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ABSTRACT

Spray forming is an alternate alloy production technique to both conventional and powder
metallurgy methods. In an effort to develop process control of this process, relationships must be
established between process parameters and product quality parameters. Because mathematical
modeling of the spray forming process has not yet been able to determine well-defined
relationships between process parameters and product quality, neural networks were employed to
more clearly define this relationship. It was the goal of initial neural network development to
prove the feasibility of neural network use in spray forming control. Because this initial work was
successful, the focus of subsequent development was on determining and improving the accuracy
of these neural network predictions. Not only can neural networks successfully predict trends in
quality data, but they are as accurate as an experienced operator in predicting quality outputs.
Finally, process control development resulted in a Windows compatible software program that
puts neural network predictions within easy access for the spray forming plant operator.
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control from the beginning of the intelligent processing effort.

INTRODUCTION

Spray forming, like other near net shape manufacturing methods, was developed as an
alternative to the conventional casting and wrought manufacturing methods. In addition to
producing parts in near final shape, spray forming can produce preforms that are nearly fully
dense and with a refined microstructure. Realizing the potential cost savings of this alloy
production technique, the U.S. Navy has made a significant investment in exploiting and
developing innovative materials processing via metal spray forming. As part of this research and
development investment, CONSWC installed a research facility in 1987 to enable manufacture of
prototype components for both commercial and military applications. Several research and
development programs have been conducted at CDNSWC, and they are described in the Spray
Forming Programs Section.

Osprey TM spray forming is a single step gas atomization and deposition process. The
Spray Forming section provides a brief background on this relatively new alloy production
technique. While the basic concepts of spray forming are relatively straight forward, the
interactions between gas, metal and substrate are complicated. As a result, the process of finding
the optimal process parameters can be an extensive trial and error iteration. In an effort to
eliminate the need for this process and to find quicker and easier ways to determine the optimal
process parameters, emphasis has been placed on an intelligent processing program. The main
goal of this program is to be able to control preform quality in real time.

Before the quality can be controlled in real time, however, there must be an established
relationship between the process parameter data and the spray formed part quality data. The
process of finding correlations between the process parameters and the quality data is not an easy
task. Many groups have devoted significant time and effort towards this correlation in the form of
mathematical modeling. At the International Conference on Spray Forming, an entire session was
dedicated to modelling of the process. A review of this session is given in reference 1. While this
pursuit is both interesting and necessary for future developments, it has not yet been able to
provide information to the plant operator that can help him make decisions about the quality of
the part and the process parameters that lead to good part quality. As a result of this, emphasis
has been placed on empirical modeling using neural networks in the intelligent processing
program at CDNSWC. The objective of this report is to present the results of two studies that
utilized neural networks to determine product quality and to use these results to develop a process
simulator. An outline of this report is given in the following paragraphs.

The Neural Networks section briefly introduces neural networks and the two subsequent
sections highlight two different projects in neural network development. Specifically, in the
Feasibility section, neural networks were found to correlate process parameters and quality. In the
Accuracy section, three different neural networks were developed and the accuracy of their
quality predictions was assessed.

Finally, the Process Simulator section will outline the development of a process simulator
which is developed in Microsoft Visual Basic using code created from Neural Works 2




Professional Software. This simulator asks the user for input process parameters and predicts the
corresponding outputs, allowing the user to see the probable outputs before actually performing a
run. '

SPRAY FORMING PROGRAMS

Since 1987, the Spray Forming Technology Group at CDNSWC has established a state-of-
the-art metal spray forming facility for the study and exploitation of this near net shape
manufacturing process. Spray forming is a single step gas atomization/deposition process which
yields ferrous and non-ferrous, near final shape, near fully dense preforms. In the Osprey™ spray
forming process, molten metal is rapidly atomized to form a fine spray of particles that are
deposited onto a collector or mandre! at rates up to 400 pounds per minute. Spray forming has
proven to be a viable and cost effective alternative to conventional metalworking technology for
the production of material preforms with properties surpassing those of their cast and wrought
counterparts. Current programs at CONSWC are aimed at certification of the spray formed
products, optimization of the process, industrialization of the technology, and development of a
reactive metal spray forming capability.

The spray forming effort at CONSWC began when a program was initiated to identify and
develop viable near-net-shape manufacturing methods to reduce the high costs of Alloy 625
piping while still maintaining or improving the properties of the final product. The CONSWC
program indicated that near-net-shape manufacturing, specifically Osprey spray forming, is a
viable alternative for producing quality Alloy 625 tubular preforms. The Osprey preforms
exhibited a fine, equiaxed microstructure and mechanical properties equivalent to the current
specification for the extruded product. Because of the success of the CDNSWC research and
development efforts, spray formed Alloy 625 has been selected as a candidate for evaluation
under the Foreign Comparative Test (FCT) Program sponsored by the Office of the Secretary
of Defense. This program will determine if the Osprey process is certifiable as a viable low cost
alternative for conventional piping manufacturing of Alloy 625 piping for naval submarine
applications. This program is sponsored by Sharon Allen at the FCT Program Office and technical
support is provided by Art Smookler at the Naval Sea Systems Command (NAVSEA).

The Intelligent Processing program has also been undertaken to implement real time
sensing of preform temperature, deposition rate, and quality (as indicated by surface properties).
The objective of the program is to produce asymmetric components with repeatable
microstructural quality. This will be accomplished by developing sensor, control, and manipulator
technology to monitor the critical process conditions and modifying parameters during the process
via a Fuzzy Logic Controller (FLC). The Intelligent Processing program has been sponsored by
ONR, ONT, and at CONSWC by Ivan Caplan.

Results from the intelligent processing program will be combined with other CONSWC
developments in optimization of the spray forming process and integrated into a 4.5 ton melt
capacity, pilot plant facility. The objective of this Manufacturing Technology (MANTECH)
program is to industrialize the spray forming manufacturing process in the United States to reduce
the cost of military components and to enhance the global competitiveness of U.S. industry. The
MANTECH plant will be the largest spray forming facility in the world. The plant has been
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manufactured and is scheduled to installed at a U.S. industrial facility in FY94. This program is
sponsored by Steve Linder at the MANTECH Program Office and Mike Petz of NAVSEA.

