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CHAPTER 1 Terrain Masking Algorithm and Algorithm Analysis

1.1 Introduction

The future for increased processing performance lies in the parallel architectures

of today and the future. Although these architecture can provide increased processing

power over current sequential Von Neuman architectures, the challenge is how to obtain

this capability when developing software to run on these architectures.

The objective of this effort is attempt to parallelize a terrain masking algorithm

which is part of the Multi-Source Integrated Viewing System (MIVS). This algorithm

has an identified need for increased processing time. The challenge of this effort is to

identify the inherent parallelism and select an appropriate method for parallelizing the

algorithm and mapping it to the selected Meiko transputer architecture. Another

objective of this effort is to identify the problems that exist when parallelizing existing

sequential code for any given high performance architecture.

1.2 Electronic Mission Planning

Electronic Mission Planning is a process that is made up of a number of different

functions which navigate an aircraft to and from a target [Benincasa92]. These

functions include such things as logistics, threats, and resource availability. Terrain

masking is one function that is utilized in a number of Air Force Electronic Mission

Planning systems. For example, at Rome Laboratory, two systems the Improved Many-

On-Many (IMOM) System [AFEWC89] and the Multi-Source Integrated Viewing

System (MIVS) [Souza92] utilize terrain masking.

Terrain Masking is the process of determining where an electronic emitting device

such as a radar or jammer has line-of-sight for a given range, field of view and above

ground level height. Line-of-sight means that the emitting device is able to detect

objects directly above the horizon at a given position [LaBatt90]. The results of the
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terrain masking algorithm are displayed differently depending upon the system. For

example, with the IMOM system the results of terrain masking produce an accurate

display of rings around the radar or jammer with reference to the terrain. The MIVS

system, on the other hand uses different colors to show where an electronic emitting

device has line-of-sight with respect to the terrain.

1.3 The Improved Many-On-Many Mission Planning System

The Improved Many-On-Many system was developed by Air Force Electronic

Warfare Center (AFEWC) in Texas to assist combat mission planners [LaBatt9O]. The

objective of this program was to develop a tool that would aid in planning Electronic

Combat (EC) missions in the context of overall mission planning [AFEWC89J.

Electronic Combat mission planning is a part of mission planning that deals with the

electromagnetic spectrum of a battlefield. It was felt a tool was needed to help in the

process of mission planning because of the growing complexity of current air defenses.

IMOM consists of nine separate, one-on-one engineering models. These models include

the capabilities of displaying terrain masking effects, Airborne Warning and Control

System (AWACS) radar coverage, and infrared tracking range functions just to name a

few [AFEWC89]. IMOM also provides the capability of developing requirements for

further EC missions and provides the ability to derive new requirements for improving

the system.

Terrain masking is one function in the overall IMOM system. Terrain masking

provides a user with the capability to show how limitations of terrain can effect the

coverage amount of a radar or weapon system. The IMOM terrain masking function

calculates, where an electronic emitting device, both ground and air based, has visibility

for a given altitude. The IMOM system provides radars and jammers as the two types of

emitting devices. The output from terrain masking is a display of rings around the

emitting device. These rings reflect the characteristics of the terrain that may impede
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what the device can see if placed at the specified location. If the output results obtained

do not meet the requirements for the optimal operation of the emitting device, new

location parameters for the emitting device can be entered into the terrain masking

function to see if they satisfy the requirements.

The terrain masking algorithm utilized in the IMOM system is called a radial or

spoke wheel algorithm. It is called a radial or spoke wheel algorithm because the terrain

masking calculation is performed by drawing radial lines from the specified radar system

to a given target aircraft altitude at angular increments for a full 360 degrees around the

radar system (refer to figure 1).

KEY

O Terrain

0 Terrain Point

Radial

Figure 1. Radial Approach to Terrain Masking
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The length the radial lines are drawn is based on how far the emitting device is from the

given aircraft altitude. The aircraft altitude is a user supplied parameter. The distance

between radial lines is defined as angular increment. Angular increment is measured in

degrees and is also a user supplied parameter. The distance between the terrain points on

each radial is defined as terrain resolution. The terrain resolution setting can vary

between 1 and 9 and is also a user supplied parameter. A setting of I would specify a

fine grain terrain resolution, while a setting of 9 will specify a coarse grain resolution. If

fine grain terrain resolution (1) is selected, the distance between the points is set at .25

nautical miles (approximately 1500 feet) and the sampling along the radial is calculated

more frequently. If coarse grain terrain resolution (9) is selected, the distance between

the points is set at 2.25 nautical miles (approximately 13,500 feet) and the sampling along

the radials is calculated less frequently. In general, the terrain resolution is calculated by

multiplying the setting number by .25 nautical miles or by 1500 feet.

The IMOM terrain masking algorithm is computationally intensive due to four

factors. These factors are: the number of radars specified to be masked, the altitude of the

aircrafts, the terrain resolution, and the number of degrees between the radials.

According the report by [Labatt90], the calculations of the rings around a emitting device

are influenced by the above factors (refer to figure 2).

FACTOR TYPE INCREASES TIME DECREASES TIME

Number of Radars more than one radar less radars and small area

Terrain Resolution fine grain resolution coarse grain resolution

Aircraft Altitude high altitude low altitude

Angular Increments small increments large increments

Figure 2. Factors Affecting Terrain Masking Calculation

In order to decrease the amount of time to calculate terrain masking, the user can modify

the number of radars, terrain resolution, aircraft altitude, and the angular increments of
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the radials. For example, according to the report by [Labatt90], just by varying the terrain

resolution, the time for terrain masking can be decreased (refer to figure 3).

TERRAIN TIME FOR MASKING

RESOLUTION IN SECONDS

1 50.2

2 33.8

3 29.0

4 26.4

5 25.8

6 24.4

7 24.7

8 23.5

9 23.2

Figure 3. Timing for Terrain Masking Varying Terrain Resolution

By changing the terrain resolution parameter from 1 to 9; 27 seconds is saved in

calculating terrain masking. But this savings does not come without a price. Instead of

checking the terrain approximately every 1500 feet, the terrain is now checked every

13,500 feet. The trend that can be discerned from this is that time is decreased, but the

result is less accuracy in the terrain masking calculation. [Labatt90] showed a similar

case for modifying the angular increment parameter. Using an angular increment of 90

degrees versus and angular increment of 1 degree saved 86.5 seconds. But the sacrifice

again was the loss of accuracy in the terrain masking calculation.

As a result ot the analysis conducted by [LaBatt90], terrain masking seemed like

a viable candidate for parallelization. If the processing time could be reduced for the

computationally intensive terrain masking case, then the user would not have to sacrifice

accuracy for speed of execution.
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1.4 Analysis of the IMOM Terrain Masking Code

In order to determine how to parallelize the terrain masking algorithm, the

software for the IMOM system was analyzed. The IMOM system is composed of

approximately 36,000 lines of Fortran77 code. Since terrain masking is only one function

in the IMOM system, the first task was to determine what portion of the 36,000 lines of

code constituted the terrain masking algorithm. Determining the number of lines of code

was a manual process since the documentation available did not provide this information

and a software tool for counting lines of code was not available. The process utilized

consisted of constructing call trees of the IMOM software and manually counting the

number of lines of code for the terrain masking algorithm (refer to appendix A for the call

tree) [Benincasa92]. It was determined that terrain masking consisted of about 10,000

lines of code.

The next step was to examine data dependencies inherent in the terrain masking

algorithm. This would help to identify any data parallelism present in the algorithm.

Data parallelism is defined as a type of parallelism where the same operation or program

instruction can be executed over a large array of data [Hillis]. This seemed to be a valid

step because of the type of processing involved in the terrain masking algorithm. The

terrain masking algorithm processes large volumes of data. At this point it would have

been beneficial if there was a software tool available that would have helped in

identifying inherent data dependency. But since software tool support was not available,

the approach taken was to develop a relational database consisting of all global data used

in the terrain masking algorithm. The database was developed on a Macintosh computer

using Double Helix, a product from Odesta [Odesta9l].

