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A THEORY OF CONDITIONAL INFORMATION

FOR PROBABILISTIC INFERENCE

IN INTELLIGENT SYSTEMS:

III, MATHEMATICAL APPENDIX

ABSTRACT

This paper concludes the work begun in Part I in present-

ing a coherent theory of conditioning consistent with all con-

ditional probability evaluations. Part I presented the interval

of events approach to conditional events, while Part II devel-

oped the cartesian product space approach. While the former is
computationally feasible to implement, it lacks certain theoret-

"ical properties - in particular, it is non-boolean in nature.

On the other hand, the latter approach, while conceptually more

desirable than the former - it leads to a unique boolean struc-

ture - is much more complicated from a computation-implementation

viewpoint. This paper presents the more technically detailed

results "Fequired in the presentations of Parts I and IH.

Key Words

Bayesian methodology, conditional events, conditional event algebra,

conditional probability, conditional random variables, conditionals, if-then

statements, implications, intelligent systems, logic of conditionals,

probabilistic inference, quantification of if-then rules
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OVERVIEW

This paper constitutes p•art III of a series of three papers on the develop-

ment of a theory of conditional information compatible with all conditional prob-

ability evaluations. The bulk of this paper is a mathematical appendix which

supplies the technical details for the chief results provided in Parts I and II.

In Parts I and II of this paper, the problem of modeling conditional inform-

ation compatible with all conditional probability evaluations was addressed [1], [21

A tpical problem is the determination of the meaning of the if-then statements

"if b,then au , "if d,then c", as well as the logical compound "if b,then a

and,if d, then c", and the probability P(if b.then a, and, if d, then c), when

the probability evaluations of the component if-then statements are

P(if b, then a) =Pl'alb) ; P(if d, then c) = P(cld).

When b = d, the standard development of probability leads simply to

P(if b,then a, and, if b then c ) = P(aclb) = P(ab.cblb),

with the natural identifications

(2iO "if b, then a"<-+ ab ;"if ti, then c" +-+ cb

However, when b t d , no standard procedure exists for dealihg with the
above and related issues. Call any such if-then statement as above a' conditional

event'and the algebra that allows logically combining such entities a~conditional

event algebraw. In general, there are many such conditional event algebras, extend-

ing ordinary boolean algebra. (The term "extension" is used carefully here, since
all unconditional events a,b,c,., can all be considered special cases of conditicor-

al events "if U, then a", "if 9, then b", "if Q, then c",.., where fZ is the uni-

versal event.) All of this leads, .in turn, to the development of conditional

events and conditional event algebras.

In Parts I and II, two types of conditional events were developed, useful

in addressing the above type of problem as well as a wide variety of other

problems that can arise in intelligent systgms. The first type (Part I) has-anevont
interval structure. Two leading -calculi-or conditional event algebras determining

the extension of the traditional boolean operations to this setting-are the

SGNW (Goodman-Nguyen-Walker) and SAC (Schay-Adams-Calabrese), which are briefly
reviewed. The new.type of conditional events( Part 1T - called a-type) arises
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"from an infinite proddct construction over the original sigma-algebra of uncon-

ditional events, and, unlike the first type, they form a proper subclass of the

carrier space - which is here a sigma-algebra - and are , in general, not even

closed relative to the boolean operations of the carrier soace. But, a number of

of problems that were not able to be addressed by the previous approach - in-

cluding the higher order conditioning problem and the need for a firm basis for

establishment of conditional random variables and related concepts - can be

successfully addressed through the latter approach. However, one of the draw-

backs in applying the new procedure is the rapidly increasing (factorially)

computational lengths required for multiple argument conjunctions or disjunc-

tions, unlike the essentially!linear growth rate corresponding computations enjoyed
by the interval approach. The usefulness of the two conditional event approaches

was illustrated through the presentation and analysis of eight different

typesof conditional information problems.

Among the open issues deriving from this effort-, the most important include:

"" 1. Determine approximations to the product space approaci, operations which

will retain accuracy, but will no longer be computationally intensive.

2. Complete characterization of optimal approximations to product space

approach operations via GNW and SAC conditional event algebras.

3. Derive a universal property for the product space approach, justifying

its form as opposed to other possible candidates.

4. Determine the structure of the subalgebra spanned by the second type
(i.e., a-type) of conditional events, relative to the proper-including sigma

al ebra.

