
RL-TR-94-39 AD-A281 020
Final Technical Report
May199 111 I II II II I III9III1

PLANNING IN DYNAMIC AND
UNCERTAIN ENVIRONMENTS

SRI International

DTIC
Sponsored by S ELECT£
Advanced Research Projects Agency JUL 06199 !

ARPA Order No. 7513

APPROIVVED FOR PUBLIC REL,,'ASE, DISTRIBUTIO0N1UNLhV11W,0

94-20481

The views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or
Implied, of the Advanced Research Projects Agency or the U.S. Government.

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

VTIC QUAITY WSMpECTED 3

4 7 5 160

Best,
Avai~lable

copy

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-94-39 has been reviewed and is approved for publication.

APPROVED:

LOUIS J. HOEBEL
Project Engineer

FOR THE COMMANDER: Z4 4e
JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3CA) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

Accesion For

NTIS CRA&I

DTIC TAB
Unannounced
Justification

PLANNING IN DYNAMIC AND UNCERTAIN ENVIRONMENT -....................

David Wilkins By
Karen Myers Distribution I

Leonard Wesley Availability Codes

John Lowrance Dist Avail and or

Special

Contractor: SRI International
Contract Number: F30602-90-C-0086
Effective Date of Contract: 30 August 1990
Contract Expiration Date: 30 August 1993
Short Title of Work: Planning in Dynamic & Uncertain

Environments
Program Code Number: 3E20
Period of Work Covered: Aug 90 - Nov 93

Principal Investigator: David Wilkins
Phone: (415) 859-2057

RL Project Engineer: Louis J. Hoebel
Phone: (315) 330-3655

Approved for public release; distribution unlimited.

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was
monitored by Louis J. Hoebel, RL (C3CA), 525 Brooks
Road, Griffiss AFB NY 13441-4505 under Contract
F30602-90-C-0086.

REPORT DOCUMENTATION PAGE OMB No-e00MB No. 0704-01 88
PL.m q No"m 1w* ca d inf I is "mmtao Ihat sp 1 r fLu ,Iu Om i w.•aimm. saisM* edo-," Oama swcwu

aw u d ml l = 0nwr"Odm" d::il ~ piw ~ ubI df Vaft SwdcQmrwwa r09~fu *Vdm .mm wcr w~w adtfts
d:-:n .W an 'g w *4 In bl,, t i•Sw n Ho* Swi - "mm In ft'00 Opmu WV~q~wm 1215 'atw-sa,
*u I.. 1a4, Adrmai% VA 2=4= wNdto " Offas d Mwaown w lSuM PopwiCnk Rn~sla' A (0WU441I. Wwbqmn OC 2=o5

1. AGENCY USE ONLY @.w. tank) 12. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 1994 Final Aug 90 - Nov 93

4. TIT.E AND SUBTITLE 5. FUNDING NUMBERS
C - F30602-90-C-0086

PLANNING IN DYNAMIC AND UNCERTAIN ENVIRONMENTS P - 2301E
PE - 62301E
PR - G513

. AUTHOR$) TA - 00
David Wilkins, Karen Myers, Leonard Wesley, and WU - 01
John Lowrance

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) & PERFORMING ORGANIZATION
SRI International REPORT NUMBER
333 Ravenswood Ave
Menlo Park CA 94025 N/A

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10L SPONSORINGIMONITORING
Advanced Research Projects Agency- AGENCY REPORT NUMBER
3701 North Fairfax Drive Rome Laboratory (C3CA) RL-TR-94-39
Arlington VA 22203-1714 525 Brooks Road

Griffiss AFB NY 13441-4505

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Louis J. Hoebel/C3CA/(315) 330-3655

i 2a DISTRIBUTION1AVALABU1Y STATEMENT 12. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13, ABSTRACTM-m U-0,)

SRI has built a domain-independent planning and execution system called CYPRESS which
satisfies the following requirements:

- imperfect input information
- rapid response during execution
- minimal allocated computing resources during execution
- incorporate preplanned plans
- integrate planning and execution
- special technique for optimization of schedules.

CYPRESS contains SIPE-2, a classical hierarchical Al planning system; PRS-CL, a
reactive plan execution system; Gister-CL, a suite of evidential reasoning tools and
the Grasper-CL system for interface and graphics. CYPRESS Also runs in the ARPA/Rome
Laboratory Planning Initiatives Common Prototyping Environment (CPE) and uses that
system for communication between subsystems.

14. JBJECT TERMS ,s NUMMM OF PNXS
Planning, Uncertainty, Evidential Reasoning, Execution Monitoring 152

17. SECURITY CLASSFXIAON 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITAT1ON OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 54M,2W- Stxmae Fam., :--S ir .

P iam by ANSI StC L

Contents

1 Introduction 1

1.1 Relationship with the Planning Initiative 1

1.2 Overview of CYPRESS: A New Technology 2

2 Summary of Accomplishments 6

2.1 Integrating and Extending Generative and Reactive Planning 6

2.2 Handling Uncertainty and Military Knowledge 8

2.3 Common Prototyping Environment 9

2.4 Human Computer Interaction 10

2.5 Documentation and Technology Transfer 10

3 A Common Knowledge Representation for Plan Generation and Reactive
Execution 11

3.1 Developing a Common Representation 13

3.2 The ACT Formalism 16

3.2.1 ACT Slots 16

3.2.2 Plots . 21

3.2.3 Metapredicates 22

3.2.4 Using ACTs 26

3.2.5 Translators 29

4 Using CYPRESS 31

4.1 Anatomy of a CYPRESS Application 31

4.2 Final Demonstration 33

5 Run-time Replanning 36

5.1 Overview of Replanning 36

5.2 Architeiture 38

5.3 Failure Recognition 39

5.4 The Replanning Process 40

5.5 Communication ... 41

5.6 Replanning Example 41

5.7 Future Work 42

6 The ACT Editor 44

7 Generative Planning 47

7.1 Reasoning about Locations 48

7.2 Replanning for P . .S 49

7.3 New Features 50

7.3.1 Common Knowledge Bases 50

7.3.2 CPE Interactions 50

7.3.3 Additive Numerical Goals 51

7.4 Graphical User Interface 51

7.5 Improved Interactive Planning 53

7.6 Efficiency Gains .. 54

8 Reactive Control 56

8.1 ACT Execution ... 56

8.2 Shared Knowledge ... 58

8.3 User Interface .. 59

8.4 Run-time Replanning 59

9 Handling Uncertainty 60

9.1 Evaluating Plans in Uncertain Worlds 61

9.1.1 Frame Logic .. 61

9.1.2 Framing Evidence 65

9.1.3 Evidential Analyses 70

9.1.4 Implementing Evidential Reasoning 71

9.2 A SIPE-2 Logic for Gister-CL 73

9.2.1 World States and Propositions 73

9.2.2 Translations .. 74

ii

9.2.3 Equivalent States 76
9.3 Probabilistic Operators 77

9.4 Summary of Plan Evaluation Under Uncertainty 80

9.5 Selection of Military Forces During Planning 80

9.5.1 Framing the Problem 83

9.5.2 Analyzing a Unit 86
9.6 Subsytem Communications 87

10 Grasper-CL 88

10.1 Extensions .. 89

10.2 Impact ... 90

11 Technology Transfer, Travel, Demonstrations, and Publications 91

11.1 Technology Transfer 91
11.2 Travel and Demonstrations 92

11.3 Publications ... 95

A SIPE-2: Interactive Planning and Execution 100

B Gister: Evidential Reasoning 103

C PRS-. Procedural Reasoning 107

D AIC Software Specifications 110

D.1 Introduction 110
D.2 Directory Structure Conventions 111

D.3 Lisp Functions Defined for each System 112

D.4 Shell Commands Defined for each System 114

D.5 Exam ples 115

E ACT Syntax 116

E.1 ACT Specification 116

E.2 PRS Restrictions 119

E.3 SIPE Restrictions 120

F Demonstrations in the SOCAP Domain 121

F.1 SOCAP Demonstration 121

F.2 Replanning Demonstration 127

G Papers 132

iii

List of Figures

1.1 Overview of SRI projects 2

1.2 The Architecture of CYPRESS 3

2.1 Organization and personnel for the software implementation done under UP
project. Shaded boxes indicate partial ITSC support... 7

3.1 ACT Slots .. 15

3.2 ACT Metapredicates 17
3.3 Deploy Airforce Operator as an ACT 20

3.4 ACT with Graphical Display of Plot 21
3.5 Plot of Deploy Airforce ACT 22
3.6 An ACT for Establishing a Lookout 28

3.7 An ACT for Deducing Locations 29

4.1 Final demonstration 34

5.1 Replanning Architecture 38

6.1 Plot of Deploy Airforce ACT 45
6.2 ACT Editor Command Menus 46

7.1 SIPE-2 GUI command menus 52

7.2 Plan highlighting resource: Fennario Port 53

9.1 BLOCKS-WORLD frame 62
9.2 PUT-C-ON-A compatibility relation 65
9.3 BLOCKS-WORLD gallery 66

9.4 An analysis .. 71
9.5 A plan network ... 74
9.6 A gallery based on the Sipe-2 logic 79

9.7 Gister gallery for Army unit selection 84

iv

9.8 An example FM value for the F. MORALE frame 85
9.9 The resulting FM value for the F. READINESS frame 85

9.10 Gister analysis for interpreting information 86

9.11 Result of degree to which unit meets force ratio requirements. 87

C.1 Structure of the Procedural Reasoning System 108

v

Chapter 1

Introduction

SRI International (SRI) is pleased to present this final report under contract F30602-90-C-

0086, Planning in Dynamic and Uncertain Environments, to Rome Laboratory (RL) of the

USAF and the Advanced Research Projects Agency (ARPA). The research on this project

was conducted by SRI's Artificial Intelligence Center (AIC), and hereafter the project will be

referred to as UP, for "uncertain planning." This report describes accomplishments made un-

der this contract in our effort to develop a flexible, integrated planning and execution system

based on several high-performance artificial intelligence (AI) technologies. More detailed de-

scriptions than those provided in this report can be found in the two previous annual reports

on this project, and in papers we have written as described in Chapter 11.

1.1 Relationship with the Planning Initiative

The UP project was part of the ARPA/RL Knowledge-Based Planning and Scheduling Initia-

tive (ARPI), and played an important role in the second Integrated Feasibility Demonstration

(IFD-2). Because the needs of ARPI have, in part, directed this research, it is necessary to

explain the relationship of this project to other projects. The software developed under UP

runs in the Common Prototyping Environment (CPE) developed as part of ARPI, and can

use systems developed by other projects in its problem solving process. The communication

software developed by other ARPI projects is used both to interact with software of other

projects and within our own system.

SRI's Information and Telecommunications Sciences Center (ITSC) also has a project

that is part of ARPI. ITSC is applying currently existing AI technologies developed by the

AIC to a planning problem from the U.S. Central Command. Their application system,
SOCAP (System for Operations and Crises Action Planning), was a major component of

IFD-2 in January 1992. The AIC, on the UP project, developed a new prototype technology

1

UP

Integrate and Prototype
Extend New

Technologies Technology

SCren I Domain Reasoning

STechnology Requirements

• SOCAP

Military Operations -w Planning
Planning Problem System

Figure 1.1: Overview of SRI projects

by. extending and integrating several existing Al technologies, including those being used
on the ITSC project. Figure 1.1 depicts the relationship between these two projects. It is
important to note the cooperation: the domain requirements of the ITSC project drove some
of the research in the AIC project, and the tools and techniques developed by the AIC project

were transferred to the ITSC project rapidly.

1.2 Overview of CYPRESS: A New Technology

Planning in real-world domains is a complex and dynamic process. Automated planning
systems must satisfy a number of requirements, including the ability to handle uncertain
information, real-time response, intelligent application of standard operating procedures,
dynamic plan modification, and interaction with a human planner.

There are several major shortcomings of current Al planning technology for addressing
problems in military operations planning:

"* Systems require perfect information.

"* Systems cannot respond quickly during execution.

"* Computing resources cannot be allocated during execution.

"* Off-the-shelf plans are not incorporated into new plans.

2

ACT Editor

ACT->Sipe, Sip.->ACT graphi c know lge ACT->PRS
translators translator

GRASPERSIPE-2 PRS

-common interface

-generative planning] -customize graphics -reactive execution
-replanning -replanning overseer

replanning

operator selection 7 plan selection
obetslcin pr
situation assessment proceur selecI oGISTER situation assessment

-reasoning about uncertainty

Figure 1.2: The Architecture of CYPRESS

* Replanning and execution are not integrated.

* Systems do not have special techniques for optimization of schedules.

As part of the UP project, the AIC has built a domain-independent planning and exe-
cution system called CYPRESS which has been designed to satisfy the above requirements.

CYPRESS supports a full range of planning capabilities including action specification, gener-
ative planning, reactive plan execution, and dynamic replanning.

CYPRESS is built on top of four AI systems previously developed at SRI, namely SIPE-2,
PRS-CL, Gister-CL, and Grasper-CL, along with a system developed specifically for CYPRESS
called the ACT EDITOR.' Figure 1.2 depicts the architecture of CYPRESS.

SIPE-2 and PRS-CL constitute the two fundamental planning technologies in the system.
SIPE-2 is a classical Al planning system capable of generating plans in a hierarchical fashion
[33, 36]. PRS-CL is a reactive plan-execution system that integrates goal-oriented and event-
driven activity in a flexible, uniform framework (11]. Although these two systems were

1SIPE-2, PRS-CL, Ginter-CL, Grasper-CL, and ACT EDITOR are trademarks of SRI International.

3

developed independently, they have been made to work together within CYPRESS: PRS-CL
can execute plans produced by SIPE-2 and can invoke SIPE-2 in situations where run-time
replanning is required. Gister-CL implements a suite of evidential reasoning techniques that

can be used during plan generation and plan execution to analyze uncertain information
about the world and possible actions [20, 28]. SIPE-2 can use Gister-CL to aid in choosing
among operators that apply for a given goal. Similarly, PRS-CL can employ Gister-CL to

choose among suitable plans for execution at run-time. SIPE-2, PRS-CL, and Gister-CL are

not theoretical exercises, but rather implemented, tested systems that have been applied to
numerous problem domains. They are described in more detail in Appendices A, B, and C.

PRS-CL and SIPE-2 employ their own internal representations for plans and actions. For
this reason, we developed an interlingua called the ACT representation [37] that enables these
systems to share information. ACT provides a language for specifying the actions and plans

employed by both plan-generation and plan-execution systems. At the heart of the formalism
is the ACT structure, which corresponds to both an operator in the terminology of generative

planners, and a plan frament in the terminology of plan execution systems. ACT structures
(also referred to as ACTs) provide a common representation language that bridges the gap
between these two types of plan-based systems. The ACT EDITOR subsystem supports the
creation, display and manipulation of ACTs. In addition, CYPRESS includes translators that

can automatically map ACTs onto SIPE-2 operators and PBS-CL Kotowledge Areas, as well
as a translator that can map SIPE-2 operators and plans into ACTs.

The ability to define and manipulate plans and operators graphically greatly improves
man-machine interactions. For this reason, the CYPRESS subsystems share a uniform graph-
ical interface built on top of the Grasper-CL system [14]. Grasper-CL is a programming-
language extension to Lisp that introduces graphs - arbitrarily connected networks - as a

primitive data type. It includes procedures for graph construction, modification, and queries
as well as a menu-driven, interactive display package that allows graphs to be constructed,

modified, and viewed through direct pictorial manipulation. Grasper-CL is used both as a

uniform basis for the man-machine interface of each subsystem and as a separate subsystem
that provides supplementary graphical editing capabilities.

CYPRESS runs in the CPE developed as part of ARPI. Our software has cooperated
with ARPI systems from other sites in developing a military operations plan (in particular,

General Electric's (GE) Tachyon system [2]), and uses the communication software provided
in the CPE (in particular, the Cronus and Knet systems) for this purpose as well as for
communication between subsystems of CYPRESS that are running on different machines.

ACTs have enabled SIPE-2 and PRS-CL to cooperate on the same problem for the first time
-SIPE-2 generating plans while PBS-CL responds to events, executes the plans produced,

and controls the execution of the lower-level actions that have not been planned. Replanning

4

during execution occurs whenever PRS-CL decides it is necessary, and execution continues
during planning with the new plan eventually being merged with the current execution state.
This is the first time that a planner. and execution system of such complexity have cooperated
in this fashion.

The ACT EDITOR provides a graphical knowledge-editor for both SIPE-2 and PRS-CL, since
ACTs can be translated into either system. The integrated planning and execution we have
demonstrated shows that ACT representational constructs have reasonable computational
properties as well as being expressive enough for this domain. The ability to represent all
the constructs in PRS and SIPE-2 implies the ACT formalism is sufficient for a wide range
of interesting problems, since both of these systems have been applied to several practical

domains.

5

Chapter 2

Summary of Accomplishments

CYPRESS includes the techniques- developed to address the major tasks. of the UP project.

These were to (1) introduce evidential-reasoning methods into an integrated planning system;

(2) design a uniform representation for operating procedures based on the knowledge areas

(KAs) of PRS-CL, and on representational constructs to support representation and use of

expert planning knowledge in SIPE-2; (3) construct a graphical man-machine interface for

manipulating this uniform representation that also supports interaction with SIPE-2, PRS-

CL, and Gister-CL; (4) integrate the resulting system with other ARPI systems in the CPE;

(5) develop techniques to control planning and plan execution that will enable the system to

react quickly when necessary, and to consider more alternatives when time permits; and (6)

validate the technical developments through a proof-of-concept demonstration in the domain

of military operations planning.

The most important of the following accomplishments are described in more detail later

in this report. Figure 2.1 depicts graphically how our implementations interact with each

other, and indicates the personnel involved in the implementations. The shaded boxes were

supported partly by the ITSC project. The following sections mention each of the boxes

in the figure as well as several accomplishments not relating to implementation. They are

grouped by topic, although many items relate to more than one topic.

2.1 Integrating and Extending Generative and Reactive

Planning

* We developed an interlingua called the ACT representation [37] that enables our sys-

tems to share information. ACT provides a language for specifying the actions and

plans employed by both plan-generation and plan-execution systems. Its syntax is

formally specified in Appendix E of this report.

6

via Cronus

ACT-Verifier

Lowrance, LAe, Myers_
SIPE-2 Dmi

Interactive search Knowledge
new Grasper GUI iP. Mes________

Wiulkns -- use SIPE KB
parallel ACTsACT->SIPE new Grasper GUI

DomainTranslator

Knowled[ACTad selectio
Kar, owane, ilin jWeli s ey Lo ne Wilki s, e

F eigur e , 2.:Oraizations adprolfrtesfwreipeetto oeudr
proec. haedboers idct ata TC pot

vi7 rn s ---- o

"* We have enabled SIPE-2 and PRS-CL to cooperate on the same problem for the first

time so that a generated plan can be executed, and replanning during execution can

occur when necessary. A planner and execution system of such complexity have never

before cooperated in this fashion.

" We developed a theory of reasoning about locations that is adequate from both the the-

oretical and the practical perspectives. Our theory applies to technological frameworks

ranging from generative planners to schedulers to reactive systems. We extended the

IFD-2 domain knowledge to implement this theory. Our effort was inspired by several

inaccuracies in the IFD-2 representation that needed to be corrected before the knowl-

edge could support more extended reasoning, such as that done in our demonstration.

" We made several important extensions to SIPE-2 to facilitate its use in military oper-

ations planning, to implement the ACT formalism, and to interact with PRS-CL, both

by sending plans to PRS-CL and replanning during execution when PPS-CL so requests.

These extensions provide a significant increase in capability and ease of use.

* We made several extensions to PBS-CL to handle the new aspects of the ACT repre-

sentation, to provide a Grasper-based GUI, and to invoke SIPE-2 for replanning during

execution. A major extension was the ability to execute parallel actions.

* For efficiency, PPS-CL and SIPE-2 use their own internal representations for plans and

actions. We implemented translators from the ACT formalism into the internal repre-

sentations of both systems, as well as a translator from SIPE-2 to ACT that translates

both SIPE-2 operators and plans into the ACT formalism.

* We performed an analysis of the SIPE-2 planning for IFD-2 which resulted in efficiency

gains of an order of magnitude.

2.2 Handling Uncertainty and Military Knowledge

" Together with ITSC, we encoded a significant amount of domain knowledge for joint

military operations planning. This is an appropriate military problem for our proof-of-

concept demonstration and for driving our technology development. Domain knowledge

has been encoded in ACTs for use by SIPE-2 for planning and by PB.-CL during exe-

cution, and in Gister-CL for reasoning about uncertain information.

" We developed a theory and implemented it (using SIPE-2 and Gister-CL) for evaluating

the likelihood that plans will accomplish their intended goals given both an uncertain

description of the initial state of the world and the use of probabilistically reliable

operators.

8

e We identified several opportunities for using uncertain information in our design. We

developed Gister-CL analyses for the case of selecting an appropriate military unit

during planning. To reason about uncertainty while executing within a PRS-CL envi-

ronment, we developed several methods and techniques for calling and receiving the

results of Gister-CL analyses.

2.3 Common Prototyping Environment

" We developed code and a set of conventions for building major software systems, that

should provide a standard for specification of all software systems within ARPI. The
conventions are described in Appendix D. These standards specify how to load and

run a system as well as providing a patch facility. We extended the Cronus and Knet

systems of the CPE to conform to these system specifications.

"* We installed the Cronus and Knet systems from the CPE and used them in our final

demonstration for communication between Gister-CL, SIPE-2, and PRS-CL, both of
which support interaction through Knet. For example, SIPE-2 sends plans to PRS-CL

and gets back information about the world and replanning requests.

"* We extended SIPE-2 to interact with GE's Tachyon system in a loosely coupled manner.

Tachyon is able to process extended temporal constraints for SIPE-2 during planning.
They communicate by using the Cronus system in the CPE.

" We made progress on accessing multiple and common knowledge bases across all sys-
tems. PRS-CL has been extended to access multiple data bases; in particular, it now

uses SIPE-2 knowledge structures. SIPE-2 was extended to make it easy to use a uni-
form frame-access language (designed by the AIC on a concurrent ARPA project). The

IFD-2 plan has been generated with all knowledge base references going to a LOOM
knowledge base.

" We ported all of our software systems, SIPE-2, Gister-CL, Grasper-CL, and PRS-CL,

"to the CPE (with support from the ITSC project). This involved conversion from

SYMBOLICS Lisp to Lucid COMMON LISP, and from SYMBOLICS windows to CLIM.

9

2.4 Human Computer Interaction

* We implemented the ACT EDITOR which allows graphical input and editing of plans
and operating procedures represented as ACTs. It can appropriately display large,
complex ACTs. The ACT EDITOR includes a simplifier to simplify ACTs, and a verifier
to check for legal syntax, legal topography, and consistent use of logical predicates.

* We designed and implemented graphical user interfaces (GUIs) based on Grasper-CL
for SIPE-2, PRS-CL, and the ACT EDITOR. These GUIs provide a significant increase in
capability and ease of use over the original interfaces.

2.5 Documentation and Technology Transfer

" We wrote several papers and documents (see Chapter 11), including a paper describing
the SOCAP application, extensive manuals for all systems, a paper on the ACT inter-
lingua, a paper on our theory of locations, and a paper on preliminary investigations of
evidential measures for choosing among alternative actions. Some of these papers are
in Appendix G.

"* We devoted a considerable amount of effort to cooperating with the other participants in
ARPL. This cooperation included participating in the design of the KRSL plan language
being developed at ISX, attending quarterly ARPI meetings, revamping the Technology
Rmoadnap of ARPI, making our software available to ARPI researchers, and using CPE
software in our systems.

"* We distributed our software to many ARPI sites during this project, as well as to
several non-ARPI sites. This demonstrated the usefulness of our system specification
standards, and enabled sharing and evaluation of software in the research community.

10

Chapter 3

A Common Knowledge

Representation for Plan

Generation and Reactive

Execution

Our research concerned taking appropriate actions in a dynamic and uncertain environment.

The dynamic environment requires that the execution system be able to respond to stimuli
and make decisions in "real time." Furthermore, we were interested in applications complex

enough that the ability to synthesize plans and use these plans to guide the execution system
is critical. We developed a representation, called the ACT formalism, for representing the

knowledge necessary to both generate plans and execute them while responding to external

events. This chapter describes the ACT formalism and its use in CYPRESS.

Two features distinguish our approach: (1) the development of an heuristically adequate

system that will be useful in practical applications, and (2) the need to generate complex

plans with parallel actions of multiple agents. To achieve these requirements, we started with
AI technologies in planning and reactive control (SIPE-2 and PRS-CL) that had already been

implemented and shown to be useful in practical applications. However, these technologies

did different types of reasoning using different knowledge representations - Sections 3.1
and 3.2.3 describe the difficulties in using a common representation for these tasks. In this
chapter, we describe the ACT formalism, which is a common representation that planning

and reactive control systems can use for representing and reasoning about plans and the

knowledge necessary to generate and execute them. SIPE-2 and PRS-CL were extended and

merged to fully implement the ACT formalism.

11

Developing an interlingua so that different reasoning systems can cooperate on different
aspects of the same problem is a central challenge for the field of artificial intelligence. This
chapter presents an attempt to do this for a narrowly focused problem, namely getting plan-
ning and execution systems to use a common language. We view this narrow focus as critical
to achieving success in terms of near-term use in software tools, since a common representa-
tion that tries to cover too broad an area runs into serious problems that have been described

elsewhere [12].

Our integration of planning and control focuses on domains with the following properties
(among others):

e Reactive response is required.

* Plans must be generated to achieve acceptable performance.

* The system must be able to act without a plan.

* Complex plans (e.g., including parallel actions) must be supported in both planning
and execution.

We give two examples of domains that meet these requirements. Our software has been

used to do planning and reactive execution in both. The first domain is controlling an indoor

mobile robot. A reactive control system is necessary to respond to people and obstacles
that may suddenly and unexpectedly appear in the robot's path. Deliberative planning is
necessary so that the robot can achieve purposeful behavior, such as retrieving a book from
the library and bringing it to someone's c~ce. The second domain is military operations
planning. Certainly one would not engage in an operation like Desert Storm without first
doing deliberative planning to achieve the requirements of the mission. Reactive response

is also necessary because execution of military plans is often interrupted by unexpected
equipment failures, weather conditions, and enemy actions.

An important design goal of our research is to develop an heuristically adequate system
that will be useful in practical applications, thus the need to generate complex plans with
parallel actions that are interrelated. For example, in military operations planning, many
actions are being executed simultaneously, and changes in the way one action is accomplished

may affect the execution of other parallel actions. Because of the complexity of the plans, a
graphical user interface is required to understand the plans and system behavior.

The complexity of the plans is what differentiates our approach from previous approaches
to the integration of planning and execution. Lyons and Hendricks [22] describe an approach
in which the planner monitors the execution of the reactive system and specifies adaptations
to the reactive system that will improve its performance relative to achievement of the given

12

goals. They require these incremental adaptations to improve system performance before they
are added to the reactor. The RAP system [7] also uses simple plans to modify the reactive

control of a robot. Such approaches work in the robot problem, where plans are relatively
simple, but in the military planning problem, the planner must exercise more control over
the execution system. In our system, the planner produces much more complex plans than

in either of the above systems, and does not modify the reactor to improve its performance

- rather, the planner generates a plan that will be the principal guidance for the reactor.
The reactor will generally have no idea how to accomplish the top-level goals appropriately
until the planner has generated a plan. The reactor will implement appropriate lower-level

behaviors while it is waiting for a plan, and may pose additional problems to the planner
during execution.

The development of the ACT formalism is similar in motivation to the development of
the KRSL language [15] that is being done as part of ARIPI. However, the ACT formalism is

more focused, trying only to get planning and execution systems to speak a common language,
while the KRSL effort is more ambitious, trying to develop a common language for many
types of systems, including systems for planning, execution, scheduling, simulation, temporal

reasoning, database management, and other tasks. The ACT formalism has been one of the

formalisms driving the design of the KRSL specification for plans.

3.1 Developing a Common Representation

Our uniform representation refers to knowledge provided by the user, e.g., plan fragments
and standard operating procedures (SOPs), as ACTs. ACTs are used by both the planning

and execution systems. This allows both systems to cooperate on the same problem, and
allows software tools for graphically editing and creating ACTs to enhance both systems
simultaneously and uniformly.

In our implementation, ACTs represent operators in SIPE-2, and KAs in PRS-CL, and are
the recommended method for encoding knowledge. We have implemented translators from
the ACT formalism to the internal representations of both SIPE-2 and PRS-CL, as described

in Section 3.2.5. The plans generated by the planner are translated to instantiated ACTs.

The execution system uses procedures encoded as ACTs to respond to minor problems during
execution, and may also reinvoke the planner when appropriate. We have implemented an
ACT EDITOR (see Chapter 6) to support graphical input and modification of ACTs.

Obviously, the new representation must be capable of supporting the types of reasoning
done by both planning systems and reactive control systems. This is no small task, since
each system stresses a different type of knowledge and reasoning process. For example, PPS-
CL frequently uses conditionals and loops in its procedures, and can monitor the world to

13

determine what is true. Before extensions were made to support ACTs, PRS-CL did not

support parallel execution of separate actions. SIPE-2, on the other hand, stresses parallel
actions and uses the planner's reasoning to predict what is true (since sensors cannot sense

future states). The ACT representation supports all these types of reasoning, and PRS-CL

and SIPE-2 have been extended to support certain aspects of the ACT formalism. These
extensions are described in detail elsewhere [35].

A central issue in designing the ACT formalism is the difference between planning and
execution. While executing a plan and generating a plan require much of the same knowl-

edge, there are still some important differences between the two activities. The planner is
attempting to look ahead to the future consequences of particular courses of action, while the

execution system is sensing the world and reacting to incoming information. This difference
manifests itself in several ways, including system response to violations of requirements, the

triggering of ACTs, and the representation of knowledge about the world. These manifesta-
tions result in different interpretations of the ACT formalism during planning and execution.
How these differing interpretations are implemented in SIPE-2 and PRS-CL is described in

Section 3.2.3.

One important difference is that the planner can permit requirements to be violated,
because its plan-critic algorithms can then be used to patch the plan to prevent the violations

from occurring. The execution system, however, must fail as soon as a requirement is violated

since the world is actually in a state that violates the requirement. It is generally difficult to

determine the most appropriate response to an execution failure; thus, the execution system
will need knowledge, unnecessary to the planner, about how to respond to failures.

In order to be reactive, the execution system must have ACTs that are both goal-driven
and event-driven. In addition to trying to achieve system goals, it must respond appropriately
to events that take place in the world. The planner, in contrast, need respond only to its

own goals since it is reasoning about hypothetical future states. Ideally, the planner would

modify partially generated plans to react to changes in the world during the planning process.
although current Al planning systems have only minimal capabilities in this area. The

requirement for PRS-CL to be event-driven results in distinguishing between goal predicates
and fact predicates in the ACT formalism.

Representation of the world state is generally different in planning and execution systems.

