
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A280 996

ELECTE

JUL 0 q 1q94

THESIS

INTEGRATING COMPUTERS INTO
CALCULUS INSTRUCTION

by

Jon L. Christensen
and

Brian E. Pierson

March, 1994

Thesis Co-Advisors: Maurice D. Weir
Carlos F. Borges

Approved for public release; distribution is unlimited.

DTIC QUALMT IIjspECTED 5

94-20396 5 11
I Ikilrrmrll~llP~lll • 9 4 7 5 1 17



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-

Public repoting budedn for dtis collection of informatiat is etimaited to avage I how per reseon, inhuding the tame for reviewing iatructiom. merdaing
exist dao sourc•, Sathe and w madintai the d"atneeded, aidcompleS and rvievwig the collection of infomaion. Seid co• musc Wdqgdt
borden estimate or my othor aspect of dts collection of inf•wuaion, icludig surggestions for rodcing tus burden, to Waahinon headqurte Services,
Directoate for Iormation Operations and Rqpors. 1215 Jefferson Davis Highway, Suite 1204. Arlington, VA 22202-4302, and to the Office of Mougement

aid Bdc arekRedaction Prjc 0704-1981 Wadisa DC 2M.0
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I March 1994 Master's Th'esis

4. TITLE AND SUBTmTE INTEGRATING COMPUTERS INTO 5. FIJNDING NUMBERS
CALCULUS INSTRUCT`ION

6. AUTHOR(S) CHRISTENSEN, Jon L. and
PIERSON, Brian E.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION
Monterey CA 93943-5000 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

II. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited. A

13. ABSTRACT (maximum 200 words)

Visualization is key in helping a student understand the fundamentals of Calculus. The new generation
of computer literate students, raised in a video-based environment, will expect more than the traditional
chalkboard methods in assisting them in this visualization. By integrating computers into the classroom and
developing software to assist in mathematics instruction, we can enhance student comprehension of, and
ability to apply, mathematics in solving real world problems of interest to the military.

As evidenced by the success of both the Apple Macintosh and Windows software, mouse driven,
graphical user interfaces (GUI's) represent a powerful and frequently-used tool in the computing
environment. GUI's improve the visual capabilities in computing software, simplify program execution,
and reduce the time required to become proficient with the software. When designed correctly, the GUI-
based software can significantly improve the way in which people interact with computers. This thesis lays
the framework and develops multi-platform GUI software modules needed for the instruction of Calculus.

14. SUBJECT TERMS Graphical User Interface, Multi-Platform, Portability, Color 15. NUMBER OF
Look Up Table, Point and Click PAGES 110

16. PRICE CODE

17. SECURITY CLASSIFI- 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFICA- 20. LIMITATION OF
CATION OF REPORT CATION OF THIS PAGE TION OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

DTIC QUA= TNUSEC7T'n 3



Approved for public release; distribution is unlimited.

Integrating Computers into

Calculus Instruction
by

Jon L Christensen

Captain, United States Army
B.S., United States Military Academy, 1984

and
Brian E. Pierson

Captain, United States Army
B.S., United States Military Academy, 1984

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
March 1994

Author:

A uthor: 

JonL._ _ _ _ _ _ _ _ _ _ _ __se_ _ _

Brian E. Pierson

Approved by: I I, I e f

S~~Carlos F. Bo'g, Co- lvisor

Richard Franke, Chairman
Department of Mathematics

ii



ABSTRACT

Visualization is key in helping a student understand the findamentals of Calculus. The

new generation of computer literate students, raised in a video-based environment, will

expect more than the traditional chalkboard methods in assisting them in this visualization.

By integrating computers into the classroom and developing software to assist in

mathematics instruction, we can enhance student comprehension of, and ability to apply,

mathematics in solving real world problems of interest to the military.

As evidenced by the success of both the Apple Macintosh and Windows software, mouse

driven, graphical user interfaces (GUI's) represent a powerful and frequently-used tool in the

computing environment. GUI's improve the visual capabilities in computing software,

simplify program execution, and reduce the time required to become proficient with the

software. When designed correctly, the GUI-based software can significantly improve the

way in which people interact with computers. This thesis lays the framework and develops

multi-platform GUI software modules needed for the instruction of Calculus.

Accesion For

NTIS CRA&I
DTIC TAB L!
Unaneoui,.ced
Justification

By
Dist, ibution I

Availability Codes

Avaii and I orDist Special

iAi



TABLE OF CONTENTS

I. INTRODUCTION ..................................... I

A. GENERAL ...................................... I

B. OBJECTIVE ...................................... 1

C. ISSUES ... .... .... ...... .... .... ... .. .. .. . . . . .. 3

II. TOPIC SELECTION ..................................... 5

A. STARTING POINTS ................................. 5

B. NARROWING THE AREA .............................. 7

III. COMPUTING PLATFORMS ............................... 13

A. GENERAL ..................................... 13

B. PERSONAL COMPUTER ............................. 13

C. M ACINTOSH .................................... 17

IV. SOFTW ARE ........................................ 18

A. GENERAL ..................................... 18

B. M ACINTOSH .................................... 21

C. PERSONAL COMPUTER ............................. 22

iv



V. FRAMEWORK DEVELOPMENT ............................ 24

A. CONCEPT ...................................... 24

B. PERSONAL COMPUTER WINDOW DESIGN ................. 25

C. MACINTOSH DESIGN ............................... 28

VI. PROJECT DEVELOPMENT ............................... 29

A. MODULE DESIGN FACTORS .......................... 29

1. Interactivity ................................. 29

2. Three-Dimensional Graphics ........................ 31

3. Animation .................................. 32

4. Interface Building .............................. 33

B. TECHNICAL DESIGN FACTORS ......................... 35

1. Processing Speed ............................... 35

2. Floating Point Arithmetic .......................... 36

3. Color Displays ................................ 37

VII. MODULE DESCRIPTIONS ............................... 39

A. POLAR PLOTS ................................... 39

B. SINE FUNCTION .................................. 39

C. TRAPEZOIDAL RULE ............................... 40

D. PARAMETRIC EQUATIONS ........................... 41

E. PROJECTILE MOTION ............................... 41

v



F. DISK METHOD ................................... 42

G. UNDAMPED SPRING ................................ 43

H. ABOUT .......................................... 44

I. POPULATION GROWTH MODEL .......................... 45

J. COBWEB THEORY .................................. 45

K. SIMULATION MODEL ............................... 46

VIII. CLASSROOM DESIGN .................................. 48

A. DISCUSSION ..................................... 48

B. HARDW ARE ..................................... 48

C. SAMPLE CLASSROOM LAYOUT ......................... 52

IX. CONCLUSION ....................................... 54

A. GENERAL ...................................... 54

B. FURTHER RESEARCH ............................... 54

C. RECOMMENDATIONS ............................... 55

APPENDIX A .......................................... 57

APPENDIX B .......................................... 75

APPENDIX C .......................................... 87

vi



LIST OF REFERENCES ..................................... 97

INITIAL DISTRIBUTION LIST ................................. 98

vii



ACRONYM LIST

CD-ROM ............................ Compact Disk - Read Only

CLUT ................................. Color Look Up Table

CPU ................................ Central Processing Unit

DOS ................................. Disk Operating System

GUI ................................ Graphical User Interface

IBM ............................ International Business Machines

LCD ................................. Liquid Crystal Display

M B ........................................ M egabyte

M Hz ....................................... M egahertz

PC .................................... Personal Computer

RAM ............................... Random Access Memory

SVGA ............................ Super Video Graphics Adapter

viii



ACKNOWLEDGEMENT

The authors wish to acknowledge the help of the following individuals: Mr. Lary

Moore of the National Security Affairs Department Computer Support Center, who

provided invaluable technical advice; Dr. Van Henson, Dr. David Canright, and Dr.

Jeffery Leader of the Naval Postgraduate School Mathematics Department who

volunteered to assist in the formulation of the concept of the project and supported its

preparation; our advisors Dr. Maurice Weir and Dr. Carlos Borges; and finally our wives

Teresa, whose proofreading skills proved invaluable and Ariadna, whose graphic arts and

design skills were essential in the final production phases of the project.

ix



I. INTRODUCTION

A. GENERAL

Calculus has traditionally been taught using illustrated textbooks and chalkboards. The

arrival of the personal computer boom has opened new avenues for instruction that can

greatly enhance the current methods. The purpose of this work is to investigate the

integration of computers into calculus instruction. Our aim is to explore subjects and topics

that are difficult to instruct using traditional teaching methods, along with those areas that

may be improved by using the computer. The goal is not to produce a tutorial for the

student, but rather to produce a multimedia tool that the professor may use in the instruction

of calculus. Furthermore, the thesis offers sample modules to enhance the instruction of

calculus, and presents classroom design and system needs essential for the successful

integration of computer instruction.

B. OBJECTIVE

Humans are primarily visual learners. The more techniques and concepts that can be

displayed visually, the better the potential for understanding on the part of the student. For

example, merely explaining the meaning of slope as "the change in the x direction divided

by the change in the y direction" is too abstract a discussion for many students. Current

mathematics teaching philosophy introduces a simplified terminology such as "rise over

run", and then an instructor usually draws some illustrations on the chalkboard to



demonstrate the idea. Generally, real understanding does not occur until the student sees

the concept of slope drawn on the chalkboard. This capturing of visual representations of

mathematical concepts is solely the burden of the instructor, and is frequently limited by his

ability to draw. Even if the instructor refers to an illustration in the textbook, he or she must

draw something on the chalkboard for purposes of reference during the classroom discussion.

The integration of computers into the classroom environment can significantly lessen this

burden.

Essential to our program design was the process of interviewing dozens of mathematics

professors who have taught calculus for years. Collectively, their experiences pointed the

way toward instructional areas that can be enhanced through the use of visualization

techniques available on the computer. As a result of these interviews, several design

requirements were identified. First, the design had to be easy to use. This requirement

reduces training time and does not discourage inexperienced computer users. Next, each

instructor expressed a strong desire to be able to enter their own equations and to alter the

designs to conform to their own teaching style. Finally, the computer had to be a natural

part of the instruction and not a distraction.

A review of the commercial software packages currently available revealed that, without

a significant amount of preparation time on the part of the instructor, computer-aided

instruction was nearly impossible. This identified a need for a system that can be readily and

rapidly deployed by a professor for use in the classroom. The system should not replace the

2



professor's instruction, but should be a tool to aid in learning basic and abstract ideas. This

thesis lays the groundwork for designing such a system, and introduces several example

modules designed for use m the classroom.

The focus of this project is on the visualization of mathematical concepts. The ability

to display quickly 3D graphics and animation that enhance conceptualization is critical to

the design. The ability to display ideas interactively in the classroom is also essential if the

instructional presentation is to be smooth and effective. The spotlight is on being able to

better demonstrate mathematical concepts which are currently difficult, if not impossible,

to present.

C. ISSUES

Several issues needed to be resolved before beginning a project of this magnitude. The

first issue was determining the availability of computing platforms. To complete a project

of this size in a reasonable amount of time, computers had to be dedicated from the

Mathematics Department to support production. A second issue was procurement of the

necessary software to create the modules. The final area of concern was time since a project

of this scope takes several hundred hours to produce. Each of these issues had to be

addressed in order for the project to move forward.

The first step was to solve the computer platform issue. Because the project was to be

multi-platform based , two separate computer systems were needed. The fastest possible

IBM based personal computer and Macintosh systems were selected because these systems

3



are most widely used. Specific descriptions of the systems involved and their development

is addressed later. This portion of the development was probably the most time-consuming

of the entire project because the computers had to be configured and installed onto the

network to support production. This effort was time consuming, primarily because of a lack

of documentation for the systems and lack of technical support.

Once the platforms were finalized, the focus turned to software. This is a process that

can take several months because the procurement procedure can often be slow. The software

packages called Windowcraft and SuperCard is physically in the domain of the Mathematics

Department, so the production of future modules is now possible.

