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I F Abstract. To provide a logic for reasoning about concurrently executing programs Abra-

hamson has defined an extension of propositional dynamic logic (PDL) by allowing inter-
leaving as an operator for combining programs, in addition to the regular PDL operators
union, concatenation, and star. We show that the satisfiability problem for interleaving PDL

is complete for deterministic double-exponential time, and that this probl-m requires time
double-exponential in cn/logn for some positive constant c. Moreover, this lower bound

holds even when restricted to formulas where each program appearing in the formula has the
form a, I a2 l ... I ak where I denotes the interleaving operator and where al, ... , ak are reg-
ular programs, i.e., programs built frora atomic programs using only the regular operators.
Another consequence of the method used to prove this result is that the equivalence problem

for regular expressions with interleaving requires space 21/log'n and that this lower bound
holds even to decide whether (El sE2I ... IEk)U F =_ V where El,..., En, F are ordinary

regular expressions; this improves a previous result of the authors. Moreove ", the same lower
bound holds for the containment problem for expressions of the form El I E21[ ... I Ek.
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1 Introduction

Propositional dynamic logic (PDL) was defined by Fischer and Ladner [4] as a formal system
for reasoning about programs. It is a propositional version of a first-order dynamic loinic
introduced earlier by Pratt [15]. In PDL, the regular operators (union, concatenat.'a, and
Kleene star) are used as operators for constructing programs. If a and b are programs, then
a U b means to nondeterministically run either a or b, a; b (e.g., concatenaticn of programs)
means to run a followed by b, and a* means to run a any finite number of times. The
satisfiability problem for PDL is known to be complete for deterministic exponential time
[4, 16]. The effect on complexity of using different formalisms for writing programs has
been studied, for example, by Abrahamson [1] for programs with Boolean variables, and by
Harel, Rosner, and Vardi [71 for programs specified by finite-state automata using various
concurrency mechanisms such as existential branching, universal branching, and bounded
cooperative (e.g., communicating) concurrency. A recent survey on logics of programs,
including PDL, is given by Kozen and Tiuryn [11]. The survey by Harel [6] concentrates
on complexity and decidability for variants of PDL.

To permit reasoning about concurrently executing programs, Abrahamson [1] has ex-
tended PDL by including interleaving as an operator on programs. For example, if a, b,
and c are atomic programs, possible executions of the program a* I (b; c) are abac, bcaaa,
and baaaca. A complete definition of interleaving PDL (IPDL) appears in Section 3. Build-
ing on Fischer and Ladner's [4] nondeterministic exponential time decision procedure for
PDL, Abrahamson [1] shows that the satisfiability problem for IPDL can be decided in
nondeterministic double-exponential time. Using a result of Pratt [17] and Harel and Sher-
man [81, the upper bound can be improved to deterministic double-exponential time. Our
main result is that the satisfiability problem for IPDL is cowm]ete for deterministic double-
exponential time (2-EXPTIME), and that a lower bound on time is double-exponential in
cn/log n for some constant c > 0. Moreover, to prove the lower bound, we do not need
the full power of IPDL which allows the interleaving operator to be arbitrarily nested with
the other operators. The lower bound holds even when restricted to formulas where each
program appearing in the formula has the form al I a 2 l ... I ak where I denotes the interleav-
ing operator and where a,,... ,ak are regular programs, i.e., programs built from atomic
programs using only the regular operators - union, concatenation and star.

As noted above, Harel, Rosner and Vardi [7] have previously studied the complexity of
PDL under various models of concurrency. Among the many results in 17], the one which
is closest in spirit to our result is that PDL is complete for 2-EXPTIME if programs are
specified by concurrent automata. There are, however, differences between the concurrent
automata model and the interleaving model. One difference is that we use expressions
while [7] uses automata (and it is known that automata can express certain languages much
more succinctly that expressions [3]). Another difference is that the concurrent automata
model corresponds to synchronous concurrent execution with communication, whereas the 0
interleaving model corresponds more closely to asynchronous concurrent execution without
communication.

