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ABSTRACT

The advent of GPS has afforded the aerospace controls engineer a powerful, new

means of controlling air vehicles. This work explores a new method of designing and
implementing controllers and guidance systems for autonomous control of air vehicles

utilizing a GPS integrated guidance, navigation and control system. This is a subject

of considerable interest when realizing controllers to track reference trajectories given

in an inertial reference frame. The design, implementation, and dynamic simulation

of a precise tracking trajectory controller for an Unmanned Air Vehicle (UAV) is pre-

sented. This design provides a natural conversion of commands and other measured

outputs (such as GPS signals) from an inertial reference frame to a body-fixed refer-

ence frame. This achieves automatic recruiting of the actuators while preserving the

properties of the original design (linearization principle).
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I. INTRODUCTION

The advent of GPS has afforded the aerospace controls engineer a powerful new

means of controlling air vehicles. Current guidance schemes rely in some part on

ground based radars, navigational aides, beacons, localizer beams, etc. Guidance

and control of the air vehicle have been developed seperately and then combined in

a somewhat adhoc process. Precise tracking of inertial fixed trajectories using an

onboard GPS integrated GNC suite affords a quantum leap in autonomous flight

capabilities. The greatest impact of the proposed technology is expected in the area

of trajectory tracking control for autonomous unmanned vehicles, and automatic

approach and landing of manned vehicles dicussed next.

Control of the commercial air traffic throughout the country continues to become

more and more demanding as an increased number of vehicles vie for limited access

to the major commercial aviation hubs. Sophisticated and expensive ground based

radar control facilities employ a large number of personnel to individually instruct

the pilots of these aircraft on the trajectories they are to fly. Precise control of the

aircraft trajectory such as required by an approach into an airfield requires constant

attention from a ground based air traffic controller. Furthermore, ATC ability to

effectively control the aircraft is influenced by ground based radar coverage and navaid

equipment available and is often negatively influenced by atmospheric conditions.

Airfields with limited resources are often unable to take-off and land aircraft requiring

instrument departures and arrivals.

Flight patterns around major aviation hubs are, in general, inertial based tra-

jectories. That is, an aircraft is required to track a certain path over the ground while

adhering to a certian altitude schedule, irrespective of air mass disturbances. In some
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cases, such as on final approach to land or when the aerodrome is situated among

significant terrain or cultural development, precise adherence to the desired trajectory

is crucial for flight safety. In any case, commanding an inertial trajectory directly

utilizing a GPS integrated GNC system could prove to be more cost effective and

accurate than current methods. Furthermore, such a guidance scheme could open up

many more airports to significant commercial air traffic without requiring the capital

investment and maintenance of ground based radar facilities.

Unmanned air vehicles can be a cost effective means of power projection. Addi-

tionally, in some cases human physiological limits may prove to be the limiting factor

in the performance of an air vehicle. The precision delivery of munitions becomes

of paramount importance as weapons and weapon delivery platforms continue to in-

crease in cost, thus limiting their numbers. All of these concerns can be addressed

by autonomous air vehicles utilizing a GPS aided guidance, navigation and control

suite.

All of these applications have a common thread running through them. While

the particulars of the vehicles may vary considerably, the intent is to acheive au-

tonomous control of their trajectory. As a proof of concept, this work presents a new

design process for the synthesis of a guidance, navigation, and control system for a

UAV named Bluebird. The function of the this GNC system is to track inertial tra-

jectories. Bluebird is a UAV operated at the Unmanned Air Vehicle Lab at the Naval

Postgraduate School. It has a 12.5 foot wingspan and a 20 pound payload capability,

and is currently being equipped with a full avionics suite, including IMU, GPS, and

air data sensors.

The design process began with the development of a nonlinear dynamic model of

Bluebird implemented in SIMULINK. A typical cruise flight condition was chosen as

the point for linearization. After linearization of the nonlinear model, the work cen-
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tered on the design of a linear controller. LQR (Linear Quadratic Regulator) synthesis

approach was used since it provides an intuitive means of synthesizing a multivariable

controller within the framework of real world design constraints. Following the de-

sign of the LQR controller, the challenge of implementing the linear controller on the

nonlinear plant was addressed. A novel method of converting commands and outputs

from inertial to body reference cooridinates was used [Ref. 10]. This method achieves

automatic recruiting of the actuators, while preserving a certain linearization prop-

erty. Next, the accuracy of the nonlinear simulation was enhanced with the addition

of high fidelity models of sensors used onboard Bluebird. Additionally, Kalman filters

were designed in order to provide optimal state estimates. Finally, the performance

cf the controller was evaluated in simulations with the full nonlinear model.
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II. DEVELOPMENT OF THE DYNAMIC
MODEL

The development of an integrated guidance, navigation, and control system

required a high fidelity nonlinear model of the aircraft dynamics. The discussion

begins with an explanation of nomenclature, abbreviations, and a definition of frames

of reference.

A. REFERENCE FRAMES

Three different reference frames are used in this report. They are:

"* Local Tangent Plane or Inertial Reference Frame

"* Body-Fixed Reference Frame

"* Wind or Flight Path Reference Frame

1. Local Tangent Plane Reference Frame

The position of the air vehicle must be maintained with respect to the local

tangent plane coordinate system. This coordinate &ystem is formed by extending a

ray from the center of the earth to its surface. A plane is attached tangent to the point

of intersection of the ray with the Earth's surface. While it is somewhat arbitrary, for

our purposes here it will be convenient to define the positive x direction as pointing

east, the positive y direction as pointing north, and the positive z direction as pointing

up. This is depicted in Figure 2.1.

For the purposes of this development, the rotation of the earth and its

associated Coriolis' forces can be ignored and the local tangent plane reference frame

4
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• "equator

Figure 2.1: Local Tangent Plane Coordinate System

can be considered to be an inertial reference frame. In this work, {I} is used to

represent the inertial reference frame.

2. Body-Fixed Reference Frame

The body-fixed reference frame is a right hand orthogonal system with

the origin at the center of gravity of the air vehicle. The positive x direction points

towards the nose. The positive y direction points out the right wing and the positive z

direction points towards the bottom of the air vehicle. The velocity of the air vehicle

with respect to the inertial reference frame, resolved along the x, y, and z axis of the

body-fixed reference frame, are termed u, v, and w, respectively. The angular rate of

rotation of the air vehicle with respect to the inertial reference frame, resolved in the

body-fixed reference frame, are called p, q, and r, respectively. Positive values for the

forces, moments, angular rates, and linear velocities in the body-fixed reference frame

are shown in Figure 2.2. The abrieviation, {B}, is used to represent the body-fixed

reference frame.
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Figure 2.2: Body-Fixed Coordinate System [Ref. 11]

3. Flight Path or Wind Reference Frame

The wind reference frame is also a right hand orthogonal system with its

origin at the center of gravity, c.g., of the air vehicle. The x axis is aligned with the

velocity vector of the air vehicle. The orientation of the wind reference frame with

respect to the body-fixed reference frame is defined in terms of the angles a and P.
The equations for a and P are given below.

a = tan1 '(W/t) (2.1)

and

= ain-'(v/V) (2.2)
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where the vectors u, v, w, and V are velocity components of the air vehicle defined in

Figure 2.3. The abrieviation, {W), is used to represent the wind reference frame.

"W6

U

I jQ

9J,-

Figure 2.3: Wind or Flight Path Reference Frame [Ref. 11]

B. COORDINATE TRANSFORMATIONS

In order to use these three coordinate systems, one must be able to transform

between them freely. The Euler angles, 4), 0, and IP, termed roll, pitch, and yaw,

are defined in order to express the orientation of the body-fixed reference frame with

respect to the inertial reference frame. For the purposes of this development, a 3-2-1

Euler angle transformation will suffice as its singularity occurs at 0 equal to 90 de-

grees. The 3-2-1 transformation is given without explanation but a good development

of Euler angle transformations in general can be found in [Ref. 6]. The nature of

the angular rotation is more apparent when the transformation is expressed as the

7



product of three rotation matricies. In the case of a 3-2-1 rotation sequence, the three

matrices in Equation 2.3 correspond to rotations about the yaw, pitch, and roll axes

of the air vehicle. Of course, the three matrices can be multiplied out for an analytic

result contained in a single matrix, although the resulting matrix is somewhat busy

to inspect. In any case, the transformation between a free vector resolved in the in-

ertial reference frame and the same vector resolved in the body-fixed reference frame

is given by:

well int 0o o 0 o 0 0 1
ZV= i n - 'k c [P 0 ]F 0 coo 0 sinO ]V (2.3)

0 0 1 sne 0 CosO 0 -sin4 coso

where ZV is a free vector resolved in {I} and VV is the same vector resolved in {B}.

The inverse is also defined. Conveniently, since the transformation is orthonormal,

the inverse is simply the transpose of the rotation matrices shown in Equation 2.3.

Not all, transformations, however, are orthonormal. Of particular interest is

the case of angular rotation rates. The body-fixed reference frame's angular rate of

rotation with respect to the inertial reference frame can be related to the rate of

change of the Euler angles by a transformation matrix. The development is straight

forward and is fully explained in [Ref. 11]. The final transformation matrix from p,

q, r to the time rate of change of the Euler angles, 4, 6, 4, is given by:

[1= : :co -c stan ][ q (2.4)
4 0 sin#fewO cost sec r

By integrating Equation 2.4, the time history of the Euler angles can be obtained.

Aerodynamic forces and moments are often calculated using stability and control

derivatives defined with respect to the wind reference frame. The angles, a and P,

define the orientation of the wind reference frame to the body-fixed reference frame.
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Therefore, a transformation matrix can be obtained that relates a free vector, such as

lift or drag, resolved in {W} to the same vector resolved in {B}. The transformation

is expressed as:

cooa coo. -cooasin j -sina a
BV I sin coso 0 WV (2.5)

sin acos• -sinasin• cosa I

where BV is a free vector resolved in {B} and WV is the same vector resolved in

{w}.

C. NOTATION

Some standardized abbreviations will simplify the development of the nonlinear

kinematic model of the air vehicle. This short-hand is used in the field of robotics

where multiple frames of reference are common [Re.e 5].

"* 1Pq represents the position vector from the origin of the local tangent plane to

the center of gravity of the air vehicle.

"* B v and Bav represent the velocity and acceleration, measured at the center of

gravity of the air vehicle, with respect to {I}, resolved in {B}. The components

of B vv are commonly termed u, v, and w.

"* Ivv and rac represent the velocity and acceleration, measured at the center of

gravity of the air vehicle, with respect to {II, resolved in {I).

"* B'B is the angular velocity of the {B) coordinate system with respect to {I},

resolved in {B}. The components of BWB are commonly termed p, q, and r.

"* 1wB represents the angular velocity of the {BI coordinate system with respect

to {I}, resolved in {I }.
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B •R represents the transformation matrix used to express a free vector resolved

in { B}, in {I). The inverse is represented by OR

* &R represents the transformation matrix used to express a free vector resolved

in {W}, in {B}. The inverse is represented by 'R.

"* EP and EN denote the total external inertial force and moment acting on the

body resolved in {B}.

"* 'F and 'N denote the total external inertial force and moment acting on the

body resolved in {I}.

"* EL is the inertial angular momentum of the body resolved in {B}.

"* 'L is the inertial angular momentum of the body resolved in {I}.

