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Abstract

Binary Moment Diagrams (BMDs) provide a canonical representations for linear functions similar to the
way Binary Decision Diagrams (BDDs) represent Boolean functions. Within the class of linear functions,
we can embed arbitary functions from Boolean variables to real, rational, or integer values. BMDs can
thus model the functionality of data path circuits operating over word level data. Many important
functions, including integer multiplication, that cannot be represented efficiently at the bit level with
BDDs have simple representations at the word level with BMDs. Furthermore, BMDs can represent
Boolean functions with around the same complexity as BDDs.

We propose a hierarchical approach to verifying arithmetic circuits, here basic building blocks are first
shown to implement a word-level specification. The overall circuit functionality Is then verified at the
word level. Multipliers with word sizes of up to 62 bits have been verified by this technique.
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Verification of Arithmetic Functions
with Binary Moment Diagrams*

Abstract

Binary Moment Diagrams (BMDs) provide a canonical representations for linear
functions similar to the way Binary Decision Diagrams (BDDs) represent Boolean
functions. Within the class of linear functions, we can embed arbitary functions from
Boolean variables to real, rational, or integer values. BMDs can thus model the func-
tionality of data path circuits operating over word level data. Many important func-
tions, including integer multiplication, that cannot be represented efficiently at the
bit level with BDDs have simple representations at the word level with BMDs. Fur-
thermore, BMDs can represent Boolean functions with around the same complexity as
BDDs.

We propose a hierarchical approach to verifying arithmetic circuits, here basic build-
ing blocks are first shown to implement a word-level specification. The overall circuit
functionality is then verified at the word level. Multipliers with word sizes of up to 62
bits have been verified by this technique.
Keywords: Formal verification, binary decision diagrams, arithmetic circuits, multi-
pliers

1. Introduction

Binary Decision Diagrams (BDDs) have proved successful for representing and manipulat-
ing Boolean functions symbolically [4] in a variety of application domains. Buil':..- ' - i this
success, there have been several efforts to extend the BDD concept to represent functions
over Boolean variables, but having non-Boolean ranges, such as integers or real numbers

"This research is sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel
Command, USAF, and the Advanced Research Projects Agency (ARPA) under grant number F33615-93-1-
1330.



Boolean Numeric

Terminal Edge-Weighted
Pointwise BDD MTBDD, ADD EVBDD
Moment FDD BMD *BMD

Table 1: Categorization of Graphical Function Representations.

[1, 7, 8, 15, 17]. This class of functions is sometimes termed "pseudo-Boolean" [12]. Many
tasks can be expressed in terms of operations on such functions, including integer linear pro-
gramming, matrix manipulation, spectral transforms, and word-level digital system analysis.
To date, the proposed representations for these functions have proved too fragile for routine
application-too often the data structures grow exponentially in the number of variables.

In this paper we propose a new representation called Multiplicative Binary Moment Diagrams
(*BMDs) that improve on previous methods. *BMDs incorporate two novel features: they

are based on a decomposition of a linear function in terms of its "moments," and they have
weights associated with their edges which are combined multiplicatively, These features
have as heritage ideas found in previous function representations, namely the Reed-Muller
decomposition used by Functional Decision Diagrams (FDDs) [9, 14], and the additive edge
weights found in Edge-Valued Binary Decision Diagrams (EVBDDs) [15]. The relations
between the various representations are described more fully below.
*BMDs are particularly effective for representing digital systems at the word level, where
sets of binary signals are interpreted as encoding integer (fixed point) or rational (floating
point) values. Common integer and floating point encodings have efficient representations
as *BMDs, as do operations such as addition and multiplication. *BMDs can also represent
Boolean functions as a special case, with size comparable to BDDs.
*BMDs can serve as the basis for a hierarchical methodology for verifying circuits such as

multipliers. At the low level, we have a set of building blocks such as add steppers, Booth
steppers, and carry save adders described at both the bit level (as combinational circuits)
and at the word level (as algebraic expressions). Using a methodology proposed by Lai and
Sastry [15], we verify that the bit-level implementation of each block implements its word-
level specification. At the higher level (or levels), a system is described as an interconnection
of blocks having word-level representations, and the specification is also given at the word-
level. We then verify that the composition of the block functions corresponds to the system
specification. By this technique we can verify systems, such as multipliers [5], that cannot
be represented efficiently at the bit level. We also can handle a more abstract level of
specification than can methodologies that work entirely at the bit level.

2. Graphical Function Representations

Methods related to ordered BDDs for representing functions as graphs can be categorized
as shown in Table 1. First, the range of a function can be either Boolean or numeric, e.g.,
integer, rational, or real. Second, we will consider two methods of decomposing a function
with respect to a Boolean variable x: in terms of its value at x = 1 and x = 0 (pointwise
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Pointwise Decomposition Linear Decomposition

y z F 8 +0 0 8 -20z +
0 1 -12 2y +

1 0 10 4 yz
1 1 -6

MTBDD BMD

y y

Figure 1: Example Function Decompositions. MTBDDs are based on a pointwise
decomposition (left), while BMDs are based on a linear decomposition (right).

decomposition), or its Amoments," i.e., its value at x = 0 and how this value changes as x
changes to 1. Finally, the values of a numeric function can be expressed in terms of values
associated with the leaves or with the edges. Note that in all cases we assume a total ordering
of the variables and that variables are tested according to this ordering along any path from
the root to a leaf.

To illustrate the two ways of decomposing a function, consider the function F over a set
of Boolean variables y and z, yielding the integer values shown in the table of Figure 1. A
pointwise decomposition characterizes a function by its value for every possible set of argu-
ment values. By extending BDDs to allow numeric leaf values, the pointwise decomposition
leads to a "Multi-Terminal" BDD (MTBDD) representation of a function 17, 8] (also called
"ADD" [1]), as shown on the left side of Figure 1. In our drawings of graphs based on a
pointwise decomposition, the dashed line from a vertex denotes the case where the vertex
variable is 0, and the solid line denotes the case where the variable is 1. Observe that the
leaf values correspond directly to the entries in the function table.

Exploiting the fact that the function variables take on only the values 0 and 1, we can
write a linear expression for function F directly from the function table. For variable y, the
assignment y = 1 is encoded as y, and the assignment y = 0 is encoded as 1 - y:

8 (1- y) (l-z) +
F(xy) 1-12 (1 -y) z +F~~)= 10 y (1 - z) +

-6 y Z

Expanding this expression and combining common terms yields the expression:

F(x,y) = 8-20z+2y+4yz

3



- 8yOz° + -20yoz 1 + 2y3z° + 4yYz'

This representation is called the "monomial expansion" of F. It represents the function as
a sum of terms ay bz'b where a is a numeric coefficient and both b. and b, are either 0 or 1.
This expansion leads to the BMD representation of a function, as shown on the right side
of Figure 1. In our drawings of graphs based on a moment decomposition, the dashed line
from a vertex indicates the case where the function is independent of the vertex variable x
(b. = 0), while the solid line indicates the case where the function varies linearly (b. = 1).

2.1. Recursive Decompositions of Functions

The graph representations of functions we consider expand a function one variable at a
time, rather than in terms of all the variables, as do the tabular form and the monomial
expansions of Figure 1. Better insight can be gained by considering recursive decompositions
of the function, where a function is decomposed in terms of a variable into two subfunctions.
In our graphical representation, each vertex denotes a function. The outgoing branches from
the vertex indicate the subfunctions resulting from the decomposition with respect to the
vertex variable.

