
NASA Contractor Report 194904

ICASE Report No. 94-26 (I

°" I, CASE
cow
4 RUNTIME SUPPORT FOR DATA PARALLEL TASKS
I

DTIC
S ELECTESJUN 291994u

Matthew Haines
Bryan Hess •IC QuM ISPB0• 2•
Piyush Mehrotra
John Van Rosendale
Hans Zima

This docmijeat has bee aprv
for public rejecge aAd sale, its
distribution is •unjimit*.

Contract NAS 1-19480
April 1994 -!

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center = ..
Hampton, VA 23681-0001 ___

--- O

SOperated by Universities Space Research Association

94 6 28 054

Runtime Support for Data Parallel Tasks*

Matthew Hainest Bryan Hesst Piyush Mehrotra t

John Van Rosendalet
Hans Zimat

tInstitute for Computer Applications in Science and Engineering

NASA Langley Research Center, Mail Stop 132C
Hampton, VA 23681-0001

/haines, bhess,pn,jvr]J icase. edu

Institute for Software Technology and Parallel Systems
University of Vienna

Briinner Strasse 72, A-1210, Vienna, Austria
zima Opar. univie. ac. at

Abstract

We have recently introduced a set of Fortran language extensions that allow for
integrated support of task and data parallelism, and provide for shared data abstrac-
tions (SI)As) as a method for communication and synchronization among these tasks.
In this paper we discuss the design and implementation issues of the runtime system
necessary to support these extensions, and discuss the underlying requirements for
such a system. To test the feasibility of this approach, we implement a prototype of
the runtime system and use this to support an abstract multidisciplinary optimization
(MDO) problem for aircraft design. We give initial results and discuss future plans.

*This research supported by the National Aeronautics and Space Administration under NASA Contract
No. NASA-19480, while the authors were in residence at ICASE. NASA Langley Research Center. Hampton,
VA 23681.

1 Introduction

Most of the recent research effort in parallel languages and compilers has concentrated on
specification and exploitation of data parallelism in scientific codes. However, there are a
large number of scientific and engineering codes which exhibit multiple levels of parallelism.
Multidisciplinary applications are a good example of such codes. These applications, such
as weather modeling and aircraft design, integrate codes from different disciplines to solve
a larger and more complex problem. In general, the different discipline codes can execute
concurrently, interacting with each other only when they need to share data. In addition
to this outer level of task parallelism, the individual discipline codes often exhibit internal
data parallelism. For example, the design of an aircraft requires data parallel codes from
disciplines such as aerodynamics, propulsion, structural analysis, controls and so forth to
interact asynchronously while optimizing the design variables of the aircraft.

1)ata parallel language extensions such as High Performance Fortran (HPF) [17] and
Vienna Fortran [5] are adequate for the parallelism within individual discipline codes, but
do not provide any support for coordinating the execution and interaction of these codes.
We have recently designed a set of extensions to HPF which provide such support [6]. Along
with extensions to manage independently executing tasks, we have introduced a new mech-
anism, called Shared Data Abstractions (SDAs), to allow these tasks to share data with
each other. SDAs generalize Fortran 90 modules by including features from both objects in
object-oriented systems and monitors in shared memory languages. This provides a high-
level, controlled and clean interface for large grained parallel tasks to interact with each
other in a plug compatible manner.

In this paper, we concentrate on the design of a runtime support system to address
the specific needs of SDAs. In particular, we address two specific areas of design for SDA
runtime support: distributed data structure management and SDA method invocation (see
Figure 5). Distributed data structure management includes the distribution of SDA data
structures as well as the protocols for interfacing with distributed data structures in the
individual task codes. Method invocation includes the protocols for accessing and executing
SDA method functions based on the monitor semantics and condition clauses that can guard
every SDA method. The SDA runtime system is based on lightweight, user-level threads that
are capable of supporting both intra-processor and inter-processor communication primitives
in the form of shared memory, message passing, and remote service requests [161. This allows
the independently executing tasks and the SDA methods to share the underlying parallel re-
sources. Along with asynchronous communication between threads, the system also supports
collective communication among SPMD threads executing in a loosely synchronous manner,
such as those that might be produced by an HPF compiler for data parallel computation.
Since data parallel tasks need to communicate distributed data to each other, the runtime
system also supports communication between two sets of SPMD threads.

Other projects that focus on the integration of task and data parallelism include Fortran-
M [11, 12], DPC [27] and FX [28, 29]. Fortran-M and DP(J support mechanisms for estab-

1ms Avag a'adjo
Special

_ __A -J

lishing message plumbing between tasks, directly based on ports and an extension of C file
structures, respectively. In Fx, tasks communicate only through arguments at the time of
creation and termination. The runtime support systems for these efforts face some of the
same issues discussed in this paper. However, unlike the SDA runtime system described
here, these systems are not based on lightweight threads.

The remainder of the paper is organized as follows: Section 2 summarizes the For-
tran language extensions for supporting both task parallelism and shared data abstractions;
Section 3 outlines the runtime support necessary for supporting these extensions, with par.-
ticular respect to data distribution and method invocation issues; and Section 4 introduces
a prototype of the SDA runtime system, developed to test the feasibility of the SDA method
invocation design.

2 An Introduction to Shared Data Abstractions

In this section, we provide a short overview of the Fortran extensions we have designed to
support the integration of task and data parallelism. Full details of the these extensions can
be found in [6].

