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ABSTRACT

A frequency domain transformation is the basis for a general
approach to the identification of finite element modeling
errors. The transformation provides information as to the
location of modeling errors and provides the error matrices of
stiffness, mass, and damping. The transformation is shown to
have the unique property of directly revealing that the
process of instrumenting an actual structure with a finite
number of response transducers defines a reduced order system,
with an attendant set of singular frequencies responsible for
the nonlinear distortion imposed on the corrective parameters
of stiffness, mass, and damping. Actual test data

demonstrating this phenomenon will be presented.
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I. INTRODUCTION

A. GENERAL

Structural system identification refers to procedures
designed to verify or improve a structural model by using
dynamic test data. It requires a comparison between two
frequency domain models. The process of structural system
identification is composed of two major steps, localization
and identification. Localization will determine the portions
of the finite element (FE) model which are in error.
Identification results in the solution for the correction to
the model. The identification process is influenced by two
main structural variables, stiffness and mass.

It is not physically possible to perform a complete
structural system identification on a real structure since an
infinite number of measurements would be required. Thus,
structural system identification must be done with spatially
incomplete data. Spatially incomplete data imposes a
frequency dependency on identifying model errors that are
otherwise frequency independent. The fundamental
characteristic is inherent in all structural identification
procedures, and is the focus of this thesis.

This thesis will wuse the theoretical development
discussed in reference [1] to perform structural system

identification on a simple beam.




The first study will use a computer simulation to identify the
error in a flawed (purposely installed error) beam model
compared with an ideal beam model. The second study will use
the same flawed model and perform an error identification
using data obtained from an experiment instead of simulated
data from an ideal beam model. The two main variables,
stiffness and mass, will be examined separately in both of the
studies. Case I will perform an error identification with a
large stiffness error installed in the flawed model. Case II
will repeat the procedure with a small mass error installed in
the flawed model.

B. NOMENCLATURE

GENERAL TERMS

C: Damping Matrix
K: Stiffness Matrix

: Mass Matrix
: Frequency Response Function
s Impedance Matrix
: Generalized Harmonic Response
: Generalized Harmonic Excitation
: eigenvalue sec™
: circular frequency sec!
e matrix
i vector
SUPERSCRIPTS :

s Analytical Finite Element Model
X2 Measured (Experimental) Model

SUBSCRIPTS:
a: Retained Coordinates
o: Omitted Coordinates
i: Non-error Coordinates

c: Error Coordinates,




II. THEORETICAL DEVELOPMENT

A. FINITE ELEMENT DESCRIPTION

The finite element model of a given structure can be
defined by the relationship of structure displacement with
respect to an applied force.

£;
£

c

a a
Zii Zic || %

(2.1)

a a
Zje Zoe Xc

The force and response vectors are denoted by "f" and "x

respectively. These vectors and the impedance matrix (Z) are

Mmen

complex-valued and frequency dependent. The subscripts "i

and "c¢" denote non error and error coordinates respectively.

” "

The superscript "a" says that the quantity is calculated from
a finite element (analytical) model. If the values were

obtained from experimental test data, the superscript would be

b g Thus for the experimental model the impedance relation

would be in a format shown in equation (2.2).

£,

1

£

c

z5 zi || x; -
% (2.2)

x x
zc.t' Zee e

The error impedance matrix quantifies the difference between
the analytical and experimental models, as a function of

frequency.




It is determined from the analytical and test models by
obtaining the difference between the analytical and
experimental impedance matrices. Equatipn (2.3) describes the

error impedance matrix relation.

IO 0 zi‘i z.i.c z;i zi’::

0 AZ (2.3)

Zgi Zee Zo: Zee

The result is that the errors in the finite element model are
associated with the error coordinates.
B. STRUCTURAL SYNTHESIS TRANSFORMATION

The impedance matrix associated with the experimental
test data is not available. The difficulty is > identify the
impedance error using frequency response function data. The
analytical tool involved in the identification between two
dynamic systems can be derived using the structural synthesis
transformation (SST)[Ref. 2]. The SST is constructed from the
as yet unknown impedance error in the finite element model.
The SST is applied to the finite element frequency response
function model producing the test frequency response function
model. The frequency response function describes the
structure response to applied excitation. The frequency

response function is the inverse of the impedance matrix.

Hi; Hi || £

x i

(2.4)

X

He He




Equation (2.4) has partitioned the finite element model into
error and non-error coordinates. The response coordinate "c"
can be subject to applied forces due to the error impedances
and from applied excitation (external forces). The response
coordinate "i" will only experience externally applied forces.
Thus the force vector in equation (2.4) can be written in the

following format.

£ = £ + £i* (2.5a)

¢

£, = £ (2.5b)

1

Expanding equation (2.4) into two equations and substituting
equation (2.5) into the appropriate elements results in

equation (2.6).

i = HOED™ + HLED™ + HAES® (2.6a)

= HGEM™ + HRfS™ + HAL (2.6b)

Equation (2.6) can be reduced into a matrix format as shown in
equation (2.7). Although there are only two expressions
associated with equation (2.6), there are three harmonic
excitation terms. The matrix associated with equation (2.7)
will have three rows to account for the harmonic excitation

terms.

Hii Hip Hic || £

X;
Xe = Hcfi Hcac Hc‘c fc:e"rt (2.7)
Xe HY Hoe He || £2°




" "

The coordinates "c"” and "i" can be condensed into a coordinate

nat (e =c U i)-

{£,) = [ £ (£21 )7 (2.8a)

{£.} = {£2) (2.8b)

c

Equation (2.7) can be further condensed by utilizing the set

union and equations (2.8a,b).

X, Heo Ha

fQ

£ (2.9)

X

(-4

Ho He

The error impedance is the difference between the analytical
finite element and test models. A transformation needs to be
constructed that will use equation (2.9) and produce a similar
result for the test system. It is expected that the
transformation will be constructed from the as yet unknown
impedance error. The impedance error is generally described

by equation (2.10).

{£.) = - [8K] - Q?[aM] + ja[ac) ] { x,} (2.10a)
{£.} = -1az(Q)) {x_1} (2.10b)

The minus sign in equation (2.10) indicates the reaction
forces imposed by the impedance errors on the finite element
model are being considered. A transformation matrix can be

developed by using the results of equation (2.10b).




£

£

(-4

£

X

I 0
‘Io-Az (2.11)

The results of equation (2.11) are substituted into equation
(2.9).

X f

xc

Hee Hee

II 0 2.12
X 0 -AZ (2.12)

H C‘e HC‘C

Equation (2.12) can be reduced into the format described in

equation (2.13).

Heyy ~HoohZ
HS -HobZ

f’

x, (2.13)

Expanding equation (2.13) into two equations and using the

superscript "*" to denote a synthesized coupled response, will

result in the expression given in equation (2.14).

Xe = Hef, - HeebAZx, (2.14a)
Xe = Heef, - HecAZX. (2.14b)
7




ﬁ

Thus to solve for the synthesized response, equation (2.14a)

must be further analyzed.

(I + HRAZ)x, = Hef, ' (2.15a)
but, X, = Hgf, (2.15b)
thus, (I + HeeAZ)x, = X, (2.15¢)

solving for x.

x. = [I+HAZ) Ix, (2.15d)

Substituting equation (2.15d) into equation (2.14b) will

result in the expression provided in equation (2.16).
Xe = Heef, — HoeDZ[I + HeeAZ]Mx, (2.16a)
since x, = Hgf, (2.16b)

thus, X, = Hef, - HoeAZ[I + HeeDZ) ! HAf, (2.16c)

Equation (2.4) describes a general identity involving the
frequency response function. Using the synthesized uncoupled

response designation, the following relation can be written.

Xe = [Hell £, )} (2.17)

Substituting equation (2.17) into =quation (2.16c) will

provide the expression given in equation (2.18).




[Hoo £, = [HoE,) - [Heel[AZ)[I + HoAZ)? [HSG 1, (2.18a)
multiply by { £, 1!

[Hoel = [Heel - [Hec1[AZ][I + HocAZ)7! [He] (2.18b)

Equation (2.18b) can be further analyzed.

[T + HedZ)? = [(AZ7 + HY)AZ)™ (2.19a)
given ([a][b]))?! = [b)?! [a]? (2.19b)
results (I + HRAZ)! = [AZ)! [(Aaz7! + HE)! (2.19¢)

Equation (2.18b) can be updated by using the substituting
equation (2.19¢c) into the appropriate terms. The "=*"
superscript that denotes the synthesized coupled response, is

"n,n

replaced with an "x" superscript indicating the test system.

Heo = Hee -~ Hee[AZ™! + HZ 1 Hz, (2.20)

Equation (2.20) can be further expanded into a full matrix.

Hj; H: Hi; Hi Hi

(AZ7} + Hee ] MHSL Hee) (2.21)

HZ; Hie Ho; He Hee

Equation (2.20) (or equation (2.21)) is used for

identification via structural synthesis transformation.




Equation (2.20) is dependent on both the test and analytical
frequency response functions. Since information concerning
both frequency response functions is known, the impedance
error can therefore be determined. The impedance error can be
further dissected into mass, stiffness, and damping errors via
equation (2.10).-
C. FREQUENCY DOMAIN LOCALIZATION

As previously discussed, the error impedance can be
determined from the analytical and test frequency response
functions. The frequency response function is dependent upon
frequency, therefore, the error impedance is also dependent
upon frequency. The next step is to define a localization
matrix that will provide spatial diagnostic information. The
localization matrix will also provide information that will
ensure a unique identification. The following terms are

identified in equations (2.22a) and (2.22b).

AH,, = Hgy - Heq (2.22a)

D = [AZ!+ HE] (2.22b)

Equation (2.20) can be reduced by substituting equations

(2.22a) and (2.22b) into the appropriate terms.

Ad,, = HeeD'Hc, (2.23)

The localization matrix is defined by equation (2.24).

L= Ze MH,, 24 (2.24)

10




The localization matrix can be further defined by substituting

equation (2.23) into equation (2.24).
L = ZAHSD 'HS%Zqe (2.25a)

" ”

The coordinate "e" can also be expanded into error and non

error coordinates.

zi.i zic y

Hjc 1 a a ;i zi‘c
. . RN RER: AN (2.25b)
zci Zoc Hec ci Zcc

The frequency response matrix is the inverse of the impedance
matrix. Multiplying these two matrices will result in the
identity matrix. Partitioning the FRF and impedance matrices
into error and non error coordinates results in the

relationship provided in equation (2.26).

Z2i; Z;c | | Hi: H;

i e _IIOI (2.26)
H.H oI

cc ci cc

Z.; 2

cd

Equation (2.26) implies that all elements with mixed "i" and

" "

¢" coordinates will be zero. The results from equation

(2.26), equation (2.25b) can be rewritten in the format of

equations (2.278) and (2.27b).

0 -1
L = | {10t hio 1y (2.27a)
L ho ° h 2.27b
“jobp (2.270)
11




Equation (2.27b) indicates that the localization matrix will
produce a non zero value in the partition corresponding to the
response error coordinate set "c"
D. IMPEDANCE ERROR

The impedance error can be determined from equation
(2.21). The conclusion from equation (2.27b) is that terms
associated with non error coordinates will be zero. Applying
this conclusion to equation (2.21), the non error coordinate

elements will assumed to be zero, and equation (2.21) can be

simplified.

HY = He - HA[AZ! + HE1HE (2.28)

Equation (2.28) can be solved such that the impedance error is
dependent upon the analytical and test frequency response
functions at error coordinates determined from the

localization matrix.
[AZ] = ([Hc) - [Heel)? (2.29a)
where [HX] = ([H&]'[AH][H&])?)? (2.29b)
Equations (2.29a) and (2.29b) are used to solve for the error
impedance at a single frequency. A system of several

equations over a range of frequencies can be used to solve for

the impedance.

12




AZ_(Q,) I -o*1 jQ,I
: s : : AK_

AZ (Q,) | = [I -21 jo,1|fAM. (2.30)
H : : : AC,

82.(Q,) 1 -o*r ja.rI

E. SYSTEM REDUCTION

It is physically not possible to perform a complete
structural system identification over a frequency domain.
This would require the number of response coordinate locations
and measuring devices to be equal to the number of elements of
the finite element model. The result for a real world
structure is a measured frequency response function matrix
that is spatially incomplete. To perform the structural
system identification using the equations developed in this
section, the analytical frequency response function matrix
must be reduced in size such that it is equivalent in size to
the test frequency response function matrix. Two reduction
methods will be investigated; Extraction Reduction [Refs.
2,3}, and Improved Reduction System (IRS) [Ref. 4].

1. Extraction Reduction

Extraction Reduction is a process which extracts selected
elements from a frequency response function matrix. The
extracted elements pertain to those coordinates for which
measured data is available. The procedure requires
determining the impedance matrix from the complete stiffness

and mass matrices associated with the finite element model.

13
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The frequency response function (FRF) matrix is then obtained
by inverting the impedance matrix. The reduced FRF matrix is
obtained by extracting the elements associated with the
desired coordinates. The retained coordinates are known as
"ASET" coordinates, are associated with the measured points on
the structure. The reduced FRF matrix consists of ASET
coordinates. The omitted coordinates are known as "OSET"
coordinates. The reduced impedance matrix is then calculated
by inverting the reduced FRF matrix.

2. Improved Reduction System (IRS)

The Extraction Reduction method introduces the "ASET" and
"OSET" coordinates. The general impedance relation of

equation (2.1) can be adjusted to reflect this coordinate

system.
3 Z,, Z x
a - aa ao I a (2 . 31)
fo ZOB zoo xo
£, = Z,.%x,+ Z2,,x, (2.32a)
£, = Z_,x,+ Z,,x, (2.32b)

Equation (2.31) can be expanded into two equations.

Since the OSET coordinates are not associated with measurement
locations on the structure, they are coordinates of non
interest. Therefore the forcing function at the OSET

coordinates can be set equal tc zero.
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Adjusting equation (2.32b) will result in the solution for the

generalized structural response.

X, = -Zoa2,.X, (2.33a)

I

-1
“200Z 54

[x,] (2.33b)

Equation (2.34) is obtained by substituting the results of

equation (2.33b) into equation (2.31).

fa zaa zaa I
0 2, z.||-232., {x,} (2.34a)
£} = [2,, - 2,.2,02.,]) ix,} (2.34b)

In the static case (frequency is zero), the general impedance
relationship of equation (2.10a), demonstratzs that only the
structural stiffness will influence the correlation between

the retained and omitted coordinate response.

{x,)} = [KioK,, 1 ix,} (2.35)
(X} = [KooK,, + TMytarKopae ] ix,} (2.36a)
T = KoiM,, - KooM, KooK,, (2.36b)

The IRS relationship [ref. 5] is presented in equations

(2.36a) and (2.36b).

