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ABSTRACT

A theory is presented, yielding the wake shape,

the total pressure loss, and the drag force of two-

dimensional vee-gutter profiles in unstaggered

cascade array, for incompressible, steady, potential

flow directed normal to the cascade axis. The

results, for all gutter-included angle and blockage

ratio, are compared to two- end three-dimensional

experimental results, showing good argreement.

Approximate theor i is are presented, valid at high

blockage ratio and either at small or large gutter

angle.
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By W. G. Cornell

NOMENCLATURE

The following nomenclature is used in the paper:

Aq a function in expression for l.

Bq - function in expression for ýL

b - breadth of gutter along cascade axis

CC = contraction coefficient

CD - drag coefficient

D - drag force on a gutter

dl, d2 - inlet, outlet diameter of conical nozzle

F(b/t, 0) - function in expression for ýL

G(0() = function in asymptotic expression for p.

H(o() - function in asymptotic expression for

p = static pressure

P? = total pressure Accesion For

NTIS CRA&I
ApT = total pressure loss of cascade DTIC TAB

Unannounced
q = integer Justification

R, Z - cylindrical coordinates By ........

r, s = integers (r> a) Distribution/
Availability Codes

t = pitch of cascade along cascade axis Avail andl CorAval ado
W - -+ i(P = complex potential D Special

w = fluid velocity

wI - velocity upstream of cascade

w2 = velocity downstream of cascade

w3 = velocity after mixing of wakes and jets
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Y, X = rectangular co-ordinates

z = x + iy-- complex position variable

fAm gutter included half-angle

9q = function in expression for ..

S= function in expression for p.

= complex position variable

)= total pressure loss coefficient of cascade

- wake width ts fraction of pitch t

= dummy vuriable of integration

S- fluid-mass density

INTRODUCTION

In afterburners of modern aircraft gas-turbine power plants and in other
combustion systems, various bluff bodies are used for flameholders, creating low-
velocity regions downstream in order to stabilize combustion. One of the most
frequently used configurations is the vee-gutter flameholder, composed of concentric
annular rings of vee cross section with apex upstream. In the design of yea-gutter
flemeholders, a method is needed to predict the effect of yea-gutter geometry
on aerodynamic forces on the gutters, total pressure loss and wake shape.

The present theory idealizes the configuration as a two-dimensional
cascade of vee-gutter profiles, that is, an infinite number of equally spaced
profiles of infinite span, a section normal to the span being shown in Fig. 1. The
profiles are idealized as infinitesimally thin vee-shaped plates of included angle
2(Y and breadth b along the cascade axis which is normal to the upstream flow.

The upstream flow, infinitely far ahead of the cascade, at station 1, is
taken as a uniform flow of velocity wI normal to the cascade axis. Stagnation
streamlines will proceed undeflected from station 1 to stagnation points at S on
the apex of each profile. These streamlines then split and become the outside
surfaces of the profiles, flowing smoothly off the trailing edges T. Since in an
actual, viscous fluid, the flow cannot negotiate the sharp turn at the trailing
edges in order to proceed upctream along the inside surfaces of the profiles, it
will be assumed that the flow separates from the profile at the trailing edges.
The streamlines extending downstream from the trailing edges will be taken as
"free streamlines," enclosing "dead water" regions or wakes, extending infinitely
far downstream to station 2. At station 2 the flow consists of wakes of extent
I.t parallel to the cascade axis, and intervening jets of extent (1 - 0,)t. In the
wakes, the velocity is taken as zero, in the jets at a constant value w2 , normal to
the cascade axis, The static pressure will be considered uniform across both wakes
and jets at station 2. Thus, the static pressure in the entire wakes will be taken



constant at the downstream value p2. As a boundary condition, then, the static
pressure will be constant at P2 along the free streamlines.

It will be assumed that the flow is two-dimensional, steady,
incompressible, irrotational, nonviscous, and free of body forces. As a consequence,
the velocity '2 in the jets will exceed the inlet velocity w1. Further, the total
pressure PT = p + 1/2(pi2 ) will be constant in the flow from 1 to 2, so that no
losses will be accounted for in the process of formation of the jets.

