
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A280 968
II~lnhjI0UI

THESIS
DTIC QuArLy INsCTED 2

THE EFFECTS OF BUDGET CUTS ON
ARMY MATERIEL COMMAND POST

DEPLOYMENT SOFTWARE SUPPORT
FACILITIES

by

Mark C. Jones

June 1994

Principal Advisor: Martin J. McCaffrey D T I C
Associate Advisor James C. Emery,% ELE CTE f
Approved for public release; distribution is unlimited.. -

94-19975 ...I(l~ll!ll~llllllll!!{l9 4 6 2 9 0 0 7'

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

Public reporting burden fbt this collection of infonnmion is timated to average I hour per response. including the time for reviewing imniessuw. smdebg
exstg dam sources, gatheming and nuunmining the dam needed and completing and reviewing the collection of information. Snd comsuem regd.. this
burden estimate or any other aspect of this collection of information. including suglestions for reducing this burden. to Washingpon Heedquanen Services.
Directorate for Information Operations and Reports. 12 15 Jefferson Davis Highway. Suite 1204. Arlington. VA 222024302. and to the Office ofM
and .Budge Paperwork Reduction Project 407•4-01881 Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. . 'PRT DATE 3. REPORT TYPE AND DATES COVERED

June 1994 Master's Thesis

4. TITLE AND SUBTITLE The Effects of Budget Cuts on Army Materiel 5. FUNDING NUMBERS

Command Post Deployment Software Support Facilities

6. AUTHOR(S) Mark C. Jones
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING

Naval Postgraduate School ORGANIZATION
Monterey CA 93943-5000 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

I. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited. *A

13. ABSTRACT (maximum 200 words)

Increasingly, Department of Defense (DoD) weapon systems are becoming more software dependenL The
future holds a ten-fold increase in the amount of on-board software in military systems. Software will
provide more functionality and there will be more of it. The growth in the amount of fielded software
has increased the requirements for software support services. It is estimated that more than 70% of the
DoD expenditure for software is for what is ommL ý.ýly referred to as post deployment software support
(PDSS), i.e., software maintenance of fielded system software. This thesis examines the impact of the
declining defense budget and personnel reductions on Army software support activities, and the potential
effect on operational systems. A secondary question was to review what is involved in PDSS support and
what missions the PDSS centers perform. During this re,-*irch the PDSS centers at CECOM and
MICOM were examined. They provide "cradle to grave" software support. While both PDSS centers
have experienced a constant growth in the number of systems they support, the number of people they
have on hand has actually decreased. At the same time their budgets have not increased proportionately
to their increased workload. Support for some systems has been terminated because of the cut backs.
Continued budget cuts could jeopardize their ability to provide support to many systems in the future.

14. SUBJECT TERMS PDSS, Software Maintenance, Budget 15. NUMBER OF
PAGES *117

16. PRICE CODE
17. SECURITY CLASSIFI- 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFI- 20. LIMITATION OF

CATION OF REPORT CATION OF THIS PAGE CATION OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Approved for public release; distribution is unlimited.

The Effects of Budget Cuts on Army Materiel Command Post Deployment
Software Support Facilities

by

Mark C. Jones
Captain, United States Army

B.S., Washington State University, 1983

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL

June 1994

Author: 6lAAcJvQ.
Mark C.Joe

Approved by: Q 2

arto* J.-iafey r

-got JaesC.Asocat,*oi

ABSTRACT

Increasingly, Department of Defense (DoD) weapon systems are becoming more

software dependent. The future holds a ten-fold increase in the amount of on-board

software in military systems. Software will provide more functionality and there

will be more of it. The growth in the amount of fielded software has increased the

requirements for software support services. It is estimated that more than 70% of

the DoD expenditure for software is for what is commonly referred to as post

deployment software support (PDSS), i.e., software maintenance of fielded system

software. This thesis examines the impact of the declining defense budget and

personnel reductions on Army software support activities, and the potential effect

on operational systems. A secondary question was to review what is involved in

PDSS support and what missions the PDSS centers perform. During this research

the PDSS centers at CECOM and MICOM were examined. They provide "cradle

to grave" software support. While both PDSS centers have experienced a constant

growth in the number of systems they support, the number of people they have on

hand has actually decreased. At the same time their budgets have not increased

proportionately to their increased workload. Support for some systems has been

terminated because of the cut backs. Continued budget cuts could jeopardize their

ability to provide support to many systems in the future.

fli

TABLE OF CONTENTS

INTRODUCTION ... I

A. GENERA .. 1

B. AREA OF RESEARCH AND OBJECTIVES 4

C. RESEARCH QUESTIONS 4

1. Primary Question 4

2. Subsidiary Questions 4

D. SCOPE ... 4

E. METHODOLOGY 5

1. Literature Search 5

2. Survey .. 5

3. Interview .. 5

F. LIMITATIONS 5

G. ORGANIZATION 6

I. THE SOFTWARE MAINTENANCE CHALLENGE 7

A. WHAT IS THE CHALLENGE? 7

B. WHAT IS MAINTENANCE? 12

1. Background 12

iv

2. Mainte Oeew 14

3. Corrective maintenance 14

4. Adaptive Maintenance 16

5. Enhancement Maintenance 16

6. Supportive Mainteance 17

M. PERFORMING SOFTWARE MAINTENANCE 18

A. PROGRAM MAINTENANCE 18

1. Introduction 18

2. The Software Maintenance Process 21

a. Understanding the Program 21

b. Modifying the Existing Program 23

c. Revalidating :he Program 24

B. THE DEBUGGING PROCESS 25

C. MANAGING MAINTENANCE 27

1. Change Control Procedures 27

2. Separate Maintenance Staffs 29

3. Scheduled Maintenance 29

4. Programming Teams 30

a. Peer Reviews 30

b. Chief Programmer Team 31

c. Walk-Throughs 32

V

D. CONCLUSION 32

IV. THE SOFTWARE LIFE CYCLE 33

A. THE ACQUISITION LIFE CYCLE 33

1. Pre-Concept Exploration and Definition 33

2. Concept Exploration & Definition-Phase 0 34

3. Demonstration & Validation-Phase I 35

4. Engineering & Manufacturing Development-Phase 1I 35

5. Production & Deployment-Phase Il 35

6. Operations & Support-Phase IV 36

B. SOFTWARE LIFE CYCLE 36

1. Software Development Process 37

a. Software Requirements Analysis 38

b. Software Preliminiry Design 39

C. Detailed Design 39

d. Coding and Computer Software Unit (CSU) Testing 40

e. Computer Software Component (CSC) Integration and

Testing 41

f. Computer Software Configuration Item (CSCI) Testing ... 41

g. Systems Integration & Testing 42

2. Post Deployment Software Support 42

vi

V. M EOODOLOGY .. 44

A. PERSONNEL 44

B. TRAINING ... 45

C. BUDGET .. 46

D. OPERATIONS 46

E. LEADERSHIP INTERVIEWS 47

VI. DATA ANALYSIS 48

A. INTRODUCTION 48

1. History ... 48

a. Stage One 48

b. Stage Two 49

c. Stage Three 49

d. Stage Four 50

2. LCSECs Role in the Life Cycle 51

3. Differences Between the PDSS Centers 51

B. PERSONNEL 52

I. Demographics of the PDSS Work Force 52

2. History of the PDSS Work Force 54

3. Future Projections for the PDSS Work Force 55

4. Examples of Problems Because of Personnel Cutbacks 56

5. Personnel Policies 58

vii

C. OPERATIONS 60

1. History of Software Supported 60

2. Role of the Contractor in the LCSECs 63

3. Classification and Prioritization of the Work Load 64

4. Support Equipment 65

5. Operation Desert Shield/Desert Storm Support 65

D.. BUDGET .. 71

E. TRAINING ... 79

1. Education level of PDSS personnel 79

2. Advanced Training in the Activities 80

F. INTERVIEWS 82

1. Existing Problems 82

2. Impact of a Lack of Software Support 83

3. Balancing Budget Cuts in the LCSECs 84

G. CONCLUSION 85

VII. CONCLUSIONS AND RECOMMENDATIONS 86

A. CONCLUSIONS 86

1. Interoperability 86

2. Funding Stability 87

3. Growth in Systems Supported 88

4. Reductions in PDSS Center Personnel 89

viii

5. The PDSS Center Grade Structure 89

6. Conuractor Support of PDSS Centers 90

B. RECOMMENDATIONS 90

1. PDSS Funding Support 90

2. PDSS Funding Stability 91

3. PDSS OMA Funding 91

4. PDSS Personnel Cuts 91

5. Discretionary Funding 92

APPENDIX ... 93

LIST OF REFERENCES 99

INITIAL DISTRIBUTION LIST 102

ix

• - -

LIST OF FIGURES

Figure I Bugs as Percentage of Maintenance Actions 8

Figure 2 Breakdown of Types of Maintnce.......................... 9

Figure 3 Breakdown of Perfective M n 9

Figure 4 Breakdown of User-Requested Enhancements 10

Figure 5 Swanson and Reutter's software maintenance categories 13

Figure 6 Waterfall model of software development 37

Figure 7 CECOM and MICOM SED's Grade Structure 53

Figure 8 MICOM SED Personnel History 54

Figure 9 CECOM SED History of Systems Supported 61

Figure 10 CECOM SED Current System Breakout by Number of SLOC 61

Figure 11 MICOM SED History of Software Systems Supported 62

Figure 12 CECOM SED History OMA and Matrix Supported Software 63

Figure 13 CECOM SED Budget History 74

Figure 14 CECOM SED Projected Funding 75

Figure 15 MICOM SED History of Funding 76

Figure 16 History of CECOM SED PA Account 77

Figure 17 History MICOM SED Contractor Participation................. 78

Figure 18 Educational Levels of the LCSECs 79

X

LIST OF ABBREVIATIONS

ADM Acquisition Decision Memorandum

AMC Army Materiel Command

AMCCOM Armament Munitions Chemical Command

ANG Air National Guard

ATACMS Army Tactical Missile System

ATCOM Aviation Troop Command

C3 Command Control Communications

CDR Critical Design Review

CECOM Communication Electronics Command

CINC Commander in Chief

CSC Computer Software Component

CSCI Computer Software Configuration Items

CSU Commuter Software Unit

CY Calendar Year

DEMVAL Demonstration Validation Phase

DoD Department of Defense

DP Data Processors

EMD Engineering Manufcuiring Development Phase

FCA Functional Configuration Audit

xi

FY Fiscal Year

GAO General Accounting Office

GPA Grade Point Average

GS General Services

GUI Graphical User Interfaces

HSC Health Services Command

INST Instruction

IDD Interfae Design Document

ISC Information Services Command

LCSEC Life Cycle Software Engineering Centers

MICOM Missile Command

OMA Operations Maintenance Army

OSHA Occupational Safety and Health Administration

PA Procurement Funding

PCA Physical Configuration Audit

PDSS Post Deployment Software Support

PEO Program Executive Officer

PM Program Manager

R&D Research and Development

RIF Reduction in Force

RDEC Research Development Engineering Center

SDD Software Design Document

xii

SED Software Engnering Directorate

SSR Software Specification Review

SSS System/Segment Specification

STP Software Test Plan

TBM Tactical Ballistic Missile

USD(A) Under Secretary of Defense for Acquisition

xm

~~ W~

I. INTRODUCTION

A. GENERAL

Increasingly, Department of Defense (DoD) weapon systems are becoming more

software dependent. The challenge facing DoD is similar to the challenge facing the

civilian sector. Both are experiencing an incredible growth in the amount of software that

they support. In 1977, UNIX (version 6) kernel had only 11,000 lines of code. One

individual could read and understand all of the code by studying it for several weeks. In

1990 a version of the same item had expanded to 450,000 lines of code. The code now

covers 7,500 pages. The printed program is so heavy (75 pounds) that it is against

Occupational Safety Health Administration (OSHA) regulations for one person to lift it.

In 1977 the entire UNIX system had between 200,000 and 400,000 lines of code. In

1990 that same system had expanded to 1,900,000 lines of code. DoD is experiencing

a similar software growth pattern. (ARES, 1991)

The General Accounting Office (GAO) estimates that currently DoD spends between

$24 billion and $32 billion annually on software (GAO, 1992, p. 2-3). We cannot get any

better estimate (an $8 billion range) because DoD has not had a means to track software

costs (GAO, 1992, p. 2-3). In the past software has not been tracked as a separate,

discrete item. The estimates listed above were obtained by the GAO from external

sources such as trade associations and defense media. However, this lack of cost data has

been recognized and steps to correct it have been initiated. A change to Defense

I

Instruction 5000.2 now requires that any weapon system started after February 23, 1991,

should identify and report software costs separate from other costs (DoD Inst 5000.2,

1991). It is also estimated that more than 70% of DoD's expenditure for software is for

Post Deployment Software Support (PDSS), commonly referred to as maintenance of

fielded software (ARES, 1991, p. 9-12).

In the last 25 years the DoD requirements for software have skyrocketed. Software

costs for weapon systems have been dramatically rising. It is expected they will continue

to rise at a disproportionately greater rate than other system costs.

Software will be providing more functionality and we will be getting more of it.

This increase in the amount of fielded software has increased the requirements for

software support services. Currently there is a shortage of qualified software personnel.

The demand for software support personnel is increasing at a rate of 12% per year, while

the actual number of software personnel is increasing at a rate of only 4% year. (MCCR,

1990, ch. 7, p. 2)

The software programs being delivered are much larger in size, and therefore more

complex. This makes them more difficult to maintain. Unfortunately, there has often

been a tendency, when programs dollars are reduced, to cut out many of the items that

are needed to support the software once fielded. These include proper documentation and

software support tools.

With the current downsizing of the military and a decreasing DoD budget, the

military support infiastructure is also being significantly reduced. This poses a dilemma

in the Government software community. At a time when greater amounts of software are

2

being supported, the number of personnel to support it is being reduced at an alaming

rate. This downsizing is creating significant challenges for the software support

community because software maintenance is an extremely manpower-intensive activity

requiring specific program knowledge to be productive. Many programmers who are

familiar with existing programs are being lost. Their experience and knowledge, perhaps

the most important factor in software productivity and quality, are assets that cannot be

easily replaced. (ARES, 1991, p. 3-1, 3-14)

The seriousness and magnitude of the PDSS problem must be corr' icated to

senior Army leadership. The risks and potential disastrous consequences to weapons,

command, control, and communication systems must be addressed.

Software plays a critical role in today's modem weapon systems. It must be

maintained. Thus, PDSS should be thought of in the same light as we think of any of

our other production i.

We in the Army have reached a point where software support for some systems is

being terminated, brought about by budget and personnel cuts. Caution needs to be taken

in cutting the infrastructure that provides software support for the software-intensive

weapon systems our soldiers in the field will use in future conflicts. If the software

support for a system is terminated, then removal of the system from the fielded inventory

must be given serious consideration. Commanders would not think of keeping weapon

systems for which logistics support had been terminated. (ARES, 1991, p. 3-1, 3-14)

3

B. AREA OF RESEARCH AND OBJECTIVES

This thesis examines the PDSS of Army weapon systems and the impact of

personnel and budgetary cutbacks on the ability of the PDSS centers to perform their

assigned missions.

