction to Chapter 4

The operator expansion method presented in Chapter 3 is an approximate numeri-
cal technique for computing scattering from rough surfaces. The solution is cast as a
systematic series; in practice, only a few leading terms in the series are used. Milder
[1991] presented the expansions for the first three terms (through second order) and we
have derived one more term (third order, N 3). Computing the third order solution
presents additional numerical difficulties associated with the increase in complexity of

the terms, and may not be practical for some applications. Nevertheless, the third order
term is very helpful in studying the convergence of the OE, and also in examining the
behavior of the short forms of the OE solution.

The issues discussed in the previous chapter regarding the link between the formal I
validity of the solution and the validity of the Rayleigh hypothesis are of academic
interest, but have little bearing on the usefulness of the OE method. The latter is depen-
dent on the accuracy of the leading order solutions, and Milder showed [Milder, 1991],
[Milder and Sharp, 1992], through comparisons with exact solutions for sinusoidal and
triangular sawtooth surfaces, that the method performs well. Furthermore, Milder
showed that the OE reduces to the small perturbation result for surfaces with
sufficiently small values of kh, and to the Kirchhoff approximation result for surfaces
with oscillations long compared to the incident wavelength. This important reduction
property indicates that the operator expansion method should be valid over a wide
range of scattering parameters because the two classical methods are valid in comple-
mentary, but not necessarily overlapping, scattering regimes. Indeed, any method that
can accurately compute scattering from multiscale surfaces must possess capabilities of
both classical approximations. Before applying the OE to multiscale surfaces (Chapter
5) we first examine the performance of the operator expansion solution for scattering
from single-scale randomly rough surfaces; in this chapter we study scattering from sur-
faces with a Gaussian spectrum.

The accuracy of the OE for scattering from randomly rough surfaces can be
assessed through comparison to exact results, obtained by solving an integral equation.
Here, we use a numerical solution of the first kind equation (2.14), or of an equivalent
second kind equation, following Thorsos [1988]. The implementation of the solutions
is identical to that presented by Thorsos, and will not be repeated here. However, a few



7S

remarks on the equivalence of these numerical solutions are in order. Though the first
and second kind equations are formally equivalent, agreement between the two numeri-
cal solutions to some prescribed accuracy will only be reached when the surface sam-
pling density and incident field tapering are sufficient. With increasingly dense sam-
pling, each numerical integral equation solution converges to the same result, but the
implementation of the first kind solution often requires more surface partition density
than second kind solution to reach the same level of accuracy. This difference is only
typically noticeable when scattering strength comparisons are made to within 0.2 dB, or
when total energy accuracy is required beyond 1%, for sampling densities of 5 points
per wavelength. The OE is very accurate for some cases; thus, the second kind solution
is used on those occasions when precise comparisons are desired for scattering from
slightly rough surfaces sampled at less than 8 points per wavelength. At higher densi-
ties, or for rougher surfaces, the first kind solution is more efficient. (The second kind
solution takes almost twice as long to compute as the first kind solution for a given
number of points.) We do not distinguish between first or second kind solutions in the
examples presented below because, before comparing with approximate solutions, the
accuracy of the integral equation solution is determined by convergence studies and
through comparison between first and second kind solutions. The error remaining in
the integral equation solution is always verified to be much less than the error of an
approximate solution whose accuracy is being evaluated.

The validity of the classical methods is well known for surfaces with a Gaussian
spectrum [Thorsos, 1988] and [Thorsos and Jackson, 1989]; hence, it is natural to study
the operator expansion method in this context. Section 4.2 presents a brief review of
these results. In Sec. 4.3 we examine the accuracy and convergence rate of the standard
OE series in the surface roughness regime for which the classical methods apply. Then,
for somewhat rougher surfaces, we compare the alternative forms of the OE solution
(the odd, even, and consistent series) to the standard series solution, and to the integral
equation solution, in Sec. 4.4. In Sec. 4.5, the various OE solutions are examined as
surface roughness is increased to well beyond the domains in which the classical
approximations are valid. We observe that the OE method fails gradually, remaining
accurate for some cases in which enhanced backscattering is observed. Finally, in Sec.
4.6 the nwean plane solution obtained using just the Z operator (Sec. 3.4) is investi-
gated numerically, and compared to the classical solutions.

4.2 Accuracy of the classical approximations

3 The roughness regime depends on the incident and scattering angles 9i and 0e,
and on the surface roughness in comparison to the acoustic wavelength. For surfaces
with Gaussian statistics (see Sec. 6.1) and with a Gaussian spectrum given by

I



76

W(K) = 2,e- (4.1)

where K is the spatial wavenumber, two parameters define the surface roughness: the
surface correlation length 1, and the root-mean-square (rms) surface height h. The rms
surface slope is given by s = 4j h/l. An example of a single realization of a 1-D sur-
face generated using the Gaussian spectrum (4.1) is presented in Fig. 4. 1, along with the
scattering geometry for the 2-D scattering problem.

i "% "I..

z I

S :z= lX
31

Figure 4.1 : Geometry for scattering from a l-D rough surface. The surface height function
z = W(x) is a realization of a Gaussian stochastic process, with a Gaussian spectrum given by (4.1).
Bars of length three times the rms height 3h and correlation length 31 are indicated next to the sur-
face for comparison; for illustrative purposes the ratio h /I is many times larger than that used in
the calculations. The surface has been tapered at the ends using a 10% cosine taper. The incident
field amplitude is typically made very small near the ends of the surface; the amplitude of the ta-
pered plane wave incident field (evaluated on the mean plane) for L/g = 4 is plotted with a dashed
line.

The kl-kh plane represents the parameter space for the (Gaussian spectrum) sur-
face roughness. The locations of the numerical examples in this plane are shown in Fig.
4.2, along with the 1 dB validity contours for "bistatic" scattering for the two classical
methods, as presented by Thorsos [1988], and Thorsos and Jackson [1989]. We define

bistatic to mean "for all scattering angles, given a single incident angle". The solid
curves mark the locus in the kI -kh plane for which the maximum error in the
incoherent scattering strength computed by the perturbation method (at any scattering
angle, for 450 incidence) is I dB. The Kirchhoff approximation validity region is not as
sharply defined [Thorsos and Jackson, 1991], and scattering angles near grazing are
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excluded from consideration [Thorsos, 1988]. With the same accuracy criterion of I dB,
we use representative examples to illustrate that the operator expansion solution is
accurate and rapidly convergent in both regions of ki-kh space for which the classical
methods are valid, in the "gap" between those regions, and for parts of the ki-kh plane
well above those regions.1 10 111 I 1 , ' ' 'H I .i.

410

khts

'_A3

0.5 Al (4A

-0 ....... III

1I 10

iFigure 4.2 The k -kh plane, roughness parameter space for surfaces with Gaussian spectra. Lo-
cated in the ki -kh plane are the numerical examples (on cortours of the slope-height parameter
khs), the validity regions for lowest order perturbation theory (0(2 )), next order perturbation theory
(&) and the Kirchhoff approximation (KA). Examples discussed in the dissertation are marked

by dots and labeled; other cases examined in detail but not discussed are marked by plus signs.

The examples are chosen on contours of constant slope-height parameter k/is inI ~order to study convergence and accuracy of the OE as a function of k/is. Milder pro-
posed the "Fresnel number" k/is [Milder, 19911 as an indicator of the applicability of
the OE, and found that the method performed well for scattering from I -D [Milder

1991] and 2-D [Milder and Sharp, 1992] sinusoidal surfaces when khs S 1.0. We find
that the single parameter k/is is a useful general indicator of the roughness regime forI the OE applied to randomly rough surfaces, but that the convergence properties and the
accuracy at any given order also depend on the angular distance from the specular
direction, and on the surface roughness parameters ki and kh (or alternatively, on the

I.. ÷ .. .
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rms slope and normalized height) separately. We now turn to a detailed examination of
the examples; the essential results of this study are summarized in Chapter 9.

4.3 Accuracy of the OE for moderately rough surfaces H
The examples in this section illustrate three fundamental numerical results using 3

Gaussian spectrum surfaces of moderate roughness. First, through comparison with the
numerically exact solution of an integral equation, the accuracy of the operator expan-
sion solution is found to be very good over a wide range of incident and scattering
angles. Second. the convergence of the operator expansion solution is rapid and mono-
tonic over a wide range of scattering parameters. Therefore, for this roughness regime
(khs = 0.15), the accuracy of the solution at any order can be inferred from the size of
the next term in the series. Third, the operator expansion solution taken to first order in
the surface field is comparable in accuracy to the classical methods in their respective
validity regions, but it is also accurate for some examples in which neither classical
method is accurate. These results will be useful in applying the operator expansion
method to scattering from 2-D surfaces for which exact solutions are still extremely
costly.

Case Al - a(2) validity region

Case Al was selected from the region within which lowest order perturbation I
theory, with cross section computed to order (kh )2 and denoted o2), is accurate. Bi-
static scattering strength curves computed over an ensemble of 50 surface realizations
appear in Fig. 4.3, where kI = 1.4,/h = 0.38 and the incident grazing angle Oi = 45*.

The rms surface slope s = 0.384 S tan ¥, so that the rms slope angle y= 210. We first
examine the scattering strength curves computed by the operator expansion method
with orders defined by (2.22) and (3.40), and presented in Fig. 4.3a; we denote these
solutions as OEo, OE1 , and OE2 at zeroth, first, and second orders, respectively. (This
notation is not the same as that used by Milder [1991], in which the short series solu-
tions (3.41) and (3.42) were designated by OE.. Milder did not present results for the
standard series solution.) In this region, convergence is so rapid that curves OE, and
OE2 are essentially identical when plotted on the scale shown. To better distinguish
between orders the difference between each scattering strength curve and the second •
order curve OE2 is presented in Fig. 4.3b. Note that the error in OE0 is nearly com-
pletely corrected by the first order contribution, most significantly near grazing. 3

The convergence of the operator expansion series can be further appreciated by
examining the contributions to the cross section from each individual order in the series U

I
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i Figure 4.3 :Scattering results averaged over 50 surfaces using parameters for case Al, ki 1.4,

kh = 0.38, and 6i = 45". The scattering strengths for the zeroth, first, and second orders of the
Operator Expansion solution (OEo, OEn, and OED) indicate rapid convergence (a), the character of! which is better illustrated by the difference between scattering strength curves (b).

for the surface field. These contributions are obtained by computing the I F,,I terms in

i (2.22); denoted by ON,,, the curves for the first four terms are presented in Fig. 4.3c.

(Note that ONO =- OE0.) The relative amplitudes of the far field contributions from each

order fall off monotonically over the full range of scattering angles. Experience with the
i operator expansion solution for surfaces with moderate roughness shows that a rapid

rate of decay of the series terms with increasing order is always associated with conver-
i gence to the exact solution, except very near grazing as described below. Note that the

ON,, series as defined does not consider the phases of the contributions at each order,

and as such provides a conservative estimate of the convergence of the solution. Some
icancellation between orders does ocr(ergaigbetween zeroth adfirstores

for example) and results in faster decay of the solution than is apparent from the ON,,
i series. Because the operator expansion is very accurate, the differences between the

!0
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OE scattering strength curves and the integral equation (IE) scattering strength are
presented; these difference curves represent the error in the complete solution at each
order. Furthermore, by using the EE solution as the reference curve, the fluctuations
resulting from a finite number of surface realizations are reduced.

Differences between the OE, and OE2 solutions and the integral equation solution
appear in Fig. 4.3d and are typical for the 0.(2) region. The first order solution is very
accurate over all scattering angles except for a very narrow range a few degrees from
grazing; the errors for all orders above zeroth reach about 1.5 dB at 0W and 180*. A
discrepancy with the integral equation solution very near grazing is commonly
observed in all cases, but the detailed structure of that difference depends on numerical
parameters such as the surface length. As expected from the rapid convergence, the
second order solution OE2 differs little from OE, but is clearly more accurate on aver-
age.

In the regime where lowest order perturbation theory is accurate, it is of interest to
compare the operator expansion and perturbation theory solutions in terms of their rela-
tive accuracy and rate of convergence. In Fig. 4.3e the difference between the integrpy
equation solution and the Monte Carlo solution for the incoherent scattering strengths
0(2) and 0(4), computed to order (kh )2 and (kh)4, respectively, is presented. Even
though formally averaged solutions exist for perturbation theory, it is more straightfor-
ward to compare a Monte Carlo perturbation solution to the integral equation solution
because of the inevitable statistical fluctuations in the scattering curves. Nevertheless,
the error in matching the fluctuations with the lowest order solution 0(2) is readily
apparent, though the mean error is clearly less than 1 dB (the error threshold used to 3
determine accuracy). Accurately matching both the mean and the fluctuations requires
higher order contributions in perturbation theory as indicated by the 0(4) curve, whereas
even the first order operator expansion solution matches the integral equation fluctua-
tions very well; see Fig. 4.3d.

Two additional remarks are in order when comparing perturbation theory curves to I
the operator expansion or integral equation results. First, the Monte Carlo implementa-
tion of Rayleigh-Rice perturbation theory has an explicit sin 20s dependence for the
cross sectiont at low grazing angles that is correct for the infinite length Dirichlet sur-
face but incorrect for finite length surfaces. This behavior makes comparisons with
finite length calculations difficult in the region very near grazing. Near grazing, the
angular dependence of the infinite surface cross section creates a very steep falloff in

I This explicit dependence comes from expressing the solution in terms of a field on the mean 1
plane, resulting in a factor of k, in the scattering amplitude (3.50). I

I
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Figure 4.3 (continued) : The scattering strength contributions from the individual terms in the sur-
face field series (denoted ON,) can be used to examine convergence of the solution over all scatter-
ing angles (c). Differences between the OE solutions and the exact Integral Equation (tE) solution
indicate that the operator expansion has converged to the right answer, except perhaps very near
grazing (d). When lowest order perturbation theory (&'2)) is accurate, a"2) and a"' (e) do not match
the IE fluctuations as well and are less accurate on average than OE, and OE2 (d).
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scattering strength curves which is blurred by limited angular resolution in the other
Monte Carlo methods. The integral equation result is the exact solution of the finite sur- I
face problem, and is used to assess the accuracy of the operator expansion solution over
all scattering angles. Second, the cross section generally computed here by the integral
equation and operator expansion methods is the total scattering cross section, meaning
that both the coherent and incoherent parts of the scattered field are included. The total
field is computed because it is of interest to evaluate the accuracy of the operator
expansion estimate of the coherent field (and hence energy conservation) as well. The
perturbation solution used in this work contains only the incoherent solution, and com-
parisons to other solutions near the specular direction are only performed for the
incoherent component.

Case A2 - c0(4) validity region

Case A2 is located in a scattering regime that requires terms of order (kh )4 in the
perturbation series for the scattering cross section in order to maintain 1 dB accuracy
over the bistatic scattering range; the surface parameters are k1 = 2.6 and kh = 0.52,
resulting in rms surface slope s = 0.283. The operator expansion solution for the sur-
face field contributions to the scattering strength again decays monotonically with
increasing order over all scattering angles (Fig. 4.4a). The first order contribution ON1

is well below OE0 except near grazing where it once again proves very effective at
correcting the significant error in OE0. Indeed, Figs. 4.4b and 4.4c 4ow through com- I
parison with the integral equation that the accuracy of first order ion OE1 is very
good over most of the range of scattering angles but worsens in the back direction,
finally underpredicting the scattering strength by I dB at 100. The second order solu-
tion OE2 is accurate over all angles, except within 5V of grazing; again, this inaccuracy
close to grazing can be reduced by zero-padding the computational surface. In this
example, the averaged perturbation result (0) has a deviation from the integral equation
solution that is about 0.5 dB over most scattering angles, but r(4) also fluctuates much
more than the operator expansion solutions; see Fig. 4.4c. In this region, the first order
operator expansion solution OE1 is more accurate than &(4) except near grazing in the
back direction. The second order solution OE2 is consistently better than (0), indicating

that the broader range of applicability of the operator expansion solution results in fas-
ter convergence than that of the perturbation solution in the region where the latter is
valid.

