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ABSTRACT

A theory is presented, yielding the wake shape,
the total pressure loss, and the drag force of two-
dimensional vee-gutter profiles in unstaggered
cascade array, for incompressible, steady, potential
flow directed normal to the cascade axis. The
results, for all gutter-included angle and blockage
ratio, are compared to two- and three-dimensional
experimental results, showing good argreement.

qn;Approximate theor! 38 are presented, valid at high

blockage ratio and either at smell or large gutter

angle.
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THE FLOW IN A VEE-GUTTER CASCADEs
»

By W. G. Cornell

NOMENCLATURE

function in expression for p

function in expression for |

breadth of gutter along cascade axis
contraction coei‘ficient

drag coefficient

drag force on a gutter

inlet, outlet diameter of conicai nozzle
function in expression for p

function in asymptotic expression for
function in asymptotic expression for p

static pressure

= total pressure

total pressure loss of cascade
integer

cylindrical coordinates

integers (r> s)

pitch of cascade along cascade axis
¢+ i¥ = complex potential

fluid velocity

velocity upstream of cascade
velocity downstream of cascade

velocity after mixing of wakes and jets

The following nomenclature is used in the paper:
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Y, X = rectangular co-ordinates

2 = x 4+ 1y = complex position variable
o= gutter included half-angle
Bq = function in expression for

€ = function in expression for (b

S = complex position variable
= total pressure loss coefficient of cascade
= wake width ¢s fraction of pitch t

§ = dummy vsrieble of integration

= fluid-mass density

INTRODUCTION

In zfterburners of modern aircraft gas-turbine power plants and in other
combustion systems, various bluff bodies are used for flameholders, creating low-
velocity regions downstream in order to stabilize combustion. One of the most
frequently used configurations is the vee-gutter flameholder, composed of concentric
annular rings of vee cross section with apex upstream. In the design of vee-gutter
flemeholders, a method is needed to predict the effect of vee-gutter geometry
on aerodynamic forces on the gutters;, total pressure loss and weke shape,

The present theory idealizes the configuration &s a two-dimensional
cascede of vee-gutter profiles, that is;, an infinite number of equally spaced
profiles of infinite span, & section normal to the span being shown in Fig. 1. The
profiles sre ideslized as infinitesimally thin vee-shaped plates of included angle
2% and breadth b along the cascade axis which is normel to the upstream flow.

The upstream flow, infinitely far shead of the cascade, st stetion 1, is
teken as a uniform flow of velocity w] normel to the cascade axis. Stagnation
stresmlines will proceed undeflected from station 1 to stagnation points at S on
the apex of each profile. These streamlines then split 2nd become the outside
surfsces of the profiles, flowing smoothly off the trailing edges T. Since in an
actual, viscous fluid, the flow cannot negotiate the sharp turn at the trailing
edges in order to proceed upctream along the inside surfaces of the profiles, it
will be assumed that the flow separates from the profile at the trailing edges.

The streamlines extending downstream from the trailing edges will be taken as

"free streamlines,” enclosing "dead water" regions or wakes, extending infinitely
fur downstream to station 2. At station 2 the flow consists of wakes of extent

pt parellel to the cascade axis, and intervening jets of extent (1 -pw)t. In the
wakes, the veloclity is taken as zero, in the jets at a constent value wp, normel to
the cescade axis. The static pressure will be considered uniform across both wakes
and jets at station 2. Thus, the static pressure in the entire wakes will be taken
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constant at the downstream value pp. As a boundary condition, then, the stetic
pressure will be constant at pp along the free streamlines.

It will be assumed that the flow is two-dimensionszl, steady,
incompressible, irrotational, nonviscous, and free of body forces. As a consegquence,
the velocity wp in the jets will exceed the inlet velocity wj. Further, the total
pressure pp = p + 1/2(pw®) will be constent in the flow from 1 to 2, so that no
losses will be accounted for in the process of formation of the jets.

The wekes and jets are then assumed to mix at constant momentum, since no
mechanism is present to afford a force external to the fluid, between station 2
and station 3, located farther downstreem. The flow at stetion 8 is characterized
by uniform velocity wg normal to the cascede axis and equal, from continuity
considerations, to the inlet velocity wj. The stetic pressure will be taken as
uniform at pg, a lower value than the inlet static pressure pj, since a totsal
pressure loss will be computed in the mixing.