For function f over a set of Boolean variables, let f, (respectively, fy) denote the positive
.(resp., negative) cofactor of f with respect to variable x, i.e., the function resulting when
constant 1, (resp., 0) is substituted for x. BDDs are based on a pointwise decomposition,
where the function is characterized with respect to some variable z in terms of its cofactors.
Function f can be expressed in terms of an expansion (variously credited to Shannon and
to Boole):

f = XAfjF V zAf.

In this equation we use A and V to represent Boolean sum and product, and overline to
represent Boolean complement.

For expressing functions having numeric range, the Boole-Shannon expansion can be gener-
alized as:

f = (1-z).fir + -f3  (1)

where., +, and - denote multiplication, addition, and subtraction, respectively. Note that
this expansion relies on the assumption that variable x is Boolean, i.e., it will evaluate to
either 0 or 1. Both MTBDDs and EVBDDs [15, 171 are based on such a pointwise decom-
position. As with BDDs, each vertex v describes a function f in terms of its decomposition
with respect to variable x = Var(v). The two outgoing arcs: Lo(v) and Hi(v) denote functions
fj and f,, respectively. A leaf vertex v in an MTBDD has an associated value Val(v).

The moment decomposition of a function is obtained by rearranging the terms of Equation
1:

f - f + .(f -f )

h f+ Az.f (2)

where f* = f. - fy is called the linear moment of f with respect to x. This terminology
arises by viewing f as being a linear function with respect to its variables, and thus fa is the
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partial derivative of f with respect to x. Since we are interested in the value of the function
for only two values of z, we can always extend it to a linear form. The negative cofactor
will be termed the constant moment, i.e., it denotes the portion of function f that remains
constant with respect to z, while f* denotes the portion that varies linearly. Relating to the
monomial expansion presented earlier, the two moments of function f partition the set of
monomial terms into those that are independent of z, i.e., b., = 0 (fy), and those that vary
linearly with x, i.e., b. = 1 (fA).

We will define two forms of graphs representing functions according to a moment decompo-
sition. In both cases, vertex v denoting function f is labeled by a variable x = Var(v), and
has two outgoing arcs: Lo(v) denoting function fy and Hi(v) denoting function fj. We will
term graphs of this form "Moment" Diagrams (MDs) as opposed to "Decision" Diagrams
(DDs). The distinction is based on the rules used to evaluate a function for some valua-
tion of the variables. In a decision diagram one simply traverses the unique path from the
root to a leaf determined by the variable values, possibly accumulating edge weights. For
example, consider the evaluation of a MTBDD for Boolean variable assignment 4,. That is,
4, denotes a function that for each variable z assigns a value O(x) equal to either 0 or to 1.
The evaluation starting at vertex v can be defined as:

Val(v), v is leaf
MTBDDeval(v, ) = MTBDDeval(Lo(v), 0), O(Var(v)) = 0 (3)

MTBDDeval(Hi(v), 4), O(Var(v)) = 1

In a moment diagram, evaluation requires consideration of multiple paths in the graph. For
every vertex v labeled by a variable z that evaluates to 1, subgraphs Lo(v) and Hi(v) must
both be evaluated and their results summed. The evaluation of BMD for Boolean variable
assignment 4, starting at vertex v can be defined as:

fVai(v), v is leaf
BoolEval(v,4) - BoolEval(Lo(v),4), O(Var(v)) = 0 (4)

BoolEval(Lo(v), 4) + BoolEval(Hi(v), 0), O(Var(v)) = 1

In return for the more complex evaluation rule of moment diagrams, we obtain graphs that
are potentially much more compact.

By way of comparison, the moment decomposition of Equation 2 is analogous to the Reed-
Muller expansion (also called the positive Davio expansion [9]) for Boolean functions:

f = f7 E xA(f.Df-)

The expression f•,9f- is referred to as the Boolean difference of f with respect to x [21], and in
many ways is analogous to our ;Tie- moment. Other researchers [9, 14] have explored the use
of graphs for Boolean functious oased on this expansion, calling them Functional Decision
Diagrams (FDDs). By our terminology, we would refer to such a graph as a "moment"
diagram rather than a "decision" diagram.

2.2. Edge Versus Terminal Weights

5
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X1 2
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Figure 2: Different Representations for Binary-Weighted Bits. All represent the
function X = 4x 2 + 2x, + x0.

One method to represent functions yielding numeric values, used by MTBDDs and by BMDs,
is to simply introduce a distinct leaf vertex for each constant value needed. This approach has
the drawback, however, that many leaves may be required, often exponential in the number
of variables. Figure 2 illustrates the complexity of the function mapping a vector of Boolean
variables: x-,- ... , xi, x0 to an integer value according to its interpretation as an onsigned
binary number. As can be seen, the MTBDD representation will grow exponentially with
the word size, since there are 2' different values for the function.

A second method for defining function values is to associate weights with the edges. This
idea was originated by Lai, et al in their definition of EVBDDs. In their case, edge weights
are combined additively, i.e., the value of a function is determined by following a path from a
root to a leaf, summing the edge weights encountered. As shown on the right side of Figure
2, the edge weights of EVBDDS can lead to a much more compact representation than with
MTBDDs. In our drawings of EVBDDs, edge weights are shown in square boxes, where an
edge without a box has weight 0. For representing a sum of weighted bits, this representation
achieves a linear complexity. Various schemes can be used for "normalizing" edge weights
so that the resultig graph provides a canonical form for the function. For example, the
standard formulation of EVBDDs requires that edge Lo(v) for any vertex v have weight 0.

The bottom of Figure 2 shows the BMD representation of the same function. Observe
that the graph for this function grows linearly with word size. In our drawings for BMDs,
the solid line leaving vertex v indicates Hi(v), the linear moment. The linear moment of
X with respect to any variable zx is simply its binary weight 2i, giving rise to the simple
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linear structure shown. Thus, the moment decomposition is sufficient for simplifying the
representation of this function.
*BMDs also have edge weights, although the weights combine multiplicatively rather than

additively. Although not the case for Figure 3, edge weighting can lead to a much more
concise representation of a function. As an illustration, Figure 3 shows three representations
of the function 8-20z+2y+4yz+ 12x+24zz+ 15xy. The upper graph is a BMD, with the leaf
values corresponding to the coefficients in the monomial expansion. As the figure shows, the
BMD data structure misses some opportunities for sharing of common subexpressions. For
example, the terms 2y + 4yz and 12x + 24xz can be factored as 2y(1 + 2z) and 12x(1 + 2z),
respectively. The representation could therefore save space by sharing the subexpression
I + 2z. For more complex functions, one might expect more opportunities for such sharing.

The two forms of *BMDs, shown at the bottom of Figure 3 indicate how *BMDs are able
to exploit the sharing of common subexpressions. In our drawings of *BMDs, we indicate
the weight of an edge in a square box. Unlabeled edges have weight 1. In evaluating
the function for a set of arguments, the weights are multiplied together when traversing
downward. There are a variety of different rules for manipulating edge weights, resulting
in different representations. We will describe two different sets of rules-one that results in
rational weights, even when manipulating integer functions (left), and one that yields integer
weights, but is only applicable for integer functions (right). Observe that these two rules
yield graphs with identical branching structure, but differing in edge weights.

For the remainder of the presentation we will consider mainly *BMDs, The effort required
to implement weighted edges is justified by the savings in graph sizes. For functions with
integer ranges, we will use integer edge weights. Keeping edge weights as integers is easier
than maintaining rational numbers. If we approximate rational numbers with floating point
representations, the vagaries of the rounding behavior could greatly complicate the use of
*BMDs in formal verification.

