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Chapter 1

Introduction and Summary of
Results

Near-field antenna measurements have been formulated and used extensively during the past
three decades to obtain near and far fields of antennas from near-field measurements [1]. In
particular, probe-corrected planar near-field measurements were first rigorously formulated
in 1963 by Kerns [2], [31 using the plane-wave scattering-matrix theory for antennas and
antenna-antenna interactions. Kerns derived the probe-corrected formulas that give the field
of an antenna (called the test antenna) everywhere in a half space in terms of near-field data.
The near-field data is the output of a probe, with a known receiving characteristic, obtained
by scanning on a plane in front of the test antenna. The formulas take into account the
receiving characteristic of the probe and assume that multiple interactions between the probe
and the test antenna are negligible. All this work was performed in the frequency-domain so
that Kerns' formulas determine the fields at one frequency at a time. For antennas excited
by short pulses with wide bandwidths it would therefore be convenient to have formulas that
determine the time-domain field directly without having to perform the calculations for one
frequency at a time.

The purpose of this report is to derive probe-corrected planar near-field formulas in the
time domain, so that a single set of near-field data in the time domain yields the field
of the test antenna directly in the time domain. Formulas are derived for both acoustic
and electromagnetic fields and the space outside the region occupied by the test antenna is
assumed to be isotropic, homogeneous, and lossless.

The time-domain probe-corrected formulas are derived in two different ways. First, they
are derived by taking the inverse Fourier transform of the corresponding frequency-domain
formulas. Secondly, they are derived directly in the time domain using a time-domain expan-
sion of the field and a time-domain receiving characteristic of the probe. A previous report
[41 derived non-probe-corrected planar near-field formulas in the time domain and numerous
results from that report will be used here. For example, the frequency-domain plane-wave
spectrum formulas of [4, ch.2] and the time-domain Radon transform formulas of [4, ch.3]
will be used extensively.
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This report is organized as follows. Chapter 2 derives Kerns' frequency-domain, probe-
corrected formulas that are relevant for the translation into the time domain. Acoustic fields
are treated in Section 2.1 while electromagnetic fields are treated in Section 2.2. (In the
electromagnetic case, it proves convenient to define a vector output of the probe.) The
derivations are performed by first expanding the field of the test antenna in terms of plane
waves [4, ch.2]. Then the definition of the receiving characteristic of the probe and the
plane-wave expansion are used to express the output of the probe as a Fourier integral of
the receiving characteristic of the probe and the plane-wave spectrum of the test antenna.
Finally, the inverse Fourier transform is used to express the plane-wave spectrum of the
test antenna in terms of the Fourier transform of the output of the probe and the receiving

characteristic of the probe. The special case where the probe is reciprocal is also discussed.
In Chapter 3, we derive the time-domain probe-corrected formulas for both acoustic and

electromagnetic fields. In Section 3.1, these formulas are derived for the acoustic field, first
by using the inverse Fourier transform and the corresponding frequency-domain formulas
of Chapter 2. Then these time-domain probe-corrected formulas are derived directly in
the time domain using a time-domain plane-wave expansion of the field radiated by the test
antenna and a time-domain receiving characteristic of the probe. These general time-domain
probe-corrected formulas involve a double spatial integral (over the scan plane) and a single
time-convolution integral (over all times). The integrand in the resulting triple integral is a
product of the inverse receiving characteristic of the probe and the output of the probe.

The special case is considered when the output of the probe, due to an incoming time-
domain plane wave, is proportional to the time derivative of the plane wave. It is shown that
for this type of probe the probe-corrected formulas simplify significantly because it is possible
to calculate the time-convolution integral analytically. Specifically, the far-field pattern is
given by a double spatial integral (which is simply the Radon transform of the output of the
probe) divided by the angular dependence of the receiving characteristic. Finally, reciprocal
acoustic probes are considered in Section 3.1. Time-domain reciprocity relations are derived
for these probes and their time-domain receiving characteristics are related to their far fields.

In Section 3.2, the time-domain probe-corrected formulas are derived for the electromag-
netic field. Also for the electromagnetic field, it is found that the probe-corrected formulas,
in general, involve the calculation of a double spatial integral and a time-convolution integral.
For probes whose outputs, due to an incoming time-domain plane wave, are proportional
to the time derivative of the plane wave, it is found that the time-convolution integral can
be calculated analytically. The far field of the test antenna for this type of probe (called
a D-dot probe) is given in terms of a double spatial integral only. Finally, in Section 3.2,
time-domain reciprocity relations for reciprocal electromagnetic probes are derived.

. Section 3.3 outlines two computation schemes to numerically calculate the time-domain
far-field patterns from sampled near-field data obtained by using the special type of probe
mentioned above. The output of such a probe, due to an incoming time-domain plane wave,
is proportional to the time derivative of the field of that plane wave. The two computation
schemes are probe-corrected analogs to the non-probe-corrected schemes presented in [4,
ch.4].
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The first scheme, called the frequency-domain computation scheme, is based on the
frequency-domain formulation in Chapter 2. This scheme consists of the following three
steps: (1) use the Fourier transform to calculate the frequency-domain output of the probe
from the time-domain output, (2) use the frequency-domain probe-corrected formulas of
Chapter 2 to calculate the frequency-domain far field from the frequency-domain output of
the probe, and (3) use the inverse Fourier transform to calculate the time-domain far field
from the frequency-domain far field. This scheme makes use of frequency-domain sampling
theorems and the fast Fourier transform (FFT).

The second scheme, called the time-domain computation scheme, is based on the time-
domain formulation in Chapter 3. This scheme simply uses the formula that directly gives
the time-domain far field in terms of the time-domain output of the probe and its time-
domain inverse receiving characteristic. The time-domain sampling theorem from [4, sec.4.2]
shows how small the sample spacing between points on the scan plane must be to calculate
the far field accurately.

The conclusions of the comparison of two non-probe-corrected computation schemes
given in [4, sec.4.4] are also valid for the probe-corrected schemes of this report. Specifi-
cally, the direct time-domain computation scheme is much simpler to program and use than
the frequency-domain computation scheme. However, because the frequency-domain com-
putation scheme uses the FFT it is much faster for large antennas than the time-domain
computation scheme when the full far field is calculated for all times.

When only part of the far field is calculated, the difference in computer time for the
two computation schemes becomes smaller and the time-domain computation scheme there-
fore becomes more advantageous because of its simplicity. Furthermore, the duration of the
far-field pattern is extended erroneously because of the finite size of the scan plane, and
this longer time-duration has to be taken into account in the frequency-domain calculation
scheme. The frequency spacing in the frequency-domain computation scheme has to be cho-
sen small enough so that significant time-domain aliasing is avoided in the calculation of the
time-domain far-field pattern. The problem of choosing the frequency spacing small enough
does not occur for the time-domain computation scheme because no frequency spacing is
used.

Furthermore, the time-domain computation scheme has the capability to calculate the
far-field pattern at early times from near-field measurements taken at early times only. This
capability is not possessed by the frequency-domain computation scheme because the near
field is required for its entire duration to calculate its Fourier transform. For many antennas
fed by short pulses, the time dependence of both the near field and far field consists of an
early-time part, which contains most of the power, and a late-time part which is oscillatory
and contains little power. The duration of the early-time part may be much smaller than the
duration of the entire field. If only the early-time part of the far field is of interest, one can use
the time-domain computation scheme to determine this part from near-field measurements
taken for early times only. Thereby one can significantly reduce the number of near-field time
samples needed for the far-field calculation. If instead the frequency-domain computation
scheme is used, the number of near-field time samples cannot be reduced because time
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samples taken over the entire duration of the near field are needed to calculate the Fourier
transform of the near field.

No matter which scheme is chosen, planar time-domain near-field antenna measurements
can eliminate the error in the far-field pattern due to the finite scan plane because this error
is separated in time from the correct far-field pattern. This makes it possible to use planar
scanning in the time domain to compute the far-field of broadbeam antennas in both the
time and frequency domains.

Finally, a numerical example illustrates the use of the time-domain computation scheme
and one of the acoustic probe-corrected formulas. In this example the far-field pattern of
an acoustic point source with Gaussian time dependence is calculated from near-field data
obtained by a nonideal probe. The output of this probe, due to an incoming time-domain
plane wave, is equal to the time derivative of the plane wave times cos 0, where 0 determines
the propagation direction of the plane wave. It is found that the time-domain computation
scheme computes the far-field pattern accurately and that the result obtained by neglecting
probe correction is very inaccurate for off-axis angles of observation.
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Chapter 2

Frequency-Domain Formulas

Probe-corrected planar near-field frequency-domain formulas will be derived in this chapter
for both acoustic and electromagnetic fields using a simple, straightforward approach. Those
frequency-domain formulas especially useful for the translation of near-field techniques to the
time domain will be emphasized. Throughout the report eCwt time dependence is suppressed
in all the time-harmonic equations.