The wakes and Jets are then assumed to mix at constant momentum, since no
mechanism is present to afford a force external to the fluid, between station 2
and station 5, located farther downstream. The flow at station 5 is characterized
by uniform velocity w3 normal to the cascade axis and equal, from continuity
considerations, to the inlet velocity w1 . The static pressure will be taken as
uniform at PS, a lower value than the inlet static pressure Pl, since a total
pressure loss will be computed in the mixing.

The problem may be stated as follows: Given a vee-gutter cascade defined
geometrically by (X, b/t and an upstream flo% velocity wl, it is required to find
the wake thickness/pitch ratio FAJ, the drag force D (normal to the cascade axis)
on each profile and the total pressure loss APT - PTl - PTay.

FLOW IN THE WAKES AND JETS

The flow between stations 1 and 2 is considered first. The yea-gutter
flow configuration shown in Fig. 1 is seen to be identical, under the assumptions
made, to the configuration shown in Fig. 2, that of flow in a two-dimensional
contraction, formed of two semi-infinite walls RS and extensions ST inclined at
angle a to RS and having breadth b/2 measured normal to RS. At station 1,
infinitely far ahead of the contraction, the velocity is wl. The flow discharges
into stagnant fluid having static pressure p2 and forms a vena contracts of
breadth (1 - V)t at station 2, infinitely far downstream. Von Mises (1)l has given
the desired potential-flow solution for the two-dimensional contraction, in order
to predict flow coefficients for discharge from such openings, utilizing the
free streamline theory of Helmholtz and Kirchoff (2. The results, in the present
nomenclature, are as follows: The wake thickness/pitch ratio lJ is given by

1 - b/t (1),=1 1 + F(O(, b/t) ...

where

si/ - M r f cos (s0q) + Bq sin (a )

1 Underlined numbers in parentheses refer to the Bibliography at the end of the paper.
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r, a a arbitrary integers, r as, r/s u.T/o(

fPq = (2q - 1) 0(18

Aq w 2 in (1 - COO 9q) +

- (E - i/E) in (-/8- 1 - 2el/3 cos #q)

- 2(1/E - C) tgs

In order to evaluate F(o, b/t) for chosen 0k, b/t, the integers r, a are
chosen to yield the minimum number of series terms. It is to be noted that
computation is restricted to values of CO which are integral fractions of 7r. This
restriction is not troublesome, however, since graphical interpolation can be
used on the results. Numerical results are shown in Figs. 3 and 4, where is
shown as a function of Oand b/t for the complete range 0<o <1800, O<b/t(1.
Also shown in Fig. 3 are results of two asymptotic theories discussed later in the
paper.

TOTAL PRESSURE LOSS

The total pressure loss APT = pTl - pT5 may be written as

p = 2  p3  .p (w2 2 - W32 ) . . . .(2)

by definition of PT = p + (1/2) p w2 and since PT1 =-PT2-

The principle of conservation of momentum may be applied for forces normal
to the cascade axis and acting on a strip of fluid of breadth t, containing a wake
and two halves of a jet, extending between stations 2 and 5. The result is

The principle of conservation of mass may be applied to the same strip,
extended to station 1, to yield

w1/`2- 1`" 9 -g = 1 . . . (4)



Combination of Equations (2.) .(3), and (4) yields the nondimensional
total pressure-loss coefficient as

)- = ,p/pwlZ = L/(l _-) p2. (5)

The loss coefficient lis seen to be a function only of f, which is given by
Equation (1) in terms of 0(, b/t. Numerical results are shown in Figs. 5 and 6,
where A is shown as a function of Co and b/t. Also shown in Fig. 5 are the results
of the asymptotic theories.

