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1. INTRODUCTION

A number of reinforcement learning systems have been proposed recently, such as the associative control

process (ACP) network (Klopf, Morgan, and Weaver, 1993a, 1993b, Baird and Klopf, 1993a, 1993b), ADHDP

(Werbos, 1989), Dyna (Sutton, 1990), other systems described in Barto and Bradtke (1991) based on Q-learning

(Watkins, 1989, Watkins and Dayan, 1992), and systems based on advantage updating (Baird 1993). These

systems learn to be optimal controllers of nonlinear plants, typically requiring that a function fix, u) be learned.

They also require that the value of argmaxf(x,u) be calculated repeatedly for various values of x, both during
H

learning, and when using the system as a controller. If the state x and action u are discretized, then the function

can be represented as a finite lookup table. If the state x is a real-valued vector, then the function can be

represented using standard function-representation techniques such as multilayer perceptrons, radial basis function

networks, and memory-based learning and interpolation systems (Atkeson, 1990). However, if the action u is

also a real-valued vector, then finding the maximum is extremely difficult with most function approximation

systems. Although Tesauro's TD-Gammon program (Tesauro, 1990, 1992) demonstrates that some difficult

problems can be solved using discrete values for u, most practical problems require real-valued vectors. The

optimization algorithm described in Baird (1992) can approximate the maximum for optimal control problems (or

the saddle point for differential games), but there may be errors in the maximization during learning. Systems

using the stochastic real-valued unit (Gullapalli, 1990, 1991) or the Analog Learning Element (Millington, 1991)

can learn real-valued actions without maximizing learned functions, but they require the use of a particular

exploration scheme. It s desirable for a system to be able to learn under any exploration scheme that tries all

actions in all states sufficiently often. Q-learning and advantage updating, for example, have this property. Also,

it would be useful if the power of any general function approximation system could be harnessed to learn the

function, while still allowing the maximum of the function to be found quickly and exactly. A method is

proposed, wire fiting, that has these desirable properties.
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2. MAXIMIZATION OF A FUNCTION

First consider the simpler problem of learning a function flu) such that it is possible to quickly find the

maximum of the function. Figure 1 shows one approach to solving this problem.

(, 'Y2)

( 'YJ

S~flu)

(u,3 )3

U

Figure 1. Method for storing a functionflu) such that the maximum can be found quickly.

The shape of the function is determined by three control points (circles). Six

parameters u1,U2,u3,Yl,y2,Y3 are initialized to arbitrary values. As training samples

are observed, the six parameters are adjusted so thatf(u) (dotted line) is a good fit

to the training data. The value offlu) at point u is defined as a weighted average of

the three yi values, weighted by distance between u and ui, and also by the distance

between yi and ymax. This ensures that the maximum offlu) always occurs at one

of the control points, (uii).

The shape of the function flu) is controlled by six parameters which specify the location of three control

points. The functionflu) is defined as:

_ [k uI+maxy,- -Y]-

The function is defined by a weighted-nearest-neighbor interpolation of the three control points. If equation

(1) is undefined for a given value of u, thenflu) is defined to be maxy, for that value of u. The function may not

go through every control point, but it is guaranteed to go through the highest point. Also, the function is
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guaranteed never to go above the highest point or below the lowest point. Therefore, the maximum of the

function is guaranteed to be located at the ui, which has the same subscript as the maximum yi value.

This function approximation system resembles a memory based learning system, but is different. In a

memory based learning system, a set of training data is stored and interpolated to give the function fu). In the

system described here, the control points are initialized to arbitrary values. Then, as training data is observed, the

control points shift untilftu) approximates the training data. For example, if all of the training data lies on the

curve shown in Figure 1, then a gradient-descent learning algorithm will learn to place the three control points as

shown in Figure 1. The control point (u3,y3), therefore, learns to be much lower than any of the training data.

Equation (1) might not be a good algorithm for interpolating raw training data, but it may be useful for learning if

the control points shift during learning. The maximum of the curvef can be found in even less time than it takes

to evaluateftu) for an arbitrary u, because the maximum can be found without using equation (1).

