

DEPARTMENT OF THE NAVY NAVY EXPERIMENTAL DIVING UNIT 321 BULLFINCH ROAD PANAMA CITY, FLORIDA 32407-7015

,

IN REPLY REFER TO:

NAVSEA TASK 92-002 & 92-003

NAVY EXPERIMENTAL DIVING UNIT

REPORT NO. 5-94

EVALUATION OF BAUER K-20 DIESEL DRIVE HIGH PRESSURE BREATHING AIR COMPRESSOR

> GEORGE D. SULLIVAN DECEMBER 1993

Approved for public release; distribution unlimited

Submitted by:

.*

G. D. SULLIVAN GS-11 Test Director

Reviewed by

R. I. JÓHNSTON GM-13 Hyperbaric Engineer

ന **B.D. MCKINLEY**

G.R. CLARKE

GM-15 Scientific Director

M.V. LINDSTROM LCDR, USN Executive Officer

Approved by:

BERT MARSH CDR, USN Commanding Officer

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE

-

.

-

.

NCLASSIFIED	E TUTO D	ACE					ı ,	•	
ECORITY CLASSIFICATION O	<u>r inis p</u>	REPORT DOCU	MENTA	TION PAGE	·				
1a. REPORT SECURITY CLASS	SIFICATI	ON	16.	RESTRICT	IVE MARKINGS	<u></u>		<u>. </u>	
2a. SECURITY CLASSIFICAT	ION AUTH	ORITY	3.	DISTRIBU	TION/AVAILABI	LITY OF I	REPOR	RT.	
2b. DECLASSIFICATION/DOW	NGRADING	SCHEDULE	-	DISTRIBU release;	TION STATEMEN distribution	ĩA: App is un lin	prove nitec	ed for pub t	lic
4. PERFORMING ORGANIZAT NEDU Report #5-94	ION REPO	RT NUMBER(S)	5.	MONITORI	NG ORGANIZATI	ON REPOR	T NUP	BER(S)	
Sa. NAME OF PERFORMING OF Navy Experimental Diving	RGANIZ. Unit	6b. OFFICE SYMBOL (If applicable)	7a.	NAME OF I	MONITORING OR	GANIZATIO	DN		
6c. ADDRESS (City, State Panama City, Florida 324	, and ZI 07-5001	P Code)	7ь.	ADDRESS	(City, State,	and ZIP	Code	e)	<u> </u>
Ba. NAME OF FUNDING/SPON ORGANIZATION Naval Sea Systems Commany	SOR ING	6b. OFFICE SYMBOL (If applicable) OOC	9.	PROCUREM	ENT INSTRUMEN	TIDENTI	FICAT	TION NUMBE	R
Bc. ADDRESS (City, State	, and ZI	P Code)	10.	SOURCE O	F FUNDING NUM	BERS			
Washington, D.C. 20362-5	101		PRO	GRAM MENT NO.	PROJECT NO.	TASK NO 92-002 92-003	•	WORK UNIT ACCESSION	NO.
12. PERSONAL AUTHOR(S) Ar. David Sullivan 13a. TYPE OF REPORT	13b. TI	ME COVERED		4. DATE	OF REPORT (Ye	ar,Month,	,Day)) 15. PAGE	COUN
	FROM	то	<u> </u>)ecember	1993			30	<u> </u>
6. SUPPLEMENTARY NOTATIO	DN								
7. COSATI CODES		18. SUBJECT TERMS	(Con	tinue on	reverse if ne	cessary a	and i	identify	
FIELD GROUP SU	B-GROUP		er))sivo Hid	h Dreccure Br	oothing /	Nic 1		
9. ABSTRACT (Continue of In response to NAVSEA tai Inive High Pressure Brea Netermine if the compress lased on the test results ist published by NAVSEA	n revers sking, N thing Ai sor syst s NEDU r OOC.	e if necessary and i avy Experimental Div r Compressor from Oc em, when operating a ecommends that the o	ident ving (ct 13 at 50 compre	ify by bla Jnit (NEDU , 1993 to DO PSI, m essor not	ock number) U) evaluated Nov 02, 1993 et Navy divin be placed on	the BAUEI . This s g commun the App	R K-2 test ity r rovec	20 Diesel was to requiremen d for Navy	ts. Use
20. DISTRIBUTION/AVAILAB		ABSTRACT SAME AS RPT. DT		21. /	ABSTRACT SECU	RITY CLA	SSIFI	ICATION	
22a. NAME OF RESPONSIBLE NEDU Library	INDIVID	UAL	226.	TELEPHONE 904-230-3	(Include Are 224	a Code)	22c.	. OFFICE S	YMBOL
) FORH 1473, 84 MAR 8	3 APR ed	ition may be used un	ntil	exhausted	SECURITY	CLASSIF	ICATI	ION OF THI	<u>s pag</u>

CONTENTS

.

•

•

• •

I.	INTRODUCTION	1
II.	EQUIPMENT DESCRIPTION	1
III.	TEST PROCEDURE RESULTS	3
	A. OIL LUBRICATION	4
	B. AIR SAMPLING	4
	C. OIL CONSUMPTION	5
	D. DIESEL FUEL	5
	E. MAINTENANCE	5
IV.	OBSERVATIONS/RECOMMENDATIONS	5
V.	CONCLUSIONS	7
VI.	REFERENCES	8
APPENI	DIX A - Test Log A - 1 thru A - 10	
APPENI	DIX B - Test Log B - 1 thru B - 7	
APPENI	DIX C Air Samples C - 1 thru C - 6	

ILLUSTRATIONS

Figure

Air Flow Diagram

No.Page No.

2

1

Accession For NTIS GPA&I DTIC TAB Unsuncemend Justification

By______ DJ_tribution/____ Availability Godes Avail and/or Dist Special A.

I. INTRODUCTION

In response to NAVSEA tasking^{1 2} two BAUER 20 CFM, MODEL K-20, NSN 4310-01-291-8028 Diving Air compressors equipped with Bauer P-5 purification systems were tested by the Navy Experimental Diving Unit (NEDU). The purpose of the test was to:

A. Determine if the compressor and Purification System provides compressed air at the required pressures, flow rates, quality and cleanliness required by the U.S. Navy³.

B. Determine the adequacy of the manufacturer's information, instructions and guidance for the safe operation and overall management of the compressor.

II. EQUIPMENT DESCRIPTION

A. GENERAL

The BAUER 20 CFM MODEL K-20 high pressure, breathing air compressor (Figure 1) is of a four stage, four cylinder, "X" configuration. The fourth stage cylinder is lubricated by means of a forced-fed lubrication system; the other cylinders and running gear are mist-lubricated.

The BAUER compressor unit consists of compressor block, condensate separator system, purification system, instrument panel, fuel tank, and a diesel engine in a skid-mounted frame.

The drive unit during this test was a Deutz, Model F2L912, 27 hp, air cooled, two-cylinder diesel engine. The engine is designed to start electrically by means of a 12 v battery, or manually with a hand crank. It is equipped with a cold weather starting aid system. A V-belt pulley and hand-operated Rockford clutch transfers rotating torque to the compressor via two V-belts.

The purification system utilizes two replaceable cartridges (BAUER filter PART No. 058825 with molecular sieve, and PART No. 068416 with activated carbon and hopcalite).

The oil/water separator block is installed between the 2nd, 3rd, and 4th stages. The drawn-off oil/water is maintained in the separator blocks until the condensate drain is manually activated. The oil/water separator block is equipped with a condensate heater for use in cold weather to prevent the condensate from freezing. The separator block requires routine maintenance consisting of periodic draining. Residual oil and water vapors that are not drained manually are removed by the purification cartridge system. The treated air is free of oil, taste, smell, and carbon monoxide.

The BAUER 20 CFM, MODEL K-20 Diving Air Compressor comes with one Technical Manual⁴ which is divided into the following sections;

- 1. Equipment Description and Data
- 2. Description and Use of the Operator's Controls and Indicators
- 3. Preventive Maintenance Checks and Services

AIR FLOW DIAGRAM

- 3. Intercooler (2nd stage)
- 4. Intercooler (3rd stage)
- 5. After Cooler
- 6. Condensate Block (2nd/3rd stage)
- 7. Interfilter (3rd/4th stage)
- 8. Interm. Pressure Safety Valve (1st stage)
- 11. Condensate Block (4th stage)
- 12. Final Pressure Relief
- 13. One-Way Valve
- 14. Filters
- 15. Bleed Off Valve
- 16. Pressure Maintaining Valve
- 17. Service Valve

A Air Outlet

B Condensate Outlet

Note: Condensate Blocks 6, 7, and 11 are actually mounted on a heated condensate drain manifold along with the final separator.

