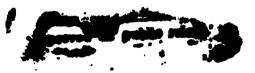
AD-A281 030


ITRI-139 -JANUARY 1994 CATEGORY: UC-408

BIENNIAL REPORT ON LONG-TERM DOSE-RESPONSE STUDIES OF INHALED OR INJECTED RADIONUCLIDES

1991 - 1993 S DTIC ELECTE JUL 05 1994 G

by the Staff of the Inhalation Toxicology Research Institute and the Radiobiology Division, University of Utah School of Medicine

DTIC QUALITY INSPECTED 2

INHALATION TOXICOLOGY RESEARCH INSTITUTE
LOVELACE BIOMEDICAL & ENVIRONMENTAL RESEARCH INSTITUTE
P.O. Box 5890
Albuquerque, NM 87185

94~7~1~059

PREPARED FOR THE OFFICE OF HEALTH
AND ENVIRONMENTAL RESEARCH
OF THE U.S. DEPARTMENT OF ENERGY
UNDER CONTRACT NUMBER DE-AC04-76EV01013

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

The research described in this report involved animals maintained in animal care facilities fully accredited by the American Association for Accreditation of Laboratory Animal Care.

Printed in the United States of America

Available from

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road.
Springfield, VA 22161.

iTRI-139 January 1994 Category: UC-408

BIENNIAL REPORT ON LONG-TERM DOSE-RESPONSE STUDIES OF INHALED OR INJECTED RADIONUCLIDES

OCTOBER 1, 1991 through SEPTEMBER 30, 1993

by the

Staff of the

Inhalation Toxicology Research Institute

J. L. Mauderly, Director

and

Radiobiology Division, University of Utah School of Medicine

R. A. Daynes, Director

Editors

B. B. Boecker

B. A. Muggenburg

S. C. Miller

P. L. Bradley

Accesi	on For									
DTIC	CRA&I TAB ounced	2								
Justific	Justification									
By Dist. ib	By									
٨	vailability	Codes								
Dist	Avail a Spe									
A-1										

PREPARED FOR THE OFFICE OF HEALTH AND ENVIRONMENTAL RESEARCH
OF THE U.S. DEPARTMENT OF ENERGY
UNDER CONTRACT NUMBER DE-AC04-76EV01013

				<u> </u>	Σ
FC	REV	vor	D.		v
EX	ECU	πν	E SI	JMMARY	vi
I	ITI	นม	FE-S	PAN STUDIES IN DOGS	1
	A.	SP	ECIF	IC PROJECT OBJECTIVES	1
	B.	EX	PER	IMENTAL APPROACHES	2
		1.	Ger	eral Procedures	2
		2.	Stu	ty-Specific Features	2
			a.	Beta-Emitting Radionuclides Inhaled in a Relatively Soluble Form	2
				i. ⁹⁰ SrCl ₂	2
				ii. ¹⁴⁴ CeCl ₃	2
				iii. ⁹¹ YCl ₃	3
				iv. ¹³⁷ CsCl	3
			b.	Beta-Emitting Radionuclides Inhaled in a Relatively Insoluble Form	3
				i. ⁹⁰ Y in FAP	3
				ii. ⁹¹ Y in FAP	3
				iii. ¹⁴⁴ Ce in FAP	3
				iv. ⁹⁰ Sr in FAP	3
			c.	Uniformity of Pulmonary Irradiation from an Inhaled Alpha-Emitting Radionuclides	5
				i. ²³⁸ PuO ₂	8
				ii. ²³⁹ PuO ₂	8
			d.	Effects of Age	9
				i. 144Ce in FAP in immature dogs	9
				ii. 144Ce in FAP in aged dogs	9
				iii. ²³⁹ PuO ₂ in immature dogs	9
				iv. ²³⁹ PuO ₂ in aged dogs	9
			c.	Effects of Protracted Exposure	9
				i. 144Ce in FAP repeated exposures	9
				ii. ²³⁹ PuO ₂ repeated exposures	9
		3.	Ade	fitional Approaches Being Used in the Life-Span Studies 1	0
	C.	CU	RRE	INT STATUS OF ITRI STUDIES	0
		1.	Ger	neral Overview	0
		2.	Sm	nmary Reports for Studies with Living Dogs	2

			<u>Pa</u>	<u>RC</u>
			a. Toxicity of Inhaled ²³⁹ PuO ₂ in Beagle Dogs. XIV:	12
			i. Monodisperse 0.75 µm AMAD Particles	12
			ii. Monodisperse 1.5 µm AMAD Particles	12
			iii. Monodisperse 3.0 µm AMAD Particles	12
			b. Toxicity of ¹⁴⁴ Ce Inhaled in a Relatively Insoluble Form by Immature Beagle Dogs. XXI.	23
			c. Toxicity of ²³⁹ PuO ₂ in Immature Beagle Dogs. XIII	26
			d. Repeated Inhalation Exposure of Beagle Dogs to ²³⁹ PuO ₂ . XVI	33
		3.	Annual Report References to Dog Longevity Studies in which All Dogs Have Died	37
			a. 90SrCl ₂ Longevity and Sacrifice Studies	37
			b. 144CeCl ₃ Longevity Study	37
			c. 91YCl ₃ Longevity Study	37
			d. 137CsCl Longevity Study	41
			e. ⁹⁰ Y in FAP Longevity Study	42
			f. 91Y in FAP Longevity Study	42
			g. 144Ce in FAP Longevity Study	44
			h. 144Ce in FAP, Aged-Dog Longevity Study	48
			i. 90Sr in FAP Longevity Study	48
			j. ²³⁸ PuO ₂ Monodisperse Aerosol Longevity Study - 1.5 and 3.0 μm AMAD Particles	
			k. ²³⁹ PuO ₂ Aged-Dog Longevity Study	48
	D.	CO	MPLETION ACTIVITIES FOR THE ITRI STUDIES	54
		1.	Completion of Individual Studies	54
		2.	Databases	56
	E.	RE	CENT RESEARCH ACCOMPLISHMENTS	57
		1.	Life-Span Health Effects of Relatively Soluble Forms of Internally Deposited Beta- Emitting Radionuclides	57
		2.	Bone Tumor Incidence in Beagle Dogs that Inhaled Soluble Radionuclides	60
		3.	Primary Lung Cancer in the Longevity Study/Control Population of the ITRI Beagle	
			Dog Colony	62
		4.	Growth Rate Patterns of Lung Tumors in Beagle Dogs Exposed to ²³⁹ PuO ₂ or ²³⁸ PuO ₂	66
		5.	Prediction of Survival Times after Repeated Exposures Based on Survival Times Following a Single Exposure of Beagle Dogs by Inhalation to ²³⁹ PuO ₂	69
II.	UN	IIVE	RSITY OF UTAH LIFE-SPAN STUDIES IN DOGS	71
	A.	SP	ECIFIC PROJECT OBJECTIVES	71
	R	FY	PERIMENTAL APPROACHES	71

				Page
		1.	General Procedures	. 71
		2.	Study-Specific Features	. 72
			a. ²³⁹ Pa	. 72
			b. ²²⁶ Ra	. 72
			c. ²²⁸ Ra	. 73
			d. ²²⁸ Th	. 73
			e. ⁹⁰ Sr	. 73
			f. ²⁴¹ Am	. 73
			g. ²⁴⁹ Cf	. 73
			h. ²⁵² Cf	. 73
			i. ²⁵³ Es	. 74
			j. ²²⁴ Ra	. 74
			k. Toxicity Studies in Immature and Aged Beagle Dogs	. 74
	C.	CU	RRENT STATUS OF THE UTAH STUDIES	. 74
		Ger	neral Overview	. 74
	D.	CO	MPLETION ACTIVITIES FOR THE UTAH STUDIES	. 76
	E.	RE	CENT RESEARCH ACCOMPLISHMENTS	. 81
		1.	Distribution of Skeletal Malignancies in Beagles Injected with ²³⁹ Pu Citrate	. 81
		2.	Occurrence of Metastases in Beagle Dogs with Skeletal Malignancies Induced by Internal	
			Irradiation	
		3.	Skeletal Malignancies among Beagle Dogs Injected with ²⁴¹ Am	
·		4.	Thyroid Lesions Induced by ²⁴¹ Am in the Beagle Dog	
		5.	Relationship of Leukemia and Radon or Thoron in the Body	
		6.	Statistics of Hits to Bone Cell Nuclei	
		7.	Static and Dynamic Bone Histomorphometry of ²³⁹ Pu-treated Dogs	
Ш.			NNE NATIONAL LABORATORY LIFE-SPAN STUDIES IN DOGS	100
			ECIFIC PROJECT OBJECTIVES	
			RRENT STATUS OF DOGS	
IV.			CATIONS FROM THE LIFE-SPAN STUDIES IN DOGS AT ITRI	105
	A.		EN-LITERATURE PUBLICATIONS FROM INCEPTION OF THE ITRI STUDIES ROUGH FY-1991 (Total of 342)	105
	B.		EN-LITERATURE PUBLICATIONS OF THE ITRI STUDIES DURING FY-1992 AND -1993 (Total of 24)	105
	C.	DO	CUMENT REPORTS RESULTING FROM THE ITRI STUDIES	107

	P	age
V.	PUBLICATIONS FROM LIFE-SPAN STUDIES IN DOGS AT THE UNIVERSITY OF UTAH	109
	A. OPEN-LITERATURE PUBLICATIONS FROM INCEPTION OF THE UTAH STUDIES THROUGH FY-1991 (Total of 395)	109
	B. OPEN-LITERATURE PUBLICATIONS OF THE UTAH STUDIES DURING FY-1992 and FY-1993 (Total of 20)	109
	C. DOCUMENT REPORTS RESULTING FORM THE UTAH STUDIES	111
	APPENDICES	
A	STATUS OF LONGEVITY AND SACRIFICE STUDIES IN BEAGLE DOGS AT ITRI (9/30/93)	113
В	STATUS OF LONGEVITY AND SACRIFICE STUDIES IN BEAGLE DOGS FROM THE UNIVERSITY OF UTAH (9/30/93)	159

FOREWORD

This is the fourth report focussed specifically on the life-span dose-response studies being conducted at the Inhalation Toxicology Research Institute, ITRI, and the University of Utah. The first three of these reports were annual reports covering fiscal years 1989, 1990, and 1991. The reporting period for this report is biennial, covering fiscal years 1992 and 1993. These reports continue the tradition of presenting an historical record of these life-span studies in annual reports.

The information in this report is current through September 30, 1993. To ensure stand-alone quality for this report, a substantial amount of information is provided about the experimental design and methods as well as references to past results and the presentation of recent results and current status reports.

This report contains current information on the life-span studies initiated at ITRI, University of Utah, and Argonne National Laboratory. The inclusion of results from the Utah studies reflects the cooperative effort among investigators at ITRI and Utah to complete the Utah studies. Included in this effort are the husbandry, clinical care, and biomedical observations of living Utah-study dogs at ITRI. Similar care and observations are being provided to all the living dogs in the life-span studies of Beagle dogs that were irradiated chronically with gamma radiation from an external source at Argonne National Laboratory until being transferred to ITRI on January 23, 1991.

Most of the studies initiated at the University of Utah or ITRI have reached the point where all dogs on study are now dead. Thus, most of the current effort is being directed toward detailed reviews and analyses of study materials and data followed by the publication of these results in the open scientific literature. Teams of investigators at both institutions are conducting the necessary reviews and analyses and publishing the related core manuscripts on each study. The results given in these basic manuscripts provide the basis for dose-response analyses to assess the health-risk implications for possible accidental human exposure. As the results from more studies become available, increasing effort will be devoted to health risk analyses across studies within a laboratory and also across studies in other laboratories. An Executive Summary briefly summarizes recent progress and accomplishments and the types and location of various data tables and charts related to these studies.

Joe Le Manderly, D.V.M.

v

EXECUTIVE SUMMARY

This report describes the scientific progress in, and current status of, life-span studies of the long-term health risks in Beagle dogs of chronic irradiation from internally deposited radionuclides or from an external source. The reporting period for this document is the 2-year period from October 1, 1991 through September 30, 1993. Studies that were initiated at three different laboratories (Inhalation Toxicology Research Institute, ITRI, University of Utah, and Argonne National Laboratory, ANL) are presented here because they are being completed at ITRI.

All living dogs in the Utah-initiated studies were transferred to the ITRI facility for the remainder of their life-span observations and measurements in September 1987. Scientists at both institutions are working collaboratively to ensure the orderly and thorough completion of these studies. This report is the fourth in a series of annual or biennial reports dealing with the current status and progress of both the Utah and ITRI studies.

Other life-span studies involving dogs exposed to gamma radiation from an external source were initiated and conducted for many years at ANL. In 1991, the decision was made to discontinue the chronic irradiation of the remaining living dogs and to transfer all remaining dogs to ITRI for care, clinical observations, and pathological observations at death or euthanasia. This report provides the current status of these dogs.

Status reports on the Utah and ITRI studies comprise most of this report. The information on both sets of studies is organized along similar lines, addressing basic research approaches, study designs, recent accomplishments, and progress in study-completion activities.

The ITRI-related section presents brief statements of project objectives, the general procedures used in these studies, and some study-specific features for each of the 19 studies being conducted with either beta- or alpha-emitting radionuclides. Dose- and effect-modifying factors being addressed in these studies include total dose, dose rate, LET, solubility, nonuniformity of dose, species, age, sex, health status, and mode of exposure. Recent additions to experimental protocols for studies in which dogs are still alive involve the collection and analysis of tumor tissues using currently available molecular biology techniques.

The ITRI section continues with a presentation on the current status of these studies divided into four sections dealing with 1) studies in which dogs are alive, 2) studies in which all dogs are dead, 3) current activities related to completion of all these studies, and 4) recent research accomplishments. On September 30, 1991, 106 dogs were alive in six studies. On September 30, 1993, the closing date for this report, the number of living dogs was 49 in four studies. All of the remaining dogs were exposed by inhalation to monodisperse particles of ²³⁹PuO₂ either once or repeatedly as young adult dogs or once as immature dogs. Brief clinical and pathology summaries are given in a manner consistent with past reports for each dog that died during the reporting period. For readers wishing to study past reports on studies in which all dogs are dead, summary information and references are given to all previous reports on these studies in past annual reports.

Much of the current effort on the ITRI studies is directed to completion of the clinical pathology reviews of the dogs by study, data analyses, and manuscript preparations needed to determine and present the basic results of these studies and their implications for human health risks from inhaled radionuclides.

Five brief reports are presented as examples of efforts underway in these studies. The first of these reports examines the long-term carcinogenic responses seen in the four studies in which dogs inhaled, or were injected with, soluble forms of beta-emitting radionuclides. Attention was directed specifically to the primary target organs, lung, liver, bone, and nasal mucosa. Differences in tumor incidence among these organs related to differences in radionuclide distribution patterns among these radionuclides. Further dose-response analyses will be conducted to provide more quantitative information on these similarities and differences.

Bone tumor incidence in all ITRI studies involving soluble or relatively soluble forms of radionuclides (90 SrCl₂, 91 YCl₃, 144 CeCl₃, 137 CsCl, and 238 PuO₂) is addressed in the second report. Comparison of the number of bone tumors observed in these studies with various beta- or alpha-emitting radionuclides suggests that the tumors occurred primarily in studies with the longer-lived radionuclides. Significant differences were observed in the distribution of tumors within the skeleton and the occurrence of possible bone-associated tumors. Further analyses are in progress.

An important aspect when analyzing the life-span incidence of lung cancer after inhalation of different radionuclides is knowledge of the incidence, types, and times of occurrence of lung cancers in unexposed control dogs. The third report in this section describes results seen to date in a population of 225 life-span control dogs. As of September 30, 1992, 204 of these dogs had died or been euthanized. The observed crude incidence was 10% in female and 6% in male dogs although this gender effect was not statistically significant. The age specific incidence increased markedly after 14 yr of age and was nearly 10% in both males and females after 16 yr. All of the tumors observed were carcinomas, most of which were papillary adenocarcinomas.

Another aspect of lung cancer, tumor growth-rate patterns, is the subject of the fourth report. Radiographs were examined of 174 dogs that developed pulmonary neoplasms after inhalation of ²³⁸PuO₂ or ²³⁹PuO₂. From this group, 29 cases were selected for further analyses. Digital traces of tumor outlines on the radiographs were entered into the computer and used to determine tumor volume as a function of time. The data suggest that growth rates of Pu-induced lung tumors have doubling times between 1 and 9 mo. The dogs generally fell in one of two groups having doubling times of either 1 to 3 mo or 6 to 9 mo. Additional analyses are being conducted to determine an appropriate point in tumor development to use for dose calculations.

The last report in this section discusses analyses of survival times in dogs exposed by inhalation to ²³⁹PuO₂ repeatedly at 6-mo intervals for 10 yr. This analysis focused on death from radiation pneumonitis and pulmonary fibrosis. The average dose rate was found to be a useful way for predicting the response to multiple exposures from a single exposure.

The current status and recent progress of life-span studies from the University of Utah begin the next major section of this annual report. These studies were begun in the early 1950s for the purpose of determining the radiotoxicity of ²³⁹Pu relative to that of ²²⁶Ra for comparison with results obtained in humans containing burdens of ²²⁶Ra. A number of studies with other radionuclides, primarily alpha emitters, were added in later years.

The specific objectives of these studies are briefly presented followed by a description of the general procedures. The main difference between the Utah studies and the ITRI studies is the exposure route. All of the Utah studies involve exposure by a single intravenous injection (or repeated injections for ²²⁴Ra), whereas all the ITRI exposures, except for ¹³⁷CsCl, were given by single or repeated inhalation exposures. The Utah studies involved both life-span studies and special serial-sacrifice studies. Of primary interest at the present time is completion of the life-span studies. Study-specific features are presented for studies of young-adult Beagles that received intravenous injections of 1 of 10 different radionuclides or of immature or aged Beagle dogs injected with ²³⁹Pu or ²²⁶Ra.

Thirty-three dogs in the University of Utah-initiated studies died or were euthanized between September 30, 1991, and September 30, 1993, leaving a total of six living dogs on study. These living dogs are in the study of ²²⁴Ra in young adult dogs or ²²⁶Ra in immature dogs.

Research efforts in the Utah studies fall into three general categories: 1) continued care and observation of the dogs still alive, 2) detailed dosimetric studies, at the organ and local levels, of these injected radionuclides and the factors that influence these dose patterns, and 3) completion of final reviews of biological materials and data, compilations and analyses of data, and preparation of final study reports for publication in the open, scientific literature. Care and study of the dogs on study is continuing at the ITRI tacility.

Most of the scientific effort at the University of Utah is currently being directed to completion of major life-span studies and the associated dosimetry studies required to determine dose-response relationships and estimated health risks for humans. The current focus of study completion activities is directed primarily to the studies of young adults dogs injected intravenously with either ²²⁶Ra or ²³⁹Pu. Milestone schedules are given for the various segments of these studies that need to be completed prior to completion of overall summary manuscripts on these studies. These individual milestone activities are also leading to other manuscripts that present more detailed examinations of the various dose and effects results obtained as well as analyses that cut across two or more studies.

Seven brief reports are given as examples of efforts underway in these studies. The first of these reports examines the distribution of skeletal malignancies in dogs injected with ²³⁹Pu citrate when they were

young adults. The distribution of ²³⁹Pu-induced bone tumors was compared with the distribution of ²²⁶Ra-induced bone tumors. The ²²⁶Ra exposed dogs showed more bone tumors in the tibia, and the ²³⁹Pu resulted in more tumors in the axial skeleton. Site-specific bone tumover rate and percent of red marrow at the site (vascularity) may have been important influencing factors in these distribution patterns.

The second report discusses the occurrence of metastases in dogs with skeletal malignancies. For most factors studied, no significant differences were established between dogs with and without metastases. However, larger tumor volumes at death appeared to be associated with the probability of metastasis. The fraction of dogs with metastasis increased monotonically with increasing tumor volume at death.

Skeletal malignancies in dogs injected with 241 Am were examined in the third report in this section. When all dosage groups >3 Gy were excluded from the analysis, a linear relationship of percent of dogs with skeletal malignancy = A = 0.76 + 30D is obtained where D is the average skeletal dose to 1 yr before death. The ratio of this equation to a similar one fitted to data for 226 Ra-injected dogs indicates that 241 Am was about six times more effective in producing bone cancers per unit of average bone dose than was 226 Ra.

Another report on the ²⁴¹Am life-span study in dogs involves thyroid lesions. Although only a relatively small fraction of the injected ²⁴¹Am was deposited in the thyroid, it resulted in high local concentrations because of the small mass of the thyroid. Follicular atrophy and interstitial fibrosis were seen at the higher dosage levels. However, the incidence of thyroid tumors in the Am-treated dogs was not significantly different from the incidence seen in the control dogs.

The fifth report in this section addresses data from the University of Utah studies that may pertain to the question of leukemia which may be caused by inhaled radon or thoron progeny. In the Utah studies, dogs injected with ²²⁶Ra, ²²⁸Ra, or ²²⁸Th received chronic internal irradiation from the gaseous decay products ²²²Rn, radon, or ²²⁰Rn, thoron. Some of these gaseous progeny might escape to the marrow cavity and irradiate the red marrow. No strong effect of myeloid or lymphoid malignancy or of mast cell malignancy was observed in dogs having either radon or thoron in their body as compared with control animals or with dogs injected with other alpha-emitting radionuclides.

The sixth and seventh reports are directed to issues of skeletal dosimetry. One of these reports discusses the statistics of hits to bone cell nuclei, and the other examines static and dynamic bone histomorphometry in ²³⁹Pu-treated dogs. In the statistical analysis, the probability of no hits to the nuclei of bone-lining cells was examined for first and subsequent generations of bone cells in the cases of random or deterministic remodeling. For the first generation of bone cells, age-dependent remodeling gives a higher probability of no hits than does random remodeling. On the other hand, for subsequent generations, age-dependent remodeling gives a lower probability of no hits than does a random one.

The histomorphometry report examines the possible effects of cage confinement on the early dosimetry of bone-seeking, alpha-emitting radionuclides. Some differences were observed in bone mass and architecture as well as some bone turnover rates. However, the currently available results are too limited to lead to definite conclusions.

The third section of this document provides a brief status report on the dogs moved to ITRI from ANL in January 1991. Seventy-three dogs were moved to ITRI. By the end of FY-1993, 43 of these dogs had died or were euthanized. All of the surviving dogs are being followed medically, and gross and histopathology information will be obtained at death.

The sections on the ITRI, Utah, and ANL studies are followed by two sections that provide references to open literature and document publications produced by the ITRI and Utah efforts. Specific references to open literature publications during the past fiscal year are included for both organizations.

This annual report concludes with publication of the annually revised appendix tables that list pertinent experimental information for every dog assigned to either an ITRI- or Utah-initiated study. These tables are working documents for which individual entries may change from time to time as new or revised information becomes available. When the information in a specific table reaches the point where further changes are unlikely, it will be so noted. None of the tables has yet reached that stage.

I. ITRI LIFE-SPAN STUDIES IN DOGS

A. SPECIFIC PROJECT OBJECTIVES

The major objectives of these studies are to define the late-occurring health effects of inhaled radionuclides, to determine appropriate dose-response functions for describing the occurrences of these effects, to gain an understanding of the relative importance of various dose- and effect-modifying factors, and to use these results to estimate human health risks from inhaled radionuclides. Because the information necessary to describe these relationships is not available from human exposures to radionuclides, it is necessary to perform studies in laboratory animals to address these issues.

The series of life-span studies conducted in Beagle dogs for this project were designed to determine the radiotoxicity of representative radionuclides found in the inventories of various types of nuclear reactors, defense production facilities, and associated waste products. Specific questions that are addressed in these studies are as follows:

- (1) What are the organs at risk relative to the solubility of the chemical form of the radionuclides?
- (2) What is the importance of total dose and dose rate to the lung with respect to beta-emitting radionuclides in producing biological effects?
- (3) What is the importance of the uniformity of dose to the lung from alpha-emitting radionuclides relative to the risk of lung cancer?
- (4) Does the age of the individual at the time of exposure modify dose and resulting effects?
- (5) Does the protraction of dose by repeated exposures have an important effect on biological responses?

Our major focus is on life-span studies in dogs; however, studies are also being done in rodents and in nonhuman primates. The purpose of these latter studies is to provide information from other species that will strengthen and improve the extrapolation of data from laboratory animals to humans.

B. EXPERIMENTAL APPROACHES

1. General Procedures

Each dog life-span study involves dogs that were exposed at one of 4 to 10 levels plus unexposed control dogs. Typically, each exposure level contained 12 dogs, although in a few instances, a particular level contained more or less than 12 dogs. All dogs used were purebred Beagles from the Institute's colony. Before being placed on study, each dog received a complete medical evaluation to ensure its suitability for inclusion in a life-span study. Dogs were placed on study according to a randomized block design. Two or more blocks of dogs, at least one block of each sex, each containing one dog at each desired exposure level and a control dog, were entered on study at a particular time. Entry of the full complement of dogs in a given study was spread over 2 to 5 yr.

With the exception of the study in which ¹³⁷CsCl was administered by intravenous injection, all radionuclides were administered by single or repeated, brief, per-nasal inhalation exposure. Dogs were whole-body counted immediately after exposure and periodically thereafter, to quantitate the initial body burden of the inhaled radionuclide and its subsequent retention. Urinary and fecal excretions were collected daily in the early post-exposure period and periodically thereafter, as another means of quantifying radionuclide retention.

All dogs on study received annual medical evaluations, as well as clinical treatment when required. The serial blood cell counts and serum chemistry determinations and the radiographic information were compiled into individual, lifetime medical records for each dog. At death, each dog received a complete necropsy, with gross examination of tissues and organs and collections of specimens for histopathology and radioanalysis of radionuclide content. Tissue specimens were examined histopathologically, and a case summary and diagnoses were prepared. Additional dosimetry data were obtained from the serial sacrifice of dogs exposed in parallel studies using the same radionuclides and aerosol forms as in the life-span studies. Histopathology results are encoded according to SNODOG, a modified version of the SNOMED nomenclature system, and entered into a FOCUS database along with major clinical results for each dog.

2. Study-Specific Features

a. Beta-Emitting Radionuclides Inhaled in a Relatively Soluble Form

The solubility of inhaled material in body fluids has a definite effect on the translocation of radionuclides from the lung and influences which organs receive significant radiation doses. The four radionuclide compounds chosen for these studies, ${}^{90}\mathrm{SrCl}_2$, ${}^{144}\mathrm{CeCl}_3$, ${}^{91}\mathrm{YCl}_3$ and ${}^{137}\mathrm{CsCl}$, provided a range of organs at risk, including lung, liver, skeleton, and whole body. For the purposes of this report, use of the terms ${}^{90}\mathrm{Sr}$, ${}^{137}\mathrm{Cs}$, or ${}^{144}\mathrm{Ce}$ refers to an equilibrium mixture of ${}^{90}\mathrm{Sr}$, ${}^{137}\mathrm{Cs}$. ${}^{137}\mathrm{mBa}$, or ${}^{144}\mathrm{Ce}$ - ${}^{144}\mathrm{Pr}$, respectively. Specific features of these four studies are given below.

i. 90SrCl₂ (Inhalation exposures performed from 1965-1967)

This study involves 48 dogs that received single inhalation exposures to graded levels of 90 Sr and 15 control dogs. The exposure aerosol was 90 SrCl₂ in a nonradioactive CsCl vector. The long-term retained burdens ranged from 0.37 to 4.44 MBq/kg body weight. Because 90 Sr is a bone-seeking radionuclide, the skeleton was the main target organ.

ii. 144CeCl₃ (Inhalation exposures performed from 1966-1967)

This study involves 55 dogs that received single inhalation exposures to ¹⁴⁴CeCl₃ on a CsCl vector and 17 control dogs. The long-term retained burdens ranged from 0.096 to 13.3 MBq/kg body weight. The main target organs were lung, liver, skeleton, and nasal cavity.

iii. 91YCl₃ (Inhalation exposures performed from 1966-1967)

This study involves 42 dogs that received single inhalation exposures to ⁹¹YCl₃ on a CsCl vector and 12 control dogs. The long-term retained burdens ranged from 0.52 to 20 MBq/kg body weight. The main target organs were similar to those for ¹⁴⁴Ce - lung, liver, skeleton, and nasal cavity.

iv. 137CsCl (Intravenous injections were done in 1968-1969)

This study involves 54 dogs that received a single intravenous injection of ¹³⁷CsCl and 12 control dogs. The initial body burdens of ¹³⁷Cs in the injected dogs ranged from 32.5 to 148 MBq/kg body weight. Because of the soluble nature of the injected material and the fact that the distribution of cesium follows that of potassium in the body, the resulting pattern of irradiation was generally a whole-body exposure, in contrast to the three studies listed above where the radionuclides were preferentially deposited in only a few organs.

b. Beta-Emitting Radionuclides Inhaled in a Relatively Insoluble Form

This series of four studies was designed to investigate the carcinogenic response of the lung to similar doses of chronic beta radiation delivered over different periods of time. To achieve this objective, four radionuclides, with radioactive half-lives ranging from 64 h to 29 yr and each encapsulated in a common form of vector aerosol, fused aluminosilicate particles (FAP), were studied. Specific features of these four studies are given below.

i. 90Y in FAP (Inhalation exposures performed from 1969-1971)

This study involves 89 dogs that received single inhalation exposures to ^{90}Y -FAP and 12 control dogs. The initial lung burdens (ILBs) ranged from 2.96 to 192 MBq/kg body weight. Because the half-life of ^{90}Y is relatively short, 2.6 days, and ^{90}Y in this form is relatively insoluble, the major radiation dose was delivered to the lung.

ii. 91Y in FAP (Inhalation exposures performed from 1970-1971)

This study involves 96 dogs exposed once to graded levels of ⁹¹Y-FAP and 12 control dogs. ILBs ranged from 0.407 to 13.3 MBq/kg body weight. The effective half-life of ⁹¹Y is approximately 53 days in the lung. The main target organs were the lung and tracheobronchial lymph nodes.

iii. 144Ce in FAP (Inhalation exposures performed from 1967-1971)

This study involves 111 dogs that received single brief exposures to ¹⁴⁴Ce-FAP as young adults and 15 control dogs. ILBs ranged from 0.00009 to 7.77 MBq/kg. The effective half-life of ¹⁴⁴Ce in the lung is about 180 days. Lung and tracheobronchial lymph nodes were the main target organs.

iv. 90Sr in FAP (Inhalation exposures performed from 1970-1974)

This study involves 106 dogs that received single brief exposures to ⁹⁰Sr-FAP as young adults and 18 control dogs. ILBs ranged from 0.0044 to 3.55 MBq/kg body weight. The radioactive half-life of ⁹⁰Sr, about 29 yr, is the longest of the four radionuclides used in this series. When incorporated in FAP, the effective pulmonary retention half-life is about 500 days. The main target organs were lung and tracheobronchial lymph nodes.

Figures 1 and 2 illustrate the effect of different retention patterns in the lung for the four studies in which young adult dogs inhaled radionuclides in FAP aerosols. These differences result from effective half-lives in lung that range from ~2 days for ⁹⁰Y to more than 500 days for ⁹⁰Sr. In Figure 1, the expected change in radiation dose rate as a function of time is shown for the levels of exposure selected to produce initial dose rates of 1 Gy/day. The dose patterns in Figure 1 required assignment of similar activity levels for ILBs, because the beta energies are similar for the four radionuclides. For the same ILB, different dose-rate patterns result in marked differences in the long-term cumulative radiation dose to the lung. Differences in radiation dose patterns among the different radionuclides are demonstrated in Figure 2, where cumulative dose curves resulting in infinite

doses of 20 Gy to the lung required II.E. ranging from 48 MBq for 90 Y (initial dose rate = 5.3 Gy/day) to 0.26 MBq for 90 Sr (initial dose rate = 0.57 Gy/day). Table 1 shows the various organs that received substantial beta radiation doses in these studies and thus, were especially at risk for the development of long-term biological effects.

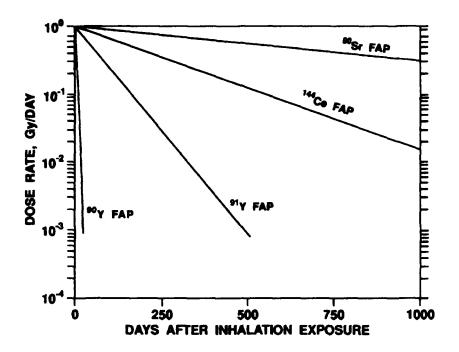


Figure 1. Calculated absorbed beta dose rate to the lung for Beagle dogs for various inhaled radionuclides Onormalized to 1 Gy/day initial dose rate (110 g lung). FAP = fused aluminosilicate particles.

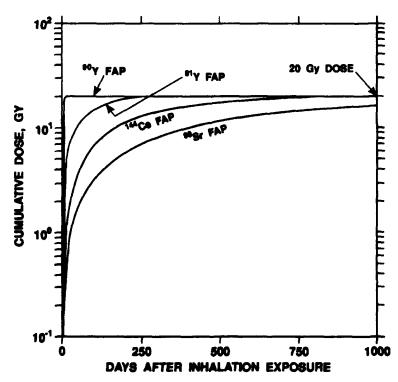


Figure 2. Calculated patterns for accumulating total beta-dose to the lung in Beagle dogs of 20 Gy from various inhaled radionuclides (110 g lung). FAP = fused aluminosilicate particles.

Table 1

Life-Span Dose-Response Studies in Beagle Dogs that Received Single,
Brief Exposures by Inhalation To Beta-Emitting Radionuclides

Acrosol	Whole-Body Effective	Age at	Organs Receiving Substantial Radiation Doses								
and Form ^a	Retention Half-Life	Inhalation Exposure	Lung	Skeleton	Liver	Whole Body	TBLNb				
137CsCl	30 days	13 months				++ ^c					
⁹¹ YCl ₃	59 days	13 months	++	++	++						
144CeCl ₃	284 days	13 months	++	++	+++						
90SrCl ₂	5-10 years	13 months		+++							
90Y FAPd	2.5 days	13 months	++				+				
⁹¹ Y FAP	53 days	13 months	+++				++				
144Ce FAP	> 200 days	13 months	+++	+	+						
90St FAP	> 500 days	13 months	+++	+	+						
144Ce FAP	> 200 days	3 months	+++	+	+		+++				
144Ce FAP	> 200 days	8-10 years	+++	+	+		+++				

^aAll polydisperse aerosols, except ¹³⁷CsCl which was given by intravenous injection.

c. Uniformity of Pulmonary Irradiation from an Inhaled Alpha-Emitting Radionuclide

To address the question of whether a nonuniform distribution of alpha radiation in the lung is more carcinogenic than a uniform distribution, five life-span studies are being conducted using Beagle dogs that inhaled either ²³⁸PuO₂ or ²³⁹PuO₂ particles of different monodisperse sizes. A schematic representation of the experimental design for these studies is shown in Figure 3, where each cube represents one dog. Five different aerosols have been used, each resulting in particles with different levels of alpha-emitter radioactivity. For each aerosol, a randomized block design was used for entering dogs on study, similar to that used for the beta-gamma dose-response studies.

Twelve blocks of dogs were exposed to each aerosol to achieve graded ILBs ranging from 0.37-21 kBq Pu/kg body weight. Sixty control dogs were included, 12 for each aerosol. Two additional ILB levels of 93 and 8.5 Bq Pu/kg body weight were included for the studies in which young-adult dogs and immature dogs inhaled 239 PuO₂ aerosols of 1.5 μ m activity median aerodynamic diameter (AMAD). An ILB of 239 Pu of 8.5 Bq Pu/kg body weight in a Beagle dog is equivalent to a lung burden of 590 kBq Pu in a 70-kg human.

The information given in Figure 3 and in Table 2 was used to calculate the initial dose rate averaged over the total lung and the local dose rate around each particle, for each particle size and activity level shown in Figure 4. With two different radioisotopes of plutonium and three different particle sizes, the alpha activity per particle and the corresponding, idealized local dose rate to a sphere of lung tissue with a radius of 180 μ m (density = 0.22 g/cm³) surrounding an individual particle varied by a factor of ~40,000. Also, the use of six activity levels for each aerosol resulted in a difference of about a factor of 50 in the initial dose rate, averaged over the entire lung. Thus, these five experiments permit comparison of the relative influences of both local dose rates and average dose rates in producing long-term biological effects. The average dose rate to the lung

^bTracheobronchial lymph nodes.

^cRelative magnitude of dose received.

dFused aluminosilicate particles.

will decrease with time after exposure, as plutonium is cleared from the lung. The local dose rate can either increase or decrease as a result of particle movement, aggregation, dissolution, or particle breakup in the lung.

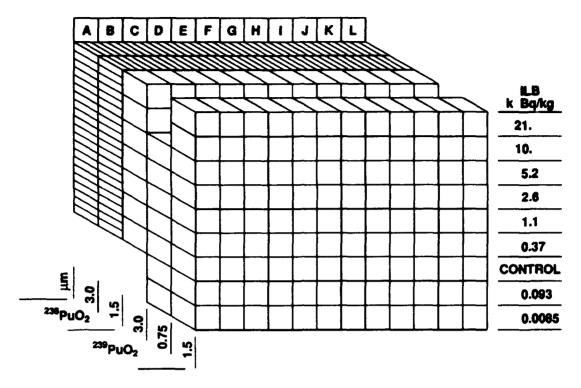


Figure 3. Schematic representation of the experimental design for life-span studies involving young adult dogs exposed to different monodisperse aerosols of ²³⁸Pu (90%)PuO₂ or ²³⁹PuO₂. Each cube represents one dog entered into the experiment at 12-14 mo of age.

Table 2

Some Characteristics of Aerosol Particles Containing Pure Transuranic, Alpha-Emitting Radionuclides

	Sifi-	Activity (Bq) per Particle ^{a,b}							
Aerosol	Specific Activity (GBq/g)	AMAD ^c = 0.75 μ m RD ^d = 0.18 μ m	AMAD = 1.5 μ m RD = 0.44 μ m	AMAD = $3.0 \mu m$ RD = $0.96 \mu m$					
²³⁹ PuO ₂	2.0	0.000049	0.00074	0.0074					
²⁴¹ AmO ₂	110	0.0027	0.039	0.41					
²³⁸ PuO ₂	560	0.014	0.20	2.1					
²⁴⁴ CmO _x	2,700	0.066	0.96	10					
²⁴² CmO _x	110,000	2.7	39	410					

^aDensity of 8 was used for these calculations. This is the measured density for ²³⁸PuO₂ and ²⁴¹AmO₂ particles produced by standard methods at this Institute.

particles produced by standard methods at this Institute. The 238 Pu used at this Institute contained 10% 239 Pu by weight. This produced a specific activity of 510 GBq/g and particle activities of 0.013, 0.18, and 1.9 Bq, respectively, for 0.75- μ m, 1.5- μ m, and 3.0- μ m AMAD particles.

^cAMAD=Activity median aerodynamic diameter of monodisperse particles (geometric standard deviation < 1.2).

dRD=Real or geometric diameter of the particle.

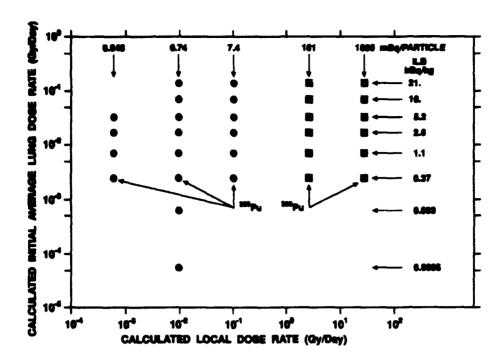


Figure 4. Calculated dose relationships for the five life-span studies involving dogs that inhaled monodisperse aerosols of $^{238}(90\%)$ PuO₂ or 239 PuO₂. Local dose rate was computed in a sphere of lung tissue (density = 0.22 g/cm³) having a radius of 180 μ m. The calculation of average dose rate was based on a 110-g lung. Self-absorption of alpha energy by the particles was negligible.

Inherent in the experimental design is a difference in the number of particles associated with a given ILB level for each aerosol. The fraction of the lung irradiated can be estimated by assuming a spherical irradiation volume of 2.4 x 10⁷ µm³ around each particle, and by determining how many of these volumes are present in the volume of a 110-g lung. Results of such a theoretical calculation are presented in Figure 5. When the number of these irradiation volumes exceeds 2.1 x 10⁷, the calculated fraction of lung irradiated exceeds 1.0. For values > 1.0, some or all portions of the lung would be irradiated by the alpha emissions from more than one particle of plutonium, even if the particles are assumed to be uniformly distributed in the lung tissue, and geometrical considerations are ignored. Our experimental evidence suggests that inhaled particles are not uniformly distributed, but are randomly deposited in the lung. This random distribution indicates that theoretical calculations of the fraction of lung irradiated are slight overestimates. All of the ILB levels for the exposures to 0.75 μ m AMAD particles of ²³⁹PuO₂ and for the upper four levels for the exposures to 1.5 μ m AMAD particles of ²³⁹PuO₂ gave calculated fractional irradiations > 1.0. The remaining ²³⁹PuO₂ ILB levels and all of the ²³⁶PuO₂ exposure levels resulted in calculated values < 1.0 for fractions of lung irradiated. Because of the overlap in fractions of lung irradiated for the several different sizes of aerosols, the effects of local dose rate are being studied, while the fraction of lung irradiated is held constant. To obtain more detailed dosimetric information, parallel studies have been conducted in dogs and rodents exposed to ²³⁹PuO₂ and ²³⁶PaO₂ aerosols and serially sacrificed at selected times after exposure. These studies have provided valuable data on the organ and tissue distribution of plutonium with time after exposure.

The dogs in the originally planned five studies of different-sized aerosol particles of ²³⁹PuO₂ and ²³⁸PuO₂ have all been exposed and entered into these studies. After the exposures were completed, we found that the ²³⁶PuO₂ particles began to break up in the lung at about 100 days after exposure. This resulted in increased solubility and translocation of ²³⁸Pu to bone and liver. Although some ²³⁸PuO₂ remained in the lung, the dose patterns to lung, liver, and bone were altered from what was initially expected to occur. The ²³⁹PuO₂ particles did not undergo any observable breakup, presumably because of their lower specific activity. Although this unexpected early dissolution of the ²³⁸PuO₂ particles changed the experimental design of the original study, important information is being obtained on the toxicity of inhaled ²³⁸PuO₂. At the same time, the ²³⁹PuO₂-exposed dogs are providing information relative to the original hypothesis.

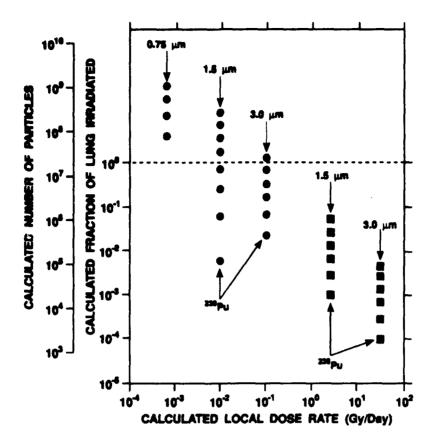


Figure 5. Calculated numbers of particles and fractions of lung irradiated based on the sphere of irradiation associated with each particle $(2.4 \times 10^7 \ \mu \text{m}^3)$ and a determination of how many of these volumes could be contained in the lung before overlapping occurred. Self-absorption of alpha energy by the particles is negligible.

Specific details on these studies are given below.

i. ²³⁸PuO₂ (Inhalation exposures performed from 1973-1976)

Two studies were initiated with young-adult dogs exposed once, briefly, to monodisperse particles of $^{238}\text{PuO}_2$. These two studies used particles with aerodynamic diameters of 1.5 and 3.0 μ m, respectively. Each study was comprised of 72 ^{238}Pu -exposed dogs and 12 control dogs. The ILBs ranged from 0.11 to 37 kBq/kg body weight in the 1.5 μ m study and 0.37 to 55.5 kBq/kg body weight in the 3.0 μ m study. Although the particles of $^{238}\text{PuO}_2$ were initially quite insoluble, these particles fractured after several months in the body, leading to decreased particle sizes and increased dissolution. Subsequent absorption of ^{238}Pu into the systemic circulation, with translocation to other organs, resulted in the skeleton and liver becoming target organs, as well as the lung.

ii. ²³⁹PuO₂ (Inhalation exposures performed from 1977-1979)

Three studies were initiated in which young-adult dogs were exposed once, briefly, to monodisperse particles. There were 48 dogs that inhaled 0.75 μ m particles of ²³⁹PuO₂, 96 dogs that inhaled 1.5 μ m particles of ²³⁹PuO₂, and 72 dogs that inhaled 3.0 μ m particles of ²³⁹PuO₂. Each study had 12 control dogs. The ILBs ranged from 0.26 to 7.4, from 0.03 to 37, and from 0.22 to 74 kBq/kg body weight for the 0.75 μ m, 1.0 μ m, and 3.0 μ m studies, respectively. Because the inhaled ²³⁹PuO₂ remained in a very insoluble form in the body, the lungs were the main target organs in these studies.

d. Effects of Age

To examine the possible effects of age on the dose-response relationships for both a beta- and an alpha-emitting radionuclide inhaled in a relatively insoluble form, additional life-span studies were conducted with dogs that were either 3 mo or 8 to 10.5 yr old at the time of inhalation exposure. The two exposure aerosols used, ¹⁴⁴Ce-FAP and ²³⁹PuO₂, will facilitate comparisons of results obtained with beta- and alpha-emitting radionuclides with results obtained from the companion, young-adult studies listed above for the same forms.

i. 144Ce in FAP in immature dogs (Inhalation exposures performed from 1972-1976)

This study involved 49 dogs that were exposed once, briefly, to ¹⁴⁴Ce-FAP aerosols at 90 days of age and five control dogs. The ILB of ¹⁴⁴Ce ranged from 0.15 to 5,180 kBq/kg body weight. The lung and tracheobronchial lymph nodes were the main target organs.

ii. 144Ce in FAP in aged dogs (Inhalation exposures performed from 1972-1975)

This study involves 42 dogs that inhaled graded activity levels of ¹⁴⁴Ce-FAP when they were 8 to 10.5 yr old and 12 control dogs. ILBs in these 42 dogs ranged from 88.8 to 2,780 kBq/kg body weight. The main target organs were lung and tracheobronchial lymph nodes.

iii. ²³⁹PuO₂ in immature dogs (Inhalation exposures performed from 1979-1982)

This study involves 96 dogs that inhaled graded activity levels of a $1.5~\mu m$ monodisperse aerosol of $^{239}\text{PuO}_2$ when they were 90 days old and 12 control dogs. The ILBs ranged from 0.01 to 29 kBq/kg body weight. Lung and tracheobronchial lymph nodes were the primary target organs.

iv. ²³⁹PuO₂ in aged dogs (Inhalation exposures performed from 1979-1982)

This study involves 48 dogs that inhaled 1.5 μ m particles of ²³⁹PuO₂ when they were 8 to 10.5 yr old and 12 control dogs. The ILBs ranged from 0.48 to 24 kBq/kg body weight. Lung and tracheobronchial lymph nodes were the main target organs.

e. Effects of Protracted Exposure

Two studies were conducted to study dose protraction, one with a beta emitter, ¹⁴⁴Ce, and one with an alpha emitter. ²³⁹Pu.

i. 144Ce in FAP repeated exposures (Inhalation exposures performed from 1973-1975)

This study involves 27 dogs that received a brief inhalation exposure to ¹⁴⁴Ce-FAP every 8 wk for 13 exposures, and nine control dogs. The 27 exposed dogs were divided into three groups of nine dogs, whose lung burdens of ¹⁴⁴Ce were (1) increased by 92 kBq/kg with each exposure, (2) re-established at 333 kBq/kg, or (3) re-established at 165 kBq/kg body weight. In each case, lung and tracheobronchial lymph nodes were the main target organs.

ii. ²³⁹PuO₂ repeated exposures (Inhalation exposures performed from 1977-1988)

This study involves 36 dogs that received a brief inhalation exposure to ²³⁹PuO₂ every 6 mo for 20 exposures. These 36 dogs were divided into two groups, for which the exposure goals and numbers of dogs were (1) lung burden increased 3.7 kBq every 6 mo (12 dogs) and (2) lung burden increased 0.37 kBq every 6 mo (24 dogs). Another group of 24 dogs received an ILB of about 3.7 kBq in one brief inhalation exposure. Twelve dogs served as controls. The singly exposed dogs and the controls were sham exposed 19 times. Lung and tracheobronchial lymph nodes were the target organs.

3. Additional Approaches Being Used in the Life-Span Studies

Additional approaches to acquiring biological information related to the pathogenesis of alpha radiation-induced lung disease have been implemented in animals in the ongoing studies. Spontaneous Beagle dog lung tumors selected from dogs exposed to ²³⁹PuO₂ through inhalation were examined for altered expression of erbB2 (p185erbB2) protooncogene product, and mutations in both the K-ras protooncogene and the p53 tumor suppressor gene. Altered expression of p185erbB2 and p53 protein was determined by immunohistochemical analysis of 117 tumors representing different histotypes in both exposed (n = 80) and unexposed (n = 37) animals. Twenty-eight tumors were analyzed for specific K-ras mutations by PCR amplification and direct sequencing. Fourteen percent (14%) (16/116) of all lung neoplasms showed elevated nuclear accumulation of p53 protein. Adenosquamous and squamous cell histotypes were the most frequently perturbed regardless of exposure history and comprised 94% of all tumors with p53 dysfunction. Eighteen percent (21/117) of all tumors had evidence of p185^{erbB2} overexpression. Intrapulmonary metastasis from primary tumors overexpressing p185^{erbB2} also showed evidence of erbB2 gene dysfunction. No differences in p185^{erbB2} expression were noted between spontaneous and plutonium-induced lung tumors, nor was there a relationship between total ²³⁹PuO₂ lung dose (Gy) at death and altered p185erbB2 or p53 protein expression. K-ras mutations were not detected in codons 12, 13, or 61 of unexposed (n = 9) or plutonium-induced lung tumors (n = 19). These data indicate that p53 and especially K-ras gene dysfunction as a result of missense mutation are infrequent events in both spontaneous and ²³⁹PuO₂-induced lung neoplasia of laboratory raised Beagle dogs and suggest that alternative mechanisms of gene alteration are involved in canine pulmonary carcinogenesis.

C. CURRENT STATUS OF ITRI STUDIES

1. General Overview

The current status of the 19 dog longevity studies at ITRI is presented in Table 3. Overall, about 3% of the total population of study dogs remained alive on September 30, 1993. At the beginning of this 2-yr report period, 13 of these 19 studies had reached the point at which all dogs were dead, and two other studies reached this same point during the report period. Current research efforts are directed at three main foci: (1) continuation of the care and study of dogs still alive in four of these studies, (2) collection and preservation of biological specimens obtained at necropsy for future efforts to develop early biological indicators of lung tumor production, and (3) completion of final reviews of biological specimens and the associated dosimetry data, compilation and analysis of data, and preparation of final study reports for publication in the open scientific literature. When a study is fully completed and submitted for publication, the study materials (slides, tissue blocks, etc.) records, and computer files will be transferred to the National Radiobiology Archive (NRA) at Richland, WA.

The brief reports that follow in Section I.C.2. give the current status of each longevity study in which dogs remain alive. This section is followed by a compilation of pertinent references to previous annual reports for all 11 studies in which all dogs are now dead (Section I.C.3.). These status reports are followed by a series of progress reports that present current highlights related to the three main foci.

Table 3

Current Status of Life-Span Radionuclide Toxicology Studies in Beagle Dogs at the Inhalation Toxicology Research Institute (9/30/93)

A	Radionuclide	Inhalation	Dogs	Number Alive				
Age at Inhalation	and Form	Exposure Year	Entered in Study	9/30/91	9/30/92	9/30/93		
12-14 mo	90SrCl ₂	1965-1967	63	0	0	0		
(young adult)	144CeCl ₃	1966-1967	72	0	0	0		
	⁹¹ YCl ₃	1966-1967	44	0	0	0		
	137CsCl	1968-1969	66	0	0	0		
	90 _{YFAP}	1969-1971	101	0	0	0		
	⁹¹ YFAP	1970-1971	108	0	0	0		
	144CeFAP	1967-1971	126	0	0	0		
	90SrFAP	1970-1974	124	0	0	0		
	²³⁸ PuO ₂ (1.5)	1974-1976	84	0	0	0		
	²³⁸ PuO ₂ (3.0)	1973-1976	84	0	0	0		
	²³⁹ PuO ₂ (0.75)	1977-1979	60	4	2	1		
	²³⁹ PuO ₂ (1.5)	1977-1979	108	21	10	4		
	²³⁹ PuO ₂ (3.0)	1977-1979	84	8	4	0		
3 mo	144CeFAP	1972-1976	54	1	0	0		
(immature)	²³⁹ PuO ₂	1979-1982	108	66	55	43		
8-10.5 yr	144CeFAP	1972-1975	54	0	0	0		
(aged)	²³⁹ PuO ₂	1979-1982	60	0	0	0		
Began at 12-14 mo	¹⁴⁴ CeFAP Repeated	1973-1975	36	0	0	0		
	²³⁹ PuO ₂ Repeated	1977-1988	72	6	4	1		
		Total	1508	106	75	49		

2. Summary Reports for Studies with Living Dogs

- a. Toxicity of Inhaled ²³⁹PuO₂ in Beagle Dogs. XIV:
 - i. Monodisperse 0.75 µm AMAD Particles.
 - ii. Monodisperse 1.5 µm AMAD Particles.
 - iii. Monodisperse 3.0 µm AMAD Particles.

Study Contact: F. F. Hahn

Studies of the long-term biological effects of ²³⁹Pu are being conducted because ²³⁹Pu is a major radionuclide in most nuclear fuel cycles and in the production of nuclear weapons. These studies also directly investigate the importance of uniform vs. nonuniform alpha irradiation of the lung. Young-adult dogs of both sexes inhaled one of three sizes of monodisperse aerosols of ²³⁹PuO₂; 0.75, 1.5, or 3.0 µm AMAD. Forty-eight dogs were exposed to 0.75 µm AMAD particles; 96 were exposed to 1.5 µm AMAD particles; 72 were exposed to 3.0 µm AMAD particles; and 36 dogs were exposed only to the aerosol vehicle. The initial pulmonary burdens ranged from 0.03 to 74 kBq/kg body mass. To assess the plutonium activity initially deposited in the lung, a short-lived, gamma-emitting radionuclide, ¹⁶⁹Yb, was incorporated into the PuO₂ aerosol, and whole-body counts were performed up to 120 days after exposure. A description of the ¹⁶⁹Yb counting technique for estimating initial pulmonary burdens of plutonium was reported previously (1979-80 Annual Report, LMF-84, pp. 132-140). The methods used to prepare the monodisperse aerosols and the aerosol exposure procedures were described in the 1976-77 Annual Report, LF-58, pp. 135-138. The experimental design charts in Figures 6-8 show the present status of these studies. The dogs in these studies are being maintained to study the biological effects that may occur throughout their lives. The procedures for health evaluations of these animals have been described (1978-79 Annual Report, LF-69, pp. 134-140).

DESIGN KBQ/KG	A	В	С	0	E	F	G	н	1	J	К	L	MEAN KBG/KG
5.2	963E 27. 2.3 E-2176	980T 34. 3.6 E-1579	9928 63. 5.9 0-1035	996U 19. 2.7 E-2446	10068 25. 2.9 E-1961	1027U 56. 5.6 E-2779	1097E 32. 3.7 E-2281	1092\$ 56. 5.9 E-1371	11098 70. 5.7 0-1520	1125S 44. 5.6 E-1280	1134C 67. 7.4 E-891	1142V 63. 7.0 E-1181	4.8
2.6	963F 17. 1.5 E-3302	982T 7.8 0.78 0-3768	990C 19. 2.0 0-2007	9995 19. 2.3 0-2886	1005C 24. 2.3 D-2085	1028U 32. 3.7 E-2742	1098C 23. 2.7 E-2031	1096S 14. 1.6 E-3115	1107A 44. 3.7 E-1757	1122T 32. 4.1 E-1525	1136A 67. 6.3 D-1467	1145T 18. 1.8 E-2563	2.7
1.1	9700 10. 0.96 E-3897	976T 7.4 0.70 D-4526	990A 17. 1.7 E-1718	1001T 23. 2.2 E-2081	1006A 14. 1.7 D-3370	1023W 19. 2.0 0-2741	1097C 14. 1.5 E-2343	1096U 7.4 0.89 E-3661	11008 10. 1.0 E-3429	11215 12. 1.4 E-2752	11308 20. 1.9 E-3093	1143T 14. 1.6 0-2951	1.5
0.37	969A 6.5 0.85 E-4162	977S 4.8 0.87 E-4618	986C 3.3 0.37 E-3626	996T 2.5 0.30 E-4275	10050 5.2 0.55 E-4171	1028S 3.3 0.37 0-4157	1096A 2.6 0.22 0-4488	1094T 4.1 0.37 0-3509	1111B 7.4 0.78 E-3375	1125T 6.3 0.78 0-3461	11348 15. 1.5 E-3094	1143S 5.6 0.52 E-3970	0.59
CONTROL	961A 0 0 0-4977	980S 0 0 0-3609	992A 0 0 0 A-6037	999U 0 0 0-3008	1007C 0 0 0-1893	1022W 0 0 E-4611	1098A 0 0 E-4024	1095T 0 0 D-5552	1106A 0 0 E-4899	1121T 0 0 0-3349	1131D 0 0 E-4375	1146S 0 0 E-4705	0
	963E =ANIMAL NUMBER 27. =INITIAL LUNG BURDEN (KBQ) 2.3 =INITIAL LUNG BURDEN (KBQ/KG) E-2176 =O-DEAD, E-EUTHANIZED, A-ALIVE - DAYS AFTER EXPOSURE AT DEATH OR ON 9-30-93												

Figure 6. Experimental design for dog study with 0.75 μm AMAD monodisperse particles of ²³⁹PuO₂ (Status as of 9-30-93).

KBQ/KS	A	•	С	0	E	7	•	н	I	J	K	L	HEAN KBQ/KB
21	9724 210 21 E-561	9848 290 31. 0-336	906A 190 . 18 . E-563	990U 250 . 25 . 0-467	10150 150. 17. 0-300	1023x 93. 11. E-662	10976 200 . 21 . E-276	1110U 250. 37. 0-206	11178 280. 29. 0-221	1137\$ 340. 34. 0-248	11340 74 7.0 E-152	11986 300. 37. 0-210	24
10	9778 130. 11. 0-503	964T 46. 6.3 E-1377	985C 150. 15. 0-1333	100. 11. 0-726	1027A 180. 17. 0-852	1006T 63. 5.9 6-1930	1088C 140. 14. 0-804	11015 320. 32. E-347	10000 170. 18. E-367	1141U 61. 12. 0-793	11304 41. 3.7 0-973	11957 130. 18. E-522	14
5.2	976A 67. 5.2 0-1438	9066 63. 6.3 E-1901	997C 89. 0.5 0-1266	9897 40. 7.0 0-1684	10238 56. 5.6 0-1787	1020T 40. 5.2 0-1134	10 020 110. 11. E-737	1000V 78. 6.8 E-947	11108 130. 16. 0-412	11415 70. 7.0 D-345	1129A 23. 2.6 E-3052	1148U 48. 7 0 E-1540	7.4
2.6	9704 56. 5.6 D-1809	9057 37. 3.6 0-1802	995A 44. 4.4 E~2666	9847 41. 4.8 0-2013	1007A 25. 2.6 E-1941	10006 41. 4.1 E-2260	10846 12. 1.0 E-1647	10956 70. 7.0 0-3204	1120A 37. 4.1 E-1713	1139U 32. 3.6 E-1765	1132C 27. 2.4 0-705	1160T 41. 4.8 E-1520	4.1
1.1	9766 8.9 1.0 E-4019	9725 14. 1.7 0~2148	999A 15. 1.9 E-4265	992T 11. 1.6 E-3068	10250 16. 1.4 E-2414	1022T 16. 1.7 E-3535	10960 8.1 0.78 E-2340	1098T 58. 7.0 A-5546	1099C 23. 2.2 0-1735	11307 32. 3.7 E-1779	11298 22. 2.1 0-862	1153T 17. 2.1 E-3366	2.3
0.37	970F 5.6 0.63 D-3945	969U 5.6 0.55 E-3633	9920 5.7 0.63 D-2315	9865 3.2 0.41 0-3783	10078 15. 1.3 E-3778	1010T 5.2 0.52 D-1109	1082C 4.1 0.41 E-3935	1112W 34. 4.1 E-1086	1113A 9.3 0.96 E-4229	11345 5.9 0.74 0-4732	1130C 16. 1.0 E-3633	11535 4.1 0.44 E-4845	1.0
0.093	9720 1.3 0.15 0-5309	960U 3.4 0.37 E-4412	9948 213 0.23 0-5732	900U 2.3 0.25 E-5463	1017A 7.8 0.85 E-4860	1010u 1.7 0.16 A-5945	1097A 2.0 0.23 E-4643	11105 13. 1.5 0-2380	1110A 3.0 0.35 E-4290	11467 4.8 0.55 0-5023	11320 2.1 0.22 A-5433	11545 1.1 0.13 0-5016	0.41
0.0085	971C 0.74 0.069 E-5544	9705 2.7 0.20 E-4530	997A 0.70 0.067 E-4901	9885 0.76 0.081 0-3955	1014C 4.4 0.52 E-4705	1022v 0.25 0.027 0-4960	1095A 0.55 0.048 E-4516	1112U 5.6 0.59 E-5057	1100A 2.2 0.23 0-4841	11305 1.2 0.15 0-4430	11318 0.92 0.065 0-5203	11497 0.92 0.12 0-4790	0.21
CONTROL	977A 0 0 E-4342	960T 0 0 E-5428	998A 0 0 E-5595	9625 0 0 E-4503	1010A 0 0 E-5216	10215 0 0 E-5270	10936 0 0 0-4441	11075 0 0 E-5235	1109A 0 0 4-5537	11365 0 0 E-4793	1131A 0 0 E-3472	11526 0 0 E-5252	o
	972A 210 21 E-561	-INITIAL	NUMBER LUNG BUR LUNG BUR E-EUTHAN (POSURE AT	DEN (KBQ/) IZED. A-AI	IVE - DAY								

Figure 7. Experimental design for dog study with 1.5 μm AMAD monodisperse particles of ²³⁹PuO₂ (Status as of 9-30-93).

DESIGN KBQ/KG	A	8	С	0	ε	F	6	н	I	J	к	L	MEAN KBQ/KG
21	964A 140. 14. E-702	9617 460. 41. 0-256	984A 570. 52. D-116	1004S 420. 48. 0-230	9970 240 . 28 . D-554	1034S 160. 21. 0-506	1069A 590 . 52 . 9-288	1101U 210. 20. E-727	11000 270. 25. 0-471	1130T 220. 33. E-631	11228 620. 74. E-105	1152V 440. 44. E-427	37
10	963A 52. 4.4 0-1636	977T 150. 19. E-589	980A 200. 19. D-666	1007\$ 93. 12. 0-781	1001A 270. 26. E~636	1029S 110. 10. 0-733	10698 240 . 21 . D-754	1105T 130. 13. E-1015	1099A 230. 21. E-1098	1137U 140. 13. E-1005	11170 200. 21. E-525	11495 140. 16. E-1355	16
5.2	966A 24. 2.1 E-1578	977U 180. 17. E-618	989A 100. 10. E-1525	10055 78. 8.9 0-1844	10008 140. 13. E-1108	1023U 41. 5.2 E-1987	1071A 110. 11. E-1434	1101T 78. 9.3 E-1043	1105A 96. 9.3 E-1055	1137T 89. 6.9 0-1422	11248 230. 21. E-454	1147U 81. 8.9 E-1257	10
2.6	965A 13. 1.1 E-4789	980V 89. 10. 0-876	986A 30. 2.7 E-2527	1006T 34. 4.4 0-2900	10058 34, 3,7 E-3497	1023V 27. 3.1 E-2451	1070A 63. 5.9 E-1648	1106S 27. 2.7 E-2367	10970 37. 3.7 E-1658	1139T 41. 4.1 E-1561	1117C 67. 5.9 E-1925	1152U 37. 4.1 E-2798	4.4
1.1	980A 9.3 0.92 E-3766	9815 14. 1.4 E-4461	9866 17. 1.4 E-3526	1005U 10. 1.1 E-2820	9998 21. 2.3 E-4129	1034T 5.6 0.85 E-4355	10706 41. 3.6 E-3185	10998 6.5 1.1 0-2429	1104A 44. 4.1 E-2096	11395 15. 1.4 0-5000	11218 30. 3.2 E-2450	1160V 20. 2.0 0-2955	1.9
0.37	9638 4.8 0.41 0-5227	980U 17. 1.5 E-2671	982A 7.0 0.67 E-4145	1009S 4.1 0.37 E-3660	9940 4.8 0.44 E-4410	1033U 2.0 0.22 0-4536	10728 14. 1.3 E-3354	1096T 7.0 0.70 0-5052	1101A 12. 1.1 E-3321	11365 4.1 0.52 E-4397	1121C 10. 0.96 E-3962	11605 18. 2.0 E-3290	0.85
CONTROL	9610 0 0 E-4473	9756 0 0 E-4567	9660 0 0 0-5609	999T 0 0 0-4971	994C 0 0 E-4567	10335 0 0 E-5591	1072C 0 0 0-1950	1104T 0 0 E-5543	1100C 0 0 0-5322	1128U 0 0 E-3461	1122C 0 0 E-4787	1152T 0 0 E-4953	0
	984A 140. 14. E-702	-INITIAL	NUMBER LUNG BUR LUNG BUR E-EUTHAN ER EXPOSU	DEN (KBG/1									

Figure 8. Experimental design for dog study with 3.0 μm AMAD monodisperse particles of ²³⁹PuO₂ (Status as of 9-30-93).

Descriptions of the major clinical and pathology findings for each dog have been included in the annual report for the year in which the dogs died; survival data are summarized in Figures 9-11. Exposure information and dosimetry results for each dog are given in Appendix A.

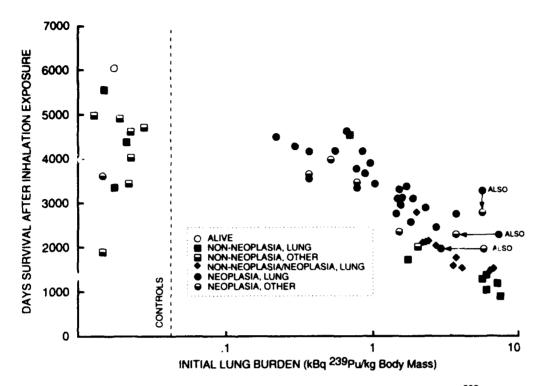


Figure 9. Survival of dogs that inhaled 0.75 μ m AMAD monodisperse particles of ²³⁹PuO₂ (Status as of 9-30-93).



Figure 10. Survival of dogs that inhaled 1.5 μm AMAD monodisperse particles of ²³⁹PuO₂ (Status as of 9-30-93). Note that dogs having lung neoplasia as an incidental finding are designated as "non-neoplasia/neoplasia lung." Dogs in which lung neoplasia was a major finding are designated as "neoplasia, lung."

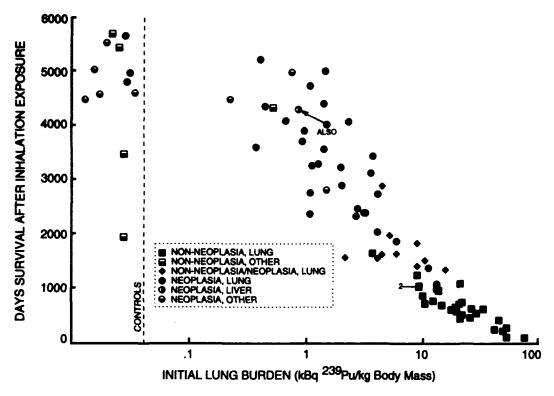


Figure 11. Survival of dogs that inhaled 3.0 μ m AMAD monodisperse particles of ²³⁹PuO₂ (Status as of 9-30-93).

During the past 2 yr, 28 dogs died. Eleven were dogs exposed to the 1.5- μ m AMAD particles, two were exposed to the 3.0- μ m particles, and 15 were control dogs exposed to the aerosol vehicle. The major clinical and pathological findings are summarized below. As of September 30, 1993, 213 ²³⁹Pu-exposed and 34 control dogs from these three studies were dead. The major findings at death from all of these dogs are summarized in Tables 4-6. We continue to observe the three ²³⁹Pu-exposed and two control dogs that remain alive at 15 to 17 yr after exposure.

In the study involving inhalation of monodisperse 0.7 μ m AMAD aerosols of ²³⁹PuO₂, three deaths occurred during the past 2 y^- all in control dogs that were only exposed to the aerosol vehicle.

Dog 1095T, a female control, was found dead 5553 days after exposure. She was treated for bronchopneumonia about 3 mo before death and had recovered. At necropsy, cardiomegaly and ventricular myocardial hypertrophy were found indicative of heart failure. Pulmonary edema was the immediate cause of death. Several benign tumors were found, multiple uterine fibromas, mammary adenomas, a parathyroid adenoma, and bilateral adrenal cortical adenomas.

Dog 1106A, a male control, was euthanized in renal failure 4899 days after inhalation exposure. At necropsy the dog had marked chronic nephropathy with cortical atrophy and replacement with fibrosis; marked anemia was present secondary to the uremia of renal disease.

Dog 1146S, a female control, was euthanized with a fever of unknown origin 4705 days after inhalation exposure. At necropsy, multiple sites of perianteritis and necrotizing arteritis were found affecting primarily heart, lymph nodes, adrenals, and ovaries. The lesions were consistent with canine polyarteritis syndrome. A mild chronic nephropathy and lymphocytic nephritis were present. The only neoplasm present was bilateral adrenocortical adenoma.

Table 4 Summary of Major Findings at Death in Dogs Exposed by Inhalation to Aerosols of Monodisperse 0.75 μm Particles of 239 PuO₂ (Status as of 9-30-93)

	Number of Dogs	ILB ^a (kBq ²³⁹ Pu/kg Body Weight)	Survival Times (Days after Exposure)	Cumulative Radiation Dose to Lung (Gy)
²³⁹ Pu-Exposed				
Non-Neoplasia				
Lung	7	0.7-7.4	891-4526	6.0-41
Bone Marrow	0			
Liver	0			
Other	1	2.0	2007	15
Neoplasia				
Lung Injury with Lung Neoplasia	10	2.0-6.7	1467-2741	13-31
Lung	26 ^{b,c,d}	0.22-5.6	1961-4618	2.0-26
Nasal Epithelium	0	••		
TBLN	0			
Heart	0		••	
Bone	0		**	
Bone Marrow	0			
Liver	0			**
Other	7 ^{b,c,d}	0.30-5.6	1961-3970	2.8-23
Control				
Non-Neoplasia				
Lung	3		3349-5552	
Bone Marrow	0		••	
Liver	0			
Other	7		1893-4977	••
Neoplasia				
Lung Injury with Lung Neoplasia	0			
Lung	0	••		
Nasal Epithelium	0			••
TBLN	0		**	
Heart	0		~-	••
Bone	0		~-	
Bone Marrow	0	••	~-	••
Liver	0		**	
Other	1		3609	

^aILB=Initial lung burden based on whole-body counting of ¹⁶⁹Yb.

^bOne dog had a lung tumor and a brain meningioma.

^cOne dog had a lung tumor and a fibrosarcoma in the mediastinum.

^dOne dog had a lung tumor and a muscle fibrosarcoma.

Table 5 Summary of Major Findings at Death in Dogs Exposed by Inhalation to Aerosols of Monodisperse 1.5 μ m Particles of 239 PuO₂ (Status as of 9-30-93)

	Number of Dogs	ILB ^a (kBq ²³⁹ Pu/kg Body Weight)	Survival Times (Days after Exposure)	Cumulative Radiation Dos to Lung (Gy)
²³⁹ Pu-Exposed				······································
Non-Neoplasia				
Lung	35 ^b	0.085-37	152-5203	0.9-59
Bone Marrow	0			
Liver	0			
Other	8^d	0.089-0.74	1109-5483	0.98-7.6
Neoplasia				
Lung Injury with Lung Neoplasia	19	0.63-15	1333-3945	4.9-49
Lung	21 ^d	0.089-7.0	2340-5732	0.98-51
Nasal Epithelium	0			
TBLN	0			
Heart	0			
Bone	1	0.85	4860	7.1
Bone Marrow	0			
Liver	1	0.48	4516	0.40
Other	11 ^{b,c}	0.067-3.7	973-5309	0.55-15
Control				
Non-Neoplasia				
Lung	0			
Bone Marrow	0			
Liver	1		4793	
Other	3		4342-5216	
Neoplasia				
Lung Injury with Lung Neoplasia	0	••		
Lung	1		5595	
Nasal Epithelium	0		••	
TBLN	0	**		
Heart	0			
Bone	1		3472	••
Bone Marrow	0	••	••	
Liver	1		5270	••
Other	4		4503-5428	

^aILB=Initial lung burden based on whole-body counting of ¹⁶⁹Yb.

bOne dog had lung injury and a kidney carcinoma.

COne dog had lung carcinoma and laryngeal carcinoma.

^dOne dog had lung adenoma and kidney nephropathy.

Table 6 Summary of Major Findings at Death in Dogs Exposed by Inhalation to Aerosols of Monodisperse 3.0 μm Particles of $^{239}PuO_2$ (Status as of 9-30-93)

	Number of Dogs	ILB ^a (kBq ²³⁹ Pu/kg Body Weight)	Survival Times (Days after Exposure)	Cumulative Radiation Dos to Lung (Gy)
²³⁹ Pu-Exposed				
Non-Neoplasia				
Lung	29	3.7-74	105-1658	24-77
Bone Marrow	0		••	
Liver	0		••	
Other	2 ^c	0.41,0.52	4397,5227	4.3,5.6
Neoplasia				
Lung Injury with Lung Neoplasia	10	2.2-16	1355-2900	13-84
Lung	29 ^{b,c}	0.37-13	1108-5227	3.9-85
Nasal Epithelium	0			
TBLN	0	••		
Heart	0			
Bone	0			
Bone Marrow	0			
Liver	1 ^b	0.85	4355	9.4
Other	3	0.22,1.5	2871,5052	2.5,13
<u>Control</u>				
Non-Neoplasia				
Lung	0			
Bone Marrow	0			
Liver	0			
Other	4		1950-5322	
Neoplasia				
Lung Injury with Lung Neoplasia	0			
Lung	3		4787-5591	
Nasal Epithelium	0	••		
TBLN	0			••
Heart	0			
Bone	0			••
Bone Marrow	0			
Liver	0			••
Other	5		4473-5609	**

^aILB=Initial lung burden based on whole-body counting of ¹⁶⁹Yb. ^bOne dog had lung and liver tumors.

^cOne dog had congestive heart failure and lung carcinoma.

Eleven dogs that inhaled 1.5 μ m AMAD particles of ²³⁹PuO₂ and six control dogs that were only exposed to the control vehicle died during the past 2 yr.

Dog 1134S, a female with an ILB of 0.74 kBq ²³⁹Pu/kg body weight, was found dead 4732 days after inhalation exposure. The dog had a long history of spondylosis and osteoarthritis. Renal insufficiency was noted several weeks before death.

At necropsy, large renal infarcts were found as the immediate cause of death. However, the marked renal cortical atrophy present was indicative of previous infarcts. Chronic renal insufficiency was evidenced by pulmonary gastric and vascular metastatic calcification and bilateral parathyroid hyperplasia. Neoplasms noted were an adenoma of the pars distalis of the pituitary, a benign mammary mixed tumor, a complex tubular adenoma, and mammary anaplastic carcinoma that infiltrated but did not metastasize.

Dog 1112U, a female with an ILB of 0.59 kBq ²³⁹Pu/kg body weight, was euthanized in a comatose condition 5057 days after inhalation exposure. The dog had numerous clinical problems over its lifetime. Most significant was chronic liver disease. At 4 yr of age, laparotomy was performed to reduce inspissated bile in the gall bladder. Liver enzymes were periodically elevated throughout life. About 1 yr before death, the dog was placed thoroughly on thyroid replacement and treated for ulcerative keratitis. The dog was subsequently treated several times for ulcerative keratitis. In the terminal episode, the dog was found comatose with a depressed body temperature. The dog did not respond to treatment, and euthanasia was recommended.

At necropsy, lesions found were generally not severe enough to produce clinical disease except for a suppurative bronchopneumonia. Three neoplasms were found, bronchioloalveolar carcinoma of the lung, cortical adenoma of the adrenal, and follicular cell adenoma of the thyroid. However, all were small and probably subclinical. The liver had focal capsular fibrosis and multiple micro granulomas but ample normal parenchyma to sustain normal hepatic function.

Dog 1146T, a female with an ILB of 0.55 kBq ²³⁹Pu/kg body weight, died during anesthesia for diagnostic radiography 5023 days after exposure. Over the years, the dog had numerous, minor clinical problems including lymphopenia, patellar luxation, and tooth extractions. About 1.5 yr before death, five mammary tumors were removed, including one noninvasive adenocarcinoma. A tumor of the lung was noted on radiographs about 6 mo before death. Seven months before death, persistent diarrhea was present. Signs of intestinal disorder became more severe and, at 5 mo before death, an adenocarcinoma of the ileum was surgically removed. The immediate cause of death was cardiopulmonary failure as indicated by hydrothorax, ascites, and pulmonary edema seen at necropsy. The pulmonary tumor was a primary bronchioloalveolar carcinoma confined to the left cardiac lobe and did not appear to contribute to the clinical disease. Other, noncontributory neoplasms found were adenocarcinoma of the pancreas, bilateral adrenocortical adenomas, and adenoma of the pituitary. There was no recurrence of the ileal tumor.

Dog 1153S, a female with an ILB of 0.44 kBq ²³⁹Pu/kg body weight, was euthanized 4845 days after inhalation exposure with a lung carcinoma. Three weeks before death, the dog was examined because of a poor appetite. The respiratory rate was elevated. The dog had a previous history of radiation pneumonitis 7 yr before and had been placed on special observation repeated times. During those observations, radiographic changes were minimal or mild. Upon bronchoscopic evaluation, the airways were normal. However, bronchial lavage revealed anaplastic epithelial cells indicative of a pulmonary carcinoma.

At necropsy, an adenocarcinoma with an alveolar pattern was found diffusely infiltrating all lung lobes. The anaplastic cells formed numerous small foci with alveolar or papillary forms and filled alveoli in some areas with cohesive cells. The neoplasm metastasized by the vasculature to the heart, stomach, and lymph nodes of the thoracic cavity. Lymphoid atrophy of tracheobronchial lymph nodes and fibrosis in the alveolar septa and pleura were also prominent.

Dog 988U, a female with an ILB of 0.26 kBq ²³⁹Pu/kg body weight, was euthanized with disc disease 5483 days after inhalation exposure. At necropsy, an invasive thyroid follicular cell carcinoma was found. The carcinoma had metastasized to the lung, larynx, and cervical lymph nodes. The cause for the terminal illness, however, was a ruptured intervertebral disc with spinal cord compression. Numerous other benign tumors were also present including ovarian adenoma, ovarian granulosa cell tumor, adrenocortical adenoma, and multiple mammary adenomas.

Dog 994B, a male with an ILB of 0.23 kBq ²³⁹Pu/kg body weight, died in renal failure 5732 day after inhalation exposure. The dog had a long history of renal insufficiency.

At necropsy, a chronic interstitial nephritis and nephrosclerosis were found. A necrotizing pancreatitis was also present that contributed significantly to the death. In addition, several significant tumors were found that were incidental to the death. These included a papillary adenocarcinoma of the lung, a follicular carcinoma of the thyroid, an islet cell carcinoma of the pancreas, and a pheochromocytoma of the adrenal.

Dog 1100A, a male with an ILB of 0.23 kBq ²³⁹Pu/kg body weight, was found dead 4841 days after inhalation exposure. The major clinical observation was a recurrent history of pneumonia leading to chronic obstructive lung disease. The dog was being treated for pneumonia when it was found dead.

At necropsy, the principal lesions were found in the adrenals and lungs. Both adrenals were completely necrotic; adrenal failure was the cause of the death. The pulmonary lesions of chronic obliterative bronchiolitis could have also added to the cause of death. Incidental neoplasms were a pituitary adenoma, renal fibroma and uterine leiomyoma.

Dog 1154S, a female with an ILB of 0.13 kBq ²³⁹Pu/kg body weight, was found dead 5016 days after exposure. At necropsy, segmental infarction of the jejunum and ileum was found as the immediate cause of death. Bilateral pheochromocytomas of the adrenals were present. Hypersecretion of catecholamines from these tumors may have been the cause of the intestinal infarcts. Other lesions were minimal. The only neoplasms noted were an adenoma of the ovary and an adenoma of the thyroid.

Dog 1149T, a female with an ILB of 0.12 kBq ²³⁹Pu/kg body weight, was found dead 4790 days after inhalation exposure. The dog had a long history of an elevated respiratory rate (> 40/min) and erythrocytosis. Two years before death, there was radiographic evidence of chronic heart failure (cardiomegaly and pulmonary interstitial pattern). On the day of death, she was anesthetized for routine radiography. The recovery was apparently normal, but she was found dead in the early morning.

At necropsy, pulmonary edema was considered the immediate cause of death. Cardiomegaly and ventricular myocardial hypertrophy were found, indicative of cardiomyopathy. These lesions of long standing may well have predisposed the dog to cardiopulmonary failure following anesthesia. Several neoplasms were found, but all were incidental. There were adrenal cortical adenoma and parathyroid gland adenoma.

Dog 971C, a male with an ILB of 0.089 kBq ²³⁹Pu/kg body weight, was euthanized in renal failure 5544 days after inhalation exposure. At necropsy, a severe chronic nephropathy was found with glomerular, tubular, and interstitial lesions that were responsible for the clinical disease and subsequent euthanasia. Marked atrophy of the tracheobronchial lymph nodes and a papillary cystic adenoma of the lung were incidental findings.

Dog 1131B, a male with an ILB of 0.085 kBq ²³⁹Pu/kg body weight, was found dead 5203 days after exposure. The dog had a history of heart failure. At necropsy, lesions of cardiac failure were found, ventricular myocardial hypertrophy, ventricular dilation, pulmonary edema, and hepatic congestion. Marked thyroid atrophy was also present indicating that hypothyroidism may also have been a factor in the dog's clinical health.

Dog 960T, a female control, was euthanized 5428 days after inhalation exposure. The dog had a long medical history of mammary tumors. Five days before death, signs of central nervous system dysfunction developed, including inability to stand and paddling movements. The dog did not respond to treatment and became comatose.

At necropsy, an anaplastic mammary carcinoma was found with metastasis to other mammary glands, kidneys, and numerous local lymph nodes. The cause for the comatose condition, however, was multiple infarcts in the cerebral cortex and left ventricular myocardium. A cause for the brain and heart lesions was not found, but appeared not to be due to metastasis of the anaplastic mammary carcinoma. Numerous other lesions were found but were considered lesions of aging and not contributory to the terminal condition. These lesions included thyroid adenoma, adrenocortical adenoma and hyperplasia, nephrosclerosis, and mucocystic hyperplasia of the gallbladder.

Dog 998A, a male control, was euthanized with a lung carcinoma 5595 days after inhalation exposure. The dog had a prolonged history of minor clinical problems. In addition, prostatomegaly was first noted about 3 yr before death. This enlargement was accompanied by a bacterial cystitis that was treated successfully. Enlargement was noted again about 1 yr before death and was diagnosed as a bladder carcinoma. A lung tumor was first noted in the left apical lobe about 16 mo before death. It increased in size until it measured 2 x 1.5 x 1.5 cm 2 mo before death.

At necropsy, a papillary adenocarcinoma was found in the left apical lobe that had metastasized to the tracheobronchial lymph nodes. An adenocarcinoma of the prostate was also present. It had metastasized to the iliac and colonic lymph nodes. A transitional cell carcinoma was found in the bladder but had not metastasized. Benign neoplasms noted were a carotid body tumor, bilateral interstitial cell adenoma of the testicles, a thyroid adenoma, and a sebaceous adenoma of the skin.

Dog 1021S, a female control, was euthanized with marked ascites 5270 days after inhalation exposure. At necropsy, a large hepatocellular carcinoma with ascites and widespread metastasis in the peritoneal cavity and hepatic lymph nodes was found. Other lesions in other organs were few and incidental.

Dog 1107S, a female control, was euthanized in renal failure 5235 days after exposure. The dog had a history of renal insufficiency. Terminally she developed hindlimb paralysis. At necropsy, a marked nephrosclerosis with atrophy was present. A large thrombus was found blocking the terminal aorta and iliac arteries. These lesions were responsible for the clinical signs leading to euthanasia. In addition, several neoplasms were present but did not contribute to death. These included a metastasizing mammary carcinoma, bilateral ovarian adenomas, a thyroid adenoma, a pituitary adenoma, and a granular cell tumor of the urinary bladder.

Dog 1136S, a female control, was euthanized in hepatic failure 4793 days after inhalation exposure. The dog had a long history of hepatic disease; increased liver-related serum enzymes were first noted 9 yr before death. Acute hepatitis was diagnosed about 6 mo before death. Elevated serum alkaline phosphatase and hyperbilirubinemia was noted. Severe icterus developed several days before death.

At necropsy, the principal alterations were in the liver and had both acute and chronic features. The lesions included multiple foci of coagulative necrosis with infiltrates of neutrophils in some foci, focal biliary duct hyperplasia with lymphocytic infiltrates, and focal vascular degeneration of hepatocytes and multiple thrombosed veins. Lesions in other organs were minimal and insignificant. Mammary adenocarcinomas were removed about 1½ yr before death and had not recurred.

Dog 1152S, a female control, was euthanized with metastatic tumor 5252 days after exposure. About 2 yr before death, two malignant mammary tumors had been removed. About 6 mo before death, a lung density was noted on radiographs. Shortly thereafter, malignant tumors were surgically removed from the mammary glands. Terminally, the local mammary lymph nodes were enlarged, the lung mass was enlarging, and the distal extremities were swelling. At necropsy, a metastatic mammary solid carcinoma was found in local lymph nodes and lung. Other neoplasms were an adenoma of the thyroid and acinar cell adenoma of the pancreas.

In the study involving inhalation of 3.0- μ m AMAD particles, two ²³⁹Pu-exposed dogs and six control dogs that were only exposed to the aerosol vehicle died during the past 2 yr.

Dog 1139S, a female with an ILB of 1.4 kBq ²³⁹Pu/kg body weight, was found dead 5080 days after exposure. The dog had a long history of autoimmune hemolytic anemia and liver disease. About 18 mo before death, lung tumors were noted radiographically. These slowly increased in size, resulting in the terminal episode of pulmonary insufficiency. At necropsy, hydrothorax secondary to the lung tumors was found as the immediate cause of death. The carcinoma of the lung was widespread through all lobes and had metastasized to the local lymph nodes. In addition to the lung tumor, a tubular cell carcinoma of the kidney, a mammary adenoma, and an adrenal cortical adenoma were found.

Dog 1096T, a female with an ILB of 0.70 kBq ²³⁹Pu/kg body weight, was found dead 5052 days after inhalation exposure. About 5 mo before death, hyperadrenocorticism was diagnosed and treated with chemical suppression therapy.

At necropsy, a large pituitary carcinoma that compressed and invaded the brain was found. Bilateral adrenal cortical adenomas were also present. The clinical disease of hyperadrenocorticism was most likely due to the functioning adrenal cortical adenomas induced by secretion from a functional pituitary gland adenoma. The dog also had a marked suppurative broncopneumonia that contributed to the death. Other lesions were considered noncontributory and incidental.

Dog 988D, a male control, died 5609 days after inhalation exposure. The dog had a long history of numerous minor clinical signs. Erythrocytosis, neutrophilia, neutropenia, eosinophilia, lymphocytosis, and lymphopenia were all noted at one time or another. Prostamegaly and testicular atrophy both occurred about 8 yr before death and continued thereafter. Severe spondylosis and reduced weight were also noted for much of the life span. In the terminal episode, the dog was performing the Morris water maze test for cognitive function when it apparently inhaled some water and developed pulmonary edema. In spite of intensive treatment, the animal died 6 h later.

At necropsy, an acute inhalation pneumonia with pulmonary edema was found as the cause of death. The dog also had a severe focal ulcerative jejunitis that may have resulted in clinical disease. Numerous aging incidental, nonneoplastic lesions were noted including adrenocortical hyperplasia, testicular atrophy, and interstitial nephritis. Several incidental tumors noted were follicular thyroid carcinoma, solitary renal lymphoma, ossifying renal fibroma, testicular interstitial cell adenoma, and melanoma of lymph node.

Dog 1033S, a female control, was euthanized 5591 days after exposure. A chest mass was noted radiographically about 20 mo before death. This mass was monitored closely and grew slowly in size. In the terminal illness, the dog had lameness and weakness.

At necropsy, a primary pulmonary adenocarcinoma was found that had metastasized widely throughout the lungs and to the heart, kidneys, intestine, spleen, humerus, and local lymph nodes. Other lesions were few and included an adenoma of the pars distalis of the pituitary gland, a thyroid adenoma, and a pheochromocytoma.

Dog 1100C, a male control, was found dead 5322 days after exposure. He had a long history of renal disease and heart valve alterations. At necropsy, findings of endocardial fibrosis and ventricular myocardial hypertrophy were indicative of valvular insufficiency. Pulmonary edema was the immediate cause of death. The only neoplasm found was an endocrine carcinoma of the mediastinum.

Dog 1104T, a female control, was euthanized 5543 days after exposure with a widespread mammary carcinoma. An adenocarcinoma had been removed from the mammary gland about 18 mo before death. At necropsy, anaplastic mammary carcinoma was found in several mammary glands and the surrounding skin, local lymph nodes, urinary bladder, and lungs. Other lesions were minimal but included a mammary adenoma and an adrenal cortical adenoma.

Dog 1122C, a male control, was euthanized 4787 days after inhalation exposure. A lung tumor was diagnosed radiographically about 1 yr before death. At necropsy, a papillary adenocarcinoma of the right apical lobe of the lung was found. Numerous incidental lesions were noted including a testicular seminoma, renal fibroma, and mammary adenoma.

Dog 1152T, a female control, was euthanized 4953 days after inhalation exposure with a lung carcinoma. A lung mass was first noted on radiograph about 10 mo before death and confirmed as a carcinoma with brush biopsy. A mammary mass was noted 6 mo before death. The lung mass progressively increased in size. Facial and sciatic nerve injury developed, resulting in the recommendation for euthanasia.

At necropsy, a large lung mass (5 x 5 x 3cm) was present in the right diaphragmatic lobe. Histologically, this tumor was an adenosquamous carcinoma that invaded walls of bronchi, large vessels, and lymphatics. Metastases from the carcinoma were found in the lymph nodes (tracheobronchial, sternal, and hepatic) and skeleton (scapulae, multiple vertebra). The bone metastases stimulated new bone proliferation that compressed on nerves and the spinal cord. The mammary gland tumor was a simple papillary cystic adenocarcinoma that had no apparent metastases. The only other neoplasm was an adrenal cortical adenoma. Other lesions found included nodular hyperplasia of the liver, uterine mucocystic hyperplasia, and myeloid hyperplasia of bone marrow.

b. Toxicity of ¹⁴⁴Ce Inhaled in a Relatively Insoluble Form by Immature Beagle Dogs. XXI.

Study Contact: B. B. Boecker

Immature Beagle dogs (3-mo-old) received single, brief inhalation exposures to ¹⁴⁴Ce in FAP as part of the ITRI studies on the effects of age at exposure on the resulting dose-response relationships, and are being followed for life-span observations. The study is comprised of 49 dogs that inhaled graded levels of ¹⁴⁴Ce, resulting in ILBs that ranged from 0.00015-5.2 MBq/kg body weight (0.004-140 Ci/kg), and five control dogs that inhaled FAP without ¹⁴⁴Ce. The exposures took place in 1972, 1973, and 1976. Specific details on experimental design considerations, metabolism, and dosimetry of the inhaled ¹⁴⁴Ce, and early occurring biological effects were presented in previous annual reports from this Institute, especially in LF-45 (1971-1972), LF-46 (1972-1973), and LF-49 (1973-1974).

Annual summaries for this study have also been included in all other annual reports to the present time. The current status of this study is shown in the experimental design chart given in Figure 12. Exposure information and dosimetry results are given for each dog in Appendix A. Survival data for dogs in this study are summarized graphically in Figure 13. The last living dog in this study, a ¹⁴⁴Ce-exposed dog, died during the 2-yr period covered by this report. Major clinical and pathology findings for this dog are summarized below. Also, the major findings in all 49 ¹⁴⁴Ce-exposed and five control dogs in this study are summarized in Table 7.

DESIGN MGQ/KG	^	•	С	0	E	HEAM MBQ/KB		
3.7		8796 11. 4.4 0-95	671C 6730 12. 5.8 3.1 2.7 0-121 0-65	1022U 18. 5.2 0-81		3.7		
2.0		8728 0.5 2.4 E-000	673C 6728 5.2 6.7 2.6 1.8 0-511 E-618	10275 0.5 2.9 0-730	10240 10. 2.7 E-700	2.5		
1.9	0204 3.7 1.4 E-2006	875T 3.4 1.0 E-1227	672C 5.7 1.8 0-1732	1033T 3.5 1.4 E-3652	1026A 6.7 2.0 E-1314	1.5		
0.93	8270 3.1 0.00 E-2341	6736 1.6 0.70 E-4641	673A 1.6 0.50 C-3326	10223 4.1 1.3 D-2007	1019A 4.0 1.4 0~1413	1.0		
0.46	6306 0.98 0.34 0-4574	6718 1.1 0.41 E-4205	672A 1.5 0.44 0-1520	1021V 2.1 0.67 E-2013	10338 1.3 0.44 E-2772	0.44		
0.22	8304 0.65 0.22 E-5367	6731 0.20 0.12 0-4715	6758 0.48 0.19 0-3635	10236 0.50 0.25 L-3507	10168 0.50 0.10 0-5063	0.19		
0.044	6240 0.30 0.11 E-5286	8747 0.067 0.032 E-3805	6718 0.22 0.000 E-5632	1018U 0.15 0.037 0-5380	10176 0.20 0.052 E-5025	0.058		
0.0005	\$234 0.041 0.010 E-8842	988U 0.019 0.0063 E-4280	\$66A 0.015 0.0052 E-5602	10217 0.070 0.025 E-4614	10188 0.027 0.0070 0-3005	0.011		
0.0017	624C 0.0087 0.0023 E-3270	6708 0.0015 0.00080 E-5106	671A 0.0066 0.0033 D-4154	10178 0.014 0.0044 E-4387	1021A 0.0074 0.0019 0-3665	0.0026		
0.00033	824A 0.0018 0.00048 E-4785	0.0004 0.00015 0-5330	6710 0.0005 0.00022 E-9513	1034U 0.0009 0.00032 E-5081	1033A 0.0012 0.00041 0-3670	0.00032		
CONTROL	8238 0 0 E-4202	0006 0 0 E-4713	0 0 0-5362	10136 0 0 0-4015	1016A 0 0 E-1376	0		
	BEBA - ANIMAL NUMBER 3.7 - INITIAL LUNS BURDEN BEBONES 1.4 - INITIAL LUNS BURDEN BEBONES E-2005 - G-GEAG, C-EUTHANIZED, A-ALIVE-DAYS AFTER EMPORME AT DEATH							

Figure 12. Experimental design for studying the effects of ¹⁴⁴Ce in FAP inhaled by immature (3-mo-old) Beagle dogs (Status as of 9-30-93).

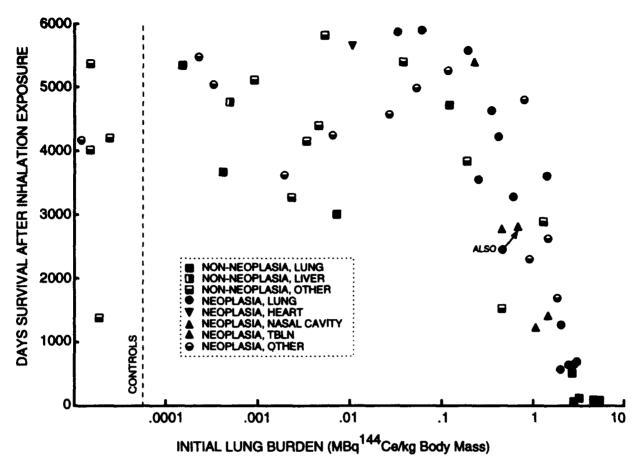


Figure 13. Relationships between the ILB of ¹⁴⁴Ce and survival time for Beagle dogs that inhaled ¹⁴⁴Ce in FAP when they were immature (3-mo-old) (Status as of 9-30-93).

Dog 1016B, a male with a lung burden of 0.89 MBq ¹⁴⁴Ce/kg body weight, died 5563 days after inhalation exposure. The dog had a long history of systolic heart murmur, osteoarthritis, patellar luxation, and spondylosis. About 1 yr before death, the dog had repeated episodes of bloat, and a 1.5 x 2 cm esophageal mass was excised. A lung tumor was noted at about the same time. The dog was in apparent good health but was found dead in the kennel.

At necropsy, an acute bronchopneumonia was found as the immediate cause of death. Two lung tumors were found, the largest in the right diaphragmatic lobe. The tumors had not metastasized but probably predisposed the dog to pneumonia. A malignant melanoma of the gingiva was also found, invading the mandible. This tumor had not metastasized. Other tumors were leiomyoma of the esophagus, adrenal cortical adenoma, and perineal adenoma.

Table 7 Summary of Major Findings at Death in Immature (3-mo-old) Dogs Exposed by Inhelation to ¹⁴⁴Ce in FAP (Status as of 9-30-93)

	Number of Dogs	ILB ^a (MBq ¹⁴⁴ Ce/kg Body Weight)	Survival Times (Days after Exposure)	Cumulative Radiation Dos to Lung (Gy)
144Ce-Exposed				
Non-Neoplasia				
Lung	9	.00015-5.2	66-5338	0.017-270
Bone Marrow	0	••		••
Liver	1	.00048	4765	0.054
Other	9	.00089-1.3	1520-5802	0.11-150
Neoplasia				
Lung Injury with Lung Neoplasia	0			
Lung	14 ^b	.032-2.9	618-5932	2.9-310
Nasal Epithelium	1	0.22	5387	33
TBLN	4 ^b	0.44-1.4	1227-2813	51-180
Heart	0	••		••
Bone	0			
Bone Marrow	0			••
Liver	0			••
Other	12	.00022-1.8	1732-5642	0.024-220
Control '				
Non-Neoplasia				
Lung	0	••		**
Bone Marrow	0			
Liver	0			
Other	4	••	1378-5362	••
Neoplasia				
Lung Injury with Lung Neoplasia	0			
Lung	0			
Nasal Epithelium	0			
TBLN	0			
Heart	0	••		
Bone	0			
Bone Marrow	0	••		
Liver	0			
Other	1		4213	**

^aILB = Initial Lung Burden ^bOne dog had lung and TBLN tumors.

c. Toxicity of ²³⁹PuO₂ in Immature Beagle Dogs. XIII.

Study Contact: R. A. Guilmette

As part of the ITRI studies on the effects of age at exposure on the resulting dose-response relationships, immature Beagle dogs (3-mo-old at exposure) received single, brief inhalation exposures to a monodisperse aerosol of ²³⁹PuO₂ (1.5 µm AMAD) and are being followed for life-span observations. The experimental design consists of blocks of 12 dogs, each exposed to graded activity levels of ²³⁹Pu that ranged from 20.7 to 0.0085 kBq/kg body mass; there were eight activity levels, with a total of 96 exposed dogs. Twelve control dogs exposed only to the aerosol vehicle were also included in the experiment. Two blocks of dogs were exposed in 1978. After a 2-yr break in exposures because of a colony outbreak of parvovirus enteritis, exposures were resumed in 1980 and continued through 1982. Specific details on experimental design considerations, metabolism, and dosimetry of the inhaled ²³⁹Pu, and early occurring biological effects have been presented in previous annual reports from this Institute, especially in LF-69, LMF-102, LMF-113, LMF-114, and LMF-115. Annual summaries for this study have also been included in all other annual reports to the present time.

The current status of this study is shown in the experimental design chart given in Figure 14. Exposure information and dosimetry results are given for each dog in Appendix A. Survival data for dogs in this study are summarized graphically in Figure 15. During the past 2 yr, 19 Pu-exposed dogs died; four control dogs died. Summaries of the major clinical and pathological findings are presented below. As of September 30, 1993, there were 36 experimental and 7 control dogs alive on this study. A summary of the major findings in the dogs at death is given in Table 8. We continue to observe the dogs remaining alive at 11 to 14 yr after exposure.

DESIGN KBQ/KG	A	9	С	٥	E	F	6	н	I	J	К	L	MEAN KBQ/KG
21	1215A 30. 5.9 E-2326	12175 32. 8.1 E-1700	1331A 78. 19. 0-1511	13315 67. 24. 0-46	1350A 70. 29. E-1909	1340T 33. 12. A-4410	1366C 53. 20. 0-1422	1367S 67. 20. E-1580	1379A 120. 26. 0-1663	1379T 100. 21. E-1506	1389A 78. 20. D-1352	1380V 110. 27. E-1937	19
10	12208 14. 5.9 E-3017	1222T 5.6 2.9 E-2773	13348 4.1 1.3 A-4425	1331U 22. 7.8 E-2496	1350C 22. 8.9 E-1852	1351S 27. 10. E-1925	1366A 23. 5.9 E-2717	1365S 36. 10. E-1947	13766 31. 7.0 D-739	1377T 37. 10. E-1386	13678 19. 4.8 E-2294	1390S 24. 7.6 E-3254	7.0
5.2	1217A 9.3 1.9 0-4185	1220T 5.9 2.4 E-2995	1331C 3.4 0.69 D-750	1337T 21. 6.3 E-4055	13360 22. 6.3 A-4418	1337U 17. 5.9 E-3649	1365A 18. 4.8 E-2307	1364S 22. 4.8 E-1981	1377A 13. 3.7 E-3435	13775 14. 4.4 0-2218	1387A 6.9 2.0 E-2629	13875 5.2 1.7 A-3940	3.7
2.6	12158 4.1 0.89 0~1558	12225 3.1 2.0 D-4715	1320A 3.4 0.74 E-1834	1324T 14. 2.6 E-3514	1339A 9.6 2.7 A-4417	13387 3.5 1.4 A-4417	1364A 8.1 2.1 E-3612	1363S 8.1 2.5 E-3858	1376A 5.9 2.7 A-4068	13767 5.6 2.5 A-4068	13848 12. 3.5 E-3844	13845 9.3 3.3 E-2190	2.3
1.1	12200 1.9 0.85 E-4922	1220\$ 2.2 0.67 0-4693	1320C 3.0 0.74 E-2273	13205 3.0 0.78 E-4410	13340 4.4 2.1 A-4425	13415 2.3 0.89 A-4410	1362A 4.4 10. A-4209	1362S 2.3 0.63 A-4209	13678 5.2 1.1 A-4194	1368T 2.6 0.96 D-3102	1384A 5.9 1.6 A-4005	13825 5.9 1.4 E-3459	1.1
0.37	1221C 0.48 0.20 D-844	1221T 0.85 0.48 D-4727	1335A 1.2 0.35 A-4424	1335T 0.10 0.034 A-4424	1340A 1.8 0.46 A-4411	1340S 0.55 0.21 E-3877	1352C 0.92 0.23 A-4318	1373T 1.9 0.44 A-4069	1374A 1.6 0.52 A-4069	1373U 2.0 0.52 0-2659	13018 2.9 0.55 A-4003	1361T 2.4 0.55 A-4003	0.37
0.093	1217C 0.19 0.044 0-4975	1223S 0.21 0.078 A-5161	13188 0.81 0.24 A-4556	1317U 0.074 0.021 E-3570	1342A 0.26 0.078 A-4391	13345 0.67 0.18 A-4425	13578 0.41 0.093 A-4263	13575 0.41 0.13 E-486	13778 0.74 0.17 A-4047	1378S 0.44 0.11 0-3768	1386A 0.41 0.096 A-3968	1386S 0.33 0.093 A-3968	0.11
0.0085	12148 0.21 0.035 E-4798	1217T 0.056 0.011 D-5155	1317A 0.052 0.013 E-1832	1319S 0.081 0.020 D-4404	13398 0.063 0.021 A-4413	13305 0.031 0.011 E-3973	1355A 0.074 0.015 A-4300	1355T 0.048 0.012 A~4300	1367A 0.063 0.013 E-3199	1368S 0.028 0.0093 A-4199	1381A 0.13 0.022 A-4003	1381S 0.12 0.030 A-4003	0.018
CONTROL.	12168 0 0 0-250	1223T 0 0 E-4896	13180 0 0 E-4345	13175 0 0 A-4556	1345A 0 0 A-4384	1342T 0 0 A-4366	1353A 0 0 0-3776	1356S 0 0 0-3992	13688 0 0 0 A-4194	1376U 0 0 A-4066	13868 0 0 A-3965	1380W 0 0 A-4024	0
	1215A 30. 5.9 E-2326	-INITIAL	NUMBER LUNG BURI LUNG BURI E-EUTHAN POSURE AT	ZEN (KBG/) ZED, A=AL	IVE - DAY								

Figure 14. Experimental design for the study of dose-response relationships in immature Beagle dogs that inhaled 1.5 μ m AMAD monodisperse ²³⁹PuO₂ (Status as of 9-30-93).

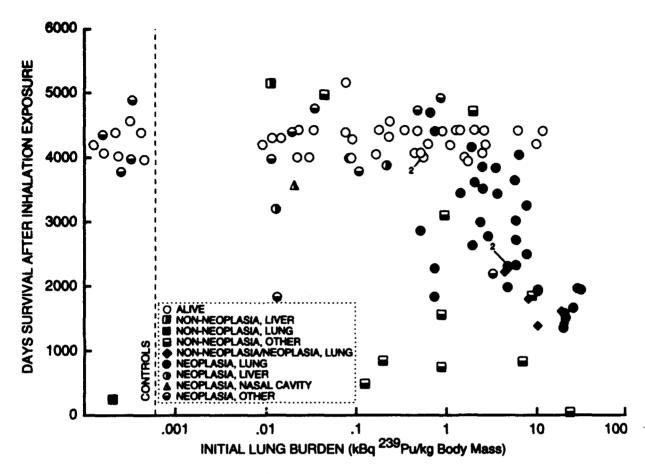


Figure 15. Relationship between ILB of ²³⁹PuO₂ and survival time for immature dogs (Status as of 9-30-93).

Dog 1390S, a female with a lung burden of 7.8 kBq ²³⁹Pu/kg body weight, was euthanized with a lung carcinoma 3254 days after inhalation exposure. The dog had numerous clinical signs. About 2 yr before death, a lymphopenia developed that persisted until death. About 1 yr before death, a thoracic mass was noted on thoracic radiographs. This was diagnosed as a lung carcinoma 2 mo later. The mass remained asymptomatic until the dog began coughing blood, and euthanasia was recommended.

At necropsy, the lung was filled with bronchioloalveolar adenocarcinoma with the largest mass in the left diaphragmatic lobe. Numerous metastases were present in many parts of the lung, the tracheobronchial and mediastinal lymph nodes, and to the left adrenal. A second, incidental neoplasm was noted on the toe of the hind limb. A squamous cell carcinoma of the skin had replaced the nail bed and extended into the bone, but had not metastasized.

Dog 1378S, a female with an ILB of 7.0 kBq ²³⁹Pu/kg body weight, died in cardiac arrest 3788 days after exposure. The dog had several clinical problems, the most severe being hypothyroidism, which was treated. In the terminal episode, the dog was examined for anorexia and incoordination. Intervertebral disc disease was suspected. Radiographs illustrated cardiomegaly and bronchopneumonia. Shortly after, the dog died in cardiac arrest.

At necropsy, a rhabdomyosarcoma was found in the left ventricular myocardium. The tumor protruded into the left ventricle partially occluding the left atrio-ventricular valve. It also extended into the intraventricular septum and the right ventricular myocardium. Metastatic rhabdomyosarcoma was present in vessels of the lung. Other neoplasms noted were an adrenal cortical adenoma, a vaginal polyp, a mixed mammary tumor, and a transitional cell carcinoma confined to the urimary bladder.

Table 8 Summary of Major Findings at Death in Dogs that Inhaled Monodisperse 1.5 μ m AMAD Particles of 239 PuO₂ when They Were Immature (Status as of 9-30-93)

	Number of Dogs	ILB ^a (kBq ²³⁹ Pu/kg Body Weight)	Survival Times (Days after Exposure)	Cumulative Radiation Dose to Lung (Gy)
²³⁹ Pu-Exposed				<u></u>
Non-Neoplasia				
Lung	0			
Bone Marrow	0			
Liver	1	0.011	5155	0.05
Other	29	0.044-24	46-4975	0.12-8.7
Neoplasia				
Lung Injury with Lung Neoplasia	5	4.4-20	1386-2218	9.4-36
Lung	33 ^b	0.021-29	1352-4410	0.05-84
Nasal Epithelium	1 ^b	0.021	3570	0.05
TBLN	0			
Heart	1	0.11	3788	0.31
Bone	0			
Bone Marrow	1	0.85	4922	1.50
Liver	2 ^c	0.01321	3199-3877	0.0346
Other	9 ^c	.011-2.0	1832-4756	.026-6.6
<u>Control</u>				
Non-Neoplasia				
Lung	1		250	
Bone Marrow	0			
Liver	0			
Other	0			
Neoplasia				
Lung Injury with Lung Neoplasia	0			
Lung	0			
Nasal Epithelium	0			••
TBLN	0			••
Heart	0			••
Bone	0			
Bone Marrow	0			
Liver	0		**	
Other	4		3776-4896	

 $^{^{}a}ILB \approx Initial lung burden based on whole-body counting of <math>^{169}Yb$.

bOne dog had nasal carcinoma and lung carcinoma.

COne dog had liver carcinoma and mammary carcinoma.

Dog 1337T, a female with an ILB of 6.3 kBq ²³⁹Pu/kg body weight, was euthanized with pulmonary insufficiency related to pulmonary neoplasia 4055 days after exposure. The dog had few clinical problems until being placed in the hospital with dyspnea. Pulmonary neoplasia was suspected, but could not be visualized radiographically.

At necropsy, a bronchioloalveolar adenocarcinoma was found filling all lobes of the lung. There were mestatases to the thoracic lymph nodes. The only other neoplasm was a C-cell adenoma of the thyroid.

Dog 1377A, a male with a lung burden of 3.7 kBq ²³⁹Pu/kg body weight, was euthanized with a lung carcinoma 3435 days after inhalation exposure. The dog had few clinical signs during its lifetime but did have parvovirus enteritis as a puppy. About 15 mo before death, a lung mass was noted radiographically. The mass slowly increased in size until respiratory distress became marked.

At necropsy, the principal disease was adenocarcinoma of the left apical cardiac lobe of the lung with metastases to other lung lobes and to the tracheobronchial, sternal, mediastinal, and hepatic lymph nodes. Other lesions were incidental. Neoplasms noted were an endochondroma of the epiglottis, seminoma and interstitial cell adenoma of the testes, and a papillary mesothelioma.

Dog 1384B, a male with an ILB of 3.5 kBq ²³⁹Pu/kg body weight, was euthanized because of metastatic neoplasia 3844 days after exposure. A lung tumor in the left diaphragmatic lobe was noted 6 mo before death. A mass over the mandible was noted 8 days before death. Because of the worsening clinical condition and suggestion of metastasis, euthanasia was recommended.

At necropsy, the largest mass, a 3-cm diameter nodule in the left diaphragmatic lobe, was a primary squamous cell carcinoma of the lung. This tumor metastasized to the tracheobronchial lymph nodes. Also present in the lungs were two other, apparently separate, primary neoplasms, a papillary adenocarcinoma and a bronchioloalveolar adenocarcinoma. Neither of these metastasized. In addition, two tumors were found in the kidneys, apparently separate primary neoplasms, because they were each confined to separate kidneys. However, each metastasized to the lungs. The only other neoplasm noted was an interstitial cell adenoma of the testicle.

Dog 1363S a female with an ILB of 2.5 kBq ²³⁹Pu/kg body weight, was euthanized with a lung tumor 3858 days after exposure. A lung tumor was noted radiographically about 18 mo before death. The tumor slowly grew in size until it compromised pulmonary function.

At necropsy, a 7 x 7 x 5 cm mass was found in the right diaphragmatic lobe. Smaller (1 to 3 mm) nodules were present in other lobes. Histologically, the large mass was a bronchioloalveolar adenocarcinoma with intra-pulmonary metastases. Other lesions were few and insignificant. The only other neoplasm was an ovarian adenoma.

Dog 1364A, a male with an ILB of 2.1 kBq ²³⁹Pu/kg body weight, was euthanized with a lung carcinoma 3612 days after inhalation exposure. The dog had few clinical problems until the day before death when it was presented for rapid respiration. On physical exam, the dog had a low grade fever and elevated heart and respiratory rates. Thoracic radiographs taken on the next day showed the left apical cardiac lobe to be filled with an apparent neoplasm. Because of the clinical condition, euthanasia was recommended.

At necropsy, a primary pulmonary adenocarcinoma was found apparently originating in the left apical cardiac lobe with extensive intra-pulmonary metastasis, primarily to the right apical lobe. Microscopic metastases were also present in the thoracic lymph nodes and epicard; ... The unusual feature of the tumor was the varied morphologic expression. Papillary, alveolar, squamous, d transitional patterns were present although the papillary pattern predominated.

Dog 1222S, a female with an ILB of 2.0 kBq ²³⁹Pu/kg body weight, was found dead 4715 days after inhalation exposure. The dog had a history of bloating after eating, but few other clinical problems.

At necropsy, there was marked dilation of the stomach with gas and undigested foodstuff, but no evidence of gastric torsion. The probable cause of death was cardiopulmonary failure as a consequence of the dilation and pressure on the great vessels. A closed suppurative endometritis was present as well as adeno-

cortical hyperplasia indicative of Cushing's disease. The pyometra and endocrine abnormalities may have contributed to the clinical disease. The only neoplasm present was a simple tubular adenoma of the mammary gland.

Dog 1382S, a female with a lung burden of 1.4 kBq ²³⁹Pu/kg body weight, was euthanized with a lung carcinoma 3459 days after inhalation exposure. The dog had a 3.3 cm diameter mass in the right apical lobe diagnosed 2 mo before death. Just before death, she presented with a right front leg limners, increased respiratory rate, and severe rales.

At necropsy, primary adenocarcinoma was found in the right apical lobe with intrapulmonary metastases, and metastases to the rib and thoracic wall mediastinum and the mediastinal, sternal, and tracheobronchial lymph nodes. The only other neoplasm was a complex tubular adenoma of the mammary gland that was incidental.

Dog 1220D, a male with an ILB of 0.85 kBq ²³⁹Pu/kg body weight, was euthanized 4922 days after exposure because of a hyperviscosity syndrome secondary to a multiple myeloma. The dog had a thyroid carcinoma removed about 3 mo before death. At that time, hyperproteinemia was noted. Three weeks before death, a monoclonal gammopathy was documented, and a bone marrow aspirate showed numerous plasma cells resulting in a diagnosis of plasma cell sarcoma (multiple myeloma). A week later, a large cutaneous infarct developed in the thorax.

At necropsy, myeloma cells were found in numerous organs, marrow, liver, kidneys, and spleen. In addition, two primary lung tumors were noted, both bronchioloalveolar carcinomas. Other neoplasms were recurrence of the thyroidal carcinoma, testicular interstitial cell adenoma, and testicular seminoma.

Dog 1320S, a female with an ILB of 0.78 kBq ²³⁹Pu/kg body weight, was euthanized because of bronchopneumonia secondary to a lung tumor 4410 days after exposure. The dog had few minor clinical problems before the terminal episode. A lung mass was noted radiographically 40 mo before death that measured 1.5 x 2.0 cm. The mass changed in size and degree of consolidation over the next several years. Two weeks before death, multiple cavitations were present. When persistent secondary pneumonia developed, euthanasia was recommended. At necropsy, a papillary adenocarcinoma was found filling the left apical cardiac lobe. Metastases were present in the thoracic lymph nodes. No other neoplasms were present.

Dog 1220S, a female with an ILB of 0.67 kBq ²³⁹Pu/kg body weight, was found dead 4693 days after inhalation exposure. The dog had a long history of medical problems. Four years before death, the right thyroid was removed because of a follicular carcinoma. In spite of the malignant nature of the tumor and obvious invasion of vessels, no pulmonary metastases were noted during the next year when numerous thorax radiographs were taken. In the terminal illness, pulmonary disease was suspected, but the dog died unexpectedly shortly after initiation of treatment for pneumonia.

At necropsy, a pleural effusion was found as the immediate cause of death. A large adenosquamous carcinoma was found as a primary tumor in the left apical cardiac lobe of the lung. The neoplasm had metastasized to other lobes of the lung, trachea, mediastinum, and sternal and mediastinal lymph nodes.

Dog 1221T, a female with an ILB of 0.48 kBq ²³⁹Pu/kg body weight, died 4727 days after exposure. The dog had a long history of minor clinical problems. About 2 yr before death, a splenectomy was performed for a large hematoma. In the terminal episode, the dog was admitted for anorexia. On physical exam, she had a fever and depression. Generalized alopecia and mammary tumors were noted. She had a long history of phenobarbital therapy for seizures and, in the prior year, hepatic enzymes were mildly but persistently elevated. The dog died that night before a further clinical examination could be performed.

At necropsy, a lymphosarcoma confined to the abdomen, except for the thoracic lymph nodes, was considered the primary cause of death. The lymphosarcoma invaded the liver, adrenals, ovary, bone marrow, and abdominal lymph nodes. The immediate cause of death was a suppurative meningitis. Other tumors noted were adrenocortical carcinoma, multiple complex adenomas of the mammary gland, and multiple sebaceous adenomas.

Dog 1340S, a female with an ILB of 0.21 kBq ²³⁹Pu/kg body weight, was euthanized with an inoperable abdominal mass 3877 days after inhalation exposure. The dog had few clinical problems until the terminal illness. At that time, several mammary tumors were present.

At necropsy, a solid mammary carcinoma was found that had metastasized to all lobes of the lungs, liver, and lumbar vertebra and local lymph nodes. The abdominal mass was a large cholangiocarcinoma that measured 9 x 7 x 6 cm at its greatest dimension. This neoplasm had not metastasized. No other neoplasms were encountered.

Dog 1217C, a male with an ILB of 0.044 kBq ²³⁹Pu/kg body weight, was found dead 4975 days after exposure. The dog had an uneventful clinical history. At necropsy, a marked ventricular myocardial hypertrophy indicative of valvular insufficiency was found. Few other lesions were present. Of particular interest were a mastocytoma of the skin and a follicular cell carcinoma of the thyroid. Neither of these tumors was metastatic nor invasive.

Dog 1214B, a male with an ILB of 0.035 kBq ²³⁹Pu/kg body weight, was euthanized 4756 days after inhalation exposure with a large mass in the throat region. The dog had a number of minor clinical problems during its life. A thyroid-stimulating hormone test about 4.5 yr before death indicated hypothyroidism. After 2 yr of treatment it was euthyroid, but hypothyroid again 1 yr before death. About 5 wk before death, an invasive amelanotic melanoma was removed from the oral cavity. Euthanasia was recommended when massive lung metastases were seen on radiography.

At necropsy, the malignant melanoma was found to have invaded the soft tissues of the neck, salivary gland, veins, and cervical and retropharyngeal lymph nodes. The melanoma had also metastasized to the lungs, myocardium, adrenal medulla, larynx, and tracheobronchial, sternal, mediastinal axillary, and prescapula lymph nodes. The right thyroid was atrophic, and the left was overrun with a follicular carcinoma. Epidermal atrophy and hyperkeratosis as well as adenexial atrophy indicated a deficiency of thyroid hormones. Other tumors present were intratubular seminoma and esophageal leiomyofibroma.

Dog 1319S, a female with an ILB of 0.020 kBq ²³⁹Pu/kg body weight, died shortly before surgery for mammary neoplasms 4404 days after exposure. The dog had numerous minor clinical observations. Two slowly growing mammary tumors were noted about 1 yr before death. They were scheduled for routine removal. During the surgical workup examination, periosteal proliferations and osteolysis were noted on radiographs of the sacral vertebrae. The dog was found dead in its cage on the morning of the scheduled surgery.

At necropsy, a widely metastatic mammary adenocarcinoma was found that had resulted in hydrothorax. The metastases involved the lung, mediastinum, omentum, mesentery, diaphragm, and axillary and thoracic lymph nodes. A myxoma was found in and around the muscles of the pelvis resulting in the radiographic bone lesions. Several benign tumors were found, hemangiomas of the subcutis and sinus mucosa, pituitary gland adenoma, and adrenal cortical adenoma.

Dog 1217T, a female with an ILB of 0.011 kBq ²³⁹Pu/kg body weight, died in comatose condition 5155 days after exposure. The dog had a relatively uneventful medical history with minor clinical findings until the terminal episode. The only exception was hypothyroidism diagnosed and treated about 15 mo before death. Terminally, the dog was noted with bloody diarrhea and pale mucous membranes. The next morning, the dog was comatose with a profound anemia, hypoproteinemia, and thrombocytopenia.

At necropsy, a marked thyroidal atrophy was noted consistent with the clinical hypothyroidism. Most striking was an atrophy and marked hemorrhagic necrosis of the liver. Several benign neoplasms were present, a chemodectoma of the mediastinum, an adenoma of the gallbladder, and an adenoma of the mammary gland. A spindle cell carcinoma of the mammary gland was also noted, but it was not invasive.

Dog 1338S, a female with an ILB of 0.011 kBq ²³⁹Pu/kg body weight, was euthanized with an inoperable tumor 3973 days after inhalation exposure. The dog had a prolonged clinical history of oral problems, including abscessed teeth, gingivitis, and epulis. The terminal episode related to a mass in the left tonsil discovered 5 days before death. The mass caused profuse salivation and anorexia. Because of the inoperable nature of the neoplasm, euthanasia was recommended.

At necropsy, the mass was found to be a poorly differentiated squamous cell carcinoma of the tonsil that extended into the adjacent salivary gland but had not metastasized. Other neoplasms noted were three adenomas of the mammary glands. Other lesions were minimal and incidental to the clinical disease.

Dog 1223T, a female control, was euthanized 4896 days after exposure. Several mastectomies had been performed with diagnoses of mixed mammary tumors, adenomas, and an adenocarcinoma. She had acute hepatitis about 6 mo before death which resolved in 3 wk. Enlarged submandibular and prescapular lymph nodes were observed about 6 wk before death. Lymphosarcoma was diagnosed based on several lymph-node aspirates. At necropsy, lymphosarcoma was found in most visceral and peripheral lymph nodes with infiltration of spleen, liver, stomach, kidneys, gall bladder, uterus, and mammary glands. Massive involvement of the liver had caused moderate hepatic necrosis. Other neoplasms noted were noncontributory and included renal fibroma, vaginal leiomyoma, and adrenal cortical adenoma.

Dog 1318D, a male control, was euthanized with an abdominal mass 4345 days after exposure. The dog had few medical problems in its life span. Diarrhea was noted about 6 mo before death, but resolved in 3 days. In the terminal episode, the dog was found comatose 1 day before death. Peritonitis with ascites was present, and a large mass was palpated in the abdomen. At necropsy, a lymphosarcoma was found greatly expanding a portion of the jejunum and invading the anterior mesenteric lymph nodes. Lymphosarcoma infiltrates were present in the tracheobronchial lymph nodes, but in no other place. Arterial thromboses were present in the lung which probably contributed to the poor clinical condition. A follicular cell adenoma was present in the thyroid.

Dog 1353A, a male control, was found dead 3776 days after exposure while on a treatment regimen for acute liver disease. The dog had few medical problems in its lifetime. Two days before death, the dog was examined for anorexia and rapid weight loss. Hepatitis was diagnosed and treatment initiated.

At necropsy, the dog was found to have malignant mastocytoma with massive infiltration of neoplastic cells in the liver, spleen, and adrenals. Less severe infiltration was present in kidneys and pituitary gland. The massive hepatic infiltrates caused an acute liver failure. Other lesions were minimal and incidental. The only other neoplasm was hemangioma of the popliteal lymph node.

Dog 1358S, a female control, died in renal failure 3992 days after exposure. In the terminal episode, the dog was thin and had oral ulcerations. She was treated for renal failure, but died several days later.

At necropsy, a marked nephropathy with nephrosclerosis was found. Ulceration of the gastric mucosa, calcification of the gastric mucosa and small arteries and hyperplasia of the parathyroid glands were all indications of renal failure and uremia. In addition, an undifferentiated sarcoma was found filling one half of one kidney. It did not spread outside the capsule of the kidney. A pituitary adenoma was also present.

d. Repeated Inhalation Exposure of Beagle Dogs to ²³⁹PuO₂. XVI.

Study Contact: J. H. Diel

To evaluate the role of chronic exposure to an alpha-emitting aerosol, PuO₂, compared to single acute uptakes of the same radionuclide, adult Beagle dogs inhaled a monodisperse aerosol of ²³⁹PuO₂ (0.75 µm AMAD) either once or once every 6 mo for 10 yr. Twenty-four singly exposed dogs received 3.7 kBq ²³⁹Pu; the multiply exposed dogs received either 0.37 or 3.7 kBq per exposure for a maximum of 20 exposures each. There were 24 dogs exposed at the lower dose, and 15 dogs exposed at the upper dose. Nine additional dogs at the upper dose were sacrificed for dosimetry. Twelve control dogs were also given repeated, semiannual sham exposures for the 10-yr duration. These dogs are being held for life-span observations. The exposures began in 1977; the final repeated exposures were done in 1987. Specific details of the experimental design considerations, the dose-response models being tested, and the metabolism and dosimetry of the inhaled ²³⁹PuO₂ have been presented in previous annual reports, particularly in LF-58, LMF-91, and LMF-102. Annual summaries for this study have also been included in all other annual reports to the present time.

The current status of this study is shown in the experimental design chart given in Figure 16. Exposure information and dosimetry results are given for each dog in Appendix A. Survival data for dogs in this study are summarized graphically in Figure 17. During the past 2 yr, two of the singly exposed dogs and three control dogs died. The major clinical and pathological findings in these dogs are summarized below. As of September 30, 1993, one dog remained alive in this study. A summary of the major biological effects in all the ²³⁹Pu-exposed and control dogs in this study is given in Table 9. Observations continue on the last living dog, which has been on study for 16 yr.

DESIGN EXPOSR	A	В	С	D	Ε	F	6	н	1	J	K	L	MEAN KBQ/EXP
SINGLE EXPOSA 3.7K80	1028A 5.6 1 E-4072	1040S 3.3 1 0-1651	1036A 3.0 1 E-3871	10505 5.2 1 0-3564	1050A 4.1 1 E-5258	10557 6.3 1 E-3558	10588 5.6 1 E-4348	10625 6.3 1 E-1030	10608 4.8 1 E-2715	1077V 7.8 1 E-4097	1063C 4.1 1 0-3901	10737 22. 1 E-1920	6.7
SINGLE EXPOSR 3.7KBQ	10288 3.0 1 0-3740	1044U 3.3 1 E-4795	1025A 7.0 1 E-3612	1055W 5.6 1 E-4979	10508 6.7 1 E-4856	1060S 6.3 1 E-3466	10518 5.6 1 D-3809	1061T 7.8 1 E-3465	1061A 7.8 1 E-3339	1077S 7.8 1 D-3216	10678 3.7 1 0-5517	1077U 9.6 1 E-4711	6.3
REPEAT EXPOSE 3.7KBQ	1027C 54. 10 E-2008	1036S 46. 9 E-1623	1040C 47. 9 E-1684	1055U 43. 10 E-1944	10450 55. 10 D-1908	10495 45. 8 E-1462	10510 46. 9 E-1895	10615 58. 9 E-1631	10628 75. 10 D-2013	1069S 67. 9 D-1892	1064A 54. 9 E-1829	1070S 49. 10 D-2374	5.6
SACRIF REPEAT EXPOSR 3.7KBQ	1041A 21. 4 5-728	1037T 54. 10 D-1698	1037A 62. 8 E-1530	1049T 10. 2 5-369	10400 9.3 2 5-364	1049V 57. 7 E-1267	10540 61. 10 S-1838	1065T 24. 4 S-728	1054C 47. 9 5-1832	1067U 26. 9 S-1749	1064C 15. 2 S-364	10761 17. 4 5-734	6.3
REPEAT EXPOSE .37KBQ	10258 8.3 18 E-3713	1029U 8.1 18 E-3571	1035A 7.9 19 E-4372	1046T 3.1 2 0-364	10468 7.5 16 D-3033	1057S 7.9 18 E-3463	1057A 12. 20 E-4140	1067T 11. 20 0-4282	1051A 11. 18 E-3569	10715 7.9 19 E-4226	1066A 11. 20 0-4294	1078S 8.0 20 E-3624	0.52
REPEAT EXPOSR .37K80	10278 6.0 12 0-2125	1035U 6.8 16 E-4134	10378 8.9 20 E-3643	10515 12. 19 E-3617	10418 8.9 19 E-3377	1057T 8.3 20 0-4444	10548 9.6 17 E-3205	1055S 13. 19 E-3533	1058C 7.8 20 0-4253	1070U 6.4 14 E-2450	10658 10. 19 E-3927	1073U 7.6 12 0-1933	0.52
CONTROL	1037E 0 18 E-5060	1044T 0 18 E-5660	1040A 0 13 D-2250	1051T 0 16 0-4206	1043A 0 18 E-3941	1058S 0 18 E-5644	1058A 0 18 E-5364	1066T 0 18 A-5805	1062A 0 6 D-969	1068V 0 18 E-4383	1062C 0 18 0-5050	10771 0 18 E-4732	0
	1028A 5.6 1 E-4072	-ANIMAL NUMBER -TOTAL EXPOSURE TO DATE (KBD) -NUMBER OF EXPOSURE (INCLUDING SHAM EXPOSURES)											

Figure 16. Experimental design for the longevity study of Beagle dogs exposed repeatedly by inhalation to 0.75 μ m AMAD aerosols of ²³⁹PuO₂ (Status as of 9-30-93).

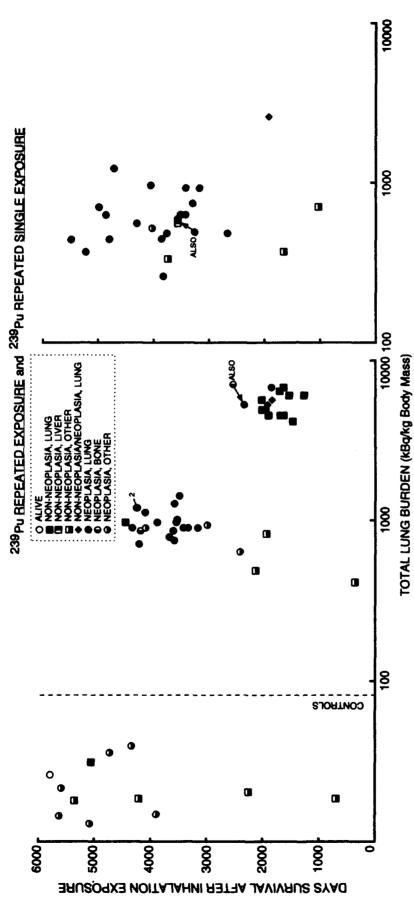


Figure 17. Survival of dogs exposed semiannually by inhalation to monodisperse aerosols of 249 PuO₂ (Status as of 9-30-93).

Table 9 Summary of Major Findings at Death in Dogs Repeatedly Exposed by Inhalation to 0.75 μ m Aerodynamic Diameter Monodisperse Aerosols of ²³⁹PuO₂ (Status as of 9-30-93)

	Number of Dogs	TLB ^a (kBq ²³⁹ Pu/kg Body Weight)	Survival Times (Days after Exposure)	Cumulative Radiation Dose to Lung (Gy)
²³⁹ Pu-Exposed				<u>-</u>
Non-Neoplasia				
Lung	12	0.41-0.68	1267-4444	6.1-27
Bone Marrow	0		••	••
Liver	1 ^b	0.56	3564	4.0
Other	6	0.33-0.81	364-3740	0.73-4.3
Neoplasia				
Lung Injury with Lung Neoplasia	3	0.50-2.6	1829-1920	15-24
Lung	36 ^{b,c}	0.26-1.4	1892-5517	1.9-31
Nasal Epithelium	0	••		
TBLN	0			
Heart	0			
Bone	2°	0.53,0.85	2374,4226	5.4,30
Bone Marrow	0			
Liver	0			
Other	5	0.52-0.93	2450-4134	2.8-5.6
<u>Control</u>				
Non-Neoplasia				
Lung	0			
Bone Marrow	0			
Liver	0			
Other	5		969-5364	
Neoplasia				
Lung Injury with Lung Neoplasia	0			
Lung	0	••	••	
Nasal Epithelium	0			
TBLN	0			
Heart	0	***	an de	
Bone	0			
Bone Marrow	0		••	
Liver	0	**		••
Other	6		3941-5660	

^aTLB=Total lung burdens based on whole-body counting of ¹⁶⁹Yb.

^bOne dog had a lung tumor and hepatic degeneration.

^cOne dog had lung and bone tumors.

Dog 1067B, a male with an ILB of 0.44 kBq ²³⁹Pu/kg body weight, was found dead 5517 days after a single inhalation exposure. The dog had a long history of prostatitis, prostamegaly, and calcified prostatic cysts. At necropsy, pulmonary edema was found to be the immediate cause of death. The principal cause of death was a pulmonary adenocarcinoma widely disseminated through the lung with metastasis to the local lymph nodes. Other neoplasms, which did not contribute to the clinical condition, included a leiomyoma of the esophagus, a follicular carcinoma of the thyroid, a follicular adenoma of the thyroid, and an adenoma of the adrenal cortex.

Dog 1050A, a male with an ILB of 0.37 kBq ²³⁹Pu/kg body weight, was euthanized with a lung carcinoma 5258 days after a single initial inhalation exposure. Thirty months before death a lung carcinoma was diagnosed during routine clinical examination. The tumor gradually enlarged, but caused no clinical signs until 2 wk before euthanasia. At that time, hypertrophic pulmonary osteopathy was diagnosed. Shortly later, coughing developed, and euthanasia was recommended.

At necropsy, the principal alterations were a primary bronchioloalveolar carcinoma and secondary pulmonary hypertrophic osteopathy. In the lungs, there were one or several primaries and multiple intrapulmonic metastases. The neoplasm had not metastasized out of the lungs but was responsible for the osteopathy. A perifollicular cell adenoma of the thyroid was also found but was incidental.

Dog 1044T, a female control, was euthanized with a recurring subcutaneous tumor 5660 days after exposure. The mass was first noted caudal to the shoulder 21 mo before death. The mass was surgically removed and diagnosed as a myxosarcoma. Nine months later, it was removed a second time. Six months before death, the myxosarcoma recurred for the third time. Because of the multiple recurrence and poor clinical condition, the dog was euthanized.

At necropsy, the myxosarcoma was found to be extensively invasive locally but had not metastasized. Numerous aging lesions were found that did not contribute to the clinical condition including a parathyroid gland adenoma, a vaginal fibroma, and mammary adenoma.

Dog 1058A, a male control, was euthanized in renal failure 5364 days after initial inhalation exposure. The dog had a long history of clinical problems, including marked spondylosis, marked prostatomegaly with chronic prostatitis, right heart enlargement with a grade IV systolic murmur, and chronic renal disease.

At necropsy, the principal lesions were in the kidney and included chronic nephropathy and those of renal secondary hyperparathyroidism; bilateral parathyroid hyperplasia, fibrous osteodystrophy, and bone marrow atrophy. Several spontaneous, incidental neoplasms were noted: parathyroid adenoma, thyroid follicular cell adenoma, adrenocortical adenoma, sebaceous adenoma of skin, and interstitial cell adenoma of testes.

Dog 1058S, a female control, was euthanized with metastatic carcinoma 5644 days after exposure. The dog had a history of multiple mammary masses, cardiomegaly, and intervertebral disc disease. Five days before euthanasia, she had peritoneal and pleural effusions and palpable abdominal mass.

At necropsy, an undifferentiated acinar cell carcinoma of the pancreas was found with widespread metastases. Metastatic neoplasms in the liver had destroyed large areas of hepatic parenchyma. Other, smaller, metastases were present in the mesenteries, omentum, mediastinum, lungs, and multiple lymph nodes.

3. Annual Report References to Dog Longevity Studies in which All Dogs Have Died

It is our custom to provide an annual status report on each dog longevity study in which dogs are still alive. These reports provide historical perspective on each study and on the sequence in which different events occurred. When all dogs in a given study are dead, the scientific effort in that study is directed to final histopathological reviews, data analyses, dose-response modeling, and open literature publications.

Recognizing that annual progress reports for an individual study may span about 20 yr, it is desirable to provide the interested reader with a guide to past annual reports and their contents. In the material that follows, a graph that illustrates the relationship between long-term retained radionuclide burden, survival time, and prominent pathological observations at death is presented for each study in which all dogs are dead. This graph is followed by an annotated list of all annual report references for that particular study.

a. 90SrCl₂ Longevity and Sacrifice Studies

Figure 18 provides data on long-term retained burden and survival time for Beagle dogs that inhaled 90 SrCl₂, and Table 10 presents annual report references to these dogs.

b. 144CeCl₃ Longevity Study

Table 11 presents annual report references to Beagle dogs that inhaled ¹⁴⁴CeC1₃, and Figure 19 provides data on the long-term retained burden and survival time for these dogs.

c. 91YCl₃ Longevity Study

Figure 20 provides data on the long-term retained burden and survival time on Beagle dogs that inhaled ⁹¹YCl₃, and Table 12 presents annual report references on these dogs.

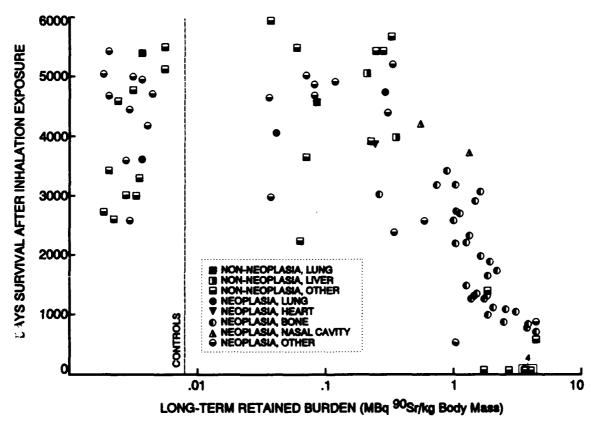


Figure 18. Relationship between long-term retained burden and survival time for Beagle dogs that inhaled 90SrCh.

Table 10

Annual Report References to Longevity and Sacrifice Studies Involving Beagle Dogs that Inhaled 90SrCl₂

Report No.	Year and Document No.	Pages	Major Contents
I.	1966-67, LF-38	1-18	Exposure details; whole-body retention; ⁸⁵ Sr deposition and fate; dosimetry methodology; early clinical findings, hematology, serum chemistry, microbiology, and pathology in early post-exposure period.
П.	1967-68, LF-39	1-13	Whole-body retention summary; dosimetry; and clinical observations, bematology, and pathology.
III.	1968-69, LF-41	1-7	Whole-body retention; biological effects summary; and survival curves.
IV.	1969-70, LF-43	123-127	Annual status report.
v.	1970-71, LF-44	121-125	Annual status report.
VI.	1971-72, LF-45	129-136	Annual status report, comparison with 90Sr citrate study at the University of Utah.
VII.	1972-73, LF-46	86-90	Annual status report.
VIII.	1973,74, LF-49	89-92	Annual status report.
IX.	1974-75, LF-52	134-138	Annual status report.
Χ.	1975-76, LF-56	154-157	Annual status report.
XI.	1976-77, LF-58	62-65	Annual status report.
XII.	1977-78, LF-60	68-71	Annual status report.
ХШ.	1978-79, LF-69	57-61	Annual status report.
XIV.	1979-80, LMF-84	48-52	Annual status report.
XV.	1980-81, LMF-91	67-72	Annual status report.
XVI.	1981-82, LMF-102	271-275	Final status report.
XVII.	1982-83, LMF-107	183-189	Bone cancer risk estimates.
XVIII.	1983-84, LMF-113	154-158	Study summary.
	1984-85, LMF-114	175-180	Analysis of early hematological effects.
	1984-85, LMF-114	275-279	Logistic analysis of dose-effects data.
	1985-86, LMF-115	167-176	Analysis of late biological effects.
	1988-89, LMF-128	63-65	Effects of route of exposure and dose rate on bone cancers.
	1990-91, LMF-135	82-84	Alpha- vs. beta-induced bone cancers.
	This report	57-59	Life-span health effects.
	This report	60-61	Bone tumor incidence.
	This report	62-65	Lung tumors in control dogs.

Table 11

Annual Report References to the Longevity Study Involving Beagle Dogs that Inhaled 144CeCl₃

Report No.	Year and Document No.	Pages	Major Contents
I.	1966-67, LF-38	19-39	Exposure details; whole-body retention; deposition and fate in parallel serial sacrifice study; dosimetry methodology; clinical findings, hematology, clinical chemistry, microbiology, and pathology in early post-exposure period.
п.	1967-68, LF-39	14-25	Deposition and fate in parallel serial sacrifice study; dosimetry; and clinical findings, hematology, and pathology.
ш.	1968-69, LF-41	8-14	Whole-body retention, biological effects summary.
IV.	1969-70, LF-43	128-136	Fate and dosimetry, biological effects summary.
V.	1970-71, LF-44	126-135	Whole-body retention, tissue distribution, clinical findings and pathology.
VI.	1971-72, LF-45	137-139	Annual status report.
VII.	1972-73, LF-46	91-95	Dosimetry methodology, annual status report.
VIII.	1973-74, LF-49	93-97	Annual status report.
IX.	1974-75, LF-52	139-142	Annual status report.
X.	1975-76, LF-56	158-163	Annual status report.
XI.	1976-77, LF-58	69-73	Annual status report.
XII.	1977-78, LF-60	76-79	Annual status report.
хш.	1978-79, LF-69	66-70	Annual status report.
XIV.	1979-80, LMF-84	57-61	Annual status report.
XV.	1980-81, LMF-91	79-83	Annual status report.
XVI.	1981-82, LMF-102	280-283	Annual status report.
XVII.	1982-83, LMF-107	194-197	Annual status report.
XVIII.	1983-84, LMF-113	163-167	Final status report, preliminary cancer risk estimates.
	1984-85, LMF-115	247-250	Nonstochastic effects; nonneoplastic liver disease and tumors in nonirradiated organs.
	1989-90, LMF-130	70-74	Biological effects summary.
	1989-90, LMF-130	75-77	Hepatic tumor comparison.
	This report	57-59	Life-span health effects.
	This report	60-61	Bone tumor incidence.
	This report	62-65	Lung tumors in control dogs.

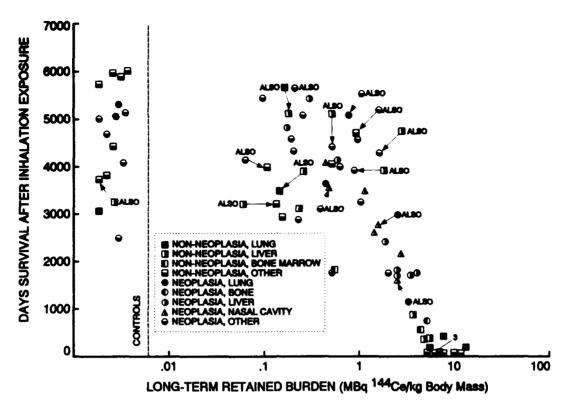


Figure 19. Relationship between long-term retained burden and survival time for Beagle dogs that inhaled \$\$^{144}CeCl_3\$.

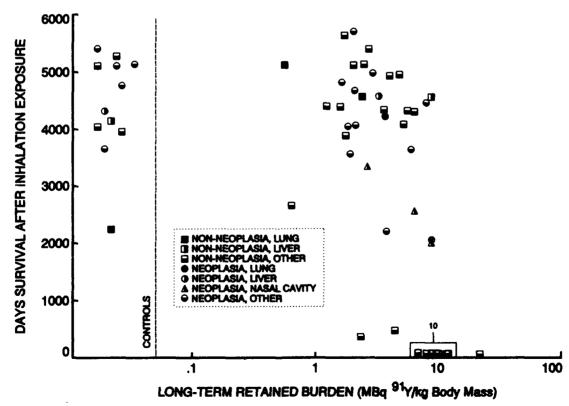


Figure 20. Relationship between long-term retained burden and survival time for Beagle dogs that inhaled ⁹¹YCl₃.

d. 137CsCl Longevity Study

Table 13 presents annual report references to Beagle dogs that were injected with ¹³⁷CsCl, and Figure 21 provides data on long-term retained burden and survival time for these dogs.

Table 12

Annual Report References to the Longevity Study Involving Beagle Dogs that Inhaled 91YCl₃

Report No.	Year and Document No.	Pages	Major Contents
I.	1966-67, LF-38	40-64	Exposure details; whole-body retention; deposition and fate in parallel serial sacrifice study; dosimetry methodology; and clinical observations, hematology, clinical chemistry, microbiology, and pathology in early post-exposure period.
II.	1967-68, LF-39	26-32	Whole-body retention; and clinical observations, hematology, clinical chemistry and pathology.
III.	1968-69, LF-41	15-18	Annual status report.
IV.	1969-70, LF-43	137-139	Annual status report.
V.	1970-71, LF-44	136-138	Annual status report.
VI.	1971-72, LF-45	140-143	Annual status report.
VII.	1972-73, LF-46	96-99	Dosimetry methodology, annual status report.
VIII.	1973-74, LF-49	98-100	Annual status report.
IX.	1974-75, LF-52	143-145	Annual status report.
X.	1975-76, LF-56	164-166	Annual status report.
XI.	1976-77, LF-58	66-68	Annual status report.
XII.	1977-78, LF-60	72-75	Annual status report.
XIII.	1978-79, LF-69	62-65	Annual status report.
XIV.	1979-80, LMF-84	53-56	Annual status report.
XV.	1980-81, LMF-84	73-78	Annual status report.
XVI.	1981-82, LMF-102	276-279	Annual status report.
XVII.	1982-83, LMF-107	190-193	Annual status report.
XVIII.	1983-84, LMF-113	159-162	Final status report, preliminary cancer risk estimates.
	1990-91, LMF-135	65-67	Biological effects summary.
	This report	57-59	Life-span health effects.
	This report	60-61	Bone tumor incidence.
	This report	62-65	Lung tumors in control dogs.

e. 90Y in FAP Longevity Study

Figure 22 provides data on the relationship between ILB and survival time for dogs that inhaled ⁹⁰Y in FAP, and Table 14 presents annual report references to these dogs.

f. 91Y in FAP Longevity Study

Table 15 presents annual report references to Beagle dogs that inhaled ⁹¹Y in FAP, and Figure 23 provides data on the long-term burden and survival time of these dogs.

