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If thermal conductivity and specific heat are taken as linear functions of

temperature, a nonlinear heat-conduction equation results. For small non-
linearities an approximate first-order analytical solution may be obtained
in certain ccses. The present analysis deals with one-dimensional prob-
lems with periodic boundary conditions. Only the rteady-state solution

(i.e., one which is periodic in time) is considered. Solutions are obtained
for the following cases: 1) Semi-infinite solid with sinusoidal boundary
temperature, 2) thick slab with sinusoidal temperature at one boundary

and constant temperature at the other, and 3) thick slab with prescribed
heat flux (a constant term plus a sinusoidal term) at one boundary, core-
stant temperature at the other. The effects of the nonlinearities are dii-

cussed; they are found to be surprisingly small.
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One-Dimensiolai Quasilinear Heat Flow .. M.

With Boundarwy Conditions Periodic in Time JOHN S THOMON

NOMENCLATURE

The following nomenclature is used in this paper:

a = Temperature coefficient for k in Equation (51

B~oB= Amplitudes of constant and first harmonic terms of
heat flux input, Equation (1433

b = Temperature coefficient for s in Equation [63

c = Specific heat (for unit mass)

f = Time-independent term in temperature solution

k a Thermal conductivity

"--ko = Value of k at reference temperature (assumed zero)

L = Thickness of slab

q" = Heat flux

Rn = Amplitude of nth harmonic of temperature

a = SP = Volumetric specific heat

s = Value of s at reference temperature (assumed zero)

To = Amplitude of temperature input, Equation [171

'= B1 / fj k- • ' = Amplitude of linear solution at boundary

TL = Constant temperature at x = L.

t = Temperature

u = Transformed temperature, defined by Equations [3) and [71

x = Distance coordinate

S= k / 29 = Thermal diffusivity

n'= Vn0/2 at

5 h{-_a) Bo / 2ko sX

= Density

= Time

L~2
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INTRODUCTION . A

The general equation for heat conduction in an ie

isotropic material, without heat sources or sinks, is

div (k grad t ) = s •.L tIl

where t is temperature, ' is time, k is thermal

conductivity, and s = c the volumetric specific heat,

i.e., the product of specific heat and density. In the case

where k and s are constants this becomes

where o(E k/s is a constant. This is a linear o~artial

differential equation; solutions have been obtained by

standard methods hor many cases of practical interest (see

for example 1(1)). However, in the 2ote general case, both

k and s in Equation sil are functions of temperature; hence

the differential equation is nonlinear.

In the nonlinear case k and s may readily be

combined into a single temperature-dependent quantity through

the transformation used by van Dusen (2)

( , H k t ') i t ' me)

SNumbers in parentheses refer to the Bibliography at thenc
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where k is the value of k at temperature to,. It follows

that k grad t = ko grad u and (3t/2)- (k./k) (/n)
and hence

S~[4]

where ot(u) = k (u)/s (u). For the time-independent case,

2 u = 0 ; thus, after the boundary conditions have been

expressed in terms of u , the problem reduces to the familiar

linear one.

In the transient case the scope of available analytical

solutions is much more limited. Hopkins (3) has suggested the

method of successive approximations and applied it to a

number of examples. Another analytical technique has been

the Boltzmann transformation (4), which converts the partial

differential equation into an ordinary one; this is

limited to the one-dimensional case with rather s-ecialized

initial condition and boundary conditions. Additional

solutions for various cases are given by Crank (7) and by

Friedmann (5,6) who includes an extensive bibliography. Much

of the work in the field is based on numerical solutions; most

of it limited to the one-dimensional problem.

The case in which boundary conditions are neriodic in

time has not received as much attention. However, if the

initial transient is neglected, the time-dependent steady state

solution can readily be found, under physically reasonable

restrictions. Vernotte (8,9) has treated a semi-infinite

bar with sinusoidal heat flux input and has briefly discussed

the case of square-wave heat flux.

The present oaper, based on the fuller analysis by
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one of the authors (10), is an extension and amplitication

of Vernotte's work. It treats additional problems, presents

more explicit results, and includes second harmonic terms.

(However, it deals only with a one-dimensional solid rather

than a bar with convection losses at the cylindrical surface.)

