
NASA Centrae¢r Rqwt 194W

ICASE, R.pot N& AD-A280 998
[lhlmllllll,

* ICASE
A THREE DIMENSIONAL MULTIGRID
REYNOLDS-AVERAGED NAVIER-STOKES
SOLVER FOR UNSTRUCTURED MESHES

DTICEECTE I

DJ. Mavriplis Q a,

Contract NAS1-19480 D NQUAL SP S T a

May 1994

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center

Hampton, VA 23681 -0001 ag9 -00

SOperated by Universities Space Research Association

94 5 062

A THREE DIMENSIONAL MULTIGRID REYNOLDS-
AVERAGED NAVIER-STOKES SOLVER FOR UNSTRUCTURED

MESHES

D. J. Mavriplis

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center

Hampton, VA

ABSTRACT

A three-dimensional unstructured mesh Reynolds averaged Navier-Stokes solver is described.
Turbulence is simulated using a single field-equation model. Computational overheads are
minimized through the use of a single edge-based data-structure, an efficient multigrid solution
technique, and the use of multi-tasking on shared memory multi-processors. The accuracy and
efficiency of the code are evaluated by computing two-dimensional flows in three-dimensions
and comparing with results from a previously validated two-dimensional code which employs
the same solution algorithm. The feasibility of computing three-dimensional turbulent flows on
grids of several million points in less than two hours of wall clock time is demonstrated.

This research was supported under the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in Sci-

ence and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681.

1. INTRODUCTION

In recent years, the use of unstructured meshes has become more widespread for compu-
tational fluid dynamics problems. The advantages of unstructured meshes lie in their ability to
deal with arbitrarily complex geometries, while providing a natural setting for the use of adap-
tive mesh enrichment techniques. However, most of the successes of unstructured meshes
have been in solving inviscid flows, particularly in three dimensions. Recently, two-
dimensional turbulent flow solutions using unstructured meshes have been demonstrated
[1,2,3,41. However, few attempts at solving similar three dimensional flows are known. While
many publications have appeared in the literature concerning three-dimensional unstructured
grid Navier-Stokes computations, few if any of these have demonstrated engineering quality
solutions for practical aerodynamic flows. The inclusion of viscous terms into an existing
unstructured Euler solver is, in fact, a simple proposition. The real challenge is to devise a
complete solution strategy capable of resolving complex flows with good accuracy at accept-
able cost on highly stretched grids.

The problems associated with unstructured mesh computations of turbulent viscous flows
are threefold. Firstly, a suitable mesh with highly stretched elements in the boundary layer and
wake regions must be generated. Secondly, a turbulence model capable of operating efficiently
on unstructured meshes must be incorporated. Finally, the memory and CPU overheads associ-
ated with the solution technique must be low enough to allow for the use of very fine meshes
which are required for meaningful results. Much work has been performed in the two-
dimensional setting in order to alleviate these problems. However, the extension of these ideas
to three dimensions has often been hindered by the overwhelming computational overheads
incurred by most methodologies.

This paper describes the development of an efficient three dimensional Navier-Stokes
solver. Most of the techniques employed have been developed and demonstrated previously in
the two-dimensional setting, and this work involves their extension to three dimensions. By a
careful choice of data-structures, the use of a rapidly converging multigrid algorithm, and the
implementation of parallel processing techniques, a solution technique which incurs acceptable
overheads and is capable of dealing with relatively fine grids is obtained.

2. METHOD DESCRIPTION

2.1. Discretization and Data Structures

We seek steady-state solutions to the Favre-averaged Navier-Stokes equations. These
equations must be closed using a suitable turbulence model in order to model the Reynolds-
stress terms. Spatial discretization of the Navier-Stokes equations is performed using a Galer-
kin finite-element approach. The conserved flow variables are stored at the vertices of the n For
mesh, and the convective fluxes are assumed to vary linearly over each tetrahedral element.
For the viscous terms, velocities are assumed to vary linearly over the tetrahedral elements.
Velocity gradients can thus be constructed at element centers, which then enables the discreti- 0

zation of the second derivatives contained in the viscous terms. Additional artificial dissipation . ao 0

terms are constructed as a blend of Laplacian and biharmonic operators. The Laplacian dissipa-
tion results in locally first-order accuracy, and is thus triggered only in the vicinity of shock
waves, while the third-order accurate biharmonic dissipation is employed throughout the tl__/
flowfield. Ai C..-odes

I Dis Spca

The natural data-structure which arises from a finite-element point of view is the element
data-structure, in which a list of elements is stored, with pointers for each element identifying
the four vertices which constitute that element It has previously been shown, in the context of
inviscid flow calculations, that the convective terms can be assembled using an edge-based
data-structure, which is both more compact (in terms of memory overheads), and minimizes the
amount of gather-scatter required on vector and parallel computer architectures. The basic
data-structure for assembling the convective terms is thus a list of edges. For each edge we
store the addresses of the two end-points of the edge, and three coefficients, which represent
the x,y,and z components of the normal of the face of the dual mesh pierced by the edge, as
shown in Figure 1, for the two-dimensional case. In three dimensions, if one considers all
tetrahedra which share a given edge, as shown in Figure 2, the face normal associated with this
edge can be computed as the sum of all the tetrahedral faces which touch only one of the two
end-points of the edge (i.e. sum of all the F. in Figure 2).

