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Surface Analytical Techniques for
Microbiologically Influenced
Corrosion—A Review

REFERENCE: Wagner, P. A_ and Ray, R. L., “Surface Analytical Techniques for Micro-
biologically Influenced Corrosion—A Review,” Microbiologically Influenced Corrosion Test-
ing, ASTM STP 1232, Jeffery R. Kearns and Brenda J. Liule, Eds., American Society for
Testing and Materials, Philadelphia. 1994, pp. 153-169.

ABSTRACT: Microbiologically influenced corrosion (MIC) has received increasing attention
from engineers. materials scientists. and corrosion specialists. In field and laboratory studies.
basic surface analytical examinations must be correlated to knowledge of the overall corroding
system in order to conclude the predence of MIC. Preliminary observations and microbiological.
chemicai. microscopic. and metallurgical techniques are discussed.

KEYWORDS: microbiologically influenced corrosion (MIC), biofilms, surface analysis

Microorganisms attach to all engineering materials in contact with natural waters and
colonize surfaces to produce biofilms. The biofilms are varied in composition but usually
include bacteria, algae, and fungi, in addition to exopolymeric material that provides at-
tachment and structural integrity. A large fraction of the biofilm is adsorbed and entrapped
materials such as solutes, heavy metals, and inorganic particulates, in addition to cellular
constituents [7]. Cells within biofilms grow, reproduce, and form colonies that are physical
anomalies on a metal surface; local anodes and cathodes and differential aeration cells result
(Fig. 1). Under aerobic conditions, areas under respiring colonies can become anodic and
surrounding areas cathodic. A thick biofilm can prevent diffusion of oxygen to cathodic
sites and diffusion of aggressive anions, such as chloride, to anodic sites. Outward diffusion
of metabolites and corrosion products is also impeded. If areas within the biofilm become
anaerobic, the cathodic mechanism can change to reduction of water or microbiologically
produced H,S.

Biofilms can be either beneficial or detrimental in industrial processes. They remove
dissoived and particulate contaminants in fixed film biological systems, such as trickling
filters, rotating biological contactors, and fluidized bed wastewater treatment piants. Biofilms
can determine water quality by influencing dissolved oxygen content and by serving as a
sink for toxic and/or hazardous materials. Microorganisms within biofilms can be used to
recover minerals and to degrade hydrocarbons [2]. However, biofilms form undesirable
deposits on engineering surfaces causing reduced heat transfer {3]. increased fluid frictional
resistance [3), plugging [4), and corrosion [4].

The term microbiologically influenced corrosion (MIC) is used to designate corrosion
resulting from the presence and activities of microorganisms within biofilms on a material

' Oceanographer and Physical Science technician. respectively, Naval Research Laboratory, Stennis
Space Center. MS 39529-5004.
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FIG. 1—Differential aeration cell resulting from microbial colony on metal surface.

surface. Microorganisms can accelerate and control corrosion reactions by several mecha-
nisms: formation of differential or concentration cells, formation of aggressive metabolites.
such as sulfides and organic and inorganic acids: metal oxidation and reduction. and de-
activation of corrosion inhibitors. Iron-oxidizing. sulfur-oxidizing. iron-reducing. sulfate-
reducing. acid-producing. slime-producing. ammonia-producing. and hyvdrogen-producing
bacteria have been implicated in the corrosion of metals and alloys. Sulfate-reducing bacteria
(SRB) are commonly found to be responsible for MIC in anaerobic environments through
the production of H,S. Metal-depositing bacteria. especially iron-oxidizing genera. form
dense deposits of cells and metal jons. creating oxygen concentration cells and under-deposit
corrosion. Acidic bacterial exopolymers can bind metal ions from the aqueous phase. in-
creasing corrosion rates by providing an additional cathodic reaction.

