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HEAT TRANSFER TO LAMINAR FLOW IN A ROUND TUBE OR

FLAT CONDUIT --- THE GRAETZ PROBLEM EXTEINDED

By. hn Sellars, Myron Tribus, and John Klein

NOMENCLATUPE

Tbo followIng nomenclature is used in the paper: r - Radius, ft.

A - eoefficient occurring in Equation (10). ro = Tube radius, ft.

B - Coefficient occurving in Equation (i0). r+ - (r/ro).

b - Half vidth of flat duct, ft. R - R(r+).

C. m Coefficient in Equation (3). Re - Reynolds modulus, dimnsionless, (2U roD/Po) or (W3 be/14g).

Cp - Unit heat capacity at constant pressure, Btu/lb-*F. S - T form variable.

D - Coefficient occurring in Equation (18). t = t(e+, r+) temperature, VF.

E - Coefficient occurring in zqution (18). T - T(s, r+), laplace transform of t.

F - F(s, r+), Iaplace transfora of (raets solution. u - Velocity of fluid, ft/sec.

g = g(x+, r+) Integrating kernel for beat-flux problems, see um - Average fluid velocity in tube, ft/sec.
Equation (").

z - Diaane along tube, ft.
G m G(s, r+) laplace transform of g.

-+ (x/ro)(Rspr)- or (x/b)(Be•)-1.
h - h(x+) Integrating kernel for heat-flux problem, see

Equation (3,). y - Distane from duct vall, ft.
Accesion For

H - ff(s) Laplace transform of h. Y+ -____________________For

I - .) z -oa f. tub (a/,f. NTIS CRA&I
- .- Distanefrcmt ,ube ~, ft. DTIC TAB

J - Bessel function of first kind, zero order. %+ - (z/ro). Unannounced
a•3- Bessel function of first kind, 1/3 oder. 7 - Zero of X(s). Justification ...........................

-/3= Bessel. function of first kind, -1/3 order. X - E.envalue. By -- ---.------- ----

k - T.ermal conductivity of fluid, BW/,eC-ft2 ('F/ft). i. - Viscosity of fluid, 1b-sec/ft.. Distribution I

S- Coefficient occurring in E•qu1ton (A-3). - - Fluid density, lb/ftS. Availability Codes
Pr - Prandtl modulus, dinsionless, (PCpk)(360o a). - DuW variable. Avail andor

q - q(x) heat flux per unit val area, Btu/•hr-ft. .- um Variable. Dist Special
q - laplace transform of (kolro). - G.ame function. ft

INTRODUCTION

'The problem considered here is posed by a system in which a fluid of
constant properties flows in steady laminar motion in a round tube or flat duct.
The velocity profile is fully established and parabolic. Up to a point (x = 0)
the fluid is isothermal. After this point a prescribed heat flux or temperature
is given at the wall of the conduit and the problem is to find the temperature
distribution, as well as the connection between heat flux and wall temperature.
The application of this solution to practical problems of heat exchange has al-
ready been so well established that further cohmment is unnecessary.
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The problem has been considered in detail by a number of workers and
an excellent review is contained in the book "Heat Transfer" by M. Jakob.' The
problem readily reduces to the finding of eigenvalues and prior to this paper
only the first three eigenfunctions and the first four eigenvalues have been
known. A recent paper2 has brought out the importance of obtaining more eigen-
values, and by using the complete set of eigenvalues and the methods of refer-
ence 2 the classical "Graetz Problem" 3 is extended to more complicated boundary
conditions.

The problem can be stated in mathematical terms as follows:

Given

LL 311 .12 /4 )t

and for

t-rto 4Co

with either

+ ~ *

or i N A.) (

find t(xr) and the relation between q(x) and tw(x).

The nondimensional form of the equations is

*x, L....w... (2)
S-.e ^* u6

The boundary conditions are

and either

*t(2.~, I) 0

or 1 = )

In view of the linearity of Equation (2), it is necessary to have onIl3
the fundamental solution, known as the Graetz solution, to construct all other
needed solutions. Therefore, the initial step is the completion of the Graetz
solution.

