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Summary

A first laboratory version of an Alertness Monitoring/Management (AMM) system has been
designed and implemented. The system continually estimates the level of alertness of a human
subject using EEG spectral information recorded from the subject's scalp, and delivers auditory
feedback to assist the subject in managing his or her own level of alertness in work environments
requiring constant vigilance. The system allows experimenters to monitor its input and output
via real-time color graphics displays.

As a first demonstration and evaluation of the system, six subjects participated in five half-
hour sessions (three training and two feedback sessions), which involved dual detection tasks
simulating the passive sonar environment. Auditory targets, 300-ms noisebursts presented at 6
dB above a noise background, were presented at a mean rate of 10 targets per minute. A continu-
oup visual waterfall display presented illuminated vertical line targets at a mean rate of one per
minute. Subjects pressed one response button to report noisebursts and another to report visual
targets.

Neural net estimation algorithms were trained for each subject to estimate the current pro-
bability of detecting auditory targets using electroencephalogram (EEG) and performance data
collected during one or more of the initial training sessions. During feedback sessions, real-time
signal processing and individualized neural network analysis of EEG recorded from a central
scalp electrode were used to estimate continuously, in near real-time, the current probability-of-
detection of auditory targets. Whenever this probability-of-detection measure declined below a
preset threshold (e.g., when it predicted more than a 40% chance of failure to detect the auditory
targets), the system sounded an alarm in the subject's headphones. When training sessions
comprising a relatively wide range of detection rates were used to train the estimation algo-
rithms, the alertness estimates followed changes in observed detection probability relatively
accurately.

Four of the six subjects reported that the alertness feedback helped them to maintain detection
performance. A fifth subject did not produce enough detection lapses to fairly evaluate the sys-
tem. Review of data from the sixth subject suggested that future versions of the system may be
able to provide useful feedback to this subject as well. Review of results of the demonstration
"experiment have suggested several improvements to signal processing and training procedures
used in the system. Effects of these enhancements on system performance are being evaluated.
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Introduction

The increasing speed and complexity of current information technology make it possible
for computerized information systems to monitor the physical environment with increasing acu-
ity. However, the capacity of the human operator or decision maker to maintain alertness to this
information is not increasing, and relatively little effort has been invested in designing technol-
ogy to enhance operators' abilities to maintain alertness. Despite common assumptions that
while we are awake our alertness to the environment is secure and unbroken, many years of vigi-
lance research attests that for most or all monitoring equipment operators (e.g., air traffic control,
sonar, radar), maintaining a constant level of alertness is rare, if not impossible (Mackworth,
1948). Yet, no system currently exists that can monitor an operator's level of alertness directly,
deliver timely information about lapses in alertness to the operator and/or supervisor, and initiate
appropriate countermeasures.

A system for accurately monitoring operator alertness would provide several benefits that
could be realized in a variety of operational environments. The direct benefit of an alertness
monitoring system would be the ability to deliver early warning of lapses in alertness to the
operator and/or supervisor, prompting interventions or countermeasures leading to a direct
improvement in total man/machine system performance. This in turn could reduce or eliminate
the need for operator redundancy, resulting in more efficient operation and substantial cost sav-
ings through manpower reduction. Currently, little exact information is available on the dynam-
ics of alertness on a minute-by-minute basis for sonar and radar operators, air traffic and
engineering plant controllers, pilots, and workers in other job categories requiring constant alert-
ness. An alertness monitoring system would also make possible direct estimates of risk of system
failure due to loss of vigilance. This information would allow more productive and cost-effective
human engineering and staffing designs for complex systems, which, could result in additional
overall cost savings.