The proof of our lower bound rests on showing how regular expressions with interleaving
can succinctly encode Turing machine computations. Using the same encoding, we improve
a result of [12]. The Non-Empty Complement (NEC) problem for a class of expressions
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is the problem of deciding, for a given expression E over alphabet E, whether E does
not describe all words in E*. It is shown in [12] that the NEC problem is exponential-
space-complete for regular expressions with interleaving, and that this problem requires
space 2cV"' for some constant c > 0. Here, we improve this result in two ways: first, the
lower bound is improved to 21/109"; second, the lower bound holds even for expressions
of the form (El IE2 I ... IEk) U F where Es,... ,Ek, F are ordinary regular expressions.
The best known upper bound is space 2°(l), so there is still a gap. Also open is tVle
computational complexity of the NEC and equivalence problems for expressions of the formn
El I E2 ... I Ek. We do show, however, that the containment problem for expressions of
this form is exponential-space-complete.

2 Encoding Turing Machine Computations
by Regular Expressions with Interleaving

We assume familiarity with regular expressions and time and space complexity; see, e.g.,
[91 or [20] if needed.

The interleaving of words z and y, denoted xjy, is the set of all words of the form

XlYlZ2yY2...Zkyk

where z = XlX2 ... zk and Yy -yIY2... Yk and where the words zi and i,, 1 < i < k, can be
of arbitrary length (including the empty word). If X and Y are sets of words, then X I Y is
the union of the sets zly over all z E X and y E Y. An interleaving ezpression is a regular
expression which can contain the interleaving operator, in addition to the usual operators
union, concatenation and star. The language L(E) described by an interleaving expression
E is defined recursively in the obvious way; in particular, L(E1 I E2) = L(EI) I L(E 2). By a
regular ezpression we mean a regular expression as usually defined, containing only union,
concatenation and star. Say that an interleaving expression E is a top-level concurrent
expression if

E= EIJE2I ... IEk

for some k > 1 and some regular expressions El, ... , Ek.
We define below a particular encoding of a Turing machine computation as a word over

a finite alphabet. We then show how to construct, for any nondeterministic Turing machine
M with space bound 2W') for some polynomial p(n) and any input x, an interleaving
expression I such that L(I) contains precisely the words which do not encode accepting
computations of M on input z. Moreover, I has the form E U F where E is a top-level
concurrent expression and F is a regular expression, and the length of I is O(p(n) log n)
where n is the length of z (and where the constant factor implicit in the O-notation depends
on M).

Before getting into the details, it is useful to explain the main idea by a simple exam-
ple. A key part of the construction is a top-level concurrent expression which can identify
identical subwords in a long word, provided that the long word has a particular restricted
format. We illustrate how this is done. Let D be a finite alphabet, and let b, c0,cl,..., cm,-
be symbols not in D. If u is a word with length divisible by m, say u = ugul ... u,%-i where
rn divides z, let h(u) be the word obtained by placing the symbol C4mod,. before uj for all
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i. Words in the restricted format are those in R = h((Dmbm)*). View a word in R as a
concatenation of blocks, where a block is any subword in h(Dmbm); i.e., a block has the
form

co do cl di ... cm-1 d.- 1 co b c b ... c.-1 b

for some do,..., d,-l E D. Let P be the set of words to E R such that (at least) two blocks
of to are identical. We claim that the following top-level concurrent expression A of length
0(m), when restricted to words in R, describes precisely the words having two identical
blocks, i.e., L(A) n R = P.

A=AofA I... A

where, for 0 < k <m - 1,

Ak = U ck d-ck b ck-dck .b
dED

and
A,, = (co"- D -cl . D ... c,_n1 -D " co . b -cl . b ... c.-i . b)*.

It is easy to see that every word w E P belongs to L(A): if we imagine that to is
scanned from left to right, the two occurrences of the repeated block, say h(dod ... d.- 1 bm),
are "parsed" to A0 , A1,... ,A,,,- where the d in the union for Ak matches dk; the other
blocks are parsed to A,. In the other direction, suppose that to E L(A) n R, so to E
L(wo I to I ... I tomw-) where tok E L(At) for all k. A key observation is that each block
of to must be either parsed entirely to two,, or parsed entirely to too,..., tow,-. If the
observation does not hold, consider the first block for which it fails. If we start by parsing
this block to wo, then tw. cannot be used later in parsing this block since the part of wtr
that has not been used yet begins with cod for some d E D. In the other case, suppose we
start by parsing this block to tow, but switch to wk when parsing the subword ckd, where
k > I and d E D. Later we have to parse the subword ck-lb. We cannot parse this subword
to wtr since the part of w.. that has not been used yet begins with ck. We cannot parse
this subword to twk-1 since the part of tWk-1 that has not been used yet begins with ck-ld
for some d E D. Given this observation, it is easy to see that w must have two identical
blocks, namely, the two blocks that are parsed entirely to to0,1i,... - -,Wm1.