Table 13

Annual Report References to Longevity and Sacrifice Studies
Involving Beagle Dogs that were Injected Intravenously with ¹³⁷CsCl

Report No.	Year and Document No.	Pages	Major Contents
I.	1967-68, LF-39	54-75	Experimental design; injection details; whole-body retention; urinary and fecal excretion; tissue concentrations; dosimetry details; and early clinical findings, hematology, serum chemistry, and pathology in early post-exposure period.
II.	1968-69, LF-41	36-45	Whole-body retention; dosimetry; microbiology; immunology; hematology; and clinical findings, biochemistry, and pathology.
III.	1969-70, LF-43	140-145	Dosimetry, biological effects summary.
IV.	1970-71, LF-44	139-144	Whole-body retention, biological effects summary.
V.	1971-72, LF-45	144-146	Annual status report.
VI.	1972-73, LF-46	100-102	Annual status report.
VII.	1973-74, LF-49	101-103	Annual status report.
VIII.	1974-75, LF-52	146-149	Annual status report.
IX.	1975-76, LF-56	167-171	Annual status report.
Χ.	1976-77, LF-58	74-77	Annual status report.
XI.	1977-78, LF-60	80-83	Annual status report.
XII.	1978-79, LF-69	71-74	Annual status report.
XIII.	1979-80, LMF-84	62-66	Annual status report.
XIV.	1980-81, LMF-91	84-89	Annual status report.
XV.	1981-82, LMF-102	284-288	Annual status report.
XVI.	1982-83, LMF-107	198-202	Annual status report.
XVII.	1983-84, LMF-113	168-171	Annual status report.
XVIII.	1984-85, LMF-114	181-184	Final status report.
	1989-90, LMF-130	66-69	Biological effects summary.
	This report	57-59	Life-span health effects.
	This report	60-61	Bone tumor incidence.
	This report	62-65	Lung tumors in control dogs.

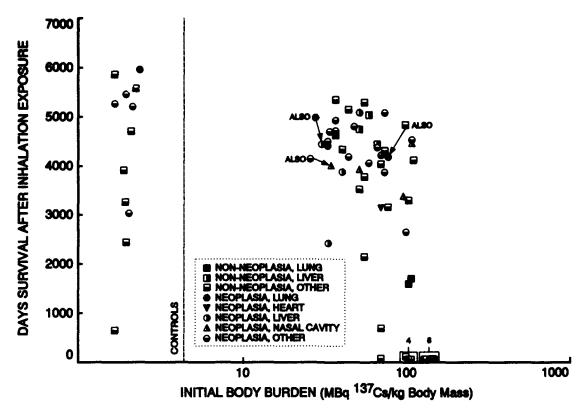


Figure 21. Relationship between long-term retained burden and survival time for dogs that were injected intravenously with ¹³⁷CsCl.

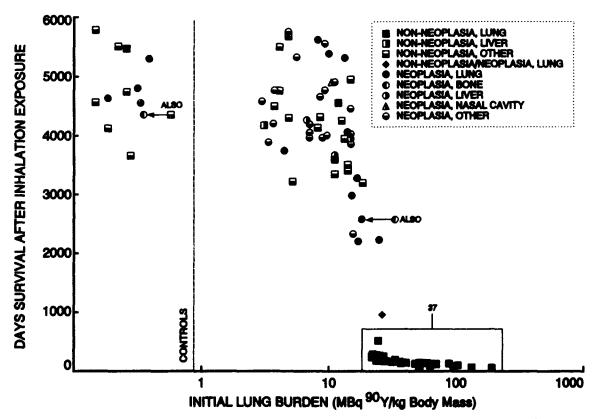


Figure 22. Relationship between ILB of ⁹⁰Y and survival time for dogs that inhaled ⁹⁰Y in fused aluminosilicate particles.

g. 144Ce in FAP Longevity Study

Figure 24 provides data on the long-term burden and survival time for Beagle dogs that inhaled ¹⁴⁴Ce in FAP, and Table 16 presents annual report references to these dogs.

Table 14

Annual Report References to Longevity and Sacrifice Series
Involving Beagle Dogs that Inhaled 90Y in FAP

Report No.	Year and Document No.	Pages	Major Contents
I.	1968-69, LF-41	46-58	Experimental procedures; whole-body retention; excretion; tissue distribution; dosimetry; and clinical observations, hematology, pulmonary function, clinical chemistry, and pathology.
11.	1969-70, LF-43	146-162	Experimental procedures; experimental design (8 blocks); tissue distribution; and clinical observations, microbiology, and pathology.
ш.	1970-71, LF-44	145-150	Full experimental design, dosimetry summary, and biological effects summary.
IV.	1971-72, LF-45	147-150	Annual status report.
v.	1972-73, LF-46	103-107	Annual status report.
VI.	1973-74, LF-49	104-107	Annual status report.
VII.	1974-75, LF-52	150-153	Annual status report.
VIII.	1975-76, LF-56	172-175	Annual status report.
IX.	1976-77, LF-58	78-82	Annual status report.
Χ.	1977-78, LF-60	84-88	Annual status report.
XI.	1978-79, LF-69	75-78	Annual status report.
XII.	1979-80, LMF-84	67-70	Annual status report.
XIII.	1980-81, LMF-91	90-95	Annual status report.
XIV.	1981-82, LMF-102	289-294	Annual status report.
XV.	1982-83, LMF-107	203-207	Annual status report.
XVI.	1983-84, LMF-113	172-176	Annual status report.
XVII.	1984-85, LMF-114	185-190	Annual status report.
XVIII.	1985-86, LMF-115	177-181	Annual status report.
XIX.	1986-87, LMF-120	205-208	Final status report.
	1986-87, LMF-120	196-204	Preliminary lung cancer risk estimates.
	1989-90, LMF-130	78-81	Beta dose-rate effects in lung.
	This report	62-65	Lung tumors in control dogs.

Table 15

Annual Report References to Longevity and Sacrifice Series Involving Beagle Dogs that Inhaled ⁹¹Y in FAP

Report No.	Year and Document No.	Pages	Major Contents
I.	1969-70, LF-43	163-182	Exposure details; whole-body retention; deposition and fate in parallel serial sacrifice study; excretion in urine and feces; dosimetry methodology; experimental design (4 blocks); and clinical observations, hematology, pulmonary physiology, clinical chemistry, and pathology in early post-exposure period.
II.	1970-71, LF-44	151-163	Full experimental design; initial deposition; whole-body retention; tissue distribution; dosimetry; and clinical observations; hematology, clinical chemistry, pulmonary function, and pathology for early post-exposure period.
III.	1971-72, LF-45	151-156	Biological effects summary.
IV.	1972-73, LF-46	108-111	Annual status report.
V.	1973-74, LF-49	108-112	Annual status report.
VI.	1974-75, LF-52	154-159	Annual status report.
VII.	1975-76, LF-56	176-179	Annual status report.
VIII.	1976-77, LF-58	83-86	Annual status report.
IX.	1977-78, LF-60	89-93	Annual status report.
X.	1978-79, LF-69	79-82	Annual status report.
XI.	1979-80, LMF-84	71-75	Annual status report.
XII.	1980-81, LMF-91	96-100	Annual status report.
хш.	1981-82, LMF-102	295-299	Annual status report.
XIV.	1982-83, LMF-107	208-212	Annual status report.
XV.	1983-84, LMF-113	177-181	Annual status report.
XVI.	1984-85, LMF-114	191-195	Annual status report.
XVII.	1985-86, LMF-115	182-186	Annual status report.
XVIII.	1986-87, LMF-120	209-212	Final status report.
	1986-87, LMF-120	196-204	Preliminary lung cancer risk estimates.
	1989-90, LMF-130	78-81	Beta dose-rate effects in lung.
	1990-91, LMF-135	61-64	Biological effects summary.
	1990-91, LMF-135	79-82	Alpha- vs. beta-induced lung cancer.
	This report	62-65	Lung tumors in control dogs.

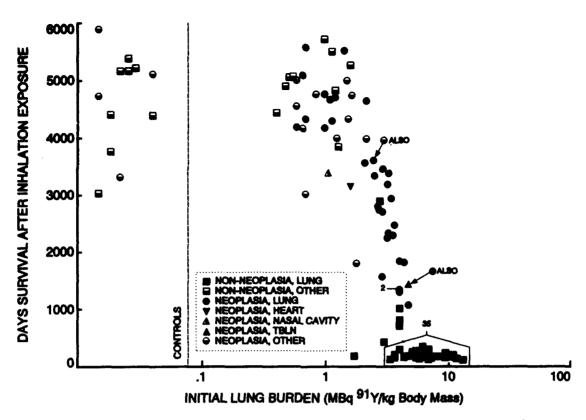


Figure 23. Relationship between ILB of ⁹¹Y and survival time for dogs that inhaled ⁹¹Y in fused aluminosilicate particles.

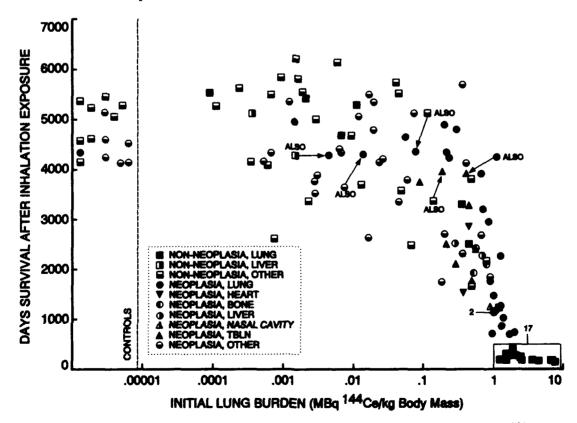


Figure 24. Relationship between ILB of ¹⁴⁴Ce and survival time for dogs that inhaled ¹⁴⁴Ce in fused aluminosilicate particles.

Table 16

Annual Report References to Longevity and Sacrifice Series Involving Beagle Dogs that Inhaled ¹⁴⁴Ce in FAP

Report No.	Year and Document No.	Pages	Major Contents
I.	1967-68, LF-39	33-53	Exposure details; whole-body retention; deposition and fate in parallel serial sacrifice study and dogs dying in early post-exposure period; and clinical observations, hematology, pulmonary physiology, clinical chemistry, and pathology in early post-exposure period.
II.	1968-69, LF-41	19-35	Partial experimental design; whole-body retention; tissue distribution and retention; dosimetry; and clinical observations, pulmonary function, clinical chemistry, hematology, immunology and pathology.
III.	1969-70, LF-43	183-187	Metabolism and dosimetry; and biological effects summary.
IV.	1970-71, LF-44	164-180	Full experimental designs for Series I and II; tissue distribution and retention; clinical observations; and pathology.
V.	1971-72, LF-45	157-166	Annual status report.
VI.	1972-73, LF-46	112-115	Annual status report.
VII.	1973-74, LF-49	113-117	Annual status report.
VIII.	1974-75, LF-52	160-164	Annual status report.
IX.	1975-76, LF-56	180-185	Annual status report.
X.	1976-77, LF-58	87-92	Annual status report.
XI.	1977-78, LF-60	94-98	Annual status report.
XII.	1978-79, LF-69	83-91	Annual status report.
XIII.	1979-80, LMF-84	76-81	Annual status report.
XIV.	1980-81, LMF-91	101-108	Annual status report.
XV.	1981-82, LMF-102	300-305	Annual status report.
XVI.	1982-83, LMF-107	213-219	Annual status report.
XVII.	1983-84, LMF-113	182-187	Annual status report.
XVIII.	1984-85, LMF-114	196-201	Annual status report.
XIX.	1985-86, LMF-115	187-192	Annual status report.
XX.	1986-87, LMF-120	213-216	Annual status report.
	1986-87, LMF-120	196-204	Preliminary lung cancer risks.
XXI.	1987-88, LMF-121	157-163	Final status report.
	1988-89, LMF-128	66-68	Age-related early health effects.
	1988-90, LMF-130	78-81	Beta dose-rate effects in lung.
	1990-91, LMF-135	75-78	Interspecies lung cancer risks.
	1990-91, LMF-135	79-82	Alpha- vs. beta-induced lung cancer.
	This report	62-65	Lung tumors in control dogs.

h. 144Ce in FAP, Aged-Dog Longevity Study

Table 17 presents annual report references to aged Beagle dogs that inhaled ¹⁴⁴Ce in FAP, and Figure 25 presents data on the ILB and survival time of these dogs.

i. 90Sr in FAP Longevity Study

Figure 26 presents data on the relationship between ILB of ⁹⁰Sr and survival time for all dogs in this study, and Table 18 presents annual report references to this study.

j. ²³⁸PuO₂ Monodisperse Aerosol Longevity Study - 1.5 and 3.0 μm AMAD Particles

Table 19 presents annual report references to these studies involving dogs that inhaled either monodisperse 1.5 μ m or 3.0 μ m AMAD particles. Figures 27 and 28 illustrate the relationship between the ILB of ²³⁸PuO₂ and survival time for all dogs in these two studies.

k. ²³⁹PuO₂ Aged-Dog Longevity Study

Figure 29 provides data on the ILB survival time of aged Beagle dogs that inhaled ²³⁹PuO₂, and Table 20 presents annual report references to these dogs.

Table 17

Annual Report References to the Longevity Study
Involving Aged Beagle Dogs that Inhaled 144Ce in FAP

Report No.	Year and Document No.	Pages	Major Contents
I.	1971-72, LF-45	172-176	Experimental design (6 blocks); exposure details; dosimetry; and early biological results.
II.	1972-73, LF-46	122-127	Comparison of tissue distribution and biological effects with those in young-adult dogs; summary of early biological results; and annual status report.
III.	1973-74, LF-49	122-125	Annual status report.
IV.	1974-75, LF-52	169-172	Complete experimental design, annual status report.
V.	1975-76, LF-56	190-194	Annual status report.
VI.	1976-77, LF-58	97-101	Annual status report.
VII.	1977-78, LF-60	94-98	Annual status report.
VIII.	1978-79, LF-69	96-100	Annual status report.
IX.	1979-80, LMF-84	86-89	Annual status report.
X.	1980-81, LMF-91	113-116	Annual status report.
XI.	1981-82, LMF-102	310-313	Annual status report.
XII.	1982-83, LMF-107	224-227	Final status report.
XIII.	1983-84, LMF-113	193-195	Study summary.
	1988-89, LMF-128	66-68	Age-related early health effects.

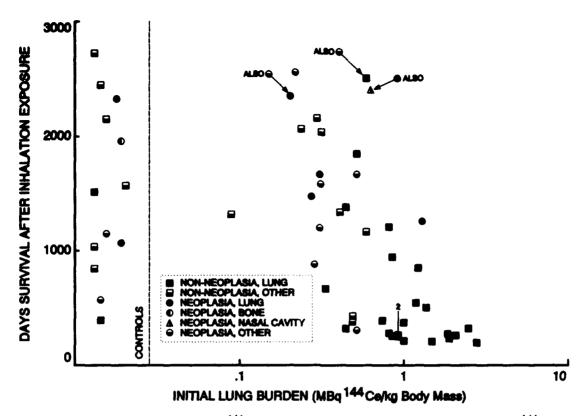


Figure 25. Relationship between ILB of ¹⁴⁴Ce and survival time for aged dogs that inhaled ¹⁴⁴Ce in fused aluminosilicate particles.

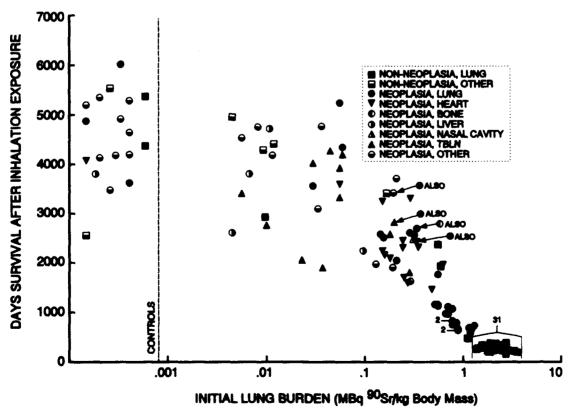


Figure 26. Relationship between ILB of ⁹⁰Sr and survival time for Beagle dogs that inhaled ⁹⁰Sr in a fused aluminosilicate matrix.

Table 18

Annual Report References to Longevity and Sacrifice Series
Involving Beagle Dogs that Inhaled 90Sr in Fused Aluminosilicate Particles

Report No.	Year and Document No.	Pages	Major Contents
I.	1969-70, LF-43	188-196	Experimental design, exposure details, whole- body retention, tissue distribution, dosimetry calculations, and early biological effects.
II.	1970-71, LF-44	181-192	Metabolism and dosimetry, excretion of ⁹⁰ Sr, clinical and pathology observations in the early post-exposure period.
III.	1971-72, LF-45	177-188	Dosimetry modeling and calculations for first 12 blocks of dogs, clinical and pathology updates.
IV.	1972-73, LF-46	128-136	Dosimetry calculations, clinical and pathology updates.
V.	1973-74, LF-49	126-129	Annual status report.
VI.	1974-75, LF-52	173-177	Annual status report, addition of six blocks at lower levels.
VII.	1975-76, LF-56	195-199	Annual status report.
VIII.	1976-77, LF-58	102-106	Annual status report.
IX.	1977-78, LF-60	108-112	Annual status report.
X.	1978-79, LF-69	101-106	Annual status report.
XI.	1979-80, LMF-84	90-94	Annual status report.
XII.	1980-81, LMF-91	117-121	Annual status report.
ХШ.	1981-82, LMF-102	314-318	Annual status report.
XIV.	1982-83, LMF-107	228-231	Annual status report.
XV.	1983-84, LMF-113	196-200	Annual status report.
XVI.	1984-85, LMF-114	207-211	Annual status report.
XVII.	1985-86, LMF-115	198-203	Annual status report.
XVIII.	1986-87, LMF-120	222-227	Annual status report.
	1986-87, LMF-120	196-204	Priliminary lung cancer risks.
XIX.	1987-88, LMF-121	184-188	Annual status report.
XX.	1988-89, LMF-128	14-17	Annual status report.
XXI.	1989-90, LMF-130 1989-90, LMF-130	12-15 78-81	Annual status report. Beta dose-rate effects in lung.
XXII.	1990-91, LMF-135	12-15	Final status report.
	1990-91, LMF-135	79-82 62-65	Alpha- vs. beta-induced lung cancer.
	This report	62-65	Lung tumors in control dogs

Report No.	Year and Document No.	Pages	Major Contents
1.	1973-74, LF-49	140-144	Experimenta? design, inhalation exposures, whole-body counting, initial lung burdens and early biological effects.
II.	1974-75, LF-52	198-203	Initial lung burdens and lymphocyte responses.
III.	1975-76, LF-56	229-237	Tissue distribution, clinical results, pathology findings.
IV.	1976-77, LF-58	122-134	Metabolism, dosimetry, hematological effects, pathology observations.
V.	1977-78, LF-60	132-144	Tissue distribution, dosimetry, hematological and pathological effects.
VI.	1978-79, LF-69	122-133	Tissue distribution, dosimetry, biological effects and survival patterns.
VII.	1979-80, LMF-84	118-128	Lung retention, tissue distribution and biological effects.
VIII.	1980-81, LMF-91	150-158	Simulation model for dosimetry, biological effects summary.
IX.	1981-82, LMF-102	327-335	Annual status report.
X.	1982-83, LMF-107	243-251	Annual status report.
XI.	1983-84, LMF-113	216-224	Tissue distribution results and annual status report.
XII.	1984-85, LMF-114	226-235	Annual status report.
XIII.	1985-86, LMF-115	215-223	Annual status report.
XIV.	1986-87, LMF-120	235-247	Annual status report.
XV.	1987-88, LMF-121	196-205	Annual status report.
XVI.	1988-89, LMF-128	18-24	Annual status report.
XVII.	1989-90, LMF-130	16-21	Annual status report.
XVIII.	1990-91, LMF-135	12-15	Final status report.
	This report	60-61	Bone tumor incidence
	This report	62-65	Lung tumors in control dogs
	This report	66-68	Lung tumor growth rate patterns

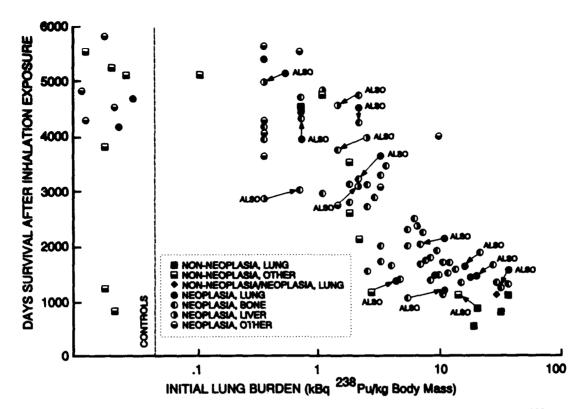


Figure 27. Survival of Beagle dogs that inhaled 1.5 μ m AMAD monodisperse aerosols of ²³⁸PuO₂.

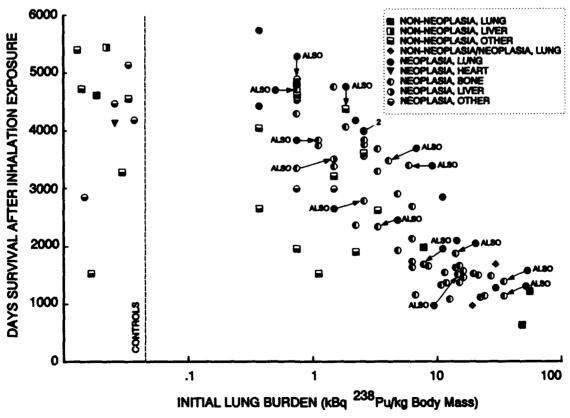


Figure 28. Survival of Beagle dogs that inhaled 3.0 μm AMAD monodisperse aerosols of 238 PuO₂.

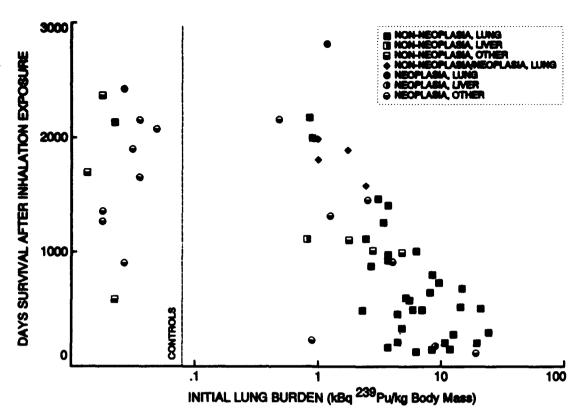


Figure 29. Relationship between ILB of ²³⁹Pu and survival time for aged dogs that inhaled ²³⁹PuO₂.

Table 20

Annual Report References to the Longevity Study Involving Aged Beagle Dogs that Inhaled ²³⁹PuO₂

Report No.	Year and Document No.	Pages	Major Contents
I.	1978-79, LF-45	141-144	Experimental design; initial lung burdens.
П.	1979-80, LMF-84	143-145	Current entries into study, early biological effects
III.	1980-81, LMF-91	1 69 -173	Annual status report.
IV.	1981-82, LMF-102	347-351	Full experimental design, annual status report.
V.	1982-83, LMF-107	264-268	Annual status report.
VI.	1983-84, LMF-113	237-241	Annual status report.
VII.	1984-85, LMF-114	249-253	Annual status report.
VIII.	1985-86, LMF-115	239-242	Annual status report.
IX.	1986-87, LMF-120	266-270	Annual status report.
X.	1987-88, LMF-121	157-163	Final status report.

D. COMPLETION ACTIVITIES FOR THE ITRI STUDIES

1. Completion of Individual Studies

At the present time, there are 15 ITRI studies in which all dogs have died. These are the studies receiving most of the current efforts directed to study completions. The general strategy being followed for each study is shown in Table 21.

Table 21

General Strategy for Completion of Individual Life-Span Studies in Dogs at ITRI

- Collect and organize materials and data
- Conduct detailed reviews
 - Dosimetry
 - Clinical
 - Pathology
- Analyze results
- Publish basic manuscripts
 - Dosimetry
 - Biological effects
 - Dose-response modeling
- Prepare cross-cutting risk analyses and manuscripts
 - Among ITRI dog studies
 - Across species including humans
 - With other laboratories
- · Send materials to National Radiobiology Archives

A review of the dosimetry, clinical, and pathology materials and records for each dog is necessary to assure uniformity in thoroughness of examination and terminology. Because each life-span study spanned nearly 2 decades, numerous veterinary clinicians and pathologists have been involved. Over such a span of time, individuals, concepts, treatments, terminology, and completeness of diagnosis have changed. Part of the purpose of these reviews is to establish standard terminology, diagnostic criteria, and reporting format. The general approach is for a team comprised of one pathologist, one clinician, and a radiation biologist to review a complete study together. Each individual reviews the appropriate material for their specialty, then all team members agree together on the diagnoses and other findings. The information is then organized on forms and entered into the database.

In the dosimetry portion of this effort, the radiation biologist reviews the performance of the counting equipment, consistency of the standards, and the retention functions for the radionuclide of interest in the various organs of concern. This ensures that the dosimetry is consistent over a study and that changes in counting efficiencies and standards did not affect the results of these long studies. It also ensures that the methods for dose calculations are consistent within each experiment. The dosimetry information is then entered into the dosimetry database.

The clinical materials being reviewed are the medical records, radiographs, hematology data, and clinical chemistry data. The pathologist reviews the written gross necropsy report, biopsy reports, and histopathology and final pathology reports for completeness; reviews the slides for tumors, and determines the organs of major concern; and reviews any photographs of the organs taken at gross necropsy. The clinician and the pathologist discuss each case to establish the following diagnoses: (1) immediate cause of death, (2) primary cause of death, (3) major contributing diseases, and (4) incidental diseases and findings. Under each category, sufficient supporting information is given to demonstrate the basis for the diagnosis. This information is then coded into SNODOG (a modified version of SNOMED) and entered into the database.

Through the end of FY-1993, clinical and pathologic reviews of materials and records have been completed on six studies $^{-90}$ SrCl₂, 144 CeCl₃, 137 CsCl, 91 YCl₃, 238 PuO₂ (1.5 μ m), and 238 PuO₂ (3.0 μ m). These six studies represent an important grouping within the ITRI program because they involved physical or chemical forms that demonstrated the highest degree of *in vivo* radionuclide solubility in the 19 studies conducted. This solubility leads to a range of organs being at risk in addition to the respiratory tract. Most of the ITRI manuscript efforts are being directed to the completion and publication of these studies. These manuscripts will provide valuable information on cancer risks in organs and tissues such as the liver, skeleton, and nasal mucosa, as well as the lung.

The current planned order and schedule for completion of dosimetry and medical reviews during Fiscal Years 1994, 1995 and 1996 are given in Table 22. Because the ITRI team has responsibility for completion of some of the studies begun at the University of Utah in addition to the ITRI studies, these studies are also listed in Table 22 to reflect the total effort involved. Also, with the cooperation and collaboration of scientists from ANL, the results and materials from a life-span study of intravenously injected ¹³⁷CsCl in dogs originally conducted at ANL will be reviewed at ITRI in FY 1994. This review will follow completion of the ITRI study with ¹³⁷CsCl, both studies being based on similar experimental designs.

Table 22

Projected Order and Schedule for Completion of Dosimetry and Medical Reviews for Life-Span Studies in Dogs at ITRI

FY 1994 224Ra Citrate (Utah)^a 137CsCl (ANL)^b 144Ce FAP FY 1995 239PuO₂ (3 sizes) 91 Y FAP 239Pu Citrate (Utah, Immature)^a FY 1996 226Ra Citrate (Utah, Immature)^a 90 Y FAP 90 Sr FAP

These studies, initiated at the University of Utah, will be completed at ITRI under the collaborative agreement. This study was conducted at ANL, but the reviews and core manuscript will be done at ITRI with collaboration from ANL staff.

Because of the maturity of the entire series of dog life-span studies at ITRI, most of the living dogs on study are also approaching the end of their life spans. Table 23 lists the number of dogs alive in each of the four studies containing living dogs and the projected year in which the last dog is expected to die. These studies will continue with the daily observation of the dogs, pathological examination of each animal when it dies, and the collection of excreta and tissues for radiochemical analysis for dosimetry. Each study will be integrated into the wrap-up schedule based on the projected date of death of all of the animals. In addition, samples of all tumors of sufficient size are being collected and preserved at -70°C for use in other projects. These samples provide valuable material for evaluating oncogenes and gene activation products present in radiation-induced tumors. Material is also available for in situ hybridization and immunohistochemistry studies.

Table 23

Predicted Dates for the Remaining Dogs to Die in the Life-Span Radionuclide Toxicity Studies

Radionuclide and Form	Completion of Inhalation Exposure (Years)	Number of Dogs Entered in Study	Number of Dogs Alive	Projected Year of Last Death
²³⁹ PuO ₂ (0.75 μm)	1977-1979	60	1	1994
²³⁹ PuO ₂ (1.5 μ m)	1977-1979	108	4	1995
²³⁹ PuO ₂ (Immature)	1979-1982	108	43	1998
²³⁹ PuO ₂ (Repeated Exposures)	1977-1988	72	1	1994

2. Databases

Over the past 30 yr, a number of different database approaches have been used at ITRI for the purpose of managing the storage and retrieval of the data and records produced in different segments of the life-span studies program. These databases have involved a broad range of information on topics such as breeding, inoculation, clinical observations, clinical pathology results, necropsy reports, pathologic diagnoses, radionuclide counting data, and analytical radiochemistry results. Some of the previous databases used have been written in-house, and others were obtained from commercial sources. A long-standing problem has been the difficulty of retrieving and using data from several sources at the same time. Also, because of these database differences, the results were not in appropriate formats for eventual transfer to the NRA.

A concerted effort is continuing to re-establish these major databases within a common software framework. The FOCUS database software is being used for this purpose. Highest priority was given first to the development of a health effects database for use in the final review of all clinical and pathologic materials for each dog. Basic details of this database were given in the 1988-1989 annual report (LMF-128, pp. 84-85). This database is now an important tool in our health effects evaluation process. Other databases that have been set up in a FOCUS format include the colony management database, the clinical pathology database, the radionuclide counting database, and the analytical chemistry database.

E. RECENT RESEARCH ACCOMPLISHMENTS

1. <u>Life-Span Health Effects of Relatively Soluble Forms of Internally Deposited Beta-Emitting Radionuclides</u>

B. B. Boecker, B. A. Muggenburg, F. F. Hahn, K. J. Nikula, and W. C. Griffith

One important area addressed in the fission-product studies is the influence of in vivo solubility of the inhaled material on the doses received by, and the effects seen in, different organs and tissues. This report presents and compares results from three studies in which young-adult Beagle dogs inhaled ⁹⁰SrCl₂ or ¹⁴⁴CeCl₃, or were injected with ¹³⁷CsCl. This comparison was chosen because of known differences in the pattern of metabolism and dosimetry among these three radionuclides, ranging from concentration mainly in one organ (⁹⁰Sr), several organs (¹⁴⁴Ce), and the whole body (¹³⁷Cs). Of particular interest are the relative distributions of radiation dose and long-term biological effects among organs exposed by these three regimens.

Young-adult Beagle dogs (12-14 mo, equal number of both sexes) inhaled, on a single occasion, different activity levels of either 90SrCl₂, or 144CeCl₃, or were injected once, intravenously, with 137CsCl. The exposure aerosols, consisting of the radionuclide plus a CsCl or CeCl₃ vector, had polydisperse size distributions with AMADs ranging from 1.5 to 2.4 μ m (s_g = 1.6 to 2.1). Exposures were completed in less than 1 h. Each dog was whole-body counted immediately after radionuclide exposure and at selected intervals thereafter to determine the initial body burden and its retention as a function of time after exposure. Each dog's health status was evaluated periodically, and illnesses considered not to be associated with the radiation exposure were treated using standard veterinary practices. All dogs were maintained in the ITRI kennel facility until they died or were euthanized when moribund. Complete necropsies and histopathological examinations were performed. When all dogs in a study were dead, all clinical and histopathological results and materials were reviewed to ensure accuracy and consistency of the diagnoses. All diseases were coded for a FOCUS database using the SNODOG system. Absorbed beta doses were computed for individual organs or the whole body as appropriate for the radionuclides and forms used. These dose calculations were based on the whole-body retention data from each radionuclide-exposed dog in the longevity study and tissue distribution and retention data obtained from serially sacrificed dogs in separate, but similar, dosimetry studies. The small photon contribution was ignored, except for the whole-body dose from ¹³⁷Cs where the photon portion contributed about one-third of the total dose.

Table 24 presents the experimental design features for the three studies compared in this report. In each study, a range of long-term retained burdens was studied, the highest of which led to early deaths within the first 2 yr after exposure. Most of these early deaths were from hematologic dyscrasias resulting from irradiation of the bone marrow. Several others were due to radiation pneumonitis, pulmonary fibrosis, or hepatic degeneration. The focus of this report is on the remaining ~80% of the dogs that survived more than 2 yr after exposure and, therefore, were at risk for the development of cancer and other later-occurring diseases.

Table 24

Experimental Design Features for Life-Span Studies of Dogs Exposed to Relatively Soluble Beta-Emitting Radionuclides

Study		Number of Dogs				
	LTRB ^a (MBq/kg)	Exposed		Controls		
		Total	>2 yr ^b	Total	>2 yr ^b	
⁹⁰ Sr	0.10 - 4.8	66	58	22	22	
¹⁴⁴ Ce	0.096 - 13	55	41	15	15	
¹³⁷ Cs	28 - 130	54	42	12	11	

^aLTRB = long-term retained burdens for exposed dogs.

^bSurvived more than 2 yr after exposure.

Cumulative absorbed dose factors (Gy per MBq/kg Long-Term Retained Burden) for organs in animals exposed to these three different patterns of radionuclide distribution are given in Table 25. The organs and tissues listed for ¹⁴⁴Ce are the four that received the highest total beta doses. Of these four, only two, bone and nasal mucosa, received significant doses from 90Sr. In contrast, the relatively uniform whole-body distribution of ¹³⁷Cs produced about the same total dose (beta plus gamma) in all four organs.

Table 25 Cumulative Absorbed Beta Doses to 5000 Days after Exposure of Beagle Dogs to Radionuclides in a Relatively Soluble Form

	G	y per MBq/kg LT	RBª
Organ/Tissue	90SrCl ₂	144CeCl ₃	¹³⁷ CsCl ^b
Lung	c	24	0.15
Liver	c	60	0.21
Bone	220	18	0.13
Nasal Mucosa	270	92	0.18
Whole Body	N/A ^d	N/A	0.21

Neoplasia was a prominent, long-term finding in both the exposed and control dogs (Gillett, N. A. et al. JNCI 79: 35, 1987; 1989-90 Annual Report on Long-Term Dose-Response Studies of Inhaled or Injected Radionuclides, p. 66, p. 70). Table 26 gives the number of dogs in which primary malignant or benign tumors were found. All tumors, whether they were the primary cause of death, a major contributing disease, or an incidental finding, are included. For this report, the controls for the three individual studies have been combined. One can roughly compare the number of tumors across the three exposed groups and the combined controls because the number of 2-yr survivors was about the same in each group.

The number of lung tumors was similar in all three exposed groups and the control group. These tumors were mainly bronchioloalveolar carcinomas and adenocarcinomas in dogs that died from 10 to 16.5 yr after exposure. The exceptions were two 144Ce-exposed dogs that died at 4.5 and 7.6 yr after exposure in which a bronchioloalveolar adenoma and adenocarcinoma, respectively, were found. In the liver, bone, and nasal mucosa, pronounced differences were found between the exposed dogs and the controls. No tumors were found in these organs in the control dogs except for two bile duct adenomas in the liver. A large number of liver tumors, both malignant (hemangiosarcoma, hepatocellular carcinoma, cholangiocarcinoma, and neurofibrosarcoma) and benign (biliary cystadenoma and bile duct adenoma) were found in dogs exposed to ¹⁴⁴Ce or ¹³⁷Cs, but not to ⁹⁰Sr. In contrast, the tumorigenic response in the ⁹⁰Sr-exposed dogs was primarily the occurrence of bone tumors (osteosarcoma, hemangiosarcoma, and fibrosarcoma). No bone tumors were seen in the other groups, except one osteosarcoma that occurred in a ¹⁴⁴Ce-exposed dog at 2.2 yr after exposure. Tumors in the nasal mucosa, mostly carcinomas, occurred in all three studies, but not in the controls. The relative distribution of tumors between the ¹⁴⁴CeCl₃ and ⁹⁰SrCl₂ studies is consistent with the dosimetry information in Table 25. The occurrence of tumors in the livers and nasal mucosa of ¹³⁷CsCl-exposed dogs indicates that these tissues are relatively responsive to this radiation insult.

^aLTRB = long-term retained burden. ^bDoses for ¹³⁷Cs include gamma contribution.

 $c_{---} = Dose < 0.1\%$ of skeletal dose.

^dNot applicable.

Table 26

Occurrence of Primary Tumors in Selected Organs of Dogs that were Exposed to

90SrCl₂, ¹⁴⁴CeCl₃, or ¹³⁷CsCl and Lived > 2 yr after Exposure or in Control Dogs

	Number of Tumors ^a				
Organ/Tissue	⁹⁰ Sr	¹⁴⁴ Ce	137 _{Cs}	Controls	
Lung	2,1 ^b	3,1	3,0	5,0	
Liver	0,1	10,11	5,5	0,2	
Bone	45,1	1,0	0,0	0,0	
Nasal Mucosa	3,0	5,0	4,0	0,0	
Number of Dogs	58	41	42	48	

^aSome dogs had more than one tumor. In addition to the tumors listed, a number of tumors were found in other organs of dogs in each of these groups; many were incidental findings at necropsy.

These initial analyses have been directed to organs and tissues that have been clearly identified as targets of radiation from these and other internally deposited radionuclides. Investigations are continuing on the question of whether additional organs or tissues may also be at risk from these different patterns of chronic beta irradiation. These results are providing valuable in vivo information on the appropriateness of current radiation-protection practices for internally deposited radionuclides.

^bNumber malignant, number benign.

2. Bone Tumor Incidence in Beagle Dogs that Inhaled Soluble Radionuclides

B. A. Muggenburg, F. F. Hahn, B. B. Boecker, K. J. Nikula, R. A. Guilmette, and W. C. Griffith

One purpose of these studies involving soluble forms of fission-product radionuclides was to determine which organs would be at risk for the development of significant long-term biological effects. The skeletal system was considered to be one of the organs at higher risk for the development of cancers because several of these radionuclides were known to accumulate preferentially in bone.

The studies conducted with radionuclides that were relatively soluble in body fluids are listed in Table 27. Dogs in a particular study were exposed once, by inhalation, to one of these radionuclides except those exposed to ¹³⁷CsCl, which was injected intravenously. In this list, ⁹⁰Sr has the greatest affinity for bone and deposits throughout the volume of the bone resulting in a large percentage of the dogs developing bone tumors (Table 28). After inhalation, ¹⁴⁴Ce and ⁹¹Y translocate from the lung primarily to liver and skeleton. The physical half-life of ¹⁴⁴Ce is a little over 9 mo, while that of ⁹¹Y is about 2 mo. Although nearly half of the activity translocated from lung deposited in bone, only one bone tumor was observed in the ¹⁴⁴Ce study, and none was observed in the ⁹¹Y study. The ¹³⁷CsCl injected intravenously resulted in an accumulation in soft tissues and a general whole-body irradiation. Although tumors were observed in some organ systems, no bone tumors were observed. The alpha-emitting radionuclide ²³⁸Pu (inhaled as ²³⁸PuO₂), which has a radioactive half-life of approximately 88 yr, was also a part of this series. Approximately equal fractions of the ²³⁸Pu that entered the blood from the lung were deposited in the liver and skeleton. The ²³⁸Pu was deposited primarily on bone surfaces and resulted in a large percentage of the dogs developing bone tumors.

Table 27

Studies of the Toxicity of Various Radionuclides Inhaled or Injected in Relatively Soluble Chemical Forms and Their Distribution Characteristics in the Skeleton

Radionuclide	Type of Radiation	Radioactive Half-life	Primary Tissue Distribution
⁹⁰ Sr	beta	29 yr	Bone volume
¹⁴⁴ Ce	beta, gamma	285 days	Bone surfaces and liver
⁹¹ Y	beta, gamma	59 days	Bone surfaces and liver
¹³⁷ Cs	beta, gamma	30 yr	Muscle and soft tissues
²³⁸ Pu	alpha	88 yr	Bone surfaces and liver

Each study had a group of control dogs (Table 28). None of the control dogs associated with these studies developed bone tumors. However, three bone tumors have been observed in a group of over 250 control dogs from all longevity studies at the Institute.

Bone tumors in the exposed dogs were primarily osteosarcomas or soft tissue sarcomas primary to bone (fibrosarcoma, hemangiosarcoma, myxosarcoma). In the 90 Sr study, 36% of the bone tumors were hemangiosarcomas or fibrosarcomas. With 238 PuO₂, less than 2% of the bone tumors were soft tissue sarcomas. The tumors within the skeleton from the 90 Sr were mainly distributed in the skull and long bones of the limbs.

Some other tumors observed in the dogs may be related to the accumulation of radioactivity in the skeleton. Tumors of the bone marrow (leukemias and myeloproliferative disorders) were noted in several dogs exposed to $^{90}\text{SrCl}_2$ or $^{144}\text{CeCl}_3$. Both of these radionuclides are beta emitters with prolonged retention in bone. No such tumors were seen in studies with $^{91}\text{YCl}_3$, $^{137}\text{CsCl}$, or $^{238}\text{PuO}_2$. Tumors of the nasal and sinus mucosa were also found in 5 to 10% of the dogs in each study with beta-emitting radionuclides. None was found in

the dogs that inhaled ²³⁸PuO₂. Tumors of the oral mucosa were also found in dogs exposed to ⁹⁰SrCl₂, ¹⁴⁴CeCl₃, ¹³⁷CsCl, or ²³⁸PuO₂. One hypothesis for the occurrence of these oral and nasal tumors is that radiation from the radionuclide in the bone surrounding the mouth, nasal cavity, and sinuses induced the tumors of the epithelial lining cells. In the case of ¹³⁷Cs, the soft tissue distribution of the radionuclide suggests this may not be the mechanism for that particular radionuclide. However, the tissue distribution of ¹³⁷Cs around the nose and mouth has not been studied closely. The inability of the alpha radiation from the ²³⁸Pu in the bones surrounding the nasal cavity and sinuses to reach the epithelial lining cell might explain why only one tumor was observed in these tissues in the dogs that inhaled ²³⁸Pu. No tumors of the nasal cavity have been observed in the control dogs associated with these studies or in a larger group of controls from other longevity studies.

Table 28

Number of Bone and Bone-Associated Tumors Found in Dogs that Inhaled or Were Injected with Radionuclides

Radionuclide	Number of Dogs	Number of Dogs Surviving > 2 yr	Dogs with Bone Tumors	Dogs with Bone- Marrow Tumors	Dogs with Nasal- Mucosal Tumors	Dogs with Oral Mucosal Tumors
90SrCl ₂	66	54	30	2	3	1
144CeCl ₃	55	41	1	3	5	3
91YCl ₃	42	29	0	0	3	0
137CsCl	54	41	0	0	4	3
$^{238}\mathrm{PuO}_{2}$	144	142	90	0	0	1
Controls	85	85	0	0	0	0

Comparison of the number of bone tumors observed in dogs that inhaled or were injected with various beta-emitting or an alpha-emitting radionuclides suggests that the tumors occurred primarily in studies with the longer-lived radionuclides. Significant differences exist in the distribution of tumors within the skeleton and the occurrence of possible bone-associated tumors between the beta- and alpha-emitting radionuclides.

As these studies are completed through final reviews and analyses of the dosimetry, clinical, and histopathological data and publication of core manuscripts, the bone cancer risks across these studies and those in other DOE laboratories will be analyzed. Of particular interest will be the comparisons of bone cancer risk factors for chronic beta and alpha irradiation and the examination of studies in which few or no bone cancers were observed even though the skeleton was irradiated.

3. Primary Lung Cancer in the Longevity Study/Control Population of the ITRI Beagle Dog Colony

F. F. Hahn, B. A. Muggenburg, and W. C. Griffith

The incidence and types of primary lung neoplasms found in unexposed dogs are critical in determining the long-term biological effects of inhaled radionuclides. The frequency of lung neoplasms in dogs is generally considered to be low, but incidence rate is difficult to document in pet populations. In North America and Europe, reports of lung carcinoma occurrence range from 0.1% (Nielsen, S. E. In *The Lung* [A. A. Liebow and D. E. Smith, eds.], Williams and Wilkins, Baltimore, p. 226, 1968) to 1% (Stunzi, H. *Pathol. Microbiol. 39*: 358, 1973) for dogs that die and are necropsied. In a survey of all types of neoplasms in the pet dog population of two counties in Northern California, the incidence rate for lung cancer, as diagnosed in dogs admitted to veterinary clinics, was 4.2 per 10,000 dogs per year (Dorn, C. R. et al. J. Natl. Cancer Inst. 40: 295, 1968). Here, we report the incidence of primary lung neoplasms in a group of 225 Beagle dogs observed for their normal life span.

The dog colony at ITRI, composed of purebred Beagle dogs, was initiated in 1962. The breeding colony has been closed to the entry of new dogs since 1965. In 1968, a generation breeding program was initiated to establish and maintain a stable gene pool (Bielfeldt, S. W. et al. Am. J. Vet. Res. 30: 2221, 1969). The initial generation consisted of 40 female and 20 male dogs.

The longevity study control population consists of all control dogs included in life-span studies of inhaled radionuclides conducted at ITRI and allowed to live out their normal life spans. These control dogs are listed in the appendix tables of this report. One control group is not included: the life-span studies of aged dogs, since the animals were selected for study at 8-10.5 yr of age.

The characteristics of the control population are noted in Table 29. The selection criteria and frequency of clinical examinations were the same as for the exposed dogs and similar among longevity studies, although the studies were initiated over a period of 12 yr.

Table 29

Characteristics of Longevity Control Dog Population

Number of Dogs	Age of Selection	Selection Criteria	Frequency of Clinical Examination		
225 total 116 females 109 males	13 ± 1 mo (except 18 were 12 ± 1 wk)	Normal size ^a Normal facial configuration Normal hematologies Normal blood chemistry Normal radiographs Normal EEG & EKG	Once per year on birthda As needed for illness Yearly radiographs		

^aDogs too large to fit into standard whole-body counting box and abnormally small dogs were not used.

All dogs were given a complete necropsy at death or euthanasia that included all organ systems. All major organs, as well as lesions, were routinely sampled for histopathologic examination.

The survival and age distribution of the population at risk and the age-specific incidence of tumors were determined using a life-table method of analysis (Rosenblatt, L. S. et al. Health Phys. 21: 869, 1971). The cumulative incidence of tumors is the sum of the age-specific incidence times the probability of survival to that age (Elandt-Johnson, R. C. and N. L. Johnson. Survival Models and Data Analysis, John Wiley and Sons, NY, 1980). The BMDP1L Life Tables and Survival Functions statistical software package was used for data analysis.

As of September 30, 1992, 204 dogs (109 males and 95 females) had died or been euthanized. The cumulative survival is shown in Figure 30. The median survival time of the males is greater than the females (14.1 yr vs. 13.7 yr); however, the survival curves are not significantly different as demonstrated by the generalized Savage, Tarone-Ware, and generalized Wilcoxon statistical tests.

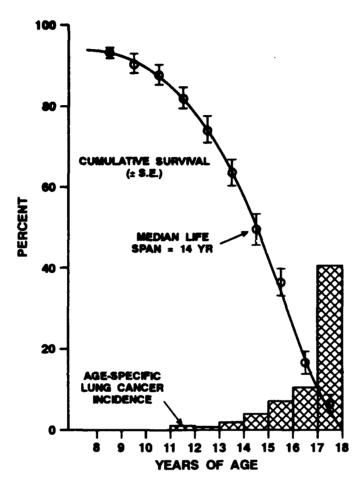


Figure 30. Longevity of control dogs and incidence of primary lung neoplasms (status as of 9/30/92).

The crude incidence of lung neoplasms was greater in females (10%) than in the males (6.4%) based on the number of dogs that had lung tumors and the number dead as of September 30, 1992. However, statistical comparison of these cumulative incidence curves shows no significant difference in the tumor incidence in males and females. This lack of predilection is consistent with previous reports of lung tumor incidence in pet populations (Moulton, J. E. Vet. Pathol. 18: 513, 1981).

The age-specific incidence of tumors is also shown in Figure 30. The incidence markedly increases after 14 yr of age and is nearly 10% after 16 yr in both males and females. The age-dependence of lung neoplasms has been noted anecdotally but has been quantified in only one previous publication. A report of the lung tumor incidence in the Beagle dog colony at the University of Utah shows an increased incidence with increased age; however, the absolute incidence is considerably lower than that reported here (Taylor, G. N. et al. Am. J. Vet. Res. 40: 1316, 1979). For example, the age-specific incidence at 13 to 16 yr is reported to be 0.7% compared to 4.2% for the similar interval in the ITRI longevity control colony.

This study indicates that the primary lung tumor incidence is higher in Beagle dogs than in other species used in long-term studies, with the exception of some mouse strains. For example, in three species frequently used in the Institute, F344 rats have a lifetime incidence of about 1%, C₅₇Bl/J mice approximately 2%, and Syrian hamsters essentially 0%.

Seventeen primary lung neoplasms were found in the control dogs (Table 30). The earliest occurring lung tumor resulted in the dog's death at 11.1 yr of age. The latest occurring was found in a 17.6-yr-old dog that died of renal failure.

Table 30

Summary of Primary Lung Neoplasms Detected in Control Dogs for the Longevity Studies

Dog Number	Age at Death (yr)	Type of Death ^a	Primary Cause of Death or Euthanasia	Lung tumor Type	Metastasis
Males					
859C	12.7	E	Lung tumor	Papillary adenocarcinoma	No
401A	14.0	D	Lung tumor	Papillary adenocarcinoma	No
1122C	14.2	E	Lung tumor	Papillary adenocarcinoma	No
378A	14.4	E	Lung tumor	Bronchioloalveolar carcinoma	Yes
361B	14.6	D	Lung tumor	Bronchioloalveolar carcinoma	Yes
56A	15.1	E	Olfactory neuroblastoma	Papillary adenocarcinoma	No
998A	15.1	E	Lung tumor	Papillary adenocarcinoma	Yes
Females					
10C	11.1	D	Lung tumor	Papillary adenocarcinoma	No
405W	11.2	D	Anesthetic death	Papillary adenocarcinoma	No
348S	13.6	E	Renal failure	Papillary adenocarcinoma	No
689U	14.1	E	Lung tumor	Papillary adenocarcinoma	No
1152T	15.0	E	Lung tumor	Adenosquamous carcinoma	Yes
407T	15.7	E	Renal failure	Papillary adenocarcinoma	No
61C	15.8	D	Lung tumor	Papillary adenocarcinoma	Yes
663S	16.1	D	Lung tumor	Adenosquamous carcinoma	No
762T	17.6	D	Nephritis	Papillary adenocarcinoma	No
283C	17.6	D	Septicemia	Bronchioloalveolar carcinoma	Yes

^aE = Euthanized; D = Died

All of the lung tumors were carcinomas. Most (12/17) were papillary adenocarcinomas, but three were bronchioloalveolar carcinomas, and two were adenosquamous carcinomas. The morphologic appearance of these tumor types overlaps in some cases. However, the difference in morphologic pattern may have biologic significance. For example, epidermal growth factor receptor expression in canine lung tumors, as determined by immunohistochemistry, is phenotype-dependent, being predominantly seen in papillary adenocarcinomas and squamous cell carcinomas and not in bronchioloalveolar carcinomas (Gillett, N. A. et al. Vet. Pathol. 29: 46, 1992).

Metastasis, usually to thoracic lymph nodes and tissues only, occurred in six cases (35%). Two of three bronchioloslycolar carcinomas had metastases, and 4 of 12 papillary adenocarcinomas had metastases. The lung tumor was the primary cause of death in 11 of the 17 tumor cases.

The lung tumor types reported here are similar to those in pet populations reported by others. One group reported 74% adenocarcinomas and 20% alveolar carcinomas (bronchioloalveolar carcinomas) in 210 cases (Ogilvie, G. K. et al. J. Am. Vet. Med. Assoc. 195: 106, 1989). Another group reported 77% adenocarcinomas and 15% alveolar carcinomas (bronchioloalveolar carcinomas) in 171 cases from pet populations (Moulton et al., 1981). A review of 11 primary lung neoplasms in the University of Utah Beagle dog colony noted 10 adenocarcinomas (Taylor et al., 1979.)

In summary, this study shows that Beagle dogs do not have a low incidence of primary lung neoplasms, but the incidence is dominated by a high age-specific incidence late in life.

4. Growth Rate Patterns of Lung Tumors in Beagle Dogs Exposed to ²³⁹PuO₂ or ²³⁸PuO₂

W. C. Griffith, J. H. Diel, B. A. Muggenburg, and S. J. Matthews

Inhalation exposure studies have been conducted in Beagle dogs to investigate the risk of lung tumor induction by α -radiation from relatively insoluble inhaled particles of 238 PuO₂ or 239 PuO₂. This report investigates the growth rate patterns for lung tumors induced in these studies. These tumor growth rate patterns are of interest because they aid in evaluation of the dose-response relationships for inhaled Pu.

Knowledge of the tumor growth rate assists in analyzing dose-response relationships by providing a more appropriate estimate of the dose and the tumor incidence rate. At the time of death, the size of a lung tumor varies greatly, suggesting that lung tumors are present for differing lengths of time before death. The tumors may be detected before death during routine surveillance of the dogs, but their sizes at time of detection are again highly variable. A tumor's growth rate and its size at death can be used to estimate a time when it was a certain size, so that all dogs can be standardized to the same tumor size. A small uniform size is used so that the estimated time is closer to when the tumor is likely to have arisen. The calculation of the tumor incidence rate is simplified by use of a time point early in the development of the tumor when the tumor is not likely to have affected survival. Because of the long attention half-lives of ²³⁹Pu and ²³⁸Pu in the lung, the radiation dose is delivered over long time periods, with part of the dose delivered after a tumor is present. Estimation of a standardized time endpoint for a tumor will eliminate variability in the dose due to the time between when a tumor reaches a uniform size and death.

The objectives of this project were to (1) develop a method to measure pulmonary tumor dimensions from radiographs; (2) select an appropriate method of calculating volume from two-dimensional images on a radiograph; and (3) determine and analyze tumor growth rate and doubling time.

To estimate lung-tumor growth, radiographs of 174 dogs that developed pulmonary neoplasms were examined. Dogs from three studies were included: single and repeated inhalation exposures to ²³⁹PuO₂ and a single inhalation exposure to ²³⁸PuO₂. The criteria for selection in each data set were (1) a single tumor with discrete boundaries exhibited in both dorsoventral and lateral views and (2) three or more serial radiographs showing the tumor that were taken over at least a 1-mo period.

Some of the 174 radiographs examined exhibited clearly delineated tumors in one view only. Other radiographs were clouded by the diffuse nature of the tumor's edges in the lung, especially those involving bronchioloalveolar carcinomas. Twenty-nine cases met our criteria. Information pertaining to tumor classification, exposure history, and metastasis was collected for each dog selected. Radiographic films in which the tumors were clearly visible ranged over a period of 57 to 578 days. With the aid of a light box, both radiographic views, dorsoventral and lateral, of the tumor perimeters were traced on paper. The cross-sectional tumor perimeters resembled circles or ellipses. The number of tracings of each dog differed with the number of radiographs taken between the time that the tumor was first observed to when the dog died, and ranged from 3 to 14. The tracings were digitized using a Graf/Pen data collection software program that was developed at ITRI. The program approximated the area of each tumor by applying the trapezoidal rule.

In recent studies in dogs (Rooser, B. et al. ACTA Oncology 26(3): 189, 1987; Perry, R. R. et al. Am. J. Vet. Res. 53(10): 1740, 1992), tumor volumes have been computed by assuming the tumor configuration to be spherical or ellipsoidal. In this project, it was assumed that tumor growth was uniform in all directions. Geometrically similar figures (i.e., the ratio of the dimensions are the same) would then be projected in each set of dorsoventral and lateral radiographs. Similarity of figures implies that the ratio of the volumes is proportional to the ratio of the areas raised to the three-halves power. This relationship was the basis for computing tumor volume. Tumor volume was plotted against days prior to death after the first noted occurrence of the tumor in the radiographs (Fig. 31).

Linear curves were estimated by least-squares regression for transformed data points for both dorsoventral and lateral views. The data were transformed by the natural logarithm of tumor volume as the dependent variable which was regressed on days prior to death as the independent variable. In most cases the slopes of the lines formed for both views appeared to be approximately the same. Single component exponential growth rates and doubling times were computed. Many of the curves appeared to be exponential. However, the growth

rates of individual tumors differed among dogs. The data suggest that growth rates of Pu-induced lung tumors have doubling times ranging from 1 to 9 mo.

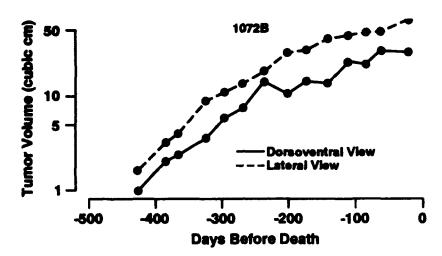


Figure 31. Example of tumor growth showing tumor volumes estimated from radiographs of dorsoventral and lateral views of the tumor at various times before death for dog 1072B.

Further statistical analysis indicated that tumors which had maximum final volumes between 20 cm³ and 125 cm³ fell into two distinct groups of doubling times. One group had doubling times between 1 and 3 mo. Those for the other group ranged from 6 to 9 mo. There were no tumors with maximum volumes between 20 cm³ and 125 cm³ that had doubling times between 3 and 6 mo (Fig. 32).

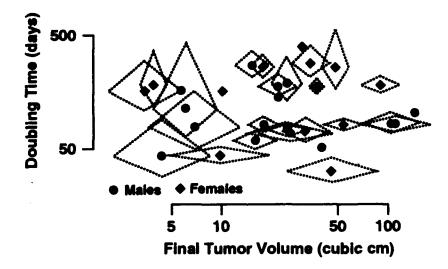


Figure 32. Tumor doubling times as a function of final tumor volume at death. The quadrilaterals illustrate the magnitude of the 95% confidence intervals determined from the linear regression for the doubling time and final tumor volume. The smaller quadrilaterals indicate that the doubling times and final volume are known more precisely. For points without quadrilaterals, the 95% confidence intervals were so broad in at least one direction that they did not fit onto the graph.

Tumor type, exposure history, and metastasis were factors that were considered for each dog. For the 29 cases reviewed, six of the tumors were classified as papillary adenocarcinoma, two as adenocarcinoma, one as adenosquamous carcinoma, one as squamous carcinoma, one as bronchioloalveolar carcinoma, and 18 as

carcinoma. Metastasis occurred in 17 cases. No relationship among doubling times and gender, histologic type, age at death, lung burden, or metastasis was established.

The results of this study suggest that tumor growth rates can be used for estimation of the time at which lung tumors are a uniform size. The standard errors for the growth rates can be reduced by observation of the tumors over a longer period of time. The similar growth rates for both dorsoventral and lateral view data suggest that the sample size could be increased by focusing on the lateral-view radiographs. Frequently, observation of the dorsoventral view was obscured by the position of the tumor in relation to the heart. Relaxing the selection criteria to use these views would provide observations over longer periods of time.

The results of this study suggest estimation of the time when the lung tumors had a volume of about 1 cm³ would be appropriate. This size of lung tumor is about as small as can be detected on a radiograph. This size of tumor is close to or inside the range of the data. Thus, it would only involve a small extrapolation. Also, the growth rate down to this size appears to be approximately exponential, so that the time estimated by this procedure is likely to have small bias. The growth before a lung tumor reaches a volume of 1 cm³ probably involves a period of much more rapid growth than those observed for the majority of tumors in this study. The slow growth rates in Figure 32 observed for many of the tumors would extrapolate back to times of origin, as a single cell, before the dog was exposed. This suggests these tumors have a period of more rapid growth, which is consistent with the observation in these studies that very few dogs have incidental lung tumors found at death when the dog dies of causes other than a lung tumor.

 Prediction of Survival Times after Repeated Exposures Based on Survival Times Following a Single Exposure of Beagle Dogs by Inhalation to ²³⁹PuO₂

J. H. Diel

Knowledge of the effects of inhalation exposure to radionuclides is highly variable depending on the type of radiation, the species, the time sequence of exposure, and many other factors. Consequently, we must find a means of using our knowledge in the areas that are reasonably well known to predict what might happen in other situations. This paper describes an approach to predict the survival time after repeated inhalation exposures based on a single exposure to the same material. The method is used in the context of exposures of relatively long-lived animals where only a few animals are exposed and makes maximal use of the information from each individual animal to obtain the best prediction.

The study that was used to evaluate this method of prediction is one in which Beagle dogs were exposed by inhalation to aerosols of ²³⁹PuO₂, either once or repeatedly at 6-mo intervals until clinical signs of radiation pneumonitis or pulmonary fibrosis appeared (Diel, J. H. et al. Radiat. Res. 129: 53, 1992). Survival time was measured as the time from first or only exposure until the dogs died a natural death or were euthanized for humane reasons.

The assumption used for the determination of the relative effectiveness of single and repeated exposures was that the same effect is produced independent of the time sequence of radiation dose accumulation if the same cumulative radiation dose is achieved at the same time after exposure. This assumes that the energy deposited and the time required for the biological system to respond to that energy deposition are both important. This is equivalent to equal effects being produced for animals having the same average dose rate at death.

Retention of Pu in the lung of a dog exposed once by inhalation to ²³⁹PuO₂ was characterized by a two-component, negative exponential function. Retention of Pu from repeated exposures was obtained by adding the retention of Pu from each exposure. Half-times of retention were assumed to be the same for repeated exposures as for single exposures, but the fraction retained depended on the number of previous exposures. Dose rate was obtained by calculating the energy deposited per unit mass of the lung. Dose is the integral over time of the dose rate, and average dose rate is the total dose to a given time divided by the time.

The average dose rate versus effect equation used assumes that the time to death from radiation pneumonitis and pulmonary fibrosis was proportional to some power of the average dose rate. The variability of the individual values about this predicted relationship was assumed to be log-normal and of equal variance for all values of the average dose rate on a log scale.

For this model, the average dose rate and survival time of each dog exposed once and dying of radiation pneumonitis and pulmonary fibrosis were used as individual points in fitting the data to the average dose rate versus effect equation. The resulting measure of variability was used to predict the probability of a repeatedly exposed dog with a given average dose rate dying of radiation pneumonitis and pulmonary fibrosis at a given time.

Because some of the repeatedly exposed dogs died from causes other than radiation pneumonitis and pulmonary fibrosis, comparison of the predicted survival with the measured survival required that the measured survival time data be corrected for competing causes. Standard methods (Kaplan, E. L. and P. Meier. J. Am. Stat. Soc. 53: 457, 1958) were used for this correction.

Retention of Pu in the lungs of dogs exposed once was characterized by a two-component exponential equation with 28% retained with a half-time of 63 days and the remaining 72% retained with a half-time of 1333 days. For the repeated exposures, the fraction retained at the shorter half-time depended on the number of previous exposures; it varied from 28% for the first exposure to 3% for the tenth exposure.

Dogs dying of radiation pneumonitis after a single inhalation exposure survived from 891 to 2741 days after exposure and died with average dose rates ranging from 1.0 to 9.2 Gy/day. The average dose rate (ADR--Gy/day) versus survival time (T--days) was found to be:

$$T = 219 ADR^{-0.474}$$
.

The variability around this fit was relatively small with a geometric standard deviation of 1.052. To check the consistency of the results with the assumptions of the model, the values of the differences between the logs of the predictions and the logs of the measured survival times for the dogs dying of radiation pneumonitis were computed. For each average dose rate, the values were found to be consistent with the assumption that the variability was the same for all values of the independent variable and had a normal distribution with mean 0 (Wilk-Shapiro test, p > 0.1).

Figure 33 compares the survival prediction of the model with the Kaplan-Meier corrected survival data. The differences between the data and predictions were not statistically significant (Kolmogorov-Smirnov test, p > 0.2).

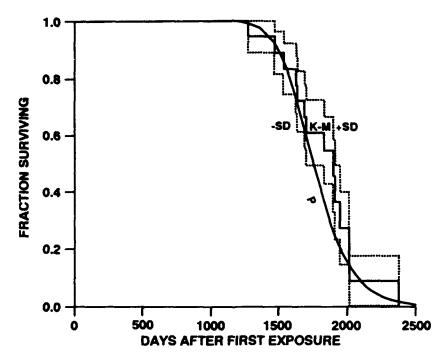


Figure 33. Survival predictions for dogs exposed repeatedly and dying of radiation pneumonitis (P) based on measured survival after a single exposure compared to Kaplan-Meier (K-M) estimates of survival of repeatedly exposed dogs dying with the effect. Standard deviation of survival (± SD) is also based on Kaplan-Meier.

The method presented is useful for predicting average response to a different time sequence of exposure. Average dose rate takes into account both total energy deposited and the time over which this energy is deposited. The average dose rate is appropriate for this prediction as would be expected for this early occurring effect that results from accumulated damage to the lung.

II. UNIVERSITY OF UTAH LIFE-SPAN STUDIES IN DOGS

A. SPECIFIC PROJECT OBJECTIVES

In 1950, the U.S. Atomic Energy Commission initiated a series of long-term radionuclide toxicity studies in Beagles at the University of Utah. At that time, the use of ²³⁹Pu for weapons and as a potential source of nuclear fuel was increasing, and plutonium production was a rapidly expanding industry. Because of the known toxicity of radium in humans, the potential toxicity of plutonium was recognized. The original studies at the University of Utah were designed to determine the relative toxicity of ²³⁹Pu and ²²⁶Ra. Because some human radium toxicity data were available, the animal studies were originally designed to reflect the human experience with ²²⁶Ra, providing a basis for extrapolating the long-term toxicity of other internally deposited radionuclides, particularly plutonium from animal studies to humans. As detailed below, the life-span effects of other nuclides were also included in this project.

The Beagle dog was selected for these studies because of concerns that erroneous predictions of human health effects might be made if shorter-lived mammals, such as rodents, were used. These concerns included the possibilities that the radiation-sensitive cancers would only be expressed in animals with longer life spans and that the target organs might be different in rodents than in humans. Because skeletal tissues were recognized as a primary target organ for radium and plutonium toxicity, further consideration was given to the Beagle because it has skeletal characteristics similar to those of humans that rodents do not have.

The major scientific questions that have been, and continue to be, addressed in the life-span radionuclide studies conducted at the University of Utah include:

- (1) What are the biological distribution and retention patterns of these nuclides?
- (2) What types of cancers are produced?
- (3) What are the dose-effect relationships?
- (4) Can differences in retention and distribution be used to predict biological response?
- (5) Does age at exposure influence biological response?
- (6) What biological factors are important in biological tissues for the expression of radiation effects?
- (7) What are the target cells for cancer induction?
- (8) What are the cellular and molecular mechanisms of cancer induction by internally deposited radionuclides in different organs?
- (9) Can reliable models be developed for predicting risk to humans?

B. EXPERIMENTAL APPROACHES

1. General Procedures

Two general types of studies have been conducted in dogs: life-span studies and sacrifice studies. In life-span studies, the toxicity of selected radionuclides is being studied, and the dogs are allowed to live out their life spans, unless sacrifice is indicated for humane reasons. In sacrifice or test studies, dogs were injected with radionuclides to study the mechanisms of deposition, retention, and specific radionuclide-tissue interactions.

Most of the dogs in the toxicity studies received a single intravenous injection of radionuclide, usually in citrate solution, at 16 to 18-mo old, when their skeletal maturity corresponded to that of an 18-yr old radium dial painter or plutonium worker. In addition, some dogs were injected with ²³⁹Pu or ²²⁶Ra at 3 mo of age (to represent children) or 5 yr of age (to represent middle-aged persons). The dogs were confined in metabolism cages 1 wk before injection and 3 wk after injection (for excreta collection). Exceptions were the dogs receiving one or a series of 10 or 50 injections of ²²⁴Ra starting at 21-mo old. These dogs were not confined after

injection because the period of injections extended to about 1 yr. In addition, confinement could have interfered with important biological functions.

Each dog in a toxicity study has been followed clinically from the time of injection to death. At death, each dog receives a complete gross necropsy examination, including radiographs of defleshed bones to identify possible tumor sites that are then examined histologically. Histopathological examinations are performed on both the radiation-induced and naturally occurring lesions. These results are then analyzed with regard to the average and local radiation doses received by the affected tissues. Various dose-response relationships are tested for their appropriateness and usefulness in predicting the human health risks for such an exposure.

Because of the maturity of a number of these studies, current emphasis at the University of Utah is directed to activities necessary to complete the studies and publish the results. The radiochemical, metabolic, and dosimetric data for both completed and continuing toxicity studies are being collected, collated, and archived. The distribution and local dosimetry of the radionuclides are being studied by using materials collected from both the toxicity and test animals. Average retention, dose, and dose-rate functions for liver and skeleton are being calculated and studied as functions of age at exposure, exposure level, and time after exposure. The occurrence, type, location, and latent period of radiation-induced cancers will be studied both as functions of local or average dose and of dose rate. Dose-response curves are being constructed to extrapolate the health effects seen in these dogs to human health risks.

A critical aspect of this research is the preparation of a complete biological record for each dog and assembly of the observations into a clinical and pathology data base that can be used with the detailed dosimetric data to establish meaningful dose-response relationships for the various radionuclides that have been studied in this program.

The final products of these efforts are publications in the peer-reviewed literature dealing with the observed dose-response relationships and health risk estimates and with a wide range of underlying metabolic, dosimetric, and mechanistic studies. The above efforts are divided between scientists at the University of Utah and ITRI.

2. Study-Specific Features

This research effort addresses the completion of 14 major life-span studies of dogs given single or multiple intravenous injections of different alpha or beta-emitting radionuclides. The studies included and the time intervals during which dogs were entered on study are described below:

a. ²³⁹Pu (Injected from 1952-1974)

Initially, the injected dosages ranged from 0.59 kBq/kg (0.016 μ Ci/kg) (termed "1-level") from which no harm was predicted, up by a sequence of levels to 106 kBq/kg (2.86 μ Ci/kg) (termed "5-level") from which severe injury occurred, including hematological damage, liver degeneration and neoplasia, and bone fractures and sarcomas. However, in 1964, when an osteosarcoma occurred at the supposedly safe, 1-level, several lower levels were introduced. The lowest level, 0.022 kBq/kg (0.0006 μ Ci/kg) (the 0.1-level), resulted in an average skeletal dose of about 0.02 Gy (? rads) at death. Among the 28 dogs treated at the 0.1 level, one developed a bone sarcoma and another an epidermoid carcinoma of the frontal sinus; both cancers may have been induced by the 239 Pu. The selective deposition of 239 Pu on bone surfaces makes this radionuclide the most effective of any studied at the Radiobiology Division for inducing bone sarcoma at low doses, per rad of average of skeletal dose. 239 Pu also deposits throughout the liver and induces liver cancers.

b. ²²⁶Ra (Injected from 1953-1970)

²²⁶Ra enabled the relative toxicity of ²³⁹Pu vs. ²²⁶Ra to be established in Beagle dogs, so that the known toxicity in the U.S. radium dial painters could be used to predict the risk to humans from ²³⁹Pu-induced bone sarcoma. ²²⁶Ra is chemically similar to calcium and deposits throughout the bone volume, especially in regions of active growth. The average skeletal dose for each dog was based on the measured retention of ²²⁶Ra and progeny. In Beagle dogs, ²²⁶Ra at higher dosages produced bone fractures. Bone sarcomas were induced over a wide range of doses. These effects were also seen in the radium dial painters.

c. ²²⁸Ra (Injected from 1954-1962)

 228 Ra was included in these studies because it was received by many of the radium dial painters. In terms of average skeletal dose, 228 Ra was about twice as effective as 226 Ra for inducing bone sarcoma. The difference may be largely due to the fact that some 228 Ra progeny are likely to redeposit on bone surfaces. An important spinoff from the study of 228 Ra in dogs was the discovery that the physical half-life of 228 Ra is 5.77 ± 0.02 yr, not 6.7 yr, as was earlier reported by Lise Meitner. Correcting for the proper half-period increased the calculated dose from 228 Ra in the dial painters by about a factor of two over earlier estimates.

d. 228Th (Injected from 1954-1963)

²²⁸Ra decays to ²²⁸Th, and there was early concern that the intestinal absorption of the ²²⁸Th in dial painters might be high. Later, it was found that absorption of ²²⁸Th from the human GI tract was low, about 0.02% compared to 20% for radium. However, the ²²⁸Th toxicity data from Beagle dogs proved very useful for evaluating the risk from radionuclides in the proposed Thorium Breeder Reactor.

e. ⁹⁰Sr (Injected from 1955-1966)

⁹⁰Sr toxicity was evaluated because of worldwide concern about radioactive fallout from atmospheric nuclear weapons testing. Few effects were observed at average skeletal doses below 50 Gy (5000 rads), but bone sarcomas occurred frequently at higher doses. Most interesting was the relative ineffectiveness of ⁹⁰Sr in producing leukemia in adult Beagle dogs. This observation agrees with the low frequency of myeloproliferative syndrome (MPS) observed in Beagle dogs at the University of California, Davis, that were injected once with ⁹⁰Sr as adults. However, a high incidence of MPS was observed in the Davis Beagle dogs exposed to a high dosage of ⁹⁰Sr administered by feeding from fetal age to adulthood.

f. ²⁴¹Am (Injected from 1966-1975)

²⁴¹Am was the first transplutonium radionuclide to be evaluated for toxicity in Beagle dogs at the University of Utah. Because of strong interest in ²⁴¹Am, especially by Charles Dunham, Head of the AEC's Division of Biology and Medicine, the original test study was expanded into a full-scale toxicity study, with about 12 dogs per dosage level. Control dogs concurrently assigned to the low-level studies of ²³⁹Pu and ²²⁶Ra were considered suitable as controls for the ²⁴¹Am studies. In 1975, the number of Beagle dogs at the 1- and 1.7-levels was increased to 26 and 24 dogs, respectively, to study the induction of liver cancer by alpha-emitters more extensively. The liver retains more ²⁴¹Am than any other monomeric radionuclide studied in Beagle dogs at the University of Utah.

g. ²⁴⁹Cf (Injected from 1971-1974)

²⁴⁹Cf, which emits alpha-particles in 100% of its decays, was the next transplutonium radionuclide to be investigated. Fortuitously, tracer amounts of beta-emitting ²⁴⁹Bk were present with the alpha-emitting ²⁴⁹Cf, making it possible to establish that the microscopic depositions of Bk and Cf were similar.

h. ²⁵²Cf (Injected from 1971-1973)

²⁵²Cf releases half of its decay energy in alpha-particles and half in extremely densely ionizing fission fragments. The ²⁵²Cf and ²⁴⁹Cf studies were run simultaneously in Beagle dogs and in mice. In the mouse studies, the fission fragments of these radionuclides were much less effective than alpha particles per Gy of average skeletal dose for inducing bone sarcoma. It is already obvious that the fission fragment dose is much less effective than the alpha-particle dose for inducing bone sarcoma in Beagle dogs. This information is significant to the astronaut who may receive appreciable radiation dose to bone from extremely densely ionizing cosmic rays.

i. 253Es (Injected from 1973-1974)

Einsteinium (element 99) was the highest element on the periodic chart to be investigated for radionuclide toxicity in Beagle dogs. Einsteinium appeared to resemble Cf most closely in its excretion, retention and tissue distribution. No bone sarcomas occurred among the five toxicity-study Beagle dogs injected with ²⁵³Es, excluding the one dog that subsequently received a large dose of ²⁴⁹Cf. This suggests that ²⁵³Es, which delivers its dose with a 20-day half-life, is not appreciably more toxic than the other transplutonium elements studied.

j. ²²⁴Ra (Injected from 1977-1979)

Toxicity studies with ²²⁴Ra (T½ = 3.62 days) were undertaken to understand the modifying effect of protraction on the dose-response of ²²⁴Ra observed in German ankylosing spondylitis patients. Four graded-dose levels were administered over three injection spans. Groups 1-2 received their ²²⁴Ra in 50 weekly fractions to correspond to the average injection span in German children; Groups 41-52 received a single injection, and Groups 81-92 received 10 weekly injections to correspond to the more recent treatment used in Germany for ankylosing spondylitis. Most of the ²²⁴Ra given the Beagle dogs was prepared by Amersham-Buchler in Germany, which also prepared the ²²⁴Ra for the German ankylosing spondylitis patients. The studies of ²²⁴Ra in Beagle dogs are among the most important with respect to understanding the mechanisms of alpha-particle-induced cancer. The short half-life of ²²⁴Ra causes some of it to decay on bone surfaces and some to decay within the bone volume, giving a local distribution of dose in bone somewhat similar to that from ²³⁹Pu. In the Beagle dogs receiving 2.8 Gy (280 rad) from ²²⁴Ra injections protracted over 50 wk, the bone sarcoma appearance times and incidences were similar to those observed from the same skeletal dose from ²³⁹Pu. It remains to be seen, however, what the effectiveness of ²²⁴Ra will be at lower doses and shorter protraction times. The ²²⁴Ra study, being the most recent, has the largest number of living dogs.

k. Toxicity Studies in Immature and Aged Beagle Dogs

Because of concern about the effects of radionuclides on members of the general public with widely different ages, the studies in Beagle dogs were expanded to include administration at 3 mo of age (to represent children) and 5 yr of age (to represent middle-aged adults). ²³⁹Pu was selected as the bone-surface-seeking radionuclide of greatest concern, while ²²⁶Ra was chosen to represent the bone-volume seeking radionuclides. Much attention has been given to the effect of changing distribution of radioactivity with age in these dogs and to the associated biological effects.

C. CURRENT STATUS OF THE UTAH STUDIES

General Overview

The current status of the 14 life-span radionuclide toxicity studies initiated at the University of Utah is given in Table 31. On September 15, 1987, all living dogs in these studies, 157, were moved to the ITRI colony for continuation of their care and biomedical evaluation for the remainder of their lives. Between September 15, 1987 and September 30, 1991, 118 of these transferred dogs died. During the past two fiscal years, an additional 33 dogs died, resulting in a population of 6 living dogs on September 30, 1993. These deaths reflect the maturity of these studies and the dogs in them at the time of transfer. These living dogs are part of the populations in two studies, the ²²⁴Ra study in young adult dogs and the study of ²²⁶Ra in immature dogs.

The research currently devoted to the Utah efforts fall into three main areas: (1) continuation of the care and study of dogs still alive in these six studies, (2) detailed dosimetric studies, at the organ and local levels, of these injected radionuclides and the factors that influence these dose patterns, and (3) completion of final reviews of biological materials and data, compilations and analysis of data, and preparation of final study reports for publication in the open, scientific literature.

Table 31

Current Status of Life-Span Radionuclide Toxicology Studies in Beagle Dogs Initiated at the University of Utah and Being Continued at the Inhalation Toxicology Research Institute (9/30/93)

A = 2 - 2 A	V5 - 4111 1	To be able	Dogs	Dogs	N	umber Aliv	ve
Age at Injection	Radionuclide Injected	Injection Year	Entered in Study	Transferred 9/15/87	9/30/91	9/30/92	9/30/93
16-18 mo	²³⁹ Pu	1952-1974	286	11	0	0	0
(young adult)	²²⁶ Ra	1953-1970	164	0	0	0	0
	²²⁸ Ra	1954-1962	89	0	0	0	0
	²²⁸ Th	1954-1963	94	0	0	0	0
	⁹⁰ Sr	1955-1966	96	0	0	0	0
	²⁴¹ Am	1966-1975	117	8	0	0	0
	²⁴⁹ Cf	1971-1974	36	5	0	0	0
	²⁵² Cf	1971-1973	36	3	0	0	0
	²⁵³ Es	1973-1974	6	0	0	0	0
	²²⁴ Ra	1977-1979	128	78	22	9	5
3 mo.	²³⁹ Pu	1972-1978	75	24	9	3	0
(immature)	²²⁶ Ra	1975-1978	54	24	8	5	1
5 yr.	²³⁹ Pu	1975-1978	34	3	0	0	0
(aged)	²²⁶ Ra	1975-1980	34	1	0	0	0
		Total	1249	157	39	17	6

D. COMPLETION ACTIVITIES FOR THE UTAH STUDIES

Because of the joint ITRI/Utah involvement in the completion of Utah studies, lead roles have been assigned for the various studies as shown in Table 32. In the studies in which most or all of the dogs have already died, Utah has the lead role, whereas ITRI will assume the lead role for those studies that will be completed later. Present wrapup emphasis is directed toward the studies in which young adult dogs were injected with ²²⁶Ra or ²³⁹Pu. The strategy for the analysis of each study includes a thorough review of all records including pathology, clinical, radiographic, dosimetric, radiochemical, and metabolic. For each study, a series of milestones has been established and specific oversight assignments given to specific investigators. The primary goal is to produce a document that summarizes all data in the study. In addition, numerous smaller, more specific papers are being published as the work progresses.

An example of the working "Milestone Schedule" for the Radium Young-Adult study is shown in Table 33 and its detailed footnotes. A similar schedule has been developed for the ²³⁹Pu study as shown in Table 34. The appended footnotes explain some of the analyses being done for this wrap-up effort. The same types of approaches will be used to the maximum extent possible within the framework of future resources available for this work. Table 35 lists a number of projected manuscript subjects that should flow from the ITRI/Utah collaborations.

Table 32

Currently Planned Division of Efforts to Complete and Publish the Lifetime Toxicity Studies in Beagle Dogs from the University of Utah

Radionuclide	Age Category	Lead Institution
²²⁶ Ra	Young Adult	U. of Utah
⁹⁰ Sr	Young Adult	U. of Utah
²³⁹ Pu	Young Adult	U. of Utah
²²⁸ Ra	Young Adult	U. of Utah
²²⁸ Th	Young Adult	U. of Utah
²⁴¹ Am	Young Adult	U. of Utah/ITR
²⁴⁹ Cf	Young Adult	U. of Utah/ITR
²⁵² Cf	Young Adult	U. of Utah/ITR
²⁵³ Es	Young Adult	U. of Utah/ITR
²²⁶ Ra	Aged	U. of Utah/ITR
²³⁹ Pu	Aged	U. of Utah/ITR
²²⁶ Ra	Immature	ITRI
²³⁹ Pu	Immature	ITRI
²²⁴ Ra	Young Adult	ITRI

Table 33

Milestone Schedule for Completion of Summary Report on ²²⁶Ra Young Adult Dog Longevity Study (September 30, 1993)

Торіс	Status
Historical review	Complete
Experimental designs	Complete
Histopathology, SNOMED *	Complete
Expanded controls b, SNOMED	Complete
Metabolism, retention	
General ^c	Complete
Model developed from new data from individual bones and plasma ^d	Pending
Gross dosimetry ^e	Complete
Survival analyses f	
Low doses	Complete
High doses	Pending
Dose-response (bone tumor incidence) g	Complete
Hematopoietic, lymphoid response	
Summary of old data h	Complete
Final tumor data i	Complete
Other soft tissues j	Complete
Skeletal tissues	
Skeletal tumor, verification i	Complete
Skeletal tumor, location i	Complete
Radiography k	Pending
Histology, microradiography 1	Pending
Fractures ^m	Complete
Tooth loss ⁿ	Complete
Local dosimetry o	Pending
Jaw syndrome ⁿ	Complete
Discussion and summary ^p	Pending
Review and submission q	Pending

^a SNOMED: Systemized Nomenclature of Medicine, College of American Pathologists. This is the standardized database for all histopathology. This database is on a Digital microVAX system and is transferred to the National Radiobiology Archive.

Expanded controls: In addition to the control dogs assigned to this study (R0.0), controls from other studies have been included in many of the analyses to increase the validity of comparing radiation and nonradiation effects. These controls are included in all models and statistical comparisons.

^c General metabolism: The metabolism of radium (and some other nuclides) is determined from the "test" animals and not the "chronic toxicity" animals. There were serial sacrifice studies done for early distribution, localization, and dosimetric studies.

- ^d Plasma: Results from a shorter term metabolism study are pending. These data will allow more precise determinations of blood nuclide levels and improvements in present metabolic models.
- ⁶ Gross dosimetry: Average skeletal dose calculated for each dog.
- Survival analyses: Presently, Cox proportional hazard models are being applied for survival analyses to the different dose groups. The statistical models are complicated by a number of factors including the need to censor animals with epilepsy, and use of control and treated animals over 3 decades with improved life expectancy due to improved veterinary practices. Initial analyses with low dose groups have been published. Analyses are continuing in higher dose groups.
- Tumor incidence: Emphasis is on skeletal tumors. Only those tumors that were verified histologically are included in these analyses. In some cases, the histological diagnosis may be disputed. The location of the tumors is documented from clinical, necropsy and radiographic records. The location of the tumors and the apparent type of tissue or origin (e.g., cancellous or cortical bone) become very important parts of the skeletal dosimetry studies.
- h Old hematology data: Due to the bone-seeking nature of these isotopes, it was originally believed that hemic tumors would be an important consequence of radionuclide exposure. This was not observed in the human or early animal studies, and a programmatic decision was made by the A.E.C. to end the detailed hematopoietic studies in the early 1970s. We have, and continue, to review the early records and reports to reconstruct the data, although very limited. Little hematological information is available for the studies after the mid-1970s.
- i Final hematological tumor data: The final incidence of hemic and lymphoid tumors is verified.
- Other soft tissues: Although not historically emphasized in these studies, the histopathology and clinical records have been reviewed and the data tabulated. Recently over 400 soft tissue tumors have been evaluated and the data statistically assessed and submitted for publication.
- Radiography: Radiographic summaries are prepared on each dog and entered into the clinical record on the database. Attempts are also being made to quantify some dose-response relationships in the radiographs. This effort is complicated by the fact that there are substantial changes in the skeletal tissues that may be attributable to aging seen in many, but not all dogs. Presently a descriptive summary is being prepared.
- Histology and microradiography: A summary of the histology (independent of skeletal tumors) and microradiographic changes is being prepared.
- m Fractures: Increased fracture occurrence is a known consequence of Ra exposure. The incidence and location of fractures has been updated and summarized.
- ⁿ Tooth loss and periodontal tissue changes are also known to occur with Ra exposure. The loss of teeth and the rate of tooth loss have been determined and are correlated with increasing dosages. The changes in oral tissues (jaw syndrome) are documented and summarized.
- Local, cellular dosimetry: This productive effort involves collaboration with Dr. Erich Polig, Karlsruhe, Germany. Dr. Polig spent about 4.5 yr in our laboratory and developed and applied an automated scanning microphotometer system for the radium dosimetry studies. From these data and companion biology studies, extensive cellular dose models have been constructed and published.
- Summary: The summary will be considered complete when the items identified above are finished, with the exception of the local dosimetry program which will continue.
- ^q Publications are submitted to peer-reviewed journals. In addition to the "Summary Paper(s)", a number of articles dealing with specific scientific issues will continue to be published in appropriate journals.

Table 34

Milestone Schedule for Completion of
Summary Report on ²³⁹Pu Young Adult Dog Longevity Study
(September 30, 1993)

Торіс	Status
Historical review	Pending
Experimental designs	Complete
Histopathology, SNOMED	
Clinical summaries	Complete
Radiographic summaries	Complete
Metabolism	
General	Complete
Short term studies	Pending
Gross dosimetry	Complete
Soft tissues - dosimetry	Complete
Liver, kidney, spleen	Complete
Other soft tissues	
Dose-response	
Tumor incidence	
Skeletal	Complete
Soft tissue	Pending
Survival analyses	
Low doses	Complete
Higher doses	Pending
Hematology	Pending
Skeletal tissues	
Skeletal tumor, verification	Complete
Skeletal tumor, location	Complete
Radiography	Pending
Histology	Pending
Microradiography	Pending
Autoradiography	Pending
Fractures	Complete
Jaw	Complete
Local dosimetry	Pending
Soft tissues	
Liver	Complete
Gonad	Complete
Other	Complete

Projected Future Manuscript Subjects from the ITRI/Utah Collaborations

Radium

- Ra bone hit local dosimetry
- Ra dose-response all doses with survival models
- · Ra mammary tumors (manuscript submitted)
- Ra soft tissue tumors (manuscript submitted)
- Ra eye tumors (manuscript in press)
- Ra daughters and leukemia (published, 1993)
- Ra summary (pending dose-response and local dosimetry analyses)

Plutonium

- Pu bone tumors, dose-response (published, 1993)
- Pu toxicity ratios for bone tumors (manuscript submitted)
- Pu bone metastases (manuscript submitted)
- Pu bone tumor occurrence specific sites (manuscript submitted)
- Pu dose-response all doses with survival models
- Pu local dosimetry and metabolism
- Pu dosimetry all tissues
- Pu summary

Americium

- Am dose-response
- Am specific tumor sites
- Am/Pu and other nuclide bone cancer induction (manuscript submitted)
- Am and thyroid lesions (published, 1993)
- · Am local dosimetry and metabolism
- Am summary

Cross-cutting manuscripts

- Comparison of effectiveness for bone cancer induction, ²³⁹Pu, ²²⁶Ra, ²²⁴Ra, ²²⁸Th, ²²⁸Ra, ²⁴⁹Cf, ⁹⁰Sr, ²⁵³Es (manuscript submitted)
- Tumor growth and metastases for all nuclides (manuscript in press)
- Summary of liver tumors and other soft tissues

With ITRI

 Ra/Pu retention and distributions as functions of growth and skeletal maturity, juvenile, young adult and aged animals

E. RECENT RESEARCH ACCOMPLISHMENTS

1. Distribution of Skeletal Malignancies in Beagles Injected with ²³⁹Pu Citrate

R. D. Lloyd, G. N. Taylor, W. Angus, S. C. Miller, F. W. Bruenger, and W. S. S. Jee

The distribution of 84 skeletal malignancies in 76 Beagle dogs injected with ²³⁹Pu as young adults (Lloyd, R. D. et al. Health Phys. 64: 45, 1993) roughly seems to follow the distribution of skeletal mass and skeletal ²³⁹Pu (Table 36). These findings are similar to those we reported earlier for a group of dogs given ²²⁶Ra (Lloyd et al., 1993). Although there were differences in tumor distribution between the animals given ²²⁶Ra and those given ²³⁹Pu (Table 37), most of them were not statistically significant. However, the radium dogs seemed to show a greater sensitivity to bone tumor origin in the tibia, while there may have been a tendency among the plutonium dogs toward increased relative sensitivity in the scapula, lumbar vertebrae, sacrum, and ribs. In contrast, the most common site for the formation of naturally occurring bone malignancy in the dog is the distal radius (Brody, R. S. et al. J. Am. Vet. Med. Assoc. 143: 471, 1963). Perhaps there were too few tumors and too few dogs in our study to establish statistical significance.

A correlation between tumor location and at least two anatomical-physiological factors in the skeleton indicated that these two factors (site-specific bone turnover rate and percent of red marrow at the site, which is correlated with vascularity) may influence the appearance of malignancies both individually and in combination. Table 38 indicates that the sensitivity for a given skeletal location (e.g., proximal humerus or distal femur) of bone malignancies among Beagle dogs given ²³⁹Pu might be correlated with the percent of red marrow at the site of tumor origin, which also indicates the degree of vascularization. The coefficient of determination, or square of the correlation coefficient, "r," (Woolf, C. M. In *Principles of Biometry*, D. Van Nostrand Co. Inc., Princeton, NJ, 1968), obtained for linear regression in a comparison of percent red marrow with percent tumors was, r² = 0.56. A similar conclusion was also made independently for the occurrence of plutonium-induced tumors in preliminary reports from this laboratory (Miller, S. C. et al. In Life-span Radiation Effects Studies in Animals: What Can They Tell Us? [R. C. Thompson and J. A. Mahaffey, eds.], Office of Scientific and Technical Information, Springfield, VA, p. 286, 1986; Smith, J. M. et al. Radiat. Res. 99: 324, 1984) which were prepared a few years before the final histopathology reports were completed.

Bone turnover rates at the specific bone locations (samples were derived mainly from cancellous or trabecular bone) appear to have a slightly less pronounced correlation with bone tumor appearance, with $r^2 = 0.54$. The multiplicative combination of these two parameters (column 6 in Table 38) appears to be a somewhat better predictor of sensitivity to tumor formation than either one alone (with $r^2 = 0.69$ for the parameters merged) and was done to indicate the combined effects of both parameters. Miller et al. (1986) investigated parameters other than marrow type and bone turnover rate, such as trabecular bone mass, bone cell population, bone cell activity, density of osteogenic precursor cells, plutonium uptake on bone surfaces, and bone-marrow microvasculature. All of these except trabecular bone mass, marrow type and bone turnover rate were important contributors to their effects on bone tumor occurrence. A strong linear relationship was not (ween trabecular mass and tumor incidence in only the few sites reported by Miller et al., but these a cited a more comprehensive study (Gong, J. K. et al. Anat. Rec. 149: 325, 1964) of the same factors that did not seem to support this relationship. The work of Gong et al. (1964) indicated that even though there was a positive relationship between the number of bone tumors and trabecular mass, the relationship may not be linear.

Except for the femur (p = 0.038), there appeared to be no difference (p > 0.10) between the relative distribution of skeletal malignancies of low-level (30 Bq to 2 kBq kg⁻¹ injected) and high-level (3 to 122 kBq kg⁻¹) dogs. Distribution of bone tumors between the axial and appendicular skeleton was 50% vs. 50% for 239 Pu (42 and 42), but it was 39% axial vs. 61% appendicular (22 and 35, respectively) for dogs given 226 Ra. However, this difference was not significant (p > 0.2).

Table 36

Comparison of the Malignant Bone Tumor Distribution in the Skeletons of Beagle Dogs Given ²³⁹Pu with the Distribution of Skeletal Mass or ²³⁹Pu Activity (± S.D.)

Bone	Number of Tumors	Percent Tumors ^a	Percent Skeletal Mass ^b	% Tum ^c % Mass	"p"d	Percent Skeletal Activity ^e	% Tum ^f % Act	"p"d
Radii	1	1.19(1.18)	2.4(0.19)	0.50(0.50)		1.08(0.35)	1.10(1.15)	
Ulnae	2	2.38(1.66)	2.5(0.13)	0.95(0.66)		1.01(0.32)	2.36(1.80)	
Humeri	11	13.1(3.68)	6.6(0.33)	1.98(0.56)	>0.05	9.87(1.83)	1.33(0.45)	
Scapulae	5	5.95(2.58)	3.9(0.47)	1.53(0.69)		5.20(0.68)	1.14(0.52)	
Paws	1	1.19(1.18)	9.6(0.65)	0.12(0.12)	<0.05	3.76(1.13)	0.32(0.33)	>0.05
Tib+Fib ⁸	2	2.38(1.66)	5.8(0.36)	0.41(0.29)	>0.05	3.52(0.75)	0.68(0.50)	
Femurs	10	11.9(3.53)	6.8(0.48)	1.75(0.53)	>0.0 5	7.88(1.40)	1.51(0.52)	
Pelvis	10	11.9(3.53)	5.1(0.42)	2.33(0.72)	>0.05	7.21(0.85)	1.65(0.53)	>0.05
(Appendicular Skeleton)	42	50.0(5.46)	42.7(3.1)	1.17(0.15)		39.5(8.73)	1 27(0.31)	
Skull	6	7.14(2.81)	15.6(1.6)	0.46(0.19)	>0.05	8.44(2.09)	0.85(0.40)	
Mandibles	3	3.57(2.02)	6.1(0.71)	0.59(0.34)	>0.05	2.76(0.95)	(د.1.29(0.8	
Ribs	5	5.95(2.58)	9.6(0.79)	0.62(0.27)	>0.05	11.6(1.56)	0.51(0.23)	>0.05
Sternum .	0	0.00(1.19)	2.7(0.72)	0.00	<0.05	2.93(0.96)	0.00	>0.05
Cerv V	5	5.95(2.58)	6.5(0.72)	0.92(0.41)		5.45(1.07)	1.09(0.52)	
Thor V	9	10.7(3.37)	7.1(0.79)	1.51(0.50)		14.7(2.25)	0.73(0.26)	
L V+Sac	14	16.7(4.07)	8.2(0.75)	2.04(0.53)	>0.05	13.9(1.56)	1.20(0.32)	
Tail	0	0.00(1.19)	1.3(0.36)	0.00	>0.05	0.68(0.23)	0.00	
(Axial Skeleton)	42	50.0(5.46)	57.1(8.2)	0.88(0.16)		60.5(14.0)	0.83(0.21)	
Total	84		99.8 ^h			100.0 ^h		

Percent tumors in each bone of the total of 84. Uncertainties shown are the standard deviations (SDs) for the binomial distribution (Sokal, R. R. and Rohlf, F. J. In Biometry, W. H. Freeman and Co., San Francisco, CA, 1969).
 Data were taken from Lloyd et al. (Health Phys. 60: 435, 1991); the uncertainties are the SDs of the measurements

^c Column 3 divided by column 4; the SDs shown were derived from the SDs of the values in columns 3 and 4 and are undefined in the case of zero tumors.

for the 64 dogs included in the earlier study.

The "p" values in columns 6 and 9 were taken to be: "p" < 0.05 = the ratio of % tumors and either % skeletal mass or % skeletal ²³⁹Pu activity were different from 1.0 by more than ± 1.96 SDs; "p" > 0.05 = ratios different from 1.0 by < ± 1.96 SD but by > ± SD; and (blanks) "p" > 0.10 = the ratios were different from 1.0 by less than ± 1 SD.

Data taken from page 143 of Lloyd et al. (In Radiobiology of Plutonium, [B. J. Stover and W. S. S. Jee, eds.], J. W. Press, Salt Lake City, UT, p. 141, 1972); the uncertainties are the SDs of the measurements for the 20 dogs included in the earlier study.

Column 3 divided by column 7; the SDs shown were derived from the SDs of the values in columns 3 and 7 and are undefined in the case of zero tumors.

F Tibiae plus fibulae and including patellae.

Os penis not included (for males only).

Table 37

Malignant Bone Tumor Distribution in the Skeleton of Beagle Dogs

Given Either ²³⁹Pu or ²²⁶Ra-Citrate by Intravenous Injection. Comparisons were Done by

Odds- Ratio Chi-Square Analysis with Yates' Correction for Continuity (Sokal and Rohlf, 1969).

Bone	57 ²²⁶ Ra Dog Tumors	84 ²³⁹ Pu Dog Tumors	Odds Ratio (Relative Risk)	95% Confidence Interval	"p"
Radii	2	1	3.018	0.27-23.82	0.566
Ulnae	2	2	1.491	0.18-8.12	1.000
Humeri	5	11	0.638	0.21-1.83	0.600
Scapulae	0	5	(a)		0.071
Paws	3	1	4.611	0.52-32.42	0.303
Tib+Fib+Pat.	10	2	8.723	2.05-32.96	0.004
Femurs	9	10	1.387	0.55-3.50	0.681
Pelvis	4	10	0.558	0.16-1.76	0.506
(Appendicular Skeleton)	35	42	1.591	0.85-3.00	0.245
Skull	7	6	1.820	0.60-5.56	0.460
Mandibles	4	3	2.038	0.45-7.55	0.440
Ribs+Stern	0	5	(a)		0.071
Cervical Vert	4	5	1.192	0.31-4.50	1.000
Thoracic V	4	9	0.629	0.18-2.02	0.654
L V+Sac+Tail	3	14	0.278	0.07-0.93	0.076
(Axial Skeleton)	22	42	0.629	0.33-1.18	0.245
Total Skeleton	57	84			
Dogs with Tumors	43	76			
Dogs at Risk	120	234			

^a No odds ratio or 95% confidence interval can be calculated for a comparison in which one member of the pair has zero tumors. The probability shown is that for Fisher's Exact 2 tailed "p" value (Sokal and Rohlf 1969, pp 589).

Table 38

Comparison of Tumor Distribution in Beagle Dogs Given ²³⁹Pu (this study) with the Occurrence of Red Marrow Sites in Bones of the Skeleton and with Bone Turnover Rates for Cancellous or for Trabecular Bone (both taken from p. 288 of Miller et al., 1986).

[Not included in this table are five skeletal malignancies for which Miller et al. (1986) did not provide data on percent red marrow or turnover rate at the specific skeletal location.]

Bone, Location	Number of Tumors	Percent Tumors	Estimated Percent Red Marrow	Bone Location ^a Turnover Rate, Percent y ⁻¹	(Col 4 x Col 5 x 0.001) ^b
Prox Radius	1	1.3	0	127	0.0
Dist Radius	0	0.0	0	85	0.0
Prox Ulna	0	0.0	0	56	0.0
Dist Ulna	0	0.0	0	45	0.0
Prox Humerus	9	11.4	75	143	10.7
Dist Humerus	1	1.3	25	57	1.4
Scapula	5	6.3	100	97	9.7
Paws	1	1.3	0	67	0.0
Prox Tibia	2	2.5	25	112	2.8
Dist Tibia	0	0.0	25	66	1.6
Prox Femur	8	10.1	75	138	10.4
Dist Femur	2	2.5	75	122	9.2
Ischium (pelvis)	4	5.1	75	143	10.7
Ilium (pelvis)	4	5.1	75	164	12.3
Skull	6	7.6	50	65	3.2
Mandible	3	3.8	25	109	2.7
Ribs	5	6.3	75	121	9.1
Sternum	0	0.0	75	97	7.3
Cerv Vertebrae	5	6.3	100	122	12.2
Thor Vertebrae	9	11.4	100	167	16.7
Lumb Vertebrae	11	13.9	100	205	20.5
Sacrum+Tail	3	3.8	50	132	6.6
Total This Comparison	79	100.0	· · · · · · · · · · · · · · · · · · ·		

^a Applies to a specific bone location (distal radius, proximal radius, etc.) and mainly includes data derived for cancellous or for trabecular bone at the particular site.

b Columns 4 and 5 were multiplied to yield an arbitrary parameter that would represent the effects of both estimates, percent red marrow and bone turnover rate; multiplication by 0.001 was simply to make the magnitude of the parameter more manageable.

About one-third of all skeletal malignancies among the dogs in this study given ²³⁹Pu occurred in the vertebral column, whereas less than one-fifth of the ²²⁶Ra-induced tumors originated in the vertebrae (Table 37). Even though the significance of this difference could not be established from our data (p > 0.05), it should not have been surprising that the first (and so far only) reported bone tumor observed among humans contaminated above background levels with ²³⁹Pu (Voelz, G. L. and Lawrence, J. N. P. Health Phys. 61: 181, 1991) was in vertebral bone (sacrum, Los Alamos National Laboratory Subject 20; United States Transuranium Registry Case 262). Jee W. S. S. et al. (Strahlentherapie 80 [Suppl]:75, 1986) reported that no bone sarcomas had by then (1984) been reported in the cervical, thoracic, or lumbar vertebrae of persons contaminated with ²²⁶Ra in spite of the fact that these structures contain a high proportion of trabecular bone. This observation has been extended in a more recent report (Schlenker, R. A. et al. In Risks from Radium and Thorotrast, BIR Report 21, [D. M. Taylor et al., eds.], British Institute of Radiology, London, p. 55, 1989) to show that only two persons in the radium series had a skeletal malignancy in the sacrum and just one person had a malignancy involving several vertebrae.

2. Occurrence of Metastases in Beagle Dogs with Skeletal Malignancies Induced by Internal Irradiation

R. D. Lloyd, W. Angus, G. N. Taylor, G. B. Thurman*, and S. C. Miller

Metastases from malignant bone tumors often are responsible for the fatal effects of these cancers. Various characteristics of primary skeletal malignancies in a group of Beagle dogs injected with bone-seeking radionuclides were reported in detail by Thurman, G. B. (University of Utah Report COO 119-243, 1971) and summarized by Thurman, G. B. et al. (Growth 35: 119, 1971). Recent completion of the histopathology reports for nearly all life-span dogs studied during the period 1952 to 1987 at the Radiobiology Laboratory, University of Utah, made it possible for us to compare the occurrence of grossly apparent metastases from skeletal malignancies induced by skeletal irradiation from internal emitters (226 Ra, 239 Pu, 228 Ra, 228 Th, 90 Sr) with a number of other factors unique to each animal.

There were 212 malignant bone tumors in 186 of these dogs for which we subsequently received information on their metastatic occurrence. These data have enabled us to correlate the parameters reported previously with the appearance of bone tumor metastases. Data available for the animals included growth-rate of the primary tumor, volume of the primary tumor at death, sex of the animal, growth period of the primary tumor ("age"), degree of calcification of the primary tumor, skeletal location of the primary tumor (identity of the bone, side of the body, location along the length of a long bone), cumulative radiation dose to the skeleton at the estimated beginning of primary tumor growth, dose equivalent to the skeleton at the same point in time, and year of death.

Growth period (length of time between tumor initiation and the death of the dog) and tumor volume at death were arranged separately in order of increasing values, and each list was marked off into quartiles (fourths). Growth periods ranged from 193 to 1990 days; the minimum tumor volume at death was 0.3 cm³, and the maximum was 1167 cm³. Division into quartiles also was used for analysis of cumulative radiation dose to the skeleton vs. frequency of metastasis and for a corresponding analysis of dose equivalent (dose multiplied by a quality factor that allows for the differing relative sensitivity of the Beagle dog to the induction of bone sarcoma by various radionuclides at the same average skeletal dose). The quality factors in Beagle dogs, expressed as the effectiveness relative to ²²⁶Ra, for the various radionuclides were taken from published reports: Lloyd, R. D. et al. (Strahlentherapie 80: 65, 1986) for ²²⁶Ra = 1.0, ²²⁸Ra = 2.0, and ²²⁸Th = 8.5; NCRP Report No. 110 (1991) for ⁹⁰Sr = 0.1; and Lloyd, R. D. et al. (Health Phys. 64: 45, 1993) for ²³⁹Pu = 16.

For any data set marked into quartiles and for which a significant difference in proportion of metastases was found by the "t" test between subgroups, the non-parametric Kendall rank correlation test (Siegel, S. Non-parametric Statistics, McGraw-Hill, New York, 1956) was used to determine the significance of any trend that could be identified within the entire data set. Data sets divided into quartiles were analyzed (Sokal, R. R. and F. J. Rohlf. In Biometry, W. H. Freeman, San Francisco, p. 70, 1969) by Odds-Ratio Chi Square methods with Yates' correction for continuity, supplemented by Fishers Exact Test for comparisons having zeros in any category. Proportions of tumors that metastasized from the various bones of the skeleton were compared by means of their relative uncertainties.

Each value of number of tumors yielding metastases and total number of tumors in the same bone were assigned an uncertainty based upon the standard deviation for the binomial distribution (Sokal and Rohlf, 1969). For a pair of data with values within 1 S. D., the "p" value was taken to be > 0.10; for those outside 1.0 but within 1.96 S. D., the "p" value was taken to be > 0.05; and for those outside of 1.96 S. D., the "p" value was taken to be < 0.05, all compared with respect to the corresponding data for the entire skeleton. The growth rates (mean doubling times) for various categories of primary skeletal malignancies (with or without metastases) were compared by means of the Group Comparison ("t") Test.

Some of the animals had more than one skeletal malignancy. If these were of different cell types, the identity of the tumor that was the origin of the metastases found in other tissues was not in doubt. Because most of the primary tumors were classified as osteosarcomas, including multiples in the same animal, we could not be sure which primary tumor was the origin of the metastases in dogs with more than one primary bone

^{*}Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee

tumor. Therefore, we analyzed the data such that we counted the growth rate of (1) only the most rapidly growing tumor in each dog with multiple tumors, (2) only the most slowly growing tumor in animals with multiple tumors, (3) only the most rapidly growing tumor in the dogs with metastases and only the most slowly growing tumor in the dogs without metastases and only the most slowly growing tumor in the dogs with metastases. In addition, only those dogs with just a single primary tumor were included in another analysis to ensure that the correct malignancy could be identified as the source of a given metastasis. If there was a substantial difference in the probability of metastatic development between tumors with different growth rates as reported by LaRue, S. M. et al. (In Book of Abstracts for the 40th Annual Meeting of the Radiation Research Society, p. 112, 1992), our study would show that either slowly growing or rapidly growing tumors could be more prone to metastasis.

For most of the comparisons, no significant differences could be established between dogs with and without metastases. However, larger tumor volumes at death appeared to be associated with the probability of metastasis. Only for the comparison of the quartile of the smallest tumor volumes at death with the largest was there a significant difference in the proportion of metastasis ("p" < 0.05). There was no difference identified between adjacent categories of tumor volume. However, the fraction of dogs with metastasis increased monotonically with increasing tumor volume at death for all four quartiles: 1st quartile = 15 metastases in dogs with 53 tumors = 0.208 (mean volume = 2.2 cm³); 2nd = 0.283 (19.2 cm³); 3rd = 0.340 (72 cm); and 4th = 0.472 (395 cm³). According to the nonparametric Kendall rank correlation test, the "p" value for this outcome is 0.042. Therefore, it appears that there is an effect of tumor volume at death on the likelihood of metastasis, with the larger tumors having a greater probability of metastasis than smaller tumors.

Various comparisons of dogs with and without metastases as a function of tumor growth rate did not, for the most part, yield significantly different results between these two groups. The exceptions were when only one tumor per dog was considered for animals having multiple primary tumors (longest doubling time for dogs with metastases and shortest doubling time for dogs without; "p" < 0.001) and when only the tumor with the longest doubling time was included for all dogs with multiple primary tumors ("p" < 0.02). We found that this effect was a result of only two tumors with doubling times of > 45 days. Both had been characterized by Thurman (1971) as among the tumors with the least uncertainty in calculated doubling time. Rates of metastasis in dogs with primary tumors in paired bones, especially the left side, were significantly higher than corresponding values of dogs with primary tumors in unpaired bones. The occurrence of metastases in dogs with primary tumors in the ribs appeared to be more pronounced than those in animals with primary tumors in other bones as compared with the average for the whole skeleton.

We conclude that analysis of the association between a variety of parameters and the occurrence of metastases from radiation-induced bone tumors serves to improve our understanding of the metastatic process. The foregoing analyses also yielded some information about the relative importance of various factors that were expected to influence metastasis.

3. Skeletal Malignancies among Beagle Dogs Injected with ²⁴¹Am

R. D. Lloyd, G. N. Taylor, W. Angus, S. C. Miller, and B. B. Boecker

Seventy skeletal malignancies were identified in 44 dogs among 117 Beagle dogs injected as young adults with graded dosages of ²⁴¹Am ranging from about 0.07 to 104 kBq kg⁻¹ and maintained for lifetime observation. Sixty-two of these tumors were osteosarcomas; four were fibrosarcomas of bone, and four were chondrosarcomas of bone (Table 39). Of these 117 dogs, 114 survived beyond the minimum age for radiation-induced bone cancer of 2.79 yr, but all are now dead.

Table 39

Dosimetry and Bone Cancer Occurrence Data in Beagle Dogs Injected with ²⁴¹Am Citrate

Dose Level	Injected kBq kg ⁻¹	No. of Dogs in Study ^a	Dogs with Bone Cancer ^b	Percent ± Uncertainty ^c	Skeletal Dose ± SD 1 yr Before Death, Gy	Age, yr, at Death with Bone Cancer ± SD
Control Dogs						
0	0	132 ^d	1	0.76 ± 0.8	_	16.1
Am Dogs						
0.2	0.066 ± 0.002	14	0	0 ± 7.1^{e}	0.06 ± 0.02	
0.5	0.197 ± 0.004	14	1 ^f	7.1 ± 7.6	0.22 ± 0.05	13.8
1.0	0.58 ± 0.015	25 ^g	3 ^h	12.0 ± 7.3	0.57 ± 0.13	13.7 ± 1.4
1.7	1.75 ± 0.04	24	10 ⁱ	41.7 ± 13.8	1.49 ± 0.39	11.5 ± 1.4
2.0	3.55 ± 0.06	12	10 ^j	83.3 ± 27.5	2.52 ± 0.59	9.1 ± 1.3
3.0	11.3 ± 0.19	13	12	92.3 ± 29.0	4.57 ± 0.87	6.1 ± 0.6
4.0	33.6 ± 4.44	12	8	66.7 ± 22.0	11.2 ± 3.3	5.3 ± 0.5
5.0	104 ± 15	(2) ^k	0		1.84 ± 1.01	
Total (A	Am dogs)	114 ^l	44 ^m			

Number that survived at least to 2.79 yr of age, the minimum latent period for death with radiation-induced bone tumor in our dog colony.

b All observed tumors were osteosarcomas except as noted.

^c With one exception, stated uncertainties are geometric means of roughly half of the 95% confidence intervals for the individual groups taken from Table A-5, page 125, of Lilienfeld et al. (eds.) (Cancer Epidemiology: Methods of Study, The Johns Hopkins Press, Baltimore, MD, 1967).

d Plus one additional dog that only lived to 1.81 yr age.

The uncertainty for a group of dogs with zero tumors was taken to be a standard deviation of +1 (Marshall, J. H., ANL-7760, Part II, p. 18, 1970).

f One fibrosarcoma of bone plus two separate primary chondrosarcomas of bone, all in the same dog.

Plus one additional dog that lived to only 2.04 yr of age (232 days after injection) and had no bone tumor.

^h Including one chondrosarcoma of bone plus two fibrosarcomas of bone.

i Including one chondrosarcoma of bone.

^j Including one fibrosarcoma of bone.

Neither dog survived to 2.79 yr of age. Both died without bone tumors.

Plus three dogs that died before 2.79 yr of age without tumors.

^m Forty-four Am-injected dogs with 70 total bone tumors, eight of which were other than osteosarcomas.

To describe the dependence of percent occurrence of bone sarcoma on skeletal radiation dose, the expression A = 0.76 + 30D was derived where A = percent of dogs with skeletal malignancy within any dosage group, D = average skeletal dose (Gy) at 1 yr before death (for doses < 3 Gy), and 0.76 represents the lifetime percent malignant bone tumor response among 132 suitable control dogs in our colony not given any radioactivity. All dosage groups with skeletal doses of > 3 Gy at a year before death were excluded from the derivation of this expression because they exhibited close to 100% occurrence and appeared to be beyond the region of linearity with dose. Similar analysis of corresponding data for dogs given 226 Ra as young adults, excluding the two highest dosage groups in which the bone tumor response was about 100%, yielded the expression, A = 0.76 + 4.7D (D < 20 Gy). The ratio of the coefficients in these two expressions, 6 ± 0.8 , indicates the effectiveness for bone cancer induction of 241 Am relative to 226 Ra (Fig. 34). This compares to the relative effectiveness obtained earlier for a 239 Pu to 226 Ra ratio of about 16 ± 5 (R. D. Lloyd et al. In Annual Report on Long-Term Dose-Response Studies of Inhaled or Injected Radionuclides, LMF-130, p. 144, 1991).

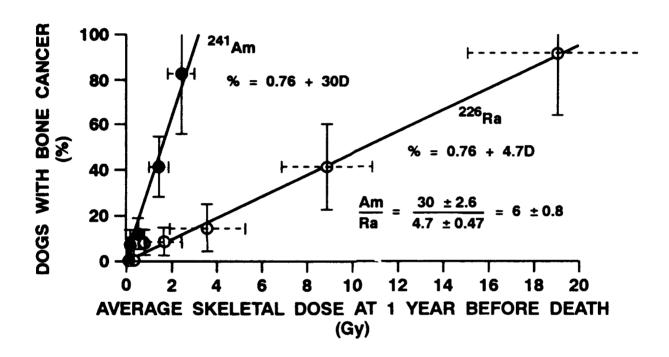


Figure 34. Relative effectiveness for induction of bone malignancies in young adult dogs given either ²⁴¹Am or ²²⁶Ra.

4. Thyroid Lesions Induced by ²⁴¹Am in the Beagle Dog

G. N. Taylor, R. D. Lloyd, F. W. Bruenger, and S. C. Miller

The concentration of ²⁴¹Am in the thyroid gland of Beagle dogs, after a single intravenous injection of Am in a citric acid-sodium citrate buffer solution at pH 3.5, was found to be slightly less than the concentration in the liver and moderately greater than in the skeleton (Lloyd, R. D. et al. Health Phys. 18: 149, 1970). However, since the mass of the combined thyroid tissue in these dogs was only about 600 mg, the percentage of injected Am retained at this site was relatively low. Part of the impact of this unusually high concentration of ²⁴¹Am in the thyroid glands of the Beagle dog, with respect to clinical, morphological, and neoplastic changes, is presented in this summary.

All of the dogs observed were purebred Beagles, born and raised at the Radiobiology Laboratory, University of Utah. The ²⁴¹Am was administered in graded dosages via a single injection in the cephalic vein at about 17 to 18 mo of age (Dougherty, T. F. et al. Radiat. Res. 17: 625, 1962). The volume of the injection solution was approximately 8 to 10 mL. Serum thyroxine levels (T4) were determined by radioimmune assay methods, using reagents supplied by PANTEX (Malibu, CA). Autoradiographs were prepared from acetone-fixed, paraffin-embedded tissues. Weighted cumulative tumor rates were determined by the method of Kaplan and Meier (J. Am. Stat. Assoc. 53: 457, 1958). Evaluation of statistical significance was by the group comparison ("t") test for thyroid weights, analysis of variance for T4 evaluations, and Cox Regression Analysis for thyroid tumor rates.

The percentage of injected activity retained in the thyroid gland following a single intravenous injection was 0.055 ± 0.00066 (mean \pm SD), and the percentage remained constant for the range of injected dosages shown in Table 40. Autoradiography indicated that most of the activity was in the basement membranes of the follicles and in the vascular walls of the smaller arterioles. Only small amounts were present in the follicular epithelium or the colloid. The resulting radiation doses (mean \pm SD) were 1.4 ± 0.9 and 0.76 ± 0.38 times those delivered to the skeleton and the liver, respectively.

Table 40

Incidence of Thyroid Tumors in Beagle Dogs Given a Single Intravenous Injection of ²⁴¹Am

²⁴¹ Am Injected (kBq kg ⁻¹)	Number of Dogs	Average Age ^a at Death (days)	Average Dose to Thyroid (Gy)	Thyroid Tumors ^b (%)	Bone and/or Liver Tumors (%)
101.75	2	941 ± 33	29.8 ± 1.5	0	0
33.58	12	1874 ± 285	28.4 ± 9.2	0	83
11.27	13	2239 ± 220	8.67 ± 4.8	0	92
3.55	12	3327 ± 420	4.04 ± 2.1	0	92
1.74	24	4633 ± 804	2.14 ± 1.2	13	58
0.58	22	4634 ± 804	0.61 ± 0.13	12	45
0.20	14	4906 ± 860	0.25 ± 0.06	0	21
0.07	14	4488 ± 953	0.08 ± 0.02	7	0
(Control)					
0	132	4749 ± 1062	0	11	4

The average age at injection was approximately 505 days.

blincludes both benign and malignant tumors.

Characteristic symptoms related to Am-induced thyroid changes, such as lethargy, obesity, epilation, or myxedema were not observed. This was true even in those instances where marked ablation of the gland had produced subnormal levels of serum T4. However, ablation of the thyroids was never absolute, and small islands of follicular cells could be found even in the dogs with the most severe radiation-induced involution.

Evaluation of the average thyroxine (T4) levels in the peripheral blood at various post-injection times indicated functional impairment of the thyroid gland at several Am dosage levels. However, the relatively wide day-to-day variation of the T4 values in both the controls and the irradiated animals made the results of single tests a relatively imprecise index of radiation-induced thyroid injury. The radiation-induced depression of the serum T4 was most clearly evident in the two highest dosage levels studied: 100 and 34 kBq kg⁻¹, which differed significantly from each other and also from the controls (p < 0.01; Fig. 35). The T4 values for the 11 kBq kg⁻¹ group were similar to those in the controls (p > 0.20), even though the radiation-induced histological alterations were usually appreciable. The T4 values of the 3.6, 1.7, and 0.58 kBq kg⁻¹ groups were not significantly different from each other (p > 0.20) and were grouped together for statistical purposes. Dogs in this combined group had significantly higher T4 levels than either the controls or the 11 kBq kg⁻¹ group (p < 0.01). This result is consistent with the observed hypertrophy of the follicular epithelium that occurred in a moderate number of these lower dosage animals.

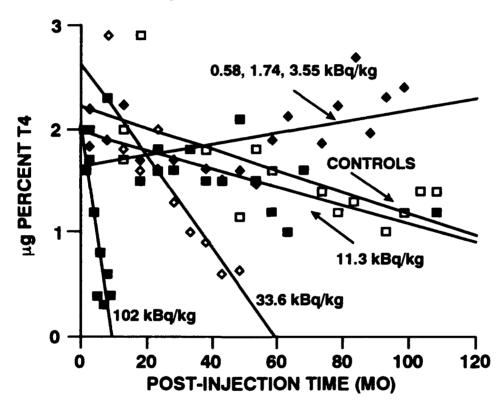


Figure 35. Comparison of T4 values in Beagle dogs injected with various dosage levels of ²⁴¹Am. The curves are least-squares fits to the plotted points.

Statistically significant (p < 0.001) reductions in the thyroid weights occurred in most of the dogs injected at the three highest levels. The most extreme atrophy occurred in the animals given 34 kBq kg⁻¹. Although some variation occurred, the thyroid weights measured in the five lowest dosage levels were within normal limits.

Histologically, in the two dogs injected at the highest dosage level studied, 100 kBq kg⁻¹, and at about 425 days post-injection, the follicular epithelium was mostly low cuboidal and became almost squamous in some areas. Atrophy, degeneration, and necrosis of the epithelium occurred focally. Scattered foci of follicular hyperplasia composed of small clusters of cells and some microfollicles were distributed among the follicles that were present at time of injection. These older follicles were anatomically normal except for the very low

cuboidal epithelium. The epithelium of these such abnormal foci usually exhibited some degree of hypertrophy, indicating that TSH or other stimulation was extant even though much of the older epithelium was nonresponsive. Nearly normal amounts of colloid were present, but based on the low serum T4, metabolic functions in much of the follicular epithelium and colloid compartment were probably impaired to an even greater degree than was suggested by the microscopic appearance. Vascular lesions, interstitial fibrosis, and leukocytic infiltrates were not seen. The absence of extreme anatomical changes at this high dosage level was possibly related to the relatively short survival times. The causes of death at this highest dosage level were combinations of kidney, liver, and bone marrow failure, all sites of high radiation exposure.

Histological changes in the thyroid were most marked in the dogs given 34 kBq kg⁻¹, probably because of the relatively high thyroid dose and the moderately long survival times after injection, averaging 1380 ± 290 days. Follicular atrophy and interstitial fibrosis were invariably present, and loss of follicles and colloid was marked. The glands were frequently reduced to a small fibrotic mass that was sometimes difficult to find at necropsy. Some of the few residual follicles contained hyperplastic foci that were, in some instances, suggestive of an early adenomatous change. These clones of follicular cell hyperplasia occasionally contained microfollicles, generally without colloid. Most of the follicular epithelium in such foci was markedly hypertrophic, suggesting elevated levels of TSH; however, levels of this hormone were not measured in any of the dogs in this study. Cytoplasmic PAS-positive, colloid-like inclusions were present in many of the cells in the hyperplastic foci. Reduced vascularity and hyalinization of some of the arterioles were seen in the most atrophic glands. Focal lymphocytic infiltrates occurred in a few of the animals in this high dosage group but were seldom seen in the other dosage levels.

Marked Am-induced changes also developed in the dogs injected with 11 kBq kg⁻¹. However, compared to the 34 kBq kg⁻¹ level, fibrosis was less extreme, the extent of the hyperplasia was greater, and a larger number of colloid-bearing follicles was present. The number of follicles and the amount of colloid appeared adequate for normal function. Follicular hyperplasia and the presence of PAS-positive, colloid-like cytoplasmic inclusions were the most marked of any of the levels. The lesions observed at even lower dosages were principally hypertrophy of the follicular cells and a minor degree of interstitial fibrosis. However, such changes were observed in only some of the animals, and hyperplasia was seldom seen.

A comparison of the incidence of thyroid tumors in the controls with those of the Am-treated dogs is presented in Table 40. Statistical evaluation indicated that the incidence in the control and irradiated dogs was not significantly different (p > 0.3). Based on the control population, 6.4 thyroid tumors were expected in the irradiated animals, and seven were observed. The thyroid neoplasms developed mostly in the dogs with long survival times, averaging 11.1 ± 1.8 yr post-injection in the controls and 12.8 ± 2.2 yr in the irradiated groups. The incidence of thyroid tumors in the males was approximately two times that of the females, which contrasts with the higher incidence observed in women (NCRP, *Induction of Thyroid Cancer by Ionizing Radiation*, NCRP, Bethesda Maryland, p. 56, 1985).

In summary, selective deposition of Am that occurred in the thyroid glands of Beagle dogs after a single intravenous injection produced obvious functional and anatomical changes. However, statistically significant increases in the incidence of thyroid neoplasia did not occur.

5. Relationship of Leukemia and Radon or Thoron in the Body

R. D. Lloyd, G. N. Taylor and S. C. Miller

D. L. Henshaw, et al. (In Indoor Radon and Lung Cancer: Reality or Myth? [F. T. Cross, ed.], Battelle Press, Richland, WA, p. 935, 1992) reported at the Twenty-Ninth Hanford Symposium on Health and the Environment (Oct. 15-19, 1990) that, "... the dose to red bone marrow from radon exceeds all other sources of background radiation ... recent epidemiological data have shown a correlation of domestic radon exposure with several conditions, including leukemia in adults and children ... both acute myeloid and acute lymphatic leukemia are associated with radon exposure ..." This paper was preceded by another publication on the same subject by the same authors (Henshaw, D. L. et al. The Lancet 335: 1008, 1990). Other investigators submitted papers to the Hanford conference that seemed to confirm this concept. James, A. C. (In Indoor Radon and Lung Cancer: Reality or Myth? [F. T. Cross, ed.], Battelle Press, Richland, WA, p. 167, 1992a) calculated the dose-rates to bone marrow from indoor radon and thoron. Participants in the panel discussion at the conference discussed the possibility that radon and especially thoron could be a radiation hazard to bone marrow. Several of the studies conducted at the University of Utah provide related information on this question. Dogs injected with 226Ra, ²²⁸Ra, or ²²⁸Th were followed throughout their lifetimes. In all of these dogs, radon (²²²Rn = Rn) or thoron (220Rn = Tn) was produced continually by the radioactive decay in the skeleton of 226Ra or 224Ra (which is a decay product of 228Th, which in turn is produced by 228Ra). A significant fraction of both these gaseous radionuclides (Rn and Tn) escaped their site of origin in bone, and some was eventually exhaled (Mays, C. W. et al. Radiat. Res. 8: 480, 1958a; Mays, C. W. Radiat. Res. 9: 438, 1958b). If radon or thoron that is inhaled by humans from ambient air reaches the bone marrow, then a certain amount of the radon or thoron produced by radium decay in the skeleton but not retained in bone also might be expected to irradiate bone marrow. Presuming that all of these suppositions are valid, we anticipated that the experience with regard to these malignancies among our dog colony could confirm the ideas of Henshaw et al. (1990; 1992).

There were 205 dogs in our colony given ²²⁶Ra and 157 given either ²²⁸Ra or ²²⁸Th. In addition, we have identified 314 suitable controls (given no radioactivity) that were entered into the experiment during the same period as those given ²²⁶Ra, ²²⁸Ra, or ²²⁸Th. Because the skeletons of the dogs with ²²⁶Ra, ²²⁸Ra, or ²²⁸Th in bone were subjected to radiation from alpha rays (²²⁸Ra itself is a beta emitter, but its radioactive daughters, ²²⁸Th and ²²⁴Ra, emit alpha rays), we thought that it would be appropriate to compare this experience with that of 505 of our dogs given bone-seeking radionuclides that emit alpha rays but have no radioactive gaseous progeny (e. g., ²³⁹Pu, ²⁴¹Am, ²⁴⁹Cf, ²⁵²Cf). Among dogs there are a number of malignant conditions that are similar to what is called leukemia in humans and which we believe should be included as leukemia-like diseases (Jarrett, W. F. H. and L. S. Mackey. *Bull. World Health Org.* 50: 21, 1974), so we also investigated their occurrence in the four groups of dogs described above. These included (as myeloid malignancies) myeloid sarcoma, megakaryocytic myelosis, and myeloproliferative disease as well as myelocytic leukemia, and (as lymphoid malignancies) lymphosarcoma—including lymphoma, reticulosarcoma, and lymphocytic leukemia—thymoma, mycosis fungoides, and plasma cell myeloma. Mast cell malignancies were also tabulated.

Table 41 gives the results of our survey. No strong effect of myeloid or lymphoid malignancy or of mast cell malignancy associated with dogs having either radon or thoron in the body appears in these data as compared with control animals or with dogs injected with other alpha-emitting radionuclides ("p" values from the chi-square test were all > 0.05 except for the third line under "C" in Table 41; when corrected for radiation-induced liver tumors, that "p" value was also >0.05). These results do not support the concept of Henshaw et al. (1990; 1992).

We believe that if irradiation of bone marrow by radon or thoron was an important causative agent in leukemia induction, at least some effect would have been detected among dogs in our colony. These dogs were irradiated 24 h each day from Rn or Tn continually produced in their skeletons, whereas humans spend only part of their day indoors where radon and thoron concentrations in air are presumably higher than outdoors.

Table 41

Leukemia and Leukemia-Like Diseases Among Beagles Dogs at the University of Utah Dog Colony

(Also included with myeloid malignancies were myeloid sarcoma, megakaryocytic myelosis and myeloproliferative disease as well as myelocytic leukemia and, with lymphoid malignancies, lymphosarcoma—including lymphoma, reticulosarcoma and lymphocytic leukemia—, thymoma, myeosis fungoides and plasma cell myeloma. A tabulation of mast cell malignancies is also shown. "Dogs with Rn" are those injected with 226Ra; "Dogs with Tn" are those injected with 228Ra or 228Th; "Others" are radioactive dogs without Rn or Tn and are those injected with 239Pu, 241Am, 249Cf; "Controls" are those dogs not given any radioactivity.)

	Down with	Total Dogs	Percent ^a	95% Confidence Limits ^b	
	Dogs with Malignancy			Lower	Upper
A. Myeloid Neoplasms					
Dogs with Rn	0	205	0.00	-	1.46
Dogs with Tn	1	157	0.64	0.02	3.56
Others	3	505	0.59	0.12	1.72
Controls	1	314	0.32	0.01	1.78
B. Lymphoid Neoplasn	ns				
Dogs with Rn	11	205	5.37	2.68	9.61
Dogs with Tn	8	157	5.10	2.20	10.05
Others	19	505	3.76	2.26	5.87
Controls	16	314	5.10	2.92	8.26
C. Mast Cell Neoplasm	ns				
Dogs with Rn	5	205	2.44	0.79	5.69
Dogs with Tn	3	157	1.91	0.39	5.58
Others	12 ^c	505	2.38	1.23	4.16
Controls	3	314	0.96	0.20	2.80
D. Non-Myeloid, Leuk	emia-Like Diseases (1	B + C, above)			
Dogs with Rn	16	205	7.80	4.46	12.64
Dogs with Tn	11	157	7.01	3.50	12.55
Others	31	505	6.14	4.14	8.78
Controls	19	314	6.05	3.64	9.44

^a (Dogs with malignancy divided by total dogs) x 100.

Confidence limits on the percent (see footnote "a"); values taken from Lilienfeld, A. M. et al. (In Cancer Epidemiology: Methods of Study, The Johns Hopkins Press, Baltimore, MD, p. 125, 1967).
 Including six dogs among those given ²³⁹Pu or ²⁴¹Am that were classified as primary liver

c Including six dogs among those given ²³⁹Pu or ²⁴¹Am that were classified as primary liver malignancies and were probably radiation-induced (Taylor, G. N. et al. Health Phys 61: 337, 1991). Without these six animals, the percent and 95% confidence limits become, respectively, 1.19, 0.44, and 2.59.

6. Statistics of Hits to Bone Cell Nuclei

I. L. Kruglikov*, **, E. Polig*, and W. S. S. Jee

In this study, the statistics of hits to nuclei of bone-lining cells are being developed. The bone-lining cell is present only during the period of quiescence of the given bone structural unit (BSU). This period of quiescence is the time interval between two remodeling cycles of a BSU, when no cell-mediated resorption occurs in the formation of bone. The stochastic nature of the lifetime of the BSU has been discussed previously (Polig, E. and W. S. S. Jee. Calcif. Tissue Int. 41: 130, 1987). For the following, it is assumed that the lifetime of the bone-lining cells, ρ , is identical to the period of quiescence of its associated BSU. The law of remodeling, which was defined for the replacement of BSUs, also governs the fate of the bone-lining cells:

$$g(\delta) = \lambda \delta^{\beta}$$
 , $\lambda \beta \geq 0$,

where $g(\delta)$ is the conditional probability that a bone-lining cell of age δ disappears within the infinitesimal interval $(\delta, \delta + d\delta)$; λ is a scaling factor dependent on the respective bone turnover rate; and β depends on the time sequence of bone remodeling. Only the stationary situation is considered here, when both the bone turnover rate and the above law of remodeling do not change in time. In general, one can describe the hits to the nuclei of the bone-lining cells as a Poisson process during the random period of quiescence, the distribution of which depends on the law of remodeling.

Let the conditional probability that the number of hits to a bone cell nucleus equals ν , provided the duration of the irradiation interval is ρ , be $\phi(\nu|\rho)$:

$$\phi(v|\rho) = \frac{(\alpha\rho)^{\nu}}{v!} e^{-\alpha\rho} ,$$

where α is the mean hit rate for the given target (Polig, E. et al. Radiat. Res. 131: 133, 1992). The conditional expectation $\mathbb{E}\{v|\rho\}$ is $\alpha\rho$. The unconditional probability P_v of v hits is obtained by integration over all possible values of ρ . The unconditional mean number of hits \overline{v} to a bone cell nucleus is $\overline{v} = \alpha\overline{\rho}$, where $\overline{\rho}$ is the mean quiescence period. Constant irradiation conditions are characterized by a constant parameter α . It is seen that the expectation value \overline{v} is independent of the form of the distribution of the quiescence periods. The variance of the number of hits is $\mathbf{Var}\{v\} = \mathbb{E}\{v^2\} - \mathbb{E}^2\{v\} = \alpha^2\mathbf{Var}\{\rho\} + \alpha\overline{\rho}$. The deviation from Poisson statistics is characterized by the relative variance,

$$R_{\nu}(\nu) = \frac{Var\{\nu\}}{\overline{\nu}} = 1 + \alpha R_{\nu}(\rho)$$
,

where $R_{\nu}(\rho) = Var\{\rho\}/\bar{\rho}$ is the relative variance of the quiescence periods. In the low dose regime $(\alpha\bar{\rho} << 1)$, the variation of the number of hits is essentially determined by the Poisson statistics, and in the high dose regime $(\alpha\bar{\rho} >> 1)$, it is determined by the variation of the period of quiescence.

In the particular case of random remodeling ($\beta = 0$), there is an exponential distribution of quiescence periods ρ , and the above relationships yield $\mathbf{Var}\{v\} = \alpha \bar{\rho}[1 + \alpha \bar{\rho}]$, and $\mathbf{R}_{\nu}(v) = 1 + \alpha \bar{\rho}$. In the limiting case of deterministic remodeling ($\beta \to \infty$), the lifetime of all cells is constant ($\bar{\rho}$). Thus $\mathbf{Var}\{v\} = \bar{v} = \alpha \bar{\rho}$, and the relative variance is one. In the general case, the density of the quiescence period ρ follows a Weibull distribution (Polig and Jee, 1987):

^{*}Kernforschungszentrum Karlsruhe, Institut für Genetik und für Toxikologie von Spaltstoffen, Karlsruhe, Germany

^{**}Physical-Mathematical Laboratory, Institute of Medical Radiology, Ministry of Health of the Ukraine, Kharkov, Ukraine

$$\mathbf{f}(\mathbf{p}) = \frac{1}{\mu \mathbf{p}} \left[\frac{\mu \mathbf{\Gamma}(\mu) \mathbf{p}}{\mathbf{p}} \right]^{\nu \mu} \exp \left\{ -\left(\frac{\mu \mathbf{\Gamma}(\mu) \mathbf{p}}{\mathbf{p}} \right)^{\nu \mu} \right\},$$

where $\mu = 1/(\beta + 1)$, and $\Gamma(\mu)$ is the Gamma function. One can show that in the general case, the inequalities $\alpha \overline{\rho} \le \text{Var}\{v\} \le \alpha \overline{\rho}[1 + \alpha \overline{\rho}]$, and $1 \le R_{\nu}(v) \le 1 + \alpha \overline{\rho}$ hold.

Up to this point, the cells irradiated over the whole quiescence period were considered. The situation for pre-existing cells that experience an instantaneous uptake of an alpha emitter is different. These cells represent the first generation of cells irradiated by a constant hit rate α , with irradiation starting at time t with no previous irradiation. To describe the irradiation of these cells, the residual lifetime γ , which is the interval from t up to the end of the lifetime, is used. Let us consider the general case of age-dependent remodeling when the quiescence periods have a Weibull distribution. In this case, the density distribution of γ is

$$q(z) = \text{Prob}\{z \le \gamma < z + dz\} = \frac{1}{0} \exp\{-[\frac{z}{0}\mu\Gamma(\mu)]^{1/\mu}\}$$
.

The mean and variance of hits to the nuclei of first generation bone-lining cells are, respectively,

$$\mathbf{E}^{(1)}\{\mathbf{v}\} = \frac{\alpha \overline{\rho}}{\mu} \Gamma(2\mu) \Gamma^{-2}(\mu) ,$$

$$Var^{(1)}\{v\} = [\Gamma(3\mu)\Gamma^{-2}(2\mu)\Gamma(\mu) - 1] [E^{(1)}\{v\}]^2 + E^{(1)}\{v\},$$

which yields

$$\frac{1}{2}\alpha\overline{\rho}\,\leq\,\mathbb{E}^{(1)}\{\mathfrak{v}\}\,\leq\,\alpha\overline{\rho}\,\,,$$

and

$$\frac{1}{2}\alpha\overline{\rho}(1+\frac{1}{2}\alpha\overline{\rho}) \leq \mathbf{Var}^{(1)}\{v\} \leq \alpha\overline{\rho}(1+\alpha\overline{\rho}) \ .$$

Thus, even for specific values of the mean hit rate α and mean quiescence period $\overline{\rho}$, the law of remodeling significantly affects the values of the mean and variance of hits to the bone-lining cells. For constant turnover rate ($\overline{\rho}$ = constant), the mean number of hits to bone-lining cells of the first generation is two times larger for random remodeling than for deterministic remodeling.

The probabilities of no hits, $P_0(\beta)$, to these cells for random and deterministic remodeling are

$$P_0^{(1)}(\beta=0) = P_0(\beta=0) = \frac{1}{1 + \alpha \overline{\rho}}$$

and

$$P_0^{(1)}(\beta=\infty) = \frac{1}{\alpha \overline{\rho}} \{1 - e^{-\alpha \overline{\rho}}\}, P_0(\beta=\infty) = e^{-\alpha \overline{\rho}},$$

respectively. The ranges of possible values of $P_0^{(1)}(\beta)$ and $P_0(\beta)$ for different $\alpha \bar{\rho}$ are shown in Figure 36. For the first generation of the bone cells, age-dependent remodeling gives a higher probability of no hits than does random remodeling. However, for the same $\alpha \bar{\rho}$, the difference is not more than 13.3% of the total number of cells. The highest probability of no hits is attained in the case of deterministic remodeling. For subsequent generations, age-dependent remodeling gives lower probability of no hits than does a random one. For the same $\alpha \bar{\rho}$, the difference is not more than 20.4% of the total number of cells. The highest probability of no hits is attained in the case of random remodeling.

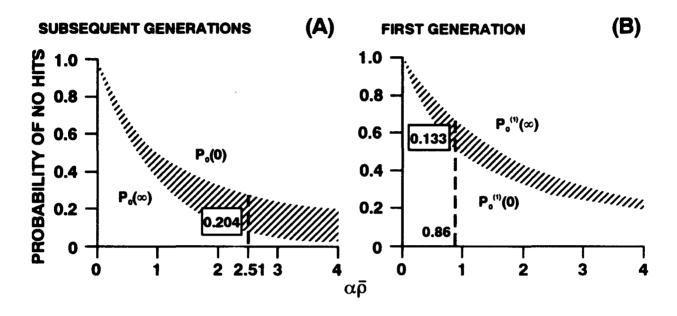


Figure 36. Probability of no hits to the nuclei of bone-lining cells as a function of $\alpha\rho$ for subsequent (A) and first (B) generations of bone cells in the cases of random (P(0)) and deterministic (P(∞)) remodeling.

7. Static and Dynamic Bone Histomorphometry of ²³⁹Pu-treated Dogs

W. S. S. Jee, R. B. Setterberg, Y. F. Ma, M. Li, X. G. Liang, F. Johnson, and H. Z. Ke

The first quantitative investigation of local radiation doses and the biological activity at corresponding specific sites of high and low tumor incidence in Beagle dogs was made by Wronski, T. J. et al. (Radiat. Res. 83: 74, 1980), who determined the micro (i.e., local) distribution of Pu on trabecular surfaces and related the observed changes to the turnover activity at those sites. It was shown that the initial, high concentration of Pu on trabecular surfaces of some high-tumor-incidence sites remained nearly constant for the first month after injection, but declined rapidly between the first and second month, followed by a long period during which the concentration of Pu declined only gradually. Changes in rates of biological activity and Pu concentrations were thought to be caused by an early radiation damage. While this is possible, a more recent view is that the confinement period at the time of injection and subsequent increase in physical activity might be responsible for those changes. In view of this and other possible inconsistencies, it is advisable to compare the early metabolism of low levels of Pu under conditions of confinement and nonconfinement. At the same time, data should be collected on the translocation kinetics of Pu at the local level, and the observed local Pu concentrations should be related to their concentrations in plasma and to the respective biological activities at those sites. This information is necessary for the construction of metabolic-dosimetric models, which, together with data on the chronic toxicity, will form the basis for future risk estimates.

The purpose of this experiment was to provide early detailed dosimetric and biological data on young adult dogs injected with ²³⁹Pu under conditions of "Confinement" (in a metabolism cage) and "Nonconfinement" (housed in the kennel facility). Initial gross and local deposition of Pu, its retention and local translocation, and the corresponding biological elements that determine these parameters are being determined to construct appropriate metabolic/dosimetric models for dogs injected with ²³⁹Pu. This report deals with our progress in providing data on the turnover of cancellous bone measured as a function of time after exposure.

Fourteen dogs were injected without prior confinement with 0.6 kBq ²³⁹Pu per kg and sacrificed sequentially at times ranging from 1 to 64 wk after injection. For comparison, 15 additional dogs were confined for the usual 4-wk period at injection and were sacrificed sequentially in groups of three between 4 wk and 64 wk after injection. All dogs received up to three treatment regimens with fluorescent bone growth markers for the evaluation of bone turnover rates as a function of temporary confinement and nonconfinement.

Forty-micron-thick, undecalcified, plastic-embedded ground sections of the proximal, mid-shaft, and distal humerus, proximal ulna, and second lumbar vertebral body were processed and analyzed (Wronski et al., 1980). The static and dynamic histomorphometry analyses included the percentage of trabecular bone area, trabecular width, number and separation, and bone-volume-based bone formation rate (Frost, H. M. et al. Metab. Bone Dis. Relat. Res. 2: 285, 1981; Kimmel, B. A. and W. S. S. Jee. Anat. Rec. 203: 31, 1982; Parfitt, A. M. et al. J. Clin. Invest. 72: 1396, 1983; Table 42). The current report deals only with data derived from the lumbar vertebral body, distal humerus, and proximal ulna from confined dogs sacrificed at 4, 8, 16, 32, and 64 wk after injection of ²³⁹Pu (Table 42). We assume that during the bone labeling period, there was no net gain or loss of bone mass (i.e., bone formation = bone resorption); thus, we used the bone-volume-based bone formation rate as an index of bone turnover.

The data are too limited to draw any definite conclusions, but there are some interesting trends worth mentioning. There are differences in bone mass and architecture (thickness, number, separation, and turnover) among the three bones. The lumbar vertebral body is constructed of less and thinner trabecular bone. Furthermore, it possesses a higher bone formation rate (turnover rate) than the other two bones. Also, in all three bones, the turnover rates are much lower at 4 wk and sometimes at 8 wk than at other times. Again, these data are too preliminary to discuss their significance; that will have to await collection of data from a known site of high cancellous bone turnover (i.e., proximal humerus; Kimmel and Jee, 1982) and from the comparison of the same bones between confined and nonconfined dogs.

