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A Progress Report on Undergraduate
Software Engineering Education

Abstract: The current status of undergraduate software engineering educa-
tion in United States universities is summarized, including descriptions of
programs at eleven schools. Possible scenarios for the further evolution of
undergraduate software engineering programs are described, based on obser-
vations of the evolution of computer science and computer engineering pro-
grams. Recent and ongoing activities of the Computer Society of the Institute
of Electrical and Electronics Engineers (IEEE) and the Association for
Computing Machinery (ACM) regarding the establishment of the profession
of software engineering are described, including the expected implications for
undergraduate software engineering education.

1. Introduction

Software engineering education in United States universities is evolving rapidly. In the
1980s, master's-level software engineering programs were just beginning; there were
few programs and their content varied considerably. The idea of a separate undergrad-
uate software engineering program was so controversial as to be almost unimaginable.
In the 1990s, master's programs are becoming more common and their content better
defined. Many computer science doctoral programs have a substantial number of stu-
dents conducting research and writing dissertations on software engineering topics.
The idea of an undergraduate software engineering program separate from computer
science, although still controversial, is being taken seriously by many people, and the
first programs are being designed. By the end of the decade, we expect that software
engineering degree programs at all academic levels will be well established.

Since 1985, the Software Engineering Institute' has tracked and reported on the growth
of software engineering education. Previous reports [Ardis89, Ford9l] have concen-
trated on graduate-level education. This report focuses on undergraduate education.

In Chapter 2, we describe programs in eleven United States universities that illustrate
the range of approaches to software engineering education that are being tried.

1 The Software Engineering Institute (SEI) was established at Carnegie Mellon University in December
1984, under a contract with the United States Department of Defense. Its primary mission is to provide
leadership in advancing the state of the practice of software engineering to improve the quality of systems
that depend on software.
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Chapter 3 compares the evolution and growth of software engineering with those of
computer science and computer engineering programs. Some parallels are identified
that suggest the future growth of software engineering programs.

Chapter 4 describes recent and ongoing activities of the Computer Society of the
Institute of Electrical and Electronics Engineers (IEEE-CS) and the Association for
Computing Machinery (ACM). The two professional societies are cooperating on a range
of activities that support the establishing of software engineering as a profession. Some
of these activities will have significant implications for undergraduate software engi-
neering education.

2 CMU/SEI-94-TR-11



2. The Current Status of Undergraduate Software
Engineering Education

We do not know of any undergraduate programs named "bachelor of science in software
engineering" at any United States universities. However, several schools teach signifi-
cant course sequences in software engineering at the undergraduate level, a few schools
offer software-related programs (other than computer science), and some schools report
that they are now developing undergraduate programs in software engineering. In the
next sections we describe the efforts at eleven of these schools. Figure 2.1 shows the
geographic distribution of the schools.

Figure 2.1. Locations of Undergraduate Programs Surveyed

2.1. Oregon Institute of Technology

The Oregon Institute of Technology (OIT), founded in 1947, is the polytechnic institute
in the Oregon state university system. For several years it has offered a four-year pro-
gram leading to the degree "Bachelor of Science in Software Engineering Technology"
and a two-year program leading to the degree "Associate of Engineering in Software
Engineering Technology." Both programs were accredited by the Technology
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Accreditation Commission of the Accreditation Board for Engineering and Technology
(ABET) in 1991.

The OIT program announcement characterizes the programs in this way: "The study of
Computer Science prepares individuals to discover and develop new ideas in the theory
of computers and computing. Software Engineering Technology uses these ideas,
together with sound engineering principles, to design and implement economical, reli-
able and maintainable software of all types."

The program is further described as using "... an applied approach to teaching .... Many
of these classes have a required laboratory component where the student learns to use
state of the art tools such as: code development and test work benches, interactive
debuggers & tracers, test generators, cross-compilers and emulators, as well as other
Computer Aided Software Engineering (CASE) tools."

In addition to a range of courses in mathematics, science, humanities, and social
sciences, the typical curriculum includes these technical courses:

Freshman: Computer Science I, II; C Programming; Advanced C Programming;
Computer Architecture I, II; Computer Assembly Language

Sophomore: Advanced Assembly Language Programming; Programming
Languages II, III; Data Structures; UNIX; Computer Graphics I;
Data Base I; Introduction to Grammars

Junior:. Computer Logic I, H, I11; Compiler Methods; Software Design and
Implementation I, 11; Numerical Methods; Operating Systems

Senior. Computer Networks; Management Processes I, II; Senior
Development Project; Industrial Psychology; Industrial Economics;
Introduction to Artificial Intelligence

Note that OIT uses a quarter system, so it is typical for a student to take five courses in
each of three quarters during the academic year.

For more information, contact: Oregon Institute of Technology, Computer Systems Engineering
Technology Department, Kiamath Falls, Oregon 97601.

2.2. Parks College of St Louis University

Parks College of St. Louis University specializes in aeronautics and flight-related educa-
tion. Beginning in 1989, it offered a bachelor's degree in "Airway Science/Computer
Science." In 1992, the curriculum was revised to provide two additional degree options,
"Applied Computer Science" and "Computer Software Systems." It was the intent of the
faculty for this latter degree to prepare students for a software engineering career, but
for several reasons it was not possible to use the phrase "software engineering" in the
title.

All three degree programs share a common freshman and sophomore year curriculum.
In the junior and senior years, the applied computer science curriculum requires the
students to choose a specialization in aerospace or electrical engineering, avionics,
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meteorology, logistics, or aeronautical administration. In those years the Computer
Software Systems students take several additional software-related courses, including

"* Operating Systems
"* Numerical Methods
"* Introduction to Computer Software Systems
"• Software Specification
"* Software Design
"* Software Generation and Maintenance
"* Software Verification
"* Software Design Project
"* Software Project Management and Economics
"* Current Topics in Computer Software Systems.

Two additional software-related electives are required.

For more information, contact: Parks College, St. Louis University, Department of Science and
Mathematics, Cahokla, Illinois 62206

2.3. University of Detroit Mercy

Mercy College of Detroit recently merged with the University of Detroit, at which time
the campus adopted the name U-iversity of Detroit Mercy. Both schools have offered
undergraduate computer science programs for many years.