C. RESEARCH QUESTIONS

The following questions pertain to this research effort.

1. Primary Question

What is the impact of the declining budget and personnel reductions on Army

software support activities, and what are the potential effects on operational weapon

systems?

2. Subsidiary Questions

a. What is the function of the PDSS activity?

b. What is involved in PDSS?

c. What was the role of the PDSS activities in supporting Desert

Shield/Storm?

d. What alternatives are available to the PDSS activities in implementing

personnel and budget cuts?

D. SCOPE

This thesis investigates the impact of budgetary and personnel reductions on the

Army Materiel Command (AMC) PDSS activities. It does not address the PDSS centers

4

located in either the Health Services Command (HSC) or the Information Services

Command (ISC). Because of time and flnding constraints, this thesis will only examine

the AMC PDSS centers located in the Communication Electronics Command (CECOM)

and the Missile Command (MICOM).

E. METHODOLOGY

1. Literature Search

A literature search was conducted in order to gain a background on software

maintenance. Department of Defense (DoD) literature was searched in order to gain

knowledge on the DoD software life cycle.

2. Survey

A written questionnaire was prepared. (See appendix) This questionnaire was

sent to all individuals who were going to be interviewed so that they would be adequately

prepared for the telephone interviews and site visits.

3. Interview

All individuals at the PDSS centers were first interviewed by telephone,

followed by an on-site visit.

F. IEMITATIONS

As previously mentioned, because of time constraints and limited funding this thesis

deals only with two of the AMC PDSS centers. The PDSS center located in Aviation

Troop Command (ATCOM) only performs software management, and is not a code

5

producing faicility. The PDSS center located in Armament Munitions Chemical Command

(AMCCOM) primarily does PDSS and provides very little software life cycle support.

The research's focus is on centers that perform support on weapon and Command,

Control, Communication (C3) systems software. No attempt was made to look at

activities providing support for automated information systems, Health Services systems,

or Logistics systems.

G. ORGANIZATION

Chapter H establishes background for the softw maintenance challenge in general.

It is based on a literature review of the field. Software maintenance is discussed from

a generic point of view, rather than drawn from a specific DoD point of view.

Chapter MI reviews current literature on how software maintenance is performed,

again not specifically in the DoD context

Chapter IV reviews the DoD acquisition life cycle, and discusses how software

development relates to this process. Material for this chapter was obtained from the DoD

Instruction 5000 series as well as the Air Force Acquisition Model program.

Chapter V discusses the methodology and major areas of research that will be

addresed in Chapter VI.

Chapter VI summarizes all of the telephonic interview data that was gathered. It

also discusses any information gathered during on-site visits.

Chapter VII presents the conclusions and recommendations derived from the data

presented in Chapter VI.

6

U. THE SOFTWARE MAINTENANCE CHALLENGE

The first section of this chapter examines the software maintenance challenge. The

following section presents what current literature says about software maintenance.

Individuals who are already familiar with software maintenance may skip this chapter.

A. WHAT IS THE CHALLENGE?

Many people understand that as hardware gets older, it starts to deteriorate, is hard

to change, requires preventive maintenance, and has high maintenance costs. It is now

common knowledge among software professionals that software maintenance is important,

difficult, and expensive. Unfortunately, all too many senior managers who control

resources appear to have the erroneous perception that exactly the opposite is tue for

software. They believe it improves with age, is easy to change, does not require

preventive maintenance, and is less expensive than the original cost.

In the book Software Maintenane (Martin, 1983) the authors define software

maintenance as.

...changes that have been made to a computer program after they have been
delivered to the customer or user. (Martin, 1983, p. 3)

It is obvious to most people when maintenance needs to be performed on a piece

of hardware equipment. Usually the greatest resources are used for maintenance that is

performed when the hardware is actually broken. In addition, as in the case of an

7

automobile, we also perform routine preventive maintenance, such as inspections, fluid

changes, etc.

The same reasoning

or association with the20

term maintenance does not

directly carry over to

software maintenance. As

is shown in Figure 1, only
80%

20% of the maintenance

effort is conducted on

broken software (i.e., to fix
Figure I Bugs as Percentage of Maintenance Actions

bugs). The remaining (Martin, 1983, p. 4)

80% of changes primarily involves fine tuning and user-demanded enhancements. In

keeping with our previous definition of maintenance, there are a number of reasons why

naintenance is conducted on software. (Lientz, 1980, p. 67-96)

Figure 2 illustrates the three types of maintenance that are discussed in a

Lientz and Swanson survey: perfective, adaptive, and corrective. They define perfetive

maintenae to be that maintenance performed to enhance performance and improve cost-

effectiveness, improve processing, improve efficiency, and improve maintainability. They

define adaptive maintenance to be that maintenance performed to adapt software to

changes in the data requirements or processing vironments. They define corrective

maintenae as any maintenace performed to identify and correct software failures,

8

performace failums, and
P.1~tJVe 550%

implementation failures.

T~his chart demonstrates the

fact that the perfective and

adaptive maintenance

account for . 80% of

software maintenance. Of

these two, perfective

maintenance accounts for Figure 2 Breakdown of Types of Maintenance (Martin,
1983, p. 29)

55% of the software

maintenance performed. (Lientz, 1980, p. 67-96)

Figure 3 breaks

perfective maintenance
Enhac 7&o

down into its major

components. Of the

perfective maintenance Other s.%

performed by software Efficency 7.5%

maintenance organizations, Documentaton 11 .0%

over 75% is to install user-

requested enhancements. Figure 3 Breakdown of Perfective Maintenance (Martin,
1983)

(Lientz, 1980, p. 67-96)

9

Figure 4 examines

user-requested enhance- Mare Info 7&0%

ments by itself. Of the

user requested

enhancements, 70% of
Other 10.0%

those are requested by the Ow

user to gain more c ar 10o0%

Refratioo 10&0%
information (Lientz, 1980,

Figure 4 Breakdown of User-Requested Enhancements
p. 67-96) (Martin, 1983)

The fact is, when software maintenance is conducted, it involves more than just

correcting defects or making design enhaneents; it also involves making enhancements

that change the software functionality and how the program itself behaves.

An article in the Wall Street Journal stated that "oil and software are the two

principal obstacles to economic progress." (Buckley, 1980, p. 1,18) More and more

software users are becoming comfortable with computers. They are beginning to expect

the easy interfaces charactezed by graphical user interfaces (GUIs) such as Windows or

Apple Macintosh. It should be expected that software users become dissatisfied and

impatient because of system bugs and failures. However, they are also becoming

dissatisfied with poor documentation, inadequate training, and the inability of

pogrammer to meet their changing requirements in a timely manner.

Much of the software maintenance problem comes from not designing software for

fiutre maintenance in the first place during initial development. The hidden cost is often

10

much highe than just acquiring difficult-o-maintain software. Such software can become

frngile to the point where managers are reluctant to make changes. (Pizzarello, 1984, p.

1-17)

Unlike hardware maintenance, software maintenance tends to deteriorate the

structure of a program. Maintenance changes often end up making the program structure

more complex and brittle. The documentation quality also tends to deteriorate. This

combination, and other factors, make it more difficult to maintain the software the next

time maintenance is required. (Pizzarello, 1984, p. 1-17)

Some managers erroneously perceive that conducting maintenance is a lot like

conducting original programming, perhaps even easier. This is a myth. Martin brings out

that new errors are invariably introduced during the maintenance process. As these errors

are introduced, more and more time is spent correcting these secondary problems rather

than fixing the structure that caused the original problem. (Pizzarello, 1984, p. 1-17)

The software maintenance challenge is best summarized by F. Brooks.

...systems program building is an entropy-decreasing process, hence inherently
metastable. Program maintenance is an entropy-increasing process, and even its
most skillful execution only delays the subsidence of the system into unfixable
obsolescence. (Brooks, 1975, p. 41-S0)

It comes down to the fact that if you want the software to be easy to maintain, one

should begin when the system is originally conceived. There are many actions that can

be performed to minimize maintenance costs. Some of these are:

11

"* Conduct the system design and programming from the start with the intention of

minimizing maintenance.

"* Adopt management practices that are sound for maintainability.

"• Minimize the complexity of system and program structures.

"* Select and enforce structured techniques that lead to ease of maintenance.

"* Reduce the need for corrective maintenance by improving software
reliability/quality.

"* Reduce the need for change maintenance by planning for and controlling user
enhancements and by using table-driven (i.e., parameterized) programs.

"• Anticipate possible migration to new technologies or software, and plan to minimize
the need for program rewriting.

"* Ensure that the documentation and structure diagramming will be entirely clear for
future maintainers. (Martin, 1983, p. 12-14)

B. WHAT IS MAINTENANCE?

The following paragraphs discuss some background on software maintenance. After

the background discussions, methods of minimizing the costs of performing corrective,

adaptive, enhancement, and supportive maintenance will be discussed.

1. Background

Two individuals who have done a great deal of work on classifying

maintenance are John Reutter and E. Burton Swanson. Swanson's work says that you can

break maintenance down into three basic categories. These categories are summarized

in Figure 5.

12

Failures can be •uan's Rain.".

attributed to errors in the I . flop"
C omamw r.,

programs. Some of these upOW

errors include invalid Adu"iWMsW chiMiMin C srdft

output results, missing data

edit checks, performance

inefficiencies, and Figure 5 Swanson and Reutter's software maintenance
categories (Martin, 1983, p. 22)

programming standard

violations. (Swanson, 1976, p. 492-497)

Environmental changes are a common occurrence in organizations over a

period of time. Two types of environmental changes can be expected. The first type is

a change in the data environment, which includes changes in laws or regulations. The

second type that can be expected is a change in the processing environment, such as the

installation of new hardware or a new operating system. (Swanson, 1976, p. 492-497)

Users and maintainers are also a cause of maintenance. Changes are requested

to improve a software program's operating efficiency, to add new features, to change

existing functions, or to improve maintainability. (Swanson, 1976, p. 492-497)

While Swanson and Reutter both use similar classification schemes to identify

the basic causes of maintenance, there is one important difference. Reutter puts support

into a separate category, whereas Swanson includes support in all three of his categories.

Reutter separates support from the remaining categories to emphasize the importance of

maintenance. He also does this to emphasize the importance of communication between

13

the users and the maintainers, as well as the importance of planning for support. (Martin,

1983, p. 20)

Softea ne summarizes the surveys conducted by Lientz, Chrysler,

and Chapin. Surveys conducted as part of their investigations concluded that the

following were major characteristics that effect the maintenance effort.

System size.

* System age.

* Number of input/output items.

• Application type.

* Programming language.

* Structuredness (Martin, 1983, p. 25-26).

2. Maintemnace Overview

Reexamination of Figure 1 reminds us that the greatest contributors to

software maintenance are enhancements performed at the request of the user. Ideally we

need to examine the sources of software maintenance, and reduce the amount of

maintenance that must be conducted.

3. Corrective maintenance

Ideally, maintainers would like to eliminate the need for corrective

maintenance all together by ensuring that software is as reliable as possible when it is

14

initially desu e Some metd that can be u=d to minimize the need ft condCtin

corrective maintenance are listed below. (Martin, 1983, p. 29-30)

"* Data-base management systems.

"• Application development systems.

"* Program generators.

"• Very high-level (fourth-generation) languages.

"• Application packages.

"* Structured techniques.

"• Parameterized programs.

"* Defensive programming.

* Mainteance audits (Martin, 1983, p. 29-30).

The first four methods on the list above tend to produce more reliable code

because a significant portion of the code is generated automatically (i.e., the amount of

manual coding is reduced). In addition, Martin submits that application packages tend

to have a higher reliability than single-user custom-coded systems. This is because

application packages have multiple users, and more users tend to find more errors.

It is common knowledge that a program that has been developed using

structured techniques is easier to understand and to test. This results because the control

structure has been standardized and the number of program paths has been reduced by

structuring restrictions.

15

Defensive programming introduces self-checking capabilities into a program.

Self-checking works by checking for off-nominal situations, providing audit trails, and

flagging unsafe programming practices. The last item in Martin's list, maintenance audits,

helps identify quality deficiencies before they cause maintenance problems. (Martin, 1983,

p. 29-30)

4. Adaptive Maintenance

While attempting to minimize maintenance, we must realize that adaptive

maintenance cannot be completely eliminated. Hardware and software "state of the art"

change rapidly; it is inevitable that some of this improving technology will be introduced.

Martin, in his book on software maintenance, cites the following examples of how to

control adaptive maintenance:

...using configuration management to plan for computer hardware and operating
system changes can reduce the need for some adaptive maintenance work. Also,
isolating system-dependent features into special program modules can limit the
portion of a program that must be modified to accommodate configuration changes.
Finally, using internal program tables/arrays, external files, and packaged routines
to handle special processing (e.g., Government regulation) can make programs
easier to modify when adaptive changes are necessary. (Martin, 1983, p. 30)

5. Enhancement Maintenance

Enhancement maintenance can also be reduced by using many of the

techniques mentioned under corrective and adaptive maintenance. In addition, the use of

data base management systems, code generators, and commercial application packages can

reduce some of the maintenance required. An advantage to using these is that it often

16

gives the user an opportunity to directly R e om om of th ahmel thmoelwv

(Gibson, 1986, p. 17-36)

Another method to improve the productivity of enhancement maintenance is

to build a prototype system. A prototype system built early in the software development

cycle allows users to work with the system and further refine their requirements. This

will decrease the number of future maintenance r•qumet. (Gibson, 1986, p. 17-36)

6. Supportive Maint..aee

The final type of maintenance is supportive mainte e. Supportive

maintenance can be reduced by implementing a number of things. The first method is

to ensure that users have up-to-date don. If the users documentation is up to

date, the maintainers will receive fewer questions. A second method is to have on-line

user documentation. This on-line docmentation is the most convenient and allows users

to get answers to their questions when they have the problem. A third method for

reducing support maintenance is to ensure that the users have adequate training. The

premise behind the items discussed above is that the better the system user. understand

the software, the less support they will require from the systems and programming staffs.

The final method for reducing support is to have a separate staff devoted solely to

software maintenance. A separate maintenance staff allows the maintainers to track

problems better and to remain familiar with the code design, punctuation, logic, and

documcntation. A problem that can develop from this approach is that the maintainers

can be thought of as second class citizens. The experienced programmers develop

programs while the inexperienced programmers maintain them. (Martin, 1983, p. 32-38)

17

M. PERFORMING SOFTWARE MAINTENANCE

This Chapter discusses. the issue of program maintenance, the debugging process,

and managing maintenance. Readers who are familiar with this process may skip this

chapter.

A. PROGRAM MAINTENANCE

1. Introduction

Many of the problems involved in software maintenance (i.e., personnel

reduction, finding cut-backs, etc.) are caused in part by the mistaken belief that software

maintenance is substantially different and generally easier than program development

It is now common knowledge among software professionals that software maintenance

is complex and resource-demanding. Unfortunately, all too many senior managers who

control resources have unrealistic perceptions about software maintenance. The

misperception that software maintenance is easier then program development leads to

ideas that it requires less experienced personnel, less sophisticated tools, and less

management control. (Martin, 1983, p. 361)

Usually, just the opposite is true. Several factors need to be considered

First, the software maintainer is required to understand programs that were written by

somebody else. This is often a very demanding task. Next, they must make program

modifications without jeopardizing the existing software's correctness or integrity. Often

there is an inadequate schedule which adds increasing pressure and forces trade-offs.