* Given a vector v, its derivative with respect to {B} is denoted as A(v)

and its derivative with respect to {I} is denoted as (6)

D. RIGID BODY EQUATIONS OF MOTION

In general, an avionics suite on a modern air vehicle utilizes a strapdown IMU.

A strapdown IMU, as the name implies, maintains a constant orientation in the body-

fixed reference frame. The output of the sensors on the IMU are resolved in {B}.

Therefore, among other reasons, it is most convenient to develop the equations of

motion of the air vehicle in the body-fixed reference frame.

1. Linear Motion

An application of Newton's Law to linear motion of a body states that

the total external force applied to a body is equal to the mass of the body times its

inertial acceleration. This could be written in the inertial reference frame as:

10



'F m 'a,

where

=a = e, (2.6)

o in the body-fixed reference frame as follows:

'F = moa

= MB

= m a6,. (2.7)

Coriolis' theorem can be used to relate the inertial and body accelerations of the air

vehicle as follows:

d91a+ B WB aIV (2.8)

where the difference in the derivatives is explained in Chapter II, part C. Equation 2.8

can be substitued into Equation 2.7 in order to obtain the desired expression for the

sum of the external inertial forces resolved in the body-flyd reference frame.

dFB B B
BF = m( vV + We X uVC)

= mdVC + m (BwB x EBV). (2.9)

2. Angular Rotation

Euler's law for the conservation of angular momentum at the center of

gravity states that:

11



1L_ =Ncg, (2.10)

where ILq is the angular momentum of the air vehicle with respect to {I} and IN,,

is the total moment applied to the air vehicle. Equation 2.10 can be written in the

body-fixed reference frame as:

L,. = BR[Ncg. (2.11)

Coriolis' theorem can be used again to expand a'4 obtaining:

dL_ 1BLq +EWBXBLCU. (2.12)

It can be shown that the angular momentum, BLq, of the air vehicle is the product

of an inertia tensor, defined as JB, and the body's angular velocity, BWB, where we

ignored all spining elements. Substituting this definition of BL, into Equation 2.12,

results in:

E dE x JsB (2.13)

Recal that '4 fi FNICV =B Nc. Using this relationship, Equation 2.13 can be

equivalently expressed as:

d dCO = "W(JBBwB) + Bw, x JE'WB (2.14)

3. External Forces and Moments

Equation 2.9 and Equation 2.14 from the preceding sections can be com-

pactly expressed as follows.

12



EF Bx (2.15)
EN •WEB + EWB ×X JBWE •

By bringing derivative terms in Equation 2.15 to the left hand side, we obtain,

d[WB = -F WExEV + rBN (2.16)
J -J-1 EWE X JEEWE + Jj1"N

Next, the forces and moments in Equation 2.16 can be expanded as follows:

B EF EBF0RAVITATIONAL +'"FPROPULSIVE + BFA1RODYNAMIC
EN BNPRoPULSIVG + BNARODYN Ic (2.17)

where
B&PAVrTAIONAL = force due to gravity

p l = force due to engine's thrust
BFzjoDYNAI = force generated by aerodynamic surfaces
BNpopuLarvz = moment generated by engine's thrust

SNzjvDyNAzt = moment generated by aerodynamic surfaces

The gravitational force expressed in {I} is given by:

Z~aRv•,= I .o

where "g" is the gravitational constant. Then

EFouvzn, = BRlFGaRAVn. (2.18)

The expansion of the propulsive forces and moments is simplified by consid-

ering the case of centerline thrust. In that case, no external moments are generated,

i.e., BNPRoPuLSrvs = 0, and the propulsive forces can be expressed as:

BF = [0' 1 (2.19)

0

13



where T represents the thrust of the powerplant.

Aerodynamic forces and moments are commonly calculated using nondi-

mensional stability and control derivatives. These derivatives are obtained by approx-

imating the aerodynamic forces and moments acting on the air vehicle using a Taylor

series expansion about a given trim point. Typically, values for these derivatives are

available for the first order terms of the expansion only. Sometimes, a few second

order terms are available, such as the terms associated with & and 4 [Ref. 7]. All

other higher order terms are usually ignored in this approximation.

In general, the aerodynamic forces and moments acting on the air vehicle

are computed as follows. The nondimensional stability and control derivatives are

dimensionalized by multiplication by the appropriate constants, such as wing span,

dynamic pressure, chord, etc. The dimensional derivative is then multiplied by the

perturbations of each aerodynamic variable or control deflection from its nominal

trim point. The summation of the forces and moments due to all of the aerodynamic

variables and control deflections, in addition to the trim value of the forces and

moments, results in the total aerodynamic force and moment acting on the air vehicle.

4. The State Space Representation

In order to implement the dynamic model in a state-space form suitable for

numerical simulation, the states of the model need to be chosen. This is somewhat

arbitrary and many choices will work so long as consistency is maintained in the

approach.

As was evident from the development of the rigid body equations of motion,

the body-fixed reference frame is the most convenient coordinate system in which to

define the states. The first three states are defined as the inertial velocity of the air

vehicle resolved in the body-fixed reference frame. These are abrieviated as u, v, and

14



w or more compactly as Bv,. The fourth through sixth states are defined as the

angular velocity of the air vehicle with respect to {I} resolved in {B}. These are

abrieviated as p, q, and r or more compactly as 'wB.

Control inputs are represented by the vector A:

A = [R, 6,, ] (2.20)

where 6., 4, and 6. are the elevator, rudder, and aileron inputs, respectively.

Control inputs for the throttle are represented by b,.

Typically, the terms in the Taylor series expansion for the aerodynamic

stability derivatives are partial derivatives with respect to u/U, a, 8, p, q, and r,

where U is the magnitude of the air vehicle's velocity vector and a and # are the

angles defining the orientation of {B} with respect to {W} [Ref. 3]. The last three

variables, p, q, and r, are states of the model. The first three can be represented as

a combination of states in the model as follows. First note that,

0 B ,(2.21)
U0

and for small values of angles a and f, a is approximately equal to w/U and 0 is

approximately equal to v/U.

It turns out, the stability derivatives can be placed in matrix form as

follows:

,,CL, CL, CL. CL, CL, CL,
Cyr, CY, CY. Cy, C,, Cy,

8C CDu CD, CD. CD, CD, CD,.
C.• CI, C1. C1, C1, C.,
CiU Cm, Cm. Cm, Cm, C,.

Similarily, for the control derivatives:
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CL,. CL,- CL,.
Cy,. CY, Cy,.

8C = CDs. CD4  CD,.

- C14* C1,, Cie.
CM,6. C.4 CM,.
Ci,. Cor Cf,.

where z' is the vector composed of u/U, a, 6, p, q, and r. Now the aerodynamic

forces and moments can be expressed as follows:

[BFAuRo 1 O {F, + C+ .+ LC (2.22)
BNABR . B RIS~aEo =•'9 OR Ja -F'zc ,+ 8 .,M ;, + A},O

where M', q, and 9 are matrices used to dimensionaiize the stability and control

derivatives and convert the state vector, z, to z':

z= u v w p q r]

S= dynamic pressure,

S= diag{-S, S, -S, Sb, Sc, Sb},

"= diag{1/VT, 1/VT , 1/V, b/2VT, c/2VT, b/2VT},

and
•,= If,,

k = diag{O,c/(2VT), b/ (2Vr), O, O, O}.

Equation 2.16 can now be further expanded using expressions of the forces

and moments derived above.

16



dBVCj 1  _BjBX 0 B VCR 1
[Be i- 0 -BJBl(BWBx BJaBBW) L B WI

BF S ], (2.23)

where [BF [BOFGRAV] + [ BFP'RoP ]tt
{CF +U o]-{c +wM + Af"+ CA} } (2.24)

Notice that there is a state derivative term on the right hand side of Equa-

tion 2.23 due to the second order terms in the Taylor series expansion of the aerody-

namic forces and moments in Equation 2.24. By bringing it to the left hand side of

Equation 2.24 and combining terms, we obtain:

d B[V ] X_1 { [[-BWBX 0 EJEw)] +

B~ 0 -j +
Mi.TBjI[ *v]+ M_1{ [BFoGv] +

[BFPiROP] btt. + B T,T(CFO A ,(.5
where:

WT= 0w R and M = B 0BJ]

and

X = Z I- .Tqg-•-k. (2.26)

Equation 2.25 expresses the derivative of the first six states of the nonlinear model

in matrix form. It is solved in the user defined MATLAB Fcn block, state-deriv.m,
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which is available for inspection in Appendix A. The physical parameters specific

to Bluebird are stored in a MATLAB .m file, Bluebird-data.m, and are called from

within the function, state-deriv.m. In order to change the vehicle being modeled,

one simply changes the constants in Bluebird-data.m.

Next, the Euler angles were added as the additional three states of the

model. The time history of the Euler angles is defined in Equation 2.4 and written

in compact form as:

A = S(A)BwB, (2.27)

where

and
1 sintane costtaneOS(A)= 0 co0 -s
0 sint sece coso .ece

The user defined MATLAB Fen block, eul.m, solves Equation 2.27, the details of

which can be found in Appendix A.

Finally, the inertial position of Bluebird can be computed as follows.

AP1 =" AV = B"RBV,. (2.28)

The rotation matrix, rR, is implemented in a MATLAB Fcn block,

posb&i.m, in order to convert the vector Bv% to the vector 'va%. The vector IVey

is then integrated to obtain a time history of the position of the air vehicle in the

local tangent plane. To increase fidelity of the simulation, a first order model of the

four actuators, 6dmt.v, 6rjdu, 6 .ileron, 6 thw.oftl, is included with a time constant

of 1/12. The resulting nonlinear dynamic model now has sixteen states which are
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computed using Equations 2.25, 2.27,and 2.28; summarized here for clarity:

states=[u v w p q r @ e 1P Xpos Ypo Zpo• 6.. 6,, 6., ,.. 1 ]

LBVT BwB AT PT ATI T,

d By 1 [ BOaX 0
J B 0 -- J(BW B BJBBWB) j +

Mi1 .rqIBM IV[: ] + MT, { BFGAV] +

[BPPOP 6,. +w.Tq(CFO + "CPA) } , (2.29)

A = S(A)8 wB, (2.30)

I, = DR"VB . (2.31)

The SIMULINK diagram of the nonlinear model is shown in Figure 2.4.

5. Mrim and Linearization

For linear controller design, the nonlinear equations above must be trimmed

and linearized for a typical cruise flight condition for Bluebird. A SIMULINK tool is

available which can be used to find equilibrium points of nonlinear dynamic models.

The user specifies which states and control inputs are to remain fixed along with

their stationary values and the trim routine searches for values of the state and input

vector for which the derivative of the state vector equals zero. With the trim condition

known, another SIMULINK tool perturbs the states around the specified trim point

in order to find the rate of change of the states and control inpus -Jacobian). The

resulting linear model is returned in state space format. Since Equation 2.28 can only
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Figure 2.4: SIMULINK Nonlinear Sixteen State Dynamic Model of an Air

Vehicle

be trimmed for v, = 0, not a typical flight condition, we will trim Equations 2.25

and 2.27, and then include Equation 2.28 for linearization.

We are interested in trimming the model in velocity. Hopefully, the deriva-

tive of the position states will never equal zero in flight. Also, in trim, the control

inputs are equal to the actuator positions. Therefore, actuator states are also removed

from the nonlinear model. The nine state nonlinear model of Bluebird used for trim

is shown in Figure 2.5.