Returning to Part I, there is no question that Lemis' triviality result [3] was

seen to be the basic guidepost that forced the search for conditional events and

their algebras to be outside the basic boolean algebra (or sigma-algebra) of

(unconditional) events a,b,c,d,... Section A herepresinta Fbr completeness the

Lewis theorem and its proof;o;Section B presents an alternative proof, based on

Sprobability ordering characterizations important ilso for their applications
throughout Part I to the development of conditional event algebras.
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As stated before, the approach to conditional events taken in Part I is

the interval of events one, where specifically any conditional event (alb)

(representing "if b, then a") is identified with

&ab, b'vab] = {xcA:abx <b' vab}.

Section C here presents -a rigorous argument for the above form to hold for

conditional events. Alithough there are many possibilities for conditional event

algebras, as mentioned earlier, the choices are not really arbitrary. In fact,

it can be shown that for a reasonably large class of conditional event algebras

there isabijective relation between each choice of a truth-functional three-

valued logic and a conditional event algebra (relative to the interval of events

approach). Section D of this appendix presents details of this relationship.

It is also interesting to note that in general extensions of probability measures

to conditonal event algebras do not produce probability measures over these

algebras (but of course for each fixed antecedent, produce conditional probabil-

ity measures). Section E provides details for this.

An alternate approach to conditional events and their algebra's is provided

by the cartesian product of spaces technique, Section F shows that as far as

considering a product space approach, the (countable) infinite number of factors

(of actually the same initial probability space) is necessary: no finite product

space will yield Conditional events. As mentioned previously, there is,in effect,

a tradeoff between the theoretical soundness and computational efficiency of the

two basic approaches to conditional events and their algebras. For the product

space approach, Section G provides general formulas for conjunctions and their

computational lengths and compares these quantitatively with the interval of

events approach. Some progress on characterizing the product space approach to

conditional events is given in Section H. Finally, Section I of this appendix

shows how two of the leading conditional event algebras for the interval of

events approach yield natural approximations (as upper and lower bounds in a

tightest sense, for suitable modifications) to the full product space compu-

tations.
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MATHEMATI CAL
APPENDIX

This appendix presents two types of results: concise statements of pre-

viously proven results, given usually without proof here (unless the latter
illustrates a particular point) and full theorems and proofs for new results.

The same convention for notation here holds as in Parts I and It.
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A. Lewis' Triviality Result.

Theorem I. (0. Lewis 1[3] )

Let (Q,A) be a measurable space. Suppose A contains at least some elements

a,b such that
0< ab < b < a (1)

Then, it is impossible to find a mapping *:A 2+A such that for all a,b e A

P(*(a,b)) = P(alb) , (2)

for all probability measures P:A-÷ [O,l] such that P(b) > 0.

Proof: Assume the converse and choose a fixed pair a,b cA with (1) holding

such that

0 < P(ab) < P(b) <1 & P(ab) t P(a)-P(b).

Then, by the assumption and usual properties of measurable spaces,

P(alb) = P(O(a,b)) = Pa ((a,b))'P(a) + Pa,(*(a,b))P(a')
= Pa(alb).P(a) + Pa,(alb).P(a')

= 1-P(a) + O.P(a')

= P(a)

a contradiction.

B. Probability inequality aud Equality Ciaracterizations

Lewis' triviality result can also shown to be derivable as a direct conse-

quent of the second of two basic theorems below concerning the ordering of

conditional probabilities:

Theorem 2. (i[4]), Lemma 2, pp, 48,49)

Let a,b,c,d e A with b,d $ 0 (A is a boolean or signa-algebra, as usual).

Then, the following two statements are equivalent:

M) P(alb) < P(cld) , all prob. meas. P:A+ (0,1] , P(b),P(d) > 0.

(ii) One of the following disjoint cases hold:

(I) ab= ,

-6-



in which case

P(alb) = 0 , all P:A+O,1],

(I0) cd d

in which case
P(cld) = 1 , all P:A-.[.O,lJ,

(III) 0 < ab < cd & 0 <.c'd 4 a'b

Theorem 3. ( [4], Corollary 1, p.49)

Let a,b,c,d c A , b,d f 0. The, the following two statements are equival-

ent:

(i) P(alb) = P(cld) , all P:A-([0,1] , P(b),P(d) > 0.

