
AD-A280 991 .&

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS V
INCREMENTAL ON-LINE TYPE INFERENCE

by

Thomas L. Robinson

March, 1994

Thesis Advisor: Dennis M. Volpano
Thesis Second Reader: Timothy Shimeall

Approved for public release; distribution is unlimited.

D17C QUALrnT fNlPEM S

94-20405
iliiil ~I~II III 1941 7 l I9 4 5 10 8

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UN CLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(omnputer Science Department (if applicable)

Naval Postgraduate School CS Naval Postgraduate School
6c ADDRESS XCitv. State. and ZIP Code) 7b. ADDRESS (City, State. and ZIP Code)

\lonterev. C'A 9394:3 Monterey, CA 93943

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c ADDRESS (Cityv, State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11, TITLE (Include Security Classification)

INCREMENTAL ON-LINE TYPE INFERENCE
12. PERSONAL AUTHOR(S)

Robinson, Thomas Lewis
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Master's Thesis FROM 06/93 TO 03 94 .I March 1994 67
16. SUPPLEMENTARY NOTATION The views expressed in this thesis are tiiose of the author and do not reflect the

official policy or position of the Department of Defense or the United States Government.
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP I SUB-GROUP Software, On-line Type Inference, Interactive Programming Environments.

I ~ II
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Type inference in interactive programming environments falls short in two respects. The ability to type
check definitions one at a time, and to type check some definitions but not all after one definition is modified
is called incremental on-line type inference. Current interactive programming environments perform batch type
inference and require extensive type recomputation for small changes.

We give an algorithm for on-line type inference that is implemented as an attribute grammar. From this
grammar an editor was automatically generated that performs on-line type inference.

The editor infers types incrementally due to a well-known reduction we used from Hindley-Milner type infer-
ence to first-order unification. Unlike other efforts, our algorithm for on-line type inference is truly incremental.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
E0 UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0ODTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Laclude Area Code) 22c. OFFICE SYMBOL
Dennis M. Volpano (408) 656-3091 1 CSVo

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions awe obsolete UNCLASSIFIED
i

Approved for public release; distribution is unlimited.

INCREMENTAL ON-LINE TYPE INFERENCE

by

Thomas Lewis Robinson
Lieutenant, United States Navy

B.A., University of Colorado, Boulder, 1987

Submitted in partial fulfillment of the
requirements for the degrees of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March, 1994

Author: .
Thomas L. Robinson

Approved By: ~ ~ ~ ~ //
Dennis M. Volpano, The s

Timothy Shimeall, Second Reader

Ted Lewis, Chairman,
Department of Computer Science

ii

ABSTRACT

Type inference in interactive programming environments falls short in two re-

spects. The ability to type check definitions one at a time, and to type check some

definitions but not all after one definition is modified is called incremental on-line

type inference. Current interactive programming environments perform batch type

inference and require extensive type recomputation for small changes.

We give an algorithm for on-line type inference that is implemented as an at-

tribute grammar. From this grammar an editor was automatically generated that

performs on-line type inference.

The editor infers types incrementally due to a well-known reduction we used

from Hindley-Milner type inference to first-order unification. Unlike other efforts,

our algorithm for on-line type inference is truly incremental.

A*oession 10?

OTIS GRA&I
DTIC TA 033
Unarlc,1jcd 0e

J ,..: Icd 3a o

By

Distribut'lon/

Availability (odoS

kAva il
or

Dist Special

111

TABLE OF CONTENTS

I. INTRODUCTION I

II. THE HINDLEY-MILNER TYPE SYSTEM 4

A. THE SIMPLY-TYPED LAMBDA CALCULUS 4

B. HINDLEY-MILNER TYPE SYSTEM5

C. THE RULES OF DAMAS AND MILNER 11

D. ALGORITHM W 12

III. ON-LINE TYPE INFERENCE WITH UPDATE 14

A. ON-LINE TYPE INFERENCE 15

B. UPDATE 21

IV. ON-LINE TYPE INFERENCE THROUGH ATTRIBUTION . 24

A. ATTRIBUTE GRAMMARS 24

B. A CIRCULAR ATTRIBUTION FOR ON-LINE TYPE INFERENCE 27

V. AN INCREMENTAL ALGORITHM FOR ON-LINE TYPE IN-

FEREN CE 33

A. THE INCREMENTAL ALGORITHM 33

B. REDUCTION 37

C. THE SYNTHESIZER GENERATOR 43

VI. RELATED WORK AND CONCLUSIONS 53

A. RELATED WORK 54

B. FUTURE WORK 54

LIST OF REFERENCES 56

INITIAL DISTRIBUTION LIST 58

iv

LIST OF FIGURES

2.1 Expressions in the Hindley-Milner type system 6

2.2 The Rules of the Hindley-Milner type system 11

4.1 Productions for the calculator grammar 26

4.2 Semantic definitions for the productions in Figure 4.1. 26

4.3 Attributed parse tree for the expression 3 + 7 27

4.4 CFG for the on-line type inference system 28

4.5 Semantic definitions for the grammar in Figure 4.4 28

4.6 A circular attribution for on-line type inference 29

4.7 The parse tree for a = Ax.z and b = a 30

4.8 Semantic equations for program in Figure 4.7 31

4.9 Type environments ordered by set inclusion 32

5.1 Dependency partial order 34

5.2 Direct and transitive dependency for (j, i) 35

5.3 Algorithm E , to generate the type equations for an expression. ... 37

5.4 Free identifier in a let-bound definition 39

5.5 Algorithm L, lifts the let expressions from the definitions40

5.6 The initial view of the syntax directed editor 46

5.7 The view when the context def list is selected 47

5.8 The view when the cursor is placed in the first definition 47

5.9 The view after the context def is selected. 48

5.10 The view when the definition is named g 48

5.11 The context fun has been selected and the place holders for a A ex-

pression have been inserted 49

v

5.12 The identifier for the A abstraction has been entered and the context

has been moved to the expression 49

5.13 A second A abstraction is entered 50

35.14 The identifier for the second A abstraction has been entered and the

context has been moved to the expression 50

5.15 The rest of the definition g has been entered 51

5.16 The definition for the conditional cond has been entered 51

5.17 A definition for f has been entered and g 's type has changed. . . .52

5.18 The definition for f has been changed causing g to be retyped resulting

in a type error for g 52

vi

ACKNOWLEDGMENTS

I would like to thank Dr. Dennis Volpano for his infinite patience and guidance.

His assistance, encouragement, and insight both academically and personally gave

me a perspective, I would not otherwise have gleaned, and am eternally grateful for.

I would also like to thank Dr. Timothy Shimeall for his help in reviewing this

thesis.

I would like to express my gratitude to my family for their support. To my

wife, Sally; for her encouragement, industrious nature, and peaceful spirit. To my

children; for reminding me of the most important issues of life.

Finally, I would like to thank Jonathan Hartman, wherever he may be, for his

superbly documented IATEX style files and examples that made the idiosyncrasies of

the Naval Postgraduate School thesis format requirements tolerable.

vii

I. INTRODUCTION

Interactive programming environments can significantly improve resource uti-

lization and programmer productivity. Current interactive programming environ-

ments, however, have not completely resolved some critical issues and consequently

typically offer limited support for the programmer. Programming environments of

the future will need to offer much more in the way of language-based support, such

as type checking. A language-based editor ought to detect and report type errors as

they occur. The traditional edit-compile-debug-run environment can require hun-

dreds or even thousands of lines of code to be recompiled for something as trivial as

a missing semicolon. The problem is that the environment in which the program is

created typically knows very little about the language being used. It is only when

the program is passed to the compiler that the programmer receives any feedback.

An interactive programming environment integrates many of the separate as-

pects of current programming environments. Type checking in an interactive pro-

gramming environment is on-line in the sense that definitions may be type checked

one at a time as they are entered into the system. On-line type checking will pro-

vide the programmer immediate feedback. This means that at any stage of program

development the interactive environment will provide feedback about the type cor-

rectness of the program even if the program is only partially complete. Consider the

following partial definition for a function that computes the length of a list given in

Standard ML [Ref. 11] notation:

fun length 1 =

case 1 of
] => <exp>

I <pat> => <exp>

In the notation for Standard ML ""]" is the empty list. The definition for length is

not complete (the incomplete term for a pattern is denoted by <pat> and the un-

specified expressions are denoted by <exp>), yet we may still derive a type according

to the rules discussed in Chapter II and given in [Ref. 8]. The type we can derive

is Va.V3.listn -- 3. This notation is the standard notation found in [Ref. 8] and is

discussed in more detail in Chapter II.

Interactive programming environments exist that perform limited type checking

but they are not on-line. For a pair or set of mutually recursive definitions, the

programmer must explicitly provide all the definitions of the mutually recursive set.

otherwise an error results. This is because environments such as Standard ML use

an extension of Damas and Milner's algorithm W [Ref. 8], that is an algorithm

for the batch type checking problem. A batch type checker reports an error upon

detecting an unbound identifier. A unbound identifier is one for which no definition

is provided. The problem is that all the definitions in the sequence must be supplied

otherwise the batch type checker complains about the unbound identifiers.

