
RL-TR-94-67
Final Technical Report
"June I W.AD- A281 019

COMMUNICATION NETWORK
SOFTWARE ANALYSIS

Clarkson University and Boston University

Robert A. Meyer, David A. Perreault

DTIC
ELECTE
JUL 061994

v G

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

94-20415 DMC QUALMY INPECTD 3llll!!i~l!~lllir!! ll ,I9 4 7 5 13 6
• i i i i i i

This report has been" reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-94-67 has been reviewed and is approved for publication.

APPROVED: 1ý

CHARLES MEYER
Project Engineer

FOR THE COMMANDER Y
JOHN A. GRANIERO
Chief Scientist for C3 Ion

D11C TAB

UrlnnounCrl

D M:t ib.io . .

D-.i AM�A and or
SpeclaI

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RIL (C3BC) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

Form AprovedtREPORT DOCUMENTATION PAGE Fo.mA70ro0180MB No. 0704-01 88
PLM q~ badw tt I~ Ir dl to wwo au - fWtd wmp I r-a., w om~w r"&Vt~eo 0u u uwur rvftuww.S in"U~rog a SW~cts
go" 0 Wd r•m 9*, Mw Ota r wv ln am wW mv msi &aao kwbc d 6 1- ubm Swid Gmmum r vu tb'um, so 0 3e or $ cv -- o e•es
coma,, d a ftvv am I .~ aA simmm g to eaA ato to Waiw*Vo Hoopiws S~a~ OkmwgMfo "anw n huwom O~w dRepans. 121i5 euftefso
Omt HowW. &*in I X. AMrW VA .402-4 idto " Of,.m d Mwwpunwt wid 0, S.W Pwwwa Pa Pmld (M704-M It Weq OC 20503

1. AGENCY USE ONLY (leave B~nk) j REPORT DATE 3 REPORT TYPE AND DATES COVEREDJune 1994 Final Jun 92 - Dec 93
4. TTLE AND SUBTITLE 5. FUNDING NUMBERS

COMMUNICATION NETWORK SOFTWARE ANALYSIS C - F30602-92-C-0083
PE - 33126F

6. AUTHOR(S) PR - 2022

Robert A. Meyer TA - 05

David A. Perreault WU - P1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFORMING ORGANIZATION
Clarkson University (Electrical & Computer Engr Dept) REPORTNUMBER
Potsdam NY 13699 N/A
Boston University (Microprocessor Research Laboratory)
Boston MA 02215

0. SPONSORINGtMOMTORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORINGNMONITORING
AGENCY REPORT NUMBER

Rome Laboratory (C3BC)
525 Brooks Road RL-TR-94-67
Griffiss AFB NY 13441-4505

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Charles Meyer/C3BC/(315) 330-1880

12a. DISTRIBUTONWAVALABILI[Y STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT~dvY*a= aumdu

Synchronous (or simultaneous) program execution (SPE) is a technique that allows the
same program to run synchronously on geographically separated computers. However,
the results generated appear to the users at the different sites as if the users are
sitting in front of the same computer. The difference between the SPE technique
and the distributed systems techniques is that with the SPE technique the same
execution takes place at each computer, while with distributed systems techniques,
parts of one program execute on different computers. The SPE technique can be used
in reducing communications in cases such as computer conferencing.
The SPE technique is based on the creation of a Shell running at each computer and
the transmission of messages between the Shells. Only a low bandwidth line connects
the computer systems. The Shell is constructed at each computer system, in software,
and resides between the operating system and the executing program and between the
entering inputs and the operating system.
This paper presents and analyzes Petri nets that model the synchronization of
simultaneous program execution between two computers. The analysis of the Petri
nets indicates proper operation of the system.

14. SUBECT TERMS ,M3ES OF PAWS20
Shell, Petri Nets, Computers I&PIcEoCOE

17. SECURITY CLASMiFICATION 1& SECURffY CLASSFICATION IgSECURITY CLASSFICATION 2L I.MTATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

P#moma by ANS =1 Z39W,

DTIC QUALTZ'IY UTSPE(TgEED 3

Communication Network Software Analysis

EXECUTIVE SUMMARY

Synchronous (or simultaneous) program execution (SPE) is a technique that

allows the same program to run synchronously on geographically separated

computers. However, the results generated appear to the users at the different sites

as if the users are sitting in front of the same computer. The difference between the

SPE technique and the distributed systems techniques is that with the SPE technique

the same execution takes place at each computer, while with distributed systems

techniques, parts of one program execute on different computers. The SPE technique

can be used in reducing communications in cases such as computer conferencing.