(ii) One of the following disjoint cases holds:

(I) ab = cd = 0

i.n which case P(alb) = P(cld) = 0 , all P:A+[Ol]J,

(II) ab = b t 0 & cd = d f 0

in which case
P(atfb) = P(cld) = 1 , all P:A-* [0,1]

(III) 0 < ab = cd < b = d

Alternative proof of Lewis' Theorem , using Theorem 3:

If eq.(2) holds in all P, then it can be rewritten as

P(*(ab)IJ) = P(alb) , all P:A- [0,1]

Immediately applying Theorem 3, shows the possibilities

(I) *(a,b) = ab = 0

U or
(II) *(a,b) =n & ab = b

or
(III) 0 <*(a,b) = ab < ( = b

-7-



But, claerly, all of the above Cases violate the hypothesis. Hence, a

contradiction holds.

C. Axio• atic Derivation of Interval Form of Conditional Events

Conditional Event Problem

Given measurable space (wfa,A) , find space A with operations corresponding

in some way to ordinary -,v,()' over A (and with elements i,6i corresponding to
2Ol , respectively) and find a mapping p:A A such that

(Qi) *(a,b) = *(abb) , all a,bcA.

(Q2) *(-,):A÷A is an injective isomorphism, i.e., an imbedding, with re-

spect to .,v,()'

(Q3) More generally than (Q2), for each beA, b"0, #(-,b):A÷A is a homomor-

phism,

(Q4) For each probability measure P:A- [0,I.] , there is a function R:A-+ [0.,]

extending P in the sense

P{(.(ab)) = P(alb) , all a,bcA , P(b) > 0

(Q5) For any a,b,c,4l.eA such that either cd = 0 or cd d , then

4#(a,b) = *(c,d) impties b ---

Theorem 4. (i [4]), Chapter 2 )

If the Conditional Event Problem has a solution relative to assuming prop-

erties (Ql)-(Q4), then for all a,b,c,d cA, b,d ý 0

(i) *(a,b) = *(c,b) iff ab = cb .

(i.i) p(a,b) = p(c,d) iff Theorem 3 (ii) holds.

Let (9 ,A ) be a given measurable space and define the naturat mapping

nat: A ÷ A , where for all a,b cA,

-8-



nat(a,b) =Ab' v ab =(xb' v ab :x cAll = ab,b' v a]

etc. (For background on the role of the natural mapping, see anj basic text in

abs tract algebra such as Burton [5], p.165 et passim.)

Define

A rangeinat) = (nat(a,b) : abe A I

and note nat(a,b) c A/Ab' , boolean quotient algebra generated by principal

ideal Ab' = {xb' :c xAl, with all of theisual coset operations. Hence,

A=U A/Ab' = U A/Ac

beA ceA

where for each b the coset operations are

nat(a,b)-nat(c,b) nat(ac,b)

nat(a,b)v nat(c,b) =nat(avc,b),

C) nat(a,b)' =nat(a',b)

Theorem 5. Ck [4), chapter 2)

Let (ýzA) be a measurable space. Then:

Mi nat:A 2 -o A furnis-hes a solution to the Conditional Event Problem for

properties (Ql)-(Q5), where, for any prob. meas. P:A-)-[O,l] , a,bcA, P(b)X),

i-(at(a,b)) = PaOO) (by assignment or definitioni,

(ii) For any space X (not necessarily nat.) and p:A 2 -). surjective satisfying

at least properties (Ql),(Q3),(Q4),(Q5) of the Problem, then

*(a,b) = ti(c,d) iff ab = cd & b =d

and *, is in a bijective relation with nat.

Hence, without loss of generality, any 4,satisfying Theorem 5 is equival-
(a) ent to nat, and we can now define conditional event "a given bV or "if b,thefl

a" as nat(a,b), where for purpose of brevity, we write nat(a,b) simply as (aib)

and define (AIA) A

-9-



D. Three-valued Logics and (Cnditional Event Algebras

Let (a,A ) be a measurable space. We employ multivariable notation here:

a (al,. ,an)eA , where aaA , ... ,n

(aib) ((al1bl),..,(anlb)) ; a-b (albl,..anbn)

¢(ajb)(w) = (¢falIbl)(Q),..,¢(anIbn)(w)) C {O,ul,l1n I
= (il,..,in) C (O,U,ll ,

f(alb)-l(i) = (¢(allbl)-l (il)..,(an bn) (in)),

-(a)= a I-a 2 *.. -a and similarly for *(f(aJb)- I(i))

noting that 1 ab , if k=l,

4s(aj b )-(k) = a'b , if k=O,ifk=0,
b ' , i fk=u

using the three-valued indicator function form for conditional events (aJb),

(alb):o {O,u,l} , where

U1 f if we ab
o(alb)(.s) = , if wea'b,

u ,if web

It is easily seen that there is a bijection between all such three-valued in-

dti:cator functions over a and (AIA).

