

8

OFFICE OF NAVAL RESEARCH

CONTRACT N00014-94-1-0101

R&T Code 31321075

Technical Report No. 13

RING-OPENING POLYMERIZATION OF STRAINED CYCLOTETRASILANES AS A NEW ROUTE TOWARDS WELL DEFINED POLYSILYLENES

by

M. Cypryk, J. Chrusciel, E. Fossum, K. Matyjaszewski

Published

in the

Makromol. Chem., Macromol Symp., 73, 167 (1993)

Carnegie Mellon University Department of Chemistry 4400 Fifth Avenue Pittsburgh, PA 15213

DTIC QUALITY INSPECTED 3,

June 30, 1994

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.

6

 $\mathbf{29}$

1. AGENCY USE ONLY (Liver Money) REFORT DATE une 30, 1994 1. REFORT IVE AND DATES COVERED Technical Report # 13 1. AGENCY USE ONLY (Liver Money) REFORT DATE une 30, 1994 1. REFORT IVE AND DATES COVERED Technical Report # 13 4. UTHC AND SUBTICE Ring-Opening Polymerization of Strained Cyclotetrasilanes as a New Route Towards Well Defined Polysilylenes 5. FUNCHER MUMERIS N00014-94-1-0101 6. AUTHOR(S) N. Cypryk, J. Chrusciel, E. FOSSUM, K. Matyjaszewski 8. PERFORMME ORGANIZATION REFORT NUMBER N00014-94-1-0101 7. FUNCHER AGENT REFORMED CONCENTION Carnegie Mellon University Department of Chemistry Office of Naval Research 800 North Quincy Street Artington, VA 22217-5000 1. SPONEDONMOC MONTONIC AGENCY REPORT NUMBER National Chem., Macromol. Symp., 73, 167 (1993) 12. DISTRIBUTION/AVALABLITY STATEMENT 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 wordd) 1. SUMMER and money strates and million to octaphenylycolotetrasilane with pingl and methyl substituents at each Si atom in the four- membered ring are prepared by partial dephenylation of octaphenylycolotetrasilane with triffic acid and the subsequent treatment with methylmagnesium bromide. Chemoselectivity, regioselectivity and stercoselectivity of monomer synthesis is discribed. They provide much better control of the microstructure than systems with Li* counterion. 4. SUMMER TERMS 15. NUMBER OF PAGES 14. FROCE CODE 7. SECURITY CLASSIFICATION OF MERSTRACT 15. NUMBER OF PAGES 14. FROCE CODE		CHILMENTAULA	rnul	
1. AGENCY USE ONLY (Level Mank) * AFFORT DATE une 30, 1994 1. ALFORT TYPE AND DATES COVERO Technical Report # 13 4. TILE AND SUBTIFIE Ring-Opening Tolymerization of Strained Cyclotetrasilanes as a New Note Towards Well Defined Polysilylenes 1. FUNDING NUMBERS NO0014-94-1-0101 4. AUTHOR(S) N. Cypryk, J. Chrusciel, E. Fossum, K. Matyjaszewski NO0014-94-1-0101 7. PERFORMANG ORGANIZATION NAME(S) AND ADDRESS(ES) E. PERFORMANG ORGANIZATION REPORT NUMBER 2. PERFORMANG ORGANIZATION NAME(S) AND ADDRESS(ES) I. PERFORMANG ORGANIZATION REPORT NUMBER 3. SPONSONING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) I. SPONSONING/MONITORING AGENCY REPORT NUMBER NO0014-94-1-0101 5. SPONSONING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) I. SPONSONING/MONITORING AGENCY REPORT NUMBER ACIENCY REPORT NUMBER NO0014-94-1-0101 5. SPONSONING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) I. SPONSONING/MONITORING AGENCY REPORT NUMBER ACIENCY REPORT ACIENCY ACIENCY REPORT NUMBER ACIENCY REPORT NUMBER ACIENCY REPORT NUMBER ACIENCY REPORT ACIENCY ACIENCY REPORT ACIENCY ACIENCY REPORT CLASSIFICATION OF REPORT CLASSIFICATION ACIENCY ACIENCICASSIFICATION ACIENCY CLASSIFICATION ACIENCY ACIENCICASSIFICATION ACI	Alter service of the service the settlement intermet galaxies as any ment with the settlemediad and com- count on contromation. To using suggestions for re Dens high has, Suite 1204, Astronom, VA 222024302	Constructional to Alienage Construction Reting and reviewing the collection during this burden, to stashington (and to the Office of Management 4	241 Augustan (C. 2003) the Elme for or information (Send Comments re meadquarters Services, Directorate and Sudget, Paperwork Reduction P	or reviewing instructions and the construction of the second test of den estimate or any other second
