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The following nomenclature is used {n the paper: r = Radius, ft.
Coefficient occurring in Equation (10). ro = Tube redius, ft.
Coefficient occuriing in Equation (10). r* = (r/rp).
Balf width of flat duct, ft. R = R{r*).
Coefficient in Bquation (3). Ry = Reynolds modulus, dimensionless, (2Up roo/usc) or (Wp bo/ug).
Unit heat capacity at canstant pressure, Btu/1b-°F. 8 = Transform varisble.
Coefficient occurring in BEquatiom (18). t = t(x*, r*) tempersture, °F.
Coefficient occurring in Equatica (18). T = T(s, r*), laplace trensform of t.
F(s, r*), laplace transform of Graetz solutiocn. u = Velocity of fluid, ft/sec.
&(x*, r*) Integrating kernel for heat-flux problems, see up = Average fluid velocity in tube, ft/sec.
Bquation (44). !
x = Distance along tube, ft.
G(s, r*) laplace transform of g.
x* = (x/ro)(RePr)=1 ar (x/v)(RePr)-1.

h(x*) Integrating kernel for heat-flux problems, see
Bquation (34). y = Distance from duct wall, ft. -

+ Accesion For
H(s) laplace transform of h. Y = (y/).
JT z Distance from tube wall, ft NTIS  CRA&J
1. - e B

’ DTIC TAB
Bessel function of first kind, zero order. ot = (z/ry). Unannounced
Bessel function of first kind, 1/3 order. y = Zero of H(s). Justification . -
Bessel function of first kind, -1/3 order. A = Eigenvalue. By
Thermal conductivity of fluid, Btu/sec.rt2 (°F/ft). W = Viscosity of fluld, b-sec/rt2. | Djstribution |
Coefficient in Equation (A-3). -p = Fluid density, 1b/ftS. L
cleat cocurring (A-2) p s 1o/ Availability Codes
Prandtl modulus, dimensionless, ( (3600 g, ). [ variable. -
’ » (uep/ b Dy ] Avail and/or
q(x) heat flux per unit wall area, Btu/hr-ft®, % = Dummy Variable. Dist Special
laplace transform of (kq/rg). P . Gemm function. R.I
INTRODUCTION |

The velocity profile is fully established and parabolic.
the fluid is isothermal.

HEAT TRANSFER TO LAMINAR FLOW IN A ROUND TUBE OR

FLAT CONDUIT ---

THE GRAETZ PROBLEM EXTENDED

By. hn Sellars, Myron Tribus, and John Klein

NOMENCLATURE

‘The problem considered here is posed by a system in which a fluid of
constant properties flows in steady laminar motion in a round tube or flat duct.

Up to a point (x = 0)

After this point a prescribed heat flux or temperature

is given at the wall of the conduit and the problem is to find the temperature
distribution, as well as the connection between heat flux and wall temperature.
The -application of this solution to practical problems of heat exchange ‘has al-
ready been so well established that further comment is unnecessary.




The problem has been considered in detail by a number of workers and
an excellent review is contained in the book "Heat Transfer" by M. Jakob.l The
problem reedily reduces to the finding of eigenvalues and prior to this paper
only the first three elgenfunctions and the first four eigenvalues have been
known. A recent paper2 has brought out the importance of obtaining more eigen-
values, and by using the complete set of eigenvalues and the methods of refer-
ence 2 the classical "Graetz Problem"3 is extended to more complicated boundary

conditions.

The problem can be stated in mathematical terms as follows:

Ay

Given
T =t(xn)

* o (1)

and for
Z <0

with either

+(x A,) =2 €, (%)

% >0
or Rt (22 = 90

find t(x,r) and the relation between q(x) and ty(x).

The nondimensional form of the equations is

A v A0 ) (2)
The boundary conditions are
t =t zt<o
and either
txt ) « ¢, (xV
zt>o0

or

tﬁf (7-*’ l) = N, 1(7")‘

In view of the linearity of Equation (2), it is necessary to have onl)
the fundamental solution, known as the Graetz solution, to construct all other
needed solutions. Therefore, the initial step is the completion of the Graetz
solution.