2.3. Algebraic Structure

Although we have presented BMDs and *BMDs as methods for representing functions over
Boolean variables, they can also be viewed as representing arbitrary linear functions. For
example, the BMD of Figure 1 can be viewed as representing the function F(x, y) = 8 -
20z + 2y + 4yz for arbitrary values of y and z. The rule for evaluating a graph given a
numeric variable assignment 4. then becomes:

f Val(v), v is leaf
LinEval(v, 4.) = LinEval(Lo(v), 4) + O(Var(v)). LinEval(Hi(v), 0) otherwise (5)

The class of linear functions can be defined as either those that can be expressed as a ii.

of monomial terms, or as those functions that obey Equation 2 for all variables.

An algebraic structure for linear functions provides further insight into our representation.
Let L denote the set of linear functions, and for a variable assignment 0 let f(4,) denote the
result of evaluating linear function f according to this assignment. We can define addition
of linear functions in the usual way, i.e., the sum of two functions f + g is a function h such
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Figure 3: Examples of BMD and *BMDs. All represent the function
8 - 20z + 2y + 4yz + 12x + 24xz + 15xy. *BMDs have weights on the edges that com-
bine multiplicatively.
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that h(o•) = f(4) + g(o). It can be seen that the algebraic structure (L, +) forms a group,
having as identity element the function that always evaluates to 0.

We could define a multiplication over functions in a similar fashion, but then the class
of linear functions would not be closed under this operation. The product of two linear
functions could yield a quadratic function. In particular, the product of functions f and g,
denoted f g can be defined recursively as follows. If these functions evaluate to constants a
and b, respectively, then their product is simply f. g = a- b. Otherwise assume the functions
are given by their moment expansions (Equation 2) with respect t.) some variable x. The
product of the functions can then be defined as:

f .g = fr. g +z(fh.gi + fi "gr) +- Xfi "ggi (6)

One can readily show that this definition is unambiguous-the result is independent of the
ordering of the variables in the successive decompositions.

Instead of conventional multiplication, we can define an operation . with similar properties,
except that it preserves linearity. This involves "demoting" the quadratic term in the equa-
tion for conventional multiplication to a linear term. The linear product of functions f and
g, denoted f .g, is defined recursively as follows. If these functions evaluate to constants a
and b, respectively, then their linear product is simply their product: f :g = a~ b. Otherwise
assume the functions are given by their moment expansions (Equation 2) with respect to
some variable z. Their linear product is defined as

f ^g = y r+Xf^g+ r+hýg+ (7)

One can show that the definition is independent of the ordering in the decomposition. The
algebraic structure (L, +, ^) forms a ring. That is, ^ is associative, and it distributes over +.
Furthermore, the function that always yields 1 serves as a unit for this ring.

Although the linear product operation is not the same as conventional multiplication, there
are two important cases where we can safely use f 'g as a replacement for f • g. First,
under the Boolean domain restriction, i.e., considering only variable assignments 0 such
that O(x) E {0, 1}, we are guaranteed that [If g](0) = [f g](0). Second, define the support
of a function f as those variables x such that fi -# 0. Under the independent support
assumption, where functions f and g have disjoint support sets, we have that f . g = f .g
for any variable assignment. In particular, for any variable x we must have that either fj or
gi is identically 0, and hence the quadratic term of Equation 6 drops out.

In general, we can "linearize" any operation op to create an operation op such that for any
Boolean variable assignment 0, we have If dp g](0) = f(4) op g(o). This involves generating
moments with respect to each variable x as:

If dpg]r = fropgr (8)

If p g]4 = [f Cip g. -[f p6g]A
= [f. epgz]-[fF dpgy]

= [I f ) dp(-g , --V [f og-I (9)

As before, ihe definition is independent of the variable ordering. In general, this lineariza-
tion would not yield valid results for non-Boolean variable assignments, whether or not the

9
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Figure 4: Representations of Signed Integers. All commonly used encodings can be
represented easily.

arguments have independent support. For example, the linearized form of exponentiation
would convert (z + 2)y into 1 + y + zy.

3. Representation of Numeric Functions

*BMDs provide a concise representation of functions defined over "words" of data, i.e.,
vectors of bits having a numeric interpretation. Let X represent a vector of Boolean variables:
Xn-1,... , x1, X0. These variables can be considered to encode an integer X according to some
encoding, e.g., unsigned binary, two's complement, BCD, etc. As Figune 2 shows, the *BMD
(as well as BMD) representations for X according to an unsigned binary encoding have linear
complexity. Figure 4 illustrates the *BMD representations of several common encodings for
signed integers, where x,,-, is the sign bit. The sign-magnitude encoding gives integer value
X = -1'-IX', where X' is the unsigned integer encoded by the remaining bits. Observe
that this can be expressed in the linear form (1 - 2x,,-)X', yielding a graph structure where
both moments for variable x,,-i point to the graph for X', but having edge weights I and -2.
As the other graphs in the figure illustrate, both two's complement and one's complement
encodings can be viewed as sums of weighted bits, where the sign bit is weighted either
-2n-1 (two's complement) or 1 - 2n-' (one's complement) [18].

The conciseness of *BMDs arises from two important properties of typical encodings. First,
many encodings are based on a sum of weighted bits. In terms of the monomial expansion,
this implies that the terms are all of low degree. Second, the • '%rity of the encodings gives
rise to many subexpressions differing only by multiplicative factors. This leads to sharing of
subgraphs in the *BMD, with edge weights denoting the different factors.

3.1. Word-Level Operations

10



Form X X+Y X*Y X2 cX
MTBDD exponential exponential exponential exponential exponential
EVBDD linear linear exponential exponential exponential

BMD linear linear quadratic quadratic exponential
BMD linear linear linear quadratic linear

Table 2: Word-Level Operation Complexity. Expressed in how the graph sizes grow
relative to the word size.

Table 2 provides a comparative summary of the four function representations for a number
of word-level operations on unsigned data. *BMD examples of these functions are included
in this paper. As can be seen, MTBDDs are totally unsuited for this class of functions. The
range of the functions to be represented is simply too large. EVBDDs yield better results
for representing word-level data and for representing "additive" operations (e.g, addition
and subtraction) at the word level. This capability was exploited by Lai and Sastry in
verifying adder circuits against word-level specifications [15]. On the other hand, EVBDDs
cannot efficiently represent more complex functions such as multiplication, squaring, and
exponentiation. Thus, for example, they cannot be used for verifying multipliers. In fact, all
published examples that can be handled efficiently at the word level using EVBDDs can be
handled at the bit level using BDDs. Their utility in verifying circuits is mainly for providing
a more abstract form of specification.

Both BMDs and *BMDs are much more effective for representing word-level operations.
BMDs remain of polynomial (quadratic) size for both multiplication and for squaring, al-
though they grow exponentially for exponentiation. *BMDs do even better, being quadratic
for squaring and linear for all other operations listed. By verifying circuits at the word level
with *BMDs, we can handle classes of systems that are beyond the capability of BDDs and
other bit-level techniques.

Figure 5 illustrates the *BMD representations of addition and multiplication expressed at
a word level. Observe that the sizes of the graphs grow only linearly with the word size n.
Word-level addition can be viewed as summing a set of weighted bits, where bits xi and y,
both have weight 2'. Word-level multiplication can be viewed as summing a set of partial
products of the form xi2'Y.

As with BDDs, the representation of a function depends on the variable ordering. For
example, Figure 6 shows the *BMDs for word-level multiplication under two additional
variable orderings. Observe that although these graphs appear more complex than the one
of Figure 5, their complexity still grows only linearly with n. In our experience, *BMDs are
much less sensitive to variable ordering than are BDDs.

i .gure 7 illustrates the *BMD representations of two unary operations on word-level data.
For representing the function cX (in this case c = 2), the *BMD has linear complexity. It
expresses the function as a product of factors of the form c2•' - (c 2 )z,. Since xi evaluates
to either 0 or to 1, the exponentiation can be linearized as: ai= 1 + (a - 1)xi. In the graph,
a vertex labeled by variable xi has outgoing edges with weights 1 and c2' - 1 both leading
to a common vertex denoting the product of the remaining factors.