I -Heat Transfer.* by Max Jakob. John Wiley & Sons. Inc.. New York.
N. Y., vol. 1, 1949.
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THE ,AETZ SOLUTION

The problem considered by Graetz and most other workers is Equation
(2) with boundary conditions.

t 01SIo

-tv so %- >0

Led (D be a solution of Equation (2), then

0e - (3)

where the Xn are the eigenvalues required to make the solution to the following
differential equation

+( +

satisfying the boundary conditions Rn(l) - 0, Rn(O) = 1. The coefficients Cn
are determined from the relation

, ft(•A)RA = \-(5)

The eigenfunctions and eigenvalues have been given only for n = 1, 2,
3. The higher modes of Equation (4) are very difficult to calculate for large
values of ) . Therefore, to obtain An and Cn for n > 3, a solution is sought
which will be valid as An w. It will be found that the resulting formulae
will provide good answers even when Xn is small. First, look for a solution in
the form

R e

and find that g(r+) satisfies

4 31 4 (,--L).o (6)

Now an asymptotic solution is sought in the form

3 . Xj" " 3f +V"<,. 4& ' €4

Substitution in Equation (6) and equating powers of X gives

.' : (8)
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Since X is large, the remaining terms in Equation (7) are neglected.
Substitution of Equations (8) and (9) in Equation (7) gives for R

f. AS

Ph (1(10)

Equation (10) is the so-called WXB approximation and is valid for o~r+ < 1 for
sufficiently large X. Now the coefficients A and B mast be determined so that

Equation (10) will correspond to the regular solution of Equation (4), where r+
is small. For small r+ Equation (10) is

A A (11)

Th,
Inspection of Equation (4) shows that when r+ is mull enough so that

X2 (1 - r+2 ) X2, the classical solution behaves as Jo (Ar+), since Equation
(4) then becomes a Bessel equation. For large )Xr+, even if r+ is small, the as-
ymptotic expression for Jo(Xr+) is

and thus, it is seen that to make Equations (11) and (12) equal for r+ small, it
is required that

A= e (13)

and for 0 < r+ < 1

R(A') - 1'. (14)

Equation (14) is not a good approximation to the solution as r+ - 1,
since it has a singularity there. Because a boundary condition is to be imposed
at r+ = 1, the development of an alternate solution, valid near r+ = 1, is con-
sidered. By patching it on to Equation (14) the solution over the range 0 A r+
- 1 is obtained.

The following change of variable is made

3 I-A+
and Equation (4) becomes
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- ~ i O..L.. Ik ,> (~) so (15)
Ar4 r-- A4V

Now consider 0 < z+ << 1 and define a new variable

1 . N, 8 (16)

Substitution of Equation (16) into Equation (14) yields for large X

S "(17)

which has the solution

The constants D and E are to be so chosen that for small z+ Equations (18) and
(14) are equivalent.

Change the variable from r+ to z+ in Equation (14) and perform the in-
tegration

S* Al. +~ AS r.~f~t : S -- V a' (19)

For small z+ Equation (19) yields

S mji~ -r~. ~(20)

so that Equation .(14) for small z+ is

R~r ( 7> (21)

For large Xz+, even if z+ is small, Equation (18) becomes

Expanding the cosines of differences of angle occurring in Equations (21) and
(22) yields the simultaneous equation

w W. Jg C.(~-
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S(23)
"b,• • + E.-• -Ji ,,...(-)V 4 ~

from which D and E are evaluated. Therefore, Equation (18) is

3

As z+ - 0 the product %/z J 1,3 IX 48/3 z+3/] 2 0, but the product in-
volving J_ becomes constant. Therefore, the coefficient of J -/3 must be
zero if R = at z+ = 0. The values of Xn must therefore be given by

A'" 4'A * ;, t ... (25)

The equations for Rn are therefore

for small r+ (center of pipe)

(A.+*)2- (- 'T (26)

for medium r+

RA (-; (27)

and for small z+ = 1 - r+ (near the wall)

Equations (24) to (28) contain all the information essential to the
problem solution. The coefficients Cn in Equation (3) are found from Equation
(24) in accordance with Equation (5). Thus it is found that

(-iJ 4W (29)l~a.(7.__)~ ~ (.v ' '•

and therefore

Z : . r(') , (30)

The derivative of R at the wall (z*= 0) which is

will be required later.



