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1. INTRODUCTION

This report provides an overview of reinforcement learning, proposes a new algorithm for reinforcement

learning in continuous time, and gives simulation results. Section 2 provides background information on

Markov processes, various reinforcement learning algorithms, and the notation used throughout this paper. This

section can be skipped by readers familiar with reinforcement learning. Section 3 proposes the advantage

updating algorithm, both for discrete time, and in the limit for continuous time. Section 4 presents the linear

quadratic regulator (LQR) problem that was used as a testbed for comparing advantage updating to Q-learning.

Section 5 analyzes why advantage updating would be expected to learn more quickly than Q-learning, and

section 6 gives simulation results consistent with this analysis. Section 7 discusses convergence of advantage

updating, and section 8 discusses implementation issues.
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2. REINFORCEMENT LEARNING SYSTEMS

A reinforcement learning system typically uses a set of real-valued parameters to store the information that is

learned. When a parameter is updated during learning, the notation:

W----K (1)

represents the operation of instantaneously changing the parameter W so that its new value is K, whereas:

W 'l'-K (2)

represents the operation of moving the value of W toward K. This is equivalent to:

W., (-----(- a)Wld•+ aK (3)

where the learning rate c is a small positive number. Appendix A summarizes this and other notation

conventions.

A Markov sequential decision process (MDP) is a system that changes its state as a function of its current

state and inputs received from a controller. The set of possible states for a given MDP, and the set of possible

actions from which the controller can choose, may each be finite or infinite. At time t, the controller chooses an

action ut, based upon the state of the MDP, xt. The MDP then transitions to a new state xt+At where At is the

duration of a time step. The state transition may be stochastic, but the probability P(u,,xjx+At) of transitioning

from state xt to state xI+At after performing action ul is a function of only xg, xI+At and uj, and is not affected by

previous states or actions. If there are a finite set of possible states and actions, then P(ut,xt,x,+At) is a

probability. If there are a continuum of possible states or actions, then P(utxt,x,+At) is a probability density

function (PDF). If time is continuous rather than discrete, then P(u,,xjjic) is the probability that action u1 will

cause the rate of change of the state to be it. The MDP also sends the controller a scalar value known as

reinforcement. If time is discrete, then the total reinforcement received by the controller during time step t is

R,@(x,ut). If time is continuous, then the rate of flow of reinforcement at time t is r(x1 ,u,).
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A reinforcement learning problem is the problem of determining which action is best in each state in order

to maximize some function of the reinforcement. The most common reinforcement learning problem is the

problem of finding actions that maximize the expected total discounted reinforcement, which for continuous

time is defined as:

( y'r(x,, u, )dt) (4)

where <-> denotes expected value, and where O<cyl is the discount factor which determines the relative

significance of earlier versus later reinforcement. For discrete time, the total discounted reinforcement received

during one time step of duration At when performing action ul in state x, is defined as:

R.(x•,u,) f y'fr(x,,u,)d'r (5)

The goal for a discrete-time controller is to find actions that maximize the expected total discounted

reinforcement:

x(yY ),, u i.)• (6)

This expression is often written with At not shown and with y chosen to implicitly reflect At, but is written

here with the At shown explicitly so that expression (6) will reduce to expression (4) in the limit as At goes to

zero. A policy, K(x), is a function that specifies a particular action for the controller to perform in each state x.

The optimal policy for a given MDP, rt*(x), is a policy such that choosing ut--nt*(xt) results in maximizing the

total discounted reinforcement for any choice of starting state. If reinforcement is bounded, then at least one

optimal policy is guaranteed to exist. The value of a state, V*(x), is the expected total discounted reinforcement

received when starting in state x and choosing all actions in accordance with an optimal policy. The functions

stored in a learning system at a given time are represented by variables without superscripts such as 7t, V, A, or

Q. The true, optimal functions that are being approximated are represented by * superscripts, such as it*, V*,

A*, or Q*.
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Expression (6) is the most common performance measure for defining a reinforcement learning problem, but

it is not the only conceivable measure. For example, Sutton (1990b) and others have considered a different

performance measure, which Schwartz (1993) calls T-optimality. For this performance measure, the problem is

to find a policy that maximizes the average reinforcement p, which is defined as:

n--I

p = limr'a" o(7)
n

A policy that maximizes p is always defined to be better than a policy that does not maximize p. If two policies

both maximize p, then the better policy is defined to be the one with the larger average adjusted value c, which

is defined as:

ft-1 M-1

a = li.. ..o i.0 (8)

A policy is said to be T-optimal if it maximizes p and has the largest Y of all the policies that maximize p.

This means that a learning system using this performance measure will first try to maximize the average of all

future reinforcements. If there are several policies that all maximize the average reinforcement, then it will

choose the policy that also maximizes near-term reinforcement. T-optimal policies do not always exist for

every MDP. If T-optimal policies do exist for a given MDP, they may all be nonstationary, so that the optimal

action in a given state may not be a deterministic function of the state alone (Ross, 1983). If stationary T-

optimal policies exist, it is not clear how to learn them. A reinforcement learning system is a system that is

capable of solving reinforcement learning problems. One reinforcement learning system for finding T-optimal

policies has been proposed by Schwartz (1993). The algorithm requires that an R value be stored for each state-

action pair, and that a global scalar p be stored. R values are represented here by script letters (ZI to distinguish

them from reinforcement (R). The update rules for R-learning are as follows, where the learning system

performs action u in state x, resulting in reinforcement R and a transition to state x':
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R(xu)--R,,(x,u)-p + maxR(x ,u) (9)
I'

If the action performed follows the current policy (i.e. u = argmax R(x,u)) then:

p ..-- R, .,(x,u)+maxRTex',u'd)--max R(X,u') (10)

It is not clear whether R-learning will always cause the R values to converge. Even when R-learning does

converge, and a stationary T-optimal policy does exist, it is still possible for R-learning to converge to the

wrong answer. Figure I shows one example where R-learning has converged, but the final R values erroneously

indicate that all possible policies are equally good. This MDP has the property that any policy under

consideration has a single average reward independent of the initial state. It might be expected that this

property would ensure that whenever R-learning converges it must arrive at a T-optimal policy, but that is not

the case. R-learning is a recent development, and it is possible that future versions of R-learning will avoid this

difficulty. The use of undiscounted performance measures in reinforcement learning is an important question

and deserves further research, but due to the current difficulties with using the T-optimality performance

measure, it will not be considered further here. The following discussions and results all pertain to the problem

of maximizing the standard performance measure (expected discounted reinforcement) given in expression (6).
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Figure 1. Counterexample for R-learning

A deterministic MDP is with two states and two actions is given for which R-learning

converges, but does not learn to distinguish the T-optimal policy from nonoptimal

policies. T-optimal is the undiscounted performance measure defined by Schwartz

(1993). Diagram (a) shows the names of the states (1 and 2) and actions (A and B). It

also shows the immediate reinforcement received when performing each action in each

state (-10, 0, and 10). Diagram (b) shows the initial R values before learning starts.