Since the landmark investigations of Mackworth (1948), studies of alertness have
confirmed that, on average, detection rates in laboratory tests begin to degrade after 2 to 3 rain of
task performance, eventually reaching a plateau during which 70% to 80% of targets are
detected (Makeig, Elliott, Inlow, & Kobus, 1990). While most vigilance research in the past has
focused on measuring mean trends in performance. performance actually tends to fluctuate irreg-
ularly within sessions, with periods of several minutes of complete unresponsiveness not uncom-
monly observed (Makeig et al., 1990). During the last century, scattered studies have presented
evidence for the presence of regular fluctuations in performance at cycle lengths ranging from a
few seconds to several minutes for measures including time estimation, threshold detection,
reaction time, and spontaneous speaking rate (Stroud, 1966). However, most previous vigilance
research has focused on simulating actual work environments using relatively low target presen-
tation rates (2/min or less) too low to record minute scale fluctuations.

Methods of real-time alertness monitoring are needed which can detect the actual time
course of performance lapses. The only direct, noninvasive measure of brain state available for
continuous monitoring in an operational environment is the recording of the brain's electromnag-
netic activity through changes in potential difference between points on the scalp. This is known
as the electroencephalogram (EEG). Since the first development of amplifiers capable of



resolving brain electrical activity, it has been known that EEG dynamics change dramatically
during and near periods of sleep or drowsiness (Beatty, Greenberg, Deibler, & O'Hara, 1974).
However, in the past there have been several obstacles to using this information to estimate
effectively and in near-real time an operator's state of alertness. Before the era of high-speed,
portable computing and appropriate signal processing algorithms, the complexity of EEG
dynamics exceeded the ability of technology to extract useful information in real-time for use in
controlling system feedback or control.

The first laboratory version of an Alertness Monitoring/Management (AMM) system.
described here has several advantages over previously proposed methods of objective alertness
estimation:
1. Many proposals for performing cognitive monitoring using EEG data have relied

exclusively on timelocked averaging of responses to unreliable system signals (auditory or
visual events) or to signals injected into the operator's environment as probes of the
operator's ability to respond. These methods require the operator to frequently shift his or
her attention from the primary monitoring task. It would be preferable to monitor operator
state without introducing distracting tasks or signals into the work environment.

2. Previous psychophysiological studies of alertness have often used the same estimator for all
subjects. However, the relatively large individual variability in EEG dynamics accompany-
ing loss of alertness means that for many operators, group statistics cannot be used to accu-
rately predict changes in alertness and performance (Makeig et al., 1990; Makeig & Inlow,
1993), and estimators customized to individual operators would be more accurate in many
cases.

3. Previous research on the relationship between the EEG spectrum and alertness used
predefined frequency bands, and therefore were insensitive to individual subject
frequency-band differences (Beatty et al., 1974: Matousek & Peterson, 1983; Belyavin &
Wright, 1987). The system discussed here incorporates a more flexible signal processing
and estimation procedure based on observations of changes in the individual EEG spec-
trum.

Phase I - System Design and Realization

The demonstration project consisted of two phases. In the first phase, a working laboratory ver-
sion of a real-time AMM system was designed and implemented, This involved several types of
real-time programming of three Unix systems linked by Ethernet, and a DOS-based personal
computer with graphics display capabilities. A schematic diagram of this system is shown in
Figure 1.

The signal processing performed by the system has several stages:

A. Simultaneous data collection and dual-task stimulation. The system records data in parallel
on two Concurrent (Real Time Unix) workstations, one dedicated to auditory stimulus syn-
thesis and data recording, the other to real-time spectral and neural net analysis, graphic
display, and producing auditory feedback. Another program, originally developed in the
laboratory of Dr. Steven Hillyard at the University of California at San Diego (Hillyard &
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Figure 1. Schematic diagram of the first laboratory version of an Alertness
Monitoring/Management (A MM) system constructed during the project. The subject
(upper rig/t) views a CRT waterfall display while hearing sounds through headphones
coming from a sound mixer, and presses auditory and visual response buttons (upper
middle) whenever he or she detects target signals in the respective modalities. Auditory
signals include a noise background, tones, and nolseburst targets .synthesized by a
Concurrent workstation (center left), and occasional auditory alertness feedback signals
(brief buzzes) synthesized by a second Concurrent workstation (center). The first
Concurrent machine also records EE;G and performance information to disk. The second
Concurrent machine processes EEG informuation in near-real time, creates an estimate of
the subject's current probability of failing to respond to the noiseburst .signals, and
produces auditory feedback signals whenever Ihe estimated error probability rises above a
preset threshold. The Concurrent mar.,•,' rc linked to a higher-speed MIPS
workstation (upper left) for off-line data analysis. A video camera aid r'ecorder (upper rigit)
record video and auditory stimulus information during the experiments.