Double Helix provides the standard features of a relational database as well as a

non-procedural visual dataflow language which uses a command string programming

language. Double Helix defines a database as a collection. The notation of a collection is

different than that of a file in a standard relational database. A file contains information
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on a single type of data where as a collection can contain information on many types of

data. One collection was defined for the terrain masking algorithm. This collection

consists of two relations. The first relation contains the terrain masking data. The terrain

masking data relation consists of the following information: data name, data description,

data type, data range, and which subroutines use the data (for an example of a data

relation record, refer to figure 4) [Benincasa92].

TERRAIN MASKING VARIABLE TYPES

NAME AOISUBLONG

DESCRIPTION Imus variable delnes a one dimensional array ot
real numbers of length two which holds the longitude angles
in radians of the southwest and northeast comcrs
respectively of the angle of intersection or the angle of
intersection subset

DATATYPE IOne-Dimensional Array of Reals

VALIDRANGE "213i to 2Pi

USEDBY CF_TERRAINMASKING

MU_INTERSECTIONOFTWORECTANGS

Figure 4. Example of a Record in the Terrain Data Relation

The second relation defines the terrain masking subroutines. This relation contains the

following information: subroutine name, subroutine function, input parameters, output

parameters, what subroutines call this subroutine, and subroutines called from this

subroutine (for an example of a subroutine relation record, refer to figure 5)

[Benincasa92].
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TERRAIN MASKING SUBROUTINES

SUBROUTINE NAME
CFTERRAIN_MASKING

SUBROUTINE FUNCTION This subroutine is the interface between the Terrain
Masking algorithm/utility code and
the application layer. As such, it gathers
feature attributes and data from the DCA
online database, receives user and
applications control inputs as parameters,
and saves the ground shadow bitmap, corresponding
ground shadow contours,
and the above-ground shadow height
matrix in the DCA online database as
temporary features.

INPUT PARAMETERS CF RECORD, WKAREAADR,WKAREA SIZE

OUTPUT PARAMETERS CFRECORD, CFSTATUS

CALLED FROM N/A - IS THE MAIN PROGRAM

SUBROUTINES CALLED WITHIN
LGET$FEATURE
MSMOVEDATA
L_PUTSMESSAGE
MU_TRANSPOSEMATRIX
L_GETMATRIXDEF
L CREATE TEMP MATRIX
CA_SHADOW_SEEFAR
LGETMATRIX
MU_CALC_THREATBOUNDARY
MUBOUNDINGRECTANGLE
MUINITIALIZECOORRDTRANS
MUINTERSECTIONOFTWO.RECTANGS

Figure 5. Example of a Record in the Terrain Subroutine Relation

By utilizing the query feature in the Double Helix database system, analysis of the

terrain masking algorithm could be conducted by using the two defined relations. For

example, the query feature provided the capability of taking a given variable in the terrain

masking algorithm and determining which subroutines used it. A query could also be set

up to see which subroutines actually modified the variable. Another query provides

information on the names of the subroutines that are called from a given subroutine. The

development of the relational database helped in determining the data dependencies in the

terrain masking algorithm. It also provided insight to partitioning the data.
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The final step in the analysis process was to utilize a Rome Laboratory developed

tool called Parallel Proto. Parallel Proto (PProto) is a rapid prototyping tool for building

parallel programs [Acosta91]. PProto provides assistance in the high-level analysis of

software. It was at this point in the research that the MIVS terrain masking algorithm

was identified. The MIVS algorithm is based on some of the IMOM functionality but has

a slightly different approach to calculating terrain masking. The biggest advantage of the

MIVS terrain masking algorithm is that the execution time is less than the IMOM terrain

masking algorithm. Since one of the goals of this research was to reduce the actual

calculation time of the terrain masking algorithm, the MIVS terrain masking algorithm

needed to be analyzed since it already reduces the calculation time. The final step in the

analysis process of the IMOM terrain masking algorithm was postponed to review the

MIVS system. This was necessary to determine if the MIVS terrain masking should be

parallelized instead of the IMOM terrain masking algorithm or if parallelization was still

an issue for this algorithm.

1.5 The Multi-Source Integrated Viewing System (MIVS)

The Multi-Source Integrated Viewing System was developed by Grumman Data

Systems for the Rome Laboratory Directorate of Intelligence and Reconnaissance. The

MIVS effort demonstrated the usefulness of cartography, spatial analysis, and image

processing in the Sentinel Byte program Unit-level Intelligence environment [Souza92].

Sentinel Byte is a software system that provides intelligence data handling deployable on

a unit-level workstation [Souza92]. This software system provides intelligence

personnel with the following capabilities: order of battle maintenance, imagery

dissemination, targeting updates, assessment of intelligence data, integrated threat

pictures for Mission Support Systems, intelligence briefings and debriefings, and

provides input to mission support functions.
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MIVS is based on two previous Rome Laboratory systems. One system dealt

with image intensification and annotation techniques and the other system was IMOM

which deals with digital cartographic applications. The MIVS system combines the

cartographic and spatial analysis features of IMOM with image processing capabilities.

One of the major requirements of the MIVS system was to provide the capability to run it

on multiple types of workstation platforms. IMOM can only run on a VAX mainframe

system. MIVS runs on a DEC 3540 VAX station, SUN 4/370, and Dell 433TE 80486

PC. This capability provides MIVS with greatly flexibility for mission planning because

the system is more portable.

The MIVS algorithm for terrain masking differs from the IMOM terrain masking

algorithm. The MIVS system uses a matrix grid approach for calculating the terrain

masking (refer to figure 6).

T ~ ~ T I I

4b----

KEY

[] Terrain

O Terrain Point

Grid Line

Figure 6. Matrix Grid Approach to Terrain Masking

In a matrix grid approach, a grid is drawn around the emitting device. This grid defines

the field of view for the emitting device. Successive rows and columns are then
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constructed in the grid to produce a NxN matrix. Then given the position of the emitting

device and the height of the device, every point in the matrix is examined to determine

visibility. Every point is visited only once by traversing columns successively farther

from the emitting device. Columns are traveled from right to left. Within a column,

points are traversed by rows starting at the emitting device and moving outward, first

above the emitting device, then below. For each point, visibility is assessed by

determining how tall an object would have to be to be seen at that point. The visibility

algorithm calculates the visibility based on only one intersection with a previous column

rather then comparing it to all previous columns. This is one reason why the algorithm is

faster than the IMOM terrain masking algorithm. Another advantage to the matrix grid

approach is that more terrain data can be processed to obtain a more accurate calculation

of the given terrain.

,.6 Analysis of the MIVS Terrain Masking Code

The MIVS system consists of approximately 136,000 lines of C code. The terrain

masking algorithm makes up 10,000 lines of the 136,000 lines. In analyzing MIVS, it

was not necessary to construct call trees because the MIVS software design document

provided a detailed description of the terrain masking software. [Grumman92].

Like IMOM, the MIVS terrain masking algorithm processes large amounts of

data. In order to analyze and determine if data parallelism was present, the Parallel Proto

(PProto) tool was utilized to do high level design analysis of the terrain masking

algorithm. PProto provides a visual language and editor for specifying hierarchical

dataflow graphs, a resource modeling tool for defining parallel and distributed

architectures, mapping mechanisms for mapping the dataflow graph components to

hardware components, simulation capabilities for simulating the defined prototype, and

software reuse capabilities [Acosta91]. PProto was utilized to reengineer the existing

code (refer to Appendix B for the PProto charts).
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The first graph in Appendix B gives a top level view of the terrain masking

algorithm. The circles represent process nodes. In PProto, a process node represents a

unit of computation [ISSI911. A process node contains behavior rules which can define a

computation or an algorithm. It can communicate with other process nodes, it can

contain local data, and it can access data stores. There are two types of process nodes in

PProto. The plain process nodes represent elementary functions that cannot be further

decomposed. The process nodes, with a picture in the circle, represent complex functions

that have a decomposition. Opening a complex process node will produce a graph of the

decomposition. For example, the process node ProcessMatrixData (in the first graph in

Appendix B) is a compound process node and contains a subgraph.