The College of Business and Administration now offers the degree "Bachelor of Science
in Software Production and Management." The curriculum integrates recent software
engineering knowledge with a more traditional curriculum in computer information
systems. Its goal is to produce graduates who are competent at producing quality soft-
ware products [Jovanovic92].

Core courses in the program are

"* Business Programming
"* Systems Analysis and Design
"* Database Design
"* Data Structures
"* Specification and Design
"* Software Quality Assurance and Testing
"* Software Management
"* Data Communications.

Electives include

9 Interface Design
• Advanced Project in Software Production and Management
* International Software Management.

The school is also developing a graduate program, "Master of Science in Software
Management."

For more information, contact- University of Detroit Mercy, Computer Information Systems Department,
Detroit, Michigan 48221.
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2.4. Rose-Hulman Institute of Technology

Rose-Hulman Institute is a small (1400 students) men's technological institution. In
1987, the school created an independent computer science department and completely
revised the computer science curriculum. Before that time, computer science was
taught in the electrical engineering department, and the curriculum was essentially an
electrical engineering curriculum with a computer science emphasis. The school now
graduates 15 to 20 computer science majors each year.

All computer science students are required to take a four-course sequence in software
engineering. In the winter and spring quarters of the junior year, they take Software
Engineering and Software System Documentation. In the fall and winter quarters of
the senior year, the students take Senior Project.

The Software System Documentation course grew out of a technical writing course
[Young9l]. However, by placing it after software engineering in the curriculum, it
rapidly became a different course from its predecessor. The maturity and experience of
the students enabled the instructor to increase the difficulty of the assignments and to
introduce more advanced topics to the students. During the 1990-91 academic year, the
same professor taught both courses and used the opportunity to combine them to inte-
grate software engineering concepts with the technical writing skills necessary to
accomplish software engineering tasks. The combined course lasts twice as long as the
Software Engineering course. Students appreciate having extra time to complete their
software projects. The longer time frame also allows all software engineering assign-
ments to be revised and polished. Students are expected to produce professional quality
work at all stages of their software engineering projects. All written work is kept on-
line so that documents can easily incorporate excerpts from previous work.

For more information, contact: Rose-Hulman Institute of Technology, Computer Science Department,
Terre Haute, Indiana 47803.

2.5. Drexel University

Drexel University is a private university in Philadelphia. It has a technological orienta-
tion, and all students in engineering, science, and information studies participate in a
co-op program that alternates college studies and paid employment beginning in the
sophomore year.

The undergraduate computer science program at Drexel included a two-quarter elective
sequence in software engineering in the early 1980s. In 1983, the first course of that
sequence became a required course, along with either the second course or a two-course
sequence in compiler construction. The goal was to ensure that students had some team
programming experience.

In the early 1990s, the curriculum was revised to include six tracks, based on the com-
puter science categories described by Denning [Denning89]. The tracks are

"* Data Structures and Algorithms
"* Numerical and Scientific Computation
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"* Artificial Intelligence
"* Operating Systems
"* Programming Languages and Compilers
"* Software Engineering and Methodology

Students must complete three of the tracks, including software engineering and
methodology. This latter track includes four courses: Object-Oriented Programming,
Software Engineering, and Software Engineering Workshop I-II. The software engi-
neering course is taken in the junior year, and the two-course workshop sequence
provides a senior year capstone experience.

Drexel has also begun offering a master's degree in software engineering, and it is
expected that as that program matures, many of the graduate-level courses will be
taken as advanced electives by undergraduates.

For more information, contact: Drexel University, Department of Mathematics and Computer Science,
Philadelphia, Pennsylvania 19104.

2.6. State University of New York, Oswego

The State University of New York at Oswego is one of 13 colleges of arts and sciences in
the New York state university system. It has more than 6000 undergraduate students.
It has offered a bachelor's degree in computer science for many years.

Recently, the curriculum in computer science was modified to offer a concentration in
software engineering, with the goal of giving students a strong background in software
design and development in preparation for careers in the software industry
[Tymann94]. A design consideration for the concentration was that it include a balance
of material from software analysis, computer systems, software systems, and software
process, as suggested by the SEI [Ford90].

For pragmatic reasons, the new concentration was designed to supplement the existing
computer science curriculum; it required small changes to some existing courses and
only a few entirely new courses. The course changes can be characterized as trying to
balance the science side of computing with the engineering side, and they are being
accomplished, in part, by the incorporation of laboratory work into several courses. In
addition, several courses with large or group programming projects are being modified
to include software engineering concerns such as documentation and modification of
existing systems.

Existing software engineering courses include a junior-level introduction to software
engineering and a course on systems analysis. New courses are being offered in
software design and software environments. The faculty expects that as they gain more
experience in teaching software engineering, they will be able to introduce additional
new courses. Currently under consideration are a course in software validation and
verification and a project course or practicum with real projects from industry.

For more information, contact: State University of New York at Oswego, Department of Computer Science,
Oswego, New York 13126.

CMU/SEI-94-TR-11 7



2.7. University of Virginia

The Department of Computer Science at the University of Virginia is in the School of
Engineering and Applied Science, and the faculty feels "a strong commitment to
achieving a true sense of rigorous engineering in our educational culture. We seek to
educate computer scientists with a clear understanding of, an appreciation for, and
skills that support the engineering and comprehension of large software systems,
reengineering of existing systems, use of modem tools and environments, and applica-
tion of innovative techniques such as software reuse.' [Knight94].

To achieve these goals, the department has recently revised its core curriculum. The
first four courses in the core are titled Introduction to Computer Science, Software
Development Methods, Program and Data Representation, and Advanced Software
Development. An emphasis on software engineering begins in the first course, and a
philosophy of engineering is incorporated into all of the core courses [Prey94].

For more information, contact: University of Virginia, Department of Computer Science, Charlottesville,
Virginia 22903.

2.8. University of West Florida

The University of West Florida, founded in 1963, is part of the state university system
of Florida.

