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ADSTRACT

The modeing of power syatmfs has been primarily driven by the commercial power

utility industry. TMes models wavily ivolve the assumption that system bus voltage and

frequency are constan However, in applications such as shipboard power systems this

infinite bus assumption is "nt valid. Tis thesis investigates the modeling of a synchronous

generoator and various loads in a modular fashion on a finite bus. The simulation presented

allows the in'eom mectn of multiple state-space models via a bus voltage model

The major difficulty encountered in building a model which computes bus voltage at

each time step is that bus voltage is a function of current and current derivative terms.

Bus voltage is also an input to the state equations which produce the current and current

derivatives. This creates an algebraic loop which is a form of implicit differential equation.

A routine has been developed by Linda Petzold of Lawrence Livermore Laboratory

for solving these types of equations. The routine, called DASSL (Differential/Algebraic

System Solver), has been implemented in a pre-release version of the software ACSL

(Advanced Continuous Simulation Language) and has been made available to the Naval

Postgraduate School on a trial basis. An isolated power system is modeled using this

software and the DASSL routine. The system response to several dynamic situations is

studied and the results are presented. Accesion For

NTIS CRA&I
DTIC TAB
Unannounced -
Justification . ...............

By
Distributionf

Availability Codes

Avail and I or
Dist Special

iii



TALE OIF CONTENTS

Pug.

I. INTRODUCTION .................................................................................................... 1

A. BACKGROUND .............C..... . 1

B. THESIS OVERVIEW ................................................................................... 1

1. Synchronous Generator Model .............. ........................ 2

2. Load Models ................................................ ................................ 4

3. Bus Voltage Model ......................................................................... 4

4. Generator Closed Loop Control ........................................................ 4

5. Simulation Softwsre ......................................................................... 4

5. System Model Connection ................................... 5

6. System Model Response and Validation ............................................. 5

7. Conclusions and Future Work ........................................................... 6

1. DEVELOPMENT OF THE SYNCHRONOUS GENERATOR MODEL ............. 7

A. SYNCHRONOUS GENERATOR EQUATIONS IN MACHINE
VARIABLES ...................................ES..................................................... 7

1. Machine Variable Voltage Equations ................................................. 7

2. Machine Variable Torque Equation ................................................. 13

B. SYNCHRONOUS GENERATOR EQUATIONS TRANSFORMED.......... 15

1. Transformed Voltage Equations ..................................................... 16

2. Transformed Torque Equation ........................................................ 19

C. CHOICE OF STATES ............... ......................................... 20

iv



M. DEELJ3PMENIT OF LOAD MODE.S ............................................................. 22

A. THE R-L LOAD MODIL ........................................................................... 22

B. THE INDUCTION MOTOR LOAD MODEL ............................................. 26

1. Voltage Equation Development. ........................................................... 26

2. Torque Equation Deeopment. ............................................................ 30

3. Explicit Form of the Induction Motor Model ................................... 31

IV. THE BUS VOLTAGE MODEL .................................................................... 33

A. INFINITE BUS MODEL ....................................................................... 34

B. PARALLEL LARGE RESISTANCE MODEL ....................................... 34

C. MATHEMATICAL EXPRESSION FOR BUS VOLTAGE .................... 35

D. DASSL BUS VOLTAGE MODEL ........................................................ 41

1. How DASSL Works ....................................................................... 42

2. The Advantage of the DASSL Bus Voltage Model .......................... 44

E. THE BUS VOLTAGE MODEL AND CLOSED LOOP CONTROL ....... 46

F. CHOICE OF BUS VOLTAGE MODEL ................................................. 47

V. SYSTEM MODEL DESCRIPTION ............................................................... 51

A. SYSTEM CLOSED LOOP CONTROL ................................................. 51

1. Field Excitation System Model ......................................................... 51

2. Prime Mover and Speed Governor Model ........................................ 52

B. THE PER-UNIT SYSTEM .................................................................... 53

C. SYSTEM MODEL IMPLEMENTATION IN ACSL ............................... 55

1. Program and Initial Sections ........................................................... 58

2. Dynamic Section .............................................................................. 58

V



VI. SYSTEM RESPONSE AND MODEL VALIDATION ........................................ 62

A. DESCRIFPION OF THE PURDUE MODEL ............................................. 62

B. VALIDATION BY COMPARISON WITH THE PURDUE MODEL ......... 63

C. DASSL MODEL RESPONSE WITH UNBALANCED LOAD .............. 67

1. The Unbalanced Load .................................................................... 68

2. Simulaion Results with Unbalsaced Loading ................................... 69

D. DASSL BASED MODEL FLEXIBILITY ............................................... 72

VII. CONCLUSIONS AND FUTURE WORK .................................................... 73

A. ADVANTAGES OF THE DASSL MODEL .......................................... 73

B. DISADVANTAGES ............................................................................. 73

C. FUTURE WORK .................................................................................. 74

LIST OF REFERENCES ....................................................................................... 76

APPENDIX A: CONVERTING STATE EQUATIONS TO EXPLICIT FORM ........ 77

THE SYNCHRONOUS MACHINE ............................................................. 77

THE INDUCTION MACHINE .................................................................... 78

THE STATE EQUATIONS FORMED EXPLICITLY FOR ACSL ................ 79

APPENDIX B: ACSL CODE ................................................................................ 82

A. BUS VOLTAGE EQUATION MODEL .................................................. 82

B. DASSL BUS VOLTAGE MODEL ........................................................ 84

C. BUS VOLTAGE EQUATION MODEL UNDER CONTROL ................ 86

D. DASSL BUS VOLTAGE MODEL UNDER CONTROL ....................... 88

E. TOTAL SYSTEM MODEL .................................................................... 90

BIBLIOGRAPHY .................................................................................................... 102

INITIAL DISTRIBUTION LIST .............................................................................. 103

vi



L INTRODUCTION

A. BACKGROUND

The modeling of synchronous generators has been prmaly driven by the commercial

power utility industry. These simulations most frequently make the assumption that the

machine to be modeled is connected to a system bus in which voltage magnitude and

frequency are fixed values. This so called "infinite bus" assumption provides good results

for many studies, especially those involving huge power grids. However, in quite a few

applications, such as in shipboard, aircraft and isolated emergency power systems this

assumption is not valid.

For such systems, some loads may be a significant percentage of the generator

capacity. When a large load is started on an isolated generator, neither voltage magnitude

nor frequency remain constant. In these situations the voltage will dip appreciably and

possibly cause other sensitive loads on the system bus to fail.

It is therefore important to be able to model accurately the behavior of a an isolated

power system. The design engineer interested in building the smallest, least expensive

machine that will do the job needs to know how the entire system will behave during

dynamic loading.

B. THESIS OVERVIEW

The most common methods for studying power systems and the interaction between

sources and loads involves use of the infinite bus modeL The interaction between sources

and loads is done by load (power) flow analysis. When a load is changed in such a

simulation the power demand must be satisfied by increasing power supplied by a source.



This approach is fine, however, it still assumes each independent submodel is on an kfinihe

bus. So for example, fluctuations in voltage magnitude and fivquency occurring in one

generator are considered negligible in the overall system.

The primary goal of this study is to develop a system model which allows sources and

loads to be connected to a bus voltage model which accurately reflects the bus voltage

behavior during transients and the effects of the transient bus voltage on the loads and

sources. The approach taken is to develop an overall system model which consists of

accepted accurate stand-alone source and load submodels. These submodels are then tied

together by a bus voltage model In final form, the system model allows the simple

connection of multiple sources and loads.

Figure 1 represents the type of isolated power system studied in this thesis. The

system consists of a gas turbine prime mover, synchronous generator, a system bus and

system loads. Models for each element of the isolated system are presented independently

then all are tied together with closed loop control to produce the system model.

1. Synchronmoi Generator Model

Much work has been done to develop accurate models for rotating electrical

machinery. Krause [Ref. l,pp 211-267] develops a state-space model for a synchronous

machine using the well known Park's transformation [Ref. 2]. Circuit voltage equations

are first developed in the three-phase a-b-c reference frame. The subsequent application of

Park's transformation has the advantage of referencing all state variables to an orthogonal

(q-d-O) reference frame. The reference frame transformation changes time varying winding

inductance values into constants. The state-space model may be developed with either

winding current or magnetic flux linkage as states. The model used in this presentation is

formulated with current states.

2
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2. Load Models

Two load models are presented, a three-phase resistive-inductive (R-L) load and

an induction motor load. These models are developed in a similar manner to the

synchronous generator model. The equations describing load circuit behavior are

transformed into the same orthogonal reference frame as that used for the synchronous

generator. The load model state equations are presented with current states.

3. Bus Voltage Model

By formulating the submodel state equations in terms of current, a bus voltage

model may be developed based on satisfying Kirchoffs Current Law (KCL) at the

common node. Several possible models for the bus voltage are explored. Ultimately, a

routine for solving implicit state equations and algebraic loops will be introduced. This

routine allows a bus voltage model to be developed which supports the goals of

modularity and expandability.

4. Generator Closed Loop Courol

Output voltage magnitude and hequency must be controlled so that bus voltage

will remain within specification. Voltage control is accomplished by a field exciter which

senses generator output terminal voltage and adjusts the field winding excitation voltage

to keep terminal voltage at the desired leveL Frequency control is accomplished by

driving the generator with a prime mover which is under the control of a speed regulating

governor. Models for both regulation systems are presented.

5. Simulation Software

Speed, ease of use, quality of output and special capabilities were considered

when choosing the simulation software. Work was done in the programs MATLAB and

SIMULINK from MathWorks [Ref. 3] and in ACSL (Advanced Continuous Simulation

Language) from Mitchell and Gauthier Associates [Ref. 4]. Both are excellent for

4



modeling systems of linear and non-linear differential equations. However, ACSL was

chosen for the power system simulation work presented here due to the special capabilities

of this package.

A pre-release version of ACSL, level lOF, was provided to the Naval

Postgraduate School on a trial basis. This version of ACSL contains an algorithm for

solving differential algebraic equations (DAEs) which is described in Chapter IV. This

algorithm allows systems of implicit differential equations to be solved. Specifically of use

is the ability to solve implicit systems formed by a system of state equations subject to an

algebraic constraint equation.

5. System Model Connection

The isolated power system simulation is modular in concept. It consists of

several submodels. Each submodeJ is a stand-alone model which is tied into the system by

the bus voltage submodel. The source and load models are well understood and have been

validated extensively by others. The bus voltage model is presented and validated as an

independent model in Chapter IV. After each piece of the system is presented, the total

isolated power system is developed from the available building blocks. The ACSL code

for the system model is described in detail.

6. System Model Response and Validation

After the system is connected and put under closed loop control, it is validated

by comparing it with a finite bus system model developed at Purdue University by Mayer

and Wasynczuk [Ref. 5]. This simulation scenario involves starting three induction

motors on a system bus supplied by a single generator. Plots of model response are

presented and discussed.

Additionally, the R-L model is modified for the case where the resistive part of

the load is unbalanced. The system model is exercised by operating it with an unbalanced

5



loading condition. Plots of the model response to this condition ar preanted and

discussed.

7. Con wuio and Future Work

Finally, conclusions about the usefulness of the finite bus model are presented.

Suggestions for expanding the system model to include winding saturation effects, more

loads and a parallel generator are made. The need for more effort in vadating the

approach is also discussed along with some suggestions on how this could be

accomplished.

6



EL DEVELOPMENT OF THE SYNCHRONOUS GENERATOR MODEL

The process used in developing the model for a synchronous generator is as follows.

First the differential equations describing the circuit behavior of each winding in the

machine are obtained. Unfortunately, because both the current and inductance terms in

the equations vary with time, these equations are complicated. Using Park's

transformation [Ref. 2], the equations describing the machine are changed to an

orthogonal reference frame which has the advantage of making all inductance terms

constant This transformation from machine variables to reference-frame variables, along

with the assumption of a linear relationship between current and flux linkages, allows the

model state equations to be expressed with either current or flux linkages as the states.

For a synchronous generator the orthogonal reference frame used will be the rotor

reference frame.

A. SYNCHRONOUS GENERATOR EQUATIONS IN MACHINE VARIABLES

The equations used to develop the synchronous generator model are derived from the

voltage equations for the windings of a three-phase machine. These equations, which

relate voltage to current and magnetic flux, are not enough to completely describe the

behavior of the machine. Additionally, an equation is needed which relates rotor

rotational speed to torque where electrical torque is described as a function of current or

flux linkage.

1. Machine Variable Voltage Equations

Figure 2 represents a two-pole, three-phase, salient-pole synchronous generator.