Process nodes communicate with other process nodes using ports and

connections. If two process nodes are to communicate, they must first have ports

associated with the node. A process node can accept and supply data to and from other

process nodes via input and output ports. Ports are connected to other ports using

connections. There are three different types of connections that can be used. The three

types of connections are stream, synchronized, and sampled. In a stream connection, the

sending process node sends the information to the receiving process node and then

proceeds with execution. In a synchronized connection, the sending process node sends

the information to the receiving process node and waits for acknowledgment of reception

before proceeding with the execution. Finally, sampled connection provides the

capability to monitor continuous data.

The square box on the first graph in appendix B represents a data store. A data

store can contain any data objects that are supported in the PProto tool. Data stores can

be both read from and written to. In this graph, TerrainMaskingData represents a

global data store which is accessed by a number of process nodes. The dashed lines from

the data store to the process node represent access to the data store. The arrow at the end

of the dashed line specifies direction. For example, if the data store

12



TerrainMaskingData has a dashed line with an arrow pointing to it from a process

node, this signifies that a process node is writing to the data store. If the arrow is

pointing to the process node, the process node is reading from the data store. If the

dashed line has bi-directional arrows the data store is being both read from and written to.

Based upon the analysis conducted with PProto, MIVS terrain masking has

inherent data parallelism like the IMOM terrain masking. For example, referring to the

subgraph of the ProcessMatrixData node in appendix B, the data can be partitioned

into 15 different pieces that can be processed in parallel. Since the MIVS terrain masking

algorithm already out performs the terrain masking in IMOM, the MIVS terrain masking

algorithm will be parallelized. This will involve parallelizing roughly 2500 lines of C

code. This portion of code is where seventy percent of the processing time resides in

calculating terrain masking.
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CHAPTER 2: Timing the Sequential Version of the Terrain Masking Algorithm

2.1 Introduction

Timing the sequential version of the terrain masking algorithm is necessary in

order to compare it against the parallel version of the algorithm for determining the delta

in execution time. Also, various terrain masking scenario test cases are needed to

determine under what conditions the execution time increases or decreases when

calculating terrain masking. The parallel implementation will want to decrease the

execution for cases which increase the execution time.

The first thing required determining where to insert time probes into the C source

code. Based on the analysis performed using the PProto tool, the main terrain masking

module is called ATint. ATint calls all other necessary modules for calculating terrain

masking. The next step was to determine where in the ATint module the time probes

should be inserted. The probes needed to be inserted so that they were as non intrusive as

possible and so that the timing would reflect the portion of code that would be modified

to include parallelism. When timing the code, portions that would remain sequential

needed to be eliminated. Again, based on the PProto analysis, the start time would be

sampled after the terrain masking variable initialization, since this initialization would

not be parallelized. The end time is sampled after the completion of the terrain masking

calculation before the image is written to the screen.

Once it was determined where to put the start and end time probes, how to store

the time information was required. This raised the question whether the file storing the

timing measurements should remain open the entire time or if it should be opened and

closed just to sample the times. Both methods were tested on a couple test cases yielding

the same timing estimates. Since it did not matter, it was decided to just open and close

the file to sample the time. This method allows for a lower probability of file corruption

which could result with an open file.
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2.2 Terrain Masking Test Cases

After determining where to insert and store the timing information, it was

necessary to define the test case scenarios. It was determined that there existed four

possible scenarios that could increase or decrease the amount of time it takes to perform

the terrain masking calculation. The first scenario would vary the range of the observer.

This set of test cases involved keeping all other parameters constant and varying the

range of the observer between 1000 meters and 20000 meters. The parameters that were

kept the same included: elevation, interpolation, shadow high, shadow low, field of view

angle, observer position, above ground level height, focus point, shade, type, fade

percent, and color. Thirteen test cases were run with the result being that range increased

the time for calculating terrain masking proportionally (refer to figure 7). For a complete

list of all test cases refer to appendix C.

Executing Terrain Masking Varying the Range 52 mea

49
46 mea

43-m
42 ma3 6 - - 4 1 a

31 ma

I 30-

10-

0
1000 S000 0 7000 00 S WO 10M 11000 12000 1300 14 000 20000

Range In Molar

Figure 7. Executing Terrain Masking Varying the Range
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Referring to figure 7, it can be observed that increasing the range from 1000 meters to

20000 meters almost doubles the amount of time for calculating the terrain masking. It

can be concluded from this that range has a direct affect on the amount of time to

calculate terrain masking and that the parallel implementation of the terrain masking

algorithm will want to reduce the calculation time as range increases.

The second scenario varied the above ground level height of the observer. As in

the first scenario all parameters were kept constant, but the above ground level height.

The above ground level height of the observer was varied between 20 meters and 40

meters. For this scenario, 13 test cases were run. The result was that modifying the

above ground level height of the observer had no effect on the terrain masking calculation

time (refer to figure 8).
Executing Terrain Masking Varying Above Ground Level Height
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Figure 8. Executing Terrain Masking Varying Above Ground Level Height
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It can be concluded that varying the above ground level height of the observer has no

effect on the terrain masking calculation and that this will not be considered in the

parallel version of the terrain masking code. The only thing that will be verified is that

the parallel implementation for this set of test cases produces consistent execution times

as the sequential version.

The third scenario varied the field of view angle of the emitting device. For

example, with a radar system its field of view could range anywhere from 180 degrees to

360 degrees. The field of view angle directly affects visibility of the emitting device.

For this set of test cases all parameters remained constant except the field of view angle

and 19 test cases were run. The field of view was varied from 360 degrees to 30 degrees.

The result was that once the field of view was narrowed to less then 360 degrees, the time

for calculating terrain masking increased, and then remained constant at that execution

time for all the test cases (refer to figure 9).
Executing Terrain Masking Varying the Field of View Angle
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Figure 9. Executing Terrain Masking Varying the Field of View Angle
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It was concluded from this set of test cases that the field view angle has a direct effect on

the calculation time of the terrain masking algorithm. The parallel version of the terrain

masking algorithm at a minimum will want to reduce the calculation time to at least the

time to calculate for a field of view of 360 degrees.

The final scenario varied the position of the observer in both latitude and

longitude. This was necessary to determine if moving the observer closer to or farther

from the emitting device effected the calculation time of terrain masking. For this set of

test cases, all parameters again remained constant except for the location of the observer.

Twelve test cases were run with the result being the distance of the observer to the

emitting directly effected the execution time of terrain masking. As the observer is

moved closer to the emitting device, the execution time decreases and as the observer is

moved farther from the emitting device, the execution time increased (refer to figure 10).

Executing Terrain Masking Varying the Observer Position
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Figure 10. Executing Terrain Masking Varying the Observer Position
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It can be concluded that the parallel version of the terrain masking algorithm at a

minimum will want to decrease the execution time of the cases when the observer

position is far away from the emitting device.

In general, the parallel version of the terrain masking algorithm will want to

reduce the execution time for the baseline test case (refer to appendix C case 1) of the

sequential version. This test case was used as the base test case for all four of the test

scenarios. The parallel version of the terrain masking algorithm will need to execute in

less than 42 seconds.
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CHAPTER 3 Parallelizing the Terrain Masking Algorithm

3.1 Introduction

The process of parallelizing the IMOM terrain masking algorithm involved first

determining which existing subroutines and functions needed to be modified. Once these

subroutines and functions were identified, the next step was to determine the most

efficient manner to partition the data for the transputer architecture. Once the data had

been partitioned, the next step was to determine how the transputers and the host

architecture would communicate. The final step was to determine what new software

needed to be written to run on the transputers.