For example, to be efficient enough to be reactive, PBS-CL maintains only one world model
that reflects the current state of the world. By contrast, SIPE-2 must be able to reason

about the world in many different future states, which necessarily adds overhead to the
representation and reasoning. Most planning systems, including SIPE-2, encode a new world
state by recording changes since a prior world state. Thus, the planner requires knowledge,
unnecessary to the execution system, relating to modeling how the world state changes as

14

NAME = unique Identifier

CUE: (facts and/or goals)
used to efficlenty retrieve this acd

PRECONDITION: (facts and/or goals)
gate conditiorm on applicability of this act

SETI"NG: (facts)
queries world to establish variable bindings

RESOURCES = resource constraints

TIME CONSTRAINTS = arbitrary temporal
constraints relating plot nodes

PROPERTIES = user defined attributes,
Including knowledge about certainty

COMMENT = documentation

PLOT=

Figure 3.1: ACT Slots

actions are taken. Another aspect of this difference is that the execution system can use the
world as an information source and use sensors to query some property in the world. Because

the planner reasons about world states that may exist in the future, it must model every

proposition in which it is interested, again requiring knowledge that may be unnecessary to

the execution system.

A final issue of practical importance is that the ACT representation must be clear enough

to enable users to understand plans and SOPs represented in it, and to allow knowledge

engineers to encode domain knowledge as ACTs. Thus, it was necessary to balance the

power of the representation with its perspicuity. Section 3.2 describes the decisions we made

in this regard.

15

3.2 The ACT Formalism

Each ACT represents a plan or a piece of domain knowledge about an action or set of
actions that can be taken. Each ACT consists of a number of predefined slots and a set of

nodes representing actions. Each slot and node uses a combination of a set of predefined

metapredicates and logical formulae to represent its knowledge. The predefined slots occur

in every ACT, and are shown in Figure 3.1, which describes briefly the idea behind each. The

slots Cue, Precondition, and Setting have as values logical formulae describing goals and/or

facts, while the other slots represent information in other forms.

Each ACT also has a Plot which is a directed graph of nodes representing actions and arcs

representing a partial temporal order for execution. The nodes in such a graph are referred to

as plot nodes. A plot has one and only one start node, but may have multiple terminal nodes.

A terminal node is a node with no outgoing arcs. Loops can be specified by connecting the

outgoing arc of one node to an ancestor node in the graph. The actions represented by each

plot node are specified by metapredicates and logical formulae described below.

While the metapredicates that may appear on the plot nodes and slots are described

in detail in Section 3.2.3, a brief summary of the metapredicates, listed in Figure 3.2,

is necessary before explaining the slots. The Test metapredicate is used to determine
whether a formula is true in the database or world without taking actions to achieve it.

The Use-Resource metapredicate makes a declaration of resources that will be used by the

ACT. Three metapredicates can be thought of as specifying actions: Achieve, Achieve-By,

and Wait-Until. Achieve directs the system to accomplish a goal by any means possible,
Achieve-By is similar but directs the system on how to accomplish the goal, and Wait-Until

directs the system to wait until some other process, agent, or action has achieved a particular
condition. The Require-Until metapredicate sets up conditions that must be maintained
over a specified interval, and the Conclude metapredicate specifies any effects that are ac-

complished by an action (in addition to the predicates mentioned in the action-metapredicate

specifying the action).

3.2.1 ACT Slots

The Cue, Precondition, and Setting slots, as well as plot nodes, are filled in with logical

formulae. Each slot can have an entry for zero or more metapredicates. The formulae used
as the values for each metapredicate are built from predicates specified in first-order logic,

connectives, and the names of ACTs. The metapredicates recognized in the ACT formalism
are shown in Figure 3.2, which hints at the syntax accepted by each where P stands for a

formula composed of first-order predicates and connectives. The syntax for metapredicates

is described fully in Appendix E. The predicates will have three truth values: true, false,

16

NAME Mr~~~tNAMEMeta~redlcates:

CUE
PRECONornON ACHIEVE: P

SETTING

RESOURCES ACHIEVE-BY: (P (ACT...))
PROPERTIES

TIME-CONSTRAWITS TEST: P

COMMENT

PLOT: CONCLUDE: P

WAIT-UNTIL: P

REQUIRE-UNTIL: (Pi P2)

USE-RESOURCE: Obi

COMMENT: string

Figure 3.2: ACT Metapredicates

and unknown. Predicate names can be declared as open or closed, to instruct the system

as to whether the closed world assumption applies. In our implementation, PRS-CL currently

restricts the use of unknown truth values to open predicates, while SIPE-2 implements it for

all predicates. If necessary, PRS-CL could be extended to handle unknown truth values in all

cases.

Static information represented as binary predicates can be stored in a sort hierarchy, and

the variables in our formalism are typed, with the types corresponding to classes in the sort

hierarchy.' The sort hierarchy should be used whenever possible for efficiency [33].

All plot nodes and all slots except Name allow arbitrary user properties (which can be used

by users and their programs but are ignored by the system) and the Coment metapredicate.

Table 3.1 lists the metapredicates the system recognizes for each slot. The slots with no

metapredicates require further explanation. Name is a symbol that names the ACT, and

Comment provides documentation (generally, just a string). Plot is a set of plot nodes, and

all metapredicates are valid for a plot node.

1SIPE-2 has such a sort hierarchy implemented and this is currently used in both PRS-CL and SIPE-2.

This may someday be replaced by a more expressive frame system, e.g., LOOM [23].

17

Slot Metapredicates

Cue Achieve, Test, Conclude
Preconditions Achieve, Test

Setting Test
Resources Use-Resource

Time- Constraints none

Properties none
Comment none

Name none

Table 3.1: Metapredicates Allowed on Slots

Properties is a user-defined property list (e.g., author, priority). While Properties does not
necessarily expect any properties, some are recognized by the system and are recommended.
Recommended properties are Authoring-System and Author.

In our ACT implementation, SIPE-2 recognizes the properties Class and Variables. Class
denotes the type of operator to which this ACT should be converted. Allowable values for
Class are state-rule, causal-rule, init-operator, operator, and both.operator. SIPE-2 will also
check the Variables property for declarations about variables. The v•.ue of variables should
be a list of quantifier-pairs. Each quantifier-pair whose first element is existential or
universal will be processed, and its second element should be a list of variable names.

The Cue is used to index and retrieve an ACT for possible execution. Cue specifications
should be short so that the system can rapidly identify a subset of potentially executable

ACTs. This is important in PRS-CL to maintain real-time response. Complicated conditions
should be put in the Precondition or Setting. Restrictions on the use of metapredicates in the

Cue are given in Section 3.2.3. General;. a Test metapredicate in the Cue indicates an event-
driven ACT that responds to some new fact becoming true, while an Achieve metapredicate
indicates a goal-driven ACT that will be used to solve system goals. A Conclude metapred-
icate is used to deduce further consequences of conclusions. The Cue corresponds to the
"•purpose" in a SIPE-2 operator, the "trigger" in a deductive operator, and the "invocation

condition" in a PS-CL KA.

The Precondition specifies the gate conditions (in addition to the Cue) on applicability
of the ACT. The ACT is not invoked unless its Cue and Precondition are true. The Setting
specifies conditions that are expected to be true in the world, and is used to instantiate
variables; O-Plan refers to such conditions as "query conditions" [4]. Although both are
gating conditions, the Setting is separated from the Precondition to make the ACT more easily

18

understood. Generally, the Precondition and Setting will consist of a Test metapredicate (see

Section 3.2.3).

The Time-Constraints slot is used to specify time constraints between plot nodes that
cannot be represented by ordering arcs. Many dependencies between different military actions

require such constraints. For instance, cargo offload teams should arrive at the same time as

the first air transport arrives at the airport. The ACT syntax for Time-Constraints allows
specification of any of the 13 Allen relations [1]. Rather than implementing time constraints

displayed as text, we plan to have the option of specifying them by different color arcs between

nodes (perhaps also with a textual representation in the properties slot).

The syntax for textual representation of time constraints does not use the metapredicates;

instead, there are two types of constraints that can be represented: time windows on nodes
and inter-node constraints. A time window for a node specifies its earliest and latest allowable
start times, earliest and latest finish times, and minimum and maximum durations. An inter-

node constraint represents a constraint between the endpoints of a pair of events or plan nodes.
It is represented as an 8-tuple composed of the minimum and maximum distance between

the start of the first event and the start of the second event, and likewise the minimum and

maximum start-finish, finish-start, and finish-finish distances. The syntax for specifying time
constraints is documented in Appendix E.

In our ACT implementation, the temporal constraints in the Time-Constraints slot are
translated for processing by GE's Tachyon system. Tachyon [21 was chosen as the exter-

nal software module for propagating the temporal constraints because it had the required
capabilities, was readily available, and was known to be efficient. Tachyon is an efficient
implementation of a constraint-based model for representing and maintaining qualitative and
quantitative temporal information. SIPE-2 calls Tachyon, which propagates these constraints
and combines them with the "commonsense" constraints that it represents internally, return-

ing an updated set of time windows on the plan nodes which are inserted into the plan. The
temporal constraints are currently ignored by PRS-CL, although PRS-CL could be extended
to support them.

Figure 3.3 is an example ACT (not all of it fits on the screen) taken from the screen of the
ACT EDITOR, a system we implemented for viewing and editing ACTs (see Chapter 6). It is
an ACT that was originally written as a SIPE-2 operator in the military operations domain
and was translated by our ACT-to-Sipe translator. The slots are displayed on the left side
of the screen and the first few plot nodes are on the right. This ACT is a planning action

designed to deploy an air force to a particular location. The Cue is used to invoke the ACT
when the system has the goal of achieving such a deployment. The Preconditions enforce

various constraints on the intermediate locations to be used in the deployment. The Setting
essentially looks up the cargo that must go by air and sea for this deployment. The plot is

19

S1PE-2 Grasper II
WINDOW

GRAPH DEPLOY-AIRFORCE

COMIPONENT

AZUCT (ACIMEv (ODRLOV9o AOL.I AMIRLD.2 END-TIME M)

CRZATZ
DUTROY 10-r ""a.

(MTES (ANW (LOCATED AWL I IOCATION. I)
IENAME M[AR AIIILD. I LOCATION. 1) Ifcag[Vg-*y

Co" (OWAR AEPORT.I LOCATION.' (1NO)UJZIO A5., WOATION.
(TRANSIT-APOVAL. AMD.2)

petal:

(TIRNN W-APPROVAL UAiORT.2) (*6KW (Lo"AT1D CUMOYWSI
SACL (NAR SiLAM.2 AIMCELD.2) SPOT.))

(NOUTE-ALOC ANrIW.13. vEItT AAUELD.2
MI-,.OC.1)

~9UT-4=SEAM" IIRIElAMINE KAURT.28UA-L.OG 10)))

PRINT-DRAW

NEW VIEW M tIg
REDRAW (TEST (AND (NOT 0. ANWMIED.2 AMMLO.1))

(NOT A- SIAPORT.1 69APORT.2))RESCALE rATI-I*ON0Ct AM. 1
LIUP-ROTATE CAR,,G•OUVU.1

CAPGOVA. I)))

VERIFY

SIMPUFy Raw

-G RIPE
4 PFD

((AJ•T4-1040m-SVOTlA SOC-21 (ClAN OP9RATOR))

as. bass

S XoLCffATL :)i tkinsoreas.,. re.a. newest EPLSY-V4IF0X NCR--Edito- Uaubl Io~d Coow-rigJt 1"1-1"3, SRI Int

Figure 3.3: Deploy Airforce Operator as an ACT

described in Section 3.2.2.

ACTs slots support the representational requirements for the applicability conditions of

both SIPE-2 operators and PRS-CL KAs. For example, when translating an operator to an

ACT, the purpose becomes a Cue composed of goal formulas, the trigger of a deductive

operator becomes a Cue composed of fact formulas, the precondition becomes fact formulas

in both the Precondition and the Setting, and constraints on variables become fact formulas

in the Setting. The SIPE-2 "instantiate" slot corresponds to an entry by that name on the

properties of an ACT. SIPE-2 could be extended to support goal formulas in the preconditions

and settings to provide additional power for interacting with parallel goals. PRS-CL KAs

can be translated to ACTs as follows: the "goal achiever" can be ignored, the "invocation

condition" becomes both fact and goal formulas in the Cue, the "context" becomes both fact

and goal formulas in both the Precondition and the Setting, and the "effects" will be encoded

in the plot.

20

A
0

condt on conditon
1 2

(A,
parlle prallel2

LA3, A5

A4

Ae

Figure 3.4: ACT with Graphical Display of Plot

3.2.2 Plots

The plot of an ACT specifies an action network that is to be executed or used for plan elab-
oration. Each node in the network has its own set of metapredicates for specifying its action,
'as described below. The arcs coming into a node are said to be disjunctive when the node
can be executed if only'one of its incoming arcs is activated. Incoming arcs are conjunctive
when all of them must be active before the node can be executed. Similarly, outgoing arcs
are disjunctive if the system needs to execute only one of them, and are conjunctive if all of
them must be executed.

We investigated several altematAve representations for plots that combine the conditionals
and loops typically used in execution systems with the parallel actions typical of planning
systems. The problem with most alternatives is that the complexity of the representations
makes them hard to understand when nodes have various combinations of disjunctive and
conjunctive arcs either incoming or outgoing. Our solution, which is reasonably perspicuous
and still general, is to define two types of nodes, conditional (or disjunctive) and parallel (or
conjunctive). All arcs coming into and going out of a conditional node (drawn as a single-

21

(LOCAT o - (LWOAET 3 (.. (MM
O*OO-fE..t RI CDOOOY)).1 CMUOYIAI

FNigure) 3.:PotoNelo ifoc C

(NOT
(MOGNMO (LOTIED

LOGOMA) &AWLOG6T)O

/ (_L0•__O _ LoaAIRn LOCATEO AWL.m/ ARUO M MSU. CAM MO S M.. IG! "MMO YSU.I V ' ,))j
SSUVenT.)) I I •RT.8T)) R I NM'=.)) |

Figure 3.5: Plot of Deploy Airforce ACT

border rectangle) are disjunctive, while all arcs coming into and going out of a parallel node

(drawn as a double-border oval) are conjunctive. This is depicted in Figure 3.4.

Two consequences of this handling of multiple edges are important: (1) If a node has
zero or one incoming edges and zero or one outgoing edges, it is irrelevant whether it is a
conditional or a parallel node - they are equivalent. (2) If one action is to be activated

by only one of its incoming edges and must activate all of its outgoing edges, then it must
be represented by a conditional node that collects the incoming edges followed by a parallel

node that collects the outgoing edges. The metapredicates may occur on either of these two

nodes, while the other node need not have any metapredicates.

Figure 3.5 shows the plot of the Deploy Airforce ACT previously discussed. The first plot

node specifies that the air force is to be mobilized. It is a parallel node, so its successors will
be invoked in either order or at the same time. The successors specify that the air cargo will

be moved to the final destination in parallel with moving the sea cargo to two intermediate
ports and finally to the final destination. The final node joins the parallel actions and posts

conclusions about the locations of the air force and its subparts.

3.2.3 Metapredicates

While executing a plan and generating a plan require much of the same knowledge, there are
still some important differences between the two activities, as discussed previously. These
differences result in different interpretations of the ACT metapredicates in the planning and
execution systems. Our implementation of ACT metapredicates in SIPE-2 and PRS-CL, as de-
scribed below, specifies how the metapredicates should be interpreted given the constraints

imposed by the planning and execution environments. However, it is possible that small

advantageous changes in this interpretation could be made based on special properties or

features of the particular planning and execution systems being used. For example, planning

systems with powerful temporal reasoning capabilities may handle the Time-Constraints slot

22

Metapredicate group Metapredicates

Environment Test, Use-Resource

Action Achieve, Achieve-By, Wait-Until

Effects Require-Until, Conclude

Table 3.2: Metapredicate Grouping for Execution in Plot

differently, and execution systems with architectures different from PRS-CL may handle fail-

ures of Require-Until metapredicates differently.

Figure 3.2 lists the metapredicates that may appear on each plot node. For purposes of

ordering their execution, these metapredicates are partitioned into three groups, as shown in

Table 3.2. The environment-metapredicates, Test and Use-Resource, are executed first by

the execution system. During planning, Use-Resource makes a declaration that will be used

by the planner (in SIPE-2, the plan critic algorithms satisfy resource requirements), and a Test

is generally ignored while expanding a plan with an ACT except in Cues and Preconditions.

The action-metapredicates, Achieve, Achieve-By, and Wait-Until, are executed next, and

there should be only one of these on a-node. The effects-metapredicates, Require-Until and

Conclude, are executed last by the execution system. During planning, Require-Until sets

up a protection interval that the planner must maintain, and Conclude specifies any effects

that are additional to the predicates mentioned in the action-metapredicate of the node.

The meanings of the ACT metapredicates are described below. As described above,

the ACT metapredicates sometimes have different semantics in the planning and execution

systems. When the term "the system" is used below, it refers to the behavior of both the

planning and execution systems. The syntax of ACT metapredicates is fully described in

Appendix E, which also mentions the parts of the syntax not accepted by SIPE-2 and/or

PRS-CL.

ACHIEVE: This metapredicate is primarily used on plot nodes, where it specifies a set of

goals the ACT would like to achieve at that point in the partial plan. In the Cue, an

Achieve metapredicate indicates a goal-driven ACT and tells the system what goals

the ACT should be used to achieve. Thus in planning, Achieve in the Cue is used for

expanding a plan and is not used for deduction. Similarly, Test and Conclude in the

Cue are ignored during plan expansion. (The class property on the Properties slot can

be used to direct the planner's use of an ACT for deduction or plan expansion.) The

execution system allows the Cue to have both a Test and an Achieve. While rarely

used, such a construct would trigger an event-driven ACT only when the system had

posted the given goals to achieve.

23

In the Precondition and Setting slots, the planner ignores an Achiev, since it achieves
goals in the plan, not during matching of these conditions. While not recommended,

an Achieve can be used in the Precondition or Setting of an ACT executed by the
execution system. However, in PP.S-CL, this will match only if PCS-CL has posted a

matching goal during the current execution cycle. This is not recommended and should

be done only by users who understand PPS-CL's main control loop.

TEST: This metapredicate specifies facts (formulae containing predicates) that can be

queried in the database and/or, for the execution system, by sensing the world. When
a Test is in the Precondition or Setting slots, it is used to determine if the ACT should

be executed after it becomes relevant. A Test in a Cue is used to determine whether
the ACT is eligible for execution, and indicates the system is testing a condition. Dur-

ing execution, if one or more of the specified facts in the Cue has just been posted in
the database and the remaining facts are true in the database, then the ACT will be
considered relevant but not yet ready for execution.

A Test in a plot node is also handled differently by the two systems. During execution,
a Test in a plot node is used to determine whether the specified facts already exist in
the database, and if not, it is used to determine which ACTs should be executed to
determine if the specified facts are true in the world. During planning, a Test in a

plot node can occur only after a conditional branching and is interpreted as a run-time
test to determine which conditional plan to execute. Any other Test in a plot node is

ignored.

CONCLUDE: This metapredicate appears only in plot nodes, and specifies the facts
(predicates) to be concluded in addition to the predicates mentioned in the action-

metapredicate of the node. Disjunctions are not allowed. During planning, Conclude is
used to reason about a different possible future world, and during execution, Conclude
formulas are posted to the database, possibly triggering the execution of event-driven
ACTs. A Conclude in a Cue triggers an event-driven ACT that responds to some new
fact becoming true. During planning, this is used to trigger deductive operators to
deduce context-dependent effects of an action.

WAIT-UNTIL: This metapredicate appears only in plot nodes, and specifies that execution
of the ACT is to be suspended until the indicated event occurs. This is identical to
PPS-CL's wait-until construct. The planner implements this metapredicate by ordering
the Wait-Until node after some action that achieves the required condition. In SIPE-2,
this is accomplished by using the external condition construct.

ACHIEVE-BY: This metapredicate appears only in plot nodes, and specifies the goals to
be achieved as well as a restricted set of ACTs, one of which must be used to achieve

24

the goals. This provides a means for guiding the system on how to achieve a goal. In

SIPE-2, this is translated to a process node for singleton ACTs and a choiceprocess

node when more that one ACT is given.

REQUIRE-UNTIL: This metapredicate appears only in plot nodes, and specifies a condi-

tion to be maintained until another indicated condition for terminating this requirement

occurs (i.e., a protection interval). The accepted syntax for Require-Until has two

options. The general one is (req-iff term-ift). Here, req-wff is a formula to be

mairitained until the termination condition term-irf becomes satisfied. The shorter

option is simply term-itf, where the req-irt is assumed to be the goal formula spec-

ified for either the Achieve or Achieve-By metapredicate in the same node. An error

arises if no such goal can be identified. In SIPE-2, a Require-Until is specified by the

protect-until construct, and the plan critics will modify any partial plan that violates

a Require-Until so that the final plan will satisfy all Require-Until instances.

Require-Until is more difficult to implement in execution systems, since it is not clear
what to do upon failure. Our implementation in PS-CL attempts to handle failures

as well as the constraints of execution and PRS-CL's architecture allow. In PRS-CL,

Require-Until instances are directly mapped onto a require-until operator that was

recently added. A PRS-CL Require-Until fails when either req-iff is unsatisfied at the

point when term-irf becomes satisfied, or req-itff is unsatisfied and there is no means

to repair it (see below). A PBS-CL Require-Until succeeds when either: req-irft is
satisfied when term-itf becomes satisfied, or the KA containing the Require-Until

terminates without the goal having failed.

While one could imagine having required formulas that are to be protected beyond the

scope of the ACT that posted them, this is problematical in PRS-CL for two reasons:

(1) the system architecture would have to be changed to allow ACTs to post goals that

would remain for processing after the ACT posting the goal had succeeded, and (2) there

is no reasonable action to take after a failure when the posting ACT no longer exists.

Should the req-tff become unsatisfied before term-itt occurs, the Require-Until

does not necessarily fail; rather, it is said to be violated. PS-CL will post a goal to

repair the violation, and the user can provide domain-dependent ACTs to perform the

repairs. If no ACTs respond to the Require-Until violation, then PRS-CL will fail

from the ACT containing the Require-Until.

COMMENT: This metapredicate can appear in any node or slot. It provides a means for

associating some documentation with the node or slot and is usually a string.

USE-RESOURCE: This metapredicate in the Resources slot means each of its arguments

is a resource throughout the plot. Our interpretaton of Use-Resource is based on the

25

resource masoning abilities of SIPE-2 and PRS-CL. This interpretation is an obvious place
for extending the ACT formalism when more powerful resource reasoning capabilities
are available. On a plot node, PRS-CL ignores Use-Resource while SIPE-2 indicates
the Use-Resource arguments will be resources only at that node (assuming they are
not mentioned in the Resources slot). Currently, these are reusable resources (i.e., they
are not consumed), and the system will prevent other simultaneous actions from using
the same resource. SIPE-2 translates Use-Resource directly into its resource construct.
PBS-CL handles the Resources slot by requiring that the specified resources be available
before the ACT can be executed. PPS-CL actually translates the Resources slot into
appropriate predicates that are appended to the Test metapredicate of the Setting slot.
The resources are allocated when the ACT is intended for execution and are released
when the ACT either succeeds or fails.

3.2.4 Using ACTs

To show how the various constructs in the ACT formalism are used to represent plan gen-
eration and execution knowledge, we will look at three example ACTs from the military
domain. A description of this domain can be found elsewhere [38], but the ACTs shown are
self-explanatory. By using ACTs, we have demonstrated SIPE-2 and PRS-CL cooperating on
the same problem for the first time. SIPE-2 generates large military operations plans while
PBS-CL" responds to events, executes the plans produced, and performs lower-level actions
that have not been planned.

First, we briefly describe how the interaction between SIPE-2 and PRS-CL currently takes
place in our implementation, although this interaction is still an area of ongoing research.
While both the planning and execution systems can use ACTs at all levels of detail, it is
necessary in realistic domains to fix a level of detail below which the planner will not plan.
Planning to the lowest level of detail is often not desirable, and the combinatorics can be
overwhelming. For example, it is not desirable to plan large military operations down to
the minutest detail. Similarly, it is often not desirable for the execution system to respond
to certain high-level goals without a plan. For example, a reactive system should not start
executing a Desert Storm-sized operation without first having a plan. ACTs at interim levels
of detail may be advantageously used by both planning and execution systems.

In the military domain, we fixed a level of detail to which SIPE-2 will plan. The more
detailed actions areleft to PRS-CL. This is accomplished by using the class property to specify
which ACTs are to be used by SIPE-2 and/or PRS-CL. SIPE-2 produces complex plans at this
level that are translated to one large instantiated ACT for execution by PBS-CL. (We are
developing techniques for splitting such an ACT into a set of smaller ACTs.) This ACT

26

will be the only one that responds to the top-level goal (in the military domain), so that

PRS-CL will simply react to events until the planner generates a plan and the top-level goal

is posted in PRS-CL. This plan will be the principal guidance for the reactor. The reactor

will implement appropriate lower-level behaviors while it is waiting for a plan, and may pose

additional problems to the planner during execution.

We will discuss three example ACTs. Figures 3.3 and 3.5 show the ACT for deploying an

air force that can be used by both SIPE-2 and PRs-CL. We then discuss a lower-level ACT

used only by PRS-CL, and finally describe a deductive ACT used by both SIPE-2 and PRS-CL
to deduce. consequences of actions.

The Cue tells the system to use the Deploy Airforce ACT to achieve a goal of deploying

an air force to a particular air field by a certain time. The Precondition and Setting must be
true in the world state before the operator can be applied. The Precondition in Figure 3.3

requires the initial position of the air force to be known, and finds intermediate seaports

and airports that are on known routes to the destination and which have transit approval.

The Setting constrains the two airports and seaports to be different and partitions the air
force into two subparts (by matching a predicate in the database). Planning variables are
constrained to be in a certain class based on their name; for example, seaportl and airfieldl
are variables that are constrained to be in the classes seaport and airfield respectively.

The Plot, shown in Figure 3.5, is used either to expand a plan by inserting the plot as a

subplan or to begin execution of deployment. The Plot begins with a parallel node that uses

an Achieve-By metapredicate to force the mobilization of the air force by using the Mobilize

ACT. The nodes following this can then be executed in any order or simultaneously. These
nodes begin two sequences of conditional nodes that use Achieve metapredicates to cause
the subparts of the air force to travel in parallel by air and by sea via different locations to
the destination. Finally, there is a parallel node, which joins these two parallel threads and
aggregates the subparts together when they have all reached the destination.

Figure 3.6 shows the Lookout-Red ACT for establishing lookouts. In our current imple-

mentation of the military domain, the planner does not plan down to the level of establishing
lookouts, so this ACT is used only by PRS-CL during execution, although it could be used by

SIPE-2 if the planning was extended to a lower level of detail. Lookout-Red is one alternative
way to achieve a lookout, and the Precondition specifies it should be used only when the

terrain is dangerous (represented here by the code-red predicate). The Setting finds the
correct site for the lookout and the correct sector for the supporting air cover. There is a

Use-Resource metapredicate in the Resources slot which requires that a tfighter resource

be available before this ACT can be executed.

The plot of Lookout-Red first uses an Achieve metapredicate to get the fighters to the
correct location. The second node in the plot achieves an air cover of a certain land sector and

27

LOOKOUT-RED

Cue-

(ACHIEVE (LOOKOUT UNIT. I LAND-SECTOR. 1))

(ACHIEVE (LOCATED TFIOHTER.1
Preconditions: AIR-SECTOR. 1))

(TEST (CODE-RED LAND-SECTOR.i)) 4
setting: UN799:

(TEST (AND (VANTAGE-POINT SITE. I LAND-SECTOR. 1) ((ACHIEVE
(ABOVE AIR-SECTOR. I LAND-SECTOR. I))) I (Ai-COVER TIFIGHTEM.

I UNIT.1
I LAND-SECTOR.1))

(REQUIRE-UNTIL
R r(LOOKOUT UNIT.1 LANO-SECTOR.1)))

Resources:

(USE-RESOURCE TFIGHTER. 1)

N7980:
Properties:

((ACHIEVE (LOCATED UNIT.1 SITEI))
((ARGUMENTS (UNIT. I LAND-SECTOR.1)) (CONCLUDE
(AUTHORING-SYSTEM ACT-EDITOR) (LOOKOUT UNIT.1 LAND-SECTOR.1)))
(CLASS NONPRIMITIVE-EXECUTION-ACTION))

Comment:

INSTALL A LOOKOUT USING AIR COVER

Figure 3.6: An ACT for Establishing a Lookout

uses a Require-Until metapredicate to specify that this air cover must be maintained until

the lookout has been achieved. Thus, if the air cover is terminated for some reason before the

lookout is established, PRS-CL will post a violation and use appropriate ACTs to respond to

tii: situation. SIPE-2 would modify a plan being generated to avoid such a violation. Finally

the plot uses an Achieve metapredicate to get the lookout unit to the correct location, and a

Conclude metapredicate to note that the lookout has now been established (which terminates

the Require-Until condition).

Another type of knowledge used by some plan generation and execution systems is knowl-

edge for deducing the context-dependent effects of actions. Such a capability greatly enhances

the expressive power of a planning system, and is a feature of SIPE-2. The ACT formalism

supports this type of knowledge. For example, the Located-sector-up ACT in Figure 3.7 is
used to deduce the new region in which a movable object is located after that object has just

moved to a new sector (a region is at a higher level of abstraction and may contain several sec-
tors). This ACT is used by both SIPE-2 and PRS-CL to update the world model whenever an

object is moved. The Cue of Located-sector-up specifies an event-driven ACT that responds

28

LOCATED-SECTOR-UP

Cue:

(TEST (LOCATED MOVABLE. I SECTOR. 1))

Precondltions:

- no entry -

Getting: -_ _ _ __:_ _ _ _

(TEST (LOCATED-WITHIN SECTOR. I REGION. 1)) O 143: 'ED OVABLE.

(COSECLUDE (LOCATED MOVABLE. 1
RIZ0ION. 1))

Resources:

- no entry -

Properties:

((VAIABLES (NOCONSTRAIN (REGION. 1)))
(AUTHORING-SYSTEM SIPE-2)
(CLASS STATE-RULE))

Figure 3.7: An ACT for Deducing Locations

to new facts about the location of an object in a sector. The Setting instantiates region.1 to

be the region of the new sector, and the single plot node uses the Conclude metapredicate

to specify that the object is now located at region.l. Similar rules deduce that the object is

no longer located at its previous sector or region.

These three ACTs show how ACT constructs are used to represent knowledge that is

typical of plan generation and execution. They show event-driven and goal-driven ACTs,
applicability conditions, resources, specification of conditions to be maintained over an inter-

val, parallel plan fragments, and deduction. In particular, the ACT formalism supports the

knowledge necessary to implement the deductive causal theories used by SIPE-2 for deducing

context-dependent effects of actions. It is easy to create and modify ACTs using the ACT

EDITOR.

