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A NEW 31ETHOD OF EVALUATING DYNAMIC RESPONSE OF
COUNTER-FLOW AND PAIRALLEL-FLOW HEAT EXCHANGERS

By Henry M. Paynterl and Yasundo Takahashi2

SYMOPSIS

From the exact solutions for the frequency response of counter-flow
and parallel-flow heat exchangers, successive parameters are calculated
which give direct information for the heat exchangers regarding transient
responses as well as frequency responses. The numerical evaluations of
the parameters from the design data of heat exchangers are generally very
simple, although the formulae themselves appear somewhat involved. Good
coincidence with meaburea transient responses is demonstrated on an example.

INTMODUCTIOB

One of the authors has published3 ' 4 analytical solutions of heat
exchangers. But numerical evaluations of these results were not simple,
especially for tubular neat exchangers (Fig. 1) because they involved
distributed parameter systems. A new u•ethod developed by the other author 5

can be applied to these cases to obtain a muerical basis for dynamic response
calculations. Thus, for example, an estiuation of the transient response,
which otherwise would have required coaplicated calculations , can be made
very easily from the design parameters listed below.

1 Assistant Professor of Mechanical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts.

2 Visiting Fellow, Electric&! Engineering, .Ussachusetts Institute of
Technology, Cambridge, Massachusetts.

3 "Transfer Function Analysis of Heat Exchangers," by Y. Takahashi in
Automatic and Manual Control edited by A. Tustin, Butterworth Sci.
Pub., 1952, p. 235.

4 "Regeluechnizche Eigenschaften dar Glerch - und Gegenstromwarmeaus-
tauschern," by Y. Tekahashi. Regelungstechnik Heft 2, 1 Jarg., 1953, p.3 2 .

"5 "On An Analogy Between Stochastic Processes and Certain Dynamic Systems,"
by H. M. Paynter. (Forthcoming ASME Paper).

6 Conduction of Heat in Solids by H. S. Carslaw and J. C. Jaeger, Oxford,

1950, pp. 325-330.
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NOMENCLATURE

A = surface area of tube walls (ftW)

a, = kA a2 -A (dl), when both are equal., a = a 2

WVc1  W2 C-

a .- a i s (dl)
a,-W~c1  s =Wc Wac--a(l

B intermediate parameter (dll)
b jL+b2, j b2 ,A V 4"/s

J = Chl 0 h" (dl)

C = tube or shell neat capacity per unit length along the flow (Btu/ft.deg.F)

c specific heat of fluid (Btu/lb. deg.F)

D = intermediate parameter (dl)

E ditto (dl)

F ditto (dl)

f ditto (dl)

G transfer functions

g = intermediate parameter (dl)

H total length of flow distance in the heat exchanger (ft)

h running length along tube side fluid (ft)

K = intermediate parameter (dl)

k = overall coefficient of heat transfer (Btu/ft2.min.deg.F)

L = H/v = distance-velocity lag of fluids (min)

M = intermediate parameter (dl)

n= numbers of lags (dl)

r =v 1/72 (dl)

s = complex variable of Laplace Transformation (dl)



Ta = skew time of step response relative to L, (dl)

Td = dead time of lag-delay model relative to L, (dl)

TI = time constant of lag model relative to L3 (dl)

TM = mean delay of step response relative to L. (dl)

Tr = time constant of root lag model relative to L., (dl)

T a =dispersion time of step response relative to L,(dl)

t = running time (min)

v = fluid velocity (ft/ain)

W = flow rate (lb/min)

x = h/H (dl)

O = film coefficient of heat transfer (Btu/ft2 ain.deg.F)

O- = coefficient of skew (dl)

/18 = (a, + aa)/2

6 = In (Steady state change in output/Steady- state change in input)

,c a, - a,)/2 Acceslon For

0 = temperature of fluid (deg.F) NTIS CRA&I
DTIC TAB

1A = coefficient of variance (d1) unannounced
j./ ( l + a ) J u s t if ic a t io n .... .... ........ ..... .. ..-. .. ....