une 30, 1994 Technical Report # 13 Ring AO SUBTINE S. FUNDANCE NUMBERS Ring AO SUBTINE S. FUNDANCE NUMBERS as a New Route Towards Well Defined Polysilylenes N00014-94-1-0101 E AUTHOR(S) N. Cypryk, J. Chrusciel, E. Fossum, K. Matyjaszewski N00014-94-1-0101 Carnegt Mellon University Department of Chemistry N00014-94-1-0101 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) E. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) N00014-94-1-0101 Department of the Nary Office of Naval Research N00014-94-1-0101 800 North Quiney Street Technical Report # 13 ATINGTON, VA 22217-5000 Technical Report # 13 11. SUPPLIMENTARY NOTES Makromol. Chem., Macromol. Symp., 73, 167 (1993) 22. DISTREUTION/AVALABLITY STATEMENT 12b. DISTREUTION CODE 23. ABSTRACT (Maximum 200 words) Ring-opening polymerization of cyclic silanes is described as a new synthetic route to well defined high molecular weight polysilylenes (polysilanes). Strained cyclotetrasilanes with phenyl and methyl subsituents at each Si atom in the four-membered ring are prepared by partial dephenylation of octaphenylcyclotetrasilane with triflic acid and the subsequent treatment with methyring resum bronide. Chemoselectivity, regioselectivity and stereoselectivity of monomer synthesis is discussed in detail. In addition to classic anionic initiato	1. AGENCY USE ONLY (Leave blank)	* REPORT DATE	3. REPORT TYPE A	AND DATES COVERED
4. THE AND SUBTILE 5. FUNDMIC NUMBERS Ring-Opening Polymerization of Strained Cyclotetrasilanes N0014-94-1-0101 6. AUTHOR(S) N. Cypryk, J. Chrusciel, E. Fossum, K. Matyjaszewski N0014-94-1-0101 7. FERGENNING ORGANIZATION NAME(S) AND ADDRESS(ES) E. FEEGOMAIN ORGANIZATION NAME(S) AND ADDRESS(ES) N00014-94-1-0101 7. PERGENNING/MONITORING AGENCY MAME(S) AND ADDRESS(ES) N00014-94-1-0101 N00014-94-1-0101 8. SPONSONING/MONITORING AGENCY MAME(S) AND ADDRESS(ES) N00014-94-1-0101 N00014-94-1-0101 9. SPONSONING/MONITORING AGENCY MAME(S) AND ADDRESS(ES) N0014-94-1-0101 N00014-94-1-0101 9. SPONSONING/MONITORING AGENCY MAME(S) AND ADDRESS(ES) N00014-94-1-0101 N00014-94-1-0101 9. SPONSONING/MONITORING AGENCY MAME(S) AND ADDRESS(ES) N00014-94-1-0101 N00014-94-1-0101 10. SPONSONING/MONITORING AGENCY MAME(S) AND ADDRESS(ES) Technical Report #13 N00014-94-1-0101 11. SUPPLIEMENTARY NOTES Technical Report #13 N00014-94-1-0101 11. SUPPLIEMENTARY WORTS Technical Report #13 N00014-94-1-0101 12. DISTRIBUTION/AVAILABELTY STATEMENT 12. SPONSONING / MONITORING AGENCY MAME(S) AND ADDRESS(ES) NO014-94-1-0101 12. DISTRIBUTION/AVAILABELTY STATEMENT 12. DISTRIBUTION (ADDRESS) NO014-94-1-0101		une 30, 1994	Technical F	Report # 13
S. AUTOR(S) M. Cypryk, J. Chrusciel, E. Fossum, K. Matyjaszewski 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Carnegie Mellon University Department of Chemistry 4400 Fifth Avenue Pittsburgh, PA 15213 8. SPONDRIG/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Department of the Navy Office of Naval Research 800 North Quincy Street Arlington, VA 22217-5000 11. SUPPLEMENTARY NOTES Makromol. Chem., Macromol. Symp., 73, 167 (1993) 12. DISTRIBUTION / AVARABLITY STATEMENT 12. DISTRIBUTION / AVARABLITY STATEMENT 12. DISTRIBUTION / AVARABLITY STATEMENT 13. ABSTRACT (Meanum 200 words) Ring-opening polymerization of cyclic silanes is described as a new synthetic route to well defined high molecular weight polysilylenes (polysilanes). Strained cyclotetrasilanes with phenyl and methyl substituents at each Si atom in the fourmembered ring are prepared by partial dephenylation of octaphenylcyclotetrasilane with triflic acid and the subsequent treatment with methylmagnesium bromide. Chemoselectivity, regioselectivity and stereoselectivity of monomer synthesis is discussed in detail. In addition to classic anionic initiators for the ring-opening process, new catalysts and initiators based on transition metals (Cu, Pd, Pt) are described. They provide much better control of the microstructure than systems with Li* counterion. 