When employing a Galerkin finite-element discretization, the viscous terms are tradition-
ally thought of as a sequence of two loops, one to construct gradients at triangle or tetrahedron
centers, and another to form the final residual contributions. However, the final discrete
viscous terms obtained in this manner form a nearest neighbor stencil. The viscous terms for a
vertex i depend only on values at i and at vertices k, such that k is joined to i by a mesh edge.
Thus, an edge-based data-structure may also be employed to assemble the viscous terms. This
fact has previously been pointed out in several references [2,5,6]. In [2], a complete derivation
of the edge-based coefficients for a Hessian matrix is given. In three-dimensions, this would
require the storage of 9 coefficients per edge, since the discrete Hessian is written as

UYS U1, U3S 0 1 "T Up,~ a ý, U - TUkU.. U,, = Vol, k-I % 1 Us J V (1)

where Vol, represents the volume of the union of tetrahedra which touch vertex i. However,
the local edge-based coefficient matrix is symmetric about the diagonal. This fortunate fact has
apparently gone unnoticed in the literature. A proof of this is given in the Appendix. Thus,
we need only store 6 coefficients per edge for the discretization of the viscous terms. If the
cross derivative terms in the Navier-Stokes equations are neglected, this can be reduced to 3
coefficients per edge. Also note that for the discretization of a Laplacian, a single coefficient
per edge is required, which is given by the sum of the diagonal terms. Thus, if we adopt the
thin-layer form of the Navier-Stokes equations, a single edge coefficient is sufficient to com-
pute the viscous terms.

At this stage, the full Navier-Stokes terms have been included, and thus 6 edge-
coefficients are stored. It is useful to examine the amount of storage this represents compared
to other approaches. Tetrahedral unstructured meshes of N points contain aN tetrahedra and
(a + 1)N edges, neglecting boundary effects. The value of a depends on the mesh, but usually
lies between 5 and 6. The traditional element data-structure requires the storage of the four
corners of each tetrahedron. Taking a = 6, this corresponds to 24N. Excessive storage is
required if a double loop is employed, with the cell gradients stored as intermediate values (at
least 9 extra values per cell or 54N). A single loop over the tetrahedra can however be used to
assemble the full viscous terms. Within the loop, the gradients may be computed, divided by
the volume, multiplied by the appropriate face normal, and then accumulated to one of the four
corner vertices of the cell. The last two operations are repeated for each comer vertex of the

2

cell. This approach requires only the storage of the element data-structure plus the vertex
coordinates (which are not required in the edge-based approach), thus a total of 27N. The
edge-based approach requires a total of 42N or 15N more than the element-based approach.
However, the element approach requires an order of magnitude more operations since the
geometric quantities such as cell volume and face normals must be recomputed each time in
the loop. If any of these quantifies are stored rather than recomputed, the storage requirements
quickly exceed those of the edge-based approach. This is a classic example of a memory-cpu-
time trade-off.

Since the viscous terms of the Navier-Stokes equations are not strictly second derivatives
of a given quantity, but contain terms such as

VX (•Vu)(2)

an exact implementation of a Galerkin discretization requires the evaluation of the viscosity at
the tetrahedra centroids in the construction of the edge coefficients. (see appendix). If the
viscosity is not constant, the edge coefficients cannot be computed in a preprocessing phase.
Thus some approximation must be made in order to enable the use of preprocessed edge
coefricients. The simplest approach is to approximate the viscosity for each edge contribution
as the average of the two values at each end of the edge. Thus the viscous terms are computed
as

4 W) .PU .).V (PAI 6 a a 4 + t) [j(PUY). : L)y (,o 9[0, 2t, - Ui-U] (3)

(PU,,). (JAU.)Y (LuA a. ao 06.•

It is important to realize that this discretization does not correspond exactly to the Galerkin
discretization. Only under certain conditions do the two formulations become equivalent (e.g
linear viscosity variations and regular triangulations). Another approach is to rewrite the
viscous terms as

V (Vx) = gV2x + VLVx (4)

and evaluate the double gradient term at each vertex using a nearest neighbor stencil. Gradient
calculations of this type can be performed using the convective edge-based coefficients. Both
of these approaches have been tested in two-dimensions and virtually no difference in the final
solution could be seen. These modifications are necessary for the viscosity in the momentum
equations, the values of Ot*velocity in the energy equation, as well as for the eddy viscosity in
the turbulence equation. The effect of the eddy viscosity variation is expected by far to be the
most important of all for practical turbulent flows. In the present work, the formulation of
equation (3) is employed exclusively.

Finally, another approach which has been suggested for computing the viscous terms [61,
consists of forming the gradients of velocity at each vertex, using the nearest neighbor stencil
of each vertex, and forming the second derivatives of the viscous terms by reapplying the same
integration to the first derivatives. This approach is attractive because it requires little addi-
tional storage. All operations can be performed using the edge-based coefficients required for
the convective terms. However, it can easily be seen that, on a one dimensional mesh of spac-
ing h, this scheme reduces to a second difference on a stencil of size 2h. This will result in
lower accuracy and possible odd-even decoupling. Since packing enough points into the
viscous layers is generally one of the main difficulties associated with viscous flow

3

t a scheme that opelAes on every other point is bighly undesirable. Thisceme
should therdore be rejected.

