
1 June 1994 1!ILU-ENC-94-2225 L72

CRHC-94-11I

Center for Reliable and High-Performance Computing

AD-A281 080I iif~lhUUliE

I

| A Graphical Environment for
U Object-Oriented Simulation

Model Environment

i Daniel Paul Olson

DTIC
ELECTE.,u,. 06, !

I JUL 06 19940

DTIC QUALITy wpr IN13D~ S T DQ"• •='' ' •% 94-20409

3 Coordinated Science Laboratory
College of Engineering
I UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for fPtbk Reea.. Dislmbion Unlimfited. 9 4 7 51 4 2

UNC~jS §FIED

REPORT DOCUMENTATION
PAGE

7a. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified_ None
Za. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION I AVAILABILUTY OF REPORT

2 Approved for public release;
Zb. OECASSIFICA• TION / OOW RAOI-NG $4EDULS I distributcion unlimuiLted

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
National Aeronautics and Space Administration

Ga. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Coordinated Science Lab j (If 4DIItei) I National Aeronautics and Space Administration
University of Illinois N/A Office of Naval Research, & ComputerSciences Cort

G€. ADoRESS (MY. State. MW ZIPCode) 7b. ADDRESS (,ty. State. and ZIP Code)

1308 W. Main Street Hampton, VA
Urbana, IL 61801 Arlington, VA,

___ ___ __ ___ ___ __ ___ __ __ ___ __ ___ __ SanDieaoICA

8a. NAME OF FUNDING/SPONSORING. 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZAbTION (7appkabile)
7a

ft ADDRESS(Ciy. State. aOW ZIPCod.) 10. SOURCE OF FUNDING NUMBERS

Pb PROGRAM PROJECT TASK IWORK UNITELEMENT NO. NO. . ACCESSION NO.

i. TITLE (Include Socur"ty Cassification)
A Graphical Environment for Object-Oriented Simulation Model Environment

.PE5SQNAL LA
Daiel. Paul Olson

I3a. TYPE OF REPORT I3b. TIME COVEREDI&.% FRPT YaMt ay S.tECON
Technical FROM TO I4 JuEneET(e#,Mn,0v)5 ECON

S. SUPPLEMENTARY NOTATION

7. COSATI CODES I IS. SUBJECT TERMS (Contnue on reveu if xecemyary and identify by blkx number)

FIELD GROUP SUB-GROUP I
9. ABSTRACT (Conn on revene if necea"y and idlelnIb by block number)

This thesis contains an overview of the work that has been done to
develop GRIND (a GRaphical INterface for Depend), which is also
a design environment and code generator. GRIND's major features
are described, and a general tutorial shows how to use the tool
to create simulation models. Three models that were constructed using
GRIND are presented to illustrate the utility of the tool. Remarks
on how the work can be extended are included.

0. OISTRIBUTION I AVAILABIIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
MUNCLASSIFIEDAJNLIMITED 0 SAME AS RPT. C3onc USERS Unclassified

?2A NAME OF RESPONSIBLE INOIVIOUAL 22b. TELEPHONE (include A• & Code) I 2c. OFFICE SYMBOL

O FORM 1473. 84 MAR 83 APR edition may be u$ed until exhausted. SECQRITY CLASSIFI.ATiON O1g • A(;

I

I

i A GRAPHICAL ENVIRONMENT FOR OBJECT-ORIENTED
SIMULATION MODEL DEVELOPMENT

U

i Accesion For'
BY NTIS CRA&IDTIC TAB

Unannounced 0

DANIEL PAUL OLSON Justification

B.S, University of Illinois, 1993 By.__

Distribution I

i Availability Codes

Dist Avail and/or

Special

3 THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the5 University of Illinois at Urbana-Champaign, 1994

U
I

Urbana, minois

I
I
I

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my thesis advisor, Professor Ravi

K. Iyer, for all of his assistance and guidance throughout this thesis work. I would also

like to thank my peers at the Center for Reliable and High-Performance Computing for

their help with an assortment of questions that I posed to them. Additionally, I would

like to thank Mark Boyd and Ann Patterson-Hine at NASA Ames Research Center for

helping me to understand the SSF-DMS. Finally, I thank my family for all of the support

and encouragement they gave me throughout my college experience.

iv

TABLE OF CONTENTS

Page

1. INTRODUCTION 1
1.1 M otivation 1
1.2 Related W ork 4
1.3 Thesis Overview 5

2. GRIND-A GRAPHICAL INTERFACE FOR DEPEND 6
2.1 Specifying the Hardware Architecture 7
2.2 Specifying the Behavioral Description 12
2.3 Controlling the Simulation and Maintaining Statistics 16

3. EXAMPLE APPLICATIONS OF GRIND 19
3.1 First-Order Static Analysis of an Avionics System 20

3.1.1 The Common Integrated Processor (CIP) 20
3.1.2 The model 21

3.2 Model for Memory-Failure Latency Analysis 26
3.2.1 The software model 27
3.2.2 Simulation results 30

3.3 Transient Failure Analysis of the SSF-DMS 32
3.3.1 The architecture of the SSF-DMS 32
3.3.2 The model 34
3.3.3 The results 36

3.4 Summary of Example Applications 38

4. CONCLUSIONS 39

REFERENCES 40

V

LIST OF TABLES

Table Page

2.1: The objects from the DEPEND Object Library which are supported by
GRIND 10

2.2: Description of each of the node types that can be used within GRIND's
visual programming environment 14