The problem may be stated as follows: Given a vee-gutter cascade defined
geometrically by X, b/t and an upstream flow velocity w], it is required to find
the wake thickness/pitch ratio p+, the drag force D (normel to the cascede axis)
on each profile and the totel pressure loss App ® pr1 - PT3.

FLOW IN THE WAKES AND JETS

The flow between statlons 1 and 2 is considered first, The vee-gutter
flow configuration shown in Fig. 1 is seen to be identical, under ‘the assumptions
made, to the configuration shown in Fig. 2, that of flow in a two-dimensional
contraction, formed of two semi-infinite walls RS and extensions ST inclined et
angle  to RS and having breadth b/2 measured mormal to RS. At station 1,
infinitely far shead of the contraction, the velocity is wj. The flow discharges
into stagnant fluid having static pressure pp and forms a vena contrecta of
breadth (1 - )t at station 2, infinitely far downstream., Von Mises (1)1 has given
the desired potential-flow solution for the two-dimensional contraction, in order
to predict flow coefficients for discharge from such openings, utilizing the
free streamline theory of Helmholtz and Kirchoff 5g). The results, in the present
nomenclature, are as follows: The wake thickness/pitch ratio ¢+ is given by

= 1l - b/t
P=l-T9Fe oy ¢ - . (1)

where

F(X, b/t) - 5’-‘%'5- g (Aq cos (8Bg) + By ein (s Pq)}
q-

1 Underlined numbers in parentheses refer to the Bibliography at the end of the paper.




r, 8 = arbitrary integers, rs, r/s = T/
Bq = (2q - 1) /s
Ag=21n 1 - coaﬁq) +
- (€ - 1/€) 1n (€%/= - 1 - 261/5 cos @)

- - €/8 sin By
Bq 2(1/€ - €) te? {1 -ei/z cos ﬁ_q-}
€=(1-w

In order to evaluate F(x, b/t) for chosen &, b/t, the integers r, s are
chosen to yield the minimum number of series terms. It is to be noted that
computation is restricted to values of X which are integral fractions of 7. This
restriction is not troublesome, however, since graphical interpolation can be
used on the results, Numerical results are shown in Figs. I and 4, where . is
shown as & function of X and b/t for the complete range 0 <X <180°, 0< b/t<1.
Also shown in Fig. 3 are results of two asymptotic theories discussed later in the
paper.

TOTAL PRESSURE LOSS

The total pressure loss Apr = pr] - prz may be written as
Gpp=pp-pg +2p(m?-w?) . . . . (2

by definition of pp = p + (1/2) p w2 and since pr1 = pre-.

The principle of conservation of momentum may be applied for forces normal
to the cascede axis and acting on a strip of fluid of bresdth t, containing a wake
and two halves of & jet, extending between stations 2 and §. The result is

pz_ps-p{.,;--zz(l-p)} N € )

The principle of conservation of mass may be applied to the same strip,
extended to station 1, to yleld

w/momwg/we=1l-Mn . . . . . . (4
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Combination of Equations (2), .(3), and (4) yields the nondimensional
totel pressure-loss coefficient as

AZ2dppfpw =2/ -2 . . . . (8)

The loss coefficient Ais seen to be a function only of +, which is given by
Equation (1) in terms of X, b/t. Numerical results are shown in Figs. § and 6,
vhere A is shown as a function of X and b/t. Also shown in Fig. 5 are the results
of the asymptotic theories.

PROFILE CRAG FORCE

The principle of congervation of momentum may be applied to the previous
strip of fluld, extended to station 1, to yield the drag force on a profile as

D=(pp-pe)t+temBt-pwmZt(l-p . . . .(8)

Since the total pressure is unchanged between stations 1 and 2, the
Bernoulli reletion yields

Pp-pe=3p(m-m2 . . . . . .(M

Combining Equations (4), (6), and (7) yields the nondimensional drag
coefficient as

Cp = D/(1/2)pm®b = (t/b2/(1 -2 . . . . (8)
which, with Equation (5), may be written as
cp=(t/DA . . . . . . . (9

which might have been deduced physically. The drag coefficient Cp is seen to be a
function only of W, or alternately of A\, and therefore of o and b/t from
Equation (1). Numerical results are shown in Figs. 7 end 8, where Cp is shown as
e function of X and b/t. The drag coefficient for the case of a single vee-gutter,
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b/t = 0, has been given previously by Bobyleff(3). Also shown in Fig. 7 are the
results of the asymptotic theories.