Synchronized execution means that the programs must have the "same

execution" and be closely synchronized. In order for the programs to have same

execution, they must get the same input at the same point in their execution. Inputs

are also used to synchronize the executions of the programs. The inputs can

originate on any computer and get distributed to the other computers. Input

accessing methods are required to specify which computer's inputs are valid at any

given time.

The SPE technique is based on the creation of a Shell running at each computer

and the transmission of messages between the Shells. Only a low bandwidth line

connects the computer systems. The Shell is constructed at each computer system, in

software, and resides between the operating system and the executing program and

between the entering inputs and the operating system.

This paper presents and analyzes Petri nets that model the synchronization of

simultaneous program execution between two computers. The interactions between
the Shell, the operating system and the application program of the two computers,
as well as the messages sent between them are modeled with Petri nets. The analysis

of the Petri nets indicates proper operation of the system. The analysis includes
safeness, conservability and liveness. Programs may execute on computers of
different speeds. This results in a delay in the execution of the faster. computer.
Timing analysis was performed to calculate the delays and the affect they have on
the performance of the system.

1. THE SHELL AND THE INPUTFS

The Shell can be considered as an extension to the operating system handling
the remote execution section. It accepts all the inputs to the system, checks if valid,
and transmits them to one of the computers called the Master. The Master collects
all the inputs, places them in order, appends some synchronization information
and distributes them to the Slave computer. The Shell is created between the
application program and the operating system and between the inputs and the
operating system. The Shell:

1. runs on both computers

2. gets activated only by an input interrupt and takes the action shown in 3 or 4
bellow.

3. accepts the inputs and hides them from the operating system. If the inputs
are valid, it stores them in Temporary Input Buffers (TIB).

4. accepts all requests for inputs and distributes and synchronizes the inputs
that are already in the TIBs if any, one at a time, by communicating with the Shell
running at the other computer.

The assumption has been made that programs requesting inputs, and inputs
entering programs go through the operating system. This is not a severe restriction
since most high level programs in single user systems and all programs in multi

user systems are written in this manner.

An application program can request input in a synchronous or asynchronous
manner. The application program can either wait until an input gets entered, in
which case the input always enters the program at the same point in its execution
and is synchronous, or, proceed on its execution and periodically check for the
presence of input, in which case it is asynchronous. The number of times C that the
application program checks for the presence of an input (through requests to the
operating system), until the input gets entered, designate the exact point in program
execution that the input got entered, and is used for the synchronization of the
asynchronous inputs between the two computer systems. The Shell updates the
values of the couater C each time the application program checks for the presence of

2

an input. The Shells running on the two computers make sure that the input is

presented to the application programs on the same C count.

Asynchronous inputs may be entered from either one of the two computers.

An input accessing method is required that designates what inputs are valid from

each one of the two computers at any time. For example, the keyboards of the two

computers may not be active at the same time. The user can specify the input

accessing method that they prefer at the beginning of the session. All the inputs

from both computers are presented to the Master where they get validated and

ordered. The Master considers all valid inputs as if they were its own inputs and

distributes them to the Slave, with some synchronization information. The

synchronization information is the count C. When an input gets presented to the

application programs on the two computers, the count of the Master, Cm, must be

equal to the count of the Slave, Cs.

Synchronous inputs may be entered from either of the two computers in which

case they must be distributed to the other computer. Synchronization is not required

but validation is. There are cases where synchronous inputs may originate from

data that exists on both computers, like reading of files that exist on both computers.

In such cases the application program can itself get the input (through the operating

system) without any action to be taken by the Shells. The rest of the paper is about

the asynchronous inputs.

2. ASYNCHRONOUS INPUT SYNCHRONIZATION

Petri nets are used for modeling the synchronization of the asynchronous

inputs. One of the most important use of Petri nets is the modeling of asynchronous

systems, especially ones that experience concurrency, asynchronism and

nondeterminism [1]. The system under construction possesses all three conditions.

