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1. INTRODUCTION

This report describes CMCAM, a program for performing lattice-gas calculations using the Thinking
Machines Corporation CM-S supercomputer. CMCAM represents part of a continuing investigation into
the applicability and performance of contemporary parallel supercomputers for lattice gas simulation.
The development of this code was guided by two goals. The first goal was to achieve high performance
in order to address significantly larger problems than can be handled with ordinary high performance
workstations. The second goal was to produce a code that is easy to modify for new experimental
scenarios. An earlier implementation done using only high level language facilities was deemed too slow
to be really useful. The present implementation uses assembler language for the highest possible
performance. The use of an assembler language certainly increases the complexity of the code, but
provides an enormous boost in the delivered performance. The code has been designed with the hope
that future extensions and enhancements to the code will involve a minimum amount of assembly code
manipulation. The code has been built with an eye towards compatibility with another parallel
supercomputer architecture, the MIT Information Mechanics group’s CAM-8 machine [Margolus, 1993).
Many components of a CMCAM simulation can be re-used without change on the CAM-8. After reading
this report an experienced C programmer should be able to understand the techniques used to perform
lattice gas simulation on the CM-5. The report should also aid persons interested in modifying the code
for future lattice gas scenarios.

2. LATTICE GAS MODELING

Lattice-Gas-Automata (LGA) models represent an intriguing alternative to conventional methods of
hydrodynamic simulation. These exactly computable models are based on particles moving on a uniform
lattice with discrete velocities. Particles are typically represented using individual bits to indicate their
presence or absence at a particular site. The particles interact with each other through collisions that
conserve the desired invariant quantities, typically mass, momentum and energy. The collisions contain
the physics of the particular system under study.

An LGA time step can be separated into two phases. The first phase involves streaming of the particles
to their new locations, consistent with their velocity and the lattice on which the simulation is being
performed. Once all the particles are at the appropriate lattice sites they interact, according to the
specified "rules” of the simulation. After the collision process the streaming step is repeated.

LGA are numerically stable methods that are able to easily accommodate highly irregular boundary
conditions. The FHP model developed by Frisch Hasslacher and Pomeau rigorously shows 2-D Navier
Stokes flow in the incompressible limit [Frisch, et al., 1986]. LGA modeling methodology has been
extended to 3 dimensional hydrodynamic flows with the advent of the FCHC model {d’Humieres, et al.,
1986]. Due to the uniformity and concurrency of the lattice gas update process, implementation on
parallel computers is usually efficient, requiring only local communication. LGA modeling offers many
substantial advantages over conventional finite-difference techniques and it is attracting increasing
attention as a promising new approach to fluid flow {Doolen, 1990].




3. CM-5 ARCHITECTURE

The Thinking Machines Corporations’s CM-S is a massively parallel computer that can contain up to
16384 processing nodes [Thinking Machines Corp., 1992]. Figure 1 shows an individual processing node
consisting of a SPARC CPU, 32 Mbytes of memory and 4 Vector processing units.

8Mb/{8Mb || 8Mb|| 8 Mb
RAM || RAM || RAM || RAM

128 .]‘b’m 128 Ijisec 128 Mb/sec 128 Mb/sec

Vector| |Vector | | Vector| | Vector
Unit Unit Unit Unit

1 1 1 ]
[ Ul 64-bit bus
SPARC Communication
N k
CPU Interface

Figure 1. CM-5 Node Architecture

These processing nodes are all connected via a "fat-tree” communications network that allows fast
inter-node communication. These processing nodes are controlled by a front-end host computer which
is a modified SUN workstation. The SPARC processor on each node issues instructions to the vector
units and performs most address bookkeeping tasks while the vector units perform arithmetic and logical
operations on the data. Each vector unit has a peak rate of 32 million 64-bit ops (floating point or
integer) for a combined total of 128 Mops/node. Each node’s memory is divided into 8 Mbyte banks,
one for each vector unit. The banks of memory are mapped into distinct parts of the address space,
inter-bank communication is be mediated by the SPARC processor in most cases. Each vector unit has
it’'s own independent 128 Mbyte/sec path to memory for a combined memory bandwidth of 512
Mbyte/sec for each node. The vector units also act as high performance memory interfaces when their
arithmetic and logical capabilities are not being used. The CM-5 at the Army High Performance
Computing Research Center in Minneapolis, Minnesota currently contains 512 nodes for a total of 16 Gb
of memory and 64 Gops of peak processing speed. A CM-5 at Los Alamos National Labs contains 1024
nodes, for twice the capacity.