PROFILE DRAG FORCE

The principle of conservation of momentum may be applied to the previous
strip of fluid, extended to station 1, to yield the dreg force on a profile as

D -- (Pl -p2)t t p wl2t - p w2ft(l - )...(6)

Since the total pressure is unchanged between stations 1 and 2, the
Bernoulli relation yields

Combining Equations (4), (6), and (7) yields the nondimensional drag
coefficient as

CD a D/(l/2)pwl2b =-(t/b)142 /(l _). - . . (8)

which, with Equation (5), may be written as

CD = (t/b) A . . . . . . . (9)

which might have been deduced physically. The drag coefficient CD is seen to be a
function only of p,, or alternately of ' , and therefore of A and b/t from
Equation (1). Numerical results are shown in Figs. 7 and 8, where CiD is shown as
a function of O( and b/t. The drag coefficient for the case of a single vee-gutter,
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b/t & Op has been given previously by Bobyleff( 5)0 Also shown in Fig. 7 are the
results of the asymptotic theories.

PHYSICAL SIGNIFICANCE OF THE RESULTS

The important physical results are shown in Fig. 5 through 8. The wake
Width/pitch ratio p,, the total pressure loss coefficient A , and the drag
coefficient CD are seen to increase with blockage ratio b/t as expected physically.
Similarly, they are seen to increase with gutter half-angle s'., with a decreasing
rate aso( is increased from o0= 0 to o(= 1800o The wake width, loss and drag at
k= 90 deg are considerably higher than those at o•= Oo However, the values at
4x- 180 deg are only slightly higher than those at o(= 90 deg.

Some explanation of the limiting geometries is in order. At constant
blockage b/t, the case of Okm 0 corresponds to a gutter made up of two coincident
sides parallel to the upstream flow direction, with "open" end downstream. Thus,
the breadth b = 0 and for b/t 7 O the pitch t = O0 Thus, ýL-0 still implies wake
width ,it = 0. The loss coefficient >0s, but APT = 09, wl = 0 since the space is
"full of gutters." At constant blockage b/t, the case of o(= 180 deg corresponds
to the same gutter as for G= 0, but with "open" end upstream. In this case, an
impediment to the flow is present in that the fluid must flow in and then back out
of the rectangular channel of breadth b = 0. Again , the pitch t = 0 for constant
b/t # 0, and M'>0 implies wake width ý-t - 0. Again X>0, ApT 0 O, wI - 0. The
case of blockage b/t - 0 is that of a sing16 gutter, since b>O and t - 00. In
this case, A.= 0 since t= oc, A- 0 since w1 > 0, and CD >0. The case of blockage
b/t u 1o0 is that of zero gap t - b between adjacent plates0 In this case ýU-- 1.0
(downstream space filled with wakes), A = 00 and CD = oo since w1 - 0.

The effect of compressibility has been ignored for simplicity of analysis.
Luckily, in modern afterburner practice Mach numbers are low (order of 0.1 - 0.2), so
that the incompressible approximation is probably reasonable. At higher Mach
numbers, additional losses may be expected. The effect of fluid friction is
neglected, and thereby all consideration of scale effects. The theory should be
most valid for high Reynolds numbers; ioeo9 for large gutters in high-velocity,
high-density, low-viscosity fluids. At low Reynolds number, the actual wake width
parameter A- will be larger than the theory predicts, leading to higher loss and daeg.
This follows from knowledge of the fact that nozzle flow coefficients decrease with
Reynolds number and that the "flow coefficient" of the vee-gutter is proportional
to 1 - o

The theoretical shape of the free streamlines could be calculated from the
theory. However. weighting the analytidal complexity of such a calculation against
the practical value of the results leads one to be satisfied with the above statement.
For estimation purposes, a reasonable wake boundary can be sketched, using the computed
wake width HLt and the boundary condition that the free streamlines are tangent to
the gutter trailing edges.

THE ASYMPTOTIC THEORIES

Owing to the analytic complexity of the exact theory, it is convenient
to have simpler results, approximately valid over part of the range of variables.
Feinig (4) gives an asymptotic theory, valid for small o( and large b/t, based upon
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an analysis entirely similar to that of the exact theory. In place of the von Vises
solution, Weinig uses his own asymptotic solution (5) of the potential flow problem
of discharge from a two-dimensional contraction, for the case o(-O, b/t-4 1.
Weinig's results are as follows:

1 h/t

1 + G . .÷. . . . (10)

where

The fundamental relations Equations (5) and (9) for ?'(P) and CD(M) still obtain.
Comparisun of Equations (1) and (10) shows the same general form of 1 .(b/t, o) in
the exact and asymptotic theories, with the approximation F(b/t, o() - G(.() for small
O.and large b/t. In Figs. 5, 5, and 7, the Weinig asymptotic theory is compared
to the exact theory. It is seen that the asymptotic theory gives good results,
p,, A, and CD being higher than the exact values, for the case of small ot and

large b/t.