The system experiences concurrency since there is execution taking place at two

computers. It experiences asynchronism since some inputs are entered in an

asynchronous way. Finally, it experiences nondeterminism, in its execution, since

the inputs are entered interactively, 'which means that the execution takes a path

related to the user response. In Petri net language, this is called decision or data-

dependency. For the analysis that will follow we adopt the theory, notation and

formulation of Coolahan and Roussopoulos[2].

3

p1
t3

p3
ti t2

p2 - User Process

t25 0 " Operating system

t26

p23

Figure 1 Petri net of User Process checking for inputs

In figure 1 is the Petri net of a running process that checks for an input Place p1
represents the application process that is executing. When the process wants to
check for an input, transition tl fires and the token goes to place p2. Transition tl is
the call to the operating system to check for an input. In p2 the checking for an input

is performed by the operating system. If no input is available, then transition t2 fires
and the token returns to p1 where the user process resumes execution. The token
loops in p1, t1, p2, t2 until an input is entered. After an input is entered, the next
time that the token gets in p2, transition t25 will fire and the loop will terminate.
The token goes to p23 where the user process gets the input. Then transition t26 fires

and the token returns to p1 where the user process returns to processing. This
scenario will continue as long as the process is executing. When the process
terminates, transition t3 fires and the token returns to the operating system, place

p3.

The handshake between the two computers for synchronizing one
asynchronous input is shown in figure 2. If the input is from the Slave, the Slave

sends the input to the Master with msg6 and the Slave proceeds on its execution.
The Master receives msg6 and checks if the Slave has access of the inputs (e.g. the
keyboard, if the input is a key). If it has, the Master accepts the input and considers it
as one of its own.

4

MASTER

msg3or4 msg7

msg6 sg5or9

SLAVE

Figure 2 The Handshake for Asynchronous Input Synchronization

If the Master has an input, it sends a msg5 to the Slave with the input and
counter, Cm. If that input was a Slave input that arrived at the Master with a msg6,
then the message number is 9 instead of 5. When the Slave receives msg5 or msg9
with the input and Cm, it compares Cm with its own count Cs. If Cs<=Cm then the
Slave continuous execution to catch up with the Master (Cs=Cm) and then it sends
msg3 to the Master. If Cs>Cm then the Slave sends msg4 to the Master with its count
Cs and waits. When Master receives msg3 it puts the input in effect, sends msg7 to
the Slave and resumes execution. If Master had received msg4, it continues
execution until Cm=Cs. Then it puts the input in effect, sends msg7 to the Slave and
resumes execution. When Slave receives msg7 it puts the input into effect and
resumes execution. The above actions of transmitting and receiving messages,
comparing counts, etc, takes place in the Shells running at the Master and the Slave.
This is shown in detail in figure 3.

Figure 3 displays the Petri net, which was build based on ideas provided by [3]
and [4]. This Perti net is divided into three parts with the dotted lines: the Master,
the Slave and the Communication (COMM). This Perti net models the handshake
of figure 2 Figure I shows how a program requests and gets an input, and figure 3
shows how two programs request and get the same input at the same point in their
executions with the help of the Shell. The input accessing method modeled on this
Petri net is that the inputs from the Master and the Slave are allowed in the order
that they arrive at the Master. No inputs are deleted unless the TIBs local to each
machine, get full.The inputs are processed one at a time.

5

p1 MASTER Comm SLAVE p4
t3 t6

p3 1s t4

ti t

p2 p

p11 t14 I msgsor9l o

p~~l t22 p20 t21 '9 2 p19

I- = _I

-User Process 0 - Operating System 0~- Shell Process G - all three

Figure 3 Perti net for synchronizing the asynchronous inputs

6

The places on the Petri net represent processing or checking of simple

conditions. The processing can be part of the application (user) process, of the Shell
process, or of the operating system. The transitions on the Petri net represent events

happening.

The Petri net of figure 6 consists mainly of. a) five loops b) four messages c) two
wait states d) some extra processing states.

The five loops are first: pl, tU, p2, t2; second: p4, t4, p5, t5; third: p9, t9, plO, t10;,
forth: p16, t18, p17, t19; fifth: p21, t23, p 22, t24;

The four messages are: first is "msg6": p7, t8, p8; second is "msg5" or "msg9":
p14, t15, p15; third is "msg3" or "msg4" :p19, t21, p20; and forth is "msg7": p24, t27,

p25.

