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ABSTRLCT

This thesis investigates the pressure drag coefficient in

the transonic regime over an axi-symmetric body, with a set of

unique contour surfaces developed in a previous thesis. The

contour surfaces were obtained by an exact solution of the

small perturbation transonic equation, using the guidelines

and tools developed at NPS. In this work, Computational Fluid

Dynamics (CFD) was not only used to compute the afterbody

contour surface, but also to investigate a conical afterbody

and complete bodies, which are composed of an arbitrary

forebody (ellipsoid) and variable afterbody (contour and

conical). Euler as well as Navier-Stokes flow-solvers were

applied to the geometries of interest, giving Mach-number

contours for viscous and inviscid flow, pressure drag

coefficient magnitude, and depicting shock wave locations. On

the basis of these results, it can be verified that our

contour surface afterbodies will decrease by 15% the peak of

the pressure drag coefficient (Cd) versus Mach number curves

in the transonic regime. These results can be used to design

low pressure drag surfaces for such shapes as missiles,

projectiles and aircraft engine nacelles.
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I. INTRODUCTION

The flight of an object over a wide range of speeds has a

critical transition zone where both subsonic and supersonic

types of flow exist. This speed regime is referred to as the

transonic range. The critical aerodynamic behavior occurs in

the range 0.8 < M < 1.2 depending on the object, where the

aerodynamic coefficients have been found to change by as much

as 100%. The behavior of the aerodynamic force components is

usually characterized by a rapid increase in the coefficients

followed by a sharp drop, in other words, a peak value for the

coefficients arises in this regime [Ref.l and 2].

One of the aerodynamic components, aerodynamic drag,

represents a significant adverse force on all flying objects

such as aircraft, missiles and projectiles. A high drag force

reduces the craft's range capability or equivalently requires

more energy to achieve a certain range. Any effort to reduce

the drag coefficient in the design process must concentrate on

reducing the wake and pressure drag (inclusive of wave drag)

contributions to the total drag.

A traditional approach to investigate aerodynamic

characteristics is based on wind tunnel data and actual flight

testing as a source for improvement of configurations to get

the best results. Unfortunately, both wind tunnel and flight

tests are considerably expensive and time consuming,
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particularly in the transonic flow regime. Because of the

great lateral influence of profiles at transonic speeds (shock

reflection of the wall bounces back to the model), models must

be made extremely small compared with wind tunnel dimensions

and this introduces great experimental difficulties.

Consequently, the data obtained at transonic speeds is

considerably less reliable than at either subsonic or

supersonic speeds. In addition, from a mathematical point of

view, even the two dimensional small perturbation potential

equation for transonic flow retains one non-linear term which

is essential for non-divergent solutions at Mach one, but this

non-linear partial differential equation has proven to be

difficult to solve. Such inherent difficulties, coupled with

the presence of shocks in the flow which cause boundary layer

separation, have resulted in the creation of many approximate

methods of solution which are employed in the design of

transonic airfoils and the like (Ref.3, 4 and 51. On the other

hand, the use of numerical simulation known as Computational

Fluid Dynamics (CFD) to predict aerodynamic characteristics

greatly increases possibilities to improve design optimization

at relatively low cost and allows for ease of design changes.

Finally, using the latest capabilities of Euler as well as

Navier-Stokes flow-solvers, it has been possible to compute

the flow over axi-symmetric bodies with various contours in

the transonic regime.
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II TRANSONIC FLOW

Transonic flows are characterized by the simultaneous

presence within the flow field of both subsonic and supersonic

regions. The properties of transonic flows can be derived from

the general equations of gas dynamics, namely, the equations

of state, continuity, momentum and energy. The following

derivation based on assumptions that the flow is steady,

irrotational and isentropic with no energy transfer, no body

forces and no shear stresses (inviscid flow).

1. Small Perturbation Theory

Starting with the equation of motion for steady,

isentropic, inviscid flow in the index notation form (Ref.4]:

u 1 = a 2 -uk (1)Saxj axk

Small-Perturbation Theory gives the velocity field as

u = U+ u ; u2 = v ; u3 = w (2)

where U denotes the free stream velocity in the x direction

and u, v, w are called perturbation velocity components in the

direction x, y, z respectively.
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Writing eq. (1) out in full, and substituting the velocity

field eq. (2), gives the equation in terms of perturbation

velocities.

a2( au÷ v ÷ wC1v20 20

43~ a aý -ýw (U+ u) 2a4U + V2.?a + W Ž
-Oay aa ax ay -z

(3)

+ (U+u) Lu + + VwL ÷- + w(U+u) ax a)

From the energy equation for a perfect gas, the speed of sound

(a) can be expressed in terms of the perturbation velocities.

(U+u) 2 + V2 + W2 a 2  U2  a.2+ - + (4)
2 (Y-1) 2 (+-1)

or

a 2 = - (Y-1) (2uU + U2 + V2 + w2 ) (5)
2

Substituting eq.(5) into eq.(3), dividing by a. 2, and

rearranging the terms, gives the full exact equation in terms

of perturbation velocities and free stream Mach number. This

equation contains linear terms on the left-hand side, but on

the right-hand side the terms are nonlinear.
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(1-.e) a +_ a.v _ aw =
ax ay az

be[(Y+J)_! +(y+l) U2 + (y-l) (v 2 +w 2 ) au
U 2 T2 2 U2  ] X

+ be[(y1) u + (y+j) v 2  (y-l) (w 2 +u 2 ) 3 (v
[ U 2 U2  2 U2  (y

+ je[(1_I) U + (y+I) w2 + (y-1) (U 2 +V2 ) ]1aw
U 2 U2  2 U 2  az

[v, uu +M -__v + w + Lu 8
[iUH a +az x ay az!x

If the perturbation velocities are small (u/Uv/Uw/U << 1),

eq. (6) can be simplified by neglecting the terms containing

squares of the perturbation velocities on the right hand side,

yielding

"u av a.w =
ax ay az

X! (Y+1) U au + l(y_1) (7).,,.(y U rax oay azl

2vLau av) + wi au + aw)

5



For further simplification, in eq. (7) all the terms on the

right hand side can be neglected, in comparison to those on

the left hand side. This gives the linear equation, which

contains only perturbation velocities and is valid only for

subsonic and supersonic flow.