Initially, p--0, which is correct because all possible policies yield an average

reinforcement of zero when starting in any state. This MDP has the property that any

policy under consideration has a single average reward independent of the initial state. It

might be expected that this property would ensure that whenever R-learning converges it

must arrive at a T-optimal policy, but that is not the case. The T-optimal policy is to

choose action A in both states. The worst possible policy is to choose action B in both

states. The initial R values erroneously indicate that all possible policies are equally

good. Repeated applications of the R-learning update rules result in no changes to p or to

any of the R values. Therefore, R-learning will never discover that the policy of always

choosing A is better than the policy of always choosing B.

One of the earliest methods for finding policies that maximize expression (6) is the algorithm known as

value iteration (or simply called the dynamic programming algorithm by Bertsekas, 1987). Value iteration is

an algorithm for finding the optimal policy x*, given the transition probabilities P and the reinforcement
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function R. Value iteration stores a value V(x) for each state x. The values are initialized to arbitrary numbers,

and then are updated repeatedly according to the update rule:

V(x)+-----max[R1 ,(x,u)+ 7'JP(u'x'x')V(x'.)] (11)

If this procedure is performed infinitely often in every state, then each value V(x) is guaranteed to converge

to the optimal value V*(x). For a given MDP, the function V*(x) is the unique solution to the Bellman equation:

V(x) = max[RM,(xu) + Y' P(u,x,x' )V(x')] (12)

After convergence, the optimal policy is implied by the value function, and can be found quickly:

7r*(x) = arg max IP(u,x,x')[R, (x,u) + y'V*(x')] (13)
X.

Simple value iteration is not well suited, however, for reinforcement learning in general. First, it requires

that the probabilities and reinforcement function to be known. If they are not known, then a separate learning

procedure must estimate them. If there are n possible states and m possible actions, the algorithm requires

O(nm) calculations to perform a single update. If there is a continuum of possible states and actions, then the

summation becomes an integral, and the maximization is performed over an infinite set of integrals. If each

state and action is a high-dimensional vector, then an approximation to update (11) will typically require O(nm)

calculations, where n and m each scale exponentially with the dimension.

The scaling problems of value iteration can be addressed by more incremental algorithms that require fewer

calculations per update. Such algorithms typically store more information than just the V(x) that is stored during

learning for value iteration. For example, an algorithm might store both an estimate of the optimal value of

each state, V(x), and an estimate of the optimal action for each state, 7c(x). There are various incremental,

asynchronous algorithms for learning with such a system. Unfortunately, these typically require that n(x)

change instantaneously during an update, which may not be possible if 7t(x) is stored in a general function

approximation system such as a neural network. Function approximation systems typically change gradually

rather than instantaneously. Also, these algorithms are not guaranteed to converge, even when there are only a

finite number of states and actions (Williams and Baird, 1990, 1993).
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For systems with a continuum of states and actions, differential dynamic programming (Jacobsren and

Mayne, 1970) avoids the need to instantaneously change the policy. This algorithm is typically used to find an

optimal trajectory from a single starting state to a single final state. A policy is found (by some other means)

that leads from the start state to the final state. The value function is then calculated for the states along the

trajectory. The update rule for differential dynamic programming then causes incremental changes in the value

and policy function so that the trajectory is slowly changed to increase the total reinforcement. This algorithm

is similar to the backpropagation through time algorithm (Nguyen and Widrow 1990), which first learns a

model of the system being controlled, then improves the policy through gradient descent. Unfortunately, both

of these algorithms are susceptible to local optima; the final policy will be such that it cannot be improved by an

infinitesimal change, but there may be an entirely different policy that is much better.

Instead of storing a value and a policy, a learning system could instead store a value V(x) for each state and a

change in value AV(x,u) for each state-action pair. The change in value AV(x,u) would represent the expected

difference between the value of state x and the value of the state reached by performing action u in state x. This

allows a more incremental algorithm than value iteration, because it is possible to avoid summing over all

possible outcomes for a given action in a given state, and it is no longer necessary to know a model of the MDP.

After performing action u in state x causing a transition to state x', the change in value could be updated

according to update (14):

AV(x,u)--RM(x,u)+ 7•y'V(x' ) - V(x) (14)

After performing update (14), if AV(x,u) is the maximum AV in state x, (i.e. action u is the current policy), then

update (15) should also be performed:

V(x) --- R + y'•V(x') (15)

The idea of storing both the value function and the change in value (or rate of change of value) was found to be

useful in one application by White and Sofge (1990, 1992), who incorporated this idea into a larger system that

also included a stored policy. However, the obvious algorithm for updating such stored functions, updates (14)

and (15), is not guaranteed to converge, even for a simple, deterministic MDP with only eight states, two

actions, and time step At=l. Figure 2 shows an example for which this algorithm does not converge. For this

8



MDP, the optimal policy is action A in every state. The worst policy is B whenever possible. The initial AV

function implies that the worst policy is considered to be optimal by the learning system. Thus, not only does

the learning system fail to converge to the optimal policy, it also periodically implies the worst possible policy.

Also, the parameter values shown in Figure 2 constitute an attractor, if the initial parameter values are changed

slightly, then after each sequence of updates they will move toward the parameter values in Figure 2. Updates

(14) and (15) change the parameters instantaneously. If there were an a above the arrow, to represent a more

gradual change, then the modified algorithm would also fail to converge for this counterexample. Each gradual

update shown in the sequence in Figure 2 would simply be repeated several times. An instantaneous update can

always be approximated by repeating a gradual update. There are other modifications that could be imagined

for updates (14) and (15), but it is not apparent how to modify them to ensure convevence to optimality. It is

not clear how a reinforcement learning system could be built that stores only V and AV (or that stores V, AV, and

a policy) and that is guaranteed to converge to the optimal policy.

A2.A95120 0 2

(a) (b)

Figure 2. Counterexample for change in value

A deterministic MDP is given with eight states, two actions, and a time step At=l for

which the updates (14) and (15) are not guaranteed to converge. The name of each state

and action is shown in (a). Action A yields an immediate reinforcement of 2, and action

B yields an immediate reinforcement of 1. The initial value in each state, V(x), and initial

9



change of value for each state-action pair, AV(x,u), are shown in (b). The parameters fail

to converge when the sequence of updates:

{2B, 1A, 2A, 8A, 8B, 1A, 6B,

4B, 3A, 4A, 2A, 2B, 3A, 8B,

6B, 5A, 6A, 4A, 4B, 5A, 2B,

8B, 7A, 8A, 6A, 6B, 7A, 4B)

is repeated infinitely often, where the numbers are states and the letters are actions. After

performing the first row of updates, all parameters have shifted clockwise two states.

After performing all four rows of updates, all parameters have been updated at least once,

and all parameters have returned to their initial values. The optimal policy is to choose

action A in every state. The worst policy is to choose action B whenever possible. The

initial parameters cause the learning system to classify the w',rst policy as being optimal,

and this is still the case after the above sequence has been repeatedly arbitrarily often.

The worst policy continues to be classified as optimal, even if the initial parameters are

perturbed slightly.

Another approach is to store a probability of choosing each action in each state, rather than a single policy

action for each state. This approach has been used, for example, by Gullapalli (1990). This approach requires

that the controller choose actions according to the stored probabilities during learning. The probabilities

typically convýerge to a deterministic policy, so exploration by the learning system must decrease over time.