Also, call f:(AIA)n÷(AIA)a generalized boolean operation, if there are
boolean operations f.! A2 n - A such that

.7

f(a(b) 1(f1 (a.b,b)If 2 (a.b,b)), for all (_Ib.)c (AI A)'. .3)

With all of the preliminaries completed, we can now state the main result:

Theorem 6. ( [4], section 3.4)

(i) For any given generalized boolean operation f:(AIA)n+(AIA), there is a

unique corresponding three-valued truth-functional logical operatfon, say

*(f):{O,u.,l} n,{O,u,l) , such that f is an isomorphism relative to f and *(f)

i.e.,
(f(_ab) = (f)((alb)()) , all we .

Specifically, one can construct *(f) as follows:

From eq.(3), using the normal disjunctive form modified, there is a unique

-10-



minimal index set J(f )s(O(,u,,I such fltat

fj(a-b ,_b) = v (.(.(ab)'(i)) all a,b A ,j=l,2.
iJ(f.)

Then, define *(f):{OU,l}n+ (O,u,l} by , for any i c {O,u,lln'

. 1 , if i e J(fl)nJ(f 2 )

(f )= 0 , if i C J(f2)mnJ(f 2 ),

a , if! c ~f)

(ii) For any given three-valued truth-functional operation T:{O,U,l}n + f0,,l},

there is a unique corresponding generalized boolean operation, say

-I (T):(AIA)n{(AIA) ,such that 0 is an isomorphism relative to -1 (T) and T,

i .e.,

{(_(ajib)(w)) = 0( 0- (¶)(akb))(w), all wen.

Specifically, one can construct *-(T) as follows:

First, define as in eq.(3), the two components 4 (-l))j , j=l,2.

1 1 n(o l(T)).(a-b , b)) = v (-(0- (alb)(i))) , all a,beAS- - - it R(h,j) -

where (1) , if j=l,
R(h,j) h-h l({0,11) , if j=2

*-l(T)(alb) = ((o-lW))I(avb,b - 2(a-b,b)).

(iii) The above results show that * is an isomorphism between all truth-

functionally-defined three-valued logics and all conditional event algebras

ith operations being generalized boolean.

E. Mon-Existence of Probability Measures Over the Conditional

C Event Extension of a Boolean Algebra

Theorem 7.

Let (n,A) be a measurable space and pick a,b,c,d c A with b,d / 0.,

-Il-
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S = {O; xA/(x.+x.) x. x.+x. for i,j distinct ( 1,2,31 ;1.

But, by choosing, e.g.,

x = x2 = x3 = 1/3

S = (0,1/2,1/3,2/3,1} ;

thenfrom above,

P(alb) + P(cjd) = ((1/3)(2/3) + (1/3))/(2/3)

= 5/6

Case 3. bd t 0 & abd 0

Construct P so that

1/2 = P(ab) = P(b) = P(cd) = P(d)

But, substituting into (2), if it were true, yields

P(alb) + P(cld) = 1+1 = 2 = P(elf),

an impossibility.

Case 4. bd t 0 & bcd = 0

Proof here imitates that for Case 3.

Corollary 1.

Let (aA) be a measurable space with eq.(1) satisfied above for some

elements. Suppose also conditions (Ql)-(Q3) are satisfied relative to the

Conditional Event Problem here. Suppose also that *:A2÷ A is closed with

respect to conjunction and disjunction and that

4(a,b)-*(cd) - 0 implies abcd - 0

SThen, even if X were boolean, it is impossible for condition (Q4) to be

satisfied when P:0(A2 ) [0,1] is an actual probability measure.

Proof: Immediate from Theorem 7.
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-( F. No Finite Product Space Can Be Used To Nodel Conditional Events

Theorem 8.

Let A be a fixed nontrivial boolean algebra. Then, for any choice of a,b C

A, with
0<a<b< a , (1)

there is no non-negative integer n and n order polynomial in four variables,

fn~t(4 n E with coefficients Cijkt (-'1,0,11 , 0 4 i,j,k.t 4 n , where, for any

x,y,Z,W £ I{

fn (x'Y'Z'w) =04i ,j&,k,t(ci jkt" xi"YJ "z k. "wt)

i +j+k+t < n

is such that for all probability measures P:,A.[O,I] with P(a) > 0

fn(P(a),P(b),P(a'b),P(b')) = P(ajb)

k1  Proof: Note first that since

P(a'b) = P(b)-P(a) ; P(b') = l-P(b) ,

the above problem is equivalent -to having an n-order polynomial in two variables

with coefficients cij C (-1,0,11 , becoming now

gn (xy) .. x 1iyj

with,for all P,

gn(P(a),P(b)) = P(alb) (2)

