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I This thesis considers two problems in computer-aided design of VLSI circuits: (1) discrete gate sizing
and (2) timing-driven placement improvement.

I The discrete gate-sizing problem is described as follows. A standard cell library typically contains
several versions of any given gate type, each of which has a different gate size. We consider the prob-
lem of choosing optimal gate sizes from the library to minimize a cost function (such as total circuit
area) while meeting the timing constraints imposed on the circuit. After presenting an efficient solu-
tion algorithm for combinational circuits, we examine the problem of minimizing the area of a synchro-
nous sequential circuit for a given clock period specification. This is done by appropriately selecting a
size for each gate in the circuit and by adjusting the delays between the central clock distribution node
and individual flip-flops. Existing methods treat these two problems separately, which may lead to
very suboptimal solutions in some cases. We develop a novel unified approach to tackle them simul-
taneously. We also address the problem of making this work applicable to very large synchronous
sequential circuits by partitioning these circuits to reduce the computational complexity.

Traditionally, gate sizing is performed before the actual physical design steps are performed. A draw-
back of such an approach is that the interconnect wire lengths are not available at the gate-sizing stage.
The gate sizes selected to be optimal at that stage may no longer be optimal later in the physical design
process in which large interconnect capacitances are introduced at the output of each gaze. To remedy
this problem, we propose a novel algorithm which performs delay and area optimization for a given
compact placement by resizing and relocating cells in the circuit layout. The algorithm combines gate
sizing with the placement adjustment procedure into one formulation. Since the gate-sizing procedure
is embedded within the placement adjustment process, interconnect capacitance information is included
in the gate-size selection process.I
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3 This thesis considers two problems in computer-aided design of VLSI circuits:

I (1) discrete gate sizing and (2) timing-driven placement improvement.

The discrete gate-sizing problem is described as follows. A standard cell library

I typically contains several versions of any given gate type, each of which has a different

3 gate size. We consider the problem of choosing optimal gate sizes from the library to

minimize a cost function (such as total circuit area) while meeting the timing constraints

U imposed on the circuit. After presenting an efficient solution algorithm for combinational

3 circuits, we examine the problem of minimizing the area of a synchronous sequential

i circuit for a given clock period specification. This is done by appropriately selecting a

size for each gate in the circuit and by adjusting the delays between the central clock

I distribution node and individual flip-flops. Existing methods treat these two problems

3 separately, which may lead to very suboptimal solutions in some cases. We develop a

novel unified approach to tackle them simultaneously. We also address the problem of

making this work applicable to very large synchronous sequential circuits by partitioning

3 these circuits to reduce the computational complexity.

Traditionally, gate sizing is performed before the actual physical design steps are per-

formed. A drawback of such an approach is that the interconnect wire lengths are not

I available at the gate-sizing stage. The gate sizes selected to be optimal at that stage
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may no longer be optimal later in the physical design process in which large intercon-

i nect capacitances are introduced at the output of each gate. To remedy this problem,

3 we propose a novel algorithm which performs delay and area optimization for a given

compact placement by resizing and relocating cells in the circuit layout. The algorithm

-- combines gate sizing with the placement adjustment procedure into one formulation.

Since the gate-sizing procedure is embedded within the placement adjustment process,

interconnect capacitance information is included in the gate-size selection process.
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CHAPTER 1

* INTRODUCTION
I

I II Introduction

U The influence of very large scale integrated (VLSI) circuit technology on our society

3 during the past decade has been overwhelming, in application areas ranging from con-

sumer products to personal computers, to business management, to defense electronics.

I The functional capability of the modem integrated circuit (IC) has increased in scope

5 and complexity ez-ponentially with time over the past two decades. The exponential

growth pattern in IC functions over time was first described by Gordon Moore [1], and

the projection he made based on this pattern is known as Moore's law.

I The creation of large, complex electronic systems has grown beyond the capabilities

of many engineers without the aid. of computers. Successful completion of large design

projects requires that computers be used in virtually all aspects of the design process.

N This trend toward automation will accelerate as improved circuit fabrication technologies

permit higher levels of integration and as more powerful computers allow more sophisi-

cated tools. These tools must span the spectrum of the design process, including par-

titioned design entry, logic synthesis, circuit design, circuit simulation and verification,1
11
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1

physical design, process simulation, and the design for testability and manufacturability.

These tools are commonly implemented and termed as computer-aided design (CAD) or 3
electronic design automation (EDA) programs. The evolution of integrated circuit devel- 3
opment has become heavily dependent on the development of CAD and EDA resources

for design support. 1
In this thesis, we examine two problems in the field of electronic design automation: U

(1) gate sizing for combinational circuits and sequential circuits, and (2) timing and area

optimization for a compact placement. Before we go into details of our work, we give a

brief description of the electronic systems design process. 1
1

1.2 The Process of Electronic System Design

A typical IC design process, shown in Figure 1.1, is composed of the four following

phases [2,3]: system design, logic design, circuit design, and physical design. They are

briefly described in the following. U

1.2.1 System design I
System design is the process of defining the circuit functionality and the input-output

behavior. A behavior representation describes how a particular design should respond to 1
a given set of inputs. Behavior may be specified by Boolean equations, tables of input I
and output values, or algorithms written in high-level computer languages, or hardware

description languages (HDL). U
3

2 I
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As far as the physical aspect of the design is concerned, at this level one is concerned

I with connecting the major subsystems and communication interfaces with the external

5 world; global wiring strategies; selecting layers for carrying global control, data, and

power; placement of major subsystem; and routing strategies.

I 1.2.2 Logic design

Logic design is the process of transforming the register transfer level (RTL) specifica-

tion of a design into a netlist of logic gates such as NAND gates, NOR gates, inverters,

I AOI gates and latches. This process begins with logic descriptions given by the RTL spec-

ification or generated by designers directly at the logic level, and optimizes the network

of gates that are required to implement the function specified by the logic descriptions.

1
3I
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The design of random logic has objectives such as:

e minimize overall layout area of the fabricated chip;

e minimize critical path delay time; 1

* maximize testability of the synthesized logic. 1

Generally, a logic design system divides the design problem into two steps [4]: 1

"* A technology-independent step, which manipulates general Boolean functions to 1

optimize the logic, using algebraic and/or Boolean techniques.

"* A technology-mapping step, which translates the technology-independent descrip- 3
tion derived in the first step to a set of logic gates that can be implemented in the

design method of choice (e.g., standard-cells, gate-arrays, field-programmable gate

arrays). 3

1.2.3 Circuit design

The circuit design phase concerns the electrical laws that govern the detailed behavior 1

of the basic circuit elements such as transistors, resistors, capacitors, and inductors. It 3
transforms the basic logic components into networks of transistors and interconnects.

Delay, power consumption, charge sharing problem, and reliability are among the

major concerns in this phase. 1

I
I
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1.2.4 Physical design

1 Physical design consists of transforming a circuit design description into'a physical

3 representation that can be used to manufacture the specified electronic circuit. Once the

circuit description of a network is available, it can be converted into a layout. Behavioral

or structural representations from the previous phases are transformed into geometric

I shapes that are used in the fabrication of the system. Placement and routing are the two

major tasks in this phase.

Placement is the task of placing modules adjacent to each other on a chip to minimize

area or delay. The placement procedure determines the locations of components within

the circuit being designed, subject to the constraints imposed by the designers and the

design rules imposed by the fabrication process and by physical principles.

Following placement, components are arranged on the chip, and the task remains to

I insert the electrical connections among the components to make them function correctly.

3 A router takes a module placement and a list of connections and connects the components

with wires.

Often, an iterative process of placement and routing is used to optimize certain ob-

jectives, such as performance or layout area, of the design.

1
1.3 Design StylesI

There are various chip design options that may be used to implement a system design,

I such as sea-of-gate, gate array, standard-cell design, and full-custom design. These VLSII
51
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Figure 1.2 Engineering trade-offs among different design styles. 3

design approaches require different trade-offs and impose different constraints on the chip

physical design in an attempt to make the design more manageable, while maintaining

sufficient design flexibility.

The trade-offs among these different approaches are illustrated in Figure 1.2 (5]. In I

the following, we briefly discuss the advantages and disadvantages of different design

styles, namely, gate-array, standard-cell, and full-custom designs.

To develop a full-custom design, engineering groups are assembled to cover the wide

range of skills required to design the part virtually from scratch. These groups may I

include experts in process engineering, device modeling, circuit design, physical design

layout, logic design, and system architecture design. The final design is optimized for the

best density and performance. However, the design turnaround time is usually large. In 1
addition, due to the large design effort required, a full-custom design is desired only for

6
1
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high volume, for which the initial engineering expense can be compensated over a long,

I active product life.

In the gate-array design, several of the lithographic patterning levels are standardized,

except for the interconnections and via geometries. The devices used to implement circuit

I designs are prefabricated on a chip, but are left unconnected after the initial processing

I step. A circuit design/logic block is placed at a specified cell location by assigning the

appropriate pattern of wires to coordinate inside that cell area; these wires connect

the devices to form the selected logic gate. Different logic blocks are then connected to

I implement the desired logic function. The disadvantage of gate arrays is that they are not

optimal for any task. There are usually blocks that are not used. Since block placement

is done in advance, interconnect routing can become complex and the resulting long wires

can slow down the circuit. Also, the design will not be compact since interblock spacing

is fixed to allow worst-case routing needs. Another problem with the gate-array approach

is that the transistor patterns are predefined. Therefore, the transistors cannot be tuned

to the specified application. This leads to inferior performance compared to full-cuAtom

I design.

Between these two extremes lies the standard-cell approach which strives for high

design system support for chip physical design and the capability to locally optimize

I circuit designs using hand-crafted cells and layouts. This approach involves the use of

I a library of basic functional elements, each of which has been fully characterized. In

the standard-cell design approach, a division is made between the tasks of handcrafting

circuit designs and placing and wiring those circuit blocks together. This separation is

I
I



U
I

based on the assumption that the time-consuming task of handcrafting a custom layout

is best restricted to small circuit designs only. The initial circuit design and layout are I
done once, and the resulting shapes stored in a technology library for repeated use across

many designs.

1.4 Standard-cell Design I
The standard-cell approach has the advantage of greatly simplifying the automated I

synthesis process because it separates the synthesis system from the details of cell lay-

out issues. The cell library presents models for individual cells, which are useful for

performing circuit and timing analyses. With the aid of many advanced CAD tools, the I
performance -f a standard-cell designed circuit is fairly high, while the design turnaround

time is fast. Therefore, this approach has become the mainstay in Application-Specific

Integrated Circuits (ASICs).

A crucial issue in the cell library approach is the size of the library. If the library is too I
small, much time is spent in converting the logic into a format that can be supported by

the small library. On the other hand, if the library size is too large, the issues of database

maintenance, pattern matching and searching become significant [6]. Moreover, the useful 1
life of a library is relatively short as dictated by the lifetime of the technology in use [7].

For these reasons, the cell libraries tend to remain relatively small in size.

The prevalent use of complex gates such as AOI or OAI further complicates the

library issue. As shown in Table 1.1 (8], as many as 3,503 different complex gates can be U

8
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Table 1.1 Number of (s, ý)-Sates.
(s,,p) 1 2 3 4 5 6

1 1 2 3 4 5 6
•2 2 T 18 42 90 186

-- 3 3 18 87 396 16TT 68TT .

4 4 42 396 3503 28435 222943
5 5 90 1677 28435 425803 6084393
6 6 186 6877 222943 6084393 154793519

I

configured for (3, p) = (4, 4), where the gates are constrained to have at most s transistors

from output to ground and p transistors from output to power supply. This number

3 dramatically increases to 425,803 for (j,p) = (5,5) and 154,793,519 for (s,p) = (6,6).

It is apparent that a moderately sized library cannot support all of the possible circuit

configurations for complex gates.

SThe other problem with the standard-cell approach is that even if the individual

3 cells in the library are nearly optimal in performance and in terms of compactness of the

layout, the whole circuit is often suboptimal after all cells are put together. For flexibility,

many standard-cell libraries contain multiple versions of some cells with different driving

3- powers.

1.5 Discrete Gate-Sizing Problem

S1.5.1 Optimization for combinational circuits

In general, circuit delay and circuit area are the primary concerns of any logic design

optimization. In many cases, a reduction in the number of stages (gates) between an input

9
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and an output node can reduce the circuit area and delay. Such an optimization is usually

made during the logic synthesis stage. This reduction is not, however, gularanteed to 1

reduce the circuit delay. A standard-cell library typically contains several versions of any g
given gate type. Celis of identical gate type differ from each other in Attribution, such as

driving-capability, gate area, and input capacitive load. Because of these differences, the I
selection of cell versions for each individual gate in the circuit has a profound impact on3

the characteristics (i.e., delay, circuit area, and power consumption) of the whole circuit.

By means of gate sizing, a fixed-topology logic' circuit can be significantly optimized. In

this thesis, we assume that a logic-level circuit description is.provided, and the objective I
is to perform gate-size selection in an optimal way. The logic synthesis stage is usually 1
performed before the technology mapping stage. Hence, we do not address this issue in

this thesis.

Given a netlist of a logic circuit and a cell library, an automatic gate-size optimization 3
algorithm chooses, from the library, one version of a logic gate for each cell such that

(1) the total circuit delay is under a constraint and an objective function (such as

circuit area or power consumption) is minimized;

(2) the total circuit area (or power consumption) is under a constraint and the circuit

delay is minimized. I
The former is called the area (power) optimization problem while the latter is called 3

the timing optimization problem. In this thesis, we concentrate on the first problem; 3
specifically, we minimize total circuit area. It should be mentioned that the algorithm

i
10 I
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presented in this thesis can be extend to the power optimization problem and timing

I optimization under area or power constraint as well.

I
1.6 Optimization for Sequential Circuits

Optimization for synchronous sequential circuits, on the other hand, is different from

combinational circuit optimization. An additional degree of freedom is available to the

I designer in that one can set the time at which clock signals arrive at various flip-flops

I (FFs) in the circuit by controlling interconnect delays in the clock signal distribution

network. With such adjustments, it is possible to change the delay specifications for the

I combinational stages of a synchronous sequential circuit to allow for better sizing.

I After developing an optimization algorithm for combinational circuits in Chapter 2,

we present an optimization technique for synchronous sequential circuits in Chapter 3.

We examine the following problem: Given a clock period specification, how can the area

of a synchronous sequential circuit be minimized by appropriately selecting a size for

each gate in the circuit from a standard-cell library, and by adjusting the delays between

the central clock and individual flip-flops?

In general, given a combinational subcircuit that lies between two FFs i and j, with

clock arrival times si and si, respectively, we have the following relations:

I si + Mazdelay(i,j) + Tu, t s+5 (1.1)

si + Mindelay(i,j) Ž 8j + TIjj (1.2)

I
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where Mazdelay(i,j) and Mindelay(i,j) are, respectively, the maximum and the mini-

mum combinational delays between the two FFs, and P is the clock period. Fishburn [91 1

studied the clock skew problem under the assumption of constant combinational gate 3
delays, and formulated the problem of finding the optimal clock period and the optimal

skews as a linear program (LP). The objective was to minimize P, with the constraints N
given by the inequalities in (1.1) and (1.2) above. In real design situations, however, P 3
is dictated by system requirements, and the real problem is to reduce the circuit area.

We first consider optimizing circuits of moderate size. Then, in Chapter 4, we consider

arbitrarily large synchronous sequential circuits for which the size of the formulated I
optimization problems becomes prohibitively large, and present a partitioning algorithm 3
to handle such circuits. The partitioning algorithm is used to control the computational

cost of the optimization problems. After the partitioning procedure, we can apply the

optimization algorithm to each partitioned subcircuit individually.

I
1.7 Performance-driven Placement I

To ensure that high-quality designs are produced, a CAD system must take two

important issues into consideration while designing a circuit:

"* Layout efficiency: producing a compact circuit layout. I

"• Performance: satisfying the timing specifications dictated by the clocking scheme. 3
With the increasing drive for high-performance chips, the timing-driven layout has be- 3
come more and more important. 1

12
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Conventional (area-driven) placement tools try to place modules in a chip to mini-

I mize the total wire length. However, as device geometries continue to shrink, interconnect

delays oecome increasingly significant. As a result, the reduction of interconnect wire

length, which heavily influences the interconnect delay, has become iiicreasingly impor-

Itant.

IRecently, there has been extensive research on performance-driven placement [10-13].

Performance-driven placement techniques can be broadly divided into two categories:

net-oriented and path-oriented. In the net-oriented approach, the acceptable delay of

I each gate (cell) is calculated and translated into bounds on the delay associated with

each net. These bounds then serve as constraints during the subsequent placement step.

In the path-oriented approach, timing analyses of critical paths are performed dynami-

cally during the placement step. All paths, or a subset of them, are taken into account

implicitly in the formulation.

Conventionally, gate sizing is performaed after technology mapping, and before the

physical placement step. A drawback of such an approach is that accurate interconnect

wire lengths are not available during the gate-sizing procedure. The gate size selected

optimally at that stage may no longer be optimal after the physical design stage in

which large interconnect capacitances are introduced at the output of each gate. To deal

with this problem, an iteration procedure is usually followed. After global placement,

the capacitance associated with each net is extracted, and the gate-sizing procedure

is repeated. However, in such an iterative approach, the variation of net capacitance

between iterations may be large and cause large perturbation in the solutions. Thus, a

13
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Figure 1.3 Advantage of gate sizing together with placement. I
number of iterations may be required, making this approach quite expensive. To deal

with this problem, it is desirable that gate sizing and placement be incorporated into a I
single procedure.

As an illustration, consider a layout placement shown in Figure 1.3(a). Gate D fans

out to gates LI, L2 and L3 . Assume that the delay of this circuit under such layout

violates timing constraints imposed on it. Moreover, D and L2 lie on a long path whose

delay exceeds the timing constraint. Conventional performance-driven placement would U
move D, L1, L2 and L3 closer to each other to decrease the delay of gate D, as shown in

Figure 1.3(b). This may increase the wire lengths of other nets attached to cells D, L1, L2 H

and L3. But if automatic gate sizing is incorporated with performance-driven placement,

a possible solution would be to replace D with a template with a higher driving capacity,

and L1 with one with a smaller loading capacitance with respect to D. As a result,

14
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some of the cells could be moved to better locations, as shown in Figure 1.3(c). The

Soverall effect is a reduction of the long path delay, while the increase in area is kept to a

minimum.

In Chapter 5, we propose an algorithm which combines the gate-sizing problem and

I performance-driven placement, into one procedure. By considering these two problems

3 together, the value of interconnect capacitance is known during the selection stage of

the automatic sizing procedure. Therefore, optimal gate sizes can be chosen for each

gate based on layout information, thus reducing the number of iterations required in the

3 conventional approach.

I
1.8 Organization of the Thesis

Chapter 2 of the thesis deals with discrete gate sizing for combinational circuits. In

Chapter 3, we formulate the synchronous sequential circuit area optimization problem

3 and present the algorithms to tackle the problem. The partitioning algorithm presented

I in Chapter 4 allows us to handle large circuits. Chapter 5 of the thesis discusses a novel

approach to timing-driven placement. Finally, concluding remarks are made in Chapter 6.