I
I
I
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Figure 4A4 Scattering results for case A2, located in the &4) validity region. with k1 = 2.6,
kh = 0.52, and 8, = 45'. Decay of the first four terms in the OE solution is rapid and monotonic
over all scattering angles (a), leading to an accurate solution (b), better shown using scattering
strength differences (c); the fluctuations in the IE solution are much better matched by the OE than
by the perturbation solution o&4), although the latter is accurate on average (avg error <i dB).
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Case A3 -- Gap region

Case A3 is selected from the "gap" region where neither a(4 ) nor the Kirchhoff
approximation are deemed accurate over the full range of scattering angles; the surface
parameters for this case are kI = 4.5 and kh = 0.69, resulting in rms surface slope
s = 0.217. A study of the cross section contributions in Fig. 4.5a from each order in the
surface field indicates that the operator expansion solution converges rapidly over most
of the scattering range, but that the decay of the terms with increasing order is not
everywhere monotonic. Because the second order term is greater than the first order
term in the region between 50 and 200, we recognize that an accurate solution in that I
angular region will likely require computing the surface field to at least second order.
Nevertheless, we suspect that second order should suffice, since the third order contri-
bution lies well below the contributions from lesser orders. This example suggests that
the effect of the second order contribution is better studied when compared with the
complete first order solution; indeed, Fig. 4.5b illustrates that the amplitude of contribu- U
tion ON2 is everywhere less than solution OE1, indicating that this new series falls off
monotonically over the full range of scattering angles. This latter series (OE1 , ON2, 3
ON3, ...) is a more appropriate indicator of convergence since first order (OE1 ) is the
lowest order for which the operator expansion solution exhibits the essentially correct
behavior near grazing, having included an important cancellation beween zeroth and l
first order terms.

The differences between the operator expansion curves and the integral equation
result appear in Fig. 4.5c. As expected from the convergence study, OE, is less accu-
rate in the back direction but OE2 is indeed very accurate over the w.,ie range of
scattering angles. The third order solution OE3 is slightly less accurate than OE2 for a
small range of angles in the backscattering region (also apparent in Fig. 4.6c for case
A4), and this behavior is the first hint of nonmonotonic convergence observed in other
cases with greater surface roughness (see Sec. 4.5.1). From Fig. 4.5d, we observe that
0E, is more accurate for this example than either o(4) or the Kirchhoff approximation
result (KA), where the formally averaged solutions for the two theories, [Thorsos,
1988] and [Thorsos and Jackson, 1989], are presented to assist in distinguishing the
curves.

I
I
I
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is more accurate than eitfr KA or oL4) (d).

Case A4 - Kirchhoff approximation validity region I
Case A4 is selected from inside the Kirchhoff approximation validity region; the

surface parameters for this case are k1 = 10.0 and kh = 1.03, resulting in rms surface
slope s = 0.146. In this regime the surfaces are smooth enough that most of the energy
is scattered into the angular region near the specular direction; numerical studies over
the full range of scattering angles are difficult to conduct since the dynamic range of the
scattering strength is very large. Very low levels in the back direction require a more
stringent choice of numerical parameters such as the incident wave taper width, surface
length, surface partition density, or surface end taper, these parameters can be relaxed
for computations emphasizing forward scattering. A study of the relative contributions
from each order of the operator expansion solution in Fig. 4.6a reveals that the conver-
gence of the operator expansion solution has a distinctly different character near specu-
lar than in the backscattering region. In the foi ;vard scattering direction the ON. terms
fall off at about 15 dB per order (beginning with OE0 which is not shown), whereas the
curves gather near grazing in the back direction. When the third order contribution lies 3
well below the lower order curves, we infer that the solution should be accurate at
second order, otherwise third (and possibly higher) order contributions become impor-
tant. The comparison with the integral equation result in Fig. 4.6c indicates that the
second order solution is indeed accurate down to the 100 grazing angle range, where the
error reaches I dB. Note that the dynamic range of the solution is much greater than
that required for most cases of practical interest; the scattering strength near 100 is
about 80 dB below the level near the specular direction. In a manner reminiscent of the 3

I
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behavior of the perturbation theory solution [Thorsos and Jackson, 1989, Fig. 121, the
lower order operator expansion solutions converge toward the exact curve from below, I
whereas the Kirchhoff approximation overpredicts the scattering strength by about 0.5
dB over the entire backscattering region, except near grazing where it is never accurate.
The first order solution (OEI) is not quite as accurate as the Kirchhoff approximation
solution (KA) in the backscattering region, but OE1 is more accurate than KA in the
forward scattering region, in particular within 200 of grazing; see Figs. 4.6b and 4.6c.

Other angles of incidence

The cases examined above indicate that the operator expansion converges to the
correct solution very rapidly in an angular scattering region broadly centered on the 3
specular direction. The higher order corrections are predominantly important away
from specular, especially near grazing in the back direction. Milder [19911 indicated
that the operator expansion method is reciprocal at each order, and we have verified this I
property analytically through third order. We would then expect that the method would
perform best for incident angles far from grazing, and perhaps converge more slowly
for incident angles closer to grazing. We have observed this general trend in other cal-
culations in which the incident angle 0, was varied, using the surface parameters of the
four examples studied above. The effect is best seen in cases with k1 > 4 where conver- [
gence in the backscattering region is slower. For case A3 and 0, = 900, the decay rate of
the contributions in Fig. 4.7a is clearly very rapid; indeed, an improvement in conver- 3
gence over the 0, = 450 calculation is observed by comparing the error curves for 0E11
and 0E2 in Fig. 4.7b with the error curves for OE 2 and OE3, respectively, in Fig. 4.5c.

Now turning to a lower angle of incidence, 0i = 20*, we see in Fig. 4.7c that con-
vergence is much slower in the backscattering direction than in the forward direction;

nevertheless, for this region of k/ -kh parameter space the operator expansion solution is
accurate at second order, see Fig. 4.7d. This general behavior is observed so long as the
scattering angle is not too close to grazing. For angles of incidence in the range

20r :5 0i 5 90*, the scattering strength inaccuracies observed very near grazing (for

example in cases A l and A2 for 05 <50) were essentially independent of 0j. These
errors likely depend on distant multiple scattering effects inadequately addressed by the
operator expansion method.

In examining the character of the bistatic scattering error curves as a function of
incident angle 0i we observe that the accuracy and convergence of the operator expan-

sion is tied to the angular separation from the specular direction: 11800 - 0i - 0sI.
Changing 0i by tens of degrees essentially shifts the error curves by the same amount.
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Figure 4.7 Convergence and accuracy of the operator expansion solution as a function of angle of
incidence for the surface parameters of case A3 (Fig. 4.5). 0, = 900 (a) and (b). The OE3 curve
lies on the zero line in (b) and is omitted for clarity.

For example, in case A3 the error curve for OE, reaches 1 dB near 0, = 90° - 0i for all

values of O, as long as 0, ? 5'.I
4.4 Evaluation of alternative series forms

4.4.1 Introduction

In defining the cross section in Sec. 2.3, we distinguished between a consistent
expansion (2.23) in orders of the surface field expansion parameter and an inconsistent
expansion (2.22) which used all terms available in a truncated series solution for the

surface field. Earlier in this chapter, we studied the accuracy of this latter form since it
is simpler to implement and was used by Milder 119911. In Sec. 4.4.2 we examine the
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consequence of that choice, and show that consistency occasionally improves the OE I
solution, but is not required to maintain accuracy. Indeed, as we'll see in examples
below, the truncated series often uses the n 'th order field more efficiently than does the 1
consistent series.

Milder developed a further simplification to the standard OE series solution by I
taking advantage of a symmetry with respect to the sign of the surface height profile.
Suitable treatment of scattering from the sign-reversed surface (Sec. 3.3.3) results in a 3
reformulation of the standard solution (3.40) for the surface field (scaled) normal
derivative into two alternative series (3.41) and (3.42) which only contain odd or even
operator terms, respectively. Milder [19911 suggested that these short series might be I
good to order n+1 when computed to order n, because the next available term in the
series is of order n+2. We find that the short series solutions do indeed exhibit the
character of the standard solution taken to next order, even when that solution is inaccu-
rate; see Sec. 4.4.3.

I
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These alternative series solutions are easier to investigate for rougher surfaces than
have been used in earlier sections; thus we take this opportunity to examine the conver-
gence properties of the OE for larger values of the slope-height parameter khs. We
begin with a study of the effect of consistency in the series expansion parameter on the
accuracy of the OE solution for the scattering strength.

1 4.4.2 Relative accuracy of the consistent expansion

In this section we examine the relative accuracy of the second order consistent
solution OE(2) (given by 1(2) in (2.23) and denoted by OE(2) in the figures) and the trun-
cated series solutions OE1 , OE2, and OE3 , given by (2.22). Results are presented for
cases whose slope-height parameter is khs = 0.5 (Fig. 4.8) and khs = 1.0 (Fig. 4.9).

Calculations have also been performed for higher values of khs and the results are simi-
lar to those shown here, though the mean error and fluctuation levels generally increase
with increasing khs.

The examples are representative of two regimes observed as a function of ki.

These regimes are separated by a transition region and are distinguished by the way the

OE,, series converges in the backscattering region (there is little sensitivity to k1 in the

forward scattering region): k1 < 3.5 (relatively large slope regime), 3.5 < ki < 5 (transi-

tion region), and k1 > 5 (relatively small slope regime). These regions are not precisely
delimited; the bounding values of k1 are to be used as a general indication. The

incident angle is quite low (9j = 200, except for Fig. 4.9a in which O = 300) allowing

study of the OE solution in the far backscatter region, that is, for relatively large Bragg

wavenumbers. We expect that these results can be used to infer accuracy of the OE for

steeper incident angles. The difference (error) curves between the scattering strengths
obtained by the various approximations and the integral equation solution are presented

for each example; 50 surface realizations were used in the averages. We limit the dis-

cussion to Fig. 4.8, but include Fig. 4.9 to provide a quantitative illustration of the
change in the OE results for a given change in the value of khs; the qualitative behavior
of the solution for these rougher surfaces is essentially the same.

I We first examine the accuracy and convergence of the standard OEn series for

khs = 0.5. In Fig. 4.8a, for ki = 2.6, kA = 0.96, and s = 0.52 (higher slope regime),

convergence of the OE, solution is nonmonotonic in the region of scattering angles

0e < 9 0*. The error curve for OE2 shows it to only be marginally better than OEI; how-

ever, the third order 0E3 is clearly more accurate. This is no longer the case in Fig.
4.8b, where k1 = 4.5, kh = 1.3, and s = 0.4 (transition regime), where for scattering

angles ID < 500 the OE3 solution is less accurate than OE2. This tendency increases

I
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with increasing kI; the OE. series may be only be asymptotically convergent in this
(lower slope) regime. Figure 4.8c, for which k = 10, kh = 1.9, and s = 0.27, illustrates
this behavior quite dramatically.

In the three examples of Fig. 4.8 the OE(2) solution curve lies between OE1 and I
OE2. This relationship to the truncated series solution might have been anticipated,
since OE(2) contains higher order terms than OEI, and the OE2 solution contains still 3
higher order terms (see (2.22) and (2.23)). TFtough its position relative to the other
operator expansion solutions does not depend on kI, the relative accuracy of OE(2) does.
The consistent solution OE(2) is more accurate in the backscatter region than the trun-

cated solution OE2 in the "higher slope" regime, approximately when ki < 4. However,
the truncated solution is better than the consistent solution over all scattering angles for 3
ki ? 4. Note that the OE(2) solution is generally comparable to OE1 (and slightly less
accurate than OE2) in the forward scattering direction, particularly near specular,
independently of ki; the higher order contributions in OE2 are apparently important in
this regime, leading to greater accuracy for that solution. Similar results to those
described for Fig. 4.8 can be observed in Fig. 4.9 for khs = 1.0.

In summary, the operator expansion solution for the cross section does not seem to
require consistency in the expansion parameter to maintain accuracy. This is fortunate
because the (inconsistent) truncated series is substantially more efficient to compute.
We now turn to a study of the short series which provide yet another OE formulation 3
which is even more efficient than the standard OE. series. I

I
I
I
I
I
I
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4.4.3 Accuracy of the odd and even series

General comments

We have calculated the standard (truncated) series operator expansion solutions

and the short series solutions through third order in the surface field over a reasonably
wide range of k1 -kh values (see Fig. 4.2) and for several different incident angles. It is
important to keep in mind that higher order calculations, particularly terms containing
third order (N 3) fields, demand more care in the numerical implementation. Repeated

application of Fourier integral operators compound edge effects and deficiencies due to
marginal sampling density in the spatial or wavenumber domains. Therefore, calcula-
tions involving surface fields above second order have an additional hidden cost not
reflected in computation times nor visible in the scattering strength curves presented
here, and may not be practical for routine use. Nevertheless, third order calculations
are extremely valuable in examining the convergence of the operator expansion solu-

i tion.

For each of the numerical cases, the integral equation (either first or second kind,

or both) solution was also computed in order to evaluate the accuracy of the approxima-
tions. Typically, convergence of the OE is slower for scattering angles far from the
specular direction, especially when scattering levels are low, that is, for larger values of
kV. We also find that as k/hs is increased, the convergence rate of the OE generally
decreases, and the accuracy of any given approximation also decreases for the most
part, though there are notable exceptions addressed later. Indeed, the detailed behavior
of the operator expansion solution in the k1 -kh parameter space is complicated and can
not be simply described. Nevertheless, the following example (case B3) provides a
very typical view of how the short series solutions behave compared with the standard

series solutions for k/is < 1.5. Other calculations show that relative positions of the
scattering strength curves for given approximations remain about the same with respect
to each other as k1 and kh are changed along a line of constant khs, but that the overall
position of the group of approximate solution curves with respect to the exact integral
equation curve (and hence the accuracy of any particular approximation) depends on

the values of k1 and k/h.

The short series solutions will be designated in a manner similar to the standard

series. In summary, both the scattering strength curves and the scattering strength error
curves are denoted OE, for solutions using I. in (2.22), OE(') for solutions using I(n)

I in (2.23), EV, for solutions using only even terms in the series presented in (3.42), and
OD. for the odd series (3.41). Note that the OE(") series is the only consistent solution

considered here. The nominal order of the solution is given by index n which

U
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represents the highest order surface field term used in the calculation. Finally, the ON.
curves are the scattering strength contributions due to the I F. 12 terms alone.

Detailed study of case B3

A representative example for khs = 0.5 is presented in ýig. 4. 10, where the surface
roughness parameters for case B3 are kl = 4.5, kh = 1.26, and s = 0.4, which
corresponds to an rms slope angle y= 220. The behavior of the surface field series
terms is evident from the scattering strength contributions ON,, in Fig. 4.10a; these

decay rapidly with increasing order over all scattering angles except those in the back- I
scattering region near grazing. An accurate solution is reached by second order, the
scattering strength curve for calculation OE2 lies within 1 dB of the integral equation
solution over the full range of scattering angles, for incident angle Oi = 200 (see Fig.
4.10b). Again, the accuracy of any operator expansion solution improves with higher
incidence angle, though no examples of this behavior are presented for this case. In I
general, the accuracy depends on the angular distance from the specular direction (see
Figs. 4.7 and 5.3).

The example of Fig. 4.10 illustrates several features of the operator expansion
solution observed in all cases studied which we review before proceeding with the short
series results. The relatively rapid decay of the terms in Fig. 4.1Oa in the angular range
between 500 < 0, < 1800 is tied to rapid convergence and good accuracy of the solution

over that range of angles, as seen in Fig. 4.10b. In the backscattering region for I
0, < 50° (corresponding to 1100 from the specular direction) the convergence is slower.
Here the accuracy of any given calculation depends on the values of kd and kh; how-
ever, the relatve positions of the individual solutions, seem to remain about the same
with respect to each other, though the relation of the group of solutions to the level of
the integral equation solution changes.

The scattering strength errors for the short series solutions EV0 , OD1 , EV2, and

OD3 are presented in Fig. 4.1Oc. The line types chosen to identify the short series solu-
tions correspond to the standard series solution curves in Fig. 4.10b which they most
resemble; note that the odd and even solutions of order n have the character (but not
quite all the accuracy) of the standard solutions of order n +1.

