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A NEW METHOD OF EVALUATING DYNAMIC RESPONSE OF
COUNTER~FLOW AND PARALLEL-FLOW HEAT EXCHANGERS

By Henry M. Paynter! and Yasundo Takahashi?

SYNOPSIS

From the exact solutions for the frequency response of counter-flow
and parellel-flow heat exchangers, successive parameters are calculated
vhich give direct information for the heat exchangers regarding transient
responses as well as frequency responses. The mmerical evaluations of
the parameters from the design data of heat exchangers are generally very
simple, although the formulae themselves appear somewhat involved. Good
coincidence with measurea transient responses is demonstrated on an example.

INTRODUCTION

One of the authors has publishedB’A analytical solutions of heat
exchangers. But mmerical evaluations of these results were not simple,
especially for tubular neat exchangers (Fig. 1) because they involved 5
distributed parameter systems. A new uethod developed by the other author
can be applied to these cases to obtein & mmerical basis for dynamic response
calculations. Thus, for example, an estization of the transgent respoanse,
vwhich otherwise would heve reyuired complicated calculations™, can be made
very easily from the design parameters listed below.
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NOMENCLATURE
A = surface ares of tube walls (ft3)
a1=;ki_ a,=_k_A_ (d1), when both are equal, a =a; = a3
LY Wacy
=Tt e TR (a1)
2C2
B = intermediate parsmeter (dl)
b=b1*ba:b1%:$:b3=g:%:~ oy Zole @)
82
C = tube or shell neat capacity per unit length along the flow (Btu/ft.deg.F)
¢ = specific heat of fluid (Btu/lb. deg.F)
D = intermediate parameter (d1)
E =ditto (d1)
F =ditte (41)
£ =aditto (a1)
G = transfer functions
g = intermediate parameter (dl)
H = total length of flow distence in the heat exchanger (ft)
h = running length along tube side fluid (ft)
K = intermediate parameter (dl) |
k = overall coefficient of heat transfer (Btu/ft3.min.deg.F)
L = H/v = distence-velocity lag of fluids (min)
M = intermediate parameter (dl)
n = mmbers of lags (dl)
r =wv/vy (41)

i

complex variable of Laplace Transformation (dl)
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T, = skew time of step respouse relative to L, (dl)
Ty = dead time of lag-delay model relative to L, (a1)
T, = time constant of lag model relative to L, (d1)
T, = mean delay of step response relative to L (dl)
T. = time constant of root lag model relative to L; (dl)
T, = dispersion time of step response relative to L,(dl)
t = running time (min)

v = fluid velocity (ft/min)

W = flow rate (1b/min)

x =h/H (d1)

X = film coefficient of heat transfer (Btu/ft? min.deg.F)
oC = coefficient of skew (dl)

/8 = (a, + 83)/2
d = 1n (Steady state change in output/Steady state change in input)
e 431 - aa)/z

Acceslon For

© = temperature of fluid (deg.F) oAl
pTiIC TAB
/q = coefficient of variance (dl) Unannoupced
Justification oo
/ = 3/ (1 + a)
=Y — —
o t/Iq (dl) Distributionl

Availability Codes

@ = pipe temperature(deg.F)
@ = circular frequency

Subscripts :
1 = tube side
2 = shell side
h = tube

8 = ghell
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BASIC ASSUMPTIONS

System parameters are uniform and constant.

Complete mixing in crosswise directions of each flow.

The heat conductivities of walls are either infinite in directions at right
angles to the flow or alternatively assumed to be included in film coefficients,
and zero in flow directions.

There are no internal sources or sinks of heat.

Pum counter- and parallel-flows (fig. 1) are considered.

FUNDAMENTAL EQUATIONS
The system parameters necessary for dynamic response analysis under the

stated assumptions are the following fifteen (see also fig. 1) :

Flow rates of fluids = W, , W,

Specific heats of fluids = ¢, , c3

Surface areas = A, , A; , Ag

Film coefficlents = &, , & , «

Film velocities = v,, v,

Flowing distance = H

Solid heat capacities = ch ’ 08
These are conveniently grouped into the dimensionless forms (defined above);

31"33':38:b1sb3:b81r

;our of them are also convenlently grouped into the following dimensionless

3

forms' for d-c gain calculations and other purposes;

7.