- 4. Operation Under Normal Conditions
- 5. Fuel Oil and Lubrication Requirements
- 6. Unit Troubleshooting Procedures
- 7. Unit Maintenance Procedures

According to the manufacturer's literature', the BAUER, Model K-20 compressor has a capacity of 566 liters per minute (20 scfm) free air delivered. The purification cartridges have an air processing capability for 80 hours of use or six months.

A pressure maintaining/non-return valve (which is set between 124 and 134 bars [1,800 and 2,000 psi]) is provided down-stream from the purification filter system. This achieves constant, optimum filtering, moisture separation, fourth stage piston ring expansion/cylinder sealing, and prevents compressed air return from the air storage flasks to the compressor during unit shut down. All four stages of the compressor are protected by safety relief valves. A diagram of the compressor system is provided in Figure 1. The compressor comes with two final system safety valves. The scuba charging whip relief is set at 220 bar (3,200 psig) and the air service line relief is set at 346 bar (5,100 psig).

III. TEST PROCEDURE RESULTS

Two compressor units were tested⁵. For identification purposes they are referred to as compressor (A) and compressor (B).

There are various methods of testing compressor capacities, stability, and reliability⁵. For this compressor evaluation, NEDU chose to continuously run the compressors for extended periods, charging a 87.7 liter (3.1 cuft) cylinder from 0 to 345 bars (0 to 5,000 psig). BAUER purification cartridges (PART No. 058825 and 068416) were used for these tests.

Compressor (A) and all ancillary equipment was received and set up according to manufacturer's instructions. A Cole Palmer Model 8502-14 temperature monitor and Yellow Springs Instruments 700 Series thermistor probes were attached for measuring compressor discharge and ambient temperatures. An Analox carbon monoxide monitor was used to analyze compressor discharge air before and after the filter purification system with the sample flow rate set at 3.0 mL per minute. Nitrogen with a 50.8 PPM mixture of Carbon Monoxide (CO) was used to calibrate the high range of the monitor, and ambient air was used to set the monitor's low range at 0.

A gas mixture of 24.4% carbon monoxide and 75.6% nitrogen was injected into the compressor intake by a Victor Equipment Company manual regulator through a Fisher/Porter flow meter.

The introduction of carbon monoxide was adjusted to maintain 50 PPM of carbon monoxide at the inlet to the central purification system. Appendix A and B shows the recorded data from the Test Log. The unit was operated in an exterior work area, open to ambient temperature and humidity. The testing included subjective evaluation of the system operation but did not include detailed mechanical review of the individual components of the system. Testing of compressor (A) was suspended at 29.6 test hours because of the failure of the automatic condensate drain (ACD) block securing bolts, excessive vibration, and repeated oil line fitting failure.

Compressor (B) was configured with the testing instrumentation used on compressor (A) and the compressor was operated for a total of 50 hours. Appendix B shows recorded data from the Test Log.

Compressor (A) testing resumed after the mechanical deficiencies were corrected by a factory on-site representative. The following parameters were recorded:

- 1. Date
- 2. Time
- 3. Meter Test Hours
- 4. Ambient Temperature
- 5. Compressor Air Discharge Temperature
- 6. Ambient Humidity
- 7. Carbon Monoxide PPM (Before/After Filtration)
- 8. Injected Carbon Monoxide Flow Rate and Percentage
- 9. Engine Oil Pressure
- 10. Engine Cylinder Head Temperature
- 11. Alternator Output Voltage
- 12. Compressor Oil Pressure
- 13. Compressor Final Discharge Pressure
- 14. Service Line Discharge Pressure
- 15. Cylinder Charging Times

A. AIR DELIVERY

Compressor capacity was determined (27.62 scfm) by calculating the average time between compressor A (673.83 SLPM (28.82 CFM)) and B (747.95 SLPM (26.41 CFM)to charge a (3.1 cuft) floodable volume cylinder from 0 to 345 bars (0 to 5,000 psig). Calculations are shown in Appendix A-10 and B-7.

B. AIR SAMPLING

Air samples were taken from the compressor purification system discharges. The sample on Compressor (A) was taken at 1 hour running time. Two samples were taken on Compressor (B) at the 25 hour and 45 hour test period. Samples were sent to the CSS Laboratory, Code 5130, for purity analysis. Appendix C lists the air sample analysis results. The P-5 purification system was previously evaluated in NEDU tests 91-17, 91-28 and recommended for approval in NEDU reports 08-91 and 12-91.

C. OIL LUBRICATION

At the beginning of the test⁵, compressor (A) engine oil level was 1.89 liters (2 quarts) below Full, and the compressor oil was .47 liters (1 pint) below Full. Compressor (B) engine was 2.36 liters (2.5 quarts) below Full, and the compressor was .47 liters (1 pint) below Full. Both units were filled to their prescribed limits. Oil levels were checked at the beginning and end of each testing period, or every 8 hours. Oil consumption was logged in Appendix A and B. The engine requires 4.7 liters (5 quarts) of Navy symbol 9250. The compressor requires approximately 4.0 liters (4.2 quarts) of MIL-L-17331 2190TEP and MIL-H-17672 (Arctic Temperature) 2135TH lubricating oil.

D. OIL CONSUMPTION

During the 50 hour test⁵, a total of 0.47 liters (1 pint) of oil was added to compressor (B) and 0.23 liters (0.5 pint) of oil added to compressor (A). No engine oil was required for either unit.

E. DIESEL FUEL

The diesel engine is fitted with a 49.20 liter (13 US gallon, 10.8 Imperial gallon) fuel tank. Both compressor engines were run at the full factory throttle setting during the entire testing period. Compressor (A) used 206 liters (54.5 gallons, 45.3 imperial gallons) of diesel fuel. The average fuel consumption was 4.12 liters (1.09 gallons, 0.90 imperial gallon) per hour. Compressor (B) used 208 liters (55 gallons, 45.7 imperial gallons) of diesel fuel. The average fuel consumption was 4.16 liters (1.1 gallons, 0.91 imperial gallon) per hour.

F. MAINTENANCE

Scheduled maintenance was performed per the manufacturer's instructions⁴. This included checking the tension of drive belts, the engine/compressor oil levels, lubrication of the clutch throw-out collar, checking the engine oil bath air cleaner every 10 hours. At 24 hours, the engine oil was changed on compressor (A).

IV. OBSERVATIONS/RECOMMENDATIONS

Compressor (A) experienced excessive vibration contributing to component Α. failure and complete unit failure at 29.9 hours of operation as listed in (APPENDIX A). A factory representative was called in and determined the vibration was caused by incorrect engine/compressor speed (factory set). Both compressor A and B engine "full throttle" speeds were re-adjusted by the factory representative to within factory specifications (2,100 to 2,300 RPM) then fine tuned to achieve a point of least vibration. This was accomplished at approximately 2,200 RPM as indicated on a mechanical tachometer. There is no mechanical or electrical device installed on the unit to determine or set engine/compressor speed. It is recommended that a tachometer be installed on the engine and instructions provided for correctly setting the diesel engine/compressor speed.

B. The ACD block securing bolts failed from excessive vibration and misalignment of piping. The manufacturer's maintenance manual⁴ (page 4-11 step 7) instructs the mechanic to bolt the ACD block to the compressor. Step 8 gives direction to then attach the six tubes to the ACD block. The factory representative (during his repair) first connected the six tubes to the ACD block prior to bolting it to the compressor. He said it helped relieve stress and vibration caused by misalignment. It is recommended that the Technical Manual⁴ be changed to reflect the above installation procedure. C. The oil fill plug on the final line pressure gauge of compressor A fell out. This required replacing the gauge. The factory representative stated this was due to ambient temperature fluctuations. The failure of such instrumentation could cause equipment failure. NEDU recommends the gauges be replaced with gauges that are not subject to failure due to ambient temperature changes.

D. Gauges have no operating parameters listed. Operating parameters should be listed on each instrument i.e., ENGINE OIL PRESS 30 - 90 PSI.

E. The discharged condensation contained oily waste. The drain pipe discharged this oil/water waste on the ground leaving an oil residue and a possible safety hazard. Page 3-22 of the Technical Manual⁴ states:

The Federal Water Pollution Control Act prohibits the discharge of oil or oily waste into or upon the navigable waters of the United States etc.

Since this compressor could be used on the deck of a vessel, NEDU recommends the condensate drain be piped into a non-pressurized tank that can be emptied in a controlled manner.

F. The fuel filter is the spin off automotive type and is mounted horizontally on the engine. Replacement of this filter can not be accomplished without spilling its contents. The fuel filter should be mounted vertically.

G. Compressor B oil pressure was operating as low as 52 bars (760 psi) (Appendix B). The factory representative stated it was too low and adjusted the oil pressure regulator to 60 bars (880 psi). The Technical Manual⁴ page 2-1 states: Pressure normally reads between 51 to 59 bars (750 to 870 psi). It is recommended that the Technical Manual⁴ be corrected to reflect the correct parameters.