A typical cruise flight condition for Bluebird is given by:
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Figure 2.5: SIMULINK Nonlinear Nine State Dynamic Model of an Air

Vehicle

"* flight speed equal to 73 feet per second

"* flight path angle equal to zero

"* wings level attitude

The nonlinear model depicted in Figure 2.4 was trimmed at this condition.

The trim values of the nine states, u, v, w, p, q, r, 0, (, and T, and the four

control inputs, 6&, I, 6,, and 6t were returned. While the sixteen state nonlinear

model cannot be trimmed in position, it can be linearized at an arbitrary position.

The origin of {I} is conveniently chosen. These values were then used to linearize

the complete nonlinear model, including position and actuator states. The resulting
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linear model of Bluebird and numerical values for the trim condition are included in

the Appendix B.
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III. THE LINEAR QUADRATIC REGULATOR
DESIGN

The previous chapter developed a nonlinear model of Bluebird, which was used

to derive a linear model for a cruise flight condition. In this chapter, a linear dynamic

controller is developed to provide trajectory tracking for the linear model. LQR

methodology was selected to design the controller. Based on design requirements, an

intuitive means of manipulating the LQR gains is presented. See [Ref. 9] for details.

The following is a brief review of the properties of an LQR controller utilized in this

design process.

A. LQR OVERVIEW

Consider the linear system

i = Ax+Bu
Z = Ciz + Diu (3.1)

where z E/P, u E R" and z E RP.

Suppose CT1J = 0 and D 1 is full column rank. Then,

zTZ = ZTCTCIZ + uDTD•1 u.

Define a cost, J, as follows:

J = J (z'z)d = J (zTCTCz + UT DTD1 u)dt (3.2)

and let Q = CTCi, and R = DTD,. Note: Q !0 and R > 0.

Assume (C1, A) is observable and (A, B) is controllable. Consider Figure 3.1.

The standard LQR problem is to find a controller, u = K(s):, such that the feed
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back system in Figure 3.1 is internally stable and J is minimized. It turns out, one

such controller uses a constant gain, u = -Kz, where

K = -/R-BTP, (3.3)

and P solves the Alegbraic Riccatti Equation:

ATP + PA - PBR-iBTP + Q = 0. (3.4)

Figure 3.1 shows the feedback interconnection of the plant C and the controller K.

Here the inputs w can include commands and disturbances.

gcl

9 C1

K

Figure 3.1: Standard LQR feedback configuration.

It turns out that the controller, K, has guaranteed simultaneous phase and gain

margins of no less than 60 degrees and 3dB, respectively [Ref. 121. Furthermore, the

controller has asymptotic properties which are exploited in the design process and

are discussed next.

Define the Hamiltonian matrix, H, as:

H A -BR"IBT]H= Q -AT

Let T be given by:
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T= 1PI

then:

where P solves the Riccatti equation, Equation 3.4.

Note,

THT =[A- BR"'BTP -BR"BTP 1
0 -AT + PBRIBT J

Therefore the eigenvalues of H are the roots of the following polynomials:

det(aI- H) = det(aI- -' HT) = dt(aI- A + BR-'BTP)det((sI + AT- PBR" BT)

Clearly, the eigenvalues of the Hamiltonian consist of the eigenvalues of 9 a and their

unstable reflections about the imaginary axis. Let R = pRI , Ri > 0, then;

det(sI -H)= sloA (l/p)R/"B
T ]

It can be shown that the det(jI - H) can be equivalently expresses as [Ref. 9]:

det(sI-H) = -1"det(eI-A)det(-sI-A)det(I+(l/p)Rl••BT(-sI-AT)-lCrTC, (sI-A)-' B)

Let

O(s) = det(aI - A)

and

0(9) = CI(eI - A)-'B.

Then

det(sI - H) = -l'#(s)k(-s)det(I + (llp)Rj1 9(-a)e))). (3.5)
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The SISO example will best demonstrate what occurs to the eigenvalues of 9 1

as p is varied from 0 to oo. Let

0(9) /(8)/,(S)

where Ob(s) are the zeros of O(a). Then,

det(sI - H) = -l"#(o)*(-,)(I + (llp)&(,)&(-,)l•(a)#(-,)).

It follows that the eigenvalues of H are the roots of,

0(j)0(-s) + (l/p)i(e)k(-a). (3.6)

Consider the feedback system shown in Figure 3.2. This is standard configuration for

SISO root locus analysis and its characteristic equation is:

O(O)(-) + (i/p)b(,)M(-8),

exactly the same as Equation 3.6. Since we know that the stable eigenvalues of H

are the eigenvalues of g d, standard root locus techniques show that

as p goes to 0 VRW. 91:

e p eigenvalues of 9 , go to the stable zeros of C1(sI - A)-IB or the stable

reflection of the unstable zeros of C1(sI - A)- 1B, where p is the number of

zeros of CI(aI - A)-'B.

* n-p eigenvalues of 9 d go to -co in Butterworth patterns.

as p goes to cc

e n eigenvalues of 9 a go to the stable eigenvalues of A and the stable reflections

of the unstable eigenvalues of A.
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Figure 3.2: Feedback Configuration for Root Locus Analysis.

B. DESIGN REQUIREMENTS

These properties of an LQR controller were utilized in a design process in order

to meet the following design requirements.

1. Zero Steady State Error

9 Achieve zero steady state values for all error variables in response to ramp

commands in position along the x, y, and z inertial axes. Note that a ramp

command in postion corresponds to a constant heading, constant velocity

trajectory.

2. Bandwidth Requirements

"* The input-output command response bandwidth (command-loop band-

width) along any of the three command channels should be no greater

than 1 radian per second and no less than 1/10 radian per second.

"* The control-loop bandwidth should not exceed 12 radians per second for

the elevator and aileron actuators, and 5 radians per second for the throttle

actuator. These numbers represent 80 % of the corresponding actuator
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bandwidths and shall ensure the actuators are not driven beyond their

linear operating range.

3. Closed Loop Damping

* The dominant dosed loop eigenvalues should have a damping ratio of at

least 0.7.

C. THE SYNTHESIS MODEL

The synthesis model is the primary interface between the control design

and the LQR algorithm. At the heart of the synthesis model is a linear model

of Bluebird developed in Chapter II.

Bluebird has four control inputs, namely elevator, rudder, ailerons, and

throttle. The elevator and throttle are natural choices for controlling x and

z position in steady state. The remaining two control inputs could be used

to control the lateral variable (y position). Both rudder and aileron provide

means of generating accelerations in the lateral plane. In fact, rudder is more

effective at generating sideslip than aileron. In the linear plant, lateral position

is the double integral of lateral acceleration. Subsequently, the resulting LQR

controller will attempt to use rudder to null out errors in lateral position, i.e.,

to turn the plane. However, the desired controller response is to bank to turn

using ailerons and to use rudder for turn coordination. Furthermore, in the

presence of wind, it is desired that Bluebird fly wings level, crabbed into the

wind, rather than use a wing down, top rudder technique. For these reasons,

the rudder was removed as a control input to the linear model.

As can be seen from Table 3.1, the dutch roll mode of Bluebird is lightly

damped. This light damping of 0.111 could pose a performance problem. Since
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rudder is available and not used in the design of the trajectory controller, the

nonlinear model of Bluebird was modified to include a yaw damper for improved

dutch roll damping. Yaw rate was fed back to the rudder through a constant

gain block with a value of 0.55. Additionally, the rudder was removed as an

external input. Note that Bluebird is still fully controllable with the remaining

three control inputs.

TABLE 3.1: EIGENVALUES OF BLUEBIRD

Mode Frequency Damping
Longitudinal red/see _

Short Peniod 5.9 0.735
Phugoid 0.497 0.0344

Laterml-Directional
Dutch Roil 2.4 0.111

Spiral 0.0384 -1
Roll Responn 4.572 1

The nonlinear model of Bluebird with three inputs and integral yaw damper

was linearized, as per Chapter II, returning the linear model,

S A z+Bu (3.7)

where

X= [I u vw p q r 0 e o IF posx zp Z, s &, 6., .. 6,,] T

and

This linear model was used in the LQR design. The eigenvalues of Bluebird

with a yaw damper are given in Table 3.2 where it can be seen that the dutch
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roll mode has been damped out. Note that the number of states decreases to

fifteen since the rudder actuator state was removed.

TABLE 3.2: EIGENVALUES OF BLUEBIRD WITH YAW DAMPER

Mode Frequency Damping
Longitudinal rad/sc _

Short Period 5.9 0.735
Phugoid 0.497 0.0344

Laterl-Directional
Dutch Roll 2.35 0.5

Spiral 0.1788 1
Roll Response -4.5686 1

Consider Figure 3.3. Here K is the controller to be designed, G is the

linear model of Bluebird, and the block, S, within the dotted line is the synthesis

model.

The signal, w, represents the commanded trajectory inputs:

to = [ Xpos.,1 Ypos.,i Zpog.,, . E)., e..d I' jT

The signal z1 represents the linear and angular position states in the linear

model.

S=[XPOs Ypoa Zpos ' @ %IT

The signal e represents the errors between the commanded and current trajec-

tory. The signal z is comprised of the outputs of the matrices, Q, and R. Since

zero steady state error is desired while tracking a ramp command in inertial

position, two integrators were placed on each error signal. This also ensures
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Figure 3.3: Synthesis and Analysis Model

perfect trackihr of constant heading trajectories in the presence of a constant

wind disturbance. Thus Q was chosen to be;

The values of c, were chosen to place six transmission zeros from u to z at

appropriate locations. If they are well chosen, six poles in the closed loop plant

will move very near to the placed transmisssion zeros. With that in mind, the

transmission zeros were chosen as appropriate target locations for the poles

added by the addition of the error states.

The q• weightings are used as a mechanism for obtaining the desired

command bandwidth. Increasing the value of q== increases the relative propor-

tion of that error state in the regulated output vector z. The resultant LQR

gain increases the command bandwidth in that channel in order to move the

controlled state to its commanded value more quickly.
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The matrix R is a constant diagonal matrix required to be full rank. Since

the plant ! has three control inputs, R is of the form,

=( r. 0 0)

R = 0 r22 0
0 0 r33

The elements of R are used as a mechanism for selecting the control bandwidth.

An increase in r, increases the relative proportion of that actuator energy in the

regulated output z. The resultant LQR gain decreases the control bandwidth

of that control input.

D. THE DESIGN PROCESS

Design requirements given in the previous section are SISO in nature.

They are expressed as bandwidth limitations of the individual actuators and

rise time and damping characteristics along the command channels. Note, the

rise time is inversely proportional to the command bandwidth. The following

LQR design process provided a means of obtaining a multivariable solution to

achieve SISO design specifications.

With an appropriate linear representation of Bluebird and a synthesis

model that incorporated well placed transmission zeros, the design "knobs"

were adjusted in order to meet performance requirements. The design "knobs"

are the elemental weightings, q.1, and r., in the Q and R matrices. The design

process iterated through the following steps.

1. Initially let q. equal 1. Iteratively determine weights for R to sat-

isfy control loop bandwidth requirements. Increasing r.. decreases the control

bandwidth along that channel.

2. With R from step 1, iteratively determine weights for q., to satisfy
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command loop bandwidth requirements. Increasing q,, increases the command

bandwidth along that channel and decreases the rise time.