Table I shows the first ten eigenvalues and the important constants
for the case of flow in a round tube. Table II gives the same data for a flat
duct with opposite walls at the same temperature. The development of the flat-
duct system is similar to the round duct and the equations are given in the ap-

pendix, numbered to correspond with the text.

TABLE I FIRST TEN EIGENVALUES AND THE IMPORTANT CONSTANTS
FOR THE CASE OF FLOW IN A ROUND TUBE

n Xn 2 cn 1/2 Cn Rn' (1)

0 2 2/3 7.1129 +1.47989 0.7303

1 6 2/3 44.489 -o.80345 0.53810

2 10 2/3 113.785 +0.58732 0.460074

3 14 2/3 215.121 -0.474993 0.413743

4 18 2/3 348.457 +0.404448 o.381785

5 22 2/3 513.793 -0.355345 0.357853

6 26 2/3 711.129 +0.318858 0.338988

7 30 2/3 940.465 -0.290488 0.323555

8 34 2/3 1201.8 +0.267691 0.310596

9 38 2/3 1495.1 -0.248895 0.29950

"a - -U' r(%)3 4 ' = .

Z C. R , &,. a. )

The previously known eigenvalues given by Jakob are shown in Table
III for comparison. Since the solution presented here is valid for large Xn,
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TABLE. II FIRST TEN EIGENVALUES AND THE IMPORTANT CONSTANTS FOR THE CASE
OF FLOW IN A FLAT DUCT WITH OPPOSITE WALLS AT THE SAME T wAR

n xn xn" 2 - K Y ' (1)

0 1.667 2.779 +0.503 .683

1 5.667 32.11 -0.121 • 454

2 9.667 93.45 +o.o648 .380

3 13.67 186.9 -0.0431 •338

4 17.67 312.2 +0.0319 .311

5 21.67 469.6 -0.0253 .291

6 25.67 658.9 +0.0207 .274

7 29.67 880.3 -0.0174 .262

8 33.67 1134 +0.0150 .251

9 37-67 1419 -0.0131 .242

• -- *-,:" J-(r•) a"/' c",' (-i-,) *.,,s -,

a -k'313r r( vs) 3YX - 3 NA,%>

TABLE III COMPARISON WITH PRVIOUSLY XON EIGENVALUJ

Results Obtained
Sellars, Tribus, Kleinm Jakob Analogue CoMuter

.CR'(1 C1 Rn' (1) 2n C C. 1
2 . C _nR1 ()w~ C 2 C2

0 2.667 +1.47989 0.7303 2.705 +1.477 0.749 2.71 1.46 0.735

1 6,667 -0.80345 0.5381 6.66 -0.810 0.539 6.69 -0.809 0.533

2 10.667 +0.58732 o.46o1 10.3 +o.385 0.179 1o.62 +0.592 o.444

3 14.667 -0.47499 0.4137 14.67* -o.479* 14.58 -0.51 0.398

*Attributed to Lee, Nelson, Cherry and Boelter.
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and in view of the agreement even at moderate values of Xn, it has been con-
cluded that all the eigenvalues and functions are now sufficiently accurately
known.

The heat flux at the wall is computed from the equation

Equation (32) is presented in the above form to bring it into agreement with
Jakob. 1

ARBMRARY WALL-TEPERA•URE VARIATIONS

If the wall-temperature variation is given by tw(x), then, as shown
by Trlbus and Klein,2 the principle of superposition may be applied and the
solution may be written in a Fourier-type Stieltjes integral

t -f "e(T 02•f,)-I•*,(,) (33)

where e is the solution to Equation (2) defined by Equation (3). The tempera-
ture of the wall and fluid for x+ < 0 is to. The Stieljes integral in Equation
(33) is evaluated by substituting (dtw/dt) dl for dtw wherever tw is continuous
and substituting [1 - e kx+ - gI, r+)H[t (93+) - t (9i')] as the contribution
of the integral wherever t. (x+) has a discontinuity. (See Tribus and Klein2
for a more detailed discussion.) The heat flux is computed from

1e%4*) ( 1., - -_.t.• • k,,(9 (34)

HEAT FLUX AT THE WALL GIVEN

The inverse problem; namely, "Given the heat flux at the wall, what
is the temperature?", may be solved'with the aid of the Laplace transform theory
Define the following transforms