The last issue to be resolved was time. A project of this size requires over a year of

initial preparation and execution time. Time invested included learning the basic operations

of the computers, fundamental programming concepts, the operation of networking software,

the building of windows interfaces, computer graphics handling techniques, and other

computer related matters. The list is quite extensive, and a high degree of proficiency had to

be reached in each area before moving forward with the project. Time management was the

most critical issue to be resolved before starting production.

This project illustrates a rudimentary road map to create computer based instructional

tools. It is these tools that the students will use to further their understanding and spark their

desire to utilize and master the mathematical sciences.

4



H. TOPIC SELECTION

A. STARTING POINTS

Before starting the project, the areas of Calculus that warranted demonstration were

chosen. The search began by writing down the index of Calcuius [Ref. 1]. A review of the

course syllabus of a core calculus course was also conducted. The combination of these

sources gave a full range of topics that could be instructed during a normal calculus

sequence. Once this list was compiled, areas that did not lend themselves to visualization

techniques, or areas that did not follow previously described program tenets were

eliminated. Topics that dealt with memorization, along with subjects that are generally

presented non-graphically, were removed. For example, sections dealing with differentiation

rules were removed since they are usually taught using analytical or operational methods.

This first cut left a list of approximately eighty potential topics. The process of allocating

the available time now had to be considered to tailor the scope of the project.

A total of eight months was available for the project. The first month was dedicated to

the topic selection process. The second month was devoted to computer setup and learning

basic programming skills. Production of the first module, along with project formulation

meetings, consumed the remainder of the second month. The third month was dedicated to

designing the control structure of the software. The remaining five months were committed

to module production.

5



Initially, the plan was to prepare each of the eighty topics organized into twelve chapters.

The Sine Function was chosen as the first module. The idea for this first module was simple.

Using the general sine function formula

Y-A 54 !!+C) +D

the module would plot various sine curves to illustrate the effects of changing the parameters

A, B, C and D. This module took nearly three weeks to complete. Included in this time,

however, was the overhead in learning the driving software and in becoming familiar with

the programming environment. After careful analysis, it was determined that completion

time for an average module would be slightly over one week. This estimate was validated

throughout the project. This one week average completion time yielded a meter by which

the number of modules possible for preparation could be estimated. The time line for the

project allowed only four months for module creation, which necessitated cutting the initial

list down to around sixteen topics.

Another constraint was the creation of the software that ties the modules together. After

some experimentation with the design of the program architecture, it was evident that its

construction would be time consuming. A month was allocated for building the program

superstructure. This, in turn, left only four months to create the modules. With this

additional constraint, the module goal was reduced to eleven. With the scope reduced to a

realistic level, the selection of the topics for the modules began.

6



B. NARROWING THE AREA

The first module, the sine function, had already been created. This module was selected

first because it would demonstrate and exercise the graphical capabilities of the computer.

Additionally, the sine function is an easily understandable mathematical concept which

would demonstrate the power of graphical computer methods for instructing calculus. Ten

more modules remained to be selected. The focus for these modules was broken down into

four major areas; concept, motion, animation, and instruction. These modules are listed

below.

- Polar Plots
- Trapezoidal Rule
- Parametric Equations
- Projectile Motion
- Disk Method of Integration
- Undamped Spring
- Population Growth Model
- Cobweb Theory
- Simulation Model
- About...

The bulk of the modules would fall under the concept area. These modules were

specifically chosen because they would help the student visualize high level mathematical

principles. Each concept module generally begins with a standard mathematical equation,

with options for parameter variation, as in the sine function module. It is critical in the

learning process for students to understand the ramifications of altering the parameters, and

to see the impact visually, such as illustrated in Figure 1. The modules that fall into this

7



concept theme were the sine function, polar plots, projectile motion, population growth

modeling, cobweb theory, and simulation modeling.

3 e2

2 Di US~ ~

[w I.
Fphing I

1M.71

Figure 1 Polar Graphing
The cardioid 1-cos(t) is plotted dynamically on the interval 0 to 2w~.

The next category of modules was motion based. One of these modules, the undamped

spring, shows the rectilinear motion of an undanmped spring and its subsequent displacement

graph. The displaced cosine wave, as traced out by a harmonic oscillator, is exceedingly

difficult for the average student to visualize. With the aid of this module, the student can

readily see the mass bouncing up and down on the spring, and pictures its displacement over

time. Placing a spring animation on the screen together with a dynamically created plot of

its displacement, as shown in Figure 2, creates an effective visualization. Modules of this

8



type, which couple moving graphics with mathematical concepts, are highly successful in

the instructional environment. The linking of real-world motion with the mcal

model representing its motion greatly enhances the student's comprehension.

UNDAMP•D SPRHG
4
3

1

-1-2

-3
-4

spdas cman 1 -L-1 a
4 4 Mass =

2 32 TWW = 1 5-J

I $I Displacement = 1.62
*I - U1

-3 -- 3-2 - •-2

.4 -_-4 Ho•M

Figure 2 Undamped Spring
The spring moves up and down while the graph of the motion is
simultaneously traced out.

The next group of modules was animation based. Describing the motion of objects is

traditionally a challenge for instructors using conventional chalkboard techniques. The

computer, however, opens the world of two and three-dimensional animation to make the

task dynamic and simple. These animations demonstrate the appearance of an object moving

through space. The two modules that display this idea present parametric equations and the

9



method of integration. The parametric equation module shows a cycloid traced by a point

on a wheel rotated through time (see Figure 3).

Figure 3 Wheel Cycloid
A cycloid is traced by a wheel rolling over a horizontal surface.

It is even more difficult to convey movement in three dimensions. VWhile instructing

integration using the disk method, the instructor has to describe the volume of a three-

dimensional object generated by rotating a curve about an axis in space. The disk method

module dynamically produces this rotation by assembling a collection of three dimensional

bit-mapped graphics into a movie, which readily simulates the rotation of a curve about an

axis in real time. Figure 4 shows the final result of this simulation technique. The concept

of rotation is not presentable in class effectively with any other media.

10



Volumes of Solids
DIA Medhod

o3 RAW Mg *aW3 Axh

Figure 4 Disk Method

A solid of revolution is created by rotating a curve about the i-axis.

The final module category contains elements to enhance the instruction of a concept.

These modules generally consist of a graphics library or slide show that can be used as either

a primary or supplementary means of instruction. The trapezoidal rule is an example of this

type of module. This module uses a slide show technique to illustrate how the area under a

curve can be approximated by trapezoids (see Figure 5). These slide shows 'ead to be

difficult to create because they require in-depth knowledge about the scripting software as

well as about the underlying mathematical concept. All future modules will fall to some

extent under the four categories described above. The base modules within these categories

will serve as templates for future modules, thereby reducing their construction times. Once

11



an educator has a base knowledge of how a module is created in a given category, he or she

can refer back to that one as a basis for creating subsequent modules.

Chees. Subitervdl In"
2 7 [-01.-2

08-i. OR

1~s 0".,-,

00.4

0.25 0.6 0.76 1 1.2S 1.6 1.75 2
Adm Amire = 2.3018346

Approximation = 2.210491

Figure 5 Trapezoidal Rule
The area under the curve is approximated by six trapezoids.

12



HI. COMPUTING PLATFORMS

A. GENERAL

Since the project was to be computer based, it was necessary to select a suitable computer

system for the software. From the reading of educational magazines directed at institutions

of higher learning, it was evident that the preponderance of educational software was

Macintosh based. However, the Department of Defense, to include the target audiences of

West Point and the Naval Postgraduate School, traditionally uses IBM Personal Computers

(PC) or clones. Targeting the PC users exclusively would result in the loss of potential

Macintosh users. The goal became the production of software that both customers could

rapidly implement. Therefore, the project was prepared for compatibility with both the

Microsoft Windows environment and the standard Macintosh interface for the Macintosh.

The design structure of the software, however, actually allows operation on all current

platforms. The portability of the program gives it a definite advantage because it may be

operated on any machine available to the user. No additional hardware or system upgrades

are required to use the software.

B. PERSONAL COMPUTER

Availability became the driving force behind selecting a computer for the personal

computer side of the design. The initial system made available for the project was a

UNISYS 386, operating at a clock speed of 20 Megahertz. This system came standard with

13



four megabytes of random access memory, or RAM. This initial configuration, designed to

operate in solely the DOS environment, proved to be unsuitable. The current operating

standard is the windows operating system, which traditionally requires mure RAM to operate

efficiently. To program and use multitasking efficiently with the PC, a larger amount of

memory was needed. The final RAM configuration for this machine before programming

was eight megabytes. This computer also came standard with both 3½ inch and 5¼ floppy

drives. Although initially these floppy drives were unremarkable, it was later found that the

standard government machines have a low density 5¼ drive. Innumerable hours were spent

determining why the drive could not read high density disks. While this problem appears

trivial, it is exceedingly difficult for the first time computer user to make accurate hardware

identification. To avoid this problem, it is best to have complete documentation on the

machine before beginning any programming.

The storage capacity of the machine was also a critical concern. Graphics files are

memory intensive and will fill rapidly a standard hard drive. The recommended hard drive

size for storing graphics files is one gigabyte. While this may appear excessive, the estimate

proved to be accurate throughout the creation of the animations and graphics required for the

proper illustration of the module concepts. The UNISYS came standard with an eighty-

megabyte hard drive which was too small to support the scope of the project. Because no

other internal installation hardware was available, it became necessary to find an alternate

solution to the storage problem. The network Novell server became the agent for alleviating

14



this problem. In addition to storage, the server had the added advantage of providing a

variety of printers needed for the output of graphics and scripts. To use this server, the

computer needed to be connected to the Naval Postgraduate School's network. To facilitate

this process, it is highly recommended that the network procedure be standardized, well

documented, and made available upon request to students in the future.

The final elements of the system were the monitor and peripherals. The monitor used is

the color 640x480 SVGA. This monitor is the industry standard and is readily available.

The peripherals included a three-button mouse and a keyboard. In summation, the initial

computer configuration for the start of the project is shown in Table 1.

TABLE 1 INITIAL PC CONFIGURATION

Item Description Details

Central Processor 386 20 MHz

Math Co-Processor 386-20 Intel Co-Processor

Random Access Memory 8 MB 70 ns speed

Storage 80 MB Seagate ST-251

Network Card Intel EXP16ODI

Video Card Trident SVGA 640x480

After working with this configuration for several months, it became evident that a faster

processor was necessary for the timely completion of the project. A direct comparison was

made between a 386/20 and a 486/33 machine. The resulting speed increase in module

production on the 486 machine was remarkable. The significant increases were realized in

15



overall system operation speed and graphics handling. An analysis of systems revealed that

the system listed in Table 1 is the minimum system configuration needed in producing the

project. Using a slower machine would result in inordinate amounts of processing time and

system waits in the production of output. The machine listed in Table 2 met or exceeded

expectations in every category.

TABLE 2 FINAL PC CONFIGURATION

Item Description Details

Central Processor 486 66 MHz

Math Co-Processor 486 Integrated on CPU

Random Access Memory 16 MB 70 ns speed

Storage 340 MB Quantum

Network Card Intel EXP 160Dl

Video Card Vortek 2 MB SVGA 1200x900

It must be emphasized that these machines are not the machines required to run the

presentation software. They are the machines recommended for use in designing and

producing additional modules. The actual presentation software we have designed runs on

all machines discussed in Section A. A single critical portion of any machine that will

enhance operation is the 2MB Video Card. This device accelerates windows performance

and graphic output.

16



C. MACINTOSH

The Macintosh system selected for programming was the Quadra 700 system. This

platform offers speed combined with excellent built-in graphic handling capability. The

Macintosh user environment is graphics based, so the architecture of the machine is designed

to support the handling of graphics and window manipulation. The specific machine

configuration is listed in Table 3. This system has all the capabilities necessary for module

design, production, and usage.

TABLE 3 MACINTOSH CONFIGURATION

Item Description Details

Central Processor 68040 25 MHz

Math Co-Processor Motorola Built-in

Random Access Memory 20 MB 80 ns speed

Storage Z'0 MB Apple-144

Video Card Integrated 1.5 MB VRAM

17



IV. SOFTWARE

A. GENERAL

The project needed to take advantage of the latest advances in the computer industry.