We now return to the details. Let M be a nondeterministic Turing machine with space
bound 2p(n), where p(n) is a polynomial and p(n) _: n. Fix an input z and let n be the
length of z. Let I = rlog 2p(n)l and m = 21, and note that p(n) :5 m < 2p(n). Let a = 2',
so s is at least as large as the space bound 2P(n). Let Q be the set of states of M and let T
be the tape symbols. An ID of M is a word of length 8 + 1 in T*QTT*. The meaning of
the ID aqo3 where o,/3 E T*, a E T, and q E Q, is that aaol is written on the tape and M
is in state q with the head scanning a. It will be useful to use a redundant representation
of an lD. If

ai = ai,oai,1 ... ai,,

is the ith ID in a computation, this is represented by the word

bijbi,2 ... bi,,-.

where bj = (aij-i,aij, aij+i) for 1 _< j < a - 1. Let A = (QuT)3 be the alphabet of
symbols used in the redundant representation.
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As in 15], we use "marked binary numbers" to index the symbols of an ID. A marked
binary number is a word over the alphabet {0,Q,1, 1} in the language described by the
expression (0 U 1)" 10Q UQ*; i.e., the rightmost (lowest order) 1 is marked, as well as all O's
to the right of this 1; and in the representation of 0, all O's are marked. For 0 < k <m m - 1,
let [k] denote the length-i marked binary representation of k. Call these the low-level
numbers. For 0 _< j _5 s - 1, let [[Ji] denote the length-rn marked binary representation of
j. Call these the high-level numbers. It is useful to use different symbols for the digits in
the two types of numbers, say, {0, 1,0,11 for the low-level and {0', 1',Q',1'} for the high-
level. The marking allows the successor relation to be tested locally as follows. Define
succ(O) = succ(Q) = {0,1) and succ(1) = succ(1) = {1,0}. If yj ... yj = [k], and z = z1. . .z
is a marked binary number of length 1, then z = [k +1 rmod ml iff zj E succ(y,) for 1 < i < 1.
Similarly, the successor relation for the high-level numbers can be checked locally.

The idea is that we use high-level numbers to number the symbols of ID's obtaining some
word a', and then use the low-level numbers to number the symbols of a'. The low-level
numbering is done as follows. If w is a word with length divisible by m, say w = 0,001, ... or.-,
where m divides z, let g(w) be the word obtained from w by placing the word 2[i mod mJ3
before o% for all i. I.e.,

g(w) = 2[013o'o 2[113oal ... 2(m - 113 om_1 21013 am,, 21m - 113 o-1 •

(The word 2[k]3 plays the role of the symbol ck in the simple example above.)
An accepting computation of M on input x is represented by

a = g(a')

where

a' 0]] [[1#' [[1I]] bfl [[2]] b' ... -[[ - 1]] bom8.l [0#

[101] #In [[I]1 n [11 bm .

1101 Wn [I]],tm [[21] btm,2 .. [[s - 1]] bt',.-1 [[0]] #m

where, for 0 < i < t, the word bi,lbi,2 ... b1,,-1 is the redundant representation of the ith ID
in the computation of M on input z, and the accepting state appears in bt,lbt,2 ... bt,,-,.

A word a has the correct framework if a = g(a') for some a' of the form (1) where
the bj can be any symbols of A which are locally consistent within the same ID, i.e., if
bj = (01,02, 03), then bj+1 = (02,03, 04) for some a4.