H. The compressor unit comes with a SCUBA charging connection, fitted with a relief valve set at 224 bars (3300 psi) and connected to a 344 bars (5000 psi) hose whip. Charging a single 2,265 liter (80 cuft) cylinder directly from the compressor would exceed the recommended charging rate⁶. This is noted for the information of all operators.

I. The fuel tank fill opening was directly over the engine exhaust manifold. There was no label warning operators to secure the engine and let it cool before adding fuel. It is recommended that the fuel tank be turned 180° in its mount. This will place the fill opening away from the engine exhaust manifold.

J. The fuel supply line has no shut off valve. It is recommended that a fuel valve be installed.

K. The rubber fuel lines rub against the skid frame. The vibration of the running unit started wearing a hole through the hose. The Army has a field modification which calls for wrapping the hose in canvas wrapping. These compressors were not modified. All compressors should be modified to include a chaffing guard on the fuel lines.

V. CONCLUSIONS

Numerous equipment failures, excessive vibration and maintenance problems occurred during both this evaluation and the one conducted in NEDU test 91-17. After the factory representative worked on both compressor A and B they seemed to operate satisfactory with less vibration than before his adjustments. Thirteen additional hours were logged on each compressor, while charging numerous Army Special Divers Air Support System (SDASS) flasks. The compressors operated satisfactory during this period. The Bauer K-20 compressor was built to the requirements of an Army specification written to provide a compressor to be used in an unusual application. The Army presently has approximately 75 of these units.

The high pressure air compressor delivers air which meets USN standards³ at an average rate of 782.11 LPM (27.62 CFM) per Appendix A and B. This meets the manufacturer's specifications. However, due to reliability and safety concerns, NEDU is recommending that the BAUER 20 CFM 5000 psi, MODEL K-20, NSN 4310-01-291-8028 not be included on the ANU list⁷. NEDU recommends that no additional compressors be procured.

VI. REFERENCES

1. NAVSEA Task 92-002. <u>Evaluation of commercially available divers air compressors</u>.

2. NAVSEA Task 92-003. <u>Evaluation of Commercially Available Filters for H.P.</u> and L.P. Breathing Air.

3. NAVSEA J994-LP-001-9010. U.S. Navy Diving Manual Volume 1, Rev 3, Para 5.3.2. Air Purity Standards, 15 December 1988.

4. Army Technical Manual, M-5-4310-389-14 <u>Operator</u>, <u>Unit and Intermediate</u> (<u>Direct Support/General Support</u>) <u>Maintenance Manual</u>.

5. Navy Experimental Diving Unit Test Plan Number 93-34, September 1993.

6. Naval Ships Technical Manual, S9086-SY-STM-010, Chapeter 551 1st Rev. 1 November 1987. Compressed Air Plants and Systems, para 551-4.2.21.

7. NAVSEAINST 10560.2B, Diving Equipment Authorized for Navy Use.

8. U.S. Army Contract Modification Number P00013 dated 23 October 1993. Issued by U.S. Army Aviation & Troop Command AMSAT-A-PSLE Ralph Macias 314-263-2535 4300 Goodfellow Boulevard St. Louis, Mo.83120-1798.

BAUER H.P. COMPRESSOR (A)

DATE 13 OCTOBER 1993

	NITTEN A	ř.	i. 2	NAME A MARK	CONCERN	NOTTON	DUBCTI COMP.	O UD INTO INTAKE	DAGE PRESS	CH STATE	AND	COMP OIL PRESS	TANA.	SERVICE LINE DISCH	CHAR		CHARGIN	TLINDER D INFORMA	NOL	5 Z R
		AUGK Takere	COMP Decalors	×	REFORM FLITER	APTER NLITER	FLOW	svs *		E.				Z	RATED CUFT	QEIN K	FTALT TIDA	o an Ona		NGN
	2.4	3	-19	¥91		·			*		76+	8	1.700	•		·	·			
8	23.8	ų.	£,	\$1\$	Net of	JHLAL O	1.10 CC	24.4%	8		N6 +	£	3,300	3,900		·	·		·	
9030	24.0	\$	- 	385	Net of	yuu o	1.65 CC	24.45	8		N6 +	£	3,000	3,000	3.4	5,000	9634			
9960	24.4	38	•94	305	MAL OS	MAA O	1.05 CC	24.45	8		16 +	2	2,300	2,300	3.4	3,000				
0000	X .9	è	, IS	305	So PPM	o PPM	1.05 CC	24.45	8	•	N6 +	ŝ	4,900	4,900	3.4	5,000		0660	5,000	8
1000	23.4	b	4	Xae	So PPM	MAY 0	1.66 CC	5176	8		^s+	£	3,100	3,100				•		
1600	6.12	4.	18	S15	Julia oc	MAY 0	1.65 CC	24.45	8		+5V	<u>و</u> -	2,000	006,1		•	·		·	
1109	26.4	7.	ŝ	365) PPM) PTM	1.05 CC	24.45	8	•	A2+	098	1,800	•						
2 11		ONLING						•		•							·			
1217		Dellaro		•													•		•	
126	2.12	şe	ġ	385	30 PPM	o PPN	1.65 CC	24.45	8		∧ 5+	59 8	4,600	0	3.4	5,000	120			
1900	21.7	3.	ŝ	365	SO PPINE) PPIN	1.05 CC	24.45	8		^S +	8465	3,300	3,300	3.4	3.000	·			
1336	28.2	38	ŝ	365	So PPM) Prime	1.05 CC	24.45	8		∧s+	596	2,100	2,100	3.4	5,000		1312	5,000	42
99 1 1	28.7	4	ŝ	365	Made of	Maa o	1.65 CC	21.45	8		∧ S+	B KS	1,900	006	3.4	5,000	1353			
1430	29.2	k	-98 88	36%	SO PPM	M44 0	1.05 CC	24.45	8		^ S+	59 8	4,400	4,400	74	5,000		1435	5,000	14
1463	SBCURED T	DATING.											,					- -		
REMARKS 0700 STAR 0730 CRBC	A DATTAUND	BUT CALIBRATIO	N IL (ADDED 2 OT 92	TIO ENGINE OS	AND 1/2 OF 219	0 THP COMPRES	BOR OIL													

673 ADDRD 16 GALLONG OF DEBRET FUEL 1134 OEL LEAK ON COMPRESSOR OEL GAUOS SUPPLY LING (REPLACED SWEDOS LOCK FITTINGS 1305 SERVICE VALVE EARD WEREL FEEL OFF

Appendix A - 1

-

•

•

.

BAUER H.P. COMPRESSOR (A)

DATE 14 OCTORER 1993

11 Matrix Matrix <th matrix<="" th=""> <th matrix<="" th=""></th></th>	<th matrix<="" th=""></th>	
Math Origination Construction State State State Construction State		
CONTRACTION DEC MAR CONT MAR CONT MAR CONTRACT		
Mith Observation Base of the state of t		
Contribution IMMERTIDDING Deside official and a Cut, image in a REWUL image in a REWUL image in a REWUL image in a REWUL image in a Cut/OBB image in a Cut/OBB image image in a Cut/OBB image image image in a Cut/OBB image		
Different End Control Final Control Final Cuttores Cutores		
Biol Cr.L. MARE COME FEMAL F		
Crut AMF COMF TRALL AMF COMF TRALL CULTONER <		
Auf Contr FNAL Service Clance FNAL Service Clance FNAL Service Clance		
Coult Filval. Structs Cruintings		
THVAL SERVICE I.URE CHANORE CTLENDER CALANORE CTLENDER CALANORE CTLENDER CALANORE CLUNCE CALANORE RATE CALANOR FIL FIL 1980 0		
Starvics Cruncis <		
CEALOER CALORER CALLORER CALLO		
DER CALINDER		
Cruthdea Frairt Ban Frairt Ban 1043 5,000 5,000 1013 5,000 6 1013 5,000 6 1013 7 1013 7 1000 7 10000 7 1000 7 10000000000		
Ref 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		

ons adord in Gallors of Diskel Fuel ans started eacine 1414 aduusted back pressure requilator valve

BAUER H.P. COMPRESSOR (A)