The computer science curriculum has an option called Computer Information Systems,
which the department describes as "having a strong software engineering focus." The
option includes a three-semester sequence Software Engineering I, Software
Engineering H, and Sys' ems Project.

The first course in the sequence is an introduction to software engineering and an
overview of a typical software life cycle. Early life-cycle activities are covered in some-
what more detail. The second course emphasizes software design and testing. Students
in these courses often produce a software specification and design that is then imple-
mented in the Systems Project course.

For more information, contact: University of West Florida, Department of Computer Science, Pensacola,
Florida 32514.

2.9. Rochester Institute of Technology

The Rochester Institute of Technology (RIT) has offered the degree "Master of Software
Development and Management" since 1987. The school's undergraduate computer
science program includes a four-course sequence in software engineering beginning in
the sophomore year.

In 1993, a committee of faculty from computer science and several engineering depart-
ments began developing an undergraduate program, probably to be titled "Bachelor of
Science in Software Engineering." They hope to begin the program in the fall of 1.995.

8 CMU/SEI-94-TR-11



The RIT effort is noteworthy for several reasons.

1. It is likely to be the first such program in the United States.

2. The committee designing the program represents all the affected constituencies
on campus (several departments, schools, and colleges), so that the political
issues and "turf battles" can be openly addressed and resolved early in the
process. The committee spent time investigating the depth and breadth of
software engineering, and they were able to reach consensus that software
engineering is an engineering discipline and that it is different from computer
science and computer engineering.

3. The effort is likely to show the extent to which the content of an existing gradu-
ate program can be adapted in the creation of an undergraduate program.

The RIT program will also address a constraint that most schools will not have: all RIT
programs are cooperative programs. The students require five years to complete the
program, including a total of one year in industry. This presents an interesting problem
in curriculum design. If the first co-op period is as early as the sophomore year, how
should the early courses be structured to provide the students with sufficient skills to
make effective use of their first industry assignment?

Engineering programs at RIT are accredited by ABET, and the school expects to seek
accreditation for its software engineering program as well. Because it could be the first
school to do so, it will likely help catalyze the resolution of many accreditation issues.

For more information, contact: Rochester Institute of Technology, Department of Computer Science,
Rochester, New York 14623.

2.10. University of Washington

The University of Washington (UW) in Seattle has branch campuses to serve the Puget
Sound region of northwest Washington. A particular goal of the branch campuses is to
meet the intellectual and pragmatic needs of students whose goal is employment in the
software industry.

Toward this end, a committee including faculty from the UW Department of Computer
Science and Engineering, faculty from the Bothell branch campus, and industry repre-
sentatives has been working to define a curriculum for the branch campuses leading to a
degree in "Software Systems." The curriculum is organized as three components:
preparation, core computer science, and software development processes. The prepara-
tion includes mathematics, science, writing, and programming courses.

The core computer science courses include
"* Object-Oriented Programming and Abstract Data Types
"* Discrete Structures and Formal Models
"* Data Structures and Their Algorithms
"* Computer Systems
"* Programming Languages and Their Implementation
"• Networks and Distributed Systems
"• Databases

CMU/SEI-94-TR-11 9



The software development processes courses include

"* The Software Product
"* Information Design and Product Presentation
" Software Production
"* Requirements and Specification
"* Design
"* Testing, Analysis, and Verification

The curriculum is designed to teach fundamental concepts, while providing an extensive
laboratory component in which the students can develop more specific, job-oriented
skills.

Funding limitations have delayed the implementation of this program, although plan-
ning and development are still proceeding.

For more information, contact: University of Washington, Department of Computer Science, Seattle,
Washington 98195.

2.11. Florida Institute of Technology

The Florida Institute of Technology began efforts in 1991 to offer an undergraduate
software engineering degree. The faculty chose the Lnf lenging strategy of first intro-
ducing a new freshman course sequence that stressed Harlan Mills' cleanroom develop-
ment method. All freshman computer science majors took the new sequence. The strat-
egy called for introduction of additional software engineering courses each year until the
full four-year program was in place.

By early 1993, it became evident that the strategy was not succeeding. A major factor
was the difficulty in developing the necessary course materials for the new freshman
sequence-materials that presented the Ada language in the context of the functional
verification techniques and box-structured development strategies required by the
cleanroom method. In addition, the inclusion of the new material in the freshman
courses limited the students' abilities to acquire traditional programming skills. This
became a significant issue for the faculty as the students entered the more traditional
sophomore computer science courses.

Ultimately, the faculty decided to return to a typical freshman computer science course
sequence. Some higher-level software engineering courses are being retained, including
a project-oriented course.

One other lesson can be learned from Florida Tech's experience. The new freshman
courses were viewed by faculty outside the department as inappropriate service courses
in programming for science and engineering majors. This is likely to be a concern at
many schools that consider introducing freshman-level software engineering courses.
As is the case in many disciplines, the differing needs of majors and non-majors may
require a department to offer different introductory courses to the two groups.

For more information, contac Florida Institute of Technology, Department of Computer Science,
Melbourne, Florida 32901.
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2.12. Other Schools

In addition to the schools whose programs or plans were described in the previous
sections, there are probably many others that have introduced more software engineer-
ing into their computer science programs in recent years. For example, we have heard
that there are now software engineering options in the computer science programs at
Washington State University and at the California Polytechnic State University.

We also note that software engineering programs have begun appearing in universities
outside the United States. For example, in Australia, the Swinburne University of
Technology offers a Bachelor of Science in Software Engineering and the University of
Melbourne offers a Bachelor of Engineering in Software Engineering.

We solicit information from all schools for inclusion in subsequent rel

CMU/SEI-94-TR-l1 11



3. Evolution of Undergraduate Software Engineering
Programs

It may seem that the growth of distinct undergraduate software engineering degree
programs is proceeding slowly. A significant question to ask at this point is whether
that growth is typical-is it what we would expect to see in a new technical discipline?
This chapter tries to answer that question.

Our approach is to look for trends in the growth of software engineering programs and
compare them to historical trends for related disciplines. In particular, we examine the
evolution of computer science and computer engineering programs. We would expect
that some of the patterns of growth of those programs would suggest how software engi-
neering programs might emerge.