MIC has received increased attention by corrosion scientists and engineers in recent years
with the development of surface analytical and electrochemical techniques that can quantify
the impact of microbes on electrochemical phenomena and provide details of corrosion
mechanisms. MIC has been documented for metals exposed to seawater. fresh water. de-
mineralized water. process chemicals. food stuffs. soils. aircraft fuels. human plasma. and
sewage. The chemical process. oil and gas. and power generation industries and the U.S.
military have acknowledged the occurrence and prevalence of MIC in their operating sys-
tems. In the past ten years there have been at least 20 international conferences that included
sessions on the subject. _

Investigations for MIC can usually determine only if conditions are appropriate for MIC.
Experience has shown that MIC is considered only when other forms of nonbiological
corrosion have been eliminated. This paper will review field and laboratory surface analyvtical
procedures for investigating a corroding system to determine if MIC may be a causative
agent. Some are applicable to field and laboratory use. while others are only useful for
research. Related electrochemical techniques used to identify mechanisms and monitor and
quantify electrochemical parameters and corrosion rates have been discussed elsewhere [5].

Preliminary Examination of a Corrosion System

The Corroding Sample

1. Metal Composition—Metals listed as commercially pure actually contain a variety of

impurities and imperfections that influence corrosion. In general, as purity increases. the

tendercy for a metal to corrode is reduced. However, high purity metals frequently have
low mechanical strength, leading to the use of alloying elements to improve mechanical,
physical, fabrication, and corrosion characteristics [6]. Alloy composition. manufacturing
specifications such as surface finish and heat treatments, and presence of protective coating
influence susceptibility to MIC {7). :

2. Macroscopic Examination—Color photographs of the corroded material while still wet
and before extensive handling can be invaluable for reference and documentation.
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a. Visible fouling

Extensive biological fouling with filamentous material, slime. and debris suggests the
presence of algae. in addition to fungi and bacteria. In the presence of light. algae produce
oxygen (photosynthesis) that can accumulate in the biofilm. In the absence of light, algae
consume oxygen (respiration) and reverse the process. Dowling et al. [§] showed that a
icrobial cAlony on metal surface. photosynthetic biofilm may influence ennoblement of the open circuit potential of type 316L
stainless steel so that it approaches the potential above which pits can initiate and grow
(Fig. 2). Algae and fungi may also produce aggressive metabolites. Additionally. Little et

'orrosion reactions by sevefal mecha- al. have shown that there is no correlation between the thickness of the biofilm and the
| formation of aggressive nfetabolites. chemistry at the biofilm/metal interface {9]. Localized cells of pH values 5.2-9.2 were
tal oxidation and reductjbn, and de- measured randomly at depths within an estuarine biofilm on type 304 stainless steel.
fur-oxidizing. iron-redyfing. sulfate-
-producing. and hydrgfen-producing b. Localized corrosion
.s:ai:dazl:l:-:;‘b?:g::fi‘ n(::ec::f lt':;c(t’en: (1) Forms—MIC is localized corrosion and can appear as pitting. crevice corrosion.
pecially iron-oxidifing genera "f “r’-lm under-deposit corrosion. dealloying. or stress corrosion crackulng. The form. shape. and
concentration cel ang ugnder-cie (Z)sit . depth of the corroded areas should be noted. Pits associated with MIC often have a small
tal ions from thd aqueous hasep o surface opening with a larger supsurface cavity. SRB prodt.xc.e open pitting or gouging on
thodic reaction q phase. §ta|nless steel. When SR_B are active alopg edges of gasket.ed joints. shallow crevice corrosion
entists and enéi ers in recent vear is qften fqund under adjacent gaskets. Subsurface tunneling has been observgd along ferrite
‘hemical technia Nt years stringers in weld areas of stainless steel [10]: SRB 'attack on cast iron typxcal!y produces
3 and providlgu;estails o ntify graphitization where the corroded areas are filled with a soft skeleton of graphite {1/]. On
corroyion nickel and cupronickel alloys. SRB are reported to produce conical pits containing concentric
:xpos‘ed to seawater. fresh water.jde- rings {/2].
S, alfoaff fUC_IS. hurpan piasma fand " 12) Location—Distribution of corrosion within the sample is important. Frequently.
T generation ‘f{d“S‘leS and lf}C -S. pitting of stainless steels is located in the heat-affected zone. fusion line, and adjacent base
lence of MIC in their operatifg sys- metal of welds [/0]. Kobrin described pitting attack in weld seams of a tvpe 316L stainless
ternational conferences that ifcluded steel storage tank after hydrotesting due to metal-depositing bacteria (Fig. 3) [/2]. Regions
diti . ' of low flow such as in bends. elbows. or crevices due to engineering design and fabrication
:%n mc::s arfe appropriatyf for MIC. are common sites for MIC. especially where low oxygen concentrations encourage anaerobic
when other forms of ngnbiological bacterial growth. Any recurring directional pattern of localized attack may be related to
field and laboratory surffce analytical v turbulence or impinging flow.
-termr:i if MIC may Je a causative (3) Material within Pirs—Tatnall reviewed a case history where fine dark particles were
se. while othelts are nly useful for found in open pits in galvanized steel. identified to include aerobic sulfur-oxidizing bacteria
Hentify mechanisms #nd monitor and and anaerobic SRB [/3].
s have been discussfd elsewhere [5]. I
| S
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c. Corrosion producis