An interesting way to compare the short series solutions to the standard solutions
is to look at the solutions order by order. Fig. 4.1 Ia contains three curves correspond-
ing to the solutions which could be considered first order (EV0, OEl, and OD13), either

because of the highest order of included surface field terms or because of the solution
character, and the error curve for OE(2) which is a second order approximation included

I
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here for comparison. The accuracy of all approximations is good for the forward

angles, 0, ? 900, but the performance of these solutions in the backscattering region

0), < 900 is quite variable. Solutions which can be considered second order (OE(2),

ODI, OE2, and EV2) are presented in Fig. 4.1lb. Considering the OD1 solution for
example, Figs. 4.1 la and 4.1 lb indicate that the short series solution evaluated to first
order appears to be more similar to the second order solutions OE2 and OE(2) than to the
first order solution OE1. Similar observations can be made for EV2 when comparing
Figs. 4.11b and 4.11c. Admittedly, these comparisons are highly qualitative, but the
obvious complexity of the relationship between solutions precludes making a more pre- I
cise general statement. These characteristics are more easily discernible for power law
surfaces (see Figs. 5.4 and 5.5). 3
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4.5 OE behavior for rougher surfaces

4.5.1 General properties of the OE solutions for khs < 1.5

The general properties of the operator expansion solution have been discussed I
above, but we summarize them here and illustrate them by presenting solution curves
from six numerical examples. These examples are picked using two values of ki, and
are representative of two regimes discussed in Sec. 4.4.2, a relatively higher slope
regime, and a relatively lower slope regime. Furthermore, the cases are chosen with
kihs = 0.5, 1.0, and 1.5 to show how the OE solutions behave with changes in slope- I
height parameter. We include these examples for completeness, and because there is no
better way to demonstrate the detailed behavior of the various OE approximations con-
sidered.

As the slope-height parameter khs is increased, the operator expansion generally
converges more slowly, and a given approximation typically becomes less accurate.
The convergence of the series for the normal derivative surface fiehO , -easily observed
by examining the rate of decay of the ON,, series as a function of khs. As the decay I
rate slows overall, the third order solution ON3 rises to the level of the second order
term ON2, and eventually exceeds it. The OE solution is perhaps beginning to diverge3
when this happens, although the fourth order term has not been computed to verify this
trend. (A hint of the fourth order term's behavior can be obtained from looking at the

relative accuracy of the OE3 and OD3 solutions; when OD3 is more accurate than OE3, I
the fourth order term ON4 is likely to be smaller than the third order term ON3.) The
convergence seems to be asymptotic, because the leading orders do tend to converge
before diverging. Accuracy of the OE solution is best studied by examining the scatter-
ing strength error curves obtained through comparison with the integral equation solu-
tion, which has been computed for the same set of surface realizations.

Typically, the convergence rate and accuracy degrade slowly with increasing

roughness, that is, there is no clear threshold roughness above which the method fails
catastrophically. Performance of the OE method is generally better in the forward
scattering region, but behavior in the backscattering region is variable and depends
quite strongly on the values of kI and kh. The slope-height parameter is generally a
good indicator of the operator expansion's performance, but detailed behavior with
respect to scattering angle depends on the separate values of kI and kh; experience with I
the method leads to a fairly reliable "calibration" of its performance with respect to the
value of khs. The OE solution is not as accurate within a few degrees of grazing as it is
elsewhere, and this is thought to be due to the numerical difficulties associated with the
zero-crossing of the k. filter function in Q. However, the method is also expected to

U
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have difficulties accurately treating strong distant multiple scattering, a phenomenon
associated with the rise of scattered field singularities with increasing slope, discussed
in Chapter 3 and in the following section. As roughness increases, the importance of
distant multiple scattering increases for higher grazing angle scattering; indeed, numeri-
cal tests show that the range of angles over which the solution converges to an incorrect
answer (or never converges) increases with increasing roughness. This behavior will be

easily observed in the example presented in Sec. 4.5.2, when khs = 3.5, but can also be

detected in Figs. 4.12-17 following below.

One notable exception to the general rule is that as khs increases beyonc. the

accuracy of the first order solution actually improves in the backscatter region, particu-

larly in the regime for k1 < 4. In this same region of scattering angles, the higher order
solutions are usually not as accurate as the first order solution; this is a manifestation of

the asymptotic convergence of the OE solution in this roughness regime. It is possible

(but admittedly a speculation) that the importance of the (nonlocal) scattering physics

included in the first order solution (OE1 ) increases as khs is increased from 0.5 to 1.5,

for example for k = 2.6 (see Figs. 4.12, 4.13, and 4.14). Higher order terms (OE2 and

higher) likely emphasize more distant contributions which may also be important, but3 these are perhaps not handled as accurately by the OE at these roughness levels. The
importance of correctly treating multiple scattering, and of the operator expansion

method's ability to include some nonlocal contributions, is dramatically illustrated in
the next section. First we examine the regime for 0.55 khs 5 1.5. The decay of the
ON. series is presented in Fig. 4.12 for k1 = 2.6, and in Fig. 4.15 for k1 = 10. The

accuracy of the standard series is presented in Fig. 4.13 and Fig. 4.16, for k! = 2.6 and

ki = 10, respectively. Similarly, the accuracy of the short series is given by the curves
in Figs. 4.14 and 4.17, for the same examples.

I
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4.5.2 Very rough surfaces - backscattering enhancement

A new physical regime exists for very rough Dhichlet surfaces in which multiple
scattering plays an important role. Double-scattered reciprocal paths lead to an
enhancement peak in the backscatter direction which can rise 3 dB above the average
level [Thorsos and Jackson, 1991], [Ishimaru and Chen, 19901, in a manner analogous
to the corresponding volume scattering problem [Tsang and Ishimaru, 19841. Illustra-
tive paths for the double scattering are sketched in Fig. 4.18. When such scattering
processes contribute strongly to the cross section, the Rayleigh hypothesis is invalid
because singularities of the (continued) scattered field must be present above the lowest I
points on the surface.

U

s I
" " I

Figure 4.18: Schematic depiction of double scattered paths and the location of associated singular- i
ities of the continued scattered field, for the roughness regime that supports backscattering
enhancement.

Case F4, for which kI = 7.0, kh = 4.2, s = 0.85, and khs = 3.56, is rough enough
that the enhancement peak is clearly visible in scattering strength contributions (Fig.
4.19a), and also in the scattering cross section curves (Fig. 4.20). The ON, terms for
n > 0 all contribute to the estimate of backscatter enhancement, indicating that even the
first order OE solution includes nonlocal contributions distant enough to produce the I
enhancement peak. The scattering strength contributions from each order in the series
for the surface field through third are presented in Fig. 4.19a. Each curve, except OE0 ,
has a distinct bump centered on the incident direction of 0, = 600. It is interesting to

observe that the width of the peaks decreases with increasing order; this behavior
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Figure 4.19: Scattering results for an example in the backscattering enhancement regime (case F4,
9j = 60*, 500 surfaces). (a) Convergence of the operator expansion surface field - ON. series.

(b) Accuracy of the standard series solution - OE, series. (c) Accuracy of the short series solu-
tion- OD. and EV. series.
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indicates that the higher order OE terms treat more distant scattering than the lower
order terms. (The width of the bump is inversely related to the average distance I
between multiplt scattering points on paths that contribute to the backscatter enhance-
ment.) Though the operator expansion series appears to be diverging beginning at
second order, the error curves in Fig. 4.19b for the standard series and in Fig. 4.19c for
the short series indicate that the second (ON 2) and third (ON3) order contributions lead
to approximations which improve in accuracy with increasing order, at least for the m
range of scattering angles 400 away from grazing. The surface roughness in this regime
is such that a large number of realizations is required to reduce the fluctuations to an
acceptable level; 500 surfaces were used in the calculations for case F4, an order of
magnitude more than were used in most calculations presented earlier.

Until the backscattering enhancement regime is reached, the OE solution gradually
slows its rate of convergence over most scattering angles; poor convergence is observed
first in the angular region near grazing. By the time the slope-height parameter reaches m
k-s = 3.5, the range of angles over which the solution converges to an accurate solution
has been reduced to 400 5 0, 5 1400, when the incident angle is 0i = 600. The back- 3
scattering enhancement peak is clearly seen in plots of the scattering cross section,
presented for the integra' equation, OE3, and EV2 in Fig. 4.20. The OE3 solution is the
better approximation near the peak, but the EV2 solution is more accurate away from I
the peak in the range of scattering angles 800 < 0, • 1500. The operator expansion is
able to accurately calculate scattering for a case with khs = 3.5 which is just rough 3
enough to exhibit backscattering enhancement, but the OE method is not capable of
treating scattering from surfaces which are significantly rougher.

4.6 Accuracy of the Z -• solution

The Z -1 solution, or "mean-plane" solution, is based on using the upward plane I
wave coefficients (3.3) available after the first continuation step from the rough surface
to the mean plane. The method is presented in Sec. 3.4.2, and the solution for the
scattering amplitude is given by (3.50) and (3.44) using the expansion for Z -given by
(3.17). Unlike the OE solution based on using the N operator (of which Z is a com-
ponent), the mean-plane method does not reverse the continuation step taken by opera-
tor Z', and so does not reduce the height dependence introduced by the continuation.
Consequently, the mean-plane solution has many of the characteristics of the standard
perturbation solution (see Sec. 3.4.4 for a detailed comparison of the two methods), yet
numerical comparisons (see below) indicate that the mean-plane method has some
advantages over the perturbation method. For example, the Z 'solution converges more I
rapidly than the perturbation solution, resulting in a more accurate result at any given
order. Also, the mean-plane solution better matches fluctuations of the exact result for 3
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Figure 4.20: Selected cross section curves from the backscatter enhancement example case F4,
0i = 600. using 500 surface realizations.

ia finite number of surface realizations. However, the mean-plane solution obtained
using Z is currently only implemented as a numerical method, and is not as easily
averaged as the perturbation solution. Our goal here is merely to show numerically
how the Z method differs from the perturbation method which it greatly resembles,
and to show the importance of the second (reverse) continuation step used in N but
obviously absent in ZI A -1The Z solution is computed for the four A-cases examined in Sec. 4.3, for which

the slope-height parameter is khs = 0.15. The mean-plane method becomes inaccurate,
and converges more slowly if at all, as the normalized height kh is increased beyond

kh ? 1.0, even though khs is small for those cases. We begin by comparing the Z andI
N solutions for each of the four examples A1-A4, then review the accuracy of the per-
turbation method for three of those cases. All examples are for the same incident angle
(9i = 450) used in the computations in Sec. 4.3. The mean-plane solutions presented
below are calculated using the truncated series (2.22) for the cross section.

The Z method converges rapidly, and provides an accurate solution for case Al,
with kh = 0.38, and ki = 1.4. The scattering strength contributions from each order in
the series for the scattering amplitude computed using Z (labeled Zn, where n is the

I
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order of the calculation) are presented in Fig. 4.21a, and should be compared to the
analogous plot for the operator expansion solution in Fig. 4.3c. Though the mean-plane
method series decays uniformly over scattering angles, it is clear that the decay is not as
rapid as for the operator expansion solution. Using the I dB bistatic error criterion, the
mean-plane solution (labeled MPn) is accurate at first order (Fig. 4.21b) but is not quite
as accurate as the operator expansion solution (Fig. 4.3d). We recall that the behavior
of the mean-plane methods (both Z and perturbation theory) very near grazing is con-
trolled by the explicit factor of k,, in the scattering amplitude (see Sec. 3.4.2) which
results in the difference with the integral equation (IE) and operator expansion (OE)
solutions.
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Figure 4.21 Results of calculations using the Z operator (mean-plane method) to compute
scattering from the 50 surfaces used in Fig. 4.3 for case Al. (a) Scattering strength contributions
from each term in the series for the scattering amplitude. (b) Error curves for the truncated series I
solution using the Mean-Plane (MP) method.

U
I



i 113

As k1 increases, the OE solution converges more slowly in the backscattering
region; see Sec. 4.3 for scattering from moderately rough surfaces, and Sec. 4.5.1 for

scattering from rougher surfaces. The mean-plane solution also has this property, but

its accuracy degrades more quickly than that of the OE solution, with increasing kV.

For example, in case A2 with kh = 0.52 and k1 = 2.6, the decay of the Z series terms

is not as rapid as it was in case Al; see Fig. 4.22a. The first order solution MPI is not

accurate over the entire range of scattering angles (see Fig. 4.22b), whereas the OE1

solution is (see Fig. 4.4c).
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solution MP2 has more than I dB error for scattering angles near Os = 900
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Figure 4.23 :Results of calculations using the Z operator (mean-plane method) for c•s A3, with
the parameters of Fig. 4.5. (a) Scattering strength contributions from each term in the Z series for UI
the scattering amplitude. (b) Error curves for the solution using the Mean-Plane (MIP) method.

""- I

When ki is increased to ki = 10, with kh = 1.03 in case A4, the Z series does not
appear to be converging in the back direction, for angles 0, < 900; see Fig. 4.24a.
Nevertheless, the error curves in Fig. 4.24b do indicate convergence toward the correct
solution. In the forward direction, the MP solution performs better than elsewhere; the

third order solution MP3 is accurate over the forward scattering angles 0, ? 120'. By
comparison with Fig. 4.6, it is clear that the OE solution is much better than the Z--

solution at treating scattering in this regime of larger kh values, when khs is still small.
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Figure 4.24 Results of calculations using the Z operator (mean-plane method) for cjsp A4, with
the parameters of Fig. 4.6. (a) Scattering strength contributions from each term in the Z series for
the scattering amplitude. (b) Error curves for the solution using the Mean-Plane (MP) method.

i The Monte Carlo perturbation method error curves for lowest order (0(2)) and next
order (&±)) have been presented for case Al in Fig. 4.3e, but we present them here in
Fig. 4.25• for convenience in comparing with the Z mean-plane method error curves

for the same case, in Fig. 4.21b. The perturbation solution for case A2 is presented in
Fig. 4.25b. It is clear by casual inspection of the error curves for the two methods that
the mean-plane method is much more widely accurate than the perturbation method, at
any given order. Note that the comparison is not directly equivalent for any but the

lowest order (MP1 and a(2)) because the perturbation solution has been computed using
the consistent expansion for the cross section (2.23), whereas the mean-plane method is
computed using the truncated series (2.22); however, this difference actually favors the
perturbation solution. Figure 4.25c illustrates the contrast between the two solutions
MP2 and y(4), which both contain terms of order no higher than (kh )4, for case A3

I located outside the validity region of 0"(4). This calculation clearly illustrates the wider
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accuracy of the mean-plane solution using operator Z note that the scale in Fig. 4.25c
is four times greater than in Figs. 4.25a and 4.25b. The method based on operator Z

might have been an attractive alternative to perturbation theory were it not for the
existence of methods that are altogether less sensitive to the value of kh, such as, for
example, the operator expansion method and the small slope approximation [Vorono-
vich, 1985], which are accurate for large surface height when the surface slope is small.
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Figure 4.25: Comparison between the perturbation method and the Z mean-plane method. (a)
Monte Carlo perturbation results for aO2) and oa() (incoherent scattering), for case Al. (b) Monte
Carlo perturbation rTsults for 0"(2) and a(4) for case A2. (c) Error curves for the second order solu-
tion MP2 using the Z method, and the perturbation solution aO), for case A3.
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CHAPTER 5

Accuracy of the Operator Expansion for Surfaces
with a Pierson-Moskowitz Spectrum I

5.1 Introduction to Chapter S n

Many naturally occurring rough surfaces have surface height spectra that can be
represented over a significant portion of the spectral band by a power law function of
the spatial wave number. Such surfaces are rough at many length scales, and computing
single-frequency scattering from such multiscale surfaces has been difficult since nei-
ther of the classical approximations (Kirchhoff approximation and perturbation theory)
provides accurate results over the full range of scattering angles. In this chapter, we
direct our study to relatively low frequency (200 to 1000 Hz) acoustic scattering from
the ocean surface boundary and investigate the accuracy of the operator expansion
method in this application. Scattering from the real ocean surface is a 3-D problem,
additionally complicated by the presence of bubbles created by breaking waves and
then carried to significant depths by surface circulation and mixing processes. Further-
more, gravity waves are nonlinear and nonsymmetrical (the waves do not look the same
from above as they do from below). The OE method as currently developed can only
compute scattering from a distinct boundary given an incident field known on the boun-
dary, and does not account for variations in the neighboring medium. We use a simple
sea surface model for the purpose of testing the OE method, and trust that the results of
this study will carry over to more realistic applications, at least to realistic 2-D ocean
surface shapes.