These advances, brought about through the standardization of personal computer interfaces,

greatly simply programming concepts. One such advance allowed for creating the project

modules without requiring a complete programming team. Specifically, the Windows

operating system for the personal computer and the System 7 architecture for the Macintosh

presented an environment where programs operate simply and quickly. The simplifying of

programming techniques was also critical to the developmental process. One technique,

called object-oriented programming, allows the programmer to create a single object and use

it with slight modifications throughout the entire programming process. The user then needs

only to activate that object in order to run the program. Previously, the user was often

required to type numerous commands to carry out a particular task. Under object-oriented

programming, designers can create software that allows the user to use a common-sense

approach to running programs. An environment can be created that does not require

sophisticated programming skills but only rudimentary knowledge of elementary computer

operations to allow proper functioning of the program package. These advances in the

information technology industry greatly empowered the project to move forward.

Selecting a programming utility for the project to take advantage of the technological

advances was the most critical decision of the project. A language that was easily transferred

18



between the personal computer and Macintosh was desirable to avoid duplication of effort

inherent in building a multi-platform product. The product had to allow for creation of

objects that could be programmed to perform specific tasks. The software needed the ability

to draw dynamic graphs generated by codes internal to the program. The utility also had to

be based on the scripting techniques of programming. (Scripting, in this sense, is a method

by which programmers can write code in a form similar to written English.) The package

then, transparent to the programmer, transfers the code to machine language. As an example,

the following figure is a button, scripted for a specific task.

SErase Graph

This button is designed to erase any on screen plots, and to then reset any equations used to

create the plots. The program, or script, for this button is shown below.

on mouseUp
get the rect of card button "graph plot"
choose select tool
drag from item 1 of it - 10, item 2 of it - 10 to item 3 of it + 10, item 4 of it + 10
delete graphic
put "" into card field "amp"
put "" into card field "amplitude"
choose browse tool

end mouseUp

19



The script is in a language called ClearTalk. An advanced computer user can easily read the

script and determine its function. This script, upon activation of the mouse, selects the area

of the screen in which graphics are plotted and also deletes the graphs. It will then reset

areas of the screen reserved for equations to "empty strings" and then return control of the

computer to the user (See Appendix B for a full description of ClearTalk and scripting).

While this script may seem complicated initially, it is much easier to code than other higher-

level programming languages. It is therefore ideal for programmers who lack a computer

science background. ClearTalk provides an excellent vehicle for rapid program development

that is both readable and readily understandable to an educator trying to produce a teaching

tool. The minimal training time to learn the language coupled with its ease of use made

scripting an essential capability for the software selected.

The final and most important characteristic was to have a stand alone product. The final

product needed to operate independent of any other computational or graphics programs and

in a classroom environment. This stand alone capability would significantly reduce the cost

of operating the software, since the user would not be required to purchase other software

to operate the program. It is also simpler to use than otherwise.

It next became necessary to find a software package that could meet or exceed these

requirements. The starting point in the search for software was computer magazines and

brochures. Initially this proved to be unsuccessful because these magazines are not primarily

targeted toward programmers. However, it was learned that some professors had seen some

20



other graphics materials produced for physics using Claris's Hypercard. Using this

information, a search was conducted for products produced in Hypercard. A mechanical

engineering tool written at San Jose State University [Ref. 13] was located that appeared to

have the functions necessary to make the project work. A software utility had now been

identified that seemed to have the required functions and a family of programming products

could now be investigated.

B. MACINTOSH

The search began for a utility for the Macintosh with Hypercard [Ref. 14]. This package,

in a reduced form, is actually included with every Macintosh machine. The package, by

itself, is capable of running all Hypercard products. Hypercard is a program that creates

cards, similar to note cards, of any size and places them into collections called stacks. The

stacks can then be manipulated to display any information contained on the cards. This

appeared to be a very promising utility on which the project could be built. As a result, the

full version of Hypercard, called the Developers Kit, was purchased at a price ofjust under

one hundred dollars. This program appeared to meet all of the project requirements, so the

first module was soon under way. The training time for learning the operation of the

programming package was approximately one month. Most of this time was spent becoming

familiar with the ClearTalk scripting vocabulary. Unfortunately, after working with the

program for several months, a serious shortfall was identified. Hypercard was designed

purely for black and white programming purposes. As such, it had no built-in capability

21



available for the importing of color graphics. In addition, its animation tools were very

cumbersome. Because color greatly enhances the appearance of any instructional product,

it became desirable to find a new utility that had color capability. The search for such a

utility began and a scripting program called Aldus SuperCard [Ref. 7] was finally located.

This program utility was touted to have full color capability and superior graphics and

animation handlers. In addition, it was based on the ClearTalk programming language so

after some further investigation, SuperCard was chosen as the program driver for the project

on Macintosh. This scripting utility truly was everything it was supposed be! It handles

color effortlessly and has superior on-line help as well as debugging routines. With

SuperCard the creation of envisioned modules, within the given time frame, seemed to be

a reasonable goal.

C. PERSONAL COMPUTER

Finding similar software for the personal computer proved to be a more formidable task.

Because the Windows system is relatively new, not many programming utilities are yet

available to the general public. The methods of locating software that were so successful for

the Macintosh failed for the PC. Finally, two products that might meet the project needs

became known. One such product was Microsoft's Visual Basic (which is the programmers

choice for the creation of Windows based utilities). This product is designed for an

experienced programmer and it requires detailed programming for all object-oriented

functions. Another drawback is that Visual Basic uses a programming language which

22



differs significantly from ClearTalk (making it undesirable for this project). The second

item was a little-known product called Windowcraft [Ref 3]. This product uses virtually the

same language and programming techniques as SuperCard and can directly translate

Macintosh scripts. In addition, it has excellent graphic handling capabilities, can operate in

a stand-alone mode with only the standard Windows software as a driver, and is relatively

inexpensive. It, too, offers on-line help and excellent debugging features. As a result,

Windowcraft was chosen as the software driver for the personal computer. The software

met all the specified project requirements. Thus all programming utilities had been located

that would allow for the creation of modules usable on both the personal computer and

Macintosh machines.

23



V. FRAMEWORK DEVELOPMENT

A. CONCEPT

One of the critical design tenets for the program was ease of use. The program had to be

user friendly in both operation and organization. A control structure was needed that would

add a logical flow to the project. In addition, the structure had to be easy to manipulate. The

combination of these needs led to the program's hierarchical or book design structure. A

central controlling program runs all of the modules in the project. This control program,

once initiated, gives the user a textbook feel (see Figure 6). First, the instructor selects a

chapter for use. The controlling program then brings the available chapter modules into

view. Next, the user chooses a specific module. This control program is analogous to a tree

structure. The user must move vertically within the program, and horizontal movement is

not allowed. This type of tree structure greatly simplifies the use of the program.

Control Program

Chapters

Modules

Figure 6 Program Hierarchy

24



The modules ae organized into chapters, following the usual pattem of presentation in

a standard calculus text. The chapters re then collected under the central program, giving

the program its textbook structure. This type of design allows the user to find topics quickly

and controls the flow of information in a logical pattern. The pattern allows for a program

design structure known as point and click. Point and click is an operating design that allows

the user to traverse the structure in a logical and easy to follow manner. The structure returns

the user to chapter listings in the same way for each module. Similarly, each chapter's

controls for moving up and down the structure are consistent throughout the entire design.

Therefore, once the user becomes familiar with the control features he or she will only need

to point and click the appropriate graphic to move from place to place throughout the tree.

B. PERSONAL COMPUTER WINDOW DESIGN

The personal computer design takes full advantage of the windows operating system.

The controller program is summoned through an icon defined within the program. The user

initiates the program by double clicking on the icon to start the program. At his point the

program's logo, CalcAid, appears on the screen. The main CalcAid window initially displays

a design screen along with standard "File" and "Print" menus located on a menu bar (Figure

7). The "File" menu includes options for quitting the program along with a

subroutine entitled "About...". This "About..." function displays information about the

program and its designers. The "Print" menu allows the user to print slides within the

25



program. By selecting the menu button, the user reaches the main menu, which is the heart

of the controller programn.

Figure 7 Opening Screen

The main menu gives the instructor the option to select a specific area of calculus for

use. This chapter menu is shown in Figure 8. By double clicking on the subject area name,

the user calls up the desired module. This structure speeds the use of the program and makes

the design easy to follow. AlI screens display the menu bar that allows the user to terminate

the program and instantly return to the windows environment.

26



* Limits

* iferential Equalons

* ntsgraon

Modeling

* Plrne Curve and Polar Coordinstes

* Vectors

* Projectile Motion

* Dynamical System.

* Transcendental Functions

Figure 8 Chapter Menu

Once a chapter has been selected, the program displays a subject sub-menu. This sub-

menu lists the modules available to the user within that chapter. The selection of a module

from a sub-menu works on the same point and click principle as the chapter menu slide. By

selecting an option from this screen, the instructor calls up a specific module for use. The

controller program then opens a new window that will run and display the module selected.

For example, by selecting the Trapezoidal Rule entry from the Integration sub-menu, the user

would see a screen that looks similar to Figure 9. Further control measures are shown in this

figure. These control features include the Home Button and the Left/Right Arrow Button.

By selecting the Home Button, the user will return to the sub-menu previous to the given

slide. The Left/Right Arrow Button either takes the user to the next slide, or returns the user

27



to a previous slide. These conventions we consistent throughout the progam. Thus, the user

must only possess rudimentary point and click skills to be able to navigate successfidly

throughout the program.

T Ab

Y

2 J,. p TRAIN30!ODAL RWLE

1. DIVID 3 IU Em
1.5 CURVE WITR 8 TRNDEZOXDS

O1 INAL WIDTH.

1 2. CAICULATE AND SUM
THE AREAS Or THE INDI-
VI3YUAL TRAPEZOIDS.

0.5!

0.2S 0.5 0. 75 1 1.2S 1.5 1. 75 2

rFlL AREA sETUE= .25 AM) 1.75

LET a-6, N-. 25

Figure 9 Trapezoidal Rule

C. MACINTOSH DESIGN

The operation of the program on the Macintosh is essentially the same as that of the

personal computer. The operation of the control structure transparent to the user is the main

difference. The Macintosh program consists of only one executable program. This program

contains the controller program and all necessary sub-programs to operate the product. This

structure conforms to the stack and card protocol habitually associated with the Macintosh.

28



VI. PROJECT DEVELOPMENT

A. MODULE DESIGN FACTORS

Before constructing modules for the program, several factors had to be considered.

Interactivity, animation, and use of graphics are prime advantages of computer-based design.

The project had to make maximum use of these benefits. The building of graphical user

interfaces, or GUI's was also critical to the design. A module that is well laid out and easy

to follow facilitates the program operation. The modules also had to be aesthetically

pleasing, so physical layout and color selection became important design factors. While

not all inclusive, this list of factors had a major influence on project preparation.

1. Interactivity

As stated above, the modules had to make full use of the interactive capabilities of

the computer. The resulting module designs allow for changing equation parameters and

graphically demonstrating the results of those changes. These graphic results give the

student instant visual response to parameter changes. The Projectile Motion module

illustrates this idea. The professor can begin by plotting the flight of a projectile with set

parameters, such as shown in Figure 10. The professor and class may then speculate on the

results of increasing the velocity by fifty units. With a minimum of effort, the instructor

could then illustrate the results of the parameter change (see Figure 11). This ability to

obtain direct results to different variable input greatly enhances the learning process and

allows the professor and students to ask "what happens if..." questions. In addition, since

29



-1 ve ay

730

20- d-NO EJv~lw

ToEN

filee E"i

6 s xbal ve Jhm

Figure~f~as 10PrjetleMoioh

Mie EduTmetf~le

70

190 xfl jl F920-0 l

To~~ Ernie~ Grapht

Figureu 11t Proecil Moti.n 2

300



time and effort required to physically graph the equations is no longer necessary, the

instructor can save valuable class time. This can only result in a better trained student.