Discrete mounds or columns (tubercles) can develop on metal surfaces as a result of
microbial activities. Morphology and location are often indicative of the causative microbial
species. Deposit shape. color. and texture should be noted. SRB produce characteristic
black deposits of FeS on steel and stainless steels. Distinctive reddish-brown, hemispherical.
or conical tubercles with a small “‘chimney shape™ near the center on the surface of steel
and subsurface pitting are characteristics of iron bacteria activity [/4].

Bacterial deposits usually have a soft slimy texture when fresh and wet. In the presence
of slime-formers. deposits are more irregular and may appear layered. In anaerobic con-
ditions where SRB involvement is suspected. the deposit may be screened for the presence
of H.,S by odor and testing with HCI [//].

Environment of the Corroding System

In an ideal investigation of MIC. the corrosion environment would be available for in-
spection. Factors of interest include the following:

(1) Presence. Absence, Cycles of Light—This would influence biofilm composition. res-
piration. and metabolic activities [8].

(2) Aqueous Medium—Microorganisms within the biofilm are capable of maintaining an
environment that is radically different from that of the bulk medium in terms of pH. dissolved
oxygen. and organic and inorganic species [9]. Interfacial chemistry cannot be predicted
from measurement of any set of parameters in the bulk medium. Similarly. the numbers
and types of bacteria within biofilms cannot be predicted or determined by measuring
planktonic microorganisms [15). The following parameters for the aqueous medium offer
supportive data for investigation of MIC and causative organisms.

a. Temperature—Microorganisms have been found at water temperatures from 1°C in
Antarctic waters [/6] to 320°C in deep-sea hydrothermal vents [17].

b. Salinity—Bacteria are commonly found in fresh and open ocean waters.
c. Dissolved oxygen—Bacteria are found in 0 to 1009% O, concentrations.

d. Water chemistries—Including organic carbon nutrients, NO;, CO.. O., SO,. and other
compounds that may serve as terminal electron acceptors in respiratory metabolism. The
presence and concentration of nitrites, phosphates, and sulfides: ionic materials such as
chlorine. sulfur and phosphorous; metals, and acids is important. For example. breakdown
of the protective passive oxide film on stainless steel occurs in the presence of the chlorides.

e. Water microbiology—See microbiology discussion.

f. Direction and velocity of flow—Hydrodynamic shear stress, related to flow, influences
transport. transfer. and reaction rates within the biofilm, as well as biofilm detachment.