Qualitative conclusions are discussed from two diffe.ent

view-points: a) the case in which the thermal properties

are known and the temperature solution is desired (e.g. the

periodic solar heating of the crust of the earth or the

periodic heating of a cylinder wall in an internal combustion

engine); b) the case in which the required temperatures are

experimentally measured in order to determine the thermal

properties.

PROBLEMS AND ASSUMPTIONS

Three problems will not be considered:

a) A one-dimensional, semi-infinite solid with the

surface temperature sinusoidal in time.

b) A one-dimensional, thick slab with sinusoidal

temperature variation at one boundary and constant tenperature

at the other. (The term "thick slab" implies a negligibly

small periodic temperature variation near the second beundarvr.

c) A one-dimensional slab with the right bound2ary at

constant temperature. At the left boundary there ir a

prescribed heat flux input, consisting of a constant. tern

plus a sinusoidal term. This exanple may be useful in the

experimental measurement of thermal conductivity.

Two basic assumptions are made throughout the

analysis:
5



1) It is supposed that the periodic input has

been applied long enough so that the transient has

died out. In other words, only the steady-state,

time-dependent solution is obtained; it is assumed

that the solution is periodic with the same period

as involved in the boundary conditions. Hence, no

initial conditions appear in any of the cases

considered.

2) It i assumed that the temperature-

dependent r-mcerties are linear functions and that

the variations are small, 'ore soecifically, the

thermal ccn'.Vuctivity k a d the volumetric specific

;-,at c -rf: taken as

t ko ýl + 2 at) 5

a = a (1 + 2 bt) [63

wzhfre o ko, a and b are constants. Since the

variation 1s assumed small, 2at<cl and 2bt_<C1.

I!ence terms independent of a and b are considered

as zero-order terms, linear terms in these parameters

are considered as first-order in smallness, quadratic

terns in these paraxreters are taken as second order and

assumed negligibly small.

METHOD OF ANALYSIS

The method of solution lathat of "harmonic balance."

This technique is the same as that employed by Vernotte (8,9)

except that he deals with amplitude and phase angle for each
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frequency while the present inalysis deals with amplitudes

of sine and cosine terms. "Harmonic balance" is a familiar

technique for ordinary nonlinear differential equations

(e.g., references (11) through (14).

It will be convenient to treat the problem in terms

of the transformed variable u defined by Equation [3)

Using Equation [5] for k in this transformation yields

u = t + at2 = t (1 + at) (7)

If second-order terms are neglected (as stated in Assumption 2),

1 + a u = I + a t and the inverse transformation is

t 2 u (l + au) -= u (1 - au) [83

In the same way, Equations (5] and {6) become k 2 k (1 + 2 au)

and s = s (1 + 2 bu). Substituting these expressions in
- -O

the one-dimensional case of Equation [i] gives

(I+. a, ÷ IN•_•= __ [9]
or S I

or S ., (iaba)'liA •' [9O]

aihere o( k /s k S

As stated in Assumption 1, the solution will be

assumed periodic and may thus be written as a Fourier

series, i.e.
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(If higher terms are included in the series, they will be

found to be at least second-order for the problems under

consideration here.) Inserting Equation 51) in

Equation [10o now yields the approximate expression

CosWC t il C1 ~al sit.W1

Sin cAX W Cos, WT . Wt sl*. awX Co aw

2f tWf Wr2jW wb-sw% t.S.1 2wV

ate L" 2,.T

(Since the last bracket is multiplied by (b - a) and since

P and ta may be shown to be first-order terms, their

product has been omitted in the bracket.)

Equating coefficients of the time-independent

terms and of the respective sine and cosine terms now gives

the five ordinary differential equations

~~ o
4`4_ [12]

__?f (6-A)w

-. ý [15]
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[16]

Solution of a specific problem now consists in

expressing the boundary conditions in terms cf u, comparing

these expressions with Equation [II] to determine the boundary

conditions on f, O f / t1 , and )PZ , solving the

five ordinary differential equations (Equations [12] through

[16] ) subject to these conditions and, finally, expressing

the solution in terms of t o The various steps will be

explained in some detail in the first problem below, while

the other cases will be outlined more briefly.