T(O, .ý) (t 41 t Ale,

TW (s)=(s ) (361,
2

'Forced Convection from Nonisothermal Surfaces, by M. Tribus andJ. Klein, Heat Transfer: A Symposium held at the University of Michigan
during the Summer of 1952, Engineering Research Institute, University of
Michigan. 1953, pp 211-235.
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*I- X A+'~)] je.% (37)

S, 1) (38)

Applying the Faltung theorem to Equations (33) and (34) yields;

= F( S,") S T= (3) (40)

s) = (3) s -r-ws •)

If the heat flux is finite, tw(x+) will be continuous. Eliminating tw(s) from

the above equations,

-7 (42)
T(S, A') A (s)

H (5)
Now define

G( s,+) = F(S, +

H (S) (43)

and let g(x+, r+) be the inverse transform of G(s, r+). Then, for arbitrary
heat flux at the wall, the temperature is given by

= (S) , s (44)

Thus, the problem is reduced to finding g(x+, r+), which is given by

a(,:* C - :( A+)AS

af- i ýC- ( d(S) (1(45)

Returning to Equations (37), (38), and (3) it is found that

~~- C" it,• (/0)

(S' (,11)O~aa(146)

H- (47)

Because F and H have poles at s = -X2i, the quotient F/H has no poles
except at S = 0 and the zeroes of H(s) and the zeroes of H(s) nu•st be found nu-
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merically. Because H'(s) is monotonic, it is found that the zeroes of H(s) oc-
cur between the -X2n. Letting 72m be the values satisfying H(-7 2 m) = 0, from
the theory of residues

8(AI At -1 (

Table IV gives the values of 72M, H'(-y72m) for the first three values
of m. The term H(O) has been shown by others' to be given by

H(o) (=4.9)

hence, the wall temperature may be easily calculated with the aid of

"Y,- H(-Y_, (50o)

TABLE IV THE VALUES OF 7y2M H' (_.2 M) FOR THE FIRST THREE VALUES OF m
Roots of H(s) = 0, Values of H'(-7 2m)

H (5) 2 _______
"-,.o e x m 7' -H,(-.•) 7 m •'-l

S M TMH'(-72m

C. &•if) = -. oa•'��a 1 25.639 8.854 x lO- 4.405

+ 1/3 ,2 84.624 2.062 x 10-3 5.7308
3 176.40 9.435 x 10-4 6.0084

Hcs•, = •-

TABLE V VALES OF , H'(-7M2) FOR THE FIRM THR VALUES OF m FOR A FLAT tIXJT

Roots of H(s) = 0, Values of H'(-72m)

s. 72 -1'(-72) -1
+,2 I, (- ,y )

fl' e. 2'(,)
(S + 1 149.3145 7.145 1cl' 27.2

2 185.94 1. 67 x 10-4 32.1

3 409.-45 6.89 x 10-5 35.4
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A SAMPLE CALCULATION FOR CONSTANT WALL HEAT FLUX

By way of illustration consider the computation of the asymptotic val-
ue of the Nusselt modulus for the case of constant heat flux at the wall. Com-
bining Equations (44) and (48) with q(t) = q = constant, the following is ob-
tained.

Letting Px = x+, where P = nk/2WCp, and integrating Equation (51) gives

I _ _

7- CO .

which may be rewritten as

+) X

+ "' Il . "9.-,,l

Equation (53) shows that far down the pipe (x+ co) the derivative of
t with respect to x is independent of x or r+; i.e.,

5__X .4r 0 (54)

Substituting this quantity into Equation (2) leads to

(~t~)(55)

which may be integrated directly to give

- 4�4. G( (56)

Now the mixed mean temperature along the pipe is given by

but the mixed mean temperature is also defined by



a 13
0l

"",- M- 2p t(Zt$),Td1,At (58)

w e

Substituting Equation (56) into Equation (58) and integrating results in

Combining Equations (59) and (56)

S- -AT (60)

and substituting Equation (57) into Equation (60)

+ 7 (61)

at r+ = 1. This expression reduces to

but from Equation (52), since Rn(l) = 0,

)I1 (63)tA

Hence,

(Note that the first three terms sum to approximately -0.270) Now, the Nusselt

modulus is given by

t.Ju. = -?."(65)

From Equation (60)

-t (-A*.) e* (66

which when substituted into Equation (65) gives

NUa Y Z .36 (67)

Substitution of (64), (58) and (53) into (65) yields the local value

of the Nusselt Modulus for the case q(x*) = constant.
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N LL I(68)
*& ' --

CALCULATION FOR LINEARLY VARYING WALL T MATURES

In similar fashion the use of the boundary condition Tw(x*) - To -
A x* where A = any constant, gives:

A 9 t% a
'.'