3.2 Determining What Existing Code Needed to Be Modified

When determining what code needed to be modified, the decision was made to

try to modify as little existing code as possible. This decision was made so that terrain

masking would still be able to run in the MIVS system environment. Based on analysis

of the existing code, it was determined that the CSEEFAR_SHADOW subroutine is

where the majority of the terrain maskirg calculation is being performed. It is this

algorithm that comsumes about seventy percent of the total terrain masking calculation

time.

The CSEEFARSHADOW subroutine given the position of the observer

(latitude, longitude), the height of the observer, and the range of the given sensor,

calculates the visibility of every terrain elevation point in the identified area. The

C_SEEFARSHADOW subroutine receives the following inputs: the terrain region

(cel-e), the observer latitude (obs-lat), the observer longitude (obs-lon), how far the

observer can see (range), the observer height about above sea-level (obs_ht), the

orientation of the terrain data (orientation), the number of rows of elevation data

(nr rows), the number of columns of elevation data (nr.cols), the longitude of the first
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element in the elevation data (SWLon), the latitude of the first element in the elevation

data (SWilat), the number of radians between the columns of elevation data (xinc), and

the number of radians between the rows of the elevation data (yjinc). The

C_SEEFARSHADOW subroutine produces the following outputs: the array of shadow

data defining which points are visible and which points are not (bitmap), the array of

shadow heights (shad_ht), and the current horizon elevations (horizon). The calculation

to determine whether or not a given point is visible by comparing it to points on the

horizon is actomplished by a function called CVISIBILITY. This function is repeatedly

called by the CSEEFARSHADOW subroutine for column and row pairs of terrain

data.

The terrain elevation data in the CSEEFARSHADOW subroutine is processed

by first going through all columns and rows to the right of the observer. For example, the

processing begins by starting to the right of the observer and one row above the observer

and processing all the rows above the observer. Then, still staying to the right of the

observer and starting at one row below the observer, all the rows below the observer are

processed. There are two more similar pairs of calculations of this type performed for the

columns to the right of the observer. Once the visibility has been determined for columns

to the right of the observer, the visibility is calculated for the columns to the left of the

observer. The same type of calculations are performed as were done for the columns to

the right. The total number of pairs of calculation that is conducted on the terrain

elevation data is six. For each of these calculations, the elevation data is processed by

the C_VISIBILITY function.

It was determined that no modifications needed to be made to the CVISIBILITY

function since this routine would work no matter how large or small the amount of terrain

data passed to it. The only change required to the C_VISIBILITY function is that it

would no longer execute on the Sun processor, rather it would execute on the transpurer

processors.
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The C_SEEFARSHADOW subroutine would need to be modified in order to

communicate (send and receive pertinent data) with the transputer platform and remove

all references of calls to the C_VISIBILITY function since this would now be executed

on the transputer platform.

3.3 Partitioning the Terrain Elevation Data

As stated in section 3.2, it was determined that there were six column and row

pair calculations. In order to determine if the data in these column and row calculations

was dependent or independent, a sample data set was traced through the program. The

trace showed that the calculation for visibility of the rows and columns is independent.

This meant that the calculation for visibility of data points in a row or column is not

dependent on the calculation of data points in adjacent rows or columns. For example,

when columns to the right and rows above the observer were being processed, columns to

the right and rows below the observer could be processed at the same time. In the same

manner, columns to the left and rows above the observer could be processed at the same

time as columns to the left and rows below the observer.

In order to determine how to partition the terrain elevation data, a distribution of

the sample trace data was plotted Charts showing the data distribution for rows above

and below the observer are given in figure 11 and 12. From these charts it can be

observed that the data is linearly distributed. Because the distribution is linear, the data

can be divided equally. The division of data is dependent upon the number of transputer

processors available.
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Figure 11. Data Distribution for Rows Above the Observer

460 ~Distribution of Dole for Columns to the Lef and Rowe Below the Observer

440

420

,do

to

S. .

Index Into the Shadow Height Array

Figure 12. Data Distribution for Rows Below the Observer
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3.4 Determining Communication between the Sun Host and Transputers

The transputer architecture that is being utilized is a Meiko MK202 16-processor

transputer board with 2 mega-bytes of memory per processor. The Meiko board is

housed in a Sun SparcStation 4/330 with 40 mega-bytes of memory and 3 giga-bytes of

combined internal and external disk storage. Since there are 16 transputer processors

available, it was decided that each pair of column/row calculations would be given 8

processors. Of the eight processors, one processor is assigned as the master process that

interfaces with the Sun 4/330 processor. The transputer processors are configured as two

binary trees with each master process node communicating with the Sun host processor

(refer to figure 13).

Sun 4/330

Master Process 1 Master Proces's M

Slave Processes Slave Processes

Figure 13. View of Sun and Transputer Configuration

The master process receives the terrain elevation data as well as other data reqr" I to

calculate terrain visibility from the Sun processor. The master process divides the terrain
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elevation data equally among the seven transputer processors. The master process also

transmits any other relevant data required to perform the visibility calculation. The seven

processors are referred to as slave processes, they only communicate with the master

process. Also, the slave processes do not need to communicate amongst each other.

Once the slave processes have finished their calculations on the terrain elevation data,

they transmit the results back to the master process. The master process then sends the

results to the Sun processor. This configuration was selected to reduce the overhead of

communication and synchronization between the Sun host processor and the transputers.

With a in-Sun Meiko transputer board there is only one port available for communicating

between the host process and the transputer computing surface. If there was not a master

process, all the transputers would have to communicate directly with the host processor.

This would create a bottleneck for receiving and transmitting data thereby reducing the

amount of useful processing time.

In order for the Sun host processor and master transputer process to share data, the

External Data Representation Protocol (XDR) must be used. The XDR protocol is a set

of routines that provides the ability to encode non-portable data types within a byte array

so that it can be transmitted between processors and decoded [Meiko91]. This is required

because the Meiko transputer data protocol is different from the Sun 4/330 data protocol.

For the terrain masking algorithm, the Sun host processor must transmit 21 data

elements to the master process in order for the visibility calculation to be performed. To

send the data to the master process, the data elements were encapsulated in a C structure

so that only one transmit command sequence was required. In order to use the XDR

protocol, a three step process is involved. The first step is to create the required amount

of memory needed to transmit the data. The next step is to transmit the data. In order to

transmit the data, a csnjtx command is used. The problem with the transmit command is

that only one data element at a time can be transferred. Finally, the last step is to destroy

the memory space allocated. If the data was not encapsulated 21 separate memory
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allocations, transmits commands, and memory deallocations would have been required.

This would have resulted in a tremendous amount of overhead in communication.

Finally, the master process needs to send the results of the visibility calculations

performed by the slave processes back to the Sun host. The shadow height array and the

bitmap array must be sent back to the CSEEFARSHADOW routine running on the Sun

processor.

3.5 Software Written to Run on the Transputer Architecture

Four software modules were written to run on the transputer architecture. Two

subroutines called MASTERROWSABOVE and MASTERROWSBELOW were

developed to run on the two transputer nodes designated as the master nodes.

MASTERROWSABOVE and MASTERROWSBELOW are responsible for

receiving the terrain elevation data from the CSEEFARSHADOW routine running on

the Sun processor. These two subroutines are basically the same except that

MASTERROWSABOVE is only concerned with the rows above the observer and

MASTERROWSBELOW is only concerned with the rows below the observer. Each

subroutine partitions the terrain elevation data evenly among the seven slave processors

connected to them. Once the data has been transmitted to the slave processes, the master

processes wait for the results. Upon receipt of all the results, the subroutines then

transmit the shadow height array and the bitmap array data back to the

C_SEEFARSHADOW subroutine running on the Sun processor.