Suppose that (2) is true for all P. In light of Lemma 0, (4] , pp.47-48,

for the numbers 1/3 and 2/3 , one can find P such that

P(a) = P(a'b) = P(b') = 1/3

yielding

(I) P(alb) = (1/3)/((1/3)+(1/3)) = 1/2

Substituting these last two equations into (2) yields

-14-



1ci. c;(1/3)1-(2/3)3 = 112
i ,j

which, when multiplied by 2 .32n yields

2.( if c. 32n-i-i. 2 J) . 32n
i,jm

whichis impossible, as 3 to any power cannot have an even divisor. Hence, a

contradiction occurs if (l) holds.
U

Corollary 2.

There is no finite sequence of finite-sized experiments consisting of in-
dependent trials whose outcomes are edther a,a'b,b,b' (assuming as before that

eq.(l) holds) such that the overall probability of success is P(alb).

(9 Proof: Use Theorem. 8.

G. Multiple Argiujment Form for Conjunction of a-Type Conditional

Events and Their Computational Lengths

Theorem 9.

Let ( ,A) be a given measurable space and construct as before (g,A) with

a: A2 . , etc. Then, for all a<b, c<d, e<f, all in A

0i) (i a(a,b)-alc,d):a(e,f)• I/YO•J

-c(.ad f' ,bvdvf) ®cac ,dvf)®a(e,f)
V a1(acf' ,bvdvf))cL(e,f)

v a(ad'f' ,bvdvf)® @ (ce,dvf)

v a(ad'f',bvdvf) @ a(ed'I.dvf)o ®(c,d)

v v a(aed' ,bvdvf)@ct(cd)

v. (cbIf')bvd vf) f a(eb' ,bvf)@ az(a ,b)

v q(ceb' ,bvdvf) )O(a,b)

v c(cb'f',bvdvf)®@(ae,bvf)



- I

v a(cb' fbvdvf)E().(af' ,bvf)ORa(e,f)

v Ca(eb'd' ,bvdvf)84ad' ,bvd)@Ja(c,d)

v c(eb'd' ,bvdvf)@a(ac,bvd)

v a(eb'd' ,bvdvf)i)a(b'c,bvd)®a(a,b)

V a(ace,bvdvf).

(ii) For any probability measure P:A-[O,l], there is the corresponding

product measure ':÷ [0,1], yielding the evaluation of (i):

P~a(a,b)-tdc,d).a(e,f)) by replacing in ti) each occurrence of a by P, each

comma within each original a-term by the conditional probability symbol (.j."),

® by arithmetic product, and v by arithmetic sum.

Proof: Define for any a,b e A,

a ,ifj=O,

bxa ={bx...xbxa if J=l,2,..

j factors

Then,

a(a,b) .a(c,d) -a(e,f)

vb')) xa).( v (d')Jlxc)-( v (f
i=0 j=0 k=O

V v ('((b' )ixa).((d')jxc).((f')kxe))) . (1)
rali J,kc

(an for same

I rearrange-
|ment p rel-
| ative to nu-
Lmeri.cal valuesj

counting ties

By considering here all 13 possible rearrangements of i,j,k relative to
increasing order, including cases for equalities, one obtains the desired

result. For example, for the rearrangement (j<i<k) , which gives rise to the

ninth term (from top to bottom) in the espansion in part (i), note that the

corresponding term inside the right hand v expression in eq.(l) becomes

(b'd'f')Jx cb'f' x (b'f1)i-j-1 x af' x (f')k-i-I x e

.For (ii), the probability evaluation follows,again as in the two argument

"-16-



case in Part II ([2], Section 4, main theorem, (vii)).
X

It is of some interest to be able to obtain the general formula for the

onxjunction of n a-type conditional events:

Let o((j) be any rearrangement of. = (nl..•jn) in numerical order, taking

into account ties

0 < .< ..= <r)< +
jp~~l~ll)=..==jp(2.ml) < jp(•=.=p2m) . (r~l)=.."=jp(rm r

so that

m1 + m2 +..+ mr n

Also, for any index set K, let

v(aK) v a. -*(aK -a -({a) = a"
K K j K j;K j

J. = {p(j~l),..•p(j,m.)) • j=l•..,r

( j(k) = k+l U ..U Jr k--O,.. r-l ; J(O).J1U .. U =J

S,1~~(r-l) = Jr ; r)