3.2.5 Translators

SIPE-2 and PRS-CL run their own internal representations for efficiency reasons. Thus, it

is necessary to translate ACTs into these representations and back. Section 3.2.3 described

some of the details of translating metapredicates.

The SIPE-to-ACT translator can translate all SIPE-2 operators to the ACT formalism,

as well as translating fully instantiated plans. Thus, all operators originally written for

SIPE-2 can be viewed and modified with the ACT EDITOR (as shown by the example in

29

Figure 3.3), and new operators can be created using the ACT EDITOR. The system cannot

yet translate a partial plan with uninstantiated variables into ACT, since not all possible

constraints on variables generated by SIPE-2 have a corresponding formulation in ACT. This

could be handled by using the Properties slot to store an internal SIPE-2 representation, but
we have not found it necessary to translate partially developed plans.

The ACT-to-SIPE translator translates all ACTs into either SIPE-2 operators or plans.

This enables SIPE-2 to plan with ACTs that have been input by the user in the ACT

EDITOR. The temporal constraints in the Time-Constraints slot are translated for processing

by Tachyon. The ACT-to-PRS translator converts ACTs into a representation that can be

interpreted and executed in real time under the control of PRS-CL. This makes all SIPE-2

operators accessible to PRS-CL by running SIPE-to-ACT and ACT-to-PRS. Section 3.2.3 de-

scribed this process. The constraints in the Time-Constraints slot are currently ignored when

translating to PRS-CL, although it is clear that PRS-CL could be extended to support them.

We have not implemented a PRS-to-ACT translator, as PRS-CL does not have structures that

will be passed to SIPE-2.

30

Chapter 4

Using CYPRESS

We successfully implemented all aspects of CYPRESS as described in Chapter 1.2. This

involved porting all our existing systems to the CPE, and extending them as described in

this report. Grasper-CL, SIPE-2, PRS-CL, the ACT EDITOR, and Gister-CL all now run in

Lucid CommonLisp and CLIM 1.1, and are available for distribution to the ARPI community.

New code was first developed and tested in the SYMBOLICS environment since its debugging

capabilities allowed us to develop code at a much faster rate the could be done in the Lucid

environment. This worked well in practice. Our code runs on both SUN and SYMBOLICS

since it uses macros with conditional compilation flags for all functions that are implemented

differently in the two environments. A significant amount of time was spent doing system

debugging of the CLIM code.

In this chapter, we describe how to use CYPRESS and describe the final demonstration on

this project, which is an example of one such use.

4.1 Anatomy of a CYPRESS Application

The subsystems of CYPRESS can be used independently of each other. Thus, users can choose

to run certain of the subsystems but not others. The real advantage of CYPRESS, however,

is that it can be used as an integrated pla-ning framework that supports a wide range of

planning activities with interactions among the subsystems. Below, we describe how a user

might exercise the full extent of CYPRESS during a plan-generation/plan-execution session.

This description follows the use of CYPRESS in our final demonstration.

The first step for any application is to represent the possible actions for the domain. In

CYPRESS, these actions would be defined as a collection of ACTs using the ACT EDITOR.

These ACTs would next be translated, by clicking an ACT EDITOR command, into the

31

I

internal operator representation of SIPE-2 for plan generation. PRS-CL can execute ACTs

directly as the translation to internal representations is done automatically by PRS-CL.

Based on the operators translated from the ACT representation, SIPE-2 could then be

used to generate plans in response to user-specified goals. The user can instruct SIP E-2 to

use Gister-CL to make certain decisions in the planning process either by setting appropriate

parameters or by making an interactive request (details can be found in the SIPE-2 manual).

If the user indicates that he or she wishes SIPE-2 to use Gister-CL, SIPE-2 will automatically

call Gister-CL during the planning process to reason about uncertain information, and, if

requested, trace the Gister-CL analysis in another window. In particular, Gister-CL can be

invoked to choose among alternative objects and resources for use in the plan and to choose

among alternative operators that can be applied to achieve a goal. The user must supply the

appropriate evidential analysis for the given problem domain and uncertain information.

The plan generated by SIPE-2 would be at some fixed level of abstraction deemed ap-
propriate (by the domain programmer) for execution by PRS-CL. This is done by specifying

whether or not an ACT should be used by SIPE-2 (see the ACT EDITOR manual). SIPE-2

should be used to plan only'to a level that can be reasoned about ahead of time. The dynamic

nature ot many domains makes it unreasonable to try to plan everything to the lowest detail.

Rather, it .is the res',onsibility of the plan execution system to further refine and adapt the

plan to the actual state of the world during the execution process.

Once a plan :s generated usinK SIPE-2, the user can click on a SIPE-2 command to translate
it into an ACT. If desired, the user ceu:... then make modifications or enhancements to the plan

ACT using the ACT EDITOR. The final ACT can be executed directly by PRS-CL (internally,

PRS-CL will first translate it to a KA for efficiency reasons).

During execution, PRS-CL will use additional domain-specific ACTs, not used by the

planner, to flesh out the sub-goals of the plan (as appropriate). Gister-CL could be called by

PRS-CL during plan execution to aid in choosing among multiple KAs that may apply in a

given situation. Calls to Gister-CL would be made by the domain-specific meta-ACTs being

executed by PRS-CL. Thus, when writing such ACTs, the domain programmer will indicate
those situations in which PRS-CL should call Gister-CL.

CYPRESS supports a certain amount of replanning. Should an unexpected problem arise

during execution of the plan, PRS-CL would automatically recognize the problem and call

SIPE-2 to produce a new plan. PRS-CL would continue executing those portions of the plan
that wefe not affected by the problem, until receiving a new plan from SIPE-2. At that point,

PRS-CL would reconcile the new plan with its current state and continue execution.

CYPRESS has recently been applied to joint military operations planning, using the sub-
systems as described in this section to generate and execute a plan. SIPE-2 used knowledge

32

provided in the ACT EDITOR to generate employment and deployment plans for dealing with

specific enemy threats, using Gister-CL to choose military units based on uncertain infor-

mation about both friendly and enemy units. The plan was then translated to an ACT for

execution by PRS-CL. PRS-CL employed a suite of lower-level ACTs (which could again be

graphically modified by the user) that define the execution steps for the actions that the

planner assumes as primitive. PRS-CL responded to unexpected events with ACTs that en-

code standard operating procedures. When the plan became compromised, PRS-CL invoked

SIPE-2 to replan while continuing execution.

4.2 Final Demonstration

We developed a proof-of-concept demonstration of the use of CYPRESS to generate and exe-

cute plans, making use of uncertain intelligence reports, for an extended version of the defense

scenario that was used in IFD-2. This application is described in the paper "Applying an

AI Planner to Military Operations Planning" in Appendix G. This demonstration has been

given (at least in part) several times, as documented in *Chapter 11. Detailed instructions for

running this demonstration are given in Appendix F. In this section, we give an overview of

the demonstration.

The AIC participated in the encoding of the domain knowledge of the defense scenario

which was done primarily by ITSC. The AIC used knowledge and plans from this domain

during development and testing of all our software. SIPE-2 successfully generated employment

plans for dealing with specific enemy COAs, and expanded deployment plans for getting the

relevant combat forces, supporting forces, and their equipment and supplies to their destina-

tions in time for the successful completion of their mission. Input to the system includes threat

assessments, terrain analysis, apportioned forces, transport capabilities, planning goals, key

assumptions, and operational constraints. PRS-CL successfully executed these plans and

applied lower-level standard operating procedures. Most of the input came from military

databases; around 100 plan operators in SIPE-2's input language were developed to describe

military operations that can achieve specific employment or deployment goals. The final

plans contain approximately 200 primitive actions. The input has around 250 classes and

500 objects, 15-20 properties per object, and around 2200 predicate instances. The result-

ing representations and plans have been validated by military planners at the U.S. Central

Command in Tampa, Florida, and at the Armed Forces Staff College at Norfolk, Virginia. A

more detailed description of this domain is given elsewhere [38].

The demonstration uses a scenario in which a show of force is made to deter an enemy

threat. In particular, ground patrols are established in the region where the threat has been

33

SOCAP ACTs, SOPs

ACTs ACT$
SIPE->ACT ACT->PRS
Compiler sp o Cm ie

vla Cronus
operato plans I IF Cronus

SIPE-2 ACT-Editor

n GUI iPRS

ISOCA P Domain dC Vrflert PR
SACT-Sim~eplifier Jo

S' ifler [-new GUI

7 parallel execution
ACT->SIPE replan requests•

Compiler ACTs

unanticipated
t events

requests,
analysis assessment requests,

ACT selection Mai analysis

via Cronus

Figure 4.1: Final demonstration

noted. We can also show the planner generating a variety of different plans if so desired. The

interaction between the subsystems of CYPRESS in the demonstration is shown in Figure 4.1.

The user uses the ACT EDITOR, the graphical knowledge editor developed on this project,

to graphically input or modify ACTs that encode information about how to accomplish certain

goals. These ACTs will be translated into both SIPE-2 and PRS-CL. The new SIPE-2 GUI is

then used to interactively generate a plan, taking into account the newly provided knowledge.

Our evidential reasoning system, Gister-CL, is used to help the planner make appropriate

decisions based on its analysis of uncertain information.

After SIPE-2 and Gister-CL generate a plan, it is translated to an ACT, at which point

the user can again graphically modify the plan with the ACT EDITOR. The plan is then ex-

ecuted by PRS-CL. PRs-CL uses a suite of lower-level ACTs (which can again be graphically

modified by the user) that define the execution steps for the actions that the planner assumes

as primitive. The lower-level ACTs emphasize the specific primitive planning action of estab-

lishing ground patrols. In the demonstration, ground patrols require constructing a camp,

34

securing the- camp through the use of local patrols both around the camp and in nearby
cities, and establishing a strategic lookout force. Lookouts can be established in different
ways, depending on the perceived level of danger accorded to the threatening forces.

The scenario illustrates the reactivity of PRS-CL through its ability to adapt plan execution
to certain unexpected events. In the demonstration, a force is sent to establish a lookout
under safe conditions; however, when the enemy threat becomes sufficiently dangerous an
alternative approach to establishing the lookout is adopted that entails air cover while lookout
forces are in transit. During execution, PRS-CL responds to unexpected events with standard
operating procedures. When the plan becomes compromised, PPs-CL will invoke SIPE-2 to
replan while PRS-CL continues execution. PRS-CL will accept the new plan produced by

SIPE-2 and incorporate it into its execution.

35

Chapter 5

Run-time. Replanning

The ACT formalism is the interlingua that supports the integration of generative and reactive
planning. ACTs have enabled SIPE-2 and PRS-CL to cooperate on the same problem for the
first time. SIPE-2 generates plans and translates them to ACTs. PRS-CL then executes these
plan ACTs, responds to events, and controls the execution of the lower-level actions that
have not been planned. This process is described in Chapter 3.

Unexpected events during execution that cannot be adequately handled by the standard
operating procedures encoded as ACTs may require run-time replanning. The ability for
PRS-CL to make replanning requests of SZPE-2 completes the integration loop in CYPRESS

and is the subject of this chapter. Replanning during execution is invoked whenever PRS-CL
decides it is necessary, and execution continues during planning with the new plan (translated
to an ACT) eventually being merged with the current execution state.

This is the first time that a planner and execution system of such complexity have co-
operated in this fashion. As described in Chapter 3, the complexity of the plans is what

differentiates our approach from previous approaches to the integration of planning and exe-
cution. Previous approaches work in a single-agent robot domain, where plans are relatively
simple. In the military planning problem, many agents are executing in parallel and the plan-
ner must exercise more control over the execution system. The reactor will generally have
no idea how to accomplish the top-level goals appropriately until the planner has generated
a plan, and the reactor will implement appropriate lower-level behaviors while it is waiting
for a plan.

5.1 Overview of Replanning

Applying CYPRESS to a particular domain involves using SIPE-2 to plan down to a fixed level
of abstraction, then having PRS-CL execute the resultant plan by applying lower-level ACTs

36

to further expand the goals in the plan. PRS-CL provides a certain amount of flexibility
at run-time through its ability to adapt plan execution to the current state of the world.

For example, it can choose among multiple ACTs to satisfy a given goal, depending on

run-time conditions. PRS-CL can also be made to recover from certain kinds of failures.
For example, the repair facility described in Chapter 8 is used to recover from failures to

maintain some specified condition over a designated time interval (as specified using the

Require-Until metapredicate) through the use of domain-specific repair routines. The basic

SOCAP demonstration described in Appendix F.1 provides an example of this kind of repair.

These adaptive mechanisms make PRS-CL a flexible execution system. However, the
mechanisms are local in nature in that they can only adapt the plan execution in response

to the current situation. They do not suffice for handling failures that require more strategic

changes in planned activity. Modifications of a more global nature need the look-ahead
reasoning capabilities of a generative planning system. One of the main efforts in the final

year of this project was to add a domain-independent run-time replanning capability to
CYPRESS, which would allow PRS-CL to invoke SIPE-2 to perform replanning for failures that
cannot be remediated locally. In particular, we have developed a replanning framework that
supports the following behavior:

1. PRS-CL detects an irrecoverable failure during execution of a plan generated by SLPE-2.

2. PRS-CL commuinicates information about the current state of the execution to SIPE,-2,

then continues ezecuting those parts of the plan that are unaffected by the failure.

3. SIPE-2 invokes its replanner to produce an alternative plan.

4. The new plan is translated to an ACT and forwarded to PRS-CL.

5. PRS-CL merges the new plan with its current activities and continues execution.

The second step above highlights an important characteristic of our replanning framework,
namely its asynchronous mode of operation. For asynchronous replanning, plan execution
continues on those branches of the plan that are not affected by the failure. This mode of
operation contrasts with synchronous replanning, in which plan execution is halted while an

alternative plan is generated. Asynchronous replanning presents greater technical challenges,
the most critical of which is to reconcile the state to which plan execution has progressed

during generation of a new plan with the new plan itself. Asynchronous replanning is critical

in many domains (including military operations), since it is infeasible to halt execution while

replanning occurs for some parts of the plan.

37

SIPE-2 PRS-CL
replan request withplan nmso, world, talre

update World 4 eln gn

via prs-send,
problem recognizer shared files, or

t and Cronussocap Other

agent agent
plannernow plan,

node map

Figure 5.1: Replanning Architecture

5.2 Architecture

Our basic model for replanning is bottom-up in nature, being driven by the activities of

the execution system. The execution system is responsible for recognizing failure situations,

requesting that the planner produce a new plan, and finally implementing the new plan. In

essence, the planner acts as a server to the execution system, providing new plans in response

to new world situations as requested by the execution system.

The overall architecture for the replanning framework is depicted in Figure 5.1. An

individual PRS-CL application agent (sach as the SOCAP agent in the demonstration described

in Appendix F) initiates the replanning process upon detection of a failure that it recognizes

as being replannable. (The criteria for replannability of failures is discussed further in the

next section.) All requests for replanning by application agents are forwarded to a special

PRS-CL agent named REPLANNER using the internal PBS-CL message-passing facilities. This

special agent performs all necessary communication with SIPE-2, thus enabling any domain

agent that requested replanning to be able to continue execution of those parts of the plan

that are unaffected by the failure that initiated the replanning request. The REPLANNER agent

is identical to other PPS-CL agents; its specialized behavior results from the set of ACTs that

it executes.

The message sent to the REPLANNER agent indicates the name of the application agent, a

unique identifier for this particular failure episode, the plan ACT being executed, the failed

goal in the ACT, and the execution front. The plan ACT is the ACT generated by the planner

at the level of abstraction shared by PRS.CL and SIPE-2. The execution front is a list of the

nodes last successfully executed on each parallel execution thread of the plan ACT. As will
be seen, SIPE-2 makes use of this information as part of its replanning procedure.

38

The REPLANNER agent also sends SIPE-2 relevant information from its database that char-

acterizes the current world state (since the planner is not monitoring the world during exe-

cution). Without updates from the REPLANNER agent, SIPE-2 could only generate plans for

the original state, rather than the state in which the failure occurred.

The REPLANNER agent then awaits a response. In general, SIPE-2 will reply with a new

plan that addresses the failure. The new plan is forwarded to the application agent that

initiated the replanning, who then integrates it with its current activities. Under certain

circumstances, it is possible that no new plan will be found. In such a case, SIPE-2 notifies

the REPLANNER agent of the failure, who in turn notifies the original agent that requested the

replanning. This agent will then terminate its execution of the original plan.

Three different forms of communication between the REPLANNER agent and SIPE-2 are

supported in CYPRESS. These communication protocols are discussed in Section 5.5.

5.3 Failure Recognition

Fa recognition is built into the plan execution process. Individual PRS-CL agents have

been modified to identify situations that should trigger replanning, and respond accordingly.

Not all failures in PRS-CL warrant replanning. Certain types of failures are a normal part of

plan execution, or can be repaired by using the various local recovery techniques described

above. For this reason, only failures at the highest level of PRS-CL execution (that is, in the

plan ACT produced by SIPE-2) are considered as candidates for triggering replanning.

Execution failures come in different types, depending on the nature of the goal(s) that has

failed (here, we use the term goal in a generic sense to denote an objective of the execution

system). Our replanning system focuses on failures for the most basic types of goals: goals

of having some condition being true in the world (corresponding to the ACT metapredicate

Test) and goals of achievement (corresponding to the ACT metapredicate Achieve).

A test goal is considered to have failed by the plan execution system when the condition

being tested cannot be established as true. From the perspective of planning, a failed test

goal corresponds to the failure of preconditions for application of an operator. Such failures

arise because the world has changed in some unexpected way since the original plan was

generated.

An achievement goal is considered to have failed by the plan execution system when the

condition to be achieved does not hold and there are no ACTs available that can be used to

achieve the condition. From the planning perspective, a failed achievement goal corresponds
to a lack of suitable operators that could be used to satisfy the goal.

39

5.4 The Replanning Process

As noted above, SIPE-2 acts as a "planning server" to PRS-CL in that it responds to requests

from the REPLANER agent to fix plans that have failed. Two major extensions to SIPE-2

were implemented to meet the replanning requirements. One involved enhancing the exist-

ing replanning algorithms of SIPE-2; the other was adding the communication protocols for

processing replanning requests from PRS-CL.

The most important change in the replanning algorithms was to provide the option of

producing a plan that is different from the original. SIPE-2 does so by preventing the applica-

tion of the operator that originally inserted the failed action into the plan. This modification

to SIPE-2 was necessary to enable replanning of failed actions that the planner treats as

primitive (that is, achievement goals). Since all the preconditions of such actions would re-

main tr,,- the planner would have no reason to believe that the original plan wouldn't work.

Without this modification, the planner might simply return the same plan.

When a replannable failure is detected, the REPLAJNER agent passes SIPE-2 the name of

the plan being executed, the action within the plan that failed, the execution front, a unique

identifier for this replanning episode, and a description of the current state of the world. The

latter can be either a file that completely describes the world, or a list of predicates that are

incrementally added to SIPE-2's model of the world. SIPE-2 was extended to process these

inputs and find a revised plan.

After finding a revised plan, SIPE-2 communicates two pieces of data to PRS-CL: the plan,

and a*node map. The node map is a partial mapping from nodes in the original plan to nodes
in the new plan. The node map contains an entry for every node in the original plan that

(1) has changed in some way or has been removed plan, and (2) might possibly be executing.

(The latter condition simply means that actions before the execution front or that follow the

failed action need not be included in the node map.) In a given node map entry, the node

from the original plan maps to a back-up node in the new plan. The back-up nodes are used
by PRS-CL when it is passed the new plan: if PRS-CL is executing any node in the original plan

that has been modified or eliminated (and so has a node map entry), it continues execution

in the new plan from the corresponding back-up node.

One of the key technical difficulties in developing the replanning capability was to provide
the means to integr. -.e the revised plan with the current activities being undertaken by PRS-

CL. This problem is further complicated for asynchronous planning, since execution of the

original plan continues while the new plan is generated. We developed a tranoformational
approach to integration, in which the execution structures of PRS-CL are modified in accord

with the new plan produced by SIPE-2. When presented with a new plan that overcomes

some failure, PRS-CL transfers control from the original plan ACT to the new plan ACT.

40

Actions/subgoals being executed in response to nodes that are not in the node map simply
continue execution. For nodes in the node map, PS-CL aborts their associated activities,
and begins execution at the corresponding node in the new plan as specified by the node
map. While the transformational approach required the development of a number of complex
routines for manipulating the PRS-CL data structures used to track current activities, At has
tne advantage of preserving undisturbed those activities in progress from the old plan that
remain part of the new plan.

5.5 Communication

The communication between the execution and planning systems that underlies the replan-
ning framework was implemented using three different protocols. The individual protocols
are useful under various circumstances:

Message-passing: The message-passing protocol is based on the PPS.CL message-passing
facilities. It works only when both systems are running in the same LISP image, but is
very fast as a result (since the information already exists in the Lisp image and does

not need to be transferred).

Shared-files: The shared file protocol involves writing files to disk that can be read by both
systems. This form of communication works in any configuration but is the slowest
method.

Knet-Cronus: This protocol employs the Knet and Cronus systems of the CPE. It is used
when the systems are running on different machines (or in different images). The inter-

nal representation of an ACT is sent through Knet servers, directly from the planner
to the execution system. This approach is much quicker than writing and reading files:
large plans with hundreds of nodes can be transmitted in only a few seconds (perhaps
even less than a second - it is not possible to get exact timings).

The communication protocol to be used for any particular run is determined by the

binding for the variable sipe: :*AGENT-PROTOCOL*, as described in the next section.

5.6 Replanning Example

Here, we describe briefly an implemented scenario that illustrates how the replanning ca-
pabilities can be used. within the SOCAP military operations domain. For more details on
running this example, consult Appendix F.2.

41

The original plan produced in this domain involves four main threads of execution for
deterring a set of known threats. Two of these threads correspond to deterrence using ground
forces, one corresponds to deterrence using naval forces, and the fourth using air forces. As
part of the air deterrence operations, aircraft are moved among various air bases. The use of
any individual air base requires explicit transit approval; such approval is granted for all air
bases used in the plan as part of the original domain knowledge.

Execution failure can be triggered by rescinding transit approval for any of these air bases.

Doing so simply involves deleting the appropriate fact of the form

(transit-approval <airbas>)

from the SOCAP agent's database. Removal of such facts lead to plan failure when execu-
tion reaches the stage where this approval is required. Without replanning, execution would
completely fail at this point. When replanning is enabled, the SOCAP agent will notify the
REPLANNER agent, which in turn will issue a replanning request to SIPE-2. Meanwhile, exe-
cution of the remaining branches of the original plan continues.

Replanning for this situation produces a modified plan in which an alternative mobiliza-
tion strategy is employed. In particular, alternative air bases that have transit approval are
used in the new plan. This plan is sent to the REPLANNER agent, who forwards it to the SOCAP
agent. The SOCAP agent then integrates its current activities with the new plan and continues
execution. CYPRESS responds effectively to an unexpected removal of a transit approval dur-
ing execution of the operation. This is done without disrupting operations unaffected by the
transit approval. In addition, the response will be approriate since the planner has checked
the future consequences of the new mobilization plan. In this manner, the integration of
planning and reactive control provide a system more robust in the face of unexpected events
than was previously possible.

5.7 Future Work

The replanning facility described in this chapter provides a basis for flexible plan execution
that is capable of adapting to significant unexpected changes in the world. This versatility
is critical when operating in dynamic domains where unexpected events may invalidate sig-
nificant portions of predefined plans. However, there are many interesting extensions to the
replanning work described here that would provide a more powerful replanning facility. We
describe a number of these extensions here.

One extension involves a more tightly-coupled approach to replanning. In the approach
adopted on this project, the interactions between PRS-CL and SIPE-2 are the minimum re-
quired for the replanning to succeed. More complex methods would support further com-
munication between the two systems during both execution and replanning, leading to more

42

intelligent activity. For example, SIPE-2 could receive periodic updates from PRS-CL regard-

ing changes in the world. This information would enable SIPE-2 to reason forward in time to

anticipate plan failures, rather than simply responding to them once they arise. As a second

example, it would be useful to have SIPE-2 communicate with PS-CL during the replanning

process to provide information about changes being made to the plan. PRS-CL could then

modify its execution of the original plan to avoid undertaking steps that will be eliminated

or modified in the new plan being generated.

Failure recognition could be extended both to support other types of failures, such as

the unavailability of resources and failure of maintenance goals (represented using the ACT

metapredicate Require-Until), and to anticipate failures before getting too deep. in the

execution.

43

Chapter 6

The ACT Editor

In military domains, the complexity of the plans and knowledge requires a graphical user

interface to input ACTs, and to understand ACTs generated by the planner. We have

implemented an ACT EDITOR for displaying, editing, and inputing ACTs. It effectively

provides a graphical knowledge-editor for both SIPE-2 and PRS-CL.

The ACT EDITOR displays ACTs graphically as shown in Figures 3.3 and 6.1. Grasper-CL

allows great flexibility for the user to customize the display of ACTs. As with all CYPRESS

interfaces, command menus are used for interaction. The ACT EDITOR has four command

menus: GRAPH, ACT, COMPONENT, and WINDOW. Figure 6.2 shows the command

menus associated with each of the four noun -modes, hinting at the functionality of the

system. Some of the more important capabilities are mentioned below.

Figure 3.3 showed the commands available for acting on a whole ACT. The EXAMINE

command was used to change the print width of the ACT to produce the drawing of the

plot in Figure 3.5. At the bottom of the command menu is a command to translate this

ACT to SIPE-2. Figure 6.1 shows the commands available for acting on individual slots and

plot nodes. In this figure, the user has clicked the EXAMINE command and then clicked

the first node of the plot. The resulting pop-up window allows the user to edit any of the

metapredicates on that node - currently Achieve-By is the only metapredicate on node

P0216.

A user can input ACTs graphically using the menu-based interface. A user can create or

modify an ACT by selecting the appropriate actions from the menu; the ACT EDITOR will

prompt for all necessary information. For example, in Figure 6.1 the pop-up window allows

editing of the metapredicates, e.g., additional effects of the mobilize action could be added

under the Conclude metapredicate. A user who has finished creating or modifying an ACT

can use the VERIFY command to invoke the ACT-Verifier to check the syntax and topology.

44

SIPE-2 Grasper II
WINDOWOn.'-

ACT

rIND Pon;:
CREATE 7*CBvE 19VC (ACHlvE

DUSTE (LOCATED CGOOIV•0. . ((WAO At)
tmm.) SPLr.))

EDImCNANT

MOVE q..hmfl.I ??ALIGN LOhtehlg -- : ((01gOSILZE R!R.I LOCNTIO.II) CMOSXLDZZ))

Sao.Ualu p Rcrt?

(LOusATIo CANGOV.11 H I v" 9?O)VF. LCADCROYE

RJse-lm•rce: ?9

- YICE, b s?

a H7Trl•T:)Malhjwns a.v'• grao. ag~,ueag DEPILg?-lIIUF1tCI[RCT-fdltor -- Urmqjllalhsd Copvrighn 1•)91-19)3, SRI mnt

Figure 6.1: Plot of Deploy Airforce ACT

ACTs produced by the SIPE,-to-ACT translator can .often be quite complex. This is

certainly the case when plans generated by SIPE-2 for nontrivial problems are converted into

ACTs; for example, a typical plan in the military domain produces an ACT that contains

more than 200 plot nodes. User-generated ACTs can also be complicated, especially if the
user is inexperienced. Two capabilities were added to the ACT EDITOR with the purpose

of reducing the complexity of manipulating and viewing ACTs: a simplifier and the NEW
VIEW command.

The simplifier is used to streamline the logical structure of an ACT. The simplifier will

eliminate both unnecessary plot nodes and redundant ordering links. These simplifications

produce ACTs that are semantically equivalent but often noticeably more compact. The

compactness is of benefit primarily for viewing purposes, making the intent of an ACT more

apparent to a user. In addition, simplification can lead to improved plan execution perfor-
mance when unnecessary components of ACTs are eliminated.

The NEW VIEW command does not modify the structure of an ACT but rather modifies

45

Window Graph Act Component
APPICATIO APPLICATION AMMON APPUCATION

WINDOW WINDOW WINDOW WINDOW
GAP•APN GRAPH GRAPH GRAPH
ACT ACT ACT ACT

COMPONENT COMPONENT COMPONENT COMPONENT

RESRE SELECT SELECT CREATE
PANE -L..AYOUT CREATE CREATE DESTROY

DESTROY DESTROY FIND

INPUT RENAME COPY
OUTPUT COPY RENAME
MERGE C0ANGE TYPE

BACKUP
BACIUP REVERT EXAMINE
REVERT EDIT

PRINT-ORAW
PRINT-ORAW ANCESTORS

REDRAW DESCENDANTS
VERIFY RESCALE UNRELATED
SIMPLIFY

CUSTOMZE MOVE
SIPE NEW VIEW ALIGN

VERIFY
SIMPUFY REDRAW ACT

->SIPE

Figure 6.2: ACT Editor Command Menus

its presentation on the screen. While the underlying ACT remains unchanged, a user can

vary the amount of detail to be presented on each plot node. Having the ability to modify

the display characteristics in this manner -is of value most notably when examining ACTs

generated by SIPE-2 for complex problems, since their size can render them unwieldy.

46

Chapter 7

Generative Planning

This chapter describes extensions to generative planning technology made during the course of
this project, concentrating on the advances made during the latter part of the project. (Earlier
advances are described in our previous annual reports.) We developed a theory of reasoning
about location that is adequate for solving many classes of problems of practical interest,
and implemented it in SIPE-2 for the military operations planning problem as described in

Section 7.1. This theory'applies to technological frameworks ranging from generative planners

to schedulers to reactive systems. The integration of SIPE-2 and PRS-CL during the final year

of this project, which broke new ground in the cooperation of planning and execution systems,

is described in Chapter 5.

SIPE-2 runs in the CPE and has been distributed to many ARPI sites (see Chapter 11

for a list). The SIPE-2 implementation of the IFD-2 domain resulted in several important

extensions. These extensions, described in the remaining sections of this chapter, provide

a significant increase in capability and ease of use and include a redesigned graphical inter-

face that can graphically display plans and domain knowledge, a more powerful interactive

planning mode, and several new features. We also describe how performance on the IFD-2

problem was significantly improved.

Several minor extensions are not described here; examples include extended. numerical

reasoning capabilities, the entering of new information after each planning level, the removal

of redundant actions from a plan, and taking advantage of the capabilities of the Grasper-

CL-based interface (for example, flashing the nodes as they are executed) in the execution

monitor and replanner.

47

7.1 Reasoning about Locations

While much progress has been made in the development of knowledge-based problem-solving

and planning systems in recent years, relatively little effort has been devoted to the task of
formulating the knowledge required by such systems to solve practical problems. Correct and

appropriate representations are critical to successful deployment of the systems for nontrivial

applications; nevertheless, representational issues remain mostly unexplored.