The other two subroutines are called SLAVEROWSABOVE and

SLAVEROWSBELOW. These two subroutines run on the slave process nodes.

Seven transputer nodes receive a copy of the SLAVEROWSABOVE subroutine and

seven receive a copy of the SLAVEROWSBELOW. These two subroutines are

responsible for calculating whether a particular terrain elevation point has visibility at a

given location. SLAVEROWSABOVE and SLAVEROWS_BELOW also contain
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code that originally ran on the Sun processor. This includes the CVISIBILITY function

which determines the visibility of a terrain elevation point. The subroutines receive data

from the master processes and return the results of the visibility calculation.
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CHAPTER 4 Results

4.1 Problems Encountered

Memory limitations of the transputer processors coupled with the size of the

terrain elevation data made it unfeasible to obtain a complete execution run of the parallel

version of the terrain masking algorithm. The Meiko MK202 board provides a maximum

of 2 mega-bytes of memory per processor which in the beginning of this effort seemed

sufficient to support the terrain masking algorithm. Unfortunately, over a megabyte of

the memory per processor is consumed by the Meiko Operating System and the heap

stack. This left very little memory for storing the program and data required to calculate

the terrain masking visibility. The data required to process the terrain masking algorithm

consists of two 38,000 element integer arrays, one 38,000 element unsigned character

array, and one 100 element floating point array and 17 miscellaneous data elements. This

data needed to be transmitted from the Sun host processor to the master processes on the

transputer architecture which then partitioned the data for the slave processes.

When terrain masking was executed a stack overflow was obtained on the

transputer processors because there was not sufficient memory available to load the

program and the required data onto the transputer processors. In order to determine that

this was the problem, the -v (verbose) and -m (memory) options were used with Meiko

MRUN command when executing the parallel version of terrain masking. The -m option

shows how the memory on each transputer process is allocated and what is allocated to

the memory (refer to figure 14).
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carrie% mrun -v -m test.par
grab: procl maps to proc 0 type 8 mem 174K m255b255p255 (MK255)
grab: about to grab domain from svcs
MEMORY MAP: proc

Primary transputer memory : 80000000 - 801lfffff

procl1 *_ocaIRteClient'-sysHeapVec 80023940-801 fffff ( 1906K)
prodl' .g-dataLinklnfo 800238c0-8002393f
proc '_unixRteTron 800238bc-800238bf
prodl'_locaiRteTron 800238b8-800238bb
prod '_-csn'-bssVec 80023494-800238b7 ( 2K)
prodl'_csn 80022820-80023493 ( 4K)
prod '_IcsnNetwork 80022748-8002281f
procl'TEXTý_Unix-cxx.rt8 8001d078-80022747 ( 22K)
procl'TEXT-locl-xxx.rt8 8001b290-8001d177 ( 8K)
procl'TEXT -csnx -xxx.rt8 800170a0-8001b28f ( 17K)
procl'masterý-rows-.-above'_bssVec 80014c64-8001709f ( 10K)
procl'master rows-above'_argsVec 80014050-80014c63
procl'master -rows -above 8000fe20-80014c4f ( 20K)
procl'TEXT-master-rows~above 8000alb8-8000felf ( 24K)
prodl'_csnNetTable 8000alb4-8000alb7
prodl'_csnRouteTable 8000alac-8000alb3
procl csnHopTable 8000ala8-8000a lab
prodl' -csnTransportTable 800061a8-8000ala7 ( 16K)
procl'_-unixRteClient'_bssVec 800038f8-800061a7 ( 11K)
procl -unixRteClient 80002560-800038f7 ( 5K)
prodl'_locaiRteClient'_ýbssVec 800020 10-8000255f ( 2K)
prodl'_bocaiRteClient 80001000-8000200f ( 5K)
prodl'-intemabRam 80000070-80000fff ( 4K)
ANONYMOUS 80000000-8000006f FIXED

boot: Booting transputer proc 1 (link 0) from cs-host (link 0)
load: Loading code segment ./master~rows-above
load: Loading code segment /usr/meiko/cstools/rte/unix_cxx.rt8
load: Loading code segment /usr/meiko/cstools/rte/locl -xxx.rt8
load: Loading code segment /usr/meiko/cstools/rte/Csnx_xxx .rt8
init: send initializations for prod
run: Run thread _ locaiRteClient Wptr 80002008 Iptr 800 1cf55 pri 0
run: Run thread _-unixRteClient Wptr 800038f0 Iptr 8002 1a41 pri 0
run : Run thread master_rows,-above Wptr 80014c48 Iptr 8000alIbc pri 1
run: Run thread - sn Wptr 8002348c Iptr 800 1b079 pri 1
load: Domain up and running (1 children)
[procl'master-rows.-abovel *** Stack overflow in main() in file master~rows-above.c

Figure 14. Sample of Meiko MRUN Command Using -M Option
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The first step to solve this problem was to try and reduce the size of the program

that needed to run on the transputer processors. The SLAVEROWSABOVE and

SLAVEROWSBELOW program could not be reduced at all, the size of the program

remained at 34K. The MASTERROWSABOVE and MASTERROWSBELOW

were reduced slightly removing some unnecessary include files, but the size of the files

remained at 24K.

The next step was to try and see if the size of sysHeapVec (refer to figure 14)

could be reduced to allow more room for the program and data. There is an option

available with the Meiko C compiler which allows the user to tell the linker to set the

stack size to a certain number of bytes [MeikoOSi. The option is -tF(storage-bytes). In

order to get the program to fit on the processing nodes the -tF option had to be set to

20480K. This solved the problem of getting the programs and data to fit on the

transputers, but a SVCS services error was given that the processor wires did not exist

(refer to figure 15).
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canrie% mcc -o masterý_rows,_above -tF20480k master~rows_above.c -Ics -lcsn
carrie% more test.par
par

processor 0 (proejtype host) /appl/mivs/bin/Uc
processor 1 master_rows_above

endpar
carrie% nirun -v -m test.par
grab: procl maps to proc 0 type 8 mem 20634K m255b255p255 (MK255)
grab: about to grab domain from svcs
svcs: requested processors or wires don't exist
MEMORY MAP: procl

Primary transputer memory : 80000000 - 81 426b If

proc 1'_localRteClient>.sysHeapVec 8141 eb2O-8 1426b if ( 32K)
procl'..g-dataLinklnfo 814leaaO-814leblf
prodl'-unixRteTron 814lea9c-8141ea9f
procl'lIocalRteTron 8141ea98-8141ea9b
proc '_csn'_bssVec 814le674-8141ea97 ( 2K)
prodl'_csn 8141da00-8141e673 ( 4K)
procl'_csnNetwork 814ld928-8141d9ff
proc lTEXT _unix_cxx.rt8 81418358-814ld927 ( 22K)
procl'TEXT locl-xxx.rt8 81416470-81418357 ( 8K)
procl'TEXT-csnx-xxx.rt8 81412280-8141646f ( 17K)
procl'masterý-rows-above'_bssVec 8140fe44-8141227f ( 10K)
procl1'master-rows-above'-argsVec 81 40fe30-8 140fe43
proc 1'masterý_rowsý_above 8000fe20-8 I4Ofe2f (2048 1K)
procl'TEX(T masterý-rowsý-above 8000alb8-8000felf (24K)
procl'_-csnNetTable 8000alb4-8000alb7
prodl'_-csnRouteTable 8000alac-8000alb3
procl' -csnHopTable 8000ala8-8000alab
proc 1'_csnTransportTable 80006 1a8-8000ala7 (16K)
proc'_ýunixRteClient'_bssVec 800038f8-800061a7 ( 1K)
prodl'_unixRteClient 80002560-800038f7 (5K)
prod1'_locaiRteClient'_bssVec: 80002010-8000255f ( 2K)
procl'_-locaiRteClient 8000 1000-8000200f ( 5K)
prodl'_internaiRam 80000070-80000fff ( 4K)
ANON4YMOUS 80000000-8000006f FIXED

Terminated with errors

Figure 15. Sample of Meiko MRUN with syslleapVec Size Reduced

The SVCS is the scheduler daemon for the Meiko In-Sun Computing Surface[MeikoOS].