18

Much of the maintemane is performed on older legacy systems, many of which ae

unstucmed and brittle programs with poor docmentation. This often makes them

difficult to maintain. There is also a scarcity of modem programming tools available in

many software maintenance organizations. (Pizzarello, 1984, p. 213-229)

Software maintenance involves a variety of tasks. Some of these tasks include:

"* Reviewing program requrements and s i tions.

"* Interviewing end users and developers.

"* Examining programs and documentation.

"• Determining the cause of program errors (20%) and where program changes should
be made (80%A).

"* Evaluating the possible side effects resulting from a program change.

"* Coding program changes.

"* Revalidating programs.

"* Updating program documentation and libraries (Martin, 1983, p. 361).

Many problems arise from software maintenance. Just as errors (bugs) are

introduced during new system development, some bugs will result from the software

maintenance effort. It only takes a couple of haphazard software patches to make a

program a maintemance mess and lead to the early obsolescence of that software. Other

problems that frequently confiont software maintainers are listed below- (Pizarello, 1984,

p. 213-229)

19

"• Poor quality of the original program.

"* Inadequate documao

"* Limited tools.

"* High learning curve due to the inceasing size and complexity of new software
systems (Martin, 1983, p. 362-363).

Regardless of the problems and risks that are created by performing software

maintenance, the need to do it will not go away. A reasonable approach to mitigate these

problems is to improve the maintenance process itself. These are methods and actions

that can improve the process; some are listed below.

"* Provide a program modification procedure that uses structured techniques.

"* Encourage flow of communicaion among the end users, maintainers, and

developers.

" Establish and enforce programming and docmentation standards.

"• Improve documention for existing programs.

"* Perform maintenance audits to check the corectness and quality of maintenance
work.

"* Increase end-user involvement and respnsibility in the maintenance process.

"* Batch maintenancie requests rather than make program modifications in a piecemeal
fashion

"* Emphasize careu and thorough retesting and revalidation when a program is
modified.

"* Provide continuous training for maintainers in new software technologies and to
improve their knowledge of the application area. (Martin, 1983, p. 362-363).

20

2. inw Software Martgaam sse.

Typically, the software maintenance is broken into a three-step proce1. The

steps involved will be discussed in the following sections and include:

"* Understand the existing program.

"* Modify the existing program.

"• Revalidate a modified program (Martin, 1983, P. 363).

&.Vuasada the Program.

There are three steps involved in understanding a program: gain a top-

down underanding, improve documentation, and participate in the development process.

(Martin, 1983, p. 363)

Undesanding the program involves acquiring an u of the

functional objective of the program, its internal structure, and its operating requirements.

Failure to do this could result in the maintainer inadvertently introducing new errors into

the program. (Martin, 1983, p. 363)

Developing an understanding of the program is actually a three-step

process. The first step is for the maintainers to be given a chance to understand the

program before they modify it. Gaining this familiarity implies that the maintainer will

gain an understanding of the program's overall function, its basic components, its stability,

and its ability to be easily and correctly modified. James Martin explains the

methodology behind the Top-Down understanding approach.

21

First become familiar with the overall program purpose and the overall flow or
control from component to component. Identify the basic data structures as well
as the processing components of the program. If this program is part of a system
of programs, understand its functions within this system.

Then become immersed in the details of how the program works by identifying
what each component does and how it is implemented in the code. A component
may be a data file, a program subroutine, a program module, or simply a piece of
program code that can be logically grouped together.

As you learn about the program, document what you learn. (Martin, 1983, p. 364)

In order to perform software maintenance on a piece of software, the most

current source code listing needs to be available. Many times these listing are not

available to the programmers. This complicates software maintenance and makes it more

difficult.

There are automated tools available to help improve a program's

readability. This helps improve the maintainers chance of successfully modifying a

program.

Freedman suggests an approach called "fix and improve." The philosophy

behind this method is not only to make a program modification or change, but also to

improve the future maintainability of the program. For instance, if the high-level program

documentation is incomplete or inaccurate, the maintainers should attempt to recreate it

and to improve it. (Freedman, 1980, p. 57-59)

The final step in understanding a software program is that the maintainers

should be involved in the design process if at all possible. This will give the maintainers

a chance to become familiar with the program prior to accepting responsibility for its

22

_ - L

ainl~mu. Tb u~mrswould 6=i be ivolved in the deuip coding. and taoing

phases of the softwen dewlP mePm al lIfe cycle.

Modifying the program involves three steps: design the change, alter the

code, and minimize the side efficts of the program change.

Swanson lists two types of program changes: correcting a program error

and performing a program enhneet. If the maintainers are going to correct an error,

they must first find the cause or camses of the error. They then determine what program

logic must be changed to correct the error. Adding a program enhancement requires the

development of new code. Once the new code is developed, the maintainers must then

figure out how to integrate the new modification into the existing program. (Swanson,

1976, p. 492497)

Once the maintainers have completed these steps, they can actually alter

the code. There are two objectives when altering a program's code: correctly and

efficiently code the change, and most important for the user eliminate any unwanted side

effects from the change.

Freedman divides the side effects from performing software maintenance

changes into four categories. These categories are code errors, data errors, documentation

errors, and miscellaneu errors. (Freedman, 1980, p. 57-59)

The first two categories of eors mainly affect the program itself. These

two errors me referred to as "ripple effect" errors, because they create additional errors

in the program. The last two categories of errors have a much broader impact They

23

have an adverse impact not only on the program itself, but on how the program interacts

with other programs as well. Errors in the documentation of a program may create

problems because program documentation tells other program designers how to make their

program interact with the the original program.

c. RewildaeIag the Program

Once a program is modified, then the entire program needs to be

revalidated. This ensures that not only have the maintainers used the correct logic when

they made the change, but it also validates that the unmodified portions of the software

still work.

Data indicates that if a maintenance action involves fewer than 10 lines

of source code, there is less than a 50% chance of programmers successfully making that

change without introducing additional errors. If the maintenance action involves 50

statements or more, the probability of successfully making a change is reduced to only

20% (Boehm, 1973, p. 48-59). The revalidation process closely resembles the original

pr~gram validation effort. The maintainers use the same or similar test cases, as well as

the same or similar test data.

When a program is revalidated, three steps are followed. System-level

testing involves testing the entire program for failures. Once the change has passed the

system-level test, then the programmers test the unmodified portions of the program by

conducting regression tests. Regression testing involves running the program through an

entire bank of tests to ensure that other areas of the software program still work correctly.

24

The muintains directly sest the modifid paridms of the Vrop m the lst slep in hew

process. (Martin, 1983, p. 376-377)

B. THE DEBUGGING PROCESS

As mentioned, the chances of successfully completing a maintenance action without

any errors are very small. This is where the debugging process comes in. Two basic

methods often used are individual debugging or group debugging, or a combination of

both.

Based on research data, the best results achieved during the debugging process are

achieved using the following method. The first step involves two individuals who work

independently attempting to locate errors using a computer-based testing approach.

During this step in the testing process, some desktop testing is conducted. When the

individuals complete their individual testing, they pool all of the errors that they have

found and conduct a program walk-through using the error evidence that each has

gathered separately. During the entire process, automatic debugging tools are used to aid

the process. (Schneiderman, 1980, p. 129-130)

In order for maintainers to effectively debug a program, the following list of items

should be prepared:

"* The source code listing.

"* A detailed program specification.

"* A program flow chart.

"* An output listing.

25

"• A trace of statements executed and the variable values.

* Access to a terminal for .rogram execution.

* Clues to types or location of error (Schneiderman, 1980, p. 112-113).

Debugging is a very difficult and time-consuming process. Martin provides some

general guidelines to use when debugging:

"* Not using a random approach to debugging.

"* Isolating one error at a time.

"• Embedding debugging code into the program to make program errors easy to locate.

"* Carefully studying the actual program output, and comparing it to samples of the
expected output

"• Focusing attention on data handled by the program rather than solely on the
program's processing logic.

"* Using the most powerful debugging tools available, as well as a variety of
debugging methods to avoid becoming locked into considering only one possibility
too prematurely.

"• Keeping a record of errors detected and corrected, as well as noting where the
errors occurred in the program.

"* Keeping a record of the types of errors that are found, since this information will
be used to predict where future errors will occur.

"* Measuring program complexity.

"* Training maintainers in debugging techniques using training programs involving
artificially seeded errors. Immediate feedback on all seeded errors is provided
showing the maintainers what they missed. (Martin, 1983, p. 391)

26

C. MANAGING MAINTENANCE

With regards to the software life cycle, most management attention has been paid

to the development portion; most managers would prefer that the maintenance portion of

the software life cycle just go away. Good software engineering practices can be applied

to the software maintenance phase of the life cycle as well as the initial development

portion of the life cycle. As is the case during software development, management

problems often outweigh technical problems during the maintenance phase.

There is no technological change or easy fix that will get us out of the ever-growing

software maintenance challenge. The project management techniques that are being

applied in program development should now be applied to software maintenance. These

include instituting a change control procedure, creating a separate maintenance staff,

using a scheduled maintenance approach to software changes, and creating programming

teams. Each of these is briefly discussed.

1. Change Control Procedures

The biggest management problem that maintenance organizations face is

trying to control program change. Some methods that can be used to control the change

process include creating a change review board, using a user charge-back system, and

instituting a program quality control audit step. These are all methods that control the

costs and risks associated with modifying programs. (Osborne, 1983, p. 38-40)

Requests for program changes come from many places. They come from the

users community, from the program development group, from the maintenance

community, from the operations community, and from management.

27

Regardless of where the maintenance action originates, no program

modification should be made until the changes have been carefully considered. Even

simple changes can have major consequences to a program. Careful consideration needs

to be given to each change. With different groups submitting changes, it is possible that

conflicting changes will be forwarded to the maintainers. In addition, a community may

ask for a change that is incompatible with the life cycle goals of the program. An

example of such a change would include one user community requesting a software

enhancement that suboptimizes the program for the remaining users. (Osborne, 1983, p.

38-40)

Some questions should be answered when changes are cc-sidered. Is the

maintenance objective of the program to preserve a single version of the program for all

users, or is to allow different versions to support different user groups? Is there a plan

to replace this program in the near future? Will this change alter the original scope and

purpose of the program? (Osborne, 1983, p. 38-40)

Effective change control procedures have three primary purposes. The first

is to study how the program changes over tin e so that future support needs can be

planned. A second is to provide follow-up procedures to every user request, because it

is important to report back to the requester with the planned change implementation

schedule or the reason for rejecting the request. The third is to ensure that changes are

planned and scheduled so that maintenance tasks can be planned and scheduled. (Martin,

1983, p. 414-418)

28

Martin suggests the best method of controlling change is by using two

concepts. The first method is to appoint a change review board whose job it is to review

all change requests. The second method is to implement a charge-back system. Under

this system the users pay for all changes that they want to implement. This may create

problems. Those organizations that can afford it will get all of the changes; those

sections unable to fund changes will get no changes to their programs, even though their

requirements may be just as important. (Martin, 1983, p. 414-418)

2. Separate Maintenance Staffs

Another method of dealing with maintenance management problems (e.g., by

increasing programmer productivity, controlling the maintenance effort, and controlling

costs associated with performing program maintenance) is to create a separate program

maintenance staff. (Martin, 1983, p. 421-422)

The advantage of creating a separate maintenance organization is that it is

possible to raise the morale of both the maintenance and development staff. Normafly,

only larger organizations can afford the cost of a separate maintenance staff. As

mentioned earlier, when creating a separate maintenance organization care must be taken

to ensure that not just inexperienced programmers are assigned to the maintenance staff.

3. Scheduled Maintenance

Scheduled maintenance uses the new release concept for systems software.

When program changes are consolidated, managers are given more time to plan for

29

efficient program modifications. In addition, the users know that their requests will not

be acted on immediately. This forces them to give careful consideration to which changes

they really need. When the changes for any single program are batched together, the

impact of the changes can be more thoroughly evaluated. When management knows

which applications will be maintained during which months of the year, they can plan

more effectively and prioritize the maintenance projects. (Martin, 1983, p. 421-422)

4. Programming Teams

The management problem can also be reduced with the creation of

programming teams. These teams provide the same benefits to software maintenance as

they provide to new software development, i.e., improved program quality, increased

programmer productivity, and job enrichment.

Osborne provides three popular team programming concepts. These concepts

are peer reviews, chief programmer team, and the walk-through.

a. Peer Reviews

The peer review method is the oldest and simplest programming method.

The premise behind it is that everyone connected with a program's development will work

together to build the best program possible. This method emphasizes an open, democratic

environment in which personal worth is separate from errors in one's work. The quality

is assured in this method when the programmers review and critique each other's work.

(Osborne, 1983, p. 38-40)

30

Sections of code developed by one programme we gven to amder

programmer, who then identifies what he considers to be errors. It is important, though,

to ensure that everybody involved in the process knows that this is not an evaluation of

the programmer's capabilities or performance. Instead, the process provides an analysis

and evaluation of the code. If at all possible, the project manager should not be involved

in the peer review. (Osborne, 1983, p. 38-40)

b. Chkief Programnmer Team

The chief programmer team is completely opposite the democratic

structure of the peer review programming method. Under the chief programmer team

concept there is a strict organizational structure in which discipline, clear leadership, and

functional separation are stressed. (Osborne, 1983, p. 38-40)

This programming method is based on the concept that an experienced

programmer who is supported by a team of programmers can produce a quality product

much faster than the groups of programmers organized under traditional methods of

organization. Under this concept, the chief programmer is responsible for the overall

design, development, review, and evaluation of the work performed by members of his

team. This could include the establishment and enforcement of rules regarding

programming style, control, and integrity of the program.

In order for this to work, the chief programmer must be the focal point

of the programming effort. He must be aware of and familiar with all of the work

performed by the team. This method places a large administrative and technical burden

on the chief programmer. He or she must have strong leadership abilities, technical

31

capabilities, and the ability to delegate work and responsibility. An important part of the

chief programmer concept is that other members of the team support the chief

programmer - e.g., prepare test data, run tests, maintain the program library, document

programs. (Osborne, 1983, p. 38-40)

c. WFAg-Throughs

The structured walk-through concept involves a set of formal rules for

reviewing a program's development progress. One advantage is that it may be used

during any phase of the program life cycle. It may be used to deternine schedule

breakdowns, to identify development problems and system errors, or to provide a

constructive learning environment. The basic rules for this approach are:

" A walk-through is not used to review an individual's work performance; it is used
to review program quality and project progress.

" Each person attending a walk-through must function as a reviewee, reviewer, or
recording secretary.

" During the walk-through, problems may be identified, but not corrected. (Osborne,
1983, p. 38-40)

D. CONCLUSION

This Chapter has presented information obtained from literature on performing

software maintenance. In particular it has discussed program maintenance, debugging

processes and managing maintenance. The following chapter will discuss the acquisition

and software life cycles.

32

IV. THE SO MTWARE LIFE CYCLE

All of the PDSS centers that were examined mentioned the same thing, their

software support mission is a cradle-to-grave responsibility. Many people are under the

mistaken belief that the PDSS centers are involved strictly in PDSS. This is not true.