15




The IRS procedure starts with obtaining the complete
stiffness and mass matrices from the finite element program.
The next step is to partition the matrices into retained and

omitted set coordinates.

K, K

k=" (2.37a)
KOC KOO
M, M

M= " (2.37b)
MO! MOO

Transforming the retained coordinates (ASET partition)
with the transformation matrix will produce the reduced mass

and stiffness matrices.

tTK, t (2.38a)

S Al

tT™, t (2.38b)

Determining the transformation matrix "t" requires two steps.
The first step is to solve for "T" with equation (2.36b).
Solving equation (2.36b) only solves the lower partition of
equation (2.33b). To complete the transformation, the upper
partition of equation (2.33b) must be included. To complete
the transformation, an identity matrix the size of the number
of retained coordinates is added to the "T" matrix.

.- I7)
- T (. )
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Utilizing the results from equations (2.38a) and (2.38b), the
reduced impedance and FRF matrices can be calculated in a

manner similar to that of extraction reduction.

Z® = K*- Q*M* (2.40a)

(2.40Db)
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III. COMPUTER SIMULATION

A. BEAM MODEL

1. General Description

Presented in this section are the results of two computer
simulations that will elaborate on the theory presented in the
previous section.

The structure that will be modeled for the simulation
will be a simple beam.

TABLE 3-1: IDEAL BEAM SPECIFICATIONS

PARAMETERS VALUE SOURCE

Length 60.625 in Measured I
Width 1.5656 in Measured I
Thickness 0.5339 in Measured i
Density 0.284 1b/cu.in Calculated
Modulus 28*e+06 psi Appendix B

The ideal beam model is defined as the finite element
model of the beam described in Table 3.1 (Appendix B) and will
simulate the test data of the actual structure. The flawed
(or error) model is defined similarly to the ideal beam model
with the exception of a purposely installed error within the
finite element model. The flawed model represents the best
attempt at modeling, which results in an imperfect model.
Case 1

Two distinctly flawed models will be investigated.

will have a large stiffness error.

18




Case 11 will have a small mass error. Table 3.2 furnishes a
summary of the details involved in the case studies.

TABLE 3-2: CASE STUDY SUMMARY

ﬁ -
CASE ERROR TYPE VALUE LOCATION
I Modulus 9.0%e+06 psi | Element #2
11 Density 0.25 1bm/in"3 | Element #3

The installed errors are graphically represented in
Figures 3-1 thru 3~3. The true stiffness and mass errors for
each case are displayed. The true error for the case 1 mass
matrix and the case II stiffness matrix are zero.

2. Natural Frequencies

The natural frequencies of the ideal model and both
flawed models were calculated by determining the stiffness and
mass matrices and then solving for the eigenvalues.

TABLE 3-3: NATURAL FREQUENCIES (HZ)

et —————————
MODE IDEAL CASE 1 CASE I1
First 29.07 20.27 29.56
Second 79.96 64.33 81.32
Third 157.14 124.47 159.94
Fourth 259.39 222.18 263.26
Fifth 387.85 324.06 396.23

The natural frequency values of case I1 are much closer to the
ideal model than that of case 1. This is due to case I1

having a smaller installed model error.
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3. Frequency Response

A comparison of the frequency response functions (FRF) of
the ideal beam model with each of the flawed beam models was
performed. The associated mass and stiffness matrices were
determined for each model and used to calculate the FRF matrix
(H) at a given frequency. A comparison was done by plotting
the "1,1" element of the FRF matrix over a frequency range
from 20 to 420 hz. Figures 3-4 and 3-5 display the results of
the calculations. The FRF matrices of the flawed and ideal
models compare much closer in case I1 (Figure 3-5) than case
1. This is a result of the modeling error being much smaller
in case II. A comparison between frequency response functions
is important when determining the accuracy of a finite element
model. When comparing a finite element model with an actual
FRF, the closer the curves approximate each other, the better
the model approximates the actual structure.
B. LOCALIZATION MATRIX

The localization matrix provides spatial diagnostic
information pertaining to the errors in the finite element
model of the structure. The localization matrix reveals the
error coordinate subset from the ASET. This is required to
ensure a full rank solution for the impedance matrix. The
computer simulation will define the flawed finite element
model as the analytical model, and the ideal beam finite

element model as the test model.
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A spatially complete localization matrix is calculated
and displayed in Figures 3-6 and 3-7. The location of the
error described in Figure 3-6 will be a summation of the mass
and stiffness errors (Figures 3-1 and 3-2). Since the mass
error (Figure 3-2) is zero, the error location in Figure 3-6
matches the error location of Figure 3-1. The results of the
spatially complete localization for case 11 parallels those of
case 1 (Figures 3-7 and 3-3). It is also important to note,
that these figures were calculated at a frequency of 50 hz.
The figures did not change shape with frequency.

1. Extraction Reduction

Extraction Reduction 1is the process of extracting
selected matrix elements from a given FRF matrix. The
selected elements will be associated with those coordinates
that have available data. In the computer simulation, the
beam is divided into 24 elements, two degrees of freedom per
element plus a coordinate at each end. This will result in
both the stiffness and mass matrices to be 50x50 elements in
size. The FRF matrix, which is calculated from the mass and
stiffness matrices, will also be 50x50 elements in size. The
goal of the matrix extraction will be to reduce the size of
the FRF matrix to 5x5 elements. This will correspond to the
translational excitation and response coordinates. Each case
will have the localization matrix plotted for three separate
frequencies (35,150,350 hz) and an element of the localization

matrix plotted over thé entire frequency range.
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a. Case I (Large Stiffness Error)

Case I involved a large stiffness error between beam
elements number two and three. The localization matrix was
calculated at three arbitrarily selected frequencies
(35,150,350 hz) to ensure spacing throughout the range of 20-
420 h=z. Figures 3-8 thru 3-10 displays the plots of the
localization matrix for the frequencies selected. The actual
value of the localization matrix is not the important result,
it is the location of that maximum value that is the most
meaningful. The location of the maximum value designates the
error coordinates and indicates where the significant error
exists in the finite element model of the structure. Figures
3-8 and 3-10 indicate an error between the second and third
coordinates. Figure 3-9 also shows an error at the third
coordinate, with possible errors at the second and fourth
coordinates. Figure 3-9 does not conclusively reveal the
error location. The overall important result is that these
figures correlate with the true error that was installed
between the second and third beam elements. These figures
also reveal that the 1localization matrix varies with
frequency.

The second calculation involves computing the
localization matrix over a frequency range. Figures 3-11 and
3-12 display the plots of the "2,2" and "3,3" elements of the

localization matrix over a frequency range of 20 to 420 hz.
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In comparing Figures 3-11 and 3-12, although the actual
value of the elements vary, the peak values occur at the same
frequencies. When considering equations (2.24) and (2.22a),
large values of the localization matrix element are expected
at the test system eigenvalues. Equation (2.34b) indicates
that the omitted set impedance will not exist over the entire

frequency domain.

(2,1 = (det(Z2,]) ! adj (2] (3.1a)

det [2,,] = det[K,, - w’M,] (3.1b)

Equation (3.1a) and (3.1b) reveal that for the OSET
eigenvalues, the FRF matrix is large (unbounded for undamped
systems). The hine peak values in Figures 3-11 and 3-12
correspond to the test model natural frequencies and the
eigenvalues of the analytical model omitted coordinates.
Table 3-4 provides a summary of the peak frequencies.

TABLE 3-4: PEAK FREQUENCIES - Case 1

PEAK FREQUENCY (HZ) MODEL: TYPE l
29.07 Test: Natural Frequency
79.96 Test: Natural Frequency
I* 157.14 Test: Natural Frequency
l 172.60 Analytical: OSET Frequency
225.34 Analytical: OSET FrequencyuT
| 259.39 Test: Natural Frequency
265.46 Analytical: OSET Frequency
354.07 Analytical: OSET Frequency
387.05 Test: Natural Frequency
35




b. Case II (Small Mass Error)

Case Il involves a small mass error located between
elements number three and four. The localization matrix was
calculated at the same frequencies as case I (35, 150, 350
hz), and displayed in Figures 3-13 thru 3-15. It is evident
from the figures that a model error is located at the third
coordinate. Figures 3-13 and 3-14 show a peak value (although
slightly hidden) corresponding to the fourth coordinate.
Figure 3-15 shows an error at the second coordinate with a
minor error at the fourth coordinate. Figure 3-15 by itself
does not conclusively reveal the error location, but the
combined evaluation of all three of the mesh plots do provide
an approximation to the location of the installed model error.
When comparing the results of case II with those of case I
(Figures 3-8 thru 3-10), the localization matrix values of
case II are smaller in magnitude, but spatial identification
of the error locations are more apparent in case II. The
localization matrix was also calculated on a frequency domain
with a similar procedure used in case 1. Figures 3-16 and 3-
17 display the plots of the "3,3" and "4,4" elements of the
localization matrix. As in case I, the plots associated with
case II display peak values at the test system natural
frequencies and the analytical model OSET eigenvalues. Table

3-5 provides a summary of these results.
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TABLE 3-5: PEAK FREQUENCIES - CASE 11

PEAK FREQUENCY (HZ) MODEL: TYPE
29.07 Test: Natural Frequency
79.96 Test: Natural Frequency
157.14 Test: Natural Frequency
213.03 Analytical: OSET Frequency
246.12 Analytical: OSET Frequency
259.39 Test: Natural Frequency
333.20 Analytical: OSET Frequency
387.85 Test: Natural Frequency

2. Improved Reduction System (IRS)

Matrix reduction uses the IRS reduction as described in
Section I1.E.2. The computer simulation will reduce the
flawed and ideal model frequency response functions from a
50x50 element matrix to a 5x5 element matrix. The five
elements ir the reduced matrix will pertain to the
translational excitation and response coordinates. In
analyzing real structures, the test FRF matrix will already be
in the reduced format. It is important to note that the
purpose of the matrix reduction is to reduce the analytical
model FRF matrix to a size equivalent to that of the test FRF
matrix. For the purpose of the computer simulation, the ideal
beam model (defined as the test model) will be reduced via
extraction reduction in order to reproduce the reduction
process inherent in spatially incomplete measurements. The
flawed finite element model (defined as the analytical model)

will be reduced via IRS.
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a. Case 1 (Large Stiffness Error)

The same calculations that were performed using the
extraction reduction method were repeated using the IRS
reduction method. The first calculation for determining the
localization matrix at a specific frequency was performed at
three frequencies (35, 150, 350 hz) and the results are
displayed in Figures 3-18 thru 3-20. The first result is
that the estimation of the model error location is not
identifiable in any of the three figures. The actual value of
the localization matrix are seven orders of magnitude higher
than the corresponding values for the extraction reduction
method. The reason that the error location 1is not
identifiable is that the stiffness and mass matrices are
transformed into new coordinates. This effectively hides the
location of the model error. The second calculation was to
determine the localization matrix over a frequency domain.
Figures 3-21 and 3-22 display the plot of the "2,2" and "3,3"
elements of the Localization Matrix over a frequency domain of
20 to 420 hz. Since the reduced FRF matrix does not involve
the OSET impedance, the singularities expected with the
eigenvalues of the analytical model OSET coordinates
disappear. The test model natural frequencies continue to
appear in both figures 3-21 and 3-22.

b. Case 11 (Small Mass Error)
Case 11 results are the same as those of case 1I. No

plots of Case Il are provided.
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C. IMPEDANCE ERROR SPECTRA

Equation (2.3) describes the impedance error between the
analytical and test models. Equations (2.29a) and (2.29b)
provide a method for calculating the impedance error using the
analytical and test frequency response functions. The
computer simulation will be performed in the same manner as
Section III.B to calculate the impedance error for spatially
incomplete data.

1. Extraction Reduction

In trying to predict the behavior of the impedance error
spectra, equation (2.3) can be considered in the equivalent

form (equation (3.2)) in conjunction with equation (2.34b).

AZ = Z2(R,) - Ze(9y) (3.2)

The result of this analysis is that for extraction reduction,
the impedance error spectra will be large (unbounded for
undamped systems) at the OSET eigenvalues of both the
analytical and test models.

a. Case I (Large Stiffness Error)

Figure 3-23 1is a plot of the "1,1" element of the
impedance error over a frequency domain of 20 to 420 hz. All
five coordinates from the reduced FRF matrix were used in the
calculations. The OSET eigenvalues for both the analytical
and test models appear as peak values in the figure. Table 3-

6 provides a summary of the peak values.
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TABLE 3-6: OSET EIGENVALUES - CASE 1

Analytical Model (hz) Test Model (hz)
172.60 209.92
| 225.34 244.90
I 265.46 327.96
l 354.07 423.79

Equations (2.34a) and (2.34b) reveal that given the
location of the error coordinates from the localization matrix
(Figures 3-8 thru 3-10), the calculations of the impedance
matrix must be performed by using only the error coordinates
instead of the entire reduced matrix. Figure 3-24 is a plot
of the impedance error over a frequency domain, using the
error coordinates identified from the localization matrix
(coordinates two thru four) in the impedance error
calculations. The results are not consistent with those of
Figure 3-23. A closer investigation of Figures 3-8 thru 3-10
indicates that neglecting coordinates one and five as
insignificant was not a good assumption. Values of the
localization matrix at these coordinates, although small, are
not insignificant. The poor assumption induces an error in
the impedance error calculation and causes the plot to be
inaccurate. Figure 3-23 also displays a significant amount of
"noise" in the plot. This noise is a result of the large
difference between the FRF models creating a situation of
inverting poorly conditioned matrices during the impedance

error calculations.
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b. Case 11 (Small Mass Error)

Figure 3-25 is the same plot as figure 3-23 with the
exception that it applies to case II. | The OSET eigenvalues
for both the analytical and test models also appear in this
figure. Table 3-7 provides the case Il summary of the peak
values in Figure 3-25.

TABLE 3-7: OSET EIGENVALUES - CASE II

Analytical Model (hz) Test Model (hz)
213.03 209.92
246.12 244.90
333.20 327.96

2. IRS Reduction

The reduced FRF matrices are not dependent upon the OSET
coordinates. The eigenvalues from the OSET coordinates
associated with the analytical model do not appear in the
impedance error plot. Figures 3-26 and 3-27 display the
impedance error calculations using IRS reduction, utilizing
all the error coordinates, of case I and case II respectively.
The test system OSET coordinate eigenvalues listed in Tables
3-6 and 3-7 appear as peak values in both figures. Since case
I and case Il have identical OSET eigenvalues for the test

system, Figures 3-26 and 3-27 are identical.
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IV. EXPERIMENTAL RESULTS

A. GENERAL

In section III, an analysis of two case studies was
performed involving structural system identification of a
flawed beam finite element model with an ideal beam finite
element model. 1In this section, the same two case studies
will be analyzed, using the same flawed beam finite element
models of Section III with experimental FRF data. Details
about the procedures used in obtaining and arranging the
experimental FRF data is described in Appendix A.