DATE 15 OCTOBER 1993

						ſ							ſ			Ī			ſ	1
JAN BAL	METEN NOTES	ĕ	1. 91	ANDI	CONICCENT	TATTON	C INUBICTIA COMOP. 1	o Intake	NI ING		AMP METER Vol.17	CONC.	IN I	ABRYNCH LINB DIACH	CTLIN	8 8	CEANDONE	TUNDER INFORMAT	TION	
		AMR	COMP DSCB0*F	×	NUTTER BRIVARE	APTER PLITER	PLOW BATTS	2×		•				E	RATED CUTT				울로	
CNI1		ONCLUB		•	•						·			·	·	·		·	•	
	35.8	¥	×	100%	741 Q	9 777 C	1.65 CC	26.45	8		∧s+	8	2,100	1,750			•			
8	×:	×	ŝ	315 X	30 PFM	ytil 0	1.65 CC	24.45	8		^5 +	9 9	2,100	906		·				
0056	×	×	ž	808	96 ILIN	2 PPM	1.65 CC	24.45	8		^s+	9	4,100	4,100	3.4	5,0%0	680			
8	5.12	¥	°3	140%	Mad of	A 1994	1.65 CC	34.45	8	•	^ S+	894	3,000	3,000	3.4	5,000		0580	3.000	
90 1	37.E	•\$L	ak.	818	JAPPE OL	9444 Y	1.65 CC	24.45	8	•	^2 +	ŝ	2,100	8		•		•		
1656	X.S	-54	58	805	30 PPM	S PPAK	1.65 CC	24.45	8		^S +	998 -	4,400	4,400				•		
1100	X.C	4	• 3 8	808	MEY OC) PPAG	1.65 CC	24.45	8		∧s+	8	2,900	2,900		•		·		
9611	5.85	Ř	. 2	816	30 PPK	4 PPM	1.65 CC	24.4%	8		+5V	99 8	2,100	1,900				•		
900	39.6	ķ	ł	808	Wild of	4 1974	1.65 CC	24.45	8		^S +	998	3,000	3,000				•		
971	40.5	¢.	ŝ	808	30 PTM	A TPM	1.65 CC	24.45	8		AS +	898	3,100	3,100				·		1
1961	8.0k	- -	°23	2.4	yead of	NAL Y	1.65 CC	24.45	8		∧s+	98	2,100	1,400				•		
1366		ISTERIO								·						•				
RINANCE OTO FIAK OTO CERCI	TTD INSTRUME	INT CALIBRATION	r d				1			1										

othe ceneral inverse a completeder of one added in gallons of Dibert Fur-

.

•

.

BAUER H.P. COMPRESSOR (A)

DATE 18 OCTOBER 1993

				Ī				Ī	Ī		ľ	ľ				ł			$\left \right $	ſ
ANT AND	AUTON	Ĭ.		AMA MUM	CONCERT	NOLIVI	C TINDECTE	O DD INTO INTAKE	ONE 110 Second		AMP	COMP OIL Press	ING 1947	LING LING DISCH	CHARK CYTLIN BIZI		CHARGIN	VLINDER 0 INFOIDAN	NON	분별
		ANDE	COMP DBCBD*F	*	MEPORA FILTER	AFTER MLTBR	NOL	8*		÷				E	RATED CUFF		FLANT TIDGT		8 F	. NGM
800				•	•	•		•	8		^ 5+				·			 ·		
900	41.0	*	7 .	318	WAA LO	o TTNK	1.65 CC	24.45	8	•	^6 +	SM	2,106	0 8	· -		·	 ·		
9969	41.5	¥	ż	×	SO PTIME	3 PML	1.65 CC	24.45	8		^S +	38	2,900	2,906			·	•	-	
0000	9.25	ż	*	M.S.	A PPA	0 PPM	1.65 CC	24.45	8	,	+5V	998	2,100	500	3.4	5,000	929			
1000	53	å	.16	80	NGA W	WLL O	1.05 CC	24.45	8		^S +	8	4,300	4,200	3.4	5,000	·	1005	5,000	ł.
1056	6.0	ż	ŝ	NN	40 TPM	3 PPM	1.65 CC	24.45	8		^6 +	98	2,300	2,300	· ·			•		
1166	6.5	2	5	¥Q	20 TEM	4 PRM	1.10 00	24.45	8	160-	∧ S+	946 -	2,100	1,200				•		
9611	0.14	8	4	ĩ	M42 05	NTTO O	1.10 00	2445	8	160-	∧ \$+	89	3,500	3,300						
38	5.45	2	£	¥	30 PFM	NTT 0	1.10 CC	24.45	8	160*	^ 5+	946	2,106	1,400		•	•			
921	63.0	i.	ł.	10	MALE OS	APPE	1.10 CC	24.45	8	160	∿ \$+	ŝ	2,000	3 00						
1360	6.56	ŝ	ŝ	715	So PPM	0 PPM	1.10 CC	24.45	8	160*	^ 5+	9 9 8	3,600	3,600						
1330	0.24 4	3 2	.S	71.5	Net of	o PPAK	1.10 CC	24.45	8	160-	^S +	8	2,100	1,300				·		
1406	5.34	2	46	715	3444 05	1 PPM	1.10 OC	24.45	8	160-	^ S+	894	4,800	4,800		•				•
1436	<i>e</i> 7.0	*	8	715	30 7EM	1 774	1.10 CC	24.45	8	160	A2+	998	3,000	3,000	·					
1435		ONTING						•									·			
REMARKS 0700 STAK 0730 CEBC 0735 ADDE	THE PARTRUM	ENT CALIBRATION LOOMFREESOR OF LOP DIDGEL FUEL	z d							1										

BAUER H.P. COMPRESSOR (A)

DATE 19 OCTOBER 1993

		6036	84.6	ē		1	1	8	8	ŝ	Ĩ	ğ	8	ŝ	ž	ĕ	Ħ	ភ្ម	ŝ	ŝ	1	Ę	ŝ
		STARTED IN	6.15	3.6	ī	ACUMED TH	STATTED TE	ł	Ŧ		ET OLITA		STATTED TE	*	*			89	6.12	8.8	2	22	
F	New State		k	*	k	ATTEN LAAK	owen	*	*	ATTRO LEAK	outur		ONTER	*	ż		Contrast	*	*	*	*	*	
÷	COMP	•	ġ	ż	ž			\$	ł					.	*		•	×	,	:	\$	ŧ	
Allowing and a second s	×	•	100%	×a	**		·	¥	ž					MK	29K	•		217	¥.R.	¥9,	se .	217	
CONCENT	BEFORE FILTER		AT THM	MAY of	y HL of			YE x	Ĕ	[.			•	New of	46 TPM			ž.	7 4 \$	MET 25	ř.	YË ¥	
NORM	ATTER Filter		744.0	yer :	NE :			744 0	¥.					Mdd I	1 TPM			1 PPM	yee o	MAY 0	YEL O	ATT O	
DATECTER COMP. D	NOM	·	1.10 CC	1.10 CC	1.10 CC	•		1.10 00	1.10 00				•	1.10 CC	1.10 CC			1.10 CC	1.10 00	1.10 CC	1.10 CC	1.10 CC	
D INTO VIAKE	3.	·	24.45	24.45	24.45	•		24.45	***	 .				24.45	24.45			24.45	24.45	24.45	X	× ×	
		ŝ	100	8	8		•	8	8		•	•		8	8		,	8	8	8	\$	8	
	F			•		•		•			•				160-			160*	160	160*	160	160-	
AMA Mister Mister		¥+	^S+	^ 5+	^S +			^ \$+	^ \$+					V *	∧s+			^ S+	∧S+	+5V	N \$+	N +	
And Contra		·	8	596	8			- -	8	·				ŝ	Z	·		8	830	976	3	2	
IN IN		·	2,000	2,900	2,600	·		3,900	2,300		•			4,00	2,300	·		4,100	2,100	1,950	2,900	2,400	
ALLING LING DIACH	74	·	۰	2,900	1,500		•	3,900	2,500	,				4.000	2,300			4,100	1,300	٥	2,900	2,400	
CRAB	ILA TED CUFT	·				·	•	•		•		·	·	·		·		·				·	
	Ê	ł				-			·			·		-	·		-	·				•	·
CIARGING	START TDGS						·	Ī						-							 -		
LINDER LINDERATIC		-		-				-								-	-+			-			
5 E E S	e P	+	_		-			_			_	_		+		╉	-						
도 귀 특 기	i.	T																					_

Appendix A - 5

-

•

-

٠

•

MAARA SHAARA SHORTED BRITINGENT CALERATION SHORTED BALLANG & CONTRIBUTO OL SHORTED BALLANG & CONTRIBUTO OL SHORTED BALL THAN ON CONTRIBUTO OL SHORTED BALL THAN SHOULTON VALVA SHORTED BALL THANKER ARA LINE ANDORE ATTIMO LAALING THANNO SHORTED BALL AND WOLE THADUNG AT ATTIACTION TOTALI ATTIMOS SHORTED ATTIACT BOOM WOLE THADUNG AT ATTIACTION CONTRIP ATTIMOS SHORTED BALL AND WOLE THADUNG AT ATTIACTION TOTAL ATTIACT SHORTED BALL AND WOLE THADUNG AT ATTIACTION TOTAL ATTIACTION SHORTED BALL AND WOLE THADUNG AT ATTIACTION TOTAL ATTIACT SHORTED BALLANCE BOOM WOLE THADUNG AT ATTIACTION TOTAL ATTIACT SHORTED BALLANCE BOOM WOLE THADUNG AT ATTIACTION SHORTED BALLANCE BOOM COMPANIES SHOLTED BALLANCE BOOM WOLE ATTIACTION SHOLTED BALLANCE BOOM WOLE AT ATTICCULUM SHOTTACTOR ATTICCULUM SHOTTACT AT ATTICCULUM SHOTTACT ATTICCULUM SHOTTACT AT ATTICCULUM SHOTTACT AT ATTICCULUM SHOTTACT AT ATTICCULUM SHOTTACT AT ATTICCULUM SHOTTACT ATTICCULUM SHOTTACT AT ATTICCULUM SHOTTACT ATTICCULUM SHO