3. If it is required to increase the damping of a lightly damped mode, use

an eigenvector decomposition to determine the primary states affecting that

mode. Include a weighting on the derivative of those states in the output z.

4. Ensure that control-loop bandwidths are still satisfactory with the

values of q. in step 2. It is possible that all of the performance requirements

are not acheivable within control bandwidth limitations.

5. Connect the LQR controller to the linear plant and evaluate the per-

formance in terms of command response and disturbance rejection.

6. Confirm satisfaction of other design requirements, including damping.

7. if any step is unsatisfactory, go back to the synthesis model and make

appropriate changes. Transmission zeros may need to be added, moved, or

deleted. Synthesis model outputs may need to be reevaluated.

Bode plots were used to determine compliance with the requirements.

After five iterations through the seven step process, the following values for Q

and R matrices resulted in a controller design that met design requirements.

0.50 0 1 0.2 0.01Q= 0 1 0 1°C& °';5
0 0 1 1 L•40.2

5000 0 0

R=t 0 1000 0
0 0 1000

The transmission zeros created in the sythesis model are shown in Ta-

ble 3.3.
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TABLE 3.3: TRANSMISSION ZEROS OF SYNTHESIS MODEL

Channel c,1 c.2 c.3 Freqency rad/ ec) Damping
Xy, 1 0.2 0.01 0.1 1
Y1,. 1 0.4 0.0625 0.25 0.8
Zv 1 0.4 0.0625 0.25 0.8

E. LQR CONTROLLER PERFORMANCE

The eigenvalues of the feedback interconnection of the plant and controller

are given in Table 3.4. It is apparent that the zeros created in the synthesis

model were well placed and attracted the integrators created by the addition

of the error states. There are two sets of lightly damped poles. These do not

present a problem because their frequency is an order of magnitude greater

than the frequency of the eigenvalues associated with the trajectory commands.

Notice that the actuator poles did not change, indicating that the control band-

widths were slower than the actuator bandwidths. Actuator models provide a

simple means of determining if the control bandwidths exceeded the actuator

bandwidths.

Figures 3.4 through 3.6 depict the control-loop bandwidths for the eleva-

tor, aileron, and throttle. The cross coupling between longitudinal and lateral

flight controls was so slight that it is not shown due to scale.

Figures 3.7 through 3.9 depict the command-loop bandwidth for step com-

mands in inertial position. Notice that there is some coupling between X com-

mand and Z response; the rest are essentially uncoupled.

A summary of the resulting command and control bandwidths achieved

is presented in Table 3.5.
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TABLE 3.4: EIGENVALUES OF THE FEEDBACK SYSTEM

Mode Frequency (Tad/sec) Damping
* "xs Response 0.08 0.92
* "axi Response 0.21 0.77
Z Axis Response 0.21 0.77

elevator 12.1 1.0
aileron 12.3 1.0
throttle 12.4 1.0

otes0.62 0.79
____________1.90 0.35

2.17 1.0
____________2.35 0.18

___________2.26 0.68

___________4.54 1.0

____________5.86 0.74

-0 414.. . :.. . . ...

0 thioUle

-60...... .

43 0 10.. 10... 10............

Frequency (rad/sec)

.3.0 .............

-540.......... ...... ....... .............. . . .

10'11 10 10

Frequency (red/ec)

Figure 3.4: Control-Loop Bandwidth: Elevator Channel

The response to two types of trajectory commands is of interest. The first

is the reponse to a ramp command in Y position. This corresponds to a change

in the heading of the commanded trajectory. The response in terms of angle of

bank and heading activity is shown in Figure 3.10. The controller achieves the
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Figure 3.6: Control-Loop Bandwidth: Aileron Channel

desired result of turning Bluebird to the required heading. The nonminimum,

phase response of the heading state is due to adverse yaw.

The response to a ramp command in Z position corresponds to the re-

sponse to a change in flight path angle of the commanded trajectory. Figure 3.11
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Z Channel

10 0, 10 110*
Freqluency (rai~eec)

0C... .. .......

-36 . .... .............. .. ...
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Frequency (rmd~mec)

Figure 3.9: Command-Loop Bandwidth: Z Position Channel

TABLE 3.5: COMMAND AND CONTROL BANDWIDTHS

TJIWBea Frequency

Elevator4.0
Aileron____ 5.0

Throttle 1.0

*_________ 0.75

*YAxis 1.0
Z "is 1.0

equally. The wind disturbance begins at t = 0.
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IV. CONTROLLER IMPLEMENTATION
ON THE NONLINEAR PLANT

In Chapter III, a linear controller was designed to control the trajectory

of an air vehicle. However, this controller cannot be implemented, as is, on

the nonlinear plant. It would only be effective for commanded trajectories that

represent relatively small perturbations from the specific trajectory for which

it was designed. Intuitively, it is clear that the dynamics of the plant do not

depend on the heading angle xI. Furthermore, the orientation of the force of

gravity is the only change in the dynamics of the air vehicle due to changes in

Sor E. It turns out that these issues were addressed in [Ref. 10], where a new

methodology for implementing cwntrollers on nonlinear plants is proposed. The

method involves differentiating some of the inputs to the controller, hence the

term, D-implementation.

This chapter begins with a general description of the structure of _D-

implementation. Furthermore, the specifics of its implementation on the non-

linear model in SIMULINK are discussed. Next, the fidelity of the nonlinear

simulation is improved by incorporating output feedback. This step involves

inclusion of high fidelty sensor models and Kalman filters. Finally, all of the

pieces of the complete nonlinear simulation are brought together in SIMULINK.

A. D-IMPLEMENTATION

Using the development in ..Chapter II, the vehicle dynamics can be ex-

pressed in state space form as follows:
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w. !V(BvvBwBu) +. R(A)g

dtB

dit- Pv =" R(A)Bv,d =•O
d A = s(A) B WB, (4.1)

where f, and fJw are continuously differentiable and u E *96 denotes the vector

of control inputs. To condense the notation, we define

nB Ve , ,= f"(.) Is

M-() := I 01,0L(.) := [0 S(.) '

where zi E Rs, z2 E Re and L E R&. Furthermore, we define

' := ] Ele (4.2)

as the vector of linear and angular position commands that Bluebird must

track. With this notation, the dynamics of the augmented plant can be written

as follows:
4 = fA(z ,U)+ f2 (,)
ip = L([ 1(2-).
ez = [I 01(y2 - r) (4.3)e2 = [0 IJ(y2 - r)
y, = h(z,, u)
Y2 X=

where y, and y2 are the available measurements, el and e2 are the trajectory

errors separated into linear and angular components. Notice that L is only a

function of the orientation vector A = [0 I]z,. For simplicity of exposition, we

have not included any extra dynamics for the actuators or sensors.
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The set S of trajectories where the plant 9 is expected to operate is given

by

:= {(X qz,,uo, ro) [ 1,o E r},[ = r0  ,]oE )

fA(:o(,zO., o.) + f2 (X,) = 0
where r corresponds to the set of prescribed linear and angular positions of

Bluebird. This is a broad definition of trimmed flight. Notice that it does

not preclude the presence of an inertial acceleration due to centripetal force.

As usual, we restrict the angular positions to some subset of [-x/2, r/2] x

(-r/2,w/2) x [-w/2,v/2], as the inverse of L(.) is not defined at 0 = W/2-

Notice, from the definition of z, E E and equation (4.1) it follows that:

DwB E -+D wB = constant

A EC- A = consant.

Notice that the set C is easily parameterized by xz, = ro E r. Given

(ra, IoUo, ro) E 6, we obtain

Y10 : h(X', IUO)

Y/2o :-- po

el V, 0= (Y ol~ - ,'o) :0

e. =[0 I](Y/o - to) := 0..

Let bz,, 6zb,, bu, 6l/, 6V2, br, be, and 5e2 correspond to small per-

turbations of zx, z., u, 11, y/2, r, el, and e2 about the nominal values

z", z,,, uo, Ylo, yl, , ro, ea,, and e2. respectively. The family of lin-

earized models associated with the rigid body 9 and the set S is defined as
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91 i (9t o), ro E r), where

6zv = A16xz + A26zp + B6u
6:, = 6z=. + A4bzP
6by = C16zx + D16u91 (ro): 6Y2 6,4
6e, [I 0](6b2 - 6r)
6e2  [0 1](6Y2 - 60r)

o =V(ZOIro,Uo),

and

A= 0 g x,8 R(Ao)S-I(Ao)] A0[ -1R(Ao)Vo x S-(Ao)]

(4.5)

Matrices A2 and A4 were derived using the identity in Appendix C. The intent of

this derivation is to isolate the plant dynamics that are a function of Ao. Notice

that A2 represents the contribution of the force of gravity to the dynamics of

Bluebird and A4 represents the sensitivity of Bluebird's trajectory to changes

in the air vehicle's spatial orientation.

Let ro E 6 be given. Define

bi = A16z, + A26zp + B6u
6z, 6=, + 462,
by, C1,6x + D16u

Qi0 (to)- 6Y2 6:p (4.6)
6e1  [1 01](6Y2- 6)
6e2  [0 I](6y2 - 6r)
a o  V(:.,' To, UO),

where

A2  [0 g xBR(Ao)] A 4 =[ 0 -vo;x] (4.7)A= 0 0 , 4= 0 0 "

Notice that Equation 4.6 decribes the linear model of Bluebird used for

the design of the LQR controller in the previous chapter, where ro was chosen

as the origin of {I} with Ao equal to zero. Note, at this condition, BR(0) = I.

Recall, the structure of the controller developed in Chapter III is given by:
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=1  [662 0]T (4.8)
6u Cc16zc1 + Cab6z. + DAl6y + [D3 D,2][bel ee 2]T.

Based on X, we propose to implement the following controller for the

nonlinear plant C :

ict = BeaL-'(A)[ei OJT

.i = oC,1z + CaL-(A)[(e OJT + Deli,
K (A):= +DVL-N(A)[0 h ]T (4.9)

A = [o 0 •12
U = Z, + D,.,L-(A)[eI ]•T.

Figure 4.1 shows the block diagram of X (A). Notice that A serves as a

gain scheduling variable. As a function of A, L-1 serves to properly resolve

the trajectory error at the input to the controller. Note, the controller forms

the derivative of the measured outputs, yi. Recall, yt is the measurement of

the states X. and the dynamics of z, are essentially independent of the air

vehicle's spatial orientation or position in {I}. An integrator at the output of

the controller serves to recover the properties of the linear design. The error is

formed using the outputs 12 and the commanded trajectory r. Recall, Y2 is the

measurement of the states z,. L-1 serves to resolve this error, originally formed

in {I}, in {B}.

It turns out that the implementation of Figure 4.1 has an important prop-

erty discussed next. First we need to make the following assumptions:

Al. Dim(x,2) = dim(u) = dim(Y2 ).

A2. The matrix

[.s1-A,, Ba
-CII Ca

has full rank at .9 = 0.
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Y-1 S c

= Cci Cc2 Dc, [Dc3 hDc

Figure 4.1: Block diagram of the nonlinear controller X (A)

A3. The matrix pair (A,,, Cc,) is observable.

Also denote by T(914 XA ) : 6r -- 6y2 the closed loop linear system that

results from connecting 91. to X1 , and by T(91. ICI )(s) its transfer matrix.

Similarly, we let TI(Q, X )(ro) denote the linearization of the closed loop system

T(9, X ) at the equilibrium point determined by ro and let TI(g, X )(ro)(s)

be its transfer matrix. Then the following hold.