The experimental FRF matrix is obtained in a spatially
incomplete form. The experimental FRF matrix elements are
made up of coordinates that correspond to the locations in
which the structure response and excitation can be measured.
The process of structural system identification requires that
the sizes of the experimental and analytical model FRF matrix
to be equivalent. Thus, the analytical model FRF matrix must
be reduced to the same size as the experimental FRF matrix.
B. LOCALIZATION MATRIX

1. Extraction Reduction

The flawed beam finite element model is defined as the
analytical model. The analytical model FRF matrix will be
reduced by extraction. The translational excitation and

response locations will be the retained coordinates.
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a. Case I (Large Stiffness Error)

The first calculation performed was determining the
localization matrix at a specific frequency. The same
frequencies used in Section III (35, 150, 350 hz) are used in
this section.

Figures 4-1 thru 4-3 display the results of the
localization matrix at the selected frequencies. The initial
observation is that larger values of model errors are
associated with the second, third, and fourth coordinates.
Figure 4-3 emphasizes larger model errors associated with the
third and fourth coordinates. Comparing Figures 4-1 thru 4-3
with the appropriate figures from the computer simulation
(Figures 3-8 thru 3-10), two of the three figures exhibit
similar shapes (location of large model errors). The
localization matrix determination with the experimental system
does not explicitly identify the actual installed error
located between the second and third elements as well as the
computer simulation. It must be remembered that although
known as an ideal beam model, modeling errors do exist within
the ideal beam model when compared with the experimental
system. The flawed beam finite element model is based upon
the ideal beam finite element model. Therefore, Figures 4-1
thru 4-3 will display errors associated with both the flawed
beam and ideal beam finite element models, while Figures 3-8
thru 3-10 only display errors associated with the flawed beam

finite element model.

58




Response Coordinates 1 1

Excitation Coordinates

FIGURE 4-1: Localization
Matrix - 35 hz
Case I

59




Response Coordinates 1 1

Excitation Coordinates

FIGURE 4-2: Localization
Matrix - 150 hz
Case I

60




Response Coordinates 1 1

Excitation Coordinates

FIGURE 4-3: Localization
Matrix - 350 hz
Case I

61




The second calculation was to determine the localization
matrix over a frequency domain. Figures 4-4 and 4-5 are plots
of the "2,2" and "3,3" components of the localization matrix
over a frequency range of 20 to 420 hz. All five coordinates
of the reduced matrices were used as error coordinates.
Figures 4-4 and 4-5 display nine peak values which are
associated with the experimental system natural frequencies
and the analytical model omitted set (OSET) eigenvalues.
These results are consistent with the computer simulation
results of Section III.B.1. Table 4-~1 provides a summary of

the peak values associated with Figures 4-4 and 4-5.

TABLE 4-1: PEAK FREQUENCIES - CASE I

29.90 Experiment:Natural Frequencyl
81.20 Experiment:Natural Frequency
155.90 Experiment:Natural Frequency
172.60 Analytical: OSET Frequency
225.34 Analytical: OSET Frequency
258.30 Experiment:Natural Frequency
265.46 Analytical: OSET Frequency
354.07 Analytical: OSET Frequency
387.80 Experiment:Natural Frequency
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b. Case II (Small Mass Error)

The same calculations were performed for case II.
Figures 4-6 thru 4-8 display the locglization matrix at a
specific frequency (35, 150, 350 hz). All three figures
suggest significant model errors existing at elements two,
three, and four. When these figures are compared with the
computer simulation results (Figures 3-13 thru 3-15), the
differences between the plots are much more apparent than was
observed in case I. As discussed in case I, there are
modeling errors associated with the ideal beam model that are
not included in Figures 3-13 thru 3-15. 1In case I, the ideal
beam modeling errors are insignificant compared with the
installed errors associated with the flawed beam model. 1In
case II, the flawed beam model installed error is small, thus
the ideal beam modeling errors now become significant. The
results is a larger apparent difference between Figures 4-6
thru 4-8 and Figures 3-13 thru 3-15.

Figures 4-9 and 4-10 display a plot of the "3,3" and
"4,4" elements of the localization matrix over a frequency
range from 20 to 4?0 hz. The peak values displayed in both
plots represent the experimental system natural frequencies
and the analytical model OSET coordinates. These results
remain consistent with those observed in case I and the
computer simulation. Table 4-2 is a summary of the peak

values observed in Figures 4-9 and 4-10.
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Table 4-2: PEAK FREQUENCIES - CASE II

---;;;;-;;:;:;ncy (hz) T Sou;;e:
29.90 Experiment :Natural Frequency
81.20 Experiment :Natural Frequency
155.90 Experiment:Natural Frequency
213.03 Analytical: OSET Frequency
246.12 Analytical: OSET Frequency
258.30 Experiment:Natural Frequency
233.20 Analytical: OSET Frequency
387.80 Experiment:Natural Fregquency

2. Improved Reduction System (IRS)

The procedure used in Section IV.B.1 is repeated in this
section with the exception that the analytical model will be
reduced via the IRS method.

As discussed in Section III.B.2.a, determining the
localization matrix at a specific fregquency provides little
useful information, thus that calculation will not be
performed in this section.

a. Case I (Large Stiffness Error)

Figure 4-11 displays e "2,2" element of the
localization matrix plotted over a frequency range of 20 to
420 hz. The five peak values that appear in—the figure, are
all associated with the experimental sygtem natural

frequencies.
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b. Case II (Small Mass Error)

Figure 4-12 displays the "3,3" element of the
localization matrix plotted over a freguency range of 20 to
420 hz. The experimental system natural frequencies appear as
peak values. This remains consistent with the results from
case I and the computer simulation. Table 4-3 is a summary of
the peak values displayed in Figures 4-11 and 4-12.

Table 4-3: PEAK VALUES CASE I AND II

7 "ttt
Frequency (hz)

29.90

81.20
155.90
258.30
387.80

C. IMPEDANCE ERROR

The impedance error calculations performed in Section
III.C. is repeated in this section. The experimental FRF
matrix will be used instcad of the reduced FRF matrix from the
ideal beam finite element.

1. Extraction Reduction

a. Case I (Large Stiffness Error)

Figure 4-13 is a plot of the "1,1" element of the

impedance error matrix over a frequency range from 20 to 420

hz.

73




in\bf (log of)

(]

n

100 150 200 250 300 350 400
Frequency (hz)

FIGURE 4-12: L,,(Q)
(IRS) Case II

74

450




10 ! ! :

Ibfin (log of)

0 S0 100 150 200 250 300 350 400 450
Frequency (h2)

FIGURE 4-13: AZ,,(Q)
(o) Q:.set (o) Q:aet

(o) Q, - Case I

75

R




The results of the impedance error calculations performed
in computer simulation (Section II1.C.1) reveal that the peak
values of the impedance error versus frequency plots were
associated with the OSET coordinate eigenvalues from both the
analytical and test models. Figure 4-13 does display the
expected peak values associated with the OSET coordinate
eigenvalues, but four of the five experimental system natural
frequencies also appear as peak values within the figure (a
peak at 258.30 hz is not visible). The appearance of these
natural frequencies is not fully understood. In trying to
determine why these natural frequencies appear, the ideal beam
finite element model was modified to include damping (Appendix
B). The reasoning to include damping is that the experimental
FRF matrix is complex valued while the FRF matrix from the
finite element programs consist only of real valued elements.
The results are displayed in Figure 4-14. The analysis is
that the experimental system OSET eigenvalues decreased in
magnitude, but the peaks associated with the experimental
system natural frequencies remain. Although the appearance of
the natural frequencies are not known, it remains that the
OSET coordinate eigenvalues do appear as peak values. It is
also interesting to note that the experimental system naturdl
frequency peaks do not appear as clean as the OSET coordinate

eigenvalues.
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b. Case II (Small Mass Error)

Figure 4-15 is a plot of the "1,1" element of the
impedance error matrix over a frequency range from 20 to 420
hz. The peak values that appeared in Figure 4-13 also appear
in Figure 4-15. The important result is the appearance of the
OSET coordinate eigenvalues.

2. Improved Reduction System (IRS)

Figure 4-16 displays the plot of the impedance error over
a frequency range of 20 to 420 hz utilizing IRS reduction of
the analytical model FRF matrix for case I. The peak values
in the plot are associated with the OSET coordinate
eigenvalues of the experimental system. Two of the
experimental system natural frequencies (155.90 and 387.80 hz)
slightly appear. As in Section IV.C.1, the important result
is the appearance of the OSET coordinate eigenvalues. These
results remain consistent with the results of the computer
simulation (Section III.C.2). The results for case II are
identical to the results of case I.

D. IDEAL BEAM MODEL

The previous two sections have described structural
identification of a flawed beam finite element model against
an ideal beam finite element model and against an experimental
system. The next step is to perform a structural
identification of the ideal beam model versus the experimental
system. This step is to determine the accuracy of the best

finite element model against the experimental structure.
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1. Localization

The ideal beam model will provide the analytical FRF and
will be reduced to match the size of tHe experimental system
FRF matrix. The retained coordinates will correspond to the
translational response and excitation coordinates.

a. Extraction Reduction

The ideal beam model was reduced using extraction
reduction. Figures 4-17 thru 4-19 display elements "1,1",
"3,3", and "4,4" of the localization matrix plotted over a
frequency range from 20 to 420 hz. In analyzing the three
figures, all the test system natural frequencies appear as
expected. However, several of the analytical model OSET
eigenvalues do not appear in each of the figures. Table 4-4
provides a summary of the analytical model OSET eigenvalues
for the "1,1", "2,2", and "4,4" elements of the localization

matrix.

TABLE 4-4: OMITTED SET COORDINATE EIGENVALUES

——————————
_—_LIJ.—-T_- I‘33 I‘44
209.92 hz Missing Missing
244.90 hz 244.90 hz 244.90 hz
327.96 hz Missing 327122 hz
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The missing OSET eigenvalues appear to be a result of the
beam finite element model being homogeneous. Since actual
structures are generally more complicated than a simple beam,
the missing OSET eigenvalues are a result of the simplicity of
the experimental structure and not of importance. A more
detailed discussion concerning the missing OSET eigenvalues is
provided in Appendix D.

b. Improved Reduction System (IRS)

Figure 4-20 displays the "1,1" element of the
localization matrix over a frequency range of 20 to 420 hz.
As expected, the test system natural frequencies appear as
peak values.

2. Impedance Error

As was done with the localization matrix calculation, the
impedance error calculation was performed using the ideal beam
model as the analytical model FRF matrix. The analytical
model will be reduced to match the size of the experimental
system FRF matrix.

a. Extraction Reduction

Figure 4-21 thru 4-23 display the "1,1", "2,2", and "3,3"
element of the impedance error over a frequency range from 20
to 420 hz. The same problem of the missing OSET eigenvalues
in the localization matrix for the analyticai model occur in
the impedance error plots. In addition, the corresponding
OSET eigenvalues for the test system are also missing from the

Figures 4-22 and 4-23.%
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The missing OSET eigenvalues for the impedance error
spectra is similar to those missing from the localization
matrix calculations. Since the ide;l beam model finite
element is a very close approximation to the experimental
structure, the missing OSET eigenvalues associated with the
test system is consistent with those missing from the ideal
beam finite element model. A detailed description is provided
in Appendix D.

b. Improved Reduction System (IRS)

Figures 4-24 thru 4-26 display the plots of the same
impedance error elements as Figures 4-21 thru 4-23 with the
exception that the ideal beam model was reduced using the IRS
method. As expected, Figure 4-24 shows all the test system
OSET eigenvalues as peak values. Figures 4-25 and 4-26 are
consistent with Figures 4-22 and 4-23 in that there are
missing test system OSET eigenvalues. This will be addressed

in Appendix D.

+
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V. CONCLUSIONS / RECOMMENDATIONS

A. SUMMARY
1. Extraction Reduction
a. Localization

The localization matrix at a specific frequency provides
an approximation to the location of the error associated with
the finite element model. Spatially incomplete data will not
provide a true error location.

A nonlinear dependence of the localization matrix with
frequency results due to performing spatially incomplete
identification. The plot of localization matrix versus
frequency results in peak values corresponding to the test
system natural frequencies and the analytical model OSET
eigenvalues.

b. Impedance Error

The plot of the impedance error matrix versus frequency
results in‘peak values corresponding to the OSET eigenvalues
associated with the test system and analytical models. Test
system natural frequencies did appear when using experimental

test data.
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2. Improved Reduction System (IRS)
a. Localization

Since the IRS transforms the stiffness and mass matrices,
the localization matrix at a specific frequency provided no
useful information about error location or identification.
The plot of the localization matrix versus frequency resulted
in peak values corresponding to the test system natural
frequencies.

b. Impedance Error

The plot of the impedance error matrix versus frequency
results in peak values corresponding to the OSET eigenvalues
associated with the test system only.

B. CONCLUSIONS

This thesis has discussed a general theory for error
localization and identification. When using frequency
response data from a finite element model and an experimental
structure, the theory extracts from the matrix difference of
the FRF, a set of impedance error spectra.

Spatially complete data will provide the true frequency
independent error spectra of mass, stiffness, and damping.
Spatially incomplete data can provide an approximate frequency
error spectra, but it is impossible to localize and identify

the independent errors specifically.
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The identification of a secondary dynamic system
comprising the coordinates not measured in the vibration test,
impacts the test results.

The eigenvalues of this secondary system provide the
nonlinearity imposed on the identified parameters. The
secondary system ultimately results in the inability to
localize and identify the true errors associated with the
spatially incomplete data.

C. RECOMMENDATIONS

The real purpose of this thesis was to test the theory
provided in references [1,2] with actual frequency response
data.

Although satisfactory results were achieved,
investigation is still needed for the following items:

- Determine the reason for the appearance of test system
natural frequencies in the impedance error spectra using
experimental test data.

- The actual mechanism in the finite element model that is
causing the missing OSET eigenvalues.

- Implementation of angular test data into the results.

The logical supplement to this test would be to utilize
a more complex structure to localize and identify finite

element model errors.
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APPENDIX A

TEST EQUIPMENT \ PROCEDURE

I. GENERAL SYSTEM DESCRIPTION

A. Purpose

The overall purpose of the test system is to vibrate a
given beam at a known force and frequency, and measure the
beam response. A frequency response function (FRF) 1is
obtained by repeating the test over several frequencies of
interest. The FRF data is then sent to a personal computer
for further calculations.