(-Lu) a+u av a__w =
ax ay az

For transonic flow, where M, - 1, the coefficient of au/Ox on

the left hand side becomes very small, but it is not correct

co neglect the first term on the right hand side of eq.(7).

Therefore, the governing equation of transonic fJow in term of

perturbation velocities is as follows:

;) u + 1V + w = 4 (Y+i)u 8u (9)

For irrotational flow, a perturbation velocity potential @

exists,

Ua V = C1 ( W (10)

Substitution of eq.(10) into eq.(9), gives the governing

equation for transonic flow in terms of the velocity

potential.

6



2 a2 a2 2 ~ + 1 y~) aP a 2,p11
ax 2  ay 2  a z 2  U dx ax

For bodies of revolution, it is convenient to use cylindrical

coordinates (x,r,0) where x is aligned with the body axis. The

velocity components corresponding to (x,r,0) are Ux, ur and

u8 , respectively. The velocity potential in the cylindrica

coordinates,

ux= U U = TX, Ur = ' T (12)

Transforming Cartesian coordinate eq. (9) into cylindrical

coordinate, gives the governing equation of transonic flow.

2 820 a 2 o 1CI + 1 a20 _ (,(y+1) a¢ 8a20 ( 3 )
5x--a2 +r-- r÷ T8 r 2 80 2  U ax x2

For axially symmetric flow, where the conditions are the same

in every meridian plane, there is no variation with 0, so the

small perturbation, non-linear, axi-symmetric transonic

potential equation can be written as follows

a2  +I ao +, (_ 2)a -2 M; (-y+) a 82€ (14)

ar2 r÷ ax-2 U •X j•x2



Or rewriting in shorthand notation,

Orr + + ) x - U(Y+l)

Reference 6 introduces a modified potential equation for axi-

symmetric flows

I a ( -r r) + (lA ) ox = (16)

where the modified velocity potentials are

OUXb ,-l orinMhe(,Y+l).L (17)u- U

2. An exact solution for axu-syumetric, transonic flow.

Solutions to the modified transonic eq. (16) have been

given by Biblarz [Ref.6 and 7] by using the separation of

variables approach with a potential function *(x,r) of the

form

O(x,r) = t(x)I(r) + (1-14)x (18)

Substituting the above t function in the modified transonic

eq. (16) results in two ordinary, second order, non-linear

differential equations

8



dt d2t 0 (19)

and

±17 + 1 dt X2 = 0 (20)

where X is the separation constant.

The solution to the first differential eq. (19) is obtained

by multiplying both sides dt/dx,

dt J_ (X_ I 0 (21)

or

d [_(dCif)3  X t~2>O (22)

Thus

df IE2+Of- (23)

where a is a constant given by Ref.6.

Rearranging eq. (23)

dx- d
9(24)

9



and integrating eq. (24) gives,

J 1 (25)

where a and x0 are integration constants.

The solution to the second non-linear ordinary

differential equation (20), is obtained by an outer expansion

method. (Ref.8]

= ( 4 + (l- 2 (1 2rf (r (l.rM K;) f (r... (26)

Where (1-M, 2 ) represents a small parameter and the first term

is the purely sonic solution.

By taking first and second derivatives eq. (26) and

subtituting them into eq. (20) yields,

( )= 1 2a2X2r2(v/42) 127)

Al-Hashel [Ref.9] reported on eq.(26) and eq.(27),

implemented the boundary conditions with the constants (z, C 1,

a and X, gave the final results in the new variables,

if 3X(28)

10



ft(%r+2) - r(VW+2) X a (29)

(a X) 0. 4 14 2  (31)

then

f (32)

where xo-O, and

1 [=-(OI +÷2) + 2-o. M3 • (%/ 2) (33)

Equation (32) has been numerically integrated and plotted on

figure (1) as E (R) versus :R, and eq. (33) will be evaluated and

plotted in figure (2) as q (k) versus f for M, = 1.05, 1.1 and

1.2. A "patching" technique discussed in Ref.9 has been used

here.

11



III. PRESSURE COEFFICIENT AND BOUNDARY SURFACES

1. Pressure Coefficient

Liepmann and Roshko (Ref.41 define the pressure coefficient

as,

C = ° •-P.) 2 p (34)
O.5p.U2 we ~m

From the isentropic relation, we have pressure ratio in terms

of Mach number and after substituting into eq. (34) yields

2 + (.-_- A (3 )

Introducing M.2 = U2 /a. 2 , M2 = u 2/a 2 and using energy equation

(recall eq.4 and eq.5), the pressure coefficient can be

expressed in terms of the perturbation velocities,

2 + 4- (U+u) 2 v 2 w 2 I2

(36)

2 1 U2 - 1

12



Using the binomial expansion on the expression inside the

square brackets in eq. (36), we obtain the pressure coefficient

in the form

C 2 + 1 _e) E! V 2 +W
2-[ 2u u__M 2 v2+w (37)

For axi-symmetric flow, in cylindrical coordinates where u=ux

and (v 2 +W2 ) . Ur 2 , substituting into eq. (37) yields

" [ 2u. + (l_-be)(uX) _(U)2 J (38)cp= -. lU. £U.)

The linearized pressure coefficient approximation for axi-

symmetric flow turns out to be

C u= -x (39)
U.