2±Twbduime Msddskg
The one-equation turbulence model of Spahat and Allmaras [7] has been implemened in

the present solver, since this approach avoids the compcatons involved in implementing alge-
braic models on unstructured meshes [8), is reasonably robust and inexpensive, and has been
shown to yield favorable results in three dimensional aerodynamic flows [9].

The turbulence equation is also discretized using the edge-based data-structure. The con-
vective terms are treated using a first-order upwind formulation, and the diffusion terms are
treated analogously to the viscous terms in the flow equations. The particular discretization
ensures positivity of the discrete solution. The turbulence equation is advanced in time using a
point-implicit treatment [101. For a single equation, this corresponds to a Jacobi iteration.
This scheme is attractive since it ensures positivity of the turbulence equation variable not only
at steady-state, but throughout the convergence process. The turbulence equation is effectively
solved decoupled from the flow equations (using different local time-step values). The conver-
gence of both the turbulence equation and the flow field equations is accelerated using an
unstructured multigrid algorithm. The turbulence and flow equations are only coupled on the
finest grid of the multigrid sequence, where the eddy viscosity values from the turbulence
model are fed back into the flow solution.

This particular field-equation turbulence model requires information concerning the dis-
tance of each grid point to the closest wall boundary. The simplest way of computing this dis-
tance function is to compute the normal distance from a given grid point to all boundary faces,
and preserve the minimum distance found. This results in an 0(N513) algorithm, where N
represents the number of grid points. For fine grids, this becomes excessively costly.
Although more sophisticated search techniques exist for reducing this to 0(Nlogiv), a simple
solution is to compute the distance function on the second finest mesh of the multigrid
sequence, and then to interpolate these values to the finest grid. This alone reduces the cost of
computing the distance function by a factor of 32.

2.3. Solution Technique

The flow equations and turbulence equations are advanced in time to obtain the steady
state solution. The flow equations are advanced using a multi-stage Runge-Kutta explicit
scheme, while the turbulence equation is solved as described above. Local time-stepping and
residual averaging are employed to accelerate the convergence of the flow equations.

An unstructured multigrid technique is employed to further accelerate the convergence of
both the flow and turbulence equations. This technique, which has previously been demon-
strated for the Navier-Stokes equations in two dimensions [1], and for the Euler equations in
three dimensions [5], employs a set of non-nested coarse and fine meshes. In a preprocessing
step, the indirection arrays which correspond to the restriction and prolongation operators
(interpolation of variables, residuals, and corrections) between each successive pair of grids are
constructed, using an efficient search algorithm. On domain boundaries, which may not coin-
cide between the various grids due to the discretization of curved surfaces which constitute the
boundaries, the search and interpolation procedures are carried out in the parametric space
which defines the surface patches of the boundary geometry. Linear interpolation is used to

4

transfer flow variables, residuals and corrections between the various meshes of the multigrid
sequence. This requires the storage of four addresses and four coefficients per mesh point.
Once these operators have been constructed and stored, the inter-mesh multigrid transfers can
be implemented as a simple gather-scatter of array elements within each multigrid cycle.

The unstructured multigrid algorithm incurs approximately a 30% memory overhead,
mostly due to the extra storage required for the coarse grids of the multigrid sequence, and
requires roughly 90% more CPU time per cycle, but results in convergence rates which are an
order of magnitude higher than the single grid solver.

2.4. Parallel Processing

The use of one basic and simple data-structure, and the choice of an explicit scheme aug-
mented with multigrid, enable a relatively simple and efficient parallel implementation of the
solver on shared and distributed memory parallel architectures. Previous experience with dis-
tributed memory machines has been less than satisfactory. Such implementations require con-
siderable effort and have not been able to demonstrate superior performance for this class of
problems [11,12]. The shared memory vector-parallel architecture of the CRAY-YMP-C90 has
proved to be very effective for the current type of problems. For example, the 16 processor
CRAY-YMP-C90 was found to provide more than double the performance of the INTEL Delta
machine using 512 processors on a three-dimensional unstructured multigrid Euler solver [11].
Furthermore, the shared memory architecture and the parallel compiler support available on
CRAY machines enable a relatively simple implementation using standard FORTRAN 77.
Parallelization on shared memory architectures is imperative for large cases, not only to speed
up solution time, but also to avoid idling processors in a time sharing environment when jobs
becomes large enough to fill the main memory of the machine.

The majority of the work in the present solver involves loops over edges. These loops
must be both vectorized and parallelized. Since multiple edges meet at each mesh vertex, the
loops contain data dependencies which inhibit both vectorization and parallelization. In order
to vectorize these loops, the list of edges is split into subgroups, or colors, such that within
each color, no vertex dependencies exist. The overall loop is hence transformed into an outer
loop over all colors, and an inner vectorizable within each color. A simple parallelization stra-
tegy is to further divide the colored groups into subgroups that can be computed in parallel.
This is automatically done at compile time by the autotasking compiler provided the appropri-
ate compiler directive is specified at the beginning of each loop. The subgroups are then distri-
buted over all processors, taking advantage of the complete vector and parallel power of the
machine.

For the inviscid version of the present solver, speedups of 13 to 14 on 16 processors
have been observed in a dedicated environment, indicating a degree of parallelism of over 99%
has been achieved according to Amdahl's law. The viscous cases presented in the results sec-
tion, however, were run in a time sharing environment, and yielded speedups between 10 and
12 on 16 processors. Benchmarking of the full viscous solver in a dedicated environment is
planned for the near future.