There is a regular expression F of length O(p(n) log n) which describes all words which
(1) do not have the correct framework, or (2) do not contain the accepting state, or
(3) b0,1 ... b0,,-. does not represent the initial ID on input z. The construction of F is fairly
straightforward, although tedious, using standard methods as in, for example, [5, 13, 18, 19].
F is written as a union of "mistakes" which cause a word to violate (1), (2), or (3). The
expression has length O(ml), i.e., length O(p(n) log n), since each type of mistake involves
making local checks in a where the region of locality has length O(mW). For example, letting
D = {0', 1', 1') be the digits used in high-level numbers and E = AUDu{0, 1,0j,, 2,3, #}
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be the entire alphabet, the following expression describes the mistake that the high-level
numbers are not incremented correctly:

U '" d. E2'(1+3)-l • (D - succ(d)) • V
dED

As one more example, we write an expression of length O(n) which (given that a has the
correct framework) describes the mistake that bo,1 ... b0,,- 1 is not the redundant representa-
tion of the initial ID, qozB"-, where B is the blank tape symbol. Let c1, C2,.. , c,+j E A
be such that the redundant representation of the initial ID is cjc 2 ... C,+1(B, B, B)I-n- 2.

Let G = {O,1,Q,1,2,3}, D = DUG, A = AUG, and # - {#}UG. Let S+ abbreviate
SS°. The expression is

f)+. D+. ((A - {Ci}) U C' )+ ((A - {C2}) U C2 .A+. (..
• .((A - f{•,+l}) U Cn+1.A+ D+. (,& U b)'.- (Ax - {(B, B, B)}))) ... ).E'"

The rest of the construction of F is left to the interested reader.
The more interesting part of the construction is an expression E which describes the

mistake that the symbols bij for i > I do not correspond to a computation of M. For
b E A where b contains at most one occurrence of a state symbol, let N(b) be the set of
triples which could occur in the next ED at the same position as b. We construct a top-level
concurrent expression E such that, when restricted to words a having the correct framework,
a E L(E) iff b,+1j V N(bij) for some i and j. The expression will identify pairs (bij, bi+lj)
using the fact that the same high-level number [[j]J precedes both bij and b,+1j, and that
there is exactly one occurrence of g(#,) between them. Recall that D = {0', 1', 0', 1'}.

E= EoIExI... lEm

where, for 0 < k <m - 1,

Ek = U U(2[k]3"-D2[k]3.#)"
dED b6E

•(2k]3 .d.2[k3-b. 2[k3. D.2[k]3. #.21k]3 .d.2[k]3. (A - N(b)))
.(2[k]3 -D. 2[k]3. #)'

and

Em= (210]3 • D 21113. D... 2[m - 113. D. 2[0]3. A. 2[113 A..2[m1]3.A)*.

We now argue that E has the required property. Assuming that a has the correct
framework, let a block of a be any subword of the form

2[013 do 2[1]3 di ... 2[m - 1]3 di-_ 2[0130 2[1]3 a ... 2[m - 113a

for some do,... , d,-I E D and o, E A U I#}. In other notation, a block has the form
g(,[j]] orn) for some j and or. A #-block is a block where r = #.

The easier direction is the case where a is such that b,+jj V N(b,,j) for some i and
j. Imagining that a is scanned from left to right, we describe how a is "parsed" to
EO, E1 ,... ,Er. In the expression E£, we refer to the first (resp., last) occurrence of the
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subexpression (2[k]3 • D. 2[k]3 -#)" as the first (resp., last) part of Ek, and we refer to the
rest of Ek as the middle part. Each non-#-block is parsed to Em and each #-block is parsed
to the first parts of Eo,..., Em.-,, until we reach the block g([[J]] blj). At this point, 9([QI])
is parsed to the middle parts of Eo,... , , where the d in each such expression matches
the corresponding digit of [Jj]i. Then g(bi'j) is parsed to the middle parts of E 0 ,. .. , Em-l,
where b matches bij. The following non-#-blocks are parsed to Em, the next #-block is
parsed to the middle parts of Eo,..., E.-I, and the following non-#-blocks are parsed to
Em up to the block g(([jj] bi+lj). This block is parsed to the middle parts of Eo,.. .., Em.-.
(so the middle parts of Eo,..., Ema-i are now used up). Each remaining non-#-block is
parsed to Em and each remaining #-block is parsed to the last parts of E 0,..., E.-I.