1 ‘Heat Tramsfer,' by Max Jakob, John Wiley & Sons, Inc., New York.
N. Y., vol. 1, 19849,
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THE GRAETZ SOLUTION

The problem considered by Graetz and most other workers is Equation
(2) with boundary conditions.

t =i xt <o

+
1, =0 %" >0

lLed (O be a solution of Equation (2), then

[ 4 o~
6=3 c r et (3)

MNse

where the A, are the eigenvalues required to make the solution to the following
differential equation

A R.:' +R. +\: A-a) Ry 0 (1)

satisfying the boundary conditions Rp(l) = O, Ry(0) = 1. The coefficients Cp
are determined from the relation

S' At (1 -a*) R dat

C. = - = -2
T el TR, O

The eigenfunctions and eigenvalues have been given only for n = 1, 2,
3. The higher modes of Equation (4) are very difficult to calculate for large
values of A . Therefore, to obtain Ap and Cp for n > 3, a solution is sought
which will be valid as My *+ ©. It will be found that the resulting formulae
will provide good answers even when A, is small. First, look for a solution in
the form

R, cgm’)
and find that g(r*) satisfies
3"yt L g eN (1-2*) mo (6)

*
»
Now an asymptotic solution is sought in the form

-]
3:\3.93,-‘-)3‘4--- (n
Substitution in Equation (6) and equating powers of A gives

3.' = 2i (14 (8)




J' = -%W (9)

Since A is large, the remaining terms in Equation (7) are neglected.
Substitution of Equations (8) and (9) in Equatio? (7) gives for R

Al A
Y I. Ja-g* dg -t S, Vi-g dg
At +Be

R = y — 10
0w (-at)" (10)

Equation (10) is the so-called WKB approximation and is valid for o<r* < 1 for
sufficiently large A. Now the coefficients A and B must be determined so that

Equation (10) will correspond to the regular solution of Equation (4), where r*
is small. For small r* Equation (10) is

VS _aat
R = Ae "'BQ‘)A (11)
VAF (1 -am)N

Inspection of Equation (U4) shows' that when r* is small enough so that
A2 (1 - r*2) + A2, the classical solution behaves as Jo (Art), since Equation
(4) then becomes a Bessel equation. For large Ar*, even if r* is small, the as-
ymptotic expression for Jo(Ar*) is

T o) = By wa (W01-%) (12)

and thus, it is seen that to meke Equations (11) and (12) equal for r* small, it
is required that

% . %
I W (43)
and for 0 <r* <1
A*
JONT A (M, T As - %) (14)

(1 -4"D%

Equation (14) is not a good approximation to the solution as r* =+ 1,
since it has a singularity there. Because a boundary condition 1s to be imposed
at r+ = 1, the development of an alternate solution, valid near r* = 1, is con-

sidered. By patching it on to Equation (14) the solution over the range O & r*
= 1 is obtained.

The following change of variavle is made

+
3z 1-a

and Equation (4) becomes

]




5
.—‘l - ...‘__- !L’ ¢ x‘ 3*(3')’) Rso (15)
T -3¢ 43
Now consider O < z* << 1 and define a new variable
n = N2y (26)

Substitution of Equation (16) into Equation (14) yields for large A
d'r

Tt ARe (17)
which has the solution
3‘. k
ko T, (F 9y T, (A 5) (18)

The constants D and E are to be so chosen that for small z* BEguations (18) and
(14) are equivalent.

