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"A THEORY OF CONDITIONAL INFORMATION

"FOR PROBABILISTIC INFERENCE

IN INTELLIGENT SYSTEMS:

I, INTERVAL OF EVENTS APPROACH

ABSTRACT

This paper emphasizes the need to develop further prob-

ability theory at the service of probabilistic intelligent

systems. In the field of probabilistic systems, the causal

relationships among variables of interest are viewed as if-then

(or production) rules whose certainty factors are quantified

as conditional probabilities. With some additional assumptions

about the variables of interest, such as conditional independ-

ence, standard probability theory can. be applied to carry out

10 the reasoning processes. In more general situations, in which

all information (in the premises as well as the conclusions)

is in unconditional and conditional form - or in only conditional

form - current probabilistic machinery requires more develop-

ment to cope with this new situation.

After identifying typical situations, as mentioned above,

we present a theory of conditional information in the form of

the new concept of "conditional events", compatible with all

conditional probability quantifications. We specify applications

of this theory to various problems in intelligent systems,. The

approach taken here to conditional events is through intervals

ef events.
Key Words

Bayesian methodology, conditional events, conditional event algebra,

conditional probabili•ty, conditional random variables, conditionals, i f-then

statements, implications, intelligent systems, logic of conditionals,

( probabilistic inference, quantification of if-then rules
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r~*) 1. INTRODUCTION

One of the aims of this paper is to point out potential areas in the field

of probabilistic intelligent systems, where the need to model uncertain if-then

rules as mathematical entities is apparent.

The analysis carried out in this paper is essentially restricted to prob-

ability considerations. However, all of this can be extended to a more general

setting, such as to apply, e.g., to conditional linguistic information. There,

fuzzy set!.-theory and fuzzy logic could be used as a vehicle to model vagueness

of natural language concepts.

To facilitate the writing, we now specify the notation to be used through-

out this paper, once and for all.

Basically, intelligent systems are concerned with reasoning with knowledge.

As is well known, it is sufficientto use a probability space ({l,A,P) to des-

cribe probabilistic knowledge, where (SI,A) is a measurable space, i.e., QcAc_

P(Qa), A a sigma algebra or boolean algebra of subsets of a , P(Q) denoting the

power class ,or collection of all subsets, of Ql , and where P:A-- [0,1] Jis a pi-ob-

ability measure on A, (0,1] dehoting the unit interval.'{t real: Ost:l1). We will

also use small letters at the beginning of the alphabet to denote elements of A;

these are usually interpreted as events or subsets of 9 (but also as propositions

or statements - see comments below). Set operations on Q are demoted as: - or

a lack of the symbol, when no ambiguity precludes its omission - for "and" or

conjunction or set intersection n ; v for "or" or disjunction or set union u

)' for "not" or negation or set complement; <for "contained in" or subset in-

clusion s_. We may also interpret 4 as the basic entailment or deduction relation

among elements of A. The symbol <: stands for strict set inclusion. When there is

no confulion, the same symbols, < and < will be employed to denote both the set

relations as above -and the usual numerical ordering relations of "less than or

equal to" and "strictly less than", respectively. We will use throughout the

paper 0 to indicate the zero element or null or empty event in A and $1 to in-

dicate the unity or universal element in A. The usual mathematical notation will

also be.. used, such as e "in" or set membership; {x:R(x)} for the set of all ele-

ments x such that predicate R(x) holds; f:G÷H for the function f mapping

O space G into H ; x for cartesian product, as axb xc = ((r,s,t): rca, scb,

-2-



tdc) and A1 xA 2 = [(a,,a 2 ): a. e A.}. Superscripted notation using integers

indicates repeated caftesian product as A3 for AxA xA and fa,b}n for {a,blx.
x(a,b) (n factors). Other notation will be introduced as needed.

A knowledge-base usually consistsi of facts (i.e., propositions or state-

ments in a natural language) and rules (i.e., conditional or if-then statements).

In view of the well-known Stone Representation Theorem (Mendelson, i[l]), one can

view a boolean (or sigma-) algebra A of propositions as being equivalent to one
of events (or subsets) as above, where logical connections among propositions are
idd~titlied as corresponding set operations.

By an if-then rule here, we mean "if b, then a", symbolized as b-a. When

such a rule is uncertain - as e.g. "When you have dried skin that,e.g.,feels to
the touch as wood, you have disease Z" - or not always true, one needs to quanti-

fy the strength of that rule, or at least our degree of belief in such a rule. In

the probabilistic setting, there are-several ways of doing this. If the arrow

is interpreted as the materzal conditionaZ of classical logic, i.e.,

~C) b+a = b' v a (= b' v ab)

then
P(b-*a) = P(b' v a) (= 1-P(b) + P(ab))

is one such quantification. (See, e.g. Nilsson [2j .)