Section 3.1 presents some factual data on the growth of software engineering programs
in United States universities. Section 3.2 compares that growth to the growth of
computer science programs in the 1960s. Section 3.3 looks at the evolution of the
computer engineering program at Carnegie Mellon University, which provides an
interesting example of the problem of creating separate programs in closely related
disciplines.

3.1. Growth of Graduate Software Engineering Programs

We have heard suggestions that new academic disciplines tend to emerge first at the
master's level. This is plausible for several reasons.

"* A new discipline often evolves out of specialized areas of another discipline, and a
student needs a foundation in the parent discipline before studying the new one.

"* Graduate programs often have topics or seminar courses already on the books
that provide the flexibility to teach new topics with a minimum of formal admin-
istrative barriers.

"* Experience gained in teaching graduate courses makes it easier to organize and
less risky to teach the same material at the undergraduate level.

"* Developing a year-long master's curriculum is substantially easier than develop-
ing a four-year bachelor's curriculum.

To examine this hypothesis, we can first look at some statistics.

Graduate programs in software engineering first appeared in 1978 at Seattle
University, and in 1979 at Texas Christian University and the Wang Institute of
Graduate Studies (which closed in 1987). Over the past 15 years, nearly 25 additional
programs have been developed. In addition, more than 25 other universities have a
named or unnamed software engineering option or track within their graduate
computer science or similar programs.

12 CMU/SEI-94-TR-11



MS in Software Engineering MS in Software Systems Engineering
Andrews University George Mason University
Colorado Technical College MS in Software Development and Management
Drexel University Rochester Institute of Technology
Kansas State University Master of Software Design and Development
Monmouth College Texas Christian University
National Technological University University of St. Thomas
National University
Southern Methodist University MS in Systems Engineering
University of Houston, Clear Lake Boston University
University of Pittsburgh MS in Software Systems Management
University of Scranton Air Force Institute of Technology
University of St. Thomas Certificate in Software Engineering

Master of Software Engineering (MSE) Azusa Pacific University
Carnegie Mellon University New York University
Embry-Riddle Aeronautical University Santa Clara University
Seattle University Troy State University in Montgomery

Master of Engineering in Software Engineering University of Colorado at Colorado Springs

University of Colorado Certificate in Software Systems Engineering
George Mason University

Table -1.1. Grmduate Programs in Software Engineering

MS in Computer Science, named SE option MS in Computer Info. Systems (SE emphasis)
Air Force Institute of Technology Grand Valley State University
California State University, Sacramento MS in Computer Science, unnamed SE option
East Tennessee State University Arizona State University
Florida Atlantic University Georgia Institute of Technology
Florida Institute of Technology Mississippi State University
George Washington University Purdue University
Portland State University University of Alabama in Huntsville
San Jose State University University of Florida
University of Alaska at Fairbanks University of Maryland
University of Iowa University of Tennessee
University of Southern California Master of Computer Science, unnamed SE
University of West Florida option

Master of Computer Science, Software Arizona State University
Engineering Option

Wichita State University

Table 3.2. Graduate Programs in Computer Science with a Software Engineering Option

These programs are not always easy to identify, primarily because not all of them have

the phrase "software engineering" in their titles. For the purposes of tracking the
growth of software engineering education, we have tried to look beyond the titles and

include all programs that address professional education of software practitioners at the
master's level (including certificate programs).

The software engineering programs in United States universities that we have been

able to identify are shown in Table 3.1, grouped by program title. Descriptions of many

CMU/SEI-94-TR-11 13
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3.1; the horizontal axis is the year in which the program was officially established. We
have been unable to attach precise dates to the programs listed in Table 3.2 because
there was no comparable defining event for those programs. We believe, however, that
the growth of those programs roughly parallels the growth curve in Figure 3.2.

3.2. Evolution of Computer Science Programs

The evolution of computer science degree programs is well documented in Seymour
Pollack's excellent history of computer science education [Pollack82]. By looking at that
history, we can gain insight into several questions:

* How fast did the number of computer science programs grow?
* What were the important causes of the creation of computer science programs?

* How did computer science curricula evolve?
* Did computer science programs appear first at the master's level (as discussed in

the previous section)?

We may be able to identify, aspects of the evolution of software engineering programs
that parallel those of computer science programs. If so, they may suggest likely scenar-
ios for the future of software engineering education.
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Figure 3.2 Growth of Master's Programs in Software Engineering

Growth rate. To compare the rates of growth of computer science and software engi-
neering programs, we first consider these statistics:

"* The first few PhD programs appeared about 1961; these were interdisciplinary
programs in existing departments rather than separate degree programs.

"* By 1964 there were about a dozen computer science bachelor's degree programs
in US universities.

"* Between 1964 and 1968, the number of bachelor's programs grew to nearly 100;
master's programs experienced a similar increase. The number of PhD programs
grew from about 10 to about 40.

Compared to computer science, the growth of separate software engineering programs
has been much slower. Although there have been calls for such programs as early as
1969 [Kuo69], no undergraduate programs actually named software engineering have
been created (see the previous chapter for some descriptions of programs that come
close). We do believe, however, that the majority of computer science programs now
have at least one course in software engineering.

In the previous section, we noted that approximately 25 master's or certificate programs
in software engineering have been created between 1978 and 1994-a 16-year span.

CMU/SEI-94-TR-11 15



Figure 3.2 shows the growth of those programs over that period. This growth rate is
also much slower than that of computer science.

We do not know of doctoral programs in software engineering that are so-named and
separate from computer science programs. Many universities report that increasing
numbers of students in computer science doctoral programs are writing dissertations on
software engineering topics. Prominent among these in the last several years have been
Arizona State University, Purdue University, the University of Florida, the University
of Maryland, and the University of California at Irvine.

Causes of program development. One catalyst of the rapid growth of undergraduate
computer science programs between 1964 and 1968 was the publication of the first cur-
riculum recommendations [ACM65] from the Association for Computer Machinery
(ACM). We note that neither the ACM nor the IEEE Computer Society (the other main
professional society) has yet published a model curriculum for an undergraduate
software engineering degree (however, see the next chapter). We believe such a model
curriculum would be an important factor in the growth of undergraduate software engi-
neering programs, just as was the case for computer science.