11
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Figure 5: Representations of Word-Level Sum and Product. The graphs grow linearly
with word size.

For representing the function X', both the BMD and the *BMD have quadratic complexity.
The representation can be seen to follow a recursive expansion of the function based on
the decomposition: X = X,•= 2"•-z,_x,- + X,,-,, where Xk denotes the weighted sum of
variables zo through Zk-,. In terms of this decomposition we have:

X.' = (2"-'x.-I + X.- 1 )2

22n 2 x2n.- 1 + 2 + X 2

Since Xn-1 is Boolean-valued, we can "demote" the quadratic term xn.. to a linear term
X.-.1 Thus, the constant moment for the function is X , while the linear moment is

2 2n-2 + 2nX,,_. = 2 n(X,._l + 2 n'-2). In our example with n = 4, the left subgraph represents
the function X3, while the right side represents the subgraph 16(X 3 + 4). Observe that the
different constant offsets for each bit cause the growth of the graph to be quadratic rather
than linear. That is, there is no sharing between the graphs for the terms X.-I + 2'-2 for
different values of i. For many applications, this quadratic complexity is acceptable. For
example, we could represent the square of a 32-bit number by a graph of around 530 vertices.

4. Representation of Boolean Functions

Boolean functions are just a special case of numeric functions having a restricted range.
Therefore such functions can be represented as BMDs or *BMDs. The algebraic strut -_e

introduced in Section 2.3 provides a convenient notation for translating Boolean operaL uns

12
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Figure 6: Representations of Word-Level Product for Other Variable Orderings.
The graphs grow linearly with the word size regardless of the variable ordering.
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into operations on linear functions. In particular, let f and g denote functions have Boolean
ranges. Then we can define the standard Boolean operations as:

7= 1-f
fAg = f~g
fVg = f+g-(fPg)

feg = f +g-2(f g) (10)

Figure 8 illustrates the *BMD representations of several common Boolean functions over
multiple variables, namely their Boolean product and sum, as well as their exclusive-or sum.
As this figure shows, the *BMD of Boolean functions may have values other than 0 or 1
for edge weights and leaf values. Under all variable assignments, however, the function will
evaluate to 0 or to 1. As can be seen in the figure, these functions all have representations
that grow linearly with the number of variables, as is the case for their BDD representations.
The representation for AND follows due to the parallel between Boolean and linear products.
The representation for OR can be seen to follow an iterative structure. In particular, let
F,, denote the OR of variables z 1 ,z 2,..., x,, and G,, denote their NOR, i.e., G,, = 1 - F,.
Function F,& can be rewritten as:

F. x = F.-I

=z. F.-I - (x.F.-I)

= + x.(1 -

= F.-I + z.G.- 1

Thus, the moments of function F& with respect to variable x,, are F.- 1 and G,,-.. Based on
this result, function G,, can be rewritten as:

G. = 1-F.

= 1 - F.-I - x.G.-I

=G.- + x(-G,-I)

Thus, the moments of function G,, with respect to variable z,, are G,,-, and -G,,- 1 . In the
center graph of Figure 8, the vertices on the left side denote the sequence of OR functions,
while those on the right side denote the sequence of NOR functions.

The representation for EXCLUSIVE-OR follows a similar iterative structure. It can be gen-
erated by defining function F, to be the EXCLUSIVE-OR of variables X1,x 2,...,r,,, while
letting G,, denote the function G,, = 1 - 2F.. It can be shown that F, has tP,'rrPts F,._.
and G,-,, while G. has moments GC-. and -2G,- 1.

Figure 9 illustrates the similarity between BDDs and *BMDs when representing the Boolean
functions describing an adder circuit at the bit level. Observe the relation between the
word-level representation (Figure 5) and the bit-level representation of addition. Both are
functions over variables representing the adder inputs, but the former is a single function
yielding an integer value, while the latter is a set of Boolean functions: one for each output
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signal for the circuit. The relation between these two representations will be discussed more
fully in our development of a verification methodology.

The BDD representation shown in Figure 9 employs two techniques to reduce its size [3].
First, it represents a set of functions by a single graph with multiple roots, allowing dif-
ferent functions to share common subgraphs. In fact, the set of functions is maintained
in strong canonical form, where every function to be represented is denoted by a unique
root vertex. The *BMD representation can also use this form of sharing and maintained in
strong canonical form. Second, the BDD contains "negative edges" (indicated by dots on
the edge) to denote Boolean complementation. The use of edge weights in *BMDs has a
similar effect, although edge weights cannot be used to directly represent the complement
operation: 7= 1-f. Observe in any case that the *BMD representation for these functions
has a similar structure to the BDD representation. Both grow linearly with the word size,
with the *BMD requring 7 vertices per bit position, and the BDD requiring 5.

In all of the examples shown, the *BMD representation of a Boolean function is of comparable
size to its BDD representation. We conjecture, however, that this is not always the case.
The two representations are based on different expansions of the function, and hence there
would not seem to be any fundamental reason for them to be of similar complexity.

5. Factoring and Other Decision Properties

One powerful property of BDDs is that, given a BDD representation of a function f over a
set of variables 1, one can easily find solutions to the equation f(s) = 0 by tracing paths
from the root to the leaf with value 0. This strength of BDDs is also a limitation. Since
any problem that can be expressed as a function f having an efficient BDD representation
is amenable to easy solution, this implies that i3DDs cannot efficiently represent functions
corresponding to intractable problems.

Imagine for example, that it were possible to construct the 2n BDDs giving a bit-level
representation of multiplication over n-bit integers - and -. Then 'w: could potentially
factor a large number K, by solving the equation:

2n-1

A Pi(Z, T)Eki = oi=O

where PA is the function representing bit i of the product, and ki is the ith bit of K. Observe
in this equation that the values k, are constants, and therefore the computation involves
forming the product of either true or complemented multiplier output functions. Experts
consider factoring to be a "hard" problem. In fact, the RSA encryption algorithm [231 relies
on the assumption that given the public key, one cannot derive the two prime factors of the
key in a reasonable amount of time. Thus, one would expect that some step in the above
scheme for factoring would break down. In the case of BDDs, the problem comes in trying
to generate the BDD representations of the functions Pi. It can be shown that these graphs
grow exponentially with the word size [5].

Define the task of "finding a zero for function f" as finding a (Boolean) variable assignment
such that f(z) = 0. We will call a representation for functions "easily invertible" if it
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is always possible to find a zero for the function in time polynomial in the size of the
representation. Both BDDs and MTBDDs have this property-one simply finds a path to
the leaf with value 0. One can also show that FDDs are easily invertible [2], even though
evaluation does not involve simply following a single path in the graph.

On the other hand, EVBDDs are not easily invertible, assuming P # NP. The following
argument shows that the problem of finding a zero of a function represented by an EVBDD
is NP-complete. First, the problem is clearly NP, since given an assignment to the variables,
one can evaluate an EVBDD and determine whether the function yields 0 for this assign-
ment. Furthermore, any instance of the NP-complete Partition problem [10] can readily be
translated into an EVBDD solution problem. This problem is defined as: given a set of n
elements A, where each element i has a nonnegative integer "size" si, determine whether
there exists a subset A' such that

ieA' iEA-A'

To translate this into an equation solution problem, let S = ZeA si, and define the function
f as:

f (I, Xn) = -S12 + X,s, (11)
s=1

This function has an EVBDD with n nonterminal vertices. It is similar in structure to that
of Figure 2, except that the outgoing solid arc from a vertex with variable xi has weight si,
and the root has weight -S/2. The challenge of solving this problem for EVBDDs can be
seen to lie with the edge weights. One must find a path through the graph such that the
edge weights encountered sum to 0.