Change the variable from r* to z+ in Equation (14) and perform the in-
tegration

N < ) R . ¥
R N (R I W ey FYOE A i PP EE)

For small z+ Equation (19) yields

ot Y
S. h-s‘ dg -17.,' ﬁ/_.‘ }* (20)
so that Equation (14) for small zt* is
Vi fk -t 1)
" o E (BN -0 %
RGY =V ﬁ_& (21)

For large Az*, even if z* is small, Equation (18) becomes

“0"_ m)ﬂ ok_
R‘wggzm(%s EK)+eenm(2F i)

Py xE (22)

Expanding the cosines of differences of angle occurring in Equations (21) and
(22) yields the simultanecus equation

'Dus‘-k tE T, =% s (3-)%




(23)

Daw & + Eain T =V acm (-0 %

[k 8

from which D and E are evaluated. Therefore, Equation (18) is

R %
Ra 55 [-0F B L) 0 8) 7 00

As z+ + O the product Vz+ Jia [A J8/3 z+3/2] + 0, but the product in-
volving J__1 5 becomes constant. Therefore, the coefficient of J_ ,/ 5 Dast be
zero if R =0 at z* = O. The values of A, must therefore be given by

A,.‘, 4'“ f&s m..‘ " ‘, “ e a (25)
The equations for R, are therefore

for small r* (center of pipe)

R, (A =T (A A0 (26)
for medium r*
)M + V-_t ) © e
R, (a) = J-2 e X A VITHE 4 Ay ancama’ - % .
Tt ( l—.n") L

and for small z* = 1 - r* (near the wall)
3
g« E o 3, (57 5%) -

Equations (24) to (28) contain all the information essential to the
problem solution. The coefficients C, in Equation (3) are found from Equation
(24) in accordance with Equation (5). Thus it is found that

~el -
1) . L 29
(’.\ x.\‘ = ( ') ‘.ﬁ f'(‘&) n =0 'o 2) T ( )
5’.‘
and therefore "
~ % “
C_,‘ = (-9 2 .‘T r(%) Am el AL AR (30)

The derivative of R at the wall (z*= O) which is

Sl I
trn o ot 07 2.
R,‘“) = (3;; ”'. = r{%) 3‘,‘ ~nas el 3, " (31)

will be required later.

o
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Table I shows the first ten elgenvalues and the important constants
for the case of flow in a round tube. Table II gives the same data for a flat
duct with opposite walls at the same temperature. The development of the flat-
duct system is similar to the round duct and the equations are given in the ap-
pendix, numbered to correspond with the text.

TABLE I  FIRST TEN EIGENVALUES AND THE IMPORTANT CONSTANTS
FOR THE CASE OF FLOW IN A ROUND TUBE

n M N2 Cp -1/2 ¢, R' (1)
2 2/3 7.1129 +1.47989 0.7303
6 2/3 L. 489 -0.80345 0.53810
10 2/3  113.785 +0.58732 0.460074
14 2/3 215,121 -0.474993 0.413743

18 2/3 348,457  +0.404LLS 0.381785
22 2/3  513.793 -0.355343 0.357853
26 2/3 T11.129 +0.318858 0.33%8988
30 2/3  940.465  -0.290L488 0.323555
34 2/3 1201.8 +0.267691 0.310596
38 2/3 1495.1 -0.248895 0.29950

O 0 1 O 1 W N O

Cm = (.‘)* ." ‘.6 P(VJ) x‘:v’ -
™

e AWy
x (%) 3%

g ""’8
(-0 Q.74¢06 Xm

! '/
- % K"‘{') = = [ ot2? xm s

Ao =t 4%, mao 3 ...

-t
0« T o R (D E

+
1(1") = ‘L} b2 S;A R () ‘-x..x (t.-t)

The previously known eigenvalues given by Jakob are shown in Table
III for comparison. Since the solution presented here is valid for large Ay,