Johnston, submitted), runs on a dedicated PC. It presents visual stimuli against a random
visual waterfall background, and delivers stimulus timing information to the Concurrent
computers.

B. Data selection, scaling, and artifact rejection. Real-time artifact rejection and scaling rou-
tines preprocess the EEG data using coefficients read from a file created by the neural net
training software. Data from epochs contaminated by artifacts are replaced by the most
recent accepted values.

C. Robust real-time spectral estimation. Real-time spectral analysis of the data is accom-
plished using Hanning-windowed data windows of 256 points with 50% overlap. After
rejecting windows in which data exceed +/-50 uV, median filtering, a robust statistical
smoothing technique, is used on the estimates, to further minimize the presence of data
artifacts, principally muscle noise, in the EEG record. The moving median filter uses a
moving square window of 11 overlapping power estimates for each frequency.

D. Off-line neural net training. An automated search procedure selects optimum EEG fre-
quencies and time-smoothing parameters for each subject. A two-layer perceptron network
is then trained to use smoothed power estimates at these frequencies to optimally predict
local error rate, defined as the percentage of targets not responded to (i.e., lapses) in a mov-
ing time window, A 95-s square window is advanced through the performance record in
steps of 1.64 s to create the local error rate measure from the sequence of behavioral
responses (hits and lapses). Intertarget intervals are randomized in order to prevent per-
severation in subject responses, and therefore smoothing requires use of a specially
designed smoothing program that produces smoothed, regularly spaced estimates from
irregularly spaced data.

Inputs to the neural network estimation algorithm consist of smoothed and median-filtered
EEG power estimates at a set of five EEG frequencies. These frequencies are chosen for
each subject on the basis of previously published coherence results (Makeig & lnlow,
1993). A sigmoidal activation function is used at the single second-layer node. The net-
works are trained using a standard backpropagation method to predict the smoothed local
error rate measure. A training script directs a commercial neural net simulation package
(SN2) to train the perceptron network. We have recently shown that such networks give
better estimation performance for this problem than linear regression (Venturini, Lytton.
Sejnowski, Inlow, Elliott, & Makeig, submitted). For the demonstration experiments, this
network was trained on data from the first sessions of each subject, producing an individu-
alized alertness estimation network for each subject.

E. Real-time neural network estimation. During subsequent feedback sessions, the weights
from the previously trained network for each subject were read into a real-time feed-
forward neural network module that computes a local error rate estimate from the smoothed
real-time spectral estimates every 1.64 s.

F. Auditory feedback. During feedback sessions, whenever estimated error rate rises above a
preset level (e.g., 40%), the system synthesizes a I-s burst of square-wave sound using the
clock board of the Concurrent computer. An analog sound mixing board then feeds this
signal into the subject's headphones. The alarm repeats once each 1.64-s epoch during



which the error rate estimate remains above the alarm threshold. To maximize alarm
impact on the subject, if the alarm sounds for more than 8 epochs in a row it is disabled for
another 16 epochs, unless the error rate estimate first dips below, then rises above the alarm
threshold.

F. Graphic display of the estimation process: Real-time graphic displays help the experi-
menters monitor the experiments, and provide a dynamic means of demonstrating the
operation of the system. A set of multiwindow real-time graphics modules display the raw
incoming EEG and the resulting power spectral values input to the estimation network.
These spectral values are overplotted on a plot of the correlations between power at each
EEG frequency and performance, during the training experiment used to train the network.