3.1: List of assumed failure rates 24
3.2: List of reliability statistics 25
3.3: Percent of system crashes attributed to the respective subcomponents.. .. 26
3.4: Statistics from the simulations using the two workload intensity levels. . . 30
3.5: Probabilities that a checked invalid sensor value will be detected as out-

of-bounds .. 35
3.6: Statistics from the simulations using varying levels of out-of-bounds check-

ing for sensor values 37

vi

LIST OF FIGURES

Figure Page

2.1: The window that the user first sees when invoking GRIND 7
2.2: The Object Menu 8
2.3: Set Inits menu for an F".s.erv.r2 object 11
2.4: The graphical specification of a routine called receivemg 15

3.1: Common Integrated Processor (CIP) block diagram 20
3.2: GRIND hardware display showing the Set Inits menu for the processing

elem ents 23
3.3: Reliability curves for CIP system 25
3.4: The graphical representation of the task method 29
3.5: Distributions of memory error latencies for a system executing a sin-

gle dispatchLtask process and for another system running three
dispatch..task processes 31

3.6: Distributions of processing-element utilization samples for a system run-
ning one dispatch-task process and for another system running
three dispatch-task processes 32

3.7: Overview of SSF-DMS Hardware Architecture 33
3.8: Transient sensor failure distributions 37

1. INTRODUCTION

1.1 Motivation

Today's fault-tolerant computing systems require innovative solutions to dependabil-

ity problems. To meet these needs, a highly instrumented, simulation-based CAD envi-

ronment, called DEPEND, has been developed that allows designers to study a system

in detail [1, 2]. The CAD tool provides a framework based on C++ that allows the eval-

uation of highly dependable systems. An important feature of DEPEND is its library of

C++ objects which can be used to rapidly model components typically found in fault-

tolerant systems. These objects provide extensive, automated fault injection facilities

which can simulate realistic fault scenarios. In addition, the objects of the DEPEND

Object Library provide several key features that are necessary for fault simulation [3]:

1. They provide ways to signal a change in the status of a component due to a failure,

so that remedial actions can be simulated.

2

2. They have the capability to model the intercomponent dependencies under fault

conditions. For example, a failed server may not be able to initiate reintegration

without control from a healthy control server. Such dependencies can be easily

modeled with DEPEND.

3. They provide several automatic fault statistics collection facilities that provide

measures such as MTTF and availability. They can also provide a detailed list of

every fault injected, repair action attempted, and their status.

DEPEND's system-level simulation environment differentiates itself from many tools

which require prototype systems for fault-injection studies [4, 5, 6, 7, 8]. While the results

that come from analyzing prototype systems are indispensable, it is also very important

to be able to study an architecture in the early stages of the design in order to evaluate

dependability and performance tradeoffs. Another key characteristic of DEPEND is its

ability to model the execution of actual application code while realistic faults are injected

into the system [91.

GRIND, the subject of this thesis, provides an alternative to coding C++ directly.

GRIND is a menu-driven X-Windows application which facilitates the creation of DE-

PEND models. With this interface, one is able to visualize the architecture of the system

being modeled and how it functions. Hardware components are represented using icons

while the software aspects of the system are specified using a graphical flow-chart repre-

sentation. Development of models can also be performed more quickly because GRIND's

menu structure presents most of DEPEND's features to the user so that less time is

3

spent referring to the manual and debugging typos. While a graphical interface provides

a speedier and more intuitive way of entering models, much of DEPEND's power can

not be harnessed graphically, which means that direct C++ coding must be used to

create especially complex models. However, since GRIND's output is a file containing a

well-formatted C++ program, one can speed up the creation of a complex model by first

using GRIND to create a simpler, more abstract model, and then extending the model

by directly editing the C++ code generated by GRIND.

DEPEND users without C++ experience will find that GRIND is essential. The

graphical interface has a visual programming environment that is designed such that one

can specify the functional behavior of a system without having to know more than the

basics C++ syntax. However, GRIND is not designed solely for those who do not know

C++. GRIND also caters to the experienced C++ programmers by providing a text

editing environment which one can use to efficiently specify the C++ code of functions

that are to be used in the DEPEND model. We believe that this tool will be useful in

speeding the creation of a model, reducing the number of mistakes made, and helping

the user visualize the system being simulated.

1.2 Related Work

Graphical representation can be quite useful in that one is spared the job of writ-

ing large amounts of code in an esoteric simulation language; thus, the time spent in

the analysis stage is reduced. A number of analysis packages have included graphical

4

interfaces and have been effective in speeding the process of preliminary analysis of the

design.

NEST is a graphical environment for simulation and rapid prototyping of distributed

networked systems [10]. A system is graphically represented as a set of nodes intercon-

nected by arcs. Nodes model different points in an interconnection network while the arcs

represent the communication channels between them. Actual code (with modification)

can be included in the model to accurately simulate processes executing on the nodes.

The behavior of the system with server and link failures can also be simulated. NEST's

graphical interface is similar to GRIND in that the user constructs a visual image which

directly corresponds to the hardware architecture of the system, while the behavioral

description is kept separate. However, NEST's range of application is limited to dis-

tributed systems, and its graphical environment does not extend to the specification of

the system's behavior.

Similar to the DEPEND/GRIND environment, SES Workbench has a graphical inter-

face to a simulation language which is an extension of the C programming language [11].

It differs, though, in that its graphical language is based on transactions which propagate

across a directed graph of nodes. SES Workbench's concept of using transactions and

directed graphs reflects the fact that its simulation language has its origin in queueing

networks. Another example of another graphical tool based on queueing networks is

RESQ [121.

5

A number of other analysis tools using graphical interfaces are based on extensions of

stochastic Petri nets. Petri nets, with their idea of places and transitions, also have their

own natural way of being represented graphically. UltraSAN is an exaL-ple of a software

package based on stochastic activity networks, a stochastic extension to Petri nets [13].

1.3 Thesis Overview

This thesi3 contains an overview of the work that has been done to develop GRIND.