In the other direction, if a E L(E), it can be seen that this is the only way a parse
can proceed. Let a E L(wo I uw I ... I wt.) where wk E L(Ek). A first observation is that
each subword 2[k]3 o, where o E D U A U (#}, must be parsed entirely to a single word,
either wk or wtm. A second key observation is that each block must be either parsed entirely
to wrn, or parsed entirely to wo,.. . ,,-,. Given the first observation, the argument for
the second observation is exactly as in the simple example above, and we do not repeat
it. Consider now the first block of a which is parsed to the middle parts of Eo,... , Em,*- 1 .
(There must be such a block since the middle parts of E0 ,. . . , E.-I must be used.) Say
that this block is g([JJ]] bmj). This determines a d = dk and a b = bk in the two unions for
each Ek (0 < k < m - 1) where d0 d1 ... d,-, = [Jill and bk = bj for all k. The following
blocks, up to the next #-block (call this #-block /) must then be parsed to Em, and #
must be parsed to the middle parts of Eo,..., Em-i. Now some block -y between / and
the next #-block after P must be parsed to the middle parts of E.,... , E,.-l, for otherwise
there will be no way to parse the next #-block after P. Since the dk's determine [[Jll, we
must have -y = g([Uj]] bi+lj). Since b& = bij, we must have bi+lj 9 N(bij).

This completes the construction of I = E U F such that L(I) 6 E* iff M accepts z.

Let EXPSPACE denote the class of languages which can be recognized in space 2P'*) for
some polynomial p(n). Recall that the non-empty complement (NEC) problem for a class
of expressions is the problem of deciding, given an expression E over alphabet E, whether
L(E) # V. In 112] we observe that the NEC problem for interleaving expressions can be
solved in space 20(n). From the above construction, we get the following.

Theorem 2.1 The non-empty complement problem for ezpressions of the form E U F,
where E is a top-level concurrent expression and F is a regular expression, is EXPSPA CE-
complete. There is a constant c > 0 such that no Turing machine with space bound 2e/i0gn
can solve this problem.

Remark. By using the "shuffle resistant" code of Warmuth and Haussler [21] (see also
Proposition 3.1 of [12]), this theorem remains true for expressions over a binary alphabet
E= {0,l).

Although it is an open question whether the NEC or equivalence problems are EXPSPACE-
complete for top-level concurrent expressions, it follows from the above that the contain-
ment problem (i.e., deciding for given expressions RI and R2 whether L(Ri) C_ L(R 2)) is
EXPSPACE-complete for top-level concurrent expressions.
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Theorem 2.2 The containment problem for top-level concurrent expressions is EXPSPA CE-
complete. There is a constant c > 0 such that no Tring machine with space bound 2 n/1o° n

can solve this problem.

Proof. The exponential-space upper bound for the containment problem follows easily (like
the exponential-space upper bound for the NEC problem in [12]) by converting the input
expressions R, and R 2 to equivalent (and exponentially larger) nondeterministic finite-state
automata.

To prove EXPSPACE-hardness, let F and E = EoLE I... I EE be the expressions
constructed above, where F and the Ei's are regular expressions. Let b and c be symbols
not in E. Letting

R, = bm+l . cm+1 . E,

R2 = (b.EoUc)j(b.EiUc) ... I(b.Em Uc) I(bm1+l-F Ucm+-),

it is easy to see that L(E U F) = E" iff L(R 1) _ L(R 2). I

Remark. A similarity between the interleaving and the intersection operators is that the
NEC and containment problems for regular expressions extended by interleaving have the
same complexity as the NEC and containment problems for regular expressions extended
by intersection: all of these problems are EXPSPACE-complete. For expressions with in-
tersection, this was first proved by Hunt [10] (see also Ffirer [5]). For expressions with
interleaving, this was proved by the authors in [12]. In fact, the proof in [12] proceeds by
giving a reduction from the NEC problem for expressions with intersection to the NEC
problem for expressions with interleaving, by showing how interleaving can "simulate" in-
tersection under certain conditions. In contrast, for expressions in the restricted forms used
in Theorems 2.1 and 2.2, replacing interleaving by intersection lowers the complexity of the
problem: the NEC and containment problems for expressions of the form

(El n E 2 n ... n Ek) u F,

where El,. . . , Ek, F are regular expressions, can be solved in polynomial space. Since these
problems contain the NEC problem for regular expressions as a special case (where k = I
and F - 0), these problems are PSPACE-complete, since the NEC problem for regular
expressions is PSPACE-complete [13].