In our system, a program is composed of a set of asynchronous, autonomous tasks that
execute independently of one another. These tasks may embody nested parallelism, for
example, by executing a data parallel HPF program. A set of tasks interact by creating an
SDA object of an appropriate type and making the object accessible to all tasks in the set.
The SDA executes autonomously on its own resources, and acts as a data repository. The
tasks can access the data within an SDA object by invoking the associated SDA methods,
which execute asynchronously with respect to the invoking task. However, the SDA semantics
enforce exclusive access to the data for each call to the SDA, which is done by ensuring that
only one method of a particular SDA is active at any given time. This combination of task
and SDA concepts forms a powerful tool for hierarchically structuring a complex body of.
parallel code.

We presume that High Performance Fortran (HPF) [17] is to be used to specify the data
parallelism in the codes. Thus, the set of extensions described here build on top of HPF
and concentrate on management of asynchronous tasks and their interaction through SDAs.
Multidisciplinary optimization (MDO) problems form a natural target for integrating task
and data parallelism, as they are commonly formed by combining data parallel units from
various disciplines to form a single application. As an example, we introduce a simplified
MDO application for aircraft design that will highlight the need for supporting task parallel
constructs and communication between tasks using data structure repositories (SDAs).

2

FeSolver ý ý S~urfaceem FlowSolver

Figure 1: A sample MDO application for aircraft design

2.1 A Sample MDO Application

We now briefly desc.ribe a focus application: the simultaneous optimization of the aerody-
namic and structural design of an aircraft configuration. Though a realistic multidisciplinary
optimization of a full aircraft configuration would require a number of other discipline codes,
such as controls, we present this simplified version for the sake of brevity.

The structure of the program is shown in Figure 1 where the tasks are represented
by rectangles and the SDAs by ovals. The Optimizer is the main task and controls tile
execution of the entire MDO application. It creates three SDAs (StatusRecord, Sensitivities,
and SurfaceGeom) and makes them available to the other two tasks, FlowSolver and FeSolver,
as they are spawned.

The Optimizer initiates execution of the application by storing the initial geometry in
the SDA Surface.Geom. The FeSolver task generates a finite element model based on this
geometry and uses some initial forces to determine the structural deflections. These deflec-
tions are then stored in SurfaceGeom as a deflected geometry. The FlowSolver, meanwhile,
generates an aerodynamics grid based on the initial geometry and performs an analysis of
the airflow around the aircraft, producing a new flow solution.

In subsequent cycles, the FeSolver uses forces based on the current flow solultion to
produce new deformations, while the FlowSolver uses the deformed geometry and the pre-
vious flow solution to produce new solutions. This process is repeated until the FeSolver
determines that the difference between the new and old deflections is within some specified
tolerance. At this point, it places some output variables in the StatusRecord SDA. Both
FcSolvcr and FlowSolver also produce sensitivity derivatives and place them in the Sensitiv-
ities SDA. These represent the behavior of the output variables, such as lift and drag, with
respect to design variables, such as the sweep angle of the wing.

When, the inner iteration is completed, the Optimizer obtains the output variables and
the sensitivity derivatives and, based on some objecti v'e function that it is minimizing, decides
whether to terminate the program or to produce a modified base geometry. In the latter
case, it places the new geometry in the SurfaceGeom SDA, and the inner cycle is repeated.

3

SPAWN FlowSolver (SurfaceGeom, Sensitivities,...) ON resource-request

Figure 2: Code fragment spawning the FlouSolver task

2.2 Task Management

We now describe the HPF extensions required to create and manage tasks. These tasks are
units of coarse-grain parallelism executing in their own address space. They are spawned
by explicit activation of task programs, entities syntactically similar to a Fortran subroutine
(except for the keyword TASK CODE which is used instead of SUBROUTINE). The spawn
is non-blocking in that the spawning task continues its execution after the spawn. A task
terminates when its execution reaches the end of the associated task program code, or if it
is explicitly killed.

An example of how the Optimizer task could spawn the FlowSolver task is depicted
in Figure 2, where SurfaceGeom and Sensitivities are SDA objects which are passed as
arguments to the FlowSolver task.

Tasks operate on a set of system resources allocated to them at the time of their spawn-
ing, either through an explicit resource request (using an on clause as shown above) or as
defaults assigned by the system. A resource request has two optional parts: a machine spec-
ification and a processor specification. The machine specification can be used to specify a
particular physical machine or a class of machines. If a class of machines is specified, such
as Sun Sparc 10, then the system is free to choose one from a set of such machines. The
processor specification is used to select the set of processors on which the specified task will
execute. In either case, the user can request that the spawned task use part of the spawning
task's resources, or that the system should allocate new resources for the spawned task.

Tasks may have nested functional or data parallelism, where the former is embodied
by spawning other tasks, and the latter is specified using HPF directives. Thus, the task
code specification may include a PROCESSORS directive along with directives that specify
the distribution of data across these processors. It is then the compilers job to produce the
appropriate SPMD code for the data parallel task.