To model surfaces rough in one dimension (I-D)t we use a roughness spectrum
derived from the Pierson-Moskowitz spectrum for a fully developed sea [Thorsos,
1990a]

and W(K)=0 otherwise, and where the parameters a=8.1 x 10-3 and (3=0.74 are
obtained from the Pierson-Moskowitz frequency spectrum [Pierson and Moskowitz,
1964]. Here g = 9.81 m/s2 is the gravitational acceleration, and U is the wind speed

(mns) at a standard height of 19.5 meters. This power law spectrum is limited at low

t Recall that we specialize to I -D surfaces because we rely on the solution of an integral equation

(IE) to provide the exact result for the problem. The IE solution is too computationally intensive I
to be systematically applied to scattering from 2-D surfaces.

I
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spatial wave numbers by a function of the wind speed U, and at high wave numbers by
an upper cutoff K1, about which more details are given below. The I-D Pierson-

Moskowitz spectrum (5.1) is plotted in Fig. 5.1 for wind speeds of 5, 10, 15, and 20
m/s, and a cutoff of KC = 2k for 200 Hz acoustic waves in water with a sound speed of
1500 m/s. Single surface realizations (each using the same sequence of random
numbers) for the four wind speeds are also presented in Fig. 5. 1.

A numerical study [Thorsos, 1990a] of scattering from I-D Pierson-Moskowitz
surfaces for a wind speed of 20 m/s (39 knots), and for incident angles between 100 and
200, indicated that the Kirchhoff approximation accurately predicts the incoherent scat-
tered field near the specular direction, but is inaccurate for backscattering. Conversely,
perturbation theory with cross section computed consistently to fourth order in kh (a(4)

is very accurate in computing incoherent scattering over all scattering angles except
near the specular direction. The operator expansion solution reduces to both classical
approximations in their respective asymptotic limits, and numerical studies in chapter 4
using surfaces with a Gaussian spectrum indicate that the method is widely accurate for

I surfaces with small slope-height roughness parameter khs. This suggests that it might
also perform well for low frequency scattering from ocean surfaces, for which khs is

*small.

It is important to note that without an upper wavenumber cutoff the rms slope for
the Pierson-Moskowitz spectrum is unbounded. In this dissertation, we set the upper
cutoff to no more than Kc = 2k (maximum Bragg wave number) because integral equa-
tion studies have demonstrated numerically that retaining portions of the surface height
spectrum above twice the acoustic wave number has little impact on the scattering
results averaged over a set of surface realizations, for all scattering angles, though some
differences are visible for scattering from single realizations. It is numerically advanta-
geous to use a small value of Kc. A larger cutoff requires a significant increase in sur-

face sampling density because the higher order operator expansion calculations effec-
tively broaden the surface field spectrum through numerous convolutions with the
Fourier transform of the surface height. The chosen cutoff of 2k results in a slope-
height parameter value of about khs = 0.25 for 200 Hz scattering from 20 m/s surfaces.
This value of the slope-height parameter is appropriate when including the full range of
scattering angles, but it may effectively be lowered for scattering angles closer to the
specular direction. In standard perturbation theory, the scattering results at any angle
depend to first order on the value of the surface height spectrum at the Bragg wave
number, indicating that an effective large-scale rms slope (obtained by cutting off the

spectrum at near the Bragg wave number) might be a more appropriate value to use in
describing the roughness regime for the OE (see for example Fig. 5.2). Numerical tests
confirm that the OE converges more rapidly near specular, but no attempt has been
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Figure 5.1 The Pierson-Moskowitz spectrum, and individual surface realizations for four wind
speeds: 5, 10, 15, and 20 m/s. The scales for the surface profiles are in meters.
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made to relate the rate of convergence to a specific value of khs.

A cutoff of K, = k is used in Sec. 5.4 because the study emphasizes forward3 scattering. Again, integral equation studiest show numerically that including higher
wavenumber components of the surface height spectrum does not change the results.
Using a lower cutoff makes it possible to use longer surfaces (for better angular resolu-
tion) when studying scattering at low grazing incident angles. As discussed above, the
smaller cutoff also reduces the rms slope for those surfaces, thereby lowering the

slope-height parameter to a value that more accurately reflects the scattering regime for
the operator expansion.

5.2 Low frequency scattering results - standard series

I In this section, the standard series solution (3.40) of the operator expansion
method is applied to 200 Hz scattering from I-D Pierson-Moskowitz surfaces, with3 wind speeds between 5 and 20 r/s and for incident angles between 100 and 90P. In
summary, the second order solution (OE2) is accurate over the entire range of scattering
angles for all incident angles tested, underpredicting the scattering strength by a max-

imum error of 0.5 dB near the backscattering direction for the most challenging case
studied (U = 20 m/s and 0i = 100). The first order solution (0E1 ) is slightly less accu-
rate over the entire range of scattering angles, reaching a maximum error of 2 dB near

0, = 15*, when Oi = 100. The operator expansion solution for the coherent field is very

accurate; the energy error for the total field is typically less than 2% for the first order
solution OE 1, and less than 0.1% for the second order solution OE2.

An example with 20 rm/s wind speed and incident angle 0i = 200 illustrates typical
results obtained using the operator expansion. The convergence of the operator expan-
sion solution for the surface field is evident when comparing the contributions from
each order to the scattering strength, for an average computed from 50 surface realiza-

tions (Fig. 5.2a). The scattering strength curves for the first order solution (OE1), the
lowest order for which the proper angular behavior near grazing is obtained, and the

second and third order contributions (ON2 and ON3 ) indicate that the ON,, series terms

decay rapidly over all scattering angles, especially in the region near the specular direc-3 tion. The convergence of the operator expansion solution to the integral equation result
is illustrated in Fig. 5.2b which presents the scattering strengths for the zeroth and first3 orders plotted along with the Integral Equation solution (IE); higher orders are

The OE solution shows a similar lack of sensitivity to the higher wavenumber surface corm-

ponenls for this application to forward scattering.

I



122

100- (a) - OE1
S-I0 r ,--- ON2 -*-\I

.g -20 ---

-30

-80
-90

0 20 40 60 80 100 120 140 160 180

S" 0 (b Integral Equation (IE

C,,. 0  
- I

=• -lol- -- OEO

-60

S-30

IU

.• -40

S-50

-60

-70 0 20 40 60 80 100 120 140 160 180

*- O--EOE3-IE

Z i I

CO• 01 .ivAi4 --e--- ~OEIE2 -E 1E 1 -

S-40 -1E

CO/ --2. ..e

-3

0 20 40 60 80 100 120 140 160 180

Scattering Angle (deg)
Figure 5.2 :Averaged results for 200 Hz scattering from 50 surfaces with a U =20 m/s Pierson-II
Moskowitz spectrum and with 0• = 20'. The decay of the ON,. series is rapid and monotonic over
all scattering angles (a). The scattering strengths for zeroth and first order solutions OE0 and OE,
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indistinguishable from the IE curve at this scale. As in the Gaussian examples, the
Sdifference between the operator expansion scattering strengths and the integral equation

scattering strength provides a clear picture of the accuracy of the operator expansion
solution for each order up through OE3; see Fig. 5.2c. Within a few degrees of grazing

the OE solution is not as reliable as elsewhere, though the maximum error is typically
only 1-2 dB at grazing in either direction for the computational surface lengths used in
the examples. This error can be reduced to about 0.5 dB by zero-padding the computa-
tional surface to twice the minimum number of intervals (2048); see Fig. 5.10.

-- The convergence rate of the operator expansion solution depends on the incident
angle in a manner similar to that observed for single scale surfaces: the solution is gen-
erally more accurate when the incident angle is further from grazing. For ei = 900 the
averaged first order solution (OE1 ) reaches a maximum error of about 0.5 dB near
-0 = 200, compared to 0.7 dB when ei = 45*, 1.3 dB for 0i = 200, and 2 dB for 0i = 100.
The scattering strength differences (error curves) between the operator expansion solu-
tions and the integral equation solution for Oi = 100, 450, and 900 are presented in Figs.

5.3a, 5.3b, and 5.3c, respectively. The curves in Fig. 5.3 indicate that for any given
order (and for this surface roughness), the error in scattering strength is essentially
determined by the angular distance away from the specular direction 11800 -0i -0sI;

from this and other examples it seems that scattering results for low grazing angles of
incidence can be used to infer accuracy for higher incident grazing angles.

No fundamentally different behavior is noted as the incident angle is further

reduced to near the rms surface slope angle, which is about 70 for these surfaces (for aI cutoff of K. = 2k), where multiple scattering between large surface features might be

expected to occur. Examples emphasizing very low angle scattering are presented in

Sec. 5.4.

5.3 Low frequency scattering results - alternative series

In this section, we investigate the accuracy of further simplifications introduced by
Milder which involve only odd-termed (3.41), or only even-termed (3.42), operator
series. Numerical examples illustrate that use of these shorter forms in computing

scattering from Pierson-Moskowitz surfaces results in a reduction in computational
expense while clearly improving upon the accuracy of the standard solution (3.40).

We also revisit the question regarding the relative merit of retaining consistency in
the expansion for the cross section at the expense of computational efficiency which
was addressed in Sec. 4.4.2 for scattering from surfaces with a Gaussian spectrum.
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Those findings suggested that consistency in the expansion parameter is not required in
order to maintain accuracy; it turns out that the same is true for scattering from
Pierson-Moskowitz surfaces. First we examine the accuracy of the short series solu-
tions.

For this power law spectrum, the short series computed to order n are almost as
accurate as the standard series taken to order n+l, providing a solution which is easier
to compute and more accurate for any given order in the surface 'Reld. This behavior is
dramatically illustrated by comparing the scattering strength for the even series solution
EV0 to the standard solution OE0 . Recall that OE0 is never accurate for a significant
range of angles near grazing (within about 150 for the parameters of Fig. 5.2), whereas
OE, is essentially correct in this region. For the forward scattering angles
(900 < 0, < 1800) we see through comparison with the integral equation solution that,
for the 20 m/s surface and 01 = 200, the operator expansion solution obtained using EV0

is accurpte over the full range of forward angles, including those between 1650 and
1800; see Fib. 5.4.

U 10
Integral Equation (IE)

+-'-- EVO
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I -20
C Il
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Figure 5.4 : Comparison between the zeroth order standard series solution (OE0) and the zeroth
order even series solution (EV0) for forward scattering angles. The exact integral equation solution
(1E) is also presented for reference.
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Ranking the various operator expansion solutions by their relative accuracy for
scattering from surfaces with a Pierson-Moskowitz spectrum is very easily accom-
plished because the standard OE solution approaches the exact scattering strength from
below (Fig. 5.2c) over all scattering angles. The short series solutions (3.41) and (3.42)
are consistently more accurate than the standard series (3.31), for any given order in the
surface field. Qualitatively, the relative accuracy of the solutions is maintained over all
scattering angles except for those very near grazing (less than about 3 degrees), for
which the operator expansion solution is not as reliable. For the example of Fig. 5.2,
where the wind speed is U = 20 mn/s and the incident angle is ei = 200, the differences
between the scattering strengths of the operator expansion solutions and the integral
equation result are presented in Fig. 5.5. The error curves for the standard solutions
O0E, OE1, and OE2 are plotted in broken lines, and the error curves for the short forms
EV0, OD1, and EV2 are plotted using solid lines. It is easy to see that the short forms
evaluated to order n in the surface field have the character and nearly all of the accu-
racy of the standard solution evaluated at order n + 1.

We conclude this section by presenting the error curve for the second order con-
sistent solution OE(2) (2.23c) compared with the first order truncated solution (2.22b)
curves using the standard series for the scattering amplitude (OE1), and using the odd
series (OD1); see Fig. 5.6. The OE(2) curve is more accurate than OE1 but less accurate
than OD1 over all scattering angles. This example is typical for scattering from
Pierson-Moskowitz surfaces, and clearly illustrates the lack of importance of retaining
consistency in constructing the cross section in the operator expansion method. Com-
paring the curves in Fig. 5.6 with those in Fig. 5.5 we see that the second order trun-
cated solution OE2 is more accurate than the second order consistent solution OE(2),
while being faster to compute. The short series solutions are faster yet, and are the
most efficient forms of the operator expansion solution among those investigated.



127

0E2-1E
+-+OD1- 1EI I +----+OE1 -JE

1+ 0

*& 1

CDIC
I-

11 1 oil L

wl'.0 A

I0 20 40 60 80 100 120 140 160 180
* Scattering Angle (deg)
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field OE(2) and the mincated solutions computed to first order in the surface field (standard series

solution 0E1 and odd series solution OD,), for the parameters of Fig. 5.2.

5.4 Results for higher frequency, and very low grazing anglesI

In Sec. 5.4 we extend the operator expansion calculations to higher frequencies 3
and lower incident grazing angles, for which the scattering regime is more stringent.i
This investigation is important because many sea surface scattering applications are
characterized by low grazing angle propagation over a wide range of frequencies. Dis- I
tant multiple scattering (an area of weakness for the OE) becomes increasingly likely in
this regime. Recent studies of the accuracy of the "single backscattering multiple for-I

ward scattering" approximation [Thorsos, 1990b] indicate that for low grazing angleI
propagation, distant multiple scattering is only important in successive forward scatter-ii

ing, either propagating away from the source, or back toward the source; accurateI
results can be obtained using a single backscattering event in which the wave reverses
direction, and this backscatter can be accurately treated using lowest order perturbation

theory. Furthermore, backscatter from ocean surfaces is typically dominated by volume
scattering from near surface bubbles, particularly for wind speeds above about 8 ni/s.
The accuracy of the OE method has also been found to degrade as the incident angle
approaches grazing, though this behavior is worst in the backscattering region. We will
therefore concentrate on studying the accuracy of the QE method in computing forward

scattering from the ocean surface (the air-sea interface) at low grazing angles. The
value of the slope-height parameter khs has been observed to give a general indication

II • U
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of the accuracy of the operator expansion solution, and khs is proportional to the fre-
quency of the acoustic wave; we will therefore extend the calculations to higher fre-
quencies than previously considered.

Studies of low grazing angle surface scattering are difficult because significantly
longer surfaces are required to maintain sufficient angular resolution in the scattering
cross section. Since the sampling density along the surface is only a function of the
acoustic frequency and the surface roughness (specifically, the value of the upper cutoff
1K), the number of surface partitions increases in proportion to the surface length.
Thus, exact scattering calculations using the integral equation method used above
[Thorsos, 1988] become very intensive as the incident grazing angle is reduced below

about 6i < 10, for f = 400 Hz.

The Parabolic Equation (PE) has long been used to compute propagation of energy
in the ocean for angles relatively close to the horizontal direction [Tappert, 1977]. For
that restricted range of angles, and to model "one-way" propagation (appropriate for
weakly scattering media for which there is little scattering in the back direction), the
parabolic equation is a good approximation to the Helmholtz Equation (HE). Many
refinements to the standard PE approximation have led to algorithms that can accurately
compute one-way wave propagation over a very wide range of angles about the forward
(horizontal) direction. Recently, a parabolic equation approximation has been applied
to surface scattering [Thorsos, 1987, 1993b], and an associated integral equation tech-
nique has been developed yielding a practical numerical solution to low grazing angle
scattering. Within this approximation (which accurately matches the Helmholtz equa-
tion results for forward scattering for scattering angles within about 450 of grazing) an
accurate numerical solution is now available which can readily treat scattering from
surfaces an order of magnitude longer than previously possible with the technique
based on the HE. We use this Parabolic Equation Integral Equation (PEIE) method to
evaluate the accuracy of the operator expansion for low angle forward scattering. (The
OE is still much faster to evaluate than the PEIE solution.)

Using the PEIE solution, the accuracy of the operator expansion solution has been
examined over the range of scattering angles 1350 - OS •1800, for incident angles
50• 0i <200, with frequencies f = 200 Hz, 500 Hz, and 1000 Hz, and for 1-D

Pierson-Moskowitz surfaces with 15 m/s wind speed. In these studies, the upper cutoff
for the surface roughness spectrum is K, = k; integral equation studies confirm that
higher wavenumber components do not contribute significantly to forward scattering.
The number of surface partitions used in computing scattering for Oi = 100 and f = 200
Hz is 1000. For the most challenging case, 0i = 5' and f = 1000 Hz, 20,000 surface
partition intervals are used; typically, the number of intervals required to provide

I
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adequate angular resolution and accuracy in the scattered field is inversely proportional
to the square of the incident grazing angle, for angles near grazing. Results for all cal- I
culations are averaged over 50 surface realizations.