On the other hand, due to the causal relationship among variables of inter-
est, in a domain of investigation, b+a is often quantified by conditional prob-

abilities (see, e.g., Pearl [3j )

P(b+a) = P(alb) = Pb(a) = P(ab)/P(b)

when P(b) > 0 . This quantification concurs also with a number of logicians' and
philosophers' thinking (including, e.g., Adams'[4] and McGeeI[5] ). If we insist on

using the latter quantification methodology, then it is easy to see that in gen-

eral,

b-a i(b' v a

since by inspection

P(alb) f P(b' v a).

More generally, b-a cannot be an element of A , except for trivial cases such
as b = (Q. This fact is known as the triviality result (Lewis [6] ; see also [7]-.)

-3-



In existing theories dealing with if-then rules, there apparently has been

no need to model them. as separate mathematical entities (Pearl [3] ), since it

suffices to specify the joint distribution of all variables involved in a bayes-

ian network. While the subject of conditional statements in natural language

and logic remains very much a topic of interest (see, e.g., Jackson [8] i,McGee

(5] , and Traugott et al. .9] ), there is little emphasis, however, on mathe-

matical modeling of conditionals (or conditional events). Instead, the emphasis

has been on logical aspects of them, keeping such conditionals as primitive or

undefined concepts.

In the probability theory literature, there have been relatively few works

concerning the modeling of conditional events (e.g., De Finetti [10] and Koopman

[11]). However, these works have been largely forgotten, perhaps due to the

common fact that any mathematical development which does not contribute to ad-

vances in applications may be considered unimportant. This is somewhat similar

to the employment of the term "conditional random variables" by Wilks, [12] to

nmtivate conditional distributions, but where the concept itself is not presented

clearly as a separate useful well-defined mathematical entity.

As we will see, the mathematical modeling of if-then rules, compatible with

conditional probability evaluations, i.e.,

P(b+a) = P(alb)

is indispensAble in extending probabilistic techniques to general intelligent

systems. It should be noted that in probabilistic inference for systems,more than

the standard probability calculus may be needed. Indeed, due to the nature of,

s-ay, expert systems, certain-new logical tools have been added-(see, e.g.,Pearl

[3] ), namely the "logic of high probabilities" (see also Adams.[13]). Our work

in this paper can be viewed as a concretizing of the general theory of con-

ditionals discussed by logicians and philosophers for use here in intelligent

systems.

In Section 2, we will illustrate various problems of interest in intelligent

systems in which mathematical modeling of conditional events is needed. In Sec-

tion 3 we first discuss and contrast the use of conditional probabilities and

probabilities of material conditi6nals and see that it is more useful to employ

) the former than the latter in evaluating if-then rules. This is followed by a

basic introduction to the interval of events approach to conditional events.

In PartIlof this work, a new approach to conditional events will be in-
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troduced which yields a more computationally complex structure, but which has

certain advantages over the interval of events approach. Part Ill of this
effortwill be anioverview and a mathematical appendix documenting the .more tech-

nically detailed results.

2. CONDITIONAL INFERENCE INIPMQBABILISTIC SYSTEMS

In order to motivate our development of conditional events and their

associated logics - or "conditional event algebras" - we consider in this sec-
tion eight typical types of problems concerning conditional information or re-
lated concepts. It is our belief that up till the present, there has been no

real unifying rigorous framework extending standard probability theory for

.dealing with these problems; rather instead, apparently only informal or ad

hoc procedures have sufficed.

PrdbaLem 1. A knowledge base -of a diagnostic system consists of rules of the
form bi --ai, i=l,..,n. The strength of each rule il P(ailbi). Clearly, the un-

conditional forms a I, bi are in actuality special cases of conditionals rela-

tive to 9, i.e., in symbols

ai = (ai 11) and bi = (bi:[Q)

At this point we can even regard such 'tonditional events" as well-defined ob-

jects as in De Finetti [14];, Gilio t[15]L When the strength of the rule b-)a

is computed in the context of another event c, following the bayesian view-

point, the prior probability P is replaced by the conditional probability Pc'

so that these values are equal to Pc(aijbi), representing formally P c(b.-i-a.),

or hopefully, equivalently, P((c+bi)+(c+a ia)). In the more realistic situation,

where each ai and bi are each conditioned on separate premises, say ci and di,
respectively, the rules should become formally (bildi)÷o.(ailci). If we insist

on using probability quantification of rules, we need to be able to define

and compute the probabilities of the above formal expressions expressed as

P((bild')÷(a'Ici)). These formal rules are mentioned, e.g., in Goldszmidt &

oj Pearl [16].