2.3 Shared Data Abstractions

An SDA type specification, modeled after the Fortran 90 module [2], consists of a set of
data structures and an associated set of methods (procedures) that manipulate this data.
The data and methods can be public or private, where public methods and data are directly
accessible to tasks which have access to an instance of the SDA type. Private SDA data and
methods can only be used by other data or methods within an SDA. In this respect, SDAs

4

SDA TYPE SGeoniType (StatusRecord)
SDA (StatRecType) StatusRecord
TYPE (surface) base
TYPE (surface) deflected

LOGICAL DeflectFull = .FALSE.
PRIVATE base, deflected, DeflectFull

CONTAINS
SUBROUTINE PutBase (b)

TYPE (surface) b
base = b
deflected = b
DeflectFull = .TRUE.

END

SUBROUTINE GetDeflected (d) WHEN DeflectFull
TYPE (surface) d
DeflectFull = .FALSE.
d = deflected

END

END SurfaceGeom

Figure 3: Code fragment specifying for the SurfaceGeom SDA

and their methods are similar to C++ classes and class functions [81.

As stated before, access to SDA data is exclusive, thus ensuring that there are no data
conflicts due to the asynchronous method calls. That is, only one method call associated
with an SDA object can be active at any time. Other requests are delayed and the calling
task blocked until the currently executing method completes.

Figure 3 presents a code fragment that depicts a portion of the type specification for the
SurfaceGeom SDA. The first part (before the keyword CONTAINS) consists of the internal
data structures of the SDA, all of which have been declared private here, and thus cannot be
directly accessed from outside. The second part (after the keyword CONTAINS) consists
of the procedure declarations which constitute the methods associated with the SDA.

Each procedure declaration can have an optional condition clause which "guards" the
execution of the method, similar to Dijkstra's guarded commands [7]. The condition clause

5

SDA (StatRecType) StatusRecord
SDA (SGeomType) SurfaceGeom
SDA (SensType) Sensitivities

CALL StatusRecord%INIT
CALL SurfaceGeom%IN IT(Status Record)
CALL Sensitivities%INIT

Figure 4: Declaration and initialization of SDA variables.

consists of a logical expression, comprised of the internal data structures and the arguments
to the procedure. A method call is executed only if the associated condition clause is true
at the moment of evaluation. If the condition clause evaluates to false, the corresponding
method call is enqueued until the expression evaluates to true, as a result of the SDA data
being modified by another method call. A method that is declared without a condition clause
will be assigned a default condition clause that always evaluates to true. For example, in
the above code, the calls to method GctDcflected will be executed only when DeflcctFull
is true. Thus, if a task calls GetDeflected before a call for PutBase, the former is blocked
until the latter is executed, ensuring that the variable deflected has an appropriate value.
(Condition clauses, therefore, provide a way to synchronize task interactions based on data
dependencies.

Similar to HPF procedure declarations, each SDA type may have an optional processors
directives which allows the internal data structures of the SDA to be distributed across
these processors. This is useful (or perhaps necessary) for SDAs that comprise large data
structures. The dummy arguments of the SDA methods can also be distributed using the
rules applicable to an HPF procedure.

An SDA variable is declared using syntax similar to Fortran 90 derived types. For
example, in our MDO application the Optimizer might declare the SDA variables as shown
in Figure 4, where Z is the operator used for member selection. As with any other global
variable, an SDA variable has to be initialized before it can be used. This is done using the

predefined methods INIT (as shown in Figure 4), which initializes the SDA by allocating
the internal data structures from the heap, or LOAD, which loads the data from secondary
storage. The corresponding SAVE method can be used by the programmer to save the
internal state of an SDA to secondary storage for later use. This allows SDAs to be persistent,
which is an important consideration for most MDO applications. An SDA may specify an
optional resource request, similar to the one used when spawning tasks, which is used to
specify the resources to be used for executing the SDA.

Having provided an initial overview of tasks and SDAs, we now examitne the issues
involved with providing runtime support for the SDA extensions. A detailed description of

6

the task and SDA extensions, including sample code for a similar MDO application, can be
found in [6]

3 SDA Runtime Support

If we take all abstract view of the SDA problem, we see that there are two basic types of
"tasks" that must be mapped to a set of physical resources: computation tasks, responsible
for executing the actual computations being performed, and SDA tasks, responsible for
executing the SDA methods and performing any resulting communication operations. Each
processor participating in a computation will be assigned at least one computation task, and
each processor participating in the storage of an SDA object will be assigned at least one SDA
task. Since multiple computations and SDAs may utilize the same (or overlapping) resources,
any given processor in the system might be responsible for the simultaneous execution of
multiple, independent tasks. Execution of these multiple tasks can be implemented on Unix-
based systems by mapping each task to a process, where each processor can execute multiple
processes in some fashion. However, this process-based approach has several drawbacks,
including

"* the inability to control scheduling decisions, since Unix processes are scheduled by the
operating system with little input from the user;

"* the inability to share addressing spaces between tasks, since each Unix process is
assigned its own address space. It is desirable for the SDA task to deliver data to the
computation task without involving the computation task;

"* costly context switching, due to the large amount of context associated with a (hcavy-
weight) Unix process; and

"* the inability to execute on systems that do not fully support multiple Unix processes
per processor, such as the nCUBE/2 [24], or systems running special microkernels
without process support, such as the SUNMOS kernel for the Paragon.