1
I
I
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CHAPTER 2

DISCRETE GATE-SIZING I
PROBLEM

!
2.1 Introduction

The delay of a MOS integrated circuit can be tuned by appropriately choosing the

sizes of transistors in the circuit. While a combinational MOS circuit in which all tran-

sistors have the minimum size has the smallest possible area, its circuit delay may not

be acceptable. It is often possible to reduce the delay of such a circuit, at the expense of I

increased area, by increasing the sizes of certain transistors in the circuit. The optimiza- u
tion problem that deals with this area-delay trade-off is known as the sizing problem.

In general, the interaction between the size of a certain gate and the delay of the whole I
circuit is very complicated. A larger cell usually has a larger driving capability and a I

larger input capacitive load. Therefore, using a large template tends to speed up the gate

itself while slowing down the predecessor gates that d,•ve it.

Example 2.1 Consider the chain of three CMOS inverters shown in Figure 2.1(a) [14]. I
Let the width of both the n-type and p-type transistors in gate 2 be w2, and let D be the 3
total delay through the three gates. Consider the effect of increasing w2 , while keeping
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Figure 2.1 (a) A chain of three inverters. (b) Effect of transistor sizes on delay for the
three-inverter chain.

3 the size of the transistors in gates 1 and 3 fixed. This causes the magnitude of the output

current of gate 2 to increase, thus the time required, d2, for gate 2 to drive its output

signal will decrease monotonically (Figure 2.1(b)). However, increasing w2 also increases

3 the capacitive load on the output of gate 1, thus slowing down the output transition of

U the first gate. Beyond a certain point, w2 = A, the total delay, D, starts to increase with

respect to w2 , which shows the nonmonotonicity of the delay-area relationship. 3I
The rationale for dealing with only combinational circuits in a world rampant with

I sequential circuits is as follows. A typical MOS digital integrated circuit consists of mul-

3 tiple stages of combinational logic blocks that lie between latches, clocked by system

clock signals. Delay reduction must ensure that the worst-case delays of the combina-

tional blocks are such that valid signals reach a latch in time for a transition in the signal

3 clocking the latch. In other words, the worst-case delay of each combinational stage must

be restricted to be below a certain specification.

1
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The problem of continuous sizing, in which transistor sizes are allowed to vary con-

tinuously between a minimum size and a maximum size, has been tackled by several I
researchers [14-21]. The problem is most often posed as a nonlinear optimization prob-

lem, with nonlinear programming techniques used to arrive at the solution. The solutions

found by these techniques are then rounded to the nearest integer. The continuous model I
works well for sizing transistors in a full-custom layout, but does not work well for de- 3
signing with macrocelis and standard cells, for which only a small number of choices are

available. Transistor sizing on a gate array, where transistor sizes have to be multiples

of the standard transistor, is also poorly realized by the continuous model. U
A related problem that has received less attention is that of discrete or library-specific I

sizing. In this problem, only a limited number of size choices are available for each gate.

This corresponds to the scenario in which a circuit designer is permitted to choose gate i
configurations for each gate type from within a standard-cell library. This problem is

essentially a combinatorial optimization problem and has been shown to be NP-complete

[22].

In this chapter, we present a new algorithm for solving the gate-sizing problem for

combinational circuits that takes into consideration the variations of gate output capac-

itance with gate resizing. There are three phases in our algorithm. In the first stage,

the gate-sizing problem is formulated as a linear program. The solution of this linear

program provides us with a set of gate sizes that does not necessarily belong to the set

of allowable sizes. Therefore, in the second phase, we move from the linear program

solution to a set of allowable gate sizes, using heuristic techniques. In the third phase,

I
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we further fine-tune the solution to guarantee that the delay constraints are satisfied.

3 Finally, to illustrate the efficacy of our algorithm, we present a comparison of the results

of this technique with the solutions obtained by simulated annealing as well as by our

implementation of the algorithm in [23).

UIt is worth mentioning that rounding solutions of the linear program to the nearest

3 available sizes may not produce good solutions. In a tightly constrained problem, round-

ing continuous sizes to the nearest discrete size may not even give a feasible solution.

The only reason that the continuous model works so well for transistor sizing is that the

3 performance measures are rather insensitive to small changes in transistor sizes, and the

I steps between possible sizes are small compared to the sizes themselves. In our problem,

however, the change between each step is large. Consequently, the solution obtained by

I rounding a linear program solution may violate timing constraints, or the objective value

U may be much larger than the optimal solution. Therefore, a more sophisicated algorithm

is needed to handle the problem.

This chapter is organized as follows. We briefly describe previous approaches to the

3 discrete gate-sizing problem in Section 2.2. Then we describe the linear programming

approach that we propose in Section 2.3, followed by two postprocessing phases described

in Sections 2.4 and 2.5. Experimental results are given in Section 2.6. Finally, we conclude

t this chapter in Section 2.7

I
I
I
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2.2 Previous Work I
Chan [221 proposed a solution to the problem that was based on a branch-and-bound

strategy. The algorithm is exact for Boolean tree networks. For general networks that I
are not tree-structured, a backtracking-based algorithm is proposed for finding a feasible 3
solution. The algorithm for solving the optimal discrete sizing problem on a Boolean

tree network consists of two phases. In the first phase, timing requirements for each

vertex in the network are generated and propagated through the network. All of the

timing requirements at the fan-in of each vertex are intersected to prune infeasible timing u
requirements of the vertex's predecessors. In the second phase, backward substitution

is used to assign optimal sizes to each vertex to minimize the total cost. For general I
DAGs (directed acyclic graph), a cloning procedure is used to convert the DAG into an 3
equivalent tree, whereby a vertex of fan-out m is implicitly duplicated m times, followed

by a reconciliation step in which a single size that satisfies the requirements on all of the

cloned vertices is selected. As pointed out in [24], this procedure does not necessarily 3
provide the optimal solution for a general DAG; moreover, this algorithm is of exponential

complexity in the worst case.

The approach of Lin et al. [23] uses a heuristic algorithm that is an adaptation of

the TILOS algorithm [15] for continuous transistor sizing, with further refinements. The 3
approach is based on a greedy algorithm that uses two measures known as sensitivity

and criticality to determine which cell sizes are to be changed. The sensitivity of a

cell indicates how much local delay per unit area can be decreased if we pick another 3
I
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N template for this specific cell, while criticality tells us whether a cell has to be replaced by

a larger template to fulfill the delay constraints of the circuit. A weighted sum of a cell's

sensitivity and criticality is used to guide the algorithm to select a certain number of gates

to be replaced with a different template. At the beginning of the algorithm, all cells in

U the circuit are set to their minimum sizes. The algorithm consists of a series of iterations,

3 each iteration in turn having two phases. In the first phase (increasing phase), a quantum

number of cells are replaced with larger templates, such that the delay constraints can

be satisfied. After the timing constraints are satisfied, in the second phase (decreasing

3 phase), a quantum number of cells are replaced with templates with smaller cell areas

to reduce total circuit area. The value of quantum is determined emperically and is

reduced by one-half over each iteration. The iteration continues until quantum becomes

3 1 or no improvement is possible. However, while the TILOS algorithm is known to work

3 reasonably well for the continuous sizing case, the primary reason for its success is that

the change in the circuit in each iteration is very small. On the other hand, in the discrete

I sizing case, any change must necessarily be a large jump, and a TILOS-like algorithm is

3 likely to give very suboptimal results.

Another algorithm proposed by. Li et al. [24] is exact for series-parallel circuits. A

simple parallel circuit is a basic circuit that is comprised of several chains that have the

I same first and last module. A series-parallel circuit is a basic circuit recursively defined

3 as (241:

3 . A chain of basic modules is a series-parallel circuit.

I
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"* A simple parallel circuit is a series-parallel circuit.

"* A circuit obtained from a series-parallel circuit C by replacing any interconnect of

C by another series-parallel circuit is also a series-parallel circuit. I
The algorithm uses a dynamic programming technique to find solutions for a chain of 3
modules. For a simple parallel circuit, a number of transformations are repeated to obtain

the optimal implementation. Finally, the optimal implementation of any series-parallel

circuit is obtained by repeatedly using the chain and simple parallel circuit transformation I
on subcircuits of the given series-parallel circuit. This work is extended to nonseries- 3
parallel circuits, whose structures are represented by general DAGs, and several heuristic

techniques are used in conjunction with the algorithm, but no guarantees on optimality

are made for such circuits. Moreover, their algorithm does not consider the capaticances 3
of fan-out modules (gates). Therefore the results may not be accurate since, in reality,

the gate delay is a function of the fan-out gate sizes as well.

Both of the above two approaches [23,24] are heuristics, and hence no concrete state- I
ments can be made on how close their solutions are to the optimal solution. Moreover, 3
neither work shows comparisons with a technique such as simulated annealing [251 that

is known to give optimal or near-optimal solutions. I
The algorithm proposed in [261 does use simulated annealing; however, since simulated i

annealing is computationally expensive, a technique for variable pruning is used by this 3
algorithm to reduce the computational complexity. An initial configuration is obtained

using an algorithm similar to TILOS [151. The set of gates that are left at minimum size at I
2
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the end of this algorithm are eliminated from the parameter space, under the assumption

3 that these cells would not be sized in the final configuration. The sizes of the. remaining

3 cells are determined using a simulated annealing algorithm. One argument against such

an algorithm is that it would have very large runtimes for tight timing specifications, in

I which a large number of cells would be sized by the TILOS-like heuristic.

I
* 2.3 Problem Formulation

3 For a combinational circuit, the discrete gate-sizing problem is formulated as

3 minimize Area

subject to Delay :T.,. (2.1)

Alternatively, we can formulate the following problem:

mmize Delay

subject to Area 5A... (2.2)

In this chapter, we concentrate on the first problem, although the same algorithm

I can be applied to the second problem with minor changes.

I 2.3.1 Formulation of delay constraints

N The delay of a gate in a standard-cell library can be characterized by

delay =R R xC..t+r= xC,+rX.w+'r 2  (23)
2 w
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Figure 2.2 An example illustrating calculation of the output load capacitance of a gate. 3
where R, is the equivalent resistance of the gate, C..t is the load capacitance of the gate, I
,r is the intrinsic delay of the gate, R. represents the on-resistance of a unit transistor,

and w, is called the nominal gate size of gi. Therefore, the size of each gate can be

parameterized by a number, to, referred to as the (nominal) gate size.

The output ltoad capacitance of a gate can be calculated by summing the gate terminal 3
capacitances of its fan-out gates and interconnect wiring capacitance, assuming that 3
layout information is given. For the time being, we ignore the interconnect capacitance.

In Chapter 5, we will discuss how to combine layout information with our formulation I
to obtain more accurate results. 3

Consider a gate Gi which fans out to several gates including gate Gi, as shown in

Figure 2.2. The output node of logic gate i is connected to the n-type transistor nj, and

p-type transistor pli of logic gate Gi. Let the transistor nfj have the geometry as shown I
in Figure 2.3.

As illustrated in Figure 2.3, the parameter L stands for the length of the channel,

zni is the channel width of transistor nij, and dd and d. refer to the lengths of the drain I
I
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I i ds dd

I L

i Figure 2.3 Top view of the geometry of a typical transistor.

and source terminals. The gate terminal capacitance, C,, of the transistor n,, can be

expressed as

I C, = CTrA. L.z xn, + 2. Caw. (L + znj,) (2.4)

I where

C COTA : Gate terminal area capacitance (pF/#rm2)

C-P : Gate terminal perimeter capacitance (pF/j&m)I
Since the channel length, L, of transistors in a typical standard-cell library is fixed,

3 the output load capacitance of logic gate i with respect to logic gate j can be expressed

*~as

cap(i,j) f K, .-zn, + K 2  (2.5)

I where

U Ki = CGTA'L+2"CGTp

3 K2 = 2. C .-L (2.6)

3 In general, the gate terminal capacitances of a certain transistor in different versions

of a logic gate may not be linearly proportional to the nominal size of that logic gate.

I
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Figure 2.4 Approximating gate terminal capacitance by an affine function. 3
For example, Figure 2.4 shows a typical plot of the gate terminal capacitance of a certain 3
transistor with respect to different sizes of a logic gate. Inspite of this, however, we can 3
approximate the data points by an affine function using linear least-squares approxima-

tion, as shown in the figure. In other words, the output load capacitance of logic gate i I
as seen by logic gate j is 3

cap(i,j) = a. zi + ,Oij (2.7) 3
where zi is the size of logic gate j.

Therefore, the output load capacitance of gate i can be found to be I

C,, = cap(i,1) +cap(i,2) +...+cap(i,f) I

= •a" Z + 6i + •2"Z2+82 +"'.+aif. ZI+Oi (2.8) 3
where zi, z2,..., z1 are the sizes of the cells which logic gate i fans out to. 3

Thus, the delay function D(w) of gate i with nominal size w can be represented as

D(w) & -C.. ,g l w + r 2
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Figure 2.5 Surface plots of the function g(w, z) - z/w from two different viewpoints.

-Ra zit+ il'"++ 'zf+#if+rl W+r2 (2.9)
W

Therefore the delay of a cell is a sum of functions of g(w, z) = z/w and h(w) = 1/w.

Figure 2.5 shows surface plots of the function z/w. Since the function g(w, z) = ziw is

3I relatively smooth, it can be approximated by a convex piecewise linear function with q

regions of the form

a, - w + b. z-+ c, (w, z) E Region R1

PWL(w, z) a 2 W +b2. zZ + c 2  (w, z) E RegionR 2  (2.10)

a. w +b z + c-, (w, z) E RegionR,

S= max(ai.w+b,.z+ci) V(,y)e It . (2.11)t~~ <i<q

3 The second equality follows from the first since PWL(w, z) is convex.

2
I
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Figure 2.6 Approximation of the function 1/w by a piecewise linear function. I
The function 1/w is shown in Figure 2.6. Similarly, we can approximate the function

h(w) = 1/w with a convex piecewise linear function of the form

d •w+el w E Region r,

pw(X.) = + e2  w E Region r 2  (2.12)I

d,- w + e tw E Region r,

- max (di-w+ej) V w E Ur1  (2.13) 3I-Sj~q iI

Therefore, the gate delay D(w, z1, ... , z1 ) of a gate with size w, and fan-out gate sizes 3
z ... zcan be represented using a convex piecewise linear function with q regions, as

follows:

I
I
I
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| D(w,zi,,.. ,zj)

3"w + ,,. z +-.- +b,,z!+ "-w(+, 2 (w,z ..- z1 ) E Region RI

a-.• +&2,.,. Z,+...+& •, + a,+ •-,.,W+r,' (W, ,, ... zf) E Reg-ion R2
(2.14)

a, • W + it.,, + , + + ,z. + 4, +72-, •w +V-2 (w, Zi .. z•) E•Region R,

Max OW"(a- w+ il-Zl+." b,,z,+•+a)+?'r +r2 V(w, z... z),,U I

I 2.3.2 Formulation of the linear program

3 The formal definition of the gate-sizing problem for a combinational circuit is as

given in (2.1). Since the objective function, namely, the area of the circuit, is difficult to

estimate, we approximate it as the sum of the gate sizes, as has been done in almost all

I work on sizing [14-21].

3 Similarly, in general, the cell area of a logic gate may not be linearly proportional to

the cell size, as shown in Figure 2.7. Nevertheless, we can approximate those data points

I by an anie function using linear least-squares approximation as shown in the figure.

3 Therefore, the cell area of a gate i can be expressed as

3 area(i) = 1" tw, + ei (2.15)

3 where wt is the nominal size of gate i.

The delay specification states that all path delays must be bounded by T,,,,. Since the

number of PI-PO paths could be exponential, the set of constraining delay equations could

I 29
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Figure 2.7 Approximating gate area by an affine function. 3

potentially be exponential in the number of gates; unless certain additional variables, mi, 3
i= 1 ... M (where M is the number of gates), are introduced to reduce the number of 3
constraints. The worst-case signal arrival time mi corresponds to the worst-case delay

from the primary inputs to gate i. Using these variables, for each gate i with delay di, ,

we have 3
m, = max{, 3j + d, IV jFanin(i)} (2.16)

where Fanin(i) is the set of fan-in gates of gate i. Equivalently, we have I
ml + d, < mN, V j E Fanin(i). (2.17) U

This reduces the number of constraining equations to • Fanin(i), which, for most

practical circuits, is of the order O(M).

For example, consider a part of a circuit as shown in Figure 2.8. Gates 1, 2, and 3 3
fan out to gate 4. The worst-case signal arrival times of gate 1, 2, and 3 are 4.5, 3.0, and 3

I
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3 Figure 2.8 An example illustrating the definition of mi.

3 3.5, respectively. The gate delay of logic gate 4 is 0.3. Then the worst-case signal arrival

3 time of gate 4 is m4 = max(4.5, 3.0, 3.5) + 0.3 = 4.8.

We now formulate the linear program asI
M

minimize F "Y" wi
i--i

subject to For all gates = 1... M

m++di <_j Vj EFanin(i)

3 mj T, Vgate i at PO's (2.18)

Id 2:> b(wi, wi,,,.., w.j~o(,)

wi 2_ Minsize(i)
Iwi <_ Maxsize(i)

I W

where wi,1, ... wi,1o(i) are the sizes of the gates to which gate i fans out, and Minsize(i)

I and Mazaize(i) are the minimum and maximum sizes of gate i in the library, respectively.

3 Notice that in the objective function, the constant term in (2.15) is omitted since it does

not affect the result.

3
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The preceding is a linear program in the variables wi, d,, mi. It is worth noting that

the entries in the constraint matrix are very sparse, which makes the problem amenable I
to fast solution by sparse linear program approaches. Notice that the equalities of (2.14) 3
are replaced here by inequalities so as to satisfy (2.15).

It should be emphasized that our approach is able to handle different timing spec- I
ifications at different primary outputs. However, for the sake of simplicity, we use the 3
same timing specification for all of the primary outputs in the circuit.

2.4 Phase II : The Mapping Algorithm U
The set of permissible sizes for gate i is Si w • w,,p,}, where pi is the cardinality I

of Si. The solution of the linear program would, in general, provide a gate size, wi, that 3
does not belong to Si. If so, we consider the two permissible gate sizes that are closest to

w,; we denote the nearest larger (smaller) size by wi+ (wi_). Note that in any standard

cell library, wi+ has a smaller delay than w,_. Since it is reasonable to assume that 3
the LP solution is close to the solution of the combinatorial problem, we formulate the 3
following smaller problem:

For all i = 1... M : Select wi = wi+ or wi_,

such that Delay < Tp 3
Although the complexity has been reduced from O pi) for the original problem3

to O( 2M), this is still an NP-complete problem. In this section we present an implicit

enumeration algorithm for mapping the gate sizes obtained using linear programming

I
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onto permissible gate sizes. The algorithm is based on a breadth-first branch-and-bound

3 approach.

It is worth pointing out that the solution to this problem is not necessarily the optimal

solution; however, it is very likely that the final objective function vilue for a solution

U arrived at using good heuristics will be close to the linear program solution, and hence

3 close to the optimal solution. This supposition is borne out by the results presented in

Section 2.6.

In Section 2.4.1, we present an implicit enumeration mapping algorithm which is

3 single-path oriented. Although the execution time is fast, the result may not be satisfy-

3 ing. Therefore, in Section 2.4.2, we propose an improved implicit enumeration mapping

algorithm using a global approach.U
I 2.4.1 Implicit enumeration approach

The algorithm first places all M gates in a queue, Q, in decreasing order of their

worst-case signal arrival time, mi•. The longest path, P, from any PI to the gate at the

3 head of Q is found. The unmapped gates along P are mapped to permissible gate sizes

3 using an implicit enumeration approach [27]. Once a gate size has been mapped onto a

permissible size, it is said to be processed, and remains unchanged during the remainder

U of the enumeration process. A processed gate is removed from the queue Q.