The first case we present is for incident angle Oi = 100 and f = 500 Hz
(k/h = 2.513, khs = 0.309). The incoherentt contributions to the scattering strength for
each of the surface field terms (beginning with the first order solution OE1) in Fig. 5.7a
indicate rapid decay over all forward angles in the range 1350 < 0 :5 1800. The depres-
sion centered about the specular direction 0., = 170° visible in OE1 is due to the gap in
the 15 m/s surface height spectrum at low wave numbers, leading to a very small contri-
bution. This effect is observed in perturbation theory as well, where there are no Bragg
contributions in a spectral gap. (We observe that the depression is not visible in ON2

and ON3 because these contain only higher order contributions.) The error curves for
the standard series solutions in Fig. 5.7b indicate that the OE solution is accurate at first
order, though some error remains in OE, near the specular direction which requires
higher order contributions because of the gap in the surface height spectrum. All OE
solutions are somewhat unreliable within a couple of degrees from grazing, though for
this set of parameters the OE solution converges to a very accurate solution near graz-
ing. The OE2 and OE3 curves are actually more accurate than the PEIE solution for

angles 0, < 1650, because the parabolic equation solution has a systematically increas-
ing error as the scattering angle is decreased further from the forward horizontal direc-
tion (180*). In all examples presented in this section, the PEIE overpredicts the correct I
scattering strength obtained by exact solution of the HE by an amount that can be
inferred from the difference between OE3 and the zero line (PEIE) in Fig. 5.7b. Not
surprisingly, the short series solutions converge more rapidly to the exact solution; see
Fig. 5.7c.

I
I

? Only incoherent scattering strength is considered in the forward scattering examples because U
the strong (and broad) coherent signal masks some of the interesting behavior of the OE method.
Typical physical scattering may have a much narrower coherent peak than is possible to obtain
with tapered wave numerical simulations.

I
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Figure 5.7 : Average (50 surfaces) scattering results for the operator expansion compared with the

Parabolic Equation Integral Equation (PEJE) solution, for scattering from 15 m/s Pierson-Moskowitz surfaces with incident angle 0, = 100 and acoustic frequency f = 500 Hz, using 2500
surface intervals. Scattering strength contributions from the ON,, series (a). Accuracy of the OE,
standard series solutions (b). Accuracy of the short series solutions (c).
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The convergence of the OE solution changes somewhat as the incident angle is
reduced to Oi = 50, for the same frequency f = 500 Hz, so that the rms height and slope U
are the same as for the previous example. The specular direction is now only 50 from
grazing, and higher order contributions are required to obtain an accurate solution from
1750 to 1800. Note that the decay of the ON. series (Fig. 5.8a) for 50 incidence is less
rapid near grazing than for 100 incidence. This is reflected in the accuracy of the OE,
solution, which begins to deviate from the exact solution near 172O and exceeds 1 dB I
error between 1760 and grazing; see Fig. 5.8b. All short series solutions (except EV0)
are accurate over the entire range of forward angles studied (see Fig. 5.8c), except
perhaps for OD3 within 1V of grazing; the operator expansion solutions are relatively
quite unreliable within a degree or two near grazing, producing results that occasionally
vary by 1 or 2 dB depending on the particular set of surface parameters used.

Increasing the frequency to 1000 Hz (kh = 5.03, khs = 0.673) while maintaining
5* incidence still leads to an accurate operator expansion solution, but begins to show
how the method's convergence degrades with increasing roughness. The decay of the
OE1, ON2, ON3 series is slower in the angular region 1720 :5 0, < 1800 than forf = 500
Hz, and is not monotonic for this example (Fig. 5.9a) in the region very near grazing.
The standard series error curves do not converge monotonically to the exact solution for
scattering angles greater than 0, > 1720, which corresponds to the angular location of I
the edge of the gap in the scattering strength. As previously discussed, this gap is due to
the lack of low wavenumber energy in the surface height spectrum, and contributions
from higher order OE terms dominate in this angular region. Nevertheless, the OE
solutions (first order and higher) are all accurate over the range of angles studied here,
with OE, reaching 1 dB error at 1350 (Fig. 5.9b). The short series are similarly accu- I
rate (Fig. 5.9c). Some very distant multiple scattering can occur for this last example,
because the ratio between the wavelength of the surface waves at the peak of the spec-
trum for 15 m/s waves and the acoustic wavelength is X / X = 140, but the slope of
these large scale waves is very small. The number of surface partition intervals for this
case is 20,000, and computations with further reduction of the incident angle, or I
increase of the acoustic frequency, have not been performed. Nevertheless, this study
has shown that the operator expansion can give reliable results for a wide range of
roughness regimes, in forward scattering from I-D Pierson-Moskowitz Dirichlet sur-
faces.

I
I'
I
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We conclude this section by illustrating the effects of extending the computational
surface length by zero-padding the rough surface profile, a procedure discussed in Sec.
3.3.4. The error curves for the second order solution OE2 for several different computa-
tional surface lengths are presented in Fig. 5.10. The same rough surface ensemble
used in Fig. 5.2 is used here; each rough surface is divided into 1000 intervals. The
shortest computational surface is therefore extended by zero-padding to 1024 intervals.
The error at grazing for this surface length is about 2 dB, and is essentially independent
of calculation order (except for OE0 which has a much larger error near grazing due to
its similarity to the Kirchhoff Approximation). The error in the angular region within a
few degrees of grazing is significantly reduced by further extending the computational
surface length (by zero-padding) to the next power of two, that is, 2048 intervals; at
grazing, the error is about 0.5 dB for this surface length. Further reductions in numeri-
cal error are possible by continuing to lengthen the computational surface, but these3 improvements are modest and are not likely to be worth the additional computational
cost. In many cases, using the minimum computational surface length is satisfactory,
and all calculations in this dissertation (except for the ones used in Fig. 5.10) were per-
formed by extending the number of surface intervals to the nearest power of two.

i2 17 1718
Sctern 2g. dg

0E2 (1024) -I1E
b 1 0 E2 (2048) - 1E
-- -- 0E2 (4096) -I 1EI

170 175 180
Scattering Angle (deg)

Figure S.10 :The effect of comnputational surface length on near-grazing accuracy. The errorUcurves are presented for 0E2 uig50 rough surface realizations with each rough surface divided
into 1000 intervals. The computational surface for the operator expansion calculation was extend-
ed by zero-padding to 1024, 2048, and 4096 intervals.



136

CHAPTER 6 .

Formal Average of the Operator Expansion Solution

6.1 Introduction

The field scattered by a single randomly rough surface is itself a random function
of space. Similarly, at any given point in space, the field scattered by each different
surface realization is a random process. It is in this latter sense that we will consider the
random scattering problem. The moments of the scattered field, obtained by averaging
over the ensemble of random surfaces, are often of greater interest than the field scat-
tered by a single "deterministic" surface. The operator expansion method has been
derived and implemented to compute scattering from one surface profile at a time. To
compute moments of the scattered field using the OE method we have resorted to
numerically averaging the scattering results computed from many surface realizations
taken from a stochastic ensemble of interest; this is known as the Monte Carlo method.

In this chapter we attempt to formally average the OE solution using the statistical
properties of the surface height to evaluate certain moments of the field. Such expres-

sions for the moments do not contain any random fluctuations since the average is taken
over all members of the stochastic ensemble, If no additional approximations are made
in performing the average analytically, the formally averaged result corresponds to the
asymptotic limit of the Monte Carlo solution as the number of surface realizations is
taken to be infinitely large, except for the fact that the formal average is for infinitely
long surfaces. The angular behavior of the scattering cross section near grazing is lim-
ited by angular resolution in the Monte Carlo method because finite length surfaces are
used in the calculations.

We succeed at finding an expression for the first and second moments of the
scattering amplitude (leading directly to the scattering cross section) for the simplest
OE approximation, the zeroth order even series solution EV0. The expression for the
second moment contains five integrations and as such is not practical, particularly since
the EV0 solution is not sufficiently accurate for many applications of interest (demon-
strated numerically in Chapters 4 and 5). No important approximations were made in
obtaining the formal average of the EV0 solution, and analogous expressions for higher
order approximations will be substantially more complicated. The usefulness of a for-
mally averaged solution for the operator expansion is unquestioned, but finding an
efficiently computable expression for the OE approximations remains a subject of
research. We report our findings here as an introduction to the problem.

I
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The scattered field at any point can be decomposed into two parts, the average

field and the randomly fluctuating field:

p, (r) = <p,(r)> + pf(r). (6.1)

The average, denoted by the brackets < >, is performed over all surface profile realiza-
tions. The moments of the field are obtained by averaging the expressions relating the
field to the surface height function ;(x), and to the incident field. As we will see below,

this procedure leads to the evaluation of moments of functions of the surface height.

I The surface height is a random variable that we assume is stationary in space, that

is, its statistical description is the same for all locations. The surface height is also

* assumed to have Gaussian statistics, which means that the ensemble of rough surfaces
is entirely described by its two-point probability density function (pdM):

1 [2UI2P2(ýI, ;2) 2 exp (6.2-2);12+2

2Ih2 (] -C _C22 [ 2h 2 (1-C? 2 ) ] (6.2)

I where C 1 2 = C(xI-x2) is the normalized correlation function of the surface height,

and h is the rms surface height. The correlation function is denoted and defined as fol-

* lows:

h 2 C(x 2 -Xl) a <VXI)(X 2)> <;1E2>

= -- I ý2 P 2(; 1 ,t 2) dt 1 dt;2 " (6.3)

Note that ý(x) is a mean zero process, that is, <; > = 0. A Gaussian process is often
defined by its spectrum, which is related to the correlation function by a Fourier

transform [Papoulis, 1984].

A function of the surface height f (t) is also a random variable, but is not gen-

erally Gaussian. However, the pdf of f (t) is not needed to find the moments off; they

can be found using the pdf of ý as follows [Papoulis, 1984]:

<f Q>= ff (t)P(t)dt. (6.4)

We will apply similar relations to find the average scattered field < p, >, called the

3 coherent field, and the second moment of the field <pps > which is proportional to
the average scattered intensity; in the far field of the ensonified surface patch, the
second moment of the scattering amplitude F enters into the expression for the cross

section (2.20). Here, the total scattering cross section o is understood to be the sum of
the coherent scattering cross section ac and the incoherent scattering cross section al,

I



I
138 I
such = a - C. 

(6.5)

Thus, we are interested in both the first and second moments of the scattering ampli-
tude. We begin by reviewing the expression for the scattering amplitude obtained by I
the operator expansion method for scattering from a single surface.

In the far field of the ensonified surface region, the scattering amplitude is given •
by (3.32)

b )F s) = A exp[-i k ,-r] p'(r') dx', with A = axJ4

'~II
where p '(r)= -1 i (iA-V p (r)) = ¢)is the scaled normal derivative of the total field
on the rough surface. The OE method provides an estimate ofp '(r) using the nonlocal
operator N whose series expansion is given by (3.28). Recall the three alternative series
solutions for the total field derivative, (3.40), (3.41), and (3.42):

Pad = pi")_(N 0 + NI+N2 +"'p , I)P
P,ýd = 2P'-2(N +I 3 + "" )Pi

P m= -2(N 0 +N 2 + "")Pi•

In choosing the best series to average, we recognize that it is advantageous to use an
expression with as few terms as possible because of the cross terms that appear in the I
expression for the second moment of the scattering amplitude. For example, at lowest
order the standard series has two terms (pi'-Nopi), but the even termed series has only I
a single term: -21NoPi. Numerical tests on surfaces with Gaussian or Pierson-

Moskowitz spectral forms discussed in Chapters 4 and 5 have shown that the even
(EVe) and odd (OD.) series (short series forms) are more efficient than the standard
series; that is, they make better use of the n 'th order surface field in providing an accu-
rate solution. The EV0 term is effectively a first order solution, and we'll examine its
first and second moments below.

6.2 Coherent field- EV0

The EV0 estimate for the surface values of the scaled normal derivative is

P 'v 0 =- 2 N0p1 =-2Qpi, with Q defined by (3.4):

Pi(x, •(x)) = Jdk exp[ikx] (ikz) f .- exp[-ikxx'] pi (x', 1(x')) ,

with k 2  k2 and Im(kz) > 0. We set the incident field to a tapered plane

I!
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wave (though we don't really need this degree of rigor in this limited development)

pi(r) = B(x)exp[iki-r], ki =kixx+k 2i , ki. <0,

where the taper function B (x) changes arbitrarily slowly on the scale of the acoustic
wavelength and also on the scale of the surface correlation length. With the scattering
wavevector defined by k, = k..x + k.i, with k, 2 a0, the scattering amplitude for solu-
tion EV0 is

F FEvo(k,'ki)-2 A f dx Iexp[ -ikszx I- ikn4 (x 1)]fdAk expf ikxx I]I(ikz)

S

I f -XI exp[-ikxx 21 exp[ikixx2 +iki 2 )(x2 )JB(x 2)" (6.6)
S i-

I The averaging is only to be performed over functions of surface height, so all ý(x)
dependent terms are grouped together. Note that because the random variable C is
assumed to be stationary, we drop the explicit x-dependence but label the surface
heights differently if they are functions of different locations: for example, we write
i(x 1) a C1. Taking the ensemble average of (6.6)

<FEvO>=-2A f dxI exp[-ikxx i] f dkx exp[ ikxx 1 ] (ikz)
SI

x f 2 expli(kix-k.)x 2 ] B(x 2 ) <exptikiC 2 -ik, 1J>. (6.7)
S 2

We must now evaluate the second moment

Mexp[ -iksz H I exp[ ikiz =2]

which we will do using the probability density function for the surface height. In order
to illustrate the more general method of evaluating moments of functions of several ran-
dom variables, we do not take advantage of a special property of exponential functions
of random variables. Later, in the evaluation of the incoherent scattering amplitude, a
fourth moment will be evaluated using the special property mentioned above.

The moment M 0 is evaluated using the two-point pdf for the surface height as fol-
lows

I Mo = ff exp[-iksz41lexp[ ikizý2]P2(41,C2)ddC2 (6.8)

- exp A- ( k2 - 2C(x I-x 2)ksz kiz + k 2) (6.9)

I
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and yields another Gaussian form by Fourier transform of the Gaussian pdf (6.2).
Because the correlation function C only depends on the difference between location I
coordinates, we change integration variables to sum and difference coordinates using
the following transformation:

x =x 1 -x 2 and x'=x1 +x 2  (6.10)

giving

x 2- + and x 2 = 2 (6.11)2 2 I
and d&r d2= &- dr dr'. Rearranging the integrals in (6.7) for the average scattering

amplitude and changing variables we obtain:

<F y 0 > 2 2A 7Xj j dXldX2 (ik.z)XP~ikx(XlX2)JCxp[-iks.xiJ

x exp[ikixx 2 ] Mo(Xl-X 2 ) B(x 2) (6.12)

- 2A dkx dx'. (ik,) expt ikxxI exp[ -ik. (x +x')/2J

x exp[iki(x'-x)2J M0(x) B(~ 2 (6.13) I

The surface correlation length is much shorter than the. length of the ensonified portion
of the surface, and the correlation function decays to negligible levels at distances of
many correlation lengths. Thus, the integration limits for the difference coordinate x
may just as well be extended from 2S to infinity. Similarly, because the taper function
B changes very slowly on the scale of the surface height correlation length, the depen-
dence on the difference coordinate may be dropped. We can therefore collect all quan-
tities dependent on the sum coordinate x' and perform that integration:

<FEvo> = -2A ff !2"•-2x-r (ikz) exp[ ikxx ] exp[-iksx/2] exp[-ikix/2] M o(x)

x -f4 -exp[-iksxx'/2J exp[ikix'/2] B(x'/2). (6.14)2 2
This last integral over the sum coordinate is the Fourier transform of the taper function,
centered about the specular reflection condition: 27t B (k - kiu ). In the limit as the

I
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I taper width becomes infinitely large, a delta function evaluated in the specular direction
is obtained.U
6.3 Incoherent Scattering Amplitude

We wish to compute the EV0 estimate for the scattering cross section given by

i 
(3.33) 

<FF>

where the "normalized" energy flux E1 ' incident on the surface is related to the actual

energy flux Ef by:

Ef'= Ef 2-p
sin~i

I If the taper function is assumed to have the modified Gaussian form defined in (3.34),
and the taper parameter g is very large compared to the acoustic wavelength, the nor-

malized flux E" for the Gaussian tapered plane wave becomes approximately ifYg,

as can be seen from (3.35).