In light of the disadvantages of mapping our tasks to Unix processes, our approach is
to utilize lightweight, user-level threads to represent these various independent tasks. A
lightweight, user-level thread is a unit of computation with minimal context that executes
within the domain of a kernel-level entity, such as a Unix process or Mach thread. Lightweight
threads are becoming increasingly useful in supporting language implementations for both
parallel and sequential machines by providing a level of concurrency within a kernel-level
process. Threads are used in simulation systems [14, 261 to provide parallel events that
can be scheduled on a single processor, language implementations [20, 22, 25] to provide
support for coroutines, Ada tasks, or C++ method invocations, and generic runtime systems
[13, 15, 32] to support fine-grain parallelism and multithreading capabilities. Additionally,

7

SDA Runtime Interface

Distributed Data Structure Support Method Invocation Support

Chant: Communicating Threads

Communication Library Lightweight Thread Library
(e.g. MPI, p4, PVM, ...) I (e.g. pthreads, cthreads, ..

Figure 5: Runtime layers for SDA support

the POSIX committee has adopted a standard for a lightweight threads interface [18], and
many lightweight thread libraries have been designed and implemented for workstations and
shared memory multiprocessors [1, 3, 9, 19, 23, 30].

Lightweight threads offer significant advantages over heavyweight processes, including
full control over thread scheduling, shared addressing spaces among threads within the same
process, very fast context switching, and the ability to execute on systems that do not provide
multiprocess support. The main drawbacks of using threads to support our tasks are a lack of
portability and standardization, and a lack of support for distributed memory communication
primitives. The computation tasks will require point-to-point communication primitives
and SDA tasks will require both point-to-point and remote service request primitives to
communicate with tasks located in other memory spaces. For example, the computation
task may be an HPF module that contains send/receive primitives inserted by the compiler,
and an SDA task may need to execute a remote service request to fetch a piece of rernote
data. Our solution to these problems is to implement our SDA runtime support, as depicted
in Figure 5, atop a runtime interface called Chant [16] that we are currently developing.
Chant supports both a standardized interface for thread operations (as specified by the
POSIX thread standard [181) and communication among threads using either point-to-point
primitives (such as those defined in the MPI standard [10]) or remote service requests (such
as Active Messages [31]). A description of Chant, and its current status, can be found in
[16].

Figure 5 depicts the SDA runtimie system as being composed of two portions: one for
distributed data structure management and one for method invocation management. In the
next two sections we examine these portions in more detail.

3.1 Distributed Data Structures

In addition to the two types of threads being potentially mapped to each processor (com-
putation threads and SDA threads), there are two types of data structures that must be
distributed across the processors: computation data, which is any data structure defined
within a computation task, and SDA data, which is any data structure defined within an

8

PROGRAM main SDA TYPE SType
!HPF$ PROCESSORS P(M) !HPF$ PROCESSORS P(N)

SDA (SType) S ...
... CONTAINS

INTEGER A(1000) SUBROUTINE put (B)
!HPF$ DISTRIBUTE A(BLOC'K) INTEGER B(:)

CALL S%put(A) END put

END main END SType

Figure 6: SDA code excerpt

SDA. Since each type of data may be independently distributed over a set of processor mem-
ories, we must have a mechanism for transferring data between the two. We now illustrate
the issues that arise when data must be transferred from a distributed computation data
structure to a distributed SDA data structure. To illustrate the point, let's consider the
code excerpt in Figure 6, which declares an JAPF computation, main, on M processors, and

an SDA, S, distributed among N processors. The task main contains an array, A, that is
distributed by BLOCK across the same M processors that contain main. At some point, the
values from the distributed array A are used to update the SDA array, B, using the SDA
method put. Let's consider the issues that arise with different values of M and N.

If M and N are both greater than 1, then both main and S along with their data structures
are distributed. We will assume that main and S are each represented by a set of threads
distributed over the processors, and that each contains a "master" thread among the set,
which may be responsible for external coordination of the thread group. To execute the put
method, we have the following options for transferring the data from A to B:

1. The master thread from main collects the elements of A into a local scratch array, thef

sends it to the master thread for S, which distributes the values among S's remaining
threads, such that each thread updates its portion of B. This provides the simplest
solution in terms of scheduling data transfers, since only one transfer occurs, from

master thread of main to master thread of S. However, two scratch arrays and two
gather/scatter operations are required, consuming both time and space.

2. The master thread from main collects the elements of A into a local scratch array,

then negotiates with the master thread of S to determine how the scratch array is
to be distributed among the threads of S, considering B's distribution. After the ne-

gotiation, main's master thread distributes the scratch array directly to S's threads.
This approach eliminates one scratch array and the scatter operation, but introduces
a negotiation phase that is required to discern B's distribution.

9

PO P1 P2 P3

W SDA array of 8 elements with BLOCK distribution

U HPF array of 8 elements with CYCLIC distribution

Figure 7: Sample array distributions for HPF and SDA tasks

3. The master thread from main negotiates with the master thread of S, then informs the
other threads in main to send their portion of A to S's master thread. When the master
thread from S has received all of the messages and formed a local scratch array, the
array is distributed among the remaining threads in S. As with the previous scenario,
this approach eliminates a one scratch array and a gather operation at the expense of
a negotiation phase.

4. The master thread from main negotiates with the master thread of S, then informs
the other threads in main to send their portion of A to the appropriate threads in S,
according to the distribution of B. This approach eliminates both scratch arrays and
gather/scatter operations, but requires all threads from S and, main to understand each
others array distribution.