Phase II - Demonstration and Evaluation

As a first demonstration and evaluation of the system, 30 experimental sessions were conducted.
In some of the sessions, real-time auditory feedback was delivered to the subject. These experi-
ments were the first of an continuing series whose goal is to enhance and evaluate the operation
of the prototype AMM system.

Methods

Subjects

Six volunteers, three male and three female, participated in dual-task auditory and visual
simulations of a passive sonar target detection environment. Two of the subjects were prospec-
tive students in a Navy sonar course. The remaining subjects were members of the laboratory
staff. Ages ranged from 18 to 36 years (M = 24.5 years). None of the subjets reported any
known hearing loss; the thrd males had all passed standard Navy hearing tests.

Stimuli

A Concurrent Real Time Unix computer system synthesized the auditory stimuli using a
16-bit D/A converter sampling at 50 kHz. The auditory stimulus streams used in the experiment
arc shown zshematically in Figure 2. The stimuli were presented binaurally, in a white noise
background at 63 dB (A-weighting), through headphones mounted in isolating cuffs. For con-
tinuity with the existing experimental design, task-irrelevant probe tones of two frequencies (568
Hz and 1098 Hz) were presented in random order with interstimulus intervals of 2 s to 4 s at 72
dB. Probe tones were 50 ms in duration, with rise and fall times of 10 ins. High tones were
presented more frequently (probability of occurrence 80%) than were low tones (20%).

Auditory targets were 300-ms noisebursts with rise and fall times of 150 ms and 110 ms,
respectively. Noiseburst targets occurred in 50% of the 2-s to 4-s interstimulus intervals (i.e., at a
mean rate of 10/min) and were presented at approximately 6 dB above the noise background.
The auditory feedback alarm consisted of a 200-Hz square wave tone, 800 ms in duration,
presented at approximately 75 dB. The auditory stimuli were similar to those used in earlier
alertness monitoring experiments (Makeig & Inlow, 1993), except that in the present
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experiments, auditory steady-state response stimulation was not used.

TARGET BURST
IN WHITE NOISE "ISI MEAN 6 s ;

IRRELEVANT 80% 20O

PROBE TONES p4- SI 2-4 S

1098 Hz 1098 Hz 568 Hz

Figure 2. Schematic depiction of the auditory stimuli used in the experiments& Frequent
(80%) and Rare (20%) tones were presented at random interstimulus Intervals of 2 s to 4 s.
In harl the Intertone interva:s, noiseburst targets were presented 6 dB above their
threshold in the 63 dB white noise background, which was continuously presented during
the experiments Auditory alarm .signals consisted of I-s, 75dB, 200-Hz square-wave
stimuli. During feedback sessions, these were presmeted every 1.64 s that the estimated
error rate for the auditory detection task rose above a preset threshold (normally 40%).

Visual stimuli are produced using a PC (Everex EX-3000R) with a CTX 14-inch, VGA
Color Monitor (CVP-5468). The display was 13-cm wide by 9-cm high. The display background
was composed of 1-mm squares filled with randomly assigned greyscale values, the result
resembling visual television noise ("snow"). This display was updated twice each second by
adding new lines of squares to the top of the screen and scrolling the existing display down one
line, creating a moving "waterfall" effect. Visual targets, introduced at a mean rate of I/min.
consisted of 20 consecutive white squares forming a vertical line. The target line was embedded
in the clutter of the display background, and scrolled down the display from top to bottom with
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the rest of the display.

Procedure
Each subject participated in five 28-min experimental sessions on separate days. Subjects

sat in a chair with their right index and middle fingers resting on the visual and auditory target
response buttons, respectively. The chair, which was located in a sound-resistant booth, was
positioned so that subjects faced a 39-by-48-cm window in the booth's wall. The CRT monitor
was positioned approximately 110 cm from the subjects' eyes, so the display background sub-
tended approximately 7 degrees of visual angle.

At the beginning of each session, the experimenter read a set of standardized instructions.
Subjects were instructed to press one of two response buttons (auditory or visual) whenever they
detected an auditory or visual target. The subjects then were given from 2 min to 5 min of train-
ing on the tasks in three stages: auditory alone, visual alone, and auditory plus visual.