"•"= / ( )By ......................... ------- -

0= pipe temperature(deg.F)

C.)= circular frequency Dist Special

Subsc~ftpts -

1 = tube side

2 = shell side

h= tube

s = shell



-- 4--

BASIC ASSUMPTIONS

1) System parameters are uniform and constant.

2) Complete mixLng in crosswise directions of each flow.

3) The heat conductivities of walls are either infinite in directions at right
angles to the flow or alternatively assumed to be included in film coefficients,
and zero in flow directions.

4) There are no internal sources or sinks of heat.

5) Pum counter- and parallel-flows (fig. 1) are considered.

FUNDAMENTAL EQUATIONS

The system parameters necessary for dynamic response analysis under the
stated assumptions are the following fifteen (see also fig. 1) :

Flow rates of fluids = WV , WV

Specific heats of fluids c ,02

Surface areas = A , A2 , As

Film coefficients = 0(1 , e, OC3

Film velocities v., v2
Flowing distance H

Solid heat capacities = Ch , C6
These are conveniently grouped into the dimensionless forms (defined above);

ajt , aa' , as , b , s , bI , r

four of them are also conveniently grouped into the following dimensionless
forms for d-c gain calculations and other purposes;

7. These are also given in the following forms:

a, -=-IS c ' aa = ck

where k (Btu/mn-fta-F) is the overall coefficient of heat transmission of
the heating surface. This form can be introduced by means of the well-khown
law of heat transmission, which under the assumption stated above, is written
as:

1/kA = l/C 1 A + 1/'2A2

where 1/kA is the equivalent resistance to heat transmission
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where b = + ba. Almost a&l these parameters have been necessary for the
conventional steady state design of heat exchangers; for examle, for mean
temperature difference calculations.

The running time t(min) and running distance along the tube-side fluid
h(ft) are also expressed in the following dimensionless forms;

'r= /L, , x = /H

Now the simultaneous equations to be solved ares

Yr -- + XG. = a, _ .•

a. (02. a- (1)+ba(

-2 (O =,I sO

In these equations, LA and 9 are tube-side an shell-side fluid temperatures,
and . are tube and shell temperatures, the double symbol •± is - for counter

Riow (Fit. 2) and + for parallel flow (Fig. 3).

In the following treatments, the Laplac3 transform solutions of Equation
(1) are expanded in the following forms

G(s) e= -m + 2 b

where the parameters, 6r , T , T , and T are given in terms of system constants
listed above. The symbol a fs tie complex variable of the Laplace transformation.
The value and significance of this representation has been indicated elsewhere (5).
However, one may say in swauary that I measures the steady-state a&plitude ratio
between response and disturbance, Tm measures the mean time delay between response
and disturbance, T. defines the dispersion or attenuation and Ta the assymuetry
or phase non-linearity. This characterisation is very efficient for any physical
procees, such as those treated here, where the step response is montonic non-
decreasing in time.
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COUNTZR-FLOW

The Laplace transform solution (transfer function) of Equation (1) is:

G(s) = 91-.2

fl + fa + (f + fa)' - 4g93- coh (1  + f2)' - 4•gg

2 2 2

whore

f, al ' (b3+s) +
bi s

a3 ' (b.+ s)
f2 + a r + a e

b_ _ + r +

gl = 102 g = aa'lk
b+s ab+

and

g2,2 = g1 when G(s) is defined as

Outlet temperature W Inlet temperature Case 1
of tube side fluid'" (of shell side fluid) 1

g1 a = g2 for the G(s) of

Outlet temperature ( / (Inlet temperature Case 2
of shell side fluid' of tube side fluid) (Fig. 2)

Now, the parameters of Equation (2) are determined by expanding (2) and (3) in
selies in s and comparing the corresponding terms. The expansion is easier for
G (S) than G(S). The results yield a solution for the new parameters in the
symbolic form;

S= f* (al', als & b b, a p ,b , r)