Table 42 Bone Histomorphometry of Confined Beagle Dogs

Group	n ^a	Trabecular Bone Area (%)	Trabecular Number (#/mm)	Trabecular Separation (μm)	Trabecular Separation (µm)	Bone Formation Rate/BV ^b (%/yr)
2nd Lum	bar Ver	tebral Body				
4 wk	3	27.3 ± 2.8°	100 ± 12.6	2.78 ± 0.23	278 ± 27	118.0 ± 25.3
8 wk	3	29.9 ± 3.8	98 ± 9.0	3.05 ± 0.26	239 ± 29	126.2 ± 25.7
16 wk	3	29.9 ± 1.1	108 ± 8.7	2.78 ± 0.29	265 ± 33	149.5 ± 56.2
32 wk	3	30.7 ± 2.9	109 ± 15.9	2.86 ± 0.16	248 ± 13	190.1 ± 54.8
64 wk	2	28.9 ± 0.1	107 ± 0.7	2.71 ± 0.03	273 ± 13	84.8 ± 2.4
Distal H	umerus	(DHE2)d	_			
4 wk	3	35.1 ± 4.7	139 ± 20.8	2.54 ± 0.14	256 ± 21	18.9 ± 11.8
8 wk	3	40.6 ± 4.4	184 ± 38.5	2.24 ± 0.30	268 ± 31	102 ± 83.3
16 wk	3	37.9 ± 5.2	154 ± 10.0	2.45 ± 0.26	257 ± 45	93.7 ± 16.1°
32 wk	3	41.8 ± 1.7	163 ± 11.0	2.58 ± 0.16	226 ± 17	$27.7 \pm 21^{\rm f}$
64 wk	2	45.0 ± 1.1^{e}	155 ± 19.0	2.93 ± 0.29^{g}	189 ± 15 ^{e,g,h}	$55.17 \pm 1.0^{e,f}$
Proximal	Ulna (I	PUA2) ^d				
4 wk	3	46.7 ± 6.7	168 ± 31.8	2.81 ± 0.21	190 ± 20	31.5 ± 13.8
8 wk	3	54.8 ± 8.6	198 ± 30.5	2.78 ± 0.27	164 ± 39	49.8 ± 15.2
16 wk	3	55.0 ± 6.4	212 ± 22.6	2.60 ± 0.23	175 ± 34	66.7 ± 22.0
32 wk	3	51.1 ± 8.4	$129 \pm 15.8^{\mathrm{f}}$	$3.95 \pm 0.38^{e,f,g}$	126 ± 30	44.6 ± 14.4
64 wk	2	46.0 ± 4.1	221 ± 37.7	2.13 ± 0.55^{h}	265 ± 88	119.6 ± 85.7

^an = number of dogs.

^bBV = bone volume.

^cMean SD.

^dDHE2 = last 2 cm of distal humerus; PUA2 = 2 cm distal to proximal end of ulna.

 $^{^{}e}p$ < 0.05 vs. 4 wk value. ^{f}p < 0.05 vs. 16 wk value.

p < 0.05 vs. 8 wk value.

 $^{^{\}rm h}$ p < 0.05 vs. 32 wk value.

III. ARGONNE NATIONAL LABORATORY LIFE-SPAN STUDIES IN DOGS

A. SPECIFIC PROJECT OBJECTIVES

Studies have been in progress at the Argonne National Laboratory for many years to study the long-term biological effects of protracted ⁶⁰Co irradiation in laboratory dogs. Because the dog has a much longer life-span than rodents, results from the dog are providing a bridge for extrapolating results between rodent data and what would be projected for people irradiated under similar conditions. The previously stated objectives of these studies were to (1) determine the relative influence of daily exposure rate and total accumulated dose, (2) provide data for estimates of radiation-specific excess mortality rates in the dog to enable interspecies comparisons with existing rodent data, and (3) study the radiation damage related to life shortening and death, particularly leukemia and other pathology of the blood-forming system. The radiation-exposed dogs in these studies received protracted whole-body ⁶⁰Co irradiation for 22 h/day, 7 days/wk, at various dose rates down to those allowing a nearly normal life-span. Other dogs that were housed under the same conditions but were not exposed to the ⁶⁰Co radiation served as controls.

The basic studies initiated at the Argonne National Laboratory to study the effects of protracted whole-body irradiation of dogs have been primarily of two types: life-span and terminated. In the life-span studies, Beagle dogs were entered on study as young adults and irradiated chronically 22 h/day, 7 days/wk, at different dose rates (0.3, 0.75, or 1.9 cGy per day) over their remaining life span. In the terminated-type of study, dogs were chronically exposed under a similar regimen at dose rates of 3.8, 7.5, 12.8, or 26.3 cGy per day until predetermined total doses of 450, 1050, 1500, or 3000 cGy were accumulated. The irradiation of these dogs has been completed or stopped, and most of the dogs are now dead.

B. CURRENT STATUS OF DOGS

The study population alive in January 1991 comprised colony controls, study dogs that were being exposed at the 0.3 cGy per day level and the associated controls. In addition, other dogs were on long-term study of the hematopoietic effects of different regimens of protracted irradiation from an external ⁶⁰Co source. At that time, a decision was made to discontinue the chronic irradiation of the remaining dogs on study and to transfer all remaining dogs to ITRI for care, clinical observations, and pathological evaluations at death or euthanasia. A total of 73 dogs were transferred to the ITRI colony on January 23, 1991, and are receiving appropriate life-span followup observations (Table 43).

From October 1, 1991, to January 10, 1994, 16 dogs died or were euthanized in the study, Protracted Whole-Body 60 Co Irradiation. All of the dogs in this study are now dead. Twelve of the 32 dogs transferred to ITRI in this study died with neoplastic disease, a prevalence similar to that of control dogs in the ITRI colony. No clear pattern of site or tumor type emerges from these data. Four dogs died in the Colony Control group. One of these dogs died with neoplastic disease. Four dogs in the other studies died. All of the surviving dogs continue to be followed medically, and gross and histopathology information will be obtained at death.

Table 43

Status of Dogs Transferred from Argonne National Laboratory to ITRI on January 23, 1991

Study Name	Tattoo	Sex	Birth Detc	Death Date	Death Age	Gross Findings
Protracted Whole-Body	3020	F	75046	91075	5873	Acute Hepatitis, Nodular Hyperplasia- Liver
60Co Irradiation 0.3 cGy/day	3234	F	76105	91094	5468	Glomerulonephritis, Severe Chronic
,,	3244	F	76114	91059	5424	Mammary Carcinoma with Metastasis
	3247	M	76114	91104	5469	Congestive Heart Failure, Secondary to Myocardial Degeneration
	3262	M	76119	92365	6090	Perianal Adenocarcinoma, Pyelonephritis, Valvular Insufficiency
	3287	M	76132	91245	5592	Kidney Carcinoma, Metastasis to Adrenal, Thyroid, L. Node
	3300	M	76173	91283	5589	Nasal Tumor, Lip Fibrosarcoma
	3309	M	76174	91309	5614	Kidney Carcinoma, Pyelonephritis, Cystitis, Disseminated Intravascular Coagulation
	3363	M	76292	91350	5537	Chronic Renal Failure, Chronic Heart Failure
	3364	M	76292	91276	5463	Osteosarcoma, Ileum and Leiomyoma Esophagus
	3368	F	76293	92358	5907	Renal Atrophy, Liver Atrophy
	3374	M	76293	93195	6112	Congestive Heart Failure, Renal Insufficiency, Carcinoma Pancreas
	3377	M	76302	91077	5254	Lung-Necrosis, Seizures
	3378	F	76302	91283	5461	Pyelonephritis, Liver Degeneration
	3385	M	76302	93337	6245	Cervical Disc Protrusion
	3410	M	76306	92003	5541	Thyroid Carcinoma, with Metastasis
	3418	M	76308	93126	6028	Intervertebral Disc Protrusion and Spinal Cord Compression
	3432	F	76325	91225	5379	Disc Degeneration, Pyelonephritis, Liver Degeneration
	3433	F	76325	93070	5955	Intervertebral Protrusion and Spinal Cord Compression
	3447	F	76331	91192	5340	Diverse Clinical and Gross Findings, No PCOD Yet
	3456	M	76334	92104	5614	Hydrocephalus, Pheochromocytoma
	3543	M	77164	91303	5252	Intestinal Malabsorption, Neuromuscular Disease

Table 43

Status of Dogs Transferred from Argonne National Laboratory to ITRI on January 23, 1991

Study Name	Tattoo	Sex	Birth Detc	Death Date	Death Age	Gross Findings
Protracted Whole-Body	3544	M	77164	93274	5924	Congestive Heart Failure, Pulmonary Edema
60 Co Irradiation 0.3 cGy/day (Concluded)	3549	M	77172	91157	5098	Right Heart Failure, Liver Chronic Passive Congestion, Scizures
(3552	F	77180	92169	5467	Lung - Adenocarcinoma
	3555	F	77180	92199	5497	Renal Cortical Atrophy, Pneumonia
	3571	F	77195	91319	5237	Osteosarcoma, Right Femur, Mammar Gland Adenocarcinoma
	3572	F	77195	91073	4991	Mammary Neoplasia with Metastasis
	3575	F	77195	91204	5122	Myocardial Infarction
	3576	M	77195	91135	5053	Chronic Pyelonephritis
	3590	F	77238	91317	5192	Adenocarcinoma Jejunum
	3602	F	77270	91207	5050	Adrenal Cortical Carcinoma
Hematologic	A4171	F	84220	-		
Changes in Radiation-	4173	M	84220	92087	2789	Squamous Cell Carcinoma Oral Cavit
Induced	A4178	M	84223			
Leukemia	A4230	M	86034			
	A4231	M	86034			
	A4236	M	86081			
	A4238	M	86081			
	A4239	M	86081			
	A4319	F	86305			
	A4446	M	88044			
	A4449	M	88045			
	A4512	M	89137			
	A4518	M	89138			
	A4524	M	89144			
	A4525	M	89144			
	A4532	M	89148			
,	A4535	M	89148			
	A4541	M	89148			
•	A4549	M	89187			
	9001	F	81008	92301	4310	Pulmonary Thrombosis, Hepatic Tumor

Table 43

Status of Dogs Transferred from Argonne National Laboratory to ITRI on January 23, 1991

Study Name	Tattoo	Sex	Birth Date	Death Date	Death Age	Gross Findings
Fractionated	A4358	M	87129			
Weekly Doses from ⁶⁰ Co	A4349	M	87123			
External	A4405	M	87207			
Irradiation	4427	M	87343	92129	1612	Bone Marrow Atrophy, Valvular Endocarditis, Embolic Nephritis
Continuous	3055	F	75118	92020	6111	Renal Atrophy
Irradiation In Utero	A4147	F	83308			
	A4148	F	83308			
	A4150	F	83308	_		
Cadmium	A3917	F	81112	92020	6111	Renal Atrophy
Metabolism in Dogs	A9009	F	83185			
Colony	A3542	M	77164			
Controls	A3591	M	77238			
	3618	M	77341	91214	4986	Ruptured Disk, Cord Compression
	3695	F	78171	91144	4721	Ovary-Tumor, Liver-Fibrosarcoma
	3752	M	78179	93210	5510	Pyelonephritis, Renal Atrophy
	3784	M	79127	94003	5355	CNS Disease, Cause Undetermined
	3835	M	79267	92222	4703	Disseminated Malignant Melanoma
	3909	M	81111	92280	4186	Lymphangiotasia Oral Cavity
	A3936	M	81175			
	A3991	M	82005			
	A4161	F	84003			

IV. PUBLICATIONS FROM THE LIFE-SPAN STUDIES IN DOGS AT ITRI

A. OPEN-LITERATURE PUBLICATIONS FROM INCEPTION OF THE ITRI STUDIES THROUGH FY-1991 (Total of 342)

Full references to these publications are given in: Annual Report on Long-Term Dose-Response Studies of Inhaled or Injected Radionuclides; 1988-1989, pp. 129-150, Report LMF-128 (1990), 1989-1990, pp. 157-159, Report LMF-130 (1991), and 1990-1991, pp. 121-123, Report LMF-135 (1992).

- B. OPEN-LITERATURE PUBLICATIONS OF THE ITRI STUDIES DURING FY-1992 AND FY-1993 (Total of 24)
- Boecker, B. B., B. A. Muggenburg, F. F. Hahn, K. J. Nikula and W. C. Griffith: Life-Span Health Effects of Relatively Soluble Forms of Internally Deposited Beta-Emitting Radionuclides. In *Proceedings of the International Radiation Protection Association 8th Congress*, pp. 864-867, 1992.
- Brooks, A. L., R. A. Guilmette, F. F. Hahn, P. J. Haley, B. A. Muggenburg, J. A. Mewhinney and R. O. McClellan: Distribution and Biological Effects of Inhaled ²³⁹Pu(NO₃)₄ in Cynomolgus Monkeys. *Radiat. Res. 130*: 79-87, 1992.
- Davila, D. R., R. A. Guilmette, D. E. Bice, B. A. Muggenburg, D. S. Swafford and P. J. Haley: Long-Term Consequences of ²³⁹PuO₂ Exposure in Dogs: Persistent T Lymphocyte Dysfunction. *Int. J. Radiat. Biol.* 61: 123-133, 1992.
- Diel, J. H., R. A. Guilmette, B. A. Muggenburg, F. F. Hahn and I. Y. Chang: Influence of Dose Rate on Survival Time for ²³⁹PuO₂ Induced Radiation Pneumonitis or Pulmonary Fibrosis in Dogs. *Radiat. Res.* 129: 43-60, 1992.
- Gillett, N. A., R. R. Poo!, G. N. Taylor, B. A. Muggenburg and B. B. Boecker: Strontium-90 Induced Bone Tumours in Beagle Dogs: Effects of Route of Exposure and Dose Rate. Int. J. Radiat. Biol. 61: 821-831, 1992.
- Gillett, N. A., B. L. Stegelmeier, G. Kelly, P. J. Haley and F. F. Hahn: Expression of Epidermal Growth Factor Receptor in Plutonium-239 Induced Lung Neoplasms in Dogs. Vet. Pathol. 29: 425-449, 1992.
- Gillett, N. A., B. L. Stegelmeier, I. Y. Chang and G. Kelly: Expression of Transforming Growth Factor Alpha in Plutonium-239 Induced Lung Neoplasms in Dogs: Investigations of Autocrine Mechanisms of Growth. *Radiat. Res.* 126: 289-295, 1991.
- Gillett, N. A., R. R. Pool and B. A. Muggenburg: Tumors of Bone. In DOE/OHER Beagle Pathology Atlas (in press).
- Griffith, W. C., B. B. Boecker, F. F. Hahn, B. A. Muggenburg and M. B. Snipes: The Effect of Dose Protraction on the Incidence of Lung Carcinomas in Beagle Dogs with Internally Deposited Beta-Emitting Radionuclides. In *Proceedings of the 8th International Congress of the International Radiation Protection Association*, pp. 896-899, 1992.
- Guilmette, R. A. and B. A. Muggenburg: Decorporation Therapy for Inhaled Plutonium Nitrate Using Repeatedly and Continuously Administered DTPA. Int. J. Radiat. Biol. 63: 395-403, 1993.
- Guilmette, R. A., W. C. Griffith and A. W. Hickman: Intake Assessment for Workers that Inhaled ²³⁸Pu Aerosols. To be published in *Proceedings of the Workshop on Intake of Radionuclides: Detection, Assessment and Limitation of Occupational Exposure* held in Bath, UK, September 13-17, 1993 (in press).
- Guilmette, R. A. and A. F. Eidson: Using Animal Dosimetry Models to Interpret Human Bioassay Data for Actinide Exposures. Int. J. Radioanalytical Nucl. Chem. Articles 1561: 425-449, 1992.

- Guilmette, R. A. and W. C. Griffith: The Effect of Isotope on the Dosimetry of Inhaled Plutonium Oxide. In Proceedings of the 8th International Congress of the International Radiation Protection Association, pp. 900-903, 1992.
- Guilmette, R. A. and B. A. Muggenburg: Effectiveness of Continuously Infused DTPA Therapy in Reducing the Radiation Dose from Inhaled ²⁴⁴Cm₂O₃ Aerosols. Health Phys. 62: 311-318, 1992.
- Hahn, F. F., W. C. Griffith, B. B. Boecker, B. A. Muggenburg and D. L. Lundgren: Comparison of the Effects of Inhaled ²³⁹PuO₂ and β-Emitting Radionuclides on the Incidence of Lung Carcinomas in Laboratory Animals. In *Proceedings of the 8th International Congress of the International Radiation Protection Association*, pp. 916-919, 1992.
- Hahn, F. F., P. J. Haley, A. F. Hubbs, M. D. Hoover and D. L. Lundgren: Radiation-Induced Mesotheliomas in Rats. In *Mechanisms in Fibre Carcinogenesis* (R. C. Brown et al., eds.), pp. 91-99, Plenum Press, New York, 1991.
- Hahn, F. F., W. C. Griffith, C. H. Hobbs, B. A. Muggenburg, G. J. Newton and B. B. Boecker: Biological Effects of ⁹¹Y in Relatively Insoluble Particles Inhaled by Beagle Dogs. *Ann. Occup. Hyg.* (in press).
- Jones, S. E., D. R. Davila, P. J. Haley and D. E. Bice: The Effects of Age on Immune Responses in the Antigen-Instilled Dog Lung. Antibody Responses in the Lung and Lymphoid Tissues Following Primary and Secondary Antigen Instillation. *Mech. Ageing Dev.* 68: 191-207, 1993.
- Muggenburg, B. A., R. A. Guilmette, L. M. Romero and J. A. Mewhinney: Improvements in Lung Lavage to Increase its Effectiveness in Removing Inhaled Radionuclides. In *Proceedings of the 8th International Congress of the International Radiation Protection Association*, pp. 920-923, 1992.
- Muggenburg, B. A., R. A. Guilmette, W. C. Griffith, F. F. Hahn, N. A. Gillett and B. B. Boecker: The Toxicity of Inhaled Particles of ²³⁸PuO₂ in Dogs. Ann. Occup. Hyg. (in press).
- Shyr, L. J. and B. A. Muggenburg: A Comparison of the Predicted Risks of Developing Osteosarcoma for Dogs Exposed to ²³⁸PuO₂ Based on Average Bone Dose or Endosteal Cell Dose. *Radiat. Res. 132*: 13-18, 1992.
- Shyr, L. J., J. H. Diel, I. Y. Chang and R. A. Guilmette: A Method for Studying the Effect of the Distribution of Inhaled ²³⁹PuO₂ Particles on Dose-Rate Distribution in the Beagle Dog Lung. *Radiat. Prot. Dosim. 38*: 229-235, 1991.
- Shyr, L. J., J. H. Diel, I. Y. Chang and R. A. Guilmette: The Use of Autoradiographic Data for Estimating Tumor Cell Dose in Alpha Immunotherapy. In *Fifth International Radiopharmaceutical Dosimetry Symposium*, pp. 589-599, Oak Ridge Associated Universities, Oak Ridge, TN, 1992.
- Taya, A., J. A. Mewhinney, and R. A. Guilmette: Subcellular Distribution of ²⁴¹Am in Beagle Lungs Following Inhalation of ²⁴¹Am(NO₃)₃ Aerosols. *Ann. Occup. Hyg.* (in press).

1

C. DOCUMENT REPORTS RESULTING FROM THE ITRI STUDIES

Report No.	Date	Title
LF-28	Sep 1965	Selective Summary of Studies on the Fission Product Inhalation Program from July 1964 through June 1965
LF-33	Nov 1966	Selective Summary of Studies on the Fission Product Inhalation Program from July 1965 through June 1966
LF-38	Nov 1967	Fission Product Inhalation Program Annual Report, 1966-1967
LF-39	Nov 1968	Fission Product Inhalation Program Annual Report, 1967-1968
LF-41	Nov 1969	Fission Product Inhalation Program Annual Report, 1968-1969
LF-43	Nov 1970	Fission Product Inhalation Program Annual Report, 1969-1970
LF-44	Nov 1971	Fission Product Inhalation Program Annual Report, 1970-1971
LF-45	Nov 1972	Fission Product Inhalation Program Annual Report, 1971-1972
LF-46	Dec 1973	Inhalation Toxicology Research Institute Annual Report, 1972-1973
LF-49	Dec 1974	Inhalation Toxicology Research Institute Annual Report, 1973-1974
LF-52	Dec 1975	Inhalation Toxicology Research Institute Annual Report, 1974-1975
LF-56	Dec 1976	Inhalation Toxicology Research Institute Annual Report, 1975-1976
LF-58	Dec 1977	Inhalation Toxicology Research Institute Annual Report, 1976-1977
LF-60	Dec 1978	Inhalation Toxicology Research Institute Annual Report, 1977-1978
LF-69	Dec 1979	Inhalation Toxicology Research Institute Annual Report, 1978-1979
LMF-84	Dec 1980	Inhalation Toxicology Research Institute Annual Report, 1979-1980
LMF-91	Dec 1981	Inhalation Toxicology Research Institute Annual Report, 1980-1981
LMF-102	Dec 1982	Inhalation Toxicology Research Institute Annual Report, 1981-1982
LMF-107	Dec 1983	Inhalation Toxicology Research Institute Annual Report, 1982-1983

Report No.	Date	Title
LMF-113	Dec 1984	Inhalation Toxicology Research Institute Annual Report, 1983-1984
LMF-114	Dec 1985	Inhalation Toxicology Research Institute Annual Report, 1984-1985
LMF-115	Dec 1986	Inhalation Toxicology Research Institute Annual Report, 1985-1986
LMF-120	Dec 1987	Inhalation Toxicology Research Institute Annual Report, 1986-1987
LMF-121	Dec 1988	Inhalation Toxicology Research Institute Annual Report, 1987-1988
LMF-128	Aug 1990	Annual Report on Long-Term Dose-Response Studies of Inhaled or Injected Radionuclides, 1988-1989
LMF-130	Mar 1991	Annual Report on Long-Term Dose-Response Studies of Inhaled or Injected Radionuclides, 1989-1990
LMF-135	Mar 1992	Annual Report on Long-Term Dose-Response Studies of Inhaled or Injected Radionuclides, 1990-1991
ITRI-139	Jan 1994	Biennial Report on Long-Term Dose-Response Studies of Inhaled or Injected Radionuclides, 1991-1993 (this report)

V. PUBLICATIONS FROM LIFE-SPAN STUDIES IN DOGS AT THE UNIVERSITY OF UTAH

A. OPEN-LITERATURE PUBLICATIONS FROM INCEPTION OF THE UTAH STUDIES THROUGH FY-1991 (Total of 395)

Full references to these publications are given in: Annual Report on Long-Term Dose-Response Studies of Inhaled or Injected Radionuclides; 1988-1989, pp. 151-176, Report LMF-128 (1990), 1989-1990, pp. 163-164, Report LMF-130 (1991), and 1990-1991, pp. 127-128, Report LMF-135 (1992).

B. OPEN-LITERATURE PUBLICATIONS OF THE UTAH STUDIES DURING FY-1992 and FY-1993 (Total of 20)

- Bruenger, F. W., G. Kuswik-Rabiega and S. C. Miller: Decorporation of Aged Actinide Deposits by Oral Administration of Lipophilic Polyaminocarboxylic Acids. J. Medicinal Chemistry 35: 112-118, 1992.
- Bruenger, F. W., R. D. Lloyd, S. C. Miller, G. N. Taylor and W. Angus: Mammary Tumor Occurrence in Beagles Given ²²⁶Ra. (submitted).
- Jee, W. S. S., J. Inuoe, K. W. Jee, T. Haba, H. Z. Ke, X. J. Li and R. B. Setterberg: Histomorphometry Assay of Growth Bones. In: *Handbook of Bone Morphology, Second Edition*, H. Takahashi, ed., Nashimura Co. Ltd., Niigata City, Japan, pp. 101-107, 1993.
- Lloyd, R. D., W. Angus, G. N. Taylor, G. B. Thurman and S. C. Miller: Occurrence of Metastases in Beagles with Skeletal Malignancies Induced by Internal Irradiation. *Health Phys.* (in press).
- Lloyd, R. D., G. N. Taylor and S. C. Miller: Does Leukemia Result from the Presence of Radon or Thoron in the body? *Health Phys.* 65: 439-440, 1993.
- Lloyd, R. D., G. N. Taylor, W. Angus, F. W. Bruenger, and S. C. Miller: Bone Cancer Occurrence Among Young Adult Beagles given ²³⁹Pu. *Health Phys.* 64: 45-51, 1993.
- Lloyd, R. D., G. N. Taylor, W. Angus, F. W. Bruenger and S. C. Miller: Soft Tissue Tumors Among Beagles Injected with ²²⁶Ra. (submitted).
- Lloyd, R. D., G. N. Taylor, W. Angus, F. W. Bruenger and S. C. Miller: Eye Tumors and Other Lesions Among Beagles Given 90Sr or 226Ra. Health Phys. (in press).
- Lloyd, R. D., S. C. Miller, G. N. Taylor, F. W. Bruenger, W. S. S. Jee and W. Angus: Relative Effectiveness for Bone Cancer Induction of ²³⁹Pu and Some Other Internal Emitters. (submitted).
- Lloyd, R. D., G. N. Taylor, W. Angus, S. C. Miller, F. W. Bruenger and W. S. S. Jee: Distribution of Skeletal Malignancies Among Individual Bones of Beagles Given ²³⁹Pu Citrate by Intravenous Injection. (submitted).
- Miller, S. C. and W. S. S. Jee: Bone Lining Cells. In: Bone, Vol. 4: Bone Metabolism and Mineralization, B. K. Hall, ed., CRC Press, Boca Raton, pp. 1-19, 1992.
- Miller, S. C., F. W. Bruenger, G. K. Kuswik-Rabiega and R. D. Lloyd: The Decorporation of Plutonium by the Oral Administration of a Partially Lipophilic Polyaminocarboxylic Acid. *Health Phys.* 63: 195-197, 1992.
- Miller, S. C., F. W. Bruenger, G. Kuswik-Rabiega, G. Liu and R. D. Lloyd: The Effect of Duration of Treatment and Dose of an Orally Administered, Partially Lipophilic Polyaminocarboxylic Acid on the Decorporation of Plutonium. J. Pharmacology and Experimental Therapeutics (in press).
- Polig, E., W. S. S. Jee, R. B. Setterberg and F. Johnson: Local Distribution and Dosimetry of ²²⁶Ra in the Trabecular Skeleton of the Beagles. *Radiat. Res. 131*: 24-34, 1992.
- Polig, E. and W. S. S. Jee: Hit Rates and Radiation Doses to Nuclei of Bone Lining Cells from Alpha-Emitting Radionuclides. Radiat. Res. 131: 133-142, 1992.

- Stannard, J. N., R. D. Lloyd, P. W. Durbin, R. K. Jones, N. J. Parks, R. R. Pool and H. A. Ragan: Some Aspects of Strontium Radiobiology, NCRP Report No. 110, National Council on Radiation Protection and Measurements, Bethesda, MD, 1991.
- Taylor, G. N., R. D. Lloyd, C. W. Mays, W. Angus, S. C. Miller, L. Shabestari and F. F. Hahn: Plutonium or Americium-Induced Liver Tumors in Beagles. *Health Phys.* 61: 337-347, 1991.
- Taylor, G. N., R. D. Lloyd, F. W. Bruenger and S. C. Miller: ²⁴¹Am-Induced Thyroid Lesions in the Beagle. Health Phys. 64: 653-660, 1993.
- Taylor, G. N., R. D. Lloyd, C. W. Mays, L. Shabestari and S. C. Miller: Promotion of Radiation-Induced Liver Neoplasia by Ethanol. *Health Phys.* 62: 178-182.
- Woodard, J. C. and W. S. S. Jee: Skeletal System. In: Fundamentals of Toxicologic Pathology, W. M. Haschek-Holik and C. Rorisseau, eds., Academic Press, (in press).

C. DOCUMENT REPORTS RESULTING FORM THE UTAH STUDIES

Report No.	Date	Title
TID-7639	Jun 1954	Consultants Meeting
AECU-3418	Mar 1955	Annual Report
AECU-3109	Sep 1955	Semi-Annual Report
TID-16458	Mar 1956	Annual Report
TID-16459	Sep 1956	Semi-Annual Report
AECU-3522	Mar 1957	Annual Report
AECU-3583	Sep 1957	Semi-Annual Report
COO-215	Mar 1958	Annual Report
COO-216	Mar 1958	Escape of Radon and Thoron
COO-217	Sep 1958	Semi-Annual Report
AECU-4112	Feb 1959	Radioactive Fallout
COO-218	Mar 1959	Annual Report
COO-219	Sep 1959	Semi-Annual Report
COO-220	Mar 1960	Research in Radiobiology
COO-221	Aug 1960	Interim Report of 90Sr
COO-222	Sep 1960	Research in Radiobiology
COO-223	Mar 1961	Research in Radiobiology
COO-224	Sep 1961	Research in Radiobiology
COO-225	Mar 1962	Research in Radiobiology
COO-226	Sep 1962	Research in Radiobiology
COO-227	Mar 1963	Research in Radiobiology
COO-228	Sep 1963	Research in Radiobiology
COO-119-229	Mar 1964	Research in Radiobiology
COO-119-230	Jul 1964	(Superseded by COO-119-245)
COO-119-231	Sep 1964	Research in Radiobiology
COO-119-232	Mar 1965	Research in Radiobiology
COO-119-233	Sep 1965	Research in Radiobiology
COO-119-234	Mar 1966	Research in Radiobiology
COO-119-235	Sep 1966	Research in Radiobiology
COO-119-236	Mar 1967	Research in Radiobiology
COO-119-237	Mar 1968	Research in Radiobiology
COO-119-238	Aug 1968	Rb in RBC, Plasma, and Urine
COO-119-239	Dec 1968	Cs, Rb, and K Metabolism
COO-119-240	Mar 1969	Research in Radiobiology

Report No.	Date	Title
COO-119-241	Mar 1970	Retention and Dosimetry
COO-119-242	Jan 1971	Research in Radiobiology
COO-119-243	Jan 1971	Osteosarcoma Growth Dynamics
COO-119-244	Mar 1971	Research in Radiobiology
COO-119-245	May 1971	(Superseded by COO-119-255)
COO-119-246	Mar 1972	Research in Radiobiology
COO-119-247	Oct 1972	Rb and Cs Metabolism
COO-119-248	Mar 1973	Research in Radiobiology
COO-119-249	Mar 1975	Research in Radiobiology
COO-119-250	Mar 1975	Research in Radiobiology
COO-119-251	Mar 1976	Research in Radiobiology
COO-119-252	Mar 1977	Research in Radiobiology
COO-119-253	Mar 1978	Research in Radiobiology
COO-119-254	Mar 1979	Research in Radiobiology
COO-119-255	Jan 1980	Radiobiology Safety Manual
COO-119-256	Mar 1980	Research in Radiobiology
COO-119-257	Mar 1982	Research in Radiobiology
COO-119-258	Mar 1983	Research in Radiobiology
COO-119-259	Dec 1984	Research in Radiobiology
COO-119-261	Dec 1985	Research in Radiobiology
COO-119-262	Dec 1986	Research in Radiobiology
COO-119-263	Dec 1987	Research in Radiobiology
COO-119-264	Dec 1988	Research in Radiobiology
LMF-121	Dec 1988	ITRI Annual Report
LMF-128	Aug 1990	Annual Report on Long-Term Dose- Response Studies of Inhaled or Injected Radionuclides, 1988-1989
LMF-130	Mar 1991	Annual Report on Long-Term Dose- Response Studies of Inhaled or Injected Radionuclides, 1989-1990
LMF-135	Mar 1991	Annual Report on Long-Term Dose- Response Studies of Inhaled or Injected Radionuclides, 1990-1991
ITRI-139	Jan 1994	Biennial Report on Long-Term Dose- Response Studies of Inhaled or Injected Radionuclides, 1991-1993 (this report)

APPENDIX A: STATUS OF LONGEVITY AND SACRIFICE STUDIES IN BEAGLE DOGS AT ITRI (9/30/93)

Data in this appendix are preliminary estimates through September 30, 1993, of (1) total body or organ contents and (2) the resultant radiation dose received by individual dogs that have been assigned to longevity or sacrifice studies. These estimates are provided as an information source for scientists in this laboratory and others who desire to follow the progress of these studies. It must be emphasized that these data are preliminary and based on results that may be inaccurate or incomplete at the time these tables were prepared. Although the data represent the best information currently available, it must be noted that, with time, certain values and diagnoses will be modified and updated as new and better information becomes available. This information has not, as yet, received the overall vigorous review and analysis by the respective investigators that is required before these data can be used in subsequent analyses. Readers are cautioned against using these data for independent dose-response modeling or other analytical efforts by other scientists until the principal ITRI investigators have had the opportunity to perform the necessary basic data reviews and analyses and publish reports on these studies.

An expedited effort is underway to complete these reviews and publications. When the reviews have been completed and the basic results published in the peer-reviewed literature, the investigators will be very interested in exploring collaborative efforts of mutual interest with other investigators to maximize the ways in which these valuable data are ultimately used.

RADIOACTIVITY CONTENT

Initial body burden (IBB) is defined as the best current estimate of the total radionuclide content within the body immediately after an inhalation exposure or intravenous injection.

Long-term retained burden (LTRB) is defined as the best current estimate of the amount of radionuclide remaining in the body after early clearance of the nasopharyngeal and tracheobronchial regions via the gastrointestinal tract. The term is used in these tables to describe the type of body burden resulting from inhalation of a radionuclide in a relatively soluble form. It is related to the amount of radionuclide deposited in the entire respiratory tract, and not just to the fraction deposited in the pulmonary region.

Initial lung burden (ILB) is defined as the long-term retained burden associated with the inhalation of relatively insoluble particles. In this case, essentially all of the bdy burden remaining after early clearance of the masopharyngeal and tracheobronchial regions is in the pulmonary region.

CLINICOPATHOLOGICAL FEATURES

Comments are tabulated for the current interpretation of the most prominent clinicopathological features associated with the death of animals. It should be recognized that many animals have multiple tumors or other lesions, not all of which can be listed in a summary table. Diagnoses are discussed in greater detail in the text of this and preceding reports, and in open literature publications.

RADIATION DOSE CALCULATIONS

The methods used in establishing the radiation dose parameters presented have been described in the text of the report or referenced to previous reports. A key consideration in these calculations is tissue weight, because absorbed dose is inversely proportional to tissue weight. Tissue weights used for the calculated dose values reported in Appendix A have changed over the years; it is important that the reader be aware of these changes and the rationale behind them.

Lung weights used in the earliest reported dose calculations (1966-67 Annual Report, LF-38, pp. 19-64 and 1967-68 Annual Report, LF-39, pp. 14-75) were based on a (lung weight)/(body weight) radio of 0.0075 determined from tissue weights from exsanguinated dogs. This ratio was changed to 0.014 in the 1968-69 Annual Report (LF-41, pp. 27-28), based on calculations of the estimated weight of lung with its normal complement of blood in the living dog. Subsequent experimental evidence reported in the 1971-72 Annual Report, (LF-45, pp. 119-128) indicated that this value was too high. Based on these results, our best estimate of the (lung weight (with blood))/(body weight) ratio is 0.011. This value has been used for all dose calculations for dog lungs in all annual report appendices, beginning with those in 1972-73 Annual Report, LF-46.

Liver weights used in early reports were calculated using a (liver weight)/(body weight) ratio of 0.027, which was based on tissue weights from exsanguinated dogs. The ratio was used for dose calculations in all reports through the 1971-72 Annual Report, LF-45. Based on experimental data presented on LF-45, the best estimate for the (liver weight (with blood))/(body weight) ratio is 0.050. This value has been used for all dose calculations for dog liver beginning with the 1972-73 Annual Report, LF-46.

Skeleton weights have always been calculated on the basis of a (skeleton weight)/(body weight) ratio of 0.10.

Tracheobronchial lymph node weights are based on a (tracheobronchial lymph node weight)/(body weight) ratio of 0.00005.

STATUS TABLES

A.1	⁹⁰ SrCl ₂ , Longevity Study	117
A.2	90SrCl ₂ , Sacrifice Study	119
A.3	144CeCl ₂ , Longevity Study	120
A.4	91YCl ₃ , Longevity Study	122
A.5	91YCl ₃ , Sacrifice Study	123
A. 6	137CsCl, Longevity Study	124
A. 7	90Y in Fused Aluminosilicate Particles, Longevity Study	127
A.8	91Y in Fused Aluminosilicate Particles, Longevity Study	128
A .9	¹⁴⁴ Ce in Fused Aluminosilicate Particles, Longevity Study (Series I)	130
A.10	¹⁴⁴ Ce in Fused Aluminosilicate Particles, Longevity Study (Series II)	131
A.11	¹⁴⁴ Ce in Fused Aluminosilicate Particles, Sacrifice Study (Series II, III, IV)	133
A.12	¹⁴⁴ Ce in Fused Aluminosilicate Particles, Immature Longevity Study	135
A.13	¹⁴⁴ Ce in Fused Aluminosilicate Particles, Immature Sacrifice Study	136
A.14	¹⁴⁴ Ce in Fused Aluminosilicate Particles, Aged Longevity Study	137
A.15	90Sr in Fused Aluminosilicate Particles, Longevity Study	138
A.16	¹⁴⁴ Ce in Fused Aluminosilicate Particles, Repeated Exposure Study	141
A.17	²³⁸ PuO ₂ Monodisperse Aerosol (1.5 μm AMAD), Longevity Study	142
A.18	²³⁶ PuO ₂ Monodisperse Aerosol (3.0 μm AMAD), Longevity Study	144
A .19	²³⁹ PuO ₂ Monodisperse Aerosol (0.75 μm AMAD), Longevity Study	146
A.2 0	²³⁹ PaO ₂ Monodisperse Aerosol (1.5 μm AMAD), Longevity Study	148
A.21	²³⁹ PaO ₂ Monodisperse Aerosol (3.0 μm AMAD), Longevity Study	150
A.22	²³⁹ PuO ₂ Monodisperse Aerosol (1.5 μm AMAD), Immature Longevity Study	152
A.23	²³⁹ PuO ₂ Monodisperse Aerosol (1.5 μm AMAD), Aged Longevity Study	154
A.24	²³⁹ PuO ₂ Monodisperse Aerosol (0.75 μm AMAD), Repeated Exposure Study	156

A.1 90SrCl₂, Longevity Study

				ATION	EXP.							DOSE RATE (GY/DAY)				cu	
••••	ENTIFICA	• • • •		AGE	VT		1.8.8.			L.T.R.			730	POTENT.AT	AT	73	
17700	AN-EXPT	SEX	DATE	DAYS	KG	RANK	MBQ/KG	MBQ	RANK	UCI/KG	MBQ/KG	INITIAL	DAYS	5000 DAYS	DEATH	DAY	
157E	01-416	F	67115	431	9.7	01	10.	100.	01	120.	4.4	.55	.21	.070	.21	180.	
164A	02-419	Ä	67124	387	9.0	09	7.8	70.	02	120.	4.4	.54	•	.013	.24		
158E	02-416	F	67115	429	10.2	06	8.9	89.	03	120.	4.4	.54	. 16	. 053	. 15	140.	
195C	03-456	F	67275	397	9.3	03	10.	93.	04	110.	4.1	.48			.30		
1958	02-456	M	67275		10.1	04	9.6	96.	05	100.	3.7	.48			.34		
62F	01-419	F	67124	436	11.2	02	10.	110.	06	100.	3.7	.47	.21	.037	.20	180.	
588	03-416	M	67115	429	9.3		8.9	81.	07	100.	3.7	.47			.36		
598	02-417	F	67117	430	9.8	08	8.1	78.	08	98.	3.6	.45			.29		
608	02-418	M	67122	435	9.5	07	8.5	81.	09	97.	3.6	.44	.18	.062	.17	150.	
3C	01-261	M	65229	408	9.1	11	5.9	56.	10	83.	3.1	.37	.15	.057	.14	130.	
59A	01-417	M	67117		11.3	10	6.7	74.	11	74.	2.7	.34			.25	-	
60C	03-417	F	67117	430	10.4	12	5.9	59.	12	69.	2.6	.31	.075	.032	.068	70.	
38	02-256	M	65208	387	8.0	17	4.1	33.	13	59.	2.2	.27	.081	.023	.059	76.	
6F	03-263	F	65231	384	7.8	15	4.4	34.	14	52.	1.9	.24	.090	.037	.064	89.	
34	02-228	M	65123	381	8.3	19	3.7	30 .	15	51.	1.9	.23	.066	.019	.054	64.	
2F	01-228	F	65123	402 434	8.1	18 13	4.1	34. 56.	16 17	50. 50.	1.9 1.9	.26 .23	.086 .095	.045 .023	.080	79. 88.	
62A	01-418	M	67122 65209	396	11.9		4.8 3.4	23.	18	44.	1.6	.20	.047	.025	.024	47.	
ZE	02-257	•	65230		6.7 7.8	21 14	4.4	23. 35.	19	41.	1.5	.19	.064	.024	.053	64.	
6A 9B	01-262 01-252	M	65201	383 404	6.4	23	3.1	20.	20	40.	1.5	.18	.038	.013	.033	39.	
2F	01-256	F	65208	395	8.8	16	4.4	20. 37.	21	34.	1.3	. 16	.062	.026	.051	59.	
9C	02-252	F	65201	404	7.8	22	3.2	25.	22	28.	1.0	.13	.033	.014	.019	33.	
2A	02-252	M	65202	389	10.5	20	3.6	37.	23	28.	1.0	.12	.061	.015	.035	61.	
90	01-253	F	65202	405	8.7	24	2.6	23.	24	27.	1.0	.12	.034	.013	.021	35.	
0E	03-283	F	65301	383	6.3	28	1.0	6.3	25	9.6	0.36	.044	.015	.0061	.0068	15.	
8C	02-271	H	65256	406	7.6	26	1.1	8.5	26	9.3	0.34	.043	.014	.0056	.0084	15.	
90	02-283	F	65301	385	8.7	29	1.0	8.5	27	9.1	0.34	.042	.042	.0035	.0035	11.	
8E	01-283	F	65301	391	6.5	27	1.1	7.0	28	8.9	0.33	.040	.0081	.0025	.0025	8.4	
OC	02-272	À	65257	395	8.5	32	0.70	5.9	29	8.3	0.31	.037	.011	.0033	.0040	12.	
08	01-272	M	65257	395	8.2	35	0.63	5.2	30	7.9	0.29	.036	.0090	.0030	.0032	9.	
20	01-284	F	65302	377	7.8	30	0.93	7.0	31	7.7	0.28	.036	.011	.0030	.0030	11.	
88	01-271	M	65256	406	7.2	25	1.2	8.5	32	7.1	0.26	.032	.010	.0030	.0050	11.	
20	01-257	M	65209	396	9.1	36	0.59	5.2	33	6.8	0.25	.031	.0088	.0031	.0031	9.	
00	03-272	M	65257	395	8.9	31	0.85	7.4	34	6.6	0.24	.030	.0091	.0028	.0039	9.	
2E	02-284	F	65302	377	8.7	33	0.70	6.3	35	6.1	0.23	.028	.0083	.0028	.0033	8.	
2F	03-284	F	65302	377	7.3	34	0.63	4.8	36	5.7	0.21	.026	.0059	.0019	.0020	6.	
68	01-266	M	65238	391	9.0	37	0.24	2.2	37	3.2	0.12	.015	.0041	.00077	.00090	4.	
SE .	02-277	F	65271	380	7.5	38	0.20	1.5	38	2.3	0.085	.010	.0033	.0016	.0017	3.	
OG	01-277	F	65271	409	7.0	39	0.17	1.2	39	2.2	0.081	.010	.0037	.0012	.0013	3.	
סל	02-267	F	65239	390	10.6	41	0.15	1.6	40	2.2	0.081	.0098	.0019	.00035	.00039	1.	
7A	03-266	M	65238	389	9.1	43	0.15	1.3	41	1.9	0.070	.0087	.0018	.00047	.00070	1.	
6G	02-266	F	65238	391	7.0	46	0.12	0.81	42	1.9	0.070	.0086	.0019	.00035	.00040	1.	
3E	01-265	M	65237	416	7.8	45	0.12	0.93	43	1.7	0.063	.0079	.0029	.00057	.0016	2.	
48	03-265	M	65237	397	8.2	42	0.15	1.2	44	1.6	0.059	.0055	.0024	.00074	.00074	2.	
7F	01-282	F	65300	400	8.1	44	0.12	1.0	45	1.1	0.041	.0048	.0019	.00058	.00070	1.9	
48	02-265	Ħ	65237	397	8.0	40	0.16	1.3 0.81	46	1.0	0.037	.0047 .0046	.0017	.00038	.00035	1.7	
0E	01-276	M	65270	408	8.1	47	0.10		47	1.0	0.037			.00033		1.8	

BETA RADIATION DOSE TO SKELETON

MT	E (GY/DAY)		α	MULATIVE (G	(Y)			
10 /\$	POTENT.AT 5000 DAYS		730 DAYS	POTENT.TO 5000 DAYS	TO DEATH	DEATH DATE	DAYS TO DEATH	COMMENTS
	.070	.21	180.	730. +	190.	69143	759	E-FIBROBARCOMA, PELVIS
	.013	.24		520. +	170.	68344	585	D-EPILEPTIC SEIZURES
	.053	. 15	140.	550. +	170.	69311	927	E-HEMANGIOSARCOMA, SITE UNDETERMINED
		.30			8.1	67296	21	D-HEMATOLOGICAL DYSCRASIA
		.34			11.	67303	26	D-HEMATOLOGICAL DYSCRASIA
	.037	.20	180.	610. +	220.	69279	886	E-OSTEOSARCONA, ILIUN
		.36			13.	67146	31	E-HEMATOLOGICAL DYSCRASIA
		.29			6.6	67135	18	E-HEMATOLOGICAL DYSCRASIA
	.062	.17	150.	620. +	170.	69255	864	E-FIBROSARC., RIBS; NEMANGIOSARC., SCAPULA, RIB
	.057	.14	130.	540. +	180.	68233	1099	E-OSTEOSARCOMA, RIB
	474	.25	-	200	8.5	67146	29	D-HEMATOLOGICAL DYSCRASIA
ŀ	.032	.068	<i>7</i> 0.	280. +	99.	70163	1142	E-HEMANGIOSARCOMA, NUMERUS
Į	.023	.059	76.	270. +	150.	70169	1787	E-OSTEOSARCOMA, HUMERUS
)	.037 .019	.064 .054	89.	330. + 220. +	180. 100.	70343 69023	1938 1361	E-OST-SARC., VERT.; HEN-SARC., RIB AND MAND. D-CEREBELLAR HENORRHAGE
•	.045	.080	64. 79.	350. +	100.	68074	1046	
•	.023	.060	88.	320. +	170.	71363	1702	E-HEMANGIOSARCOMA, ILIUM E-OSTEOSARCOMA, MAXILLA
į	.025	.024	47.	160. +	130.	74044	3122	E-OSTEOSARCOMA, VERTEBRAE
ί.	.024	.053	64.	230. +	100.	69173	1404	D-OSTEOSARCOMA, SACRUM
	.013	.021	39.	140. +	100.	73243	2964	D-OSTEOSARCOMA, MAXILLA
;	.026	.051	59.	230. +	100.	69287	1540	E-OSTEOSARCOMA, MAXILLA
i	.014	.019	33.	120. +	95.	74151	3237	D-OSTEOSARCOMA, MANDIBLE
í	.015	.035	61.	200. +	130.	71258	2247	E-HEMANGIOSARCOMA, RIB
i	.013	.021	35.	120. +	85,	72279	2633	E-OSTEOSARCOMA, SKULL
j	.0061	.0068	15.	56. +	49.	76278	3994	E-HEPATITIS
•	.0056	.0084	15.	51. +	33.	72136	2436	D-MYELONONOCYTIC LEUKEMIA
2	.0035	.0035	11.	37.	37.	80084	5261	E-MESOTHELIOMA, PLEURA
31	.0025	.0025	8.4	28.	28.	81135	5678	E-OSTEOARTHRITIS
	.0033	.0040	12.	39. +	38.	77327	4453	E-LYMPHOSARCOMA
20	.0030	.0032	9.5	32.	32.	78304	4795	D-ADENOCARCINOMA, LUNG
1	.0030	.0030	11.	37.	37.	80263	5439	E-NEPHROSCLEROSIS
)	.0030	.0050	11.	35. +	28 .	74046	3077	E-MYXOSARCOMA, MAXILLA
38	.0031	.0031	9.3	31.	31.	80171	5440	D-CONGESTIVE HEART FAILURE
21	.0028	.0039	9.3	32. +	ે9.	76114	3874	E-HEMANGIOSARCOMA, HEART
13	.0028	.0033	8.3	30. +	27.	76211	3926	D-MALABSORPTION SYNDROME
59	.0019	.0020	6.7	21.	21.	79253	5064	D-HEPATIC DEGENERATION
61	.00077	.00090	4.1	13.	13.	79095	4970	E-TRANSITIONAL CELL CARCINOMA, BLADDER
53	.0016	.0017	3.5	13. +	12.	78107	4584	D-CONGESTIVE HEART FAILURE
37	.0012	.0013	3.8	13	13.	79085	4927	E-ADENOCARCINOMA, NASAL CAVITY
19	.00035	.00039	1.9	5.7+	5.6	78235	4744	E-EPENDYMONA, BRAIN
18	.00047	.00070	1.8	6.0+	5.3	75248	3662	E-PERITORITIS
19	.00035	.00040	1.8	5.8	5.8	79204	5079	E-ADENOCARCINOMA, MAMMARY GLAND
29	.00057	.0016	2.7	8.9+	6.1	71293	2247	D-ACCIDENTAL DEATH
24	.00074	.00074	2.2	8.3	8.3	80255 77034	5496 4117	E-NEPHROSCLEROSIS
19	.00058	.00070	1.9	6.6+	6.0	77034	4117	E-BRONCHIOLOALVEOLAR CARCINOMA
17	.00038	.00035	1.7	5.4 5.3+	5.4 4.3	81341 74016	5948 3033	E-NEPHROSCLEROSIS D-TRANSITIONAL CELL CARCINOMA, BLADDER
17 13	.00033 .00031	.00036	1.8 1.4	3.3 7 4.3+	4.2	78228	3033 4706	E-ADENOCARCINOMA, MAMMARY GLAND
13	.00031	.00000	1.4	4.37	7.6	10660	7/00	E-PREMULAKEIMUNA, NAMMAKI WLAMP

A.1 96SrCl₂, Longevity Study (continued)

							BETA RADIATION DOSE TO SE								
				LATION	EXP.					DOSE RATE (GY/DAY)					
DOG IDE	DOG IDENTIFICATION					1.8.8.	L.T.R.B.								
TATTOO	AM-EXPT	SEX	DATE	AGE DAYS	-	RANK MBQ/KG MBQ	RANK UCI/KG MBQ/KG	INITIAL	730 Days	POTENT.AT 5000 DAYS	AT DEATH	D			
		•••										•			
19A	01-254	M	65203	406	8.7	С	c								
21C	02-254	F	65203	398	8.5	С	С								
24E	01-264	F	65232	392	8.6	С	С								
26E	02-264	F	65232	385	6.9	С	С								
28A	01-273		65258	408		C	С								
30A	03-273		65258	396	9.5	С	С								
31A	01-278			400		Č	Č								
32A	02-278		65272	394	8.9	C	С								
338	03-278		65272	388		Č	Č								
35F	01-285		65305	414		Č	Č								
400	02-285		65305	387	9.4	Č	Ċ								
42C	03-285		65305	380	10.3	Ē	Č								
158A	01-420		67115		10.2	Č	Č								
160A	02-420		67117		9.9	Č	č								
162E	03-420		67122		10.2	č	č								
	****					_	•								

UCI/KG REPRESENTS MICROCURIES OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
MBG/KG REPRESENTS MEGABEQUERELS OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER INHALATION EXPOSURE.
+ INDICATES THE DOG DIED BEFORE IT RECEIVED ITS POTENTIAL INFINITE DOSE.
COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED, RESPECTIVELY. PROMINENT FINDINGS ARE IN

HATION DOSE TO SKELETON

DAY)	CUMULATIVE (GY)			
IT.AT AT	730 POTENT.TO TO DAYS 5000 DAYS DEATH	DEATH DATE	AYS TO DEATH	COMMENTS
		77125 79262 74030 75307 79328 81009 82120	4508 5403 5505 3439 3023 4236 5103 3012 3654 5136 5008 5482	D-SEPTICENIA D-CONGESTIVE NEART FAILURE E-CARCINOMA, THYROID D-ASPIRATION PHEUMONIA D-CONGESTIVE NEART FAILURE E-EPIDERMAL CYST, SKULL D-ARTERIOSCLEROSIS; HYPOTHYROIDISM E-LYMPHOSARCOMA D-LYMPHOSARCOMA D-LYMPHOSARCOMA D-ACCIDENTAL DEATH D-ADENOCARCINOMA, HANNARY GLAND D-NEPHROSCLEROSIS E-SQLANOUS CELL CARCINOMA, TONSIL E-SQLANOUS CELL CARCINOMA, TONSIL E-SQLANOUS CELL CARCINOMA, TONSIL E-STUTITARY ADENOMA-CUSHING'S DISEASE

INT FINDINGS ARE INCLUDED.

A.2 90SrCl₂, Sacrifice Study

BETA RADIATION DOSE TO SKELETON

				LATION	EXP.							1	DOSE R/	ATE (GY/DAY))	(CUMULAT
DOG ID	ENTIFICA	LION		AGE	VT		1.8.8.			L.T.R.	8.		730	POTENT .AT	AT	730	POTEN
TATTOO	AN-EXPT	SEX	DATE		KG	RANK	MBQ/KG	MBQ	RANK	UCI/KG	MBQ/KG	INITIAL				DAYS	5000
78	01-212		65061		7.6	03	4.8	37	01	67	2.5	.29	.14	.030	.13	120	43
4C	02-183			405		02	4.8	36	02	65	2.4	.30		222	.23	~	74
10A	02-215		65084	394		08	3.7	37	03	55	2.0	.22	.10	.022	.086	90	31
84	02-212		65081	402		01	5.5	44	04	51	1.9	.23	.10	.029	.084	90	
90	01-215		65084	396		04	4.8	44	05	47	1.7	.20	.095	.026	.080	84	31
118	02-216		65085	389		09	3.4	33	06	47	1.7	.25		00004	.17		-
28	01-183			411		06	4.4	33	07	46	1.7	.21	^74	.00001	.063	47	7
108	01-216		65085	395		10	3.2	26	80	44	1.6	.20	.071	.017	.046	63	22
98	01-214		65083	397		17	2.6	26	09	39	1.4	. 18	.050		.038	48	15
9C	02-214		65083		10.1	15	3.0	30	10	37	1.4	.17	.071	.010	.054	67	20
12E	02-230		65125	404		18	2.6	21	11	36 74	1.3	.16	.060		.039	56	21
68	01-207		65054	414		20	2.3	17	12	36	1.3	.13	.044	.019	.021	44	16
5A	02-184			391		07	4.1	37	13 14	35	1.3	.16	061	.00029 .017	.072 .034	46	7
88	01-213		65082	403		16	2.9	25 29	15	34 31	1.3	.16 .14	.051	.017	.034	40	18
40	01-184		64328	408		11	3.1	24	16	31 30	1.1 1.1	.14	.041	.012	.022	39	14
128	01-229		65124		11.0	21	2.2	22							.022	43	
60	03-207		65054	414 404		13 14	3.0		17 18	29 28	1.1 1.0	.14	.043	.0034	.054	43	15
120	01-230		65125 65054	414		19	3.0 2.4	23 20	18	28 24	0.89	.13 .11	.040		.017	38	12 13
6C	02-207		65082		10.7	22	1.8	19	20	2 4 20	0.74	.093	.037		.017	35	13
9A 4B	02-213 01-185		64329	409		23	1.5	15	20 21	20 16	0.74	.073	.029		.019	28	11
48 12C	02-229		65124	403		24	1.6	16	22	15	0.55	.068	.023	.0085	.0099	22	
12C 2A	02- <i>22</i> 9 02-1 8 2		64324	410		24 05	4.4	30	23	15	0.33	.33	ىئال.	.0005	.27	EE	•
	01-182		64324	404		12	3.4	33	24						.13		I
4A SC	01-182		64324	387		Ċ	3.4	23	Č						. 13		i
20	03-162		64328	414		Č			Č								1
20 4E	03-183		64328	408		Č			č								
	04-207		65054		12.0	C			č								;
6A 9E	01-217		65083		8.2	Č			Č								
7E 10C	02-217		65085	395		Č			č								i
12A	01-231		65124		10.3	Č			Č								
138	02-231		65124	382		Č			Č								1
13C	03-231		65124	382		Č			č								
130	04-231		65124		6.5	č			č								}
130	U9"23;	- F	92164	J0c	0.7	L			L								

UCI/KG REPRESENTS MICROCURIES OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
MBG/KG REPRESENTS MEGABEQUERELS OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER INHALATION EXPOSURE.
+ INDICATES THE DOG DIED BEFORE IT RECEIVED ITS POTENTIAL INFINITE DOSE.
COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED, RESPECTIVELY. PROMINENT FINDINGS ARE INCLU

MIATION DOSE TO SKELETOL

T/DAY)		C	UMULATIVE (EY)			
UT.AT DAYS	AT DEATH	730 DAYS	POTENT. TO 5000 DAYS	TO DEATH	DEATH DATE	DAYS TO DEATH	COMMENT
D	.13	120	430+	150.	67279	928	E-HEMANGIOSARCOMA, SCAPULA
	.23			7.3	64353	28	s •
2	.086	90	310+	130.	68157	1168	E-HEMANGIOSARCOMA, SCAPULA
	.084	90	340+	150.	68348	1362	E-OSTEOSARCOMA, VERTEBRA, SCAPULA
6	.060	84	310+	130.	68305	1316	E-HEMANGIOSARCOMA, THORAX; NUMERUS
	.17			6.0	65116	31	E-HEMATOLOGIC DYSCRASIA
001	.063		72+	39.	65340	381	\$-
7	.046	63	220+	140.	70293	2034	D-OSTEOSARC., SCAPULA & RIB; HEMANGIOSARC., RIB
B 7	.038	48	150+	76.	68355	1367	E-FIBROSARCOMA, SKULL
0	.054	67	200+	100.	68306	1318	E-OSTEOSARC., TIBIA: HEMANGIOSARC., SITE UND.
0	.039	56	210+	140.	71314	2380	E-OSTEOSARCOMA, RIB, ILIUM
001 7 87 0 6 9 029 7	.021	44	160+	130.	75140	3738	E-SQUAMOUS CELL CARCINOMA, NASAL CAVITY
029	.072		96+	36.	65341	379	\$•
7	.034	46	180+	110.	71155	2264	E-OSTEOSARCOMA, TIBIA
	.11			3.5	64357	29	\$-
2	.022	39	140+	100.	72336	2768	E-OSTEOSARCOMA, ILIUM
4	.024	43	150+	110.	72280	2782	E-OSTEOSARCOMA, MANDIBLE
2 4 54 2 4 5 85	.054	_	120+	40.	66345	585	D-MYELOMONOCYTIC LEUKEMIA
2	.017	38	130+	110.	74239	3472	E-OSTEOSARCOMA, MANDIBLE
4	.019	35	130+	99.	74028	3233	E-OSTEOSARCOMA, MANDIBLE
Ś	.019	28	110+	71.	72035	2628	D-BASOSQUAMOUS CARCINONA, TEMPORAL REGION
e 5	.0099	22	80+	72.	76329	4222	E-SQUAMOUS CELL CARCINOMA, SINUS CAVITY
	.27			1.5	64329	5	\$•
	.13			0.77	64329	5	s-
					64330	6	S-
					65342	380	S-
					64352	24	S-
					78044	4738	E-CARCINONA, THYROID
					72165	2638	E-FIBROSARCOMA, THORACIC WALL
					75103	3670	D-ADENOCARCINOMA, LUNG
					78162	4786	D-CONGESTIVE HEART FAILURE; NEPHROSCLEROSIS
					72183	2615	D-AUTOIMMUNE HEMOLYTIC ANEMIA
					74147	3310	D-RENAL AMYLOIDOSIS
					79068	5057	E-ADENOCARCINOMA, MAMMARY GLAND

DSURE.

ROMINENT FINDINGS ARE INCLUDED.

A.3 144CeCl₃, Longevity Study

										BETA RADIATION DOSE T							
			INHAL	ATION	EXP.							CUMU	LUNG LATIVE	(GY)	CUMU	LIVER	(6)
DOG 10	ENTIFICA	1100	•••••	AGE	WT	1.8.8.			L.T.R.	. 5. 		365	730	TO	365	730	
TATTOO	AN-EXPT	SEX	DATE	DAYS	KG	MBQ/KG	RANK	UCI/KG	UCI	MBQ/KG	HBQ	DAYS	DAYS	DEATH	DAYS	DAYS	D
							••••				******						
152C	02-407	F	67094	428		27.	01	360.	2900	13.	110.			210.			24
1568	03-408	Ħ	67096			19.	02	320.	2800	12.	100.			74.			- 1
1518	01-407	M	67094		9.8	17.	03	270.	2700	10.	100.			76.			- 1
1560	01-406	F	67096			16.	04	210.	2100	7.8	78.	470		48. 170.	280.		
19 8 £ 151C	01-457 03-407	F	67278 67094			15. 14.	05 06	210. 190.	1800 1900	7.8 7.0	67. 70.	170.		52.	260.		4
1970	02-458	F	67279		9.0	13.	07	190.	1700	7.0	63.			52.			- 1
199A	02-462		67285	397	8.5	13.	08	190.	1600	7.0	59.			64.			- 1
201G	02-463	F	67290		8.3	11.	09	170.	1400	6.3	52.			44.			- 1
153A	02-408	M	67096			10.	10	150.	1500	5.5	56.			86.			- 1
195A	01-458	M	67279		10.0	8.9	11	150.	1500	5.5	56.			120.			- 14
198A	01-462	H	67285	399	8.5	11.	12	140.	1200	5.2	44.	110.	120.	120.	180.	260.	21
203F	03-463	F	67290		6.3	13.	13	140.	870	5.2	32.			42.			_ 3
197C	03-462	M	67285	399	8.3	9.6	14	130.	1100	4.8	41.			98.	4.4		1
200A	02-460	M	67283	390		7.0	15	120.	1300	4.4	48.	95.		100.	160.	200	19
199E	01-460	F	67283		7.5	12.	16	110.	810	4.1	30.	87.	97.	99.	150.	200.	24 21 21
62F 201C	02-322 03-460	F	66082 67283		9.6 8.8	7.4	17	100. 94.	960 830	3.7 3.5	36. 31.	79. 74.	88. 83.	88. 85.	130. 120.	190. 170.	21
64A	01-326	M	66096		9.0	10. 8.1	18 19	74.	660	3.5 2.7	24.	74. 58.	65.	67.	98.	140.	- 14
60B	01-320	F	66075	402	8.6	4.8	20	69.	590	2.6	22.	55.	61.	62.	91.	130.	15
200E	01-463	F	67290		8.3	9.3	21	68.	560	2.5	21.	54.	60.	61.	90.	130.	13
62E	01-322		66082		8.1	4.8	22	67.	540	2.5	20.	53.	59.	60.	88.	120.	15
64C	03-323	F	66084	379	9.3	5.2	23	55.	520	2.0	19.	43.	48.	50.	73.	100.	14
62B	02-321	M	66080		9.9	4.1	24	51.	500	1.9	19.	40.	45.	46.	67.	94.	11
63C	02-323	F	66084	383	6.8	6.3	25	44.	300	1.6	11.	35.	39.	39.	58.	81.	g
66B	03-326	M	66096		8.8	4.4	26	43.	380	1.6	14.	34.	39.	39.	57.	80.	9
65B	02-326	M	66096			4.1	27	39.	430	1.4	16.	31.	34.	35.	51.	72.	8
61B	01-321	M	66080			2.5	28	31.	300	1.1	11.	24.	27.	28.	41.	57.	9
60C	02-320	F	66075		10.2	4.8	29	28.	280	1.0	10.	22.	25.	25.	37.	52.	9
63B	01-323	M	66084	383	8.1	4.8	30	26.	210	0.96	7.8	21.	23.	23.	34.	48.	5
54A 54B	01-305 02-305	M F	66027 66027		10.2 11.6	1.6	31	25. 24.	250 280	0.93	9.3	20. 19.	22. 21.	23. 22.	33. 32.	46.	5
548 520	02-303	F	66025		7.7	1.6 1.6	32 33	24. 21.	170	0.89 0.78	10. 6.3	17.	18.	19.	32. 28.	44. 39.	4
55D	02-306	F	66028		8.7	1.7	33 34	17.	150	0.63	5.5	13.	15.	15.	22.	31.	7
600	03-320	F	66075			5.5	35	16.	140	0.59	5.2	13.	14.	14.	21.	30.	3
57A	02-308	H	66034			1.3	36	15.	130	0.55	4.8	12.	13.	14.	20.	28.	77 77 77
53B	02-301	F	66024			1.6	37	14.	150	0.52	5.5	11.	12.	13.	18.	26.	3
53C	02-302	F	66025			1.6	38	14.	130	0.52	4.8	11.	12.	13.	19.	26.	3
56B	01-308	M	66034		10.9	1.3	39	14.	150	0.52	5.5	11.	12.	13.	19.	26.	3
52C	01-301	F	66024			1.6	40	13.	120	0.48	4.4	10.	11.	12.	17.	24.	2
55A	01-306	M	66028		10.8	1.2	41	12.	130	0.44	4.8	9.5	11.	11.	16.	22.	2
57C	02-309	M	66035		8.2	0.89	42	12.	95	0.44	3.5	9.5	11.	11.	16.	22.	2
51B	01-299	M	66021	408		0.52	43	8.1	68	0.30	2.5	6.4	7.1	7.3	11.	15.	1
57B	01-309	M	66035		9.3	1.1	44	6.9	64	0.26	2.4	5.5	6.1	6.2	9.1	13.	1
50E	03-297	F	66018 66018		8.1	0.44	45	6.3	51	0.23	1.9	5.0	5.5	5.7	8.3	12.	1
50A 49A	01-297 01-294	M	66013		8.0 9.9	0.48 0.41	46 47	6.2 5.5	50 55	0.23 0.20	1.9 2.0	4.9 4.3	5.5 4.8	5.6 5.0	8.2 7.3	12. 10.	1
528	02-299	H	66021			0.41	47 48	5.2	56	0.20	2.0	4.1	4.6	4.7	6.9	9.6	i
498	02-294	M	66013			0.48	49	4.9	43	0.18	1.6	3.9	4.3	4.4	6.5	9.1	i
490	01-295	F	66014		10.9	0.41	50	4.7	52	0.17	1.9	3.7	4.1	4.2	6.2	8.7	i

TA RADIATION DOSE TO TISSUE

	CUM	LIVER LATIVE	(GY)		KELETO				
O TH	365 DAYS	730 DAYS	TO DEATH	365 Days	730 DAYS	TO DEATH	DEATH DATE	DAYS TO DEATH	COMMENT
			240.			70.	67238	144	D-PULMONARY INJURY
5.			32.			9.6	67117	21	E-HEMATOLOGICAL DYSCRASIA
) .			41.			12.	67125	31	E-MEMATOLOGICAL DYSCRASIA
В.			21.			6.1	67118	22	E-HEMATOLOGICAL DYSCRASIA
₽.	280.		280.	82.		84.	68288	375	D-PULHONARY FIBROSIS
Ę٠			30.			8.6	67125	31	E-HEMATOLOGICAL DYSCRASIA
فيفيفين			30.			8.6	67311	32	D-MEMATOLOGICAL DYSCRASIA
٠.			44. 22.			13. 6.5	67329 67317	44 27	D-HEMATOLOGICAL DYSCRASIA
j .			96.			29.	67234	138	D-HEMATOLOGICAL DYSCRASIA D-PULMONARY INJURY
6 .			190.			56.	68250	336	D-HEPATIC INJURY
هنده	180.	260.	270.	55.	78.	81.	69353	799	E-OSTEOSARCOMA, VERTEBRA
2.			25.		. • •	7.4	67326	36	D-HEMATOLOGICAL DYSCRASIA
3 .			160.			46.	68229	309	D-HEPATIC INJURY
D.	160.		190.	49.		58.	69062	510	D-MARROW APLASIA
Ð.	150.	200.	240.	43.	62.	74.	72265	1808	D-HEMANGIOSARCOMA, LIVER; HEPATIC DEGENERATION
₽.	130.	190.	200.	39 .	56.	60.	68226	874	D-HEPATIC INJURY
5. 7.	120.	170.	210.	37.	53.	63.	72216	1759	E-HEMANGIOSARCOMA, LIVER; NEPATIC DEGENERATION
ŗ.	98.	140.	160.	29.	41.	50.	72069	2164	E-SQUANOUS CELL CARCINONA, NASAL CAVITY
2.	91.	130.	150.	27.	39.	46.	70246	1632	E-SQUAM.CELL CARC., MASAL CAVITY; ADENOMA, LUNG
0.	90. 88.	130. 120.	150. 150.	27. 26.	38. 38.	46. 45.	72247 70356	1783 1735	D-HEMANGIOSARCOMA,LIVER; MEPATIC DEGENERATION D-HEMANGIOSARCOMA,LIVER; MEPATIC FIBROMA
6.	73.	100.	120.	21.	31.	37.	71064	1806	E-NYELOGENOUS LEUKENIA
E :	67.	94.	110.	20.	29.	34.	72356	2467	D-HEMANGIOSARCOMA, LIVER; HEPATIC DEGENERATION
5 .	58.	81.	97.	17.	29.	29.	78041	4340	E-BILE DUCT CYSTADENOMA, MULTIPLE; HEPATIC DEGEN.
	57.	80.	95.	17.	29.	29.	73312	2773	E-SQUAM.CELL CARC., NASAL CAVITY; CARCINONA, LUNG
5.	51.	72.	86.	15.	22.	26.	73151	2612	E-HEMANGIOSARCOMA, NASAL CAVITY
В.	41.	57.	68.	12.	21.	21.	75287	3494	D-SQUAMOUS CELL CARCINOMA, NASAL CAVITY
5.	37.	52.	62.	11.	19.	19.	75093	3305	E-MALIGNANT MELANOMA, EAR CANAL; EPENDYMOMA
<u>5</u> .	34.	48.	57.	10.	17.	17.	78326	4625	E-SQ. CELL CARC., MOUTH; BILE DUCT CYSTADENOMAS, MULT.
ջ.	33.	46.	55.	9.8	17.	17.	78354	4710	E-NEPHRITIS, BILIARY CYSTS, MULT.; CARC., PROSTATE
	32.	44.	53.	9.4	16.	16.	76351	3976 5470	E-CARCINONA, NAMMARY GLAND; NODULAR HYPERPLASIA LIVER
ξ.	28. 22.	39. 31.	46. 37.	8.2 6.6	14. 11.	14. 11.	80051 77062	5139 4052	E-CARCINOMA, BLADDER; CARC., LUNG; CARC., THYROID
k.	21.	30.	35.	6.2	11.	11.	77251	4194	E-DISC DISEASE; CARC., THYR. AND ADREN.; BILIARY CYSTS E-HEMANGIOSAR., LIV.; BILIARY CYSTS, MULT.; ADENOMA, PIT.
Z	20.	28.	33.	5.9	8.4	10.	71034	1826	E-MYELOPROLIFERATIVE DISORDER
4. 13. 13. 13.	18.	26.	31.	5.5	9.4	9.4	77064	4058	D-CONGESTIVE HEART FAILURE
3 .	19.	26.	31.	5.5	7.8	9.4	78116	4474	E-CARC., MAN. GLAND; BILE DUCT CYSTADENOMA; HEP. DEGEN.
3.	19.	26.	31.	5.5	7.8	9.4	71019	1811	D-MYELOGENOUS LEUKENTA
2.	17.	24.	2 9 .	5.1	7.3	8.7	75298	3561	D-ADENOCARC., MAM.GLAND; SQUA.CELL CARC., NASAL CAVITY
1.	16.	22.	26.	4.7	6.7	8.0	76070	3694	E-ADENOCARC., BRONCHOGENIC-LUNG; BILIARY CYSTAD., MULT.
1.	16.	22.	26.	4.7	6.7	8.0	77102	4085	E-SQUAM.CELL CARC., MASAL CAVITY
7.3	11.	15.	18.	3.2	4.5	5.4	81027	5485	E-CARCINOMA, LIVER-HEPATOCELLULAR
6.2	9.1	13.	15.	2.7	3.9	4.6	80059	5137	D-CARCINOMA, BILE DUCT
5.7	8.3	12.	14.	2.5	3.5	4.2	74213	3117	D-HEPATIC LIPIDOSIS & DEGENERATION
5.6	8.2	12.	14.	2.4	3.5	4.2 3.7	74031 78012	2935 4382	D-EPENDYNONA, CENTRAL NERVOUS SYSTEM
5.0	7.3	10. 9.6	12. 11.	2.2 2.0	3.1 2.9	3.7 3.5	78279	4362 4641	D-MALIGNANT MELANOMA, SOFT PALATE
4.7 4.4	6.9 6.5	9.1	11.	1.9	2.7	3.3	80020	5120	E-ADENOCARCINOMA, PERIANAL GLAND D-HEPAT.NOD.HYPERPLASIA; CARC., THYR.; ASPIRATION PNEU.
4.2	6.2	8.7	10.	1.8	2.6	3.1	79144	4878	E-HEMANGIOSAR., LIVER; CARC. ADREN.; MULT. BILIARY CYSTS
7.5	7.2						. , , , , ,	-910	

A.3 144CeCl₃, Longevity Study (continued)

BETA	-	ATION	BARE	TA	

	DOG IDENTIFICATION						. L.T.R.B.					CURU	LUNG LATIVE	(GY)	LIVER CUMULATIVE (GY)		
DOG ID	ENTIFICA	TION	•••••			1.8.8.			L.T.R.	.B.					745		
TATTOO	AN-EXPT	SEX	DATE	DAYS	WT KG	MBQ/KG	RANK	UCI/KG	UCI	MBQ/KG	MBQ	365 Days	730 DAYS	TO DEATH	365 Days	730 DAYS	TO DEATH
50F	01-296		66020		8.3	0.48	51	4.2	35	0.16	1.3	3.3	3.7	3.8	5.5	7.8	9.2
49E	02-295		66014			0.37	52	3.9	36	0.14	1.3	3.1	3.4	3.5	5.2	7.2	8.6
51A 500	02-298 02-297		66020 66018			0.32 0.48	53 54	3.6 2.9	40 20	0.13 0.11	1.5 0.74	2.8 2.3	3.2 2.6	3.2 2.6	4.8 3.8	6.7 5.4	7.9 6.4
49G	01-296		66017		8.4	0.28	55	2.6	22	0.096	0.81	2.3	2.5	2.3	3.4	4.8	5.7
49C	01-300		66013			0.20	C	2.0	22	0.070	0.01	6.1	2.3	2.3	3.4	4.0	2.1
50C	02-300		66017				Č										
51C	03-300		66021		10.4		č										
51E	04-300		66021	408			č										
52A	05-300		66021	406			Č										
53A	01-310	F	66024	409	9.3		С										
530	02-310	F	66024	409	8.1		C										
54C	03-310	F	66027	407	9.2		C										
56A	04-310	M	66034	402	11.8		C										
60A	01-327	M	66075		10.1		C										
61C	02-327		66080		10.0		C										
AS6	03-327		66080		13.2		C										
1530	01-412		67094				C										
156E	02-412		67094	416			C										
1978	01-465		67289		9.0		C										
198C	02-465		67289		9.9		C										
201A	03-465		67289		12.6		C										
***	****	***	****	***													

UCI/KG REPRESENTS MICROCURIES OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
MBQ/KG REPRESENTS MEGABEQUERELS OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER INHALATION EXPOSURE.
+ INDICATES THE DOG DIED BEFORE IT RECEIVED ITS POTENTIAL INFINITE DOSE.
COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED, RESPECTIVELY. PROMINENT FINDINGS ARE INCLU

MOIATION DOSE TO TISSUE

CLINU	LIVER LATIVE	(GY)		KELETO				
365 Days	730 DAYS	TO DEATH	365 DAYS	730 DAYS	TO DEATH	DEATH DATE	DAYS TO DEATH	COMMENT
5.5 5.2 4.8 3.8 3.4	7.8 7.2 6.7 5.4 4.8	9.2 8.6 7.9 6.4 5.7	1.6 1.5 1.4 1.1 1.0	2.4 2.2 2.0 1.6 1.5	2.8 2.6 2.4 1.9 1.7	74038 75213 74309 76358 81036 74156 81273 76103 79337 76189 79019 78073 80106 80037 82205 80333 73068 67243 67243 84096	2940 3486 3211 3992 5498 3065 5735 3734 5064 4743 4432 5192 5116 5974 5366 2545 149 149 6016 4138 5504	D-MYELOMALACIA D-PULMOMARY EDEMA; MODULAR HYPERPLASIA, LIVER D-COMGESTIVE MEART FAILURE; MEPATIC DEGEMERATION D-CONG. MEART FAILURE; CHRONIC MEPHRITIS; ADEMOMA, MAM. D-CARCIMOMA, PAMCREAS; CARCIMOMA MAMMARY D-ASPIRATION PMEUMONIA, EPILEPSY E-REMAL CORTICAL ATROPMY D-AMESTMETIC DEATH; MEPATIC DEGEMERATION E-CARCIMOMA, MAMMARY; MEUROFIBROSARCOMA, SUBCUTIS D-REMAL AMYLOIDOSIS; UREMIA E-CARCIMOMA, THYROID; OVARIAN TUMOR E-MYELOMALACIA E-CARCIMOMA, ADREMAL E-CARC, LUMG; OLF. NEUROBLASTOMA; SQ. CELL CARC, SAL. GLAND D-REMAL ATROPMY AND FIBROSIS D-ASPIR. PMEUM.; ADEMOCARC., LUMG; CARC. TMY.; CAR. MAMMARY E-CARCIMOMA, THYROID S- S- D-VALVULAR INSUFFICIENCY, MEART E-MAST CELL TUMOR, SUBCUTIS E-INTERSTITIAL MEPHRITIS

IT FINDINGS ARE INCLUDED.

A.4 91YCl₃, Longevity Study

														BETA	RADIAT	ION DO	SE TO T
noe in	ENTIFICA	7 I /II		ATION		1.8.8.			L.T.R.	.		CUN	LUNG LATIVE	(GY)	CUM	LIVER	
000 10	EMITLICA			AGE	WT			· • • • • • • • • • • • • • • • • • • •		· • • • • • • • • • • • • • • • • • • •		365	730	TO	365	730	TO
TATTOO	AN-EXPT	SEX	DATE	DAYS	KG	MBQ/KG	RANK	UCI/KG	UCI	MBQ/KG	MBQ	DAYS	DAYS	DEATH	DAYS	DAYS	DEATH
118E	02-380	F	66320	413	9.3	48.	01	540	5100	20.	190.			43.			3.4
122C	01-383	M	66333	410	9.8	28.	02	300	3000	11.	110.			28.			3.0
118F 119C	01-382 01-384	F	66326 66335	419 423	8.0 8.2	29. 20.	03 04	290 250	2300 2100	11. 9.3	85. 78.			25. 24.			2.5 2.7
1648	01-423	M	67146	409	9.5	16.	05	250	2300	9.3	85.			24.			2.7
1190	02-382	F	66326	414	6.5	27.	06	240	1600	8.9	59.			25.			3.2
123A	02-383	Ħ	66333	409	11.0	33.	07	240	2600	8.9	96.			23.			2.5
118A	01-381	Ħ	66322	415	8.1	20.	08	220	1800	8.1	67.	24.	30.	33.	3.1	8.1	10.
119A 118D	03-381 02-381	M	66322 66322	410 415	8.3 8.6	20. 19.	09 10	220 200	1800 1800	8.1 7.4	67. 67.	24. 22.	30. 28.	33. 31.	3.1 2.8	8.1 7.0	10. 9.7
120C	03-384	F	66335	420	9.3	23.	11	200	1900	7.4	70.		LU.	20.			2.3
164F	02-423	F	67146	409	9.0	17.	12	200	1800	7.4	67.			20.			2.3
165A	01-426	M	67153	392	11.0	20.	13	160	1700	5.9	63.	18.	23.	24.	2.3	5.9	7.6
171F	02-434	F	67163	391	6.3	26.	14	160	1000	5.9	37.	18.	23.	24.	2.3	5.9	7.6
169C 1188	01-434 01-380	M	67163 66320	397 413	8.7 7.9	17. 13.	15 16	150 140	1300 1100	5.5 5.2	48. 41.	17. 15.	22. 19.	23. 20.	2.1 1.9	5.4 5.1	7.0 6.5
120A	02-384	H	66335	420	10.6	20.	17	130	1400	4.8	52.	14.	18.	20.	1.8	4.7	5.9
164C	03-422	Ñ	67144	407	9.3	10.	18	110	1100	4.1	41.	12.	15.	17.	1.6	4.0	5.2
1690	01-432	F	67159	393	5.9	5.2	19	100	610	3.7	23.	11.	14.	15.	1.4	3.6	4.8
164G	01-425	F	67151	414	7.7	6.3	20	94	730	3.5	27.	10.	13.	14.	1.3	3.4	4.5
174A	01-438	W	67172	385	9.6	7.0	21	92	880 820	3.4	33. 30.	10. 9.8	13. 13.	14.	1.3	3.3 3.2	4.4 4.3
171B 165F	02-435 03-426	M F	67166 67153	394 392	9.0 9.2	8.5 8.1	22 23	90 82	750	3.3 3.0	30. 28.	9.0	11.	14. 12.	1.2 1.1	3.2	4.3 3.9
166E	02-426	F	67153		11.1	15.	24	73	820	2.7	30.	8.0	10.	iī.	1.0	2.6	3.5
172A	03-435	M	67166	385	8.8	6.7	25	68	600	2.5	22.	7.4	9.5	10.	0.97	2.5	3.5
134C	02-385	F	66354	408	9.9	8.5	26	66	650	2.4	24.	7.2	9.3	10.	0.92	2.4	3.1
134A	01-385	H	66354	408	9.7	8.5	27	62	600	2.3	22.	6.7	8.6	9.4	0.86	2.3	3.0
176D 169A	03-438 01-435	F	67172 67166	384 400	9.2	9.3 8.9	28 29	60 58	550 600	2.2 2.1	20. 22.	6.6 6.4	8.4 8.1	9.1 8.9	0.86 0.81	2.2	2.9 2.8
172C	01-433	F	67160	379	7.1	4.4	30	53	380	2.0	14.	5.8	7.4	8.1	0.76	1.9	2.5
173G	02-433	F	67160	376	7.2	4.8	31	52	370	1.9	14.	5.7	7.2	7.9	0.76	1.9	2.5
174E	02-438	F	67172	385	8.7	7.4	32	51	450	1.9	17.	5.6	7.1	7.7	0.70	1.8	2.4
167B	01-431	M	67158	394	10.5	4.8	33	51	540	1.9	20.	5.6	7.1	7.7	0.70	1.8	2.4
171E	03-429	F	67156 67144	384 383	6.4 8.2	5.2 3.4	34 35	48 46	310 380	1.8 1.7	11. 14.	5.2 5.1	6.7 6.5	7.4 7.0	0.65 0.65	1.7 1.7	2.3 0.20
165G 1698	02-422 01-429	F	67156	390	9.9	3.0	36	44	440	1.6	16.	4.8	6.1	6.7	0.59	1.6	2.1
164D	01-422	H	67144	407	9.3	4.8	37	43	400	1.6	15.	4.7	6.0	6.6	0.59	1.6	2.1
176E	01-437	F	67170	382	6.8	5.5	38	41	280	1.5	10.	4.4	5.7	6.2	0.59	1.5	1.9
171A	02-429	M	67156	384	8.2	3.5	39	40	320	1.5	12.	4.3	5.6	6.1	0.54	1.5	1.9
166C	02-425	M	67151	388	11.0	2.4	40	31	350	1.1	13.	3.4	4.3	4.7	0.44	1.1	1.5
174F 167C	02-437 04-426	F	67170 67153	383 389	6.2 9.9	3.1 2.4	41 42	16 14	97 140	0.59 0.52	3.6 5.2	1.8 1.5	2.3 1.9	2.4 2.2	0.23 0.19	0.59 0.51	0.76 0.65
118C	01-386	F	66320		10.2	6.7	C C		.70	٠.۶٤	٦.٤	1.5	,	2.2	0.19	0.51	0.03
119B	02-386	H	66322	410	9.4		Č										
121A	04-386	M	66335	416	9.4		C										
164E	01-430	F	67151	414	8.8		C										
165D 165E	02-430 03-430	M	67151 67151	390 390	11.4 9.0		C										
1668	03-430	M	67153		10.3		C										
167A	01-441	Ä	67156		10.3		Č										
167E	02-441	F	67156	392	10.3		C										
171D	03-441	F	67163	391	7.8		C										
174D	04-441	F	67166		13.1		C										
1768	05-441	M	67195	40/	10.4		L										

UCI/KG REPRESENTS MICROCURIES OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT. MBQ/KG REPRESENTS HICKOCORIES OF RADIONACLIDE FER KILOGRAM OF TOTAL BODY WEIGHT.

DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER INHALATION EXPOSURE.

+ INDICATES THE DOG DIED BEFORE IT RECEIVED ITS POTENTIAL INFINITE DOSE.

COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED, RESPECTIVELY. PROMINENT FINDINGS ARE IN

MOTATION DOSE TO TISSUE

CUNU	LIVER		-	KELETO				
365	730	TO	365	730	TO	DEATH		
DAYS	DAYS	DEATH	DAYS	DAYS	DEATH	DATE	DEATH	COMMENT
		3.4			9.1	66332	12	D-HEMATOLOGICAL DYSCRASIA
		3.0			8.0	66353	20	D-HEMATOLOGICAL DYSCRASIA
		2.5			6.7	66343	17	- ··-·
		2.7			7.3	66357	22	
		2.7 3.2			7.3 8.6	67168 66354	22 28	
		2.5			6.7	66354	21	D-HENATOLOGICAL DYSCRASIA
3.1	8.1	10.	8.4	21.	29.	72143	2012	E-SQUAMOUS CELL CARCINOMA, MASAL CAVITY
.1	8.1	10.	8.4	21.	29.	79137	4563	E-HEPATIC FIBROSIS
.8	7.0	9.7	7.6	19.	26.	79097	4523	D-CARCINONA, MANNARY GLAND
		2.3			6.0	66358	23	E-HEMATOLOGICAL DYSCRASIA
_		2.3			6.2	67168	22	D-HEMATOLOGICAL DYSCRASIA
.3	5.9	7.6	6.1	15.	21.	79074	4304	D-CONGESTIVE HEART FAILURE
.3	5.9	7.6	6.1	15.	21.	74163	2557	E-SQUAMOUS CELL CARCINONA, NASAL CAVITY
.1	5.4 5.1	7.0 6.5	5.7	14.	20.	77202 78261	3692 4324	E-LYNPHONA, VISCERA
.9	4.7	5.9	5.3 4.9	13. 12.	18. 17.	78038	4086	E-RIGHT HEART FAILURE E-NEPHROSCLEROSIS
	4.0	5.2	4.2	11.	14.	68252	473	D-EPILEPTIC SEIZURE
.4	3.6	4.8	3.8	9.6	13.	80344	4933	
	3.4	4.5	3.6	9.0	12.	73217	2258	
.3	3.3	4.4	3.5	8.8	12.	79061	4272	D-CARCINOMA, LUNG
.2	3.2	4.3	3.4	8.6	12.	79114	4331	E-URENIA
.1	3.0	3.9	3.1	7.9	11.	80032	4627	D-HEMANGIOSARCOMA, LIVER
.0_	2.6	3.5	2.8	7.0	9.5	81065	5026	D-DISSEMINATED CARCINONA
.97		3.5	2.6	6.5	8.8	82085	5398	
.92		3.1	2.5	6.3	8.6	76054 81007	3352 5172	
	2.3 2.2	3.0 2.9	2.4 2.3	6.0 5.8	8.1 7.8	79356	5132 4567	D-CONGESTIVE HEART FAILURE D-PULMONARY INFARCTION
	2.1	2.8	2.2	5.6	7.5	68165	364	D-EPILEPTIC SEIZURE
.76		2.5	2.0	5.1	6.9	78257	4115	E-CHEMODECTOMA
.76		2.5	2.0	5.0	6.8	80134	4722	E-CARCINONA, MANMARY GLAND
.70	1.8	2.4	1.9	4.9	6.6	81175	5117	D-RENAL FAILURE
	1.8	2.4	1.9	4.9	6.6	83066	5752	E-CARCINONA, ORAL CAVITY
	1.7	2.3	1.8	4.6	6.2	77117	3614	
	1.7	0.20	1.7	4.4	6.0	78223	4097	E-AMELOANOTIC MELANOSARCOMA, MOUTH
.59		2.1	1.7	4.2	5.7	78025	3887	D-AUTOIMUNE HENOLYTIC ANEMIA
.59	1.5	2.1 1.9	1.6 1.6	4.1 3.9	5.6 5.3	82300 80288	5635 4866	D-ENTERITIS E-LEIOMYOMA, VAGINA
	1.5	1.9	1.5	3.8	5.2	79165	4392	
	1.1	1.5	1.2	3.0	4.0	79172	4404	
		0.76	0.61	1.5	2.1	74276	2663	
	0.51	0.65	0.53	1.3	1.8	81160	5121	D-BRONCHOPNEUMONIA
						81296	5455	E-ADENOCARCINONA, MAMMARY GLAND
						80024	4815	E-CARCINOMA, THYROID
						81132	5276	E-OSTEOARTHRITIS
						77203	3705	E-DISSEMINATED CARCINONA, MANNARY GLAND
						79134	4366	E-HEMANGIOSARCOMA, LIVER
						78279 81195	4146 5156	
						73205	2241	E-HEMANGIOSARCOMA, PERITONEUM D-SUPPURATIVE PLEURITIS
						81226	5184	
						78187	4042	
						78107	3959	E-GASTROENTERITIS
						81190	5109	D-INTERSTITIAL NEPHRITIS

ENT FINDINGS ARE INCLUDED.

 I_{J}^{\bullet}

A.5 91YCl₃, Sacrifice Study

BETA RADIATION DOSE TO TISSUE

																	,,,,,,,,,,	
006 10	EN TIFICA	TION	INHAL			1.8.8.		1	.L.B.			CLAN	LUNG LATIVE	(6 Y)	CUM	LIVE	-	Q.
				AGE	VT							30	120	TO	10	120	70	-
TATTOO	AN-EXPT	SEX	DATE	DAYS		MBQ/KG	RANK	UCI/KG	UCI	MMQ/KG	MBQ	DAYS	DAYS	DEATH	30 DAYS	120 DAYS	TO DEATH	MY
					••••		••••		••••				••••		••••		••••	****
173F	02-442		67179			9.6	01	220	1000	8.1	37	24	30	33	5.7	15	19.	8.4
1728	01-442	M	67179	396	7.2	19.	02	220	1600	8.1	59			23			5.3	- 1
176C	01-443	F	67180	392	8.3	14.	03	170	1500	6.3	56	19		19	4.4		4.8	4.4
174C	02-443	H	67180	393	7.9	11.	04	120	970	4.4	34	13	17	18	3.1		11.	7.7
	*****						•••			•••	-		••		•••	•	• • •	7.4

UCI/KG REPRESENTS MICROCURIES OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
MBG/KG REPRESENTS MEGABEQUERELS OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER IMMALATION EXPOSURE.
+ INDICATES THE DOG DIED BEFORE IT RECEIVED ITS POTENTIAL INFINITE DOSE.
COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED, RESPECTIVELY. PROMINENT FINDINGS ARE INCLU

ICH DODE TO TISQUE

TALINE FIAE		CLAN	SKELET ALATIV				
120 BAYS	TO DEATH	30 MYS	120 DAYS	TO DEATH	DEATH DATE	DAYS TO DEATH	CONNENT
15	19. 5.3 4.8 11.	8.4 6.5 4.6	21 12	29. 7.5 6.8 16.	73096 67206 67213 81021	2109 27 33 4955	D-BRONCHIOLOALVEOLAR CARCINONA; CARCINONA, NAUMARY D-NEMATOLOGICAL DYSCRASIA D-NEMATOLOGICAL DYSCRASIA E-ENCEPNALOPATHY

FINDINGS ARE INCLUDED.

A.6 137CsCl, Longevity Study

RADIATION DOSE TO MIKE					
	BADI	ATION	MASE	TΛ	LHIO

200 12	INJECTION EXPOSURE													RATE (
	AM-EXPT	• • • •		DATE	AGE DAYS	UT KG	RANK	UC1/KG	i.B.I UCI	MBQ/KG	HBQ	INITIAL	30 Days	180 DAYS	365 Days	AT DEATH
271D	12-558	F	F	68330	421	7.2	01	4000	29000	150	1100	.72				.31
2448	06-522	Ä	À	68164	402	8.8	02	3900	34000	140	1300	.72	.31			.30
241F	06-523	F	Î	68165	419	8.2	03	3900	32000	140	1200	.71				.38
273A	11-558	11	E	68330	405	9.4	04	3800	36000	140	1300	.69				.43
2490	06-540	M	D	68215	422		05	3600	36000	130	1300	.68				.35
253C	06-539	F	C	68214	393	9.5	06	3500	33000	130	1200	.65				.38
277F	09-560	F	H	68354	392	7.1	07	3000	21000	110	780	.54	. 19	.0020	.00002	
2848	09-562	Ņ	İ	69028	394	8.5	06	2900	25000	110	930	.52	. 18	.0020	.00001	
282C 280C	10-562 09-567	F	J	69028 69052	402	7.6 7.9	09 10	2900 2900	22000 23000	110 110	810 850	.53 .53	.25	.0059	.00020	.32
292A	10-567	M	K	69052	429 379	8.5	11	2900	25000	110	930	.52	.17	.0030	.00003	. 32
241G	05-523	F	È	68165	419		12	2800	24000	100	890	.51	• • • •	.0050	.00003	.27
247E	05-539	F	č	68214	428	7.9	13	2800	22000	100	810	.51				.27
266C	09-558	M	Ĕ	68330	435	7.4	14	2800	21000	100	780	.50	.23	.0025	.00005	
273E	10-558	F	F	68330	405	8.3	15	2800	23000	100	850	.51	.26	.0075	.00030	
245B	05-522	M	A	68164	392	9.1	16	2700	25000	100	930	.51	. 18			.051
2790	10-560	M	G	68354	383	8.1	17	2700	22000	100	810	.48	.22	.0050	.00010	
248A	05-540	Ħ	D	68215	428	9.6	18	2600	25000	96	930	.48	.23	.0030	.00003	
244E	04-523	F	B	68165	403	7.5	19	2100	16000	78	590	.37	.16	.0035	.00004	
2660	08-558	F	F	68330	435	7.8	20	2100	16000	78	590	.37	. 15	.0020	.00005	
2798	07-560	M	G	68354	383	9.9	21	2000	20000	74	740	.36	. 19	.0060	.00020	
275E	08-560	F	H	68354 69028	410 395	7.8 8.8	22 23	2000 2000	16000 18000	74 74	590 670	.37 .37	. 15 . 13	.0020 .0025	.00003	
2830 2920	08-562 08-567	F	j	69052	379	9.0	24	1900	17000	70	630	.36	.13	.0040	.00008	
241A	04-522	Ħ	L A	68164	418		25	1900	19000	70	700	.36	.18	.0040	.00000	.090
271A	07-558	M	Ê	68330	421	9.8	26	1900	19000	70	700	.35	.19	.0040	.00010	.000003
283A	07-562	H	ī	69028		11.2	27	1900	21000	70	780	.35	.14	.0030	.00005	
291A	07-567	H	Ř	69052		10.8	28	1900	21000	70	780	.35	.12	.0028	.00003	
253B	04-539	F	C	68214	393	9.7	29	1800	17000	67	630	.34	. 15	.0040	.00006	
247A	04-540	M	D	68215	429	9.8	30	1800	18000	67	670	.34	.17	.0060	.00010	
244C	03-522	M	A	68164	402	6.7	31	1600	11000	59	410	.28	.090	.0013	.00001	
2800	06-562	F	j	69028	405	6.8	32	1600	11000	59	410	.28	.098	.0025	.00003	
279A	05-560	M	G	68354	383	9.5	33	1500	14000	56	520	.27	.11	.0011	.00002	
278f	06-560	F	H	68354	391	8.4	34	1500	13000	56	480	.26	.13	.0030	.00010	
2860	05-567	F	L	69052	417		35	1500	13000	56	480	.27	.10	.0022	.00004	
241E	03-523	F	8	68165 68330	419		36 37	1400 1400	13000 16000	52 52	480 590	.26 .26	. 14 . 15	.0050 .0060	.00015	
267A 268C	05-558 06-558	Ħ	E	68330	433 433	11.2 11.0	37 38	1400	15000	52	560	.26	.17	.014	.00060	
2890	05-562	M	í	69028	376		39	1400	14000	52	520	.26	.099	.0030	.00005	
247C	03-540	M	Ď	68215	429	8.8	40	1300	11000	48	410	.25	.12	.0018	.00003	
291C	06-567	H	ĸ	69052	382		41	1200	9200	44	340	.22	.11	.0041	.00005	
252C	03-539	F	Ĉ	68214	407	9.3	42	1200	11000	44	410	.21	.12	.0025	.00005	
244F	02-523	F	B	68165	403	5.8	43	1100	6400	41	240	.20	.072	.00083	.00001	
2788	04-560	M	Ğ	68354	391	9.5	44	1100	10000	41	370	.21	.10	.0020	.00003	
2418	02-522	M	Ā	68164	418	9.8	45	1000	9800	37	360	. 19	.079	.0013	.00001	
273F	04-558	F	F	68330	405	8.4	46	1000	8400	37	310	. 19	.10	.0045	.00040	
2780	03-560	F	H	68354		10.3	47	1000	10000	37	370	. 19	.084	.0013	.00004	
281C	04-562	F	J	69028	404	8.4	48	1000	8400	37	310	. 19	.065	.0015	.00006	
281B	03-567	F	Ļ	69052	428	9.8	49	940	9200	35	340	.17	.081	.0030	.00008	
285A	03-562	M	Ĩ	69028		10.5	50	920	9700	34 33	360 740	.17	.063	.0020	.00002	
287A	04-567	M	K	69052	410	10.2	51	900	9200	33	340	.17	.080	.0028	.00007	

RADIATION DOSE TO WHOLE BODY

E (GY/DAY)			C	MALLAT	IVE (Y)			
80 YS	365 DAYS	AT DEATH	30 DAYS	180 DAYS	365 DAYS	AT DEATH	DEATH DATE	DAYS TO DEATH	COMMENT
	•••••		••••	••••	••••	••		•••••	
		.31				11.	68356	26	D-HEMATOLOGICAL DYSCRASIA
		.30	13.			14.	68197	33	D-MEMATOLOGICAL DYSCRASIA
		.38				10.	68187	22	D-HEMATOLOGICAL DYSCRASIA
		.43				9.5	68349	19	D-HENATOLOGICAL DYSCRASIA
		.35				13	68242	27	D-MEMATOLOGICAL DYSCRASIA
		.38				9.7	68236	22	D-HEMATOLOGICAL DYSCRASIA
20	.00002		9.2	15.	15.	15.	80094	4123	E-RENAL INFARCTION
20	.00001		9.0	15.	15.	15.	81182	4537	D-CARCINOMA, PROSTATE
59	.00020		10.	20.	20.	20.	73271	1704	E-ARTHRITIS; PHEUMONIA
		.32				9.1	69076	24	E-HEMATOLOGICAL DYSCRASIA
30	.00003		7.9	15.	15.	15.	81146	4477	E-CARC., MASAL CAVITY; CARC., INTESTINE
		.27				8.6	68190	25	D-HEMATOLOGICAL DYSCRASIA
		.27			4-	9.1	68241	27	D-HEMATOLOGICAL DYSCRASIA
25	.00005		9.5	17.	17.	17.	73097	1594	D-PNEUMONIA; PHARYNGITIS
75	.00030	AF 4	10.	22.	22.	22.	77343	3301	E-SUPPURATIVE ENDONETRITIS
**	00010	.051	8.6		4.0	14.	68245	81 2707	D-HEMATOLOGICAL DYSCRASIA
50 30	.00010		9.5	18.	18.	18.	76139	2707 3386	E-SARCOMA, MAST CELL
35	.00003		10. 7.0	19. 15.	19. 15.	19. 15.	77313 80022	4240	E-SQUAM. CELL CARCINOMA, SINUS CAVITY E-NEPHROSCLEROSIS; CARCINOMA, LUNG
20	.00005		6.7	12.	12.	12.	77204	3162	D-CONGESTIVE HEART FAILURE
60	.00020		7.8	15.	15.	15.	79262	3926	E-TUMOR, PERIPHERAL NERVE
20	.00003		7.0	12.	12.	12.	83013	5138	D-MAMMARY ADENOCARCINOMA
25	.00004		6.4	11.	11.	11.	80322	4311	D-HEMATOMA, SPLEEN
40	.00008		6.7	12.	12.	12.	77277	3147	D-HEMANGIOSARCOMA, HEART
	.0000	.090	7.1		•	13.	68241	3,77	D-HEMATOLOGICAL DYSCRASIA
40	.00010	.000003	7.3	15.	15.	15.	70292	693	D-SHOCK
30	.00005		7.3	12.	12.	12.	80286	4275	D-HEMANGIOSARCOMA, SPLEEN
28	.00003		6.3	10.	10.	10.	80077	4042	E-LEUKOENCEPHALOMALACIA
40	.00006		6.5	13.	13.	13.	80265	4434	D-CARCINGHA, MANMARY GLAND
60	.00010		7.2	15.	15.	15.	80280	4448	D-HEPATIC DEGENERATION
13	.00001		4.3	7.7	7.7	7.7	82091	5041	D-HEPATIC ATROPHY
25	.00003		5.0	8.4	8.5	8.5	80128	4117	E-CARCINOMA, NAMMARY GLAND
11	.00002		4.7	8.3	8.4	8.4	74310	2148	D-RENAL AMYLOIDOSIS
30	.00010		5.6	10.	10.	10.	83173	5298	D-INTERSTITIAL NEPHRITIS
22	.00004		4.8	8.2	8.3	8.3	79184	3784	D-PYOMETRA
50	.00015		5.5	12.	12.	12.	82195	5144	D-HEMANGIOSARCOMA, LIVER
60	.00020		5.8	13.	13.	13.	78206	3529	E-BRAIN EDEMA, UNDÉTERMINED CAUSE
6	.00060		6.3	15.	15.	15.	81334	4753	D-HEPATIC ATROPHY
50	.00005		4.8	8.7	8.8	8.8	79312	3936	E-CARCINOMA, MASAL CAVITY
18	.00003		4.7	9.8	9.9	9.9	81327	4861	D-CARCINOMA, STOMACH
61	.00005		5.2	9.7	9.9	9.9	83090	5151	E-RENAL CORTICAL FIBROSIS
25_	.00005		4.8	9.5	9.7	9.7	80072	4241	E-SARCONA, MAMMARY GLAND
783	.00001		3.4	5.9	5.9	5.9	80120	4338	D-RENAL AMYLOIDOSIS
50	.00003		4.4	8.1	8.2	8.2	79269	3933	E-TUMOR, LIVER
13	.00001		3.3	6.4	6.5	6.5	83027	5342	E-PYELONEPHRITIS
15	.00040		4.2	8.8	9.1	9.1	81266	4685	E-CARCINONA, MANNARY GLAND
13	.00004		3.5	6.4	6.5	6.5	82217	4977	E-MEDIASTINAL TUMOR
15	.00006		3.2	5.6	5.7	5.7	81282	4637	D-CNS DISTURBANCE
Ю	.00008		3.5	6.9	7.1	7.1	80046	4011	D-CARCINOMA, MAMMARY; TUMOR, NASAL CAVITY
!0	.00002		3.1	5.4	5.5	5.5	82028	4748	E-CARCINOMA, BLADDER
:8	.00007		3.6	6.7	6.9	6.9	75332	2471	E-NEUROFIBROSARCOMA, LIVER

A.6 ¹³⁷CsCl, Longevity Study (continued)

														RADI	ATION DO	SE TO WHO	LE BOS
			INJ	ECTION	EXPOSI	RE							DOSE	RATE (Y/DAY)		
DOG ID	ENTIFICA	TION	••••	• • • • • •		• • • • •			1.8.1) .						• • • • • • • • • • • • • • • • • • • •	
•••••					AGE	WT	••••	• • • • • • • •			• • • • •		30	180	365	TA	30
TATTOO	AM-EXPT	SEX	BLOCK	DATE	DAYS	KG	RANK	UCI/KG	UCI	MBQ/KG	MBQ	INITIAL	DAYS	DAYS	DAYS	DEATH	DAYS
	•••••	•••				••••						•••••		•••••			
249C	02-540	Ħ	D	68215	422	8.8	52	900	7900	33	290	.17	.086	.0022	.00002		3.4
266A	03-558		Ē	68330	435		53	890	8100	33	300	.16	.079	.0015	.00004		3.3
248C	02-539		č	68214	427	8.3	54	880	7300	33	270	.16	.076	.0011	.00002		3.3
241C	01-522		Ă	68164	418		~	•••		-			.010				
244D	01-523		Ê	68165	403	7.2	č										
2510	01-539		Č	68214	408	6.8	č										
2478	01-540		Ď	68215	429	9.4	č										
2670	02-558		2	68330	435	7.4	č										
2708	01-558		E	68330	423		Č										
			_			8.4	_										
274E	01-560		H	68354	419	7.1	C										
277A	02-560		Ģ	68354	392		Č										
282A	01-562		I	69028	402	8.6	C										
283C	02-562		J	69028		8.8	C										
2820	02-567	F	L	69052	426	6.9	C										
286C	01-567	M	K	69052	417	8.4	C										
****	*****	***	****	***													į

UCI/KG REPRESENTS MICROCURIES OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
MBG/KG REPRESENTS MEGABEQUERELS OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER INHALATION EXPOSURE.
+ INDICATES THE DOG DIED BEFORE IT RECEIVED ITS POTENTIAL INFINITE DOSE.
COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED, RESPECTIVELY. PROMINENT FINDINGS ARE INCLUDE

'ION DOSE TO WHOLE BODY

DAY)		C	UNULAT	IVE (iY)			
365 DAYS	AT DEATH	30 Days	180 DAYS	365 Days		DEATH DATE	DAYS TO DEATH	COMMENT
00002 00004 00002		3.4 3.3 3.3	7.0 6.3 6.1	7.1 6.4 6.1		81015 81056 80318 82313 70081 83054 84233 79225 83364 77154 75239 84130 85199 78030 82011	4549 4475 4487 5263 647 5319 5862 3913 5513 3088 2442 5580 6015 3265 4707	E-CARCINOMA, BLADDER E-MEMANGIOGARCOMA, SPLEEN E-LIVER DEGEN.; CARC., LIVER; CARC., LUNG E-INTERSTITIAL NEPWRITIS D-MEMOLYTIC ANEMIA; ENDOCARDITIS E-INTERSTITIAL NEPWRITIS E-PYELOMEPHRITIS D-ENDOMETRITIS; PERITOMITIS D-ADEMOCARCIMOMA, PROSTATE D-CARCIMOMA, MANMARY GLAMD D-RENAL ANYLOIDOSIS E-THROMBOSIS, AORTA D-BRONCHIOLOALVEOLAR CARC., LUNG E-RENAL FAILURE; UREMIA E-PYELOMEPHRITIS

T FINDINGS ARE INCLUDED.

A.7 99Y in Fused Aluminosilicate Particles, Longevity Study

					pue-	N P-								BETA	A RADIATION	DOSE TO
DOG IDE	ENTIFICAT	TION	AHNI	LATION		••••	1.8.				I.L.B.	•		RATE ((GY/MIN)	CUMULAT
	••••••	_	_	_	AGE									******		
TATTOO	AN-EXPT	SEX	BLOCK	DATE	DAYS	KG	MBQ/KG	MBQ	RANK	UCI/KG	UCI	MBQ/KG	HBQ	INITIAL	AT DEATH	INFIN.
		•								_						
333A	02-661		A	69266		10.3	230.	2300	01	5200	53000	190.	2000	.15	.030	810+
3331	01-661	F		69266			180.	1600	02	3600	31000	130.	1100	.10	.005	570+
3478	02-684	F	D	69322	379		130.	1300	03	2800	27000	100.	1000	.080		440
340C	03-684	M	C	69322		10.6	130.	1400	04	2600	28000	96.	1000	.076		410
332V	01-662	F	8	69267	418		150.	850 850	05 04	2400 1900	13000 19000	89. 70	480 700	.060		370 300
339A	04-684 03-661	M F	C 8	69322 69266			89. 96.	850 930	06 97	1900 1900	18000	70. 70.	670	.056 .055		290
335S 334A	05-661	M	A	69266		11.4	96. 85.	950 960	97 08	1700	19000	70. 63.	700	.055		270
334A 341T	03-685	F	Ď	69323			93.	810	09	1700	15000	63.	560	.048		270
340U	01-684	F	Ď	69322			170.	1700	10	1600	16000	59.	590	.048		250
341C	02-685	M	č	69323		10.1	67.	670	11	1500	15000	56.	560	.044		240
3408	05-685	H	č	69323		10.6	63.	670	12	1400	15000	52.	560	.042		230
3348	02-662	M	Ă	69267	407	10.6	70.	740	13	1400	15000	52.	560	.041		230
332T	04-662	F	8	69267	418	8.0	70.	560	14	1400	11000	52.	410	.041		220
347B	04-685	M	Ç	69323	380		56.	480	15	1300	11000	48.	410	. 038		200
335A	03-662	M	A	69267	400		59.	560	16	1100	11000	41.	410	.032		180
343V	01-685	F	D	69323	395		96.	670	17	1100	7500	41.	280	.030		170
406U	04-820	F	H	70258	409		52.	440 530	18 10	1100	8800	41.	330	.030		170 170
339s	05-662	F	B	69267		7.7	67. 54	520 670	19 20	1000 980	7800 12000	37.	290 440	.029 .027		170 150
406A 448U	03-820 02-874	M F	G L	70258 71089		12.0	56. 67.	670 560	20 21	980 900	7600	36. 33.	440 280	.027 .027		150 140
448U 439A	02-8/4	F M	· I	71059		5.4 13.1	67. 48.	630	22	850	11000	33. 31.	410	.027		140
439A 343C	03-686	M	Ç	69325	397		40. 32.	300	23	760	7100	28.	260	.024		120
343C 437T	01-863	F	j	71053	406		32. 30.	230	24	740	5600	27.	210	.022		120
380B	01-746	M	Ĕ	70124	394		36.	320	25	730	6600	27.	240	.022		120
451B	04-874	Ä	ĸ	71089	401	9.5	41.	370	26	730	6900	27.	260	.022		120
403T	02-820	F	Ĥ	70258		6.9	34.	230	27	710	4900	26.	180	.020		110
449U	01-874	5	ï	71089	408	5.9	44.	260	28	710	4200	26.	160	.020		110
4528	03-874	M	K	71089	461	9.8	41.	410	29	700	6900	26.	260	.020		110
3415	02-686	F	D	69325			35.	340	30	690	6800	26.	250	.020		110
413A	01-821	M	G	70259		11.2	29.	320	31	680	7600	25.	280	.020		110
333B	06-662	M	Ÿ	69267		11.9	36.	440	32	680	8000	25.	300	.019		110
4488	04-863	M	I	71053	375		31.	310	33	670	6600	25. 24	240	.019		100
402C	01-820	M	G	70258	417		29.	200	34 75	660 660	4700	24.	170	.019		100 100
404U 434T	03-821 02-863	F	H j	70259 71053	416 415		32 <i>.</i> 30.	190 220	35 36	640 640	3700 4700	24. 24.	140 170	.019 .019		100
4341 446C	02-863	F M	J I	71054		11.2	30. 25.	220 280	36 37	600	6700	24.	250	.019		95
446U	01-864	F	7	71054	412		25. 34.	200 310	37 38	590	5300	22.	200	.018		93
371S	03-746	F	F	70124	423		25 .	190	39	590	4600	22.	170	.018		93
4001	04-821	F	H	70259			21.	130	40	500	3300	19.	120	.015		79
378B	04-746	M	Ë	70124		10.3	26.	260	41	490	5100	18.	190	.014		77
333s	02-663	F	B	69268			22.	160	42	460	3500	17.	130	.014		72
450B	03-875	M	K	71090	406	9.4	21.	200	43	450	4200	17.	160	.013		71
446S	04-864	F	J	71054	380	8.1	21.	170	44	420	3400	16.	130	.012		66
332C	01-663	M	A	69268	419		19.	160	45	410	3500	15.	130	.012		65
4495	04-875	F	L	71090			21.	160	46	400	3200	15.	120	.012		64
400U	01-817	F	H	70251	418		20.	150	47	400	3000	15.	110	.012		62
411C	02-821	M	G	70259	394		21.	190	48	380	3500	14.	130	.011		60
439C	02-864	M	I	71054	403		26.	250 150	49 50	380 380	3700	14.	140	.011		60 60
411D	04-817	M	G	70251 71090	386 402		16.	150 190	50 51	380 380	3700 3600	14.	140 130	.011		60 60
452A 449T	01-875 02-875	M	K	71090			20. 20.	160	51 52	380	3100	14. 14.	110	.011 .011		60 60

BETA RADIATION DOSE TO LUNG RATE (GY/MIN) CHMULATIVE (GY)

	•		RATE (GY/MIN)	CUMULA	TIVE (GY)	DEATH	DAVE TO	
1	MBQ/KG	MBQ	INITIAL	AT DEATH	INFIN.	TO DEATH	DEATH	DAYS TO DEATH	COMMENT
00	190.	2000	.15	.030	810+	700	69273	7	D-PULMONARY INJURY
	130.	1100	.10	.005	570+	550	69278	12	D-PULMONARY INJURY
00	100.	1000	.080		440	440	70004	47	D-PULMONARY INJURY
00	96.	1000	.076		410	410	69353	31	D-PULMONARY INJURY
00	89.	480	.060		370	370	69342	75	D-PULMONARY INJURY
00	70.	700	.056		300	300	70021	64	D-PULMONARY INJURY
000	70.	670	.055		290	290	69336	70	D-PULMONARY INJURY
000	63.	700	.048		270	270	69304	38	E-PULHONARY INJURY
100	63.	560	.048		270	270	70033	75	D-PULMONARY INJURY
900	59.	590	.048		250	250	70045	88	D-PULMONARY INJURY
100	56.	560	.044		240	240	70043	85	D-PULMONARY INJURY
100	52.	560	.042		230	230	70048	90	D-PULMONARY INJURY
900	52.	560	.041		230	230	69290	23	D-PULMONARY INJURY
82	52.	410	.041		220	220	69356	89	E-PULHONARY INJURY
500	48.	410	.038		200	200	70033	75	D-PULMONARY INJURY D-PULMONARY INJURY
	41.	410	.032		180 170	180	69358 70050	91	D-PULMONARY INJURY
200	41. 41.	280 330	.030 .030		170	170 170	70349	92 91	D-PULMONARY INJURY
8	37.	290	.029		170	170	69349	82	D-PULMONARY INJURY
500	36.	440	.027		150	150	71001	108	D-PULMONARY INJURY
5	33.	280	.027		140	140	71230	141	D-PULMONARY INJURY
8	31.	410	.024		140	140	71158	105	D-PULMONARY INJURY
100	28.	260	.022		120	120	70077	117	D-PULMONARY INJURY
00	27.	210	.022		120	120	71175	122	D-PULMONARY INJURY
100	27.	240	.022		120	120	70323	199	D-PULMONARY INJURY
000	27.	260	.022		120	120	71232	143	D-PULMONARY INJURY
100	26.	180	.020		110	110	71028	135	D-PULMONARY INJURY
200	26.	160	.020		110	110	73261	903	D-PULMONARY FIBROSIS; ADENOMA, LUNG
00	26.	260	.020		110	110	71210	121	D-PULMONARY INJURY
000	26.	250	.020		110	110	70123	163	E-PULMONARY INJURY
100	25.	280	.020		110	110	71108	214	D-PULMONARY INJURY
00	25.	300	.019		110	110	70028	126	D-PULMONARY INJURY
00 100	25.	240	.019		100	100	77139	2278	E-FIBROSARCOMA, LUNG; OSTEOPATHY
100	24.	170	.019		100	100	71356	463	D-PULMONARY INJURY
00	24.	140	.019		100	100	71114	220	D-PULMONARY INJURY
700	24.	170	.019		100	100	71176	123	D-PULMONARY INJURY
00	22.	250	.018		95	95 07	71291	237	D-PULMONARY INJURY
100	22.	200	.018		93	93	71259	205	D-PULMONARY INJURY
00 00 00	22.	170	.018		93	93 70	70306	182	D-PULMONARY INJURY
W	19.	120	.015		79 77	79 77	79172	3200 3437	D-CONGESTIVE HEART FAILURE
00	18.	190	.014		77	77 73	77194 75327	2627	E-BRONC.ALV.CARC.; OSTEOSARC., VERT.
500	17.	130 160	.014		72 71	72 71	75327 80131	2250 3328	D-BRONCHIOLOALYEOLAR CARCINOMA D-CARCINOMA, LUNG
100 100	17.	130	.013 .012		66		77239	3328 2377	
i L	16. 15.	130	.012		65	66 65	78013	3032	E-CARCINOMA; SITE UNDETERMINED E-SQUAMOUS CELL CARCINOMA, LUNG
00	15.	120	.012		64	64	84295	4953	D-CONGESTIVE HEART FAILURE
00	15.	110	.012		62	62	83010	4507	E-ADENGCARCINGMA, MAMMARY
800	14.	130	.012		60	60	80118	3511	D-HEART FAILURE
8	14.	140	.011		60	60	80178	3411	E-HEART FAILURE
00	14.	140	.011		60	60	81247	4014	D-LYMPHOSARCOMA, LIVER
	14.	130	.011		60	60	82146	4074	E-ORAL MELANOSARCOMA
00	14.	110	.011		60	60	82036	3964	E-MAMMARY CARCINOMA
			••					_,_,	

A.7 *Y in Fused Aluminosilicate Particles, Longevity Study (continued)

			TMUA	LATION	EVBA	N IDE								BETA RADIATIO	N DOSE TO LUN
DOG ID	ENTIFICAT	TION	1 MILA	LATION	AGE	WT	1.8.	B.			1.L.B	•		RATE (GY/MIN)	CUMULATIVE
TATTOO	AN-EXPT	SEX	BLOCK	DATE			MBQ/KG	MBQ	RANK	UCI/KG	UCI	MBQ/KG	MBQ	INITIAL AT DEATH	INFIN. TO D
3741			F	70124			17.	140	53	370	3000	14.	110	.011	58
348C 343T	04-686 01-686		C	69325 69325	376 397	8.7 8.5	25. 16.	210 140	54 55	360 360	3200 3100	13. 13.	120 110	.011 .011	57 57
4345	01-867		j	71055		9.4	16.	150	56	340	3200	13.	120	.0096	53
407S	02-817		Ä	70251	402		16.	120	57	320	2300	12.	85	.0093	51
3800	01-747		Ë	70125		9.4	15.	140	58	300	2900	11.	110	.0090	48
406B	03-817		G	70251		12.1	18.	210	59	300	3600	11.	130	.0088	48
446D	04-867		I	71055		11.4	17.	190	60	300	3400	11.	130	.0088	48
375U	02-747		F	70125		7.6	14.	110	61	290	2200	11.	81	.0088	48
437\$	03-867	F	i	71055 71055	408	8.4 9.0	16.	130 110	62 63	280 270	2300 2400	10. 10.	85 89	.0080 .0079	44 43
441A 399A	02-867 02-818		I G	70252			13. 10.	93	64	260	2300	9.6	85	.0075	41
377B	03-747		Ē	70125		9.0	13.	110	65	250	2300	9.3	85	.0072	39
450C	01-876		ĸ	71091		10.4	10.	100	66	250	2600	9.3	96	.0072	39
339U	04-687		D	69328	428	7.2	12.	85	67	240	1700	8.9	63	.0069	38
372s	04-747	F	F	70125		9.6	12.	110	68	230	2200	8.5	81	.0069	36
3398	01-687		C	69328	428		8.5	78	69	230	2100	8.5	78	.0065	36
332s	03-663	F	B	69268	419		10.	89	70	220	1900	8.1	70	.0065	36
447U 3358	04-876	£	Ļ	71091 69268		6.6	10. 10.	67 100	71 72	220 190	1500 1900	8.1 7.0	56 70	.0065 .0056	34 1 30
408U	04-663 01-818	M F	A	70252		9.8 9.0	9.6	89	73	190	1700	7.0	63	.0056	30
438S	01-868	F	Ĵ	71056		9.1	16.	150	74	190	1800	7.0	67	.0055	30
447B	03-868	-	ĭ	71056			11.	78	75	180	1300		48	.0052	28
377s	01-748	F	F	70126		9.9	7.0	70	76	150	1500	5.5	56	.0043	24
380C	03-748	M	E	70126		10.2	6.7	70	77	140	1500	5.2	56	.0043	23
339T	02-665		В	69269		6.4	7.0	44	78	130	830	4.8	31	.0038	20
407B			Ğ	70252 71091		10.6 10.2	7.0	74 63	79 80	130 130	1300 1300	4.8 4.8	48 48	.0037 .0037	20 2 20
450E 448T	03-876 02-876		K	71091		8.3	6.3 5.2	44	81	120	960	4.4	36	.0037	19
343A	03-687		Č	69328			4.4	41	82	110	1000		37	.0033	18
405U	04-818	F	H	70252		6.8	5.5	37	83	110	720	4.1	27	.0030	17
334C	01-665		Ä	69269		8.3	5.2	44	84	100	850		31	.0030	17
436V	04-868		J	71056		7.4	6.7	48	85	100	750		28	.0029	15 1
4388	02-868		1	71056		8.6	5.5	48	86	98	840		31	.0028	15
3798	02-748		Ē	70126		10.7	4.1	44	87	90	960		36	.0027	14 1
372T 340T	04-748 02-687	F	F	70126 69328		10.4	3.4 3.7	36 41	88 89	83 80	860 810		32 30	.0023 .0023	13 1 13 1
333E	01-660		Ā	69265		9.5	3.1	41	C	80	610	3.0	30	.0023	13
334T	02-660		Ê	69265					č						
348s	02-683	F	Ď	69321		9.0			č						
3498	01-683		Č	69321		12.2			Č						
378A	01-745		E	70121		11.6			C						
383U	02-745	F	F	70121					Č						
401A	02-812		G	70247		9.2			C						
4071	01-812	F	H	70247	398	8.0			C						
438U 441B	02-862 01-862	-	J I	71050 71050		7.8 8.6			C						
4474	02-873	F	ť	71085					č						
448A	01-873		ĸ	71085		10.0			č						
	*****		****												

UCI/KG REPRESENTS MICROCURIES OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
MBG/KG REPRESENTS MEGABEQUERELS OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER INHALATION EXPOSURE.
+ INDICATES THE DOG DIED BEFORE IT RECEIVED ITS POTENTIAL INFINITE DOSE.
COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED, RESPECTIVELY. PROMINENT FINDINGS ARE INCLUDED.

BETA RADIATION DOSE TO LUNG

RATE (GY/MIN)	CUMULATI	VE (GY)		DAYS TO	
INITIAL AT DEATH	INFIN. T	O DEATH	DATE		COMMENT
******				******	
.011	58	58	81195	4089	D-PULMONARY FIBROSIS; CARCINOMA, LUNG
.011	57	57	84213	5366	E-BRONCHIOLOALVEOLAR CARCINONA, LUNG
.011	57	57 53	80231	3923	D-HEMOLYTIC AMENIA
.0096	53	53	82295	4258	D-CONGESTIVE HEART FAILURE
.0093	51	51 48	83062	4559	E-INTERSTITIAL PHEUMONIA
.0090			79189	3351	D-UREMIA
.0068	48	48	80197	3598	D-INTERSTITIAL PNEUMONIA
.0068	48	48 48	81124	3722	E-LYMPHOSARCOMA, LIVER
.0088	48	48	83341	4964	E-ADENOCARCINONA, NAMMARY GLAND
.0080	44	44	84221	4914	E-ADENOCARCINOMA, NASAL
.0079	43	43	86013	5437	E-CARCINONA, LUNG
.0075	41	43 41 39	81290	4056	D-RENAL TUNORS
.0072	39	39	85254	5608	
.0072	39	39	84164	4821	D-SQUAMOUS CELL CARCINOMA, TONSIL
.0069	38	38	80325	4014	E-ADENOCARCINOMA, MAMMARY GLAND
.0069	36	36	83084	4707	D-ADENOCARCINONA, JEJUNUM
.0065	36 36	36 36 34 30	81263	4318	D-RENAL AMYLOIDOSIS
.0065	36 34	36 7/	85089	5665 4136	E-CARCINOMA, LUNG
.0065 .0056	70	34 70	82209 80293		D-EPILEPSY
	30 30	30 30 30		4236	D-MENINGIOMA
.0056 .0055	30 30	30 30	82105 82134		
.0052	28	28	82348		
.0052	26 24	20 24	85019	5372	
.0043	23	24 23	79058	3219	
.0038	20	20	81189	4303	E-THROMBOEMBOLISM
.0037	20	20 20 20	86086	5678	
.0037	20	20	87006	5759	
.0033	19	19	81230		
.0033	18	18		5499	
.0030	17	17		4762	D-ENTERITIS
.0030	17	17	82018		E-DISC PROTRUSION
.0029	15	15	84122	4814	
.0028	15	15		4250	
.0027	14	14	81042	3934	D-PROSTATITIS; CARCINOMA, SALIVARY
.0023	13	13	81285	4177	D-HEPATIC DEGENERATION
.0023	13	13	82208	4628	D-PANCREATIC ISLET CELL CARCINOMA
			82084	4567	E-RENAL ATROPHY
			81005	4123	E-NECROTIZING ARTERITIS
			82174	4601	E-CARCINOMA, LUNG
			85265	5788	D-CONGESTIVE HEART FAILURE
			83223	4850	E-CARCINOMA, LUNG
			85154	5512	E-NEPHROSCLEROSIS
			83179	4680	D-CARCINONA, LUNG
			85114	5346	E-CARCINONA, LUNG
			86041	5470	D-THROMBOSIS, LUNG
			83067		
			81090	3658	
			84080	4743	

ON EXPOSURE.

LY. PROMINENT FINDINGS ARE INCLUDED.

A.8 91Y in Fused Aluminosilicate Particles, Longevity Study

			INHA	LATION	EXPO	SURE									DOSE	RATE (GY/E
DOG IDE	ENTIFICA"	TION					1.0	.B.			I.L.	B.					
					AGE	WT									60	120	3
TATTOO	AN-EXPT	SEX	BLOCK	DATE	DAYS	KG	MBQ/KG	MBQ	RANK	UCI/KG	UCI	MBQ/KG	MBQ	INITIAL	DAYS	DAYS	q
										•••••		•••••					
386T	04-759	F	D	70154		13.5	37.	520.	01	360	4900		180.	9.9	4.4		
375A	01-722	M	A	70079	369		32.	330.	02	320	3300	12.	120.	8.8	3.6	1.5	
384A	02-758	M	C	70153		12.0	28.	340.	03	300	3600	11.	130.	8.3	3.9	1.8	į
383 5	01-760	F	B	70155			31.	340.	04	300	3300	11.	120.	8.3	3.6	1.5	
384\$	02-759	F	В	70154			26.	280.	05	300	3300	-	120.	8.2	3.6	1.6	
372A	03-724	×	A	70082			25.	280.	06	270	3100	10.	110.	7.5	3.2	1.3	į
3848	03-758	H	C	70153			24.	240.	07	260	2700	9.6	100.	7.2	3.2	1.4	
392U	01-761	F	D	70156	368	9.4	17.	160.	08	260	2400	9.6	89.	7.1	3.2	1.4	
385A	03-759	M	C	70154		11.0	13.	140.	09	230	2600	8.5	96.	6.4	2.8	1.2	
393s	01-758	F	8	70153			14.	160.	10	210	2300	7.8	85.	5.7	2.5	1.1	
374A	03-722	M	A	70079		10.8	11.	110.	11	200	2100	7.4	78.	5.3	2.4	1.1	
387V	02-760	F	D	70155		7.1	15.	100.	12	190	1300	7.0	48.	5.2	2.3	1.0	
489C	01-951	Ħ	K	71257	383	7.6	13.	100.	13	190	1500	7.0	56.	5.2	2.2	0.96	
484E	01-953	M	K	71259	398	9.1	11.	100.	14	180	1700	6.7	63.	5.1	2.1	0.90	
423C	03-835	M	E	70342	391	8.9	8.5	74.	15	170	1500	6.3	56.	4.6	2.0	0.86	
426S	04-834	F	F	70341		7.9	12.	96.	16	170	1300	6.3	48.	4.3	1.9	0.81	
491A	04-952	M	1	71258	369	9.8	14.	140.	17	170	1700	6.3	63.	4.7	2.0	0.84	
483T	04-951	F	L	71257	396	6.4	10.	63.	18	170	1100	6.3	41.	4.5	2.0	0.88	
484S	03-952	F	J	71258	397	7.2	14.	96.	19	170	1200	6.3	44.	4.5	1.9	0.82	
374B	01-724	M	A	70082	372	9.4	12.	110.	20	160	1500	5.9	56.	4.3	1.9	0.82	
385D	01-759	M	C	70154	401	9.4	13.	120.	21	160	1500	5.9	56.	4.3	1.9	0.84	
385s	04-758	F	8	70153	400	8.8	17.	150.	22	150	1300	5.5	48.	4.0	1.8	0.78	
420C	01-834	Ħ	G	70341	401	10.9	13.	140.	23	150	1700	5.5	63.	4.2	1.9	0.84	
419V	04-835	F	H	70342	415	7.1	6.3	44.	24	150	1100	5.5	41.	4.2	1.8	0.79	
491B	01-952	M	1	71258	369	9.0	7.4	67.	25	150	1300	5.5	48.	4.1	1.7	0.72	
390v	02-761	F	D	70156	376	7.6	17.	130.	26	140	1100	5.2	41.	3.8	1.7	0.77	!
492A	03-956	M	1	71264	374	11.3	11.	120.	27	140	1500	5.2	56.	3.7	1.5	0.60	
422C	02-834	M	E	70341	397	10.8	7.4	81.	28	130	1400	4.8	52.	3.7	1.6	0.69	
485U	02-951	F	j	71257	395	6.2	8.1	52.	29	130	830	4.8	31.	3.6	1.5	0.65	.0
4898	01-954	M	K	71260	386	10.0	8.9	89.	30	130	1300	4.8	48.	3.6	1.5	0.64	.a
420U	01-836	F	F	70343	403	7.3	9.3	67.	31	120	880	4.4	33.	3.3	1.5	0.66	
420B	01-837	M	G	70344	404	10.4	7.8	81.	32	120	1300	4.4	48.	3.3	1.5	0.64	
4228	02-835	F	H	70342		11.3	10.	120.	33	120	1400	4.4	52.	3.3	1.4	0.58	
490T	02-952	F	J	71258	370	7.9	5.2	41.	34	120	920	4.4	34.	3.2	1.4	0.62	.a
430A	01-835	M	E	70342		11.6	21.	240.	35	110	1200	4.1	44.	3.0	1.3	0.60	i
425T	03-834	F	F	70341	387	8.2	13.	110.	36	110	940	4.1	35.	3.3	1.4	0.61	0.
484V	04-953	F	L	71259	398	6.0	6.7	41.	37	110	680	4.1	25.	3.0	1.3	0.56	.0
376B	02-724	M	A	70082	370	8.4	10.	85.	38	110	900	4.1	33.	3.0	1.3	0.56	.0
422B	03-838	M	E	70348			5.9	67.	39	110	1200	4.1	44.	2.9	1.3	0.56	.0
428A	02-841	M	G	70351		9.4	7.4	70.	40	110	1100	4.1	41.	3.1	1.3	0.57	.0
484B	03-951	M	I	71257	396	8.6	6.3	56.	41	110	930	4.1	34.	2.9	1.2	0.52	.0
4898	02-956	F	J	71264		8.1	6.7	52.	42	110	890	4.1	33.	3.0	1.3	0.52	.0 0.
387s	01-767	F	D	70162	406	7.7	12.	96.	43	100	800	3.7	30.	2.8	1.2	0.51	.0
419T	02-838	F	F	70348	421	7.8	9.3	70.	44	100	800	3.7	30.	2.8	1.2	0.54	
490S	03-954	F	L	71260	372	8.1	7.0	56.	45	100	850	3.7	31.	2.9	1.2	0.51	
390T	04-766	F	В	70161	381	8.6	7.4	63.	46	97	830	3.6	31.	2.6	1.2	0.51	.0 0.
483D	02-953	M	I	71259	398	7.7	5.2	41.	47	94	720	3.5	27.	2.5	1.1	0.48	.0
490A	02-954	М	K	71260	372	9.2	5.5	52.	48	92	840	3.4	31.	2.5	1.1	0.45	
4925	04-956	F	J	71264	374	8.0	10.	85.	49	90	720	3.3	27.	2.5	0.94	0.36	.a
4285	03-837	F	Ħ	70344	386	7.1	7.8	56.	50	89	640	3.3	24.	2.5	1.1	0.51	0. 0.
484D	01-956	M	Ï	71264	403	7.7	6.3	48.	51	88	670	3.3	25.	2.4	1.0	0.44	.0
488U	03-953	F	Ĺ	71259	389	8.5	4.4	41.	52	87	740	3.2	27.	2.4	1.0	0.45	.0
420A	04-841	M	E	70351	411	12.4	7.8	96.	53	82	1000	3.0	37.	2.2	1.1	0.51	.ai
383C	01-766	M	C	70161	415	10.1	5.9	59.	54	80	820	3.0	30.	2.2	0.95	0.41	.0
432A	04-838	M	E	70348	367		4.8	44.	55	80	780	3.0	29.	2.2	0.99	0.44	.0

BETA RADIATION DOSE TO LUNG

DOSE RATE (GY/DAY) CUMULATIVE (GY)												
60	120	365	AT	60	120	365	POTENT.	TO	DEATH	DAYS TO	ANIMENIT	
DAYS	DAYS	DAYS	DEATH	DAYS	DAYS	DAYS	impim.	DEATH	DATE	DEATH	COMMENT	
•												
4.4			2.1	410			730+	570	70267	113	D-PULMONARY INJURY	
3.6	1.5		1.1	350	490		590+	510	70219	140	D-PULMONARY INJURY	
3.9 3.6	1.8 1.5		0. <i>69</i> 0. 8 5	350 340	510 4 8 0		650+ 590+	600 530	70347 70317	194 162	D-PULNONARY INJURY D-PULNONARY INJURY	
3.6	1.6		0.65 0.51	340	480		600+	560	70356	202	D-PULMONARY INJURY	
3.2	1.3		0.53	30	430		520+	490	70267	185	D-PULMONARY INJURY	
3.2	1.4		0.30	300	430		530+	510	71024	236	D-PULMONARY INJURY	
3.2	1.4		0.91	290	420		530+	460	70309	153	D-PULMONARY INJURY	
[2.8	1.2		0.59	260	380		460+	420	70327	173	D-PULMONARY INJURY	
2.5	1.1		0.48	230	330		410+	370	70330	177	D-PULMONARY INJURY	
2.4	1.1		0.75	220	320		400+	340	70226	147	D-PULMONARY INJURY	
2.3	1.0 0.96		0.96 0.078	210 210	300 300		380+ 370	310 370	70278 72190	123 298	D-PULMONARY INJURY D-PULMONARY INJURY	
2.1	0.90		0.24	200	290		350+	340	72107	213	D-PULMONARY INJURY	
2.0	0.86		0.49	190	270		330+	290	71137	160	D-PULMONARY INJURY	
1.9	0.81		0.28	180	250		310+	290	71172	196	D-PULMONARY INJURY	
2.0	0.8		0.29	190	270		330+	310	72089	196	D-PULMONARY INJURY	
2.0	0.88		0.041	180	270		330	330	72238	346	D-PULMONARY INJURY	
1.9	0.82		0.39	180	260		320+	290	72065	172	D-PULMONARY INJURY	
1.9 1.9	0.82 0.84		0.64 0.36	180 180	250 260		310+ 320+	260 290	70219 70335	137 181	D-PULMONARY INJURY D-PULMONARY INJURY	
1.8	0.78		0.097	160	240		290	290	71062	274	D-PULMONARY INJURY	
1.9	0.84		0.55	170	250		310+	270	71128	152	D-PULMONARY INJURY	
1.8	0.79		0.50	170	240		300+	270	71130	153	D-PULMONARY INJURY	
1.7	0.72		0.30	160	230		280+	260	72074	181	E-PULMONARY INJURY	
1.7	0.77		0.13	160	230		290+	280	71043	252	E-PULMONARY INJURY	
1.5	0.60		0.14	140	200		240+	230	72115	216	D-PULMONARY INJURY	
1.6	0. <i>6</i> 9 0.65	.019	0.30	150 150	210 210	250	260+ 250	240 250	71155 74276	179 1115	D-PULMONARY INJURY D-BRONCHIOLOALVEOLAR CARCINOMA	
1.5 1.5	0.64	.019		140	200	250	250	250	75234	1435	E-HEMANGIOSARCOMA, TBLN; B.A. CARCINOMA	
1.5	0.66	.017	0.42	140	200	230	250+	220	71137	159	E-PULMONARY INJURY	
1.5	0.64		0.30	140	200		240+	220	71153	174	D-PULMONARY INJURY	
1.4	0.58		0.27	130	190		230+	210	71150	173	D-PULMONARY INJURY	
1.4	0.62	.022		130	190	230	230	230	76293	1861	D-BRONCHIOLOALVEOLAR CARCINGHA	
1.3	0.60	000	0.059	120	180	270	220	220	71272	295	E-PULMONARY INJURY	
1.4	0.61 0.56	.020 .015		130 120	190 180	230 210	230 210	230 210	74268 75178	1388 1380	D-ADENOCARCINOMA, BRONCHOGENIC E-COMBINED SQUAM.CELL-B.A.CARC.	
1.3 1.3	0.56	.018	0.00004	120	170	210	210	210	72162	810	D-PULMONARY INJURY	
1.3	0.56	.020	0.00004	120	170	210	210	210	73263	1011	D-PULMONARY INJURY	
1.3	0.57	.018	0.00016	130	180	220	220	220	72325	704	D-PULMONARY INJURY	
1.2	0.52	.015		120	170	200	200	200	75138	1342	D-BRONCHIOLOALVEOLAR CARCINONA	
1.3	0.52	.015		120	170	200	210	210	76321	1883	E-BRONCHIOLOALVEOLAR CARCINOMA	
1.2	0.51	.016		110	160	200	200	200	77119	2514	D-BRONCHIOLOALVEOLAR CARCINOMA	
1.2	0.54		0.35	110 110	170		200+ 200+	180 190	71135 73101	152 206	D-PULMONARY INJURY	
1.2	0.51 0.51	.018	0.15	110	160 160	190	190	190	72101 76307	2337	D-PULMONARY VASCULAR INJURY E-BRONCHIOLOALVEOLAR CARCINOMA	
1.1	0.48	.016		100	150	180	180	180	79319	29 8 2	E-CARCINOMA, LUNG	
1.1	0.45		0.43	100	140		180+	150	72019	124	D-PULMONARY VASCULAR INJURY	
0.94	0.36	.0970	-	95	130	150	150	150	81035	3424	D-CARCINOMA, LUNG	
1.1	0.51	.020		100	150	190	190	190	77163	2376	D-SQUAMOUS CELL CARCINOMA, LUNG	
1.0	0.44	.014		96	140	170	170 170	170	80207	3230	D-CARCINOMA, LUNG	
1.0	0.45 0.51	.013 .024	0.011	97 95	140 140	170 180	170 180	170 180	77356 72047	22 89 426	D-SQUAMOUS CELL CARCINOMA, LUNG D-PULMONARY INJURY	
1.1 0.95	0.41	.013	v.v.:	90	130	160	160	160	77353	2749	E-SQUAMOUS CELL CARC. AND OSTEOSARC., LUNG	
	0.44	.017		90	130	160	160	160	80198	3502	E-CARCINOMA, LUNG	
5											·	

A.8 91Y in Fused Aluminosilicate Particles, Longevity Study (continued)

			INHAL	LATION	EXPOS	URE								••••••	DOSE	RATE (G	//DAY)
DOG IDE	NTIFICAT	ION					I.B				1.1.1	3.			60	120	365
					AGE				0444			MDO /VC	MBQ	INITIAL		DAYS	DAYS
TATTOO	AN-EXPT	SEX	BLOCK	DATE	DAYS	KG	MBQ/KG	MBQ	KARK	UCI/KG	001	MBU/KU		1811176			
					••••												1
426A	01-838	M	G	70348	393	11.5	5.9	70.	56	79	910	2.9	34.	2.2	0.96	0.42	.015
485W		F	Ĵ	71260		6.6	4.8	32.	57	76	500	2.8	19.	2.1	0.98	0.46	.021
422T		F	F	70351		9.9	8.5	85.	58	75	740	2.8	27.	2.0	0.93	0.42	.017
425S	04-837	F	H	70344		10.5	10.	100.	59	73	760	2.7	28.	2.0		0.39	.014
4915	02-958			71265		8.1	4.1	33.	60	69	560	2.6	21.	1.9		0.30 0.34	.0075
426T	02-837		F	70344		7.4	7.4	56.	61	67 59	490 430	2.5 2.2	18. 16.	1.8 1.6		0.32	.012
4878	01-958		K	71265	396	7.2 8.4	5.2 7.0	37. 59.	63	59	500	2.2	19.	1.6		0.31	.010
3911		F	D C	70161 70161	375 417		4.4	37. 31.	64 64	57	390	2.1	14.	1.6		0.30	.011
3828 431A	03-766 01-839		E	70349			3.7	37.	65	49	500	1.8	19.	1.3	0.59		.0089
492C	03-958		ī	71265		7.2	3.4	24.	66	47	340		13.	1.3		0.23	1
421T	02-836		F	70343		9.6	4.4	41.	67	45	430	1.7	16.	1.2	0.54		.0091
489T	04-958	F	Ĺ	71265			3.6	28.	68		340	1.6	13.	1.2	0.50		.0060
396x	03-767	F	8	70162		7.9	7.4	59.		44	340	1.6	13.	1.2	0.57	0.27	.012
430C	04-836		G	70343			3.3	26.		42	340		13. 8.5	1.1	0.48	0.20	.0058
428T	02-840	F	H	70350		5.7	4.1	23.	71	41 39	230 310		11.	1.1 1.0	0.47		.0078
4888	04-959		I	71266 70079		8.1 11.6	2.1 10.	17. 110.	72 73		400	1.3	15.	0.93		0.15	.0037
372B	02-722 02-767		A B	70162		7.8	3.4	27.	74	34	260		9.6	0.91		0.17	.0059
387U 396S	04-767		Ď	70162		8.8	2.9	26.	75	33	300		11.	0.93	0.42	0.19	.0075
4890	02-959		ĸ	71266		9.6	2.4	23.	76	33	320		12.	0.91	0.37	0.15	.0041
4245	03-839		Ĥ	70349			1.4	13.	77	31	290	1.1	11.	0.85		0.16	.0058
4885	01-960		Ĵ	71267		7.3	2.8	21.	78	31	230		8.5	0.85		0.16	.0050
386A	03-763	M	C	70159		11.0	1.4	16.	79	30	330		12.	0.83	0.37	0.17	.0063
376A	03-725		A	70084			1.5	<u> 13.</u>	80	29	240		8.9	0.80		0.15 0.15	.0055 .0055
4200	03-836		E	70343		9.3	4.1	37.	81 82	27 27	250 270		9.3 10.	0.72 0.72		0.14	.0048
429S	04-839		F	70349		10.2 6.3	3.2 2.5	33. 16.			180		6.7	0.73	0.30	0.12	.0030
4841 383v	03-960 04-763	F	L D	71267 70159			1.9	14.	83 84	23	170		6.3	0.64	0.27		.0036
422A	02-839		Ğ	70349		11.6	1.4	16.	85	19	230		8.5	0.53		0.096	.0029
425A	01-840		Ğ	70350		9.1	2.1	19.	86	19	180		6.7	0.52		0.10	.0039
487S	04-960		Ĵ	71267			1.7	11.	87	19	130		4.8	0.52		0.099	.0042
420s	04-840	F	Н	70350	410		1.6	12.	88	18	140		5.2	0.50		0.11	.0045
382C	02-763		С	70159			1.0	7.4	89	18	130		4.8	0.49		0.091	.0037 .0030
487A	03-959		I	71266		8.1	1.1	8.9	90	16	130		4.8 5.2	0.42 0.43		0.083 0.078	.0023
492B	02-960		K	71267			1.1	10. 7.4	91 92	16 16	140 120		4.4	0.43		0.086	.0035
485T	01-959		Ļ	71266 70084			1.0 1.4	12.	93	15	140		5.2	0.42		0.074	.0027
373A 383W	02-725 01-763		A B	70159			1.6	13.	94	14	110		4.1	0.39		0.066	.0028
42 3 U	03-840	F	F	70350			1.3	8.1	95	13	110		4.1	0.35		0.066	.0022
432B	01-841		Ė	70351			0.93	7.8	96	11	92	0.41	3.4	0.31	0.14	0.065	.0026
370A	01-725		A	70084	393	9.6			C								
381B	03-755		C	70147		11.2			С								
385T	01-755		В	70147					C								
389W	02-755		D	70147					C								
420T	01-833		H	70338					C								
424A	02-833		E F	70338 70338					Č								
428U 431B	04-833 03-833		Ğ	70338					č								
483A	02-950		ĸ	71256					č								
485S	03-950		Ĵ	71256		8.3			C								į
488C	04-950		I	71256	386				C								
488T	01-950		L		386	8.6			С								
***	***	***	*****	##													

BETA I

UCI/KG REPRESENTS MICROCURIES OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT. MBG/KG REPRESENTS MEGABEQUERELS OF RADIONACLIDE PER RICOGRAM OF TOTAL BODY WEIGHT.

DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER INHALATION EXPOSURE.

+ INDICATES THE DOG DIED BEFORE IT RECEIVED ITS POTENTIAL INFINITE DOSE.

COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED, RESPECTIVELY. PROMINENT FINDINGS ARE INCLU

BETA RADIATION DOSE TO LUNG

RATE (6	Y/DAY)	•••••	•••••	a	MULATI	VE (GY)	••••			
120	365	AT	60	120	365	POTENT.	TO	DEATH	DAYS TO	
DAYS	DAYS	DEATH	DAYS	DAYS	DAYS	INFIN.	DEATH	DATE	DEATH	CONNENT
0.42	.015		89	130	160	160	160	75135	1613	D-COMBINED SQUANGUS CELL-8-A-CARCINONA
0.46	.021		88	130	160	170	170	79228	2890	D-PULHONARY INJURY
0.42	.017		85	120	150	160	160	78212	2783	D-B-A-CARCINONA AND OSTEOSARCONA, LUNG
0.39	.014		81	120	140	150	150	78263	2841	E-SQUANCUS CELL-B-A-CARCINGNA, LUNG
0.30	.0075		74	100	120	120	120	80358	3380	E-CARCINONA, LUNG
0.34	.012		74	110	130	130	130	80340	3648	E-CARCINONA, NAMMARY; CARCINONA, LUNG
0.32	.012		67	97	120	120	120	84206	4689	E-BRONCHIOLOALVEOLAR CARCINOMA, LUNG
0.31	.010		65	94	120	120	120	81169	4026	E-CARCINOMA, ADRENAL CORTEX
0.30	.011		64	92	110	110	110	80155	3646	D-CARCINOMA, LUNG
0.26	.0089		55	79	97	97	97	76005	1847	E-NEMANGIOSARCOMA, SPLEEN
0.23		0.093	52	74		90+	83	72063	183	D-PULMONARY VASCULAR INJURY
0.24	.0091		50	72	90	9 1	91	84019	4789	E-FIBROMAS, VAGINA
0.21	.0060		47	67	81	82	82	86055	5269	E-VERTEBRAL FRACTURE
0.27	.012		51	75	95	96	96	79021	3146	E-HEMANGIOSARCOMA, NEART
0.20	.0058		46	65	78	79	79	82337	4377	D-CARCINONA, COLON
0.22	.0076		45	65	81	81	81	84284	5047	E-ADENOCARCINOMA, MAMPIARY GLAND
0.21	.0078		43	62	77	78	78	86359	5572	D-CARCINONA, LUNG
0.15	.0037		37	52	61	62	62	80270	3843	D-GRANULONATOUS INFECTION
0.17	.0059		37	53	64	64	64	81182	4038	E-CARCINOMA, MANNARY GLAND
0.19	.0075		38	56	70	70	70	83165	4751	D-CARCINOMA, LUNG
0.15	.0041		36	51	61	61	61	84344	4826	D-CONGESTIVE FAILURE, HEART
0.16	.0058		35	50	62	62	62	82307	4341	E-CARCINOMA, LUNG
0.16	.0050		34	49	60	60	60	86294	5506	D-SEPTICEMIA
0.17	.0063		34 32	49	61	62 56	62 56	83124	4713 3390	E-CARCINOMA, LUNG
0.15	.0055 .0055		30	46	56 54	56 54	56 54	79187 86220	5721	E-TUMOR, MASAL CAVITY E-HEART FAILURE
0.15	.0055		30 30	43 42	52	53	53	84047	4811	E-BRONCHIOLOALVEOLAR CARCINOMA, LUNG
0.14 0.12	.0030		29	40	48	33 48	55 48	83105	4221	D-CARCINOMA, LUNG
0.11	.0036		26	36	44	44	44	83221	4810	E-ADENOCARCINONA, MANNARY
0.096	.0029		21	31	37	37	37	86129	5624	E-CARCINOMA, LUNG
0.10	.0039		21	31	39	39	39	79125	3062	E-TUNOR, PITUITARY
0.099	.0042		21	30	38	38	38	83270	4386	E-CARCINOMA, LUNG
0.11	.0045		21	31	39	39	39	82177	4210	D-CARCINOMA, BLADDER
0.091	.0037		20	28	35	35	35	84182	5136	E-ADENOCARCINOMA, LUNG
0.083	.0030		17	25	31	31	31	83115	4232	E-CARCINONA, LUNG
0.078	.0023		17	25	30	30	30	84117	4598	E-ADENOCARCINONA, PERIANAL GLAND
0.086	.0035		17	25	31	31	31	85204	5052	D-ADENOCARCINONA, MANNARY GLAND
0.074	.0027		17	24	29	29	29	84043	5072	D-HEART FAILURE
0.066	.0028		16	22	26	26	26	84103	5057	E-PYOMETRA
0.066	.0022		14	20	25	25	25	84138	4901	E-NEPHRITIS, CHRONIC
0.065	.0026		13	19	24	24	24	83040	4437	E-CHOLANGIO NEPATITIS
li .								82091	4390	E-ACCIDENTAL DEATH
l)								86245	5942	E-ADENOMA, PITUITARY
								83178	4779	E-ADENOCARCINOMA, MANNARY
ll.								82171	4407	D-PYCHETRA
								85165	5306	E-INTERSTITIAL NEPHRITIS
ll .								85079	5220	E-PROLAPSED DISC
								85017	5158	E-MALIGNANT MELANOMA, MOUTH
li								79080	3029	D-UNDETERMINED
}								85312	5170	E-NEPHROSCLEROSIS
								82001	3763	D-LYMPHADENOPATHY
								86144	5367 3363	D-RENAL CALCULI
1								80332	2303	D-CARCINOMA, BLADDER

INGS ARE INCLUDED.

A.9 144Ce in Fused Aluminosilicate Particles, Longevity Study (Series I)

																	BETA R	W
				LATION				_				_		(OSE RA	TE (GY	/DAY)	
DOG 10	ENTIFICA	TION					1.4	8.8.			I.L.	5.			40	120	745	
					AGE		WB0 /Y0	MB 0	BANK		1161	MPA /V C	MBA	INITIAL	60	DAYS	365	Da
141100	AN-EXPT	3EX	BLOCK	DATE	DAYS	KG	MBQ/KG	MBQ	KARK	UCI/KG			MBQ	INITIAL	DAYS		DAYS	
2288	02-490	н	c	68029	372	8.4	20.	170.	01	210	1700	7.8	63.	13.	8.8	7.2		7.
2108	01-474	H	Ā	67348	419	7.9	16.	130.	02	190	1500		56.	11.	8.6	6.7		5]
2098	02-474	M	Ä	67348	421	9.1	11.	100.	03	190	1700		63.	10.	7.7	6.1		4.
2088	01-478	F	B	67355		11.0	17.	190.	04	180	2000	6.7	74.	10.	8.4	6.7		5.
2116	02-478	F	Ī	67355	424	7.5	10.	74.	05	120	890	4.4	33.	6.9	5.3	4.2		3.
226C	01-490	M	C	68029	374	7.8	11.	89.	06	96	740	3.6	27.	5.5	4.2	3.2		2.
217A	01-491	M	C	68030	407	8.8	4.8	41.	07	68	600	2.5	22.	3.8	2.9	2.2		1
211A	03-473	Ħ	A	67347	416	8.1	3.7	30.	08	66	540	2.4	20.	3.8	2.9	2.3		1.
211E	03-477	F	8	67354	423	8.6	4.4	41.	09	51	440	1.9	16.	2.9	2.2	1.7	.66	0.
228A	02-491	M	C	68030	373	9.9	2.5	25.	10	34	330	1.3	12.	1.9	1.4	1.1	.42	0.
211D	02-473	M	A	67347	416	7.1	2.0	14.	11	27	190	1.0	7.0	1.5	1.0	0.74	.24	0.
211F	02-477	F		67354	423	8.7	1.4	12.	12	19	170		6.3	1.1	0.79	0.60	.23	į
223A	03-491	M	C	68030	382	9.8	1.3	12.	13	15	150		5.5	0.89	0.60	0.44	.16	- 1
2080	01-477	F		67354	431	5.9	0.96	5.5	14	15	91	0.55	3.4	0.89	0.68	0.53	.20	1
209C	01-473	M	A	67347	420	9.0	1.0	8.9	15	11	100	0.41	3.7	0.64	0.49	0.38	. 15	
208A	01-476	M	A	67353	430	8.9			C									- 1
2090	02-476	F	8	67353	426	7.9			C									
220C	01-492	M	C	68032	391	10.2			C									

UCI/KG REPRESENTS MICROCURIES OF RADIOMUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
MBG/KG REPRESENTS MEGABEQUERELS OF RADIOMUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER INHALATION EXPOSURE.
+ INDICATES THE DOG DIED BEFORE IT RECEIVED ITS POTENTIAL INFINITE DOSE.
COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED, RESPECTIVELY. PROMINENT FINDINGS ARE INCLUDE.

BETA RADIATION DOSE TO LUNG

HE R	ITE (GY	/DAY)			CUMUL	ATIVE	DOSE (GY)			
MYS	120 Days	365 Days	AT DEATH	60 DAYS	120 DAYS	365 Days	POTENT. INFIN.	TO DEATH	DEATH)ATE	DAYS TO DEATH	COMMENT
8.6 7.7 8.4 3.3 1.2 2.9 2.2 1.4 1.0 9.79 3.68 3.49	7.2 6.7 6.1 6.7 4.2 3.2 2.2 2.3 1.7 1.1 0.74 0.64 0.53 0.38	.66 .42 .24 .23 .16 .20	7.0 5.3 4.7 5.5 3.4 2.4 1.7 1.2 0.57 0.015 0.012	640 580 530 560 370 290 200 200 150 98 76 56 44 47 34	1100 1000 940 1000 650 510 360 360 370 170 130 97 75 83 60	530 340 230 190 140 170	6700+ 2700+ 2400+ 2900+ 1700+ 1200+ 830+ 720+ 460 300+ 250 190 220 160	1300 1400 1300 1400 840 700 480 580 560 460 290 250 190 220 160	68172 68156 68164 68161 68218 68216 68239 69033 71252 71071 76317 74309 74193 79143 82328 80183 81042	143 173 181 182 171 189 186 257 410 1318 1185 3250 2471 2396 4179 5454 4578 4759	D-PULMONARY INJURY D-PULMONARY INJURY D-PULMONARY INJURY D-PULMONARY INJURY E-PULMONARY INJURY D-PULMONARY INJURY D-PULMONARY INJURY D-PULMONARY INJURY D-PULMONARY INJURY D-PULMONARY INJURY E-HEMANGIOSARCOMA, LUNG E-OSTEOSARCOMA, LUNG E-OSTEOSARCOMA, LUNG E-HEMANGIOSARCOMA, BONE D-HEMANGIOSARCOMA, BONE D-HEMANGIOSARCOMA, TBLN. E-LYMPHOMA, VISCERAL D-RENAL ATROPHY D-RENAL ANYLOIDOSIS E-SQUAMOUS CELL CARCINOMA, TONSIL

FINDINGS ARE INCLUDED.

A.10 144Ce in Fused Aluminosilicate Particles, Longevity Study (Series II)

														•••••	
			INKA	LATION	EXPOS	SURE									DOSE
DOG ID	ENTIFICA	TION			• • • • • •		1.8	.B.			1.1.8	•			
	· · · · · · · ·		51 55 2		AGE	WT			RANK			MBO (VC	MBQ	******	DAY:
141100	AN-EXPT	25 X	BLUCK	DATE	DATS	KG	MBQ/KG	MBQ	KARK	UCI/KG	UCI	MBQ/KG	mpu	INITIAL	JA
315V	02-595	F	D	69149	398	7.2	6.3	44.	01	66.	470.	2.4	17.	3.7	2.7
2968	02-586	M	A	69121	399	9.1	4.8	44.	02	65.	590.	2.4	22.	3.7	2.9
327A	01-642	M	E	69213	387	9.4	4.4	41.	03	56.	520.	2.1	19.	3.2	2.4
479U	04-947	F	L	71225	379	6.8	6.7	44.	04	54.	360.	2.0	13.	3.2	1.9
330s	02-642	F	F	69213	374	8.3	4.1	34.	05	53.	440.	2.0	16.	3.0	2.3
297 s	03-586	F	B	69121	402	10.4	6.3	67.	06	46.	470.	1.7	17.	2.7	2.0
470A	03-947	M	K	71225		11.0	2.5	27.	07	44.	480.	1.6	18.	2.7	2.0
4658	03-918	F	J	71176	382	7.9	3.7	30.	08	41.	330.	1.5	12.	2.4	1.8
465A	04-918	M	1	71176		11.4	2.3	26.	09	41.	460.	1.5	17.	2.3	1.8
330U	03-641	F	F	69212	373	6.0	3.1	19.	10	37.	220.	1.4	8.1	2.2	1.5
315A	01-595	M	С	69149		10.9	4.8	15.	11	35.	380.	1.3	14.	2.0	1.3
3308	04-641	M	E	69212	373	6.3	2.7	17.	12	34.	220.	1.3	8.1	2.0	1.4
303A	01-586	M	A	69121	391	9.5	2.8	27.	13	33.	320.	1.2	12.	1.9	1.4
454A	03-883	M	G	71106	402	8.8	2.5	22.	14	32.	280.	1.2	10.	1.9	1.4
453\$	04-883	F	H	71106	408	8.0	1.4	11.	15	29.	230.	1.1	8.5	1.7	1.3
4648	01-918	M	I	71176	385	9.4	1.7	16.	16	27.	250.	1.0	9.3	1.6	1.1
310T	02-594	F	D	69148	402	8.9	4.8	41.	17	26.	230.	0.96	8.5	1.5	1.1
460S	02-918	F	J	71176	419	7.9	3.0	23.	18	24.	190.	0.89	7.0	1.5	0.97
4805	02-947	F	L	71225	373	8.3	1.9	16.	19	24.	200.	0.89	7.4	1.5	1.0
312B	03-594	M	C	69148	399	9.0	1.8	16.	20	24.	210.	0.89	7.8	1.4	1.0
29 8 S	03-585	F	8	69120		10.4	2.3	24.	21	23.	240.	0.85	8.9	1.3	0.97
455B	01-883	M	G	71106		11.7	2.2	26.	22	19.	220.	0.70	8.1	1.1	0.83
471A	01-947	M	K	71225	397	7.5	1.3	9.6	23	19.	150.	0.70	5.5	1.2	0.80
453T	02-883	F	H	71106	408	6.4	1.7	11.	24	18.	110.	0.67	4.1	1.0	0.75
315U	01-594	F	D	69148	397	8.3	1.9	16.	25	18.	150.	0.67	5.5	1.0	0.77
304s	01-585	F	8	69120	386	7.4	1.3	9.6	26	17.	120.	0.63	4.4	0.98	0.72
311B	03-593	M	C	69147		9.3	0.74	7.0	27	14.	130.	0.52	4.8	0.79	0.57
328T	02-641	F	F	69212		10.6	0.96	10.	28	13.	140.	0.48	5.2	0.76	0.55
467A	03-916	H	ı	71175		12.2	0.96	11.	29	13.	160.	0.48	5.9	0.77	0.55
467T	04-946	F	Ļ	71224	422	6.4	0.67	4.4	30	13.	81.	0.48	3.0	0.78	0.55
297B	02-585	M	A	69120	401	9.6	1.9	18	31	12.	110.	0.44	4.1	0.68	0.45
326C	01-641	M	E	69212	391	9.4	0.67	6.3	32	12.	110.	0.44	4.1	0.70	0.51
463A	02-916	M	I	71175		10.9	0.74	8.1	33	12.	130.	0.44	4.8	0.74	0.50
480B	03-946	M	K	71224	372	8.2	0.74	6.3	34	11.	91.	0.41	3.4	0.68	0.46
4545	04-882	F	H	71105	401	9.6	1.5	14.	35	10.	95.	0.37	3.5	0.60	0.44
454E	03-882	M	G	71105	401	8.9	0.78	7.0	36	9.8	87.	0.36	3.2	0.60	0.42
305V	02-584	F	В	69119	382	6.9	0.67	4.4	37	9.8	67.	0.36	2.5	0.57	0.37
460T	04-916	F	ī	71175	418	7.4	1.1	12.	38	9.5	<i>7</i> 0.	0.35	2.6	0.56	0.42
327B	01-640	M	E	69211	385	9.0	0.59	5.2	39	8.0	72.	0.30	2.7	0.46	0.32
323V	02-640	F	F	69211	408	7.8	0.44	3.4	40	7.8	60.	0.29	2.2	0.45	0.33
303B	03-584	M	A	69119	389	6.7	0.63	4.4	41	7.6	51.	0.28	1.9	0.44	0.34
310s	02-593	F	D	69147		9.1	0.35	3.2	42	6.3	57.	0.23	2.1	0.36	0.26
469S	02-946	F	Ļ	71224	397	7.2	0.48	3.4	43	5.8	42.	0.21	1.6	0.35	0.26
4788	01-946	M	K	71224	379	9.6	0.37	3.7	44	5.7	54.	0.21	2.0	0.33	0.26
308B	01-593	M	C	69147		10.3	0.27	2.8	45	5.4	55.	0.20	2.0	0.31	0.23
454C	01-882	M F	G	71105 71175	401 384	9.5	0.52	4.8 3.2	46 47	5.4 5.0	51. 37.	0.20 0.19	1.9 1.4	0.32 0.29	0.24 0.21
4641	01-916	F	J			7.4	0.44	5.2 6.3	47 48	4.9	37. 51.	0.19	1.9	0.29	0.21
455T	02-882	F	H	71105		10.4	0.59	0.3 2.4	48 49	2.4	19.	0.18	0.70	0.30	0.091
313S	01-598	•	_	69160	411	7.9 10.0	0.30		50	2.4	21.	0.039	0.78	0.14	0.081
296B 466V	01-592 04-915	M	Ą	69135 71174	380	7.9	0.14 0.17	1.4 1.3	51	2.0	15.	0.074	0.75	0.12	0.084
	02-598	F	C	69160	411	9.6	0.17	1.4	52	1.8	17.	0.067	0.63	0.10	0.07
313C 304T	02-598	Ę	8	69135	401	7.8	0.093	0.70	53	1.6	12.	0.059	0.44	0.092	0.061
324V	03-638	F	F	69210		7.2	0.14	1.0	54	1.5	11.	0.056	0.41	0.083	0.061
331A	04-638	М	Ė	69210		9.0	0.081	0.74	55	1.3	11.	0.048	0.41	0.073	0.051

BETA RADIATION DOSE TO LUNG

••	DOSE RAT	E (GY/DAY	· · · · · · · · · · · · · · · · · · ·	********	CUMULATIVE	DOSE (GY)	•••••			
L	60 Days	365 Days	AT DEATH	60 Days	365 Days	POTENT. INFIN.	TO DEATH	DEATH DATE	DAYS TO DEATH	COMMENT
	2.7		1.3	190.		890. +	530.	70030	246	D-PULMONARY INJURY
	2.9		1.5	200.		1000. +	570.	69355	234	D-PULMONARY INJURY
	2.4		0.99	170.		840. +	500.	70121	273	D-PULMONARY INJURY
	1.9	.57	0.12	140.	470.	620. +	590.	73284	790	E-HENANGIOSARCONA, LUNG
	2.3		0.91	150.	4.0.	710. +	500.	70127	279	D-PULMONARY INJURY
	2.0	.60	0.15	140.	500.	660. +	610.	71141	750	E-HEMANGIOSARC, AND FIBROSARC, LUNG
	2.0		0.69	140.		530. +	410.	72135	275	D-PULMONARY INJURY
	1.8		0.91	120.		460. +	280.	71361	185	D-PULMONARY INJURY
	1.8		0.66	120.		570. +	410.	72122	311	D-PULMONARY INJURY
	1.5	.43	0.032	110.	360.	470. +	460.	72194	1077	E-HENANGIOSARCOMA, LUNG
	1.3	.43	0.060	95.	330.	460. +	430.	71335	916	D-NEMANGIOSARC. AND B-A-CARCINOMA, LUNG
	1.4	.38		100.	340.	440.	440.	75334	2313	D-NEM-SARC., SITE UND.; B-A-CARC., LUNG
	1.4		0.74	98.		390. +	240.	69314	193	D-PULMONARY VASCULAR INJURY
	1.4	.31	0.012	98.	310.	38 0.	380.	74238	1228	D-PULMONARY THROMBOSIS; AMYLOIDOSIS
	1.3	.41	0.018	89.	33 0.	440. +	430.	74236	1226	D-HEM-SARCB-A-CARCBRONCHO.CA.,LUNG
	1.1	.29	0.0030	80.	260.	330.	330.	75238	1523	D-BRONCHIOLOALVEOLAR CARCINOMA
	1.1	.33	0.079	77.	270.	360. +	340.	71183	765	E-HEMANGIOSARCOMA, LUNG
	0.97	.27		72.	230.	300.	300.	76160	1810	D-MIXED TUNOR, LUNG; 8-A-CARCINONA
	1.0	.29	0.0091	73.	250.	320.	320.	75017	1253	E-SQUAMOUS CELL CARCINONA, NASAL CAVITY
	1.0	.31	0.0015	72.	250.	340.	340.	74217	1895	D-HEMANGIOSARCOMA, SPLEEN
	0.97	.29		68.	230.	320.	320.	77199	3001	E-MIXED TUMOR, LUNG; OSTEOSARCOMA, LUNG
	0.83	.23		58.	200.	260.	260.	77093	2179	D-EPILEPSY
	0.80	.22		57.	190.	250.	250.	77216	2183	E-HEMANGIOSARCOMA, BONE
	0.75	.20		53.	180.	230.	230.	78277	2728	E-HEMANGIOSARCOMA, SPLEEN
	0.77	.21	0.00040	54.	180.	240.	240.	80092	3961 3737	D-ADENOCARCINOMA, LUNG
	0.72	.21	0.00018	50.	170.	230.	230.	75256 74295	2327 1974	D-HEMANGIOSARCOMA, LIVER E-HEMANGIOSARCOMA, BOTH HUMERI
	0.57	.16	0.00060	40. 39.	140.	180. 170.	180. 170.	79365	3805	E-GASTROENTEROPATHY
	0.55 0.55	.15 .14		39.	130. 13.	160.	160.	76112	1763	D-HEMANGIOSARCOMA, TBLN
	0.55	.17		39.	140.	180.	180.	76147	1749	D-ACCIDENTAL DEATH
	0.45	.14		33.	110.	150.	150.	76065	2501	D-PLEURITIS (NOCARDIA SP.)
	0.51	.14		36.	120.	160.	160.	78205	3280	E-HEMANGIOSARCOMA, TBLN
	0.50	.14		36.	120.	150.	150.	79102	2849	D-HEMANGIOSARCOMA, HEART
	0.46	.14		33.	110.	150.	150.	82125	3919	E-HEMANGIOSARC., TBLN; CARCINOMA, LUNG
	0.44	.12	0.0013	31.	100.	130.	130.	75171	1527	D-HEMANGIOSARCOMA, HEART
	0.42	.12		30.	100.	130.	130.	77278	2365	E-HEMANGIOSARCOMA, DERMIS
	0.37	.10		46.	120.	120.	120.	85021	5746	D-CARCINOMA, SKIN
	0.42	.12		29.	100.	130.	130.	80189	3301	E-CHRONIC TRACHEITIS
	0.32	.097		23.	78.	110.	110.	82316	4853	E-CARCINOMA, LUNG
	0.33	.092	0.00010	23.	79.	100.	100.	<i>7</i> 5127	2107	D-HEMANGIOSARCOMA, TBLN
	0.34	. 12		23.	86.	120.	120.	76133	2570	E-HEMANGIÓSARCOMA, LIVER
	0.26	.077		18.	63.	85.	85.	81049	4285	E-CARCINOMA, LUNG
	0.26	.080		18.	64.	8 6.	86.	83235	4394	E-INTERSTITIAL NEPHRITIS; LUNG CARC.
	0.26	.083		18.	64.	87.	87.	78169	2502	D-HEMANGIOSARCOMA, TBLN
	0.23	.00028		16.	<u>57.</u>	77.	77.	82342	4943	D-MYOCARDIAL DEGENERATION; LUNG TUMOR
	0.24	.067		17.	57.	78.	78.	78301	2753	E-HEMANGIOSARCOMA, DISSEMINATED
	0.21	.053		15.	48.	62.	62.	82112	3955	D-PYCHETRA AND HEMANGICHA, TBLN
	0.21	.050		15.	47.	60.	60.	76072	1793	E-HEMANGIOSARCOMA, SITE UNDETERMINED
	0.098	.029		7.0	24.	32.	32.	79257	3749	D-HEMANGIOSARCOMA, TBLN
	0.089	.028		6.2	22.	30.	30.	81162	4410 5170	D-CONGEST. HEART FAIL.; CARCINOMA, LUNG
	0.086	.025		5.9	21.	27.	27.	85238 74087	5178 2479	E-ADENOCARCINOMA, MAMMARY GLAND D-PERITONITIS (NOCARDIA SP.)
	0.079	.025 .022		5.4 4.7	19.	26. 23.	26. 23.	76083 79324	2479 3841	E-ADENOCARCINONA, BLADDER
	0.068 0.067	.022		4.5	17. 17.	23. 22.	23. 22.	82160	4698	E-CARCINOMA, LUNG
	0.057	.019		3.9	15.	20.	20.	79132	3574	D-UNDETERMINED
	v. v.,	,				LV.				

A.10 144Ce in Fused Aluminosilicate Particles, Longevity Study (Series II) (continued)

			INKA	LATION	EXPO	SURE								******	DOSE RAT	E (G
DOG ID	ENTIFICA	TION	•••••		AGE	VT	1.8.	8.			I.L.B.				60	•
TATTOO	AN-EXPT	SEX	BLOCK	DATE			MBQ/KG	MBQ	RANK	UCI/KG	UCI	MBQ/KG	MBQ	INITIAL	DAYS	
4618	03-915	H	1	71174		11.1	0.11	1.2	56	1.2	13.	0.044	0.48	0.071	0.052	.01
4670	04-945	F	L	71223			0.10	0.67	57	1.2	7.5	0.044	0.28	0.067	0.050	.01
477A	03-945	M	K	71223		11.0	0.067	1.1	58 59	1.1 0.71	12. 5.9	0.041 0.026	0.44	0.066 0.041	0.050 0.030	.01
3290 4538	03-642 03-881	M	E	69213 71104			0.044 0.052	0.37 0.44	60	0.63	5.1	0.025	0.22 0.19	0.037	0.028	.00
4638	02-915	F	j	71174		10.4	0.028	0.30	61	0.53	5.5	0.020	0.20	0.037	0.023	.00
452U	04-881	F	Ä	71104			0.17	1.4	62	0.52	4.2	0.019	0.16	0.040	0.024	.007
3145	04-597	F	D	69157			0.030	0.29	63	0.45	4.4	0.017	0.16	0.026	0.018	.00
296U	02-591	F	B	69134		8.4	0.030	0.25	64	0.44	3.7	0.016	0.14	0.024	0.018	.004
3138	03-597	M	C	69157		10.1	0.041	0.41	65	0.37	3.7	0.014	0.14	0.021	0.015	.00
461A	01-915	M	<u> </u>	71174		12.0	0.018	0.22	66	0.35	4.3	0.013	0.16	0.022	0.015	.004
322V	02-638	F	F	69210			0.026	0.16	67	0.32	2.0	0.012	0.074	0.019	0.014	.004
476C	01-945	M	K	71223 71223			0.021	0.19	68 69	0.30 0.25	2.7	0.011 0.0093	0.10 0.059	0.018 0.014	0.014 0.011	.00
471S 297A	02-945 01-591	F	L A	69134		6.3 11.0	0.033 0.014	0.21 0.16	70	0.25	1.6 2.0	0.0067	0.039	0.011	0.0080	.00
	02-881	F	Ĥ	71104	406		0.014	0.089	71	0.18	1.1	0.0067	0.041	0.011	0.0087	.003
	01-881	N	Ğ	71104			0.014	0.11	72	0.17	1.4	0.0063	0.052	0.011	0.0078	.00
472V	02-942	F	ĭ	71222			0.013	0.11	73	0.16	1.3	0.0059	0.048	0.0095	0.0074	.002
	02-590	F	Š	69129			0.013	0.13	74	0.12	1.2	0.0044	0.044	0.0071	0.0056	.001
	02-914	M	I	71173	409		0.0059	0.052	<i>7</i> 5	0.083	0.75	0.0031	0.028	0.0049	0.0038	.001
	01-942	M	K	71222	386		0.0041	0.036	76	0.079	0.67	0.0029	0.025	0.0047	0.0037	.001
	02-589	F	B	69128			0.0085	0.078	77	0.077	0.68	0.0028	0.025	0.0046	0.0036	.001
	01-597	F	D	69157	412	10.1	0.0048	0.048	78	0.076	0.77	0.0028	0.028	0.0045	0.0035	.001
4645	01-914	F	J	71173	382		0.0044	0.037	79	0.062	0.50	0.0023	0.019	0.0037	0.0029	.000
451T	04-880 02-597	F	H	71103 69157			0.0033 0.0078	0.026 0.089	80 81	0.057 0.051	0.45 0.59	0.0021 0.0019	0.017 0.022	0.0034 0.0030	0.0026 0.0024	.000
	01-590	M	Ä	69129		11.5 11.3	0.0076	0.063	82	0.044	0.50	0.0019	0.022	0.0036	0.0020	.000
	03-596	F	Ô	69156			0.011	0.089	83	0.041	0.33	0.0015	0.012	0.0024	0.0019	.000
	05-636	F	F	69209			0.0056	0.044	84	0.039	0.33	0.0014	0.012	0.0023	0.0018	.000
	01-589	M	À	69128			0.0070	0.063	85	0.033	0.31	0.0012	0.011	0.0020	0.0015	.000
312A	04-596	M	C	69156	407	11.0	0.0018	0.020	86	0.025	0.27	0.00092	0.010	0.0015	0.0012	.000
472U	02-941	F	L	71221			0.0013	0.011	87	0.020	0.17	0.00074	0.0063	0.0012	0.00093	.000
465B	01-912	M	I	71172		11.2	0.0015	0.017	88	0.018	0.20	0.00067	0.0074	0.0011	0.00083	.000
	03-880	H	G	71103		11.1	0.0025	0.027	89	0.018	0.20	0.00067	0.0074	0.0011	0.00083	.000
3270	06-636	M	Ę	69209			0.0029	0.025	90	0.016	0.14	0.00059	0.0052	0.00095	0.00074	.000
462S	02-912	F	J E	71172 69209			0.0015 0.0023	0.012	91 92	0.014 0.0096	0.11 0.090	0.00052 0.00036	0.0041 0.0033	0.00083 0.00057	0.00065	000.
327C 478C	03-636 01-941	M	K	71221	376		0.0023	0.021 0.0081	93	0.0092	0.081	0.00034	0.0030	0.00054	0.00043	.000
324T	04-636	F	F	69209			0.0020	0.021	94	0.0063	0.068	0.00023	0.0025	0.00037	0.00029	.000
453A	01-880	H	Ġ	71103			0.00019	0.0017	95	0.0030	0.027		0.0010	0.00038	0.00014	.000
452T	02-880	F	H	71103			0.00007	0.0067	96	0.0024	0.023	0.000089	0.00085	0.00014	0.00011	.000
	01-588	F	В	69127					С							
3060	02-588	M	A	69127		9.4			C							
308T	02-596	F	D	69156		9.3	•		Ç							
3108	01-596	M	C	69156		11.0			C							
322U	02-636	F	F	69209					Č							
324B	01-636	M	E	69209 71099					C							
450A 452S	01-878 02-878	M F	G H	71099		11.8 10.2			C							
4525 464U	02-911	F	Ĵ	71169					Č							
4678	01-911	M	ĭ	71169					č							
477B	01-940	H	ĸ	71218					č							
	02-940	F	Ĺ	71218					C							
***	****	****	****	A A												

UCI/KG REPRESENTS MICROCURIES OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
MBG/KG REPRESENTS MEGABEQUERELS OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER INHALATION EXPOSURE.
+ INDICATES THE DOG DIED BEFORE IT RECEIVED ITS POTENTIAL INFINITE DOSE.
COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED, RESPECTIVELY. PROMINENT FINDINGS ARE INCLUDED.

BETA RADIATION DOSE TO LUNG

HOSE RAT	E (GY/DAY)		(CUMULATIVE	DOSE (GY)				
60 Days	365 DAYS	AT DEATH	60 Days	365 Days	POTENT. INFIN.	TO DEATH	DEATH DATE	DAYS TO DEATH	COMMENT
	.016 .014 .013 .0096 .0084 .0068 .0072 .0051 .0049 .0042 .0048 .0047 .0034 .0023 .0030 .0026 .0021 .0010 .0010 .0010 .0010 .0010 .00083 .00059 .00055 .00055 .00052 .00044 .00024 .00024 .00024 .00024 .00013 .00019 .00013 .00019 .00013 .000012	DEATH					_		E-LYMPHOSARCOMA, DISSEMINATED E-PYELOMEPHRITIS, KIDMEY E-MEHANGIOSARCOMA, SPLEEN E-CARCINOMA, THYROID D-CARCINOMA, THYROID D-CARCINOMA, MAMMARY E-ADENOCARCINOMA, MAMMARY GLAND E-ADENOCARCINOMA, MAMMARY GLAND D-TRANSITIONAL CELL CARCINOMA, BLADDER E-CAR., KID.; LYMPHOSAR, SPLEEN; CAR., LUNG E-PERINEAL NERNIA D-HEMANGIOSARCOMA, SPLEEN D-BRONCHIOLITIS D-SPONDYLITIS, ACUTE E-NECROTIZING PNEUNONIA E-CARCINOMA, MAMMARY GLAND E-PITUITARY TUMOR D-MUSCLE ABSCESSATION E-NECROTIZING NEPATITIS; CARC., LUNG E-ADENOCARCINOMA, PROSTATE D-ENTERITIS E-PERIPHERAL NERVE TUMOR E-CARCINOMA, MAMMARY GLAND D-PYOMETRA D-BRONCHOPHEUMONIA E-NEPHRITIS, CHROMIC E-INTERSTITIAL NEPHRITIS D-EPILEPSY D-CARCINOMA, LUNG E-MENINGIOMA, BRAIN E-INTERSTITIAL NEPHRITIS D-ACCIDENTAL DEATH E-DISC PROTRUSION E-CARCINOMA, TONSIL D-CONGESTIVE HEART FAILURE E-PITUITARY TUMOR D-HEPATIC DEGENERATION D-CHRONIC ENTERITIS E-CONGESTIVE HEART FAILURE E-INTERSTITIAL NEPHRITIS D-HEMOLYTIC AMENIA D-CHRONIC PANCREATITIS D-HEMOLYTIC SANCH E-ANKYLOSING SPONDYLITIS D-ADENOCARCINOMA, STOMACH E-CARCINOMA, LUNG E-LYMPHOSARCOMA, GENERALIZED
							86020 84122	5281 4652	E-HEART, CHRONIC INFARCTION E-ASTROCYTOMA, BRAIN

CLUDED.

A.11 144Ce in Fused Aluminosilicate Particles, Sacrifice Study (Series II, III, IV)

																	BETA	RAD!
DOC IN	EMT 1 E 1 CA1		I NW	ALATIO	N EXPO	SURE		.8 .			1.L.				DOSE #	LATE (G	Y/DAY)	
006 10	ENTIFICAT				AGE	WT						,			60	120	365	1
TATTOO	AM-EXPT	SEX	SER	DATE	DAYS	KG	MBQ/KG	MBQ	RANK	UCI/KG	UCI	MBQ/KG	MBQ	INITIAL	DAYS	DAYS	DAYS	.n
5418	01-999	F	11	72103		7.9	5.2	41.	01	71	560	2.6	21.	4.1	3.1	2.3		2
520A	02-998	M	11 11	72102 72115		11.0 9.2	4.8 5.2	52. 48.	02 03	66 64	720 590	2.4 2.4	27. 22.	3.7 3.7	2.8 2.6	2.1 2.1		- 11
530C 530B	04-1007 01-1002	M	11	72109		9.5	3.4	32.	04	60	560	2.2	21.	3.4	2.2	2.1		-i1
525W	01-1004	F	ii	72111		7.3	4.1	30.	Ŏ5	58	420	2.1	16.	3.4	2.5	1.9		-il
527A	03-1007	M	ii	72115		9.2	2.9	27.	06	54	500	2.0	19.	3.1	2.1	1.6		0.
521T	03-998	F	ÏÏ	72102		8.7	3.4	30.	07	52	450	1.9	17.	3.1	2.4	1.8		- 13
526A	01-1001	M	11	72108	416	7.5	3.6	27.	08	52	390	1.9	14.	3.0	2.0			- 14
5268	02-1000	Ħ	11	72104		5.8	4.4	25.	09	52	300	1.9	11.	3.1	2.2	1.6		- 14
5265	01-1007	F	11	72115		6.6	3.7	25.	10	51	330	1.9	12.	2.9	2.1			_!4
525T	02-1003	F	11	72110		8.8	4.1	37.	11	48	420	1.8	16.	2.9	2.1	1.6		14
522T	03-1003	F	11	72110		8.0	5.2	41. 30.	12 13	48 46	380 420	1.8	14. 16.	2.9 2.8	2.1	1.6	.53	얾
525U 539A	02-1004 03-997	F] [] [72111 72101	428 394	9.1 9.3	3.3 4.4	41.	14	41	380	1.7 1.5	14.	2.6	1.9 1.8	1.3	.48	61
530A	04-998	K	ii	72102		11.5	3.1	35.	15	39	450	1.4	17.	2.3	1.8	1.3		ŏ1
541U	01-1000	F	ii	72104		7.9	2.3	18.	16	35	280	1.3	10.	2.1	1.4	1.1	.40	61
535C	03-1000	M	ii	72104		7.7	2.6	20.	17	34	260	1.3	9.6	2.0	1.4	1.1	.44	0]
5390	04-1000	M	11	72104	397	7.9	1.9	15.	18	33	260	1.2	9.6	1.9	1.4	1.0	.39	0.
52 2 U	01-998	F	11	72102		7.8	3.4	27.	19	33	250	1.2	9.3	1.9	1.4	0.99		0.
526C	02-997	H	11	72101		6.9	2.5	17.	20	33	230	1.2	8.5	1.9	1.3	0.96	.35	64
5198	04-1004	F	11	72111	439	8.3	2.7	23.	21	32	270	1.2	10.	1.9	1.4	1.0	.38	64
5245	02-1001	F	11	72108		6.7	2.0	14.	22	32	210	1.2	7.8	1.9	1.3	1.0	.42	બ
522\$ 527 B	04-997 02-1002	H	11 11	72101 72109		8.7 9.3	2.9 2.1	25. 19.	23 24	31 31	270 290	1.1 1.1	10. 11.	1.8 1.8	1.4 1.3	1.1 0.95	.33	얾
532U	02-1002	F	ii	72115		7.8	1.6	12.	25	31	240	1.1	8.9	1.8	1.3	0.98	.36	٠1
521B	03-999	M	ii	72103		7.6	3.1	24.	26	30	230	i.i	8.5	1.7	1.3	1.0	.39	٥١
5361	03-1001	F	ii	72108		7.6	2.4	19.	27	29	220	1.1	8.1	1.7	1.2	0.88		ō.
519T	03-1004	F	11	72111	439	8.7	3.4	29.	28	28	240	1.0	8.9	1.7	1.2			0.
527D	01-997	M	11	72101	404	7.9	1.7	14.	29	27	220	1.0	8.1	1.6	1.2	0.90	.36	0-
519A	03-1002	Ħ	11	72109		8.6	4.1	35.	30	27	230	1.0	8.5	1.6	1.2	0.87	.33	04
520 8	04-1003	M	11	72110		11.9	6.7	78.	31	26	310	0.96	11.	1.6	1.2	0.85	.29	04
52 3 T	02-1008	F	11	72116		6.0	1.7	10.	32	26	150	0.96	5.5	1.5	0.99	0.73	.29	04
543C	04-1004 01-1003	M F	11	72109 72110		7.6	1.6 2.5	12.	33 34	26 24	190 160	0.96 0.89	7.0 5.9	1.5 1.5	1.1	0.84 0.82	.34 .31	۵
520 s 5260	01-1003	M	11 11	72103		6.7 5.5	1.9	17. 10.	34 35	24 16	86	0.59	3.2	0.94	0.68	0.51	.20	61
541A	05-1000	M	ii	72104		8.3	1.0	8.5	36	16	140	0.59	5.2	0.92	0.67	0.51	.19	őJ
538S	04-1001	F	ii	72108		6.7	0.89	5.9	37	14	95	0.52	3.5	0.83	0.57	0.42	.16	7
533T	01-1008	F	ii	72116		5.9	0.74	4.4	38	14	81	0.52	3.0	0.79	0.56	0.41	.16	
523\$	01-995	F	II	72097	416	8.8		•••	C									
533A	03-995	M	11	72097	394	8.3			C									
5 388	02-995	M	11	72097		9.3			С									1
540T	05-995	F	11	72097		5.7			C									
542A	06-995	M	11	72097		9.1			C									
542S	04-995	F	11	72097		8.2			Č									
521S	06-996 03-996	F	11 11	72098 72098		8.6 8.7			C									
522A 522V	01-996	M F	11	72098		7.8			Č									1
530S	05-996	F	11	72098		8.6			Č									
540B	04-996	M	ii	72098		8.0			č									1
547B	02-996	M	ii	72098		10.4			č									
																		- 1

BETA RADIATION DOSE TO LUNG

	DOSE R	ATE (Y/DAY)			CUMUL	ATIVE	DOSE (GY))			
IAL	60 Days	120 DAYS	365 Days	AT DEATH	60 DAYS	120 DAYS		POTENT. INFIN.	TO DEATH	DEATH DATE	DAYS TO DEATH	COMMENT
	7.4					770		27 0.	700			C. DIN MOMARY THE HEY
	3.1	2.3		2.2	210	370		850+	390	72231	128	S-PULMONARY INJURY S-PULMONARY INJURY
	2.8	2.1		1.5	190	340		770+	450	72283	181	
	2.6	2.1		1.3	190	330		990+	550	73005	256 80	S-PULMONARY INJURY S-PULMONARY INJURY
	2.2 2.5	1.9		1.9	170	310		870+	210	721 8 9 72 29 0	179	S-PULMONARY INJURY
	2.1	1.6		1.4 0.99	180 150	260		700+ 750+	400 420	73003	254	E-PULMONARY INJURY
	2.4	1.8		1.7	160	290		680+	300	72230	128	S-PULMONARY INJURY
	2.0	1.0		1.7	150	270		750+	190	72189	81	S-PULMONARY INJURY
	2.2	1.6		1.1	160	270		550+	350	72284	180	S-PULMONARY INJURY
i	2.1			1.9	150	2.0		740+	190	72196	81	S-PULMONARY INJURY
	2.1	1.6		1.5	150	260		580+	280	72241	131	S-PULMONARY INJURY
	2.1	1.6		0.99	150	260		760+	430	73002	258	S-PULMONARY INJURY
	1.9	1.4	.53	0.27	140	240	450	610+	530	73316	571	E-PULMONARY INJURY
	1.8	1.3	.48	0.28	120	220	410	560+	470	73249	514	S-PULMONARY INJURY
	1.8	1.3		0.62	120	220		510+	370	73025	289	D-PULMONARY INJURY
	1.4	1.1	.40	0.026	100	180	340	450	450	75101	1093	S-PULMONARY INJURY
	1.4	1.1	.44	0.14	99	170	340	470+	430	74056	683	D-PULMONARY INJURY
	1.4	1.0	.39	0.099	96	170	330	430	410	74113	740	S-PULMONARY INJURY
	1.4	0.99		0.94	96	170		350+	170	72230	128	S-PULMONARY INJURY
	1.3	0.96	.35	0.19	94	160	310	400+	350	73250	515	S-PULMONARY INJURY
	1.4	1.0	.38	0.025	98	170	330	430	430	75106	1091	S-PULMONARY INJURY
	1.3	1.0	.42	0.059	93	160	330	450+	430	74294	917	S-PULMONARY INJURY
	1.4	1.1		0.57	95	170		400+	280	72357	256	S-PULMONARY INJURY
	1.3	0.95	.33	0.0046	92	160	300	390	390	76153	1505	D-HEMANGIOSARCOMA, LUNG
	1.3	0.98	.36		91	160	310	410	410	78145	2222	E-HEMANGIOSARCOMA, HEART
	1.3	1.0	.39	0.028	92	160	320	430	430	75106	1099	S-HEMANGIOSARCOMA, LUNG
	1.2	0.88		0.50	86	150		390+	240	73002	260	S-PULMONARY INJURY
}	1.2			0.86	86	450	~~~	330+	160	72241	130	S-PULMONARY INJURY
	1.2	0.90	.36	0.22	84	150	290	410+	330	73257	522	D-PULMONARY INJURY
	1.2	0.87	.33	0.042	81	140	280	370+ 340+	350	74295	917	S-PULMONARY INJURY D-PULMONARY INJURY
	1.2	0.85 0.73	.29 .29	0.054	82	140	270	360+ 320+	340 270	74267 73264	888 514	S-PULHONARY INJURY
1	0.99 1.1	0.73	.34	0.17	73 78	120 140	240 270	360	360	80144	2957	E-HEMANGIOSARCOMA, LUNG
	1.1	0.82	.31	0.073	76	130	260	340+	320	74114	735	S-PULMONARY INJURY
L	0.68	0.51	.20	0.052	48	83	160	220+	200	74114	742	S-PULMONARY INJURY
5		0.51	.19	0.052	47	82	160	220+	200	74113	740	S-PULMONARY INJURY
	0.57		.16	0.032	41	71	140	180	180	84350	4625	D-CARCINOMA.LUNG
	0.56	0.41	.16		40	69	130	180	180	82303	3840	D-INTERSTITIAL PNEUMONIA
		••••	• • • •		10	•				72354	257	S-NORMAL
ĺ										72224	127	S-NORMAL
										86171	5188	E-ENTERITIS
										83298	4219	D-PULMONARY THROMBOSIS
										74108	742	S-NORMAL
1										85316	4968	E-NEPHROSCLEROSIS
										86122	5138	E-LYMPHOSARCOMA, GENERALIZED
										79104	2563	D-NYOCARDIAL INFARCT
										75104	1102	S-NORMAL
										75014	1012	S-NORMAL
										74108	741	S-NORMAL
1										85031	4682	E-ADENOCARCINOMA, PROSTATE

A.11 ¹⁴⁴Ce in Fused Aluminosilicate Particles, Sacrifice Study (Series II, III, IV) (continued)

																	BETA
noc in	ENTIFICA	TION	IMM	ALATIO	I EXPO	SURE	1.8	. R			I.L.	1.		•••••	DOSE 1	LATE (G	Y/DAY
					AGE	WT						,. 	•••••		60	120	365
TATTOO	AN-EXPT	SEX	SER	DATE		KG	MBQ/KG	MBQ	RANK	UCI/KG	UCI	MBQ/KG	MBQ	INITIAL	DAYS	DAYS	DAYS
538A	03-1016	М	111	72137	428	9.1	3.5	32.	01	69	630	2.6	23.	3.8	2.9	2.2	
540U	01-1013	F	111	72132	424	6.6	5.5	37.	02	59	390	2.2	14.	3.4	2.6	1.9]
535T	01-1015		111	72136	431	6.3	9.3	59.	03	50	320	1.9	12.	2.6	1.8	1.3	
5358	03-1019		111		438	7.8	5.2	41.	04	50	390	1.9	14.	2.9	2.2	1.7	1
540\$	04-1019		111		435	6.5	8.1	52.	05	50	320	1.9	12.	2.7	2.1	1.6	
5398	02-1014		111	72133	426	8.6	3.5	30.	06	48	410	1.8	15.	2.7	2.0	1.5	
542C	03-1014		111	72133	424	7.8	4.8	37.	07	48	380	1.8	14.	2.2	1.5	1.1	.39
547C	02-1015		111		416	9.9	2.8	28.	08	25	340	0.93	13.	2.0	1.4	1.1	.42
535A	01-1019		111		438	7.9	3.7	30.	09	34	270	1.3	10.	1.9	1.4	1.0	
547T 544T	04-1014 02-1019				413 432	7.1 7.4	3.1 3.7	22. 28.	10 11	32 32	230 230	1.2 1.2	8.5 8.5	1.8 1.8	1.2 1.3	0.93 0.95	.37
530T	04-1016		111			10.2	2.7	20. 27.	12	32 29	300	1.1	11.	1.6	1.2	0.92	.38
527C	06-1017		111	72140		10.2	2.7	21.	Ċ	27	300	1.1	11.	1.0	1.4	0.72	
541W	04-1017		111	72140	432	8.7			č								
5440	05-1017		iii	72140	429	7.0			č								
547D	01-1017		iii	72140	420	7.3			č								
539C	01-1018		iii	72143	436	8.5			č								
541T	02-1018		111	72143	435	8.4			Ċ								
539T	03-1013	F	IV	72132	425	8.6	4.4	37.	01	41	350	1.5	13.	2.2	1.8	1.4	.57
543A	04-1013	M	IV	72132	422	10.8	3.1	34.	02	33	250	1.2	9.3	1.9	1.4	1.1	.39
541V	02-1016	F	I۷	72137	429	7.8	2.6	20.	03	33	260	1.2	9.6	1.9	1.3	1.0	.39 .41 .32 .33
5428	01-1016		١٧	72137	428	9.7	4.1	41.	04	32	320	1.2	12.	1.9	1.2	0.83	.32
5438	01-1014		IV	72133	423	9.2	1.6	15.	05	31	290	1.1	11.	1.8	1.3	0.94	.33
54 3 \$	02-1013		IV	72132	422	9.2	3.7	35.	06	29	270	1.1	10.	1.5	1.1	0.87	.34
530U	03-1017		IA	72140	442	8.5			C								1
538C	07-1017		IA	72140	434	7.5			C								1
539\$	02-1017	F	IV	72140	433	7.6			C								1

UCI/KG REPRESENTS MICROCURIES OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
MBG/KG REPRESENTS MEGABEQUERELS OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER INHALATION EXPOSURE.
+ INDICATES THE DOG DIED BEFORE IT RECEIVED ITS POTENTIAL INFINITE DOSE.
COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED, RESPECTIVELY. PROMINENT FINDINGS ARE I

BETA RADIATION DOSE TO LUNG

DOSE I	ATE (G	Y/DAY)			CUMUL	ATIVE	DOSE (GY))			
60 Days	120 DAYS	365 Days	AT DEATH	60 Days	120 DAYS	365 DAYS	POTENT. INFIN.	TO DEATH	DEATH	DAYS TO DEATH	COMMENT
2.9 2.6 1.8 2.2 2.1 1.5 1.4 1.2 1.3 1.2	2.2 1.9 1.3 1.7 1.6 1.5 1.1 1.1 1.0 0.93 0.95 0.92	.39 .42 .37 .38	1.4 1.3 0.65 1.6 0.51 0.042 0.039 0.92 0.84 0.17	200 180 130 150 140 110 99 97 90 92 84	350 310 220 270 250 250 250 180 170 150 150	350 340 300 290 440 330	820+ 720+ 620+ 670+ 600+ 590+ 450 440 380+ 400 340+ 410+	520 430 410 310 290 450 450 440 190 400 180 360	72350 72329 73089 72286 72286 73124 75012 75035 72287 76334 72287 76345 72350 75043 73127 72292 72290 73133 74297	213 197 319 142 142 357 975 995 143 1662 143 612 1666 210 999 353 149 147 367 896	S-PULMONARY INJURY D-PULMONARY INJURY S-PULMONARY INJURY S-PULMONARY INJURY S-PULMONARY INJURY S-PULMONARY INJURY D-PULMONARY INJURY S-PULMONARY INJURY S-PULMONARY INJURY S-PULMONARY INJURY S-PULMONARY INJURY S-PULMONARY INJURY S-PULMONARY INJURY S-HEPATIC ATROPHY AND FIBROSIS S-NORMAL S-NORMAL S-NORMAL S-NORMAL S-PULMONARY INJURY S-PULMONARY INJURY S-PULMONARY INJURY
1.3 1.2 1.3 1.1	1.0 0.83 0.94 0.87	.41 .32 .33 .34	0.016	94 88 91 80	160 150 160 140	320 280 300 280	440+ 360 390 370	430 360 390 370	75316 81068 78096 75226 87224 86248 76122	1275 3219 2155 1190 5563 5222 1443	D-PULMONARY INJURY E-CARCINOMA, LUNG D-PULMONARY INJURY E-PULMONARY INJURY E-CHRONIC REMAL DISEASE; B.A. CARC., LUNG E-NEPHROSCLEROSIS E-ASPIRATION PNEUMONIA

MENT FINDINGS ARE INCLUDED.

A.12 144Ce in Fused Aluminosilicate Particles, Immature Longevity Study

TATTOO AN-ERFT SEX BLOCK DATE DATS K6 MB0/KG MB0 RAMK UCI / KG UCI MB0/KG MB0 INITIAL AMTS															• • • • • • • • • • • • • • • • • • • •	
TATTOD AM-EMPT SEX BLOCK DATE DATS (6) MBQ/KG MBQ MBQ MBQ MBQ/KG MBQ/KG MBQ MBQ/KG MBQ MBQ/KG MBQ MBQ/KG MB				INHA	LATION	EXPOS	URE									DOSE RATE
1022U 03-1922 F D 76239 94 3.5 13. 44. 01 140. 480. 5.2 18. 6.1 2.3 (758 02-1136 F B 73033 92 2.5 11. 28. 02 120. 310. 4.4 11. 5.2 2.2 2.6 171. 025. 02-1136 F B 73033 92 2.5 11. 28. 02 120. 310. 4.4 11. 5.2 2.2 2.6 171. 025. 02-1136 F D 76239 86 2.9 11. 32. 02. 02 120. 310. 4.4 11. 5.2 2.2 2.6 11. 025. 02-1136 F D 76239 86 2.9 11. 32. 02. 02 120. 310. 4.4 11. 5.2 2.3 2.6 1.6 1.6 12. 3 1.0 120. 02-1925 F D 76239 86 2.9 11. 32. 04. 05 6 74. 270. 2.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	DOG ID	ENTIFICAT	ION					1.8	.8.			1.1.6	l.			
1022U 03-1922 F D 76239 94 3.5 13. 44. 01 140. 480. 5.2 18. 6.1 2.3 6758 02-1136 F B 73033 92 2.5 11. 28. 02 120. 310. 4.4 11. 5.2 2.2 671C 03-1132 M C 73030 95 3.8 7.0 27. 03 84. 320. 31. 12. 3.6 1.6 1.6 10278 02-1925 F D 76247 86 2.9 11. 32. 04 79. 230. 2.9 8.5 3.4 1.0 10240 01-1922 M E 76247 86 2.9 11. 32. 04 79. 230. 2.9 8.5 3.4 1.0 10240 01-1922 M E 76239 86 3.7 5.5 20. 05 74. 270. 2.7 10. 3.2 0.8 6.6 17. 0.1 10240 01-1928 M E 76239 86 3.7 5.5 20. 05 74. 270. 2.7 10. 3.2 0.0 0.80 16726 01-1928 M E 76239 36 3.7 5.5 20. 05 74. 270. 2.7 5.9 3.2 0.0 0.80 16726 01-1928 M E 76247 88 3.4 8.1 27. 09 53. 180. 2.0 6.7 2.3 0.84 17.0 10240 11-1928 M E 76247 88 3.4 8.1 27. 09 53. 180. 2.0 6.7 2.3 0.84 16728 03-1133 M C 73031 94 3.4 8.1 27. 09 53. 180. 2.0 6.7 2.3 0.84 16728 03-1133 M C 73031 94 3.4 8.1 27. 09 53. 180. 2.0 6.7 2.3 0.84 16728 03-1133 M C 73031 94 3.4 8.1 27. 09 53. 180. 2.0 6.7 2.3 0.84 16728 03-1133 M C 73031 94 3.4 8.1 27. 09 53. 180. 2.0 6.7 2.3 0.84 16728 03-1133 M C 73031 94 3.5 5.5 18. 11 48. 150. 1.8 5.5 2.1 0.69 16290 01-1055 M A 72221 92 2.8 10. 28. 12 38. 100. 1.4 3.7 1.6 0.63 10194 02-1921 M E 76222 M E 76232 M E 76232 M E 76232 M E 76234 M																
6735 02-1136 P 8 73033 92 2.5 11. 28. 02 120. 310. 4.4 11. 5.2 2.2 1027 30.3 11.6 10278 02-1925 F D 76247 86 2.9 11. 32. 04 79. 230. 2.9 8.5 3.4 1.1 12. 3.6 1.6 1240 01-1922 H E 76239 86 3.7 5.5 20. 05 74. 270. 2.7 10. 3.2 1.0 6730 03-1136 H C 73033 95 2.2 10. 21. 06 73. 160. 2.7 5.9 3.2 0.86 6735 01-1136 H C 73033 95 2.2 10. 21. 06 73. 160. 2.7 5.9 3.2 0.86 6735 01-1136 H C 73033 95 2.2 10. 21. 06 73. 160. 2.7 5.9 3.2 0.86 6735 01-1136 H C 73033 95 2.2 10. 21. 06 73. 160. 2.7 5.9 3.2 0.86 6735 01-1135 H C 73033 95 2.2 10. 21. 7.0 14. 07 70. 140. 2.6 5.2 3.0 0.80 6735 01-1135 H C 73033 95 2.2 10. 21. 7.0 14. 07 70. 140. 2.6 5.2 3.0 0.80 6735 01-1135 H C 73033 95 2.2 10. 21. 7.0 14. 07 70. 140. 2.6 5.2 3.0 0.80 6735 01-1135 H C 73033 94 3.4 8.1 8.2 9.5 18. 10. 140. 2.6 5.2 2.3 0.86 6735 01-1135 H C 73031 94 3.4 9.5 18. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	TATTOO	AN-EXPT	SEX	BLOCK	DATE	DAYS	KG	MBQ/KG	MBQ	RANK	UC1/KG	UC1	MBQ/KG	ARG.	INITIAL	DAYS
6735 02-1136 P 8 73033 92 2.5 11. 28. 02 120. 310. 4.4 11. 5.2 2.2 1027 30.3 11.6 10278 02-1925 F D 76247 86 2.9 11. 32. 04 79. 230. 2.9 8.5 3.4 1.1 12. 3.6 1.6 1240 01-1922 H E 76239 86 3.7 5.5 20. 05 74. 270. 2.7 10. 3.2 1.0 6730 03-1136 H C 73033 95 2.2 10. 21. 06 73. 160. 2.7 5.9 3.2 0.86 6735 01-1136 H C 73033 95 2.2 10. 21. 06 73. 160. 2.7 5.9 3.2 0.86 6735 01-1136 H C 73033 95 2.2 10. 21. 06 73. 160. 2.7 5.9 3.2 0.86 6735 01-1136 H C 73033 95 2.2 10. 21. 06 73. 160. 2.7 5.9 3.2 0.86 6735 01-1135 H C 73033 95 2.2 10. 21. 7.0 14. 07 70. 140. 2.6 5.2 3.0 0.80 6735 01-1135 H C 73033 95 2.2 10. 21. 7.0 14. 07 70. 140. 2.6 5.2 3.0 0.80 6735 01-1135 H C 73033 95 2.2 10. 21. 7.0 14. 07 70. 140. 2.6 5.2 3.0 0.80 6735 01-1135 H C 73033 94 3.4 8.1 8.2 9.5 18. 10. 140. 2.6 5.2 2.3 0.86 6735 01-1135 H C 73031 94 3.4 9.5 18. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10			•••	•••••												
6735 02-1136 P 8 73033 92 2.5 11. 28. 02 120. 310. 4.4 11. 5.2 2.2 1027 30.3 11.6 10278 02-1925 F D 76247 86 2.9 11. 32. 04 79. 230. 2.9 8.5 3.4 1.1 12. 3.6 1.6 1240 01-1922 H E 76239 86 3.7 5.5 20. 05 74. 270. 2.7 10. 3.2 1.0 6730 03-1136 H C 73033 95 2.2 10. 21. 06 73. 160. 2.7 5.9 3.2 0.86 6735 01-1136 H C 73033 95 2.2 10. 21. 06 73. 160. 2.7 5.9 3.2 0.86 6735 01-1136 H C 73033 95 2.2 10. 21. 06 73. 160. 2.7 5.9 3.2 0.86 6735 01-1136 H C 73033 95 2.2 10. 21. 06 73. 160. 2.7 5.9 3.2 0.86 6735 01-1135 H C 73033 95 2.2 10. 21. 7.0 14. 07 70. 140. 2.6 5.2 3.0 0.80 6735 01-1135 H C 73033 95 2.2 10. 21. 7.0 14. 07 70. 140. 2.6 5.2 3.0 0.80 6735 01-1135 H C 73033 95 2.2 10. 21. 7.0 14. 07 70. 140. 2.6 5.2 3.0 0.80 6735 01-1135 H C 73033 94 3.4 8.1 8.2 9.5 18. 10. 140. 2.6 5.2 2.3 0.86 6735 01-1135 H C 73031 94 3.4 9.5 18. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	10220	03-1022	F	D	76230	94	3.5	13	44.	01	140.	480.	5.2	18.	6.1	2.3
671c 03-1132 M C 73030 95 3.8 7.0 27. 03 84. 320. 3.1 12. 3.6 1.6 1.6 10278 02-1925 F D 76247 86 2.9 11. 32. 04 79. 230. 2.9 8.5 3.4 1.1 10240 01-1922 M E 76239 86 3.7 5.5 20. 05 74. 270. 2.7 10. 3.2 1.0 6730 03-1136 M C 73033 95 2.2 10. 21. 06 73. 160. 2.7 5.9 3.2 0.86 6730 03-1136 M C 73033 95 2.1 7.0 14. 07 70. 140. 2.6 5.2 3.0 0.80 6735 01-1133 F B 73031 94 3.6 7.4 26. 08 64. 230. 2.4 8.5 2.8 0.96 10264 01-1925 M E 76237 88 3.4 8.1 27. 09 53. 180. 2.0 6.7 2.3 0.86 6726 02-1133 M C 73031 94 3.2 5.5 18. 11 48. 150. 1.8 5.5 2.1 0.86 6726 02-1133 M C 73031 94 3.2 8.5 18. 11 48. 150. 1.8 5.5 2.1 0.69 6726 02-1135 M C 73031 94 3.2 2.8 10. 28. 11 12 38. 1100. 1.4 3.7 1.6 0.84 10284 02-1128 02-1128 M E 76247 88 3.4 8.1 27. 09 53. 180. 1.9 6.7 2.3 0.66 6726 02-1137 M E 76247 88 3.4 8.1 27. 09 53. 180. 1.8 5.5 2.1 0.69 6726 02-1137 F B 76247 88 3.2 8.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1										• •						
10278 02-1925 F D 76247 86 2.9 11. 32. 04 79. 230. 2.9 8.5 3.4 1.1 10240 01-1922 H E 76239 86 3.7 5.5 20. 05 74. 270. 27. 10. 3.2 1.0 6730 03-1136 H C 73033 95 2.2 10. 21. 06 73. 160. 2.7 5.9 3.2 0.86 673C 01-1136 H C 73033 95 2.1 7.0 14. 06 73. 160. 2.7 5.9 3.2 0.86 673C 01-1136 H C 73033 95 2.1 7.0 14. 07 70. 140. 2.6 5.2 3.0 0.80 673C 01-1136 H C 73033 95 2.1 7.0 14. 07 70. 140. 2.6 5.2 3.0 0.80 673C 01-1136 H C 73033 95 2.1 7.0 14. 07 70. 140. 2.6 5.2 3.0 0.80 673C 01-1136 H C 73033 95 2.1 7.0 14. 07 70. 140. 2.6 5.2 3.0 0.80 673C 01-1136 H C 73033 95 2.1 7.0 14. 07 70. 140. 2.6 5.2 3.0 0.80 673C 01-1136 H C 73033 95 2.1 7.0 14. 07 70. 140. 2.6 5.2 3.0 0.80 673C 01-1136 H C 73033 95 2.1 7.0 14. 07 70. 140. 2.6 5.2 3.0 0.80 673C 01-1136 H C 73033 94 3.4 8.1 27. 09 53. 180. 2.0 6.7 2.3 0.84 673C 03-1138 H C 73033 94 3.4 8.1 27. 09 53. 180. 2.0 6.7 2.3 0.84 673C 03-1138 H C 73033 92 2.8 15. 10 32 180. 1.9 6.7 2.3 0.84 673C 03-1138 H C 73033 92 2.8 15. 18. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19			•													
10240 01-1922 N E 76239 86 3.7 5.5 20. 05 74. 270. 2.7 10. 3.2 1.0 6730 03-1136 N C 73033 95 2.2 10. 21. 06 73. 160. 2.7 5.9 3.2 0.86 673C 03-1133 N C 73033 95 2.1 7.0 14. 07 70. 140. 2.6 5.2 3.0 0.80 10260 10-1133 F B 73031 % 3.6 7.4 26. 08 64. 230. 2.4 8.5 2.8 0.96 10260 10-1926 N E 76247 88 3.4 8.1 27. 09 53. 180. 2.0 6.7 2.3 0.84 672E 03-1133 N C 73031 94 3.2 5.5 18. 11 48. 150. 1.9 6.7 2.3 0.86 672E 02-1133 N C 73031 94 3.2 5.5 18. 11 48. 150. 1.9 6.7 2.3 0.86 672E 02-1133 N C 73031 94 3.2 5.5 18. 11 48. 150. 1.9 6.7 2.3 0.86 10192 N E 76242 91 3.6 7.8 27. 09 53. 180. 2.0 6.7 2.3 0.84 10193 N C 73031 94 3.2 5.5 18. 11 48. 150. 1.8 5.5 2.1 0.69 10193 N C 73031 94 3.2 2.8 10. 28. 12 38. 100. 1.4 3.7 1.6 0.83 10194 N C 74027 F D 76262 89 3.4 4.4 11. 148. 150. 1.8 5.5 2.1 0.69 10193 N C 74027 F D 76262 89 3.4 4.4 11. 138. 150. 1.4 4.5 1.5 0.5 1.6 0.54 10227 F D 76262 89 3.5 2.0 7.0 17 24. 8 1.0 1.0 1.4 3.5 1.5 0.5 1.5 0.5 1.0 1022 N C 7213 N C 7213 N C 7220 N										04	79.			8.5	3.4	1.1
673c 01-1136 M C 73033 95 2.2 10. 21. 06 73. 160. 2.7 5.9 3.2 0.86 1673c 01-1136 M C 73033 95 2.1 7.0 14. 06 73. 160. 2.7 5.9 3.2 0.86 1673c 01-1136 M C 73033 95 2.1 7.0 14. 07 70. 140. 2.6 5.2 3.0 0.80 1672c 01-1136 M C 73033 95 2.1 7.0 14. 07 70. 140. 2.6 5.2 3.0 0.80 1672c 01-1135 M C 73031 94 3.4 8.1 27. 09 53. 180. 2.0 6.7 2.3 0.84 1672c 02-1133 M C 73031 94 3.4 9.6 33. 10 52. 180. 1.9 6.7 2.3 0.84 1672c 02-1133 M C 73031 94 3.4 9.6 33. 10 52. 180. 1.9 6.7 2.3 0.76 1672c 02-1133 M C 73031 94 3.2 5.5 18. 11 48. 150. 1.8 5.5 2.1 0.69 16290 10-1055 M A 72221 92 2.8 10. 28. 12 38. 100. 1.8 5.5 2.1 0.69 16290 10-1055 M A 72221 92 2.8 10. 28. 12 38. 100. 1.4 3.7 1.6 0.63 10331 02-1927 M E 76232 91 3.5 7.8 27. 13 38. 100. 1.4 3.7 1.6 0.63 10331 02-1927 M E 76232 91 3.5 7.8 27. 13 38. 100. 1.4 4.8 1.6 0.56 10331 02-1927 M E 76232 91 3.5 7.8 27. 13 38. 130. 1.4 4.8 1.6 0.56 10331 02-1927 F D 76257 89 2.6 4.4 11. 14 37. 95. 1.4 3.5 1.5 0.51 10331 02-1927 F D 76257 89 3.4 5.9 20. 16 28. 92. 1.0 3.4 1.2 0.43 1673 1673 1673 1673 1673 1673 1673 167			•													
673c 01-1136 F B 73031 95 2.1 7.0 14. 07 70. 140. 2.6 5.2 3.0 0.80 10728 01-1133 F B 73031 94 3.6 7.4 26. 08 64. 230. 2.4 8.5 2.8 0.96 1026A 01-1925 M E 76247 88 3.4 8.1 27. 09 53. 180. 2.0 6.7 2.3 0.84 6728 03-1133 M C 73031 94 3.4 9.6 33. 10 52. 180. 1.9 6.7 2.3 0.76 6728 03-1133 M C 73031 94 3.4 9.6 33. 10 52. 180. 1.9 6.7 2.3 0.76 6728 03-1135 M C 73031 94 3.2 5.5 18. 11 48. 150. 1.8 5.5 2.1 0.69 10.00 10.00 10.00 10.00 10.00 10.00 10.00 1.4 3.7 1.6 0.63 10.09 10.00			M			95	2.2	10.	21.	06	73.	160.	2.7	5.9	3.2	0.86
6728 01-1132 F B 76373 94 3.6 7.4 26. 08 64. 230. 2.4 8.5 2.8 0.96 1026A 01-1925 N E 76247 88 3.4 8.1 27. 09 53. 180. 2.0 6.7 2.3 0.84 6728 03-1133 N C 73031 94 3.4 9.6 33. 10 52. 180. 1.9 6.7 2.3 0.76 672C 02-133 N C 73031 94 3.4 9.6 33. 10 52. 180. 1.9 6.7 2.3 0.76 672C 02-133 N C 73031 94 3.2 5.5 18. 11 48. 150. 1.8 5.5 2.1 0.69 629A 01-1055 N A 72221 92 2.8 10. 28. 12 38. 100. 1.4 3.7 1.6 0.53 1019A 02-1927 F D 76267 89 2.6 4.4 11. 14 37. 95. 1.4 3.5 1.5 0.51 1022S 02-1919 F D 76267 89 2.6 4.4 11. 14 37. 95. 1.4 3.5 1.5 0.51 1022S 02-1919 F D 76231 86 3.2 3.0 9.3 15 34. 110. 13 4.1 1.6 0.56 6751 02-1137 F B 73036 95 3.4 5.9 20. 16 28. 92. 1.0 3.4 1.2 0.43 672B 03-1014 N A 72220 94 2.5 1.0 7.0 17 24. 85. 0.89 3.1 1.0 0.50 673S 01-1135 F B 73032 94 2.1 1.9 3.7 18 21. 42. 0.78 1.6 0.91 0.28 1021V 01-1921 F D 76232 88 3.3 1.3 4.4 19 18. 58. 0.67 2.1 0.79 0.25 673A 02-1132 N C 73030 92 2.9 6.3 17. 20 16. 44. 0.59 1.6 0.69 0.19 0.28 1021V 01-132 N C 73030 92 3.5 1.9 6.7 21 12. 41. 0.44 1.5 0.52 0.17 10338 01-1927 N E 76232 88 2.8 2.6 7.4 24 9.3 26. 0.34 0.96 0.40 0.16 673S 02-1131 F B 73029 94 2.8 1.3 3.7 23 11. 30. 0.41 1.1 0.44 1.5 0.52 0.17 10338 01-1927 N E 76232 88 2.8 2.6 7.4 24 9.3 26. 0.34 0.96 0.40 0.16 1023S 03-1919 F D 76231 88 2.8 2.6 7.4 24 9.3 26. 0.34 0.96 0.40 0.16 1023S 03-1919 F D 76231 88 2.8 2.6 7.4 24 9.3 26. 0.34 0.96 0.40 0.16 1023S 03-1919 F D 76231 86 2.4 0.44 1.0 25 6.7 16. 0.25 0.59 0.29 0.094 2.8 103 02-1919 F D 76231 86 2.4 0.44 1.0 25 6.7 16. 0.25 0.59 0.29 0.094 2.8 103 02-1919 F D 76231 86 2.4 0.44 1.0 25 6.7 16. 0.25 0.59 0.29 0.094 2.8 103 02-1919 F D 76231 86 2.4 0.44 1.0 25 6.7 16. 0.25 0.59 0.29 0.094 2.8 10.1 3. 4. 22 12. 35. 0.44 1.3 0.52 0.18 1023S 03-1919 F D 76231 86 2.4 0.44 1.0 25 6.7 16. 0.25 0.59 0.29 0.094 2.7 10.18 10.000 0.11 0.000 0.11 0.000 0.11 0.000 0.10 0.000 0.10 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000			M	C	73033	95		7.0	14.	07	70.	140.	2.6	5.2	3.0	0.80
6728 03-1133 M C 73031 94 3.4 9.6 33. 10 52. 180. 1.9 6.7 2.3 0.76 672C 02-133 M C 73031 94 3.4 9.6 33. 10 52. 180. 1.9 6.7 2.3 0.76 629A 01-1055 M A 72221 92 2.8 10. 28. 12 38. 100. 1.4 4.8 1.6 0.6 0.63 1019A 02-1927 F D 76267 89 2.6 4.4 11. 14 37. 95. 1.4 3.5 1.5 0.51 1022S 02-1919 F D 76267 89 2.6 4.4 11. 14 37. 95. 1.4 3.5 1.5 0.51 1022S 02-1919 F D 76267 89 2.6 4.4 11. 14 37. 95. 1.4 3.5 1.5 0.51 1022S 02-1919 F D 76267 89 2.6 4.4 11. 14 37. 95. 1.4 3.5 1.5 0.51 1022S 02-1919 F D 76267 89 2.6 4.4 11. 14 37. 95. 1.4 3.5 1.5 0.56 675T 02-1137 F B 73036 95 3.4 5.9 20. 16 28. 92. 1.0 3.4 11. 0.69 6678 03-1054 M A 7222D 94 3.5 2.0 7.0 17 24. 85. 0.89 3.1 1.0 0.50 673S 01-1135 F B 73030 92 2.9 6.3 17. 20 16. 28. 92. 1.0 3.4 1.0 0.50 673S 01-1135 F B 73030 92 2.9 6.3 17. 20 16. 44. 0.59 1.6 0.69 0.19 672A 01-1132 M C 73030 92 2.9 6.3 17. 20 16. 44. 0.59 1.6 0.69 0.19 672A 01-132 M C 73030 92 3.5 1.9 6.7 21 12. 41. 0.44 1.5 0.52 0.17 10338 01-1927 M E 76267 89 3.0 1.1 3. 4. 22 12. 35. 0.44 1.3 0.52 0.18 671S 02-1131 F B 73029 9 2.8 1.3 3.7 23 111. 30. 0.41 1.1 0.44 1.5 0.52 0.17 671S 02-1131 F B 73029 9 2.8 1.3 3.7 23 111. 30. 0.41 1.1 0.44 0.14 0.14 0.14 0.15 0.55 0.17 0.25 0.18 0.25 0.17 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	672S	01-1133	F	8	73031	94	3.6	7.4		80	64.	230.	2.4			0.96
6726 02-1133	1026A	01-1925	M	E	76247	88	3.4	8.1	27.	09	53.	180.	2.0	6.7		
1019A 02-1921 M E 76232 92 2.8 10. 28. 12 38. 100. 1.4 3.7 1.6 0.63 1019A 02-1921 M E 76232 91 3.5 7.8 27. 13 38. 130. 1.4 4.8 1.6 0.56 10337 02-1927 F D 76247 89 2.6 4.4 11. 14 37. 95. 1.4 3.5 1.5 0.51 10228 02-1919 F D 76231 86 3.2 3.0 9.3 15 34. 110. 1.3 4.1 1.6 0.56 6751 02-1137 F B 73036 95 3.4 5.9 20. 16 28. 92. 1.0 3.4 1.2 0.43 6278 03-1054 M A 72220 94 2.1 1.9 3.7 18 21. 42. 0.78 3.1 1.0 0.50 6738 01-1135 F B 75032 94 2.1 1.9 3.7 18 21. 42. 0.78 1.6 0.91 0.28 1021V 01-1921 F D 76231 88 3.3 1.3 4.4 19 18. 38. 0.67 2.1 0.78 0.25 673A 02-1132 M C 73030 93 3.5 1.9 6.7 21 12. 41. 0.44 1.5 0.52 0.17 673A 01-1135 M C 73030 93 3.5 1.9 6.7 21 12. 41. 0.44 1.5 0.52 0.17 673B 01-1927 M E 76267 89 3.0 1.1 3.4 22 12. 35. 0.44 1.3 0.52 0.18 6718 02-1131 F B 73029 94 2.8 1.3 3.7 23 11. 30. 0.41 1.1 0.48 0.14 6718 02-1131 F B 73029 88 2.8 2.6 7.4 24 9.3 26. 0.34 0.66 0.40 0.16 10238 03-1919 F D 76231 86 2.4 0.44 1.0 25 6.7 16. 0.25 0.59 0.29 0.094 673A 03-1131 F B 73029 88 2.7 0.67 1.8 27 5.0 13. 0.19 0.48 0.22 0.060 10168 01-1919 M E 76230 95 3.0 0.55 2.1 26 6.0 23. 0.22 0.85 0.26 0.26 673B 04-1131 M C 73029 88 2.7 0.67 1.8 27 5.0 13. 0.19 0.48 0.22 0.060 10168 01-1919 M E 76231 97 3.3 0.89 2.9 28 4.9 16. 0.18 0.95 0.22 0.060 10178 03-1131 F B 73029 91 1.7 0.70 1.2 29 3.2 5.4 0.12 0.20 0.14 0.033 10211 02-1918 F D 76230 95 3.8 0.0056 0.16 3.9 0.14 0.060 0.067 0.0077 0.0082 10211 02-1918	672 B	03-1133	M	C			3.4	9.6		10			1.9			
1019A 02-1921 M E 76232 91 3.5 7.8 27. 13 38. 130. 1.4 4.8 1.6 0.56 1033T 02-1927 F D 76267 89 2.6 4.4 11. 14 37. 95. 1.4 3.5 1.5 0.51 1022S 02-1919 F D 76267 89 2.6 4.4 11. 14 37. 95. 1.4 3.5 1.5 0.51 1022S 02-1919 F D 76267 89 2.6 4.4 11. 14 37. 95. 1.4 3.5 1.5 0.51 1022S 02-1919 F D 76267 89 2.6 4.4 11. 14 37. 95. 1.4 3.5 1.5 0.51 1022S 02-1919 F D 76267 89 3.0 9.3 15 34. 110. 1.3 4.1 1.6 0.56 675T 02-1137 F B 73032 94 2.1 1.9 3.7 18 21. 42. 0.78 1.6 0.99 3.1 1.0 0.50 673S 01-1135 F B 73032 94 2.1 1.9 3.7 18 21. 42. 0.78 1.6 0.91 0.28 1021V 01-1921 F D 76232 88 3.3 1.3 4.4 19 18. 58. 0.67 2.1 0.78 0.25 673A 02-1132 M C 73030 93 3.5 1.9 6.7 21 12. 41. 0.44 1.5 0.52 0.17 673A 02-1132 M C 73030 93 3.5 1.9 6.7 21 12. 41. 0.44 1.5 0.52 0.17 673B 01-1927 M E 76267 89 3.0 1.1 3.4 22 12. 35. 0.44 1.3 0.52 0.18 6718 02-1131 F B 73029 94 2.8 1.3 3.7 23 11. 30. 0.41 1.1 0.48 0.14 6718 02-1131 F B 73029 88 2.8 1.3 3.7 23 11. 30. 0.41 1.1 0.48 0.14 673B 02-1054 M A 72220 88 2.8 2.6 7.4 24 9.3 26. 0.34 0.96 0.40 0.16 1023S 03-1919 F D 76231 86 2.4 0.44 1.0 25 6.7 16. 0.25 0.59 0.29 0.094 673B 04-1131 M C 73029 88 2.7 0.67 1.8 27 5.0 13. 0.19 0.48 0.22 0.650 10168 01-1919 M E 76237 97 3.3 0.89 2.9 28 4.9 16. 0.18 0.59 0.20 0.054 673T 03-1131 F B 73029 91 1.7 0.70 1.2 29 3.2 5.4 0.12 0.20 0.14 0.033 1017B 04-1918 M E 76230 95 4.0 0.067 0.27 33 10.81 30 3.1 1.8 0.032 0.059 0.22 0.060 1018B 03-1131 F B 73029 91 1.7 0.70 1.2 29 3.2 5.4 0.12 0.20 0.14 0.033 6240 04-1048 M A 72209 90 2.7 0.31 0.81 30 3.1 1.8 0.032 0.059 0.22 0.069 1017B 04-1918 M E 76230 95 4.0 0.067 0.27 33 10.8 0.3 1.0 0.050 0.078 0.022 0.069 1017B 04-1918 M E 76230 95 4.0 0.066 0.16 38 0.17 0.50 0.003 0.004 0.003 0.00	672C		M	C			3.2	5.5								
10337 02-1927 F			M													
10228 02-1919 F B 70338 86 3.2 3.0 9.3 15 34. 110. 1.3 4.1 1.6 0.56 67\$T 02-1137 F B 73036 95 3.4 5.9 20. 16 28. 92. 1.0 3.4 1.2 0.43 6278 03-1054 M A 72209 94 3.5 2.0 7.0 17 24. 85. 0.89 3.1 1.0 0.50 6738 01-1135 F B 73039 94 2.1 1.9 3.7 18 21. 42. 0.78 1.6 0.91 0.28 6738 01-1135 F B 73039 94 2.1 1.9 3.7 18 21. 42. 0.78 1.6 0.91 0.28 6738 01-1132 M C 73030 92 2.9 6.3 17. 20 16. 44. 0.59 1.6 0.69 0.19 672A 01-1132 M C 73030 92 2.9 6.3 17. 20 16. 44. 0.59 1.6 0.69 0.19 10338 01-1927 M E 76267 89 3.0 1.1 3.4 22 12. 35. 0.44 1.5 0.52 0.17 10338 01-1927 M E 76267 89 3.0 1.1 3.4 22 12. 35. 0.44 1.5 0.52 0.17 10338 01-1927 M E 76267 89 3.0 1.1 3.4 22 12. 35. 0.44 1.3 0.52 0.18 6308 02-1054 M A 72209 88 2.8 2.6 7.4 24 9.3 26. 0.34 0.96 0.40 0.16 10238 03-1919 F D 76231 86 2.4 0.44 1.0 25 6.7 16. 0.25 0.59 0.29 0.094 6300 01-1054 M A 72209 88 2.7 0.67 1.8 27 5.0 13. 0.19 0.48 0.22 0.85 6738 04-1131 M C 73029 88 2.7 0.67 1.8 27 5.0 13. 0.19 0.48 0.22 0.85 10168 01-1919 M E 76231 97 3.3 0.89 2.9 28 4.9 16. 0.18 0.59 0.21 0.060 10168 01-1919 M E 76231 97 3.3 0.89 2.9 28 4.9 16. 0.18 0.59 0.21 0.078 6260 04-1048 M A 72209 90 2.7 0.31 0.81 30 3.1 8.1 0.11 0.30 0.13 0.051 10178 04-1918 M E 76230 95 4.0 0.16 0.65 32 1.4 5.4 0.12 0.20 0.14 0.033 10178 04-1918 M E 76230 95 4.0 0.16 0.65 32 1.4 5.4 0.05 0.20 0.061 10180 03-1918 F D 76230 86 3.0 0.067 0.27 33 1.0 4.1 0.037 0.15 0.043 0.021 10180 03-1918 F D 76230 95 4.0 0.067 0.27 33 1.0 4.1 0.037 0.078 0.031 10180 03-1918 F D 76230 95 4.0 0.067 0.27 33 1.0 4.1 0.037 0.05 0.009 0.003 10178 04-1918 M E 76230 95 4.0 0.067 0.27 33 1.0 4.1 0.037 0.05 0.009 0.009 10178 04-1918 M E 76230 95 4.0 0.066 0.072 33 1.0 4.1 0.037 0.05 0.009 0.009 10180 03-1918 F D 76230 86 3.0 0.056 0.17 35 0.71 2.1 0.026 0.078 0.031 0.091 10180 03-1918 F D 76230 86 3.0 0.056 0.17 35 0.71 2.1 0.026 0.009 0.009 10178 04-1918 M E 76230 95 4.0 0.067 0.078 0.033 0.090 0.0090 0.0038 0.0091 10179 04-1918 M E 76230 95 4.0 0.066 0.067 0.27 33 1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000																
6758 02-1137 F B 75036 95 3.4 5.9 20. 16 28. 92. 1.0 3.4 1.2 0.43 6278 03-1054 M A 72220 94 3.5 2.0 7.0 17 24. 85. 0.89 3.1 1.0 0.50 6735 01-1135 F B 75032 94 2.1 1.9 3.7 18 21. 42. 0.78 1.6 0.91 0.28 1021V 01-1921 F D 76232 88 3.3 1.3 4.4 19 18. 58. 0.67 2.1 0.78 0.25 673A 02-1132 M C 73030 92 2.9 6.3 17. 20 16. 44. 0.59 1.6 0.69 0.19 1.6 0.67 2.1 0.78 0.25 673A 02-1132 M C 73030 93 3.5 1.9 6.7 21 12. 41. 0.44 1.5 0.52 0.17 10338 01-1927 M E 76267 89 3.0 1.1 3.4 22 12. 35. 0.44 1.3 0.52 0.18 6718 02-1131 F B 73029 94 2.8 1.3 3.7 23 11. 30. 0.41 1.1 0.44 1.5 0.52 0.18 6718 02-1131 F B 73029 88 2.6 7.4 24 9.3 26. 0.34 0.96 0.40 0.16 10238 03-1919 F D 76231 86 2.4 0.44 1.0 25 6.7 16. 0.25 0.59 0.29 0.094 630A 01-1054 M A 72220 88 3.8 0.55 2.1 26 6.0 23. 0.22 0.85 0.26 0.12 6758 04-1131 M C 73029 88 2.7 0.67 1.8 27 5.0 13. 0.19 0.48 01-1048 01-1048 01-1048 M A 72209 91 1.7 0.70 1.2 29 3.2 5.4 0.18 0.59 0.21 0.078 6718 03-1130 M C 73029 91 0.7 0.70 1.2 29 3.2 5.4 0.18 0.19 0.48 0.22 0.060 10168 01-1019 M E 76231 97 3.3 0.89 2.9 28 4.9 16. 0.18 0.59 0.21 0.078 6718 03-1131 F B 73029 95 4.0 0.16 0.53 3.1 1.6 0.1 0.10 0.05 0.13 0.051 10180 01-1019 M E 76230 95 4.0 0.16 0.52 31 1.6 0.10 0.10 0.13 0.051 10180 03-1018 01-1018 M C 73029 88 2.7 0.67 1.8 29 3.2 5.4 0.12 0.20 0.14 0.033 6240 04-1048 M A 72209 90 2.7 0.31 0.81 30 3.1 8.1 0.11 0.30 0.13 0.051 10180 03-1018 M C 73029 88 2.1 0.17 0.70 1.2 29 3.2 5.4 0.12 0.20 0.14 0.033 0.25 0.18 0.10 0.18 0.19 0.22 0.060 0.022 0.060 0.002 0.0			•	-												
6278 03-1054 M A 72220 94 3.5 2.0 7.0 17 24. 85. 0.89 3.1 1.0 0.50 6738 01-1135 F B 73032 94 2.1 1.9 3.7 18 21. 42. 0.78 1.6 0.91 0.28 1021V 01-1921 F D 76232 88 3.3 1.3 4.4 19 18. 58. 0.67 2.1 0.78 0.25 6734 02-1132 M C 73030 93 3.5 1.9 6.7 21 12. 20 16. 44. 0.59 1.6 0.69 0.19 6738 01-1132 M C 73030 93 3.5 1.9 6.7 21 12. 41. 0.44 1.5 0.52 0.17 10338 01-1927 M E 76267 89 3.0 1.1 3.4 22 12. 35. 0.44 1.3 0.52 0.18 6718 02-1131 F B 73029 94 2.8 1.3 3.7 23 11. 30. 0.41 1.1 0.48 1.5 0.52 0.18 6718 02-1131 F B 73029 88 2.8 2.6 7.4 24 9.3 26. 0.34 0.96 0.40 0.16 10238 03-1919 F D 76231 86 2.4 0.44 1.0 25 6.7 16. 0.25 0.59 0.29 0.094 6300 01-1054 M A 72220 88 3.8 0.55 2.1 26 6.0 23. 0.22 0.85 0.26 0.12 6738 04-1131 M C 73029 88 2.7 0.67 1.8 27 5.0 13. 0.19 0.48 0.22 0.060 10168 01-1919 M E 76231 97 3.3 0.89 2.9 28 4.9 16. 0.18 0.59 0.21 0.078 6731 03-1131 F B 73029 91 1.7 0.70 1.2 29 3.2 5.4 0.12 0.20 0.14 0.033 6240 04-1048 M A 72209 90 2.7 0.31 0.81 30 3.1 8.1 0.11 0.30 0.13 0.051 1018U 03-1131 F B 73029 95 4.0 0.14 0.52 31 1.6 5.9 0.059 0.22 0.064 0.023 10178 04-1918 M E 76230 95 4.0 0.14 0.52 31 1.6 5.9 0.059 0.22 0.064 0.023 10178 04-1918 M E 76230 95 4.0 0.16 0.63 32 1.4 5.4 0.052 0.20 0.061 0.023 10178 04-1918 M E 76230 95 4.0 0.16 0.63 32 1.4 5.4 0.052 0.20 0.061 0.022 1018U 03-1918 F D 76231 80 0.14 0.052 0.17 0.35 34 0.87 1.8 0.037 0.15 0.043 0.001 0				_												
6738 01-1192			-	_												
1021V 01-1921 F D 76232 88 3.3 1.3 4.4 19 18. 58. 0.67 2.1 0.78 0.25 673A 02-1132 M C 73030 92 2.9 6.3 17. 20 16. 44. 0.59 1.6 0.69 0.19 672A 02-1132 M C 73030 93 3.5 1.9 6.7 21 12. 41. 0.44 1.5 0.52 0.17 1033B 01-1927 M E 76267 89 3.0 1.1 3.4 22 12. 35. 0.44 1.5 0.52 0.17 1033B 01-1927 M E 76267 89 3.0 1.1 3.4 22 12. 35. 0.44 1.3 0.52 0.18 671S 02-1131 F B 73029 94 2.8 1.3 3.7 23 11. 30. 0.41 1.1 0.48 0.14 630B 02-1054 M A 72220 88 2.8 2.6 7.4 24 9.3 26. 0.34 0.96 0.40 0.16 1023S 03-1919 F D 76231 86 2.4 0.44 1.0 25 6.7 16. 0.25 0.59 0.29 0.094 630A 01-1054 M A 72220 88 3.8 0.55 2.1 26 6.0 23. 0.22 0.85 0.26 0.12 673B 04-131 M C 73029 88 2.7 0.67 1.8 27 5.0 13. 0.9 0.8 0.59 0.21 0.050 1016B 01-1919 M E 76231 97 3.3 0.89 2.9 28 4.9 16. 0.18 0.59 0.21 0.078 673T 03-1131 F B 73029 91 1.7 0.70 1.2 29 3.2 5.4 0.12 0.20 0.14 0.033 673B 03-1131 F B 73029 91 2.7 0.31 0.81 30 3.1 8.1 0.11 0.30 0.13 0.051 1017B 04-1918 M E 76230 95 4.0 0.16 0.63 32 1.1 6.5 9 0.059 0.22 0.069 0.023 1017B 03-1918 F D 76230 95 4.0 0.16 0.63 32 1.4 5.4 0.052 0.20 0.067 0.023 1018B 03-1918 F D 76230 95 4.0 0.16 0.63 32 1.4 5.4 0.052 0.20 0.067 0.038 0.0087 1021 0.2-1918 F D 76230 95 4.0 0.16 0.63 32 1.4 5.4 0.052 0.20 0.067 0.031 0.0081 0										• •						
672A 01-1132 N C 73030 92 2.9 6.3 17. 20 16. 44. 0.59 1.6 0.69 0.19 672A 01-1132 N C 73030 93 3.5 1.9 6.7 21 12. 41. 0.44 1.5 0.52 0.17 10338 01-1927 N E 76267 89 3.0 1.1 3.4 22 12. 35. 0.44 1.3 0.52 0.18 6718 02-1131 F B 73029 94 2.8 1.3 3.7 23 11. 30. 0.41 1.1 0.88 0.14 1.3 0.52 0.18 6718 02-1054 N A 72220 88 2.8 2.6 7.4 24 9.3 26. 0.34 0.96 0.40 0.16 10238 03-1919 F D 76231 86 2.4 0.44 1.0 25 6.7 16. 0.25 0.59 0.29 0.094 1025 03-1913 N C 73029 88 2.7 0.67 1.8 27 5.0 13. 0.19 0.48 0.22 0.65 0.46 0.12 6758 04-1131 N C 73029 88 2.7 0.67 1.8 27 5.0 13. 0.19 0.48 0.22 0.660 0.1068 01-1919 N E 76231 97 3.3 0.89 2.9 28 4.9 16. 0.18 0.59 0.21 0.078 6731 03-1131 F B 73029 91 1.7 0.70 1.2 29 3.2 5.4 0.12 0.20 0.14 0.033 6240 04-1048 N A 72229 90 2.7 0.31 0.81 30 3.1 8.1 0.11 0.30 0.13 0.051 0718 04-1918 N E 76230 95 4.0 0.16 0.65 32 1.4 5.4 0.152 0.20 0.069 0.023 10178 04-1918 N E 76230 95 4.0 0.16 0.65 32 1.4 5.4 0.052 0.20 0.061 0.022 0.067 6747 01-1131 F B 73029 91 4.0 0.063 0.24 36 0.28 1.1 0.037 0.070 0.071			•	_												
10338 01-1927 N E 76267 89 3.0 1.1 3.4 22 12. 35. 0.44 1.5 0.52 0.18 6718 02-1131 F 8 73029 94 2.8 1.3 3.7 23 11. 30. 0.41 1.1 0.48 0.14 6308 02-1054 N A 72220 88 2.8 2.6 7.4 24 9.3 26. 0.34 0.96 0.40 0.16 10238 03-1919 F 0 76231 86 2.4 0.44 1.0 25 6.7 16. 0.25 0.59 0.29 0.094 630A 01-1054 N A 72220 88 3.8 0.55 2.1 26 6.0 23. 0.22 0.85 0.26 0.12 6738 04-1131 N C 73029 88 2.7 0.67 1.8 27 5.0 13. 0.19 0.48 0.22 0.060 10168 01-1919 N E 76231 97 3.3 0.89 2.9 28 4.9 16. 0.18 0.59 0.21 0.078 6737 03-1131 F 8 73029 91 1.7 0.70 1.2 29 3.2 5.4 0.12 0.20 0.14 0.033 6240 04-1048 N A 72209 90 2.7 0.31 0.81 30 3.1 8.1 0.11 0.30 0.13 0.051 0.078 6741 0.1918 N E 76230 95 4.0 0.16 0.63 32 1.4 5.4 0.052 0.20 0.061 0.022 10188 03-1918 F D 76230 95 4.0 0.16 0.63 32 1.4 5.4 0.052 0.20 0.061 0.022 10188 03-1918 F D 76230 98 4.0 0.16 0.63 32 1.4 5.4 0.052 0.20 0.061 0.022 10188 03-1918 F D 76230 98 4.0 0.16 0.63 32 1.4 5.4 0.052 0.20 0.061 0.022 10189 03-1918 F D 76230 98 4.0 0.16 0.63 32 1.4 5.4 0.052 0.20 0.061 0.022 10189 03-1918 F D 76230 98 4.0 0.067 0.27 33 1.0 4.1 0.037 0.15 0.043 0.020 6694 03-1918 N E 76230 95 4.0 0.067 0.27 33 1.0 4.1 0.037 0.15 0.043 0.020 6694 03-1918 N E 76230 95 4.0 0.067 0.27 33 1.0 4.1 0.037 0.15 0.043 0.020 6694 03-1918 N E 76230 95 3.8 0.0078 0.034 37 0.19 0.72 0.0070 0.027 0.0082 0.0087 1021 0.0091 0.0084 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0080 0.0087 0.0080 0.0087 0.0080 0.0087 0.0080 0.0087 0.0080 0.0087 0.0080 0.0087 0.0080 0.0087 0.0080 0.008																
10338 01-1927 M E 76267 89 3.0 1.1 3.4 22 12. 35. 0.44 1.3 0.52 0.18 671s 02-1131 F B 73029 94 2.8 1.3 3.7 23 11. 30. 0.41 1.1 0.48 0.14 6308 02-1054 M A 72220 88 2.8 2.6 7.4 24 9.3 26. 0.34 0.96 0.40 0.16 0.25 0.39 0.29 0.094 0.303 0.1919 F D 76231 86 2.4 0.44 1.0 25 6.7 16. 0.25 0.59 0.29 0.094 0.303 0.1019 0.48 0.22 0.65 0.26 0.12 0.78 0.11 0.18 0.10 0.48 0.22 0.65 0.26 0.12 0.78 0.11 0.18 0.18 0.19 0.48 0.22 0.66 0.12 0.16 0.18 0.19 0.48 0.22 0.65 0.12 0.16 0.18 0.19 0.48 0.22 0.66 0.12 0.16 0.18 0.19 0.48 0.22 0.66 0.12 0.16 0.18 0.19 0.48 0.22 0.66 0.12 0.16 0.18 0.19 0.48 0.22 0.66 0.12 0.078 0.11 0.19 0.48 0.22 0.66 0.12 0.078 0.11 0.19 0.48 0.22 0.66 0.12 0.078 0.11 0.19 0.48 0.22 0.66 0.12 0.078 0.11 0.13 0.11 0.30 0.13 0.15 0.13 0.15 0.13 0.15 0.13 0.15 0.13 0.15 0.13 0.15 0.13 0.15 0.13 0.15 0.14 0.18 0.18 0.18 0.19 0.14 0.18 0.18 0.18 0.19 0.14 0.18																
6718 02-1131 F B 73029 94 2.8 1.3 3.7 23 11. 30. 0.41 1.1 0.48 0.14 6308 02-1054 M A 72220 88 2.8 2.6 7.4 24 9.3 26. 0.34 0.96 0.40 0.16 10238 03-1919 F D 76231 86 2.4 0.44 1.0 25 6.7 16. 0.25 0.59 0.29 0.99 0.99 630A 01-1054 M A 72220 88 3.8 0.55 2.1 26 6.0 23. 0.22 0.85 0.26 0.12 6758 0.131 N C 73029 88 2.7 0.67 1.8 27 5.0 13. 0.19 0.48 0.22 0.060 10168 01-1919 M E 76231 97 3.3 0.89 2.9 28 4.9 16. 0.18 0.59 0.21 0.078 6737 03-1131 F B 73029 91 1.7 0.70 1.2 29 3.2 5.4 0.12 0.20 0.14 0.033 6240 04-1048 M A 72209 90 2.7 0.31 0.81 30 3.1 8.1 0.11 0.30 0.13 0.51 0.57 0.0178 04-1918 M E 76230 95 4.0 0.16 0.63 32 1.4 5.4 0.052 0.20 0.069 0.023 10178 04-1918 M E 76230 95 4.0 0.16 0.63 32 1.4 5.4 0.052 0.20 0.061 0.022 1018U 03-1918 F D 76230 95 4.0 0.067 0.27 33 1.0 4.1 0.037 0.15 0.043 0.020 6747 01-1131 F B 73029 88 2.1 0.17 0.55 34 0.87 1.8 0.032 0.067 0.033 0.0087 10211 02-1918 F D 76230 95 4.0 0.066 0.17 35 0.71 2.1 0.026 0.078 0.031 0.0087 10211 02-1918 F D 76230 95 4.0 0.066 0.17 35 0.71 2.1 0.026 0.078 0.031 0.0091 623A 03-1048 M A 72209 91 4.0 0.063 0.24 36 0.28 1.1 0.000 0.067 0.027 0.0083 0.0087 1018U 01-1918 M E 76230 95 3.8 0.0078 0.054 37 0.19 0.72 0.0070 0.027 0.0082 0.0063 10188 01-1918 M E 76230 95 3.8 0.0078 0.054 37 0.19 0.72 0.0070 0.027 0.0082 0.0027 669U 03-1125 F B 73019 84 3.0 0.056 0.16 38 0.17 0.50 0.063 0.019 0.0074 0.0023 668A 02-1125 M C 73019 93 3.2 0.055 0.16 38 0.17 0.50 0.063 0.019 0.0074 0.0023 668A 02-1125 M C 73026 91 2.7 0.036 0.096 41 0.089 0.24 0.0033 0.0089 0.0096 0.0039 0.0012 6640 0.1105 0.1-1915 F B 73018 90 2.7 0.036 0.096 41 0.081 44 0.089 0.24 0.0040 0.0089 0.0097 0.0074 0.0023 668A 02-1125 F B 73018 90 2.4 0.0084 0.081 44 0.089 0.24 0.0040 0.0089 0.0097 0.00074 0.0023 668B 0.01-1125 F B 73018 90 2.4 0.0084 0.081 44 0.0067 0.0024 0.0008 0.0009 0.0009 0.0009 0.0008 0.0009 0.0009 0.0009 0.0008 0.0009 0.0009 0.0008 0.0009 0.0009 0.0008 0.0009 0.0009 0.0008 0.0009 0.0009 0.0008 0.0009 0.0009 0.0009 0.0009 0.0008 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.00009 0.0009				_												
Company Comp																
1023S 03-1019 F D 76231 86 2.4 0.44 1.0 25 6.7 16. 0.25 0.59 0.29 0.094 630A 01-1054 M A 72220 88 3.8 0.55 2.1 26 6.0 23. 0.22 0.85 0.26 0.12 6758 04-1131 M C 73029 88 2.7 0.67 1.8 27 5.0 13. 0.19 0.48 0.22 0.060 10168 01-1919 M E 76231 97 3.3 0.89 2.9 28 4.9 16. 0.18 0.59 0.21 0.078 6737 03-1131 F B 73029 91 1.7 0.70 1.2 29 3.2 5.4 0.12 0.20 0.14 0.033 6240 04-1048 M A 72209 90 2.7 0.31 0.81 30 3.1 8.1 0.11 0.30 0.13 0.051 6718 03-1130 M C 73026 91 3.0 0.14 0.52 31 1.6 5.9 0.059 0.22 0.069 0.023 10178 04-1918 M E 76230 95 4.0 0.16 0.63 32 1.4 5.4 0.052 0.20 0.061 0.022 10180 03-1918 F D 76230 95 4.0 0.16 0.63 32 1.4 5.4 0.052 0.20 0.067 0.038 0.0087 10217 02-1918 F D 76230 98 2.1 0.17 0.35 34 0.87 1.8 0.032 0.067 0.038 0.0087 10217 02-1918 F D 76230 98 8.2 1 0.17 0.35 34 0.87 1.8 0.032 0.067 0.038 0.0087 10188 01-1918 M E 76230 95 4.0 0.063 0.24 36 0.87 1.8 0.032 0.067 0.038 0.0091 623A 03-1048 M A 72209 91 4.0 0.063 0.24 36 0.82 1.1 0.010 0.041 0.012 0.0063 0.10188 01-1918 M E 76230 95 3.8 0.0078 0.034 37 0.19 0.72 0.0070 0.027 0.0082 0.0027 6690 03-1125 M C 73019 93 3.2 0.052 0.16 39 0.14 0.43 0.0052 0.016 0.0061 0.0019 0.073 668A 02-1125 M C 73029 83 3.0 0.056 0.16 39 0.14 0.43 0.0052 0.016 0.0061 0.0019 0.075 6240 02-1108 M A 72209 90 2.9 0.048 0.14 42 0.061 0.18 0.0023 0.0099 0.0039 0.0016 671A 02-1130 M C 73026 91 2.7 0.036 0.096 41 0.089 0.24 0.0033 0.0089 0.0039 0.0016 671A 02-1130 M C 73026 91 2.7 0.036 0.096 41 0.089 0.24 0.0033 0.0089 0.0016 0.0061 0.0019 0.0074 0.0023 0.0069 0.0064 0.0065 0.0066 0				_							-					
630A 01-1054 M A 72220 88 3.8 0.55 2.1 26 6.0 23. 0.22 0.85 0.26 0.12 6758 04-1131 M C 73029 88 2.7 0.67 1.8 27 5.0 13. 0.19 0.48 0.22 0.060 10168 01-1919 M E 76231 97 3.3 0.89 2.9 28 4.9 16. 0.18 0.59 0.21 0.078 6737 03-1131 F B 73029 91 1.7 0.70 1.2 29 3.2 5.4 0.12 0.20 0.14 0.033 6240 04-1048 M A 72209 90 2.7 0.31 0.81 30 3.1 8.1 0.11 0.30 0.13 0.051 6718 03-1130 M C 73026 91 3.0 0.14 0.52 31 1.6 5.9 0.059 0.22 0.069 0.023 10178 04-1918 M E 76230 95 4.0 0.067 0.27 33 1.0 4.1 0.037 0.15 0.063 0.20 674T 01-1131 F B 73029 88 2.1 0.17 0.35 34 0.87 1.8 0.032 0.067 0.038 0.0020 674T 01-1131 F B 73029 88 2.1 0.17 0.35 34 0.87 1.8 0.032 0.067 0.038 0.0087 1021 02-1918 M A 72209 91 4.0 0.063 0.24 36 0.28 1.1 0.10 0.04 0.074 0.0023 10188 01-1918 M E 76230 95 3.8 0.0078 0.034 37 0.19 0.72 0.0070 0.027 0.0082 0.0065 10188 01-1918 M E 76230 95 3.8 0.0078 0.034 37 0.19 0.72 0.0070 0.027 0.0082 0.0027 6690 03-1125 F B 73019 84 3.0 0.052 0.16 39 0.14 0.43 0.0052 0.016 0.0061 0.0022 0.0063 10188 01-1918 M E 76230 95 3.8 0.0078 0.034 37 0.19 0.72 0.0070 0.027 0.0082 0.0027 6690 03-1125 F B 73019 84 3.0 0.052 0.16 39 0.14 0.43 0.0052 0.016 0.0061 0.0019 1017s 01-1915 F D 76229 94 3.2 0.011 0.035 40 0.12 0.38 0.0044 0.014 0.0052 0.0016 0.0019 1017s 01-1915 F B 73019 83 3.2 0.052 0.16 39 0.14 0.43 0.0052 0.016 0.0061 0.0019 1017s 01-1926 F B 73019 89 1.7 0.048 0.081 44 0.044 0.064 0.0033 0.0089 0.0039 0.0012 6244 01-1048 M A 72209 90 0.008 0.0054 0.0050 0.0054 40 0.0052 0.0016 0.0001 0.00033 0.0067 0.0022 0.00064 0.0033 0.00067 0.0022 0.00064 0.0033 0.00067 0.0022 0.00069 0.0011 0.035 0.0009 0.0015 0.00009 0.00012 0.00040 0.00012 0.00064 0.00012 0.00064 0.00012 0.00064 0.00012 0.00064 0.00012 0.00064 0.00012 0.00064 0.00012 0.00064 0.00012 0.00064 0.00012 0.00069 0.00012 0.00064 0.00012 0.00069 0.00012 0.00069 0.00012 0.00069 0.00012 0.00060 0.00070 0.0006																
6758 04-1131 M C 73029 88 2.7 0.67 1.8 27 5.0 13. 0.19 0.48 0.22 0.060 10168 01-1919 M E 76231 97 3.3 0.89 2.9 28 4.9 16. 0.18 0.59 0.21 0.078 6737 03-1131 F B 73029 91 1.7 0.70 1.2 29 3.2 5.4 0.12 0.20 0.14 0.033 6240 04-1048 M A 72209 90 2.7 0.31 0.81 30 3.1 8.1 0.11 0.30 0.13 0.051 6718 03-1130 M C 73026 91 3.0 0.14 0.52 31 1.6 5.9 0.059 0.22 0.069 0.023 10178 04-1918 M E 76230 95 4.0 0.16 0.63 32 1.4 5.4 0.052 0.20 0.061 0.022 1018U 03-1918 F D 76230 95 4.0 0.067 0.27 33 1.0 4.1 0.037 0.15 0.043 0.020 6747 01-1131 F B 73029 88 2.1 0.17 0.35 34 0.87 1.8 0.032 0.067 0.038 0.0087 10211 02-1918 F D 76230 86 3.0 0.066 0.17 35 0.71 2.1 0.026 0.078 0.031 0.0091 623A 03-1048 M A 72209 91 4.0 0.063 0.24 36 0.28 1.1 0.010 0.041 0.012 0.0063 1018B 01-1918 M E 76230 95 3.8 0.0078 0.034 37 0.19 0.72 0.0070 0.027 0.0082 0.0027 669U 03-1125 F B 73019 84 3.0 0.056 0.16 38 0.17 0.50 0.0063 0.019 0.0074 0.0023 668A 02-1125 M C 73019 93 3.2 0.052 0.061 3.0 0.056 0.16 38 0.17 0.50 0.0063 0.019 0.0074 0.0023 6648A 02-1125 M C 73019 93 3.2 0.052 0.061 0.035 0.096 11 0.035 40 0.12 0.38 0.0044 0.014 0.0052 0.0016 671A 02-1130 M C 73026 91 2.7 0.036 0.096 41 0.089 0.24 0.0033 0.0089 0.0039 0.0016 671A 02-1130 M C 73026 91 2.7 0.036 0.096 41 0.089 0.24 0.0033 0.0089 0.0039 0.0016 671A 02-1130 M C 73026 91 2.7 0.036 0.096 41 0.089 0.24 0.0033 0.0069 0.0016 0.0016 0.0016 0.0011 0.0012 0.0063 0.0019 0.0074 0.0022 0.00069 6705 01-1125 F B 73019 89 1.7 0.036 0.096 41 0.089 0.24 0.0033 0.0069 0.0015 0.0016 0.0011 0.0012 0.0063 0.0016 0.0011 0.0012 0.0064 0.0012 0.00069 0.0015 0.0014 0.0012 0.0064 0.0015 0.0016 0.0011 0.0012 0.00069 0.0015 0.0016 0.0011 0.0012 0.00069 0.0015 0.0016 0.0011 0.0012 0.00060 0.00060 0.0015 0.00010 0.00015 0.00010 0.00015 0.00010 0.00015 0.00010 0.00015 0.00010 0.00015 0.00010 0.00015 0.00010 0.00015 0.00010 0.00015 0.00010 0.00015 0.00010 0.00015 0.00010 0.00015 0.00010 0.00015 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010			-	-												
10168 01-1919 M E 76231 97 3.3 0.89 2.9 28 4.9 16. 0.18 0.59 0.21 0.078 6737 03-1131 F B 73029 91 1.7 0.70 1.2 29 3.2 5.4 0.12 0.20 0.14 0.031 0.051 6718 03-1130 M C 73026 91 3.0 0.14 0.52 31 1.6 5.9 0.059 0.22 0.069 0.023 10178 04-1918 M E 76230 95 4.0 0.16 0.63 32 1.4 5.4 0.052 0.20 0.061 0.022 1018U 03-1918 F D 76230 95 4.0 0.16 0.63 32 1.4 5.4 0.052 0.20 0.061 0.022 1018U 03-1918 F D 76230 95 4.0 0.16 0.63 32 1.4 5.4 0.052 0.20 0.061 0.022 1021 0211 02-1918 F D 76230 95 4.0 0.067 0.27 33 1.0 4.1 0.037 0.15 0.043 0.020 674T 01-1131 F B 73029 88 2.1 0.17 0.35 34 0.87 1.8 0.032 0.067 0.038 0.0097 623A 03-1048 M A 72209 91 4.0 0.063 0.24 36 0.28 1.1 0.010 0.041 0.012 0.063 10188 01-1918 M E 76230 95 3.8 0.0078 0.034 37 0.19 0.72 0.0000 0.027 0.0082 0.0027 669U 03-1125 F B 73019 84 3.0 0.056 0.16 38 0.17 0.50 0.0063 0.019 0.0074 0.0023 668A 02-1125 M C 73019 93 3.2 0.052 0.16 39 0.14 0.43 0.0052 0.016 0.0061 0.0019 1017\$ 01-1915 F D 76229 94 3.2 0.011 0.035 40 0.12 0.38 0.0044 0.014 0.0052 0.0016 671A 02-1130 M C 73026 91 2.7 0.036 0.096 41 0.089 0.24 0.0033 0.0089 0.0039 0.0012 624C 02-1048 M A 72209 90 2.9 0.048 0.14 42 0.061 0.18 0.0023 0.0067 0.0027 0.00084 10214 03-1926 M E 76230 88 3.9 0.018 0.070 43 0.051 0.000 0.0009 0.0015 0.0016 0.0017 0.0033 624A 01-1048 M A 72209 90 2.9 0.048 0.14 42 0.061 0.18 0.0023 0.0067 0.0027 0.00084 10214 03-1926 M E 76236 88 2.9 0.017 0.0048 44 0.021 0.009 0.0015 0.0016 0.00017 0.0033 624A 01-1048 M A 72209 90 2.9 0.048 0.14 42 0.061 0.18 0.0023 0.0067 0.0027 0.00084 10214 03-1926 F D 76266 88 2.9 0.017 0.0048 44 0.0010 0.0010 0.0015 0.00010 0.0003 0.0016 6238 01-1046 M A 72209 90 3.5 0.0024 0.0032 0.0009 0.0033 0.00017 0.00040 0.0015 0.00017 0.00050 6699 0.0-1130 M C 73018 90 3.4 0.6698 02-1124 M C 73018 90 3.4 0.6698 02-11																
673T 03-1131 F 8 73029 91 1.7 0.70 1.2 29 3.2 5.4 0.12 0.20 0.14 0.033 6240 04-1048 H A 72209 90 2.7 0.31 0.81 30 3.1 8.1 0.11 0.30 0.13 0.051 6718 03-1130 H C 73026 91 3.0 0.14 0.52 31 1.6 5.9 0.059 0.22 0.069 0.023 10178 04-1918 H E 76230 95 4.0 0.16 0.63 32 1.4 5.4 0.052 0.20 0.061 0.022 10180 03-1918 F D 76230 95 4.0 0.067 0.27 33 1.0 4.1 0.037 0.15 0.043 0.020 674T 01-1131 F 8 73029 88 2.1 0.17 0.35 34 0.87 1.8 0.032 0.067 0.038 0.0087 1021T 02-1918 F D 76230 86 3.0 0.056 0.17 35 0.71 2.1 0.026 0.078 0.031 0.0091 623A 03-1048 H A 72209 91 4.0 0.063 0.24 36 0.28 1.1 0.010 0.041 0.012 0.0063 0.19 0.1918 H E 76230 95 3.8 0.0078 0.034 37 0.19 0.72 0.0070 0.027 0.0082 0.0027 6690 03-1125 F 8 73019 84 3.0 0.056 0.16 38 0.17 0.50 0.0063 0.014 0.0023 668A 02-1125 H C 73019 93 3.2 0.055 0.16 39 0.14 0.43 0.0052 0.016 0.0061 0.0091 623A 02-1130 H C 73026 91 2.7 0.036 0.096 41 0.089 0.24 0.0033 0.0089 0.0039 0.0012 6240 02-1130 H C 73026 91 2.7 0.036 0.096 41 0.089 0.24 0.0033 0.0089 0.0039 0.0012 6240 02-1130 H C 73026 91 2.7 0.036 0.096 41 0.089 0.24 0.0033 0.0089 0.0039 0.0012 6240 01-1135 F 8 73019 89 1.7 0.048 0.081 44 0.061 0.18 0.0023 0.0067 0.0027 0.00069 670S 01-1125 F 8 73019 89 1.7 0.048 0.081 44 0.024 0.061 0.089 0.0074 0.0022 0.0069 670S 01-1125 F 8 73019 89 1.7 0.048 0.081 44 0.024 0.040 0.00089 0.0015 0.0010 0.00033 624A 01-1048 H A 72209 90 2.9 0.048 0.14 42 0.061 0.18 0.0023 0.0067 0.0027 0.00069 670S 01-1125 F 8 73019 89 1.7 0.048 0.081 44 0.024 0.040 0.00089 0.0015 0.0010 0.00033 624A 01-1048 H A 72208 90 3.5 0.0066 82 0.0069 0.0074 0.0022 0.00069 0.0015 0.0016 0.00015 0.00016 0.00015 0.00016 0.00015 0.00016 0.00015 0.00016 0.00015 0.00016 0.00015 0.00016 0.00015 0.00016 0.00015 0.00016 0.00016 0.00017 0.000050 0.0016 0.0017 0.000050 0.0016 0.0017 0.000050 0.0017 0.000050 0.0018 0.00017 0.000050 0.00017 0.000050 0.0018 0.00017 0.000050 0.00017 0.00050 0.00017 0.00050 0.00017 0.00050 0.00017 0.00050 0.00017 0.00050 0.00017 0.00050 0.00017 0.00050 0.00017 0.00050 0.00017 0.00050 0.00017 0.00050 0.000																
624D 04-1048 M A 72209 90 2.7 0.31 0.81 30 3.1 8.1 0.11 0.30 0.13 0.051 671B 03-1130 M C 73026 91 3.0 0.14 0.52 31 1.6 5.9 0.059 0.22 0.069 0.023 1017B 04-1918 M E 76230 95 4.0 0.16 0.63 32 1.4 5.4 0.052 0.20 0.061 0.022 1018U 03-1918 F D 76230 95 4.0 0.067 0.27 33 1.0 4.1 0.037 0.15 0.043 0.020 674T 01-1131 F B 73029 88 2.1 0.17 0.35 34 0.87 1.8 0.032 0.067 0.038 0.0087 1021T 02-1918 F D 76230 86 3.0 0.056 0.17 0.35 34 0.87 1.8 0.032 0.067 0.038 0.0087 1021T 02-1918 F D 76230 86 3.0 0.056 0.17 35 0.71 2.1 0.026 0.078 0.031 0.0091 623A 03-1048 M A 72209 91 4.0 0.063 0.24 36 0.28 1.1 0.010 0.041 0.012 0.0063 1018B 01-1918 M E 76230 95 3.8 0.0078 0.034 37 0.19 0.72 0.0070 0.027 0.0082 0.0027 669U 03-1125 F B 73019 84 3.0 0.056 0.16 38 0.17 0.50 0.0063 0.019 0.0074 0.0023 668A 02-1125 M C 73019 93 3.2 0.052 0.16 39 0.14 0.43 0.0052 0.016 0.0061 0.0016 671A 02-1130 M C 73026 91 2.7 0.036 0.096 41 0.089 0.24 0.0033 0.0089 0.0039 0.0012 624 0.0-1033 0.0-1034 M A 72209 90 2.9 0.048 0.14 42 0.061 0.18 0.0023 0.0067 0.0027 0.00084 1021A 03-1921 M E 76232 88 3.9 0.018 0.096 41 0.089 0.24 0.0033 0.0067 0.0027 0.00084 1021A 03-1921 M E 76232 88 3.9 0.018 0.091 0.070 43 0.051 0.20 0.0019 0.0074 0.0022 0.00069 670S 01-1125 F B 73019 89 1.7 0.048 0.081 44 0.024 0.061 0.18 0.0023 0.0067 0.0027 0.00084 1021A 03-1921 M E 76232 88 3.9 0.018 0.081 44 0.024 0.061 0.18 0.0023 0.0067 0.0027 0.00084 1021A 03-1921 M E 76232 88 3.9 0.018 0.081 0.090 0.0019 0.0074 0.0022 0.00069 670S 01-1125 F B 73019 89 1.7 0.048 0.081 44 0.024 0.060 0.00089 0.0015 0.0010 0.00033 624A 01-1048 M A 72209 90 2.9 0.048 0.081 44 0.024 0.060 0.00089 0.0015 0.0010 0.00033 624A 01-1048 M A 72208 90 3.5 0.0017 0.0048 46 0.011 0.032 0.00041 0.0012 0.00048 0.00015 0.00016 669V 03-1124 F B 73018 90 3.4 0.0017 0.0048 46 0.011 0.032 0.00041 0.0012 0.00048 0.00015 0.00060			F			91				29	3.2	5.4	0.12		0.14	0.033
10178 04-1918 M E 76230 95 4.0 0.16 0.63 32 1.4 5.4 0.052 0.20 0.061 0.022 1018U 03-1918 F D 76230 95 4.0 0.067 0.27 33 1.0 4.1 0.037 0.15 0.043 0.020 674T 01-1131 F B 73029 88 2.1 0.17 0.35 34 0.87 1.8 0.032 0.067 0.038 0.0087 1021T 02-1918 F D 76230 86 3.0 0.056 0.17 35 0.71 2.1 0.026 0.078 0.031 0.0091 623A 03-1048 M A 72209 91 4.0 0.063 0.24 36 0.28 1.1 0.010 0.041 0.012 0.0063 1018B 01-1918 M E 76230 95 3.8 0.0078 0.034 37 0.19 0.72 0.0070 0.027 0.0082 0.0027 669U 03-1125 F B 73019 84 3.0 0.056 0.16 38 0.17 0.50 0.0063 0.019 0.0074 0.0023 668A 02-1125 M C 73019 93 3.2 0.052 0.16 39 0.14 0.43 0.0052 0.016 0.0061 0.0019 10175 01-1915 F D 76229 94 3.2 0.011 0.035 40 0.12 0.38 0.0044 0.014 0.0052 0.016 671A 02-1130 M C 73026 91 2.7 0.036 0.096 41 0.089 0.24 0.0033 0.0089 0.0039 0.0012 624C 02-1048 M A 72209 90 2.9 0.048 0.14 42 0.061 0.18 0.0023 0.0067 0.0027 0.00084 1021A 03-1921 M E 76232 88 3.9 0.018 0.070 43 0.051 0.20 0.0019 0.0074 0.0022 0.00069 670S 01-1125 F B 73019 89 1.7 0.048 0.081 44 0.061 0.18 0.0023 0.0067 0.0027 0.00084 1021A 03-1921 M E 76232 88 3.9 0.018 0.070 43 0.051 0.20 0.0019 0.0074 0.0022 0.00069 670S 01-1125 F B 73019 89 1.7 0.048 0.081 44 0.024 0.040 0.00099 0.0015 0.0015 1033A 02-1926 M E 76266 88 2.9 0.017 0.048 46 0.011 0.032 0.00041 0.0012 0.00048 0.0015 1033A 02-1926 M E 76266 88 2.9 0.017 0.048 46 0.011 0.032 0.00041 0.0012 0.00048 0.0015 1033A 01-1926 F D 76266 88 2.9 0.017 0.0048 46 0.011 0.032 0.00041 0.0012 0.00048 0.00015 1034U 01-1926 F D 76266 85 2.8 0.0022 0.0059 47 0.0090 0.024 0.00032 0.00090 0.00038 0.00012 6699 03-1124 F B 73018 90 3.5 C 6698 01-1124 M C 73018 90 3.4 C 6699 02-1124 F B 73018 90 3.4 C 6699 02-1124 F B 73018 90 3.5 C 6698 02-1124 F B 73018 90 3.5 C 6698 01-1124 M C 73018 90 3.5 C 6698 01-1124 M C 73018 90 3.5 C 6698 01-1124 M C 73018 90 3.4 C 6699 02-1124 F B 73018			M	A	72209	90	2.7	0.31	0.81	30	3.1		0.11	0.30	0.13	0.051
1018U 03-1918 F	671B	03-1130	M	C			3.0	0.14	0.52		1.6					
674T 01-1131 F B 73029 88 2.1 0.17 0.35 34 0.87 1.8 0.032 0.067 0.038 0.0087 1021T 02-1918 F D 76230 86 3.0 0.056 0.17 35 0.71 2.1 0.026 0.078 0.031 0.0091 623A 03-1048 M A 72209 91 4.0 0.063 0.24 36 0.28 1.1 0.010 0.041 0.012 0.0063 10188 01-1918 M E 76230 95 3.8 0.0078 0.034 37 0.19 0.72 0.0070 0.027 0.0082 0.0027 669U 03-1125 F B 73019 84 3.0 0.056 0.16 38 0.17 0.50 0.0063 0.019 0.0074 0.0023 668A 02-1125 M C 73019 93 3.2 0.052 0.16 38 0.17 0.50 0.0063 0.019 0.0074 0.0023 668A 02-1125 M C 73026 91 2.7 0.036 0.096 41 0.089 0.24 0.0033 0.0089 0.0019 671A 02-1130 M C 73026 91 2.7 0.036 0.096 41 0.089 0.24 0.0033 0.0089 0.0039 0.0012 624C 02-1048 M A 72209 90 2.9 0.048 0.14 42 0.061 0.18 0.0023 0.0067 0.0027 0.00084 1021A 03-1921 M E 76232 88 3.9 0.018 0.070 43 0.051 0.20 0.0019 0.0074 0.0022 0.00069 6708 01-1125 F B 73019 89 1.7 0.048 0.081 44 0.024 0.040 0.00089 0.0015 0.0010 0.0033 624A 01-1048 M A 72209 90 4.0 0.031 0.12 45 0.013 0.051 0.0009 0.0015 0.0015 0.0015 1033A 02-1926 M E 76266 88 2.9 0.017 0.0048 46 0.011 0.032 0.00041 0.0012 0.00048 0.0015 1034U 01-1926 F D 76266 85 2.8 0.0022 0.0059 47 0.0090 0.024 0.00032 0.00060 0.00038 0.00015 1034U 01-1926 F D 76266 85 2.8 0.0022 0.0059 47 0.0090 0.024 0.00032 0.00060 0.00038 0.00015 1034U 01-1926 F B 73018 90 2.6 0.032 0.081 49 0.0000 0.010 0.00032 0.00060 0.0	1017B	04-1918	M	E			4.0	0.16								
1021T 02-1918 F D 76230 86 3.0 0.056 0.17 35 0.71 2.1 0.026 0.078 0.031 0.0091 623A 03-1048 M A 72209 91 4.0 0.063 0.24 36 0.28 1.1 0.010 0.041 0.012 0.0063 10188 01-1918 M E 76230 95 3.8 0.0078 0.034 37 0.19 0.72 0.0070 0.027 0.0082 0.0027 6690 03-1125 F B 73019 84 3.0 0.056 0.16 38 0.17 0.50 0.0063 0.019 0.0074 0.0023 668A 02-1125 M C 73019 93 3.2 0.052 0.16 39 0.14 0.43 0.0052 0.016 0.0061 0.0019 1017\$ 01-1915 F D 76229 94 3.2 0.011 0.035 40 0.12 0.38 0.0044 0.014 0.0052 0.0016 671A 02-1130 M C 73026 91 2.7 0.036 0.096 41 0.089 0.24 0.0033 0.0089 0.0039 0.0012 624C 02-1048 M A 72209 90 2.9 0.048 0.14 42 0.061 0.18 0.0023 0.0067 0.0027 0.00084 1021A 03-1921 M E 76232 88 3.9 0.018 0.070 43 0.051 0.20 0.0019 0.0074 0.0022 0.00069 670\$ 01-1125 F B 73019 89 1.7 0.048 0.081 44 0.024 0.040 0.00089 0.0015 0.0010 0.00033 624A 01-1048 M A 72209 90 4.0 0.031 0.12 45 0.013 0.050 0.00048 0.0018 0.00055 0.0017 1033A 02-1926 M E 76266 88 2.9 0.017 0.0048 46 0.011 0.032 0.00041 0.0012 0.00048 0.0015 1034U 01-1926 F D 76266 85 2.8 0.0022 0.0059 47 0.0090 0.024 0.00032 0.00090 0.00038 0.00015 6238 01-1046 M A 72208 90 3.5 C 6688 02-1124 F B 73018 90 3.4 C 6 0.032 0.0014 0.0015 0.00017 0.000050 0.0015 0.00017 0.000050 0.0015 0.00017 0.000050 0.0015 0.00017 0.000050 0.0015 0.0017 0.000050 0.0017 0.000050 0.0018 0.00015 0.00017 0.000050 0.0018 0.00015 0.00017 0.000050 0.0018 0.00015 0.00017 0.000050 0.00018 0.00015 0.00017 0.000050 0.00018 0.00015 0.00017 0.000050 0.00018 0.00015 0.00017 0.000050 0.00018 0.00015 0.00017 0.000050 0.00018 0.00015 0.00017 0.000050 0.00018 0.00015 0.00017 0.000050 0.00018 0.00015 0.00017 0.000050 0.00018 0.00015 0.00017 0.000050 0.00018 0.00015 0.00017 0.000050 0.00018 0.00015 0.00017 0.000050 0.00018 0.00015 0.00017 0.000050 0.00018 0.00015 0.00017 0.000050 0.00018 0.00015 0.000018 0.00017 0.000050 0.00018 0.00017 0.000050 0.00018 0.00017 0.			•	-												
623A 03-1048 M A 72209 91 4.0 0.063 0.24 36 0.28 1.1 0.010 0.041 0.012 0.0063 10188 01-1918 M E 76230 95 3.8 0.0078 0.034 37 0.19 0.72 0.0070 0.027 0.0082 0.0027 669U 03-1125 F B 73019 84 3.0 0.056 0.16 38 0.17 0.50 0.0063 0.019 0.0074 0.0023 668A 02-1125 M C 73019 93 3.2 0.052 0.16 39 0.14 0.43 0.0052 0.016 0.0061 0.0019 1017\$ 01-1915 F D 76229 94 3.2 0.011 0.035 40 0.12 0.38 0.0044 0.014 0.0052 0.0016 671A 02-1130 M C 73026 91 2.7 0.036 0.096 41 0.089 0.24 0.0033 0.0089 0.0039 0.0012 624C 02-1048 M A 72209 90 2.9 0.048 0.14 42 0.061 0.18 0.0023 0.0067 0.0027 0.0084 1021A 03-1921 M E 76232 88 3.9 0.018 0.070 43 0.051 0.20 0.0019 0.0074 0.0022 0.0069 670\$ 01-1125 F B 73019 89 1.7 0.048 0.081 44 0.024 0.040 0.00089 0.0015 0.0010 0.0033 624A 01-1048 M A 72209 90 4.0 0.031 0.12 45 0.013 0.050 0.00048 0.0018 0.00055 0.0017 1033A 02-1926 M E 76266 88 2.9 0.017 0.0084 46 0.011 0.032 0.00041 0.0012 0.00048 0.0015 1034U 01-1926 F D 76266 85 2.8 0.0022 0.0059 47 0.0090 0.024 0.00032 0.00090 0.0038 0.0015 1034U 01-1926 F D 76266 85 2.8 0.0022 0.0059 47 0.0090 0.024 0.00032 0.00090 0.00038 0.00015 0.00016 669V 03-1124 F B 73018 90 2.6 0.032 0.081 49 0.0040 0.010 0.00022 0.00060 0.00026 0.000070 669V 03-1124 F B 73018 90 3.5 C 6688 01-1124 F B 73018 90 3.5 C 6689 02-1124 F B 73018 90 3.6 C 6689 02-112				_												
10188 01-1918 M E 76230 95 3.8 0.0078 0.034 37 0.19 0.72 0.0070 0.027 0.0082 0.0027 669U 03-1125 F B 73019 84 3.0 0.056 0.16 38 0.17 0.50 0.0063 0.019 0.0074 0.0023 668A 02-1125 M C 73019 93 3.2 0.052 0.16 39 0.14 0.43 0.0052 0.016 0.0061 0.0019 10175 01-1915 F D 76229 94 3.2 0.011 0.035 40 0.12 0.38 0.0044 0.014 0.0052 0.0016 671A 02-1130 M C 73026 91 2.7 0.036 0.096 41 0.089 0.24 0.0033 0.0089 0.0039 0.0039 0.0012 624C 02-1048 M A 72209 90 2.9 0.048 0.14 42 0.061 0.18 0.0023 0.0067 0.0027 0.00084 1021A 03-1921 M E 76232 88 3.9 0.018 0.070 43 0.051 0.20 0.0019 0.0074 0.0022 0.00069 670S 01-1125 F B 73019 89 1.7 0.048 0.081 44 0.024 0.040 0.00089 0.0015 0.0010 0.0033 624A 01-1048 M A 72209 90 4.0 0.031 0.12 45 0.013 0.050 0.00048 0.0018 0.00055 0.00017 1033A 02-1926 M E 76266 88 2.9 0.017 0.0048 46 0.011 0.032 0.00041 0.0012 0.00048 0.0017 1033A 02-1926 M E 76266 88 2.9 0.017 0.0048 46 0.011 0.032 0.00041 0.0012 0.00048 0.0017 1033A 02-1926 F D 76266 85 2.8 0.0022 0.0059 47 0.0090 0.024 0.00032 0.00090 0.0038 0.00012 671D 01-1130 M C 73026 91 2.9 0.024 0.067 48 0.0060 0.016 0.00022 0.00060 0.00038 0.00012 669V 03-1124 F B 73018 90 2.6 0.032 0.081 49 0.0040 0.010 0.00015 0.00040 0.00017 0.000050 6638 01-1124 M C 73018 92 3.1 6669S 02-1124 F B 73018 90 3.5 6668S 01-1124 F B 73018 90 3.4 C 1013S 02-1913 F D 76223 96 2.7			-	_												
669U 03-1125 F B 73019 84 3.0 0.056 0.16 38 0.17 0.50 0.0063 0.019 0.0074 0.0023 668A 02-1125 M C 73019 93 3.2 0.052 0.16 39 0.14 0.43 0.0052 0.016 0.0061 0.0019 1017s 01-1915 F D 76229 94 3.2 0.011 0.035 40 0.12 0.38 0.0044 0.014 0.0052 0.016 671A 02-1130 M C 73026 91 2.7 0.036 0.096 41 0.089 0.24 0.0033 0.0089 0.0039 0.0012 624C 02-1048 M A 72209 90 2.9 0.048 0.14 42 0.061 0.18 0.0023 0.0067 0.0027 0.00084 1021A 03-1921 M E 76232 88 3.9 0.018 0.070 43 0.051 0.20 0.0019 0.0074 0.0022 0.00069 670s 01-1125 F B 73019 89 1.7 0.048 0.081 44 0.024 0.040 0.00089 0.0015 0.0010 0.00033 624A 01-1048 M A 72209 90 4.0 0.031 0.12 45 0.013 0.050 0.00048 0.0018 0.00055 0.0017 10334 02-1926 M E 76266 88 2.9 0.017 0.0048 46 0.011 0.032 0.00041 0.0018 0.00055 0.00015 10340 01-1926 F D 76266 85 2.8 0.0022 0.0059 47 0.0090 0.024 0.00032 0.00090 0.00038 0.00012 671D 01-1130 M C 73026 91 2.9 0.024 0.067 48 0.0060 0.016 0.00022 0.00060 0.00038 0.00012 669V 03-1124 F B 73018 90 2.6 0.032 0.081 49 0.0040 0.010 0.00015 0.00040 0.00017 0.00050 6238 01-1046 M A 72208 90 3.5 C 6688 01-1124 F B 73018 90 3.4 C 73018 92 3.1 669S 02-1124 F B 73018 90 3.4 C 1013S 02-1913 F D 76223 96 2.7																
668A 02-1125 M C 73019 93 3.2 0.052 0.16 39 0.14 0.43 0.0052 0.016 0.0061 0.0019 10178 01-1915 F D 76229 94 3.2 0.011 0.035 40 0.12 0.38 0.0044 0.014 0.0052 0.0016 671A 02-1130 M C 73026 91 2.7 0.036 0.096 41 0.089 0.24 0.0033 0.0089 0.0039 0.0012 624C 02-1048 M A 72209 90 2.9 0.048 0.14 42 0.061 0.18 0.0023 0.0067 0.0027 0.00084 1021A 03-1921 M E 76232 88 3.9 0.018 0.070 43 0.051 0.20 0.0019 0.0074 0.0022 0.0069 670S 01-1125 F B 73019 89 1.7 0.048 0.081 44 0.024 0.040 0.00089 0.0015 0.0010 0.00033 624A 01-1048 M A 72209 90 4.0 0.031 0.12 45 0.013 0.050 0.00048 0.0018 0.00055 0.0017 1033A 02-1926 M E 76266 88 2.9 0.017 0.0048 46 0.011 0.032 0.00041 0.0012 0.00048 0.0015 1034U 01-1926 F D 76266 85 2.8 0.0022 0.0059 47 0.0090 0.024 0.00032 0.00090 0.00038 0.00015 624D 01-1130 M C 73026 91 2.9 0.024 0.067 48 0.0060 0.016 0.00022 0.00060 0.00026 0.00070 669V 03-1124 F B 73018 90 2.6 0.032 0.081 49 0.0040 0.010 0.00015 0.00017 0.000050 623B 01-1046 M A 72208 90 3.5 6688 01-1124 M C 73018 92 3.1 669S 02-1124 F B 73018 90 3.4 C 1013S 02-1913 F D 76223 96 2.7																
1017s 01-1915 F D 76229 94 3.2 0.011 0.035 40 0.12 0.38 0.0044 0.014 0.0052 0.0016 671A 02-1130 M C 73026 91 2.7 0.036 0.096 41 0.089 0.24 0.0033 0.0089 0.0039 0.0012 624C 02-1048 M A 72209 90 2.9 0.048 0.14 42 0.061 0.18 0.0023 0.0067 0.0027 0.00084 1021A 03-1921 M E 76232 88 3.9 0.018 0.070 43 0.051 0.20 0.0019 0.0074 0.0022 0.0069 670S 01-1125 F B 73019 89 1.7 0.048 0.081 44 0.024 0.040 0.00089 0.0015 0.0010 0.00033 624A 01-1048 M A 72209 90 4.0 0.031 0.12 45 0.013 0.050 0.00048 0.0018 0.00055 0.00017 1033A 02-1926 M E 76266 88 2.9 0.017 0.0048 46 0.011 0.032 0.00041 0.0012 0.00048 0.0015 1034U 01-1926 F D 76266 85 2.8 0.0022 0.0059 47 0.0090 0.024 0.00032 0.00090 0.00038 0.00015 671D 01-1130 M C 73026 91 2.9 0.024 0.067 48 0.0060 0.016 0.00022 0.00060 0.00026 0.00070 669V 03-1124 F B 73018 90 2.6 0.032 0.081 49 0.0040 0.010 0.00015 0.00040 0.00017 0.000050 6638 01-1046 M A 72208 90 3.5 C C 6688 01-1124 M C 73018 92 3.1 C C 669S 02-1124 F B 73018 90 3.4 C C 1013S 02-1913 F D 76223 96 2.7			-													
671A 02-1130 M C 73026 91 2.7 0.036 0.096 41 0.089 0.24 0.0033 0.0089 0.0039 0.0012 624C 02-1048 M A 72209 90 2.9 0.048 0.14 42 0.061 0.18 0.0023 0.0067 0.0027 0.00084 1021A 03-1921 M E 76232 88 3.9 0.018 0.070 43 0.051 0.20 0.0019 0.0074 0.0022 0.0069 670S 01-1125 F B 73019 89 1.7 0.048 0.081 44 0.024 0.040 0.00089 0.0015 0.0010 0.00033 624A 01-1048 M A 72209 90 4.0 0.031 0.12 45 0.013 0.050 0.00048 0.0018 0.00055 0.00017 1033A 02-1926 M E 76266 88 2.9 0.017 0.0048 46 0.011 0.032 0.00041 0.0012 0.00048 0.0015 1034U 01-1926 F D 76266 85 2.8 0.0022 0.0059 47 0.0090 0.024 0.00032 0.00090 0.00038 0.00015 671D 01-1130 M C 73026 91 2.9 0.024 0.067 48 0.0060 0.016 0.00022 0.00060 0.00026 0.00070 6699 03-1124 F B 73018 90 2.6 0.032 0.081 49 0.0040 0.010 0.00015 0.00040 0.00017 0.000050 6638 01-1046 M A 72208 90 3.5 C C 6688 01-1124 M C 73018 92 3.1 C C 669S 02-1124 F B 73018 90 3.4 C C 1013S 02-1913 F D 76223 96 2.7				_												
624C 02-1048 M A 72209 90 2.9 0.048 0.14 42 0.061 0.18 0.0023 0.0067 0.0027 0.00084 1021A 03-1921 M E 76232 88 3.9 0.018 0.070 43 0.051 0.20 0.0019 0.0074 0.0022 0.00069 670S 01-1125 F B 73019 89 1.7 0.048 0.081 44 0.024 0.040 0.00089 0.0015 0.0010 0.00033 624A 01-1048 M A 72209 90 4.0 0.031 0.12 45 0.013 0.050 0.00048 0.0018 0.00015 1033A 02-1926 M E 76266 88 2.9 0.017 0.0048 46 0.011 0.032 0.00041 0.0012 0.00048 0.0015 1034U 01-1926 F D 76266 85 2.8 0.0022 0.0059 47 0.0090 0.024 0.0032 0.00090 0.0038 0.00015 671D 01-1130 M C 73026 91 2.9 0.024 0.067 48 0.0060 0.016 0.00022 0.00060 0.00038 0.00012 669V 03-1124 F B 73018 90 2.6 0.032 0.081 49 0.0040 0.010 0.00015 0.00040 0.00017 0.00050 6638 01-1046 M A 72208 90 3.5 C 6688 01-1124 M C 73018 92 3.1 669S 02-1124 F B 73018 90 3.4 C 1013S 02-1913 F D 76223 96 2.7				_								0.36				
1021A 03-1921 M E 76232 88 3.9 0.018 0.070 43 0.051 0.20 0.0019 0.0074 0.0022 0.00069 670S 01-1125 F B 73019 89 1.7 0.048 0.081 44 0.024 0.040 0.00089 0.0015 0.0010 0.00033 624A 01-1048 M A 72209 90 4.0 0.031 0.12 45 0.013 0.050 0.0048 0.0018 0.00055 0.00017 1033A 02-1926 M E 76266 88 2.9 0.017 0.0048 46 0.011 0.032 0.00041 0.0012 0.00048 0.0015 1034U 01-1926 F D 76266 85 2.8 0.0022 0.0059 47 0.0090 0.024 0.00032 0.00090 0.00048 0.00015 0.00015 671D 01-1130 M C 73026 91 2.9 0.024 0.067 48 0.0060 0.016 0.00022 0.00060 0.00026 0.00070 669V 03-1124 F B 73018 90 2.6 0.032 0.081 49 0.0040 0.010 0.0015 0.00040 0.00017 0.00050 623B 01-1046 M A 72208 90 3.5 C 668B 01-1124 M C 73018 92 3.1 669S 02-1124 F B 73018 90 3.4 C 1013S 02-1913 F D 76223 96 2.7																
670s 01-1125 F B 73019 89 1.7 0.048 0.081 44 0.024 0.040 0.00089 0.0015 0.0010 0.00033 624A 01-1048 M A 72209 90 4.0 0.031 0.12 45 0.013 0.050 0.00048 0.0018 0.00055 0.00017 1033A 02-1926 M E 76266 88 2.9 0.017 0.0048 46 0.011 0.032 0.00041 0.0012 0.00048 0.0015 1034U 01-1926 F D 76266 85 2.8 0.0022 0.0059 47 0.0090 0.024 0.00032 0.00090 0.00038 0.00012 671D 01-1130 M C 73026 91 2.9 0.024 0.067 48 0.0060 0.016 0.00022 0.00060 0.00026 0.000070 669V 03-1124 F B 73018 90 2.6 0.032 0.081 49 0.0040 0.010 0.00015 0.00040 0.00017 0.000050 6238 01-1046 M A 72208 90 3.5 6688 01-1124 M C 73018 92 3.1 C 669s 02-1124 F B 73018 90 3.4 C 1013s 02-1913 F D 76223 96 2.7																
624A 01-1048 M A 72209 90 4.0 0.031 0.12 45 0.013 0.050 0.00048 0.0018 0.00055 0.00017 1033A 02-1926 M E 76266 88 2.9 0.017 0.0048 46 0.011 0.032 0.00041 0.0012 0.00048 0.00015 1034U 01-1926 F D 76266 85 2.8 0.0022 0.0059 47 0.0090 0.024 0.00032 0.00090 0.00038 0.00012 671D 01-1130 M C 73026 91 2.9 0.024 0.067 48 0.0060 0.016 0.00022 0.00060 0.00026 0.00070 669V 03-1124 F B 73018 90 2.6 0.032 0.081 49 0.0040 0.010 0.00015 0.00040 0.00017 0.000050 623B 01-1046 M A 72208 90 3.5 C 6688 01-1124 M C 73018 92 3.1 C 669S 02-1124 F B 73018 90 3.4 C 1013S 02-1913 F D 76223 96 2.7				_												
1033A 02-1926 M E 76266 88 2.9 0.017 0.0048 46 0.011 0.032 0.00041 0.0012 0.00048 0.00015 1034U 01-1926 F D 76266 85 2.8 0.0022 0.0059 47 0.0090 0.024 0.00032 0.00090 0.0038 0.00012 671D 01-1130 M C 73026 91 2.9 0.024 0.067 48 0.0060 0.016 0.00022 0.00060 0.00026 0.000070 669V 03-1124 F B 73018 90 2.6 0.032 0.081 49 0.0040 0.010 0.00015 0.00040 0.00017 0.000050 623B 01-1046 M A 72208 90 3.5 668B 01-1124 M C 73018 92 3.1 C C 669S 02-1124 F B 73018 90 3.4 C C 1013S 02-1913 F D 76223 96 2.7			•	-												
1034U 01-1926 F D 76266 85 2.8 0.0022 0.0059 47 0.0090 0.024 0.00032 0.00090 0.0038 0.00012 671D 01-1130 M C 73026 91 2.9 0.024 0.067 48 0.0060 0.016 0.00022 0.00060 0.0026 0.000070 669V 03-1124 F B 73018 90 2.6 0.032 0.081 49 0.0040 0.010 0.00015 0.00040 0.00017 0.000050 623B 01-1046 M A 72208 90 3.5 C 668B 01-1124 M C 73018 92 3.1 C 669S 02-1124 F B 73018 90 3.4 C 1013S 02-1913 F D 76223 96 2.7 C																
671D 01-1130 M C 73026 91 2.9 0.024 0.067 48 0.0060 0.016 0.00022 0.00060 0.00026 0.000070 669V 03-1124 F B 73018 90 2.6 0.032 0.081 49 0.0040 0.010 0.00015 0.00040 0.00017 0.000050 623B 01-1046 M A 72208 90 3.5 C 668B 01-1124 M C 73018 92 3.1 C 669S 02-1124 F B 73018 90 3.4 C 1013S 02-1913 F D 76223 96 2.7 C			•••													
669V 03-1124 F B 73018 90 2.6 0.032 0.081 49 0.0040 0.010 0.00015 0.00040 0.00017 0.000050 623B 01-1046 M A 72208 90 3.5 C 668B 01-1124 M C 73018 92 3.1 C 669S 02-1124 F B 73018 90 3.4 C 1013S 02-1913 F D 76223 96 2.7 C				-												
623B 01-1046 M A 72208 90 3.5 C 668B 01-1124 M C 73018 92 3.1 C 669S 02-1124 F B 73018 90 3.4 C 1013S 02-1913 F D 76223 96 2.7 C				_												0.000050
669S 02-1124 F B 73018 90 3.4 C 1013S 02-1913 F D 76223 96 2.7 C			M	_		90				C						
1013S 02-1913 F D 76223 96 2.7 C	6688	01-1124	M	C	73018											- 41
			F	B												1
1016A 01-1913 M E 76223 89 3.4 C				-												1
	1016A	01-1913	M	E	76223	89	3.4			C						

UCI/KG REPRESENTS MICROCURIES OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT. MBG/KG REPRESENTS MEGABEQUERELS OF RADIONOCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.

DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER INHALATION EXPOSURE.

+ INDICATES THE DOG DIED BEFORE IT RECEIVED ITS POTENTIAL INFINITE DOSE.

COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED, RESPECTIVELY. PROMINENT FINDINGS ARE INCLUDED

BETA RADIATION DOSE TO LUNG

	DOSE RATE	(GY/DAY))		CUMULAT	IVE DOSE	(GY)			
AL	60 Days	365 Days	AT DEATH	60 Days	365 Days	POTENT. INFIN.	TO DEATH	DEATH	DAYS TO DEATH	COMMENT
	2.3		1.6	210.		550. +	270.	76330	91	D-PULMONARY INJURY
	2.2		1.4	190.		800. +	250.	73128	95	D-PULMONARY INJURY; CONG. NEART FAIL.
	1.6		1.3	140.		490. +	210.	73151	121	D-PULMONARY INJURY; CONG. HEART FAIL.
	1.1	.23	0.053	110.	260.	320. +	300.	78254	738	D-HEMANGIOSARCOMA, LUNG
	1.0	.27	0.073	100.	260.	330. +	310.	78208	700	E-HEMANGIOSARCOMA, LUNG
	0.86		0.78	100.		150. +	110.	73099	66	D-PULMONARY INJURY; CONG. HEART FAIL.
	0.80	.21	0.13	92.	210.	270. +	240.	74179	511	D-PULMONARY INJURY
	0.96	.26	0.090	88.	250.	310. +	290.	74355	689	E-HEMANGIOSARCOMA, LUNG
	0.84	. 16		82.	190.	230.	230.	80100	1314	E-HEMANGIOSARCOMA, LUNG
	0.76	.21	0.081	78.	200.	250. +	230.	74284	618	E-HEMANGIOSARCOMA, LUNG
	0.6 9	.18	0.0044	<i>7</i> 2.	180.	220.	220.	77302	1732	D-HEHANGIOSARCOMA, SPLEEN
	0.63	.11		59.	130.	160.	160.	79330	2666	E-HEMANGIOSARCOMA, MUSCLE
	0.56	.14		50.	130.	180.	180.	80184	1413	D-HEMANGIOSARCOMA, TBLN
	0.51	.10		50.	120.	140.	140.	86266	3652	E-CARCINONA, LUNG; HEMANGIOSARCOMA, LUI
	0.56	.10		55.	120.	150.	150.	84196	2887	D-PLEURITIS, NOCARDIA
	0.43	.13_	0.0052	40.	110.	150.	150.	76168	1227	E-HEMANGIOSARCOMA, TBLN.
	0.50	.095		46.	110.	130.	130.	79004	2341	E-HEMANGIOSARCOMA, DISSEMINATED
	0.28	.072		3 0.	72.	91.	91.	86125	4841	E-CARCINONA, ANAL SAC
	0.25	.051		25.	58.	71.	71.	84123	2813	E-HEMANGIOSARCOMA, TBLN; B.A. CARC., LE
	0.19	.055		21.	53.	<u>67.</u>	<u>67.</u>	82069	3326	E-LYMPHOSARC., GENERAL; ADENDOCARC., LL
	0.17	.047	0.0025	17.	45.	57.	57.	77089	1520	D-EPILEPSY; HYPOTHRYROIDISM
	0.18	.037		17.	41.	51.	51.	84117	2772	E-HEMANGIOSARCOMA, TBLN
	0.14	.038		14.	36.	46.	46.	84278	4266	E-CARCINOMA, LUNG
	0.16	.025		15.	33.	40.	40.	85145	4674	D-CARCINOMA, LUNG
	0.094	.019		9.0	21.	27.	27.	86175	3597	E-CARCINONA, LUNG
	0.12	.024		11.	27.	33.	33.	87128	5387	E-CARCINONA, NASAL
	0.060	.015		7.0	15.	19.	19.	83212	3835	D-PANCREATIC ATROPHY
	0.078	.014		6.9	17.	20.	20.	91315	5563	D-CARCINONA, LUNG
	0.033	.0087		3.3	8.1	11.	11.	85361	4715	D-INTERSTITIAL PNEUMONIA
	0.051	.0089		4.7	11.	13.	13.	87026	5296	E-MELANOMA, ORAL
	0.023	.0065		2.5	6.3	8.0	8.0	89114	5932	E-MESOTHELIOMA, PULMONARY CARCINOMA E-TRANSITIONAL CELL CARCINOMA, PROSTA
	0.022	.0054		1.9	5.2	6.6	6.6	90141	5025	D-INTERSTITIAL NEPHRITIS
	0.020	.0049 .0023		1.7	4.5	6.5	6.5	91141	5390	E-PAPILLARY ADENOCARCINOMA, LUNG
	0.0087 0.0091	.0023		1.0	2.4	2.9	2.9	89090	5905	E-MANMARY COMPLEX ADENOCARCINONA
	0.0063	.0011		0.89 0.50	2.1	2.7	2.7	89095	4614	E-HEART BASE TUNOR, HEART
	0.0027	.00090		0.30	1.3 0.67	1.6 0.98	1.6 0.98	88007 84313	5642 3005	D-FOCAL PNEUMONIA
	0.0027	.00058		0.24	0.58	0.74	0.74	84291	42 89	E-LYMPHOSARCOMA, VISCERAL
	0.0023	.00046		0.19	0.46	0.59	0.74	88343	5802	E-CORONARY, PULMONARY THRONBOSES
	0.0016	.00040		0.17	0.40	0.51	0.54	88243	4397	E-DEGENERATIVE MYOPATHY, ESOPHAGUS
	0.0012	.00030		0.13	0.30	0.38	0.38	84163	4154	D-IMPACTION, GALL BLADDER
	0.00084	.00021		0.088	U.21	0.27	0.27	81191	3270	E-POLIGENCEPHALOMALACIA, SPINAL CORD
	0.00069	.00017		0.072	0.17	0.22	0.22	86244	3665	D-LEICHYOSARCOMA, INTESTINE
	0.00033	.000082		0.034	0.083	0.11	0.11	87012	5106	E-CHRONIC INTERSTITIAL NEPHRITIS
;	0.00017	.000042		0.018	0.043	0.054	0.054	85225	4765	E-CIRRHOSIS, LIVER
3	0.00015	.000037		0.015	0.044	0.047	0.047	86283	3670	D-PNEUMONIA
į	0.00012	.000029		0.012	0.029	0.037	0.037	90233	5081	E-ADENOCARCINOMA, MAMMARY GLAND
5	0.000070			0.0080	0.019	0.024	0.024	88061	5513	E-MALIGNANT MELANOMA, ORAL CAVITY
7				0.0060	0.013	0.017	0.017	87242	5338	D-PNEUMON IA
					*			84027	4202	E-HEART FAILURE
								87267	5362	D-HEART FAILURE
								84214	4213	E-LYMPHOSARCOMA, GENERALIZED
								87220	4015	D-ENDOCARDITIS
								80140	1378	E-VERTEBRAL DISC RUPTURE

B ARE INCLUDED.

j

A.13 144Ce in Fused Aluminosilicate Particles, Immature Sacrifice Study

												BETA I	RADIATIO	X
BOG IDENTIFICATION	INHALAT	TION EXPOSU					•			OSE R/	ATE (G1	/DAY)		•
DOG IDENTIFICATION		AGE WT	1.	J.B.		1 - 1				60	120	365	AT	
TATTOO AN-EXPT SEX	DATE	DAYS KG	MBQ/KG	MBQ	UC1/KG	UCI	MBQ/KG	MBQ	INITIAL	DAYS	DAYS	DAYS	DEATH	
******			• •••••											
672T 04-1132 F	73030	93 3.0	0 5.2	15.	46	140	1.7	5.2	2.2	.63	.39	. 15	.084	
6298 03-1055 M	72221	92 2.	7 10.	27.	43	120	1.6	4.4	1.7	.88	.46		.42	
673u 01-1137 F	73036	98 1.	7 5.2	8.9	37	62	1.4	2.3	1.2	.42			.29	
631S 03-1063 F	72228	91 1.	8 1.4	2.4	11	19	0.41	0.7	0.48	.17	.10	.035		
*********	******	•												

UCI/KG REPRESENTS MICROCURIES OF RADIOMUCLIDE PER KILOGRAM OF TOTAL BODY MEIGHT.
MBG/KG REPRESENTS MEGABEQUERELS OF RADIOMUCLIDE PER KILOGRAM OF TOTAL BODY MEIGHT.
DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER INHALATION EXPOSURE.
+ INDICATES THE DOG DIED BEFORE IT RECEIVED ITS POTENTIAL INFINITE DOSE.
COMMENT: D, E, OR S INDICATE THE DOG DIED, MAS EUTHANIZED OR MAS SACRIFICED, RESPECTIVELY. PROMINENT FINDINGS ARE I

BETA RADIATION DOSE TO LUNG

0	OSE RA	TE (GY	/DAY)			CUMUL	ATIVE	DOSE (GY))			
TIAL	60 Days	120 DAYS	365 DAYS	AT DEATH	60 DAYS	120 DAYS	365 DAYS	POTENT. INFIN.	TO DEATH	DEATH DATE	DAYS TO DEATH	COMMENT
2 7 2	.63 .88 .42	.39 .46	.15	.084 .42 .29	69 75 44 16	98 110 24	160	200+ 160+ 130+ 38	170 120 51 38	74179 72350 73117 82258	514 129 81 3241	S-PULMONARY INJURY S- S- S-

TION EXPOSURE.

MELY. PROMINENT FINDINGS ARE INCLUDED.

A.14 144Ce in Fused Aluminosilicate Particles, Aged Longevity Study

																	BETA
			INHA	LATION	EXPO:	SURE		_							DOSE	RATE (G	Y/DAY
DOG ID	ENTIFICAT	ION					1.8.	8.			1.L.B	·			60	120	365
TATTOO	AN-EXPT	SEX	BLOCK	DATE	AGE DAYS	WT KG	MBQ/KG	MBQ	RANK	UC1/KG	UCI	MBQ/KG	MBQ	INITIAL	DAYS	DAYS	DAYS
FD-49 FD-40	02-962 02-991	F	8 E	72040 72055			5.5 6.3	52. 74.	01 02	75. 67.	710 800	2.8 2.5	26. 30.	4.4 4.0	3.0 3.2	2.2 2.5	
FD-96	01-987	F	C	72046	3686	10.9	3.7	41.	03	56.	610	2.1	23.	3.3	2.5	2.0	1
FD-108 FD-118	03-967 01-990	F	D F	72046 72054			5.9 7.0	70. 44.	04 05	51. 50.	600 330	1.9 1.9	22. 12.	3.0 3.0	2.3 2.2	1.8 1.7	
FD-145	03-962	F	A	72040	3840	10.5	2.7	28.	06	40.	420	1.5	16.	2.4	1.8	1.4	
738 176A	01-1685 02-1689	M	H K	75252 75258			5.9 2.3	70. 28.	07 08	37. 35.	420 410	1.4 1.3	16. 15.	2.1 2.0	1.6 1.5	1.2 1.2	.45
211C	03-1690	Ä	î	75259			2.5	28.	09	33.	370	1.2	14.	1.9	1.5	1.2	.45
105A	03-1687	M	I	75254			2.3	30.	10	32.	420	1.2	16.	1.8	1.4	1.1	.41
151A FD-12	03-1688 02-987	M F	C 1	75255 72046			4.4 4.4	59. 67.	11 12	27. 27.	370 400	1.0 1.0	14. 15.	1.5 1.6	1.2 1.1	0.96 0.83	.39
71A	02-1686	Ä	H	75253			2.6	33.	13	25.	320	0.93	12.	1.4	1.1	0.88	1
FD-7	01-991	F	E	72055			4.4	48.	14	25.	250	0.93	9.3	1.5	1.1	0.84	1
FD-100 FD-121	01-983 02-990	F	8 F	72041 72054			3.0 3.3	26. 52.	15 16	23. 23.	200 360	0.85 0.85	7.4 13.	1.4 1.4	1.0 1.0	0.78 0.78	1
FD-94	03-990	F	Ď	72054			2.3	15.	17	22.	150	0.81	5.5	1.3	0.98	0.75	.28
FD-31	04-982	F	A	72040			1.4	14.	18	22.	230	0.81	8.5	1.3	0.95	0.72	- 1
FD-103 166A	01-982 03-1689	F	B K	72040 75258		9.4	1.0 1.4	9.3 18.	19 20	20. 17.	190 210	0.74 0.63	7.0 7.8	1.2 0.97	0.88 0.75	0.70 0.59	.22
1168	02-1688	Ä	Ĵ	75255			1.4	15.	21	16.	170	0.59	6.3	0.91	0.70	0.55	.21
214D	01-1690	M	Ĺ	75259			1.3	13.	22	16.	170	0.59	6.3	0.91	0.70	0.55	.21
FD-32 FD-47	03-984 02-984	F	D C	72045 72045		7.8 8.4	1.4 1.0	11. 8.9	23 24	14. 14.	110 120	0.52 0.52	4.1	0.83 0.83	0.64 0.58	0.50 0.44	.20
FD-190	01-1376	M	G	74036		9.7	1.5	14.	25	14.	130	0.52	4.8	0.83	0.58	0.46	.17
FD-15	01-989	F	F	72053	3273	12.3	2.6	31.	26	13.	160	0.48	5.9	0.77	0.57	0.44	.15
FD-30	02-983	F	A	72041 74035			1.9	21.	27 28	13.	150 170	0.48 0.44	5.5	0.77 0.71	0.62 0.55	0.49 0.44	.19
23A FD-185	03-1374 02-1374	M	G G	74035			1.9 5.5	26. 63.	29	12. 12.	140	0.44	6.3 5.2	0.71	0.50	0.36	.12
FD-153	02-989	F	Ě	72053			1.7	15.	30	11.	96	0.41	3.6	0.65	0.49	0.38	.15
FD-154	04-989	F	F	72053			1.0	11.	31	9.0	100	0.33	3.7	0.53	0.38	0.29	-11 :
FD-95 116A	01-984 01-1688	F	C	72045 75255			0.67 0.63	4.8 7.4	32 33	8.5 8.4	62 100	0.31 0.31	2.3 3.7	0.50 0.48	0.37 0.38	0.28 0.30	.11 .11
1098	02-1687	M	ĭ	75254			0.70	7.8	34	8.3	90	0.31	3.3	0.47	0.35	0.26	.079
FD-131	01-1374	M	G	74035			0.55	5.9	35	8.3	88	0.31	3.3	0.49	0.37		.11
165B FD-48	01-1689 04-984	M F	K	75258 72045			0.81 1.3	11. 15.	36 37	8.0 7.7	110 94	0.30 0.28	4.1 3.5	0.46 0.46	0.36 0.3/	0.2 8 0.27	.11 .10
FD-38	03-983	F	В	72041		8.7	0.85	7.4	38	7.4	64	0.27	2.4	0.44	0.34	0.27	.11
FD-104	04-983	F	A	72041			0.89	11.	39	6.4	79	0.24	2.9	0.38		0.21	.081
181C	02-1690 03-989	M F	L E	75259 72053			1.6 0.89	16. 8.5	40 41	5.9 5.5	60 54	0.22 0.20	2.2 2.0	0.34 0.33	0.26 0.25	0.21 0.20	.078
FD-150 FD-307	01-1686	M	H	75253			0.12	1.6	42	2.4	31	0.089	1.1	0.14	0.11	0.087	.033
FD-101	05-981	F	A	72039	3842	9.9			C								
FD-117		F	C	72039		6.2			C								
FD-147 FD-149	02-981 04-981	F	D F	72039 72039					C C								
FD-4	03-981	F	Ë	72039	3499	14.7			C								
FD-6	06-981	F	В	72039					C								:
2C 111A	01-1379 05-1684	M	G I	74038 75248					C								;
114D	01-1684	M	j	75248	3634	12.1			Č								i
178A	04-1684	M	K	75248					C								į
225B 59C	02-1684 03-1684	M	L H	75248 75248					C								
	JJ 1004	•	**		3003	,			•								1

UCI/KG REPRESENTS MICROCURIES OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
MBQ/KG REPRESENTS MEGABEQUERELS OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER INHALATION EXPOSURE.
+ INDICATES THE DOG DIED BEFORE IT RECEIVED ITS POTENTIAL INFINITE DOSE.
COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED, RESPECTIVELY. PROMINENT FINDINGS ARE INCLUDED.

BETA RADIATION DOSE TO LUNG

OGE	RATE (G	Y/DAY)			CLINIAL	ATIVE	DOSE (GY))			
60 AYS	120 DAYS	365 DAYS	AT DEATN	60 DAYS	120 DAYS	365 DAYS	POTENT. INFIN.	TO DEATH	DEATH DATE	DAYS TO DEATH	COMMENT
MYS	DAYS	DAYS	DEATH	DAYS	DAYS	DAYS	INFIN.	DEATH	DATE	DEATH	D-PULMONARY INJURY D-PULMONARY INJURY D-PULMONARY INJURY E-PULMONARY INJURY D-PULMONARY INJURY E-ADENOCARCINOMA, MASAL; CARCINOMA, LUNG D-NENORRAGIC ENTERITIS E-GRANULOMATOUS PNEUMONIA; MENINGIOMA D-LEIONYOMA, BLADDER; PULMONARY INJURY D-ADENOCARCINOMA, MANNARY GLAND E-NEPHROSCLEROSIS; CARCINOMA, PANCREAS D-CONGESTIVE HEART FAILURE D-PULMONARY INJURY; NYPOTHYROID D-PULMONARY INJURY D-PULMONARY
									77195 73265 77033	1983 592 1091	E-FIBROBLASTIC OŠTEOSARCOMA,BONE D-ADENOCARCINOMA,MAMMARY GLAND D-BRONCHIOLOALVEOLAR CARCINOMA

DINGS ARE INCLUDED.

DOG ID	ENTIFICA	TION	INHA	LATION	EXPOS	WRE	1.0				I.L.B	l_			DOSE
					AGE	WT	••••••	•••••				• • • • • • • • • • • • • • • • • • • •			60
TATTOO	AN-EXPT	SEX	BLOCK	DATE	DAYS	KG	MBQ/KG	MBQ	RANK	UCI/KG	UCI	MBQ/KG	MBQ	INITIAL	DAYS
4474	A4 BBB		44	70700	•••	40.7		400	004	04	4047	7.4	70	5 A	, .
417A 415T	04-828 01-828	M F	H	70288 70288		10.6 9.2	9.3 4.4	100. 41.	001 002	96. 90.	1014. 832.	3.6 3.3	38. 31.	5.0 4.8	4.5 3.9
435A	01-856	M	j	71032		11.5	5.2	63.	003	77.	885.	2.8	33.	4.1	3.3
393A	01-792	×	č	70218		10.3	3.7	37.	004	74.	763.	2.7	28.	3.9	3.3
4168	02-828	H	Ň	70288		11.6	7.8	89.	005	74.	855.	2.7	32.	3.9	3.5
403A	03-809	M	E	70238	396	7.0	5.2	36.	006	74.	515.	2.7	19.	3.9	3.1
397 T	04-792	F	D	70218		8.6	5.5	48.	007	73.	629.	2.7	23.	3.9	3.0
5008	04-964	M	Ļ	71300		8.6	5.5	48.	008	71.	608.	2.6	22.	3.7	2.8
417T	03-828	F	Ī	70288		9.5	11.	100.	009	70.	661.	2.6	24.	3.7	2.9
403S 403U	04-809 01-809	F	F F	70238 70238		7.0 6.8	5.2 5.5	36. 37.	010 011	68. 67.	468. 454.	2.5 2.5	17. 17.	3.6 3.5	2.4 2.8
39 6 U	02-792	F	Ď	70238		6.8	3.5	24.	012	66.	452.	2.4	17.	3.5	2.8
432T	01-855	F	ĸ	71029		8.2	7.0	59.	013	65.	530.	2.4	20.	3.4	2.7
433A	02-854	H	Ĵ	71028		11.0	4.1	48.	014	65.	710.	2.4	26.	3.4	2.7
405X	01-824	F	Ğ	70266		8.6	4.8	41.	015	63.	541.	2.3	20.	3.3	2.8
355s	01-703	F	B	70036		8.6	5.5	48.	016	62.	536.	2.3	20.	3.3	2.6
355B	02-703	M	A	70036		9.4	3.7	35.	017	58.	544.	2.1	20.	3.0	2.5
398A	03-792	M	C	70218		11.4	3.0	34.	018	57.	652.	2.1	24.	3.0	2.5
408T	02-824 03-701	F	G B	70266 70034		8.6 8.4	3.7 3.3	33. 28.	019 020	55.	473.	2.0 2.0	18. 16.	2.9 2.8	2.5 2.4
361T 402D	02-809	M	E	70238	397	6.7	7.0	48.	020	53. 53.	444. 354.	2.0	13.	2.8	2.4
357A	01-702	Ä	Ā	70035	421	9.8	5.5	52.	022	53.	515.	2.0	19.	2.8	2.3
4185	03-827	F	î	70286		10.0	3.3	33.	023	51.	514.	1.9	19.	2.7	2.4
437D	03-855	M	J	71029		8.3	3.7	32.	024	51.	423.	1.9	16.	2.7	2.0
494A	03-964	M	L	71300	404	9.4	3.7	36.	025	50.	474.	1.9	18.	2.7	1.9
411A	01-827	M	H	70286	421	14.2	9.6	130.	026	49.	6 99 .	1.8	26.	2.6	2.4
431U	02-855	F	K	71029		7.2	8.9	67.	027	48.	348.	1.8	13.	2.5	2.2
402A 400S	01-808 04-808	M F	E	70237 70237	396 404	9.5 9.1	2.1 3.1	20. 28.	028 029	42. 41.	402. 370.	1.6 1.5	15. 14.	2.2 2.1	1.9 1.7
433S	04-854	•	K	71028	411	9.0	2.3	21.	030	38.	370. 339.	1.4	13.	2.0	1.7
411T	03-824	F	Ĝ	70266		7.6	2.6	20.	031	37.	284.	1.4	11.	2.0	1.8
497B	02-964	M	ũ	71300	375	8.8	1.8	16.	032	35.	308.	1.3	11.	1.8	1.4
396T	03-790	F	D	70216		8.6	3.0	25.	033	33.	282.	1.2	10.	1.7	1.3
3980	02-790	M	C	70216		9.5	1.9	18.	034	32.	305.	1.2	11.	1.7	1.4
751A	03-1581	M	0	74338		10.0	1.7	17.	035	31.	309.	1.1	11.	1.6	1.4
354W	02-702	F	В	70035	425	7.5	2.3	17.	036	30.	224.	1.1	8.3 9.5	1.6 1.3	1.3
355A 433C	04-701 01-854	M	, A	70034 71028	422 411	10.6 9.8	3.6 1.1	37. 10.	037 038	24. 24.	257. 234.	0.89 0.89	9.5 8.7	1.3	1.1 1.1
748S	01-1580		×	74337		7.6	1.5	11.	039	23.	171.	0.85	6.3	1.2	1.0
414T	04-827	F	ĩ	70286	397	7.0	2.0	14.	040	21.	150.	0.78	5.5	1.1	0.97
416C	02-827	M	Ĥ	70286		10.7	1.6	17.	041	21.	223.	0.78	8.3	1.1	0.92
759s	03-1586	F	P	74347	415	10.0	1.7	17.	042	21.	208.	0.78	7.7	1.1	0.91
430s	03-854	F	K	71028	423	7.7	1.1	8.5	043	21.	160.	0.78	5.9	1.1	0.90
399U	03-808	F	F	70237	407	7.2	2.0	14.	044	19.	137.	0.70	5.1	1.0	0.86
401B	02-808	M	E	70237		9.0	1.9	17.	045	19.	169.	0.70	6.3	0.98	0.85
3988 4045	01-790 01-823	M	C	70216 70265	391 422	11.2 8.6	1.0 0.89	12. 7.4	046 047	18. 17.	204. 150.	0.67 0.63	7.5 5.5	0.96 0.92	0.82 0.77
4045 748A	02-1581	F	M	74338	447	8.2	0.89	7.4	048	16.	134.	0.63	5.0	0.92	0.77
746A 354A	01-701	Ħ	Ä	70034	424	10.4	1.8	19.	049	15.	161.	0.55	6.0	0.81	0.70
495C	01-964	M	î	71300	385	8.0	0.89	7.0	050	15.	119.	0.55	4.4	0.78	0.65
362T	02-701	F	B	70034	413	6.8	1.3	8.9	051	15.	101.	0.55	3.7	0.78	0.68
397 \$	04-790	F	D	70216		8.3	0.96	8.1	052	15.	121.	0.55	4.5	0.76	0.65
413B	02-826	M	H	70285	409	10.9	0.85	9.3	053	14.	148.	0.52	5.5	0.71	0.60

BETA RADIATION DOSE TO LUNG

DOSE	RATE (G)	(/DAY)			CUMU	LATIVE D	OSE (GY)	*****			
60 DAYS	120 DAYS	365 Days	AT DEATH	60 Days	120 DAYS	365 Days	POTENTIAL 5000 DAYS	TO DEATH	DEATH DATE	DAYS TO DEATH	COMMENT
i . 5	4.3		4.2	280.	550.		11000. +	870.	71118	195	D-PULMOMARY INJURY
1.9	3.4		3.1	260.	470.		13000. +	790.	71143	220	D-PULMONARY INJURY
1.3	3.0		2.7	220.	410.		11000. +	720.	71263	231	E-PULNONARY INJURY
1.3	2.8		2.5	220.	400.		1400. +		71012	159	D-PULMONARY INJURY
1.5	3.2		3.0	210.	420.		3400. +		71107	184	D-PULHONARY INJURY
1.1	2.7	2.1	2.1	210.	380.	940.	4700. +		71259	386	D-PULHONARY INJURY
1.0	2.6		2.3	200.	360.		9600. +	600.	71071	218	D-PULMONARY INJURY
1.8	2.4		2.1	190.	350.		8900. +	640.	72190	255	D-PULMONARY INJURY
!.9	2.6		2.4	200.	360.		10000. +	730.	71190	267	E-PULMONARY INJURY
1.4	2.2		1.8	150.	290.		1700. +	510.	71105	232	D-PULMONARY INJURY
1.8	2.5		2.2	190.	350.		4700. +	670.	71131	258	D-PULMONARY INJURY
1.8	2.6		2.0	180.	340.		2500. +	820.	71182	329	D-PULMONARY INJURY
1.7	2.3		1.9	180.	330.		5800. +	640.	71297	268	D-PULMONARY INJURY
1.7	2.5		2.3	180.	340.		10000. +	650.	71280	252	E-PULMONARY INJURY
1.8	3.4		2.1	180.	340.		870. +	610.	71144	243	D-PULMONARY INJURY
!.6	2.3		1.9	180.	320.		4500. +	780.	71013	342	D-PULMONARY INJURY
1.5	2.2	1.8	1.8	170.	310.	780.	7800. +	800.	71044	373	D-PULMONARY INJURY
!.5	2.2		2.1	160.	300.		7800. +	640.	71135	282	D-PULMONARY INJURY
!.5	2.2		2.0	160.	300.		8300. +	540.	71139	238	D-PULMONARY INJURY
1.4	2.2		1.9	150.	290.		3000. +	590.	70299	265	D-PULMONARY INJURY
1.4	2.1		1.7	150.	290.		3700. +	620.	71173	300	D-PULMONARY INJURY
!.3	2.0		1.6	150.	280.		6900. +	670.	71011	341	D-PULMONARY INJURY
1.4	2.1		1.7	150.	290.		1200. +	440.	71122	201	D-PULMONARY INJURY
1.0	1.7	1.2	1.2	140.	250.	600.	1600. +	620.	72040	376	E-PULMONARY INJURY
1.9	1.4		0.67	140.	240.		750. +	420.	72245	310	D-PULMONARY INJURY
1.4	2.2		2.0	150.	290.		1800. +	450.	71122	201	D-PULMONARY INJURY
!-2	1.9		1.7	140.	260.		6900. +	450.	71255	226	D-PULMONARY INJURY
1.9	1.6		1.3	120.	220.		5400. +	530.	71212	340	D-PULMONARY INJURY
1.7	1.5		1.3	110.	210.		3700. +	430.	71158	286	D-PULMONARY INJURY
1.7	1.5		1.3	110.	200.		3500. +	420.	71307	279	D-PULMONARY INJURY
1.8	1.6		1.2	110.	210.		1000. +	400.	71160	259	D-PULMONARY INJURY
1.4	1.2	0.76	0.51	96.	170.	390.	1200. +	660 <i>.</i>	73357	788	D-HEMANGIOSARCOMA, LUNG
.3	1.2	0.81	0.52	90.	160.	400.	1000. +	630.	72204	718	D-HEMANGIOSARCOMA, LUNG
-4	1.2	0.89	0.70	93.	170.	420.	1500. +	650.	72130	644	E-HEMANGIOSARCOMA, LUNG
1.4	1.2	0.93	0.67	89.	170.	420.	1500. +	720.	76355	747	E-HEMANGIOSARCOMA, LUNG
1.3	1.1	0.86	0.80	85.	160.	400.	1700. +	490.	71147	477	D-PULMONARY INJURY
1.1	0.98	0.65	0.44	71.	130.	330.	1000. +	520.	72019	715	D-HEMANGIOSARCOMA, LUNG
1.1	1.0	0.78	0.58	71.	140.	350.	1200. +	570.	72356	693	E-HEMANGIOSARCOMA, LUNG
□.0 _	0.91	0.69	0.44	65.	120.	310.	1000. +	580.	77084	843	E-HEMANGIOSARCOMA, LUNG
1.97	0.86	0.60	0.38	63.	120.	290.	1000. +	540.	73064	874	D-HEMANGIOSARCOMA, LUNG
1.92	0.79	0.50	0.24	60.	110.	260.	840. +	530.	73318	1128	E-EPIDERMOID CARC.; HEMANGIOSARC., LUNG
1.91	0.78	0.54	0.37	60.	110.	270.	1100. +	500.	77133	882	E-HEMANGIOSARCOMA, LUNG
1.90	0.79	0.59	0.41	59.	110.	270.	970. +	490.	73106	809	E-HEMANGIOSARCOMA, LUNG
1.86	0.74	0.50	0.27	56.	100.	250.	930. +	540.	73311	1170	E-HEMANGIOSARCOMA, LUNG
1.85	0.78	0.60	0.30	55.	100.	270.	850. +	560.	73166	1025	D-HEMANGIOSARCOMA, LUNG
1.82	0.73	0.54	0.29	53.	99.	250.	820. +	520.	73153	1033	E-HEMANGIOSARC. AND B.A.CARC., LUNG
).77	0.66	0.45	0.087	50.	93.	230.	660. +	580.	76042	1968	D-HEMANGIOSARCOMA, HEART
1.78	0.71	0.50	0.15	49.	94.	240.	870. +	660.	80078	1931	D-PULMONARY INJURY
1.70	0.61	0.40	0.18	45.	84.	200.	660. +	430.	73152	1214	E-HEMANG., LUNG; SQUAM-CELL CARC, LUNG
1.65	0.55	0.36	0.11	43.	78.	190.	600. +	480.	76295	1821	E-HEMANGIOSARC., SPLEEN; B.A.CARCINOMA
1.68	0.60	0.41	0.18	44.	82.	200.	600. +	430.	73123	1185	D-HEMANGIOSARCOMA, LUNG
1.65	0.56	0.38	0.064	42.	78.	190.	600. +	540.	77032	2373	D-PULMONARY INJURY
1.60	0.51	0.30	0.15	39.	72.	170.	630. +	340.	74037	1213	D-HEMANGIOSARCOMA, LUNG

A.15 ⁹⁰Sr in Fused Aluminosilicate Particles, Longevity Study (continued)

				.												•
			INHA	LATION	EXPOS	LURE		_							DOSE	RATE
DOG ID	ENTIFICA'	TION			• • • • • •		1.8	.8.			I.L.B.	•			*******	••••••
					AGE	VT	*******				******		****		60	. 13
TATTOO	AN-EXPT	SEX	BLOCK	DATE	DAYS	KG	MBQ/KG	MBQ	RANK	UCI/KG	UCI	MBQ/KG	MBQ	INITIAL	DAYS	DAT
			••••						••••							1
415V	01-826	F	1	70285	393	7.5	0.85	6.7	054	13.	99.	0.48	3.7	0.70	0.59	0.51
405A	02-806	Ň	Ė	70236	387	9.7	0.78	7.8	055	9.4	92.	0.35	3.4	0.50	0.41	0.34
438A	04-853	Ä	j	71027	376	9.9	0.74	7.4	056	9.2	91.	0.34	3.4	0.48	0.39	0.33
3581	01-704	Ë	i	70037	420	9.0	0.89	7.8	057	9.1	82.	0.34	3.0	0.48	0.44	0.41
4115	03-823	F	Ğ	70265	400	8.1	0.85	7.0	058	8.6	70.	0.32	2.6	0.45	0.41	0.34
413C	03-826	H	H	70285	409	12.2	0.44	5.2	059	8.5	103.	0.31	3.8	0.45	0.38	0.34
393C	02-789	H	Ü	70215	424	8.2	0.41	3.4	060	7.9	65.	0.29	2.4	0.42	0.37	0.33
3931	03-789	F	Ď	70215	424	6.6	0.55	3.2	061	7.9	52.	0.29	1.9	0.42	0.34	0.3
3991	01-806	F	F	70236	406	8.0	0.48	4.1	062	7.7	61.	0.28	2.3	0.40	0.36	0.32
3678	04-700	M	À	70033	385	9.6	1.0	8.5	063	7.6	73.	0.28	2.7	0.40	0.36	0.33
7541	02-1580	Ë	Ä	74337	410	7.0	0.41	2.7	064	7.4	52.	0.27	1.9	0.39	0.34	0.3
494D	01-963	M	ũ	71299	403	8.0	0.44	3.6	065	6.8	55.	0.25	2.0	0.36	0.33	0.31
430V	02-853	Ë	ĸ	71027	422	7.2	0.81	5.9	066	6.6	48.	0.24	1.8	0.35	0.31	0.2
4135	04-826	F	ï	70285	409	10.4	0.59	6.3	067	6.6	69.	0.24	2.6	0.35	0.29	0.24
405S	02-823	F	Ğ	70265	416	9.9	0.52	5.2	068	5.7	57.	0.21	2.1	0.30	0.27	0.25
759C	01-1586	M	ě	74347	415	10.9	0.36	4.1	069	5.7	62.	0.21	2.3	0.30	0.26	0.23
3528	02-704	M	Ã	70037	433	7.9	0.31	2.5	070	5.4	43.	0.20	1.6	0.28	0.25	0.23 0.23 0.20
755A	01-1581	M	Ö	74338	409	7.1	0.25	1.8	071	5.3	38.	0.20	1.4	0.28	0.24	0.26
7548	03-1580	H	M	74337	410	8.1	0.34	2.7	072	5.2	42.	0.19	1.6	0.27	0.25	0.2
431T	01-853	Ë	ĸ	71027	419	6.6	0.37	2.4	073	4.9	33.	0.18	1.2	0.26	0.22	0.21
4948	02-963	H	ĩ	71299	403	9.4	0.41	3.7	074	4.9	46.	0.18	1.7	0.26	0.21	0.1
360T	02-700	F	Ř	70033	414	7.9	0.93	7.4	075	4.5	35.	0.17	1.3	0.23	0.19	0.1
3998	04-806	F	F	70236	406	9.7	0.31	3.1	076	4.3	41.	0.16	1.5	0.22	0.20	0.18
3985	04-789	F	Ď	70215	390	9.6	0.36	3.4	077	4.2	40.	0.16	1.5	0.22	0.19	0.17
435C	03-853	M	J	71027	386	9.0	0.25	2.3	078	4.1	37.	0.15	1.4	0.21	0.18	0.14
393D	01-789	M	Č	70215	424	10.5	0.27	2.9	079	4.1	43.	0.15	1.6	0.21	0.19	0.17
403B	03-806	H	Ē	70236	394	7.3	0.26	1.9	080	3.9	28.	0.14	1.0	0.20	0.18	0.17
758U	04-1586	F	P	74347	417	7.0	0.48	3.3	081	3.5	24.	0.13	0.89	0.18	0.15	0.14
755U	02-1586	F	R	74347	418	6.2	0.48	3.1	082	2.6	16.	0.096	0.59	0.14	0.12	0.11
762B	01-1583	N	Ö	74344	407	6.7	0.14	0.93	083	1.6	11.	0.059	0.41	0.085	0.074	0.04
756C	02-1584	M	õ	74345	416	11.0	0.085	0.96	084	1.5	17.	0.056	0.63	0.081	0.073	0.04
751U	03-1583	F	P	74344	435	10.2	0.089	0.89	085	1.5	16.	0.056	0.59	0.080	0.068	0.05
749S	02-1577	F	N	74330	430	8.2	0.093	0.74	086	1.5	12.	0.056	0.44	0.079	0.071	6.04
749B	03-1579	94	M	74336	436	8.8	0.093	0.81	087	1.5	13.	0.056	0.48	0.076	0.064	0.05
762U	01-1584	F	R	74345	408	6.9	0.11	0.81	088	1.2	8.5	0.044	0.31	0.065	0.058	0.05
7568	04-1578	M	0	74331	402	10.6	0.085	0.93	089	1.0	11.	0.037	0.41	0.054	0.048	0.04
7488	02-1579	M	0	74336	445	8.7	0.074	0.63	090	0.98	8.5	0.036	0.31	0.051	0.047	0.04
755S	04-1584	F	R	74345	416	10.0	0.10	1.0	091	0.90	9.0	0.033	0.33	0.047	0.044	0.04
754S	04-1585	F	P	74346	419	8.3	0.15	1.2	092	0.80	6.6	0.030	0.24	0.042	0.038	0.03
752A	03-1578	M	M	74331	414	6.7	0.056	0.37	093	0.80	5.3	0.030	0.20	0.042	0.039	0.03
751T	03-1577	F	N	74330	421	9.3	0.085	0.78	094	0.62	5.8	0.023	0.21	0.033	0.029	0.02
754A	01-1579	M	M	74336	409	9.7	0.024	0.23	095	0.32	3.1	0.012	0.11	0.017	0.016	0.01
7517	04-1583	F	R	74344	435	8.4	0.031	0.26	096	0.31	2.6	0.011	0.096	0.016	0.015	0.01
7590	01-1585	M	Q	74346	414	9.1	0.033	0.30	097	0.29	2.7	0.011	0.10	0.015	0.014	0.01
762V	03-1584	F	Ř	74345	408	6.3	0.067	0.41	098	0.27	1.7	0.010	0.063	0.014	0.013	0.01
758T	03-1585	F	P	74346	416	7.0	0.017	0.12	099	0.26	1.8	0.0096	0.067	0.014	0.013	0.01
748T	04-1579	F	N	74336	445	5.8	0.026	0.15	100	0.25	1.5	0.0093	0.056	0.013	0.012	0.01
763A	02-1585	M	Ÿ	74346	408	9.9	0.024	0.24	101	0.22	ž.ž	0.0081	0.081	0.011	0.011	0.00
750A	01-1577	M	M	74330	428	10.5	0.022	0.23	102	0.18	1.8	0.0067	0.067	0.0092	0.0085	0.00
763s	02-1583	F	P	74344	406	8.2	0.033	0.27	103	0.15	1.2	0.0056	0.044	0.0078	0.0072	0.00
758C	01-1578	M	Ö	74331	401	7.7	0.021	0.17	104	0.15	1.1	0.0056	0.041	0.0077	0.0072	0.00
756A	02-1578	M	ŏ	74331	402	10.2	0.024	0.24	105	0.12	1.3	0.0044	0.048	0.0065	0.0060	0.00
749T	04-1577	F	N	74330	430	7.9	0.027	0.21	106	0.12	0.94	0.0044	0.035	0.0062	0.0059	0.00

BETA RADIATION DOSE TO LUNG

ISE I	RATE (GY	/DAY)	••••••		CUMUL	ATIVE D	OSE (GY)				
		365	47	60	• • • • • • •	365		TO	DEATH	DAYS TO	
i Is	120 Days	DAYS	AT Death	DAYS	120 Days	DAYS	POTENTIAL 5000 DAYS		DATE	DEATH	CONNENT
•••								••••			•••••
,	0.51	0.33	0.11	39.	72.	170.	500. +	380.	74285	1461	D-HEMANGIOSARCOMA, HEART
lí	0.34	0.20	0.035	27.	50.	110.	330. +	290.	76358	2313	E-HEMANGIOSARCOMA, NEART
j i	0.33	0.23	0.035	26.	47.	110.	400. +	360.	78223	2753	E-HEMANGIOSARC., RIB; B-A-CARCINONA
l i	0.41	0.32	0.049	28.	53.	140.	490. +	440.	76275	2429	D-HEMANGIOSARCOMA, NEART; B-A-CARCINOMA
li	0.38	0.27	0.016	26.	50.	130.	340. +	320.	77304	2596	D-PULHONARY INJURY; CONSINED CARC., LUNG
1	0.34	0.23	0.029	25.	46.	110.	340. +	310.	77224	2496	E-SQUAMOUS CELL CARCINONA, MASAL CAVITY
7	0.33	0.24	0.063	24.	45.	110.	410. +	310.	75072	1683	E-HEMANGIOSARCONA, SITE UNDETERMINED
•	0.30	0.19	0.010	23.	42.	100.	290. +	280.	79234	3306	D-HEMANGIOSARCOMA, NEART
6	0.32	0.23	0.077	23.	43.	110.	400. +	310.	75217	1807	D-HENANGIOSARCONA, TBLN
1	0.33	0.23	0.030	23.	43.	110.	340. +	310.	77091	2615	D-ASPIRATION PNEUMONIA; B-A-CARCINONA
1	0.30	0.22	0.093	22.	41.	100.	410. +	290.	79104	1593	D-HENANGIOSARCOMA, NEART
J.	0.31	0.25	0.063	21.	40.	110.	400. +	310.	76176	1703	D-HEMANGIOSARCOMA, NEART
1	0.28	0.20	0.043	20.	37.	95.	340. +	290.	77140	2305	E-NEMANGIOSARCOMA, NEART
•	0.26	0.18	0.027	19.	36.	87.	280. +	250.	77171	2443	D-HENANGIOSARCONA, NEART
r	0.25	0.17	0.0063	17.	33 .	84.	220. +	210.	81014	3767	E-HEMANGIOSARCOMA, DISSENIMATED
5	0.23	0.16	0.043	17.	32.	80.	290. +	230.	80260	2104	E-HEMANGIOSARCOMA, LUNG
ŀ	0.23	0.17	0.023	16.	3.0	79.	290. +	260.	77310	2830	D-SQ.CELL CARC, LUNG; HEMANGIOSARC., TBLN
į.	0.20	0.14	0.022	16.	29.	72.	230. +	220.	84163	3477	D-HEMANGIOSARCOMA, UNDET .; PUL. ADENOMA
1	0.22	0.17	0.059	15.	30 .	78.	320. +	240.	80109	1963	E-HEMANGIOSARCOMA, MUSCLE
Ŗ	0.21	0.17	0.047	14.	27.	74.	300. +	240.	76295	2094	D-HEMANGIOSARCOMA, HEART
Į.	0.18	0.12	0.020	14.	25.	60.	200. +	180.	78329	2587	D-HEMANGIOSARCOMA, TBLN
?	0.16	0.10	0.0040	13.	23.	53.	150. +	140.	79158	3412	D-ULCERATIVE PHARYNGITIS
?	0.18	0.13	0.035	13.	24.	62.	230. +	190.	76201	2156	D-HEMANGIOSARCOMA, HEART
?	6.17	0.12	0.020	12.	23.	57.	200. +	170.	77223	2565	E-HEMANGIOSARCOMA, LUNG
1	0.16	0.12	0.038	12.	22.	55.	240. +	190.	77076	2241	E-HEMANGIOSARCOMA, HEART
?	0.17	0.12	0.013	12.	23.	57.	200. +	190. 180.	79173 77315	3245 2636	E-HEMANGIOSARCOMA, HEART
} 5	0.17	0.12	0.020	12. 10.	22. 19.	56. 48.	200. + 180. +	150.	80186	2030	E-HEMANGIOSARC., SITE UND.; B-A-CARCINOMA E-HEMANGIOSARCOMA, SPLEEN
ž	0.14 0.11	0.11 0.079	0.029 0.019	7.7	15.	37.	130. +	110.	81091	2301	E-HENANGIOSARCOMA, LIVER
74	0.066	0.049	0.0070	4.8	9.0	23.	88. +	86.	86161	4200	E-HEMANGIOSARCOMA, TBLN
73	0.067	0.048	0.0090	4.6	8.8	23.	84. +	80.	85256	3929	E-HEMANGIOSARCOMA, TBLN
58	0.059	0.040	0.0070	4.4	8.2	20.	70. +	61.	84024	3332	E-ANGIOSARCOMA, TBLN
ñ	0.065	0.050	0.010	4.5	8.5	22.	90. +	85.	84272	3594	E-HENANGIOSARCONA, HEART
*	0.057	0.042	0.0060	4.2	7.8	20.	73. +	72.	89153	5296	D-PUL. FIBROSIS, PUL. ADENOCARCINOMA
	0.053	0.039	0.0050	3.7	7.0	18.	66. +	64.	86234	4274	E-HEMANGIOSARCOMA, TBLN; CARCINOMA, LUNG
18	0.044	0.031	0.0077	3.1	5.8	15.	48. +	39.	80045	1905	E-HEMANGIOSARCOMA, TBLN
17	0.046	0.036	0.0040	3.0	5.8	16.	71. +	73.	88047	4824	E-MESOTHELIONA, PLEURAL
14	0.041	0.032	0.0040	2.7	5.3	14.	55. +	49.	83213	3155	E-HEMANGIOSARCOMA, SPLEEN
18	0.035	0.028	0.0040	2.4	4.6	12.	45. +	44.	84314	3620	E-CARCINONA, LUNG
59	0.036	0.028	0.0050	2.4	4.7	12.	52. +	48.	85345	4032	E-HEMANGIOSARCOMA, TBLN
29	0.026	0.019	0.0048	1.8	3.5	8.8	31. +	26.	80196	2057	E-HEMANGIOSARCOMA, TBLN
16	0.015	0.012	0.0012	0.99	1.9	5.2	23. +	22.	86365	4412	D-CARDIONYOPATHY, HEART
15	0.013	0.0093	0.00080	0.93	1.8	4.5	17. +	16.	86199	4238	E-CARCINONA, MANNARY GLAND
14	0.013	0.010	0.0010	0.89	1.7	4.6	17. +	16.	86323	4774	E-CHOLANGIOCARCINOMA, LIVER
13	0.011	0.0069	0.00070	0.81	1.5	3.7	10. +	8.8	82188	2765	E-HEMANGIOSARCOMA, TBLN
13	0.012	0.0087	0.00060	0.79	1.5	4.0	11. +	10.	82351	2927	D-PULMONARY THROMBOSIS
12	0.011	0.0079	0.00030	0.76	1.5	3.8	9.7+	9.5	86143	4190	D-HEART FAILURE
11	0.0099	0.0075	0.00080	0.66	1.3	3.4	15. +	14.	88041	4808	E-HEMANGIOSARCOMA, SPLEEN
385	0.0079	0.0058	0.00080	0.53	1.0	2.7	11. +	9.5	85172	3860	E-LYMPHOSARCOMA, LÍVER
172	0.0067	0.0048	0.00020	0.45	0.87	2.3	5.8+	5.7	87182	4591	E-LYMPHOSARCOMA, BRAIN
072	0.0068	0.0054	0.00070	0.45	0.87	2.4	7.9+	7.7	84093	3414	E-HEMANGIOSARCOMA, TBLN
060	0.0056	0.0040	0.00020	0.38	0.72	1.9	6.6+	6.2	88176	4958	E-PYELONEPHRITIS
059	0.0055	0.0042	0.00045	0.36	0.70	1.9	5.7+	5.5	82075	2667	E-HEMANGIOSARCOMA, LIVER

139

A.15 Sr in Fused Aluminosilicate Particles, Longevity Study (continued)

			INHA	LATION	EXPOS	URE									DOSE	RATE (G
DOG ID	ENTIFICAT	TION					1.8	.8.			1.L.B	•				
					AGE	WT									60	120
TATTOO	AM-EXPT	SEX	BLOCK	DATE		KG	MSQ/KG	MBQ	RANK	UCI/KG	UCI	MBQ/KG	MBQ	INITIAL	DAYS	DAYS
	•••••			•••••		••••				•••••				******		
3545	02-699	F	8	70027	417	7.8			c							
3618	01-699	H	Ā	70027		12.0			č							
3970	01-788	F	ĥ	70212		7.5			č							
3998	02-788	i	ř	70212		10.9			ř							
401S	01-811		Ē	70240		8.5			Č							
		<u> </u>	r -						Č							
4028	02-811	M	E	70240		11.1			Ü							
405W	01-816	F	G	70247	398	6.8			C							
41 3 U	01-830	F	I	70289	413	9.4			C							
418C	02-830	M	H	70289	368	11.4			C							
4315	02-851	F	K	71025	417	7.4			C							
437A	01-851	M	j	71025		10.9			C							
497A	01-962	M	Ĺ	71299		11.1			Ċ							
751S	03-1576	F	Ň	74329		11.6			č							
754C	01-1576		Ä	74329		6.7			ř							
758A	02-1576		6	74329		11.2			č							
			7						Č							
7588	03-1582	H	Q	74343		10.4			Ü							
761S	01-1582	F	R	74343		9.8			C							
762T	02-1582		P	74343	406	7.2			C							
***	*****	****	****	18												

UCI/KG REPRESENTS MICROCURIES OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
MBG/KG REPRESENTS MEGABEQUERELS OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER INHALATION EXPOSURE.
+ INDICATES THE DOG DIED BEFORE IT RECEIVED ITS POTENTIAL INFINITE DOSE.
COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED, RESPECTIVELY. PROMINENT FINDINGS ARE INCLUDED.

BETA RADIATION DOSE TO LUNG

		BEIA	KADIATION	DOZE 10	LUNG						
DOSE	RATE (GY	/DAY)			CUMU	LATIVE D	OSE (GY)				
60 Days	120 Days	365 Days	AT DEATH	60 DAYS	120 DAYS	365 Days	POTENTIAL 5000 DAYS	TO DEATH	DEATH DATE	DAYS TO DEATH	COMMENT
	•••••			••••		••••			81196 83211 85273 84073 85106 85133 80275 83244 85067 82244 85318 82140	4189 4932 5540 4974 5345 5372 3680 4703 5257 4237 5407 3859	E-ADENOCARCINOMA, MANMARY GLAND D-CARCINOMA, LUNG E-PYELONEPHRITIS, KIDNEY E-ADENOCARCINOMA, PROSTATE E-ADENOCARCINOMA, MANMARY GLAND D-BRONCHOPNEUMONIA, LUNG D-CARCINOMA, BLADDER E-CARCINOMA, BLADDER E-MALIGNANT MELANOMA, CRAL E-TRANSITIONAL CELL CARCINOMA, BLADDER D-LYMPHOSARCOMA, GENERALIZED E-CARCINOMA, MEPATOCELLULAR
									86200 86022	4254 4076	D-FIBROMA, VÁGINA D-HEMANGIOSARCOMA, HEART
									84211 86335 81344 91159	3534 4375 2558 6025	E-ADENOCARCINOMA, PANCREAS D-BRONCHIOLITIS, LUNG D-ACCIDENTAL DEATH D-PYELOMEPHRITIS; CARCINOMA, LUNG

ARE INCLUDED.

A.16 144Ce in Fused Aluminosilicate Particles, Repeated Exposure Study

											BE	TA RADIAT	ION DOSE TO LUNG			
				INITIAL EURASIAS			F . WA!	EVOC	****	DOSE RATE (GY/DAY)			CUMULATIVE DOSE (GY)			
DOG IDENTIFICATION			INITIAL EXPOSURE			FINAL EXPOSE			AFTER	AFTER						
our inclification					AGE	WT		AGE	WT	INITIAL		AT	365	730	POTENT.	TO
TATTOO	AN-EXPT	SEX	GROUP	DATE	DAYS	KG	DATE	DAYS	KG	EXP.	EXP.	DEATH	DAYS	DAYS	INFIN.	DEATH
				****						•••••						
645C	01-1294	M	1	73340	518	8.3	75288	1195	9.5	.18	.75	.0028	130	370	520	520
648U	02-1294		Ī	73340	513	6.5	75288	1191	7.1	.18	.64		130	350	480	480
664C	03-1294		Ī	73340	452	9.6	75288	1130	11.7	.20	.65	.0038	130	370	500	500
641T	04-1294		Ĭ	73340	526	8.9	75288	1204	11.5	. 19	.60	.0017	110	310	440	440
644T	05-1294		i	73340	518	7.1	75288	1195	8.3	.14	.64	.065	120	350	480+	460
6465	01-1295		Ī	73341	518	7.1	75289	1196	9.0	.15	.48		100	260	360	360
654T	02-1295		Ĭ	73341	495	7.6	75289	1173	8.5	.17	.72	.0011	130	350	500	500
645S	03-1295		i	73341	519	9.0	75289	1197	12.5	.24	.55	.00044	110	300	410	410
641C	04-1295		ī	73341	527	9.3	75289	1205	11.3	.23	.71	.0012	150	380	520	520
662U	01-1292		ĬI	73338	458	6.2	75286	1136	7.2	.58	.46		170	340	430	430
6548	02-1292		11	73338	492	6.3	75286	1170	7.2	.54	.54		160	340	450	450
645A	03-1292		ii	73338	516	10.7	75286	1194	12.1	.74	.55	.00085	180	360	470	470
651S	04-1292		ii	73338	500	8.4	75286	1178	9.4	.62	.57		170	360	470	470
665B	05-1292		ii	73338	434	8.8	75286	1112	10.2	.67	.53	.00052	180	350	460	460
654A	01-1293		ii	73339	493	10.6	75287	1171	11.6	.56	.53	.0022	180	380	490	490
6418	02-1293		ii	73339	525	10.9	75287	1203	12.5	.55	.46	.00056	170	340	430	430
6488	03-1293		ii	73339	512	8.6	75287	1220	9.0	.55	.58	.0054	170	370	480	480
648S	04-1293		ii	73339	512	7.5	75287	1220	8.2	.66	.65	.020	190	390	520	520
649U	01-1290		iii	73333	502	9.2	75282	1180	9.2	.30	.28	.0036	87	180	230	230
650U	02-1290		iii	73333	501	8.5	75282	1178	10.0	.26	.32	.0030	91	200	260	260
649V	03-1290		iii	73333	502	7.8	75282	1180	8.9	.33	.29	.00056	93	190	250	250
6508	04-1290		iii	73333	501	9.8	75282	1178	11.3	.30	.34	.00050	93	200	270	270
641A	05-1290		111	73333	519	13.5	75282	1178	13.2	.34	.24	.00072	87	180	230	230
662S	01-1291		iii	73334	454	10.8	75283	1133	11.5	.31	.19	.00072	85	210	250 250	250 250
655U	02-1291		111	73334	486	8.2	75283	1165	10.4	.28	.25	.0028	78	160	210	210
644S	03-1291		111	73334	512	10.5	75283	1191	11.6	.33	.23	.0028	84	170	210	210
				73334				1109	10.9	.33 .39	.25 .25	.17	94	190	240+	190
665A	04-1291		111		430	10.4	75283			.39	.23	. 17	74	190	240+	170
6648	01-1288		C	73331	443	11.3	75273	1115	11.8							
664A	02-1288		C	73331	443	11.9	75273	1115	11.9							
648T	03-1288		C	73331	504	7.9	75273	1076	8.9							
663S	04-1288		C	73331	451	9.5	75273	1123	11.2							
6468	05-1288		C	73331	508	8.2	75050	957	9.8							
648A	01-1289		С	73332	505	8.4	75274	1178	9.1							
649B	02-1289		C	73332	501	10.9	75274	1174	11.4							
662T	03-1289		C	73332	452	9.8	75274	1124	9.7							
657A	04-1289		С	73332	477	9.6	75274	1150	10.6							
***	****	****	*****													

RETA BADIATION DOSE TO LING

EXPOSURE GROUPS:

GROUP I - LUNG BURDEN INCREASED BY .093 MBQ (2.5 UCI) 144-CE/KG BODY WEIGHT EVERY 56 DAYS FOR 13 EXPOSURES.
GROUP II - LUNG BURDEN RE-ESTABLISHED AT .33 MBQ (9.0 UCI) 144-CE/KG BODY WEIGHT EVERY 56 DAYS FOR 13 EXPOSURES.
GROUP III - LUNG BURDEN RE-ESTABLISHED AT .17 MBQ (4.5 UCI) 144-CE/KG BODY WEIGHT EVERY 56 DAYS FOR 13 EXPOSURES.

UCI/KG REPRESENTS MICROCURIES OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.

MBQ/KG REPRESENTS MEGABEQUERELS OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.

DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER INHALATION EXPOSURE.

+ INDICATES THE DOG DIED BEFORE IT RECEIVED ITS POTENTIAL INFINITE DOSE.

COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED, RESPECTIVELY. PROMINENT FINDINGS ARE INCLUDE

LTO LUNG MLATIVE DOSE (GY)

	******	•••••		DAYS FROM FIRST	
730 DAYS	POTENT. INFIN.		DEATH	INHALATION TO DEATH	COMMENT
370	520	520	79240	2091	D-MYELONALACIA; HENANGIOSARCONA, LUNG
350	480	480	80275	2491	D-FIBRINOUS PNEUMONIA
370	500	500	79124	1975	D-HEMANGIOSARC., SPLEEN; SQUAM.CELL CARC., LUNG
310	440	440	79315	2166	D-PULMONARY INJURY
350	480+	460	77135	1256	D-PULMONARY INJURY
260	360	360	85117	4159	D-INTERSTITIAL PNEUMONIA
350	500	500	80094	2309	D-HENANGIOSARCOMA, NEART
300	410	410	80263	2478	E-CARCINOMA, THYROID
380	520	520	80074	2289	D-CARCINOMA, LUNG
340	430	430	81254	2838	E-HEMANGIOSÁRCOMA, TBLN; CARCINOMA, LUNG
340	450	450	83019	3333	E-HEMANGIOSARCOMA, SPLEEN
360	470	470	80092	2310	D-CARCINOMA, LUNG
360	470	470	82292	3241	E-CARCINOMA, LUNG; HEMANGIOSARCOMA, TBLN
350	460	460	80211	2429	D-ADENOCARCINOMA, LUNG
380	490	490	79215	2067	D-PNEUMONITIS AND FIBROSIS; B-A-CARCINOMA
340	430	430	80151	2368	D-CARCINOMA, LUNG
370	480	480	79008	1860	D-PNEUM. AND FIBROSIS; B-A-CARC.; HEMANGIOSARC., TBLN
390	520	520	78071	1558	D-HEMOLYTIC ANEMIA
180	230	230	78279	1772	E-PARVOVIRUS INFECTION
200	260	260	81202	2791	E-HEMANGIOSARCOMA, SPLEEN
190	250	250	80032	2255	E-TUMOR, BRAIN
200	270	270	84200	3884	E-COMBINED CARCINOMA, LUNG; CARCINOSARCOMA, LUNG
180	230	230	79292	2150	E-HEMANGIOSARCOMA, LIVER
210	250	250	80199	2421	D-HENANGIOSARCONA, TBLN
160	210	210	78312	1804	E-HEMANGIOSARCOMA, TBLN
170	210	210	83139	3457	D-RADIATION PNEUMONITIS AND PULMONARY FIBROSIS
190	240+	190	76010	771	D-BONE MARROW APLASIA
1			83356	3677	E-THYROID CARCINOMA
			86004	4421	D-HEMANGIOSARCOMA, KIDNEY
			76288	1052	D-AUTOHEMOLYTIC ANEMIA
			88273	5420	D-CARCINONA, LUNG
			75067	466	D-ACCIDENTAL DEATH AFTER NINTH EXPOSURE
			88133	5279	E-LYMPHOSARCOMA, LIVER
1			83166	3486	D-TRANSITIONAL CELL CARCINOMA, BLADDER
			86209	4625	E-FIBROSARCOMA, ORAL CAVITY
			85249	4300	D-PROSTATITIS

13 EXPOSURES. FOR 13 EXPOSURES. FOR 13 EXPOSURES.

ENT FINDINGS ARE INCLUDED.

A.17 ²³⁸PuO₂ Monodisperse Aerosol (1.5 μm AMAD), Longevity Study

														CUMULAT	IVE AL	PHA RADI	DITA	
000 105	INHALATION EXPOSURE DENTIFICATIONAGE UT					URE			ILB (W	BC)		ILB (R)	DOSE TO DEATH (GY)					
200 105	MITTUAL				AGE	WT						110 (K)	FROM	ILB (W	BC)	FROM	ILB	
TATTOO	AN-EXPT	SEX	BLOCK	DATE		KG	RANK	UCI/KG	UCI	KBQ/KG	KBQ	KBQ	LUNG	LIVER	BONE	LUNG	LIV	
701A	02-1444		C	74122		9.4		1.0	9.3	37.	340.	300	59.	20.	9.6	51.	17.	
857V	01-1742	F	Ĵ	75343	395	9.8		1.0	9.3	37.	340.	440	57.	15.	7.1	74.	19.	
7468	02-1548		G	74253	364	10.3		0.87	9.3	32.	340.	280	66.	8.9	4.2	52.	7.1	
718U	01-1484	F	F	74169	406	7.5	04	0.87	6.1	32.	230.	280	48.	15.	7.4	54.	17.	
726A 690s	02-1490 02-1358	M F	E 8	74171 74029	378 400	11.5 8.0	05 06	0.80 0.80	9.3 6.1	30. 30.	340. 230.	260 210	62. 46.	13. 16.	6.1 7.5	47. 41.	9.0	
684A	01-1362	-	Ä	74031		10.5	07	0.55	5.8	20.	210.	190	40. 33.	13.	6.1	28.	11.	
877C	02-1832		ĥ	76078	414	13.1	08	0.52	6.7	19.	250.	440	32.	2.6	1.2	55.	4.	
747S	03-1552	F	Ĥ	74255	366	7.8		0.49	3.8	18.	140.	130	29.	11.	5.3	27.	10.	
726T	03-1484	F	Ë	74169	376	10.0		0.44	4.3	16.	160.	150	26.	11.	5.3	26.	11.	
746T	01-1552	F	H	74255	366	9.6		0.41	3.9	15.	140.	110	24.	8.2	4.0	19.	6.1	
708T	02-1:40	F	D	74120	406	7.3	12	0.39	2.8	14.	100.	160	23.	6.0	2.9	35.	9.	
745A	03-1548	M	Ğ	74253		7.9		0.37	2.9	14.	110.	110	22.	9.0	4.4	22.	9.	
707T	03-1444	F	D	74122	412	8.6	14	0.33	2.8	12.	100.	93	20.	8.6	4.2	18.	7.	
723C	01-1490	M	E	74171	383	8.7	15	0.32	2.8	12.	100.	100	19.	7.5	3.7	22.	8.5	
8588	02-1746	M	I	75345	395	10.6	16	0.30	3.1	11.	110.	140	17.	5.3	2.6	20.	5.9	
737A	02-1552	M	G	74255	418	10.3	17	0.29	3.0	11.	110.	89	18.	7.7	3.7	14.	5.9	
861\$	02-1742	F	J	75343		8.0		0.29	2.3	11.	85.	130	17.	4.8	2.3	25.	6.9	
877T	02-1828	F	L	76077		9.8		0.27	2.6	10.	96.	200	16.	6.0	3.0	31.	12.	
858T	02-1744	F	J	75344	394	9.5	20	0.27	2.5	10.	93.	24	16.	16.	7.6	4.3	4.1 6.1	
705B	01-1444	M	C	74122	416	8.0		0.26	2.1	9.6	78.	67	16.	7.8	3.7	14.		
880T	01-1828	F	Ļ	76076	401	7.6		0.25	1.9	9.3	70.	120	15.	5.7	2.8	25.	9.6	
693B	03-1362	M	Ą	74031	383 380	9.7		0.23	2.3	8.5	85 .	85	14.	6.6	3.2	14.	6.6	
862A	01-1746	M	Į	75345 75345	384	8.3 11.0	24 25	0.23 0.21	1.9	8.5	70.	96 130	14.	4.9	2.4	18.	6.4	
860C	03-1746 02-1492	M	I E	74172	379	11.3	26	0.21	2.3	7.8	85.	120	13.	5.6	2.7	16.	7.1	
7258 699a	01-1440	M	C	74172	434	8.3	20 27	0.20	2.2 1.5	7.4 7.0	81. 56.	96 81	12. 11.	6.6 4.7	3.2 2.3	13. 15.	6.6	
685A	03-1358	Ä	Ä	74029	415	10.0	28	0.19	1.9	7.0	70.	70	12.	5.9	2.9	12.	6.2	
692S	01-1358	F	B	74029	384	8.3	29	0.18	1.5	6.7	56.	52	11.	6.4	3.1	11.	6.0	
6915	03-1360	F	8	74030	399	13.0	30	0.17	1.7	6.3	63.	63	8.1	4.9	2.4	8.6	5.2	
715C	02-1484	H	Ē	74169	422	9.6	31	0.15	1.4	5.6	52.	100	9.0	5.1	2.4	18.	10.	
7251	02-1486	F	Ē	74170	377	11.2	32	0.15	1.7	5.6	63.	74	9.3	4.7	2.3	11.	5.5	
876A	03-1828	H	ĸ	76077	421	11.7		0.13	1.5	4.8	56.	100	7.7	2.8	1.4	13.	4.6	
704U	03-1440	F	Ď	74120	415	8.8	34	0.12	1.1	4.4	41.	78	7.5	2.6	1.3	14.	4.8	
875A	03-1832	M	K	76078	427	13.2		0.11	1.5	4.1	56.	85	6.9	2.9	1.4	8.7	3.7	
745T	01-1554	F	H	74256	371	9.1	36	0.10	0.87	3.7	32.	44	9.7	8.0	4.0	7.7	6.4	
746A	01-1550	M	G	74254	365	8.7	37	0.090	0.80	3.3	30.	41	5.7	4.2	2.0	7.8	5.9	
875s	01-1832	F	L	76078	427	10.7	38	0.090	1.0	3.3	37.	85	5.7	2.5	1.2	12.	5.3	
692U	02-1362	F	В	74031	386	6.3	39	0.090	0.53	3.3	20.	31	5.3	4.1	2.0	5.3	4.1	
877B	03-1834	M	K	76079	415	11.4	40	0.090	1.0	3.3	37.	59	5.4	2.7	1.3	11.	5.4	
718V	03-1490	F	F	74171	408	7.9	41	0.080	0.63	3.0	23.	41	4.9	3.4	1.6	7.8	6.2	
879\$	01-1830	F	L	76077		9.7		0.070	0.73	2.6	27.	48	4.6	1.8	0.90	8.1	3.2	
685B	03-1364	M	A	74032	418	9.4	43	0.070	0.67	2.6	25.	33	4.5	3.3	1.6	4.9	3.6	
738A	03-1550	M	G	74254	410	10.4	44	0.070	0.73	2.6	27.	31	4.4	2.1	1.3	4.5	3.4	
8608	03-1744	M	I	75344	383	10.7	45	0.060	0.61	2.2	23.	31	3.6	2.7	1.3	5.3	3.9	
708U	02-1446	F	D	74123	409	7.4	46	0.060	0.42	2.2	16.	30	3.6	3.8	1.8	8.0	8.9	
744U	01-1548	F	Ħ	74253	376	7.8	47	0.060	0.44	2.2	16.	23	3.5	1.8	0.90	7.9	4.1	
857X	01-1748	F	j	75346	398	9.3	48	0.060	0.51	2.2	19.	41	3.2	2.4	1.1	7.3	5.7	
8748	03-1830	M	K	76077	428	12.3	49	0.050	0.59	1.9	22.	37 24	3.0	2.0	1.0	5.0	3.5	
704T	01-1446	F	D C	74123	418	9.5	50 51	0.050	0.45	1.9 1.9	17.	26 37	2.9	1.8	0.90	3.2 5.3	2.0	
705A	01-1442	M	C	74121	415	10.5	51	0.050	0.49	1.7	18.	3/	2.9	2.2	1.0	7.3	4.6	

DLATIVE ALPHA RADIATION

DOSE	TΩ	DEATH	/GY\
•		VEAIR	

3 (W	OC)	FROM	ILB (R	REC.)	DEATH	DAYS TO	
	DONE		LIVER		DATE	DEATH	COMMENT
	••••		••••		*****		***************************************
]-	9.6	51.	17.	8.3	78012	1351	E-OSTEOSARCOMA, HUMERUS
! •_	7.1	74.	19.	9.2	78344	1097	D-PHEUMONITIS AND PULMONARY FIBROSIS
.9	4.2	52.	7.1	3.4	76315	792	D-PHEUMONITIS AND PULMONARY FIBROSIS
1-	7.4	54.	17.	8.3	77355	12 8 2	E-OSTEOSARC., LUMB. VERT.; CARCINOMA, LUNG
-	6.1	47.	9.6	4.7	77182	1107	E-PNEUM. AND PUL. FIBROS.; CARC., LUNG(I)
) -	7.5	41.	14.	6.8	77313	1380	E-OSTEOSARCOMA, THOR. AND LUM. VERT.
[- .	6.1	28.	11.	5.1	78073	1503	E-OSTEOSARC.,THOR.VERT.;SARC.,LUNG(1)
.6	1.2	55.	4.5	2.1	77248	536	D-PNEUMONITIS AND PULMONARY FIBROSIS
-	5.3	27.	10.	4.9	78275	1481	D-CARCINOMA, LUNG
!	5.3	26.	11	5.3	79023	1680	E-OSTEOSARC.,THOR.;CARC,LUNG(1)
.2	4.0	19.	6.3	3.1	78171	1377	E-OSTEOSARCONA, HUMERUS
.0	2.9	35.	9.2	4.4	77128	1104	D-IMM.HEM.AMEMIA; PNEUM. AND PUL. FIBROS.
.0	4.4	22.	9.0	4.4	79045	1618	E-OSTEOSARCOMA, FÉMUR AND STERNUM
.6 .5	4.2	18.	7.6	3.8	79039	1743	E-OSTEOSARCOMA, HUMERUS
.5	3.7	22.	8.5	4.2	78263	1553	E-OSTEOSARCOMA, ILIUM
.3	2.6	20.	5.9	2.9	79129	1245	E-OSTEOSARCOMA, SACRUM; CARCINOMA, LUNG(I)
1.7	3.7	14.	5.9	2.9	79178	1749	E-OSTEOSARC., NUM., LUM. VERT. AND ISCHIUM
.8	2.3	25.	6.9	3.3	79047	1165	E-OSTEOSARCOMA, LUMBAR VERTEBRAE
j.0	3.0	31	12.	5.8	80133	1517	E-BONE TUMOR, T3
.8	7.6	4.3	4.3	2.0	87016	4055	E-SARCOMA, SITE UNDETERMINED
.8	3.7	14.	6.7	3.2	79255	1959	E-OSTEOSARCOMA, THOR. VERT. AND HUMERUS
.7	2.8	25.	9.6	4.7	80129	1514	E-BONE TUMOR, TŽ
.6	3.2	14.	6.6	3.2	79038	1833	E-OSTEOSARCONA, NUMERUS
.9	2.4	18.	6.4	3.1	79306	1422	D-OSTEOSARCOMA,C5,L2
.6	2.7	16.	7.1	3.5	80304	1785	E-OSTEOSARCOMA, HUMERUS
.6 .7	3.2	13.	6.9	3.3	80276	2295	E-OSTEOSARCOMA, HUMERUS
.7	2.3	15.	6.6	3.2	79010	1716	D-OSTEOSARCOMA, SCAPULA
.9	2.9	12.	6.2	3.0	79281	2078	E-OSTEOSARCONA, T5; CARCINONA, LUNG
1.4	3.1	11.	6.0	2.9	80254	2416	E-FIBROSARCOMA, LIVER
.9	2.4	8.6	5.2	2.5	81019	2546	E-OSTEOSARCOMA, TIBIA
1.1	2.4	18.	10.	3.9	80324	2346	E-OSTEOSARCOMA, HUMERUS AND SKULL
.7	2.3	11.	5.5	2.7	80028	2049	E-BONE TUMOR, HUMERUS
.8	1.4	13.	4.6	2.3	80060	1444	E-BONE TUMOR, T12
.6	1.3	14.	4.8	2.3	78072	1413	E-DISC PROTRUS.; CARCINOMA, LUNG(1)
.9	1.4	8.7	3.7	1.8	80305	1688	E-OSTEOSARCOMA, VERT. 110
-0	4.0	7.7	6.4	3.2	84116	3512	E-OSTEOSARCOMA, ILIUM
.2	2.0	7.8	5.9	2.8	83098	3131	D-MAST CELL TUMOR
.5	1.2	12.	5.3	2.6	81016	1765	E-OSTEOSARCOMA, ILIUM
-1	2.0	5.3	4.1	2.2	83087	3343	E-OSTEOSARCOMA, LUMBAR VERT. L7
.7	1.3	11.	5.4	2.1	81302	2050	E-OSTEOSARCOMA, PELVIS
.4	1.6	7.8	6.2	3.1	82183	2934	E-OSTEOSARCOMA, SACRUM
.8	0.90	8.1	3.2	1.4	80204	1588	E-BONE TUMOR, T8
.3	1.6	4.9	3.6	1.7	82278	3168	E-OSTEOSARC., THOR.T2 AND LUMBAR VERT.L4
.1	1.3	4.5	3.4	1.6	82098	2766	E-OSTEOSARCOMA, VERTEBRAE, T12, L1
-7	1.3	5.3	3.9	1.8	84235	3178	E-FIBROSARC., LIVER; SQUAM. CARC., GINGIVA
.8	1.8	8.0	8.9	4.0	86043	4303	E-OSTEOSARCONA, BONÉ; CARCINONA, LÚNG
.8	0.90	7.9	4.1	2.0	80184	2122	E-ULCERATIVE ILEITIS
-4	1.1	7.3		2.7	84289	3230	E-OSTEOSARCOMA, PARIETAL; CARCINOMA, LUNG
.0	1.0	5.0		1.7	84002	2847	E-OSTEOSARCOMA, HUMERUS
.8	0.90	3.2	2.0	0.9	81163	2597	D-ACCIDENTAL DEATH
.2	1.0	5.3	4.6	2.2	83010	3176	E-OSTEOSARCOMA, THOR. VERT. T11
1							

A.17 ²³⁶PuO₂ Monodisperse Aerosol (1.5 µm AMAD), Longevity Study (continued)

														CUMULAT	IVE AL	PHA RADI	ATION	
000 101		• •••	INHA	LATION	EXPOS	URE			*** ***	Bes.		(8)		DOS	E TO DI	EATH (GY)	
DOG IDE	NTIFICAT	100			AGE	WT			ILB (W	BL)		ILB (R)	680	M ILB (mr\	6904	ILB (95C
TATTOO	AN-EXPT	SEX	BLOCK	DATE	DAYS	KG		UCI/KG	UCI	KBQ/KG	KBQ	KBQ	LUNG	LIVER			LIVER	
694A	02-1360	H	A	74030	370	11.8	52	0.050	0.53	1.9	20.	41	2.8	2.3	1.1	5.3	5.0	2.8
862T	03-1742		Ĵ	75343		6.8		0.040	0.28	1.5	10.	26	2.3	3.1	1.4	6.5	7.6	3.
7465	02-1554		Ĥ	74256	367	10.9		0.040	0.42	1.5	16.	32	2.5	2.1	1.1	4.9	4.6	2.
723A	01-1486	M	É	74170	382	11.2	55	0.030	0.39	1.1	14.	31	2.2	1.5	0.70	4.3	3.5	1.0
6945	02-1364	F	B	74032	372	9.7		0.030	0.33	1.1	12.	32	2.2	2.8	1.3	5.7	7.3	3.
859D	03-1748	M	I	75346	387	10.7	57	0.030	0.27	1.1	10.	27	1.6	1.9	0.90	4.4	5.4	2.
872V	01-1834	F	L	76079	443	8.9	58	0.020	0.19	0.74	7.0	18	1.3	1.0	0.5ū	3.5	2.6	1.8
726S	03-1492		F	74172		8.5		0.020	0.17	0.74	6.3	20	1.3	1.4	0.70	4.1	4.5	2.1
858A	01-1744	M	1	75344		10.2	60	0.020	0.19	0.74	7.0		1.2	2.0	0.90			
7038	02-1442		C	74121		9.6		0.020	0.19	0.74	7.0		1.3	1.6	0.70	4.4	5.6	2.5
6845	01-1360		B	74030		10.1		0.020	0.17	0.74	6.3	23	1.1	1.2	0.60	3.8	4.6	2.1
724 S	01-1492		F	74172		9.1		0.020	0.15	0.74	5.6		1.1	1.2	0.60	4.4	5.1	2.3
877s	02-1830		L	76077		10.7		0.010	0.15	0.37	5.6		0.90	0.90	0.40	3.6	3.6	1.7
725A	03-1486		Ε	74170		10.6		0.010	0.14	0.37	5.2		0.80	1.1	0.50	4.2	5.7	2.7
685C	01-1364		A	74032		9.6		0.010	0.19	0.37	7.0		1.3	1.2	0.60	2.9	3.0	1.4
860s	02-1748		J	75346		10.2		0.010	0.11	0.37	4.1		0.70	0.70	0.30	4.1	4.3	2.0
747A	02-1550		G	74254		8.3		0.010	0.070	0.37	2.6		0.60	0.60	0.30	3.7	4.0	1.0
701C	03-1446		C	74123		8.8		0.010	0.070	0.37	2.6		0.50	0.80	0.40	4.1	6.8	3.1
708V	03-1442	F	D	74121		8.2		0.010	0.050		1.9		0.40	0.60	0.30	4.7	7.3	3.4
744T	03-1554	F	H	74256		7.4		0.010	0.040		1.5		0.30	0.30				
875B	02-1834		K	76079		11.4		0.003	0.030	0.11	1.1	14	0.20	0.30	0.10	2.1	2.9	1.4
689U	02-1378	F	8	74038		9.1												
694C	01-1378	M	A	74038		7.9												
704A	02-1432	M	C	74113		10.2												
705s	01-1432	<u> </u>	D	74113		5.5												
721A	01-1488		Ē	74170 74170		13.0												
725s	02-1488	F	F			10.1												
738C 745S	01-1556 02-1556		G	74263 74263		9.6												
7433 859C	02-1556		H	75344		9.6 11.3												
860T	01-1754	M	I	75344		9.2												
8740	01-1734	F	L	76078		9.4												
8768	02-1835	H	K	76078		11.4												
0100	VE" 1033			.,00/0	466	11.4	·											

UCI/KG REPRESENTS MICROCURIES OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.

KBQ/KG REPRESENTS KILOBEQUERELS OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.

DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER INHALATION EXPOSURE.

COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED RESPECTIVELY. PROMINENT FINDINGS ARE INCLUDED

(I) SIGNIFIES AN INCIDENTAL FINDING WHICH WAS NOT IMMEDIATELY LIFE-THREATENING.

CAUTION: THE RECONSTRUCTED INITIAL LUNG BURDENS, DENOTED BY (R) AND (REC) IN THIS TABLE MAY BE TOO HIGH BECAUSE OF CURRENT ANALYTICAL RADIOCHEMICAL PROBLEMS. THIS MAY LEAD TO CALCULATED ORGAN DOSES THAT ARE TOO HIGH. THIS PROBLEM IS ESH IMPORTANT FOR DOGS IN THE LOWER EXPOSURE LEVELS.

TIVE ALPHA RADIATION

BE TO DEATH (GY)

		EC.)	DEATH	DAYS TO	
LUNG	LIVER	DONE	DATE	DEATH	COMMENT
5.3	5.0	2.2	83270	3527	D-UNDETERMINED
6.5	7.6	3.6	88218	4623	E-CHONDROSARC.,LIVER;OSTEOSARCOMA,SCAPULA
4.9	4.6	2.1	85043	3805	E-OSTEOSARCONA, FENUR; FIBROSARCONA, LIVER
	3.5				E-OSTEOSARCOMA, SCAPULA
	7.3				E-LIVER HEPATOCELLULAR CARCINONA
	5.4			4760	E-PYELOMEPHRITIS
3.5	2.6	1.2	84276	3i iÿ	E-OSTEOSARCOMA, SACRUM; FIBROSARC., LIVER
4.1	4.5	2.1	86168	4379	E-OSTEOSARCOMA, BONE; CARCINOMA, LUNG
			91089	5589	E-NYELOPROLIFERATIVÉ DISEASE
			87134		E-FIBROSARCOMA, BONE
					D-BRONCHOPMEUMON I A
					E-CARCINOMA, LUNG
			87054		E-OSTEOSARCOMA, BONE
4.2	5.7	2.7	88099		E-CARCINONA, LIVER; CARCINONA, LUNG
	3.0	1.4			E-MELANOMA, MOUTH
	4.3	2.0	87128		E-OSTEOSARCOMA, BONE
3.7		1.8	86093		D-CARCINOMA, INTESTINE
	6.8	3.1	89338		E-HEMANGIOSÁRCOMA, SUBCUTIS
4.7	7.3	3.4	89100		E-DEGENERATIVE JOINT DISEASE; B.A. CARC.
					E-MAST CELL TUMOR, MOUTH
2.1	2.9	1.4		5123	E-CHRONIC MEPHRITIS
				4746	E-CARCINOMA, LUNG
					E-ADENOMA, PITUITARY
					E-MAST CELL TUMOR DISSEMINATED
			77241	1224	E-MALABSORPTION SYNDROME
			76260	820	D-LEUCOENCEPHALOMALACIA
			87015	4593	D-CARCINOMA, BLADDER
			89329	5546	E-CHRONIC MEPHRITIS
			89038	5254	E-CHRONIC INTERSTITIAL MEPHRITIS
			87196	4235	E-CARCINOMA, LUNG
			87315	4354	E-ADENONA, PÍTUITARY; BRONCHOPNEUMONIA, LUNG
			86241	3816	E-CIRRHOSIS, LIVER
			90080	5116	D-AMESTHETIC DEATH
	5.3 6.5 4.9 4.3 5.4 3.5 4.1 4.4 3.6 4.2 2.9 4.1 3.7 4.7	5.3 5.0 6.5 7.6 4.9 4.6 4.3 3.5 5.7 7.3 4.4 5.4 3.5 2.6 4.1 4.5 4.4 5.6 3.8 4.6 4.4 5.1 3.6 3.6 4.2 5.7 2.9 3.0 4.1 4.3 3.7 4.0 4.1 6.8 4.7 7.3	5.3 5.0 2.2 6.5 7.6 3.6 4.9 4.6 2.1 4.3 3.5 1.6 5.7 7.3 3.3 4.4 5.4 2.5 3.5 2.6 1.2 4.1 4.5 2.1 4.4 5.6 2.5 3.8 4.6 2.1 4.4 5.1 2.3 3.6 3.6 1.7 4.2 5.7 2.7 2.9 3.0 1.4 4.1 4.3 2.0 3.7 4.0 1.8 4.1 6.8 3.1 4.7 7.3 3.4	5.3 5.0 2.2 83270 6.5 7.6 3.6 88218 4.9 4.6 2.1 85043 4.3 3.5 1.6 82260 5.7 7.3 3.3 87086 4.4 5.4 2.5 88358 3.5 2.6 1.2 84276 4.1 4.5 2.1 86183 4.4 5.6 2.5 87134 3.8 4.6 2.1 86183 4.4 5.1 2.3 86204 3.6 3.6 1.7 87054 4.2 5.7 2.7 88099 2.9 3.0 1.4 85130 4.1 4.3 2.0 87128 3.7 4.0 1.8 86093 4.1 6.8 3.1 89338 4.7 7.3 3.4 89100 2.1 2.9 1.4 90088 87036 90073 87254 77241 76260 87015 89329 89038 87796 87315 86241	5.3 5.0 2.2 83270 3527 6.5 7.6 3.6 88218 4623 4.9 4.6 2.1 85043 3805 4.3 3.5 1.6 82260 3012 5.7 7.3 3.3 87086 4802 4.4 5.4 2.5 88358 4760 3.5 2.6 1.2 84276 3iiii 4.1 4.5 2.1 86168 4379 91089 91089 4.4 5.6 2.5 87134 4761 3.8 4.6 2.1 86183 4536 4.4 5.1 2.3 86204 4415 3.6 3.6 1.7 87054 3995 4.2 5.7 2.7 88099 5042 2.9 3.0 1.4 85130 4116 4.1 4.3 2.0 87128 4164 3.7 4.0 1.8 86093 4222 4.1 6.8 3.1 89338 5694 4.7 7.3 3.4 89100 5458 84298 3694 2.1 2.9 1.4 90088 5123 87036 4746 90073 5879 87254 4889 77241 1224 76260 820 87015 4593 89329 5546 89038 5254 87196 4235 87315 4354 86241 3816

RE. MENT FINDINGS ARE INCLUDED.

DO HIGH BECAUSE OF CURRENT NIGH. THIS PROBLEM IS ESPECIALLY

A.18 ²³⁶PuO₂ Monodisperse Aerosol (3.0 µm AMAD), Longevity Study

														CUMULAT	IVE ALF	PHA RADI	ATION
			INHA	LATION	EXPOS	URE							•••••	DOS	E TO DE	ATH (GY	,
DOG IDE	NTIFICAT	1 ON							ILS (WB	C)		ILB (R)				FROM	1
TATTOO	AN-EXPT	SEX	BLOCK	DATE	AGE DAYS	WT KG	RANK	UCI/KG	UCI	KBQ/KG	KBQ	KBQ	LUNG	ilb (i Liver	BONE	LUMG	LIVE
			•••••	•••••	••••								•••••				
6671	01-1306	F	8	73347	433	7.1	01	1.50	11.	56.	400.	310.	120.	28.	13.	92.	22.
710C	02-1460	M	E	74143	427	8.7	02	1.30	11.	48.	420.	360.	86.	9.6	4.8	70.	7.4
736A	02-1540		G	74249	414	10.1	03	0.93	9.3	34.	340.	380.	48.	17.	8.0	<u>53.</u>	18.
6678	03-1306		8	73347	431	10.3	04	0.93	9.3	34.	340.	280.	48.	21.	9.8	37.	16.
674B	03-1302		Ā	73345	403	9.4	05	0.80	7.3	30.	270.	220.	42.	21.	10.	35. 58.	17.
866A 696A	02-1814 03-1428		K	76062 74113	441 433	12.3 10.8	06 07	0.80 0.73	9.5 8.0	30. 27.	350. 300.	510. 240.	41. 40.	16. 18.	7.6 8.7	31.	23. 14.
849S	02-1720		ĭ	75324	424	8.2	08	0.65	5.3	24.	200.	200.	34.	12.	5.3	33.	11.
731S	01-1540		Ň	74249	437	6.5	09	0.60	3.9	22.	140.	140.	32.	11.	5.1	32.	ii. l
7115	01-1456		Ë	74141	423	7.2	10	0.58	4.2	21.	160.	160.	31.	15.	6.9	31.	14.
703s	01-1436		Ď	74115	415	7.5	11	0.53	3.9	20.	140.	93.	28.	13.	6.3	17.	8.1
736S	03-1538	F	H	74247	412	7.9	12	0.52	4.1	19.	150.	300.	39.	7.3	3.5	74.	14.
696S	03-1436		D	74115	435	5.4	13	0.44	2.4	16.	89.	78.	24.	12.	5.5	21.	10.
682V	02-1302	F	8	73345	373	8.3	14	0.41	3.4	15.	130.	130.	22.	10.	4.9	21.	9.9
852B	01-1720	M	Ī	75324	409	10.3	15	0.41	4.1	15.	150.	160.	21.	11.	5.3	17.	8.4
716T	02-1456		F	74141	393 404	8.8	16	0.41 0.39	3.6	15.	130. 160.	140. 140.	22.	9.2 9.8	4.4 4.7	23. 19.	9.7
674A	01-1302 02-1306		Ā	73345 73347	393	10.6 10.0	17 18	0.39	4.2 3.9	14. 14.	140.	89.	21. 22.	13.	6.5	13.	7.8
6808 695A	01-1428	Ä	A C	74113	442	12.4	19	0.38	4.7	14.	170.	130.	21.	12.	5.7	16.	6.9
865S	01-1814	F	ĭ	76062	442	7.2	20	0.38	2.7	14.	100.	130.	20.	10.	4.8	30.	15.
697B	02-1436	-	č	74115	430	12.7	21	0.34	4.3	13.	160.	110.	18.	5.1	2.5	12.	3.5
708A	03-1456		Ě	74141	427	11.0	22	0.32	3.5	12.	130.	130.	17.	7.1	3.4	18.	
867A	01-1818	M	ĸ	76064	432	12.4	23	0.31	3.9	11.	140.	170.	17.	8.0	3.8	20.	7.3 9.2
846A	03-1720	M	1	75324	431	12.7	24	0.29	3.6	11.	130.	130.	15.	6.2	2.9	11.	4.6
715B	03-1460		E	74143	396	9.8	25	0.23	2.2	8.5	81.	89.	2.1	6.1	3.0	13.	6.4
730s	01-1542	F	H	74252	442	10.6	26	0.21	2.3	7.8	85.	85.	17.	6.9	3.3	18.	7.2
870V	03-1814	F	Ļ	76062	426	11.7	27	0.21	2.5	7.8	93.	140.	12.	6.0	2.9	20.	11.
733A	04-1538 02-1538	H	G	74247 74247	431 412	9.9 9.4	28 29	0.18 0.17	1.8 1.9	6.7 6.3	67. 70.	110. 130.	9.5 11.	3.3 3.5	1.6 2.6	16. 19.	5.5 6.0
736E 846B	02-1536	M	G I	75322	429	9.6	30	0.17	1.7	6.3	63.	70.	9.6	5.1	2.5	7.9	4.2
715A	02-1462		Ė	74144	397	8.8	31	0.17	1.5	6.3	56.	56.	9.5	5.8	2.9	8.8	5.4
678T	01-1304	F	Ē	73346	398	8.1	32	0.17	1.4	6.3	52.	48.	9.6	7.3	3.5	10.	7.8
8485	01-1722		Ĵ	75325	427	9.6	33	0.16	1.5	5.9	56.	28.	8.9	8.1	3.8	4.5	4.0
869T	03-1818	F	L	76064	431	7.5	34	0.13	1.0	4.8	37.	63.	7.2	4.1	2.0	13.	7.3
696D	01-1438		С	74116	436	6.7	35	0.13	0.93	4.8	34.	41.	7.8	6.0	2.9	9.2	7.5
7140	01-1460		F	74143	402	6.6	36	0.11	0.67	4.1	25.	41.	5.9	5.5	2.7	9.5	8.5
674C	02-1308		Ā	73348	407	10.1	37	0.090	1.0	3.3	37.	44.	5.7	5.5	2.6	6.8	6.8
680A	03-1308	Ħ	À	73348	394	11.5	38 39	0.090	1.1 0.73	3.3 3.3	41. 27.	44. 41.	5.3 5.4	3.6 4.8	1.7 2.3	5.3 8.1	3.6 7.1
848T 865D	01-1716 02-1818		J K	75322 76064	424 444	7.7 10.2	39 40	0.090	0.73	3.3 3.3	27. 32.	52.	4.8	3.5	1.7	8.7	5.4
874A	02-1818		K	76065	416	13.3	41	0.070	1.0	2.6	37.	52. 59.	4.7	3.2	1.6	9.2	7.1
702S	03-1434	F	Ď	74114	415	8.1	42	0.070	0.60	2.6	22.	37.	4.2	4.0	1.9	5.7	5.4
846C	03-1718		ĭ	75323	431	9.2	43	0.070	0.73	2.6	27.	41.	4.5	4.5	1.8	6.8	6.2
711T	01-1458		F	74142	424	6.5	44	0.070	0.49	2.6	18.	35.	4.4	4.6	2.3	8.5	8.9
733s	02-1542		Н	74252		8.8	45	0.070	0.67	2.6	25.	37.	4.4	4.9	2.3	6.6	6.9
854B	01-1718	H	I	75323	396	7.6	46	0.070	0.51	2.6	19.	33.	3.9	4.0	1.8	6.6	6.2
856T	03-1716	-	J	75322	378	5.8	47	0.070	0.40	2.6	15.	30.	3.9	4.0	1.8	8.0	7.5
869U	02-1816		L	76063	430	8.4	48	0.060	0.52	2.2	19.	37.	3.3	1.9	1.5	6.2	3.5
735C	04-1540		Ğ	74249	424	10.5	49 50	0.060	0.58	2.2 2.2	21. 23.	35. 48.	3.2 3.1	3.6 2.1	1.7 1.0	5.2 6.6	5.6
732A 697A	01-1538 03-1438		G	74247 74116		11.0 10.4	50 51	0.050	0.61 0.55	1.9	23. 20.	40. 37.	3.1	3.8	1.7	5.6	6.0
OTIA	UJ- 1430	-	L	17119	731	10.4	,	U.UJU	·	1.7	£0.	J	٦.١	5.0	•••	٠.٠	0.0

CUMULATIVE ALPHA RADIATION

y

	******	CUMULA	IVE ALP	WA RADI	ATION				
R)	•••••	DOS	E TO DE	ATN (GY	')				
:: -	FROM LUNG	ILB (L			ILB (R LIVER		DEATH DATE	DAYS TO DEATH	CONNENT
	120.	28.	13.	92.	22.	11.	77099	1213	D-PNEUMONITIS AND PULMONARY FIBROSIS
	86.	9.6	4.8	70.	7.8	3.9	76044	631	E-PHEUMONITIS AND PULMONARY FIBROSIS
	48.	17.	8.0	53.	18.	8.8	77334	1181	E-OSTEOSAR., LUN. VERT.; CARCINONA, LUNG
	48. 42.	21. 21.	9. 8 10.	37. 35.	16. 17.	7.6 8.3	77318 78202	1432 1683	E-OSTEOSARC.,CERV. VERT.;CARC.,LUNG(1) D-PNEUN. AND PUL. FIBROS.;CARC.,LUNG(1)
	41.	16.	7.6	58.	23.	11.	79285	1319	E-CARCINONA, LUNG
	40.	18.	8.7	31.	14.	6.7	78180	1528	E-OSTEOSARCOMA, HUMERUS AND PALATINE
	34.	12.	5.3	33.	11.	5.1	79047	1184	E-OSTEOSARCOMA, THOR. VERT. AND SACRUM
	32.	11.	5.1	32.	11.	5.1	77314	1161	E-OSTEOSARCOMA, TIBIA AND FEMUR
	31.	15.	6.9	31.	14.	6.8	78223	1543	E-OSTEOSARCONA, IL IUN
	28.	13.	6.3	17.	8.1	3.9	78222	1568	E-OSTEOSARCOMA, LUMBAR VERTEBRAE
	39.	7.3	3.5 5.5	74.	14.	6.7	77117	966 1610	D-PNEUM. AND PUL. FIBROS.; CARC., LUNG(I)
	24. 22.	12. 10.	3.3 4.9	21. 21.	10. 9.9	4.8 4.7	78264 78069	1550	E-OSTEOSARCOMA, HUMERUS E-OSTEOSARCOMA, LUMBAR VERTEBRAE
	21.	11.	5.3	17.	8.8	4.3	80205	1707	E-BONE TUNORS, T8 AND C7
	22.	9.2	4.4	23.	9.7	4.7	78096	1416	E-OSTEOSARCONA, ISCHIUM AND ILIUM
	21.	9.8	4.7	19.	8.7	4.2	78075	1556	E-OSTEOSARC., CERV. VERT., SCAP.; CARC., LUNG
	22.	13.	6.5	13.	7.8	3.9	79299	2143	D-CARCINOMA, LUNG
	21.	12.	5.7	16.	9.3	4.5	79205	1918	D-OSTEOSARCOMA, HUMERI
	20.	10.	4.8	30.	15.	7.2	80273	1672	E-BONE TUMORS, L4, ILIUM, SCAP.; CARC., LUNG
	18.	5.1	2.5	12.	3.5	1.7	77144	1125	E-OSTEOSARCOMA, CERVICAL VERTEBRAE
	17.	7.1	3.4	18. 20.	7.3 9.2	3.5	78089 80191	1409 1588	E-OSTEOSARCONA, THORACIC VERTEBRAE
	17. 15.	8.0 6.2	3.8 2.9	11.	4.6	4.4 2.2	79235	1372	E-BONE TUMORS, NUMERI E-OSTEOSARCOMA, THORACIC VERTEBRAE
	2.1	6.1	3.0	13.	6.4	3.1	79016	1699	E-OSTEOSARCONA, HUNERUS
	17.	6.9	3.3	18.	7.2	3.4	80038	1977	D-PNEUMONITIS
	12.	6.0	2.9	20.	11.	5.0	80330	1729	E-OSTEOSARCOMA, FEMUR; CARCINOMA, LUNG
	9.5	3.3	1.6	16.	5.5	2.7	77353	1202	E-OSTEOSARCOMA, SACRUM, STERNUM AND FEMUR
	11.	3.5	2.6	19.	6.0	4.5	79101	1680	E-OSTEOSARCOMA, HUMERUS
	9.6	5.1	2.5	7.9	4.2	2.0	80274	1778	E-BONE TUMORS, HUMERUS
	9.5	5.8	2.9	8.8	5.4	2.7	80129	2176	E-BONE TUMOR, HUMERUS
	9.6 8.9	7.3	3.5	10. 4.5	7.8 4.0	3.6 1.9	81161 85123	2737 3451	D-OSTEOSARC., HUMERI, T6-T12; CARC., LUNG
	7.2	8.1 4.1	3.8 2.0	13.	7.3	3.6	81210	1973	E-OSTEOSARCOMA, FEMUR; CARCINOMA, LUNG E-OSTEOSARCOMA, VERT. L2
	7.8	6.0	2.9	9.2	7.5	3.6	82152	2958	E-OSTEOSARCOMA, FRONTAL BONE
	5.9	5.5	2.7	9.5	8.5	4.1	84023	3532	E-OSTEOSARC., SCAP., HUMER.; B.A.CARC., LUNG
	5.7	5.5	2.6	6.8	6.8	3.1	84072	3741	E-OSTEOSARCOMA, HUMERUS
	5.3	3.6	1.7	5.3	3.6	1.7	80177	2385	E-OSTEOSARCOMA, L6; CARCINOMA, LUNG
	5.4	4.8	2.3	8.1	7.1	3.4	85022	3353	E-OSTEOSARCOMA, RIB
	4.8	3.5	1.7	8.7	5.4	2.6	83131	2624	E-KIDNEY ATROPHY
	4.7	3.2	1.6	9.2	7.1	3.4	83343	2835	E-OSTEOSARC., VERT. L6; ADENOCARC., LUNG
	4.2 4.5	4.0 4.5	1.9	5.7 6.8	5.4 6.2	2.6 3.0	84074 85290	3612 3620	E-OSTEOSARCOMA, SCAPULA D-MYOCARDIAL DEGENERATION, HEART
	4.4	4.6	1.8 2.3	8.5	8.9	4.2	85166	4042	D-CARCINOMA, LUNG
	4:4	4.9	2.3	6.6	6.9	3.3	85288	4054	E-CARCINOMA, LUNG
	3.9	4.0	1.8	6.6	6.2	3.1	86136	3831	E-OSTEOSARCOMA, BONE
	3.9	4.0	1.8	8.0	7.5	3.8	86108	3804	E-OSTEOSARCOMA, BONE
	3,3	1.9	1.5	6.2	3.5	2.9	81138	1902	D-EPILEPSY
	3.2	3.6	1.7	5.2	5.6	1.9	86100	4234	E-CARCINOMA, LUNG
	3.1	2.1	1.0	6.6	4.2	2.0	81103	2413	E-OSTEOSARCOMA, VERT. L5 AND S1
	3.1	3.8	1.7	5.6	6.0	3.1	86119	4386	E-DISC PROTRUSION; CARCINONA, LUNG

A.18 ²³⁸PuO₂ Monodisperse Aerosol (3.0 µm AMAD), Longevity Study (continued)

														CUMULAT	IVE ALP	HA RADI	ATION	
			INHA	LATION	EXPOS	WRE								DOS	E TO DE	ATH (GY)	- 7
DOG IDE	NTIFICAT	ON							ILB (WB	C)		ILB (R)						
TATTOO	AM-EVRY	eev	BI OCK	DATE	AGE DAYS	WT KG	DAME	UCI/KG	ırı	KBQ/KG	YB0	KBQ	LUNG	ILB (i LIVER		LUNG	ILB (R LIVER	ZC
141100	AN-EXPT	3E Y	BLUCK	DAIE	DATS		KAMA	001/49				*D4		LIVER		Lone	CIVER	7
680T	03-1304	F	8	73346		6.7		0.050	0.31	1.9	11.	24.	2.7	2.8	1.4	3.6	4.3	
705C	03-1458	M	E	74142		9.3		0.040	0.40	1.5	15.	26.	2.4	2.0	0.90	4.0	3.2	
872\$	01-1820	F	L	76065	429	11.3		0.040	0.46	1.5	17.	35.	2.3	2.1	1.0	4.7	4.2	
6 9 7\$	02-1434	F	D	74114	429	8.0		0.040	0.31	1.5	11.	21.	2.2	1.9	0.90	3.2	2.7	
715s	01-1462	F	F	74144	397	7.2	56	0.040	0.26	1.5	9.6	27.	2.1	2.9	1.4	5.8	8.1	
704S	02-1428	F	D	74113	408	9.5	57	0.040	0.34	1.5	13.	26.	2.1	1.9	0.90	4.0	3.8	
857s	02-1722	F	J	75325	377	11.8	58	0.030	0.40	1.1	15.	21.	1.8	0.80	0.40	2.5	1.1	- 1
7148	03-1462	F	F	74144	403	8.4	59	0.030	0.25	1.1	9.3	21.	1.7	1.8	0.80	3.9	3.7	
734S	03-1542	F	#	74252	435	9.8	60	0.030	0.26	1.1	9.6	23.	1.6	1.6	0.70	3.6	3.8	
871B	01-1816	Ħ	K	76063	427	12.1	61	0.020	0.26	0.74	9.6	28.	1.2	1.7	0.80	3.6	5.0	
6798	01-1308	Ħ	A	73348	396	9.2		0.020	0.18	0.74	6.7	25.	1.1	1.4	0.60	4.3	5.6	
865B	03-1816	Ħ	K	76063	443	12.4		0.020	0.22	0.74	8.1	27.	1.0	1.4	0.60	3.4	4.5	
849C	02-1718		ĩ	75323	424	9.9		0.020	0.17	0.74	6.3	17.	1.0	0.80	0.40	2.6	2.0	
856S	03-1722	F	Ĵ	75325	381	8.9		0.020	0.15	0.74	5.6	15.	1.0	1.4	0.60	2.6	3.7	
7328	04-1542		Ğ	74252		11.2		0.020	0.19	0.74	7.0	20.	0.90	0.50	0.30	2.6	1.5	
680S	02-1304	F	B	73346	392	7.9		0.020	0.13	0.74	4.8	21.	0.90	1.4	0.60	4.3	6.1	
6998	02-1438	F	Ď	74116		9.1		0.020	0.14	0.74	5.2	24.	0.90	1.2	0.60	4.1	5.8	
734T	03-1540	F	H	74249		9.4		0.010	0.13	0.37	4.8	20.	0.80	0.90	0.40	3.4	3.6	
870T	03-1820	F	ï	76065	429	9.2		0.010	0.11	0.37	4.1	9.3	0.70	0.50	0.20	1.5	1.0	
6970	01-1434	H	č	74114	429	10.2		0.010	0.080		3.0	18.	0.50	0.50	0.20	2.8	3.0	
708C	02-1458	H	Ē	74142		7.8		0.010	0.040	0.37	1.5	22.	0.30	0.60	0.20	4.5	8.9	
6795	02-1309	F	B	73348	396	7.4		0.0,0		••••	•••		0.00	*****			•••	
681E	01-1309		Ă	73348	381	9.5												
696C	01-1430		ĉ	74113	433	8.3												
702U	02-1430	F	Ď	74113	414	8.9												
710A	02-1472	<u></u>	Ē	74150		11.4												
718T	01-1472	F	F	74150		7.4												
7368	01-1536	M	Ġ	74241	407	10.5												
733T	02-1536			74242		7.5												
		F	H	75329														
848A	02-1724	M	I	75329 75329		8.8												
857U	01-1724	r	'n		381	9.4												
870U	01-1823	F	ŗ	76063	400	10.0												
871A	02-1823	М	K	76063	400	10.0	C											

UCI/KG REPRESENTS MICROCURIES OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.

KBQ/KG REPRESENTS KILOBEQUERELS OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.

DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER IMMALATION EXPOSURE.

COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED RESPECTIVELY. PROMINENT FINDINGS ARE INCLUDE

(1) SIGNIFIES AN INCIDENTAL FINDING WHICH WAS NOT IMMEDIATELY LIFE-THREATENING.

CAUTION: THE RECONSTRUCTED INITIAL LUNG BURDENS, DENOTED BY (R) AND (REC) IN THIS TABLE MAY BE TOO HIGH BECAUSE OF CURREL ANALYTICAL RADIOCHEMICAL PROBLEMS. THIS MAY LEAD TO CALCULATED ORGAN DOSES THAT ARE TOO HIGH. THIS PROBLEM IS EIMPORTANT FOR DOGS IN THE LOWER EXPOSURE LEVELS.

WA RADIATION

ATH	(GY)	

FROM	ILB (R	EC.)	DEATH	DAYS TO	
			DATE	DEATH	COMENT
	•••••	••••	••••		***************************************
	4.3	1.9	85086	4123	E-OSTEOBARCOMA, SACRUM
		1.5	82266	3046	D-LYMPHOBARCONA, VI SCERAL
4.7	4.2	2.0	85214	3437	E-CHONDROSARCOMA, SCAPULA
3.2	2.7	1.5	83049	3222	E-PANCREATITIS
5.8	8.1	3.8	87211	4815	E-OSTEOSARCONA, BONE
4.0	3.8	1.8	84027		E-UNDIFF. SARC., RIB; MEUROFIBROSARC., LIV.
2.5	1.1	0.5	80024	1525	D-EPILEPSY
3.9	3.7	1.0	85005	3879	E-OSTEOSARCONA, VERTEBRA; CARCINONA, LUNG
3.6	3.8	1.7 2.3 2.4 2.0 1.0	85065	3831	F-OSTEGRARCOMA VERTERRA
3.5	5.0	2.3	89040	4726	E-CHRONIC INTER. NEPHRITIS: ACRT. THROMB.
4.3	5.6	2.4	85310	4345	E-OSTEOSARCOMA, BONE
3.4	4.5	2.0	88257	4577	E-ADENOCARCINOMA, RECTUM; NEPHROPATHY
2.6	2.0	1.0	84079	3043	E-MELANONA, SKIN
2.6	3.7	17	ままてつム	4726 4345 4577 3043 4749 1954	E-CHONDRO. OSTEOSARC, NUM.; PAP. ADCA., LUNG
2.6	1.5	0.7	80015	1954	D-GASTRIC FOREIGN BODY
4.3	6.1	2.9	87183	4950	E-CARCINONA, NAMMARY; CARCINONA, LUNG
4.1	5.8	27	87 214	4848	D-PHEUMONIA
3.4	3.6	1.9	86346 83162	4480	E-CARCINONA, LUNG
1.5	1.0	0.5	83162	2654	D-PYONETRA
2.8	3.0	1.4	85149	4053	D-THROMBOSIS, AORTA
4.5	8.9	3.9	90086	5788	E-ANKYLOSING SPONDYLOSIS: ADENOCARCINOMA. LUNG
			86127	4527	E-CARCINONA, MANDIARY
			88280	5410	D-INTERVERT, DISC DISEASE: BRONCHOPHEUM.
			87100	4735	E-PYELONEPHRITIS
			89087	5453	
			86335	4568	D-ACUTE MEPHROSIS
			88231	5194	E-CARCINOMA, MAMMARY GLAND
			87119	4626	D-PULMONARY EDENA
			82223	2903	E-LYMPHOSARCOMA, SKIN
			87087	4141	D-HEMANGIOSARCOMA, HEART
			80030	1527	D-EPILEPSY
			85063	3288	D-PYONETRA
			87187	4142	E-ADENOMA, PITUITARY

DINGS ARE INCLUDED.

BECAUSE OF CURRENT HIS PROBLEM IS ESPECIALLY

A.19 239 PuO₂ Monodisperse Aerosol (0.75 μ m AMAD), Longevity Study

CUMULATIVE ALPHA RADIATION DOSE (GY

TATTOO AM-EXPT SEX BLOCK DATE DAYS KG RANK UCI/KG UCI KBD/KG KBQ KBQ LUNG LU				INHA	LATION	EXPOS	URE						•	TO 0	EATH
1134C 01-2686 M K 78325 385 8.9 01 0.20 1.8 7.4 67. 100 41 1142V 01-2730 F L 79052 421 9.1 02 0.19 1.7 7.0 63. 63 20 1136A 03-2690 M K 78326 368 10.4 06 0.17 1.8 6.3 67. 63 31 1136A 03-2690 M K 78326 368 10.4 06 0.17 1.8 6.3 67. 63 31 1136A 03-2690 M K 78326 368 10.4 06 0.17 1.8 6.3 67. 63 31 1136A 03-2690 M K 78326 368 10.4 06 0.17 1.8 6.3 67. 63 31 1136B 03-2690 M K 78326 368 10.4 06 0.17 1.8 6.3 67. 63 31 1136C 01-2526 M I 78164 411 9.5 06 0.16 1.5 5.9 63. 67 62 11072 01-2236 F F 77216 421 10.3 07 0.15 1.5 5.6 56. 31 22 11252 01-2236 F F 77216 421 10.3 07 0.15 1.5 5.6 56. 31 22 11252 01-2240 F J 78248 388 7.6 09 0.11 0.87 4.1 32. 33 3 22 11271 03-2612 F J 78244 388 7.6 09 0.11 0.87 4.1 32. 33 3 22 11070 03-2532 M I 78166 375 12.4 10 0.10 1.87 4.1 32. 33 3 22 11070 03-2532 M I 78166 375 12.4 10 0.10 1.87 3.7 32. 17 10.09 0.27 0.15 1.2 5.6 44 40 41 22 3 10.00 03-2532 M I 78166 375 12.4 10 0.10 0.87 3.7 32. 17 10.00 03-2532 M I 78166 375 12.4 10 0.10 0.87 3.7 32. 17 10.00 03-2532 M I 78166 375 12.4 10 0.10 0.87 3.7 32. 17 10.00 03-2532 M I 78166 375 12.4 10 0.00 0.87 3.7 32. 17 10.00 03-2532 M I 78166 375 12.4 10 0.00 0.87 3.7 32. 17 10.00 0.27 0.7 3.0 32 21 10.00 03-2532 M I 78166 375 12.5 17 0.00 0.97 0.67 2.9 25 3. 30 22 10.00 03-2532 M I 78164 375 12.5 17 0.00 0.97 0.67 2.9 25 3. 30 22 10.00 03-2532 M I 78164 375 12.5 17 0.00 0.07 0.67 2.9 25 3. 30 22 10.00 0.00 0.00 0.00 0.00 0.00 0.00	DOG IDE	ENTIFICAT	ION						11	LB (MB	C)		ILB (R)	·	850
1142V 01-2750 F L 79052 421 9.1 02 0.19 1.7 7.0 63. 63 11968 01-2560 H L 78152 367 10.6 03 0.18 1.9 6.7 70. 63. 63 1136A 03-2690 H K 78326 368 10.4 0.4 0.17 1.8 6.3 67. 63 11978 01-2106 H C 77069 399 10.8 05 0.16 1.7 5.9 63. 67 1092S 01-2528 F H 78144 411 9.5 06 0.16 1.7 5.9 63. 67 1027U 01-2236 F F 77216 421 10.3 07 0.15 1.5 5.9 56. 59 1027U 01-2236 F F 77216 421 10.3 07 0.15 1.5 5.9 56. 59 1027U 01-2238 F J 78244 388 7.6 09 0.11 0.87 3.7 32. 13 1122T 03-2612 F J 78244 388 7.6 09 0.11 0.87 3.7 32. 33 1122T 03-2552 H I 78164 71 0.10 0.87 3.7 32. 17 1097E 01-2534 H G 78151 391 8.6 15 0.096 0.93 3.6 34. 44 23 10068 01-2148 H E 77118 373 8.5 14 0.079 0.67 2.9 25. 30 10068 01-2148 H E 77118 373 8.5 14 0.079 0.67 2.9 25. 30 1098C 03-2236 H G 78151 391 8.6 15 0.073 0.63 2.7 23. 34 996U 02-2174 F D 77140 446 7.1 16 0.073 0.52 2.7 19. 19 18 9635 02-1954 H A 77007 439 11.5 17 0.063 0.73 2.3 27. 15. 10052 01-2172 F D 77140 409 10.6 0.050 0.51 2.0 19. 23 10052 03-2150 H E 7719 377 10.3 19 0.062 0.51 2.3 19. 30 22-21007 03-2273 F F 7719 371 0.3 19 0.062 0.51 2.3 19. 30 22-21007 01-2172 F D 77139 409 10.6 0.055 0.51 2.0 19. 23 10053 02-2274 F D 77140 409 10.6 0.055 0.51 2.0 19. 23 10054 01-2172 F D 77150 409 10.6 0.055 0.51 2.0 19. 23 10074 01-2172 F D 77150 409 10.6 0.055 0.51 2.0 19. 23 10075 03-2552 F F 7719 377 10.3 19 0.062 0.64 2.3 24. 37 10076 01-2172 F D 77150 400 9.3 21 0.055 0.51 2.0 19. 23 10510 02-2238 F F 77070 410 9.3 21 0.055 0.51 2.0 19. 23 10510 02-2238 F F 77070 410 9.3 25 0.063 0.73 1.6 14. 21 11457 03-2732 F L 79053 418 8.9 28 0.042 0.37 1.6 14. 21 11678 02-2238 F F 7719 374 8.5 26 0.049 0.48 1.8 18. 24 11710 0600 02-2238 F F 7719 374 8.5 26 0.049 0.48 1.8 18. 24 171348 01-2252 F L 79053 418 8.9 28 0.042 0.37 1.6 14. 21 11810 02-2253 F F 7719 374 8.5 26 0.040 0.39 1.7 14. 21 11910 0000 02-2253 F F 77070 400 9.0 0.00	TATTOO	AN-EXPT	SEX	BLOCK	DATE			RANK	UC1/KG	lou	KBQ/KG	KBQ		LUNG	LUNG
1142V 01-2750 F L 79052 421 9.1 02 0.19 1.7 7.0 63. 63 11968 01-2560 H L 78152 367 10.6 03 0.18 1.9 6.7 70. 63. 63 1136A 03-2690 H K 78326 368 10.4 0.4 0.17 1.8 6.3 67. 63 11978 01-2106 H C 77069 399 10.8 05 0.16 1.7 5.9 63. 67 1092S 01-2528 F H 78144 411 9.5 06 0.16 1.7 5.9 63. 67 1027U 01-2236 F F 77216 421 10.3 07 0.15 1.5 5.9 56. 59 1027U 01-2236 F F 77216 421 10.3 07 0.15 1.5 5.9 56. 59 1027U 01-2238 F J 78244 388 7.6 09 0.11 0.87 3.7 32. 13 1122T 03-2612 F J 78244 388 7.6 09 0.11 0.87 3.7 32. 33 1122T 03-2552 H I 78164 71 0.10 0.87 3.7 32. 17 1097E 01-2534 H G 78151 391 8.6 15 0.096 0.93 3.6 34. 44 23 10068 01-2148 H E 77118 373 8.5 14 0.079 0.67 2.9 25. 30 10068 01-2148 H E 77118 373 8.5 14 0.079 0.67 2.9 25. 30 1098C 03-2236 H G 78151 391 8.6 15 0.073 0.63 2.7 23. 34 996U 02-2174 F D 77140 446 7.1 16 0.073 0.52 2.7 19. 19 18 9635 02-1954 H A 77007 439 11.5 17 0.063 0.73 2.3 27. 15. 10052 01-2172 F D 77140 409 10.6 0.050 0.51 2.0 19. 23 10052 03-2150 H E 7719 377 10.3 19 0.062 0.51 2.3 19. 30 22-21007 03-2273 F F 7719 371 0.3 19 0.062 0.51 2.3 19. 30 22-21007 01-2172 F D 77139 409 10.6 0.055 0.51 2.0 19. 23 10053 02-2274 F D 77140 409 10.6 0.055 0.51 2.0 19. 23 10054 01-2172 F D 77150 409 10.6 0.055 0.51 2.0 19. 23 10074 01-2172 F D 77150 409 10.6 0.055 0.51 2.0 19. 23 10075 03-2552 F F 7719 377 10.3 19 0.062 0.64 2.3 24. 37 10076 01-2172 F D 77150 400 9.3 21 0.055 0.51 2.0 19. 23 10510 02-2238 F F 77070 410 9.3 21 0.055 0.51 2.0 19. 23 10510 02-2238 F F 77070 410 9.3 25 0.063 0.73 1.6 14. 21 11457 03-2732 F L 79053 418 8.9 28 0.042 0.37 1.6 14. 21 11678 02-2238 F F 7719 374 8.5 26 0.049 0.48 1.8 18. 24 11710 0600 02-2238 F F 7719 374 8.5 26 0.049 0.48 1.8 18. 24 171348 01-2252 F L 79053 418 8.9 28 0.042 0.37 1.6 14. 21 11810 02-2253 F F 7719 374 8.5 26 0.040 0.39 1.7 14. 21 11910 0000 02-2253 F F 77070 400 9.0 0.00	1134C	01-2686	- 14	ĸ	78325	385	8.9	01	0.20	1.8	7.4	67.	100		41
1136A 03-2690 N K 78326 368 10.4 04 0.17 1.8 6.3 47. 63 31 9928 01-2106 M C 77069 399 10.8 05 0.16 1.7 5.9 63. 67 24 10928 01-2528 F N 78144 411 9.5 06 0.16 1.7 5.9 63. 67 24 10928 01-2326 F F 77216 421 10.3 07 0.15 1.5 5.6 56. 59 29 10270 01-2236 F F 77216 421 10.3 07 0.15 1.5 5.6 56. 51 1 21 1125S 01-2610 F J 78248 374 8.2 08 0.15 1.5 5.6 56. 31 21 11221 03-2612 F J 78244 388 7.6 09 0.11 0.87 3.7 32. 33 22 1107A 03-2652 M I 78164 375 12.4 10 0.10 0.87 3.7 32. 35 25 10280 03-2536 F F 77217 421 8.7 11 0.10 0.87 3.7 32. 17 14 10976 01-2534 M G 78150 396 8.9 12 0.10 0.87 3.7 32. 17 23. 10068 01-2148 M E 77118 373 8.5 14 0.079 0.67 2.9 25. 30 21 10068 01-2148 M E 77118 373 8.5 14 0.079 0.67 2.9 25. 30 21 10980 03-2236 M G 78151 391 8.6 15 0.073 0.52 2.7 23. 34 24 9960 02-2174 F D 77140 446 7.1 16 0.073 0.52 2.7 19. 19 19 18 9638 02-19754 M A 77007 439 11.5 17 0.063 0.73 0.52 2.7 19. 19 19 18 9998 01-2172 F D 77139 423 8.2 18 0.062 0.51 2.3 19. 30 26 10050 03-2130 M E 77119 377 10.3 19 0.062 0.51 2.3 19. 30 26 10051 03-2238 F F 77217 438 9.4 22 0.055 0.51 2.0 19. 25 11 18 1023W 02-2238 F F 77217 438 9.4 22 0.055 0.51 2.0 19. 25 11 18 1023W 02-2238 F F 77719 377 10.3 19 0.062 0.51 0.54 1.9 20. 14. 11 11068 03-2532 F L 79053 414 9.8 24 0.069 0.63 0.73 1.6 14. 19. 18 11308 02-22590 M K 78326 403 10.5 23 0.055 0.51 2.0 19. 25 11 110980 03-2532 F L 79053 418 8.9 28 0.042 0.37 1.6 14. 11. 11 11060 02-2532 F L 79053 418 8.9 28 0.042 0.37 1.6 14. 11. 11 11071 03-2732 F L 79053 418 8.9 28 0.042 0.37 1.6 14. 11. 11 11096 03-2532 F M 78151 397 9.0 30 0.041 0.37 1.5 14. 25 11 110970 01-1954 M A 77007 439 11.4 29 0.041 0.37 1.5 14. 25 11 110980 02-2550 M E 77119 377 9.0 30 0.041 0.37 1.5 14. 12. 11 110980 03-2532 F M 78151 397 9.0 30 0.041 0.37 1.5 14. 12. 11 110980 03-2532 F M 78154 395 8.6 27 0.043 0.37 1.6 14. 12. 11 110980 03-2532 F M 78154 395 8.6 27 0.043 0.37 1.6 14. 12. 25 11 110970 01-1954 M A 77007 426 40.9 10.9 30 0.041 0.37 1.5 14. 12. 25 11 110970 01-1952 M A 77006 424 401 8.5 32 0.0090 0.33 1.4 12. 25 11 110980 03		01-2730	F			421		02			7.0	63.	63		29
9928 01-2106 M C 77069 399 10.8 05 0.16 1.7 5.9 63. 67 10928 01-2236 F M 78144 411 9.5 06 0.16 1.7 5.9 65. 59 10270 01-2236 F F 77216 421 10.3 07 0.15 1.5 5.6 5.9 56. 59 10270 01-2236 F F 77216 421 10.3 07 0.15 1.5 5.6 56. 31 11255 01-2610 F J 78248 374 8.2 08 0.15 1.2 5.6 44. 41 23 1107A 03-2612 F J 78244 388 7.6 09 0.11 0.87 4.1 32. 33 11227 03-2612 F J 78164 375 12.4 10 0.10 1.2 3.7 44. 56 10280 03-2238 F F 77217 421 8.7 11 0.10 0.87 3.7 32. 17 1097E 01-2334 M G 78150 396 8.9 12 0.10 0.87 3.7 32. 17 1097E 01-2334 M G 78150 396 8.9 12 0.10 0.87 3.7 32. 23 10068 01-2148 M E 77118 373 8.5 14 0.079 0.67 2.9 25. 30 1098C 03-2338 F M 78151 391 8.6 15 0.073 0.63 2.7 23. 34 996U 02-2174 F D 77140 446 7.1 16 0.073 0.52 2.7 19. 19 983F 02-21954 M A 77007 439 115 17 0.063 0.73 2.3 27. 15. 999S 01-2172 F D 77139 423 8.2 18 0.062 0.51 2.3 19. 30 1007C 01-2174 F D 77140 409 10.6 20 0.059 0.63 2.2 23. 31 1038C 02-2238 F F 77217 438 9.4 22 0.054 0.51 2.3 19. 30 1163T 03-2238 F F 77217 438 9.4 22 0.054 0.51 2.3 19. 30 1163T 03-2732 F L 79053 414 9.8 24 0.069 0.45 1.7 17. 81 1099D 01-2174 F D 77140 409 10.6 20 0.059 0.63 2.2 23. 31 11308 02-2238 F F 77217 38 9.4 22 0.054 0.51 2.0 19. 23 11308 02-2238 F F 77217 38 9.4 22 0.044 0.51 1.9 20. 18. 18 1099C 02-2108 M C 77070 410 9.3 21 0.055 0.51 2.0 19. 23 11308 02-2238 F F 77217 378 38 9.8 2 20 0.054 0.51 1.9 20. 18. 18 1099C 02-2108 M C 77070 410 9.5 25 0.047 0.45 1.7 17. 81 1099C 02-2238 F F 77217 378 38 9.8 2 20 0.059 0.63 1.7 12. 22 1143T 02-2233 F H 78145 395 8.6 27 0.043 0.37 1.6 14. 21 1091C 02-2233 F H 78145 395 8.6 27 0.043 0.37 1.6 14. 21 1091C 02-2233 F H 78145 395 8.6 27 0.045 0.37 1.6 14. 21 1096C 03-2233 F H 78145 395 8.6 27 0.045 0.37 1.6 14. 21 11318 01-2250 R H 78145 395 8.6 27 0.045 0.37 1.6 14. 21 11318 01-2252 F H 78145 395 8.6 27 0.045 0.37 1.6 14. 21 11318 01-2252 F H 78145 395 8.6 27 0.045 0.07 0.89 7.4 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	11098	01-2560	M	1	78165		10.6		0.18	1.9	6.7	70.			
100225 01-2236 F															
1027U 01-2236 F F 77216 421 10.3 07 0.15 1.5 5.6 56. 31 1125S 01-2610 F J 78284 378 8.2 08 0.15 1.2 5.6 44.1 23 11227 03-2612 F J 78284 388 7.6 09 0.11 0.87 4.1 32. 33 11227 03-2612 F J 78166 375 12.4 10 0.10 1.2 3.7 44. 56 1028U 03-2238 F F 77217 421 8.7 11 0.10 0.87 4.1 32. 33 10090 03-2238 F F 77217 421 8.7 11 0.10 0.87 3.7 32. 17 1007E 01-2334 N G 78150 396 8.9 12 0.10 0.87 3.7 32. 17 10080 01-2148 N E 77118 373 8.5 14 0.079 0.67 2.9 25. 30 21 10080 01-2148 N E 77118 373 8.5 14 0.079 0.67 2.9 25. 30 21 10080 01-2148 N E 77118 373 8.5 14 0.079 0.67 2.9 25. 30 21 10080 01-2148 N E 77118 373 8.5 14 0.075 0.63 2.7 23. 34 996U 02-2174 F D 77140 446 7.1 16 0.073 0.52 2.7 19. 19 18 9635 02-1954 N A 77007 439 115. 17 0.063 0.73 2.3 27. 15. 9998 01-2172 F D 77139 423 8.2 18 0.062 0.51 2.3 19. 30 26 1005C 03-2150 N E 77119 377 10.3 19 0.062 0.64 2.3 24. 37 1023W 02-2238 F F 77217 438 9.4 22 0.054 0.51 2.3 19. 30 26 10010 10-2174 F D 77140 409 10.6 20 0.059 0.63 2.2 23. 31 188 9900 02-2238 F F 77217 438 9.4 22 0.054 0.51 2.0 19. 18 13 11308 02-2238 F F 77217 438 9.4 22 0.054 0.51 2.0 19. 18 13 11308 02-2238 F R 7735 341 0.955 0.51 2.0 19. 23 11 11457 03-2732 F L 79053 414 9.8 24 0.049 0.48 1.8 18. 24 17 110640 1-2150 N E 77119 374 8.5 26 0.046 0.39 1.7 14. 21 10965 03-2535 F N 7815 397 9.0 30 0.041 0.37 1.5 14. 21 10970 01-2154 N A 77007 410 9.5 25 0.047 0.45 1.7 17. 81 10968 03-2532 F N 7815 397 9.0 30 0.041 0.37 1.5 14. 21 10970 02-2536 N E 7719 374 48.5 28 0.042 0.37 1.6 14. 11. 9435 01-2935 N R 7815 397 9.0 30 0.041 0.37 1.5 14. 21 10970 02-2536 N E 7815 397 9.0 30 0.041 0.37 1.5 14. 21 10970 01-1952 N A 77004 400 8.5 25 0.047 0.45 1.7 1.5 17. 22 11138 01-2650 N E 7719 374 4.5 28 2.0 0.090 0.091 0.70 7.4 5.8 5.8 11257 01-2612 F J 78244 370 8.1 39 0.021 0.20 0.70 7.4 5.5 5.2 3.8 5.5 6.8 9827 01-2632 F R 78145 395 8.6 27 0.043 0.070 0.090															
1122S 01-2610 F															
1122T 03-2612 F J 78244 388 7.6 09 0.11 0.87 4.1 32. 33 22 1107A 03-2562 N I 78166 375 12.4 10 0.10 1.2 3.7 44. 56 1028U 03-2238 F F 77217 421 8.7 11 0.10 0.87 3.7 32. 17 1097E 01-2534 N G 78150 396 8.9 12 0.10 0.87 3.7 32. 17 23. 14 1097E 03-2602 F B 77035 410 9.7 13 0.096 0.93 3.6 34. 44 23 10068 01-2148 N E 77118 373 8.5 14 0.079 0.67 2.9 25. 30 21 10080 03-2535 N G 78150 391 8.6 15 0.073 0.63 2.7 23. 34 994U 02-2174 F D 77140 446 7.1 16 0.073 0.52 2.7 19. 19 18 943E 02-1954 N A 77007 439 11.5 17 0.063 0.73 2.3 27. 15. 999S 01-2172 F D 77139 423 8.2 18 0.062 0.51 2.3 19. 30 26 10017 01-2174 F D 77140 449 10.6 20 0.059 0.63 2.2 23. 31 10080 02-2108 N C 77070 410 9.3 21 0.055 0.51 2.0 19. 25 1023W 02-2238 F F F 77217 438 9.4 22 0.054 0.51 2.0 19. 25 1023W 02-2238 F F F 77717 440 9.9 10.6 20 0.054 0.51 2.0 19. 25 103-2610 01-2108 N C 77070 410 9.5 25 0.054 0.51 2.0 19. 25 103-2732 F L 79053 414 9.8 24 0.069 0.48 1.8 18. 24 17 1006A 01-2108 N C 77070 410 9.5 25 0.047 0.45 1.7 17. 81 1096S 03-2552 F R 77119 377 9.0 30 0.041 0.37 1.6 14. 12. 1143T 02-2732 F L 79053 418 8.9 28 0.042 0.37 1.6 14. 12. 1143T 02-2536 N C 77119 374 8.5 26 0.046 0.39 1.7 14. 21 1096S 03-2552 F R 77119 379 9.0 30 0.041 0.37 1.5 14. 12. 1143T 02-2536 N R C 77119 379 9.0 30 0.041 0.37 1.5 14. 12. 1143T 02-2536 N R C 77119 379 9.0 30 0.041 0.37 1.5 14. 12. 1143T 02-2536 N R C 77070 410 9.5 25 0.047 0.45 1.7 17. 81 1096S 03-2552 F R 77119 379 9.0 30 0.041 0.37 1.5 14. 12. 1143T 02-2536 N R C 78151 397 9.0 30 0.041 0.37 1.5 14. 12. 23 11909C 02-2536 N R R 78153 395 8.2 35 0.024 0.20 0.89 7.4 7.4 7.0 9.9 1134B 01-2652 N I 78166 399 9.5 33 0.028 0.27 1.0 10. 8.0 9990 01-2108 N R 77035 440 9.9 37 0.021 0.21 0.70 7.8 7.4 7.6 7.6 7.6 7.6 7.6 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.8 7.8															
1107A 03-2562 M 1 78166 375 12.6 10 0.10 1.2 3.7 44. 56 1028U 03-2238 F F 77217 421 8.7 11 0.10 0.87 3.7 32. 17 1097E 01-2534 M G 78150 396 8.9 12 0.10 0.87 3.7 32. 23. 980T 03-2022 F B 77035 410 9.7 13 0.096 0.93 3.6 34. 44 23 10068 01-2148 M E 77118 373 8.5 14 0.079 0.67 2.9 25. 30 21 1098C 03-2536 M G 78151 391 8.6 15 0.073 0.63 2.7 23. 34 24 996U 02-2174 F D 77140 446 7.1 16 0.075 0.63 2.7 23. 34 24 996U 02-21754 M A 77007 439 11.5 17 0.063 0.73 2.3 27. 19. 19 18 963E 02-1954 M A 77007 439 11.5 17 0.063 0.73 2.3 27. 19. 19 18 999S 01-2172 F D 77139 423 8.2 18 0.062 0.51 2.3 19. 30 22 10017 01-2174 F D 77140 409 10.6 20 0.059 0.63 2.2 23. 31 18 990C 02-2108 M C 77070 410 9.3 21 0.055 0.51 2.0 19. 23 1023W 02-2238 F F 77217 438 9.4 22 0.054 0.51 2.0 19. 18 1135B 02-2600 M K 78326 403 10.5 23 0.051 0.54 1.9 20. 19. 18 1096S 03-2532 F N 78145 395 8.6 27 0.043 0.37 1.6 14. 21 1096S 03-2532 F N 78145 395 8.6 27 0.043 0.37 1.6 14. 11 1096S 03-2532 F N 78145 395 8.6 27 0.043 0.37 1.6 14. 11 11218 02-2612 F J 7824 401 8.5 28 0.042 0.37 1.6 14. 11. 9637 0.1918 N C 77070 410 9.5 25 0.047 0.45 1.7 17. 81 1096S 03-2532 F N 78145 395 8.6 27 0.043 0.37 1.6 14. 11. 9907 0.022536 M R 78070 439 11.4 29 0.041 0.37 1.5 17. 22 11348 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19. 11. 11 11218 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19. 11. 11. 11 11218 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19. 11. 11. 11 11218 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19. 11. 11. 11 11218 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19. 11. 11. 11 11218 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19. 11. 11. 11 11219 02-2612 F J 78244 370 8.7 37 0.021 0.21 0.78 7.8 6.3 6.2 11. 11. 11. 11 11218 02-2612 F J 78244 370 8.7 37 0.021 0.21 0.78 7.8 6.3 6.2 11. 11. 11. 11 11218 02-2612 F J 78244 370 8.7 37 0.021 0.21 0.78 7.8 6.3 6.2 11. 11. 11. 11 11218 02-2612 F J 78244 370 8.7 37 0.021 0.21 0.70 7.8 7.4 5.8 6.2 11. 11. 11. 11. 11. 11. 11. 11. 11. 1															23 33
1028U 03-2238 F 77217 421 8.7 11 0.10 0.87 3.7 32. 17 14 1097E 01-2534 M G 78150 396 8.9 12 0.10 0.87 3.7 32. 32. 32. 33 34. 44 23 34 34 34 34 34 34															
1097E 01-2534 N G 78150 396 8.9 12 0.10 0.87 3.7 32. 23.							8 7								
980T 03-2082 F 8 77035 410 9.7 13 0.096 0.93 3.6 34. 44 23 10068 01-2148 N E 77118 373 8.5 14 0.079 0.67 2.9 25. 30 21 10980 03-2536 N G 78151 391 8.6 15 0.073 0.63 2.7 23. 34 24 996U 02-2174 F D 77140 446 7.1 16 0.073 0.52 2.7 19. 19 18 963E 02-1954 N A 77007 439 11.5 17 0.063 0.73 2.3 27. 15. 999S 01-2172 F D 77140 409 10.6 20 0.059 0.63 2.2 23. 31 18 990C 02-2108 N C 77070 410 9.3 21 0.055 0.51 2.3 19. 30 22 1001T 01-2174 F D 77140 409 9.3 21 0.055 0.51 2.0 19. 23 11 1308 02-2238 F F 77217 438 9.4 22 0.054 0.51 2.0 19. 18 13 13108 02-2690 N K 78326 403 10.5 23 0.051 0.54 1.9 20. 14. 1145T 03-2732 F L 79053 414 9.8 24 0.049 0.48 1.8 18. 24 17 1900A 01-2150 M E 77119 374 8.5 26 0.046 0.39 1.7 14. 21 18 1006A 01-2150 M E 77119 374 8.5 26 0.046 0.39 1.7 14. 21 18 1096S 03-2532 F N 78145 395 8.6 27 0.043 0.37 1.6 14. 11. 963F 01-1954 M A 77007 439 11.4 29 0.041 0.47 1.5 17. 22 14 1097C 02-2536 M G 78151 397 9.0 30 0.041 0.47 1.5 17. 22 14 1097C 02-2536 M G 78151 397 9.0 30 0.041 0.47 1.5 17. 22 14 1097C 02-2536 M G 78151 397 9.0 30 0.041 0.47 1.5 17. 22 14 1097C 02-2536 M G 78151 397 9.0 30 0.041 0.47 1.5 15. 11. 11218 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19 11008 02-2532 F N 78145 395 8.2 35 0.026 0.27 0.96 10. 7.6 1096U 02-2536 M G 78151 397 9.0 30 0.041 0.47 1.5 15. 11. 11218 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19 11008 02-2532 F N 78145 395 8.2 35 0.026 0.27 0.96 10. 7.6 1096U 02-2536 M G 78151 397 9.0 30 0.041 0.47 1.5 17. 22 19 11008 02-2532 F N 78145 395 8.2 35 0.026 0.27 0.96 10. 7.6 1096U 02-2536 F R 77035 404 9.9 37 0.021 0.21 0.78 7.4 5.8 5.5 6.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.20 0.78 7.4 5.8 5.5 6.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.20 0.78 7.4 5.8 5.5 6.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.20 0.70 7.4 6.0 9775 01-2082 F R 77035 404 9.9 37 0.021 0.20 0.70 7.4 6.0 9767 01-2082 F R 77035 404 9.9 37 0.021 0.20 0.70 7.4 6.0 9767 01-2082 F R 77035 401 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0													• • •	23	14
10068							9.7	13					44	LJ.	23
1098C 03-2536 M G 78151 391 8.6 15 0.073 0.63 2.7 23. 34 24 996U 02-2174 F D 77140 446 7.1 16 0.073 0.52 2.7 19. 19 963E 02-1954 M A 77007 439 11.5 17 0.063 0.73 2.3 27. 15. 9998 01-2172 F D 77139 423 8.2 18 0.062 0.51 2.3 19. 30 26 1005C 03-2150 M E 77119 377 10.3 19 0.062 0.64 2.3 2.3 24. 37 22 10017 01-2174 F D 77140 409 10.6 20 0.059 0.63 2.2 23. 31 18 990C 02-2108 M C 77070 410 9.3 21 0.055 0.51 2.0 19. 25 15 1025M 02-2238 F F 77217 438 9.4 22 0.054 0.51 2.0 19. 18 13 1130B 02-2690 M K 78326 403 10.5 23 0.051 0.54 1.9 20. 14. 1145T 03-2732 F L 79053 414 9.8 24 0.049 0.48 1.8 18. 24 14. 1145T 03-2732 F L 79053 418 8.9 28 0.042 0.37 1.6 14. 21 18 10966 03-2532 F H 78145 395 8.6 27 0.063 0.37 1.6 14. 11. 963F 01-1954 M A 77007 439 11.4 29 0.041 0.47 1.5 17. 22 14 11997C 02-2536 H G 78151 397 9.0 30 0.041 0.37 1.5 14. 11. 11218 02-2612 F J 78244 401 8.9 28 0.042 0.39 1.3 14. 12. 23 19. 11308 02-2562 M I 78166 399 9.5 33 0.028 0.27 1.0 10. 10. 8.0 9700 01-1952 M A 77007 426 10.1 36 0.025 0.27 0.96 10. 10. 7.6 1096U 02-2532 F H 78165 395 8.2 35 0.024 0.09 0.48 1.8 18. 24 1118 01-2690 M K 78326 386 10.0 31 0.040 0.40 1.5 15. 11. 11218 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19. 11008 02-2562 F H 78165 395 8.2 35 0.024 0.09 0.89 7.4 7.6 7.0 9969A 03-1954 M A 77007 426 10.1 36 0.023 0.29 0.39 1.7 4 5.8 9.9 111348 01-2690 M K 78326 386 10.0 31 0.040 0.40 1.5 15. 14. 9.9 11008 02-2582 F H 78165 395 8.2 35 0.024 0.20 0.89 7.4 7.4 7.0 9969A 03-1954 M A 77007 426 10.1 36 0.023 0.23 0.85 8.5 6.8 9821 02-2082 F B 77035 404 9.9 37 0.021 0.21 0.21 0.78 7.8 6.2 11118 01-2622 F B 77035 405 9.9 37 0.021 0.21 0.27 0.78 7.4 5.8 1125 01-2612 F J 78244 437 8.1 39 0.024 0.00 0.70 7.4 5.6 6.0 9767 01-2080 F B 77035 438 11.0 43 0.019 0.00 0.07 7.4 5.6 6.0 9767 01-2080 F B 77035 438 11.0 43 0.019 0.00 0.07 7.4 5.6 6.0 9767 01-2080 F B 77035 438 11.0 43 0.019 0.00 0.07 7.4 5.6 6.0 9767 01-2080 F B 77035 438 11.0 43 0.019 0.00 0.07 7.4 5.6 6.0 9767 01-2080 F B 77035 438 11.0 40 0.019 0.00 0.07 7.4 5.6 6.0 9767 01-2080 F B 77							8.5	14							21
996U 02-2174 F D 77140 446 7.1 16 0.073 0.52 2.7 19. 19 963E 02-1954 N A 77007 439 11.5 17 0.063 0.73 2.3 27. 15. 9998 01-2172 F D 77139 423 8.2 18 0.062 0.51 2.3 19. 30 26 1005C 03-2150 N E 77119 377 10.3 19 0.062 0.64 2.3 24. 37 22 10017 01-2174 F D 77140 409 10.6 20 0.059 0.63 2.2 23. 31 18 990C 02-2108 N C 77070 410 9.3 21 0.055 0.51 2.0 19. 23 15 1023M 02-2238 F F 77217 438 9.4 22 0.054 0.51 2.0 19. 18 13 1130B 02-2690 N K 78326 403 10.5 23 0.051 0.54 1.9 20. 19. 18 13 1130B 02-2690 N K 78326 403 10.5 23 0.051 0.54 1.9 20. 14. 1145T 03-2732 F L 79053 414 9.8 24 0.049 0.48 1.8 18. 24 14. 1145T 03-2732 F L 79053 414 9.8 24 0.049 0.48 1.8 18. 24 17 1006A 01-2150 N E 77119 374 8.5 26 0.046 0.39 1.7 14. 21 18 1096S 03-2532 F H 78145 395 8.6 27 0.043 0.37 1.6 14. 11. 1063F 01-1954 N A 77007 439 11.4 29 0.041 0.47 1.5 17. 22 14 1097C 02-2536 N G 78151 397 9.0 30 0.041 0.47 1.5 17. 22 14 1097C 02-2536 N K 78326 386 10.0 31 0.040 0.40 1.5 15. 11. 1121S 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19 1100B 02-2562 N I 78166 399 9.5 33 0.028 0.27 1.0 10. 8.0 11348 01-2690 N K 78326 386 10.0 31 0.040 0.40 1.5 15. 11. 1121S 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19 1100B 02-2562 N I 78145 395 8.2 35 0.024 0.20 0.37 7.4 10. 10. 7.6 109640 02-2532 F N 78145 395 8.2 35 0.028 0.27 1.0 10. 8.0 9700 01-1952 N A 77006 424 10.4 34 0.026 0.27 0.96 10. 7.6 109640 02-2532 F N 78145 395 8.2 35 0.028 0.27 1.0 10. 7.6 109640 02-2532 F N 78145 395 8.2 35 0.024 0.20 0.89 7.4 7.0 969A 03-1954 N A 77007 426 10.1 36 0.023 0.23 0.85 8.5 6.8 982T 02-2082 F B 77035 404 9.9 37 0.021 0.21 0.78 7.8 6.3 1125 01-2612 F J 78244 370 8.1 39 0.021 0.20 0.78 7.4 5.8 1125 01-2612 F J 78244 370 8.1 39 0.021 0.00 0.77 7.4 5.8 1125 01-2612 F J 78145 401 10.6 44 0.010 0.17 0.78 6.3 1136 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.55 5.2 3.8 11438 01-2602 F B 77035 438 11.0 43 0.014 0.15 0.55 5.2 3.8 11438 01-2602 F B 77035 418 11.0 43 0.014 0.15 0.55 5.2 3.8 11438 01-2612 F J 78245 401 10.6 44 0.010 0.11 0.37 4.1 3.0															24
999\$ 01-2172 F D 77139 423 8.2 18 0.062 0.51 2.3 19. 30 26 1005c 03-2150 N E 77179 377 10.3 19 0.062 0.64 2.3 24. 37 22 10017 01-2174 F D 77140 409 10.6 20 0.059 0.63 2.2 23. 31 18 990c 02-2108 N C 77070 410 9.3 21 0.055 0.51 2.0 19. 23 15 1023M 02-2238 F F 77217 438 9.4 22 0.054 0.51 2.0 19. 23 15 11308 02-2690 N K 78326 403 10.5 23 0.051 0.54 1.9 20. 14. 1145T 03-2732 F L 79053 414 9.8 24 0.049 0.48 1.8 18. 24 17 1900A 01-2108 N C 77070 410 9.5 25 0.047 0.45 1.7 17. 81 47 1006A 01-2150 N E 77119 374 8.5 26 0.046 0.39 1.7 14. 21 18 1096\$ 03-2532 F N 78145 395 8.6 27 0.043 0.37 1.6 14. 12. 1143T 02-2732 F L 79053 418 8.9 28 0.042 0.37 1.6 14. 11. 963F 01-1954 N A 77007 439 11.4 29 0.041 0.47 1.5 17. 22 14 1097C 02-2536 N G 78151 397 9.0 30 0.041 0.47 1.5 17. 22 14 1097C 02-2536 N G 78151 397 9.0 30 0.041 0.47 1.5 17. 22 14 1097C 02-2536 N G 78151 397 9.0 30 0.041 0.47 1.5 17. 22 14 1121S 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19 11348 01-2690 N K 78326 386 10.0 31 0.040 0.40 1.5 15. 11. 1121S 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19 11008 02-2562 N I 78166 399 9.5 33 0.028 0.27 1.0 10. 8.0 9700 01-1952 N A 77006 424 10.4 34 0.026 0.27 0.96 10. 7.6 10960 02-2532 F N 78145 395 8.2 35 0.024 0.20 0.89 7.4 7.6 10960 02-2562 N I 78166 365 9.7 38 0.021 0.20 0.89 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.21 0.78 7.8 6.3 6.0 982T 02-2082 F B 77035 404 9.9 37 0.021 0.21 0.78 7.8 6.3 6.0 977S 01-2080 F B 77035 431 10.3 40 0.019 0.20 0.70 7.4 6.0 977S 01-2080 F B 77035 433 10.3 40 0.019 0.20 0.70 7.4 6.0 977S 01-2080 F B 77035 431 10.3 40 0.019 0.20 0.70 7.4 6.0 977S 01-2080 F B 77035 431 10.3 40 0.019 0.20 0.70 7.4 6.0 977S 01-2080 F B 77035 438 11.0 43 0.014 0.15 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.55 5.6 4.0 10947 01-2532 F N 78145 401 10.6 44 0.010 0.11 0.37 4.1	996U			D	77140			16	0.073	0.52	2.7	19.	19		18
1005C 03-2150 M E 77119 377 10.3 19 0.062 0.64 2.3 24. 37 22 1001T 01-2174 F D 77140 409 10.6 20 0.059 0.63 2.2 23. 31 18 990C 02-2108 M C 77070 410 9.3 21 0.055 0.51 2.0 19. 23 15 1023W 02-2238 F F 77217 438 9.4 22 0.054 0.51 2.0 19. 23 15 13 1308 02-2690 M K 78326 403 10.5 23 0.051 0.54 1.9 20. 19. 18 13 1308 02-2690 M K 78326 403 10.5 23 0.051 0.54 1.9 20. 14. 11. 14. 11. 14. 17 1006A 01-2108 M C 77070 410 9.5 25 0.047 0.45 1.7 17. 81 47 1006A 01-2150 M E 77119 374 8.5 26 0.046 0.39 1.7 17. 81 47 1096S 03-2532 F H 78145 395 8.6 27 0.043 0.37 1.6 14. 11. 14. 14. 14. 14. 14. 14. 14. 14. 16. 16. 16. 16. 16. 16. 16. 16. 16. 17. 17. 17. 18. 19. 19. 18. 19. 1	963E	02-1954	M	A		439		17	0.063	0.73		27.		15.	
1001T 01-2174 F D 77140 409 10.6 20 0.059 0.63 2.2 23. 31 18 990C 02-2108 M C 77070 410 9.3 21 0.055 0.51 2.0 19. 23 15 1023W 02-2238 F F 77217 438 9.4 22 0.054 0.51 2.0 19. 18 13 11308 02-2690 M K 78326 403 10.5 23 0.051 0.54 1.9 20. 14. 1145T 03-2732 F L 79053 414 9.8 24 0.049 0.48 1.8 18. 24 17 1006A 01-2108 M C 77070 410 9.5 25 0.047 0.45 1.7 17. 81 47 1006A 01-2150 M E 77119 374 8.5 26 0.046 0.39 1.7 17. 81 47 1006A 01-2250 M E 77119 374 8.5 26 0.046 0.39 1.7 14. 21 18 1096S 03-2532 F H 78145 395 8.6 27 0.043 0.37 1.6 14. 12. 1143T 02-2732 F L 79053 418 8.9 28 0.042 0.37 1.6 14. 11. 963F 01-1954 M A 77007 439 11.4 29 0.041 0.47 1.5 17. 22 14 1097C 02-2536 M G 78151 397 9.0 30 0.041 0.47 1.5 17. 22 14 1097C 02-2536 M G 78151 397 9.0 30 0.041 0.47 1.5 15. 11. 1121S 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19 11108 02-2562 M I 78166 399 9.5 33 0.028 0.27 1.0 10. 8.0 9700 01-1952 M A 77006 424 10.4 34 0.026 0.27 0.96 10. 7.6 1096U 02-2532 F B 77035 404 9.9 37 0.021 0.21 0.78 7.8 6.3 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.20 0.89 7.4 7.0 969A 03-1954 M A 77007 426 10.1 36 0.023 0.23 0.85 8.5 6.8 982T 02-2082 F B 77035 404 9.9 37 0.021 0.21 0.78 7.8 6.3 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.20 0.78 7.8 6.3 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.20 0.78 7.8 6.3 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.17 0.78 6.3 6.0 977S 01-2080 F B 77035 430 7.4 41 0.018 0.13 0.67 4.8 5.4 10050 02-2150 M E 77119 377 9.6 42 0.015 0.14 0.55 5.2 5.6 4.0 1094T 01-2532 F L 79053 418 11.0 43 0.014 0.15 0.55 5.2 5.6 4.0 1094T 01-2532 F L 79053 418 11.0 43 0.014 0.15 0.55 5.2 5.6 4.0	999\$														
990C 02-2108 M C 77070 410 9.3 21 0.055 0.51 2.0 19. 23 15 1023M 02-2238 F F 77217 438 9.4 22 0.054 0.51 2.0 19. 18 13 1330 02-2690 M K 78326 403 10.5 23 0.051 0.54 1.9 20. 14. 1145T 03-2732 F L 79053 414 9.8 24 0.049 0.48 1.8 18. 24 17 990A 01-2108 M C 77070 410 9.5 25 0.047 0.45 1.7 17. 81 47 1006A 01-2150 M E 77119 374 8.5 26 0.046 0.39 1.7 14. 21 18 1096S 03-2532 F M 78145 395 8.6 27 0.043 0.37 1.6 14. 12. 1143T 02-2732 F L 79053 418 8.9 28 0.042 0.37 1.6 14. 12. 1143T 02-2732 F L 79053 418 8.9 28 0.042 0.37 1.6 14. 11. 963F 01-1954 M A 77007 439 11.4 29 0.041 0.47 1.5 17. 22 14 1097C 02-2536 M G 78151 397 9.0 30 0.041 0.37 1.5 17. 22 14 1121S 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19 11008 02-2562 M I 78166 399 9.5 33 0.028 0.27 1.0 10. 8.0 970D 01-1952 M A 77006 424 10.4 34 0.026 0.27 0.96 10. 7.6 1096U 02-2532 F M 78145 395 8.2 35 0.028 0.27 1.0 10. 8.0 970D 01-1952 M A 77007 426 10.1 36 0.023 0.23 0.85 8.5 6.8 982T 02-2082 F B 77035 404 9.9 37 0.021 0.21 0.78 7.8 6.3 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.21 0.70 7.8 6.3 6.2 1111B 01-2562 M I 78166 365 9.7 38 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.21 0.70 7.4 6.0 977S 01-2082 F B 77035 430 7.4 41 0.018 0.13 0.67 4.8 5.4 10050 02-2150 M E 77119 377 9.6 42 0.015 0.14 0.55 5.2 3.8 11050 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.55 5.2 3.8 11094T 01-2532 F L 79053 418 11.0 43 0.014 0.15 0.55 5.2 3.8 11094T 01-2532 F L 79053 418 11.0 43 0.014 0.15 0.55 5.6 4.0 1094T 01-2532 F H 78145 401 10.6 44 0.010 0.11 0.37 4.1															
1023W 02-2288 F F 77217 438 9.4 22 0.054 0.51 2.0 19. 18 13 1130B 02-2690 M K 78326 403 10.5 23 0.051 0.54 1.9 20. 14. 11451 03-2732 F L 79053 414 9.8 24 0.049 0.48 1.8 18. 24 17 1990A 01-2108 M C 77070 410 9.5 25 0.047 0.45 1.7 17. 81 47 1006A 01-2150 M E 77119 374 8.5 26 0.046 0.39 1.7 14. 21 18 1096S 03-2532 F H 78145 395 8.6 27 0.043 0.37 1.6 14. 12. 11431 02-2732 F L 79053 418 8.9 28 0.042 0.37 1.6 14. 11. 963F 01-1954 M A 77007 439 11.4 29 0.041 0.47 1.5 17. 22 14 1097C 02-2536 M G 78151 397 9.0 30 0.041 0.37 1.5 14. 9.9 11348 01-2690 M K 78326 386 10.0 31 0.040 0.40 1.5 15. 11. 1121S 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19 11008 02-2562 M I 78166 399 9.5 33 0.028 0.27 1.0 10. 8.0 9700 01-1952 M A 77006 424 10.4 34 0.026 0.27 0.96 10. 7.6 1096U 02-2532 F M 78145 395 8.2 35 0.024 0.20 0.89 7.4 7.0 969A 03-1954 M A 77007 426 10.1 36 0.023 0.23 0.85 8.5 6.8 982T 02-2082 F B 77035 404 9.9 37 0.021 0.21 0.78 7.8 6.3 982T 02-2082 F B 77035 404 9.9 37 0.021 0.21 0.78 7.8 6.3 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F B 77035 404 9.9 37 0.021 0.21 0.78 6.3 6.0 976T 01-2080 F B 77035 430 7.4 41 0.018 0.13 0.67 4.8 5.4 1005D 02-2150 M E 77119 377 9.6 42 0.015 0.14 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.52 5.6 4.0 1094T 01-2532 F H 78145 401 10.6 44 0.010 0.11 0.37 4.1								20							
11308 02-2690 N K 78326 403 10.5 23 0.051 0.54 1.9 20. 14. 1145T 03-2732 F L 79053 414 9.8 24 0.049 0.48 1.8 18. 24 17 1990A 01-2108 N C 77070 410 9.5 25 0.047 0.45 1.7 17. 81 47 1006A 01-2150 N E 77119 374 8.5 26 0.046 0.39 1.7 14. 21 18 1096S 03-2532 F H 78145 395 8.6 27 0.043 0.37 1.6 14. 12. 1143T 02-2732 F L 79053 418 8.9 28 0.042 0.37 1.6 14. 11. 963F 01-1954 N A 77007 439 11.4 29 0.041 0.47 1.5 17. 22 14 1097C 02-2536 N G 78151 397 9.0 30 0.041 0.37 1.5 14. 9.9 11348 01-2690 N K 78326 386 10.0 31 0.040 0.40 1.5 15. 11. 1121S 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19 11008 02-2562 N I 78166 399 9.5 33 0.028 0.27 1.0 10. 8.0 9700 01-1952 N A 77006 424 10.4 34 0.026 0.27 0.96 10. 7.6 1096U 02-2532 F N 78145 395 8.2 35 0.024 0.20 0.89 7.4 7.0 969A 03-1954 N A 77007 426 10.1 36 0.023 0.23 0.85 8.5 6.8 982T 02-2082 F B 77035 404 9.9 37 0.021 0.21 0.78 7.8 6.3 9705 01-2612 F J 78244 370 8.1 39 0.021 0.21 0.78 7.8 6.3 11118 01-2562 N I 78166 365 9.7 38 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.21 0.78 7.8 6.3 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.27 0.78 6.3 6.0 977S 01-2082 F B 77035 438 11.0 3 00 0.019 0.20 0.70 7.4 6.0 977S 01-2082 F B 77035 438 11.0 3 0.019 0.015 0.14 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.52 5.6 4.0 1094T 01-2532 F N 78145 401 10.6 44 0.010 0.11 0.37 4.1															
1145T 03-2732 F L 79053 414 9.8 24 0.049 0.48 1.8 18. 24 17 990A 01-2108 M C 777070 410 9.5 25 0.047 0.45 1.7 17. 81 47 1006A 01-2150 M E 77119 374 8.5 26 0.046 0.39 1.7 14. 21 18 1096S 03-2532 F H 78145 395 8.6 27 0.043 0.37 1.6 14. 12. 1143T 02-2732 F L 79053 418 8.9 28 0.042 0.37 1.6 14. 11. 963F 01-1954 M A 77007 439 11.4 29 0.041 0.47 1.5 17. 22 14 1097C 02-2536 M G 78151 397 9.0 30 0.041 0.37 1.5 14. 9.9 11348 01-2690 M K 78326 386 10.0 31 0.040 0.40 1.5 15. 11. 1121S 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19 11008 02-2562 M I 78166 399 9.5 33 0.028 0.27 1.0 10. 8.0 970D 01-1952 M A 77006 424 10.4 34 0.026 0.27 0.96 10. 7.6 1096U 02-2532 F M 78145 395 8.2 35 0.024 0.20 0.89 7.4 7.0 969A 03-1954 M A 77007 426 10.1 36 0.023 0.23 0.85 8.5 6.8 982T 02-2082 F B 77035 404 9.9 37 0.021 0.21 0.78 7.8 6.2 11118 01-2562 M I 78166 365 9.7 38 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.21 0.78 7.8 6.2 11118 01-2562 F B 77035 404 9.9 37 0.021 0.21 0.78 7.8 6.3 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.17 0.78 6.3 6.0 976T 01-2080 F B 77034 431 10.3 40 0.019 0.20 0.70 7.4 6.0 977S 01-2082 F B 77035 418 11.0 43 0.014 0.15 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.55 5.6 4.0 1094T 01-2532 F M 78145 401 10.6 44 0.010 0.11 0.37 4.1		02-2238	F					22					15	4.1	15
990A 01-2108 M C 77070 410 9.5 25 0.047 0.45 1.7 17. 81 47 1006A 01-2150 M E 77119 374 8.5 26 0.046 0.39 1.7 14. 21 18 1096S 03-2532 F H 78145 395 8.6 27 0.043 0.37 1.6 14. 12. 1143T 02-2732 F L 79053 418 8.9 28 0.042 0.37 1.6 14. 11. 963F 01-1954 M A 77007 439 11.4 29 0.041 0.47 1.5 17. 22 14. 1097C 02-2536 M G 78151 397 9.0 30 0.041 0.37 1.5 14. 9.9 11348 01-2690 M K 78326 386 10.0 31 0.040 0.40 1.5 15. 11. 1121S 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19 11008 02-2562 M I 78166 399 9.5 33 0.028 0.27 1.0 10. 8.0 970D 01-1952 M A 77006 424 10.4 34 0.026 0.27 0.96 10. 7.6 1096U 02-2532 F H 78145 395 8.2 35 0.024 0.20 0.89 7.4 7.0 969A 03-1954 M A 77007 426 10.1 36 0.023 0.23 0.85 8.5 6.8 982T 02-2082 F B 77035 404 9.9 37 0.021 0.21 0.78 7.8 6.2 1111B 01-2562 M I 78166 365 9.7 38 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.21 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.17 0.78 6.3 6.0 976T 01-2080 F B 77035 430 7.4 41 0.018 0.13 0.67 4.8 5.4 1005D 02-2150 M E 77119 377 9.6 42 0.015 0.14 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.55 5.2 3.8 11094T 01-2532 F H 78145 401 10.6 44 0.010 0.11 0.37 4.1								23					34	14.	17
1006A 01-2150 M E 77119 374 8.5 26 0.046 0.39 1.7 14. 21 18 1096S 03-2532 F H 78145 395 8.6 27 0.043 0.37 1.6 14. 12. 1143T 02-2732 F L 79053 418 8.9 28 0.042 0.37 1.6 14. 11. 963F 01-1954 M A 77007 439 11.4 29 0.041 0.47 1.5 17. 22 14 1097C 02-2536 M G 78151 397 9.0 30 0.041 0.37 1.5 14. 9.9 1134B 01-2690 M K 78326 386 10.0 31 0.040 0.40 1.5 15. 11. 1121S 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19 1100B 02-2562 M I 78166 399 9.5 33 0.028 0.27 1.0 10. 8.0 9700 01-1952 M A 77006 424 10.4 34 0.026 0.27 0.96 10. 7.6 1096U 02-2532 F M 78145 395 8.2 35 0.024 0.20 0.89 7.4 7.0 969A 03-1954 M A 77007 426 10.1 36 0.023 0.23 0.85 8.5 6.8 982T 02-2082 F B 77035 404 9.9 37 0.021 0.21 3.78 7.8 6.2 1111B 01-2562 M I 78166 365 9.7 38 0.021 0.20 0.78 7.8 6.3 1125T 01-2612 F J 78244 4370 8.1 39 0.021 0.20 0.78 7.8 6.3 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.17 0.78 6.3 6.0 976T 01-2080 F B 77035 430 7.4 41 0.018 0.13 0.67 4.8 5.4 1005D 02-2150 M E 77119 377 9.6 42 0.015 0.14 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.55 5.6 4.0 1094T 01-2532 F H 78145 401 10.6 44 0.010 0.11 0.37 4.1 3.0					77070	410									
1096S 03-2532 F H 78145 395 8.6 27 0.043 0.37 1.6 14. 12. 11. 143T 02-2732 F L 79053 418 8.9 28 0.042 0.37 1.6 14. 11. 963F 01-1954 M A 77007 439 11.4 29 0.041 0.47 1.5 17. 22 14 1097C 02-2536 M G 78151 397 9.0 30 0.041 0.37 1.5 14. 9.9 11348 01-2690 M K 78326 386 10.0 31 0.040 0.40 1.5 15. 11. 121S 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19. 11008 02-2562 M I 78166 399 9.5 33 0.028 0.27 1.0 10. 8.0 9700 01-1952 M A 77006 424 10.4 34 0.026 0.27 0.96 10. 7.6 1096U 02-2532 F H 78145 395 8.2 35 0.024 0.20 0.89 7.4 7.0 969A 03-1954 M A 77007 426 10.1 36 0.023 0.23 0.85 8.5 6.8 982T 02-2082 F B 77035 404 9.9 37 0.021 0.21 0.78 7.8 6.2 11118 01-2562 M I 78166 365 9.7 38 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 431 10.3 40 0.019 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.17 0.78 6.3 6.0 976T 01-2080 F B 77035 430 7.4 41 0.018 0.13 0.67 4.8 5.4 1005D 02-2150 M E 77119 377 9.6 42 0.015 0.14 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.52 5.6 4.0 1094T 01-2532 F H 78145 401 10.6 44 0.010 0.11 0.37 4.1							9.5	26							
1143T 02-2732 F L 79053 418 8.9 28 0.042 0.37 1.6 14. 11. 963F 01-1954 M A 77007 439 11.4 29 0.041 0.47 1.5 17. 22 14 1097C 02-2536 M G 78151 397 9.0 30 0.041 0.37 1.5 14. 9.9 11348 01-2690 M K 78326 386 10.0 31 0.040 0.40 1.5 15. 11. 1218 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19 11008 02-2562 M I 78166 399 9.5 33 0.028 0.27 1.0 10. 8.0 9700 01-1952 M A 77006 424 10.4 34 0.026 0.27 0.96 10. 7.6 1096U 02-2532 F N 78145 395 8.2 35 0.024 0.20 0.89 7.4 7.0 969A 03-1954 M A 77007 426 10.1 36 0.023 0.23 0.85 8.5 6.8 982T 02-2082 F B 77035 404 9.9 37 0.021 0.21 0.78 7.8 6.2 11118 01-2562 M I 78166 365 9.7 38 0.021 0.20 0.78 7.8 6.2 11118 01-2562 M I 78166 365 9.7 38 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.17 0.78 6.3 6.0 976T 01-2080 F B 77034 431 10.3 40 0.019 0.20 0.70 7.4 6.0 977S 01-2082 F B 77035 403 0.00 0.00 0.00 0.70 7.4 6.0 977S 01-2082 F B 77035 430 7.4 41 0.018 0.13 0.67 4.8 5.4 10050 02-2150 M E 77119 377 9.6 42 0.015 0.14 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.52 5.6 4.0 1094T 01-2532 F H 78145 401 10.6 44 0.010 0.11 0.37 4.1								27					£ 1	12.	10
963F 01-1954 M A 77007 439 11.4 29 0.041 0.47 1.5 17. 22 14 1097C 02-2536 M G 78151 397 9.0 30 0.041 0.37 1.5 14. 9.9 11348 01-2690 M K 78326 386 10.0 31 0.040 0.40 1.5 15. 11. 1121S 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19 11008 02-2562 M I 78166 399 9.5 33 0.028 0.27 1.0 10. 8.0 9700 01-1952 M A 77006 424 10.4 34 0.026 0.27 0.96 10. 7.6 1096U 02-2532 F H 78145 395 8.2 35 0.024 0.20 0.89 7.4 7.0 969A 03-1954 M A 77007 426 10.1 36 0.023 0.23 0.85 8.5 6.8 982T 02-2082 F B 77035 404 9.9 37 0.021 0.21 0.78 7.8 6.2 1111B 01-2562 M I 78166 365 9.7 38 0.021 0.20 0.78 7.8 6.2 1111B 01-2562 M I 78166 365 9.7 38 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.17 0.78 6.3 6.0 976T 01-2080 F B 77034 431 10.3 40 0.019 0.20 0.70 7.4 6.0 977S 01-2082 F B 77035 404 10.3 40 0.019 0.20 0.70 7.4 6.0 977S 01-2082 F B 77035 430 7.4 41 0.018 0.13 0.67 4.8 5.4 10050 02-2150 M E 77119 377 9.6 42 0.015 0.14 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.52 5.6 4.0 1094T 01-2532 F H 78145 401 10.6 44 0.010 0.11 0.37 4.1								28							
1097C 02-2536 M G 78151 397 9.0 30 0.041 0.37 1.5 14. 9.9 11348 01-2690 M K 78326 386 10.0 31 0.040 0.40 1.5 15. 11. 1121S 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19 11008 02-2562 M I 78166 399 9.5 33 0.028 0.27 1.0 10. 8.0 9700 01-1952 M A 77006 424 10.4 34 0.026 0.27 0.96 10. 7.6 1096U 02-2532 F M 78145 395 8.2 35 0.024 0.20 0.89 7.4 7.0 969A 03-1954 M A 77007 426 10.1 36 0.023 0.23 0.85 8.5 6.8 982T 02-2082 F B 77035 404 9.9 37 0.021 0.21 0.78 7.8 6.2 11118 01-2562 M I 78166 365 9.7 38 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.20 0.78 7.4 5.8 1125T 01-262 F B 77035 431 10.3 40 0.019 0.20 0.70 7.4 6.0 977S 01-2080 F B 77035 431 10.3 40 0.019 0.20 0.70 7.4 6.0 977S 01-2082 F B 77035 430 7.4 41 0.018 0.13 0.67 4.8 5.4 10050 02-2150 M E 77119 377 9.6 42 0.015 0.14 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.52 5.6 4.0 1094T 01-2532 F H 78145 401 10.6 44 0.010 0.11 0.37 4.1								29					22		14
11348 01-2690 N K 78326 386 10.0 31 0.040 0.40 1.5 15. 11. 11218 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19 11008 02-2562 N I 78166 399 9.5 33 0.028 0.27 1.0 10. 8.0 9700 01-1952 N A 77006 424 10.4 34 0.026 0.27 0.96 10. 7.6 1096U 02-2532 F H 78145 395 8.2 35 0.024 0.20 0.89 7.4 7.0 969A 03-1954 N A 77007 426 10.1 36 0.023 0.23 0.85 8.5 6.8 982T 02-2082 F B 77035 404 9.9 37 0.021 0.21 0.78 7.8 6.2 11118 01-2562 N I 78166 365 9.7 38 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.17 0.78 6.3 6.0 976T 01-2080 F B 77035 430 7.4 41 0.018 0.13 0.67 4.8 5.4 1005D 02-2150 M E 77119 377 9.6 42 0.015 0.14 0.55 5.2 3.8 11438 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.52 5.6 4.0 1094T 01-2532 F H 78145 401 10.6 44 0.010 0.11 0.37 4.1														9.9	
1121S 02-2612 F J 78244 401 8.5 32 0.039 0.33 1.4 12. 23 19 1100B 02-2562 M I 78166 399 9.5 33 0.028 0.27 1.0 10. 8.0 9700 01-1952 M A 77006 424 10.4 34 0.026 0.27 0.96 10. 7.6 1096U 02-2532 F H 78145 395 8.2 35 0.024 0.20 0.89 7.4 7.0 969A 03-1954 M A 77007 426 10.1 36 0.023 0.23 0.85 8.5 6.8 982T 02-2082 F B 77035 404 9.9 37 0.021 0.21 3.78 7.8 6.2 1111B 01-2562 M I 78166 365 9.7 38 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.17 0.78 6.3 6.0 976T 01-2080 F B 77034 431 10.3 40 0.019 0.20 0.70 7.4 6.0 977S 01-2082 F B 77035 430 7.4 41 0.018 0.13 0.67 4.8 5.4 1005D 02-2150 M E 77119 377 9.6 42 0.015 0.14 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.52 5.6 4.0 1094T 01-2532 F H 78145 401 10.6 44 0.010 0.11 0.37 4.1	11348	01-2690			78326	386			0.040	0.40	1.5	15.		11.	
9700 01-1952 M A 77006 424 10.4 34 0.026 0.27 0.96 10. 7.6 1096U 02-2532 F H 78145 395 8.2 35 0.024 0.20 0.89 7.4 7.0 969A 03-1954 M A 77007 426 10.1 36 0.023 0.23 0.85 8.5 6.8 982T 02-2082 F B 77035 404 9.9 37 0.021 0.21 0.78 7.8 6.2 1111B 01-2562 M I 78166 365 9.7 38 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.17 0.78 6.3 6.0 976T 01-2080 F B 77034 431 10.3 40 0.019 0.20 0.70 7.4 6.0 977S 01-2082 F B 77035 430 7.4 41 0.018 0.13 0.67 4.8 5.4 1005D 02-2150 M E 77119 377 9.6 42 0.015 0.14 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.52 5.6 4.0 1094T 01-2532 F H 78145 401 10.6 44 0.010 0.11 0.37 4.1 3.0	11215			J	78244	401	8.5		0.039	0.33	1.4	12.	23		19
1096U 02-2532 F H 78145 395 8.2 35 0.024 0.20 0.89 7.4 7.0 969A 03-1954 M A 77007 426 10.1 36 0.023 0.23 0.85 8.5 6.8 982T 02-2082 F B 77035 404 9.9 37 0.021 0.21 0.78 7.8 6.2 1111B 01-2562 M I 78166 365 9.7 38 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.17 0.78 6.3 6.0 976T 01-2080 F B 77034 431 10.3 40 0.019 0.20 0.70 7.4 6.0 977S 01-2082 F B 77035 430 7.4 41 0.018 0.13 0.67 4.8 5.4 1005D 02-2150 M E 77119 377 9.6 42 0.015 0.14 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.52 5.6 4.0 1094T 01-2532 F H 78145 401 10.6 44 0.010 0.11 0.37 4.1 3.0				1											
969A 03-1954 M A 77007 426 10.1 36 0.023 0.23 0.85 8.5 6.8 982T 02-2082 F B 77035 404 9.9 37 0.021 0.21 0.78 7.8 6.2 1111B 01-2562 M I 78166 365 9.7 38 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.17 0.78 6.3 6.0 976T 01-2080 F B 77034 431 10.3 40 0.019 0.20 0.70 7.4 6.0 977S 01-2082 F B 77035 430 7.4 41 0.018 0.13 0.67 4.8 5.4 10050 02-2150 M E 77119 377 9.6 42 0.015 0.14 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.52 5.6 4.0 1094T 01-2532 F H 78145 401 10.6 44 0.010 0.11 0.37 4.1 3.0								34							
982T 02-2082 F B 77035 404 9.9 37 0.021 0.21 0.78 7.8 6.2 11118 01-2562 M I 78166 365 9.7 38 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.17 0.78 6.3 6.0 976T 01-2080 F B 77034 431 10.3 40 0.019 0.20 0.70 7.4 6.0 977S 01-2082 F B 77035 430 7.4 41 0.018 0.13 0.67 4.8 5.4 1005D 02-2150 M E 77119 377 9.6 42 0.015 0.14 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.52 5.6 4.0 1094T 01-2532 F H 78145 401 10.6 44 0.010 0.11 0.37 4.1 3.0															
1111B 01-2562 M I 78166 365 9.7 38 0.021 0.20 0.78 7.4 5.8 1125T 01-2612 F J 78244 370 8.1 39 0.021 0.17 0.78 6.3 6.0 976T 01-2080 F B 77034 431 10.3 40 0.019 0.20 0.70 7.4 6.0 977S 01-2082 F B 77035 430 7.4 41 0.018 0.13 0.67 4.8 5.4 1005D 02-2150 M E 77119 377 9.6 42 0.015 0.14 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.52 5.6 4.0 1094T 01-2532 F H 78145 401 10.6 44 0.010 0.11 0.37 4.1 3.0								36							
1125T 01-2612 F J 78244 370 8.1 39 0.021 0.17 0.78 6.3 6.0 976T 01-2080 F B 77034 431 10.3 40 0.019 0.20 0.70 7.4 6.0 977S 01-2082 F B 77035 430 7.4 41 0.018 0.13 0.67 4.8 5.4 1005D 02-2150 M E 77119 377 9.6 42 0.015 0.14 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.52 5.6 4.0 1094T 01-2532 F H 78145 401 10.6 44 0.010 0.11 0.37 4.1 3.0				_											
976T 01-2080 F B 77034 431 10.3 40 0.019 0.20 0.70 7.4 6.0 977S 01-2082 F B 77035 430 7.4 41 0.018 0.13 0.67 4.8 5.4 1005D 02-2150 M E 77119 377 9.6 42 0.015 0.14 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.52 5.6 4.0 1094T 01-2532 F H 78145 401 10.6 44 0.010 0.11 0.37 4.1 3.0				_			9.7	36 30							
977S 01-2082 F B 77035 430 7.4 41 0.018 0.13 0.67 4.8 5.4 1005D 02-2150 M E 77119 377 9.6 42 0.015 0.14 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.52 5.6 4.0 1094T 01-2532 F H 78145 401 10.6 44 0.010 0.11 0.37 4.1 3.0							10.1								
1005D 02-2150 M E 77119 377 9.6 42 0.015 0.14 0.55 5.2 3.8 1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.52 5.6 4.0 1094T 01-2532 F H 78145 401 10.6 44 0.010 0.11 0.37 4.1 3.0												4 A			
1143S 01-2732 F L 79053 418 11.0 43 0.014 0.15 0.52 5.6 4.0 1094T 01-2532 F H 78145 401 10.6 44 0.010 0.11 0.37 4.1 3.0															
1094T 01-2532 F H 78145 401 10.6 44 0.010 0.11 0.37 4.1 3.0															
INDUS NICESU F FILEIF TEL 7.7 TJ V.NIN V.NYN V.JF J.J 6.7	10285	01-2238		Ë	77217		9.4		0.010	0.090		3.3		2.9	
988C 03-2108 M C 77070 425 9.3 46 0.010 0.090 0.37 3.3 2.8														2.8	
996T 03-2174 F D 77140 446 8.8 47 0.0080 0.070 0.30 2.6 2.4															
1096A 01-2536 M G 78151 401 10.8 48 0.0060 0.070 0.22 2.6 2.0	1096A	01-2536	M	G	78151	401	10.8	48	0.0060	0.070	0.22	2.6		2.0	