There may be uses for a system that can leamf(u) and find the maximum. It is more useful, however, to

have a system that can learn fx,u) and can find the u that maximizes the function for any given x. This can be

done using the same method shown above, but with the parameters ui and yi replaced with functions ui(x) and

yj(x). In this case, the control points become control wires in a higher-dimensional space, and the function is a

surface fitted to those wires.
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3. MAXIMIZATION OF A CROSS SECTION

Wire fitting is a function approximation method designed to facilitate finding the maximum of the function

fix, u) for any given x. When using wire fitting, the function ftx, u) is evaluated for a given x and u as shown

in Figure 2.

Sf(x,u)

Interpolation Function (equation 2) j
a,(x)1Y y(X) C12() 1yý(X) ... 0.(x y.x)

Learned Function

x U

Figure 2. The wire fitting architecture.

A function approximation system learns the function in the lower block. Given the

state x, this generates a set of control points. The interpolating function then fits a

function to the set of control points and calculatesf(x,u), in the same manner as in

Figure 1.

Any general function approximation system can be used to learn the function marked "learned function" in

Figure 2. This function generates a set of control points based upon the value of x. A function is then fitted to the

set of control points, and the value off is then calculated from u in the manner illustrated in the previous section.

Since there is a set of control points for every possible x, the control points are actually control curves, or wires,

in a higher-dimensional space. Thus, the function is actually being fitted to a set of wires rather than to a set of

points. The action u and the functions fii are all vectors with the same number of elements. The state x is also a

vector, possibly with a different number of elements. The functionf and the functions yj are all scalars, andf is a

weighted average of the set of Yi. In a reinforcement learning system, the functionfix, u) typically represents the

utility of performing action u in state x, so the u that maximizesftx,u) is the optimal action to perform in state x.

The lower box in Figure 2 can be any function approximation system, such as a multilayer perceptron trained by

backpropagation. Its only input is the state x. Its output is a set of vector pairs (Uti, y,), which control the shape
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of the function in state x. Equation (2) is a continuous, smooth function of its inputs, so it is possible to

backpropagate errors inf back through equation (2) to update weights in the learning system:

f(x,u) = lir - -(x- (2)

For a given state, the set of vector pairs (0i, y,) are interpolated to giveftx,u). The value y. is simply the

maximum of the y, values. Equation (2) definesftx,u) for a particular u to be a weighted average of y, values.

If u is near a particular fik, then the corresponding y, is given more weight. The nonnegative constant parameters

ci determine the amount of smoothing. If all ci =0, then the interpolation "honors the data", andff-y8 when u =fii.

If the ci values are positive, the interpolated function is smoother, and f may not be exactly equal to y1, even

when u=fii.. The constants ci can be chosen a priori, or they can be learned. As will be shown below, if the

learned function is trained with a memory-based learning method, then the values for ci can be chosen arbitrarily,

with no effect on learning or performance. The limit in equation (2) is merely for mathematical completeness. It

ensures that the function is defined when u=Oi. The equation can be written without the limit and e, if it is stated

thatf(x,u)=y, whenever the coefficient of y, in the summation would be undefined.

The control points (fii, y,) serve to shape the function in a given state. Each control point plays a role

analogous to a knot for a spline or a data point for an interpolation function. It is also analogous to the parameters

associated with one radial basis function in a radial basis function network. In each case, the parameters have a

local effect on the shape of the function. However, Equation 2 has one property that distinguishes it from other

interpolation algorithms. No matter what values the vector pairs have, it is always the case that:

maxf(x,u) = maxy8(x) a y.(x) (3)

This is easily proved. First, consider a value of u not equal to any fii . In this case, the expression in

Equation 1 is defined for e=0. f is then a weighted average of the y,, with each weight between zero and one and

the sum of the weights equal to one. A weighted average of several numbers cannot exceed the largest number, so

f is less than or equal to the maximum y,, which is y.. Next, consider the case in which u is equal to OIma,

where dm=, is the fii with the same subscript as y.. In this case, as e goes to zero, the sum in the numerator

comes to be dominated by the term containing fimax and y., so in the limitf=-y.. Lastly, consider the case in
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which u = Uitomax. By a similar argument, if ci=O, then f=--yj, y.. If c,-4, then f is simply a weighted sum of

y,, sojfty.. Thus, when U dn,,x,f=-yr, and for every U~imax,f fYn. Therefore, Equation 3 is true.