The fiust three sessions for each subject were training sessions. The estimation network
was then trained on EEG spectral and performance data from the training session that contained
the most failures to respond (lapses). The training procedure generated sets of coefficients for an
error estimation algorithm matching individual subjects' EEG dynamics. In subsequent feedback
sessions, this individualized estimation algorithm was applied to spontaneous EEG to estimate
changes in mean current error rate in a 95-s moving exponential time window. When the error
estimate exceeded a predetcrmined threshold level (mrasst often 40%). auditory alarm signals
were delivered to the subject via the subject's headphones.

Data C'ollection

Data from all sessions were continuously recorded to disk for off-line analysis. Standard
Grass EEG amplifiers (bandpass 0.1- to 100-Hz) amplified EEG, electrooculogram (EOG), and
electrocardiogram (ECG) signals 50k, 10k, and 3k times, respectively. Biopotential data were
multiplexed with response button press information and converted to 16-bit digital format at a
sampling rate of 312.5 Hz. EEG data were recorded from two midline sites, one frontal (Fz) and
the other midway between parietal and occipital sites (Pz/Oz). using 10-rnni gold-plated
electrodes referenced to the right earlobe. Periocular electrodes were used to record electrical
potentials generated by eye movements. One electrode was placed at the outer canthus of the
right eye and another about 0.5 cm above the left eyebrow. The ECG data were recorded from an
electrode placed approximnately 4 tm below the left clavicle. Electrical impedance at all
electrode sites was adjusted to less than 5 kOhms by cleaning the skin under the electrodes with
abrasive gel. Before each experiment, the EEG amplifiers we.e calibrated to compensate for any
differences between actual and nonualt gain values.

Analysis
Auditory targets were classified as Hits if the subject pressed the Auditory response button

within 120 ms to 3000 ms of target onset, or were classified as Lapses if they did not. Responses
to visual targets were considered Hits if the subject pressed the visual target button while the tar-
get was on the screen (i.e., within 20 s after it began to appear). Auditory performance was
quantified by smoothing with a 95-s exponential window whose gain varied smoothly from 1.0
at the leading edge to 0. 1 at the trailing edge. Visual performance was smoodied with a 155-s
bell-shaped (Papoulis) window % 'ich was trcated as non-causal (i.e., "now" was considered to
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be the middle; of the visual performance window). Smoothed estimates of error rates and EEG
power at 8, EEG frequencies were produced at intervals of 1.64s.

Moving-averaged EEG spectral power was calculated as follows: Hanning-windowed data
windows of 256 points with 50% overlap were converted to the frequency domain using 512-
point Fast Fourier Transforms (FFTs). Prior to transforming to spectral power, a simple out-of-
bounds test rejected data epochs containing gross muscle artifacts. Median filtering was then
performed on the accepted epochs using a moving window of II overlapping power estimates at
each frequency. When a data window contained one or more out-of-bounds value, the latest
accepted values were substituted prior to median filtering

For each session, power at each EEG frequency was correlated with changes in local error
rate on the auditory task. To optimize this correlation for the purpose of real-time alertness esti-
mation, the correlation was calculated separately for spectral power values smoothed with a set
of 95-s exponential windows with different decay rates. The decay rate giving the best correla-
tion was selected, along with five EEG frequencies for use in the estimation n,-work. These
were the most highly correlated single frequencies in each of five frequency bands whose power
was shown in earlier experiments (Makeig & Inlow, 1993) to be most sensitive to changes in
detection perforraice.

To train the neural network for each subject, EEG power from a training session (without
feedback) was used to train a two-layer perceptron neural network. Data from each session con-
sisted of 1024 spectral and error rate estimates at 1.64-s intervals. Of these. 260 wem selected
for testing the generalization of the network training results to determine a stopping point for the
net training. EEG power values were normalized for import to the network by linearly
transforming the 20th and 80th percentiles of the power distribution in the training session to
range from. 1.0 to 1.0.