•

୬ 1 Appendix A

i

BAUER H.P. COMPRESSOR (A)

DATE 20 OCTOBER 1993

31	MITH	, Å	4. 8		CONCERT.	The second	INVIDE C	S ID INTO INTAKE		E	AND METER Volta		TAKE Take				C XIII C XIII C XIII	LINDER DIPORAT	M	e a a a
		AMA Taker	COMP Dectory	*	SIGCIER SIGCIER	ATTIR	ALOW AATS	*		•				r.		Ê.			윩쿺	
200		SADA		•	·		•	•	99 190	·	^S +		•	·	·	•	·	•		ŀ
8	đ	¥	ŗ	S.M.	NAL 95	MAG 0	1.10 00	24.45	8	•	^5 +	8	2,100	9					_	
8	\$3.0		ONUL	•	•	•			·			•	,	•		•				
	IATOR DRAIN	BLOCK SECURIN) GETIVA SUTION ()	I BILL OVERNY.	DRAIN BLOCK T	o anaka unco	ATRALLOTT													

•

•

•

-

BAUER H.P. COMPRESSOR (A)

~	ì
ð	i
ð	ŝ
~	Ì
\sim	ſ
÷	
щ	l
2	j
~	ì
5	1
-	1
2	١
1	2
С	1
-	
~	
ì	1
ľΠ,	1
F	1
~	1
	ſ
	1

3 H		H.	÷	A B -	CONCEPT	N NOL	DOMO-19	1 INTO		EZZ	ANA METAV		TAN.	MERVICE LINE Discre				TINDER	N	EIN
			COMP	t .	NUTORS FLITTE	ATTA ATTA	MON	3×		;					CUTT CUTT	a z	UNE INC		8 K	
1	NAL GULIVIS						•		2		N 5+									
-	88	•	*	¥					\$		A 6+	8	2,308	ş		-		-		·
ž		adite:		,											•			-	·	
8	STARTED IN	Bilby					•		8		^6 +				·		-			
8	×1	*		84					R		A 6+	8	4,600	4,60	·	-		·		
ŝ	533	"	,	217					8	•	^ 5+	2	2,706	2,700						
8	121	'n.		1		•			8		^5 +	3 -	3,000	3,000					-	
ğ	5%	k		5					8	 .	^ \$+	8	3,600	3,400						
ŝ	7.12	*		ž				•	8		∧s+	1	3,100	3,100				-		-
81	:*	ż		¥63					8	160°	∧ \$+	8	2,300	1,700						-
81	x .7	ż		×.		•	•		8	165°	+5V		2,000	1,600	·	-	·			·
ŝ	ĩ	E		S.R.					8	163*	^S +	9 8	4,200	4,200		•				Ī
<u>s</u>	i	ż		ž					8	165°	+5V	8	4,300	4,300						-
ŝ	6.3	ż		×9					8	163°	^8+	ŝ	2,300	1,800		·		-		
8	8.7	ż		ŝ					8	160	+3V	8	3,000	3,000			·		-	
Ĩ	5	à		53					8	166*	∧s+	8	4,700	4,700	·	·		-		
8	a ,	ż		83					8		^ \$+	92 22	2,000	82	·			-1		
ŝ		ONLINE											·	·	·					
MOTE: FIL MOTE:	A TRANSING A TRANSING A TRAD RATING A TRAD RADING A TRAD RADING A MED CUNTRH A MED CUNTRH A MED CUNTRH A MED CUNTRH	GAUGE OLL FILL BAT CALBRATIO & CONTRESSOR & CONTRESSOR OR OIL CIANOR LETED, STATTED THROUGH-OUT B	. FLUO WAS MISSEN W XL XL XL XL EADTHO EADTHO	0. 01103 L2	NETHO OFF. AND	WAS CHANGED														

BAUER H.P. COMPRESSOR (A)

~	2
ò	N
X	
2	2
-	
-	Ì
н	1
a	2
2	•
C	1
6	
5	J
6	٦
	n
	3
11	ń
- 5-	1
	ć
- 2	ŝ
•	

		Т	—т	r			+				-		r			- T			
통클	,				·			·			₹		•				·		
NOTTON	N M				·			·	ł		8 8								
cylinder Ing inform								·			1								
CHARO	START TIME		·	·	·	·		·	·	1012					·	·	·		
			·	·	·					5.008					·	·			
	RATED CUT		·							3.4									
ABAYICE LINE DISCH	۶.	·	1,406	5,000	2,200	۰	3,800	000	2,300	0	3,800	2,100	3,500	1,600	4,900	1,900	3,000		
TANK BNL			2,200	5.000	2,200	2,300	3,800	2,100	2,500	2,200	5,808	2,300	3,500	2,200	4,900	2,300	5,000		
		·	Ē	£	ŝ	2	â	.	88	8	998	2	8	998	2	ŝ	ŝ	·	
AMA MATTER MAR		V01+	+10V	V 2+	^S+	^S+	^S+	^S+	V \$+	^S+	^S +	N6+	N \$+	NS +	√ 5+	NS +	V2 +		
	÷	·	•			•				·								·	
		ğ	<u>8</u>	8	8	8	8	8	8	8	8	\$	8	8	56	8	8	56	
D INTO	3×						·					ŀ				•	•		
INVIACING COND. I	MON	•								•	•	•						•	
Notio	ATTER FILTER															,	•		
CONTROL	METORS FILTER	·		•												•	•		
¥.	*	•	80	S0	¥	ž	ž	š	ž	×	sa	ž	ž	ž		ŝ	ž	•	
	CONC	•																	
N.				*	ġ	6	•	×	4	•		•	1.	6	ķ	Å	ķ	8	CALINIATION APPENDIX OIL DIRECTOR OIL DIRECTOR
		MENE GUIN	ī	6.5	61.E	9	la	3		3	3	5	6.8	3		6.0	979	BCURED THAT	PARTALIMENT (PROCINE & CON PROCINE & CON
					╞	8	-	8		8	8				-	8	8	8	VANCE STATTIC SCHOOLD SCHOOLD SCHOOLD SADORD 10
1 34	!	8	5	1 5	8	*	15	18	1 2	۲ ۲	=	ª	1 2	"	1 2	1 =	1 3	1 3	

BAUER H.P. COMPRESSOR (A)

DATE 1 NOVEMBER 1993

CYL Fill	ž				. 	 		. 			 	. 		-
RMATION	END		·		. 	. 		. 	·	·	. 	·		-
CYLINDE GING INFO	END TIME		·	·	. 	·		. 	·	. 	. 	. 		
CHARC	START		ŀ	ŀ						.		.		
RGED NDER ZE	RATED PSI	·		ŀ								•		
CHA	RATED CUFT			.								•		
SERVICE LINE DISCH	κ.		905'1	s,000	905.4	1,700	ş	4.000	3,800	8	4,300	5,000		
ISA SINIT TVNH			2,300	5,000	90C.¥	2,300	2,100	4,000	3,800	2,000	4.300	5,000		* 39 ED CEM
COMP OIL PRESS			8	98	8	8	8	8	8	99	8	8		Wans to Ele
AMP METER VOLTS		•	∧S+	V2+	∧s+	∧s+	∧s+	∧ \$+	∧S+	∧ \$+	∧S+	∧S+	,	
CYL HEAD TEMP	ц.		·	•		•			•					
ENG OIL PRESS			8	8	\$	\$	8	8	8	56	85	56	\$, therefore, the c
o ed into intake	GAS \$		•		•	•	•	•	•	•		•	•	4.4 4.4 6 10 10 10 10 10 10 10 10 10 10 10 10 10
INTECTI COMP.	PLOW RATE			•			•		•	•	•		•	
TA TION	AFTER Filter			•		•		•				,	•) i: <mark>S+42+4</mark> 2
CONCENT	BEFORE FILTER	•		•		·					٠			111.) 1pti. 341.14 ATA
ANIK	R	·	76%	75%	715	\$99	615	505	805	88	828	61%	•	ComPaesson C
4	COMP DSCH0*F										,			ADDED 1 PRT (HR COMPLETED A flack from 0 to 3
Temps	AMBI TBMP*F	RE	43.	•	42.0	48*	-6 1	-05	ŝ	ŝ	sı*	1 3•	TING 50 HR	Couldination Outpasson (n) 30 Minusson (n) 30 au 87.7 bar (3.1 cu
METER HOURS		STARTED ENG	68.6	69 .1	69.69	70.1	70.6	п.1	71.6	2.1	72.6	73.1	SECURED TEST	D INSTRUMENT D ENTRY OF A C D TESTING CO for presentiting
REAL		074S	080	0630	0060	0660	<u>8</u>	1020	8	0611	1200	1230	1230	REMARKS: NOS CHRCAT 0730 CHRCAT 12-0 SECURE The mean day