2.1 Acoustic Fields

The excess pressure of the acoustic field in a homogeneous isotropic stationary fluid is denoted
by 0I, which satisfies the homogeneous Helmholtz equation V2- + k2 I = 0 in every source-
free region. Here k = w/c is the propagation constant and c is the acoustic speed. In
the following the excess pressure 0 is simply called the acoustic field. To use the same
terminology as for electromagnetic fields, the acoustic source, which generates the field 0,
will be called the test antenna.

Consider Figure 2.1, showing the geometry for measuring the acoustic field 0 radiated
by an acoustic test antenna located in the half space z < zo and fed by a single propagating
mode of amplitude ao at the reference plane So. Alternatively, one can think of the test
antenna as a source region that includes the antenna, the feed system, and the generator,
without specifying a waveguide mode with amplitude a0 . This approach was taken in [4].

When the test antenna is the only object in all space it radiates the field given by the
plane-wave expansion [3], [4, eqs.(2.8),(2.9)], [5]

4)(f) = ao - T°(kI +)- i(kxx+kl•+')dkydk•' z _ Z0  (2.1)
21r . f00 I okk~ +z~kkz>

where To is the transmitting spectrum of the test antenna given by

TO(k•, ky) = 2r-e / + O(f)e-i(kxx+'c'Y)dxdy, z > zo (2.2)
27rao -o -00
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Y z=zo

Test Probe
Antenna

/ilP

Figure 2.1: Planar scanning geometry.

with

I ký2 -kv-k 1, k"+ 2 k
I I •/k -+ k 2- , k2 + k>k2  (2.3)

and f = xi + yj + zi. The propagation vector for each plane wave can be denoted by
k = k• + k,• + -y,. (The product a0To equals the spectrum T defined in (4].)

The far field of the test antenna, when it is the only object in all space, is given by the
well known expression (4, eq.(2.48)]

eikr
(f) - -iaokcosO--eTo(kcos Osin0, ksin sin0), z > zo (2.4)

r

where the spherical coordinates (r,0,0) are determined such that x = r cososin 9, y =
r sin € sin 0, and z = r cos 0. It is convenient to write the far field in terms of the far-field
pattern Fo(O, 40) which is defined such that the far field is t - ao.Fo(O, k)eikT/r. The far-
field expression (2.4) gives the following relation between the spectrum To and the far-field
pattern

.Fo(0,€) = -ikcosOTo(kcosebsin8, ksin sin 0), 0 < 0 < 7r/2. (2.5)

The goal of this section is to calculate the spectrum To for the fixed test antenna by
measuring its field on the plane z = zo using a probe as shown in Figure 2.1. The location
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of some reference point of the probe is denoted by ro = xoi + yoj + z0o and in the following
the probe is simply said to be located at fo when its reference point is located at ro0 For
planar scanning the probe translates without rotation in the z0 plane.

Start by assuming that the distance between the probe and the test antenna is always
sufficiently large that multiple interactions can be neglected. That is, the reflection in the
test antenna, of the field radiated by the induced sources on the probe, does not affect
the output of the probe. The effect of the multiple interactions can formally be taken
into account by using the plane-wave scattering-matrix theory [3). However, this theory
does not provide quantitative information about these multiple interactions and to obtain
useful probe-corrected formulas they have to be neglected. Therefore, we will not use the
comprehensive plane-wave scattering-matrix formulation here, but instead use a more direct
approach that exhibits the physics of the transmit-receive process. Also, this direct approach
can be extended to the time-domain analysis in the next chapter.

The output of the probe at the reference plane Sp is denoted by bp(fo) and the receiving
characteristic of the probe R (k,,k.) is defined to be the output of the probe, when it is
located at ro = 0 with a fixed orientation in the incident plane wave (27r)-Iei(kzx+kPy+-z).
This means that the output of the probe (when it is located at f0) due to the incident
plane wave (21r)-Iei(k-x+k1Y+-Yz) is given by p,(k_, ky )ei(k~xo+kyy0o+-yo). Note that the plane-
wave field (27r)-lei(k-x+kvY+-z) propagates in the direction given by the spherical angles (0, 0)
determined from k2, = k cos 4' sin 0 and k. = k sin 4' sin 0 where k is the propagation constant.
When k• + k' < k2 , -y is real and the plane wave is propagating; when k' + k' > k2 , -Y is
imaginary and the plane wave is decaying.

Equation (2.1) shows that the plane-wave component of I) propagating in the direction
(ks, k.) is given by ao(27r)-'To(k_, k,)ei(kzz+kiy+v-z)dkzdk, such that the contribution to the
output of the probe from this plane-wave component is

dbp(ifo) = aoR.p(k., k,)To( k, k)ei(k'=°+ky•°+y°)dk.dky (2.6)

provided multiple interactions between the probe and test antenna are negligible. Also, we
are assuming throughout that the probe output line is perfectly matched, so that there is no
reflection from its termination. The total output of the probe is thus seen from (2.1) to be
the integral over the entire k. - k. plane of the expression in (2.6), that is

f+OOf .+0

bp(fo) = ao f +' f,,00PR(k., ky,)To(k., ky)e'(kxxO+ky°o+-yzo)dk2 dk1 , (2.7)

which is the final expression for the output of the probe located at io. This plane-wave
"transmission formula" along with the Fourier transform formulas show directly that the
spectrum To for the acoustic field is given by [3], [5]

To (k., ky) = (2er)2a--,k, k•) +f00 +00 bp(fo)e-i(k•xo+kyo )dxodyo. (2.8)

That is, the spectrum To for the acoustic field t is simply the Fourier transform of the
output of the probe divided by the receiving characteristic R1 of the probe. This is the
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general probe-corrected formula which gives the spectrum To for the test antenna in terms
of the receiving characteristic and output of the probe.

2.1.1 Formulas for Reciprocal Probes

If the probe is a reciprocal electroacoustic transducer [6], fed by an electromagnetic waveguide
in which only a single mode is propagating, the receiving characteristic is given in terms of
the spectrum T. for the probe by the equation [6, eq.(10a)]

_,(k., k,) - T,(-k., -k,) (2.9)
s/owPo

where iro is the characteristic admittance for the propagating mode in the waveguide feed and
po is the static pressure of the fluid. Inserting this expression for .14 into the probe-corrected
formula (2.8) one finds that the spectrum for the test antenna is given by

,oOpowe- 'yzo +00 J+00

To(k, ky) = (27r)21 T(k. /-oo f. 0 b,_o)e- _°+ )dxody°' (2.10)

which is valid when the probe is a reciprocal electroacoustic transducer.
Finally let us express the far-field pattern (2.5) of the test antenna in terms of the far-

field pattern of the probe. The far-field pattern of the probe .Fp(O, 0) (with the reference
point of the probe at fo = 0 and the spherical angles 8 and 0 measured with respect to the
(x,y,z) coordinate system of Figure 2.1) is defined by Op - ap.F,,(O,O)e'kr/r where 4?p is
the far field of the probe and a. is the amplitude of the probe-input signal when the probe
is used as a transmit antenna. Since the probe radiates into the half space z < z0 , the
relation between its far-field pattern Fp and its spectrum T, is given by [4, sec.2.2.1], [5,
eq.(18)] F',(#,O) = ikcosOTp(kcos4sin#,ksin4,sinO) for ir/2 < 0 < 7r. This shows that
Tp(-kcos4,sin0,-ksin 0sin0) = [ikcos(7r-O)]- 1 Fp(7r-O,ir+ 4,), forO < 0 < ir/2 and thus
from (2.10) and (2.5) the expression for the far-field pattern of the test antenna is

qopowk cos 0 +00/+0o
(2w)2= aoFp(r + 4') 7r f. bo e dxodyo. (2.11)

Here i = cos 0 sin 0 + ý sin 0sin 0 + i cos 0 and .',(0, 4') is the far-field pattern of the probe
when it is located at io = 0 of the coordinate system fixed with respect to the test antenna
and is radiating alone in the homogeneous fluid (the test antenna is removed). The expression
(2.11) gives the far-field pattern of the test antenna as the Fourier transform of the output
of the probe divided by the far-field pattern of the probe.

2.2 Electromagnetic Fields

Consider Figure 2.1 showing the geometry for measuring the electric field B radiated into
free space by the test antenna which is located in the half space z < zo and is fed by a signal
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of amplitude a0 . When the test antenna is the only object in all space it radiates the field
E given by the plane-wave expansion [3], [4, eqs.(2.10),(2.11)]

E(f) = - x, J+ o(k ky)ei kx+kY•+Y)dkxdk,, z > Zo (2.12)

where To is the transmitting spectrum of the test antenna given by

To(k., ky) = 1 +E ()e-(k'x+kSY)dxdy, z > Zo (2.13)
2irao 0 J-OJ 0

with F = xi + yj + zi and k • To = 0. The far field of the test antenna is given by the well
known expression [3], [4, eq.(2.50)]

ikr

E(F) -, -iaokcos -- To(kcosq0sin0, ksin sin0), z > zo (2.14)
r

and the far-field pattern

.Fo(0,)= -ikcos OTo(kcosbsin0, k sin 0 sin 0), 0_< 0 < 2. (2.15)

for the test antenna is defined such that the far electric field is PE ao.Po(0, 6)ei /r.
In the following we determine the spectrum To by measuring the electric field on the

plane z = zo using a probe as shown in Figure 2.1. As for the acoustic field, the probe is
located by its reference point f0 as measured in the (x, y, z) coordinate system of the test
antenna (see Figure 2.1). Again, we assume that the distance between the probe and the
test antenna is always large enough for multiple interactions between the test antenna and
the probe to be negligible. That is, the reflection in the test antenna, of the field radiated
by the induced currents on the probe, does not affect the output of the probe.