3. RISULTS

3.1. ingl Sement Wing

In order to validate the three dimensional Navier-Stokes solver a two-dimensional tur-
bulent flow over a wing geometry with no spanwise variation has been computed, and the
results compared with the solution from a two-dimensional unstructured flow solver on an
equivalent grid. The particular two-dimensional solver employed has been previously
described and validated, and is routinely used in production environments [1,13]. This two-
dimensional solver employs the equivalent discretization, solution technique, and turbulence
model as the three-dimensional code described in this paper. Therefore the two codes should
give nearly identical results for purely two-dimensional cases.

The first test case involves the transonic flow over a wing of aspect ratio 2 with no
sweep or spanwise variation. The wing section (independent of span location) is an RAE 2822
airfoil. The three-dimensional grids employed for computing the flow over this wing geometry
are displayed in Figures 3. They are formed by first constructing a two-dimensional unstruc-
tured grid about an RAE 2822 airfoil, using the method described in 1141. The two-
dimensional mesh is then stacked in the spanwise direction, thus forming a mesh of spanwise
prizms. This prizmatic mesh is then converted into a tetrahedral mesh by dividing each prizm
into three tetrahedra using a variant of the prizm division algorithms reported in [15,16] . The
resulting geometry consists of a wing with a symmetry plane at both ends of the wing. There
is thus no wing tip present and no spanwise variation whatsoever. This can be thought of as a
typical wing-in-wind-tunnel two-dimensional test.

The finest mesh for this case is depicted in Figure 3a. The entire mesh contains 1.04
million points and 6 million tetrahedra. The mesh is formed by 33 spanwise stations with
31,571 grid points at each station. The normal mesh spacing at the wing surface is 10-
chords, which results in cell aspect ratios of the order of 500:1 in these regions. A total of
five meshes were used in the multigrid sequence for this case. Four of these meshes are dep-
icted in Figures 3a through 3d. Each coarser mesh contains a factor of approximately 8 fewer
points than the previous mesh, and consecutive meshes are generally non-nested.

The freestream Mach number for this case is 0.73, the incidence is 2.79 degrees, and the
Reynolds number is 6.5 million. The solution is depicted qualitatively in Figure 4, as a plot of
density contours on the surface of the wing and symmetry walls. The lack of any spanwise
variation of the contours on the wing indicate the presence of purely two-dimensional flow.
The flow is transonic and a normal shock is observed slightly aft of the mid chord location.
Figure 5 provides a more quantitative picture of this solution. The computed surface pressure
at the mid-span location is compared with experimental data as well as with the computed
results of the two-dimensional code on an equivalent station grid of 31,571 points. Both the
two and three-dimensional codes tend to underpredict the lift compared with the experimental
data, a fact which is attributed to the turbulence model employed. For example, the same
two-dimensional code achieves a lift value some 10% higher using the Baldwin-Lomax model.
However, the two and three-dimensional flow solutions agree very well with each other. The
three-dimensional solution is slightly more diffusive than the two-dimensional solution, which
is attributed to the presence of extra spanwise dissipation, which is non-zero even in a two-
dimensional flow, due to the presence of diagonal edges in between neighboring spanwise sta-
tions.

6

The convergence rate for this case is plotted in Figure 6. The residuals are seen to be
reduced by almost 4 orders of magnitude over 200 multigrid cycles, for an average residual
reduction of 0.957. This is comparable but somewhat slower than the rate of 0.943 achieved
by the two-dimensional multigrid code, which is also plotted for comparison purposes in the
same figure. Finally, the single grid convergence rate of the two-dimensional code is also
shown in the figure. A residual reduction of only 2 orders of magnitude over 1000 cycles is
achieved for the single grid approach. Thus the multigrid procedure converges over 10 times
faster than the single grid code, for the two-dimensional case. Since the three-dimensional
multigrid convergence rate is close to that of two-dimensional case, one can conclude that
gains of similar magnitude are afforded by the multigrid algorithm in three dimensions. The
three-dimensional single grid convergence is not plotted due to the excessive computer costs
required for such a run with obvious conclusions.

In order to demonstrate the three-dimensional capability of the present code, the wing of
the previous case (aspect ratio 2) is given a sweep of 30 degrees, and a taper of 0.5. This
spanwise variation results in fully three-dimensional flow. The flow over the swept and
tapered wing at the same conditions is computed using equivalent grids to those described
above (same point densities). Figure 7 depicts the solution in terms of density contours on the
wing and symmetry wall surfaces. The convergence rate for this case is almost identical to
that displayed in Figure 6 for the unswept three-dimensional wing, and is therefore not
displayed.

For both of these cases a total of 177 Mwords of memory was required. This translates
to 170 words per fine-grid vertex. This includes all the arrays for the coarse grid variables of
the multigrid sequence. Both of these cases required 75 seconds of CPU time per multigrid
cycle, or a total time of 4.2 single CPU hours on the CRAY-YMP-C90 machine. When run in
multitasking mode on all 16 processors of the machine, the total aggregate CPU time rose to 5
hours, but the jobs were executed in 28 minutes of connect time, as indicated by the batch job
log file, in a time-sharing environment in which only 60% of the machine was dedicated to this
particular job. In a dedicated environment, these jobs can be expected to execute in just over
15 minutes.