SVCS stands for Sun Virtual Computing Surface. The daemon boots the system

processor on each board and provides a TCP service to handle user process requests. One

of the services provided is the wiring of the processors. By reducing the size of

sysHeapVec, the capability for SVCS was not available.
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The next step was to reduce the size of the data. Reducing the size of the data

would also help reduce the size of the programs because the size of the arrays that the

programs had to handle would be smaller. The biggest problem existed with the arrays

being transmitted from the Sun processor to the master processes running on the

transputers. The following four arrays were targeted: shad-ht, cel-e, bitmap, and

horizon. The shad_ht, cele, and bitmap arrays all contained 38,000 elements, the

horizon array contained 100 elements. Reducing the size of the arrays allowed the

programs to load, but in order to achieve this, each array could only have 10 elements.

This would mean that in order to send all of the necessary data to the master processes

3800 separate XDR transmits would be required. The overhead produced by the

communication would eliminate any possible chance of speedup. Attempts were made

without modifying the existing design to get a complete terrain masking execution but

success was not obtained.

4.2 Possible Results If Parallel Execution was Successful

If more memory per processor was available on the transputer nodes, the ability to

execute the parallel version of the terrain masking algorithm would be possible.

Assuming that the parallel implementation executed successfully, lets try to determine

the possible speed-up attainable. The parallel approach taken reduces the number of

row/column calculations from 12 sequential calculations to 2 parallel row/columns

calculations that are executed six times. This could roughly provide a 2 to 1 speed-up

over the current sequential implementation. Each of the calculation pairs partitions the

data over 7 transputers nodes.

A number of factors must be considered. These factors are the cost for initializing

the transputer nodes for execution, the cost for sending the data from the Sun host

processor to the master process on the Meiko Computing Surface, the cost of sending the

partitioned data to the slave processes, the cost of each slave process transmitting their
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results back to the master process, and the cost of the master process transmitting the

results back to the Sun host process. The cost to initialize the transputer network is

actually neglible because the transputer network is initialized when the MIVS system is

brought up and therefore has no bearing on the timing of the terrain masking calculation.

The main penalty cost that must be considered is the transfer of data.

The amount of data being transmitted from the Sun host processor to each master

process pair is roughly 195,400 bytes of data. The master processes must then

communicate this data to the slave processes. The slave processors process the data and

communicate their results back to the master processes. The master processes then

transfer this data to the Sun processor. The total amount of result data produced by the

slave processes is approximately 38,000 bytes. The data transfer rate between the Sun

host processor and the Meiko transputer node is approximately 2.2 mega-bytes per

second, and the data transfer rate between transputer nodes is approximately 1.4 mega-

bytes per second. Based on this, roughly 1.74 secs would be required for data

communication in the parallel version of the terrain masking algorithm.

An example will be used to show the possible speed-up attainable. Referring to

test case 18 in Appendix C, it took 42 seconds to calculate terrain masking for the

sequential version. Assuming half of the 42 seconds, 21 seconds is spent processing the

data, 10.5 seconds would be required for the parallel version (this is because a 2 to 1

speed-up is possible). Add to this the data communication overhead of 1.74 and the total

time for test case 18 is now 12.24 secs. Therefore, the total time to execute the parallel

version of the terrain masking algorithm is approximately 12.24 seconds. To obtain the

amount of speed-up attainable, 42 secs is divided 12.24 yielding a 3 to 1 speed-up. For

test case 18, a speed-up of 3 to 1 is possible. For other test cases, the speed-up may be

more or less depending upon the size of the data and the execution speed. If the size of

the data is larger than the example above, and the execution time is less than 42 secs, the

speed-up obtained will be less.
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CHAPTER 5 CONCLUSION

The process of parallelizing existing sequential software is currently not an easy

task. The software developer must first try to determine what is the most suitable

architecture for executing their particular application. In making this selection, the

software developer must be concerned with many issues such as the memory size

available on the processors, the number of processors available, the speed of the

memory, and the protocols available for communicating among the processors. This is

not always easy to determine as can be seen from the research presented here. What may

seem sufficient by the specifications provided by the hardware vendor may not be what

they seem. One possible hope for making the process of selecting the appropriate parallel

architecture easier is to provide software assessment tools. One such tool, called the

Parallel Assessment Window System (PAWS), allows a user to run existing code on a

number of characterized parallel architectures in order to determine the most appropriate

architecture for a given application [PAWS91]

Once the architecture is selected the real work begins. The software developer

must determine the type of parallelism that exists in the application and the best method

for implementing it. Such issues as determining how to partition data, determining the

number of identical or non-identical tasks, synchronizing messages between tasks, are

among the problems encountered. Software tools for supporting design, code and testing

of parallel software are required. Even after all the decisions are made and the algorithm

is parallelized, there is no guarantee that what was projected will be obtained.

For the military community, these problems make the prospect of developing

software targeted for execution on parallel architectures risky and expensive. This is

because military systems are large and complex and consist of many different types of

processing [Alexandridis86]. The future for parallel architectures lies in making software

support available to aid the software developer.
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Appendix A - IMOM Terrain Masking Call Trees

LGMF~hURE CF_ TERRAIN MASKING CALL TREEMý

L-PUT$M•_SSAGE CASHADX)WSEEFAR

This is the top-level call tree for the IMOM terrain masking algorithm. For a detailed

look at all the sub-call trees refer to [Benincasa92].
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Appendix C - Test Cases for Timing Sequential Version of Terrain Masking

Case 1: This is the base test case. The following information was entered into the terrain
masking tinting function:

elevation levelI
interpolation bilinear
shadowlow 0
shadow-high 0
fov_angle 360
range 10000
observerlatitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738259288
end time measurement in secs 738259330
total execution time in secs 42

The following set of test cases varies the range.

Case 2: Everything is the same as in test case 1 except the range has been changed to
9000.

elevation level_1
interpolation bilinear
shadow_low 0
shadow-high 0
fovangle 360
range 9000
observerjlatitude 31 12 43 N
observerjongitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agi 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738174644
end time measurement in secs 738174685
total execution time in secs 41
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Case 3: Everything is the same as in test case 1 except the range has been changed to
8000.

elevation level_1
interpolation bilinear
shadowjlow 0
shadow__high 0
fov-angle 360
range 8000
observerlatitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738174994
end time measurement in secs 738175032
total execution time in secs 38

Case 4: Everything is the same as in test case I except the range has been changed to
7000.

elevation level_1
interpolation bilinear
shadow-low 0
shadow-high 0
fovyangle 360
range 7000
observerlatitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738175309
end time measurement in secs 738175346
total execution time in secs 37
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Case 5: Everything is the same as in test case I except the range has been changed to
6000.

elevation level_1
interpolation bilinear
shadowlow 0
shadowjdgh 0
fov angie 360
range 6000
observerlatitude 31 12 43 N
observeri-ongitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
ag1 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738175638
end time measurement in secs 738175674
total execution time in secs 36

Case 6: Everything is the same as in test case 1 except the range has been changed to
5000.

elevation levelI
interpolation bilinear
shadowlow 0
shadowhigh 0
fovangle 360
range 5000
observerlatitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agi 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738175899
end time measurement in secs 738175933
total execution time in secs 34
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Case 7: Everything is the same as in test case 1 except the range has been changed to
1000.