The as, bs, and cs windings are on the stator and spaced 1200 apart. These stator windings

are identical, sinusoidally distributed and have N. equivalent turns. On the rotor, kq and

kd are damper windings while the fd winding is used for applying the field excitation. The

7



rotor windings are situated in an orthogonal q-d refeence frume. Rotor windings are also

sinusoidally distributed but each may have a different number of equivalent turns; N4, NU

and Nfj respectively. Note that the current direction is out of the stator windings

(generator convention). The series resistive-inductive pair in each stator and rotor circuit

represents the electrical characteristic of each winding. The rotor angular position and

speed are represented by O, and o•, respectively.

bs axi

"aa

fdf

+

'Cl

F~gu 2. Two-pole, three-phase, salient-pole synchronous; machine
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By summing voltages around each circuit loop, equations (1) through (6) are

obtained. Equations (1), (2) and (3) represent the stator windings while (4), (5) and (6)

model the rotor circuits. Voltage in the inductive elements is expressed by Faraday's law

where the induced voltage equals the rate of change of the flux linkages. The damper

windings are short circuited at the ends so that v14 and vtd equal zero.

va = -roi. + (1)
dt

Vk = -rb,i1 + Aj. (2)
dt

v. =-ri + A. (3)
dt

dt

Vfi = rfdisd +--•-( (5)

0 = ruiu + AM (6)
dt

In order to use equations (1) through (6) to develop a state-space model in

terms of current, the flux linkage derivative terms must be looked at in more detail. For a

linear magnetic system the flux linkage may be related to current via the relationship

X. = Li (7)

where

[ X.t Xbg X. X krXd ~ (8)

/=[i. .i. i, i. (9)

9



The terms of the matnix L reprsent the mutual and self inductance tms

relating flux linkage to currents. In general L* would relate x-winding flux to z-windm g

current. So, for example, the expanded expression for the w-winding flux linkge Js

written as

X = L. 1 + Lbib + Li,, + L.4a + Lwb + L.ihd (10)

where, in general, both inductance and current are functions of time. Using equation (7

the inductance-current product may be substituted for flux linkage in equations (1)

through (6).

Because access to the rotor windings is difficult, the machine parameters

(winding resistance, inductances, voltages etc.) are most commonly referred to the stator.

Referring values from the rotor to the stator is done in a manner similar to referring

variables from the primary to the secondary of a transformer (via the turns ratio). Krause

[Ref. h:pp. 167] uses a prime to denote referred variables. In this derivation all variables

may be assumed to be referred to the stator. In particular the inductance matrix which

follows as part of the compact voltage equations is written in referred quantities.

With flux linkage expressed in terms of currents and winding inductance, a

compact vector-matrix form of the voltage equations may now be written as

Ez [ )[ j 4(t) ]L ] (l-,1)[

where the operator p represents the derivative with respect to time, d/. With the

equations expressed in the machine reference frame the derivative operator must be

10



applied to the inductance-curret product, sinme both may vary with me. The COSUt,
is a function of referring varabkLe

In equation (11) the inductmce matrix is made up of four malr maice. The

L, matrix relates stator winding flux linkage to stator current. The Lr matrix elate rotor

winding flux linkage to rotor current. The L. matrix relates rotor windings to stator

windings. These matrices have the following form:

1 1!:
+LA- Las cs20, -. ILA - L, an2(O, -) L. - La os 2(B, + -)

LA-•• , cms2(O, _.) L%+LLA- cm2(0,-+ - LA- acos2(0,+x)

•L.A-4 2(O,+.]3 -LL cos s2(0,+x) L+LA 4cam2(9,+

(12)

,cos, , L, sin0, 4 ,sin0,

L L. C i(,--L) L., sin(e,- .) Ln Or 2e-- 2: (13)
3 F 3 F 3L. cos(O, + L•-) L., sin (o, + L.) L., sin(e,+ L-)

L3 3 3

Lr= 0 0W +] (14)

The inductance terms in matrices (12), (13) and (14) are either self or mutual

inductances. Elements on the main diagonal of the L. and Lr matrices are self inductances

and are made up of leakage and magnetizing inductance parts (Lk + L.). Off diagonal

elements of L, and L4 and all elements of L. represent mutual inductances and therefore

11



am asumed to have no lesae inductance put. The variables .and L reptesent the

total maguetizing inductance in the q ad d am respectively.

Because the rotor widng are wound on an orthogonal s of axes, the mms

of 4L are easily deternined. Orthogonal magnetic lines o flux do not combine so

orthogonal windings have zero mutual inductance. The mutual inductance for windings

which share a common axis is computed as for a ansfarmer which is die product of the

number of turns divided by the common reluctance.

The situation is more complicated for the L. and L. matrices The inductane

terms depend on rotor position. Because it will be shown that these matrices ar greatly

simplified by the Park's transformation, a detailed explanaion of these matrix elements will

not be made here. Figure 3 demonstrates how, in the case of a salient-pole machine,

rotor position (which changes the size of the air gap) will have an impact on the reluctance

path and therefore on the inductance.

. -.-. ''.'-•-''...-i. .. flm - ~ >- -. -... •'-..-.- .

- . -,__......................-...............• ... '.

113mw. 3. Rotor position influene on winding ilndutoem
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For the as winding, minimum reluctance and maximum inductance (LA + L8)

occurs when e, equals 900 and 2700 while maximum reluctance and minimum inductance

(LA-L8)isexperiencedat0*and 1800. For a machine with a round rotorLBiszero and

the L. terms are all constant. A complew description of the development of the e,

dependent matrix terms may be found in Krause [Ref. l:pp 211-227).

2. Machine Variable Torque Equation

The torque equation is developed based on the assumption of linearity in the X,-i

relationship of an electromagnetic system. This allows the energy stored (W) in the

electromagnetic system to be expressed by

w 1Li 2  (15)
2

and in matrix-vector form

W = irLi (16)2- -

Energy or work is also the product of force and displacement. Using this basic

definition yields

W=79

T =- (17)ae

T = l .TL.)
132

13



where T is torque and S is angular dwsacement. From equation (17) Kmue (Ref. :p

2171 goes on to fully develop the electrical torque equation in the machine refrn=e frume

for a P-pole generator

T ()o- =(f)1-Ia[L.]. (

The electrical torque, T., is positive for generawr action when the stator current flows out

of the stator terminals.

One more diff•eentia equation is needed to develop a state-space model. Each

voltage equation is a function of currents, current derivatives and rotor position. Rotor

position must be related to the system states. The second derivative of rotor position may

be related to torque which in turn is a function of the system states. The final differential

equation is obtained by writing the relationship for the mechanical system with friction,

windage and other mechanical losses neglected

/p0)=-- , )(T' - To (19)

where J is the inertia, P is number of poles and T, is the prime mover input torque. It can

be seen that when input torque is greater than the produced electrical torque the rotor

acceleration is positive and the machine speeds up. A large load will cause current to rise

and from equation (18) electrical torque will also rise resulting in deceleration of the

machine.

14



B. SYNCHRONOUS GENERATOR EQUATIONS TRANSFORMED

For the salient pole synchronous generator in the machine reference frame, most

inductance terms are highly dependent on 0, the rotor angle, which in turn is dependent

on time. This mak the flux linkage derivative term a complicated chain rule expression

(inductance and current are both time varying). If, howe'. .r, the terms of the inductance

matrix could be transformed into constants, the flux linkage derivative could be simply

expressed as

A• = LP-i (20)

The voltage equations may be rewritten in compact form by assuming that such a

transformation is possible and making the substitution suggested by equation (20). This

yields

v_ ri + Lpi (21)

Equation (21) then becomes the basis for a set of state equations describing the behavior

of the synchronous generator. The relatively simple form of equation (21) is not possible

when the voltage equations are expressed in the machine reference frame, in other words,

with stator voltages, currents and inductances expressed in the a-b-c reference frame.

Fortunately R. H. Park developed a transformation making equation (21) possible.

The Park's transformation eliminates time varying inductance terms and introduces a

reference frame speed term, (o, which may be chosen to be rotor speed. Thus the Park's

equations put the voltage equations in the orthogonal q-d-O reference frame of the rotor.

15



1. Traunfbrmed Voltage Equmatom

The transformation changes variables from the a-b-c frame to the q-d-O frame of

reference. For an arbitrary vector variable f, reprsenting voltage or current, the

transformation matrix K' operates as follows

Looo = K? L_. (22)

where the transformation matrix is

Cos 0 , c O(, - 2) cos(e, + 2)'
3 3

2 2 2

and rotor position is defined as

0, = .•), (4A + O,(o) (24)

The transformation is now applied to the voltage equations (12) with the

following result:

[[ ][-i0,] [KLS (: )pL (25)

where the transformation applied to r. yields

16



Krr.(K:)"• = K'rI(K:)- ) rKI(K ,)- = vI = r. (26)

Because it has equal values on the main diagonal, r. is not Alered

Multiplying out the terms of the idctance matrix gives surprising results. By

carefully following the ruies of matrix mutiplication, pplying the derivative operator in

the proper sequence and using the correct igionomei identities the voltage equations

may now be expressed as

VV = -(r, + pL,)i, - LdwC,i + pL.,i4 + L.w•,j + Lwo,iw (27)

v. = Lo)ýi• -(rQ + pLd)i* - l•4 •q + + + pldim (28)

Vo= = -(r. + pl)io, (29)

0 =-pL.-, + (rk, + pL 4 )iq (30)

vf=d -p L i + (Ld4 + PL. -if + P iAZ (31)

0 =-pL.i, + pL4i0 + (rW + pL.4 )i4 (32)

where all inductance terms are constants and the following definitions apply

L1 = L,+L.1 (33)

S= •, + Ld (34)

S= L r + L-9 (35)

Lf = LW + Ld (36)

/. =f L/ +L., (37)

17



The voltage equations may be used in the form of equations (27) through (32),

but it is more common to see the inductances expesed as zeactances. This is

accomplished by using the relationship wbL = X. e inductamce is multiplied by a base

angular frequency (often 60 Hz). Machine parameters are usuaily provided in ohms.

Making this change and putting the state equations in matrix form gives

v,, -r0 0 0 o 0 0o !io "OzL0 0 -x, o 00,jV
Ob 401, O

V& 0 -, 0 0 0 0 Lb XL - X, 0 0 D*,. o -• o o o • -a- o o-X" 0 0 '•

VOS 0 0 -r 0 0 0 if, Ob 04o
+ 0 0 0 0 0 0 +

0 0 0 O 0 0 i 0 0 0 0 0 0 + jV

0fd 0 0 0 0 X . . 00i 0 0 0 0 0 0 .m,•.

L0J L0 0 0 0 0~ r, - 0 0 0 0 0
-x, ox

:-L 0 0 X-1 0 0
(kb pb

0 0 ZAIJL 0 0 0

0 0 0 o o 0
0 -( x,, 2) 0df 0 ONPi

ob fflmb Pi.J

0 X-AI 0 XI K
L Wb Wb

(38)

The right hand side of equation (38) is divided into three parts

v = AL-' + A4oi + Bpi (39)
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a linear part (ALj, a nonlinear part (ANOID and a current derivative parL This type of

equation is known as an implicit differential equation. Ihis is because a particular state

equation, for example equation (27)

v = -(r + pL)i', - LAo,i' + pL.iW + LWO),iN + LCo,i,

cannot be written explicitly. That is with one state derivative isolated on the left and a

combination of states only on the right. This is a drawback to this development since most

simulation software prefers the explicit form for the differential equations of the model

2. Transformed Torque Equation

The complete form of the final state equation takes shape in the transformed

reference frame. The dependence on angular displacement has been eliminated and

replaced with a speed term (o. The torque-acceleration equation will provide this final

equation. Krause [ Ref. l:p 2271 substitutes the reference frame transformation into

equation (18)

T, = (E) [(Kr _o,]{ L aP ao., -o,( + , [T

(40)

and after considerable work arrives at

3PT = - I Xd (-i, + id + iW)i. - X.(-ig, + i ) i,] (41)
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Now when equation (19) is used for the final state equation, the speed derivative can be

expressed as a function of the other states.

C. CHOICE OF STATES

Most developments of the Park's equations arrive at a set of state equations

expressed in terms of magnetic flux linkage. Krause [Ref. 2:pp. 177], Anderson [Ref.

6:pp. 85-88] and many others express a preference for the flux linkage expressions over

the current expressions because they have explicit form. The implicit set of equations

requires that a matrix inversion be performed or that some sophisticated, and often slow,

routine be used to solve the problem. The matrix inversion often involves a poorly

conditioned matrix and methods such as LU decomposition may introduce significant

error.

Sources and loads on a common system bus do not sLare flux linkage but do share

currents (and therefore current derivatives). Because the goal here is to develop a model

which allows an entire power system to be built up in a modular fashion, the system

submodels will be expressed in terms of current. Also, intuitively, bus voltage must have

some functional relationship to the bus current. Solution of the finite bus problem relies

on choosing to express syttem state equations in terms of current.

In order to put the system in explicit form, equation (39) is manipulated to isolate the

state derivative on the left hand side of the equation

pi = V(-AL)i + V(-AN)(Ori + V. (42)

where V = B-1. This involves the matrix inversion mentioned above and therefore the

possibility of error.
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In order to minimize the possibility of error, the B matrix was inverted symbolically

so that the matrix terms of equation (42) could be expressed as functions of the given

machine parameters. MATHCAD 4.0 [Ref. 7] was used to perform the matrix inversion

and surprisingly the terms were not terribly unwieldy. Appendix A contains the

MATHCAD output showing the symbolically inverted matrix. These results were then

used to write the final form of the state equations for the simulation. The explicit form of

the system state equations may be seen in ACSL simulation code of Appendix B and are

described in Chapter VL
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lI. DEVELOPMENT OF LOAD MODMLS

The next step in the process of modeling a ±inile bus power system involves modeling

the system loads. In order to have a system simulation in which loads and sources can be

put together in a modular fashion, the load model equations are developed with current

states.