The Software Engineering Institute published its first master's curriculum recommen-
dations in 1987. Although the rate of growth of master's programs increased (see Figure
3.2), the SEI curriculum was not the only factor in that growth. The increasing needs of
industry for educational opportunities for software engineers was a major reason for the
development of new programs. On the other hand, the majority of programs started
since 1987 acknowledge having been influenced by the SEI curriculum. This reinforces
our belief that a model curriculum is an important catalyst for creation of new
programs.

Curriculum evolution. One of the principal reasons for advocating the development
of software engineering programs is the perception that computer science curricula have
evolved to a state that does not adequately prepare students for professional careers
building software-intensive systems. How did computer science curricula get to that
state?

Model curricula greatly influence the philosophy and direction of degree programs.
Pollack notes that the most significant event in the early history of computer science
education, the publication of ACM Curriculum '68 [ACM68I, led the education commu-
nity further toward science (and research) and away from engineering (and professional
practice):

Interestingly, Curriculum '68's influence also had a dichotomizing aspect: Its
basically mathematical orientation sharpened its contrast with more pragmatic
alternatives. Most computer science educators agreed that the proposed core
courses included issues crucial to computer science. However, the curriculum
brought to the surface a strong division over the way in which these issues
should be viewed. In defining the contents of the courses, Curriculum '68 estab-
lished clearly its alignment with more traditional mathematical studies, giving
primary emphasis to a search for beauty and elegance. Pedagogically, this
implied a set of academic objectives concerned chiefly with preparation for
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graduate study leading to a career in research. Consequently, those colleges and
universities holding with the perception of computer science saw Curriculum '68
as a reinforcement and endorsement of their orientation and sought to imple-
ment it commensurate with their resources.

On the other hand, many educators felt the curriculum to be at odds with their
perception of reality. They argued that the uses of computer science and the
observed roles of computer scientists militate for an education approach much
closer to that used in professional disciplines. ... In this light, computer science
education should have a strong professional flavor (it was argued), with design
principles, general approaches to problem solving, and experiments with current
methodologies receiving considerable attention. This would be consistent with
the expectation of professional employment starting at the baccalaureate level.

Two arguments heard today for not having software engineering programs are these:
"* Software engineering is not sufficiently mature to warrant a separate college

curriculum.
"* Software engineering is a specialty area that should only be taught at the gradu-

ate level after a student has an undergraduate background in computer science.

Pollack notes that similar arguments were made in the 1960s regarding computer
science:

At a more fundamental level, many universities, while convinced of computer
science's separate identity, felt that an independent program was premature.
For them, computer science was a graduate specialty to be preceded by under-
graduate concentration in some established area (not necessarily mathematics or
science).

The fact that more than 900 United States colleges and universities now offer some kind
of computing-related undergraduate degree suggests that these arguments against
separate computer science programs were not valid. Neither do we find them to be
persuasive when applied to software engineering.

It seems more plausible that the slower growth of software engineering education can be
attributed to the availability of computer science education, which for two decades has
produced graduates with computer programming knowledge and thus has reduced the
urgency of the need for software engineering education. Only recently, as society has
become increasingly dependent on complex, software-intensive systems, has the demand
for software engineers grown significantly, resulting in greater appreciation for the
differences between the two disciplines.

These differences can be traced to seeds planted in the early 1960s. Pollack notes

The rapid growth of computer science education stimulated increased interest in
theoretical areas (such as automata theory and formal languages) whose pursuit
predated computers. Now, these areas were seen potentially to impinge on
questions raised by the design and use of computer systems. Consequently,
there appeared to be a prospect of concurrent and mutually nourishing develop-
ment in computer science theory and practice. Curiously, this did not happen.
The newly intensified effort generally maintained its own paths, interacting very
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little with the application-motivated problems that were helping to spur head-
long advances in hardware and software technology.

In considering this rapid growth of the theoretical currents of computing, we are
reminded of the seemingly prophetic remarks of computing pioneer John von Neumann
[vonNeumann47]:

As a mathematical discipline travels far from its empirical source, or still more, if
it is a second- and third-generation only indirectly inspired from ideas coming
from "reality," it is beset with very grave dangers. It becomes more and more
purely aestheticizing, more and more purely l'art pour l'art. This need not be
bad, if the field is surrounded by correlated subjects, which still have closer
empirical connections, or if the discipline is under the influence of men with an
exceptionally well-developed taste.

But there is a grave danger that the subject will develop along the line of least
resistance, that the stream, so far from its source, will separate into a multitude
of insignificant branches, and that the discipline will become a disorganized
mass of details and complexities.... [Wihenever this stage is reached, the only
remedy seems to me to be the rejuvenating return to the source: the reinjection
of more or less directly empirical ideas. I am convinced that this is a necessary
condition to conserve the freshness and the vitality of the subject, and that this
will remain so in the future.

A typical undergraduate computer science curriculum of the last ten to twenty years
exhibits some of the danger suggested by von Neumann; that is, the curriculum includes
several independent, one-semester courses that cover individual branches of the disci-
pline. Furthermore, the most common courses that do reach back toward the empirical
source (building useful artifacts) are about operating systems and compilers-artifacts
from the computer science domain itself.

First programs at the master's level. In the previous section we noted the hypothe-
sis that degree programs in a new discipline first emerge at the master's level.
Although this seems to be happening in software engineering, the statistics cited above
on the growth of degree programs during the 1960s tend to refute that hypothesis for
computer science.

Possible futures. Pollack (writing in 1982) concludes

This ongoing turmoil, fueled by a diversity of viewpoints, will continue to enrich
the discipline and could well lead to convergence on not one but several viable
identities.

We believe that the education community is on the verge of realizing Pollack's predic-
tion. The mathematical, abstract, science-like, and research-oriented aspects of comput-
ing will continue to be addressed by programs in computer science. The application of
computing knowledge in the building of useful, software-intensive products will be
addressed by programs in software engineering. In addition, computation (for purposes
of simulation and visualization) has emerged as a third paradigm of science (along with
theory and experimentation), leading to the growth of computational science programs.
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We can only imagine how computing will ultimately affect education in the professional
disciplines and in the humanities, social sciences, and fine arts.

