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ABSTRACT

This thesis investigates the pressure drag coefficient in
the transonic regime over an axi-symmetric body, with a set of
unique contour surfaces developed in a previous thesis. The
contour surfaces were obtained by an exact solution of the
small perturbation transonic equation, using the guidelines
and tools developed at NPS. In this work, Computational Fluid
Dynamics (CFD) was not only used to compute the afterbody
contour surface, but also to investigate a conical afterbody
and complete bodies, which are composed of an arbitrary
forebody (ellipsoid) and variable afterbody (contour and
conical). Euler as well as Navier-Stokes flow-solvers were
applied to the geometries of interest, giving Mach-number
contours for viscous and inviscid flow, pressure drag
coefficient magnitude, and depicting shock wave locations. On
the basis of these results, it can be verified that our
contour surface afterbodies will decrease by 15% the peak of
the pressure drag coefficient (C4) versus Mach number curves
in the transonic regime. These results can be used to design
low pressure drag surfaces for such shapes as missiles,
projectiles and aircraft engine nacelles.
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I. INTRODUCTION

The flight of an object over a wide range of speeds has a
critical transition zone where both subsonic and supersonic
types of flow exist. This speed regime is referred to as the
transonic range. The critical aerodynamic behavior occurs in
the range 0.8 < M < 1.2 depending on the object, where the
aerodynamic coefficients have been found to change by as much
as 100%. The behavior of the aerodynamic force components is
usually characterized by a rapid increase in the coefficients
followed by a sharp drop, in other words, a peak value for the
coefficients arises in this regime [Ref.l1l and 2].

One of the aerodynamic components, aerodynamic drag,
represents a significant adverse force on all flying objects
such as aircraft, missiles and projectiles. A high drag force
reduces the craft’s range capability or equivalently requires
more energy to achieve a certain range. Any effort to reduce
the drag coefficient in the design process must concentrate on
reducing the wake and pressure drag (inclusive of wave drag)
contributions to the total drag.

A traditional approach to investigate aerodynamic
characteristics is based on wind tunnel data and actual flight
testing as a source for improvement of configurations to get
the best results. Unfortunately, both wind tunnel and flight

tests are considerably expensive and time consuming,




particularly in the transonic flow regime. Because of the
great lateral influence of profiles at transonic speeds (shock
reflection of the wall bounces back to the model), models must
be made extremely small compared with wind tunnel dimensions
and this introduces great experimental difficulties.
Consequently, the data obtained at transonic speeds is
considerably 1less reliable than at either subsonic or
supersonic speeds. In addition, from a mathematical point of
view, even the two dimensional small perturbation potential
equation for transonic flow retains one non-linear term which
is essential for non-divergent solutions at Mach one, but this
non-linear partial differential equation has proven to be
difficult to solve. Such inherent difficulties, coupled with
the presence of shocks in the flow which cause boundary layer
separation, have resulted in the creation of many approximate
methods of solution which are employed in the design of
transonic airfoils and the like [Ref.3, 4 and 5]. On the other
hand, the use of numerical simulation known as Computational
Fluid Dynamics (CFD) to predict aerodynamic characteristics
greatly increases possibilities to improve design optimization
at relatively low cost and allows for ease of design changes.

Finally, using the latest capabilities of Euler as well as
Navier-Stokes flow-solvers, it has been possible to compute
the flow over axi-symmetric bodies with various contours in

the transonic regime.




II TRANSONIC FLOW

Transonic flows are characterized by the simultaneous
presence within the flow field of both subsonic and supersonic
regions. The properties of transonic flows can be derived from
the general equations of gas dynamics, namely, the equations
of state, continuity, momentum and energy. The following
derivation based on assumptions that the flow is steady,
irrotational and isentropic with no energy transfer, no body

forces and no shear stresses (inviscid flow).

1. Small Perturbation Theory
Starting with the equation of motion for steady,

isentropic, inviscid flow in the index notation form [Ref.4]:

du; du
uiuj_i': = g2k (1)
dx; 0x,
Small-Perturbation Theory gives the velocity field as
uy =U0U+u ; u=v ; U, =w (2)

where U denotes the free stream velocity in the x direction
and u, v, w are called perturbation velocity components in the

direction x, y, z respectively.




Writing eq. (1) out in full, and substituting the velocity

field eq.(2), gives the equation in terms of perturbation
velocities.
ou ov . Ow du v ow
2f OU vv YWl . 2 VU 2 Vv 2 UW
2\ ax * oy * 3z (Oru) ox v oy T W ez

(3)

+ (U+u) v(-g—; + %) + %’ + g_;’ + w(U+u)(%¥ + %g)

From the energy equation for a perfect gas, the speed of sound

(a) can be expressed in terms of the perturbation velocities.

(Uru)? + v3 +w? a2 _ Ur, _al (4)
2 (y-1) 2 (y-1)
or
ad = 63 - (J;A(ZUU*' u? + v + w?) (5)

Substituting eq.(5) into eq.(3), dividing by a,2, and
rearranging the terms, gives the full exact equation in terms
of perturbation velocities and free stream Mach number. This
equation contains linear terms on the left-hand side, but on

the right-hand side the terms are nonlinear.




2 yery 8 . (y*1) u? o (y-1) (vi+w?) |du
Mo (y+1) U ¥ 2 U? ¥ 2 U2 ox

f iy gy 8, (y+1) v2 . (y-1) (w2+u?)]dv
e A e =t 5 |5 (6)

2 (y_1y Y (y+1) w? (y-1) (u?+v?) |dw
* M"L(Y L AN U? "2 U? 0z

e EAL R R L R

If the perturbation velocities are small (u/U,v/U,w/U << 1),
eq. (6) can be simplified by neglecting the terms containing

squares of the perturbation velocities on the right hand side,

yielding :

_m2yOu . Ov _ ow _
(1M)-§J_(+-67’+$

M2 (y+ 1)292 + M2 (y-1) U(g" Sw N

ey ey




For further simplification, in eq.(7) all the terms on the
right hand side can be neglected, in comparison to those on
the left hand side. This gives the linear equation, which
contains only perturbation velocities and is valid only for

subsonic and supersonic flow.