(3) System Relationship to Nearby Upstream Industry—Environmental ground or air pol-
lution and terrestrial influence. as compared to open ocean. '

(4) Operating History of Corroding Svstem—As an example, there have been several
documented cases of MIC in the nuclear industry where shutdown after hydrotesting with
natural waters has resulted in extensive pitting failures {/8]. Inadequate drainage left stagnant
areas conducive to bacterial attack. Antifouling and cathodic protection measures in use
should be known.
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Collection and Transport of Corroding Sample and Medium

Pope {11]. Tatnall [14]. and Stoecker [/9)] have described sample collection for the study
of MIC. Swabs should be obtained from the base metal and within pits beneath tubercles.
Samples of tubercular material and aqueous medium. in addition to any other items in the
environment of interest should be collected. General recommendations are to collect and
analyze intact specimens. maintained in natural liquid medium, as soon as possible after
disturbing the normal operating system. Samples should be taken in clean sterile containers
and chilled until examination within 12-24 h. Specimens to be studied microscopically should
be fixed in preservatives such as 2-4< formaldehyde or glutaraldehyde to maintain structural
integrity.

Microbiology

It must be remembered that biofilms are a total community with svnergistic relationships
between organisms, producing activities different than those from isolated species. Cultures
only provide identification of species present.

Standard microbiological practices for general and selective cultures are commonly de-
scribed. General plate counts may be misleading because results do not necessarily correlate
with bacteria directly related to MIC. Using knowledge of the corroding system. including
oxygen content. metal alloy involved. and other parameters. a microbiologist could deter-
mine investigative directions such as using Postgate medium {20] where SRB are suspected.

Commercially prepared media and test Kits are available for on-site and laboratory screen-
ing. Little et al. have described several for the detection of SRB [2/].

Culture Techniques

The American Petroleum Institute (API. New York. NY) Recommended Practice (RP
38) [22] for the enumeration of SRB in subsurface injection waters specifies sodium lactate
as the carbon source. When bacteria are present in the sample, they reduce sulfate in the
medium to sulfide that reacts with iron in solution to produce black ferrous sulfide. Black-
ening of the medium over a 28-day period signals the presence of SRB. A solid medium
technique termed "agar deeps™ uses a modification of API with sodium sulfite as the reducing
agent/oxvgen scavenger [23). An agar slant is inoculated. oxygen is excluded, tube is sealed,
incubated for 5 days, and observed for blackening.

Direct Methods

Unlike culturing techniques. direct methods for detecting and quantifying SRB do not
require SRB growth. Instead. direct methods measure constitutive properties including:
adenosine-5'-phosphosulfate (APS) reductase {23], hydrogenase [24], cell-bound antibodies
{25]. and DNA [26]. Attempts have also been made to use adenosine triphosphate (ATP)
[27] and radiorespirometric measurements for estimates of SRB activity [28].

The APS reductase antibodv method was developed by Tatnall [23]. APS reductase is an
intercellular enzyme found in all SRB. Briefly, cells are washed to remove interfering
chemicals including hydrogen sulfide and lysed to release APS reductase. The lysed sample
is washed and exposed to a color-developing solution. In the presence of APS reductase a
blue color appears within 10 min. The degree of color is proportional to the amount of
enzyme and roughly to the number of celis from which the enzyme was extracted. Similarly,
a procedure has been developed to quantify hvdrogenase from SRB that requires that cells
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be concentrated by filtration from water samples [24]. Solids. including corrosion products
and sludge. can be used without pretreatment. The sample is exposed to an enzyme extracting
solution for 15 min and placed in an anaerobic chamber from which oxvgen is removed by
hydrogen. The enzyme reacts with excess hvdrogen and simultaneously reduces an indicator
dve in solution. The acti-ity of the hydrogenase is established by the development of a blue
color within 4 h. Color iniensity is proportional to rate of hvdrogen uptake.

Field and laboratory epifluorescence cell surface antibodv methods for detecting SRB
have been developed by D. H. Pope [25). Both methods are based on the use and subsequent
detection of specific antibodies. produced in rabbits. that react with SRB cells. A secondary
antibody. produced in goats. is then reacted with the primary rabbit antibodies bound to
the SRB cells. In the laboratory method. the goat antibodies are linked to a fluorochrome
that enables bacterial cells marked with the secondary antibody to be viewed with an epi-
fluorescence microscope. In the field method. the goat antibodies are conjugated with an
enzyme (alkaline phosphatase) that can then be reacted with a colorless substrate to produce
a visible color proportional to the quantity of SRB present.