Recall the modified axial velocity potential, eq. (17),

U.ux •(),i (40)

thus

ux= __(41)

13



Substitute eq. (41) into eq. (39), yields

-2 t,
cC- • ÷14 O(42)

b%4 (-Y +l)

The derivative of the potential function eq. (18) with respect

to x becomes

.x = E + i- )(43)

Ref.6 introduces relation of the constants C1, a, a and X in

expression,

of = ±cij-•,•-•.7574 (44)

and

[1.2426  (45)a:-~i- 1. a8xlo -2
XJ. X 7574

Rewriting eq. (23) and substitute the constant ot eq. (44)

becomes

c. [ E2 + C1 1 (1--b4 11475741(4

14



Recall the new variable eq. (28)

f 3X -2(47)r2C, 1

Substituting eq. (47) into eq. (46) and factoring C1 out, yields

1 1
d ° c- [2 + I 1-b) I1.75741] (48)

Recall and arrange new variable eq. (31)

(a X) 0. 4 14 2  (49)

Rewriting eq. (43) the modified potential function and

inserting eq. (48) and eq. (49), becomes

10 4142  1 [ (0)

Ox -1-7 i I 1 (a•4°"11.7574]2 (5

or

1

aO.4142C1
O __ = ao _ 2+1 (1-f4)I1 + <1-54)

15



Substituting the expression of constants eq. (45) into eq. (51)

1

= 0.2208 j[ • I (l-M) • - (52)

Finally, rewriting the pressure coefficient C as

1

= 2 -2 2208f •2+1 (1-M) i1"757•4 ] ÷(-• (53)

2. Boundary Surfaces

For an inviscid flow, the condition to be applied at the

surface of a solid boundary is that the direction of the flow

velocity vector must be tangent to the solid surface. In other

words, the velocity vector is everywhere at right angles to

the normal to the solid boundary [Ref.10]. In addition the

boundary condition requires that the gradient of potential 0

vanish far ahead of the body. In terms of perturbation

velocities this boundary condition becomes

16c Ur (54)

16



Recall the modified velocity perturbation potential eq. (17)

Ur

thus

Ur _ Or (56)

substituting eq. (56) into eq. (54),

()r (57)

Taking the d>'Iferential of eq.(18) with respect to r gives

ai (58)

Expressing eq. (58) in terms of new variables, recall eq. (28),

eq.(29) and eq. (31)

Or = 0.0848 f Uk (59)

17



Recalling eq. (33) and taking the derivative with respect to f

then substituting eq. (59) into eq. (57), yields

(d). 0.0848 E[-8+2.8284 1i-be fl"'2"+0 1512(I-b)2 f6.657dx X(y+l) 1

(60)

Replacing the left hand side of eq. (60) with the new variables

eq. (29) and eq(30), then rearranging it becomes

d-P_ 0.0326 -[-8+2.8284 I1-bI f'1.284+0o 1512(l-ý)2 f6.657J
k M.!(y+1) f3 "

(61)

For further arrangement, by separating variables eq. (61),

yields

df

--- 2. 82 84 11- Z1.28-0.1512 (1-X!)2 _f6.65-,

-0.0326 E d(

Then, integrating both sides of eq. (62) becomes

18



f df

-2.8284 4-0.1512 (1-X!)2 f.6657)
f. 3 (63)

-0.0326 f Z
X! (Y+l) 0

where

Y0 = i. 2074-1_ (64)

Al-hashel [Ref.10] has developed and computed eq.(63)

using numerical integration, to determine the boundary

surfaces in dimensional and non-dimensional (normalized) form

for M, = 1.05, 1.10 and 1.20 as depicted in Figure (3) and

Figure (4). Based on these calculations, the geometric grid of

the afterbody for Mach number 1.10 and 1.20 are developed for

further study with Computational Fluid Dynamic (CFD).

This thesis research also examines conical afterbodies as

a solid afterbody boundary surface with base diameter ratio

(db/dm) of 0.50 and 0.75 and conical turning angle (f) of 26.6

and 14.0 degree respectively [Ref.l1 and 12]. Then, for

further investigation, the complete bodies as a solid boundary

surface are generated, with a kind of forebody (ellipsoid)

joined with the contour surface afterbodies a, well as the

conical afterbodies.
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IV. DRAG

Drag is one of the aerodynamic force components parallel

to free stream velocity (U,). It represents a significant

adverse force on all flying objects. Basically, the drag force

is divided into two categories, the drag caused by forces

acting normal to the boundary surface which is called pressure

drag (inclusive forebody, base and wave drag) and that arising

from the tangential forces acting on the surface, by virtue of

viscosity which is called viscous drag or skin friction.

Figure (5) shows the components of the drag as function of

Mach number and the methods used to compute body drag in four

Mach number regimes (Ref.5].

'SA

________ I 1..t* I e 7~ ... I lliIi l

* |1 41$RW IICURSn O. €. ~ tithnud. n I~ r-gw. C lI~~

raw. In

tI I

Flit q Ln4 .N.bh.,1 tnt pvUmgWtql dvnlg

Figure 5. Components of the Drag [Ref.5]
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1. Skin Friction

Skin friction is the result of shearing force within the

boundary layer of a viscous flow, acting tangentially to a

surface in motion relative to the fluid. The amount of viscous

resistance depends upon whether the flow is laminar or

turbulent (Ref.5]. Krasnov [Ref. 13] introduces the laminar and

turbulent skin friction for flat plates, based on the boundary

layer theory, for compressible flow. These formulas also valid

for bodies of revolution with infinite length.