The complications in passing data from a computation task to an SDA are a result of
the different ways a particular data structure may want to be viewed. For example, consider
the situation in Figure 7, where an SDA array is distributed differently than an HPF array,
and we wish to update the SDA array with the values from the HPF array. To avoid scratch
arrays and gather/scatter operations among the HPF and SDA threads, each HPF thread
must know which array elements it owns locally, and where the corresponding SDA array
elements are located. Consider the HPF computation thread on P1, which owns elements
2 and 6 of the HPF array. After negotiations, it learns that element 2 of the SDA array is
located on processor PO and element 6 of the SDA array is located on processor P2, and can
then send the array elements to the processors directly.

Referring again to our example in Figure 6, we explore the special case of having either M
or N (or both) be restricted to 1. When N is 1, the SDA is executed on a single processor, and
all computation threads will send their array values to the single SDA processor. Likewise,
when M is 1, the computation array is stored on a single processor, and so a single compl)tation
thread will distribute the array to the SDA processors. When both M and N are 1, at most
a single message is needed to update the SDA array. We can summarize the support for
distributed SDA data structures as follows:

* The application will collect a set of hardware processing elements that will be used to
execute all computation and SDA threads, and on which to store all data structures.

10

" Each computation task will be represented by a group of computation threads, dis-
tributed over some set of processors. Any data structures belonging to the task will
also be distributed over the same set of processors, according to their respective dis-
tribution directives.

"* Each SDA will be distributed over some set of processors, where the presence of an
SDA on any given processor is evidenced by some set of distributed data and an SDA
thread responsible for that data.

"* Each thread group will identify a "master" thread that can act as a negotiator for the
entire thread group on issues such as determining data distribution.

"* Multiple computation and SDA threads on the same processor will be executed ill
an interleaved fashion, according to the scheduling policy of the thread system and
the "readiness" of the threads. Priorities can be used to influence thread scheduling
decisions. For example, when a message arrives for an SDA thread, it may assume
higher priority than the other computation threads, allowing it to handle the message
at the next scheduling opportunity.

This level of complexity in data structure management is necessary to accommodate
the various modules which comprise an MDO application, since each module is typically
developed independently of the others and wishes to view the same data in a different
format or distribution. In addition to remapping a data structure from one distribution to
another, the SDA may be required to change the dimensionality of a data structure or to
filter the data using some predefined filter. The methods outlined above will accommodate
all of these requests.

3.2 SDA Method Invocation

Referring once again to Figure 5, we now discuss the runtime issues involved with SDA
method invocation. The semantics of SDAs place two restrictions on method invocation:

1. each method invocation has cxclusive access to the SDA data (i.e. only one method
for a given SDA object can be active at any one time), and

2. execution of each method is guarded by a condition clausc, which is an expression that
must evaluate to true before the method code can be executed.

We can view an SDA as being comprised of two components: a control structure, which
executes the SDA methods in accordance with the stated restrictions, and a set of SDA data
structures. In the previous section we addressed with the issues arising due to distributed
SDA data structures. We now address the issues regarding SDA control structure and method
invocation.

11

At this point, our design only supports a centralized SDA control structure, represented
by a single master thread on a specified processor. All remaining SDA processors will host
worker threads, which take part in the method execution when instructed by the master
thread. Allowing for distributed control of an SDA would require implementing distributed
mutual exclusion algorithms, such as [21], to guarantee the monitor-like semantics of SDAs.
and is a point of interest for future research.

Mutually-exclusive access to the SDA in the current design, is guaranteed by the fact
that each SDA is controlled by a single master thread. When an SDA method is invoked
by a thread executing on a different processor a message is sent to the processor executing
the SDA master thread with a request to invoke the method. The calling task then waits
for the reply. Since the SDA master is located on a single processor, and all actual method
invocations are performed by the master, we maintain the monitor-like semantics of SDA
method invocation.

Having established the master-worker organization of the SDA control structure, we
can now describe a simple mechanism for ensuring that the second restriction is enforced.
Each SDA method has an associated boolean condition function representing the condition
expression specified by the programmer. When an SDA master receives a request to execute
a method, its condition function is first evaluated to see if the condition is true and, if not,
the method is enqueued and another request is handled. Whenever a condition function
evaluates to true, the associated method is invoked, after which the condition functions for
any enqueued methods are examined to see if their conditions have changed. When no more
enqueued method conditions evaluate to true, a new method invocation request is processed.
Starvation is prevented by ensuring that any enqueued method whose condition has changed,
is processed before a new method request. Fairness is determined by the order in which
enqueued method conditions are evaluated, which is under the programmer's control.

4 A Prototype Implementation

We now describe a prototype implementation of the SDA runtime system for method invo-
cation. At this point, all data structures are allocated to a single processor, and the SDA
control structure is centralized. The prototype is built using C++ and is currently running on
a cluster of workstations, supported by the p4 [4] portable primitives for parallel execution.
To test the feasibility of our method invocation design, we have successfully implemented
and executed two SDA programs using this prototype: a simple stack manipulation program
and the MDO application for aircraft design introduced in Section 2.1.