The Spray Forming Technology Group at CDNSWC is currently developing a Reactive
Metal Spray Forming Facility to extend the benefits of spray forming to reactive metals such as
titanium. The facility will be located at the Nike Site and commissioning is scheduled for late
FY94. Initial program funding has been provided by Ivan Caplan of CONSWC and Mike Petz of

NAVSEA.

SPRAY FORMING

The spray forming plant at CDNSWC (figure 1) consists of a spray chamber, a gas atomizer
and a collector attached to the end of a manipulator arm. The metal is induction melted to a
desired superheat (usually 80 to 100 degrees Celsius above melting temperature) in an alumina
crucible above the chamber. The molten metal is bottom poured from the crucible into the
nitrogen purged chamber through an alumina nozzle at rates of 20-75 kg/min. Once inside the
chamber, the moliten metal stream is atomized by nitrogen gas. In addition to breaking up the
stream of molten metal into fine particles, the atomizing gas extracts heat from the particles,
protects the particles from oxygen pickup and directs the stream of molten metal onto a mild steel
substrate that is at room temperature. The metal particles are in different states of solidification
depending on their size and eventually impact the surface of the rotating and translating
substrate.[2] The motion path of the manipulator dictates the final part shape. Typically, spray
forming produces tubular and billet products. However, the CDNSWC facility has an operational
five-axis manipulator with the goal of producing more complicated shapes.

Several of the process parameters listed in figure 1 are used to control a spray forming run.
Nitrogen gas overpressure in the crucible is used to control the metal flow rate into the chamber
and to control melt purity. During a run, the overpressure is increased in order to keep metal flow
constant as the melt height decreases. The atomization gas pressure is responsible for the
atomization of the molten metal as well as directing the particle stream. By changing the
atomizing gas pressure more or less heat is removed from the metal stream. This affects the state
of particles as they collide and impact on the surface of the substrate, and therefore the final
quality of the preform. Similarly, the spray height, or particle flight distance, affects the amount of
heat in the particles on impact with the substrate. The greater the distance particles must travel
towards the substrate, the more heat is dissipated from the particles by convection and radiation.
The preform yield is also affected by changes in the spray height. Because the area of the spray
cone increases as the spray height increases, the preform yield typically goes down with an
increase in spray height.

The scanner varies the angle of the spray with respect to the substrate and can be used to
change the spray profile. For example, when forming a tubular without the scanner, the angle
between the tubular substrate and the spray remains fixed at 90 deg. and the temperature and
mass distributions of the spray profile are bell shaped curves. When used in this study, the scanner
oscillates the angle between the spray and the substrate from 87 to 93 deg. This causes a
*smoothing” of the bell-shaped temperature and mass distribution, usually leading to reduced
porosity. Withdraw rate is the velocity along the axis of the tubular (driving the manipulator arm
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either forward or backward). Coupled with the metal flow rate, the withdraw rate dictates the
overall preform thickness, while the rotation rate controls the individual layer thickness deposited

during each pass under the spray.

|_Molten Metal

Nitrogen Atomizing Gas
/ «
_——_'//
Spray Height
Sprayof __|
Particles (A .
Surface Roughness Manipulator Arm
(Translation and

Spray Deposited  Ratation)

Exhaust Gas
Spray Chmbx Ampentm Sensor
L BN

Figure 1. Schematic of the spray forming process.

Several of the parameters described above are combined in a single term called the
gas/metal ratio. This single term is a relative measure of heat content of the spray and is a ratio of
the gas flow rate to the metal flow rate. The equation used to calculate the melt flow rate is:

Metal Flow Rate =CD¢MAM-\I2‘(G‘WI+%) Eq. 1

where CD is the coefficient of discharge (the fraction of the nozzle area effectively used by the
metal flow), Pyerql is the density of the metal, G is the acceleration due to gravity, MH is the
height of the metal in the crucible, OP is the gas overpressure in the crucible and 4,57,/ is the
area of the nozzle. During a run, the gas overpressure is increased to offset the decrease in melt
height with the goal of keeping the term inside the square root of equation 1 constant. All of the
terms in equation 1 are either constant or easily accessible at run time except the melt height and
the coefficient of discharge, which must be estimated. The gas/metal ratio is simply the gas flow
rate divided by the metal flow rate.

There are several characteristics that can be used to evaluate the quality of a spray formed
preform. In this study, yield and porosity are the primary indicators of quality. Previous studies
have shown that the porosity of the sprayed preforms reflects changes in process parameters and
decreases the amount of usable material, making it a good measure of preform quality.[3,5] The
yield is simply the weight of the preform before any subsequent processing divided by the starting
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weight of the melt. In order to make optimal preforms, porosity should be minimized and yield
should be maximized.

While spray forming offers many advantages over conventional manufacturing methods, the
exact relationship between process parameters and quality, as defined by porosity and yield, is
hard to define. An experienced operator typically has his own parameter "operating envelope"” in
which he knows he will get a viable spray formed product. This operator will simply observe a
preform as it is being sprayed to determine its relative quality. This operator's decision-making
process is based mostly on his experience, memory of past runs and his ability to associate
preform appearance with quality. In an effort to copy this experience - based decision making
process and to improve on it, the Spray Forming Technology Group at CDNSWC began using
neural networks to associate run time process parameters with a preform's porosity and yield.