This prevents the issue of exploration from being addressed separately from the issue of learning. It would be

useful to have a general algorithm that was guaranteed to learn when observing any sequence of actions, not just

actions chosen according to specific probabilities. For such an algorithm, the exploration mechanism could be

designed freely, without concern that it might prevent convergence of the learning algorithm.

Q-learning is an algorithm that avoids the problems of the above algorithms. It is incremental, direct (does

not need a model of the MDP), and guaranteed to converge, at least for the discrete case with a finite number of

states and actions. Furthermore, it can learn from any sequence of experiences in which every action is tried in

every state infinitely often. Instead of storing values and policies, Q-learning stores Q values. For a given state

10



x and action u, the optimal Q value, Q*(x,u), is the expected total discounted reinforcement that is received by

starting in state x, performing action u on the first time step, then performing optimal actions thereafter. The

maximum Q value in a state is the value of that state. The action associated with the maximum Q value in a

state is the policy for that state. Initially, all Q values are set to arbitrary numbers. After an action u is

performed in state x, the result is observed and the Q value is updated:

Q(x,u)--2---R(x,u) + y' maxQ(x' ,u) (16)

The equivalent of the Bellman equation for Q-learning is:

Q(x,u) = R,(x,u) + y"XP(u,x,xY)maxQ(x',u) (17)

The optimal Q function, Q*(x,u), is the unique solution to equation (17). The policies implied by Q*,

policies that always choose actions that maximize Q*, are optimal policies.

Update (16) does not require a model of the MDP, nor does it contain any summations or integrals. The

computational complexity of a single update is independent of the number of states. If the Q values are stored

in a lookup table, then the complexity is linear in the number of actions, due to the time that it takes to find the

maximum. However, the term being maximized is a stored function, not a calculated expression. This suggests

that if Q is stored in an appropriate function approximation system, it might be possible to reduce even this part

of the update to a constant-time algorithm. One algorithm that does this is described in Baird (1992). Another

method, wire fitting, is described in Baird and Klopf (1993b). In both cases, the maximization of the function is

performed incrementally during learning, rather than requiring an exhaustive search for each update. Q-learning

therefore appears to have none of the disadvantages of any of the algorithms described above, and the

computational complexity per update is constant. Reinforcement learning systems based on discrete Q-learning

are described in Baird and Klopf (1993a), and Klopf, Morgan, and Weaver (1993).

Q-learning requires relatively little computation per update, but it is useful to consider how the number of

updates required scales with noise or with the duration of a time step, At. An important consideration is the

relationship between Q values for the same state, and between Q values for the same action. The Q values

Q(x,ul) and Q~r,u2) represent the long-term reinforcement received when starting in state x and performing

11



action ul or u2 respectively, followed by optimal actions thereafter. In a typical reinforcement learning problem

with continuous states and actions, it is frequently the case that performing one wrong action in a long sequence

of optimal actions will have little effect on the total reinforcement. In such a case, Q(x,u I) and Q(x,u2) will

have relatively close values. On the other hand, the values of widely separated states will typically not be close

to each other. Therefore Q(xl,u) and Q(x2 ,u) may differ greatly for some choices of xi and X2. The policy

implied by a Q function is determined by the relative Q values in a single state. If the Q function is stored in a

function approximation system with some error, the implied policy will tend to be sensitive to that error. As the

time step duration At approaches zero, the penalty for one wrong action in a sequence decreases, the Q values

for different actions in a given state become closer, and the implied policy becomes even more sensitive to noise

or function approximation error. In the limit, for continuous time, the Q function contains no information about

the policy. Therefore, Q-learning would be expected to learn slowly when the time steps are of short duration,

due to the sensitivity to errors, and it is incapable of learning in continuous time. This problem is not a property

of any particular function approximation system; rather, it is inherent in the definition of Q values.

12



3. THE ADVANTAGE UPDATING ALGORITHM

Reinforcement learning in continuous time is possible through the use of advantage updating. The

advantage updating algorithm is a reinforcement learning algorithm in which two types of information are

stored. For each state x, the value V(x) is stored, representing the total discounted return expected when starting

in state x and performing optimal actions. For each state x and action u, the advantage, A (x,u), is stored,

representing the degree to which the expected total discounted reinforcement is increased by performing action

u (followed by optimal actions thereafter) relative to the action currently considered best. After convergence to

optimality, the value function V*(x) represents the true value of each state. The advantage function A*(xu) will

be zero if u is the optimal action (because u confers no advantage relative to itself) and A*(x,u) will be negative

for any suboptimal u (because a suboptimal action has a negative advantage relative to the best action). For a

given action u, the Q value Q*(x,u) represents the utility of that action, the change in value AV*(x,u) represents

the incremental utility of that action, and the advantage A*(x,u) represents the utility of that action relative to the

optimal action. The optimal advantage function A* can be defined in terms of the optimal value function V*:

A*(x,u) = I[R ..(x~u) - V*(x) + y'YXP(u',X'Y)V*(X')] (18)

The definition of an advantage includes a I/At term to ensure that, for small time step duration At, the

advantages will not all go to zero. Advantages are related to Q values by:

AK(x,u)= -i[Q (x,u)-maxQ-(x,u)] (19)
AtL J

Both the value function and the advantage function are needed during learning, but after convergence to

optimality, the policy can be extracted from the advantage function alone. The optimal policy for state x is any

u that maximizes A*(ru). The notation Amax() is defined as:

A (x) = max A(x, u) (20)
U

If Amax is zero in every state, then the advantage function is said to be normalized. Amax should eventually

converge to zero in every state. The update rules for advantage updating in discrete time are as follows:
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Advantage Updating

LEARN: perform action u, in state x,

a(x,,u,)i .--,(x,) + R•,,(x,,u,) + y•'V(x,÷,) - V(x,) (21)
At

V(X,)<- -8 V(X,)+ [A,, (x,) - A., (x,)Va (22)

NORMALIZE: pick an arbitrary state x and pick an action u randomly with uniform probability

A(x,u).-- A(x,u) - A,,(x) (23)

For the learning updates, the system performs action ut in state xt and observes the reinforcement received,

R&(xt,ul), and the next state, xt+&t. The advantage and value functions are then updated according to updates

(21) and (22). Update (21) modifies the advantage function A(x,u). The maximum advantage in state x prior to

applying update (21) is Amaxozd(X). After applying update (21) the maximum is Anma,,u•0). If these are

different, then update (22) changes the value V(x) by a proportional amount. As cc goes to zero, the change in

Aax goes to zero, but the change in Amax in update (22) is divided by cc, so the value function will continue to

learn at a reasonable rate as a decreases. Advantage updating can be applied to continuous-time systems by

taking the limit as At goes to zero in updates (21), (22), and (23). For (22) and (23), At can be replaced with

zero. Substituting equation (5) into update (21) and taking the limit as At goes to zero yields:

A(x,,u,) --- A,(x,) + V(x,) In y+ V(x,) + r(x,,u,) (24)

The learning updates, (21), (22), and (24), require interaction with the MDP or a model of the MDP, but the

normalizing update, (23), does not. Normalizing updates can always be performed by evaluating and changing

the stored functions independent of the MDP. Normalization is done to ensure that after convergence

Anmax)=O in every state. This avoids the representation problem noted above for Q-learning, where the Q

function differs greatly between states but differs little between actions in the same state. Learning and

normalizing can be performed asynchronously. For example, a system might perform a learning update once

per time step, in states along a particular trajectory through state space, and perform a normalizing update

multiple times per time step in states scattered randomly throughout the state space. The advantage updating
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algorithm is referred to as "advantage updating" rather than "advantage learning" because it in'iu'iles both

learning and normalizing updates.