In subsequent sessions, to compute the continuous estimate of local error rate, power at the
same five frequencies used to train the network was first smoothed with the same causal 95-s
exponential windows selected to train the network, normalized using the same scaling parane-
ters, and delivered to the feedforward neural network softwaec.

Feedback
In experiments employing auditory feedback, the local error rate estimate was compared

against the alarm threshold value. In most of the feedback sessions this threshold was set to 40%
estimated errors. If the estimate exceeded the threshold, a 0.8-s. 200-Hz square wave burst at 75
dB was synthesized by the cr'rnputer's clock board, mixed with the auditory stimuli, and
delivered to the subject. To avoid nionotony and subscquent loss of arousal value, a rule was
implemented that once the alarm had sounded for 8 consecutive epochs, it was silenced for 16
more epochs unless the alertness estimate fell below and then returned above its threshold value.
Alarm history was saved for later review.



Result,

Subject Performance
Local error rate, the performance measure used in these experiments, is not a uniquely

defined measure. In the summary plots below, a 155-s (95-epoch) noncausal bell-shaped
Papoulis window was used to compute local error rate. Total percentage of correct responses to
auditory targets in the 20 experimental sessions ranged from 99.6% to 45.4%. Mean auditory
error rates for the 20 sessions, and visual error rates for 18 sessions (shown in Figures 3a and b),
followed the same trend as earlier experiments, with group mean error rate increasing for the
first 10 min and remaining stable thereafter. (Visual data for two sessions were lost because of
equipment failure). Although earlier experiments had revealed a tendency for a monotonic
increase in mean error rate across repeated sessions, in thmse sessions no such trend was
observed.

Note the strong similarity (r = 0.73) between tht mean auditory and visual performance
records. These results confirm results of our earlier auditory detection experiments (Makeig et
al., 1990), and of classical vigilance experiments (Mackworth, 1948). In individual sessions,
however, local error rates fluctuated widely, as shown in Figure 4, in which each local error rate
trace may vary from a low of 0% (all correct) to a high of 100% (no responses). Note in Figure
4 that the four subjects have different mean error rates and no consistent pattern of fluctations
within sessions. On average, two of the subjwcts (dl and d2) had lower mean error rates than 'Y c
other two (d3 and d4).

Error Rate Estimation

Figure 5 below shows estimated and actual error rates for one feedback session each from
three of the four subjects. A qualitative fit between the estimated and actual error rates is
app•rent. In each cae, during segments in which estimated error rate was above the alarm thres-
hold, local error rate was high relative to the rest of the session.
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Figure 3. Group means in auditory and visual task error rates. For the auditory task,
(dotted line) average of 20 sessions on four subjects. Visual error rate data (solid line) from two
sessions was lost due to mechanical difficulties, so the visual error rate curve averages data from
18 sessions. These curves reproduce those found in earlier experiments (Makeig & Inlow, 1993),
and follow trends reported in previous vigilance research.

Discussion

These experiments have demonstrated the feasibility of objective real-time alertness
estimation in a laboratory AMM system by delivering auditory alarm signals to operators when
estimated alertness becan'e lower than a preset threshold. Alertness level is difficult to estimate
subjectively, since lo"s of alertness is accompanied also by loss of self-awareness and memory.
This may also be one reason that individual fluctuations in alertness have not been studied much
in previous vigilance research. Nevertheless, at the end of the three sessions shown in Figure 5,
each of the three subjeý.ts reported that the auditory feedback helped them to maintain alertness
by giving tnem objective confirmation of changes in their levels of alertness.