4. SUBJECT TERMS 15. NUMM	4. TITLE AND SUBTITLE Ring-Opening Polymerizat as a New Route Towards W	ion of Strained Well Defined Poly	Cyclotetrasilane silylenes	S. FUNDING NUMBERS
R. Cypryk, J. Contracter, D. Fosson, Kr. Mary Josefford P. PEFORMING ORGANIZATION MAME(S) AND ADDRESS(ES) Carnegie Mellon University Department of Chemistry 4400 Fifth Avenue Pittsburgh, PA 15213 D. SPONSORIG/MONITORING AGENCY MAME(S) AND ADDRESS(ES) Department of the Navy Office of Naval Research 800 North Quincy Street Arlington, VA 22217-5000 III. SUPPLEMENTARY NOTES Makromol. Chem., Macromol. Symp., 73, 167 (1993) 72. DISTRIBUTION / AVAILABELITY STATEMENT 73. ASSTRACT (Maximum 200 words) Ring-opening polymerization of cyclic silanes is described as a new synthetic route to well defined high molecular weight polysilylenes (polysilanes). Strained cyclotetrasilanes with phenyl and methyl substituents at each Si atom in the fourmembered ring are prepared by partial dephenylation of octaphenylcyclotetrasilane with triflic acid and the subsequent treatment with methylmagnesium bromide. Chemoselectivity, regioselectivity and stereoselectivity of monomer synthesis is discussed in detail. In addition to classic anionic initiators for the ring-opening process, new catalysts and initiators based on transition metals (Cu, Pd, Pt) are described. They provide much better control of the microstructure than systems with Li* counterion. 4. SUBJECT TERMS 15. NUMMER OF PAGES 7. SECURITY CLASSIFICATION OF ASSTRACT 15. NUMMER OF PAGES 16. PROFE 16. SECU	6. AUTHOR(S)	F Fossum K. M	atviaszewski	
7. PERFORMING ORGANILATION HAME(S) AND ADDRESS(ES) E - PERFORMING ORGANIZATION Carnegie Mellon University Performent of Chemistry 94400 Fifth Avenue N00014-94-1-0101 Pittsburgh, PA 15213 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Department of the Navy AGENCY NAME(S) AND ADDRESS(ES) Department of the Navy 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Department of the Navy Technical Report #13 Office of Naval Research Technical Report #13 800 North Quincy Street Technical Report #13 11. SUPPLEMENTARY NOTES Technical Report #13 Makromol. Chem., Macromol. Symp., 73, 167 (1993) 12b. DISTRIBUTION CODE 12a. DISTRIBUTION/AVAULABRITY STATEMENT 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) 12b. DISTRIBUTION CODE Ring-opening polymerization of cyclic silanes is described as a new synthetic route to well defined high molecular weight polysilylenes (polysilanes). Strained cyclotetrasilanes with phenyl and methyl substituents at each Si atom in the fourmembered ring are prepared by partial dephenylation of octaphenylcyclotetrasilane with triflic acid and the subsequent treatment with methylmagnesium bromide. Chemoselectivity, regioselectivity and stereoselectivity of monomer synthesis is discussed in detail. In addition to classic anionic initiators for the ring-opening process, new catalysts and initiators based on transition metals	M. Cypryk, J. Chruscier,	L. 1055du, K		