SOLUTIONS

a) Semi-Infinite Solid, Periodic Surface Temperature

This problem is mathematically defined by: 1) the

one-dimensional form of Equation [i] , 2) the expressions

for k and s , Equations [5) and [6] , and 3) the

boundary conditions

t (o) T. sin, w 'r17

The first two items are combined in Equation [O0 , which

in turn led to Equations [12] through [16]. The third item,

the boundary conditions, may be transformed by Equation [7]

to become

-a -



By comparing u (o, 1 ) with Equation [iIl , it follows that

.f~o) ., -i a192 1191

020

a [21]

u ( O¶, I ) indicates that f, , and W all

remain finite at infinity.

The solution of Equation (12) is obviously

f(• GT. L
( x a a2 22

Since f (x) itself is first-order in this case, the right

hand sides of Equations [13) and [1i4 are clearly negligible.

Hence these two equations with the boundary condition given

by Equation [20) reduce to the well-known linear case; the

solutions are

- £23)I

N(.i To e [24

where

/- 2 "[25)

Inserting Equations [23) and [24] in [151 and

[161 yields
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m2 •g

2w z -8 P (b e-)211Sie 2

Sa ta 2W 2-yS+~
with boundary conditions given by Equation [21] . The

solutions are

-(a-6)t-_ e- Ir. •r (bX-)1'r
2 2 C%3 "'X [26

Ova. a) To r-

v I(,c - e , - (b- 0T 2 a,-
2 s-,, 2 27]

where

~ r28]

The solution in terms of u is now obtained by

inserting Equations [221 , [23) , £24] , [261 , and [27)

in Equation lill and finally converted back to t by the

inverse transformation, Equation [8) . When second-order

terms are neglected, the result is

t -a - ',% . Z X
t - _ e + T. e sin ,, ax)

2

- 2 a, e gs a--
-r4).ZF .. 2•,. °

a ~' X) 9]

It is of interest to consider the amplitude .2

and the phase angle t of the second harmonic term. In

reference (10) it is shown that these quantities are closely

approximated by
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- NONLINEAR SOLUTION .. .

-0.6 -- TIME INDEPENDENT TERM 1. 1.5
----. FIRST HARMONIC NX -

0.- -_, . Fig. 2 Amplitudes of time-independent
0.2 W.. .. - 1 term Fo. first harmonic R1, and second R2

in a semi-infinite solid with sinusoidal boun-
dary temperature for the case 2(a) To = 0.25,

-0.2_ __ __ (b)=0

0it 2W

W•- -1. 71 a', X
Fig. 1 Temperature solution for different positions R (2 -( 6- ) 7 X e -303
in a semi-infinite solid with sinusoidal boundary 2 '

temperature, given by Equation (29), for the case
2(a) To = 0.25, b = 0. The first harmonic is iden-

tical to the linear solution.

"-* L- -71 Y, +. 03 [~l 311

From equation t31] it ren,1ily follows that the maximum

value of R2 occurs.at . = .59 an-d is given'by

-22

(R2)max .09 (2a-b)T 2  [321

Figures 1 to 3 show various aspects of the nonlinear

solution for the case in which 2aT0  = .25., i.e., the

thermal conductivity varies by + 251 about its mean value.

The effects of the nonlinearity appear considerably smaller

than might be expected from a preliminary estimate.

b) Thick Slab, Periodic Surface Temperature

The problem of the thick slab with periodic surface

temperature is identical with the previous case except that

Equation E18) is replaced by a boundary condition at the
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right hand surface X = L , i.e., •....-NONLINEA SOL.UTION
I --- LINEAR• SOLUTION

t (L, ) TL [33__ 0.5

where it will be assumed

IzL I <.• b By Equation [7,

this becomes

u (L, '• ) = TL + aTL2 [3 Fig.a Maximum and minimum temperatures in
a semi-infinite solid with periodic boundary tem-

perature for the case 2(a) To = 0.25. (b) = 0. The
linear case is shown for comparison.