TABLE. IT

A =

n M M K -kn Yp' ()
0 1.667 2.779 +0.503 .683
1 5.667 32,11 -0.121 54
2 9.667 93.45 +0.0648 .380
3 13.67 186.9 -0.0431 .338
L 17.67 312.2 +0.0319 .311
5 21.67 469.6 -0.0253 .291
6 25.67 658.9 +0.0207 2Tk
7 29.67 880.3 -0.017k4 262
8 33.67 1134 +0.0150 .251
9 37.67 1419 -0.0131 2k2
Koy = -7 ) it )‘MJ/" =607 ows X.,..y‘
Y
Y b
-k Y (0 $:2% P(% )0 = ot .3
T F(%) 3k
4~.+{/, ma=o0, 4 2 -

0 = ZK.,.Y,,(a*)e

L N
RPNE %
59+ 2 & ko (e

FIRST TEN EIGENVALUES AND THE IMPORTANT CONSTANTS FOR THE CASE
OF FLOW IN A FLAT DUCT WITH OPPOSITE WALLS AT THE SAME TEMPERATURE

BN T

TABLE III  COMPARISON WITH FREVIOUSLY KNOWN EIGENVALUES
Results Obtained
Sellars, Tribus, Klein Jakob Analogue Computer
n | o | gy | o | DB | o o L
0 2.667 +1.47989 0.7303 2.705 +1.477 0.749 2.7 1.46 0.73
1 6667 -0.80345 0.5381 6.66 -0.810 0.539 6.69 -0.809 0.533
2 10.667 +0.58732 0.4601 10.3 +0.385 0.179 10.62 +0.592 0. bk
3 14,667  -0.47499 0.5137 1. 6T%  -0.4T9*  aeeee 14.58  -0.51 0.398

#*Attributed to Lee, Nelson, Cherry and Boelter.




and in vievw of the agreement even at moderate values of Ay, it has been con-
cluded that all the eigenvalues and functions are now sufficiently accurately

known.
The heat flux at the wall is computed from the equation

t / !
10 =403, - RrgoMTew

Equation (32) is presented in the above form to bring it into agreement with
Jakob.1

ARBTITRARY WALL-TEMPERATURE VARIATIONS

If the wall-temperature variation is given by tw(x), then, as shown
by Tribus and Klein,2 the principle of superposition may be applied and the
solution may be written in a Fourier-type Stieltjes integral

X.*

t-t, =f§ [1 - o(x-ga)] dt, (5) (33)

vhere © is the solution to Equation (2) defined by Equation (3). The tempera-
ture of the wall and fluid for x* < 0 is t,. The Stieljes integral in Equation
(33) 1s evaluated by substituting (dtw/dg) d§ for dty wherever ty is continuous
and substituting [1 - @ (x* - &,, r*)][t (&,%) - t (£,7)] as the contribution
of the integral wherever t, (x*) has a discontinuity. (See Tribus and Klein2
for a more detailed discussion.) The heat flux is computed from

xt
1(#) =4 (%%’>A'-: = -’/‘%. 5. & (23, 1) dt, () G

HEAT FIUX AT THE WALL GIVEN

The inverse problem; namely, "Given the heat flux at the wall, what
is the temperature?", may be solved with the aid of the Laplace transform theory

Define the following transforms

o t
T 2§, € (¢ ) ayr (35)

Tu(8) = T(s, 1 (36

2

‘Forced Convection from Nonisothermal Surfaces, by M. Tribus and
J. Klein, Heat Transfer: A Symposium held at the University of Michigan
during the Summer of 1952, Engineering Research Institute, ﬁniversity of
Michigan, 1953, pp 211-235.




+
Fis,») = S:[ 1 - a(xt,a?)] eﬂu d«t (37)

-sxt (38)
H(S) = T (5,0 = - f 6,\4(1.‘, e dx'
+
®© _sx
< e (x4 x*
QW =2 ), ! (39)
Applying the Faltung theorem to Equations (33) and (34) yields;

T(s,a*) = F(s,AD s T, (8 (ko)
(41)

Qs) = H(S)s T, (s

If the heat flux is finite, tw(x*) will be continuous. Eliminating ty(s) from
the above equations,

F(s, at) (k2)

TS, M) = Q)
s 29 H(s) Q

Now define
F(s,»t)