NEURAL NETWORKS

Description

Although a computer can perform mathematical calculations more quickly and accurately
than a human being, it still cannot match even a child's capability in recognizing faces, spoken
words, and handwriting. In the early days of artificial intelligence, scientists realized the power
and versatility of the human brain and how similar computing power could change and improve
computers. These scientists decided the best way to mimic the function of the brain was to mimic
the form and structure of the brain through software simulations. Human brains are made up of a
vast network of interconnected neurons. By constructing a simplified network of interconnected
artificial neurons (an artificial neural network), it is possible to mimic a few of the intuitive and
indirect human thought processes. This presents great opportunities for many complicated
processes that have unclear or weak relationships between inputs and outputs and also provides a
mechanism for computers to "learn". To date, neural networks have been successfully used in
predicting stock market fluctuations, weather, credit card fraud and even in iecognizing
handwriting.[6]

Biological neural networks are composed of billions of interconnected neurons ( a single
neuron is shown in figure 2). Each neuron acts as a small microprocessing unit and is composed
of dendrites (where input from other neurons is received) and an axon (where output to other
neurons is sent). There is a small synaptic junction between axons and dendrites of different
neurons which provides a way for neurons to communicate with each other. A single neuron will
receive a signal from other neurons on its dendrites. If the combined input from these neurons is
of sufficient strength, it will cause the neuron to send a signal to other neurons (or "fire"). This is
accomplished through the release of chemical neurotransmitters which carry the signal across the
synaptic junction from one neuron’s axon to another neuron's dendrite. In this way, a signal is
transmitted through a group of interconnected neurons.
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Figure 2. Diagram of a biological neuron.

Synaptic Junction

The modification of connections between neurons is the mechanism that allows human
beings to learn. For example, if an event causes two neighboring neurons to fire, the synapse
between them will get stronger. The strong connection between two neurons means that if an
event causes one of the neurons to fire, the other will fire as well. Often, these connections
become reinforced through experience and repetition, perpetuating the learning sequence. A
single event may activate many neurons at a time. If a single neuron dies or malfunctions, the
network is still able to respond to the event because each neuron has only a small effect on the
overall function of the network.[7] The function of the basic biological neuron is relatively simple.
The complexities and power of biological neural networks lie in the amount of neurons and the
significance of their interconnections.[8)

The artificial counterpart to the biological neuron is the processing element (PE), shown in
figure 3. Like the neuron, a PE receives input from many other PE's. These inputs can be summed
or combined in a number of ways. In most neural network algorithms, the inputs are summed and
the PE "fires" if the combined threshold is above a certain level. Instead of an event triggering a
chain of steps, as in traditional computing, events activate many PE's at a time in a neural
network. If a single PE were to provide invalid or incorrect sensor data, the network could still
function and respond to the event, in a similar way to the biological neural network. In contrast,
the malfunction of a single step in conventional computing causes a breakdown of the entire
process. Like neurons, the individual functions of PE's are relatively simple. Again, the power of
neural network analysis lies in the number of PE's and the level and significance of

interconnection.[9]
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Figure 3. Diagram of an artificial neuron (processing element).

Typically artificial neural networks have an input and output layer and one or more hidden
layers. The processing elements in each layer are fully connected to each of the processing
elements in the layers before and afier it. Figure 4 shows a typical neural network format. The
number of PE's in the input layer correspond to the number of inputs for the neural network.
Often, the input data is normalized before presentation to the neural network so that no input has
undue influence on the network as a result of large values. There can be one or more hidden
layers in a neural network. These hidden layers are simply layers of PE's in-between the input and
output layers. The number of PE's in each hidden layer and the number of hidden layers is a matter
of user preference. Neural network literature, however, recommends only one hidden layer with
the number of PE's never to equal the number of patterns in the training set (to guard against
memorization).[10] The number of PE's in the output layer correspond to the number of desired
outputs from the neural network.

Output Layer

Figure 4. Diagram of the arrangement of a typical neural network.

Like biological neural networks, artificial neural networks are able to learn by strengthening
the connections (or weights) between the neurons. An artificial neural network is typically
presented with a set of training data, including both the inputs and the corresponding outputs.
This set of data will be presented to the neural network several thousand times until a minimum
error has been reached. More specific information on neural network training is given in the

appendix.




k- ural N

The most popular type of neural network is the back-propagated neural network. Its
popularity is largely a result of its relative simplicity and ease in training. Neural network
development is basically a two step process: training and testing. This section will briefly describe
how a back-propagated neural network trains and tests.[10]

In training a back-propagated neural network, several input patterns are presented to the
neural network. A particular input pattern causes activity in the first layer which spreads through
the hidden layer (or layers) to the output layer. The neural network compares its output values to
the actual output values, which will most likely be wrong in the initial stages of training. The
algorithm tries to spread "blame" for this error equally among the weights of each of the output
PE's and the connections to the layer right before it. Before changes in the weights are
implemented, the error back propagates over inter-layer connections all the way back to the input
laver. Once the error has propagated back to the input layer, all the weights are modified.[10]

The main goal in back-propagation is to reduce the mean squared error by moving down the
gradient of error curve. Ideally, the error curve is a smooth 3-D parabola (or bowl shape). In
reality, the error curve is much more complex, and the neural network can easily get stuck at local
minima before getting to the lowest possible error. An example of a two-dimensional gradient of
error curve is shown in figure 5. Depending on the path chosen by the neural network to reduce
error, it could end up at any of the local minima in the gradient of error curve. In order to push
. the neural network out of the local minima and move on to the absolute minimum, the neural
network must be "shook up”. There are many tools available to assist in the "shaking up":
reinitializing the weights, randomly changing the weights and adding noise to the input data set.
Changes can also be made by adjusting the learning rule and the transfer function.[10]

Two-Dimensional Gradient of Error Curve

Minimum

Figure 5. Diagram of two-dimensional gradient of error curve with local and absolute minimas
and maximas.

The learning rule used in all neural network development in this paper is the delta rule. For
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this learning rule, the network is given an input vector and produces an output vector which is
compared to the actual output. If the two values agree, no changes occur. If the values do not
agree, weights are modified to reduce the difference. The transfer function used in all neural
network development in this paper is the hyperbolic tangent function. The transfer function
determines the response of the PE (a function of the input to the PE). Each processing element
will pass the hyperbolic tangent of the combination of its inputs. This forces the output of each PE
to be from -1 to +1.[11] In the testing phase, the neural network uses the weights modified in
learning to predict outputs to a different set of inputs.