The scalar output of the probe is denoted by bp and it proves convenient to define the
vector output of the probe as a vector sum of the scalar output for two mutually perpendicular
orientations [7], [8]:

bp =bp + by. (2.16)

Here b and b are the scalar outputs of the probe when some reference line attached to the
probe is parallel to the x and y axis, respectively. For example, if the probe is an open-ended
rectangular waveguide the reference line could be chosen such that it is parallel to the longest
cross-sectional side of the waveguide.

The dyadic receiving characteristic of the probe RI(k., ky) is defined such that the vec-
tor output of the probe, when it is located at F0 = 0, due to the incident plane wave
(21r)-1e•,(kw+kwP+•z) with E. k = 0, is given by bp = f4(k., ky) . E. Consequently, the vector
output of the probe, when it is located at fo = xoi + yoy + z0o, due to the same incident
plane wave, is given by bp = Rp(k•, ky) . 6ei(k zO+ktit+YzO). The plane-wave expansion (2.12)
for the electric field radiated by the test antenna shows that radiated plane-wave component
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propagating in the direction given by (k., kv) is ao(27r)-To(kx, kf)ei(k=z+kJV+Yz) dkdk, and

thus the vector output of the probe due to this plane-wave component is

db (fo) = aoTR.p(k., k,) To(kx, kY)ei(k..o+kM3o +"•0)dkdks,. (2.17)

The total vector output of the probe is thus seen from (2.12) to be the integral over the
entire k, - k. plane of the expression in (2.17), that is

t+00f+00= -ikx~jo-z
bp(o)= ao Rp(k.,k,) - -o(k, _ k)(ke o+ko+ko)•.dk. (2.18)

which is the final expression or plane-wave "transmission formula" for the vector out
the probe located at fo. Taking the inverse Fourier transform of this transmission for, "t
shows that

ci-fzo +00+o

7ý~kkv=-T ek. fy Lp b(f) )e (k..0+kPyo)dxodyo (2.19)k (2-r) 2ao _0 I.00

from which To will be determined. Since the vector output of the probe bp is normal to the
z axis, (2.19) gives only two equations for determining the three rectangular components of
the spectrum §To. However, T0 satisfies the well-known orthogonality relation [4, eq.(2.12)]
i'0 (k., kv). -k = 0 so only two equations are necessary for determining To. Because the vector
output of the probe (2.16) is perpendicular to i the receiving characteristic can be written
as

RT(k., k,) = iR;(k., k,) + j.•,(k., k,) (2.20)

with Wp -k = 0 and RP, k = 0. To solve (2.19) for the spectrum To of the electric field, define

the inverse of R,?(k,,, k.) by [8]

R, (k.,k,) . =(k., k)=(k.,k,)O(k., k) + 4(k.,k,)4(k.,k,) (2.21)

where 9 and 4 are unit vectors orthogonal to k satisfying the relations 0 x k = k, k x 0 = 4,
and 4 x k = 6 with k defined such that kk = k = ki + k1 i + -y. Specifically, 0 and 4 can
be expressed in terms of k. and k. as

k + k kz(2.22)

and
Okk)ky 1 k., Y (2.23)

IT -- V . +'k

If k, = kcos4'sin0 and k. = ksin sin0, then -' = kcos0, and the unit vectors i(k., kv)
and O(k., k.) are simply the usual angular unit vectors of the spherical coordinate system
(k,0, ,) [9, app.1, eqs.(115-116)].
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Writing RP as i& + ýj, and assuming that k1c x k 1 # 0 one finds that the inverse
receiving characteristic is given by

R_, k -[R X- Rpy] (2.24)

which expresses the inverse receiving characteristic of the probe in terms of the vectors

R• = -Rp and = . Rp. Multiplying (2.19) with RP and using the definition of the
inverse receiving characteristic (2.21) show that the spectrum T0 is given by

To(k.,ky)- (2-R- o P (ks), ;P(Fo)e-'{,.°+kY0)dxodyo. (2.25)

This is the final probe-corrected formula giving the spectrum To for the electric field radiated
into free space by the test antenna as a product of the inverse receiving characteristic of the
probe and the Fourier transform of the vector output of the probe.

2.2.1 Formulas for Reciprocal Probes

Now consider the special case of a reciprocal probe that is fed by a waveguide supporting
just one propagating mode. Then it follows from [3, ch.2, eq.(1.6-20a)] that the transmitting
spectrum of the probe Tp is related to the vector receiving characteristic f4 by the reciprocity
relation

RP,( ks,) = ,/ - k). (2.26)

Here e, p, and i/o are the permittivity of free space, the permeability of free space, and the
characteristic admittance for the propagating mode in the waveguide feed. In Kerns' work
[3], 9' and 402 correspond to our ',p and f4, and -ilo corresponds to To. The vector receiving
characteristic R,(k., k.) of the probe is defined according to [3, ch.2, eqs.(1.3-8),(1.6-14a)]
such that the scalar output of the probe (when it is located at fo = 0), due to the incident
plane wave (2 r)-19ei(k-+kiP+,+') with -k = 0, is given by bp = f4(k., k) -E. Letting Tf and

Sbe the transm itting spectra of the probe when it is located at Fo = 6 and its reference
line is parallel to the x and y axis, respectively, one sees from (2.20) that RP and RP are the
corresponding vector receiving characteristics of the probe. Applying the reciprocity relation
(2.26) to these z and y receiving-transmitting characteristics gives

(k.,)T (- k.,- ky), ?(k., kv) = Y (2.27)

One can also see that R; and R are vector receiving characteristics corresponding to 4.2 in
Kerns' work [31 by comparing the x and y components of the vector transmission formula(2.18) with Kerns' scalar transmission formula [3, ch.2, eq.(3.1-1), and ch.3, eq.(1-12)].
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Equations (2.27) allow the dyadic receiving characteristic RP in (2.20) to be written in
terms of the transmitting spectrum of the probe in two different orientations. One may also
insert the values of Rk(k., k.) and Rp(k., k.) from (2.27) into the expression (2.24) for the
inverse of R,. and then use (2.25) to calculate the transmitting spectrum of the test antenna.

Let us finally express the far-field pattern (2.15) of the test antenna in terms of the vector
output of the probe and the far-field patterns, F,(0, 4) and Y(0, 0b), of the probe in the
two orientations when it is located at fo = 0. To do this, we use the far-field relation (2.14)
and the expression (2.25) for the transmitting spectrum to show that the far-field pattern
for the test antenna is given by

ikcoso--+00 +00 -
7, F. RP (kcos40sin0, ksin 0sinO) - dxodyo. (2.28)
()ao f. f p~oo ekfdoy.(.8

Since the far-field pattern of the probe is to be evaluated in the hemisphere with z < Zo it is
found that [3, ch.2, eq.(1.2-16b)], [4, sec.2.2.1] fY'(0, 4') = ikcos OT,(kcos OsinO, ksin 0 sin 0)
for 7r/2 < 0 < ir, and the reciprocity relation (2.27) then shows that

R,;(kcos 0sin0, ksin 0sinO)= .- F'(7r - 0, 7r + b) (2.29)

and similarly for RY. Inserting these results into the expression for the inverse receiving
characteristic (2.24) yields p_ iqokr^ x r[F•(7 - 0, 7r + 0).i - Fp-(V - 0, 7r + 0)j]RP (kcos4.sin0, ksinq sine) = ijk x .f(7r - , ir + 46) x Pp(7r - O,7r + 0)]

(2.30)
which is the final expression giving the inverse of the dyadic receiving characteristic of the
probe in terms of the far-field patterns of the probe in two orientations. Inserting (2.30) into
(2.28) gives the far-field pattern of the test antenna in terms of the far-field patterns of the
probe and the Fourier transform of the vector output of the probe

c(2w)2ao P. [ Pý-or- 0, 7 + 0) x Pp(7r- 0, 7 + 0)]

•~ 1~i7fp(fo)e-"kfOdxodyo. (2.31)

If the receiving probe is a reciprocal elementary electric dipole, the formula (2.31) for
the far field, or more generally, the formula (2.25) for the plane-wave spectrum of the test
antenna should reduce to the non-probe-corrected formulas of [4]. To prove this, begin with
the expression for the receiving characteristic and output of a reciprocal electric dipole probe
[3, p.131]

RP= P ik x(kxi) (2.32)
--41ria2

12



- p -k x (k x (2.33)RP 41riaorl----o

bp = b•i + brUv• WP &V g(fo) (2.34)
2iaori0

where p is the magnitude of the electric dipole moment and E!rjy = Ei + Ej is the transverse
electric field of the test antenna in the scan plane. Substituting R/ and R/ frcm (2.32) and

(2.33) into (2.24), and simplifying the resulting dyadic expression shows that RP for the
dipole probe can be written as

=- 2-
-R = x (j- ij). (2.35)

With bp and RP from (2.34) and (2.35) inserted into (2.25), the spectrum of the test antenna
takes the form

T(k., k.) = aoTo(k.,ky) = e-110k + × i x Pv(fo)e-i(kzzo+ky°)dxodyo (2.36)
2ir-y _0 _

or

T(k2, k-) = e 27 1 &0 v() - - v(. E f(fo)] ei(kzxO+kY1Ia)dxodyo. (2.37)

Equation (2.37) determines the plane-wave spectrum of the test antenna in terms of the
transverse electric field of the test antenna on the scan plane. It is identical to the result
obtained for the spectrum of the test antenna from the non-probe-corrected formulas [4,
eqs.(2.11)-(2.12)].