Messages consist of three fields: 1. type of message (or msg number) 2. input

info 3. local counter. In the case of keyboard inputs, the message type field is one byte

long, the input info field is two bytes: one byte for the ASCII code of the key and one

byte for the extended code or scan code, and the counter field can be of fixed or
variable size. A variable counter field requires the message to have a forth field

containing the message length.

The two wait states are: first t14, p13, t22; second: t20, p18, t28.

In the first loop, in pl, the user process is running and when it checks for input

transition tl fires and the token comes to p2. As was seen in figure 1 this would be a

call to the operating system, checking for inputs, but in this case p2 is the Shell
which intercepts the calls of the user process to the operating system concerning

input In p2 the shell will check if a msg6 has arrived from the Slave holding an

input (token in p8) and then transition tll would fire. If no msg6 has arrived from

Slave then if a local input has been inserted at Master, t13 will fire; else a will fire

and the token returns to pl where the Master user process resumes execution.

While a token is ready at p2, priority is given first to tll to fire, then to t13 and last to

t2.

All loops work in a similar manner. Looking at these five loops in figure 3, the

top place of each loop is execution of the user process, and counter C increments by

7

one each time the token passes through. The bottom place is execution in the shell

that checks conditions and priorities. All actions required to synchronize the inputs

are taken while executing in the Shell.

In the second loop, in place p5 priority is given first to t17 to fire if a message
has arrived from the Master. If no message from the Master is available, if an Slave

input is available the t7 will fire. Otherwise, t5 will fire.

In the third loop, in place pl0, priority is given first to t16 to fire if a message

from Master has arrived, else tl0 will fire.

In the fourth loop, in place p17, t20 will fire if Cs>=Cm+l; else (if Cs<Cm+l) t19

will fire.

In the fifth loop, in place p22, t24 will fire if Cm<Cs; if Cm=Cs t25 will fire.

Example of Execution of the Perti net.

Case 1: Master gets input (key located in one of its TIBs).

The user program starts at p1 for Master and at p4 for the Slave. While Master

is waiting for key (Master keyboard TIB is empty), Master is looping at p1, tl, p2, t2

and Slave is looping at p4, t4, p5, t5, Master presses a key (key in TIB placed there by

the Shell hiding the key from the operating system). Next time the Master gets -t -t
t13 will fire and p12 will prepare msg5 to send to Slave containing the key and Cm.

When t14 fires msg5 is send to Slave and the Master waits at p13. In p14 takes place

the transmission of msg5 and t15 fires when msg5 arrives in the Slave. In p15 the

computer where the Slave process is running receives msg5. The Slave process is

executing in the loop p4, t4, p5, t5 and next time the token gets to p5, t17 will be

enabled and will fire to p16. At p16 the Slave user process resumes, and the Slave

will loop in p16, t18, p17, t19 until Cs>=Cm+l. During this loop the Slave user

process has the chance to catch up with the Master user process if necessary. While

at p17, t20 will fire and the Slave will wait at p18 while a msg3 (if Cs=Cm+l) or a

msg4 (if Cs>Cm+l) is sent to Master. The transmission takes place at p19. When t21
fires, msg3 or msg4 has arrived at Master and is received at p20. A ready token at p20

resumes the wait of the Master at p13. t22 fires and Master user process resumes

execution. Master loops at p2 l, t23, p22, t24 until Cm=Cs. This gives a chance for

Master user process to catch up with the Slave user process. While at p22, t25 will
8

fire (Cm=Cs). A token goes at p23 where the input is passed to the Master user

process, Cm is set to zero, and eventually t26 fires and the token returns to the

Master user process at pl. Another token is sent to p24 which is msg7 transmitted to

the Slave. When t27 fires, msg7 has arrived at Slave and is received at p25. A ready

token at p25 resumes the wait of the Salve at p18. When t28 fires the token goes at

p26 where the input is passed to the Slave user process, Cs is set to zero, and

eventually t29 fires and the token returns to the Slave user process at p4.

Note that the input passed to the Slave user process (p26, t29) could take place

during the wait (t20, p18, t28). In other words p26 is executed4 before p18. Thus the

wait is replaced by t20, p 26, t29, p18, t28 and the flring of t28 returns the token to p4.