elevation level_1
interpolation bilinear
shadow low 0
shadow_high 0
fovrangle 360
range 1000
observer_latitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738176214
end time measurement in secs 738176245
total execution time in secs 31

Case 8: Everything is the same as in test case 1 except the range has been changed to
11000.

elevation levelI
interpolation bilinear
shadow_low 0
shadow_high 0
fov-angle 360
range 11000
observerlatitude 31 12 43 N
observerjongitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinx.ng yellow
start time measurement in secs 738176451
end time measurement in secs 738176494
total execution time in secs 43
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Case 9: Everything is the same as in test case I except the range has been changed to
12000.

elevation level_1
Interpolation bilinear
shadowlow 0
shadow -high 0
fovangle 360
range 12000
observer_latitude 31 12 43 N
observerjongitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agi 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738176769
end time measurement in secs 738176815
total execution time in secs 46

Case 10: Everything is the same as in test case 1 except the range has been changed to
13000.

elevation levelU
interpolation bilinear
shadow_low 0
shadow high 0
fovangle 360
range 13000
observer-latitude 31 12 43 N
observer longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738177033
end time measurement in secs 738177082
total execution time in secs 49
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Case 11: Everything is the same as in test case I except the range has been changed to
14000.

elevation levelI
interpolation bilinear
shadow_low 0
shadowhigh 0
fovangle 360
range 14000
observerlatitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738177418
end time measurement in secs 738177468
total execution time in secs 50

Case 12: Everything is the same as in test case 1 except the range has been changed to
15000.

elevation level_1
interpolation bilinear
shadowlow 0
shadow.high 0
fovangle 360
range 15000
observerlatitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738177742
end time measurement in sees 738177794
total execution time in secs 52
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Case 13: Everything is the same as in test case I except the range has been changed to
20000.

elevation level_ I
interpolation bilinear
shadowlow 0
shadow high 0
fovrangle 360
range 20000
observer_latitude 31 12 43 N
observerjongitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738178273
end time measurement in sees 738178333
total execution time in sees 60

The following set of test cases varies the agi.

Case 14: Everything is the same as in test case 1 except the agl has been changed to 29.

elevation level_1
interpolation bilinear
shadowlow 0
shadow-high 0
fovangle 360
range 10000
observer_latitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 29
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738249282
end time measurement in sees 738249324
total execution time in secs 42
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Case 15: Everything is the same as in test case I except the agl has been changed to 28.

elevation level_1
interpolation bilinear
shadowlow 0
shadow-high 0
fov_angle 360
range 10000
observerlatitude 31 12 43 N
observerýIongitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 28
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738249952
end time measurement in sees 738249994
total execution time in sees 42

Case 16: Everything is the same as in test case 1 except the agl has been changed to 27.

elevation level_1
interpolation bilinear
shadow_low 0
shadow._high 0
fovangle 360
range 10000
observerlatitude 31 12 43 N
observerilongitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 27
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in sees 738250282
end time measurement in sees 738250324
total execution time in sees 42
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Case 17: Everything is the same as in test case 1 except the ag' has been changed to 26.

elevation level_1
interpolation bilinear
shadowlow 0
shadow-high 0
fovangle 360
range 10000
observerlatitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 26
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738258551
end time measurement in secs 738258593
total execution time in secs 42

Case 18: Everything is the same as in test case 1 except the agl has been changed to 20.

elevation levelI
interpolation bilinear
shadow-low 0
shadow high 0
fovangle 360
range 10000
observerlatitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 20
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738258788
end time measurement in secs 738258830
total execution time in secs 42
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Case 19: Everything is the same as in test case I except the agl has been changed to 31.

elevation level_1
interpolation bilinear
shadowlow 0
shadow-high 0
fov.angle 360
range 10000
observerlatitude 31 12 43 N
observerilongitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 31
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738259693
end time measurement in secs 738259735
total execution time in secs 42

Case 20: Everything is the same as in test case I except the agI has been changed to 32.

elevation level_1
interpolation bilinear
shadowlow 0
shadow-high 0
fov-angle 360
range 10000
observerlatitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 32
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738259942
end time measurement in secs 738259984
total execution time in secs 42
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Case 21: Everything is the same as in test case 1 except the agl has been changed to 33.

elevation level_1
interpolation bilinear
shadow_low 0
shadow-high 0
fovangle 360
range 10000
observerlatitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agI 33
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738260150
end time measurement in secs 738260192
total execution time in secs 42

Case 22: Everything is the same as in test case 1 except the agl has been changed to 34.

elevation level_1
interpolation bilinear
shadow_low 0
shadow_high 0
fovangle 360
range 10000
observer-latitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 34
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738263572
end time measurement in secs 738263614
total execution time in secs 42
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Case 23: Everything is the same as in test case I except the agi has been changed to 40.

elevation level_-1
interpolation bilinear
shadow_low 0
shadow-high 0
fov_angle 360
range 10000
observerlatitude 31 12 43 N
observerlongitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 40
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738266866
end time measurement in secs 738266908
total execution time in secs 42

The following set of test cases varied the FOV angle.

Case 24: Everything is the same as in test case I except the fov angle has been changed
to 180.

elevation level_1
interpolation bilinear
shadow-low 0
shadow-high 0
fovangle 180
range 10000
observer_latitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agI 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738267144
end time measurement in secs 738267191
total execution time in secs 47
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Case 25: Everything is the same as in test case I except the fov angle has been changed
to 90.

elevation level_ I
interpolation bilinear
shadow-low 0
shadowhigh 0
fovangle 90
range 10000
observerlatitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738267494
end time measurement in sees 738267541
total execution time in secs 47

Case 26: Everything is the same as in test case I except the fov angle has been changed
to 60.

elevation levelI
interpolation bilinear
shadow-low 0
shadow high 0
fov_angle 60
range 10000
observerlatitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agi 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738267722
end time measurement in secs 738267769
total execution time in secs 47
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Case 27: Everything is the same as in test case I except the fov angle has been changed
to 30.

elevation level_1
interpolation bilinear
shadowlow 0
shadowhigh 0
fovangle 30
range 10000
observerlatitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738267961
end time measurement in secs 738268008
total execution time in secs 47

Case 28: Everything is the same as in test case 1 except the fov angle has been changed
to 240.

elevation level_1
interpolation bilinear
shadowlow 0
shadowihigh 0
fovangle 240
range 10000
observerlatitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738271609
end time measurement in secs 738271656
total execution time in secs 47
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Case 29: Everything is the same as in test case I except the fov angle has been changed
to 260.

elevation level_1
interpolation bilinear
shadow-low 0
shadow-high 0
fov_angle 260
range 10000
observerlatitude 31 12 43 N
observer~jongitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 738269193
end time measurement in secs 738269240
total execution time in sees 47

Case 30: Everything is the same as in test case I except the fov angle has been changed
to 280.

elevation levelI
interpolation bilinear
shadowlow 0
shadow-high 0
fovangle 280
range 10000
observerlatitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in sees 738269394
end time measurement in sees 738269441
total execution time in sees 47
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Case 31: Everything is the same as in test case 1 except the fov angle has been changed
to 300.

elevation level_1
interpolation bilinear
shadowlow 0
shadow_-high 0
fovangle 300
range 10000
observer_latitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 739500850
end time measurement in secs 739500897
total execution time in secs 47

Case 32: Everything is the same as in test case I except the fov angle has been changed
to 310.

elevation level_1
interpolation bilinear
shadow_low 0
shadow-high 0
fovangle 310
range 10000
observer_latitude 31 12 43 N
observerjongitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
ag] 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 739501219
end time measurement in sees 739501266
total execution time in secs 47

56

I1



Case 33: Everything is the same as in test case 1 except the fov angle has been changed
to 320.