While extending the IFD-2 domain knowledge to support more complex reasoning (such

as that being done by PS-CL), we developed an analysis of one particular ontological prob-

lem, namely locations, from both the theoretical and the practical perspectives. Our theory is
both heuristically and epistemically adequate for solving many classes of problems of practical

interest. Locational information is important for any system that must reason about objects
whose positions change over time. A broad range of AI applications fits this description, in-

cluding directed navigation for autonomous vehicles (such as mobile robots), transportation
planning, military operations, process planning, production line scheduling, and real-time
tracking. For this reason, our theory applies to technological frameworks ranging from gen-

erative planners to schedulers to reactive systems.

To implement our theory, two major changes were made in the domain knowledge' While

the original version of this knowledge worked for the problems solved in IFD-2, there were
several inaccuracies in the representation that needed to be corrected before the knowledge
could support more extended reasoning, such as that being done by PRS-CL when it uses

ACTs to control execution at a lower level of detail than that planned for by SIPE-2. First,
we rewrote the subclass structure of the sort hierarchy to correctly reflect that fact that

subclass links are interpreted as "IS-A" links. Second, we reformulated the ontology for

predicates involved in reasoning about locations, and added about 25 deductive operators to
correctly reason about objects changing location and to deduce all commutative predicates.

Our theory of reasoning about location will not be described in detail here, since it is
described in a paper (included in Appendix G), by Dr. Myers and Dr. Wilkins, entitled
"Reasoning about Locations and Movement." This paper presents our theory and describes
the practical experience of implementing this theory in SIPE-2 and SOCAP. It was submitted

to the Artificial Intelligence Journal special issue on planning in June 1993, and we have been
notified that they want to publish it after revisions have been made and approved.

The journal paper begins with an analysis of the simplest characterization of location,
progressively enriching it to include notions such as multiple abstraction levels and aggrega-

tion. For each case we present a formal theory and discuss the situations in which it applies.
We define a belief revision framework along with a provably correct set of belief revision rules

that maintains a STRIPS-style database in accordance with the constraints of each theory.

48

The final part of the paper describes how to operationalize the belief revision rules to support
efficient reasoning about locations. While this analysis is applicable to many types of rea-
soning systems, we concentrate specifically on generative planners. In particular, we describe
operationalization of the belief revision rules for SIPE-2. However, the same basic methods
could be applied in many other plamnning frameworks. Experimental results show that a di-
rect translation of the belief revision rules leads to computational inefficiency. To address
this problem, several techniques are presented that provide greatly improved performance in
locative reasoning.

7.2 Replanning for PRS

As described in Chapter 5, two major extensions to SIPE-2 were implemented to enable
cooperation with PRS-CL. One involved enhancing the existing replanning algorithms of SIPE-
2, and the other was the communication protocols used to receive requests from PRS-CL and
respond with new plans and other information needed by PPRS-CL to coordinate its continued
execution with the new plan.

The changes to the replanning algorithms were numerous, but mostly too small and
detailed to describe in this report. The most important change is that one mode of failure in
PBS-CL is that some action that is primitive to the planner cannot be executed in the actual
world for some (probably unknown) reason. However, all the preconditions of the action are
still true, so that the planner would again find the same plan. SIPE-2 now provides the option
of producing a plan that is different from the original plan. It does this by preventing the
application of the operator that originally inserted the failed action into the plan.

Two of the smaller extensions are briefly mentioned. First, the replanning action of
reinstantiating a planning variable was rewritten to analyze a proposed new instantiation in
much more depth than was done previously. This should keep poor choices from being made.
Second, the problem-recognizing algorithm was extended to appropriately handle problems
with numerical information.

In our implemented scheme (described in'Chapter 5), PRS-CL passes to SIPE-2 the name
of the plan being executed, the action within the plan that failed, an execution front, a
unique identifier for this request, and a description of the current state of the world. The
latter can be either a file that completely describes the world or a list of predicates that
are incrementally added to SIPE-2's model of the world. Processing this input to invoke the
replanner required writing code to accept the world model and update the internal world
model and to process the execution front correctly.

After finding a revised plan, SIPE-2 must communicate two things to PRS-CL: the plan,
and a node map. The plan is translated to an ACT and sent to PRS-CL. The node map

49

inclucjes a mapping for every changed or deleted action that PRS-CL might possibly have
executed during the replanning process. Each such action is mapped to the appropriate

node in the revised plan where execution should start. The node map required additional

bookkeeping facilities in the replanning algorithyms.

This two-way communication is supported by SIPE-2 in any of three protocols: a send-

message function in PRS-CL, writing to files, or using the Knet and Cronus systems of the

CPE. The protocol is selected by binding the variable sipe: : *AGENT-PROTOCOL* to either
:file, :prs-send, or :knet. The file option works by writing files to disk that are read by
the other system. Files work in any configuration, but is slower than the other options. The

prs-send option will work only when both systems are running in the same Lisp image, and
is very fast since the information already exists in the Lisp image and does not need to be
transferred. The Knet option will work when the systems are running on different machines.
The internal representation of an ACT is sent; through servers we wrote in Knet, directly
from the planner to the execution system. This option is much quicker than writing files and

then later reading them. Large plans with hundreds of nodes seem to transmit in only a few
seconds (perhaps even less than a second - it is not possible to get exact timings).

7.3 New Features

The new features added to SIPE-2 during this project are too numerous to mention. Our
previous annual reports describe many of them. This section briefly describes the most

important new features implemented during the last year of the project.

7.3.1 Common Knowledge Bases

Another ARPA project at the AIC has been making progress on accessing multiple and
common knowledge bases across all systems. This effort has resulted in a uniform frame-
access language so that our systems can easily interface with any of several (non-SRI) database
systems that may be used to store domain knowledge. SIPE-2 was extended to make it easy

.to use this frame-access language by simply redefining some simple access functions. Using
this language, the IFD-2 plan has been generated with all knowledge base references going

to a LOOM knowledge base [23]. However, using LOOM slows the planning process by one
to two orders of magnitude.

7.3.2 CPE Interactions

With the help of Bolt, Berenek, and Newman (BBN), we installed the Cronus and Knet
systems on our machines. We converted them to use our software specification conventions

50

which provide version control, a patch facility, and the ability to run these systems without
each user having a considerable amount of code in his personal initialization files (as BBN
requires). We use these systems in our final demonstration for communication between SIPE-
2 and PRS-CL, both of which were extended to interact by using the Cronus system. SIPE-2
sends plans to PRS-CL and gets back information about the world and replanning requests.

We extended SIPE-2 to interact with GE's Tachyon system in a loosely coupled manner.

Tachyon is able to process extended temporal constraints for SIPE-2 during planning. They
communicate by using the Cronus system in the CPE.

7.3.3 Additive Numerical Goals

One important new feature in SIPE-2 (partially supported by this'project) is the ability to
solve a numerical goal by adding links to several parallel actions that together achieve it.
This capability will prove to be important in military planning since with this facility a given
unit can respond to several threats, without taking on too many responses.

7.4 Graphical User Interface

We completely redesigned the SIPE-2 GUI as part of this project, taking into account its
shortcomings during development of SOCAP. The new design is both more powerful and easier
to understand. The interface is built on Grasper-CL, as are the interfaces of all subsystems
in CYPRESS, where selecting a noun in the command menu brings up a menu of commands

appropriate to that noun.

Figure 7.1 shows the command menus in the new GUI. Important additions are the
commands Print, List, and Draw, each of which can now be applied to each of the following
structures: operators, problems, plans, worlds, and objects. Several new capabilities were
implemented to support these commands and better serve the user, including the ability
to draw graphically the sort hierarchy, the world model, deductive operators, and normal
planning operators. Improved layout algorithms for these drawings were developed.

Our previous annual reports describe many of the capabilities in the GUI. It automatically
lays out the nodes of a new plan and gives the user several options concerning which nodes
to display and how to label the nodes. One can highlight all the successors of a node, or all
the predecessors of a node, or all the nodes unordered with respect to a node, or all nodes
that mention a certain object or have certain predicates in their effects. This capability is
very useful in plans with many parallel links, such as military operations plans. For example,
highlighting all the nodes that mention Fennario Port shows the schedule for that port as in
Figure 7.2 (the user can pan over the entire plan), and highlighting all the nodes unordered

51

OI, 00LE e PlO nILER U P RO nILE
DOMAIN DOMAIN DOMAIN DOMAIN
MAN PLAN PLAN MAN

DRAWINGS DSABINOS DRAWINGS iOS
NoneNODE NODE MODE

TRACE IBsM OLVE DRAW. FIND
automatic operator PRINT

PLANNDIG DIFop lnteractive problem
zIrWIBNCm FIND OSunus plan "IUECERSOU
NUWMUCAL ORAU Plas world SUCCII&ORS

SuARO EXECUTEC 9b~c PARALLEL
arSO

PRINTING operu DEsSTRA SELCT &UOZuC
pUNblemisn hKDUD ITROT AIGUMUNT

DRAWING pknos PiEDICATE
2 NODES so"FEWRIN NEW VEW

Worel RENAME RNAMIEW AMVE
objects DSTRkOY REDRAW move
CantataO ALION

*) ACT BACKUP
MiJNT PJEVERT

operator SESCALE
problem HARDCOPT

plan
node GMPHLK
world "Iect
object creast

cooumln, destoy
Input

.) A output

Figure 7.1: SIPE-2 GUI command menus

with respect to a certain node could show all actions in the current phase of the operation.
One can also highlight all the actions that accomplish a certain condition. For example, to
highlight all the actions that move troops in a plan, one can click the Predicate verb and
specify the moved predicate. The user can move nodes around with the mouse to make the
graph look exactly as desired. Other capabilities include the ability to hardcopy graphs, save
them, find a node by moving it onto the screen and highlighting it, and execute plans while
highlighting the nodes being executed. Similarly, the new interface supports the interactive
planner, including highlighting nodes for which choices are being made.

Several capabilities were added to the GUI during the last year of the project. One of the
most important was a new capability for viewing the planning process on the screen. SIPE-2
can now incrementally highlight and draw ordering links between actions as they are added
during planning. In particular, it flashes the first node, then draws the ordering link, then
flashes the second node. This gives an excellent visual depiction of how the plan is flowing.
Other recent additions to the GUI are briefly mentioned below.

"* a number of new window-layout options are available in the CLIM interface with a new
LAYOUT command in the PROFILE menu to choose among them

"* pull-down menus can be chosen instead of command menus in some layouts

"* a permanent CHOICE window can be used for selecting operators, nodes, and units

52

ACT-Editor Grasper It

PLAN TVR1T
mach WIG K TERAPI

IPASALLIL"W0-0

PUZDIATE
KAO a1

MOVE
ALIGN T m

kighi ~ WNOd. sng vix-i-arisgdpw
P5654 Pi 8 56 l~pg g g

es oce fo baktacin
Hig fourt newe con F1mmaPnd s forssrmoifyngplaswreadd:ADGAL EET OL

* allnodehighightin is2 nowldne hinboth the brdsourey eandarin window

* printing can now be (optionally) done in pop-up windows which have their own process
so they stay around while the user does other things (such as continue planning)

* meaningful names for plans and drawings are automatically generated.

7.5 Improved Interactive Planning

Several new capabilities were added to SIPE-2'8 Interactive Search. The most important of
these are described below.

.53

"* The application of plan critics can be controlled with greater flexibility

"* The user can choose to finish planning automatically at any point

"* All possible replanning points are kept, even when another problem has been started
or when the user aborts while generating an unfinished plan

"* The user may now suspend the planning when desired and use the full power of the
GUI and all its command menus to display data structures. The user can then exit and
continue planning.

"* The menus used by interactive planning were redesigned

"* The interactive search now highlights each node on the screen whenever it is making
a decision about that node, e.g., planning for the node, choosing an operator for the
node, choosing instantiations for the variables at that node, or choosing a node for
backtracking to make another choice.

7.6 Efficiency Gains

An analysis of the planning in IFD-2 was performed after IFD-2. This resulted in significant
efficiency gains. The IFD-2 plan originally took 12.7 minutes to produce on our SYMBOLICS
and 22.0 minutes to produce on a SUN Sparc 1+. Because much of the SUN time was garbage
collecting, our SUN timings would vary significantly on a machine with a different memory
configuration. These times have been reduced to 4.2 minutes on the SYMBOLICS and 1.0
minute on the same SUN by making the following changes.

" The values of four documented global variables were set differently than their defaults.
This customized SIPE-2 to the domain and avoided unnecessary computation. This
change cut the SYMBOLICS time in half, and should have a similar effect on SUN com-
putation.

" To further improve the SUN time, it was necessary to compile every single scrap of
code. The problem-specific functions for computing durations that are called during
planning were not compiled. They were moved from the SIPE-2 input file to a Lisp file
and compiled. This procedure did not affect time on the SYMBOLICS, but cut the SUN
time in half.

"* SIPE-2 was changed to not compute numerical bounds for a variable whose value is
computed by a function when it is appropriate to wait for the arguments to the function
to be instantiated. In particular, SOCAP was computing the duration of a move from

54

one place to another when the destination and embarkation were not yet instantiated.
Each time, there are about 900 possible routes and a duration was calculated for each
to compute the bounds. Without these calls, the speed increased by a factor of 3 on the

SYMBOLICS, and by a factor of nearly 10 on the SUN (mostly because of less garbage
collecting).

* SIPE-2 was compiled with the Lucid production mode compiler. This procedure had
been tried earlier but compiler bugs prevented proper execution. These bugs appear to
be fixed now. This reduced the Sparc 1+ time from 1.7 minutes to 1.0 minute.

55

Chapter 8

Reactive Control

This chapter describes extensions to reactive control technology made during the course
of this project, concentrating on the advances made during the latter part of the project.

(Earlier advances are described in our previous annual reports.) The integration of SIPE-2

and PRS-CL during the final year of this project, which broke new ground in the cooperation

of planning and execution systems, is described in Chapter 5.

PRs-CL runs in the CPE and has been distributed to many non-SRI sites. PPS-CL was

extended in numerous ways to provide the increased functionality required for the CYPRESS

system. The most significant extensions, described below, were made to support the ACT

formalism, to support data-sharing with SIPE-2, to support run-time replanning after exe-

cution failures, and to provide an improved user interface. We have prepared a new user's

guide that documents the extended system in detail.

8.1 ACT Execution

Many of the modifications to PRS-CL were made to support the use of the ACT formalism

for representing actions. Originally, actions were represented in PRS-CL using structures

called knowledge areas (AAs). ACTs permit the representation of a number of important

constructs not supported by KAs. For instance, the ACT formalism includes the metapredi-

cates Use-Resource, Require-Until, and Achieve-By, which have no counterparts in KAs.

Furthermore, ACT plots provide a more general graphical representation of actions than is

allowed by KAs.

Extending PS-CL to support the full generality of ACT plots involved accommodat-

ing parallel execution of actions. P.S-CL has always supported some parallelism, but only

through the use of multiple agents or execution of multiple KAs simultaneously in response

56

to parallel goals. Parallelism was not supported within an individual KA, as it is within

ACTs. This type of parallelism is valuable for representing many types of inherently parallel

activities, as evidenced in the SOCAP domain. PRS-CL has been extended to execute directed,

possibly cyclic, graphs of actions that support parallel topologies, including all SIPE-2 plans

and operators. This was a complex task, as it involved a major overhaul of the run-time rep-

resentation structures and the introduction of control mechanisms for activating/deactivating

parallel execution threads.

A limited resource-handling capability was added to PRS-CL to support the ACT predicate

Use-Resource. Resources can be allocated and released, but only for the entire scope of an

ACT. This corresponds to the use of Use-Resource in the Resource environment node of an

ACT; the use of this metapredicate in plot nodes is not supported. Resources are assigned

on an all-or-nothing basis. All-or-nothing treatment is appropriate for reusable resources

that can be used for only one purpose at a time. The current implementation must be

extended to handle consumable resources, such as fuel, that can be allocated to multiple

users simultaneously, provided that sufficient quantities are available.

Another ACT addition to PRS-CL was the (REQUIRE-UNTIL (req-wf term-wfif))

metapredicate, which can be used to specify that a required condition remain true until

some termination condition is satisfied. (PRS-CL already included the operator # which could

be used to specify conditions that needed to be preserved, but its semantics were quite dif-

ferent.) We have provided the Require-Until metapredicate with an active maintenance

semantics, which allows the required condition to be temporarily violated without leading

to a complete failure of the goal. Doing so enables the use of repair procedures that can ap-

plied in order to actively re-establish the required condition. Repair procedures are generally

domain-specific ACTs designed for fixing individual conditions. The following describes the

failure/success behavior for Require-Until:

* a Require-Until goal fails when either:

- req-wift is unsatisfied at the point when term-wff becomes satisfied, OR

- req-w•f is unsatisfied and there is no means to repair it.

* a Require-Until goal succeeds when either:

- req-wif is satisfied when term-wff becomes satisfied, OR

- the ACT containing the Require-Until goal terminates without the goal having

failed.

Note that the req-itf need not be satisfied when a Require-Until goal is posted initially.

When the req-wif of a Require-Until goal is initially detected as unsatisfied, PRS-CL

57

will post a repair goal of the form (ACHIEVE (REPAIR req-vtf)). If no repair ACTs have

been specified or none succeed in re-establishing req-vU•, the Require-Until goal is then

considered to have failed. An example of the use of the repair facility is provided in our

demonstration (see Section 4.2).

PRS-CL was also extended to support the Achieve-By metapredicate. Originally, PRS-CL
allowed the specification of goals but not any information indicating which procedures should

be used to accomplish those goals. In order to support the Achieve-By metapredicate, the

PRS-CL interpreter loop was modified to filter candidate ACTs to be applied in order to select

only from among those specified by the Achieve-By metapredicate.

Finally, the unification and database retrieval mechanisms were modified to use the typed

variable syntax common to both the ACT formalism and SIPE-2.

8.2 Shared Knowledge

The ACT formalism serves as a language for communicating plans between the SIPE-2 and

PRS systems. In addition to sharing plans, the two systems must also share knowledge about
the domain of operation. SIPE-2 plans are based on a priori knowledge about the domain,

much of which must be made accessible to PRS-CL in order for the plan to be executed.
Similarly, when PRS-CL reaches an execution impasse, SIPE-2 will be invoked for replanning

purposes and will require knowledge about what changes in the world have occurred during

plan execution. These changes could be either direct consequences of plan execution or

unexpected developments not predicted by the original model of the world.

Inputing domain knowledge independently for both systems both duplicates work unnec-

essarily and introduces the possibility of consistency problems. Instead, we have implemented

a translation facility for exchanging domain knowledge between the two systems.

One part of the facility enables PRS-CL to access SIPE-2 domain information. The domain

information includes both the SIPE-2 database and the SIPE-2 sort hierarchy. Initially, the

SIPE-2 database is translated directly into the PRS-CL database. It is necessary to duplicate
the SIPE-2 database in this manner since much of- the database knowledge is dynamic in

nature: execution of plans by PRS-CL will lead to changes in both the world and what is

known about the world. The PRS-CL database is updated during plan execution to keep

track of the system's overall knowledge about the world. In contrast, the information in the

sort hierarchy describes static properties that are fixed for the scope of the application. Given

the permanence of this information and the potential for hierarchies of substantial size, the

hierarchy is not translated into the PRS-CL database. Instead, PRS-CL has been modified

to consult not only its internal database but also an arbitrary number of external databases

58

(such as the SIPE-2 sort hierarchy) when evaluating the truth-value of a predicate or seeking
bindings for logical variables. This generalized consultation mechanism could be used in the

future to access additional sources of domain information, such as external military databases.

The second part of the translation facility enables PBS-CL to send SIPE-2 updates about

the current state of the world. Since SIPE-2 is a planner rather than an execution system, it

does not keep track of changes in the world that occur during execution. Thus, it requires
updates from PRS-CL in order to keep its world model accurate. Although one could imagine

having PRS-CL issue such updates to SIPE-2 on a routine basis, currently they are used only

to update SIPE-2's world model when replanning is invoked.

8.3 User Interface

A Grasper-based graphical user interface was constructed for PRS-CL that employs the same

basic 'look and feel' as the other component systems of CYPRESS. This interface extends

and improves upon the previous PRS-CL interface in numerous ways. The main emphases of
these modifications have been to simplify interactions with the system and to provide better

run-time tracing facilities. The new user's manual for PRS-CL documents the interface.

8.4 Run-time Replanning

One of the most interesting aspects of the CYPRESS system is its ability to provide run-

time replanning for goals when failures occur during execution. For replanning, PRS-CL is

responsible for detecting replannable failure situations, making requests to SIPE-2 to produce

an alternative plan, and then integrating the new plan into the current execution activities.
The extensions to PS-CL that were necessary to support replanning are described in detail

in Chapter 5.

59

Chapter 9

Handling Uncertainty

Uncertain information is ubiquitous in military operations, as in most real-world problems.

Most planning technologies are not capable of handling uncertain information because of

the combinatorics involved. We have addressed this shortcoming on two fronts. First, we

have developed a theory and implemented it (using SIPE-2 and Gister-CL) for evaluating the

likelihood that plans will accomplish their intended goals given both an uncertain description

of the initial state of the world and the use of probabilistically reliable operators. This method

is described in Sections 9.1 through 9.3, and summarized in Section 9.4. Second, we have

identified several opportunities for using uncertain information in CYPRESS.

One such opportunity is using Gister-CL for situation assessment to determine the facts

to be inserted in the initial world model before planning. Another opportunity is choosing

among competing ACTs in the presence of uncertainty about the situation and uncertainty

about the effects of an ACT. This is a problem faced by both SIPE-2 and PRS-CL, and a

paper published this year by Dr. Wesley describes preliminary investigations of evidential

measures for choosing among alternative actions [31]. A third opportunity involves choosing

of particular objects for use during planning: for example, choosing which unit to use in a par-

ticular operation, or which airport to use for landing them. Since each of these opportunities

involves a time-consuming construction of analyses based on the domain-specific knowledge

about the information sources, we have implemented analyses for one such opportunity as a

proof-of-concept demonstration. In particular we have developed Gister-CL analyses for the

case of selecting an appropriate military unit during planning, as described in Section 9.5.

In addition, we implemented techniques using the CPE for calling and receiving the results

of Gister-CL analyses with both SIPE-2 and PS-CL. These are described in Section 9.6. The

evidential reasoning concepts used in this chapter are defined in Appendix B.

60

9.1 Evaluating Plans in Uncertain Worlds

The approach we have taken in our work is to combine our existing systems into a test bed

suitable for exploring different technological solutions. By combining our existing systems,
we are attempting to accumulate the benefits of each. Each system can support a common

representation, namely first-order logic. In this section we describe our work on the problem

of evaluation of a given plan in an uncertain environment. By uncertain environment, we

mean a world where the initial state is not known with certainty and where the effects of

actions are not known with certainty.

Since Gister-CL supports reasoning about uncertainty, but SIPE-2 and PRs-CL do not,

our approach is to have Gister-CL evaluate a given plan in an uncertain environment. The

plan will not incorporate uncertain information, rather it will be a plan produced by SIPE-2,

or a standard operating procedure that has been selected by PRS-CL, or a plan created by the

user. By evaluate a plan, we mean that Gister-CL will be able to predict the probabilistic

results of executing a plan given that neither the initial state of the world nor the effects of

applying operators (in known states) are known with certainty. Such evaluations could be
utilized by PRS-CL's meta-level procedures to select those procedures for execution that are

most likely to achieve their intended goals or by SIPE-2 to compare alternative plans.

9.1.1 Frame Logic

The first step in applying Gister-CL to a selected domain of application is to define the frame
logic. Suppose that the answer to some question A is contained in a finite set E)A. That is,

each element ai of OA corresponds to a distinct possible answer to the question A, no two

of which can be simultaneously true. For example, A might be a question concerning the
configuration of a set of blocks. In this case, OA would consist of all the possible configurations

under consideration. 9A is called a frame of discernment. If there are exactly three blocks,

labeled "A", "B", and "C", and each can rest on top of one other block or on a table, then

GA might be defined as follows:

OA = {ABC,ACB,AB-C,AC-B,BAC,

BCA, BC-A, BA-C, CAB,

CBA, CA-B, CB-A,A-B-C}

where AB-C corresponds to block A resting on top of block B, and blocks B and C resting

on the table.

61

•NTABLE..

Figure 9.1: BLOCKS-WORLD frame.

In implementing this formal approach, we have found that frames, like the other formal
elements in this theory, can be straightforwardly represented as graphs consisting of nodes
connected by directed edges (i.e., arcs). Because they are graphs, these formal elements
are easily understood, and they provide an intuitive basis for human-computer interaction.
A frame is represented by a named graph that includes a node for each element of the
frame and may include additional nodes representing aliases, i.e., named disjunctions of
elements. Each of these additional nodes has edges pointing to elements of the frame (or
other aliases) that make up the disjunction. Here, the possible configurations for three
blocks are represented by a graph named BLOCKS-WORLD (Figure 9.1) that includes the
thirteen different configurations as elements (e.g., ABC, ACB, AB-C) and aliases for each
block being clear (i.e., CLEAR-A, CLEAR-B, CLEAR-C), for each block being on the table (i.e.,
ONTABLE-A, ONTABLE-B, ONTABLE-C), and for each block being immediately on top of
each of the other two (i.e., AB, AC, BA, BC, CA, CB).

Propositions

Once a frame of discernment has been established for a given question, it formalizes a variable
where each possible value for the variable is an element of the frame. A statement pertaining
to the value of this variable is discerned by the frame, just in case the impact of the statement
is to focus on some subset of the possible values in the frame as containing the true value. In
other words, a propositional statement Ai about the answer to question A corresponds to a
subset of 9A. For example, if the statement is "block A is on block B," then it corresponds
to the set of block configuration in EA where block A rests on block B.

AB = {ABCAB-C, CAB} c eA

62

Other propositions related to this question can be similarly represented as subsets of eA
(i.e., as elements of the power set of eA, denoted 2eA); the subset A, might correspond to

all those configurations in EA that have no block on top of block C. Once this has been
accomplished, logical questions involving multiple statements can be posed and resolved in
terms of the frame. Given two propositions, A, and Ai, and their corresponding sets, A, and
Aj, the following logical operations and relation can be resolved through the associated set
operations and relation:

-iA, *=* OA-A,

AiAA, 4 AmnAj

AivAj c== AiuAj
Ai =*Aj A€==. AiCA

Thus, when two statements pertaining to the same question are available, and they are
each represented as subsets of the same frame, their joint impact is calculated by intersecting
those two subsets. Given "A is on B" (AB) and "the top of C is dear" (CLEAR-C), their joint
impact is

AB = {ABC,AB-C,CAB}

CLEAR-C = {AB-C, BA-C, CAB, CBA,

CA-B, CB-A, A-B-C}

AB n CLEAR-C = {AB-C, CAB}

All other statements that correspond to supersets of this result in GA, are implicitly true
(e.g., "a block is on B"); all of those statements whose corresponding sets are disjoint from
this result are implicitly false (e.g., "A is on C"); and all others statements' truthfulness are
undetermined (e.g., "B is on the table"). As additional information becomes available, it can
be combined with the current result in the same way. Since intersection is commutative and
associative, the order that information enters is of no consequence.

Translating Propositions

Suppose that another question of interest B has been separately framed. For example, if A
corresponds to the state of the blocks at time 1, then B might correspond to the state of
the blocks at time 2. Its frame of discernment, GB, is defined as the set of possible block
configurations at time 2 (for this example, eA and eB are equivalent).

63

Os= {b 1,b2,. ..,b,,,l

Bj 6eB

If something is known about the state of the blocks at time 1, we would like to take advantage

of this information to narrow the possibilities at time 2. To do this, one must first define

a compatibility relation between the two frames. A compatibility relation simply describes

which elements from the two frames can be true simultaneously i.e., which elements are

compatible. For this example, if at most one block can be moved in a single unit of time,

then state AB-C from eA is compatible with AB-C, CAB, and A-B-C from e,, since these are

the only states that could immediately follow AB-C. Thus, a compatibility relation between

frames eA and (B is a subset of the cross product of the two frames. A pair (a,, bi) is included

if and only if they are compatible. Typically, there is at least one pair (a,, bj) included for

each a, in eA (the analogue is true for each bh):

II(AB) _ ()A X (B

Using the compatibility relation II(AB) we can define a compatibility mapping rA...B for

translating propositional statements expressed relative to eA to statements relative to ea.

If a statement A, is true, then the statement rA,..B(Ak) is also true:

Am-B : 2eA 2'e.

rA...B(Ak) f {b, (ai,,b,) E 11I(A.B), a, E Ak,

In. our example, the compatibility relation II(AB) delimits all possible state changes be-

tween time 1 and 2. However, when evaluating a plan, additional information is available,

namely, the specific action or operation that is to be performed. One means of incorporating

this information is to define a distinct compatibility relation corresponding to each operation.

For example, the compatibility relation rIPUT.C-ON.A would have CAB as the only state in (eB

compatible with AB-C in 9A; those states in (A that already have block C on block A (e.g.,

CAB) or that have some block on C, thus preventing it from being moved, are compatible
with the same state in eB.

Within Gister-CL, each compatibility relation is represented by a graph that includes a

node for each of the elements in its corresponding frame and edges connecting compatible
elements. An edge connects two elements just in case the element at the arrow head can be

reached in one temporal step from the other connected element (Figure 9.2).

64

Figure 9.2: PUT-C-ON-A compatibility relation.

Given the propositions AB and CLEAR-C: at time 1, we conclude that the initial state is
either AB-C or CAB; if we know that PUT-C-ON-A is applied, then we conclude that the
state at time 2 must be CAB. Presuming that -the possible states for any time : are the same

as those for times 1 and 2, and that the possible operations and their effects are the same

in moving from any time : to + 1, these frames and compatibility relations can be used to
calculate the effects of any planned sequence of actions.

The overall topology, formed by frames and compatibility relations, is represented as a

graph, called a galle'ry. In a gallery the frames are represented as nodes, and the compat-
ibility relations are represented as edges connecting the frames they relate. In Figure 9.3,
the BLOCKS-WORLD frame is represented as a node, and the compatibility relations corre-
sponding to •ac.h operator are represented by edges connecting the BLOCKS-WORLD frame

to itself. Two other compatibili'•y relations capture the null operation (i.e., the NO-OP com-
patibility relation has each element compatible with itself) and the random operation (i.e.,

the UNKNOWN compatibility relation that has every element connected to every element).

9.1.2 Framing Evidence

When information is inconclusive, partial beliefs replace certainty; probabilstic distributions
over statements discerned by a frame replace Boolean valued propositions. These distribu-
tions are called mass distributions. Each body of evidence is represented as a mass distribution

(e.g., mA) that distributes a unit of belief over propositional statements discerned by a frame

(e.g., eA4):

65

PUT.A.ON.TABLE NO.0P UNKNOWN

P~r.AON-CPUT .5-ON-A

P~-A0NB LOCKS-WORLD PUT-B-ON-C

PUT-C-ON-TABLAE 0PVT-B-ON-TA.BLE

PUT-C-ON-B PUT.C.ON-A

Figure 9.3: BLOCKS-WORLD gallery.

mA: 2eA [0, 1]

E mA(A,) = 1
A.COA

mA(O) = 0

For example, if we are told that there is an 80% chance that block A is on B and a 20%

chance that block A is not on B, then this is represented by a mass distribution mAB that

attributes 0.8 to the set corresponding to AB, 0.2 to the complement of AB with respect to

eA, and 0.0 to all other subsets of eA.