•mTz f (all . aa' s as' , bA, bav bs,. r)
Ts= f2 (all , aa' , a.' , b a ,, b ab , r) (4)

Ta =f (al' , a3' , at' , b, , b p, bs , r)
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Details of the algebraic reduction procedure are given in Appendix 1. The most
simple relation is given when solid capacities are neglected, and when the Wc
values and the velocities are equal for both fluids. For this case, taking
/o= a/(la), where a = kA as abscissa, the new parameters Ta , Ts , Ta are

Uc '

plotted in terms of conventional relative statistical measures, in which we define
coefficients in the form:

Ts

Coefficient of variance: If

Coefficient of skew: oL =a3

A zero value of /' means that the time distribution has no dispersion about the
mean Tm; a zero value of cc signifies that the distribution is symmetric about
the mean Tm. From the plot we can observe directly that when P = 0, which occurs
for small sizes, writh low overall efficiencies, the time distribution for a step
disturbance is symmetric ( cc = 0) and has the quickest response (minimm values
of Tm and # ). As /0 increases, Tm, /4, and or, all increase with / and ,
becoming infinitely large as the length of the exchanger becomes infinite.

PARALLEL FLOW

The Laplace transform solution of Equation (1) is:

4. f,+a fj- ( f ) ý
G(s) = g f - 2 2 jinh + 4g 1ga_(6)

. 2

(f1 - f,)a + 4Z9g1

The symbols fl, f, g1 s, ga and g., 2 are the same as defined on counter-flow,
see also Fig. 3.

From this equation the parameters of equation (2) are determined in the same
symbolic form as equation (4). Detaila of algebraic reduction procedure and
typical special cases are given in Appendix 2.

NUMERICAL EXAMPLE

An an example of the application of the formulas above to engineering
practice, one can consider the special instances of counter-flow and parallel-
flow exchangers with the following assumed characteristics:

a, =1.5 a,. =6 b=27 a =4

a 2 =1.5 aa' =2 r=3 b =3

STEP RESPONSE IN TUBE INLET TEMPERATURE
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Counter Flow: Exchanger

Applying the above values to Equations (9), (12), and (13) we obtain

0 =1.65

T1 =2.28

T = 2.16

Ta 3.08

The measure of spread T and the assy~netry measure T can, as before, be

expressed in terms of d1mensionless coefficients, namtily

Variation /" = T/T% = 0.948

Skew CC (T/T)3 = 2.90

These values can be compared, for example to those for a unit lag, whose transform
has the form:

(Lag) Ga(s) 1
1 + Ts

where^. = 1 and • 2. The variation can be matched by adding a suitable
time delay term, since the transform for this case becomes

(Lag + Delay) Gb(s) e-Tds
l+s

for which T3  Td*TE

zTsT
Ta =3Td +T1

giving/ = T /Ta 2 T,1/Td +T-1

c = T 3/T 3 = 2

Thus a lag-delay model with /' = 0.95 and oC= 2 would have the form shown In
Fig. 5.

However, the value of OL for the heat exchanger indicates a curve more
skewed than that expressed by a unit lag. Such a function is found in what the
statisticians would call a "chi-square" distribution of one degree of freedom
with the transform:

(Root-Lag) GVS)
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having the parameters

T = T/2

T a TrI!A r2,/ = 1.414

Ta = Tr OC. 2Io2 = 2.838

If this root-lag function is delayed in addition, with the transfom:

(Root-lag-delay) Gd(s) = e-Tds/

and parameters

T. = Td +÷lTr
32 1

r r
Ta = Tr 2

Thus a distribution curve of this form with /A = 0.95 and OC 2.828 is also
sketched in Fig. 5.

There are many other possible distributions, all with the same values
TM ,T , T , but differing in higher order terms. These will all, in
genera!, gie reasonable approximations to the dynamic response of the given
system, and many are susceptible to ready calculation. In the present
instance, those shown in Fig. 5 come directly from functions which are readily
available in tabular form and also easily realized in computing networks, etc.