Type checking in an interactive programming environment is an on-line problem

vice a batch problem. Definitions are type checked one at a time and the type checker

must not object to undefined free identifiers. Rather, when a definition is provided

the type checker must ensure that the definition is used correctly. Consider again

the definition for length given above. We can fill in some of the missing information.

fun length 1
case 1 of

-> =0

I <pat> => <exp>

Now we can type the definition of length Vct.list at -+ int. As we shall see later, this

type implies length will accept a list of elements of any type as input and return the

2

length of the list. This type can be determined even though the definition is not

complete.

We complete the definition for length so that we have:

fun length 1 =
case 1 of

[J => 0
I (h::t) => I + (length t)

In Standard ML the notation (h::t) means the concatenation of the head and tail of a

list. Completing the definition, however, does not provide any more type information

for length and we are left with Va.list a --+ int for the principal type of length.

"We propose an extension of W for on-line type checking. (In this thesis

type checking and type inference are used synonymously.) The model we use is

a consistently-attributed parse tree specified by an attribute-grammar. Implicit in

the model is incremental recomputation of types. In addition, recomputing a type

can be reduced to reunification using a well-known reduction from Hindley-Milner

style type checking to first-order unification. Unlike other extensions of W [Ref. 13],

for on-line type checking, our on-line type checker is truly incremental.

3

II. THE HINDLEY-MILNER TYPE SYSTEM

In this chapter we review the history and basis for our type system. In Section A

we describe the simply-typed lambda calculus. In Section B we describe the Hindley-

Mlilner type system and the grammar for the expressions typed in their type system.

We will also describe parametric polymorphism and look at an example that shows

how polymorphic functions are useful. In Section C we look at the type inference

rules of the Damas and Milner type system. In Section D ve review Damas and

Milner's algorithm W which infers a type for an expression of the grammar given in

Section B. This chapter puts the thesis contribution in the context of other work,

namely the simply-typed lambda calculus, the Hindley-Milner type system, and the

polymorphic lambda calculus.

A. THE SIMPLY-TYPED LAMBDA CALCULUS

The simply-typed lambda calculus has types: r ::= p I rl --+ r2 . Small greek

letters are used to represent type variables (type variables have values that range over

all named and anonymous types definable in a language.) We will use the standard

notation x : o to mean that the expression x has type a. In this type system we

can infer the types of lambda expressions such as: Ax.x : a --- a. We can also type

more complex expressions such as: (Ax.x) Ax.x : --- 03.

In the simply-typed lambda calculus, however, we would be unable to type the

expression, (Ay.y y) Ax.x. The simply-typed lambda calculus fails to infer a type for

this expression because A in the simply-typed lambda calculus exhibits monomorphic

abstraction. This means that each instance of y in (y y) must have the same type.

In order to type (Ay.y y) Ax.x, we must be able to instantiate a unique type for

4

each instance of y in (y y). The simply-typed lambda calculus, however, fails in

this regard. But the expression (Ay.y y) Ax.z reduces to the equivalent expression

(Ax.x) Ax.x. We have already seen that this expression can be given the type 3 -. 3.

So we have two expressions that are equivalent but only one may be typed in the

simply-typed lambda calculus.

B. HINDLEY-MILNER TYPE SYSTEM

The Hindley-Milner type system extends the types of the simply-typed lambda

calculus with type schemes (quantified expressions of type variables), so now in

addition to 7 types we also have type schemes. The complete type system is:

r ::= p1Ti7T 2

a Va.af

The Hindley-Milner type system is able to infer a more general type than tho simply-

typed lambda calculus. In the Hindley-Milner type system, for example, we can infer

a more general type for the identity function: Ax.x : Va.a -- a.

The Hindley-Milner type system, however, still fails to infer a type for the

expression (Ay.y y) Ax.x, because of the limitation of monomorphic lambda abstrac-

tion. But the Hindley-Milner type system provides the let expression, that allows

the equivalent expression: let y = Ax.: in y y ni, to be correctly typed. Let in the

Hindley-Milner type system exhibits polymorphism and, using their type system, we

can infer the correct type: Va.a --+ a, for the expression let y = Ax.x in y y ni.

This is better than the simply-typed lambda calculus in which we could not type the

expression (Ay.y y)Ax.x at all.

In order to type the expression (Ay.y y) Ax.x we need a polymorphic lambda

calculus, which is beyond the scope of this thesis. A polymorphic lambda calculus

is a second order calculus that would allow a type for each instance of y in (y y) to

be instantiated uniquely.

5

e X

e e'
I Ax.e
I letz=eine' ni

Figure 2.1: Expressions in the Hindley-Milner type system.

The Hindley-Milner type system will infer a type for a single expression. The

grammar for expressions in the Hindley-Milner type system, shown in Figure 2.1, is

the lambda calculus with the addition of let expressions. Some authors include an

additional production to the ones given in Figure 2.1, e --+ c, where c is a constant

such as true, false, 1, 2, This production is just a special case of e -e x and we

will use just the production e --+ z where x can be an identifier or a constant such

as true, false, 1, 2,.

Lambda abstraction Ax.x is the identity function. By definition, this function

applied to any argument simply returns the argument. So that if we applied Ax.x

to true we would get true, and if we applied Ax.x to 1 we would get 1. In the

Hindley-Milner type system we are able to infer a much more general type for this

expression. We can now say, Ax.z has type Va.a --- a, which is more general than

-3 in the sense that a can be instantiated to any type.

We can also define more complicated expressions built up from basic expressions.

For instance, we can define a function first = Ax.A..x, which will take as input a

pair and return the first element of the pair, so if it were applied to (1 2) it would

return 1. Actually the lambda calculus is curried, which means functions can only

be applied to a single argument. So the definition we have given for first actually

takes as input the first element of a pair and returns a function that takes as input

the second element of a pair. For this function, the value returned would be the first

element of the two input elements.

6

Similarly we could define a function that returns the second element of a pair:

Ax.Ay.y, which will take as input a pair and return the second element of the pair,

so if it were applied to (1 2) it would return 2.

A conditional expression can similarly be defined:

Cond = Ax.Ay.Az.z x y,

and if we also define True which is defined the same as first,

True = Ax.Ay.x,

then we could apply

Cond 1 2 True,

where we mean:

((((Ax.Ay.Az.z x y) 1) 2) True).

The parentheses have been added to emphasize the fact that the lambda calculus is

curried and the A abstraction can only be applied to one argument. The order in

which this may be reduced is:

(((Ay.Az.z 1 y) 2) True),

where the bound occurrence of x has been replaced by 1. Next we may perform the

following reduction:

((Az.z 1 2) True),

where y has been replaced by 2. Finally we can reduce the expression to:

((True 1) 2),

where z has been replaced by True. This can also be reduced as follows:

((True 1) 2)
(((Az.Ay.z) 1) 2)
((Ay.1) 2)

--, 1

7

This reduction gives us the expected result. Recall the original expression was

Cond 1 2 True. If this were expressed as the equivalent If true then I else 2 fi we

would see the expected result immediately. Since true is always true we get I from

the then branch of the conditional expression just as we would expect.

Polymorphism in the Hindley-Milner type system is called parametric polymor-

phism. Functions that operate on parameters of different types are polymorphic.

Suppose that we could define a function length that returns the length of a list of

any type. We can say length has type Va.list a --+ int adn therefore is polymorphic.

It returns the length of any list. [Ref. 1: pg. 364]

Aho, Sethi, and Ullman claim Ada is polymorphic, albeit a restricted poly-

morphism. It is worth taking a look at an example of what might be considered a

polymorphic Ada module. Their claim is that generics in Ada are polymorphic. In

this context generic is an Ada reserved word. It is true that an Ada generic module

may be compiled without complete type specifications. In order to use such a func-

tion, however, the generic module must be instantiated at run-tinm. The generic

module must be instantiated for each type of list that uses the function length. Thus

at run-time, an instance of the generic module will exist for every type for which the

module has been instantiated and each module will be monomorphic. [Ref. 1: pg.

364]

Let's look at an Ada specification for a generic function length, that will return

the length of a linked-list of any type.

generic
type list is private;
with function Next (e: list) return list;
with function Empty (e: list) return boolean;

function length (1: list) return positive;

8

We must also provide a body for the function.

function length (1: list) return positive is
len: positive :- 0;

lptr : list := 1;
begin

while not Empty(lptr) loop
len : len + 1;
lptr : Next(lptr);

end loop;
return len;

end length;

This comprises a complete compilation unit in Ada. A bit more work is requirec

to use the function length in a program. If we look at the specification for the

generic function we see that three parameters are required. First, we must know

how to access the elements of the list so we need a pointer to a list element which

should contain a field with a pointer to another list element and to be useful at least

one data field. The second and third parameters are functions which are required

to manipulate the type of list we have specified in the first parameter. Since this

is a generic module we have to explicitly provide these functions when the generic

function is instantiated for a specific list type. For each type of list that uses the

generic function length, a separate instantiation is required. Each instantiation

requires separate code for the specific list type.

