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USING LIDAR TOMOGRAPHY TO CHARACTERIZE

IN A TURBULENT MEDIA

1. Introduction

Atmospheric lidar returns depend on both backscatter( 0) and
extinction(o)1 :

P(z)=K(z) exp[-2 J: a(r') drl],(1

Z2 z/.0

where P is the power return, r is range, and K contains system
constants. Exact determination of extinction and backscatter from
a single return requires a knowledge of the range dependence of
either extinction or backscatter or the relationship between these
variables. However, for multiple returns2 , tomography methods can
be used to independently determine extinction and backscatter. In
one approach, the logarithmic form of the lidar equation separates
the two variables:

S(r)uln[P(r)r2/K] =ln[p(r)] -2,r(r), (2)

where r is the optical depth [:(r)= J o(r')drl] and the lidar data
rl-o

is both range corrected and calibrated. From an aircraft, the lidar
can scan 450 forward of vertical, straight down, and 450 aft of
vertical, see figure 1:

S45.=B -T,
S0. -B2-T2 (3)

S-45 B3 -T3

where B and T are respectively the logarithm backscatter [ln[1]
and twice the optical depth [2:].

TS
TT

Figure 1. An aircraft flying from left to right makes three
tomographic lidar observations of the same volume.

bnuq, 19%.



Controlled scanning allows the backscatter at the one point to be
observed several times. In a homogeneous atmosphere, the system of
equations becomes over-determined:

T1_ r3_ T2

cos(450) (4)
B, =B2 B 3

and the backscatter and extinction can be determined from a set of
equations that use a least square fitting process to minimize the
errors.

While equations(3) and (4) are overly simplistic, they
illuminate the advantage -- over-determined equations -- and
limitation of lidar tomography -- the need for homogeneity. Spatial
homogeneity is needed since the scattering must be almost
homogeneous inside the individual grid elements. If tomography can
use regions whose scale sizes are an order of magnitude smaller
than the size of the dominant atmospheric structures, the
approximation can be quite reasonable. Temporal homogeneity is also
needed, ie. the atmosphere must not dramatically change between the
measurements. Simply stated, the time between the lidar
measurements must be substantially faster than the 'half life' of
the dominant atmospheric structures.

This report contains an initial discussion of the tomographic
method and will not provide a detailed analysis of equipment and/or
atmospheric conditions required for this method to work. While
possible instrumental configurations include: mobile lidars,
multiple fixed lidars, and even single lidars, only a single
scanning lidar (either moving or stationary) is modelled. The model
used to test the inversion accuracies are selected for simplicity
and ability to test a wide range of conditions; however, the model
is not based on any specific atmospheric model.

2. taic Technique and Equations

In the specific tomography method discussed by this report, a
grid divides the atmosphere into equal regions. Each region is
assumed to have a constant backscatter and extinction. A discrete
form of the lidar equation is used:

n~m

4. kI.(j-i).n.n'i(5)

where i and j represent spatial coordinates, k is a unique number
assigned to each return, n and m are the maximum size for the
coordinates, and At,, is a geometrical factor. For extinction, A,.,
is determined by the distance through the grid element that the kth
profile follows. For backscatter, A.j1 is either one (if this
return is from this region) or zero. A series of measurements of
the same grid are made from different locations, systems of
equations are formed, and the equations are combined into a matrix
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relationship:

81

2

~2jr; ~: jr2J(6)

where the matrix equation is S =Xfl, K is the total number of
returns, and N is the total number of grid elements [n*m].

Table 1 shows the grid that is used for the tomography
calculations. Each square is arbitrarily scaled to one on a side.
The center of each square is set to be an integer and the edge then
becomes an integer plus (or minus) a half. The wide line on the
left hand side, which represents the lidar location, has a j
coordinate of 0.5 . The first set of observations (or scan)
originate at the top [i=0.5] and the other sets of observations are
made at 1/2 step intervals [J=0.5,1.0,1.5, etc.]. Backscatter
measurement are made at center of each square [ie. (i=1.0,J=1.0),
(i-1.,j-2.O),#.... (i-2.0,j-1.0),... ].