Chapter 2 describes GRIND's major features and gives a general tutorial of how to use the

tool to create simulations models. Three models that were constructed using GRIND are

presented in Chapter 3 in order to illustrate the utility of the tool. Chapter 4 concludes

the thesis with remarks on how this work can be extended.

6

2. GRIND-A GRAPHICAL INTERFACE FOR DEPEND

GRIND is a front-end tool which interfaces to DEPEND in a simple way. The graph-

ical interface is used to specify the hardware and software architectures of the system to

be modeled and to set the parameters that govern how the simulation is to run. When

the user has completed the specification, GRIND then extracts the model from its in-

ternal data structures and creates a DEPEND source code file. All that is remaining is

to compile the source code and run the executable to obtain the raw simulation results.

Different variations of the same model can be tested by making the necessary changes to

the model within GRIND, recompiling, and then rerunning.

When creating a functional simulation model, one can view the simulation model

as having three aspects: the hardware architecture of the system to be modeled, the

functional behavior of the system, and the manner in which the simulation is to execute.

The following three sections describe the features of GRIND that address these issues.

7

Figure 2.1: The window that the user first sees when invoking GRIND.

2.1 Specifying the Hardware Architecture

Figure 2.1 shows the display which first appears when GRIND is first started. The

column of buttons represents the commands which can be invoked from the main window.

These commands are invoked by pressing the respective button and are described in the

following paragraphs.

8

Figure 2.2: The Object Menu. Note that FT.server2 is the parent class of the CPU object.

When creating a simulation model, the first action that the GRIND user will likely

perform is to create derived classes from one of the default objects found in the DEPEND

Object Library. A derived object is usually constructed for each of the different types

of subcomponents that are going to be included in the model. Derived classes make it

possible to add workload or supply additional behavioral description to the default DE-

PEND objects. Therefore, if the user thinks that it is remotely possible that a workload

will be modeled on a particular object or that additional functionality may have to be

included in it, it would be best to create a derived class for that object at the start.

Derived classes can be created and modified within the Obj ect Menu which is accessed

through the Derive Obj command button. Figure 2.2 shows the Object Menu. A new

object can be created by selecting the Create Class button, selecting a parent class

from the list, and then entering the name of the new class. The user then has the option

9

of adding component routines and component variables (discussed in Section 2.2) to the

new object.

The Add command provides the means to add components to a model. When the

user clicks on the Add button, a submenu appears listing each of the objects from the

DEPEND Object Library as well as each of the derived objects that have been defined.

Selecting one of these objects causes an icon of that object to be tied to the cursor which

can be placed anywhere in the schematic by clicking the mouse button. Once an icon is

placed in the schematic, the object that it represents becomes a part of the model. It

should be noted that though there is only a single listing for each DEPEND object and

for each derived class in the Add sub-menu, these objects can be instantiaoed multiple

times to represent different components that have similar characteristics. One should also

know that not all of the objects in the DEPEND Object Library are available through

GRIND. Table 2.1 lists the DEPEND objects which are supported by GRIND. It does not

matter in regard to the simulation model where the icon is placed within the schematic,

but the user will want to orient the objects so that they reflect the architecture of the

system being modeled. To give the user more control over how the objects are displayed,

GRIND has many of the display features common to schematic capture tools such as

zoom in/out, pan, display/hide grid, copy, move, and delete.

Once an object is added to the model, it has to be configured such that it accurately

models its corresponding component. In the textual DEPEND environment, configuring

the objects involves the tedious process of calling many initialization methods for each

10

Table 2.1: The objects from the DEPEND Object Library which are supported by
GRIND.

Name Description
FT-barrier Allows an arbitrary number of coroutines to synchronize.
FT-injector2 Automatically injects faults based on statistical distributions.

Offers workload based injections. Can inject correlated and
latent faults.

FT-kofn Models a k-out-of-n system. Automatic fault injection. Hot and
cold sparing policies. Automatic repair and reconfiguration
with specified coverages

FTlink2 Simulates communication channels. Several types of faults: link
dead, packet corruption, packet loss, and user-defined faults.
Automatic retry.

FT.memory Simulates a basic random access memory. Can inject permanent
and transient faults (bit flips) with latencies.

FT~server2 Simulates a server with spares. Three sparing policies: no
spare, graceful degradation, stand-by sparing. Automatic repair
and reconfiguration with specified coverage. Automatic injection
of faults.

gque General purpose singly linked queue.
Event Manages an event. Coroutines can wait on an event or set an

event.

Ii

Figure 2.3: Set Iaits menu for an FT..s.rv.r2 object.

of the objects. GRIND speeds the initialization of the objects by providing a menu of

parameters for each object. In order to access the menu for a particular component, the

user selects the Set Inits command and then clicks on the icon for that component.

Figure 2.3 shows the Set Inits menu for an FT..server2 object. The parameters shown

in the figure are a. reduced set of the more commonly used initialization methods for

the FT..server2 object; a full listing of the parameters appears when the Full/Reduced

pushbutton is selected. Default values are assigned to many of the commonly used

parameters to further reduce the work of the user. Parameters typical of many of the

objects include the failure distribution, the fault latency, the number of spares, and the

sparing policy.

After the components have been added to the model, their interconnections can be

defined. GRIND represents a connection from one object to another with a line from an

output pin of an icon to an input pin of another icon. A "pin" is simply a point along the

border of an icon to which a connection line can be attached. An input pin is denoted

by a short bristle while output pins are represented by small circles. Each object has one

12

input pin and can have multiple output pins. For a visual example, see Figure 3.2 on

page 23 showing a GRIND display which contains a number of components connected

together. The user sets these interconnections through the Connect command.

2.2 Specifying the Behavioral Description

Within the textual DEPEND environment, the behavior of a system's components is

defined using C++ functions. These DEPEND C++ functions correspond to "routines"

in GRIND. For every routine specified in the GRIND environment, either a C++ function

or method is created in the DEPEND output file.