Two load models are looked at, a simple R-L load and an induction motor. The final

simulation allows for either type load to be connected to the bus alone or for both type

loads to be connected in parallel

The choice of load model was motivated by the fact that even in isolated systems,

such as a shipboard system, the system load can be looked at as a nearly constant power

factor load most of the time. An R-L load model, allowing for the time varying of its

resistive and reactive parts, adequately simulates many loading conditions.

The induction motor is a very common large load onboard ship. Fire pumps,

hydraulic pumps and large ventilation fans are some of the uses for induction motors. For

this reason an induction motor model was also chosen for a system load.

A. THE R-L LOAD MODEL

The three-phase R-L load is represented by Figure 4. The diagram may represent a

balanced or unbalanced system. That is the resistance and inductance of each phase may

or may not be equal. In practice considerable effort is made to balance the system load,

however, power systems are frequently subjected to unbalanced loading conditions. The

model will be developed for a balanced load. Methods to handle the unbalanced case will

be discussed in Chapter VL
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O +

S+

Figure 4. Three-phm R-L droilt.

The mathematical development for the load paralDs the generator model

development. First the voltage equations are written down as

vW, = r0. + Ad, (43)

Vb, = 4 + AM(44)

VcS = rk + Ad (45)

or in matrix form as

= rcik, + L+pi, (46)

where the balanced resistance matrix is
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r!oo1
!= r (47)

.0 0 S

and the balmaed inducanuc mMix i

L 0 1, (48)

If the mutual inductance between phases is ammed neglipgie the iductanoe matrix has

terms only on the main diagonaL It is a fairly simple manetr to include off-diagonal

(mutual inductance) terms since the marix sAMl will have no dime dependent terms. Note

also that the derivaive operao in (45) applies only to the current since there ar no time

varyingarms in L

Next the load must be convened to the same reference frame (q-d-O) as the generator

model The same -ranFormation used in equation (25) is applied to the R-L load

equations. These equations may now be written as

y.•o = r.•o, + Kr[Ip(Ks 1)- 1.•oJ (49)

Since both the transformation matrix and current vary with time the product rule for

differentation yields

Zoo, = K11(K.,)-'1 -oj + (KsLp(KT)-'4jq0o, + KLr(K;)-4p ,,o, (50)

Using the sam approach as (26), the first and t•hd tem on the right hand side are emily

obtained. The second term iilustrates how the speed tam was introduced in equations
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(27) through (32). 1 operao is apIed to die rmfn -i maix awmp with the

fotlowing result

CosI -ora O, co, 1, 0

(51)

then

KoLO, _( -) 1' 0 - L , - 0 (1)
co( ) hsin(O, +-) cos(1, . 3)o

3 Co (03 3 ) 3

Fimnay, afte substituting reactance for indwuctnc, the stat equations for the load in q-d-O

reference may be written in expanded form as

vf. = Ili#, + W, -X I&v + -x, Piql (53)
(Db o04

vds = -O)r -=Li#4- + rAg + -X Pi v (54)
(Ob (Ob

X (51)

vo, = r0io6 + I Al

Equations (53) through (55) represent an explicit form Of the load model state

equations. Thes equations will easiy "plug in" to the final system model.
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B. THE INDUCTION MOTOR LOAD MODEL

Unlike the simple R-L load, the induction motor model does not result in a set of

state equations which are explicit in current states. The induction motor model

development is somewhat like the synchronous machine modeL The development here

will not be as detailed as the synchronous machine model was. However, key differences

in the equations based on machine geomety and operating theory will be explaid before

the final set of equations is presented.

1. Voltage Equation Devlopmnt

Figure 5 represents the two-pole, three-phase, induction motor load. The stator

windings of this machine are identical, sinusoidally distributed and spaced 1200 apart. As

for the synchronous machine, these windings are designated as, bs and cs each having N,

equivalent turns. The rotor arrangement, however, is considerably different from the

synchronous machine configuration.

For the model development, rotor windings are considered to be identical

sinusoidally distributed windings spaced 1200 apart on the rotor with N, equivalent turns.

The rotor windings are designated ar, br and cr. The rotor displacement and speed are

represented by Orm and ca. respectively. The rotor windings are all shorted, although

machines are available which allow the rotor windings to be excited externally.

The assumptions are not entirely valid because many, if not most, induction

motors are of the squirrel-cage variety. In this type of machine the rotor windings consist

of metal bars laid into the rotor which are shorted at the ends. Krause points out that in

most cases uniformly distributed rotor bars are adequately described by the sinusoidal

assumption [Ref. h:p 167).

One obvious difference in the induction motor geometry from that of the

synchronous machine is the shape of the rotor. Because the rotor is round, none of the
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terms of the s3taor-stator idWuctane matrix depend on O,0. The only rotor position

dependence is seen in the inductance rnms relating smt to rotor windingi Note that the

subscript for rotor position and speed is rm to differentiMe it from the synchronous

machine rotor speed, O,..

bsa is

br dud as
'v v ar ald

Das axi

cr am

ib2

v i'br/'

Ycs

'aas

IFIgure S. Two-pole, three-phase, Induction motor.
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PufeunIs- a Kkmchfs Voltage Law (KVL) -u- ao d eh loop alsm the

volbpequatioms to bew rimem in aomp fnm

[% 0 1" ]) + P([CLm L. ii)(6

where ali variabes are referred to the stawo via the turns ratio. The zeo element of the

voltage vector are due to the fact that the rotor windings are shoted on the ends.

"Me inductance mamo is ume up of una matrices. In the expressions below,

the leakage inductances are I and 4 for the stator and rotor windings respectively. With

all variabies refefred to the stator windings, the only anawizing inductance rm

appearing m the rmces is 4w (the stator magedum inductance). The matrices consist

of

Lb+LMd 2 LM -IL.

= Li+1i (57)

1 1

L, •. L + ., -. 5

11
Lr M - LMp Lb , (58)

2 2
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Cos em cos(OM +2L 000
3 3

L1, = L. cos(eOa -- 2x,, Co M ccO(8, +1-x) (59)
3 3

Cos (I9,M+A! Cos( ) Cos 0M
3 3

The voltage equations must be transformed to the orthogonal reference frame.

Applying the transformation matrix, Kr, results in

[0 . 0 ][4ioa~] +P Ks%. (K;)-l K;L. (Ky )'ý i, 0,[4o0] [= r

r, JLgo (L.(K')-' KL ' i (60)

and after performing the multiplication and making the reactance for inductance

substitution, the equations, in the separated form of equation (38) become

r00 0 0 0 _ 0 0 -oA 0
4- ' i b Mb 4

V& 0 r, 0 0 0 0 id, 0 0 SAX 0 0,da

ooor,0 oo , 0 0 0 0 0 0/' i

0 0 0 0 r,0 0 iW. 0-- x- o 0 0 o +0

0 0 0 0 0 0o 1 o o 1°r

0w~ 0 0 0X 0 0

1b 0, j •L 0 0 0 0 0 oj

x-A- o x--o o . oo 0 L 0 0 0 0
o A.. 0X 0 ~~(1
0 0 0L 0 0 0 .Ao,

Scb

o 0 0 0 0 A O
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where the foAowhI insa apply W

XM - MIA. (62)

x. M 4 ,(4 + 1,,,) (63)

x, = ,(DIA + 1,.) (64)

mW = (0, - MM) (65)

It is interesting to note dat the speed team dee e when the tansfomtion is

applied to the 4r matrix (ws), is diffence between the referme framn speed

(o,)and the motors rotor speed(com). The reference franc speed usually chosen for

induction motor simulation is the bus voltae electrical anulr fiquency. For the system

model being developed here, electrical frequency is defined by the rotor speed of the

synchronous generator. This speed difference term, known as slip speed, is basic to the

operation of the induction motor. lTe rotor currents will be zero at steady state unless the

reference speed and rotor speed are unequal. Rotor current will be shown necessary to

produce torque in the next section.

One more equation is needed to complete the state-space model. As was the

case for the synchronous machine modeL the speed term is related to the other states via

the torque equation.

2. Torque Equati Dodopmmt

Using the argument based on energy stored in an electromagnetic system the

electrical torque developed by an induction motor can be shown to be

31 Le? (66)
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for a P-pole motor [Ref. l:pp 169-170). Fquation (66) does not involve L, or L because

only the L., matrix is dependent on 0.. This equation shows that torque will be zero

when rotor current is zero.

Application of the transformation matrix to (66) yields

T.= (P)[(K:)-44#o, ]4(L=.KI) l

T (67)

which in terms of currents may be expressed as

T7 =(•"j = PX (iqv id,- Wiai,) (68)

with T, positive for motor action. With an expression for torque as a function of current

states the final state equation may now be written.

The friction and windage losses are once again neglected and the differential

equation for the mechanical system is written down. In the case of a motor, electrical

torque will accelerate the rotor while applied load torque (TI) will slow the rotor down.

The equation describing this is

S(69)

where J, is the inertia of the motor's rotor and P is the number of poles.

3. Explicit Form of the Induction Motor Model

The voltage equations (61) may be manipulated in the same manner as those for

the synchronous machine in order to put them in explicit form. MATHCAD was again
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used to symbolcally invert the matrix Lsocaed with the sate derivaives 1he result of

the matrix inversion is contained in Appendix A and the full form of the state equation

may be seen in the ACSL code of Appendix B and are described in Chapw VL
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IV. THE BUS VOLTAGE MODEL

The next step in building a total system model based on Figure I involves connecting

the source model with the load model (or load models in parallel). The physical entity

which joins load and source is the system bus. Figure 6 is a block diagram of the system

to be modeled without the field excitation or speed regulator loops closed.

CMFP Bus Motor

SMoeed
toato

(eharkcal R-L Lmad,,aPII) M MOMe

FIgure 6. Isolated power system block diagram.

The source and load models have been discussed in some detail, now a model for the

system bus voltage must be developed. The simplest approach, and the approach most

frequently taken, is to assume the bus voltage is of fixed magnitude and frequency. This is

the so called infinite bus assumption.

Another method of modeling the bus voltage is to attempt to develop a dynamic

mathematical expression for bus voltage. The difficulty with this approach is that the

previously mentioned algebraic loop problem must be avoided. As a practical matter, the

simulation code cannot use bus voltage to solve for the current derivative terms if bus

voltage is described as a function of those current derivatives.
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Two methods ate presented for dealing with the algebraic loop. The first uses

algebraic manipulation to eliminate current derivative terms from the equation describing

bus voltage. The second method involves treating the total system as a large implicit

model by using the DASSL algorithm [Ref. 81.

A. INFINITE BUS MODEL

Use of the infinite bus model greatly simplifies the power system simulation.

Anderson [Ref. 2:p. 26] notes, "A major bus of a power system of a very large capacity

compared to the rating of the machine under consideration is approximately an infinite

bus". Simulations of this type have been done extensively and are well understood. The

generator and load models presented in Chapter H and M] have been validated as infinite

buL models. Park [Ref. 2], Krause [Ref. 1], Anderson [Ref. 6] and many others have

demonswated the validity of these models with both flux linkage and current states.

However, for rease,, previously mentioned, the finite bus model will not be used for the

isolated power system.

B. PARALLEL LARGE RESISTANCE MODEL

Another method of modeling bus voltage so that it may be used as a varying input to

all the system submodels is to connect a large parallel resistance on the bus. Figure 7

shows this conceptually. The use of a very large resistance allows source current and load

current to be approximately equal. The bus voltage may be computed using Ohm's law

and then fed back as an input to the load and source models. This approach eliminates

voltage dependence on the current derivative but does not accurately model the system.
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Additionally, before any other computational errors are accounted for, some accuracy

is sacrificed because a small current is bled off by the resistor. While this small current

may not be significant in many applications, this solution method is not as satisfying as the

methods which follow.

fSynbroaos
ieneozar Lor

:Wpu to mome rLwrit~

Figure 7. Paraflel resistor bus voltage modeL

C. MATHEMATICAL EXPRESSION FOR BUS VOLTAGE

One satisfying method of solving the bus voltage model dilemma is to develop a

mathematical expression based on well understood and accepted theory. At the node

connecting load and source the sum of the currents is zero by Kirchoffs Current Law

(KCL). It also follows, because differentiation is a linear operation, that the sum of

current derivatives is zero.

The algebraic loop difficulty is introduced when current derivative terms show up in

the mathematical expression for bus voltage. This is because bus voltage is an input to the

equations from which current derivatives are computed. Most simulation software will fail

when algebraic loops are encountered. This problem can be addressed by finding a way to

eliminate the current derivatives from the bus voltage equation.
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In order to demonstrate this approach, a simplified system will be examined. Figure 8

represents a circuit containing a voltage source, V,, and passive elements LI, L2, R, and R2.

A single current, i,, flows in the circuit and the differential equation describing the system

is

dfiV I,( + 1-2)d! + ( R + R2) is
dt (70)

Later in the chapter this circuit will be placed under closed loop control. For control

system work, the s-domain transfer function form of the system equation is

I'(s) 1
V,(s) (LI + 4)s + (R1 + R2) (71)

L, R, L2

Vi,

Figure 8. Simple circuit to demonstrate bus voltage equation representation.