Laminar flow, Re < 106

CfL - 1.32 ( + 0.03X!) 3 (65)

(Re) 2

Turbulent flow, Re > 106

Cfr = 0.472 [log1 0 Re (1+0.2d)-1.76]-2.59 (66)
(1+0.1Mx!)

where Re is the Reynold number

21



2. Pressuze Drag

Liepmann and Roshko [Ref.4] introduce the pressure drag

formula (inclusive wave drag and base drag) for axi-symmetric

bodies as,

L

D =f p dS -p5(L)
0

(67)
L

-f (p-p.) dS + (PW-PB) S(L)
0

or, in dimensionless form,

CD Dq.S(L)

(68)

1 cddx+C

0

where SW(x) = wr2 is the cross-sectional area of the body at x.

dS(x) = 2ardr = 2nrr drdx (69)
dx

or

dS = 2nrdr (70)
dx dx
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The first term in square bracket eq. (68) can be solved by

inserting eq. (53), eq. (60) and eq. (70) yielding,

d 8 -2 .2208j[f2+1 (1-M) 11.7574]7+(1-M4)

(7(-1)

(71)

(2irr) 0.36f-+ 2 .2B 4I1jlAfl.82 81~4+0.1512 (l1Af)2f6.6571L.dx(2er (' 1+1)

Recalling new variables eq.(28), eq.(29), eq.(30) and

inserting #2 _ l-NM2 into eq. (71) yields,

L

11-•2 1711
-2 [o.22os#(c~jft3.514sI]+#1-42 Jsioc (2if (1-# ) (-y+l) I x0. 71 a0 .2071  ( 2

{0.0326 [8 +2.82841 21f1.8284+0.1512p4f6.657ld9
(,-#2) (,y+,)

where C1 , a and X are constants.
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The second term in square bracket eq. (68) is the contribution

to the drag by the base pressure PB" Ref.4 claims, that the

values of the base pressure coefficient CB must be obtained

experimentally. However Krasnov (Ref.13] introduces the

boattail drag coefficient for a conical afterbody as,

CpB = 0. 002 F8 + _Lj81.7(1_S) (73)

where

6 - turning angle of the conical body

SB - ratio of the base area to the mid-section area

In this work, the skin friction coefficient as well as the

pressure drag coefficient of the geometries of interest, at

specified Mach number, can be obtained directly from the

results of CFD calculations. The Euler solution will give the

pressure drag and the Navier-Stokes solution will give both.
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V. COMPUTATION.L FLUID DYNAKICS

The rapid advancement in the speed of computers and their

enormous memory size has led to the emergence of the field of

computational fluid dynamics (CFD). This branch of fluid

dynamics complements its experimental and theoretical

branches, by providing an alternate, cost-effective means of

simulating real flow. It also offers the only means of

examining theoretical advances for conditions unavailable

experimentally. As a model based method, CFD can provide the

convenience of being able to switch off specific terms in the

governing equations [Ref.14], so as to assist the researcher

in understanding the contributions of various physical

factors.

In this work, CFD was used to compute the axi-symmetric

flow over the afterbody geometry of models only (the boundary

surfaces obtained by the small perturbation method [Ref.9] and

conical afterbody) and over complete body models which are

composed of forebody (ellipsoid) and afterbody.

1. Grid Generation

The computer programs GRAPE [Ref.15] and GRIDGEN2D

[Ref.16] are tools used to generate two-dimensional structured

grids about airfoils and other shapes by the use of algebraic

or Poisson differential equation solvers. GRAPE was used for

25



the geometry with smooth contour surfaces, while GRIDGEN2D was

used for the geometry with a conical afterbody with non-smooth

points. Outer and inner boundaries were specified as the C-

type grid for afterbody models only, while the 0 type grid was

for the complete body models, where both type of grids treat

the surface of the body as the inner boundary. The important

characteristics in a grid generation technique are the ability

to specify the spacing between mesh points at the boundary, in

the direction normal to the boundary, and the control of the

angles with which mesh lines intersect the boundaries which is

known as orthogonality [Ref.15].

Figure (6) is a typical output of program GRAPE for an

afterbody with small perturbation solution contour for Mach

1.10 (SPS_1.1), C-type grid with the grid size of 115x60, and

figure (7) is the complete body with the grid size of 152x60

(0-type grid).

To develop a three-dimensional grid from two-dimensional

grid (output program GRAPE), the FORTRAN code called HALF.F

(Appendix) was used to write out the half of the 2D grid and

convert them into 3D plane-grid. Then, the FORTRAN code

ROTATEGR.F (Appendix) was used to rotate the 3D plane-grid for

11 planes plus 2 more to generate a 3D volume grid of half of

an axi-symmetric body surface as shown in figure (8) and

figure (9) with grid size of 58x13x60 and 77x13x60

respectively. These grids are ready for further processing

with a flow-solver.
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Program GRIDGEN2D gives the pattern of how to build 2D-

grid. It consists of four subfaces which are treated as

boundaries. Grid spacing is determined by setting up the

distribution points of each pair subfaces. It uses equal

spacing along the body surface, while the direction normal to

the body surface uses geometric spacing with specified width

in the beginning. Figure (10) and Figure (11) are typical

outputs of GRIDGEN2D for an afterbody and for a complete body

with the grid size of 58x60 and 77x60 respectively. FORTRAN

code D2D3.F (Appendix) is used to convert 2D grid output from

GRIDGEN2D into 3D plane-grid. Then we apply the FORTRAN code

ROTATEGR.F to generate a 3D volume grid of half of an axi-

symmetric body as depicted in Figure (12) and Figure (13) with

the grid size of 58x13x60 and 77x13x60.

In this research, we also attempted to develop a fine grid

for complete bodies (0-type grid), where the radius of outer

boundary is set up to be five times of the body's length. The

steps to obtain 3D volume grid are similar to those described

above with the final grid size of 77x9x120 and the final

geometry of a quarter of an axi-symmetric body instead of a

half body. Figures (14) and (15) are typical fine grids of the

complete body with a conical afterbody and a complete body

with contour surface afterbody.
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2. Flow-solver

The OVERFLOW program [Ref.17] was developed by NASA-Ames

Research Center. It uses either 3-D Euler or Navier-Stokes

flow-solvers for inviscid/viscous flow, by setting True or

False the parameter VISINP (viscosity input) in the input file

(overflow. in). Before flow-solver code (OVERFLOW) is applied

on the grid file, a formatted 3D grid file named "grid.for"

must be converted into an unformatted grid file named

"grid.in", by using FORTRAN code called READX.F (Appendix).