(1 AL) . ov . ow

ax 3 az (8)

For transonic flow, where M, = 1, the coefficient of du/dx on
the left hand side becomes very small, but it is not correct
co neglect the first term on the right hand side of eq. (7).

Therefore, the governing equation of transonic flow in term of

perturbation velocities is as follows:

v

. du
(1 M;)zr- ¥

+ 'a‘ = M2 (y+1) AL (9)

For irrotational flow, a perturbation velocity potential ¢

exists,
=a¢ =a‘P - O¢ 10
Utk VS YT 3 (10)
Substitution of eq.(10) into eq.(9), gives the governing

equation for transonic flow in terms of the velocity

potential.




2o _ Me(1+1) 3y 0% (11)
ax2 dy* 9z? T 0x gx2 '

For bodies of revolution, it is convenient to use cylindrical
coordinates (x,r,0) where x is aligned with the body axis. The
velocity components corresponding to (x,r,0) are u,, u, and
ug, respectively. The velocity potential in the cylindrica

coordinates,

"
@
-
I
D
©

u, =U0+u 7% ' UYr = 3o ue=_1f.g% (12)

Transforming Cartesian coordinate eq.(9) into cylindrical

coordinate, gives the governing equation of transonic flow.

2, 3%¢

(1-M2) %6 _ Mo (r+1) 3¢ 3% (13
o ax% ar?

1
T 12362 U 9x9x2

For axially symmetric flow, where the conditions are the same
in every meridian plane, there is no variation with 8, so the
small perturbation, non-linear, axi-symmetric transonic

potential equation can be written as follows

929 _ Mz (v*1) 3¢ 3% (14)

0% _ 10¢ np2
T T T ) dx2 U 0x gx2

dr2 ror




Or rewriting in shorthand notation,

_ M2 (y+1)
U

bor + T0r v (1-0) by = Bbx (15)

Reference 6 introduces a modified potential equation for axi-

symmetric flows

é.a"’;(m,) o (1-M2) by = rbo (16)

where the modified velocity potentials are :

¢xnbﬁ(y+1)it;.‘ , ¢r"ﬁ(‘7*l)u—; (17)

2. An exact solution for axi-symmetric, transonic flow.
Solutions to the modified transonic eq.(16) have been

given by Biblarz [Ref.6 and 7] by using the separation of

variables approach with a potential function ¢(x,r) of the

form

$(x,r) = E(x)n(r) + (1-M2)x (18)

Substituting the above ¢ function in the modified transonic
eq. (16) results in two ordinary, second order, non-linear

differential equations




2
df d%¢ _\z -0 (19)

and

Q
)
<3

-a2 =0 (20)

K,
Nl
BiS

where A is the separation constant.
The solution to the first differential eq. (19) is obtained

by multiplying both sides di/dx,

% %'3,%] - % ) =0 (21)
or
SECRE SR
Thus
%’E‘ = ( N2 4 a )% (23)

where a is a constant given by Ref.é6.

Rearranging eq. (23)

(24)




and integrating eq. (24) gives,

(25)

where a and x, are integration constants.

The solution to the second non-linear ordinary
differential equation (20), is obtained by an outer expansion
method. [Ref.8]

4

=z (1-M2) £, () + (1-M2)2£,(x) + ... (26)
r

n(r) =

2

Where (1-M,%) represents a small parameter and the first term
is the purely sonic solution.
By taking first and second derivatives eq.(26) and

subtituting them into eq. (20) yields,

M2 2
n(r)= 12 +|1-Mﬁ|akr‘“”2’+l&.f§l_a2k2r3‘“g*2’ .. .. 217)
Ar 28+8/8

Al-Hashel [Ref.9] reported on eq.(26) and eq.(27),
implemented the boundary conditions with the constants «a, C,,

a and A, gave the final results in the new variables,
3\ )3
fm? (28)
20,

10




E2WE2) o »(VE+2) ) 4

-1 1
Xm Cl_g ,‘(37*)'2

then

where Xo=0, and

n=
f2

2
- _ 1 _ (VT +2) (1-M3) 22 (VT +2)
-1 b * 5t

(29)

(30)

(31)

(32)

(33)

Equation (32) has been numerically integrated and plotted on

figure (1) as {(X) versus X, and eq. (33) will be evaluated and

plotted in figure (2) as # () versus ¥ for M, =1.05, 1.1 and

1.2. A "patching" technique discussed in Ref.9 has been used

here.

11




III. PRESSURE COEFFICIENT AND BOUNDARY SURFACES

l. Pressure Coefficient

Liepmann and Roshko [Ref.4) define the pressure coefficient

as,

(P=Py) 2 P
Cp = - L, 34
Fo0se0? 4 [p‘” ] B

From the isentropic relation, we have pressure ratio in terms

of Mach number and after substituting into eq. (34) yields

¥/ {y-1)
2 2+(7-1)M§ (35)
Cp = % -1
™2 |2+ (y-1) M

Introducing M,2 = U?/a,2, M? = u?/a? and using energy equation
(recall eq.4 and eqg.5), the pressure coefficient can be

expressed in terms of the perturbation velocities,

[ /(y-1)
o= _2 cY" 12} (Uru) 2+view? -1
P~ T3 2 M, 2
Mz ; u
(36)
[ /(y-1)
_ 2 _ytly? 2u, u?+viiw? -1
2 =2 T T gz
M, \ Y

12




Using the binomial expansion on the expression inside the
square brackets in eq. (36), we obtain the pressure coefficient

in the form

- _| 2u _ u?  vi+w?
C, = —ZT-+(1 ﬁ)?zd- 2 (37)

For axi-symmetric flow, in cylindrical coordinates where u=u,

2) 2 , substituting into eq. (37) yields

2 2
o {3 el (3

and (vZ+w?) = u,

(38)

The linearized pressure coefficient approximation for axi-

symmetric flow turns out to be

C, = ~—= (39)

Recall the modified axial velocity potential, eq. (17},

br = M2 (y+1) T"Ii‘ (40)
thus
ora _Ox (41)
U a2 (y+1)

13




Substitute eq. (41) into eq. (39), yields

_2 ¢
Cp = X (42)
Mf(7+l)