Carnegie Mellon University Department of Chemistry 4400 Fifth Avenue Fittsburgh, PA 15213 NO014-94-1-0101 5: SFONSORING/MONIFORME AGENCY MAME(S) AND ADDRESS(ES) Department of the Navy Office of Naval Research 800 North Quincy Street Arlington, VA 22217-5000 14. SFONSORING/MONITORING AGENCY REPORT NUMBER 11: SUPPLEMENTARY NOTES Makromol. Chem., Macromol. Symp., 73, 167 (1993) Technical Report # 13 22. DISTRIBUTION/AVAILABLITY STATEMENT 12b. DISTRIBUTION CODE 3. ABSTRACT (Maximum 200 words) Ring-opening polymerization of cyclic silanes is described as a new synthetic route to well defined high molecular weight polysilylenes (polysilanes). Strained cyclotetrasilanes with phenyl and methyl substituents at each Si atom in the four- membered ring are prepared by partial dephenylation of octaphenylcyclotetrasilane with triflic acid and the subsequent treatment with methylmagnesium bromide. Chemoselectivity, regioselectivity and stereoselectivity of monomer synthesis is discussed in detail. In addition to classic anionic initiators for the ring-opening process, new catalysts and initiators based on transition metals (Cu, Pd, Pt) are described. They provide much better control of the microstructure than systems with Li* counterion. 4. SUBJECT TERMS 15. NUMSER OF PAGES 16. FRICE CODE 7. SECURITY CLASSFRCATION OF MIST MAC Classified 19. SECURITY CLASSFRCATION Classified 20. LIMITATION OF ASSTRA UL	. PERFORMING ORGANIZATION NAME	S) AND ADORESS(ES)		8. PERFORMING ORGANIZATION
Department of Chemistry 4400 Fifth Avenue Pittsburgh, PA 15213 N00014-94-1-0101 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES) Department of the Navy Office of Naval Research 800 North Quincy Street Arlington, VA 22217-5000 10. SPONSORING/MONITORING AGENCY REPORT HUMSER Technical Report # 13 1. SUPPLEMENTARY NOTES Makromol. Chem., Macromol. Symp., 73, 167 (1993) Technical Report # 13 22. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE 3. ABSTRACT (Maximum 200 words) Targ-opening polymerization of cyclic silanes is described as a new synthetic route to well defined high molecular weight polysilylenes (polysilanes). Strained cyclotetrasilanes with phenyl and methyl substituents at each Si atom in the four- membered ring are prepared by partial dephenylation of octaphenylcyclotetrasilane with triflic acid and the subsequent treatment with methylmagnesium bromide. Chemoselectivity, regioselectivity and stereoselectivity of monomer synthesis is discussed in detail. In addition to classic anionic initiators for the ring-opening process, new catalysts and initiators based on transition metals (Cu, Pd, Pt) are described. They provide much better control of the microstructure than systems with Li* counterion. 4. SUBJECT TERMS 15. NUMBER OF PAGES 16. FRICE CODE 7. SECURITY CLASSFICATION OF MEFONT Classified 19. SECURITY CLASSFICATION OF ABSTRACT UL	Carnegie Mellon Unive	rsity		REPORT NUMBER
4400 Fifth Avenue Pittsburgh, PA 15213 1: SPONSORING/MONITORING AGENCY MAME(S) AND ADDRESS(ES) Department of the Navy Office of Naval Research 800 North Quincy Street Arlington, VA 22217-5000 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 1: SUPPLEMENTARY NOTES Makromol. Chem., Macromol. Symp., 73, 167 (1993) Technical Report #13 2: DISTRIBUTION/AVAILABLITY STATEMENT 12b. DISTRIBUTION CODE 3: ABSTRACT (Maximum 200 words) 12b. DISTRIBUTION CODE 3: ABSTRACT (Maximum 200 words) 12b. DISTRIBUTION (AVAILABLITY STATEMENT 3: ABSTRACT (Maximum 200 words) 12b. DISTRIBUTION CODE 3: ABSTRACT (Maximum 200 words) 12b. DISTRIBUTION (CODE 4: SUBJECT TERMS 12b. DISTRIBUTION CODE 6: SUBJECT TERMS 12b. DISTRIBUTION CODE 7: SECURITY CLASSIFICATION OF THIS FAGE 15. NUMBER OF PAGES 7: SECURITY CLASSIFICATION OF THIS FAGE 15. NUMBER OF PAGES 7: SECURITY CLASSIFICATION OF THIS FAGE 15. NUMBER OF PAGES 7: SECURITY CLASSIFICATION OF THIS FAGE 15. NUMBER OF PAGES 7: SECURITY CLASSIFICATION OF THIS FAGE 19. SECURITY CLASSIFICATION OF ABSTRACT CLassified 20. LIMITATION OF ABSTRACT UL	Department of Chemist	ry		N00014-94-1-0101