CMCAM is implemented on the CM-5 in a Multiple Instruction Multiple Data (MIMD) style. The
CMMD message passing library is used for inter-node communication and host-node interaction [Thinking
Machines Corp., 1993a]. In order to get the highest possible performance the vector units on each node
are explicitly manipulated using their assembler language known as DPEAC. To ease the burden of hand
coding the vector units a macro package known as GCC/DPEAC is used [Thinking Machines Corp.,
1993b]. This package uses features available in the GNU C compiler to issue assembler language
instructions from ANSI C and simplifies matters considerably.
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We partition the problem space into equally sized rectangular units. Figure 2 shows this partitioning for
N nodes. Each processing node is responsible for updating one of these rectangular units. This
partitioning allows one to send a small number of long messages to connect the space together.
Inter-node communication is only necessary along one of the axes of the problem space. Since the
inter-node communications network is optimized for long message lengths we expect that this partitioning
will make effective use of available communications bandwidth. This approach also substantially reduces
code complexity. Within a processing node, each of the 4 vector units is responsible for updating it’s
quarter of the space. Communication between each vector unit’s 8 Mbyte bank of memory is mediated
by the SPARC processor.

Node | Node | Node | Node | Node | Node
N

Figure 2. Problem Space Partitioning

There are two distinct phases of a lattice gas update cycle. The first phase is the collision phase where
particles interact, this amounts to a local permutation of the data at a particular site. The second phase
involves streaming of the bits to their new locations, consistent with their velocity and the lattice on
which the simulation is being performed. In most lattice gas models all collisions can happen
concurrently and all sites can stream their data concurrently, as well.

4. STRUCTURE OF A CM5 APPLICATION

There are several different paradigms for implementation of a particular application on the CM5. There
are languages such as C* and CM-FORTRAN that insulate the implementor from explicit management
of processors and allow the use of high level concepts and structures in a parallel environment. C* and
CM-FORTRAN have a Single Instruction Multiple Data (SIMD) approach to parallelism. Typically there
is a substantial performance loss when using these languages, as the compilers introduce substantial
overhead in their management of the available resources.

There is another approach to parallel computing known as Multiple Instruction Multiple Data (MIMD).
This model contains several processors, each executing it’s own stream of instructions that communicate
with other processors via message passing. This type of model is available through the use of the CM5
message passing library known as CMMD. CMMD provides communication and synchronization
primitives that can be used to produce a MIMD application. These primitives can be manipulated from
a standard high-level language such as ANSI C.




For many types of problems this explicit management of the communications resources can be more
efficient than implementation in the SIMD high level languages. Lattice gas simulation tests have been
performed with the CMCAM code that show a speed gain of a factor of 25 over a C* implementation
[Yepez, et al., 1994]. Since a main goal of a lattice gas implementation on the CMS has been to produce
an application with extremely high performance, the CMMD message passing model has been chosen and
will be discussed here. The discussion here is based on Thinking Machines’ CMMD documentation
[Thinking Machines Corp., 1993a).

There are two styles for programming a CM-5 application using the facilities provided by CMMD. There
is a hostless and a host/node style. The host/node style has been used here. In a host/node type
application there are two separate communicating main programs. ‘There is a program that runs on the
front-end host machine and a second program that is replicated on all the processing nodes. Since
CMCAM performs such tasks as remote file transfer and X-window display the host/node paradigm is
the most appropriate. The X-window code and all the disk 1/O can be centralized in the program that
runs on the front-end host.