3 After P has been processed, the process is repeated for the longest path to the gate

that is now at the head of Q, until Q is empty. Thus, although the circuit could have

3
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an exponentially large number of paths, our algorithm has to handle at most A( of those

paths. 3
Let G, be the gate that is currently at the head of the queue. Let P - G1, G2 ,. , GIpI 3

be the longest path from any PI to gate G1 , where IPI is the number of gates on the

path. The order of gates on the path is such that G. fans out to Gi-1, 2:5 i < IPI. The U
predecessor (successor) of gate Gi on the path P is the gae G,+1 (Gi- 1 ). Note that Gapl 3
has no predecessor and G, has no successor.

Starting from GI, we form a state-space tree. Each node at level i in the state-space

tree is a cell configuration, which represents a possible realization of gate Gi. To help U
define a cell configuration, we introduce the following notation. Let 3

C(ij) : the jth node at level i,

anc(ij) : the ancestor node of C(ij), I
FO(i) the set of gates that gate i fans out to, 3
area(i, wi) the cell area of gate i when its size is wi, area(i, wi) = yj - wi (see (2.18)),

RV..(wi) the equivalent resistance of gate i, corresponding to size wi, U
that drives its load capacitances, R t(wt) = R.&/w (see (2.2)), 3

ri(w3 ) : cap(i,j), given that gate j is the predecessor of gate i on path P,

and the size of gate j is wi.

Definition 2.1 A cell configuration, C(i,j) is a triple (Wij, Aj1 , Dij), U
W = Wc(,j) I {Wi4. ,3

A " Ac(ij) = area(i, Wil) + A,,Oij),

Oi= Dc(ij) 4fi1 + D.,i) I

I
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where 4, = k."(W,1 ) - cap(i, k) + r(..i)

where Aqi is the accumulated area from the root to C(i,j), Dq, is the acczmulates delay

3 from the root to C(i,j), and d, is the configuration delay associated with C(i,j). Phys-

3 ically, 4j, corresponds to the delay of gate i, given that gate i has size W,,, and gate

(i - 1) has siz W."O().

I In the state-space tree, each node has no more than two successors since there are at

3 most two choices for the gate size. Every node in the tree corresponds to an assignment

of sizes to those gates which lie on the path from the tree root to that node.

The root of the tree is, by definition, assigned a null cell configuration (0, 0, 0). We

3 begin with the unprocessed gate on the current path, P, that is closest to the POs. and

3 implicitly enumerate the two possible realizations of each gate i, w,+ and w.._. The delay

of each gate is dependent on its own siz and on the size of the gates that it fans out to.

U Therefore, once Gi has been enumerated, the delay associated with the predecessor of G,

3 on path P can be calculated, and it can be enumerated. The process continues until all

gates along P have been processed.

During the enumeration process, it is possible to eliminate several of the possibilities

3 to prune the search space. A node C(i,j) with a cell configuration (W1i,Aj,,Dq,) is

3 bounded if there exists a cell configuration (Wih, Aik, D,,) at the same level of the tree

such thatI
(1) area(i, Wjk) < area(i, Wi), Aik < A.1 and D11 < Dii, or

I
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03 (. 2 01

ods0 3
(0,0,0)

rod Q(1,1) mods (1, 2)
(1.2.0.2,O.9) (M. O.A L1)

du 0.9 djL= 1.1

.t) .ode(2.2) (od.(2,3) fade(2,4)
(r.1 2.7 LT7) (1.0,22, 2.1) (5, 2.3, 1.6) (1.0,1 . 2.0)

dju O8 dn L.2  dj (L5 du a0.9

Figure 2.9 An example illistrating the construction of a state-space tree in the mapping
algorithm.

(2) area(i, Wit) < area(i, Wi), Aik < Aq, and Dik <5 Di. 3
Example 2.2 In Figure 2.9, let G, be the current head of the queue, Q. Let G2 be the 3
predecessor of G1 , and G3 that of G2 on the longest path from a PI to GI. There are

two possible realizations for G1, namely, 3
(1) one with area(1, W1 ,1 ) = 1.2 and delay d1,1 = 0.9, and

(2) one with area(l, W1 4 ) = 0.8 and delay d1,2 = 1.1. N
If neither node C(1, 1) nor C(1, 2) is bounded, we proceed to construct the second level

for both cell configurations. The two successors of node C(1, 1) in the tree represent two 3
possible configurations of G2 if G, is chosen to be of the size with area(l, W1,1 ) = 1.2. 3

I
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I Further, node C(2, 1) represents the configuration if G2 is chosen to have a template

3 with area(2, W2.1) = 1.5. Here, if the corresponding configuration delay of Ga, d2.1 = 0.8,

I then

accumulated delay of GI and G2 , DU,1 = 1.7

*accumulated area of GI and G2 , A2 ,1 = 2.7

Similarly, node C(2,2) represents the situation if GI is Chosen to be of the size with cell

area 1.2 and G2 with cell area 1.0. If the configuration delay of G2 , d2.2 = 1.2, then

* accumulated delay D2.2 = 2.1

I e accumulated area A,.2 = 2.2

I The entries of node C(2, 3) and C(2, 4) can be calculated similarly.

3 Now, notice that nodes C(2, 1) and C(2, 3) have the same gate area for G2, while node

C(2, 3) has less accumulated area and accumulated delay than node C(2, 1). Therefore,

node C(2, 1) is bounded, and it is not necessary to enumerate the descendants of C(2, 1).

I Similarly, C(2, 2) is bounded since C(2, 4) has superior configuration to C(2, 2). 0

3 For every path P in the circuit, we define a quantity known as the maximum path

delay, (MPD), as follows:

Smin (mi - di), if gate i is not at a PO
MPD(P) = (2.19)

I min[ min (mi - di), Tp•], if gate i is at a PO
jeFO(i)

I
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where gate i is the gate that lies at the end of path P. Note that even if gate i is at a

PO, it could still fan out to other gates in the circuit; this is reflected in the definition of I
the MPD. Maximum path delay physically corresponds to the maximal delay that can 3
be assigned to path P before its effect is propagated beyond gate Gj'at the end of the

path. U
After the state-space tree for the longest path P has been constructed, the algorithm 3

examines the cell configurations at the leaf nodes of the tree. The cell configuration,

C(IPI, n), which satisfies the following requirements, is selected.

(1) Dlpl,. :5 MPD(P), I

(2) Djpl,, 2_ DIpl,i V C(IPI,i) such that DiPl,, S MPD(P). I

In requirement (2), instead of using AIp1,,, 1  AiPl,i as the criterion, we use DIpI,n 2 I
DIp1,i. This is because we do not want to perturb the solution obtained from the linear 3
programming too much. This way, it is expected that no change in gate size takes the

circuit delay radically away from T,...

By performing a trace-back from C(IPI, n) to the root of the tree, the size of each I
gate along P is determined from the cell configurations at each traversed node of the3

tree.

2.4.2 Global implicit enumeration approach3

The rationale behind our global enumeration algorithm is based on the following

observation. Given the solution of the linear programming, the majority of the gates

3
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remain at their smallest sizes. Only a small portion of the gates in the circuit are moved

I to a larger size because, for a typical circuit, although there may be a huge. number of

3 long paths, the number of gates on these long paths is, in general, relatively small.

Based on this observation, during the implicit enumeration procedure we may ignore

Sthose gates which are assigned to have their smallest size by the solution of the linear

programming, and concentrate on those gates that have been assigned larger sizes and

are probably on long paths.

Definition 2.2 A critical gate is a gate whose size is larger than its smallest possible

size.

Notice that the determination of critical gates, in general, can be very difficult to

3 obtain, since whether a gate is critical or not heavily depends on the circuit structure as

3 well as the tightness of the delay bounds. However, using an analytical approach such as

linear programming, whether a gate is critical or not can be determined easily.

I We modify the circuit topology by adding a source node so and a sink node si. A

dummy edge is added from node so to each of the input nodes and from each of the

output nodes to the node si. Next, for each gate i we define maz-delay,-to-sink, denoted

by rmds(i), to be the maximum of the delays of all possible paths starting from gate i to

3 the sink node si [281. That is,

1 mds(i) = max {mds(j) + di} (2.20)
jeFO(i)

3 The method for finding max-delay-to-sink is a topological sort. That is, mds(i) of

a gate i can be calculated only after all of the mds's of its fan-out gates have been
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computed. Therefore, the computation of mds's starts from sink node si and proceeds

backwards until we reach the source node so. I
A breadth-first search is applied to levelize the circuit from the sink node backwards.'

The level of a gate i in this levelization is called its backward circuit level, c-level(i). By

definition, the backward circuit level of the sink node si is 0, while the source node so I
has the largest backward circuit level. Starting from si, we form a state-space tree by

implicitly enumerating critical gates. During the enumeration, noncritical gates remain

at their minimum size and need not be enumerated. Each level in the state-space tree

corresponds to a critical gate. The corresponding critical gate of level i is gate k, where I
k = F(i). Similarly, the corresponding level of a critical gate k in the state-space tree is

called the gate's tree level, tlevel(k). Therefore tdlevel(Y'(i)) = i. Each node at level i

in the state-space tree is a cell configuration, which represents a possible realization of i
its corresponding gate. Let C(i,j) denote the jth node at level i, and anc(i,j) be its

ancestor node.

Definition 2.3 A cell configuration, C(i,j) is a triple .(Wij, A.j, D~i),

Wi, = Wcj) E {Wtr(i)+, Wim-()},

Ai Ac(1,) = -77(i) - W,, + A.,i)

D = Dc(ij) = max {mds(k)}, where k is a gate in the circuit (not necessarily a

critical gate), which satisfies c-level(k) = c-level( F(i)) + 2. I

'This is different from a traditional levelizing scheme which i. done starting from the source node U
and proceeds forwards.

I
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U where A~i is the accumulated area from the root to C(i,j). (Notice that 'Y7(j) W,, is the

cell area of gate .F(i), given that its size is Wi.)

In the state-space tree, each node has no more than two successors since there are

at most two choices for the gate size. The root of the tree is, by dfnition, assigned

I a null cell configuration (0, 0, 0). We begin with the critical gate that has the smallest

backward circuit level and implicitly enumerate the two possible realizations of each gate

1 .(i), wy-(j+ and wx.()_.2 The delay of each gate is dependent on its own size and on the

size of the gates that it fans out to. Therefore, once gr(i) has been enumerated, the delay

associated with the predecessor of g'(i) can be calculated, and the remaining critical gates

can be enumerated. During the enumeration process, it is possible to eliminate several

of the possibilities to prune the search space. A node C(ij) with a cell configuration

(Wii, Aq, Dii) is bounded if there exists a cell configuration (Wi,., Aik, Dik), at the same

level of the tree such that

(1) Ak _ A.1 and Dik < Dii, or

(2) Ajk < Aii andr Dk :5 Dii.

After all of the critical gates have been implicitly enumerated, we keep calculating

max-delay-to-sink for each remaining gate. However, since noncritical gates have fixed

sizes, no enumeration is necessary. Rather, we simply propagate the values toward the

source node. For each leaf node of the state-space tree, the max-delay-to-sink of the source

node corresponding to that node is calculated and denoted by Dýj. The cell configuration

S 21f there is more than one critical gate which has the same backward circuit level, one of them is
randomly chosen.
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which has the largest Dý1 and satisfies DVi :_ T,., is selected. By performing a trace-

back from the selected leaf node to the root of the tree, the size of each critical gate is I

determined from the cell configurations at each traversed node.

2.5 Phase III : The Adjusting Algorithm 1I
After the mapping phase, if the delay constraints cannot be satisfied, some of the gates

in the circuit must be fine-tuned. For each PO which violates the timing constraints, we 3
identify the longest path to that PO. For example, if gate p at the PO has a worst case

signal arrival time mp > Tp,., we first find the longest path, P, to Gp. The path slack of
P is defined as

Palack(P) = Tp, - m,, (2.21)

For each gate along that longest path, we calculate the local delay difference for each

of the gates along path P. Assume that G(-1, G(, Gj+ 1 are consecutive gates, in order of

precedence, on path P. The local delay and local delay difference associated with GC are U
defined as 3

delay(G,) = !e•" C 1' + Rk* Cw (2.22)

•6delay(G,) = AC,,,C' + .. CL, (2.23)

where Ro,,t and C1. are, respectively, the equivalent driving resistance of gate i, and the

capacitive load driven by gate i. Therefore, Adelay(Gi) is the difference between the

original local delay of G( and the new local delay of G( after we replace it with a different 3
gate size that has a different value of Rk., and CL1+l.
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After calculating the local delay difference associated with each of the gates along

path P, we select the largest one, Adelay(G,), which satisfies

Adelay(G,) < Pslack(P) (2.24)

and change the size of G,, accordingly. If none of the local delay differences satisfy

(2.24), we select the most negative one and replace the gate with a new realization. This

process continues until the delay constraints are all satisfied. Also, notice that unlike in

I the mapping algorithm, we do not restrict our choices to w1+ and wj_ at this phase.

I
2.6 Experimental Results

The preceding algorithms were implemented in a program GALANT (GAte sizing

using Linear programming ANd heuricTics) on a Sun SparclO station. The test cir-

I cuits include several ISCAS85 combinational benchmark circuits (29j. Each cell in the

standard-cell library has four different sizes of realization with different driving capabil-

ities.

ieTo prove the efficacy of the approach, a simulated annealing algorithm and Lin's

3 algorithm [23] were implemented for comparison. The parameters used in Lin's algorithm

have been tuned to give the best overall results. The simulated annealing algorithm that

we have implemented is similar to that described in [261. However, unlike in [261, all gate

I sizes were allowed to change during the simulated annealing procedure; while the run-

I times for this procedure were extremely high, the solution obtained can safely be said to

be close to optimal. Although simulated annealing does not guarantee the global optimal

I
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solution, a well-designed algorithm and a very slow annealing procedure can provide a

solution that is very close to the global optimum. I
The results of our approach, in comparison with Lin's algorithm and simulated an-

nealing, are shown in Table 2.1. The test circuits include five ISCAS85 benchmarks,

and vary in size from 160 gates (824 transistors) to 3512 gates (15,396 transistors). It I

can be seen that the accuracy of the results of our approach ranges from being as good

as simulated annealing for c432 to a discrepancy of less than 2.0% in comparison with

simulated annealing. The average discrepancy is less than 1.0%, and the run times are

considerably smaller than those for simulated annealing. I
Although Lin's algorithm runs much faster than GALANT, it does not always provide 3

good results. For loose timing constraints, its solution is comparable to the result ob-

tained using GALANT. For somewhat tight specifications, however, its solution becomes I
excessively pessimistic. For even tighter delay constraints, it cannot obtain a solution

at all. As mentioned previously, Lin's algorithm essentially is an adaptation of the TI-

LOS algorithm [151 for continuous transistor sizing, with a few enhancements. While the

TILOS algorithm is known to work reasonably well for the continuous sizing case, the I
primary reason for its success is that the change in the circuit in each iteration is very

small. However, in the discrete sizing case, any change must necessarily be a large jump,

and a TILOS-like algorithm is likely to give very suboptimal results. U
Table 2.2 shows the amount of time taken by the mapping and adjusting algorithm in

comparison with the time required to solve the linear program, for some of the results in

Table 2.1. It is clear that for all circuits, the chief component (over 95%) of the runtime

I
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Table 2.1 Performance comparison of GALANT with Lin's algorithm and simulated
annealing.

Circuit T..,. Simulated Annealing GALANT Lin's Algorithm

5 At" Run time Area Run time Are Run time •A

(ASA) (AG) (AL)

c432 16.0 2372 19mi 53 2376 4.82s 1.002 2376 0.10. 1.002

14.0 2515 21rin 17s 2515 5.38. 1.000 2749 0.15. 1.092

12.0 2950 24min 27. 2983 7.72. 1.011 - - -

c1355 14.0 8276 3h 32min 8276 1min 13 1.000 8536 0.69. 1.031
13.0 9258 3h 45min 9412 2min 14s 1.017 10319 1.28s 1.115

12.5 10224 4h 12min 10417 3min 32a 1.019 - - -

:c2670 17.0 17623 5h 22min 17623 4min 12s 1.000 18020 11.21s 1.023

16.0 17772 5h 42min 17790 4min 30s 1.001 20150 19.79 1.134

14.0 18929 8h 12min 19079 7min 8g 1.008 - - -

c5315 20.0 36906 13h 46min 36954 11rmin 52. 1.001 37344 2.20. 1.012

18.5 37438 14h 2mnn 37457 17min 28s 1.001 41248 4.32s 1.102

17.0 38618 14h 43min 38863 19min 2. 1.006 -

c7552 18.0 50557 22h 5ra 50604 35mmn 499 1.001 51100 9.54s 1.0113 17.0 50740 23h 20min 51254 52min 27s 1.010 53772 34.57s 1.060

16.0 52069 24h 5min 52563 1h 11min 1.009 -

Averuge Area Ratio 1.0057

I
was the linear programming algorithm; the heuristic was extremely fast in comparison.

The discrepancy between the sum of LP solution time and the time required for mapping

5 and adjusting in Table 2.2, and the total runtime in Table 2.1 is attributable to the

preprocessing step which performs miscellaneous administrative steps such as reading in

the circuit description and levelizing the circuit.

I
I
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Table 2.2 Execution times for the Linear Program and the Mapping and Adjusting
Algorithms.

Circuit #of gates T,.• LP solution Mapping and Adjusting I
c432 160 12.0 6.98s 0.75s
c1355 546 14.0 1min 4. 7.33s

c2670 1193 14.0 6min 50s 13.68s
c5315 2307 17.0 18min 299 32.51s
c7552 3512 16.0 1h 10mrin min 21s

I
A comparison of the run-times for GALANT, Lin's algorithm, and simulated anneal-

ing on the circuit c432, for various timing specifications, is shown in Table 2.3 and is

plotted in Figure 2.10. It is clear that GALANT is orders of magnitude faster than sim- I
ulated annealing, with results of comparable quality. It can be seen that as the timing

specification becomes tighter, the area increases; the increase in area is very rapid for

tighter timing specifications. In all cases, the solution obtained by GALANT is very close I

to the solution obtained by simulated annealing. In comparison with the results of Lin's 3
algorithm, we find that GALANT provides results of substantially better quality, with I
reasonable run-times.

The runtime of GALANT is seen to go up as the timing specifications become tighter. I
This can be ascribed to the fact that there are many more solutions of the linear program

that are close to the optimal solution, and hence the simplex procedure takes a longer

time. This is in contrast with the case for a loose timing specification, in which most

I
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Table 2.3 Performance comparison of GALANT with Lin's algorithin and simulated
annealing for c432.