65,27 = H(S) (43)

and let g(x*, rt) be the inverse transform of G(s, r*). Then, for arbitrary
heat flux at the wall, the temperature is given by

+
x
- Jle

toto= ) H(As, A ds (lh)

Thus, the problem is reduced to finding g(x*, r*), vhich is given by
c+ioo

sxt +)
9(‘1", At) = E,T"" S e FO, A7 4s (45)
(-t o0

me H(s)

Returning to Equations (37), (38), and (3) it is found that

o0 +)
Fs,A =L _ 5 Safalnl
K Ea Serat (46)

Hes) = -2 Co R O
~szo S-}\:

(47)

Because F and H have poles at s = -A2,, the quotient F/I-I has no poles
except at S = O and the zerces of H(s) and the zeroces of H(s) must be found mu-




1l

merically. Because H'(s) is monotonic, it is found that the zeroes of H(s) oc-
cur between the -A2,. Letting Y2, be the values satisfying H(-723;) = O, from
the theory of residues

- xt s ¢
Y %
e R T TESNWES . oy

L o0 X:‘YM:

Table IV gives the values of 72111’ H' (-72m) for the first three values
of m. The term H(O) has beer shown by othersl to be given by

Heo) = + '/,, (49)
hence, the wall temperature may be easily calculated with the aid of
, > ot
(%, 1) = 4 - et
R ) ~ N HI(-YD (50)

TABLE IV THE VALUES OF 72m’ H'(-y2,) FOR THE FIRST THREE VALUES OF m
Roots of H(s) = 0, Values of H'(-72,)

o [
His) = - 5 SmRu (0

s0 S km’- m 72 -H' (_72 -1
' m + ’, m m) 72!!1 B (_72m)
Cm R () = -2 028572 3,1 1 25.659 8.854 x 10-3 4.405
Ay = #m +3/3 mao 3 - 2 84,624 2,062 x 10-3 5.7308
& (1) 3 176.40 9.435 x 10-4 6.0084
' Con
Hs) = i (s+ R )"

TABLE V. VALUES OF V2, H'(-72) FOR THE FIRST THREE VALUES OF m FOR A FLAT DUCT

Roots of -I-I.(s) = 0, Values of E'(-‘Yzm)

7
Aty = -3 K=Y (0

H -1
S+% 2% m 73 -H'(-72)) =
3/»‘ m 2m 72m H (_72m)
Hsy = Ko X O
(s + %) 1 49.345 7.45 % 1074 27.2
2 185.9% 1.67 x 10-4 3.1

>\m=4~*'g mso /2 -
3 L409.45 6.89 x 10-5 35.4
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A SAMPLE CALCULATION FOR CONSTANT WALL HEAT FLUX

By way of illustration consider the computation of the asymptotic val-
ue of the NMusselt modulus for the case of constant heat flux at the wall. Com-
bining Equations (44) and (48) with q(&) = q = constant, the following is ob-
tained.

, . 1 jx Y (-3 - (2~3*)
*+) - = b -
to4 ~t = 32 D2 Soen -2 et LiaT e (o

Letting Bx = x*, where B = nk/2WCp, and integrating Equation (51) gives

t 3
—Yar BX
+ - no ”e
At s BT e - A5t
o H(=%) (52)

) e.u..."Qx
- ¢ d=-e
Z "‘R"‘E x OL-vr)

vwhich may be rewritten as

t(xt At) - = 1%
R TR =

¥y H'(-%)
Y‘
e.x.flx cp S Lo e ¢x ] (53)
Iien - % R TR T

Equation (53) shows that far down the pipe (x* + «) the derivative of
t with respect to x is independent of x or r*; i.e.,

3t _ 4 e For xt _\ 0 (54)
‘9% 'y
Substituting this quantity into Equation (2) leads to
i R RO 1 (>5)
) T A -Y ont ant
vwhich may be integrated directly to give
£ S
(AN - txt o) 4 A A
@ = g (- 0) (56)

Now the mixed mean temperature along the pipe is given by

Y-t = 2Magx
T (27 -8, = wcr" TLQ" (57)

but the mixed mean temperature is also defined by
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[
T (1) = f_ uece ‘t(zt At) 31'4*J'1!