* the feedback systems TI(Q, X )(ro) and T(91., IC ) have the same closed

loop eigenvalues;

Ti(9 ,AIC )(to)(9) L(Ao)T(Q1. , IZC )(s)L-(Ao),

Ao =[o1]zx

Thus, the eigenvalues of the linearizations at each operating point are

preserved; furthermore, the input-output behavior of the linearized operators
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is preserved in a well-defined sense. The reader is referred to [Ref. 101 for a

complete discussion on approximations to this method that avoid using pure

differentiation. The proof of this result is contained in Appendix C.

B. D-IMPLEMENTATION OF THE CONTROLLER IN SIMULINK

In general, three steps are required to implement the linear controller

developed Chapter III on the nonlinear plant. First, the controller needs to

form the derivative of z. as per Equation 4.9. Recall, i. is equal to the vec-

tor [BVq, Bw8 ]. The first three elements of the vector, Bv,,, are available as

processed acceleration outputs from the IMU. Therefore, the controller need

not compute the derivative of Bv% since it will have it available directly. The

derivative of 5LwB is computed by the controller.

Secondly, the controller needs to act on the vectors, el and e2. The linear

position error el is formed as the difference in commanded and current posi-

tion. The vector e1L is then multiplied by the transformation matrix BR. This

effectively resolves the linear trajectory error in the body-fixed reference frame.

Along this position trajectory, there exists a corresponding trajectory of Euler

angles. Recall that z. = constant is one of the constraints on the set of tra-

jectories. This includes a broad range of flight conditions such as steady turns,

steady pull-ups, climbing or descending turns, or constant heading. While it

is natural to define the linear trajectory as a sequence of positions, it is more

convenient to define the derivatives of the Euler angles rather than the values of

the angles directly. Consider, for example, that for many trajectories of interest

in C, the components of A can be described by: ý = 0; 0 = 0; and iV = desired

turn rate. Furthermore, the relationship between the rates of change of the

Euler angles and BwB is used as a means of resolving the angular position error
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in f{B). Recall,

BWE - S 1 (A). (4.10)

Therefore, the derivative of the Euler angle states is formed and the commanded

Euler angle rate is removed to form i2. This error is resolved in {B} using

Equation 4.10. The integrator at the end of the controller recovers the effect of

the initial differentiation.

Thirdly, the required error states are formed by integrating the rotated

linear trajectory error vector el. Figure 4.1 indicates that integral action is

accomplished at the output of the controller in order to recover the original

properties of the linear design. This accounts for one of the integration steps

on the error. Therefore, only one additional integrator is required to provide

double integration action on the trajectory error el.

Figure 4.2 shows the V-implemented controller in SIMULINK, file plantl.m.

See Appendix B for a complete description. The LQR gain has been parsed into

several separate matrices for clarity of control action.

C. GENERATION OF THE TRAJECTORY COMMANDS

The commanded trajectory is specified with respect to the inertial refer-

ence frame. At this point, it is assumed that a knowledge of the air vehicle's

performance capabilities is known and that the specified trajectory is within

those capabilities provided there is no wind. The air vehicle has certain airspeed

restrictions with respect to the air mass that cannot be violated regardless of

the desired trajectory to be tracked. These restrictions typically provide lower

and upper bounds on the velocity of the air vehicle with respect to the airmass.
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An example of a lower limit is the stall speed of the air vehicle. Such limits are

usualy based on fundamental physical limitations of the airgane and a "fly-

able" trajectory can become dunflyable" under certain conditions. Therefore,

a logic block positioned between the commanded trajectory and the controller

ensures that the commanded trajectory can be flown at current flight conditions

within user defined indicated airspeed limits, shown in Figure 4.3. The corn-

manded linear trajectory enters the block as a time stamped position fix in the

inertial reference frame. Onboard sensors provide both inertial velocities from

the IMU and air mass velocities from the pitot-static system. Furthermore, a
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dual vane device instrumented on Bluebird provides both a and P measure-

ments. Note: a dose approximation to these readings could be obtained from

IMU measurements as outlined in Chapter II.

Figure 4.3: Commanded Tfrajectory Logic Block

With these measurements, the wind vector resolved in {I} is calculated as:

'W = Ratjc -• 4RwWvW (4.11)

where

wvcg= 01j
and VF is the indicated airspeed obtained from the pitot-static system.

The commanded indicated airspeed of the air vehicle, Vi-Id, is calculated as:

V-..ad =I V~~j _ WJ,
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where 'v•, is the numeric derivative of the commanded linear trajectory. If the

commanded indicated airspeed is not within specified limits, the commanded

trajectory is altered as follows. The angles 0 and 0 are calculated as follows:

0 = tan-'(v,/v.) (4.12)

and

= -(4.13)

where the components of 'v, are [v., vV, vJ]T. Note that the angles 0 and

define the commanded velocity vector's orientation in {I}.

Finally, the amount that Vt-,• is outside of indicated airspeed limits is

subtracted from the magnitude of Zv.,w, resulting in the magnitude of the new

commanded inertial velocity, termed V. V is then resolved in {I} according to:

F (9)co.(o) -cos(9)sin(b) -uin($) I
=Vn -- sin(,) CoW(M) 0 V (4.14)

[sin(O)cos(O) -sin(O)sin(b) cos(9)

where Zv1  is the new commanded inertial velocity. This command is inte-

grated and sent to the controller as the commanded trajectory. The MATLAB

.m file that implements this logic is windlogic.m and can be found in Appendix

A.

The net effect of the trajectory logic block is simple. When Bluebird runs

up against one of its airspeed limits, the commanded trajectory can no longer be

followed. A choice is made to maintain the direction of the commanded velocity

but change its magnitude. Notice that this method does not affect the turn rate

associated with the trajectory and subsequently, no processing of the angular
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trajectory commands is required. In this way, Bluebird is never commanded to

fly a trajectory that would force it to exceed the performance limits.

The performance of the trajectory logic block can be seen in Figure 4.4.

The lower limit for Bluebird was arbitrarily choosen as 63 feet per second. Blue-

bird is initially flying due north at a ground speed of 73 feet per second, crabbed

into 20 feet per second of wind from the west. The commanded trajectory turns

90 degrees to the east. Notice that the original trajectory would result in an

indicated airspeed of 53 fps while the revised trajectory results in a commanded

trajectory of 63 fps.

17 ..................................

700

7 . ............... ............. . .............. i................. .. .. .. .. .... .. .. ........

Iasc, . i - _____

o 20 40 6o so 100 120
"TIme - seconds

Figure 4.4: Example of Commanded Trajectory Revision

If the commanded trajectory is generated using a velocity rather than

position schedule, the differentiation block in Figure 4.4 can be removed. A

velocity schedule is specified in {I} as a sine wave of appropriate magnitude,

frequency, and phms along the x and y axis. The commanded ground speed

corresponds to the ma~giitude and the commanded turn rate corresponds to

the frequency of the sine function. Constant heading flight is a subset of these
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trajectories where the frequency is zero. Tuii method of generating trajectory

commands makes determining turning rate (A,,) simple. As an example, con-

sider the case of generating the velocity schedule for a circular flight pattern

at a ground speed of 100 fps and a turn rate of 0.1 radians per second. The

derivative of the commanded trajectory, ÷, parameterized by time is:

z axis velocity = 100sin(0.1t + pi/2)
y Gzia velocity = 100sin(O.It + 0)
z azis velocity = desired climb or descent rate÷ := =0 (4.15)
* =0

' - 0.1

The SIMULINK block that generates the commanded trajectory is shown

in Figure 4.5.

Figure 4.5: Generation of Trajectory Commands

53



D. STATE FEEDBACK TO OUTPUT FEEDBACK

Up until this point, the development of the tracking controller has dealt

exclusively with full state feedback. This section will detail a method whereby

the full state feedback is replaced by high fidelity models of the onboard sensors

in conjunction with Kalman filters designed to provide optimal state estimates,

using onboard sensor data.

1. Sensor Modeling

This work builds upon sensor models developed in two prior theses.

In [RV. 1], a detailed model of the inertial measurement unit, IMU, is devel-

oped. In [Ref. 2], a detailed model of the GPS unit is developed. The IMU is

a compact, lightweight, low power unit which integrates nine sensor measure-

ments in one box. These sensors are three axis accelerometers, three axis rate

gyros, pitch and roll inclinometers, and a magnetometer. The accelerometers

are instrument grade, signal conditioned, and temperature compenstated. Full

scale output is +/- 3 g's. The accelerometer's frequency response is flat past

100 Hz. However, the antialiasing inside the IMU limits the effective bandwidth

of all of the sensors to 20 Hz. An internal initialization program allows the unit

to compenstate for accelerometer bias and cross axis error. Table 4.1 shows the

specifications of the accelerometers incorporated into the sensor model [Ref. 8].

The rate gyros used by the IMU are solid state vibrating element

angular rate sensors. This relatively new technology uses no moving parts. A

piezoelectric bender element is mounted end to end but rotated at a 90 degree

angle. The element fastened to the base is resonantly driven such that the

sense element swings a reciprocating arc. Under zero angular rate conditions,

the motion of the sense element due to the drive element does not produce any
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TABLE 4.1: ACCELEROMETER CHARACTERISTICS

Acceleration Range "-2g's
Acceleration Bandwidth 20 Hz

Acceleration Bias 0.2% of Full Scale
Acceleration Scale Factor 0.2% of Full Scale
Acceleration Noise Floor 0.0005 g's

Cross Axis Sensitivity 0.5% of Full Scale

bending of the sense element. When a rate of rotation exists, Coriolis forces

cause momentum to be transfered into the plane perpendicular to the motion

of the drive element, thus causing bending of the sense element. A pressure

transducer picks up a signal from the sense element when it is bent that is

proportional to the angular rate with a phase dependent on the direction of

rotation. Figure 4.6 shows the configuration of two rate sensors mounted in a

"tuning fork" configuration. Table 4.2 shows specifications of the rate sensors

incorporated into the sensor model [Ref. 8].

Figure 4.6: Angular Rate Sensor
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TABLE 4.2: ANGULAR RATE SENSOR CHARACTERISTICS

Rotational Rate Range 114.6deg/aec
Rotational Rate Bandwidth 20 Hz

Rotational Rate Bias 2.0% of Full Scale
Rotational Rate Scale Factor 0.5% of Full Scale
Rotational Rate Noise Floor 0.05% of Full Scale

Cross Axis Sensitivity 0.5% of Full Scale

The inclinometers utilize a .liquid crystal pendulous sensor. It is a

low bandwidth sensor ( approximately 0.12 radians per second) that is meant

to be integrated with the rate sensors for high bandwidth measurements of

angular position. The fluxgate magnetometer provides heading measurements.

The specifications incorporated into the Euler angle sensor models are shown

in Table 4.3 [R. 8].

TABLE 4.3: INCLINOMETER AND MAGNETOMETER CHARAC-
TERISTICS

Pitch and Roll Range ±50 deg
Pitch and Roll Bandwidth 1/2 Hz
Pitch and Roll Accuracy 0.2 deg

Heading Range 4:180 deg
Heading Accuracy 3.0 deg

Heading Repeatability 0.5 deg
Heading Linearity 0.5%

GPS provides data in a form that can be converted to local tangent

plane position. A brief summary of the errors included in the GPS model

follows.