The PDSS centers provide much of the matrix support required by program managers

during the early developmental phases of a weapon system's life cycle. In addition, the

eventual efficiency of the maintemmce of the system software may be significantly

affected by decisions and actions taken at the initiation of the software development

effort. The following paragraphs discuss the acquisition and software life cycles.

A. THE ACQUISmON LIFE CYCLE

DoD acquisition programs are managed through a series of progressive acquisition

phases, with major milestone decision points. DoD Instruction 5000.2 defines five major

milestones and phases of the DoD acquisition process. These milestones and phases are

the basis for all weapon system management in DoD.

1. Pre-Concept Exploration and Definition

The major objective of the Pre-Concept Exploration and Definition phase is

to take the validated mission need statement and decide if that mission need statement

warrants the initiation of further studies. If further studies are warranted, then the study

group will decide how many alternate ideas will be investigated. (AFAM, 1993)

33

The pr -ra nust cmqpiew amv tsks b ef it cm lave this phase. These

tasks include validating the 1 reis , n-, atdeveloping -n acqusition strategy, and awarding

the concept evalustica cr-c or onocbP (AFAM, 1993)

Once the Defense Acqumitio Bornd (DAB) agrees that a requirement is valid,

then the Under Secretary of Defense for Acquisition (USD(A)) issues an Acquisition

Decision Memorandum (ADM). The ADM issued by the USD(A) identifies several key

items. These items include which service and office has respomsibility for the program.

The ADM will determin how may shwatives will be examined. It will also identify

the lead organiion for the study, the funding limits, th source of funding, and the

Milestone I exit cniter.

2. Ceoeept Ex•ew .s.at & -D t- Pbm@ #

During the Concept Exploration and Definition phas threat-based mision

feasibility studies are done. At this early stage, the studies will not address any specific

hardware solution.

The purpose behind these studies is to decide which concepts or technologies

can satisfy the mission need statement These studies will also identify any high-risk

areas, as well as a management approach. The program acquisition strategy, program

initial cost objectives, program schedule, and system performance are identified for all of

the most viable alternatives. The conclusion of this phase is Milestone I Concept

Demonstration Approval.

34

3. N &Vaht - 1

The Demonstration and Validaion phase (DEMVAL) serves to validate the

critical ticnologies and processes that will be used for system development. During this

phase the contractor will prove that he understands the processes involved in the program.

The characteristics and capabilities of the system are more clearly defined. The program

office also identifies which design approach they prefer. This phase is concluded with

the Milestone II Development Approval. (AFAM, 1993)

4. Eugineeriag & Manufacturing Deveopment-Phuse H

Significant portions of the systems developmental resources are consumed

during the Engineering and Manufactudn Development phase (EMD). The subsystems

developed during DEMVAL are integrated into a full-up system during EMD. The most

promising system developed during EMD is advanced into a stable, producible, and cost-

effective system design.

The exit point for this phase is the Milestone mI production approval decision.

This milestone gives approval for the system to proceed into either low-rate or full-scale

production.

5. Production & Deployment-Phme HI

The objective of the Production and Deployment phase is to establish a stable,

efficient production and support base. It is during this phase that an operational capability

that meets the user's needs are achieved. To confirm and monitor performance and

system quality, follow-on operational testing is conducted. Another method that is used

35

to monitor quality is to perform production verification testing. Verification is conducted

to ensure that deficiencies are being corrected. During this phase any improvements that

were not incorporated into the original design can be scheduled into future production

lots.

6. Operations & Support-Phase IV

The Operations and Support Phase of the life cycle begins when the users

declare that the system is operationally capable. This phase continues until the system

is retired and leaves the inventory. The objectives of this phase are to ensure that the

fielded system continues to provide the capabilities necessary to meet the documented

mission need. In addition, if the system was fielded with any performance deficiencies

these may be identified and system upgrades to fix these may be introduced during this

phase. (AFAM, 1993)

B. SOFTWARE LIFE CYCLE

The development of a new weapon system requires numerous skills. It requires the

integration of technical, administrative, and management disciplines. Integrating these

disciplines creates a cohesive, well planned, and rigorously controlled development

process. As computers become an ever more critical part of today's modem weapons

systems, software also takes on a more critical role.

The software development process must begin early in the weapon's system

development process. It begins during the early stages of the system engineering process.

Once the system engineering process commences, the system is broken into major

36

ct This includes diding wa portion of he misson will be pufomed by

hardware and what portion will be performed by software. Once the requirements have

been defined, the software development process begins.

1. Software Development Proes

DOD-STD-2167A breaks the

software development process down into

an eight-step development cycle. The

discussion in this DoD standard revolves

around what is commonly referred to in

the software world as the "waterfall

model." Figure 6 graphically depicts this

process.

The cycle starts during initial

system design when the hardware and aUiMm OO-STM 217A

software are not yet separated. Once Figure 6 Waterfall model of software
development

system design has been completed in the

development cycle, the hardware and software must be integrated. This is because the

two are usually developed along separate lines. Before the system goes into its test and

evaluation period, the hardware and software are integrated into the system configuration.

The first step in the development process is to generate the system-level

requirements. These requirements are reflected in the System/Segment Specification

37

(SSS), commonly referred to as the Type A specifications. The specifications at this time

are neither hardware- nor software-specific.

After the Systems Requirements Review has been completed, actual system

design begins. The purpose of the system design process is to establish the functional

baseline. The initial subsystem/segment designs are also developed at this time. Finally,

the systems engineering practices that are going to be employed during the system

development are refined. It is here we first see software-specific deliverables. (MCCR,

1990, ch. 5, p. 1-14)

Sofwdam Rtequiments Anasis

Once the finctional baseline has been established, the design process

proceeds into the Software ReJquments Analysis phase. (DOD-STD-2167A, 1988, p.

5.2) Typical products of this phase include:

"* An estimation of the size of the software effort.

"* An estimation of the software support tools required.

"* Prototypes of some high-risk areas.

"• Final versions of the software specifications.

"* Updated software development plan.

At the conclusion of the software requirements analysis phase, the last

two items on the list are reviewed by Government representatives at the Software

Specification Review (SSR). This review will produce the software allocated baseline for

the project. (DOD-STD-2167A, 1988, p. 4.1-4.6)

38

b- Skweaw Pndilmbuay Des~gu

After the software allocated baseline is established, the software developer

will begin software preliminary design. During Preliminary Design the total software

structure is determined, as well as the relationship between individual components of the

software. Products that usually result from work during this phase include:

"* The Software Design Document (SDD).

"* The Interface Design Document (IDD).

"* The Software Test Plan (STP) (DOD-STD 2167A, 1988, p. 5.1)

c. Detailed Design

The purpose of detailed design is to logically define and complete the

software design. When the detailed design phase is concluded, all of the allocated

requirements will be satisfied. The software must be designed to a level such that

someone other than the original designer can finish the project. The functions of all

components, inputs, outputs, and constraints will be defined. In addition, the relationships

between different components will be specified. These relationships include logical,

static, and dynamic relationships of all components. The component and system

integration test procedures will also be produced. Typically, the products of this phase

include: (MCCR, 1990, ch. 5, p. 1-14)

39

"• A detailed description of the computer processing associated with the system.

"* A detailed description of the data.

At the conclusion of detailed design, a Critical Design Review (CDR) is

conducted by the Government. This review assures the customer that the software design

meets the requirements of both the system level specifications and the software

development specifications.

I Codinl and Computer Se•twe Unit (CSR) Testing

Coding is the point where the detailed design is translated into a software

program. The source program lists are generated during the coding phase When the

coding is complete, the programmers check the source code for errors. When the

programmer is satisfied that the source code correctly carries out the detailed design, he

than compiles the program. Compiling a program translates the source code into a

machine-executable form. (DOD-STD-2167A, 1988, p. 5.5)

The purpose behind Computer Software Unit (CSU) testing is to

eliminate any errors that may exist because of the coding process. Errors occur for many

reasons. They include errors due to programmer mistakes, deficiencies in the software

reqrements, or deficiencies in the design documentation. The responsibility for CSU

testing usually falls on the programmer who coded the unit. For the software process to

be efficient, a rigorous unit-level testing program must be implemented. (MCCR, 1990,

ch. 5, p. 1-14)

40

.11

e. Computer Sofluwt Componet (CSC Istqndoe aud Testg

The purpose of CSC Integration and Testing is to integrate the software

units and components that have been tested independently, and test them as CSCs. The

idea is to demonstrate that the combination of components will fulfill the system design.

The conclusion of this phase is the integration of the individual CSC's. These items are

tested at the Test Readiness Review (TRR) prior to starting CSCI testing. (DOD-STD-

2167A, 1988, p. 5.6)

f. Computer Software Configurtion Item (C5CI Testing

Upon the successful completion of the Test Readiness Review, the

developer performs CSCI testing. This is the last step in the software development cycle.

It precedes the integration of the hardware and software portions of the system. The

purpose of CSCI testing is to perform formal tests according to the software test plans

and procedures that were previously developed. Testing at this point demonstrates that

the software satisfies the Software Requirements Specification and the Interface

Requirements Specifications. (DOD-STD-2167A, 1988, p. 5.7) When the software is

released for integration testing, a Functional Configuration Audit (FCA) and the Physical

Configuration Audit (PCA) are conducted. The software FCA is the Government's

method of verifying that the CSCIs perform according to their requirements and interface

specifications. The software PCA is a formal technical examination of the as-built

software product against its design. (DOD-STD-2167A, 1988, p. 5.7)

41

g. Systens lntftkran & Testing

Systems Integration and Testing proves that the developed software will

work once it is integrated into the system environment. The entire integrated hardware

and software system is turned over to the Government after the Formal Qualification

Review (FQR). The FQR is a system-level review that verifies that the actual system

performance complies with the system requirements. It is at this point that the

contractor's role will diminish. Configuration control of the software will revert to the

Government once the product baseline has been approved. (DOD-STD-2167A, 1988, p.

5.8)

2. Post Deployment Software Support

The PDSS activities perform configuration control over software they support.

There are three types of changes that the PDSS activities make: those caused by latent

defects, those caused by a user-requested enhancement, and those required by a major

product improvement. The PDSS activities usually perform the first two changes

themselves, while they generally contract out the software changes necessitated by a

major system upgrade. (MCCR, 1990, ch. 7, p. I -11)

Software does not fail in the same way that hardware does. When hardware

degrades overtime, its components simply wear out. A software problem occurs because

of an error that existed since the software's creation or was introduced by subsequent

maintenance. When a problem caused by a hardware component occurs, the problem is

fixed by bring the component back to its original configuration. If the problem is a

42

software error, a new onguaonis created when a problem is fixed. (MCCR. 1990,

ch. 7, p. 1-11)

When a user sends in a software complaint, the Army maintenance directorate

sends a logistic support representative assigned to the area to the user activity to

investigate the complaint. Once the complaint has been verified and determined to be a

software problem, it is sent to the PDSS activity. The PDSS activity tries to duplicate

and identify the cause of the problem. Once the source of the problem is identified,

solutions are developed and tested to ensure that the original problem has been solved.

Regression testing is also done to ensure that no new problems are introduced during the

software maintenance process. When initial system tests are completed integration tests

are then run on actual equipment to ensure that the software runs without any errors.

Finally, an interoperability test is run. This test ensures that the software change has not

created problems with any other piece of equipment with which the software must

operate. The final step in the software maintenance process is to update all of the

effected documentation. (MCCR, 1990, ch. 7, p. 1-11)

When the software change is completed and validated, it is distributed to the

users. For low-density systems with limited distribution, the change may be hand

delivered and installed to ensure smooth execution. For large-quantity, widely distributed

systems that may require larger numbers of changes, the users are supplied through the

distribution process with written instruction packages on installing the new software

release. (MCCR, 1990, ch. 7, p. 1-11)

43

V. METHODOLOGY

This chapter discusses the methodology and types of data that were gathered during

the research. Interviews with PDSS personnel were conducted both over the phone and

in person during visits to PDSS activities at CECOM and MICOM. Topics include

personnel, training, budget, operations, and senior leadership.

A. PERSONNEL

As part of DoD's effort to downsize the military, the civilian employees of DoD are

undergoing much the same downsizing effort as the active uniformed force. The

uniformed force has been given a vision of what it will look like in the near future, which

is the ten-division Army. To date, no reference was found to a similar analysis performed

on the civilian side of the Army. Rather than analyzing the processes that are being

performed, it appears the Army has resorted to across-the-board cuts, hiring and

promotion freezes, and incentives to leave Government service. In many cases only

people have been reduced, without a commensurate reduction in the work load. The

PDSS activities are largely manned by civilians. The following section addresses

personnel issues.

"* Number of personnel presently working in the PDSS centers.

"* Number of Government civilians.

"* Number of uniformed military.

44

F " ,-T-ý-1."% P ' , -, ,

"* Number of contractor personnel.

"* Rank structure of the PDSS centers.

"* History on the number of Government personnel authorized back to 1985.

"* History on the number of contractor personnel hired back to 1985.

"* The extent of future personnel reductions.

"* Impact the draw-down has already had on the PDSS centers.

"* The use of contractors to make up for lost Government personnel.

"* Effects that reduced resources have on the PDSS centers.

"* Effects of further budget cuts on systems currently supported.

"• Personnel turn-over rates at the PDSS centers.

"* Personnel policies instituted at the PDSS centers.

B. TRAINING

The state of the art in software engineering is constantly changing. It is important

that the PDSS centers have a training program in place to keep their employees at the

leading edge of software engineering practices. Have budget cut-backs had an adverse

effect on the training in the PDSS centers? Some of the issues that were addressed by

this thesis follow:

"* The education levels of Government civilians.

"• The types of training the PDSS centers give.

"* The impact of budget cuts on the PDSS centers ability to improve their processes.

45

C. BUDGET

The Federal Government, and DoD in particular, are in the process of down-sizing.

Budget reductions are one effect. It was desired to gather a budget history of the PDSS

centers, and compare the historical budgets with their projected out-year budgets. The

following issues were addressed by this thesis:

"* The budget history of the PDSS centers since 1985.

"* Projected future budgets of the PDSS centers.

"* The impact that the budget and personnel cuts could have on future software
maintenance.

"* The impact of unstable funding profiles.

"* Implications of budget cuts.

D. OPERATIONS

In order to come to any reasonable conclusions with regard to budget data, it would

be necessary to have a history of the software support for systems provided by the PDSS

centers. The following issues were addressed by this thesis:

"* History of the software supported by the PDSS centers since 1985.

"* SLOC supported.

"* Number of languages supported.

"* The role of the contractor in the PDSS centers.

"* Kow the PDSS centers classify and prioritize their workload.

46

"• Status of the support equipmen in the PDSS centers.

"* The types of support the PDS3 centers provided the troops in the field during
Operation Desert Shield/Desert Storm.

"* The impact the current round of budget and personnel cuts would have on the PDSS
centers ability to provide the same level of support during similar potential
conflicts.

E. LEADERSHIP INTERVIEWS

It was desired to obtain the opinion of the Director or Deputy Director of each of

the PDSS centers on the following issues:

"* The impact of existing budget and personnel reductions.

"* The impact of the reduction in software maintenance support.