B. System Setup

Figure A-1 is the schematic of the test system. The HP
3562A Dynamic system analyzer controls, measures, and
tabulates the FRF. The HP 3562A sends an electronic signal
via the SS 250 amplifier that causes the shaker to vibrate at
a given frequency and force. This force is measured by the
load cell that is attached to the shaker and the beam. This
data is sent back to the HP 3562A via the load cell power
supply. The beam acceleration 1is measured by an
accelerometer. The accelerometer data is also sent to the HP
3562A via a separate power supply. The HP 3562A performs two
fast fourier transforms and develops the FRF. This data is
sent to a data disc via the HP 9122 disk drive. The personal

computer then obtains the data from the HP 9122 disk drive.
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C. System Components
1. HP 3562A Dynamic Signal Analyzer
The HP 3562A is a two-channel analyzer. The source
connection supplies the controlling information to the shaker
assembly. Channel one receives data from the load cell while
channel two receives data from the accelerometer. During a
specific data collection operation the HP 3562A can only
collect data from the load cell and one accelerometer. The
resultant FRF contains 801 data points.
2. HP 9122 Disc Drive
The HP 9122 Disc Drive contains two ports for 3.5" data
discs and an HPIB connection port. The HP 9122 is connected
to the HP 3562A and the personal computer via the HPIB
connection.
3. Personal Computer
The Personal Computer is a DataStor 486 - 66 Mhz
computer. An AT-GPIW interface card is installed within the
computer. This allows an HPIB interface with the HP 9122 disc
drive. Software utilized is MATLAB 4.0 with windows and the
HP Standard Data Format (HPSDF). The HPSDF software allows
the HP 3562A LIF format data to be transformed into a MAT file

for use by MATLAB.
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4. Accelerometers

The accelerometers are part of the Model 8832
Translational Angular Piezobeam (TAP) system. The
accelerometers measure Translational and angular acceleration
(note: The HP 3562A, which is only two channels, can only
accept input from the angular or translational output, not
both simultaneously).

The accelerometers are mounted to the beam with a thin
layer of wax. The operational theory associated with the
accelerometers is provided in reference [6]. Specific
accelerometer data sheets are provided in this appendix. A
total of five accelerometers was used, spaced 15" apart. The
accelerometer power supply used 115 volt power from a typical
laboratory space outlet.

5. Load Cell

The Load Cell is an Integrated Circuit Piezoelectric
(ICP) transducer. The load cell contains a 10/32" tapped
connection at each end. One end is attached to the beam and
the other end to the shaker assembly via two separate 10/32"
screws. The operational theory is provided in reference [7].
Specific transducer data is provided in this appendix. The

power supply uses a 1.5 volt battery.

100




W————f

6. Shaker Assembly
The Shaker Assembly is composed of the SS 250 amplifier
and the PM25A Vibration Exciter. The PM25A is an
electromagnetic vibrator. The SS 250 amplifier allows control
of the maximum displacement produced by the vibrator. The
PM25A is attached to the Load Cell via a 10/32" screw.  The
operational theory of the PM25A and the SS 250 is pr: :d in
reference [8].
7. Beam
Discussed in detail in Appendix B.
1I. TEST PROCEDURE
A. System Deaignation
The beam has five accelerometers and one load cell
attached at any given time. Figure A-2 shows the numbering

associated with the accelerometers and load cell locations.

LOLATION MUAMEER ACCLLEROMETER

’//// {4 ' X " \\\\\ £ o

/

/

FIGURE A-2: Accelerometer/
Load Cell Designation
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Each accelerometer measures translation and angular

acceleration that result in ten (5x2) response coordinates.
0dd numbers are associated with transla%ional motion, and even
numbers are associated with angular motion. Since the shaker
only provides translation force (no moments are produced),
there are only five excitation coordinates that are odd
numbered. Table A.1 provides a summary of the coordinate

designation.

TABLE A-1: COORDINATE SYSTEM DESIGNATION

Location Number Response Excitation
Coordinate Coordinate

1 1,2 1

2 3,4 3

3 5,6 5

4 7,8 7

S 9,10 9

Thus, for example, consider frequency response function h2_S5.
The number "2" indicates that the response is the angular
measurement at location #1 and the number "5" indicates the

excitation at location #3.
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B. Systeam Physical Setup

1. HP 3562A
The HP 3562A is connected to the various components using
a coaxial cable. The source outlet is connected to the SS 250
amplifier. Channel one is connected to the load cell power
supply and channel two is connected to the accelerometer power
supply. Each accelerometer power supply has two connection
points; one for translational motion, the other for angular
motion. Only one connection point is used per data run.
2. Shaker Assembly
The SS 250 amplifier is connected via an electrical cable
to the PM2SA Vibration Exciter. The PM25SA is physically
attached (via a 10/32" screw) to the back side of the load
cell.
3. Accelerometers/Load Cells
The load cell is physically attached (via two separate
10/32" screws) to the shaker and the beam. The electrical
output of the load cell is sent to the power supply. The
accelerometer electrical output (one cable) is sent to the
accelerometer power supply.
C. Data Acquisition
1. HP 3562A
Table A-2 provides a summary of the programmed setpoints

of the HP 3562A for a single data collection operation.
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TABLE A-2: HP 3562A PROGRAMMED SETPOINTS

—
PROGRAM SETPOINT SETTING
Measure Mode Swept Sine wave
Linear Sweep
Select Measurement Frequency Response
Average Averages: 3
Auto Intggral: 1%
Frequency Start (20,120,220,320 hz)
Span (100 hz)
Source Source Level: 0.5 v
Engineering Units Load Cell: 52.56 mv/eu
Accelerometer: various
EU Label Load Cell: mv/1bf
Accelerometer: mv/g
mv/(rad/s2)

2. System Operation

Placing the HP 3562A in "run" commences the data
collection operation. Each data collection operation requires
approximately 13 minutes. There was a total of 250 data
collection operations (50 runs at each frequency span, 10
response positions and 5 excitation positions, with 5§ separate
starting frequencies).

If the shaker assembly was not properly aligned with the
beam, response was audible at the system resonant frequencies.
The FRF plot on the HP 3562A also exhibited noise vice a

smooth curve.
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D. Data Transformation

This portion of the procedure is the transfer of the data
from the HP 3562A to the personal computer that will allow the
data to be evaluated using MATLAB codes.

1. File Designation

Data files are labeled in the following format.

h#1_#2X: h letter designator to indicate FRF

#1 - number indicating response coordinate
#2 - number indicating excitation coordinate
X - letter indicating frequency band

A 20 - 120 hz

B : 120 - 220 hz

C : 220 - 320 hz

D : 320 - 420 hz
Thus, for example, h2_5B indicates an FRF that is measuring
the angular response at position #1, excitation occurring at
position #3, and at a frequency band of 120 - 220 hz.

2. HP 3562A to Personal Computer (PC)

Once an FRF is obtained by the HP 3562A, the data is
transferred from the HP 3562A to the HP 9122 Disc drive.
Chapter 12 of reference [9] provide detailed procedures for
saving and labeling files from the HP 3562A to the HP 9122.
The files saved to the HP 9122 were labeled in the format
described in Section D.1.

Using the HPSDF software, the PC accesses the file from
the HP 9122 and stores the data within the HPSDF directory.
The files stored in the HPSDF were also labeled in the same
format as described in Section D.1. Appendix A of reference
[10] provides a detailed procedure on transferring data from

the HP 9122 to the PC.
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Two important items that are not mentioned in the
reference [10] will influence data operations. Transferred
data will be located in the PC hard ﬁrive under the HPSDF
directory. The second item that is more significant, involves
an interface problem between the PC, HP 3562A, and the HP
9122. After accessing data from the HP 9122 with the PC, the
system will not allow subsequent transfer of data from the HP
3562A to the HP 9122. The HP 3562A will display a "disc drive
not online” warning. Further attempts to access data from the
HP 9122 with either the HP 3562A or the PC will be
unsuccessful. Complete shutdown of the PC solved the
immediate problem. The overall solution is procedural in
nature. All data collection operation by the HP 3562A and
transfer to the HP 9122 is completed before any data transfer
from the HP 9122 to the PC.

3. MAT files

After transfer from the HP 3562A to the PC is completed,
the files are located and labeled as C:>HPSDF\*.DAT . The *
is a wild card designator that describes a specific file
labeled in the format described in Section D.1.

Utilizing Appendix A of reference [10], a single *.DAT
file is then transformed into a FREQRESP.MAT file. The HPSDF

software will always name the transformed ffle FREQRESP .MAT.
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If several files are being transferred, the newer files

will over write the older files, thus losing the information
from the older files. The FREQRESP.MAT file must be renamed
before transforming any subsequent *.DAT files. The DOS
command, within the HPSDF directory, RENAME FREQRESP.MAT
* MAT (* is the wild card designator previously described)
will accomplish the task of preventing older files from being
lost.

Each * .MAT file has two variables, 02iix is the frequency
coordinate, and o02il is the y-axis value. The y-axis value is
a complex number.

E. Data Manipulation

After completion of data transfer and transformation,
there exists 250 * MAT files that must be further manipulated
in order to achieve efficient processing with the MATLAB
sof tware.

The first step is to transfer the * . MAT files from the
HPSDF directory to the MATLAB directory. The *.MAT files were
sent to the directory C:>MATLAB\BEAMDATA using Microsoft
Windows Version 3.1.

In order to achieve better computing efficiency, the 250
* MAT files (each *.MAT file contains a matrix of 801 x 2
elements) is transformed into four files each containing 801
X 50 elements. The o02ilx variable is ignored since the
frequency range is linear (frequency spacing between elements

is 0.125 hz).
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The four files were labeled into the following format.
he*.mat he: FRF designation
*: Frequency Range designator
a: 20 - 120 hz
b: 120 - 220 hz
c: 220 - 320 hz
d: 320 - 420 hz
These four files are also located in the directory
C:>MATLAB\BEAMDATA. Thus, for example, to obtain the FRF
matrix for a frequency of 100 hz would require accessing the
hea.mat file and extracting row 640 ((100-20 hz)#* 8 rows/hz),
columns 1 thru 50.
These four files provide the data for the test system FRF
in the MATLAB codes used to solve the 1localization and

impedance error calculations.
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TRANSLATIONAL ANGULAR PIEZOBEAM
SYSTEM MODEL 8832

Accelerometer Model BA96....vcivveeererisnennnenenasesSN £C58089
Coupler Mode!l S130... ..ttt ieeereeneeneecseacnnnnaasaesON C38612

Angqular Sensitivity at 250 Hz, 130 rad/s? 0.478 aV/rad/s?
Linear Sensitivity at 100 Hz, 3q,p¢ 1019 mV/g

Linear RaNge ... viinrenerenncaaass 21O g

ANQular Range ...cvicvvenrencceness, 218,000 rad/s:
Mounted Resonant Freauency (nom.) . 8 kHz
Transverse Sensitivity max. ..c.cc0.. 2%

Bias Voltage .. ... eireennenennanas 1l =3 VDC
Time Constant (NOM.) tv.eeeerecoaee 1.0 5

All measurements at 21°C
g = 2.807 m/s2

NIST TRACEABILITY

This accelerometer was calibrated using a back to back coaparison technigue
against g Kistler Working S5Standard. The Working Standard is periadically
calibrated against a Kistler Reference Standard System which in turn is
periadically recertified by the MNatignal Institute of Standards ang
Technology. The calibration of all Kistler accestance test instrumentation is
in conformance with MIL-STD-45462A.

Working Standard Reference Standard
Linear Acceleration:
Accelerometer Model 809K112 SN CS51785 Model B8002K SN C17447
Charge Amplifier Model 35020 SN C31904 Model 3029 SN C4870
NIST Test Report Number: 822/250337
Angular Acceleration:
Acczierometers Mode! B8602A500M1 Model B808K! SN 1243
SN C36072/SN C£36073
Charge Amplifiers Model 504E10 Model! S561T SN 251
SN C4797/5N C4423
Summing Amplifier Model 5217 SN 186396

—— . — i ——— — - ———— ——— —— — A —— ——

Mark Thomas
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Calibration Certificate

TAP”

TRANSLATIONAL ANGULAR PIEZOBEAM
SYSTEM MODEL 8832

Accelerometer Model B6FA.....vvescesvesosasonnsosnasss 3N C38082
Coupler Model S130...ceeeecenossecscososvossasassasneasadN C33393

Angular Sensitivity at 250 Hz, 130 rad/s!? 0.485 mV/rad/s?
Linear Sensitivity at 100 Hz, 3g,.p¢ 1015 av/g

Linear RanNQge ...cccisccsccencsveses 210 g

ANQular RANGE . ccieseccenncanceeees 18,000 rad/s?
Mounted Rescnant Frequency (nom.) . 8 kHz
Transverse Sensitivity max. ....... 2%

Bias Voltag® ccceeeeersonsenasanses 11 T VDC

Time Constant (NOmM.) cecerveecarsees 1.0 3

All measurements at 21°C
g = 9.8B07 mss?

NIST TRACEABILITY

This accelersmeter was calibrated using a back to back comparisen technique
against a Kistler Warking Standard. The Working Standard is periodically
calibrated against a Kistler Reference Standard System which in turn is
periodically recertified by the National institute af Standards and
Technology. The calibration of all Kistler acceptance test instrumentation is
in conformance with MIL-STD-43662A.

Norking Standard Reference Standard
Linear Acceleration:
Accelarometer Model B09K112 SN CS5178S Model 8002K SN C17447
Charge Amplifier Model 5020 SN C31904 Madel 5020 SN C4870
NIST Test Report Number: 8227250337
Angular Acceleration:
Acceleraseters Model 84602A500M) Model BOBK1 SN 1243
SN C36072/SN C£36073
Charge Amplifiers Model SO4ELOQ Model 5617 SN 251!
SN C4797/SN C4623
Summing Amplifier Madel 35217 SN 186396

SEP 247993 .
By:______‘?ﬂ_‘:{&__&‘“___ __________ Data: 09-24-1993 <

Mark Thomas
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TRANSLATIONAL ANGULAR PIEZOBEAM
SYSTEM MODEL 8832

Accelerometer Model 8498, ..t ereriinenencnennneeasss.ON C58086

Coupler Model S130....000vvvvennnn. cresrerssaaessaass 9N C33806
Anqular Sensitivity at 230 Hz, 130 rad/s? 0.483 aV/rad/s!?
Linear Sensitivity at 100 Hz, 3g,pg 1024 mV/g

Linear Range .......ccct0veeeeeeesa. *10 g

AngQular RanNge ....vvceeceees seesees £18,000 rad/s?
Mounted Resonant Frequency (nom.) . 8 kHz
Transverse Sensitivity max. ceevaea. 2%

Bias Voltage ......ceeececeseneesss 11 3 VDC
Time Constant (NOmM.) v vceeeveeeeenses 1.0 s

All measurements at 21°C
g = 9.807 m/s?

NIST TRACEABILITY

This accelerometer was calibrated using a back to back camparison technigue
against a Kistler Working Standard., The Working Standard is periodically
calibrated against a Kistler Reference Standard System which in turn is
periodically recertified by the National Institute of Standards and
Technology. The calibration of all Kistler acceptance test instrumentation is
in conformance with MIL-S5TD-45662A.