GPS Error Sources

* Selective Availability
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- intentional degradation of pseudorange signal by Departmant of Defense

" Clock Differences

- drift and bias in GPS clock

"* Ephemeris Error

- error introduced in converting pseudoranges to inertial position fix

Each of these sensor components is simulated in block diagram form in SIMULINK

utilizing internal modeling principles based on manufacturer specifications and

known sources of error. The upper level SIMULINK diagram of these sensor

models is shown in Figure 4.7 and contained in the SIMULINK file plantl.m.

dodo*mm A6801d•

**no

H E_
"A= I

Figure 4.7: Sensor Models in SIMULINK
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2. Kalman Filtering

With the outputs of the modeled sensors available, Kalman filters

were developed along the linear and angular position channels to provide optimal

estimates of the states for the controller. An approach analogous to the LQR

design was used. Consider the linear system described by:

S= A x+ B u + G w (4.16)

z = Cz+V

where v and w are zero mean white noise with respective power spectral densities

of V and W.

A gain matrix, L, was found such that the Kalman filter given by:

i = Az + Bu + L(z - Cz) (4.17)

produces an optimal estimate of z. The Kalman gain L is calculated as follows:

L = YCTV-..,

where Y is positive semidefinite and solves the algebraic Riccati equation:

AY + YAT _ yCTV-lCY + GWGT = 0

A synthesis model was formed that included the dynamics of the

original plant. The IMU used in Bluebird incorporates an initialization routine

that removes steady state bias from the sensors. Therefore, extra dynamics were

not required in the Kalman filter to compensate for bias. The design process was

primarily driven by the bandwidth limitations of the inclinometers and GPS.

The values of V and W were used as "knobs" in the iterative design process.
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For the GPS sensor, a break frequency of 1/2 radian per second was desired.

For the Euler angle sensors, a break frequency of 1/10 radian per second was

desired. It was also desired to wash out the accelerometers and rate sensor

biases at low frequencies.

The Kalman filter for the position estimate blends processed ac-

celerometer outputs with the GPS position fixes. Figure 4.8 shows the frequency

response along the x axis of the Kalman position filter. The other two axes have

similar dynamics.

20
"18 -0 ..... ..... ..... .... . .... ... ........ . .... ...... . ....

-4 . . .. ....... . .... t ......... . . ....... . . ......

. ! i !ii-j.-"i :A~cce.emeterSunsor: dmhed line i!!

10" 10", 10" 10 1
Frequency- rad/sec

150 ..... ......--.. --.-- : ...... ................. .......

"0 ............ ..... .........

0 ...... . ......

0. .......

-50 . ..... .... . ..........

10"1 10" 10"0 10 1
Frequency - rad/sec

Figure 4.8: Frequency Response of Position Filter

The Kalnan filter for the Euler angles blends the outputs of the angu-

lar rate sensc-rs, converted to Euler angle rates, with Euler angle measurements

from the inclinometers and magnetometer. Figure 4.9 shows the frequeLcy re-

suonse of one channel of the Euler angle filter. The remaining two angle channels
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are similar.
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Figure 4.9: Frequency Response of Euler Angle Filter

E. INTEGRATION OF THE FULL NONLINEAR SIMULATION

The full nonlinear simulation can now be pieced together. Recall in Chap-

ter II, the nonlinear rigid body dynamics were implemented in a SIMULINK

block labeled Equations of Motion. If the simulation is expanded to include the

effects of a moving airmass, the dynamics of Bluebird can be simulated at an

arbitrary flight condition. Wind is usually referenced with respect to the iner-

tial reference frame, therefore a SIMULINK block, Wind, is included in the full

simulation whose output is a vector w,, comprised of the wind velocity resolved

in {I}. Next, the wind velocity is resolved in {B} and added to the inertial

velocity of Bluebird, 'v,,. The result is the velocity of Bluebird with respect
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to the airmass, resolved in {BI. This velocity, rather than Bvy is used when

computing the aerodynamic contribution to the total external force and moment

used in Equation 2.25. A more detailed description of how this is accomplisaed

in the .m file state-deriv.m is contained in Appendix A.

All sixteen states are sent to a SIMULINK block, Sensors, that models

the avionic sensor suite onboard Bluebird. The output from these sensors is

appropriately processed in a SIMULINK block, Kalman filters. The filtered

output is directed to the D-Implemented Controller block. The commands to

the controller come from a trajectory block which uses the measured outputs

from the filter block to process the commanded trajectory. The controller gen-

erates actuator commands necessary to maintain the air vehicle on the com-

manded trajectory, thus completing the loop. The complete top level view of

the SIMULINK nonlinear simulation is shown in Figure 4.10 and contained in

the SIMULINK file plantl.m.
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V. APPLICATION TO THE CONTROL OF
BLUEBIRD

A. lV-IMPLEMENTED CONTROLLER PERFORMANCE CHAR-

ACTERISTICS

The performance characteristics of the trajectory tracking controller de-

signed in Chapters III and IV were evaluated using a two step process. First, the

sensor and filter blocks were removed and the controller was connected directly

to the nonlinear equations of motion block. Utilizing pure state feedback, Blue-

bird was flown along two fundamentally different types of trajectories. These

two trajectories served as general examples of the set of all trajectories defined

in Chapter IV, Equation 4.4. Next, the se8sor and fer blocks were added.

A general deparure and arrival trajectory, which is a combination of the two

types of trajectories tested in the first step, was commanded and flown with

the controller utilizing output feedback. Data from this simulation were used

as input to a virtual prototype simulation discussed later.

The dynamic flight simulations were started using the same initial condi-

tion. At this initial condition, Bluebird is aligned with the positive x-axis and

trimmed for level flight at 73 fps. The positive x direction is considered to be

heading north. The mechanics of the dynamic simulation use a right-hand or-

thogonal coordinate system described in Chapter II. As such, the positive y-axis

is pointing east and the positive z-axis is pointing down. This choice is con-

venient from a computational standpoint since it coincides with the body-fixed

reference frame of Bluebird at the initial condition specified above. Typically,
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however, the positive z axis is considered to be pointing up. If the right-hand

orthogonality is maintained, the positive y-axis would then point towards the

west. For ease of visualization, this is the cooridinate system used to display

the results of the simulations.

The simulations are intended to evaluate the capabilities of the controller

in terms of the nature of trajectories that can be followed in a stationary air mass

and in an air mass moving at constant velocity. Two basic kinds of trimmed

flight serve as the bases for the test trajectories. Each test trajectory is flown in

no-wind conditions, and then again with the wind added at some point during

the flight.

The simplest form of trimmed flight is constant velocity, constant heading.

This corresponds to a trajectory defined by a ramp command in inertial posi-

tion. This was the basic trajectory that the controller was designed to track.

Figure 5.1 shows a three dimensional plot of the first test trajectory. In this

case the trajectory encompasses 30 seconds of flight heading north at 73 fps

followed by a 90 degree turn to join a trajectory heading east at 73 fps while

climbing at 300 feet per minute. On the second flight, a wind of 20 feet per

second from the north is added at the time the turn is commanded (elapsed

time = 30 seconds).

Figure 5.2 contains the first four graphs of flight data. The first graph

shows the time history of Bluebird's distance from the commanded trajectory.

The next three graphs show the time history of the Euler angles. Consider the

baseline flight (no-wind data). Bluebird begins the turn at an elapsed time of

30 seconds and exits the turn at an elapsed time of 45 seconds. Approximately

30 seconds later the trajectory error is nearly zero. In the presence of 20 feet
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Figure 5.1: Test 'f-ajectory #1

per second of wind from the north, the trajectory error also goes to zero in

about the same period of tin ae graphs of the Euler angles indicate that

Bluebird is flying wings level, crabbed into the crosswind, which is the desired

result. Figure 5.3 shows the groumdspeed and indicated airspeed during the

flights. Notice that in both cases, the commanded groundspeed of 73 feet per

second is eventually maintained. Finally, Figure 5.4 shows the time history of

the control activity during the flights.

Trimmed flight does not necessarily have BwB equal to zero. For instance,

any steady turning manuever fits the definition of trimmed flight given in Chap-
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Figure 5.2: Trajectory #1: Position Error and Euler Anglas

ter IV. Figure 5.5 shows the three dimensional plot of the second test trajectory.

In this case the test trajectory is a helix flown at 73 feet per second. The turn

rate is one revolution per minute and the helix angle is 4 degrees which corre-
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Consider Figure 5.6 which shows the position error and Euler angle time

history for the helix trajectory. Notice that with no wind the controller manuev-

era Bluebird to join the commanded trajectory with zero error in steady state.

The constant pitch and bank angles confirm the steady state performance. On

the second flight, a wind of 20 feet per second from the east was added at the

start of the helical trajectory (elapsed time equal to 40 seconds). Intuitively,

it is clear that the bank and pitch angle must vary as Bluebird traverses the
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Figure 5.4: Trajectory #1: Control Activity

helix. To an observer on Bluebird, the wind, while constant in {I}, represents

a sinusoidal disturbance. This explains the sinusoidal nature of the position er-

ror around the helix. Figure 5.7 shows the groundspeed and indicated airspeed
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to ascertain the sensitivity of the position error to changes in commanded turn

rate and wind velocity. Figure 5.9 shows the position error around the helix

for three different turn rates with a constant wind of 10 feet per second. The

dashed line corresponds to a turn rate of 3 degrees per second or 2 minutes
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Figure 5.6: Trajectory #2: Position Error and Euler Angles

per revolution; the solid line corresponds to a turn rate of 6 degrees per second

or 1 minute per revolution; and the dash dot line corresponds to a turn rate

of 9 degrees per second or 40 seconds per revolution. The error increases with
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Figure 5.7: Trajectory #2: Velocity Data

increasing turn rate. The 9 degree per second turn rate corresponds to a steady

state angle of bank of thirty degrees, no wind. It may not be desireable to

command trajectories requiring more than a certain angle of bank and this may

place an upper bound on the error.

Figure 5.10 shows the position error around the helix for three different

wind velocities at a constant turn rate of 6 degrees per second. The wind varies

in velocity from 10 to 25 feet per second. The local maxima values of the

position error are proportional to the magnitude of the disturbance.

71



Elevator Activity
5 , •howind:' 'wind:' ' ...

101
'0 5 I ... " I " " ""I

0 50 100 150 200 250
Time -seconds

Rudder Activity

0

S11

I t.

0 50 100 150 200 250
Time -seconds

Aileron Activity

10

.a 10-1i.-

0 50 100 150 200 250
Time -seconds

Throttle Activity

... . ... .. . . ...... .............................. ........ ..................

O.5-
0 50 100 150 200 250

Time -seconds

Figure 5.8: Trajectory #2: Control Activity

B. AN AIRPORT DEPARTURE AND ARRIVAL FLIGHT SIM-

ULATION

In many cases, the trimmed flight condition of an air vehicle changes often.

A good example of this would be a standard instrument departure or arrival
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Figure 5.9: Trajectory #2: Position Error for Varying Turn Rates

to an airfield. These trajectories are typically a combination of constant radius

turns and wings level flight, while often climbing and descending. Trajectory

position errors become critical when the air vehicle is on final approach with a

constant heading, constant velocity trajectory.