To explain the details of our prototype implementation, we present the SDA stack
example, which provides several public methods, such as push, pop, and top. Each method is
guarded by a condition clause to ensure that the stack does not overflow or underflow. For
example, the pop and top methods may only be invoked when the stack is non-empty, while
the push may only be executed so long as the stack is not at its maximum size. If a task

12

TYPE SDA-stack-pop-stub 0
{

send-message-to-SDA (POP)
receive-message-from-SDA (result)

return(result)

bool SDA-stack-pop-condition 0)

return (stack-height > 0)

generic SDA-stack-pop-method()

result = pop-from-private-stack ()
return (result)

Figure 8: Three functions needed to implement the SDA stack method pop

thread sends a request to pop an empty stack, the condition clause will evaluate to false and
the method will be enqueued until the condition clause can be satisfied. When (perlhaps at
a later time) another task thread sends a push request to the same stack and, assuming the
stack is not full, its condition clause will evaluate to true, the push will be executed, and an
acknowledgment returned to the caller. The condition for the blocked pop will now evaluate
to true since the stack is now non-empty, and the resulting value returned to its caller in an
acknowledgment message.

Each SDA method is compiled into three functions:

1. the method function, which embodies the method code itself as specified by the'pro-
grammner,

2. the condition function, which is a boolean function that evaluates the guarded condition
clause, and

3. the stub function, which provides the method's public interface to the task threads and
is used to access the SDA method function from a remote processor.

Figure 8 depicts the pseudocode for the SDA stack method pop. When a task makes a
method call, it is actually invoking the stub routine for the specified method, which marshals
the arguments into a buffer, sends a generic message to the SDA master, and awaits a reply.
Each message consists of (1) the name of the method to be invoked, (2) the callers address
(used for the reply message), and (3) the method arguments.

13

qhfsqO]Jmethodplr

qlistlO!.condptr mnt push(void*) qentry qentry qentry
int push condition()i

qlist[O] POP
qhist[O I I PUSH

qlist[210 0 0, TOP P POP

qhst[3l ret addr ret addr

message-rec message-rec

void args void args

Figure 9: The queue list data structure used in the stack SDA prototype

Each SDA master is a thread which waits for messages from task stubs and takes
appropriate action as specified by the message. The master incorporates a data structure
analogous to that shown in Figure 9 for the stack SDA. The data structure consists of a list
of queues, one for each method, and associated with each method queue are pointers to its
condition and method functions. Both functions are called using the single generic argument
pointer that was created by the stub code and sent with the method invocation request. The
condition function always returns a boolean, whereas the method function returns a generic
value that is sent back to the stub function. Along with pointers to the method and condition
functions, each method queue also contains a list of outstanding method invocation requests,
represented by the message received from the stub routine.

The algorithm in Figure 10 depicts the main loop of the SDA master. On receiving a
message from a task stub routine, the SDA master executes the associated condition function
to determine if the method can be executed. If the condition function returns false, the
method is enqueued in the appropriate list. Otherwise, the associated method function is
executed and the results returned to the caller through the stub routine. Since the execution
of any method may change the SDA state, the condition functions associated with any
enqueued SDA methods are reevaluated and the methods whose conditions evaluate to true
are executed. This reevaluation of condition functions is repeated until no further methods
can be executed, at which time t:-e master continues waiting for further messages from stub
routines.

14

sda-master()
{

do forever

m = wait-for-message 0;

if (m.condition (m.arg) true)
{

result = m.method (m.arg);
return-result-to-caller (result, m.caller);
repeat
{

for each method queue do
{

while condition of queue i is true
{

m = get-first-method-in-queue (i)
result = m.method (m.arg)
return-result-to-caller (result, m.caller)

}
}

} until no methods are executed in a single pass
}
else

enqueue-message (m);

Figure 10: Pseudocode for the main loop of an SDA master

4.1 Preliminary Results

In order to quantify the overhead of our method invocation design, we performed the follow-
ing experiment:

1. We first measured the round-trip message delay of our network using p4. This provides
the basis for comparing our other results, since in all cases a single message is passed
from the calling stub to a master thread, and back to the calling stub.

2. Next, we encoded a version of our SDA stack routines using a simple remote procedure
call mechanism, but without the complicated SDA master algorithm and queue struc-
tures. This is done by performing a sequence of pushes and pops without checking
for underflow/overflow conditions. Since our SDA method must do at least this much
work, this test represents a lower bound to the execution of our SDA stack.

15

3. Next, we timed our prototype SDA implementation performing a series of alternating
pushes and pops. However, although the conditions are evaluated for each method.
they always evaluate to true and so we never enqueue any methods. This test is
designed to highlight the overhead associated with packing and unpacking messages
from the stubs and evaluating condition routines.

4. Finally, we timed our SDA stack prototype using a series of alternating pushes and
pops, but this time we simulate each method function evaluating false on the first
time, true on the second. This forces the SDA master to enqueue the arriving method,
then retrieve the method, re-evaluate its condition function, and finally complete its
execution. This test is designed to measure the overhead associated with manipulating
the method queues.

Each of the four tests consisted of multiple trials of 10,000 complete method calls, and
each" trial was timed (including message delays) to determine the average time required for a
method call (or a round-trip message in the case of test #1). The different trials were then
averaged together to achieve confidence intervals of 95%. All tests were performed under
similar conditions on a set of Sun Sparcstation 10 workstations with low traffic.

The outcome of the tests, presented in Figure 4.1, yield the following empirical results:

"* the basic RPC mechanism adds only 1.7% overhead to the basic round-trip message
time (test #1 vs. test #2), where the relative overhead of test #2 to test #1 is
computed as: (tts,#2 - tt,,#l)/ttst#1. Remaining overheads are computed similarly.