"* How the PDSS center leadership handled budget and personnel cuts.

"* The current concerns of the senior PDSS leadership.

47

VI. DATA ANALYSIS

This Chapter presents data gathered during the research process. In all, pers,,nnel

from two centers were surveyed and visited. The data from each PDSS center is

presented separately. In some cases, the data is consolidated in order to retain anonymity

of the source.

A. INTRODUCTION

The following sections will present the history of the PDSS centers. In order to put

all of the data in its proper context, the roles and differences between the two PDSS

centers are examined.

1. Bintory

All of the surveyed centers evolved in a similar manner. This evolution is

characterized by a briefing obtained from the Communications Electronics Command

(CECOM) Software Engineering Directorate (SED) (CECOM SED, 21 February 1994).

It shows that the PDSS centers evolved through four stages. Although both PDSS centers

evolved similarly, each had a somewhat different focus.

& Stae One

Stage one of the PDSS evolution started prior to 1981. During this

period, the only players involved in the software process were the program managers

(PMs). Their primary emphasis was on hardware and software development, not total life

cycle support which includes the maintenance phase.

48

Seve problem resulted. They cluded an inadequate emphasis on Ufe

cycle support needs and little standardL-,ation in the processes created because of the lack

of coordinated decision making. In aedition, software expertise was spread across

multiple PMs. This duplication of responsibility usually meant that software personnel

were not able to obtain the training necessary to keep them skilled in current technology.

It also meant that if a software professional wanted to get promoted, he had to move out

of software management into another acquisition field. (CECOM SED, 21 February

1994)

b Stage Two

Stage two of the process occurred between 1981 and 1983. The key

players for this period were the PMs and the newly formed PDSS centers. The PM's

primary emphasis was once again on software development issues. The PDSS centers

were concerned only with providing PDSS.

This stage of the evolution process filled the support void for fielded systems

that had been present during stage one. However, problems soon emerged in the

transition of software from the PM to the PDSS activities. The major problem centered

on the inability of the PDSS activities to significantly influence the software development

process to consider life cycle support issues. (CECOM SED, 21 February 1994)

c. Stage MTree

The third stage in the evolution of PDSS centers occurred from 1983 to

1985. The players involved during this period were the PMs and the PDSS centers,

49

which were renamed Life Cycle Software Engineering Centers (LCSECs). The LCSECs

emphasis changed from conducting PDSS and expanded to include full life cycle upport

for software. This included involvement during development. PMs were still co'remed

primarily with software development.

This change in the LCSECs focus eased some of the problems negleed

during stage two. It also improved the previously neglected process of planning for

PDSS. (CECOM SED, 21 February 1994)

d Stage Four

Stage four of the PDSS evolution started in 1985 and continues to the

present. At this stage, the primary players continued to be the PMs and LCSECs. PMs

were still concerned with the management of the software development for their systems.

The LCSEC's broadened their mission to include addressing technical programmatic and

developmental software issues during the development process. In addition, they also

sought to incorporate life cycle support issues into the developmental process. PDSS

activities were still concerned with PDSS planning, as well as performing PDSS.

This fourth stage of the evolution eliminated many of the software

transition problems and provided a healthy base for standardizing interfaces across

systems. Centralizing the software personnel at LCSECs also improved the career

promotional opportunities for software personnel. (CECOM SED, 21 February 1994)

50

2. LCSECs Role In the Life Cycle

Under the current concept the LCSEC's are involved in all phases of a

system's life cycle. During the initial developmental piises of a system, the LCSECs

primarily provide fimctional and software program support. Functional software support

involves providing software development expertise, such as verification and validation,

or pre-award contractor surveys. Software program support involves the software

personnel who manage and track the contractor's activities on a day-to-day basis.

During this period, the LCSECs software personnel provide technical support

to both the program executive officers (PEOs) and PMs. They ensure that the

management and technical decisions made during development address the PDSS needs

of the software. The LCSECs also use this early developmental time to oversee and i

knowledge about the software design. The software design will play a key role in the

maintainability of the software.

As software development progresses to coding and software integration

testing, the LCSEC personnel provide counsel to the PM and play key roles in reviews

and inspections defined in the contract.

During the production and support phases, the LCSECs are dedicated to the

PDSS of the software. As such they focus on modifying, refining, and controlling the

software. (CECOM SED, 21 February 1994)

3. Differences Between the PDSS Centers

There are some differences between the two LCSECs discussed in this thesis.

These differences make it difficult to directly compare and contrast data between centers.

51

CECOM SED most closely fits the model discussed previously in Paragraph

2. They provide support for the entire software life cycle. At CECOM, the PMs obtain

all their software management and functional expertise from the CECOM SED.

At MICOM SED, the previously discussed model does not entirely hold true.

Like the CECOM SED, the MICOM SED is organized under the Research Development

Engineering Center (RDEC). However, if a PM needs software management expertise

(e.g., oversight of a particular software subsystem) he gets such support from a pool of

software professionals who work for a separate division of the RDEC, not for the

MICOM SED. A PM who needs pre-award contract surveys or verification and

validation obtains such functional expertise from the MICOM SED.

B. PERSONNEL

Personnel staffing at the SEDs consists of a combination of Government civilian

employees (with a GS or GM designation), military personnel, and contractor employees.

1. Demographics of the PDSS Work Force

CECOM SED has a current on-hand strength of 366 Government civilian

employees, 24 military personnel, and 1290 contractor personnel for a total work force

of 1680. It provides support to 227 systems for a ratio of 7.4 individuals per system.

(Wagner, 1993)

The MICOM SED has a current authorized strength of 128 personnel, with

an on-hand strength of 103 Government civilians and 327 contractor personnel. The

52

MICOM SED also has 12 software interns presently working Part-time who will st

working full time April 1994. These software interns are not counted in their current

strength figures. Although it has the authorization for two uniformed military personnel

in its table of organization, the MICOM SED currently has none on hand. The military

slots are desired and are projected to be filled in the future. The MICOM SED work

force provides support for 47 systems. The total work force of 436 individuals provides

a ratio of 9.3 individuals per system. (Rostollan, 1993)

lwmonel Both of the PDSS facilities

140 have similar rank structures

120

100 as can be seen in Figure 7.

so This rank structure is

heavily weighted at the GS
20M
0 -fj1 132 1 12 and 13 level. Them is

Grad. 7 I limited potential for
MICOM N 71 71 41144i 5i 41 31 1 7 1 0

CEOMj19i371117195124120112!131201 7 1 promotion above GS/GM

Figure 7 CECOM and MICOM SED's Grade Structure 13.
(Rostollan, 1993) (Wagner, 1993) In the CECOM SED

organizational structure, the individuals shown in Figure 7 who are higher then GS 13 are

in charge of individual sections and serve in management assignments. Most who are

below the GS 13 level hold technical positions.

As previously mentioned, the MICOM SED's rank structure is nearly identical

to that of the CECOM SED. This rank structure places 71% of the engineers at a level

53

of GS 12 or 13. The positions below that are generally non-technical positions. Again,

as was the case at the CECOM SED, there are relatively few high-level positions

available for software engineers to advance beyond GS 13.

2. History of the PDSS Work Force

All of the LCSECs have undergone continuous change since their inception.

This is not surprising given the constant increase in software to be supported, as well as

the increase in the use of software in weapon systems. As a result, tracking the history

of the number of individuals authorized in past years was difficult Only one of the

LCSECs had historical data on personnel.

Personnel The MICOM SED kept

160 very good records in this

140 area. Figure 8 shows the
120-
100

MICOM SED's history of

W0 personnel growth from

60 fiscal year 1984 through

rv , .~, wIwI 1993. The MICOM SED

H 78 1 71195 196 1 9 110 IM 14713 i
as 1 has experienced significant

95 06 a51w 06 OR 06 loll @s

Figure 8 MICOM SED Personnel History (Rostollan, growth since its inception.
1993) In FY 1985, it was

authorized 71 personnel; this figure grew to a high of 147 in 1992. The growth in the

number of authorized personnel coincides in part to the growth in the number of systems

supported. Also, during the period the MICOM SED began an over-hire policy. This

54

allowed the MICOM SED to hire additional temporary Government employees to fill

increased system support needs. In 1993, the over-hire policy was abolished, and the

number of authorized personnel dropped to 128. The abolishment of the over-hire policy

occurred because of budget cuts in the MICOM RDEC.

An interesting trend can be seen by looking at the number of personnel that

the MICOM SED has assigned. In 1984, the SED started over-strength in actual versus

authorized personnel. This soon changed, and for a period of several years their on-hand

strength closely tracked the authorized strength. In 1991, because of the increase in the

number of systems supported, the number of authorized personnel rose from 100 to 131.

The number of people on hand stayed nearly constant with the year before figures. From

1992 through 1995 there was only a slight increase. This gap can be primarily attributed

to the hiring freeze in place at the MICOM SED. These numbers do not reflect the

software interns that the MICOM SED had on hand during the periods covered.

3. Future Projections for the PDSS Work Force

The CECOM SED's personnel authorization has been cut from its current level

of 366 Government civilians down to 250 Government civilians as part of CECOM's

effort to downsize its personnel force. This is primarily attributable to the overall

reduction in the size of the Army work force. This reduction forewarns of significant

PDSS software personnel support shortfalls for the systems assigned to the CECOM SED.

The CECOM SED currently projects it will meet its draw-down figure by early

retirements and through the DoD personnel buy-out incentive program. They do not

55

project having to undergo a reduction in force (RIF). However, further personnel cuts

could require forced reductions. (Wagner, 1993)

Reductions in Government personnel are often offset by an increase in the

number of contractor personnel hired to handle increased work loads. However, the

CECOM SED has recently lost funding support for four of the systems currently under

PDSS support. Therefore it is unlikely the reduction in Government personnel will be

offset by contractor personnel.

Discussions with MICOM SED personnel indicate that they have been spared

further cuts in the current round of manpower cuts. The MICOM RDEC appears to

understand the need for the MICOM SED to be shielded from Army downsizing cuts.

Personnel at the MICOM SED indicated there may even be some personnel growth in the

near future. (Craig, 1994)

4. Examples of Problems Because of Persounel Cutbacks

From discussions with both LCSECs, the loss of personnel has had no direct

affect on the PDSS mission in the short run. To a large degree this is because of the

large amount of work that is performed by contractor personnel. Only budget cuts have

an immediate and detrimental effect on the center's ability to perform their missions.

An example of the problems experienced because of personnel cut-backs has

to do with the loss or reassignment of experienced personnel when a system's funding is

terminated. The TSQ-73 is a battalion- and brigade-level missile manager for the HAWK

air defense system. The TSQ-73's PDSS funding was cut as part of the FY 1994 budget

deliberations. The MICOM SED has several contractor personnel who have worked

56

exclusively on that system for over 20 years. Some have worked for as many as seven

different support contractors. With the TSQ-73 funding cuts, such individuals will either

be reassigned or terminated. For software maintenance, knowledge of the design and

structure of the software is crucial and a major productivity factor. Such knowledge is

not quickly accrued. Should the Army at some time in the future decide to reestablish

PDSS support for this system it is likely that it will not be able to rehire these

experienced and knowledgeable individuals. Any attempt to reestablish PDSS support for

the TSQ-73 will take significant time to reach past productivity and quality levels.

(Rostollan, 1993)

Many do not understand the cognitive challenge software maintenance

involves. Most would accept that an experienced automobile mechanic can easily adapt

and perform most maintenance tasks on just about any automobile. Many presume the

same is true for those performing software maintenance. After all, it is maintenance.

This simply is not the case. Those involved with software maintenance have one of the

most intellectually challenging jobs in our society. Studies have shown that upwards of

30% to 50% of a software maintainer's time is spent just trying to understand the design

and unsort what others have previously done to the code. It takes new programmers

anywhere from six months to one year before they are fully productive maintainers.

Army leadership should review the significant consequences personnel cuts have on

software support. When PDSS for a system is terminated, serious consideration should

be given to removing the system from the field.

57

Another problem confronting the PDSS activities is the mix of contractor to

Government staffing levels. The CECOM SED indicated that the optimal rmnge for

contractor staffing of PDSS activities is between 50% and 60% of the overall effort.

Currently both LCSECs have contractors providing in excess of 70% of the support effort.

Retirements, transfers, and buyouts of Government personnel are likely to drive up the

contractor-to-Government ratio as more contractors are hired, contingent on the

availability of funding.

This raises the serious issue of the role of Government personnel in PDSS.

As the percentage of Government employees continues to decrease, they more and more

assume the roles of oversight and administration. Fewer are directly involved in software

engineering functions and the Governmentss knowledge and ng of the

software deteriorates. This is another serious problem Army leadership should address.

(CECOM SED, 21 February 1994)

5. Personnel Policies

Both of the PDSS facilities are under strict hiring freezes as part of the

Government's effort to downsize. Both the CECOM and MICOM SEDs currently

experience a Government personnel loss rate that runs between 10% and 12% per year.

This equates to an annual loss rate of 24 individuals per year at the CECOM SED, and

11 individuals per year at the MICOM SED. (Doughtery, 1993) (Rostollan, 1993)

The LCSECs use two methods to offset this loss of personnel. The first

method is with the use of software intern's. The second method is through the

58

-74,

consolidation of a mission area, such as the cnodaonof the avionics supportmiso

from the ATCOM to the CECOM SED.

Under the software intern program, the Government hires individuals

(generally electrical engineers) straight out of college. These individuals attend a one-

year software engineering internship, followed by half-day attendance at a fully-finded

masters degree program in software engineering. A more detailed discussion of the

software intern program is presented under the training section of this report. Both the

CECOM and MICOM SEDs said they each received 10 to 13 people a year from this

program. (Doughtery, 1993) (Rostollan, 1993)

A second method that the LCSECs have to get more people is through

consolidation of PDSS missions. The CECOM SED indicated they were in "a state of

Perpetual reorganization." As they pick up new missions, or as software fiinctions are

centralized, they pick up additional people and work. An example of this is when the

CECOM SED received the avionics support mission from the ATCOM PDSS activity.

(Wagner, 1993)

The Government's attempt to cut the federal work force by buying out

individuals has also had an effect on both activities. Although the buy-out currently does

not apply to software engineers, it does apply to other key specialties such as engineers,

computer scientists, and mathematicians. The buy-out along with early retirements are

both methods the CECOM SED is using to achieve its downsizing goal. (Turner, 1994)

Presently, none of the SEDs indicated they are losing personnel to commercial

industry. However, this may in part be only due to the poor economy the past couple of

59

years. In addition, a large number of software engineers have entered the job market

because of the downsizing of the defense and aerospace industries. If the national or

local economies start to pick up, there is concern the LCSECs could start experiencing

significant personnel loss to industry due to the limited promotion opportunities and the

pay differential with the private sector.

The final way the SEDs lose people is through promotions and transfers. The

SEDs, besides being under a hiring freeze, are also under a high-level promotion freeze.

If an individual wants to get promoted, he must normally leave the SED and move to a

job outside the SED. In the case of the MICOM SED, individuals were moving to the

PEO office where they could get promoted. Now, the MICOM PEO structure is

undergoing a RIF. This has largely dissipated this avenue of loss. Most Government

employees are staying put and trying to ride out the RIFs and downsizing. (Doughtery,

1993) (Rostollan, 1993)

C. OPERATIONS

The following paragraphs discuss PDSS center operations. Among the topics

addressed are the support software systems and the role contractors play in PDSS.