The code is divided into several types of modules. Modules with a .cp.c extension are ANSI C program
modules that run on the front end host. These modules are typically concerned with disk 1/0, X-Window
machinations or supplying/gathering simulation data to/from node code. Modules with a .pn.c
designation are modules that make up the program that runs on each processing node. Modules
designated .cdp.c contain GCC/DPEAC statements that can be directly mapped to VU assembly language
instructions for the nodes.

A Makefile handles the compilation and linking tasks for the many types of modules. Briefly, the .cp.c
modules are compiled/linked into a host program while the .pn.c modules are compiled/linked into a node
program. The .cdp files are first compiled using gcc with flags that reserve some registers for exclusive
use of the vector units. This initial compilation produces a file that can be run through dpas, the VU
assembler. The output of dpas is a .pn.o object module that can be linked with the node code. After
linking with uncountable libraries, the host and node programs are forged into a common executable that
can be handled by the CM-5 run time system. Figure 3 shows the header file inheritance scheme for the
host and node code. This scheme effectively partitions the definitions and declarations on both the host
and node sides of the code, while allowing for some definitions to be commonly shared.




common.h

Global Constants
Standard Headers

extem.cp.h axtern.pn.h

Global host variables Global Node variables
Host Constanis Node Constants
cam.cp.h cam.pn.h

Host Function Prototypes | (Node Function Prototypes
Host specific header files | |Node specific header files

l |

modute.cp.c module.pn.c

Figure 3. Header File Include Scheme

5. STREAMING

The most time consuming part of the code is the streaming. Even though each cell only communicates
with its near neighbors during an LGA update cycle the communications part of the code is substantial,
as individual bits must be picked out of words and reassembled into other words. In this CM-5
implementation there are two types of boundaries that the particles must move across. Particles must
move across VU boundaries, since each VU has its own bank of memory. Particles must also move
between processing nodes in the machine.

The streaming completely defines the lattice structure of the simulation. The first type of boundary is
between each vector unit on a CM-5 processing node. Communication between the VU’s is mediated
by the SPARC processor. Values are read from the registers on each VU, transferred to a SPARC
register and then written to the appropriate VU. This transfer takes place at each streaming step of the
calculation and is accomplished using the dpread and dplead CDPEAC macros.

At the edge of each processing node there is a different boundary that must be crossed, this boundary is
between two processing nodes. Communication between nodes involves the data network and is done
using the CMMD message passing library calls. This type of communication is substantially slower than
the on-node communication. For VU 0 and VU 3 there is an additional step of moving the data from
the VU address space into the SPARC memory address space. The communication must ensure that
every site on every VU has a directly accessible copy of the site data at each of its neighboring sites.




The process of updating each site after the communication process goes as follows:

1. Each site loads pointers to its neighbors from pre-computed addressing tables. These tables may
be computed in ordinary C, which is advantageous for changing from one model to another.
Additionally, potentially complex addressing calculations are performed only once, during
initialization.

2. The pointers are dereferenced using the indirect addressing capability of the vector units.

3. Each site masks off the appropriate bits from it’s neighbors and accumulates these bits in a
register. -

4, After all the bits from all the directions have been accumulated the value is written to memory.

Memory is double buffered so that only old values are used in the composition of new ones.

Here is an actual DPEAC code fragment that performs these operations:

loadv_v u(du ,vlen,RO_addr,8,V610]); /' load pointers to RO neighbors */

RO_addr += R_bump; * bump pointer table address */
Loadv _i(u,Sv,V6,V8); /* load RO neighbor data */
Loadv_i(u,Sv,V7,V9); /* load RO neighbor data */
andv(du, v8 SCALAR(R‘le) v2); /* RO neighbor & SCALAR(R126) */
loadv_v_u(du,vlen,R1_addr,8,v6(0}); /* load pointers to R1 neighbors */
RO_addr += R_bump; /* bump pointer table address */
Loadv _i{u,Sv,V6,V8); /* load R1 neighbor data */

toadv_ )(u,sv,V? Vo), /* \oad R1 neighbor data */
andv(du,va,SCALAR(R126),V6); /* R1 neighbor & SCALAR(R124) */
addv(du,V2,v4,V2); /* accumulate R1 bits */