It is obvious that in order to solve the above problem, we need to define

conditional events of the form (ai.bi), as well as logical operations among
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• them. The implication arrow (4.) among these objects could be defined based on

logical considerations among conditional events. The problem of assigning

probabilities to compounds of conditional statements in a natural language is

also of concern to logicians (see, e.g., McGee ; (5]).

Problem 2. A common inference rule in intelligent systems is mondu ponens.

In a classical two-valued logic setting, given bla = b' v a , we deduce a if

the evidence is b, since b-+a and b conjoined entail a, where the entailment

relation is < . Equivalently, we have

(b' va)-b = ab 4 a

But, under the probability quantification b-*a (as in P(bla) = P(alb)) is

not equal to b' v a . Hence, not only objects like bla = (alb) need to be de-

fined, but also the conjunction with b = (bjSl), so that the analogue of modus

ponens holds:

(aIb)-(b I) = (ab11)((d Ifa)

Moreover, when new evidence c no longer matches exactly premise b (i.e.,

no longer "fires" inference rule b+a ; in real-world applications such partial

matching happens quite frequently), we also need to be able to determine the

more general conjunction between (alb) and (cjIl). In the same vein, even more

generally, the evaluation of probabilities of expressions such as

P((alb) v (cld)) are also of interest, such as in the truth or probability eval-

uation of the natural language expression (referrirg to a hand of cards) "If I

pick all picture cards, I will get a king, or, if I pick all black cards, I will

get a Queen or King".

Problem 3. Let (9,A,P) be a probability space and consider events a,b,c,d,..

in A. Suppose event e in A is known partially in the sense that according to

source j, e lies in event interval

[aj,b.] = {xeA: a•< x <b} ; aj e<(bb , j=l,..,r.

For example, let

e = "John purchased x items of type A, B, C today" (x,A,B,C unknown)

aj=-"John always buys at least items A,..,Am ", according-to source j

b.= "John always buys at most items Al,..,Am,Am An", according to
ýource j also, j=l,2.

-6-



C) We wish-to estimate the probability of e relative to each source j, as
well as obtain the probability of the logical conjunction, disjunction, or

any other appropriate compound of these event intervals. Certainly, one could

simply estimate P~e) for source j,

Est(P(e)) = (l/2)(P(a.) + P(b.)) , j=l,2.

But, this subsumes equal weight assignments to P(a.) and POb.). On the other
hand, we mi~ht agree that we do not know what appropriate weights to assign

these values (perhaps the interval of possible resulting values should not be

considered to have uniform weighting, but possibly some biased-type emphasizing

upper bounds as more important). Instead, we could attempt to determine the

weights adaptively by beginning with some reasonable prior Wo~j assigned to

P(b.) and l-wo~j assigned to P(a.), yielding back the weighted average, say

Estl(P(ej)) = (l-w o)-P(a.) + w oP(a)
I, O, J 3

By succesively resubstituting these estimatesback as weights and computing

the resulting weighted averages, it follows that the resulting seqeience of

0 values always converges to the same value, independent of intial estimate w

and the resulting limit is

Est ,(P(e.)) = P(a jb' Jv a ) , j=l.2.

(See (7] , pp. 151,152 and the related discussion later in Section 3 (iv).)

In turn, if we seek to find the estimate of e relative to the conjunction of

the event intervals [al,b 1 ] and [a2 ,b2 ], do we consider the class intersec-
t ion [a 1  n [a2,b2]= [alva 2 , bl.b 2], if a 1va 22< blb 2

0 , if otherwise

or perhaps, the "functional image extension"of event intersections or conjunc-
tions (for definition of functional image extension in a rigorous setting,

see Section 3(iii); here, the term refers to component-wise application of

operations)

[al,bI]- [a2 ,b 2 ] = (a1*a2 . b1.b2 ] ?

Which is more natural ?

In any case, the above problem is equivalent to assuming, in effect, in-
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terval [aj,bJI is identifiable as"conditional event' (a••IV. v a) and the choice

of particular conditional eveat conjunction operation to be made for

(albi v a1 )-ia 2jb' v a2 ) , and subsequently, for PN(a lIb', v a,)-(a 2Ib' v a2 )).

(All of this wili be shown later.)

