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ABSTRACT

The log-X2 distribution of correlation times and its application to polymer systems are

examined. It is found that the original mean correlation-time parameter, r,, (Macromolecules,

1973, 6, 882) does not represent the true mean of the distribution. A properly parameterized log-

X2 distribution and function relating the original r0 and width parameters, p and b, to the true mean

are derived. Fitting of both the original log-X2 , corrected log-x 2, and log-normal distribution to

experimental data is discussed and the log-normal distribution being proposed as an alternative.

Interpretations of NMR data from polymer/solvent systems can be different for the log-x2 and log-

normal distributions. Due to its better defined moments, the log-normal's results are believed to be

more physically realistic when large widths are required.
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Often, definitive models for molecular motion do not exist or fail to give reasonable results.

And, as an approximation, an exponential decay of correlation with a distribution of correlation

times is used as the correlation function. Such distributions prove very useful, especially for

polymers and polymer solutions, at describing and quantifying the dynamics. 1-8

Heatley 8 has summarized the successes and failures of several of the distributions used to

describe polymer dynamics. Of these, the asymmetric log-X2 distribution has had good success in

fitting data from a broad range of techniques including NMR, ESR, and dielectric studies.1 .2 ,5,8

We have found that the use of the log-X2 distribution may occassionally yield parameters which

should not be compared from system to system. In some cases, a proper comparison can be made

with the application of a correction factor. For example, the application of the log-X2 distribution,

as proposed in the literature,1 to NMR relaxation data of toluene in polystyrene generated a slower

mean rotational correlation time for pure toluene than it did for motionally hindered toluene near

polystyrene at the same temperature. It also yielded unphysical results in a dynamics study of

poly(iso-propyl acrylate) (PIPA).7 In that study, the mean correlation time predicted by the log-

X2 distribution had little correlation with polymer concentration, often being faster for more

concentrated solutions than for less concentrated ones at the same temperature. Other models

employed to quantify the PIPA system suffered similar problems. After examining the log-X2

distribution, we found that the parameter c0 , previously interpreted as the mean correlation time, is

not the true mean, but rather a scaling factor which can be related to the true mean.

A normalized, scaled, base b log-X2 distribution, FX(cc; b,p,O), has the form of:

FX(rc; b,p,O)= I(W--- (ln(0 + 1)r1 (k + 1)" (plnCb)+1) for 0<cc <oo (1)
0 F-(p) 0

with cc, b, p, 0, and r the correlation time, numerical base, width parameter, scaling parameter,

and gamma function, respectively. The superscript X denotes the log-X2 distribution. The
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parameter b is often fixed at 1000, but it could be replaced with e, the natural base. The mean,

rý(b,p,0), of FX(cc; b,p,O) is:

1ý(b,p,O) = c FX(xc; b,p,O) d• = 0 [p - 1 (2)

Experiments often probe the dynamics through the Fourier transform of the correlation

function or spectral density, J(co). For a distribution, F(cc), of exponentially decaying correlation

times, J(o) is:

M~O) = I;2 F(Tc) T ~ 3
1oo + (02,qdc 3

where (o and tc are the frequency and correlation time, respectively. FX(rc; b,p,O) could be used in

equation (3) and the-mean correlation time calculated from equation (2) after determining the

parameters b, p, and 0. However, transforming the distribution and spectral density to a reduced

correlation time will allow a more direct comparison with the original worki and eliminate the need

for equation (2) as the scaling parameter, 0, will be replaced by a mean correlation-time parameter,

TO.

With the transformation 'r = Tc/T0(b,p,0) applied to FX(Tc; b,p,0), the log-_ 2 distribution of

reduced correlation times, GX(Tr; b,p), is:

GX(T'r; b,p>= (lnr(b) (b,p,1) (ln(Tr '4(b,p,1) + I))p' ('Tr (b,p,1) + )"(p~n(b> +I1 (4)

For simplicity, 0 is set to one in the arguement as the transformation eliminates any 0 dependence.

Similarly, J(od) becomes:
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J~)- •2 GX(r; b,p) Tr T ~ 5
000J(Od 2X• (5)

where To has replaced 4(b,p,9) and, consequently, represents the au mean of the distribution.