By a similar argument, one can show that BMDs and *BMDs also do not form easily
invertible representations. Both are clearly in NP, since evaluation can be performed in
time linear in the graph sizes. Furthermore, both provide linear-sized representations of the
function defined in Equation 11. For example, the BMD representation of this function has
structure similar to that of Figure 2. The solid arc from a vertex with variable xi points to a
leaf with value si, while the dashed arc from the vertex with variable x0 points to a leaf with
value -S/2. The *BMD has similar structure, but possibly with weights moved up into the
edges.

The challenge of finding a zero of a BMD or *BMD can be seen to lie with the evaluation
rule, given by Equation 4-evaluation requires considering multiple paths in the graph. We
can readily represent the factoring problem, as shown in Figure 10 by constructing a *BMD
representation of the function X. Y- K (in this example K = 35). The BMD representation
of this function is somewhat more complex, but still of size quadratic in n. The lack of an
efficient inversion algorithm prev'r s one from factoring by this method.

The example of factoring illustrates the fact that the strengths and weaknesses of BDDs
versus *BMDs are somewhat orthogonal. Tasks that can easily be performed on BDDs are
much more difficult to perform on *BMDs. On the other hand, *BMDs can represent circuit
functions that cause exponential blow up for BDDs or to their extensions as MTBDDs and
EVBDDs.
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6. Algorithms

In this section we describe key algorithms for constructing and manipulating *BMDs. The
algorithms have a similar style to their counterparts for BDDs. Unlike operations on BDDs
where the complexities are at worst polynomial in the argument sizes, most operations on
*BMDs potentially have exponential complexity. We will show in the experimental results,
however, that these exponential cases do not arise in our applications.

6.1. Representation of *BMDs

We will represent a function as a "weighted pair" of the form (w, v) where w is a numeric
weight and v designates a graph vertex. Weights can either be maintained as integers or
real numbers. Maintaining rational-valued weights follows the same rules as the real case.
Vertex v = A denotes a terminal leaf, in which case the weight denotes the leaf value. The
weight wo must be nonzero, except for the terminal case. Each vertex v has the following
attributes:

Var(v) The vertex variable.

Hi(v) The pair designating the linear moment.

Lo(v) The pair designating the constant moment.

Uid(v) Unique identifier for vertex.

Observe that each edge in the graph is also represented as a weighted pair.

6.2. Maintaining Canonical Form

The functions to be represented are maintained as a single graph in strong canonical form.
That is, pairs ("o, v1) and (ui,, v2 ) denote the same function if and only if M = u2 and
t= t-2. We assume that the set of variables is totally ordered, and that all of the vertices
constructed obey this ordering. That is, for any vertex v, its variable Var(v) must be less
than any variable appearing in the subgraphs Lo(v) and Hi(v).

Maintaining a canonical form requires obeying a set of conventions for vertex creation and
for weight manipulation. These conventions are expressed by the pseudo-code shown in
Figures 11 and 12. The MakeBranch algorithm provides the primary means of creating and
reusing vertices in the graph. It is given as arguments a variable and two moments, each
represented as weighted pairs. It returns a pair representing the function given by Equation
2. It assumes that Lhe argument variable is less than any variable in the argument subgraphs.
The steps performed by MakeBranch are illustrated in Figure 13. In this figure two moments
are drawn as weighted pointers.

When the linear moment is the constant 0, we can simply return the constant moment as
the result, since this function is independent of variable z. Observe that this rule differs
from the reduction rule for a graph based on a pointwise decomposition such as BDDs. In
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function MakeBranch(variable z, pair (uw, qi), pair (wA, vh)): pair
{ Create a branch, normalize weights. }
{ Assumes that z < Var(vh) and z < Var(vq)}

if wh = 0 then return (tm, q)
W 4- Norm Weight(ut, wh)
Wi 4-- tU/w

Wh 4 h- WAIW

V 4 UniqueVertez(z, (wi,q), (wh,vh))
return (W,v)

function Unique Vertez(variable z, pair (Wi,vj), pair (wA, vA)): vertex

{ Maintain set of graph vertices such that no duplicates created }
key +- [x, W, Uid(vi), oh, Uid(vA)]
found, v +- LookUp( UTable, key)
if found then return v
v -- Neuwvertex)
Var(v) r- , Uid(v) +- UnidO;

Lo(v) - (u, "); Hi(v) +- (h, Av)
Insert(UTable, key, v)
return v

function NorrnWeight(integer wl, integer wA): integer
{ Normalization function, integer weights. }

w +- gcd(u4, Wh)

if ( < 0
then return -W
else return w

function NormWeight(real wi, real wh): real
{ Normalization function, real weights I

ifI = 0
then return wh
else return tq

Figure 11: Algorithms for Maintaining *BMD. These algorithms preserve a strong
canonical form.
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function Apply Weight(wtype w', pair (w, v)): pair
{ Multiply function by constant }

if w' = 0 then return (0, A)
return (w'. WI, V)

Figure 12: Algorithm for Multiplying Function by Weight. This algorithm ensures
that edge to a nonterminal vertex has weight 0.

Arguments Results
xW W

X X

W1 Wh Wj hl

Figure 13: Normalizing Transformations Made by MakeBranch. These transformations
enforce the rules on branch weights.
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such cases a vertex can be eliminated when both of its children are identical. This reflects
the difference between the two different function decompositions. Our rule for *BMDs is
similar to that for FDDs (9, 14].

For other values of the linear moment, the routine first factors out some weight w, ad-
justing the weights of the two arguments accordingly. We show two versions of a function
Norm Weight according to whether integer or real-valued weights are to be used. For the
integer case, we want to extract any common factor while ensuring that all weights are inte-
gers. Hence we take the greatest common divisor (gcd) of the argument weights. In addition,
we adopt the convention that the sign of the extracted weight matches that of the constant
moment. This assumes that gcd always returns a nonnegative value. For real-valued weights
we adopt the convention that the weighted pair designating the constant moment for a ver-
tex always has weight 0 (only when this moment is the constant 0) or 1. In the former case
the weight of the pair designating the first moment will have weight 1. Thus, normalizing
real-valued weights involves moving one of the argument weights up and adjusting the other.

Once the weights have been normalized MakeBranch calls the function Unique Vertex to find
an existing vertex or create a new one. This function maintains a table (typically a hash
table) where each entry is indexed by a key formed from the variable and the two moments.
Every vertex in the graph is stored according to such a key and hence duplicaLe vertices are
never constructed.

Figure 12 shows the code for a function Apply Weight to multiply a function, given as a
weighted pair, by a constant value, given as a weight w'. This procedure simply adjusts the
pair weight, detecting the special case where the multiplicative constant is 0.

As long as all vertices are created through calls to the MakeBranch function and all mul-
tiplications by constants are performed by calls to Apply Weight, the graph will remain in
strongly canonical form.

6.3. The Apply Operations

As with BDDs, *BMDs are constructed by starting with base functions corresponding to
constants and single variables, and then building more complex functions by combining
simpler functions according to some operation. In the case of BDDs this combination is
expressed by a single algorithm that can apply an arbitrary Boolean operation to a pair of
functions. In the case of *BMDs we require algorithms tailored to the characteristics of the
individual operations. To simplify the presentation, we show only a few of these algorithms
and attempt to do so in as uniform a style as possible. These algorithms are referred to
collectively as "Apply" algorithms.