The derivative of the potential function eq. (18) with respect

to x becomes

bx=0 & * (1-M2) (43)

Ref.6 introduces relation of the constants C;, a, a and A in

expression,
Q= tc1|1_£|1.7574 (44)
and
[ ]al e - 1.08x1072 e
NO-7574

Rewriting eq.(23) and substitute the constant o eq.(44)

becomes

1
3
g’% - T)\Ez + ¢y (1-M2) |1.7574]'§ (46)

14




Recall the new variable eq. (28)

. .
F-z[3N])2 (47)
: E[“‘zq]

Substituting eq. (47) into eq. (46) and factoring C, out, yields
1 1
% - CP' [22 + | (1-M2) |1.7s74]§ (48)
Recall and arrange new variable eq. (31)

0.4142
g = Lad2 %2 5 (49)

Rewriting eq.(43) the modified potential function and

inserting eq. (48) and eq. (49), becomes

1 1
0.4142 .
¢x = (ak) ‘1-" Clj [£2+| (1_113) Il.7574]-§ + (1_M§) (50)

or

a°-4142ci§

1
T = (51)
bx = —zEsE- 7 [ 8l -0 12753 4 1)

15




Substituting the expression of constants eq. (45) into eq. (51)

1
$, = 0.2208 ﬁ[§2 . |(1_M§)|1.7574T§ . (1-M%) (52)
Finally, rewriting the pressure coefficient Co as
1
Cp = ——2 .2zoeﬁ[£2+| (1-M2) |1-75“]7+(1-M3) (53)

M2 (y+1)

2. Boundary Surfaces

For an inviscid flow, the condition to be applied at the
surface of a solid boundary is that the direction of the flow
velocity vector must be tangent to the solid surface. In other
words, the velocity vector is everywhere at right angles to
the normal to the solid boundary [Ref.10). In addition the
boundary condition requires that the gradient of potential ¢
vanish far ahead of the body. In terms of perturbation

velocities this boundary condition becomes

dr ur
— = — (54)
( dx surface U-

16




Recall the modified velocity perturbation potential eq. (17)

b = M2 (y+1) "Fr (55)
thus
ur $r
- 5 —— (56)
Uen [é (-y+1)

substituting eq. (56) into eq. (54),

(%) s T;l) (57)

Taking the 4. fferential of eq.(18) with respect to r gives
¢y = 3 ar (58)

Expressing eq. (58) in terms of new variables, recall eq. (28),

eq. (29) and eq. (31)
¢, = 0.0848 § 97

(59)

17




Recalling eq. (33) and taking the derivative with respect to ¥ ,

then substituting eq. (59) into eq.(57), yields

(_d_£ =0-0848 ¢ -8 5 8284 |1-M?| P1:828440.1512 (1-M2)2 76657
dax Mj(y-p-l) e
(60)

Replacing the left hand side of eq. (60) with the new variables

eq. (29) and eq(30), then rearranging it becomes

ar _ 0.0326 ¢ | -8,; g2g4 |1-MZ| £1-828440. 1512 (1-M2)2 76-657
d¥  MZ(y+1)

f.’)

(61)

For further arrangement, by separating variables eq. (61),

yields

dr =

2 -2.8284[1-M2| £2-9284-0.1512 (1-M2)2 75657

(62)

~0.0326 ¢ 4o
MZ? (y+1)

Then, integrating both sides of eq. (62) becomes

18




r
dr

%o [-i%—z.ezsul—uflfl-““ -0.1512 (1-M2)2 £6-657

(63)
2
—2.0326 f E dg
Mo(y+1) o
where
1.2074
L |1—Mf|°'2°71 (64)

Al-hashel [Ref.10] has developed and computed eq. (63)
using numerical integration, to determine the boundary
surfaces in dimensional and non-dimensional (normalized) form
for M, = 1.05, 1.10 and 1.20 as depicted in Figure (3) and
Figure (4). Based on these calculations, the geometric grid of
the afterbody for Mach number 1.10 and 1.20 are developed for
further study with Computational Fluid Dynamic (CFD).

This thesis research also examines conical afterbodies as
a solid afterbody boundary surface with base diameter ratio
(dp/dy) of 0.50 and 0.75 and conical turning angle (f) of 26.6
and 14.0 degree respectively [Ref.11 and 12]. Then, for
further investigation, the complete bodies as a solid boundary
surface are generated, with a kind of forebody (ellipsoid)
joined with the contour surface afterbodies a; well as the

conical afterbodies.

19




IV. DRAG
Drag is one of the aerodynamic force components parallel

to free stream velocity (U,). It represents a significant
adverse force on all flying objects. Basically, the drag force
is divided into two categories, the drag caused by forces
acting normal to the boundary surface which is called pressure
drag (inclusive forebody, base and wave drag) and that arising
from the tangential forces acting on the surface, by virtue of
viscosity which 1is called viscous drag or skin friction.
Figure (5) shows the components of the drag as function of
Mach number and the methods used to compute body drag in four

Mach number regimes [Ref.5].

e e~
[ 10
ORAG
rORSNOY
PRESSUNE
nhan
c”" WAVE
T \L~
SKwe
TMEHON
! 1
10 MACH NUMEER
Fig. % Variation dus tn tHach nmmber nf drag components.
Q nov noarran ] O sate
Caynromaracinn [
TRANGOM | CARR/ puE——— 17 & & L1} [ Y
GEWERAL
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1. Skin Friction

Skin friction is the result of shearing force within the
boundary layer of a viscous flow, acting tangentially to a
surface in motion relative to the fluid. The amount of viscous
resistance depends upon whether the flow is laminar or
turbulent [Ref.5]. Krasnov [Ref.13] introduces the laminar and
turbulent skin friction for flat plates, based on the boundary
layer theory, for compressible flow. These formulas also valid

for bodies of revolution with infinite length.