If FX(Tc; b,p,O) had been scaled by the parameter "o, as in reference (1), instead of

(b,p,0), z0 of equation (5) would not be the true mean, but a scaling parameter. The mean

correlation time could then be calculated from:

= j Z• c l(; b,p,O)d~c =d r fo Tr G'X(Cr; r0,b,p,O) d~r (6)

where GX('Cr; '0,b,p,0) is FX(Tc; b,p,e) scaled about the parameter Co. Being scaled about

, (b,p,O) simplifies matters by cancelling any previous scaling and making the mean of

GX(Tr; bp) = 1 and, so, <Tc> = To.

For comparison, the spectral density (equation (5)) can be but into a form similar to equation

(25) of reference (1):

Jo ~2 X2s'P) [es_'1] T' d

J~o Tb~p 2X ' d (7)
fdUjJ = ) [p-lnb)~ I i][ + 0) 0 ([es-. ii(p )iI

where p, b, and w are as defined previously, s is an integration variable,

x2 (s,p) - PP SP'I e-s P (8)

and t0 is the mean correlation time of the distribution.

The relationship between the true mean, To, of equations (5) and (7) and the originally

reported mean,1 g, can be calculated from equation (6) and is:
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1 orgorg
ý4-1

To ,bor- 1 (9)

where the superscript org indicates parameters that. were fitted from the original distribution.

Depending on b and p, this could be a large correction and, consequently, responsible for the

log-X2's previously reported unphysical behavior. Also, this equation and the distribution itself

are only valid for p > ln(b) where the distribution is normalizable. The possible limitations of the

distribution and its dependencies on p and b are clarified by examining the moments of

GX('i; bp) which are:

(r)= t GX(tc; bp) d'cr = X (1} (-ln-i (jp: i n(b)) ((1p-1-n(b - 1)-n (10)
i=o

where (P) is the binomial coefficient. The original distribution has a similar form for its moments.

For large values of p, the moments are essentially independent of b. For the intermediate values,

In(b) scales p to smaller values, making the distribution wider for a given p/ln(b) ratio. Finally,

for small values of p, the dependence is unclear as the moments are infinite. This behavior

suggests that the natural base e should work as well as any other, i.e. 1000, as long as p is not

restricted to integer values. Indeed, with non-integerp values, all data tested fit equally well and

with the same predicted 0 using either e or 1000 as the base.

To test the corrected log-g 2 distribution's ability to fit polymer data and yield physically

meaningful results, we used it to fit four data sets: polystyrene, polyisoprene, and polybutadiene
13 C T,-T2 (20.6 MHz) data from the original paperl; polyisoprene 13C T1 (20.1 and 100.6 MHz)

data5 ; poly(iso-propyl acrylate)-d in chloroform 2H TI-T 2 (13.8 MHz)7 data; and, toluene-d5 in

polystyrene 2 H TI-T 2 (30.7 MHz) data.6 These systems represent a wide variety of polymer

dynamics, namely bulk polymer dynamics, solution state polymer dynamics, and solvent dynamics

in polymer solutions.
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For the polymer data in the original paper, the mean correlation times, to's, from both the

original and modified log-X2 seem physically reasonable for polystyrene in o-dichlorobenzene and

bulk polyisobutene. However, the original distribution yielded an unusually fast tO of 0.1 ns for

bulk polybutadiene. Using equation (9), this t 0 became 5 ns, the same value fit from the modified

distribution. This seems more reasonable. In general, the modified log-X2 distribution generates

larger To's than the original. But, with the use of equation (9) both distributions yield the same

r,0, with smaller values of p requiring larger corrections. These results are typical of all the data

fit in this paper.

Unlike TI-T2 data investigated, both the modified and original (in conjuction with equation

(9)) log-X2 distributions generate unrealistically long t0 's from the polyisoprene 13 C T1 data.5

Table I lists the results from the 13C data. The reason the log-j 2 distribution fails for the 13C data

is not clear. It may linked to its undefined moments and that the 13C data only samples the

distribution in the MHz region. As can be seen from Table I, the modified log-X2 compares well

until p becomes less than 2*ln(b) below which only the log-X2's first moment exists. For these

values of p, the distribution's tail is poorly parameterized and large correlation times may be

unduely weighted. To successfully fit data to such a distribution, some constraints on the tail, as

the zero frequency T2 data imposes, would probably help give more reasonable results.