0.8, {ABC, AB-C, CAB}
mB(Ai) = 0.2, {ACB AC-B, BAC, BCA, BC-A,

BA-C, CBA, CA-B, CB-A, A-B-C}

0.0, otherwise

Interpreting Evidence

To interpret a body of evidence relative to the star Aj, we calculate its support and
plausibility to derive its evidential interval as follows

Spt(Aj) = E MA(Aj)

PLs(Ai) = 1 - sPt(eA - A,)
[Spt(Ai), P13(Ai)] 9_ (0,1]

Given the body of evidence represented by mAB, the evidential interval for AB is [0.8,0.8],

for CLEAR-C is [0.0, 1.0], for {ABC) is [0.0, 0.8], and for CLEAR-B is [0.0, 0.2].

66

Propositional statements that are attributed nonzero mass are called the focal elements
of the distribution. When a mass distribution's focal elements are all single element sets, the

distribution corresponds to a classical additive probability distribution, and the evidential

interval, for any proposition discerned by the frame, collapses to a point, i.e., support is

equivalent to plausibility. For any other choice of focal elements, some propositional state-

ment discerned by the frame will have an evidential interval with support strictly less than

plausibility. This reflects the fact that mass attributed to a set consisting of more than one el-

ement represents an incomplete assessment; if additional information were available, the mass
attributed to this set of elements would be distributed over its single element subsets. Thus,

an evidential interval with support strictly less than plausibility is indicative of incomplete
information relative to the frame.

For example, consider another point of evidence. A computer vision system reports that

block C is dear. Based upon our previous experience with this system, we know that it always
correctly determines if a block is clear or not, but 10% of the time it misidentifies the block.
In other words, although we do not doubt that some block is clear, we are uncertain whether
the block observed was C. Assuming that there is a 90% chance that the observed block was
C and a 10% chance that it was not, then this evidence is represented by a mass distribution
mCLEL.c that attributes 0.9 to CLEAR-C and 0.1 to the set of all possible configurations,
since every configuration has at least one clear block.

0.9, {AB-C, BA-C, CAB, CBA,

CA-B, CB-A, A-B-C}
MCLAR-(,i) = 0.1, {ABC, ACB, AB-C, AC-B,

BAC, BCA, BC-A, BA-C, CAB,

CBA, CA-B, CB-A, A'B-C}
0.0, otherwise

Based upon this distribution, the evidential interval corresponding to the proposition that
block C is clear is [0.9, 1.0], that it is not clear [0.0, 0.1], and that it is any particular config-

uration where C is clear is [0.0, 1.0].

Fusing Evidence

When two mass distributions ml and m• representing independent opinions are expressed
relative to the same frame of discernment, they can be fused (i.e., combined) using Dempster's

Rule of Combination [26]. Dempster's rule pools mass distributions to produce a new mass

distribution m3 that represents the consensus of the original disparate opinions. That is,
Dempster's rule produces a new mass distribution that leans towards points of agreement

67

between the original opinions and away from points of disagreement. Dempster's rule is

defined as follows:

m(Ai,) m'E m 2 m(Ak)

_ 1 m MA)(A,)m2 CAj)
AA,=-Ak

<1.

Combining the two bodies of evidence mAB and mCLEAR.C by Dempster's rule results in

a mass distribution that attributes 0.72 to C being dear and A being on B, 0.18 to C being

clear and A not on B, 0.08 to A on B, and 0.02 to A not on B.

0.72, {CAB, AB-C)

0.18, {A-B-C, CB-A, CA-B, CBA, BA-C}

mAD 9 mcLEAR-c(AS) = 0.08, {ABC, AB-C, CAB)
0.02, {ACB AC-B. BAC, BCA, BC-A,

BA-C, CBA, CA-B, CB-A, A-B-C}

0.0, otherwise

This induces the following evidential intervals: [0.9, 1.0] for CLEAR-C, [0.72, 1.0] for CA,

[0.8,0.8] for AB, [0.0,0.8] for {CAB) and {AB-C}, 10.0,0.2] for {CBA}, and [0.0, 1.01 for

CLEAR-A.

Since Dempster's rule is both commutative and associative, multiple (independent) bodies

of evidence can be combined in any order without affecting the result. If the initial bodies of

evidence are independent, then the derivative bodies of evidence are independent as long as

they share no common ancestors.

The conflict (i.e., x) generated during the application of Dempster's rule quantifies the

degree to which the mass distributions being combined are incompatible, that is, the degree

to which the two distributions are directly contradictory. When K = 1, the distributions are

in direct and complete contradiction to one another and no consensus exists (i.e., Dempster's

rule is undefined); when ic = 0, there is no contradiction and the evidential intervals based

upon the consensus distribution willbe contained within the bounds of the evidential intervals

based upon the component distributions, i.e., the combination is monotonic, otherwise, the

umponent distribution are partially contradictory. In this case, Dempster's rule focuses

the consensus on the compatible portions of the component distributions by eliminating

68

the contradictory portions and normalizing what remains; some evidential intervals based
upon the consensus distributions will not fall within the bounds of intervals based upon the
component distributions, i.e., the combination is nonmonotonic.

Translating Evidence

If a body of evidence is to be interpreted relative to a question expressed over a different
frame from the one over which the evidence is expressed, a path of compatibility relations
connecting the two frames is required. The mass distribution expressing the body of evidence
is then repeatedly translated from frame to frame, via compatibility mappitgs, until it reaches
the ultimate frame of the question. In our planning example, interpreting the effects of a body
of evidence about time 1 on propositions at time 5 requires that the evidence be translated
from frame to frame, for each planned action between time 1 and time 5.

In translating mA from frame OA to frame eB via compatibility mapping rA...B, the

following computation is applied to derive the translated mass distribution MB:

MR(Bi) F, M(=
1-c rm(A()=B)

= F_ mA(A,)
rA._(A4)=e

<1.

Intuitively, if we (partially) believe Ai, and A, implies Bi, then we should (partially) believe
Bj; if some focal element A, is incompatible with every element in (B, then there is conflict
(i.e., r.) between the evidence and the logic of the frames and compatibility relation. This is
equivalent to the conflict in Dempster's rule.

In our example, to evaluate the effect of applying the PUT-C-ON-A operator, given the
two independent bodies of evidence about the initial state, mAB and mcLEAR-C, we first
combine these mass distributions using Dempster's rule and then translate the result via
compatibility mapping rPUT.C-ON.A to frame 9B. The result is a mass distribution that

attributes 0.72 to {CAB}, 0.18 to {CA-B, CBA, BA-C), 0.08 to (CAB, ABC), and 0.02 to the
complement of {A-B-C}.

69

0.72, (CAB)

0.18, {CA-B, CBA, BA-C}
0.08, {ABC, CAB}

mPUT.C.0N.A(AB9CLEAR.C)(Ai) = 0.02, {ABC, ACB, AB-C, AC-B,

BAC, BCA, BC-A, BA-C,
CAB, CBA, CA-B, CB-A)

0.0, otherwise

This induces the following evidential intervals: [0.9,1.01 for CLEAR-C, [0.72, 1.0] for CA,
[0.8, 0.8] for AB, [0.72, 0.8] for {CAB), [0.0, 0.2] for {CBA}, [0.0, 0.1] for CLEAR-A, and [0.0, 0.0]

for {AB-C}. Given a sequence of operators to be applied after executing PUT-C-ON-A, we
simply perform successive translations until the sequence is exhausted.

When multiple bodies of evidence are available over different frames, they must be trans-
lated to a common frame before they can be combined using Dempster's rule. They can all
be translated to a single frame and combined, or subsets of the available evidence can be
translated and combined at intermediate frames, and these intermediate results then can be
translated and combined until the final destination frame is reiched. If during plan execu-
tion, intermediate observations are made, resulting in additional bodies of evidence about the

state of world at time i, these bodies of evidence can be combined' with the body of evidence
representing the presumed state of the world at time i, to refine the predicted outcome of
the plan. So, in our example, if we had additional information about the state of the world

at time 2, it could be combined with our result for that time before additional translations
are performed.

9.1.3 Evidential Analyses

Once a gallery has been established, Gister-CL can analyze the available evidence. The goal

of this analysis is to establish a line of reasoning, based upon both the possibilistic information
in the gallery and the probabilistic information from the evidence, that determines the most

likely answers to some questions. The gallery delimits the space of possible situations, and the
evidential information establishes the likelihoods of these possibilities. Within an analysis,.
bodies of evidence are expressed relative to frames in the gallery, and paths are established
for the bodies of evidence to move through the frames via the compatibility mappings. An
analysis also specifies if other evidential operations are to be performed, including whether

multiple bodies of evidence are to be combined when they arrive at common frames. Finally,
an analysis specifies which frame and ultimate bodies of evidence are to be used to answer

each target question. Thus, an analysis specifies a means for arguing from multiple bodies of

70

[0.9, 1.0o CLEAR-C
[0.72, 1.0] CA
[0.8. 0.8] AB

10.0, 0.81 (CAB)
10,0, 0.83 (AB-C)
[0.0,0.21 (CBA)

(0.9, 1.01 CLEAR-C
[0.72, 1.01 CA

MASOCIZAIC[0.%,0.8 AB
[0.72, U] (CAB)
[OA00.0] (AB-C)

MCUL-. (00, 0.2] (CBA)
0.0, 0.01 CLEAR-A

Figure 9.4: An analysis.

evidence toward a particular (probabilistic) conclusion. An analysis, in an evidential context,
is the analogue of a proof tree in a logical context.

Analyses are represented as data-flow graphs where the data and the operations are ev-
idential. Figure 9.4 is the analysis that fuses mAn and mCLEAP.-c and then applies the
PUT-C-ON-A operator to the result, and finally interprets that result relative to some se-
lected propositions. Primitive bodies of evidence are represented by elliptical nodes, and
derivative bodies of evidence are represented by circular nodes. Diamond-shaped nodes rep-
resent interpretations of bodies of evidence. The values of these nodes are used as repositories
for the information (i.e., data) that they represent. For bodies of evidence, this information
includes a frame of discernment, a mass distribution, and other supporting information (e.g.,
the compatibility relation to use during translation).

9.1.4 Implementing Evidential Reasoning

In the preceding discussion, we have defined the frame logic in terms of set theoretic concepts.
This is the way that it is most often presented, since the audience is usually more familiar
with multivariate decision theory and statistics than with propositional logic. However, all of
the evidential reasoning operations can be recast using propositional logic. These modified
definitions follow.

Interpretation:

Spt(A)= mA(A1)
Ai7Aj

71

Pls(A,) I - Spt(-'A)
[Spt(Aj), Pla(Aj)] (0 1

Fusion:

M3(AkiAA,) = m' EDm'(AiAAA)

E 1' m(Ai)m' (Ai)
A,iAA,

M-(AA ,M 2A(Aj
.(AAA,)

<1

Translation:

mB j) = 1 mA(Ai)
rAB(Ai)=Bj

1C = E mA(Ai)
rA.B(AI)=FALSE

<1.

Implementing evidential-reasoning systems can be divided into two independent subprob-
lems: How to represent mass distributions and perform numeric calculations on them? How
to represent propositions and perform logical inferences? Accordingly, Gister-CL's imple-
mentation of evidential reasoning consists of two distinct components: one that manipulates
and interprets mass distributions and another that performs logical reasoning. As mass dis-
tributions are manipulated by the first component, logical questions are posed to the second
component. The implementation of each of these components is independent of the other.
The best-suited implementations depends upon the characteristics of the domain of applica-
tion and upon the characteristics of the host computational environment. Most importantly,
the numeric component places no constraints on the representation of propositions or the
implementation of the logical operations, just so long as the logical questions posed by the
numeric component are answered by the logical component.

Since different logical representations are better suited to different applications, Gister-
CL allows a frame logic implementation to essentially be given as a parameter. A frame
logic implementation is represented as a distinct object (using object-oriented programming
techniques) capable of answering all of the logical questions required to support the numeric
module's evidential operations. One such implementation is based on set theory, mirroring
the set-theoretic presentation of the frame logic in this report.

72

However, it should be clear from the simple blocks world example in this report that this
representation is not suitable for real-world planning. The representation is too cumbersome,
since each possible world state must be enumerated, and the compatibility relations must
specify all compatible states for every possible world state. Instead,. we have developed a
frame logic based upon SIPE-2's representation of plans and techniques for reasoning about
them.

9.2 A SIPE-2 Logic for Gister-CL

The central idea behind the combination of SIPE-2 and Gister-CL is that the former can
provide the logic used by the latter when the domain is planning, with several advantages.

Briefly, these advantages are compactness of representation (one does not enumerate every
possible world state nor elements of compatibility relations), SIPE-2's efficiency when deter-
mining the truth of a proposition in a world state, the use of nonlinear plans under conditions
imposed by SIPE-2's heuristics, and the ability of the planner to generate plans automatically
when Gister-CL eventually asks that goals be satisfied rather th an that operators be applied.

We have implemented a SIPE-2 frame logic for Gister-CL as described below, and have
tested it by evaluating and interactively constructing plans in a blocks world with uncer-
tain states. When Gister-CL evaluates plans, the SIPE-2 logic provides the algorithms and
representations for determining whether a proposition is true in a world state, for determin-
ing whether two world states are equivalent, and for performing translations using compact
SIPE-2 operators.

9.2.1 World States and Propositions

The different possible initial world states are represented in Gister-CL as SIPE-2 plan nodes
of type planhead. Planhead nodes explicitly list all predicates that are true at that node.
All other world states, i.e., those generated by planned actions, are represented in Gister-CL
by SIPE-2 plan nodes of type process. The planner creates these plan nodes in response to
requests from Gister-CL to perform translations (see Section 9.2.2). Process nodes implicitly
represent the world state since they list only predicates that have changed since the previous
node. Gister-CL represents an incompletely specified world state as a set of plan nodes.

For example, given the propositions AB and CLEAR-C at time 1, we represent the resulting
incompletely specified world state as {AB-C, CAB}, where AB-C and CAB are names for SIPE-
2 planhead nodes. Suppose an operator is applied in this state. As described in the next
section, this will cause SIPE-2 to produce plan networks for each element of this set, and the
incompletely specified world state at time 2 would be represented as fP13, P19), where P13

73

P13

AB-C PUTON
C
A

pig
CAB*' PUTON

C
A

Figure 9.5: A plan network.

and P19 are names for SIPE-2 process nodes in a plan network. SIPE-2's graphical portrayal

of.this plan network is in Figure 9.5. From SIPE-2's perspective, this network consists of two

distinct plans, each beginning in a different world state, and each applying a single operator.

Gister-CL needs to query the truth of propositions in specific world states. In our imple-

mentation, Gister-CL accepts propositions specified in SIPE-2 syntax, which are then passed

on to the planner together with the plan node representing the desired world state. Checking

a proposition in an incompletely specified scate will result in several such calls to the planner,

one for each element in the set of plan nodes representing the incomplete state information.

For the answer to be 'true, SIPF-2 must conclude that the proposition is true at each plan

node in the set; for the answer to be false, SZPE-2 must conclude that the proposition is false

for each plan node; otherwise, the truth value of the proposition is indeterminate with respect

to the incompletely specified state. SIPE-2 parses the propositions into its data structures

and simply applies its truth criterion to the proposition at the plan node. The plan node is

part of a plan network that the truth criterion uses to compute its result. This computation

has been shown in practice to be efficient, even in realistic domains [34].

In the blocks world example, the SIPE-2 predicates, plans, and operators are exactly

the same as they are in published examples [331. The only limitation of this technique is

that certain restrictions are placed by SIPE-2 on the form of the input propositions [33].

This did not prove to be problematic, and some restrictions could be easily relaxed. This

implementation provides both the compactness of plan nodes as a representation and the

efficiency of computing on tlh•m with the truth criterion.

9.2.2 Translations

As discussed earlier, Gister-CL can use a graph to represent a compatibility relation that

captures the effects of an action. However, this representation is much too cumbersome in

practice since an arc must be included from every possible pair of successive world states

under that action.

74

The SIPE-2 logic does translations for Gister-CL by using its operators to generate plan

networks. Gister-CL has a set of named compatibility mappings, but does not represent these

mappings in any more detail. Gister-CL calls SIPE-2 to translate from one world state to

another using the named compatibility mapping. The planner translates Gister-CL's name

into a goal or process node in a plan network. For example, a translation request for the

compatibility mapping PUT-A-ON-B causes the planner to add a process node to a plan

network. The process node specifies that the standard PUTON operator be applied to the

arguments A and B. Alternatively, a goal node might have been added instead of a process

node. Such a goal node would specify (ON A B) as the goal. The current implementation

creates process nodes; the use of goal nodes is discussed in Section 9.2.2.

The node is added to the plan at the point that represents the state from which we are

translating. The planner then expands this plan in more detail to obtain the final represen-

tation of the new world state. This process makes use of SIPE-2's causal theory for deducing

the effects of actions. The plan node returned to Gister-CL is the last node in the expansion

of the added node. Since Gister-CL may make the same request several times, SIPE-2 uses its

context mechanism to keep track of all expansions and returns an already constructed plan

node whenever appropriate.

Suppose we apply PUT-A-ON-C in the incompletely specified state {AB-C, CAB) at time 1.

SIPE-- creates process nodes for applying PUTON to A and C after each of the two planhead

nodes AB-C and CAB. The first one is expanded by the planner, and a process node, P13,

is returned. As described later, an equivalence test in the SIPE-2 frame logic allows Gister-

CL to merge P13 with AC-B. The second process node cannot be expanded because the

precondition of the operator is not satisfied. SIPE-2 returns the previous world state, CAB

in this case, on the assumption that the executing agent recognizes the unexecutable action

and ignores it. Thus the resulting uncertain state at time 2 is fP13, CABI. Domain-specific

knowledge about the effects of attempting unexecutable actions could easily be incorporated.

For-example, if the agent would knock C off A while attempting to put A on C in CAB, an

operator could be written to encode this knowledge, and the precondition of this operator

would allow it to expand the node for putting A on C.

We enhanced Gister-CL so that it can associate parameters with compatibility relations

that are being used in translations. Formerly, each domain process had to be represented by

a distinct compatibility relation. This required that each possible parameterization of the

PUTON operator be, modeled as a distinct compatibility relation with a unique name, e.g.,

PUT-A-ON-C. This is impractical for all but trival planning problems. With this enhancement

to Gister-CL, only a single PUTON compatibility relation is required. When it is used for

translation, both it and the arguments to use have to be provided, e.g., PUTON(A, C).

One advantage of using plan networks in this way is that they might contain nonlin-

75

ear plans, yet the nonlinearity would be invisible to Gister-CL. The process node returned
to Gister-CL would be after the unordered actions in the nonlinear plan, so only SIPE-2's

truth criterion needs to address the question of nonlinearity. Thus, the restriction to linear
sequences can be partially alleviated.

Generating Plans for Translations

One extension of this scheme is to allow the translation to be described as a goal node to be

achieved. The planner could then build an arbitrary plan for achieving this goal and use it to

represent the compatibility mapping. One complication is that this means the "compatibility

mapping" might vary depending on the situation (since different plans might be generated).
However, achieving a goal in an uncertain world state will require that the same plan be used

for each world state in the mass distribution. While this complication does not appear to

pose theoretical difficulties, it has not yet been implemented. This capability of translating
via goals would be useful for letting the planner fill in the details of a more abstract plan

that has been provided.

9.2.3 Equivalent States

It is important to notice when two world states are equivalent in Gister-CL, since this can
significantly collapse the size of the sets that the system must reason about, which in turn

significantly reduces the combinatorics. This is particularly useful in the blocks world because

the simple states mean that all sorts of plan networks might result in the same world state.

In more complex, realistic domains it may be rare for different sequences of actions to result

in exactly the same state. However, even in these domains it will eventually be necessary to

recognize states as equivalent in all relevant aspects so that the combinatorics can be reduced.

For this reason, we have not written code to determine the equality of two states in

SIPE-2 (a possibly expensive computation). Instead we allow the user to specify the relevant
aspects for dividing states into equivalence classes. While this puts more of a burden on the

user, we view it as necessary for obtaining heuristic adequacy in complex domains. This is

accomplished by defining an "equivalence" operator that is designated for this checking. This

is a standard SIPE-2 operator with a list of arguments and a precondition, but nothing else.

Matching the precondition in a particular world state will return a list of instantiations for

variables in the operator that effectively specify its equivalence class. Thus, when Gister-CL

asks whether two world states are equivalent, SIPE-2 simply calls its truth criterion on the

precondition of the equivalence operator at each of the two states. If the result is failure in

both cases, or success with the same variable instantiations in both cases, then the two states

76

are equivalent. Again, the efficiency of the truth criterion is used to significantly improve on

an algorithm for determining the equality of any two states.

For example, our equivalence operator in the blocks world has a precondition of

(ON A OBJECT1) A (ON B OBJECT2) A (ON C OBJECT3), where the OBJECTn are vari-

ables to be instantiated. In a world where A, B, and C are the only blocks, this condition

distinguishes every state, effectively implementing a test for equality with its efficiency ob-

tained through use of SIPE-2's equivalence-operator mechanism. In our previous example,

P13 and AC-B were equivalent. This is easily determined by matching the equivalence con-

dition at each of these two nodes, and getting C, TALBLE, and TABLE as the instantiations

for the OBJECTn in both cases.

9.3 Probabilistic Operators

The discussion to this point has focused on plan evaluation when the initial (and therefore

subsequent) state of the world is uncertain. Another source of uncertainty that needs to be

taken into account is the nondeterministic nature of many real-world operators. Within the

blocks world, one can imagine that if a robot is attempting to move the blocks as specified in

a plan, that each operation will only probabilistically achieve the intended goal. For example,

if the operation is to put block C on block A, the initial grasp for block C might fall short,

leaving block C in its original position, or the placement of block C on top of block A might

fail, causing block C to fall to the table. These probabilistically accurate operators can be

incorporated into an evidential model as probabilistic translations.

Let's first examine this using the set-based logic introduced in Section 9.1. As previously

discussed, given two frames, 9A and (B, and a compatibility relation, II(A,B), propositional

statements can be translated between these two frames. Alternatively, instead of translating

propositional statements between these two frames via rA--B and rB...A, we might choose

to translate these statements to a common frame that captures all of the information and

then on to the target frame. This common frame, e(A,B), is identical to the compatibility

relation II(A,B). Frames eA and eB are trivially related to frame G(A,B) via the following

compatibility relations and compatibility mappings:

O(AB) = II(A,B) 9 GA X OB

II(A,(AB)) = {(ai,(aibi)) (ai,bi) E II(A,B)}

I((AB).B) = {((a,, bj), bj) (ai, bi) E II(A.B))

rA..(A,B)(Ak) = {(ai, bj) I (ai,bi) E II(AB), ai E Ak }

r(AB)--B(Xk) = {bi I (a,,bj) E II(AB). (ai,bj) E Xk }

77

Given these three frames, eA, G(A,B), and 0B, and two compatibility mappings, rA--(AB)

and r(A,B)-.B, a mass distribution over GA can be translated to O(A,•B) and then on to OB;
the result will be identical to that produced through a single translation from eA to GB via

rA'-..B.

Once this intermediate frame has been introduced, probabilistic information about the

relationship between eA and eB can be taken into account. This information, expressed

as a mass distribution, m(A.B), over G(A,B), provides a means of "weighting" translations

to favor some elements of 0 (A,B) over others. The probabilistic translation is accomplished

by translating the mass distribution over EA to e(A,B), fusing the result with m(A,B), and

translating the fused result to GB.

In our blocks world example, if II(A,B) (and consequently G(A,B)) delimits all possible state

changes between time i and i + 1, then each nonprobabilistic operator can be represented by

a mass distribution that assigns all of its mass to a single set, the set consisting of paired

states from eA and (B where the state from (GA is transformed into the state from GB

by applying that operator. For the operator PUT-C-ON-A this set assigned unit mass is

designated PUT-C-ON-A. Given similarly constructed sets, PUT-C-ON-TABLE and NO-OP,
corresponding to the operators for putting C on the table and doing nothing (i.e., no changes
in state), we can represent a probabilistically accurate operator for putting C on A by a mass

distribution mpUT-c-ON-A. If this mass distribution is intended to represent the knowledge

that 90% of the time this operator acts as intended, but 10% of the time it functions as if

the intended action were to put C on the table or to do nothing, then it would be defined as

follows:

0.9, PUT-C-ON-A
mPUT-C-ON-A(XM) = 0.1, PUT-C-ON-TABLE U NO-OP

0.0, otherwise

To determine the probabilistic effect of this operator on mAB $ mCLEAR-C, we first trans-

late mAB 9 mCLEAR-C to the equivalent of frame G(A,B) via compatibility mapping rA--(A.E),

fuse this result with MpUT.C.ON.A, and then translate this result via r(A,B),.B to obtain

the final result. Using this technique, we coclude [0.9, 1.0] for CLEAR-C, [0.65, 1.0] for

CA, [0.8,0.8] for AS, [0.65,0.8] for fCAB}, [0.0,0.2] for {CBA}, [0.0, 0.19] for CLEAR-A, and
(0.0, 0.8] for {AB-CJ. Comparing these results with previous ones obtained using a nonprob-
abilistic version of PUT-C-ON-A, we find that the support for CA and {CABJ has decreased,
and the plausibility for CLEAR-A and {AB-C) has increased, while the evidential intervals for

the others have remained unchanged. This re1.ncts the fact that C is less likely to be on top

of A and more likely to be elsewhere.

78

PUTON

BLOCKS-WORLD

NO-OP UNKNOWN

Figure 9.6: A gallery based on the Sipe-2 logic.

More specifically, we can define a propabilistic translation that transforms a mass distri-
bution m' , defined over frame 9A, via compatibility mappings to a frame O(AA) and a mass
distribution m(AA), to determine the result mn+' over the same frame eA, in a single step.

Mt+I'(Ak) M' 1m(Aj)M(AA)(XI)
-r(A.A). A(rA-(A.A)(A.))=Ak

= •-m(Aj)m(A,A)(Xj)

r(A,A),.A (r A,.(A,A) (Ai))=

If we now turn to the SIPE-2 logic for Gister-CL, we can simplify even further. Within
the SIPE-2 logic, a nondeterministic operator is captured by a mass distribution over pa-
rameterized compatibility relations where these compatibility relations correspond to SIPE-2

operators. For the blocks world, the gallery consists of a single frame with two compatibility
relations: PUTON and NO-OP (Figure 9.6). Utilizing this gallery, mPUT.C.ON.A is represented
as follows.

0.9, {PUTON(C, A)}

mPUT.C4ON.A(Xi) 0.1, {PUTON(C, TABLE), NO-OPO)

0.0, otherwise

If ml expresses what is currently known about the state of frame eA and mx expresses
a probabilistic SIPE-2 operator relative to 0A, then the following expression for m' 1 deter-
mines the probabilistic effect of that operator in that state.

mA (Ak) = mtA(Aj)mx(Xj)

U•taXi z(Ai)=Aa

In essence, the application of the parameterized SIPE-2 operators Zj replace the compatibility
mappings and the normalizing factor is not needed since every SIPE-2 operator is defined to

79

return something for every state. Gister-CL was modified to directly support this operation

as a single probabilistic translation. Importantly, this approach to probabilistic operators

requires no changes to the SIPE-2 frame logic previously described.

Given this last addition to Gister-CL, it is fully capable of evaluating plans in the presence

of nondeterministic operators and uncertain initial states.

9.4 Summary of Plan Evaluation Under Uncertainty

We have implemented a SIPE-2 logic within Gister-CL, and have tested it by evaluating and

interactively constructing plans in a blocks world with uncertain world states. This work

demonstrates some of the ways that our planning technology can be beneficially combined
with evidential reasoning. Several advantages are obtained by this combination: compactness

of representation, the efficiency of SIPE-2 operators to determine the effects of actions, SIPE-

2's efficiency when determining the truth of a proposition in a world state, the use of nonlinear

plans, and the ability of the planner to generate plans automatically while Gister-CL manages

the uncertain aspects of the situation.

9.5 Selection of Military Forces During Planning

Military operations planning requires selecting particular military forces to carry out specific

missions in support of larger military objectives. Conrt.ricting plans that use the most

appropriate military units to carry out prescribed missions is important to the overall success

of th! mission. The choice of the most appropriate unit will typically depend on several

factors that range from the availability, readiness, firepower, and so forth to the type of

enemy forces expected to be encountered. The choice is difficult because there is generally

uncertain information about the relevant factors.

In this section, we describe how Gister-CL, which is based on the theory of evidential

reasoning (ER), can be used during plan generation to help reason about selecting an ap-

propriate Army unit to carry out a specified mission. We begin by describing how this is

currently accomplished in the Army. Then we describe the problem Gister-CL is intended

to address in this task and indicate how this task can be carried out within a Gister-CL

framework. We present an example from the IFD-2 plan generation.

Current Unit Selection Method: Selecting a unit to carry out a particular mission is

currently a highly manual process that typically involves assessing and then comparing the

perceived strength of friendly and potential enemy forces. A unit is then chosen based on the

80

degree to which it meets or exceeds specified force-strength ratio requirements. For example,
to carry out a deterrent mission, sound military practice suggests that the ratio of friendly to
enemy force strength be greater than or equal to two. For attack missions, the ratio should
be greater than or equal to three.

A unit's strength is based on the combined assessments of different characteristics that
include:

* TROOPS: The degree to which the unit has its full and ready complement of military
Wersonnel.

* ARMAMENT: The type and extent to which the troops are appropriately armed.

* TRADITION: The degree to which the current mission is the type of mission the
unit has traditionally fought.

* EQUIPMENT: The type and operational status of equipment used by the unit.

e TRANSPORT: The type and readiness of transportation required to move the unit.

e POSTURE: The degree to which the unit is located where it needs to be deployed to
carry out a mission.

* MORALE: The morale of the troops assigned to the unit.

* TRAINING & EXPERIENCE: The amount and type of training the unit has
received for the mission at hand, and the amount and type of mission experience.

* MOBILITY: The degree and speed with which the unit can be relocated.

Friendly as well as enemy unit forces have an associated numerical "base-strength" value
which, in some sense, represents the power of a unit given no deficiencies with respect to its
characteristics. If a unit has its full complement of troops, armament, equipment, and so
forth, then the unit can be said to be at its designed level of strength (i.e., power). Intu-
itively, deficiencies in one or more characteristics should be reflected in terms of a reduction
in a units overall power. Expressing deficiencies is traditionally done in terms of a "force
multiplier" (FM) that is associated with each characteristic. A FM is a numerical value
in the range [0, 11, where a value of 0 means a unit is totally deficient with respect to the
corresponding characteristic, a value of I means a unit is not deficient with respect to the
corresponding characteristic, and values decreasing from 1 to 0 mean the unit is increasingly

deficient with respect to the corresponding characteristic.