The equivalent of the Bellman equation for advantage updating is a pair of simultaneous equations:

V(x)+ A(x,u)At = R,,,(x,u)+ •M P(u,x,x' )V(x') (25)

max A(x,u)= 0 (26)
M

The unique solution to this set of equations is the optimal value and advantage functions V*(x) and A*(xu).

This can be seen by considering an arbitrary state x and the action Umax that maximizes the advantage in that

state. For a given state, if (25) is satisfied, then the action that maximizes A will also maximize the right side of

(25). If the advantage function satisfies (26), then A(x,Umax)--O. Equation (25) then reduces to equation (12),

which is the Bellman equation. The only solution to this equation is V=V*, so V* is the unique solution to

equations (25) and (26). Given that V=V*, equation (25) can be solved for A, yielding equation (18), so the

unique solution to the set of equations (25) and (26) is the pair of functions A* and V*.

The pair of equations (25) and (26) has the same unique solution as the pair (27) and (28), because equation

(28) ensures that Amax(X) is zero in every state.

V(x) + (A(x,u) - A.(x))&t = R.(x,u) + yXP(u,x,x' )V(x') (27)

maxA(x,u) = 0 (28)
U

If, in state x, a large constant were added to each advantage A*(x,u) and to the value V*(x), then the resulting

advantage and value functions would still satisfy equation (27). However, the advantage function would not

satisfy equation (28), and so would be referred to as an unnormalized advantage function. Such a function

would still be useful, because the optimal policy can be calculated from it, but it could be difficult to represent

in a function approximation system. The learning updates (21) and (22) find value and advantage functions that

satisfy (27). The normalizing updates (22) and (23) ensure that the advantage function will be normalized, and

so will satisfy (28) as well.
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The update rules for advantage updating have a significant property: there are time derivatives in the update

rules, but no gradients or partial derivatives. At time t, it is necessary to know Amax(Xg) and the value and rate

of change of V(xt) while performing the current action. It is not necessary to know the partial derivative of V or

A with respect to state or action. Nor is it necessary to know the partial derivative of next state with respect to

current state or action. Only a few of the recent values of V need to be known in order to calculate the time

derivative; there is no need for models of the system being controlled. Existing methods for solving

continuous-time optimization problems, such as value iteration or differential dynamic programming, require

that models be known or learned, and that partial derivatives of models be calculated. For a stochastic system

controlled by a continuum of actions, previous methods also require maximizing over a set of one integral for

each action. Advantage updating does not require the calculation of an integral during each update operation,

and maximization is only done over stored values. For this reason, advantage updating appears useful for

controlling stochastic systems, even if a model is already known with perfect accuracy. If the model is known,

then the system can learn by interacting with the model as in the Dyna system (Sutton, 1990a). Table 1

compares advantage updating with several other algorithms.
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Table 1. Comparison of several algorithms

stored for Bellman equation Direct Converge Con.statex, Update rules B tme
sactionct u to X

R-learning !x,u) R + R - p + max [y
, p If following the policy then: p=E[R+maxR']-R yes no no

p+-4--R + maxR'-max R

Value iteration V(x) V +--f-- R + Y maxV V = E[R + yw maxV'] no yes yes

V(x) AV s * (R+ Y'V'-V)/Ai AV=E[R + ryV'- V]/yA
Change in value AV(XU) If following the policy then: = E[R + max V'] yes no yes

I V x u V < - -O R + y & V I [ + r m x ' _ _

Q-learning Q(xu) Q --- R + y max Q' Q = E[R + yr max Q'I yes yes no

Ao-a-A_. +(R+y m V'-V)/At
Advantage V(x) V < - V + AA./aV]-A yes yes yes
updating A(;) For a randomly, uniformly chosen action: Are.= 0

A + --ý - -A - A ...

Equations are given in a simplified form, where primed letters represent information

associated with the next state and unprimed letters represent information associated with

the current state. See the text for a more detailed form of the equations. The fourth

column gives the equivalent of the Bellman equation; the unique solution to this equation

or set of equations is the optimal function or functions that should be learned. R-learning

is not guaranteed to learn to reject suboptimal policies. Value iteration is not direct; it

requires a model to be known or learned, and it requires the calculation of the maximum

of an infinite set of integrals to perform one update. The algorithms described in the text

that are based on storing a change in value are not guaranteed to converge, even for a

deterministic MDP with only eight states. Q-learning and R-learning do not work in

continuous time, and are sensitive to function-approximation errors when the time step is

small. Advantage updating is direct, is guaranteed to converge for an MDP with finite

states and actions, and is appropriate for continuous-time systems or systems with small

time steps.
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4. A LINEAR QUADRATIC REGULATOR PROBLEM

Linear Quadratic Regulator (LQR) problems are commonly used as test beds for control systems, and are

useful benchmarks for reinforcement learning systems (Bradtke, 1993). The following linear quadratic

regulator (LQR) control problem can serve as a benchmark for comparing Q-leaming to advantage updating in

the presence of noise or small time steps. At a given time t, the state of the system being controlled is the real

value xt. The controller chooses a control action ut which is also a real value. The dynamics of the system are:

i, = u, (29)

The rate of reinforcement to the learning system, r(xt,ut), is

r(x,,u) = -x, - u2, (30)

Given some positive discount factor y_1, the goal is to maximize the total discounted reinforcement:

J y'r(x,,u,)dt (31)
0

A discrete-time controller can change its output every At seconds, and its output is constant between

changes. The discounted reinforcement received during a single time step is:

1+,Ul t+&f

R,(x,,u,)= Jyr(x,,u,)dr= Jy I(-(x, + u ')dr (32)
I I

and the total reinforcement to be maximized is:

(33)
i.0
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Given this control problem, it is possible to calculate the optimal policy lt*(x), value function V*(x), Q value

function Q*(x,u), and advantage function A*(x,u). These functions are linear or quadratic for all At and 7-51:

R*(x) = -kax (34)

V*(x) =-k2X2 (35)

Q" (x,u) = -(k2+ Atk1
2k3)x2 - 2Atklk 3xu- Atk3u 2  (36)

A* (x,u) = -kI (kx + u) 2  (37)

The constants ki are positive for all nonnegative values of At and y'l. For At--O and y=l, all ki=l. Appendix B

gives the general formula for each ki as a function of At and '.
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5. Q-LEARNING WITH SMALL TIME STEPS

x (t)
1

0.5.

"- s... ... .......... t
10 15t

Figure 3. Optimal LQR trajectories

The optimal trajectory for the linear quadratic regulator (LQR) problem, starting at x0=I,

for continuous time (solid line) and for discrete time with time steps of duration 5

(dashed line). In continuous time, the optimal speed is high when x=l, and the speed

decreases as x approaches zero. In discrete time, the optimal speed is lower initially, to

decrease the amount of overshoot on the first time step.