Parallel Flow Exchanger

The general formulas (18) to (21) give

• = 0.475

Tm = 2.81

T 8= 1.10

Ta = 1.02

with the coefficients

Ts / T= 1.10/2.81 = 0.391

oC- (Ta / T )3 = (1.02/ 1.l0) = 0.795
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Now, it is readily shown (3) that an n-lag cascade ( a chi-square
distribution of 2n degrees of freedom) has the coefficients

In the special case of n 6.5, with a transfer characteristic of the
form:

(1 + )6.5

The coefficients become

/0 = 0.392, o(= 0.784

and the mean time T is given by
m

Accordingly, a reasonable approximation to the parallel flow step response
characteristic can be found in the chi-square distribution of 13 degrees of
freedom with T• - 2.81/6.5 = 0.432. This is indicated in Fig. 6 and compared
with a lag-delay approximation with/" 0.391 and c = 2.

FREQUENCY RESPONSE RESULTS

In terms of the same representation used for transient response, the

frequency responses of heat exchangers i•ay be found directly.

Thus, if j -Ts+ TsS -Ta 3S3 3 ..

G(s) e
+ iT sa+ .. ....2 +s- T 383...

1 6T

Even Odd

Then, with s = j4) cf T

Phase /GW) -T w + Ta 16 a •o

so that the set of parameters p , T , T , T , ... describe the frequency
characteristics simply and uniquely. Howiver, aspecification of only the first
few parameters merely defines the low frequency behavior, and as the frequenec
40 is increased, more of the time constants will be required to characterize

the behavior.
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However, one can proceed as was done in estimating the step response,
by picking a suitable model using the low frequency constants alone, and thus
extrapolate the response to high frequencies under the tacit assumption that
the model so chosen will behave at least roughly like the prototype at higher
frequencies.

Then for the counterflow exchanger, there has been plotted in Fig. 7 the
predicted frequency response characteristics for the two previously determined
models, namely

COUNTER-FLOW EXCHANGER
Lag-Delay Model Root-Lag-Delay Mod-el

Amplitude i/ i + Tra i/I + T 2 5

Ratio+-02•Uo ~I A 1,-+ 4".6,,.,z + 9.4Q•)

Phase Tdw + tan T. t Tdo + 7 tan T r

- O.12co + tan1I 2.16w - 0.75w+ 0.5 tan-1 3.07w

In a directly similar fashion, the response characteristics for the
parallel flow exchanger have also been plotted in Fig. 8 from the formulas
below.

PARALLEL-FLOW EXC1ANGER

Lag-Delay Model Multi-Lag Model

Amplitude 1/ + 2W2 1/(l + Tr2W2)13/4

Ratio - + T 01/ + .r 9 3)3 .25

Phase Taw + tan -I TJw 6.5 tan -I (Trw)

f1.71w+ tan -1 1.10W = 6.5 tan-1 (o.43-)

EXPFIMENTAL CONFIRMATION

Experiments under carefully controlled conditions have been made previously
by one of the authors (1,2) upon a heat exchanger model used both in counter flow
and parallel flow. These yielded among other results the response in the shell
stream outlet temperature to disturbances in the tube stream inlet temperature.
These disturbances involved both stepwise and sinusoidal cbAges.
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Results of some of these model tests are indicated in Fig. 9 to 12.
It is important to stress that the step responses and the frequency responses
represent data from independent test procedures and therefore represent, in a
Certain sense at least, independent physical data.

From blueprint data and direct measurements of the model the basic
physical constants were obtained. These correspond precisely to the data
assumed in the numerical examples of the previous paragraphs. However, the
surface conductance constants Cc1 and oc0 were back-figured, at least in part,
from the calculated steady-state (aero frequency) temperature ratios. Moreover,
the distance velocity lag was estimated from measurements only with tolerable
accuracy at L, = 0.6 minutes with a probable error of at least 0.05 minutes.

With these restrictions understood, the predicted and measured step and
frequency responses are depicted in Fig. 9 to 12.
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APPFENIX 1.