At p23 and p26 the input was passed to the Master or Slave user process

respectively. The Shell presents the input, which in this case is a keystroke entered

in the keyboard buffer of the Master or the Slave. A call to the operating system is

invoked from the Shell to check for an input (key). The call to the operating system

returns that an input is present. Since an input is present, a call from the user

process to the operating system may follow, to read and process the input. The token

returns to pl or p4 to start processing the next input.

For i=23,26

tia tib

Pi Pi a p11 b p, c

* - User Process 0 - Operating System Q- Shell Process " all three

Case2: Slave gets an input (keypress).

Master is looping at pl, tl, p2, t2 and Slave is looping at p4, t4, p5, t5 waiting for

a key. When the Slave gets an input, next time the token gets to p5, V will fire. A

token goes to p7 where msg6 is transmited to Master, and another token goes to p9

making the Slave loop in p9, t9, pl0, tl0. When msg6 arrives at Master, t8 fires and a

9

token goes to p8 where the Master receives msg6. The token at p8 will break the loop
pl, tl, p2, t2 next time the token comes around to p2. tll will fire, the token goes to
pll where the Slave's input is considered as Master's input. t12 fires and the token

goes to p12 where Master assembles msg9 (instead of msg5 since it is Slave's input)
and when t14 fires it transmits it to the Slave. Master is waiting at p13. When msg9
arrives at the Slave, t15 fires and the a token comes to p15 where the Slave receives
msg9. Since the Slave is looping at p9, t9, plO, tHO, next time it comes around to plO,

t16 fires and a token comes to p16. From then on is the same as in Casel above.

3. PETRI NET ANALYSIS

Analysis on the Perti net was performed to ensure the proper operation of the

system. The reachability tree was constructed and studied. Conclusions of the

reachability tree are:

1. All the places in the Petri net are safe except place p8 where it is 2-bounded.

But that is not a problem since p8 is a buffer that can hold two messages.

Safeness is a property that must hold in order for the system to work properly.

Each place represents the execution of a routine. Safeness states: never more than
one token at any place. Assume that a token arrives at a place, which means that a
routine will start executing. If another token arrives at the same place before the first
routine finishes executing, another routine (with the same code) will start executing
and the first routine will stop, causing the system to be in an unknown and
unwanted state and therefore unable to recover.

2. The Petri net is not conservative since the number of tokens in the net does
not remain constant. Even though the number of tokens is not constant, it can be
noted that there is one "resident" token at the Master and one at the Slave at all
times that show where the Master and the Slave currently execute. In addition,

there are some extra tokens generated and deleted upon the transmission and

reception of messages that designate processing at communications processors.

3. The Perti net is live, which means that all the transitions are live and that
there are not any deadlocks.

The protocol is written is such a way that no message can be transmitted unless
all previous messages have been received properly. There are communications

10

processors, that handle the transmission and reception of messages and the
retransmissions if necessary. This takes place at a lower level not seen and not
affecting this Petri net. At this level, we assume that all messages arrive properly.

For further analysis on the Perti net and on other Petri nets modeling different
input accessing methods refer to [5].

4. TIMING ANALYSIS

Suppose that the Master executes three times faster than the Slave. The
Master process is checking for the presence of inputs three times faster than the
Slave process. Figure 4 shows the requests for input of the Master and Slave
processes to the operating system. These are denoted as markings on the Master and
Slave axis respectively. Also shown are all the messages to synchronize a key that

was pressed by the user at the Slave machine.

Master
processes

.%1 •k ey
MASTER CUT k
1 5 10 13 1I -

I' I
msg6 Isg3

g7 mngi

1 5 10 131 1
SLAVE Slave S

presses Saekey processeskey

Figure 4 The Catch Up Time (CUT)

On the left side of figure 4, msg7 designates the end of the synchronization of
the previous input. After the last synchronization, the Master and the Slave keep
track of how many times the the application process asks the operating system to
check for the presence of inputs, counters Cm and Cs respectively. Slave presses a
key when Cs=2 and next time the Shell gets access (Cs becomes 3), msg6 is send to

Master. Master receives msg6 at Cm=11 and gets processed when the Shell at Master
11

gets access (Cm becomes 12). Master compares counts and sends msg5 and Slave
receives it at Cs=4 and will process it when Cs=5. Then the Slave has to catch up, and

the Master has to wait for the Slave. At Cs=13 the Slave sends msg3 to the Master
and stops its wait. On the next Master count, Cm=13, Master sends mnsg7 and a new
synchronization phase starts.