2. Three-Dimensional Graphics

The ability to graph equations in three dimensions on a chalkboard is a challenge to

all but the most artistically inclined mathematics professors. Furthermore, few studrats

visualize well in three dimensions, and have difficulty forming a clear picture of what the

mathematical equations mean geometrically. The computer can alleviate both problems.

Taking advantage ,-f the computer's graphic capability, several modules were constructed of

pre-made bitmapped plots of equations in three dimensions. By bitmapping these plots,

the instructor can get immediate response to input, and does not have to wait extended

periods of time while the computer generates images. These plots accurately depict the

characteristics and shapes of the figures to the students. The simplest case is a collection of

bitmapped images that help students visualize cutting planes and conic sections. A more

complex case involves the use of animation, and is demonstrated in the Disk Method

Module. As pictured in Figure 12, one aspect of the module shows the results of rotating

a curve about the x-axis. The computer's ability to graphically portray equations in three

dimensions is one of the driving forces in integrating computers into the classroom. By

taking advantage of this capability the computer has a superior means of conveying difficult

concepts to the student.

31



Volumes of Solids
rDsk Method

o- n6mb Abu x Ad.

Figure 12 Disk Method

3. Animation

The computer offers an excellent means for adding motion to module presentations.

By creating a series of graphics and displaying them in rapid succession, like movie frames,

the illusion of motion is created. This technique is a powerful tool in presentation of

mathematical ideas. Figures 13 through 16 show the path of a rolling circle on a smooth

surface and illustrate this animation technique. Under normal classroom situations an

instructor would have to trace out the circle's path on the chalkboard to demonstrate the

cycloid concept. This technique is both time consuming and cumbersome. With the

computer, however, the professor can simply activate the pre-made animation and the cycloid

32



path is drawn through an animation sequence. The students quickly see a visual image that

helps them understand the concept.

Figure 13 Cycloid 1 Figure 14 Cycloid 2

Figure 15 Cycloid 3 Figure 16 Cycloid 4

4. Interface Building

The careful design of the graphical user interface became a key component of module

production. The modules had to be easy to use and had to follow a convention easy to

learn. An object's function had to be readily identifiable to the program user. In addition,

the physical layout of the modules had to be visually appealing. By applying these design

tenets to the project, an aesthetically pleasing and functional interface was created.

33



It was important to maintain a consistency of design throughout the project. Since the

program adheres to a set structure, the user needs to learn only a few commands. The

project's navigation tools and basic operating structure remain consistent through all

modules. For example, a Home Button always takes the user back to an initial slide. Thus,

by learning the conventions of one module, the user can effectively manipulate the entire

package.

Individual modules were built following the logical design convention. Each module

was designed in turn with the same point and click structure. Input fields and buttons were

fashioned to draw upon the user's common sense and then placed on the screen in carefully

planned locations. Each item on the screen connects an activity with an action. Interfaces

were designed to eliminate the need for a user's manual. This, in turn, makes the product

more likely to be used because a person can immediately begin running the software with

minimum effort. This type of layout simplifies use and reduces the time spent learning to

run the program.

The artistic aspect of design was not overlooked. The modules were built so that the

layout and color selection were not egregious. Colors were carefully selected to complement

the design of the module. Similar colors were chosen to present a module's structure, while

contrasting colors were selected to stress concepts. Color was incorporated into the

production of all graphics, so that specific aspects could be emphasized. Design

considerations were not limited to color; the physical layout of the screen was also important.

34



Figures and objects were carefully placed on the screen to give a sense of proportion to the

modules. A great deal of time was spent improving the appearance of the computer screens

in the modules. A project of this type must be pleasing to the student's eye and also

functional if it is to be effective and useful as an instructional tool.

B. TECHNICAL DESIGN FACTORS

There are currently a great number of central processing units, or CPUs, available in

today's market. The program needed to be compatible with all of them which is a

challenging design constraint. Each of the CPUs have different speed and graphic handling

capabilities. More importantly, the computing standards of the processors often differ and

they do not all operate on the same floating point arithmetic standard. In designing the

project, it became essential to find consistency between the two platforms in all three of these

areas. Although the three technical problems addressed here are not all inclusive, they do

represent fairly well the areas dealt with in formulating the project.

1. Processing Speed

The processing speed of the computer was critical in furthering module design. The

project was initially designed to function on the 386 and 68040 families of processors. After

several design reviews, it became apparent that the project needed to be capable also of

running on slower machines. Because many of the dynamic and animation modules were

already at their processing limit, this posed a design problem. When these modules were

run on slower machines, screen output was excessively slow and frequently resulted in

35



system crashes. Additional progamming and other options were needed to correct these

shortfalls. As a solution, static operation modes were created for several memory hungry

dynamic modules. The static option consists of predrawn images that replace the dynamic

plotting in given modules. These predrawn images were selected as representative of their

entire group, and can be called up instantly by the user. As a result, processing speed was

greatly reduced and the lower end machines no longer failed. Unfortunately, the interactive

and animation capabilities of several modules are lost when dropping to the slower

processors. But with the addition of static modes, the slower machines can still convey many

of the module teaching points.

2. Floating Point Arithmetic

The computer performs mathematical operations using floating point arithmetic,

(expressed more simply as just floating point). Several of the modules contained within the

project possess codes that require numerical calculations in order to display graphic results.

The inexperienced computer programmer often assumes that all computers operate in the

same fashion, but in reality this is almost never the case.

Many people consider floating point arithmetic an esoteric subject. However the

floating point problem is ubiquitous in computer systems, and quickly became a factor in the

design of this project. The script language used in the development of this program has a

floating point data type. The means by which the various microprocessors available on the

market handle floating point differ greatly, and unfortunately do not adhere to the same

36



standards. This became painfully obvious when the software was transported across diffrent

machines or platforms and erroneous or unexpected numerical results often occurred.

The floating point problem was first encountered using the Trapezoidal Rule module.

In this module, the computer performs thousands of numerical calculations to approximate

the area under a curve by summing together many inscribed trapezoids approximating the

curve. The module was originally created on the UNISYS system and was functioning

correctly. When the module was transferred to the 486 system the different processor

caused floating point errors to occur. The cause of the problem was traced to the way the

machine performed floating point. This problem was quite unexpected to a novice

programmer. An investigation yielded that the current generation of personal computers do

not all adhere to the IEEE 754 standard [Ref. 9]. The problem was not insurmountable but

its solution required the introduction of double precision number formats into the computer

code. This, in turn, resulted in reduced calculation speed in some of the modules. The use

of double precision is by no means to be considered a panacea for all floating point problems.

It does however appear to cure a majority of the difficulties we encountered by moving from

processor to processor. The need for the programmers to have a basic understanding of

floating point arithmetic can not be over emphasized.

3. Color Displays

The selection of color schemes became a problem during the course of the project,

especially for the personal computer. Typical video displays on the market show anywhere

37



from 16 standard colors to over 256 colors. In pogramming color selection, a number is

assigned to each color choice. The specific color number is usually found in the given

program's Color Look Up Table, or CLUT. Unfortunately, these CLUTs are not

standardized for all Windows based programs. In addition, not all video drivers display

colors in exactly the same way. As a result, colors schemes were often changed "behind the

scenes" when transporting the program across platforms or to other machines. Color

mapping was difficult to predict or standardize, and some machines even rendered the

dules unreadable. To further complicate matters, the first version of the Windowcraft

driving software had built-in internal problems when dealing with 256 color design. To

simplify matters, and to eliminate the color mapping problems, all personal computer

modules were designed using only the standard 16 color mapping. The next version of

Windowcraft will have better color handling capabilities and future modules can be

developed using the full 256 color spectrum.

38



VH. MODULE DESCRIPrIONS

A. POLAR PLOTS

The Polar Plots Module graphs polar equations in both the r= and the r2= formats. This

module was designed to assist the student in envisioning plotting in polar coordinates. In the

dynamic mode, this module will overplot a number of manually entered polar functions.

The inrst four functions are plotted in different colors to assist in visualization. At the user's

discretion, a table is produced showing the value of the polar equation at standard angle

intervals. This table helps the student understand function symmetry and how polar

functions are actually plotted. Scaling is automatic and adjusts to the input equation.

The static mode consists of twelve predrawn options, including circles, cardioids,

lemniscates, limicrons, and four-leaved roses. In this mode the user may rapidly choose and

overlay the predrawn equations in order to show curve sizes, shapes, and intersections.

Since the curves are predrawn, speed is rapidly increased over that of the dynamic mode.

This static mode is useful on slow-processing machines.

B. SINE FUNCTION

The Sine Function Module plots the standard sine function in both static and dynamic

modes. This module was designed to facilitate the understanding of the general sine curve

by enabling the user to plot the general sine function and adjust parameters. In the dynamic

39



mode, the user may vwy the parameters a indicated bythe gmeral sine function equation

of the form

f(x)- A ea [B(x-CJ + D

where A is the amplitude, B is the number of periods desind in a 2z interval, C is the phase

shift, and D is the vertical translation. Separate finctions are plotted simultaneously, with

the first five being of different color to facilitate visualization. In order to simplify scaling,

the user is limited to an amplitude between *5; phase shifts of 0, x/2, x, x/3, or 2x; number

of periods in 2x between 0 and 8, and translations between ± 2.

The static mode was designed for use on lower end machines. In this mode, the user may

choose to display any of twelve different predefined sine functions. All fuictions may be

displayed simultaneously, and all are drawn using different colors. Since the functions are

predrawn, the demonstration speed is increased significantly over the that of the dynamic

mode.

C. TRAPEZOIDAL RULE

The Trapezoidal Rule module gives an introduction to numerical integration methods

using the Trapezoidal Rule. The module starts with an example of the graph of the function

y = x J 4-x , and steps through the process of finding the area underneath this curve

between .25 and 1.75. The demonstration uses 6 as the number of subintervals with length

h of .25. Sequential slides show individual trapezoids drawn underneath the curve and the

calculations needed to determine the approximate area. The trapezoidal area is then shown

40



together with the actual area, and the trapezoidal figure clearly shows where the area

differences occur. The final slide allows the user to visually portray the same function with

a choice of six different prebuilt subintervals, or to numerically calculate the area under the

function with any subinterval. This slide clearly demonstrates the error which occurs using

small subintervals, and how the actual area and trapezoidal area become comparable at a

larger subinterval of 64.

D. PARAMETRIC EQUATIONS

The Parametric Equations module demonstrates parametric equation concepts through

the use of cycloids. In the wheel cycloid example, a wheel of constant radius rolls along a

horizontal surface without slipping. In the animation sequence, the path traced by a point

on the wheel's surface is plotted in sequence. At the end of the animation, the curve of the

form P(xy)=(at+acos0, a+asine) is clearly shown on the screen. In the square cycloid

sequence, a square travels along an undulating surface without slipping. The path traced by

a point on the vertex of square is then plotted in sequence. At the end of the animation, a

curve similar to that of the wheel cycloid is shown.

E. PROJECTILE MOTION

The Projectile Motion module illustrates the concept of vector and parametric equations

for ideal projectile motion. The calculations in this module are based solely on the ideal

motion, assuming only gravity affects the flight of the projectile, factors such as drag and

41



frictional force are not taken into account. The equations of motion are

xW Xo0 + (V#CoS. )t, y -yo+ (Vo SInR )t- %4ge

with (x0,yo) as the initial point, v0 is the initial velocity, g as the gravitational force, and

a the firing angle measured in degrees from the horizontal. This module allows the user

to compare trajectories by changing the parameters of the equations: the initial velocity,

angle of elevation, firing location, or time. Output includes graphic representation of the

projectile motion, maximum flight time, maximum height, maximum range, and final height

and range. The user may run the module in either a metric mode or an English units mode

with output in the correct units. This module may be used to solve problems involving only

one unknown parameter, and is useful for exploring problems consisting of more than one

unknown parameter through iterative methods.