A second asymptotic theory can be developed for the case of large c( and
large b/t. Weinig (§) has shown that a "bell mouth," suitable for an inlet in a
turbomschine test stand, can be designed for constant velocity on the surface.
Potential theory methods (2) are applied as follows: The desired bell mouth flow
in the z-plane is describable in terms of an unknown complex potential WIA # + iT .
The z-plane is mapped conformally on theS -plane, containing as image of the bell
mouth flow a uniform flow, 2 given by W = - . Physical deduction shows that
ln(dW/z)=a:•ei is a reasonable, yet simple expression for the S -plane image of
the isotach-isocline field of the s-plane. Then, having du/dS and dW/dz in terms
of S , the derivative dz/dt of the transfo~metion function is obtained. Integration
yields z = -Ei(e ), where -Ei(-x) a Are-4/• )d I is the exponential integral
and I is a dummy variable of integration. Further investigation shows that the
bell-mouth contour is the Sici spiral shown in Fig. 9, where z x + iy and:

3,. . . .)

Irr

2 Taking velocity proportional to the positive potential derivative.
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and CiWO) - f(cos c/a) dok and Si(O) a (r/2) ( sino4/o)do( are
respectively the cosine and sine integrals.

The angle o( is the local inclination of the bell-mouth contour. The
potential flow pattern of the bell mouth can be applied to the vee-gutter
configuration as shown in Fig. 100 At chosen points P on the bell-mouth contour,
the upstream flow is taken as that off the trailing edges of vee-gutters in a
cascade of large blockage b/t and half-angle D( 0 The downstream portions of the
bell-mouth contour are taken as the free streamlines of the vee-gutter cascade.
The wake width parameter ý6is then given by

1 -l +/(t

where

Again, Equations (5) and (9) give ?(k) and CD('X)o The same general form
of •o(b/t, c) is obtained as in Equations (1) and (10). with the approximation that
F(b/t~cx) - H(c) for large co and large b/t 0 In Figs0 5, 5, and 7, the present
asymptotic theory is compared to the exact theory0 The asymptotic theory gives
fairly good results, the range of validity being restricted to very large OCand b/t,
and •, •, and CD beirg higher than the exact values.

COMPARISON WITH EXPERIMENTAL RESULTS

Noreen (7) tested single vee-gutters of 90 deg included angle (o( 450)
and various widths b in a rectangular channel (span 2 2 in., wall spacing t,= 4 in.).
The blockage ratios b/t were 0.5, 0M625, 0.75. Tests were made with air at
velocities from 25 to 90 fps and with and without combustion. Pressure drop across
the vee-gutter section was determined by measurement cf wall static pressure before
and behind the vee-guttero In Fig0 11 are shown test values of loss coefficient
S plotted as a function of b/t, compared with the theoretical curve foro( = 45 deg.

Measured losses with combustion exceed those predicted theoretically. Measured
losses without combustion are less than theory predicts. The undoubtedly
imperfectly square edges of the vee-gutter trailing edges probably are partially
responsible for the relatively low loss of the cold tests. Thus, the theory
assumes that the wake leaves tangent to the vee-gutter surface at the trailing edge.
If the edge is slightly rounded, the flow will follow the contour, leading to a
thinner wake, and, hence, lower loss0

In the case of the hot tests, additional losses occur due to heat addition.
The disparity between. theory and experiment is least at high blockage b/t, becoming
higher as b/t is decreased0 This is to be expected, since the theory's assumption
of wake-pressure constant at the downstream value becomes less valid as blockage
is decreased0 In the case of low blockage cascades, the actual wake pressure is
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somewhat below the downstream value, giving rise to relatively high drag, thick
wake, and large loss compared to the theoretical value. As blockage is increased,
strong accelerations are forced in the flow from inlet to jets between the wakes,
and the theoretical assumption is more nearly representative of fact.