Working Standard Reference Standard
Linear Acceleration:
Acceleroneter Model B809K112 SN C51785 Model 8002K SN C17447
Charge Amplifier Model 5020 SN C31904 Model 5020 SN CaB70
NIST Test Report Number: 822/250337
Angular Acceleratian:
Acceleronmeters Model B402A500MI1 Model 808K!1 SN 1243

SN C346072/5N C36073
Charge Amplifiers Model 304E!LO0 Model 561T SN 231

Anol SN C3797/SN C4623
Sueming Amplifier Model 3217 SN 186396 a
SEP ~41393

(nd

By: 7’7"\-& %m Date: 09-24-1993

— - —— T —— — ———————— —— o — ———— T — ———

Mark Thomas
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TRANSLATIONAL ANGULAR PIEZOBEAM
SYSTEM MODEL 8832

Accelerometer Model B694. ... civeescenertascncnns e+ SN £358083
Caoupler Model 3130...ccecacvenn eeossvecaceessnnsansess SN CIZ394
Angular Sensitivity at 2350 Hz, 130 rad/s? 0.493 aV/rad/s?
Linear Sensitivity at 100 Hz, 3g,pg 1017 mV/g
Linear Range cceicceveecccnes eeacoe 10 g
Angular RAaNQG® cccvivevsvsoscvsanas eee 218,000 radrs/s?

Mounted Resonant Frequency (nom.) . B kHz
Transverse Sensitivity max. seese.. 2%

Bias voltage ....... vesasesennaneas 11 3 VDC
Time Constant (NOM.) cceecesrncsceees 1.0 5

All measurements at 21°C
g = 92.807 m/s?

NIST TRACEABILITY

This accelerometer was calibrated using a back to back coaparison technigue
against a Kistler Working Standard. The Working Standard is periodically
calibrated against a Kistler Reference Standard System which in turn is
periodically recertified by the National I[nstitute of Standards and
Technology. The calibration of all Kistler acceptance test instrumsentation is
in conformance with MIL-STD-436624A.

Norking Standard Reference Standard
Linear Acceleration:
Acceleroameter Model 809K!12 SN CS5178S Madel 8002K SN C17447
Charge Amplifier Model 35020 SN CJ1704 Model 5020 SN C4870
NIST Test Report Nunmber: 8227230337
Anguiar Acceleration:
Accelerometers Model B8402A500M1 Model B0BK! SN 1263
SN C36072/SN C£36073
Charge Amplifiers Model SO04EL0 Model S61T SN 231
SN CA797/SN L4623
Sunming Amplifier Model 32i7 SN 186394
e SEP 241993

2NE

i
N

Wailb Homas Date: 09-24-1993

Mark Thomas
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TRANSLATIONAL ANGULAR PIEZOBEAM
SYSTEM MODEL 8832

Accelerometer Model B696. ittt etnenencnrensseassnsssSN £C58087
Coupler Model S130....cciiitrereserveannnsonnesennenesedN £34610

Angular Sensitivity at 250 Hz, 130 rad/s? 0.483 aV/rad/s?
Linear Sensitivity at 100 Hz, 3g,p4 1020 nV/g

Linear Range ...civievnrireveeacs.. 210 g

Angular Range .....c.cvivitrecnnnee.. ¥18,000 rad/s?
Mounted Resonant Frequency (nom.) . 8 kHz
Transverse Sensitivity max. ccevee. 2%

Bias Voltage ...vviveenerenaaeenas 11 £33 UDC
Time Constant (Nom.) .....vevevee.. 1.0 s

All measurements at 21°C
g = 92.807 m/s?

NIST TRACEABILITY

This accelerometer was calibrated using a back to back comparison technigue
against a Kistler Working Standard. The Working Standard is periodically
calibrated aqainst a Kistler Reference Standard System which in turn is
periodically recertified bv the National I[Institute of Standards and
Technology. The calibration of all Kistler acceptance test instrumentation is
in conformance with MIL-STD-45662A.

Working Standard Reference Standard
Linear Acceleration:
Accelerometer Model B09Kt12 SN CS1785 Model B002K SN (17347
Charge Amplifier Model 5020 SN C31904 Model 5020 SN C4870
NIST Test Repart Nuaber: 822/2350337
Angular Acceleration:
Accelerometers Model B8602A300M1 Model BOBK! SN 1243
SN C36072/SN C346073 -
Charge Amplifiers Mode! S504E10 Model 3417 SN 251
SN C4797/5N C4423
Summing Amplitier Model 5217 SN 186396

OCT 381993
777‘4-& %"‘“- Date: 10-04-1993

Mark Thomas
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Setting the determinant of the left hand matrix equal to zero

and solving.

2+*(cosh(kL)sin(kL) - sinh(kL)cos (kL)) = 0 (B.5)

Equation (B.5) defines an infinite number of solutions for the
term "kl1".

B. Mode Shapes

Combining equations (B.1) thru (B.4), a general
expression of the wave equation for a given mode can be

determined.

¢,(x) = cosh(k;x) + cos(k;x) - a,(sinh(k,x)+sin(k;x)) (B.6a)

cosh(k;l)-cos(k;1)

@ = sinh(k;1)-sin(k;1) (B.6b)
TABLE B-2: KL AND ALPHA VALUES
Mode kl Alpha

1 4.730041 0.982502

2 7.853205 1.000777

3 10.995607 0.999966

4 14.137165 1.000001

5 17.278760 1.000000

Numerically solving equation (B.6) and inserting values for x,
the graphed solution will depict the shape of the beam for the
given mode.

Figures B-1 thru B-5 display the first five mode shapes
of the experimental begm. The mode shapes were normalized by

using the first normalization method.
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C. Natural Frequencies

Reference [12] provides the mathematical development for
the equation for determining the -natural frequencies.
Equation (B.7) is provided without proof.

ki [E1 (B.7)

% = 2@\ Ty

with vy = p » Cross-Sectional Area

TABLE B-3: CALCULATED NATURAL FREQUENCIES

MODE FREQUENCY (HZ)
First 29.65
Second 81.72
Third 160.20
Fourth 264.38
Fifth 395.61

III. FINITE ELEMENT MODELING

The finite element model divides the beam into multiple
homogenous elements. All the multiple elements of the
structure are then combined to produce the overall structural
model. This structural model is then utilized to calculate

the system response.
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Reference [13] is used as guidance for the finite element
development. Bernoulli-Euler theory considers a beam element
with uniform length (L), mass density (p), elastic modulus

(E), cross-sectional (A), and moment of inertia (I). There

are two degrees of freedom (traverse and angular motion) per
node. Each element has two nodes and therefore a total of
four degrees of freedom. The displacement of the beam can be

described as written in equation (B.8).

4
v(x,t) = Yi(x i(t
) Z; (x) v;(t) 5.8

y; = shape function
The subscript "i" in equation (B.8) describes the specific
mode shape of the structure.

The shape function must satisfy the following boundary

conditions.
¥ (0) = ya(0) = Uy(L) = wa(L) = 1 (B.9a)
¥1(0) = ¥y (L) = yi(L) = 0 (B.9b)
U,(0) = Y,(L) = y3(L) = O (B.9¢c)
¥3(0) = 3(0) = yi(L) = 0 (B.9d)
¥e(0) = We(0) = Y (L) = 0 (B.9e)

Each element can be assumed to be loaded only at its ends.

Thus the equilibrium equation is given by equation (B.10).

(EZv/)' = 0 (B.10)
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The general solution to equation (B.10) is a cubic polynomial.
- x x X
v(x) =€ C(3) * G v C( ) (B.11)

Inserting the boundary conditions from equation (B.9) into
equation (B.11) results in the following expressions for the

shape functions.

v =1-3(5) 23 (B.12a)
V= X - () L(T) (B.12b)
U= ()2 - 2% (B.12¢)
Vo= -L(3)+ L(E)? (B.12d)

A. Stiffness / Mass Matrices
The Bernoulli-Euler stiffness and mass coefficients for

each element can be described by equation (B.13).

L

ky = [ ETVIY] dx (B.13a)
L

m;; = _/; PAY;Y; dx (B.13b)

1. Basic Element
Combining equations (B.12) and (B.13) will result in the
stiffness and mass matrices for the basic beam element. For
example, to solve for element "1,1" (i=1 and j=1), compute
the second derivative of the first shape equation (equation

(B.12a)).

w1=—__+ -——(-—) (Bol4)
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Inserting equations (B.12) and (B.14) into equation (B.13)
will result :n a mass and stiffness expression for the "1,1"
element.

=36 EL(*] - 4(X X2
k,, = 36 L4f01 4(3) + 4(3)* dx  (B.15a)

- Ly _ ¢ X2 X3 _ X5 X6
m,, oAfol 6(F)*+4(3)° - 12(3)° + 4(3)° dx (B.15b)
The elemental stiffness and mass matrices can be
developed by solving for each coefficient. The finél results,

which are provided by reference [13], are as follows.

12 6L -12 6L
Er 6L 4L? -6L 2L?
T3 |12 -6r 12 -6L?

6L 2L? -6L 4L?

k= (B.16)

156 22L 54 -13L
_ AL {22L 4rL% 13L -3L?
m=F%20 |ss4 13z 156 -22L (B.17)

-13L -3L? -22L 4L?

Equations (B.16) and (B.17) were used to develop the finite
element model for the beam used in the experiment. The number
of elements chosen are divisible by four. This will ensure
that the clements are sized equally and that the load cell and
accelerometers would always be 1located on an elemental

boundary.
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2. Other Model Considerations

The basic finite element model considers a beam to be 60
inches long, neglects the effects due to the weight from the
accelerometers and the load cell, and the weight loss from the
drilled and tapped connection points on the beam. The actual
beam is 60.625 inches long. The added lergth allows the
entire surface of the accelerometers to be mounted at both
ends. The extra 0.3125 inches on each end is considered a
"lumped mass" at the end coordinates.

The moment of inertia due to the lumped mass was added on
to the appropriate elements of the mass matrix. Each
accelerometer weighs 9.1 grams and remained at the same
location throughout the experiment. The accelerometers were
also considered as lumped masses at the appropriate
coordinates. The load cell changed location depending on the
excitation coordinate, thus to simplify the calculations the
load cell mass was neglected. The weight loss due to the
drilled connection points for the 1load cell was also
considered insignificant and thus ignored in the final model.

B. Number of Elements

The decision as to the number of elements for the finite
element model must be considered somewhat carefully. Table B-3
lists the natural frequencies for a given number of model

elements.
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The natural frequencies converge to a limiting value as

the number of elements are increased. Figures B-6 and B-7
plot the frequency versus the number of elements for the
fourth and fifth modes. Both plots show the convergence to a

single frequency with the increase in the number of elements.

TABLE B-4: FREQUENCY (HZ) VS. BEAM ELEMENTS

# OF First Second Third Fourth Fifth
ELEMENT Mode Mode Mode Mode Mode
4 29.10 80.00 158.47 289.49 451.86
8 29.07 79.97 157.44 260.64 391.63
12 29.07 79.96 157.20 259.66 388.71
16 29.07 79.96 157.15 259.46 388.09
20 29.07 79.96 157.14 259.41 387.91
24 29.07 79.96 157.13 259.39 387.85
28 29.07 79.96 157.13 259.38 387.81

As the number of elements are increased, the finite
element model accuracy increases. The disadvantage is that as
the number of elements increase, so does the computing time.
In the experimental calculations, the 24 beam element model
was considered to provide sufficient accuracy.

Iv. MODEL ACCURACY

The accuracy of the various models can be compared to the

observed response from the experiment. The finite element

model will always be assumed to have 24 beam elements.
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A. Natural Frequencies

The natural frequencies obtained from the exact solution
and the finite element model were compared with the observed
natural frequencies from the experiment. Tables B-5 and B-6

summarize the resths‘of the natural frequency comparison.

~

.,

™~
TABLE B-5: EXACT SO;EETGN\VS. OBSERVED DATA

”*
Modes First Second Third Fourth Fifth

Observe 29.90 81.20 155.90 258.30 387.80
Exact 29.65 81.72 160.20 264.38 395.61
_0.84 _0.64 2.76 | 2.35 | 2.01

»% Er:orﬁw

TABLE B-6: FINITE ELEMENT VS. OBSERVED DATA

Modes Third Fourth Fifth
Observe 29.90 81.20 155.90 258.30 387.80 ]
Model 29.07 79.96 157.13 259.39 387.854]
0.01 |

Second

7% Error

As shown in Tables B-5 and B-6 both the exact solution
and the finite element model results correspcnded with the
observed results from the experiments.

B. Frequency Response Function (FRF)

Frequency response curves from the finite element model
were compared with the frequency response curves from the

experiment.
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Figure B-8 is a plot of the "1,1" element of the finite
element model and experimental FRF curves. The close
proximity of the two curves indicate that the finite element
model closely approximates the experimental structure. Figure
B-9 is the same plot as Figure B-8 with the exception of using
a four element (vice 24 element) model. As expected, the four
element model is not as good an approximation as the 24
element model. Figure B-10 is also the same as Figure B-8
with the exception that damping was added to the finite
element model. The damping decreased the peak values
associated with the natural frequencies of the finite element
FRF curve.

V. UNIT ANALYSIS

The units of the FRF matrix from the finite element model
are not equivalent to the units of the FRF matrix from the HP
3562A. Figuré B-11 is a block diagram of the unit conversion
associated with the translational elements of the FRF matrix.
This conversion is required for comparisons and calculations
involving finite element models and experimental test data.
The rotational elements of the FRF matrices undergo the same
conversion with the addition of dividing the experimental FRF
by the gain factor associated with the accelerometer power

supply.
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ACCELEROMETER
Channci #2
Units: mv { Ibf

LOAD CELL
Channe! #1
Units: mv {g

Units: g/ Ibt

Divide by Frequency Squared
Units: rad"2 { sec™4
FREQUENCY RESPONSE FUNCTION
Units: in { Ibf

Divide by g (in / sec*2)

FINITE ELEMENT MODEL
Units: g-in/ lbf

FIGURE B-11: Unit
Analysis - Translational
Coordinates
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APPENDIX C

COMPUTER CODE

BMMODEL .M

Calculates the the global mass and stiffness
matrices.

The beam dimensions must be adjusted in the
program as appropriate. The beam is also
considered homogeneous throughout its entire
length.

This program also includes addition of an extra
0.3125 inches of beam as a "lumped mass'" at each
end, and the weight due to the accelerometers.