- Table 1: ric Grid
Distance [j]

1 2 3 4 5

1 1 6 11 16 21 1
26 31 36 41 46

Distance/ 2 2 7 12 17 22 2
27 32 37 42 47

Time [i] 3 3 8 13 18 23 3
28 33 38 43 48

4 4 9 14 19 24 4
29 34 39 44 49

5 5 10 15 20 25 5
30 35 40 45 50

1 2 3 4 5
rhotop nu in element is nber -for the

backscattering and the bottom number is the matrix number for the
extinction.
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The coefficients for the first two returns are:
[for a lidar located at (i=0.5,j=0.5) and a return from
(i=1.0,j=l.O) ]

Sl -Tj (7)

2$

[In the above case, the coefficients A 1 1 and A2 , 2 6 are respectively 1.0

and Al . All other coefficients for this return are zero (ie.A1,L=0
2

where LA 1 or 26.]
[for a lidar located at (i=0.5,j=0.5) and a return from
(i=1.0,j=2.0)]

s.=B,- T, -1T.

[In the above case, the coefficients A,.6. A2.26 , and A231 are

respectively 1.0, J, and Jul.

The scan angles are restricted to less than or equal to 450 [ie.
the column change (j) is less than or equal to the row change (i)].
This limitation is not necessary and represents a convenient, but
arbitrary restriction. For the grid shown in table 1 and, for the
scheme discussed above, 195 returns are possible. Since the
equations have 50 unknowns, the equation system is over-determined
and the least squares determination of the atmospheric parameters
(backscatter and optical depth) becomes 3 :

E*A (XAX' ) X T  (9)

where Re denotes the least square estimate, Xr is the transpose of
X, and "-' is the inverse of X.

The added information in the over-determined equations can be
used in several ways. Using the estimated atmospheric parameters,
estimated return values can be derived and an error (e] determined
from the difference between the actual (Ski and estimated return
values [ SJ ] :

e=E(S6¶-Sk) 2. (10)

Then this difference can be used to normalize the original
geometrical terms:

where the weight function must be normalized [ 1 /y=1 ], and the
V'-1

tomography equations recalculated using reduced input errors.
Another use of the extra degrees of freedom could be to account for
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temporal changes in the scattering media. For example, the
resulting terms might account for changes in optical properties
when a constant dry aerosol size distribution is modified by
changing humidity.

Computationally, the inversion of the matrix with geometrical
terms requires the n6 multiplications [where n denotes the size of
measurement grid] and can not be easily done on small computers
except for small grids'. However, if the appropriate inverse of
the geometrical matrix [X] is calculated ahead of time on a large
computer and transferred to a small computer, the number of
multiplications is reduced to n4. Then scattering coefficients can
be derived on the PC computer from equation (9). While only two
dimensional grids are considered in this report, a three
dimensional grid could be analyzed with the same techniques (and
such measurements are well within the capabilities of a state-of-
the-art lidar).

3. Random Errors and Error Reduction

The tomography analysis technique outlined in section 2 is a
"least squares' process and the errors in the derived parameters
matrix are linearly related to the magnitude of errors in the
measurement matrix:

fl'in (AT'A T) 9*, (12)

where §* and 90 are the errors in the measurement and derived
matrices respectively.

To test the sensitivity of this inversion algorithm, a
thousand backscatter and extinction matrices were randomly selected
with no relationship between backscatter and extinction. The
logarithm of the backscatter[(p] values are selected from a
Gaussian distribution with an average of zero and a rms variation
of one. The extinction [TI], which corresponds to the optical depth
of each square, are also selected from a Gaussian distribution with
an average of 0.1/grid element and a variance that is 10% of the
mean value. Using the selected backscatter and extinction, the
simulated return values [S] are derived from the original
geometrical matrix [X] with a random error [and with a variance of
SO] added. Table 2 shows the errors in the extinction and
backscatter terms at various grid locations:

where E. is the resulting error, I is the total number of
observations, and the original input for atmospheric parameters and
the output values are B. and B. respectively. Except for the last
column [J-5], the backscatter errors are moderately larger than the
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input errors with only a small variation between the various rows
and columns. The extinction errors are larger than the backscatter
errors and increase in range. Since few returns from the last
column are used, the backscatter and extinction errors are
substantially larger for this column.