More generally, the problem of representing,logically manipulating, and

evaluating probabilistically, event intervals in the above sense can be seen to

be the same as identifying conditional events as intervals of events and the

determination of the most appropriate conditional event algebra.

1'roblem 4. Given a probability space (Q,A,P) and a random variable (rv)

Y:(6,A)-.(1,R) ( the last measurable space is the real numbers with the usual

borel field of associated subsets of Q). Suppose that two experiments are made

wiith experiment j corresponding to a fixed a. < b. c 3 , so that

success occurs if Y is in aj ,

failure occurs if Y is in a-b.,(J 3uncertain outcome occurs, if Y is in bW , j=l,2.

Using either an iterated weighting argument as in Problem 3, or a fair betting

argument - where say I unit of payoff is assigned to success, 0 for failure,
and p(a lb ) for the uncertain outcome (see, e.g., McGee [5]-) or a coherency

argument inthe sense 'of De Finetti as employed by Gilio et al [15],([17J1 or

Coletti et al. 118]', one obtains

E(succcss level for expt j) = l-P(a3 ) + O-P(ab ) + p(aj.bj)-p(U)

= p(a jb.) , j=1,2 .

In turn, how does one compute', e.g., the conjunction

E(success level for expt 1 and 2) ?

This problem is related to obtaining P((allbl).(a 2 1b2 )) , provided one can

compute the conjunction of such conditional events.

S)Problem 5. Let P be a prior probability measure on the measurable space

(11,A). If the new information is in the form of an element be A, the usual

bayesian updating procedure consists of replacing P by Pb which is, again, a

-8-



7 -robability'measure on A (or equivalently, on the trace of Aon b, A-b = fxb:xEA1)

defined by

Pb(a) = P(alb) = P(ab)/P(b), for all aeA with p(b) >0. Suppose, in-

stead of b, we learn a new rule of the form c+b If c-*b = c' v b , then the bayes.+

ian updating probability measure will be Pc' vb It is not clear what the updating

probabilities should be in the case where conditional probability evaluations are

used (in view again of the Lewis triviality result [6] !). If a mathematical object

c-b, denoted as (bfc), can be found as an event in some other boolean (or sigma-)

algebra besides A , then we can extend bayesian updating to the case of condition-

al information in a fully satisfactory way.

Problem 6. The issue in Problem 5 also appears in the analysis of evidence,

based upon the Dempster-Shafer theory of belief functions (Shafer [19]). Specif-

ically, from the knowledge of P(a),one can construct the mass assignment function

m on Q (assumed finite for simplicity) by

P(a) , if b = a ,

m(b) 1-P(a), if b = ,
0, if otherwise

for any b s Q

The above construction can be carried out when we learn a,b, and P(alb),
r

if the object (alb) can be identified as some subset of a-set bigger than 1.

Problem 7. Let R be a relational database with entries of three types: 1 to

affirm the occurrence or satisfaction of a given combination of attributes; 0
to indicate the negation of occurrence of that combination of attributes; and

a to indicate "nullsU i.e., missing or unknown data relative to that situation.

Can a consistent calculus of operations be developed - compatible with prob-

ability evaluations - for representing and logically manipulating such data-

bases ? Date [20], in effect, proposed the use of Lukasiewicz logic (without

explicitly recognizing it) as a-way for logically combining such entries. How-

ever, other three-valued logics are possibly justified, depending on the ra-

tionalechosen. (See, e.g., Rescher '[21] for background on this area.) Moreover,

it has recently been established (1[7]1, 'hapter 3) that each three-valued

logic corresponds to.the semantics of a "conditional event algebra" (this term

will be clarified later). This fact, together with the interpretation of each

database as actually being the three-valued indicator function of a uniquely

determined conditional event, points to the use of conditional event algebra

-9-



as a guideline for developing calculi of logical operators for databases.

Problem 8. The following problem may have only theoretical interest, but the

hope is that it will open up a wide range of applications due to its fundamental

thrust: The idea of a "conditional random variable" is not a standard one in the

literature, with only a handful of individuals even using the term informally.

(See Wilks [12) again as the key example of this.) But, as appealing intuitive-

ly the concept may be, a rigorous definition is yet to be made. (In [7]), a

preliminary attempt was made in developing this concept, but a number of ad hoe
iassumptions had to be made, in effect, to take into account the non-booleanness

of the interval approach, which at the time was the only available approach.

All of these difficulties disappear with the new boolean "Q-form" approach taken

in Section 4.)

Since events can be identified as special random variables, via their ordin-

ary indicator functions, it is anticipated that once the concept of conditional

events is well-established, a rigorous definition of a conditional random vari-

able can be-obtained. Also, if this idea can be made rigorous, we can procede to

determine induced conditional probability measures and their joint distributions,

using standard measure theory.