Circuit To. Simulated Annealing GALANT Lan's Algorithm

Area R= time Am Run time Area Run time

* (AsA) (AG) (AL) SA

c432 1.5 2331 24min 29s 2331 4.63a 1.000 2331 0.098 1.000
17.0 2337 24min 28s 2337 4.66. 1.000 2337 0.08s 1.000
16.5 2350 25min 1, 2350 4.72s 1.000 2368 0.09s 1.013
16.0 2372 25min 40s 2376 4.81s 1.002 2376 0.17s 1.002
15.5 2394 25min 45s 2402 5.02s 1.003 2450 0.16s 1.023
15.0 2420 26min 28s 2424 4.96s 1.002 2465 0.13s 1.019
14.5 2467 26min 17s 2467 5.02s 1.000 2719 0.16s 1.102
14.0 2515 26rin 32s 2515 5.39s 1.000 2749 0.23s 1.092
13.5 2563 27min 47s 2563 5.68s 1.000 2929 0.17s 1.143
13.0 2645 27min 57s 2658 6.05s 1.005 3024 0.15s 1.143
12.5. 2801 28mmi 33s 2801 7.24s 1.000 3332 0.26s 1.190
12.0 2950 24min 27s 2983 7.72s 1.011
11.5 3096 36min 4a 3139 8.40s 1.014
11.0 3300 38mri 28s 3315 13.35. 1.005
10.5 3546 43min 5s 3583 10.95s 1.010

3 Average Area Ratio 1.009 1.206

I
gates are at minimum size at the solution, and the vertices of the feasible region where

these gates are at nonminimum sizes are clearly suboptimal.

I
1 2.7 Conclusions

5 In this chapter, an efficient algorithm is presented to minimize the area taken by cells

in standard-cell designed combinational circuits under timing constraints. We present

4
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Figure 2.10 Comparison of Galant and Lin's algorithm against simulated annealing 3
for c432.

a comparison of the results of our algorithm with the solutions obtained by our imple-

mentation of Lin's algorithm [231 and by simulated annealing. In [231, it was shown that I
Lin's algorithm is able to obtain better results than the technology mapping of MIS2 [8].

Although Lin's algorithm is fast, its solution becomes excessively pessimistic for tight

delay constraints. For very tight timing constraints, it fails to obtain a solution at all.

Experimental results show that our approach can obtain a near-optimal solution (com- 3
pared to simulated annealing) in a reasonable amount of time, even for very tight delay I
constraints. By adding additional linear programming constraints to account for short

path delay (30], and slightly modifying the mapping and adjusting algorithm, the same I
approach can be used to tackle the double-sided delay constraints problem. 3

The major bottleneck of our approach is the time required to solve the linear program.

Our approach uses a linear program which is solved using a package available in the

I
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I public domain (311, whose base is a sparse matrix dual simplex linear program solver.

3 It is possible to reduce the CPU usage using vector processors; as pointed out in (31],

I the CPU usage can be reduced by about 40% on an Ailiant FX/8 machine. Although

the computational complexity of the simplex method can be exponential in the worst

I case, it has been observed that for most practical problems, the complexity ranges from

I O((1/n+1/(m-ni))_1 ) to O((i/n+l/(m-n+i)-_/m)_) for m inequality constraints

and n variables (321. Other polynomial-time linear programming algorithms such as

Karmarkar's algorithm [331 may also be employed; however, in practice, its average run-

U time has been found to be similar to that of the simplex algorithm.

Finally, to incream the accuracy of the results, instead of using the RC delay model,

one can use fast timing simulation to evaluate delay of the circuit during implicit enu-

U meration. The run time will be greater. However, as we have mentioned, the number

3 of critical gates is likely to be relatively small. Therefore, the size of state-space tree is

usually small. This means that the number of times that we have to perform fast timing

simulation would also be small.

I
I
I
I
I
I
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CHAPTER 3

OPTIMIZATION FOR 3
SYNCHRONOUS SEQUENTIAL

CIRCUITS I
I

3.1 Introduction

The delay-area optimization problem for a combinational circuit is examined in Chap-

ter 2. Optimization for synchronous sequential circuits, on the other hand, is different. !

An additional degree of freedom is available to the designer in that one can set the time 3
at which clock signals arrive at various flip-flops (FFs) in the circuit by controlling in-

terconnect delays in the clock signal distribution network. With such adjustments, it is

possible to change the delay specifications for the combinational stages of a synchronous I
sequential circuit to allow for better sizing. This effect is even more important in the I

standard-cell environment, where the granularity of available choices for gate sizes is

coarse, and the delay of an optimally sized combinational subcircuit may differ signifi- I

cantly from its delay specification. However, consideration of clock skew in conjunction 3
with sizing increases the complexity of the problem tremendously, since it is no longer

possible to decouple the problem and solve it on one subcircuit at a time.

5
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UCLK CIK CLK
Figure 3.1 The advantages of nonzero clock skew.

I Example 3.1 Consider the circuit shown in Figure 3.1. If the gates in Block 1 are sized

substantially, while those in Block 2 are close to their minimum sizes, then by allowing

N a clock skew at FF B, it is possible to increase the delay specification for Block 1 and

I decrease that for Block 2. This could reduce the area of Block 1 greatly, at the expense

of a small increase in the area of Block 2. 0I
3 Example 3.2 Consider the synchronous sequential circuit shown in Figure 3.2. In ad-

dition to the possibility of adjusting clock skews at boundary latches as in Example 3.1,

we can adjust clock skews at internal latches as well. By doing so, it is also possible to

I reduce the circuit area of the combinational block. 0

I In general, given a combinational circuit segment that lies between two flip-flops i

and j, if s, and a9 are the clock arrival times at the two flip-flops, we have the following

relations:I
as + Mazdelap(i,j) + Tft, < s3 + P (3.1)

si + Mindelay(i,j) - s3 + ThAI (3.2)

I
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Figure 3.2 An example illustrating the definition of a synchronous block. I
where Mazdelay(i,j) and Mindelay(i,j) are, respectively, the maximum and the mini-

mum combinational delays between the two flip-flops, and P is the clock period. Fish- I
burn (9] studied the clock skew problem, under the assumption that the delays of the 3
combinational segments are constant, and formulated the problem of finding the optimal

clock period and the optimal skews as a linear program. The objective was to minimize

P, with the constraints given by the inequalities in (3.1) and (3.2) above. In real design I
situations, however, P is dictated by system requirements, and the real problem is to 3
reduce the circuit area.

In this chapter, we examine the following problem: Given a clock period specification, U
how can the area of a synchronous sequential circuit be minimized by appropriately

selecting gate size for each gate in the circuit from a standard-cell library, and by adjusting

the delays between the central clock and individual flip-flops? For simplicity, the analysis

will use positive-edge-triggered D-flip-flops. In the following, the terminologies flip-flop U
I
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(FF) and latch will be used interchangably. We assume that all primary inputs (PIs) and

3 primary outputs (POs) are connected to FFs outside the system, and are clocked with

zero (or constant) skew.

We first present an algorithm for small synchronous sequential circuits and then show

U how it can be extended to arbitrarily large circuits. The algorithm works in three phases

3 to solve the problem. In the first phase, the combined gate sizing and clock skew op-

timization problem is formulated as an LP. The solution of this LP provides us with a

set of gate sizes that does not necessarily belong to the set of allowable sizes. Hence,

3 in the second phase, we move from the LP solution to a set of allowable gate sizes,

u using heuristic techniques. At the end of the second phase, the set of allowable sizes

obtained may not satisfy (3.1) and (3.2) simultaneously. Hence in the third stage, we

I fine-tune the longest path to satisfy (3.1) and satisfy the short path constraints in (3.2)

by appropriately inserting delay buffers in the short path.

In Chapter 4, we consider arbitrarily large synchronous sequential circuits for which

the sizes of the formulated LPs are prohibitively large, and present a partitioning algo-

I rithm to handle such circuits. The partitioning algorithm is used to control the compu-

tational cost of the linear programs. After the partitioning procedure, we can apply the

optimization algorithm to each partitioned subcircuit.

I This chapter is organized as follows. We briefly discuss previous work on clock skew

3 optimization in Section 3.2. In Section 3.3, we formulate the synchronous sequential cir-

cuit area optimization problem. To reduce the number of constraints in our formulation,

we propose a pruning algorithm in Section 3.4.- A buffer insertion algorithm is presented
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in Section 3.5, which is used to satisfy short-path constraints without violating long-path

constraints. Experimental results are given in Section 3.6. Finally, Section 3..7 concludes

this chapter. 3

3.2 Previous Work on Clock Skew Optimization I
Synchronous circuit designers usually try to eliminate clock skew. Clock skew is

referred to as the variations in the delays from the central clock source to individual flip- 3
flops of the system. This effort can involve equalization of wire length [34] or wire width

(351, symmetric design of the distribution network, and design guidelines to eliminate skew

due to process variations [36]. Clock skew can limit the clock speed of a synchronous I
system or cause clocking hazards leading to malfunction at any clock rate. 3

In a synchronous sequential circuit, a data race due to clock skew can cause the system

to fail [371. Consider a synchronous sequential digital system with flip-flops (FFs) as

shown in Figure 3.3. Let a9 denote the individual delay between the central clock source 3
and flip-flop FF,, and let P be the clock period. Assume that there is a data path, with

delay d•,, from the output of FF, to the input of FFj for a certain input combination to

the system. As illustrated in Figure 3.4, there are two constraints on .i, sj and dj that I
must be satisfied: 3
Double Clocking : If s9 > -9 + dii, then when the positive clock edge arrives at F&i, I

the data race ahead through the path and destroy the data at the input to FFj

before the clock arrives there. When the clock edge finally arrives at FFj, the

I
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Figure 3.3 A synchronous sequential system.I
wrong data are clocked through. Since the data are through two FF's with one

I clock edge, this has been called double-clocking.

I Zero Clocking : This occurs when si + dij > aj + P, i.e., the data reach FF1 too late.

3 When the clock edge arrives at FFj, the correct data are not ready yet. Since no

correct data are clocked in by a FF, this is called zero-clocking.

It is, therefore, desirable to keep the maximum (longest-path) delay small to maximize

the clock speed, while keeping the minimum (shortest-path) delay large enough to avoid

clock hazards.

In [9], Fishburn developed a set of inequalities which indicates whether either of the

above hazards is present. In his model, each FF, receives the central clock signal delayed

3 by s, by the delay element imposed between it and the central clock. Further, in order

3 for a FF to operate correctly when the clock edge arrives at time t, it is assumed that the

correct input data must be present and stable during the time interval (t-T T,•u, t+T 4d),
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Figure 3.4 Double-clocking and zero-clocking. I

where Tap~, and Tk.1, are the setup time and hold time of the FF, respectively. For all of

the FFs, the lower and upper bounds MIN(i, j) and MAX(i, j) (where 1 < i,j J <C, C

is the total number of FFs in the circuit) are computed, which are the times required

for a signal edge to propagate from FF, to FFj. Since it is possible that multiple paths

exist from FF, to FFi, MIN(i,j) and MAX(i~j) must be computed as the minimumI

and maximum of these path delays; if no such path exists, define MIN(ij) = oo and 3
MAX(ij) = -00.

To avoid double-clocking between FF, and FFi, the data edge generated at FF: by

a clock edge may not arrive at FFi earlier than Thw4 after the latest arrival of the same I
clock edge arrives at FF,. The clock edge arrives at FF, at Si, the fastest propagation

from FF, to FF, is MIN(ij). The arrival time of the clock edge at FF1 is si. Thus,

we have I
I
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3 a, + MIN(i,j) Ž sj + Td. (3.3)

3 Similarly, to avoid zero-clocking, the data generated at FF, by the clock edge must

arrive at FFi no later than T..f,. amount of time before the next clock edge arrives. The

slowest propagation time from FFi to FFj is MAX(ij). The clock period is P, thus

3 the next clock edge arrives at FF, at 8s + P. Therefore,

I a, + Tft, + MAX(i,j) _ ai + P. (3.4)

3 Inequalities (3.3) and (3.4) dictate the correct operation of a synchronous sequential

I system.

Two different optimization problems are then formulated (91 with regard to clock skew

I optimization. They are discussed briefly in the following.

I
3.2.1 Minimize P subject to clocking constraints

Assume that the value of T~,p, Twd, and the maximum and minumum delays be-

I tween each pair of flip-flops (MAX(ij), MIN(ij)) are constant, while the clock period

3 P and clock skews to individual flop-flops, .9, are variable. To make the period P as

short as possible while satisfying the system of inequalities Eq. (3.3) and (3.4), a linear

U program can be formulated as follows:

5
I
I
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minimize P I
subject to - si:, T - MIN(i,j), Vi,j = I..... C (3.5) 3

-i + P _ To,. + MAX(i,j), V i,j = 1,....,. C

I
3.2.2 Maxinmze mnum margina for error

While manufacturing a circuit, it is inevitable that process variations will cause design U
parameters, such as component values, to waver from their nominal values. As a result, 3
the manufactured circuit may no longer meet some design specifications, such as the

requirements on the delay. On the other hand, a system on the verge of clock hazards

might pass system diagnosis but malfunction at unpredictable times due to fluctuations I
in ambient temperature or power supply voltage. One way to increase reliability of the 3
system and prevent these problems from happening, is to provide a safety margin over

all the constraints of the slack, i.e., the amount by which the inequality is satisfied. This N
converts the problem into a maximin problem. This is modeled by introducing a new

variable M, which is added to each of the main constraint inequalities so that when M

is maximized by the program, it will be the minimum slack over all the inequalities. In

this problem formulation, M and sa are variables to be determined, while P is specified I
as a constant. The problem can be formulated as: 3

I
I
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3 maximize M

subject to s,-sj -M Ž_ Tý,.-MIN(i,j), Vi,j ffi,.-.,£ (3.6)

aj-si-M2_T..s,+MAX(ij)-P, Vi,j=1,...,.C

U
I 3.3 Formulation of Constraints

3 In Fishburn's approach (9], it is assumed that circuit delays are fixed. In our problem,

since gate sizes are to be determined, individual gate delays, and therefore the total circuit

delay, are variables, while the clock period is a user-specified constant. Therefore, the

I problem becomes much more complicated since the delays MIN(i,j) and MAX(ij)

3 between each pair of latches are now also variables.

Our problem requires us to represent path delay constraints between every pair of

FFs. This may be achieved by performing PERT [381 on the circuit and setting all FFs

3 except the FF of interest (e.g., FF,) to -co (oo) for the longest (shortest) delay path

from FF. to all FFs, and the arrival time at the FF of interest is set to 0 [9]. Therefore in

addition to the longest-path delay variable mk, for the shortest-path delay, we introduce

1 new variables, pl, k = 1 ... N, which correspond to the shortest delay from the PIs (the

3 outputs of FFs are considered as pseudo-Pis) up to the output of Gk.

Spj + 4h _ P,, V j E Fanin(k). (3.7)

I
59U



I
I

To represent path delays between every pair of FFs, we need intermediate variables m',

(pt) to represent the longest (shortest) delay from FF, to the k' gate. The. number of 3
constraints so introduced may be prohibitively large. An efficient procedure for intelli- 3
gent selection of intermediate mL and p, variables to reduce the nuziber of additional

variables and constraints without making approximations has been developed. Deferring I
"a discussion on these procedures to Section 3.4, we now formulate the linear program for 3
"a general synchronous sequential circuit as

minimize -7k I Wk
k=1

subjectto d4 _: D(wA,wk,l,... WUj.(k)), 1 <k <k 3
wu, > Minsize(k), 1 < k 5 AN

wk < Mazsize(k), 1 < k <A( (3.8) 3
For all FF i, 1 i<£

S+ A > Sj + Thad I -< j <5 Z, k = Fanin(FFj) 3
3i + T,*,,• + Mk < $j + Pv, 1< j 5 Z, k = Fanin(FFj)

For all gates k=1,...,K 3
rye, + dk < k, V I E Fanin(k)

pi + d p, V I E Fanin(k) I
I

The above is a linear program in the variables wi, di, mi, p1 and si. Again, the entries

in the constraint matrix are very sparse, which makes the problem amenable to fast I
solution by sparse linear program approaches. 3

I
I

60 I



I

33.4 Symbolic Propagation of Constraints

We begin by counting the number of LP constraints in (3.8). We ignore the'constraints

3 on the maximum and minimum sizes of each gate since these are handled separately by

3 the simplex method. The di inequalities impose q constraints for each of the gates in the

circuit to the LP formulation (see Eq. (2.15)). Let F = ffi I Fanin(i), where X is total

3 number of gates in the circuit. Then for each FF, there are O(.F + C) constraints, where

3 £ is the total number of FFs in the circuit. Therefore the total number of constraints

could be as large as O(1'r. q + C. (Y' + )). Assume that the average number of fan-ins

to a gate is 2.5 and q = 5. Then F= 2.5NA, and Z ..F is the dominant term in the

3 expression above. For real circuits, Z is large, and hence the number of constraints could

be tremendous. In this section, we propose a symbolic propagation method to prune

the number of constraints by a judicious choice of the intermediate variables m and p,

U without sacrificing accuracy. Basically, for any PI, we introduce m and p variables for

3 those gates that are in that PI's fan-out cone. Also, we collapse constraints on chains of

gates wherever possible (line 6 in Figure 3.5).

The synchronous sequential circuit is first levelized. For this purpose, the inputs

5 of FFs are considered as pseudo-POs the outputs of FFs are considered as pseudo-PIs.

3 Two string variables, matring(i) and pstring(i), are used to store the long-path delay

and short-path delay constraints associated with gate i, respectively. For each gate and

I each FF, an integer variable w1 E {O, 1} is introduced to indicate its status; that is,

3 the variable wi has the value 1 whenev #ring(i) and patrring(i) are nonempty, i.e.,

6
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ALGORITIHI Syubolic.propagat ion()

1. tor i = I to £ { 1

2. w- 0, mjtring(j) - "", ptring(j) f- o" tor all gates and P1 s;

3. for j = 1 to -.a-leve• {

4. far each gate k at level j {
S. it ( wu = 0 for all I Efanin(k) ); /* do nothing ,

6. if ( among all I E fanin(k), exactly one w, = 1, others-0 ) { 3
7. mstring(k) *- mutring(LP) + "di•,

Pstring(k) #- P..tring(l') + "4i" wg, +-13

/= wl , P 4e fanin(k) ./

8. else {
9. wk, 1-i, mstring(k) +- "m,", pstring(k) -

10. for all w( = 1, 1 E fanin(k) {
11. write down the two constrain'ts,

12. mtring(l) + d4, < mL, pstring(l) +4 ,_ pks

Fiv're 3.5 The symbolic constraints propagation algorithm.

when the constraints stored in mstring(i) and pstring(i) must be propagated; otherwise,

Wi = 0.

The algorithm for propagating delay constraints symbolically is given in Figure 3.5. In I
the following discussion of the algorithm, we elaborate on the formation of mitring; the 3
formation of pstring proceeds analogously. At line 2, for each gate j, wi and mstring(j)

are initialized by setting wi = 0, and mstring(j) to the null string. At line 5, we check if

wI = 0 for all I E fanin(k), i.e., if all of gate k's input gates have a null mitring. If so, 3
6
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no constraints have to be propagated, and no operations are needed. Next, at line 6, we

3 check whether exactly one of gate k's input gates, e.g., gate P', has a nonempty mstring;

others have null matring's. If so, we may continue to propagate the constraint. This is

implemented by concatenating mstring(l') and "d,,," and storing the'resulting string in

I wmtring(k). Also wi, is set to 1 to indicate that further propagation is required at this

3 gate. Finally, if more than one of gate k's input gates have nonempty mstring, we add

a new intermediate variable, mt, and the string "mi" is stored at mstring(k) (line 9).