Comparison with Equation [II3 now shows

f (L) = L + a TL 2 [35)

S(L.) : = , (L) = 0 . (L.) Pa L) = 0 [363

The problem now reduces to solving Equations [121 through

[16]. with boundary conditions given by Equations [19], [20],

[21] , [351 , and [36)

The time-independent part f (x) -s easily found to

be

•(:1 ' -a (3[7]

since the term "thick slab" will be taken to imply

ifL. = q -w7?_ . L -,;> 1 38]

Hence terms in e or e may be assumed zero at

the right boundary. Furtherirore terms in C •, L) may be

taken as first-order in smallness.
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Inserting Equation (372 in Equation [13]now yields

__- ?I. r (-)T [39]

w.ll be approximately equal to the solution of the linear

problem as given by Equation [24]. Thus the order of magnitude

of the last factor in Fquation [391 is

( !±6) To % e- 11%

L L
The maximum value of the term on the right is .37 T (0 L)=;

hence it is a first-order term. Since the right side of

Equation [39] also contains a factor of (b-a)TL, the product

is negligible. Similarly the right hand side of Equation [147

vanishes.

Thus the remainder of the problem now becomes

identical to the previous case and the final temperature solution

is

t L2•i).• ( I _+ ,I.

c)Thicklb eroi ea lx

c)hhic SlbunPeriondic etin fluxthc.sa it eroi

heat flux will be taken as

k(0 ) = B, -, ) + '.
'40

a)TikSapPridcHa lx

Th bondr codtosfratiksa ihproi



t (L .0 - Be Le [421

(The second condition is chosen to make u vanish at the origin.)

From Equation [31 , it follows that t t/2" _- 0

with this relation and Equation E7) , the boundary conditions

become

B * #
%- - R3]

u (L,') = -0BL/k° [4!1

Hence the boundary conditions on Equations [12) through (16] are

-a& - k. B*L
W' N B, f e

141z0 BI [4~6],o./-" ' (, j. _ , (L) o: i) L

The solution of Equation [12] is now

f W ~Bo x [8

Substituting this result in Equation [13) yields

A - !! ?.=,-" ". '6 - 19
bex. at k. d%

Since the coefficient on the right side of Equation [49] is.

first-order and since ), differs from the linear solution,

WAi , by first-order quantities, it is sufficiently accurate

to use in this term and obtain
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S_ yI 3 2(b-.)e.W Q Be U150-

ke( fA* h*v.

Equation [14] may be approximated in a similar way, i.e. 9

ax + . - k.a-.2 [513
W~ KV, 6

When Equations [50o and [51] are solved with boundary

conditions given by 46•] , the result is

, c,)0= - 111-( (), %) s ( )SJ• (1)Js (+ 4 S

COS (11% + 4 a [521

[5-31
where

T. - B,/J k. , [543

S(b-9.) B./ k.,1, [55]

T is the amplitude of the linear solution at the boundary

while S is a dimensionless parameter giving one measure of

nonlinearity. 0. and fA may nowbe found as before.

In terms of t , the final result becomes

16
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- - LINEAR SOLUTION \ -2.0
. FIRST HARMONIC

-- TIME INOEPENDENT TERM
I I -.

0 IT 21T
u J- r. - - 0 0 .5 1.0 1.5

Fig. 4 Temperature solution, given by Equation WE-

(56). at Y . )( = 0. 5 in a thick slab with input Fig. 5 Amplitudes of the time-independent
flux consisting of a constant plus a sinusoidal term term Fo, first harmonic R1, and second har-
for the cue 2(a) To = 0.25, (b) = 0, Bo = BI. The monic % in a thick slab with input flux con-
linear solution is shown for comparison. sisting of a constant plus a sinusoidal term

for the case 2(a) To = 0. 25. (b) = 0, Bo =

B1•

kee

It-+ 1- 1[ +,L+ $(IpL)J I,! - -)+U, S(I,,) 5j, -,,•- f)}

. e fb-a)T: - , (eWT-_jx).e + e Si "(M 2 • [A;]

Some aspects of this solution are shown in Figures 4L and 5.

CONCLUSIONS

a) The method presented here offers a rather general

approach for finding the steady-state solution when boundary



conditions are periodic and variations of the thermal parameters

are small. However, the algebra may become quite complicated,

particularly in two-dimensional and three-dimensional problems.

b) The most important qualitative effect appears to be

the introduction of a second harmonic term; in the linear case,

such a term does not appear at all. Both the time-independent

term and the first harmonic may also be modified; in fact, in

some cases, it appears that a time-independent term is

introduced by nonlinearity. However, it must be recalled that

the zero level of temperature is arbitrary; hence the

time-independent term can be regarded as a quantitative change

rather than a qualitative one.