Retaining the general form of the taper function B (x), we write the expression for
the squared magnitude of the scattering amplitude for the EV0 approximation as

FF* =p x -k dkexp[ ikxxu(ik)IS
Ix f X exp[ - ikXx 21] exp[ ikiXx 2 + ikiz ý2 ] B (X 2)

S21

I x dx 3 exp[ ikx 3 + iksz W3 fdkx' exp[-ikxX/3 1 (ikz')*
S

x f &-- exp[ ikx'x 4 ] exp[-ikxx 4 - ikiz 4 B (x 4) (6.15)
S 2

which we now rearrange, again grouping the height dependent quantities together in

preparation for averaging:

I
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FF* =4A2 (dk e ji ei X 2 1

x exp[-ikSA 1+iki 2I B(x 2)

X f-•-(ikl')* f fdX3& 4 exp[-ik,'(x3-x 4)] exp[ ik.x 3-ikix 41
,I.X S S

x exptik.,83-iki,•] B(x 4). (6.16)

It is clear that to compute the moment < FF >EVO we need to evaluate the following

fourth moment:

MOO = <eXP.I (-k=ý1+k42+kný3-kiz•)]> = <eiX> (6.17)

Since all the surface height variables are zero-mean Gaussian random variables, then X

is also a zero-mean Gaussian variable, and we can evaluate Mo0 using the relationship

<e'X> = e2 . (6.18) 1
This relationship is obtained by Fourier transforming the single-point Gaussian pdf in
the same way as was done earlier for moment M0. Here, squaring X and rearranging

terms we obtain:
X2 =k22 2 + i 2; +k2zj+k2

k• +k&z + + + ksz - 2 kzký 1 2 - 2k$21 l 3

+ 2 kakiz 4 + 2 k= ka 2z3 - 2 kz2ý2- 2 k kiz C3ý4. (6.19)

Taking the average of X 2, we obtain an expression in terms of all possible two-point

correlation functions for the four coordinate locations:

<X>- 2h 2 [kn2+ký-kszk zC 12 -C 14 -C23+C34)-ks~C1 3 -kd2c 2. 4 ]

where(6.20)whereI

< C(Xi) C(xj) >
Ci- C (x 5 -xj) = C (xj -xj) h ( (6.21)

We can now write the desired second moment of F as:

<FF*> = 4A 2f x 2  (ikz)(ikzl)* ldx2 dx 3 dx 4 e 2 B(x 2)

×B (X4) exp[ (kx(Xl-X2) - kx'(x3-X4) - k=(XIX3) + kix(X2-x4) .(6.22)
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We would like to take advantage of the fact that the correlation functions only
depend on difference coordinates, but there are six pairs of difference coordinates to
choose from, given the four spatial coordinates; thus, the choice of variable transforma-
tion to make is not an obvious one. We follow Uscinski [ 1985] in picking the following

combinations, though we normalize the difference coordinates in a symmetrical way:

9=-- (X 1 +X 2 +X 3 +X 4 ) (6.23a)

U -L[(xX1 +x 2 )-(x 3 +x 4 )] (6.23b)I
v=-[(xi+x 4 )-(x 2 +x 3 )] (6.23c)

W= 2-[(x +x3)-(X2+x4)] (6.23d)

leading to

I " ( + 2w + 2v + 2u + 4g ) (6.24a)

X2 =I ( - 2w - 2v + 2u + 4g ) (6.24b)

X 3 = "I ( + 2w - 2v - 2u + 4ti ) (6.24c)
1

x 4 = I ( - 2w + 2v - 2u + 4 ). (6.24d)

In terms of the new coordinates, the six possible difference coordinate pairs are given
by

3 X--X 2 =W +V X 1 -X 4 =W +U X 2 -X 3 =U -W (6.25a)

x 3 -x 4 =w -v x 1 -x 3 =v +u x 2 -x 4 =u -v . (6.25b)

I Under the variable transformation the average of X 2 becomes

<X2> = 2h 2 [ k"2 + kJ2 -k tki..(C(w+v)-C(w+u)-C(u-w)+C(w-v))
-k2C(v +u)-k2C(u-v)] , (6.26)

and the other exponential term in (6.22) becomes
exp [i (k.,(w + v ) - k.'(w - v )- k..(v + u ) +ki., (u - v)]

= =exp [i ( w(k.,-k,,') + v(k.,+k.,'-k. - ka) + u(ki.,- kaz (6.27)

Finally, under the variable transformation

dx& dx 2 dx 3 dx 4 = J dw dv du dg± (6.28)I
I
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we change to sum and "difference" coordinates in (6.22) to obtain:

<F *>= 4A2jJ z (ik2)(ik')* J du dvdw e 2<

2S 2S2S

JJ 42 2s

S~[i (wkk)vk~x-ukx+~s-s ] I
x Jdi(,--~+iI B+-~-+1] 6.30) ~a

S|
The dependence on all variables but g. can be dropped in the taper function B for the
same reason cited in the development of (6.14), namely that the taper function is essen-
tially constant over the range of u, v, or w for which these variables lead to non- I
negligible contributions in their integrals. The resulting integral over center of mass
coordinate IL 3

f B 2(pt)dpt (6.31)

cancels a similar term from the energy flux incident on the surface, which appears in the
denominator of the expression for the cross section. The limits of integration for the
integrals over u, v, and w can be extended to infinity as in (6.14), because the correla-
tion functions will be negligibly small at ranges on the order of the surface length. 3

We are left with an expression for the total scattering cross section using the EV0

approximation that has five integrals - an unwieldy solution, currently impractical to

evaluate numerically for scattering from 1-D surfaces, let alone 2-D surfaces. Higher
order operator expansion solutions will be considerably more complex, and yet are
needed to provide a sufficiently accurate solution for most applications; based on the I
results of Chapters 4 and 5, approximation EV0 does not seem accurate enough in gen-
eral to be worth implementing in the form implied by (6.30). Further progress in reduc-

ing the expression, perhaps by making additional approximations in performing the
integrals beyond those inherent in the EV0 solution, must be made before the operator
expansion has a useful formally averaged solution. Because the operator expansion
method is so widely accurate this investigation remains a subject worthy of research. I

I
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CHAPTER 7

Dissertation Summary
* and

Proposed Future Work

I
7.1 Introduction

I Many kinds of energy propagate as waves, and these waves are modified by the
changes in physical properties they encounter as they travel through a medium. In par-
ticular, an interface between two different media imposes boundary conditions on the
wave field that often result in reflected and transmitted fields. Few physical surfaces are
smooth; consequently, the interaction of waves with rough boundaries, called scatter-
ing, is a commonly occurring phenomenon. The essence of the rough surface scattering
problem is to determine the field scattered by a rough boundary of known shape, given

3 a known field incident upon it.

The deterministic problem treats scattering from a single surface, whereas in many

situations an averaged solution is preferred, in which moments of the scattered field
provide a more useful description of the scattering results. The exact solution of the
rough surface scattering problem can only be obtained numerically, and then only for
scattering from one surface at a time. Exact solutions of the stochastic problem are
approached by averaging scattering results from a large number of individual realiza-
tdons of the process; this procedure, called the Monte Carlo method, is very computa-
tionally intensive, even for computing 2-D scattering from 1-D surfaces.

Many approximations have been proposed to address the rough surface scattering
problem, but most are restricted to treating a small range of roughness regimes. Very

few methods can accurately treat scattering from multiscale surfaces (which commonly
occur in nature) over a wide range of incident and scattering angles. In this disserta-
tion, we study a new technique called the Operator Expansion (OE) method recently3 introduced by Milder [1991]. The OE method, currently only developed for scattering
from surfaces with a Dirichlet boundary condition, has several important properties:

* Milder showed that the OE solution reduces analytically to the classical solutions to
the surface scattering problem in their respective asymptotic limits, that is, to the per-
turbation solution in the limit of small rms surface height, and to the Kirchhoff
approximation in the limit of very smooth surfaces (varying slowly on the scale of
the acoustic wavelength). This reduction to both classical solutions must be aI
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property of any method that can accurately treat scattering from multiscale surfaces,
yet has historically been very difficult to achieve.

" The OE solution is cast as an expansion in a systematic series, conveniently provid-

ing a self consistent accuracy check based on the convergence properties of the
series.

" The OE solution is reciprocal at each order in the expansion. Reciprocity is a physi-
cal property of the scattering problem that is not always easy to retain in an approxi-

mation. I

"* The OE solution is implemented using Fast Fourier Transforms (FFTs) and is

extremely fast to compute, even for 3-D scattering from 2-D surfaces.

These features make the OE method a very promising approximation and have

motivated the current study of its accuracy. Milder tested the method for scattering

from 1-D sinusoidal surfaces and wedge shaped gratings [Milder, 1991], and from 2-D
sinusoidal surfaces [Milder and Sharp, 1992], and found that the method proved to be
both fast and accurate for those surface types. We examine the method in computing
scattering from randomly rough surfaces. In particular, the application to scattering

from multiscale surfaces, such as those encountered in scattering of sound from the
ocean surface, is of great interest. In this study, accuracy of the OE method is deter-
mined through comparison to the exact solution obtained through an integral equation
technique; as discussed above, this solution is practically limited to treating scattering
from 1-D surfaces. Our study was performed for 2-D scattering from I-D surfaces, but

the results are expected to carry over to 3-D scattering from 2-D surfaces.

Extensive numerical tests have shown that the operator expansion method is

indeed accurate over a wide range of scattering parameters. These results are reported

in Chapters 4 and 5, which treat scattering from randomly rough surfaces with Gaussian
and Pierson-Moskowitz spectra, respectively. The broad range of validity of the OE

method prompted a closer look at the derivation. We find that insight into the method's
accuracy can be gained by examining the construction of the operator solution; this

construction is performed in Chapter 3 in a somewhat less rigorous but more intuitive I
manner than in Milder's derivation. An extensive discussion of the differences between

Milder's approach and our own also appear in Chapter 3. The basic equations govern-

ing the scattering problem and the two classical methods used to solve it are presented

in Chapter 2.

The operator expansion method is currently developed as a numerical technique,

that is, it computes scattering from one surface at a time. While this makes
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comparisons with the exact integral equation solution particularly convenient, the OE
method can only be used to compute moments of the scattered field using the Monte
Carlo method. Most other approximations are formally averaged, that is, the statistical

* properties of the randomly rough surface height are used to analytically evaluate the
moments of the scattered field. An attempt at formally averaging the lowest order
operator expansion solution (even series solution EV0 ) is presented in Chapter 6; the
resulting expression for the scattering cross section is not simple enough to be practical.
Thus, the OE method is currently seen as a very efficient numerical method providing
an accurate solution to the surface scattering problem for rougher scattering regimes
than can be treated with other approximations. The OE solution is much faster to com-
pute than the exact integral equation solution and is practical for computing scattering
from realistic 2-D surfaces, even when applied in a Monte Carlo approach.

A detailed summary of the work presented in the dissertation follows below.

3 7.2 Basic equations for rough surface scattering - Chapter 2

In Chapter 2, the basic equations governing acoustic scattering from rough sur-
faces are developed. The operator expansion method is well suited to computing 3-D
scattering from 2-D surfaces, but the integral equation solution is only practical for
solving scattering from I-D surfaces; for consistency, all expressions are developed for
2-D scattering from 1-D surfaces.

In Sec. 2.2.2 Green's theorem is used to develop the Helmholtz-Kirchhoff scatter-

ing integrals which govern the surface scattering problem. Following Wolf [1973],
Green's theorem is used to generate several important surface integral identities relating
the incident, scattered, or total fields, and their normal derivatives. These integral
theorems are the mathematical foundation of the scattering problem and provide the
starting point for all approximations. These integral relations also lead to integral equa-
tions (Sec. 2.2.4) that can be solved numerically to provide the exact solutions used in
this dissertation to assess the accuracy of approximate methods.

The problem of scattering from an infinite rough surface (in contrast to scattering
from a finite object) poses formal difficulties which are addressed by considering

ensonification by a source of finite extent. It is seen that the case of plane wave
incidence can only be reached through a limiting process, in which the mathematical

surface closing the integration surface is extended along with the ensonification region
(Sec. 2.2.2).

I
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It is often of interest to specialize the scattering solution to a region far from the
ensonified surface; thus, the scattering amplitude is defined for the 2-D scattering
geometry in Sec. 2.3. For stochastic problems, the average scattering results are often
presented in terms of the the scattering cross section (here defined for a general incident
field (2.18)), or in terms of the scattering strength which is the cross section expressed
in dB. Methods that express the scattered field as systematic series expansions (such as
the operator expansion or perturbation theory) have expansions for the cross section i
that contain cross terms of mixed orders. Typically, cross section series are organized
by collecting terms of the same order in the field expansion parameter, but in the case
of the operator expansion we find through numerical studies that consistency in the
expansion parameter is not required to maintain accuracy of the solution. Indeed, the
"truncated" series (2.22) which is more efficient computationally often proves to be i
more accurate than the consistent series (2.23). These two series solutions are
presented in Sec. 2.3, and are numerically tested in Sec. 4.4 and Sec. 5.3.

For completeness, the two classical approximations, the Kirchhoff approximation
(Sec. 2.4) and the small perturbation method (field perturbation, Sec. 2.5), are presented
for scattering from a single surface. Through application of an integral theorem on the
incident field developed earlier in the chapter, three forms of the Kirchhoff solution are
presented. Though these forms are rigorously equivalent, they appear to be quite dif- l
ferent; this example illustrates how reciprocal solutions can appear to be nonreciprocal.
Rayleigh-Rice perturbation theory is presented for scattering from a single surface
because the "Monte Carlo" development of the method is conveniently compared with
the operator expansion solution in Chapter 3. It is seen through this comparison and
through numerical tests in Chapter 4 that a subtle difference in the application of the
perturbation method can result in a dramatic improvement in the accuracy of the solu-
tion. In Sec. 2.5 the mathematical foundation for this investigation is developed.

7.3 The operator expansion method - Chapter 3

The operator expansion method, introduced for the rough surface scattering prob-
lem by Milder [1991], was inspired by earlier work in surface hydrodynamics [Milder,
1990]. In the OE method, the Dirichlet (pressure release) scattering problem is solved
using a nonlocal operator that computes the normal derivative of the scattered field
given only the boundary values of the scattered field; these are known because they are
tied to the incident field through the boundary condition. The nonlocal (scaled) normal
derivative operator N that performs this transformation is expressed in a systematic
series expansion whose terms contain powers of the surface height function and powers
of a Fourier integral operator Q (3.4). In Chapter 3, we revisit the derivation of the

I I IIi



I
149

operator expansion and show how it is used to solve the Dirichlet scattering problem.
Our presentation differs from that given by Milder in two fundamental respects. First,
we derive the expansion for N assuming explicitly that the scattered field satisfies the
Rayleigh Hypothesis (RH), though we then apply N in cases for which the RH may not
hold. Second, the series expansion itself is obtained in a more straightforward but less
rigorous way. Though our approach seems to make unnecessarily restrictive assump-
tions, the solution thus obtained is identical to Milder's. Furthermore, it provides an
alternative way of deriving the expansion that we feel is simpler and more intuitive.
The differences between our derivation and that of Milder's are extensively discussed
in Sec. 3.5, and are summarized at the end of this section.