Hogan has described a nonisotopic. semiquantitative procedure for the detection of De-
sulfobacterium and Desulfotomaculum using DNA probes that are labeled with an acridinium
ester and is sensitive to 10° organisms/mL [26]. DNA probes are directed towards nbosomal
RNA and may be viewed as consisting of three to four steps: (1) sample handling. (2) binding
the probe to the target. (3) removal or destruction of the unbound probe. and (4) detection
and quantification of the reporter group on the bound probe.

ATP assays estimate the total number of viable organisms by measuring the amount of
ATP in a sample. ATP is a compound found in all living matter. Littman proposed that
ATP assay techniques may be used with oilfield water samples to estimate relative numbers
of SRB [27]. The procedure requires that a water sample be filtered to remove solids and
salts that may interfere with the test. The filtered sample is added to a reagent that releases
cell ATP. An enzyme then reacts with the ATP to produce a photochemical reaction. Emitted
light can be measured with a photometer and the number of bacterial cells is estimated from
the total light emitted.

Microscopy

Because MIC cannot be verified by morphology of localized corrosion or composition of
corrosion products. it is essential in the diagnosis of MIC that a spatial relationship be
established between microorganisms. substratum metal. and corrosion. Several microscopic
techniques have been used to document numbers and types of microorganisms on surfaces.
Epifluorescence microscopy has been used to evaluate the distribution of cells on corroded
surfaces [25]). This technique requires sample fixation and staining. It is often difficult to
distinguish individual cells within a densely populated biofilm using epifluorescence mi-
croscopy and it is sometimes impossible to penetrate corrosion products with stains. Trans-
mission electron microscopy (TEM) has been used to demonstrate microbial cells distributed
throughout corrosion lavers [29]. TEM requires sample fixation. dehyvdration. embedding
and thin sectioning. Traditional scanning electron microscopy (SEM). coupled with energy
dispersive spectroscopy (EDS). has been used extensively to demonstrate bacteria in cor-
roded areas and to determine surface chemistries resulting from MIC. Elemental chemistry
of the base metal. pit area. corrosion products, and general biofilm should be 1dentified.
Presence. morphology. and distribution of microorganisms within the biofilm. and the pres-
ence of polymeric material must be determined. Figure 4 shows localized corrosion and
distribution of bacteria in corrosion products from a copper ‘nickel piping svstem after 1
year of service [30].
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FIG. 4—Pining in copperinickel piping sysiem after 1 vear i service |30): (a) = pitted area and
(b) = bacieria in cross-section of pitied area. :

Preparation of biological material for SEM requires extensive manipulation, including
fixation, dehydration, and either air or critical-point ‘drying because the SEM operates at
high vacuum. Nonconducting samples. including biofilms. must be coated with a conductive
film of metal before the specimen can be imaged. Uncoated nonconductors build up local
concentrations of electrons. referred to as ““charging.” that prevent the formation of usuable
images. EDS can be used to determine the elemental composition of surface films in the
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SEM, but EDS analyses must be completed prior to deposition of a thin metal coating. EDS
data are typicallv collected from an arca. the specimen removed from the specimen chamber
and coated with a conductive laver. and returned to the SEM. The operator attempts to
relocate and photograph the precise area from which the EDS data were collected. Little
et al. [31] demonstrated that sample preparation for SEM. including the solvent removal
of water and air or cntical point drving, decreases areal coverage of the surface by the
biofilm. removes cells from the biofilm. removes extracellular polvmeric material that may
contribute to corrosion. and decreases the concentration of metals bound within the matrix
of the exopolymer (Fig. 3).