However, differences between the estimated and actual error rate curves remain larger than
evpected on the basis of Monte Carlo simulations and earlier work using linear regression (Mak-
eig & Inlow, 1993). As the z'y tem design was changed during the sessions, quantitative
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Figure L.--2l error rate time series for individual se.ssions. Note that despite the
predictabily of the group mean rates in Figure 3, individual error rate dynamics vary
considerably. The three starred runs are examined in more detail in Figure 5 below.

performance statistics will be reported later, after a larger number of subjects are run using the
same version of the system. In the two feedback sessions for the fourth subject, the error rate
estimate did not follow the actual error rate or subjective alertness changes accurately enough
for the subject to report that feedback had been useful in managing his alertness. Recently, we
trained a network using Vcrsion 1.1 of the system and tested this net on data frNm this subject's
other four sessions. Results suggest that Version 1.1 is capable of producing ueful alertness
estimates for this subject. Review of the results of 30 sessions has prompted several ideas for
improving the alertness estimation and training procedure:

1. In Version 1.0 of the system, which was tested on the first four subjects (Fig. 5), the
smoothing window used to compute local error rate and train the neural net algorithm. con-
sisted of a two-sided or noncausal bell-shaped window. In real-time spectral estimation,
however, noacausal filtering cannot be used, because it requires "future" data which
become available only after an unacceptable delay. In the real-time system, therefore, a
trailing or causal exponential window was used to smooth the spectral data. In system Ver-
sion 1.1, which so far has been tested on only two subjects (figs. 6 and 7). the error rate and
EEG windows used to train and run the estimation network are causal.
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Figure S. Actual and estlinated local error rate for the auditory task for three f~eedback
sessions on three of the four subjects. The alam threshold level is also shown on each plot.
(See text for further details).
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2. In Version 1.0 of the system, there were differences between the artifact rejection and
median smoothing in the computation of the EEG spectra for training and running the net-
works. In Version 1.1, both algorithms are identical.

3. The subjects judged the feedback alarm signals used in these experiments as sufficiently
arousing on first presentation. However, in Version 1.0 the signals tended to mask auditory
targets that were sometime: presented simultaneously. Therefore, in Version 1.1, the alarm
signals are shortened. In future versions of the system, the alarms should increase in inten-
sity or urgency if the error rate estimate remains high. The subject should also be able to
control the volume of the alarm. Finally, use of more complex auditory feedback, includ-
ing prerecorded voice messages, should be explored. In more advanced versions of the sys-
tem, continuous visual alertness information could be made available to the subject.

4. It may be that improved estimation accuracy can be attained if the neural network used
power at more than five EEG frequencies. and/or if it employed a more complex structure
and training procedure. Other network structures and training procedures are being investi-
gated.

5. While monitoring from a single scalp channel might be optimum form a practical point of
view, it is likely that significant improvements in statistical power and noise cancellation
can be achieved by collecting data from two or more scalp channels, by monitoring evoked
responses to the task-irrelevant probe tones (Makeig et al., 1990) and/or by monitoring
other psychophysiological channels (such as eye movements and heart rate). Data from
multiple physiological information channels could then be combined in a more advanced
alertness estimation algorithm. We are now evaluating these possibilities.

6. '-arher research (Makeig & Inlow, 19M3) showed that to ensure accurate error rate estima-
tion, the training uata must cor. lain a wide range of local error rates For at least two sub-
jec.s (d2 and d4), loca error rate remained low throughout the training sessions and there-
fore could not be used to train the estimation network. Future experiments should be long
enough, and/or should mnanipulate subject sleep, caffeine intake, etc., svi as to maximize the
range of local error rates s'•e, in the training sessions. Optimum methods of taking advan-
tage of partial bctwcen-stbject similarities to combine training session data from more than
one subjort rhould also be studied.