F. DISK METHOD

The Disk Method module is an outline of finding the volume of a solid of revolution

using the disk technique. First, a curve is shown in the xyz-plane. The user is then prompted

to rotate the curve about the x or the y-axis. The solid of revolution is generated about the

proper axis using an animation sequence, which helps the student visualize the volume

generating concept. The next slide shows a curve in the xyz-plane with rectangles drawn

underneath to represent the generating region. At the user's prompt, the rectangles are

incrementally revolved around the x-axis, forming the solid disks whose volumes

approximate the volume of the solid. The module then portrays the idea of the "kth" disk

42



volume, the concept of the disk volume sum, and the transformation of this Riemaun sum

into an integral expression. Finally, the module demonstrates the entire procedure by rotating

the curve y - F about the x-axis, generating a half sphere, and finally calculating this

familiar volume using the disk method.

G. UNDAMPED SPRING

The Undamped Spring module plots interactively the motion of a mass on a vibrating

spring with no damping and without an external force, following Hooke's law. The module

includes an animated sequence of a mass on a spring moving up and down in a vertical plane,

given some initial displacement. As the mass begins to move, the equation of motion is

plotted simultaneously on the screen. The module gives the student a clear picture of simple

harmonic motion.

The equation of motion is modeled by the second-order differential equation

mutt + ku = 0

with a constant mass m, a spring constant k, and a displacement from the equilibrium

point at time t of u(t). The general solution of this equation becomes

uzAcs t+Bsin fIt

with the constants A and B determined by the initial conditions. The user provides one

initial condition by entering an initial displacement u(O). The second initial condition

is provided by assuming that the initial velocity u'(0) is zero. The solution, when plotted,

43



is a displaced cosine wave representing the simple harmonic motion of the mass. Since

no external force and no damping is present, the curve maintains a constant amplitude

and does not diminish with time.

The user may vary a number of parameters to illustrate changes in the equation of

motion. The mass, spring constant, initial displacement (limited in range to ±4), and

time may all be entered separately. Output includes the plot of the solution of the equation

of motion and the displacement at some final time t. Multiple equations may be overplotted

in different colors to show the effects of the parameter changes.

H. ABOUT...

The About... Module is an interactive program designed to tell the user about the

software. An "about" sequence is common in most Windows driven software. Although

this is not technically a mathematically based module, it does demonstrate the potential

for animation in future programming. When the about function is activated, the primary

screen of the project disappears. In its place a smaller sized window pops on the screen

and a paint field with the project logo enters the window from the left. The paint field

moves across the screen horizontally until it stops in the center of the window. At this

time, two other paint fields drop in from the top of the window. The first paint field

contains the name of the authors and the second window contains information about the

project. These paint fields pass over and under the logo field, giving the illusion of

layering, while traveling vertically down the window. Finally, a reset button enters from

44



to a fixed location on the screen. When the user clicks the reset button, the original project

window reappears. These animation concepts and programming techniques can be used to

illustrate advanced two and three-dimensional concepts in later modules.

I. POPULATION GROWTH MODEL

The Population Growth Model is designed to show the student the behavior of the

logistic function as applied to population modeling. The logistic equation used is in the form

A(n+l)=(l+r)A(n) - bA2(n), where n is the number of discrete units, r is the unrestricted

growth rate, L is the carrying capacity of a population, and b = r/L. The user may alter the

model by entering different parameter values for the growth rate, carrying capacity, number

of periods, and initial population value. When the graph is plotted, discrete values for the

population are plotted based upon the number of periods. From this graph the student can

see readily if the population converges or diverges. An additional feature allows the user

to show the population limiting line L along with its discrete plot.

J. COBWEB THEORY

The Cobweb Theory module is designed for two purposes. First, it uses the graphical

technique called cobwebbing which enhances the student's understanding of dynamical

systems and fixed points. Second, it helps the student understand the behavior of the logistic

equation. The module uses the same logistic function form as in the Population Growth

module described above.

45



In the Cobweb Theory module, the user begins by defining the parameters in the logistic

equation by entering values for the growth rate, number of discrete units, and carrying

capacity. Next the graph of the function as defined is plotted on the screen simultaneously

with the graph of the function y - x. The user then enters an initial value for the population

and the module then dynamically draws the cobweb for the dynamical system and returns

an equilibrium value. With the aid of this module the student can see readily if the system

is stable, unstable, or inconclusive.

K. SIMULATION MODEL

The Simulation Model was built in response to an actual problem assigned in a

mathematical modeling course. It is included to demonstrate the potential for graphical

programming in teaching modeling and simulation. Graphical changes which take place

because of external input can occur visually in real time on the computer screen. This

feature pays huge dividends in helping the student understand simulation methods.

This module models a distribution problem typically found in a Monte Carlo simulation.

Specifically, students begin to line up to make course changes prior to starting an academic

term. They must wait until a counselor becomes available to perform one of six different

services. Some students may require only one service while others require two. The

simulation assigns students to a service based upon a given historical distribution.

The user inputs the number of students taking part in the simulation. A random number

generator then assigns each student to a service based upon the given distribution. As

46



students are assigned to a service, a bar chart is constructed on the screen based upon

that assignment. A background bar chart remains in place which is based on the actual

distribution. At the end of the simulation run, the user is able to compare immediately

the simulation distribution with that of the target distribution by examining the two bar

charts. Additionally, output is available showing the total and average number of

students assigned to each service. This module is an excellent tool for showing students how

a random number generator used in a Monte Carlo simulation actually builds a distribution.

47



VII. CLASSROOM DESIGN

A. DISCUSSION

Now that several project supporting modules have been completed, the methods of

presenting the software must be considered. The hardware advances of today allow for a

variety of classroom presentation techniques. The classroom layout can also be modified to

support calculus instruction by computer. Taken in combination, hardware improvements

along with classroom layout changes can greatly enhance the instruction of calculus.

B. HARDWARE

In order to operate the project in the classroom several hardware needs arise. All

designs require the classroom be equipped with a computing platform.' The classroom

must also support the display of video output at sufficient size for all students to see.

The video display and the computer are the only devices required to support project

use. However, to take advantage of all the design features of the program, several additional

hardware item% should be purchased. The system, either in its base form or with all the

peripherals, will operate in any classroom environment.

It is best to operate the software with portable computers. Portability can be achieved

by placing a desk top computer on a cart or, even more ideally, by using a laptop computer.

The requirements for the desk top computer are outlined in Chapter IV. A laptop computer

configuration has some additional requirements. Primarily, it must have sufficient

computing power as well as the necessary video display capabilities. Keeping in mind the

48



ever changing computer industry, the computm recorsended for use at the time of witing

are listed in Table 4. This table reflects the systems recommended for both the personal

computer and the Macintosh platforms.

TABLE 4- PORTABLE COMPUTER CONFIGURATION

IBM Lap top 486-33 MHz VGA

Powerbook Family 68030 RGB Standard

In selecting a laptop computer, it is critical to ensure its video display capability can drive

an external viewing device. Not all machines have this capability, as evidenced by the

Macintosh Powerbook 100 and several low end IBM compatibles. While both the desk top

computer and the laptop will display all elements of the project, the laptop is more desirable

because it offers the user both setup flexibility and setup speed. The user needs only to carry

the computer and a display device to the classroom. Moving a cart-based desktop can

be cumbersome and many instructors will be discouraged from use if required to push a

computer from room to room. Therefore, laptop computers are highly recommended for

driving the program.

The required display devices come in two distinct forms. The first is the oversized

monitor. The minimum size monitor recommended is thirty-two diagonal inches. This

monitor is of sufficient size for display in most 30-40 student classrooms. It offers superior

image quality and can be positioned anywhere within the classroom. A monitor of this size,

however, has some significant disadvantages. First, a thirty-two inch monitor is not easily

49



portable. (For purposes of this project, we experimented with a cart-baed model and found

it was very unwieldy to move.) Second, the user would have to allow a minimum of twenty

minutes before class to move and set up a monitor of this size. While it is clearly an option

for display purposes, it is not the most desirable one.

The second type of display device is the liquid crystal display panel, or LCD. An LCD

is the most preferred method of display. The display panel is portable and can be moved

easily from room to room. The setup of the LCD is simple and can be done quickly. The

user needs only to place the panel on an overhead display and then hook up the computer

system. A disadvantage of the liquid crystal display is that it is tied to an overhead projector

and screen. It can be displayed only where these items exist in the classroom. Another

disadvantage is brought out during actual use. Because the display is projector based, it is

often necessary to darken the classroom to optimize the image quality. This, in turn,

interferes with the students' taking notes. Finding an optimal lighting balance maybe

difficult, but not impossible. The problem might also be solved by purchasing high light

output overheads that show detailed displays under nearly all lighting conditions. At any

rate, lighting is a potential problem that must be addressed before using the project. In sum,

the project requires a display device that provides a balance between visibility and

portability.

The addition of a laser pointer and laser recognizing device can greatly enhance the

presentation. In the ideal configuration, the program will be used in a classroom with some

50



reduced lighting. The instructor will often need to highlight items of interest on the screen.

The laser pointer is an excellent tool for accomplishing this task. A laser pointer operates

by focusing a beam of light on the desired area of the display. The range of the standard

laser far exceeds the dimensions of most classrooms, so the instructor can move freely about

the classroom while using the pointer. Recent technology has taken the laser pointer idea one

step fiuther, in the form of laser recognizing devices. These devices are placed in

conjunction with the liquid crystal display panel, and recognize the laser pointer's position

on the screen. The device then sends the input to the computer causing it to act effectively

like an extended mouse. The user can then press a second button on the laser pointer that

acts as a mouse button. Thus, the user can remotely operate the program by taking advantage

of the point and click design structure of the modules. The addition of this piece of hardware

is especially attractive because it allows the instructor to move freely about the classroom

while simultaneously operating the instruction panel. This capability of remote pointing and

clicking also exists for the oversized monitor. The ability can be realized through the

purchase of software that allows for the recognition. In either case, the program's structure

allows hands-off manipulation of most structures. Thus, the user has many options for

controlling the program.

The combination of the laptop computer, liquid crystal display panel, and laser device

is the ideal configuration for using the project. The user needs only to transport a package

the size of a briefcase to the classroom in order to execute the program. The setup time of

51



this configuration is less than two minutes, and complete operation of all components is

achievable in less than five minutes. The "plug-and-play" nature of the devices of today

allows for this rapid setup time. The system is especially appealing to the user who must

move from classroom to classroom throughout the day. In addition, the laptop device could

be assigned solely for the instructor's personal use. This habitual association allows the user

to tailor the program to individual needs and gives the user added confidence in the

intended functioning of the program. The total system allows a freedom of movement and

design of instruction which was previously impossible.

C. SAMPLE CLASSROOM LAYOUT

The physical arrangement of the classrooms used for computer-based instruction is also

important. Students must be able to see the main instruction screen and be able to

read materials on their desks. In addition, the insmrctor must be able to interact with

students while using the program. Each of these areas must be considered in setting

up a room for computer-based instruction.

The placement of students in relation to the display screen is crucial. All students must

be able to discern clearly all items on the screen. Their view of the screen also must

be as unobstructed as possible, thus reducing movement by the student trying to see the

screen. The ideal layout of the classroom to maximize the view of all students is shown in

Figure 17. While it may be impossible to arrange all classrooms to this design, it is

presented here as a recommendation for future classroom layouts.

52



I ]o []

000000
0 0 0 0 0 0 0

Figure 17 Classroom Layout

53



IX CONCLUSION

A. GENERAL

This project explored the creation of software to assist the mathematics

instructor in teaching calculus. The project took over one year to complete and the

results of the work, along with the steps necessary to produce the final product, are contained

in this thesis. The path that is described reflects the steps needed to produce a workable

output. The goal of this thesis was to detail the steps necessary to produce the software

and to identify critical areas that need be addressed. Our product offers a control structure

as well as a starting point for the creation of other modules that can support instruction.

B. FURTHER RESEARCH

This project was the first step in integrating the computer into the classroom as a tool for

demonstrations. During the preparation of the project, additional capabilities of the computer

were discovered that would allow an even wider variety of subjects to be covered. In

addition, recent technological advances, (such as the advent of CD-ROM capable

computers), have opened even more avenues to explore. The advances in the computer

industry, in conjunction with a more experienced programming team, will undoubtedly allow

for the creation of new and innovative modules.