NEURAL NETWORK FEASIBILITY

The goal of the intelligent processing program is to find relationships between sensor and
process parameter data and quality data. Neural networks were proposed as a way to make this
correlation. The following section describes the initial effort to correlate process parameters with
end product quality through neural networks. All available data from five previously analyzed
Alloy 625 (Nominal amounts of 60% Ni, 20% Cr, 8% Mo, 5% Fe, 4% Nb) tubes was tabulated
and used as neural network training data. The ultimate goal of this study was to determine
whether neural networks could correlate to process parameters with quality and predict trends in
quality expected by experienced operators. The success of this feasibility study determines
whether neural networks will be used in future process control developments.

Surface Roughness Sensor

Among the advanced sensing techniques used at CDNSWC to monitor the spray forming
process is a surface roughness sensor, described in greater detail in reference 2. The development
of the surface roughness sensor was based on the knowledge that an experienced operator will
determine the relative quality of a preform by observing the surface characteristics during a spray
forming run. The actual sensor consists of an argon laser, a CCD (charge coupled device) camera
and roughness determination software. The laser is expanded into a long, thin line.and projected
onto the preform as it is deposited. The roughness determination software will grab a frame with
the laser stripe, digitize it and calculate the root mean square (RMS) value of the roughness in
that particular frame. Each frame has a time stamp and can be related back to other time stamped
process parameters. Recent sensor work has determined there are correlations between RMS
values and porosity values measured after processing [2], as porosity was determined to be the
primary indicator of quality.[4] Because surface roughness is used by an experienced operator to
determine product quality, it is an appropriate input for the neural network.

Run Evaluation and Preparation

Five spray formed Alloy 625 tubular preforms were used in this study. Each preform was
evaluated as-sprayed and was approximately 19 cm long, 10 cm in inner diameter and 2 to 3 cm
thick. Properties for the runs are listed in table 1.

10




Table 1.  Process Parameters and Part Properties for runs A-E.

Run A B C D E
Actual GasMetal (kg/kg) 0.65 0.26 0.24 0.33 0.49
Secondary Gas Pressure (Bars) 6.9 6.5 6.2 76 6.9
Overpressure Rate (mBars/sec) 0.125 3.46 3.79 KR k] 217
Nozzle Diameter (mm) 528 7.26 7.24 6.81 5.36
Rotational Speed (rpm) 230 230 230 230 230
Withdraw Rate (mm/sec) 22 4 4 4 NA
Layer Thickness (mm) 0.10 0.17 0.21 0.18 0.14
Preform Weight (kg) 16.1 15.3 16.0 16.3 15.7
Thickness (mm) 19 25 19 25 19

Run Time (sec) 64 28 24 30 48

The following process parameters were available for these spray forming runs: gas/metal
ratio, rotation rate, withdraw rate, spray height and the temperature of the melt, exhaust gas
temperature and the surface roughness. All of these process parameters were continuously
monitored and recorded during a run at a sample rate of 0.5 Hz. In this section, the artificial
neural networks were developed to predict the dependent process variables of exhaust
temperature, surface roughness and porosity from the independent process variables of time, melt
temperature and gas/metal ratio. The independent variables are those process parameters which
can be directly controlled and are believed to have some effect on the quality of the preform. In
contrast, dependent variables cannot be directly controlled and are affected by changes in
environment. ‘

In order to determine porosity, a 1.25 cm wide longitudinal sample was cut from the wall of
each tube (as shown in figure 6a) and then sectioned diagonally (as shown in figure 6b). The
sample was sectioned in this way to correlate percent porosity measurements with the sequential
points in time when the material was deposited. There were typically five to six sections per run,
ranging in thickness from 0.2 cm to 4.0 cm. The porosity in each section was determined using
ASTM test B311-58 (Archimedes Method). These porosity values were plotted as a function of
time into the run (see figure 7). Porosity values at intermediate times were obtained by
interpolating between the measured values. This analysis made it possible to match porosity
values to corresponding run time process parameter values which were measured in discrete two-
second intervals.

(end of run)

Figure 6 Diagram showing longitudinal slice removed from the final tube (A). This lengthwise
slice is then sliced diagonally to correspond with time based measurements (B).
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Figure 7. Graph showing the variation of porosity throughout run A.

Neural Network Development

Three neural networks were developed to prove the feasibility of using neural networks in
spray forming, each with a different training data set. All three neural networks were presented
with a training set containing time, melt temperature and gas/metal ratio as inputs, and exhaust
gas temperature, surface roughness and porosity as outputs. (For the five runs considered,
rotation rate, withdraw rate and spray height were invariant and therefore not used as inputs for
the neural network.) In addition, it is believed that the quality of the preform at each moment in a
spray forming run is dependent on process parameter values several seconds before that moment
as well as the process parameter values at that moment. This is particularly apparent in the
beginning of the run or the "non-steady state” phase of the run. For this reason, the gas/metal
ratio and melt temperature of the three previous time slices are included with the inputs for each
moment of time. The five runs together produced 67 training vectors. For the purposes of this
particular study, a training vector (shown in figure 8) is defined as a single data point consisting of
input values (stimuli) and desired output values (response). The testing vectors are comprised
only of the input parameters.
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Training vector = [Time(t), GM(t), Tmelt(t), GM(t-2), Tmelt(1-2), GM(t4), Tmeli(t-4), GM(1-6),
Tmelt(1-6), ExTemp(t), SurfRough(t), Porosity(0)]

Where:

INPUTS: OUTPUTS:
Time(t) = time into run at moment t ExTemp(t) = exhaust temperature at moment t
GM(t) = gas/metal ratio at moment ¢ SurfRough(t) = surface roughness at moment t
Tmelt(t) = temperature of melt at moment t Porosity(t) = porosity at moment t

GM(t-2) = gas/metal ratio two seconds before t

Tmelt(t-2) = temperature of melt two seconds before t

GM(t-4) = gas/metal ratio four seconds before t

Tmelt(t-4) = temperature of melt four seconds before t

GM(t-6) = gas/metal ratio six seconds before t

Tmelt(t-6) = temperature of melt six seconds before t

Figure 8. Diagram showing the different components of the training vectors used in this study.
Each component is further classified as an input or an output.