There are four types of routines within GRIND: global, component, notify, and iter-

ation. Global routines are not associated with a particular object so they are therefore

not well-suited to simulate workloads running on components. Rather, they are usually

used to start up and maintain a simulation by performing such tasks as initializing or

setting global variables or initiating workloads. The menu for adding or editing global

routines is accessed through the Routines command on the main GRIND window.

In contrast to global routines, component routines are always associated with derived

classes. They correspond to methods (functions associated with classes) in the C++

language. Since a component routine is tightly coupled with an object, it is usually used

to model a workload running on the object that it is associated with. The Obj ect Menu

allows the user to add component routines as well as variables to the derived classes.

13

GRIND allows one to define a number of different notifj routines for derived classes.

A notify routine is a special type of component routine which is called when a specific

event (such as a fault injection or an automatic repair) occurs. For instance, if a derived

class has its fault notify routine defined, whenever an object of that class has a fault

injected, the fault notify routine is called for that object. Notify routines are defined by

the user through the Obj ect Menu. Iteration routines are special types of global routines

and are described in Section 2.3.

There are two ways to define methods/routines within the GRIND environment:

textually and graphically. Whenever it is time to define a routine, GRIND prompts

the user as to which mode of entry is desired. Those who are comfortable with C++

syntax but still enjoy GRIND's framework for constructing models may desire to use a

standard text editor and type in the actual code for that routine. Alternatively, the user

may desire GRIND's visual programming environment for entering routines. The goal

of these features is to allow the specification of a wide range of behaviors with the least

amount of work.

GRIND's visual programming environment allows a user who has only basic program-

ming skills and a limited knowledge of C++ to create a routine. Every routine that is

visually created is represented by a "flow chart" which consists of nodes and arrows.

Flow charts are analogous to those that programmers often draw before coding a pro-

gram. Each flow chart has its own window containing a command panel and a display

similar to the main window. The nodes of a flow chart correspond to C++ statements

14

Table 2.2: Description of each of the node types that can be used within GRIND's visual
programming environment.

Nod* Tye User Action
For control Specify index variable.

Specify starting value for variable.
Specify ending value for variable.

While control Specify the condition for looping.
if control Specify the condition for branching.
Done control (No action necessary. This node causes the

simulation to halt. Its use is discussed
Section 2.3.)

Assignment to Variable action Select global variable from menu.
Specify expression to be assigned to variable

Global Routine action From menu, select global routine that is to be called.
Within the menu, specify arguments for the routine.

Component Routine action Select component whose method is to be called.
Select method and specify arguments from menu.

Local. Comp Routine action Select method and specify arguments from menu.
(Not available when defining global routines.)

Message action Specify message that is to be sent to output.
Custom action Type C++ statement.

while the arrows define the order in which the nodes will be executed. GRIND divides

the different types of nodes into two categorier- control and action. Control nodes control

the flow of execution through the flow chart by providing the capabilities of branching

and looping. Action nodes cause actions to be taken such as assigning values to variables,

invoking routines, and sending messages to the display. Nodes are placed and connected

in a manner similar to the way components are placed and connected in the main GRIND

display. Table 2.2 contains a listing of the types of control and action nodes, and Fig-

ure 2.4 shows GRIND's visual programming environment with a sample flow chart. The

"User Actions" entry within the table for each node lists the actions that have to be

15

Figure 2.4: The graphical specification of a routine called receive.msg. This routine uses
a while control node to implement an infinite loop, a Component Routine
action node to simulate a message being received from a bus, and an Assign
"to Variable action node to update a global variable called num.zsgs.

16

performed by the user in order to specify the contents of that node. These actions are

performed after the node's icon has been placed within the window.

2.3 Controlling the Simulation and Maintaining Statistics

GRIND has a number of features to help the user set up the simulation. In order to

obtain statistically valid results, a user will often want to run many simulations for the

same model with a different random number generator seed for each simulation. For this

reason, GRIND outputs C++ code which loops a user-defined number of times, with a

simulation run executing once for every iteration of the loop.

To control the various simulation runs, a number of parameters are available for the

user to define through the Ezec Parmn menu. The first parameter is the number of

iterations of the simulation that are to be executed. The user will want to make this

number large enough so that the simulation results will be statistically valid.

The next parameter in the Exec Paras menu that has to be set is the termination

condition. The termination condition parameter determines when a simulation run is to

be terminated. There are four possible values for the termination condition: time, fail,

"time/fail, and done. If time is used, the simulation will finish after a user-defined

amount of simulated time. This time can also be set within the Exec Parus menu. The

fail value is used when the user wants the simulation to terminate when the modeled

system fails. Time/f ail is a combination of time and fail. Whichever events occurs

first will cause the current simulation iteration to terminate. If the termination condition

17

is set to done, a simulation run will not terminate until a done node is encountered in one

of the routines. The sole purpose of including a done node in a routine is to signal that a

simulation iteration is to be halted. It should be noted that if a done node is encountered

when the termination condition is set to tiue, fail, or time/fail, the current iteration

will be stopped even if the system has not yet failed and the specified amount of time

has not yet elapsed.

When the termination condition is set to either fail or time/fail, the user defines

what it means for a system to fail by specifying what set of components must be alive in

order for the system to be alive. This is done through the Edit System Dependencies

command within the Exec Paras menu. The combination of components is specified in

a logical AND-OR expression. For instance, a system containing five components, V, W,

X, Y, and Z, can be defined as being functional as long as [V AND W] OR [X AND Y]

OR [Z AND X AND V] are alive.