For each input gate whose mstring is nonempty (wI = 1), we need a delay constraint

3 (line 12).

3 Example 3.3 Figure 3.6 gives an example that illustrates the symbolic delay constraints

g propagation algorithm. Assume that rntring(l1) = "mmi", mrstring(12) = mstring(13) -

"(null string). Therefore, from lines 6 and 7 of the pseudo-code, mstring(14) =

I "m1I +d 1 4" and w14 = 1. Propagating this further, we find that similarly, matring(15) =

3 "mI, + d14 + d13," and w1 s = 1. Finally, for gate 16, we apply lines 9 through 12 and

find that we must introduce a variable mle, and set wLs = 1. We also write down the

I two constraints shown in the figure and add these to the set of LP constraints. C

I By using the symbolic constraints propagation algorithm, although the actual reduc-

3 tion is dependent on the structure of the circuit, experimental results show that this

algorithm can reduce the number of constraints to less than 7% of the original number

on the average for the tested circuits.

I
I
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mI + d +d, <=nml, 3
Figure 3.6 An example illustrating symbolic delay propagation algorithm.

I
3.5 Satisfying Short-Path Delay Constraints

The solution of the LP would, in general, provide a gate size, z,, that does not belong

to the permissible set, St = {w.i -.. w&,, }. If so, we consider the two permissible gate

sizes that are closest to wk; we denote the nearest larger (smaller) size by wl'+ (Wk-). As 3
in Section 2.4, we formulate the following smaller problem: 3

For allk k =1-...A(: Select wi = wi+ or wl,_, such that

forall FFs 1 .i,j<I

si + Mazdelay(i,j) + T..f,, < si + P1 ., I
Si + Mindelay(i,j) Ž sj + Tw,

The mapping algorithm described in Section 2.4 can be used to obtain a solution for this

problem. I

1
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After the mapping phase, if some of the delay constraints cannot be satisfied, we

3 have to fine-tune some gate sizes in the circuit. In Section 2.5, we have discussed the

3 approach to resolving the violation of long-path delay constraints. The same strategy

can be applied to synchronous sequential circuit optimization, except that the definition

I of path slack must be modified.

3 For each PO j (including pseudo PO0 at the inputs of FFs), the required maximum

U (minimum) signal arrival times, reql(j) (req.(j)), can be expressed as

Sreqs(j) - s + P.,. - T•,,

req.(j) - *i + TZw (3.9)I
The path slack then can be defined asI

Pslack(PI(n)) = reqI(n) - m, (3.10)U
Violations of short-path delay constraints, on the other hand, can be resolved by

I inserting delay buffers. However, buffer insertion cannot be carried out arbitrarily, since

one must simultaneously ensure that the changes in the circuit do not violate any long

path constraints.

For every gate i in the circuit, we define the gate slack, Gslack(i), as

min {m 3 + Gslack(j) - (dj + mi)), if gate i is not at a PO
Gslack(i) = .vPOW) (3.11)

min{ min [mi + Gslack(j) - (di + mi)], (reqi(i) - mi)}, otherwiseI , ./PO(i)

I
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Note that if gate i is at a PO, it could still fan out to other gates in the circuit; this N
is reflected in the definition of the gate slack. Physically, gate slack corresponds to the 3
amount by which the delay of gate i can be increased before its effect will be propagated

to any POs or FFs, in terms of long-path delay. Therefore, it tell us tlie maximum delay

that a delay buffer can have if we are to insert a delay buffer at the output of gate i. I
For example, consider a part of a circuit as shown in Figure 3.7. In the circuit, gates 3

4 and 5 are connected to flip-flops. Gate 4 has gates I and 2 as its fan-in gates, while

gate 5 has gate 2 and 3 as its fan-in gates. The required signal arrival times at the inputs

of both flip-flops are indicated in the figure. The long-path -and short-path signal arrival 3
times of gates 1, 2, and 3 are shown in the figure. The delays of gates 4 and 5 are 0.5 3
and 0.4, respectively. With this information, the long-path and short-path signal arrival

times of gates 4 and 5 can be calculated, and are given in the figure. As we can see, the I
short-path signal arrival time of gate 4 is 2.1, which is less than the required minimum 5
signal arrival time, 2.3. Therefore, it is necessary to process the short paths to gate 4.

Gate slacks are calculated using Eq. (3.11). For the time being, we assume that inserting

a delay buffer at the output of a gate will not affect the delay of that gate. Since the 3
gate slack of gate 2 is 0.2, we can insert a delay buffer with 0.2 delay immediately at 3
the output of gate 2.1 After the buffer insertion, it can be seen that p4 = 2.3, M4 = 6.0,

Ps = 2.2, and ms = 5.5. This way, the required minimum signal arrival time at the input I
of ffip-flop A is satisfied, while none of the required maximum signal arrival times are 3
violated. On the other hand, if we insert a delay buffer with delay time 0.3 at the same

IAlternatively, we caa insert a delay buffer immediately at the input of gate 4.
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P1 = 2.0

E l dsin0A PS a2.05msxFF -5.0o5

Figure 3.7 An example illustrating the definition of Gsback.I
location, it can be shown that p. = 2.4, M4 = 6.0, ps = 2.3, and ms = 5.6. Therefore,

although the required minimum signal arrival time at the input of flip-flop A is satisfied,

I the required maximum signal arrival time at the input of flip-flop B is violated due to

3 insertion of the buffer.

If output gate G,,1 violates the hold time constraint, its shortest path P.(nl) to some

1 PI is first identified. If p,, is the worst-case shortest-path signal arrival time of gate

3 nl, and req.(nl) is the required shortest-path delay, then the delay of P.(nl) must be

increased by at least req.(nl) - p,,.

In a real situation, however, inserting a buffer at the output of a gate will affect the

3 delay of that gate. Therefore, care must be taken when performing buffer insertion to

3 increase short-path delay.

The algorithm for inserting buffers is shown in Figure 3.8. At the beginning of this

I phase, we first back-propagate gate slacks from POs and all FFs. The gate slack of

3 each gate is determined recursively using (3.11). In line (4) of the algorithm, beginning

6
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ALGORITHM Insortbu-fer(nl)

1. Let P,(nl) be the shortest path to gate nl, and Gi,,.Gk be on path I
P,(nl) (G,., fans out to Gqn(i-), 2:5 i < k, k = S of gates along P,(nl).);

2. i*0- 1;I

3. while ( p < req.(nl)

4. if ( 3 a (small"et) butfeor, bf, in the library such that: I
delay(Ga,.) < delay'(Ga,) + delay(bf) :5 delay(G,) + sLack(G,,j) )

5. insert bf at the output of G,.; I
6. incrwmentally update dack(j), mi, pi for each gate j in the circuit;

7. if C P,( i N req,(nl) ) stop;

8. else goto 1.

9. i--i+1; U

Figure 3.8 The buffer insertion algorithm. 3
from the smallest buffer in the library, we try to insert a buffer at the output of gate

G,,i. The delay of the buffer is denoted by delay(bf). Since the output capacitance of

G,,i is changed during this process, we have to recalculate its delay, which is denoted by

delay'(G,).I

Example 3.4 In Figure 3.9, let gate 4 be connected to some FF. The required maximum U
arrival time (reqj) is 4.8, and the required minimum arrival time (req.) is 1.3. The actual 3
long-path delays (mi) and short-path delays (pi) for all gates are as indicated. The

gate slack of each gate is calculated and shown in the figure. Since gate 4 violates the I

shortest-path delay requirement, the shortest-path to it, P,(4), is found; this can be seen

to include gate 3. Since the gate slack of gate 3 is 1.0, we can insert a delay buffer between
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m1 =4.5
p = 1.5
slack(u) U 0.0

Figur 3.0 a nb= 4.8
te�s1.f ) =,0.5 tep4= 1t2 ' ( .4

mg~ 3.5,•e%4).= 4.8
adL = 0.3 retl(4) = 1.3ifc()10 --- )= 0.0...

I ...... Ns' Wert a delay, buffr here

Figure 3.9 An example illustrating buffr insertion algorithm.

U gates 3 and 4. If delay(3) -= 0.5, the delay after introducing the buffer, delay'(3) --0.4,

Iand delay(bf) =0.3, then the new value of p4 is 1.4, which satisfies req,(4), 0I

* 3.6 Experimental Results

The algorithms above were implemented in program GALANT-S on a Sun Sparcl0

station. The test circuits include many of the ISCAS85 combinational benchmark circuits

[291 and ISCAS89 synchronous sequential circuits [39]. Each cell in the standard-cell

3 library has five different sizes of realization with different driving capabilities.

First, in Table 3.1, the experimental results using the symbolic constraints prop-

agation algorithm are listed. For each circuit, the numbers of primary inputs, primary

I outputs, flip-flops, and gates are also shown. Both the number of longest-path delay

constraints without using symbolic constraint propagation algorithm and the number of

constraints pruned by the algorithm are given. It is clear that our pruning algorithm

I
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is very efficient. The number of delay constraints is reduced by more than 93% on the

average. I
For a given desired clock period (Pp.), the optimized results both with and without 3

clock skew optimization are shown in Table 3.2. Depending on the structure of the

circuits, the improvement over total area of the circuit ranges from 1.2% to almost 20%. U
As for the execution time, the run time ranges from about the same for some circuits, to

less than double or triple for most circuits.

One may raise the question of whether it is worthwhile to minimize circuit area

through clock skew optimization, since the reduction of area is not very significant for I
some circuits. However, Table 3.3 provides some more in-depth experiments of two 3
circuits, s838 and s1423. In this experiment, we try to minimize the area using different

specified clock periods. As one can see, for s1423, the minimum clock period without clock I
skew optimization is about 32.5. On the other hand, using clock skew optimization, the 3
minimum period can be as small as 22, which gives an almost 33% improvement in terms

of clock speed. For s838, using clock skew optimization also gives a 30% improvement.

Hence, using clock skew o imization can not only reduce the circuit area, but also allows I
a faster clock speed.

3.7 Comment and Conclusions

3.7.1 Clock tree routing 3
In (341, Tsay proposed a zero-skew clock tree routing algorithm. In his approach, a 3

clock tree is modeled as an RC tree for delay analysis. Based on a lumped delay model

I
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Table 3.1 Experimental results of the symbolic constraints propagation algorithm for
ISCAS89 benchmark circuits.

Circuit # of # of # of # of longest-path constraints

PIs POs FFs gates original primed %

s27 4 1 3 10 133 27 20.3%

s208 11 2 8 104 3276 214 6.5%

s298 3 6 14 137 4556 280 6.1%

s344 9 11 15 160 6720 401 6.0%I __ __ _

s349 9 11 15 160 6816 417 6.1%

s382 3 6 21 158 7488 575 7.7%

s386 7 7 6 171 4758 282 5.9%

s400 3 6 21 162 7824 656 8.4%

s420 19 2 16 196 11830 544 4.6%

s444 3 6 21 181 8592 830 9.7%

sSlO 19 7 6 211 10775 553 5.1%

s526 3 6 21 229 11688 541 4.6%

s641 35 24 19 379 30402 1331 4.4%

I s838 35 2 32 446 55948 2670 4.8%

s953 16 23 29 395 34470 1788 5.2%

s1196 14 14 18 529 32736 2241 6.8%

s1423 17 5 74 657 106379 7953 7.5%

s1488 8 19 6 748 21014 1506 7.2%

s1494 8 19 6 725 20860 1528 7.3%

s5378 35 49 179 2779 911854 6593 0.7%

I
I
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Table 3.2 Performance comparison with and without clock skew optimization for IS-

CAS 89 benchmark circuits.

Circuit P,,.. with clock skew opt. w/o clock skew opt. A'

Area (At) Run time Area (A2) Run time

s27 3.75 151.12 0.32s 179.29 0.30s 0.842 1
s208 6.8 1404.00 3.32s 1745.25 3.06s 0.805

s298 6.5 2125.50 4.20s 2295.58 4.12s 0.926

s344 8.0 2093.00 7.10s 2400.67 6.91s 0.872

s349 8.0 2128.75 6.18s 2498.17 6.01s 0.852 1

s382 8.5 2216.50 7.68s 2334.04 6.04s 0.949

s386 6.5 3521.37 7.55s 3577.17 6.14s 0.984 I
s400 8.4 2314.00 8.19s 2515.50 7.13s 0.920 i

s420 12.0 2522.00 9.06s 2952.63 8.94s 0.854

s444 8.5 2463.50 11.55s 2724.04 7.22s 0.904 3
s510 11.0 3219.67 16.13s 3261.37 10.35s 0.987

s526 6.5 3914.08 10.21s 4311.67 9.35s 0.908

s641 22.0 4598.75 51.59s 4747.17 26.49s 0.969

s838 10.5 6162.00 100.67s 7324.42 43.77s 0.841

s953 10.5 5516.87 243.93s 5898.75 67.69s 0.935

s1196 12.0 8550.21 288.15s 8752.42 97.43s 0.977 I
s1423 35.0 9871.87 1069.75s 10151.38 80.71s 0.972

s1488 10.0 15025.29 148.27s 15322.12 137.61s 0.981

s1494 10.0 14773.96 158.14s 14962.46 115.45s 0.987

s5378 10.0 29219.12 2633.78s 29717.53 1414.49s 0.983

I
I
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Table 3.3 Improving possible clocking speeds using clock skew optimization..

I Circuit P.. with clock skew opt. w/o clock skew opt.

Area (At) Run time Area (A2 ) Run time

s838 10.5 6162.00 100.67s 7324.42 43.77s 0.841

10.25 6165.25 102.18s 7365.58 45.30s 0.837

10.0 6182.04 103.25s - -

7.5 6637.58 130.20s

6.75 7417.58 172.31s

* 6.5 j - -

s1423 35.0 9871.87 1069.75s 10151.38 80.71s 0.972

32.5 9998.63 1130.89s 10545.71 84.05s 0.948

30.0 10154.08 1450.03s -

22.0 12178.83 1605.43.

20.0 - -

7
I
I
I
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and the delay computation method, he found that any two zero-skewed subtrees can be

merged into a tree with zero skew by tapping the connection to a specific location of each 1
subtree. The approach is a recursive bottom-up algorithm. To realize the clock routing

of a nonzero-skew system as in our approach, Tsay's zero-skew routing algorithm can

be modified to handle the problem [34]. This can be done by adding a fictitious delay I
element on each clock pin.

Let us assume that the optimal clock delay to latch i is Do + Di, where Do is a

common offset value which is unknown until the clock routing is determined. Thus, the

skew between latch i and latch j is Di - Di. Let D,,. be the maximum clock delay, i.e., I
D,.,.= max(Do +DO = Do +max Dk (3.12)

Define the fictitious delay of latch i as 3
4di =A..- (Do + DO)=max Dk- Di (3.13)

In other words, each clock pin attached to a latch is modeled as a lumped delay model

with an input loading capacitance and a branch delay, as shown in Figure 3.10. Then the

zero-skew routing algorithm is performed on this modified clock tree with the fictitious U
delay on each clock pin.

3.7.2 Conclusions

In this chapter, a unified approach to minimizing synchronous sequential circuit area I
and optimizing clock skews has also been presented. Traditionally, the circuit area of a 1
synchronous sequential circuit is minimized one combinational subcircuit at a time. Our
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(a) (b)
Figure 3.10 (a) A clock pin on a latch. (b) The modified model of a clock pin according
to the optimal skew obtained from our algorithm.

experiments have shown that this may lead to very suboptimal solutions in some cases.

I Experimental results show that using clock skew optimization can not only reduce the

circuit area, but also allows a faster clock speed.

In our formulation, for each gate in the circuit, we use the same delay variable (d4)

U when calculating longest-path delay and shortest-path delay. In practice, however, the

worst-case maximum delay and worst-case minimum delay are different for a specific gate.

Nonetheless, our formulation and algorithm described.in this chapter can be modified to

consider this effect.

U In the experimental results, only active circuit area (cell area) is considered. The data

do not include the clock tree routing area. It is possible that due to the introduction

of clock skew at each latch, the clock tree routing area may be increased. On the other

I hand, since both positive and negative clock skews are allowed at each latch, it is possible

3 that the net increase in the clock tree routing area may be insignificant. Nevertheless,

more thorough study should be conducted before the clock skew optimization technique

can be applied to real circuit designs.

I
I
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Finally, the clock skew scheme may appear similar to the maximum-rate pipelining

technique used in pipelined computer systems [40]. However, the clock in a. maximum- I
rate pipeline cannot be single-stepped or even slowed down significantly. This makes

maximum-rate designs extremely hard to debug. In the clock skew sc6 eme, by constrast,

single-stepping is always possible (9]. Therefore, circuits implemented using clock skew I
techniques can be debugged without difficulties.

I
I
I
I
I
I
I
I
I
I
I
I

76 I



I
I
I
i CHAPTER 4

I PARTITIONING FOR
OPTIMIZATION

I
I 4.1 Introduction

As indicated in Section 3.4, the number of constraints in our formulation of the LP

is, in the worst case, proportional to the product of the number of gates and the number

of FFs in the circuit. Ideally, for a given synchronous sequential circuit, all variables

and constraints should be considered together to obtain an optimal solution. However,

for large synchronous sequential circuits, the size of the LP could be prohibitively large

even with our symbolic constraint propagation algorithm. Therefore, it is desirable to

l partition large synchronous sequential circuits into smaller, more tractable subcircuits,

so that we can apply the algorithm described in Chapter 3 to each subcircuit. While

this would entail some loss of optimality, an efficient partitioning scheme would minimize

that loss; moreover, the reduction in execution time would be very rewarding.

It is well-known that multiple-way network partitioning problems are NP-hard [41].

Therefore, typical approaches to solving such problems find heuristics that will yield

approximate solutions in polynomial time [42, 43]. Traditional partitioning problems

7
77U



I
I

usually have explicit objective functions; for example, in physical layout it is desirable

to have minimal interface signals resulting from partitioning the circuit, and hence the I
objective function to be minimized there is the number of nets connecting more than

two blocks. Our synchronous sequential circuit partitioning problem, however, is made

harder by the absence of a well-defined objective function; since our ultimate goal is to

minimize the total area of the circuit, there is no direct physical measure that could serve

as an objective function for partitioning. In this chapter, we develop a heuristic measure

that will be shown to be an effective objective function for our partitioning problem.

In this chapter, we first briefly discuss previous work on network partitioning in I
Section 4.2. We develop our partitioning algorithm based on Sanchis' multiple-way par-

titioning algorithm [42]; details of Sanchis' algorithm are provided in Section 4.3. We

present our synchronous sequential circuit partitioning algorithm in Section 4.4. Finally, U
experimental results are given in Section 4.5, and we conclude this chapter in the same 3
section.

4.2 Previous Work on Partitioning

As VLSI system complexity increases, a divide-and-conquer approach is used to keep I
the circuit design process tractable. Using this strategy, a complex problem is divided into

small subproblems, thus reducing the complexity of the original problem dramatically.

I
I
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Given a circuit (network) consisting of a set of modules (nodes) connected by a set

of signals (nets), the objective of a K-way partitioning is to divide the whole circuit into

iUK subsets such that the number of signals crowing these subsets is minimized.

A network as described above can be modeled as a graph where each edge (net)

i connects exactly two vertices (node). The graph partitioning problem can be formally

stated as follows. We are given an undirected graph, G = (V, E) where vertices V =

{uv2, ,'.. ,v,) and weighted edges e = (vi,vi) represent the cost of putting vi and

vi in separate partitions. The problem is to divide the vertices into k disjoint sets

I {P , .,'", Pk} for a given k, such that some cost function is optimized. The cost

function can be based on the weights of the edges cut and/or the sizes of the partitions.