In examining the above problems, we realize the need to develop further

probability theory, especially in defining conditional events and their logical

qperations. For Problems 5,6, and 8, we also need a boolean (or sigma~algebra

form for conditional events.

The detailed solutions to a number of the problems will be given in Sec-

tion 5, while sketches of directions" of action will be indicated for the more

obvious ones, once the key tools are provided in Sections 3 and 4.

3. CONDITIONAL INFORMATION AS CONDITIONAL EVENTS

FROM THE EVENT INTERVAL VIEWPOINT

As in the Introduction, we use a boolean or sigma algebra A of subsets of

a set S1 to denote propositions of interest in some knowledge domain. A probabil-

( istic knowledge is described by a probability measure P on (11,A). Since

P(b' va) = l-P(b)+P(ab) = P(alb) + P(b')-P(a'jb) > P(alb)

-10-



With strict inequality holding in general, unless the trivial cases hold

P(b) = 1 or P(ab) = P(b) ,

the quantification *of rules by the material conditional is not compatible with

conditional probability. (The above elementary-appearing relation surprisingly

is not well-known. See, e.g., [7] for a history of it.)

In eliciting an expert's knowledge to construct rule-based systems, the

expert's degree of belief in each rule is often interpreted as a conditional

probability. This is in agreement with the thesis concerning common-sense

reasoning; this view of assigning numerical values to conditional statements

is also common in statistical applications. For example, one would be hard-

pressed not to agree that a reasonable interpretation of "Birds fly" is that

among the population of birds (subsuming a reasonable experience with seeing

or reading about different birds), only a sma1ll percentage cannot fly. This is,

of course, the standard empirical estimate of the conditional probability of

the statement above.

0 In all of the following, subsequent rules of the form "if b then a" will

be needed compatibly with conditional probability evaluations, i.e., formally,

as stated previously,

P(b+a) = P(a[b) = Pb(a) = P(ab)/P(b) ; P(b)>O0

Also, as mentioned before, if-such an object b~a existed, by the Lewis

triviality result, it cannot be an element-in A. (For various proofs, see here

Appendix, Theorem 1 and the proof following Theorem 3,or see [7],, chapter-1.)

The above negative result, however, does not rule out the possibilitY of

modeling b-a in a well-defined way, conpatibZe with all conditionaZ probabiZity

evaluations ! It merely states thht if'we are going to search for an object rep-,

resenting b+a , we must look "outside" of A itself. Being outside of A does not

necessarily mean b+a is not an event, i.e., it does not imply that b-*a is not an

element of some other larger boolean algebra. This observation is important for

mathematical investigations of this problem, since it seems that because of the

triviality result, logicians and philosophers, as well (Adams [4], Jackson [8],

( Harper et al. [22] , Sanford [23]1) leave conditional statements as primitives

in a natural language or formal language setting, rather than seraching for a

concrete counterpart of boolean algebra.
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Lewis' triviality result appearsto be indeed the key stumbling block to

progress in developing conditional events, compatible with conditional probabil-

ity. Its impact on the field of logic and philosophy has been enormous. (See

again the above cited references). However, it is the opinion of these authors

that the reaction to Lewis' significant result has been perhaps too strong, re-

sulting in a lack of attempts at changing his hypothesis through simple natural

modifications to the underlying algebraic structure. Lewis himself proposed a

basic way to avoid the problem through the use of "imaging", whereby a probabil-

ity measure P relative to a set a, instead of increasing by the normalization

factor (l/P(a)) over a in forming the conditional Pa' now increases over a by

reassignment of additional probability measure outside of a, i.e., in a', to

within a , preserving the structure of a probability measure, as does Pa' (See

the excellent exposition by Ggrdenfors [24].)

On the probability and statistics side, Boole appeared to be the first to

consider the concept of conditional events under the form of a "division" of

events [25], Boole's book is definitely the thought-provoking source for develop-

U- ment of a rigorous theory of probability. However, Kolmogorov did not find it

Useful to rigorize Boole's division of events. Perhaps, as far as statistics

and probability applications are concerned, such a concept shed no actual new

light. (See also the series of papers by Koopman [I1]1,[26J, e.g.) Or, perhaps,
Boole's work on this topic was not rigorous enQugh. Jevons [27] and Schrader

[28] who were among the main codifiers of modern boolean. algebra, omitted the

concept entirely, though Hailperin [29] over a hundred years later showed

Boole's ideas could be made rigorous. However, in effectHailperin- - as Boole-

did not go beyond certain inverse and constrained probability problems in

applying the idea. In fact,neither ever developed a calculus for combining

conditional events nontrivially, i.e., for the case of differing premises.