Noreen (Z) also made spark Schlieren photographs of the wake flow. In
general, the wake boundaries tended to roll up into vortices and ultimately to
become turbulent. Examination of the photographs showed that the theoretical wake
boundry lay approximately along an eye estimate of the locus of the centers of
the rolled-up vortices. Typical photographs are shown in Fig. 12. In the photo-
graphs, the flow proceeds from right to left. The upper trailing edge of the vee-
gutter is seen, and the light field is the field of flow. The vertical marks at the
top of the photographs were 1 in. &part on the model. Shown on the photographs are
the theoretical wake boundary, as well as the "effective" wake boundary computed
from the measured loss coefficient. The theoretical wake is thinner than the
"effective" wake in the hot tests, the converse being true in the cold tests,

Test data of Grey and Wilsted (g) are shown, compared with theory, in
Figs. 1, and 14. Tests were made in air with axi-symmetrical conical nozzles of
various cone angle and diameter ratio. The original data were presented in the form
of curves of contraction coefficient as a function of cone angle, diameter ratio,
and nozzle pressure ratio. For comparison tith the present vee-gutter theory, the
orifinal data were extrapolated to zero pressure ratio and reworked into the form
of wbke-width parameter ýLas a function of gutter half-angle C< and blockage b/t,
for the equivalent two-dimensional case, defined as that one having the same
fraction of blocked area as the three-dimensional case of the experiment0 Thus,
vith dl and d2, respectively, the inlet and outlet diameters of the conical nozzle,
the blockage ratio of the equivalent vee-gutter is given by

e eq. - ll o (1)

The contraction coefficient is related to t and b/t by

CC = 1(4)1- b o.. . . .14

from the geometry of the configuration shown in Fig. 1.

The validity of this comparison of two- and three-dimensional flows is
well knoy•ao The classical example is the fact that the theoretical contraction
coefficient for a two-dimensional sharp-edged orifice (long slit) is very nearly
equal to the experimental value for circular sharp-edged orifices (2). Other
examples are cited by VReinig (9), the writer (L0), and given later. The
limitations of the validity of such comparisons of two- and three-dimensional flows
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are principally governed by the following consideration., If a three-dimensional
flow with radial co-ordinate denoted by R and axial co-ordinate by Z be compared
with a two-dimensional flow with "comparable" co-ordinates denoted by Y and X,
then a comparison such as that discussed is based upon the following imputed co-
ordinate transformation

Y. R. 
(15)

Consideration of the nonlinear nature of the Y. R relation quickly indicates that
the comparison is valid only for flows in which the radial (R) components of velocity
rre relatively small. In cases where large radial velocities exist, a vee-gutter in
the three-dimensional R, Z -space transforms into a gutter of curved elements in
the two-dimensional Y, X -space. Only for the cases of small radial velocity does a
vee-gutter in R, Z become (approximately) a vee-gutter in Y, X. Thus, in the vee-
gutter case, for gutters of small half angle cK, the comparison is most valid.
Further. for large blockage (and, hence, small velocity along the cascade axis)
most validity is found, Examination of Fig. 15 shows good agreement between theory
and experiment. Best agreement is noted at high blockage b/t, as expected, and at
high gutter half-angle 0 (, This latter is unexpected from the foregoing considerations.
However, a further factor probably is responsible for overriding this: At high
gutter angle, the 'effective blockage" is greater and more acceleration is forced upon
the jets between the wakes, leading to more accurate theoretical prediction
(-similarly to the effect discussed previously under the effect of blockage b/t).
Fig. 14 shows theory and experiment for the case of O(N 90 deg, wake-width parameter
P-being shown as a function of blockage b/t. Good agreement is obtained.

The data of Betz and Petersohn (11) on two-dimensional cascades of sharp-
edged flat plates-equivalent to the case of ok= 90 deg-are also shown on Fig. 14.
Tests were made with air and also with water discharging into atmospheric air.
The velocity in the jets between the wakes was reported, calculated from static
pressure measurements downstream of the cascade, In the present comparisons,
wake width parameter H was calculated from twI - (1 -0)tw 2, the continuity relation,
using experimental values of wl/w2. It is noted that the experimental vaues of
V. are less then those predicted theoretically, an effect no doubt partially due to
imperfect sharpness of plate edges.