In order to give the user control over each simulation run and provide a means to

collect and reset statistics, GRIND provides four iteration routines- pre-iteration routine,

iteration start routine, iteration end routine, and post-iteration routine. The pre-iteration

routine is called only once before any of the simulation runs begin to execute. It can be

used to initialize variables which will be accumulated throughout all of the simulation

iterations. The iteration start routine is called at the beginning of each simulation run.

Workloads and other processes that are to run throughout a simulation are generally ini-

tiated by the iteration start routine. This routine might also initialize variables which are

18

used to collect statistics for & single run. The iteration end routine is invoked every time

a simulation is terminated. The results of a simulation are often output by this routine.

Also, if faults are being injected during the simulation, the user will want to repair each

component whose status might be 'faulty." The final iteration routine, post-iteration, is

called after the last iteration end routine has completed. The main use of this routine is

to output statistics which were gathered throughout all of the simulation iterations. Each

of these iteration routines can be defined through the Routines command in GRIND's

main window.

19

3. EX XMPLE APPLICATIONS OF GRIND

This chapter presents three models that were constructed using GRIND. An analy-

sis was performed using each of these models, and the results of the analysis are also

presented. These examples are included in order to demonstrate GRIND's range of ap-

plication.

The first model is an example of a first-order static analysis in which each subcompo-

nent of a computing system is given a failure rate and faults are injected until the system

as a whole fails. GRIND constructs the output code such that many simulations can be

executed sequentially so that a distribution of times to failure can be obtained. Such an

analysis can be performed on virtually any system using GRIND.

The second analysis uses an extended version of the first model in order to perform

a memory failure latency analysis. A workload is simulated which performs reads and

writes to memory while transient failures are injected to random memory locations.

Rough utilization figures are also obtained for each of the computing elements.

20

GMEM

Figure 3.1: Common Integrated Processor (CIP) block diagram.

The final example is a slightly more complex model of a different computing system.

Like the second model, the third includes the concepts of workload and transient fail-

ures, but this model differs in that it simulates and measures a limited amount of fault

propagation.

3.1 First-Order Static Analysis of an Avionics System

3.1.1 The Common Integrated Processor (CIP)

The two models presented in this section and in Section 3.2 are based on the Common

Integrated Processor (CIP), a processing module found in one of Hughes' avionic com-

puter systems. The system consists of four processing elements (PEs), two redundant

network interfaces (NIs), a global memory (GMEM), and a standard control processor

(SCP). See Figure 3.1 for a block diagram of the CIP. Either NI can be used by any

of the PEs to send or receive data from the outside world. The SCP is responsible for

21

distributing tasks among the four PEa which communicate with each other using the

GMEM.

As far as we could tell from its documentation, a CIP module does not by itself have

any hardware fault-tolerant features. For the purpose of illustrating GRIND's capabili-

ties, we will consider a version of the CIP module that has a limited amount of redun-

dancy. We will assume that the reason for having multiple PEs is for fault-tolerance

considerations as well as for increasing computing power. Let's assume that three of the

four processors are required to maintain the minimum throughput requirements. Also,

since the two NIs each connect the four processors to the outside world, we will assume

that one network interface has enough bandwidth so that if one fails, the system as a

whole can continue to operate.

3.1.2 The model

This analysis focuses mainly on the system's four processing elements. Since tasks

are likely to be running on a PE when it fails, the process of reconfiguring to use only

three PEs is likely to be complex and itself prone to failure. Thus, the model includes a

reconfiguration coverage for the processing elements. Given the failure rates of each of

U the subcomponents, an interesting analysis would be to see how sensitive the reliability

I of the module as a whole is to this reconfiguration coverage. This would give engineers an

idea of how much effort has to be invested in designing a robust reconfiguration process.I

IT

22

Constructing this model using GRIND was a straightforward process. The first step

was to create a derived class for each of the different types of subcomponents in the

model. Once a derived class is created, one can create variables and methods for that

class in addition to those inherited from the parent class. In this example model, a PE

class was derived from the FT-kofn object. Because FT.kofu is the parent of PE, PE

inherits all of FT.kofn's functionality, making it able to model the processing-element

3-out-of-4 system. Similarly, a GMEM class was derived from the FTzmemory object, a SCP

class from the FT.server2 object, and an NI class from the FT-server2 object. Since no

workload (involving such activities as processor utilization, message passing, and memory

access) is incorporated into this model, there was no need to further specialize the derived

classes.

Once the derived classes were established and objects from these classes were added to 3
the model, the initialization methods of these objects were set through the Set Inits menu. 1
Through this menu, the fault injection rates as well as some of the other configuration

parameters were set. See Figure 3.2 for a GRIND display showing the objects of the I
model and a listing of the initialization methods of pe., an object of the class PE. The 3
subwindow shown in Figure 3.2 is the Set Inits menu for the pe. object, through which

we specified it to be a 3-out-of-4 system with a 66.7% reconfiguration (switch) coverage.

The failure rates for each of the objects (listed in Table 3.1) were also set through this 3
menu. 3

I
I

23

I|

Figure 3.2: GRIND hardware display showing the Set Inits menu for the processing ele-
ments.

24

Table 3.1: List of assumed failure rates.

Subcomponent MTTF Failure Rate
SCP 5 years 2.28 x 10-6 failures/hr
PE 5 years 2.28 x I0- failures/hr

GMEM 3 years 3.80 x 10-3 failures/hr
NI 8 years 1.43 x 10-5 failures/hr

In this model, we defined the fault notify routine for each of the different derived

class types (SCP, PE, NI, and GME4) such that the name of a component is sent to the

standard output when that component has a fault injected. This will allow us to know

which component is responsible for each failure and will thus help us to ascertain which

components are reliability bottlenecks.

Through the Ezec Parms menu, we specified that the simulation was to run ten-

thousand times, with each simulation terminating when the system as a whole fails. The

Ezec Parmsa menu also allowed us to specify what combination of components had to be

alive in order for the system as a whole to be alive. We specified this combination such

that two failures can potentially be tolerated: one NI failure and one PE failure if the

processing-element reconfiguration is successful.