At compile time the generic function length could be given type Va.lista - int

that leads one to believe generics in Ada may be polymorphic. At run-time, however,

each instance of length can only have type listr --+ int for some particular r. The

fact that at run-time there exists an instance of the function length for every type

for which the generic function length has been instantiated means that generics in

Ada are not polymorphic, and in fact Ada is monomorphic.

In Standard ML a function that finds the length of a list can be written that is

polymorphic.

9

fun length 1 =
case 1 of

[) => 0
I (h::t) I> 1 + (length t)

Length in Standard ML could also be typed Va.list a -+ int and this would hold

true at run-time as well [Ref. 1: pg. 365).

In the Hindley-Milner grammar the let expression provides let polymorphism.

If e is polymorphic then in the expression let x = e in e' ni, every free occurrence of

x in e' can be assigned an instance of the type of e. This implies that each occurrence

of x in e' may have a different type depending on how each occurrence of x is used

in e'.

Different strategies have been proposed for typing let expressions. Damas and

Milner's algorithm W handles let expressions by typing the definition of the let-

bound id and then typing the body of the let expression in an environment that

includes a generic type for the let-bound id. Here we are using the term generic to

refer to a type that may be instantiated and not a generic unit in Ada. See [Ref. 4]

for more about generic types.

Another strategy is to replace every occurrence of the let-bound id in the body

of the let expression with the definition of the let-bound id. This strategy has a

disadvantage. If the let-bound id does not occur in the body of the let expression

then the replacement will not occur. Consequently during type analysis the definition

of the let-bound id will never be processed. This would allow type errors in the body

of the let-bound id's definition to go undetected. This is unacceptable under strict

semantics for let expressions.

10

TAUT: AI-x:t ar:ainA

INST: Ao -e :oA I-e : ar r

GEN: A4 - e: a a not free in A

COMB: A -e:r'- r A -T:r
A I- (e e') :

A. UI:r'} e:r
ABS: A (Ax.e) : r' --* r

A L- e: a AzU{fx: a) H- e': r
LET: A - (let x = e in e'ni): r

Figure 2.2: The Rules of the Hindley-Milner type system.

C. THE RULES OF DAMAS AND MILNER

The notation used in this paper is that used in [Ref. 8]. Briefly, A is a set of

assumptions for which the following holds true: A contains at most one assumption

about each identifier x, and A. is the set of assumptions with no assumption for x.

We use the notation x : o, to mean that z has the type a. Also we use the following

notation to mean, from the set of assumptions A we can infer type a, where or is a

type scheme, for an expression e: A I- e : a. Also, for a and /, type variables and

r a type scheme: [#3j/a]1" means to replace all free occurrences of the ai's in r with

the 03's. Damas and Milner provided the rules shown in Figure 2.2 for type inference

[Ref. 81.

11

D. ALGORITHM W

Damas and Milner gave the following algorithm for typing a single expression

of the grammar given in Figure 2.1 with respect to an initial assumption set A. W

returns a substitution S and a type variable r [Ref. 8].

W(.4. 0) = (S. r) where

1. If e is x and there is an assumption x : Val... 0, 7' in A then S = Id and

r = [3,/aj]' where the 3,'s are new.

2. If e is (el e2) then let W(A,el) = (Sl,rl) and W(SIA,e 2) = (S 2 ,r 2) and

U(S 2rl, r2 , 3) = V where 3 is new; then S = VS 2S1 and r = V3.

3. If c is Ax.el then let 3 be a new type variable and W(A, Ux : 3.el) = (S= , 71);

then S = S, and T = S, 3 --+ 71.

4. If e is let z = el in e2 ni, then let W(A, el) = (Sl,rl) and W(A, el) = (Sl, r1)

and W(S 1 AU{x: 1A(r 1)}, e2) = (S 2, T2); then S = S2S, and r = 72.

The substitution S = [O3/ail returned by W must be applied to the type variable

r, and the resulting r type must closed with respect to the initial set of assumptions

A. The result is a type scheme for the expression.

W infers the type for a single expression. There is no implicit mechanism to

deal with top-level definitions. Any extension of W to a "program" must be done

explicitly.

1. Most General Unifier

Damas and Milner's algorithm W uses Robinson's unification algorithm.

The unification algorithm U has the following property: If U(r, r') returns V, then

V unifies r and r', i.e., Vr = Vr'. Also, if S unifies r and r', then U(T, r') returns

12

some V and there is another substitution R such that S = RV. V involves only

variables in r and r' [Ref. 8: pg. 210].

The substitution V that we are interested in. is the most general unifier,

that imposes the fewest constraints on the variables in the expression [Ref. 1 : pg.

:370].

2. Principle Type Scheme

It' infers a principal type scheme for an expression. This implies that

any other type scheme for the expression is a generic instance of the principal type

scheme. This is dependent on the unification algorithm returning the most general

unifier [Ref. 8: pg. 208].

13

III. ON-LINE TYPE INFERENCE WITH
UPDATE

In this chapter we will look at the two key elements of a type checker for an

interactive programming environment. First, we look at what makes the type checker

on-line. Second, we look at the effect of an update which affords us an opportunity

to perform type checking incrementally.

Interactive programming environments would provide much greater leverage

to the programmer if the environment had the ability to perform type checking as

definitions are input to the system, one definition at a time, rather than waiting

until a series of definitions is complete and then analyzing them for type errors.

Additionally, given a sequence of definitions that have already been built up in an

interactive environment, a small change to one definition should not cause the entire

sequence to be retyped unnecessarily. If the system is well designed it should be able

to use as much information from previous typings and limit recomputation.

There are two issues involved. The first is what we refer to as on-line type

inference. Secondly, we are concerned with the semantics of what an update to a

sequence of definitions means for the entire sequence.

Consider defining a function g that uses a function f such that g is free in E.

If we encode this in Standard ML using let as

let val f a fn ... in
let val g a fn ... f... in E
end

end

14

then we must pay attention to the dependency. The definitions of f and g are

sequenced. However. Standard ML does provide simultaneous declarations so we

could write it as a simultaneous declaration where g is defined first:

fun go = f
and fo) =
E

But now suppose h is also free in the definition of g. If we don't include a definition

for h as well in the simultaneous declaration, then the Standard ML interpreter

complains that h is an unbound variable or constructor when in fact the interpreter

could very well infer a type for f.

The problem is that simultaneous declarations in Standard ML and letrec defi-

nitions in Scheme are typed in batch mode. That is, all definitions must be supplied

before a type is inferred for any one of the defined functions. Clearly this is unde-

sirable in a programming environment where definitions are typically given in any

order and the need for type analysis begins before all definitions of objects compris-

ing a system or even a subsystem are present. The problem at hand then is what we

call on-line type inference. We are proposing a programming environment in which

definitions can be made in any order and are continuously type-checked.

A. ON-LINE TYPE INFERENCE

Type checking definitions, one at a time, is called on-line type checking. If a

definition, g has been provided and we have inferred a type for g, then when we

infer a type for f in which g occurs free, we will use an instantiation of the type of

g to infer a type for f. However, if no definition has been provided for g and we are

inferring a type for f in which g occurs free then we can give g an instantiation of

Va.a as necessary in f. This assumption can take place without restricting the type

of f or g, nor any loss of generality. This implies that meaningful type analysis may

15

take place at any time, and not just when a program or sequence of definitions is

complete. This also means that if g occurs more than once in f, each occurrence may

be typed uniquely because the generic type Va.a can be instantiated as necessary

depending on how g is used in f.

We propose an environment that will infer a type for a definition that may

contain free identifiers and may possibly be incomplete. Those free identifiers may

be defined and thus may have an associated type. In the case of a partial definition

missing elements will be represented by a place holder. Thus the expression will

be complete in the context where place holders are :onsidered valid terms. If a

definition f contains free identifiers whose types are not known or is incomplete, we

may still be able to infer a type for f. We will assume that an undefined identifier has

the most general type Va.a. This can be done without loss of generality, restricting

the type of any free identifier nor imposing any constraints on the type of a term

containing place holders. If f contains a free identifier g that has not been defined.

a type may still be inferred for f. If later a definition is provided for g, then the type

of f is updated reflecting any changes imposed by the type of g.

We could extend the grammar given in Chapter II for expressions to include

place holders:
e < expression >

e el

I Ax.e
I let x = e in e' ni

The production e -- < expression > denotes a place holder for an undefined or

partial expression. This change appears minor, but if we allow such expressions in

the grammar and are still able to infer a type for the expression then we can infer

types for partial definitions.

Recursive definitions are handled using the fixed point combinator Y [Ref. 2: pg.

164]. The fixed point combinator Y has the property that for an expression M,

16

YM = M(YM). This allows recursive and mutually recursive definitions to be

typed, but forces the user to use the fixed point combinator Y.