Given this method for representing a function f, it is possible to implement a reinforcement learning system

that learns from any sequence of actions. Any function approximation system can be used as the lower box in

Figure 2. The system in Figure 2 can be used to quickly calculate thef value for a given state-action pair, fix, u),

or the optimal action in a state, fmax(), or the maximumf value for a state, y. (x). If action u is performed in

state x, then f(x, u) can be calculated immediately. On the next time step (or several time steps later for multistep

learning), an improved estimate can be calculated forf(x, u) by the reinforcement learning algorithm, using the

value of the new states and the reinforcement received. This can be used to calculate an error inf(x, u). If the

learning system is gradient-based, then the error can be propagated back through Equation 2 and through the

learned function, so that f(x, u) moves toward the improved estimate for f(x, u). Thus, this method for

representingf is flexible, and can be incorporated in a variety of reinforcement learning systems.

This method for representing the functionfix, u) can be represented graphically, as shown in Figure 3.
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Graph of f(x,u) Graph of f(x,u), with 3 wires shown

f f

xo Xo
x x

Cross Section of f(x,u) at x=x

(Ci2(Xo),y 2(Xo)) I

q (f1(Xo),y 1(Xo))

U

Figure 3. An example of a functionf(x,u) whose shape is determined by three wires.

In any given state, such as xo, the wires intersect the plane of that state at three

points. These three points are the control points that determine the shape of the

function for that value of x. The shape of the function in that plane is determined
by the location of the three wires, and the function is guaranteed to pass through the
point (iimax(xo), y. (xo)), which in this example is the point (i'2(xo), y2(xo)).

The upper graphs in Figure 2 show an example of a function flx,u), where x and u are scalars. The graph

on the left is the f function itself, while the one on the right shows three control wires superimposed on the

picture. The lower graph is a cross section of the function, taken at state xO. The set of all points of the form (x,

ii(x), y1 (x)) forms the ith wire in 3-D space. The shape of the surface is then determined by the shape and

location of the control wires. The shape of the function in this example is determined by three wires: A high,
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curved wire (dark gray), a medium, curved wire (light gray), and a low, straight wire (black). Although the

surface does not touch the wires at every point, it is drawn toward them, and so consists of two intersecting ridges

with a valley between them. Where the ridges intersect, the surface rises to the highest wire. In this example each

wire has a constant height but, in general, a wire could have a varying height. The lower picture in Figure 2

shows a cross section of the graph on the right for a particular state, xO. Each wire intersects the plane of xO at a

point, so the three wires define three control points. The learning system learns the location of each control point

in each state. The surface is defined by Equation 2, which ensures that the highest point on the surface will lie on

one of the control points within the cross section at any given state.
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4. MEMORY-BASED LEARNING

The method presented here for representing a function can be used with a variety of function representation

systems. It is clear how it could be used with a gradient-based function approximation system. The error inf can

be propagated back through equation (2) (which is differentiable), to change the weights in the learning system.

This causes the control wires to shift until the surface has the appropriate shape to minimize the mean squared

error inf It may be less clear how it could be used with a memory-based function approximation system, so we

elaborate upon that alternative in this section.

For a memory-based function approximation system, the stored information will comprise a set of triplets (xi,

ut, Et). If action ut is performed in state xt at time t, the system will outputf(xt,ut). The reinforcement learning

algorithm then calculates an estimate Et of whatf(xt,ut) should have been, based on the results of performing

action ut in state xt. Once this estimate has been calculated, the triplet (xi, ut, E1) can be stored. The functions

fii(x) and yi(x) can be calculated from the set of stored memories. If old memories are eventually lost, perhaps

because of a finite-sized memory set, then the fii(x) and yi(x) functions would be expected to improve with

experience, yielding memory-based learning.

Memory-based learning has an advantage relative to gradient learning systems when used with wire fitting. It

is possible to calculate and store each triplet without calculatingJfx, u). In a gradient learning system, the output

of the system must be calculated so that an error can be found to drive learning. In a memory-based system,

examples of inputs and desired outputs are simply stored, and the actual outputsfix, u) need not be calculated.

Thus, for the particular case of a memory-based learning system, Equation 2 need never be evaluated. This not

only saves calculation time, but also simplifies the system because the constants ci do not have to be chosen or

learned.