The modules created were initially based on a rudimentary knowledge of the operation

of the computer. More advanced capabilities, such as the incorporation of movie clips or

sound, were not explored. These areas offer great possibilities for future research,

54



and could significantly further enhance the understanding of calculus. It is important to note,

however, that a good under of the basic operations of the computer and software is

essential to using these new capabilities. Several months of training time must be invested

in order to exploit these advanced features. This document might act as a road map

to help decrease this training time significantly.

The advent of new technology offers directions of research. The CD-ROM allows the

transport and storage of data that far exceed the capacity of the floppy disk. As the

stages of the project were created, it soon became evident that computer graphics, (even

when stored in their most compact form), require large amounts of memory. The files that

compose this project, consisting of a controller program and twelve operational modules, far

exceed the storage capacity of a single floppy disk. The CD-ROM technology allows for the

storage and rapid retrieval of over fifty times the amount of material found on a conventional

floppy. We note also that a device which writes to CD-ROMs is presently available,

although expensive. (The price at the time of publishing this paper was approximately

$4000.) The CD-ROM will soon be the standard for information distribution.

C. RECOMMENDATIONS

The use of the computer as an instructional tool is increasing. The students of tomorrow

expect that instruction will take every advantage of integrating computers into the

curriculum. It is essential that a university professor have at his or her disposal an easy to

use tool to aid in the instruction of calculus. This project produced a product that

55



is multiplatform. Duality was created by producing two distinct packages for each of the

current computer families. In the development phase the production of two separate systems

was quite time consuming, but this should not be the case in the future. Presently, Apple's

PowerPC machine will straddle the Macintosh and IBM worlds. The new machines will

come standard with internal software designed to exploit programs written for both

Macintosh and IBM platforms. The two families are rapidly becoming interrelated and

interchangeable. The focus for designers of future modules should not be on cross platform

work. Their efforts will be better spent on producing interactive modules for either system

to take full advantage of the age of technology.

56



APPENDIX A

OPERATION OF PROGRAM MODUI LES

1. GENERAL COMMANDS/OBJECTS

This appendix gives a brief discussion on how to use each of the modules created for the

CalcAid program. As discussed in the main body of this thesis, the modules are laid out in

a standard fashion with structural homogeneity maintained throughout the program. As a

result, commands perform the same function all through the program. These commands,

along with the corresponding symbol when appropriate, are listed below.

File This feature appears on all menu bars in all modules (see
Figure 18). Clicking on this function displays a submenu with
a Quit and an About.. command. Clicking the Quit command
starts the sequence for exiting CalcAid. Clicking About starts
a routine that displays program information.

Print This feature appears on all menu bars in all modules (see
Figure 18). Clicking on this function displays a submenu with
a Print Window command. Clicking on the Print Window
command allows the user to print various slides of a module.

This button returns the user to the previous menu.

This button sends the user to the next slide.

This button returns the user to the previous slide.

57



- This button begins an animation sequence.

Plot Gr This button plots graphs on a screen axis.

(Erase Graph This button erases all graphs on a screen axis.

2. EQUATION CONVENTIONS

Several modules require the user to enter equations or mathematical formulas. These

equations and formulas must be entered in a standard ClearTalk syntax. This syntax is easy

to follow, and is similar to many other mathematical programs. A brief legend of symbols

is shown below in Table 5.

TABLE S - CIEARTALK EQUATION SYNTAX

Symbol Definition

+ Add

Subtract

* Multiply: 3*4 = 3x4

/ Divide: 3/4 = 3-4

A Raise to a power: 3A4 = 34

cos(angle in radians) Cosine of the angle: cos('n) = -1

exp(number) The natural (base-e) exponential of the number:
exp(2) = e2 = 7.3891

in (number) The natural (base-e) logarithm of the number: ln(l) = 0

sin(angle in radians) Sine of the angle: sin(n) = 0

sqrt(number) Square root of the number: sqrt(4) = jF4 = 2

58



3. POLAR PLOTS

This module graphs all polar equations, and comes in both a static and dynamic mode.

To reach this module, click on the Plane Curves and Polar Coordinates entry on the main

menu screen. Next, click on the Polar Graphing entry on the Plane Curves and Polar

Coordinates submenu. This will bring up the Polar Plots module, as shown in Figure 18.

Eile E•int

jangle q

from rZZZto F2*l--1

Plot GraphEreGrp I ]

1 2 3

Figure 18 Dynamic Polar Plots

Equations are entered in either the r- and the r^2= fields located in the top right portion

of the screen. Equations must be entered in a standard ClearTalk syntax as outlined in Table

5. The variable used in the polar equations for either the number or angle in radians entry

is "t". For example, the equation for a cardioid would be entered in the r = as 1-cos(t).

59



Similarly, r=[- returns a spiral. If e2=I 4sln(2*T] is entered, a lemn iscate will be

plotted on the screen.

The from and to fields on the screen are used to enter a plot start angle and a plot end

angle, respectively. Again, these angles must be in radians, and entered using the ClearTalk

syntax.

After entering an equation and a from and to angle, push Plot Graph to graph the

equation. Up to four equations may be plotted in different colors. If the value of the

function exceeds the axis scale, the axis will automatically readjust. The Table button

displays a table showing the values of the equation and standard angle intervals, and then

toggles to a Hide button. To hide the table, simply click on the Hide button.

The To Static Mode button brings up the Static Mode screen, shown in Figure 19. This

screen has a list of twelve predrawn polar equation options. To display any of the given

curves, click on the entry for that curve. All twelve curves, or any combination of them, may

be plotted together. The To Dynamic Mode returns to the dynamic Polar Plots screen.

p.I

Tab, of Figur

Figure 19 Static Polar Plots

60



4. SINE FUNCTION

To reach this module, begin by pressing the Transcendental Functions button on the

main menu screen. This brings up the Transcendental Function Submenu. Press the Sine

Function button, and the Sine Function module screen shown in Figure 20 will appear.

7 Amplitude
7 - (ital)

5 Phase shin
4 - CIED (M) CIE)
30-2 - (M:)GKD
I - a of Pefods" In 2 PI Unite
0 = i8

-1 U Af
-2 - TranslatIon
-3 CDa)) ( K) (H) (a)".4
-6 - -6 I• (Eraee Graph]

-7

S Sin( 1 *0 X)

Figure 20 Dynamic Sine Function

This module was designed to facilitate the understanding of the general sine curve by

enabling the user to plot the sine function with adjusted parameters. The user may vary the

parameters as indicated by the general sine function of the form f(x) = A sin [B(x-C)I + D,

where A is the amplitude, B is the number of periods desired in a 2n interval, C is the phase

shift, and D is the vertical translation. To change the amplitude, enter a value between -5

61



and 5 in the Ampltude = To change the phase shift, click on one of the five buttons

located under the word Phase Shift To change the number of periods in a 2x interval, enter

a value between 0 an- 8 in the # of Periods in 2 Pi Units []. The five buttons under the

Translation heading change the vertical translation of the equation.

The Static button brings up the Sine Function Static Mode screen, shown in Figure 21.

This screen has a list of twelve predrawn sine equation options. To display any of the listed

functions, click on the entry for that function. All twelve curves, or any combination of

them, may be plotted together.

Eie Ednt

2 -3 n( 4 x

-1 in
-2 Q-~
-4

Figure 21 Static Sine Function

62



5. TRAPEZOIDAL RULE

To reach the Trapezoidal Rule module, choose the Integration button from the main

menu. Next, pick the Trapezoidal Rule button from the Integration submenu. This calls

up the first Trapezoidal Rule screen, shown in Figure 22. The first four slides of this module

outline the trapezoidal rule, and contain only standard buttons as listed in section I of this

appendix. Slide 5, as shown in Figure 23, requires some explanation. There are six

subinterval sizes listed in the upper right hand portion of the screen. To partition the given

curve into one of these standard sizes, click on the corresponding button. A graph of the

curve with the given subinterval will appear on the screen. In addition, the area as

calculated using the trapezoidal rule method will appear in the Approximation = [=i]. The

actual area, as determined by integration, is listed above this box. If an integer is typed in

the n= =, the trapezoidal area calculated with that integer subinterval will appear in the

Approximation =

fine Rib.
V

rV•.P Y." TRAPEZOIDAL RUL

1. DZVIDE WMION UinE
1 $ cmRY WME HN TWAPE2ODS

or EWAL VrMME.
1l 2. c~umTCAT E AM Nm

TM ARM Or THE iini-
O. $VIDUaL 1rXDEZOXZD.

0 2S 0 5 0 7S 1 5 1 5 ?S 2

rflOW ACA MERSEF .25 AM 1.75

LET N-", 1-. 25

Figure 22 Trapezoidal Rule Slide 1

63



Chees bLuivd W

15 Op4

Oý25~r- O- ,7- .2 . I7'.ow''.

Aftbal Area a 2.301 34

AppndmeUam .U9

Figure 23 Trapezoidal Rule Slide 5

6. PARAMETRIC EQUATIONS

The parametric equation module consists of two submodules entitled Wheel Cycloid and

Square Cycloid. To reach these modules, click on the Plane Curves and Polar Coordinates

entry on the main menu screen. Next, click on the Parm, etric Equations entry on the Plane

Curves and Polar Coordinates submenu. This will call up another submenu, with Wheel

Cycloid and Square Cycloid as listed entries. By clicking the Wheel Cycloid entry, the

screen shown in Figure 24 appears. Likewise, by clicking the Square Cycloid entry, the

screen shown in Figure 25 appears. Both modules are initiated by clicking on the Animation

button.

64



Figure 24 Wheel Cycloid

Figure 25 Square Cycloid

65



7. PROJECTILE MOTION

The projectile motion module illustrates the concept of ideal projectile motion. To run

this module, click on the Projectile Motion menu on the Main Menu screen. The English

Unit Projectile Motion screen will appear as in Figure 26. Calculations for this screen are

based on standard English Units. The user may enter values for initial velocity, angle of

elevation, initial firing position, and time. The angle of elevation may be entered in two

different ways. The first way is by typing a value between 0 and 90 degrees in the Angle

of Elevation = The second way is to use the Angle of Elevation scroll bar. Simply click

on the ends of the scroll bar to change the angle value, or physically move scroll button of

the scroll bar to the desired angle value. The corresponding angle will automatically update

the value in the Angle of Elevation =• The initial velocity may be changed in the same

manner, using either the Initial Velocity = or the Initial Velocity scroll bar. To change

the firing point from the origin to another location, simvly type in the coordinates of the new

location in the xO and yO fields. Change the time of flight by typing in a new value in the

t = If no value is entered in this field, or if a time greater than the maximum flight time

is entered, the flight time defaults to the maximum flight time.

After the flight path is plotted, output for the maximum flight time, the maximum height,

the range, and the landing coordinates is presented in the corresponding = locations on the

lower right hand portion of the screen. The To Metric Units calls up the screen shown in

66



Figure 27. This screen operates in exactly the same way as the English Unit screen, except

all calculations are computed using metric units.

2411- E -'ehu" l VIedS m iN•

126

120- Mm F, Tiem u--"e

m- u~~~xliiii--I

S .. '1 1~t qI. Uil 440.

Figure 26 English Unit Projectile Motion

Ilk E"m
Angl ii Elevedee: -

S11
T0-

30 - M v - • "m - - 8C"

30- max Fit Tme W- bne

Ramp Ei--e hm

10 X eIgol = km

0 S. I I: I I I I U I I yflnl j "--J Io

18 26 36 46 S0 6, 70 ,00 100 11,120

I "En'lith UnIts%

Figure 27 Metric Unit Projectile Motion

67



8. DISK METHOD

The Disk Method module gives a brief lesson on using the disk method for finding the

volume of a solid of revolution. To reach the Disk Method module, choose the iltegatliom

button from the main menu. Next, pick the Disk Method button from the Integration

submenu. This calls up the first Disk Method screen, shown in Figure 28. This module is

completely self explanatory; the user must only click on any but.3n to start an action.

Appendix B shows a complete break down of all slides in this module.