Then, the NAMELIST input file parameter specification must be

written for running OVERFLOW, it is called "overflow.in". The

input parameter consists of the number of iterations,

timesteps, calculation methods, smoothing, type of flow and

boundary conditions for each grid. The value of angle of

attack (ALPHA) depends on the orientation of the grid in the

coordinate system. In this case, ALPHA is 1800 (flow comes

from the x-positive to the x-negative direction). The boundary

conditions depend on the geometry corresponding to the final

3D volume grid. Both input parameters, the angle of attack and

the boundary conditions for each geometric shape, are

tabulated in Table 1.

The file overflow.in (Appendix) is a typical input

parameter specification of the axi-symmetric body with a

conical afterbody using the grid size of 77x13x60. This file

input uses NSTEP-100, Mach number=0.95, ALPHA-1800 . The

calculation method depends on a central difference Euler term
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in J, K, L and ARC3D diagonal factorization and dissipation

scheme (IRHS-0, ILHS-2, IDISS-2). For the first attempt a time

step DT=0.1, ITIME=l and CFLMIN=5.0 was utilized. The boundary

condition consists of 6 boundaries (NBC=6), with the type of

BC IBTYP=30 (inflow) in the J positive (1), IBTYP=15 (Axis K

round) in J negative (-1) direction, IBTYP=12 (symmetry in Y)

in the K positive (2) and K negative (-2) direction, IBTYP=1

(Inviscid adiabatic wall) in the L positive (3) direction and

IBTYP=32 (Supersonic /subsonic inflow/outflow) in the L

negative (-3) direction.

The OVERFLOW program gives output files such as ovr.out,

q.save, resid.out and fomo.out. To verify that a calculation

is appropriate or converged, it can be traced by looking at

the plot of residual history (resid.out). A convergence

criterion was defined as the reduction in residuals by two

orders of magnitude. If the first run (NSTEP=I00) does not

fulfill the convergence criterion, one may perform a restart

by further running OVERFLOW and changing the parameter

RESTART=.T. in the input file (overflow.in) and by copying

q.save into q.restart. Repeating the above steps until all

convergence criteria are met. If in the output file q.bomb

appears, one tries another run by changing parameter time step

DT and CFLMIN until the criteria are met. Then, one converts

the output file q.save (unformatted) into formatted file named

q.form by using FORTRAN code READ1.F (Appendix).

Finally, the last step is to run PLOT3D program with the
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source formatted files x=grid.for and q=q.form. By using

functions on the PLOT3D program, many plots such as pressure,

velocity, Mach number, vorticity, etc., are obtained.

3. Results

The results of CFD programs are grouped into the

corresponding geometric shape, namely, afterbody only and

complete body. The Euler flow-solver (inviscid flow) was

applied to all axi-symmetric bodies, except for the afterbody

models only, where both Euler and Navier-Stokes (viscous flow)

were applied. Most of the calculations converged in 500

iterations, meaning that the residual history achieved a two

order of magnitude drop.

Results can be analyzed by plotting the q.form file,

output file from the OVERFLOW program, using the proper

function in PLOT3D program (Mach number). By interpreting the

Mach number contour surrounding the body surfaces, one can be

determine the characteristics of the flow field. In addition,

the drag coefficient Cd, can be obtained in the file fomo.out,

output from OVERFLOW. Hence, in the sequences of Mach number,

one can describe the significant flow characteristic of each

geometric shape.

a. Afterbodies

An Euler as well as a Navier-Stokes flow-solver was

applied to these afterbody models. The approaching free stream
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Mach number (ranging from 1.05 to 1.50) starts from the mid-

section of the afterbodies, then the flow follows along the

afterbody surface until it reaches a maximum local Mach number

as tabulated in Table 2. The maximum local Mach number f or

viscous f low is always lower compared to in the inviscid f low.

This may be caused by the viscous f low itself since we are

taking into account the shear f orce in the boundary layer near

the surface.

For the afterbodies from the small perturbation solution

contour (SPSI.0, SPSI.I and SPSI.2), in inviscid flow, the

shock, -s are formed at the contour surface. The location of the

shock dtzpenda on the specific afterbody contour and the

approaching Mach, aumber; at the higher Mach numbers the shock

appears a bit further downstream as shown in Figures (16)

through (21). As shown in Figure (22) and Figure (23), this is

apparently a result of viscosity; it shows the boundary layer

by the increment of Mach number away form the surface. Weak

shocks were formed further downstream compared to inviscid

flow. Flow separation occurs in the starting contour region

and is followed by circulating flow in the base region.

For the conical afterbody, the approaching free stream

Mach number increases following the mid-section surface, then

a flow expansion occurs at the turning angle region, until the

maximum local Mach number is reached. A weak shock is formed

at the end of the boattail region as shown in Figure (24) ,

while for the viscous flow, the weak shock develops away from
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boattail surface due to the boundary layer and the separation

of the flow. The circulating flow in the base region is-more

significant than in the inviscid flow as depicted in Figure

(25). In addition, from Table 2, for viscous flow the maximum

local Mach number for the conical afterbody is higher than for

the contoured afterbody.

For each afterbody the pressure drag coefficient (Cd)

versus free stream Mach number (M,) for inviscid and viscous

flow are plotted in Figure (26). The negative sign of Cd is

due to the fact that the calculation of pressure starts from

mid-section through the base of afterbody and ignores the

forebody pressure. These results show that the pressure drag

coefficient is higher for viscous flows than for inviscid

flows for each given afterbody. This may be caused by the

viscosity effect and the pressure distribution difference in

the flow field. In addition, it can be seen from the chart,

that the Cd for the afterbody with small perturbation solution

contour Mach 1.10 (SPS1.I) has the lowest Cd values over the

entire Mach number range. Therefore, the SPS1.1 contour shows

to be relatively the best among these afterbodies.

b. Complete Bodies

Complete bodies consist of an arbitrary forebody

(ellipsoid) joined to various afterbodies such as the small

perturbation solution contours (SPS_1.1 and SPS_1.2) and a

conical afterbody. The approaching free stream Mach number (M.
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ranging from 0.50 to 1.50) starts from outer boundary with

distance of 1 times for the coarse grid and 5 times body's

length for the fine grid respectively. Significant differences

between coarse and fine grid calculations can be seen from the

characteristic bow shock. In the coarse grid, the bow shock

hits the outer boundary, this causes the approaching free

stream Mach number not to be the same as in the input

parameter as shown in Figure (27). While in the fine grid, the

bow shock dies out before reaches the outer boundary as

depicted in Figure (28). So, further discussion is focused on

the fine grid exclusively.