In the next chapter, the frequency-domain formulas of this chapter for probe-corrected
near-field measurements will be translated into the time domain.

13



Chapter 3

Time-Domain Formulas

The probe-corrected planar near-field time-domain formulas are derived in this chapter for
both acoustic and electromagnetic fields. Section 3.1 derives the formulas for the acoustic
field first, by taking the inverse Fourier transform of the corresponding frequency-domain
formulas of Section 2.1, and then directly in the time domain. Section 3.2 derives the
corresponding formulas for the electromagnetic field. Finally, Section 3.3 uses the probe-
corrected formulas to numerically calculate the far-field pattern of an acoustic point source
from near-field data obtained by a nonideal probe.

3.1 Acoustic Fields

Without loss of generality we assume that the scan plane is at z = 0 because it simplifies
the time-domain analysis of this section significantly. Thus, the test antenna is located in
the half space z < 0 and radiates the time-domain acoustic field O(f, t) satisfying the scalar
wave equation 1 82

)- ý4(ft)= 0, >0 (3.1)

where c is the signal speed. The acoustic field 0(f, t) can be found from its Fourier transform
*•(j) given in Section 2.1, by the Fourier inversion formula

*(•, t) = 10(j)e-i•t dw (3.2)

In this chapter all frequency-domain fields are labeled with subscript w. The time-domain
probe-corrected formulas are derived in Subsection 3.1.1 using the Fourier inversion formula
(3.2) and the frequency-domain probe-corrected formulas of Section 2.1. Subsection 3.1.3
rederives these formulas by working directly in the time domain with the Radon transform
and a time-domain receiving characteristic for the probe. It is shown that the probe-corrected
formulas simplify significantly when the probe output due to an incoming plane wave is
proportional to the time derivative of the field of that plane wave.
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Before the time-domain probe-corrected formulas are derived we summarize the time-
domain field representation from [4, sec.3.2.2J on which all the time-domain formulas of this

report are based. We start by defining the two time-domain functions

To(, rh t) = +00 To-(w4,w,?)e-Wtdw (3.3)

and
T(ý,r,t) = 10a°wTow(wý,wv)e-iwtdw = +0J ao(t - t')To(, 77, t')dt' (3.4)

where To, is the plane-wave spectrum (2.2) of the test antenna, and (C, q) are new spectral
variables, and a0o is the spectrum of the input signal such that ao(t) = f+•'aowe•i•tdw is
the time dependence of the input signal to the test antenna. Use the definition of T along
with the expression (2.2) for the frequency-domain spectrum to get [4, eq.(3.51)]

T(4, il 1t) +=0 + f J (fo, t + ýxo + rlyo)dzodyo, fo = xoi + yo (3.5)

which shows that T is simply the Radon transform of the time-domain field O(ro, t) on the
plane z = 0 when the test antenna is fed by the input signal ao(t). The results of [41 show
that the time-domain field in the half space z > 0 is given by [4, eq.(3.56)]

S--T( , ,1 , t - ýx - 77y - Cz)d~driq••,t)=21ir •+•<-t

1 +00 ICtz -T(ý, q1,t - - - T-y)dt'd~drl, z > 0 (3.6)

fw J J2+,72>c:2 -f ICI2z2 + jr2 Nj2

where -2 _ _ , +, +72 <C-
S= /7 +712_ c-1, •2 +712> c- (3.7)

Furthermore, the time-domain far field is given by the simple expression [4, eq.(3.59)]

'6(f, t) , " TT(C' cos 4, sin 0, C' sin 4, sin 0, t - r/c), 0 < 0 < r/2. (3.8)

cr at
These expressions show that the field radiated by the test antenna into the half space z > 0
is completely determined from the Radon transform T(ý, q, t) of the field on the plane z = 0.
Writing the time-domain far-field as $(f, t) . F(0, 4, t - r/c)/r, where .F is the time-domain
far-field pattern, we find from (3.8) that

.F(OG,0,,t) - c-0aT (c- cos4, sin0, c-' sin 0 sin 0, t), 0 0< ir /2. (3.9)
c T9i

The formulas (3.5)-(3.9) constitute the time-domain field representation that gives the field
in the half space z > 0 in terms of the Radon transform of the field on the plane z = 0.

Having summarized the time-domain field representations, we will now derive expressions
that give the Radon transform T or the far-field pattern F in terms of the output and
receiving characteristic of the probe.
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3.1.1 Formulas Obtained from the Fourier Transform

We begin by deriving the time-domain probe-corrected formulas using the Fourier transform
along with the frequency-domain formulas of Section 2.1. The frequency-domain probe-
corrected formula (2.8) shows that with 0o xo;i + y0j

T•(w;,w(i) = ao.YTo(wý,wr,) = (27r) 2 R,(wý,wq) ] ]oo b (fo)e-"w(tx+n)dxodyo

(3.10)
where R,,, and b. are the frequency-domain receiving characteristic and output, respectively,
of the probe. Introduce the inverse time-domain receiving characteristic of the probe defined
by

+oo e-iwtRp-'(ý, 77, t) =w f-o (wý, wq)d•(.1

Use the convolution rule

j g-w f(t')g(t - t')dt' (3.12)

in taking the inverse Fourier transform of (3.10) to get the following three alternative formulas
for the Radon transform T

(,) j R'(•, l, t')t) 1 1 bp(fo, t - t' + ýzo + 77yo)dxodyodt' (3.13)

T(, (2,r)s L? 1 1 R=' ( 7, t - t' + ýxo + ijyo)bp(fo, t')dxodyodt' (3.14)

and

T(ý, 1 (, t) = +J 0 Ji L R;'(ý, ,t - t' + ýxo + 77Yo)bp(fo,t')dt'dxodyo (3.15)

where fo = xo& + Yop and bp(fo, t') is the time-domain output of the probe when it is located
at f0. The formulas (3.13), (3.14), and (3.15) are the general time-domain probe-corrected
formulas giving the Radon transform of the field in terms of the output and receiving char-
acteristic of the probe.

Assume that the test antenna is turned on at t = to so that all fields are zero for
t < to. Then the output of the probe bp(fo, t) is zero for i0 ý p(t) where p(t) is the finite
region of the scan plane on which the field is nonzero at time t. (For late times, p(t) is
approximately a circular disk with radius c(t - to).) Without making any assumption about
the time dependence of the inverse receiving characteristic R;', the probe-corrected formulas
all involve at least one integral over an infinite region. For example, the (x0, yo) integral in

1Both the time-domain receiving characteristic Rp(,, q t) = f+-, Ru(w,wj?)e-'w1dw and its inverse
defined by (3.11) can be generalized functions. This will be seen from Section 3.1.3 where these functions
are defined directly in the time domain.
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(3.14) becomes an integral over the finite region p(t'), but the t' integration goes from t' = to
to t' = +0 and thus involves an integration over an infinite region. Similar statements hold
for the probe-corrected formulas (3.13) and (3.15). However, as we shall see later in this
section, only integrals over finite regions need be calculated to get the time-domain far-field
pattern when a special type of probe is used.

Equation (3.15) may be the most attractive for measurement purposes since the inner
time integral can be calculated at each scan point f0 for the desired values of (ý, -q, t). Thus
one would not have to store the values of the output of the probe bp(fo, t') over time to
calculate the Radon transform of the field radiated by the test antenna.