Environmental scanning electron microscopy (ESEM) was used to demonstrate that the
number and types of microorganisms on copper surfaces have been underestimated by SEM.
ESEM provides fast. accurate images of a biofilm (Fig. 6). its spatial relationship to a
corrosion site. as well as surface chemistry. without extensive manipulation of the sample.
This instrument uses a4 unique secondary electron detector capable of forming high resolution
images at pressures in the range of 0.1 to 20 torr. At these relatively high pressures. specimen

9-J848 W nyLENE . 10726 040e

FIG. S—ESEM images comparing biofilm coverage when wet and after removal of water [31]: (a) =
as taken directly from water and (b)Y = after acetone-xylene removal of water.
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charging is dissipated into the gaseous environment of the specimen chamber, enabling
direct observation of uncoated. nonconductive specimens. If water vapor is used as the
specimen environment, wet samples can be observed directly. and EDS data can be collected
at the same time as sample morphology and topography are photographed. Figure 7 shows
a flow diagram for sample preparation for SEM compared to that for ESEM.

Corrosion and sulfide film formation on copper-containing metals can be followed using
ESEM/EDS. In the presence of S° . a porous layer of cuprous sulfide with the general
stoichiometry CuxS, O < x < | forms {32]. Copper ions migrate through the layer, react
with more sulfide to produce a thick black scale. It has been argued that if the copper sulfide
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FIG. 7—Flow chart comparing sample preparation for SEM and ESEM.
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layer were djurleite (Cu,..S) the sulfide laver would be protective. However. even if such
a sulfide film were technically passivating. the film's mechanical stability is so poor that
sulfide films are useless for corrosion protection. In the presence of turbulence. the loosely
adherent sulfide film is removed. exposing a fresh copper surface to react with the sulfide
ions. Preparation of microbiologicallv-produced sulfide corrosion products on copper foils
for the SEM physically or chemically. or both. removes material from the surface.

An important feature of wet biofilms on copper-containing metals was that the micro-
organisms were distributed throughout the copper/nickel/iron-rich surface lavers and not
on top of these layers as some traditional scanning electron micrographs have indicated.
Fixation. dehydration. and critical-point drving resulted in a loss of material from the surface
so that many bacteria were removed with the surface deposits. It has been previously reported
that bacterial cells attached to the base metal were tenaciously attached to the surface and
were not removed or distorted during the SEM preparation [37]. TEM has been used to
demonstrate that bacteria were intimately associated with the corrosion products and that
on copper surfaces. the bacteria were found between layers of corrosion products and
attached to base metal [29]. Similarly. ESEM images demonstrate that SRB were distributed
throughout the sulfur-rich corrosion layers.

Dealloying of nicke! from copper/nickel alloys and intergranular corrosion as a result of
MIC has been reported by several investigators. Little et al. used EDS to demonstrate
selective dealloying of Monel 400 in the presence of SRB from an estuarine environment
(Fig. 8) {30]. The first evidence of a spatial relationship between the constitueats of the
biofilm and dealloying within pits covered with bacteria and diatoms has been presented.
Little et al. demonstrated that diatoms are easily removed from marine biofilms during
preparation for SEM and advanced the opinion that the role of diatoms in MIC has been
neglected (Fig. §) [3/].

Several new forms of microscopy have been recently developed. Brief descriptions of
those with potential application to the research study of biofilms follow.

Confocal laser scanning microscopy uses mechanical scanning of the object and a laser
light source. A pinhole diaphragm just before the photomultiplier allows detection of light
from very small specimen areas. High spatial resolution is achieved where horizontal optical
sections can be collected and compiled for 3-dimensional image analysis [33]. Geesey has
used this technigue to study muitidimensional images within a biofilm®.

*G. G. Geesey. personal communication, {992,
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Scanning tunneling microscopy uses the principle of quantum mechanical tunneling. The
microscope tip and the sample form two electrodes between which tunneling can occur
through a nonconductor, usually a vacuum, but can be other media such as water or an
electrolyte. The tip moves in x.y.z dimensions to yicld a surface map of local density states.
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This technique has been applied to imaging unstained. uncoated viruses [34]. Atomic force
microscopy provides contour images, as used by Bremer et al., to show spatial relationship
between a bacterium and a pit on a copper surface [35]. Probes use x,y.z piezotranslation
to position a sample in contact with a microfabricated cantilever where it is scanned in a
raster pattern.