3.2. Three-Element High-Lift Wing

The next test case consists of flow over a high-lift wing configuration with a slat and a
single slotted flap. The wing has an aspect ratio of 2 with no sweep or spanwise variation.
The wing section (independent of span location) is a Douglas three-element airfoil, which has
been extensively tested both numerically and experimentally [13]. The three-dimensional fine
grid employed for computing the flow over this wing geometry is displayed in Figure 8. This
grid is formed by first constructing a two-dimensional unstructured grid about the three-element
airfoil using the method described in [14], and then stacking the grids and subdividing the
resulting prizinatic elements, as described previously. The resulting geometry can be thought
of as a typical wing-in-wind-tunnel two-dimensional test, with symmetry end walls at both
extremities of the wing.

The finest mesh for this case contains 1.84 million points and 10.6 million tetrahedra.
The mesh is formed by 33 spanwise stations with 55,865 grid points at each station. The nor-
mal mesh spacing at the wing surface is 10-6 chords, which results in cell aspect ratios greater
than 1000:1 in these regions. A total of five meshes were used in the multigrid sequence for
this case. Each coarser mesh contains a factor of approximately 8 fewer points than the

7n

previous mesh, and consecutive meshes are generally non-nested. This level of mesh resolu-
don corresponds to the equivalent minimum required resolution for adequate performance pred-
iction using the two-dimensional code, as determined by a grid resolution study [13]. To the
author's knowledge, this represents the largest aerodynamic unstructured grid computation
attempted to date.

The freestream Mach number for this case is 0.2, the incidence is 16.21 degrees, and the
Reynolds number is 9 million. The flow is assumed to be fully turbulent, thus no transition
points are specified. The solution is depicted qualitatively in Figure 9, as a plot of density
contours on the surface of the wing and Mach contours on the surface of the symmetry wall.
The lack of any spanwise variation of the contours on the wing indicates the presence of
purely two-dimensional flow. The computed surface pressure at the mid-span location is com-
pared with experimental data as well as with the computed results of the two-dimensional code
on an equivalent station grid of 55,865 points in Figure 10. Excellent agreement between the
experimental data and the two- and three-dimensional codes is observed.

In order to demonstrate the three-dimensional capability of the present code, the seg-
mented wing of the previous case is given a sweep of 30 degrees, and a taper of 0.5. This
spanwise variation results in fully three-dimensional flow. The freestream Mach number is 0.2
as previously, but the incidence is lowered to 12 degrees. The flow over the swept and tapered
wing (aspect ratio 2) is computed using equivalent grids to those described above (same point
densities). Figure 11 depicts the solution in terms of density contours on the wing surfaces
and Mach contours on the wall surface. The wall Mach contours are qualitatively similar to
those displayed in Figure 9 for the previous case, while spanwise variation of the wing surface
contours is noted, indicating the presence of fully three dimensional flow.

In Figure 12, the multigrid convergence rates of the two-dimensional code, and the
three-dimensional unswept-wing and swept-wing runs are compared. The two-dimensional run
and the three-dimensional unswept wing run converge at very similar rates, achieving a resi-
dual reduction of 4.5 to 5 orders of magnitude over 300 cycles. The three-dimensional swept
wing run converges somewhat slower than the previous two runs, but still achieves a similar
level of residual reduction over 450 cycles. This similarity between the two-dimensional and
three-dimensional convergence rates is a good indication that the full benefit of the multigrid
algorithm has been achieved for three-dimensional flows.

Both of the above cases required a total of 312 Mwords of memory, and 140 to 075
seconds of CPU time per multigrid cycle on the CRAY-YMP-C90 machine, depending on the
amount of concurrency achieved during a particular run in the time-sharing environment. A
typical 450 cycle run on all 16 processors required 1.9 hours of connect time, as indicated by
the batch job log file, in a time-sharing environment in which 65% of the machine was dedi-
cated to this particular job. In a dedicated environment, such a job can be expected to execute
in approximately 1.25 hours.

4. CONCLUSIONS

The aim of this paper has been to demonstrate the feasibility of computing turbulent
viscous flows over complex geometries on fine grids using the unstructured mesh approach.
While it is recognized that this capability is expensive, it is entirely feasible from a technical
standpoint. This is made possible by several factors:
a) the reduction of memory overheads through the use of a single efficient data-structure
b) the implementation of a rapidly converging multigrid algorithm

8

c) the use of parallel processing
d) the availability of a large central memory machine with multiple rapid processors and simple
to use parallelization tools.

The code currently requires approximately 170 words per fine grid vertex, which includes
all the coarse grid information. It is estimated that this can be futher reduced by 10 to 15%.
The code runs at 320 Mflops on a single CRAY-YMP-C90 processor and requires 72
microseconds per vertex per multigrid cycle, with 200 to 400 cycles usually required for con-
vergence. Predicted performance on a dedicated 16 processor machine is 4 Gflops and 5.8
microseconds per vertex per cycle, corresponding to a speedup of 13. Thus, on the current
maximum configuration of the machine (1 Gword, 16 processors), a case of 6 million grid
points could be computed in 2 to 4 hours. Of course whether such a computation is worth its
cost in an industrial environment is another matter.