Once the current is known it is possible to compute the dynamic voltage behavior at

the node. This voltage, V,, is the voltage appearing across the elements L2 and R2. The

differential equation for this quantity is
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dt (72)

The transfer function from current to node voltage is

Va(s) = L-s + R2 (73)

I(s)

and the transfer function relating source voltage to node voltage may now be written as

the product of (71) and (73)

VS(S) ,(s) = Va s) 4 + R2

ls(s) Vs(s) Vs(s) (4 + LO)s + ( + R2 ) (74)

The transfer function representation of the system for node voltage given source

voltage has no delay (the order of the numerator is not smaller than the order of the

denominator). This is the way the algebraic loop phenomenon manifests itself in the s-

domain. Node voltage can not be properly fed back to contribute to the source voltage

without adding a controller delay. As an open loop transfer function, equation (74) may

be simulated in many software packages. The system current and node voltage may also

be computed using equations (70) and (72).

The ultimate goal of the system simulation being developed here is to be able to take

independent submodels and tie them together with a bus voltage model This modular

approach has the advantage of not requiring the entire model to be redeveloped if one of

the sources or loads changes. It is not desirable in complicated systems to develop a new

system model each time a submodel changes. Figure 9 shows how the basic circuit of
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Figure 8 may be brake. in two pices source and load. to demonuamaa die amoder

42
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FIgwre 9. Dividing dk syst Into submodek .

The equations describing each submodel may then be obtained ineedently. For

the source submodel

A __.4 + (s j)(75)

and for the load submodel

p 2 - i2 + ( (76)
L2 L2

The submodels are accurate and it is easy to see that if terminal (bus) voltage, V, is

a freed value (infinite bus) both equations are easily solved. However, a solution which

models the source-load ineracdon and the terminal voltage dynamic behavior is desired.

In order to do this, terminal voltage must be solved at each time step of the simulation.
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The terminal voltage is then fed without delay to the set of equations describing source

and load. The previously derived expression for node voltage, equation (72), can not be

used. A current derivative term appears in this expression which will cause an algebraic

loop error.

One possible solution is to develop an expression which eliminates the derivative

terms. Based on KCL at the connecting node the current derivatives may be set equal.

The resulting equation for terminal voltage has no derivative terms

This allows V, to be solved at each time step of the simulation and then fed into the

submodel equations. The system of Figures 8 and 9 was modeled in ACSL. The model

was formulated using both the single system approach and the modular system approach.

Appendix B contains the ACSL code used for this simulation. The model parameters used

were

R-1.0i R 2 = 5.0 l

4 =0.6H L 2 = 0.2H

and the source voltage was a .5 duty cycle square wave pulse train with magnitude equal

to 1.0 and a period of 2.5 seconds.

Figure 10 compares the circuit response using the single loop model with the

response obtained from the submodel approach. The single loop solution for voltage,

VNODE, is computed from equation (72) after the differential equation for current (70) is

solved. The plot labeled VT is the solution for the terminal voltage using the
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sbo a d eation (). A volage is compuoed at ech time step then fed

as a input to the soure ad load submodel equations (75) amd (76). "rme diffmuc

between the two solution methods s DELV.

Comprison of the current solution in each submodel is abo simgificant. Idealy, the

two currens will be equal since the submodels share a common node. DELI is the

difference between s, and 12 and DELID is the variation between pi, and A4. Also plotted

is il, representing current flowing in the system.

Figure 10 dmonstras that the bus voltage equain submodel yields good results

The magnitude of error in voltage and current is extmely mall and this approach

achieves the desired modularity of the system model. There are, however, some

disadvantages to this approach.

The current error variation (DELI), although small, is still growing at the end of the

run. This is due to the formulation of the bus voltage equation. The current derivatives

are set equal but nothing in the equation forces the currents to stay together.

Another problem is that the bus voltage equation is not simple for complex systems.

The equations for the synchronous generator with an R-L load are quite complicated and

with an induction motor load are mote so. This approach also requires that the bus

voltage model be redeveloped for different source and load submodels. The addition of

submodels in parallel on the bus creates difficulties for the same reasons as just mentioned

for complex systems.

D. DASSL BUS VOLTAGE MODEL

In order to have a system model which is truly modular, a better solution than the bus

voltage equation must be found. The requirement to find a new and often complicated

expression for the bus voltage each time a submodel is altered becomes extremely
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uiwW* Wdy Mwnoaaai previonsly mentioned DASSL algorithmn provides a more

satifacory solution to the problem.

1. How DASSL Woits

lhw basic idea of the DASSL routine is to replace the derivative in the implicit

equation with a differem approma and thn solve, using Newto's method, for the

derivative at the current time step. It has been impemented in the comuAeay available

simulation package ACSL The class of problem DASSL is designed to solve ate known

as differential algebraic equations (DAE). DA~s include systems of implici diffnal

equations and syste• s of equations conaining algebraic lop

To show how the routine works the loud-source-bus problem will be set up as a

DAE or implicit equation. One way to wride the general DAB [Ref. 9:p. 41] which

applies to the case of the load, source and bus voltage models is to represent the load and

source model equations as a system of differential equations of the form

Ai = 1(L,2, t) (78)

coupled to an algebraic constraint

Q A Q1(L,x,t) (79)

If it is then assumed that voltage is some unknown function of the state and state

deri,,.ive vectors

X = h(pi, j4 t) (80)
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the system equations may be rpresucad in a fully uilicit form by substituting for voltage

in equations (78) and (79). Implict equaions of this type have been solved most

successfully using backward Niation formula (BD) Vef. 9*.p.42].

The simplest BDF method involves replacing the derivative with a first order

backwards difference. DASSL extends the idea of the BDF. Rather than using the first

order difference, the derivative is approximated by the A' order difference and k ranges

from one to five. Order and step siz are automaticaLly selected based on the behavior of

the solution. Because of the flexibility of the routine, DASSL has been shown to be highly

stable and robust [Ref. 9:pp. 115-116].

Two criteria must be met to successfully solve a DAE system. The system must

be solvable and implementable [Ref. 9:p. 16]. Solvable means that the states are

differentiable over the time interval of interest. The solution must be smooth enough to

make this possible. Implementable refers to the solution technique. The method used to

solve the nonlinear system of equations must provide a solution at each time step. In the

case at hand, as is often done, the solvability will be assumed. The current states are

relatively smooth functions. The implementability of the DASSL routine is also assumed.

The routine as implemented in ACSL may be used to solve implicit differential

equations, algebraic loops and systems of differential equations with an algebraic

constraint. Conceptually the bus voltage problem may be looked at as a system of state

equations with an algebraic constraint based on Kirchoffs Current Law. In order to solve

for a node voltage in ACSL using the implicit equation solver the constraint equation must

first be defined. Based on KCL at a connecting node, a residual, r, may be defined

r I Pik +Z (81)
t k
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where it is desired to kep the residual at or near zero. The node voltage, which is

assumed implicitly related to this KCL equation, may then be found by using the DASSL

implicit solver. The operator in ACSL is IMPOW, and the syntax is

V,& = IMPLC(r, V.*.,) (82)

where V,,k is the node voltage initial condition [Ref. 10:pp. 1-41.

2. The Advantage of the DASSL Be Voltge Model

The fact that the constraint equation (81) for the system is simple regardless of

the complexity of subsystems connected at the node of interest gives the DASSL bus

voltage model a great advantage over the mathematical model presented in the previous

section. It is a simple matter to add or remove loads and sources from the larger system

modeL No reformation of the bus voltage model is required. Additionally, the constraint

equation keeps the error between submodel currents close to zero. Even if a transient

occurs which makes the error grow momentarily, the implicit solver adjusts voltage to

move the current error back towards zero.

The simple system of figure 9 was simulated using the implicit feature of ACSL.

The same model parameters were used as in the simulation results presented in figure 10.

The code used may be seen in Appendix B. Figure 11 contains the simulation results using

the DASSL routine. As with the results of the bus voltage equation submodel, the

DASSL bus voltage submodel is in excellent agreement with the single loop solution.

Notice the improvement in current derivative error and current error, DELID and DELI

respectively.
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E. THE BUS VOLTAGE MODEL AND CLOSED LOOP CONTROL

One final ch required of the bus voltage model is that its output be able to

be fed to a bus voltage control circuiL The power system model which is being developed

here requires that field excitation for the generator be controlled in order to maintain the

bus voltage at or near specification. To accomplish this, the bus voltage submodel must

accurately track the terminal voltage behavior during transients so that the control circuit

submodel responds correctly.

In order to demonstrate the behavior of the bus voltage submodel, the source-load

system of Figure 9 will again be used. The transfer function relating source voltage to

terminal voltage was developed and given as equation (74). Using this transfer function

form of the system model a control system may be developed. In this case a cascade

controller was designed using the root locus technique which produced a highly damped

response with a fast settling time and small steady state error. The transfer function

design is shown in Figure 12.

Voltage Reference (+0 2(+5 wV
2, (s + .O1 (S + io0) (s+ 7.5)CI

Gi Cascade Coto H yt Mode/

Figure 12. Transfer function form of the simple source-load system with bus voltage
control

The closed loop response was modeled three ways using ACSL The transfer

function form of the system model was compared with a closed loop form using both the
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bus voltage equation and the DASSL routine. In the simulation runs, system parameters

were initially set to the values given on page 39. The voltage reference was then step

changed from zero to one. All forms of the system model produced a similar step

response. Next the load parameters were step changed to R2 = 0.01 and L2 = 0.001. The

two submodel forms of the system exhibited similar behavior, a large increase in load

current and a large initial dip in bus voltage. This transient was followed by bus voltage

recovery to the commanded value.

Figure 13 shows the response of the closed loop system to a step change in the

voltage reference from zero to one. Results for both bus voltage submodels are shown.

The plot labeled DELV is the difference between the transfer function solution and the

indicated submodel. Both bus voltage submodels provide very good results and are in

excellent agreement with the transfer function modeL Note the plot of DELI which is

moving away from zero in the bus voltage equation submodel.

Figure 14 is the response of the system to the step load change. The DASSL results

are in very good agreement with the bus voltage equation submodeL The difference to

note is again the DELI plot, Figure 14 (b). The simulation was allowed to continue to 100

seconds. The DASSL routine, while allowing some error between load and source

current, keeps forcing the error back toward zero. The bus voltage equation allows the

DELI error to grow 50 to 100 times larger than the DASSL routine allows.

F. CHOICE OF BUS VOLTAGE MODEL

While the methods presented here are by no means exhaustive, several reasonable

possibilities for a bus voltage model have been looked at. Some advantages and

disadvantages of each have been discussed. Remember that modularity and simplicity are

desired characteristics of the total system modeL
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Figure 13. System response of both voltage submodels to step change in reference
voltage. DELV compares model response to a transfer lmncton form of &he system.
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Figure 14. Step change in load for both submodels; (a) terminal voltage and current

response, (b) source and load current difference to 100 seconds.
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The only choice presented which allows both modularity and simplicity in

implementation as the total system model grows is the DASSL bus voltage model. The

routine accurately solves for bus voltage and then feeds that solution to all connected

submodels. Additional submodels may be included by simply adding the current and

current derivative terms from the new submodel into the KCL constraint equation. The

DASSL routine is easy to use, fast, accurate and robust
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V. SYSTEM MODEL DESCRIPTION

Most of the pieces required to build an isolated power system operating on a finite

bus have been developed and presented. Validated submodels for source, loads and bus

voltage are available to be used as building blocks for a larger modeL This section puts

the system model together by providing a means for closed loop control, a description of

the per-unit (pu) system and a detailed description of the ACSL code used in the final

system simulation.

A. SYSTEM CLOSED LOOP CONTROL

In order to complete the system model and put it under closed loop control, two

more submodels must be developed. These are the field excitation system and the prime

mover and speed governor system. The field excitation system is a voltage regulator and

exciter which senses the magnitude of the bus voltage and then adjusts the voltage applied

to the field winding as necessary to maintain the bus voltage at or near the commanded

reference level. The speed governor senses the mechanical speed of the rotor and applies

a control signal to the prime mover which maintains rotor speed at or near the commanded

reference level.

1. Field Excitation System Model

There are many types of field excitation systems used for synchronous generator

voltage control. The IEEE Type 2 representation [Ref. 101 presented here is typical for

power systems used aboard US Navy ships. It is also the type of field excitation system in

the model which is used for comparison in the next chapter.

Figure 15 is a block diagram of the IEEE Type 2 regulator and exciter. The first

section, from the summing junction to V., is the regulator. From the second summing

junction to the output is the exciter section. There are two saturation functions, one
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associated with each patn of the system w deals of ko. tn is model i the

simulaton are discussed in the section describing the ACSL code

+'(I +i •s)+dEwaOm

FIgure 15. IEEE Type 2 regulaor and excter sytem bond of Re. 10.