An important question for a memory-based system is that of how the functions fii(x) and yi(x) can be

calculated from the set of stored data. In Figure 3, this would correspond to the question of how several wires

can be created that will generate a surface that is a reasonable approximation to a set of data points scattered

throughout the cube. If there are n functions fii(x) and yi(x), then every state will intersect n of the wires. One

possible solution is presented next.

For a given state x, the functions fitx) and yjfx) are defined by Equations 4 through 10. If there are n wires,

then there will be a wire associated with each of the n data points nearest to state x (Euclidean distance). The ith
9
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wire will not necessarily go through the ith data point, but fii(x) will typically be fairly close to the u component

of the associated data point. In the equations that follow, t is an index that ranges over all stored data points. The

index i ranges over those data points that are associated with wires. States and actions are vectors. The subscript

k represents the kth element of an action vector, and the subscript L represents the Lth element of a state vector:

di,= CxL-x )2 + -u +)2 + (4)

(5) Uia = d (6)

J

yTua =' d"j (7) mik= Y•,,-S Y ,k(8

fi,,(x) = i + a mt (9) y,(x) = Y, + a m (10)

Each of the n data points (xt, ut, Et) is projected into the plane of the current state x, to gi, a projected point

(x, ut, Et). These points are locations where estimates of the value off should be most reliable. All of the data

points (not just the n closest) have an effect on the wire associated with each projected point. The effect of the ith

data point on the ith wire is inversely proportional to its distance from the projection, and is given by Equation 4.

Equations 5 through 8 perform weighted linear regression. This gives an estimate of the direction one should

move from the projected point to maximize the functionf(x, u). Equations 9 and 10 place the location of the ith

wire (ui(x), yi(x)) near the projected point, slightly uphill in the direction found by weighted linear regression.

Thus, each wire comprises a local estimate of an action that would maximizef, and an estimate of thef value for

that action. The linear regression is done separately for each dimension. For high-dimensional action vectors,

this is less computationally intensive than doing multidimensional linear regression. The results are the same

when the stored values (xt, ut) are evenly distributed (have zero covariance). If the state-action space is explored

unevenly, then the stored values may not be evenly distributed, and it may be necessary to perform an affine

transformation on the data to give zero covariance.
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5. SIMULATION RESULTS

The wire fitting approach was tested by incorporating it into a reinforcement learning system used to control

an inverted pendulum hinged to a cart moving on an infinite track. Q-learning was used for the reinforcement

learning algorithm, and a memory-based learning system was used as the function approximation system. The

equations for the cart-pole system are:

(m' + m,)x + mlOcosO- m,19 2 sin 9= f -pLsgn* (11)

4 m1l20 + mp/Ucos 0 - mgl sin 0 = -(12

where:
x = position of the cart (m)

0 = pole angle (rad)

g = 9.8 m/s2 acceleration due to gravity
mc = 1.0 kg mass of the cart

mp = 0.1 kg mass of the pole

I = 0.5 m pole half-length
gc = 0.0005 N friction between cart and track

gp = 0.000002 N-m-s friction between pole and cart

It < 10.0 N force applied to cart

The cart-pole system was simulated by Euler integration at 50 Hz. Reinforcement was proportional to the

pole angle squared, with an additional negative reinforcement when the pole exceeded 12 degrees from vertical.

The learning system was allowed to learn for only 60 seconds of simulated time, during which a random action in

the range [-10,10] newtons was chosen with uniform probability on each time step. This training data contained

information on only a small portion of the state space, so the learning system was forced to generalize. The

learning system was able to balance the pole indefinitely after 60 seconds of training time, after which learning

was disabled. When the learning system was applied to a finite-track, cart-pole problem, it was not able to learn

to control the cart and pole consistently. This appears to be due to the fact that a time step was only 0.02 second.

Baird (1993) explains why Q-learning cannot learn in continuous time (or discrete time with small time steps), and

proposes a new algorithm, advantage updating, which does not have this limitation. Advantage updating could be

combined with wire fitting and a function approximation system; this remains an area for future research.
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6. CONCLUSION

We have proposed wire fitting, a new method for representing functions using any general function

approximation system. This method solves the maximization problem arising in reinforcement learning systems

and offers several other advantages. We have presented an example of a memory-based system that may be used

with the method to represent Q functions, and have shown how the method, combined with the memory-based

system, can be used for reinforcement learning on a cart-pole control problem.
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