3 PDL with Interleaving

We review Abrahamsons's [1) definition of PDL with interleaving added as a program con-
structor. We call this logic interleaving PDL to avoid confusion with other definitions of
concurrent PDL in the literature, e.g., (7, 141.

We begin with a set to of atomic formulas which represent propositional variables and
a set to of atomic programs which represent indivisible program steps. Syntactically, if
p and q are formulas and a and b are programs, then p V q and -'p are formulas, (a)p is
a formula meaning "it is possible to run a to reach a state in which p is true," a U b is a
program meaning "run either z or b," a; b is a program meaning "run a followed by b," a* is
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a program meaning "run a any finite number of times," p? is a program meaning "continue
iff p is true," and alb is a program meaning "run a and b concurrently."

A model is a triple M•= (W, 7r, r) where W is a set of states; for each atomic formula p,
ir(p) g W is the set of states in which p is true; and for each atomic program a, r(a) _ WxW
is the set of state transitions of a. 7r is extended to all formulas and r is extended to all
programs. In general, r is a set of computation sequences, i.e., a subset of (W x W)*. To
extend r, the sets r(a U b), r(a; b), r(a*), and r(alb) are obtained from r(a) and T(b) by
union, c( ucatenation, star, and interleaving, respectively. r(p?) is the set of all (u, u) such
that u E ir(p). Note that r(a) can contain computation sequences such as (u, v)(w, z) which
do not make sense if v:0 w and if a is run alone. We must include such sequences since, if a
is interleaved with b, the program b could make the transition from v to w. A computation
sequence a is legal if, whenever (u,v)(w,z) is a subword of o, then v = tw. To extend 7r,
7r(pVq) = 7r(p) Ur(q) and 7r(-'p) = W-ir(p). Finally, ir((a)p) is the set of states u such that
either there exists a state z and a legal computation sequence o E r(a) such that z E 7r(p)
and such that o has the form o = (u, )... (, z), or e E r(a) and u E 7r(p).

A formula is test-free if it contains no occurrence of "?".
A formula Wo is a top-level concurrent formula if each program appearing in W has the form

a, Ia2l ... Iak for some k > 1 where a 1,... , ah are regular programs, i.e., these programs
contain no occurrences of the interleaving operator.

A formula ip is satisfiable if there is a model M and a state u such that u E 7r(W).

Pratt [17] and Harel and Sherman [8] show that the satisfiability problem for PDL
(without interleaving) can be decided in deterministic exponential time even if programs are
described by nondeterministic finite-state automata (NFA's) instead of regular expressions.
By a straightforward cross-product construction (see, e.g., [12, §3]), any regular expression
with interleaving can be converted to an exponentially larger NFA. It follows that the
satisfiability problem for interleaving PDL belongs to 2-EXPTIME (the class of languages
which can be recognized by deterministic Turing machines in time double-exponential in
p(n) for some polynomial p(n)). This gives the upper bound part of the following theorem.

Theorem 3.1 The satisfiability problem for interleaving PDL is complete for 2-EXPTIME,
even when restricted to top-level concurrent formulas which are test-free. There is a constant
c > 0 such that no deterministic TAring machine with time bound 22`1•"1/ can solve this
problem.

Proof. To prove 2-EXPTIME-hardness, we use expressions similar to the ones constructed
in the previous section. But since a model of PDL is a directed graph rather than just a
sequence, we can simulate a 2p(W) space-bounded alternating Turing machine (ATM) rather
than a 2X(,) space-bounded nondeterministic Turing machine. This idea was first used by
Fischer and Ladner [4] (with a linear rather than an exponential space bound), and has been
used in many other papers on the complexity of propositional program logics. Familiarity
with the ATM model is assumed [2]. Recall that every language in 2-EXPTIME is accepted
by some ATM with space bound 2P(O) for some polynomial p(n). Let M be such an ATM. We
can assume that M begins in an existential state, existential and universal states alternate
at each step, and M has exactly two possible moves at each step.

The expression I of the previous section is modified to describe all strings which do not
represent valid computation paths of M on input z. A valid computation path is a sequence



of ID's which begins with the initial ID on input x, ends with an accepting ID, and such
that each ID follows from the previous one by the rules of M. Instead of the single inter-ID
marker #, we use four markers #" for c E {1, 2) and r E {e, ui). The subscript c indicates
whether the first or second choice is taken in going from the ID preceding the marker to
the ID following the marker, and the superscript r indicates whether the ID preceding the
marker is existential or universal.