elevation level_ I
interpolation bilinear
shadowlow 0
shadow-high 0
fovangle 320
range 10000
observer_latitude 31 12 43 N
observerjlongitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 739501586
end time measurement in secs 739501633
total execution time in secs 47

Case 34: Everything is the same as in test case 1 except the fov angle has been changed
to 330.

elevation level_1
interpolation bilinear
shadowlow 0
shadow-high 0
fov_angle 330
range 10000
observerlatitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 739501747
end time measurement in secs 739501794
total execution time in secs 47
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Case 35: Everything is the same as in test case I except the fov angle has been changed
to 340.

elevation level_ 1
interpolation bilinear
shadowlow 0
shadow-high 0
fovangle 340
range 10000
observerlatitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 739501905
end time measurement in secs 739501952
total execution time in secs 47

Case 36: Everything is the same as in test case I except the fov angle has been changed
to 350.

elevation levell
interpolation bilinear
shadowlow 0
shadow-high 0
fovangle 350
range 10000
observer_latitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agi 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 739502049
end time measurement in secs 739502096
total execution time in secs 47
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Case 37 Everything is the same as in test case 1 except the fov angle has been changed
to 355.

elevation level_ I
interpolation bilinear
shadowlow 0
shadowhigh 0
fov-angle 355
range 10000
observer_latitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agi 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 739502208
end time measurement in secs 739502255
total execution time in secs 47

Case 38: Everything is the same as in test case 1 except the fov angle has been changed
to 356.

elevation level_ I
interpolation bilinear
shadowlow 0
shadow_high 0
fov-angle 356
range 10000
observerlatitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 739502362
end time measurement in secs 739502409
total execution time in secs 47
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Case 39: Everything is the same as in test case 1 except the fov angle has been changed
to 357.

elevation level_1
interpolation bilinear
shadowlow 0
shadow-high 0
fovangle 357
range 10000
observerlatitude 31 12 43 N
observer longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 739502509
end time measurement in secs 739502556
total execution time in secs 47

Case 40: Everything is the same as in test case I except the fov angle has been changed
to 358.

elevation levelI
interpolation bilinear
shadowlow 0
shadow.high 0
fovangle 358
range 10000
observerlatitude 31 12 43 N
observer-longitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 739502659
end time measurement in secs 739502706
total execution time in secs 47
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Case 41: Everything is the same as in trer case I except the fov angle has been changed
to 359.

elevation level_1
interpolation bilinear
shadowlow 0
shadow-high 0
fovangle 359
range 10000
observerlatitude 31 12 43 N
observerjongitude 97 36 52 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agi 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 739502825
end time measurement in secs 739502872
total execution time in secs

The following set of test cases varies the observer position.

Case 42: Everything is the same as in test case I except the observer position was
changed to Latitude: 31 13 1 N, Longitude: 97 42 17 W

elevation level_1
interpolation bilinear
shadow_low 0
shadowhigh 0
fovangle 360
range 10000
observerlatitude 31 13 1 N
observerilongitude 97 42 17 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 739503180
end time measurement in secs 739503219
total execution time in secs 39

61



Case 43: Everything is the same as in test case 1 except the observer position was
changed to Latitude: 31 12 33 N, Longitude: 97 40 55 W

elevation levelI
interpolation bilinear
shadowlow 0
shadow-high 0
fovangle 360
range 10000
observerlatitude 31 12 33 N
observer-longitude 97 40 55 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 739503436
end time measurement in secs 739503478
total execution time in secs 42

Case 44: Everything is the same as in test case I except the observer position was
changed to Latitude: 31 10 37 N, Longitude: 97 40 19 W

elevation level_1
interpolation bilinear
shadowlow 0
shadow high 0
fovangle 360
range 10000
observerlatitude 31 10 37 N
observer longitude 97 40 19 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 739503634
end time measurement in secs 739503679
total execution time in secs 45
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Case 45: Everything is the same as in test case 1 except the observer position was
changed to Latitude: 31 9 29 N, Longitude: 97 42 7 W

elevation levelI
interpolation bilinear
shadowlow 0
shadow..high 0
fovangle 360
range 10000
observerlatitude 31 9 29 N
observer-longitude 97 42 7 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agi 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 739503836
end time measurement in secs 739503879
total execution time in secs 43

Case 46: Everything is the same as in test case 1 except the observer position was
changed to Latitude: 31 14 50 N, Longitude: 97 42 29 W

elevation level_1
interpolation bilinear
shadow_low 0
shadow high 0
fovangle 360
range 10000
observerlatitude 31 14 50 N
observer-longitude 97 42 29 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 739504018
end time measurement in secs 739504055
total execution time in secs 37
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Case 47: Everything is the same as in test case I except the observer position was
changed to Latitude: 31 13 52 N, Longitude: 97 39 17 W

elevation level_ I
interpolation bilinear
shadowlow 0
shadow-high 0
fovangle 360
range 10000
observerlatitude 31 13 52 N
observer-longitude 97 39 17 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 739504200
end time measurement in secs 739504240
total execution time in secs 40

Case 48: Everything is the same as in test case I except the observer position was
changed to Latitude: 31 11 30 N, Longitude: 97 38 18 W

elevation level_1
interpolation bilinear
shadowlow 0
shadow -high 0
fovangle 360
range 10000
observerlatitude 31 11 30 N
observer-longitude 97 38 18 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 739504392
end time measurement in secs 739504436
total execution time in secs 44
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Case 49: Everything is the same as in test case 1 except the observer position was
changed to Latitude: 31 7 32 N, Longitude: 97 42 13 W

elevation level I
interpolation bilinear
shadowlow 0
shadow-high 0
fov.angle 360
range 10000
observer_latitude 31 7 32 N
observer-longitude 97 42 13 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agi 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 739504575
end time measurement in secs 739504618
total execution time in secs 43

Case 50: Everything is the same as in test case I except the observer position was
changed to Latitude: 31 14 43 N, Longitude: 97 37 2 W

elevation level 1
interpolation bilinear
shadow-low 0
shadowhigh 0
fov-angle 360
range 10000
observerlatitude 31 14 43 N
observer-longitude 97 37 2 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in secs 739504749
end time measurement in secs 739504788
total execution time in secs 39
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Case 51: Everything is the same as in test case 1 except the observer position was
changed to Latitude: 31 1 23 N, Longitude: 97 36 15 W

elevation levelI
interpolation bilinear
shadowlow 0
shadow high 0
fovangle 360
range 10000
observerlatitude 31 11 23 N
observer-longitude 97 "A 'S W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to obspr',cr
type fade
fade percent 50
color of tinting yellow
start time measurement in sees 739504955
end time measurement in sees 739504999
total execution time in sees 44

Case 52: Everything is the same as in test case 1 except the observer position was
changed to Latitude: 31 8 12 N, Longitude: 97 37 37 W

elevation levelI
interpolation bilinear
shadowlow 0
shadow-high 0
fovangle 360
range 10000
observerlatitude 31 8 12N
observer-longitude 97 37 37 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agi 30
shade invisible to observer
type fade
fade percent 50
color of tinting yellow
start time measurement in sees 739505150
end time measurement in sees 739505196
total execution time in sees 46
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Case 53: Everything is the same as in test case 1 except the observer position was
changed to Latitude: 31 5 46 N, Longitude: 97 41 55 W

elevation level_1
interpolation bilinear
shadowlow 0
shadow high 0
fovangle 360
range 10000
observer_latitude 31 5 46 N
observerlongitude 97 41 55 W
focus point latitude 31 5 57 N
focus point longitude 97 36 52 W
agl 30
shade invisible to observer
tpe fade
fade percent 50
color of tinting yellow
start time measurement in secs 739505306
end time measurement in secs 739505349
total execution time in secs 43
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MISSION

OF

ROME LABORA TOR Y

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.