Figs. 151, 16 and 17 show test results of Langer (12), who measured forces
with a two-component balance on cascades of the profiles shown corresponding to
vee-guttes of half-angle ot= 90p 140o5, 180 deg and to various blockages b/to
The data are shown as normal force coefficient C (wl/w 2) 2, or drag coefficient based

on jet v'elocity w2 , as a function of blockage b/t 0  It is noted that at low blockage
b/t experimental dreg coefficient is generally less than that predicted theoretically,
an unexpected result. However, agreement improves with increasing blockage, as
expecte. At high blockage, experimental drag coefficients exceed theoretical
values cs expected.,



Experimental data of Flachsbert (15) are shown on Fig. 18, compared with
the theory. The data are shown as total pressure loss coefficient ; as a function
of blockage b/t, for tests with air in three-dimensional screens formed of
rectangularly-woven thin sheet metal strips, with flow normal to the plane of the
screen. The original three-dimensional data have been converted to equivalent
two-dimensional data on the basis of equal blocked area ratio, rs previously
discussed. Good agreement is noted between theory and experiment, measured losses
being lower, probably due to slight rounding of the plate edges. This comparison
of theory end experiment %as first noted by Teinig (9) in his study of ribbon
parachutes.

CONCLUSION

The present theory gives a reasonable means of predicting the performance
of high blockage cascades of vee-gutter profiles, yielding the wake shape, the total
pressure loss and the drag force on the profiles. Consequently, the effects of
design choice of blockage and gutter angle can be predicted prior to proof testing
of after burner flameholders of vee-gatter type.
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Captions for Illustrations

Fig. I Flo% in a vee-gutter cascade

Fig. 2 Flow in a tio-dimensional contraction

Fig. 3 Wake width parameter/ as a function of gutter half-angle O( for various
blockage b/t

Fig. 4 Wake width parameter^.as a function of blockage b/t for various gutter
half-angle o(

Fig. 5 Total pressure loss coefficient )as a function of gutter half-angle o(ffor
various blockage b/t

Fig. 6 Total pressure-loss coefficient -A as a function of blockage b/t for various
gutter half-angle cO

Fig. 7 Drag coefficient CD as a function of gutter half-angle OCfor various
blockage b/t

Fig. 8 Drag coefficient CD as a function of blockage b/t for various gutter half-

angle o

Fig. 9 Sici spiral

Fig, 10 Flow in vee-gutter cascade of large gutter half-angle o' and large blockage b/t

Fig. 11 Comparison of theory and experiment for single vee-gutter between parallel
walls, Gutter half-angleCo = 45 deg end various blockage b/t

Fig. 12(a) Spark Schlieren photograph of flow with combustion over single vee-gutter
between parallel walls, Gutter half-angle 0(= 45 deg, blockage b/t = 0.75
and inlet velocity wI - 48.7 fps. Wake boundary calculated from loss measure-
ments - - - theoretical wake boundary -



Fig. 12(b) Spark Schlieren photograph of flow without combustion over a single
vee-gutter between parallel walls. Gutter half-angle o = 45 dog,
blockage b/t - 0.75 and inlet velocity wI u 46.6 fps. 'ake boundary
calculated from loss measurements - - - theoretical wake boundary

Fig. 15 Comparison of theory and experiment for axisymmetric conical nozzles tith
various half-angle O( and blockage b/t

Fig. 14 Comparison of theory and experiment for axisymmetric conical nozzles and
flat plate cascades with half-angle o( = 90 deg and various blockage b/t

Fig. 15 Comparison of theory and experiment for cascades of gutter half-angle
0(- 90 deg and various blockage b/t

Fig. 16 Comparison of theory and experiment for cascades of gutter half-angle
Ok- 140.5 deg and various blockage b/t

Fig. 17 Comparison of theory and experiment for cascades of gutter half-dngle
c= 180 deg and various blockage b/t

Fig. 18 Comparison of theory and experiment for flow normal to sheet metal strip
screens. Half-angle CK% 90 deg and various blockage b/t
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