P JP P dP P JP P dP JP dP P dP JP JP IP dP OP dP P JP JF dP dP IP JIP IP

Inputs:
Number of beam elements (input prior to program)
Ensure the number of elements is divisible by 4
This will ensure that the accelerometers are
located at a node.
Beam: Length, Width, Depth, Modulus, Density
OQutputs:
Mass and Stiffness Matrices
if rem(n,4) "= 0,
error('# of elements must be divisible by four')
break
end
%
FLELLLEELETLLELTHLLTHLTELHSTLLLLLLEEEEFEHEEESESSEFTEETTEEHEEHE5%S
%
% General Beam Specifications:
%
tl = 60; % Beam length - total (inches)
w = 1.5656; % Beam width (inches)
d = 0.5339; % Beam depth (inches)
E = 28e+06; % Modulus of Elasticity (psi)
D = 0.284/386.04; % Density (1lbf/in"3)
%
LT EEEEE AR EL AL EEEEEEE L EL A LRSI ETILAILLITLTLLSTILTIILLLT T3 3
%
%
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nc = (n*x2)+2; % Number of coordinates
el = tl/n; % Beam Element length (inches)
A = wxd; % Cross Sectional Area (in~2)
I = (wxd~3)/12; % Cross Sectional Inertia (in~3)
$
%
$ Develope Elemental Mass and Stiffness Matrices
k = []; % Zero matrix for multiple runs
m =[]
kea = (I/el"3) * [ 12 6xel; 6%xel 4*el”2];
keb = (I/el”3) * [-12 6*%el; -6%el 2%el”2];
kec = (I/el"3) * [-12 -6%el; 6xel 2%el”2];
ked = (I/el"3) * [ 12 -6%el; -6%el 4*el”2];
mea = (A*el/420) * [156 22%el; 22%el 4*el”2];
meb = (A*el/420) * [ 54 -13%el; 13*el -3%*el”2];
mec = (A*el/420) * [ 54 13*el; -13%el -3*el”2];
med = (A*el/420) * [156 -22%el; -22%el 4%*el”"2];
%
$ Develope Global Mass and Stiffness Matrices
$
k = zeros(nc);
m = zeros(nc);
for p = 1:n,
a = 2%p;
k(a-1:a,a-1:a) = k(a-1l:a,a-1:a) + kea*E;
k(a-1:a,a+l:a+2) = k(a-l:a,a+l:a+2) + keb*E;
k(a+l:a+2,a-1:a) = k(a+l:a+2,a-1:a) + kec*E;
k(a+l:a+2,a+l:a+2) = k(a+l:a+2,a+l1:a+2) + ked*E;
m(a-1l:a,a~-1:a) = m(a-1l:a,a-1:a) + meax*D;
m(a-1l:a,a+l:a+2) = m(a-1l:a,a+l:a+2) + meb*D;
m(a+l:a+2,a-1:a) = m(a+l:a+2,a-1:a) + mec*D;
m(a+l:a+2,a+l:a+2) = m(a+l:a+2,a+l1:a+2) + med*D;
end
%
% Addition of lumped masses.
%
% Lumped masses - accelerometers (9.1 grms)
%
accmass = 0.0091/(0.4536%386.04); % 0.4536 kg/lbm
i = 1:1:4;
node(i) = (i*(n/4)) + 1;
crd(i) = (2*node(i)) - 1;
m(l,1) = m(1,1) + accmass;

m(crd(i),crd(i)) = m(crd(i),crd(i)) + accmass;
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%
% Lumped masses - End overhang
%
ovrhng = 2.5/8; % inches on each end
ohngmass = D*wxd*ovrhng; :
m(l,1) = m(1,1) + ohngmass; '
m(crd(4),crd(4)) = m(crd(4),crd(4)) + ohngmass;
%
% inertia effect on rotation
%
inermass = (ohngmass/12)*(d"2);
m(2,2) = m(2,2) + inermass;

m(crd(4)+1,crd(4)+1) = m(crd(4)+1,crd(4)+1) + inermass;




BMERR .M

Calculates the stiffness and mass matrices for
a finite element modeled beam that is
heterogeneous.

The only non-homogeneous variables compensated:
Modulus : Stiffness
Density : Mass

Inputs:
Number of beam elements (input prior to program)
Ensure number of elements is divisible by 4
This ensures that the accelerometers are located
at a node.
Beam: Length , Width, Depth
Modulus and Density including the beam elements
with the appropriate Modulus and density values.

Outputs:
Mass and Stiffness Matrices

P dP AP JP IP dP P dP JIP OP dP dP dP JP dP dP dP dP JF P IP dP JP

if rem(n,4) "= 0,
error{'# of elements must be divisible by four')

break
end
SEEEEELEEHELELHELTLTELUBHLLLHHLLTHLTLLBTLLUHTLLHLTTILHLLHFLLRLS
% General Beam Specifications:
%
nc = (nx2)+2; % Number of coordinates
tl = 60; % Beam length - total (inches)
el = tl/n; % Beam Element length (inches)
w = 1.5656; % Beam width (inches)
d = 0.5339; % Beam depth (inches)
A = wxd; % Cross Sectional Area (in~2)
I = (wxd"3)/12; % Cross Sectional Inertia (in~3)
%
% Type of error mass(density) or stiffness(modulus)
% Non - uniform Beam Modulus
%
for x=1:n, % Length of E vector = # of elements
if x < 6,
E(x) = 28e+06;
elseif x < 13,
E(x) = 28e+06;
else
E(x) = 28e+06;
end
end
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Non - uniform Bgam Density

dP dP JP

for x = 1:n,
if x < 12,
D(x) = 0.284/386.04;
elseif x < 19,
D(x) = 0.250/386.04;

else
D(x) = 0.284/386.04;
end
end
SHEEEELFLLLHELTTLETLETTETETHHELTLEELEHEETHHLLTHLETLETHTELTLEHHES
% Develope Elemental Mass and Stiffness Matrices
%
k1l = [1; % Zero matrix for multiple runs
ml =1[];
kea = (I/el”3) * [ 12 6*el; 6*el 4xel”2];
keb = (I/el”3) * [-12 6*el; -6%*el 2%el”2]};
kec = (I/el”3) * [-12 -6%*el; 6*xel 2%el”2];
ked = (I/el”3) * [ 12 -6*el; -6%el 4%xel”2];
mea = (A*el/420) * [156 22%*el; 22%el 4*21°2];
meb = (A*el/420) * [ 54 -13*el; 13%el -3*el”2];
mec = (A*el/420) * [ 54 13*%el; -13%el -3*el”2];
med = (A*el/420) * [156 -22%el; -22%el 4*el”2];
% .
% Develope Global Mass and Stiffness Matrices
%
k1l = zeros(nc);
ml = zeros(nc);
for p = 1:n,
a = 2*p;
kl(a-l:a,a-1:a) = kl(a-1l:a,a-1:a) + kea*E(p);
ki(a-1l:a,a+l:a+2) = kl(a-1l:a,a+l:a+2) + keb*E(p);
ki(a+l:a+2,a-1:a) = ki(a+l:a+2,a-1:a) + kec*E(p);
kl(a+l:a+2,a+l:a+2) = kl(a+l:a+2,a+l1:a+2) + ked*E(p);
ml(a-1:a,a-1:a) = ml(a-1l:a,a-1:a) + mea*D(p);
ml{(a-1:a,a+l:a+2) = ml(a-1:a,a+l:a+2) + meb*D(p);
ml(a+l:a+2,a-1:a) = ml(a+l:a+2,a-1:a) + mec*D(p);
ml(a+l:a+2,a+l:a+2) = mi(a+l:a+2,a+l:a+2) + med*D(p);
end
%
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Addition of lumped masses.

Lumped masses - accelerometers (9.1 grms)

accmass = 0.0091/(0.4536*386.04); % 0.4536 kg/lbm
i = 1:1:4;

node(i) = (i*(n/4)) + 1;

crd(i) = (2*node(i)) - 1;

mi(1,1) = mi(1,1) + accmass;
mi(crd(i),crd(i)) = mi(crd(i),crd(i)) + accmass;

Lumped masses - End overhang

ovrhng = 2.5/8; % inches on each end
ohngmass = D(1)*w*d*ovrhng;
mi(1,1) = ml(1,1) + ohngmass;

ml(crd(4),crd(4)) = ml(crd(4),crd(4)) + ohngmass;

% inertia effect on rotation
inermass = (ohngmass/12)*(d"2);
mi(2,2) = ml1(2,2) + inermass;
ml(crd(4)+1,crd(4)+1) = ml(crd(4)+1,crd(4)+1) + inermass;
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TSTMDL .M

Purpose of this program is to plot the FRF of a %
baseline test model (BMMODEL.M) versus a model with a
known error installed (BMERR.M).

Inputs:
# of Beam Elements
Note: BMERR.M must be adjusted as appropriate for
changes in elements or installed errors prior to
running this program.
Start Frequency
Frequency Increment
End Frequency
Response and Excitation Coordinates. These values
change with the change in the # of beam elements

Outputs:
FRF of test model versus the model with the
installed error.

FEETLTFLTFETLTLHTFLTLITBTLLLBVLHLBTLBLEUTHTEFEFTELHTLETLBLEHLBLS

9P dP IR IP JP JP JP P dP dP dP IP IP OP JP P IP dP P  JP JP dP JP

n = 24; % Number of beam elements

f1 = 20; % Start frequency (hz)

inc = 0.125; % Incremental frequency (hz)
£f2 = 420; % End frequency (hz)

row = 1; % Model Response Coordinate
col = 1; % Model Excitation Coordinate

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%

bmmodel % Test Model
bmerr % Model with installed error
%
%
% Calculate the FRF
%
i=1;
for w = fl:inc:£2,
wl = 2%pi*w; % Converting hz to rad / sec
Z =k - w1l 2%m;
2zl = kl1- wi™2*ml;
h = inv (z) / 386.04; % Scale Corrections
hl = inv (z1) / 386.04;
%
he(i) = loglO(h(row,col)); % Logarithmic Scale
hel(i) = logl0(hl(row,col));
%
i= i+1;
end
%
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Plot the results

w = fl:inc:£2;
plot(w,he,'- -',w,hel, 'g")
xlabel('Frequency (hz)')
ylabel('in/1lbf (log of)')
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EXTSIM.M

Purpose of this program is to perform a matrix %
extraction of the computer simulation models.

Matrix Reduction consists of extraction of the %
translational excitation and response coordinates.
Localization Matrix will be a 5X5 matrix

Inputs:
Stiffness and Mass Matrices from BMMODEL.M and BMERR.M
Number of beam elements
Three Frequencies (low,medium,high)
Two error coordinates

Outputs:

Localization Matrix at different frequencies
Localization Matrix (component) vs frequency.

SEEELFEETTLLTLEBLLETLLTLLBLLLTLLTFLTLLBLLLLTLBTHELTLHBLLLHH9%%

PRI IPIIIP I dPIP PN

n = 24; % Number of Elements
f1 = 20; % Start Frequency (hz)
f2 = 420; % End Frequency (hz)
inc = 0.125; % Incremental Frequency (hz)
wlow = 35; % Low Frequency (hz)
wmed = 150; % Medium Frequency (hz)
whigh = 350; % High Frequency (hz)
cl = 3; % Left error coordinate
c2 = 4; % Right error coordinate
%
%

FEELTFLTTFLHTFHLTTLTLLLLLLLEHLLBTTLXFLLILLLHTTLHLFLHTFLHHTTLHHHL%%%
%

bmerr % Flawed model (k,m matrices)
bmmodel % Ideal model (k,m matrices)
aset = [1:n/2:(2*n)+1]; % Retained Coordinates
%
%
% Localization Matrix at a given frequency
%
%
wfix = [wlow,wmed,whigh];
wfixl = wfix*pi*2; % Convert to rads per second
%
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for i =

:3

1:3,
z2 = (k-wfix(i)~2%m); % Develope impedance matrices
zl = (kl-wfix(i)~2*m1);
h = inv(z); % Frequency Response matrices
hl = inv(z1);
h = h(aset,aset)/386.04; % Matrix Extraction
hl = hl(aset,aset)/386.04;

zl = inv(hl);
loc = z1*(hl-h)*z1; % Localization Matrix

if i==1,

llow = loc;
elseif i==2,

lmed = loc;
else

lhigh = loc;

end

end
Localization Matrix versus Frequency

i=1;
for w = fl:inc:£2;

Wl = wkpix2;

Z = k-wl"2%m;

zl = kl1-wl~2*ml;

h = inv(z)/386.04;

hl = inv(z1)/386.04;

h = h(aset,aset);

hl = hil(aset,aset);

z1 = inv(hl);

loc = 21*(hi-h)*z1;

lab(i) = loc(cl,cl); % Error component of L

lba(i) = loc(c2,c2); % Error component of L
i=i+1;
end
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L
L IRSSIM. M
3
S Purpose of this program is to perform a matrix IRS
L Reduction of the computer simulation models.
% Localization Matrix will be a 5X%5 matrix
L
% Inputs:
$ Stiffness and Mass Matrices from BMMODEL.M and BMERR.M
3 Number of beam elements
% Three Frequencies (low,medium,high)
Two error coordinates
%
L Qutputs:
L Localization Matrix at different frequencies
L Localization Matrix (component) vs frequency.
%
SLEHEEHEELHEELLHLLLTLHHLLLLEHLFLTLHEFTHHLLHBLLHHLLHLLLHTLALHERLLSS
%
n = 24; % Number of Elements
f1 = 20; % Start Frequency (hz)
£2 = 420; % End Frequency (hz)
inc = 0.125; % Incremental Frequency (hz)
wlow = 35; % Low Frequency (hz)
wmed = 150; % Medium Frequency (hz)
whigh = 350; % High Frequency (hz)
cl = 2; % Left error coordinate
. c2 = 3; % Right error coordinate
L

HEETLHELLLTLLBTLLTLHLHHLTEBTLTLLLBLTLLLTLTLLHLSELLLBSLEBLHIHTHLH4%%
%

bmerr % Flawed model (k,m matrices)
bmmodel % Ideal model (k,m matrices)
aset = [1:n/2:(2*n)+1]; % Retained Coordinates

al = aset(1,2); % Omitted Coordinates

a2 = aset(1,3);

a3 = aset(1,4);

a4 = aset(1,5);

oset = [2:al-1,al+l:a2-1,a2+1:a3-1,a3+1:a4-1,n*2+2];

b = length(aset);
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IRS Reduction of the Error Model
Partition stiffness and Mass Matrices

klaa = kl(aset,aset);
kloa = kil(oset,aset);
klao = kl(aset,oset);
kloo = kl(oset,oset);
mlaa = ml(aset,aset);
mloa = ml(oset,aset);
mlao = ml(aset,oset);
mloo = ml(oset,oset);
Transformation Matrix
klool = inv (kloo);
tl = klool*mloa - klool*mioo*klool*kloa;
Tl = [eye(b);tl1l];
Reduced Stiffness and Mass Matrices
klbar = T1'%k1*Ti1;
mlbar = T1'*ml*T1;
Localization Matrix at a given frequency
wiix = [wlow,wmed,whigh];
wfixl = wfix*pi*x2; % Convert to rads per second
for i = 1:3,
zZ =k - wfixl(i)“"2*m;
21 = klbar - wfix1(i)“2*milbar;
h = inv(z);
h = h(aset,aset)/386.04;
hl = inv(z21)/386.04;
zl = inv(hl);
loc = z1*(hl-h)*z1;
if i==1,
llow = loc;
elseif i==2,
lmed = loc;
else
lhigh = loc;
end
end

148




9P JP oF

Localization Mairix versus Frequency

i=1;
for w = fl:inc:£2;
wl = wkpi%x2;
Z =k - wl"2xpy;
z1 = klbar ~ wi“2*mlbar;
h = inv(z);
h = h(aset,aset)/386.04;
hl = inv(21)/386.04;
zl = inv(hl);
loc = zix(hl-h)*zj1;
lab(i) = loc(cl,cl); % Error Component of L
lba(i) = loc(ec2,c2); % Error Component of L
i=1i+1;
end
149




EXTDATA.M

Purpose: To perform a matrix extraction of a beam finite
element model and determine the localization
matrix by comparing with experimental data.