BAUER H.P. COMPRESSOR (B)

31	4 5	STOLL -		ſ				F											F	ł
39		,			CONCENT	TATION	C ENTRICTE COMP. L	D D INTO NTAKE	DATE DISC		AMP METER Volty	COMP OIL PERME	NAL International International	SERVICE LINE DISCH	CTLIN	융登교	CHARGIN	ANNONA C	NOL	병렬렬
		ANDR	COMP DECENT	*	MEPORA -FILTER	ATTR	FLOW	3*		÷				2	MTRD CUTT	₽ ¥	FIART Take	GNB EMCL	an Br	
ž	FLAMB I	ENDA	•	•		•	·		8		% +		·	·	·	-	·	•		
	1.1	5	\$	¥	MAN OK	1440	1.16 CC	24.45	8		^S+	ŝ	2,100	•	·		·	-+		
	у. Ж	5	"	844	NAT OL	NAM 0	1.16 CC	24.45	8		N2+	Ŗ	2,100	8	·			+		
:	Ŗ	3	Þ	898	NHI 60	M44 0	1.10 00	24.4%	8		^6 +	9	2,100	1,500	-					
8	a R	\$	f	XX	Will OF	o PPM	1.10 CC	21.45	8		^S +	Ř	2,300	2,300						
ŝ	1:8	E	ŧ	8	AFT &	MAL O	1.10 CC	24.45	8		^ 5+	9.	3,600	3,900			·		+	
8	8.8	•	¥	826	¥.	MAL 0	1.5 00	24.45	3		^2+	9	2,400	2,100	2	3,000	101			
110	ž	k	\$	¥	Wei of	1 PPM	14 60	24.45	3		^\$ +	<u>R</u>	2,100	1.900			·	1051	3,000	8
8	x,	*	k	2	N44 9	1 794	1.4 00	24.45	3		^\$ +	<u>ş</u>	2,400	2,100	·	·				
ŝ	1'17	*	ŝ	848	APP IA	1 774	1.4 00	24.45	3		^S +	Æ	4,100	3,800	·					
8	25.7	*	ķ	808	Waa (*	I PPA	1.4 00	24.45	8		^S+	Ŗ	2,200	1.900	·		·			
8	x	3.	ŝ	5	NAL U	NGL 1	1.4 00	24.45	38		^S +	98.	4,500	4,200			·			
8	Ŕ	×	58	ž	A TPA	1 PPM	1.4 00	24.45	8		^ 5+	9 2	2,000	92		-+			+	
Ę	21.3	*	\$	586	YEL ¥	M41 1	1.6 00	X.45	12		+3V	0a a	2,300	1,900			-+			
8	27.6	*	ķ	¥	nn u	7442 I	1.3 00	24.4%	8		^2	8	2,100	1.100		-1				
<u>8</u>	ž	*	£	NN	Miji St	1 776	13 00	24.45	8		<u>v</u> +	R	4,300	4.100						
981	X	4	°53	388	Mid 15	¥ H	13 00	34.65	8	 	N+	8	2,800	2,300	-	-				
8	1.81	4	ż	38	So PPAK	11 PPK	1.3 00	24.45	8	-	V +	<u>8</u>	2,000	1,100				-		
ĝ	79.6	¥	ŝ	785	Met of	10 774	1.3 CC	21.45	8	-	+ىر	<u>R</u>	5,200	4,900		-†		-		
8.	1.05	*	£	\$13	Yead SC	3 THK	1.3 00	24.45	8		N2+	ар Д	3,600	3,300		-1				
ŝ	3 0.6	ż	ż	53 %	Ned at	M44 01	1.5 00	24.45	8		^S+	84	2,600	2,400						

BAUER H.P. COMPRESSOR (B)

	1
a	h
ā	N
	4
	í
[1	1
p	
C)
E	1
5	
C	J
~	٩
~	1
-	
5	
C	1
6	J
×	2
ē	j
	_
Ľ	1
E	
	1
-	ſ
-	ŝ
6	

																			┝	Γ
	Nation Bedda	A E	E		CONCENT	NOTION	C INTECTE COMP. 1	o D INTO NTAKE	DOLES	E S F	AMP METER Voltrs	OIL OIL		LINE LINE DISCH	CYLINE	9 8 .	CRARGING	TINDER TINDENATI	8	동불월
			COMP Decisio*P	*	ARPORA FILTER	AFTER FILTER	MO.FT RATE	%		÷				 2	CUTT CUTT		TAAT		Ê Z	E.
80	31.1	¥	ور	ž	APPAK	744 01	1.5 00	21.45	2		N 5+	<u>8</u>	2,000	20						
100	31.2	ŝ	.95	N N	A PPA	10 774	1.3 00	24.45	2		^ \$+	92	2,000	8						
1906	31.6	4	ż	318	SO PPM	10 774	1.5 00	26.45	8		√ \$+	9 K	5,100	4,900						
1996	5 2	**	ŝ	805	Med as	7444 61	1.5 00	24.45	8		+3V	9 K	3,600	3,300						
2000	976	71.	ķ	858	Mara os	10 PPM	1.5 00	24.45	53	•	^ 5+	982	2,300	1,900		•				
2000	38.5	7.	ž	212	MAA 95	10 7794	1.5 00	24.45	3	•	∧ \$+	982	5,100	4, 800						
2160	39.E	7.	. R	978	Medel SS	JN44 01	13 00	24.45	3		^2^	- ²²	4.000	3,700						
2130	x,	\$2	5 8	88	Meda 05	10 PPM	1.5 CC	24.45	3	•	+sv	92	2,600	2,300						
2000	XI	*	e3•	885	MAA OS	IO PPM	1.5 CC	24.4%	2	•	+3V	£	2,000	9 9						
2296	15.3	ł	*	88	NPPA OS	16 PPM	1.3 CC	24.45	8		+5V	984	5.200	4,900					-	
2969	35.6	it	4	88	Mere oc	MAR (I	1.5 00	24.45	3	•	^\$+	۴.	2,900	2,600						
2356	883	\$	78.	846	SO PPIM	MAL 61	1.5 CC	24.45	8		^ \$+	8	2.500	2,200						
2400	1%	is	. 9	586	So PPM	M44 61	1.5 00	24.4%	3		^2^	×	2,000	3 00						
9690	37.5	ł	90,	345	SO PPM	IT PPAK	1.3 CC	24.45	ß		√ 5+	£	5,000	4,700						
9010	57.6	ż	¢.	366	SO PPM	16 PPM	1.5 00	24.45	3	•	+5V	992	3,400	3.100						
0130	X .5	ł	-54	1005	Mer of	MAR (1	1.5 00	24.45	58		×+	9 2	2,500	2,000						
6260	36.8	er.	e2.	105%	M44 of	19 PPM	1.5 00	24.4%	8		∧ \$+	¥	2,000	300						

BAUER H.P. COMPRESSOR (B)