The flow stagnates on the nose and then follows the body

surface until it reaches a maximum local Mach number as

tabulated in Table 3. The critical Mach number for these

complete bodies is approximately at M. = 0.70, where the

maximum local Mach number reaches unity at the shoulder

region.

Figure (29) shows a typical high subsonic free stream Mach

number (M, = 0.85) flow over the complete body SPS_1.1. The

flow stagnates on the nose tip, then flow is accelerated

following the forebody surface reaching a sonic line at the

mid-way of the forebody and forming a supersonic region at the

shoulder. Then, the flow deccelerates at the mid-section and

accelerates again until reaches a maximum local Mach number at

the starting region of the afterbody and a weak shock occurs

in this region. A supersonic approaching free stream Mach
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number, is depicted in Figures (30) and (31) for SPS_1.1 and

SPS_1.2 respectively. A bow shock is obviously seen in front

of the nose. The characteristic of the bow shock is more

inclined down stream for the higher MD as shown in Figure

(32). A subsonic region is formed between bow shock and the

nose, then the flow accelerates along the forebody surface up

to a supersonic region in the mid-section. The expansion flow

occurs in the starting contour region until it reaches a

maximum local Mach number. Then, a shock is formed in the

contour region. Similar as in the afterbody only, the shock

location depends upon the contour surface and M.. The shock

location for a given contour is more downstream for higher M.

and at the same M., the shock location for SPS_1.1 is more

downstream than SPS_1.2. A typical residual history of CFD

calculation for complete body with small perturbation solution

contour is shown in Figure (33). Convergence is obtained at

about 500 iterations.

For the conical afterbody, the flow characteristic is the

same as the other complete bodies up to the mid-section

region. The expansion flow occurs at the turning angle, then

the flow accelerated along the conical surface and weak shock

is formed at the edge of base. Figures (34) and (35) show the

Mach number contour and corresponding residual calculation for

conical afterbody at M, = 1.10.

The pressure drag coefficient (Cd-press) versus free

stream Mach number (M,) for fine grid complete bodies are
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plotted in Figure (36). The drag rises sharply in the high

subsonic Mach number (M0 - 0.95) and reaches a maximum (peak)

at M, - 1.10. Then the drag decreases with a shallow curve as

the M, increases. The decreasing shallow curve may be caused

by the bluntness of the nose and it agrees with Shapiro

[Ref.18] because the fineness ratio and bluntness of the nose

of bodies of revolution are the important factors that

contribute the drag curve at transonic and supersonic range.

It can be seen from the graph, the drag curve of complete body

with conical afterbody is higher than with small perturbation

solution contour at the entire MD. Furthermore, the peak of

the drag curve is approximately 15% higher. The drag curve for

SPS_1.1 and SPS_1.2 are likely to have the same trend up to MD

= 0.95; beyond this Mach number, the drag curve for SPS_1.2 is

slightly greater than for SPS_1.1. Therefore, the complete

body with small perturbation solution contour afterbody Mach

1.1 (SPS_1.1) relatively gives the lowest drag.
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VI. CONCLUSIONS AND RZCObMWWZDATIONS

The use of numerical simulation (CFD) appears to be the

most cost effective method to predict the aerodynamic

performance, especially in the transonic range.

In this research, the grid-generating program GRAPE is

suitable only for the geometry with smooth contour surface

(SPS_1.1 and SPS_1.2), while the program GRIDGEN2D is used for

the geometry of a conical afterbody with non-smooth points.

We have shown that for a complete body model the use of a

fine grid (77x9x120) is more reliable than a coarse grid

(77x13x60). This is shown by the characteristic of the bow

shock at M, > 1 as seen in Figures 27 and 28. The pressure

drag coefficient (Cd) versus free stream Mach number (M.)

graphs show that the small perturbation solution contour for

Mach 1.10 (SPS_1.1) gives relatively the lowest Cd on both

models (afterbody and complete body), a decrease of

approximately 15% of peak in the transonic range compared to

the conical afterbody. Therefore, the best design of an axi-

symmetric body such as missiles, projectiles and aircraft, can

be based on the small perturbation solution contour.

Finally, this work may be continued with the investigation

a complete body with pointed nose geometry and the application

of a Euler as well as Navier-Stokes flow-solvers within

various small angle of attack.
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PROGRAM KSI.F

"* This program is developed to calculate KSI(X), K(X) and X *
"* using mumerical integration based on trapezoidal rule to *
"* solve equation (32) and plotting the output as shown in *
"* Figs. 1 *

REAL M(3), X(0:401,3), A, Al, B(401,3)
# KSI, P, FUNC, H, DD, Q, L, K(401,3), N, NI
INTEGER YY
OPEN (UNIT=9, FILE=' KSI',STATUS= 'UNKNOWN')
PRINT *, 'ENTER LOWER & UPPER BOUND, # OF INTERVALS, # OF

#DATA SET'
READ *, A, Al, N, N1

100 DO 10 I=1,3
PRINT*, 'ENTER MACH NO.'
READ*, M(I)

c M(I) = 0.9+I*0.1
IF (M(I).LT.1.0) THEN
P = -1.
ELSE
P = 1.
ENDIF
DO 20 J=1,N1

B(J,I) = J*Al/N1
H = (B(J,I)-A)/N
AREA = 0.
K(J,I)=(-0.0102/(M(I)**2))*((ABS((B(J,I)**2)- ((ABS(l-

# M(I) *'2) )**i. 7574) ) )** (2./3. ) +(ABS (1-M(I) *'2) )**i. 1716)
c

DO 30 L= 1,N
KSI = A + (L-0.5)*H
DD = (KSI**2+P*(ABS(1-M(I)**2))**1.7574)
IF (DD.GT.0.0) THEN
FUNC = I./(DD**(1./3.))
Q= 1.
ELSE
FUNC =./((-I.*DD)**(I./3.))