E r

Then, for any a3 4 bj e A

•-a_~))=. a(al ,bI )9 ... ec(a n bn)

+ "0 Jlx
""=(a(,bi) v (b') xa (2)

It follows analogous to the case of three arguments,

-(c(a,b)) =v v
all p all

jfor r I
\ fixed/

where

H4
x(.(b•())pZl)•pll- x (-(aj2 ''•())

ID x... p r- I )-(-2,1,) -1

X(. ibj(r_2)))"prI, ~-, x.(-(aj )-(-j(r-lI)

- -, l3 (rlf-J(rl,1) -I r-l
X(- (9j(r-l) )) x (-(a J) r (3)

r
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Hence, taking disjunctions over the Jd(i0 ) in (3), from basic represen-

tation for each a(ai.bi) in (2), it follows that:

Theorem 10.

Let the same assumptions hold as above. Then,
(i )

*(o(ab)) = v ,(P)
all
P

where for any rearrangement 0, noting the dependency of the J) and Ji and r

on p
r

y(p) ®a((ad )'l'(l'j(i)))" v(bj(i-l)))

indicating repetitive tensor-like producting in the obvious way, noting its
reduction to an identity form when r=l.

(ii) For any probability evaluation of (i) via the product measure extension

Of P . AP(-(ada.b)) is obtained , analogous to Theorem 9(ii), by replacing

in (i) each occurrence of a by P, each comma inside the original a-type con-
ditional event by conditional probability operation (@-)• ® by "arithmetic

product, and v by arithmetic sum.

; t• • . ., e'- th- c m P.jtu tionP a 1 1 r--: cti s r'eoi ;-d to cUt::;, re1e:ea ,

a-type conditional event conjunction and disjunction. First, recall (see,
e.g., Abramowitz & Stegun [6], section 241 the total number of ways to par-
tition a set of n distinct elements into k non-empty components is the Stirling
number of the second kind k

Sn(k) = (1/k!) (l)
j=O

and the number i(n) of possible distinct rearrangements p of n distinct var-
iable set (jl...,j n ,where ties are allowed and the rearrangements are rela-

tive to increasing numerical order, is

n
K(n) = k . k!

Hence,
-18-



n k
sc(n) i 1 (l) k-j.(k).j

k=- j= " (4)

Using the above results, one can compare the computational lengths between

the two leading conjunction operation candidates (GNW and SAC) for the interval

representation form of conditional events wilh the computational length for the

a-representation of conditional eventsconjunction-

Theorem 11.

Let (.0,A) be a given measurable space. Consider both its interval

conditional event extension (AIA) relative to Q4W and SAC algebras. Consider

also the product space extension (B,I) 'and the associated a-type conditional

event extension (A2 ) cA . Then, for any a <bj cA, j=l,...,n:

(i) Number of boolean operations required to compute P(-((alb))) for-GNW is

A ,where

4 An = 5n

(ii) Number of boolean operations required to compute P(-((alb))) for SAC is
B , where

n Bn = 4n

(iii) Number of hoolean operations required t6 compoute P(-(•(•_)) is C,

where 
K(n)<Cn< 2nc(n)

Proof: For (i), use the form

((_lb)) = (-(a)l('(a))v v(a'-b))

and for (ii), use the form
:o((alb) = (-(b' v a) I v(b)),

where - is GNU conjunction and -0 is SAC conjunction. See Section 3(iii) El],
L) eq.(l) for the two-argument case for GNW and Remark 2, following eq.(1) above

for the two- argument case for SAC. Both generalize readily to the multiple

argument forms.
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H. Uniqueness of Representation of a -Type Conditional Events

.The closest we can now come to establishing the uniqueness of the a-repre-

sentation for conditional events is in the following-theorem:

Theorem 12.

Given a measurable space (0,A) and infinite product space extension

(*,A) with conditional event mapping a:A2 -4 ; consider

Ar = a({alx..xa : a cA, j=l,..,r)).

Let A,B.:A 2A be arbitrary satisfying
r

P(A(a,bIB(a,b)) = P(aib) , all a,b e A, all P .

2.
Suppose, also that 4s:A -•A is such that

*(ab) = -*.x c. , (0)
i=0 j=0 -

where cij = c ij(A(a~b),B(ab)) cAr , for all a,b c A, all i,j=O,1,2,..

and % indicates disjoint disjunction.

Then, the following two statements are equivalent:

(i) c.. c 4=(0,b)B(a,b),B(abP'Pr. , all .,j:0,,,... (1)

and

P(q(a,b)) = P(alb)-, all a,b cA , all .P (2)

etc.