Five tests were performed with the three neural networks developed in this paper (see figure
9). The first three tests involve testing the neural network with actual data. The prediction of the
neural network is then compared to actual data to assess the performance of the network. The last
two tests show hypothetical data to the network. The prediction of the network to hypothetical
data is expected to conform with trends based on experience.

Training and Testing Schedule
all available data all available
3/4 available data 1/4 available data
data from 4 runs data from 5th run
all available data hypothetical data (time varied)
all available data hypothetical data (gas/metal ratio, melt temp varied)

Figure 9. Diagram showing the three different neural networks and the five different test files. It
should be noted that the neural network trained with all the data was tested with 3
different test files.

The first neural network was trained with all data available then later tested with the same
data set. Such a test indicates the existence of contradictory and/or ambiguous training data.

To construct the second and third training sets, specific training vectors were removed from
the original data set and the neural networks were trained with these reduced training files. Later,
the removed training vectors were presented to the network as test files. In the second training
set, 18 vectors were randomly removed which included information from each of the five runs. All
of the data associated with run D was removed in the third training set. In both of the neural
networks created by these training files, the removed vectors are used later to test the network.
The neural network prediction is then compared to the actual value to determine the accuracy of
the network. The purpose of these tests is to determine how accurately the neural network can
predict information it has not seen.

In an effort to determine the individual effects of the input process parameters, the neural
network trained with all the data was tested with two different files of hypothetical input data.
The first hypothetical data file held gas/metal ratio and melt temperature constant while varying
time. The results of this test indicate whether time has an effect on the process. In the second

13




hypothetical data file, time was held constant while gas/metal ratio and melt temperature were
varied. Specifically, this was accomplished by varying the melt temperature over a range of
values. At each melt temperature value, the gas/metal ratio was also varied over a range of values.
The resulting three-dimensional plots reveal the effect of gas/metal ratio and melt temperature on
the output properties, as well as the optimal operating range for the input parameters.

The neural networks created in this paper were developed using NeuralWorks Professional
11 software. The configuration for each of the networks consisted of an input layer with nine input
PEs (corresponding to the inputs shown in figure 8), two hidden layers of six processing elements
each, and an output layer of three processing elements (corresponding to the outputs shown in
figure 8).

Di sion

Using the procedure outlined above, three neural networks were created and then tested.
The following graphs show each network's prediction of porosity. In the first step, a neural
network was created using the entire data set and then tested on the same data set. The graph
showing the ability of the network to predict porosity is shown in figure 10. The neural network
predicted value agrees with the actual value or is very close to the actual value for most of the
data points. This shows that the training file for this neural network contained little, if any,
contradictory data. Vectors 1 to 22 are from run A, vectors 23 to 31 are from run B, vectors 32
to 39 are from run C, vectors 40 to 49 are from run D, and vectors 50 to 67 are from run E.
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Figure 10. Graph showing the prediction of the neural network and actual porosity values when
the neural network is trained with a set of data and then tested with the same set of

data.

In the next step of the procedure, approximately 1/4 of the data from the test file was
randomly removed before training the neural network. This removed set of data contained
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information from each run and was later used to test the neural network. The results of this
experiment are shown in figure 11. The neural network's predicted values come very close the
actual values, showing that the network can accurately predict data it has not seen before.
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Figure 11. Graph showing the neural network porosity prediction and actual porosity values
when the neural network is trained with 3/4 of the original data set and tested with the
remaining 1/4. :

Again to determine how well the neural network responds to data it has not seen before, a
network was trained with four of the five runs and tested with the remaining run. Run D was
chosen to be removed for this experiment. The results of the neural network prediction are shown
in figure 12. Because each of the five runs is different, each run may contain information not
contained in any of the other runs. For this reason, this neural network was not as successful in
predicting porosity as the previous network. The neural network predictions are as much as 4%
off the actual porosity values, but follow the trends of the actual data. Again, the neural network
responded well to data that it has not seen before.
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Figure 12. Graph showing neural network porosity prediction compared to actual values for a
neurai network trained with four test runs and tested with one run.

In the final step of this study, the neural network trained with the entire original data set
was tested with two sets of hypothetical data. The purpose of this experiment was to determine
the individual effects of the input process parameters on the final part quality. In the first
hypothetical data set, the melt temperature and gas/metal ratio were held constant while time was
varied from O to 60 seconds. The network prediction of exhaust temperature and RMS surface
roughness value (1 RMS value = 0.25 mm) for this test file are shown in figure 13. Contrary to
what is shown in figure 13, the exhaust temperature starts at room temperature (20 °C) in actual
runs. The exhaust temperature starts at about 200 °C in figure 13 because the neural network was
not trained with data from the first six seconds of the run (as a result of the temporal nature of the
neural network). Thus, the first six seconds for both figures 13 and 14 represent an extrapolation
for the network and should be considered accordingly. It should be noted that the exhaust gas
temperature seems to level off at about 30 seconds after the run has started, while the RMS value
increases linearly starting about 15 seconds into the run. The variation of porosity with time is
shown in figure 14. The porosity also levels off, but again not until about 30 seconds after the run
has started. It has been a long held belief that the spray forming process does not reach steady
state until well into a run. For example, the half first meter (or the "non-steady state” section) of
sprayed tube is often discarded in production size plants. The following graphs reinforce this

hypothesis.
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Figure 13. Graph showing the neural network prediction for exhaust gas temperature and RMS
surface roughness value for a neural network trained with the entire original data set
and tested with a data set in which only time was varied.
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Figure 14. Graph showing the neural network prediction of porosity for a neural network trained
with the entire original data set and tested with a data set in which only time was
varied.