The operator expansion method solves the rough surface scattering problem much
more efficiently than possible with an integral equation method by retaining only the
most important parts of the nonlocal relationship between the surface values of scat-
tered field and the surface values of its normal derivative (embodied in the integral rela-
tionships (2.9) or (2.15)). This is accomplished using an upward directed plane wave3 expansion of the scattered field (3.2), approximately obtained from its rough surface
values. The up-going wave representation approach for solving the rough surface prob-
lem is introduced by first applying the solution technique to the problem of reflection of
a down-going incident field by a flat surface (Sec. 3.2.1). In that unique situation, the
decomposition of the scattered field into up-going plane waves can be simply and
exactly obtained by Fourier transform of the surface values of the field. Once the plane
wave representation for the field is known, the field or any of its derivatives can be
evaluated anywhere the representation is valid, namely above the flat surface. The flat
surface solution is expressed in terms of a Fourier integral operator Q (3.4), which
transforms the surface values of the scattered field (given by the negative of the incident
field) into the surface values of the vertical derivative of the field. The spectral tech-
nique thus developed is far more complicated than necessary to solve the problem of
reflection by a flat surface, but illustrates the approach used in the rough surface case.
Though the plane wave coefficients for the scattered field are never explicitly com-
puted, representation of the surface values of the scattered field in up-going waves
underlies the entire derivation.

The extension of the flat surface solution to the rough surface scattering problem
(Sec. 3.2) involves the construction of a nonlocal vertical derivative operator D thatI AA Areduces to Q when the surface is flat. Like operator Q, operator D is applied to the

surface values of the scattered field, specified through the Dirichlet boundary condition.
Rough surface operator D is made up of three distinct operations performed sequen-
tially. The scattered field is first analytically continued from the rough surface to a flat
plane. On the flat plane, the vertical derivative of the field is obtained using operator
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I
Q. Finally, the vertical derivative field is continued back to the rough surface. The
vertical derivative of the scattered field is then related to the desired normal derivative
using the known tangential derivative of the surface field (the tangential derivative is
known because the scattered field is known all along the surface). Thus, operator DAI
(3.19) forms the essential part of the normal derivative operator N (3.26) by providing
an estimate of the behavior of the scattered field in the neighborhood of the surface
given only the values of the field on the surface.

The two analytic continuation operations (operators Z and Z-) are expressed as
series whose terms contain powers of the surface height function C(x) and powers of
operator Q, leading to a series expansion for the normal derivative operator N (3.28) in
powers of ý and Q. Though each continuation operation is an expansion in surface
height, the combination of the two continuations (away from and back to the rough sur-
face) effectively reduces the height dependence of the OE solution, giving the method
its broad range of accuracy. To illustrate the effect of the two-way continuation, a solu-
tion based on a single continuation using Z is examined in Sec. 3.4. Since the con-
tinuation carries the scattered field to the mean plane, the plane wave coefficients for
the upward wave representation can be found by Fourier transform, directly leading to

the far-field scattering solution. The Z method is developed analytically in Chapter 3
and numerically compared to the standard OE solution based on N (and to the exact I
integral equation solution) in Chapter 4; those results confirm that the two-way con-
tinuation greatly extends the range of accuracy and applicability of the operator expan-
sion solution over the solution based on the one-way continuation.

The operator notation is very compact, and makes analytical comparisons between
the OE and the small perturbation method very straightforward. Previously reported
developments of "Monte Carlo perturbation theory" [Thorsos and Jackson, 1989]
expand the total (incident plus scattered) field in small parameter kh (normalized sur-
face height). When the development is carried out for the scattered field alone, and theA

solution written in operator notation using powers of ý and Q, the operations are shown
to be identical to those in the Z method described above (Sec. 3.4.4). However, a sub-
tle difference in the application of the operations results in different lowest order solu-
tions, and hence different higher order solutions as well. The zero order perturbation U
solution is the mean plane reflection, whereas the zero order solution in the Z method
places the rough surface values of the incident field on the mean plane, thus including
roughness effects at lowest order. Numerical tests in Chapter 4 show that the Z solu-
tion is much more widely accurate, and converges more rapidly, than the perturbation
solution; indeed, were it not for the operator expansion method (based on the use of N),
the "modified" perturbation solution based on operator Z might have been a very
attractive method to pursue. However, Milder's operator expansion method which takes
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advantage of two-way continuation is accurate over a much wider range of scattering
regimes than the single continuation methods.

Milder [1991] showed that the OE solution can be simplified by exploiting a sym-
metry property of the expansion with respect to an inversion of the surface height func-
tion. By treating the analogous scattering problem for ensonification from below, or by
simply developing the expansion for the nonlocal normal derivative operator for down-
ward propagating waves (Sec. 3.3.3), two alternative series for the operator expansion
estimate for the surface values of the scattered field normal derivative are obtained.
These series contain only odd (3.41), or only even (3.42), order terms from the series
for N, thus providing series solutions that are expected to converge more rapidly than

m the standard solution (3.40). This expectation is confirmed and quantified in numerical
tests conducted in Chapters 4 and 5.

The expansion for N is written in terms of powers • Fourier integral operator Q;
because Q is implemented using FFTs, the scattering solution is very efficiently com-
puted. The OE solution for the scattered field is implemented in two steps. First, the
rough boundary values of the normal derivative of the scattered field are computed
using a few leading terms in the series for N. Second, the scattered field is computed
above the rough surface using the usual Helmholtz integral. Numerical implementation
notes, including a description of the incident field (modified Gaussian tapered plane
wave), use of the FFT, tapering of the surface height function, factoring of operator
terms, and other such details are discussed in Sec. 3.3t.

Chapter 3 concludes with a detailed discussion of the two principal mathematical
differences between Milder's derivation of the OE solution and our own, and these are
the method of finding the operator series expansion and the use of the Rayleigh
hypothesis. The two derivations lead to the same expansion for N, but we believe that
the approach taken in Sec. 3.2 is more intuitive, though somewhat less rigorous.

I Milder [1991] used a variational differentiation technique to solve for the expan-
sion for nonlocal vertical derivative operator D, obviating the need to find an explicit
series representation for the continuation operator Z . However, the backsubstitution
method (used in Sec. 3.2.4) is a very straightforward approach and provides an
t All numerical codes used in this work, including those which compute the rough surface values

of the normal derivative using the Kirchhoff approximation, perturbation theory, the operator ex-
pansion, and the first and second kind integral equation solutions, and those that compute the
Helmholtz integrals and random rough surface height profile realizations, were written by this au-
thor, with the exception of the FFr and matrix inversion routines which came from Numerical Re-
cipes (Press et al., 1986], and LINPACK [Dongarra et al., 1979], respectively, and the PEIE
method used in Chapter 5, which is courtesy of Eric Thorsos [1993b].I
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alternative path to the same solution. Furthermore, finding an explicit expansion for
Z allows us to analyze the OE solution; in particular, the solution based on operator

Z is found to be very closely related to the perturbation solution. We present an
expanded discussion of Milder's variational technique in Sec. 3.5.2 for completeness,
but also because of its elegance in solving for the operator expansion. Use of commuta-
tor notation further simplifies the expansion, and the variational derivative operating on
commutator forms becomes particularly convenient for generating higher order terms in
the expansion (3.20).

In our derivation, we have assumed that operator N can be directly applied to the I
rough surface values of the scattered field, even though the latter may not satisfy the
Rayleigh hypothesis. The validity of this operation is in question because the deriva-
tion of N is performed for fields which do satisfy the RH, that is, fields whose singulari-
ties lie entirely below the plane passing through the lowest point on the rough surface
(see Sec. 3.5.2). A field that satisfies the RH can be freely continued in the region
between surface extrema, and such continuation is a fundamental part of the operator
expansion derivation. Furthermore, a representation of the surface values of the scat-
tered field in upward directed plane waves underlies the operator expansion method,
and the validity of such a representation for the scattered field inside the wells of the
surface (and in particular on the surface) is tied to the validity of the RH.

To avoid making the Rayleigh hypothesis Milder did not apply the normal deriva-
tive operator N to the scattered field directly, but it turns out that his approach is no less
restrictive. We find that in his derivation the RH condition is imposed on an arbitrary
down-going plane wave which, by analogy with the scattering problem, is equivalent to
imposing the RH on the scattered field. On the other hand, in transforming an exact
integral identity (the extended boundary condition (2.9)), Milder shows how the usual
point-wise Rayleigh assumption can be relaxed when the solution for the scattered field
off the rough surface is desired. In that case, the upward wave expansion for the sur-
face values of the scattered field (and hence its normal derivative) need only match the
true field specified by the boundary condition in an integral sense, that is, certain sur-
face integrals over those quantities are equal (see Sec. 3.5.2).

A similar conclusion has been reached by others investigating the validity of the
Rayleigh hypothesis, a study with a long and contentious history. A review of the RH
issues arising in connection with the operator expansion method is presented in Sec.
3.5.2. The most important result from the work of Meecham [1956b], Yasuura [19711,
Millar [1973], Petit [1980], and others, is that a truncated up-going plane wave
representation can approximate the boundary values of the scattered field to arbitrary
accuracy, in the mean-square sense (an integral statement). This "completeness"'
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property of up-going plane waves also guarantees that the scattered field off (above) the
surface can be similarly approximated to arbitrary accuracy, even in the wells of the
surface when the Rayleigh hypothesis is not satisfied. Thus, the up-going wave
representation is not in itself fundamentally limited by the validity of the Rayleigh
hypothesis; rather, the difficulty with methods based on such upward wave representa-
tions lies in finding the series coefficients for scattering problems over a wide range of
scattering regimes.

The theory that demonstrates completeness of up-going waves also leads to a
rigorous numerical method of finding the plane wave coefficients using a least-squares
technique. The OE scattering solution is not obtained by solving a least-squares prob-
lem; the plane wave coefficients are never explicitly determined in the OE method, but
are effectively approximated by the operator expansion series solution. (The
coefficients could be obtained by evaluating an integral over the surface values of the
normal derivative field in a manner similar to (3.32) for the scattering amplitude; see
also (3.50).) The operator expansion method is not exact, but it does provide a very
accurate solution over a wide range of scattering parameters. Furthermore, the OE solu-
tion is computed much more rapidly than possible with a rigorous method. We now turn
to a summary of the numerical study of the accuracy of the operator expansion.

1 7.4 Accuracy of the OE for computing scattering from surfaces with a Gaussian
spectrum - Chapter 4

The operator expansion method looks very promising analytically, but without
numerical tests the accuracy of the solution is a matter of speculation, particularly when
questions about the method's formal validity arise in connection with the Rayleigh
hypothesis. In Chapters 4 and 5 we examine the accuracy of the operator expansion
solution at several orders by comparison with the exact numerical solution of an
integral equation, over a wide range of scattering regimes. Chapter 4 addresses scatter-

ing from random surfacest with a Gaussian spectrum while Chapter 5 addresses scatter-
ing from multiscale surfaces with a power law spectrum (Pierson-Moskowitz). These
tests indicate that the OE method is fast and accurate at computing acoustic scattering
from Dirichlet boundaries for many situations of practical interest.

S'AII examples presented here are for average scattering; most cases use results from 50 surface
realizations. Some fluctuations in the estimate for the scattering strength remain but are
significantly reduced by examining the difference between the exact integral equation solution and
an approximate solution.

I
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Because the OE method is cast as a series solution, convergence of the series is
examined as well as the accuracy at each order. For this purpose, we typically compute

the surface field up through third order, one order higher than was presented by Milder.
The third order term is substantially more complex than the second order term and also
requires additional care in numerical implementation; it is more sensitive to edge
effects and requires more surface sampling density than lower order terms for similar
relative accuracy (see Sec. 3.3.4). For many applications a second order solution is i
sufficiently accurate, but the third order term is very useful in estimating the accuracy
of the second order solution in the absence of an exact solution.

The accuracy of the classical methods (perturbation theory and Kirchhoff approxi-
mation, to which the OE solution reduces in appropriate limits) is well known for
acoustic scattering from 1-D Dirichlet surfaces with a Gaussian spectrum [Thorsos,
1988], [Thorsos and Jackson, 1989]. We review these findings in Sec. 4.2, and use the
ki -kh plane to map out the regions of validity of the classical methods and to guide our
investigation of the accuracy of the OE (see Fig. 4.2). Milder [1991] proposed the
"Fresnel number" k/s (which we call the slope-height parameter) as a general descrip-
tor for the OE roughness regime. To examine this single parameter's ability to describe
the method's performance (convergence rate and accuracy) numerical cases were
selected on contours of constant khs in the kl-kh plane. We find that the single slope- R
height parameter khs is a useful general indicator, but that convergence and accuracy of
the OE solution also depend on the angular distance from the specular direction, and on i
the surface roughness parameters k1 and kh separately.

Section 4.3 examines the performance of the OE for moderately rough surfaces,
that is, for a roughness regime that includes the validity regions of both classical
methods. Fig. 4.2 illustrates that the line for khs = 0.15 from which the first set of
examples is chosen (A cases) conveniently spans the validity regions of the classical I
methods, also crossing a gap between those regions. The results for scattering from
these surfaces confirm that the operator expansion method has capabilities of both clas- 3
sical approximations. Milder [1991] reduced the operator expansion solution to the per-
turbation solution for small kh (when perturbation theory is known to be accurate), but

it is not clear from this analytical result how small kh must be for the operator expan-i
sion to be accurate as well. We find that the first order operator expansion solution
(OE1 ) is comparable in accuracy to &4) (the second order perturbation solution, that is,

computed to order (kh )4 in the cross section) over all scattering angles for the region in
which a(4) is accurate; see Figs. 4.3d, 4.3e, and 4.4c for the relative accuracy of the
operator expansion and perturbation solutions for cases A l and A2.

I
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The first order operator expansion is also comparable in accuracy to the Kirchhoff
approximation (KA) where the latter is accurate, that is, for surfaces with kI > 6 and for
incident and scattering angles away from grazing (Fig. 4.6). However, unlike the
Kirchhoff approximation, the OE1 solution has the essentially correct angular depen-
dence near grazing because important nonlocal effects are included in the solution. An
example of the near-grazing behavior of OEI is presented in Fig. 4.5d, for case A3.
However, we remark that when the scattering levels are very low in the backscattering
region, higher orders of the OE are required to provide an accurate solution, even in
some cases when the KA is accurate; see Fig. 4.6.

Significantly, the operator expansion solution is also accurate in regions of ki-kh
roughness parameter space that lie outside the validity region boundaries of the classi-
cal approximations, for khs = 0.15. Figure 4.5 gives an example of scattering taken
from the "gap region" and illustrates the relative accuracy of OEI, KA, and 0(4) over all
scattering angles, for incident angle 0i = 450.

The operator expansion solution is cast as a series for which convergence is
observed to result in accuracy of the solution. When khs = 0.15, the operator expansion
solution converges very rapidly to the exact solution. The rapid convergence can beI appreciated by looking at the scattering strength contributions from the first four terms
in the series for the surface field. For case Al, the curves in Fig. 4.3c illustrate how the
terms decay, computed over all scattering angles, for incident angle Oi = 45*. The solu-
tion converges so rapidly in this regime that the scattering strength results plotted over
their full dynamic range are almost indistinguishable; for example, see the curves for
case A2 in Fig. 4.4b. The differences between the integral equation scattering strength
curve and the scattering strength curves for the operator expansion solutions are there-
fore presented with each example. The accuracy and convergence of the operator
expansion solution can then be observed over all scattering angles; for case A3 and
0i = 450, these differences are presented in Fig. 4.5c. For 0i = 90' and 0i = 200, the
difference curves for case A3 are presented in Figs. 4.7b and 4.7d, respectively.

Milder [1991] indicated that the operator expansion solution is symmetrical, and
hence reciprocal, order by order (we have verified this property through third order) and
numerical results for a single angle of incidence show that higher order corrections are
more important fcr scattering angles far from the specular direction, especially near
grazing in the back direction. Alternatively, convergence is fastest near specular. Thus,
it is not surprising that numerical tests for several angles of incidence indicate that the
accuracy (and )nvergence) of the solution at any given order for a given roughness
generally depends on the angular distance from the specular direction 11800 - 0i - OS I.
Changing the incident angle by tens of degrees essentially shifts the scattering strength
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error curves by the same amount, for scattering angles more than a few degrees from

grazing.

Sec. A.4 evaluates the accuracy of alternative series for the operator expansion

solution. We begin by examining the consequence of choosing computational

efficiency at the expense of retaining consistency in the series expansion for the cross
section. Figs. 4.8 and 4.9 for khs = 0.5 and khs = 1.0, respectively, illustrate that con- 3
sistency in the surface field series expansion parameter is not required to maintain accu-
racy of the scattering solution. This is fortunate because the inconsistent (truncated)

cross section series (2.22) is far more efficiently computed than the consistent series

(2.23).