Therefore, the sequence of marker superscripts in (the representation of) a valid com-
putation path must bc ueueue... (it starts with u because a marker precedes the first ID in
our construction). The expression F for framework errors contains additional expressions
for strings not of this form. Let F' denote F including these additions.

The expression E for computation errors is modified to take into account the subscript c
in the unique occurrence of a #-block between the ID containing bij and the ID containing
b,+Ij. More precisely, for a triple b E A, let Ni(b) (resp., N 2(b)) be the set of triples which
could occur in the next ID at the same position as b, assuming that the first (resp., second)
move is taken. Abbreviating # = {#•, #f, #2, #u} and #c = {#1, #u}, the modified Ek is

E = U U U (2[k]3. D. 2[k]3. #)*
dED bEA cE{1,2}

•(2[k]3 •d - 2[k)3 • b. 2[k]3 • D. 2[k]3 • #c" 2[k]3 • d. 2[k]3 . (A - N,(b)))

•(2[k]3. D. 2[k]3. #)'.

Let E' denote the expression E after these modifications, i.e.,

E' = Eo I . .. I E.-_ I Em.

Now an interleaving PDL formula • is constructed so that V is satisfiable iff M accepts
x. The length of W is O(p(n) log n). The set of atomic programs is the alphabet S used in
E' U F', and there is one atomic formula P. A model of PDL is essentially a directed multi-
graph (i.e., there can be multiple edges between two nodes), where each edge (transition)
is labeled with an element of E, and each node (state) is labeled either P or -'P depending
on whether P is true or false at that state. The graph has a distinguished state u, the state
where V is true. Since all that matters about a model is its reachability structure with
respect to labeled paths, it is useful to imagine that the graph has been "unwcund" into a
directed tree rooted at u with all paths directed away from u. The idea is that the portion
of the tree where P is true should contain an accepting computation tree of M on input z.
That is, (1) if p is a directed path which starts at u and terminates at the point where P
first becomes false, then p should represent a valid computation path of M (more precisely,
the sequence of atomic programs labeling the path p should represent a valid computation
path), and (2) for each universal ID in the computation tree, both successors of this ID
should be in the computation tree.

As usual, let [a]p abbreviate -'(a)--p; the intuitive meaning of [a]p is "all ways of running
a reach a state where p is true."

ip is a conjunction of several components described next. Translations into formal PDL
are also given.
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1. P is true at u.
Translation: P.

2. For every state to reachable from u, it is possible to reach from to a state where P is
false.
Translation: [EJ((.2)-P).
(Note: Using E* to define "reachable", a state is always reachable from itself.)

3. There are no invalid computa.ion paths starting at u. That is, it is impossible to run
E' U F' from u to reach a stat _- where P is false.
Translation: -'(E')-'P A -'(F')-'P.
(Note: We break this formula into a conjunction, one part for E' and one part for F',
to obtain a top-level concurrent formula.)

4. Both possible moves must be taken after every universal ID. That is, for every state
to reachable from u and every c E {1, 2}, if it is possible to run g((#')rn) from to then
it is possible to run 9((#0_c)m) from to.
Translation: AcE(1,2} [E*](((g((#c)¶)) true) --* ((9((#"_c)m")) true)).

Remarks.
(1) By the remark following Theorem 2.1, two atomic programs suffice to prove Theorem 3.1.

(2) The atomic formula P in the construction can be replaced by the formula ((E) true),
which is true at a state to iff there is some transition out of state w. That is, computation
paths terminate at states which have no outgoing transitions. So Theorem 3.1 remains true
for formulas containing no atomic formulas.

(3) It follows from [8] that an upper bound on the complexity of IPDL is deterministic time

22d' for some constant d > 0. There is a gap between this upper bound and the lower
bound of Theorem 3.1.
(4) 2-EXPTIME-completeness holds also for deterministic PDL (DPDL) with interleaving.
In DPDL, models (W, 7r, T) are restricted to those such that, for every atomic program a, if
(u, v) E r(a) and (u, w) E r(a) then v = w. (This does not have to hold for non-atomic a,
however.) The 2-EXPTIME upper bound follows again from [8]. We need only deterministic
atomic programs to prove the lower bound.
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