Table 2: Output errors resulting from uniform input errors

Range [j]

1 2 3 4 5

1 1.7 1.5 1.4 2.1 10.7 1
2.5 5.3 6.5 8.1 17.7

Distance/ 2 1.7 1.3 1.4 1.6 11.3 2
2.4 5.2 6.6 7.6 24.1

Time [i] 3 1.7 1.4 1.4 1.7 12.1 3
2.5 5.2 6.6 8.2 21.3

4 1.8 1.5 1.4 1.6 12.1 4
2.5 5.2 6.6 7.8 23.9

5 1.7 1.4 1.4 2.5 12.0 5
2.5 5.2 6.6 8.0 20.5

1 2 3 4 5
e a c ad t t errors are respectively on the

top and bottom line of each box. Output errors are normalized by
input errors.

Table 3 shows analysis of random data when the 'return'
[i=0.5,j=3.0] from the center square [i=3.0,j=3.0] has random
errors added. While the derived values from the grid with the error
are influenced, the least squares process spreads the errors to
other squares as well. The last column again has the largest errors
and, in the case of extinction, the errors in the center square are
not even substantially larger than the other errors in the center
column.

Using the derived atmospheric parameters, new 'returns' can be

calculated from the geometrical matrix [X] and compared with the
original 'returns'. For example, in the case discussed above, the
difference between derived and original returns was calculated. The
recalculated return (from the one which errors were added) has the
largest error, which reduces the original error by 80%. Other
recalculated returns from the same square [i=0,j=2.5 to
i-3.5,J-3.5; i-0,J-3.5 to i=3.5,J-3.5; i-0,j-4.5 to i-3.5,j=3.5;
i-O,J-4.0 tQ i-3.5,J-3.5] increase original error by 10%.
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Table 3: output errors resulting from an error
to the center square

Range [j]

1 2 3 4 5

1 0.2 0.1 2.2 1.2 5.1 1
0.3 1.1 3.8 10.2 2.2

Distance/ 2 0.4 0.0 2.4 0.4 6.5 2
0.6 0.2 4.3 9.3 22.8

Time [i] 3 1.2 0.2 3.4 1.2 10.9 3
1.9 2.3 4.5 10.9 8.0

4 0.4 0.0 2.4 0.4 6.5 4
0.6 0.2 4.3 9.3 22.8

5 0.2 0.1 2.2 1.2 5.1 5
0.3 1.1 3.8 10.2 2.2

1 2 3 4 5
Note: Backs trnd extinctinerrors are respectively on the
top and bottom line of each box. Output errors are normalized by
input errors and scaled by 10-2.

4. Errors introduced by a changing scattering media

Scattering media can be altered by redistribution of
scattering structures and changes in scattering media itself. In
this section, changes caused by turbulence to scattering structures
are simulated, while the average scattering conditions are left
unchanged. Constant movement of the media is not simulated since it
is assumed that movement can be removed during the initial analysis
of the lidar data.

The spectrum [CF] of scattering structures is assumed be
Gaussian:

0( 11 22

where w is the wave number, the numerical subscript is the grid
component, and a, is the rms width of the spectrum. Each phase of
each Fourier component is selected randomly and has a random phase
velocity:

F(W1 21 , t) =.F(W 1 ,6 2)exp(2%i [rnd(w1,, 2 ) +(V1+V2 ) ]},

where F is 'the complex magnitude the spectral components, t is
time, phase velocities have a gaussian distribution exp[-(v1 /oG) 2],

7



and the wave numbers are randomly [rnd(w,, 2 ) ] selected. The
spectrum with appropriate phases is calculated on a 16 by 16 grid
and Fourier transformed with a two dimensional FFT:

ff(x25 x2, t) =t t exp [-27ic,) 1x l /n] exp [-2ric 2x2/n] f( ,1, I2' t),
i-ij-1

where f is magnitude of the scattering in the real domain and n is
the maximum grid size [16]. The final scattering media is a 5 by 5
sub-element selected from the larger grid. This process is done
twice to select matrices for backscatter and matrices for
extinction. Figure 2 shows the scattering media in one direction
where the change of the aerosols structures in time can be seen.

Using tomography, backscatter and extinction errors are
calculated for a hundred cases each with eleven time steps. These
errors (relative to the original errors) were dependant on the
ratio of backscatter to extinction, the dominant structure size,
and the rms wind variation of the relative structures. Figure 3
shows the backscatter and extinction errors for the different
ratios of these parameters. The smallest errors occur when the
ratio is approximately one. When the extinction values are small,
the error in the backscatter values are small even when extinction
errors are large. Since the extinction is dependant on both
backscatter and extinction, this parameter is strongly dependant on
both and the error is a minimum when the two errors are comparable
in size.