PHYSICAL SIGNIFICANCE OF THE RESULTS

: The important physical results sre shown in Fig. & through 8. The wake
»idth/pitch ratio g, the total pressure loss coefficient X , and the drag
coefficient Cp are seen to increase with blockage ratio b/t as expected physically.
Similarly, they are seen to increase with gutter half-angle X, with a decreasing
rate aso( is incressed from X = 0 to X = 180°, The wake width, loss and drag at
K= 90 deg are considerably higher than those at X = 0. However, the values at
= 180 deg are only slightly higher than those at X = 90 deg.

Some explanation of the limiting geometries is in order. At constant
blockage b/t, the case of A= 0 corresponds to a gutter made up of two coincident
sides parallel to the upstream flow direction;, with "open" end downstream. Thus,
the breadth b = 0 and for b/t ¥ 0, the pitch t = 0. Thus, >0 still implies wake
width pt = 0. The loss coefficient A>0, but 4pp = O, w3 = O since the space is
"full of gutters."” At constant blockage b/t, the case of oX= 180 deg corresponds
to tbe same gutter as for X= 0, but with "open" end upstream, In this case, an
impediment to the flow is present in that the fluid must flow in and then back out
of the rectangular channel of breadth b = 0. Again; the pitch t = O for constant
b/t # 0, and M >0 implies wake width it = O. Again A>0, App =0, w3 = 0. The
case of blockage b/t = 0 is that of a single gutter, since b>0 and t =00, In
this case, 4= 0 since t = o0 ; A= 0 since W) > 0, and Cp > 0. The case of blockage
b/t ®» 1.0 is that of 2ero gap t - b between adjacent plates. In this case p= 1.0
(downstream epace filled with wakes), A = o6and Cp = o0 since w3 = O.

The effect of compressibility has been ignored for simplicity of analysis.
Luckily, in modern afterburner practice Mech numbers are low (order of 0.1 - 0.2), 80
that the incompressible approximetion is probably reasonable, At higher Mach
numbers, additional losses may be expected. The effect of fluid friction is
neglected, and thereby all consideration of scale effects. The theory should be
most valid for high Reynolds numbers; i.e.;, for large gutters in high-velocity,
high-density, low-viscosity fluids. At low Reynolds number, the actual wake width
perameter } will be larger than the thecry predicts, leading to higher loss and drag. -
This follows from knowledge of the fact that nozzle flow coefficients decrease with
Reynolds number and that the "flow coefficient" of the vee-gutter is proportional
tol -,

The theoretical shape of the free streamlines could be calculated from the
theory. However, weighting the analytical complexity of such a calculation against
the practical value of the results leads one to be sstisfied with the above statement,
For estimation purposes, a reasonable wake boundery can be sketched, using the computed
wake width it and the boundary condition that the free streamlines are tangent to
the gutter trailing edges.

THE ASYMPTOTIC THEORIES
Owing to the analytic complexity of the exact theory, it i1s convenient

to have simpler results, approximately valid over part of the range of wvarisbles.
Feinig (4) gives sn asymptotic theory, valid for small ok and large b/t, based upon

e ———————————————————————————————————]
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an analysis entirely similar to that of the exact theory. In place of the von Mises
solution, Weinig uses his own asymptotic solution (§) of the potential flow problem
of discharge from a two-dimensional contraction, for the case x-—»0, b/t —¥1.
Weinig's results are as follows: :

e e e . .. (10

where

G(®) 55[“(1 + 0.085 ( - %)2}

The fundamental relations Equations (5) and (9) for A (@ and Cp()) still obtain.
Compariscn of Equations (1) and (10) shows the same general form of p(b/t, X) in
the exact and asymptotic theories, with the approximation F(b/t, %) ~G(x) for small
®and large b/t. In Figs. 3, 5, and 7, the Weinig asymptotic theory is compared

to the exact theory. It is seen that the asymptotic theory gives good results,

[T A, and Cp being higher than the exact values, for the case of small o and
large b/t.