Volumes of Solids

Disk Method

oR- I . Aheut x Ak

Figure 28 Disk Method

9. UNDAMPED SPRING

The Undamped Spring module interactively plots the motion of a mass on a vibrating

68



spring following Hooke's law. The module is called up by clicking on the Differential

Equations button on the Main menu, and then the Undamped Spring button on the

Differential Equations submenu. Figure 29 shows the Undamped Spring screen. The

Spring Constant may be changed by typing in a value in the Spring Constant =[--. The

default value for this field is one. To alter the object mass, enter a new value in the Mass =

=. Again, if no value is entered in this field, the default is one. To change the motion

time, enter a new value in the Time = = The module is initiated by the Initial

Displacement scroll bar. To give the spring an initial displacement, drag the Initial

Displacement scroll bar button to the desired value of displacement. The module will

initiate once the scroll button is released. After the motion of the spring is plotted, the final

displacement is returned in the Displacement =--].

Elie dkt

UNDAMPED SPRING

3-
2-

0I-

2 2

-3

OI I Dsplacement :

- SpigC ntn

.1 .1

.2 -2

.3 -3

.4 .4

Figure 29 Undamped Spring

69



10. ABOUT...

The About... module subroutine can be reached from any slide. To activate the

subroutine, first click on the Efile command located on all screen menu bars. Next, click on

the About... command on the Eile submenu. The present window will disappear, and the

About... window will initiate. This window is shown in Figure 30.

Figure 30 Initial About... Window

After this window appears, the animation sequence immediately begins. A project logo

enters from the left of the window. Next, the names of the projectt s authors enter form the

top of the window. This is followed by a field with information about the project itself.

Finally, an OK button enters from the bottom of the screen. The final window is shown in

Figure 3 1. To return to the previously hidden window, click on the OK button.

70



P bye os p bms m
J" cbftsMmft

Figure 31 Final About... Screen

11. POPULATION GROWTH MODEL

The Population Growth Module shows the behavior of the logistical function as applied

to population modeling. The module is activated by clicking on the Dynamical Systems on

the Main menu, followed by the Population Growth Model button on the Dynamical

Systems submenu. Figure 32 shows the Population Growth Model screen. To change the

unrestricted growth rate, r, type in a new value in the Growth Rate [ To change the

population carrying capacity, L, enter a new value in the Carrying Capacity [ Similarly,

new values for the number of periods and the population initial value may be entered in their

respective fields. The Show L button, when initiated, shows the limiting line for the

population on the population graph.

71



Gm#W* Rft

In" Vahe

Show L7
Logistic Equai~on

Figure 32 Population Growth Model

12. COBWEB THEORY

The Cobweb Theory module demonstrates the behavior of the logistic equation through

the graphical technique called cobwebbing. The module is activated by clicking on the

Dynamical Systems on the Main menu, followed by the Cobweb Theory button on the

Dynamical Systems submenu. Figure 33 shows the Cobweb Theory Model screen. To

change the unrestricted growth rate, r. type in a new value in the Growth Rate =~ To

change the population carrying capacity, L, enter a new value in the Carrying Capacity

Similarly, new values for the number of steps and the population initial value may be entered

72



in their respective fields. To draw the cobweb of the equation, click on the Draw Cobweb

button. The Equilibrium Value is returned upon completion of graphing.

file Erint

Growth Rafs

Canyinag Capacity

Number of Steps

MellI Voluv

_Plrae Graph

Equilibrium Value :(Draw Cobvsb

Logistic Equation
A(n.t) -(1* )An) - A-2(n)

Figure 33 Cobweb Theory

13. SIMULATION MODEL

The Simulation Model module models a distribution problem typically found in a Monte

Carlo type simulation. The specifics of the module are described in detail in Section K of

Chapter 7. This module is triggered by clicking on the Modeling button of the Main menu.

Figure 34 shows the Simulation Model screen. The only input required is the total number

of students involved in the simulation. Simply enter the value in the Simulation Number

--. The Run button activates the program. The complete breakdown of the generated

73



distribution is displayed gmphically and in the output - fields on the right side of the

screen.

am Mm cmi of ItM

vIC mm AC RC oc cFs

Figure 34 Simulation Model

"74



APPENDIX B

This appendix explains displays and all of the slides that make up the Disk Method

module. This module is indicative of the work that went into all other modules. The Disk

Method Module is composed of 58 individual slides. The first slide, shown in figure 35,

shows a curve plotted in the xyz-plane. The user is given the option to rotate the curve about

the x or the y axis.

Eie Ehint

Volumes of Solids
Disk Method

o- Rate Abut x "s

o Rotate About y Axia

Figure 35 Initial Slide

The next 13 slides, shown in figures 36-48, display the volume generated by the curve as it

is rotated about the x axis. The solids were graphed parametrically by Mathematica in n/6

increments. Because this process was exceedingly slow using the PC, the actual solids were

75



generated by the Macintosh using a Mathematica kernel running on a SUN SPARC 10

workstation.

Volumes of "oUds Volumes of ids

m m I mm

Figure 36 Slide 2 Figure 37 Slide 3

Volumes of Soclds Volumes of Solidsme lei meI~ memi•

Figure 38 Slide 4 Figure 39 Slide 5

Volumes of Solids Volumes of bords

m m Dmm/mm~

Figure 40 Slide 6 Figure 41 Slide 7

76



Vokmes@ of Soldn Volums of goldIs

m m mum

Figure 42 Slide 8 Figure 43 Slide 9

Volumes of ol.Volumes of Sellds

Figure 4 Slide 10 Figure 45 Slide 11

Volumes of Solids Volumes of Solids
me No"Of mo b

Figure 46 Slide 12 Figure 47 Slide 13

77



Vimmm Of....

Figure 48 Slide 14

The next 13 slides, as shown in Figures 49-61, generate the solid formed by rotating the

curve about the y axis.

VOlumes of Solids Volumfs of Solds

Figure 49 Slide 15 Figure 50 Slide 16

VolumMs of Solds Volumes of Solids

U•'M

Figure 51 Slide 17 Figure 52 Slide 18

78



Volumes of bilds Vouames of agags

47-

m mm mm

Figure 53 Slide 19 Figure 54 Slide 20

Volumes q SOlN&s Volumes of SolidsMOO"i o"l Ow"k

mm mm m m

I

Figure 55 Slide 21 Figure 56 Slide 22

Volumes of sods Volumes of Gols
olui msmd O~ ilusmd

-5---------

m m mNu

Figure 57 Slide 23 Figure 58 Slide 24

79



mMob as" V

* m m b ".I • d'

a m m m

Figure 59 Slide 25 Figure 60 Slide 26

VoWuMs of SONs"

r --

Figure 61 Slide 27

Figure 62 depicts the next slide, which explains the rectangular approximating region

concept of the disk method. The next series of slide, shown in figures 63-75, rotate the

rectangular approximating region about the x axis.

cw"-. AwW

Figure 62 Slide 28 Figure 63 Slide 29

80



I~ IWW mwm

avianO

--

Figures6 Slide 32 Figure 67 Slide 33

mum mOn

Figure 64 Slide 32 Figure 67 Slide 33

81m

mum mum

Figure 68 Slide 34 Figure 69 Slide 35

81



Si i

- t -.s i

Now mome

Figure 70 Slie 36 Figr 71 Slie 37

mom m•m

Figure 72 Slide 38 Figure 73 Slide 39

iI W W,

I. -bmw

mom momFgr72Side 3 Fgr73Side3

Figure 74 Slide 40 Figure 75 Slide 41

82



The next slide, shown in figure 76, shows the enlarged view of the "k*" disk. Figures 77

and 78 explain how to sum all disks, and show how that sum approximates the area as the

disk width limit approaches zero.

-tise dDttss

mum mmm.

Figure 76 Slide 42 Figure 77 Slide 43

As &x-O:

vONuMii n (f(x))Ick

Figure 78 Slide 44

The final series of slides, displayed in Figures 79-92, show the entire process using the

equation representing a quarter circle. On the final slide, the volume of the half sphere

created by rotating the curve about the x axis is displayed.

83



mm mm
Figure 79 Slide 45 Figure 80 Slide 46

mm mm

Figure 81 Slide 47 Figure 82 Slide 48

MUOVUP.: W'in.- KAMLMYV-7

Figure 83 Slide 49 Figure 84 Slide 50

84



Figure 85 Slide 51 Figure 86 Slide 52

UWLE: Y-27 xB~: y-rii--

Figure 87 Slide 53 Figure 88 Slide 54

IXILU: y4r~i-- UxAiWL y-V2-X--

Figure 89 Slide 55 Figure 90 Slide 56

85



=mm • Y-m W MY-4W1-"7

(2x-jrj) dw•-•
4~ 

-Ts

Figure 91 Slide 57 Figure 92 Slide 58

86



APPENDIX C

This appendix explains the ClearTalk code that drives the Undamped Spring Module.

The code for this module is indicative of the code for other modules, and gives the reader

a flavor for programming in the ClearTalk language. Included in the discussion are some

design techniques that allow the program to function smoothly. These techniques are not

inherently obvious to the first time programmer. The module screen appears below in Figure

93.

Ele E•dnt

UNDAMPED SPRING
- - 4

3
2
1 •
0'
-1
-2
-3
-41

Spring Constant i

4 4 Mass =

3 3 Time =
2 2

- Displacement:
-1 -- --

-2 -2
-3 -3
-4 -4

Figure 93 Undamped Spring

Each of the modules prepared for the project and the controlling structure were

programmed using the script language programming technique. This unique language,

87



known as ClearTalk, offered some very desirable properties. The most significant of these

properties was its ease of use. A minimum background in computer science was sufficient

for understanding the language.

The starting point for the module was deciding what teaching points were to be covered.

The module would demonstrate the rectilinear motion of a harmonic oscillator and plot the

motion that is described in a time versus displacement graph. In order to demonstrate these

concepts fully, four parameters would be allowed to vary; the spring constant (k), the mass

(m), time (t) and finally the initial displacement from rest of the system (x0). While taking

these parameters in to account, a slide had to be designed that supported the display of a

graph, an animated oscillator, input of four variables, and the controlling structures that

allowed the module to operate. After several design proposals and layoL,,s, the slide format

shown in Figure 93 was chosen. Of particular interest is the scroll bar used for entering

initial displacement. This technique was chosen because it gives a better understanding of

what initial displacement means on this system.

After deciding upon an initial layout, work was initiated on the supporting code. The

programming of modules is conducted in three distinct phases; the collection of input for

calculations, the graphical display of the input, and finally the creation of an animation that

supports understanding the demonstrated concept. By following this order, the programmer

has a logical sequence in which to debug the program. This order also cuts down on errors,

as mistakes are less likely to be compounded. The script that drives the program will now

88



be described in detail. Hopefully, this will assist future work in creating similar modules.

The majority of the script that operates the module is associated with the slide itself, and

is not tied to a specific object. The code that is present in the slide level of programming

consists of four subroutines. Each of the subroutine functions is essential to the proper

performance of the module. The first code that a module executes is the open slide

subroutine. This routine executes each time the slide is brought into operation.

on openSlide
global msi,mxorgmyorgmassrec,xorgyorgcolorcntcoord
set loc of foreground draw objectmass" to ioc background paint field *mass
slider'
put the Ioc of background paint field "mass sliders into morg
put item 1 of morg into mxorg
put item 2 of morg into myorg
put the rect of paint field "mass slider' into msl
put the rect of foreground draw object "mass' massrec
put the rect of paint field "graph plot" into coord
put item 1 of coord into xorg
put round ((item 4 of coord + item 2 of coord)/2) into yorg
set the brush to 8
put 0 into colorcnt

end openslide

The subroutine initializes the global variables used by the program and initializes the

location of screen graphics. The routine then dynamically retrieves the location of various

objects and places their screen locations into variables used by the program. The final

command at the end of the routine sets the size of the paint brush that will be utilized

throughout the module. The subroutine then terminates and returns control to the user.