One of the main obstacles to employing this capability in a production environment
remains the grid generation process. The ability to reliably generate very fine highly stretched
three-dimensional tetrahedral grids is still under development, and recent progress has been
made in this area [15,161. At this stage, the flow solver has been demonstrated by constructing
three-dimensional unstructured grids using a two-dimensional stacking procedure. In the
future, solutions over more complex geometries such as partial flap wings and complete aircraft
configurations will be attempted. This will require interfacing with a more general grid genera-
tion procedure.

ACKNOWLEDGMENTS

This work was made possible in large part due to the computational resources provided
by the NASA Numerical Aerodynamic Simulation Program (NAS).

REFERENCES

1. Mavriplis, D. J., "Turbulent Flow Calculations Using Unstructured and Adaptive
Meshes", Int. J. Numer. Methods Fluids, Vol. 13, No. 9, November 1991, pp. 1131-1152

2. Barth, T. J., "Numerical Aspects of Computing Viscous High-Reynolds Number Flows
on Unstructured Meshes", AIAA Paper 91-0721 January, 1991

3. Anderson, W. K., and Bonhaus, D. L., "Navier-Stokes Computations and Experimental
Comparisons for Multielement Airfoil Configurations", AJAA Paper 93-0645 January
1993

4. Davis, W. H., Matus, R. J., "High Lift Multiple Element Airfoil Analysis with Unstruc-
tured Grids" AJAA Paper 93-3478 August 1993

5. Mavriplis, D. J., "Three Dimensional Unstructured Multigrid for the Euler Equations",
AIAA Journal Vol 30, No 7, pp. 1753-1761, July 1992.

6. Luo, H., Baum, J. D., Lohner, R., and Cabello, J., "Adaptive Edge-Based Finite-Element
Schemes for the Euler and Navier-Stokes Equations on Unstructured Grids", AIAA Paper
93-0336 January 1993

7. Spalart, P. R., and Allmaras S. R., "A One-Equation Turbulence Model for Aerodynamic

Flows", A/AA Paper 92-0439 January 1992

9

8. Mavnplis, D. J., "Algebraic Turbulence Modeling for Unstructured and Adaptive
Meshes", AIAA Journal, Vol 29, No. 12, pp. 2986-2093, December 1991

9. Rumsey, C. L., "A Comparison of the Predictive Capabilities of Several Turbulence
Models Using Upwind and Central-Difference Computer Codes", AJAA Paper 93-0192
January 1993

10. Mavnplis, D. J., and Martinelli, L., "Multigrid Solution of Compressible Turbulent Flow
on Unstructured Meshes Using a Two-Equation Model", AIAA Paper 91-0237, January
1991.

11. Mavriplis, D. J., Vermeland, R. E., Das, R., and Saltz, J. "Implementation of a Parallel
Unstructured Euler Solver on Shared and Distributed Memory Architectures", Proceed-
ings of the SuperComputing '92 Conference, IEEE Computer Society Press, November
1992.

12. Morano, E. M., and Mavnplis , D. J., "Implementation of a Parallel Unstructured Euler
Solver on the CM-5", AIAA Paper 94-0755 January 1994

13. Valarezo, W. 0., and Mavriplis, D. J., "Navier-Stokes Applications to High-Lift Airfoil
Analysis", AJAA Paper 93-3534, AIAA 1 1th Applied Aerodynamics Conference, Monterey
CA, August 1993

14. Mavriplis, D. J., "Unstructured and Adaptive Mesh Generation for High Re'molds
Number Viscous Flows", Proc. of the 3rd Int. Conf. on Numerical Grid Generation in
Comp. Fluid Dyn., Eds. A. S. Arcilla, J. Hauser, P. R. Eisman, and J. F. Thompson,
Pineridge Press Ltd., 1991, pp. 79-91.

15. Lohner, R., "Matching Semistructured and Unstructured Grids for Navier-Stokes Calcula-
tions", AIAA Paper 93-3348 July 1993

16. Pirzadeh, S., "Unstructured Viscous Grid Generation by Advancing Layers Method"
AJAA Paper 93-3453 August 1993

10

APPENDIX A

SYMMETRIC EDGE-BASED COEFFICIENTS FOR VISCOUS TERMS

1. 2D Case

The edge coefficients for the viscous terms are derived by considering the Galerkin
finite-element discretization of these terms. Assuming piecewise linear variation of the veloci-
ties, the Navier-Stokes equations are multiplied by a test function of compact support and
integrated over the entire domain. This derivation, which is detailed in [1], yields the follow-
ing discrete form for the second derivatives at vertex i:

4LU.).~ (1)y3 tw)A. g.[(luY)X (tuy)y] (p.u2) Ay, (p.uy) Ax,

where the summation is over all triangular elements which have a vertex at i. Vol,, represents
the volume or surface covered by the union of these triangles, and Ax,,Ay, denote the x and y
increments along the outer edge of the triangle e, as depicted in Figure 1. The first derivatives
represent gradients on the triangles of the mesh. For piecewise linear functions, such gradients
can be evaluated exactly:

uX = 2 rjAuik Ayj - Auij Ayik

(2)

uy = 2 voIA ik Axi - AuijAxik

where the cell volume is given by

VOA = AX Ay,, - Ax., Ay, (3)

for triangle A shown in Figure 1. Using the properties of differences such as Axi,*= -Axj, and
Axj + Axjk = Axa, the volume can be rewritten as

VolA = AXjkAyk - AxM Ayjk (4)

By analogy, the gradients and volume for triangle B are given by
1 r
I 2 o Auij Ayi, - AuiAyij]

_x2 vol8 .