storev_v_u(du, vlen, SNEXT_addr,8,V2[0}); /* write out accumulated results */

The first load instruction loads 2 32-bit pointers into each element of vector unit register V6, since it is
a double unsigned (du) format instruction. Loading 2 single precision quantities as one double precision
quantity doubles the effective memory bandwidth. These two 32-bit pointers show up as single precision
quantities in V6 and V7. The addresses in V6 and V7 are then used as offsets to load the actual site data
from neighbors in the RO direction into V8 and V9. There are two indirect load instructions since we
only want to load unsigned single precision (u) quantities. Then the bits from the neighboring site are
subjected to a logical and operation which selects the bits that stream to the present site. Double
precision masks have already been loaded into registers R126,R124 for this purpose. This process is
repeated for all the lattice directions and the incoming bits are accumulated in a register using an add
operation. After all the streaming has been completed the final accumulated results are written to
memory as a double precision quantity.

6. COLLISIONS

The collision phase can be handled via look up tables (LUT’s) for 16 bit sites. The LUT is attractive in
that it can be an extremely simple and fast update mechanism. We have distributed the LUTs throughout
the machine, indeed each vector unit has it’s own copy of the LUT. Figure 4 shows the memory layout
on each node. During the collision phase each vector unit fetches all the sites in it’s partition of the
problem space and runs them through its copy of the LUT. Since each vector unit has it’s own
independent 128 Mbyte/sec data path to a bank of memory, this operation can be performed extremely




rapidly. With this high degree of parallelism the LUT operation consumes a small fraction of the time
necessary to update the space. As the number of bits of site data grows beyond 16 (64K entries), the
LUT’s begin to consume too much memory. For models that involve larger quantities of site data (i.e.
\# bits $>$ 20) other methods involving LUT compression/decompression need to be used for the
collision phase [Henon, 1992].

LuT LuT LuT LUT
Addressing || ||Addressing || || Addressing|| ||Addressing
Tables Tables Tables Tables

Site Site Site Site

Data Data Data Data

Vector Vector Vector Vector
Unit 0 Unit 1 Unit 2 Unit 3

Figure 4. Node Memory Layout

Here is a GCC/DPEAC code fragment that performs collisions. This code assumes that we have loaded
V2 with sites that are ready for collisions.

mulv(u, V2, SCALAR(R111),V6); /* multiply new state by 4 to use */
/* as byte offset into lookup table*/

loadv_i(u,clutv,Vv6,v8); /* perform indirect Lload from lookup table */

The code fragment shows that only a multiply and an indirect load are necessary to perform a lookup
table based collision.

7. AN EXAMPLE CALCULATION

Here is an example of how to conduct a particular simulation experiment using CMCAM. This
calculation will utilize an 8 bit variant of the FHP model, which contains a rest particle and obstacle bit.
The bit definitions are contained in fhp_hood.h. Initial conditions, boundary conditions and any required
forcing for the flow need to be specified.

Let’s consider a specific flow experiment in some detail. The flow to be examined is channel flow with
a flat plate obstacle. Figure 5 shows a diagram of this situation. The first consideration is that we need
a steady flow directed towards the right of the diagram. Viscous dissipation will reduce the flow velocity
to zero unless we include some type of forcing which will keep the fluid moving down the channel.
Another important aspect of performing this channel flow experiment is what to do about the inflow and
outflow boundary conditions. If a simple periodic geometry is used, disturbances propagating along the
channel could re-enter it and eventually dominate the simulation behavior.
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Flow direction —> —>

Figure 5. Flat plate channel flow.

A periodic channel geometry that incorporates a forcing strip located at the leftmost side of the channel
meets the requirements. The forcing strip completely reconstructs the particle distribution in the strip
at each time step. This prevents disturbances from propagating repeatedly around the channel. The
reconstruction maintains the desired net velocity and density in the strip. Particles that emanate from the
strip are free to propagate in either direction around the cylindrical channel.