To demonstrate the handling of mutual recursion, consider defining the func-

tions even and odd. Using the grammar for expressions given above where we use

the notation if z x y for the conditional, we first define a function pair:

pair = Ax.Ay.Az.z x y

Next we define functions first and second:

first = Ax.Ay.x

second = Ax.Ay.y

Now we must provide a definition for the fixed point combinator Y:

Y = Af.(Ax.f(x x))(Ax.f(x x))

Y has the property that (YM) for some function M is M (YM). Finally, we must

define a tuple for even and odd:

P = (Y(Ax.((pair

(An.(if (= n 0) true ((x second)(- n 1)))))

(An.(if (= n 0) false ((x first)(- n 1)))))))

Now we can define even as P applied to first and odd as P applied to second.

even = (P first)

odd = (P second)

17

Let's look at an example: First, let's rewrite P to make it easier to read:

P = (YM)

where

-l = (Ax.((pair

(An.(if (= n O) true ((x second)(- n 1)))))

(An.(if (=n O) false ((x first)(- n 1))))))

Now we can apply even to a number:

(even 2)

-- ((P first) 2)

-- (((YM) first) 2)

(((M (YM)) first) 2)

((((Ax.((pair

(An.(if (=n 0) true ((x second)(- n 1)))))

(An.(if (= n 0) false ((x first)(- n 1))))))

(YM)) first) 2)

-- ((((pair

(An.(if (= n 0) true (((YM) second)(- n 1)))))

(An.(if (- n 0) false (((YM) first)(- n 1))))))

first) 2)

S((An.(if (= n 0) true (((YM) second)(- n 1)))) 2)

-- (((YM) second) 1)

-. (((M(YM)) second) 1)

-- ((Ax.((pair

(An.(if (- n 0) true ((x second)(- n 1)))))

(An.(if (= n 0) false ((x first)(- n 1))))))

18

(YM)) second) 1)

S((((pair

(An.(if (= n 0) true (((YM) second)(- n 1)))))

(An.(if (= n 0) false (((YM) first)(- n 1))))))

second) 1)

((An.(if (= n 0) false (((Y'M) first)(- n 1))))1)

(((YM) first) 0)

-- (((M (Y.1)) first) 0)

-- ((((Ax.((pair

(An.(if (= n 0) true ((x second)(- n 1)))))

(An.(if (= n 0) false ((x first)(- n 1))))))

(YM)) first) 0)

-- ((((pair

(An.(if (= n 0) true (((YM) second)(- n 1)))))

(An.(if (= n 0) false (((YM) first)(- n 1))))))

first) 0)

-((An.(if (= n 0) true (((YM) second)(- n 1)))) 0)

-(true)

As expected, even applied to 2 returns true.

In our type system the definitions we type are partially ordered. Ordered defi-

nitions and mutual recursion would normally cause a problem. We have a solution,

however, which is to use the fixed point combinator Y and tuples. The brief exam-

ple we just looked at demonstrates how a system can implement mutually recursive

definitions with a tuple and the fixed point combinator Y. Since we can define mu-

tually recursive definitions using a tuple and Y, the definitions given in a program

are partially ordered.

19

In an off-line or batch type system, no definition may contain undefined free

identifiers, otherwise an error results. Standard ML is an off-line type inference

system. In our system, definitions may have undefined free identifiers and the order

those definitions are entered is irrelevant. Additionally a definition may not even be

complete but contain place holders for expressions and the type inference system will

still return a valid type if one exists. Suppose we entered the following definition:

foo = A< identifier > . < exp >.

The place holders for an identifier and expression indicate we have not completely

specified the definition of foo, however, we can still infer a type for foo: Va.V3.(a

3). Type analysis takes place with no restrictions imposed by the place holders and

we can infer the most general type for the expression.

Damas and Milner's algorithm W infers a type for a single expression. We

would like to have the ability to type a series of named expressions or a "program.-

A named expression is simply a definition. Typing expressions one at a time allows

programs to be develop in an incremental top-down fashion. This is not so easy to

do in batch systems since a free identifier for which no definition has been provided

causes an error. A batch system forces bottom-up development where all definitions

must be defined before being referenced. For example, defining g and then f in

terms of g should be the same as defining f in terms of g and then defining g. In an

imperative language such as Ada, if we define f in terms of g but have not already

defined g, nor provided a specification for g, during compilation we will get an error.

Ada requires that either g be defined or a specification be provided prior to its use.

Either way, this forces the programmer to worry about how function definitions are

ordered when in fact ordering functions at the same nesting depth is irrelevant to

the meaning of the program.

20

B. UPDATE

In an interactive programming environment there is a unique problem when

we have a sequence of definitions and we update or modify one of the definitions.

The effects of an update varies among languages. There are at least four possible

interpretations for updating a sequence of definitions [Ref. 9].

1. An update to a definition supersedes the original definition and is used in all

subsequent references to the definition but does not change definitions prior to

the new (updated) definition. This is ML's interpretation.

2. An update to a definition is an augment to a partially defined definition and is

incorporated in all subsequent references to the definition but does not change

definitions prior to the new (updated) definition.

3. An update to a definition supersedes the original definition and all references

both prior and subsequent to the new (updated) definition are changed. This

is the behavior we desire.

4. An update to a definition augments the original definition and all references to

the definition both prior and subsequent to the new (updated) definition are

changed. This is Prolog's interpretation.

Standard ML's interpretation requires that the user re-enter any definition that

depends on the modified definition if the effect of the modification should be propa-

gated. For example, in Standard ML if we have a definition f and then a definition

g which references f, and then update the definition of f so now we have f', the

reference to f in g is not changed, and consequently g is not changed either. This is

not desirable because if there are many other definitions besides 9 which reference f

and we want them all to refer to the new definition f', then every d- 'ition in which

21

f occurs free that we want to reference the new definition f' must be re-entered

after the new definition for f'. A better solution would be to have an environment

that allows a user "to go back" and modify the original definition. In this sense a

syntax-directed editor provides the logical framework in which to allow updates to

be made directly to the original text. Update will now replace the original definition

and all references to the definition will refer to the new definition.

Typically for environments like Prolog, Scheme, and Standard ML a file is

loaded and the entire file is interpreted and any type errors are reported at that

time. If a definition is to be changed then the file is edited, loaded, and processed.

So even if the change was small and, only a few definitions needed to be processed,

the rest of the definitions in the file are processed unnecessarily. The problem is how

to handle small changes to a large set of definitions with the minimum amount of

work [Ref. 10].

There are two issues that determine the incremental aspects of an update. First,

if we can preserve information when we type a definition we can reduce the amount

of work that is necessary to recompute the type of that definition. Assume we have

a definition f in which g occurs free. A type may already have been inferred for f

when a modification to g necessitates that f have its type reinferred. If we use as

much information as possible from the earlier typing of f when its type is reinferred

then we can type f incrementally.

Second, if the dependencies are carefully observed only those definitions that

depend on a modified definition or whose type changes as a result of a modification,

must be retyped. It is possible to partially order the definitions because we have the

fixed point combinator Y to handle recursive and mutually recursive definitions. We

can represent the dependencies as a pair (f, g), that means f depends on g. If we

have a sequence of definitions with the following dependencies, {(f,g), (f, h), (h, i)}

and f were modified, only f would need to have its type inferred. If i were modified

22

then types would need to be inferred for f, h, and i, but not g. So, by observing the

dependencies we can limit the amount of work needed to infer types for the sequence

of definitions.

Since we have an environment that allows the programmer to edit the original

definition there is no question what a reference to a modified definition should be.

The original definition no longer exists so any reference must be to the new updated

definition. This is even more important in an on-line environment where definitions

may be entered in any order. In f a reference to g may refer to a definition either

above or below f in the parse tree. The ordering does not matter in the on-line

environment. So if f references g and g is modified yielding g' the reference in f is

clearly to g'.

23

IV. ON-LINE TYPE INFERENCE THROUGH
ATTRIBUTION

In this chapter we look at a special class of grammars called attribute grammars

and provide an attributed grammar for on-line type inference. The attribution is

circular but nonetheless is an on-line type inference algorithm. In Section A we

look at attribute grammars in general and provide the semantics for the attribute

equations of an attributed grammar. In Section B we will look at a circular set of

attribute equations for on-line type inference and discuss the meaning of such a set

of attribut, equations.

A. ATTRIBUTE GRAMMARS

A context-free grammar (CFG) is a tuple, G = (N, E, S, P) where N is a set

of symbols, E is a set of terminals, S E N is the start symbol, and P is a set

of productions. This formalization can be easily extended to allow the symbols in

(N U E) to have values. This extension is a special class of grammars called Attribute

Grammars (AGs). The names of values associated with a symbol in a grammar

are called attributes. The attributes for a grammar's symbols can be divided into

two categories: inherited and synthesized. Inherited attributes can be calculated

from parent's and sibling's attributes. Synthesized attributes can be calculated from

children's attributes and other attributes at the same node. The equations from

which an attribute's value is determined are called attribute equations. [Ref. 1: pg.

280]

Formally, an attribute grammar can be expressed as a 5-tuple [Ref. 7]:

A G = (G, A, VAL, SD, SC).

24

G is a context-free grammar that we just discussed. A is a set of attributes such

that each attribute a E A ranges over a domain of values denoted by Dom(a). VAL

is the set of values that an attribute a can assume,

VAL = {Dom(a) I a E A}.