Ford and Fulkerson [44] proposed the ma-flow-min-cwt algorithm, which A..,As the

U optimum solution between subsets of unconstrained sizes in polynominal time. Using

3 their algorithm, a minimum cut separating designated nodes s and t can be found by

flow techniques in O(n 3 ) time, where n = jVI = number of vertices in the graph. Cut-tree

techniques [451 will yield the global minimum cut using n - I minimum cut computation

in O(n 4 ) time. However, these algorithms tend to generate very unbalanced partitions.

Unfortunately, when size balancing constraints are imposed, the problem becomes NP-

complete. Because of its importance, many heuristics have been proposed to solve the

I partitioning problem [42,43,46-51]. These heuristics can be classified into the following

3 two categories:
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(1) Iterative method- Iterative heuristics explore the solution space by making a large

number of moves (small changes to the solution) either randomly or greedily in an I
attempt to discover a global minimum.

(2) Spectral method - In spectral partitioning techniques, the eigenvectors and eigen-

values (spectrum) of a graph are computed, and a cost function is shown to be

minimized by a function of the spectrum. Some heuristic is used for mapping the U
information provided by the eigenvectors into an actual partition.

The two approaches are discussed in more detail in the following two subsections.

4.2.1 Iterative partitioning

In [46], Kernighan and Lin described a heuristic procedure for graph partitioning I
which became the basis for most of the iterative improvement partitioning algorithms 3
generally used. Their algorithm deals with the problem of partitioning a network wita

n cells (vertices) (n even) into two partitions of n/2 cells each. The basic approach is to

start with a given partition and to improve it by iteratively choosing one node from each

of the blocks (partitions) and exchanging them. The nodes are selected to be switched so

that a maximum decrease in cut-set size is obtained (or minimum increase if no decrease

is possible). The algorithm consists of a series of passes. In each pass,* two nodes are I
interchanged in turn until all n nodes have been moved. In each iteration, the two nodes

to be moved are chosen from among the ones which have not been moved during the

pass. At the end of each pass, the n/2 partitions produced during the pass are examined
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and the one with the minimum cut-set size is chosen as the starting partition for the next

I pass. Passes are performed until no improvement in cut-set size can be obtained.

3 Fiduccia and Mattheyses [471 modified the Kernighan-Lin algorithm. Their algorithm

has a linear worst-case complexity in each paws. In their algorithm, onl one cell is moved

U between two partitions at a time instead of switching pairs. This allows for more flexibility

in block sizes. In addition, a method is introduced for keeping the candidates in each

partition sorted at all times. Elegant data structures were developed through which they

could maintain the sorted candidates, and thus avoiding searching for a candidate to

U be moved. Hence a linear-time complexity is achieved. Fiduccia and Mattheyses also

3 introduced the idea of preserving balance in the sizes of the blocks. Since only one cell

is moved at a time, block sizes cannot be contrained to be constant during the pass.

I Instead, each block's size is constrained to be withi'. a given range. When choosing the

next cell to be moved, the cell with the highest gain (reducing maximum number of cuts

across the partition) in each block is examined. It will alway6 ,e possible to move at

least one of these cells while preserving balance. If both may be moved, the one with the

highest gain is selected.

3 Krishnamurthy [481 further improved the Fiduccia-Mattheyses algorithm by refining

the method for choosing the best cell to be moved. He introduced the concept of level

I gain. Consider the example shown in Figure 4.1. Moving A would eliminate one net;

3 moving B, however, would not eliminate any net. However, if we move B and C together,

two nets can be eliminated. Therefore, the first level gain (71) of A is 1, and that of B

is 0; while the second level gain (-y2) of A is 0, and that of B is 2. The gain vector of a

U
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CI

Figure 4.1 An example illustrating the concept of level gain.

cell E is then defined as =

17,(E) =< 7,(E),..,(E >(4.1)

where I is the number of levels used. These vectors are ordered lexicographically. At each

iteration, the free cell with the largest gain vector is moved. Computing higher-level gains

enables the algorithm to better distinguish between cells whose first-level gains are the

same.

In (421, Sanchis further generalized Krishnamurthy's algorithm to deal with the multiple- I
way partitioning problem. There are several ways in which a two-way partitioning algo-

rithm can be adapted to multiple-way partitioning. For example, one can successively

choose pairs of blocks and apply the two-way algorithm to these pairs. However, since

eliminating a net from the cut-set formed across a given pair of blocks does not neces-

sarily remove it from the cut-set of the multiple block partition, this method may not

be able to obtain good results. The second method consists of a hierarchical use of the

two-way algorithm. For example, for a four-way partition we could use the two-way al- I
I
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gorithm to partition the cells into two blocks, and then partition each of these two blocks

into two blocks each. However, the first partitioning will try to minimize the number

of connections between the first two blocks, thus tending to maximize the connections

inside these two blocks and making it harder to obtain good partitions thereafter. An

I alternative for obtaining better solutions is to attempt to improve the partition uniformly

3 at each step. Under such a scheme, we should consider at each iteration during a pass all

possible moves of each free cell from its home block to any of the other blocks, and the

best of such moves should be chosen. This is the basice approach taken by Sanchis. Since

we develop our partitioning scheme based on Sanchis' algorithm, details of the algorithm

will be discussed in Section 4.3.

More recently, Yeh et al. [43] proposed a general-purpose multiple-way partitioning

U algorithm. In their approach, a top-down clustering is carried out first to group highly

connected subsircuits into clusters and then condense these clusters into single nodes prior

to the execution of iterative procedure. They also proposed a uniform multipin net model

to capture the contributory moves. Consider the example shown in Figure 4.2. Suppose

during a pass, nodes A, B and C have not been locked. Moving A would eliminate nets

ie, eC, and ei and introduce net e,, to the cut-set. Thus the gain would be 2. Moving

B would not eliminate any net, but would allow for nets ej, e2, and e to be eliminated,

I provided that node C is moved along with B. If we use the level gain model, the moving

of A would be favored, which would depress the movement of B and C. Based upon the

above observation, a different approach is introduced. Let us now concentrate on the

perspective of nets. If we want to eliminate net ej, we would have to move B and C
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Figure 4.2 An example for multipin net model.

together. This would also introduce the elimination of nets ei and e at the same time.

Thus the gain would be 3. On the other hand, if we decide to remove net ea, we would

move A only, and the gain is 2. Therefore, if we view a move as initiated by a net instead I
of a node, the ambiguity associated with selecting moves would be reduced. Based on this

model, a primal-dual iteration is used to enhance the iteration improvement. The primal

process is based on the Fiduccia-Mattheyses algorithm. The dual process is similar to

the primal process except that it concentrates on net perspective during the pass.

4.2.2 Spectral partitioning

Spectral-based partitioning extracts information about the structure of the graph I
from the eigenvalues and eigenvectors of the matrices derived from the graph. A graph

can be represented by the adjacency matriz A(G).I aii, if (vi, vi) E E
•j =. (4.2)!

0, otherwise
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where aii is the weight of the edge between vi and vi. By convention, Ai = 0 for all

3 i -- 1,..-, n. If we let d(vi) denote the degree of node vi (i.e., the sum of weights of all

edges incident on vi), we obtain the n x n diagonal degree matrix D(G) defined by

0, ifi =j

1 The Laplacian of G is the n x n symmetric matrix Q(G) = D(G) - A(G). Since the

3 rows (and columns) sum to 0, the Laplacian is singular; it has rank of at most n - 1 and 0

as an eigenvalue. In fact, the multiplicity of the 0 eigenvalue is the number of connected

components of G.

I Donath and Hoffman [52] derived a lower bound on the weight of the edges cut (E,)

3 by a partition. satisfying predetermined partition sizes. If mI _ m 2 2: ... Ž_ mk are

the given partition sizes and A1 :5 1\2 :5 ... "' A are the smallest k eigenvalues of the

1 Laplacian, then E, >_ 1

3In [53], Hall showed that the eigenvalues/eigenvectors of the Laplacian solve the one-

dimensional quadratic placement problem of finding the.vector x = (zX, X2,. X, z,•) which

minimizes the total weighted squared distance between n points that can be expressed

l~as
* X,~( -) 2A4, (4.4)

subject to the constraints Ixi = (xTx)1/2 - 1.

Here zi is the coordinate assigned to vertice vi in a one-dimensional space. The

I constraint is imposed to avoid the trivial solution in which all xis are equal. Equation

8
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(4.4) can be rewritten in matrix notation in quadratic form as U
minimize z = XTQX

subject to (xTx)1 /2 - 1 (4.5)

To solve this constrained minimization problem, we form the Lagrangian I

L = xTQx - A(xTx- 1) (4.6) 1
Taking the partial derivative of L with respect to x and setting it equal to 0 yields I

2Qx- 2Ax = 0 (4.7) I

which can be rewritten as U
(Q - )J)x = 0 (4.8) 1

where I is the identity matrix. 3
This is an eigenvalue formulation for A. For a system of n linear equations, there are n

possible eigenvalues A1 _5 A2 _ ... _< A,. For a connected graph, the Laplacian has rank 1

of n - I. The minimum eigenvalue 0 gives the trivial solution x = (1 / Vrn),..., 1/V(n). 3
Hence the eigenvector corresponding to the second smallest eigenvalue, A2 is used. The

second smallest eigenvalue is a lower bound on a nontrivial solution to (4.5). In his

paper, Hall heuristically derived a k-dimensional generalization in which the eigenvectors 3
are used as the basis for clustering placement. 3

Recently, Hagen and Kahng [49] established a connection between Hall's formulation

and 2-way ratio-cut (541 partitioning. They construct a 2-way partition from v2 (the 1

8
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corresponding eigenvector of A2) by sorting v2 and identifying a cut in the sorted v2

which yields the best ratio-cut value.

I In [51], Chan et al. developed a spectral approach to multiple-way ratio-cut parti-

tioning which provides a generalization of the ratio-cut cost metric to k-way partitioning

I and a lower bound on this cost metric. Their approach involves finding the k smallest

3 eigenvalues/eigenvector pairs to the Laplacian. The eigenvectors provide an embedding

of the graph's n vertices into a k-dimensional subspace. A heuristic is then used to

enforce the points in the embedding into k partitions.

I
4.3 Sanchis' Multiple-way Partitioning Algorithm

-- A cell is labeled free if it has not been moved during the pass; otherwise, it is labeled

locked. Define

6Aj(N) = I{CIC E A and CE CN andC i. free}I

A,((N) = I{Cl E A and C • CN and C is locked}l (4.9)

Thus OA,(N) is the number of free cells on the net N which are in the block A, while

3 •AA. (N) is the number of locked cells on net N which are in the block A. For each block

g A. and each net N, define the binding numbers 0:

13A,(N) OA.(N) if AA,(N)=0 (4.10)

0o if AA, (N) > 0
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The binding number of a net with respect to a block of a partition indicates how tightly

the net is bound to the block. We also define the function 0' as follows:

Y,(N) = /,,8A(N) (4.11) 5
•i•

That is, #/3(N) is the sum of all of the binding numbers of net N with respect to all of 1

the blocks of the partition except block A.; it gives a measure of how tightly N is bound

to the partitions other than A&. i
We now define the ith level gain associated with moving cell C from block A, to block

Ak.

•,'(C) = I{N E NcI/3A,(N) = i and 6A.(N) >-O}l

-I{N E NcIAf(N) = i - 1 and #A,(N) > 0}1 (4.12) 0
The first term in (4.12) measures the ith level benefit of moving cell C from the side of 3
the partition consisting of all blocks except Ak, to Ak. The second term measures the 3
ith level penalty of moving C from Aj to the side of the partition consisting of all blocks

except A,. I
The balance requirement for the block sizes can be Satisfied as follows. Let r1 ,., rb 3

be such that 0 < r, < I for each i and I
E , =1(4.13)
iml 3

We want the size of Aj to be close to ric, where c is the total number of cells in the

network. A parameter w is chosen such that 0 < w :_ minj<j<b(rjc), and we allow the 1

following range for the size of A.:

ric- w < IA1 - ric + w (4.14)
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IThat is, a cell move from A, to Ai is allowed if it. preserves the above relationship for A.

I and Ai.

I Given the initial partition, the algorithm improves the partition by iteratively moving

one cell from one block to another in aseies of paes. A cell is labeled free if it has not

Ibeen moved during that pus. Each pass in turn consists of a series of iterations during

I each of which the free block with the largest gain is moved. During each move, we ensure

that the number of constraints in a block does not violate the constraints given by (4.14).

The gain vector, m•(C), as defined in (4.12), is updated constantly as cells are moved

from one block to another. At the end of each pass, the partitions generated during that

pass are examined and the one with the minimum cut-set size is chosen as the starting

partition for the next pas. Passes are performed until no improvement of the objective

I value can be obtained.

I
4.4 Synchronous Sequential Circuit Partitioning

To help us describe our partitioning algorithm, we introduce the following terminol-

ogy. For a synchronous sequential circuit, such as one shown in Figure 4.3, we define the

Sfollowing.

An internal latch is a latch whose fan-in and fan-out gates belong to the same combi-

national block.

A sequential block consists of a combinational subcircuit and its associated internal

latches.
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Figure 4.3 An example illustrating the definition of an internal latch, a sequential 1
block, and a boundary latch.

Boundary latches are latches that act as either a pseudo-PI or a pseudo-PO (but not a
both) to a combinational block, i.e., latches whose fan-in and fan-out gates belong

to different combinational blocks. I

A partition of a synchronous sequential circuit N is a partition of the sequential I
blocks of N into disjoint groups. A b-way partitioning of the network is described by the 3
b-tuple (GCv, G2 , ... G1 ) where the G~s are disjoint sets of sequential blocks whose union

is the entire set of blocks in the network. Each G4 is said to be a group of the partition.

After partitioning, boundary latches that lie between groups (that do not belong to any 1

groups) will be set to have constant skews. In other words, we do not have any control 3
on the skews of those latches during the optimization process.

For a given sequential block B, let LB denote the set of boundary latches incident on

B, and for a given boundary latch L, BL denotes the set of sequential blocks that L is 3
9
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Figure 4.4 Tightness factor.

connected to. For each boundary latch L, we define input tightness rj,,, output tightness

r .t, and the tightne ratio r as

,r•,(L) = maximum combinational delay from any boundary latch to L in the

unsized circuit,

r.,(L) = maximum combinational delay from L to any boundary latch in the

unsized circuit,

T-(L) = I "/O"• if-,,>r -2:.,, (4.15)

where the adjective "unsized" implies that all gates in the subcircuit are at the minimum

size. The tightness ratio r(L) provides a measure of how advantageous it would be to

provide a skew at L. For example, in Figure 4.4, if the input tightness (of path Pin,)

is 3.0, and output tightness (of path P.,t) is 1.1, retiming the path Pi,, U P..t would be

of great benefit. Therefore, if the circuit contains an FF whose input and output are

connected to paths with vastly different tightness factors, the two paths should remain

in the same partition.
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Figure 4.5 Example showing the definition of merit. 5
For each pair of blocks (B,, Bi), define merit p. as

•j -- T(Lk) (4.16) 3
I

where Bi - Bj means latch L, lies between Bi and B,. The value of Aij is defined to

be 0 if Bi and B, are disjoint. For example, in Figure 4.5, sequential blocks (Bi and Bi) I
are connected through three latches LI, L2, and L3 with tightness ratios r(L1), r(L 2) and

,r(L 3), respectively. Then the merit between the two blocks is Aij = r"(LI)+T"(L2 )+"(L3).

Physically, Aji is used to measure the figure of merit if Bi and Bi are in the same group. 3
A high pj means that the tightness ratio is high, and hence Bi and B, should be in the

same group.

The cost associated with each block, Bi, is cj, the number of linear programming con- 3
straints required for solving Bi. This number can be calculated very efficiently. Assume

that group Gk consists of blocks Bkt,i = 1,... IGkI. Then we define the cost of Gk, UC(Gk) = IGtlJ MIk J~Jr~lIi

(=x c= , and the merit of Gk, M(G1 ) = p=, We now formulate

the following optimization problem:
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max E M(G&)

Subject to C(Gh) < a MaxConitraints " (4.17)

where N is the number of groups, MaxConstraints is the maximum number of con-

straints that one wishes to feed to the LP, and a 2: 1 is introduced so that the parti-

tioning procedure becomes more flexible since the cost of a group is allowed to exceed

MaxConstraints temporarily. Now that the partitioning problem has been explicitly

defined, we develop a multiple-way synchronous sequential circuit partitioning algorithm

based on the algorithm proposed by Sanchis (42].

For each group Gk and each boundary latch L, define the connection number, 4, as

O*G(L) = I{BIB E Gk andB E BL}I (4.18)

Since each boundary latch connects exactly two blocks, 4G,(L) E {0, 1, 2}. In other

Lwords, if Bi 4* Bi, then (a) if Bi 0 G* and Bi 0 Gk, OGA(L) = 0 (Figure 4.6(a)), (b)

if Bi 0 Gk and B, E Gk, or vice versa (Figure 4.6(b)), Oab(L) = 1, and (c) if Bi E Gk

and B, E Gk, 0I Gt(L) = 2 (Figure 4.6(c)).

The gain associated with moving B from Gi to Gi is defined as

r,,(B) = E(r(L,)IL, e LB Cand *,(L,) = 1)

- ('(L,) IEL. E LB and OGI,(L,) = 2) (4.19)

The first term of (4.19) measures the benefit of moving B to Gi, while the second

measures the penalty of moving B out of Gi.
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Figure 4.6 Example showing calculation of connection numbers.I

As an example, consider a scenario illistrated in Figure 4.7. According to the figure,

latch L, belongs to group Gi, while Lt does not belong to any group. Therefore, we are 3
able to change the skew of latch L,,, but not that of latch Lt. If we move sequential block g
B from Gi to G,, latch Lt would be included in group Gi, which means that we are able

to adjust the skew of latch Lt when we apply our optimization procedure on group Gi. 3
On the other hand, now L, does not belong to any group. Therefore, by moving B from

Gi to Gi, we obtain control over latch L,,, and the benefit is -r(LI). Also we lose control U
I
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Figure 4.7 Moving gain.

on latch L., which gives a penalty of r(L.). Finally, latch L,, does not play a role here,

since it doeo not belong to groups Gi or Gj, before or after the moving.

Before beginning the partitioning procedure, the number of linear programming con-

straints, ci, required for each block i is calculated using the modified symbolic constraints

propagation algorithm. If ci > MaxConstraints for some block Bi, then it is placed in

a group alone and will not be processed later. Let

TotalConstraints = "(cici < MaxConstraints) (4.20)
j

Each remaining block is put into one of the N' groups,

I=.[TotalConstraints9 4.1
N' = |MaxConstraints | ' (4.21)

such that for each group k, C(Gk) < MaxConstraints. This is an integer knapsack

problem, and many heuristic algorithms can be used to obtain an initial partition (see,

for example, [551, Chapter 2). In some cases, it may be impossible to put all blocks into

N groups without violating the restriction on C(Gk) above; if so, the number of groups

may be larger than that given in (4.21).
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After the partitioning, we apply the optimization algorithm described in Chapter 3

to each group. 3

4.5 Experimental Results and Conclusion U
Table 4.1 gives the experimental results for the partitioning procedure. Since most

of the ISCAS89 circuits consist of only one combinational block, we generated some 3
synchronous sequential random logic circuits. The number of gates and FFs in those

circuits are shown in Table 4.1. For each circuit, we conduct three experiments.