With the above info..ation, GRIND was able to create a C++ program which was

compiled and then run. The output of the executable is simply a listing of ten-thousand

times to failure along with the component failures that precipitated each system failure.

With the aid of a standard statistical analysis package, a curve estimating the reliability

of the system was easily constructed.

I

25

U..
Ir

-

Figure 3.3: Reliability curves for CIP system. The graph on the right is an enlarged
version of the one on the left.

Table 3.2: List of reliability statistics. MTTF is the mean time to failure. The figures
for the 90 and 95 percent confidences represent the length of time that one
can be 90 and 95 percent certain that the system will stay alive.

_______Cvrg=1.O00 J Cvrg=0.667 Cvrg=0.333
MTTF 1.25 yr 1.12 yr 1.00 yr

90% conf. 1600 hr 1200 hr 1000 hr
95% conf. 830 hr 610 hr 480 hr

Three simulation executables were created with reconfiguration coverage values set

to 1.00, 0.667, and 0.333. Awk and SAS were used to process the raw output from the

models. The reliability curves are shown in Figure 3.3 and some reliability statistics are

given in Table 3.2. Judging by the full reliability curves and the MTTF values, it does not

appear that the reconfiguration coverage has a great effect on the reliability of the system

(a 25% decrease in MTTF from coverage equalling 1.000 to a coverage equalling 0.333).

But since this system is primarily geared for avionics applications in which mission times

are measured in hours, it is more important to view the reliability in the short run. For

26

Table 3.3: Percent of system crashes attributed to the respective subcomponents.

Subcomponent Cvrg=1.000 Cvrgu0.667 Cvyr=0.333
SCP 25.3% 22.3% 20.0%
PE 30.0% 37.6% 44.6%

GMEM 41.6% 37.1% 33.3%
N1 3.2% 2.9% 2.1%

this reason, a zoomed-in version of the reliability graphs and durations for the 95th and

90th percentiles is also given. From these, we can see that as the reconfiguration coverage

decreases from 1.000 to 0.333, there is a 42% decrease in the length of time that we can

be 95% certain that the system will stay alive.

Because the simulation executable records each component failure, we were able to

determine which component caused each crash. Table 3.3 breaks down the percent of

system failures that each subcomponent was responsible for. From this table, we can

see that the processing elements become the main reliability bottleneck of the system

(increasing its share of system failures by almost 50%) as the coverage decreases to

0.333.

3.2 Model for Memory-Failure Latency Analysis

The second model of the Common Integrated Processor simulates a mock workload

running on the system in order to determine the latency of memory faults and to gain

rough estimates of the utilization of the processing elements and the standard control

processor. The latency of a memory fault is defined here as the time from the corruption

of a memory location to the reading of that location. If the corrupted cell is written over,

27

nothing is recorded except that the error was avoided. Utilization is the percent of time

that a resource (e.g., a SCP or a PE) is being used. The utilization figures calculated for

the PEA are the average utilization figures for each of the four PEa. Therefore, it would

take four continuous jobs running simultaneously to attain a PE utilization of 1.00.

3.2.1 The software model

Two component routines were added to simulate the workload: dispatch..tasks was

added to the SCP object and task was added to the PE object. These methods pick

random values from normal and exponential distributions in order to model the software's

functionality. It should be noted that the latency results presented here are most likely

not representative of the dependability of the CUP since the analysis is highly dependent

on the patterns in which the software accesses memory. The analysis will have value

only if the behavior of the software and the rate at which the jobs arrive are accurately

modeled.

Dispatchtasks models a process running on the SCP which repeatedly issues jobs

to the processing elements. The amount of time between task dispatches is picked from

an exponential distribution with a mean of 0.05 second and the amount of processing

time required for each dispatch is picked from a normal distribution with a mean of 0.01

second and a standard deviation of 0.0075 second. Each task is sent to the PE object as a

whole, which, in turn, decides how the job is to be distributed to the four processors. This

decision is handled automatically by the PE object (a feature which it inherited from

28

the FT.kofn object) and is done in the most intelligent way. Therefore, this simulation

assumes that the SCP is able to determine which is the best processing element to send

a task. This assumption does not affect the utilization figures that are given here, but

does perhaps decrease the latency of the memory faults since the response time of each

task is minimized.

Each job initiated by dispatch-tasks to run on a processing element is modeled by

the task method. Memory locations within GMEM are accessed sequentially by task.

Dispatch-tasks gives task the starting address and the number of memory locations

that are to be read or written to, each of which is picked at random from the ranges

[0,300] and [50,200], respectively. Dispatch-tasks also decides randomly whether task

is going to read or write to those locations. The amount of processing that task performs

for each access is selected from an exponential distribution with a mean of 0.001 second.

Figure 3.4 shows the graphical representation used to specify the task method. From

this figure, one can see GRIND's flow-chart style of graphically specifying routines.

As was mentioned earlier, the object used to model the global memory, GMDI, is a

derived class of the FT.zeuory object. FT.-euory allows one to model large memory

spaces by maintaining a sparse data structure of memory locations. With each memory

location, FT-.uory keeps a status flag telling whether that location is "uninitialized,"

"valid," or "faulty." Since this model's representation of the software does not deal with

actual data, only these status flags are accessed by the task method. If task performs a

read on a memory location whose flag indicates that the cell is faulty, the time at which

29

ý.,f lit

fit

L f'

Ch,

(J
coý I

mt
'lotw

f Ild

Figure 3.4: The graphical representation of the task method.

30

Table 3.4: Statistics from the simulations using the two workload intensity levels. Note
that the X Masked figures refer to the percent of errors which were avoided.