Inputs:
Input finite element model (BMERR.M)
Number of beam elements
Test data (c:\matlab\beamdata directory)
Three frequencies (low,med,high)
Start / End frequencies

Outputs:

Localization Matrix at different frequencies
Localization Matrix (component) vs frequency

FHEEEHLHLEELTTLHEBFTLLEHTLLLLLLEHHLLHTTLTLHHLTEEHLLLHEHHTEHBERH%%

9P dP dP dP P dP dP dP JP dP dP JP JP dP dP JP IP IP P IF IF

n = 24; % Number of beam elements
f1 = 20; % Start frequency (hz)

f2 = 420; % End frequency (hz)

inc = 0.125; % Frequency increment (hz)
wlow = 35; % Low frequency (hz)

wmed = 150; % Medium frequency (hz)
whigh = 350; % High frequency (hz)

%
FEEFLLTEELLBTFTLHHLLELBLLBBTLLETHLLLHTLLFLHLLLLBHLHTELHBHLLTHIH4%Y
%

bmerr % Flawed Model (k,m matrices)
aset = [1:n/2:(2*n)+1]; % Retained coordinates
%
%
% Load FRF experimental data and arrange (3201x50 matrix)
%
load c:\matlab\beamdata\hea.mat;
load c:\matlab\beamdata\heb.mat;
load c:\matlab\beamdata\hec.mat;
load c:\matlab\beamdata\hed.mat;
%
hebar = [hea(1:800,:); heb(1:800,:)];
hebar = [hebar; hec(1:800,:); hed(1:801,:)]1;
%
clear hea heb hec hed % Reduce Memory usage
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Localization Matrix at a given frequency

wfix = [wlow,wmed,whigh]; i
wfixl = wfix*pix2; % Convert to radians/sec
n = (8 * (wfix - 20)) +1; % Counter to access hedata
for i = 1:3, % Analytical FRF Matrix
za = (kl-wfix1(i)“"2%ml);
ha = inv(za);
ha = ha(aset,aset)/386.04; % Extraction Reduction
za = inv(ha);
hx = datfreq(n(i), hebar); % Experimental FRF Matrix
hx = hx(1:2:9,:)/(wfixl(i)"2);
loc = za*(ha-hx)*za; % Localization Matrix
if i == 1,
llow = loc;
elseif i == 2,
lmed = loc;
else
lhigh = loc;
end
end
Localization Matrix Versus Frequency
cntr =1;
for w = fl:inc:£f2,
wl = wkpix2;
za = kl-wl“"2*ml;
ha = inv(za);
ha = ha(aset,aset)/386.04;
za = inv(ha);
n = (8 * (w - 20)) +1;
hx = datfreq(n,hebar);
hx = hx(1:2:9,:)/(wl1"2);
loc = za*(ha-hx)*za;
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loc(1,1);
loc(2,2);
loc(3,3);

liil(cntr)
122(cntr)
133(cntr)

Impedance Error Calculation

aP Jb 9P

inv(ha);

hxext inv(haext*(ha-hx)*haext);
dzext inv(hxext - ha);
dzl(cntr) dzext(1,1);

dz2(cntr) dzext(2,2);

dz3(cntr) dzext(3,3);

haext

%

cntr = cntr+1;
end
w = fl:inc:£f2;
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%

IRSDATA .M

Purpose:
To perform a IRS reduction of a beam finite
element model and determine the localization
matrix by comparing with experimental data.

Inputs:
Input finite element model (BMERR.M)
Number of beam elements
Test data (c:\matlab\beamdata directory)
Three frequencies (low,med,high)
Start / End frequencies

‘Outputs:

Localization Matrix at different frequencies
Localization Matrix (component) vs frequency

FEEEFLELTLTEBLLBHTEHLEHTLLBLEEHLLBTLLLLLLHLLLTTETLBTLLH%%%

n = 24; % Number of beam elements
f1 = 20; % Start frequency (hz)

£2 = 420; % End frequency (hz)

inc = 0.125; % Frequency increment (hz)
wlow = 35; % Low frequency (hz)

wmed = 150; % Medium fregquency (hz)
whigh = 350; % High frequency (hz)

BETLELLHLHTLTLHTLLLLHHLLLLHILLLBBTLTLLLLTTLLELLTTELHITLHHLEHS

%

9P df dP 9P

bmerr % Flawed Model (k,m matrices)
aset = [1:n/2:(2*n)+1]}; % Retained coordinates

cl = aset(1,2);

c2 = aset(1,3); % omitted coordinates

c3 = aset(l1,4);

c4 = aset(1l,5);

oset=[2:c1-1,cl+l:c2-1,c2+1:¢c3-1,c3+1:c4-1,n*2+2];
b = length(aset;;

Partition model k & m matrices

kaa = kl(aset,aset); maa = ml(aset,aset);

koa = kl(oset,aset); moa = ml(oset,aset);

kao = kl(aset,oset); mao = ml(aset,oset);

koo = kl(oset,oset); moo = ml(oset,oset);
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Transformation Matrix

kool = inv(koo);

t = kool*moa-kool*moo*kool*koa;

T = [eye(b);t];

kbar = T'* k1 * T; % Reduced k matrix
mbar = T'* ml1 * T; % Reduced m matrix

Load FRF experimental data and arrange (3201x50 matrix)
load c:\matlab\beamdata\hea.mat;
load c:\matlab\beamdata\heb.mat;
load c:\matlab\beamdata\hec.mat;
load c:\matlab\beamdata\hed.mat;

hebar = [hea(1:800,:); heb(1:800,:)];
hebar = [hepar; hec(1:800,:); hed(1:801,:)];

clear hea heb hec hed % Reduce Memory usage

Localization Matrix at a given frequency

wfix = [wlow,wmed,whigh];
wfixl = wfix*pix2; % Convert to radians/sec
Counter to access he data
n = (8 * (wfix - 20)) + 1;
for i = 1:3, % Analytical FRF Matrix
za = (kbar-wfixl(i) " 2*mbar);
ha = inv(za)/386.04;
hx = datfreq(n(i),hebar); % Experimental FRF Matrix
hx = hx(1:2:9,:)/(wfix1(i)"~2);
loc = za*(ha-hx)*za; % Localization Matrix
if i == 1,
llow = loc;
elseif i == 2,
lmed = loc;
else
lhigh = loc;
end b
end
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Localization Matrix Versus Frequency

cntr =1;

for w = fl:inc:£f2,
Wl = wxpix2;
za = kbar-wl“2*mbar;
ha = inv(za)/386.04;
n = (8 * (w- 20)) + 1;
hx = datfreq(n,hebar);
hx = hx(1:2:9,:)/(w1"2);
loc = za*(ha-hx)*za;
111(cntr) = loc(1,1);
122(cntr) = loc(2,2);
133(cntr) = loc(3,3);

Impedance Error Calculation

haext = inv(ha);
hxext = inv(haext*(ha-hx)*haext);
dzext = inv(hxext - ha);

dzl(cntr) = dzext(1,1);
dz2(cntr) = dzext(2,2);
dz3(cntr) = dzext(3,3);

cntr = cntr+l;
end
w = fl:inc:£2;
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DATFREQ.M
unction hx = datfreq (n,hebar)
Input:
Frequency (20-420 hz)
FRF experimental data base (3201x50 matrix)

Output:
Experimental FRF matrix for the desired frequency

9P dP df JIf dP I df dP h P JP

(hebar(n,1:5);hebar(n,6:10);hebar(n,11:15)];
[hx;hebar(n,16:20);hebar(n,21:25)];
[hx;hebar(n,26:30);hebar(n,31:35)];
(hx;hebar(n,36:40);hebar(n,41:45)];
[hx;hebar(n,46:50)];

REEER
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HEBUILD.M

Purpose:
Build a matrix from experimental data

Input:
Start frequency (20+n*100) hz n=[1,2,3]
Note: Letter code in this program must be
adjusted in accordance with the file coding
End frequency (120+n*100) hz n=[1,2,3]
Data Files: - files must be in *.mat format
file location c:\matlab\beamdata directory

Output:
x mat file: - size 801x50 matrix
file name = he#.mat #:letter code

clear
i= 20; % Start frequency
j = 120; % End frequency
a=1; % Align frequency with vector
b = 801;
Establish root code based on frequency range

if i == 20,

root = 'a'; %$ a: 20 - 120 hz
elseif i == 120,

root = 'b'; $ b: 120 - 220 hz
elseif i == 220,

root = 'c'; % c: 120 - 220 hz
else,

root = 'd’; $ d: 320 - 420 hz
end

for d2 = 1:10,
for d1 = 1:2:9,
flname = ['h',num2str(d2),'_',num2str(dl),root]);
eval(['load c:\matlab\beamdata\',flname,'.mat']);
eval(['he',root,'=[he’',root,"',02i1]};"']);
end
end

eval(['save c:\matlab\beamdata\he',root,'.mat']);

157




FRFMTCH.M

Purpose:
Compare modeled FRF response with tabulated
FRF response from the beam experiment.

Modeled FRF:
Calculated using k,m from BMMODEL.M
Must insert a value for n (# elements)
If n is other than 4, then the location of
the h matrix must be considered carefully
to ensure proper comparison.

Tabulated FRF:
Data is received from the .mat files
File location c:\matlab\beamdata
Tabulated frequency range is 20-420 hz
Beam has 5 accelerometers and 4 beam elements

Program will progress thru each file <cntrl c >
terminates the program
FEEEEEEEELELLELEEHLLHETTRLLLELLLLLLLLLLLLLLLHLHTELLTLLHHHHH%S

9P dP dP IP JP dP dP IP dP dP P IP dP dP P P JIP dP dP JP P JP JP

n = 24; % # of beam elements

row = 1; % Model response coordinate

col = 1; % Model Excitation coordinate

flnm = 'hil_1"'; % measured FRF file of interest

£f1 = 20; % Start frequency (hz) (min=20hz)
£f2 = 420; % End frequency (hz) (max=420hz)
inc = 0.125; % mat file 801 elements-100 hz span

SHEEELEELLLLHHELLLETELHBBLELLLLLLHHBHEELLLLHHLELLLLTHHLLLHHSS
Tabulated FRF
Lovading initial *.mat file based on f1

y=0]; va=[]; yb=[1; yd=[1];

if £1 < 120,
a = 8%x(fix(£1)-20)+((f1-fix(£1))/0.125)+1;
eval(['load c:\matlab\beamdata\’',flnm,'a.mat']);
ya = 02i11(1:801);
eval(['load c:\matlab\beamdata\',flnm,'b.mat']);
yb = 02i1(1:801);
eval(['load c:\matlab\beamdata\',flnm,'c.mat']);
yc = 02i1(1:801);
eval(['load c:\matlab\beamdata\',flnm,'d.mat']);
yd = 02i1(1:801);

9P d@ dP df df
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elseif £1 < 220,
= 8% (fix(£1)-120)+((£1-£ix(£1))/0.125)+1;

eval(['load c:\matlab\beamdata\',flnm,'b.mat']);
yb = 0211(1 801);
eval(['load c: \matlab\beamdata\ flnm, c.mat']);
yc = 0211(1 801);
eval(['load c:\matlab\beamdata\',flnm, 'd.mat']);
yd = 02i1(1:801);

elseif £f1 < 320,
a = 8%x(fix(£1)-220)+((f1-£fix(£1))/0.125)+1;
eval(['load c:\matlab\beamdata\',flnm, 'c.mat']);
yc = 02i1(1:801);
eval(['load c:\matlab\beamdata\',flnm,'d.mat’']);
yd = 02i1(1:801);

else
a = B%(fix(£1)-320)+((£f1-fix(£1))/0.125)+1;
eval(['load c:\matlab\beamdata\',flnm, 'd.mat’']);
yd = 02i1(1:801);

end

Data length based on frequencies

if £2 <= 120,
b = 8*(f1x(f2) -20)+((£f2- f1x(f2))/0 125)+1;
Y = va(a:b);
elseif £2 <= 220,
b = 8x(fix(£2)-120)+((£f2-£fix(£2))/0.125)+1;
if £f1 < 120,
= [ya(a:801);yb(2:b)};
else
Y = yb(a:b);
end
elseif £2 <= 320,
b = 8x(fix(£2)-220)+((£2-£fix(£2))/0.125)+1;
if £1 < 120,
Yy = [ya(a:801);yb(2:801);yc(2:b)];
elseif f1 < 220,
= [yb(a:801);yc(2:b)];
else
Y = yc(a:b);
end
else .
b = 8*x(fix(£2)-320)+((£2-£ix(£2))/0.125)+1;
if £1 < 120,
y = [ya(a:801);yb(2:801);yc(2:801);yd(2:b)];
elseif f1 < 220,
Y = [yb(a:801);yc(2:801);xd(2:b)];
elseif f1 < 320
= [yc(a:801);yd(2:b)];
else
Yy = yd(a:b);
end
end
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dP P oP

dP dP oP

P P df

Calculate the model FRF
. bmmodel % calculate k and m matrices
if=ri;(row,2) "= 0,
Translation accelerometer adjust

for w = £fl1:inc:£f2,

wl = 2%pi*w; % convert hz to rad/sec
z =k - wl™2xm;
h = inv(z);
he(i) = h(row,co0l)/386.04; % unit correction
y (i) = y(i)/(w1"2); % unit correction
i = i+1;
end
else % Angular accelerometer adjust
for w = fl:inc:£f2,
wl = 2*pi*w;
z = k-wl™2%*m;
h = inv(z);
he(i) = h(row,col); % 10* : due to TAP gain
y(i) = y(i)/(10%(wi"2)},
i = i+l;
end

end
Plot results

Plot coordinate scale
w=fl:inc:£2;
hedb = log(he)/log(10);
ydb = log(y)/log(10);
plot(w,hedb, '~ - ,w,ydb,'g’')
xlabel('Frequency (hz)')
ylabel('in/1bf (log of)')