2. Prime Mover and Speed Governor Model

As for the excitation system, many models are available for prime mover and

speed governor. Steam turbines, hydro-turbines, diesel engines and gas urbines are a few

examples of the types of system used to drive synchronous generators. A simple transfer

function form for one of these systems might consist of two simple first order delays, one

for the speed governor and one for the prime mover. Choice of the prime mover and

governor model was driven by the desire to compare results of this system simulation with

other work

Mayer and Wasynczuk [Ref. 5] provide a model for an Allison 501 gas turbine

engine and governor. Figure 16 is the s-domain representation of this model. The model

is a per-unit modeL A per-unit model references all model variables to some base value.
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Per-unit models are vry common in power sysem simdkion woik and will be descibed

in more detail in the next section.

Per UU r

(p•) K.)-. M,"----

B. THE PER-U SYSTEM

The per-unit (pu) system was developed to simplify the calculation and interpretation

of results an power system simulation work. A pu quantity is defined as an actual quantity
(voltage, current, power etc.) divided by a base or reference quantity. The base values are

selected according to known characteristcs of the machine being studied. The final

system simulation presented here is in the per-unit system.
The pu system is based on machine rated bus voltage, power and synchronous speed.

Machine parameters are usually supplied by the manufactue in pu. The base quantities

used here are

Vb. : rated operating voltage

P• : rated volt-amperes for synchronous generator,

rated horsepower times 746 for induction motor
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Www : road opaing eocuic frequency

With these defined, impedance and tWrque tbe qumdtis may be derived

Z I M =(83)

(2/P)ci.

Use of the pu system slightly changes the state equations for the synchronous

machine and induction machine. In the pu system the ineria (J) is replaced by the inertia

constant (H) which has units of seconds. The two inertia terms are related by

H =J ( .I~bML) (84)

The electrical torque equations, (41) and (68), are altered in the pu system. For the

synchronous machine they are written as

T,= Xmd(-id, + f + iAd)iv - X.4(-Lqs + i)d
P, = (2L)(• _ T.) (85)

and for the induction machine as

T.= XM,(j, ol - d,

(86)
M = t2,.),. I)
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Use of the pu system introduces a compaibiity problem for the system model. Since

it is desired to build a model where sources and loads are interconnected, all submodels

must be referenced to the same bnse values. The generator and motor models share a

common base voltage and electrical frequmcy; however, base power is different in each

submodeL For the work presented here, the synchronous machine drives the selection of

base quantities. This requires that the other submodels be referenced to the synchronous

machine. By manipulation of (83) and (84), the machine parameters of the induction

motor may be put in the synchronous generator base as follows:

Zpuafoiimcwdch = r d_~h
p~ mond mod )(87)

Hp,,(sy,•_•,.) - Pb&WWRNCh) )Hl, vW_,N•.(._ (/

C. SYSTEM MODEL IMPLEMENTATION IN ACSL

The ACSL program code is contained in Appendix B. The description of system

model implementation follows the layout of the program code. In order to make the

ACSL program easier to follow, throughout this section the variables will be referred to

by the same name used in the ACSL code. The block diagram of Figure 17 represents the

system simulation as implemented in ACSL The blocks labeled Synchronous Generator

Model (SGM) and Load 1 Model (LIM) through Load n Model (LnM) represent the

stand-alone state-space models developed in Chapters U and Ell. The models are
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implemented with current states. At each time step of the simulation, vectors repesenting

the model currents (it and i) and current derivatives (Wd and W are computed. Each of

these models requires bus voltage as an input. The bus voltage to the load may

a line loss.

The orthogonal bus voltage values, vqs and vd, are generated by the Bus Voltage

Model (BVM). For the system simulation preseited her the DASSL bus voltage model

is used. In order to set up the implicit solution, the BVM requires all q and d axis source

and load current and current derivative terms as inputs. The model forms a residual from

these inputs based on KCL The bus voltage is then computed, using the DASSL routine,

at each step of the simulation. The DASSL routine drives the residual close to zero.

The SGM requires, in addition to bus voltage, an input torque (T1) and field winding

voltage (Vfd). The SGM outputs are currents (1t current derivatives (k,&) and rotor

speed (wr). Speed control for the SGM is provided by the gas turbine and governor which

provides the input torque based on the behavior of wr. The voltage control is

accomplished by the regulator/exciter which uses the rectified magnitude of the bus

voltage to provide the appropriate level of Vfd.

LIM through LnM receive bus voltage inputs vql and vd/. These voltage quantities

are the BVM outputs modified by accounting for transmission line resistance and

reactance. Additionally, these load models require an input representing the electrical

frequency. For this system model, the electrical frequency is the wr output from the SGM.

The block labeled Inverse Park's Transformation (IT) allows the system voltages

and currents, which are expressed in the orthogonal reference frame, to be changed to the

a-b-c reference. The IPT uses tur, the variable representing rotor position, to perform

the transformation. This variable is obtained by integrating rotor speed with respect to

time.
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1. Program md htar Se•em

The first few lines of the program set simulation parameters. It is here that

things lik integration algorithm, integration step size and communication interval for the

output file may be specfied. The default integration algorithm is a Runge-Kutta fourth

order routine. The step size is selected, based on the Nyquist criteria, so that the dynamic

response transients can be computed and printed. Following the setting of simulation

parameters the machine parameters needed for each state-space subnodel are entered.

The iniial section of the code computes all coefficients needed for the source

and load submodels using the machine parameters. Stairting with the synchronous

generator, the elements of the inverse B matrix are computed. The expressions for these

elements are obtained from the MATHCAD output of Appendix A. After the inverse

matrix elements are computed, the terms for the linear and nonlinear matrices are

calculated. The procedure is repeated for each induction motor modeL Finally initial

conditions for each integration in the simulation are entered. These are obtained by doing

steady state calculations or by running the model with initial conditions set equal to zero

until the model reaches steady state.

2. Dynamic Section

The dynamic section of the ACSL code is the heart of the simulation. This

section contains all the differential equations describing the models. It is this section of

the code which is executed at each time step of the simulation. The speed of execution is

a function of the number of integrations which must be performed, the integration

algorithm selected, integration step size and the total time which must be simulated.

Execution time is also affected by the DASSL routine which slows the simulation down at

each time step by varying amounts in order to drive the bus voltage to a value that satisfies

the constraint equation.
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The constants vref and wref are the commanded inputs for voltage magnitude

and speed. The constants mot-onX and cbI represent circuit breakas for the loads. If

these are set to zero, no voltage is applied to the load. The induction motors each have a

speed square law load applied to them. This type of load is typical for a pump, a common

application for induction motors on board ship. The R-L load parameters are initially set

to large values so that, unless they are changed, the load will be very small even with bus

voltage applied (when cbl is set to one).

Next some quantities are derived so that they may be output. A ripple term is

added to the voltage magnitude to simulate the output of a rectifier. To make the output

more standard, torque quantities for the three motors are changed from the generator

torque base to the torque base for each induction motor.

The exciter and prime mover/governor models come from the s-domain models

of Figures 19 and 20. The following technique was used to convert the transfer function

form of the models to the form seen in the program:

B= AK,
1+ -Cs

B + Bias = AK, (88)
ipta = AKa - B

where A is the input, B is the output and h = Bs. Then this piece of the larger system

may be represented in ACSL as

h AKo-B
Ta (89)

B [h

59



"This form, wjke the undfer fmcon fom, allows ital conditions to be input for each

integration if deired.

One of the sates for the synchronous machine i •w, the rotor speed. This

quantity is also the basis for the reference finme chosen for the models. In order to use

the inverse Parks rm aton to convert q-d-O quantities to a-b-c quantities, the rotor

position (dur) must be derived. This is done by integrating rotor speed with respect to

time.

Although it has less meaning in the case of an isolated generator than in an

infinite bus or multiple generator study, rotor angle (del) is computed. Figure 18 is a

partial phasor diagram which shows how these quantities are related. The rotor angle is

sometimes referred to as the torque angle to avoid confusion with dur. The physical

position of the rotor, dur, is constantly changing as the prime mover drives the generator;

however, for a given load on the machine del is a constant

del
*Vd,

VU:

Figur M Rlato . bpbetw.en Vq ., Vas h and del.

The state equation section of th code contains the ACSL implementation of the

synchronous machine and induction machine equations in explicit form. The coefficients

on the right-hand side of the state equations are named so that they may be easily

identified. Coefficients beginning with L multiply with lnear state terms Those with an N
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multiply with nonlinear terms (those involving a current-speed product). The number

appended to the name gives the position of the coefficient in its parent matrix. In the

induction motor equations there are two additional elements to the naming conventions

just described. Because there are multiple motor models, a third digit is added to the end

of the coefficient name to indicate the motor number. A distinction is also made between

the nonlinear coefficients. Those involving the electrical speed only begin with NE, and

those involving the slip speed or difference between electrical speed and motor rotor

speed begin with ND.

The DASSL bus voltage model is simply an expanded version of the model used

in the example of Chapter IV. A residual of the currents and current derivatives is formed

for each q-d-O axis. Then the voltage value is obtained using the implicit system solver.

A line loss model based on the R-L model of Chapter HI modifies the value of line voltage

applied to the motor loads.

The final few lines of code convert the voltage and current results to the a-b-c

reference frame for output and set a simulation stop time. The ACSL system compiles the

model in FORTRAN for execution. The executable FORTRAN form of the model runs

faster than models produced in some other simulation software. The main model may be

linked to one or more command files which allow the user to more easily exercise the

model under a variety of conditions and then obtain the desired output. An command file,

which was used with this simulation, follows the system model code in Appendix B.
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VL SYSTEM RESPONSE AND MODEL VALIDATION

The model for the isolated power system has now been fully developed. The system

simulation is extremely modular and relies on accepted models for the source and load

submodels. These accepted models for a synchronous generator, induction motor and

resistive-inductive load have been extensively validated.

Other submodels were needed to complete the system. The DASSL submodel for

the bus voltage was demonstrated in Chapter IV. Chapter V added accepted field exciter

and prime mover/governor models to the system.

Although the separate pieces of the system have been validated to one degree or

another, the whole system must be tested against some standard for validation. Mayer and

Wasynczuk [Ref. 5.] of Purdue University presented a simulation of a portion of the USS

Arleigh Burke (DDG-51) power distribution system which will be used as the standard for

comparison. This model will be referred to as the Purdue model

A. DESCRIPTION OF THE PURDUE MODEL

The Purdue model is a systematic method for taking the differential algebraic

equations describing a power system and using them to establish a conventional state-

space model On each bus of the system, one machine is designated as the root machine

and any other connected machine is a nonroot machine. A root machine has current and

current derivatives as its inputs and stator voltages as its outputs. The root machine

inputs are formed by summing the currents and current derivatives from all connected

nonroot models. After establishing forms for the root and nonroot models, an

interconnection procedure is established based on the KCL constraint.

The interconnection procedure is conceptually similar to the bus voltage equation

development presented in Chapter IV. Based on the linearity of the derivative operator,
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expressions for the current derivatives for the root and nonroot models are set equal, thus

eliminating the derivative terms. Then, after complicated matrix algebraic manipulation,

an equation for determining stator voltages from the states only is produced.

Mayer and Wasynczuk validate their model by comparing it with the output produced

by the Power System Simulator at Purdue University. This facility has been used

extensively in system design work and provides detailed three-phase output based on

state-of-the-art representations of the power system components.

B. VALIDATION BY COMPARISON WrTH THE PURDUE MODEL

Mayer and Wasynczuk describe the scenario and provide all the model parameters for

the results presented in their paper. The model parameters are contained in Table 1. The

generator and induction motor parameters are all per-unit values with a 450V rms, line-to-

line, base voltage. The base power for the generator is 3125 KVA, and for the motors is

determined by the horsepower rating.

For the comparison simulation, the generator is initially in a steady state unloaded

condition. It is under closed loop regulation, operating at rated voltage and speed with

stator currents zero. At an arbitrary time, a circuit breaker is closed energizing all three

induction motors. The three motors draw large start-up currents which cause bus voltage

to dip initially before the voltage regulator and exciter circuit can react and return the bus

voltage to the commanded magnitude. The initial large currents also produce a large

electrical torque in the generator which tends to slow rotor speed. The prime

mover/governor reacts to the speed change by applying more input torque to return the

system to commanded speed. Most of the system transient behavior is complete in three

seconds. Figures 19 and 20 compare the results of the DASSL based simulation with the

results obtained by the Purdue model.
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TABLE 1. SYSTEM MODEL PARAMETRS

Prime MoveiGovernor I

K=22.5 T. = 0.55 0 T, =0.01 Tyr = 0.05

=0.23 C =.251 .1 C,aT= 1.3523 Cem= 0.5

KA = 400.0 TA =0.01 V. Max = 8.4 V. Min = 0

1w = 0.01 TM =0.15 T 0.06 K1, = 1.0

"T =0.1 A=0.1 B=0.3

Sycrn ous enertor _

r, = 0.00515 r, = 0.0613 r -0.00111 r.-0.02397

X, = 0.08 X,. = 0.3298 X•= 0.13683 X., = 0.33383

_ = 1.0 X = 1.768 H = 2.137

Induction Motors I

________ IMtl IM2 wM

Hp 200 150 40

r. 0.01 0.0051 0.005

X, 0.0655 0.0553 0.0587

X_ 3.225 2.678 2.952

X1 0.0655 0.0553 0.0587

r. 0.0261 0.0165 0.0165

H 0.922 1.524 1.054
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The DASSL based model is in excellent agreement with the Purdue model results.