In the second set of hypothetical data, the melt temperature was varied from solidus (1288 °
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C) to the highest recorded melt temperature (1547 °C) in increments of 13°. For each temperature
value, gas/metal was varied from the lowest recorded value (0.14 kg/kg) to the highest recorded
value (0.66 kg/kg) in increments of 0.03. The neural network prediction for porosity is shown in
figure 1S. This graph generally follows trends as expected. The highest melt temperature and the
lowest gas/metal ratio correlate to the lowest porosity.
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Figure 15. Graph showing the variation of porosity with variations in gas/metal ratio and melt
temperature.

Neural networks were able to predict trends in quality values that agree with the predictions
of an experienced operator. Because neural networks are successful at predicting trends, the next
step in process control development is to use neural networks to predict actual quality values. The
neural networks trained in this section were based on a small and limited data file, so no specific
process parameter values can be accurately correlated. In order to obtain specific values, a larger
and more complete set of runs, made expressly for neural network development, should be used in
future neural network development.

NEURAL NETWORK ACCURACY

Because neural networks were found to successfully correlate process parameters with
quality, further neural network development was undertaken to assess the accuracy of neural
network predictions. In this section, twelve Alloy 625 tubes were sprayed specifically for neural
network analysis. The goal was to spray a broad spectrum of tube qualities using many different
process parameter settings, which created a data set appropriate for training the neural network.
Some changes were made in the experimental procedure from that described in the previous
section. As with the feasibility study, success in this accuracy study will determine whether neural
networks will be used in future process control developments.
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Run Preparation and Evaluation

Twelve spray formed Alloy 625 (nominal amounts of 60% Ni, 20% Cr, 8% Mo, 5% Fe)
tubular preforms were used in this study, all produced at the CONSWC spray forming facility.
Each preform was evaluated as-sprayed and was 25-40 cm long, 19.1 cm in inner diameter and
2.5 to 5 cm in wall thickness. All tubes were produced using the same type of atomizer and a
starting charge weight of 97.3 kg. Processing parameters, overall porosities and yields for the runs
are listed in table 2. The process parameters for these runs were deliberately varied in order to
create a variety in end product quality, shown by the porosity varying from 2.5% to 12.2% and
the yields varying from 44% to 78%.

Table 2. Process parameter settings and results for runs F-Q.

Run Number F G H 1 J K L M N (9] P Q
Nozzle Diameter | 7.14 | 7.14 | 7.24 | 749 | 749 | 749 } 6.73 | 6.73 | 7.11 | 6.73 | 6.60 | 6.60
(mm)

Atomizing Gas 80 | 65 | 85 8.8 8.8 83 9.3 83 | 100] 79 | 69 | 57
Pressure (Bars)
| Spray Height (mm) | 650 | S50 | S50 | 700 | 600 | 650 | 600 | 500 | 550 | 450 | 550 | 600
Rotation Rate 2471186 | 248 | 184 | 186 | 186 | 186 | 185 | 188 | 187 | 186 | 18.5

(rad/sec)
Withdraw Rate 022 1042 | 022|024 |024[0.22]0.18]032]024)]0.20]022]0.25

(cm/sec)
Melt Flow Rate 49.1 {476 | 481 | 5391503 | 475|399 428 | 433 | 40 | 38.7 | 387

(kg/min)
GMR (kg/kg) 0.52 ] 043 055 ]051]047]049]070 058 ]0.71]063]0.56] 0.48
Porosity (%) $0 | 25 135 ] 64 ] 27 (45122138901} 361] 29 30
Yield (%) 51.1 ] 65.0 | 57.8 | 50.0 | 68.1 | 566 | 438 | 740 | 457 | 78.1 | 725 | 707

The following process parameters were available for this set of twelve runs: time into the
run, gas/metal ratio (as well as gas flow rate and metal flow rate), rotation rate, withdraw
(translation) rate, spray height, exhaust gas temperature and whether the scanner was used or not.
All of these process parameters were continuously monitored and recorded during each run. In
comparison to the previous section, the melit temperature was not available, nor was the surface
roughness sensor. In addition to this change, all of the available process parameters were used as
inputs for the neural network, while the outputs were simply porosity and yield. The reason for
this change in configuration was the determination that all information that is available at run time
should be used to help determine outputs. For example, all of the process parameters listed above
are available at run time and can be used to give information to the neural network. If the neural
network is trained to predict values for these parameters as outputs, it will not serve any useful
purpose and the neural network will miss the possible advantage of having this information as an
input.

In order to determine porosity, an initial 2.5 cm longitudinal cut was made (figure 16a), and
then sectioned perpendicularly to the axis of the tube (see figure 16b). (Please note the difference
between figure 16a and figure 6 in the previous section. In figure 6, the slices are diagonal instead
of perpendicular.) There were 25 to 40 perpendicular sections per sample, each approximately 1.0
cm in width. The porosity in each section was determined using the procedure described in ASTM
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test B311-58. The porosity data was then correlated to time, dividing the duration of the actual
run by the length of the preform. The actual porosity values at a particular time were correlated to
the process parameter values at the closest matching time. Yield was measured by dividing the
preform weight by the initial charge weight.

Seclion Lines
UHIHHHIHHIH

8" End
{end of run)

Figure 16. Diagram of longitudinal slice removed from the tube (A). This longitudinal slice is
then cut perpendicularly (B).

Neural Network Development

In previous work [12,13], neural networks successfully associated quality and input process
parameters using a relatively small database. The goal in this accuracy section is to further
develop neural networks using a larger and more complete database, to evaluate the performance
of these neural networks compared to actual runs and to improve their performance if possible.
Initially, a procedure similar to those outlined in references 11 and 12 is used. This procedure
helps to define an operating envelope for the spray forming process parameters. This information
is then used to plan future runs, which are used in testing the neural network to determine the
network's accuracy.

Using the procedure outlined in the previous section, a temporal neural network was
developed. This neural network was trained with the following data from runs F - O (the first ten
of the twelve runs): time into run, gas/metal ratio, spray height, scanner (on or off), withdraw
rate, rotation rate and exhaust temperature as well as the same parameters (gas/metal ratio, spray
height, scanner, withdraw rate, rotation rate and exhaust temperature) from the previous moment
in time. Details on and reasons for the development of this temporal neural network are given in
the previous section.