3.3. The Computer Engineering Program at Carnegie Mellon University

Many educators argue that computer science and software engineering are too closely
related to support separate undergraduate degree programs. A similar argument can be
made for electrical engineering and computer engineering. We know that some schools
have combined electrical and computer engineering programs and some schools have
separate programs. Thus it may be useful to look at the evolution of a computer engi-
neering program in order to support or refute that argument. The Department of
Electrical and Computer Engineering (ECE) at Carnegie Mellon University (CMU) pro-
vides an instructive case study.

With the growth of computer technology in the 1960s and 1970s, and especially with the
advent of VLSI (very large scale integration) technology and microcomputers, electrical
engineering departments found themselves challenged to include new topics and new
courses in an already broad curriculum. CMU ECE associate department head James
Hoburg reflected on their solution to this problem [Hoburg9O]:

Breadth of understanding across an engineering discipline is not the ultimate
good thing for all students. Some may actually be better served by sacrificing
breadth to depth of understanding in a subset of the areas which constitute the
discipline.

Several years ago, we peeled off Computer Engineering from Electrical
Engineering as a separate discipline with a separate degree program. Suddenly,
much of what seemed so essential to all electrical engineers was no longer essen-
tial when the Computer Engineering option became the Computer Engineering
degree. By inventing a separate discipline, we no longer felt obliged to require
breadth across all electrical technologies. This also helped to alleviate the pres-
sure we felt to incorporate rapidly expanding digital technologies into the
Electrical Engineering curriculum. Since those technologies were the heart of
Computer Engineering, now a separate discipline, it was no longer essential for
all electrical engineers to know all about them.

Figures 3.3a and 3.3b show the separate electrical engineering and computer engineer-
ing curricula (as presented in the 1988-1990 CMU catalog). The numbers indicate units
of credit (3 units are essentially equivalent to 1 semester hour; both curricula require
388 units, or approximately 129 semester hours). Note that the freshman and sopho-
more years are virtually identical in the two programs, while the junior and senior years
differ.

Both curricula exhibit an almost stereotypical characteristic of engineering curricula: a
very high percentage of specific required courses in a lockstep sequence. More specifi-
cally, the electrical engineering curriculum has 51% of the units in specific required
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Curricula at Carnegie Mellon University - 1988

Electrical Engineering Computer Engineering

Fall, Freshman Year Fall, Freshman Year
10 Calculus 10 Calculus
10 Physics I: Mechanics 10 Physics I: Mechanics
10 Modern Chemistry I 10 Modern Chemistry I
3 Computing Skills Workshop 3 Computing Skills Workshop
9 Designated Writing Course 9 Designated Writing Course
9 Freshman Elective 3 Freshman Elective

Spring, Freshman Year Spring, Freshman Year
10 Calculus with Linear Algebra 10 Calculus with Linear Algebra
10 Pl.jsics I1: Heat, Wave Motion and Optics 10 Physics I1: Heat, Wave Motion and Optics
10 Introduction to Computing for Engineering & 10 Introduction to Computing for Engineering &

Science Science
3 Freshman Chemistry Lab 3 Freshman Chemistry Lab
9 Humanities/Social Science 9 Humanities/Social Science
9 Freshman Elective 9 Freshman Elective

Fall, Sophomore Year Fall, Sophomore Year
9 Differential Equations 9 Differential Equations

10 Physics II: Electricity and Magnetism 10 Physics II: Eiectricity and Magnetism
12 Introduction to Digital Systems 12 Introduction to Digital Systems

9/11 Engineering Science Elective 9 Introduction to Modern Mathematics
9 Humanities/Social Science 9 Humanities/Social Science

Spring, Sophomore Year Spring, Sophomore Year
9 Calculus in Three Dimensions 9 Calculus in Three Dimensions
12 Linear Circuits 12 Linear Circuits
12 Intro to Electronic Devices and Circuits 12 Intro to Electronic Devices and Circuits

9/11 Engine.aring Science Elective 9 Fund Structures of Computer Science I
9 Humanities/Social Science 9 Humanities/Social Science

Figure 3.3a. CMA ECE Curriculum: Freshman and Sophomore Years

courses; the computer engineering curriculum has 55%. Both curricula require 75% of
the units in technical courses.

A situation similar to that faced by the CMJ ECE faculty in the mid-1980s now faces
computer science faculty. They are challenged to include in their computer science pro-
grams the large and growing body of knowledge of software engineering (and perhaps
some of the other growing areas such as computational science). The most common path
for curriculum evolution (because it is the easiest to implement) is to incorporate new
topics into the curriculum by adding new elective courses at the senior level. This
approach tends to sacrifice depth for breadth, leading back to Hoburg's argument above.

The CMU ECE experience suggests that separate curricula in computer science and
software engineering (and perhaps also computational science) would allow sufficient
depth in each area to satisfy the various professional education goals (graduate study,
software development career, etc.) of the majority of students.

20 CMU/SEI-94-TR-11



Curricula at Carnegie Mellon University - 1988

Electrical Engineering Computer Engineering

Fall, Junior Year Fall, Junior Year
9 Engineering Electromagnetics I 12 Introduction to Computer Architecture
12 Analysis and Design of Digital Integrated 12 Analysis and Design of Digital Integrated

Circuits Circuits
9 Signals and Systems I 9 Fund Structures of Computer Science II

9/12 Technical Elective 9/11 Engineering Science Elective
9 Humanities/Social Science/Arts 9 Humanities/Social Science/Arts

Spring, Junior Year Spring, Junior Year
9 Engineering Electromagnetics II 12 Concurrency and Real Time Systems
9 Signals and Systems II 9/11 Engineering Science Elective
12 Analysis and Design of Analog Circuits 9 Technical Elective

9/12 Technical Elective 9/12 Technical Elective
9 Humanities/Social Science/Arts 9 Humanities/Social Science/Arts