Figure 14 shows the fundamental algorithm for adding two functions. The function PlusAp-
ply takes two weighted pairs indicating the argument functions and returns a weighted pair
indicating the result function. This algorithm can also be used for subtraction by first mul-
tiplying the second argument by weight -1. This code closely follows the Apply algorithm
for BDDs [3]. It utilizes a combination of recursive descent and "memoizing," where all
computed results are stored in a table and reused whenever possible. The recursion is based
on the property that taking moments of functions commutes with addition. That is, for
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function PlusApply(pair (wi, tk), pair (utz, vz)): pair
{ Compute sum of two functions }

done, (w,v) 4-. TermCheck(+, (u, V1 ), ("J, 2))

if done then return (to, v)

t,,, (t 1 , v1), (w 2, pa) 4-- Rearrange(+, (to, ti), (,v 2))

key +- [+, t,,, Uid(tui), ", Uid(v2)]
found, (w, v) -- LookUp(OpTable, key)
if found then return Apply Weight(w', (w, v))

z 4- Min(Var(,,), Var(v2))

{ Begin recursive section }
(ov,,t) 4 SimpleMoment((",v), z, 0)
(Oto,,w) 4 SimpleMoment((",2), z, 0)

(wtoh,vih) 4 SimpleMomenk((m,vi), z, 1)
(uimh, vzh) 4 SimpleMoment((to,v 2), z, 1)

(to, ") 4- PlusAppIy((tvo, vj), (ujz, v•))

{ End recursive section )

(W,V) +- MakeBrnch(z, (q, vl), (wh, Uk))
Insert(OpTable, key, (to,v))
return ApplyWeight(4w', (to, v))

function SimpleMoment(pair (W, v), variable z, integer b): pair
{ Find moment of function under special condition. }
{ Variable either at root vertex v, or not present in graph. }
{ b = 0 for constant moment, b = 1 for linear }

if Var(v) 6 z
if b = 0

then return (w,v)
else return (0,A)

if b = 0
then return ApplyWeight(w, Lo(v))
else return ApplyWeight(w, Hi(v))

Figure 14: Apply Algorithm for Adding Two Functions. The algorithm is similar to
the counterpart for BDDs.
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Termin tion conditions
OP (M,,v,) (W2, tP) (w, v)
+ (0,A) (", V2)
+ (0,A) (uh,vI)
+ (m, v) (w2 , v) Apply Weight(w, + ua, (1, v))
• (i, A) Apply Weight(uh, (", v2))
S(w2,A) Apply Weight("2, (w, vi))

(uaA) Apply Weight(1/w2, (o, t))

Table 3: Termination Cases for Apply Algorithms. Each line indicates an operation,
a set of terminations, and the returned result.

Rearrangements
Arguments Results

op Condition w/' (ut,,v) (w2 ,V 2 )
• Uid(tv) > Uid(t,) t., (1, vi) (V, v2)

* Uid(vt) < Uid(v2) W. wt (1,V2) (1,V)
+ Iu1 > Wl Norm Weight(um, "2) (m /w',v,) (w21w', V2 )
+ 1uIt <- (Wu Norm Weight("2, upi) (u"/w', vo) (w/w', v,)
-_(_ w,/w (-(, ), V21

Table 4: Rearrangements for A r'-y Algorithms. These rearrangements increase the
likelihood of reusing a previously -computed result.
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functions f and g and for variable x:

Vf+ gji fy + g

This routine, like the other Apply algorithms, first checks a set of termination conditions
to determine whether it can return a result immediately. This test is indicated as a call
to function TermCheck having as arguments the operation and the arguments of the opera-
tion. This function returns two values: a Boolean value done indicating whether immediate
termination is possible, and a weighted pair indicating the result to return in the event of
termination. Some sample termination conditions are shown in Table 3. For the case of
addition, the algorithm can terminate if either argument represents the constant 0, or if
the two arguments are multiples of each other, indicated by weighted pairs having the same
vertex element.

Failing the termination test, the routine attempts to reuse a previously computed result.
To maximize possible reuse it first rearranges the arguments and extracts a common weight
W'. This process is indicated as a call to the function Rearrange having the same arguments
as TermCheck This function returns three values: the extracted weight and the modified
arguments to the operation. Some sample rearrangements are shown in Table 4. For the case
of addition rearranging involves normalizing the weights according to the same conditions
used in MakeBranch and ordering the arguments so that the first has greater weight. For
example, suppose at some point we compute 6y - 9z. We will extract weight -3 (assuming
integer weights) and rearrange the arguments as 3z and -2y. If we later attempt to compute
15z - 10y, we will be able to reuse this previous result with extracted weight 5.

If the routine fails to find a previously computed result, it makes recursive calls to compute
the sums of the two moments according to the minimum variable in its two arguments. In
generating the arguments for the recursion, it calls a function SimpleMoment to compute the
moments. This routine can only compute a moment with respect to a variable that either
does not appear in the graph or is at its root, a condition that is guaranteed by the selection
of z as the minimum variable in the two graphs. When the variable does not appear in the
graph, the constant moment is simply the original function, while the linear moment is the
constant 0. When the variable appears at the root, the result is the corresponding subgraph
multiplied by the weight of the original argument. The final result of PlusApply is computed
by calling MakeBranch to generate the appropriate function and multiplying this function
by the constant extracted when rearranging the arguments.

Observe that the keys for table OpTable index prior computations by both the weights and
the vertices of the (rearranged) arguments. In the worst case, the rearranging may not be
effective at creating matches with previous computations. In this event, the weights on the
arcs woid be carried downward in the recursion, via the calls to SimpleMoment. In effect,
we are dynamically generating BMD representations from the *BMD arguments. Thus, if
functions f and g have BMD representations of size mf and mi, respectively, there would
be no more than mfmg calls to PlusApply, and hence the overall algorithm has worst case
complexity O(mfm.). As we have seen, many useful functions have polynomial BMD sizes,
guaranteeing polynomial performance for PlusApply. On the other hand, some functions
blow up exponentially in converting from a *BMD to a BMD representation, in which case
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{ Begin recursive section }
(mif, vit) +- SimpkeMomeng(wtv, týt}, x, 0)

("at, ftl) 4-- SimpleMoment((L, ft), z, 0)
(wuth, Vu1) 4- PlusApply(SimpleMoment((u, ,vi), z, 1), (vuw,vt))

(u~st~h+- PlusApply(SimpleMoment((w2, t,), x, 1), (u)21, vjj))

(e, v,) .- BinApply(op, (wut, vi•), ("•a, t-1))
(wl,, vl,) P lusApply(BinApply(op, (Uhh, t,), ("h, ,•h)), (-W6, V1))

{ End recursive section }

Figure 15: Recursive Section of Apply Algorithm for Arbitrary Binary Operation.
This generic algorithm does not exploit particular properties of the operation.

the algorithm may have exponential complexity. We will see with the experimental results,
however, that this exponential blow-up does not occur for the cases we have tried. The
termination checks and rearrangements are very effective at stopping the recursion.

The Apply algorithms for other operations have a similar overall structure to that for addi-
tion, but differing in the recursive evaluation. Comments in the code of Figure 14 delimit
the "recursive section" of the routine. In this section recursive calls are made to create a
pair of weighted pointers (wt, vo and (wa, vAl) from which the returned result is constructed.
For the remaining Apply algorithms we show only their recursive sections.

Figure 15 shows the recursive section for applying an arbitrary binary operation op to a pair
of functions. This algorithm can be seen to implement the linearized form ep defined by
Equations 9 and 9. At each recursive step of the computation in Figure 15, we must sum the
moments of the arguments to generate their positive cofactors, recursively apply the opera-
tion to these cofactors, and then subtract the constant moment to obtain a linear moment.
In effect we dynamically construct an MTBDD representation of the arguments. Thus, one
would expect that this computation would perform poorly unless either the arguments have
efficient MTBDD representations, or the termination checks and rearrangements can stop
the recursion from expanding into a large number of cases.