Test of First Enhancements

To date, Version 1.1 of the system has been testtd on two st•tjects. The fifth subject, a profes-
sional sonar operator, did not prod, &- enough detection lapses in his training sossions to allow
an estimation algorithm to be trained on his data. Results of one feedback ru:- on the sixth sub-
ject are presented in Figures 6 and 7. This subject was also a sonar operator ,hut unlike the pre-
vious subject, not ,A coffee drink.-r). Figure 6 shows actual and estimated errnr rate for a 28-min
session with alertness feedback. The alarm threshold and alarm record are also shown, along
with htar drop, which was noted from the vdeutape taken of the subject during the session. The
estimation algorithm used power at five EEG frequencies chosen and smoothed individually for
the subject on the basis of a previous troir.ing session. As aiticipated, at the beginning of the run,
the estimation algorithm needed 95 s of data to bebin making accurate error rate estimates.
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In Figure 6, note the following points: Aftei the session, the subject resported that the early
alarm (at minute 2) was appropriate, since he was feeling drowsy at the time, and actually
missed one auditory target. The subject stated that the alarm reminded him to be more attentive.
The error rate estimate began to rise in minutes 5 to 9, i.e. about 4 minutes before the subject had
another response lapse. Head drop became visible almost 12 min after the alarm threshold was
reached by the error rate estimate (at minute 10), and the subject began making errors. The esti-
mation algorithm accurately estimated the subject's return to alertness at minute 19, which was
aided by an unplanned verbal query to the subject from the experimenter, who thought the sound
delivery system might be malfunctioning. Error rate during the final portion of the run (minutes
20 to 28) was accurately tracked by the system without use of any information except the
subject's EEG spectrum.

Figure 7 shows a post hoc alertness estimate of error rate in this same session, computed
from EEG power estimates at the same five frequencies and using the same smoothing constants
as were used in the real-time algorithm (Fig. 6). The same training session was also used to train
the revised estimation net. In the revised net, however, normalization constants were based on
two traini ig sessions rather than one. In Figure 7, note that the root mean square (RMS) error
between tie estimated and observed error rates (0.08) is less than that observed in Monte Carlo
simulation.; using a predetermined error rate probability curve to generate stochastic series of
Hits and Lapses with the same temporal statistics as in the actual experiments. Hence, statisti-
cally, the prediction error in Figure 7 is as small a possible, and further improvement in estima-
tion accuracy cannot be expected. The extremely close fit of the estimated and actual error rate
record in Figure 7 demonstrates that precise information about the exact alertness trend is con-
tained in the EEG power spectrum, as reported by Makeig and Inlow (1993). However, power
normalization remains an important area for further research.
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Figure 6. Results of a session on a filth subject employing real-time alertness monitoring
and feedback. In this experiment, the feedback alarm threshold was set at 0.4. The actuai
alarm signal record is shown in the lowest trace. The square pulses in the dashed trace
above it indicate moments when the subject's head was observed to drop in the videotape
of the session. The dark trace shows the actual local error rate on the auditory detection
task, smoothed using a 93-s exponential window whose center of gravity trailed the leading
edge of the window by 22 s. The top trace shows the error rate estimate computed from the
subject's EEG spectrum during the run.
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Figure 7. This figure demonstrates that significant improvement in estimation accuracy
would have been obtained had the normalization constants for preprocessing the smoothed
EEG power been computed using data from two training runs rather than from just one.
The figure shows post hoc error rate estimation using the same EEG data as in Figure 6,
but with revised normalization parameters computed using Version 1.1 of the training
algorithm on the basis of two previous training runs on this subject. Estimation accuracy
for this session cannot be distinguished from measurement error for the local error rate
measure.
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Conclusions

First laboratory versions of an individualized Alertness Monitoring/Management (AMM)
system have been demonstrated and have been tested, to date (January, 1993), in a total of 30
half-hour test sessions on six subjects. Results of these experiments suggest that sufficient inh,'r-
mation is available in the EEG spectrum recorded from a single scalp derivation to accurately
estimate probability of detection in an auditory detection task performed by subjects con-
currently with a visual task simulating one aspect if sonar operations. Future research will
attempt to determine the optimum number and location of electrodes, the best way to collect and
process individualized net training data, the generalization of the alertness estimate to perfor-
mance on more complex tasks, and ways to combine more than one channel of psychophysiolog-
ical information to make the alertness estimates more accurate and noise-resistant. Practical
questions regarding easily applied electrode montages and automatic artifact cancellation also
remain to be investigated. If reliable and convenient automatic alertness monitoring can be
developed, the range of potentially useful applications appears to be wide.
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