Laminar flow, Re < 106

-1
3

Cp = =232 (1 + 0.0342) (65)
(Re) 2
Turbulent flow, Re > 106
0.472 - -2.58
Cep = ————=— [log,,Re (1+0.2M2)1:76 66
T (1+0.1M2) [ 10 ] ( )

where Re is the Reynold number
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2. Pressure Drag
Liepmann and Roshko [Ref.4] introduce the pressure drag
formula (inclusive wave drag and base drag) for axi-symmetric

bodies as,

L
D==j.p dS - pgS(L)
0

(67)
L
= f (Pp=p.) dS + (p.-bg) S(L)
0
or, in dimensionless form,
D
Cp= ———
b gqus(L)
(68)
1 | . ds
TY3) {c"’d—xdx * Cps

2

where S(x) = wr“ is the cross-sectional area of the body at x.
= = dr
dS(x) = 2nrdr = 2nra—xdx (69)
or
dS _ pnpdr
—a; = andx (70)
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The first term in square bracket eq.(68) can be solved by

inserting eq. (53), eq.(60) and eq.(70) yielding,

L

L 1
ds -2 E ~rE2 1.757447 3
C a .220847 [£2+] (1-M?) | 4 +(1-u3)]
l Pdx lb&f('y*l)

(71)

(27r) [%ﬂfga .8284 |1-M2| £1-8284.0 1512 (1-M2) 2f5-657]
(y+1)

Recalling new variables eq.(28), eq.(29), eq.(30)

and
inserting B2 = 1-M.? into eq.(71) yields,
I ds
I Cpaax =
1
ll(l'ﬁz) (y+1) K [x0-707T z0.2071
(72)

{( 08.20)3(26 ) gg*_z .8284 le I f1.828‘4_0 . 151264f6.657}df
1- y+1

where C;, a and A are constants.
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The second term in square bracket eq. (68) is the contribution
to the drag by the base pressure pg. Ref.4 claims, that the
values of the base pressure coefficient C,gy must be obtained
experimentally. However Krasnov [Ref.13] introduces the

boattail drag coefficient for a conical afterbody as,

Cpp = 0.002 0.8 + = [8+7 (1-5p) (73)

where
0 = turning angle of the conical body

Sg = ratio of the base area to the mid-section area

In this work, the skin friction coefficient as well as the
pressure drag coefficient of the geometries of interest, at
specified Mach number, can be obtained directly from the
results of CFD calculations. The Euler solution will give the

pressure drag and the Navier-Stokes solution will give both.
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V. COMPUTATIOMAL FLUID DYNMAMICS

The rapid advancement in the speed of computers and their
enormous memory size has led to the emergence of the field of
computational fluid dynamics (CFD). This branch of fluid
dynamics complements its experimental and theoretical
branches, by providing an alternate, cost-effective means of
simulating real flow. It also offers the only means of
examining theoretical advances for conditions unavailable
experimentally. As a model based method, CFD can provide the
convenience of being able to switch off specific terms in the
governing equations [Ref.14], so as to assist the researcher
in understanding the contributions of various physical
factors.

In this work, CFD was used to compute the axi-symmetric
flow over the afterbody geometry of models only (the boundary
surfaces obtained by the small perturbation method [Ref.9] and
conical afterbody) and over complete body models which are

composed of forebody (ellipsoid) and afterbody.

1. Grid Generation

The computer programs GRAPE ([Ref.15] and GRIDGEN2D
[Ref.16] are tools used to generate two-dimensional structured
grids about airfoils and other shapes by the use of algebraic

or Poisson differential equation solvers. GRAPE was used for
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the geometry with smooth contour surfaces, while GRIDGEN2D was
used for the geometry with a conical afterbody with non-smooth
points. Outer and inner boundaries were specified as the C-
type grid for afterbody models only, while the O type grid was
for the complete body models, where both type of grids treat
the surface of the body as the inner boundary. The important
characteristics in a grid generation technique are the ability
to specify the spacing between mesh points at the boundary, in
the direction normal to the boundary, and the control of the
angles with which mesh lines intersect the boundaries which is
known as orthogonality [Ref.15].

Figure (6) is a typical output of program GRAPE for an
afterbody with small perturbation solution contour for Mach
1.10 (SPS_1.1), C-type grid with the grid size of 115x60, and
figure (7) is the complete body with the grid size of 152x60
(O-type grid).

To develop a three-dimensional grid from two-dimensional
grid (output program GRAPE), the FORTRAN code called HALF.F
(Appendix) was used to write out the half of the 2D grid and
convert them into 3D plane-grid. Then, the FORTRAN code
ROTATEGR.F (Appendix) was used to rotate the 3D plane-grid for
11 planes plus 2 more to generate a 3D volume grid of half of
an axi-symmetric body surface as shown in figure (8) and
figure (9) with grid size of 58x13x60 and 77x13x60
respectively. These grids are ready for further processing

with a flow-solver.
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Program GRIDGEN2D gives the pattern of how to build 2D-
grid. It consists of four subfaces which are treated as
boundaries. Grid spacing is determined by setting up the
distribution points of each pair subfaces. It uses equal
spacing along the body surface, while the direction normal to
the body surface uses geometric spacing with specified width
in the beginning. Figure (10) and Figure (11) are typical
outputs of GRIDGEN2D for an afterbody and for a complete body
with the grid size of 58x60 and 77x60 respectively. FORTRAN
code D2D3.F (Appendix) is used to convert 2D grid output from
GRIDGEN2D into 3D plane-grid. Then we apply the FORTRAN code
ROTATEGR.F to generate a 3D volume grid of half of an axi-
symmetric body as depicted in Figure (12) and Figure (13) with
the grid size of 58x13x60 and 77x13x60.

In this research, we also attempted to develop a fine grid
for complete bodies (O-type grid), where the radius of outer
boundary is set up to be five times of the body’s length. The
steps to obtain 3D volume grid are similar to those described
above with the final grid size of 77x9x120 and the final
geometry of a quarter of an axi-symmetric body instead of a
half body. Figures (14) and (15) are typical fine grids of the
complete body with a conical afterbody and a complete body

with contour surface afterbody.
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2. PFlow-solver

The OVERFLOW program [Ref.17] was developed by NASA .Ames
Research Center. It uses either 3-D Euler or Navier-Stokes
flow-solvers for inviscid/viscous flow, by setting True or
False the parameter VISINP (viscosity input) in the input file
(overflow.in). Before flow-solver code (OVERFLOW) is applied
on the grid file, a formatted 3D grid file named "grid.for"
must be converted into an unformatted grid file named
"grid.in", by using FORTRAN code called READX.F (Appendix).
Then, the NAMELIST input file parameter specification must be
written for running OVERFLOW, it is called "overflow.in". The
input parameter consists of the number of iterations,
timesteps, calculation methods, smoothing, type of flow and
boundary conditions for each grid. The value of angle of
attack (ALPHA) depends on the orientation of the grid in the
coordinate system. In this case, ALPHA is 180° (flow comes
from the x-positive to the x-negative direction). The boundary
conditions depend on the geometry corresponding to the final
3D volume grid. Both input parameters, the angle of attack and
the boundary conditions for each geometric shape, are
tabulated in Table 1.