Nevertheless, Boole's basic idea that an object should exist whichwhen eval-

uated by probability r easures,yielded back conditional probabilities,is a

sound one, and even the existence of these objects in a boolean setting will

be demonstrated in Section 4.

In his theory of subjective probabilities, De Finetti[lO]1?[4]identified

(alb) as an object standing alone - but compatible with conditional probabili-
C..) ty P(alb) - which has three truth values, namely the same as stated in Problem

4, but without the third value (denoted, by convention here as u) being evalu-
ated. The usefulness of this identification seems to lie in the possibility
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of us-ing the quantity (alb) explicitly (as opposed to a primitive form

extensively in logic studies, as mentioned earlier). This is exemplified by,

e.g., Lindley [30],and later Goodman et al. [31],in approaching probabil-

ity through a scoring characterization, extending De Finetti's coherency

principle. (See also Gilio et al. [17] for additional results.) Mention

should also be made of those who, albeit briefly, considered Boole's division

of events. These include Macfarlane [32], Whitehead (33] , C.I. Lewis [34] .

Later, apparently not being aware of the above individuals' work, Schay

[35] proposed to define rigorously the concept of a conditional event, equival-

ent to De Finetti's definition. But, the novel contribution of Schay is that

he was the first to propose a full algebraic structure for conditional events.

That is, he considered logical operations among them all, not just for the

ones having a common antecedent - which is,in reality,no different than the

classical situation for conditional probability. (In fact, Schay even devel-

oped an extension of the Stone Representation Theorem relative to his con-

ditional event algebras.)

Dubois and Prade [36] in their work on the theory of possibilities for

intelligent systems searched for a-three-valued logic relifd to conditional

information. In the same year (1987)- some 19 years following Schay's con-

tribution, and 12 years after Adams.proposed his conditional event algebra as

"quasi-operations" [4]' ), Calabrese independently also proposed a similar

a4lgebra of conditional events, aiming toward computer-oriented applications'[37]

In view of the new field of Al, Calabrese'rwork brought some attention to

this revival of the subject, followed immediately by Goodman [38] and Goodman

& Nguyen [39],. The reaction of the Al community to the foundational work was

somewhat positive, but cautious, as exemplified by the work of Dubois & Prade

[40] ,[411, Weber .1423:, Spies [43] , Walker [44] and Nguyen & Rogers [45]. The

state of the art of the interval derivation of-conditional events and their

algebraic structures has been presented by Goodman et al. [7]. (See also

Goodman [46] for a detailed history of the development of conditional events

and conditional event algebra, up to 1991.)

In the following, wd briefly review the essentials of the interval-ori-

ented theory. This will be used, in conjunction with the completely new de-

velopments of Section 4, to treat the eight problems discussed in Section 2.

The material presented below can be put in a more general setting as an

abstract boolean algebra. However, for definitiveness, we choose the familiar

framework of probability theory, in which the boolean algebra is taken to be
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:a sigma-algebra A of ordinary subsets of a set f1.

The following definition is the basis of the interval approach to condition-

al events, summarized in E[73,:

Mi) Definition of conditional events.

For ab c A , by conditional event "if b,then a" or "a given b", denoted

as (alb), we mean

(alIb) = {xE A : ab < x < b' v a I

in symbols the (event) interval [ab,b' va] . Thus, immediately,

(alb) = (cld) iff ab = cd & b = d
Remarks.

(a) For the justification of this definition, see [71 or Theorems 4 and 5

of the Appendix here. As mentioned before, an alternative definition - which- is

not equivalentin general, but does possess .a number of common properties -- will

6e presented in Section 4. A third type of approach to conditioning, through

use of an extended numerical division operator acting .upon ordinary set -indi-

• cator functions is given in 1E47J and summarized in F[48land will not be

discussed any further here.

(b) There are several equivalent representations of conditional events of the

type defined here for any ab c A

(alb) = (ab) (ordered pair),

(alb) = Ab' v ab (coset form)

= {xb' v ab xcA }

(alb) = {xEA : xb = ab I (inverse conjunction or "division"),

the last being perhaps the most natural or intuitive, as including all those

elements in A whose intersection with b is the same as a intersecting b.