A second asymptotic theory can be developed for the case of large ( and
large b/t. Weinig (6) has shown that a "bell mouth," suitable for an inlet in a
turbomschine test stand, can be designed for constant velocity on the surface.
Potential theory methods (2) are applied as follows: The desired bell mouth flow
in the z-plane is describable in terms of an unknown complex potential W= ¢ 4+ iV¥.
The z-plane is mapped conformally on the § -plane, containing as image of the bell
mouth flow azuniform flow,2 given by W = - 5. Physical deduction shows that
1n(dN/Jdz)==e~i T 1s a reasonable, yet simple expression for the S-plane image of
the isotach-isocline field of the z-plane. Then, having dW/_dS and dW/dz in terms
of § , the derivative dz/d¥ of the transformation function is obtained. Integration
yields z = -Ei(eV ), where ~Ei(-x) = ,”(e- /§)a¥ is the exponential integral
and § is a dummy varisble of integration. Further investigation shows that the
bell-mouth contour is the Sici spiral shown in Fig. 9, where z = x 4 iy and:

= 2 (c1(x)
° . . o . o . (11)
= 1] +Tr31(°‘)

A Y

2 Taking velocity proportional to the positive potential derivative.
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and Ci(x) = - Ji (cos /o) dat and Si(x) = (WR) - J, (sin o/ )dok are
respectively the cosine and sine integrals.

The angle K is the local inclination of the bell-mouth contour. The
potential flow pattern of the bell mouth can be applied to the vee-gutter
configuration as shown in Fig. 10. At chosen points P on the bell-mouth contour,
the upstream flow is taken as that off the trailing edges of vee-gutters in a
cascade of large blockage b/t and half-angle X. The downstream portions of the
bell-mouth contour are taken as the free streamlines of the vee-gutter cascade.
The wake width parameter \.is then given by

o _1-b/t
'Ll-l_:#a—) ° ° ° ° . (12)

where

R(®) = 2 s1(x)

Again, Equations (5) and (9) give A(w) and Cp(N). The same general form
of (b/t, ®x) is obtained as in Equations (1) and (10), with the approximation that
F(b/t,x) ~H(X) for large « and large b/t. In Figs. 3, 5, and 7, the present
asymptotic theory is compared to the exact theory. The asymptotic theory gives
fairly good results, the range of validity being restricted to very large o and b/t,
and o, A, and Cp beirg higher than the exact values.

COMPARISON WITH EXPERIMENTAL RESULTS .
Noreen (7) tested single vee-gutters of 90 deg included angle (X = 459)
and various widths b in a rectangular channel (span = £ in., wall spacing t = 4 in.).
The blockage ratios b/t were 0.5, 0.625, 0.75. Tests were made with air at
velocities from 25 to 90 fps and with and without combustion. Pressure drop across
the vee-gutter section was determined by measurement c¢f wall static pressure before
and behind the vee-gutter. In Fig. 11 are shown test values of loss coefficient
A plotted as e function of b/t, compared with the theoretical curve for & = 45 deg.
Measured losses with combustion exceed those predicted theoretically. Measured
losses without combustion are less than theory predicts. The undoubtedly
imperfectly square edges of the vee-gutter treiling edges probably are partially
responsible for the relatively low loss of the cold tests. Thus, the theory
assumes that the wake leaves tangent to the vee-gutter surface at the trailing edge.
If the edge is slightly rounded, the flow will follow the contour, leading to a
thinner wake, and, hence, lower loss.

In the case of the hot tests;, additional losses occur due to heat addition.
The disparity between. theory and experiment is least at high blockage b/t, becoming
higher as b/t is decreased. This is to be expected, since the theory'!s assumption
of wake-pressure constant at the downstream value becomes less valid as blockage
is decreased. In the case of low blockage cascades, the actual wake pressure is

~ "N
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somexhat below the downstream value, giving rise to relatively high drag, thick
wake, and large loss compared to the theoretical value. As blockege 1s increased,
strong accelerations are forced in the flow from inlet to jets between the wakes,
and the theoretical assumption is more nearly representative of fact.