The overall power of a unit should decrease as a unit becomes increasingly deficient in
one or more characteristics. This intuitive behavior can be modeled in several ways. One

81

commonly used method involves summing the product of the FMs and the unit's base-strength
value. Expressed in equation form, for 1 _< i < n = the number of characteristics, the power

of a unit u is defined as:
nI

Power(u) = base-strength(u) * I- FM(characteristici).
i=1

If all FMs equal 1, then the overall power of the unit remains at its designed base-strength.

A decrease in one or more FMs results in a reduction in the unit's overall power.

To select an appropriate unit to carry out a particular mission, the power of friendly (i.e.,

Powerj) as well as enemy (i.e., Powere) force units must be determined. The force-strength

ratio for a particular friendly and enemy unit pair is defined to be

Powerj(u)
Powers(u)

where a ratio of o is defined to be 1, a ratio of Power.(,)>o0 is defined to be 0, and a ratio of

Power(,,)>o is defined to be oo which means that the power of the friendly force far exceeds

the mission force-strength ratio requirements.

An appropriate unit to carry out a mission, therefore, is one which meets or exceeds the

mission force-strength ratio requirements. For the case where multiple units meet or exceed

such requirements, choosing any of these alternatives is said to be equally valid. It may also

be the case that one or more units far exceed a force-strength ratio requirement. In this case,
it may be wasteful to select such a unit if alternative units are available which meet or exceed

such requirements.

Problem Statement: Under ideal circumstances, assessments of deficiencies in a unit's

characteristics and determination of its overall power can be made with complete certainty.

Unfortunately, we rarely have the luxury of operating under ideal situations. In practice, it
may not be possible to know and assess characteristics of even friendly, much less enemy,

forces. For example, assessing characteristics like morale, readiness, and tradition is a highly

subjective process. Thus, it may be difficult to give a precise FM value, so a range is given
instead. Furthermore, one may be uncertain about any assessment of a FM they might wish
to express. In other words, the probability that a given FM is correct may be less than

1-that is, 0 < Prob(FM)_5 1. Consequently, evidential reasoning is important for selecting

an appropriate unit.

In the following sections, we describe how to use Gister-CL to select an Army unit to
carry out a prescribed mission.

82

9.5.1 Framing the Problem

Unit selection involves first comparing the perceived strength of friendly and potential enemy
forces, then selecting a unit based on the degree to which a unit meets or exceeds prespecified
strength-ratio requirements. Accomplishing this within an ER framework requires construct-
ing frames of discernment and relationships between them for both friendly and enemy unit
forces, a process commonly called framing the problem (see Appendix B). A frame is con-
structed that represents the nominal "base" strength for each unit, and other constructed

frames represent the FM assessments of other force characteristics. Within Gister-CL, these
frames are constructed in a gallery as shown in Figure 9.7. Frames corresponding to a friendly
force begin with "F", and frames corresponding to an enemy force begin with an "E".

Relationships between the frames are represented by connecting arcs called. compatibility
relations (CRs). In some cases, frames such as MORALE, TRAINING & EXPERIENCE, and
MOBILITY are related through CRs to form a FM associated with READINESS. Similarly,
the TROOPS and ARMAMENT frames related through CRs to form a "RELATIVE FIRE-
POWER" FM frame. The READINESS FM values reflect the multiplicative result of combin-
ing the MORALE, TRAINING & EXPERIENCE, and MOBILITY FM values. For example,
in Figure 9.8, the GUI is being used to interactively examine the FM for the morale of friendly
forces, which is 0.7. (The value may have been entered interactively by a human or program-

matically by a computer agent.) Similarly 0.7 was entered as a FM value for the mobility of
friendly forces, and 1.0 was entered for the TRAINING & EXPERIENCE FM frame. After
translating the entered FM values from their respective frames to the F.READINESS frame,
the examination in Figure 9.9 shows a FM value= 0.7 * 0.7 = 0.49 (computed by Gister-CL)
that is the multiplicative result of the input FM frames.

Some relationships between FM frames are not multiplicative in nature. For example,
the relative firepower of a unit depends on the relative values of its constituent TROOPS
and ARMAMENT FM values. The RELATIVE FIREPOWER FM value is, in our imple-
mentation, the maximum as opposed to the product of the FM values in the TROOPS and
ARMAMENT frames. The reason for this dependence is that even if a unit does not have
its full complement of troops, the remaining troops may have sufficient armament to balance
deficiencies in troops. Conversely, a unit may have sufficient troopr to balance d-1Iciencies in
armament.

A separate frame, indicated by "B.VALS" represents the base-strength values for enemy
and friendly units. A heavily armored unit, for example, would typically have a higher base-
strength value than a light infantry unit. The FM frames for both friendly and enemy unit

are related through CRs to frames which represents the result of computing their respec-
tive Power. These respective Power calculations are further translated through CRs to the

83

JI ANAET1

cF. T&E x MORALE x POSTUAE4 F. TRAOT <F TOOS AMAENT>

REO. FOCE RATI

ýRq.FR Comrb ý F,&E RIATIO COMBIN4ATIONS <FxE FM RESJLbT

~~E~ J d VMRTRF, E.TR:6 E, TRADITON

M ! T& IMRAEx OTUE TROOPSx ARMAMENT,

S.E TRANH x MORLER OSTCE,1

Figure 9.7: Gister gallery for Army unit selection

84

corw-Gnw OEM -m w.-

PrameaRelodon

*A.ICATINN
W*9K 49 TIE. o .MOILAzPSTURE, ý -~i:

GRM W. a
GALLERY

P.O.MA .

=O

FBM VLUS

MD404.S r- NoA7u~Ya~tlAhAOssE % oU~riouA T E@ P1IAD S. &FPEP0WR. IF RftATI IKE

Figur 98Aaxml MvlefrteF OAEfae

EN&XEAE ORLEAEN

Fiue99.Tersltn Mvlu o heF EDNESfae

~Lc rM§=yFc&MLL P85

I ~t ~ ~ m~ieuUI sms tow" 4um & Uooeow

0

0 0 0

Figure 9.10: Gister analysis for interpreting information

"F&E RATIO COMBINATIONS" frame which represents their ratio. The computed ratio

is then compared with the required force ratio to determine the final result for this unit. A

separate frame that specifies the type of mission (e.g., deterrent or attack) is also represented

in th. gallery and contributes to the force ratio requirements.

9.5.2 Analyzing a Unit

Given a set of FMs for a subset of friendly and enemy characteristics, the analysis of Fig-

ure 9.10 is used to reason about the characteristics and come to a conclusion about each

unit. The nodes represent the evidential operations of fusing, translating, and discounting

(see Appendix B).

For example, an analysis of the characteristics of the l99th-IND for a deterrent mission

against a particular enemy force results in the distribution shown in Figure 9.11. The distri-

86

"• " " DI '' ' ' l I I I I 1

TO lt. or Dean To MIICH UPI2 MMT BO r JUlU MtlJ :
100."1l 100. 100.u (Ro ,JS lV agoWR.. 0•RCR RATIO C•, CD, sag. 1raCR RATIO raR ULW

PA0. R a D 90. ,030 RATIO xUTs moo. 13Ca RAmIO)
7S1 1(177 ft. PAR 8XCUD Rao. FORCE RATIO

21.t (19. 23:J Kmay A30. 103CR RATIO
2. [0. 4.1 3AoW Rao. ,F10C RATIO

1. C0. 4.j ICD4 •ag. FORCR RATIO
.0. 4.3 PAR DUoW 3ng. 103CR RATIO

Figure 9.11: Result of degree to which unit meets force ratio requirements.

bution shown is obtained by examining the node "INTERP DEG UNIT MEETS REQS" in
Figure 9,10.

9.6 Subsytem Communications

We implemented several methods and techniques for calling and receiving the results of

Gister-CL analyses with both SIPE-2 and PRS-CL. We implemented the ability to graphically

trace the Gister-CL analyses in a separate window while planning and/or executioin continues

in the original window. It is also possible to run Gister-CL on a different machine in the

CPE and use Knet and Cronus to request the execution of analyses by Gister-CL.

87

Chapter 10

Grasper-CL

Several of this project's accomplishments relate to Grasper-CL. The use of a Grasper-based
GUI was essential in the military operations planning problem since it allowed graphical
display of all plans and data structures. With such large amounts of complex knowledge,
graphing the data structures proved essential to understanding and correcting the knowledge.

Grasper-CL, the system that supports the GUIs of all AIC systems, is a system for viewing
and manipulating graph-structured information. Grasper-CL defines a graph as a set of la-
beled subgraphs; each subgraph consists of a set of labeled nodes and a set of labeled directed
edges. Each edge connects two nodes; each node, edge, and subgraph have values that can be
used as general repositories for information. Grasper-CL includes procedures for graph con-
struction, modification, and queries as well as a menu-driven, interactive layout and drawing
package that allows graphs to be constructed, modified, and viewed through direct pictorial
manipulation. Nodes can appear in various shapes, including simple geometric figures (e.g.,
circles, rectangles, diamonds) and user-defined icons; edges can appear in various forms, in-
cluding piecewise linear or arbitrarily curved arrows between nodes. User-definable actions
are associated with every graphical object, providing complete control of mouse interactions
with graphs. Grasper-CL consists of several different components: a core procedure library
for programmatically manipulating the graph abstract datatype, a graph-display module for
producing drawings of graphs, a graph editor that allows users to interactively draw and edit
arbitrary graphs, and a suite of automatic graph-layout algorithms. Grasper-CL has proven
to be an extremely flexible support system for work in expert systems and related AI topics,
and serves as a general-purpose foundation for implementing graph-based user interfaces.

Work under this project accomplished the following major tasks:

9 We ported a previous version of the system from the SYMBOLICS Lisp and Window
environment to run under Lucid COMMON LISP and CLIM.

88

* We extended the capabilities of Grasper-CL in a number of respects; most significantly,

we added more sophisticated automatic graph layout facilities and a birds-eye view

mechanism that provides a low-resolution view of a complex graph.

* We fully documented Grasper-CL by writing a User's Guide, Programmer's Manual,

and Installation Guide.

* We completed a manuscript describing Grasper-CL that was submitted to a journal for

publication.

The CLIM window system is an emerging standard in Lisp windowing environments, and

is part of the CPE. We have also ported Grasper-CL to run on DEC workstations under

Lucid COMMON LISP and CLIM, and to run on SUN workstations under Allegro COMMON

LISP and CLIM. Grasper-CL contains 27,000 lines of source code.

10.1 Extensions

We spent significant effort extending and fine tuning the Grasper-CL implementation. Our

performance analysis work decreased graph-display time by a factor of 5, which is quite

significant for large graphs.

We added a number of automatic graph layout capabilities to G.asper-CL. The system

now has a suite of layout algorithms that will automatically position nodes in a variety of

arrangements, such as in a tree, a circle, a two-dimensional array, and as a set of tiers. Each

style will be preferable for graphs with different connectivities and applications with different

stylistic requirements. SIPE-2 uses several of these layout algorithms to display information

such as operators and the sort hierarchy. The layout algorithms can also be composed to

capture hierarchical structure within a complete graph. For example, in a graph containing

several cycles, we might lay out each cycle using the circular layout algorithm, and position

each circular cluster of nodes relative to one another using the array layout algorithm.

We are also implementing new tools for navigating through large graphs such as SIPE-2

plans. Such graphs do not fit on the screen in their entirety, and are difficult to visualize.

We have implemented a birds-eye-view window that shows a low-resolution view of the entire

graph - nodes, edges, or both. This window can control the scrolling of the full-resolution

window, and the user can query graph relationships in the birds-eye window. We also im-

plemented the ability to display a truncated subtree of a large graph, and to incrementally

expand or collapse nodes within the subtree to walk through regions of interest in the graph.

Thus, one can use the low-resolution view of a graph to select the region for high-resolution

browsing. Such capabilities are particularly useful when viewing large military plans.

89

10.2 Impact

A wide variety of Al programs manipulate graphs and will benefit from a user interface that
allows user interaction with a displayed graph. Grasper-CL is the most sophisticated Lisp
system yet developed for manipulating and displaying graphs. Therefore, it is important to
bring Grasper-CL and the innovations it is based upon to the attention of the Lisp commu-
nity. Several research centers are now using Grasper-CL. Examples include researchers at
NASA Ames who are using Grasper-CL to construct the user interface for a space-telescope
scheduling system, and researchers at the University of Pittsburgh who are using Grasper-CL
to build a computer-aided instruction application.

We have prepared 35-page manuscript for journal submission that provides an overview
of Grasper-CL, focusing on the open architecture of the system (see Chapter 11). It includes

the section "SIPE-2: The Anatomy of a Grasper-CL Application." A significant source of
power within the system is that all the levels of its architecture are fully documented and
accessible to the programmer. For example, the programmer can make use of the Grasper-

CL functions that manipulate the Graph abstract datatype but have no drawing capabilities,
or use high-level Grasper-CL functions to interactively alter drawn graph components (such
as renaming or reshaping nodes). Each level of the Grasper-CL architecture thus provides

support for different types of application programs. No previous Lisp grapher supports such
a wide range of applications.

90

Chapter 11

Technology Transfer, Travel,

Demonstrations, and Publications

This project supported a considerable amount of effort aimed at cooperating with the other
participants in the ARPA/RL Planning Initiative. This chapter documents our trips, demon-
strations, talks, and meetings as well as our documentation and publications, and summarizes
our efforts toward technology transfer.

11.1 Technology Transfer

SRI has put considerable effort into helping to transfer the technology in CYPRESS to others.
We have written several papers describing our work as detailed in Chapter 11. We have
written extensive documentation for all subsystems of CYPRESS. Each system has its own
manual (e.g., the manual for SIPE-2 is 168 pages long) covering use from both the user's and
the programmer's perspective. Because of the complexity of Grasper-CL and its use in all the
subsystems of CYPRESS, we documented it extensively, authoring a User's Guide, a Program-
mer's Manual, and an Installation Guide. These manuals provide in-depth, comprehensive
descriptions of Grasper-CL from both the user's and the programmer's perspective.

To enhance technology transfer of CYPRESS, we have implemented a demonstration in
the military operations planning domain. The demonstration is described in Chapter 4, and
detailed instructions for running it are given in Appendix F. We have distributed the input
data for IFD-2 to many ARPI participants, which has enabled evaluation and comparison of
other technologies.

CYPRESS is available to other ARPI contractors and to the larger AI research commu-
nity. Many sites are already using SIPE-2 and Grasper-CL, including Rome Laboratory,

91

BBN, the Al Applications Institute in Edinburgh, UCLA, GE, Rockwell, The MITRE Cor-

poration, Paramax, ORA, Colorado State University, the University of Texas at Arlington,

the University of Pittsburgh, and Stanford University. Researchers at NASA Ames are us-

ing Grasper-CL to construct the user interface for a space-telescope scheduling system, and

researchers at the University of Pittsburgh are using Grasper-CL to build a computer-aided

instruction application. We have made a number of improvements to our systems based on

suggestions from these groups.

The AIC developed code and a set of conventions for building major software systems,

that should provide a standard for specification of all software systems within ARPI. These

standards specify how to load and run a system as well as providing a patch facility. They

also make possible easy distribution of systems through either tape or ftp, thus overcoming

a common stumbling block in technology transfer. The ease with which we have distributed

and maintained our code shows the usefulness of these system specification standards.

11.2 Travel and Demonstrations

* Drs. Ingrand, Wilkins, and Lowrance attended the DARPA/RADC workshop in San

Diego during November, 1990. We had discussions with Steve Cross and Nort Fowler about
what they expected from this initiative and our project; and, we got a better understanding

of the military transportation planning domain. Dr. Ingrand gave a talk entitled "Managing

Deliberation and Reasoning in Real-Time Al Systems," and a paper of the same name ap-

peared in the proceedings. A paper by Dr. Lowrance and Dr. Wilkins, discussed below, also

appeared in the proceedings.

* Dr. Wilkins met with Mark Berstein of BBN and Mark Hoffman, Gary Edwards, and

Phil Dodson of ISX, to discuss the CPE in December 1990.

* A significant amount of our effort went into preparing for and attending the Kickoff

Meeting for this initiative in St. Louis, February 5-7, 1991. Both Dr. Lowrance and Dr.
Wilkins attended the meeting, and Dr. Wilkins prepared and delivered a talk on the future

of generative planning in this initiative.

* Dr. Wilkins participated in the knowledge representation meeting for initiative partici-

pants, held the last week of March 1991 at SRI. He described the needs of this project to the

ISX and BBN team, helped design IFD-2, and started cooperating with ISX to get SIPE-2
released as a technology package.

* Dr. Wilkins traveled to Rome Labs to give a technology-transfer tutorial on SIPE-2 on

May 23, 1991.

92

* Dr. Wilkins met with Jim Jacobs of ISX in June 1991 in an effort to release SIPE-2 as

a technology package.

* In July 1991 at SRI, Dr. Wilkins and Dr. Lowrance met with ISX, BBN, and ITSC

personnel to plan IFD-2. They discussed integration issues with the BBN team concerning

the use of SRI technology in the prototyping environment. SIPE-2 and Grasper-CL were

delivered to ISX at this meeting.

• Dr. Wilkins attended the IJCAI conference in August, 1991 where he appeared on a

panel and discussed planning and execution issues with other researchers.

* In September 1991, we gave a demonstration and presentation of the results of our

research to Lt. Col. Steve Cross, Dr. Gio Weiderhold, Nort Fowler, and others.

* Dr. Wilkins and Dr. Lowrance attended the ARPA/RL Planning Initiative workshop

in Chicago in November 1991. They were named co-chairmen of the Generative Planning

Technology Subgroup, which rewrote the technology roadmap.

* Lt. Skidmore visited SRI in November 1991, and we gave our first annual demonstration

of the software so far implemented and described our future plans.

* Dr. Wilkins attended the quarterly review of the Planning Initiative in St. Louis in

February 1992. He helped define seven Technology Integration Experiments; three include

SIPE-2, and a fourth relating to the development of the KRSL plan language.

* Dr. Wilkins has been active in the definition of the KIRSL plan language, and in

February 1992 met with Nancy Lehrer of ISX and Dr. Bienkowski and Dr. Desimone of SRI

to discuss this issue.

o Dr. Wesley attended the International Conference on Information Processing and Man-

agement of Uncertainty in Knowledge-Based Systems, and delivered a paper entitled "An

Entropy Formulation of Evidential Measures and Their Application to Real-World Problem

Solving" [31].

o During the month of July 1992, several project personnel attended the AAAI conference

in San Jose. The week after the conference, Dr. Wilkins and Dr. Lowrance meet for half a

day with Lt. Skidmore and Mr. Hoebel to discuss this project.

e Dr. Wilkins attended the TIE demonstrations given at Rome Laboratory at the end

of October 1992. SIPE-2 was demonstrated cooperating with GE's Tachyon system. Dr.

Wilkins participated in discussions about future TIEs, and attempted to clarify the idea of a
"Ucommon plan representation" since different people were using this term to mean different

things.

* Dr. Lowrance gave a talk on evidential reasoning at Rome Laboratory and had discus-

sions with RL personnel on November 19, 1992.

93

* On January 18, 1993 we gave our second annual demonstration to Mr. Hoebel at SRI.

It consisted of our final demonstration, without the ability to invoke replanning during ex-
ecution, and without using the CPE for communication. In a second demonstration, Dr.
Lowrance and Dr. Wilkins demonstrated their combination of Gister-CL and SIPE-2 to do
plan evaluation under uncertainty. This demonstration showed parameterized compatibil-

ity relations being used to model uncertain actions, and SIPE-2 being used to project the

consequences of uncertain states and actions.

• Dr. Wilkins and Dr. Lowrance attended the ARPA/RL Planning Initiative annual

meeting in San Antonio February 22-25, 1993. We demonstrated the CYPRESS system dur-

ing the demonstrations sessions. It consisted of an improved version of our second annual

demonstration. Dr. Wilkins participated in the panel on Perceptual Reasoning.

* In March 1993, Dr. Wilkins attended the 1993 Stanford Spring Symposium on Founda-

tions of Automatic Planning: The Classical Approach and Beyond, and gave the introductory

invited talk. This was the largest spring symposium in the series this year and probably the

largest forum for AI-planning in 1993, with approximately sixty planning researchers at-

tending. The talk was entitled, "How Many Domains Has Your Planner Planned In?", and

appealed for less trivial theoretical work, and more work on real planning problems. The talk

was well received.

* In July 1993, Dr. Wilkins attended the Planning Initiative meeting in Washington D.C.,

held prior to the AAAI conference. He also attended the conference, and had discussions with

several PI participants and Rome Laboratory personnel. Plans for the SOTTE effort were

made concrete.

* On September 7-8, 1993, Dr. Wilkins attended the PI Quarterly Review meeting at

Rome Laboratory. Version control is a problem in the CPE, and we distributed documen-

tation to the CPE developers on SRI's standard for system definition, version control, and

patch deflinition/loading. These standards have proven to be useful and robust in systems

like Grasper-CL, SIPE-2, PUS-CL; Gister-CL, and the ACT EDITOR. Dr. Wilkins participated

in the SOTTE working group and wrote the final SOTTE white paper. The demonstration

given at San Antonio was given at Rome Laboratory (and at ARPA later that month by

Marie Bienkowski).

* On December 1-2, 1993, Dr. Wilkins attended the PI meeting at Yale University and

participated in the working group on evaluation.

94

11.3 Publications

One of the major tasks of this project was to document our software. Previously, only inade-
quate and outdated documentation existed for SIPE-2, PRS-CL, Gister-CL, and Grasper-CL.

On this project, we have written extensive documentation for all subsystems of CYPRESS.

Each system has its own extensive manual covering use from both the user's and the pro-

grammer's perspective. In addition, we wrote an Installation Guide for all systems. As an

example of the extent of our documentation, the original manual for SIPE-2 was a 40-page

document, while the current manual is 170 pages long and contains numerous figures, com-

mented input files for three different domains, and a formal specification of the input language

in Backus-Naur Form. It should be invaluable to others in ARPI who plan to use SIPE-2.

Because of the complexity of Grasper-CL, its use in all the subsystems of CYPRESS,

and its relevance to many AI applications, we documented it extensively, authoring both
a 40-page User's Guide and a 170-page Programmer's Manual. These manuals provide in-

depth, comprehensive descriptions of Grasper-CL from both the user's and the programmer's

perspective. Extensive manuals have also been written for PRS-CL, Gister-CL, ACT EDITOR,

and CYPRESS, and we have also written a Programmer's Maintenance Manual and Software
Design Document as required by our contract.

Several papers written during this project have either been published, or submitted for

publication. These are summarized below. In addition, we plan tQ complete a paper de-
scribing the application of CYPRESS in our demonstration and to submit it to the Journal of

Eiperimental and Theoretical AL An editor of the journal has invited this paper.

* A paper by Dr. Myers and Dr. Wilkins, entitled "Reasoning about Locations and

Movement," was submitted to the it Artificial Intelligence Journal special issue on planning

in June 1993. It presents a theory of locations and describes the practical experience of
implementing this theory in SIPE-2 and SOCAP. We have been told they want to publish it

after revisions have been made and approved. This paper is included in Appendix G.

* A paper, by Dr. Wilkins, entitled A Common Knowledge Representation for Plan

Generation and Reactive Execution, was submitted to the Journal of Logic and Computation
special issue on actions and processes in June 1993. It describes and documents the ACT

formalism developed as part of this project.

0 A paper, entitled "SOCAP: Lessons Learned in Automating Military Operations Plan-

ning ", coauthored by Dr. Wilkins and people from ITSC was published in the Proceedings

of the Sixth International Conference on Industrial and Engineering Applications of Al and
Expert Systems, Edinburgh, Scotland, June, 1993.

* Dr. Wilkins was invited to contribute a chapter to a forthcoming Morgan Kaufmann

book, Intelligent Scheduling, edited by Mark Fox and Monte Zweben. We wrote a paper

95

on the use of SIPE-2 in SOCAP as developed for IFD-2. The paper, coauthored by David

Wilkins and Roberto Desimone, is entitled "Applying an Al Planner to Military Operations

Planning." This paper describes the use of SIPE-2 for joint military operations planning in

SOCAP, and makes clear the strengths and weaknesses of this approach. The book should

appear in early 1994. This paper is included in Appendix G.

* We have prepared 35-page manuscript for journal submission that provides an overview

of Grasper-CL, focusing on the open architecture of the system. It includes the section "SIPE-

2: The Anatomy of a Grasper-CL Application." A wide variety of Al programs manipulate

graphs and will benefit from a user interface that allows user interaction with a displayed

graph. Grasper-CL is the most sophisticated Lisp system yet developed for manipulating and

displaying graphs. Therefore, it is important to bring Grasper-CL and the innovations it is

based upon to the attention of the Lisp community.

o The paper, "An Entropy Formulation of Evidential Measures and Their Application to

Real-World Problem Solving", by Dr. Wesley was published in the proceedings of the Interna-

tional Conference on Information Processing and Management of Uncertainty in Knowledge-

Based Systems. It describes preliminary investigations of evidential measures for choosing

among alternative actions.

* The paper, "Plan Evaluation Under Uncertainty," by Dr. Lowrance and Dr. Wilkins

(21], appeared in the Proceedings of the Workshop on Innovative Approaches to Planning,

Scheduling, and Control, November 1990. It describes our results on how to evaluate the

likelihood that plans will accomplish their intended goals given both an uncertain description

of the initial state of the world and the use of probabilistically reliable operators.

96

Bibliography

[1] J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the
Association for Computing Machinery, 26(11):832-843, 1983.

[2] Richard Arthur and Jonathan Stillman. Tachyon: A model and environment for temporal
reasoning. Technical report, GE Corporate Research and Development Center, 1992.

[31 Paul Cohen. Heuristic Reasoning about Uncertainty: An Artificial Intelligence Approach.
Pitman Publishing, Inc., 1985.

[4] K. Currie and A. Tate. 0-plan: The open planning architecture. Artificial Intelligence,
52(1):49-86, 1991.

[5] Arthur P. Dempster. A generalizationi of Bayesian inference. Journal of the Royal
Statistical Society, 30:205-247, 1968.

[6] Jon Doyle. A truth maintenance system. In Bonnie Lynn Webber and Nils J. Nilsson,
editors, Readings in Artificial Intelligence, pages 496-516. Tioga Publishing Company,
Palo Alto, California, 1981.

[7] IL J. Firby. An investigation into reactive planning in complex domains. In Proceedings
of the 1987 National Conference on Artificial Intelligence, pages 202-206, American
Association for Artificial Intelligence, Menlo Park, CA, 1987.

[8] Thomas D. Garvey. Evidential reasoning for geographic evaluation for helicopter route
planning. Technical Report 405, SRI International Artificial Intelligence Center, Menlo
Park, CA, December 1986.

(9] Thomas D. Garvey and John D. Lowrance. Machine intelligence for electronic warfare
applications. Final Report SRI Contract 1655, SRI International Artificial Intelligence
Center, Menlo Park, CA, November 1983.

[10] Michael P. Georgeff and Fran(ois F6lix Ingrand. Research on procedural reasoning sys-
tems. Final Report Phase 1, SRI International Artificial Intelligence Center, Menlo Park,
CA, October 1988.

[11] Michael P. Georgeff and Frangois Filix Ingrand. Decision-making in an embedded rea-
soning system. In Proceedings of the 1989 International Joint Conference on Artificial
Intelligence, American Association for Artificial Intelligence, Menlo Park, CA, August
1989.

97

[121 M. L. Ginsberg. Knowledge interchange format: The KIF of death. Al Magazine,
12(3):57-63, 1991.

[13] Fran;ois Filix Ingrand, Jack Goldberg, and Janet D. Lee. SRI/GRUMMAN Crew Mem-
bers' Associate Program: Development of an authority manager. Final Report SRI
Project 7025, SRI International Artificial Intelligence Center, Menlo Park, CA, March
1989.

(14] Peter D. Karp, John D. Lowrance, and Thomas M. Strat. The Grasper-CL Documenta-
tion. SRI International Artificial Intelligence Center, Menlo Park, CA, 1992.

(15] Nancy Lehrer. KRSL specification language. Technical Report 2.0.2, ISX Corporation,
1993.

(161 John D. Lowrance. Dependency-Graph Models of Evidential Support. PhD thesis, De-
partment of Computer and Information Science, University of Massachusetts, Amherst,
MA, September 1982.

[17] John D. Lowrance. Automating argument construction. In Proceeding of the Workshop
on Assessing Uncertainty (November 13-14, 1986), Department of Statistics, Stanford
University, Stanford, California, March 1987. Stanford University and the Navy Center
for International Science and Technology.

[18] John D. Lowrance. Evidential Reasoning with Gister: A Manual. SRI International
Artificial Intelligence Center, Menlo Park, CA, April 1987.

[19] John D. Lowrance, Thomas D. Garvey, and Thomas M. Strat. A framework for
evidential-reasoning systems. In Proceeding of the National Conference on Artificial In-
telligence, pages 896-903, American Association for Artificial Intelligence, Menlo Park,
CA, August 1986.

[20] John D. Lowrance, Thomas M. Strat, and Thomas D. Garvey. Application of artificial
intelligence techniques to naval intelligence analysis. Final Report SRI Contract 6486,
SRI International Artificial Intelligence Center, Menlo Park, CA, June 1986.

[211 John D. Lowrance and David E. Wilkins. Plan evaluation under uncertainity. In Katia P.
Sycara, editor, Proceedings of the Workshop on Innovative Approaches to Planning,
Scheduling and Control, pages 439-449. Morgan Kaufmann Publishers Inc., San Mateo,
CA, November 1990.

[221 D. M. Lyons and A. J. Hendricks. A practical approach to integrating reaction and de-
liberation. In First International Conference on Artificial Intelligence Planning Systems,
"pages 153-162, College Park, Maryland, 1992.

(23] R. MacGregor and M. H. Burstein. Using a Description Classifier to Enhance Knowledge
Representation, June 1991.

[24] Judea Pearl. Probabilistic Reasoning in Intelligence Systems. Morgan Kaufmann Pub-
lishers Inc., San Mateo, CA, 1988.

98

(251 E. D. Sacerdoti. A Structure for Plans and Behaviour. Elsevier, North Holland, New
York City, NY, 1977.

(26] Glenn Shafer. A Mathematical Theory of Evidence. Princeton University Press, Prince-
ton, NJ, 1976.

(27] Thomas M. Strat. The generation of explanations within evidential reasoning systems. In
Proceedings of the 1987 International Joint Conference on Artificial Intelligence, pages
1097-1104, American Association for Artificial Intelligence, Menlo Park, CA, August
1987.

[28] Thomas M. Strat and John D. Lowrance. Explaining evidential analyses. International
Journal of Approximate Reasoning, 3(4):299-353, July 1989.