In order to determine the influence of variations in spray height and gas/metal ratio on final
part quality (porosity and yield), the temporal neural network was tested with a set of hypothetical
data in which gas/metal ratio and spray height were varied systematically while all other process
parameters were held constant. The specific values are shown in table 3. The value of time into
run was chosen as a result of previous knowledge of the steady state region (as discussed in the
previous section), and the other process parameter values were chosen to fall within the range of
values in the original training data set.
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Table 3.  Process parameter values chosen for hypothetical test file.

Process Parameter Value
Time into run (sec) 50
Exhaust Gas Temperature (deg.C) 420
Gas/Metal Ratio 0.427-0.7
Spray Height (mm) 450 - 700
Rotation Rate (rpm) 18.8
Withdraw Rate (cm/sec) 0.225
Scanner on

The neural network's porosity and yield predictions are shown in figures 17 (porosity) and 18
(yield). Again, details on this procedure are covered in greater detail in reference 12.

In general, figure 17 shows that low porosity values occur at low gas/metal ratios and short
spray heights (lower left-hand edge of graph), while high porosity values correspond to high
gas/metal ratios and long spray heights (upper right-hand edge of graph). This also agrees with
operator experience. The exception to this trend is a pocket of low porosities that extend from
gas/metal ratios of 0.43 to 0.57 and spray heights of 525 mm to 625 mm.
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Figure 17. Graph showing neural network porosity predictions to variations in the gas/metal ratio
and the spray height.

Figure 18 shows the neural network's yield prediction. Low yield values correspond to high
gas/metal ratios and long spray heights, while high yields occur with low gas/metal ratios and
short spray heights. This prediction agrees with operator experience and also corroborates with
figure 17; the best quality (low porosity and high yield) occurs when spray height is short and
gas/metal ratio is low. As noted before, there is one pocket of low porosities shown in figure 17
that does not fall into the general trend. The process parameters for runs P and Q were chosen so
that this questionable area could be investigated more fully.

It is interesting to note the gas/metal ratio and spray height which leads to an optimal
product (low porosity and high yield). When figures 17 and 18 are juxtaposed, the lowest porosity
(2-3%) and the highest yield (75-80%) regions overlap at a small section extending from
gas/metal ratio of 0.43 to 0.45 at a spray height of 550 mm.
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Figure 18. Graph showing neural network yield predictions to variations in gas/metal ratio and
spray height.

Figures 17 and 18 show which parameter values lead to the best quality and the neural
network's porosity and yield predictions at particular gas/metal ratios and spray heights. While it
is accurate to say that a gas/metal ratio of 0.44 and a spray height of 500 mm will lead to low
porosity and high yield, it is not necessarily accurate to say that these process parameters will
make a preform with 3 to 4 % porosity and 75 to 80% yield because the accuracy of the neural
network has not yet been evaluated.

In an effort to evaluate neural network accuracy, runs P and Q are used to test neural
networks created with data from the first ten runs. Because it is possible to improve the accuracy
of a neural network by improving the quality of information presented to it, three different neural
networks are developed using slightly different information. The accuracy of each neural network
can be evaluated by comparing the predicted values to the actual values.

Experienced spray forming operators use gas/metal ratio as a relative gage of the amount of
heat in the spray formed part. In addition, previous neural network research has shown that
gas/metal ratio has a major influence on the preform quality.[12] In this study, three neural
networks were each trained with slightly different versions of this important gas/metal ratio.
Specifically, the first neural network ("A") was trained with time, gas/metal ratio, spray height,
scanner (on or off), withdraw rate, rotation rate and exhaust temperature. In the second neural
network ("B"), gas/metal ratio was separated into its two components: gas flow rate and metal
flow rate. The reason for the separation was the observation that two runs could have similar
gas/metal ratios, but different melt and gas flow rates, leading to different porosities. Because it is
a ratio, the gas/metal ratio inherently disguises certain information, which could be essential. In
addition, a mass flow rate sensor will soon be implemented on the spray forming plant at
CDNSWC, making metal flow rates directly available at run time. In the third neural network
("C"), gas/metal ratio was replaced with secondary gas atomization pressure, gas overpressure
and melt nozzle diameter. These three process parameters are used to calculate the gas/metal ratio
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along with the melt height and coefficient of discharge (see equation 1). They are used as inputs
for the third neural network because their values are directly available at run time, but it should be
noted that these inputs do not include all the information necessary to calculate the metal flow
rate, and also therefore the gas/metal ratio.

It is the eventual goal of the Spray Forming Technology Group to implement real-time
control of the spray forming process, emphasizing the need for simplicity and robustness. For this
reason, the temporal orientation of the original neural network will not be used. Only inputs from
a specific moment in time will be considered, instead of including the preceding moment of time
as was used in the temporal neural network described earlier.

The neural networks in this paper were created using NeuralWorks Professional II
software. Each network had from 7 to 9 input PE's and 2 output PE's. Through a series of
iterations, 5 PE's were found to be the most effective in the hidden layer. Other settings found to
be most effective include the learning rule (delta rule), the transfer function (hyperbolic tangent)
and the number of learning cycles (100,000). Again, further details on neural network settings are
described in the appendix. The accuracy of the neural network is assessed by calculating the
standard deviation of each neural network's prediction from the actual value. The equation used to
calculate the standard deviation follows:

= i N YRt
S = 30 (B4 Eq.2

where S is the standard deviation, N is the number of samples, Py, is the value predicted by the
neural network and Ay is the actual value. The more accurate the neural network, the lower the
standard deviation will be. Because the units for porosity and yield are both percentages, the
standard deviation is also a percentage. To avoid confusion, however, the percentage unit will be
dropped in the following results discussion.