1. History of Software Supported

Figure 9 shows the growth in the number of systems that the CECOM SED

has experienced since 1988. Its records show a continual increase in the number of

systems for which they are providing support. The number of supported systems for FY

1994 has stayed constant only because four systems supported in past years lost OMA

60

Symim funding and support was
240

cancelled.
220

200 The CECOM SED could

180
not show historical records

160

140 for the total number of

120 source lines of code

CECOM FY o So 90go 91 92 93 94

(SLOC) that it supports.
SYSTEMS*i 135 152, 171 18 221 227 227

_However, Figure 10 divides
Figure 9 CECOM SED History of Systems Supported
(CECOM SED, October 1993) up the 227 supported

systems, and arranges them

by the number of SLOC. Because the complexity increases dramatically with larger

programs, the software

Pernmt maintenance work load

50 increases significantly as

40-
30 _the SLOC in a system rise.

20 Figure 11 shows a similar

0 --- system growth pattern for0

100-5001500-10W 1000+ the MICOM SED. It has

Peemio 51.0 31.4 14.4 3.1 also experienced a

continual rise in the
Figure 10 CECOM SED Current System Breakout by
Number of SLOC (Wagner, 1994) number of systems it

61

supports. This growth has only recently begun to level off. This is primarily because

budget cuts have slowed the introduction of new systems.

ystONM The MICOM SED was not

50
40 ,able to provide a count of
30 the total number of SLOC

20 •for which they provide

10 support. While using lines

0
of code versus the use of

[,WM , fiunction points as a

7 11 17 117 m1asuM for the last several

Figure 11 MICOM SED History of Software Systems ye h b debated, the
Supported (Rostollan, 1993)

fact that there is no

available measure other than number of systems presents a problem when trying to assess

the work load for an activity.

Figure 12 depicts a future problem that potentially is even more critical

for the LCSECs. That is the difference between the number of systems that are currently

fielded and in PDSS, and the number of systems that are in the development phases of

the life cycle. While the data presented in Figure 12 is from the CECOM SED, similar

situations hold for the other Army centers. The vast majority of systems that the LCSECs

support are not in the PDSS phase of the life cycle, but rather some phase of new system

development. There is a significant number of systems that are getting ready to deploy

and move into the PDSS phase of their life cycle. Even if only 50% of these systems are

62

gy�g�e ventually fielded and

250 2M1 require PDSS support, the
2W - 171 number of systems

150-13515

100 requiring PDSS would

50 more than double. These

0 systems will be manpower
IFY OSFY 89FY OOFY OIIFY 9MFY 931FY 9

intensive and require a
OMAPOSSE 21 341 431 481 541 62 65

MATRIX N 11411181 1281141 167' 167 1 162 significant increase in the

Figure 12 CECOM SED History OMA and Matrix number of personnel (either
Supported Software (CECOM SED, October 1993)

Government or contractor)

necessary to adequately support them.

2. Role of the Contractor in the LCSECs

The contractor plays a key role in both LCSECs that were visited. In both

cases, the centers paid out over 70% of their budget to fund contractor-performed work.

The centers perform all of their software support work in a modularized form. This

enables them to contract for the support for individual systems to contractors. These

contracts are worth millions of dollars annually. Some of the contractors that are

involved in providing this support for Army LCSECs include:

"* TRW.

"* Scientific Applications International Cooperation.

63

"* Rockwell International.

"• Hughes Aircraft Company (Craig, 1994).

These are all well-know defense contractors. Most of the work performed by

the two LCSECs is performed on site. One advantage of using on-site contractor

personnel cited in discussions was the ability of the Government to gain access to high

quality software personnel at a lower cost. Should the contractors perform this same

work at their company locations, the Government would be forced to pay high overhead

costs on facilities.

3. Clnsifleation and Prioridzadon of the Work Load

The LCSECs both indicated that they get very little discretionary funding.

If a PM wants work done on a system, he provides the LCSECs funding and they will

work on it

For software in the PDSS phase of the life cycle, the LCSECs, in conjunction

with the PM, prioritize the changes for each system, along with the projected costs for

those changes. The changes are generally divided into three categories: "must change,"

"need to change," and "would like to change." Once the list is compiled, it is sent to

AMC for review. From there, Training and Doctrine Command (TRADOC) rank

orders/prioritizes the systems. As a set amount of OMA funding has already been

determined, everything that falls above the available funding line gets funded, while

everything below it gets canceled. As unsophisticated as the system is, at least the

Department of the Army is attempting to address the funding shortfall problem. Prior to

64

1993, thei was no prioritization system, and the LCSECSs themselves had to make the

work decisions based upon the funding they received. (Wagner, 1994)

The bottom line is the Army faces a software support crisis. There is not

adequate funding to support all the fielded system's software.

4. Support Equipment

Both of the LCSECs visited had extensive computer and hardware resources.

This equipment includes the necessary computers and peripherals for conducting software

support. In many cases the actual tactical equipment/system used in the field is used for

testing software and firmware changes and trouble-shooting software problems. The

centers have the capability to integrate software changes onto actual equipment and onto

actual nets on which the equipment will be used. In the CECOM SED's case, this has

allowed it to perform software maintenance and enhancements on not only Army

software, but also on Marine and Air Force equipment that interface with Army tactical

communication systems.

5. Operation Desert Shield/Desert Storm Support

Everybody is familiar with the sight of the Patriot missile system engaging

incoming SCUD missiles in Saudi Arabia during Operation Desert Storm. During the

operation key software changes were made to the Patriot system. Both the CECOM and

MICOM SEDs were heavily involved in providing software support to many systems of

units deployed in Operation Desert Shield/Desert Storm.

65

The MICOM SED, along with Raytheon Corporation, provided software

support for the Patriot units deployed during Desert Shield and Desert Storm. Recause

the Patriot missile system is still undergoing major modifications, the system's PDSS

support is still provided by the Raytheon Corporation, The MICOM SED provides

functional oversight for the PM. Examples of the kind of work that the MICOM SED

performed:

" Ran tests on special software deviations/waivers for the Patriot missile system
during Desert Shield and Desert Storm.

" Ran formal qualification regression tests of Desert Shield and Desert Storm

software builds.

"* Supported testing of deviation/waivers at the White Sands Missile Range.

"* Ran tests using the PATRIOT radar to investigate radar problems from Desert
Shield and Desert Storm.

"• Performed independent analyses of deviation/waiver tests nm by Raytheon.

"* Participated in the Joint Analysis Team review of Desert Shield and Desert Storm
data in Huntsville.

"* Performed analysis of missile guidance data at Raytheon, Boston.

"• Supported radar testing at White Sands Missile Range.

"* Supported special missile flight tests at White Sands Missile Range.

"* Produced charts and reference material across all functional areas to aid the
PATRIOT Project Office trip to Israel.

"• Analyzed problems and areas of concern throughout the Desert Shield and Desert
Storm conflict that included such topics as cease fire, threat classification, target
fragmentation, false detections, and fire unit correlation.

"* Performed a parametric study of the safe passage corridor logic for the system.

66

"* Studied tracking capabilities of the Patriot radar vemus artillery shells.

"* Performed a special review of all anti-tactical ballistic missile deviation/waivers.

"* Studied debris impact point prediction algorithms. (Rostollan, 1993)

Besides the verification and test activities for the Patriot missile system that

are listed above, the MICOM SED was responsible for generating several scenarios with

tactical ballistic missile's (TBM) as targets. These TBM scenarios were used in the

testing of the tactical software, as well as for training. (Rostollan, 1993)

Although the Patriot missile system was one of the most publicized systems

that was deployed during Desert Shield/Desert Storm, many other equally important

software-intensive systems were deployed. The CECOM SED supported many of these.

They also provided support to not only Army systems, but also joint service

systems. For example, the SB-3865, Unit Level Circuit Switch, was used by Marine Corp

units. When the Marines arrived in Saudi Arabia, they operated as a separate joint task

force. This required that they have the ability to communicate to all the other service

units and commands through the tactical satellite system. However, the SB-3865 had not

been designed to operate in that mode. The system soon overloaded when demand

exceeded the system's capabilities. The CECOM SED was asked to provide a software

modification to fix the problem. Able to replicate the software failures at their location,

they designed a software solution that was quickly implemented and resolved the

deficiency.

67

Another important project during Desert Shield/Desert Storm that the CECOM

SED provided support for was the AN/APR-39(V)2. The AN/APR-39(V)2 is a radar

warning receiver installed on all U.S. fixed and rotary wing aircraft and used to detect

radar-based threats to airborne platforms. The receiver is threat-based, and is only

effective against threats that are incorporated into its database.

The CECOM SED has developed a rapid reprogramming capability for this

system that includes threat analysis, electronic warfare environment simulation, and

testing and programming capabilities. This has reduced the time required to analyze new

threats and incorporate the necessary software changes into the AN/APR-39(V)2's threat

database. (CECOM SED, February 1994)

Because the Iraqis were operating a large number of aircraft also operated by

the coalition forces, the system had to be upgraded. For example, both the French and

the Iraqis used the Mirage F-1 aircraft. With France being a U.S. ally, the Mirage F-i

had never been entered as a threat. From August 1990 to November 1990, the CECOM

SED performed four separate threat analyses and reprogrammed the AN/APR-39(V)2

based on new threat scenarios. (CECOM SED, February 1994)

The following is a typical example of the software support effort performed

by the CECOM SED during Operation Desert Shield/Desert Storm. On 8 August 1990,

the CECOM SED received 26 new threats against the AN/APR-39(V)2 that needed to be

analyzed. Once the analysis was complete, electronic warfare simulatiop and testing was

conducted on the AN/APR-39(V)2 test-bed and the software was modified. On 18

August, just ten days after receipt of the threats, the analysis, programming, and testing

68

were completed and the modified software distributed to units in the field. Such effort

was responsible for the improved effectiveness of a large number of airborne platforms

employed in Desert Shield/Desert Storm. (CECOM SED, February 1994)

Another example of the support provided during the war includes on-site

personnel assigned to units in Saudi Arabia to track software problems. Having software

knowledgeable personnel available to witness system problems first hand proved

invaluable in accurately identifying and expediting the resolution of the many problems

raised duing the operations. During Operation Desert Shield/Desert Storm the CECOM

SED had between one and two military personnel from their office stationed in Saudi

Arabia at all times. They provided direct support for identifying software problems and

forwarded the information to the CECOM SED. (CECOM SED, February 1994)

CECOM SED's timely support has not just applied to Operation Desert Shield/

Desert Storm. During Exercise Dynamic Guard 93 operations, Air National Guard (ANG)

units were activated and deployed from their continental United States locations to remote

sites in the Turkish mountains. These units deployed with AN/TSC-93A Tactical

Satellites and SB-3865 Unit Level Circuit Switches. This equipment was critical to an

elaborate communications network that included establishment of communication with an

ANITTC-39D/PS located at the NATO airbase in Corlu, Turkey. From this link,

communications via tactical satellite to the 7th Signal Brigade Headquarters in Karlsruhe,

Germany were to be establisi. 1. This would allow access to military telephone lines.

Given the complexity of the interoperability required, it should not seem

unusual that problems arose. Headquarters 7th Signal Brigade had learned that the

69

ANfITC-39D/PS would not operate with the SB-3865. The CECOM SED received a

request for emergency software support at 2:00 p.m. Friday 17 September 1993. (CECOM

SED, February 1994)

At 4:00 p.m. the CECOM SED started building an emergency release tape for

the AN/TTC-39D/PS. It contained a prototype software fix for the interoperability

problem. While the emergency software fix was being prepared, arrangements were made

to hand carry the emergency software release to Turkey in order to expedite that fix.

(CECOM SED, February 1994)

Software engineers worked through the night and by 8:00 am. Saturday, 18

September, they completed building the emergency release tape. The fix was installed

in the AN/TTC-39D/PS in the SED test bed and interoperability testing was conducted

with the SB-3865 as well as other switches. By 10:30 am. the interoperability testing

was successfully completed and a courier departed for the airport. (CECOM SED,

February 1994)

The courier arrived in Istanbul, Turkey at 3:30 p.m. Sunday. A soldier from

the 7th Signal Brigade stationed at the Corlu NATO Airbase met the courier and took

receipt of the tape. By 5 p.m. the AN/TTC-39D/PS was up and operational. The

problems were corrected. The ANG units arrived the following morning and successfully

completed Exercise Dynamic Guard. While situations such as this are not every day

occurrences, this example provides some insight on the demands made of SEDs. It

demonstrates how critical software shortfalls can be to Army operations. (CECOM SED,

February 1994)

70

D. BUDGET

As was mentioned earlier, funding is the only resource item whose reduction has

an immediate effect on the operations of the LCSECs. Both of the LCSECs presently

have greater than 70% of their operation's support provided by contractor personnel. A

reduction in their funding translates almost directly to a reduction in contractor software

support personnel.

Funding is the most unstable and erratic resource involved in software support.

Besides the uncertainty in funding availability in general, the different types of funding

and when they can be used must also be considered. The complexity for organizations

trying to manage this process is incredible.

Software (like all other DoD items) is funded based on its location in the acquisition

life cycle. Once a system's fielding is completed, its funding support comes from the

Operations and Maintenance Army (OMA) account. A system under production is

supported using procurement funds, while a system under development is funded using

research and development funds. A fielded system may use research and development

funding if such funding is used for upgrades. Finally, it is possible for different

components of a system to be in different phases of the acquisition life cycle. While

some elements are ,ill under development, other components will have completed

development and been fielded. As the individual components of a system complete their

development runs, further software support is transferred to the LCSECs, if no major

software upgrades are immediately planned. It is illegal to fund the different categories

of support with an improper type of funding. A PM whose system is still using

71

procurement money cannot spend that type of funding to perform PDSS support on a

piece of system equipment that has moved to OMA support. Under present funding

reductions this is causing problems.

For example, the Army Tactical Missile System (ATACMS) has a missile test set

associated with the system. The deployment of this test set has been completed. Its

support has been transferred over to the MICOM SED. The ATACMS missile itself,

however, is still under production and its software is funded using procurement funds.

The PDSS support for the missile remains with the contractor because the missile is still

in production and is scheduled to undergo several major system modifications. If the PM

decides to enhance the test set, he will likely have to redevelop it under a system-wide

product improvement instead of hiring the MICOM SED to perform the software

enhancement. (Craig, 1994)

The reason that this creates a challenge relates to the Army's current method of

allocating OMA funds for PDSS support. Prior to 1993, the LCSECs budgeted for OMA

PDSS funds as part of their annual budget request. Based on the annual funding the

LCSECs received, they notified the CINCS if a system's software support was terminated

because of a lack of OMA funding. Typically, the CINCs would then lobby DCSOPS

and AMC to continue system support and funds were usually found.

Starting FY 93 the LCSECs started submitting a budget request to AMC that stated

how much it would cost to perform PDSS support on each of the systems they supported.