[29] W. W. Wadge and E. A. Ashcroft. Lucid, The Dataflow Programming Language. Aca-
demic Press U. K., 1984.

[30] Leonard P. Wesley. Evidential-Based Control in Knowledge-Based Systems. PhD the-
sis, Department of Computer and Information Science, University of Massachusetts,
Amkerst, Massachusetts, 1988.

[31] Leonard P. Wesley. An entropy formulation of evidential measures and their applica-
tion to real-world problem solving. In Proceedings of the International Conference on
Information Processing and Management of Uncertainty in Knowledge-Based Systems,
pages 779-782, Servei de Publicacions i Intercanvi Cientific, Campus de la TTIB. Cra. de
Valldemossa, Palma, 1992.

[32] Leonard P. Wesley, John D. Lowrance, and Thomas D. Garvey. Reasoning about control:
An evidential approach. Technical Report 324, SRI International Artificial Intelligence
Center, Menlo Park, CA, July 1984.

[33] David E. Wilkins. Practical Planning: Extending the Classical AI Planning Paradigm.
Morgan Kaufmann Publishers Inc., San Mateo, CA, 1988.

[34] David E. Wilkins. Can AI planners solve practical problems? Computational Intelli-
gence, 6(4):232-246, 1990.

[35] David E. Wilkins. Planning in dynamic and uncertain environments. Annual report,
SRI International Artificial Intelligence Center, Menlo Park, CA, September 1992.

[36] David E. Wilkins. Using the SIPE Planning System: A Manual. SRI International
Artificial Intelligence Center, Menlo Park, CA, 1992.

[37] David E. Wilkins. A common knowledge representation for plan generation and reactive
execution. Technical Report 532, SRI International Artificial Intelligence Center, Menlo
Park, CA, June 1993.

(38] David E. Wilkins and Roberto V. Desimone. Applying an Al planner to military op-
erations planning. In M. Fox and M. Zweben, editors, Intelligent Scheduling. Morgan
Kaufmann Publishers Inc., San Mateo, CA, 1993.

99

Appendix A

SIPE-2: Interactive Planning and

Execution

Al planning techniques that have been developed over the past few decades at the SRI Al
Center, culminating in SIPE-2 [33, 36], have now reached the point where they can impact real
problems. This is demonstrated by the recent application of SRI's SIPE-2 planning system to
the problem of producing products from raw materials on process lines under production and
resource constraints in a realistic factory setting [34]. SIPE-2 generates a plan that schedules

dozens of orders (for possibly hundreds of products) on 6 production lines with approximately

20 separate product runs (with their corresponding needs for different raw materials) in about

4 minutes on a Symbolics 3645. To produce one such plan with no backtracking requires the
generation of 1500 action and goal nodes (at all planning levels).

Because this technology is generic and domain-independent, it has the potential to impact
a large variety of problems in both manufacturing and the military. For example, SIPE-2 has
also been applied to planning the actions of a mobile robot, planning the movement of aircraft
on a carrier deck, travel planning, and construction tasks. The manufacturing problem, i.e.,

moving raw materials to a production line at the correct time, has many similarities with the
logistics problems that SRI is proposing to address.

SIPE-2 provides a domain-independent formalism for describing actions and utilizes the
knowledge encoded in this formalism, together with its heuristics for handling the combina-
torics of the problem, to plan to achieve given goals in diverse problem domains. SIPE-2 uses a
hierarchical-planning paradigm, representing plans in procedural networks--as has been done

in NOAH [25] and other systems. The plans include causal information so that the system
can modify these plans in response to unanticipated events during plan execution. Unlike
expert systems, SIPE-2 is capable of generating a novel sequence of actions that responds

precisely to the situation at hand. This capability requires that the system reason about how

100

the state of the world changes as actions are performed, something that cannot be accom-

plished within the expert systems framework. SIPE-2 is a hierarchical, domain-independent,

nonlinear planning system implemented in Symbolics Common Lisp. Unlike most Al plan-

ning research, the SIPE-2 development effort has had heuristic adequacy (efficiency) as one

of its primary design goals.

SIPE-2 has implemented several extensions of previous planning systems, including the

use of constraints for the partial description of objects, the incorporation of heuristics for rea-

soning about resources, the deduction context-dependent effects of actions, and replanning

techniques. SIPE-2's formalism allows description of planning (and simple scheduling) prob-

lems in terms of the goals to be attained and the various activities that can be undertaken to

achieve these goals. The system, either automatically or under interactive control, generates

plans (possibly containing conditionals) to achieve the prescribed goals given an arbitrary

initial situation. During plan execution, it can accept descriptions of arbitrary unexpected

occurrences and modify its plans to take these into account.

A central problem in planning and simulation is that the effects an action has on the

world depend on the exact situation in which it is executed. Thus, actions can be awkward

or impossible to describe unless the system can deduce context-dependent effects. SIPE-2"s

domain rules are used to deduce the effects of an event that are conditional on the current

situation. By allowing knowledge of cause-and-effect relations to be specified independently

of the operators that describe actions, both the operators and the planning process are

simplified. This makes it much easier for the user to express his domain knowledge as SIPE-2

operators. The system controls deduction by using heuristics and triggering mechanisms.

One of the primary goals during the development of SIPE-2 has been efficiency. SIPE-2

is currently the most efficient planner we know for solving combinatorially difficult planning

problems. To achieve this efficiency, SIPE-2 incorporates special techniques for solving such

problems as:

* The determination of the truth of a formula at a particular point in a plan

* Deduction of context-dependent effects

* The unification of two variables once they have constraints on them

* The handling of parallel interactions

* Resource conflicts

9 Efficient searching through the space of all possible plans

101

The replanning and execution-monitoring problem being addressed is the following: Given
a plan, a world description, and some appropriate description of an unexpected situation that
occurs during execution of the plan, transform the plan-retaining as much of the old plan as
is reasonable-into a plan that will still accomplish the original goal from the current situation.

SIPE-2 divides this process into four steps (1) discovering or inputing the information about
the current situation, (2) determining the problems this causes in the plan, if any, (similarly,
determining shortcuts that could be taken in the plan after unexpected but helpful events),
(3) creating "fixes" that change the old plan, possibly by deleting part of it and inserting
some newly created subplan, and (4) determining whether any changes made by the above
fixes will conflict with remaining parts of the old plan.

Because of the generic nature and wide applicability of the SIPE-2 software, domain
encoding in past prototypes has taken only a few man-months. The primary advantages ove
conventional (non-AI) planning and scheduling software are the following:

"* SIPE-2's representational language allows representation of some constraints that cannot
be expressed by other techniques.

"* Resources are allocated to each action with no violation of resource constraints.

"• The system can be run interactively, letting a human make crucial, high-level decisions
while the system ensures that all the details are correctly worked out.

"• Because plans are produced in seconds or minutes, various "what-if" analyses can be
run to produce and compare alternative plans.

"* SIPE-2 can modify its plan in seconds in response to unexpected events. Surprises are
ubiquitous in the real world and often quickly render useless the unmodifiable plans
produced by linear programming techniques.

102

Appendix B

Gister: Evidential Reasoning

The Artificial Intelligence Center at SRI International has been developing new technology
to address the problem of automated information management within real-world contexts
[20, 19, 281. The result of this work is a body of techniques for automated reasoning from
evidence that we call evidential reasoning. The techniques are based upon the mathematics of
belief functions developed by Dempster and Shafer [5, 26] and have been successfully applied
to a variety of problem domains.

In this theory, the belief in a propositional statement A is summarized by an interval
[Spt(A), Pls(A)], where this evidential interval is a subinterval of the dosed real interval

[0,11. The lower bound Spt(A) represents the degree to which the evidence supports the
proposition; the upper bound Pls(A) represents the degree to which the evidence fails to refute
the proposition, i.e., the degree to which it remains plausible; and the difference between
the two represents the residual ignorance. Applying this technique, complete ignorance is
represented by the unit interval [0,1], while a precise-likelihood assignment is represented by
the "interval" collapsed about that point, e.g., false [0,0], probability of .7 [.7,.7], true [1,1].
Other degrees of ignorance are captured by evidential intervals with widths greater than 0
and less than 1, e.g., [0,.4], [.6,.9], [.8,1]. The advantage of this representation of belief is
that it directly accounts for what remains unknown. It represents exactly what is known, no
more and no less.

In this technology, a body of evidence corresponds to an assignment of evidential intervals
to the set of all relevant propositional statements. That is, a body of evidence induces a
(large) set of partial beliefs. This representation is fine in theory, but in practice, over an
expansive and dynamic real-world domain, it is computationally intractable. Therefore, an
alternate, more compact, representation is required. Fortunately, the Dempster-Shafer theory
provides just such a representation, called a mass distribution. Instead of representing a
body of evidence by enumerating all of the corresponding partial beliefs, a mass distribution

103

associates a measure of belief with just those propositional statements that the evidence

directly supports; it excludes other propositional statements that the evidence indirectly

supports, or that are unsupported by the evidence.

We introduced the Dempster-Shafer theory of belief functions to the AI community in the

context of image understanding [16]. Soon after, we adapted these techniques to the problem

of multisensor integration for electronic warfare (9]. In both domains, we developed operable

demonstration systems that drew conclusions from multiple bodies of evidence provided by

disparate sources; and in both cases, the working systems remained true to the theory. This

is significant, since other expert systems, based upon different uncertain reasoning theories,

have had to introduce heuristic methods to compensate for mismatches between their theories

and domains. Although we had successfully demonstrated the utility of Dempster-Shafer
theory applied to real-world problems, we had not yet develop a general methodology for

constructing evidential-reasoning systems.

More recently [19,17], we developed both a formal basis and a framework for implementing
automated reasoning systems based upon these techniques. Both the formal and practical

approach can be divided into four parts: (1) specifying a set of distinct propositional spaces

(i.e., fiames of discernment), each of which delimits a set of possible world situations; (2)
specifying the interrelationships among these propositional spaces (i.e., compatibility relations

in a gallery); (3) representing bodies of evidence as belief distributions over these propositional
spaces (i.e., mass distributions); and (4) establishing paths (i.e., analyses) for the bodies

of evidence to move through these propositional spaces by means of evidential operations,

eventually converging on spaces where the target questions can be answered. These steps
specify a means for arguing from multiple bodies of evidence toward probabilistic conclusions.

This technology features the ability to reason from uncertain, incomplete, and occasionally

inaccurate information (these being characteristics of the information available in real-world
domains). It provides options for the representation of information: independent opinions

are expressed by multiple (independent) bodies of evidence; dependent opinions can be ex-

pressed either by a single body of evidence or by a network (i.e., analysis) that describes the
interrelationships among several bodies of evidence. These networks of bodies of evidence

capture the genealogy of each body (similar in spirit to [3]) and are used as data-flow models

(29] to automatically update interrelated beliefs whenever any given belief is revised (i.e., for
belief revision [6]). The technology includes the following evidential operations, which are
based in theory but have intuitive appeal as well:

"* Fusion-This operation pools multiple bodies of evidence into a single body of evidence

that emphasizes points of agreement and deemphasizes points of disagreement.

"* Discounting-This operation adjusts a body of evidence to reflect its source's credibility.

104

If a source is completely reliable, discounting has no effect; if it is completely unreliable,
discounting strips away all apparent information content; otherwise, discounting reduces

the apparent information content in proportion to the source's unreliability.

"* Translation-This operation moves a body of evidence away from its original context

to a related one, to assess its impact on dependent hypotheses.

"* Projection-This operation moves a body of evidence away from its original temporal

context, to a related one. For example, a report might make direct statements that

pertain to a ship's location at a particular time. Through projection, this evidence can

be used to estimate the possible locations of this ship at other times, either future or

past.

"* Summarization-This operation eliminates extraneous details from a body of informa-

tion. The resulting body of evidence is slightly less informative, but remains consistent

with the original.

"* Interpretation-This operation calculates the "truthfulness" of a given statement based

upon a given body of evidence. It produces an estimate of both the positive and negative

effects of the evidence on the truthfulness of the statement.

In addition, more recent work has incorporated concepts from sensitivity analysis [27, 28]

and decision theory into the evidential-reasoning framework.

In implementing this formal approach, we have found that the gallery, frames, compati-
bility relations, and analyses can all be represented as graphs consisting of nodes connected

by directed edges. To support the construction, modification, and interrogation of evidential

structures, we have developed Gister-CL [18]. Gister-CL provides an interactive, menu-
driven, graphical interface that allows these graphical structures to be easily manipulated.

The user simply makes menu selections to add an evidential operation to an analysis, to

modify operation parameters, or to change any portion of a gallery, including its frames and
compatibility relations. In response, Gister-CL automatically updates the analyses.

Unlike other expert systems, Gister-CL is designed as a tool for the domain expert. With

this tool, an expert can quickly and flexibly develop an argument (i.e., a line of reasoning)

specific to a given domain situation. Gister-CL helps the expert keep track of the complex

interrelationships among the components of his arguments, ensure that the relevant informa-
tion has been properly incorporated, and reveal the more tentative aspects of the arguments.

This differs markedly from other expert systems where a single line of reasoning is devel-
oped by an expert and then is instantiated over different situations by nonexperts. Using

Gister-CL as the basis, we developed Navint [20], an integrated package of expert aids for

105

naval intelligence analysts. Gister-CL also has served as the basis for research in the areas of
helicopter mission planning [81 and situation assessment for the battlefield [19].

For real-world applications where additional information might be available from sensors
or other sources of knowledge, or where other actions can be taken, evidential reasoning
can be applied directly to the control problem [32, 30]. Here information about the probable
world state, goals, costs, etc. can be viewed as evidence, both pro and con, for taking selected

actions. This work emphasizes the selection of one or more actions for immediate invocation.
A natural extension would be to consider sequences of actions, i.e., evidential planning.

Recent work by Pearl [24] has focused on networks of interconnected processing elements
where each element computes the probabilistic values of selected variables. In these Bayesian

networks, probabilistic information flows bidirectionally along the edges in accordance with
Bayes's Rule, propagating the effects of all bodies of evidence throughout the network. We
recently have shown how such networks can be represented straightforwardly as special cases
of our evidential analyses and how these networks provide a theoretically sound method of
reasoning from probabilistically interconnected concepts, similar in spirit to "weighted" rule-
based reasoning, but based upon the formal foundation of propositional logic and probability

theory.

Thus, evidential reasoning supports true probabilistic reasoning, when the required prob-
abilistic information is available, logical reasoning, when the available information is in the
form of logical constraints, and interval probabilistic reasoning, in those situations where
probabilities can be bounded. It has the flexibility and ease-of-use of rule-based systems
while remaining consistent with logic and probability theory.

106

Appendix C

PRS: Procedural Reasoning

PRS-CL (II] is a reactive system for reasoning about and performing complex tasks in dy-

namic environments. It supports both multiagent architecture and real-time reasoning. Its

architecture is shown in Figure C.1.

PRS-CL consists of (1) a database containing current beliefs or facts about the world; (2)
a set of current goals to be realized; (3) a set of plans (called Knowledge Areas or KAs)

describing how certain sequences of actions and tests may be performed to achieve given
goals or to react to particular situations; and (4) an intention structure containing all KAs

that have been chosen for [eventual] execution. An interpreter (or inference mechanism)

manipulates these components, selecting appropriate plans based on the system's beliefs and
goals, placing those selected on the intention structure, and executing them.

The system interacts with its environment, including other systems, through its database
(which acquires new beliefs in response to changes in the environment) and through the
actions that it performs as it carries out its intentions. The features of PRs, -CL that contribute

the most to our proposed research are its reactivity, its use of procedural knowledge, and its
meta-level (reflective) capabilities.

A more detailed description of the features of PBS-CL follows.

Procedural knowledge: Procedural knowledge is a very powerful way to express plans

and sequences of actions that are executed when goals have to be fulfilled or events cause
activation conditions to be true. These procedures, called KAs, are PBS-CL representations
of plans. It is essential that actions be described in terms of their behaviors rather than
in terms of arbitrarily named procedures. Because the purpose of every step in a plan is

explicitly represented, individual processes can independently decide how to achieve their
own goals without thwarting that plan - indeed, they may even decide to assist. Similarly,
because the effect of any step in the plan is explicitly represented, individual processes can

determine whether or not their own proposed plans could be affected.

107

INU
(Beliefs) (Plans)

' 1ý SENSORS

SYSTEM INTERPRETER ENVIRONMENT
INTERFACES (Reasoner)

/ "• ' EFFECTORS -

GOALS STRUCTURE

DATA COMMAND
OUTPUT GENERATOR

Figure 0.i: Structure of the Procedural Reasoning System

Reactive and goal-driven system: The capability of being simultaneously data- and

goal-driven is an interesting feature of PBS-CL. It provides goal-driven reasoning when explicit

goals must be achieved in the world, and at the same time it enables some implicit goals to

be fulfilled using data-driven reasoning. This capability of reacting to new important events

makes the system highly adaptive to situation changes - any plan can be interrupted and

reconsidered at the light of new incoming information.

Real-time reasoning: The PBS-CL architecture provides a framework to define real-time

systems. Although we are executing procedures - which are usually complex conditional

plans - the inference mechanism used in PBS-CL guarantees that any new event is noticed

in a bounded time. While the system is executing any procedure, it monitors new incoming

events and goals. Given that the real-time behavior of the meta-level KAs used in a PRS-CL

application can be analyzed, the user can prove that his application can operate in real time

-any new event is taken care of in a bounded time.

Intention graph: The intention graph enables one PIS-CL agent to follow more than

one intention at a time - in other words, the system can be simultaneously working on more

than one task at a time. The flexibility provided by PBS-CL to manipulate the intention graph

108

-hL- - ,,.,,nnnnmnnllm lnl~~nn l~m mlm m~

enables the user to specify any kind of priority or scheduling mechanism for the execution of

these different intentions.

Meta reasoning: Part or all of the control of the system itself is made using meta-level

KAs. These meta level KAs follow the same syntax and semantics as application KAs, except

that they deal with the control of the execution of PRS-CL itself. Thus one can write meta-

level KAs that can reason effectively about the problem-solving process itself, and about the

utility of various strategies.

Multiagent architecture: PRS-CL exhibits a multiagent architecture where different

instances of PRS-CL can be used in any apphcation which requires the cooperation of more

than one agent. Because the different PRS-CL agents run asynchronously, their activity is not

constrained a priori by that of their colleagues.

Message-passing mechanism: A message-passing mechanism is provided to make pos-
sible communication between the different PPS-CL agents as well as with external modules

such as simulators or monitors. The messages that are sent are not synchronized on any

process, therefore enabling asynchronous interaction between agents and external modules.

The PRS-CL architecture has proven useful in developing real applications such as a mon-
itoring and control system for the Reaction Control System of the NASA Space Shuttle (a

real-time complex dynamic system) [10], and also a control system for naval battle manage-

ment aboard a Grumman E-2C [13].

109

Appendix D

AIC Software Specifications

Authors: Peter D. Karp, David E. Wilkins, and John D. Lowrance

D.1 Introduction

This document lays out a set of conventions for building major software systems in use at
the Artificial Intelligence Center (AIC). The main reason for needing such conventions is

that many of these software systems are used by a number of different people. People may
wish to simply run the system, or to use the system as a foundation for building another

system, or to recompile the system. Until now, every system has required the user to employ
a completely different procedure for performing these tasks, leading to great confusion. This

document defines a uniform set of Lisp functions, UNIX shell commands, and UNIX Make
operations that should be implemented for every AIC software system. The conventions

pertain to system directory structures, and operations for loading, compiling, running, and
distributing (to sites outside SRI) the system.

Examples of systems which conform to all the conventions in this document are CYPRESS,
Grasper-CL, SIPE-2, Gister-CL, AcT EDITOR, and PRS. Some of these systems are subsys-

tems of the others. When users build systems on top of one or more of these subsystems,
they are encouraged to follow these conventions. 1

One possible point of confusion in this specification is that it refers at different times to
three different languages and interpreters: COMMON LISP, The UNIX Shell, and the UNIX
Make utility. Whenever we refer to a function, we mean a function defined within COMMON

LISP. Whenever we refer to "loading" a file, we mean an invocation of the COMMON LISP
'The relevant files in the released versions of one of these systems can be used as an example for defining

a new system. Grasper-CL does not have subsystems, so use one of the other systems. If you wish to use the
delfp. facility for defining systems and logical pathnames for loading files, follow the example of SIPE-2; the
other systems include their own code for compiling and loading files.

110

function called load. When we refer to shell commands, we mean command names that have

been defined within the UNIX Shell. When we refer to shell commands with names of the form
"make XXX," we mean operations defined within a file called Makefile that are processed

by the UNIX Make utility. We use the word "executable" to mean a file that was created

by saving the virtual memory of a COMMON LISP process to disk (also known as a disksave,

sysout, or band), and that can be run as a UNIX command.

Each system is in its own directory within the aic root directory; different versions

(releases) are stored in distinct subdirectories. Within each such subdirectory, Makefile com-

mands are defined that support system recompilation, the creation of new executables, and

the writing of distribution tapes and files. From Lisp, loading the appropriate system.lisp file

is all that needs to be done to define procedures for loading, running, and compiling a selected
version of any given system. The management of executables with patches is supported by

the EXE system (see its documentation, within aic/library/sri/exe.lisp, for details).

Throughout this discussion, strings in all caps represent variables. For example, the name

AICSYS represents the name of an AIC software system (e.g., CYPRESS, Grasper-CL, SIPE-2,

Gister-CL, ACT EDITOR, or PRS).

D.2 Directory Structure Conventions

Note: Below, the tilde simply stands for the pathname of the directory where these systems
are stored on the local file system.

"AICSYS - main directory for the system

°AICSYS/V1/ - sudirectories corresponding to different versions of
"AICSYS/V2/ the system, named according to the version naming

scheme for that system

"AICSYS/released/ - a pointer to the released (public) version of the system

"AICSYS/beta/ - a pointer to the test version that will become the
next released version

111

Each version subdirectory, V. has the following structure and contents; all such

tilts need to be included in each sudirectory, i.e., no pointers

"AICSYS/V/Nakefile - Makefile for building executables and distributions

"AICSYS/V/doc/ - subdirectory for documentation

*AICSYS/V/lisp/ - subdirectory for lisp source and binary files

"AICSYS/V/EXE1 - executable disksave files corresponding to version V.
"AICSYS/V/EXE2 named according to the naming scheme for different

subsystems of AICSYS

"AICSYS/V/patches - subdirectory for executable disksave patches

"AICSYS/V/lisp/translations. lisp
- contains all system-related logical pathname definitions

"AICSYS/V/lisp/package. lisp
- defines all system related packages

"AICSYS/V/lisp/system. lisp
- loads translations.lisp and package.lisp, and defines the following

procedures in both the main system package and :user.

D.3 Lisp Functions Defined for each System

load-AICSYS fkey (subsystem :all) (reload :changed) [Function]

This function defines all packages and translations and loads the subsystem files (and

any other systems on which it depends). The subsystem files actually loaded depend upon

the value of reload and whether or not subsystems of AICSYS are already loaded. If reload

is :none then no files are loaded if subsystems of AICSYS are loaded (as determined by

loaded-AICSYS), else all subsystem files of AICSYS are loaded. If reload is :changed then

only AICSYS files modified they were last loaded are reloaded (files not previously loaded

are loaded). If reload is :all, then all subsystem files of AICSYS are loaded.

loaded-AICSYS fkey (subsystem :all) [Function]

This is a predicate that tests if the given subsystem is currently loaded.

112

coapile-AICSYS kkey (subsystem :all) (recompile? nil) (reload :changed) [Function]

This function compiles lisp source files for subsystem of AICSYS and then loads the
subsystem files; unloaded systems on which subsystem of AICSYS depends are loaded; the
subsystem files actually compiled and loaded depend upon the value of recompile? and reload.

If recompile? is t, compi]- and load all subsystem files.

If recompile? is nil and reload is :none, compile files with outdated or nonexistant binaries
(no loading). (This option is not available for all systems.)

If recompile? is nil and reload is:changed compile and load files with outdated or nonex-
istant binaries.

If recompile? is nil and reload is :all, compile files with outdated or nonexistant binaries
and load all subsystem files.

run-AICSYS Ikey (subsystem :all) [Function]

The function launches the system, first loading any subsystems not already loaded.

sav0-AICSYS fkey (subsystem :all) (resave? nil) [Function]

This function creates an executable file for AICSYS using the EXE system for managing

executables; this procedure is only to be called from a Makefle; the executable is constructed
according to the value of resave?.

If resave? is nil, it loads subsystem of AICSYS and all systems on which it depends (by

calling load-AICSYS) and then saves the lisp image as an execuatable.

If resave? is t, it loads the previously saved executable for subsystem of AICSYS, loads

patches for that subsystem executable, and then saves the lisp image as an executable.

113

D.4 Shell Commands Defined for each System

All these shell commands should be given while connected to the directory AICSYS/V/:

AICSYS - runs (launches) the full executable disksave from
"AICSYS/released/AICSYS and loads applicable patches

make compile - compiles version V of AICSYS, creating new binaries for
sources dated later than their corresponding binaries

make recompile - recompiles version V of AICSYS, creating new binaries
for all sources

make save - makes a new executable disksave out of the most recent
binaries for version V of AICSYS, and makes the resulting
executable the one loaded by shell command AICSYS; more than
one executable file may be defined for any given system;
substitute the name of the executable for EXE

make save-EXE - makes a new executable disksave (named EXE) from the most
recent binaries for version V of AICSYS; substitute the name
of the specific executable for EXE

make resave - launches the executable disksave AICSYS, loads all
appropriate patches, and then recreates the patched executable
file for AICSYS

make resave-EXE - launches the executable (named EXE) of AICSYS, loads
all appropriate patches, and then recreates the patched
executable file EXE for AICSYS; substitute the name of the
specific executable for EXE

make tape - writes a tape of the binaries, selected sources, and
.documentation for version V of AICSYS

make ftp - writes a file suitable for ftping including the binaries,
selected sources, and documentation for version V of AICSYS

114

D.5 Examples

To execute the latest (disksaved) version of Grasper-CL from the shell:

% grasper

To load the latest system definition of Grasper-CL into a LISP job:

> (load "-grasper/reloased/lisp/systeam")

To load the latest version of Grasper-CL into a Lisp job:

> (load "-grasper/released/lisp/system')
> (load-grasper)

To load and run Grasper-CL in a LISP job:

> (load "-grasper/released/lisp/system")
> (run-grasper)

To compile all Grasper-CL files whose sources are newer than their corresponding binaries
and to load all newly compiled or unloaded Grasper-CL files into a LISP job:

> (load "'grasper/released/lisp/system")
> (compile-grasper)

To recompile all Grasper-CL files, do the following from the shell:

% cd -grasper/released
% make recompile

To create a new executable for (the :all subsystem of) Grasper-CL , do one of the following
from the shell.

% cd -grasper/released
% make save

or

% cd -grasper/released
% make save-grasper

115

Appendix E

ACT Syntax

This appendix presents the syntax for defining ACTs and documents the restrictions on ACTs
that are to be translated to SIPE-2 operators and PRS KAs. The restrictions are necessary
because currently neither PBS nor SIPE-2 supports the full generality of the ACT formalism.

E.1 ACT Specification

The following Backus-Naur Form (BNF) documents the syntax for ACT metapredicates
accepted by the ACT-Editor and ACT-Verifier. For those unfamiliar with BNF, the form on
the left of the symbol : :a can be replaced by the form on the right. Items in the typewriter
font (e.g., itm) represent actual primitives to be used while italicized text (e.g., s-expression)
defines primitives descriptively. Square brackets [] are placed around optional objects. The
symbol I represents "or", the " represents any number of repetitions including zero, and the
+ represents any number of repetitions greater than one. Braces) } without "or + appended
simply indicate grouping.

Logical Formulas

wif ::a literalI (NOT wff) I (AND {wff)+) I (OR {wff}+)
literal ::= (pred-name {term}') I (not (pred-name {term}')) I

(uknoiun (pred-name {term}o))
term ::a function I individual I variable I (REBIND variable)
simple-term :: individual I variable
variable :: {class) . {integer)
function :: (fn-name {term})

pred-name : :a the name of a predicate
fn-name : :a the name of a function
individual : :a a domain object
dass : : the name of a class
integer :a a positive integer

116

Metapredicates

meta-pred :~test Iconclude Iachieve Iachieve-by
I use-res~ource wait-until require-until

test .u(TEST {wff Iwff-listl)
achieve : -(ACHIEVE -{fwff wif-list})
achieve-by :*(ACHIEVE-BY f{wff+a~cts (f (wff+acts1+))
conclude :(CONCLUDE {wff Iwff-list))
use-resource :(USE-RESOURCE {simple-term I Q{simple- term}+)})
wait-until a(WAIT-UNTIL f{wff I wif-list })
require-until -(REQUIRE-UNTIL { wif I wif-pair})
wif-pair :-(wiffwif)

wff+acts ::(wff (fact)+))
act .uthe name of an ACT

Plot Nodes

The actions associated with plot nodes are specified using metapredicates. All metapredicates
can be used on plot nodes. However, at most one instance of each metapredicate is allowed
per node. Furthermore, the metapredicates Achieve and Achieve-By are mutually exclusive:
if one is used on a node, the other is prohibited. Plot nodes can contain a comment string.
Finally, no variable mentioned in the environment nodes can appear within the scope of a
REBIND operator on a plot node.

Environment Slots

The gating environment slots, namely Cue, Setting, Test and Resources, are filled with
metapredicates. Each gating slot has its own list of accepted metapredicates. As with plot
nodes, at most one instance of each metapredicate is allowed per slot. Unlike plot nodes,
certain environment nodes require the presence of some metapredicates. The constraints on
the use of metapredicates for gating environment nodes is summarized here, building on the
BNF notation defined above. All gating slots also support a Comment entry, specified as a
string. Metapredicates in the environment slots cannot use the REBIND operator.

Cue : (0 test)Cachieve)I(conclude)
Preconditions : test fachieve wtest achieve)
Setting ::= ({test+)
Resources : Z- use-resource)

117

Properties Slot

The Properties slot is filled with a property list, PRS does not process any properties, but
SIPE-2 looks for two properties for declaring variables and for specifying temporal constraints.
The ACT->SIPE translator recognizes the property Variables, provided that its value is a
list of quantifier-pairs. Each quantifier-pair whose first element is existential or universal
is processed. The translator also recognizes the property Time-Constraints. Time constraint
information is used to specify ordering constraints between plot nodes that cannot be repre-
sented by the precedence arcs of the plots. Two types of constraints are used: time windows
on nodes and inter-node constraints. The syntax for these properties are summarized below.

Value of Time-Constraints Property

TC-value :: ({time-constraint)+)
time-constraint :: (allen-rein node node [finteger}-{integer}]) I

(qual-relation (point node) (point node))
allen-reln ::a starts overlaps I before m meets I during I

finish finishes I equals
qual-relation :: later I later-eq , earlier I earlier-eq I equals
point : := start end
node : pred-name[.integer] a act[.integer] plotnode
plotnode : : a symbol

Value of Variables Property

Var-value : :a ({var-de}d)+)
var-decl : := (decl variable)
decl : :a univeral I existential

Comment Slot

The Comment slot is generally filled with a string.