Chemistry
{1} Aqueous Medium

Chemical analyses of the liquid medium from the corrosion system has been described
previously and should be performed according to standard methodology.

(2) Base Metal and Corrosion Products

Elemental analysis of base metal and corrosion deposits using SEM/EDS or ESEM/EDS
has been described. EDS spectra are obtained while the electron beam scans the area of
interest to obtain true average compositions and avoid bias associated with selecting a specific
point on an inhomogenous surface. Associated dot mapping shows distribution of an element
of interest within a field. Figure 9 illustrates use of dot mapping in investigation of delam-
ination of a zinc coating on galvanized steel’.

Scanning Auger microprobe analyses were used by Lee et al. to show metallic segregation
in butt-welded 90/10 Cu/Ni piping [36]. The composition of the heat-affected zone was
profiled by a series of overlapping images to allow calculation of percentage compositions
from peak amplitudes. As an example, Fig. 10 shows a profile of percent concentration
calculated from Auger data for carbon across the heat affected zone of a copper/nickel butt
weld.

McNeil et al. analyzed sulfide mineral deposits on copper alloys colonized by SRB in an
attempt to identify specific mineralogies that could be used to fingerprint SRB activity {32].
They concluded that the formation of nonadherent layers of chalcocite (Cu.S) and the
presence of hexagonal chalcocite were indicators of SRB-induced corrosion of copper. The
compounds were not observed abiotically and their presence in near-surface environments
could not be explained thermodynamically. Others have identified mackinawite, gregrite.
and symthite as indicators for SRB corrosion of ferrous metals in anaerobic environments
137.

Sulfur isotope fractionation was demonstrated by Little et al. in sulfide corrosion deposits
resulting from the activities of SRB within biofilms on copper surfaces {38]. S was accumu-
lated in sulfide-rich corrosion products and *S was concentrated in the residual sulfate in
the culture medium. Conventionally, the amplitude of each isotope is not reported individ-
ually, but a ratio is established and compared to the isotope ratio of a standard to yield a
value 8*S expressed as parts per thousand. Negative & values indicate a concentration of
2§, and positive values indicate an accumulation of ¥S. Accumulation of the lighter isotope
was related to surface derivatization or corrosion as measured by weight loss. Use of this
and the preceding mineralogical technique to |dent|fy SRB-related corrosion requires so-
phisticated laboratory procedures.

* B. Little. unpublished work, 1987.
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(3) Interfacial Chemistries

Including pH. dissolved oxygen. and sulfides have been measured by Lewandowski et al.
[9]. and VanHoudt et al. [39]. Microelectrodes were developed to profile these parameters
systematically through the biofilm from external surface to the metal/biofilm interface.

Kearns et al. used X-ray photoelectron spectroscopy to characterize the interaction of
metal ions and SRB for interfacial studies [40]. The biomass was irradiated to induce
photoelectron ejection. By measuring Kinetic energies of the photoelectrons. the binding
energy of the electrons can be calculated. The binding energy value contributes to elemental
identifications. Shifts in binding energy identifies oxidation state of the element.

Metallurgy

Alloy composition. mechanical properties. and microtopograpt ie indicators of
corrosion susceptibility. Examples of localized attack for specific ali been discussed
earlier. Deformation of grain structure. presence of inclusions. and ari.  .2r manufacturing

defects provide sites of decreased corrosion resistance [6]. In certain environments. heat-
affected zones of welds in stainless steels are very susceptible to MIC [/0}]. In metallographic
examination after exposure. identification of localized attack. carbides from graphitization.
and hydrides from hydrogen-producing bacteria may suggest MIC.

Conclusions

In ideal circumstances. basic examination of a corrosion system includes preliminary
knowledge of the corroding material and its operating environment. Initial visual obser-
vations of the undisturbed sample and subsequent microbiological. microscopic. chemical.
and metallurgical examinations should provide reliable evidence for MIC.
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