Figure 3 illustrates the optimal trajectories for At=5 and At=O (continuous time) with y,=0.9. At the first

instant, the optimal policy for continuous time is to move at high speed, but the optimal policy for the discrete

time system requires a lower speed in order to lesson the degree to which it will overshoot during the first time

step. As the time step duration decreases from 5 to 0, the discrete-time trajectory converges to the continuous-

time trajectory. The optimal value function and Q function are also affected by At. Figure 4 shows the value

functions, policy functions, and Q functions for At=5, At=l, and At=0.0001.
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Figure 4. Optimal LQR functions for Q-learning

The optimal value function V* (top row), policy i* (middle row), and Q function Q*

(bottom row) are shown for the LQR problem. Functions are shown for time steps of

duration 5 (left column), duration 1 (middle column) and duration 0.0001 (right column).

In all cases, y--0.9.
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As the duration of the time step approaches zero, the optimal policy and value functions change slightly,

approaching a linear and quadratic function respectively, with coefficients of 1.0. The change in the optimal Q

function is more dramatic, however. This is visible in both the equations and the figures. If At is set to zero in

equation (36), the Q function ceases to be a function of u; it is only a function of x. This affect is also clear in

the figures. For a time step duration of 5, it is obvious that for each possible state there is a unique action that

yields the maximum Q value. This ridge of best Q values indicates the optimal policy. If the time step duration

is decreased to 1, the Q function shifts so that the optimal policy is somewhat harder to see. It is still the case,

though, that the maximum Q value in each state represents the optimal action in that state. As the time step

approaches zero duration (continuous time), it becomes increasingly difficult to extract the policy from the Q

function. In the last Q function graph in Figure 4, for each state, the Q function is almost constant over all the

actions. There is a very small bump in the Q function corresponding to the optimal action in each state, but it is

too small to be visible in a graph of the function, and it would be very difficult to learn, for a general function

approximation system. Small errors in function approximation can cause large errors in the policy implied by

the Q function. Q-learning is not practical for control when the time step duration is small, and Q-learning is

theoretically impossible in a continuous-time system.

This difficulty is not specific to this particular control problem. A Q value is defined as the expected total

discounted return if a given action is performed for only a single time step, followed by optimal actions

thereafter. Unfortunately, in a typical control system, the total discounted reinforcement over an entire

trajectory is rarely affected much by a suboptimal control action on a single time step. Thus the Q function will

be almost equal for all the actions in a given state, while exhibiting large differences between different states.

This is why Q-learning is not well suited to problems with small time steps.

22



A(x,u), dt= 5 A(x,u), dt= 1 A(x,u), dt= 0.0001

A A A

-17

U ~ 1U U

Figure 5. Optimal LQR functions for advantage updating

The optimal advantage function A* for the LQR problem are given for time steps of

duration 5 (left), duration 1 (middle) and duration 0.0001 (right). In all cases, r=0.9.

Figure 5 shows the advantage function for the same parameter values used in Figure 4. For large time step

durations, such as At=-5, the advantage and Q functions are almost identical except for scale. Both clearly

represent the policy. For smaller time steps, the advantage function continues to clearly represent the policy

and, even for continuous time, the optimal action in each state can be read easily from the graph. This suggests

that the advantage updating algorithm, which is based upon storing values and advantages, might be preferable

to Q-learning.
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6. SIMULATION RESULTS

Advantage updating and Q-learning were compared on the LQR problem described in the previous section.

In the simulations, the V function was approximated by the expression wIx 2 , and the A and Q functions were

approximated by w2x2+w3xu+w4u2 . All weights, wi, were initialized to random values between ±104, and

were updated by simple gradient descent. Each Q function was initialized with the same weights as the

corresponding advantage function to ensure a fair comparison. The control action chosen by the learning

system was constrained to lie in the range [-1,1]. When calculating the maximum A or Q value in a given state,

only actions in this range were considered. On each time step, a state was chosen randomly from the interval [-

1,1]. With probability 0.5, an action was also chosen randomly and uniformly from that interval. With

probability 0.5, the learning system chose an action according to its current policy. The advantage updating

system also performed one normalization step on each time step in a state chosen randomly and uniformly from

[-1,1]. A set of 100 Q-learning systems and 100 advantage updating systems were allowed to run in parallel, all

initialized to different random values, and all exploring with different random states and actions. At any given

time, the policy of each system was a linear function. The absolute value of the difference between the constant

in the current policy and the constant in the optimal policy was calculated for each of the 200 learning systems.

For Q-learning and advantage updating, the solution was said to have been learned when the mean absolute

error for the 100 learning systems running in parallel fell below 0.001. Figure 6 shows the number of time steps

required for learning when various amounts of noise were added to the reinforcement signal. Figure 7 shows

the number of time steps required for learning with various time step durations.
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Figure 6. Time steps required for learning as a function of noise

For a noise level of n, uniform, random noise from the range [-n1O4,nlO4] was added to

the reinforcement on each time step. For each noise level, Q learning (dashed line) used

the learning rate that was optimal to two significant digits. Advantage updating (solid

line) used learning rates with one significant digit, which were not exhaustively

optirrAzed, yet it tends to require less time than Q learning to learn the correct policy to

three decimal places. For zero noise, advantage updating is only slightly faster. For a

noise level of 13, advantage updating is more than four times faster than Q learning.
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Figure 7. Time steps required for learning as a function of time step duration, At

For each duration, Q learning (dashed line) used the learning rate that was optimal to two

significant digits. Advantage updating (solid line) used learning rates with one

significant digit, which were not exhaustively optimized. Advantage updating requires an

approximately constant number of time steps to learn the correct policy to three decimal

places, independent of At. For large At, advantage updating is slightly faster than Q-

learning to learn the policy to three decimal places. For small At, advantage updating

learns approximately 5 orders of magnitude more quickly than Q learning. As At

approaches zero, the training required by Q learning appears to grow without bound. Due

to the time required for the simulations, the last two data points for Q learning were found

with averages over 10 systems rather than 100.

Table 2 shows the learning rates used for each of the three functions for both of the algorithms for various

noise levels, and Table 3 shows learning rates for various time step durations. For the simulations described
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here, normalization was done once after each learning update, and both types of update used the same learning

rate. Advantage updating could be optimized by changing the number of normalizing updates performed per

learning update, but this was not done here. One learning update and one normalizing update were performed

on each time step. To ensure a fair comparison for the two learning algorithms, the learning rate for Q-learning

was optimized for each simulation. Rates were found by exhaustive search that were optimal to two significant

digits. The rates for advantage updating had only a single significant digit, and were not exhaustively

optimized. The rates used were sufficient to demonstrate that advantage updating learned faster than Q-learning

in every simulation. Advantage updating appears more resistant to noise than Q-learning, with learning times

that are shorter by a factor of up to seven. This may be due to the fact that noise introduces errors into the

stored function, and the policy for advantage updating is less sensitive to errors in the stored functions than for

Q-learning. All of Figure 6, and the leftmost points of Figure 7, represent simulations with large time steps.

When the time step duration is small, the difference between the two algorithms is more dramatic. In Figure 7,

as the time step duration At approaches zero (continuous time), advantage updating is able to solve the LQR

problem in a constant 216 time steps. Q-learning, however, requires approximately 10/At time steps.