"* the overhead for marshaling messages and executing condition functions adds only
1.7% overhead to the basic RPC mechanism (test #3 vs. test #2), which is 3.4%
overhead as compared with the basic round-trip message time (test #3 vs. test #1);

"* the overhead for manipulating the method queue structures is 2.3% (test #4 vs. test
#3), so the overhead for the entire SDA method invocation mechanism adds only 4.0%
overhead to the basic RPC mechanism (test #4 vs. test #2), which is only 5.8%
overhead when compared with round-trip message time (test #4 vs. test #1).

We acknowledge that some overheads may be obscured by the large round-trip message
latency of the p4 package, and that a leaner message passing interface may yield higher
overheads, and we are currently in the process of porting our prototype to other platforms,
such as the Paragon. We plan to report on these results in the final version of this paper.

5 Conclusions and Future Research

We have introduced a mechanism for integrating task and data parallelism by extending the
HPF definition with a set of primitives for defining and controlling parallel tasks and shared

16

Time for each test (with 95% confidence intervals)

Test 1: p4 round-trip
Test 2: simple RP(' using p4

Test 3: SDA without method queue

18.8 Test 4: SDA with method queue

18.6

T

S 18.4
U

S' 18.2
S-T

C6

18

0
U
Wi

-. 17.8

•... 17.6

17.4 1
17.2

17
0 1 2 3 4 .

Test

data abstractions (SDAs). We focus on the runtime support necessary to support such a
system, and provide design details for the two segments of the runtime support: distributed
data structures and method invocation using monitor and guarded condition semantics.

In particular, we describe the implementation of our method invocation design as a C++
prototype capable of executing SDA and task codes with centralized SDA control and data
structures. Using this prototype we have implemented and executed two systems employing
task parallelism and SDAs: a simple stack program which performs randomized pushes and
pops, and a multidisciplinary optimization (MDO) application for aircraft design. Both
codes execute on a cluster of workstations using p4 as the communication library.

Using our prototype implementation, we have measured the expected overhead of our
method invocation design and have found that our design adds little overhead to a stripped-
down RPC version of the same test, which we feel is a realistic lower bound for remote
method invocation. We plan to expand our results on the overheads of method invocation
for the final version of the paper.

17

We are currently in the process of incorporating the C(hant runtime system into our
prototype, which will give us the capability to exercise our distributed SDA data structure
designs, as well as full support of our parallel tasks and portability to a large number of
platforms, including the Paragon and KSR-1. From the experiences and results of our
prototype, we are making modifications to the SDA syntax and semantics, and are working on
a source-to-source translator that will take HPF programs augmented with our SDA syntax
and produce code that will execute on distributed memory multiprocessors and workstation
clusters. Finally, we are working with several applications groups to develop realistic MDO
codes that will provide the true test of our designs.

References

[1] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy.
Scheduler activations: Effective kernel support for the user-level management of paral-
lelism. In ACM Symposium on Operating Systems Principles, pages 95-109, 1991.

[2] S. Benkner B. Chapman, and H. Zima. Vienna Fortran 90. In Scalable High Perfor-
mance (7omputing Confercnce, pages 51-59, Williamsburg, VA. April 1992.

[3] Brian N. Bershad, Edward D. Lazowska, Henry M. Levy, and David B. Wagner. An
open environment for building parallel programming systems. Technical Report 88-01-
03, Department of Computer Science, University of Washington, January 1988.

[4] Ralph Butler and Ewing Lusk. User's guide to the p4 parallel programming system.
Technical Report ANL-92/17, Argonne National Laboratory, October 1992.

[5] Barbara C(hapman, Piyush Mehrotra, and Hans Zima. Programming in Vienna Fortran.
Scientific Programming, l(1):31-50, 1992.

[6] Barbara M. Chapman, Piyush Mehrotra, John Van Rosendale, and Hans P. Zima.
A software architecture of multidisciplinary applications: Integrating task and data
parallelism. ICASE Report 94-18, Institute for Computer Applications in Science and
Engineering, Hampton, VA, March 1994.

[7) E. W. Dijkstra. Guarded commands, non-determinacy and formal derivation of pro-
grams. Communications of the ACM, 18(8):453-457, August 1975.

[8] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley, 1990. ISBN 0-201-51459-1.

[9] Edward W. Felton and Dylan McNamee. Improving the performance of message-passing
applications by multithreading. In Proceedings of the Scalable High Performance Com-
puting Conference, pages 84-89, April 1992.

18

[10] Message Passing Interface Forum. Document for a Standard Message Passing Interfaca,
draft edition, November 1993.

[111] . Foster, M. Xu, B. Avalani, and A. Choudhary. A compilation system that integrates
High Performance Fortran and Fortran M. In SHPCC, May 1994.

[12] I. T. Foster and K. M. Chandy. Fortran M: A language for modular parallel pro-
gramming. Technical Report MCS-P327-0992 Revision 1, Mathematics and Computer
Science Division, Argonne National Laboratory, June 199:3.

[13] Ian Foster, Carl Kesselman, Robert Olson, and Steven Tuecke. Nexus: An interoper-
ability layer for parallel and distributed computer systems. Technical Report Version
1.3, Argonne National Labs, December 1993.

[14] Dirk Grunwald. A users guide to AWESIME: An object oriented parallel programming
and simulation system. Technical Report CU-CS-552-91, Department of Computer
Science, University of Colorado at Boulder, November 1991.