Workload level Mean Latency %Masked Ave SCP Util. Ave PE Util.
1 Process 0.336 sec 45.6% 0.190 0.44T3 Processes 0.131 sec 4T.2% 1 0.509 0.3

the access occurred is recorded and that simulation is halted. If a write is performed on

a faulty location, it is noted that an error was avoided and the simulation is stopped.

A global routine which waits for a random length of time and sets the status flag of

a random memory location to "faulty" was defined in order to inject failures into the

memory.

3.2.2 Simulation results

One-thousand memory-failure latencies and utilization samples were obtained for two

workload intensity levels. The first intensity level had only one of the dispatch-tasks

processes continuously issuing tasks to the processing elements. The second simulation

ran three dispatch..-tasks processes, each initiating jobs.

Table 3.4 lists the averages of the results gained from the simulations. As one would

expect, the results indicate an inverse relation between the intensity of the workload

and the latency of memory faults. Since more tasks are being issued to the processing

elements, more reads are occurring in a given period of time; thus, the faulty memory

locations are encountered sooner. Figure 3.5 gives the distributions of memory-failure

latencies for the two scenarios. From the figure, one can see that the distributions are

.

31

,btm L- -I - w=v - D h&m-3 Pm

M -M

S. UM ON i . 0 us. L " uS"

Figure 3.5: Distributions of memory error latencies for a system executing a single
dispatch-t±ask process and for another system running three dispatch-.task
processes.

fairly tight, With few memory faults remaining latent for more that a second for the

one-process scenario and more than a 0.5 second for the three-process scenario.

On the other hand, there appears to be a fairly large variance in the utilization of

the processing elements. For every memory fault that was injected, a sample was taken.

Figure 3.6 gives the distributions of these utilization samples for the two levels of workload

intensity. Significant levels of utilization were found in the range between 0.1 and 0.8 for

the one-process level and between 0.4 and 1.0 for the three-process workload intensity

level.

32

-0 as som &0 Ua m t o a

om.. yini~ - ei h~.t ~n3wmmmm

Figure 3.6: Distributions of processing-element utilization samples for a system run-
ning one dispatch.task process and for another system running three dis-
patch-task processes.

3.3 Transient Failure Analysis of the SSF-DMS

3.3.1 The architecture of the SSF-DMS

The Data Management System (DMS) of the Space Station Freedom (SSF) is de-

signed to be a fault tolerant distributed computing system. Figure 3.7 shows a simplified

overview of the DMS hardware architecture.' The DMS will be responsible for providing

the computing resources required to support a number of functions that are crucial to

the operation of the station. The design is centered around a set of general purpose com-

puters called Standard Data Processors (SDPs) which are interconnected by an FDDI

communication network. Also connected to the FDDI are a telemetry unit and a disk.

The SDPs are connected by MIL-STD-1553B local buses to Intel 80386-based peripheral

'The description here is loosely based on the DMS proposed architecture as it existed prior to the
SSF redesign announced in the spring of 1993.

33

FDDI Core

SSDP SDP SDP SDP

| 4| 11|11)

Figue 37 O.

Figure 3.7: Overview nf SSF-DMS Hardware Architecture.

34

processors called Multiplexor-Demultiplexors (MDMs), which are, in turn, connected to

sensors and effectors. The MDMs are responsible for collecting data from banks of sen-

sors and routing them to appropriate application programs executing in the SDPs. Each

SDP is configured as a bus controller for a subset of the 1553B buses that are used to

send requests to MDMs to obtain sensor reading values.

3.3.2 The model

In this analysis, we will be modeling transient failures in the MDMs and measuring

the latency and propagation of these failures to disk or telemetry. The latency of an

MDM failure is defined nere as the time from which the MDM is injected with a failure

until the time that MDM is detected to have an invalid sensor value. A mock workload

will be simulated to run on a single SDP connected to five MDMs. This workload will

continually fetch sensor values from the MDMs, process these values, and send the data

to either the disk or the telemetry unit. During the time that a transient failure is active

in an MDM, it is assumed that the MDM will be able to return a sensor value, but

this value will be invalid. The SDP has a means of checking to see if a sensor value is

out-of-bounds, but depending on the state of the workload, a given sensor value fetched

from an MDM may or may not be checked. Since an invalid sensor value may still be

within a reasonable range, it might not be detected as being out-of-bounds. Each MDM

has a specfied probability that (when it fails) its invalid sensor values will be detected

(out-of-bounds) if checked.

35

Table 3.5: Probabilities that a checked invalid sensor value will be detected as out-of-
bounds.

MDM # Probability
0 0.45
1 0.50
2 0.30
3 0.20
4 0.20

As with the previous example, the workload modeled here uses exponential and uni-

form distributions to determine its pattern of execution since an actual algorithm is not

available. The amount of time between sensor-value fetches is picked from an exponen-

tial distribution with a mean of 0.02 second and the MDM that is accessed for a given

sensor value is picked from a uniform distribution. After a sensor value has been fetched,

it has a 30% chance of being stored to disk. If it is not stored to disk, it then has a

30% chance of being sent to the telemetry unit. Table 3.5 gives the probabilities that a

checked invalid sensor value will be detected as out-of-bounds.

An SDP class was derived from an FTserver2 object and was used to represent the

SDP module. A component routine called gather was added to this class to model the

workload running on the SDP which continuously gathers sensor values and sends them

to the disk or the telemetry unit.

Each MDM is modeled using an MDM object which was also derived from FT.server2.

The ge'tsensor-value component routine returns a sensor value to its caller. This

routine uses the cond-ok component routine which the MDM inherited from FT-server2

to check so see if the value it returns should be invalid. Since actual data are not used

I I

36

within this model, the actual sensor values in this simulation are only flags indicating

whether the values are valid or invalid. Get.sensor-value is called directly by gather to

obtain a sensor value from a particular MDM (an FT-b.nk2 is not used for communication

between the SDP and the MDMs since bus failures and contention for the bus are not issues

in this simulation).