Fall, Senior Year Fall, Senior Year
0 ECE Senior Seminar 0 ECE Senior Seminar
9 Probability for Electrical Engineers 9 Probability for Electrical Engineers
12 Senior Design Elective 12 Senior Design Elective
12 Technical Elective 12 Logic and Processor Design
9 Humanities/Social Science/Arts 9 Humanities/Social Science/Arts

Spring, Senior Year Spring, Senior Year
9/12 Senior EE Elective 9/12 Technical Elective
12 Technical Elective 9/12 Technical Elective

9/12 Technical Elective 9/12 Technical Elective
9 Free Elective 9 Free Elective
9 Humanities/Social Science/Arts 9 Humanities/Social Science/Arts

Figure 3.3b. CMU ECE Curriculum: Junior and Senior Years

However, this is not the end of the CMU ECE story. In the last several years, a lot of
thought has been devoted to improving professional education in general, and engineer-
ing education in particular. Many engineering departments are solving the breadth vs.
depth problem by increasing the flexibility of their programs. The cost is an increased
commitment by the faculty to do meaningful advising of students, but the benefit is an
opportunity for each student to choose a program of study that matches his or her pro-
fessional goals.

It was with this approach in mind that the CMU ECE faculty undertook a complete
curriculum review and redesign, resulting in a single degree program in electrical and
computer engineering. A comparison of the old (separate) and new curricula yields
some interesting insights.

Figure 3.4 shows the new combined curriculum (as presented in the 1992-1994 CMU
catalog). It requires a total of 360 units (120 credit hours), of which only 33% is in
specific courses. The core of this curriculum consists of only three engineering courses:
Introduction to Electrical and Computer Engineering, Fundamentals of Electrical
Engineering, and Fundamentals of Computer Engineering. The latter two of these
courses have mathematics corequisites: Linear Algebra and Introduction to Modem
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Curriculum at Carnegie Mellon University - 1994

Electrical and Computer Engineering

Fall, Freshman Year Fall, Junior Year
12 Intro to Electrical and Computer Engineering 12 ECE Breadth Course 1
10 Intro to Programming and Computer Science 12 ECE Breadth Course 1
10 Calculus 12 Free Elective
9 Designated Writing Course 9 Math Elective
3 Computer Skills Workshop 9 Humanities/Social Science

Spring, Freshman Year Spring, Junior Year
12 Introduction to Engineering Elective 12 ECE Depth Course
12 Physics for Engineering Students I 12 ECE Coverage Course 1
10 Calculus with Linear Algebra 12 Free Elective
9 Humanities/Social Science 9 Humanities/Social Science

Fall, Sophomore Year Fall, Senior Year
12 ECE Core Course 12 ECE Coverage Course 2
9 Restricted Math Elective 12 Free Elective

12 Physics for Engineering Students II 12 Free Elective
9 Humanities/Social Science 9 Humanities/Social Science

Spring, Sophomore Year Spring, Senior Year
12 ECE Core Course 12 Free Elective
9 Restricted Math Elective 12 Free Elective

12 ECE Breadth Course 1 12 Free Elective
9 Humanities/Social Science 9 Humanities/Social Science

Figure 3.4 CMU Combined Electrical and Computer Engineering Curriculum

Mathematics, respectively. Students must satisfy a breadth requirement by taking one
course in at least three of the principal subject areas: physics, signals and systems,
circuits, computer hardware, and computer software. A depth requirement requires a
second course in one of the breadth areas. Two additional ECE courses are required,
plus a capstone design elective.

This approach to an engineering curriculum may also provide a model for departments
wanting to offer both computer science and software engineering curricula. The lesson
to be learned is very important, however. To achieve the capability to serve both electri-
cal engineering and computer engineering students, the CMU ECE faculty redesigned
the introductory and core courses specifically for the combined curriculum. They did not
simply add a lot of junior- and senior-level specialty courses on top of a traditional elec-
trical engineering core or a traditional computer engineering core.

Hoburg expresses some of the philosophy behind the redesign of the core [Hoburg9O]:

Don't assume that all engineering must be postponed until a foundation of
science and mathematics is laid. Teach more engineering and less basic science
and mathematics early in a curriculum. Provide motivation early by exposing
students to the applications which we too often implicitly assume they already
know about but which, in fact, are completely foreign to many....
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Provide rich and deep courses in fundamentals, basic science and mathematics,
and real understanding at the one-to-two-years-before-graduate-school level for
students to take late, not early, in the curriculum. Don't require all students to
take all such courses. Rather, help students, through high quality advising, to
pursue individual mixtures of breadth and depth based upon their individual
abilities and interests.

We expect that many schools will develop undergraduate curricula that attempt to
satisfy the needs of both computer science and software engineering students. As was
the case for the CMU ECE curriculum, the biggest challenges are in the design of the
introductory courses. In most current curricula, the idea is deeply ingrained that the
introductory courses must teach programming as an ad hoc, individual process.
Changing these courses to provide a proper basis for the engineering of software will be
technically difficult and will present political problems in schools where the introductory
courses are also service courses for other disciplines.

Recent statistics suggest that less than 10% of computer science students go immedi-
ately to graduate school; the vast majority take jobs involving the development of soft-
ware. For this reason, we would hope that any combined computer science and software
engineering curricula of the future would follow Hoburg's advice above: provide the
engineering early in the curriculum. Elective courses later in the curriculum can
provide the depth in the science of computing that is needed by students heading to
graduate school and research careers.

3.4. Conclusions

Our brief look at the evolution of computer science and computer engineering programs
leads us to four conclusions about the future evolution of undergraduate software engi-
neering education.

1. We do not expect software engineering programs to emerge as rapidly as
computer science programs did. Much of the software industry still relies on
relatively undisciplined development processes and is satisfied with the level of
programming skills in graduates of existing computer science programs. As the
industry matures, there will be a greater demand for software engineers (rather
than programmers), but that is a slow process.

2. Although separate software engineering programs in U. S. universities are
appearing first at the graduate level, this is not a requirement. It is possible for
a university to develop an undergraduate program without first creating a
graduate program.