It is noted that the Master process had to wait idle for an interval of 8*Ts,

where Ts is the time interval between two consecutive times that the Slave checks

for inputs, while the Slave catches up. This time interval will be the Catch Up Time

(CUT) of the slower process.

The CUT must be such that the responsivenri ,'f the system, from the
moment that an input is entered till the moment the input is registered by the
process, is in acceptable values for the users. That value will be called the Maximum

Allowable Wait Interval (MAWI).

It is of interest to note that, even if the Master was executing idle loops waiting

for an input, the Slave still has to do "idle catch up". In other words, the CUT of the
Slave does not do any useful processing. The Slave's idle catch up cannot be
eliminated since there is no way of knowing what the user process is executing
without interfering with the process.

The more often the computers communicate, the closer they remain
synchronized and the smaller the CUT required to regain synchronization on the
next handshake. On the other hand, the more often the computers communicate, a
higher bandwidth is required and less processing is achieved.

When some time passes without handshake (a timer expires), the Master
computer initiates communication by introducing a null key which is removed
after it gets synchronized. The users can set the value of this timer and tune he
responsiveness of the system to their needs. In other words, they can set up the
value for the MAWI. When the counter at the Master or the Slave approaches

overflow a handshake with a null key is forced, initiated from the process whose

counter approaches overflow.

The worst case response time of the system is equal to the CUT plus four
Communication delays (ComDelay). Where ComDelay is the time required to

12

transmit a message from one site and is received on the other site. The Slave input

gets synchronized with three messages to the Master and with four messages to the

Slave. A Master input gets synchronized with two messages to the Master and with

three messages to the Slave.

5. IMPORTANCE

The SPE technique helps to reduce communications in cases such as computer

conferencing. Application programs can execute synchronously at geographically
separated computers. Conferencing can take place through an application program.

For example, if the conference is about the design of a building, the conference
supporting program or application program could be AutoCad. The inputs to the
program, originating from either computer according to an input accessing method,

and some minimal synchronization information, such as the counts, are the only

data that has to be communicated between the two computer systems. With existing

methods of computer conferencing, execution takes place on one computer and
every time the screen changes, the screens or the changes of the screens have to be

communicated to the other computer. When the SPE technique is applied to

computer conferencing, only the inputs to the program, such as the kty- -okes, have

to be communicated.

Team work will be promoted even if its members are physically separated.

Collaboration can take place with the use of existing, off the shelf software, and

without any added hardware. Tutoring the use of software, debuging software,

tutoring a subject through an application program, are some aspects that can take

place remotely with the proposed approach. Application programs that produce

many screens at a high frequency, are currently unable to be used remotely unless

high bandwidth is provided. Using the proposed approach may allow

communicating over existing telephone lines. Graphical programs ordinarily

require considerable bandwidth. However, using the SPE approach allows them to

run remotely over low speed lines.

Security is embedded in the communications when done with the proposed

method. There are many circumstances where the inputs to generate the screens are

not classified, while the generated screens (outputs) are classified. Many computer

13

users who would like to have a session through their computers, will be greatly

benefitted from the results of this research.

REFERENCES

[11 J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice- Hall,
Inc., Englewood Cliffs, N.J., 1981

(2] J. E. Coolahan Jr. and N. Roussopoulos, "A timed Petri net methodology for
specifing real-time system timing requirements," International Workshop on
Timed Petri Nets, Torino, Italy, July 1985.

[3] S. M. Shatz and S. S. Yau, "The Application of Petri Nets to the
Representation of Communication In Distributed Software Systems," Proceedings
of the 3rd International Conference on Distributed Computing Systems, October 18-
22, 1982

[4] P. Merlin, "A Methodology for the Design and Implementation of
Communication Protocols", IEEE transactions on Communications, Vol. 24, No. 6,
June 1976, pp. 614-621.

[5]. Emmanouel Antonidakis, "Communications Reduction Using
Simultaneous Program Execution," Ph.D. dissertation, Department of Electrical
Computer and Systems Engineering, Boston University, Boston, MA, 1993.

14

MISSION

OF

ROME LABORA TORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