(58)
WC,
Substituting Equation (56) into Equation (58) and integrating results in
A DR %4 %‘L (59)
Combining Equations (59) and (56)
] 4 -
< (‘i'/‘n*) = 4n, at A 75 60
’ T*(T.—’—b-)*tmm 5‘# (60)
and substituting Equation (57) into Equatioca (60)
]
+ At _ _ A, : At
2t -1, = Tf' Copn+nt -2 -%.7 (61)
at rt = 1. This expression reduces to
tlt) -t = 2k 4z + 5] ()
but from Equation (52), since Rp(1l) = O,
+ A, - -__’ (63)
txt) -¢t, = I-{- [4px-2 - H'(-Y,,..")]
Hence,
—-'————' - - ” ~ -
0T AR %y -0t (64)
(Note that the first {hree terms sum to approximately -0.27.) Now, the Nusselt
modulus is given by
an
N = —Z& (65)
k(tw" MM)
From Equation (60)
which when substituted into Equation (65) gives
Nu= V) = 43 (67)
Substitution of (64), (58) and (53) into (65) yields the local value
of the Nusselt Modulus for the case q(x*) = constant.

FL




! (68)

Nu. = _'L R , g_“:yy
LB WiV v S

CALCULATION FOR LINEARLY VARYING WALL TEMPERATURES

In similar fashion the use of the boundary condition Ty(x*) - T, =
A x* where A = any constant, gives:

1 LI o
gty = AR L Ak 5 e RIy _-Na¥ (69)
*n. AD la Y 2 A"
' e
-3E Co Ron()) A% (70)
(1:')-'7'_A+ ‘gn 8ﬂ§ QTC
I W 0
Ne - 7123280 (71)
L5 F & Row N
2¢ - 2 T e

APPROXIMATIONS FOR SMALL x*

Whenever x' is small, a large number of the terms in the series, Equa-
tion (3) must be taken. The Leveque solution is a good approximation for such
cases. As shown by Tribus and Klein,?® the wall temperature and heat flux for
such a case are related by

() « kb du % (72)
% 3,,w( )% ) 5 (=537 dty(s)
and
tuw 1, - BB (£l S ql0ds (15)
° 3&r'(f/) ( e
For flat ducts
(e - A (T4)
‘3 “so
for round ducts
du 44,
(5 yeo = /n, (75)

Substitution of Equation (75) into Equations (72) or (73) (and noting
that the mixed mean temperature of the fluid ‘is essentially equal to its inlet
value at small values of x*) gives for the three cases under consideration:

- 4
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For constant wall temperature: '
4% -4
a.2 3 x I'y 1’ * <
Ne = w 1356 L £ o.00l
9% (V)
For constant heat flux
“q¥s p(%) % -4
2*9 s) _¢ %
N“ = 3 % = ’.‘373 1.*
For linearly varying wall temperature
[/
-4
’3 + i/
Nu = 3"2‘ x = Q.0398 %
% (¥s)

(16)

(77)

(18)

Figure 1 shows a graph of the functions Ry, R,, and R, compared with
solutions given by Jakob. Figure 2 shows the variations in Nusselt modulus for

three cases

‘r‘ﬁssq::-‘"“‘-.% FIG. 1
EIGEN FUNCTIONS FOR GRA '

'Li .E=="‘E>¥ GRAETZ SOLUTION
L] \ \\\\\

2 \Q» ‘\\" ‘Cg;Er

0 \\\ / -
-2 \\ﬁ\ \\ /é/ .