Additionally it agrees well with the expected behavior of such a system. Bus voltage

transient behavior is tracked during dynamic loading of the system. During the simulation

the difference between generator current and the sum of the load currents stayed bounded

in the micro amp range.

Both simulations were implemented in ACSL using a fourth-order, Runge-Kutta

integration algorithm. Using an integration step size of 1.0 millisecond, the DASSL based

model required 5.4 seconds of cpu time on a Sun SPARC 10 Model 41 workstation. For

comparison, the generator and three induction motor simulation using an infinite bus

voltage model used 2.1 seconds of cpu time on the same workstation.

C. DASSL MODEL RESPONSE WITH UNBALANCED LOAD

In three-phase power systems every effort is made by the system designers to keep

the phase loads equal. In practice this is impossible. All three phase systems experience

some degree of unbalanced loading. On board a ship this is a common problem,

particularly on older ships. Partial grounds, lighting alterations and equipment updates

are some factors that contribute to the problem. Behavior of the system presented in the

previous section to an unbalanced loading condition will be investigated.

An unbalanced R-L load in parallel with the three induction machines simulates a

situation which frequently occurs on board ship. Single phase lighting loads are served by

tapping a lighting circuit transformer primary into one phase of the three phase power

system. This often results in different loading conditions on the three phases.
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1. The Unbalmoed Load

Unbalanced loading introduces significantly more complexity to the state

equations in the q-d-O reference frame. In the R-L load development of mpter IlL

balanced loading was assumed. If the phase resistance values are allowed to be unequal

the resistance matrix becomes

[ rb0 0

0 0 r,, ]

The transformation to the orthogonal reference frame results in the K~r, (K.-3 ) matrix

taking the form

r, ocos 2A+rbcos2 B r cos A sin A + rb cos B sin B r cos A + r cos B"

•.+r 1 cos C -+rblcosCsin C .. +rq cos C

2 rd cosAsinA+rwcosBsinB r Asn2 A+r sin2 B r.sin A+rbsin B
"3 ... +rb cos C sin C ... +rb sin2 C +rb sin C

1 1I ( r cos A + rb cos B (r. (sin A + rbl sinB B2 2 r + r + r

+.rb COS C) .. +r sin C) 2

(90)

where

A =Or

3

C 2x
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This significantly complicates the state equations. Al three states now appear in

each of the three equations describing the R-L load in the q-d-O refeence fiame. Note

that an unbalanced inductance matrix will cause all three state derivative terms to appear

in all state equations (an implicit form). Putting such a system of equations in explicit

form will not be dealt with here.

2. Simulation Results with UnWbauuod Leading

For the unbalanced load study, the model is started and loaded in an identical

manner to the simulation of Figures 19 and 20. Once the system is in steady state, a

circuit breaker is closed which connects an unbalanced R-L load in parallel with the motor

loads. The per-unit unbalanced load parameters used are

rt = 5.0
ru =30. 0

r= 5.0

X,=3.0

After application of the unbalanced load, the system is again allowed to come to

steady state. The effect of this load on the phase currents may be seen in Figure 21. The

phase currents are visibly unequal. The magnitude of ift is about half the magnitude of the

other phase currents. Of more interest is the manner in which other variables are affected.

Figure 22 is a plot of several variables affected by the unbalanced load. The

unbalanced load causes oscillations to occur in the generator electrical torque. These

variations in turn cause the rotor to oscillate. The field winding current also exhibits this

oscillatory behavior due to the motion of the rotor. Not only is the generator affected, but

the plot of torque produced by induction motor two shows oscillations. Such oscillations

can be potentially damaging to equipment.
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D. DASSL BASED MODEL FLEXIBIgTrY

Many other types of studies may be done with the DASSL based modeL The system

is extremely flexible. For example, the load on one or more of the induction motors. )uld

be suddenly changed. The full transient effect of this change could then be observed

throughout the system. The response of the generator, generator control systems and

other loads could all be studied. This type of capability is extremely valuable to the

designers of isolated power systems.
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VIL CONCLUSIONS AND FUTURE WORK

There is a need for power system simulations which do not rely on the infinite bus

voltage assumption. In the recent past, the limited capabilities of computer hardware and

software made the modeling of isolated power systems difficult. Designers relied on

questionable equations to approximate terminal voltage dip under various loading

conditions. Reduced order modeling was done which provided some data at the expense

of losing transient behavior results. It has been demonstrated that by treating the

equations for the power system as a set of differential algebraic equations and using a

proven DAE solver, excellent results can be achieved.

A. ADVANTAGES OF THE DASSL MODEL

The approach presented in this thesis has several advantages over methods that have

been used in the past. Some of the advantages are:

"* the system model is highly modular in design (submodels)

"• the DASSL bus voltage submodel constraint equation makes the model simple

to expand

"• the model provides transient data

"* the submodels are standard, well validated state-space models

"• simulation speed is excellent

"• the model uses a highly regarded, commercially available DAE solving routine

B. DISADVANTAGES

There are some problems with the system model which still must be overcome.

Some of the possible disadvantages and limitation of the model are:
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"* the source and load submodels need to be developed with current states and in

the q-d-O reference frame (not always the most convenient form)

"* the total system model has not been validated against hardware results

"* the generator and motor models do not include saturation effects

"* the generator and motor models assume sinusoidally distributed windings

The last disadvantage is really a disadvantage of the standard development of the

synchronous and induction machine models. The fact that the windings are actually not

perfectly distributed introduces harmonics on the system bus. Generally these effects are

minor and may be neglected; however, some types of loads (solid state power converters

for example) may be highly sensitive to these neglected harmonics.

C. FUTURE WORK

In order to realize a benefit from the DASSL model approach significant work

remains to be done. One of the most important tasks that could be accomplished is a

hardware validation of the model. Figure 23 is a block diagram of a possible hardware

configuration for accomplishing validation.

IExciter

fIeld exitatim bus voltage

rotor speed

Figure 23. Possible hardware configuration for model validation.
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This configuration has the advantage of being complex enough to validate the

DASSL model and simple enough to build and test in the lab. Some other suggestions for

future work with this basic model are:

"• addition of one or more parallel generators

"• development of other types of load models

"• include winding saturation effects

"• try other DAE solution methods which offer the promise of improved

efficiency (for example, Halin [Ref. 12] reports a significant improvement over

DASSL with his method)

This list is by no means conclusive and much work remains to be done in this area.

The process of engineering design involves trade-offs. The DASSL model, because it

involves multiple iterations at each simulation time step, requires more than double the cpu

time than that used by the infinite bus modeL At one time this cost may have been

considered too great for the benefit derived. However, today's simulation capabilities

make the DASSL based finite bus model a practical design tool, worthy of continued

investigation.
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APPENDIX A: CONVERTING STATE EQUATIONS TO EXPLICIT FORM

In Chapters II and M the state equations for the synchronous machine and the

induction machine were developed as implicit equations with the currents as states. Those

equations had the form

X = AL. L+ ANO)L. + Bpi

where AL is the linear terms matrix and AN is the nonlinear terms matrix.

In order to convert the equations to implicit form the B matrix must be inverted so

that the state derivative vector may be isolated on the left-hand side of the equation. Since

numerical matrix inversion can often lead to problems in the case of poorly conditioned

matrices, the matrix inversion for the two models was done using the MAPLE symbolic

engine in MATHCAD 4.0.

THE SYNCHRONOUS MACHINE

"-h 0 0 a 0 0

o -k 0 0 b b where the following definitions apply:
0 0 -c 0 0 0

B-= -a 0 0 g 0 0 a = XMq;b = Xd; c = Xi.

0 b d = Rfd;-e =X d;-f =X

d d d g = X;h -Xq;k =Xd
0 -b 0 0 b fl
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0- 0

00- 0 0(b9

6-kb2  b'-te 2-V- V-0 We

o0 0 0 0 0

o (-~b 0 0 k-+b +b

0 b- (b- s) 0 0 (k+b

THE IDUCTION MACHINE

.0 0 X1M 0 0

0 X. 0 0 Xm 0

0 0 Xb 0 0 0

BXM 0 0 X. 0 0

0 xm 0 0 X., 0

B-1

0X 0 0M 0

0 [_X..XE (XM)2] 0 0 [x.. 7m

0 0 -L 0 0 0

0 -X

XM0 07 )2 0 0

"F - -X . ," HI x . . . x , ' -X .
0 [_________0___x.x. (xm

0 0 0 0 01
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THE STATE EQUATIONS FORMED EXPLICrrLY FOR ACSL

The final form of the state equations isolates the current derivative vector on the left-

hand side. In the ACSL program code an equation is written for each current derivative.

In order to develop an equation for each state derivative, the matrix equations must be

multiplied out. This development will be demonstrated for the synchronous machine, the

induction machine is treated in an identical manner. Equation (42)describes the procedure

in compact from.

pj=Li+No,i+Vv

V = B-1

L = V(-AL)

N = V(-AM)

Using MATHCAD again, the state equations may be developed as seen in the ACSL

code of Appendix B. First the L and N matrices must be computed

roo 0 0 0

ViI 0 0 V14 0 0
Or 0 0 0 0

o V22 0 0 V25 V26

L= 0 o v33 0 0 0 o o, 0 0 0
V41 0 0 V44 0 0 0 0 0--% 0 0

o vy2 0 0 V55 v56 0 0 0 0 -X, 0
0 V62 0 0 V65 V66 0 0 0 0 0

V1Sr. 0 0 -Vi4r4 0 0

0 V22.r 0 0 V25-vX., -V26-f

L = 0 0 V33r. 0 0 0

V41-r, 0 0 -V4tkq 0 0

0 Vs2t. 0 o -v55-X,. -V5&r,

0 V62.r 0 0 -V65-X,, -V66-r
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0 !d _0xOX

VII 0 0 V14 0 0 % % %

0 V22 0 00 V25 VUý0 0
0 0V33 0 0 0

V41 0 0 V4 0 0 000 0 0

0 '"2 0 0 V5svS 0 00 0 0 0

0 V42 0 0 VSV] 00000 0 0

0 0 0 0 0 0

0 VI! 0 0 -VIIIt -VI

x x-V22--i 0 0 v2-~ 0 0

0 0 0 0 0 0

SV41 0 0 0

x
0 V52 I" 0 0 V52-V- 0 0

% Ob%

x
-V162-ý! 0 0 '162-N 0 0

then the terms of the equation are multiplied out

LII 0 0 L.14 0 0 i IOL4i

0 L22 0 0 125 L26 1

0 0330 0 0 136

LIl 0 0 L44 0 0 LAH. +I.M44{10 N = 0 0 1.55 , . 56 o - 2- -v,,t.551Wi

0 1.2 0 0 L.65 LAG U 2 -i A. +L

0 N12 0 0 NI5 N16 IsNSj*Ne;

N21 0 0 N24 0 0 i

Nci 0 00000 0 0 0
0 N42 0 0 M45 M.6 N42,e, L 1 4+. 5Lig*L+ 6-eulk
N o51 0 0N54 0 0 o LZ S.;

N61 0 01N64 0 0 1.4

"~" o6-oi +2 oMA,,e.
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VII 0 0 V14 0 0 .p

0 V22 0 0 V25 V36 "a V2'e ~~

V41 0 0 V44 0 0 1. V4I.vp
o VS2 0 0 V33 V31u VS*Vb +VSS.Vf

0 V42 0 0 V65 v46 0 V42-6+VGS.Vm5v

tinaily, the expirssion for the state derivative vector may be writtenas the mum of the

three terms

iv N12coý ia + NIS5.oy.,f + Nl6.uoý.il + L11. 9 + L14týq +VII-v 9p

i, N21 -a fiq +N24ea-i *L22ib +L25.L* +L26i-ýd+V22-vd + V25-vi,

i~l L33-LO + V33*v%

p 4 .- N42ewrl + N4 * -s N46-a.*IA1m + LAWV+L4 iýq +V 4 lv,9

ifd N51emf iw + N54- f A +U246 + SLd* +L56Lýd +V52-v. + V55-v

i4d N61 eorip +N64*moriq Mid, +i L65-im L66-ý +. V62-v. V65 Vf
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APPENIMZ 2: ACSL CODE

A. BUS VOLTAGE EQUATION MODEL

tt M~ar'k Kippxe NPS Lm"ne 11
1t If

It Progamtodeonetistovaldity v busvoltagoeequationmodl . it
11 Example circuit Is solvd using; two methods and the results if
I1 weomp . II

II II

PROGRAM
NSTEPS nslp 1l
CINTERVAL Ckt - 10-2
MAXTERVAL maxl , 1e-3

DYNAMIC

DERIVATIVE

I-Circuilt parameters
CONSTANT RI-I.0
CONSTANT R2=5.0
CONSTANT Li =0.6
CONSTANT 12=0.2

I-Source voltage

Vs =PULSE(O.0, 2.5, 1.25)

I-State equations for one loop solution

id - -(RI+R2)/(LI+L2)*l + Vs/(L1 +L2)
i = INTEG(id,O.0)