PITTESDUTER, PA 13213 15. SPONSORING/MONITORING AGENCY MANE(S) AND ADDRESS(ES) Department of the Navy Office of Naval Research 800 North Quincy Street Arlington, VA 22217-5000 1. SUPPLEMENTARY NOTES Makromol. Chem., Macromol. Symp., 73, 167 (1993) 22. DISTRIBUTION/AVARABLITY STATEMENT 12. DISTRIBUTION/AVARABLITY STATEMENT 12. DISTRIBUTION/AVARABLITY STATEMENT 12. DISTRIBUTION/AVARABLITY STATEMENT 12. DISTRIBUTION / AVARABLITY STATEMENT 13. ABSTRACT (Maximum 200 words) Ring-opening polymerization of cyclic silanes is described as a new synthetic route to well defined high molecular weight polysilylenes (polysilanes). Strained cyclotetrasilanes with phenyl and methyl substituents at each Si atom in the fourmembered ring are prepared by partial dephenylation of octaphenylcyclotetrasilane with triffic acid and the subsequent treatment with methylmagnesium bromide. Chemoselectivity, regioselectivity and stereoselectivity of monomer synthesis is discussed in detail. In addition to classic anionic initiators for the ring-opening process, new catalysts and initiators based on transition metals (Cu, Pd, Pt) are described. They provide much better control of the microstructure than systems with Li* counterion. 4. SUBJECT TERMS 15. SECURITY CLASSIFICATION of	4400 Fifth Avenue			
1: SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10: SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Department of the Navy Office of Naval Research 800 North Quincy Street Arilington, VA 22217-5000 1: SUPPLEMENTARY NOTES Technical Report #13 Makromol. Chem., Macromol. Symp., 73, 167 (1993) 22. DISTRIBUTION / AVAILABILITY STATEMENT 1: Supplementation of cyclic silanes is described as a new synthetic route to well defined high molecular weight polysilylenes (polysilanes). Strained cyclotetrasilanes with prenyl and methyl substituents at each Si atom in the four-membered ring are prepared by partial dephenylation of octaphenylcyclotetrasilane with triflic acid and the subsequent treatment with methylmagnesium bromide. Chemoselectivity, regioselectivity and stereoselectivity of monomer synthesis is discussed in detail. In addition to classic anionic initiators for the ring-opening process, new catalysts and initiators based on transition metals (Cu, Pd, Pt) are described. They provide much better control of the microstructure than systems with Li* counterion. 4. SUBJECT TERMS 15. NUMBER OF PAGES 7. SECURITY CLASSIFICATION 16. SECURITY CLASSIFICATION 17. SECURITY CLASSIFICATION 0. SUBJECT TERMS 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT	Fittsburgn, FA 15213			
Department of the Navy Office of Naval Research 800 North Quincy Street Arlington, VA 22217-5000 Adent's nervoir Number Technical Report #13 11. SUPPLEMENTARY NOTES Makromol. Chem., Macromol. Symp., 73, 167 (1993) Technical Report #13 2a. DISTRIBUTION/AVAILABELITY STATEMENT 12b. DISTRIBUTION CODE 3. ABSTRACT (Maximum 200 words) 12b. DISTRIBUTION CODE 3. ABSTRACT (Maximum 200 words) 12b. DISTRIBUTION CODE Ring-opening polymerization of cyclic silanes is described as a new synthetic route to well defined high molecular weight polysilylenes (polysilanes). Strained cyclotetrasilanes with phenyl and methyl substituents at each Si atom in the four- membered ring are prepared by partial dephenylation of octaphenylcyclotetrasilane with triffic acid and the subsequent treatment with methylmagnesium bromide. Chemoselectivity, regioselectivity and stereoselectivity of monomer synthesis is discussed in detail. In addition to classic anionic initiators for the ring-opening process, new catalysts and initiators based on transition metals (Cu, Pd, Pt) are described. They provide much better control of the microstructure than systems with Li+ counterion. 4. SUBJECT TERMS 15. NUMBER OF PAGES 16. PRICE CODE 7. SECURITY CLASSIFICATION OF THIS PAGE Classified 19. SECURITY CLASSIFICATION OF ABSTRACT UL	. SPONSORING / MONITORING AGENCY	NAME(S) AND ADDRESS	ES)	10. SPONSORING / MONITORING