These are also given in the following forms:
T = kA
%W, 0 W,

where k (Btu/mn-ft2-F) is the overall coefficient of heat transmission of
the heating surface, This form can be introduced by means of the well-khown
law of heat transmission, which under the assumption stuted above, is written
as:

1/kh = 1/K,4, + 1/ %A,
vhere 1/kA is the equivalent resistance to heat transmission
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where b = b; + by. Almost all these parameters have been necessary for the
conventional steady state design of heat exchangers; for example, for mean
temperature difference calculations,

The running time t(min) and running distance along the tube-side fluid
h(ft) are also expressed in the following dimensionless forms;

Ts= t/Ll » X = h/ H
Now the simulteneous equations to be solved are:

382w oo
2%,
57 =0 (6 -F) +b; (6; - )
| (1)
123%1 % = ap! (ﬁh - Q) © aa(ﬂq
a8,
a_.;_ = b’(Oa - ¢8)

In these equations, 8, and @, are tube-side a»’ shell-side fluid temperatures,
are tube and shell temperatures, the double synbol + is - for counter
&ov (H§ 2) and + for parullel flow (Fig. 3)-

In the following treatments, the Leplace transform solutions of Equation
(1) are expanded in the following form?
7,3 3 3 o
-} o
6(3)3"184’"2"83‘-5-3 "-cco (2)

vhere the parameters, d , T , T, and T  are given in terms of system constants
listed above. The symbol s L tﬁe conpl%x variable of the Laplace transformation.
The value and significance of this representation has been indicated elsewhere (5).
However, one may say in sumnary that ¢° measures the steady-state anplitude ratio
between response and disturbence, Ty measures the uean time delay between response
and disturbence, Tg defines the dispersion or attemuation and Tgq the assymmetry
or phase non-1inearity. This charucterization is very efficient for any physical
procesns, such as those treated here, where the step response is monotonic nou-
decreasing in time.

w
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COUNTER-FLOW

The Laplace transform solution (transfer function) of Equation (1) is:

G(s) = 81.2
(3)
£, + £, /(fl + £3)? - ig1ga coth a_/(fz + £3)3 - ig18a
2zt 2 p)
where
£, = al_' (bats) + 8
b+s
aa' (b1 + )
£fa = +e r+_ s
b+e bs +8
. 8,'p = &'
and

81,2 = £ vhen G(s) is defined ae

(Outlet temperature) / (Inlet temperature ) Case 1
of tube side fluid of shell side fluid
(Fig.2)
€2 = gz for the G(s) of
?
(Outlet temperature ) / (Inlet tenperature ) Case 2
of shell side fluid of tube side fluid (Fig. 2)

Now, the parameters of Equation (2) are determined by expanding (2) and (3) in
series in s and comparing the corresponding terms. The expansion is easier for
G (S) than G(S). The results yield a solution for the new parameters in the
symbolic formj

szfo(aﬂ,83',38',b1,b3,bs,r)
T, = (a,' , 8! ) 8! :bl.,ba:bs:r)
T, =1, (8, , a5' , a' , b, by, s’ r) (4)

o o

Ta=t3(31':az'»3s':b1:ba’ ssr)
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Details of the algebraic reduction procedure are given in Appendix 1. The most

simple relation is given when solid capacities are neglected, and when the Wc

values and the velocities are equal for both fluids. For this case, taking

/= a/(1+a), where a = kA  as abscissa, the new parameters T,» T, T, are
We °?

plotted in terms of conventional relative statistical measures, in which we define

coefficients in the form:

T
Coefficient of variances M= EQ
m
7 3 (5)
Coefficient of skew: o = g
.-1.—3
s

A zero value of / means that the time distribution has no dispersion about the
mean Tp; a zero value of oc signifies that the distribution is symmetric about
the mean Tp. From the plot we can observe directly that when /= 0, which occurs
for small sizes, with low overall efficiencies, the time distribution for a step
disturbance is symmetric ( o¢ = 0) and has the quickest response (minimm values
of Ty and X ). As ,° increases, Ty, /?, and oc, all increase with /< and o< ,
becoming infinitely large as the length of the exchanger becomes infinite.

PARALLEL FLOW

The Laplace transform solution of Equation (1) is:

£, + £
G(s) =& a2 - _1__:_2_:_ [ 2 ]ﬁumh[*/{'fl'f")a t 4deata ](6)

— 2 4

-\ﬁ‘l’; - £2)3 + Lgy82

The symbols f,, f3, €1, €3 and g;,3 are the same as defined on counter-flow,
see also Fig. 3.

From this equation the paraueters of equation (2) are determined in the same
symbolic form as equation (4). Details of algebraic reduction procedure and
typical special cases are given in Appendix 2.