Simulation showed a speed increase for advantage updating by a factor of over 160,000. Smaller time steps

might have resulted in a larger factor, but Q-learning would have learned too slowly for the simulations to be

practical. Even for a fairly large time step of At--0.03, advantage updating learned twice as quickly as Q-

learning. When At--0.03, the optimal policy reduces x by 90% in 81 time steps. This suggests that if a

controller updates its outputs 50 times per second, then advantage updating will learn significantly faster than

Q-learning for operations that require at least 2 seconds (100 time steps) to perform. Further research is

necessary to determine whether this is true for systems other than a simple LQR problem.
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Table 2. Learning rate constants and number of time steps required for learning

noise a0  a 0 )0 to tA
0 1.4 0.9 0.4 0.5 239 235
1 1.4 1.0 0.3 0.5 272 222
2 0.74 0.6 0.3 0.3 415 286
3 0.44 0.5 0.3 0.3 660 375
4 0.26 0.4 0.3 0.4 1,128 445
5 0.17 0.3 0.2 0.3 1,688 561
6 0.11 0.2 0.4 0.1 2,402 755
7 0.088 0.2 0.2 0.2 3,250 765
8 0.073 0.1 0.1 0.07 3,441 1,335
9 0.054 0.1 0.09 0.05 4,668 1,578
10 0.050 0.1 0.1 0.06 4,880 1,761
11 0.046 0.08 0.06 0.06 5,506 1,761
12 0.030 0.06 0.1 0.1 8,725 1,832
13 0.028 0.06 0.1 0.1 8,863 1,845
14 0.022 0.06 0.1 0.1 11,642 1,850
15 0.018 0.06 0.1 0.1 13,131 1,890
16 0.018 0.06 0.1 0.1 13,183 1,902

Learning rate constants and the number of time steps required to learn are given for the

case of Q learning and advantage updating, with At--0.1, and varying levels of noise.

There are 100 identical learning systems learning in parallel, with different initial random

weights and different random actions. The system is defined to have learned the policy

when the mean absolute value of the error in the policy constant for the 100 systems is

less than 0.001. The learning rates for Q learning are optimal to two significant digits.

The learning rates for advantage updating have only a single significant digit, and have

not been completely optimized.
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Table 3. Optimal learning rate constants and number of time steps required for learning

At Ck9 a W) tO tA
1E0 0.44 1 0.6 0.4 382 196
3E-1 1.0 1 0.4 0.8 195 190
1E-1 1.4 1 0.3 0.5 239 214
3E-2 1.5 0.9 0.3 0.5 459 216
1E-2 1.6 0.9 0.3 0.5 1,003 216
3E-3 1.6 0.9 0.3 0.5 2,870 216
1E-3 1.5 0.9 0.3 0.5 9,032 216
3E-4 1.4 0.9 0.3 0.5 32,117 216
IE-4 1.4 0.9 0.3 0.5 96,764 216
3E-5 1.2 0.9 0.3 0.5 372,995 216
1E-5 1.3 0.9 0.3 0.5 1,032,482 216
3E-6 1.2 0.9 0.3 0.5 3,715,221 216
1E-6 1.2 0.9 0.3 0.5 * 10,524,463 216
3E-7 1.2 0.9 0.3 0.5 * 34,678,545 216
1E-7 0.9 0.3 0.5 216
3E-8 0.9 0.3 0.5 216
1E-8 0.9 0.3 0.5 216

Optimal learning rate constants, ot, and number of time steps required for learning, t, are

given for Q-learning and advantage updating, with no noise, and varying time step

durations, At. 100 identical learning systems learn in parallel, with different initial

random weights and different random actions. The system is defined to have learned the

policy when the mean absolute value of the error in the policy constant for the 100

systems is less than 0.001. Results marked with "*" represent averages over 10 systems

rather than 100. The learning rates for Q learning are optimal to two significant digits.

The learning rates for advantage updating have only a single significant digit, and have

not been completely optimized.
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7. CONVERGENCE OF ADVANTAGE UPDATING

There are three types of convergence that are desirable for an algorithm such as advantage updating. First,

performing only learning updates should ensure that the policy implied by the advantage function should

converge to optimality. Second, performing only normalizing updates should ensure that A(x,u) becomes

normalized, that is, Amna(X) converges to zero in every state. Third, the full advantage updating algorithm

(performing both types of updates) should ensure that V(x), A(x,u), Amax(X) and the policy implied by A(x,u) all

converge to optimality. Theorem I and theorem 2, below, show the first two types of convergence. A theorem

guaranteeing the third type of convergence has not yet been shown to be impossible, but will require further

analysis.

Theorem 1. A sequence of updates ensures that, with probability one, V(x) converges to V*(x) and the value of

the policy implied by A(x,u) converges to optimality with probability one if:

(1) There are a finite number of possible states and actions.

(2) Each state receives an infinite number of learning updates and a finite number

(possibly zero) of normalizing updates.

(3) j a.(x,u) = and a.(x,u) is finite, where acn(x.u) is the learning rate used for
A-i A-1

the nth time the learning updates are applied to action u in state x.

(4) Vx,u3n0 such that Vn>;no fl(x,u) = ao(x,u)At

Proof:

If the above conditions are satisfied, then at some point in time during learning, P=cAt and all future

updates are learning updates (no normalizing updates). Define the function Q to be the left side of equation

(27), so Q(xu)=V(x)+(A(xu)-Amax(r))At. The learning updates in advantage updating change the quantity

Q(x,u) in the same way that Q-learning does when P=-at.t Therefore, Q will converge to Q* with probability

one, which ensures that the value of the policy implied by the Q function will converge to optimality with

probability one (Watkdns 1989, Watkins and Dayan, 1992). Note that according to this definition of Q, the

maximum Q value in state x always equals V(x). Therefore, if Q converges to Q*, then V must converge to V*.
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In a given state, the action that maximizes Q will also be the action that maximizes A. The value of the policy

implied by the Q function converges to optimality with probability one, therefore the value of the policy implied

by the A function must also converge to optimality. 0

Theorem 2. A sequence of updates ensures that Amax(x) converges to zero with probability one in each state

(the advantage function goes into normal form) if.

(1) There are a finite number of possible actions.

(2) Each state receives an infinite number of normalizing updates and a finite number

(possibly zero) of learning updates..

(3) The learning rate cx for each state is constant.

Proof:

Define the stored information after apply ing all the learning updates as the "initial" parameter values, so the

learning updates can be ignored. Normalizing updates in one state are not affected by other states, so it is

sufficient to consider a single state. First, consider the case where Amax(x) is initially positive. Define S to be

the sum of the positive advantages in state x. Note that a normalizing update cannot change the sign of Ama(X),

and cannot increase any advantage in state x. If a normalizing update is performed in state x on one of the

positive advantages, then either S will be decremented by aAmax(x), or else one of the positive advantages will

become nonpositive and will remain nonpositive after all future updates. If there are n possible actions, then the

latter can happen at most n-I times. The maximum of a set of positive numbers is greater than or equal to the

average, so Amax(X)Z-Sfn. Therefore, decreasing S by a.Amax(x) results in S being decreased by at least aS/n.