Office of Naval Research 800 North Quincy Street Arlington, VA 22217-5000 Technical Report #13 II. SUPPLEMENTARY NOTS Makromol. Chem., Macromol. Symp., 73, 167 (1993) Technical Report #13 22. DISTRIBUTION/AVAILABBLITY STATEMENT 12b. DISTRIBUTION CODE 3. ABSTRACT (Maximum 200 words) 12b. DISTRIBUTION CODE Ring-opening polymerization of cyclic silanes is described as a new synthetic route to well defined high molecular weight polysilylenes (polysilanes). Strained cyclotetrasilanes with phenyl and methyl substituents at each Si atom in the four- membered ring are prepared by partial dephenylation of octaphenylcyclotetrasilane with triflic acid and the subsequent treatment with methylmagnesium bromide. Chemoselectivity, regioselectivity and stereoselectivity of monomer synthesis is discussed in detail. In addition to classic anionic initiators for the ring-opening process, new catalysts and initiators based on transition metals (Cu, Pd, Pt) are described. They provide much better control of the microstructure than systems with Li+ counterion. 4. SUBJECT TERMS 15. NUMBER OF PAGES 16. PRICE COOF 7. SECURITY CLASSIFICATION OF MER PAGE Classified 19. SECURITY CLASSIFICATION OF ABSTRACT Classified 20. LIMITATION OF ABSTRACT UL	Department of the Nav	' У		AGENCT REPORT NUMBER
800 North Quincy Street Arlington, VA 22217-5000 Technical Report #13 11. SUPPLEMENTARY NOTES Makromol. Chem., Macromol. Symp., 73, 167 (1993) Technical Report #13 22. DISTRIBUTION/AVAILABBLITY STATEMENT 12b. DISTRIBUTION CODE 3. ABSTRACT (Maximum 200 words) 12b. DISTRIBUTION / AVAILABBLITY STATEMENT 3. ABSTRACT (Maximum 200 words) 12b. DISTRIBUTION CODE 3. ABSTRACT (Maximum 200 words) 12b. DISTRIBUTION / AVAILABBLITY STATEMENT 12b. DISTRIBUTION / AVAILABBLITY STATEMENT 12b. DISTRIBUTION CODE 3. ABSTRACT (Maximum 200 words) 12b. DISTRIBUTION CODE Ring-opening polymerization of cyclic silanes is described as a new synthetic route to well defined high molecular weight polysilylenes (polysilanes). Strained cyclotetrasilanes with phenyl and methyl substituents at each Si atom in the four- membered ring are prepared by partial dephenylation of octaphenylcyclotetrasilane with triflic acid and the subsequent treatment with methylmagnesium bromide. Chemoselectivity, regioselectivity and stereoselectivity of monomer synthesis is discussed in detail. In addition to classic anionic initiators for the ring-opening process, new catalysts and initiators based on transition metals (Cu, Pd, Pt) are described. They provide much better control of the microstructure than systems with Li* counterion. 4. SUBJECT TERMS 15. NUMBER OF PAGES 16. PRICE CODE 7. SECURITY CLASSERCATION OF REPORT Classified 19. SECURITY CLASSERCATION OF AND TACOME <td>Office of Naval Resea</td> <th>rch</th> <th></th> <td>1</td>	Office of Naval Resea	rch		1
Arlington, VA 22217-5000 Technical Report Fill It. SUPPLEMENTARY NOTES Makromol. Chem., Macromol. Symp., 73, 167 (1993) 22. DISTRIBUTION/AVAILABRITY STATEMENT 12b. DISTRIBUTION/AVAILABRITY STATEMENT 12c. DISTRIBUTION OF AND PAGES 12c. DISTRIBUTION OF ADSTRACT	800 North Quincy Stre	et		Technical Report #13