Q = -1.
ENDIF
AREA = AREA + H*FUNC*Q
X(J,I) = AREA

30 CONTINUE
20 CONTINUE
10 CONTINUE

C
DO 40 J= 1,N1

PRINT 50, (B(J,I),X(J,I),K(J,I),I=1,3)
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50 FORMAT(IX,3(F6.3,2F10.5,1X))
40 CONTINUE

c
200 PRINT*,'TRY AGAIN?, ENTER 1 FOR YES,2 FOR DATA FILE,

# OTHERS FOR NO'
READ*, YY
IF (YY.EQ.l) THEN

GO TO 100
ELSE

IF (YY.EQ.2) THEN
DO 110 J- 1,N1
WRITE (9,50) (B(J,I),X(J,I),K(J,I),I-1,3)

110 CONTINUE
GO TO 200

ENDIF
ENDI F

END

PROGRAM ZETA. F

"* This program is written to calculate ZETA(r) and r using*
"* equation (29) and plotting output in Fig.3 . *

REAL M(3), ZETA(0:14,3), R(14)
OPEN(UNIT-9,FILE-'ZZ',STATUS-'UNKNOWN')

C
DO 10 I- 1,3

c M(I) - 0.7+I*0.i
PRINT*, ' ENTER MACH NO.'
READ*, M(I)
DO 20 J- 1,14
ZETA(0,I) - 1000.0
PRINT*, ' ENTER R VALUES'
READ*, R(J)

c R(J) = 0.1*J
ZETA(J,I) - (4/(R(J)**2))+(ABS(1-(M(I)**2))

# *(R(J)**2.8284))
# +((I-M(I)**2)*(R(J)**7.657)/50.63

IF (ZETA(J,I).GE.ZETA(J-1,I) ZETA(J,I)-ZETA(J-1,I)
20 CONTINUE
10 CONTINUE

C
PRINT 30, M

30 FORMAT(11X,5F10.4)
DO 40 J- 1,14
WRITE(9,50) (R(J), (ZETA(J,I),I-1,4)

50 FORMAT (4X, 3 '2F10.4,2X)
40 CONTINUE

END
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PROGRAM D2D3 .F

* This program will read data files output Gridgen2d

* from 2D to 3D for further processing with rotategr.f

REAL X(77,60),Y(77,60),Z(77,60)
READ(12,*) IDIM,JDIM
READ(12,*) ((X(I,J),I=11IDIM),J=1,JDIM),

# ((Y(I,J),I=1,IDIM),J=1,JDIM)
Z(I,J) =0.0
WRITE(14,*) IDIM,JDIM,1
WRITE(14,*) ((X(I,J),I=1,IDIM),J=1,JDIM),

# ((O.O,I=1,IDIM),J=1,JDIM),
# ((Y(I,J),I=1,IDIM),J=1,JDIM)

STOP
END

PROGRAM HALF. F

* This program will write out half of a grid file output*
* from Grape for further processing with rotategr.f

DIMENSION X(200,200) ,Y(200,200)
READ(30,*) IDIM,JDIM
READ(30,*) ((X(I,J),I=1,IDIM),J=1,JDIM),

# ((Y(I,J),I=1,IDIM),J=1,JDIM)
C

IDMD2=IDINi/2 + 1
C

DO 10 J=1,JDIM
Y(IDIM2,J) = 0.0

10 CONTINUE
C

WRITE(31,*) IDMD2,JDIM,1
WRITE(31,*) ((X(IJ),I=IDMD2),J=1,JDIM),

# ((0.0,I=IDMD2),J=1,JDIM),
# ((Y(I,J),I=IDMD2),J=1,JDIM)

STOP
END
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PROGRAM ROTATEGR. F

* This program will create 3D grid (body of revolution) *

* by rotating 3D plane grid for further processing with *

* Flow Solver

DIMENSION X(200,200), Y(200,200), Z(200,200)
DIMENSION XX(200,100,200), YY(200,J.O0,200),

#ZZ (200, 100,200)
CHARACTER*30 FNI
CHARACTER* 30 FNO

c
PRINT*, 'INPUT GRID'
READ(*, 21) FNI
PRINT*, 'SG = 0, MG = 1', ',UNF=l, FORM-2'
READ(*,*) IGRI
PRINT*, 'IFORI = I. UNF, IFORI = 2 FORM'
READ(*,*) IFORI

21 FORMALT(A)
IF (IFORI.EQ.1) THEN
REWIND 1
OPEN (1,FILE=FNI,FORM='UNFORMATrED')
IF (IGRI.EQ.1) READ (1) MGR
READ (1) I1,J1,K1
READ (1) ((X(I,J),I-1,I1),J=1,Jj),

# ((Z(IJ),I11,Il),J.-1,J1),

CLOSE (.L)
END IF
IF (IFORI.EQ.2) THEN
REWIND 2
OPEN (2,FILE=FNI,FORM='FORMA'ITED')
IF (IGRI.EQ.1) READ(2,*) MGR
READ (2, *) I1, J1, K1
READ(2,*) ((X(I,J),I=1,I1),J-1,J1),