State x will always have at least one positive advantage, so each update has a probability of at least l/n that it

will update a positive advantage. An infinite number of updates will result in an infinite number of updates to

positive advantages (with probability one), which results in S being decremented by at least aS/n an infinite

number of times, which causes S to converge to zero with probability one. The second case is if Amax() is

initially negative. In that case, each update has a probability of at least lln that Amax(X) will be increased by at

least -aAmax(x). With probability one, this will happen an infinite number of times, ensuring convergence with

probability one. 0
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Theorem I indicates that the learning updates alone are sufficient to learn the optimal policy, when the

advantage function is stored in a lookup table. However, the advantage function may be unnormalized, with

large values in one state, and small values in another state. An unnormalized advantage function can be as

difficult for a function approximation system to represent as a Q function, for similar reasons. Theorem 2

indicates that the normalizing update does tend to put the advantage function into normal form. Therefore a

sequence containing both types of updates may converge to an advantage function that implies an optimal

policy, and also is sufficiently normalized to be learned easily by a function approximation system. It appears

possible to prove convergence for the full advantage updating algorithm, where both learning and normalizing

updates are performed infinitely often for every state-action pair. A proof of this convergence result, based on

the results of Jaakkola, Jordan, and Singh (1993), will appear in a forthcoming paper.
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8. IMPLEMENTATION ISSUES

Many optimal control problems occurring in practice have continuous, high-dimensional state and action

vectors. This suggests that the V and A functions should be represented with general function approximation

systems that learn from examples, rather than using lookup tables. Possible systems might include a multilayer

perceptron, a radial basis function network, a CMAC, or a memory-based learning system using k-nearest-

neighbor interpolation. Such systems can be trained by giving examples of the value of a function for various

inputs.

Continuous-time advantage updating requires knowledge of the rate of change of value, V(x,). If the

learning system is constantly calculating the value of V as the state changes, then simple filters and techniques

from adaptive control theory can be used to estimate V' (xj) at a particular time t. In fact, the filter can even be

noncausal, using the values of V at times later than time t as well as at times earlier than time t in the calculation

of V(x,). It is also acceptable for the estimate of V (x1) to be somewhat noisy. As long as the noise has zero

mean and bounded variance, this should not prevent convergence of the advantage updating algorithm to the

correct policy, although noise would be expected to slow the convergence.

An additional issue arises when the action vector is continuous. All forms of dynamic programming require

the calculation on each time step of a maximum (or minimum, or minimax saddlepoint). In Q-learning, for an

update of a single parameter, it is necessary to find the maximum Q value in a particular state. Value iteration

and policy iteration require the calculation of a sum or integral over all possible state transitions for a given

action. This calculation must be repeated for each possible action in a given state, and the maximum of the

calculated values must be found in order to update a single parameter. In advantage updating, for a single

application of step I or step 2 above, the maximum advantage in a given state must be found. If the state and

action vectors are continuous, and the functions are stored (for example) in a single-hidden-layer, sigmoidal

network, then it is difficult to find the action that maximizes the output for a given state. There are three

approaches to finding this maximum.

The first approach is to find the maximizing action through traditional search techniques, treating the stored

function as an unknown function to be sampled repeatedly while trying to find the maximum. This can be
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computationally intensive and can be subject to problems with local maxima, especially in high-dimensional

action spaces.

The second approach exploits the ability of advantage updating to work with small time steps. For example,

an MDP might have a time-step duration of At, a state vector x, and a scalar action u which is a real number

between zero and one. An almost-equivalent MDP is one with a time-step duration of At/100, a state vector

(x,u), and only two possible actions: increase u by 1/100, or decrease u by 1/100. The latter MDP is almost

equivalent to the former; given an optimal policy for the latter MDP, an approximately optimal action for state x

in the former MDP can be found through at most 100 evaluations of the policy for the latter MDP. In the limit,

using large factors instead of 100, this approach reduces the problem of continuous actions to an equivalent

problem with discrete actions. The algorithm for this maximization method in the limit is given in Baird

(1992).

The third approach to finding maxima of learned functions is the wire fitting approach, described in Baird

and Klopf (1993b). It is possible to take any function approximation system and embed it in a larger system

which makes trivial the problem of finding the global maximum for each state. The maximum of the function in

a given state can be found in constant time. This approach appears general, and less computationally intensive

than the one in Baird (1992), and has been shown to work well on a simple cart-pole control problem.

The advantage updating algorithm, as described here, was designed for use with a lookup table. It has been

shown (Baird and Harmon, 1994) that when function-approximation systems are combined with algorithms

such as Q-learning or advantage updating, it can be useful to modify the learning algorithm to perform gradient

descent on the mean squared Bellman residual. If a function approximation system is used for the advantage

and value functions, and if the system being controlled is deterministic, then a given weight W in the function-

approximation system could be changed according to equation (39):
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E= ((R(x,,u,)+ y'V(x,÷,)-V(x,)) - A(x,,u,)+ maxA(x,,u)I2 + (max A(x, u))2  (38)

=adE
2 dW

=-a((R,(x, ,u,) + YA'V(xt+) - V(x,))/At - A(x,,u,)+ max A(x,,u))

d V(x+N) --- V(X -- A(x,,u,)+ d maxa(x,,u)

dW dW )At dW dW

-amax A(x,,u)--- maxA(x,,u)dWU

where E is the sum of the two squared Bellman residuals associated with advantage updating. This form of

advantage updating can be described by the single equation (39), rather than requiring three different updates,

and it requires the choice of only a single learning rate c, rather than three rates a, 03, and eo. As a simple

gradient-descent algorithr,, it is also guaranteed to converge to the correct answer under reasonable

assumptions. However, if the system being controlled is nondeterministic, it is necessary to generate two

different possible "next states" xt+At for a given action u1 performed in a given state xt. One Xt+At must be used

to evaluate V(xt+eAt), and the other must be used to evaluate -dV(x,÷,,). This ensures that the weight change is
tjW

an unbiased estimator of the true Bellman-residual gradient, but requires a system such as in Dyna (Sutton,

1990a) to generate the next state. Simulation results for (39) are presented in Harmon, Baird, and Klopf (1994).

Throughout this paper, it has been assumed that the advantage of an action is defined relative to the

maximum action in a given state. This simplifies the equations, but may lead to an optimal advantage function

that is not smooth. To avoid this problem, one could arbitrarily choose a given action in each state, Uref, as a

reference action. The advantage for a given action would then be defined as the degree to which that action is

better than the reference action. With this modification, the advantage of the reference action,

A,,(x) = A(x,u,,), would be forced to zero by normalization. Then Am= would be replaced with Aref in

updates (22) and (23), in equations (26) and (28), and in the last line of equation (39). Am=x would be replaced

with (Amax Aref) in updates (21) and (24), in equation (27), and in the rest of equation (39). A learning system

will typically spend a large proportion of the time following the policy, so it generally appears better to use

Am= as the reference rather than Aref, but it would be interesting to investigate the use of Are'instead.
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9. CONCLUSION

Advantage updating is shown to learn slightly faster than Q-learning for problems with large time steps and

no noise, and far more quickly for problems with small time steps or noise. Advantage updating works in

continuous time, which Q-learning cannot do. Advantage updating also has better convergence properties than

R-learning, differential dynamic programming, or algorithms based on stored change in value or stored policies.