The Army, which had a predetermined amount of OMA finding set aside for PDSS

support, had TRADOC rank the list of systems in order of system priority. Once the

72

systems were rank ordered, funding was allocated by starting at the top of the list and

proceeding until no more funds were available. All systems that fell below the cut-off

line had their PDSS funding terminate. Under this new practice, DCSOPS then collects

feedback from the CINCs on the impact of terminating PDSS support for a system. At

the start of FY 94, 26 systems under PDSS support had their funding terminated.

An example of the reductions caused by such budget cuts is the AN/MSC-64, a

satellite communication system used by the regional CINCs to maintain communication

with the National Command Authority. Its funding was cut during the FY 94 budget

process. However, based upon concerns raised from the CINCs, its funding was restored.

There was enough negative feedback that DCSOPS was able to set aside more OMA

funding to cover its PDSS support This is a rather haphazard method of determining

the funding status of a system, but reflects the results of budget cuts. However, not all

systems have the visibility and political backing that the AN/MSC-64 has. Such systems

have had their support terminated. (Wagner, 1994)

A major difficulty LCSECs encounter is the uncertainty of their budgets. Figure

13 illustrates this problem. This chart depicts three budget categories. Total required

(TOT REQ) is the budget the CECOM SED requested to maintain the software for the

fielded systems it supports. Initial programmed (INT PBG) refers to the funding it

initially received as a result of the budget process. Total received (TOT REC) is the

funding it actually received by the end of the fiscal year. While the data in Figure 13

was obtained from the CECOM SED, the basic challenge applies to all Army LCSECs.

73

MI~ons of $ The graph depicts a

120 problem the JCSECs

100
so currently experience. They

00 justify the work that they

40

20 perform, and as the chart

0 indicates, funding is
FY 89 90 91 92 93

TOT RECEI 46.0 52.5 72.9 82.31 97.6 requested at a certain level

INT PB0 JI 29.3 I38.51354153.9 15(TO REQ). At the end of
ITOT RECUI 46.0 152.5 172.9 76.9 1 86.7 (TOT

Figure 13 CECOM SED Budget History (Wagner, the budgeting process they
1994)

are invariably finded at a

much lower level (INT PBG). Their budgets are then incrementally increased over the

fiscal year until they reach some unknown point (TOT REC). For example, in 1992

CECOM SED requested $82.3 million. By the initial program budget guidance it was

allotted $53.9 million. At the end of the year the CECOM SED had eventually received

$76.9 million, an increase of over 42%. Such unplanned growth presents a serious

challenge to management.

In the past, as the year progresses, the LCSECs have usually ended up receiving

almost all of the money they needed. However, starting about FY 91, that trend changed.

Although the CECOM SED received funding above its INT PBG, it did not obtain all

the funding it required to fully support all of its systems. Some support that was initially

programmed was terminated, while enhancements on other systems were stretched out to

a later date. This chart also illustrates the significant growth in software systems

74

rqring supporL From FY 1989 to FY 1993 the CECOM suport budget more tm

doubled.

MLlon Of Figure 14 shows the

250 history of the CECOM

200- SED budget from FY 88 as

100 well as projected required

50 fumding out to FY 99.

0 Because of numerous

___0a__ I { ff N N reorganizations, the

S• u ~ ai, Ueur~ hU.r5 t CECOM SED's budget

Figum 14 CECOM SED Projected Funding (Doughtery, g could only be
1993)

traced back to FY 88.

These figures project an extraordinary growth in the budget, from $50 million in FY 88

to a projected requirement of over $200 million in FY 95. This is primarily due to new

systems that will be fielded during the period and the resulting software support that will

be required.

Figure 15, shows the history of the MICOM SED budget Its budget showed a

continual increase starting in 1984. This trend of increased software funding continued

until reaching a high of $58.2 million in FY 88. Since 1938, the MICOM SED's funding

levels have dropped significantly, from close to $60 million to $35 million in FY 93.

These decreases in funding are commensurate with the decreased funding levels

experienced by the program management offices located at MICOM.

75

Mi~kme of $The LCSECs are hardware

70 intensive operations which
60
50 have extensive mainframe
4040

computer operations. As

10 these computers grow old,10

0 maintenance down times

FY !841685181871i8191i0191 1921931 and costs become excessive

TetFud- .4 5s 15.6I25I52.55682147-3151.8I32.713•.36 (in many cases the

Figure 15 MICOM SED History of Funding (Rostollan, manufacturers quit
1993)

supporting them). The

LCSECs must eventually replace these out-of-date or old pieces of equipment.

The MICOM SED obtains funding for new equipment from two sources. The first

is from overhead charged to customers. The second source comes from directly charging

the appropriate PM for equipment necessary to support their system. It first uses money

accrued from the overhead charged to customers for their support. If this account cannot

pay for new equipment, than the difference is charged out to the PMs based upon their

usage of the equipment. (Craig, 1994)

The CECOM SED budgets for new equipment differently from the MICOM SED.

It budgets for new equipment in the procurement (PA) account portion of its budget.

Figure 16 shows the funding profile for this account. Prior to FY 90, the CECOM SED

received steady funding in the PA account. During FY 90 the PA portion of its budget

was reduced, and continued to decline to a low of $150,000 during FY 91. This occurred

76

NNNO $ of because higher

7 |headquarters elected not to
6
5 support the previous levels
4
3 as part of an effort to

2 reduce its own budget.

0 More recently the

Fv am .Ias 1o IIM 1 21I9 3194 N U g V I U N procurement budget has

I 300_20_ ,___1_0_o .8 0.1 I1J00I1.70¶L.aI2.1a0I.70•0o. risen somewhat. This is

Figure 16 History of CECOM SED PA Account primarily because of a
(Wagner, 1993)

significant increase in

demand for new equipment and a rise is expected to continue over the next several years.

However, it should be noted that even during the next five-year budget estimate, the

CECOM SED's procurement account is not expected to rise to the funding levels of the

late 1980's. Although the CECOM SED has been able to live within the reduced

funding levels, it has significantly reduced its modernization efforts. The risk to funding

equipment modernization in this manner is that the equipment will grow old, and difficult

as well as expensive to maintain. This problem could grow worse as a large backlog of

equipment requiring modernization or replacement builds up. (Wagner, 1993)

Because of data limitations, it was not possible to provide a history of the

percentage of the CECOM SED's budget that goes toward hiring contractors. Contractors

currently make up 77% of the CECOM SED's work force. (Wagner, 1993)

77

u The history of the MICOM

8o
SED's contractor costs as a

75
70 percentage of their budget

65

80 overall is shown in Figure

55 17. The MICOM SED has
50

a contractor ratio similar to
MK= !FY" 81aI WIU IaUiWI"W SI' a

57.4 that of the CECOM SED.
U 7.1•.7 I 77. S 1.0&1 177.4A L1 i S.S 68.1 75.3

Currently 75% of the
Figure 17 History MICOM SED Contractor Participation
(Rostollan, 1993) MICOM SED's work is

performed by contractor personnel.

Software development and support is a manpower-intensive effort. As such, the

productivity and quality of the work effort to a large extent depends on the quality and

continuity of the work force. The kind of erratic behavior depicted in Figure 17 ceates

serious problems. Under such conditions the contractor typically experiences sigahicant

turnover. New personnel normally take from six months to a year to become proficient.

The quality of the personnel hired is also called into question. Top software engineers

are unlikely to take a job given the uncertainty in job security. As a result such areas as

software productivity, quality, and documentation all tend to degrade. Such problems also

mean that software support schedules will slip. (CECOM SED, October 1993)

78

., TRAINING

The state of the art in software engineering is constantly changing and advancing.

In order for the LCSECs to remain competitive and provide the support that PEOs and

PMs require, it is important that Government software professionals be as well trained as

their counter-parts in industry.

1. Education level of PDSS personnel

Percent Figure 18 presents the

so educational levels of the

60. personnel at the two
40 --

LCSECs. The first

category representsH PPpersonnel who are pursuing

LA I A 4 6. 8 I9 8 4&i9 0.3 _1.8 their bachelors (Pur Bach)

MICOM 0.0 72.4 1 7.5 M . .OI1. 81 0.0I degree. Only a small
Figure 18 Educational Levels of the LCSECs (CECOM percentage of the people
SED, 21 February 1994) (Rostollan, 1993)

fall into this category. The

second category contains all individuals who have a bachelors degree (Bach). The third

category is comprised of individuals who are pursuing a masters degree (Pur Mast). The

fourth category encompasses all individuals who have a masters degree (Mast). The fifth

category contains all individuals who are pursuing a doctorate. (Pur PhD) And the sixth

category includes all individuals who have doctorates (PhD). All the individuals without

a bachelors degree at the CECOM SED are enrolled in formal degree programs. At the

79

CECOM SED, 46% of the personnel had a masters degree or better. At the MICOM

SED almost 20% of the personnel had a Masters degree or better. The educational levels

at both LCSECs should continue to rise as long as the software intern program remains

in place. (CECOM SED, 21 February 1994)

The software intern program, mentioned earlier in the chapter, is the primary

method the LCSECs use to keep their education level high. Individuals selected for this

program spend their first year attending an engineering intern program at Red River Army

Depot. Their second year is spent at either Fort Monmouth or Redstone Arsenal. During

this second year they work part time at the SED and attend school part time. They earn

a masters degree in software engineering. Upon completion of the program, they owe the

Government three years of service. Discussions with the CECOM SED indicated that the

software intern program for FY 95 had not yet been funded. However, this is not

unusual. For the last several years the decision to fund the software intern program has

been made in the August time frame, just four weeks before the interns are supposed to

report to Red River Army Depot. Personnel at the CECOM SED indicate that they

expect the program to be funded this year. (CECOM SED, 21 february 1994)

2. Advanced Training in the Activities

The LCSECs use a variety of methods to train their personnel. Methods

include the use of software-specific training, SEI improvement programs, and system

specific user training.

The LCSECs provide training in a variety of areas that include:

80

• Total quality managemnmt.

* Software Engineering Institute standards.

* Radar operations.

* Software management.

• Software development.

* Ada program language training.

* Cost modeling.

* Object oriented software design.

* Computer architecture modeling.

• Budget management.

* Ac~iuisition. (Rostollan, 1993)

As part of the LCSECs effort to improve their software development

processes, each has undergone the Software Engineering Institute (SEI) software

capability assessment. These self-audits allow organizations to assess their software

development processes and assist in formulating an effective program to overcome noted

deficiencies. Both LCSECs have training programs focused on deficient areas noted in

the assessment and designed to increase their competency levels. The MICOM SED is

scheduled to undergo their next self-examination in April of 1994. The LCSEC's realize

the importance of training and of constantly improving their process. (Craig, 1994)

81

F. INTERVIEWS

The following issues were discussed in interviews with senior personnel from both

LCSECs.

1. Existing Problems

According to senior management, the biggest problem facing the LCSECs is

inconsistent and volatile funding. The LCSECs receive most of their funding as customer

reimbursable funding for specific work. If a center loses funding for a project, work on

that project is terminated, and the people are transferred to another project or laid off.

Generally speaking, a cut in funding translates almost directly to a cut in personnel.

Software development and support is a manpower intensive effort. As such, the

productivity and quality of the work effort largely depends on the quality and continuity

of the work force.

The LCSECs spend a significant amount of their time justifying the work that

they perform. The LCSECs leadership is required to continually educate senior resource

managers on the effects funding cuts have on PDSS in order to try and maintain their

funding levels. They believe they have been easy targets for funding cuts during the

initial formulation phase of the budget process. The problems associated with inconsistent

and volatile funding have been previously discussed. (Craig, 1994)

Currently, both of the LCSECs have not had problems getting qualified

contractor personnel to work on their software projects. However, this is primarily

because of the poor national and local economies. Should these economies start to pick

up the LCSECs may find it difficult to attract high quality software engineers, especially

82

given the unstable job security. Both of the LCSECs leadership agreed that funding this

year has been tighter than they can ever remember. For the MICOM SED, FY 94

funding came late, forcing it to terminate part of its contractor's work force until funding

authority arrived. Its contracts end early in the fiscal year.

Another concern the LCSEC leadership expressed was concerned with how

to rebuild a PDSS support structure for a system whose funding has been cut and its

PDSS resources dispersed. In FY 94 alone, 26 Army systems under PDSS in the

LCSECs had their funding terminated. The CECOM SED designs their support contracts

so that they run from 31 November to 1 December. This allows the CECOM SED to

archive a program should its support be terminated. Archiving a program involves

placing all program documentation and work into a format that will be easier to relearn

should funding support resume. For those LCSECs that have contracts that run from 30

September to 1 October, when funding is terminated work just stops and the program

cannot be archived unless the LCSEC can come up with funding to complete the

archiving. For programs which are not archived, it will be much more difficult to restart

the PDSS support. The LCSECs estimate that it would take at least two years to restart

the PDSS support for a system and reach the previous level of productivity once its

funding has been terminated and its people and resources scattered. (Wagner, 1993)

2. Impact of a Lack of Software Support

A lack of software support creates several challenges for the soldier. From

the CECOM SED point of view, a lack of continuous software support degrades the

expertise available to perform work on a system. CECOM SED not only fixes software

83

problems, but sometinm it is the only source of expertise available to the users in the

field to fix system-related problems. Many -nes users in the field call the CECOM SED

with system and interoperability problems. Sometimes the reported problems stem from

software bugs. But most of the time they simply reflect a lack of system expertise on the

part of the users. If the LCSECs are forced to cancel software support for a system, then

users may have no one to answer questions related to such interoperability problems.

(Turner, 1994)

In addition, a lack of continuous software support raises the system's life cycle

costs. It is expensive and time consuming to try to restart a PDSS maintenance effort

once that support has been terminated. It is estimated that once support is terminated for

a system it takes upwards of two years to restart that support again. (Wagner, 1993)

3. Balancing Budget Cuts in the LCSECs

If the finding for a system is killed, the people involved in support of that

system are either moved to a new project or laid off. If the funding for a system is not

terminated, but only somewhat reduced, then some of i.,e personnel will be moved to

another system or laid off. Any system enhancements will be stretched out. (Turner,

1994)

A second method the LCSECs use to balance budget cuts is to restrict

temporary duty, training, and restrict or eliminate cash incentive awards for individuals.

During such budget cuts, discretionary research and development money for the centers

is also reduced or eliminated. Research and development work helps retain good software

engineers in the Government. Many individuals remain because of the challenging work.

84

Cutting discretionary research and development funding eliminates one of the few

methods the LCSECs have to keep high quality individuals in Government service.

(Rostollan, 1993)

G. CONCLUSION

The number of systems that the LCSECs are providing support to has skyrocketed.

In the MICOM SED the number of systems it supports has increased nearly seven-fold

since 1984. In the CECOM SED the number of systems it supports has increased by over

80% since 1988. In the CECOM SED the number of systems that are under development

is two and a half times higher than the number currently in PDSS. In the CECOM SED

the projected budget requirements are expected to increase four-fold from 1988 to 1995,

:'reasing from $50 million to over $200 million.

The LCSECs are performing all of this work with fewer people. The CECOM SED

has been downsized from 360 Government personnel to an eventual strength of 250

individuals. A rather grim picture emerges for the future of PDSS support. The budget

decline and personnel cutbacks do not bode well for the support a soldier can expect for

a system, given the existing and future software systems requiring support.