Vnode - L2*id + R2"1

I-State equations for the two sb-mcdel soution

lid = -RI1LI*1l + VwIL1 - Vt/Ll
il - INTEG(ild,0.0)

12d = -R2"i2 + VtI.2
Q - INTEG(12d,0.0)
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1-"m voamp @*Wlon fw atbqvwdSI

vt -(LI*W2(-RlIIIAl + RF12IL+ V@.IY(Ll + 12)

I-DvoenfossWr o14xA

daly aVt -vnods
del n 1-12
deWm ld -li~d*

END I od dwr~vtiv

CONSTANT tutop - 20.
TERMT(t .GE. t"to)

END I od dyrnaic
END I od progrmm
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B. DASSL BUS VOLTAGE MODEL

II II

t1 Mark KIpps NPS Mort" 11
tt It

t Program to delmonsita, validty of DASSL bus volage model. 1
H1 Example cicuit is solved usin two methods, and the resuts 1

re compared. I
II II

PROGRAM
NSTEPS nstp = 1
CINTERVAL cint a le-2
MAXTERVAL maxt = 1-3

DYNAMIC

DERIVATIVE

I-Circult parameters
CONSTANT R1=1.0
CONSTANT R2-5.0
CONSTANT L1i=0.6
CONSTANT 1.2=0.2

I-Source voltage

Vs =PULSE(0.0, 2.5, 1.25)

I-State equations for one loop solution

id = -(R1+R2y(LI1+L2)*i + Vs/(I1+L2)
i = INTEG(id,0.0)

Vnode = L2"id + R2*1

I-State equations for the two sub-model solution

ild = -RI/LI*il + Vs/Li - V/I.1
il = INTEG(ild,0.0)

12d = -R2.L212 + WVIL2
Q = INTEG(12d,0.0)

!-DASSL bus voltage model sumrs current at the node

rel -a ild + il - 12d- 12
Vt = IMPLC(res1,0.0)
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•-D mncos for o

dulv = VI - vnods
dil 1 -l 12
did - ild - 12d

END of dawkaie

CONSTANT tutop - 20.
TERMT( .GE. taop)

END I of dynamic
END I of program
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C. BUS VOLTAGE EQUATION MODEL UNDER CONTROL

II II

! mIark K p NPS Monterey 11
II If

II Progra to demintrate validity of bus voltage equation model. II
It Example cicul is solved usin two mewthd and the reesults 1
II are compared. System under cascade voltage conrl. II
if It

PROGRAM
NSTEPS natp = 1
CINTERVAL cint = 56-3
MAXTERVAL maxt = 1e-3

DYNAMIC

DERIVATIVE

I-Circuit parameters
CONSTANT R1=1.0
CONSTANT R2=5.0
CONSTANT 1 ---0.6
CONSTANT L2=0.2

Vref =STEP(0.2)

I-Cascade voltage controller from root-ocus desi

ver" =Vref-Vt
vOd =200*verr - 30WW1
v01 =INTEG(vOld,0.0)
Vad =vOld + 10"v01 -. 01'Vs
Vs =INTEG(Ved,0.0)

I-State equations for two sub-model solution

1id = -RI1/1i1 + VsL1 - Vt/L1
il = INTEG(ild,0.0)

i2d = -R2/L2*12 + VtL2.

12 = INTEG(12d,0.0)

!-Bus voltage equation

reel = ild + il -12d - 12
Vt =(L1L2)*(-Rl1*i1L1 + FR2"12/L2 + Vs/L1)/(L1 + 1.2)
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l-Trmnar funmdon form of dte w"Owm

ve =Vr - Vb
DIMENSION p(3), q(4)
CONSTANT p. 1.0, 36.0,250.0, q,, 1.0, 37.51,225.375,2.25
Vb -TRAN(2,3,p,q,50.0"v)

1-Doerencw for ou~t~

del =,11 - 12
deld aild- i2d
delv =Vt- Vb

END I of derivative

CONSTANT tstop - 1.0
TERMT(t .GE. tstop)

END I of dynamic
END I of program

87



D. DASSL BUS VOLTAGE MODEL UNDER CONTROL

! Mar Wppe NPS Monterey 11
II I
II Program to demonstrate valily of IDASSL blus volage model. II
II Example circuit Is solved using two mehiod and the results
I! are compared. System, under cascade voltage contol.
I! I

PROGRAM
NSTEPS nstp = 1
CINTERVAL cint = 5e-3
MAXTERVAL maxt = 1 e-3

DYNAMIC

DERIVATIVE

I-Circuit parameters
CONSTANT R1=1.0
CONSTANT RP2=5.0
CONSTANT L1 =0.6
CONSTANT L2=0.2

Vref = STEP(02)

!--Cascade voltage controller from root-locus design

verr =Vref-Vt
vOid --200*verr - 30v01
v01 =INTEG(vOld,0.0)
Ved =vOld + WWv01 - .01"V
Vs =INTEG(Vsd,0.0)

!-State equations for two sub-model solution

ild = -RI1LI*il + Vs/1 - Vt/L1
iH = INTEG(ild,0.0)

i2d = -R2/L2i2 + Vt/L2
i2 = INTEG(i2d,0.0)

!-DASSL bus voltage model

rei =ild + il -12d -12
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Vt - IMPLC(reei.0.0)

I-Trarmnfr function form of the syaemn for conparison

ve ,,Vr - Vb
DIMENSION p(3), q(4)
CONSTANT p- 1-0, 36.0, 250.0, qu 1.0, 37.61,225.375, 2.25
Vb =TRAN(2,3,p,q,50.0ve)

--Differences for output

dell =il -12
deld = ild- i2d
dev -=Vt-Vb

END I of derivative

CONSTANT tstop = 1.0
TERMT(t .GE. tstop)

END I of dynamic
END I of program
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IL TOTAL SYSTEM MODEL

11 Mark Kippe NPS Mw"rs

if Program to uimubtes a synchronou goneraW and oed. on a Wlle If
II "yaem bus. Bus voltage is omp~sd us"n the Imp"cf equation 1H
it aotvb routin DASSL it

H If
if

PROGRAM
NSTEPS netp =1
CINTERVAL cint = 10-3
MAXTERVAL maxt = 10-3

INITIAL

pi = 4.Oaten(l.O)
wb = 120.-M~

!HHIIII1--Synchronous Machine Parameters

H = 2.137
sn"~ = 3125.
zb = 1.0
Xs =.OS*zb
Xmq =1.0*Zb
Xmd =1 .7er*zb

X = .33383'zb
Xt~d =.13683zb
Xflq = .3298'zb
Rid =.O01ll*Zb
Xkqd = Xlkd+Xmd
Xfd = XIfd4Xmd
Xkq = Xlkq+Xmq
Rs = .0051 5zb
Rkd~ =.02397zb

RIO =.0613*zb
Xd = X&+Xmd
Xq = Xs+Xmq

11II1HI-l-nductlon Motor Parameters 200hp machlne-

iqrb1 - 149.14
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Zbhirn n einPbramib
Rs-jml a 0.01*zbjmlf
Xis-.knl -0.0655*zbjm1n

Xnijnl a 3.225zbjm1
XIr..l *0.0655'zbjiml
Rr-iml *0.O2S*zbjlml

Hjmnl -0.992*149.14131 25.
Xasjfnl = Xisjiml .Xn~iml
XrrImi -Xlrkim+Xm.)rnl

ItIIIIHI-tnluction Motor Parameters 15ftq mwtdu.J

Mip~b2 = 111.86
zbWr - smpAmpnb2
Rs-km2 = 0.0051 zb-ifT2
Xls2-W o.65s3*zb-JT2
Xnt.hn = 2.678*zb_1m2e
Xlrjm2 0.0553*zbJmf2
Rr-jrn2 0.01 65*zbjm2r
H_km2 =1.524*111.8&~3125.
Xss_1m2 - Xis_1m2+Xmjmn2
Xrrjim2 - Xlr-kn2+Xm_1m

IIIIIIIII-Induction Motor Parameters 40hp machine-

knWt = 29.83
zb_1ma srr4)nipb3
Rejm3 - 0.0056zbjm3
Xls_1m3 =0.0587Tzbjmff3

Xm_wm = 2.952*Zb_1m3
Xlr-imS3 = o.Os87zbjmff3
Rrjm3 . 0. 01 65*zbjm3
H_1m3 = 1.064'29.83131 25.
Xss_11i = Xis_irn3+Xmm3
Xrrý_1m= XMr_1m3+Xm_1m

IItIllfl!-Field Exciter Parameters-

Kaa = 400.
Tao = 0.01
Kfe = 0.01
Tfel = 0.15
1102 = 0.06
Kee = 1.0
Tee = 0.1

111ff fItI-Prine Mover and Speed Glovernior Pararm~ew --------

Kc=-22.5
Tc - 0.655
TfV m 0.01
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lit = 0.05
W1 08 0.23
C~gt - 0.251
Clg - 1.3523
co"g - 0.5

111111II-syndchronaochs i -r'sd cm -Mcl-
ý-Invus. mUdf (lammerd from MATHCAD)

Vii I- wb*Xhq(Xmq"2 - Xq*Xkq)
V14 a -Wb)mqI(Xmq"2 - XqrXkq
V22 a wb*'Qmd"2 . XkrXhd) &

(Xd*Xfd*Xk + (2*Xmd - Xkd - Xd - Xkd)Xrnd"2)
V25 - wb-Rtd(XiM - Xmd)/ &

(X(d*krXOW + (2*Xmfd - Ahd - Xd - Xfd)'Xmd"2)
V26 - wb'Xnrnd(Xfd - Xmd)I &

(XdX*dXkd + (2*Xmid _ Ahd - Xd - ~)WXmd"2)
V33 w -WbXs
V41 a wb*Xmnq(Xnql2 - Xq*X"q
V44 - -wb*Xqfo(Xmq"2 - Xq*Ylq)
V52 a wb*Xmd*(XM - Xlad)/ &

(Xd)fdMd + (2*Xnd -W- Xd - f)WXrnd"2)
V55 - wb'Rkd(Xd-kd - Xrnd-2) &

(XdrXfdX*ui + (2*Xmd - Xkd - Xd - Xki*Xmd*2)/Xmfd
V56 = wb*Xmd*(Xmfd - MY) &

(XdX*Xh~d + (2*Xrnd -)WI - Xd - Xfd)*Xmd"2)
V62 - wb-Xmd-(Xmd - Xfd)/ &

(Xd*XkrMli + (2*Xnd - Xkd - Xd - Xkd)Xmd"2)
V66 - wb-RfdQ~fd - Xd)/ &

(Xd*XkdXI + (2*Xmnd - Ahd - Xd - Xfd)*Xrnd"2)
V66 - wb-(Xfd-Xd - Xmd-2)f &

iXd*Xfd*Xkd + (2*Xmfd - Xhd - Xd -Xkd)Xmd"2)

f-liner tuons mahixc

Lii =Vii'R,
L14 -- Vl4-Rkq
L22 aV22*R8
L25 - -V25*Xnfid
L26 a -V26*Rkud
133 - V33*R
L41 a V41R*f
L44 a -V44RIq
152 - V52Rs
156% -V55'Xm
L56M -VWRkd
L02 -V2RS

165 a-V65*XJfd

166 - VS66Rkd

1--Noninear nm mnob
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N12 = V11*XdfWb
N15n--V1P*Xmdtwb
NI S.a -VI I *XMdtw
N21 a- V22*Xqhvb
N24 a V22rXmqtwb
N42 a V41 Xdtwb
N45 a V441PXmdAwb
N46 a -V41 *XMdhwb
N51 = -V52*Xqhvb
N64 a V52*Xmqhvb
N61 = -VG2*Xqhwb

N6 V62Xniqtwb

1111t111---Coeffictefts for Inductkon Motor Loads -

MACRO knIooef (x)
f-invefee mad&

61 1 ft = Xrrjmn&x/(Xssjlm&x'Xrrjkn&x - Xm-knAX-2)-Wb
B 14&x - -Xm nrAW(XnsjmAx*XirjnkWX - XffLm&x**2)*ft
B22&x - XW nW"(Xns.kI&Xrr.)nW(x - XmjmAX-2)-wb
B25&x - -XmjmI U(XssJm&x*Xrr-nx - Xm_ n&x"2)*wb
833&x = 1lfl-sjn&x'wvb
641 ft - -Xmjim&x(Xnsjm&x*Xrrjm~&x - XmnbAX*2)wbt
B44&x - Xss_km&Yx/(XssM~x-Xr_hnW~x - Xm-hX-2)'Wb
BS2&x = -Xmkn&x(Xssjm& X*Xr-k&x - Xmiin&X*42)*fb
B56&x - Xss UT"(Xasm&X*Xrr~k~x- Xm_hn&X"2)*wb
B66&x - 1/X0rIn&x'wb

Lm11&x =-Bl1&x'RekM~x
LM14&x = .B14&x*Rrjmh&x
LM22&x - -B2&x*Rsjmn&x
LM25&x - -625&x*Rr-km&x
LM33&x = -833&x*Rsjmn&x
LM4I&x = -B418X*Rs...n&x
LM44&x - -B44&x*Rijndx
LM52&x - -B52&X*Rsjmn&x
LM56&x - -656&Rijn&x
LM66&x= -B66&x*RrIm&x

NEI 2&x -61 I &x-esjm~x/wb
NEI 5&x =-BI I&x'XmbWn&x/wb
NE21 ft B22IX*Xssjim&xhvb
NE24&x mB22&x*Xmjmffxhvb
NE42Ix -B-41 &x*Xss_Im&xkvb
NE45&x 43.41 &X*Xm_Im&x/wb
NE51 ft - 52IX*Xssjmffxhvb
NE54&x - 52&x*Xr-njmxlwb
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ND12&x n .B14IXm...hikrAXW
NOI5& Si * .14&X*Xw..kwti*wb
ND2I&X -M 92ixXm..knx/wVb

ND42&X a i8r&Xn~kn&xNvb

ND51&x - .9441xMrr hNvx
NO648x n B5SG& mwr.)n&3'W

MACRO END lof hnoo

kwoo~f M

I-soumce 6-4 bobs
Iqsic = 0.0
Web -0.0

ibeb a=0.0
kq~c = 0.0
kk =1I/Xrnd
Odic = 0.0
wrib =376.991

k#* -kimic
Io0ic alosic
vqsic =1.0
vdsiC = 0.0
Vogt a=0.0
thtric =0.0
1f-exciter-
vfdic = 1.
vrelc =vdkc+ .1 exp(.3%*k~)
vollc = 0.0113
vabi = 0.00006
I--pdm mover-
lIIC = 0.0

wfllc - (T~icC1qQ)+C2gt
wtvic - wftlc
werr3lc - wtc- WHlO$

END I df INITIAL

DYNAMIC

DERIVATIVE

CONSTANT We = 1.