Each attribute is associated with a symbol of (N U E). If X is a symbol of G then

the attributes of X are denoted by:

A= {X.a I a E A}.

For each occurrence X, of a symbol X in a production p there is an attribute instance

X,.a for all a E A.. For each production p, the set of all attribute instances is:

Ap = {X,.a I a E A, and X, E p}.

A is partitioned into two disjoint sets AI and AS, the inherited and synthesized

attributes respectively. The inherited attributes of the start symbol must be null,

AIs = 0. The synthesized attributes of the terminal symbols must also be null,

ASx = 0 if X E E.

SD is the set of semantic definitions for the productions of P.

SD = {SDp I p E P}.

A semantic definition defines the value of an attribute instance in AP. The value

depends only on other attribute instances in Ap. There can be only one such semantic

definition that assigns a value to an attribute a in Ap. Given a semantic definition

f : Dom(bo) x ... x Dom(bk) --+ Dom(a), then (X i .a = f(Xo.bo,...,Xk.bk)) E SDP.

Thus, semantic definitions are local to a particular production p E P.

SC is the set of semantic conditions (predicates). There is one semantic condi-

tion for each production p E P.

SCp E Dom(bo) x ... x Dom(bk) --+ BOOL, bj E Ap.

25

P= E - E+F
I E-F
IF

F--!

Figure 4.1: Productions for the calculator grammar.

Production Semantic Rules

E--E+F Ei.v=E2 .v+F.v
E-. E- F E 1 .v= E2 .v- F.v
E .F E.v = F.v
F -- i F.v = i.lezval

Figure 4.2: Semantic definitions for the productions in Figure 4.1.

A sentence S in L(G) is in L(AG) iff for each use of production p in a derivation of

S, the values of its attribute instances satisfy SC,,.

Consider the following grammar G, where N = {E, F), E = i. S = E, and the

set of productions P is given in Figure 4.1. The grammar defines a calculator for

the + and - operators. This CFG can be attributed so that we have an attributed

grammar AG. First, we let the set of attributes for E and F be {v}, so A = {v}.

The domain for v is the natural numbers so VAL = Z. The semantic definitions

are given in Figure 4.2. In Figure 4.2 the notation E1 refers to the first or leftmost

occurrence of the symbol E in the production. Multiple occurrences are counted left

to right. For example, Ej.v refers to the attribute named v of the first symbol E in

a production. If a term E occurs only once in a production its attributes are simply

denoted E.a.

The parse tree for this grammar can then be decorated with the value of the

expressions such that at each node we store the value of the subtree rooted at that

node. For example, the decorated parse tree for the expression 3 + 7 is given in

26

E(10)
SC(7)

E (F

>3) i
F 7

3

Figure 4.3: Attributed parse tree for the expression 3 + 7.

Figure 4.3. [Ref. 1: pg. 280]

B. A CIRCULAR ATTRIBUTION FOR ON-LINE TYPE
INFERENCE

A special case of an AG is a circular AG (CAG). Non-circular AGs (NCAGs)

have been found useful in a variety of applications. CAGs, however, have generally

not been considered useful, and in fact were considered ill-formed and meaningless

until recently [Ref. 1: pg. 334] and [Ref. 12]. Semantic equations, for a circular

attribution, that employ monotonic operators (over some complete partial order),

define a unique greatest (least) fixed point that may be interpreted as the meaning

of the circular attribution [Ref. 12]. Sagiv et al. also give an algorithm for converting

these CAGs to NCAGs [Ref. 12].

On-line type inference can be characterized as computing the least fixed point

of a set of circular attribute equations. We will provide a CAG that is an on-line type

inference algorithm. The CFG for the language used in our type inference system is

similar to the grammar used in Hindley-Milner style type system.

A set of attribute equations is circular if there is a mutual dependency between

two attributes. When an attribute S.i depends on an attribute S.a and S.a depends

27

T -- P
P - D DPID
D d ld=M
M - Id

MI N
I Ald.N

let/d= MinNni

Figure 4.4: CFG for the on-line type inference system.

Production Semantic Definitions

T -P P.inhTE = 0
P -- D P P1.synTE = D.synTEUP2 .synTE

P 2.inhTE = D.synTE
D.inhTE = P1.inhTE U P2.synTE

P -- D D.inhTE = P.inhTE
P.synTE = D.synTE

D -- Id = M D.synTE = {Id, TypeOf(M, D.inhTE)} U D.inhTE

Figure 4.5: Semantic definitions for the grammar in Figure 4.4.

on S.i, where i is an inherited attribute and a is synthesized, the AG is circular.

The CFG we will use for the on-line type inference problem is given in Figure 4.4.

The set of attributes for this grammar is A = { inh TE, syn TE}. The domain of the

attributes in A are type environments ordered by subset inclusion. The semantic

definitions for the CAG are given in Figure 4.5. There are no semantic conditions

for this CAG, so SC = 0.

The inherited and synthesized type environment attributes in A denoted by

inh TE and synTE respectively are used to pass the inferred type environment up

and down the tree. A type environment maps id's to type schemes. At the node

for each definition a type will be inferred and then added to the type environments

being passed up the tree and down the tree. The attribute equations for the pro-

28

T

LJ

D inh TE syn TE

Figure 4.6: A cirr Iaý attribution for on-line type inference.

duction P --- D P add the type of a definition to the inherited and synthesized type

environment attributes for the symbol P.

The type environment that is inherited at a node D in the production P --+ D P,

consists of the types of all the definitions both above and below the node in the parse

tree. These types are propagated up the tree in P's synthesized type environment

attribute and down the tree in P's inherited type environment attribute.

In the attribute equation for the production D --* Id = M, the function TypeOf

returns the principal type of the expression M with respect to the inherited type

environment D.inhTE. The circularity of this attribution is shown in Figure 4.6.

A trivial program in this language might look like:

a = Ax.x;
b= a;

The parse tree for this program is shown in Figure 4.7. The attribute equations for

29

I I
V ih E ynTE

V2 D inh TE syn TE V3 inh TE syn TESLJ
i -" eA I

a Az.x

v4 D inh TE syn TE

= C

I ILb a

Figure 4.7: The parse tree for a = Axz.x and b = a.

the program shown in Figure 4.7 yield the system of equations in Figure 4.8. The

least fixed point of a circular set of attribute equations such as the ones in Figure 4.8

is a solution to the on-line type inference problem.

A CAG is meaningful if a few conditions are met. By Tarski's theorem if a

system S is such that all the functions f. are monotonic in all their arguments,

and all functions are defined over complete partial orders (CPOs) then a fixed point

exists [Ref. 12: pg. 381. Unlike Sagiv et al. we're interested in the least fixed point.

The system of equations in Figure 4.8 can be shown to meet Tarski's conditions,

as discussed in Sagiv's et al.'s work, and thus has a least fixed point, which is a type

environment providing types for all definitions whose types can be determined in the

input stream. The right hand sides of the equations in Figure 4.8 can be viewed

30

v1.inhTE = 0 (4.1)

vl.synTE = v2.synTE U v3.synTE (4.2)

v2.inhTE = vl.inhTE U v3 .synTE (4.3)

v2.synTE = (a, c --* a) U v2.inhTE (4.4)
v3 .inhTE = v2 .synTE (4.5)

v3 .synTE = v4 .synTE (4.6)

v4.inhTE = v3.inhTE (4.7)

v4.synTE = if (a,r) E v4.inhTE rmthen (4.8)

(b, TypeOf(a, A, v4 .inhTE)) U v4.inhTE
else v4. inh TE

v5.inhTE = v4.synTE (4.9)

Figure 4.8: Semantic equations for program in Figure 4.7

as functions that compute the value of the attribute given in the left hand side of

the equations. Equation 4.1 is trivially monotonic because 0 is a constant function.

Equations 4.2-4.4 are monotonic since, Vx.Vy.Vz. x C y =ý x U z C y U z therefore

the union operator U, is monotonic in both its arguments. Equations 4.5-4.7 and

4.9 are implicitly defined using identity which is monotonic. To show Equation 4.8,

denoted f 4.8, is monotonic we must show that Vx.Vy. z C y =: f 4.8(X) _ f4.s(y)

Suppose x C y. Then

Case I. If (a,T) E z =o f 4.s(x) = xU{(b,7)}, since x C y then (a,r) E y =>

f4.s(y) = yU{(b, r)}

Case II. If (a, r) x =o f 4.8(x) = x. If (a, 'r) E y then f4.8(y) = y U{(b, T)}, and

if (a, -r) ý y then f4.s(y) = y. In either of these two cases, f4.s(x) _ f4.s(y).

The domain of the equations in Figure 4.8 is the power set of the set of all typed

definitions. If our program consists of definitions for a and b, then the powerset

of typed definitions consists of {0, {(a, Tr)}, {(b, nb)}, {(a, ra), (b, rb)} I which can be

ordered by set inclusion. The resulting ordering is a CPO shown in Figure 4.9.

31

(a, r.), (b, Tb))

0

Figure 4.9: Type environments ordered by set inclusion.