Rather than resorting to the generic Apply algorithm of Figure 15, it is preferable to exploit
properties of the operation so that the positive cofactors of the arguments do not need to be
generated. Figure 16 shows how this can be done for multiplication, using the formulation of
linear product given by Equation 7. Each call to MultApply requires four recursive calls, plus
two calls to PlusApply. With the rearrangements shown in Table 4, we can always extract
the weights from the arguments. Hence if the arguments have *BMD re-,"' :-Itations of
mf and m, vertices, respectively, no more than mfmg calls will be maae to MultApply.
Unfortunately, this bound on the calls does not suffice to show a polynomial bound on the
complexity of the algorithm. The calls to PlusApply may blow up exponentially.

6.4. Affine Substitution
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{ Begin recursive section }
(wl, v) -- SimpleMoment((wt, vt), z, 0)
(ww, ,•t) -- SimpleMoment((wj, v2), z, 0)
(wzA, v2,) i- SimpleMoment((wu, v2), z, 1)

(•• -MultApply((wi,,el•), (u•, t,2))

(tm, vm) e- MultApply((toi,, vl,), (",,, v•j,))

(Iwo, v"l) -- MultApply((uwi, vPu), ("tj, ft))
(tqj, qj.) MultApply((w,, el,), (Wl,, VW%))

{ End recursive section }

Figure 16: Recursive Section for Apply Operation for Multiplying Functions. This
operation exploits the ring properties of linear product.

AffineSubst(pair (w, v), assignment p, assignment 3)
{ Replace each variable z in function by A(z)- z + #(z) }

if v = A then return (w,v)
Key [ [v, A, 1]

found, (we, ) +- LookUp(SubstTable, key)

if found then return Apply Weight(w, (w,, v,))
Z - Var(z)
(wui,v) 4 AffineSubst(Lo(v), ju, /f)
(wo,vh) AffineSubst(Hi(v), js, 03)
(to, v,) PlusApply((wi, vq), Apply Weight(f)(z), (wh, vh))

(wo, vji) ~-Apply Weight(,u(z), (wi,, Ph))

(to,,vt) 4-MakeBranch(z, (wj,vq), (wh,vh))

In•ert(Subst Table, key, (w, vt,))
return ApplyWeight(w, (e, Ut))

Figure 17: Affine Substitution Algorithm. Each variable in the function is replaced by

an affine transformation of the variable.
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Figure 18: Formulation of Verification Problem. The goal of verification is to prove a
correspondence between a bit-level circuit and a word-level specification

Figure 17 shows an algorithm for performing a very general form of function evaluation we

will call a.ffine substitution. The idea is to substitute for each variable x a function of the
form mz + b. The result will be a function over the same set of variables, or possibly a
subset of these variables. By selecting different values of m and b we can obtain many useful
substitutions. For example, with b = a and m = 0, we obtain the result of assigning value a
to the variable. Thus, this operation generalizes the linear evaluation shown in Equation 5,

including accounting for the edge weights. With m = 1 and b = 0, an identity substitution
will be performed, and hence the algorithm can be used for partial evaluation, where some
variables are assigned constants, while others are unchanged. With m = -1 and b = 1, we
replace the variable by its Boolean complement.

The algorithm is shown as having functional arguments p and /. When applied to a variable
x, these "assignments" yield the constant factors to be used in the affine substitution. The
algorithm follows from the linear expansion of function f with respect to each variable x.
Given that f = fy + xf•, substituting mz + b for x yields:

fI:.-mx+b = fr + bf, + rmf.

and hence this substitution yields a function with moments fy + bf, and mfj.

The routine maintains a table of previously computed substitutions. Observe that for given
assignments p andf/, recursive calls are generated from a vertex only once. The total number
of calls to AffineSubst is therefore linear in the graph size. Of course, the resulting calls to
PlusApply could cause the algorithm to blow up exponentially. For the special case of full
evaluation, however, where p(x) = 0 for all variables x, each recursive call must return a
constant function, and hence the overall complexity is linear.

7. Verification Methodology

Figure 18 illustrates schematically an approach to circuit verification originally formulated
by Lai and Sastry [15] using EVBDDs. The overall goal is to prove a correspondence between
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a combinational circuit, represented by a vector of Boolean functions j, and the specification,
represented by the word level function F. More precisely, assume that the circuit inputs
are partitioned into vectors of binary signals •1,... ,fk (in the figure k = 2). For each set
of signals 0, we are given an encoding function ENc, describing a word level interpretation
of the signals. This function will typically be a standard encoding, such as a 16-bit two's
complement integer. The circuit implements a set of Boolean functions over the inputs,
denoted by the vector of functions f(gh..., 4). Typically this circuit is given in the form
of a network of logic gates. Furthermore, we are given an encoding function ENCo defining
a word level interpretation of the output. Finally, we are given as specification a word-level
function F(X 1,... , Xk). The task of verification is then to prove the equivalence:

ENC,(f(Xi,..., ,4)) = F(ENc 1(iz),...,ENCk(ik)) (12)

That is, the circuit output, interpreted as a word should match the specification when applied
to word interpretations of the circuit inputs.
*BMDs provide a suitable data structure for this form of verification, because they can

represent both bit-level and word-level functions efficiently. EVBDDs can also be used for
this purpose, but only for the limited class of circuit functions having efficient word-level
representations as EVBDDs. By contrast, BDDs can only represent bit-level functions, and
hence the specification must be expanded into bit-level form. While this can be done readily
for standard functions such as binary addition, a more complex function such as binary to
BCD conversion would be difficult to specify at the bit level.

7.1. Component Verification

For circuits that can be represented efficiently as *BMDs at both the bit and the word
level, the test of Equation 12 can be implemented directly. As an example, consider an
n + m-Add-Stepper, illustrated in Figure 19 for n = 3 and m = 2. This circuit forms a
basic building block for the class of multipliers we will verify. It has as inputs an n + m-bit
partial product input A split into high order elements h,•-,..., ho, and low order elements
,,-,... , 1 . This naming convention is adopted to expedite the multiplier verification, as

will be discussed shortly. The other inputs are an n-bit multiplicand Xn-,..., xo, and a
single bit multiplier y. It produces an n + m + 1 bit partial product output zn+m,..., zo.

The bit-level structure for the circuit is shown in the figure, consisting of AND gates and
full adders blocks. Each full adder has three inputs a, b, and c. It produces a sum output at
the right hand side with function a ED b E c. It has a carry output at the top, with function
expressed in terms of linear operators as a: b + ac + b ̂  c - 2a ̂  b c. From this representation
we can use the algorithms PhusApply and MultApply to generate a *BMD representation of
f(fl, X, y), the function at each output z; for 0 <: i < n + m.

The word-level specification for an n + m-Add-Stepper is simply P + 2' -y. X, where P and
X are the word-level interpretations of the partial product and multiplicand inputs. Both of
these inputs are encoded as unsigned integers, as is the output. Verification therefore involves
proving that the weighted sum of the bit-level output functions: iffio, +,. 2fi is equivalent
to the word-level specification. As with BDDs, this process can be completely automated
and works well even for more complex realizations such as carry-lookahead adders.
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Figure 19: Bit-Level Representation of Add-Stepper. This circuit is a basic component

of the Multplier.
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7.2. Hierarchical Verification

For larger scale circuits, representing the bit-level functionality becomes too cumbersome
and hence the method described above cannot be applied directly. For example, attempting
to construct the bit-level functions for a multiplier would cause exponential blow-up with
*BMDs, just as it does with BDDs. Instead, we can follow a hierarchical approach in which
the overall circuit is divided into components, each having a word-level specification. Verifi-
cation then involves proving 1) that each component implements its word-level specification,
and 2) that the composition of the word-level component functions matches the specifica-
tion. This approach works well for circuits in which the components have simple word-level
specifications. Such is the case for most arithmetic circuits.