Having determined the Radon transform T(ý, 9, t) one can then use (3.6) to calculate
the time-domain field everywhere in the half space z > 0 or use (3.9) to calculate the time-
domain far-field pattern. Note also that instead of the real time-domain Radon transform
formulas (3.5)-(3.8) one could have used the complex formulas of 14, sec.3.2.3] involving the
analytic fields. The expressions for the field in the half space z > 0 would then have been
given by the simpler expression [4, eq.(3.78)], which however involves the analytic fields that
cannot be measured directly. Thus, for measurement purposes, the real Radon transform
formulas used in this report seem advantageous compared to the complex Radon transform
formulas. This was discussed more fully in the previous report [41-

3.1.2 Formulas for Time-Derivative Probes

The general time-domain probe-corrected formulas (3.13)-(3.15) require the calculation of a
triple integral involving an infinite time integral. We will now show that for a special type
of probe, which has been used for time-domain electromagnetic measurements [10], [11],
the infinite time integral can be evaluated analytically. The outputs of these probes due to
incoming plane waves are proportional to the time derivative of the field in the incoming
wave, that is, the frequency-domain receiving characteristic is proportional to w and can be
written as

(.,, wr) i (, )(3.16)21r
where the angularly dependent function Qp(ý, q/) is independent of the frequency. With the
receiving characteristic (3.16) inserted into the probe-corrected formula (3.10), the inverse
Fourier transform of (3.10) gives

31 t+o ,+0
7)=27rQ(,) J- I bp(fo,t + ýxo + yl/o)dxodyo (3.17)

which expresses the time derivative of the Radon transform of the near field as the Radon
transform of the output of the probe divided by the angularly dependent function Qp. The
far-field expression (3.9) shows that the time-domain far-field pattern is given by

F cos 0 f+ f+• bp(fo, t + ÷ . fo/c)dxodyo (3.18)

21rcQp(c-' cososinO,c- sin OsinO)
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Thus, when the probe has the simple receiving characteristic (3.16), the far field of the test
antenna is simply the Radon transform of the output of the probe divided by the angular
dependence of the probe receiving characteristic.

Let us again assume that the test antenna is turned on at t = to so that the output
of the probe 4(fo, t) is zero when f0 is outside the region p(t). Then the integrand of
(3.17) is zero when f0 is outside the region p(t + ýxo + ilyo). For late times, when the finite
region p(t) is approximately a circle of radius c(t - to), this translates into: bp(fo, t) = 0 for
Ifol > c(t - to) + cxo0 + c'7yo. When 4' + 72 > c-2 this condition is not satisfied no matter
how large Ifol may be, so in this situation the region of integration in (3.17) is infinite. When
•2 + r2 < c-2 this condition is satisfied for all lIol larger than some finite number and the
region of integration in (3.17) (and (3.18)) is finite. Consequently, when the time-domain
far-field pattern is calculated with a probe whose receiving characteristic satisfies (3.16), the
integral is over a finite region. Thus, the far-field pattern can be calculated at early times
from measured data taken on a finite scan plane without introducing any error caused by the
finite scan plane. This property of the special time-domain probe-corrected formula (3.18)
is not possessed by any of the frequency-domain probe-corrected formulas and, as discussed
in [4, ch.4], makes it possible to use planar time-domain scanning for broadbeam antennas.

3.1.3 Formulas Obtained Directly in the Time Domain

This subsection derives the probe-corrected acoustic formulas directly in the time domain
using the Radon transform and a time-domain receiving characteristic for the probe. To
define a time-domain receiving characteristic of the probe, one has to specify the time-domain
basis fields that will be used to expand the field radiated by the test antenna. We choose the
time-domain basis fields to be simply the inverse Fourier transform of the propagating and
decaying plane waves used to expand the frequency-domain fields. To facilitate the time-
domain analysis, the spectral variables (k,, k.) are replaced by (4, 77) defined by (k,,, ky) =
(w4,,wo7) for all real w and we only consider fields in the half space z > 0. Furthermore, we
write the frequency-domain plane wave (27r)-'ei(kzx+k1Y+'Yz) as

B- 1 eiw(V+wY+>z), W > 0

W T~) - eiw(x+1Y+CZ) IW <0 (3.19)

where -oo < 4 < +oo, -oo < q, < +oo, z > 0, and * denotes complex conjugation.
Taking the inverse Fourier transform (3.2) of equation (3.19) shows that the time-domain
basis fields are

(t- x-inY-(z), 4'+,72 < c-2

,•-lzICI 2 + 772 > c-2 (3.20)

where z > 0 and the identity
+ 00o 2 1( lz-0 l2Z2I+Ctdl-z > 0 (3.21)

18 1 2 +t2 '
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Figure 3.1: Propagating time-domain plane wave.

has been used.
Since these time-domain basis fields are obtained from frequency-domain plane waves, we

will refer to them as time-domain plane waves. As will be seen below, the time-domain plane
waves VB(f, t, ý, 9) constitute a complete set of functions for expanding the time-domain field
radiated by the test antenna.

Let us study the physical properties of these time-domain plane waves. The propagating
plane wave VB(f,t,ý,i7), ý2 + 112 < c- 2 is a delta function which is nonzero only on the
plane t = ýx + 77y + (z and is propagating in the direction given by the unit vector k(, o) =
ci + crj + c•i as shown in Figure 3.1. The decaying plane wave t B(F, t, ý, q), ý, + q 2 > c-2

is more complicated. On the plane ýx+,qy = to, which is parallel to the z axis, the amplitude
of the decaying plane wave has a maximum at z = It - t01/I(I and decays as z- 1 at infinity as
shown in Figure 3.2. Furthermore, from the analysis of Morse and Feshbach [13, pp. 8 1 3-8 14]
it follows that

lim raZCI 
= 6(t - - 7Y) (3.22)

zI-I-.o+ Z 21(1 + (t - ýX - ,Ty) (

so that, in agreement with (3.19), all time-domain plane waves are delta functions on the
plane z = 0.

Having defined and studied the time-domain plane waves, let us now turn to the time-
domain receiving characteristic of the probe. This characteristic is denoted by R(ý, rl, t) and
is defined to be the output of the probe, when its reference point is located at fo = 0, and the
incoming wave is the plane wave 4pB(i, t, •, 17) given in (3.20). From the expression (3.20) for
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KI
Figure 3.2: Decaying time-domain plane wave on the plane ýx + Ily = to.

the plane wave it is seen that the output of the probe, when it is located at fo = x0oi + yoj,
is given by Rp(ý, r1, t - ýxo - ?lyo) as illustrated in Figure 3.3.

Now that both the time-domain plane waves and the time-domain receiving characteristic
of the probe have been defined, v,. can caiculate the output of the probe due to the field
radiated by the test antenna. To do this note that the expression (3.6) for the field radiated
by the test antenna can be written in terms of the time-domain plane waves as the time-
convolution integral

1 +°°•B,•,t t',•, l--fT• t')dt'dýdrh z > 0. (3.23)1= -oo oo _oo +t 2

This expression enables us to derive the expression for the output of the probe b,(f 0 , t) when
it is located at fo and the incident field is that of the test antenna. We assume that the
distance between the probe and the test antenna is large enough that multiple interactions
between the test antenna and the probe can be neglected. That is, the reflection in the
test antenna, of the field radiated by the induced currents on the probe, does not affect the
output of the probe.

The output of the probe from the component -(2ir)- 1 -B(f, t-t' ', 7)a2 T(, 7, t')dt'd dr
of the incident field is, according to the definition of the probe receiving characteristic, given
by

dbp(fo, i) I 2RP(V,r,t -t' - xo - ?7yo)-a2-T(ý,r7, t')dt'd~d,-j (3.24)
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Figure 3.3: Output of probe due to the incoming plane wave 4B(vt,•,r,). The reference
point of the probe is located at fo = Xoi + yoý.

and the total output of the probe is thus seen from (3.23) to be

bp(fo,t) = - - ] ]" Rp7 (4 ,,t1,t - t' - xo -rqyo)-• T(ý, q, t')dt'd dq. (3.25)
v- 00

To determine the Radon transform T(ý, 71, t') from this equation, define the inverse time-
domain receiving characteristic R;"(ý, 17, t) for the probe in accordance with (3.11) by

J P - t')dt' = 41r2'(t), (3.26)

multiply the expression (3.25) for the total output of the probe by RP-'(f,., t" - t), and
integrate it with respect to t to get

+o t(f ,t)R ( i" - t)dt = 2 ,r ] J --2T (r, , - xo - 77yo)dadai. (3.27)0 f ( f 0) t", ,,, -q, t" - -

The Radon transform pairs (3.5) and (3.6) (see also [12, p.IIl])

q,,t) = f-J Jo oo t + 4x0 + ,±Yo)dxodtjo (3.28)

I (fo,t) = -- jj -T(eiqt - ýxo - q yo)d~dv1  (3.29)
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with ro = x0i + yj, along with (3.27), now show that the Radon transform of the field
radiated by the test antenna on the plane z = 0 is given by

T (2 r)jj f.j R-'(,n,t- t'+ ýxo + ilyo)bp(io,t')dt'dxodyo. (3.30)

This expression is seen to agree with the result (3.15) found by Fourier transforming the
corresponding frequency-domain result. Equation (3.30) is the time-domain probe-corrected
formula derived directly in the time domain using the Radon transform and a time-domain
expansion of the field radiated by the test antenna. Interchanging the orders of integration
in (3.30) produces the probe-corrected formulas (3.13) and (3.14).