85

77 MIS

VII. CONCLUSIONS AND RECOMMENDATIONS

This research has looked at PDSS activities and the impact of budget and personnel

cuts for software support for fielded systems. Conclusions and recommendations from

the research are discussed in the following paragraphs.

A. CONCLUSIONS

I. Interoperabinty

Senior Army leadership should be concerned with the declining budgets and

personnel cuts at PDSS centers. Such reductions lead directly to reduction or termination

of specific software programs. This can be especially serious and present disastrous

consequences for systems which are part of interoperable combat and communications

systems.

When AMC and TRADOC performed a FY 1994 OMA fimding analysis

review of the CECOM SED, the AN/MSC-64 fell below the cut-off line and support was

terminated. The AN/MSC-64 is a communications system that the CINCs use to talk to

the National Command Authority. It is an item used by all services. The Army provides

software maintenance on the system. Because all the services use it, the decision to

cancel support for this system soon raised serious questions. Support for the AN/MSC-64

was reinstated.

Cancelling the PDSS support for any piece of equipment can effectively doom

that item to early obsolescence. For systems whose finctionality requires interoperability

86

with other systems, this obsolescence may occur even sooner. Changes in other systems

or newly introduced systems may render this unsuprted equipment unusable if changes

to its software cannot be made.

2. Funding Stability

A key factor facilitating the smooth and efficient support of a system is

stability of its funding. Funding in PDSS translates directly into personnel resources. As

a result, cutting a systems funding usually translates directly to personnel cuts. Beca

software support is a personnel-intensive activity requiring a significant learning curve

and accumulation of program knowledge over time, flucitations and turnover of personnel

are devastating to productivity and quality software support.

Over the past few years the PDSS centers have not had a stable funding base.

The amount of funding they receive rarely meets the needed amount. Such funding

instability creates an inefficient software maintenance process. At CECOM and MICOM

SEDs, over 75% of the PDSS work force is contractor personnel. Unfortunately, the

PDSS centers do not have the capability to make up the personnel shortfall by using in-

house programmers. Contractors are continually having to retrain personnel who have

been laid off or transferred because of funding instabilities. Tremendous inefficiencies

are created, resulting in increasing software backlogs. Army leadership needs to rectify

these funding fluctuations. Because they directly effect people, they have a much more

serious affect than budget cuts that primarily impact day-to-day operations, training, or

travel. The Army is currently not facing up to the true cost of supporting its software by

the way it currently under-budgets for software support and later adds additional funding

87

when tdo CINCs uqp wes importUsie of continued suoppor Tmuivodous productivit

is lost and the ability to efcvy plan practically vaishes.

3. Giewtl In System. Supported

It can be concluded from the data presented that the number of systems to be

supported will inca dramatically over the next several years. If current budget and

personnel reducthons continue, the Army will find itself unable to provide the necessary

PDSS for the ever-growing number of fielded systems.

The fact that the number of sites or quantity of systems fielded are

significantly reduced because of the Army downizing has very little impact on the

funding and personnel required to provide an adequate amount of support for a system.

For instance, whether a communiation system has 5000 units or 1000 has little impact

on the number of people required to support the software and firmwae. A similar,

situation arises in aviation systems. Whether we operate 2000 aircraft or 500, the

resources (personnel and funding) required to provide adequate support does not dirffr

by much.

Another factor that deervm consideaion is that the number of systems (and

the amount of associated software) under development far outnumber the systems

currently receiving PDSS. Thes new systems tend to be much more software intensive

and complex. Now is the time to review the life cycle suppm resources necessary to

enure adequate support for these new system when they ae field.

88

4. Reductions in PDSS Center Personnel

The current environment of Government downsizing is having a detrimental

effect on the PDSS centers. The PDSS centers face personnel reductions from two

perspectives. The number of billet assignments is being reduced and a hiring freeze

prevents hiring new people to fill existing vacancies. The work these PDSS centers

performs does not go away. There has not been a reduction in work. Rather, the number

of new systems and the quantity of software is increasing. In general it can be said PDSS

work is largely contracted out to the civilian sector. It is not possible for the Government

to perform all of the PDSS work given the number of Government employees. To do so

requires a trained cadre of software professionals, many of whom currently serve as

Government oversight personnel.

5. The PDSS Center Grade Structure

The grade structure of the PDSS centers, combined with other factors, has the

potential to create severe personnel turn-over problems in the PDSS centers. The current

PDSS grade structure offers programmers very little promotion opportunity. Most jobs

are in grades GS 12 and 13. If an individual wants to get promoted, he or she is forced

to leave the PDSS center. While at present relatively poor local and national economies

have kept people from leaving their jobs and moving, once the economy starts to pick up

these shortsighted management methods could cost PDSS centers many of their trained

software professionals. Unfortumately, it is often the ones that are best trained and most

knowledgeable that leave because they are more marketable and in demand.

89

6. Contractor Support of PDSS Centers

While the ratio of contractor-to-Government personnel varies somewhat

between centers, the trend is for a greater proportion of contractors doing the support at

the Army PDSS centers. What level of contractor support will be allowed in the PDSS

centers? Attention should be focused on this issue and a determination made. If the

present trend of high contractor-to-Government ratio continues, the Army risks changing

PDSS centers into contract mnagement agencies where the Government employees

perform little actual software engineering. The Government's ability to attract quality

software professionals (who want to do software work) will seriously diminish under such

conditions.

B. RECOMMENDATIONS

1. PDSS Funding Support

A systems software support should be treated in the same manner as the

systems post-deployment logistics support. At present, there seems to be a belief that

software support can be significantly reduced or even terminated without much affect on

the soldiers ability to use a system.

Commanders would not think of continuing to operate equipment for which

all logistics support had been terminated. The same concept applies for a system for

which software support has been seriously degraded. If we can no longer support a

system's software, we should seriously consider retiring the system from the field. To do

otherwise requires the soldier to use a substandard piece of equipment. If a decision is

90

made to terminate a system's software support fiMdin, Army leadership must also give

thought to removing that system from the force structure.

2. PDSS Funding Stability

Every effort must be made by people involved in the PPBS process to ensure

that a PDSS center's funding reflects its workload. Without a consistent funding profile,

the Army will see ever-increasing shortfalls in a system's performance. This up-and-down

thrashing and the insecurity that results means decreasing productivity and quality.

3. PDSS OMA Funding

The OMA funding system for software is inadequate. One alternative is for

program managers or the post-deployment material managers to be given responsibility

for managing and tracking PDSS funds for their systems. These funds could then be

tracked as part of total system funding, rather than individual accounts that can be

targeted for cuts.

4. PDSS Persounel Cuts

PDSS centers need to be exempted from the current and future rounds of

personnel RIFs and downsizing presently taking place. Both of the PDSS centers

surveyed already exceed a contractor-to-Government ratio of 75/25. Further downsizing

will increase the ratio of contractor personnel. This will only lead to a decrease in the

Governmentes ability to properly support its software. The Army should study this issue

and determine what the maximum contractor-to-Government ratio is going to be. Once

91

%~~"U IF.

that level is detemined, the persomel strengths and a o mtos iu be incremd to

reflect those levels and the present hiring freeze lifted.

5. Discretionary Funding

The Army needs to increase the discretionary research and development

funding available to the PDSS centers to insure that quality personnel will stay with the

PDSS centers once the economy starts to pick up. Incentives and/or promotions should

also be examined.

This draws to a close this discussion of challenges and shortfalls in Army

software support. As we approach the next century, the Army will have significantly

greater amounts of software to support. The programs are larger and more complex.

They will require a much bigger support effort and significant amounts of funding above

today's systems. Army leadership should take the lead on resolving the many issues

raised in this discussion and plan for the future challenges software-intensive systems will

present.

92

APPENDIX

A. PEOPLE:

1. The PDSS Work force

a. Demographics of the work force
Government Civilian Military

b. What is the rank structure of the work force?

c. Is a hiring freeze in place?

d. What is your turnover rate?

e. If a hiring freeze is in place how do you handle the turnover rate?

f. How long does the average person stay in your organization?

g. Do you have problems recruiting people to work in your organization?

2. What is the History of the work force since 1985?

3. What is projected to happen to the work force?

4. Can you give me a worst case problem that has to do with people and your cuts in
supporting the systems.

93

B. TRAINING:

1. What are the education levels of people in your activities?

2. What skills do you have in your activity?

3. What type of training do you have in your activity?

4. How often do you perform your training?

5. Have you undergone a software capability assessment as given by the Software
Engineering Institute, Carnegie Mellon University?

6. If you have, what was your competency level?

7. Do you have assessment teams to perform this function in support of program
manager contractor evaluations for contract awards.

94

C. BUDGET:

1. What has the history of the budget from 1985 been?

2. What is projected to happen in the fiture to the budget?

3. What are the five most serious impacts of the declining budget?

4. What are the implications of budget cuts? How do you handle or notify the
contractor that funding levels have been cut?

5. What are your feelings on the budget cuts? Are you being cut more or less than
everybody else?

6. How big a problem is the budget cut, or is it a problem?

7. What are the worst case problems of budget problems in supporting your systems?

95

r• ' .: , • * *• 4 ,. .. ••

D. OPERATIONS:

1. What software have you supported since 1985?

2. How many languages have you supported since 1985?

3. How many systems have you supported since 1985?

4. How many programs have you supported since 1985?

5. How many Ada programs have you supported since 1985?

6. What is the role of the contractor in your activity?

7. How do you classify and prioritze your work?

8. How do you balance the workload?

9. How do you handle System crashes? Describe your scheme to fix them.

10. How do you handle safety issues? Describe your scheme to fix them.

96

r

11. What is the backlog of maintenance?

12. Is the backlog of maintenance increasing?

13. Do you have an idea of what your backlog has been since 1985?

14. What kind of support equipment do you have?

15. How do you track your percentage of memory used, and how do you communicate
requirements for hardware upgrades?

16. What was your role during Operation Desert Shield/Desert Storm?

97

E. LEADERSHIP INTERVIEWS:

1. What is the impact of existing problems, i.e. what do you do when you run out of
money?

2. What is the Impact of a lack of software support?

3. How do you balance the cuts; people, equipment, support, TDY?

4. What is coming down the line in your area?

5. What are your top five concerns right now?

98

LIST OF REFERENCES

1. U.S. Air Force, Air Force Acquisition Model (AFAM), version 1.4, ASC/CYM,
Wright Patterson Air Force Base, Ohio, 45433-6503, 1993

2. Army Executives For Software (ARES), CECOM SED, 12 July 1991, p. 9-21.

3. Boehm, B., "Software and Its Impact A Quantitative A sment," Datation,

Vol. 19, No. 5, May 1973

3. Brooks, F., The Mythical Man-Month, Addison-Wesley Publishing Co., Inc., 197--

4. Buckley, W., Computer Makers Feel Key to Sales Lks in Better Programanu
Wall Street Journal, Sept 29, 1980, p. 1,18.

5. CECOM SED, Briefing to Departent of Deftme IG, Briefing to DoD IG, 15

November 1993

6. CECOM SED, Golden Nugget Vuguapks, February 1994.

7. CECOM SED, L/FE CYCLE SOF/WARE EVGiNEERINlG FOR MI&SION
CRnT7CAL DEFENSE SYSTEAIS, Briefed by John H. Sintic Director CECOM
RDEC SED, 19 Mar 1993

8. CECOM SED, RDEC PROGRAM REVIEW SED OVER VIEW, Briefer John K
Sintic, 21 October 1993

9. CECOM SED, SOFTWARE "MAINTENANCE".• SOME ARMY LESSONS
LEARNED, Briefer Dennis Turner, 21 February 1994

10. Interview between B. Craig, Director MICOM SED, Redstone Arsenal, Al., and the
author, 30 November 1993 and 24 February 1994.

11. Department of Defense, Department of Defense Instruction Number 5000.2, Defense
Acquisition Mamagent Policies and Procedure, Department of Defense,
Government Printing Office, Washington, DC, Febnzay 1991, p. 6-B-2.

12. Departuent of Defense, Department of Defense Standard (DOD-STD) 21674
Defense System Software Development, Dqetment of Defense, Government
Printing Office, Washington, DC, 29 February 1988

99

13. Interview between Joe Doughtery, Chief Plans and Pmgramn, CECOM SED, and
the author, 17 December 1993.

14. Freedman, D., and Weinberg, G., "Manac Reviews", Techniques of Program
and System Maintenance, Lincoln, NE: Ethnotech, 1980.

15. General Accounting Office (GAO), GAO/JMTEC-92-62BR Defense's Embedded
Software Costs, Government Printing Office, Washington, DC, 6 July 1992.

16. Gibson, V., A Study of Complexity Metrics as Surrogate Measures of Software
Maintainability, Ph.D. Dissertation, State University of New York at Binghamton,
Binghamton, New York, 1986

17. Lientz, B., and Swanson, E., Software Maintenance Management A Study of the
Maintenance of Computer Application Software in 487 Data Processing
Organizations, Addison-Wesley Publishing Company, 1980.

18. Martin, James, and McClure, C., Software Maintenance - The Problem and its
Solutions, Englewood Cliffs, NJ: Prentice Hill Inc., 1983.

19. Defense Systems Management College, Mission Critical Computer Resources
Management Guide MCCR, Government Printing Office, Washington, DC, January
1990

20. Mills, H., "Software Development", IEEE Trans. on Software Engineering, Vol. SE-
2, no. 4 December 1976: p. 265-273.

21. Osborne, W., and Martin, R., Computer Science and Technology Guidance on
Software Maintenance, U.S. National Bureau of Standards, NBS Special Publication
500-106, December 1983

22. Pizzarello, A., Development and Maintenance of Large Software Systems, Lifetime
Learning Publications, 1984

23. Interview between Nancy Rostolian, Chief Business Management Office, MICOM
SED, and the author, 16 December 1993

24. MICOM SED, Unclassified, Rostollan, Nancy, Chief Business Management Office,
MICOM SED, Memorandum, 22 December 1993.

100

25. Schneiderman, B., Software Psycholoy, Cambridge, MA: Winthrop Publishers, Inc.,
1980.

26. Swanson, E., "The Dimensions of Maintenac", 2nd International Corence on
Software Engineering; Proceeding San Francisco, October 13-15, 1976, P. 492-497

27. Itmerview between Dennis Turner, Depuy Director, CECOM SED, and the mLthr,
22 February 1994

28. Interview between Jim Waner, Associate Director Life cycle Software Support,
CECOM SED, and the author, 30 November 1993 and 22 February 1994

101

INIAL LSRIUTiO T

No. Copies

L Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5100

3. Professor David V. Lamm 2
(Code SM/LT)
Naval Postgraduate School
Monterey, California 93943-5100

4. Professor Martin J. McCaffrey 6
(Code AS/MF)
Naval Postgraduate School
Monterey, California 93943-5100

5. Professor James C. Emery 1
(Code AS/EY)
Naval Postgraduate School
Monterey, California 93943-5100

6. Director CECOM SED 2
Attn: Mr. Dennis J. Turner
U.S. Army CECOM,
Ft Monmouth, NJ 07703-5207

7. Director MICOM SED 2
Attn: Mr. Bill Craig
U.S. Army RDEC
Redstone Arsenal, Al 35898-5260

8. Cpt Mark C. Jones 1
2205 Viewmount
Springfield, Or 97477

102