-I 2 Auij Axi, - Au, Axij] (5)"uy -2vB rots

vol8 = Axt, Ayjt - Axj, Ayi,

In evaluating the coefficient for the edge joining vertices i and j, it can be seen that only trian-
gles A and B in the summation will yield non-zero contributions. Substituting equations (2)
and (5) into (1), and setting (Ax,.Ay,) = (Axjk.Ayjt) for element A, and (Ax,.Ay,) = (Ax,,.Ay,,) for
element B, we obtain a final expression for the double derivatives. For example, the xx

11

derivative at vertex i takes the form

Volcv "L = 4 1 AuiJ [gA P o VA + ga vol8 (6)4 edge VI V1

where the summation is over all incoming edges for vertex i. The viscosity values ILA and gB
represent cell average values. Since this involves the values at nodes I and k as well as at i
and j, this construction is inconsistent with a purely edge-based formulation. For this reason,
these values are approximated by the average of the values at vertices i and j, denoted as Lv.
The four double derivatives can now be written as:

Vol UZ I t"' ~F AYik AYjA AYe, Ayj,1VoI. L ux = u -3 av A.VOIA +

Vol_, [tL Y) 9- -3 t "av [Aui AxikAJk + Ay,, Ax,,]VO4 VA01 vol J
(7)

4 •VA O L"A0 vol8 J

Vol., rI u 3 la u AXik bXjk + A,
~ j T ug, OIAvolg

The terms involving grid metrics can all be precomputed and stored as edge-based coefficients.
Furthermore, the metric expressions are symmetric about the i-j indices. Therefore the same
coefficients may be used for constructing the flux contribution to vertex i from vertex j, as the
flux contribution to vertex j from vertex i.

The remaining property to be proved is the equality of the two cross-derivative
coefficients i.e

AY_ Ax_ k+ Ayi, Axj, _ AXik Ayjk Ax+ (8

VOIA + VOI V01 VOA OIB (8)

This property is not evident at first glance. Certainly each term on the left hand side of (8) is
not equal to the corresponding term on the right-hand side. In order to prove the equality, we
form the difference of the two expressions in (8), and insert the expressions for the cell
volumes in the denominator taken from (4) and (5):

AYik, Axj, Ay,, Ax,,
AXjk Ay5k - AXik Ayjk Ax,, Ayj, - Axj, Ay,,

(9)
Axik Ayjk Ax,, Ayj,

AXjk, Ay,,, - Ax,,, Ay,,, Ax,, Ay,, - Ax,, Ay1,

which can be rearranged as follows

Axj, Ay,, - Ax, Ayj, Ax,, Ay,, - Ax,, Ay,,

Axk Ayk - Axk Ayj, Ax., Ay,, - Ax,, Ay, 0 (10)

Hence, the equality of the two cross-derivative coefficients.

12

2. 3D Case

An analogous construction of the edge-based coefficients in 3D yields the expression

F Gj (11)
Svole

where the a, correspond to the edge coefficients in defined in section 2.1, ij=1,2,3 denote the
x,y,z subscripts, (as opposed to vertex addresses as in the 2D case) and the proportionality
constant has been absorbed into the aj coefficients. The summation is over all tetrahedral ele-
ments surrounding the edge (i.e edge 1-2 in Figure 2). F, denotes the ith component of the
normal area vector of the face of tetrahedron e, which touches vertex 2, but does not contain
edge 1-2, and Gj the jth component of the face normal of tetrahedron e which touches vertex
1, but does not contain edge 1-2. Since these coefficients are symmetric in F and G, they can
be used to compute the flux contribution to vertex 1 as well as the flux contribution to vertex
2, along edge 1-2. This requires the storage of 9 coefficients per edge. If the coefficients are
symmetric in the ij indices, then only 6 coefficients per edge are required. In order to prove
this property, we form the difference

oqj = _ F. Gj Fj G, (12)

e vol, e vole

The volume of a tetrahedral element can be expressed as

volt = (Fj Gj - Fj Gi) Axk (13)

where i=j=-k and Axk represents the difference (xk)a - (Xk)b, where a and b are the two remain-
ing vertices other than the edge endpoints 1,2 of the tetrahedron e, as shown in Figure 2.
Inserting this expression into equation (12), we obtain

F GjI Fj Gi 1(14)
(Fj Gj- FjG,)Axk e(FGj -Fj G,)Axk EAxk

Since the summation is over all tetrahedra surrounding the edge 1-2, the sum of all such Axk
forms a closed polygon encircling the edge, and thus vanishes. The coefficients are thus sym-
metric in ij for all values of i and j, and thus only 6 coefficients per edge need to be stored.

13

k

Interal Conutl Volume (Dotted Line) Associated with Vertex i, and Face Associated with Edge i-j.
The Face Normal (bold arrow) is 1/3 of the Sum of the 2 Outer Edge Normals.

14

FWgue 2
mustramion of Tevrahedra Considered for Formation of Coefficient Associated with Edge 1-2.

F, and G, represent Face Area Nornals
for the Two Exposed Faces of Each Teuahedron e.