(c) The set of all intervals in A is precisely the same as the set of all

conditional events of this type for A . Indeed, for any ab c A

[ab] = (ablb'va)

M (d) Note that [a,b] e A, but rather, [a,b] c P(A). Therefore, there is no

contradiction with the Lewis triviality result here. It is intuitive that

unconditional propositions are special cases of conditional prolositions or

d-vents. In other words, A should be viewed as a subset of the set of all in-
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tervals [a,b] c P(A,) , denoted as (AlA), the conditional event space generated

by A . This can be done by identifying [a,a] with a . Indeed, compatible with

the above comments, note already the reduction of the definition in (i) for
b = 11.

(al) = (a) = [a,a]

(e) Note also the special cases for any a,b c A

(ala) = (ila) = [afl] = A v a = {xcA: x~a) (principal filter gen. by a),

(01b) = (b'lb)= [0,b'] = Ab' = {xcA: x'b') (principal ideal gen. by b'.).

Alsonote

(alb) = (ablb).

(ii) Three-valued logics

Consider the trivial sigma-algebra V = {Q,01. Its conditional event space

Is

(VIV) = {1M(f),Ojil), (010))

From the logical viewpoint, the truth space of two-valued logics is {0,11,

representing true and false values. If we view Q as 1 and 0 as 0 , then (VIV)

consists of three truth values, true, false, and "undefined", corresponding to

( S11), (0jQ), (010), respectively. Thus, in this simplest case, it is revealed

that conditional events have three truth values.

Now, in the literature of three-valued logics (Rescher [21]i), it is amaz-

ing that only truth tables are given, as opposed to both truth tables and ex-

tended boolean operators, as holds in the two-valued classical case for truth

tables and ordinary boolean operators. It is shown (see [7]1 , chapter 3) that

the well-known bijective correspondence between semantics (truth tables for

logical connectives) and syntactics (boolean operators or boolean poynomials)

in two-valued logic can now be extended to the three-valued logic case. This

is true not only for V , but also for general A . (See Appendix, Theorem 6 for

some details; for more background, see the previous reference to [7] )

) (iii) Logical operations among conditional events

In view of the results in (ii), if we choose Lukasiewicz 3-valued logic

(see again Rescher [21]), then the algebraic operations among conditional
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*events are exactly theioperationsamong intervals of A in the following order-

preserving fashion for - and vand order switching for ()'

[a~b]-jc,d] = (aclbd]

[a,b]v[c,d) = [avc,bvd],

[a,b]' = [b'.a'] .

where by abuse of notation, *,v,()' now stand for the functional ima•e extensions

of their counterparts among elements in A. By this, we mean that given any

f:,& A , for any A,B e P(A), define

f(A,B) = {f(a,b): acA, beBI

whilch clearly extends f to f:P(A) 2 -, P(A) . Specializing this to f being v

or - or ()' leads to the above results.

Of course, 0' has several properties that are similar to a negation, in-
cluding
c 

[a,b]" = [ab] (involution)

([a,b]-.[c,dj)'= [a,b]' v [c,d]' (deMorgan) ;

but note

[a,b]-[ ab]' = [ab' , a'b] t 0 (=0lg]),

[a,b]v[a,b]' = [avb' , b.va'] #s (=[iS]),

However, (A('BJ does not have a true complement, since for'any a<b cA,

there is no [c,d],cd e Asuch that

[a,b]-[c,d] = 0 and [a,b]vlc,d] = .

If we define
[ab]* = [b',b'] = b'

then it can be verified that ()* is a pseudocomplementation. Moreover, (* sat-

isfies the following Stone identity

[ab]* v [a,b]** = [Q,$l] =l

so that the bounded distributive lattice (AlA) is also a Stone algebra. (For

-background, see Gr~tzer [49](.) This algebraic structure turns out to be the
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logic of "rough sets" (See Pawlak'[50] and Pomykala and Pomykala '(51]!.)

For ease of calculations, we list the following conditional event counter-

parts of the interval formulas:

(alb)-(cld) = (abcd I a'b v c'd v bd),

(alb)v(cld) = (ab v cd lab v cd v bd), (1)

(alb)' = (a'jb).

Note also, the special cases

(alb)-b = ab (modus ponens form) , (2)

(acib) = (alcb)-(clb) (chaining form) (3)

In addition, one implication operktion among conditional events can be

taken as the functional image extenston of the material conditional:

(cid) 4'(alb) = fy' vx : ye(cld), xe(alb)}

= (c[d)' v (alb) = (c'd v ab c'd v ab v bd)

Finally, the partial order, denoted also as <,on the lattice (AIA) is

given by

(alb) ( (cad) iff (alb) = (alb)-(cld)

Note that ( also takes the following forms:

(alb) < (cld) iff (cid) = (alb) v (cid)

iff ab < cd & b' v a < d' v c

iff ab < cd .& c'd < a'b . (4)

Remarks.