ATION DOSE (GY)

TH			DAY	'S	
1	REC.	DEATH	TO 9-30	TO	
	LUNG	DATE	1993	DEATH	COMMENT
	••••	•••••		••••	
4	L1	81120		891	E-PNEUMONITIS AND PULMONARY FIBROSIS
	29	82137		1181	E-PNEUMONITIS AND PULMONARY FIBROSIS
_	50	82224		1520	D-RAD.PNEUM.; PUL.FIB.; PULMONARY CARC.
	31	82332		1467	D-PNEUM. AND PUL. FIBROSIS; PUL. CARC.
	24	80009		1035	D-PHEUMONITIS
	29	82054		1371	E-PHEUMONITIS AND PULMONARY FIBROSIS
_	21	85073		2779	E-MENINGIONA, BRAIN; CARCINONA, LUNG
	23	82067		1280	E-PNEUMONITIS AND PULMONARY FIBROSIS
	22	82308		1525	E-PNEUM. AND PUL. FIBROSIS; PUL. CARC.
	25 14	83097 85077		1757	E-PNEUM. AND PUL. FIBROSIS; PUL. CARC.
,	14	85037 84340		2742	E-CARCINOMA AND FIBROSARCOMA, LUNG
•	23	84240 81153		2281 1579	E-FIBROSARC.,MEDIAST.;B.A. CARC.,LUNG E-PNEUN. AND PUL. FIBROS.;CARC.,LUNG
	21	82253		1961	E-FIBROSARCOMA, MUSCLE; PUL, CARCINOMA
	4	83356		2031	E-PHEUMONITIS; B.A. CARCINGMA, LUNG
	18	84030		2446	
		82357		2176	E-PNEUM, AND PUL, FIBROSIS; PUL. CARC.
2	26	85103		2886	D-BRONCHIOLOALVEOLAR CARCINOMA, LUNG
	22	83013		2085	D-PULMONARY CARCINOMA; PUL. FIBROSIS
	18	83030		2081	E-PULMONARY CARCINOMA; PUL. FIBROSIS
1	15	82251		2007	D-HEMORRHAGIC ENTERITIS
1	13	85036		2741	D-PNEUM. AND PUL. FIBROSIS; CARC., LUNG
		87132		3093	E-CARCINOMA, LUNG
1	17	86059		2563	E-CARCINOMA, LUNG
	. 7	81327		1718	E-PHEUMONITIS AND PULMONARY FIBROSIS
1	18	86202		3370	D-CARCINOMA, LUNG
		86338		3115	E-CARCINOMA, LUNG
		87082		2951	D-CARCINOMA, LUNG
1	14	86022		3302	E-CARCINOMA, LUNG
		84303		2343	E-ADENOCARCINOMA, PANCREAS
		87133		3094	E-CARCINOMA, LUNG
1	19	86074		2752	E-CARCINOMA, LUNG
		87308 87251		3429 3897	E-CARCINOMA, LUNG
		88154		3661	E-CARCINOMA, LUNG
		88152		4162	E-CARCINOMA, LUNG E-CARCINOMA, LUNG
		87151		3768	D-CARCINOMA, LUNG
		87256		3375	E-CARCINOMA, LUNG
		88053		3461	D-HEMANGIOSARCOMA, KIDNEY
		89177		4526	D-EXUDATIVE PNEUMONIA, LUNG
		89270		4618	E-PAPILLARY ADENOCARCINOMA, LUNG
		88273		4171	E-CARCINOMA, LUNG
		90005		3970	E-ADENOCARCINOMA, MAMMARY GLAND
		88082		3589	D-CARCINOMA, LUNG
		88357		4157	D-PAPILLARY ADENOCARCINOMA, LUNG
		87044		3626	E-MALIGNANT MELANOMA, MOUTH
		89032		4275	
		90256		4488	D-BRONCHIOLOALVEOLAR CARCINOMA, LUNG

A.19 ²³⁹PuO₂ Monodisperse Aerosol (0.75 μm AMAD), Longevity Study (continued)

CUMULATIVE ALPHA RADIATION DOSE (GY) INHALATION EXPOSURE TO DEATH DOG IDENTIFICATION -----ILB (MBC) ILB (R) AGE UT -----LEC REC. KG RANK UCI/KG UCI KBQ/KG KBQ LUNG TATTOO AN-EXPT SEX BLOCK DATE DAYS KRO LUNG 961A 03-1956 M 77007 448 11.0 C 980s 02-2084 F 77035 410 R 8.4 77080 997A 02-2116 M 406 10.0 C 1007C 02-2146 M 77117 371 9.5 999U 02-2168 77130 10.3 1022W 02-2240 77231 423 01-2530 F 1095T 78145 400 10.6 1098A 01-2535 M G 78150 390 9.9 1106A 01-2564 78165 382 9.8 1121T 02-2614 F 78244 405 9.6 1131D 01-2688 M 78325 392 6.8 X 1146S 01-2733 11.0 79052 408

UCI/KG REPRESENTS MICROCURIES OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
KBQ/KG REPRESENTS KILOBEQUERELS OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.
DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER INHALATION EXPOSURE.

COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED RESPECTIVELY. PROMINENT FINDINGS ARE INCLUDE CAUTION: THE RECONSTRUCTED INITIAL LUNG BURDENS, DENOTED BY (R) AND (REC) IN THIS TABLE MAY BE TOO HIGH BECAUSE OF CURRENT ANALYTICAL RADIOCHEMICAL PROBLEMS. THIS MAY LEAD TO CALCULATED ORGAN DOSES THAT ARE TOO HIGH. THIS PROBLEM IS ESTAINED TO THE LOWER EXPOSURE LEVELS.

MADIATION DOSE (GY)

DEATH		DAY	rs .	
REC. LUNG	DEATH DATE	TO 9-30 1993	TO DEATH	COMMENT
****		•••••		••••••
	90243		4977	D-HYPERADRENOCORTICISM
	86357		3609	D-MAST CELL SARCOMA
		6037		
	82184		1893	D-EPILEPSY
	85214		3006	D-PERITONITIS
	90094		4611	E-PROLAPSE, INTERVERTEBRAL DISCS
	93218		5552	D-PNEUMONIĂ, LUNG
	89156		4024	E-PROSTATITIS, RENAL FAILURE
	91317		4899	E-NEPHROPATHY, KIDNEY
	87306		3349	D-THROMBOSIS, LUNG
	90317		4375	E-BRONCHOPHEUMON I A
	92009		4705	E-POLYARTERITIS

FINDINGS ARE INCLUDED. NIGH BECAUSE OF CURRENT N. THIS PROBLEM IS ESPECIALLY

A.20 239 PuO₂ Monodisperse Aerosol (1.5 μ m AMAD), Longevity Study

													CUMULATIVE ALPHA	
DOG 105			INHA	LATION	EXPOS	URE	ILB (MBC)					718 (8)	TO 9-30-93	TO DEAT
DOG IDE	NTIFICAT		•••••		AGE	UT			1 FD (M	BL) 		ILB (R)	WBC	MBC
TATTOO	AN-EXPT	SEX	BLOCK	DATE		KG		UCI/KG		KBQ/KG	KBQ	KBQ	LUNG	LUNG
1155\$	03-2744	F	L	79067	390	7.7	01	1.0	8.0	37.	300.	270.		
11100	02-2592		H	78208	410	6.7		1.0	6.7	37.	250.	190.		
11378	02-2726		j	79047		10.2		0.91	9.3	34.	340.	470.		
11015	01-2592		Н	78208 77013		10.1		0.86 0.85	8.7 7.6	32. 31.	320. 280.	96. 330.		
964S 990U	01-1962 01-2114		B	77076		8.5		0.79	6.7	29.	250. 250.	210.		•
1117B	02-2604		ī	78215		9.9		0.78	7.7	29.	280.	270.		
972A	02-1972		Ä	77020		10.0		0.57	5.7	21.	210.	150.		
10978	04-2514		G	78117	363	9.7	09	0.57	5.5	21.	200.	190.		
1155T	02-2744		L	79067		6.7		0.51	3.4	19.	130.	170.		
996A	01-2132		C	77111		10.6		0.48	5.1	18.	190.	170.		
10158	01-2196		E	77160		8.9		0.46	4.1	17.	150. 1 8 0.	180.		
1027A 10998	03-2196 03-2602		E	77160 78214		10.9 10.5		0.45 0.44	4.9 4.6	17. 16.	170.	160. 190.		
11108	01-2604		i	78215		7.7		0.44	3.4	16.	130.	140.		
995C	03-2152		ċ	77111		9.9		0.40	4.0	15.	150.	110.		
1096C	03-2514		Ğ	78117	367	9.8		0.38	3.7	14.	140.	130.		
11410	03-2724		Ĵ	79046	429	6.7	18	0.33	2.2	12.	81.	93.		
977 8	03-1972		A	77020		11.6			3.6	11.	130.	130.		
10928	02-2514		G	78116		9.9		0.30	3.0	11.	110.	130.		
1023X	01-2210		F	77174		8.5		0.29	2.5	11.	93.	96.		
994S 1099V	02-2114 02-2590		D H	77076 78207		9.3	22 23	0.29 0.24	2.7 2.1	11. 8.9	100. 78.	81. 59.		
997C	02-2330		Ĉ	77111	416	10.3		0.23	2.4	8.5	89.	81.		
1134D	03-2684		ĸ	78321	381	10.5		0.19	2.0	7.0	74.	70.		
11415	01-2726		Ĵ	79047		10.0		0.19	1.9	7.0	70.	190.		
10958	03-2588		H	78206		10.1	27	0.19	1.9	7.0	70.			64.
1099T	02-2588		Н	78206		8.5		0.19	1.6	7.0	59.		76.	
9891	03-2114	F	D	77076		6.7			1.3	7.0	48.			45.
1148U	01-2744		ŗ	79067 77013		6.7		0.19 0.17	1.3 1.7	7.0 6.3	48. 63.			43. 44.
965\$ 964T	02-1962 03-1962		8 8	77013		10.0 7.7		0.17	1.3	6.3	65. 48.	37.		44.
1009T	01-2208		F	77173		10.8		0.16	1.7	5.9	63.	J1 .		39.
1023B	02-2196		É	77160		10.0			1.5	5.6	56.			37.
970A	01-1972		Ā	77020		10.3			1.5	5.6	56.			36.
976A	01-1970		A	77019		12.6		0.14	1.8	5.2	67.	44.		
1020T	02-2210		F	77174		9.2		0.14	1.3	5.2	48.	41.		
1160T	03-2742		L	79066		8.3			1.1	4.8	41.			29.
994T	03-2112		D	77075		8.8			1.1	4.8	41.			33. 35.
995A 1008S	03-2130 03-2210		C F	77110 77174		10.4 9.9			1.2	4.4 4.1	44. 41.			35. 31.
1120A	02-2602		ī	78214			42	0.11	1.0	4.1	37.			25.
1112W	03-2590		Ĥ	78207		8.2		0.11	0.93	4.1	34.	63.		
1130A	03-2682		ĸ	78320	_	10.5		0.10	1.1	3.7	41.	26.		
1130T	01-2696	F	J	78334	411	8.3		0.10	0.87	3.7	32.			25.
1139U	01-2724	F	J	79046		8.9		0.098	0.87	3.6	32.			24.
966T	03-1960		B	77012		10.3			1.0	3.6	37.			24.
1007A	01-2194		Ē	77159		9.4			0.67	2.6	25. 23.			18. 24.
1129A 1132C	02-2682 01-2684		K	78320 78321	398 394	8.8 11.3		0.069 0.065	0.61 0.73	2.6 2.4	23. 27.	150.		44.
1099C	01-2602		î	78214		10.5		0.060	0.63	2.2	23.	150.		14.
11537	02-2742		i	79066			52		0.47	2.1	17.			19.
11298	02-2684	M	K	78321	398	10.7	53	0.056	0.60	2.1	22.	100.		
999A	02-2130	M	С	77110		7.8	54	0.051	0.40	1.9	15.			19.

ATIVE ALPHA RADIATION DOSE (GY)

9-30-93	TO D	EATH		DAY	7 S	
WEC	WBC	REC.	DEATH	TO 9-30	10	
LUNG	LUNG	LUNG	DATE	1993	DEATH	COMMENT
		40.	79277		210	D-PNEUMON IT IS
		31.	79049		206	D-PWEUMONITIS
4		60.	79296		249	D-PWEUMONITIS
1		17.	79190		347	E-PHEUMONITIS
		63.	77349		336	D-PNEUMONITIS
1		59. 32.	78198 79071		487	D-PNEUMONITIS
		41.	78216		221 561	D-PNEUMONITIS E-PNEUMONITIS
:		28.	79030		278	E-PREUMONITIS
		66.	80224		522	E-PNEUMONITIS
		45.	78339		593	E-PNEUMONITIS
1		40.	78194		399	D-PNEUMONITIS
1		56.	79282		852	D-PNEUMON [TIS
f }		34.	79236		387	E-PNEUMONITIS
1		36.	79262		412	D-PNEUMONITIS
·		59.	80349		1333	D-PNEUM. AND PUL.FIBROSIS; CARC., LUNG
		54.	80291		904	D-PNEUMONITIS AND PULMONARY FIBROSIS
l		50.	81108		793	D-PNEUMONITIS
ļ		27. 47.	78158 80123		503	D-PNEUMONITIS
ì		35.	79096		737 652	E-PNEUNONITIS
ľ		30.	79074		728	E-PNEUMONITIS D-PNEUMONITIS
		27.	81058		947	E-PHEUMONITIS AND PULMONARY FIBROSIS
		40.	80282		1266	D-PHEUMONITIS AND PULMONARY FIBROSIS
		5.6	79108		152	E-PHEUMONITIS
		32.	80027		345	D-PNEUMONITIS
L	64.		87123		3204	D-CARCINOMA, LUNG
76.				5546		•
	45.		81299		1684	D-PNEUM.AND PUL.FIB.; PUL. CARCINOMA
	43.		83146		1540	E-PHEUMONITIS AND PULMONARY FIBROSIS
	44.	27	82168		1981	E-PHEUM.AND PUL.FIB.; PUL.CARCINGMA
	39.	27.	80295 82277		1377	E-PHEUMONITIS AND PULMONARY FIBROSIS
1	37.		82121		1930 1787	E-PUL. CARCINOMAS; PUL. FIBROSIS
	36.		82003		1809	D-PNEUM.AND PUL.FIB.; PUL.CARCINOMA
		20.	80362		1438	D-PUL.CARCINOMA; PNEUM.AND PUL.FIB. D-PNEUM. AND PUL.FIBROSIS; CARC., LUNG
		20.	80213		1134	D-PNEUMONITIS
	29.		83133		1528	E-PNEUM. AND PUL. FIBROSIS; PUL. CARC.
	33 .		82262		2013	D-PULMONARY CARCINOMA; PUL. FIBROSIS
	35.		84220		2666	E-BRONCHIOLOALVEOLAR CARCINOMA, LUNG
	31.		83252		2269	E-PUL.CARCINOMAS; PUL. FIBROSIS
l	25.		83101		1713	E-PNEUM. AND PUL. FIBROSIS; PUL. CARC.
1		36.	81197		1086	E-PNEUMONITIS AND PULMONARY FIBROSIS
	26	11.	81197		973	D-CARC., KIDNEY; PNEUM. AND PUL. FIB.
	25. 24.		83287		1779	E-PHEUMONITIS; BRONCHIOLOALVEOLAR CARC.
	24.		83350 81353		1765	E-PHEUMONITIS AND PULMONARY FIBROSIS
	18.		82274		1802 1941	D-PNEUM.AND PUL.FIB.; PUL.CARCINOMA
	24.		87085		3052	E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. E-CARCINOMA, LUNG
		43.	80296		705	D-PNEUMONITIS AND PULMONARY FIBROSIS
	14.		83123		1735	D-PNEUM. AND PUL. FIBROSIS; PUL. CARC.
1	19.		88145		3366	E-CARCINOMA, LUNG
		37.	81087		862	D-PNEUMONITIS AND PULMONARY FIBROSIS
	19.		88358		4265	E-MALIGNANT MELANOMA, ORAL
-						• • •

A.20 ²³⁹PuO₂ Monodisperse Aerosol (1.5 µm AMAD), Longevity Study (continued)

													CUMULATIVE ALPHA	RADIATION	DOSE
				LATION	EXPOS	URE						ILB (R)	10 9-30-93	TO DI	EATH
DOG IDE	NTIFICAT	104			AGE	WT	•		150 (40			100 (K)	WBC	WBC	REC
TATTOO	AN-EXPT	SEX	BLOCK	DATE			RANK	UCI/KG	UCI	KBQ/KG	KBQ	KBQ	LUNG	LUNG	LUN
1130C	01-2682		K	78320		9.0		0.048	0.43	1.8	16.			17.	
972S	02-1960 02-2208		B	77012 77173	428 394	8.2	56 57		0.38 0.43	1.7 1.7	14. 16.			13. 16.	
1022T 992T	01-2112		Ď	77075			57 58		0.30	1.6	11.			14.	
11105	01-2590		H	78207			59	0.040	0.36	1.5	13.			12.	
10250			E	77159		10.7			0.42	1.4	16.			11.	
1007B	03-2194	M	E	77159		11.3		0.035 0.02 8	0.40 0.24	1.3	15. 8.9			13. 10.	
9788 10948	02-1970 01-2514		A G	77019 78116		8.6 12.3	62	0.027		1.0 1.0	12.			6.2	
1113A	03-2600		ī	78213		9.5	64	0.026	0.25	0.96	9.3			9.8	
1017A	02-2192	M	Ē	77158	389	9.0	65	0.023	0.21	0.85	9.3 7.8			9.1	
1096D	02-2512		Ģ	78116		10.5	66		0.22	0.78	8.1			6.0	
11348	02-2694 03-1970		j	78333 77019			67 68	0.020 0.017	0.16	0.74 0.63	5.9 5.6			7.6 6.2	
970f 992D	01-2130		A	77110		10.4		0.017		0.63	6.7			4.9	
1112U			H	78206			70		0.15	0.59	5.6			6.5	
969U	02-1958	F	8	77012		9.7	71		0.15	0.55	5.6			5.5	
1146T		F	Ī	79046 77158			72 73	0.015 0.014	0.13	0.55 0.52	4.8 4.4			5.8 5.5	
1014C 1010T	01-2192 03-2208		E F	77173		8.5 10.0		0.014		0.52	5.2	4.8		3.3	2.3
11538	01-2742		i	79066			75		0.11	0.44	4.1	4.0		4.8	
1092C	01-2512		G	78116		9.7	76		0.11	0.41	4.1			4.1	
986S	02-2112		D	77075		8.1	77		0.087	0.41	3.2			3.9 3.9	
960U 1110A	01-1960 02-2600		B	77012 78213			78 79	0.010		0.37 0.35	3.4 3.0			3.9 3.6	
970s	01-1958	F	B	77012		9.6	80	0.0076		0.28	2.7			2.9	
988U	02-2110	F	D	77074	429	8.9	81	0.0070	0.062	0.26	2.3			2.8	
9948	02-2128		Ç	77109		10.0		0.0063		0.23	2.3			2.6	
1100A	01-2600 02-2508		I	78213 78115		9.6	83 84	0.0061		0.23 0.23	2.2 2.0			2.4 2.4	
1097A 1132D	02-2508		G K	78319			85		0.058	0.22	2.1		2.4	2.4	
1010W	02-2206		F	77172		10.4		0.0043		0.16	1.7		1.8		
1130s	01-2694		J	78333			87	0.0040		0.15	1.2			1.5	
9720	02-1968		A	77018			88	0.0040		0.15	1.3			1.6	
1154S 1149T	02-2740 01-2740		L	79065 79065		9.0 7.5	89 90	0.0034		0.13 0.12	1.1 0.92			1.4 1.3	
971C	01-1968		Ă	77018			91	0.0024		0.089	0.74			0.98	
11318	01-2680		K	78319		11.0	92	0.0023		0.085	0.92			0.90	
9885	01-2110		D	77074		9.5		0.0022		0.081	0.78			0.81	
997A 1095A	01-2128 01-2508		C	77109 78115		10.6 11.2		0.0018	0.019	0.067 0.048	0.70 0.55			0.70 0.51	
1022V	01-2206		F	77172			96		0.007		0.26			0.29	
960T	02-1956		В	77007		9.4		••••			*****			3327	
977A	01-1974		A	77024		11.7									
982S	03-2116	F	D	77080		10.0									
998A 1010A	01-2146 01-2198	M	C E	77117 77160		10.5 12.4	C								
10215	01-2212	F	F	77174	396	9.3									
1093B	01-2510	H	G	78115	375	7.9	C								
1107s	01-2594	F	H	78208		9.0									
1109A 1131A	01-2605 01-2681	M	I K	78215 78319		11.8 12.2									
11368	01-2695	F	Ĵ	78333		9.0									
	01-2746	F	Ĺ	79065		9.2									

UCI/KG REPRESENTS MICROCURIES OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.

KBQ/KG REPRESENTS KILOBEQUERELS OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.

DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER INHALATION EXPOSURE.

COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED RESPECTIVELY. PROMINENT FINDINGS ARE INCLUDE CAUTION: THE RECONSTRUCTED INITIAL LUNG BURDENS, DENOTED BY (R) AND (REC) IN THIS TABLE MAY BE TOO HIGH BECAUSE OF CURRENT AMALYTICAL RADIOCHEMICAL PROBLEMS. THIS MAY LEAD TO CALCULATED ORGAN DOSES THAT ARE TOO HIGH. THIS PROBLEM IS ESSIENDED TO THE CONTROL OF THE PROBLEM OF TH

M RADIATION DOSE (GY)

TO D			DAY							
WOC	REC.	DEATH	TO 9-30	TO						
LUNG	LUNG	DATE	1993	DEATH	COMMENT					
17.		86301			E-PAPILLARY ADENOCARCINOMA, LUNG					
13.		82334			D-PHEUM. AND PUL. FIBROSIS; PUL. CARC.					
16.		87056 85331			E-CARCINONA, LUNG					
14. 12.		85221 85030			E-PHEUMONITIS AND PULMONARY FIBROSIS D-PHEUM. AND PUL. FIBROSIS; PUL. CARC.					
iī.		84017		2414	E-ADENOCARCINOMA, LUNG					
13.		87285			E-CARCINONA, LUNG					
10		88021			E-CARCINONA, LUNG					
6.2		82302		1647	E-PNEUM. AND PUL. FIBROSIS; PUL. CARC.					
9.8 9.1		90059 90270		4229	E-PAPILLARY ADENOCARCINONA, LUNG E-OSTEOSARCOMA, STERNUM					
6.0		84265			E-MULTIPLE CARCINOMAS, LUNG					
7.6		91317		4732						
6.2		87312		3945	D-PNEUMONITIS, FIBROUS ADENOMA, LUNG;					
4.9		83234		2315	D-JEJUNUM, SMOOTH MUSCLE TUMOR					
6.5		92150			E-CARCINONA, LUNG					
5.5 5.8		86358 92321		5023	E-HENOLYTIC ANENIA D-CARCINONA, LUNG					
5.5		90115			E-TRANSITIONAL CELL CARCINONA, BLADDER					
	2.3	80187		1109	D-NECROTIC PHARYNGITIS					
4.8		92163			E-CARCINONA, LUNG					
4.1		89033		3935						
3.9		87206 89041			D-CARCINOMA, LUNG					
3.9 3.6		90120		4290	E-ADENOCARCINONA, OSTEOSARCOMA, LUNG E-LYMPHOSARCOMA					
2.9		89159			E-PAPILLARY ADENOCARC., MAN. GLAND					
2.8		92079		5483	E-CARCINOMA, THYROID					
2.6		92363		5732						
2.4		91306			D-NECROSIS, ADRENAL					
2.4		91010	5433	4043	E-CARCINOMA, LUNG					
			5945							
1.5		91015		4430						
1.6 1.4		91214 92333		5014	D-CARCINONA, LUNG; CARCINONA, LARYNX D-PHEOCHRONOCYTONA, ADRENAL					
1.3		92107			D-HYOPATHY, HEART					
0.96		92084			E-NEPHROPATHY, KIDNEY; ADENOMA, LUNG					
0.90		93043		5203						
0.81		88012			D-TRANSITIONAL CARCINOMA, BLADDER					
0.70		90262			E-RENAL CELL CARCINOMA, KIDNEY					
0.51 0.29		90248 91027			E-HEPATOCELLULAR CARCINOMA,LIVER D-CARCINOMA,MAMMARY GLAND					
V.27		91322		5428	E-CARCINOMA, MANMARY GLAND					
		88349		4342	E-CHRONIC INTERSTITIAL MEPHRITIS					
		89200			E-MALIGNANT MELANOMA, ORAL					
		92234			E-CARCINGNA, LUNG					
		91263			E-ASTROCYTOMA					
		91331 90173		5270 4441	E-CARCINONA, LIVER					
		92330		5235						
			5537							
		88139			E-OSTEOSARCOMA, BONE					
		92013		4793						
		93203		3636	E-CARCINOMA, MAMMARY GLAND					

DINGS ARE INCLUDED. BECAUSE OF CURRENT HIS PROBLEM IS ESPECIALLY

A.21 ²³⁹PuO₂ Monodisperse Aerosol (3.0 µm AMAD), Longevity Study

CUMULATIVE ALPHA RADIATION D

806 15-	W712161	.~	INHA	HOLTAL	EXPOS	URE				• •		110 (0)	TO DE	ATH
DOG IDE	NTIFICAT	ION			AGE	WT			ILB (WBC	.) 	•••	ILB (R)	WBC	REC
TATTOO	AN-EXPT	SEX	BLOCK	DATE				UCI/KG	UCI	KBQ/KG	KBQ	KBQ	LUNG	LUN
	*****					••••			•••••					••••
							••		4.	•				
11228	03-2620	M	K	78251	395	8.5	01	2.0	17.	74.	620.	540		38
964A	02-2104	M	C	77068	426	11.3	02	1.4	15.	52.	570.	480		28
1069A	03-2398	M	G	78018	431	11.6		1.4	16.	52.	590.	490		63
1004\$	03-2170	F	P	77133	395	8.9	04	1.3	11.	48.	420.	390 370		53
1152V	03-2738	F	L	79061	392	9.7		1.2	12.	44.	440.	330		71
9611	03-2078	F		77033	403 440	11.1	06	1.1 0.88	13. 5.9	41. 33.	470. 220.	420 110		51 48
1138T	03-2722 03-2144	F	j	79039 77117		6.7	07 08	0.77	6.5	28.	240.	240		76
9970 1001A	02-2144	M	E	77117		8.4 10.4	09	0.70	7.3	26. 26.	270.	110		31
11000	03-2554	H	i	78159	392	10.7			7.3	25.	270.	250		54
10698	02-2398	Ä	Ġ	78018		11.3	11	0.58	6.5	21.	240.	220		68
11170	02-2590		K	78251	429	9.2		0.58	5.3	21.	200.	280		79
10345	03-2234	F	F	77215	401	7.7	13	0.56	4.3	21.	160.	220		69
1099A	02-2554	M	Ī	78159		11.2	14	0.56	6.3	21.	230.	93		38
11248	01-2620	M	Ķ	78251	382	11.2	15	0.56	6.3	21.	230.	240		49
11010	03-2552	F	Ĥ	78158	388	10.5	16	0.55	5.8	20.	210.	200		64
9771	02-2078	F	Ë	77033	428	7.9	17	0.52	4.1	19.	150.	100		35
980A	01-2104	M	Č	77068	443	10.5	18	0.51	5.4	19.	200.	200		59
9770	01-2078	F	ĭ	77033	428	10.5	19	0.47	4.9	17.	180.	140		40
11498	02-2738	F	ī	79061	407	8.8		0.42	3.7	16.	140.	140	85.	40
964A	01-1950	Ä	Ă	77005	436	9.9	21	0.39	3.9	14.	140.	160	.	53
1137U	02-2722	F	Ĵ	79039	440	10.4	22	0.36	3.7	13.	140.	160		65
10008	01-2144	Ä	Ē	77117		10.9	23	0.35	3.8	13.	140.	190		86
1105T	02-2552	F	H	78158	377	10.1	24	0.35	3.5	13.	130.	100		45
1007s	01-2170	F	Ď	77133		7.5	25	0.33	2.5	12.	93.	78		36
1071A	01-2398		Ğ	78018	427	10.4	26	0.30	3.1	11.	110.		62.	-
1029S	01-2234	F	F	77215	417	10.5	27	0.28	2.9	10.	110.	93		30
989A	03-2104	M	Ċ	77068		9.9		0.28	2.8	10.	100.		62.	
980V	01-2076		B	77032	407	9.0	29	0.27	2.4	10.	89.	81		32
1105A	01-2554		I	78159	378	10.3	30	0.25	2.6	9.3	96.	100		43
1101T	01-2552	F	H	78158		8.4	31	0.25	2.1	9.3	78.	74		39
1137T	01-2722	F	J	79039	440	10.0		0.24	2.4	8.9	89.		50.	
1147U	01-2738	F	L	79061	409	9.3	33	0.24	2.2	8.9	81.		45.	
1005s	02-2170	F	D	77133	391	8.8	34	0.24	2.1	8.9	78.		59.	
1117C	03-2618	M	K	78250	428	11.0	35	0.16	1.8	5.9	67.		42.	
1070A	03-2396	M	G	78017		10.5	36	0.16	1.7	5.9	63.		37.	
102 3 U	02-2234	F	F	77215	436	7.9	37	0.14	1.1	5.2	41.		36.	
1008T	01-2166	F	D	77132	383	7.9	38	0.12	0.93	4.4	34.		38.	
963A	02-1950		A	77005	437	12.1	39	0.12	1.4	4.4	52.		27.	
1152U	03-2736	F	L	79060	391	9.4	40	0.11	1.0	4.1	37.		33.	
1139T	03-2720	F	j	79038	433	9.8	41	0.11	1.1	4.1	41.		25.	
1104A	02-2556		1	78160		11.0		0.11	1.2	4.1	44.		29.	
1005B	03-2142	M	E	77118		8.9		0.10	0.93	3.7	34.		39.	
1097D	03-2556	M	I	78160		9.9		0.10	1.0	3.7	37.		23.	
10708	02-2396		G	78017		11.5		0.096	1.1	3.6	41.		32.	
11218	02-2618		Ķ	78250		9.2	46	0.087	0.80	3.2	30.		26.	
1023V	03-2232	F	F	77214	435	8.7		0.084	0.73	3.1	27.		25.	
986A	01-2102		C	77067		10.8		0.074	0.80	2.7	30.		22.	
1106S	03-2550	F	Ħ	78157		10.2		0.072	0.73	2.7	27.		21.	
9998	02-2142	M	E	77116	400	9.2	50	0.062	0.57	2.3	21.		23.	

ALPHA RADIATION DOSE (GY)

-	
141	

IC .	REC.	DEATH	DAYS TO	
NG.	LUNG	DATE	DEATH	COMMENT
		••••		
	70			
	38	78356	105	E-PNEUMONITIS
	28	77184	116	D-PNEUMONITIS
	63	78306	288	D-PNEUMONITIS
	53	77363	230	D-PHEUMONITIS
	71	80123	427	E-PHELHONITIS
	51	77289	256	D-PNEUMONITIS
	48	80305	631	E-PHEUMONITIS AND PULMONARY FIBROSIS
	76	78306	554	
	31	79023	636	E-PNEUMONITIS
	54	79265	471	D-PNEUMONITIS
	68	80042	754	D-PNEUMONITIS
	79	80046	525	E-PHEUMONITIS
	69	78356	506	D-PNEUMONITIS
	38	81161	1096	E-PHEUMONITIS AND PULMONARY FIBROSIS
	49	79340	454	E-PNEUMONITIS
	64	80155	727	E-PNEUMONITIS
	35	78257	589	E-PHEUMONITIS
	59	79004	666	D-PNEUMONITIS
	40	78286	618	E-PNEUMONITIS
•		82320	1355	E-PNEUM. AND PUL. FIBROSIS; PUL. CARC.
	53	78342	702	E-PNEUMONITIS
	65	81313	1005	E-PNEUMONITIS AND PULMONARY FIBROSIS
	86	80130	1108	E-CARCINONA, LUNG
	45	81077	1015	E-PHEUMONITIS AND PULMONARY FIBROSIS
	36	79184	781	D-PNEUMONITIS
		81356	1434	E-PULMONARY FIBROSIS; PUL. CARCINOMA
	30	79218	733	D-PNEUMONITIS
		81132	1525	E-PHEUM. AND PUL. FIBROSIS; CARC., LUNG
	32	79178	876	D-PMFtmmt1119
	43	81118	1055 1043	E-PNEUMONITIS AND PULMONARY FIBROSIS
	39	81105	1043	E-PHEUMONITIS AND PULMONARY FIBROSIS
		82365	1422	D-PNEUM. AND PUL. FIBROSIS; PUL. CARC.
		82222	1422 1257	E-PHEUMONITIS AND PULMONARY FIBROSIS
,		82151	1844	
		83349	1925	E-ADENOCARCINOMA, LUNG
,		82204	1648	E-PHEUM.AND PUL.FIB.; PUL.CARCINONA
,		83011	1987	E-PULMONARY FIBROSIS: PUL. CARCINONA
,		85110	2900	D-PNEUM. AND PUL. FIBROSIS; CARC. LUNG
١,		81180	1636	D-PNEUM. AND PUL. FIBROSIS; CARC., LUNG
l.		86301	2796	E-CARCINONA, LUNG
l.		83138	1561	E-PHEUM. AND PUL. FIBROSIS: PUL. CARC.
·		84065	2096	E-BRONCHIOLOALVEOLAR CARCINONA
Ĺ		86328	3497	E-CARCINOMA, LUNG
[82357	1658	E-PNEUMONITIS AND PULMONARY FIBROSIS
[86280	3185	E-CARCINOMA, LUNG
l.'		85143	2450	
		84109	2451	
		84038	2527	
		84353	2387	E-B.A. COMBINED CARCINOMAS, LUNG
		88228	4129	E-CARCINOMA, LUNG
l '		90550	7167	E-MALIGNANT MIXED TUMOR, LUNG

A.21 ²³⁹PuO₂ Monodisperse Aerosol (3.0 µm AMAD), Longevity Study (continued)

CUMULATIVE ALPHA RADIATION DOSE (GY)

		•	INHALATION							••		11 B (B)	TO DE	ATH
DOE IDE	NTIFICAT	10M			AGE	VT			IFR (MR	:)		ILB (R)	WBC	REC.
TATTOO	AM-EXPT	SEX	BLOCK	DATE				UC1/KG	UCI	KBQ/KG	KBQ	KBQ	LUNG	LUNG
966A	02-1948	H	A	77004	431	11.1	51	0.058	0.64	2.1	24.		13. 17. 18. 13. 15. 12. 10. 9.2 8.6 11. 9.5 9.0 8.8 7.6 6.7 5.6 4.8 4.3	
1160V	02-2736		ï	79060		9.8		0.054	0.53	2.0	20.		17.	
11605	01-2736		Ĺ	79060		9.3		0.053	0.49	2.0	18.		18.	
980U	03-2076		Ĭ	77032		11.9		0.040	0.47	1.5	17.		13.	
11398	02-2720		J	79038		10.6		0.038	0.40	1.4	15.		15.	
9688	03-2102		Ċ	77067		12.5	56	0.038	0.47	1.4	17.		13.	
9815	02-2076			77032		10.2		0.038	0.39	1.4	14.		15.	
10728	01-2396	M	G	78017	425	11.4		0.034	0.39	1.3	14.		12.	
1101A	01-2556		i	78160	390	10.6		0.030	0.32	1.1	12.		10.	
1005U	03-2166	F	D	77132	390	9.3	60	0.029	0.27	1.1	10.		9.2	
10995	02-2550		H	78157			61	0.029	0.23	1.1	8.5		8.6	
965A	03-1950	M	A	77005	436	12.3	62	0.029	0.36	1.1	13.		11.	
1121C	01-2618	M	K	78250	401	10.4		0.026	0.27	0.96	10.		9.5	
960A	03-1948	M	A	77004	438	10.0	64	0.025	0.25	0.92	9.3		9.0	
1034T	01-2232	F	F	77214	400	6.4	65	0.023	0.15	0.85	5.6		8.8	
10961	01-2550	F	H	78157	407	9.8	66	0.019	0.19	0.70	7.0		7.6	
982A	02-2102		C	77067		10.5	67	0.018	0.19	0.67	7.0		6.7	
11385	01-2720	F	J	79038		7.6	68	0.014	0.11	0.52	4.1		5.6	
994D	01-2142		E	77116		10.9	69	0.012	0.13	0.44	4.8		4.8	
9638	01-1948		A	77004	436	11.9		0.011	0.13	0.41	4.8		4.3	
1009S	02-2166		D	77132		10.6		0.010	0.11	0.37	4.1		3.7	
1033U	02-2232	F	F	77214	403	8.5	72	0.0060	0.053	0.22	2.0		2.4	
961D	01-1956		A	77007		11.6								
975\$	01-2084		8	77035		7.4	C							
9880	01-2116		C	77080		10.0								
994C	03-2146	M	E	77117		12.7	C							
999T	01-2168	F	D	77130	414	8.4	C							
10335	01-2240		F	77231	419	9.6								
1072C	01-2400		G	78019		10.5								
1104T	01-2558		H	78157		7.0								
1100C	01-2559		I	78158		10.6								
1122C	01-2622		K	78251	395	9.7								
112 8 U	01-2547		J	78352		8.7	C							
1152T	01-2739		L	79060	391	10.0	C							
****	****	***	****	h ft										

UCI/KG REPRESENTS MICROCURIES OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.

KBG/KG REPRESENTS KILOBEQUERELS OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.

DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER INHALATION EXPOSURE.

COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED RESPECTIVELY. PROMIMENT FINDINGS ARE INCLUDED.

CAUTION: THE RECONSTRUCTED INITIAL LUNG BURDENS, DENOTED BY (R) AND (REC) IN THIS TABLE MAY BE TOO HIGH BECAUSE OF CURRENT ANALYTICAL RADIOCHEMICAL PROBLEMS. THIS MAY LEAD TO CALCULATED ORGAN DOSES THAT ARE TOO HIGH. THIS PROBLEM IS ESPECIMPORTANT FOR DOGS IN THE LOWER EXPOSURE LEVELS.

A RADIATION DOSE (GY)

PO DEATH

REC.	DEATH	DAYS TO	
LUNG	DATE	DEATH	COMMENT
••••			•••••••
	81121	1578	E-PHEUM. AND PUL. FIBROSIS; CARC., LUNG
	87093	2955	D-CARCINONA, LUNG
	88063	3290	E-CARCINONA, LUNG
	84347	2871	E-SQUANOUS CELL CARCINONA, MOUTH
	93004	5080	
	87041	3626	
	89 110	4461	E-ADENOSQUAÑOUS CARCINONA, LUNG
	87064	3354	E-CARCINOMA, LUNG
	87194	3321	
	85030	2820	
	85029	2429	D-CARCINONA, LUNG
	90046	4789	E-PAPILLARY ADENOCARCINONA, LUNG
	89194	3962	E-PAPILLARY ADENOCARCINONA, LUNG
	87118	3766	E-CARCINOMA, LUNG
	89186	4355	E-HEMANGIOSÁRCOMA, LIVER; CARC., LUNG
	92096		
	88195	4145	
	91052	4397	E-CONGESTIVE HEART FAILURE
	89143	4410	
	91118	5227	D-CONGESTIVE HEART FAILURE; CARCINOMA, LUNG
	87140	3660	
	90002	4536	D-ADENOCARCÍNONA, PANCREAS
	89097	4473	E-SQUAMOUS CELL CARCINOMA, TONSIL
	89219	4567	E-TRANSITIONAL CELL CARCINOMA, BLADDER
	92211	5609	D-ULCERATIVE INFLAMMATION, JEJUNUM
	89321	4587	E-NEPHROBLASTOMA, KIDNEY
	90353	4971	D-MELANOMA, EYE
	92344	5591	E-CARCINONA, LUNG
	83143	1950	D-CONGESTIVÉ NEART FAILURE
	93221	5543	E-CARCINOMA, MAMMARY GLAND
	93001	5322	D-CARD I ONYOPATHY, HEART
	91290	4787	E-CARCINONA, LUNG
	88181	3481	E-OSTEOARTHRITIS, BONE
	92265	4953	E-CARCINONA, LUNG

NDINGS ARE INCLUDED. BECAUSE OF CURRENT THIS PROBLEM IS ESPECIALLY

A.22 ²³⁹PuO₂ Monodisperse Aerosol (1.5 µm AMAD), Immature Longevity Study

													CUMULATIVE ALPHA	RADIATIO
BOC 18E				LATION	EXPOS	URE			118 (18	C \		TIR (R)	TO 9-30-93	TO D
DOG IDE	MTIFICAT	108			AGE	WT			100 (40			ILB (K)	WBC	WBC
TATTOO	AN-EXPT			DATE	DAYS	KG	RANK	UC1/KG	UCI	KBQ/KG	KBQ	KBQ	25. 3.5 19. 5.8 6.3 6.3 4.3 4.6 3.4	LUNG
1350A				81296		2.4	01	0.79	1.9	29.	70.	21.		
1380V			L	82266		3.9		0.74	2.9	27.	110.	130.		
	01-3408 02-3122			82266 81225		4.8 2.8	03 04	0.69 0.64	3.3	20. 24	120.	20.		
	02-3122		j			4.7		0.57	2.7	21.	100.	84.		
	01-3454	Ň	ĸ	83060			06	0.54	2.1	20.	78.	33.		
1367\$	01-3314	F	Ĥ	82091			07	0.55	1.8	20.	67.	30.		
1366C	01-3312	M	G	82090			08	0.55	1.7	20.	63.	63.		
	01-3122		C	81225	97		09	0.51	2.1	19.	78.	34.		
1340T	01-3140		F	81246	84	2.9	10	0.32	0.90	12.	33.	27	25.	
	03-339 8 01-3310			82244 82089		3.5	11 12	0.28 0.28	0.99	10.	37. 36	24.		
13519	01-3216	E		81321	95		13	0.28	0.74	10.	27.	23.		
	01-3300			82082		4.5	14	0.27	0.12	10.	4.4		3.5	
1350C	02-3204	H		81296		2.5	15	0.24	0.59	8.9	22.	14.	• • • • • • • • • • • • • • • • • • • •	
1217\$	02-2856	F		79228		3.9	16	0.22	0.86	8.1	32.	41.		
13310		F		81226			17	0.21	0.60	7.8	22.			19.
1390\$				83060		3.1	18	0.21 0.19	0.66	7.8	24.	2/		18.
13788 1337T	04-3398 01-3130			82244 81238		4.4 3.3	19 20	0.17	0.65	7.0	31. 21	24.		18.
	03-3130			81238		3.6	21	0.17	0.60	6.3	22.		19.	10.
1215A			Ā	79220	100			0.16	0.82	5.9	30.	32.	• • • • • • • • • • • • • • • • • • • •	
1366A	02-3310	Ħ		82089	88	3.9	23	0.16	0.61	5.9	23.			15.
	02-3130			81238		3.0	24	0.16	0.46	5.9	17.			17.
	02-2844			79221		2.4	25	0.16	0.39	5.9	14.			10.
	01-3304		H	82084 82351			26	0.13 0.13	0.59	4.8	22.			14.
	01-3442 02-3304			82084		3.9 3.7	27 28	0.13	0.51	4.0 4.8	18			12. 11.
	01-3390			82224	80	3.3	29	0.12	0.38	7.4	14.			9.4
	02-3390					3.4		0.10	0.35	3.7	13.			8.2
1384B	01-3418	M	K	82287	83	3.5	31	0.094	0.33	3.5	12.			8.7
1 38 4\$	02-3418	F	L		83	2.8		0.089	0.25	3.3	9.3			6.6
	02-2852			79227	79	1.9	33	0.079	0.15	2.9	5.6	16.		
1376A	01-3386	M		82223			34	0.074	0.16	2.7	5.9		5.8	
	01-3132 01-3098			81239 81174		3.6 5.3	35 36	0.072 0.069	0.20 0.30	2.1	7.0 14		0.3	9.5
	02-3386			82223	87	2.2	37	0.068	0.15	2.5	5.6		6.3	,
	02-3302			82083	100	3.3	38	0.067	0.22	2.5	8.1		- • •	7.1
1220T	01-2856	F	В	79228	91	2.5	39	0.065	0.16	2.4	5.9			5.4
1364A	01-3302	M	G	82083	98	3.9	40	0.056	0.22	2.1	8.1			6.3
	02-3126	M	E	81231	95	2.2	41	0.056	0.12	2.1	4.4		3.6	• •
12225	03-2852	F	В	79227	79	1.6	42	0.054 0.052	0.083	2.0	5.1			2.9
	01-2844 02-3442		K	82351	94	4.5	43	0.052	0.25	2.0	9.3 8 0			6.1 5.2
	03-3442		Ĺ				45	0.033	0.14	1.7	5.2		4.3	٦.٤
1384A	02-3416		K	82286	82	3.7	46	0.043	0.16	1.6	5.9		4.6	
1 382 \$	01-3416	F	Ê	82286	92	4.1	47	0.039	0.16	1.4	5.9		• • -	4.9
13381	02-3132	F	F	81239	84	2.5	48	0.007	0.072	107			2.7	
1334B	01-3126	M	Ċ	81231	95	3.1	49	0.035	0.11	1.3	4.1		2.7	
1367B	01-3320 02-3320	M	I	82097	95	4.7	50	0.030 0.026	0.14 0.070	1. î 0.96	5.2		3.5	2.2
1368T 12158	02-3320	F	A A	82097 79220	88 100	2.7 4.6	51 52	0.026	0.070	0.89	2.6 4.1	11.		٤٠٤
1331C	02-3124	Ä	ĉ	81226	98	4.0	53	0.024	0.093	0.89	3.4	12.		
13415	02-3140		F	81246	84	2.6	54	0.024	0.062	0.89	2.3		2.4	

(R)

CUMULATIVE ALPHA RADIATION DOSE (GY)

TO 9-30-93	TO D			DAY		
VEC	MBC	REC.	DEATH	TO 9-30	TO	
LUNG	LUNG	LUNG	DATE	1993	DEATH	COMMENT
•••••	*****	••••			••••	***************************************
		43	87014		1000	E-GARCINAMA LIMO
		12. 84.	88012		1909 1937	E-CARCINOMA, LUNG E-CARCINOMA, LUNG
		24.	87103		1663	D-CARCINOMA, LUNG
		0.62	81271		46	D-PARVOVIRUS INFECTION
		36.	86311		1506	E-CARCINOMA, LUNG
		18.	86316		1352	D-CARCINONA, LUNG
		16.	86210		1580	E-CARCINONA, LUNG
		36.	86051		1422	D-PHEUMONITIS; CARCINOMA, LUNG
		16.	86010		1611	D-PHEUMONITIS; CARCINOMA, LUNG
25.				4410		
		15.	86169		1386	E-PNEUMONITIS; CARCINOMA, LUNG
		15.	87210		1947	E-CARCINONA, LUNG
		15.	87055		1925	E-CARCINOMA, LUNG
3.5				4209		
		8.6	86322		1852	E-ACCIDENTAL DEATH
		22.	84102		1700	E-RAD. PNEUM.; B.A. CARCINONA, LUNG
	19.		88166		2496	E-CARCINONA, LUNG
	18.		92027		3254	E-CARCINOMA, LUNG
	40	7.0	84253		739	D-HEMORRHAGIC ENTERITIS
40	18.		92276	//40	4055	E-CARCINOMA, LUNG
19.		47	0575 /	4418	272/	C.CARCINOMA LINIC
	15.	17.	85354 89249		2326 2717	E-CARCINOMA, LUNG E-PULMONARY CARCINOMA, MULTIPLE
	17.		91235		3649	E-CARCINOMA, LUNG
	10.		87316		3017	E-CARCINOMA, LUNG
	14.		87239		1981	E-CARCINOMA, LUNG
	12.		89088		2294	E-ADENOSQUANOUS CARCINONA, LUNG
	iī.		88200		2307	E-CARCINONA, LUNG
	9.4		88251		2218	D-PNEUMONITIS/FIBROSIS; CARC., LUNG
	8.2		92007		3435	E-CARCINOMA, LUNG
	8.7		93113		3844	E-CARCINONA, LUNG
	6.6		88286		2190	E-ASTROCYTOMA, BRAIN
		10.	87078		2773	E-CARCINOMA, LÙNG
5.8				4068		
6.3				4417		
	9.5		91036		3514	E-CARCINOMA, LUNG
6.3				4068		
	7-1		92289		3858	E-CARCINOMA, LUNG
	5.4		87301		2995	E-CARCINONA, LUNG
7 (6.3		92043	1125	3612	E-CARCINOMA, LUNG
3.6	2.0		0310/	4425	/ 745	N-ACTITE DITATION STOWARD
	2.9 6.1		92194		4715 4185	D-ACUTE DILATION, STOMACH
	5.2		91023 90058		2629	D-CARCINOMA, LUNG E-ADENOCARCINOMA, LUNG
4.3	7.6		70030	3940	2027	E-MEROCAKCIROWA, LONG
4.6				4005		
7.0	4.9		92093	4005	3459	E-CARCINONA, LUNG
3.4	•••		,,,,,	4417		
2.7				4425		
3.5				4194		
	2.2		90277		3102	D-CONGESTIVE HEART FAILURE
		4.9	83317		1558	D-HEMORRHAGIC ENTERITIS
		4.2	83246		750	D-HEMOLYTIC ANEMIA
2.4				4410		

A.22 239 PuO₂ Monodisperse Aerosol (1.5 μ m AMAD), Immature Longevity Study (continued)

													CUMULATIVE ALPHA	RADIATIO	M DQ
			INHAL	LATION	EXPOS	URE							TO 9-30-93	TO 0	EATI
DOG IDE	NTIFICATI	ON		• • • • • •	 ACE				ILB (WBC	3)		ILB (R)	VBC	WBC	RE
TATTOO	AN-EXPT	SEX	BLOCK	DATE	DAYS	WT KG	RANK	UCI/KG	UCI	KBQ/KG	KBQ	KBQ	LUNG	LUNG	LU
12200	02-2842	M	A	79220	83	2.2	55	0.023	0.050	0.85	1.9			1.5	
1320\$	01-3068	F	D	81128	90	3.8	56	0.021	0.080	0.78	3.0	/=		2.5	
1320A 1320C	01-3066 02-3066	M	C C	81127 81127	89 89	4.6	57 58	0.020 0.020	0.093 0.080	0.74 0.74	3.4 3.0	43.		1.7	23
1220\$	02-2848	F	B	79226	89	3.4	59	0.018	0.059	0.67	2.2			1.9	
13628	02-3300	F	Ĥ	82082	99	3.8	60	0.017	0.063	0.63	2.3		2.0		
13818	03-3414	M	K	82288	99	5.3	61	0.015	0.078	0.55	2.9		1.9		
1381T 1373U	04-3414 03-3384	F F	L	82288 82222	99 100	4.4	62 63	0.015 0.014	0.065 0.054	0.55 0.52	2.4 2.0		1.7	1.5	
1374A	02-3384	M	I	82222	94	3.0	64	0.014	0.043	0.52	1.6		1.1	1.5	
1340A	01-3138	M	E	81245	83	3.8	65	0.013	0.049	0.48	1.8		1.2		
12217	01-2864	F	8	79234	95	1.8	66	0.013	0.023	0.48	0.85			0.88	
13731	01-3384 01-3128	F	H	82222 81232	100 83	4.2 3.4	67 68	0.012 0.00 9 4	0.051 0.032	0.44 0.35	1.9 1.2		1.5 0. 83		
1335A 13188	01-3126	M	C C	81100	96	3.5	69	0.0064	0.022	0.24	0.81		0.60		
13520	01-3222	M	Ğ	81338	97	4.0	70	0.0063	0.025	0.23	0.92		0.62		
1340s	02-3138	F	F	81245	83	2.6	71	0.0058	0.015	0.21	0.55			0.46	
1221C	03-2840 03-3126	M	A F	79219 81231	80	2.4 3.7	72 73	0.0054 0.0049	0.013 0.018	0.20 0.18	0.48 0.67	5.2	0.66		2
1334S 1377B	01-3398	F	ľ	82244	92 100	4.4	74	0.0045	0.020	0.17	0.74		0.52		
1357\$	02-3228	F	Ĥ	82008	96	3.2	75	0.0034	0.011	0.13	0.41		•	0.12	
1378S	02-3398	F	J	82244	97	4.2	76	0.0029	0.012	0.11	0.44			0.31	
1386A	01-3432	M	K	82323	94	4.3	77 7 9	0.0026	0.011	0.096 0.093	0.41		0.30 0.32		
1386S 1357B	02-3432 01-3228	F	L G	82323 82008	94 96	3.5 4.4	78 79	0.0025 0.0025	0.0088 0.011	0.093	0.33 0.41		0.32		
1342A	01-3160	M	Ē	81265	97	3.3	8 0	0.0021	0.0070	0.078	0.26		0.21		
1223S	03-2848	F	B	79226	78	2.7	81	0.0021	0.0057	0.078	0.21		0.14		
1217C	02-2840	M	Ā	79219	92	4.4	82	0.0012	0.0051 0.0057	0.044 0.035	0.19			0.14 0.11	
1214B 13351	01-2840 02-3128	M F	A D	79219 81232	100 83	6.0 2.9	83 84	0.00095	0.0037	0.033	0.21 0.10		0.079	0.11	1
13815		F	ĭ	82288	99	3.9	85	0.00082	0.0032	0.030	0.12		0.088		
1381A	01-3414	M	K	82288	99	5.7	86	0.00060	0.0034	0.022	0.13		0.077		
13398	01-3134	H	E	81243	86	3.0	87	0.00058	0.0017	0.021	0.063		0.046	0.050	
1317U 1319S	02-3052 03-3052	F	D D	81099 81009	99 94	3.6 4.1	88 89	0.00056 0.00054	0.0020 0.0022	0.021 0.020	0.074 0.081			0.058 0.063	
1355A	01-3224	H	G	81356	91	5.0	90	0.00040	0.0020	0.015	0.074		0.048	0.005	
1317A	01-3052	M	Č	81099	98	3.9	91		0.0014	0.013	0.052			0.030	
1367A			I	82092	90	4.8	92	0.00035	0.0017	0.013	0.063		0.073	0.038	
13551 1338s	02-3224 02-3134	F	H F	81356 81243	91 88	4.1 2.8	93 94	0.00032	0.0013 0.00085	0.012 0.011	0.048 0.031		0.032	0.026	
12171	01-2848	F	В	79226	99	5.0	95	0.00030	0.0005	0.011	0.056			0.051	
1368\$	02-3316	F	j	82092	83	3.0	96		0.00076	0.0093	0.028		0.024		
12168	02-2857		A	79228	108	5.2	С				,				
12231		F	В	79240	92	2.8	C								
13178	01-3055	M	C	81100 81100	99 96	3.3 4.2	C								
13421			F	81268	100	3.1	č								
1345A	01-3163	M	E	81272	83	3.5	C								1
1353A		_	G	81342	97	2.5	C								
1358S 1368B	01-3264 01-3318	F	H	82020 82097	101 88	3.5 3.7	C C								
13760	01-3388	F	j	82225	89	2.7	Č								
1380W	02-3410		Ĺ	82267	97	3.8	C								- 1
13868	01-3433	M	K	82326	97	4.1	С								

UCI/KG REPRESENTS MICROCURIES OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.

KBQ/KG REPRESENTS KILOBEQUERELS OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.

DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER INHALATION EXPOSURE.

COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED RESPECTIVELY. PROMINENT FINDINGS ARE INCLUDE CAUTION: THE RECONSTRUCTED INITIAL LUNG BURDENS, DENOTED BY (R) AND (REC) IN THIS TABLE MAY BE TOO HIGH BECAUSE OF CURREN ANALYTICAL RADIOCHEMICAL PROBLEMS. THIS MAY LEAD TO CALCULATED ORGAN DOSES THAT ARE TOO HIGH. THIS PROBLEM IS ESTIMPORTANT FOR DOGS IN THE LOWER EXPOSURE LEVELS.

DE ALPHA RADIATION DOSE (GY)

0-93	TO D	EATH		DAY	/\$	
IC IG	WOC	REC.	DEATH	TO 9-30	TO	
	LUNG	LUNG	DATE	1993	DEATH	COMMENT
	1.5		93028		4922	E-HULTIPLE MYELOMA
	2.5		93155		4410	E-CARCINONA, LUNG
	1.7	23.	86135 87209		1834 2273	E-CARCINONA, LUNG E-CARCINONA, LUNG
	1.9		92171		4693	D-CARCINOMA, LUNG; CARCINOMA, THYROID
)				4209		
2				4003		
7			00450	4003	****	
	1.5		90159	4069	2859	D-HISTIOCYTIC SARCOMA; ADENOCARCINOMA, LUNG
<u> </u>				4411		
•	0.88		92213	4411	4727	D-LYMPHOSARCOMA
3				4069		
13 13 10 12				4424		
10				4556		
K	0.46		92105	4318	3877	E-CARCINOMA, MANDIARY GLAND; CARCINOMA, LIVER
	0.40	2.1	81332		844	D-EPILEPSY
16			0.552	4425	•••	
6 2				4047		
	0.12		83131		488	E-UNDETERMINED
	0.31		93014	3968	3788	D-RHABDONYOSARCOMA, HEART
10 10				3968		
2				4283		
10 12 12 11				4391		
14				5161		
	0.14		93080		4975	D-FIBROSIS, HEART
79	0.11		92227	4424	4756	E-MALIGNANT MELANOMA, MOUTH
)68				4003		
77				4003		
46				4413		
	0.058		91017		3570	E-CARCINOMA, MASAL CAVITY; CARCINOMA, LUNG
	0.063		93120	/700	4404	D-CARCINOMA, MANMARY GLAND
48	0.030		86105	4300	1832	E-NEUROFIBROSARCOMA, PERITONEUM
	0.038		91004		3199	E-FIBROSARCOMA, LIVER
32	******		,,,,,	4300		
	0.026		92199		3973	E-CARCINOMA, TONSIL
	0.051		93267		5155	D-NECROSIS, LIVER
024			00117	4199	250	A ACUTE BUILDINGS FRENI
			80113 93022		250 4896	D-ACUTE PULMONARY EDEMA E-LYNPHOSARCONA
			73022	4556	4070	E-FILM MODULCOM
			93062	4,550	4345	E-LYMPHOSARCOMA
				4388		
				4384		
			92101		3776 3992	D-MAST CELL SARCOMA
			92360	4194	2774	D-SARCOMA, KIDNEY
				4066		
				4024		
				3965		

FINDINGS ARE INCLUDED. IGN BECAUSE OF CURRENT . THIS PROBLEM IS ESPECIALLY

K

A.23 ²³⁹PuO₂ Monodisperse Aerosol (1.5 μm AMAD), Aged Longevity Study

CUMULATIVE ALPHA RADIATION D

													74 45	
DOG IDE	MTIFICAT	I OM	INN	ALATION	EXPOS	URE			ILB (W	BC)		ILB (R)	TO DE	AIH
					AGE	WT							WBC	REC
TATTOO	AM-EXPT	SEX	BLOCK	DATE	DAYS	KG	RANK	UCI/KG	UCI	KBQ/KG	KBQ	KBQ	LUNG	LUM
								*****					••••	
412C	02-2754	Ħ	C	79101	3520	10.8	01	0.66	7.1	24.	260.		35.	
503A	01-2878	Ħ	Ε	79282	3256	12.9	02	0.53	6.9	20.	260.	280		23.
482S	02-2878	F	H	79282	3352	9.5	03	0.57	5.4	21.	200.	220		51.
606T	01-2954	F	Ļ	80176	3068	9.8	04	0.52	5.1	19.	190.	96	33.	7.
3858 637T	01-2760 02-2954	M F	A	79115 80176	3649 2942	11.7 9.8	05 06	0.39 0.40	4.6 3.9	14. 15.	170. 140.	120	33.	35.
450S	04-2812	F	L F	79144	3382	10.9	07	0.34	3.7	13.	140.	230		29.
637A	02-3344	M	í	82169	3666	11.7	08	0.32	3.8	12.	140.	340		24.
363T	01-2754	F	Ď	79101	3760	9.7	09	0.29	2.8	11.	100.	110		12.
351C	03-2752	M	C	79100	3784	10.4	10	0.26	2.7	9.6	100.	93		26.
7290	01-3348	M	K	82182	3304	8.8	11	0.24	2.1	8.9	78.	250		28.
519U	02-2928	F	J	80045	3295	11.0	12	0.23	2.5	8.5	93.	93		26.
693A	01-3344	M	G	82169	3443	10.8	13	0.23	2.5	8.5	93.	260		20.
492T	01-2880	F	H	79283	3315	9.8	14	0.22	2.3	8.1	85.	74 130		20.
389A 360U	02-2812	M	A	79144 79144	3665 3812	12.9 9.9	15 16	0.19 0.17	2.4 1.7	7.0 6.3	89. 63.	120	4.6	21.
590S	03-2812 01-2928	F	j	80045	3022	8.1	17	0.17	1.4	6.3	52.	41	4.0	18.
365 s	03-2756	6	Ď	79102	3757	10.6	18	0.16	1.7	5.9	63.	100		21.
424T	01-2812	F	F	79144	3480	11.2	19	0.15	1.7	5.6	63.	100		23.
483S	03-2880	F	Ĥ	79283	3344	11.9	20	0.14	1.7	5.2	63.		13.	
378\$	03-2758	F	В	79114	3687	12.1	21	0.13	1.6	4.8	59.	63		19.
343U	02-2756	F	D	79102	3826	11.6	22	0.13	1.5	4.8	56.		7.6	
7238	01-3342	M	G	82167	3301	9.9	23	0.12	1.2	4.4	44.	160		32.
638A	03-3342	M	Ķ	82167	3661	9.5	24	0.12	1.1	4.4	41.	200		23.
682B	02-3342	Ņ	Ī	82167	3482	11.0	25 26	0.10 0.11	1.1 0.98	3.7 4.1	41. 36.	170 56		14. 21.
480T 503B	02-2814 03-2878	F	F	79145 79282	3215 3256	8.8 12.9	20 27	0.10	1.3	3.7	30. 48.	59		16.
346S	02-2758	F	8	79114	3829	11.7	28	0.10	1.2	3.7	44.	52		16.
627S	01-2956	F	ĭ	80177	2973	8.8	29	0.10	0.87	3.7	32.	72	17.	
466A	02-2880	M	Ē	79283	3411	10.4	30	0.092	0.96	3.4	36.	36		15.
359D	02-2752	M	C	79100	3768	7.8	31	0.083	0.65	3.1	24.	28		17.
387B	03-2814	M	A	79145	3676	11.6	32	0.075	0.87	2.8	32.	56		18.
375T	01-2756	F	D	79102	3679	10.6	33	0.073	0.78	2.7	29.	37		12.
5951	01-2930	F	j	80042	3154	9.9	34	0.066	0.65	2.4	24.	32		13.
692B	03-3340	M	Ķ	82166	3443	8.2	35	0.068	0.56	2.5	21.	41		23.
785B 681D	02-3340 01-3340	M	I G	82166 82166	2986 3486	9.1 10.1	36 37	0.066 0.062	0.60 0.63	2.4 2.3	22. 23.	41 110		22. 24.
378C	01-2752	M	Č	79100	3673	10.8	38	0.047	0.51	1.7	19.	27		14.
370s	01-2758	F	B	79114	3710	8.1	39	0.048	0.39	1.8	14.		7.0	
639\$	02-2956	F	Ĺ	80177	2935	13.4	40	0.032	0.43	1.2	16.		7.6	
536S	02-2930	F	J	80046	3263	11.7	41	0.034	0.40	1.3	15.	21		8.1
719A	04-3342	M	K	82137	3321	12.5	42	0.027	0.34	1.0	13.	31		13.
4675	01-2814	F	F	79145	3265	12.3	43	0.024	0.30	0.89	11.	35		16.
484A	01-2882	M	E	79284	3345	11.5	44	0.026	0.30	0.96	11	29		14.
7198	01-3338	M	G	82162	3316	10.5	45	0.022	0.23	0.81	8.5	27		10.
346B	01-2762	M F	Ä	79116	3831 3363	12.7	46 47	0.024 0.023	0.31 0.28	0.89 0.85	11.	19	4.5	1.1
477\$ 7318	02-2882 02-3338	M	H	79284 82162	3272	12.0 6.7	48	0.023	0.28	0.48	10. 3.3		2.9	
1315	v2-3330		٠	UE 102	3616	0.7	40	0.013	0.07	U. - 6	د.د		4.7	

EVE ALPHA RADIATION DOSE (GY)

•	•	•	•	•	•	•	-	•	•	•	•	-	•	•	-	•	-	•	-
		T	0	ı	D	E	A	Ţ	H										

Minc REC. DEATH DAYS TO	LIBO	nec.		BAVC **	
35. 80033 297 D-PMELMONITIS					AGMIPUT.
35. 80033 297 D-PNEUMONITIS	LUNG			DEATH	COMENT
25. 80121 204 D-PLEURITIS (MOCARDIA SP.)	••••				***************************************
25. 80121 204 D-PLEURITIS (MOCARDIA SP.)	25		20023	207	NDHEI MONTTIC
31. 31057 506 E-PREUMONITIS AND PULMONARY FIBROSIS		27			
33. 80270 520 D-PMELMONITIS S S S S S S S S S					
35. 82126 681 E-PHELIMONITIS AND PULNOMARY FIBROSIS 29. 80059 280 E-PHELIMONITIS AND PULNOMARY FIBROSIS 21. 779309 208 D-PHELIMONITIS AND PULNOMARY FIBROSIS 226. 81100 731 D-PHELIMONITIS AND PULNOMARY FIBROSIS 228. 83007 190 E-VIMPIONARCOMA-LIVER 229. 82316 802 E-PHELIMONITIS AND PULNOMARY FIBROSIS 240. 82316 802 E-PHELIMONITIS AND PULNOMARY FIBROSIS 250. 81199 647 D-PHELIMONITIS AND PULNOMARY FIBROSIS 261. 80273 494 E-PHELIMONITIS AND PULNOMARY FIBROSIS 271. 80273 494 E-PHELIMONITIS AND PULNOMARY FIBROSIS 272. 80358 579 E-PHELIMONITIS AND PULNOMARY FIBROSIS 273. 80358 579 E-PHELIMONITIS AND PULNOMARY FIBROSIS 274. 80273 497 D-PHELIMONITIS AND PULNOMARY FIBROSIS 275. 80303 497 E-PHELIMONITIS AND PULNOMARY FIBROSIS 276. 80070 333 D-PHELIMONITIS AND PULNOMARY FIBROSIS 277. 82012 994 D-PHELIMONITIS AND PULNOMARY FIBROSIS 278. 83259 457 E-PHELIMONITIS AND PULNOMARY FIBROSIS 279. 82012 994 D-PHELIMONITIS AND PULNOMARY FIBROSIS 279. 82012 994 D-PHELIMONITIS AND PULNOMARY FIBROSIS 270. 83304 127 E-PHELIMONITIS AND PULNOMARY FIBROSIS 271. 81350 936 D-LYMPHOSARCOMA-DUCDEMUM 272. 81425 1409 E-PHELIMONITIS AND PULNOMARY FIBROSIS 273. 83163 1969 D-PHELIMONITIS AND PULNOMARY FIBROSIS 274. 83291 490 D-PHELIMONITIS AND PULNOMARY FIBROSIS 275. 83165 1466 E-PHELIMONITIS AND PULNOMARY FIBROSIS 276. 82123 1105 D-CARDIAC FAILURE 277. 82164 1479 D-ISLET CELL CARCIMONA, PANCREAS 277. 82164 1479 D-ISLET CELL CARCIMONA, PANCREAS 278. 82626 1581 E-PHELIMONITIS AND PULNOMARY FIBROSIS 279. 82123 1105 D-CARDIAC FAILURE 270. 82123 1105 D-CARDIAC FAILURE 271. 82306 1284 E-PHELIMONITIS AND PULNOMARY FIBROSIS 272. 82626 1581 E-PHELIMONITIS AND PULNOMARY FIBROSIS 273. 83164 1479 D-ISLET CELL CARCIMONA, PANCREAS 274. 83291 490 E-PHELIMONITIS AND PULNOMARY FIBROSIS 275. 82626 1581 E-PHELIMONITIS AND PULNOMARY FIBROSIS 276. 82626 1581 E-PHELIMONITIS AND PULNOMARY FIBROSIS 277. 82626 1581 E-PHELIMONITIS AND PULNOMARY FIBROSIS 278. 82626 1581 E-PHELIMONITIS AND PULNOMARY FIBROSIS 279. 82626 1581 E-PHELIMONITIS AND PULNOMARY FIBROSIS 279. 82626 1581					
35. 82126 681 E-PHELIMONITIS AND PULMONARY FIBROSIS	77	7.5			
29. 80059 280 E-PMELIMONITIS	33.				
24. 82321 152					
12. 79309 208					
26. 83100 731 D-PULNOMARY FIBROSIS 28. 83007 190 E-LYMPHOSARCOMA-LIVER 26. 82116 802 E-MELMONITIS AND PULNOMARY FIBROSIS 20. 8219 647 D-PHELMONITIS AND PULNOMARY FIBROSIS 21. 80273 494 E-PHELMONITIS 21. 80273 494 E-PHELMONITIS 22. 80254 497 D-PHELMONITIS 23. 80356 579 E-PHELMONITIS AND PULNOMARY FIBROSIS 23. 80356 579 E-PHELMONITIS AND PULNOMARY FIBROSIS 23. 80356 579 E-PHELMONITIS AND PULNOMARY FIBROSIS 24. 80070 333 D-PHELMONITIS AND PULNOMARY FIBROSIS 25. 80070 333 D-PHELMONITIS AND PULNOMARY FIBROSIS 26. 80070 333 D-PHELMONITIS AND PULNOMARY FIBROSIS 27. 80070 333 D-PHELMONITIS AND PULNOMARY FIBROSIS 28. 83259 457 E-PHELMONITIS AND PULNOMARY FIBROSIS 29. 83259 457 E-PHELMONITIS AND PULNOMARY FIBROSIS 20. 83259 457 E-PHELMONITIS AND PULNOMARY FIBROSIS 21. 81350 936 D-LYMPHOSARCOMA-DUIQUEMN 21. 81350 936 D-LYMPHOSARCOMA-DUIQUEMN 22. 81350 936 D-LYMPHOSARCOMA-DUIQUEMN 23. 83105 1466 E-PHELMONITIS AND PULNOMARY FIBROSIS 24. 83105 1466 E-PHELMONITIS AND PULNOMARY FIBROSIS 25. 83184 167 D-PHELMONITIS AND PULNOMARY FIBROSIS 26. 83261 1012 D-PHELMONITIS AND PULNOMARY FIBROSIS 27. 83105 1466 E-PHELMONITIS AND PULNOMARY FIBROSIS 28. 83184 1679 D-PHELMONITIS AND PULNOMARY FIBROSIS 29. 86286 1581 E-PHELMONITIS AND PULNOMARY FIBROSIS 20. 86286 1581 E-PHELMONITIS AND PULNOMARY FIBROSIS 21. 81249 878 E-PHELMONITIS AND PULNOMARY FIBROSIS 22. 86286 1581 E-PHELMONITIS AND PULNOMARY FIBROSIS 23. 86184 1679 D-CARDIAC FAILURE 24. 83291 1105 D-CARDIAC FAILURE 25. 86286 1581 E-PHELMONITIS AND PULNOMARY FIBROSIS 26. 86286 1581 E-PHELMONITIS AND PULNOMARY FIBROSIS 27. 86286 1581 E-PHELMONITIS AND PULNOMARY FIBROSIS 28. 86286 1581 E-PHELMONITIS AND PULNOMARY FIBROSIS 29. 86286 1581 E-PHELMONITIS AND PULNOMARY FIBROSIS 20. 86286 1581 E-PHELMONITIS AND PULNOMARY FIBROSIS 21. 86290 2841 E-CARCINOMA, TONSIL 24. 83290 1340 E-CARCINOMA, TONSIL 25. 86286 1581 E-PHELMONITIS AND PULNOMARY FIBROSIS 28. 86290 2841 E-CARCINOMA, TONSIL 29. PHELMONITIS AND PULNOMARY FIBROSIS 20. 86280 1540 E-CARCINOMA, TONSIL 20. E-PHELMONITIS AND PULNOMARY FIBRO					
28. 83007 190 E-LYMPHOSARCOMA-LIVER 26. 82116 802 E-PHEUMONITIS AND PULNOMARY FIBROSIS 20. 82116 147 E-PHEUMONITIS AND PULNOMARY FIBROSIS 20. 81199 647 D-PHEUMONITIS AND PULNOMARY FIBROSIS 21. 80273 494 E-PHEUMONITIS AND PULNOMARY FIBROSIS 21. 80234 497 D-PHEUMONITIS AND PULNOMARY FIBROSIS 21. 80234 497 D-PHEUMONITIS AND PULNOMARY FIBROSIS 21. 80358 579 E-PHEUMONITIS AND PULNOMARY FIBROSIS 23. 80358 579 E-PHEUMONITIS AND PULNOMARY FIBROSIS 24. 802012 994 D-PERTONITIS AND PULNOMARY FIBROSIS 25. 80070 333 D-PHEUMONITIS AND PULNOMARY FIBROSIS 26. 80070 333 D-PHEUMONITIS AND PULNOMARY FIBROSIS 27. 80070 333 D-PHEUMONITIS AND PULNOMARY FIBROSIS 28. 80074 212 D-PHEUMONITIS AND PULNOMARY FIBROSIS 29. 457 E-PHEUMONITIS AND PULNOMARY FIBROSIS 21. 81350 936 D-YMPHOSARCOMA-DUDGHUM 21. 81351 978 D-PHEUMONITIS AND PULNOMARY FIBROSIS 22. 80070 30070 1258 E-PHEUMONITIS AND PULNOMARY FIBROSIS 23. 80070 30070 1258 E-PHEUMONITIS AND PULNOMARY FIBROSIS 24. 80070 30070 1258 E-PHEUMONITIS AND PULNOMARY FIBROSIS 37. 80070 1258 E-PHEUMONITIS AND PULNOMARY FIBROSIS 38. 80070 1258 E-PHEUMONITIS AND PULNOMARY FIBROSIS 39. 1409 E-PHEUMONITIS AND PULNOMARY FIBROSIS 30070 1258 E-PHEUMONITIS A					
26. 82116 802 E-PHELMONITIS AND PULMOMARY FIBROSIS 20. 81199 647 D-PHELMONITIS AND PULMOMARY FIBROSIS 21. 80273 494 E-PHELMONITIS AND PULMOMARY FIBROSIS 79273 129 D-PHELMONITIS AND PULMOMARY FIBROSIS 21. 80232 1008 E-PHELMONITIS AND PULMOMARY FIBROSIS 21. 80234 497 D-PHELMONITIS AND PULMOMARY FIBROSIS 23. 80358 579 E-PHELMONITIS AND PULMOMARY FIBROSIS 23. 80358 579 E-PHELMONITIS AND PULMOMARY FIBROSIS 23. 803153 601 E-PHELMONITIS AND PULMOMARY FIBROSIS 23. 803070 333 D-PHELMONITIS AND PULMOMARY FIBROSIS 23. 803014 212 D-PHELMONITIS AND PULMOMARY FIBROSIS 23. 803014 212 D-PHELMONITIS AND PULMOMARY FIBROSIS 21. 81350 936 D-YMPHOSARCOM-DUDGHUM 21. 81350 936 D-YMPHOSARCOM-DUDGHUM 21. 81351 978 D-YMPHOSARCOM-DUDGHUM 21. 81351 978 D-PHELMONITIS AND PULMOMARY FIBROSIS 21. 81361 978 D-PHELMONITIS AND PULMOMARY FIBROSIS 22. 86286 1581 E-PHELMONITIS AND PULMOMARY FIBROSIS 23. 86184 1479 D-SISET CELL CARCIMOMA, PANCREAS 24. 83291 490 E-PHELMONITIS AND PULMOMARY FIBROSIS 23. 86184 1479 D-SISET CELL CARCIMOMA, PANCREAS 24. 83291 490 E-PHELMONITIS AND PULMOMARY FIBROSIS 23. 86184 1479 D-SISET CELL CARCIMOMA, PANCREAS 24. 83291 1905 D-ACCIDENTAL BEATH 4 E-PHELMONITIS AND PULMOMARY FIBROSIS 24. 83291 1905 D-ACCIDENTAL BEATH 4 E-PHELMONITIS AND PULMOMARY FIBROSIS 24. 83290 1340 E-PHELMONITIS AND PULL FIBROSIS; PUL. CARC. 24. 83291 1905 D-ACCIDENTAL BEATH 4 E-PHELMONITIS AND PULL FIBROSIS; PUL. CARC. 24. 83291 1905 D-ACCIDENTAL BEATH 4 E-PHELMONITIS AND PULL FIBROSIS; PUL. CARC. 24. 83290 1340 E-PHELMONITIS AND PULL FIBROSIS; PUL. CARC. 25 E-PHELMONITIS AND PULL FIBROSIS; PUL. CARC. 26 E-PHELMONITIS AND PULL FIBROSIS; PUL.					
20. 82316					
20. 81199 647 D-PHELMONITIS AMD PULMOMARY FIBROSIS		26.	82116		
4.6 79273 494 E-PHELMONITIS 18. 82322 1008 E-PHELMONITIS 18. 82322 1008 E-PHELMONITIS AND PULNOMARY FIBROSIS 21. 80234 497 0-PHELMONITIS AND PULNOMARY FIBROSIS 23. 80358 579 E-PHELMONITIS AND PULNOMARY FIBROSIS 13. 81153 601 E-PHELMONITIS AND PULNOMARY FIBROSIS 14. 82012 994 D-PERITONITIS 15. 83269 457 E-PHELMONITIS AND PULNOMARY FIBROSIS 16. 82334 167 D-PHELMONITIS AND PULNOMARY FIBROSIS 21. 81350 936 D-LYMPHOSARCOMA-DUDGEMM 21. 81350 936 D-LYMPHOSARCOMA-DUDGEMM 21. 81361 978 D-PHELMONITIS AND PULNOMARY FIBROSIS 22. 83213 927 E-PHELMONITIS AND PULNOMARY FIBROSIS 23. 83161 978 D-PHELMONITIS AND PULNOMARY FIBROSIS 24. 83125 1409 E-PHELMONITIS AND PULNOMARY FIBROSIS 25. 83268 1258 E-PHELMONITIS AND PULNOMARY FIBROSIS 26. 83261 1012 D-CARDIAC FAILURE 27. 83105 1466 E-PHELMONITIS AND PULNOMARY FIBROSIS 28. 83267 1117 E-PHELMONITIS AND PULNOMARY FIBROSIS 29. 86286 1581 E-PHELMONITIS AND PULNOMARY FIBROSIS 20. 86286 1581 E-PHELMONITIS AND PULNOMARY FIBROSIS 21. 84166 1892 E-PHELMONITIS AND PULNOMARY FIBROSIS 22. 86286 1581 E-PHELMONITIS AND PULNOMARY FIBROSIS 23. 86184 1479 D-ISLET CELL CARCINOMA, PANCREAS 24. 83291 490 E-PHELMONITIS AND PULNOMARY FIBROSIS 25. 86286 1581 E-PHELMONITIS AND PULNOMARY FIBROSIS 26. 83290 1340 E-CARCINOMA, LUNG 27.0 82123 1105 D-ACCIDENTAL DEATH 28. 87149 1808 E-PHELM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-CARCINOMA, LUNG 4.5 8096 2841 E-CARCINOMA, LUNG 4.5 8096 2857 1821 E-PHELMON THIS AND PULNOMARY FIBROSIS; PUL. CARC. 29. 85290 1340 E-CARCINOMA, LUNG 4.5 80904 253 E-PHELM. AND PUL. FIBROSIS; PUL. CARC. 29. 85290 1340 E-CARCINOMA, LUNG 4.5 80904 253 E-PHELMON THIS AND PULNOMARY FIBROSIS; PUL. CARC. 29. 85290 1340 E-CARCINOMA, LUNG 39. 80904 253 E-PHELMON THIS AND PULNOMARY FIBROSIS; PUL. CARC. 39. 80904 253 E-PHELMON THIS AND PULNOMARY FIBROSIS; PUL. CARC. 39. 80904 253 E-PHELMON THIS AND PULNOMARY FIBROSIS; PUL. CARC. 39. 80904 253 E-PHELMON THIS AND PULNOMARY FIBROSIS; PUL. CARC. 39. 80904 253 E-PHELMON THIS AND PULNOMARY FIBROSIS; PUL. CARC. 39. 80904 253 E-PHELMON THIS AND		20.	82316	147	E-PHEUMONITIS AND PULMONARY FIBROSIS
18. 82322 1008 E-PHELHONITIS AND PULMONARY FIBROSIS 21. 80234 497 D-PHELHONITIS AND PULMONARY FIBROSIS 23. 80358 579 E-PHELHONITIS AND PULMONARY FIBROSIS 31. 81153 601 E-PHELHONITIS AND PULMONARY FIBROSIS 32. 82012 994 D-PERITONITIS 32. 83259 457 E-PHELHONITIS AND PULMONARY FIBROSIS 23. 83014 212 D-PHELHONITIS AND PULMONARY FIBROSIS 24. 81354 167 D-PHELHONITIS AND PULMONARY FIBROSIS 21. 81350 936 D-LYMPHOSARCOM-DUDGENUM 16. 82113 927 E-PHELHONITIS AND PULMONARY FIBROSIS 16. 81361 978 D-PHELHONITIS AND PULMONARY FIBROSIS 17. 84125 1409 E-PHELHONITIS AND PULMONARY FIBROSIS 17. 83105 1466 E-PHELHONITIS AND PULMONARY FIBROSIS 17. 83105 1466 E-PHELHONITIS AND PULMONARY FIBROSIS 18. 82061 1012 D-CARDIAC FAILURE 12. 81249 878 E-PHELHONITIS AND PULMONARY FIBROSIS 13. 83067 1117 E-PHELHONITIS AND PULMONARY FIBROSIS 13. 83067 117 E-PHELHONITIS AND PULMONARY FIBROSIS 22. 86286 1581 E-PHELHONITIS AND PULMONARY FIBROSIS 23. 86184 1479 D-ISLET CELL CARCINONA, PAMOREAS 24. 83291 490 E-PHELHONITIS AND PULMONARY FIBROSIS 14. 86166 1892 E-PHELHONITIS AND PULMONARY FIBROSIS 15. 8223 1105 D-ACCIDENTAL DEATH 16. 84316 1997 D-ACCIDENTAL DEATH 17. 80064 253 E-PHELHON AND PUL. FIBROSIS; PUL. CARC. 16. 84316 1997 D-THRONBOSIS, LUNG 16. 84316 1997 D-THRONBOSIS, LUNG 17. 85179 1113 E-LIVER, DEGEMERATION 18. 85081 1989 E-PHELHON AND PUL. FIBROSIS; PUL. CARC. 19. 80004 253 E-PHELHON AND PUL. FIBROSIS; PUL. CARC. 19. 80004 253 E-PHELHON AND PUL. FIBROSIS; PUL. CARC. 19. 80004 253 E-PHELHON AND PUL. FIBROSIS; PUL. CARC. 19. 80004 253 E-PHELHON AND PUL. FIBROSIS; PUL. CARC. 19. 80004 253 E-PHELHON AND PUL. FIBROSIS; PUL. CARC. 19. 80004 253 E-PHELHON AND PUL. FIBROSIS; PUL. CARC. 19. 80004 253		20.	81199	647	D-PNEUMONITIS AND PULMONARY FIBROSIS
18. 82322 1008 E-PHELMONITIS AND PULMONARY FIBROSIS 21. 80234 497 0-PHELMONITIS AND PULMONARY FIBROSIS 23. 80358 579 E-PHELMONITIS AND PULMONARY FIBROSIS 19. 82012 994 D-PERITONITIS 19. 82012 994 D-PERITONITIS 19. 82012 994 D-PERITONITIS 19. 82012 994 D-PERITONITIS AND PULMONARY FIBROSIS 19. 83259 457 E-PHELMONITIS AND PULMONARY FIBROSIS 14. 82334 167 D-PHELMONITIS AND PULMONARY FIBROSIS 14. 82334 167 D-PHELMONITIS AND PULMONARY FIBROSIS 16. 81350 936 D-LYMPHOSARCOMA-DUCDEMUM 16. 82113 927 E-PHELMONITIS AND PULMONARY FIBROSIS 16. 81361 978 D-PHELMONITIS AND PULMONARY FIBROSIS 17. 83105 1466 E-PHELMONITIS AND PULMONARY FIBROSIS 17. 83105 1466 E-PHELMONITIS AND PULMONARY FIBROSIS 18. 82061 1012 D-CARDIAC FAILURE 12. 81249 878 E-PHELMONITIS AND PULMONARY FIBROSIS 13. 83067 117 E-PHELMONITIS AND PULMONARY FIBROSIS 23. 86184 1479 D-ISLET CELL CARCINOMA, PANCREAS 22. 86286 1581 E-PHELMONITIS AND PULMONARY FIBROSIS 23. 86184 1479 D-ISLET CELL CARCINOMA, PANCREAS 22. 86286 1581 E-PHELMONITIS AND PULMONARY FIBROSIS 14. 84166 1892 E-PHELMONITIS AND PULMONARY FIBROSIS 15.		21.	80273	494	E-PNEUMONITIS
21. 80234 497 0-PMEUMONITIS AIM PULMONARY FIBROSIS 81153 601 E-PMEUMONITIS AIM PULMONARY FIBROSIS 19. 82012 994 D-PERITONITIS 80070 333 D-PMEUMONITIS AIM PULMONARY FIBROSIS 32. 83259 457 E-PMEUMONITIS AIM PULMONARY FIBROSIS 23. 83014 212 D-PMEUMONITIS AIM PULMONARY FIBROSIS 21. 81350 936 D-LYMPHOSARCOMA-DUODEMUM 16. 82133 927 E-PMEUMONITIS AIM PULMONARY FIBROSIS 16. 81361 978 D-PMEUMONITIS AIM PULMONARY FIBROSIS 17. 83105 1466 E-PMEUMONITIS AIM PULMONARY FIBROSIS 17. 83105 1466 E-PMEUMONITIS AIM PULMONARY FIBROSIS 18. 82061 1012 D-CARDIAC FAILURE 12. 81249 878 E-PMEUMONITIS AIM PULMONARY FIBROSIS 13. 83067 1117 E-PMEUMONITIS AIM PULMONARY FIBROSIS 23. 86184 1479 D-CARDIAC FAILURE 24. 83291 490 E-PMEUMONITIS AIM PULMONARY FIBROSIS 25. 86286 1581 E-PMEUMONITIS AIM PULMONARY FIBROSIS 26. 83291 490 E-PMEUMONITIS AIM PULMONARY FIBROSIS 14. 84166 1892 E-PMEUMONITIS AIM PULMONARY FIBROSIS 14. 84166 1892 E-PMEUMONITIS AIM PULMONARY FIBROSIS 15. 83080 2841 E-CARCINOMA, PANCREAS 16. 83123 105 D-ACCIDENTAL DEATH 17. 80004 253 E-MALIGNAN PULL FIBROSIS; PUL. CARC. 10. 85179 1113 E-LIVER, DEGEMERATION 1.9 80004 253 E-MALIGNANT MELANOMA 4.5 84279 881 E-PMEUMONITIS AIM PULMONARY FIBROSIS 18. 87149 1808 E-PMEUM. AIM PUL. FIBROSIS; PUL. CARC. 19. 80004 253 E-MALIGNANT MELANOMA 4.5 84279 878 E-PMEUMONITIS AIM PULMONARY FIBROSIS 1.9 80004 253 E-MALIGNANT MELANOMA 4.5 84279 8821 E-PMEUMONITIS AIM PULMONARY FIBROSIS	4.6		79273	129	D-PNEUMONITIS
21. 80234		18.	82322	1008	E-PHEUMONITIS AND PULMONARY FIBROSIS
13. 80358 579 E-PNEUMONITIS AND PULMONARY FIBROSIS 19. 82012 994 D-PERITONITIS AND PULMONARY FIBROSIS 19. 80070 333 D-PNEUMONITIS AND PULMONARY FIBROSIS 23. 83259 457 E-PNEUMONITIS AND PULMONARY FIBROSIS 23. 83014 212 D-PNEUMONITIS AND PULMONARY FIBROSIS 14. 82334 167 D-PNEUMONITIS AND PULMONARY FIBROSIS 16. 81350 936 D-LYMPHOSARCONA-DUDDENUM 16. 82113 927 E-PNEUMONITIS AND PULMONARY FIBROSIS 16. 81361 978 D-PNEUMONITIS AND PULMONARY FIBROSIS 17. 84125 1409 E-PNEUMONITIS AND PULMONARY FIBROSIS 17. 83105 1466 E-PNEUMONITIS AND PULMONARY FIBROSIS 18. 82061 1012 D-CARDIAC FAILURE 12. 81249 878 E-PNEUMONITIS AND PULMONARY FIBROSIS 13. 83067 1117 E-PNEUMONITIS AND PULMONARY FIBROSIS 23. 86184 1479 D-ISLET CELL CARCINONA,PANCREAS 22. 86286 1581 E-PNEUMONITIS AND PULMONARY FIBROSIS 14. 84166 1892 E-PNEUMONITIS AND PULMONARY FIBROSIS 14. 84166 1892 E-PNEUMONITIS AND PULMONARY FIBROSIS 15. 83290 1340 E-CARCINOMA, LUNG 16. 84316 1997 D-TIROMBOSIS, LUNG 17. 80004 253 E-PNEUM, AND PUL, FIBROSIS; PUL, CARC, 10. 85179 1113 E-LIVER, DEGENERATION 1.9 80004 253 E-MALIGNAN E-PNEUMONITIS AND PULMONARY FIBROSIS 1.9 80004 253 E-PNEUMONITIS AND PULMONARY FIBROSIS 1.9 80004 2		21.			
13. 81153 601 E-PNEUMONITIS AND PULMONARY FIBROSIS 7.6 80070 333 D-PNEUMONITIS 32. 83259 457 E-PNEUMONITIS AND PULMONARY FIBROSIS 23. 83014 212 D-PNEUMONITIS AND PULMONARY FIBROSIS 14. 82334 167 D-PNEUMONITIS AND PULMONARY FIBROSIS 21. 81350 936 D-LYMPHOSACOMA-DUDDENUM 16. 82113 927 E-PNEUMONITIS AND PULMONARY FIBROSIS 16. 81361 978 D-PNEUMONITIS AND PULMONARY FIBROSIS 16. 81361 978 D-PNEUMONITIS AND PULMONARY FIBROSIS 17. 84125 1409 E-PNEUMONITIS AND PULMONARY FIBROSIS 17. 83105 1466 E-PNEUMONITIS AND PULMONARY FIBROSIS 18. 82061 1012 D-CARDIAC FAILURE 12. 81249 878 E-PNEUMONITIS AND PULMONARY FIBROSIS 13. 83067 1117 E-PNEUMONITIS AND PULMONARY FIBROSIS 23. 86184 1479 D-ISLET CELL CARCINOMA, PANCREAS 24. 83291 490 E-PNEUMONITIS AND PULMONARY FIBROSIS 14. 84166 1852 E-PNEUMONITIS AND PULMONARY FIBROSIS 15. 86286 1581 E-PNEUM AND PUL. FIBROSIS;PUL. CARC. 24. 83291 490 E-PNEUMONITIS AND PULMONARY FIBROSIS 16. 84366 1851 E-CARCINOMA, PANCREAS 27. 86286 1581 E-PNEUM AND PUL. FIBROSIS;PUL. CARC. 28. 83290 1340 E-PNEUMONITIS AND PULMONARY FIBROSIS 18. 87149 1808 E-PNEUM. AND PUL. FIBROSIS;PUL. CARC. 16. 84316 1997 D-THROMOSIS, LUNG 16. 84316 1997 D-THROMOSIS, LUNG 17. 85179 1113 E-LIVER, DEGENERATION 1.9 80004 253 E-MALIGNANT MELANOMA 253 E-MALIGNANT MELANOMA 254.5		= : :	80358		E-PHELMONITIS AND PULMONARY FIBROSIS
7.6 19. 82012 994 D-PERITONITIS 80070 333 D-PNEUMONITIS 32. 83259 457 E-PNEUMONITIS 23. 83014 212 D-PNEUMONITIS 21. 81350 936 D-LYMPHOSARCOMA-DUQDEMUM 16. 82113 927 E-PNEUMONITIS 16. 81361 978 D-PNEUMONITIS 16. 81361 978 D-PNEUMONITIS 16. 81425 1409 E-PNEUMONITIS 17. 83105 1466 E-PNEUMONITIS 17. 83105 1466 E-PNEUMONITIS 18. 82061 1012 D-CARDIAC 12. 81249 878 E-PNEUMONITIS 13. 83067 1117 E-PNEUMONITIS 13. 83067 1117 E-PNEUMONITIS 22. 86286 1581 E-PNEUMONITIS 23. 86184 1479 D-ISLET 24. 83291 490 E-PNEUMONITIS 25. 86186 1581 E-PNEUMONITIS 16. 84166 1892 E-PNEUMONITIS 17. 83193 1105 D-ACCIDENTAL 18. 82123 1105 D-ACCIDENTAL 19. 8004 253 E-PNEUMONISIS 10. 85179 1113 E-LIVER, DEGENERATION 1.9 80004 253 E-PNEUMONITIS 25. E-PNEUMONITIS 26. 84279 1821 E-PNEUMONITIS 27. 84316 1989 E-PNEUMONITIS 28. 84316 1989 E-PNEUMONITIS 29. 80004 253 E-MALIGNANT 20. 253 E-MALIGNANT 20. 253 E-MALIGNANT 20. 20. 20. 20.	13.				
7.6 80070 333 D-PNELMONITIS 32. 83259 457 E-PNELMONITIS 32. 83014 212 D-PNELMONITIS 340 214 D-PNELMONITIS 340 214 D-PNELMONITIS 340 214 D-PNELMONITIS 340 214 D-PNELMONITIS 340 244 D-PNELMONITIS 340 244 D-PNELMONITIS 340 244 D-PNELMONITIS 340 D-PNELMONITIS 340		10			
32. 83259 457 E-PHELMONITIS AND PULMONARY FIBROSIS 23. 83014 212 D-PHELMONITIS AND PULMONARY FIBROSIS 14. 82334 167 D-PHELMONITIS AND PULMONARY FIBROSIS 21. 81350 936 D-LYMPHOSARCOMA-DUODENUM 16. 82113 927 E-PHELMONITIS AND PULMONARY FIBROSIS 16. 81361 978 D-PHELMONITIS AND PULMONARY FIBROSIS 16. 83080 1258 E-PHELMONITIS AND PULMONARY FIBROSIS 17. 83105 1466 E-PHELMONITIS AND PULMONARY FIBROSIS 17. 83105 1466 E-PHELMONITIS AND PULMONARY FIBROSIS 18. 82061 1012 D-CARDIAC FAILURE 12. 81249 878 E-PHELMONITIS AND PULMONARY FIBROSIS 13. 83067 1117 E-PHELMONITIS AND PULMONARY FIBROSIS 23. 86184 1479 D-ISLET CELL CARCINONA, PANCREAS 22. 86286 1581 E-PHELMONITIS AND PULMONARY FIBROSIS 23. 86184 1479 D-ISLET CELL CARCINONA, PANCREAS 24. 83291 490 E-PHELMONITIS AND PULMONARY FIBROSIS 14. 84166 1892 E-PHELM. AND PUL. FIBROSIS; PUL. CARC. 24. 83291 490 E-PHELMO.NITIS AND PULMONARY FIBROSIS 14. 84166 1892 E-PHELM. AND PUL. FIBROSIS; PUL. CARC. 25. 83290 1340 E-CARCINONA, LUNG 26. 83290 1340 E-CARCINONA, LUNG 27.6 8096 2841 E-CARCINONA, LUNG 28.2 83290 1340 E-CARCINONA, LUNG 38.2 83290 1340 E-CARCINONA, LUNG 4. 85081 1989 E-PHELM. AND PUL. FIBROSIS; PUL. CARC. 16. 84316 1997 D-THRONBOSIS, LUNG 14. 85081 1989 E-PHELM. AND PUL. FIBROSIS; PUL. CARC. 16. 84316 1997 D-THRONBOSIS, LUNG 14. 85081 1989 E-PHELM. AND PUL. FIBROSIS; PUL. CARC. 16. 84316 1997 D-THRONBOSIS, LUNG 16. 85179 1113 E-LIVER, DEGENERATION 17.9 80004 253 E-MALIGNANT MELANOMA 25.5 E-MALIGNANT MELANOMA 25.5 E-MALIGNANT MELANOMA 25.5 E-MALIGNANT MELANOMA 25.5 E-PHELMONITIS AND PULMONARY FIBROSIS	7 4	.,,			
23. 83014 212 D-PNEUMONITIS AMD PULMONARY FIBROSIS 14. 82334 167 D-PNEUMONITIS AMD PULMONARY FIBROSIS 21. 81350 936 D-LYMPHOSARCOMA-DUODEMUM 16. 82113 927 E-PNEUMONITIS AMD PULMONARY FIBROSIS 16. 81361 978 D-PNEUMONITIS AMD PULMONARY FIBROSIS 17. 84125 1409 E-PNEUMONITIS AMD PULMONARY FIBROSIS 15. 83080 1258 E-PNEUMONITIS AMD PULMONARY FIBROSIS 17. 83105 1466 E-PNEUMONITIS AMD PULMONARY FIBROSIS 18. 82061 1012 D-CARDIAC FAILURE 12. 81249 878 E-PNEUMONITIS AMD PULMONARY FIBROSIS 13. 83067 1117 E-PNEUMONITIS AMD PULMONARY FIBROSIS 23. 86184 1479 D-ISLET CELL CARCINONA, PANCREAS 22. 86286 1581 E-PNEUMONITIS AMD PULMONARY FIBROSIS 24. 83291 490 E-PNEUMONITIS AMD PULNONARY FIBROSIS 16. 84316 1892 E-PNEUMONITIS AMD PULNONARY FIBROSIS 17. 81096 2841 E-CARCINONA, LUNG 18. 87149 1808 E-CARCINONA, TONSIL 18. 84316 1997 D-THROMBOSIS, LUNG 14. 85081 1989 E-PNEUMO, AMD PUL, FIBROSIS; PUL, CARC, 10. 85179 1113 E-LIVER, DEGENERATION 1.9 80004 253 E-MALIGNANT MELANOMA 4.5 84279 1821 E-PNEUMONITIS AMD PULMONARY FIBROSIS	1.0	32			
14. 82334 167 D-PNEUMONITIS AND PULMONARY FIBROSIS 21. 81350 936 D-LYMPHOSARCOMA-DUDDENUM 16. 82113 927 E-PNEUMONITIS AND PULMONARY FIBROSIS 16. 81361 978 D-PNEUMONITIS AND PULMONARY FIBROSIS 16. 84125 1409 E-PNEUMONITIS AND PULMONARY FIBROSIS 17. 83105 1466 E-PNEUMONITIS AND PULMONARY FIBROSIS 17. 83105 1466 E-PNEUMONITIS AND PULMONARY FIBROSIS 18. 82061 1012 D-CARDIAC FAILURE 12. 81249 878 E-PNEUMONITIS AND PULMONARY FIBROSIS 13. 83067 1117 E-PNEUMONITIS AND PULMONARY FIBROSIS 22. 86184 1479 D-ISLET CELL CARCINOMA, PANCREAS 22. 86286 1581 E-PNEUMONITIS AND PULMONARY FIBROSIS 14. 84166 1892 E-PNEUMONITIS AND PULMONARY FIBROSIS 14. 84166 1892 E-PNEUMONITIS AND PULMONARY FIBROSIS 15. 82123 1105 D-ACCIDENTAL DEATH 16. 84366 1891 E-CARCINOMA, LUNG 17.6 88096 2841 E-CARCINOMA, TONSIL 18. 87149 1808 E-PNEUM, AND PUL, FIBROSIS; PUL, CARC, 16. 84316 1997 D-THROMBOSIS, LUNG 14. 85081 1989 E-PNEUM, AND PUL, FIBROSIS; PUL, CARC, 16. 84316 1997 D-THROMBOSIS, LUNG 14. 85081 1989 E-PNEUM, AND PUL, FIBROSIS; PUL, CARC, 16. 84316 1997 D-THROMBOSIS, LUNG 14. 85081 1989 E-PNEUM, AND PUL, FIBROSIS; PUL, CARC, 10. 85179 1113 E-LIVER, DEGENERATION 1.9 80004 253 E-MALIGNANT MELANOMA 4.5					
21. 81350 936 D-LYMPHOSARCOMA-DUODENUM 16. 82113 927 E-PHEUMONITIS AND PULMONARY FIBROSIS 16. 81361 978 D-PHEUMONITIS AND PULMONARY FIBROSIS 17. 83105 1466 E-PHEUMONITIS AND PULMONARY FIBROSIS 17. 83105 1466 E-PHEUMONITIS AND PULMONARY FIBROSIS 18. 82061 1012 D-CARDIAC FAILURE 12. 81249 878 E-PHEUMONITIS AND PULMONARY FIBROSIS 13. 83067 1117 E-PHEUMONITIS AND PULMONARY FIBROSIS 23. 86184 1479 D-ISLET CELL CARCINOMA, PANCREAS 22. 86286 1581 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 24. 83291 490 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 24. 83291 490 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 24. 83291 490 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 26. 83290 1340 E-CARCINOMA, LUNG 8.2 83290 1340 E-CARCINOMA, LUNG 8.2 83290 1340 E-CARCINOMA, LUNG 8.2 83290 1340 E-CARCINOMA, LUNG E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 10. 85179 1113 E-LIVER, DEGENERATIOM E-CARCINOMA, LUNG E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 10. 85179 1113 E-LIVER, DEGENERATIOM E-PNEUMONITIS AND PULMONARY FIBROSIS E-PNEUMONITIS					
16. 82113 927 E-PHEUMONITIS AND PULMONARY FIBROSIS 16. 81361 978 D-PHEUMONITIS AND PULMONARY FIBROSIS 17. 83080 1258 E-PHEUMONITIS AND PULMONARY FIBROSIS 17. 83105 1466 E-PHEUMONITIS AND PULMONARY FIBROSIS 18. 82061 1012 D-CARDIAC FAILURE 12. 81249 878 E-PHEUMONITIS AND PULMONARY FIBROSIS 13. 83067 1117 E-PHEUMONITIS AND PULMONARY FIBROSIS 23. 86184 1479 D-ISLET CELL CARCINOMA, PANCREAS 22. 86286 1581 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 24. 83291 490 E-PHEUMONITIS AND PULMONARY FIBROSIS 14. 84166 1892 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 24. 83291 490 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 25. 83290 1340 E-CARCINOMA, LUNG 28. 83290 1340 E-CARCINOMA, LUNG 29. 83290 1340 E-CARCINOMA, TONSIL 29. 83290 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-CARCINOMA, TONSIL 29. 83290 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1240 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1240 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1240 E-PHEUM. 29. 80004 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 E-PHEUM. 29. 80004 E-PHEUM. 29. 80004 E-PHEUM. 29. 80004 E-PHEUMO					
16. 81361 978 D-PHEUMONITIS AND PULMONARY FIBROSIS 17. 83080 1258 E-PHEUMONITIS AND PULMONARY FIBROSIS 17. 83105 1466 E-PHEUMONITIS AND PULMONARY FIBROSIS 18. 82061 1012 D-CARDIAC FAILURE 12. 81249 878 E-PHEUMONITIS AND PULMONARY FIBROSIS 13. 83067 1117 E-PHEUMONITIS AND PULMONARY FIBROSIS 13. 83067 1117 E-PHEUMONITIS AND PULMONARY FIBROSIS 25. 86184 1479 D-ISLET CELL CARCINOMA, PANCREAS 22. 86286 1581 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 24. 83291 490 E-PHEUMONITIS AND PULMONARY FIBROSIS 14. 84166 1892 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 25. 88096 2841 E-CARCINOMA, LUNG 28.2 83290 1340 E-CARCINOMA, LUNG 29. 88096 2841 E-CARCINOMA, LUNG 29. 83290 1340 E-CARCINOMA, LUNG 29. 83290 E-PHEUM, AND PUL, FIBROSIS; PUL. CARC. 29. 83290 E-PHEU					
17. 84125 1409 E-PHEUMONITIS AND PULMONARY FIBROSIS 15. 83080 1258 E-PHEUMONITIS AND PULMONARY FIBROSIS 17. 83105 1466 E-PHEUMONITIS AND PULMONARY FIBROSIS 18. 82061 1012 D-CARDIAC FAILURE 12. 81249 878 E-PHEUMONITIS AND PULMONARY FIBROSIS 13. 83067 1117 E-PHEUMONITIS AND PULMONARY FIBROSIS 23. 86184 1479 D-ISLET CELL CARCINOMA, PANCREAS 22. 86286 1581 E-PHEUMONITIS AND PULMONARY FIBROSIS 24. 83291 490 E-PHEUMONITIS AND PULMONARY FIBROSIS 14. 84166 1892 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 24. 83291 1105 D-ACCIDENTAL DEATH 27.6 88096 2841 E-CARCINOMA, LUNG 28.2 83290 1340 E-CARCINOMA, LUNG 29. 82123 1105 D-ACCIDENTAL DEATH 29. 83290 1340 E-CARCINOMA, LUNG 29. 82123 1205 D-THRONBOSIS; PUL. CARC. 29. 83290 1340 E-CARCINOMA, LUNG 29. 82123 1205 D-THRONBOSIS; PUL. CARC. 29. 83290 1340 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 84279 1821 E-PHEUMONITIS AND PULMONARY FIBROSIS					
15. 83080 1258 E-PHEUMONITIS AND PULMONARY FIBROSIS 17. 83105 1466 E-PHEUMONITIS AND PULMONARY FIBROSIS 18. 82061 1012 D-CARDIAC FAILURE 12. 81249 878 E-PHEUMONITIS AND PULMONARY FIBROSIS 13. 83067 1117 E-PHEUMONITIS AND PULMONARY FIBROSIS 23. 86184 1479 D-ISLET CELL CARCINONA, PANCREAS 22. 86286 1581 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 24. 83291 490 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 24. 83291 490 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 24. 83291 105 D-ACCIDENTAL DEATH 27.6 88096 2841 E-CARCINONA, LUNG 8.2 83290 1340 E-CARCINONA, TONSIL 13. 87149 1808 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 16. 84316 1997 D-THRONBOSIS, LUNG 14. 85081 1989 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 10. 85179 1113 E-LIVER, DEGENERATION 1.9 80004 253 E-MALIGNANT MELANONA 4.5 84279 1821 E-PHEUMONITIS AND PULMONARY FIBROSIS		16.			
17. 83105 1466 E-PHELMONITIS AND PULMONARY FIBROSIS 18. 82061 1012 D-CARDIAC FAILURE 12. 81249 878 E-PHELMONITIS AND PULMONARY FIBROSIS 13. 83067 1117 E-PHELMONITIS AND PULMONARY FIBROSIS 23. 86184 1479 D-ISLET CELL CARCINOMA, PANCREAS 22. 86286 1581 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 24. 83291 490 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 24. 83291 490 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 24. 84166 1892 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 25. 83290 1340 E-CARCINOMA, LUNG 28. 83290 1340 E-CARCINOMA, TONSIL 29. 83290 1340 E-CARCINOMA, TONSIL 29. 83290 1340 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-CARCINOMA, TONSIL 29. 83290 1340 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 E-PHEUM. ELICATOR ELI	17.	40			
18. 82061 1012 D-CARDIAC FAILURE 12. 81249 878 E-PNEUMONITIS AMD PULMOMARY FIBROSIS 13. 83067 1117 E-PNEUMONITIS AMD PULMOMARY FIBROSIS 25. 86184 1479 D-ISLET CELL CARCINOMA, PANCREAS 22. 86286 1581 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 24. 83291 490 E-PNEUMONITIS AND PULMONARY FIBROSIS 14. 84166 1892 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 7.0 82123 1105 D-ACCIDENTAL DEATH 7.6 88096 2841 E-CARCINOMA, LUNG 8.2 83290 1340 E-CARCINOMA, TONSIL 13. 87149 1808 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 16. 84316 1997 D-THROMBOSIS, LUNG 14. 85081 1989 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 10. 85179 1113 E-LIVER, DEGENERATION 1.9 80004 253 E-MALIGNANT MELANOMA 4.5 84279 1821 E-PNEUMONITIS AND PULMONARY FIBROSIS					
12. 81249 878 E-PHEUMONITIS AND PULMONARY FIBROSIS 13. 83067 1117 E-PHEUMONITIS AND PULMONARY FIBROSIS 23. 86184 1479 D-ISLET CELL CARCINOMA, PANCREAS 22. 86286 1581 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 24. 83291 490 E-PHEUMONITIS AND PULMONARY FIBROSIS 14. 84166 1892 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 7.0 82123 1105 D-ACCIDENTAL DEATH 7.6 88096 2841 E-CARCINOMA, LUNG 8.2 83290 1340 E-CARCINOMA, TONSIL 13. 87149 1808 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 16. 84316 1997 D-THRONBOSIS, LUNG 14. 85081 1989 E-PHEUM. AND PUL. FIBROSIS; PUL. CARC. 10. 85179 1113 E-LIVER, DEGENERATION 1.9 80004 253 E-MALIGNANT MELANOMA 4.5 84279 1821 E-PHEUMONITIS AND PULMONARY FIBROSIS					
13. 83067 1117 E-PNEUMONITIS AND PULMONARY FIBROSIS 23. 86184 1479 D-ISLET CELL CARCINOMA, PANCREAS 22. 86286 1581 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 24. 83291 490 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 24. 84166 1892 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 25. 82123 1105 D-ACCIDENTAL DEATH 26. 88096 2841 E-CARCINOMA, LUNG 27.6 88096 2841 E-CARCINOMA, TONSIL 28. 83290 1340 E-CARCINOMA, TONSIL 29. 83290 1340 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 1340 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 E-PNEUM. E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 29. 83290 E-PNEUM. E-PN	ŀ				
23. 86184 1479 D-ISLET CELL CARCINOMA, PANCREAS 22. 86286 1581 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 24. 83291 490 E-PNEUMONITIS AND PULNOMARY FIBROSIS 14. 84166 1892 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 7.0 82123 1105 D-ACCIDENTAL DEATH 7.6 88096 2841 E-CARCINOMA, LUNG 8.2 83290 1340 E-CARCINOMA, TONSIL 13. 87149 1808 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 16. 84316 1997 D-THRONBOSIS, LUNG 14. 85081 1989 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 10. 85179 1113 E-LIVER, DEGENERATION 1.9 80004 253 E-MALIGNANT MELANOMA 4.5 84279 1821 E-PNEUMONITIS AND PULMONARY FIBROSIS					
22. 86286 1581 E-PNEUM. AND PUL. FIBRÓSIS; PUL. CARC. 24. 83291 490 E-PNEUMONITIS AND PULNONARY FIBROSIS 14. 84166 1892 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 7.0 82123 1105 D-ACCIDENTAL DEATH 7.6 88096 2841 E-CARCINOMA, LUNG 8.2 83290 1340 E-CARCINOMA, TONSIL 13. 87149 1808 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 16. 84316 1997 D-THROMBOSIS, LUNG 14. 85081 1989 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 10. 85179 1113 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 11. 85081 1989 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 12. 80004 253 E-MALIGNANT MELANOMA 1.9 80004 253 E-MALIGNANT MELANOMA 1.5 84279 1821 E-PNEUMONITIS AND PULMONARY FIBROSIS	Ī				
24. 83291 490 E-PNEUMONITIS AND PULMONARY FIBROSIS 14. 84166 1892 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 7.0 82123 1105 D-ACCIDENTAL DEATH 7.6 88096 2841 E-CARCINOMA, LUNG 8.2 83290 1340 E-CARCINOMA, TONSIL 13. 87149 1808 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 16. 84316 1997 D-THROMBOSIS, LUNG 14. 85081 1989 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 10. 85179 1113 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 11.9 80004 253 E-MALIGNANT MELANOMA 1.9 80004 253 E-MALIGNANT MELANOMA 1.5 84279 1821 E-PNEUMONITIS AND PULMONARY FIBROSIS					D-ISLET CELL CARCINOMA, PANCREAS
14. 84166 1892 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 7.0 82123 1105 D-ACCIDENTAL DEATH 7.6 88096 2841 E-CARCINOMA, LUNG 8.2 83290 1340 E-CARCINOMA, TONSIL 13. 87149 1808 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 16. 84316 1997 D-THRONBOSIS, LUNG 14. 85081 1989 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 10. 85179 1113 E-LIVER, DEGENERATION 1.9 80004 253 E-MALIGNANT MELANONA 4.5 84279 1821 E-PNEUMONITIS AND PULMONARY FIBROSIS		22.			
7.0 82123 1105 D-ACCIDENTAL DEATH 7.6 88096 2841 E-CARCINOMA, LUNG 8.2 83290 1340 E-CARCINOMA, TONSIL 13. 87149 1808 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 16. 84316 1997 D-THRONBOSIS, LUNG 14. 85081 1989 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 10. 85179 1113 E-LIVER, DEGENERATION 1.9 80004 253 E-MALIGNANT MELANONA 4.5 84279 1821 E-PNEUMONITIS AND PULMONARY FIBROSIS		24.	83291	490	E-PNEUMONITIS AND PULMONARY FIBROSIS
7.0 82123 1105 D-ACCIDENTAL DEATH 7.6 88096 2841 E-CARCINOMA, LUNG 8.2 83290 1340 E-CARCINOMA, TONSIL 13. 87149 1808 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 16. 84316 1997 D-THRONBOSIS, LUNG 14. 85081 1989 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 10. 85179 1113 E-LIVER, DEGENERATION 1.9 80004 253 E-MALIGNANT MELANONA 4.5 84279 1821 E-PNEUMONITIS AND PULMONARY FIBROSIS		14.	84166	1892	E-PNEUM. AND PUL. FIBROSIS; PUL. CARC.
7.6 88096 8.2 83290 1340 E-CARCINOMA, LUNG 13. 87149 1808 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 16. 84316 1997 D-THRONBOSIS, LUNG 14. 85081 1989 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 10. 85179 1113 E-LIVER, DEGENERATION 1.9 80004 253 E-MALIGNANT MELANOMA 4.5 84279 1821 E-PNEUMONITIS AND PULMONARY FIBROSIS	7.0				
8.2 83290 1340 E-CARCINOMA, TONSIL 13. 87149 1808 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 16. 84316 1997 D-THRONBOSIS, LUNG 14. 85081 1989 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 10. 85179 1113 E-LIVER, DEGENERATION 1.9 80004 253 E-MALIGNANT MELANOMA 4.5 84279 1821 E-PNEUMONITIS AND PULMONARY FIBROSIS	7.6		88096	2841	E-CARCINOMA.LUNG
13. 87149 1808 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 16. 84316 1997 D-THROMBOSIS, LUNG 14. 85081 1989 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 10. 85179 1113 E-LIVER, DEGENERATION 1.9 80004 253 E-MALIGNANT MELANOMA 4.5 84279 1821 E-PNEUMONITIS AND PULMONARY FIBROSIS		8.2			
16. 84316 1997 D-THRONBOSIS,LUNG 14. 85081 1989 E-PNEUM. AND PUL. FIBROSIS;PUL. CARC. 10. 85179 1113 E-LIVER,DEGENERATION 1.9 80004 253 E-MALIGNANT MELANONA 4.5 84279 1821 E-PNEUMONITIS AND PULMONARY FIBROSIS					
14. 85081 1989 E-PNEUM. AND PUL. FIBROSIS; PUL. CARC. 10. 85179 1113 E-LIVER, DEGENERATION 1.9 80004 253 E-MALIGNANT MELANONA 4.5 84279 1821 E-PNEUMONITIS AND PULMONARY FIBROSIS					
10. 85179 1113 E-LIVER DEGENERATION 1.9 80004 253 E-MALIGNANT MELANONA 4.5 84279 1821 E-PNEUMONITIS AND PULMONARY FIBROSIS					
1.9 80004 253 É-MALIGNANT MELANONA 4.5 84279 1821 É-PNEUMONITIS AND PULMONARY FIBROSIS	1				
4.5 84279 1821 E-PNEUMONITIS AND PULMONARY FIBROSIS					
	4 8	1.7			
C.7 00173 CIOC E-VISCERAL LIMINUSARCUMA					
	6.7		90123	£ 10£	E.AIBOEKNE FILLIMONKOOLU
	ľ				

A.23 ²³⁹PuO₂ Monodisperse Aerosol (1.5 μm AMAD), Aged Longevity Study (continued)

													CUMULATIVE ALPHA	RADIATION DOE
noc ins	NTIFICAT	ION	MMI	ALATION	EXPOS	URE			ILB (æc.		ILB (R)	TC	DEATH
000 106					AGE	WT							WBC	REC.
TATTOO	AN-EXPT	SEX	BLOCK	DATE	DAYS	KG	RANK	UCI/KG	UCI	K3Q/KG	KBQ	KBQ	LUNG	LUNG
•••••								•••••					••••	
3615	02-2764	F	D	79103	3771	12.7	С			· V			1	
367A	01-2764		Č	79103	3742	11.9	č				` .			•
373S	01-2757		Ē	79113	3694	7.5	č				•			:
398C	02-2757		Ā	79113	3575	12.6	Č							
459U	01-2815	F	F	79149	3319	10.5	Č							
495S	02-2883	F	H	79285	3292	10.1	C							
510A	01-2883		Ë	79285	3208	9.5	C							
564T	01-2932		J	80046	3154	9.9	C							
625S	01-2952		Ĺ	80177	2977	9.9	C							
6558	02-3346	M	1	82168	3621	8.9	C							
713A	01-3346	M	Ğ	82168	3370	10.4	C							
785A	03-3346	M	K	82168	3002	8.3	C							

UCI/KG REPRESENTS MICROCURIES OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.