As an alternative to low frequency data, the log-normal distribution might be used. Its

moments exist; so, its tail and skew are well defined.9 In general, it has simple dependencies on

its parameters (easy to fit); is well behaved with well defined moments; and, is more skewed than

the log-X2 . It also affords a simple physical interpretation of the underlying processes. 10.11,12

The distribution of reduced correlation times, G(tr; a), for the log-normal distribution is:

G(tr; a) = 1 e-(Qn(tr)/a+.3/4) 2  (11)

which would replace GX(tr; b,p) in equation (5). Its second moment is:

(•)=ea2/2 (12)
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and its mean is one, as expected from the scaling.

The log-normal distribution fit both the TI-T 2 and 13 C T1 data discussed ealier with

vanishing error and few iterations of the fitting algorithm. 13 For these data, except for where log-

X2 failed, the T0 's were essentially identical between the modified log-12 and the log-normal,

differing from the original log-X2 according to equation (9). As mentioned previously, the

predicted magnitudes and trends of the T0's were more realistic than those of the original log-X2

and, for the PIPA data, also more realistic than other models employed7 (compare Figure 1 to

similar plots in reference (7)). That is, the tO's increased with increasing polymer concentration or

decreasing temperature, realistic in an intuitive sense.

For reference (5), the main difference between the log-normal and the original log-X2 is that

the log-normal predicts a higher apparent activation energy for the high temperature data and a 10

fold increase in TO at low temperatures. As in the reference (5), the NOEF's were not used in the

fitting procedure. They offer an independent test of each distribution's predictive ablilty.

Unfortunately, the calculated NOEF's follow the exerimental values for all the distributions and

no distinction can be made. For extremely broad distributions, however, the log-normal has a

limiting, t0 independent, NOEF value of 1.33 compared to the log-X2's value of 0.9 (at 20 Mhz).

This increase is presumably due to the larger skew of the log-normal distribution. None of the

experimental data required broad enough distributions to test this difference.

In conclusion, T0 of the original log-X2 distribution is a scaling parameter which is often, but

not always, representative of the mean. Comparisons and predicted trends may be on different

scales unless a correction to the true mean (equations (6) and (9)) is made. Modifying the

distribution yields a new distribution in which t0 is the true mean. However, both the original and

modified log-X2 distribution have limited use as their moments can be ill-defined and careful

sampling of the frequency space is required. We prefer the log-normal distribution as it is better

skewed, and has well defined moments and simple derivatives. Its ability to fit and give physically
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reasonable results from low and high frequency TI-T2 data as well as soley high frequency T1 data

indicates that it may be useful where the log-X2 appears unphysical. 6,7,8,14, 15
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this work. They also acknowledge the helpful suggestions of Professor Jake Schaefer

(Washington University).
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Table I

Fits to the C1 methylene 13C T1 data of reference (5) (Mu = 7 kg/mol) (b = 1000)

Iog-_ _ og-__b log -Xndc log-normald

T TI(100MHz) TI(20MHz) T0  p TOj p T0  p To 0

(K) (s) (s) (ns) (ns) (ns) (ns)

293 0.152 0.035 2.00 7 1.90 7.3 340*103 7.5 20.0 3.45

303 0.156 0.043 1.00 7 0.67 8.0 5500 8.0 7.10 3.36

313 0.168 0.053 0.40 8 0.31 9.4 71.2 9.5 3.30 3.27

323 0.185 0.068 0.17 11 0.17 11.5 6.48 11.5 1.40 3.07

333 0.210 0.090 0.10 14 0.10 14.0 1.41 14.0 0.660 2.86

343 0.239 0.135 0.073 24 0.076 23.3 0.272 23.5 0.240 2.25

353 0.275 0.192 0.062 34 0.064 35.7 0.139 35.7 0.130 1.80

363 0.323 0.255 0.053 45 0.054 45.6 0.097 45.6 0.095 1.57

373 0.378 0.310 0.043 47 0.044 45.7 0.079 45.7 0.078 1.58

Ea-High Temp. (kJ) 18.6 19.6 43.6 38.7

Ea-Low Temp. (kJ) 63.0 59.2 257e 68.5

a fit by Denault and Prud'homme using original log-X2;

b recalculated data using original log-X2 and non-integer p's;

c modified log-X2 , equation (4);

d log-normal distribution, equation (11);

e see text for explanation.
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Figure Caption

Figure 1. To values from the log-normal distribution's fit to 2H TI and T2 data (reference (7)) as

a function of temperature and PIPA concentration. The curves drawn are for visual clarification.
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