1. Note that because of the failure of (AIA) to have a true complement,

though it is a Stone algebra, it is not a boolean algebra.

2. This structure is derived from our selection of Lukasiewicz three-valued

* logic. If another three-valued logic is chosen - such as Sobocinski's, the

Algebraic sttuct6re will differ. It turns out thatindependently, Adams [4]
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and Calabrese [37] proposed the same type of conditiora) event algebra, with both

correspohding to Sobocinski logic; previously Schay [35] proposed a similar al-
gebra, but disguised as fragments of two different algebras. In brief, this al-

gebra takes the form

(alb) vo(cld) = (ab v cdl b v d)

(alb) -o(cjd) % (abd' v cdb' v abcdl bvd) I
(alb)' = (a'Ib),

and possesses the basic property that v here can be directly related to the

class intersection of conditional events as intervals - a popular choice of

operation in interval algebra (see e.g., Igoshin (52]-)

(alb) n (cid) = 6 -((alb) vo(cld))

where
hee , if (aIb) n (c d) # 0 iff ab v cd < (b' v a).(d' v c)S=0 (, if otherwise

The above algebra also forms separate (but related) semi-lattices relative

to * and v ((7) , section 3.5). (See also [37] ýor other properties.)

3-. For ease of reference, let us denote the order-preserving, functional

image derived algebra as GNW and the above algebra as SAC, apropos to the

authors initials.

4. In any case, no choice of conditional event algebra for this interval

setting can possibly lead to a boolean algebra, since it can be shown the only

Stone algebra here is the GNW one, which is not booleai. (This follows from

the use of the identifications of all conditional event algebras with three-

valued logics, as in (7]1, Sections 3.4, 3.5 ; also this has been verified

by personal communication with E.A. Walker, New Mexico State Unfversity.)

This fact will be used asa basis for the development of another direction for

conditt~nal events in the next section.

(iv) Probabilities of conditionals

Unlike the assignment of probability values to conditional statements in

natural language (Adams (4]), we are able now to define rigorously the probabil-
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ities of conditional events. Specifically, for any probability P on (flA)
We assign the probability of a conditional event to be the natural conditional

probability

P((alb)) = P(alb)

when P(b) > 40 This assignment is well-defined in the sense that

If (alb) = (cid) , then P(alb) = P(cld) (for P(b), Pid) > 0 )

This assignment is order-preserving. That is:

If (alb) < (cld) , then P(alb) < Ptcid).

Also, conversely, if for all probability measures P,

P(alb) < P(cjd) ,

then ont of the following pOssible cases must hold:

(I) ab - 0 , in which case P(alb) O 0,
or
(II) cd = d , in which case P(cfd) = 1

or (111) jalb) < .(cld).

(See also Appendix, Theorem 2.)

This order-preserving property is in agreement with the assignment of

truth values to conditional events as in the-use ofDe Finetti's or Schay's
three-valued indicator function, 1.e., if *(aIb):Sl + {O,u,l} is that

function with 0 < a < 1 (see Appendix, Theorem 6 and definition prior to it),

then-

(For all w eX(a b)(co) <O(cId)(ws)) iff (a-b) <-(cId).

Another rationale for probability assignment is the iterated weighting
scheme, where one first interprets P((alb)) in functional image form:

P((alb)) = P[ab,b'va] = {P(x) : xE lab, b' v all

E [P(ab) , P(b' v a)]

with end-point values achieved. From thisa nominal value w0 can be chosen
to yield the weighted end-point combination

w= (l-wo).P(ab) + (l-wo)-P(b' va)

-19-
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C and successively, the resulting values resubstituted as new weighfts

w = (1 -Wnl ).p(ab) + wn-p(b' va)

whence
imn w = P(alb)

n÷

no matter what w0 is taken to be. (See again [7]'.)

With the probability assignment established, one notes that, e.g.

eqs.(l)-(3) yield

P((alb)-(cld)) = P(abcd I a'b v c'd v bd),

P((alb)v(cld)) = P(ab v cd I ab v cd v bd),

P((alb)') = P(a'lb) = 1- P(alb)

P((alb)-b) = P(ab) - P(alb)-P(b)

etc.

Also note the property of the zero-type elements of (AIA) •

P(alb) =0 for all P iff (ajb) = (olb) iff ab - 0

and the analogous property of the unity-type elements

P(alb) = 1 for all P iff (alb) = (b4b) iff ab = b (b t 0).
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