Formulas for time-derivative probes
Let us again turn to the special case where the output of the probe due to an incoming

plane wave is proportional to the time derivative of the plane wave. In this case the time-
domain receiving characteristic takes the form

at
Rp(ý, ri, t) = Q,(ý, rq)5,-B(O, t, ý, q/) = Qp(ý, rq)b,(t) (3.31)

which is valid for all (ý, ;) and is in accordance with the frequency-domain result (3.16). The
last part of (3.31) is obtained by using the expressions (3.20) and (3.22) to get the values
of the plane waves on the plane z = 0. The definition (3.26) for the time-domain inverse
receiving characteristic and the expression (3.31) for the receiving characteristic show that

° 1,7)= (2ir) 26(t) (3.32)Yt (,7,) Qp(ý, 7)

for all (•, ,/). Taking the time derivative of the probe-corrected formula (3.30) and inserting
this value for the time derivative of RP-1, one recovers the probe-corrected formula (3.17)
derived from the corresponding frequency-domain result. It has now been demonstrated
once more that the probe-corrected formulas simplify considerably when the output of the
probe due to an incoming plane wave is proportional to the time derivative of the plane
wave.

3.1.4 Formulas for Reciprocal Probes

In the previous two subsections the probe-corrected formulas were derived for arbitrary
probes and for probes whose output is proportional to the time derivative of an incoming
plane wave. This subsection derives probe-corrected formulas for cases wb,--e the probe is a
reciprocal electroacoustic transducer [6]. It is shown that there is a simplt relation between
the time-domain receiving characteristic /p(f, r, t) and the time-domain transmitting char-
acteristic TS(f, 77, t) of the probe. Here T6(f,qv1 , t) is simply the Radon transform (3.5) of the
field radiated by the probe into the half space z < 0 when it is located at F = 0 and is fed
by the delta-function input signal ap(t) = 2Wr6(t), as shown in Figure 3.4.
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Figure 3.4: Geometry for reciprocity relations.

The field radiated by the probe into the half space z < 0 in this situation is denoted by
@• and is given by the time-convolution integral (3.23) with T replaced by TP, and with 4 )B

being the time-domain plane waves for the half space z < 0 given by (3.20) with z replaced
by -z. The delta-function far-field of the probe is given by the negative of (3.8), that is

'01(f~t r Cos 8T6 (C- cos 0sin 0 ' -sin 0sin0,t - r/ c), r'/2 < 0_< 7r (3.33)
P ~cr 5in'

and the corresponding far-field pattern is

cos0 0
.%6(8,¢,t) ---- "--9T6 ,(c- cos 0 sin 0, c-' sin C sin 0, t), ir/2 <0_< r (3.34)

where F' is defined such that the delta-function far-field is 46(, t) -. _' (0, 4,,t - r/c)/r.
Assume now that the probe is a reciprocal electroacoustic transducer [6]. Then from

(2.9) the following frequency-domain reciprocity relation exists for all real w between its
frequency-domain receiving and transmitting characteristics

(70 Tp,(-ý - ~w ) , V + 772 < -Rp,(•,w, 77w) W PO_( TI (_ýw, _77W)' ý2 + 17 >c2 (3.35)

where the fact that any frequency-domain function must satisfy f, = f-*, has been used.
Taking the inverse Fourier transform of (3.35) and using the fact that the real and imaginary
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parts of an analytic function on the real axis are related through the Hilbert transform [13,
pp.370-372] reveal the following time-domain reciprocity relation

= ___ I T ' ( _ • , _- 7 , t ) , ý 2 + 1 1 2 < C - 2
_M Pý2+72 - (3.36)

where H• denotes the Hilbert transform given by

7if(t) = J+( f )dt') (3.37)

The bar on the integral sign indicates a Cauchy principal value integration (see [4, sec.3.2.3]).
Note that the time-domain reciprocity relation (3.36) is simple and similar to the correspond-
ing frequency-domain relation (2.9) as long as ý2 +r71 < c-2 (propagating plane waves); how-
ever it is more complicated and involves the Hilbert transform when Q + q2 > c- 2 (decaying
plane waves).

The time-domain reciprocity relation (3.36) with ¢ = -c- 1 cos 0 now gives the following
relation between the delta-function far-field pattern YF• (3.34) and the receiving characteristic
of the probe

.F((0, , 0) = r70po-Rp(c-1 cos(ir + ,) sin(r - 0), c- sin(r + 0) sin(ir - 0), t), 7r/2 < 0 < 7r.

(3.38)
Consequently, for reciprocal probes, the delta-function far-field pattern is proportional to the
time derivative of the time-domain receiving characteristic. Since the delta-function far-field
pattern is equal to the time derivative of the step-function far-field pattern, it is seen that
the step-function far-field pattern of a reciprocal probe is proportional to its time-domain
receiving characteristic.

Finally assume that the probe receiving characteristic satisfies (3.31) in addition to the
reciprocity relation (3.36), that is, the output of the probe from an incoming plane wave is
proportional to the time derivative of the plane-wave field. Then (3.31) combines with (3.38)
to produce

'F'(0, 4, t) = 7jopoQp(c-' cos(ir + 4) sin(ir - 0), c' sin(7r + 4) sin(r - O))b"(t), ir/2 < 0 < •r
(3.39)

which shows that tCie angular dependence of the delta-function far-field is that of the receiving
characteristic and the time dependence of the far-field pattern is the second derivative of a
delta function. Consequently, the far-field of this particular reciprocal probe is related to
the second time derivative of the signal feeding the probe.

3.2 Electromagnetic Fields

This section derives the probe-corrected formulas for the electromagnetic fields. The deriva-
tions are very similar to the ones for the acoustic field since each of the rectangular com-
ponents of the electric field satisfies the acoustic-field formulas. Therefore, nearly all of the
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formulas for the electromagnetic fields can be obtained easily by modifying the corresponding
formulas for the acoustic field.

First we summarize the Radon transform formulas for the electric field, which allow us
to calculate the electric field everywhere in the half space z > 0 in terms of the field on the
plane z = 0. We assume that the test antenna is fed by the time signal ao(t) and introduce
the Radon transform of the electric field on the plane z = 0 by [4, eq.(3.61)]

1 f+00f+00

( t) = 1 _(,o, t + ýxo + iyo)dxodyo, ,o = Xoi + yoj. (3.40)

Because V. £ = 0 the Radon transform of the electric field satisfies [4, eqs.(3.64),(3.67)]

T(ý,q,t).(i + q+¢)-0, ý2 +712 < c- 2  (3.41)

, (+) )+ KI t+ ( T, q, t) • i = 0, ý2 + 72 > c- 2  (3.42)

where 7N is the Hilbert transform given in (3.37). Since V x E = _po it follows that the
Radon transform for the magnetic field is [4, eqs.(3.69),(3.70)]

TH•(•,7,t) 0 1=(V + 0 + (') X T(Vi 1 ,t), C + 77 <c 2  (3.43)

TH(ý,v7,t) = -({& + -I-) x T(4 ,77,t) + i x 7xtT(ý,iq, t), Q + ,z > c- (3.44)p 1'

and thus the Radon transform of the magnetic field is determined from the Radon transform
of the electric field.

The electric field in the half space z > 0 can be calculated by the formula [4, eq.(3.62)]

I + + +00 392
+= -T L00 L (~ _ t" '5)at" 2 T((',rt')dt'dYjdr, z > 0 (3.45)

where 4p is the time-domain plane wave (3.20). The time-domain far field is given by the
simple expression [4, eq.(3.71)]

E(f , t).OsO '9T(c-'cos sinO, c- sin sin0,t -r/c), 0 < 0 < r/2. (3.46)
cr at

Defining the time-domain far-field pattern F(, 0, t) for the test antenna such that the far
electric field is E(f , t) .F(0, 4, t - r/c)/r one finds from (3.46) that

- cosO - 1
-(O Tt) (c _ cos4? sin0, c' sin 0 sin O, t), 0 < 0 < r/2. (3.47)

Having summarized all the Radon transform formulas for the electric field, we now turn to
the problem of deriving the time-domain probe-corrected formulas. As in Section 2.2 for the
frequency-domain electromagnetic field, the vector output of the probe is defined by (2.16)
as a vector sum of the scalar output in two orientations. The time-domain dyadic receiving
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characteristic R,(ý, ri, t) is defined such that when the incident field is 40(f, t -t ,
with ý(ý, 7/) satisfying (3.41) and (3.42), the vector output of the probe is given by

b,(fo, t) = Rp(ý,rl, t- ýxo -inio) [(•,'7), fo = xoi + yoY (3.48)

when the probe is located at ro.
The time-domain dyadic receiving characteristic is simply the inverse Fourier transform

of the corresponding frequency-domain dyadic and because the vector output of the probe
has only x and y components, it can be written as

Rp(Cr17, t) = i/•(ý, r7, 0 + ýRp,(ý, ri, t)- (3.49)

From the expansion (3.45) of the field radiated by the test antenna it is seen that when the
probe is illuminated by this field and is located at fo, its total output is given by