Figure 20 illustrates this process for a 3-bit combinational multiplier. The bit level structure
for this circuit is shown at the top. The first stage of this circuit is a Bit-multiplier (BM),
containing just the AND gates of an Add-stepper. The remaining stages are Add-steppers
with increasing values of m. At each stage i, input yi serves as the multiplier bit. The
justification for our hierarchical verification is shown by the progression from top to bottom
in the figure. The verification of component AS 3 + 2, indicates an equivalence between
the component output interpreted as a word, and its specification when applied to word
interpretations of the circuit inputs (Figure 18). Thus, we can replace the final stage in
the circuit by its specification, shifting the encoding operations to the component inputs
(middle). Continuing, we can similarly replace the second to last stage by its specification,
shifting the encoding operations to its inputs. Finally, we can replace the first stage by
its specification, shifting the encoding operation to input i (bottom). Observe that the
multiplier inputs ' remain in bit-level form. In general this methodology can use word-level
representations of some signals and bit-level representations of others.

As this figure illustrates, once we have verified all of the components, we can verify the
overall circuit behavior by composing their word-level specifications. For the case of the
multplier this involves proving that a sequence of add steps implements multiplication. Note
that in moving the encoding operations backward in the circuit, we require that the encoding
function for a component input must match the output encoding of the component supplying
that input.

7.3. Experimental Results

Table 5 indicates the results for verifying a number of multiplier circuits having the same
structure as that of Figure 20. As can be seen, this approach remains practical for large
word sizes. Our results are limited to a 62-bit word size only because our weight values are
represented as 64-bit signed integers. We plan to extend our implementation to use arbitrary
precision arithrnoti;, enabling us to go well beyond this limit.

The table also shows the time required to verify a single n+n-Add-Stepper. One can see that
this time grows linearly with the word size. Note also that the time to completely verify an
n x n muliplier, including verifying all n Add-Steppers, is less than n times that of the final
Add-Stepper. The reason for this is that much of the computation for the Add-Steppers can
be reused. By the way we have named the partial product input variables j, the bit-level
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Figure 20: Hierarchical Verification of Multiplier. The bit-level representations of the
circuit blocks are replaced by their word-level specifications.

33



Word Size 2-input gates Mult. Time(sec) Add-Stepper Time(sec)
4 x 4 100 0.37 0.25
8 x 8 456 2.25 0.68

12 x 12 1068 5.47 1.12
16 x 16 1936 11.53 1.68
20 x 20 3060 20.68 2.00
24 x 24 4440 25.28 2.50
28 x 28 6076 35.62 2.94
32 x 32 7968 49.17 3.22
40 x 40 12520 92.95 4.32
48 x 48 18096 152.65 5.08
56 x 56 24696 226.32 5.77
62 x 62 30318 217.17 6.87

Table 5: Verification Results for Combinational Multipliers.

outputs for the Add-Steppers hardly change. In our code, we run through the complete
construction of all of the Add-Steppers, but many of the results are found in the various
stored tables. Even so, the time for the multiplier verification grows slightly worse than
quadratically in the word size. Given that the hardware complexity scales quadratically
in the word size, this performance is reasonable, although we believe it could be further
improved. We have no explanation why the verification of a 56-bit multiplier requires more
time than a 62-bit one. The 56-bit result appears to be an outlier in the performance trend.

These results are especially appealing in light of prior results on multiplier verification. A
brute force approach based on BDDs cannot get beyond even modest word sizes. Ochi et
ael[191 have successfully built the OBDDs for a 15-bit multiplier, requiring over 12 million
vertices. Increasing the word size by one bit causes the number of vertices to increase by
a factor of approximately 2.7, and hence even more powerful computers will not be able to
get much beyond this point. Jain (131 verified the 16th output of circuit C6288, a 16 x 16
multiplier using a combination of BDDs, partial enumeration of the inputs, and probabilistic
methods. The computation required 3-1/2 hours on a high performance workstation. Given
the use of explicit enumeration, it is unlikely that this approach would scale well to larger
word sizes. Burch [6] has implemented a BDD-based technique for verifying certain classes of
multipliers. His method effectively creates multiple copies of the multiplier and multiplicand
variables, leading to BDDs that grow cubically with the word size. This approach works
for multipliers, such as ours, that form all possible product bits of the form xi A yj and
then sum these bits. Burch reports verifying C6288 in 40 minutes on a Sun-3 using 12
MBytes of memory. The limiting factor in dealing with larger word sizes would be the
cubic growth in memory requirement. -urthemore, this approach cnnot handle multipliers
that use multiplier recoding techniques, although Burch describes extensions to handle some
forms of recoding.

Although we have only tried our methods on synthetically-generated multipliers based on
add steps, we are confident that we can handle C6288, as well as multipliers using multiplier
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recoding and other more advanced techniques.

8. Conclusions

*BMDS provide an efficient representation for functions mapping Boolean variables to nu-

meric values. They can represent a number of word-level functions in a compact form. They
also represent Boolean functions with complexity comparable to BDDs. They are therefore
suitable for implementing a verification methodology in which bit-level circuits are compared
to word-level specifications. By exploiting circuit hierarchy, we are able to verify circuits
having functions that are intractable to represent at the bit level.

At this stage of research, there are many open problems regarding this representation. We
need to characterize the behavior of *BMDs in representing Boolean functions. For all
examples we have tried, their sizes are comparable to BDD representations. Either a formal
relation should be established, such as has been done for EVBDDs [15], or a distinction
should be proved, such as has been done for FDDs (2]. In addition, the performance of
the Apply algorithms need to be characterized, indicating when they avoid exponential
complexity.

Verification of multipliers and other arithmetic circuits using *BMDs seems quite promising,
but these ideas must be tested and extended further. In developing a comprehensive veri-
fication system based on our hierarchical methodology, it would be good to have a "proof
manager" that keeps track of what components have been verified, checks for compatibility
between encodings, etc.

The hierarchical verification methodology described here extends to sequential circuits as
well. For modeling such circuits, one could implement a form of symbolic simulator, where
blocks of the circuit can be modeled at either the bit or the word level. For example, one
could verify a sequential multiplier by first simulating a single cycle at the bit level to show it
implements an add step, and then a series of cycles at the word level to show this implements
multiplication.

Our method shows some promise for verifying floating point hardware, although difficult
obstacles must be overcome. Using a version that supports rational numbers, we can effi-
ciently represent the word level functions denoted by standard floating point formats. This
fact follows from our ability to represent integer formats plus exponentials. Floating point
hardware, however, only computes approximations of arithmetic functions. Thus, verifica-
tion requires proving equivalence within some tolerance, rather than the strict equivalence
of the current methodology. It is unclear whether such a test can be performed efficiently.

Many techniques developed for improving the efficiency and compactness of BDDs could be
extended to *BMDs. Among these are dynamic .variable reordering [201, and loosening the
ordering requirement from a uniform total ordering to one in which variables may appear
in different orders along different paths in the graphs [11, 22]. Our experience thus far has
been thit variable ordering is not as critical when representing functions at the word level
as it is with bit-level representations. Nonetheless, these issue bear further investigation.

Some of the applications proposed for EVBDDs and MTBDDs may work well with *BMDs.
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Among these are matrix operations and spectral transforms. Applications requiring efficient
equation solving, such as integer linear programming, on the other hand, are probably not
good candidates. In any case, the opportunities for further exploration seem limitless.
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