NUMERICAL EXAMPLE
A® an example of the application of the formulas above to engineering
practice, one can consider the special instances of counter-flow and parallel-
flow exchangers with the following assumed characteristics:
a; = 1.5 et =6 b =27 a =4

ag=l.5 ag'=2 r=3 b=3

STEP RESPONSE IN TUBE INLET TEMPERATURE




Counter Flow: Exchanger

Applying the above values to Equations (9), (12), and (13) we obtain
é

e” =1,65
'1‘m = 2,28
Ta = 2.16
'1‘a = 3,08

The measure of spread T_and the assymmetry measure T can, as before, be
expressed in terms of dfnensionless coefficients, namglyx

Variation M= 're/'r ' = 0.948
Skew « =(1./1)% = 2.90

These values can be compared, for example to those for a unit lag, whose transfora
has the form:

(Lag) G (s) = 1

1+T‘s

where A =1 and & = 2. The variation /* cen be matched by adding & suitable
time delay term, since the transform for this case becomes

(Lag + Delay) G, (s) = e 1d8
1+ T‘ 8
for which T‘ = Td + '1"
Ts = T(
T& s 3 /2 T‘

giving » =T /T =T4/1,+ 1y
o = '!3/'1'83 =2

Thus a lag-delay model with A = 0,95 and &C = 2 would have the form shown in
Fig. 5.

However, the value of OC for the heat exchanger indicates a curve more
skewed than that expressed by a unit lag. Such a function is found in what tae
statisticlans would call a "chi-square" distribution of one degree of freedom
with the transform:

(Root-Lag) G (s) = by
r
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having the parameters
'rnzrsz

=Tr/ﬁ fe= J2 =144

T, =T, o= 2/2 = 2,838

If this root-lag function is delayed in addition, with the transform:
-T.8
(Root-lag-delay) Gy(s) =e @ //T+ Ta

and parameters

Tn‘ Td+2 Tr
T
- = 4
T, =T /2 M= 2/ T)
Ta =Ty =22

Thus a distribution curve of this form with /4= 0.95 and of = 2.828 is also
sketched in Fig. 5.

There are many other possible distributions, all with the same values
T but differing in higher order terms. These will all, in
generaf gi%e reasonable approximations to the dynamic response of the given
system, and many are susceptible to ready calculation. In the present
instance, those shown in Fig. 5 come directly from functions which &are readily
available in tabular form and also easily realized in computing networks, etc.

Parallel Flow Exchanger

The general formulas (18) to (21) give
s

e = 0.475
Tm = 2.31
T =1.02

with the coefficients
/= T,/ T, = 1.10/2.81 = 0.391

X = ('ra / 75)3 = (1.02/ ]..10)3 = 0.795
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Now, it is readily shown (3) that an n-lag cascade ( a chi-square
distribution of 2n degrees of freedom) has the coefficients

M=1/0, K=2//n
In the special case of n = 6.5, with a transfer characteristic of the
form:
G (s) = 1
(1 + '1“ s) 6.5

The coefficients hecome
A =0.392, K=0.784
and the mean time Tm is given by

Tm=6'5 '}k

Accordingly, a reasonable approximation to the parallel flow step response
characteristic can be found in the chi-squsre distribution of 13 degrees of
freedom with T{ = 2.81/6.5 = 0.432. This is indicated in Fig. 6 and compared
with a lag-delay approximation with « = 0.391 and o = 2.

FREQUENCY RESPONSE RESULTS

In terms of the same representation used for trunsient response, the
frequency responses of heat exchangers way be found directly.

Thus, if .
T SF- 283 - T 383 "ooo
6(s) = J m” 2 *s 3
J+%’rasa+ ®es8sss0e00s ‘Tms-6 383"'
= - —f"/ e \.—f—"
Even 0dd

Then, with s = jo g - }é_ Tsz""a .

Amplitude [Gw)| =

Phase £G) =-Tw + % 0’ ..
so thet the set of parsmeters § , ‘1‘ R T s ses describe the frequency

characteristics simply and uniquely. Howgver, specification of only the first
few parameters merely defines the low frequency behavior, and as the freyuency
@ 1s increased, more of the time constents will be required to characterize

the behavior.
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However, one can proceed as was done in estimating the step response,
by picking a suitable model using the low frequency constants alone, and thus
extrapolate the response to high frequencies under the tecit assumption that
the model so chosen will behave at least roughly like the prototype at higher

frequencies.