CONSTANT wreE a 376.991
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CONSANT moLonlaO.0. m~OLM"0., moLon3.0.
CONSTANT cbl=-0.

!,-Sqm law pump ad

al - (wr1)"2
-L (wI2)"2

013 = (Wr3)"2

I-R4. food waraIers

CONSTANT dri-S., VIa 2.

I--Derte qustlsfor oAM p fl

Zero = 0.041
Pdw~ n Tvwo * ka
pmech w 0.5"wr*TVwvb
pdsvl a 0.5'wr*To

delld - Ida - idp - kil
Ismag a WQcp(qs2 + Ids'2 +i. ose2)
IF (ABS(Iqs) .LT. 0.0001) THEN

" 0qlw-0.0
ELSE

Wow awMi(d&qe)'160.0/2l
END IF

vrp - ADS(.07oo*wr't)) - .035 No simulate recfler
yarnig - sqf((vqs'2 + vds4'2 + vos"2)) + vrip
frq - (wr -wb)/wb
I-Convert to Ind m~olo ars-
ti a te-..mfl *snfi~Pbl~b
Q2 = te...hn2smpqblkpb2
t3 - to-e....knump~mb3
wri .wr-hmn1w
w,2 a wrjn2Q/wb
wr3 = wr-kn3/wb

III1llIlI-exiter modee-

verr -vref -vamnag -vr
wred - (verrKw - vreyiTee
vre - UMINT(vred.vreic,0.0,8.5)
sat = yin - .1 eOXP(.3*vfd)
vfdd - (9at - vfdlKee)/Tee
vid aINTEG(vtdd,vtdlc)
void - (vreK19 - vol)MiT1
Vol = INTEG(vold,vol Ic)
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VUd - (Void - VbTa~11
Vib a INTE-G(VNVtdk,tl)

CONSTANT Op i.
wewi * G(Wra - *w
wen2 -Kc~wewllc - Kcur'~Wb
wenS INTEG(wwr2.wwsrtl)
wwr4 mwe" + WH1O@
Wlvd - Wof4 - wtv~Inv
Wtv *INTEG(WlvdW*c)

Wid *(WIv -WRtYrf
Wft n INTEG(Wltd.WrdC)
W112 - (Wit - C2gQ)C1 gt
TI a Wft2 + Cggr'vwrl

hr& - INTEG(#hvd.#*Ilc)

del a atan(vdsbvqs)*l O.0/pi

lIIIIIII-atate equatkon for synchronous macine* -

Iqad = Ll Iqak + N12*wrlds + L14leq + N 5*wr~ld &
+ N16*wrie + Vllvqs

kp- lNTEGoqadiq~lc)

kiad a N21*wrlq + L22~ds + N24*wrlkq + L25*W &
+ L26*W + V22?vds + V25vld

ids - INTEG(ldad.ldalc)

Wced - L33lose + V33%vos
los a INTEGlood,loslc)

ikW a L41Vkp + N42*wrds + L44*uq + N45wvi*N &
+ N46*wilud + V41 vqs

Ucq - lNTEG(Nkqdkhc)

Mdd a N51*wr*Iqs + L52Md + N54*wr*Mh + L56'¶d &
+ L56icIk + V52vds + V5vfd

Id - lNTEG"lldId)

Mod a NS1 *we*q + 162*da + NS4Wliq + L865¶d &
+ Le8led + V62Nds + V65*M

IW = INTEG(Ikdd,Mlc)

I-GENERATOR ebectrca tosq eqauobn In Mmnu d cuiruf
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To (X (- uu)qq(s.qk )

S-ý de -quto
wrd = wb*(MlTOY.)OH
wr - INTEG(w~dwrdc)

ý-Sped of wd gu tr oW ddwm~ine oelstMiu frequenc

we = wr

Iflhll1l1--etate equation macro for the hvbicdon motor look

MACRO kaMteoqn ()o

Wqd.I - LMI 1&xlq~kngx + NEI 2&x'wld~m&x + &
ND12&xcwdkr~x*IdL-n&x + WM14"_lY~x &
+ NEI 5&xwein~hn&x + NDl5S~x~w&..h~xldrjim&x &
+ 611 &X*(vqo~vmaot.ox

lqmn&x - W4TEGWqd&x0.O.)

idd...& m NE21&x~weliq..Ingx + N0218 wdkr~x'lojmrdx &
+ L2&x*Ldjntx + NE24 xmvnlqjn&x + &
ND246x~wdjnr~xIknrff&x + LM25Sf~idrmk&x &
+ B228X*(vds~vdl)mc&.on&x

id-kmax a INTEG~ldd..AzO.O)

lod_&x - LMS33Ix'ojmn&x + B33&x'(vosvol~mc~onax
IaIm&x =INTEG(iod..&x.O.O)

kId&&x =LM41 8x~qkbii~x + NE42&X'we~d...kn&x + &
ND42&x~wdn&xTIzkLkn&x + LM44&xWlqrj&x + &
NE45&X*Wk1I*JDSx + ND45&x'ed_k x1*i..rn&x &
+ B41&'*(vqs..vql)mnwor...nx

lqrImix - INTG(Iqr&.&xO.O.)

UNrd&x - NE51&X*Wiq...hn&x + ND51&x*Wdjm&X'1qjm&x &
+ LM52&XldJmk&x + NE54&x mWekn&x + &
ND54&x~wd-jm~xklqr-jmx + LM56&x'ldrjmn&x &
+. B52&X*(vds.~vdl)rmdoron~x

idrjmn&x a INTEG(Icbd..&x,O.O)

bod_&x m LM686&xliorjnr~x
Ior-kn&x - *NTG(Io&IxO.O)

Tejrn&x -Xm n(k~irx*Wdrjmx - id-krx*Iqrkn&x)

wrd-jm&x -wb*(Tejkn~x - (TIax*W~b~xlTb))2.0/1Hnkrx
-WrjmX l NTEG(W&ImkrX,O.O)

wd-kn&x -we - wr-kr&x
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MACRO END k* hkniieWi

t1I~M11--cel hidumIon nimor mdel Kim*o

-a cp- IO

11t1111-eiun i mOmor wrents aid curreit denlydve for

kpd - (djkd.2+ It" d+.k03)
k$ - (kLknl + iqlni2 + lqjnM)

kid a (W_1.kn + kkLj2 + kLdj3)

lold a (Iod.... + W-d.2 + ladS3)
hio b-(lml +iojn2 + loj3)

11111t111--defe equations forth paralle R-L -A

k~pd - (-wb'dIMl) - wM*d + (ul&W)(qB+eVqU)'Cb1
=li -lNTEG(kopd,~4cA)

klpd - wM*q - (mbrMVklp'd + (wbOMXJ)(vdslI)*cbl
k:p - lNTG(kh)d,lrJi)

kopd - (-wb~rMYl)1 + (wbIMl)vocbl
01) - lNTG(ba~dk*i)

1111111l-DASSL bus vallge model based on kWrqcI reketon-

resiq - ksd + lqa- kpd - p- kod- ko
vqs - IMPLC(resq~vsc*)

reeid - leds+ Ids - Ipd - Ip - dd- d
Weh - PAPLC(reeldvdalc)

VOS - IMPLC(rsslovoelc)

11H1H11-4ne loss moel

CONSTANT di U.006
CONSTANIT li W.001
vql m(krlq - xllqedvb - wr'W4dlqsvb)
vdI -( tl~ds - Arkbfld wb + werkP/qewb)
vol -( dflos - xltboedhb)
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tIItIII-convert cujfrrets to a-b-c reference for output-
in iqecoe(ttitr) +wweun~tr) + boe

be - Iqsoefth-2.0*p13.O) + lds's~nttr-2.O*pU3.O) + los
km a lqscoe(tttri2.0*p413.O) + icssin(tttr+2.O'pVf3.O) + ios

ila -=kocoofttr) + idrain~thtfr) +IoW
-i = lqrcoo~thtr-2.O*pi3.O) + idelsn(thvtr-2.O'pVl3.O) + io1

id - iqI'cos(thvtr+2.O'pU3.O) + id*8in(tftr+e2.O*piS.O) + iol

!I1111l11-convert voltgs to a-b-c reference for output
vas = vqecoe(thtr) + vdseeln(tttr) + vos
vbe = vqs'cos(thtr-2.0*p413.O) + vdesinothtr-2.O*pV3.O) + vos
vcs = vqcsca(thtr+2.0*pVi3.O) + vdssin(thtr+2.O*pU3.O) + vos

END ! of DERIVATIVE
CONSTANT tstop = 6.25
TERMT(t .GE. tatop)

END I of DYNAMIC
END I of PROGRAM

I!!! --- COMMAND FILE FOR DASSL SYSTEM MODEL--- 1111111

prepare t~iqs,iq-iml vqs,vds,vfd,Te,wr~del,las,vfb,vre,verr,werrl ,ti~frq &
deliq,delid,kisd,iqld,zero,vamag,iamag,iaphs,vasitl &
kiqjm2,im,iqlW3Ap,t2,wrl ,wr2,pelec,pmech,vql~vdl

set calpft=.f.,strpft=.t.,alcptt=J.f
set nrwltg=.t.

proced mot
start
s mot_onl =1. mot_on2=1. mot-pn3-1. tstop=9.O
cont
show2

end

praced mot2
s mat~onl =I. mat-or,2=l. maton3=1l. tatop=3.0
start

end

proced stpld
start
8 mot-.onl =1. maot_on2=1. mot~on3=1. tstop=Q.O
cont
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s d42. xqW2. xdl-2. uoim2. cbl-1. tiop-12.

cort

-showd
a wr2m00 xdWl.-5/l= )o.wr t xl~o~m6.000 ll -topm5

Pause
plot las/toi Miv 5 elfmsvda

pause

plot frqlm& -.01/hi.01 t~tom-.2/him.4 vfdfIou0.0
end

s devplt=4 pt-l I
plot wr2thi=1 Jxio-6.0/xhOtsop
s p11=12
s ytlspl=.16667
plot t2Ao=-Wh6
s p11=1 3
s ytlspl=.2
plot wrl/hil=.
s p11=14
plot tlflo-5/hi-5
S pit-iS5
s ythipl.1 6867 ylnspil=.6667
plot las/o-i .2Mil=1 .25
a p11=16
s ytispl=.25 yhnspl2.
plot vas/io=--2Jhi=2.
9 p11=1 7
plot frq/to=-.Ol/ihl.01
6 p11=18
s yfip1=.2
plot tlflo.-.5/hl.5S
* p11=1 9
plot vfd~o=0.0
s p11=20
s ytlspl=.2 ylnspWA .
plot yarniagthi-i .4/10-0.0
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a ykhplm2.

a xtiepl..1 8667 ythpl-.2 gidoplm.t. aatspl-A..
a devpk-G
plot wr2/ihl- AO-O~xo-6.clxhii-WMp
paus
s ytlapl.i 6667
plot mt2Aoft"m
pause
s ytieplm.2
plot wr1An=1.
pause
plot t1Ao.-SMI-5
paus
s ytlspl=.25 yknspl.'2.5
plot Wlas/to-i 2&hti=1.25
pause
a ytlspl=.25 yinspl=2.
plot vasolo,.-2Jhim2.
pause
plot frq~ou.-.O1/hi=-.O1
pause
s ytlapl=.2
plot tVlo=-.5/hl.5
pause
plot vfdflo=O.O
s ytlspl=.2 yinispl=1 .4
pause
plot vamagfhl-1 .4/Io=O.O
s yinspfr=.

end
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