15

Figure 3a
Fine GCid Employed for the Rae 2822 Wing Test Ce

(1.04 millian points, 6 million eahedra. Wall spacing l chords)

Figure 3b
Second Finest Grid Employed for the Rae 2822 Wing Test Case

(135,000 points)

16

FgWv3c
Maid Grid Employed for the Ra 2822 Wing Test Case

(23,000 points)

Figure 3d
Fourth Grid Employed for the Rae 2822 Wing Test Case

(2610 points)

17

F'It•M 4
Computed Density Contours for the Rae 2822 Wing(Mach = 0.73, Re = 6.5 million, Incidence = 2.79 degrees)

18

*Expacnmcni

21) Cnnlrutlawn

31) Compulatitm

C?

0opwo o~w wEpmtlSfePm o wn m

RU. =07,R =65a~mhiene=27 om

01

- 3D MG (SWEPT WING)

--- 21) MULTIGRII)C4

.... 2D S INGL(. GRID

.

e4

S0 200 400 6M0 800 I000 1200

Number of Cycles

Figure 6
Comparison of Observed Convergence Rates for the Three-Dimensional
Rae 2822 Wing Multigrid Case and the Corresponding Two-Dimensional

Case both with and without Muitigrid Acceleration

20

Figur 7

Computed Density Contours for the Swept and Tapered R~ae 2822 Wing

21

Jim8

Fine Grid Employed for the 3-Element Wing Test Case
(1.84 million points, 10.6 million tetrahedra, Wall spacing 10e chords)

22

Figin 9
Computed Solution for the 3-Element Wing Test Case.

Mach contours are displayed on the Symmetry Plane, and Density Contours on the Wing Surfaces.
(Mach = 0.2, Re = 9 million, Incidence = 16.21 degrees)

23

Slat Main

-20 -10

-18 -9

-16 -8

-14 -7

-6
-12

-5
-10

CP -4Cp -8
-

-3

-2

-4 -

-2 0

0 1

2 2
0.00 0.05 0.10 0.15 0.0 0.2 0.4 0.6 0.8 1.0

Flap

-5 ---- - I___ ___ ,__I __,

o Experiment

-4 - 2D Computation
--.-- 3D Computation

-3

-2

-1

0

1

2 , I I * I • I

0.6 0.7 0.8 0.9 1.0 1.1

17

Figure 10
Comparison of Computed and Experimental Surface Pressure for 3 Element Wing Case

(Mach = 0.2, Re = 9 million, Incidence = 16.21 degrees)

24

FIgure 11
Computed Solution for the 3-Element Swept and Tapered Wing Test Case.

Mach contours are displayed on the Symmetry Plane, and Density Contours on the Wing Surfaces.
(Mach = 0.2, Re = 9 million, Incidence = 12 degrees)

25

REPORT DOCUMENTATION PAGE PR ToD. 07,DT OE

n Ma 199 c Contracýa~ Itore Reortrveii
CMBNASI0794-0J

a...n

6. AUTHOR(S).IgV...2jD... I. Mavriplis M

7 .PER SFORIN ORAIATd O NA MES AN4DRW2E.6EROMN RGNZTOInsthhitud atell for Compter nnnApdcplcatins ind Scencmge €lto ffrmin.Sd_€.mnuREPORTm Nhs.urdetmBte R yotrasetfti

Mavil -i~wy Sutop 132C4 NASlnrtnA Langley0 Rsarc he OiCeofMnapetadBdt aewr euteriCASroet Repor18) Whte No. 94-29.

1. AGENCY USE ONLY(Leave blank) N2 REPORT DATE 3. REPORT TYPE AND DATES COVEREDI May 1994 Contractor Report

4. TITLE AND SUBTITLE A. FUNDING NUMBERS
A THREE DIMENSIONAL MULTIGRID REYNOLDS-AVERAGED

C NASI-19480
NAVIER-STOKES SOLVER FOR UNSTRUCTURED MESHES WU 505-90-52-01

6. AUTHOR(S)

D. J. Mavriplis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S8. PERFORMING ORGANIZATION

Institute for Computer Applications in Science REPORT NUM1BER
and Engineering ICASE Report No. 94-29
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

National Aeronautics and Space Administration AGENCY REPORT NUMBER

Langley Research Center NASA CR-194908

Hampton, VA 23681-0001 ICASE Report No. 94-29

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card
Final Report
Submitted to AIAA

12s. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category 02, 64

13. ABSTRACT (Maximum 200 words)
A three-dimensional unstructured mesh Reynolds averaged Navier-Stokes solver is described. Turbulence is simulated
using a single field-equation model. Computational overheads are minimized through the use of a single edge-based
data-structure, and efficient multigrid solution technique, and the use of multi-tasking on shared memory multi-
processors. The accuracy and efficiency of the code are evaluated by computing two-dimensional flows in three-
dimensions and comparing with results from a previously validated two-dimensional code which employs the same
solution algorithm. The feasibility of computing three-dimensional turbulent flows on grids of several million points
in less than two hours of wall clock time is demonstrated.

14. SUBJECT TERMS 15. NUMBER OF PAGES
multigrid, unstructured, Navier-Stokes 28

16. PRICE CODE
A03

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION
OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT
Unclassified UnclassifiedII

•ISM 7S40-01-280-5S00 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18

*IU.S. GOVERNMENT PRINTING OFFICE: 194- 52.-0o64/aIIs 298-102