Initial conditions may be constructed in two ways. Constructing a pattern

file via an external C program is one way. This is good for running relatively

small simulations. It allows easy reproduction of many experiments

with a simple external program that needs only to know the required final output format. The second
method is to construct a C routine for

CMCAM that will construct the initial conditions at runtime. This method is

good for performing extremely large simulations, where the initial pattern

data might be too large to conveniently read in. The usual place to insert

such a routine is in init.pn.c.

Let’s examine the code for the initial conditions. This subroutine will
first fill the simulation space with a fluid at a filling fraction of 1/7
with a net velocity of 0.4 momentum units per site in the positive x direction.

void init_plate(int Li, int lj, float speed)
4

int i,j;
" /* initializes flat plate */
/* experiment at a filling fraction of 1/7 */

/* all nodes execute this code */
/* loop over the entire space on & node */
for(i = 0; i < li; ++i)(
for(j =0; j < Lj; ++jX
/* put rest particles everywhere */
PIPS(i,j,B1T6,5v);

/* in 10X of cases replace 2 rest */
/* particles with two oppositely */
/* directed particles */




if(zran1(0) < 0.1)(
/* avoid giving particles a negative x coordinate */
if(j > 0)C
if(zrani(0) < 0.5)¢
PIPS(i,j,BIT1,SV);
PIPS(i,j-1,BIT4,Sv);

)
else(
PIPS(i,j,B1T0,Sv);
PIPS(i, j-1,BIT3,Sv);
)
)
)
? /* insert particles with 1 unit of */
/* forward momentum to obtain an average */
/* momentum per site of [speed) */
if(zran1(0) < speed){
if(zran1¢0) < 0.5)(
PIPS(i, ),B1T3,Sv);
)
else(
PIPS(i, j,BIT4,Sv);

/* insert bits for plate*/
if(self_address == (partition_size / 8) )
/* this code only executes on one node */
for(j =0; j <5; ++j)(
for(i = Li/2 - Li/16; 1 < 1i/2 + Lis16; ++i)(
PIPS(i, ,BIT7,SV);

/* add hard walls at top and bottom of channel */
for(j = 0; j < Lj; ++jX
i=0;
PIPS(i,j,BIT7,Sv);
i=Lu-1;

PIPS(i, j,BIT?,5V);
)

An important thing to keep in mind is that this code runs on every processing node involved in the
simulation. The loop boundaries li and 1j denote the boundaries of each processing node’s piece of the
simulation space. The PIPS macro is used to load the values into the memory of each of the 4 vector
units on each processing node. Note the self address conditional test where the flat plate obstacle is
inserted. Each processing node has a unique variable called self address. The code that inserts the flat
plate obstacle is only run on the node with a specific address. This test insures that the flat plate is
inserted at only one point in the channel.

Now that we have specified the initial conditions let’s examine the forcing scheme that keeps the fluid
moving through the channel. As was previously discussed we will use a forcing scheme that not only
forces the fluid, but also acts to prevent disturbances from recirculating around the channel. The code
is similar to the initial conditions routine described above and would usually reside in forcing.pn.c.




void force_plate(float speed, int Li, int (j)
<

int 1,j;
int val;
int r;
/* this forcing reconstructs */
/* the distribution at the forcing strip */
/* each time step */
/* assumes 1/7 filling fraction */

/* forcing strip in node 0 */
/* forces flow in positive x */

if(self_address == 0)(
for(i = 0; § < Li; ++i)(

~
*

first Lay down isotropic background */
/* choose a random bit to set */
r = (int)(zran1(0) * 7.0);
val = 1<<r;
/* put resulting value into vector memory */
PIPS(i,2,val,Sv);

for(i = 0; 1 < Li; ++i)(
if(zran1(0) < speed )( /* put in +x speed particles */
/* to get appropriate speed */

if(zran1(0) < 0.5 X

PIPS(i,2,BIT3,Sv);
)

else(
PIPS(i,2,BIT4,SV);
b

There is a self address test that makes sure the forcing is only done on one node. The rest of the code
merely reconstructs a strip of fluid with a given net velocity. This routine is called after each time step
to maintain a steady flow.