89



The counterpart to the open slide routine is the close slide routine. This subroutine is

executed upon module termination. The close slide routine for this module is given below.

on closeSlide
lock screen
put empty into cd fid k
put 15 into cd fid Ima
get the rect of paint field 'graph plot'
choose select tool
drag from item 1 of it, item 2 of it to item 3 of it, item 4 of it
doMenu clear picture
choose browse tool

end closeSlide

The close slide subroutine begins by not allowing any further changes to the screen by

issuing the lockscreen command. The program then empties two variable registers. The

final series of commands uses the tools available in the scripting language to erase any user

defined graphics produced during the use of the module.

The final subroutine on the slide level of programs is the workhorse of the module. It

contains the procedures that perform the majority of the calculations associated with the

module. This subroutine also controls the graphic tools used to produce plots by the module.

This module's "executable" subroutine is described line by line to facilitate understanding

of the code.

on plotGraph disp,k,mtf
(This module activates on the command of plotGraph and utilizes the variables stored in
registers disp,k,m,and tf)

put tf into maiX
(The amount of time the spring will oscillate is placed into maxX)
put 0 into minx
(The minX variable is initialized to 0)

90



put 4 into muxY
(The maxY variable is initialized to 4)
put -4 Into rainY
(The minY variable is initialized to -4)
global msimxorgmyorgmasreexorgtyorgcoloret,coord
(The global variables listed are made available for use)

if colorcnt - 1 then
set fillColor to 10

else if colorcnt = 2 then
set flllColor to 13

else if colorcnt = 3 then
set filColor to 17

else if colorcnt = 4 then
set filiColor to 15

else
set fillColor to 1

end if
(This loop sets the color the program will use in plotting graphs. The loop is
incremented, and plots that will overlay one another are displayed in different colors)
put colorcnt + 1 into colorent
(The variable colorcnt is incremented)
choose *brush paint tool'
(The graphic drawing tool is selected for use)
put 0 into t
(The time variable is initialized)
put .1 into incr
(The graphic step increment is initialized)
put round((item 3 of coord -item 1 of coord)/maxX) into tempi1
put round((item 4 of coord -item 2 of coord)/(maxY-minY)) into temp2
(These commands translate world coordinates to screen coordinates)
put sqrt(k/m) into temp3
put round ((item 4 of msl - item 2 of msl)/(maxY - minY)) into temp4
(The screen location of the spring animator is initialized)

repeat with counter = 1 to round (maxX/incr)
(This loop creates the graph and moves the spring mass incrementally)

put round(templ*t) into scalxt
(The x-direction screen correlation coefficient is calculated for the graph)
put round(temp2*(disp*cos(temp3*t))) into scalyt

91



(The y-direction screen correlation coefficient is calculated for the graph)
put (xorg + scaht) into xclick
(The screen x location is calculated for the graph plot)
put (yorg - scalyt) into yclick
(The screen x location is calculated for the graph plot)
if ycllck > 37 and yclck < 176 then

if xcick < 573 and xclick >- 319 then
click at xclickyclick

end if
end if
(The if-then structure is an error check to ensure that the point to be plotted is within the
display parameters)
put round(temp4*(disp*cos(temp3*t))) into scalmt
(The x-direction screen correlation coefficient is calculated for the spring mass)
set the height of btn "cover to 360
(A hider graphic position is initialized)
set loc of foreground draw object 'mass' to mxorg, myorg - scaldmt
(The mass is positioned based on the calculated coordinates)
add incr to t
(The time variable is incremented for the next iteration)
set the cursor to wait
(The mouse point is set to a wait state)

end repeat

put (disp*cos(temp3*t)) into cd fid 'Displacement"
(The final displacement location of the spring is calculated and placed into the card field
for display to the user)
choose browse tool
(Control is returned to the user)

end plotGraph

In summation, the plotGraph subroutine dynamically grabs the screen location of a

number of graphics and stores their locations by pixel into selected variables. These

variables are then used by scaling equations in order to present a scaled version of the desired

equation on the screen. In conjunction with this procedure, a screen graphic depicting the

rectilinear motion is positioned incrementally to give the illusion of motion. Finally, the

92



discrete loop is exited and the displacement of the mass is displayed.

The program also has scripts associated with several of the on screen graphics that detail

and control their function. For this module the erase graph button, displacement scroll bar,

and home button all have scripts. The unique characteristics of each of these graphics

warrants description to clarify how they operate within and control the module.

The erase button performs three distinct functions. It executes a routine that erases any

graphs that have been created, reinitializes all variables, and resets the animation graphics.

on mouseUp
(Execute this routine when the button is clicked on by the mouse)

set the cursor to wait
(Allow no further user input)
put *1 into cd fld Ik
(Empty the spring constant variable)
put 1* into cd fld Im"
(Empty the mass variable)
put 15 into ed fld Wtt
(Put 15 into the time factor variable)
put 0 into cd fld "Displacement'
(Display zero as the current mass displacement)
set the thumbPosition of scroll bar I to 400
(Places the slider to the midpoint of the scroll bar)
set the loc of foreground draw object Omass to loc of background paint

field "mass slider*
(Moves the mass to the initial position)
set the height of btn "cover' to 169
(Sets the hider graphic that supports the animation to the initial position)
set the bottom of btn OcoverO to 360
(Sets the hider graphic that supports the animation to the initial position)
global colorcnt
(Makes the global variable colorcnt accessible)
put 0 into colorcnt
(Resets the color counter variable)
get the rect of paint fld 'graph plot

93



(Places the coordinates of the current graph into memory)
choose select tool
(Selects a graphic controlling tool)
drag from item I of it, item 2 of it to item 3 of it, Item 4 of it
(Places a selecting box around the current image)
doMenu clear picture
(Erases the current image from the screen)
choose browse tool
(Returns control to the user)

end mouseUp

The displacement scroll bar is used to transmit the initial displacement of the spring mass

system to the program. The mouse is placed on the scroll bar and then is dragged to the

position that the user specifies. The callback script associated with the scroll bar feeds the

displacement value to the program and displaces the animated graphic to the desired location.

Upon release of the scroll bar the program is initiated and the animated motion and plots are

produced.

on mouseUp
(Routine activated by the mouse)

global morg,mxorgmyorgmsl,massreccoord,xorg
(Allows the global variables to be accessed)
put the loc of background paint field 'mass slider' into morg
(Places the graphical object's screen coordinates into a variable)
put item 1 of morg into mxorg
(Separates the morg variable's x coordinate)
put item 2 of morg into myorg
(Separates the morg variable's y coordinate)
put the rect of background paint field 'mass slider' into msl
(Places the graphical object's screen coordinates into a variable)
put the rect of foreground draw object mass" into massrec
(Places the graphical object's screen coordinates into a variable)
put the rect of paint field "graph plot into coord
(Places the graphical object's screen coordinates into a variable)

94



put item 1 of coord into xorg
(Places the x coordinate of the graph into a variable)
put round((item 4 of coord + item 2 of eoord)/2) into yorg
(Calculates the pixel size of the current graph location)
set the brush to 8
(Selects the size of the graphical drawing tool used to plot the graph)
put word 1 of cd fid "ke into k
(Places the value of the spring constant entered by the user into a variable)
if k =" then
(Executed if the user fails to enter a spring constant, sets k to the default value of 1)

put I into k
put k into cd fld "k'

end if
put word I of cd fld "m" into m
(Places the value of the mass entered by the user into a variable)
if mf" then
(Executed if the user has failed to enter a mass value, sets m to the default value of 1)

put 1 into m
put m into cd fld Im"

end if
put word I of ed fid Itf into tf
(Places the value of the time of execution into the time factor variable)
put (400-thumbPosition of me)/100 into disp
(Calculates the value of the displacement of the spring as input from the scroll bar)
set the numberFormat to "0.00'
(Sets the format in which numbers are displayed by the program)
put disp into cd field "Displacemente
(Places the initial displacement entered by the user on the screen)
plotGraph disp,km,tf
(Executes the main subroutine plotGraph and passes the four variables to it)

end mouseUp

The home button allows the user to exit the module. It resets critical variables and

repositions on screen graphics for future use. The code for the home button is shown below.

95



on mouseUp
put "" into ed fid "k'

(Empty the spring constant variable)
put 0 into cd fld Om"
(Empty the mass variable)
put 15 into cd fid "ti,
(Place 15 into the time factor variable)
put 0 into cd fid "Displacement
(Places a zero into the displacement card field)
set the thumbPosition of scroll bar I to 400
(Resets the scroll bar to the center position)
set the loc of foreground draw object "mass" to loc of background paint Aidd m"ss
sliderw
(Moves the mass to the initial position)
get the rect of paint field "graph plot
(Places the pixel location of the graphs into memory)
choose select tool
(Selects a graphics controlling tool)
drag from item I of it, item 2 of it to item 3 of it item 4 of it
(Places a selecting box around the current image)
doMenu clear picture
(Erases the current image from the screen)
choose browse tool
(Returns control to the user)
run "diff.exe"
(Starts the master program controlling structure)
hide this window
(Removes the window from the screen while it is being shut down)
doMenu "save'
(Saves the module)
doMenu 'quit*
(Turns off the module)

end mouseUp

This ends the critical scripting for the undamped spring module.

96



LIST OF REFERENCES

1. Finney, Ross L., and Thomas, George B., CALCULUS. 81 Edition, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1992.

2. Sandefur, James T., Discrete Dynamical Systems-Theory and Applications, Oxford
University Press, New York, New York, 1990.

3 A User's Guide to WindowCraft, Volume 1, Windowcraft Corporation, Acton,
Massachusetts1991.

4. Giordano, Frank R., and Weir, Maurice D., A First Course in Mathematical
Modeling, Brooks/Cole Publishing Company, Monterey, California, 1985.

5. Goodman, Danny, The Complete Hypercard Handbook, 3rd Edition, Bantam
Books, New York, New York, 1990.

6. Goodman, A. W., Analytic Geometry and the Calculus, Fourth Edition, MacMillan
Publishing Compnay, Inc., New York, New York, 1980.

7. Appleton, Bill, Supercard, Silicon Beach, San Diego, California, 1993.

8. Reichard, Kevin, and Johnson, Eric F., teach yourself.. UNLY, MIS:Press, New
York, New York, 1992.

9. Cody, W.J., "Floating Point Parameters, Models and Standards," paper presented at
the Argonne National Laboratory, Argonne, Illinois, 1982.

10. Boyce, William E. and DiPrima, Richard C., Elementary Differential Equations and
Boundary Value Problems, 5th Edition, John Wiley & Sons, Inc., New York, New
York, 1992.

11. Zill, Dennis G., A First Course in Differential Equations with Applications, 5th
Edition, Prindle, Weber & Schmidt, Boston, Massachusetts, 1979.

12. Foley, J. D., and Van Dam, A., Fundamentals of Computer Graphics, Addison-
Wesley Publishing Company, Reading, Massachusetts, 1982.

97



INITIAL DISTRIBUTION LIST

No. Copies
Defense Technical Information Center 2
Cameron Station
Alexandria VA 22304-6145

2. Library, Code 052 2
Naval Postgraduate School
Monterey CA 93943-5002

3. Professor Maurice D. Weir, MA/Wc 2
Department of Mathematics
Naval Post Graduate School
Monterey, CA 93943-5000

4. Professor Carlos F. Borges, MA/Bc 2
Department of Mathematics
Naval Post Graduate School
Monterey, CA 93943-5000

5. Professor David Canright, MA/Ca 2
Department"of Mathematics
Naval Post Graduate School
Monterey, CA 93943-5000

6. COL Frank Giordano
Department of Mathematical Sciences
United States Military Academy
West Point, NY 10996-1786

7. Professor Richard Franke, MA/Fe
Chairman, Department of Mathematics
Naval Post Graduate School
Monterey, CA 93943-5000

98



8. CPT Brian E. Pierson 4
Department of Mathematical Sciences
United States Military Academy
West Point, NY 10996-1786

9. CPT Jon L. Christensen 4
Department of Mathematical Sciences
United States Military Academy
West Point, NY 10996-1786

10. Professor J. Alan Adams
Department of Mechanical Engineering
United States Naval Academy
Annapolis, MD 21402-5003

99