Then for the counterflow exchanger, there has been plotted in Fig. 7 the
predicted frequency response characteristies for the two previously determined

models, namely

COUNTER-FLOW EXCHANGER

Lag~Delay Model

" Root-TLag-Delay Model

Ampl:ltu@o 1/ 1+ T2 o 1/ %+ T 3,2
Ratdo 21/ [T+ 4.6t = 1/(1 + 9.J0.#)%25
Phase T.ew + tan? T, 0 Tw+2tan T o
d < d 2 r

=1

= 0.12w + tan = 2.16w

= 0,75, 4 0.5 tan 13.07w

In & directly similar fashion, the response characteristics for the
parallel flow exchanger have also been plotted in Fig. 8 from the formulas

belovw. '
PARALLEL~FLOW EXCHANGER
Lag~Delay Model Multi-Lag Model
Amplitude A+ 5wt 1/(1 + Tr303)13/ 4
Ratio 213425
=1//1 * 1.2153 =1/(1 + 0.9 )
-1 -1
Phase T.w+ tan TLw 6.5 tan (Trw)

d

1

= 1l 7lw+ tan  1.10w

= 6.5 tan'l (0e43ar)

EXPERIMENTAL CONFIRMATION

Experiments under cerefully controlled conditions have been made previously
by one of the authors (1,2) upon a heat exchanger model used both in counter flow
These ylelded among other results the response in the shell
stream outlet temperature to disturbances in the tube stream inlet temperature.
These disturbances involved both stepwise and simusoidal changes.

and parallel flow.




-12 -

Results of some of these model tests are indicated in Fig. 9 to 12,
It is important to stress that the step responses and the frequency responses
represent data from independent test procedures and therefore represent, in a
eertaln sense at least, independent physical data.

Fromn blueprint data and direct measurements of the model the basic
physicel constants were obtained. These correspond precisely to the data
assumed in the mmerical examples of the previous paragraphs. However, the
surface conductance constants o, and oK, were back-figured, at least in part,
from the calculated steady-state (aero frequency) temperature ratios. Moreover,
the distance velocity lag was estimated from measurements only with tolerable
accuracy at Ly = 0,6 nimites witk a probable error of at least 0.05 mimutes.

With these restrictions understood, the predicted and measured step and
frequency responses are depicted in Fig. 9 to 12.
ACKNOWLEDGEMiNT
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APPENDIX 1.

For counter-flow, the parameters of equation (2) are given by;
S = -1np, ]
T, = D/D,

T, = /(D/D,)? - 2D,/D, ™

|
| Tg = 3 !
| .= / 367 -y + g

ete.
TheDO ’Dl,Dz ’DBm;
]
= 1
%o = s Mo+ B,)

D1= "1-" (H1+Bl+?)

83,2
[ 8
D= _1 (M, + B +_BJ.) &
83,2 2 LA
Dy = L. + By
3% o Mt Bty )

ete.
where a,,; = &, for case 1, a,,; = a; for case 2 in Fig. 2. The M and B are:

M°=';'(az+°-a)
a
M1=%- 9-1-1-—:;—3L'+1+r+-1;-5-]
a a ° (9)
M =!'-[l'-(1+r+—-s-)-—s-
2721(b b b.3
8 8
=1 =a
T2 D ¢ -d
82 8
ete,




B, = Ecoth £
B, = E£B, (coth& - & csech?® &)

Bg = e.(l:, (coth &€ - € csech®& ) + EE2 ( £coth £ - 1)) (10)

33 = £é3 (coth € - & csech® &) + 2 E,Ep € csech?® € ( € cothg-1)
+ E;B €3 csech® E(coth £ - £coth® € + & ))
3

etc.

where £ = (s, - 83)/2 .

The By , E3 5 oo in Equation (6) are:

3
L T . (1)
35K, " E 2 13
Q
and Ko = 4E3
a
K1='8b£2 *2(81"32) {51:_"'_5'2-'_+(1+r+_§)} (12)
8
K; = 125’3 {(1+r+—)+ ﬁigilf——a&'-)-}((li-ra-—-)

__(_31—1_2'2)-}4.(5.1.!_1._&2!—) -2b3(8'1+a3)

Kaz_—g-"]':33+6—"""“'2""a':3a' (a:.*aa)'z(g""_:?'aﬂ:
8,
"2 (l:. + a3) "Zb—r— {(l-:. +a3') - (g ""a)}

X a
+-—‘9-{(a,_+aa) - (g, "33')} (1+r+g:-)

‘a
-2%-37-(14»1-4-;3)
8 8
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Given the system parameters, we can evaluate M and K, und from K we can find
E, hence B. Applying these M and B, the required parameters &, 'l' , and
T are found by Equation (7), (8). These procedures &and relations get gimpler
for special cases as follows:

Special Case 1:
If € % 0, thet is, a, = @3 , the Equation (10) may be revritten as

(-] = 1
L = K /12
B, = Ka/12 - K,3/720 (13)

B, = 33/12 - K;K2/360 + x;3/30240

Special Cace 2:

If we neglect the effects of solid capacities, the Equations (1l) and
(12) reduce to:

E, =(ag + €) (1 + r)/(2€73)
- (1821')3 [1 _ (a2 2&!3 ]
E3=(1—]_-2§2[- (ag + €) +(94-2t593]

(14)

Special Case 3:

If £ = O in Special Case 2, the Equation (10) may be directly
given by:

B, =1 +€3/3
_(ag +E) (1 +1x)(2
B"— * 2 r[a-%ez) (15)
Ba (MIB - leare)-g-E3s 5 £ ("3"5)3]
w)—(a +£)( -4-4- ;25 (ag +&)3 + -378553
- 2078

a5 (a2 + )2 £3)
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Special Case 4:

If £=0 in Special Case 3, i.e., no solid capacities and a; = a; = a,
the final results are directly given by:

e—‘_l«l»a
a
e-"l‘m‘§1+r):—2-1?+;)
s T T
T P e (- D) (16)
- T3 2 3 2,
e (Z-Tst — )=-(1+r)3( 2a

Speciel Case 5:

Same as Special Case 4, and r = 1., Let us denote e‘r = l_aTa = /0 »
then we have:

=1+ —/°
T2 = Py + 4 +/03 + 8/02 (17)
505/ T B a-p

3_ 3z a  2pP3 g L3 Yl 32 P
1= &40 S tEa A P B A P A <

The values of these terms are shown in Fig. 4.
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APPENDIX 2.

Por parallel-flow from Equation (6) the parameters of Equation (2)
are determined as followss

8 [‘_’ o’
7

1
Tn =H1 +-5-P1

QJ = 83152

T3 (18)

“Z""’“a*'l"z“‘(& "%l‘)‘

2 _ P2 1
T—MB-PB"‘FIPQ +-—3#-3"b an-E?

where &;,; = a; for Case 1, a&,,; = a, for Case 2 in Fig. 3, and A = (a; + a5)/2.

The M and F in these results are:

M, = i1+r + _:§_ + &' +agt .ﬁ
1 2 2b8 2b b

M. = s _3.1_'._"'}23'_ + _4 (19)
I 2bs= - <b "

F, =E (fcoth f -1)
F, =E; (S coth A 1) - E,3 [ﬁcoth/-(l*ﬁi)] (20)
3 =By (feotn 1) - 2E,,Ea[/°coth/’- a +__)]
RPNV,

The E;, E;, ... in Equation (20) are defined in the same form as Equation (11),
but K,, K1, ... in it are given in place of Equation (12) as follows:

K, =42

Ky = 2(a; - 83) (1 -r) - 2(a;-85) ;':‘ t2 [(51"‘2)(31"33')-4/‘3)
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Ka=[(1-r-%§-) +§;_'_b-3L'J3 + (al-aa)[Z%g-%(l-r--;-'-) +
8 s s

wr - )], 123 @)

s &5 &g 2 %

571 -r-p) - 2me) g3 453 {(-1' - a3') - (8, - 8)
&

"‘%2‘ (1-r- B‘:')(ﬂx‘aa) - ']‘f':}Az* "33‘ (ay - a3)(a;' ~ a5')

- -23 (a1| - &2|)

Specisl Case 1:
No solid cspacities,

/ _ -/‘ sinh(f

e =0 53

_ 1+ (e - 22)(1 - 1)
T = - ( th F-1)
n 2 4 2 /6°° /6 (22)

'l'
"‘2"" ‘(;-7!.#[1 - -('-“:—ai'EJ ( f coth /‘-1) + 1’;2/‘ 2 (l—ﬁcsech?)
73 = (8 e2)’ (1 = z)’ [1 + _/_6_3 - /ﬂcoth/’.] coth/ +EL_2).§_J_"2/°1" ° X

a 64 S
[1 - -(3;—:)—— [P cseck?s 1) + L—;i—/—é—-z—ix
[1 - L:;?L}(ﬁ coth f -1)

Specisl Case 23
Seme a5 Case 1, and r = 1,

9‘ = 31:23./‘ S_Ajgnh
T, =1 (23)

TB=°’ a.-.O
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