N ~ +4. (71)

*.7 - e

APPROXIMATIONS FOR SMALL x+

Whenever x+ is small, a large number of the terms in the series, Equa-
tion (3) must be taken. The Leveque solution is a good approximation for such
cases. As shown by Tribus and Klein, 2 the wall temperature and heat flux for
such a case are related by

jf~) ~ f 'S(LA)~ ~zs 16ts (72)

and

43tr

For flat ducts

Au. 3(74,)

for round ducts

(dilL -4(75)

Substitution of Equation (75) into Equations (72) or (73) (and noting
that the mixed mean temperature of the fluid is essentially equal to its inlet
value at small values of x*) gives for the three cases under consideration:
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For constant wall temperature:

¶ Is +U/ # 00S' 5@. (76)

For constant heat flux

414 = 3 %4 3 (77)

For linearly varying vail temperature

N +-" (78)

Figure I shows a graph of the functions RH0 , R.I. and R2 compared with
solutions given by Jakob. Figure 2 shows the variations in Nusselt modulus for
three cases

Fi
I IE UCIN O REZSLTO

FI.. Lmfo Iwo.Cnon rpr4Pudfa~~T~

3\Ot
Uber~~~~~~~ diZaaliugfhq .itwnFusikie2byL re

Annuen ci Pysi Che.. ol.25. 885 pp.3373 7



(1) wall temperature constant,

(2) heat flux constant, and

(3) wall temperature increasing linearly along the pipe wall.

The Nusselt modulus is defined by the equation

NW W I (%) .(79)

The mixed-mean temperature, tsm, is determined by integrating the heat flux
from the origin (X+ = 0) to the position where q(x) is known.

CONCLUSIONS

The methods used in this paper have a wide applicabilit, r eiam-
ple, the liquid metals systems analyzed by Poppendiek4 could be tr, a by the
methods used here. The unsymmetrical boundary conditions treated by Yih and
Cermak 5 can also be readily treated by these methods.

The authors are somewhat surprised at the fact that whereas the as-
ymptotic formulae are all supposed to be valid only for very large X., in ac-
tuality values of n as small as 4 seem to give excellent results. The recsons
for the good results are not now clear.

APPENDIX A

The equations for a flat duct system with walls at y = + b (A-l)

Defining Re = 4Um pb/iL, x+ (xA)(RePr)-', y+ = (y/b) the equation to
be solved is

3 W
3O j T (A-2)

which has a solution

Y. o (A-3)

satisfying ( = 1at x+ - o, e * o, x 0, if y(y+) satisfies

4 'Forced Convection Heat Transfer in Thermal Entrance Regions.Part 1' by H. F. Poppendiek, Oak Ridge National Laboratory, Tenn.,
O9NLs913. Physics. series A. March, 1951.

5 'Laminar Heat Convection in Pipes and Ducts.' by C. S. Yih and
1. E. Cerbak, Civil Engineering Department. Colorado Agricultural and
Mechanical CIoege. Fort Collins. Colo.. September. 1951. NR Contract
No. N90 nr 82401, NB060-071/k.19-49.
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Y , 11 • + , •' =0 (A-4)

with Y'(O) - Y(l) = 0, Y(O) = 1. All is the value of X to permit Yn(1) f 0. The
coefficients Kn are given by

K" = -(A-5)

By the methods in the text the WKB approximation is found to be

YC"). =. fl, [(,.s • (A-14)

for 0 e y+ < 1.
Defining z = 1 - y+, the solution of A(A-4) for z << 1 is found to be

The eigenvalues are

N., , (A-25)

S(A-29)

To obtain the fluid temperature for a given heat flux use

*-" A a's=- -" V'"s,,'; ,j (A-30Y)

The integrating kernel, g, is given by

Oft I "X, k, 2V&(-31

-~ -~ (A-328)

where the -inm are the zeroes of

(-) =- K_,,,', (A-47)