4 e \_ '\\ "]

— PRESENT PAPER
— e JAKOS

()
»
"
F 3
]
o
»

g

L Tue)-TysAx
2. qix*) = constont
3. Ty (x)-Ty* constant

[Tt 21T (%]

(-]

/

§§____

Nuss et Modutus, -2V

{

gt -5- (aon)"
Fig.2. Lominor Flow of o Constont Properly Fluid in a Round Tube

3

'Uber die Warmeleitungsfahigkeit von Flussigkeiten,'
Annalen der Physik Chem., vol. 25, 1885, pp. 337-357.

L L 1biiy L 1L Lt 11y L1 L1l
D00 7] 0

by L. Graetz,
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(1) wall temperature constant,

(2) heat flux constant, and

(3) wall temperature increasing linearly along the pipe wall.

The Nusselt modulus is defined by the equation

< 21
Ne = o & )

The mixed-mean temperature, tym, is determined by integrating the heat flux
from the origin (X* = 0) to the position where q(x) is known.

CONCLUSIONS

The methods used in this paper have a wide applicabilit: T eXAm-
ple, the liquid metals systems analyzed by Poppendieks could be tr: 4 by the
methods used here. The unsymmetrical boundary conditions treated by Yih and
CermakS can also be readily treated by these methods.

The authors are somewhat surprised at the fact that whereas the as-
ymptotic formulae are all supposed to be valid only for very large A, in ac-
tuality values of n as small as 4 seem to give excellent results. The rer sons
for the good results are not now clear.

APPENDIX A

The equations for a flat duct system with walls at y = +Db (A-1)

Defining Re = WUp pb/u, x* = (x/b)(RePr)-1, y+ = (y/b) the equation to
be solved 1is

3 2 _ _t+  _Fe
; ;;’ N l-g"" ?3"" (A-2)
which has a solution
(-4 - *‘N%'
8=2 K...Y,,,(g")e % (A-3)
e O

satisfying © = 1 at xt =0, 8 + 0, x* + 0, if y(y") satisfies

4 .
Forced Convection Heat Transfer in Thermal Entrance Regions
Part 1,' by H. F. Poppendiek, Oak Ridge National Labert T :
ORNL.813, Dhysice. siries A. ‘March, 1851, oratery. Temnm..
S .
Laminar Heat Convection in Pipes and Ducts,’ by C. S. Yih and

J. E. Cermak, Civil Engineering Department, Colorado Agricultural and

Mechanical College, Fort Collins, Colo., September, 1951. ONR Contract
No. NSO nr 82401, NR063-071/1 .19.49. P ntrae
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Y“s X‘(l-a’t)y=° (A-k)

with Y'(0) = Y(1) = 0, Y(0) = 1. Ap is the value of A to permit Yn(l) = 0. The
coefficients K, are given by

-
- A-
K i >Y') 1 XA (#-2)
By the methods in the text the aICB approximation is found to be
f
Y IKY)
Y(a't) = "“'{ f, (1-% s (A-14)
| - 3"’

for 0 £ yt <1
Defining z = 1 - y*, the solution of A(A-4) for z << 1 is found to be

Ve = 070 [ e (B -R) 7, OF . o (F-)7,0F 29
The eigenvalues are

X.. = “M+(/3 (A-25)

7
% X:)w. = ("‘)M’I 'ﬂ‘k&‘ (A-29)

3= 3% () 2%

K = (-7 M () 2™ )-7/4 (A-30).

ﬁ. L

Y.

<7?)1".. = l—l)mﬂ wh 2% \j‘ (A-31)

L 3 + _
1('[’) = "% (tv v-'t.) g K...Y,:(') e.%)mﬁ (A 52)

To obtain the fluid temperature for a given heat flux use

«t
- ot
+-T, = J_{- S;“ 9 (x -S.3") 1(5)45 (A-LL)
The integrating kernel, E, is given by
e'x:‘x’ alat
(WY e % -ZT—=—o -2 KLt
R ~ % A S 3~ Y P (A-18)

where the -y2, are the zeroes of

- !
H® = -z Kaln () (A-b7)
RS 2