(ii) Up to relative factor space locations, go is the same formally as the canoni-

cal expansion for a(a,b) (Part II, Section 4, eq.(6)), with a replaced by A(a,b)

and b by B(a,b)

,i(a,b) = (A(a,b)-B(a,b)) v (B(a,b)'x A(a,b)-B(a,b))

v (B(ab)'xB(a,b)'x A(ab)-B(a,b))v.. (3)

-20-



More precisely, there is (uniquely determined by each choice of cij's) a

sequence s = (sk)k=O,l,2,.. of distinct non-negative integers such that

j'A(a,b)-B{a,b) , if j=si

ci = B(a,b)' , if j=s 0 ,sl,..,si_l , (4)
IJ r , if J#S0,ST,..Si-lSi I

for all i,j -0,1,2,...

Proof: Given (ii), one clearly has the same situation holding as in the canon-

ical one given in (3) , up to a fixed permutation of the relative locations of

A(a,b)'B(a,b) and B(a,b)'. Thus it follbs(Part II,eq.(6)) with a replaced by A(a,b),

b by B(a,b), that (2) holds. (That ((4) implies (1) is obvious.). Hence, (i)

holds.

Given (i) holding, use (1) ,1(2) and the expansion (0) with x=P(A(a,b)-

B(ab)), y=P(B(a,b)') replacing P(ab)., P(b'), respectively:

P(afb) = P(q(a,b)) = P I(c ij) = xti.yWi

i=0 j=0 i=0

S(A~a,b)1B(a,b)) x Z "yi, (5)

i=0

can vary freely over some domain and hence the equality of the two power series

in (5) implies, without loss of generality,

ti=l , w = i , for i=0,1,2,... (6)

In turn, (6) -implies, by first considering i=0, then i=l, then i=2,...,

using the mutual orthogonality of each disjunction term, that (4) indeed holds

for some s, and hence (ii) holds.

One can add constraints to the assumptions of the last theorem and to either

equivalent form (0) or (ii) to eliminate all A(a,b) and B(a,b) except for the sim-

plest: A(a,b)=a, Ba,b)=b. For example, if one assumes the modus ponens relation

-21-



q(a,b)-b = ab , all a,b E A

and, e.g.,
ab•<B(a,b) , all a,b cA

then it easily is shown that a,b are the smallest possible A,B candidates:

ab < A(a,b)-B(a,b) , b.I< B(a,b), all a,b E A

Other than -the above result, little progress has been made in fully char-

acterizing a-type representation. Of course, if one could show, e.g., that

assumptions led to the conclusion that candidate conditional event form, say

u(ab) satisfied the modus ponens condition in (1) (with V for y) and, as well

p(ab)-b' = b' x .j(ab) , (2)

a condition. that is compatible alwayswith the independence relation

P(p(a,b)-b') = •(V(ab))-^(b') = P(alb).P(b') , all prob. P,

then, by the simple expansiod

Su(a,b) = v(ab)-b v )i(a,b)-b' (3)

and reiteratively using (2) and (3), one obtains the infinite sequence expansion

of a(a,b).

I. Approximation of a-Type Operations by C2W and SAC Operations

Fir.;, c.;,ns d -r a bas -c cc.mpar's on ',n ,,,,-n. an' c.-z 'p ., or j ir s

corresponding to * , v , , where (QA) is a given measut'able space, (0,A)2 ^%
is its infinite product extension, and a:A, +A , etc. In all of the following,

as before', we use the convention that " v refer to SAC conjunction, dis-
0

junction, respectively , and now, "I • v, refer to GNW conjunction, disjunction,

respectively, with unsubcripted - , v referring to a-type conjunction, dis-

junction, respectively. Finally, ( )" refers to either the common GNW and SAC

interpretation or the a-type interpretation of complement/negation.

Theorem 13.

For any a,b,c,d cA leading to nontrivial a(a,b) (i.e., ab f 0 , b f 0,A

so a(a,b) 0 and ab t b , b f 0 , so that also a(a,b) fr):
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( (i)
a(a~b)-la(c,d) < a(a,b)-a(c,d) < a(a,b)-oa(c,d) ,

a(a,b)vo.a(c,d) < a(ab)va(c,d) < a(a,b)vla(c,d) ,

where the GNW and SAC analogues for a-type conditionals are:

a(ab)-1a(cd) = a(abcd,a'bv c'd v bd)

a(ab)vja(cd) = a(ab v cd ,ab v cd v bd)'

a(a,b)- a(c,d) = a(abd' v cdb' v abcd , b v d)

a(a,b)voa(c,d) =•(ab v cd , b vd)