Consider Figuxe 5.11. If an airfield i. aagined to be located at the origin,

then this trajectory would be indicative of a typical departure followed by a

typical arrival to that airfield. The scenario utilizes turning trajectories of three

different radii connected by straight line trajectories. The commanded velocity

is a constant 73 feet per second throughout. Wind is initially zero. Thirty
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Figure 5.10: Trajectory #2: Position Error for Varying W~ind Velocities

seconds into the flight, the wind is added at 10 feet per second from the east.

At 90 seconds into the flight the wind is increased to 20 feet per second from the

east. Finally, with Bluebird on final approach tracking a 4 degree glideslope,

the wind is rapidly shifted 90 degrees to the north and decreased in magnitude

to 5 feet per second.

Figure 5.12 shows the time history of the position error, wind velocity, and

Euler angles during the flight. Figure 5.13 shows the time history of the control

activity. Note, however, the relative diffculty of analyzing data of this nature

an it is somewhat diffcult to visualize. Flight simulation data was saved to a file

74



flight path:

ground track:' ....... '

• 9cmmanded position (10 second intervals) :`
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151500. 00
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Figure 5.11: Departure and Arrival at an Airfield

and processed for compatiblity as an input file for a 3-D visualiztion software

package, Designer's Workbench. A virtual prototype of Monterey Airport and

Bluebird was developed in [Ref. 13J. The simulation was then run as a departure

and arrival to the virtual prototype airfield. In Designer's Workbench, the flight

can be viewed from multiple perspectives and virtual prototypes of standard

cockpit displays further enhance visualization. One possible result is captured

on video tape, [Ref. 14].
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Figure 5.12: Airfield Scenario: Position Error and Euler Angles
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VI. CONCLUSIONS AND
RECOMMENDATIONS

A. CONCLUSIONS

Based on the data presented in this thesis, the following conclusions are

drawn.

"* SIMULINK provides an effective environment for the developement of non-

linear simulations for air Nehildes. As a result of this development, a linear

model of the plant at an arbitrary trim condition is easily obtained for

design purposes.

"* LQR design techniques utilizing a synthesis model and weighting "knobs"

provide a straight forward means of obtaining satisfactory controller gains

for MIMO systems while meeting design requirements.

"* D-Implementation of the linear trajectory tracking controller allows the

controller to operate effectively on the nonlinear plant. In no-wind flight

conditions, trajectories defined by an arbitrary [vo, wo] are tracked perfectly

in steady state. For flight conditions with wind, rejection of a constant

wind disturbance is accomplished along the family of trajectories defined

by an arbitrary [vo,wo -"= 0]. However, for turning flight, a constant wind

disturbance in {I) is seen as a sinusoidal disturbance in {B} and a sinu-

soidal tracking error results. For moderate bank angles and turn rates, the

errors are usually small.
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e Preprocessing of the trajectory commands by an adaptive filter allows for

steady state control of the air vehicle's velocity with respect to the air mass

in the forward path, thus not affecting stability. With sufficient margins for

transient deviations in indicated airspeed, this would allieviate the major

concern of stalling the air vehicle when tracking an inertial trajectory in

wind.

e When analyzing a nonlinear plant and controller, test simulations are vital

and in some cases the only means of performance evaluation. The three

dimensional plots and time history graphs are fine for simple trajectories,

but are difficult to analyze for more complex cases. The capabilities of a

virtual prototyping software package, like Designer's Workbench, are im-

pressive. The enhanced situational awareness and visualization capabilities

of watching the designed controller operate on a virtual prototype allow

for a "pilot's perspective" feedback not otherwise attainable on the desk

top.

B. RECOMMENDATIONS

Based on the conclusions presented above and the experience of developing

the simulation package presented in this thesis, the following recommendations

are made.

While the rigid body equations of motion are nonlinear with respect to

the kinematics involved, they are completely linear with respect to the

stability and control derivatives. The constant coefficient stability and

control derivatives could be replaced by functions when further flight data

is available.
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"* A similar design process used for the trajectory controller could be done

using 'H. design methodology.

"* The trajectory preprocessor could be used to convert an inertial fixed tra-

jectory into an air mass fixed trajectory. This might have applications

where the air vehicle's inertial position is of secondary importance com-

pared to its performance with respect to the air mass.

"• Running simulations real time in Desiner's Workbench rather than using

batch post processed data would be the next logical step. Further work

might lead to virtual prototype visualizations based on real-time simula-

tions or downlinks from actual air vehicles.
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APPENDIX A: MATLAB FILES

The SIMULINK models of Bluebird (plantl.m S plant2.m) use the fol-

lowing MATLAB .m files as user defined functions.

STATEDERIV.M

%%%%%%%%%%%%%%%%%%%%%xxx%%%xxxx%%%%%x%%%x%%%%%%%%%%%%x%%%x%%%%%x%

I I

% Function to calculate derivative of u,vw,p,q,r %

% based on %

% 1: kinematics %

% 2: gravity %

% 3: propulsion %

% 4: aerodynamics %

% %

% Variables brought from workspace: %

I I

% X a Econtrl inputs, state variables(i - 9), wind veil %

% - (da,dejdrdtrt,u,v,wp q,rphi theta psi, wind xyz)X

I I

% Variables called from function "blue-data" %

I I

% rho - air density %

Sb - wing span %
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Sc - wingcord %

% s ving area %

% Cfo a Steady state force term %

% Cfu = Stability derivative for control inputs %

Sa airplane mass %

% lb = inertia tensor matrix (body frame) %

% To - Thrust scale term %

% Pe n Engine postion matrix %

function accel a state-deriv(x)

KKKKKK Function call to got the aircraft data

[uO,wO,rho,CfxCfo,Cfu,Cfxdot,s,b,c,m,Pe,To,Ib] - bluedata;

%%KKKK seperate the combined vector into seperate elements

u - [z(l); x(2); x(3)J;

dtrt - x(4) ;

state - Ix(5); x(6); x(7); x(8); x(9); x(1O)];

lambda - W(11_); x(12); x(13)1;
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wind - [z(14); X(15); x(16)];

%%%%%% calculate velocity urt the airmass and form state vector

%%XX% that will be used to calculate the aerodynamic forces/moments

ias - u + wind

statel - [ias(1)-uO; ias(2); ias(3)-wO; x(8); x(9); x(lO));

1X%% calculate total velocity, vt

vt - (ias(1)2 + ias(2)^2 + ias(3)-2)-.5;

1U%%% calculate qbar

qbar - .5*rho*(vt^2);

%%%%%% calculate MI

Ml - diag(El/vt, 1/vt, i/vt, (.5*b)/vt, (.5*c)/vt, (.5*b)/vt]);

Z%%XX calculate M2

M2 - diag([O, 0, (.5*c)/(vt'2), 0, 0, 0));

%%%%%% calculate Sprime
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Sprzie - dia~g([-, 1, -1. b. c, bJl's);

%%%%%% calculate Ku

Mu - inv( Eeye(3)*u~zerou(3) ;zeros(3) ,IbJ);

%%%%%% calculate Tv2b

alpha - ias(3)/vt;

beta - ias(2)/vt;

TI - [cou(alpha), 0, -sin(alpha); 0,1,0; sin(alpha), 0, cos(alpha)J;

T2 - Ccoz(beta.), -sin(beta), 0; sin(beta), c05(beta.), 0; 0,0,1J;

Tv2b a [T1*T2, zeros(3); zeros(3), T1*T2J;

%%%%%% calculate Chi

Chi - eye( 6 ) - Mu*Tv2b*qbazreSpriae*Cfxdot*M2;

%%%%%% calculate Propulsion matrix

Prop - C .ye(3);

0,-PeC3),Pe(2);

Pe(3) ,0,-Pe(1);

-Pe(2) ,Pe(1) ,0J;
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%%%%%% calculate gravity vector and rotation matrix {I} to (BI

Rot - [1. 0, -sin(lambda(2));

0, coo(laabda(i)), cos~lazbda(2))*sin(laabd&(1));

0, -sin~imabda~i)), cos(lambda(2))*cos(lambda(i))Ij;

Ru2b - CRot;zeros(3)J;

g - [0; 0; 32.174J;

FgU - m*g;

XX%%%% put the components due to gravity; thrust; and control surface

%%%%%% deflections together for their contribution to x-dot

thrust - Prop*To*dtrt;

gravity - Ru2b*FgU;

ctrl - qbar*(Tv2b*(Spriue*(Cfo + (Cfu*u))));

xdotu - (Mu* (ctrl+thnist+gravity));

%%%%%% calculate kinematic contribution

osegax - O,-state(6) state(S) ;state(6) ,O,-state(4) ;-state(5) ,state(4) ,0);

vzlb - (-inv(Ib))*(omegax*Ib);
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Rot = (-omsgax, zeron(3); zeron(3), wxIbh;

xdotrot -Rot*state;

%%%%% state vector feedback component xdot

xdotcfx - qbar*(Mu*(Tv2b*(Spriue*(Cfx*(Mi*statel)))));

%%%%%% add three components of xdot together and premult by invCChi)

idot- inv(Chi) *(xdotrot+xdotd~x'xdotu);

%%%%% return xdot

accejinzdot;

ETJLERLB21.M

% Transform'rttion (p q r] to lambda-dot%
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function idot = eul-b2u(x)

%%%%% seperate the composite vector Ix' into Ep q r)

%%%% sand [phi theta psi].

omega - x(zI); x(2); x(3)3;

phi-x(4);

theta-' z(5);

psiinz(6);

%%% calculate the rotation matrix {I} to {B}

%%%%% based on euler angles

Rb2u - [I. hin~phi)*tan~theta), con(phi)*tan~theta);

0, cos(phi), -xin(phi);

0. sin(phi)*sec(theta), cos(phi)*sec(theta)J;

%%%%% calculate leada-dot

idot - Rb2u* omega;

EULERJI2B.M

%%%%%%%% X XXX XXXXX XXX XX XXXXX XXX XXXXXXXXX%%%%%%%
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% Transformation lambda-dot to [p q rJ

tunction onegadot - eul-i2b(z)

21111 seperate the composite vector 'z' into lambda-dot

12%2% and [phi theta pail.

idot - [(l(); x(2); x(3)J;

phiuX(i);

theta- i(S);

puiu'z(6);

11111 calculate the rotation matrix {BI to {I}

2111 based on euler angles

Rb2i - [1, uin(phi)*tan(theta), cou(phi)*tan(theta);

0. cos(phi), -sin(phi);

0, *in(phi)*sec(theta), %os(phi) *sec (theta)J3

1212 calculate laada-dot

omesadot - inv(Rb2i)*ldot;
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POSITIONB2I.M

,%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 2

% From the workspace: %

% 1: free vector u'i resolved in {B} e(1:3) 2
% 2: euler angle vector {phi~thetapsi) 9(4:6) %

% Returns: %
2 2

% 1: free vector 'u resolved i {I} W2

%%,%%%%%%?%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function ans - pos.b2i(e)

22222 this will rotate the trajectory error through phi, theta, psi

22222 from {b} to {i}. (3-2-1 transformation

phi-e (4);

thetame(5);

psime(6);
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&-.psi - cos(pui)usin(pui),O

-sui(pui) .com(pui) 0

m-theta = [con(theta),O,-sia(theta)

sxin(theta) ,O~coo(thota)J;

u..phi - C1.,00

O~cos(phi).sin(ph~i)

0 -Biii(phi) .cos(phi)J;

rotb2i - inv(&-.phift-.thetaft-.psi);

U n (e(1); e(2); e(3)3;

ans - rotb2i*u;