118

E.2 PRS Restrictions

The following restrictions are placed on ACTs to be translated to PRS knowledge areas (KAAs).

"* The Unknown operator for construction of literals is not supported.

"* Use-Resource metapredicates on plot nodes are ignored.

"* The Conclude metapredicate cannot be applied to either an explicit disjunction such as
(OR P1 ... PL), or an explicit disjunction embedded within a conjunction such as (AND
(Q) (OR P1 ... Pk)). This restriction is necessary because (a) PRS does not support
the insertion of disjunctive facts into'its database, and (b) when given a conjunctive
fact to be concluded, PRS adds the individual conjuncts into the database.

(NOTE: PRS will only flag the use of explicit disjunctions written using the operator
OR. Implicit disjunctions such as (NOT (AND (P) (Q))) are not recognized.)

In addition, the following conventions should be noted:

- An OR is equivalent to the first disjunct that succeeds (as in Lisp), rather than a logical
disjunction that considers instantiations from all disjuncts.

* Metapredicates of the form

(ACHIEVE (wffl ... wffk))
(ACHIEVE (AND wffl ... wffk))

are equivalent for plot nodes. For environment nodes, the latter is translated to (FACT*
(AND wffl ... wffk)) while the former is translated to (& (FACT* wffl) ... (FACT*
wffk)). The analogous convention holds for the translation of metapredicates of the
form (TEST (wffl ... wffk)).

119

E.3 SIPE Restrictions

The following are restrictions placed on ACTs that are to be translated to SIPE-2 operators.
The ACT-to-SIPE translator issqes a warning message whenever a restriction is violated.

The system translates only ACTs whose class property (in the Properties slot)
is one of: state-rule, causal-rule, init-operator, init.operator, operator,
both.operator. ACTs with class operator correspond to action operators in SIPE-2 while
ACTs having any other of the above class properties correspond to SIPE-2 deductive rules.
We use the term nondeductive to refer to the former class of operators and deductive operator
to refer to the latter class.

"* For logical formulae:

- AND should not be nested inside NOT, OR, or AND.

- OR should not be nested inside NOT or OR.

"* Formulaes containing OR are allowed in Test metapredicates only.

"* The REBIND construct is not supported.

"* The predicates - class in - range > < <= >= are translated to
SIPE-2 constraints. They should not be used inside an OR.

"* An OR is equivalent to the first disjunct that succeeds (as in Lisp), rather than a logical
disjunction that will consider instantiations from all disjuncts.

"* For the Cue slot, Achieve and Test can be applied only to atomic formulas, negated
atomic formulas, and conjunctive formulas.

"* In the Cue slot of a deductive ACT, all metapredicates except Conclude are ignored,
while in the Cue slot of a nondeductive ACT, all metapredicates except Achieve are
ignored.

* Achieve is ignored in the Precondition slot.

* Deductive operators must have a Conclude metapredicate in the Cue slot and all plot
nodes except the start node are ignored. Nondeductive operators must have an Achieve
metapredicate in the Cue slot.

* Currently the ACT-to-SIPE translator does handle the option of using the names of
plotnodes in the Time-Constraints property.

120

Appendix F

Demonstrations in the SOCAP
Domain

This chapter provides instructions for running two demonstrations of the CYPRESS system
within the SOCAP domain. Section F.1 describes the basic demonstration, in which a de-
terence plan is created using SIPE-2 and Gister-CL, translated into the Act representation,
then executed by PRS-CL. Section F.2 presents extensions to the basic demo that highlight
the replanning capabilities of CYPRESS.

F.1 SOCAP Demonstration

The first step is to load the CYPRESS system. If an executable containing SIPE-2, PRS-CL,
Gister-CL and Grasper-CL is available, invoke that executable. Otherwise, the CYPRESS
system is loaded by executing the following steps:

* start a Lisp process

e execute (load "/homedir/cypreus/rl.asd/liusp/systeu. lisp")

9 load CYPRESS, using the appropriate call to the function load-cypress

Note that /homedir/ refers to the directory on your local file system where the CYPRESS
system is stored. At the AIC, /homedir/ can replaced by the tilde character.

The CYPRESS system is now ready for use. The next three steps load and initialize the
SOCAP demonstration files, as well as starting up the CLIM frame for the system.

* execute (load "/hooedir/cypress/roleasod/dwmos/aic-socap/up-dmo. lisp")

* execute (run-sipe)

* execute (load-demo :all) from within the CLIM lisp listener pane

121

The command (load-demo : all) initializes the CYPRESS system for the entire SOCAP demo.
The function load-demo also accepts the arguments :prs and :gister to initialize the
demonstrations for those two subsystems only (SIPE-2 is initialized as part of initializing
either PRS-CL and Gister-CL).

The demo is ready to run at this point. The remainder of this section describes how to
interact with the various CYPRESS subsystems to control the demonstration.

To restart the demonstration after it has been run previously, call the function
(prs: :init-demo).

ACT EDITOR (Part 1)

To demonstrate the capabilities of the ACT EDITOR, first select this system from the
application menu (click on APPLICATION, then select ACT EDITOR, from the pop-
up window that appears). Next, select the graph socap-acts. graph and the Act
Deter-border-incursion-by-ground-patrol. (These steps can be done prior to the start
of the demonstration.) This Act is used by SIPE-2 in generating the deterence plan. Make
sure that before the demo starts, the Resources slot is empty.

During the actual demonstration, execute the following steps:

"* Select the APPLICATION button to show the various systems that have been loaded.
Explain the architecture of CYPRESS.

"* Use the EXAMINE command in the NODE menu to add (army. 1) as an entry for
the Use-Resource slot of the node Resources (make sure that you enter a list!). This
change is made to ensure that different armies are used for parallel deterence patrols.

"* Invoke the ->SIPE command in the ACT menu to translate the ACT to a SIPE-2 oper-
ator. (You will be prompted for a filename in which to store the translated operator.)

SIPE-2 (Part 1)

Switch to the SIPE-2 system by clicking APPLICATION. Use the INPUT command in the
DOMAIN menu to load the file containing the new version of the ACT just edited.

If desired, the user can show off various features of SIPE-2's interface, such as its ability to
interact with the database and to display operators and problems. In particular, you may wish
to display the planning problem to be used in the demonstration. To do so, use the DRAW
PROBLEM command in the DRAWINGS menu. A list of problems will be displayed; choose
the problem SOCAP-1 (problem SOCAP-2 is the same and can also be used). The problem
will be graphically displayed, showing the top-level goal (protected-ti coa-1). Note that
all drawing operations within SIPE.-2 will be done within the current graph. For example,
drawing a problem or generating a new plan will cause changes to be made to the current
graph. For this reason, the user is advised to create a new graph to contain these drawings.
To do so, select the DRAWINGS menu; then choose the CREATE option under the GRAPH:
heading. You will be prompted for a name for the graph being created.

122

Optional: use the LAYOUT command in the PROFILE menu to switch to the layout
with a choice window. This is a nice feature for making choices in the interactive search in
a permanent pane instead of in pop-up menus.

"* To begin planning, select the PLAN menu. Click on INTERACTIVE to initiate inter-

active planning.

"* In the pop-up menu for the interactive planning options, reset the following values:

- Under the heading "Choosing Operators", set User chooses operator at each node
to YES.

- Under the heading "Choosing Instantiations, Ordering", set User chooses required
instantiations to YES.

SIPE-2 will now enter its main interactive planning loop. At the start of each cycle, the
user is prompted with a pop-up menu listing the top-level interactive choices. Three of these
choices are relevant for the demo. When PLAN NEW LEVEL is selected, SIPE-2 will refine
the current plan one level deeper. CONTINUE PLANNING AUTOMATICALLY commands
SIPE-2 to finish the planning process on its own. QUIT will terminate the interactive planning
for the current problem.

* Click PLAN NEW LEVEL to start the first planning cycle.

* At this first planning level, SIPE-2 has a choice of operators to apply. You can show
the interface capabilities of SIPE-2 by drawing the possible choices. The choices
can be drawn by clicking on the name of the operator to be drawn (here, either
Join-t-show-of-force or Join--ops-deoenas) then setting the flag for Draw oper-
ator and radisplay plan after final choice to YES.

* After you have finished drawing the operators, select Joint-show-of-force as the
desired operator.

After finishing with this planning level, SPE-2 will pop-up a menu asking you to choose
a name and whether to display the current plan. Set the USE-DEFAULTS flag under
the heading Draw plan graphically by clicking on it. SIPE-2 will display the first level
of the plan.

* The top-level planaing menu will appear again. Continue the cycle of selecting PLAN
NEW LEVEL to generate the next planning level, then drawing the resultant plan.

* During the third planning cycle, the user will again be prompted to choose among
a set of operators (there will be four deter-border-incursion operators listed as
possibilities). At this point, change the second search option (labeled Continue search,
choosing operators automatically at all nodes) to force SIPE-2 to perform all future
operator selections.

* SIPE-2 will next prompt for help in instantiating the variable amay. 1. Choose the option
to use Gister-CL to analyze the situation. A menu will ask for the particular armies to
consider. Here, pick 199th-iab and 107th-acr and YES for Switch to Gister.

123

L, . i

At this point, control is switched to Gister-CL. The demonstration of SIPE-2 will continue
alter the use of Gister-CL.

GISTER-CL

A new window for Gister-CL will appear on the screen. Begin by explaining how Gister-CL
is to be used. Basically, a probabilistic analysis of both the friendly and enemy forces is done.
The analysis results in the calculation of a required force ratio for deterring the enemy, along
with a probability that the ratio is satisfied by the individual friendly force. The birds-eye
window can be used to show the over-all structure of the analysis graph.

* Click on the upper left circle to begin the Gister-CL analysis.

* When finished, note how the 199tbh-jb is best.

* Click on EVIDENCE to bring up the evidence-level menu, then select EXAMINE.
Click on the last node in the analysis (the diamond-shaped node) to show probabilistic
intervals for the current force (the 199th-iab).

* When finished with Gister-CL, select the APPLICATION menu, then click on EXIT.

At this point, control returns to SIPE-2.

SIPE-2 (Part 2)

" SIPE-2 will automatically use the 199th-iab, as recommended by Gister-CL. It will
continue to ask about other instantiations for this planning level; simply use the default
value (which is highlighted) for each. Note that after the 199th-ijb has been used for
the army on the first branch of the ground deterence, it is not eligible for use in the
second branch. This exclusion is a result of the resource constraint added to the Act
Dater-border-incursion-by-ground-patrol earlier in the demo.

" At the end of planning this level, the top-level interactive planning menu will appear
again. The user can continue to plan each level interactively by selecting PLAN NEW
LEVEL. Alternatively, the user can either:

- choose CONTINUE PLANNING AUTOMATICALLY rather than PLAN NEW

LEVEL to have SIPE-2 finish the plan on its own, OR

- choose QUIT rather than PLAN NEW LEVEL.

The number of levels of SIPE-2 planning that should be performed will vary, depending
on the audience.

"• After the final level has been completed, draw the resultant plan. This plan consists
of four main threads of parallel activity for deterring the set of known threats. Two of
these threads correspond to deterence using ground forces, one corresponds to deterence
using naval forces, and the fourth using air forces. Use the birds-eye to show the over-all
structure of the plan, pointing out the four parallel threads.

124

Optional: The command ->ACT on the PLAN menu can be used to translate the final
plan to the Act representation, and the AcT EDITOR can then be used to modify it
before executing it in PBS-CL. Because a copy of the translated plan has been pre-loaded
into PRS-CL to speed the demo, it isn't necessary to perform this step. Under normal
circumstances though, this translation process would be required.

If you changed the pane layout as part of the SIPE-2 execution, use the LAYOUT com-
mand in the PROFILE menu to return to the default layout at this point. The default layout
is preferable for both the ACT EDITOR and PRsCL systems.

ACT EDITOR (Part 2)

Use the APPLICATION menu to choose the ACT EDITOR. We will display the ACT rep-
resentation of the SIPE-2-generated plan and explain how PRS-CL executes this Act, using
lower-level standard operating procedures that are also expressed as Acts.

Click SELECT in the GRAPH menu. In the pop-up window that is presented, choose
the graph show-of-force. graph. Doing so will result in the plan ACT being displayed.

Now is a good time to explain the interaction between SIPE-2 and PRS-CL. The basic idea
is that SIPE-2 should be used for planning down to a certain level of detail; PR.S-CL can then
be used to further flesh out the plan at run-time by applying appropriate ACTs at lower
levels of abstraction. As an example:

"* Point out the two Ground-patrols goals in the Show-of-force act.

"* Choose the SELECT command and switch to the graph ground-patrols-sops .graph.
When prompted for an Act, select Ground-patrol. Show how this ACT can be applied
to satisfy the Ground-patrols goals. Also, point out the Lookout goal in this ACT.

" Click SELECT in the ACT menu. From the pop-up window, choose Lookout-clear.
This act can be used to establish the Lookout goal in the Ground-patrol act in sit-
uations where there is no Code-red in effect (see the preconditions slot). Click on
SELECT then choose Lookout-dangerous to show the operator to be used when a
Code-red is in effect. The Code-red predicate is a good example of a run-time con-
dition for which it is more appropriate to have PRP-CL respond then to have SIPE-2
plan.

Next, we show the ACTs used in the demonstration of PRS-CL's ability to repair failed goals.

"* Click on SELECT in the GRAPH menu. From the pop-up window, choose
naval-patrol-sops. graph. When prompted for an ACT, choose Naval-patrols.

"* The second node in the plot of this ACT shows the goal of having
Ship-to-shore-communications established and maintained for the duration of the
ACT (this goal is specified with the Require-Until metapredicate). In the demon-
stration, PRS-CL will achieve this goal; the user will then intervene and remove the
corresponding fact from the database. This retraction will trigger a repair ACT to
reachieve the goal without causing the entire plan execution to fail.

S. m mmmm mm mmi mimmliIl l ~ it Hi liC 5i

a Click SELECT in the ACT menu and choose the ACT Repair communications and
show how it can be used to re-establish the communication goals.

PRS-CL

We are now ready to switch to PRS-CL in order to execute the plan. Enter the APPLICATION
menu and select PRS-CL. For initialization purposes, perform the following steps:

" Enter the AGENT menu then click on SELECT. This step will set the current agent to
SOCAP if it is the only defined agent, otherwise select SOCAP from the menu presented.

" Select the EXECUTION menu to access the run-time knowledge-level operations. All
remaining commands will be chosen from this menu.

" Select the TRACE command. In response to the pop-up menu, select PROCEDURE-
GRAPHIC, DATABASE and RESOURCES. You will be prompted by a second pop-up
window to choose the ACTs to be graphically traced. Choose among the following, as
appropriate:

Strongly Recommended:
Show-of-force (the generated plan)

To show Reactivity/Repair:
Naval-patrol
Repair-comaunications
Secure-sea-sector (for extra detail, when speed is not an issue)
Ship-to-shore-communications (for extra detail, when speed is not an issue)

To demonstrate Lower-level Expansion, Resources (not generally traced):
Ground-patrols
Lookout
Secure-site
Set-up-camp

Execute the following steps to run the PS-CL portion of the demo:

"* Post the goal (protected-ti coa-1) using the POST GOAL menu item.

"* Click PAUSE when the graphic trace switches from Show-of-force to Naval-patrols.

"* Explain the naval patrol scenario and repair mechanism.
Scenario: The Act Naval-Patrol requires that the fact
(ship-shore-comuntications 22rd-saf) be protected for the duration of the Act.
We will interrupt the protection by removing this fact from the PS-CL database, which
will in turn invoke the Act Repair Communications, which was written specifically to
fix this protection violation.

126

* Click RUN to continue execution.

* Click CONFIRM and select (ok naval-patrols).
(Do this step any time after seeing the message "Wait for (ok naval-patrols)".)

Click RETRACT FACT, enter (ship-shore-communications 22nd-ssf). This step
causes the fact to be removed from the agent's database.
(Do this retraction any time after the fact has been added to the database.)

* Click CONFIRM, choose (ok repair) after seeing the message
"Wait for (ok repair)". (This confirmation allows the repair process to proceed.)

* Click CONFIRM, choose (ok secure-sea-sector).
(Do this step after seeing the message "Wait for (ok secure-sea-sector)")

No further user interaction is required at this point. PRS-CL will continue execution of the
plan until it reaches a successful completion. If desired, the user can interact with PRS-

CL during the remainder of the execution to perform operations such as changing the trace
selections, accessing the database or pausing execution.

To redo the PRS-CL portion of the demo, it is necessary to restore the agent database to
its original state. The restoration can be achieved by selecting the KNOWLEDGE menu,
then clicking on RESTORE DB. The PRS-CL demo can now be repeated.

F.2 Replanning Demonstration

The replanning demonstration uses the basic SOCAP scenario described in the previous sec-
tion. During plan execution, however, the user can makes modifications to the SOCAP agent
database in order to cause an execution failure. The failure will in turn initiate a replanning
process designed to produce an alternative plan that addresses the failure.

Overview

The original plan produced in this domain involves four main threads of execution for de-
terring a set of known threats. Two of these threads correspond to deterrence using ground
forces, one corresponds to deterrence using naval forces, and the fourth using air forces. As

part of the air deterrence operations aircraft are moved among various air bases. The use of
any individual air base requires explicit transit approval; such approval is granted for all air
bases used in the plan as part of the original domain knowledge.

Execution failure can be triggered by rescinding transit approval for any of these air bases.
Doing so simply involves deleting the appropriate fact of the form

(transit-approval <airbase>)

from the SOCAP agent's database. Removal of such facts lead to plan failure when execu-
tion reaches the stage where this approval is required. Without replanning, execution would
completely fail at this point. When replanning is enabled, the SOCAP agent will notify the

127

REPLANNER agent, which in turn will issue a replanning request to SIPE-2. Meanwhile, exe-
cution of the remaining branches of the original plan continues.

Replanning for this situation produces a modified plan in which an alternative mobiliza-
tion strategy is employed. This plan is sent to the REPLANNER agent, who forwards it to
the SOCAP agent who integrates the new plan into its intention structures and continues
execution.

Initialization

Initialization for the replanning demonstration employs the same steps described in Sec-
tion F.1, with one minor modification. Prior to executing the LISP function

(load-demo :all)

it is necessary to set the LISP variable

PRS: :*LOAD-STORED-SOCAP-PLAN*

to nil. This "uriable controls whether or not to load a predefined Act plan for the SOCAP
domain into the SOCAP agent. Pre-loading the plan is useful in situations such as the basic
SOCAD demons~ratioa fronm the previous section, where no modifications to the plan are
needed. When replanning !s to be used though, it is necessary to load a plan that has
been generated by SIPE-2 durinr the current session. This requirement arises because the
replanning process needs access to the internal SIPE-2 structures that were used to create the
plan, not just the final Act version of the plan. Currently, those SIPE-2 structures are not
saved with the Act representation of a plan.

Prior to the start of the demonstration it is necessary to enable replanning. The use of
run-time replanning is controlled by the variable

PRS: : *USE-REPLANNING*

When this variable is t, replanning is enabled. It should already be set to t by the domain
initialization process, but you may wish to check before proceeding with the demonstration.

In addition to enabling replanning, it is also necessary to specify a communication pro-
tocol. As described in Chapter 5, CYPRESS replanning supports three different protocols:
message-passing, file-sharing, and the use of Knet-Cronus. To specify a particular protocol,
set the LISP variable

SIPE: :*AGENT-PROT0C0L*

to either :Prs-send for message-passing, :file for shared files, or :knet for KNET and
CRONUS. The default value is : knet. The message-passing protocol works only when PRS-CL
and SIPE-2 are running in the same LISP image. The shared-file protocol is slow. The Knet-
Cronus protocol uses the Knet and Cronus systems of the CPE for fast communication when
the two systems are running on different machines or in different processes. The replanning
process itself is identical under any of the protocols.

The message-passing and shared-file protocols require no additional steps. To run the
replanning demonstration using the Knet and Cronus protocol, the initialization process
described above should be performed on the two machines zo be used. In addition, it is

128

necessary to start the appropriate servers. On the machine that will be used for PRS-CL
execution, execute the function

(knet :start-servezr :PRS-AGENT)

in its LISP image. On the machine for SIPE-2, execute

(knot: start-server : SIPE-AGENT).

Plan Generation using Sipe-2

The first step in the replanning demonstration is to generate a plan. To do so, follow the
steps described in the previous section (remember to create a new graph in which to store
the generated plan). Once the plan is generated, it needs to be translated to the Act repre-
sentation for use by PRS-CL. The translation can be done using the ->ACT command on the
PLAN menu. Now, switch to PRS-CL(click on APPLICATION).

Plan Execution and Replanning using PRS-CL

As described in Chapter 5, the replanning architecture makes use of a PRS-CL agent called
REPLANER that is dedicated to servicing replan requests from other PuS-CL agents. Thus,
for the SOCAP domain there will be two active PRS-CL agents: SOCAP and REPLANNER.

Within PRS-CL, there is a notion of the current agent which denotes the single agent that
is 'attached' to the interface. In particular, lower-level menu operations such as loading Acts
or posting goals, are applied to the current agent. The current agent can be set using the
SELECT command in the AGENT menu. For the replanning demonstration, a pop-up menu
will appear with two agents from which to choose: SOCAP and REPLANNER.

The first step is to load the plan into the SOCAP agent. Set the current agent to be SOCAP,
then select the KNOWLEDGE menu. Clicking on APPEND will bring up a menu of choices,
from which you should select PROCEDURES. A menu of graph choices will appear, from
which you should select the graph containing the Act version of the plan you have created.
Doing so will cause the plan to be loaded into the SOCAP agent.

The system is ready to execute the plan. Before doing so, it is best to enable some run-
time tracing for both the SOCAP and REPLANNER agents. PRS-CL permits tracing of multiple
agents simultaneously. However, graphical tracing is activated only for the current agent.
This restriction is necessary because the various agents operate in parallel, thus making it
impossible to graphically trace the activities of more than one agent at a time. Textual trace
and output windows will appear for all agents. These windows are created at the time of
receipt of their first display messages.

To set the trace selections for an agent, first make that agent be the current agent. Then
click the TRACE command in the EXECUTION menu. A pop-up menu will appear with
the possible choices.

For the SOCAP agent, choose DATABASE, MESSAGES, RESOURCES (optional),
PROCEDURE-GRAPHIC, and PROCEDURE-TEXT. Pop-up menus will appear that al-
low you to specify which Acts (procedures) should be traced graphically and textually.
Activate text tracing for the Acts Successful Replanning, Failed Replanning and the

129

Act corresponding to the plan created using SIPE-2. Activate graphic tracing only for the
Act corresponding to the plan. For the REPLANNER agent, choose only MESSAGES and
PROCEDURE-TEXT for the Act REPLANNER.

To run the demonstration, set the current agent to be SOCAP. Then post the goal

(protected-ti coa-1)

to the SOCAP agent, as described in the previous section. Doing so will cause the agent to
begin execution of the Act representing the plan generated using SIPE-2.

Shortly after execution commences (or prior to posting the goal), remove the fact

(transit-approval rota.naval. statio-af.b)

from the SOCAP agent's database using the RETRACT FACT command. Eventually, the
SOCAP agent will encounter an execution failure for a node with a Test metapredicate con-
taining that fact.

The SOCAP agent will notify the REPLANNER agent of the failure via PRS-CL message-
passing. The trace and output windows for the REPLANNER agent will provide information
about the status of the replanning operation. These windows will appear as soon as the
replanning process commences.

The REPLANNER agent will issue a replanning request to SIPE-2. A pop-up window will
be displayed on the SIPE-2 host that documents its replanning process. Upon generation of
a new plan, SIPE-2 notifies the REPLANNER, agent, which in turn passes on the new plan to
the SOCAP agent. Upon integration of this plan into the execution structures, the graphical
tracing will switch to the newly generated Act plan. If you wish to examine this Act, click
the PAUSE command to temporarily halt execution, then use the scroll bars in the interface
to navigate through the Act display. To continue execution, click the RUN command.

Execution will proceed from this point without further interruptions, although the user
is free to interact with the system as desired.

130

Controlling Replanning

Below is a list of LISP variables that can be set to control the replanning process. All variables
are in the package :prs unless otherwise specified.

SIPE: :*AGENT-PROTOCOL* This variable selects the communication protocol to be used. Its
value can be :PRS-CL-send for message-passing, :file for file-sharing, or :Knet for
Knet and Cronus.

USE-REPLANNING When this variable is nil, replanning is disabled; for all other values,
replanning is enabled. The system default is nil, but the SOCAP domain files reset the
value to t.

TRACE-REPLAN When set to t (the default), this variable enables both textual and graphical
execution traces to be enabled automatically for any new plan generated by replanning.

PRS-ONLY-PREDICATES Contains a list of predicates that should not be forwarded to SIPE-
2 when transferring the current world state for replanning. To improve efficiency, this
variable should be set to a list of predicate names that are accessed only by PRS-CL.
Correctness does not require that this variable be set.

REPLAN-IO-DIRECTORY Identifies the directory in which the files used under the shared-file
protocol for communication should be stored. For our demonstration, this variable is
set to "Ihomedirlcypress/be.ta/demosuaic-socap/".

131

Appendix G

Papers

This appendix contains the two papers written on this project that have not been covered in
this report, or previously submitted under the documentation requirements of this contract.

The first paper, coauthored by David Wilkins and Roberto Desimone, is entitled "Apply-
ing an AI Planner to Military Operations Planning." This paper describes the SOCAP domain
in some detail, the use of SIPE-2 for joint military operations planning in SOCAP, and the
strengths and weaknesses of this approach. This paper will appear in early 1994 in a Morgan
Kaufmann book, Intelligent Scheduling, edited by Mark Fox and Monte Zweben.

Following this is the paper by Dr. Myers and Dr. Wilkins entitled "Reasoning about
Locations and Movement." This was submitted to the it Artificial Intelligence Journal special
issue on planning in June 1993, and will be published after revisions are made and approved.
It presents a theory of locations and describes the practical experience of implementing this
theory in SIPE-2 and SOCAP.

132

DISTPI1UTION LIT

addresses number
o+ copies

4R. L3UIS J- HOEREL 5

RLfC3C4
SLD6 43
525 SR$OKS ROAD
GRIFFI.S AF8 NY 13441-4505

SRI INTERNATIONAL 5
333 RAVENSWOID AVE
VE'JLO PA;< CA 94,25

RLISUL
TECHNICAL LIBRARY
26 EL=CTR3NIC PKY
GR-FFISS AF3 hY 13441-4514

ADMINISTPATOO 2

DzFENS: TECHNICAL INFO CENTEP
DTIC-FDAC
CAMERON STATION BUILDING 5
ALEXANDRIA VA 2233•46145

AOVANCED ,ES"APCH PROJECTS AGENCY I

3721 NORTH FAIRFAX.DPIVE
ARLINGTON VA 22203-1714

NAVAL WARFARE ASSESSME4T CENTER

GID•E I;PQAT:ONS CENTERICODE IA-53

CORONA CA 91718-5ý

4Q ACC/DI¥Y
ATTN: •AJ. D:VINE -

L44GLEY AF9 VA 23665-5575

WRIGHT LA3ORATORY/AAAI-4
WRiGHT-PATTERSON AFS OH 454.33-6543

OLml

ir1GHT LA3A.RATCRY/AAAlZ2
ATTN: ORP FRANK(LINd HUTSON
W~IGHT-PATT-rSON AFS OH4 43433-5543

qUILDINIG 642P AREA 5
WRIGHT-PATTEVSON AF3 3OW 4543Z-6583

WDIGl4T LA3)RATORY/MTTEL1
WRtGI4TPATTEPSON AFB 014-45433

WIGHT-PTrEDSON AFO OH 45433-6573

AUL/LS= I
3LDG 1 41..5
MAXWELL AF? AL 361-42-5564

US ARMY STRATEGIC DEFI
CssD-:'M-PA
Po sox 153ý
HU4bTSVILLE AL 358:7-38:1

C:"MAN~DINZ OFFICER1
'JAVAL AV:3NIP% CENITEP
L13RARY D/765

bIAVAL W.EA~PONS CENTER
TECHNICAL LVIRARYIC3431
CHINiA LAKE CA 93555-6301

SPICE 'I NAVAL WARFARE SYSTEMS COM I

WASHINqTCN DC 20363-512C

CORP U.S. ARMY MISSILE CC-IANO 2
;SDSTOZE SCIENTIFIC INFO CENTEP
&!SMT-R-CS-RIILL DOCUMENTS
PEDSTONz ARSE-v4-AL AL 35893o5241

ADVISG2Y GROUP ON ELECTRON DEVICES 2

ATTN: DOCU9UIENTS
211 CCYSTIL DPIVESUZTS 3-7

AZLING 3N VA 22202

LaS 4LAMS NATIONAL LABO*ATOPY I

PREORT L13PAPY
m S 3 ,* i
LOS ALAHOS Nm 87544

AEOC L!3RARY

AFR43LD AF3 T14 373S9

FT dUCHU:A LZ 85613-5:1.

Aý: W=T4=EP SE*VICE TECHNICAL LI?
FL 441'.
SC3TT AF! IL 62225-5458

AF!WCIMSI
132 4ALL 3LVO STE 115
SAN ANTONI: TX 78243-7316

S10TWADE E4GINSERIN6 I4S' (SEII
TECNNiCAL LIBRARY
5030 F3R9ES AVE
DITSBURSH PA 15213

0L-3

OIECTIJR 'dSA/CSS
W1 57
93N) SAVAGE DOAD
C3RT MSADZ- MD 2lC55-6.-#W'

'ISA
S323ii4C
SA32 ol: 22
FORT M'EADE Mo 21055-60013

ATTN: D. 4LLF'Y
1:V X911
41- SAVA3r POAD

FT ME1ADE MID 2L755-60COW

aD31

0310 SAVAGS DOAD
FT. %iS8DD ND V~755-600.

DIONSA

931mý SAVAGE ROAD
FT M'EADE 4iD 2'W775

NSA/CSS
POS/P S F LDG
FORT G90QSE G, MEADE MD 20755-6lC3

5,) G219FTS3 ST!E~T

zSC/AV
H, SCHILLT43 CIRCLE
;ANSCOV 4F3 MA W01731-2.816s

9L 28:7/QrESEARCH LIBRAaY
'-L AA/SULL
I4A4SC3O" AFS M"A C1731"500C

DL-4

T,:HNICAL REPORTS CENTER

WAIL ODOP DI13

eUDLI•GTON ROAD
9EDFORD MA C1731

DEFENSE TECHNOLOGY SEC ADOrN (DTSA)
ATTN: STTDI 0 ATRICK SULLIVAN
4.' ARMY NAVY DRIVE
SUITS 301
ARLINGTON VA 22202

DL-5

MISSION

OF

ROME LABORA TORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