1. SUPPLEMENTARY NOTES Makromol. Chem., Macromol. Symp., 73, 167 (1993) 2a. DISTRIBUTION/AVAILABLITY STATEMENT 12b. DISTRIBUTION/AVAILABLITY STATEMENT 12b. DISTRIBUTION/AVAILABLITY STATEMENT 12b. DISTRIBUTION/AVAILABLITY STATEMENT 12b. DISTRIBUTION / AVAILABLITY STATEMENT 12c. DISTRIBUTION / AVAILABLITY STATEMENT 12c. DISTRIBUTION	Arlington, VA 2221/-5	000		Technical Report #
3. ABSTRACT (Maximum 200 words) Ring-opening polymerization of cyclic silanes is described as a new synthetic route to well defined high molecular weight polysilylenes (polysilanes). Strained cyclotetrasilanes with phenyl and methyl substituents at each Si atom in the four-membered ring are prepared by partial dephenylation of octaphenylcyclotetrasilane with triflic acid and the subsequent treatment with methylmagnesium bromide. Chemoselectivity, regioselectivity and stereoselectivity of monomer synthesis is discussed in detail. In addition to classic anionic initiators for the ring-opening process, new catalysts and initiators based on transition metals (Cu, Pd, Pt) are described. They provide much better control of the microstructure than systems with Li* counterion. 4. SUBJECT TERMS 15. NUMBER OF PAGES 16. PRICE CODE 14. SECURITY CLASSIFICATION OF THIS PAGE 0F REPORT 18. SECURITY CLASSIFICATION OF THIS PAGE 0F REPORT 18. SECURITY CLASSIFICATION OF THIS PAGE 0F REPORT 19. SECURITY CLASSIFICATION OF ABSTRACT 0L LBMITATION OF ABSTRACT UL	2a. DISTRIBUTION / AVAILABILITY STAT	EMENT		12b. DISTRIBUTION CODE
Ring-opening polymerization of cyclic silanes is described as a new synthetic route to well defined high molecular weight polysilylenes (polysilanes). Strained cyclotetrasilanes with phenyl and methyl substituents at each Si atom in the four-membered ring are prepared by partial dephenylation of octaphenylcyclotetrasilane with triflic acid and the subsequent treatment with methylmagnesium bromide. Chemoselectivity, regioselectivity and stereoselectivity of monomer synthesis is discussed in detail. In addition to classic anionic initiators for the ring-opening process, new catalysts and initiators based on transition metals (Cu, Pd, Pt) are described. They provide much better control of the microstructure than systems with Li+ counterion. 4. SUBJECT TERMS 15. NUMBER OF PAGES 7. SECUNITY CLASSIFICATION OF ABSTRACT Classified 19. SECURITY CLASSIFICATION OF ABSTRACT UL	3. ABSTRACT (Maximum 200 words)			
I. SUBJECT TERMS I. SUBJECT TERMS IS. NUMBER OF PAGES IG. PRICE CODE IG. P	Ring-opening polymer route to well defined h cyclotetrasilanes with p membered ring are pre octaphenylcyclotetrasi methylmagnesium bro stereoselectivity of mo classic anionic initiator based on transition me control of the microstr	ization of cyclic sil igh molecular wei phenyl and methyl pared by partial d lane with triflic aci mide. Chemoselec nomer synthesis is s for the ring-oper tals (Cu, Pd, Pt) ar ucture than syster	lanes is described a ght polysilylenes (l substituents at ea ephenylation of id and the subsequ tivity, regioselection discussed in detaining process, new re described. They as with Li ⁺ counter	as a new synthetic (polysilanes). Strained ach Si atom in the four- uent treatment with ivity and ail. In addition to catalysts and initiators provide much better rion.
7. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRA OF REPORT OF ADSTRACT Classified Classified UL	4. SUBJECT TERMS	. <u></u>		15. NUMBER OF PAGES 16. PRICE CODE
OF REPORTOF THIS PAGEOF ABSTRACTClassifiedClassifiedUL	T. SECURITY CLASSIFICATION I LE	ECURITY CLASSIFICATION	19. SECURITY CLASS	FICATION 20. LIMITATION OF ABSTR
	OF REPORT Classified Cla	F THIS PAGE Baified	OF ABSTRACT	UL