The file overflow.in (Appendix) is a typical input
parameter specification of the axi-symmetric body with a
conical afterbody using the grid size of 77x13x60. This file
input uses NSTEP=100, Mach number=0.95, ALPHA=180°. The

calculation method depends on a central difference Euler term
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in J, K, L and ARC3D diagonal factorization and dissipation
scheme (IRHS=0, ILHS=2, IDISS=2). For the first attempt a time
step DT=0.1, ITIME=1 and CFLMIN=5.0 was utilized. The boundary
condition consists of 6 boundaries (NBC=6), with the type of
BC IBTYP=30 (inflow) in the J positive (1), IBTYP=15 (Axis K
round) in J negative (-1) direction, IBTYP=12 (symmetry in Y)
in the K positive (2) and K negative (-2) direction, IBTYP=1
(Inviscid adiabatic wall) in the L positive (3) direction and
IBTYP=32 (Supersonic /subsonic inflow/outflow) in the L
negative (-3) direction.

The OVERFLOW program gives output files such as ovr.out,
g.save, resid.out and fomo.out. To verify that a calculation
is appropriate or converged, it can be traced by looking at
the plot of residual history (resid.out). A convergence
criterion was defined as the reduction in residuals by two
orders of magnitude. If the first run (NSTEP=100) does not
fulfill the convergence criterion, one may perform a restart
by further running OVERFLOW and changing the parameter
RESTART=.T. in the input file (overflow.in) and by copying
g.save into g.restart. Repeating the above steps until all
convergence criteria are met. If in the output file gq.bomb
appears, one tries another run by changing parameter time step
DT and CFLMIN until the criteria are met. Then, one converts
the output file g.save (unformatted) into formatted file named
g.form by using FORTRAN code READ1.F (Appendix).

Finally, the last step is to run PLOT3D program with the
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source formatted files x=grid.for and g=q.form. By using
functions on the PLOT3D program, many plots such as pressure,

velocity, Mach number, vorticity, etc., are obtained.

3. Results

The results of CFD programs are grouped into the
corresponding geometric shape, namely, afterbody only and
complete body. The Euler flow-solver (inviscid flow) was
applied to all axi-symmetric bodies, except for the afterbody
models only, where both Euler and Navier-Stokes (viscous flow)
were applied. Most of the calculations converged in 500
iterations, meaning that the residual history achieved a two
order of magnitude drop.

Results can be analyzed by plotting the qg.form file,
output file from the OVERFLOW program, using the proper
function in PLOT3D program (Mach number). By interpreting the
Mach number contour surrounding the body surfaces, one can be
determine the characteristics of the flow field. In addition,
the drag coefficient C4, can be obtained in the file fomo.out,
output from OVERFLOW. Hence, in the sequences of Mach number,
one can describe the significant flow characteristic of each

geometric shape.

a. Afterbodies
An Euler as well as a Navier-Stokes flow-solver was

applied to these afterbody models. The approaching free stream
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Mach number (ranging from 1.05 to 1.50) starts from the mid-
section of the afterbodies, then the flow follows along the
afterbody surface until it reaches a maximum local Mach number
as tabulated in Table 2. The maximum local Mach number for
viscous flow is always lower compared to in the inviscid flow.
This may be caused by the viscous flow itself since we are
taking into account the shear force in the boundary layer near
the surface.

For the afterbodies from the small perturbation solution
contour (SPS1.0, SPS1.1 and SPS1.2), in inviscid flow, the
shocizs are formed at the contour surface. The location of the
shock dependa on the specific afterbody contour and the
approaching Mach wumber; at the higher Mach numbers the shock
appears a bit further downstream as shown in Figures (16)
through (21). As shown in Figure (22) and Figure (23), this is
apparently a result of viscosity; it shows the boundary layer
by the increment of Mach number away form the surface. Weak
shocks were formed further downstream compared to inviscid
flow. Flow separation occurs in the starting contour region
and is followed by circulating flow in the base region.

For the conical afterbody. the approaching free stream
Mach number increases following the mid-section surface, then
a flow expansion occurs at the turning angle region, until the
maximum local Mach number is reached. A weak shock is formed
at the end of the boattail region as shown in Figure (24),

while for the viscous flow, the weak shock develops away from
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boattail surface due to the boundary layer and the separation
of the flow. The circulating flow in the base region is-more
significant than in the inviscid flow as depicted in Figure
(25). In addition, from Table 2, for viscous flow the maximum
local Mach number for the conical afterbody is higher than for
the contoured afterbody.

For each afterbody the pressure drag coefficient (Cy)
versus free stream Mach number (M,) for inviscid and viscous
flow are plotted in Figure (26). The negative sign of C4 is
due to the fact that the calculation of pressure starts from
mid-section through the base of afterbody and ignores the
forebody pressure. These results show that the pressure drag
coefficient is higher for wviscous flows than for inviscid
flows for each given afterbody. This may be caused by the
vigcosity effect and the pressure distribution difference in
the flow field. In addition, it can be seen from the chart,
that the C4 for the afterbody with small perturbation solution
contour Mach 1.10 (SPS1.1) has the lowest C4 values over the
entire Mach number range. Therefore, the SPS1.1 contour shows

to be relatively the best among these afterbodies.

b. Complete Bodies
Complete bodies consist of an arbitrary forebody
(ellipsoid) joined to various afterbodies such as the small
perturbation solution contours (SPS_1.1 and SPS_1.2) and a

conical afterbody. The approaching free stream Mach number (M,
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ranging from 0.50 to 1.50) starts from outer boundary with
distance of 1 times for the coarse grid and 5 times body’s
length for the fine grid respectively. Significant differences
between coarse and fine grid calculations can be seen from the
characteristic bow shock. In the coarse grid, the bow shock
hits the outer boundary, this causes the approaching free
stream Mach number not to be the same as in the input
parameter as shown in Figure (27). While in the fine grid, the
bow shock dies out before reaches the outer boundary as
depicted in Figure (28). So, further discussion is focused on
the fine grid exclusively.