We are concerned with the least fixed point. If {(a, a *), (b,a -- a)) is

a solution to the type inference problem for the program a =)x.x: b = a; then

{(a,a .- a), (b,a --. a), (c,a -- a)) is also a solution, meaning it is also a fixed

point but it is not the least fixed point. The set {(a,a -+ a), (b,a --+ a)} is the

least fixed point for the semantic definitions of the program in Figure 4.7.

While we know that the circular attribution given in Figure 4.5 has meaning

and can be shown to have a least fixed point which can be taken to be a solution

to the type inference problem, tools exist for NCAGs. Sagiv et al. have a technique

for transforming CAGs to NCAGs [Ref. 12]. This transformation from a circular

attribution to a non-circular attribution is being investigated.

Another, alternative would be to use Farrow's evaluator generator which is capa-

ble of accepting a circular attribution and generating a fixed-point-finding attribute

evaluator. [Ref. 5]

32

V. AN INCREMENTAL ALGORITHM FOR
ON-LINE TYPE INFERENCE

In this chapter we present an incremental algorithm for on-line type inference

that is an incremental type-checker. It is a syntax directed editor, but can be thought

of as a programming environment. As such, it provides the programmer an envi-

ronment to evaluate the types for definitions of the form val i = e, where val is a

keyword to denote a definition. Identifiers i, denote the name of the definition. The

expressions, denoted by e, have the form we saw in Chapter IV. The definitions all

have top-level scope much like definitions in Standard ML. Unlike Standard ML.

ho-vever, the scope of the definitions in our programming environment is the entire

prog:'am and not only the rest of the program that appears after the definition.

Moreover. the order ,efinitions are entered is irrelevant.

First, we look at an incremental algorithm for on-line type inference. It relies

on a reduction from the Hindley-Milner type system to first-order unification. The

remainder of the chapter is devoted to an example that demonstrates the reduction.

unification and resulting type computations.

A. THE INCREMENTAL ALGORITHM

The algorithm is incremental in two respects. First, if the type of a definition

must be reinferred as much work as possible from the previous typing is used in the

retyping. Second, only those definitions whose types may have changed will have

types reinferred. There are three events that may cause a definition's type to change.

First, when a definition is input to the system. Second, when a definition is modified.

33

2
g h

f

Figure 5.1: Dependency partial order.

Third, when a definition's type changes as a result of a change to the type of another

definition on which it depends.

If a definition f must be retyped as a result of a new type being generated for

a definition g, that occurs free in f, we can retype f incrementally if we can use

some information from the original computation for the type of f. If we observe the

dependencies we can be even more incremental. For example, if we have definitions

f, g, h, i, and dependencies {(f,g), (f, h), (h,i)}, shown in Figure 5.1, where (f,g)

means f depends on g, and then modify the definition of i, we must infer a new type

for i, since it was modified. In addition, if the type of i changes, we will have to infer

new types for those definitions that depend on i. But we have to be careful about

the order in which the definitions are typed after i's type is reinferred. If we modify

the initial set of definitions such that i is free in both h and j, then we have the

dependencies shown in Figure 5.2. Both h and j depend on i, but j also depends on

h. If i is modified then we may need to infer types for f, h, and j, but we must type

h before f and j because of the dependencies (j, h) and (f, h). If we recompute h's

type and it does not change then only j remains to be typed, not f, even though f

transitively depends on i, which was modified.

Before we give the incremental algorithm we must first define some notation.

Let A be a set of type assumptions mapping the given operators to type schemes.

34

",/"h

f j

Figure 5.2: Direct and transitive dependency for (j, i).

The operators in the initial assumption set are cons, hd, t1, nil, and Y. Let G (a

DAG) be the dependency graph for the definitions in the program. Let eqnm and

aM denote the type equations and the type variable respectively, for a term M.

Construction of eqnm and aM is discussed in Section B. We also let TE[v' : a']

mean update type environment TE, so that v' now has type a'. The algorithm uses

function TypeOf defined by

TypeOf(M, TE) = let S = Unify(eqnm, TE) in

close (SaM, TE).

Unify needs a type environment since, as we shall see, eqnM may contain references

to types of other top-level definitions. TypeOf applies the most general unifier of

eqnM, to am and then closes the resulting type giving the principal type for M.

The incremental algorithm is defined below:

Input: A DAG G of definitions, a type environment TE and a vertex v of G.
Output: A type environment.
begin

Affected = {v}
while Affected # 0 do

delete the least element v'E Affected
let a' = TypeOf(M, TE) where v' is defined as term M in

if a' $ a' where v' : a' E TE then
Affected = Affected U{x I (x, v') E edges(G)}

35

TE = TE[v: a]
fi

ni
od

return TE
end

Let R be the dependency relation for a set of definitions S. We must compute

the transitive closure of the dependency relation R. The transitive closure is anti-

symmetric by virtue of the way mutual recursion is handled using the fixed point

combinator Y. Therefore the transitive closure is antisymmetric and transitive, and

thus a partial order say P. We can extend P to a consistent total (linear) order L. We

write the dependency (x, m) as m < z. For a modified definition m let Affected(m)

be the set of affected definitions. Affected(m) 9 S, is defined as {z I (x,m) E P}.

So Affected(m) is the set of all definitions that depend on the modified definition

m. The Affected set is totally ordered by L, so we can recompute the types of each

definition in Affected in the order given by L.

We can take the example from Figure 5.2 and again consider what happens if

i is modified. A total (linear) order for this set of definitions is L = (g,i, h,j,f).

When the incremental algorithm is called, Affected is set to i. Since i is the only

element in Affected it is the least element and is removed from Affected. The type

of i is computed and we will assume the type has changed from the previous type of

i. Affected is updated to include h and j. The type environment TE is also updated

with the new type for i. On the next iteration, Affected is {h,j} and since h < j,

h is the next definition to be retyped. If the type of h has changed, then f would

be added to the Affected set, otherwise only j's type remains to be computed. This

process continues until Affected is empty.

36

E(M,A) =

case M of
Ax.M: let A'= AU{z x-o 0}/ #new var in

let (a, e) = E(M, A') in
(-y, {e} 0U{ = 0 --+ a}) where -y is new

(M N): let (a, el) = E(M, A) in
let (1G, e2) = E(N, A) in

(7, fel)Ufe 2} = --* -y}) -" new

X: if x : V&.r E A then
let r' = [#I3 /acIT where #i's are new in

(-j, {r' = 'y) where -y is new
else

(,, {t = new

Figure 5.3: Algorithm E, to generate the type equations for an expression.

B. REDUCTION

Note that TypeOf uses aM and eqnM produced for a term M. The latter is a

set of type equations corresponding to an instance of first-order unification. This

instance is obtained by a well-known reduction from type inference to unification

[Ref. 14]. The aM is a type variable to which the most general unifier can be applied

to get a principal type for M. The reduction is achieved by algorithm E of Figure 5.3.

It takes a term M and an assumption set A as input and returns a pair (aM, eqnM),

where aM is a type variable and eqnM is an associated set of type equations for M.

The type obtained by closing the application of eqnM's most general unifier to aM

is the principal type of M.

The notation t=, means the type of the definition for x. In E we generate type

equations where t., stands for the type of z. When we unify the equations for a

definition say y in which x occurs free we must instantiate the type of x and replace

each occurrence of ti, in the type equations for y with an instantiation of the type

37

of x. Since the definitions will be partially ordered we know we will have already

typed the definition for z prior to typing the definition for y if z occurs free in y,

thus we will be able to instantiate the type of z for each occurrence of t, in the type

equations of any definition y. each occurrence getting a new instantiation.

The correctness of algorithm E can be stated as follows: Suppose E(M, A) =

(aM, eqnm), where M is a let-free expression, A is a set of type assumptions, aM is

a type variable, and eqnm is a set of type equations. Then S is a unifier of eqnm iff
.4 I- V : Sam.

1. Algorithm L - Lifting Let Expressions

To build the type equations necessary for unification we must first deal

with let expressions. Algorithm E does not handle let expressions. The system

proposed by Wand and O'Keefe also ignores let expressions [Ref. 14]. Cardelli's

system handles let expressions in the same fashion as Damas and Milner [Ref. 41

[Ref. 81. Their strategy, however, is not suitable for an on-line environment. Typing

the let-bound id's definition and then typing the body of the let expression will not

work in an environment with top-level definitions, because a let-bound id's definition

may contain free identifiers. To meet the requirements for being on-line, a let-bound

id's definition would have to be partially ordered, along with the rest of the top level

definitions and typed accordingly.

hi order to handle let expressions we need a different strategy. To construct

the equations necessary for unification, we must lift the let expressions from the terms

of our programs so that all our expressions are let-free.

There are two considerations that determine how let expressions must be

handled. First, we require let expressions to exhibit polymorphism. This requirement

implies that each occurrence of a let-bound id in the body of the let expression is

not restricted to the same type. Each occurrence of a let-bound id may be used

38

val a = let z = y in z 2 ni
val y = Az.z

Figure 5.4: Free identifier in a let-bound definition.

uniquely, and thus may have a unique type associated with it.