# ((Z(IJ),I=lI1),J=1,J1)
CLOSE (2)
ENDI F

c
PI - 4.*ATAN(I(.)
PRINT*, 'NO OF PLANE IN J DIRECTION V'
READ(5,*) 3M
DTH = (180./(JM-1))*(PI/180)
DO 11 1=1,11
DO 11 J=1,J1
K=J
XX(I,2,K) = X(I,K)
YY(I,2,K) = 0.0
ZZ(1,2,K) = Z(I,K)

11 CONTINUE

81



C

IM-Iii
KM-Jl
DO 20 J-3,JM+l
DO 20 I-1,IM
DO 20 K-1,KM
XX (I, J, K) -X (I, K)
TH - (J-1)*DTH
YY(I,J,K) - SIN(TH)*Z(I,K)
ZZ (I, J, K) -COS (TH) *Z (I, K)

20 CONTINUE
C

DO 30 I-1,IM
DO 30 K'ml,KM
J-1
XX(I,J,K) = XX(I,J+2,K)
YY(I,J,K) =-YY(I,J+2,K)
ZZ(I,J,K) = ZZ(I,J+2,K)
J=JM+2
XX(I,J,K) - XX(I,J-2,K)
YY(I,J,K) --YY(I,J-2,K)
ZZ(I,J,K) = ZZ(I,J-2,K)

30 CONTINUE
JM-JM+2

C
PRINT*, 'Output filename =

READ(5,21) FNO
C

REWIND 3
OPEN( 3, FILE-FNO, FORM='UNFORMATTED')
WRITE(3) IM,JM,KM
WRITE(3) (((X(I,J,K), I=1,IM),J=l,JM),K=1,KM),
# (((Y(I,J,K), I=1,IM),J-1,JM),K=1,KM),
# (((Z(I,J,K), I=1,IM),J=1,JM),K=1,KM)

CLOSE (3)
STOP
END
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PROGRAM READX. F

* This program will read 3D grid file and convert from *
* formatted into unformatted file (grid.for to grid.in) *
* for further processing with Overflow.*

DIMENSION X(77,13,60), Y(77,13,60), Z(77,13,60)
OPEN(UNIT-12,FILE-'GRID.FOR' ,STATUS-'tJNKNOWN')
OPEN(UNIT=14,FILE-'GRID.IN' ,STATUS-'NEW',

#FORM-' UNFORMATTED')
READ(12, *) IDIM,JDIM,KDIM
READ(12,20) (((X(I,J,K), I-l,IDIM),J-1,JDIM),K-1,KDIM),

# (((Y(IJK), I-1,IDIM),J-1,JDIM),K=1,KDIM),
# ~(((Z(I,JK), I-1,IDIM),J=1,JDIM),K-1,KDIM)

C
WRITE (14) IDIM, JDIM, KDIM
WRITE(14) (((X(I,JOK), I-1,IDIM),J-1,JDIM),K=1,KDIM),
# (((Y(I,J,K), I-1,IDIM),J-1,JDIM),K=1,KDIM),
# (((Z(I,J,K), I-1,IDIM),J-1,JDIM),K=1,KDIM)

20 FORMAT(6F15.6)
STOP

PROGRAM READQ. F

* This program will read g-save file output from*
* overflow and convert from unformatted into formatted*
* file for further processing with Plot3d.*

DIMENSION Q(77,13,60,5)
OPEN(LJNIT=1, FILE='Q.SAVE' ,STATUS='OLD',

#FORM=' UNFORMATrED')
OPEN(20,FILE='Q.FORM',STATUS='NEW',FORM='FORMATTED'
READ (1) NI, NJ, NK
READ (1) FSMACH, ALPHA, RE, TIME
READ(l) ((((Q(I,J,K,NX) ,I=1,NI),J=1,NJ),K=1,NK),NX=1,5)

C
WRITE (2 0,*) NI, NJ, NK
WRITE(20,*) FSMACH,ALPHA,RE,TIME
WRITE(20,*) ((((Q(I,J,K,NX)

#,I=1,NI),J=l,NJ),K=1,NK),NX=1,5)
PRINT*, NI,NJ,NK
STOP
END
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PROGRAM OVERFLOW. IN

"* Input file for Overflow to run either EULER or NAVIER- *

"* STOKES Flow-solver. •
** ************* *********** ************ **** * ***** *** ** * * *

$GLOBAL
CHIMRA=.F., NSTEP=100, RESTART=.F., NSAVE=l00, NQT=0,
$END

$FLOINP
ALPHA=180.0, FSMACH=0.95, REY= 6.00E6, TINF= 520.0,
$END

$GRDNAM
NAME= 'AXI-SYMMETRIC BODY WITH AFT-CONE, 77x13x60
GRID',
$END

$METPRM
IRHS = 0, ILHS = 2, IDISS = 2,
$END

$TIMACU
DT = 0.1, ITIME = 1, TFOSO = 1.00, CFLMIN = 5.00,
$END

$SMOACU
ISPECJ = 2, DIS2J = 2.00, DIS4J = 0.02,
ISPECK = 2, DIS2K = 2.00, DIS4K = 0.02,
ISPECL = 2, DIS2L = 2.00, DIS4L = 0.02,
SMOO = 1.00, EPSE = 0.35,
$END

$VISINP
VISCJ = .F. , VISCK = .F. , VISCL = .F.
NTURB = 0,
ITTYP= 1,
ITDIR = 3,
JTLS = 1,
JTLE = 77,
KTLS = 1,
KTLE = 13,
LTLS = 1,
LTLE = 60,
TLPAR1= .3,
$END

$BCINP
NBC = 6,
IBTYP = 15, 12, 12, 1, 32, 15,
IBDIR = 1, 2, -2, 3, 3, -1,
JBCS = 1, 1, 1, 1, 1, 77,
JBCE = 1, 77, 77, 77, 77, 77,
KBCS = 1, 1, 13, 1, 1, 1,
KBCE = 13, 1, 13, 13, 13, 13,
LBCS = 1, 1, 1, 1, 60, 1,
LBCE = 60, 60, 60, 1, 60, 60,
$END
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