The flow stagnates on the nose and then follows the body
surface until it reaches a maximum local Mach number as
tabulated in Table 3. The critical Mach number for these
complete bodies is approximately at M, = 0.70, where the
maximum local Mach number reaches unity at the shoulder
region.

Figure (29) shows a typical high subsonic free stream Mach
number (M, = 0.85) flow over the complete body SPS_1.1. The
flow stagnates on the nose tip, then flow is accelerated
following the forebody surface reaching a sonic line at the
mid-way of the forebody and forming a supersonic region at the
shoulder. Then, the flow deccelerates at the mid-section and
accelerates again until réaches a maximum local Mach number at
the starting region of the afterbody and a weak shock occurs

in this region. A supersonic approaching free stream Mach
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number, is depicted in Figures (30) and (31) for SPS_1.1 and
SPS_1.2 respectively. A bow shock is obviously seen in front
of the nose. The characteristic of the bow shock is more
inclined down stream for the higher M, as shown in Figure
(32). A subsonic region is formed between bow shock and the
nose, then the flow accelerates along the forebody surface up
to a supersonic region in the mid-section. The expansion flow
occurs in the starting contour region until it reaches a
maximum local Mach number. Then, a shock is formed in the
contour region. Similar as in the afterbody only, the shock
location depends upon the contour surface and M,. The shock
location for a given contour is more downstream for higher M,
and at the same M,, the shock location for SPS_1.1 is more
downstream than SPS_1.2. A typical residual history of CFD
calculation for complete body with small perturbation solution
contour is shown in Figure (33). Convergence is obtained at
about 500 iterations.

For the conical afterbody, the flow characteristic is the
same as the other complete bodies up to the mid-section
region. The expansion flow occurs at the turning angle, then
the flow accelerated along the conical surface and weak shock
is formed at the edge of base. Figures (34) and (35) show the
Mach number contour and corresponding residual calculation for
conical afterbody at M, = 1.10.

The pressure drag coefficient (C4-press) versus free

stream Mach number (M,) for fine grid complete bodies are
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plotted in Figure (36). The drag rises sharply in the high
subsonic Mach number (M, ~ 0.95) and reaches a maximum (peak)
at M, ~ 1.10. Then the drag decreases with a shallow curve as
the M, increases. The decreasing shallow curve may be caused
by the bluntness of the nose and it agrees with Shapiro
[Ref.18) because the fineness ratio and bluntness of the nose
of bodies of revolution are the important factors that
contribute the drag curve at transonic and supersonic range.
It can be seen from the graph, the drag curve of complete body
with conical afterbody is higher than with small perturbation
solution contour at the entire M_,. Furthermore, the peak of
the drag curve is approximately 15% higher. The drag curve for
SPS_1.1 and SPS_1.2 are likely to have the same trend up to M,
= 0.95; beyond this Mach number, the drag curve for SPS_1.2 is
slightly greater than for SPS_1.1. Therefore, the complete
body with small perturbation solution contour afterbody Mach

1.1 (SPS_1.1) relatively gives the lowest drag.
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VI. CONCLUSIONS AND RECOMMENDATIONS

The use of numerical simulation (CFD) appears to be the
most cost effective method to predict the aerodynamic
performance, especially in the transonic range.

In this research, the grid-generating program GRAPE is
suitable only for the geometry with smooth contour surface
(SPS_1.1 and SPS_1.2), while the program GRIDGEN2D is used for
the geometry of a conical afterbody with non-smooth points.

We have shown that for a complete body model the use of a
fine grid (77x9x120) is more reliable than a coarse grid
(77x13x60). This is shown by the characteristic of the bow
shock at M, > 1 as seen in Figures 27 and 28. The pressure
drag coefficient (C4) versus free stream Mach number (M,)
graphs show that the small perturbation solution contour for
Mach 1.10 (SPS_1.1) gives relatively the lowest C4 on both
models (afterbody and complete body), a decrease of
approximately 15% of peak in the transonic range compared to
the conical afterbody. Therefore, the best design of an axi-
symmetric body such as missiles, projectiles and aircraft, can
be based on the small perturbation solution contour.

Finally, this work may be continued with the investigation
a complete body with pointed nose geometry and the application
of a Euler as well as Navier-Stokes flow-solvers within

various small angle of attack.
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PROGRAM KSI.F

122222 EREAZESIZEESS A RSS2 22222222222 2222222 2222222222222 X
* This program is developed to calculate KSI(X), K(X) and X *
* using mumerical integration based on trapezoidal rule to *
* golve equation (32) and plotting the output as shown in +*
* Figs. 1 . *
I X2 XXX R XS SRR RSS2 RSS2 2422222232323 22ZX2222222 2228 X

REAL M(3), X(0:401,3), A, Al, B(401,3)
# , KSI, P, FUNC, H, DD, Q, L, K(401,3), N, N1
INTEGER YY

OPEN (UNIT=9, FILE='KSI',STATUS='UNKNOWN’)

PRINT *,’'ENTER LOWER & UPPER BOUND, # OF INTERVALS, # OF
#DATA SET’

READ *, A, Al, N, N1

100 DO 10 I=1,3
PRINT*, ‘'ENTER MACH NO.'

READ*, M(I)

o M(I) = 0.9+I*0.1
IF (M(I).LT.1.0) THEN
P=-1.