(ii) The bounds by the GNW operationsgiven as aboveare the tightest possible,

i.e., referring to Remark 3, following the main theorem, Section 4, for all

nontrivaal a-type conditional events

a(a,b)-, a(cd) = a(ab)-la(c,d)

":1) ca(a,b)v* a(c,d) = a(a,b)vla(c,d)

Proof: First, note from Section 4, main theorem, part (iv), the partial (lat-

tice) order ( for (AlA) for GNW coincides with the (boolean) order stemmingA

from A restricted to the space of a-type conditionals, a(A2 ). This implies

directly that the upper left inequality is true. Dually, because GNW and a-type

conditionals both' formn-OeMorgan systems for conjunction, disjunction, and nega-

tion, reapi`catior, of the above result then shows the validity of the lower

right inequality.

The upper right inequality holds, by inspection of the conjunction form

for SAC and that for a-type, showing the differenceto be in the appended ten-

sor-like factors to the latter.(These factors are readily seen to yield ex-

pressions < corresponding SAC terms without the tensor factors.) Finally,

since both SAC and a-type conjunction , disjunction, and negation form a

DeMorgan system, the lower left inequality is also valid.

0
Modify the definitions of -* and v, from Remark 3, following main theorem

of Section 4, as follows:
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(a,b)'):4(cd) = inf {c(e,f): c(a,b)-a(c,d) < ,(e,f), for which Hypothesisl(o)
<() is satisfied I

a(a,b) a.Q(c,d) sup ({(e,f) :cz(e,f) < c(a,b) v a(c,d),for which Hypothesis(o)
<d) i:.s satisfied}}

Hypothesis(o): -For any a,b,.c,d cA , consider only a(ab). a(c,d) f ti , with

b-(d'.vc) , d-(b' va) t 0 ; ef-(d'vc) pt f.(d'vc) ; ef-(b'va) i f-(b'va)

Theorem 14.

For any a,bc,d c A , the above modified upper optimal approximation for

conjunction and lower approximation for disjunction coincide with the corres-

ponding SAC operations. That is, for all such (restricted) a,b,c,d

and a(a,b)(a(c,d) = a(a,b)-oa(cd) (2)
a(a,b)&a(c,d) = c(a,b)v a(c,d).

*Proof: Let e,f c A arbitrary-such that

a(a,b)-a(c,d) < a(e,f).. 3

Us-ing Hypothesis Co), let P :A-[O,1] be any probability measure with

P(b-(d'vc))> 0 and denotelas usual, the, infinite product probabilityassoci-rated with P as Pr:A.-) [0 , I] We then apply the conditional probability.

b..(d, v c) I-U. Lth si' of cq.(2), yiictiig (aftLer sicmptifyii-y tiie Li.3 Cf (3)

(Scthe main theorem, part(vii), Section 4))

P(abd' v abcd Ib-(d'vc)) (P(eIf.(d'vc)) , (4)

forall pro&. meas. P. Hence, by Theorem 2, Appendix and Hypothesis (o), the

only possibility is that eq.(4) implies

abd' v abcd < ef.(d'vc) C ef . (5)

Similarly, by taking now Pd(b'va) and applying its infinite product
extension to both sides of.(3) shows, analbgous to (4),

cdb' v abcd < ef.(b'va) 4 ef . (61
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Then, disjoining eqs.(S) and (6) gives

abd' v cdb' v abcd < ef (f)

Also, by eq..(3$) and Theorem 13(i), it follows that

a (a, b) -1 (c, d) < a(e , f)

whence by Section 3(iii), eq.(4),

abcd <ef & e'f ((abcd)'(a'b v c'd v bd) = a'b v c'd. (8)

Combining eqs.(7) and (8),

abd' v cdb' v abcd <ef & e'f< a'b v c'd (9)

On the other hand, consider the comparison of SAC conjunction with Q(e,f):
By eq.i1) above and again use of eq.(4), Section 3(iii),

11.). ci(a,b)-oa(c,d) acz(ef) (10

i•ff
abd' 'v cdb' v abcd (ef & e'f < (abd' v cdb' v abcd)'-(b v d)

= a'b v c'd (11)

But, clearly, eqs.(9) and (II) are the same. Hence, eq.(tl) holds. Since a(e,f)
is also arbitrary satisfying eq.(3.), then by the very definition fore , the
top equation of (2) holds. By a duality argument (using DeMorgan relations)
the bottom equation of (2) also holds.
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