(1) First, we minimize the area using clock skew optimization, but without partitioning. I

(2) Secondly, we minimize the circuit area using both clock skew optimization and I
partitioning. 3

(3) For comparison, we minimize the circuit with neither clock skew optimization nor

partitioning. I

From the table, it can be seen that the first approach is able to obtain the best result I
as expected. Since it considers all variables at the same time, it provides the best solution. 3
However, the run time is large. Compared to the first approach, the second approach runs

much faster, at a very slight area penalty. Not surprisingly, the third approach gives the I
worst solution. We also note that the introduction of clock skew provides a significantly 3
faster clock speed for circuit m1337. Although it has not been shown here, the same

result also holds for m1783. For m1783, we also specify several different MaxConstraints. 3
The result shows that as the specified MaxConstraints increases, the number of groups

after partitioning decreases. As the number of groups decreases, the optimized solution

I
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Table 4.1 Performance comparison of the partitioning procedure.

Circuit #of #of #of #of #of

PIs POs FFs gates blocks

m51 8 8 12 51 5
m144 16 2 18 144 9

m1337 51 53 97 1337 42
m1783 90 54 124 1783 43

Circuit Pp. with clock skew opt. without

w/o partitioning with partitioning

Area Run time MxCnstt NS Area Run time Area Run time

m51 5.0 731 1.74s 300 2 813 1.50s 849 1.29s

m144 6.2 1872 6.11s 300 5 1953 3.32s 2410 2.87s

m1337 9.5 12364 135.35. 1500 6 12370 58.969 13055 47.54s

S9.25 12353 151.34a 1500 6 12356 57.91s -

7.5 12685 171.92s 1500 6 12689 60.74s
6.75 13049 186.61s 1500 6 13112 60.94s

""F- 6.5 - 1500 a - -

m1783 9.5 18564 427.14s 300 16 18743 155.07s 21074 140.23s

1 1000 8 18708 156.55s

2000 6 18572 159.93s

3- t MxCnst = MaxConstraints, the maximum number of contraints.
N, number of groups after partitioning.
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using the partitioning procedure improves, while the run time increases only slightly. i

When N = 6, the solution is comparable to that without using partitioning, and the run 3
time is still far less than that without using partitioning.

In summary, in this chapter we develop a synchronous sequential circuit partitioning I
algorithm. We propose a heuristic measure which is shown to be effective as the objective

function of the partitioning problem. Experimental results show that our partitioning

procedure is very effective in making our optimization algorithm run at a much faster i
speed, with no significant degradation in the quality of the solution. 5

!
I
I
I
I
I

I
I
U
I
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CHAPTER 5

* DELAY AND AREA
OPTIMIZATION FOR

PLACEMENTI
I

5.1 IntroductionI
For standard-cell based VLSI circuits, optimization for improving timing performance

I can be carried out at three levels in the design process: logic synthesis, gate size selec-

3 tion, and layout. In previous chapters, we have concentrated on optimizing the timing

performance of a VLSI circuit by gate sizing. Thus far, we have not considered inter-

3 connect delay due to wiring capacitances. As the size of today's VLSI circuits becomes

increasingly larger and the device size becomes smaller, the delay of a circuit becomes

dominated by interconnect delays [56]. For example, in an SSI or MSI chip designed in

3 5 pm nMOS technology, the gate input capacitance (15 fF per minimum size transistor)

dominates the wiring capacitance (200 fF/mm). A typical transistor with W/L = 10 has

a capacitance of 150 fF, which is equivalent to 0.75 mm of wire. With a typical MSI

3 die size of a few millimeters on a side, most of the nets will be well below 0.75 mm.

According to the scaling theory, when the transistors are scaled down, the gate input

U capacitance is reduced, while the wiring capacitance per unit length is unchanged (56].

i
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Therefore in a 0.5 pm CMOS technology, a minimum-sized transistor has 1.5 fF input

capacitance, which yields a typical transistor (WIL = 10) input capacitance of 15 fF. 3
This is equivalent to 0.075 mm of wire, which represents a large number of the nets in a

typical 12 x 12 mm VLSI chip. Consequently, as the devices are scaled down further in

submicron technology, the node capacitances will not go down as much as they did in a 3
5 ,m nMOS MSI chip because of the increased role of the wiring capacitance, and the

delay of a circuit is dominated by interconnect delay. I
In this chapter, we extend our work to consider interconnect delay. We coL ate our I

work on the gate size selection and placement steps. Layout optimization, also referred to

as timing-driven layout is concerned with placement and routing. From the overall chip I
timing viewpoint, the placement steps are more critical than the routing which can affect 3
mostly the local issues such as noise coupling. For this reason, placement has received

more attention in timing-driven layout. 3
Recently, there has been extensive research on timing-driven placement [10-13]. Timing-

driven placement techniques can be broadly divided into two categories: net-oriented and

path-oriented. In the net-oriented approach, the acceptable delay of each gate (cell) is 3
calculated and translated into bounds on the delay associated with each net. These

bounds then serve as constraints during the subsequent placement step. In the path-

oriented approach, timing analyses of critical paths are performed dynamically during I
the placement step. All paths, or a subset of them, are taken into account implicitly in

the formulation. Since the delay of a circuit is inherently path-oriented, it is expected I
that path-based approaches can obtain better solutions (13,57]. 3

A standard-cell library typically contains several versions of any given gate type,

each of which has a different gate size. The gate-sizing problem is that of choosing I
I
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-- optimal gate sizes from the library to minimize a cost function (such as total circuit

area), while meeting the timing constraints imposed on the circuit. This is usually

done after technology mapping, where the logic function of each gate is determined, and

I-- before the physical placement step. A drawback of such an approach is that accurate

3 interconnect wire lengths are not available during the gate-sizing procedure. The gate size

selected optimally at that stage may no longer be optimal after the physical design stage

I where large interconnect capacitances are introduced at the output of each gate. To deal

with this problem, an iteration procedure is usually followed. After global placement,

the capacitance associated with each net is extracted, and the gate-sizing procedure

is repeated. However, in such an iterative approach, the variation of net capacitance

between iterations may be large and cause large perturbation in the solutions. Thus, a

number of iterations may be required, making this approach quite expensive. To deal

with this problem, it is desirable that gate sizing and placement be incorporated into a

single procedure.

As an illustration, consider a layout placement shown in Figure 5.1(a). Gate D

fans out to gates LI, L4 and L3 . Assume that the delay of this circuit under such layout

conditions violates the timing constraints imposed on it. Moreover, D and L2 lie on a long

path whose delay exceeds the timing constraint. Conventional timing-driven placement

would move D, L 1, L2 and L4 closer to one another to decrease the delay of gate D, as

shown in Figure 5.1(b). This may increase the wire lengths of other nets attached to

cells D, L 1, L2 and L3. But if automatic gate sizing is incorporated with timing-driven

placement, a possible solution would be to replace D with a template with a higher

driving capacity, and L, with one with a smaller loading capacitance with respect to D.

As a result, some of the cells could be moved to better locations, as shown in Figure
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Figure 5.1 Advantage of gate sizing together with placement.

5.1(c). The overall effect is a reduction of the long-path delay, while the increase in area

is kept to a minimum.

In [58], Kim et al. propose an area-timing-testability driven placement algorithm. 3
Their algorithm consists of a series of iterations. At the beginning of each iteration,

a placement using Timberwolf [59] is done to minimize the total wire length. After

placement, a set of partial scan flip-flops is selected, followed by a gate-sizing step [23]. 3
After gate sizing is done, timing bounds are calculated for each net; then Timberwolf is

called again to obtain an improved layout. In each iteration of the annealing step inside 3
Timberwoif, cells switch their positions in an attempt to reduce the total wire length 3
and also to meet the timing bound assigned to each net. Therefore, the algorithm is

net-based, and the gate sizing and placement steps are treated separately. I
In this chapter, we propose an algorithm which combines the gate-sizing problem 3

and timing-driven placement into one procedure. By considering these two problems
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together, the value of the interconnect capacitance is known during the selection stage

of the automatic sizing procedure. Therefore, optimal gate sizes can be chosen for each

gate based on layout information, thus reducing the number of iterations required in

i the conventional approach. For simplicity, we use a row-based layout style. However, a

i more general arrangement can be used. In the following, the terminologies "gate" and

"(cell are used interchangeably. Both refer to a module in the circuit. Besides, in the

i following, we consider combinational circuits only. For a sequential circuit, we can apply

i our algorithm to a combinational block in the sequential circuit one at a time.

This chapter is organized as follows. Section 5.2 briefly discusses previous work on

I timing-driven placement. In Section 5.3 we formulate the task of timing-driven placement

with automatic gate sizing in a single optimization problem. In Section 5.4 we describe a

novel algorithm which performs delay and area optimization for a given compact place-

ment by means of gate resizing and relocation. Experimental results are provided in

Section 5.5. Finally, we conclude the chapter in Section 5.6.

5.2 Previous Work

I For many years, timing-driven layout techniques were net-oriented. The timing con-

straints derived from higher levels were translated into bounds on delay associated with

each net, and timing-driven placement and routing were used to synthesize a layout sat-

Sisfying those constraints. However, timing is not associated with the nets but with the

signal flows along paths which are combinations of nets in the circuit. Therefore, instead

of satisfying individual net delays, the constraints on the sum of delays of all of the nets

i constituting a path must be satisfied.
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To take into consideration more accurate timing behavior and achieve globally better

solutions, timing analysis of critical paths must be performed dynamically during the

placement procedure. Such a technique is proposed by Jackson and Kuh in [101 where

a sequence of linear programming steps is used to determine the cell placement in a I
hierarchical approach. The delay behavior is modeled in a path-oriented manner and 3
considers intercell delays as well as interconnect and pin capacitances.

Sutanthavibul and Shragowitz (601 proposed a hierarchical constructive placement I
algorithm with look-ahead and adaptive placement capabilities. The delay functions are 3
computed based upon the net geometry, capacitance per unit wire length, and the net

loading, to arrive at the path delay values. I
Donath et al. [61] introduced an approach in which the timing is evaluated together

with routability in the global placement step. The parameterized delay equations are used

in the path analysis. During the placement of cells on the critical paths, fast incremental 3
timing analysis is performed to evaluate the feasibility of each move. A complete timing

analysis is done after each major step.

Srinivasan et al. [11] proposed an approach based on Lagrangian Relaxation. They 3
observed that only a small subset of timing requirements is active as constraints at one

time, thus the problem of a large number of paths can be effectively avoided. They I
represented timing requirements by a set of linear ineqialities. When the corresponding 3
constrained optimization problem is turned into a Lagrangian, these linear inequalities

make the Lagrangian nondifferentiable. The subgradient method was used to update I
Lagrange multipliers on the nondifferentiable Lagrangian. 3

Most recently, Hamada et al. [13] proposed an algorithm which also transforms the

placement with timing constraints into a Lagrangian problem. A primal-dual approach I
I
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is then used to find the optimal relative module locations. In each primal dual iteration,

the primal problem is solved by a piecewise linear resistive network method, while the

dual process is used to update the Lagrange multipliers by using the Newton method.

5.3 Timing-Driven Placement with Gate Sizing

Typically, a path-based timing-driven placement algorithm formulates the placement

problem as an optimization problem, with both timing requirement and physical place-

ment requirement as constraints. The constraints are usually linear ones. The objective

function can be either a linear function or a quadratic function of the cell coordinates.

A quadratic objective function allows efficient quadratic programming techniques to be

used, thus the problem can be solved relatively fast. However, in [62], it was observed that

a linear objective function tends to reflect the actual wiring demands more accurately

than the quadratic objective function. Therefore, we choose to use a linear objective

function in our approach.

A circuit can be modeled as a set of M gates (cells), Q = {gI,"" ,gm}, interconnected

by a set of N nets, A( = {nl,'" , nN}, that attach to the cells at pins. For the sake of

simplicity, we assume that all gates in the circuit are of single output. Therefore, net

ni is associated with gate g,. Hence, the same index i can be referred to as both a gate

and a net. We also assume that all pins are located in the centers of cells. Therefore,

the physical location of a cell i on the chip is represented by (zx, yi), where zi (yi) is the

x (y) coordinate of cell i. The positions of the I/O pads are fixed and located on the

perimeter of the chip. These constraints act as the boundary conditions.
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I
Figure 5.2 Approximating wire length using bounding box method for 2- and 3-pin

nets. 3

Figure 5.3 Approximating wire length using bounding box method for 4- and 5-pin

nets.

There are three categories of constraints in our LP formulation, namely, physical,3

timing, and sizing constraints.

I
5.3.1 Physical constraints

We approximate the wire length of an individual net by the half-perimeter of the

smallest rectangle enclosing the pins of the net [10]. This approximation is the same as I
the rectilinear, minimal Steiner tree length for two- or three-pin nets (Figure 5.2). The 3
approximation error for four- and five-pin nets is within the width of the bounding box

of the Steiner tree length [63] (Figure 5.3). The bounding box for net i is denoted by four I
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Figure 5.4 Approximating wire length using bounding box method.

parameters, the northernmost (qj), southernmost (ai), easternmost (e), and westernmost

(w,) extents of the pins of the net (Figure 5.4). Mathematically, the bounding box

constraints can be expressed as follows:

Wi Ž5 Xi,,

0%• < yij, Vl <5j <5pi51

where pi is the number of pins associated with net i and j is a pin of net i.

Let Ct, and C. denote the unit length wire capacitance in horizontal and vertical

layers, respectively. Then the interconnect capacitance, Ci, of net i can be estimated as

C, = C%(Ci - wi,) + C.-(17, - ,) (5.2)

Similarly, the length of net i, 14, is

4 = (4 -wi) + (7i --i) (5.3)
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Therefore, the total wire length of the layout is

SIi (5.4)

5.3.2 Timing and sizing constraints

Consider a single-output gate i with fi(i) inputs, and gate i fans out to fo(i) gates.

The worst-case signal arrival time at the output of gate i, mj, can be expressed as

mN . r1j + d, 1 :5 j :5 fi(i) (5.5) 1
Now the delay of gate g9 can be contributed to the loading capacitance of its fan-out I

gates, plus the wire capacitance of its fan-out net ni. Let CL!j represent the loading 3
capacitance of gate g,, with respect to gate 9g. Then the delay of gate gi is I

d - x Cw + r (5.6)
WiU

= -,x (ci + E= CL!.t) +r -' • = + r'2 (5-T)I
fIo~i)

X' jC,,(e'. -- u4) + ,(rj-- +) + E (aj .wq+',,6++Si.)} +','..,++,'2 (5.8)
= i j=l

I
where aj, and 6ji axe related to the (transistor) gate terminal area capacitance and

(transistor) gate terminal perimeter capacitance of the transistor of cell j to which cell i 1
fans out [17].

As in Section 2.3.1, this is a sum of functions of the form y/w. Therefore, it can be

approximated by a piecewise linear function. 1
I
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5.3.3 Objective function

The objective function of our optimization problem can be formulated as

M Nmin(J , -t i + T -EIi) (5.9)
irni m

where Ii is the length of net i, T is a constant. In general, we may want to set T equal

to the sum of the width of interconnect wire and the minimum distance between two

adjacent wires. That way, T is the minimum width a wire occupies on the chip.

The objective function in this formulation represents two important quantities to be

minimized in physical design. The first term is the total area of the cells. The second

term represents the total area taken by the interconnect wires.

5.3.4 Slot constraints

For most placement algorithms using mathematical programming techniques, the so-

lutions in general would yield a placement which could have many cell overlaps. There-

fore, placement is usually alternated with partitioning steps that generate constraints for

the next step. During each step, the following constraint is introduced for each region:

1

r M Yj (5.10)

where rif (r?) is the z (y) coordinate of the center of the i th region, Mi. Mi is the

number of cells in that region.
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Equation (5. 10) forces the center of gravity-of all cells in the region to be equal to the

center of the region. Therefore, the cells are distributed better over the whole placement

region.

5.3.5 Final LP

After introducing the constraints and objective function, we are in a position to

formulate the following linear programming: U
M N

minimize (E"i 'w + T. U ,)
subject to For all gates i = 1... M

mi + d <_ mi V j E Fanin(i) 3
mN :_ T' V gates i at PO's

d. 2_ D(w,, Wi,, ... , Wto(,),ji, ,rl N, '47) (5.11) 3
wi > Minsize(i)

wt :5 Mazsize(i) 3
e Vle ij :_pj

wi <5 VI <_j <p5 ,

7i <: Yij Vi :5j _pj

ai :5 YiiV 1 :5i :5Pi U
The above is a linear program in the variables wi, mi, d, xi, y, I ,, I7i, and ai.

I
I
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5.4 A Unified Algorithm for Adjusting Placement

and Gate Sizing

Although it is possible to solve (5.11) directly, the execution time tnay be excessively

3 large due to the large number of variables and constraints, In this section, we present an

algorithm which tackles this problem indirectly, and thus reduces execution time.

Notice that timing-driven placement is needed because, in general, gate sizes are

3 selected before the placement procedure, and gate sizes are fixed during placement. This

imposes a restriction on the placement tool in the search for a good placement with

minimum wire length. On the other hand, although placement tools such as those in

3 (59,641 can obtain a placement with minimal wire length, the delay of the circuit based

on that placement may exceed timing constraints. Recently, it has been suggested that

I a compact placement which violates the timing constraint could be made to satisfy the

3 delay bound by adjusting the sizes of some gates, without altering the placement topology

(Chapter 16, [65]). In the following, we propose an algorithm which combines gate resizing

I and relocation to satisfy timing constraints, and at the same time the total circuit area

(including cell area and wire length) is kept to a minimum, for a given compact placement.

First, all of the gates in the circuit are set to their minimum size. A compact placement

3 is obtained with the objective of minimizing the total wire length. This can be done by

using existing placement packages (e.g., Timberwolf [59] or Gordian [641). After that, the

wiring capacitance associated with the output of each gate is calculated. Based on this

3 information, together with the circuit structure, optimal gate sizes are selected using the

gate size optimization algorithm described in Sections 2.4 and 2.5. In general, some gates

will be selected to have a larger size. This may cause overlap among cells. This problemI
111I



ALGORITHM Resizing and Relocation() I
1. do initia.l placement; 3
2. do initial gate sizing for all cells in the circuit;

3. while ( timing constraints are not satisfied ) {

4. select gates belonging to type 1, 2, and 3;

5. formulate LP (Eq. (5.11)) for these gates; 3
(remaining cells serve as boundary conditions)

6. solve the LP; I
7. use mapping algorithm (Sec. 2.4) to obtain permissible size

for each gate; U
8. adjust cell locations to avoid overlap;

9. } I

10. report final placement; 3
Figure 5.5 An outline of the Resizing and Relocation algorithm.

can be solved by shifting cells to avoid overlap. In general, however, the perturbation on

the delays of individual gates may cause the circuit delay to exceed the delay constraints. 3
If that does happen, a conventional approach would repeat the gate-sizing procedure

to guarantee that the circuit delay of that specific layout is below the delay constraint.

Usually, the gate sizing and placement procedures have to be repeated a few times before 3
a final solution is reached.