Second, we must allow for top-level naming that implies a definition may

contain free identifiers. In the Hindley-Milner type system a type is inferred for a

single expression that may also contain free identifiers, but those free identifiers may

not refer to another top-level expression. A limited form of naming is permitted

in the Hindly-Milner type system using let expressions. Thus in our type system

where a free identifier may occur anywhere in the expression including a let-bound

id's definition, we have to treat let expressions differently.

For example, consider the trivial program fragment in Figure 5.4. There is

a dependency in a on y. We only consider the free identifiers in a when we determine

the dependencies. The let-bound id x is not free in a. But, we must consider any

free identifier in a even in the definition of the let-bound identifier. If we were to

infer a type for the let-bound id z and then type the body of the let expression using

the reduction technique we are proposing then we would have to apply the results

of typing x to the typing of the body of the let expression.

The solution, when we have an expression let x = e in e' ni, is to replace

each occurrence of x in e' with e. This allows us to maintain let polymorphism and

deal with top-level naming. If a let-bound id's definition contains free identifiers,

the substitution of e for x in e' will introduce a free identifier in the body of the let

expression, which we know how to handle, and eliminate the necessity of applying

the results of one typing to another.

This strategy has the disadvantage that if the let-bound id does not occur

in the body of the let expression then the definition of the let-bound id will not be

39

L(exp, env) =

case ezp of
Z: (z, ezp') E env ? ezp': ezp
Azx.M: Ax.L(M)
(M N): (L(M) L(N))
let x = M in N ni: L(N, env[x '-- L(M, env)])
end case

Figure 5.5: Algorithm L, lifts the let expressions from the definitions.

typed. We could get around this limitation by forcing the equations for the definition

of the let-bound id to be included with the equations for the let expression's body

and unified regardless whether id is referenced.

We have an algorithm L shown in Figure 5.5 which simply replaces each

occurrence of a let-bound ld in the body of the let expression with the let-bound

id's definition. L takes as input an expression and an environment which consists of

pairs of let-bound identifiers and their definitions and returns a let-free expression.

The environment is initially empty. The algorithm recursively calls itself until all the

terminal nodes have been reached. When a let expression is encountered a binding

is added to the environment and the body of the let expression is processed using

the new environment.

2. EXAMPLE REDUCTION AND UNIFICATION

In this section we present an example that demonstrates the type checker

in action. We look at the type equations that are generated by E and the final types

for the definitions. The final types are inferred by unifying the equations returned

by E. applying the substitution that is returned by unification, and closing the type.

Suppose we enter the following definition:

g = Ay.Az.cond z nil (f y)

40

In g cond and f are free, and no definition is provided for them yet. Also free in g

is nil which is defined in the initial assumption set and has type Va.lista. E will

return an associated type variable and a set of type equations. In these examples we

will show the sub-expression from which the type equation was generated next to the

type equation. For g, the type variable returned by E is ý, and the type equations

that get generated by E are:

Subexpression Type equation

cond tcond = t (5.1)

z 0 =0 (5.2)

cond z t = 0 -- (5.3)

nil list ?7= (5.4)

(cond z) nil ic=C--, (5.5)

f t 1 =6 (5.6)

Y ai (5.7)

f y b= -Y- (5.8)

((cond z) nil) (f y) A = p (5.9)

Az.((cond z) nil) (f y) v = u- (5.10)

Ay.Az.((cond z) nil) (f y) ý = a -- v (5.11)

Unification of the type equations yields a substitution that when applied to ý and

then closed gives us the type Va.V13.V-f.(a -+ (0 -- y)) for g.

If we continue and provide a definition for cond = Ax.Ay.Az.z x y, E will

return the type variable 3 and the following type equations for cond:

Subexpression Type equation

z f

41

z e

z z 17: -

Y It•

(z:)y ,:t -.I

AY.Az.(z X) Y 6 = -Y

AX.Ay.Az.(z X) Y i : o -- 6

The type of cond is Va.V$.V-y.(a --# (03--+ ((a -. (03 --+ -y)) --# y))). Now we can

retype g since we now have a new type for cond. All that is required, is to reunify

the type equations given above for g, only this time we will be able to instantiate

the type for cond, and not have to use an instantiation of the assumption Va.0, for

the type of cond. This, however, does not change the type of g.

Suppose we define f = Az.z. This definition will cause g's type to change.

The type variable for f returned by E is y and its type equations are:

Subexpression Type equation

x a

Ax.x 7 = a /

The type of g is now Va.V#.V't((a --+ (list 13 -y y)) --+ (a -)

But if we change the definition of f to f = Ax.nil, we will get a type error

for g. The type variable for f returned by E is 7 and its new type equations are:

Subexpression Type equation

nil list a*=

Ax.nil y=6--,

42

This changes the type of f to Va.V/.a --+ list 03, that causes unification to fail on

g's type equations. When g's type equations are reunified Equation 5.1 gives us

t = (7r -* (p - ((7r -+ (p o)) - o))). From Equation 5.3, c = (p -4 ((7r

(p - o,)) - o,)). Equations 5.4 and 5.5 give us A = ((7r - (list q - oj) a) a). In

Equation 5.6 we must instantiate the type of f. This will give us b = T - list 0.

Then from Equation 5.8 we find f = list 4. Finally, when we try to unify Equation 5.9

we find we have to unify list 4 with (7r --* (list ir -- a)) which fails. As a result-g

exhibits a type error.

C. THE SYNTHESIZER GENERATOR

We have implemented an on-line type checker using a tool called The Synthesizer

Generator (SynGen) [Ref. 6]. This tool was chosen for its ability to rapidly produced

a syntax directed editor with an X-Windows interface. The language used in SynGen

is the Synthesizer Specification Language (SSL).

There are three main parts of a specification in SSL. First, is the abstract

syntax for the underlying language of the editor. The second part is the attribution

and the accompanying attribute equations. Lastly, are the unparsing rules which

determine how the program's parse tree is to be traversed. Part of the unparsing

rules also determine what is displayed at each node and what the user is allowed to

edit. The unparsing rules also control how expressions and terms are input to the

system.

Unfortunately, SSL does not allow circular attribute equations. In order to get

around the limitations of SSL we chose to perform the type inference at the root

of the parse tree. This is a change to the circular attribution given in Chapter IV.

The abstract syntax used in our implementation looks quite similar to that given in

Figure 4.4. A program is simply a list of definitions or bindings of identifiers and

expressions of the lambda calculus (with the addition of let expressions).

43

An attribution is provided in our implementation that is used to pass up the

tree the type variables and type equations generated by E for each definition. The

attribution also passes a type environment back down the tree. At the node for each

definition the type variables and type equations are generated by E and passed up

the tree. At the root, types are inferred for the definitions and a type environment

is passed back down the tree. Then at the node for each definition a lookup is

performed on the environment that is being passed down the tree and the type for

the current node is pulled from the environment and displayed.

There is another significant optimization we would like to be able to make, but

is not possible in the framework of SSL. Given a sequence of definitions f, g, h...

and a set of dependencies (f, g), (g, h), (h, i),..., and h is updated, we would like to

be able to infer a type for only h and those definitions that transitively depend on h,

in this case g and f. Unfortunately SSL does not provide any mechanism to detect

whether a parse tree has been changed, so we end up reunifying the type equations

for all definitions. This is undesirable but the implementation is still incremental to

the extent the type equations are not regenerated. This is strictly a limitation of

SSL.

To demonstrate the interface generated by SynGen a brief example is shown in

Figures 5.6 through 5.18. Figure 5.6 shows the programming environment at start

up. The top pane is a nme-ssage pane. The middle pane is the editing window for

the defined language. The bottom pane is a context aid that shows at what node

of the parse tree the cursor is currently resting. The context pane also shows some

available transformations of the current node which would take the user one level

deeper in the parse tree. The displayed transformations are up to the editor designer

so additional transformations may be defined but not displayed.

Figure 5.7 shows the editor after the context has been changed to def list. A

program consists of a set of assumptions and a list of definitions. The user-input

44

assumption set may be null but there will be a place holder shown in the editor

-window.

In Figure 5.8 the cursor has been placed on the place holder for a definition. As

you can see the context has changed to a def list. When the context selection def

in Figure 5.8 is made the definition place holder is transformed to the place holders

for an identifier and expression as is shown in Figure 5.9. The keyword val and the

symbol '=" are also inserted.

The definition has been named g and the context has been moved to expres-

sion in Figure 5.10. Once the definition is named the type is displayed. Note that

g is given the universal type Va.a. The reason no type is provided until the defi-

nition is named is due to the fact that the display routine does a lookup based on

the definitions name in the type environment. The available transformations for an

expression are shown in the context pane at the bottom of the window. The ex-

pression can also be just an identifier although this transformation is not explicitly

listed. The displayed transformations are up to the editor designer. Optional input

modes permit a very flexible combination of explicit and implicit input modes that

make the editor as rigid or as flexible as the designer wishes. One extreme would be

to force the user to explicitly enter all input with a mouse making selections from

the context pane while the opposite extreme allows a syntactically correct expression

to be entered from the keyboard. This allows for a friendly interface that does not

require explicit mouse selection for every program transformation.