Figure 2: The changes in
a typical simulated

3 3 scattering media are
shown. Each line shows
the scattering in the

2 2 one direction through
2 the grid at one time.
"U The different fourier

1 1 • components have
0 different phase

E0 .0 0 velocities which are
C7 selected from a Gaussian
S distribution where the

-1 -1 . rms variation equals one
z grid square per each

-2 -2 • time element.

-3 1-3
0 5 10 15

Distance
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Figure 3: The error
1400 scaled for random

movement and structure

size (o~/~) is plotted
1200 \on the ordinate for the

different ratios of
1000 backscatter (natural

logarithm) and
S/extinction. The

O 800 \ extinction and
U2 backscatter errors are

600 plotted as solid and
d dashed lines

L 4 respectively. Note, the
400 •smallest error occurs

when the ratio is
200 \ approximately one.

0 J
0.001 0.01 0.1 1 10 100

Ln(bocksc)/ext

The relative errors are influenced by the random movement of
and the size of the structures. When the structures move rapidly,
the scattering media changes quickly and the variation of the
scattering media over the measurement cycle becomes larger. Since
the smaller structures move a larger fraction of their scale size
in shorter time intervals, the relative errors are also dependant
on structure sizes. When the backscatter to extinction ratio is
one, the relative errors are:

Perrju 152

where e.r and arr are the average backscatter and extinction
errors divided by the average parameter value, o. is the rms
variation of speed [in units of one grid dimension divide by one
time step], and a. is the rms scale size of aerosol structures [in
units of one grid dimension].

If each grid element is assumed to be 10 m on a side and
random movement of structures is assumed to be 1 m/s, the error for
various lidar configurations can be calculated. For an aircraft
moving at 100 n/s over a media which has a dominant structure size
of 1 kim, the relative error becomes 15%, which is acceptable for
many atmospheric measurements. For a stationary lidar when the wind
speed is 10i/s, the error is 150% which is not acceptable.
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5. Summary and Conclusions

Tomography can be used to simultaneously measure both
backscatter and extinction measurements. However, the method is
limited. The scattering properties need to be almost homogenous
inside the tomography grid elements and must not change
significantly during the measurement cycle. Computationally the
most multiplications required is n". With a pre-calculated inverted
geometrical matrix [A], the solution of individual terms requires
n4 multiplications.

Since the equations are over-determined, scattering properties
can be derived from a least squares fitting process. Errors are
linearly related to the matrix relationship, which includes linear
extinction and logarithmic backscatter terms. The technique is, in
theory, not limited to two dimensional cases, but can be used for
three dimensional grids as well.

Unlike some lidar inversion processes, the tomography method
is not limited to a fixed backscatter to extinction relationship.
This is especially important for environmental conditions (such as
coast lines) where the aerosols change on short spatial and
temporal scales.

All the analysis was done for a single flat scanning scheme
where the lidar is scanned *45° perpendicular to the average wind.
This scheme is achievable with many existing scanning lidars, and
while no effort was made to find the optimal scanning scheme to
minimize errors, wider scanning angles should reduce errors.

The sensitivity of this algorithm to random movement restricts
the tomographic applications of single stationary lidars. For
accurate detailed analysis, multiple spatially separated lidars
will probably be needed. With two scanning lidars, the unknowns
match the number of observations and, while the inversion is
possible, the errors would be large, since the errors for each
observation can not be reduced by a least squares fitting process.
However, with three lidars, a suitable inversion should be
possible, since the scattering media can be characterized from an
over-determined set of equations.

10



References:

1. R. M. Measures, Laser remote sensing: fundamentals and
applications, Wiley & Son, New York (1984).

2. J.A. Weinman,"Tomographic lidar to measure the extinction of
atmospheric aerosols"Appl Opt 23,3882-3888(1984).

3. L.W.Johnson and R.D. Riess,"Numerical Analysis,"Addison-Wesley,
Reading, Ma,1977.

4. The number of multiplications represents a worst case scenario
and, since the matrix has many zeros, more efficient algorithms
designed for sparse matrices may reduce the number of required
multiplications.

a

ii