Neural Network A Results

Neural network A was trained with the following data from runs F - O: time into run,
gas/metal ratio, exhaust temperature, spray height, scanner (on or off), withdraw rate, rotation
rate, porosity and yield. Figures 19 and 20 show neural network A's porosity predictions for runs
P and Q and compare these to the actual values. The standard deviation of the neural network
predictions from actual porosity values is 1.7, and the maximum deviation is 4.1. Because the
porosity values vary from 0 to 20%, an average variation of 1.7 would be acceptable for research
purposes at CDNSWC. For example, most uses of spray formed parts require fully dense material.
The neural network can be used to determine the porosity parameters that lead to the lowest
possible porosity. Because spray forming rarely produces material completely without porosity,
some subsequent processing is usually necessary. If the neural network porosity prediction is off
the actual porosity by an average of 1.7, there will be a slight change in the amount of subsequent
processing and in the amount of material that is lost because of the subsequent processing.
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" Figure 19. Graph showing the neural network A's porosity predictions for run P.
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Figure 20. Graph showing neural network A's porosity predictions for run Q.

The yield predictions of neural network A are shown in figure 21 and compared to the
actual yields. It should be noted that the yield measured here is a function of the entire run.
However, it was necessary to treat yield as a variable with time in constructing the neural network
training sets. For this reason, when a neural network is presented with a set of inputs, it predicts
both porosity and yield. The porosity values can be analyzed on an individual basis, but the yield

24




value only has meaning for an entire run. Thus, the values shown in figure 21 represent the
average of neural network A's yield predictions for an entire run.

The standard deviation between the neural network's yield predictions and the actual values
is 5.6, and the maximum deviation is 13.5. The Spray Forming Technology Group has estimated
that an experienced operator's best yield guess is approximately + 10, so neural network A can
predict yield with slightly better accuracy than an experienced operator.
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Figure 21. Comparison of neural network A's yield predictions to the actual yields.

Neural Network B Results

For neural network B, the single input of gas/metal ratio was separated into gas flow rate
and metal flow rate and all other inputs were the same as in neural network A. Figures 22 and 23
show neural network B's porosity predictions and compare those to the actual values. The
standard deviation between the neural network's porosity prediction and the actual value is 1.2
and the maximum deviation is 2.7. This is a slight improvement in accuracy over neural network
A

25




Porosity (%)
o

8

[.)

4 A
3 HHHHE
2] Addindaiinading
I’OQNNQQMOOQN,MON' - P - ¢
-a:ass::aas:szaasssﬁis:z:s
srrasygedsgdigsy ggYSLRELS

Time into run (sec)

Figure 22. Neural network B's porosity predictions for run P.
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Figure 23. Neural network B's porosity predictions for run Q.

Figure 24 shows the average of neural network B's yield predictions. The standard deviation
between the neural network's yield prediction and the actual values is 1.7 and the maximum
deviation is 6.3. Again, neural network B shows an improvement in accuracy over neural network
A. Because the standard deviation and the maximum deviation are both less than + 10 off the
actual yields, this network is capable of predicting yield with a lower error than an experienced
operator.
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Figure 24. Graph showing the neural network B's yield predictions compared to the actual yields
of runs P and Q.

Neural Network C Results

For neural network C, the single input of gas/metal ratio was replaced with the atomization
gas pressure, the gas overpressure and the melt nozzle diameter while all other inputs remained
the same as neural network A. Neural network C's porosity predictions are shown in figures 25
(run P) and 26 (run Q). The standard deviation of the neural network's porosity prediction from
the actual value is 7.4 and the maximum deviation is 16.0. This represents a significant increase in
error over neural networks A and B, and is too high to predict a reliable porosity. For example,
the overall porosity of runs G and L are 2.5% and 12.2% respectively. These runs represent the
ends of the broas! spectrum of Alloy 625 preforms produced in the CDNSWC spray forming
plant. This neural network would not be able to tell the difference between these two preforms
with a high degree of confidence. For this reason, neural network C would not be useful in

predicting porosity.
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Figure 25. Comparison of neural network’s porosity predictions to actual porosity values for run
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Figure 26. Comparison of neural networks porosity predictions for run Q.

Neural network C's yield predictions are shown in figure 27. The standard deviation of the
neural network's yield prediction and the actual values is 11.0 and the maximum deviation is 17.1.

Again, this represents a significant decrease in accuracy from neural networks A and B and this

neural network would not be as reliable in predicting yield as an experienced operator.
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Figure 27. Graph showing neural network C's yield prediction compared to actual yield values of
runs P and Q.

Because neural network B was more accurate in predicting yield and porosity than either
neural network A or C, the inputs of gas flow and metal flow appear to represent activity in the
spray forming chamber most accurately. As stated previously, two runs can have the same
gas/metal ratio, but different metal flow rates, gas flow rates and porosities. Separating the
gas/metal ratio into gas and metal flow rates improved the neural network accuracy by removing
the contradictory information (that the same gas/metal ratio could lead to different porosities).
Replacing gas/metal ratio with only the basic parameters that are available at run time (secondary
gas pressure, overpressure, nozzle diameter) significantly decreased the accuracy of neural
network C. This neural network had the poorest accuracy of the three neural networks, indicating
the absence of crucial and nonpredictable information, such as melt height. Table 4 shows the
standard and maximum deviation values of both yield and porosity for the three neural networks.

Table4. Standard and maximum deviations for porosity and yield predictions (neural networks

A, B, and C).
Neural Standard Deviation - | Maximum Deviation | Standard Deviation Maximum

Network | Porosity Predictions | - Porosity Predictions | - Yield Predictions Deviation - Yield

Predictions
A 1.7 4.1 $.6 13.5
B 1.2 2.7 1.7 6.3
C 7.4 16.0 11.0 17.1
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PROCESS SIMULATOR

Neural networks have proven to be both a feasible and an accurate method for predicting
quality parameters in spray forming, as discussed in the two preceding sections. Because both of
these studies were successful, the next step in process control development is to actually use
neural networks to control and improve the spray forming process. This implementation is a
multi-faceted effort. In the long term, the neural networks developed for these studies will be used
to generate rules for a fuzzy logic controller. This controller will have a set of rules to determine
product quality from different sources, weight the rules according to current conditions, and ma