NALF																				ſ
	MATTHE	Ë.		AMR	CONCENT	NOLLAN	C INTRCT	O DD DATO DATAKE	Charles and	E ST	AMP METER VOLTS	COMP OIL PRESS	INAL BNAL	SERVICE LINE DISCH	CHAIK	8 8 .	CIAROINO	LINDER INPORMAT	NOL	E Z Z
		NAC TOAT	COMP	*	REFORE FLITTER	AFTER RLTBR	RLOW	570 *		d.				E.	RATED CUPT	UEL VI	TAAT Taat	ena Badi	0 2 2 2	i i
3	."	\$	k	100%	TE 9	W44 61	1.5 CC	21.45	3	·	۰ <u>۶</u> +	¥	4,900	4.60						
8	346	\$	ķ	100%	* THE	M44 61	1.5 00	24.45	3		^ \$+	£	3,200	3,000						
8	54	\$	ş	100%	Mada 85	WAA SI	1.5 00	24.45	3		^ 5+	Ŗ	2,200	1,600						
8	4	3	ż	100%	NH IS	MAA 91	1.5 CC	24.45	3		AS +	<u>R</u>	5,100	4,800						·
8	÷	ż	\$	1001	NET 25	M44 61	13 00	34.45	3		NS +	84	2,100	1,100	•					
\$	1	ż	×	ž	NE *	y Mar	ت ع	24.45	2		√ 5+	8	4,600	4,300						
ş	6.14	3	ż	ž	7ER	y Mark	1 2 2	24.45	2		∧ 5+	9 <u>4</u>	3,400	3,100						
•	3	ż	*	100%	Mer &	MAA IT	1.1 CC	24.45	8		^6 +	8	2,400	2,100				-1		
\$	0.0	8	\$	100%	N TTM	IS PPA	1.3 00	24.45	3		+5V	998	2,000	8	·					
ĝ	57	t	÷	2.00	MEL 9	IG PPM	1.3 00	24.45	3		^S+	8	3,300	3,200		-		-†		
ŝ	6.9	\$	\$	88	30 PFM	17 PPM	1.5 00	24.45	8		+5V	982	3,000	4,700						
8	¥	•	*	*8	NE ¥	ILE PPAG	13 00	24.45	3		^S+	<u>ş</u>	2,600	2,300				-		
ş	4	4	4	828	NET #	19 794	1.5 00	24.45	3		v 2+	ġ.	2,300	1.900	·			-†		
8	46.2	"	ł	715	7447	IS FAM	13 00	24.45	3		∿ +	Ř	3,100	4,800			-	-		
9860	4:7	3.	3	8 8	M44 94	APPAGE TI	1.5 CC	24.45	2		+ SV	£	2,000	88		·				
100	:*	¥	73°	ž	Nel ¥	M44 61	13 00	24.4%	2		+5V	98	2,000	1,100	·					
ŝ	1.24	à	ż	¥99	46 PPM	A444 ()	1.5 CC	34.45	2	·	¥,	£	3,500	3,200		-				7

BAUER H.P. COMPRESSOR (B)

DATE 27 OCTOBER 1993

ALTON CYL	END MIN.					-				
CYLINDEI CHARGING INFOR	ataat Taat Taat						. 	 	ا۔ احـــ	
CHAROED CYLINDER RZB		· ·						-		
SERVICE LINE DISCH	2 D	1,400	1,200	4,100	4,000	1,300	4,600	4,300	1,500	
IRA TVNH		2,200	2,100	4,400	4,300	2,100	4,900	4,000	2,200	
AN IS CONT		ş	ŝ,	044	98	ş	<u>R</u>	ę.	8	
AMP METER VOLTS		∑; +	∧ \$+	A 5+	^ \$+	∧s+	√ \$+	A8+	∧s+	
TI HIEVE	÷.		8	165	165	165	160	16		
Over Over		2	8	8	8	0 8	98	8	8	
CO TED INTO INTAKE	8×	24.65	24.45	24.45	24.45	34.45	24.45	24.45	24.4%	
INUBC	NOLF	1.0 05	1.0 CC	8 91	1.0 00	1.0 CC	1.0 00	1.0 CC	1.0 CC	
MIL NOLLVI	AFTER AFTER	NGA ST	10 PPM	Mild 6	NGS :	Med 8	1 PPM	NGC 1	7 PPM	
CONCEN	ABCORE MULTER		MEM 12	7444 St	APPAN	MAA 64	44 FPK	N44 64	MAA SP	
	*	<i>su</i>	S.N.	S.K.	*	88	809	83	838	
	COMP DACHOPP	4	35	-00	\$	ż	5	ż	Ŀ	
ľ	ALCK TBACK		È	Ł	à	\$	ż	à	. 2	
METER		47.2	6.13	:	÷	•	5.64	946	90.5	
IN STATE		5100 1	*	ž	8	8	951	ş	1450	

S OCTORER S OCTORER THE STRITTED FRETRIGATER THE STRITTED FRETRIGATER THE STRITTED FRETRIGATER THE STRITTED FRETRIGATE THE STRITTED FRETRIGA

BAUER H.P. COMPRESSOR (B)

DATE 28 OCTOBER 1993

								ţ		Ì	Ì	Ì	I							
3					CONCENT	M ATTON	OK DOBCTER COMP. D		COLL COLL PREMAR	ESE	ALTON METRIC	COMP OIL PRIM	IVAL IVAL	LINE LINE DISCH	CHAR	88.	CHANGING	TUNDER DIPOENAT	ION	음독철
}			COMP Decision?	×	barona Filitta	E E	MOR	3*		ŗ.				Ę	A TED CUFT		START TIDAE	e spe		į
1		ACT NO.						•	8		N S+					 .		┠╼╼╋	┝╼┥	- I
ę	ž	k	3	\$2	Nel 9	MAL CI	20 11 1	X145	8		^ 5+	¥	2,106	ŝ					+	
Ę	×	\$	38	80	ANTE OL	15 PPM	20 11	24.4%	8	•	^ S+	ŝ	2,600	2,300	7	2,00 00	191	-	+	
8	31.4	÷	\$	Ř	944A 05	N #1 (1	30 I'I	24.45	2		^ S+	ş	1,000	•		-		ĩõ	5.000	\$
8	31.9	ė	ż	X	742 *	NAM ST	1.1 00	24.45	2		^S +	9 8	3,400	3,100			·		-	
8	44	ż	ż	SQ.	¥.	IL PAN	30 17	24.45	3		∧ \$+	990	2,900	2,600	·		-	-+	-+	
8	a a	Þ	*	88	Ĕ.	IS PAN	817	24.45	2		^ \$+	- ⁹ 8	3,000	2,700				-+	-†	
8	23.4	k	7.	ž	MAL OF	Id PPM	2 8 11	24.45	38		∧ \$+	8	3,100	2,800		·		-+		
89	8.8	*	38	365	SO PPM	13 PPM	20 11	24.45	8		^ 2+	Sa Sa	2,000	•	4	3.000	1031	-+	+	
1100	X	•	4	525	Mere or	Maa (I	71 00	26.45	8		+5V	860	3,700	3.400	·			11	2 00 5	8
Å	87	i	×	8,8	MAY 02	MAG 61	20 11	24.4%	8		+5V	3	2,300	1,900	·	-				
8	35.4	\$	ķ	879	Maa os	16 PPM	20 17	24.45	8		^ €+	3	3,800	3,300		-	·			
821	6.85	\$	ż	819 818	MAN OS	15 PPM	811	24.45	8		v +	97	2,100	1,600		-	-	-+	-	
9061	X	ż	ż	¥ (3	M44 05	14 PPM	11 00	24.45	8		<i>∧</i> 5+	3	5,300	5,000		-	-	-		
8	675	ż	Ŀ	529	MAL OS	M44 8	20 11	24.45	8		N +	9	2,300	1,900		-		-†	-+	
8	¥15	.4	-19	805	30 FPM	10 PPM	11 00	24.45	8		N +	8	2,000	•	·		-1			
NINANC NOR ADE DES ADE DES ADE DES ADE DES ADE DES ADE	s ded 7 onl pres care engine raed cunch red engine f tred engine f	RL FURL & COMPRESSOR (BRANNO FOR OIL CHANGE	dil. (coulld not rena	OVB OIL DRAU	s onisn onta n	- CHEATER BAR														

Appendix B - 5

•

BAUER H.P. COMPRESSOR (B)

DATE 1 NOVEMBER 1993

TRAL				AMGK	CONCENT	NOLLVA	INUNCIA	other	ON LIO	ц Ц	4 VIC	off.	ENAL FINAL	SERVICE LINE	CYLIK		CIANOING	VILINDER 0 INFORMA	NOL	토물	
	BOURS			AT MADE			COMP. 1	NTAKE	TRESS	iner	SITON	128744	Z	DISCH	7.8	2				P	
		ANDE	COMP DECHOP	*	MRYORE FILTER	AFTER	FLOW RATE	840 84		*				E	A THE	arta A	TAAT	CIVE BMCE	2 2	NCN.	
ž		DADA					·	 ·	8		^ 5+		•							·	
:	Ĩ	\$	ş	N.N.	7ER	Maa s	8 •1	24.45	8		A2+	058	2,200	1,600							
8	38.6	.*	25	735	SO PPIN	1 PPM	1.0 00	24.45	8		^S+	ŝ	3,300	5,000						·	
8	1.82	ţ	ş	715	NALI OS	10 PPM	1.0 CC	24.45	8		^ S+	â	4,900	4,600							
8	99.6	¥	ž	899	NAL OS	NAT :	1.0 00	24.45	2		^S+	-	3,000	2,700						·	
8	1.60	*	\$ 1	80	JNALA OS	10 PPM	1.0 CC	24.45	3		∧s+	ŝ	2,000	200							
8	9.00	3	k	80	NAL OS	MAY 21	1.0 00	24.45	5		∧ 5+	8	4,600	4,300				· ·			
1100	61.1	ķ	ŝ	83	Mdd os	Maia or	1.0 00	24.45	8		∧s+	088	3,700	3,400							
1130	61.6	300	,ş	80	30 FFM	14 274	1.0 00	24.45	3		^\$+	99 98	2,000	100		 ,					
1300	1.0	51*	•19	80	yudd oc	y44 \$1	1.0 CC	24.45	58		∧s+	89	3,900	3,600							
1230	979	ž	8 ,	61 5	MAY OR	M44 61	1.0 CC	24.45	8		^s+	098	4,500	4,200							
1300	6).I	33°	\$	8-09 2	Mak of	M44 61	1.0 00	24.45	58		^s+	999	2,000	1.000							
1330	0.6	ž	¢,	8.8	NAM OS	JN44 61	1.0 00	24.45	58		∧ S+	89	3,800	3.500	•						
1400	6 4.1	33*	.9	39%	WAA OS	N44 61	1.0 CC	24.45	8		∧s+	99 98	3,000	4,700							
1430	64.6	33*	1 89	395	WLAE OF	W44 61	1.0 CC	21.45	8		As+	<u>8</u>	2,300	1.900							
1691	SECURED TE	STINO	•							•							·			·	
REMARCA FILM ADDE FILM ADD	t ED 10 GAL DIES KED ENGINE & KED CUTCH B LEED CUTCH B	EL PUEL L'OMPRESSOR O ILARDO	4	!				1													