KBQ/KG REPRESENTS KILOBEQUERELS OF RADIONUCLIDE PER KILOGRAM OF TOTAL BODY WEIGHT.

DOSE RATE AND CUMULATIVE DOSE ARE PRESENTED AS FUNCTIONS OF TIME IN DAYS AFTER INHALATION EXPOSURE.

COMMENT: D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED RESPECTIVELY. PROMINENT FINDINGS ARE INCLUDE

CAUTION: THE RECONSTRUCTED INITIAL LUNG BURDENS, DENOTED BY (R) AND (REC) IN THIS TABLE MAY BE TOO HIGH BECAUSE OF CURREN

ANALYTICAL RADIOCHEMICAL PROBLEMS. THIS MAY LEAD TO CALCULATED ORGAN DOSES THAT ARE TOO HIGH. THIS PROBLEM IS ES

IMPORTANT FOR DOGS IN THE LOWER EXPOSURE LEVELS.

ALPHA RADIATION DOSE (GY)

TO DEATH

C	REC.	DEATH	DAYS TO	
	LUNG	DATE	DEATH	COMMENT
•	****	*****	******	***************************************
		85087	2176	E-CARCINONA, NOUTH
		85358	2447	E-ADENOCARCINONA, LUNG
		83327	1675	E-ADENOCARCINONA, NAMBARY
		83031	1379	E-TONSIL SQUANOUS CELL CARCINONA
		82342	1289	D-CARCINOMA, KIDNEY
		81139	585	D-ACCIDENTAL DEATH
		85225	2132	D-BRONCHOPHEUMONIA, LUNG
		85141	1922	E-MELANONA, MOUTH
		86352	2369	D-CONGESTIVE HEART FAILURE
		85012	926	D-CHENODECTONA, MALIGNANT
		87051	1695	E-NEPHRITIS, KIDNEY
		88090	2099	E-CARCINONA, BLADDER
				•

INDINGS ARE INCLUDED. M BECAUSE OF CURRENT THIS PROBLEM IS ESPECIALLY

A.24 239 PuO₂ Monodisperse Aerosol (0.75 μ m AMAD), Repeated Exposure Study

DOG IDE	ENTIFICATI	ON		LATION OSURE	FIR	ST EXPO			TLB ((USC)			MAXIMUM ALPHA	CUMULA ALPHA RA DOSE TO E
TATTOO	AN-EXPT	SEX	GROUP	BLOCK	DATE	DAYS	WT KG	NCI/KG	NCI	KBQ/KG	KBQ	NUMBER OF EXPOSURES	DOSE RATE GY/DAY	TO 1
102 8 A	01-2244	М	ı	A	77229	433	11.1	14	150	0.52	5.6	1	.0032	
1036A	02-2244	H	Ī	Ċ	77229	406	11.7	7	80	0.26	3.0	1	.0016	1
1025A	03-2244	M	1	C	77229	437	12.0	16	190	0.59	7.0	1	.0038	
10288	04-2244	Ħ	I	A	77229	433	9.0	9	80	0.33	3.0	1	.0021	4
10440	01-2266	F	Ī	B	77243	379	7.7	12	90	0.44	3.3	1	.0028	3
10508	02-2266	M	I	E	77243	368	10.8	17	180	0.63	6.7	1	.0040	•
1040\$	03-2266	F	I	B	77243	395	8.8	10	90	0.37	3.3	1	.0025	3
1050A	04-2266	Ņ	1	E	77243	368	11.2	10	110	0.37	4.1	1	.0024	3
1055W 1050s	01-2292 02-2292	F	I I	D	77271 77271	387 396	8.1 9.4	19 15	150 140	0.70 0.56	5.6 5.2	1	.0044 .0036	3
10503	03-2292	M	i	G	77271	395	11.3	13	150	0.48	5.6	i	.0032	1
10588	04-2292	Ä	i	Ğ	77271	369	10.0	15	150	0.56	5.6	i	.0036	2
1061A	.01-2318	Ä	i	ī	77291	371	10.3	20	210	0.74	7.8	i	.0049	7
1060s	02-2318	F	1	F	77291	384	10.3	17	170	0.63	6.3	i	.0040	ä
1055T	03-2318	F	1	F	77291	407	9.9	17	170	0.63	6.3	1	.0041	4
10608	04-2318	M	1	I	77291	384	9.9	13	130	0.48	4.8	1	.0031	44 99 99 161 111
1063C	01-2348	M	1	K	77312	390	9.1	12	110	0.44	4.1	1	.0029	ş
10678	02-2348	Ħ	I	K	77312	371	8.4	12	100	0.44	3.7	1	.0029	9
1061T	03-2348	F	Ī	H	77312	392	8.5	25	210	0.93	7.8	1	.0059	3
10625	04-2348	F	i	H	77312	391	8.9	19	170	0.70	6.3	1	.0046	
10770	01-2388	F	į	Ļ	78010 78010	405 405	7.9	33	260	1.2	9.6	1	.0079	10
1077V 1073T	02-2388 03-2388	F	1 1	j L	78010	417	8.0 8.4	26 70	210 590	0.96	7.8	1	.0063 .017	
10731 1077\$	04-2388	F	i	j	78010	405	8.4	70 25	210	2.6 0.93	22. 7.8	i	.0060	15 9 23 17
1027C	03-2246	M	iı	Ä	77230	435	12.4	130	1500	5.0	54.	10	.018	24
1040C	04-2246	M	ii	ĉ	77230	382	10.1	120	1300	4.4	47.	9	.018	17
10365	01-2268	F	ii	B	77244	421	9.6	120	1200	4.3	46.	ģ	.016	16
1045D	02-2268	H	ii	Ĕ	77244	379	10.6	140	1500	5.0	55.	10	.018	22
1055U	01-2294	F	II	D	77272	388	8.6	130	1200	4.7	43.	10	.018	16 22 20 20
1051D	03-2294	M	11	G	77272	396	10.7	120	1200	4.3	46.	9	.017	20
10628	01-2320	H	II	I	77292	371	12.3	150	2000	5.6	75.	10	.021	27
10495	03-2320	F	11	F	77292	419	9.8	110	1200	4.1	45.	8	.017	14
10615	01-2350	F	11	H	77313	393	8.4	180	1600	6.8	58.	9	.027	26
1064A	02-2350	M	11	K	77313	391	10.3	150	1500	5.4	54.	9	.021	24
1070s	01-2390	F	11	Ļ	78011	421	8.2	140	1300	5.3	49.	10	.023	30 31
1069\$ 1037B	04-2390 01-2248	F	II III	C	78011 77231	424 397	10.2 9.7	180	1800	6.7	67. 8.9	9 20	.028 .0027	
1037B	01-2248	M	111	Ä	77231	397 439	10.7	23 21	240 220	0.85 0.78	8.3	20 18	.0027	7
10278	03-2248	M	111	Â	77231	439	10.7	13	160	0.78	6.0	12	.0024	2
10278 1035A	04-2248	M	iii	Ĉ	77231	410	8.5	24	210	0.89	7.9	19	.0026	2
10418	01-2272	M	iii	Ē	77245	384	9.6	24	240	0.89	8.9	19	.0026	6
1046B	02-2272	M	iii	Ē	77245	378	7.2	25	200	0.93	7.5	16	.0027	6
10350	03-2272	F	III	B	77245	424	7.4	24	180	0.89	6.8	16	.0029	8
1029U	04-2272	F	111	8	77245	446	8.4	27	220	1.0	8.1	18	.0030	7
1054B	01-2296	M	111	G	77273	392	9.6	24	260	0.89	9.6	17	.0026	6
1057A	02-2296	M	111	G	77273	371	10.1	30	330	1.1	12.	20	.0030	11
1046T	03-2296	F	111	D	77273	406	7.3	11	85	0.41	3.1	2	.0024	0
1051s	04-2296	F	111	D	77273	397	9.0	34	330	1.3	12.	19	.0035	10
1051A	01-2322	M	111	Ī	77293	417	11.7	26	300	0.96	11.	18	.0027	8
1057s	02-2322	F	111	F	77293	391	8.5	24	210	0.89	7.9	18	.0027	6
10577	03-2322	F	111	F	77293	391	9.4	26	230	0.96	8.3	20	.0029	8
1058C	04-2322	M	111	1	77293	391	10.3	19	210	0.70	7.8	20	.0021	61

+

	MAXIMUM ALPHA	CUMULATIVE ALPHA RADIATION DOSE TO LUNG (GY)		DAYS FROM		
8	DOSE RATE GY/DAY	TO DEATH	DEATH DATE	9-30-93	DEATH	COMMENT
-		••••••	••••			***************************************
	.0032	5.9	88284		4072	E-DISSEMINATED SARCOMA
	.0016	2.9	88083		3871	E-PAPILLARY ADENOCARCINOMA, LUNG
	.0038	6.3	87189		3612	E-CARCINOMA, LUNG
	.0021	3.6	87317		3740	D-CONGESTIVE FAILURE, HEART
	.0028	5.6	90290		4795	E-CARCINONA, LUNG
	.0040	8.1	90351		4856	E-MULTIPLE CARCINONA, LUNG
	.0025	2.5	82068		1651	D-IMMUNE HEMOLYTIC AMENIA
	.0024	5.0	92023		5258	E-CARCINOMA, LUNG
	.0044	9.1	91137		4979	E-CARCINONA, LUNG
	.0036	5.9	87183		3564	D-HEPATIC DEGENERATION; CARCINONA, LUNG
	.0032	5.5	88063		3809	D-PAPILLARY ADENOCARCINONA, LUNG
	.0036	6.8	89236		4348	E-ADENOSQUANOUS CARCINONA, LUNG
	.0049	7.8	86343		3339	E-CARCINOMA, LUNG
	.0040	6.4	87105		3466	E-ADENOCARCINOMA, MANNARY GLAND
	.0041	6.8	87197		3558	E-CARCINOMA, LUNG
	.0031	4.4	85084		2715	E-CARCINOMA, LUNG
	.0029	5.1	88196		3901	D-MALIGNANT MIXED TUMOR, LUNG
	.0029	6.3	92351		5517	D-CARCINOMA, LUNG
	.0059	9.6	87125		3465	E-CARCINOMA, LUNG
	.0046	3.5	80247		1030	E-VERTEBRAL DISC HERNIATION
	.0079	16.	90338		4711	E-CARCINOMA, LUNG
	.0063	11.	89089		4097	E-PAPILLARY ADENOCARCINOMA, LUNG
	.017	15	83104		1920	E-PNEUMONITIS AND PUL. FIBROSIS; PUL. CARC.
	.0060	9.3	86304		3216	D-CARCINOMA, LUNG
	.018	23.	83047		2008	E-PHEUMONITIS AND PULMONARY FIBROSIS
	.018	17.	82088		1684	E-PHEUMONITIS AND PULMONARY FIBROSIS
	.016 .018	16. 22.	82041		1623	E-PHEUMONITIS AND PULMONARY FIBROSIS
	.018	22.	82326		1908	D-PHEUMONITIS AND PUL. FIBROSIS; PUL. CARC.
	.017	20. 20.	83025		1944	E-PHEUMONITIS AND PULMONARY FIBROSIS
	.021	27.	82341 83114		1895	E-PHEUMONITIS AND PULMONARY FIBROSIS
	.017	14.	81293		2013	D-PNEUMONITIS AND PULMONARY FIBROSIS
	.027	26.	82118		1462	E-PHEUMONITIS AND PULMONARY FIBROSIS
	.021	24.	82316		1631 1829	E-PHEUMONITIS AND PULMONARY FIBROSIS
	.023	30.	84194		2374	E-PHEUMONITIS AND PUL. FIBROSIS; PUL. CARC.
	.028	31.	83077		1892	D-B.A. CARC., LUNG; OSTEOSARCOMA, MANDIBLE D-PULMONARY CARCINOMA
	.0027	7.1	87222		3643	E-CARCINOMA, LUNG
	.0024	6.3	87292		3713	E-SQUAMOUS CARCINOMA, LUNG
	.0017	2.5	83165		2125	D-RUPTURED GALL BLADDER
	.0026	8.1	89220		4372	E-PAPILLARY ADENOCARCINOMA, LUNG
	.0026	6.4	86335		3377	E-CARCINONA, LUNG
	.0027	6.1	85356		3033	D-CARCINOMA, PITUITARY
	.0029	8.0	88362		4134	E-TRANSITIONAL CELL CARCINOMA, BLADDER
	.0030	7.4	87164		3571	E-CARCINOMA, LUNG
	.0026	6.5	86191		3205	E-ADENOCARCINONA, LUNG
	.0030	11.	89030		4140	E-PAPILLARY ADENOCARCINOMA, LUNG
	.0024	0.86	78272		364	D-ACCIDENTAL DEATH
	.0035	10.	87238		3617	E-CARCINOMA, LUNG
	.0027	8.0	87230		3589	E-CARCINOMA, LUNG
	.0027	6.6	87104		3463	E-CARCINOMA, LUNG
	.0029	8.9	89354		4444	D-BRONCHOPNEUMONIA
	.0021	6.2	89163		4253	D-PAPILLARY ADENOCARCINOMA, LUNG

A.24 ²³⁹PuO₂ Monodisperse Aerosol (0.75 μm AMAD), Repeated Exposure Study (continued)

DOG IDE	NTIFICAT	ION		ATION SURE		T EXPO			TLB ((MBC)			MAXIMUM ALPHA	CUMULATIVE ALPHA RADIATION DOSE TO LUNG (
						AGE	WT	•••••		•••••		NUMBER OF	DOSE RATE	************
TATTOO	AN-EXPT	SEX	GROUP	BLOCK	DATE	DAYS	KG	NCI/KG	MCI	KBQ/KG	KBQ	EXPOSURES	GY/DAY	TO DEATH
				5555										
1055\$	01-2352		111	M	77314	430	8.9	38	350	1.4	13.	19	.0037	11.
1066A	02-2352		111	K	77314	378	9.0	32	290	1.2	11.	20	.0031	11.
10658	03-2352		111	K	77314	<u> 391</u>	10.1	26	270	0.96	10.	19	.0026	8.2
10671	04-2352		111	H	77314	373	8.9	32	300	1.2	11.	20	.0031	11.
10715	01-2392		111	j	78012	421	8.6	23	210	0.85	7.9	19	.0026	7.8
10700	02-2392		111	J	78012	422	9.7	17	170	0.63	6.4	14	.0022	3.8
10730	03-2392		111	Ļ	78012	419	8.5	22	210	0.81	7.6	12	.0029	4.2
1078\$	04-2392		111	ř	78012	401	10.2	20	220	0.74	8.0	20	.0024	6.2
1037A	01-2246		S	Ç	77230	400	10.3	160	1700	6.1	62.	8	.025	22.
1041A	02-2246		\$	A	77230	369	10.0	54	580	2.0	21.	4	.010	4.1
10371	03-2268		S	. B	77244	414	8.5	170	1500	6.4	54.	10	.022	26.
10400	04-2268		\$	E	77244	396	10.3	23	250	0.85	9.3	. 2	.0051	1.1
10540	02-2294		S	G	77272	391	7.9	200	1700	7.3	61.	10	.027	31.
10497	04-2294		S	D	777272	399	9.7	28	280	1.0	10.	2	.0056	1.5
1054C	02-2320	.	S	Ī	77292	411	7.0	180	1300	6.5	47.	9	.025	29.
1049V	04-2320		S	F	77292	419	9.3	160	1500	5.9	57.	7	.028	17.
1065T	03-2350		S	H	77313	390	7.9	81	640	3.0	24.	•	.016	6.0
1064C	04-2350		\$	K	77313	391	8.5	46	410	1.7	15.	2	.0088	2.5
10670	02-2390		S	J	78011	435	6.9	88	700	3.3	26.	9	.015	13.
10781	03-2390		S	Ļ	78011	400	10.2	41	470	1.5	17.	4	.0075	3.2
1037E	01-2249		C	Ā	77231	401	10.0							
1040A	02-2249		C	C	77231	383	13.5							
1044T	01-2270		C	B	77244	380	7.1							
1043A	02-2270		C	E	77244	382	10.8							
1058A	01-2293		C	G	77271	369	10.0							
1051T	02-2293		C	D	77271	395	7.5							
1058s	01-2324		C	F	77305	403	10.5							
1062A	02-2324		C	1	77305	384	11.2							
1066T	01-2347		C	H	77312	376	7.0							
1062C	02-2347		C	K	77312	391	11.5							
1077T	01-2394		Ç	Ļ	78045	440	8.8							
1068V	02-2394		C	J	78045	464	9.5							
****	****	***	*****	•										

EXPOSURE GROUPS:
GROUP I: SINGLE EXPOSURE TO 0.1UCI; THEN SHAM EXPOSURE EVERY 182 DAYS.

GROUP II: LUNG BURDEN INCREASED 0.1UCI EVERY 182 DAYS.
GROUP III: LUNG BURDEN INCREASED 0.01UCI EVERY 182 DAYS.
GROUP S: SACRIFICE SERIES; EXPOSURES AS FOR GROUP II.
GROUP C: CONTROLS; SHAM EXPOSURE EVERY 182 DAYS.

NOTES:

TLB (WBC)= TOTAL PLUTONIUM ACTIVITY INHALED BASED ON WHOLE BODY COUNTS OF 169YB TAG.
DOSE AND DOSE RATE ARE FOR LUNG AND INCLUDE ACTIVITY IN TRACHEOBRONCHIAL LYMPH NODES.
D, E, OR S INDICATE THE DOG DIED, WAS EUTHANIZED OR WAS SACRIFICED, RESPECTIVELY. PROMINENT FINDINGS ARE INCLUDED.

rtinued)

MAXIMUM ALPHA	CUMULATIVE ALPHA RADIATION DOSE TO LUNG (GY)		DAYS FRO EXPOSU	RE TO	
DOSE RATE		DEATH			
GY/BAY	TO DEATH	DATE	9-30-93	DEATH	COMMENT
***************************************	***************************************				
.0037	11.	87195		3533	
.0031	11.	89225		4294	
.0026	8.2	88224		3927	E-PAPILLARY ADENOCARCINOMA, LUNG
.0031	11.	89213		4282	
.0026	7.8	89220		4226	
.0022	3.8	84271		2450	
.0029	4.2	83118		1933	
.0024	6.2	87349		3624	
.025	22.	81299		1530	
.010	4.1	79228		728	S-SACRIFICED
.022	26.	82116		1698	D-PNEUMONITIS AND PULNONARY FIBROSIS
.0051	1.1	78243		364	S-SACRIFICED
.027	31.	82284		1838	S-SACRIFICED
.0056	1.5	78276		369	\$-SACRIFICED
.025	29.	82298		1832	S-SACRIFICED
.028	17.	81096		1267	
.016	6.0	79311		728	
.0088	2.5	78312		364	S-SACRIFICED
.015	13.	82299		1749	S-SACRIFICED
.0075	3.2	80015		734	S-SACRIFICED
		91196		5080	E-MELANOMA, MOUTH
		83290		2250	D-ACCIDENTAL DEATH
		93060		5660	
		88168		3941	
		92157		5364	
		89096		4208	
		93105		5644	
		80179		969	D-STRANGULATED HERNIA
			5805		
		91249		5050	D-BRONCHOPMEUMON I A
		91029		4732	
		90045		4383	E-ADENOCARCÍNOMA, MANDIARY GLAND

FINDINGS ARE INCLUDED.

APPENDIX B: STATUS OF LONGEVITY AND SACRIFICE STUDIES IN BEAGLE DOGS FROM THE UNIVERSITY OF UTAH (9/30/93)

This appendix contains detailed tabular information through September 30, 1993, on all dogs in the life-span studies and many related sacrifice series associated with these studies that have been initiated at the University of Utah over the past 35 years. All of the dogs remaining alive in the life-span studies at the University of Utah were transferred to the Lovelace ITRI colony on September 15, 1987, where they are being maintained and studied for the remainder of their life spans. Responsibility for managing the completion of the Utah life-span studies has been assigned to ITRI, with input from a small team of investigators at the University of Utah and investigators at ITRI.

Appendix tables of this kind have been an important part of the annual reports from the Utah studies, and they will be continued as part of future ITRI annual reports. For consistency, the format of the Utah tables is similar to that used in past reports.

The following tables detailed information on the toxicity and test animals, respectively. Toxicity animals are those animals that were usually maintained until sacrifice became a clinical necessity; test animals were sacrificed as needed for special studies.

Dogs were put into the toxicity study at graded injection levels. At each level, about half the dogs were male and half female. Litter mates were used whenever possible. Abnormal dogs were excluded. Each animal received the designated quantity of one radionuclide in a single intravenous injection of 0.08 molar citrate solution at pH 3.5. Unless otherwise specified, the radionuclides were monomeric (either ionic or complexed with citrate).

The five injection levels designated by integers are those specified at the early meetings of the consultants; those designated by nonintegers have been added by the laboratory staff. Since those injection levels were originally specified in "retained" activities, the actual injections were four times the desired "retained" μ Ci/kg for 90 Sr, 210 Pb, 224 Ra, 226 Ra, and 228 Ra, and 1.11 times the desired "retained" μ Ci/kg for 228 Th, 239 Pu, 241 Am, $^{243/244}$ Cm, $^{249/252}$ Cf, and 253 Es.

Level 1 = 10 x
$$\frac{0.1 \ \mu\text{Ci}^{226}\text{Ra}}{70 \ \text{kg man}}$$
 = 0.0143 retained $\mu\text{Ci/kg}$

The desired "retained" activities were the same for all the radionuclides except ⁹⁰Sr, in which case they were greater by a factor of 10. Injection level 1 was the basis of the scheme, and was 10 times the maximum permissible concentration of ²²⁶Ra in man.

Since radioactive decay and excretion occur continuously, the term "total body retention" is meaningless unless the time after injection is specified. Our present measurements indicate that the effective retention of alkaline earth elements and ²¹⁰Pb decrease to about 25% of that injected by the following times after injection:

<u>Element</u>	Time (days)
⁹⁰ Sr	134
²¹⁰ Pb	98
²²⁴ Ra	5
²²⁶ Ra	271
²²⁸ Ra	214

Retention of actinide elements decreased to about 90% at post-injection times shown below:

228 _{Th}	6
239 _{Pu}	6
²⁴¹ Am	6
²⁴³²⁴⁴ Cm	1
253Es	1

All other injection levels were simple multiples of level 1, as shown below.

Level 0.1 is 1/27 of level 1

Level 0.2 is 1/9 of level 1

Level 0.5 is 1/3 of level 1

Level 0.7 is 2/3 of level 1

Level 1.5 is 2 times level 1

Level 1.7 is 3 times level 1

Level 2 is 6 times level 1

Level 3 is 18 times level 1

Level 4 is 54 times level 1

Level 4.5 is 94 times level 1

Level 5 is 162 times level 1.

The numbering system for the dogs was built around the injection program and serves as a code to describe each dogs place in the experiment. The first letter tells the sex of toxicity animals (M = male; F = female). When the first letter is T, the dog is a test animal. M, F, or T is followed by a number which denotes chronological order of the individual test dogs, or of groups, in the case of toxicity dogs.

Next comes a code letter for the radionuclide: $C=^{243/244}Cm$; $E=^{253}Es$; $F=^{252}Cf$; $G=^{249}Cf$; $J=^{85}Sr$; $K=^{237,241}Pu$; $L=^{210}Pb$; $M=^{228}Ra$; $P=^{239}Pu$; $Q=^{224}Ra$; $R=^{226}Ra$; $S=^{90}Sr$; $T=^{228}Th$; $U=^{233,232}U$; $V=^{238}U$; $W=^{241}Am$; A=ancillary (nonradioactive).

"A" following the regular dog number means that the dog is a replacement; "H" following the regular dog number means that the dog received more than one injection. "B", "C" or "D" denotes an intended special assignment, but most of these dogs have been redesignated for life-span toxicity studies. "E" in the final position is used to denote that the dog listed is a St. Bernard. "P" in the final position indicates that the nuclide was polymeric (injected in a particulate form). "Y" in the final position indicates that the animal was injected as a juvenile. "N" in the final position indicates that the animal was injected as a neonate. A plus (+) in the final position denotes that the animal was "old" when injected. Letters denoting a radionuclide may follow the final number, in which case the letter indicates that two radionuclides were given. The injection level refers to the radionuclide appearing first in the identifying code.

Example: M1R5 is a male animal in the first radium group at the highest injection level.

Although M1R5, M1R4, M1R3, M1R2, M1R1, and M1R0 constitute a group and were injected at the same time, the tables are arranged according to injection level to facilitate comparison of all the R5 animals, all the R4 animals, etc.

The conditions listed in the status tables under "Comments on Dead Dogs" give the cancers and the lesions that had the most apparent effect on the clinical status of the animal. These comments should not be considered as confirmed pathology. For example, multiple rib fractures, which seldom produce symptoms, are not listed, even though their incidence was usually much higher than the crippling fractures involving the limb bones or mandible. The hematological changes have been omitted unless they were extreme. Increased rate of tooth loss, hepatic changes, eye lesions, and many other factors in the various syndromes have not been included because of space limitations. Over the years many soft tissue tumors have been removed surgically. In many instances, the conditions that have been listd were the reasons for sacrifice of the animal but they were not the immediate cause of death. Most of the animals were euthanized when death appeared imminent or when life could no longer be prolonged humanely.

DOSIMETRY

The tables include the calculated average dose in Gy to the skeleton at death. ⁹⁰Sr, ²²⁶Ra, ²²⁸Ra, ²⁴¹Am, ²⁴⁹Cf, and ²⁵²Cf doses are calculated for each dog, using its individually observed retention values: ²³⁹Pu, ²²⁸Th, and ²²⁴Ra doses are based on the average retention equations. For the young adult Beagle dogs injected at about 17 mo of age, the following equations were used for the EFFECTIVE skeletal retention at (t) days after injection to account for both radioactive decay and biological elimination. These equations do not apply to St. Bernards (E) or to Beagles injected as neonates (N), young juveniles (Y), old dogs (+), or to dogs receiving polymeric plutonium (P) or chelation therapy.

Detailed retention data and dosimetric analyses were presented or referenced in the 1984 annual report (C00-119-259, December 1984). The skeletal doses are based upon a wet skeleton which is 10% of the body weight at the time of injection (C00-119-257, pp. 89-92, 1982).

²²⁸Ra and ²²⁶Ra doses deserve special comment. The dose from "pure" ²²⁸Ra and its *in vivo* produced daughters is based on our best evaluation of 5.77 0.02 yr for the ²²⁸Ra half-period. The tabulated total doses include the contributions from ²²⁸Th contamination in the injection solutions. For example, ²²⁸Th contaminations of 0.6%, 3% and 15%, respectively, account for 3%, 13% and 42% of the total dose in rads at 1000 days. If injected ²²⁸Th is four times more toxic rad-for-rad than is *in vivo* produced ²²⁸Th, these injected ²²⁸Th contamination would account for 10%, 37% and 74% of the total biological damage at 1000 days. Therefore, it may be desirable to use only results from the slightly contaminated (0.6% ²²⁸Th) dogs in evaluation of ²²⁸Ra toxicity. The contribution from injected ²¹⁰Pb which occurs in the ²²⁶Ra injection solution as a result of ²²⁶Ra decay has been included in skeleton dose calculations for ²²⁶Ra dogs. This can account for between about 1% and 30% of the total:

```
^{226}\text{Ra (adults, dose level 5)} = 0.20e^{-0.00488t} + 0.29e^{-0.000299t}
^{226}\text{Ra (adults, lower levels)} = 0.21e^{-0.0155T} + 0.18e^{-0.00204t} + 0.15e^{-0.000150t}
^{222}\text{Rn}/^{226}\text{Ra (adults, all levels)} = 0.075 (1-e^{-0.181t}) t^{0.158}
^{239}\text{Pu (dose level 5)} = 0.07e^{-0.0011t} + 0.43
^{239}\text{Pu (dose level 4)} = 0.11e^{-0.0011t} + 0.39
^{239}\text{Pu (dose level 3)} = 0.15e^{-0.0011t} + 0.34
^{239}\text{Pu (lower levels)} = 0.29e^{-0.0011t} + 0.21
```

```
228Ra (all levels) = 0.21e<sup>-0.016t</sup> + 0.177e<sup>-0.0024t</sup> + 0.15e<sup>-0.00048t</sup> (pure at t = 0) with 84% retention of in vivo produced daughters of <sup>228</sup>Th.
228Th (all levels) = 0.68e<sup>-0.00117t</sup> with ratios of <sup>224</sup>Ra, <sup>220</sup>Rn, <sup>216</sup>Po, <sup>212</sup>Pb, <sup>212</sup>Bi to <sup>228</sup>Th as a function of ime after injection and of dose level as given in Radiat. Res. 98: 614-628, 1984.
241Am (dose level 5) = 0.359 + 0.157 (1-e<sup>-0.0065t</sup>)
241Am (dose level 4) = 0.359 + 0.141 (1-e<sup>-0.0029t</sup>)
241Am (dose level 3) = 0.359 + 0.076 (1-e<sup>-0.0021t</sup>)
241Am (lower levels) = 0.359 + 0.015 (1-e<sup>-0.0014t</sup>)
249Cf (all levels) = 0.498e<sup>-0.0000794t</sup>
252Cf (all levels) = 0.528e<sup>-0.214t</sup> - 0.228e<sup>-9.01t</sup> with the effective retention of <sup>224</sup>Ra daughters for all levels of:
```

220
Rn and 216 Po = 0.486e $^{-0.214t}$ - 0.276e $^{-4.65t}$

212
Pb = 0.447e^{-0.214t} - 0.336e^{-2.40t}

$$^{212}\text{Bi} = ^{212}\text{Po} + ^{208}\text{T1} = 0.391e^{-0.214t} - 0.350e^{-2.38t}$$

For the calculation of radiation dose for dogs that had received particulate plutonium, measured skeletal weights were used. The following skeletal Pu-retentions ($R_{\rm Skel}$) were applied:

- 1. Dogs that received no further treatment: $R_{Skel} = 60(1 0.914e^{0.00098t})e^{-0.000237t}$
- 2. Dogs that received 30 mole CaDTPA/kg once weekly: $R_{Skel} = 6.7\%$ constant average retention.
- 3. Dogs that received 30 mole ZnDTPA/kg daily: $R_{Skel} = 2.8\%$ constant average retention.

STATUS TABLES

B.1	²⁴¹ Am, Chronic Toxicity Study	165
B.2	²⁴⁹ Cf, Chronic Toxicity Study	168
B.3	²⁵² Cf, Chronic Toxicity Study	169
B.4	²⁵³ Es, Chronic Toxicity Study	170
B.5	²³⁹ Pu, Chronic Toxicity Study	171
B .6	²²⁴ Ra (Quickradium), Chronic Toxicity Study	181
B.7	²²⁶ Ra, Chronic Toxicity Study	184
B.8	²²⁸ Ra (Mesothorium), Chronic Toxicity Study	190
B.9	90Sr, Chronic Toxicity Study	193
B.10	²²⁸ Th, Chronic Toxicity Study	196
B .11	²⁴¹ Am, Test Studies	199
B.12	²¹⁰ Bi, Test Studies	201
B.13	²⁴⁹ Cf, Test Studies	202
B.14	²⁵² Cf, Test Studies	203
B.15	^{243,244} Cm, Test Studies	204
B .16	²⁵³ Es, Test Studies	205
B.17	²¹⁰ Pb, Test Studies	206
B.18	²³⁷ Pu or ²⁴¹ Pu, Test Studies	207
B.19	²³⁹ Pu, Test Studies	208
B.20	²²⁴ Ra (Quickradium), Test Studies	216
B.21	²²⁶ Ra, Test Studies	217
B.22	²²⁸ Ra (Mesothorium), Test Studies	221
B.23	90Sr, Test Studies	222
B.24	²²⁸ Th, Test Studies	223
B.25	²³² U and/or ²³³ U, Test Studies	224
B.26	²³⁸ U, Test Studies	225
B.27	X-Rays, Test Studies	226
B.28	²¹⁰ Po, Test Studies	227
B.29	Ancillary Studies	228

B.1 241 Am, Chronic Toxicity Study

	1	UNDETERNINED (NO SKELETAL TUNCK)	NEMANGIOSARCOMA (SOFT TISSUE) THEOREGENERAL ISM	LUNG CARCINOMA	THYMCMA	MAST CELL SARCOM	VALVULAR ENDOCARDITIS, PNEURONIA		SPONDYLOSIS, LUNG CARCINOMA	ENDOMETRITIS	PREUMONIA	EPIDERMOID CARCINOMA (MOUTH)	PANCREATITIS	LYMPHOSARCOMA, LUNG ADENOCARCINOMA	FIBROSARCOM (LIVER)	UNDETERMINED (NO SKELETAL TUMOX)	HEMAGIOSARCONA (SOFT TISSUE)	MELANONA (MOUTH)	PARCELATITIS	HANNARY ADEROCARCINGTA, NEMORRHAGE (LIVER)	MALIGAMI MELANDA	METALLUCIL UMACIMUM IPHANGIORADONA CONT. TIRGIS	MED-EXILIS	CHOIDROSARCOIA, FIBROSARCOIA (SKELETON)	UNDETERMINED (NO TUNOR)	MANNARY ADENDEARCINGNA	INTUSSUSCEPTION	CHOLANGIOCARCINONA, SENILITY		LIVER NIXUSARCUMA Affinental etbandu ation	MAST CELL SARCONA	CHONDROSARCONA (L. RIB #10)	EPIDERNOID CARCINONA (MOUTH)	DEGENERATION (KIDNEY), PWEUNONIA	OSTEOSARCOM, LUNG ADENOCARCINOMA, MEPHRITIS	THROMBOENBOL 15H	FIBROSARCOM (SKELETON)	CHOLANGIOCARCINONA	LUNG CARCINONA	THE CHECK DEST
10 TO	SKELETON (GY)	9.0	8.2	0.03	0.0	0.07	0.07	0.05	0.0	0.07	0.10	8	S.S.	80.0	97.0	0.19	0.51	7.0	0.27	2,50	9 5	35	0.27	20	0.30	97.0	0.17	R :	\$ 1	2 5	0.57	0.88	0.56	0.72	۶.	0.56	0.58	0.82	0.63	97.0
PORT	INJECTION	3815	2162 224	2/1	0987	4705	40 56	3157	9667	4287	7887	7697	3335	67.5	# C 7 P)	400	6525	8	C () ()	704	5421	4510	4555	5306	4433	3283	55 565 57 57 57 57 57 57 57 57 57 57 57 57 57	20,0	3 5	3262	4793	3632	4328	\$227	3134	3891	4855	366	2230
	DATE	OCT - 13-66	MAR-21-68	MAY-06-68	JUL-02-68	JUL-30-68	NOV-25-69	JAN-26-70	FEB-24-70	APR-22-70	JUL -16-70	JUL - 16-70	AUG-25-70	AUG-25-70	001-13-00	9-51-120 55-56	MAR-21-68	MAY-05-65	MAT-06-98	JUL-02-68	40-CZ-AOM	SFR-26-70	APR-22-70	JUL-16-70	JUK-16-70	AUG-25-70	AUG-25-70	SEP-15-66	25 - 13 - 80 25 - 13 - 80	MAR-21-00	NOV-25-69	MAR-21-68	MAY-06-68	69-52-70M	JAN-26-70	FEB-24-70	APR-22-70	JUL-16-70	AUG-23-70	AUG-25-70
5	INJECTED (KBQ/KG)	0.0662	0.0659	0.0666	9990.0	0.0644	0.0648	0.0622	0.0648	0.0666	0.0659	0.0662	0.0655	0.0040	26.0	2.0	0.196	0.203	2 5			8 5	0,196	0.202	0.203	0.195	0.197	0.592	20.0	0.5%	0.588	0.607	0.585	0.603	0.581	0.585	0.581	0.603	0.592	0.592
INJECTION	INJECTED (UCI/KG)	0.00179	0.001/8	0.00180	0.00180	0.00174	0.00175	0.00168	5.00173	0.00180	0.00178	0.0017	0.0017	0.001/3	0.0035	0.00339	0.00250	0.00248	0.0038	0.00228	0.00260	0.00303	0.00531	0.00545	0.00548	0.00527	0.00533	0.0160	200	250	0.0159	0.0164	0.0158	0.0163	0.0157	0.0158	0.0157	0.0163	0.0160	0.0160
•	LEIGHT (KG)	10.6	 	6.0	1.9	1.0	10.7	10.4	13.3	6 .8	13.5	9.0	κ. Υ.	- 5		·:	72.2	4.0	9.9	?	:		12.8	1.9	12.1	9.6	12.0	8 8	? .	2 2 3	1.4	11.6	12.1	8.25	5 0.0	10.4	12.1	12.4	6.0	10.4
	AGE (DAYS)	Ħ	35	2	467	3	8	3	Ŝ	3	Š	2	2	8	3	3	§ !	2	25	Ì	76	8 8	767	20	50	53	8	517	<u> </u>				223	225	\$	Ş	Ŝ	2	256	8
	DOG	F013402	204402 E024402	F031402	MO41402	M048402	MO49402	F058402	H062N02	F069402	M070M02	M079402	F060402	H092402	201	500	M023405	10274US	1050405	1040403 1040403	COMOCOM	SON SON	M070M05	F080405	F061W05	F089405	H096405	F009410		F021410	F021V10A	MOZZV10	M028V10	F051110	#060 110	M064110	F071V10	MO62410	F090410	M097410

B.1 241Am, Chronic Toxicity Study (continued)

INJECTION

						POST	DOSE 10	
2	AGE	WEIGHT	INJECTED	INJECTED	DATE	INJECTION	SKELETON	
	(DAYS)	(¥6)	(UCI/KG)	(KBQ/KG)	INJECTED	INTERVAL	(6)	
F122V10	20%	9.38	0.0150	0.555	NOV-06-75	1677	0.51	PYONETRA (VIERUS)
H123U10	516	11.8		0.577	DEC-09-73	7097	0.62	INTERSTITIAL PHEUMONIA (LUNG)
F124U10	516	8.36		0.581	DEC-09-75	4728	0.65	SQUANCUS CELL CARCINOMA, ORAL MUCOSA
F127410	767	8.89	0.0152	0.562	NOV-06-73	7997	0.57	CHOLANGIOCARCINOMA (LIVER)
H128410	693	13.2		0.566	NOV-06-75	4901	K.0	ANESTHETIC DEATH/REMAL DISEASE
F130u10	167	10.3	0.0153	0.566	NOV-06-75	3783	0.45	PHELMONIA, FIBROSARC. (LIVER), MYELOPROLIFERATIVE DISEASE
H132V10	482	9.86		0.566	NOV-06-75	4396	0.56	HEMANGIOSARCOMA, CHOLANGIOCARCINOMA (LIVER)
M134V10	687	9.03		0.555	NOV-06-75	5093	2.0	GLOWERULOWEPHRITIS; TRANSITIONAL CELL CARC., PROSTATE
F137410	515	7.7		0.570	DEC-09-75	5314	0.77	HEMANGIOSARCOMA, LIVER
F138410	514	8.63	0.0152	0.562	DEC-09-75	3270	0.45	TRANSITIONAL CELL CARCINCHA (URINARY BLADDER)
H139410	513	9.11	0.0157	0.581	DEC-09-75	4063	99.0	CARCINOMA (DUCDENUM)
F141110	200	8.89	0.0154	0.570	DEC-09-75	3612	0.55	MELANOMA (ORAL)
F042417	8	9.56	0.0484	5.	JUL-30-68	2960	1.59	MAST CELL SARCOMA (LIVER)
F043117	765	10.4	0.0481	1.78	JUL-30-68	3666	1.82	SURGICAL COMPLICATIONS
F044117	765	7.46	0.673	7.7	JUL -30-68	3306	- -8	MAST CELL SARCOMA
H045U17	765	11.9	0.0486	1.80	JUL-30-68	4012	2.05	OBSTRUCTION (VENA CAVA)
*1046#17	\$	8.42	6.63	1.7	JUL-30-68	2848	1.25	STATUS EPILEPTICUS
1047417	3	11.1	0.0486	.8	JUL -30-68	3486	1.72	HEMORRHAGE (LIVER)
F052417	552	9.57	0.0493	1.82	NOV-25-69	4307	2.15	OSTEOSARCOMA, LUNG CARCINOMA
H061117	967	10.7	0.0458	1.69	JAN-26-70	3767	1.70	OSTEOSARCONA
H065417	485	11.2	0.0471	1.74	FEB-24-70	3680	-3	MAST CELL SARCONA (LIVER)
F072W17	200	1.1	0.63	1.7	APR-22-70	4293	2.13	OSTEOSARCOMA, FIBROSARCOMA (SOFT TISSUE)
M083W17	50	12.6	0.0493	1.82	JUL-16-70	3925	2.03	CHOLANGIOCARCINOMA
F091117	84	13.3	0.0480	1.78	AUG-25-70	2193	76.0	BLOOD DYSCRASIA
M098417	067	13.3	0.0480	1.78	AUG-25-70	3790	2.08	OSTEOSARCOMA
F115W17	205	8.7	0.0468	1.7	OCT-17-74	3942	2.17	COLLAPSED VERTEBRA, OSTEOPOROSIS
F116W17	205	8.56	0.0470	1.74	OCT-17-74	3464	2.17	OSTEOSARCONA
F121417	200	9.36	0.0458	1.69	NOV-06-73	2982	1.15	UNDETERMINED (NO TUMOR)
M125W17	515	0.0	0.0471	1.7	DEC-09-73	3601	1.61	OSTEOSARCOMA, CHOLANGIOCARC., MEMANGIOSARC. (LIVER)
F126W17	767	9.63	0.0456	1.69	NOV-06-73	3903	1.53	EPIDERHOID CARCINOMA, OSTEOSARCOMA
1129417	663	8.26	0.0453	 89.	100-08-12 100-08-12	2624	1.38	OSTEOSARCOMA
F131W17	65	9.16	0.0457	1.69	MOV-06-73	4200	1.62	AORTIC BODY TUROR
M133W17	163	5.8 8.0	0.0459	2.5	MOV-06-73	3452	1.50	UNDIFFERENTIATED SARCONA (ILEUM, SWALL INTESTIME)
H135W17	684	10.0	0.0458	1.69	10V-06-73	3227		OSTEOSARCOMA
F136W17	225	8.91	0.0461	7.7	DEC-09-73	1343	0.63	TRAUMA, THROMBOEMBOLISM
M140417	5	5.5	0.0469	1.7	DEC-09-73	2691	1.33	FIBROSARCOMA (LIVER)
F007420	8	12.6	0.0952	3.52	SEP-15-66	187 2	1.67	OSTEOSARCOMA
F008420	8	11.7	0.0957	3.54	SEP-15-66	2841	5.68	OSTEOSARCOMA
MO19420	513	13.4	0.0970	3°20	MAR-21-68	2785	2.7	FIBROSARCONA (LIVER)
M027420	472	12.7	0.0961	3.56	MAY-08-68	2887	2.56	MAST CELL SARCONA
M038W20	127	80. 80.	0.0945	3.50	JUL-02-68	3047	3.15	OSTEOSARCOMA
F059420	10	7.21	0.0%	5.5	JUL-02-65	2000	5.43	OSTEDSARCONA, NOSE ADENOCARCINONA

B.1 ²⁴¹Am, Chronic Toxicity Study (continued)

		6 9 4 0 5 0 9 5 6 9 6 9 5 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				2					FIBROSARC. (SKELETON), MEPATIC CELL CARC.											2		(KIDNEY)										
				TEBRA		FIBROSARCOMA (LIVER)									(LIVER AND KIDNEY)						TEPEN 1118	(KIDNEY AND THYROID)	THROMBOENBOL I SH	.IVER NESOTHELIMM, DEGENERATION (KIDNEY)		WEL. 2MA				(LIVER)			(LIVER AND KIDNEY)	
	COPPENTS	OSTEOSARCONA	OSTEOSARCONA	COLLAPSED VERTEBRA	OSTEOSARCONA	OSTEOSARCOMA.	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCOMA.	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	DEGENERATION	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA,	DEGENERATION	OSTEOSARCONA,	LIVER NESOTH	OSTEOSARCONA	HEPATIC NESOTHEL, 294	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	DEGENERATION	OSTEOSARCONA	OSTEOSARCONA	DEGENERATION	
	SKELETON (GY)	3.21	3.93	2.39	2,93	3.67	2.54	×.8	8.4	6.07	7.54	5.53	5.29	7.15	6.67	5.36	5.65	29.6	99.9	47.74	50.6	17.7	12.6	18.2	14.8	15.2	17.6	14.6	18.0	6.98	13.9	15.9	14.5	•
į	INJECTION INTERVAL	3055	3341	2476	2773	3424	23.18	1917	1510	1736	2127	1696	1764	1876	1863	<u>8</u>	1533	1558	1884	1198	Ē	1533	1132	1527	3 56	1323	1388	1415	1569	633	1300	1381	401	•
	DATE INJECTED	NOV-25-69	FEB-24-70	JUN-17-73	JUL-16-70	JUL-16-70	AUG-25-70	SEP-15-66	SEP-15-66	HAR-21-68	MAY-08-68	JUL -02-68	JUL-02-68	HOV-25-69	FEB-24-70	APR-22-70	JUN-17-70	JUL-16-70	AUG-25-70	DEC-02-70	99-92-NOr	28-66	MAR-21-68	MAY-08-68	JUL-02-68	JUL-02-68	HOV-25-69	FEB-24-70	APR-22-70	APR-22-70	JUL-16-70	AUG-25-70	JUN-28-66	**
_ :	INJECTED (KDQ/KG)	3.55	3.46	3.57	3.5	3.65	3.56	11.3	11.5	11.4	11.5	11.3	10.9	11.3	10.9	11.2	11.4	11.5	1.1	11.2	33.2	33.7	34.2	¥.3	33.0	33.4	33.8	32.9	33.3	33.5	33.9	33.7	103.	
INJECTION	INJECTED (UCI/KG)	0.0960	0.0935	0.0965	0.0964	0.0987	0.0962	0.305	0.310	0.307	0.310	0.305	762.0	0.306	0.295	0.302	0.308	0.312	0.301	0.304	0.897	0.911	0.924	0.927	0.893	0.905	0.914	0.890	0.899	906.0	0.916	0.912	2.78	
	WEIGHT (KG)	9.54	9.12	74.3	10.6	5.0	10.6	15.0	1.9	9.6	12.4	1.0	3.4	10.5	1.8 8.	10.0	5.45	11.3	11.2	- 0. E	12.6	9.40	9.87	10.5	10.7	8.87	8.37	1.8	9.37	10.5	13.1	11.3	10.4	1
	AGE (DAYS)	8	25	553	563	263	8	3	<u>%</u>	225	24	117	3 9	84	28 4	245	22 6	£6 7	4 90	245	516	516	225	42	11	117	967	59	58	8	Š	84	517	-
	DOG	MOS 342C	F066W20	MO75420	F084W20	MO85420	F092420	MO05430	F006430	F018L50	M026430	M0364/30	F037/50	MO54430	H067430	F074W30	F075W30	H066430	F093430	M100430	M003W40	F0041140	M017460	F025140	#03414 0	FO35W40	F055W40	MOSSILKO	F076440	M0777460	MOB74 40	F094440	HOO1450	-

MEASUREMENTS MADE TO DATE INDICATE THE LIVER DOSE FROM AM-241 TO BE APPROXIMATELY TWO TIMES THAT TO THE SKELETON.

THE ORIGINAL "T" (TEST) DESIGNATION FOR THE ABOVE ANIMALS HAS BEEN CHANGED TO "M" AND "F" (MALE OR FEMALE) TOXICITY DESIGNATIONS. FOR EXAMPLE, THE MALE DOG ORIGINALLY INJECTED AS TOOINSO IS NOW DESIGNATED MODINSO.

B.2 20Cf, Chronic Toxicity Study

	COMMENTS	REPER IT IS	MYELDID SARCOMA	PNEUMONIA	ACCIDENTAL STRANGULATION	HEART BLOCK/LIVER ATROPHY	DISC PROTRUSION; MELANCHA, CRAL	MANDIARY ADEMOCARCINONA	INFECTION (BACTERIAL)	AMKYLOSING SPONDYLITIS	AXONAL DEGENERATION (BRAIN STEN)	MALIGMANT MELANCHA, ORAL MUCOSA	MESOTHELIONA (PLEURA)	PYELONEPHRITIS	EPIDERHOID CARCINONA (ORAL)	EPIDERHOID CARCINONA (ORAL)	MANBIARY ADENOCARCINOMA	ADEMOCARCINONA (LUNG)	MOSE ADENOCARCINOMA	STATUS EPILEPTICUS	CHOLANGIOCARCINGNA	BILIARY OBSTRUCTION	PHEUMONIA	Hydronephros I s	MELANONA (MOUTH)	OSTEOSARCOMA	EPIDERMOID CARCINOMA (TYMPANIC BULLA)	OSTEOSARCOMA	OSTEOSARCUMA	USIEUSAKUUM	OSTEOSARCOMA	OSTEOSARCOM	OSTEOSARCOMA	OSTEOSARCOM	OSTEOSARCOMA	OSTEOSARCONA	OSTEOSARCOMA
900	SKELETON (GY)							0	0.02	0.03	9.0 0	0.	0.	0.42	0.38	97.0	0.36	0.33	0.16	0.35	0.91	0.82	0.93	0.54	8	2.7	. G	2.28	3:	3:	4.45	7.10	7.25		6.9	7.43	2.97
Š	INJECTION INTERVAL	1877	3122	6967	592	2597	5873	4636	2678	3633	5241	2445	9667	5916	5105	3668	4208	3788	2037	158	4352	3849	77.7	3063	4586	2029	2301	2618		797	3037	1716	2	75	1541	1657	1322
	DATE INJECTED	0CT-23-73	HOV-28-72	HOV-28-72	MAR-05-74	MAY-30-74	OCT-23-73	OCT-23-73	JUL-05-72	JUL-05-72	APR-24-74	APR-24-74	JUL-05-72	OCT-23-73	FEB-29-72	FEB-29-72	MAR-05-74	MAY-30-74	FEB-29-72	DEC-16-71	JUL-05-72	JUL-05-72	DEC-16-71	MAR-05-74	HOV-28-72	DEC-16-71	DEC-16-71	JUL-05-72	DEC-16-71	DEC-16-7	MOV-28-72	FEB-24-71	FEB-24-71	FEB-24-71	FEB-24-71	MAY-30-74	MOV-28-72
101	INJECTED (KBQ/KG)							0.0226	0.0233	0.0233	0.0222	0.0222	0.0237	0.179	0.190	0.192	0.191	0.207	0.189	0.570	0.562	0.570	0.570	0.566	0.592	3.35	3.39	9.50	5.54 1.54	2	3.56	10.7	10.4	10.5	10.5	1.1	10.8
INJECTION	INJECTED (UCI/KG)	:						.00061	.00063	.00063	09000.	0 900 .	79000	.00485	.00514	81500.	.00516	.00559	.00511	.0154	.0152	.0154	.0154	.0153	916.	5060	9160	.0935	5	SIN.	2963	8 8 7	. 28 2	787	.283	.30 02	. 293 293
	LEIGHT (KG)	7.7	10.5	10.1	==	1.0	7.11	9.91	13.1		11.4	2.8	11.6	9.50	12.0	12.6	10.9	11.3	1.8	8.58	11.4	11.5	2.5	8.5	10.6	9.35	:	20.0	?: ?:		0.0	11.6	13.2	13.7	£.	9.12	10.1
	AGE (DAYS)	85	5 2 3	<u>%</u>	205	214	8	8	3	984	3	3	3 3	8	514	514	471	š	514	252	3	984	555	7.7	254	558	222	Ş	× :	<u>ر</u>	254	2 6	<u>8</u>	8 8	88 88	514	254
	NOC SACES	F001600	MD02600	H003600	F004600	F005600	M006600	F001601	M002G01	H003G01	F004G01	F005601	M006G01	F001605	M002G05	MO03G05	F004G05	F005605	#006605	F001G10	M002610	M003610	F004G10	F005G10	M006610	F001620	M002620	M003620	1006620	1005620	#006620	F001G30	M002G30	M003630	F004630	F005630	M006G30

B.3 252Cf, Chronic Toxicity Study

	COMENTS	FIBROSARCONA (SOFT TISSUE)	MANNARY ADEMOCARCINONA	EPIDERMOID CARCINGMA (NOSE)	PYELOMEPHRITIS (KIDNEY)	PNEUMONIA	FIBROSARCONA (SOFT TISSUE)	ADEMOCARCINOMA	UNDETERMINED (NO TUNOR)	BRONCHIOLOALVEOLAR CARCINOMA	NONPRODUCTIVE OSTEOBLASTIC OSTEOSARCOMA, VERTEBRA	PHEUMONIA, EMPYEMA	NEPHRITIS, SENILITY	LYMPHOSARCOMA	THROMBOENBOLISM, PNEUMONIA	MELANCHA (MOUTH), MAMMARY ADENOCARCINOMA	HEMANGIOSARCONA (SOFT TISSUE), ADENOCARCINONA (OVARY)	KIDNEY FAILURE	NEPHRITIS	FIBROSARCOMA (SOFT TISSUE)	MAMBLARY ADENOCARCINOMA, CHOLANGIOCARCINOMA	KIDNEY FAILURE	PLASMA CELL SARCOMA, THROMBOENBOLISM	LIVER ATROPHY, CHOLANGIOCARCINCHA (LIVER)	UNDETERMINED (NO TUMOR)	OSTEOSARCOM	OSTEOSARCOM	OSTEOSARCONA	HEMANGIOSARCOMA (SOFT TISSUE)	MELANCHA (MOUTH)	FIBROSARCOMA (SKELETON)	FIBROSARCOMA (SKELETON)	OSTEOSARCOMA	OSTEOSARCOM	OSTEOSARCOMA	OSTEOSARCOM	OSTEOSARCOM
1000	SKELETON (GY)	; 6 8 8						0.02	0.02	0.03	0.02	0.02	0.03	0.20	0.20	0.19	0.19	0.20	0.20	0.60	3. 0	0.61	0.60	0.71	0.63	3.30	3.47	3.05	3.25	3.35	3.38	8.10	8.14	8.38	8.86	8.47	8.57
Š	INJECTION INTERVAL	3240	3968	580 6	5537	3720	3871	7507	3949	4542	2949	3581	5115	5308	4318	4567	4348	4348	2096	3983	5102	4737	3652	5950	4120	2813	3695	3584	4103	4055	3927	1546	1723	2030	2015	1673	1846
	DATE	FEB-01-72	JAN-03-73	JAN-03-73	FEB-27-73	FEB-01-72	NOV-28-72	JUL-26-72	MOV-02-72	JAN-03-73	FEB-27-73	JUL-26-72	MOV-02-72	JUL-26-72	MOV-02-72	FEB-27-73	FEB-27-73	JUL-26-72	NOV-02-72	SEP-08-71	SEP-08-71	SEP-08-71	SEP-08-71	SEP-08-71	MOV-02-72	JUL-26-72	JAN-03-73	FEB-27-73	FEB-27-73	JUL-26-72	NOV-02-72	MAR-03-71	MAR-03-71	MAR-03-71	MAR-03-71	NOV-28-72	NOV-02-72
8	INJECTED (KBQ/KG)	; ; ; ; ;						0.0222	0.0237	0.0278	0.0222	0.0222	0.0229	0.194	0.196	0.194	0.192	0.196	0.196	0.603	0.618	0.618	0.611	0.611	0.611	3.41	3.35	3.36	3.37	3.35	3.37	10.7	10.7	8.01	10.9	10.5	8.01
INJECTION	INJECTED (UCI/KG)							09000	79000.	52000.	09000.	09000.	.00062	.00525	.00529	.00525	.00518	.00530	.00529	.0163	.0167	.0167	.0165	.0165	.0165	.0922	.0905	.090	.0910	.0905	.0912	.289	.289	.292	282.	.284	.293
	LE IGHT (KG)	12.0	10.6	9.43	10.6	10.4	10.9	13.0	9.15	1.0	77.6	10.4	10.3	12.2	1.0	8.9	11.2	77.0	1.0	69.6	8.28	89. 83	10.0	12.9	29.6	1.5	9.85	9.16	9.33	10.2	11.4	11.6	10.6	8.66	69.6	1.1	10.2
	AGE (DAYS)	262	242	245	492	262	2 6	867	254	245	765	4 98	254	7	513	511	485	767	254	% %	% %	539	539	539	513	967	245	51	L 2	ž	513	58	583	583	583	254	513
	DOG NUMBER	M001F00	F002F00	F003F00	F004F00	#005F00	#006F00	H001F01	F002F01	F003F01	F004F01	M005F01	M006F01	M001F05	F002F05	F003F05	F004F05	M005F05	M006F05	M001F10	F002F10	F003F10	F004F10	M005F10	M006F10	M001F20	F002F20	F003F20	F004F20	M005F20	M006F20	M001F30	F002F30	F003F30	F004F30	M005F30	M006F30

B.4 253Es, Chronic Toxicity Study

			INJECT 108	3				
						P061	DOSE 10	
8		_	INJECTED	INJECTED		INJECT ION	SKELETON	
HUBBER	(DAYS)	(KG)	(UC1/KG)	(KBQ/KG)	INJECTED	INTERVAL	(eY)	COMENTS
		:					:	
F001E30	2	11.2	0.284	10.5		528	0.15	DEGENERATION (KIDNEY), PNEUMONIA
M003E30	2	1.3		10.7		5167	0.15	UNDETERMINED
HOOKE30	2	7.93		10.9		7697	0.16	PHELMONIA, HYPOTHYROIDISM
F001E50	Ž	8.3		5.45		2876	93:-	MAST CELL SARCOM
F002E50G	3	9.21	2.81	5		5005	7.53	OSTEOSARCOMA
M003E50	٤,	10.4	2.8	. 55	JUN-05-73	4762	1.50	LUNG CARCINONA
****	**********	**********	****					

FOOZESOG SUBSEQUENTLY RECEIVED 11.8 KB9/KG (0.318 UCI/KG) OF CF-249 ON MAY 28, 1974, 7.34 OF THE TOTAL 7.53 GY Were from CF-249.

B.5 239Pu, Chronic Toxicity Study

			RUPTURE (SPLEEN), SENTHONA	AMESTMETIC ACCIDENT	PANCREAS ADEMOCARCINGMA	THYROID ADENOCARCINOMA, MEPHRITIS	ADREMAL CORTEX ADENOCARCINOMA	THRONDOENDOL I SM	RNABOOMOSARCOMA, MANNARY ADENOCARCINONA	CIRCULATORY FAILURE	THROUGOERBOL 15H, HEPHRITIS	LYMPHOGARCOM	FIBROGARCONA (SOFT TISSUE)	CARCINOM (TESTES), NEWANGIOGARCOMA (SPLEEN)	OSTEOSARCOM	ENDOMETRITIS	TRANSITIONAL CELL CARCINOMA (URIMARY BLADDER)	SENILITY	SENILITY THRONDOENBOLISH, NELANONA (EYE AND ORAL)		FIBROGARCOMA (TURBINATES)	PLEURAL EFFUSION	ACRTIC BODY TUROR	MEPHRITIS	STATUS EPILEPTICUS, BILIARY OBSTRUCTION	HELANONA (HOUTH)	CARDIAC INSUFFICIENCY	SENILITY	SENIL 1TY	INAMITION, UNDETERMINED (NO SKELETAL TUNOR)	MELANONA (MOUTH), MEPHRITIS	INABILITION, UNDETERMINED (NO SKELETAL TUNCK)	ASIROCY IOM	FARATORS (NO SKELEIAL IURIX)	STATUS EPILEPTICUS	DEGENERATION (KIDNEY), FASCIITIS	INAMITION, UNDETERMINED (NO SKELETAL TUNDR)	PANCREATITIS	TRANSITIONAL CELL CARCINONA (URINARY BLADDER)		CARCINOMA (AORTIC BODY, PROSTATE), SENILITY	PIEURONIA	PANCREAS ADENOCARCINONA, SENINONA	PERIARTERITIS
52	SKELETON (CV)																																											
1	INJECTION	INIERAL	4003	2735	5362	5138	9907	448	2344	7204	3032	3971	3821	4143	5361	4105	3750	4736	5535	6787	5203	3748	4157	4403	1763	3629	1840	2046	4923	25	2487	4139	7	500	9	2544	25	4485	3623	3382	1909	5113	1957	3377
	DATE	INSECTED	DEC-01-52	MAR-02-53	JUN-01-53	SEP-16-53	OCT-14-53	MAY-12-54	OCT-25-54	MAR-15-55	SEP-09-55	MOV-22-55	APR-24-56	MAY-29-56	MA-9-5	MAY-12-64	OCT-23-64	APR-07-65	99-90-AON	99-62-NON	99-62-AON	DEC-29-66	JAN-26-67	MAY-25-67	HAY-12-64	MAY-12-64	MAY-12-64	SEP-21-65	SEP-21-65	NOV-18-65	JAN-26-67	MAR-22-67	MAR-22-6/	10-77-MM	19-C2-14H	MAY-25-67	JUN-22-67	JUN-22-67	HOV-16-67	HOV-16-67	DEC-21-67	DEC-21-67	JUL-30-68	JAN-09-69
		(New/Ne)																																										
INJECTION	INJECTED	(OCI/NG)																																										
	LE IGHT	() () () () () () () () () ()	8.9	6.36	10.8	10.7	K.	5.39	6 .8	10.9	- - -	1.0	10.3	10.9	4.47	6.6	12.1	13.9	12.2	1.4	13.1	8.50	13.3	10.6	1.8	12.6	11.2	10.3	12.1	1.7	13.5	12.7	 		D. :	12.2	1.7	10.4	10.7	12.2	7.01	10.1	10.3	4.1
	AGE		#	ž	515	3	3	Ş	S1S	ž	ž	3	3																					\$	9	ĝ	204	2	25	\$ <u>\$</u>	26 5	205	ჰ	225
	8		M001P00	F002F00	HOGSPOO	H004P00	1005100	1006900	F007F00	004800M	F009F00	F010100	101 1700	H012P00	F013F00	F014P00	MO15P00	H016P00	H017P00	F018P00	M019P00	F020 P 00	M021P00	F022P00	MO31P008	H031P00C	MO32P008	M032P00C	H033P008	M033P00C	#034P00	M034P00C	1035700 1015700	HUSSPOOL.		1036P00C	H0377008	MO37700C	M038P008	M038P00C	MO39P008	MO39POOC	MO40400M	MO40P00C

B.5 23Pu, Chronic Toxicity Study (continued)

		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	5					M (COME)													R), PERITONITIS		THE ADDITIONAL	one receipment.						DEA CELL TURDR								
	COMENTS	PANCREATITIS	LYMPHOSARCOMA PATESTIANS CARCINOMA BILLANN CARTENTION	INICOTINAL CARCINATA, DILIARI DEGIMANTAM PRESENTA	STATUS EPILEPTICUS	TRANSITIONAL CELL CARCINGIA, BLADDER	LYMPHOSARCOMA	HYDROCEPHALUS	HYPOTHERMIA, BRONCHIOLOALVEOLAR CARCINOMA (LUMG)	ENDOMETRITIS, PANCREATITIS	PERFORATION (INTESTINE)		UNDETERMINED (NO SKELETAL TURCK)	REASSIGNED, SEE FOLINGUM	REASSIGNED SEE MOIGNAUM	REASSIGNED SEE 1241930+	ACCIDENTAL STRANGULATION	REASSIGNED, SEE 1247P30+	THRONBOENBOL I SH	REASSIGNED, SEE 1251P30+	STATUS EPILEPTICUS	TRANSITIONAL CELL CARC. (URINARY BLADDER), PERITONITIS	CHONDROSARCOMA (MUMERUS) Damidelatir dystonomy	FPINEMAIN CAPE (FPANTA) CIMIC) CLIBBURE ANEMARAN	LYPHOSARCOMA	MELANONA (MOUTH)	NEPHR1718	MANUARY ADENOCARCINOMA	ACCIDENTAL STRANGE ATION	STATUS EPILEPTICUS	TRANS. CELL CARC. (URIN. BLADDER)GRANUCKA CELL TUNCR	BONE HARROW APLASIA	PANCREATITIS	UNDIFFERENTIATED MALIGNANCY (ABDONEN)	PHEUMONIA	ARKYLOSING SPONDYLITIS	HENANGIOGARCONA (SOFT TISSUE)	MPRETTS.	PULNONARY ENDOLISH, MEPHRITIS
5	SKELETON (GY)																				6	0.02	20.0 0.0	9.0	0.05	0.02	0.05	0.0	9.5	.0	0.05	0.05	9.0	0.05	0.02	, o	20.0	0.05	0.02
į	INJECTION INTERVAL	28 3	2562 2926	8797	1537	5584	3715	5963	5718	4547	89	2202	1964				1353		2660	į	5736 2736	7644	5064	353	9757	4221	5519	3636	2	276	5272	4156	3292	5036		200 200 200 200 200 200 200 200 200 200	7	4412	4025
	DATE INJECTED	JAN-17-69	APR-24-74	APR-24-74	AUG-29-74	AUG-29-74	AUG-29-74	AUG-29-74	MAR-01-72	MAR-01-72	APR-25-72	APR-25-72	MM-D-72				APR-27-76		APR-27-76	•	DEC-16-76	MAR-04-04	MAY-12-04	APB-07-65	25-85-XX	NOV-29-66	NOV-29-66	DEC-29-66	79-52-XV	144-2-2 144-2-2	NOV-18-65	NOV-18-65	99-80-AON	MAY-25-67	JUN-22-67	JUN-22-67	DEC-21-67	Aug-08-73	DEC-02-70
	INJECTED (KDQ/KG)																				0	0.022	0.0204	0.02	0.0211	0.0259	0.0233	0.0278	21.0	0.0252	0.0218	0.0292	0.0215	0.0218	0.0222	0.0218	0.0215	0.0211	0.0266
INJECTION	INJECTED (UCI/KG)																					•	0.00055	•			•	0.0007 2007 2007	•					•	•	0.00059			
	LE IGHT (KG)		2 :	12.7	11.5	1.5	11.3	11.7	7.10	۶. ا	3.97	3.67	4.57				8.3		4.07	;	8.	\$.	20.5		12.2	9.58	1.6	9 : 8 :	8	12.2	10.4	10.8	=	 	R	 	10.5	6.0	8.34
	AGE (DAYS)	3	R.	2	267	167	164	167	26	26	5	2 2	5				85	1	8	;	5	5	35	35	25	536	238	85	3	516	249	249	K	8	£ ;	2 5	2 64	8	3
	BOG BLEER BLEER	#041P00		004770	MO45P00	MO46P00	MO47P00	MO48P00	MO81900Y	F062P00Y	FORTPOOY	F064P00Y	M066700V	FIGHEOOV	F104500V	10490F	M105P00Y	F106P00Y	M107P00Y	F100P00Y	#109P00Y	F015P01	104704	264	200	F018P01	104610	F020P01	5022001	H031P01B	F032P018	M033P018	F034P018	M035P018	F036P018	#03/P01	#039P01	#044P01	F044P01C

B.5 23 Pu, Chronic Toxicity Study (continued)

		E. PECKOLIA	DTR	TESTIME)	RITOHITIS	(SOFT T1SSUE)	•		ILEUS (INTESTINE), PANCREATITIS	RITIS	ATHEROSCLEROSIS, ARTERIOSCLEROSIS				UNDETERMINED (NO SKELETAL TUNCK)		O TUNDR)		~		CELL TUMORS	(80FT TISSUE)	WASSAY ADENOCARCINCHA, THRONDOEMBOLISH		i	MEY)		ARCINOM				ENDOMETRITIS, PERITONITIS, MEPARITIS	VER		LYMPHOSARCOMA, PERFORATION (INTESTINE)	(SOFT TISSUE)		RCINOMA	PLASMA CELL SARCOMA (SOFT TISSME & SKELETOM)	DEGENERATION (LIVER), MADDARY ADENOCARCINONA	EATITIS	(SOFT TISSUE)	RCI WOWA
		KIDNEY FAILURE, PNEURONIA	ABCESSATION (TOOTH)	OBSTRUCTION (INTESTINE)	ENDOMETRITIS, PERITONITIS	HEMANGIOSARCONA (SOFT TISSUE)	PHEUMORIA (LUNG)	NEPHR 1115	ILEUS (INTESTIM	ENTERITIS, MEPM	ATHEROSCLEROS1S,	ENCEPHAL 1718	LYMPHOGARCOMA	MEPHE IT IS	UNDETERMINED (N	THROMBOENBOL I SM	UNDETERMINED (NO TUNOR)	LYMPHOSARCOMA	MELANDIN (MOUTH)		METASTATIC MAST	HEMANGIOSARCONA (SOFT TISSUE)	HAMMARY ADEIROCAL	MAST CELL SARCOM	PHEUMONIA	HEMORRHAGE (KIDNEY)	RHABDONYOSARCOM	PROSTATE ADENOCARCINOMA	LUNG CARCINGMA	I VIOLITIES I		ENDOMETRITIS, PEL	HYXOSARCOMA (LIVER)	ENTERITIS	LYMPHOSARCOM, 1	HEMANGIOSARCONA (SOFT TISSUE)	PHEUMONIA	HAMBARY ADENOCARCINGHA	PLASMA CELL SAR	DEGENERATION (L.	NEPHRITIS, PANCREATITIS	HENANGIOSARCONA (SOFT TISSUE)	HEPATIC CELL CARCINON
10 TO	SKELETON (GY)	0.03	0.05	0.03	0.05	0.02	6	0.03	0.05	9	0.07	8	0.03	0.07	9.8	0.07	8.	9.02	6	9. 8	0.02	0.03	0.05	0.07	6.0	9.0	8		9.0	9.5	56	0.05	9.0	5.0	6.0	0.03	0.05	0.05	0	0.07	0	0.03	0.0 0
1928	INJECTION	3762	5517	3630	4409	4507	4858	3222	3221	3963	4803	2841	4391	5319	4392	4299	4708	4080	0 79 2	4971	5378	3591	3881	5241	2776	4615	2068	3634	4515	7004	ž X	4330	5245	3291	3351	2804	6287	1874	3546	2006	2 88 0	2916	4911
	DATE INJECTED	MAY-30-74	AUG-08-73	MAY-30-74	AUG-08-73	AUG-08-73	MAY-30-74	MAY-30-74	MAR-04-64	MAY-12-64	OCT-23-64	APR-07-65	MOV-08-66	MOV-29-66	MOV-29-66	DEC-29-66	JAH-26-67	MAY-25-67	MAR-04-64	MAY-12-64	MAY-12-64	NOV-18-65	FEB-04-65	FEB-04-65	MOV-18-65	HOV-18-65	NOV-18-65	99-90-A	99-90-0M	00-00-AOM	79-73-13E	JUN-22-67	MAY-25-67	JUN-22-67	NOV-16-67	NOV-16-67	NOV-16-67	MOV-16-67	NOV-16-67	DEC-21-67	DEC-21-67	DEC-02-70	DEC-21-67
75	INJECTED (KBQ/KG)	0.0451	0.0189	0.0444	0.0211	0.0189	0.0444	0.0459	0.0762	0.0640	0.0744	0.0603	0.0633	0.0740	0.0733	0.0829	0.820	0.0651	0.0685	0.0625	0.0688	0.0659	0.0677	0.0714	0.0659	0.0651	0.0659	0.0629	0.0636	9,00	644	0.0648	0.0655	0.0655	0.0540	0.0551	0.0555	0.0566	0.0562	0.0781	0.0651	0.0792	0.0640
INJECTION	INJECTED (UCI/KG)	0.00122	0.00051	0.00120	0.00057	0.00051	0.00120	0.00124	0.00206	0.00173	0.00201	0.00163	0.00171	0.00500	0.00196	0.00224	0.00181	0.00176	0.00185	0.00169	0.00186	0.00178	0.00183	0.00193	0.00178	0.00176	0.00178	0.0012	0.00172	25.50	2 E	20.00	0.00177	0.00177	0.00146	0.00149	0.00150	0.00153	0.00152	0.00211	0.00176	0.00214	0.00173
	WEIGHT (KG)	13.5	9.00	13.2	•	¥.	10.9	7.	7.6	•	6.0	1.4		9.6		8.30	12.1	8.30	10.7		9.35	13.6		\$	14.5	12.5	12.7	12.7			. C	9.10		10.4	8.74	10.6	1 9.7	7.14	0.0	.S		1.6	\$. \$
	AGE (0 A 73)	ğ	8	ž	8	Š	254	క్డ	516	516	Š	Š	533	55 55 56	530	232	22	Ş	515	4 25	428	%	Š	8	513	%	513	553	25	2 8	20	204	2	563	28	22	23	22	517	205	8	25	Ŗ
	DOG RUGGER	#045P018	F045P01C	#046P01B	F046F01C	26,40	7048P01	F049F01	F013P02	F014P02	H015P02	#016#02	1017702	F018P02	H019P 02	F020P02	M021P02	F022P02	MO31P028	F031P02C	F031P02D	M032P02B	F032P02C	F032P02D	M033P02B	F033P02C	F033P02D	1034P028	F034P02C	1034400	FORSBOOL	F035P02D	M036P02B	F036P02C	F036P02D	MO37P028	F037P02C	F037P02D	M038P02B	F038P02C	F038P02D	M039P02B	F039P02C

B.5 239Pu, Chronic Toxicity Study (continued)

INJECTION

	COSSENTS	RHABDOMOSARCOMA	CHONIC INTERSTITIAL MEDMEITIS	USIEUSAKUTA, VASIRA ADERGUAKUINUM	MORNOLAKUINOM (MAMA) IKAUMEIIID Mammady angharanginom	SPECIAL STUDY	MELANCHA (ORAL CAVITY)	KIDWEY FAILURE, ADREMAL HYPOPLASIA	PARALYSIS (CERVICAL SPONDYLOSIS)	GLONERULOMEPHRITIS	UNDIFFERENTIATED MALIGNANCY (SOFT TISSUE)	MANNARY ADENOCARCINOMA	MANNARY ADEMOCARCINOMA	CHONDROSARCONA (TURBINATES + MUMERUS)	THRONDOENBOLISM, THYROID CARCINONA	CHRONOPHOBE ADENOVA	ANKYLOSIING SPONDYLITIS	HEMANGIOSARCOMA (SOFT TISSUE)	OSTEOSARCOM	EPIDERMOID CARCINOMA (MOUTH)	DEGENERATION (KIDNEY), NEWORRHAGE (HYPOTHALANDS)	ANKYLOSING SPONDYLITIS, PHEUMONIA	CHRCHOPHOBE ADENOMA, SENILITY	PWEUMONIA	STATUS EPILEPTICUS	SPECIAL STUDY		POPUNKY CAKCINCHA EBECTAL STIDY		OSTEOSARCOM	EPIDERMOID CARCINONA (MOUTH)	UNDETERMINED (NO SKELETAL TUNOR)	PERITOHITIS, MANBLARY CARCINGMA	INARITION	PARLIACKIA	SURGICAL COMPLICATIONS	ENCOMETRITIS	TRANSITIONAL CELL CARCINGNA (URINARY BLADGER)	CHRONIC INTERSTITIAL PWEUMONIA	SPECIAL STUDY	LUMG ABSCESS, LIVER DEGENERATION	STELLAL SILDS
DOSE TO	SKELETON (GY)	9.	9,6	5 2	8 8	90	0.07	9.0	0.0	0.07	9.0	0.11	0.13	0.16	0.20	0.15	91.0	0.18	0.18	0.14	0.18	0.19	0.18 5.18	0.16 3.16	9.0	0.12	2:	25		0.15	0.16	0.12	0.16	0.20	0.22	0.18	0.15	0.15	2.5	5.6	9.5	•
POST	INJECTION INTERVAL	240	4752	9067	7070	76	2069	4457	3631	5735	5624	2388	3498	4537	4588	7062	7957	4333	3829	3480	7567	5203	7087	7007	200	976	227	100	7027	38 38 38 38	4956	3488	4350	27	2/1	3618	417	4393	%	Ş	6/24	ļ
	DATE INJECTED	DEC-21-67	AUG-08-73	MEP-04-09	DFC-02-70	HOV-17-71	APR-24-74	APR-24-74	APR-24-74	APR-24-74	APR-24-74	MAR-04-64	SEP-23-70	NAY-12-64	OCT-23-64	APR-07-65	99-90-AON	NOV-29-66	MOV-29-66	DEC-29-66	JAN-26-67	MAY-25-67	JAN-30-74	JAN-30-74	MAR-04-64	FEB-04-65	MOV-16-65	MOV-16-65	MM-27-67	HAY-25-67	NOV-16-67	NOV-16-67	DEC-21-67	DEC-02-70	DEC-02-70	DEC-02-70	OCT-03-69	OCT-03-69	AUG-08-73	20-02-03	AUG-06-73	10-50-101
	INJECTED (KBQ/KG)	0.0651	0.0673	200.0	0.0884	0.0655	0.06%	0.0681	0.0681	0.0696	0.0662	0.200	0.163	0.182	0.232	0.193	0.187	0.220	0.239	0.205	0.195	0.194	0.199	0.198	0.203	0.212	0.502	0.20	500	0.195	0.168	0.166	0.1951	0.250	0.247	0.247	6.1 6.1	0.178	0.202	0.135	0.223	?
	INJECTED (UC1/KG)	0.00176	0.00182	0,000	0.00.0	0.00177	0.00188	0.00184	0.00184	0.00188	0.00179	0.00240	0.00495	0.00493	0.00627	0.00521	0.00206	0.00594	0.00645	0.00553	0.00526	0.00525	0.00539	0.00536	0.00549	0.00572	0.00340	0.00559	0000	0.00527	0.00454	0.00448	0.00528	0.00675	0.00668	0.00668	0.00484	0.00480	0.00546	0.0030	0.00004	
	LEIGHT (KG)	٠. ۲	9.42		- 0	11.6	12.0	11.6	11.6	11.4	1.1	9.93	11.2	8	8.41	12.6	13.4	. 9	÷.	9.30	8.8		2.6	8.		, i	2 :	- ¢	2 2	11.5	8.39	10.5	6. 6.	13.1 1.2	12.2	2.4	9!	10.7	12.0	<u></u>	9 6	?
	AGE (DAYS)	8	ž		É	3	164	3	2	482	28	516	2	516	Š	20	533	230	230	232	238	3	200	8	55	3	2 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		3 5	2	517	517	8	242	242	542	545	537	8	‡ §	, 1,	j
		F039 P 020	HO42P028	1042F0ZC	F04 7602C	MO44P02	M044P02C	MO44P02D	M045P02B	M045P02C	MO46P02B	F013P05	F013P05A	F014P05	#015P05	H016P05	#017P05	F018P05	#019P05	F020P05	M021P05	F022P05	#025P05	#026P05	MOS1POSB	F031P05C	MUSCPUDE FORTROOFE	F035F05B	FORSBOSB	MO36P058	F037P058	M038P05B	F039P05B	M042P05B	#042P05C	F042P050	F043P058	F043P05C	HO43P050	8C04440M	FO44PO5C	

B.5 23 Pu, Chronic Toxicity Study (continued)

		1 1 1 1 1	INJECTION	3	8 9 8 8 8	Tag	DOSE TO	
	AGE (DAYS)	3	INJECTED (UCI/KG)	INJECTED (KBQ/KG)	DATE INJECTED	INJECTION INTERVAL	SKELETON (GY)	COMENTS
F045P05C	3	10.0	0.00516	0.191	MOV-17-71	32	0.0	SPECIAL STUDY
MO46P05B	\$	_	0.00336	0.124	9-50-Mnr	7	0.0	SPECIAL STUDY
F046P0SC	25		0.00516	0.191	MOV-17-71	_	0.0	SPECIAL STUDY
1047 05	3	÷.	0.00524	0.194	AUG-08-74	2305	0.10	ABSCESS (LUNG), EMPYENA
HO48P05	25 25		0.00546	0.202	AUG-08-74	4809	0.18	Intervertebral disc prolapse
F049P05	269			0.199	AUG-08-74	3240	0.13	ENDOMETRITIS
F050P05	3 8			0.200	AUG-08-74	4576	0.17	KIDNEY FAILURE
HO51P05	28			0.204	AUG-29-74	7272	0.17	THROMBOCHBOLISM (PORTAL VEIN)
M052P05	50			0.203	AUG-29-74	3205	0.13	FIBROSARCONA (SOFT TISSUE)
H053P05	967			0.191	AUG-29-74	4004	0.15	OSTEOSARCOM
H054P05	767			0.204	AUG-29-74	24.78	0.11	PNEUMONIA, EMPYEMA
F055P05	533			0.202	OCT-17-74	2063	0.13	ACUTE PREUMONITIS
F056P05	533			0.204	0CT-17-74	7162	0.13	INAMITION
6057205	523			100	OCT-17-74	9917	0.16	AORTIC BODY CARCINOMA DEGENERATION (LIVER)
FINIBUSY) E			228	SED-10-74	2027	0 . 1	ADEMOCRACIANMA
W10260KV	3 5			220	SED-10-74	7		MEDIADOCT EDUCTO. CITA ANGLOCABETHANA 11769
100201F	2 5			0.267	SEP-17-14	24.67		TETANGELENGELS, CHARACTECANCINCTAL, LIVER THANH TO THE TANK THANH THE TANK THANH THE TANK THANH THE TANK THANH THA
10047014 10047014	\$ 8	7 7		0.220	ACP - 19-74	700		INVESTIGATION AND PROPERTY AND
	2 8			*	AFK-2/-/0	777	- 6	ANICODOS (KIDRE), MERCINCIA (FILOTIAN)
FUSE COL	6 8			12.0	\$/-07-AOM) ()	3 :	
F100-051	6		0.0030	0.215	#OV-26-74	\$07	2:	GRANDLOSA CELL CARCINOSA
F107P05Y	\$ 3		0.00555	502.0	SEP-22-76	2000	0.13	CARCINOM, MANDARY GLAND
MICOPOSY	<u> </u>	74.4	0.00484	6.15 6.15	DEC-16-76	1793	6.6	DECEMENATION (PANCHEAS)
F109P05Y	8		0.00542	0.201	APR-20-78	5339	7.0	MEMARGIOSARCOMA, SPLEEN
M110P05Y	8	4.48	0.00521	0.193	MAR-09-78	7863	0.13	LYMPHOSARCOMA
F111P05Y	28		0.00533	0.197	MAY-23-78	5412	0.14	MELANCHA, MOUTH
F014P07	533		0.00947	0.350	JUL-22-69	97.27	0.31	PHEUMONIA
M015P07	533		0.00941	0.348	JUL-22-69	K	0.24	CHONDROGARCOMA (SKELETAL, TURBINATES)
M016P07	516		0.0102	0.377	SEP-04-69	3573	0.27	REPATITIS
H017P07	240		0.0103	0.381	OCT-03-69	3938	0.30	TRANSITIONAL CELL CARCINGNA, CHRONOPHORE ADENONA
F018907	53		0.00942	0.349	JUL-22-69	£823	0.32	MEPHRITIS, DEGENERATION (LIVER)
1019907	50		0.0104	0.385	SEP-23-73	1737	0.16	STRANGULATED MERNIA
F020P07	521		0.00926	0.343	JUL-22-69	3718	X	FIBROSARCONA (LIVER)
M021P07	\$	•	0.0104	0.385	SEP-23-70	5212	0.37	GLAUCOMA, SENTLITY
F022P07	538		0.0108	0.400	SEP-04-69	4657	0.35	UNDETERMINED (NO TUNOR)
F023P07	538		0.0108	0.400	SEP-04-69	1844	0.34	OSTEOSARCOMA, PHEUMONIA
F024P07	516		0.0110	0.407	SEP-04-69	3861	0.31	OSTEOSARCOMA
M025P07	506		0.0117	0.433	AUG-08-73	2042	0.20	STATUS EPILEPTICUS
M026P07	4	10.2	0.0112	0.414	SEP-20-73	4023	0.33	OSTEOSARCONA
M0277907	767		0.0116	0.429	SEP-20-73	5598	77.0	CHRONIC INTERSTITIAL NEPHRITIS/BRONCHIOLOALVEOLAR CARC
F028P07	87		0.0110	207.0	SEP-20-73	4512	0.35	BILIARY OBSTRUCTION, SUPPLIENTIVE CHOLANGIOMEPATITIS
F029P07	763	8.63	0.0113	0.418	SEP-20-73	4210	N.O	PHEOCHRODOCYTOMA
F030P07	784		0.0113	0.418	SEP-20-73	7579	0.34	OSTEOSARCOMA, MYELOPROLIFERATIVE DISEASE
MO31P07	521	13.2	0.00956	0.354	DEC-04-73	4253	0.29	LYMPHOSARCOMA
1			1		! !	į		

B.5 239Pu, Chronic Toxicity Study (continued)

INJECTION TO THE TOTAL TO THE T	(KBQ/KG) INJECTED INJECTION SKELETON	.00967 0.358 DEC-04-73 3496 0.25 PROSTATITIS.PERITORITIS	1103 0.381 JAN-30-74 4607 0.35	0.26 0.362 DEC-04-73 57-11 0.27	1960	0.270 0.570 DEC-04-73 5731 0.57	0995 0.368 DEC-04-73 4235 0.30	10969 0.359 DEC-04-73 4795 0.32	0990 0.366 DEC-04-73 4074 0.29	1105 0.389 JAN-30-74 2750 0.23	0.392 JAN-30-74 4235 0.32	0.392 JAN-30-74 4942 0.36	0.389 JAN-30-74 4285 0.32	0104 0.385 JAN-30-74 4362 0.32 (0.389 JAN-30-74 4655 0.34	775C 5/-05-WYP 195'D	0.366 MAR-05-74 34.05 0.25	0.414 AUG-29-74 4030 0.33	0.389 AUG-29-74 5594 0.40	0.555 DEC-01-52 4572 0.48	0.603 MAR-02-53 4810 0.55	0.611 JUN-01-53 4292 0.51	0.514 SEP-16-53 4549 0.45	0.525 OCT-14-53 1539 0.20	0.518	0.618 OCT-25-54 3981 0.48	0.636 MAR-15-55 3367 0.44 (0.622 SEP-09-55 2257 0.32	0.562 MOV-22-55 5649 0.41		0.566 SEP-03-58 5277 0.55	0.522 JUL-22-69 4185	0.588 SEP-04-69 3596 0.42	0.611 SEP-04-69 4211	0.559 OCT-03-69 4690 0.50	0.518 JUL-22-69 4788 0.47 (0.588 SEP-23-70 5217 0.57	0.522 JUL-22-69 3482 0.37	.0156 0.577 SEP-23-70 3734 0.43 OSTEOSARCOMA
INJECTION	:	2960		62600	1960	2000	266	6960	06600	55				3 5											0.0160														
	AGE WEIGHT (DAYS) (KG)	521 9.46	•	521 10.1																					0.11 504														
	•	M032P07	M033P07	M034P07	F055PU/	7030504 M037807	F038P07	F039P07	M040P07	MO41P07	M042P07	MO43P07	F044P07	MO45P07	F046407	104/201 10/2014	2006901	F050P07	F051P07	M001P10	F002P10	H003P10	H004P10	F005P10	F004104	F007P10	M006P10	F009P10	F010P10	101 101 101 101 101 101 101 101 101 101	0197104	F014P10	M015P10	M016P10	M017710	F018P10	M019P10	F020P10	M021P10

B.5 239Pu, Chronic Toxicity Study (continued)

	CONNENTS	CHRCHOPHOBE ADENCHA	OSTEOSARCOMA	HEMANGIOSARCONA (NON-SKELETAL)	THROMBOETISM (PULMONARY)	PARALYSIS (SPONDYLITIS)	PERSISTENT AORTIC ARCH		KHABUUNTUSAKUUNA Pabriikhaa Diiiiitas	BILIARY CYSTS	CARCINOMA, THYROID	MAST CELL TUMOR, SKIN		FIBROSARC. (SOFT TIS), MAMM. ADENOCARC. CHOLANGIOCARC.	DSTEOSARCOMA, FIBROSARCOMA (SKELETOM)	FIBROSARCOMA (ORAL)	CHOLANGI OCARCI NOMA	OSTEOSARCOMA	OSTEOSARCOM	CHROMOPHOBE CARC., BIL. OBSTRUCTION, PROS. ADENOCARC.	OSTEOSARCOMA	OSTEOSARCOMA	OSTEOSARCOMA	CHONDROSARCONA	OSTEOSARCOMA	OSTEOSARCOM	CATENCE	CHOLANGIOCARCINOMA	LYMPHOSARCOMA	CHONDROSARCOMA, OSTEOSARCOMA	CARDIONYOPATHY (HEART), CHOLANGIOCARCINONA (LIVER)	MEPATITIS	TRANSITIONAL CELL CARC. (URIMARY BLADDER), NEPHROSIS	ADEROPA, PITOLIANT	THRUMOUTHOUTH (AUX AUTHOUTE)	DEBENDEATION (INTENTINE)	MEDATORILL AD DECEMBRITAN I IVER	ADENOCARCINGMA. COLOM	HEPATOCELLULAR CARCINOMA, LIVER	HAST CELL SARCOMA, ABDONEN	HAMMARY ADEMOCARCINOMA
3000	_	0.52 CF	_	_		_ `		•	0.50		_	_	_		_		_	_	_		_	_	_	_	_	2,48		_	_	_	_				· · ·				_	_	_
Š	INJECTION INTERVAL	4508	3308	4793	959	3549	2 5	200	5417	5333	5839	4918	7620	3752	2990	3381	4028	3025	3430	3430	3312	2659	2221	3353	3282 3500	2500 747	4214	2777	2973	4373	4834	3005	5912	6000	# O# 2	2000	5610	4457	5017	5118	2163
	DATE INJECTED	SEP-04-69	SEP-04-69	AUG-08-73	SEP-19-74	SEP-19-74	7-12-AON	74 CO 400	MAR-02-76	OCT-08-76	DEC-16-76	MAR-09-78	MAY-23-78	JUN-10-75	JUL-06-77	MAY-09-78	MAY-09-78	JUN-26-56	NOV-22-55	JUN-26-56	oct - 10-56	JUN-26-56	JUN-26-56	OCT-10-56	0C1-10-56	OCT-10-56	SEP-03-58	APR-24-56	oct-10-56	SEP-03-58	SEP-19-74	SEP-19-74	MOV-21-74	APR-21-10	MOV-24-76	SED-24-76	OCT-08-76	APR-20-78	JUL - 11 - 78	JUL-11-78	JUN-24-75
8	INJECTED (KBQ/KG)	0.603	0.603	0.622	0.633	0.633	0.50	0.00	0.525	0.718	0.540	0.574	0.585	0.585	0.644	0.603	0.585	1.78	1.59	1.83	2	 .82	2.	2	\. - -	5.6	69	1.80	1.82	ا ت	2.01	2.02	3.5	<u>.</u> .		2 %	K	1.89	1.72	1.74	1.69
INJECTION	INJECTED (UCI/KG)	0.0163	0.0163	0.0168	0.017	0.0171	0.0157	0.0130	0.0143	0.0194	0.0146	0.0155	0.0158	0.0158	0.0174	0.0163	0.0158	0.67	0.0431	0.0495	0.0484	0.0493	0.0459	0.0481	28.0	. c.				0.673	0.0543	0.0245	0.0455	96.0	0.0463	6.02	7	0.0510	9990.0		0.0456
	ME I GMT (KG)	11.2		. !	Ni (N 1		•												8.83						10.72					 						6.33		M	M	2
	AGE (DAYS)	-	516	.		2 5			5 5			8	23	1787	1830	1855	1481	657	527	2 5	673	642	8	<u>د</u> ا	Si	8 R				Ľ	8	5 8	3 6	2 8	2 2	õõ	3 6	88	8	35	1725
	DOG NUMBER	F023P10	F024P10	M025P10	FIOTPIOY	YOL 420TM	F105070V	X 200 11	F1056107	F107P10Y	F106P10Y	M109P10Y	M110P10Y	F501P10+	F502P10+	F503P10+	M507P10+	M001P17	F002P17	M003P17	M004P17	F005P17	F006P17	F007P17	7008P1	F00%17	F010P17A	M011P17	M012P17	M013P17	F101P17	M102P177	F103P17	#104P	1007	7107013	M108017	F109017	M110P177	F111P17Y	F501P17+

B.5 239Pu, Chronic Toxicity Study (continued)

																									IDMEY)														
	COMMENTS	OSTEOSARCOMA, THROMBOENBOL I SM	THROMBOEMBOLISM, (KIDNEY) ANYLOIDOSIS	NAMIARY ADENOCARCINOMA	OSTEOSARCOMA	BRONCHOPHEUMONIA	OSTEOSARCOMA	OSTEOSARCONA (FEMUR)	HEPATITIS	OSTEOSARCOMA	OSTEOSARCONA	OSTEOSARCOMA	OSTEOSARCOMA	OSTEOSARCOMA	OSTEOSARCONA	OSTEOSARCOMA	EPIDERMOID CARCINONA (FRONTAL SINUS)	PNEUMONIA	OSTEOSARCOMA	OSTEOSARCOMA	OSTEOSARCOMA	OSTEOSARCOMA	OSTEOSARCOMA (FEMUR)	AMYLOIDOSIS (KIDNEY)	CHOLANGIOCARCINOMA (LIVER), AMYLOIDOSIS (KIDNEY)	CHOLANGIOCARCINOMA, LIVER	OSTEOSARCUMA	AMYLOIDOSIS (KIDNEY)	CHONDROBLASTIC OSTEOSARCONA, MANERUS	*YXOSARCOMA (LIVER)	PARALYSIS (UNDETERMINED)	GIANT CELL TUMOR, TIBIA	OSTEOSARCOMA	THROMBOEMBOL I SM	OSTEOSARCOMA, THROMBGEMBOL I SM	UNDETERMINED	PHEOCHRONOCYTONA	UNDETERMINED (NO TUNOR)	LYMPHOSARCOMA
1	SKELETON (GY)	1.1	1.32	1.29	°.9	1.20	1.05	- 80.	0.91	0.85	1.98	2.47	2.29	1.98	 8	2.07	5.78	1.50	7.	2.21	1.42	. 8.	2.37	2.16	1.96	72.2	 	2.01	2.0%	1.27	1.38	2.11	1.69	1.36	1.7	2.22	1.35	1.56	1.69
136	INJECTION INTERVAL	3771	3502	3337	2577	3803	3011	3452	2160	2002	2985	2780	3185	2948	2423	2947	2093	1761	2014	2912	1617	2284	0067	\$ 05	4370	2605	4140	4100	4957	5654	2890	4430	2288	1715	1879	3305	1623	2002	2258
	DATE	0"C-16-75	MAY-13-76	JUL-06-77	MAY-09-78	MAY-09-78	JUL-20-78	SEP-07-78	NOV-30-78	NOV-30-78	DEC-01-52	MAR-02-53	JUN-01-53	SEP-16-53	OCT-14-53	MAY-12-54	OCT-25-54	MAR-15-55	SEP-09-55	NOV-22-55	APR-24-56	MAY-29-56	SEP-19-74	SEP-19-74	MAR-02-76	APR-13-76	APR-27-76 APR-27-76	SEP-22-76	DEC-16-76	MAY-09-78	JUL-11-78	JUL-11-78	Z-10-XJ	MAR-05-76	MAR-05-76	JUL-20-78	JUL-20-78	SEP-07-78	JUL-20-78
₹	INJECTED (KBQ/KG)	1.54	1.92	£.	1.63	7.66	1.69	1.59	- - -	1.86	3.16	4.14	3.48	3.19	3.13	3.34	3.69	3.54	3.74	3.58	3.56	3.70	3.63	3.92	3.34	χ. Υ	5. V	3.63	3.09	3.41	3.44	3.54	3.34	3.36	4.07	3.41	3.49	3.45	3.37
INJECTION	INJECTED (UC1/KG)	0.0416	0.0519		•			•		0.0503	•	•				•	0.0996			•	•			•	•		96						•			•	•	-	0.0911
	VEIGHT (KG)	10.0	10.2	11.2	8.8	9.26	10.7	12.6	12.7	1.5	7.61	7.73	10.5	3 .6	8.12	7.54	8.40	2.73	9.72	7.94	10.3	9.98	9.8	5.82 2.82	4.27	3.15	2.5	3.22	3.69	2.60	3.28	3.18	10.2	10.2	8.44	8.87	2.6	2.8	.
	AGE (DAYS)	1732	1826	181	1846	1823	1849	1840	1845	1835	745	425	485	8	28	417	485	9	552	551	28	622	<u>د</u>	2	S :	2 8	3 2	\$	2	8	8	8	1787	1737	1743	1874	1855	1887	1855
	DOG NUMBER	F502P17+	F503P17+	F504P17+	F505P17+	F506P17+	M507P17+	MS08P17+	M509P17+	M510P17+	M001P20	F002P20	M003P20	M004P20	F005P20	F006P20	F007P20	M008P20	F009P20	F010P20	M011P20	M012P20	F101P20Y	M102P20Y	M103P20Y	F104P20Y	F105P207	F107P20Y	M108P20Y	F109P20Y	M110P20Y	F111P20Y	F501P20+	F502P20+	F503P20+	F504P20+	F505P20+	F506P20+	M507P20+

在在在水水水水水水水水水水水水水水水水水水水水水水水水水水水

F502P20 AND F503P20 WERE GIVEN TRACER 8.88 KBQ (0.24 UCI) PU-237 IN THE SAME INJECTION SOLUTION CONTAINING THEIR PU-239.

B.5 237pu, Chronic Toxicity Study (continued)

		1																																									
		FIBROSARCOMA (SKELETOW), CHOLANGIOCARCINOMA	•	HEPHRITIS, THROMBOENBOLISM													(SKELETON)	CHOLANGIOSARCONA PROSTATITIS		(LIVER)							RUCTION						PLICATIONS										
	COMENTS	FIBROSARCOM	OSTEOSARCONA	MEPHRITIS, THE	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCOMA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCOMA	OSTEOSARCOMA	MYXOSARCOMA (SKELETON)	CHOLANGI OSAR	OSTEOSARCONA	F1BROSARCOMA	OSTEOSARCONA	OSTEOSARCOMA	OSTEOSARCONA	OSTEOSARCOMA	OSTEOSARCONA	OSTEOSARCONA	BILIARY OBSTRUCTION	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCUMA OCTEOCABECOMA	MEDWEITIS	OSTEOSARCONA	SURGICAL COMPLICATIONS	OSTEOSARCONA	OSTEOSARCOMA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCOMA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA
95	SKELETON (GY)	22	2.8	1.49	4.25	6.50	5.10	6 .09	4.77	4.98	5.58	۲. ا	6.10	5.06	4.17	5.57	4.31	5.44	4.71	4.01	4.76	3.40	4.23	3.49	4.39	4.07	2.87	4.48	4.19	2. ×		4.02	1.05	3.53	4.20	3.10	89.4	16.3	18.6	13.1	12.4	12.8	12.9
1964	INJECTION INTERVAL	2399	2559	1728	1476	1%1	1604	1950	1504	1617	1627	1721	1894	1546	1198	1659	2590	3368	2942	2290	2935	2410	2564	2101	2692	5 666	1873	2808	1634	004	1070 1070	1419	ž	1421	1545	106	1706	1724	155c	1198	1066	1245	1357
	DATE	SEP-07-78	MOV-30-78	MOV-30-78	DEC-01-52	MAR-02-53	JUN-01-53	SEP-16-53	OCT-14-53	MAY-12-54	OCT-25-54	HAR-15-55	SEP-09-55	HOV-22-55	APR-24-56	MAY-29-56	APR-25-72	APR-25-72	APR-25-72	SEP-19-74	APR-27-76	APR-13-76	APR-27-76	APR-27-76	JUN-01-76	SEP-24-76	DEC-16-76	MAY-09-78	25-17-13 27-17-13	DEC-23-73	MOV-30-78	NOV-30-78	SEP-07-78	SEP-07-78	NOV-02-78	HOV-02-78	NOV-30-78	DEC-01-52	MAR-02-53	JUN-01-53	SEP-16-53	OCT-14-53	MAY-12-54
3	INJECTED (KBQ/KG)	3.39	3.62	3.6	9.6	11.5	10.8	10.8	10.7	10.4	11.6	11.1	1.1	11.0	11.4	11.4	11.8	11.8	11.5	12.3	11.7	9.95	11.7	11.5	11.7	10.9	10.5		70.7		- «	5,11	10.1	10.1	11.2	11.3	11.6	30.5	38.1	7.76	36.0	32.3	30.0
INJECTION	INJECTED (UCI/KG)	0.0917	0.0979	0.0966	0.261	0.312	162.0	0.292	0.288	0.282	0.314	0.300	0.300	0.298	0.309	0.308	0.320	0.319	0.312	0.332	0.316	0.269	0.317	0.312	0.315	0.295	0.283	0.300	282.0	27.0	318	0.312	0.274	0.274	0.304	0.306	0.313	0.823	1.03	0.929	976.0	0.872	0.811
	VEIGHT (KG)	7.91	10.6	12.0	8.8	6.85	8.74	8.51	8.22	8.38	8. 8.	5.7	7.67	8. 8.	10.5	10.2	4.03	×.3	۲. دی	2.88 88	3.93	3.54	4.65	3.86	4.22	3.69	3.56	2.7	10.3 5.5	, ÷	200	8	7.55	11.8	10.2	11.6	1.1	7.61	8.65	9.36	8.74	7.93	9.56
	AGE (DAYS)	1817	1835	Ř	418	422	485	809	650	415	68	\$	552	533	28	622	2	26	26	2	8	8	8	2	2	2	8	8		1.57	1 2 2	1835	1823	1853	1829	1817	<u>z</u>	775	3 8	59	8	650	450
	DOG NUMBER	#508P20+	M509P20+	M510920+	H001P30	F002P30	M003P30	M004P30	F005P30	F006P30	F007P30	MO08930	F009P30	F010P30	M011P30	H012P30	MO61P30Y	M086P30Y	M089P30Y	F101P30Y	M102P30Y	F103P30Y	M104P30Y	M105P30Y	F106P30Y	F107P30Y	M108930Y	F109P30Y	F501P30+	F3027304	150k940F3	F505P30+	F506P30+	M507P30+	MS08930+	M509930+	M510930+	M001P40	F002P40	M003P40	M004P40	F005P40	F006P40

B.5 239Pu, Chronic Toxicity Study (continued)

									OSTEOSARCOMA, CRIPPLING FRACTURE	DEGENERATION (LIVER), ASCITES	•	OSTEOSARCOMA, DEGEWERATION, WENORRHAGE (LIVER)	•	OSTEOSARCOMA, CRIPPLING FRACTURE		DSTEOSARCOMA, EPISTAXIS, CIRCLA ATORY FAILURE			FIBROSARCOMA (SOFT TISSUE)										
	COMENTS	OSTEOSARCOMA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCOMA	OSTEOSARCONA	OSTEOSARCONA, C	DEGENERATION (OSTEOSARCOMA	OSTEOSARCOMA, D	OSTEOSARCONA	OSTEOSARCONA, C	GINGIVITIS	OSTEOSARCOM, E	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA, F	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCOMA	OSTEOSARCOMA	OSTEOSARCOMA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCOMA	ı
	SKELETON (GY)	13.6	12.1	15.1	12.7	14.0	14.3	43.3	54.7	19.0	60.2	68.5	37.7	54.3	39.4	38.5	22.1	23.9	29.5	23.6	21.3	27.4	23.4	25.5	28.7	24.0	29.3	31.03	
	POST INJECTION INTERVAL	108	1157	1343	1241	1288	1463	1324	1576	667	1562	2059	1194	1491	1192	1145	1161	1295	1442	1259	1134	1345	1119	1227	1443	1137	1491	1616	
	DATE INJECTED	OCT-25-54	MAR-15-55	SEP-09-55	NOV-22-55	APR-24-56	MAY-29-56	DEC-01-52	MAR-02-53	JUN-01-53	SEP-16-53	OCT-14-53	MAY-12-54	OCT-25-54	MAR-15-55	SEP-09-55	MAR-01-72	MAR-01-72	MAR-01-72	MAR-01-72	MAR-01-72	APR-25-72							
8 0	INJECTED (KBQ/KG)	35.6	32.8	35.5	32.1	¥.3	31.0	98.8	122.	111.	117.	102.	5.7	111.	99.5	101.	99.5	98.4	7.86	8.5	7.76	109.	108.	110.	108.	110.	107.	106.	
INJECTION	INJECTED (UCI/KG)	0.963	0.887	0.960	998.0	0.927	0.838	2.67	3.30	3.8	3.17	2.77	2.57	5.3	5.69	2.73	2.68	5.66	2.66	2.68	5.6	2.3	2.93	2.8 8.2	2.35	2.97	2.90	2.87	****
	WEIGHT (KG)	8.45	9.22	8.58	6.48	9.56	1.4	8.8	6	8.10	9.18	8.7	8.	8.33	9.55	9.45	3.	8. 8.	8.9	3.55	4.15	K. 7	4.15	3.65	2	4.38	Z.	3.82	*******
	AGE (DAYS)	\$87	651	552	527	88	598	418	1150	515	26	69	404	78 7	767	225	z	ま	Z	\$	*	2	8	2	93	8	2	2	*******
	DOG NUMBER	F007940	M008P40	F009P40	F010P40	M011P40	M012P40	M001P50	F002P50	H003P50	M004P50	F005P50	F006P50	F007P50	M008P50	F009P50	MO81P50Y	F082P50Y	F083P50Y	F084P50Y	F085P50Y	M086P50Y	F087P50Y	F088P50Y	H089P50Y	H090P50Y	M091P50Y	M092P50Y	*****

MO42P008 WAS REMOVED FROM INJECTION TABLES BECAUSE DOG NEVER REACHED YOUNG ADULT AGE.

B.6 224Ra (Quickradium), Chronic Toxicity Study

		yios	DCARCINONA		*190010	# 160000		ASI CELL MACUM, DISSEMINATED		TANCACALITIS PRANCITIONAL CELL CABCINGAL BLANKER		USIARY)	TH)		GALIGNANT MELANONA, MOUTH	SOLID CARCINONA, MANNARY GLAND	SAL CAVITY	W, LUNG	INTERVERTEBRAL DISC DISEASE		THROMBOEMBOLISM, PANCREATITIS	DATICISM	REATITIS	DCARCINONA	INTERVERTEDRAL DISC DISEASE	PRANSITIONAL CELL CARCINGMA, URINARY BLADDER		MERNIATION (CERVICAL DISC)	TUBORDO COMO PORTO DE LA PROPERTA DE LA PERSONA DE LA PERS		WARY GLAMD	MITIS	LANOWA, MOUTH	FIBRINGUS PHEUNCHIA, LUNG	, MANDIBLE	W (RECTUR)	, SPLEEK	CHOLANGIOCARCINONA (LIVER)	TICENTA			CAUSE UNDETERMINED
	COMENTS	STATUS EPILEPTICUS	MANNARY ADENOCARCINGNA	ONDETERMINED	PREUMIA EXETENT ANN DIDOETE	STRICTS AND SELECT	STRUCTAL LELL SARCUMA	יייייייייייייייייייייייייייייייייייייי	LIVING	TPANCERITIONAL	MEDIT LEGIC	CARCINOM CHAMMARY	HELAHOMA (MOUTH)	LIVING	MALIGNANT NEI	SOLID CARCIN	CARCINOMA, MASAL CAVITY	ADENOCARCINONA,	INTERVERTEBR/	ENDONETRITIS	THROMBOEMBOL	HYPERADRENOCORT ICI SH	CHRONIC PANCREATITIS	MANNARY ADENOCARCINGHA	INTERVERTEBRA	TRANSITIONAL	MEMATOWA, SPLEEN	MERMIATION (CERVICAL DIS	Tuerrengian	HYDROCEPHALUS	CARCINGRA, NAMBARY GLAND	GLONERULONEPHR 1 T1S	MALIGNANT ME	FIBRINGUS PM	OSTEOSARCOMA, MANDIBLE	ADENOCARCINONA (RECTUM)	FIBROSARCONA, SPLEEN	CHOLANGIOCAR	PYCHETRA/SEPTICENTA	THROMBOENBOL I SH	ADENOCARCI NO	CHS DISEASE,
Poer 10	SKELETON (GY)	: : : : :																	8.0	0.10	0.11	0.13	0.10	0.11	0.10	8.6	6.6	21.0	5 5		0.11	0.11	0.11	0.10	0.11	0.10	0.1	0.10	0.11	0.10	 5.6	0.08
a de la	INJECTION INTERVAL	2602	3376	1942	\$ 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0			100	2202	4) (7) 2001	24.5	3810	2498	5342	4709	3582	4306	4780	8997	7367	2156	5021	1309	1797	670	3835	0827	3143	8772	2268	4353	4307	4783	4718	487	2792	5327	7060	4026	2080	3129	3361
	DATE INJECTED	MAY-19-77	MAY-19-77	2-05-70	7-12-17-17	11-06-A0H	77-17-17-17-17-17-17-17-17-17-17-17-17-1	2 - S	MAY-02-79	MAY-02-70	CED-12-78	AUG-10-77	FEB-14-79	FEB-14-79	FEB-14-79	APR-25-79	APR-25-79	APR-25-79	MAY-19-77	MAY-19-77	MAY-19-77	MAY-19-77	MAY-19-77	MAY-19-77	MAY-19-77	MAY-19-77	MAY-19-77	MAY-19-77	14 - 10 - 14 M	JAN-09-79	DEC-05-78	JAN-09-73	JAN-09-79	DEC-05-78	JAN-09-79	MOV-30-77	JAN-09-73	MQV-30-77	SEP-12-78	MOV-30-77	AUG-10-77	FEB-14-79
75																			10.8	11.7	13.3	15.7	12.7	13.0	11.7	1.5	11.2	15.0	. 4		13.0	13.1	13.3	12.7	13.4	12.7	13.2	12.9	14.2	12.9	12.7	10.5
INJECTION	INJECTED (UCI/KG)	: : :																	0.291	0.317	0.359	0.423	0.342	0.352		0.312	•	0.400	•	0.365	0.352	0.355	0.359	0.344	•	•	•	0.348	•	0.348	, K	0.283
	WEIGHT (KG)	11.6	10.7	* F	?:	? 6	ķ.	2.0		7.7	. ÷	1.2	10.4	2.80	9.17	10.2	10.5	8.85 25	11.9	10.9	3.62	8.18	<u>.</u>	8 .83	6.0	<u>-</u> :	7:	6.52	. CY	11.2	9.78	9.22	8 .	9.15	8 .0	=	3	12.2	11.4	10.7	2.5	JQ.0
	AGE (DAYS)	857	3	8	8 3	8 3	8 2	6	<u> </u>	2 6	; <u> </u>	6.5	639	23	639	3	3	929	\$	દે	£3	635	£3	632	3	ž	95	5 5	2 5	Š	3	28	5	2	3	3	8	ž	3	3	619	8
	DOG NUMBER	M00100M	F002900#						10/1000	0007702		F046000	HO6190H	F062900H	H063400H	F06400H	H06500H	F066900#	H001920H	F002020H	M003920H	F004a20#	#0020500#	F006920#	H007@20H	F008020#	#020600#	F010820	FO 1 20 20 E	1041020	F042920	MO43020	F044920	MO45920	F046920	MO4.7920	F048920	M049920	F050020	MO51920	F052020	H051920H

B.6 ²²⁴Ra (Quickradium), Chronic Toxicity Study (continued)

		-6.6.9.8.4.4.8.8.8.8.8.8.8.6.5								!	CAND	ATITIS (LIVER)						ENCHA		T.	<						ARY BLADDER)	RUSION													
	COOPERITS	MELANONA (SOFT PALATE)	LYMPHOSARCONA	GLOMERULONEPHRITIS (KIDNEY)	LYMPHOSAKOWA, DISSENIMALED SIOMEDH OMEDMETTS	LYMPHOSARCOMA, SMALL INTESTINE	WELOPROLIFERATIVE DISEASE	ATROPHY, PANCREAS	LYMPHOSARCOMA	KEPATITIS	TUBULAR ADENOCARCINOMA, MAMBARY GLAND	INTERVERTEBRAL DISC PROLAPSE, MEPATITIS (LIVER)	INCOMPOSITION (FORMOWAY)	PANCREATIC ATROPHY. ENTERITIS	GASTROENTERITIS	OSTEOSARCOMA	INTUSSUSCEPTION (ILEUM)	THROMBOEMBOLISM, CHROMATOPHORE ADENOMA	PNEUMONIA, CHRONIC ENTERITIS	TRANSITIONAL CARCINOMA, MASAL CAVITY	FIBROBLASTIC OSTEOSARCOMA, MAXILLA	LTMPHOSAKOMA, DISSEMINATED BYELOMEDWEITE	MYFICHTERNATION COME MADROLY	PANCREATITIS, PNEURONIA	CARCINGIA, MAIGRARY	GLOMERULONEPHRITIS	TRANSITIONAL CELL CARCINCHA (URINARY BLADDER)	SPONDYLOSIS, VERTEBRAE; DISC PROTRUSION	CARCINCTA, TUTTORY GLAND CABCINCTA DANCERS	SYSTEMIC ANYLOIDOSIS	HEMANGIOSARCOMA (HEART)	ENDOMETRITIS	LIVING	CARCINGHA, MANHARY GLAND	FIBROSARCOMA (SKELETON)	MEPHRITIS, KIDNEY	PERITORITIS	GRANULOSA CELL TUMOR, OVARY	SPONDYLOSIS DEFUNDAMS	PAPILLARY ADENOCARCINONA, LUNG	
120		0.0	_	N 6	25	- 0	. 0	_	_	0		0.32				_		-	_			\$ 						75.0 75.0				0.33 EI	_	_	0.32 F		×		25.0		
Ę	INJECTION INTERVAL	3452	5352	3187	9847 9847	3715	4488	2566	7687	3743	3711	3938	4676 4576	2685	4180	3632	2862	3716	3095	4338	4254	5685	3505	2154	6994	4331	2242	8267	7767	1944	3731	3182	5342	4883	2602	5124	3852	9824	5009 5101	4137	
	DATE	FEB-14-79	FEB-14-79	FEB-14-79	FEB-14-79	APR-25-79	APR-25-79	APR-25-79	APR-25-79	APR-25-79	APR-25-79	MAY-19-77	MAY-10-77	MAY - 19 - 77	MAY-19-77	MAY-19-77	MAY-19-77	MAY-19-77	MAY-19-77	MAY-19-77	77-18-17 11. 10 11.	MAT-19-77	JAN-09-78	DEC-05-78	JAN-09-79	JAN-09-79	JAN-09-79	24-69-NAL	MOV-30-77	SEP-12-78	NOV-30-77	AUG-10-77	FEB-14-79	FEB-14-79	FEB-14-79	FEB-14-79	FEB-14-79	FEB-14-79	APK-25-79	APR-25-79	
=	INJECTED (KBQ/KG)	12.8	13.7	15.1	12.0 7.5	12.4	13.8	13.3	13.2	12.8	16.7	39.2	, 6 6 6 6	76.5	34.1	38.8	34.1	4.4.4	30.4	35.6	58.5	4-14	1.14	41.4	41.1	45.6	42.6	42.2	7 17	8.44	0.04	40.7	56.6	37.0	60 (60 (47.7	41.4	0.0	41.1	37.7	
INJECTION	INJECTED (UC1/KG)	0.345	0.370	0.409	C) C) C	0.336	0.372	0.359	0.356	0.346	0.450	8.6		1.33	0.922	1.05	0.922	1.20	0.822	0.962	3.5	7.1	2	1.12	1.1	1.15	1.15	7.7	21.	1.21	1.08	1.1	0.720	0.00	٠. ج	2.5	1.12	80.		1.02	
	WE IGHT (KG)	8.68	8.10	7.32	 	10.6	9.59	9.93	10.0	10.3	7.9	10.3	<u> </u>	8.16	8.11	10.4	1.8	9.10	13.4	T:3	. i		5 9	9.45	8.42	1.3	9.6	70.5		07.6	9.85	6.67	12.1	6. 2	8.78	P. 1	7.7	8.07		20.00	
	AGE (DAYS)	639	28	3 %	<u> </u>	8	626	653	929	8	8	\$	Ē	E	632	8	645	632	38	3	95	2 5	Ě	656	83	ş	687	656	8 5	225	83	Š	657	63	3	X	8		83	66 K	
	DOG NUMBER	F082920H	H083920H	F084920H	F055920H	MO87020H	F088020H	H089920H	F090020H	M091920H	F092920M	MO01030H	MONORON MANAGEMENT	F004030H	H005030H	F006030H	H007020H	F008Q30H	H009030H	F010030H	HOSOL LON	FU12450H	5042040	H043030	F044930	H045a30	F046930	H047030	100000 PM	F050930	MO5 1030	F052930	H081a30H	F082930H	H083030H	F064630H	H082030H	F066030H	106/650H	1089230H	

B.6 224Ra (Quickradium), Chronic Toxicity Study (continued)

			INJECT	5		ţave	00 TO	
DOG MUNBER	AGE (DAYS)	LEIGHT (KG)	INJECTED (UCI/KG)	INJECTED (KBQ/KG)	DATE	INJECTION	SKELETON (GY)	COPMENTS
F090030H	929	8.55	1.18	43.7	APR-25-79	603	0.35	WEMANGLOSARCOMA, SUBCUTIS
MO91630H	653	7.54	1.34	9.67	APR-25-79	3807	0.40	REMAL ANYLOIDOSIS
F092030H	8	S	1.13	41.8	APR-25-79	5272		
H001040H	653	10.2	3.23	120.	MAY-19-77	3563	0.97	EPIDERHOID CARCINONA (ORAL)
F002940H	653	2.4	3.49	129.	MAY-19-77	1580	 20:	THORACIC EXTRAVASATION OF LYMPH, OVARIAN PAPILLARY CARCINONA
H003040H	85	13.5	2.44	8.3	MAY-19-77	3637	0.7 K	HEMANGIOSARCOMA (ABDONEN)
F004040H	3	9.10	3.62	134.	MAY-19-77	3787	. .8	OSTEOSARCONA, METATARSUS
H090500H	6 43	10.5	3.14	116.	MAY-19-77	3235	0.94	ADENOCARCINOMA (MASAL CAVITY)
F006040H	\$7	10.8	3.05	113.	MAY-19-77	1923	0.92	MARRARY ADENOCARCINONA
MO4 1040	6 07	10.9	3.6	112.	MOV-30-77	5238	0.91	ADENOCARCINOMA, LUNG; CARCINOMA, KIDMEY
F042940	ş	8.01	3.28	121.	JAN-09-79	4012	98.0	AUTOIMMUME MEMOLYTIC AMENIA
MO43040	3	11.2	3.25	120.	DEC-05-78	4018	96.0	SQUANCUS CELL CARCINOMA, MAXILLA
F044040	69	7.7	3.28	121.	JAN-09-79	4285	96.0	COCHTOAMELOBLASTOMA
MO45040	3	10.2	3.28	121.	MOV-30-77	4615	96.0	OSTEOBLASTIC OSTEOSARCOMA, THORACIC VERTEBRA
F046040	729	8.85	3.56	132.	SEP-12-78	6267	1.07	CARCINOMA, KIDNEY
MO61040H	657	1.0	2.90	107.	FEB-14-79	3224	0.87	HEMANGIOSARCOMA, ADREMAL GLAND
F062040H	83	8.8	3.62	134.	FEB-14-79	5201		LYMPHOMA, THYMUS
M083040H	§	10.6	3.01	111.	FEB-14-79	5342		LIVING
F064940H	678	10.4	3.01	111.	APR-25-79	3873	8.0	LEIONYOFIBROSARCOMA, VAGINA
M065940H	3	8.25	3.80	141.	APR-25-79	2729	1.14	SPONDYLOSIS DEFORMANS
F086940H	3	9.37	3.35	124.	APR-25-79	1991	9.6	CONGESTIVE FAILURE, MEART
MO01050H	653	10.6	3 .6	320.	MAY-19-77	2433	2.59	OSTEOSARCOMA
F002050H	653	1.4	8. 8.	297.	MAY-19-77	1994 1994	2.41	
H003050H	Z	10.6	8. 2.	320.	MAY-19-77	2016	2.59	UNDETERMINED (NO SKELETAL TUMOR)
F004450H	\$	8.35	1.0	706.	MAY-19-77	1636	3.23	OSTEOSARCOM
H005050H	3	8	9.27	343.	MAY-19-77	2021	2.73	OSTEOSARCOMA
F006050H	3	9.12	10.0	370	MAY-19-77	2259	8.8 8.8	
MO4 1050	E	11.4	9.65	357.	JAN-09-79	3742	8:8	FIBROSARCONA, LIVER
F042050	129	7.76	10.2	377.	DEC-05-78	3066	8.6 9.9	OSTEOSARCONA
00000	Š		٠.٠ د.٠		JAN-09-73	• (2.63	BLOOD DYSCRASIA
ADCOCACE.	7	7.5	2.5 2.5		JOE -03-72	2;	3.5	PURPURA MEMORRIAGICA
1044070	8 8	5 6			DEC-03-78	9	7 r	PURPURA MEMURRAGICA
ADC04404	20	2 t	9.0 10.0		20-10-72 21-10-73	8	4.0	MATERIA ADEIDIAKUMA
MO45450	ğ	S. S.	12.0	į	DEC-07-77	200	8.8	HYXCHA (CHENTUM & LIVER), OSTEOSARCCHA, VERTEBRA
104040	6	27.0	\$ 6		2-K3-W5	25	6. 7.	TUBULAR ADEROCARCINOM, MANARY GLAND
HOCD LOCAL	919	8.5	0.0	5.5	FEB-14-73	2/9/2	8.6	OSTEUSARCIUM, IMCOMBUENBOLISM ANTLOIDUSIS
FOSSOS	§ :	5.73		519.	FEB-14-79	1	2.59	OSTEUSARCOM
MOSS SOM	<u>ا</u> و	8.6	9.55		FEB-14-79	3422	8.8	CHS DISEASE, CAUSE UNDETERNINED
F064904	ę į	7:	9.93	Š	APR-25-73	2073	8.3	SPLENIC MEMORRAGE, MANARY ADEROCARCINGA
HOCOCOL HOCOCOL	9)::	 	356.	5 - C - S - C - S - C - S - C - S - C - S - C - S - C - S - C - S - C - C	/g (6.5	
HOCHOOL	8	0.5	y., o		V-C2-XA	7/5	8.3	P. BROSARCUA

GROUPS 41-52 RECEIVED RA-224 IN 1 INJECTION. 81-92 RECEIVED RA-224 IN 10 FRACTIONS (1/MEEK). 1-12 RECEIVED RA-224 IN 50 FRACTIONS (1/MEEK).

B.7 226Ra, Chronic Toxicity Study

		OW	FRANSITIONAL CELL CARCINONA (URINARY BLADDER)				NEPER ITIS							ET CELL TUMOR	EPHALUS	(CLUMG)	CARCINONA	T TISSUE)	DENOCARCINOMA	;	£		SIATUS EFILEFILLUS STITASV OBSTRUCTION I FIONVOSABOOMS (VARIMA)	reincionarcae (valim)	CY. PANCREATITIS	•	CARCINGIA (URINARY BLADDER)	ž	•	Ē		1 715SLE)			ENIA	.	£			ILEPTICUS	£
	COMENTS	SENINGHA, LYMPHOSARCOM	TRANSITIONAL CELL CA	STATUS EPILEPTICUS	TUBOARDOEMBO 1 CH	STATUS EPILEPTICUS	•		AORTIC BODY TUMOR	MEPHRITIS	FIBROMA (VAGINA)	PNEUMONIA	MELANGHA (MOUTH)	THROMBOEMBOLISM, ISLET CELL	PANCREATITIS, NYDROCEPHALUS	EPIDERMOID CARCINOMA (LUNG)	SALIVARY GLAND ADENOCARCINONA	MEMANGIOSARCONA (SOFT TISSUE)	PHELMONIA, MANNARY ADENOCARCINOMA	SENILITY, INANITION	MAMMARY ADENOCARCINGMA	SEPTICEMIA	SIAIUS EFILEFIICUS	PANCEEATITIS	VALVULAR INSUFFICIENCY, PANCREATITIS	MANHARY CARCINONA	TRANSITIONAL CELL CA	MANNARY ADENOCARCINONA	MELANONA (MOUTH)	DAMCECATITIES	PANCREATITIS	HENANGIOSARCONA (SOFT TISSUE)	OVARIAN ADENOCARCINOMA	SENILITY	ENDONETRITIS, SEPTICENIA	MANNARY ADENOCARCINOMA	NAMBARY ADENOCARCINOM	MELANONA (MOUTH)	LYMPHOSARCOMA	PNEUMONIA, STATUS EPILEPTICUS	POPULAR AVERAGANCING
3	SKELETON (GY)																																								
	INJECTION INTERVAL	3116	3673	2139	#07C	3187	3360	3361	1550	9697	4575	4283	4752	5725	4372	3677	2042	5321	4726	7880	4234	290	0047	0887	4657	7827	4828	3670	6206	9 66 7	\$ \$ \$ \$ \$ \$	3185	5349	5066	5124	5281	4538	4403	£003	2 22	- 700
	DATE INJECTED	AFR-20-53	NOV-16-53	MAR-10-54	M-22-54	JUL -27-54	AUG-24-54	DEC-21-54	APR-11-55	JUL-27-55	DEC-20-55	JAN-17-56	MAR-04-64	OCT-23-64	FEB-04-65	APR-07-65	APR-27-66	MAY-25-66	oct-13-66	DEC-29-66	JAM-26-67	MAR-22-6/	40-121-120 121-121-120	SEP-21-65	SEP-21-65	SEP-21-65	SEP-21-65	SEP-21-65	MAY-25-66	20-CZ-1WH	MAR-22-67	HAR-22-67	FEB-01-68	FEB-01-68	JAN-09-69	JUL-02-68	JUL-02-68	JUL-02-68	MAY-20-69	SEP-23-70	27.62.136
8	INJECTED (KBQ/KG)																																								
INJECTION	INJECTED INJECTE (UCI/KG) (KBQ/KG																																								
	WEIGHT (KG)	8.03	14.6	* :	2.5	8,63	11.0	8.21	11.7	10.9	10.2	8.68	12.3	10. 8	12.8	9. 0.	12.5	12.0	8.42	2.6	S .	- · ·	o 6	88	8	11.7	2.6	8	2.50	•		6	9.41	9.38	8.8 8.8	19.1	9.17	8	=:	4.05	·.
	AGE (DAYS)	558	787	5 3	\$ 5	3 5	211	83	2	225	24	2	515	238	ž	3	\$	765	25	8	Ž	35	2 2	3	2	232	232	235	3 5	2 %	22	3	205	205	225	797	79	197	2	25	Ž
	DOG MLMBER	M001R00	MOOZE OO	F003800		F006800	MO07800	F000000	F009R00	MO10M00	FOITROO	F012R00	MO13R00	F014R00	MO15R00	F016R00	#017100	F018800	F019R00	MOZOR 00	FUZIROO	00X2X0M		F0312000	F032R008	F032R00C	F032R000	F033R008	FOSSROOC	2027	F034R00C	F034R000	F035R008	F035R00C	F035R00D	F036R008	F036R00C	F036R000	F037800	F037700C	3554750

B.7 226Ra, Chronic Toxicity Study (continued)

			INJECTION	INJECTION		Š	9	
POS NUMBER	AGE (DAYS)	WETGHT (KG)	INJECTED (UCI/KG)	INJECTED (KBQ/KG)	DATE INJECTED	INJECTION INTERVAL	SKELETON (GY)	COMMENTS
FOSOROGE M101R00Y	5	11.5	0 0 0 0 0 1 1	t 9 9 9 9 9 9	SEP-23-70	3821	• • • •	ENCEPNALITIS REASSIGNED SEE MS15R40+
M102R00Y								3
M103800Y								REASSIGNED, SEE MS1774-0+ REASSIGNED, SEE FS1884-0+
F105R00Y								3
M107800Y		4.32			MAR-09-77	5256		į
F100R00Y		4.22			HAR-16-77	4301		SOLID CARCINOMA, MANNARY GLAND
F109R00Y		2.35			JAK-19-78	5733		LIVING
M013R02	23	4.7	0.00577	0.213	MAR-04-64	4518	07.0	MELANONA (NOUTH)
F014R02		8 . 10	0.00836	0.306	OCT-23-64	3448	0.42	MELANONA (MOUTH)
MO15R02		5.8 8.6	0.00873	0.323	FEB-04-65	4102	0.31	CIRCULATORY FAILURE
F016802		8.	0.00665	0.246	APR-07-65	617	0.27	LYMPHOSARCOMA, MELANOMA (SKIM)
H017802		2. 8. i	0.0071	0.263	APR-27-66	202¢	X	SENILITY, MEPHRITIS, LYMPHADEMOPATHY
F018802		9.30	0.00652	0.241	MAY-25-66	3387	0.24	LUNG CARCINGNA, ADENOCARCINGNA
F019R02		9:0:	0.00785	0.290	OCT - 13 - 66	3611 163	0.31	PRECINONIA
		?:	0.000/0	0.25	DEC-29-66	25.	12.0	LYMPHOSARCOM
FUZ IRUZ		- :	9000	467.0	70-07-NAL		7.0	PATENT ADENCARCINGA
MOSCRUZ MOSCRUZ	_	. · ·	0.00	0.330	MAR-22-07	26.2		CAC AND DO AND D
5014805	_	K	0220	718	A-54-54	200	2	CHOCKEDOMACING
MO15805		10.4	0.0263	0.973	FEB-04-65	7624		MELANONA (MOUTH)
FOTGROS		11.4	0.0205	0.73	APR-07-65	4141	0.81	MANNARY ADENOCARCINOMA
MO17105		9.20	0.0215	9.30	APR-27-66	7907	0.73	MELANONA (MOUTH)
FOTOROS	-	9.10	0.0197	0.729	MAY-25-66	0067	0.97	MELANOMA (MOUTH)
F019R05		10.0	0.0230	0.851	OCT-13-66	5059	. 8.	MAMMARY CARCINGMA, DEGENERATION (KIDMEY)
M020R05		13.2	0.0206	0.762	DEC-29-66	4526	0.0	MEPHRITIS
F021R05		8 8	0.0208	o.3	JAN-26-67	4281	0.68	HEHORRHAGE (HYPOTHALAMUS), ULCER (STONACH)
M022R05		12.3	0.0290	1.070	HAR-22-67	3192	1.01	
MO318058		7 :	0.0210	0.73	APR-27-66	4310	9.0	THYROID ADENOCARCINOMA, AMKYLOSING SPONDYLITIS
F031R50C	537	07.6	0.0235	0.870	DEC-22-65	4393	0.8	TRAUM
F031R050	237	11.7	0.0238		DEC-22-65	164.7	0.92	THYROID ADENOCARCINOMA
M032R05B	8	13.4	0.01%	0.72	MAY-25-66	3219	٠ ۲	THYMCHA
F032R05C		<u>-</u>	0.0239	0.884	DEC-22-65	4180	98 .0	ADAMANTINCHA (MANDIBLE)
F032R050		 	0.0240	0.868	DEC-22-65	3870	0.87	HEMANGIOSARCOMA (SOFT TISSUE)
M033R05B		12.9	0.01%	0.718	MAY-25-66	3848	0.85	EPIDERHOID CARCINGNA (MOUTH)
F033R05C		9.0	0.0212	0.78	APR-27-66	4935	8:0	INANITION UNDETERNINED (NO SKELETAL TUNCK)
F033R05D		۶. •	0.0217	0.803	APR-27-66	7697	8.	BILE DUCT OBSTRUCTION, KIDNEY FAILURE
H034R05B		20.5	0.0196	52.0	MAY-25-66	5249	8:0	AMKYLOSING SPONDYLITIS, MELANCHA (MOUTH)
F034R05C		8	0.0215	2	APR-27-66	4322	0.63	HANDLARY ADENCEARCINGNA
F034R050		9.3	0.0212	36.0	APR-27-66	4628	0.95	TRANSITIONAL CELL CARCINOMA (URINARY BLADDER)
M035R05B		10.4	0.0205	0.739	DEC-29-66	4367	2	PROSTATITIS

B.7 226Ra, Chronic Toxicity Study (continued)

. 222 222 222 222 222 222 223 223 223 223	(KG)	INJECTED (UCI/KG)	(KBQ/KG)	DATE	INTERVAL	SKELETON (GY)	COMENTS
	: 8	0.0201	0.744	DEC-29-66	0667	0.74	SURGICAL COMPLICATIONS
	10.2	0.0202	0.747	DEC-29-66	5171	0.81	THROMBOEMBOLISM, MAMMARY ADEMOCARCINOMA
	4.32	0.0186	0.688	HAR-25-75	5217	8.3	MESOTHELICHA/PAPILLARY ADENOCARCINCHA, LUNG
	7.	0.0187	0.692	APR-24-75	200	9	
	3.61	0.0192	0.710	MAY-06-75	5091	0.89	LYMPHOSARCOMA, SWALL INTESTINE
	8.	0.01 8 4	0.681	MR-25-75	2549	1.02	PYELCHEPHRITIS
	80.7	0.01 8 4	0.681	MAR-25-75	4811	0.87	THROMBOSIS (LUNG), AMYLOIDOSIS KIDINEY
	3.6	0.0188	9.690	APR-24-75	9267	0.81	BETA CELL CARCINOMA, PANCREAS
	3.69	0.0191	0.707	MAR-08-77	4428	0.82	CARCINONA, PROSTATE
	2.54	0.0185	0.685	JAN-19-78	2060	6.0	SARCOMA. PANCREAS
	3.65	0.0177	0.655	MAR-09-78	2005	0.93	CARCINONA MANNARY GLAND
	1	0.0195	0.722	AUG-08-78	3001	67.0	PULHONARY CALCIFICATION, NAMBARY ADENOCARCINONA
	**	, S.	2	ADD-20-53	222	K	MELANCHA (MOTER)
	9 0	200.0	76.2	MOV-16-57	4054	. 4	CENTRAL CHOCK
		26.00	;;				MANUAL ARENOCARCINOMA
	8 9	0.00	2.13	MAX 10 24	2000		TATELY NOTECONOLINGAL
	3	7500	V.30	APK-07-34	2020	2.	
	11.7	0.0436	- - -	75-22-M	3780	2.5	TRANS. CELL CARC. (URIMARY BLADDER), HYDROMEPHROSIS
	7.23	0.0584	2.16	JUL-27-54	2260	1.93	EPERITIS
	11.4	0.0651	2.41	AUG-24-54	3544	1.71	STATUS EPILEPTICUS
	8.98	0.0559	2.07	DEC-21-54	2968	0.97	LYMPHOSARCOMA
	9.88	0.0521	1.93	APR-11-55	4399	<u>.</u> .	PNEUMONIA
	11.5	0.0573	2.12	JUL-27-55	4003	1.65	FIBROSARCOMA GINGIVA, MELANOMA (EYE)
	11.2	0.0522	2.93	DEC-20-55	5636	1.61	MELANCHA (EYE), MANNARY ADENOCARCINONA
	9.71	0.0444	7.6	JAN-17-56	3978	1.29	MELANCHA (MOUTH)
	11.7	0.0527	. .8	MAR-04-64	3739	1.82	CYST (PROSTATE), ADENOCARCIMONA (PROSTATE)
	10.5	0.0701	2.59	OCT-23-64	1729	1.63	STATUS EPILEPTICUS
	88	0.0797	8.2	FEB-04-65	893	0.92	SUBDURAL HENDRRHAGE (SPINAL CORD)
	8	0.0611	2.26	APP-07-65	7557	1.03	LYMPHOSARCOMA
	11.4	0.0639	2.36	APR-27-66	5601	2.63	
	10.0	0.0589	2.18	MAY-25-66	3625	1.67	MANBIARY ADENOCARCINOMA
	11.6	0.0682	2.52	oct - 13-66	3612	2.33	OSTEOSARCOM
	10.0	0.0610	2.26	DEC-29-66	4260	2.71	CHONDROSARCONA (ETIMOID), ADENOCARCINONA (ADRENAL)
	9.10	0.0633	2.34	JAN-26-67	5189	2.07	PNEUMONIA
	10.9	0.0861	3.19	MAR-22-67	4845	4.59	PROSTATE ADEMOCARC. TRAMS. CELL CARC. (BLADDER)
	10.4	0.0712	2.63	DEC-22-65	3000	1.7	STATUS EPILEPTICUS
	8.9	0.0545	2.02	MAR-25-75	5787	2.59	ADENCHA PITUITARY
	75.7	0.0546	2.05	APR-01-75	7827	2.22	MAST CELL SARCING (INTESTINE)
	¥ 0.8	0.0564	2.00	MAY-06-75	7927	2.08	CARONIC PANCESATITIS
	7	0.0541	5	K-X-X	5161	2.26	CHOMORGAPCHA MASAI CAVITY
		26.00	3 -	X - 50 - 80 A	2017	3 -	
	2 6	0.0560		APR-01-12	7767		CHACKLE TANCKEN LILE LEBESHACE / FO FEE /
	3:		9:0	C1-42-X4V	-		HENCHANE (BYLEEM)
	7.1	5.5	2:3	74-09-17	25	3:	

B.7 226Ra, Chronic Toxicity Study (continued)

	CONNECNTS	MEPATOCELLULAR CARCINOMA	DENOCARCINONA, NASAL MUCOSA	THRONDOENDOLISH, MELANONA EYE	LYMPHOSARCOM	FIBROSARCOMA (GLM OF MAXILLA)	WARRARY ADENOCARCINGMA	EPERITIS	DSTEOSARCOMA	CEMERAL IZED CALCINOSIS	TOKENIA (BACTERIAL), THYROID ADENOCARCINOM	DAUG ALLERGY	ENDOMETRITIS		UNDIFFERENTIATED MALIGNAMOT, (NO SKELETAL TUNCK)	HELANCHA (HOUTH), THYROID ADENOCARCINOMA	ENCEPHALOPATHY	MALABSORPTION SYNDROME	SARCONA (MYOCARDIUN)	INANITION	STATUS EPILEPTICUS		HANNARY ADENOCARCINGNA	MESTMESIA ACCIDENT	ADENOCARCINGIA, NED LAST INUM	SPONDYLOSIS, VERTEBRAE; DISC PROTRUSION	MALIGNANT EPULIS	SPONDYLOSIS, VERTEBRAE; DISC PROTRUSION	MENANGIOSARCONA (SOFT TISSUE)	UNICOMMUNA, MELANUMA (ETE.)	DEBEGGATION (TERES)	VALVA AP BIOCCAPOITIS MEI ANNIA (FYE)	OSTEOSARCHIA. ADREMAL CORTEX ADEMOCARCINGMA	EPIDERHOID CARCINOMA (TYMPAMIC BULLA)	DSTEOSARCOMA, CUSHING'S DISEASE	UNDIFFERENTIATED MALIGNANCY (INTESTIME)	WHENRY ADENOCARCINON	DSTEOSARCOMA	DSTEOSARCOM	MARBARY ADEMOCARCINONA	DSTEOSARCOMA	DSTEOSARCOMA	PROSTATIC CARCINOMA
3			_	•	_	_	_	_	_	_	•				_	_	_	_				•	_	_	_		6.81		_ `		. 6		10.2		_			_		_	_	9.00	_
ž	INJECTION INTERVAL	3907	5927	4436	1273	325	3268	28	4107	3432	3142	2577	3914	557	£067	5324	2388	4587	3844	3450	5369	4315	4004	€0	5583	4959	4733	5168	97		\$ 10 P	35	2027	4615	3424	12/7	3998	3569	3297	8762	3022	3492	4135
	DATE INJECTED	FAR-09-78	MAY-23-78	JAN-17-56	NOV-30-56	HAR-06-63	DEC-20-55	DEC-20-55	DEC-20-55	DEC-20-55	NOV-30-56	DEC-20-55	NOV-30-56	40V-30-56	JAM-07-59	MOV-30-56	MOV-30-56	APR-01-75	APR-24-75	MAY-06-75	MAR-25-75	MAR-25-75	APR-24-75	MAR-16-77	APR-20-78	MAY-23-78	22-15r	MAY-23-78	APR-20-53	MOV-10-55	ADB-07-54	ADD-11-55	JUN-22-54	JUL-27-54	AUG-24-54	DEC-21-54	APR-11-55	JUL-27-55	DEC-20-55	JAN-17-56	MAR-07-75	MAR-07-75	MAR-07-75
INJECTION	INJECTED (KDQ/KG)	2.01	<u>.</u> 8.	5.07	6.03	8.21	6.11	6.03	5.59	2.62	6.03	8. 8.	6.22	6.18	6.77	6.11	6.18	6.03	6.18	6.18	S. 8	5.83	9 .6	6.14	9.6	6.07	2.92	S. 5		? •	0. F		8	13.3	15.3	12.2	11.7	12.8	11.5	10.4	11.7	12.0	1.8
INJECTION	INJECTED (UCI/KG)	0.0544	0.0527	0.137	0.163	0.222	0.165	0.163	0.151	0.152	0.163	0.1% 24.00	0.168	0.167	o. 183	0.165	0.167	0.163	0.167	0.167	0.159	0.158	0.180 861.0	0.166	0.180	0	0	0	0 (0.70	>	,	0.267	0	0.413	0	0.317	0.345	0.310	0.281	0.317	0.324	0.320
	WE LOAT (KG)	3.61	2.8	8.0	8	12.0	13.1	و .2	10.1	8 .	7.17	9. 20.	7.55	9.57	10.6	8.17	S	4.19	5.42	2. 8	3.65	3.6	3.8	3.7	S	8.8	2.5	M. 70	2.5	7.		, ¢	1.5	10.6	=	8.3	27.6	8.8	9.3	10.3	3.	4.27	5.35
	AGE (DAYS)	8	8	23	8	2	Ľ,	575	5	6	8	6	8	8	25	8	§	8	r	8	2	23	ድ	ድ	23	8	2	8	5	746	* 3	5	3	29	514	22	265	22	Ê	161	8	8	8
	2 E 00	F109R107	WITHIOT	MOOTR17	H002R17	M002R17A	F003R17	MDO4R17	#005&17	F006R17	H007R17	F000R17	F009R17	M010R17	MOTOR17A	F011R17	F012R17	HIOTRITY	MIOZRIZ	M103R177	F104R177	Fluenty	K129.	7187011.	M106K17	F109817	F119817	M111R17Y	M001R20	1002020 1002020		4004	#005R20	F006R20	M007R20	F008820	F009R20	MO10R20	F011R20	F012R20	MIOIRZOY	M102R207	M103R20Y

B.7 226Ra, Chronic Toxicity Study (continued)

	COMENTS	OSTEOSARCOMA, MANNARY ADENOCARCIMONA	THROMBOENBOLISM, INFARCTION	ENCOMETRITIS, MEPHRITIS, PMELMONIA	TEROMOSIS, PENIS	OSTEOSARCOMA	HEMMIGIOSARCOMA, LIVER	CONSTRED OSTEUSARCOMA, ISCRIUM	OSTEOSARCUM COTEOSASCAL	USTEUSARCUM	OSTEOSARCOM	OSTEOSARCOM	OSTEOSARCONA	OSTEOSARCOMA	OSTEOSARCOMA	OSTEOSARCONA	OSTEOSARCONA	ENDOMETRITIS, PERITONITIS	OSTEOSARCOMA	EPIDERHOID CARCINONA (MIDDLE EAR)	OSTEOSARCOMA	PATHOLOGICAL FRACTURE		OSTEOSARCOM	OS I EUSAKUUM ORTEORAS COMA	OSTEOSARCOMA. METATARSUS		OSTEOSARCONA	OSTEOSARCOMA	OSTEOSARCOMA	LYMPROSARCOMA Tuborabote / Limes Anny Others / Church	INCREMENTAL COMES, MILLOLDONIS NIGHT	AMESTMESTA ACCIDENT	THROMBOENBOL ISH. OSTEOPOROSIS	PROSTATITIS, MEPWRITIS	FIBROSARCOM (SKELETON)	OSTEOSARCOMA	OSTEOSARCONA	OSTEOSARCOMA	CANINE DISTEMPER	OSTEOSARCOM	OSTEOSARCONA
9	SKELETON (GY)	12.0	8.3 1.3	10.2	14.07	9.60	12.36	2	24.2	17.0 7.7.7	24.0	7.22	22.9	30.9	19.8	19.1	33.9	13.9	17.0	32.9	24.3	6.5	7.72	9.0	27.1	32.5	23.3	16.7	20.8	13.4	7.21	- 2	0.32	14.7	15.7	17.0	11.6	6 .1	62.4	22.3	41.0	61.5
Š	INJECTION INTERVAL	3960	3029	3	2930	3142	5552	6.647 6.647 6.647	06 9 2	0777	1917	2955	1932	5060	2612	2487	1237	1610	1897	2962	2231	212	2728	3 S 3 C 3 C	2017	3788	2862	1659	<u>\$</u>	2112	6557 1125	1774	22	2591	2066	2035	1671	160 6	1884	067	1614	1518
	DATE INJECTED	MAR-07-75	HAR-07-75	MAR-14-75	MR-16-77	APR-20-78	JAN-19-76	57-07-MOF	APR-20-55	MOV-10-55	APR-07-54	JUM-22-54	JUL-27-54	AUG-24-54	DEC-21-54	APR-11-55	JUL-27-55	DEC-20-55	JAN-17-56	APR-24-75	APR-24-75	MAY-06-73	MR-25-73	APR-24-75	MAY-00-72	MAY-09-78	JAN-19-78	AUG-08-78	5C-10-12	SEP-22-76	77-67-10H	MOV-02-78	OCT -05 -78	OCT-05-78	OCT-05-78	MOV-02-78	MOV-02-78	APR-20-53	HOV-16-53	MAR-10-54	MOV-30-56	APR-07-54
35	INJECTED (KBQ/KG)	11.7	11.9	11.4	12.2	12.9	12.3	2. : :	1.4.	D + - 7	65.69	N. 18	42.2	47.7	38.1	36.5	39.2	¥.7	32.7	37.4	37.4	0.04	37.7	37.7	0. W	9 60	40.3	37.7	29.8	98.0	\$0.0 44.0	. Y	37.0	37.4	37.4	45.5	45.5	130.	131.	13 .	115.	128.
INJECTION	INJECTED (UCI/KG)	0.317	0.321	0.300	0.329	0.748	0.332	0.520	2.E	5:	- 2	978	1.14	1.29	1.03	0.987	. 8	0.938	0.863	1.01	1.01	8	1.02	1.02	 	5	8	1.02	908.0	0.972	3 2	20.	18	1.0	.0.	1.23	ا .ت	3.51	3.55	3.33	3.10	3.47
	LEIGHT (KG)	4.36	3.93	4.19	4.53	4.63	2:	5.5		7.05 7.7	1.7	13.0	K.	12.3	7.76	8.02	10.1	12.9	11.4	4.41	2.40	2.94	3.74	 		2.2	3.40	3.6	10.4	8.26	0.0	 	2.5	10.8	1.5	# F	10.6	9.08	9.53	8.65	7.20	8.83
	AGE (DAYS)	8	8	26	S	33 3	28 2	Βĺ	Ç	5 2	8 2 7	199	99	514	275	551	2 22	83	497	S	S	8 8	18 9	B 8	3 2	3 2	8	ま	1787	1918	920	10 to 1	28	1881	1876	1829	1817	471	2,	ž	8	904
	_ 2	F104R20Y	F105R20Y	F106R20Y	M107720Y	M106R20Y	F109R20Y	F110R20Y	MO01R30	FOOTBETO	MO04830	MO05R30	F006R30	H007R30	F008R30	F009R30	M010R30	F011R30	F012R30	MIOIRSOY	M102R30Y	MIOSRSOY	F104R30Y	F105R30Y	#100K301	MIDGRESOY	F109R30Y	F110R30Y	F501R30+	F502R30+	F305R30+	FEORBROA	#506R30+	M507R30+	M506R30+	M509R30+	MS10R30+	M001R40	M002R40	F003R40	F003R40A	M004R40

B.7 226Ra, Chronic Toxicity Study (continued)

1015 8821 868	MAR-10-54 APR-07-54 JUN-22-54 JUL-27-54 AUG-24-54 DEC-21-54
1288 825 266 1219	

FOAZROOM WAS RENOVED FROM INJECTION TABLES DECAUSE DOG NEVER REACHED YOUNG ADULT AGE.