Milder [1991] introduced the even (3.42) and odd (3.41) series solutions, and sug- •

gested that these short series might be good to order n+l when computed to order n,
because the next available term in the series is of order n +2. We find that the short
series solutions do indeed exhibit some (but not all) of the character of the standard
solution (3.40) taken to next order, even when that solution is inaccurate; see Sec. 4.4.3.
This behavior, observed in case B3 (khs = 0.5, Fig. 4.10), is typical of that observed in
many other calculations. Further examples are given in Sec. 4.5 which presents results

for scattering from rougher surfaces.

Many properties of the OE observed for moderately rough surfaces continue to
hold as the roughness increases. The convergence rate of the series for the surface field

is useful in assessing the accuracy of the solution at any given order. When examined

in the far field, the contributions from individual orders indicate convergence as a func-
tion of scattering angle. When decay of these terms (ONn) is rapid, the OE solution

always converges to an accurate result. When the decay is not rapid, or not monotonic,

the accuracy of the solution at lower orders may still be good; the series appears to con-
verge asymptotically in these cases. No clear threshold exists above which the OE
method fails dramatically. Experience with the method leads to a good "calibration" of
its performance (convergence and accuracy) with respect to the values of kh, kI, khs,
and scattering angles. For a given value of khs, two regimes are observed in a variety of

calculations: smaller ki (relatively larger slope), and larger k1 (relatively smaller slope). i

These regimes are primarily distinguished by differences in behavior of the OE in the
backscatter region. Detailed comparisons between OE solutions and the integral equa-

tion solution were conducted for many points in the k1 -kh plane. Examples for

khs = 0.5, 1.0, and 1.5 in Sec. 4.5 present results representative of the two k1 regimes.
These results are presented for completeness, and because the detailed behavior of the n

OE solution is best conveyed using the scattering strength error curves themselves. I
I
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A different physical regime exists for very rough surfaces in which multiple
scattering plays an important role. Double-scattered reciprocal paths combine
coherently leading to an enhancement peak in the backscatter direction that can rise 3
dB above the average level. It is perhaps surprising that the OE method can correctly
compute such effects (in some cases), because the double scattering takes place over
significant distances, requiring correct treatment of widely nonlocal interactions. Figs.
4.19 and 4.20 indicate that the OE solution is accurate over the range of scattering
angles 40* < 0, < 140', including the backscatter region in case F4 (khs = 3.6, ki = 7.0,
kh = 4.2, s = 0.85) with incident grazing angle 0, = 600. Case F4 is just rough enough
to exhibit backscatter enhancement; the OE method is unable to accurately treat scatter-
ing from surfaces which are much rougher. Studies in this regime often require averag-
ing over large numbers of surface realizations to reduce the random fluctuations to
acceptable levels; 500 surfaces were used in case R4.

I Finally, Chapter 4 concludes with an investigation of the accuracy of the solution
based on operator Z , the one-way continuation operator that continues the scattered

I field from the rough surface to the mean plane. The Z solution is computed for each
of the four A-cases (khs = 0.15), and compared with the standard OE solution, with the
integral equation solution, and with the Monte Carlo perturbation solution. The Z
solution exhibits a strong height dependence, providing an accurate solution in case Al
(kh = 0.52), but barely converging in case A4 (kh = 1.03) to a solution that is much less3 accurate than the N solution which converges rapidly. The examples in Sec. 4.6 illus-
trate the tremendous difference the two-way continuation makes in constructing a
widely accurate scattering solution.U A -,

The Z solution is very similar analytically to the perturbation solution; the opera-
tions are the same, but the zeroth order solutions (and hence higher orders as well) are
defined differently. The numerical examples show how this subtle difference dramati-A--

cally improves the accuracy of the solution obtained. The Z method converges more
Srapidly, and better matches the fluctuations of the exact solution for scattering from a

finite number of surface realizations than the standard perturbation solution.

3 In summary, the operator expansion is accurate and rapidly convergent for scatter-
ing from surfaces with a Gaussian spectrum, over a wide range of scattering angles and
over a wide range of surface roughness scales. This method is accurate in the validity
regions of perturbation theory and the Kirchhoff approximation and beyond, strongly
suggesting that the operator expansion method would be useful in computing scattering3 from multiscale surfaces; this expectation is confirmed in the numerical tests conducted
in Chapter 5.I

I
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7.S Accuracy of the OE for computing scattering from surfaces with a Pierson-
Moskowitz spectrum - Chapter 5

The ocean surface is one of many naturally occurring interfaces which are rough
on many scales. Scattering of acoustic waves from the ocean surface is a problem

further complicated by the existence of variations in the sound speed in the water,
which are due to the presence of bubbles, variations in temperature, pressure, and salin-
ity, and to a lesser extent marine life, in the near surface region. In this dissertation the
problem is restricted to interface scattering alone; we treat scattering of 200-1000 Hz
acoustic energy from 1-D randomly rough surfaces consistent with a spectrum derived
from the Pierson-Moskowitz spectrum for a fully developed sea. In this model, the 1-D
surface height spectrum is inversely proportional to the cube of the spatial wave 3
number with an upper wavenumber cutoff, and tapered at low wave numbers in a way
that depends on the wind speed. This simplified model is used to assess the accuracy of
the OE method, again through comparison with the integral equation solution. We I
expect that the results of this study will extend to scattering from realistic 2-D surfaces
for which exact solutions are still very costly. 3

In Sec. 5.2, we study low frequency (200 Hz) scattering from surfaces with wind
speeds between 5 and 20 m/s, and for incident angles 100 5 9j < 900. In this regime, the i

operator expansion series solution is rapidly convergent over all scattering angles, pro-
viding an accurate solution at second order, where the maximum error for OE2 is about I
0.5 dB (in the backscattering region) for incident angle 9i = 100. The accuracy and
convergence rate of the operator expansion solution up through third order are illus-
trated for 0i = 200 and 20 m/s wind speed in Fig. 5.2. At any given scattering angle

(except a couple of degrees from grazirg where the OE solution is not quite as reliable),
the scattering strength error decreases as the incident angle is increased, much as it did
for Gaussian surfaces. This effect is demonstrated in Fig. 5.3, which presents scattering
results for the same ensemble of 50 realizations of 20 m/s surfaces, for Oi = 100, 450,
and 900 .

The accuracy of the alternative series formulations has also been examined for
I-D Pierson-Moskowitz surfaces. The greater efficiency of the short forms (odd and
even series) is more clearly visible for Pierson-Moskowitz surfaces than for surfaces
with a Gaussian spectrum. Figs. 5.4 and 5.5 indicate that the short series solutions are
more accurate than the standard series computed to the same order, over all scattering
angles. The character of the short series solutions computed to order n is very similar
to that of the standard solution computed to order n + this surface height spec- I

trum, the odd and even series essentially get "an order fc l
I!
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The short series also prove to be much more efficient at computing an accurate
solution than the consistent series solution computed to the same order in the surface
field. Fig. 5.6 illustrates this property for the second order consistent solution OEM2);
even the first order solution OD, is more accurate than OE(2 ) over almost all scattering
angles. This surprising lack of sensitivity of the OE solution to consistency in the
expansion parameter is very different from the behavior of perturbation theory applied
to scattering from Pierson-Moskowitz surfaces [Thorsos, 1990]. There it was shown
that a major cancellation between terms containing fourth powers of the perturbation
expansion parameter kh requires careful computation of both terms at that order, c22

and 013, necessitating calculation of the second and third order fields to obtain the
second term in the series for the incoherent cross section a(4).

Many applications in ocean acoustics involve very low grazing angle propagation
and scattering, and for higher frequencies than 200 Hz. The difficulty with testing
scattering approximations in this regime using an integral equation technique has been
the need for extremely long surfaces to preserve accuracy and angular resolution, and
hence large numbers of surface partion intervals. The recent application of a parabolic
approximation to the low grazing angle forward scattering problem [Thorsos, 1993b]
has made testing of approximations possible in this regime. We apply the OE method
to scattering from 15 m/s 1-D Pierson-Moskowitz surfaces for incident grazing angles
as low as 0i = 50 for acoustic frequencies as high as f = 1000 Hz. For that example

20,000 surface partition intervals are used. As for most numerical examples in the
dissertation, 50 surface realizations are used in obtaining an average solution. We find
that even for this case, the OE solutions (first order and higher) are accurate over the
range of forward scatter : --les studied: 1350 < 0s < 1800 (see Fig. 5.9). Some dis-

tant multiple scattering L.•,, occur for this example, because the ratio between the
wavelength of the tallest surface waves (at the peak of the surface height spectrum) and
the acoustic wavelength is Xeak / X = 140.

The OE solution for scattering angles within a few degrees of grazing requires
more numerical care than elsewhere. The Fourier integral operator Q includes a
wavenumber domain filter which goes to zero for k• = 0, and relatively fine sampling in

the wavenumber domain is required to properly represent the wave field in the neigh-
borhood of the zero crossing. Extending the length of the computational surface by
zero-padding the rough surface profile before Fourier transforming is a straightforward
way of reducing the near-grazing error in the scattering strength; the error can be as
large as 2 or 3 dB at grazing. An example representative of the results obtained for

several choices of computational surface length is given in Fig. 5.10.

I
I
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In summary, the operator expansion method is accurate and rapidly convergent for
scattering from I-D Pierson-Moskowitz surfaces used to model the ocean surface for
wind speeds up to 15-20 m/s, for frequencies up to 1000 Hz. The numerical studies
have all been carried out for surfaces rough in one dimension only because of computa-
tional constraints associated with the integral equation method. Nevertheless, the tie
between the rapid convergence of the operator expansion series solution and its accu-
racy is expected to carry over to scattering from two-dimensional surfaces. The opera- I
tor expansion is fast and accurate enough to be useful in treating moderate (f : 1000
Hz) frequency scattering from realistic two-dimensional sea surfaces. The method is
likely to be useful at higher frequencies, but such tests have not been performed.

I
7.6 Formnal average of the OE solution - Chapter 6

The operator expansion is currently applied in a Monte Carlo method, estimating I
moments of the scattered field by averaging scattering results computed from one sur-
face at a time. A formal average of the lowest order even series solution EV0 is per-
formed in Chapter 6, but the solution obtained for the scattering cross section is not
simple enough to be practical. The expression for the second moment of the scattering
amplitude for scattering from a l-D surface contains five integrations; without further U
reduction in complexity this unwieldy expression is of little practical value, particularly
since this low order solution is not deemed sufficiently accurate for most applications.

The complexity of the average solution is a consequence of the OE method's non-
local nature; this nonlocal property is also responsible for the method's accuracy. The
simplest solution for the unknown surface field (specifically, the normal derivative of
the scattered field) is obtained using the fundamental nonlocal derivative operator Q
which contains two Fourier integrals, one over the transverse coordinate and one over
the transverse wave number. A third integral (over the transverse coordinate) gives the
scattered field above the surface. In the second moment, the product of two scattered
field terms gives rise to a six-fold integral expression. A suitable coordinate transfor-
mation to sum and "difference" coordinates allows evaluation of the integral over the
sum coordinate, leaving five integrals as mentioned above.

The second moment expression rapidly becomes more complex as higher order
solutions are averaged. In essence, each higher order in the operator expansion for the
surface field contains an additional product by the surface height function ý and an
additional operation by Q, such that the n 'th order operator has n factors of ý and n + 1
factors of Q arranged in alternating order in its intrinsically nonlocal term (see Eq.
(3.28) for the complete list of terms in the expansion through third order). The

I
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complexity of averaging higher order terms is prohibitively complex without applica-
tion of some clever integration technique, or suitable approximation. The expressions

in Chapter 6 are presented in order to outline the problem, and are not intended to be

numerically evaluated.

I 7.7 Summary and ideas for future work

The operator expansion method [Milder, 1991] has been applied to computing
acoustic scattering from 1-D randomly rough Dirichlet surfaces with Gaussian and

Pierson-Moskowitz spectra. Through comparison with exact numerical results obtained

by solution of an integral equation, the operator expansion method is found to provide a

rapidly convergent and accurate solution over a wide range of incident and scattering

angles and surface roughness parameters. The method achieves its accuracy through a

cleverly constructed nonlocal operator that is expanded in a series containing powers of

the surface height function and a Fourier integral operator. The latter is conveniently
implemented in terms of FFTs, resulting in an algorithm that is very rapidly computed.

Though the method only computes scattering from a single surface profile at a time, it is

sufficiently fast to be practical in computing scattering from 2-D surfaces; the findings
regarding the method's accuracy in scattering from 1-D surfaces are expected to carry
over to scattering from 2-D surfaces.

I The operator expansion method is a very promising technique, and the research for

this dissertation has led to several interesting avenues worthy of further development:

0 The method is currently only developed for scattering from Dirichlet surfaces, but

the formalism of Chapter 3 may be useful in extending the method to other boun-

dary conditions. Preliminary work on the Neumann boundary condition is
encouragingt.

I * The method does not currently have a practical formal average. Such a result

would enhance the method's usefulness.

U * A few informal comparisons to other approximations that do have formally aver-
aged solutions (such as the small slope approximation [Voronovich, 1985], for

t The formalisnl of Chapter 3 leads to a straightforward Neumann expansion in terms of the in-
verse operator Q -1, which presents more of a challenge to implement. In a personal communica-
tion, Milder 11993] indicated that a straightforward numerical treatment of Q -1 is possible, lead-
ing to a useful OE solution for the Neumann boundary and consequently for electromagnetic
scattering from a perfect conductor.I
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example) indicate that the OE method is more accurate. However, further tests are
necessary to establish the relative accuracy of these methods.

The OE has been tested for 1-D surfaces, but real applications exist primarily for
scattering from 2-D surfaces. The extension to 2-D surfaces has been done by

Milder and Sharp [1992], and others [Dubberley, 1992], but further validation
through comparisons to theoretical and experimental results should be performed.

I
I
I
I
I
I
I
I
I
I
I
I
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m APPENDIX

Table of Numerical Parameters

TABLE 1 : Parameter values used in numerical computations.

Case Figure(s) ei(deg) ki kh Number of X/Ax Lig Tp(%)
[Freq (Hz)] [U (m/s)] Intervals

SAl 4.3,21,25 45 1.4 0.38 800 10 5.0 0
A2 4.4,22,25 45 2.6 0.52 800 8 5.5 03 A3 4.5,7,23,25 45,20,90 4.5 0.69 600 5 5.5 0
A4 4.6 45 10.0 1.03 750 5 7.0 10
B2 4.8,12,13,14 20 2.6 0.96 1100 10 5.5 5
B3 4.8,10,11 20 4.5 1.26 800 6 6.0 10
B4 4.8,15,16,17 20 10.0 1.88 800 5 8.0 15
C2 4.9,12,13,14 30 2.6 1.35 1500 14 5.5 8
C3 4.9 20 4.5 1.78 1100 10 6.0 10
C4 4.9,15,16,17 . "2 10.0 2.67 1200 6 7.0 15
D2 4.9,12,13,14 30 2.6 1.66 1500 15 5.5 8
D4 4.9,15,16,17 20 10.0 3.26 1200 8 7.0 153 F4 4.19,20 60 7.0 4.2 512 12 6.0 15

[200] 5.2,3,4,5,6 20,45,90 [20] 1.79 1000 6 6.0 10
[200] 5.3 10 [20] 1.79 2000 6 6.5 10

[500] 5.7 10 [15] 2.51 2500 5 4.0 0
[500] 5.8 5 [15] 2.51 10000 5 4.0 0

[1000] 5.9 5 [15] 5.03 20000 5 4.0 0

The number of surface realizations used in the averaging for each case is 50,
except in the backscattering enhancement case F4 when 500 surfaces were used. The
parameter values presented below are for all computations except third order operator
expansion calculations, OE3 and ON3. These calculations were done using twice the
surface partition density (i.e., twice the number of points per wavelength V lAx, and
hence twice the number of surface intervals) for the same surface profile used in the
other calculations. The surface height function is spectrally interpolated to obtain the
higher density. The incident field taper is expressed in terms of the surface length L
and the taper width g defined in (3.34). The surface height taper discussed in Sec. 3.3.4
is listed in Table I as "Tp" and represents the percentage of the surface length L over

m which a half period cosine tapers the surface height at each end of the surface.
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