A DISK class was derived from the FTu.auory object and is used to model the system's

disk. Added to it is the store component routine which takes a sensor value as a

parameter. Store simply checks the sensor value that was passed and records a "disk

error" if that value is invalid. Similarly, a TELEM class was derived from the FT.server2

object in order to model the telemetry unit. It has a send.data component routine which

takes a sensor value as a parameter. If the sensor value passed to this routine is invalid,

a "telemetry error" is recorded.

3.3.3 The results

Two versions of the model described above were evaluated: one using a 25% proba-

bility that a checked invalid sensor value will be detected as out-of-bounds and another

using a 75% probability. One-thousand simulation iterations were executed for each sce-

nario. Each iteration simulated the system for ten years, with transient failures injected

into each MDM using a rate of once per ten years (exponential distribution). The num-

ber of disk errors and the number of telemetry errors were recorded for each mission,

and the latency of an MDM failure was recorded every time a sensor value was detected

37

Table 3.6: Statistics from the simulations using varying levels of out-of-bounds checking
for sensor values.

% of sensor values checked 25% 75%
number of missions simulated 1000 1000

length of each mmion 10 yrs 10 yrs
average # of disk errors per mission 5.05 2.66

average # of telem. errors per mission 3.38 1.84
average latency 0.335 sec 0.227 sec

% of faults detected 28.5% 54.0%

Domed=. Laa. ObmAm-2Sk 4bAW Danui I.LwT DWW&Wim-7S% &Ambd

- - - .-----

I - - --

am Up LN LID US 20 *Sa. UI LM US 2A

Figure 3.8: Transient sensor failure distributions.

as out-of-bounds. Transient failures whose durations expired before they were detected

were also recorded.

Table 3.6 gives the average number of times that errors propagated to the disk and the

telemetry unit, the average latency of MDM failures, and the percent of transient failures

that passed undetected. Figure 3.8 shows the distribution of MDM error latencies. For

the given workload, these results quantify how much the system's dependability improves

when the percent of sensor values checked increases from 25% to 75%.

38

3.4 Summary of Example Applications

This chapter gave a brief overview of the DEPEND/GRIND environment and pre-

sented three models constructed using GRIND. It has been shown that GRIND can

be used to capture aspects of both the system's hardware and software architectures.

Though the results presented here have little value since they are based on fictitious

parameters, accurate failure rates and a more precise description of the software can be

included to obtain valid simulation results.

39

II

4. CONCLUSIONS

This document has motivated the need for GRIND, described its major features, and

presented example applications of the tool. The most prominent contribution of this work

has been the development of techniques to graphically specify fault-injection simulation

models in an object-oriented environment. In particular, GRIND's flow-chart method of

defining a system's behavior with menus to aid the user in specifying the contents of the

flow chart's nodes is not included in any other graphical packages known to the author.

40

I
REFERENCES

[1] K. K. Goewami and R. K. Iyer, "DEPEND: A simulation-based environment for
system level dependability analysis," Tech. Rep. CR1C Report #92-11, CRHC -
University of Illinois at Urbana-Champaign, June 1992.

(2] K. K. Growami and R. K. Iyer, "A design environment for prediction and evalua-
tion of system dependability," in Proceedings of the Ninth Digital Avionics Systems

Conference, October 1990.

[3] K. K. Goswami and R. K. Iyer, The DEPEND Reference Manual University of

Illinois - Center for Reliable and High Performance Computing, Urbana, Illinois
61801, Oct. 1990.

[4) J. Lala, "Fault detection isolation and reconfiguration in ftmp: Methods and
experimental results," in 5th AIAA/IEEE Digital Avionics Systems Conference,

pp. 21.3.1-21.3.9, 1983.

[51 K. G. Shin and Y. Lee, "Error detection process - model, design, and its impact on
computer performance," IEEE Transactions on Computers, vol. C-33, pp. 529-540,
Jun. 1984.

[6] L. Young, R. K. Iyer, K. K. Goswami, and C. Alonso, "A hybrid monitor assisted
fault injection environment," in Third IFIP Conference on Dependable Computing
for Critical Applications, Sep. 1992.

(7] Z. Segall. et al., "FIAT - fault injection based automated testing environment,"
in Proceedings of the 18th International Symposium on Fault-Tolerant Computing,
pp. 102-107, Jun. 1988.

(8] G. Kanawati, N. Kanawati, and J. Abraham, "FERRARI: A fault and error auto-
matic real-time injector," in Proceedings of the 22nd International Symposium on
Fault-Tolerant Computing, Jul. 1992.

41

[9] K. K. Goswami and R. K. Iyer, "A simulation-based study of a triple modular
redundant system using DEPEND," in 5th International Tests, Diagnosia, Fault
Treatment Conference, Sept. 1991.

[10] A. Dupuy, J. Schwartz, Y. Yemini, and D. Bacon, "NEST: A network simulation
and prototyping testbed," Communications of the ACM, vol. 33, pp. 64-74, Oct.
1990.

[11] SES, Inc., Austin, TX, SES/Sim Simulation Language Reference Manual, Mar. 1989.

(121 C. Sauer, E. MacNair, and J. Kurose, "Resq: Cms user's guide," Tech. Rep. RA-139,
IBM T.J. Watson Research Center, Yorktown Heights, NY, Apr. 1982.

(13] W. H. Sanders, W. D. Obal, M. A. Qureshi, and F. K. Widjanarko, "UltraSAN
version 2: Architecture, features, and implementation," Tech. Rep. PMRL-93-17,
Department of Electrical and Computer Engineering, University of Arizona, Oct.
1993.