BAUER H.P. COMPRESSOR (B)

DATE 2 NOVEMBER 1993

ABAL Tage	METTER HOURS	Mat	r. 1	AMBI	CONCENT	NOLLVA	CC INJECTEI COMP. I	o d into ntake	ENG OIL PRESS	CYL HEAD TEMP	AMP METER VOLTS	COMP OIL PRESS	ISA FINAL	SERVICE LINE DISCH	CYLNI CYLNI SIZI	9 1 1	CHARGING	LINDER 1 INFORMAT	ğ	CYL Fill Time
		AMBI TEMP*P	COMP DSCH0*P	R	BEFORE FLTER	AFTER FILTER	FLOW RATE	GAS A		4. •				ē	RATED CUFT	RATED PSI	START TIME	END TIME	END PSI	NW
olitis	STARTED E	NOINE				•	•		*	•	۲S+	·		•		·				
6700	64.7	-05	•*	675	SO PPM	MPP BI	1.1 CC	24.4%	8		+5V	069	2,200	0		•				
9666	65.2	30*	. %	675	SO PPM	W44 61	1.1 CC	24.4%	8		+5V	880	2,300	1.900		•				
080	65.7	36°	6 2.	\$99	M44 05	M44 82	1.1 CC	24.4%	83	•	^S +	880	4,200	3.900						
0630	66.2	•09	.я	519	46 PPM	Mda 12	11 CC	24.45	83		∧ \$+	860	2,700	2.400						
0060	66.7	£3.	.,	80	M44 84	24 PPM	1.1 CC	24.4%	65		+5V	990	4,000	3,700		•				
0660	67.2	. %	3 2	879	Mdd 64	M44 92	20 1.1	24.4%	3		∧s+	940	006'1	000'1		•	•			
90 00	61.7	s7°	6 8°	S 09	M44 05	Mdd UZ	11 CC	24.4%	85		∧ 5+	940	2,900	2.600	•	•				
9004	68.2	-86	.8	615	M44 05	Mdd 12	1.1 CC	24.4%	58		+SV	940	5,100	4,800			·			
110	68.7	99°	22.	61 %	SO PPM	28 PPM	1.1 CC	24.4%	85		^s+	840	2.000	1,000			·			
130	69.2	-66 -	ж.	\$09	•		•	•	85		∧s+	840	1.800	1,000						
97 10	69.7	-09	, 89	365			•		85		^S+	840	3,900	3.500		· ·				
1230	70.2	•0•	۰۵	362	·	•	•	•	85		+5V	940	2,000	1,700						
1300	70.7	•09	-11	385			•		83		∧s+	940	3.500	3,200				 ·		
1330	71.2	SECURED TEST	DNI.		•		•	•	85		+5V	840	5,300	5,000						
REMARK 0630 CHBI 0635 GRE 0635 GRE 0605 STAI 065 STAI 065 AR 2	S: CIGED ENGINE / VEED CLUTCH I VEED CLUTCH I EED 10 GAL DIES TED ENGINE VAMPLE TAKEN	A COMPRESSOR OF BEARDING SEL FUEL	il (added i pint	COMPRESSOR	DIC															

1330 SECURED TESTING, 50 HR.

The mean time for pressurining an 87.7 liter (3.1 cuft) fluct from 0 to 345 bars (0 to 5000 pai, 341.14 ATA) is: 40-400-40 = 40 minutes, therefore, the charging rate is: 87.7 x 341.14 = 747.95 SLPM or 26.41 CFM

Appendix B - 7

•

•

MEMORANDUM

14 October 1993

From: G. Deason, Code 2530 To: Dave Sullivan, NEDU

Subj: Analysis of air sample from Bauer K-20 compressor (1 hour evaluations).

1. In accordance with your request, the air sample received at the gas analysis lab was analyzed and found to contain:

Standard Components

Components	Level	Limit
Oxygen	21.0%	20-22****
Nitrogen	78.1%	NONE***
Argon	0.9%	NONE***
Carbon Dioxide	63.0 PPM	1000 PPM***
Total Hydrocarbons*	1.8 PPM	25 PPM**
Carbon Monoxide	<0.5 PPM	20 PPM**
Methane	1.8 PPM	1000 PPM**
Acetone	<0.1 PPM	200 PPM***
Benzene	<0.1 PPM	1 PPM***
Chloroform	<0.1 PPM	1 PPM***
Ethanol	<0.1 PPM	100 PPM***
Freon 113	<0.1 PPM	10 PPM***
Freon 11	<0.1 PPM	100 PPM***
Freon 12	<0.1 PPM	100 PPM***
Freon 114	<0.1 PPM	100 PPM***
Isopropyl Alcohol	<0.1 PPM	1 PPM***
Methanol	<0.1 PPM	10 PPM***
Methyl Chloroform	<0.1 PPM	30 PPM***
Methyl Ethyl Ketone	<0.1 PPM	20 PPM***
Methyl Isobutyl Ketone	<0.1 PPM	20 PPM***
Methyl Chloride	<0.1 PPM	25 PPM***
Toluene	<0.1 PPM	20 PPM***
Trimethyl Benzenes	<0.1 PPM	3 PPM***
Xylenes	<0.1 PPM	50 PPM***

Other Components

Component	Level	Limit
C4+	<0.1 PPM	<0.1

 \mathbf{PPM}

*Expressed as methane equivalents.
**Limits from process instruction #0558-839.
***Limits from Navy Dive Manual; Vol 2, Rev 3.
****OSHA Final Rule limits published as of July 1992 (not
 specified in Navy Dive Manual.)

2. The sample showed no appreciable contamination. All components were within the acceptable range.

eson Glen Deason

Chemist

27 October 1993

Memorandum

To: Dave Sullivan, NEDU

From: Glen Deason, Code 2530

Subject: Analysis of air sample from the Bauer K-20 #B compressor evaluation test, 25 hour sample.

1. In accordance with your request, the air sample delivered to the gas analysis lab was analyzed and found to contain:

Standard Components

Component	Level	Limit
Oxygen	21%	20-22****
Nitrogen	78.1%	NONE***
Argon	0.9%	NONE***
Carbon Dioxide	505 PPM	1000 PPM***
Total Hydrocarbons*	1.9 PPM	25 PPM**
Carbon Monoxide	21.6 PPM	2LO PPM**
Methane	1.9 PPM	1000 PPM**
Acetone	<0.1 PPM	200 PPM***
Benzene	<0.1 PPM	1 PPM***
Chloroform	<0.1 PPM	1 PPM***
Ethanol	<0.1 PPM	100 PPM***
Freon 113	<0.1 PPM	100 PPM***
Freon 11	<0.1 PPM	100 PPM***
Freon 12	<0.1 PPM	100 PPM***
Freon 114	<0.1 PPM	100 PPM***
Isopropyl Alcohol	<0.1 PPM	1 PPM***
Methanol	<0.1 PPM	10 PPM***
Methyl Chloroform	<0.1 PPM	30 PPM***
Methyl Ethyl Ketone	<0.1 PPM	20 PPM***
Methyl Isobutyl Ketone	<0.1 PPM	20 PPM***
Methylene Chloride	<0.1 PPM	25 PPM***
Toluene	<0.1 PPM	20 PPM***
Trimethyl Benzenes	<0.1 PPM	3 PPM***
Xylenes	<0.1 PPM	50 PPM***
Other Components		
Component	Level	Limit
NONE		
C4+	<0.1 PPM	NONE

*Expressed as methane equivalents. **Limits taken from process instruction #0558-839. ***Limits taken from Navy Dive Manual; Vol. 2, Rev. 3. **** OSHA Final Rule limits published as of July 1992 (not specified in Navy Dive Manual).

2. The above sample showed appreciable contamination; all components were not within the acceptable range.

Lean Glen Deason

Chemist