3. The publication by the professional societies oi a model curriculum for a bache-
lor of science in software engineering degree would probably accelerate the
growth of such programs significantly. The effects of such a model curriculum
would include establishing the credibility of such programs, encouraging
authors and publishers to create the needed new textbooks, and providing a
basis for future accreditation guidelines for such programs.
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4. For the immediate future, the most likely evolutionary path will be the creation
of a software engineering track within a computer science program. We hope
that schools following this path will learn from examples such as that described
in the previous section (the CMU ECE curriculum) and develop introductory
courses that serve both software engineering and computer science tracks
equally well.
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4. Recent Actions by the Professional Societies

Although there is no professional society in the United States specifically for software
engineers, both the Computer Society of the Institution of Electrical and Electronics
Engineers (IEEE-CS) and the Association for Computer Machinery (ACM) have a large
percentage of their memberships who consider themselves software engineers. Both
societies address the needs of software engineers through their publications and confer-
ences.

In 1993, efforts began in both societies to address issues related to the establishment of
the profession of software engineering. Professional education for software engineers is
one of those issues. The next two sections summarize the societies' efforts.

4.1. IEEE Computer Society

At its May 1993 meeting, held in conjunction with the International Conference on
Software Engineering (ICSE), the IEEE Computer Society Board of Governors consid-
ered a motion from Fletcher Buckley "to initiate the actions to establish software engi-
neering as a profession." The motion identified four specific actions to be included in
that work:

1. Determining appropriate definitions and establishing those definitions as IEEE
approved standards.

2. Determining the body of knowledge appropriate for an undergraduate program
in software engineering and establishing ABET accreditation guidelines for
such programs.

3. Defining a code of ethics for software engineers.

4. Encouraging the states to adopt licensing procedures for software engineers.

Buckley's proposal was widely circulated for three months before the meeting, so many
people came to ICSE prepared to discuss it. Several informal discussion sessions pre-
cý.zkd the meeting of the Board of Governors.

Ultimately, the Board of Governors adopted a somewhat different motion, calling for a
more deliberate consideration of the issues by an ad hoc committee of "well-respected
individuals ... with a balance of industry, research, and academic backgrounds." The
committee was to be charged with considering and documenting both the factors
involved in and the value of

1. establishing software engineering as an approved academic program including
the associated accreditation issues;

2. establishing a separate set of software engineering ethics;
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3. establishing software engineering as a certified or registered field.

The committee was to make its initial report to the Board of Governors at their
November 1993 meeting.

Computer Society president James Aylor selected a committee consisting of Mario
Barbacci (Software Engineering Institute), Fletcher Buckley (Martin Marietta), Larry
Druffel (Software Engineering Institute), Winston Royce (TRW), and Norman
Schneidewind (U. S. Naval Postgraduate School). Stuart Zweben (Ohio State
University), the current ACM vice-president, represented the ACM (see the next
section).

The committee quickly recognized that it would be unable to make comprehensive
recommendations or definitive proposals by the November reporting date. They agreed
instead to define a process and agenda for various working groups and task forces that
would consider individual issues.

Four recommendations were made by the committee at the November Board of
Governors meeting [Barbacci94l.

1. The Computer Society, through its Standards Activities Board and appropriate
standards subcommittees, should adopt standard definitions necessary for
defining a software engineering profession.

2. The Computer Society should identify the body of knowledge and the recom-
mended practices for professional software engineers. This effort should be
carried out by a task force of industry experts.

3. The Computer Society should study and customize, if necessary, existing codes
of ethics, in order to develop a code of ethics for the software engineering pro-
fession. This task should be charged to the Committee on Public Policy.

4. Curricula should be defined for undergraduate, graduate (master's level), and
continuing education programs in software engineering. This task should be
charged to a task force drawn from the education boards or groups of the SEI,
ACM, IEEE Computer Society, and other relevant societies.

The fourth recommendation included this elaboration: "There is a debate as to whether
Software Engineering is a part of Computer Science or vice versa. We should not be
distracted by this debate from the goal of meeting the needs of industry. The education
needed by competent software engineers could be acquired in different ways. ... The
objective is to seek agreement on the curricula that should be taught and not necessarily
on which departments teach it."

The committee stated its belief that there are implied dependencies among the four
recommended actions that would require them to be implemented in the order stated.
The committee expects its next report, scheduled for the spring of 1994, to include more
details of the recommendations and plans and schedules for implementing them.

Finally, the committee stated, "The process should be open to the full community. This
requires early dissemination of proposals and engaging the appropriate communities."
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4.2. ACM

The ACM also began efforts in 1993 to address issues related to establishing software
engineering as a profession. At its August 1993 meeting, the ACM Council endorsed the
establishment of a "Commission on Software Engineering" that would make recommen-
dations regarding terminology, standards of good practice, and education and training
for professional software engineers.

The ACM Council directed the commission to carry out its work jointly with the IEEE
Computer Society, if possible (see the previous section). The commission was to be
drawn from leading people in the software engineering community, with representation
from industry, government, and academia. It would gather information from other
knowledgeable groups and related published material, and it would cooperate with
other organizations interested in the subject.

In particular, the commission was charged with addressing several questions, including

1. What activities are usually considered part of software engineering?

2. What is the state of software engineering as a profession?

3. What standard practices currently exist for software engineering?

4. What are the implications of the above for education? Curriculum?
Accreditation?

5. What are the implications of the above for certification? Licensing?

The commission was asked to complete its work by April 30, 1994.

There are obvious similarities in the questions being addressed by the two societies.
Rather than proceeding independently, the ACM and the Computer Society agreed in
March 1994 to cooperate in this work.

4.3. Task Force Activities

Following the November 1993 meeting of the IEEE Computer Society Board of
Governors, efforts began to create task forces to carry out the recommendations of the
steering committee. A group led by Dr. Patricia Douglas (IBM Skill Dynamics) has
started defining procedures to identify the body of knowledge and skills of software
engineering (recommendation 2). Several computing professionals knowledgeable in the
area of ethics have been asked to participate in a second task force (recommendation 3).
The chairs of the IEEE Computer Society Educational Activities Board and the ACM
Education Board have agreed to lead the creation of appropriate curriculum task forces
(recommendation 4).
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