1 +0 +oo[ +oo-- a2:9
bp(fo, t) = ---2 ]. ]. Rp(-, 71,t - t' - fXo - ilyo)' T,-T(Cjq, t')dt'd~dq (3.50)

which is the electromagnetic analog to the acoustic formula (3.25). The time-domain inverse
72----

receiving characteristic RP'(1,i1 , t) is simply the inverse Fourier transform of the frequency-
domain inverse receiving characteristic given in (2.24)

W- T~O k,)X [fp,(wý' wi)ir - A;(wC wv))J .-i(.51
RP V, 1, 0 i(m - [f=wýww) X ++(w,,,e (3.51)

where the unit vector k(V, 0) = c4 + cr9j + cCi. It does not seem possible, in general,
to express the inverse time-domain receiving characteristic directly in terms of the x and y
components, Rpr(4, 71, t) and Rp(ý,ri, t). According to (2.21), for all (ý, j7) the dyadic receiving
characteristic and its inverse satisfy

/ Rp VE, 7, t - 0') " Rp(C, 7, t'dt' = 4w 26(t) [i(ý,rV)6(6,,rq) + ¢(C, 77)(,r) (3.52)

where 8(., r/) and q(, i/) are time-independent unit vectors given by

OV,0 X+ -• ! z (3.53)

and 17 0,X + 7 (3.54)

Taking the inverse Fourier transform of the probe-corrected formula (2.25) one obtains
the following three alternative time-domain probe-corrected formulas

T(,/,t)= oo _ (ý, q,t') • J0 p(fo,t- t' + 4xo + qyo)dzodyodt' (3.55)
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t) (2r)- JjJ,, jf,,,,t - + zo + ,jyo) .T2(-o,t')dxodyodt' (3.56)

and

T(•, ,t) = (2ir) 3 1 f 1i. R, ,,7,t -t' + ýxo + ,yo). b,(fo, t')dt'dxodyo (3.57)

where f0 = x0ir + Y0y. As for the acoustic field, equation (3.57) may be the most attractive
for measurement purposes since the inner time integral can be calculated at each scan point
fo for the desired values of ( Thus, one would not have to store the values of the
vector output of the probe over time to calculate the Radon transform of the electric field
radiated by the test antenna.

3.2.1 Formulas for Time-Derivative Probes

If the electromagnetic probe is a so-called D-dot probe [10], [111, [14], [15] its output from
an incoming plane wave is proportional to the time derivative of the plane-wave field and
the frequency-domain receiving characteristic is

O = 1 [ ,+ , (3.58)R,(wý'w) =-2- Q, v'71) = -2 o o+mv,

where the angularly dependent function Qp(ý, q) is independent of the frequency. (Note from
(2.32) and (2.33) that a reciprocal elementary electric dipole probe is a D-dot probe.) With
this receiving characteristic, the time-domain probe-corrected formula reduces to

-T (, 7,,t) - Qf (ý, f b7) 6,(ot + ýxo + 77yo)dxodyo (3.59)

where Qp (e, ) is found from (2.24) to be

kGQ,(i,))xxQ;(•,,)]I k(V, ,)) = 7 + c •i + ci ¢. (3.60)k(c .j).-[V 7)X ,0

Combining the expression (3.59) for the time derivative of the Radon transform of the near-
field with the expression (3.47) for the far-field pattern shows that the far-field pattern is
given by

cose --- 0 +00F °

F(8, 4', t)- L__c s (c' cos 4 sin0, C' sin4'sinO),o. I bp(fo,t + iFo/c)dxodyo

(3.61)
where 0 < 0 < ir/2. Thus, for D-dot probes the probe-corrected formula simplifies so that
only the calculation of a double integral is needed to find the Radon transform T or the
far-field pattern Yý'.
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3.2.2 Formulas for Reciprocal Probes

Finally we consider the reciprocal probe and derive time-domain reciprocity relations between
the transmitting and receiving characteristics of the probe, using the Fourier transform
along with frequency-domain reciprocity relations. We define the time-domain transmitting
characteristic TX(ý, 7, t) of the probe, when its reference line is parallel to the x axis, to be
the Radon transform (3.40) of the field radiated by the probe into the half space z < 0 when
it is located at f0 = 0 and is fed by the delta-function input signal ap(t) = 27rb(t).

The frequency-domain reciprocity relation (2.27) shows that for all real W

- { -, •);. +.t.. -7 _ _2 <2 C-2<36
R I'l4t 2 > cT2  (3.62)

which by use of the inverse Fourier transform gives the time-domain reciprocity relation

T._-Nz(_ 1 7,t), ý2 + 72 < C-2
ý (,tT7, 2 P1 z( 4 -,7, t), ý2 + 7 > C-2  (3.63)

where N is the Hilbert transform given in (3.37). A similar result holds when the reference
line of the probe is parallel to the y axis. Inserting the expression (3.63) for kP and the corre-
sponding expression for Rv into (3.51) gives a formula for the inverse receiving characteristic
in terms of the transmitting characteristics in the two orientations.

3.3 Time-Domain Sampling Theorem and Numerical
Far-Field Calculations

In this section we will consider only the special cases where the output of the probe, due
to an incoming plane wave, is proportional to the time derivative of that plane-wave field.
These cases are of practical interest because such probes actually are used for time-domain
measurements [10], [111, [14], [151. Two different computation schemes, each of which nu-
merically calculates the time-domain far-field pattern from sampled near-field data, will be
presented. The first is the frequency-domain computation scheme, which is based on the
frequency-domain probe-corrected formulas derived in Chapter 2. The second is the time-
domain computation scheme, which is based on the time-domain probe-corrected formulas
derived in Chapter 3.

3.3.1 Frequency-Domain Computation Scheme

This computation scheme is similar to the non-probe-corrected scheme presented in [4,
sec.4.1] and consists of the following three steps: (1) use the Fourier transform to calcu-
late the frequency-domain output of the probe from the measured time-domain output of
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the probe, (2) calculate the frequency-domain far field from the frequency-domain output
of the probe, and (3) use the inverse Fourier transform to calculate the time-domain far
field from the frequency-domain far field. This scheme makes use of well-known frequency-
domain probe-corrected formulas (2.8) or (2.25), sampling theorems, and the fast Fourier
transform (FFT). The formulas for the discrete version of this scheme to calculate the time-
domain acoustic far-field pattern F are easily found from the non-probe-corrected formulas
[4, sec.4.1, eqs.(4.5)-(4.7)]. We summarize the probe-corrected formulas for the acoustic field
below.

Assume that the output of the probe is bandlimited so that bp can be set equal to zero
for IwI > W,,z and assume that bp(f 0 , t) begins at some time t o (which may depend on the
position fo in the scan plane) and ends approximately at a time that can be expressed as
to + (N,, - 1)At where At = i/rJa,,. Then the frequency-domain output of the probe can
be calculated from

1 N,-I
bp(fo) = E bp(fo, to + mAt)etw("0+mA')zt, IwI <Wmo,. (3.64)

vrm0

The frequency-domain far-field pattern can be found from the probe-corrected formulas (2.8)
and (2.5). With the receiving characteristic given by (3.16) the discrete form of this formula
becomes

cos e
.,,(0, 4) = ao,.'o,,(O, ) = 27rcQp(c-l cos 4, sin 0, c- 1 sin 4 sin 0)

N. N,

, , bp,(fom.)ei Fo-R/%~xo~yo (3.65)
,,n=-Nx n=-N,

where Fo,, = mAzxo + nAyo0 is a sampling point on the scan plane. The sample spacing
Ax0 = Ayo = Ain/2 = rc/w,,,n is required by the frequency-domain sampling theorem
[1, fig.10], while N, and N. are integers that determine the size of the scan plane, and
r = i cos 4 sin 0 + j sin 4 sin 0 + i cos 0 is the direction to the far-field observation point. Now
that the frequency-domain far-field pattern is calculated, the time-domain far-field pattern
is found from the inverse Fourier transform

N.,/2 2w
..F(O,,,t) = • , (0 Aw = (3.66)

m-N,,12 Nw

by means of the sampling theorem if the far field F(0, 4,, t) has about the same duration as
the output of the probe. If the time duration of the far field is longer than that of the output
of the probe, one must decrease the frequency sample spacing Aw by increasing N,. The
numerical example given at the end of this section shows that the duration of the calculated
far-field pattern, in general, depends not only on the near field but also on the size of the
scan plane. This is because the artificial edges of the scan plane produce a diffracted field
that will make the time duration of the far-field pattern calculated from (3.66) longer than
that of the exact far-field pattern.
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3.3.2 Time-Domain Computation Scheme

This computation scheme is similar to the non-probe-corrected scheme presented in [4,
sec.4.2] and uses the direct formulas (3.18) or (3.61), which give the time-domain far-field
pattern directly in terms of the time-domain output of the probe. The discrete version of
the formula (3.18) to calculate the acoustic far-field pattern F is similar to the non-probe-
corrected formula [4, sec.4.2, eq.(4.11)], and can be found by Fourier transforming (3.65) to
get

= tCos 0
J0, b,) -- 2rcQp(c- 1 cos 0 sin 0, c-1 sin 0 sin 0)

Nz NV
bp(io,mn,t+ ÷fo•,j./c)AxoAyo. (3.67)

m=-Nx n=-N,

3.3.3 Comparisons of the Two Computation Schemes

The comparison given in [4, sec.4.41 of the non-probe-corrected computation schemes also
applies to the probe-corrected ones. Rp( zifically, when the far fields of electrically large radi-
ators are calculated for all times and all angles of observation, the FFT makes the frequency-
domain computation scheme much faster than the time-domain computation scheme. When
only part of the far field is calculated, the difference in computer time for the two compu-
tation schemes becomes smaller and the time-domain computation scheme becomes more
advantageous because of its simplicity. The time-domain computation scheme is much eas-
ier to use than the frequency-domain computation scheme and it is consequently the more
attractive scheme when one is not concerned with the amount of computer time it takes
to perform the far-field calculations. Furthermore, the calculated far-field pattern has an
extended time duration because of the finite scan plane and to avoid aliasing, this extended
duration has to be taken into account when the frequency-domain computation scheme is
used. The time-domain computation scheme does not make use of the Fourier transform
and thus does not encounter this aliasing problem.