To compute the flow velocity at each point we use pre-computed lookup tables that map the individual
site states to floating point numbers that specify density, x momentum, y momentum and so on. These
tables are computed in tabulate\_states.pn.c.

Nearly all the simulation ingredients are in place, we have completely specified boundary conditions and
external forcing. To visualize the flow we need to extract the simulation data from each vector unit’s
memory, compute the flow velocity at each point and transmit an image to the front end host, where it
can be displayed or written to disk for later processing. Figure 6 shows some results from running the
experiment on a 1 K x 2 K lattice. The coloring indicates only the direction of the flow.
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8. PERFORMANCE

After implementing a simulator with the above considerations in mind we find that we can achieve update
rates on the order of 550 Msites/sec on a 256 node partition of the CM-5 for an 8-bit FHP gas model.
This timing was done using a 2048 x 32768 lattice with a model that packed two 8-bit sites into a 32 bit
word. We find that the longer the system is across each node the greater the performance realized. This
is due to the fact that long system sizes across each node increase the fraction of sites in the interior of
each vector unit that do not need to communicate with sites on adjacent vector units or processing nodes.

Extending the CMCAM simulator to use more complex models can result in substantial performance
penalties. For example the 2-speed thermohydrodynamic mode! of Chen, et al. [1991) requires that some
bits are streamed twice as fast as other bits. The most straightforward way to implement this using
CMCAM is to perform two streaming cycles before a collision cycle, incurring a factor of 2 performance
loss.
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APPENDIX A. CODING CONVENTIONS

1i,1) Bounds of a pn's portion of simulation space
Sv time t lattice memory
SNEXTv time t + 1 lattice memory

PIPS(i,j,val,addr) {Put Into Parallel Space]
- Write (val) into vu memory at lattice site i,j
This macro automatically selects the appropriate VU
to write to.

GFPS (i, j,addr) (Get From Parallel Space]
Read from vu memory at lattice site i,j into addr.
This macro automatically selects the appropriate VU
to read from.
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APPENDIX B. ARGUMENTS

Recognized Command line arguments to CMCAM:

Required:

-nsteps (int] -> number of steps to run

-report_freq [int] -> display and statistics gathering interval
~-pattern file [fname} -> filename of initial conditions pattern
-rlut_file (fname] -> filename of the right handed lut
~1llut_file ([fname] ~-> filename of the left handed lut

-8ys_x (int] -> system x dimension
-8ys_y [int) -> gystem y dimension
Optional:

-forcing [float]} -> number of momentum units per time step to add in
each direction

-xdisplay -> if present, an X window is opened and displays the state
every report freq timesteps

—cam_pattern -> the pattern file is a CAM format pattern file

-colordisp -> color display

-display table_file -> file that maps automaton states to
8-bit color indices
-palette file ~> file that maps 8-bit color indices to RGB colors
-send_frames [hostname:directory) -> enables automatic rcp of generated
frames to specified host
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APPENDIX C. CAM-8 COMPATIBILITY

CMCAM is compatible with the MIT Information Mechanics Group’s CAM-8 machine in the following
ways.

1. The format of the collision rule lookup table is identical. LUT’s produced for the CAM are
usable directly by CMCAM.

2. CAM display tables and color palettes are directly usable by CMCAM.

3 CAM initial pattern data is consumable by CMCAM.

Streaming information is encoded in a different manner on each machine and there is no provision for
directly transporting code from one machine to the other.

16




[

APPENDIX D. OBTAINING AND RUNNING THE CODE

CMCAM source code may be currently obtained from Guy Seeley, email address:
seeley@wind.plh.af.mil, phone (617)377-2475.

1. Uncompress and untar the file containing the source and appropriate supporting files.
2. Type make. This should compile all the modules and produce an executable known as lutem.
3. Make sure that you are operating on a color X-Window terminal with your DISPLAY

environment variable appropriately set and access to your own X display enabled.

4. Type sample_run. This will run a sample calculation on a 32 node partition of a CM-5. This
calculation will display an X-window view of the simulation every 250 time steps.
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