[15] Matthew Haines and Wimr B6hm. On the design of distributed memory Sisal. Journal
of Programming Languages, 1:209-240, 1993.

[16] Matthew Haines, David Cronk, and Piyush Mehrotra. On the design of Chant: A
talking threads package. ICASE Report 94-25, Institute for Computer Applications in
Science and Engineering, NASA Langley Research Center, Hampton, VA 23681, April
1994.

[17] High Performance Fortran Forum. High Performance Fortran Language Specification,
version 1.0 edition, May 1993.

[18] IEEE. Threads Extension for Portable Operating Systems (Draft 7), February 1992.

[19] David Keppel. Tools and techniques for building fast portable threads packages. Tech-
nical Report UWCSE 93-05-06, University of Washington, 1993.

[20] Jenq Kuen Lee and Dennis Gannon. Object oriented parallel programming experiments
and results. In Proceedings of Supercomputing 91, pages 273-282, Albuquerque, NM,
November 1991.

[21] Mamoru Maekawa. A N algorithm for mutual exclusion in decentralized systems.
A CM Transactions on Computer Systems, :3(2):145-159, May 1985.

[22] Frank Mueller. A library implementation of POSIX threads under UNIX. In Winter
USENIX, pages 29-41, San Diego, CA, January 1993.

(23] Bodhisattwa Mukherjee, Greg Eisenhauer, and Kaushik Ghosh. A machine independent
interface for lightweight threads. Technical Report CIT-CC-93/53, College of Comput-
ing, Georgia Institute of Technology, Atlanta, Georgia, 1993.

19

[24] nCUBE, Beaverton, OR. nCUBE/2 Technical Overview, SYSTEMS. 1990.

[25] Carl Schmidtmann, Michael Tao, and Steven Watt. Design and implmentation of a
multithreaded Xlib. In Winter USENIX, pages 193-203, San Diego, CA, January 1993.

[26] H. Schwetman. CSIM Reference Manual (Revision 9). Microelectronics and Computer
Technology Corperation, 9430 Research Blvd, Austin, TX. 1986.

[27] B. Seevers, M. J. Quinn, and P. .. Hatcher. A parallel programming environment
supporting multiple data-parallel modules. In Workshop on Languages, Compilers and
Run-Time Environments for Distributed Mmeory Machines, October 1992.

[28] J. Subhlok and T. Gross. Task parallel programming in Fx. Technical Report (,MIT-
CS-94-112, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
.15213, 1994.

[29j J. Subhlok, J. Stichnoth, D. O'Hallaron, and T. Gross. Exploiting task and data paral-
lelism on a multicomputer. In Proceedings of the 2nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, San Diego, CA, May 1993.

[:30] Sun Microsystems, Inc. Lightweight Process Library, sun release 4.1 edition, .January
1990.

[311 Thorsteii von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser.
Active messages: A mechanism for integrated communications and computation. In
Proceedings of the 19th Annual International Symposium on Computer Architecture,
pages 256-266, May 1992.

[32] Mark Weiser, Alan Demers, and Carl Hauser. The portable common runtime approach
to interoperability. ACM Symposium on Operating Systems Principles, pages 114-122,
December 1989.

20

I

Form Approved

REPORT DOCUMENTATION PAGE OMB No 0704-0188
Public reporting burden for this collection of information is estimated to average I hour per response. including the time for reviewing instructions, searchmin existing data sources

Xatherng and maintaining the data needed. and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this
collec t on of information. including• suggestions for reducing this burden. to Washington Headquarters Services, Directorate for Information Operations and Reports. 12 2t' Jefferson
Davis Highway, Sutte 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-018J8). Washmrigon, DC 20S0I

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I April 1994 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

RUTNTIME SUTPPORT FOR DATA PARALLEL TASKS
(' NASI-1I480
WU 505-90-52-01

6. AUTHOR(S)

Matthew Haines, Bryan Hess, Piyush Mehrotra,
John Van Rosendale, and Hans Zima

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Institute for Computer Applications in Science REPORT NUMBER

and Engineering I('ASE Report No. 94-26
Mail Stop 132C, NASA Langley Research ('enter
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

National Aeronautics and Space Administration AGENCY REPORT NUMBER

Langley Research Center NASA (!R-194904
Hampton, VA 23681-0001 iCASE Report No. 94-26

It. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card
Final Report
To appear in Supercomputing '94

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

U ncla.ssified- Unlimited

Subject Category 61

13. ABSTRACT (Maximum 200 words)
We have recently introduced a set of Fortran language extensions that allow for integrated support of task and data
parallelism, and provide for shared data abstractions, (SDAs) as a method for communication and synchronization
among these tasks. In this paper we discuss the design and implementation issues of the runtime system necessary
to support these extensions, and discuss the underlying requirements for such a system. To test the feasibility of this
approach, we implement a prototype of the runtime system and use this to support an abstract multidisciplinary
optimization (MIDO) problem for aircraft design. We give initial results and discuss future plans.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Thread-based runtime systems, data parallelism, task parallelism, H PF 22

16. PRICE CODE

A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION

OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT

Unclassified Unclassified

%SN 7540-01-280-5500 Standard Form 295(Rev. 2-89)
Prescribed by ANSI Std Z39-18
2Q8-102