As pointed out in Section 3.1, planar time-domain near-field antenna measurements,
unlike single-frequency near-field measurements, have the capability of eliminating finite
scan errors. This makes it possible to determine the far-field pattern of broadbeam antennas
from planar time-domain measurements, as will be demonstrated in the following example.

3.3.4 Numerical Example

The probe-corrected formula (3.18), and its discrete version (3.67), will now be verified
numerically by using the time-domain computation scheme to calculate the far-field pattern
of an acoustic point source with Gaussian time dependence. The near-field data used in this
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computation are obtained by measuring the near field of the point source with a nonideal
probe.

The acoustic point source with Gaussian time dependence is located at fi = -di and its
radiated field is given by

D(r, t) = f(t- If + dillc), f(t) = e-4t2172 (3.68)41rlf + dil

where 'r and d are positive constants. The near-field data are obtained by using a probe
whose receiving characteristic is in the form (3.31), that is, the output of the probe due to the
incoming plane wave tB is proportional to the time derivative of the incoming plane wave
OtB. The angularly dependent function Qp(4,t7) is chosen to be cos 0, where 0 is the angle
between the propagation direction of the plane wave and the z axis. Since the propagation
direction of the plane wave is given by k = ýci +iicý + (ci, the angularly dependent function
is S/IV-1 - -V2c2- 9f2C2, V. + .72 < c- 2

QP(, 77) =C( = i/TC2 + 2c2 - 11, ý2 + T<2 > C-2 (3.69)

To calculate the double summation (3.67) for the far-field pattern, we have to know the
output of the probe at each scan point on the scan plane. Since the receiving characteristic
of the probe is defined in terms of plane waves we have to expand the acoustic point-source
field in terms of plane waves in order to determine the output of the probe.

We start by writing the acoustic point-source field (3.68) in terms of the Fourier integral

*G~~f = [+0 feikl•+d~I
OG(f, t) + c) --idi e i"tdw (3.70)f 047rlf + i

where f, = r(4V7'r)-e_,,,2 ,2 / is the spectrum of the Gaussian time function f(t) in (3.68).
The reason we write the acoustic field in this form is that we can now make use of the
identity [4, eq.(2.29)] to show that

f4ir + d•i- 8 if- + (0 -ekýx+k"y+1(z+d)ldk7dky (3.71)

47rif + d~i 8i2-. f.~

which gives the frequency-domain point-source field in terms of plane waves. The plane-wave
spectrum for the point-source field (3.70) is then seen from (3.71) and (2.1) to be

T (k, ,)= ____i-rd (3.72)

Then (2.7) shows that the frequency-domain output of the probe is given by

if, 1+ -o1 RI- (k-, kV) ei(k..o+k'vo+jyd)dkdk z0 = 0 (3.73)
47r -00 =0
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where R,, is the frequency-domain receiving characteristic of the special time-derivative
probe found from (3.16) and (3.69) to be

Ri(k.,k() =, wQ'ý11) =_ W( z c-Y (3.74)
21r 27r 21r

Inserting this expression for the receiving characteristic of the probe into (3.73) and making
use of (3.71), one finds that the frequency-domain output of the probe is given by

cfW a eikjfo+dil
= 4r Od Io+dI (3.75)

Note that this expression could also have been given in terms of a partial derivative with
respect to z. However, since z = 0 on the scan plane it is more convenient to write it in
terms of the distance d between the point source and the scan plane. Taking the inverse
Fourier transform of (3.75) shows that the time-domain output of the probe is simply

bp(fo, 1) = a 4D G(f0, t) (3.76)
idd

where 4D is the Gaussian acoustic point-source field (3.68). We have now shown that the
output of the probe equals -c times the partial derivative with respect to d (or z) of the
point-source field. This result could also have been obtained by using the formulas of [7]
where receiving antennas are described as linear differential operators. When the distance
between the probe and the point source is large, (3.76) shows that the output of the probe is
b,(fo, t) - cos Oat'(fo, t) where 0 is the angle between the z axis and the vector going from
the point source to the point fo on the scan plane. This result is explained by noting that
the point-source field at a position fo in the far field consists of a plane wave propagating
in the direction given by 9, and the output of the special probe equals cos 0 times the time
derivative of an incident plane-wave field.

Having calculated the output of the probe we use (3.18) to find the following expression
for the far-field pattern of the test antenna

F(O''t) = -2"--•1 L , _(fot +f;.fo/c)dxodyo, 0 < 0 < r/2._(3.77)

The discrete version of (3.77) useful for computation is obtained from (3.67) as

IF(O'd't) = -- N s ,b a Vd mn t + i" . '/c)AZXOAYO, 0 < 0 < ir/2. (3.78)
2rn=-Jv, ,=-Ny T

If probe correction had been neglected, the far-field pattern would have been given by
the right side of (3.77) or (3.78) divided by cos 0. Thus, probe correction can be neglected
only if cos 0 t 1.

Let us now show the computed far-field pattern of the Gaussian acoustic point source
obtained from the near-field formula (3.78). In the previous report [4, sec.4.3] it was shown
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Figure 3.5: Gaussian point source measured on a finite scan plane with a time-derivative
probe.

that the maximum effective frequency in the acoustic field (3.68) is Wai, - 12/1r and thus
the shortest wave length is Am,,,i = 27rc/iw,.m "• cr/2. For the numerical calculations we
choose d = 2 Au ,,, = cr. To satisfy the requirements of the sampling theorem [4, sec.4.2], the
near field is sampled with spatial sample spacing Ax0 = Ayo = Ai,,•/2 _' cr14. The far-field
pattern will be calculated for (0, )) = (450, 0) and the scan plane is chosen to be a square
of sidelength 20d, which is large enough to avoid the problems of the interference between
the correct field and the erroneous field for this angle of observation. The erroneous field is
due to the edges of the scan plane and has been discussed in (4, sec.4.41. With this size of
the scan plane and this observation direction, the erroneous signal ends approximately 20.57-
after the correct signal. Thus, the duration of the far-field pattern calculated from (3.77)
is approximately 23r whereas the duration of the exact far-field pattern is only 2.5r. See
Figure 3.5 for a picture of the scanning geometry.

Figure 3.6 shows the far-field pattern calculated for (0, €) = (450,0) in three different
ways: (a) is the exact Gaussian far-field pattern; (b) is the far-field pattern calculated without
probe correction by inserting the output of the probe (3.76) as if it were the measured near
field OG, into [4, eq.(4.11)]; and (c) is the far-field pattern calculated by the probe-corrected
formula (3.78).

The curve (a), which is exact, has the Gaussian wave form and is only significantly nonzero
on the interval -0.5r < t < 2.0T. The curve (b), which is obtained without probe correction,
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Figure 3.6: Values of the far-field pattern .(45, 0, t). (a) exact; (b) without probe correction;
(c) with probe correction.

is clearly in error even on the interval where the exact far-field pattern is nonzero. In fact, it
equals cos 450 ;z 0 -707 times the probe-corrected value given by the curve (c). The curve (c),
which is obtained from the probe-corrected formula (3.78), cannot be distinguished from the
exact curve on the interval --r < t < 2.4,r. Because of the finite size of the scan plane the
curves (b) and (c) are erroneous (negative) on parts of the interval from t = 2.4,r to t = 23,r
(the end of the erroneous signal (t = 23,r) is found by determining the time after which the
field is identically zero on the finite scan plane [4, sec.4.4J). However, the erroneous parts
for the curve (c) do not overlap with the interval where the exact far-field pattern is nonzero
so the curve (c) is an excellent approximation to the exact far-field pattern. The curve (b)
obtained without probe-correction is seen to be a very poor approximation to the exact far-
field pattern. Probe correction is therefore required to get an accurate far-field pattern when
this special time-derivative probe with cos 0 angular dependence is used. Furthermore, it is
demonstrated that time-domain planar near-field measurements can be tised to accurately
determine the far-field pattern of broadbeam antennas that cannot be accurately measured
in the frequency domain because of the errors introduced by the finite scan plane.
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