Complete learning systems for continuous states, actions, and time can be built using this algorithm with

existing function approximation systems, function maximization systems, and filter systems. Unlike differential

dynamic programming or value iteration, it is possible for advantage updating to learn without a model. If a

model is known or learned, advantage updating may be combined with the model as in Dyna (Sutton, 1990a). If

the system being controlled is stochastic, this direct method combined with the model could be more efficient

than an indirect method combined with the model. This is due to the fact that some indirect methods require

maximization over infinite sets of integrals in order to accomplish a single update, whereas advantage updating

can accomplish the calculation of both the integrals and the maximization incrementally. Future work will

include analysis of additional convergence issues, and application of advantage updating to more difficult

problems.
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APPENDIX A: NOTATION

Xt State at time t

Ut Control action at time t. In discrete-time control, action is constant throughout a time step.

r,&(x1 ,ut) Rate of reinforcement at time t while performing action ut in state xt.

RM,(x,u) Total discounted reinforcement during a single time step starting in state x with constant action

u.. R is the integral of r as time varies over a single time step.

(XX,u) Information stored by R-learning for the state-action pair (x,u). R values are not usually written

in script, but a script Ris used here to distinguish R vales from reinforcement.

Kt*(x) Optimal control action to perform in state x.

V*(x) Total discounted reinforcement over all time if starting in state x then acting optimally.

Q*(xU) Total discounted reinforcement over all time if starting in state x, doing u, then acting optimally.

AV*(x,u) Expected value of V*(x')-V* (x), where x' is the state reached by performing action u in state x.

A*(xu) Amount by which action u is better than the optimal action in maximizing total discounted

reinforcement over all time. A* is zero for optimal actions, negative for all other actions.

IC,V,Q,A,AV Learning system's estimates of 7t*, V*, Q*, A*, and AV*.

All parameter updates are represented by arrows. When a parameter is updated during learning, the notation:

W ( K (40)

represents the operation of instantaneously changing the parameter W so that its ne1- value is K, whereas:

W a---K (41)

represents a partial movement of the value of W toward K, which is equivalent to:

W. --- ( - a)Wu + aK (42)

where the learning rate a is a small positive number.
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APPENDIX B: LQR CONSTANTS

For At-,O and yTl, the following 3 equations give the constants, ki, fr ) the optimal controller for the LQR

problem. If At=O, or y=l, or both, the constants are calculated by evaluating the limit of the right side the

equations as At goes to zero, or y goes to one, or both:

( ) 2yw -_2Atlny_2_(lI-y,)ln2y+ V(2+ Iln2y)2(lz ,) 2 -4At 2yln 2 y (43)

k At= 2-2y2"' +4Aty' In y + (1 1-y2)')n ((2 +ln 2 y)2(1- YA) 2 -4At 2y& In2 y

= (2 + In2 y)(l- _ y) 2 - 2At 2y& In2 y-_ (I - YM ) j(2 + In 2 y)2 (I_ y't ) 2 - 4At 2r',, In2 y (44)k2 =2A1 2 7y& In 3 y

= (2+In2 r)(,y2 1 - 1)-4Aty'& In y-(I- y(')/(2 + In2 2 y)2 2(1 _ 4 At 2 Y&• in 2 y (45)
2Atyln 3 

y

The validity of these equations can be verified by substituting the equations for ki into the equations for n*, V*,

Q*, and A*, then substituting those equations into the Bellman equations to check that they are satisfied. The

following Mathematica code calculates all the functions, and verifies that the given equations for the constants

do lead to functions V* and A* that satisfy equation (25). The last line prints the difference between the two

sides of equation (25) as a function of x, u, At, and y.

(********** Check validity of functions and constants ***********)
s[g_,dt_] := Sqrt[(2+Log[g]^2)A2(l-gAdt)A2-4dtA2gAdt*Log(g]A2]
kl[g_,dt_] :=(l-gA dt)/dt*(2gA dt-2dt*Log [g]-2- (l-gd /

(2-2gA (2dt)+4dt *gAdt*Log[g] +(1lgA (2dt))Log [g]A2+ (1lgA dt)s[g,dt])
k2[g_,dt] :=( (2+Log [g]A 2) (l-gAdt)A 2-2dt^2 gdt*Log [g]/ 2- (l-gAdt)s[g,dt])

(2dt ̂ 2gAdt*Log [g] ^3)
k3[g,dt_] :=((2+Log [g]A 2) (gA (2dt)-l)-4dt*gAdt*Log(g]-(l-g^dt)s[g,dt]) /

(2dt*Log [g] A3)
r [x_, u_, g_,dt_J :=-xA2-uA2
R [x_,,u_,g_,dt_] := Integrate [gAt*r[x+t*u,u,g,dt],{t,O,dt}]
V [x_,g_,dt_] :=-k2[g,dt]*xA2
A [x_,u_,g_,dt_] :=-k3(g,dt]*(kl[g,dt]* x+u)A2
pi[xý_,g_,dt_] :=-kl[g, dt]*x
Q [x ,u ,g_,dtI := V[x,g,dt]+dt*A[x,u,g,dt]Toge~her [ g,ýýdt*V [x+dt*u, g, dt] -V [x, g, dt] +R [x, u, g,dt] -dt*A [x, u, g,dt] ]

The code prints the number zero, therefore the equation is satisfied for all values of x, a, At, and %y. It is clear

that A* is nonpositive everywhere, and is zero when following the policy 7*. Therefore, the functions A*, V*,

and xt* are also correct. It is also clear that Q*=V+A*At, therefore Q* is correct. The following code finds the

constants for several special cases, as well as the general formula for R.:
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(********** special values of R and k ***********)
R [x,u,g,dt]
Limit [R[x,u,g,dt ],g->l]
Limit [kl [g, dt], g->l]
Limit [k2 [g,dt],g->l]
Limit Ik3 Ig, dtI, g->1I
Limit [kl (g, dt], dt->O]
Limit [k2 [g, dt], dt->O]
Limit [k3 (g,dt],dt->O]
Limit (Limit [kl [g, dt], g->l], dt->O]
Limit (Limit (k2 [g, dt], g->l],dt->O]
Limit (Limit(k3[g,dtl ,g->l],dt->0]

This finds that the total, discounted reinforcement received during a single time step of duration At, starting in

state x, with a constant control action of u throughout the time step is:

R(x,u) = 2(1- yA)u2 + 2u(In y)(uAty7' -(1- yaN)x)+ In2 r((1- _yAl _ Atg2y7)u2 + (1- yA)x 2 - 2At•yux) (46)

In3 y

If r-1, then R reduces to:

R(x,u) =-At(u2 + 2 + Atxu + Atu2/3) (47)

For no discounting (r=1), the constants are:

3At +6 41 +AtYX2/2 =(48)

6+ 2At2 +6 l + At2 10

/q: 1+A:>j 2  (49)

For continuous time (At=0), the constants are:

In y+ 44 + in2 y52 (51)
2

k3 = 1 (52)

For continuous time with no discounting (At=O, y1) , the constants reduce to:

k= =k2 =k 3 = 1 (53)
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