For counter-flow, the parameters of equation (2) are given by;

T = - 2J/D €"
s8  /(D 1 /D 0)2 - 2Dj,/DO 7

Ta= 3 1 1) 13 (L7o

etc.

The Do0 , D, Da , D3 are;

Do = (MO +. BO)
1 2

D2. =- 1- (M• I , + E •,
al113  b

D .a + B _4 B _(

aD l 2 (M3  3 +

etc.

where a1 ,8 = a] for case 1, a•,= a, for case 2 in Fig. 2. The K and B are:

X. = (al + a2)

2L b a al b4

M =~~ 1 1 s
2 b be tc

etc.



B. = i cth£

B, = LE Bo (coth- L cech2 6.)

Ba = P, (coth E - L. csecha L) + FE- ( E. o0th I - 1)) (10)

B 3  3 (ooth 4 - C csech 3 &) + 2 E1E3 Ecsech2 E(•. coth E-1)

+ E1,3 E 2 ceech.2 F(coth f- Zcoth3 E C +

etc.
where -(a-a)/2.

The E1 , E .. in Equation (6) are:

IKI El =• LK 2
=21Ko •E 2Ko-SK

K K1K2 
(13)

-3 2K0  4Kz KO 3

and KO 4EA

aaKl + 2(a+ + ..)a,+ (A1' + a+r + ) (12)

b L b ba
K=120, + +( r ÷a )+ 2(&,' + 1"l( + r a:')

-b + b

23 + 6a. ' +a (• + a.' 2

a .0 as •

K1 + , 2a',4  92 !1tA3.(a. +) - 2 al +~ 4. )a)

3- (&1 ÷ + .). a? - + &29 - (a, + ",)]

+"1I ((ai .÷a 3 )- (a1 ' - aa')j (14." r a•ss

aa

-2 - (1•4. r +a )
b b
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Given the system parameters, we can evaluate 1 and K, and from K we can find
E, hence B. Applying these M and B, the required parameters - , T , T , and
Ta are found by Equation (7), (8). These procedures and relations get Simpler
for special cases as follows:

Special Case 1:

If F- 0., that is, a, s a , the Equation (10) may be rewritten as

Bo 1

B, = K1/12

Ba K2/12 - K%2/720 (13)

B 3 = K 3112 - K1 K,/360 +* 1 3 /,3021,0

Special Case 2:

If we neglect the effects of solid capacities, the Equations (11) and
(12) reduce to:

E = (aa + F-) (1 + r)/(26A)

(1+r)Ea = (1-+ r)2 a F

3 160

Special Case 3:

If C 0 in Special Case 2, the Equation (10) may be directly
given by:

BO = 1 +8/32

S(a(2 + E ) 2(a +r r 21 )

B3 -= a (a2 ) 45 9 4 5  315

- 288225(a+) J
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Special Case 4:

If f = 0 in Special Case 3, i.e., no solid capacities and a], a2 a,
the final results are directly given by:

a

e- 1 +r) 1 1)
2a 3

-- 'a ) + (1 + r)2 (6e~- "- 3  "T") (.-•

e - Ta 3  82a
e (a-T- T3  la

6 2 6

Special Case 5:

Same as Special Case 4. and r = 1. Let us denote e -+a
then we have:

T2 _:1 pj, s (17)

a 15V o'3 + h27e 15(1e) 45(a sh 315(1 n ,.

The values of these terus are shown in Fig. 4.
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APPEN•IX 2.

For paranlel-flow from Equation (6) the parameters of Equation (2)
are determined as follows:

O''al sinh 
4 e.-

M]. +
Ta b1 +;F 1

T a (18)

-• M2 + F2 - 2Fa-

T 3

T- FF F 2 1

where a 9,2 = a, for Case 1, al, 2 = an for Case 2 in Fig. 3, andS-- (a1 + aa)/2.