Our algorithm, in contrast, does not repeat the gate-sizing procedure all over again. 3
Rather, once the algorithm detects that the delay of the circuit is violated, a number 3
of gates, as described below, are selected. These gates will be resized and/or moved

to different locations to satisfy time constrains as well as to minimize total circuit area I
(including cell area and wire length). The outline of our algorit' 1 is shown is Figure 5.5. 3
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N In the following, we described how we select only a small portion of gates in the circuit

for resizing and relocation, and how cell resizing and relocation can be combined into

one formulation.

In addition to the worst-case signal arrival time, mr*, for each gate i in the circuit

we introduce the required signal arrival time, r.. The required signal arrival time is the

latest time by which a signal has to arrive at the output of gate i to make the delay at

I the POs less than the specified delay. The required signal arrival time is defined to be

S[ TOW, if gate i at PO
ri=I 4(5.12)

I max{ri - di I Vj E Fanout(i)}, otherwise

I For each gate i, we also define a slack si, where.

3 =, ri - mn (5.13)

3 Definition 5.1 An active gate i is a gate with si < 0. The set of all active gates is

denoted by C.I
Definition 5.2 The timing of a circuit layout is said to be satisfied if and only if C is

3 empty, i.e., si 2_ 0, for every gate i in the circuit.

3 Definition 5.3 A critical path is a path in which all of the gates along the path have

slack values less than or equal to zero.

Our objective is to satisfy specified delay bounds and to keep the total circuit area

I to a minimum. This can be achieved in two ways. The first one is to resize gates. For

3 example, for those gates lying on critical paths, we may replace a gate with a template

with a higher driving capacity to reduce the delay of that gate. Alternatively, we may
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replace a gate with one with smaller input capacitance, thus reducing the delay of its 1

driving gates. The second one is to move some cells to new locations, so as to reduce the

interconnect wiring capacitance attached to those gates lying on critical paths. This will

also reduce the delays of these gates. . 1

The unified optimization algorithm begins by calculating the slack of each gate. Then 1

three types of gates are selected for improvement. U
(1) The first type is active gates, which are gates with negative slack. These gates will

be allowed to change their sizes as well as be free to move to new locations. Since

active gates are those with worst-case signal arrival times later than the required

signal arrival time, it is most important to adjust the delays of active gates such

that the circuit delay is less than the specified timing constraints. However, in

addition to adjusting the size and location of an active gate, the following two

types of cells should also be included in the linear program.

(2) The second type involves those gates with nonnegative slacks less than a small I
specified value, 6. During this phase some gates will change their size, and some

others will be moved to new locations; as a result, output load capacitances of

certain gates will increase (while those of others will decrease). For those gates with 3
large slacks, it is likely that such changes, although they will increase their delay,

will not make their slack negative. Therefore, those gates with larger slacks are

likely to remain nonactive. However, for those gates with small nonnegative slacks, 3
it is possible that such a delay increase will make their slacks become negative.

Therefore, it is more advantageous to include those gates with small nonnegative

slacks in the formulation to avoid additional iterations.
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(3) The third type of gate includes those that are directly connected to the outputs of

active gates. Remember that active gates are those which violate timing constraints.

Therefore, reducing the delays of these gates, besides changing their sizes, can also

be accomplished by reducing their output load capacitances. This can be done by

3 either moving or reducing the sizes of the active gates' fan-out cells.

- Gates belonging to types 1, 2, and 3 are put into the linear program, (5.11), and

a new solution is obtained by solving it. In principle, to obtain a better solution, it is

I_ necessary to include all three types of gates in the linear program. In practice, however,

3 to maintain the efficiency of the program, it is necessary to limit the number of gates to be

included. In addition, since many gates' locations are fixed, they can serve as boundary

conditions for physical constraints. Therefore, the gravity centering constraints, (5.10),

are not needed. Furthermore, to avoid drastically changing the solution, each selected

gate is allowed to change to its nearest larger or smaller size only.

The solution of such a formulated linear program gives a new size and a new position

for each selected cell. The mapping algorithm described in Section 2.4 is used to obtain

the permissible size for each gate. Since many cells are moved to new locations, and some

of them are replaced with templates of different sizes, there may be overlap among some

cells. Therefore, it is necessary to move cells into (slightly) different locations to avoid

overlap.

If necessary, the above procedure is repeated until the delay constraints are all satis-

fied. However, according to our experience, only one iteration is needed in most cases.

Also, since only a relatively small number of gates are selected to be resized and relo-

cated, the execution time for each iteration is relatively small (compared to the time

needed to resize all gates).
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Table 5.1 Experimental results of PRECISE.

Crct Tom Conventional approach PRECISE Ap LP
Am LUT

co A M run time cell wire run time
area length are lengthI
(AM) (Lm) (Ap) (Lp) II

c432 14.0 3111 785 31.22s 3061 732 45.77: 0.984 0.922 I
13.0 3726 912 31.58. 3484 796 59.26s 0.935 0.873
12.0 1 - - 4344 913 1min 52s - -

c1355 20.0 8096 2612 2min 2s 7997 2356 Imin 53s 0.988 0.902
19.0 8998 2794 3min 18s 8911 2619 2min 51s 0.990 0.937
18.0 - - - 9912 2811 5m,; 33s

c2670 2,5.0 18015 11243 12min 31s 17680 10710 7min 26s 0.981 0.953
23.0 18648 11462 14min 14s 18408 10840 8min 11s 0.987 0.946
21.0 - 19692 11788 8min 57s

e5315 26.0 37650 23810 47m,; 31s 37310 23173 25min 7s 0.991 0.973
24.0 38432 24231 59mmn 46. 38055 23534 31mi- 11s 0.990 0.971
22.5 - - 39351 24344 41m* 51s -

c7552 27.0 50968 43625 2h 3mmn 51046 42524 lh Omin 1.007 0.975
24.0 - - 52699 43613 lh 1r4min - -

23.0 - - - 54088 43673 2h 2mmin

Average Ratio 0.983 0.939

I
5.5 Experimental Results

The above algorithms have been implemented in C in the program PRECISE (PeRfor-

mancE-driven plaCement with automatic gate SizE optimization) on a Sun Sparc 10 U
Station.

The experimental results of the program PRECISE, which implements the unified

placement improvement and gate resizing algorithms, are summarized in Table 5.1. I
I
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To show the effectiveness of our algorithm, we intentionally adjust the value of the in-

terconnect wiring capacitance per unit length, such that interconnect delay accounts for

about 30% of the total delay of each circuit. At present, we use Fiduccia's min-cut

partitioning algorithm [47] to obtain a compact placement. The partitioning algorithm

recursively divides cells into two partitions so that the number-of nets that cross the par-

tition boundaries is minimized, until a small number of cells are left in each partition and

then cells are placed to their final location. It has been observed that partitioning-based

placement tends to spread the wiring across the layout surface and thus produces very

routable placement (Chapter 4, [3]). More compact placement can be obtained by using

i other algorithms (e.g., (59,64]). For comparison, we also perform placement and gate

i sizing based on the purely iterative approach. That is, the two procedures of placement

adjustment and gate resizing are executed separately and are included in an iteration

U loop. The experimental results show that PRECISE is able to obtain better solutions

than the conventional iterative approach. Moreover, for very tight timing bounds, the

conventional approach fails to obtain solutions at all. This is because cell locations are

i fixed in the conventional approach, and excessively large capacitances may have been

introduced at the output of some gates on critical paths. On the other hand, in addi-

i tion to resizing cells, PRECISE also moves cells to different locations to reduce large

i wiring capacitance. Therefore, it is able to obtain solutions even for tight delay bounds.

Furthermore, since instead of trying to resize all cells, PRECISE resizes only a small

i portion of cells when timing bounds are violated; as a result, its execution time is faster

in general.
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5.6 Conclusion

To date, gate sizing and placement are treated separately in different steps 'during the

circuit design process. Such an approach ham not caused much trouble because intercon-

nect delay takes up only a small amount of the circuit delay in a chip fabricated using

today's VLSI technology. However, as the devices are scaled down in deep submicron I
technology, the delay of a circuit becomes dominated by interconnect delay. Therefore,

it becomes more and more important to combine gate sizing and placement into one

procedure. I
In this chapter, for the first time, the gate-sizing problem is combined with placement

in one formulation. Although the execution time for the combined problem may be ex-

cessively large, we propose an indirect approach to fully utilize some special properties of

the formulation to develop a novel algorithm which performs delay and area optimization

for a given compact placement, by resizing and relocating cells in the circuit lay-out. The

experimental results are very encouraging.

I
I
I
I
I
I
I
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CHAPTER 6

CONCLUSIONS

In this thesis, an efficient algorithm is presented to minimize the area taken by cells

in standard-cell designs under timing constraints. Experimental results show that our

approach can obtain a near-optimal solution (compared to simulated annealing) in a

reasonable amount of time, even for very tight delay constraints.

For synchronous sequential circuits, a unified approach to minimizing circuit area and

optimizing clock skews is presented. Traditionally, the circuit area of a sequential circuit

is minimized one combinational subcircuit at a time. Our experiments have shown that

this may lead to very suboptimal solutions in some cases. We formulate the discrete

gate-sizing optimization as a linear program, which enables us to integrate the equations

with clock skew optimization constraints, taking a more global view of the problem.

Experimental results show that this approach not only reduces total circuit area, but

also gives much faster operational clock speed. For large sequential circuits, we also

present a partitioning procedure. Experiments shows that our partitioning procedure is

very effective. Using our partitioning procedure, our optimization algorithm is able to

run at a much faster speed, with no significant degradation in the quality of the solution.

To date, most research on performance-driven placement assumes that gate sizes are

selected before the placement stage. This imposes a restriction on the placement tool
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in searching for a good placement with minimum wire length. Recently, it has been

suggested that a compact placement which violates the timing constraint could be made

to satisfy the delay bound by adjusting the sizes of some gates, without altering the

placement topology (65]. In this thesis, we have shown that such an approach may lead I
to solutions of inferior quality. Instead, by considering resizing and moving the locations

of some gates in a unified optimization procedure, we are able to obtain better solutions,

with smaller execution times than the conventional iterative method. For the first time, 1

the gate-sizing problem is combined with placement in one formulation. Although the

execution time for the combined problem may be excessively large, we propose an indirect

approach to fully utilize some special properties of the formulation to develop a novel 1

algorithm which performs delay and area optimization for a given compact placement,

by resizing and relocating cells in the circuit layout. I
6.1 Future Work

In a combinational circuit, there are some paths that can never be excited by any

combination at the primary inputs. Hence, these paths can never be critical (66-68]. The

presence of false paths in a circuit causes some gates to be sized unnecessarily, since the 1

optimizer tries to reduce the delay along a path that can never be critical. This may lead 3
to a suboptimal solution to the gate-sizing problem. In other words, although a physical

level performance optimizer must certify that the delay of the longest sensitizable paths 1
after optimization is not longer than the specified delay, long paths are allowed to exist

in the optimized circuit if they are not sensitizable. As demonstrated in [69], most long

paths in a complex circuits are actually false. As a result, to optimize the performance

I
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of a large circuit at the physical level, it is important to consider the false path problem

in conjunction with gate size optimization.

Retiming [701 has been shown to be an effective technique to optimize the performance

of synchronous sequential circuits. Retiming is an operation on a network whereby reg-

isters move across logic blocks in order to minimize the clock cycle or the number of

registers while maintaining the behavior of the circuits.

The retiming technique considers only the sequential elements of the circuit; it as-

sumes that the combinational logic structure is fixed. In [71], a set of logic synthesis

operations has been combined with retiming to optimize sequential circuits for the area

and clock period. Peripheral retiming has been used to optimize the performance of

pipe]ined circuits using combinational delay optimization techniques [72]. While these

formulations do exist, they are not directly relevant to our work since we assume that we

begin our optimization at the end of the logic synthesis stage. It has been shown that

a retiming algorithm can be formulated as a mixed integer linear program [70]. This

approach, however, may not be applied directly to our problem, since the computational

complexity involved would be prohibitive. We propose to seek methods of carrying out

retiming through a series of inexpensive local optimization. For example, as shown in

Figure 6.1 [9], it can be seen that changing the clock arrival time at a flip-flop is equiva-

lent to changing the delay specifications on the combinational subcircuits to which that

ffip-flop is connected. The net effect of this is similar to the moving of the flip-flop across

combinational logic module boundaries. Therefore the solution to the clock skew opti-

mization problem could also be interpreted to be a new set of timing specifications for

each combinational subcircuit, which may be enforced either by permitting a clock skew,

or through retiming.
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clock Delay L

Figure 6.1 Retiming and clock delay transformation.

Methods for using retiming in combination with clock skew for achieving this change 3
in the timing specification should be explored, thus obtaining better solutions for gate-size

optimization. !

In a real chip, the delay between two successive logic gates is composed of three

elements: (1) intrinsic delay due to switching a gate on/off, (2) delays due to charging

fanout and load capacitance, and (3) delay due to distributed RC interconnection. The

scaling rule suggests that the interconnect delay will be dominant for the circuits with

larger chip size and smaller geometry. The effect can be quite significant for submicron

circuits since the interconnect delay grows superlinearly with the scaling factor and the 3
chip dimension. As the VLSI fabrication technology reaches submicron device dimensions

and gigahertz frequencies, it is necessary to consider such interconnect delays. The N
timing-driven placement improvement algorithm we propose in Chapter 5 uses a lumped 3
RC model. However, wires on scaled-down ICs have significant resistance and should

be analyzed as distributed RC lines. In summary, timing-driven placement and routing I
remain the challenges of today's submicron device technology. 3
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Currently, there are growing demands for low power circuits for two main reasons.

First, as the device size and chip density continue to increase rapidly, with a down scale

to 0.6 Am at present (and 0.2 am expected) and over 100 MHz clock cycles, it becomes

too expensive to provide adequate cooling systems for powerful microprocessor chips.

For example, using 0.75 ;m technology and 3.3 V power supply, DEC's Alpha chip

consumes 30 W at 200 MHz [73]. Second, with the increasing popularity of portable

consumer products (e.g., laptop/notebook computers and cellular phones), low-power

designs become a must, because conventional nickel-cadmium battery technology provides

only 20 W'h of energy for each pound of weight (741. For these reasons, designers now

are willing to trade off area for low power consumption.

There has been active research related to low power designs [75-821. At the architec-

ture level, a parallel implementation can be used to maintain throughput while reducing

the supply voltage, thus reducing the power consumption [75]. At the circuit level, a

popular technique is to turn off the system clock for those parts of the circuit that are

not active. In a CMOS design, the average power consumed by a gate is given by

1
P,9 x C.1 , x x D (6.1)

where Cw is the output load capacitance, V" is the power supply voltage, and D is the

transition density of the gate [791. Hence, power consumption of a gate is determined by

three factors, namely, C..t, Vd and D. At the device level, work is being done to reduce

the peak voltage needed for switching (reducing Va). Other than Vd, we can reduce the

power consumed by a single gate by reducing Cot and D. Some work has been done in

the area of low power logic synthesis. However, as in the area and delay optimization

in logic synthesis, the work is applied to technology-independent synthesis, where gate
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models for power, delay, and area are not very accurate [76]. Therefore, it is important

to perform low-power design at the gate-sizing and physical layout stages. 3
For the gate-sizing and physical layout problems, it is important to reduce the capac-

itance load of those gates with large switching activity. For example,-if gate i has large

switching activity, it is then desirable to reduce its capacitance load due to (1) its fan-out 3
gates, and (2) interconnect wires. For cae (1), we should choose a template with smaller

input capacitance for its fan-out gates. Hence, the objective function of the optimization I
should be weighted by the transition density of each gate. To deal with case (2), during

placement procedure, it is advantageous to put the fan-out gates of i closer. Similarly, a

weight based'on each gate's transition density can be included when calculating the total I
wire length. Therefore, a low-power driven placement algorithm can also be developed. 5

I
I
I
I
I
I
I
I
I
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APPENDIX A

I EXTRACTING PARAMETERS
FROM A LIBRARY

I
In this appendix, we will show how various parameters needed in our formulation can

3 be calculated from a given standard-cell library.

As an example, conside a three-input AO (and-or-inverter) gate whose output logic

value is 37a_2 +T. This gate has three inputs, namely, a,, a 2, and b. In the given

3 library, this gate has three templates with different cell areas and driving capabilities.

Usually, the library lists pin-to-pin delay information, as well as worst-case delay. In

our application, we use the worst-case delay. Suppose the characteristics of the three

3 templates are specified as follows.

e Template 1

- cell area = 1856

I- worst-case delay = R-. x C. + r 3.64 x C., + 0.75

- pin capacitance of a, = 0.123

- pin capacitance of a2 = 0.091

3 - pin capacitance of b = 0.111

* *Template 2

- cell area = 3401
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- worst-case delay = 2.05 x C.t + 1.40

- pin capacitance of a, = 0.185

- pin capacitance of a2 = 0.175

- pin capacitance of b = 0.201 1
e Template 3 1

- Cell area = 5797

- worst-case delay = 1.00 x C,, + 2.30 1
- pin capacitance of at = 0.405

- pin capacitance of a2 = 0.285

- pin capacitance of b = 0.345 1
Let R, = 5.0. From the above information, we have 3
"* w, = R.,,/Rt = 5.0/3.64 = 1.374 3
" w2 = RI/R2.t = 5.0/2.05 = 2.439

. W3 =&/R3 t = 5.0/1.00 = 5.000 3
where w1 , w2, and w3 are permissible gate sizes.

To obtain a linear relationship between the cell area and the gate size, we linearly ap- I
proximate the set of data points of area vs. w, {(1.374, 1856), (2.439, 3401), (5.000, 5797) }. 3
Then we have the following linear expression of the gate area in terms of the gate size,

W.

area= --- 7w + • = 1060.02. tw + 571.346 (A.1) 3
Therefore, -y = 1060.02 and e 571.346. The data points and the affine function are

plotted in Figure A. 1

1
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U The capacitance at input pin a, to be used to calculate the loading capacitance, C..t,

of this gate's fan-in gates can be obtained by linearly approximating the set of data points

of a, pin capacitance vs. w, {(1.374,0.1229), (2.439,0.185), (5.000,0.405)}. This gives

cap(a 1) = a,1 •o +- 8 w 0.05885. tw + 0.03007 (A.2)

STherefore, a,1 = 0.05885 and 8,jj = 0.03007. The data points and the affine function

3 are plotted in Figure A.2 The capacitances at pins a,, a2, and b contribute to the output

capacitance of any fan-in gates.

I Following the same procedure, we can find that a, 2 = 0.06942, /.2 = -0.00033, and

ab = 0.06371, 06 = 0.03336.

To obtain the values of r, and r2, we have to linearly approximate the following data

set of 'r vs. to, {(1.374,0.75), (2.439,1.40), (5.00,2.30)}. This gives

3" = to• +r2= 0.41349. tw + 0.268641 (A.3)

Therefore, r, = 0.41349 and r2 = 0.268641. The data points and the afine function are

plotted in Figure A.3
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Figure A.2 Calculating a and •. 3
intrinsic delay

2.5

2 3
1.5 *1 I
0.5 ° I

Figure A.3 Calculating r and r2 . I

Finally, the gate delay can be approximated by the following equation: 3
delay = R.XC.x+'r -W.+r 2  3

= --- x Cm. + 0.41349. w + 0.268641 (A.4)
w

I
I
I
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