Noreen (Z) also maede spark Schlieren photographs of the wake flow. In
genersl, the wake boundsries tended to roll up into vortices and ultimately to
become turbulent. FExamination of the photographs showed thet the theoretical wake
boundery lay approximately along an eye estimate of the locus of the centers of
the rolled-up vortices. Typical photographs are shown in Fig. 12. In the photo-
greohs, the flow proceeds from right to left. The upper trailing edge of the vee-
gutter is seen, and the light fleld is the field of flow. The verticel marks at the
top of the photographs were 1 in. epart on the model. Shown on the photographs are
the theoretical wake boundary, as well as the "effective" wake boundary computed
from the measured loss coefficient. The theoretical weke is thinner than the
"effective™ weke in the hot tests, the converse being true in the cold tests.

Test data of Grey nd VWilsted (8) are shown, compared with theory, in
Figs. 12 and 14, Tests were made in air with axi-symmetrical conical nozzles of
various cone angle snd diameter ratio. The original data were presented in the form
of curves of contraction coefficient as a function of cone angle, diameter retio,
and nozzle pressure ratio. For comparison with the present vee-gutter theory, the
original date were extrapolated to zero pressure ratio and reworked into the form
of wake-width parzmeter p as a function of gutter half-sngle X and blockage b/t,
for the equivalent two-dimensional case, defined as that one having the seme
fraction of blocked area as the three-dimensional case of the experiment. Thus,
vith d1 and dp, respectively, the inlet and outlet diemeters of the conlicel nozzle,
the blockage ratio of the equivalent vee-gutter is given by

@ =1- (gg)2 (13)
eq. l ° ° ° ° ° °

The contraction coefficient is related to y—end b/t by

cc = = O 6 73
t

from the geometry of the configuration shown in Fig. 1.

The validity of this comparison of two- and three-dimensional flows is
well knowu. The classical example 1s the fact that the theoretical contraction
coefficient for & two-dimensional sharp-edged orifice (long slit) is very nearly
equal to the experimental value for circular sharp-edged orifices (2). Other
exsmples are cited by Weinig (3), the writer (10), snd given later. The
limitetions of the validity of such comparisons of two- end three-dimensional flows
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are principally governed by the following consideration. If a three-dimensional
flow with radial co-ordinste denoted by R and axisl co-ordinate by Z be compared
with a two~dimensionel flow with "comperable" co-ordinates denoted by Y and X,
then & comparison such as that discussed is based upon the following imputed co-
ordinate transformation

X = 2 (
o o & o e @ 15)
Y = R®

Consideration of the nonlinear nature of the Y, R relstion quickly indicates that

the comparison is valid only for flows in which the radial (R) components of velocity
ere relatively small. In cases where large radial velocities exist, a vee-gutter in
the three-dimensional R, Z -space transforms into a gutter of curved elements in

the two-dimensional Y, X -space, Only for the cases of smell radial velocity does a
vee-gutter in R, Z become (approximately) a vee-gutter in ¥, X. Thus, in the vee-
gutter case, for gutters of small half angle o , the comparison is most valid.
Further, for large blockage (and, hence, small velocity along the cascade axis)

most validity is found. Examination of Fig, 13 shows good agreement between theory
and experiment. Best agreement is noted at high blockage b/t, as expected, and at
high gutter half-engle X . This latter is unexpected from the foregoing considerations.
However, & further factor probably is responsible for overriding this: At high

gutter angle, the "effective blockage" is greater and more acceleration is forced upon
the jets between the wakes; leading to more sccurate theoretical prediction

(similarly to the effect discussed previously under the effect of blockage b/t).

Fig. 14 shows theory end experiment for the case of X = 90 deg, wake-width parameter
M- being shown as a function of blockage b/t. Good agreement is obtained.

The data of Betz and Petersohn (11) on two-dimensional cascades of sharp-
edged flat plates—equivalent to the case of X = 90 deg——are also shown on Fig. 14.
Tests were made with air and also with water discharging into atmospheric air.
The velocity in the jets between the wakes was reported, caiculated from stetic
pressure measurements downstream of the cascade, In the present comparisons,
wake width parameter | was celculated from twy = (1 - i) twg, the continuity relationm,
using experimental velues of wi/wg. It is noted that the experimental veues of
W are less then those predicted theoretically, an effect no doubt partielly due to
imperfect sharpness of plate edges.