160




dP dP JF dP P dP dP 9P dP JIP dP JIP JP JIP JP dP

DAMP .M

Damping data of beam experiment.
Results were obtained by the half power point method

Format: zetal (first mode)
zeta2 thru zeta5 (2nd thru 5th modes)

zeta is a 10x5 matrix
zeta = 2z11 z13 215 2z17 z19
z21 zZ3 z25 227 z29

2101 2103 2105 2107 2109

z1l = [.0146 .0127 .0042 .0051 .0035];
z2 = [.0185 .0102 .0042 .0127 .0043];
z3 = [.0167 .0063 .0034 .0169 .0048];
z4 = [.0184 .0081 .0038 .0153 .0043];
z5 = [.0184 .0106 .0038 .0047 .0045]);
z6 = [.0167 .0144 .0042 .0059 .0045];
z7 = [.0166 .0147 .0042 .0102 .0060];
z8 = [.0146 .0129 .0055 .0127 .0048];
z9 = [.0146 .0120 .0055 .0047 .0046];
z0 = [.0167 .0064 .0042 .0047 .0052];

zetal = [21;22;23;24;25;26,;27;28;29;20];

zl = [.0016 .0023 .0000 .0018 .0102];
z2 = [.0019 .0023 .0000 .0018 .0102];
z3 = {.0016 .0031 .0000 .0018 .0104];
z4 = [.0016 .0023 .0088 .0016 .0066];
25 = [.0033 .0000 .0000 .0090 .0063];
z6 = [{.0016 ~"23 .0018 .0019 .0111];
z7 = [.0016 (23 .0148 .0016 .0105];
z8 = [.0016 " 18 .0000 .0017 .0113];
z9 = [.0016 .0023 .0047 .0014 .0107];
z0 = [.0016 .0020 .0127 .0018 .0092];

zeta2 = [21;22;23;24;25;26;27;28;29;20];

21 = [.0032 .0054 .0041 .0039 .0029];
z2 = [.0038 .0054 .0046 .0048 .0030];
z3 = [.0060 .0034 .0044 .0033 .0015];
z4 = [.0035 .0050 .0050 .0047 .0015];
z5 = [{.0075 .0048 .0048 .0032 .0021}];
z6 = [.0027 .0034 .0039 .0068 .0020];
z7 = [.0076 .0050 .0046 .0023 .0022];
z8 = [.0068 .0050 .0031 .0048 .0028];
z9 = [.0072 .0051 .0046 .0022 .0033];
z0 = [.0071 .0050 .0031 .0023 .0028];

zetad = [21;22;23;24;25;26;27;28;29;z01;
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zl = [.0017 .0017 .0053 .0018 .0023];
z2 = [.0019 .0019 .0044 .0022 .0023];
z3 = [.0021 .0014 .0051 .0011 .0018];
z4 = [.0019 .0021 .0061 .0019 .0017];
25 = [.0000 .0000 .0000 .0000 .0000];
z6 = [.0017 .0021 .0025 .0018 .0016];
z7 = [.0022 .0017 .0000 .0015 .0019];
z8 = [.0023 .0022 .0000 .0019 .00231];
z9 = [.0023 .0018 .0000 .0015 .00211;
z0 = [.0023 .0018 .0000 .0015 .00211;
zetad = [21;22;23;24;25;26;27;28;29;2z0];
%
zl1 = [.0013 .0009 .0010 .0014 .0012);
z2 = [.0013 .0010 .0012 .0007 .0013);
z3 = [.0016 .0010 .0008 .0012 .0017];
z4 = [.0014 .0011 .0009 .0009 .0017];
z5 = [.0016 .0005 .0007 .0011 .0014];
z6 = [.0015 .0009 .0008 .0010 .0016];
z7 = [.0014 .0006 .0008 .0011 .0013];
z8 = [.0014 .0009 .0015 .0009 .0011];
z9 = [.0014 .0005 .0009 .0011 .0010];
z0 = [.0014 .0007 .0012 .0013 .0011];

zetaS = [21;22;23;24;25;26;27;28;29;20];

162




dP P IP  dP JdP P dP JP JP dP JP P OF JP JP JP JF 0P ¢P

9P JP dP JP d¢ dP

9P dP JP oP

9P df JP

Input data from half power calculations

CMATRIX.M

Purpose:
Produce a damping matrig from damping data

Inputs:

Zeta: DAMP.M

K,M Matrices: BMERR.M and BMMODEL.M
Outputs:

Damping Matrix
Input zeta and determine an average value

damp

z2(1) = sum(sum(zetal)')/50; % 1lst Mode average value
z(2) = sum(sum(zeta2)')/50; % 2nd Mode average value
z(3) = sum(sum(zeta3)')/50; % 3rd Mode average value
z(4) = sum(sum(zetad)')/50; % 4th Mode average value
z(5) = sum(sum(zeta5)')/50; % 5th Mode average value

Determine eigenvalues and eigenvectors

Stiffness and Mass matrices are assumed to have been
previously initialized from a previous statement

(phi,lam] = eig(kl,ml); % Sort in ascending order
[lambda,cntr] = sort(diag(lam));
phi = phi(:,cntr);

Mass normalized the eigenvector

phi = phi/sqrt(phi'*ml*phi);

lambda = lambda(3:7,:); % Keep first five modes
phi = phi(:,3:7);

lamzeta = zeros(5); % develope 2*zeta*omega matrix

for i = 1:5,

lamzeta(i,i) = 2*z(i)*sqrt(lambda(i));
end

Calculate final damping matrix

¢ = ml * phi * lamzeta * phi' * ml;
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APPENDIX D
MISSING OSET ANALYSIS

As discovered in Section 1V, expected peak values of the
localization matrix and the impedance error associated with
the OSET frequencies, were missing for the inner elements of
the localization and impedance error matrices.

Evaluation of the various models to determine which OSET
frequencies are missing is a good starting point for this
analysis. Tables D-1 thru D-4 will summarize the peak values
of the "1,1", "2,2", and "3,3" elements of the localization
and impedance error matrices using various combinations of
analytical and test models. The summary will also include the
effects of extraction and IRS reduction.

The tables will list the actual peak frequencies. A
dashed line indicates the specific frequency peak'is not

expected (and did not occur).
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TABLE D-1: IDEAL VS. EXPERIMENTAL

Ideal Beam Model
Experimental Data

Analytical System:
Test System:

Extraction Reduction IRS Reduction

L1a L22 L3 L1a L22 L33
29.90 29.90 29.90 29.90 29.90 29.90
81.20 81.20 81.20 81.20 81.20 81.20

155.90 155.90 155.90 155.90 155.90 155.90
209.92 Missing | Missing | ---=== | —===== | —==e—-
244.90 244.90 244.90 | ——=-== | —meeee | mmee——e
258.30 258.30 258.30 258.30 258.30 258.30
327.96 327.96 Missing | ===-=== | ==ceec | cccce-

Impedance Error Matrix (hz)
Extraction Reduction IRS Reduction
dzll dz dz dz dz dz
22 33 11 22 33

29.90 29.90 29.90 | --=-——- -— -
81.20 81.20 81.20 | ====== | o= | e
155.90 155.90 155.90 | ====== | —=ccee | coc-ee-
209.92 Missing | Missing | ====== | e=ceece | —ceec--
210.25 Missing | Missing | 210.25 Missing | Missing
244.90 244.90 244.90 | ====== | m;eeee | e
245.05 245.05 245.05 245.05 245.05 245.05
258.30 258.30 258.30 | ====== | scemee | memeee
327.96 327.96 Missing | =~==== | —eccceec | e
329.50 329.50 Missing | 329.50 329.50 Missing
387.80 387.80 387.80
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TABLE D-2: CASE I VS. IDEAL
Analytical System: Flawed Model (Case I)

Test System: Ideal Beam Model
Extraction Reduction IRS Reduction
L11 L22 L33 L11 L22 L33
29.07 29.07 29.07 29.07 29.07 29.07
79.96 79.96 79.96 79.96 79.96 79.96

157.14 157.14 157.14 157.14 157.14 157.14
172.60 172.60 172.60 - | e—_———
225.34 225.34 225.34 | —=mmwe | ceemee | cmmeea
259.39 259.39 259.39 259.39 259.39 259.39
265.46 265.46 265.46 | =e=mmme | cceeen | mmeeea
354.07 354.07 354.07 | ~==emee | cmmmee | e
387.85 387.85 387.85 387.85 387.85 387.85

Impedance Error Matrix (hz)

Extraction Reduction IRS Reduction

4231 4222 dz33 4233 dz2 | 9233
172.60 172.60 172.60 | —===== | —mecen | mmee—-
209.92 Missing | Missing 209.92 Missing | Missing
225.34 225.34 225.34 | -=-m== | cmmmee | meeee-
244.90 244.90 244.90 244.90 244.90 244.90
265.46 265.46 265.46 | ~===e= | e | mmmeee
327.96 327.96 Missing | 327.96 327.96 Missing

354.07 354.07 354.07 | ~——=== | comecece | —meee-




TABLE D-3:

CASE I VS. EXPERIMENTAL

Analytical Model:
Test System:

Flawed Model (Case I)

Impedance Error (hz)

Extraction Reduction

Experimental Data
Extraction Reduction " IRS Reduction

L1y L22 L33 L1y L22 L33
29.90 29.90 29.90 29.90 29.90 29.90
81.20 81.20 81.20 81.20 81.20 81.20
155.90 155.90 155.90 155.90 155.90 155.90
172.60 172.60 172.60 | =~====e | cmceen | —m-——-
225.34 225.34 225.34 | ~=m=m= | mmmmee | e
258.30 258.30 258.30 258.30 258.30 258.30
265.46 265.46 265,46 | —=m=mw= | cmmcee | emeea-
354.07 354.07 354.07 | =====e | cmmcae | cmeee-
387.80 387.80 387.80 387.80 387.80 387.80

IRS Reduction

dzy; | 9222 dz33 4233 dz22 dz33
29.90 29.90 29.90 | ~——mem | mmmmee | e
81.20 81.20 81.20 | —==eem | cmmeee | e
155.90 155.90 155.90 | —==—me | cmmaee | oo
172.60 172.60 172.60 | ———=m= | cmmmee | oo
209.92 Missing | Missing 209.92 Missing | Missing
225.34 225.34 225.34 | ——ceem | mmmmee | e
244.90 244.90 244.90 244.90 244.90 244.90
265.46 265.46 265.46 | ~=—mee | ccdman | meeee-
327.96 327.96 Missing 327.96 327.96 Missing
354.07 354.07 354.07 | === | cmmm—n | e
387.85 387.85 387.85 | ~=———ee | cmmmae | e




F........l..l.-IllIIlIIIIIIIIIIIIIIIIIIII-I--------t*

TABLE D-4: CASE I VS. CASE II

Flawed Model (Case I)
Flawed Model (Case II)

Analytical Model:
Test System:

Extraction Reduction

IRS Reduction

L1 L22 L33 L11 L22 L33
29.56 29.56 29.56 29.56 29.56 29.56
81.32 81.32 81.32 81.32 81.32 81.32

159.94 | 159.94 | 159.94 | 159.94 | 159.94 | 159.94
172.60 | 172.60 | 172.60 | ==--== | —ceeee | coeeeo
225.34 | 225.34 | 225.34 | —~—mec | coeem | coeee-
263.26 | 263.26 | 263.26 | 263.26 | 263.26 | 263.26
265.46 | 265.46 | 265.46 | -=———- | —meeem | —oceeo
354.07 | 354.07 | 354.07 | --==—= | =mmmee | —cmmeeo
396.23 | 396.23 | 396.23 | 396.23 | 396.23 | 396.23

Impedance Error (hz)

Extraction Reduction IRS Reduction
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dz44 dz,, dz3q dz44 dz,, dz;3
172.60 172.60 172.60 | —-—==== | —ce=mmee | mmee——
213.03 213.03 213.903 213.03 213.03 213.03
225.34 225.34 225.34 | —===mm | cmmmee ] meeee-
246.12 246.12 246.12 246.12 246.12 246.12
265.46 265.46 265.46 | ———-—= | —emmee | ceee—-
333.20 333.20 333.20 333.20 333.20 333.20
354.07 354.07 354.07




Table D-1 reveals missing OSET frequency peaks associated
with the ideai beam model and the experimental test data.
Table D-2 shows missing OSET frequency peaks associated with
the ideal beam model. Case I flawed beam finite element model
displayed all the expected OSET frequency peaks. The results
of Table D-3 are the same as Table D-2 with the exception that
the experimental test data is used vice the ideal beam model.
Table "-4 involves a structural identification between the
case I and case II flawed beam finite element models. All
expected eigenvalues appeared in the 1localization and
impedance error spectra plots.

Further information which is not detailed in this
appendix, is that the "4,4" element plots displayed the same
missing OSET frequency peaks as the "2,2" element, and the
"5,5" element contained all the expected OSET frequency peaks.
The "5,5" element plot corresponded to the "1,1" element plot.

The overall pattern indicates that some mechanism in the
ideal beam finite element model and the experimental data is
causing the missing OSET frequency peaks.

The next step is to ry to identify the mechanism using
the reduction process. Equation (2.34b) indicates that the
FRF is dependent on the inverse of the OSET partitioned
impedance matrix. Figures D-1 and D-2 plot the inverse of the
OSET partitioned impedance matrix over a frequency range from
20 to 420 hz for the ideal beam and Case II flawed beam finite

element models.
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All the expected OSET frequency peak values appear in
both figures. The next calculation is a plot of the product
of Zoa, Zao, and the inverse of the OSET impedance matrix.
Figures D-3 and D-4 display this product over the same
frequency range of 20 to 420 hz for the ideal beam and case II
flawed beam finite element models.

Figure D-3 displays missing OSET frequency peaks that
correspond to the missing peak values described in Tables D-1
and D-2. Figure D-4 contains all expected OSET frequency
peaks. The "1,1" element does have a frequency peak at 213.03
hz, it is not visible in this particular plot.

The missing OSET frequency peaks correspond to a
mechanism in the ideal beam model. Since the experimental
data closely resembles the ideal beam model, the same
mechanism is impacting both these results. The flawed beam
models do not exhibit the missing OSET frequency peak values.

The final conclusion is that since the product of the
partitioned impedance matrix described above is providing
missing OSET peak frequencies, the effects of a symmetrical
matrix is causing the missing OSET peak values. This
symmetrical matrix would result from a homogeneous beam finite
element model or structure. This conclusion is supported by
the lack of missing OSET peak values displayed in the flawed

finite element models which are heterogeneous.
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