ELSE
P=1.
ENDIF

DO 20 J=1,N1
B(J,I) = J*A1/N1
H = (B(J,I)-A)/N
AREA = 0.
K(J,I)=(-0.0102/(M(I)**2))*((ABS((B(J,I)**2)-((ABS(1-
# M(I)**2))**1.7574)))**(2./3.)+(ABS(1-M(I)**2))**1.1716)

DO 30 L= 1,N
KSI = A + (L-0.5)*H
DD = (KSI**2+P* (ABS(1-M(I)**2))*%*1,7574)
IF (DD.GT.0.0) THEN
FUNC = 1./(DD**(1./3.))
Q = 1.
ELSE
FUNC = 1./((-1.*DD)**(1./3.))
Q = -1.
ENDIF
AREA = AREA + H*FUNC*Q
30 CONTINUE
20 CONTINUE
10 CONTINUE

DO 40 J= 1,N1
PRINT 50, (B(J,I),X(J,I),K(J,I),I=1,3)
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50 FORMAT (1X,3 (F6.3,2F10.5,1X))
40 CONTINUE
o]
200 PRINT*, ‘'TRY AGAIN?, ENTER 1 FOR YES,2 FOR DATA FILE,
# OTHERS FOR NO’
READ*, YY
IF (YY.EQ.1) THEN
GO TO 100
ELSE
IF (YY.EQ.2) THEN
DO 110 J= 1,N1
WRITE (9,50) (B(J,I),X(J,I),K(J,I),I=1,3)

110 CONTINUE
GO TO 200
ENDIF
ENDIF
END

PROGRAM ZETA.F
2 X2 2222222222222 2 3222222222222 222222232222 2222 222222222 2X/
* This program is written to calculate ZETA(r) and r using*

* equation (29) and plotting output in Fig.3 . *
2 I R R22222222322322 2222222223222 3222222222222 2222 22222223222

REAL M(3), ZETA(0:14,3), R(14)
OPEN (UNIT=9,FILE='ZZ’ ,STATUS='UNKNOWN’ )

DO 10 I= 1,3
c M(I) = 0.7+I%0.1
PRINT*, ’'ENTER MACH NO.’
READ*, M(I)
DO 20 J= 1,14
ZETA(0,I) = 1000.0
PRINT*, ’'ENTER R VALUES'’
READ*, R(J)
c R(J) = 0.1*J
‘ZBTA(J,I) = (4/(R(J)**2))+(ABS(1- (M(I)*+*2))
# *(R(J)**2,8284))
# +((1-M(I)**2)*(R(J)**7.657)/50.63
IF (ZETA(J,I1).GE.ZETA(J-1,I) ZETA(J,I)=ZETA(J-1,1I1)
20 CONTINUE
10 CONTINUE

PRINT 30, M
30 FORMAT (11X,5F10.4)

DO 40 J= 1,14

WRITE(9,50) (R(J), (ZETA(J,I),I=1,4)
50 FORMAT (4X, 3 '2F10.4, 2X)
40 CONTINUE

END
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PROGRAM D2D3.F
1 2222322332222 2222222222222 22222 222X R X2 R 22X X2 XX X R RRY
* This program will read data files output Gridgen2d *

* from 2D to 3D for further processing with rotategr.f +*
[ 222X 22222 X2 X222 2222222222 22X X222 2R R RN R R

REAL X(77,60),Y(77,60),2(77,60)

READ (12, *) IDIM,JDIM

READ (12, *) ((X(I,J),I=1,IDIM),J=1,JDIM),
# ((y(r,J),I=1,IDIM),J=1,JDIM)
Z(I1,J)=0.0

WRITE(14,*) IDIM,JDIM,1

WRITE (14, *) ((X(I,J),I=1,IDIM),J=1,JDIM),
# ((0.0,I=1,IDIM),J=1,JDIM),

# ((¥(r,J),I=1,IDIM),J=1,JDIM)
STOP

END

PROGRAM HALF.F
2222222222222 222222222222 ARd22 2222222322232 X222 222 2
* This program will write out half of a grid file output *

* from Grape for further processing with rotategr.f *
L X2 222322222 2222222222222 32 222222222222 2222232232223 22 00 23

DIMENSION X(200,200),Y(200,200)

READ (30, *) IDIM,JDIM

READ(30,*) ((X(I1,J),I=1,IDIM),J=1,JDIM),
# ((y(x,J),I=1,IDIM),J=1,JDIM)

IDMD2=IDIM/2 + 1

DO 10 J=1,JDIM
Y(IDIM2,J) = 0.0
10 CONTINUE

WRITE (31, *) IDMD2,JDIM,1

WRITE(31,*) ((X(I,J),I=IDMD2),J=1,JDIM),
# ((0.0,I=IDMD2),J=1,JDIM),

# ((Y(r,J),1=IDMD2) ,J=1,JDIM)
STOP

END
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PROGRAM ROTATEGR.F

I 2 2SR 2ES2X2 2R3 2222222222222 23 2222322222242 2322222 222222
* This program will create 3D grid (body of revolution) *
* Dby rotating 3D plane grid for further processing with *

* Flow Solver *
E R R R R R AR 2222222222233 234332322X222322 3222322233232 2232 X2 X2 2 2]

DIMENSION X(200,200), Y(200,200), Z(200,200)
DIMENSION XX(200,100,200), YY(200,100,200),
#22(200,100,200)

CHARACTER*30 FNI

CHARACTER*30 FNO

PRINT*, ’‘INPUT GRID’
READ(*,21) FNI
PRINT*, 'SG = 0, MG = 1’, ’,UNF=1, FORM=2'
READ (*,*) IGRI
PRINT*, 'IFORI = 1 UNF, IFORI = 2 FORM’
READ (*,*) IFORI
21 FORMAT (A)
IF (IFORI.EQ.1) THEN
REWIND 1
OPEN (1,FILE=FNI, FORM='UNFORMATTED'’)
IF (IGRI.EQ.1) READ (1) MGR
READ (1) I1,J1,K1
READ (1) ((X(1,J),I=1,I1),J=1,J1),
((Y(I:J)II’llIl):JsllJl):
((Z(IIJ)IIallIl),J’I'Jl)
CLOSE (i)
ENDIF
IF (IFORI.EQ.2) THEN
REWIND 2
OPEN (2,FILE=FNI, FORM='FORMATTED’)
IF (IGRI.EQ.1l) READ(2,*) MGR
READ(2,*) I1,J1,K1l
READ(2,*) ((X(I1,J),I=1,I1),J0=1,01),
# ((y(1,J),I=1,11),J0=1,J1),
# ((2(x,J),I=1,1I1),Jd=1,J1)
CLOSE (2)
ENDIF

* 3%

PI = 4.*ATAN(1.)