Figure 5.11 shows the editor after the expression has been transformed to a A

abstraction. Figure 5.12 shows an identifier entered for the A abstraction and the

context advanced to the expression.

In Figure 5.13 a second lambda abstraction has been entered. Figure 5.14

shows the identifier for the second lambda abstraction and the context advanced.

Figure 5.15 shows the rest of the definition for g. The free identifiers in g are cond,

45

Oontet: progrm

Figure 5.6: The initial view of the syntax directed editor.

nil. and f. Recall nil is one of the built in operators with type Va.list a.

In Figure 5.16 the definition for cond has been entered. Providing a definition

for cond causes g's type equations to be reunified but the type of g is not changed.

In Figure 5.17 f has been defined as the identity function. This change causes

g's type equations to once again be unified and a new type for g is inferred. This

time the type of g does change to reflect the constraints imposed by the type of f

and nil.

The final display in Figure 5.18 shows the effects of redefining f such that it

causes g's type equations to be reunified. This time, however, the unification process

fails due to the inconsistent use of f in g and the type system returns a type error

for g.

46

(de fitionw

Type?7

Conttxt: Assumptionbt Iumpin

Figure 5.7: The view when the context def list is selected.

Pq *mtinsdj

< de finition>

Contxt: defList f

Figure 5.8: The view when the cursor is placed in the first definition.

47

Type?

Context: Id

Figure 5.9: The view after the context def is selected.

(Assumptions>

Va.l g

Type: Va

Conlod: exp p-etp.Ight E [E]

Figure 5.10: The view when the definition is named g.

48

assmp.tatns.>

Val g . A•idntifier>. <exw>

Type; V. V0. (p)

Context: Id

Figure 5. 11: The context fun has been selected and the place holders for a A expres-
sion have been inserted.

IN

<Assumptions>

Val 9 - yka
Type: e. V P. P a

Context: exp pif pigtunE

Figure 5.12: The identifier for the A abstraction has been entered and the context
has been moved to the expression.

49

(Asompt~ozw>

vul 9 0 hy.)Li(4entjer>. <eXP>

Type: VlV VX. (X -(--.))

Ell

Cornwxt: Id

Figure 5.13: A second A• abstraction is entered.

(AJUss~apt•ons >

•Tpe: VeiV•. YX.(x -" (1-. s))

Figure 5.14: The identifier for the second A abstraction has been entered and the
context has been moved to the expression.

50

(<su~mpUons)

va. g • hy. Az. cond z ,al (f y)

Type;. v,.pV.VX. (x - (P ")

Figure 5.15: The rest of the definition g has been entered.

(&Smuptio.o

Val. 9 - Ay. As. cand a nil (f 1)
Type: vQjvp cx- (x " (p - a));

Vl cmd Axz. A.y. At. x x y

Type: Va.4.V. (N - (P - ((x at)(P.) -. a)));

CoMeMt: deftnt r

Figure 5.16: The definition for the conditional cond has been entered.

51

Figure~~~~~~~~~q 5.17 Aw deiito for ff ha 7enetrdad)'yehscagd

vig A. L cd ll(t)

cod - &A WA. Am. , a?
Vs 4o Vg (ti - () - (fx - 0i - -)));

Vs- AI x p . Cla. rVa.°(a

Figure 5.17: A definition for f has been entered and g's type has changed.

in Aa. Aty cpA a erl (f

Va v vx x -- (0 -2 ((x - (0 - 8)) - sm;

Va. V0 . (P (Ls,)

Figure 5.18: The definition for f has been changed causing g to be retyped resulting
in a type error for g.

52

VI. RELATED WORK AND CONCLUSIONS

We have shown that on-line type inference, an essential element of any in-

teractive programming environment, is possible using an attribute grammar. Our

type system obtains typings consistent with the Hindley-Milner type system. Type

checking is performed on-line and incrementally. Modular, top-down program devel-

opment is possible and the type system maintains correct typings for each definition

at every stage of program development.

The on-line type inference problem can be reduced to that of first order uni-

fication on a set of type equations. We use the well known reduction from the

Hindley-Milner type system to first order unification. The reduction generates type

equations for each definition. The type equations can be saved and used in future

typings for the definition which would then just require reunifying the type equations.

The type equations will not change unless the expression is modified (by editing), at

which point the type equations would be reconstructed.

The algorithm is incremental because we can save the type equations and only

reunify the type equations when we must reinfer the type for a definition. Addition-

ally, the attribute grammar model we propose has a certain degree of incremental

attribute re-evaluation implicit in the model. Significant additional savings are pos-

sible if the dependencies of the definitions are observed. The dependency relation is

a partial order and thus we can generate a total (linear) order. For a modified defi-

nition we must retype only the modified definition and those definitions that depend

on the modified definition.

53

A. RELATED WORK

MIT's Id programming environment is the current state of the art. Our type

system is more incremental because we take advantage of the reduction from the

Hindley-Milner type system to first-order unification. Any time a definition's type

must be reinferred we only have to reunify its type equations. The Id environment

calls W from the Hindley-Milner type system which does all the work of constructing

and unifying the type equations for an expression every time it is called.

B. FUTURE WORK

This thesis will serve as the basis for further research aimed at ultimately de-

veloping a type discipline for a class of implicitly type imperative programming

languages in an interactive programming environment.

One issue we have not addressed in this paper is what happens if more than

one definition is entered with the same name. In a syntax directed editor environ-

ment that we have proposed, the ability to edit any definition makes the process of

updating a sequence of definitions occur in a framework that is more intuitive than

current environments i.e., Prolog, Standard ML, and Scheme. What we have not

considered, however, is what is the meaning of two definitions in a sequence with the

same name. This is called overloading. Overloading is an independent problem that

has been studied separately (Ref. 3]. Overloading is beyond the scope of this paper.

so the effect of multiple definitions with the same name has not been addressed in

this thesis. Integrating the on-line system with overloading remains to be done.

Investigating Sagiv et al.'s CAG to NCAG transformation is another area where

further research is needed. Since SynGen is only capable of handling non-circular

attribute equations the simple attribution in Chapter IV can not be implemented

using SynGen. Work remains in determining whether the transformation of [Ref. 12]

54

can be applied to transform the circular attribution of Chapter IV, Another interest-

ing research direction is exploring whether a fixed-vi lat finding attribute evaluator

can be produced automatically using the work of Farrow [Ref. 5].

55

LIST OF REFERENCES

[1] Alfred V. Aho, Ravi Sethi, and Jeffery D. Ullman. Compilers Principles, Tech-
niques, and Tools. Addison-Wesley, 1988.

[2] Anthony Field and Peter Harrison. Functional Programming. Addison Wesley,
1987.

[3] Bruce J. Bull. Type inference with overloading using an attribute grammar.
Master's thesis, Naval Postgraduate School, Monterey CA, 1994.

[4] Luca Cardelli. Basic polymorphic typechecking. Science of Computer Program-
ming, 8:147-172, 1987.

[5] R. W. Farrow. Automatic generation of fixed-point-finding evaluators for circu-
lar but well-defined attribute grammars. Symposium on Compiler Construction,
pages 85-98, 1986.

[6) GrammaTech Inc., Ithaca, NY. The Synthesizer Generator Reference Manual,
Release 4.0, 1992.

[7] U. Kastens. Ordered attribute grammars. Acta Inf, 13,3:229-256, 1980.

[8] Luis Damas and Robin Milner. Principal type schemes for functional programs.
Proc. 9th ACM Symposium on Principles of Programming Languages, pages
207-212, 1982.

[9] Alan Mycroft. Incremental polymorphic type checking with update (preliminary
version). Proc. Symposium on Logical Foundations of Computer Science, LNCS,

620:347-357, 1992.

[10] Rishiyur S. Nikhil. Practical polymorphism. Proc. Conf. on Functional Pro-
gramming Languages and Computer Architecture., LNCS 201:319-333, 1985.

[11] Laurence C. Paulson. ML for the Working Programmer. Cambridge University
Press, 1991.

[12] S. Sagiv, 0. Edelstein, N. Francez, and M. Rodeh. Resolving circularity in at-
tribute grammars with applications to data flow analysis (preliminary-version).
Association for Computing Machinery, 36, 1989.

56

[13] Shail Aditya and Rishiyur S. Nikhil. Incremental polymorphism. Prof. 5th Conf.
on Functional Programming Languages and Computer Arch: ecture, LNCS,
523:379-405, 1991.

[14] Mitchell Wand and Patrick O'Keefe. On the complexity of type inference with
coercion. Proc. ACM Conf. on Functional Programming and Computer Archi-
tecture, 1989.

57

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Computer Science Department 2
Code CS
Naval Postgraduate School
Monterey, CA 93943

4. Dr. Dennis M. Volpano 10
Code CS/Vo
Naval Postgraduate School
Monterey, CA 93943

5. Dr. Timothy Shimeall 1
Code CS/Sm
Naval Postgraduate School
Monterey, CA 93943

6. LT Thomas L. Robinson 2
200 Main St.
Kingston, MA 02364

58