Figs. 1&, 16, and 17 show test results of Langer (12), who measured forces
with & two-component baslance on cascsdes of the profiles shown corresponding to
vee-gutters of half-angle A= 90, 140.5, 180 deg and to verious blockages b/t.

The data are shown as normal force coefficient C (wl/wz) s, or drag coefficient besed
on jet velozity wo, as a function of blockage b/t., It is noted that at low blockage
b/t experimental dreg coefficient is generally less than that predicted theoreticelly,
en unexpected result. However, egreement improves with increasing blockage, &s
expected. At high blockage, experimental drag coefficients exceed theoretical

veites 25 expected,
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Experimental data of Flechsbert (13) are shown on Fig. 18, compared with
the theory. The data are shown as total pressure loss coefficient A as & function
of blockage b/t, for tests with air in three-dimensional screens formed of
rectengularly-woven thin sheet metal strips, with flow normal to the plane of the
screen., The originsl three-dimensional data have been converted to equivelent
[ two-dimensional data on the basis of egual blocked ares retio, s previously
discussed. Good agreement is noted between theory and experiment, measured losses
being lower, probaebly due to slight rounding of the plate edges. This comperison
of theory and experiment was first noted by Veinig (9) in his study of ribbon
parachutes.

CONCLUEION

The present theory gives a reasonable means of predicting the performence
of high blockaege cascades of vee-gutter profiles, yielding the weke shepe, the total
pressure loss and the drag force on the profiles. Consequently, the effects of
design choice of blockage and gutter angle cen be predicted prior to proof testing
of after burner flameholders of vee-gutter type.
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Captions for Illustrestions
Fig. 1 Flow in a vee-gutter cascade

Fig. 2 Flow in a two-dimensional contraction

Fig. 3 Wake width parameter . as a function of gutter half-engle ™ for various
blockage b/t

Fig. 4 Wake width perameter s as a function of blockage b/t for various gutter
half-angle o

Fig. 5 Total pressure loss coefficient Aas a function of gutter helf-angle  for
various blocksge b/t

Fig. 6 Totel pressure-loss coefficient N as & function of blockage b/t for various
gutter half-angle o

Fig. 7 Dreg coefficient Cp as a functiun of gutter half-angle OXfor various
blockage b/t

Fig. 8 Drag coefficient Cp as a function of blockage b/t for various gutter half-
angle X

Fig. 9 Sici spiral
Fig, 10 Flow in vee-gutter cascade of large gutter half-angle ok and large blockage b/t

Fig. 11 Comparison of theory and experiment for single vee-gutter between parallel
walls. Gutter half-sngle X = 45 deg end vsrious blockage b/t

Fig. 12(a) Sperk Schlieren photograph of flow with combustion over single vee-~gutter
between perallel walla., Gutter helf-sngle X= 45 deg, blockasge b/t = 0.75
and inlet velocity w) = 48.7 fps. Wake boundary calculated from loss measure-
ments - - - theoretical wake boundery --.-.—
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12(b) Spark Schlieren photograph of flow without combustion over a single
vee-gutter between parallel walls, Gutter half-angle X = 4§ deg,
blockage b/t = 0.75 and inlet velocity w) = 46.5 fps. Wake boundery
calculated from loss measurementes - - - theoretical weke boundary -.-.-

13 Comparison of theory and experiment for axisymmetric conical nozzles with
verious half-angle X and blockage b/t

14 Comparison of theory and experiment for axisymmetric conical nozzles and
flat plate cascades with half-angle X = 90 deg and various blockage b/t

15 Comparison of theory and experiment for cascades of gutter half-engle
®= 90 deg and various blockage b/t

16 Comparison of theory and experiment for cascades of gutter half-engle
®= 140.5 deg and various blockage b/t

17 Comparison of theory and experiment for cascades of gutter half-angle
= 180 deg and various blockagé b/t

18 Comparison of theory and experiment for flow normal to sheet metal strip
screens. Half-angle X = 90 deg and various blockage b/t
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