B.8 ²²⁸Ra (Mesothorium), Chronic Toxicity Study

	COMMENTS	MENINGCENCEPHALITIS SENTITY	INFARCTION (BRAIN)	VALVALAR ENDOCARDITIS MYOCARDIAL INFARCTION	HANNEY ADENOCARCINON	REPRETES STATUS EPILEPTICAS	PAELHONIA	THRC#BOEMBOL I SM	PNEUMONIA	MELANCHA (MOUTH)	PHELHOWIA	THRONOCHISH, TRANS, CELL CARC. (URINARY BLADDER)	THROMBOENBOLISM, MELANOMA (EYE)	PARCELATION	THROMOGRAGOLISM, MELANOMA (EYE)	LYMPHOSARCOMA	LYMPHOSARCOMA	MELANDA (ETE)	PHELMONIA, MELANDIA (EYE)	ENTERITIS, MELANOMA (ETE)	INCIDENTIAL AND	DEGENERALIUM (ALDMEI), IMAUDOCHOCLISH, MELAMUM (ETE) Billaby Obetbirtion aelamoma (EVE)	STATIS EPILEPTICIS	FIBROSARCOM (SPLEEN)	MEPHRITIS, MELANCHA (EYE), PANCREATITIS, CHOLANGIOCARC.	FIBROSARCINA, GINGIVAL (R.MAXILLA), MELANCHA (EYE)	OSTEOSARCOMA	PMELMONIA, PANCKEATITIS, MELANCHA (EYE)	TELEMENT AND	EFICERACIO LAKULMAN (PENIS) MENANGIOGRAPICAN	MELANONA (EYE)	VALVULAR ENDOCARDITIS	MELANONA (EYE)	MANNARY ADENOCARCINONA	LYMPHOSARCOMA	OSTEOSARCOM	OSTEOSARCOM	OSTEOSARCOMA	LYMPHOSARCOMA	USIECONACCOM
DORE TO	SKELETON (GY)											i	0.5	\$. · ·	1.13	1.20	0.81	: : :	21.1	? ? • •	3:	<u> </u>	3 2	28	2.19	2.13	3.08 1.08			1.50	2.41	3.12	2.13	.9.	2.32	7.21	7.32	7.21	%. %.	47.0
Face	INJECTION INTERVAL	3451	202	4816	1964	* * * * * * * * * * * * * * * * * * *	3624	2005	4132	2991	3248	0124	2460	2000	1697	4193	352	STOS.	1667	4202	1361	/0C\$	1020	2952	4292	2925	3157	924	1,07	3 5 5 7 8	3886	0297	9962	2767	3786	4265	2382	2709	7	*
	DATE	JAN-04-54	NAR-13-56	JAN-15-57	MAR-05-57	MM-04-57	JAN-15-63	MAR-09-60	APR-13-60	JUL-17-62	SEP-18-62	DEC-22-60	JUL-17-62	JUL-17-62	SEP-18-62	SEP-18-62	OCT-23-62	29-52-120	JUL-17-62	MAR-09-60	AFK-13-00	30C-17-02	OCT-23-62	JAN-04-54	OCT-23-62	NOV-29-54	MAR-13-56	JAN-15-57	MAC -03-37	JIM-04-57	MAR-09-60	APR-13-60	JUL-17-62	SEP-18-62	OCT-23-62	OCT-23-62	HAR-13-56	MAR-13-56	JAN-15-57	MAK-U3-3/
3	INJECTED (KBQ/KG)											•	0.640	0.00	9.73	0.736	0.636	0.633	0.636	0.588	0.00	7.7	0.611	1.71	1.89	1.20	2.18	P:	ē F		1.82	.86	1.85	2.27	7.5	5.59	6.77	.6 8	%; %	27.6
INJECTION	INJECTED (UCI/KG)											;	0.0173	0.01/3	0.0199	0.0199	0.0172	20.0	0.0172	0.0159	2,6	6.000	0.0165	0.0463	0.0512	0.0324	0.0289	0.0481		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.0491	9.95	0.0501	0.0613	0.0498	0.151	0.183	0.180	0.143	<u>.</u>
	LEIGHT (KG)	2. K	13.0	10.3	7.5	3.5	10.9	11.6	12.4	13.3	9.31	10.0	9.47	5.15	9	12.8		10.5	8.87	97.0		2 6	5.6	K .7	8.07	8.2	₩.	8.8	9.0	20	12.4	5	9.43	8.91	9.27	7.52	8.8	1.0	3 .	14.0
	AGE (DAYS)	22	R K	3	2	}	2 2	\$	5	581	Ç,	Š	765	265	Ĉ.	5	X	25	765	Š	Ş §	7 5	55	718	8	459	K	2	8 8	¥ 2	929	5	765	5 5	2 28	510	38	576	2	909
	DOG NUMBER	F001H00	004500H	MO04M00	F005M00	500000	F007400A	F008H00	M009400	MO10M00	F011M00	0012101	F001M05	F002H05	MO03M05	H004H05	F005M05	MO06465	F007H05	F000000	COLLABOR 077	FO11005	HO12HO5	F001M10	F001M10A	F002M10	H003H10	#004#10	012000	F007410	F000M10	H009H10	M010M10	F011M10	MOTOM	F001M17	F002M17	M003M17	H004M17	- FCS54

B.8 228Ra (Mesothorium), Chronic Toxicity Study (continued)

			, MELANGNA (EYE)				(Compt. VAS 3/15 Only		HELMINA (ETC.)																						CRIPPLING FRACTURE		HERNIA	DSTEOSARCONA, NEPHRITIS, ULCER (MOUTH)	CRIPPLING FRACTURE, ULCER (MOUTH)	•			KENIA	ACTURE		ACTURE
	COMENTS	OS : EOSARCOMA	OSTEOSARCONA,	OSTEOSARCONA	OSTEOSARCOM	OSTEUSARCOM	CSTEUSARCOM	OCTEDEA BOOM	MEMORRAGE (INTESTINE)	PHEUMONIA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	PANCREATITIS	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCOMA	OSTEOSARCOMA	OSTEOSARCOMA	OSTEOSARCOMA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCOMA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCUM	OSTEOSARCOMA	OSTEOSARCONA	STRANGULATED HERNIA	OSTEOSARCONA	CRIPPLING FR	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	NEPHRITIS, ANEHIA	CRIPPLING FRACTURE	ULCER (MOUTH)	CRIPPLING FRACTURE
9	SKELETON (GY)	3.8	6.	20.5 20.5	8 !	5.55	10.1		5 5 5 6	3.27	10.4	9.32	13.9	10.7	9.32	5.63	14.6	11.0	13.3	17.3	20.7	24.5	15.9	21.6	19.1	31.6	21.7	22.9	5.5		23.5	22.3	17.3	56.2	26.8	43.6	6.74	46.5	¥.3	2.S	140.	26.3
1	INJECTION	3424	9792	9242	? ;		2562		<u> </u>	619	2822	2688	7297	2239	2386	1254	2373	2878	2471	918	1856	1185	1176	1869	1421	1463	1447	55	C :	144	3	2	418	1063	86	10	1121	1253	22	28	9	<u>×</u>
	DATE INJECTED	APR-23-57	JUN-04-57	MAR-09-60	APK-13-60	JUL-17-62	SEP-16-02	144-04-54	MOV-20-54	MAR-13-56	JAN-15-57	HAR-05-57	APR-23-57	JUN-04-57	MAR-09-60	APR-13-60	JUL-17-62	SEP-18-62	OCT-23-62	JAN-04-54	NOV-29-54	MAR-13-56	JAN-15-57	MAR-05-57	APR-23-57	JUN-04-57	MAR-09-60	APR-13-60	20-71-Jun	SCF-10-02	JAN-04-54	MOV-29-54	HAR-13-56	JUN-04-57	JAN-15-57	MAR-05-57	APR-23-57	JUN-04-57	JAN-04-54	NOV-29-54	MAR-13-56	JAN-15-57
<u>5</u>	INJECTED (KBQ/KG)	5.33	2.40	5.4°	رن. د	4.34	9.5	8 .	7.18	13.2	10.4	10.9	11.3	1.0	1.1	11.2	11.5	14.1	11.3	31.7	22.6	35.7	33.9	34.8	35.3	33.6	35.1	% 1.0	0.75	, X	8	8.89	125.	7.76	7.16	98.8	7.96	98.8	300.	202.	365.	5 85.
INJECTION	INJECTED (UCI/KG)	0.144	0.146	0.148	0.14 0.00	2.0	2.1.0	0.133	0.196	0.358	0.282	0.295	0.306	0.298	0.300	0.305	0.311	0.381	0.306	0.858	0.612	0.965	0.916	0.940	0.953	0.907	0.950	0.918	3.5	087	99.2	1.86	3.37	2.64	2.47	2.67	5.66	2.67	8.11	2.46	40.4	7.89
	WEIGHT (KG)	10.0	10.2	20.8	9.9	- ! - !	 0	7.60	8.5	1.0	8.8	8.30	12.4	-	12.4	8.	1.2	7.03	27.6	10.4	2	10.4	10.2	8.51	8	3	= ·	S.	* : :	- <u>-</u> -	7.56	8.3	9.65	7.X	7.2	9.63	67.6	8.40	7.7	7.35	8.87	2.2
	AGE (DAYS)	765	ž	ž į	ę s	¥ .	52	3	517	276	3	50 88	50	25	654	8	630	20.	254	519	3	2	Ş	531	50	×	53	8	ž (, t	. §	3	25	767	\$	8 8	50	3	56	9	2	787
	DOG	M006M17	F007M17	FOODMIT	/ LINCOCKI		F013817	F004M20	F002420	M003M20	M004M20	F005M20	M006M20	F007M20	F008M20	M009M20	MO10M20	F011M20	#012K20	F001M30	F002/G0	M003M30	M004M30	F005H30	M006H30	F007/G0	F0084(30	M009430	050000	2 1 CH	F001M40	F002440	M003M40	MOOSH40A	M004M40	F005#40	M006#40	F007140	F001M50	F002M50	M003M20	M004H50

B.8 228Ra (Mesothorium), Chronic Toxicity Study (continued)

		ULCER (MOUTH) OSTEOSARCOMA, CRIPPLING FRACTURE ULCER (MOUTH), WYOCARDIAL INFARCTION
	COMMENTS	ULCER (MOUTH) OSTEOSARCONA, ULCER (MOUTH)
1		95.4 67.3 181.
į	INJECTION INTERVAL	% % % %
	DATE INJECTED	MAR-05-57 APR-23-57 JUN-04-57
₹	AGE WEIGHT INJECTED INJECTED DATE (DAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED	314. 321. 330.
INJECTION	INJECTED (UCI/KG)	8.48 8.67 8.92
	LEIGHT (KG)	05MS0 658 11.1 8 06MS0 580 7.53 8 07MS0 494 7.35 8
	AGE (DAYS)	658 580 580
	DOG NUMBER	F005M50 658 11.1 M006M50 580 7.53 F007M50 494 7.35

(KBQ TH-228/KBQ RA-228) INJECTED = 0.15 FOR F001M10, F001M20, F001M30, F001M40, F001M50.

= 0.03 FOR F002M10, F002M17, F002M20, F002M30, F002M40, F002M50. M003M30, M003M40, M003M50.

= 0.006 FOR GROUPS 4, 5, 6, 7, 8, 9, 10, 11, 12, AND FOR DOGS FOOTHOS, FOOT

B.9 %Sr, Chronic Toxicity Study

£	_		LUNG CARCINOMA	MEDICALING ACKLILLY METRICLES MEDICAL SECTION OF THE SECTION OF TH	TRANSITIONAL CELL CARCINONA (URINARY BLADDER)	MELANCHA (MOUTH)	DIABETES MELLITUS	DIABETES MELLITUS	TRAUM	MAMMARY ADENOCARCINONA	PLESCUE (VOPI I 1990E)	TOWNERS TO THE CONTROL OF THE CONTRO	IMPROPER INJECTION AGE		_	_	_	-				_			95 BILIARY OBSTRUCTION 72 HEMANGIOGRAPHELIAL CABCOMA (11458)			_	_	•		_	15 917109 ETILETICOS, TARCKERITIS			ISLET CELL TUMOR	_	_		35 MAMMARY ADENOCARCINOMA
2000	SKELETON (GY)												0.20	8.	8.0	1.42	1.48	6.3	2.20	1.21	6.	9.0	2.5	8 8	5.5	70.7	3.37	2.8	<u>۔</u> چ	K.2	5.43	2.47		2	2.38	3.55	K. 7	6.29 6.29	9.0	7:
1908	INJECTION INTERVAL	2484	3838	575 575	4158	4726	3303	4482	708	3425	1764	403 5474	308	5219	2027	5363	2065	2705	5739	5837	2784	3601	5321	7767	42L4 56.24	2027	9787	6297	1715	233	5581	223	2 KO 7	7967	3180	4717	3269	3768	\$23	5
	DATE INJECTED	JAN-18-55	FEB-14-56	oct-15-57	HOV-19-57	MAY-27-58	JAN-07-59	MAY-19-59	AUG-11-59	JUN-04-63	NOV-03-50	14M-06-50	JAN-18-55	FEB-14-56	FEB-14-56	SEP-11-57	OCT-15-57	NOV-19-57	MAY-27-58	NOV-11-58	MAY-19-59	AUG-11-59	SEP-29-59	MOV-03-59	JAN-06-60 FER-14-54	FFR-14-56	SEP-11-57	OCT-15-57	NOV-19-57	MAR-06-63	MAY-27-58	MOV-11-58	AIIC-11-50	SFP-20-50	NOV-03-59	JAN-06-60	JAN-18-55	FEB-14-56	SEP-11-57	OCT-15-57
10		·											21.2	21.8	22.4	21.2	20.7	19.7	21.5	19.1	25.8	19.8	20.6	20.4	~ ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	3	62.5	62.2	59.5	65.9	9.5	2.65 *	- 0	4.19	62.2	62.2	137.	127.	125.	126.
INJECTION	INJECTED (UCI/KG)												0.573	0.588	0.606	0.572	0.560	0.532	0.581	0.517	0.697	0.534	0.558	0.550	0.559	2 2	.69	1.68	1. 8	5 .7	2.1	3.5	5.63	3	99.1	3.	2.8	3.45	3.30	3.41
	VEIGHT (KG)	8.48	1.0	8.19	10.6	9.68	9.46	67.6	12.4	1.2	. o	8 8	98.9	9.38	8.8	10.9	æ. %	10.2	9.26	6.94	5. 8.	11.6	2.5	. i	7.57	11.6	9.19	9.60	9.85	11.4	9.0	10.2	÷ c		100	1.9	5.59	8.97	7.82	8
	AGE (DAYS)	205	9 6	520	2 5	3	797	483	249	535	776	¥ \$	1524	521	295	493	222	555	99	254	483	249	225	543	60 70 403	2,5	667	225	3	667	\$	3 £	2 7 2	2 (24.3	60	205	267	767	725
	DOG	F001S00	#002800 #004800	F004500	MO05800	MO06500	F007S00A	F008500	F009800	F009500A	1010300	101260	F001S10	F001S10A	M002510	M003S10	F004S10	M005s10	M006S10	F007S10	F008S10	F009810	M010S10	F011510	M012510	M002517	H003S17	F004S17	H005S17	M005817A	M006517	F007517	F000517	M010S17	F011S17	H012S17	F001S20	M002S20	M003820	F004820

B.9 98r, Chronic Toxicity Study (continued)

FEG T MAI						
(KG)	(UCI/KG)	INJECTED (KBQ/KG)	DATE INJECTED	INJECTION	SKELETON (GY)	COMENTS
8.72	3.24	120.	NOV-19-57	3253	5.28	ULCER (STOWACH)
9.19	3.50	130.	MAY-27-58	5193	8.47	UNDIFFERENTIATED SARCONA (LIVER), WEPHRITIS
11.2	3.19	118.	NOV-11-58	3421	4.55	ISLET CELL ADENOMA
67.6	4.14	153.	MAY-19-59	3955	9.9 20.9	PREUMONIA
	3.28	121.	AUG-11-59	2467	5.62	UNDETERMINED (NO SKELETAL TUNOR)
٥.٧	3.34	124.	SEP-29-59	3436	5.91	VALVULAR ENDOCARDITIS
9.4	3.41	126.	MOV-03-59	7880	6.58	MANNARY SARCONA
11.6	3.49	129.	JAN-06-60	4884	7.8	HEPATIC CELL CARCINONA
7.36	11.6	429.	JAN-18-55	5149	32.9	UNDETERMINED (NO SKELETAL TUMOR)
9.62	11.6	429.	FEB-14-56	4263	26.0	MEPHRITIS
11.4	10.8	400	SEP-11-57	2767	24.0	SEMINOMA, HYDROCEPHALUS
9.17	10.6	392.	oct-15-57	3101	14.8	MANNARY ADENOCARCINONA
8	10.1	374.	NOV-19-57	0797	21.3	SERTOLI CELL TUMOR
77 6	10.9	403	MAY-27-58	2995	30.8	MEPHRITIS. MALIGNAMOY (TESTES)
9.80	10.1	374.	MOV-11-58	4018	18.1	OSTEOSARCOMA MANHARY ADENOCARCINOMA THYROID CARCINOMA
2.5	12.0	127	MAY-10-50	4832	30.5	INDETERMINED (NO SKELETAL TUROR)
0	10.1	376.	AUG-11-59	6657	56.6	CHROHOPHORE ADEMONA
2.5	10.3	381	SEP-29-59	2898	20.9	FIBROSARCOMA (SOFT TISSUE)
8.8	10.8	6 00	NOV-03-59	4831	9.54	NEPER 11:S
8.43	10.2	377.	JAN-06-60	4831	16.3	TRANSITIONAL CELL CARCINOMA (URINARY BLADDER)
8.74	33.3	1230.	JAN-18-55	3682	62.9	UNDETERMINED (NO SKELETAL TUMOR)
1.2	32.6	1210.	FEB-14-56	2093	56.4	EPIDERMOID CARCINOMA (MOUTN)
9.83	32.1	1190.	SEP-11-57	2781	41.2	THROMBOENBOLISM
8.24	32.1	1180.	OCT-15-57	7787	7.7	OSTEOSARCOMA, EPIDERMOID CARCINOMA (MOUTH)
9.65	30.6	1130.	NOV-19-57	4427	62.6	NEMANGIOSARCOMA (SOFT TISSUE)
9.0	32.7	1210.	SEP-03-58	3530	68.7	SEMINORA
6.0	30.9	1140.	NOV-11-58	7997	9.0 2	OSTEOSARCOMA
10.9	9.07	1500.	MAY-19-59	5206	7.1	UNDETERMINED (NO SKELETAL TUMOR)
9.26	30.6	1130.	AUG-11-59	7965	8.K	UNDETERMINED (NO SKELETAL TUMOR)
8.20	31.3	160.	SEP-29-59	4242	5.5	HENANGIOMA, PERIAMAL GLAND CARCINONA
80 80 80	52.7	1210.	MOV-03-59	2114	33.0	BLOCD DYSCRASIA, ENDOMETRITIS
6.0	32.3	1200.	JAN-06-60	4226	52.8	NOSE ADENOCARCINONA
8 .8	64. 2	2380.	MAR-16-66	3030	73.7	PURPURA MEMORRHAGICA
12.2	63.6	2350.	MAR-16-66	2707	2.2	OSTEOSARCOMA
	63.8	5360 .	MAR-16-66	1493	58.9	ANEMIA, INFARCTION, MYELOID METAPLASIA
9.80	\$.5	23%.	MAR-16-66	2197	4.8	HEMANGIOSARCOMA (SOFT TISSUE)
13.3	61.3	2270.	MAR-16-66	8	53.5	OSTEOSARCOWA
12.0	63.8	2360.	MAR-16-66	2843	۳. ک و	OSTEOSARCOMA
8.8	\$.5	2390.	MAR-16-66	2813	00 100	OSTEDSARCOMA, EPIDERMOID CARCIMONA (FRONTAL SINUS)
8.6	6.5	23%0.	MAR-16-66	2325	8.%	HEMANGIOSARCOMA (SKELETON)
10.3	5 .0	2370.	MAR-16-66	1028	51.3	OSTEOSARCOMA
14.0	6.09	2250.	MAR-16-66	790 2	110.	EPIDERMOID CARCINOMA (FRONTAL SINUS)
6:	63.8	2360.	MAR-16-66	1758	63.8	OSTEOSARCOMA

B.9 MSr, Chronic Toxicity Study (continued)

			COMMENTS		OSTEOSARCOMA, MEMANGIOSARCOMA (SKELETOM)	OSTEOSARCOMA	STRANGULATED MERNIA	OSTEOSARCOMA	OSTEOSARCOMA	OSTEOSARCONA	ANEMIA, AUTOAGGLUTINATION, INFARCTION	MEMORRHAGE (INTESTIME)	OSTEOSARCONA, INFARCTION, THRONDOCYTOPENIA	STATUS EPILEPTICUS	OSTEOSARCOMA	EPIDERMOID CARCINOMA (FRONTAL SINUS)	ANEMIA, THROMBOCYTOPENIA	HEMANGIOSARCOMA (SKELETOW)	HEMANGIOSARCOMA (SKELETON)
	DOSE TO	SKELETON	(c)															2.66	
	705	INJECTION	INTERVAL		2253	3	522	1740	2256	1448	1285	32	1021	1129	1469	1982	8	1667	1165
		DATE	INJECTED		MAR-16-66	JAN-18-55	FEB-14-56	JAN-07-59	OCT-15-57	oct-15-57	NOV-19-57	SEP-03-58	JAN-07-59	MOV-11-58	JAN-07-59	AUG-11-59	SEP-29-59	NOV-03-59	JAN-06-60
101		INJECTED	(KBQ/KG)	•	2360.	3810.	3770	3570.	3770.	3890.	3520.	3660.	3480.	3430.	3350.	3460.	3550.	3770.	3670.
INJECTION		INJECTED	(UCI/KG)	:	53.7	103.	102.	% .6	102.	105 .	95.2	98.8	% .5	92.7	8.5	93.5	8.0	102.	8.5
		JEIGHT	(KG)		1.4	9.38	12.2	1.4	10.3	11.4	8.53	9.33	11.2	10.2	11.2	8.82	8.55	8.97	12.5
			(DAYS)															245	
		902	HUNGER	•	M012545	F001S50	M002850	M002S50A	MO03\$50	F004550	MO05850	H006550	MO06S50A	F007S50	F008\$50	F009550	M010S50	F011S50	M012S50

B.10 229Th, Chronic Toxicity Study

	COMMENTS	LYMPHOSARCOMA	INTERSTICATION NEW PRINTERS BRAIT MENORRHAGE	LYMPHOSARCOM	LYMPHOSARCOMA	TRAUM		MEMORYNAGE (SKAIM)	TRANSITIONAL CELL CARCINGA (URINARY BLADDER)	AORTIC BODY TUNOR	STATUS EPILEPTICUS	TRANSITIONAL CELL CARCINOMA (URINARY BLADDER)	LUNG CARCINOMA, MYELDID SARCOMA (LIVER)	MELANONA (MOUTH), STONACH CARCINONA	STATUS EPILEPTICUS	TRANS. CELL CARC. (URINARY BLADDER), THROMBOENBOLISM	STRANGULATION ON VOMITUS, STATUS EPILEPTICUS		ISLET CELL TUMOR		THE CONTROLL OF THE CHARLES I CHARLE	BILLIARY OBSTRUCTION MANAGEY ADSIDED	BILIARY OBSTRUCTION, CHRONIC PANCREATITIS	MEPATIC CELL CARCINOMA	HENORRHAGE (BRAIN)	STRANGULATION ON VONITUS, STATUS EPILEPTICUS	ENDOMETRITIS, PERITONITIS	SIATUS EPILEPTICUS, PREUMORIA Decratitis	ISLET CELL TUROR	NEPHRITIS, PROSTATE ADENOCARCINONA	MELANCHA (CRAL)	MANDARY ADENOCARCINOMA	OSTEOSARCONA, THYROID ADENOCARCINONA	THROMBOENBOLISM, ISLET CELL ADENOCARCINOMA	DEGEMERATION (LIVER), AMESTMESIA ACCIDENT	OSTEOSARCONA	PERIAMAL GLAMO CARCINOMA	ATELDID SAKUMA (LIVER)	OSTEOSARCOMA, ADERGCARCINOMA (INTROID+PERIAMAL GLAND) STATIS FPIFFFICIS	
0005	SKELETON (GY)												0.13	0.13	0.13	0.13	9.08 	9.16	7.0	2.0	. c		0.14	0.15	0.39	0.35	0.37	0.50	0,40	0.39	77.0	0.45	0.40	0.41	0.39	1.13	1.15	-	5.5	!
Tana	INJECTION	5687	2592	3072	2306	7	404V	7141 7141	5061	7004	4271	4137	4837	4822	4720	4515	889	2000	4767	7667	1067	7127	4573	3350	3471	1976	3032	2159 4854	4548	5840	4599	4149	1767	3952	1682	3172	4570	7414	321/ 2884	-
	DATE INJECTED	FEB-08-54	JUN-06-55	OCT-18-55	OCT-14-58	JAN-10-61	DEC-13-60	PEB-U/-61 MAY-24-61	III-20-61	JUL-28-61	JUN-04-63	JUL-09-63	MAR-27-62	MAR-27-62	MAR-27-62	MAR-27-62	FEB-09-60	JUN-04-63	JAN-10-61	PEB-U/-01	IIM-20-41	111 -28-61	JUN-04-63	JUL-09-63	SEP-07-56	SEP-28-54	20-NOC	OCT - 18-55	JAN-10-61	FEB-07-61	MAY-24-61	JUN-29-61	JUL-28-61	JUN-04-63	JUL-09-63	FEB-08-54	SEP-07-56	SEP-07-30	SEP-07-56 OCT-14-58	:
3	INJECTED (KBQ/KG)												0.0607	0.0614	0.0603	0.0614	0.0599	0.0640	0.0651	0.0388	7490.0	6,000	0.0633	0.0703	0.184	0.181	0.179	0.200	0.189	0.182	0.208	9.1%	0.189	0.192	0.210	0.518	0.540	0.337	0 . V) }
INJECTION	INJECTED (UCI/KG)												0.00164	0.00166	0.00163	0.00166	0.00162	0.00173	0.00176	× 200.0	9.5	5	0.00171	0.00190	0.00496	0.00400	0.00485	0.00240	0.00510	0.00491	0.00562	0.00529	0.00510	0.00518	0.00567	0.0140	0.0146	0.0145	0.01	>
	KETGHT (KG)	8.24	11.6	8.10	10.4	3.	9.6		× ×	10.4	9.45	6.6	11.4	4.0	28	0.0	13.8	13.4			7.57	5	9.76	7.37	14.3	10.5	e. 50	8.38 8.44	9.6	9.11	9.53	8.62	10.2 10.2	2.	3	9.36	9.27	8 6	11.0	:
	AGE (DAYS)	567	3 &	25	458	683	8	בול בול	300	23.	530	765	3	3	2	27	8	25	60	750	, y	Š	23.0	765	6 69	455	629	0 0 5 5	687	532	533	269		230	765	663	§	3 8	9 5 5	!
	DOG NUMBER	M001100	F003100	M004100	M005100	F006T00	F00e100A	MOC/100	F000100	F010T00	F011T00	F012T00	M001102	H002102	F003102	M004T02	M005T02	H005T02A	F006102	#00/105	F000102	E010102	F011102	F012T02	M001T05	M002105	F003T05	1004105 1004105	F006T05	M007705	M008T05	F009T05	F010105	F011T05	F012T05	M001710	M002T10	1003110	MO05110	••••••

B.10 228Th, Chronic Toxicity Study (continued)

																																			≨								
	COMMENTS	PERFORATION (STOWACH)		LUNG CARCINCHA, MEPHRITIS	LEIGHYOSARCOM	FIBROSARCOMA (BONE)	OSTEOSARCOMA	PHEUMONIA	OSTEOSARCOMA	OSTEOSARCOMA	COMA (NO SKELETAL TUMOR)	HEMANGI OSARCOMA	OSTEOSARCOMA	OSTEOSARCONA	LEPTOSPIROSIS	OSTEOSARCONA, PNEUMONIA	OSTEOSARCOMA	CHONDROSARCOMA	OSTEOSARCONA	OSTEOSARCOMA	OSTEOSARCONA	OSTEOSARCOMA	OSTEOSARCONA	OSTEOSARCONA	TRAUMA	OSTEOSARCOMA	OSTEOSARCUIA	US I EUSAKUUMA	OSTEOSARCHA	OSTEOSARCOMA	OSTEOSARCOM	OSTEOSARCOMA	OSTEOSARCOMA	OSTEOSARCONA, ANENIA	GIANT CELL TUNCR, (BONE) TRAJAN	OSTEOSARCONA	OSTEOSARCOMA	OSTEOSARCOMA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA	
7	SKELETON (GY)	1.17	1.15	1.32	1.20	1.17	1.21	1.01	2.22	2.21	2.14	2.21	1.92	2.17	.73	5.40	2.46	2.35	2.08 8.08	2.27	2.39	2.97	5.26	8.8	0.52	5.37	e :	5.4	5.5	5.82	5.05	8.4	4.9	16.9	15.6	10.2	14.1	14.2	17.2		13.9	17.4 15.4	<u>:</u>
Taca	INJECTION	3273	3538	259 8	2546	3420	703	1263	2894	22.26	1921	2309	1624	23,73	283	3110	5665	2963	1859	2408	2120	1282	20.	1541	2	1222	665	9 5	200	1209	1022	1038	1449	8	929	242	2	8	1156	198	S	₹ 8	
	DATE INJECTED	JAN-10-61	FEB-07-61	MAY-24-61	JUN-29-61	JUL - 28-61	JUN-04-63	JUL-09-63	SEP-07-56	SEP-28-54	JUN-06-55	oct-18-55	FEB-09-60	JAN-10-61	FEB-07-61	JUN-04-63	MAY-24-61	JUN-29-61	JUL - 28-61	JCN-04-63	JUL-09-63	FEB-08-54	SEP-28-54	JUN-06-55	oct-18-55	SEP-07-56	FEB-09-60	JAM - 10-01	MAY-24-61	JUN-29-61	JUL-28-61	JUN-04-63	JU09-63	FEB-06-54	SEP-28-54	JUN-06-55	oct-18-55	FEB-09-60	JAN-10-61	FEB-07-61	MAY-24-61	19-52-E1	3
3	INJECTED (KBG/KG)	0.555	0.544	0.614	0.592	0.555	0.570	0.618	1.07	5.08	1.12	1.11	1. 8	 80.	- 8	1.15	1.20	1.13	1.10	1.13	1.22	3.61	3.24	3.36	3.33	3.33	5 5	5.5 7.2	27.5	3.62	3.40	3.34	2.S	=-	1.1	1.0	10.5	8.8	10.4	78.6	11.6	5.0	!
INJECTION	INJECTED (UCI/KG)	0.0150	0.0147	9.0166	0.0160	0.0150	0.0154	0.0167	0.0289	0.0293	0.0303	0.0599	0.0286	0.0292	0.0292	0.0311	0.0324	0.0306	0.02%	0.0305	0.0329	0.0976	0.087	0.000	0.000	0.0889	0.0848	200		0.00.0	0.0919	0.0904	0.10 001	0.301	0.301	0.272	0.285	0.269	0.282	9.20	0.313	9	
	WEIGHT (KG)	8.81	9.18	9 .	10.0	10.2	7.55	8.	۲. ج	10.0	10.3	8.59	9.65	8.14	8.83 53	9.08 80	11.6	8. 8.	4.	7.5	7.56	10.2	9.16	7.87	13.0	9.0	21.6		6.6	8	10.7	10.8	8.92	9.15	-	12.0	9 .	10.7	8 .8	8.	- : 2 :	1.5 2,4	1
	AGE (DAYS)	69	23	555	227	Š	2 20	7.7	&	458	8	59	28	Ş	517	22	Ž	257	8	218 8	\$	8	3	7.7	225	920	R :	£17	- 5	257	204	518	3	314	458	7	કુ	27	451	427	Ž:	511	}
	POG	F006T10	MO07110	M006710	F009T10	F010T10	F011710	F012T10	M001715	H002T15	F003715	H004115	M005T15	F006T15	M007115	M007115A	M008T15	F009T15	F010T15	F011115	F012T15	H001120	M002120	F003T20	H004120	H004T20A	0212001	2001	MOORT 20	F009T20	F010T20	F011T20	F012T20	M001130	M002130	F003T30	H004130	H005130	F006T30	MD07130	M006T30	F009130	-

B.10 228Th, Chronic Toxicity Study (continued)

								MEPHR I T I S				
			COMMENTS		OSTEOSARCOMA	HEMANGIOSARCOMA (SKELETON)	OSTEOSARCOMA, CRIPPLING FRACTURE	OSTEDSARCOMA, CRIPPLING FRACTURE.	ULCER (MOUTH), NEPHRITIS	ULCER (MOUTH)	KIDNEY DEGENERATION	PANCYTOPENIA
	DOSE TO	SKELETON	(eY)	•						42.5		
	POST	INJECTION	INTERVAL		8	Š	6 45	833	763	8	212	26
		DATE	INJECTED		3-5-5	JUL-09-63	FEB-08-54	SEP-28-54	JUN-06-55	oct-18-55	FEB-08-54	SEP-28-54
5		INJECTED	(KBQ/KG)		70.	11.8	32.6	33.9	9.62	30.9	102.	97.3
INJECTION		INJECTED	(UC1/KG)		20.0	0.320	0.882	916.0	0.800	0.835	2.76	2.63
		VEI GHT	(KG)		2.2	1.5	8.32	8.32	7.25	8.81	87.6	8.25
		¥	(DAYS)		218	458	Ş	\$ \$	3	ş	Ç	3
		90	HUNDER		3 5 5	F012T30	H001740	M002T40	F003T40	M004740	M001750	M002150

B.11 24 Am, Test Studies

	COPENTS	SPECIAL STUDY	FIREGRANCOM (LIVER)	PHELINONIA	CHOLAMGIOCARCINOMA	SPECIAL STUDY	CHOLANGIOCARCINOM, MEPATIC CELL CARCINOM	PMEURONIA RECTAL STIDY	CHOLANGIOCARCINOMA	SPECIAL STUDY	OSTEOSARCOMA, MEMANGIOSARC. (LIVER), FIBROSARC. (LIVER)	EMPYENA	FIBROSARCOMA (SOFT TISSUE), DEGENERATION (KIDNEY)	TRAIN	CHANGE IS, METILENIA Putinguia	PRESENTENT ACCIDENT ADRENCEPTICAL MYDORIACIA	SPECIAL STUDY	종	MEMANGIOSARCOMA (SOFT TISSUE)	OSTEORARCOM	OSTEOSARCOMA	OSTEOSARCOW		ENCEPIAL OPATHY	SPECIAL STUDY	SPECIAL STUDY	UNDETERMINED HAMMARY ADENCEARCHUMA	SPECIAL STUDY						SPECIAL STUDY	OSTEOSARCHA	UNDETERMINED (NO SKELETAL TUNCR)	PREDIONIA EBECIAL CII DV	STEPINE SING
1	SKELETON (GY)	• • • •	0.63	0.26	0.57	98.0	 		9	9.0	6.27	5.18	6.7		9.°°	3.7	. 8	0.14	2.00	5.78	. .		3 8	2.6	2.46	0.07	3.5	1.26	1.72	0.03	0.03	0.03	0.03	8 8	. 9. 9. 9. 6. 6.	2.17	- v	7.50
2	INJECTION INTERVAL	4292	867	1802	3770		2200	1510	3340	17	2535	1864 1864	90.			505	7117	3	3760	1505	25	2421	250	282	3654	ກຸ	1554	2240	2240	٥	2	٠;	₽'	- 0	1416	333	322	Ì
	DATE INJECTED	DEC-30-76	DEC-30-76	DEC-30-76	DEC-30-76	DEC-30-76	DEC-30-76	DEC-30-76	DEC-30-76	oct-10-72	oct-10-72	HOV-28-72	MOV-28-72	22-92-NOH	21-00-30W	AM 6-08-73	AUG-08-73	OCT-23-73	OCT-23-73	JUL-02-74	JAN-28-76	FEB-04-76	1EB-13-70	AUG-04-76	AUG-04-76	AUG-04-76	SEP-20-83	SEP-20-83	SEP-20-83	HAR-26-86	APR-04-86	APR-21-86	APR-22-86	MAY-07-56	MOV-19-74	MOV-19-74	MOV-19-74	21-41-14
	INJECTED (KDQ/KG)	3 5 6 6 6 8	0.588	0.568	0.607	0.599	2.	- *	2 2	10.4	10.5	11.3	-:	11.4	7:	- - -	11.2	12.3	12.3	-	-:	11.7		. • •	10.6	10.6		8.2	10.9	11.5	10.4	12.6	8.6	13.0	. 4 . 4	49.6	53.3 7	£7.:
INJECTION	INJECTED (UCI/KG)	• • • •	0.0159	0.0159	0.0164	0.0162	0.0481	8 6	9	0.280	0.283	0.305	0.301	90.70	5 6	5 5 5 5	0.303	0.333	0.333	0.300	0.299	0.317	0.501	0.50	0.286	0.286	8 7 8 8 8 8	0.216	26.0	0.310	0.280	0.340	0.270	0.350	7.20	<u> </u>	- c	5
	VE 1947 (KG)	12.9	1.4	1.9	3.6												9.6	6.92	9.35	12.9	9.76	12.6	3 6	10.2	10.0	8.	5.0 3.0	14.3	10.5	9.6	9.0	8.		8 8	8	8.8	8.36	:
	AGE (DAYS)	553	2 £	3	2,46	ž	553	% %	Ę	515	50	2658	222	222	ž	8 5	88	8	8,	53	8	Z S	Š	235 235	278	226	32	789	28	2267	Ē	3512	5569	2:	28	22	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	74.
	DOG NUMBER	1158400	1160410	T161V10	T162W10	1163410	1164117	7165W17	7177911	T102450	T103450	1104430	T105450	T106430		1110430	T111150	T112430	1113430	T114430	T142430	1143450	1140430	1155430	1156430	T157430	117456	1177/50	T178430	T181430	T182450	T183430	1184430	1185450	11740	11184	111946	-

B.11 241 Am, Test Studies (continued)

	CONNEXTS	SPECIAL STUDY	HELANGNA (MOUTH)	DEGENERATION (LIVER AND KIDNEY)	SPECIAL STUDY																							
Ş.	SKELETON (GY)			9.0																						9. 0.		
į	INJECTION INTERVAL	545	1	_	_	7	~	•0	5	2220	2220	22	5	15	252	-	ጽ	283	-	m	S	'n	-	-	m	-	~	••
	DATE INJECTED	NAY-19-76	JUN-21-78	#UN-21-78	JUN-21-78	JUN-21-78	JUN-21-78	JUN-20-78	57-18-75	OCT-11-83	OCT-11-83	JAN-29-68	NOV-25-69	JAN-26-70	NOV-10-70	AUG-17-72	APR-02-73	FEB-24-75	FEB-01-76	OCT-23-67	APR-30-68	APR-30-68						
101	INJECTED (KBQ/KG)	36.4	36.1	٠. لا	K.7	39.2	30.5	30.2	41.4	33.2	31.3	103.	107.	102.	8.8 8.8	110.	9.92	117.	115.		107.	103.	118.	115.	105	168 .	165.	165.
INJECTION	INJECTED (UCI/KG)	0.963	0.976	0.919	0.937	9.1	0.824	0.817	1.12	986.0	979.0	2.78	2.8	2.77	2.67	2.8	2.34	3.17	3.11	2.97	2.88	2.3	3.20	3.11	2.8	4.53	4.46	4.47
	KE IGHT	11.6	9.80	10.4	10.2	6 .8	11.6	11.7	8.50	3.45	3.65	10.7	1.3	7.01	1.3	10.4	9.54	8.77	٥. ک	0.26	0.27	0.28	0.24	٠ ک	0.27	11.5	1.0	10.5
	AGE (DAYS)	397	8	ğ	8	3	876	8	ğ	87	8	3	552	8	244	& M	3542	2894	-	-	-	-	-	-		8 28	553	393
	DOG NUMBER	1145440	T168460	1169440	T170440	1171460	T172440	1173460	T174440	1179440Y	T180460Y	T016450	1056450	T057/50	1099450	T101450	T107450	T120450	1147450H	1148450H	T149450M	T150450N	T151450M	1152450M	T153450N	1015455	1032455	1033455

B.12 ²¹⁶Bi, Test Studies

			INJECT TON	5					
		•	i		********	5	2 25		
9	¥	_	-	INJECTED	DATE	INJECT ION	SKELETON		
	(DAYS)	(KG)	(UCI/KG)	(KBQ/KG)	INJECTED	INTERVAL	(GY)	COMMENTS	
		•	-				:		•
T001030	Ş			%	AUG-06-80	-	0.01	SPECIAL STUDY	
1002030	929			ž	AUG-07-80	77.7	0.01	SPECIAL STUDY	
1003030	3			582	AUG-19-80		0.0	SPECIAL STUDY	
1004030	3			311	AUG-27-80	2/24	0.0	SPECIAL STUDY	
1005030	1338			407	JAN-06-82	_	0.01	SPECIAL STUDY	
1006030	752			262	JAN-13-82	2/24	0.01	SPECIAL STUDY	

B.13 249Cf, Test Studies

			COMMENTS		NEPHRITIS, MYOCARDIAL INFARCTION	SPECIAL STUDY	SPECIAL STUDY
	DOSE 10	SKELETON	(eY)		20.2	0.29	0.82
	POST	INJECTION	INTERVAL		200	_	72
		DATE	IMJECTED		FEB-24-71	FEB-24-71	FEB-24-71
₹		INJECTED	(KBQ/KG)	* * * * * * * * * * * * * * * * * * * *	105	102	\$
INJECT 10E		INJECTED	(UCI/KG)		2.8	2.71	2.80
		JEIGH	(DAYS) (KG)		12.2	10.7	9.89
		AGE	(DAYS)	•	265	<u>%</u>	Š
			MUMBER		T001650		1003650

B.14 252Cf, Test Studies

		COMMENTS		SPECIAL STUDY	SPECIAL STUDY
DOSE 10	SKELETON	(GY)		2.87	-
5	INJECTION	INTERVAL		፠	1
	DATE	INJECTED		SEP-08-71	NOV-17-71
********	INJECTED	(KBa/KG)		호	5
				2.81	2.87
	FIGHT	(KG)	•	11.4	10.7
	AGE	(DAYS)		% %	240
	900	MUMBER		T001F50	T002F50
		AGE WEIGHT INJECTED INJECTED DATE	AGE WEIGHT INJECTED INJECTED DATE INJECTION SKELETON R (DAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL (GY) C	AGE WEIGHT INJECTED INJECTED DATE INJECTION SKELETON (DAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL (GY)	AGE WEIGHT INJECTED INJECTED DATE INJECTION SKELETON (DAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL (GY) 586 11.4 2.81 104 SEP-08-71 36 2.87

B.15 243,244Cm, Test Studies

								AND KIDNEY)	!				
			COMMENTS	ebertat etten		SPECIAL STUDY	SPECIAL STUDY	DEGENERATION (LIVER	SPECIAL STUDY	SPECIAL STUDY	SPECIAL STUDY	DEGENERATION (LIVER)	SPECIAL STUDY
		SKELETON	(GY)	20									
	Ē	INJECTION	INTERVAL		•	9 2	==	1142	9	T	2	385	87
		DATE	INJECTED	ABB- 20- BO	8-19-WA	APR-29-80	APR-29-80	FEB-27-73	FEB-27-73	FEB-27-73	FEB-27-73	FEB-27-73	OCT-22-73
5		INJECTED	(KBQ/KG)	11 4	•	11.3	11.5	86.2	7.76	7.76	7.76	97.3	107.
		INJECTED	(DCI/KG)		3	0.306	0.310	9.8	2.8	2.8	2.¢	2.63	2.8
		F 164	(KG)	*	?	8.43	27.6	10.4	12.2	11.4	12.5	12.8	10.7
	1	AGE	(DAYS)	ğ	?	8	2 26	51	29	2	584	485	964
		90	KUMBER	T007F40		T006C30	T009C30	1001050	T002C50	T003C50	T004C50	T005C50	1006C50

B.16 2GEs, Test Studies

								EMPYEMA	
			COMMENTS	************	SPECIAL	SPECIAL	SPECIAL	ABSCESS (LUNG), I	SPECIAL STUDY
	DOSE TO	SKELETON	(ex)		0.50	0.77	1.38	3.5	0.34
	Post	INJECTION	INTERVAL		~	2	55	2428	_
		DATE	INJECTED		JUN-05-73	27-50-M	JUN-05-73	57-90-M	SEP-10-73
5		INJECTED	(KBQ/KG)		\$	107	5	110	<u>5</u>
			(UC1/KG)						
		WEIGHT	(KG		3. 3.	12.2	÷.0	12.3	11.2
		AGE	(DAYS) (KG)		2	3	3	\$	787
		900	HUNDER (T001E50	T002E50	T003E50	T004E50	T005E50

B.17 ²¹⁰Pb, Test Studies

			COMMENTS		SPECIAL STUDY					
	DOSE TO	SKELETON	(GY)		0.01	0.01	0.01	0.01	0.01	0.01
	PosT	INJECTION	INTERVAL		_	2/24	-	2/24	-	2/24
		DATE	INJECTED		AUG-06-80	AUG-07-80	AUG-19-80	AUG-27-80	JAN-06-82	JAN-13-82
3		INJECTED	(KBQ/KG)		5 86	567	285	311	407	262
INJECTION		INJECTED	(UCI/KG)		8.00	7.95	7.70	8.40	11.0	7.08
		LEI GHT	(KG)		10.9	10.4	9.05	8.9	10.8	11.2
		AGE	(DAYS)	•	8	929	603	681	1338	1264
		5 00	*CMBER		1001030	T002030	1003030	1004030	T005030	T006030

B.18 237Pu or 241Pu, Test Studies

			INJECTION	<u>5</u>		1908	1000	
902	•	: -	•	INJECTED	DATE	INJECTION	SKELETON	
MUMBER	(DAYS)	(KG)	(UCI/KG)	(KBQ/KG)	INJECTED	INTERVAL	(ex)	COMMENTS
0077000	•	•						
				3	DEC-10-7	2	5.5	••
T002K10				786.0	DEC-10-74	2	0.0	••
T003K10				- .8	DEC-10-74	22	0.01	•
T021K17				18648.	FEB-28-80	_	0.20	•
T022K17Y				13653.	APR-08-80	7	9.0	•
T023K17Y			462.	17094.	APR-08-80	2	1.03	SPECIAL STUDY
T024K17	245	12.2		18759.	JUL-30-81	•	0.17	•
*****		*******	****					

TOOJK10 THROUGH TOO3K10 WERE INJECTED WITH PU-237. TOO2K17 THROUGH TO24K17 WERE INJECTED WITH PU-241.

B.19 239Pu, Test Studies

	COMMENTS	REASSIGNED, SEE FOOGTOOA REASSIGNED. SEE T124P17	<u>_</u>				SPECIAL STUDY									SPECIAL STUDY	SPECIAL STUDY	SPECIAL STUDY	SPECIAL STUDY	ARTHRITIS	DIGESTIVE DISORDER	LYMPHOSARCONA	UNDETERMINED (NO TUMOR)	OSTEOSARCOMA	MAST CELL SARCOMA	THROMBOEMBOL I SM	ACARIAN DERMATITIS	EMPYEMA, ISLET CELL TUMOR	DATELLE LABO	BATTELLE LABS - DEAD (NO CAUSE REC'D)		•	SPECIAL STUDY	SPECIAL STUDY		SPECIAL STUDY						SPECIAL STUDY
300	SKELETON (GY)	: : : :																		0.01	0.05	0.01	0.0	0.0	0.05	0.12	0.12	0.13	5	0,10	0.10	0.05	0.05	6.0 0	0.11	6. 0	0.01	0.05	0.07	0.12	0.01	0.03
1904	INJECTION	• • • • • •	378	=	14	4	_	5	4	27	26	58	&	1645	1645	1647	8 2	554	455	2390	3761	2372	3381	3709	3702	3011	2851	3371	<u> </u>	228 228 228	2481	8	26	194	647	229	33	274	375	246	٠ ;	2
	DATE	0 0 0 0 0 0 0 0	MAY-06-75	FEB-23-76	FEB-06-76	FEB-13-76	FEB-12-76	FEB-26-76	MAR-12-76	FEB-24-77	MAR-24-77	APR-14-77	OCT-04-77	AUG-03-82	AUG-03-82	AUG-03-82	JAN-21-86	JAN-21-86	JAN-21-86	AUG-22-73	FEB-19-75	APR-01-75	JUL-25-73	JUL-25-73	AUG-22-73	MAY-09-72	JUN-01-72	27-10-NOT	MOV- 17-81	NOV-17-81	DEC-15-81	JUL-28-61	JUL-28-61	JUL-28-61	JUL-28-61	AUG-09-61	AUG-09-61	AUG-09-61	SEP-15-61	SEP-15-61	SEP-15-61	SEP-15-61
3	INJECTED (KBQ/KG)	1 1 1 1 1 2 1																		0.0226	0.0244	0.0263	0.0566	0.0581	0.0707	0.193	0.189	0.188	184	0.183	0.181	0.636	0.636	0.618	0.592	0.555	0.548	0.599	0.566	0.570	0.585	0.548
INJECTION	INJECTED (UCI/KG)	•																		0.00061	0.00066	0.00071	0.00153	0.00157	0.00191	0.00521	0.00512	0.00507	0.00353	0.00494	0.00490	0.0172	0.0172	0.0167	0.0160	0.0150	0.0148	0.0162	0.0153	0.0154	0.0158	0.0148
	WEIGHT (KG)		7.60	1.8	10.3	8.50	9.31	9.25	13.2	9.78	8.52	11.3	8. S	55.5	58.5	60.3	11.2	=-	11.2	51.3	55.7	52.0	48.7	44.3	47.2	6.87	44.5	 	7 77	7.97	45.0	13.1	13.1	13.8	12.0	10.5	12.4	8.47	10.7	89.	40.4	8.39
	AGE (DAYS)	! ! ! !	487	574	581	581	23	555	570	205	518	516	25	557	257	557	1810	1825	1825	53	517	557	269	269	265	88	611	611	2 5	230	558	1485	559	559	556	225	548	519	550	550	24	247
	DOG NUMBER	T022P00 T064P00	1090000	T105P00	1108P00	1109600	1110900	1114200	T115P00	T180P00	T182P00	T183P00	T201P00	7258P00E	T259P00E	1260P00E	1275P00+	1276P00+	1277P00+	T083P01E	T084P01E	T085P01E	T080P02E	T081P02E	T082P02E	T071P05E	T072P05E	T0/3P05E	1252805E	1253P05E	T254P05E	T023P10	T024P10	T025P10	T026P10	T028P10	T030P10	T032P10	T033P10	T034P10	T036P10	T037P10

B.19 239Pu, Test Studies (continued)

	COMMENTS	SPECIAL STUDY	SPECIAL STUDY	SERILITY	DSTEDSARCOMA	IANCE VEHICLES THE MEDIUM TON	SPECIAL STUDY	SPECIAL STUDY						SECIAL STUDY								SPECIAL STUDY	SPECIAL STUDY	DEAD (NO CAUSE REC'D) - BATTELLE LABS			SPECIAL STUDY											SPECIAL STUDY		
	8	: %	SPE		5 8	3 3	E ds	SPE	SPE	SP	S	SPE		ָה מ	9	SPE	SPE	SPE	SPE	S	SPE	SPE	SPE	PEA PEA	SP	S	, S	9	S	SPE	SPE	SPE	Š	SP	8	SPE	E	S	ָה ה	SP
1000	SKELETON (GY)	9.0	0.13	0.43	2.5		0.0	0.0	0.0	0.05	0.0		5.6	\$ 8	\$ 5	0.07	0.01	0.03	0.01	0.01	0.01	0.01	0.01	7 .0	3 6	3.6	20.0	9.0	0.01	0.05	0.01	0.0	0.01	90.0	0.01	9.0	0.0	9.0	5 6	0.07
Poce	INJECTION	376	769	2400	2595	1100	379	^	62	133	27	91	•	- 002	5	363	26	140	7	33	26	22	7	2760	182	182	211	71	71	4	26	7:	7	877	-	m (~ ;	2	* •	<u></u>
	DATE	SEP-15-61	SEP-15-61	JUL-05-66	APR-20-72	MAX-00-72	MAY-06-75	HAY-13-75	MAY-13-75	MAY-13-75	MAY-28-75	JUN-05-73	201-08-72 111-08-73	Z - 10 - 12 - 12 - 12 - 12 - 12 - 12 - 12	K-71-M=	24-75	AUG-22-75	AUG-26-75	SEP-05-75	MAR-24-77	APR-14-77	OCT-12-77	OCT-25-78	MAR-11-81	NOV-19-85	NOV-21-85	JAN-27-86	FFR-18-86	FEB-20-86	JAN-21-86	JAN-23-86	FEB-25-86	FEB-27-86	MAR-13-86	JAN-16-76	FEB-06-76	FEB-06-76	FEB-11-76	res-63-70	MAY-13-76
<u>8</u>	INJECTED (KBQ/KG)	0.559	0.655	0.599	0.585	0.572	0.651	967.0	967.0	0.533	0.614	0.659	0.588	200	0.539	0.574	0.585	0.562	0.581	0.599	0.622	0.640	0.429	0.570	0.599	0.596	0.592	5,58	0.592	0.788	0.592	0.592	0.596	0.607	9.1	2.68 86.	1.67	8.5	1.01	. . .
INJECTION	INJECTED (UCI/KG)	0.0151	0.0177	0.0162	0.0	0.0.0	0.0176	0.0134	0.0134	0.0144	0.0166	0.0178	0.0159	20.0	0.0152	0.0155	0.0158	0.0152	0.0157	0.0162	0.0168	0.0173	0.0116	0.0154	0.0162	1910.0	0.0100	0.0159	0.0160	0.0213	0.0160	0.0160	0.0161	0.0164	0.047	0.0455	0.0451	0.0433	0.00	0.0527
	WEIGHT (KG)	10.7	9.92	8.	2.5	70.0	8	10.6	10.8	8.0	<u>-</u>	9.6	9.0	 		10.0	10.0	11.7	8.97	8.44	% %	7.67	10.2	26.6	و ا و	`	· •	10.0	14.5	10.8	14.4	1.1	10.2	8	۲.	3	9.35			
	AGE (DAYS)	1534	1534	102	0 0 0 0 0 0	700	8 8	88,	887	887	8	51	2 6	3 8	707	787	8	767	84	518	516	587	611	236	1834	200	C791	1834	1836	595	265	561	563	577	265	S 3		572 50 80 80	707	2558
	DOG NUMBER	1039910	T040P10	1049910	10607106	102001	1089910	1091910	T092P10	T093P10	T094P10	1095010	019901	109/210	10001	1100010	T101P10	T102P10	T103P10	T181P10	T184P10	T202P10	T218P10W	T248P10E	T261P10+	1262910+	12627104	1265P10+	T266P10+	1278P10	1279910	1280P10	T281P10	T292P10	T104P17	1106917	T107017	1111917	1112717	T124P17

B.19 239Pu, Test Studies (continued)

			INJECTION	35	1 1 1 1 1 1	1904	DOSE TO	
DOG NUMBER	AGE (DAYS)	KE IGHT (KG)	INJECTED (UC1/KG)	INJECTED (KBQ/KG)	DATE	INJECTION	SKELETON (GY)	COMENTS
1226P17W	625	8.65	0.0319	1.18	67-90-M	7	0.01	SPECIAL STUDY
1227P17V	615	8.65	0.0319	1.18	52-90-NOF	~	0.01	SPECIAL STUDY
T228P17V	\$29	8.45	0.0327	1.21	22-90-MOF	~	0.0	
T2299174	615	9.30	0.0297	1.10	52-90-M	7	0.0	
1230P17	8	٠. ج	0.0277	1.02	2C-90-NOC	~	0.0	
1231P12V	591	۲. ا	0.0356	1.32	27-90-M	~	0.0	
T244P17J	3	12.5	0.0153	0.566	JUL - 29-80	~	0.01	
T245P17V	299	13.6	0.0140	0.518	JUL-29-80	_	0.0	SPECIAL STUDY
T057720E	618	40.4	0.0961	3.56	SEP-10-69	1506	1.35	OSTEOSARCOMA
T061P20E	80	47.2	0.0983	m S	JAN-06-70	1639	1.47	OSTEOSARCOMA
T062P20E	ž (25.5	0.156	5.77	JAN-22-70	2221	98.6	
T117P20Y	2 3	٠. د د	0.10g	8.9	JAN-15-76	`;		
10292111	\$ &	5.67	20.10 200.0	20.0	JAM-15-76	* 6	0.0	
1024611	\$ 8	74.4	7760.0		0/-CI-NYC	9 2	3:	_
10240211	₽ è	6.4			OAM-13-70	0 ;	= ;	
11271211	\$ 8	\$ 9	110	4.	JAM-13-70	<u> </u>	2 5	SPECIAL SIUDI
112201	2,7	10.01 70.01			MAB-05-76	ò ÷	2.5	
T125P20W	2 2	0.32	0.127	2.79	JUN-22-76	i w	0.0	
T126P20N	~	8.0	0.160	5.92	JUN-22-76	M	0.01	
T127P20N	~	0.31	0.148	5.48	JUL-19-76	, "	0.01	
T128P20N	7	0.30	0.153	2.66	JUL - 19-76	-	0.01	SPECIAL STUDY
T129P20W	~	0.28	0.197	7.29	JUL-19-76	-	0.01	
T154P20N	~	0.20	0.154	5.70	MOV-09-76	~	0.01	
T155P20N	~	0.20	0.151	5.59	NOV-09-76	~	0.0	
T156P20N	7	9.58	0.0897	3.32	NOV-09-76	~ ;	0.0	
0248611	S S		0.0866	3.20 3.20	7-11-NYC	2:	0.02	
1159720	3 9		0.0783	3.2	77-11-NAC	2;	5.6	SPECIAL STUDY
1161920	8 2	10.0	2000	, c	JAN-11-77	<u> </u>	9.00	
1162920	89	9.59	0.0874	3.23	JAN-11-77	1 2	0.02	
T163P20	83	10.6	0.0791	2.93	JAN-11-77	7	0.01	
T164P20	3 8	10.0	0.0838	3.10	JAN-11-77	4	0.05	SPECIAL STUDY
T165P20	69	10.4	0.0806	2.98	JAN-11-77	7	0.01	SPECIAL STUDY
T166P20	707	9.27	0.0904	3.34	FEB-01-77	7	0.05	
1167720	707	12.6	0.0665	5.46	FEB-01-77	7	0.0	
T168P20	707	9.39	0.0693	3.30	FEB-01-77	7	0.05	
1169920	8	10.9	0.0769	2.85	FEB-01-77	7	0.0	
1170920	8	9	0.0776	2.87	FEB-01-77	7	0.0	
T171P20	2	# F	0.0742	2.7	FEB-01-77	7		
22.2		S •	0.000	. s.	75.01-7	:	20.0	
11/3P20 1. 7. 620V	9 6	4.0°	900	8.7 7.	FEB-01-77	7 6	9.0	SPECIAL STUDY
1734471	2	3.76		9	FEB-00-11	3	CC. >	

B.19 ²³Pu, Test Studies (continued)

	3					SOG			
DOG	AGE (DAYS)	WEIGHT (KG)	INJECTED (UCI/KG)	INJECTED (KBQ/KG)	DATE	INJECTION	SKELETON (GY)	COMENTS	
7175P20Y	8	3,16	0.0936	3.46	FEB-08-77	512	% 0.34	SPECIAL STUDY	Ð
1176P20Y	8	2.89	0.0953	3.53	FEB-08-77	3	0.26		STUDY
1177P20Y	25	4.01	0.0981	3.63	FEB-08-77	38	0.27		STUDY
1178P20Y	35	7.7	0.0969	3.59	FEB-08-77	513	0.35	SPECIAL STI	STUDY
1179P20Y	8	3.8	0.0967	3.58	FEB-08-77	9 9	0.43	SPECIAL STI	STUDY
T185P20Y	8	3.31	0.0941	3.48	MAR-09-78	162	0.16	SPECIAL ST	STUDY
T186P20Y	8	3.71	0.0918	3.40	MAY-09-78	28	0.0	SPECIAL ST	STUDY
187P20Y	23	3.20	0.0994	3.68	NOV-21-78	8 2	0.03	SPECIAL STI	STUDY
1188P20Y	28	3.32	0.0988	3.6	HOV-21-78	128	0.13	SPECIAL ST	STUDY
203920	580	10.9	0.0826	3.8	SEP-05-78	~	0.01	SPECIAL ST	STUDY
1204P20	563	7.70	0.117	4.33	SEP-06-78	~	0.01		STUDY
205P20	520	9.55	0.0943	3.49	SEP-07-78	^	0.01		STUDY
206920	1282	11.2	0.0804	2.97	AUG-24-78	~	0.01		STUDY
207920	942		0.0070	3.62	AUG-24-78	~	0.01		STUDY
208920	270		0.0827	N. 06	AUG-24-78	^	0.01		STUDY
20002	90	08	0.0010	3.40	AUG-24-78	. ~	0.01		STUDY
210920	920	5.25	0.0974	3.60	AUG-24-78	^	0.01		STUDY
211220	1295	7.40	0.122	4.51	AUG-23-78	• •	0.01		STUDY
212220	805	8.80	0.103	3.81	AUG-21-78	5	0.0		STUDY
2139204	553	9.50	0.0703	2.60	OCT-10-78	^	0.01	SPECIAL ST	STUDY
214P20W	553	8.8	0.0742	2.73	oct-10-78	~	0.0	•	STUDY
215P20U	553	3 .8	0.0777	2.87	OCT-10-78	7	0.01		STUDY
216P20V	537	11.4	0.0586	2.17	OCT-10-78	7	0.0		STUDY
217P20U	537	07.6	0.0711	2.63	OCT-10-78	7	0.0		STUDY
219P20V	ğ	12.0	0.0731	2.70	DEC-01-78	35	0.0 80.0		STUDY
220P204	ğ	=:3	0.0776	2.87	DEC-01-78	45	0.11	٠.	STUDY
221P204	8	9.36	0.0938	3.47	DEC-01-78	×	0.1		STUDY
232P20U	3 6	10.4	0.102	3.71	SEP-13-79	~	0.0		STUDY
233P20N	38	12.0	0.0882	3.26	SEP-13-79	_	0.0		STUDY
2346201	3	1.6	0.0913	3.38	SEP-13-73	~	0.0	••	STUDY
235P201	240	8. K	0.121	87.7	SEP-13-79	_	0.01		STUDY
2369204	% %	11.2	0.0946	3.50	SEP-13-79	_	0.0		STUDY
23722	3	10.3	0.103	3.8 1	SEP-13-79	^	0.0		STUDY
2389204	581	10.2	9.10	3.85	SEP-26-79	~	0.01	••	STUDY
239P20L	541	10.8	0.0980	3.63	OCT-29-79	~	0.0		STUDY
246P20Y	8		0.120	7	JAN-20-81	*	0.05		STUDY
7255P20E	8	u	0.0956	3.54	SEP-22-83	75	o. 92		STUDY
7567P20+	1827	_	0.0957	3.54	APR-15-86	7	0.01		STUDY
7568P20+	1826	•	0.0956	3.54	APR-17-86	_	0.0	SPECIAL ST	STUDY
269920+	1840	_	0.0948	3.51	MAY-27-86	727	ช.0		STUDY
1270P20+	1846		0.0957	3.54	MAY-29-86	727	0.23	SPECIAL ST	STUDY
271P20+	1839	•	0.0956	3.54	JUN-10-86	8 2	0.03	SPECIAL ST	STUDY

B.19 ²³Pu, Test Studies (continued)

	i																																								
								3	ST ST	STIDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STEDY	STUDY		STIDY	STUDY													
COPPENTS		SPECIAL	STECIAL SPECIAL	STELLAL	SPECIAL	STECTAL STEELS	SPECIAL	STECTAL SPECIAL	SPECIAL	COFCIA	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL
DOSE TO SKELETON (GY)		88	8 %	0.60	97.0	0.0	0.7		.00	0.0	ò	0.03	0.50	0.50	0.26	0.X	0.26	0.0	0.07	0.07	0.13	0.14	0.13	3	\$ 6	5.0	5 6	7	77.0	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.03	0.05	0.02	90.0 0	0.08
POST INJECTION INTERVAL		2 3	8 %	* 77	9 27		433		2 2	2	58	8 2	877	877	727	554	522	%	%	%	112	112	112	8	22 6	9 ^	. ^	877	877	2	2	2	2	2	2	12	12	2	*	8	3
DATE		98-01-MOF	20-21-MOS	MAK 10-00	MAR-20-80	20 - C2 - WM	MAR-27-86	20 - C - E - C - C - C - C - C - C - C - C	ADB-20-84	MAY-01-86	MAY-06-86	MAY-08-86	MAR-18-86	MAR-20-86	JUL - 15-86	JUL-17-86	JUL-22-86	SEP-23-86	SEP-25-86	SEP-30-86	NOV-18-56	NOV-20-86	NOV-25-86	FEB-19-57	FEB-24-57	MAY-05-87	MAY-07-87	MAY-13-86	MAY-15-86	APR-08-87	APR-09-87	AUG-13-87	AUG-14-87	MAY-14-87	JUN-16-87	JUN-08-87	JUN-08-87	SEP-29-87	SEP-30-87	SEP-29-87	SEP-30-87
INJECTED (KBQ/KG)		2.49	7	ָ י י	5.33 5.83				 	7.5.2	3.57	3.57	3.54	3.54	3.43	3.42	3.46	3.33	3.52	3.52	3.46	3.52	3.42	, i	5.55	5.70 25.00	35.	3.50	3.54	3.29	3.29	3.49	3.41	3.67	3.85	3.10	3.92	3.59	3.59	3.63	3.57
INJECTED (UCI/KG)		0.0963	200	9.00		0.003			200	7900	7960.0	0.0965	0.0957	0.0957	0.0928	0.0924	0.0936	0.0901	0.0952	0.0952	0.0936	0.0952	0.0923	0.104	0.0959		2900	0.0947	0.0956	0.0800	0.0890	0.0942	0.0922	0.0991	0.104	0.0839	0.106	0.0970	0.0970	0.0980	0.0966
VE IGNT		3.	- 6	3			7.5) N	'n		•	9.59	=	13.1	13.8	13.0	1.0	13.2	12.4	12.6	12.6	12.4	12.8	0.51	2.6	5 C		13.0	13.1	11.6	10.4	9.40	6.0	6.55	7.18	13.5	10.8	13.0	12.1	13.3	13.4
AGE (DAYS)		9	§ 3	8 8	5 5		2 2			ď	200	Š	3	3 8	556	558	38	9 29	224	220	3	610	8	287	è :	7 7	3	500	1816	8	201	88	8	152	150	200	588 80	3	5	3	8
DOG NUMBER		T275P20+	12/4/20	1202120	1285820	201102	0246821	1200750	128020	1280920	1290920	1291920	1293920	T294P20	T295P20	1296P20	1297720	1298P20	1299P20	1300P20	1301920	T302P20	T303P20	T504P20	1505P20	130767	1308920	T309P20+	T310P20+	T313P20Y	T314P20Y	T315P20Y	T316P20Y	1317P20Y	T318P20Y	T319P20	T320P20	1321P20	T322P20	T323P20	T324P20

B.19 239Pu, Test Studies (continued)

																												_															
		•																										UNDIFFERENTIATED MALIGNANCY (SOFT TISSUE)															
		•													, PANCREATITIS	, PANCREATITIS		, PANCREATITIS								(SKELETON)		TED MALIGNAMON				5			MAL I GHANT								
	COMMENTS	SPECIAL STUDY				SPECIAL STUDY	OSTEOSARCOMA	OSTEOSARCOMA	OSTEOSARCONA	OSTEOSARCONA	OSTEOSARCONA					SPECIAL STUDY,	SPECIAL STUDY	SPECIAL STUDY,	OSTEOSARCONA	OSTEOSARCONA				SPECIAL STUDY	SPECIAL STUDY	FIBROSARCONA (SKELETON)	OSTEOSARCONA	UNDIFFERENTIA	OSTEOSARCOMA	COTECONACONA	SPECIAL STUDY	THROPBOENBOL I SH	SPECIAL STUDY	OSTEOSARCONA						_			SPECIAL STUDY
	SKELETON (GY)	3.02	8.	9.16	1.35	22.0	8.63	3.12	3.28	2.32	5.03	5.22	1.48	0.85	97.	1.65	8.	0. 88	1.69	2.83	0.03	0.19	0.17	0.14	0.02	6.63	6.30	7.4	13.6	0.21	0.10	1.1	0.15	2.23	2.91	0.12	5.69	0.69	2.0 8	1.32	8.8 8.8	9.0	6
į	POST INJECTION INTERVAL	ŝ	35	9	3	187	2835	716	576	ž	1623	1633	511	518	\$3	657	580	273	1753	2066	^	\$	2	2	2	10%	1148	E	1451	25	8	1097	132	282	2	\$	3506	752	5 5	417	824	3	ĸ
	DATE	JUL -28-61	AUG-09-61	AUG-09-61	SEP-15-61	SEP-15-61	JUL-05-66	SEP-10-69	69-50-AON	JAN-06-70	MAR-28-73	NAR-28-73	JUL-29-80	JUL-29-80	JUL - 29-80	JUL-29-80	MAR-03-81	SEP-29-81	JAN-31-84	JAN-31-84	MOV-25-86	MOV-25-86	JUL-07-67	JUN-03-69	MOV-30-71	HOV-30-71	MOV-30-71	MAR-28-73	MAR-28-73	KEB-27-75	MOV-18-76	NOV-18-76	MOV-18-76	MOV-18-76	MOV-18-76	MOV-18-76	NOV-18-76	MOV-18-76	MOV-18-76	MOV-18-76	MOV-18-76	MOV-18-76	MOV-18-76
8	INJECTED (KBQ/KG)	12.3	11.0	11.3	11.2	11.2	1.0	8.0	10.7	11.6	11.5	11.8	10.4	5.92	8.55	9.25	12.0	11.2	27.6	12.4	- :-	11.1	35.1	0. 82.0	33.4	33.8	33.6	٠. ا	33.2	- 7	2.62	9.62	29.7	9.62	2.62	9.62	7.62	29.3	2.62	29.5	29.5	29.5	29. 3
INJECTION	INJECTED I	0.332	0.2%	0.305	0.303	0.304	0.2 %	0.291	0.290	0.314	0.310	0.320	0.282	0.160	0.231	0.250	0.323	0.304	9.220	0.336	0.300	0.299	0.949	o.785	96.0	0.913	0.907	0.937	0.007		286	0.79	9.80%	0.800	0.789	28.	200	0.792	9.786	96.	9	2	
	WEIGHT (KG)	11.5	12.1	13.0	1.9	 %	۶. الح	52.3	£.5	45.2	9.8 8.	8.21	8 .8	14.2	9. 8	9.10	9.85	10.1	13.1	9.6	14.2	12.7	3.	9.0	= .5	9.0	40.4	5.3	6.47	. 97	99.6	12.6	10.1	S	9.87	= ::	10.2	11.4	3.6	12.2	2	10.3	8 .28
	AGE (DAYS)	536	282	22	550	Ş	102	ß	591	267	¥13	2488	223	2161	2 20 8	5 8	1877	1839	555	555	ş	Š	437	445													8	8	8	\$	59	3	209
	DOG NUMBER	1027930	1029930	1031930	1035930	1036P30	1050930	1058P30E	1059P30E	T060P30E	10777930	1078P30	1240P30+	T241P30+	T242P30+	1243930+	1247930+	T251P30+	1256P30U	12572304	T311P30	1312930	T052P40	1055P40	T065P40P	10669409	T067940P	107476	10/2840	10040405	T130P40P	11319409	T132P40P	11339409	T134P40P	11359409	11366400	11379400	T138P40P	T139P40P	11409409	11419409	1142P40P

B.19 239Pu, Test Studies (continued)

INJECTION

																																Precise Sign Netsocabena Binth nyerbaela nesembation (1908)	LOS DISCARIO, DESEMBNITOR (LIVER)		PURPURA MEMORRHAGICA, DEGEMERATION (LIVER)				IVER		MDIFFERENTIATED SARCONA (SKELETON)	
	COMENTS	OSTEOSARCONA	OSTEOSARCOMA		SPECIAL STUDY	COLECTAL CUM				OSTEOSARCONA	OSTEOSARCOMA						_															OFTENER STUDY	DECEMENATION (11VED) ACCITE	MEPHRITIS. DEGEN	PURPURA HEMORRHA	SPECIAL STUDY	SPECIAL STUDY	SPECIAL STUDY	DEGENERATION (LIVER)	SPECIAL STUDY	UNDIFFERENTIATED	OSTEOSARCONA
000	SKELETON (GY)	6.11	5.87	0.21	0.24	97.7	5	7	3.60	9.19	7.08	8	0.36	o. 8	 8	3.0%	24.8	11.6	13.7	14.1	26.1	28.70	0.55	0.54	1.9	8	0.12	0.22	8	3.41	9 2	6. 07	16.1	31.7	45.4	0.41	1.52	7.2	27.6	2.72	45.4	8 .02
Tace	INJECTION	1267	1288	117	721	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1513	454	128	1568	1594	•••	32	-	&	7	610	365	8	904	#	863	\$	\$	8 2	58	m	~	- - {	25	21)	227	636	1227	13	9	32	732	8	1327	1055
		NOV-18-76	NOV-18-76	MOV-18-76	MOV-15-76	MOV- 10-70	MOV-18-76	MOV-18-76	MOV-18-76	NOV-18-76	NOV-18-76	MAY-13-81	MAY-13-81	JUN-24-52	OCT-13-52	SEP-15-52	OCT-13-52	OCT-13-52	DEC-14-54	DEC-14-54	DEC-14-54	DEC-14-54	NOV-22-55	NOV-23-55	NOV-22-55	NOV-23-55	APR-24-56	APR-24-56	OCT-15-56	OCT - 10 - 56	FEB-12-5/	PEG-16-3/	0FC-15-60	DEC-15-60	NOV-30-64	FEB-10-65	JUL-15-65	SEP-21-65	OCT-28-65	MOV-30-65	MAR-11-66	99-90-10r
8	INJECTED (KBQ/KG)	29.5	29.3	۳. 8	2.5		2 2	, M	29.3	29.5	29.5	3 4.2	34.3	113.	112.	253.	19.	112.	8.5	101.	9.5	98.8 8	2	191.	102.	<u>5</u>	117.	6.0		5.			§ 8	101	11.	88.6	5	101.	11.	112.	%.e	
INJECTION	INJECTED (UCI/KG)	0.798	0.793	6	2			262.0	0.792	96.0	0.790	0.924	0.926	3.05	3. 8.	6.85	3.22	3.02	5.69	2.73	2.68	2.67	2.80	2.74	2.76	2.74	3.16	2.43	2.79	5.65	5.6	3.5	***	2.2	3.01	2.40	2.86	2.72	3.01	3.02	2.61	2.73
	LEIGHT (KG)	10.2	9.85	6.0 6.0	3.5	2.0	ž	2	11.4	8.8	11.2	8.38	10.2	11.4	12.7	1.9	9.65	8. 2.	10.4	6.16	7.40	8.32	10.3	1.9 -	12.1	9.23	8.27	9.38	8.32	 :	- `		, F	10.3	8.50	11.4	14.0	12.0	1.9	12.4	8.50	6.80
	AGE (DAYS)	8	60 2	8	25)	\$ 6 2 2 4	202	265	297	%	1413	1019	ž	1581	916	%	1015	727	227	£ 3	257	551	23%	516	78 5	287	287	5	Si	Š	2 4	3 3	88	543	510	8	516	420	803	554	103
		T1439409	11442400	T145P40P	1146409	407447F1	11400400	T150P40P	T151P40P	T152P40P	11579409	1249940	1250P40	T000P50	1001950	T002P50	1003P50	T004P50	1005P50	1006P50	1007750	T008P50	1009950	1010050	T011P50	T012P50	1013P50	1014P50	1015P50	1016-50	101750	1010101	1020050	T021P50	1041P50	1042950	T043P50H	T044P50H	T046P50	T047P50	T048P50	1051P50

B.19 239Pu, Test Studies (continued)

			INJECTION	1 01					
3						POST	DOSE 10		
	(DAYS)	(KG)	(UCI/KG)	(KBQ/KG)	DATE	INJECTION	SCELETOR (GY)	CONNENTS	
TOKTOKO	1647	•	2 63	2	MAB. 11.40	4660	20.2	DESCRIPTION OF TARBO	
108480	<u> </u>		7.	<u>;</u> 5	MAS-11-60	767	3.45 14.4	CONTRACTION (LIVER)	
1063950	3		2.7	102.	DEC-14-70	8	17.2	SPECIAL STUDY	
10877950	3008		2.93	90	FEB-24-75	182	5.74	SPECIAL STUDY	
1066950			3.01	11.	FEB-24-75	78	8.8	SPECIAL STUDY	
1153950			2.55	2.3	MOV-16-76	22	C. 3	SPECIAL STUDY	
T222P50Y			3.27	121.	JAN-15-79	~	0.33	SPECIAL STUDY	
1223P50Y	2		2.77	102.	JAM-15-79	7	0.28	SPECIAL STUDY	
1224P50Y	2		3.23	120.	JAN-15-79	7	0.65	SPECIAL STUDY	
1225P50Y	2		2.72	101	JAN-15-79	7	0.54	SPECIAL STUDY	
1056955	50		2.73	38.	JUL-29-69	~	0.3¢	SPECIAL STUDY	
1116955	533		4.32	160	JAN-13-76	~	0.11	SPECIAL STUDY	
1198955	35		4.57	169.	APR-10-78	~	0.10	SPECIAL STUDY	
1199955	1377		4.54	168	APR-10-78	~	0.10	SPECIAL STUDY	
T200P55	657		4.34	161.	JUN-13-77	72	0.11	SPECIAL STUDY	
****	******	•	****						

FOR THE CALCULATION OF RADIATION DOSE FOR DOGS THAT HAD RECEIVED PARTICULATE PLUTONIUM, MEASURED SKELETAL WEIGHTS WERE USED. THE FOLLOWING SKELETAL PU-RETENTIONS (R) WERE APPLIED:

- A. DOGS THAT RECEIVED NO FURTHER TREATHENT R = 60(1 0.914 exp0.00098t) exp0.000287t. B. DOGS THAT RECEIVED 30 MNOLES CADTPA/KG ONCE WEEKLY R = 6.7% CONSTANT AVERAGE RETENTION. C. DOGS THAT RECEIVED 309 UNOLES ZNDTPA/KG DAILY R = 2.8% CONSTANT AVERAGE REJENTION.

T117P20Y ... T122P20Y AND T123P20 WERE GIVEN TRACER PU-237 IN THE SAME SOLUTION CONTAINING THEIR PU-239.

DOGS IN THE SEQUENCE T213P20W ... T221P17W AND T226P17W ... T239P20W WERE GIVEN A MIXTURE OF PU-239, PU-237 AND AN-241.

1043P50H MAS ALSO GIVEN 37.4 KBQ/KG (1.01 UCI/KG) PU-239 ONE DAY PRIOR TO SACRIFICE.

1044950H WAS GIVEN 30.8 KBG/KG (0.833 UCI/KG) PU-239 AND 339 KBG/KG (9.17 UCI/KG) FE-59 ONE DAY PRIOR TO SACRIFICE.

B.20 224Ra (Quickradium) Test Studies

	COMMENTS	AMELICA, DECEMENATION (NIGHET)		_	Ī		_	AORTIC BODY TUNOR	THROMBOEMBOL 15M	CIRCULATORY FAILURE	MEPHRITIS	OSTEOSARCOMA	MEMANGIOSARCOMA (SKELETON)		_		OSTEOSARCOMA, EPIDERMOID CARCINOMA (FRONTAL SIMUS)	OSTEOSARCOW	OSTEOSARCONA	PURPURA	•-	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	•	PURPURA MEMORRHAGICA
1000	SKELETON (GY)	9 6	2	4.74	5.4	5.40	0.0	0.32	0.32	0.33	0.31	6.71	7.31	88.0	8.0	25.8	36.0	38.2	3.61	2.51	0.	0.0	67.0	0.14	%. 7.%	1.37	0.41	9.3	 87.0	0.52	6.47
•	INJECTION INTERVAL	4013	4211	3757	4893	1967	72/7	3668	4087	4605	4785	2317	2708	1451	292	1692	1462	1638	2053	92	3/54	1/24	-	8/54	7	M	-	-	-	-	ħ
	DATE INJECTED	FEB-01-00	FEB-01-68	FEB-01-68	FEB-01-68	FEB-01-68	MAR-26-63	DEC-04-63	DEC-04-63	DEC-04-63	DEC-04-63	HAR-27-63	MAR-27-63	DEC-04-63	DEC-04-63	FEB-01-68	APR-24-63	APR-24-63	10V-06-63	NOV-06-63	DEC-13-77	JAN-03-78	DEC-19-77	JAN-10-78	JAN-24-78	JAN-14-78	DEC-04-79	APR-21-81	MAY-12-81	DEC-15-82	OCT-17-63
<u>15</u>	INJECTED (KBQ/KG)		.65	11.5	11.5	11.3	32.4	32.7	32.9	33.7	32.2	90 108	90	۶. ۲.	 -:	101.	359.	355.	317.	319.	374.	310.	374.	374.	369.	374.	312.	271.	361.	392.	3 5.
INJECTION	INJECTED (UCI/KG)	 552	0.0447	0.310	0.311	0.306	0.875	0.885	0.889	0.912	0.870	2.91	2.91	2.57	2.57	2.73	9.71	9.59	8.56	8.62	10.1	8.37	1.01	1.0	86.6	10.1	8.43	7.33	۶. ۲.	10.6	21.4
	KE IGHT (KG)	9.5	0	9.36	10.2	9.68 83.	9.55	9.10	13.5	11.3	10.3	12.0	13.1	9.80	10.3	12.7	9.55	29.6	₹.	9.77	8.39	10.9	9.14	80 20	8.8	10.6	10.9	13.0	12.2	10.5	8.29
	AGE (DAYS)	4 K	205	514	514	205	99	563	\$	5	438	3 9	3	503	503	514	2,	727	465	Ľ,	6 43	619	6 7	63 88	8 8	8 5	21	593	§	E	422
	DOG	10201	1021010	T016920	T017920	1018920	T001030	1011930	T012930	T013930	T014930	1002940	1003940	1009940	T010040	T015940	1004050	T005a50	1007050	1008050	T022050	1023050	1024950	1025950	T026950	T027950	1028050	1029950	1030050	1031050	1006060

1001030J ALSO RECEIVED 666 KBQ (18.0 UCI) SR-85.

SKELETAL DOSES FOR TO22950 TO TO31950 ARE FROM RA-224 (AND DAUGHTERS). CONTAMINATION OF THE INJECTION SOLUTION WITH OTHER EMITTERS WAS NEGLIGIBLE. DOSINETRIC DETAILS ARE TO BE FOUND IN COO-199-253, PP. 263-276, MARCH 1978.

FOR THE OTHER RA-224 TEST DOGS, THE SKELETAL DOSES ARE FROM RA-224 (AND DAUGHTERS) PLUS CONTANINATION FROM PB-210 AND TH-228. IN SOME CASES THE PB-210 AND TH-228 CONTANINATION WAS APPRECIABLE. PLEASE SEE THE ARTICLE, "MA-224 TOXICITY FROM A PILOT STUDY IN BEAGLES" IN COO-119-252, MARCH 1977, PP. 272-287, PARTICULARLY SEE P. 278. (MOTE THAT THE SKELETAL DOSES LISTED ON PAGE 278 OF THE REFERENCE CITED WERE CALCULATED FOR BEAGLES WITH 75 G SKELETOM/KG BODY WEIGHT AS USED MEREIN).

B.21 226Ra, Test Studies

																			NECROS 18																				
												3		ì					MEPATIC																				
										1		DC 1 MOMA	NORA (NO						TOKEMIA,																				
		SEE H012H00									CNS SYNDRONE	ADEMOCA	FD CARCL	REC'D)					UMONIA,				REC'D)																
	COMMENTS	REASSIGNED, SE	SPECIAL STUDY				SPECIAL STUDY	BLOAT	SPECIAL STUDY	LYMPHOSARCOHA	HYDROCEPHALUS,	STELLAL SIGNI SPECIAL STIDY ADENOCABCINGMA : INC	MOTEFERENTIATED CARCINOMA (NOSE)	DEAD (NO CAUSE REC'D)	BATTELLE LABS	BATTELLE LABS	SPECIAL STUDY	SPECIAL STUDY	NEPHRITIS, PNEUMONIA, TOXEMIA, MEPATIC MECROSIS	SPECIAL STUDY	ARTHRITIS	DEAD (NO CAUSE	DEAD (NO CAUSE				SPECIAL SILOT	_		SPECIAL STUDY				SPECIAL STUDY			SPECIAL STUDY	SPECIAL STUDY	OSTEOSARCOMA
5	SKELETON (GY)				-	-		_		_		C .	11.0			_	0.01	0.0	1.72	1.68	1.23	_	_	0.02	0.13	1.92			1.15	2.16	0.19	1.02	1.49	8	<u>.</u>	0.0	0.40		9.9
Š	INJECTION INTERVAL		<u> </u>	208	2	5	^	31%	2772	0101	1025 25 25	7121	197	3262	2495	2495	~	63	1686	2575	1416	2770	% 1	~ ;	3	9 9 8	8 %	? ~	127	202	8 2	132	210	5	365	15	8	_	1602
	DATE INJECTED		MAY - 15 - 75	MAY-28-75	MAY-28-75	JUN-25-75	JUL-09-75	JAN-07-74	JUL-10-79	AUG-03-82	AUG-03-82	DEC-23-62	AUG-19-80	AUG-19-80	DEC-01-81	DEC-01-81	APR-03-62	APR-03-62	DEC-27-77	JUL-29-80	JUL-29-80	SEP-16-80	SEP-16-80	APR-04-62	APR-04-62	MAY-06-75	MAY-13-73	MAY-14-75	MAY-28-75	MAY-28-75	MAY-28-75	5C-96-305	JUN-10-75	JUN-24-75	JUL-01-73	JUL-02-75	JUN-10-75	AUG-05-75	NOV-03-77
3	INJECTED (KBQ/KG)											707 0	0.733	0.725	0.710	0.707	2.	1.80	5.06	5.24	2.28	5.29	2.27	5.40	5.37	13.0	- -	11.6	13.2	13.5	13.3	11.6	9.81	11.6	12.1	12.2	9.36	12.1	12.4
INJECTION	INJECTED (UCI/KG)											0 0101	0.0108	0.0196	0.0192	0.0191	0.0483	0.0487	0.0558	0.0605	0.0617	0.0618	0.0614	0.146	0.145	0.350		0.313	0.357	0.365	0.359	0.314	0.265	0.313	0.328	0.329	0.253	0.327	0.335
	WE IGHT		, s 1							8.5	58.0	0 47					13.0		49.5	-				14.0													10.3		55.4
	AGE (DAYS)		9 5	, S	\$	987	205	240	539	257	557	250	565				<u>&</u>	8	519	254	244	227	527	296		487	9 8	8	503	£	\$63	512	067	487	067	491	513	629	ž
	e c	T039R00	10/28/00	1080800	T083R00	T087R00	T090R00	T123R00E	T124R00E	T155R00E	T156R00E	110/200E	T118805F	T119R05E	T133R05E	T134R05E	T040R10	T041R10	T105R10E	T116R10E	T117R10E	T120R10E	T121R10E	T042R17	T043R17	T073R20	10/4820 1076820	1077820	T079R20	T081R20	T082R20	T084R20	T085R20	T086R20	T088R20	T089R20	T091R20	T092R20	T099R20E

B.21 226Ra, Test Studies (continued)

							2	
102R20E	AGE (DAYS)	LEIGHT (KG)	INJECTED (UCI/KG)	INJECTED (KBQ/KG)	DATE	INJECTION	SKELETON (GY)	COMMENTS
	501	£ 27	0.342	12.7	DEC-00-77	1587	۲ •	OSTEOSABCOMA
T158R20Y	300	12.5	0.463	17.1	JUN-12-87	7	0.16	SPECIAL STUDY
T159R20Y	800	9.40	0.488	18.1	OCT-09-87	7	0.17	
T160R20Y	210	8.92	787.0	17.9	JUL-08-87	7	0.16	
T161R20Y	80 70 70 70	1.0	0.482	17.8	JUL-09-87	14	0.16	SPECIAL STUDY
1162R20Y	150	8.05	0.498	18.4	MAY-11-87	15	0.17	SPECIAL STUDY
r163R20Y	150	7.20	0.483	17.9	MAY-12-87	15	0.16	SPECIAL STUDY
T028R30H	371	11.7	1.1	41.1	NOV-24-58	387	3.67	SPECIAL STUDY
T032R30	471	11.4	1.13	41.8	MAR-03-59	5549	20.3	OSTEOSARCONA
7033R30	471	10.6	1.15	45.6	MAR-03-59	1822	50.6	OSTEOSARCOMA, NEPHRITIS
F034R30	420	15.7	1.12	41.4	MAR-03-59	1737	17.4	OSTEOSARCOMA
r035R30J	929	77.6	0.951	35.2	MAY-05-59	∞	0.14	SPECIAL STUDY
r044R30	938	=	0.937	34.7	APR-04-62	8	0.82	SPECIAL STUDY
T045R30	0%	13.6	0.941	34.8	APR-06-62	7	0.12	SPECIAL STUDY
F046R30	810	12.5	0.928	34.3	APR-05-62	69	1.14	SPECIAL STUDY
r063R30	229	8.72	0.899	33.3	JAN-29-64	፠	0.56	SPECIAL STUDY
r064R30	551	8.45	0.919	34.0	JAN-29-64	63	0.85	
r065R30	551	11.6	0.922	34.1	JAN-29-64	2	1.1	
T066R30	249		0.90	33.4	JAN-29-64	132	1.65	SPECIAL STUDY
1067R30	249	12.7	0.898	33.2	JAN-29-64	134	1.92	SPECIAL STUDY
7068R30	249	12.1	0.917	33.9	JAN-29-64	1667	12.1	OSTEOSARCOMA
r069R30	8 67	& &	0.919	34.0	JAN-29-64	622	6.73 75	SPECIAL STUDY
1070R30	864	14.2	0.922	34.1	JAN-29-64	1996	23.5	
1093R30	226	۲. ا	0.969	35.9	JAN-27-76	m	90.0	
1094R30	571	8	0.930	34.4	JAN-23-76	=	0.54	
1095R30	2	10. 2	1.03	38.1	FEB-17-76	14	0.36	
1096R30	26	7.	0.60	36.6	FEB-17-76	~ ·	0.13	
1097R30	3	30.8 8.0	0.972	98	FEB-26-76	4	& i	
1098R30	249	9.51	996.0	35.7	FEB-20-76	6	0.34	SPECIAL STUDY
1101R30E	64	42.6	S	38.8	MOV-22-77	523	1.0	STATUS EPILEPTICUS
103R30E	201	42.4	01.	40.7	DEC-08-77	32	20.7	
107R30Y	5	17.7		37.4	FEB-21-80	119	1.94	
108830Y	5	3.97	8.	39.5	FEB-21-80	8 23	3.6	_
109R30Y	₽	м К	 5	38.8	FEB-21-80	ž	5.88 88	
110R30E	1297	58.8	<u>.</u> 2	38.5	FEB-13-80	5	0.37	SPECIAL STUDY
111R307	8	4.67	. .	39.5	MAR-13-80	2	0.51	SPECIAL STUDY
112R30Y	8	3.52	.9.	38.8	MAR-13-80	67	1.08	SPECIAL STUDY
113R30Y	8	3.17	.8	40.3	APR-08-80	~	0.18	SPECIAL STUDY
1114R30Y	8	3.55	1.07	39.6	APR-06-80	75	۲. ٥	SPECIAL STUDY
1135R30+	1850	10.8	1.14	42.2	AUG-01-84	7	0.11	SPECIAL STUDY
r136R30+	2276	11.2	1.14	42.2	AUG-01-84	7	0.X	
1137R30+	218	₩.	1.14	42.2	AUG-22-84	ň	0.57	

TO35830J ALSO RECEIVED 3660 KBQ (99.0 UCI) SR-85.

B.21 226Ra, Test Studies (continued)

						Poce	27 3005		
DOG NUMBER	AGE (DAYS)	KEIGHT (KG)	INJECTED (UCI/KG)	INJECTED (KBQ/KG)	DATE INJECTED	INJECTION INTERVAL	SKELETON (GY)	COPPENTS	
1138R30+	1822	11.7	1.14	42.2	AUG-22-84	\$	8.0	SPECIAL	STUDY
139R30+	2276		1.14	42.2	AUG-01-64	133	\$.		STUDY
1140R30+	1822	-	1.14	42.2	AUG-22-84	623	2.2	SPECIAL	STUDY
1141R30+	2151		1.14	42.2	AUG-01-84	378	4.23	SPECIAL	STUDY
144830	613	12.1	0.911	33.7	DEC-10-84	7	0.10	SPECIAL	STUDY
145R30	9	12.0	0.918	o K	DEC-17-84	523	2.83	-	STUDY
146R30	9	13.0	0.907	33.6	DEC-17-84	241	3.43	SPECIAL	STUDY
147730	652	13.6	0.896	33.2	JAN-02-85	368	5.07		STUDY
148R30	652	13.7	0.919	0.75	JAN-02-85	*	0.20		STUDY
149830	3	14.5	0.00	33.6	JAN-09-85	ጲ	0.50	SPECIAL	STUDY
150830	ž	13.3	906	33.6	JAN-09-85	አ	0.54		STUDY
151830	635	12.3	0.909	33.6	JAN-16-85	ĸ	0.87		STUDY
152R30	53	13.2	0.903	33.4	JAN-16-85	20	1.10		STUDY
153830	979	12.8	1.10	7.07	APR-02-85	110	2		STUDY
154.830	99	10.2	1.10	7.07	APR-02-85	122	1.74		STUDY
125835H	~	•	1.53	9.95	18-96-81	~	0.02		STUDY
1248 Su	۰ ۱	2		× ×	18-90- IIII.	4	8		STIDY
1278751	. ~	92	3	7 19	.H06-81	4	8		STUDY
128835H	. ~		3	205	Jul -06-81	-	0.01		STUDY
120e35u	. ~	0.31	9	20.5	18-90- IUL	. 7 1	0.17		STUDY
130e35H	7	2	7	9 07	JUL -27-81	4	0		STIDY
131R35N	4	07.0	1.20	7.77	JUL -27-81	^	0.07		STUDY
132835N	•	0.35	1.37	20.7	JUL-27-81	<u>4</u>	0.15		STUDY
1014R40	£2	8.12	3.17	117.	JUL -12-56	2	8.		STUDY
1015R40	229	9.03	3.1	115.	JUL-111-56	2127	53.9	-	\$
023R40H	7	9.50	50.4	150.	NOV-25-58	1471	54.1	OSTEOSARCON	3
024R40H	25	11.0	3.24	120.	MOV-24-58	1505	44.1	OSTEOSARCON	500
1025R40H	378	1. S	3.42	127.	NOV-24-58	1309	41.6	OSTEOSARCOM	M 00
026R40H	33	1.0	3.48	129.	NOV-24-58	982	24.0	OSTEOSARCOW	\$
027R40H	37	11.5	×.×	124.	NOV-24-58	1414	43.3	OSTEOSARCON	50
036840	8	10.2	8.8	11.	DEC-22-60	154	39.9	OSTEOSARCON	≨ 8
1037740	8	9.53	3.8	111.	DEC-22-60	1627	36.8	OSTEOSARCOM	≨ 03
1038R40	Ŝ	10.1	3.05	112.	DEC-22-60	1503	8.04	OSTEOSARCON	M 00
1057R40	8	12.1	2.72	101.	AUG-15-63	7	0.59	SPECIAL	STOY
1058R40	2	11.7	2.41	89.5	AUG-15-63	2	3.11	SPECIAL	STUDY
1059840	Ê	3.6	2.57	8. 1.	AUG-15-63	3	3.01	SPECIAL	STUDY
1060R40	83	12.1	2.33	26.2	AUG-15-63	117	4.67		STUDY
1061R40	6	9.48	2.3	8	AUG-15-63	371	17.3	SPECIAL	STUDY
r062R40	\$	8.63	2.68	8.5	AUG-15-63	3	17.8	SPECIAL	STUDY
T001R50	8	=======================================	10.3	381.	DEC-01-52	1074	8.5	OSTEOSARCOM	\$
T002R50	919	8.40	4.39	162.	JAN-12-53	1366	47.6	OSTEOSARCONA	\$
003850	2776	8	72. 7	174	JAM-12-53	¥67	17.2	EDEFTA!	VEITE
					ļ				

B.21 226Ra, Test Studies (continued)

												(MOUTH)	(MOUTH)	(HOUTH)																					Y 1	
			_		_		_	_		_	_	ULCER	ULCER		\$		CTURE				_	_	_	_	_	_	_	_	Œ	_	_	_			EUKOPENIA, PNEUMONIA	
	Z.	STUDY				L STUDY				L STUDY	L STUDY	DSTEOSARCOMA,	DSTEOSARCOMA ,	DSTEOSARCOMA,	HONDROSARCOM	TIS	RIPPLING FRACTURE	TIS	TIS	TIS	L STUDY	L STUDY		L STUDY	FLANONA (MOUTH)		L STUDY	L STUDY	L STUDY	L STUDY	ENIA, I					
	COMMENTS	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIA	SPECIAL	SPECIAL	SPECIAL	OSTEOS	OSTEOS	OSTEOS	CHONDR	NEPHRITIS	CRIPPL	NEPHRITIS	NEPHR1T1S	NEPHRITIS	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIA	SPECIAL	SPECIA	SPECIA	MELANO	SPECIA	SPECIAL	SPECIAL	SPECIAL	SPECIAL	LEUKOP	
100	SKELETON (GY)	0.15	0.15	0.15	4.58	5.48	2.3	3.44	28.3	24.3	7.6	107.	125.	123.	132.	35.9	58.9	36.5	30.5	20.4	0.85	29.2	18.1	2.52	6.18	0.71	5.50	12.1	6.98	12.6	0.14	14.3	7.7	2.87	17.6	
1906	INJECTION INTERVAL	-	-	-	58	58	67	67	225	188	12	1140	1226	1219	1340	386	587	216	178	303	2	15	26	5	33	'n	33	8	45	24	,- -	8	862	4	67	
	DATE INJECTED	OCT-06-53	oct-06-53	OCT-06-53	NAY-10-55	MAY-10-55	MAY-11-55	MAY-11-55	MAY-09-56	MAY-09-56	JUL-11-57	0CT-29-58	oc1 - 29 - 58	oct-29-58	oc1-29-58	oct-29-58	oct-29-58	MAR-03-59	MAR-03-59	MAR-03-59	MAY-02-63	MAY-02-63	MAY-08-63	MAY-08-63	MAY-08-63	MAY-22-63	MAY-22-63	MAY-22-63	JAN-28-69	AUG-17-72	JUN-23-80	JUL-12-84	JUL-12-84	JUN-11-62	DEC-28-62	
1 <u>0</u>	INJECTED (KBQ/KG)	433.	422.	437.	<u>۲</u>	71.8	73.3	70.7	360.	361.	358.	365.	,00	396.	392.	374.	374.	385.	385.	385.	279.	276.	314.	317.	315.	324.	319.	319.	342.	459.	323.	452.	450.	1090.	.626	
INJECTION	INJECTED (UCI/KG)	11.7	11.4	11.8	1.92	1.94	1.98	1.91	9.72	9.76	9.68	9.87	10.8	10.7	10.6	10.1	10.1	10.4	10.4	10.4	7.54	7.46	8.48	8.57	8.50	8.76	8.61	8.61	9.23	12.4	8.74	12.2	12.2	7.62	25.1	****
	WE IGHT (KG)	6.14	6.14	6.14	5.52	10.4	1.02	1.58	12.3	7.59	12.4	12.2	1:1	11.3	11.4	11.8	11.9	13.5	1.5	10.5	10.6	13.7	13.3	10.7	12.0	11.4	1.6	11.6	13.8	9.45	11.4	10.4	10.8	5.27	11.2	*****
	AGE (DAYS)	126	126	126	320	2274	3	73	397	397	3 0	384	38	385	385	382	382	7.27	7.27	471	485	48 5	418	418	418	416	416	416	4025	4776	272	2488	2478	8	2843	****
	DOG	T005R50	T006R50	T007R50	T008R50	T009R50	T010R50	T011R50	T012R50	T013R50	T016R50	T017R50H	T018R50H	T019R50H	T020R50H	T021R50H	T022R50H	T029R50	T030R50	T031R50	T049R50	T050R50	T051R50	T052R50	T053R50	T054R50	T055R50	T056R50	T071R50	T072R50	T115R50	T142R50+	T143R50+	T047R60	T048R60	*****

THE MULTIPLE INJECTION DOGS WERE MALE BEAGLES BORN IN DAVIS, CALIFORNIA, BUT INJECTED IN OUR LABORATORY. EACH WAS INJECTED SIX TIMES OVER A 280 DAY PERIOD WITH 56 DAYS BETWEEN EACH INJECTION. EACH RA-226 INJECTION WAS 740 KBG (20.0 UCI) FOR THE DOGS TOITMSOH... TO22R5OH... TO22R5OH. 237 KBG (6.41 UCI) FOR TO23R4OH... TO27R4OH; AND 96.6 KBG (2.61 UCI) FOR TO28R3OH. TABULATED FOR EACH DOG IS AGE AT FIRST INJECTION, AVERAGE WEIGHT DURING THE INJECTION PERIOD, TOTAL UCI/AVERAGE WEIGHT, THE DATE OF FIRST INJECTION THE TIME FROM FIRST INJECTION TO DEATH.

B.22 228Ra (Mesothorium), Test Studies

	COMMENTS CANINE DISTEMPER SPECIAL STUDY ULCER (MOUTH), AMENIA, CRIPPLING FRACTURE
DOSE TO	SKELETON (GY) 15.2 50.1 157.
POST	INJECTION INTERVAL 314 755 700
,	DATE INJECTED SEP-08-54 SEP-08-54 MAR-13-56
INJECTION	INJECTED (KBQ/KG) 157 158 392
INJECTION	1NJECTED 1 (UCL/KG) (4.23 4.27 10.6
	DOG AGE WEIGHT IN. UMBER (DAYS) (KG) (UK 01M45 528 9.13 02M45 463 8.93 03M50 579 9.15
	AGE (DAYS) 528 463 579
	DOG AGE WEIGHT INJECTE NUMBER (DAYS) (KG) (UCI/KG T001M5 528 9.13 4.23 T002M5 463 8.93 4.27 T003M50 579 9.15 10.6

KBQ TH-228 / KBQ RA-228) INJECTED # 0.03.

B.23 WSr, Test Studies

		* 1																					PURPURA HEMORRHAGICA			
		• • • • •									CGEE												PURPURA			
		T . 07	TUDY	TUDY	ruov	TUDY	7007	TUDY	TUDY	HLUNG PHANTON	HLUNG PHANTOM, SAM MCGEE	TUDY	TUDY	TUDY	TUDY	TUDY	TUDY	7007	7007	TUDY	EMANGIOSARCOMA (SKELETON)	DES	EUKOPENIA, THROMBOCYTOPENIA,	IEMANGIOSARCOMA (SKELETON)	EUKOPENIA, THROMBOCYTOPENIA	
	COMMENTS	SPECIAL S	SPECIAL S	SPECIAL STUDY	SPECIAL S	BREMSSTRAKLUNG	BREMSSTRA	SPECIAL S	SPECIAL S	SPECIAL S	SPECIAL S	SPECIAL S	SPECIAL STUDY	SPECIAL S	SPECIAL S	SPECIAL S	HEMANG 10S	OSTEOSARCOM	LEUKOPENI	HEMANGIOS.	LEUKOPENI					
1904	SKELETON (GY)			0.14	0.19	0.45	0.36	0.0	76.0		_				_				_			105.	99.4	166.	4.93	
1900	INJECTION INTERVAL	112	0	8	8	132	132	٥	13	\$	80	£	5	8 2	41	116	1/24	~	0	8	1525	1379	2	1369	54	
1	DATE INJECTED	MAR-05-54	NOV-04-54	SEP-27-55	SEP-27-55	SEP-27-55	SEP-27-55	NOV-08-61	OCT-02-63	SEP-11-57	JUL-08-60	OCT-02-63	MAR-05-54	MAR-05-54	MAR-05-54	MAR-05-54	MAR-16-54	MAR-16-54	NOV-07-61	MOV-07-61	APR-01-69	APR-01-69	JAN-19-62	JAN-19-62	JAN-19-62	
3 5	INJECTED (KBQ/KG)	• • • • • •																						11174.		
INJECTION	INJECTED (UCI/KG)	f 		2.74	3.62	3.25	2.62	3.27	8.30	10.5	19.1	28.9	148.	148.	148.	148.	87.0	87.0	 -:-	78.4	o. &	100.	295.	302.	284.	***
	VEIGHT (KG)	7.7																							5.43	
	AGE (DAYS)	151	243	26	26	26	26	39	362	593	324	077	149	144	151	144	155	155	245	595	242	245	670	670	670	******
	DOG NUMBER	1001500	T008S00	T008S20H	T009S20H	T010S20H	T011S20H	T016S20	T021S25J	T012S30	1013540	T020S40J	T002S50	T003S50	T004S50	1005850	T006S50	1007850	1014850	T015S50	T022S50	T023S50	1017560	1018560	T019S60	*****

TOOBS20 ... TOTIS20H WERE GIVEN 10 INJECTIONS, 37 KBQ (1 UCI SR-90) EACH AT WEEKLY INTERVALS. AGE IS AT FIRST INJECTION, WEIGHT IS AVERAGE DURING THE INJECTION PERIOD, KBQ/KG (UCI/KG) IS TOTAL SR-90/AVERAGE WEIGHT, DATE IS AT FIRST INJECTION. DAYS ARE FROM FIRST INJECTION TO DEATH.

T020S40J RECEIVED 18.5 KBQ (0.5 UCI) SR-85 IN ADDITION TO THE 9130 KBQ (246.8 UCI) SR-90. T021S25J RECEIVED 18.5 KBQ (0.5 UCI) SR-85 AND 22200 KBQ (600 UCI) SR-89 IN ADDITION TO THE 2210 KBQ (59.8 UCI) SR-90.

B.24 228Th, Test Studies

							TURE	
				:			FE	
							CRIPPLING	
					4		AMENTA,	
			COMMENTS		CANINE DISTEMP	SPECIAL STUDY	ULCER (MOUTH), AMENIA, CRIPPLING FRACTURE	•
	DOSE TO	SKELETON			15.2	50.1	157.	
	POST	INJECTION	INTERVAL	•	314	35 25	ş	
		DATE	INJECTED	•	SEP-08-54	SEP-08-54	MAR-13-56	
5		INJECTED	(KBQ/KG)		157	158	392	
INJECTION		INJECTED	NUMBER (DAYS) -(KG) (UCI/KG) (4.23	4.27	10.6	***
		18181	(KG)	•	9.13	8.93	9.15	*****************
		¥	(DAYS)		2 28	3	25	*******
		900	MUMBER	•	T001M45 528	1002445	1003450	****

KB9 TH-228 / KB9 RA-228) INJECTED = 0.03.

B.25 23U and/or 233U, Test Studies

	i																						
		STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	STUDY	
COPENTS		SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	SPECIAL	
SKELETON (GY)																							
INJECTION INTERVAL		3	365	39 1	169	56	2	27	8 2	7	~	z	922	٧	7	2	364	-	12	12	7	∞	
DATE INJECTED		DEC-08-20	DEC-09-80	DEC-09-80	DEC-09-80	DEC-09-80	DEC-09-80	DEC-09-80	DEC-09-80	JAN-19-82	JAN-26-82	FEB-23-76	MAR-11-76	FEB-25-76	FEB-25-76	FEB-25-76	FEB-25-76	MAY-10-76	APR-28-81	APR-28-81	DEC-09-80	DEC-09-80	
INJECTED (KBQ/KG)		70.5	10.5	10.8	10.5	9.8	10.5	10.5	10.5	33.3	29.5	10 8 .	108.	89.5	108.	110.	108.	102.	1 04.	104.	131.	130.	
INJECTED (UCI/KG)		0.284	0.283	0.291	0.284	0.266	0.285	0.284	0.284	0.00	0.797	2.91	2.91	2.42	2.91	2.%	2.92	2.77	2.80	2.82	3.55	3.52	****
KE IGHT		10.0	8.52	10.4	1.1	8.83	10.4	9.57	9.57	8.6	1.8	10.4	12.0	11.4	9.01	8.8	12.2	10.4	10.3	11.7	11.4	8.39	*****
AGE (DAYS)		27	571	8	3	537	267	% %	532	245	225	539	254	7	541	541	28	66	26	8	532	3	*******
DOG		T023U30	T024U30	T025U30	T026U30	T027U30	T028U30	T029U30	T030U30	1031040	1032040	T001U50	1002050	T003U50	1004US0	1005050	1006U50	T007J50	T008U50	T009U50	1021050	1022050	***
	WEIGHT INJECTED INJECTED DATE INJECTION SKELETON) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL (GY) C	AGE WEIGHT INJECTED INJECTED DATE INJECTION SKELETON (DAYS) (KG) (UCI/KG) (KDQ/KG) INJECTED INTERVAL (GY) COMMENTS	AGE WEIGHT INJECTED INJECTED DATE INJECTION SKELETON (DAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL (GY) CONNENTS 571 10.0 0.284 10.5 DEC-09-80 363 SPECIAL (AGE WEIGHT INJECTED INJECTED DATE INJECTION SKELETON (DAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL (GY) CONNENTS 571 10.0 0.284 10.5 DEC-09-80 363 SPECIAL 5 571 8.52 0.283 10.5 DEC-09-80 365 SPECIAL 5	AGE WEIGHT INJECTED INJECTED DATE INJECTION SKELETON (DAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL (GY) COMENTS 571 10.0 0.284 10.5 DEC-09-80 363 SPECIAL 9 571 8.52 0.283 10.5 DEC-09-80 365 SPECIAL 9 566 10.4 0.291 10.8 DEC-09-80 168 SPECIAL 9	AGE WEIGHT INJECTED INJECTED DATE INJECTION SKELETON (DAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL (GY) COMENTS (S71 10.0 0.284 10.5 DEC-09-80 363 SPECIAL S71 8.52 0.283 10.5 DEC-09-80 365 SPECIAL SPECIAL S66 10.4 0.291 10.8 DEC-09-80 168 SPECIAL S66 11.1 0.284 10.5 DEC-09-80 169 SPECIAL SPECIAL S60 11.1 0.284 10.5 DEC-09-80 169 SPECIAL SPECIAL S60 11.1 0.284 10.5 DEC-09-80 169 SPECIAL	AGE WEIGHT INJECTED INJECTED DATE INJECTION SKELETON (DAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL (GY) COMMENTS (DAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL (GY) COMMENTS (DAYS) (D.5 DEC-09-80 363 SPECIAL SFC 10.4 0.291 10.8 DEC-09-80 168 SPECIAL SFC 11.1 0.284 10.5 DEC-09-80 169 SPECIAL SFC 11.1 0.284 10.5 DEC-09-80 93 SPECIAL SPECIAL SFC 11.1 0.284 10.5 DEC-09-80 93 SPECIAL SPECIAL SFC 11.1 0.284 10.5 DEC-09-80 93 SPECIAL SPECIAL SPECIAL SFC 11.1 0.284 10.5 DEC-09-80 93 SPECIAL SPE	AGE WEIGHT INJECTED INJECTED DATE INJECTION SKELETON COMPENTS (CAYS) (KG) (UCI/KG) (KGQ/KG) INJECTED INTERVAL (GY) COMPENTS (ST 10.0 0.284 10.5 DEC-09-80 365 SPECIAL SFECIAL	AGE WEIGHT INJECTED INJECTED DATE INJECTION SKELETON COMENTS (DAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL (GY) COMENTS 571 10.0 0.284 10.5 DEC-09-80 365 SPECIAL 566 10.4 0.291 10.8 DEC-09-80 168 SPECIAL 560 11.1 0.284 10.5 DEC-09-80 169 SPECIAL 557 8.83 0.286 9.8 DEC-09-80 93 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 91 SPECIAL 566 9.57 0.284 10.5 DEC-09-80 27 SPECIAL 566 9.57 0.284 10.5 DEC-09-80 27 SPECIAL 566 9.57 0.284 10.5 DEC-09-80 27	AGE WEIGHT INJECTED INJECTED DATE INJECTION SKELETON COMMENTS (DAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL (GY) COMMENTS (TO 0.284 10.5 DEC-09-80 365 SPECIAL 564 10.4 0.291 10.8 DEC-09-80 168 SPECIAL 564 11.1 0.284 10.5 DEC-09-80 169 SPECIAL 557 18.83 0.264 9.8 DEC-09-80 93 SPECIAL 566 9.57 0.285 10.5 DEC-09-80 91 SPECIAL 566 9.57 0.284 10.5 DEC-09-80 27 SPECIAL 566 9.57 0.284 10.5 DEC-09-80 28 SPECIAL 566 9.57 0.285 10.5 DEC-09-80 28 SPECI	AGE WEIGHT INJECTED INJECTED DATE INJECTION SKELETON COMENTS (DAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL (GY) COMENTS (DAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL (GY) COMENTS (DEC-09-80 3-65 SPECIAL S-64 10.4 0.291 10.5 DEC-09-80 169 SPECIAL S-64 10.1 0.284 10.5 DEC-09-80 169 SPECIAL S-65 10.4 0.285 10.5 DEC-09-80 93 SPECIAL S-65 10.4 0.285 10.5 DEC-09-80 27 SPECIAL S-65 9.57 0.284 10.5 DEC-09-80 27 SPECIAL S-65 9.54 0.900 33.3 JAN-19-82 7 SPECIAL S-65 9.94 0.900 33.3 JAN-19-82 7 SPECIAL S-65 SPECIAL S-65 9.94 0.900 33.3 JAN-19-82 7 SPECIAL S-65 SPECIAL S-65 9.94 0.900 33.3 JAN-19-82 7 SPECIAL S-65 SPECIAL S-65 9.94 0.900 33.3 JAN-19-82 7 SPECIAL S-65 SPECIAL S-65 9.94 0.900 33.3 JAN-19-82 7 SPECIAL S-65 SPECIAL S-6	AGE WEIGHT INJECTED INJECTED INJECTION SKELETON CDAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL (GY) COMENTS 571 10.0 0.284 10.5 DEC-09-80 363 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 365 SPECIAL 564 10.4 0.291 10.8 DEC-09-80 169 SPECIAL 560 11.1 0.284 10.5 DEC-09-80 169 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 93 SPECIAL 567 10.4 0.286 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.286 10.5 DEC-09-80 27 SPECIAL 537 9.94 10.5 DEC-09-80 27 SPECIAL 538 9.94 10.5 DEC-09-80 28 SPECIAL 545 9.94 0.900 33.	AGE WEIGHT INJECTED INJECTED INJECTION SKELETON CDAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL (GY) COMENTS 571 10.0 0.284 10.5 DEC-09-80 363 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 365 SPECIAL 564 10.4 0.291 10.8 DEC-09-80 169 SPECIAL 560 11.1 0.284 10.5 DEC-09-80 169 SPECIAL 560 11.1 0.284 10.5 DEC-09-80 93 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 97 SPECIAL 567 10.4 0.284 10.5 DEC-09-80 27 SPECIAL 566 9.57 0.284 10.5 DEC-09-80 27 SPECIAL 552 11.8 0.797 29.5 JAN-26-82 7 SPECIAL 552 11.	AGE WEIGHT INJECTED INJECTED DATE INJECTION SKELETON CDAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL (GY) COMENTS 571 10.0 0.284 10.5 DEC-09-80 363 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 365 SPECIAL 560 11.1 0.284 10.5 DEC-09-80 169 SPECIAL 560 11.1 0.284 10.5 DEC-09-80 169 SPECIAL 560 11.1 0.284 10.5 DEC-09-80 93 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 97 SPECIAL 567 10.4 0.284 10.5 DEC-09-80 27 SPECIAL 566 9.57 0.284 10.5 DEC-09-80 28 SPECIAL 545 9.94 0.900 33.3.3 JAN-19-62 7 SPECIAL	AGE WEIGHT INJECTED INJECTED INJECTED COMPENTS (DAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL GY) COMPENTS 571 10.0 0.284 10.5 DEC-09-80 365 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 168 SPECIAL 560 11.1 0.284 10.5 DEC-09-80 169 SPECIAL 557 10.4 0.284 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.284 10.5 DEC-09-80 91 SPECIAL 566 9.57 0.284 10.5 DEC-09-80 27 SPECIAL 552 9.94 0.900 33.3 JAN-19-82 7 SPECIAL 552 11.8 0.777 29.5 JAN-26-82 7 SPECIAL 524 11.4 </th <th>AGE WEIGHT INJECTED INJECTED INJECTION SKELETON CDAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL GY) COMENTS 571 10.0 0.284 10.5 DEC-09-80 365 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 168 SPECIAL 560 10.4 0.284 10.5 DEC-09-80 169 SPECIAL 560 10.4 0.286 9.8 DEC-09-80 93 SPECIAL 567 10.4 0.286 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.286 10.5 DEC-09-80 97 SPECIAL 566 9.57 0.284 10.5 DEC-09-80 27 SPECIAL 545 9.94 0.900 33.3 JAM-19-82 7 SPECIAL 552 11.8 0.777 29.5 JAM-26-82 7 SPECIAL 552 12.0<th>AGE WEIGHT INJECTED INJECTION SKELETON CDAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL GY) COMENTS 571 10.0 0.284 10.5 DEC-09-80 3.65 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 168 SPECIAL 560 10.4 0.294 10.5 DEC-09-80 169 SPECIAL 560 10.4 0.284 10.5 DEC-09-80 93 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 93 SPECIAL 567 10.4 0.266 9.8 DEC-09-80 97 SPECIAL 567 10.4 10.5 DEC-09-80 27 SPECIAL 556 9.57 0.284 10.5 DEC-09-80 28 SPECIAL 552 11.8 0.777 29.5 JAN-19-82 7 SPECIAL 552 11.8 0.777 29.5</th><th>AGE WEIGHT INJECTED INJECTION SKELETON CDAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL GT) COMENTS 571 10.0 0.284 10.5 DEC-09-80 365 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 169 SPECIAL 560 11.1 0.284 10.5 DEC-09-80 169 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 93 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 91 SPECIAL 566 9.57 0.286 10.5 DEC-09-80 27 SPECIAL 566 9.57 0.286 10.5 DEC-09-80 27 SPECIAL 552 11.8 0.797 29.5 JAN-19-82 7 SPECIAL 552 11.8 0.797 29.5 JAN-26-82 7 SPECIAL 554 11.4 2.42</th><th>AGE WEIGHT INJECTED DATE INJECTION SKELETON CDAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL (GY) COMENTS 571 10.0 0.284 10.5 DEC-09-80 365 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 365 SPECIAL 566 10.4 0.291 10.8 DEC-09-80 169 SPECIAL 560 11.1 0.284 10.5 DEC-09-80 93 SPECIAL 560 11.1 0.285 10.5 DEC-09-80 93 SPECIAL 560 9.5 0.266 9.8 DEC-09-80 97 SPECIAL 560 9.5 0.285 10.5 DEC-09-80 27 SPECIAL 545 9.94 0.900 33.3 JAN-19-82 7 SPECIAL 552 11.8 0.797 29.5 JAN-26-82 7 SPECIAL 541 11.4</th><th>AGE WEIGHT INJECTED DATE INJECTION SKELETON CDAYS) (KG) (UCI/KG) (KBQ/KG) INJECTION SKELETON 571 10.0 0.284 10.5 DEC-09-80 365 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 365 SPECIAL 564 10.4 0.291 10.5 DEC-09-80 169 SPECIAL 564 10.4 0.284 10.5 DEC-09-80 93 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 97 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 27 SPECIAL 567 10.286 10.5 DEC-09-80 27 SPECIAL 552 11.8 0.797 29.5 JAN-26-82 7 SPECIAL 552 11.8 0.797 29.5 JAN-26-82 7 SPECIAL 541 11.4 2.42 89.5 FEB-25-76<</th><th>AGE WEIGHT INJECTED INJECTED INJECTED COMENTS (DAYS) (WG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL GY) COMENTS 571 10.0 0.284 10.5 DEC-09-80 3.65 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 168 SPECIAL 564 10.4 0.284 10.5 DEC-09-80 169 SPECIAL 557 10.4 0.285 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.286 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 91 SPECIAL 566 9.57 0.284 10.5 DEC-09-80 27 SPECIAL 552 11.8 0.77 29.5 JAM-19-82 7 SPECIAL 554 11.4<th>AGE WEIGHT INJECTED INJECTED INJECTED COMENTS (DAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INJECTED INJECTED COMENTS 571 10.0 0.284 10.5 DEC-09-80 365 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 168 SPECIAL 560 10.4 0.284 10.5 DEC-09-80 169 SPECIAL 550 10.4 0.284 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.286 9.8 DEC-09-80 91 SPECIAL 567 10.4 0.286 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.286 10.5 DEC-09-80 27 SPECIAL 545 9.96 10.5 DEC-09-80 27 SPECIAL 552 11.8 0.77 29.5 JAN-26-82 7 SPECIAL 554 11.4 2.42<</th><th>MEIGHT INJECTED INJECTED DATE INJECTION SKELETON (KG) (UCI/KG) (KBG/KG) INJECTED INTERVAL (GY) (UCI/KG) (KBG/KG) INJECTED INTERVAL (GY) (GY) (GY) (GY) (GY) (GY) (GY) (GY)</th></th></th>	AGE WEIGHT INJECTED INJECTED INJECTION SKELETON CDAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL GY) COMENTS 571 10.0 0.284 10.5 DEC-09-80 365 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 168 SPECIAL 560 10.4 0.284 10.5 DEC-09-80 169 SPECIAL 560 10.4 0.286 9.8 DEC-09-80 93 SPECIAL 567 10.4 0.286 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.286 10.5 DEC-09-80 97 SPECIAL 566 9.57 0.284 10.5 DEC-09-80 27 SPECIAL 545 9.94 0.900 33.3 JAM-19-82 7 SPECIAL 552 11.8 0.777 29.5 JAM-26-82 7 SPECIAL 552 12.0 <th>AGE WEIGHT INJECTED INJECTION SKELETON CDAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL GY) COMENTS 571 10.0 0.284 10.5 DEC-09-80 3.65 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 168 SPECIAL 560 10.4 0.294 10.5 DEC-09-80 169 SPECIAL 560 10.4 0.284 10.5 DEC-09-80 93 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 93 SPECIAL 567 10.4 0.266 9.8 DEC-09-80 97 SPECIAL 567 10.4 10.5 DEC-09-80 27 SPECIAL 556 9.57 0.284 10.5 DEC-09-80 28 SPECIAL 552 11.8 0.777 29.5 JAN-19-82 7 SPECIAL 552 11.8 0.777 29.5</th> <th>AGE WEIGHT INJECTED INJECTION SKELETON CDAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL GT) COMENTS 571 10.0 0.284 10.5 DEC-09-80 365 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 169 SPECIAL 560 11.1 0.284 10.5 DEC-09-80 169 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 93 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 91 SPECIAL 566 9.57 0.286 10.5 DEC-09-80 27 SPECIAL 566 9.57 0.286 10.5 DEC-09-80 27 SPECIAL 552 11.8 0.797 29.5 JAN-19-82 7 SPECIAL 552 11.8 0.797 29.5 JAN-26-82 7 SPECIAL 554 11.4 2.42</th> <th>AGE WEIGHT INJECTED DATE INJECTION SKELETON CDAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL (GY) COMENTS 571 10.0 0.284 10.5 DEC-09-80 365 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 365 SPECIAL 566 10.4 0.291 10.8 DEC-09-80 169 SPECIAL 560 11.1 0.284 10.5 DEC-09-80 93 SPECIAL 560 11.1 0.285 10.5 DEC-09-80 93 SPECIAL 560 9.5 0.266 9.8 DEC-09-80 97 SPECIAL 560 9.5 0.285 10.5 DEC-09-80 27 SPECIAL 545 9.94 0.900 33.3 JAN-19-82 7 SPECIAL 552 11.8 0.797 29.5 JAN-26-82 7 SPECIAL 541 11.4</th> <th>AGE WEIGHT INJECTED DATE INJECTION SKELETON CDAYS) (KG) (UCI/KG) (KBQ/KG) INJECTION SKELETON 571 10.0 0.284 10.5 DEC-09-80 365 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 365 SPECIAL 564 10.4 0.291 10.5 DEC-09-80 169 SPECIAL 564 10.4 0.284 10.5 DEC-09-80 93 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 97 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 27 SPECIAL 567 10.286 10.5 DEC-09-80 27 SPECIAL 552 11.8 0.797 29.5 JAN-26-82 7 SPECIAL 552 11.8 0.797 29.5 JAN-26-82 7 SPECIAL 541 11.4 2.42 89.5 FEB-25-76<</th> <th>AGE WEIGHT INJECTED INJECTED INJECTED COMENTS (DAYS) (WG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL GY) COMENTS 571 10.0 0.284 10.5 DEC-09-80 3.65 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 168 SPECIAL 564 10.4 0.284 10.5 DEC-09-80 169 SPECIAL 557 10.4 0.285 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.286 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 91 SPECIAL 566 9.57 0.284 10.5 DEC-09-80 27 SPECIAL 552 11.8 0.77 29.5 JAM-19-82 7 SPECIAL 554 11.4<th>AGE WEIGHT INJECTED INJECTED INJECTED COMENTS (DAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INJECTED INJECTED COMENTS 571 10.0 0.284 10.5 DEC-09-80 365 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 168 SPECIAL 560 10.4 0.284 10.5 DEC-09-80 169 SPECIAL 550 10.4 0.284 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.286 9.8 DEC-09-80 91 SPECIAL 567 10.4 0.286 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.286 10.5 DEC-09-80 27 SPECIAL 545 9.96 10.5 DEC-09-80 27 SPECIAL 552 11.8 0.77 29.5 JAN-26-82 7 SPECIAL 554 11.4 2.42<</th><th>MEIGHT INJECTED INJECTED DATE INJECTION SKELETON (KG) (UCI/KG) (KBG/KG) INJECTED INTERVAL (GY) (UCI/KG) (KBG/KG) INJECTED INTERVAL (GY) (GY) (GY) (GY) (GY) (GY) (GY) (GY)</th></th>	AGE WEIGHT INJECTED INJECTION SKELETON CDAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL GY) COMENTS 571 10.0 0.284 10.5 DEC-09-80 3.65 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 168 SPECIAL 560 10.4 0.294 10.5 DEC-09-80 169 SPECIAL 560 10.4 0.284 10.5 DEC-09-80 93 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 93 SPECIAL 567 10.4 0.266 9.8 DEC-09-80 97 SPECIAL 567 10.4 10.5 DEC-09-80 27 SPECIAL 556 9.57 0.284 10.5 DEC-09-80 28 SPECIAL 552 11.8 0.777 29.5 JAN-19-82 7 SPECIAL 552 11.8 0.777 29.5	AGE WEIGHT INJECTED INJECTION SKELETON CDAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL GT) COMENTS 571 10.0 0.284 10.5 DEC-09-80 365 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 169 SPECIAL 560 11.1 0.284 10.5 DEC-09-80 169 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 93 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 91 SPECIAL 566 9.57 0.286 10.5 DEC-09-80 27 SPECIAL 566 9.57 0.286 10.5 DEC-09-80 27 SPECIAL 552 11.8 0.797 29.5 JAN-19-82 7 SPECIAL 552 11.8 0.797 29.5 JAN-26-82 7 SPECIAL 554 11.4 2.42	AGE WEIGHT INJECTED DATE INJECTION SKELETON CDAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL (GY) COMENTS 571 10.0 0.284 10.5 DEC-09-80 365 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 365 SPECIAL 566 10.4 0.291 10.8 DEC-09-80 169 SPECIAL 560 11.1 0.284 10.5 DEC-09-80 93 SPECIAL 560 11.1 0.285 10.5 DEC-09-80 93 SPECIAL 560 9.5 0.266 9.8 DEC-09-80 97 SPECIAL 560 9.5 0.285 10.5 DEC-09-80 27 SPECIAL 545 9.94 0.900 33.3 JAN-19-82 7 SPECIAL 552 11.8 0.797 29.5 JAN-26-82 7 SPECIAL 541 11.4	AGE WEIGHT INJECTED DATE INJECTION SKELETON CDAYS) (KG) (UCI/KG) (KBQ/KG) INJECTION SKELETON 571 10.0 0.284 10.5 DEC-09-80 365 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 365 SPECIAL 564 10.4 0.291 10.5 DEC-09-80 169 SPECIAL 564 10.4 0.284 10.5 DEC-09-80 93 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 97 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 27 SPECIAL 567 10.286 10.5 DEC-09-80 27 SPECIAL 552 11.8 0.797 29.5 JAN-26-82 7 SPECIAL 552 11.8 0.797 29.5 JAN-26-82 7 SPECIAL 541 11.4 2.42 89.5 FEB-25-76<	AGE WEIGHT INJECTED INJECTED INJECTED COMENTS (DAYS) (WG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL GY) COMENTS 571 10.0 0.284 10.5 DEC-09-80 3.65 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 168 SPECIAL 564 10.4 0.284 10.5 DEC-09-80 169 SPECIAL 557 10.4 0.285 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.286 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.285 10.5 DEC-09-80 91 SPECIAL 566 9.57 0.284 10.5 DEC-09-80 27 SPECIAL 552 11.8 0.77 29.5 JAM-19-82 7 SPECIAL 554 11.4 <th>AGE WEIGHT INJECTED INJECTED INJECTED COMENTS (DAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INJECTED INJECTED COMENTS 571 10.0 0.284 10.5 DEC-09-80 365 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 168 SPECIAL 560 10.4 0.284 10.5 DEC-09-80 169 SPECIAL 550 10.4 0.284 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.286 9.8 DEC-09-80 91 SPECIAL 567 10.4 0.286 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.286 10.5 DEC-09-80 27 SPECIAL 545 9.96 10.5 DEC-09-80 27 SPECIAL 552 11.8 0.77 29.5 JAN-26-82 7 SPECIAL 554 11.4 2.42<</th> <th>MEIGHT INJECTED INJECTED DATE INJECTION SKELETON (KG) (UCI/KG) (KBG/KG) INJECTED INTERVAL (GY) (UCI/KG) (KBG/KG) INJECTED INTERVAL (GY) (GY) (GY) (GY) (GY) (GY) (GY) (GY)</th>	AGE WEIGHT INJECTED INJECTED INJECTED COMENTS (DAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INJECTED INJECTED COMENTS 571 10.0 0.284 10.5 DEC-09-80 365 SPECIAL 571 8.52 0.283 10.5 DEC-09-80 168 SPECIAL 560 10.4 0.284 10.5 DEC-09-80 169 SPECIAL 550 10.4 0.284 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.286 9.8 DEC-09-80 91 SPECIAL 567 10.4 0.286 10.5 DEC-09-80 91 SPECIAL 567 10.4 0.286 10.5 DEC-09-80 27 SPECIAL 545 9.96 10.5 DEC-09-80 27 SPECIAL 552 11.8 0.77 29.5 JAN-26-82 7 SPECIAL 554 11.4 2.42<	MEIGHT INJECTED INJECTED DATE INJECTION SKELETON (KG) (UCI/KG) (KBG/KG) INJECTED INTERVAL (GY) (UCI/KG) (KBG/KG) INJECTED INTERVAL (GY) (GY) (GY) (GY) (GY) (GY) (GY) (GY)

1023U30 THROUGH T030U30 RECEIVED U-232 ONLY. 1031U40 THROUGH T032U40 RECEIVED U-233 ONLY. 1021U50 RECEIVED 103 KBQ/KG (2.78 UCI/KG) OF U-232 AND 37.4 KBQ/KG (1.01 UCI/KG) OF U-233. 1022U50 RECEIVED 102 KBQ/KG (2.76 UCI/KG) OF U-232 AND 37.0 KBQ/KG (1.00 UCI/KG) OF U-233.

B.26 236U, Test Studies

DOG AGE WEIGHT INJECTED INJECTED DATE INJECTION SKELETON MANGER (DAYS) (KG) (UCI/KG) (KBQ/KG) INJECTED INTERVAL (GY) CONNENTS

B.27 X-Ray, Test Studies

		X-RAY	EXPOSURE, R	•	3	\$	2	3	\$	1.2
			COMMENTS	*****************************	SPECIAL STUDY	COFCIAL STIMY				
	DOSE TO	SKELETON	(63)		••	•			-	
	POST	INJECTION	INTERVAL		5775	7297	5527	3812	5745	121
		DATE	INJECTED		NOV-30-56	MOV-28-56	APR-11-60	APR-11-60	APR-04-60	APP-04-60
≅			(KBQ/KG)							
INJECTION		INJECTED	(UCI/KG)							
		_	(KG							
			(DAYS)							×2
		8	MUNDER.		001XF	002XM	003XF	004XH	DO5XF	MX900

B.28 210Po, Test Studies

	COMMENTS	SPECIAL STUDY SPECIAL STUDY SPECIAL STUDY SPECIAL STUDY
100	SKELETON (GY)	
Poet	INJECTION	470 243 7
	DATE	JUL-12-84 JUL-12-84 APR-08-86 APR-08-86
	AGE WEIGHT INJECTED INJECTED DATE (DAYS) (KG) (UCI/KG) (KDQ/KG) INJECTED	125 128 118 7:1
INJECT ION	INJECTED (UCI/KG)	3.39 3.18 3.18
	KE IGHT	12.3 12.1 12.2
	AGE (DAYS)	2655 2655 2655 2655
		T001240 T002240 T003240 T004240

B.29 Ancillary Studies

	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9									351																					=											
	STUDY	STUDY, THYROIDITIS	STOP	SIATUS EPILEPIICUS Taansitionai pei carcinoma (imbinamo e aphem)	INMOSTICANT CELL LARCINGTA (URINARI BLADGE),	AGE (BRAIM)	PARALYSIS (NO SKELETAL TUMOR)	FIBROSARCONA (SOFT TISSUE)	STUDY	ADENOCARCINOMA, PULMONARY THROMBOEMBOLISM	9.	STUDY	THRONGOENBOL I SM	TRANSITIONAL CELL CARCINOMA (URINARY BLADDER)	STUDY		9	HAMMARY ADENOCARCINOMA	STUDY	ADENOCARCINOMA, THYROID CARCINGMA	IRCOMA	THROMBOENBOL I SM		ISLET CELL TUMOR, PNEUMONIA	PERITONITIS, PANCREATITIS	STUDY	STUDY	MELANONA (MOUTH)	STATUS EPILEPTICUS	IRCOM	AMYLOIDOSIS (KIDNEY), PULMONARY THROMBOEMBOLISM		51001		STUDY	THE CHECKED ISK	EPIDERNOID CARCINOMA (MOUTH), PHELMONIA	LEIONYOSARCOMA (SPLEEN)	STATUS EPILEPTICUS	SPECIAL STUDY, REASSIGNED-SEE TO18P5	CORTEX	PHELMONIA, SENILITY
COMMENT	SPECIAL	SPECIAL	SPECIAL	STATUS		LYMPHOSARCOHA	PARALYS	FIBROSA	SPECIAL	MANGARY	ARTHRITIS	SPECIAL STUDY	THROMBO	TRANSIT	SPECIAL	TRAUMA	NEPHR! TIS	HAMMARY	SPECIAL	HAMMARY	LYMPHOSARCOMA	THROMBO	SPECIAL STUDY	ISLET CI	PERITON	SPECIAL STUDY	SPECIAL	MELANON	STATUS	LYMPHOSARCOMA	AMYLOID	SPECIAL SIUDY	SPECIAL	SPECIAL	MANABOV	THEOREM	EP IDERM	LEIOMYO	STATUS	SPECIAL	ADREMAL	PHEUMON
DAYS AGE AT DEATH	1363	2492	1651	2560	1415	3682	3745	3719	2605	9617	4218	4527	3777	728	4415	2145	5921	4166	5464	2208	4320	17.1	3074	2645	4132	2129	3113	5016	5265	266	3263	\$ 5	826		2002	7027	999	7027	1265	3883	5016	6182
DOG NUMBER	F001A00	F002A00	MOOSAGO	MO04400	0047004	MO07A00	MOORADO	F009A00	F010A00	F011A00	F012A00	F013A00	F014A00	F015A00	F016A00	F017A00	F018A00	F019A00	F020A00	F021A00	F022A00	M023A00	M024A00	F025A00	M026A00	M027A00	M028A00	M029A00	F031A00	F032A00	F033A00	POSAGO	M035A00	1030AU	F030A00	030A00	M040A00	F041A00	H042A00	F043A00	F044A00	F045A00

COMMENT	REASSIGNED, SEE TO-ORGO	SPECIAL STUDY	PARTIES : Plants Managemans reserved	IBEEL LELL JURGE, METURENNE (MAIN) SPECIAL STUDY	SPECIAL STUDY		TWYNOID CARCINOMA	SPECIAL STUDY, PYCHETRA	MEPARITIS	VOLVULUS, PERITONITIS	UNDIFFERENTIATED MALIGNANCY (ABDONINAL CAVITY)	SPECIAL STOY	SPECIAL STUDY	REASSIGNED, SEE TOTINSO	RETICAL OSARCINA	TIEN THOMESONS TIES SHEET	PRESENTATION OF TAXABLE INMODEL WAVINGE (UKIN. BLADEK) BEARRETAKEN EEK TAXBEN	AEABELGMEN GES TOLLBYN	i W	#	UNDIFFERENTIATED CARCINOMA (ABDONINAL CAVITY)	REASSIGNED, SEE TOKAR30	FIRMOSARCOM (SOFT TISSUE), MEPHRITIS	SPECIAL STUDY	DECEMENATION (ADREMAL GLAND), DIABETES WELLITUS	LYMPHOSARCOMA	FACULTATION CAREFULLY AND THE	ETTERMINE CARLINGTA (TAULT) BEARCACCASCAS SASTINAS CALASV	MEDATIC CELL CADCINOLA		LUNG CARCINOM	LEIGHOGARCOM	LIMG CARCINGM	INTESTINE SARCOM	LYMPHOSARCOM	CERVICAL SPONDYLOSIS	SPECIAL STUDY	<u>_</u>	REASSIGNED, SEE T107450	¥
DAYS AGE AT DEATH		22.	2 5	2263	900	200	5520	3190	4563	ē	7355	767	≥	į	5511	250	956				4521		5914	22	868	5553	326	200	213	6527	\$419	1265	3627	9967	2 525	2,38	84	1987		
POG MUNDER	MD46AD0	F04.7400		00000	F051A00	F052A00	F053A00	F054A00	F055A00	MD56A00	F057A00	M058A00	H059400	MD60400	MD61A00	2062400		MOASAOO	MD66A00	M067A00	FOSEADO	F069A00	F070400	M071A00	M073A00	F074A00		277400	20778A00	5079400	FOBOADO	F061A00	HD62A00	FOEGAOO	MO64ADO	HOESAOO	MOBGADO	F067A00	F066A00	-

		SPECIAL STUDY DEACCIONED CEE TOTABLO	SE 3	Ճ	0		MANTAKT ADENCAKCINGAA SPECIAL STUDY								SPECIAL STUDY	ENCEPHALITIS	s	REASSIGNED, SEE TOTBP30	PNEUMONIA	ا ج				SEE	SEE	SEE	, SEE	, SEE			STRA	, SEE	, SEE F504P1	, SEE	, SEE F501R5	, SEE F503R4	REASSIGNED, SEE F503R3.0+					
DAYS AGE AT DEATH	•	& 2.7		4719	4373	4117	767 67	904	0 82	243	217	85	157	4354	4131	1969	2222		2924	2962		2591	2057								373											
	F091A00	F092A00	F094A00	F095A00	F096A00	F097A00	F099400	M100A00	M101A00	F102A00	M103A00	M104A00	F105A00	F106A00	F107A00	F108A00	F109A00	F110A00	F111A00	F112A00	F113A00	F114A00	F115A00	F116A00	F117A00	F118A00	F119A00	F120A00	F121A00	F122A00	F123A00	F124A00	F125A00	F126A00	F127A00	F128A00	F129A00	F130A00	F131A00	F132A00	F133A00	F134A00

=		SPECIAL STUDY DEAGETONER SEE ESCAPEDA		3		35	SEE	MEANDINGED, DEE 11/08/50+	y y	, a	. 법	SPECIAL STUDY			SPECIAL STUDY, PANCREATITIS	NOSE ADENOCARCINONA	≿	SEE	SEE	KED, SEE T211P2 0			≿	3		SPECIAL STUDY			SPECIAL STUDY				SPECIAL STUDY	SPECIAL TOTAL	SPECIAL	SPECIAL LOY	SPECIAL STUDY					
DAYS AGE AT DEATH		3465				1830				3202		1901	4317	4385	4205	268	4282		2931	5406	2603				3926	3926	1257		35	88	369	517	513	510	ድ	518 5	26	z	220	521	3420	198
	F135A00	M136400	F138400	F139A00	F140A00	F141A00	F142A00	614400	F145A00	F146A00	F147A00	F148A00	F149A00	F150A00	F151A00	F152A00	F153A00	F154A00	F155A00	F156A00	F157A00	F158A00	F159A00	F160A00	F161A00	F162A00	F163A00	F164A00	M165A00	H166A00	F167A00	M166A00	M169A00	M170A00	M171A00		F173A00	F174A00	F175A00	F176A00	M177A00	M178A00

NUMBER	AT DEATH	COMMENT	
H179A00	4125	S	
F180A00	3653		
M151A00	1211	•	
	2 /2 2 - 2	SPECIAL SIMO	
F184A70	28		
M185A00	524		
M186A00	189		
F187A00	8	_	
F188A00	193		
F189A00	5 95		
F190A00	372		
F191A00	176		
H192A00	2		
N193A00	369	SPECIAL STUDY	
F194A00	371	SPECIAL STUDY	
4195A00	362	SPECIAL STUDY	
M196A00	1168		
M197AC0	273	SPECIAL STUDY	
F198A00	274	SPECIAL STUDY	
M199A00	£2	SPECIAL STUDY	
M200A00	263	SPECIAL STUDY	
F201A00	267	SPECIAL STUDY	
M202A00	4150	SPECIAL STUDY	
F203A00	3546	_	
H204A00	28 2		
F205A00	٤	STUDY	
F206A00	3759	STUDY,	AMYLOIDOSIS (KIDNEY)
F207A00	3729	STUDY	
4208A00	7.2		
M209A00	2 2		
4210A00	2077	STUDY	
F211A00	2368	χ.	STATUS EPILEPTICUS
F212A00			T207P20
F213A00			
F214A00			T209P20
F215A00	3528		
F216A00	3334	MANNARY ADENOCARCINONA	ICINOMA
F217A00		REASSIGNED, SEE	SEE F514R40+
F218A00	3910	≿	(CHRONIC PANCREATITIS)
F219A00	3884		
F220A00	3836	SPECIAL STUDY	
F221A00		-	T212P20

		ACCICHEN CEF 11	1 1	2	SPECIAL STUDY		SPECIAL STUDY	REASSIGNED, SEE T139R30+	٥	SEE	REASSIGNED, SEE TOO3240	ě	. SEE ,	, SEE	REASSIGNED, SEE T004240	0	SEE	SEE	REASSIGNED, SEE T136R30+		۵	SEE	REASSIGNED, SEE T182W30	SPECIAL STUDY	SPECIAL STUDY	SPECIAL STUDY		≿	REASSIGNED, SEE T1864/30			_,	_	_	_		_	SPECIAL STUDY	SPECIAL STUDY
DAYS AGE	AI UEAIN			\$29	616	557	553		1586			2657				2697				2456	2378			2067	2077	1397	1358	1344		1307	1252	1275	123	1300	1092	1078	1084 2	1152	16
900		್	6224A00	F225A00	F226A00	M227A00	M228A00	F229A00	F230A00	F231A00	F232A00	F233A00	F234A00	F235A00	F236A00	F237A00	F238A00	F239A00	F240A00	F241A00	F242A00	F243A00	F244A00	M245A00	M246A00	F247A00	F248A00	F249A00	F250A00	F251A00	F252A00	F253A00	F254A00	F255A00	F256A00	F257A00	F258A00	F259A00	F260A00