c) The quantitative effects of the nonlinearities are

surprisingly small; it appears that the thermal properties may

safely be treated as constants in some cases where their

variation is quite large. For example, when the thermal

conductivity at the surface varies by L 255 about its mean

value, the maximum amplitude of the second harmonic may be

only 2%I or 3"' of the a:-tplitude of temperature variation at the

surface. (The effect on the time-independent term is roughly

twice as great; in the last problem this was accentuated by the

constant term in the heat flux input.) The explanation seems

to be that the conductivity varies more or less symmetrically

about its mean value ko ; if the-*&pat4on in k were pro-

portional to the square of the temperature, nonlinear effects

might be considerably greater.

d) In general, variation in thermal conductivity

has more effect than variation in the volumetric specific heat
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s . The time-independent part of the solution, if any, is

unaffected by s .

e) Since the second harmonic is a characteristically

nonlinear term and vanishes for the linear case, experimental

measurement of the second harmonic amplitude seems to provide a

sensitive method of determining the coefficients a and b ,

which describe the temperature variation of k and s ,

respectively. However, several possible drawbacks should be

noted. First, it may be difficult to generate a sinusoidal

temperature or heat flux input with sufficient accuracy.

Secondly on the basis of the second harmonic alone it is

d-fficult or impossible (depending on the boundary condition)

to separate a and b . Finally the frequencies required

would be quite low, thus perhaps complicating the experimental

task of frequency analysis. Further study is being given to

this problem.

ACKNOWLEDGE7SENTS

The writers wish to express their thanks to

Professor Stanley Corrsin for helpful discussion and criticism,

to Mr. George L. Hand for preparing ths figures, and to

Mrs. C. F. Harness for typing the manuscript.

BIBLIOGRAPHY

1 "Conduction of Heat in Solids," by H. S. Carsiaw and J. C.
Jaeger, Oxford University Press, London, England, 1950.

2 "Note on the Theory of Heat Conduction," by N. S. Van Dusen,
Journal of Research of the National Bureau of Standards, vol. 4,
1930, Pp. 753-756.

3 "Heat Conduction in a Medium Having Thermal Properties
Dependent on Temperature," by K. R. Hopkins, Proceedings of the
Physical Society of London, vol. 50, 1938, pp. 703-706.

19



4 "Temperature Rise in a Material of Which the Thermal
Properties Vary with Temperature," by J. W. Awbery, Proceedings
of the Physical Society of London, vol. 48, 1936, pp. 118-123.

"Quasilinear Heat Flow," by N. Z. Friedmann, Trans. ASNE,
vol. 0, 1958, pp. 635-45.

6 "Quasilinear Heat Flow," by N. E. Friedmann, Doctoral
Dissertation, University of California, Los Angeles, Calif.,
November, 1956.

7 "The Mathematics of Diffusion," by J. Crank, Clarendon
Press, Oxford, England, 1956.

8 "The Problem of the Bar in the Periodic Case When the
Physical Properties Depend on Temperature," by P. Vernotte,
Comptes Rendus de l'Academie des Sciences, (Paris), vol. 24,
1956, pp. 2808-2810.

9 "The Problem of the Bar in the General Periodic Case,
the Physical Properties Depending on Temperature," by P.
Vernotte, Comptes Rendus de l'Academie des Sciences, (Paris),
vol. 24, 1956, pp. 2913-2915.

10 "Quasilinear Heat Flow: Boundary Temperature Varying
Periodically with Time," by D. N. Roy, Master's essay, Johns
Hopkins University, 1959.

11 "Forced Oscillations in Non-Linear Systems," by C.
Hayashi, Nippon Printing and Publishing Company, Osaka, Japan,
1953, pp. 23-80.

12 "Nonlinear Vibrations in Electrical and Mechanical
Systems," by J. J. Stoker, Interscience Publishers, New York,
N. Y., 1950, pp. 103-109.

1i "Analysis of Nonlinear Circuits Using Impedance Con-
cepts,' by J. S. Thomsen and S. P. Schlesinger, Institute of
Radio Engineers, Transactions on Circuit Theory, vol. CT-2,
1955, pp. 271-278.

14 "Introduction to Non-Linear Mechanics," by N. Kryloff
and N. Bogoliuboff, free translation by S. Lefschetz, Princeton
University Press, Princeton, N. J., 19147, PP. 59-63.

20