The M and F in these results are:

2 +2b 2b b
aS all + a 1 /8Ma = - 2l + T (19)

5

"2b x 2b2 b7

U+

F3,1 E, tod coth (-1)

Fn = E2 ( coth -1) - 12 (#coth/4 (1 + (20)

F 14 ( coth ,4-1) - 2E31Eaf/oth /0- (I1+ Z.!]
+ A,' t(( + -6 / th ?- (l + -2•-)]

The El, E2, ... in Equation (20) are defined in the same form as Equation (U1),

but Ko, K1 , ... in it are given in place of Equation (12) as follows:

KO = 2/

=.
K, = 2(a, an) (I - r) - 2(al-a2) +!4 2 ((ai-a2)(&3I..a2 t)-4,4/)
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Ka- 1(1-r- ) b a+t -a•'J (a)..&) 2 i1 r a) +
5 a 5

a a a a
K3~ 2 1 r - 2(a1-a2) b + ;2 &2'(a'- ~) a 2 a)?

s 0 0÷...2 (1- r • (a1- -aa)l(a-- -

28

- '(al' - a')
b-

Special Case i:

No solid capacities,

*e 0-4aja sinA~i

=+r (_ E.- a,)(1 - r) (fcoth /-1)TZ 2 4/62 (2

2i' _ [- (aa)2 /_ (d coth /-1) + (1-_?csech/*)

T 3 1 + 2-2 = cothyd coth/ +a 64P 5 3. - 32,A 4

1 a- 2
2 J1 2p csech2/3 -1i) +. (1-r) 3(a, -a.) xP= 32' a

(ai~a213 )(cothf -1)

Special Case 2s

Saee as Case 1, and r 1.

- sinhe,

(23)

T a O, Ta =0



* S

I R-19--

LIST OF FIGUR CAPTIONS

Fig. 1 Counter-flow heat exchanger shoving symbolim

Fig. 2 Two cases of counter-flow

Fig. 3 Two cases ot parall-l-f"low

Fig. Distribition parameters for a special case of counter-flow
Mean delay: TU

Coefficient of variance: /A

Coefficient of skew CC

Fig. 5 Analytical stop response for a counter-flow exchanger

Fig. 6 Analytical step response for a parallel-flov exchanger

Fig. 7 Analytical frequency response for a counter-flow exchanger

Fig. 8 Analytical frequency response for a parallel-flow exchanger

FIC. 9 Computed and experimental step responses for a counter-flow
exchanger

Fig. 10 Computed and experimental step responses for a parallel-flow
exchanger

Fig. 1n Computed and experimental frequency responses for a counter-
flow exchanger

Fig. 12 Computed and experimental frequency responses for a parallel-
flow exchanger



DISTURBANiCE--. mw

j- H

-7 C C jCASE 2. CASE 2.

2.8 ~ ~ Fg - 1_ i. i.

1I.0

2A0.

0.6 -I- - /O.5 a-2.0.

2.00.

0.2 Z .0.95 G%2.83.

ZLa 0 ± L5 6 7 6 9 1

00ýý L

1. z__ Fig.5

LAG-DELAY MODEL -
0.6 -,u0.39 n2.0.

0.4(14--ULTI-LAG MODEL
~ 0. -. - /.0.3 aI.Q76

Gw (1+0,/.O430)6-5

0 0.2 04 0.6 0.3 1.0 0 I2 t 345
P.a L

1+0 Fig.6

Fig.4

_RAW -0LAY

- - RO ~~Ot-AGDLA
0!5 go--DC _ _

L.A-DELAY A-0LY

0.u D 0.0 1.0 Le W 0.5 0 035 1.0 wI

Fig.7



IN

10.02051 . 100 . .5(

07LAG-IDELAY MCE

0__ 30oI - - .

00 0.2 3 . to 0. at 2 3 4 5. .0
t w

Fig.9 Fig. 1

1.0 50--

a a

0.4

000 .0 0502 0. 0.035 0 6 .1 02 0.5

Fig.9ig Fig11

2 5 0 . . . .5 00 005 * 0
CPU Olt

413 "a-Fig.120