POSITION-I2B.M

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%x



% Fron the workspace: %

K %

I 1: free vector 'u' resolved in MI e(1:3) %

% 2: euler anigle vector {phi~theta~psi} e(4:6) %

% Returns:%

% 1: free vector 'u resolved in (B) %

function ans -pos..i2b(a)

%1%%% this will rotate through phi, theta, psi

%%1%% from {i} to {b}. (3-2-1 transformation)

phime (4);

thotau'e(5);

psiine(6);

m..psi - (cos(psi),sin(psi),O

-sin (psi) ,cos (psi) ,0

0,0,13;

m-.theta - Ecos. 0t),,-sin (theta)

0,1,0 
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sin(theta) ,0co's(theta)];

u...phi - [11010

0~cos(phi) ,uin(phi)

O,-sin(phi).cos(phi)J;

rot 12b - (u..phieu..theta*u..psi);

ii 0 (e(1); e(2); e(3)3;

uns - roti2b*u;

% fumtion to limit trajectory comnmands,* if required %

% from workspace: %

% 1: comumanded inertial velocity %

% 2: inertial wind %
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% 3: lower IAS limit%

% 4: upper IAS limit %

% returnus: revised commanded velocity %

funct ion vc03"liait (u)

%1%%% seperate ui

vol..j - Eu(1);u(2);u(3)3;

wind-.i - Eu(4),u(5),uC6)3;

ll'UM();

ulmU(8);

%%%%% calculate magnitud and direction of commanded velocity

gs-sqrt(vel-.i(1)^2 + vel-.i(2)-2);

ang-atan2(vel-.i(2) ,vel..i(i));

%%%%%% calculate commanded IAS (steady state)
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Vt. sqrt((vel..i(1)4vind-i(I))-2 *(vel-.i(2)4vizld-.i(2))-2 +(vel..iC3)+wiM...i(3))Y

%%%%%% Prepare return variable (may not be limited)

vcou - vel..i;

%%%%%% Check limits and revise it outside

it Vt > ul;

over - vt - ul;

vcom(1 - (go - over)*cos(ahlg);

vcoa(2) - (go - over)*sizi(ang);

end;

it vt < 11;

under a 11 - 'vt;

vcon(1) - (gs + under)*cos(ang);

94



vcoa(2) *(gon + under)*sin(azig);

and;

% Aircraft data for Bluebird %

function [uO,vO, rhoCfCfoCfEu.Cfzdot. ,b~c,m PeTo,I1bJ - blue..data

11111 trimmed flight speed and angle of attack

uO - 73.3;

vO 0 0;

111111 Density: Sea level- std day

rho - .0023769;

1111% derivative matrix due to state variables
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XXXII rows: [CD CY CL Cl Cm Cu]

%XX% col: Eu v/U w/U p q rJ

Cfx a [0 0 .188 0 0 0;

0 -. 31 0 0 0 .0973;

0 0 4.22 0 3.94 0;

0 -. 0597 0 -. 363 0 .1;

0 0 -1.163 0 -11.77 0;

0 .0487 0 -. 0481 0 -. 0452J;

%XXI% derivative matrix due to control inputs

%XXX rows: [CD CY CCl C1 CnC

%X%%% col: OlOev rud ail]

Cfu - (.065 0 0;

0 .0697 0;

.472 .0147 0;

0 .0028 .265;

-1.41 0 0;

0 -. 0329 -. 0347J;

%%%%% derivative matriz due to i-dot (alpha-dot k Beta-dot)
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Cfxdot - [0 0 0 0 0 0;

o 0 0 0 0 0;

0 0 1.32 0 0 0;

o o 0 0 0 0;

000000];

%XX%% steady state force vector

Cfo - [.03; 0; .385; 0; 0; 0];

=%ZX1 physical din.

%%%%% VT -55 LBS.

u " 1.7095;

* - 22.38;

b - 12.42;

c - 1.802;

%%%%% engine data (4 HP motor)

Pe - [0; 0; 0];

To - [15 ;0;0];

%%,%% inertia tensor matrix

"b - [ 10 0 0; 0 16.12 0; 0 0 7.97];
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APPENDIX B: SIMULINK FILES

The nine state nonlinear model of bluebird is contained in the SIMULINK

file EOM-9.m and was trimmed at a flight condition of

"* flight speed equal to 73 fps

"* flight path angle equal to zero

using the TRIM command. The resulting trim values for the state vector and

input vector are:

73.3
0

-0.0023
00
0 andu-
0000
0

L 0

The LINMOD command was used to linearize the sixteen state nonlinear

model of Bluebird (contained in the SIMULINK file EOM.16.m and described

in Chapter III) about this trim point. The resulting linear system is contained

in the MATLAB file Linearl6.mat.

The rudder was removed as a control input (remove the second column

of the B matrix) and the resulting linear model was used as a basis for the

synthesis model contained in the SIMULINK file synthesis.m. This synthesis

model was used to determine the LQR gain. The synthesis model, Q and R
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weighting matrices, and resulting LQR gain is contained in the MATLAB le

LQR-dat. mt.

The full nonlinear simulation is contained in the SIMULINK file, plantl m.

The MATLAB .m file simdata loads the workspace with the appropriate vari-

ables. The file simdata calk the .m file trajectory.m in -,rder to generate the

trajectory schedule. Any changes to the commanded trajectory or wind distur-

bance schedule can be made in trajectory.nm

A version of the nonlinear simulation that does not use the filter and

sensor blocks is contained in the SIMULINK file plantg.m. It runs considerably

quicker than plantl.m.
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APPENDIX C: D-IM[PLEMENTATION

PROOFS REFERENCED

Identity.Let z E R3 = const be given. Then

d (rR()x)= -'R(A)z x S-1 (A). (C.1)

and
dA(t R(A).) = z x4 R(A)S-1 (A). (C.2)

Proof: To derive both equations we will need Poisson's Law:

d ( =B 4A R(A), (C.3)

and the following identity:

a x b = -b x a (0.4)

for any vectors a and b of compatible dimensions. Now, consider

d(R(A)x)= (•( R(A))x +' R(A)-z

= WE 4 R(A)z = -,R(A)z xE WE, (0.5)

using equation (C.3), (C.4) and z = const.

Next, by the chain rule we get

d ('R(A).T) = •X(IRA)--)±A
3iBdA (A d)t

= d(CR(A)x)S(A) EBW. (0.6)

Equation (C.1) now follows by comparing equations (C.5) and (C.6).
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To obtain equation (C.2), consider

d(•R(A)7BR(A)) = d('R(A))BR(A) +B R(A)d(BR(A)) 0, (C.7)

mince ZR(A)BR(A) = I VA. Now, using equations (C.3) and (C.7) we get:

d (B (~s
R(A)) = -PR(A)BwB x. (0.8)

Finally, following the steps in the derivation of equation (C.1) we obtain:
ds

U(fR(A)x) = z 4 R(A)S-'(A).

Theorem .. l Suppose that assumptions Al through A3 hold.

Al. Dim(z.2) = dim(u) = dim(y2).

A2. The matrix-1

-Cd C 4 J

has full rank at =0.

A3. The matriz pair (Ad, Cd) is observable.

Then for each eguilibrium point of 9 in 6 the following properties are

observed:

* the feedback systems Z(Q, X )(ro) and T(01., •K•) have the same closed

loop eigenvalues;

-S

T(g ,K )(ro)(s)= L(Ao)T(9j., K)(s)L-'(Ao),

Ao = [0Ilz,,
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Proof: In the proof we set the controller matrices D.1, Da D, to zero. This

does not change the results but considerably simplifies the algebra. Further-

more, we will drop explicit dependence of the controller parameters on a. Let

=XGIXO P , uo, ra E c) be given. Consider the feedback interconnection

of the linear plant 9j. (Ao) and linear controller KX1. The state matrix F of this

feedback system has the following form:

At A2 B2Cc1  B2C 1
F _ ,A 0 0

F:-BC 0 A4 Bo 0 (C.9)Bec, 0 Ao Bo
C 2 0 0i

Next we linearize the feedback interconnection of the plant g and the controller

X. However, in order to that, first we must determine the values of the con-

troller states x. and zd calong the trajectory ro E 6. Fro,., equation (4.9) we

obtain:

d d
;za. = Aazxo + BS1•y14 + BdL-'(Ao)eo
d

2c% = Ce~zeu + CaL-(Ao)eo

•O = Zc0.

Notice, since along ro:

eo =0, 1f1o = wonst, Zc2o = uO= cvat

we get

d
,Zco= Ac1ze1.

0 = C01z•,.
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Now, using Asuumption A3 we conclude that za. = 0.

In order to compute the linearization of the feedback interconnection of

g and K , we must first obtain the lineansations of equations (4.3) and (4.9)

about the operating points (zr,,zo, uo) E 6 and (za. = 0,Za = uo,V1, =

0,eCo = Y2 -ro = 0) respectively, determined by ro E .. The linearization of

the plant Q is given by (4.4). The linearization of the controller X has the

following form:

A= Ad4 + B• + BL-1 (92 -)

42 = Cd. (C8L(92o)

it 60 - (C.10)

It is easy to verify that the state matrix M of I(Q, C )(ro)is

| M:= B•A,1 A2C~t• ,•- 0 B.,I

M- L A4 0 (C.11)
i BdClA , + &L- 1 A o ed

0 CdL-1  C&d

Let r 0 01
'1 0 0• "

P:= 0OL 010

0 00 1 0

Obviously,
1 0 001
0 L- 1 0 0

0 0 1 0I

Now using simple algebra it is easy to show that

• = P-IMP
r At A2  0 B

B=CA BOA + Ed BA t ICiB
0 C cc0 0
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At A2  0 B 1
I A 4  0 0

= 01 I0 tA-]+B[OI .
.t01 A1 A4 .ýi

•0 Ca cc, 0 -

The proof of the first part of the theorem now follows from Assumption A2 and

an observation that the matrices F and R are in the form of the matrices F

and M. The proof of the second part of the theorem consists of the following

steps:

1. compute the transfer matrix of the linearization of the controller X (A)

using equation (C.10) from controller inputs 01, 02, p to controller output

'1;

2. apply a similarity transormation

[0 L -1]

to the ln ation of the plant (= 9 (ro)) given by equation (4.4) and

derive the transfer matrix from the control inputs of the linear plant q to

the outputs 01 and 02 using this new state-space realization;

3 compute the feedbac intercoknection of the transfer matrices obtained in

steps 1 and 2 to get the final result.

A simple computation shows that the transfer matrix from the controller inputs

91, 02, p to the controller output 17 is given by:

(a= C 1(I - Aa)-1 (B L-'(•2(s) -

+ Beta1() + CcL-1(i 2 (8)-,(S))

- I(s) I 92(8) , (C.12)
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where /C(a) is the transfer matrix for the controller K,.

Applying similarity transformation P, to equation (4.4) and computing

the transfer matrix from 'q to 01 and 2 remslts in:

-I 0 (C.13)
C, 0 DI
0 L 0

where the transfer matrix is given in packed matrix form. A simple obseration

shows that

lks~a)] = j1h.g4sj

where G,*,(a) is the trander matrix for the plant ,0.

Now routine algebra shows that the trandsr matrix from p to 09 of the

feedbac interconnection of the transfer matrices in equations (C.12) and (C.13)

in given b.

Ti(Q ,X )(ro)(s) - L(A.)T(;,., K, )(,)L 1-(Ao).
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