PRINT*, ’'NO OF PLANE IN J DIRECTION 2’
READ(S,*) JM

DTH = (180./(JM-1))*(PI/180)

DO 11 I=1,I1

DO 11 J=1,J1

K=J

XX(I,2,K) = X(I,K)
YY(I,2,K) = 0.0
Zz(1,2,K) = Z(I,K)

11 CONTINUE
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20

30

#
#

IM=I1

KM=J1

DO 20 J=3,JM+1
DO 20 I=1,IM

DO 20 K=1,KM
XX(I,J,K)=X(I,K)
TH = (J-1) *DTH
YY(I,J,K) = SIN(TH)*Z(I,K)
2Z(I,J,K) = COS(TH)*Z(I,K)
CONTINUE

DO 30 I=1,IM

DO 30 K=1,KM

J=1

XX(I,J,K) = XX(I,J+2,K)
YY(I,J,K) =-YY(I,J+2,K)

2z(1,J,K) = 22(I,J+2,K)
J=JM+2

XX(1,J,K) = XX(I,J-2,K)
YY(I,J,K) =-YY¥(I,J-2,K)
2z(1,J3,K) = 2Z(1,3-2,K)
CONTINUE

JM=JM+2

PRINT*, ’‘Output filename =’
READ(S,21) FNO

REWIND 3

OPEN( 3, FILE=FNO, FORM='UNFORMATTED’)

WRITE(3) IM,JM,KM

WRITE(3) (((x(1,J,K), I=1,IM),JdJ=1,JM),K=1,KM),
(((y(x,J,K), I=1,IM),J=1,JM),K=1,KM),
(((z2(x,J,K), I=1,IM),J=1,JM),K=1,KM)

CLOSE (3)

STOP

END
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PROGRAM READX.F

LA AL 2 2222222222222 222232222 R YRR T

* This program will read 3D grid file and convert from +
* formatted into unformatted file (grid.for to grid.in) =
* for further processing with Overflow. *

22222222 AR R0 2222 222222222 222 R R LR R ;

DIMENSION X(77,13,60), Y¥(77,13,60), Z(77,13,60)

OPEN (UNIT=12, FILE='GRID.FOR’ ,STATUS='UNKNOWN’ )
OPEN(UNIT=14, FILE='GRID.IN’, STATUS='NEW’,
#FORM='UNFORMATTED' )

READ (12, *) IDIM,JDIM, KDIM

READ (12,20) (((X(I,J,K), I=1,IDIM),J=1,JDIM), K=1,KDIM),
# (({(Y(1,J3,K), I=1,IDIM),J=1,JDIM),K=1,KDIM),
# (((2(1,J,K), I=1,IDIM),J=1,JDIM),K=1,KDIM)

WRITE(14) IDIM,JDIM,KDIM
WRITE(14) (((X(I,J,K), I=1,IDIM),J=1,JDIM),K=1,KDIM),
# (((¥(1,J,K), I=1,IDIM),J=1,JDIM),K=1,KDIM),
# (((z(1,J3,K), I=1,IDIM),J=1,JDIM),K=1,KDIM)
20 FORMAT (6F15.6)
STOP
END

PROGRAM READQ.F
R e Y e R R 2 2 22 R R T

* This program will read g.save file output from *
* Overflow and convert from unformatted into formatted *
* file for further processing with Plot3d. *

L2222 2222222222222 2222222222222 222322222 R R LR LR

DIMENSION Q(77,13,60,5)

OPEN (UNIT=1,FILE='Q.SAVE’,STATUS='0OLD’,
#FORM='UNFORMATTED' )

OPEN (20, FILE='Q.FORM’ , STATUS='NEW’ , FORM=' FORMATTED' )
READ (1) NI,NJ,NK

READ (1) FSMACH,ALPHA, RE, TIME

READ(I) ((((Q(I,J,K,NX) ,I=1,NI),J=1,NJ),K=1,NK),NX=1,5)

WRITE (20, *) NI,NJ,NK
WRITE (20, *) FSMACH,ALPHA,RE, TIME
WRITE(20,*) ((((Q(I,J,K,NX)

#,I=1,NI),J=1,NJ),K=1,NK),NX=1,5)
PRINT*, NI,NJ,NK

STOP

END
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PROGRAM OVERFLOW. IN
(222222 L 2222222222222 2222222222222 A2 XSRS
* Input file for Overflow to run either EULER or NAVIER- +
* STOKES Flow-solver. *
(2 XXX LALERRL A2 222 R dl Rl iSRS R XL R S
SGLOBAL
CHIMRA=.F., NSTEP=100, RESTART=.F., NSAVE=100, NQT=0,
$END
$FLOINP
ALPHA=180.0, FSMACH=0.95, REY= 6.00E6, TINF= 520.0,
$END
$GRDNAM
NAME= 'AXI-SYMMETRIC BODY WITH AFT-CONE, 77x13x60
GRID’,
$END
SMETPRM
IRHS = 0, ILHS = 2, IDISS = 2,
$END
$TIMACU
DT = 0.1, ITIME = 1, TFOSO = 1.00, CFLMIN = 5.00,
SEND
$SMOACU
ISPECJ
ISPECK
ISPECL
SMOO =
$END
SVISINP
VISCJI
NTURB
ITTYP
ITDIR
JTLS
JTLE
KTLS
KTLE
LTLS
LTLE
TLPARl= .3,
$END
$BCINP
NBC
IBTYP
IBDIR
JBCS
JBCE
KBCS
KBCE
LBCS
LBCE
$END

DIS2J
DIS2K
DIS2L
, EPSE

2.00, DIs4g
2.00, DIS4K
2.00, DIs4L
0.35,

0.02,
0.02,
0.02,

oNNN

O~ & =

o wn
o

=ouonon

.F. , VISCK = .F. , VISCL = .F. ,

A T | R | A I |
~J
~l

T T I I |
’—I
<
N
N
R
X
PWUHRIHWR
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