.

.

RING-OPENING POLYMERIZATION OF STRAINED CYCLOTETRASILANES AS A NEW ROUTE TOWARDS WELL DEFINED POLYSILYLENES

M. Cypryk, J. Chrusciel, E. Fossum, <u>K. Matyjaszewski</u>

Carnegie Mellon University, Department of Chemistry, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA

<u>Abstract</u>: Ring-opening polymerization of cyclic silanes is described as a new synthetic route to well defined high molecular weight polysilylenes. Strained cyclotetrasilanes with phenyl and methyl substituents at each Si atom in the four-membered ring are prepared by partial dephenylation of octaphenylcyclotetrasilane with triflic acid and subsequent treatment with methylmagnesium bromide. Chemoselectivity, regioselectivity and stereoselectivity of monomer synthesis is discussed in detail. In addition to classic anionic initiators for the ring-opening process, new catalysts and initiators based on transition metals (Cu, Pd, Pt) are described. They provide much better control of the microstructure than systems with Li⁺ counterion.

INTRODUCTION

Recent interest in polysilylenes (polysilanes) originates in the unusual and attractive properties of these polymers^{1,2,3}. There are a few current and potential applications for these polymers. Polysilylenes are used as precursors to silicon carbide fibers, as photoconductors, photoresists, nonlinear optical materials, as well as initiators for radical polymerization. These polymers with a linear Si-Si catenation reaching more than 1,000 Si atoms in the main chain only recently have been prepared as soluble and tractable materials. Polysilylenes behave differently than most organic polymers. They strongly absorb in the range of 300 to 400 nm with the extinction coefficient and absorption maximum depending on the chain conformation and nature of substituents. They form easily radical anions and radical cations, in a way similar to polyenes. Symmetrically substituted polymers do not transform to the isotropic melt but rather form columnar mesophases. These polymers are thermodynamically unstable and can be easily degraded to cyclooligosilanes. The degradation can be accomplished by light but also thermally as well as in the presence of anionic intermediates.

Most properties of polysilylenes depend strongly on substituents at silicon atom as well as on the chain conformation. Some applications, especially in the optoelectronics, as well as correct structure-property studies require preparation of well defined polymers. They should have controlled molecular weight, narrow molecular weight distribution, desired functional groups along the chain and at the chain end, as well as controlled microstructure. It is also interesting to compare properties of various copolymers with a random and a regular (blocky and periodic) structures and to establish influence of the tacticity on chain conformation and on spectroscopic and electronic properties.

Polysilylenes are typically prepared by the reductive coupling of disubstituted dichlorosilanes with alkali metals⁴ and by dehydrogenative coupling of primary silanes⁵. In both cases polymers with a broad molecular weight distribution and uncontrolled molecular weights are formed. We improved a control of some parameters of the reductive coupling process by using low temperature sonochemical technique⁶. Some side reactions were suppressed and also polymers with very high molecular weight (M>100,000) were selectively degraded by friction forces operating during the cavitation process. Nevertheless, no control of the end groups and no control of tacticities was possible in this system. Polysilylenes can be also prepared by the anionic polymerization of so called masked disilenes, i.e. adducts of disilenes to aromatic compounds such as biphenyl or naphthalene⁷. This technique provides very good control of various structural features of polysilylenes and enables preparation of block copolymers. It can not be, however used to prepare polymers with aryl groups.

We have previously reported on the synthesis of strained cyclotetrasilanes which can be anionically polymerized to high molecular weight polysilylenes^{8,9}. This method allows preparation of polymers with aryl groups, too. In this paper we will discuss in more details the synthesis and characterization of some of cyclosilanes and use of some new catalytic systems for ring-opening polymerization.

RESULTS AND DISCUSSION

Monomer Synthesis/Triflation

Most cyclopolysilanes described in literature are strainless and can not be used for polymerization. Reductive coupling usually produces rings which can not be polymerized by ring opening process. Generally the preferred ring size decreases with bulkiness of substituents and for dimethyl system the sixmembered ring is preferred, for methylphenyl system the cyclopentasilane dominates, for diphenyl system the cyclotetrasilane is formed in large amount, and a mixture of cyclotrisilane and disilene is formed with even more bulky dimesityl system. We have previously described the rapid and efficient dearylation of phenyl groups from different silanes using triflic acid. This reaction can also be applied to octaphenylcyclotetrasilane. Up to four phenyl groups can be removed from this ring before any ring cleavage is noticed. The resulting 1,2,3,4-tetraphenyl-1,2,3,4-tetrakis(trifluoromethane-sulfonate)cyclotetrasilane can be then converted by the action of methyl magnesium bromide to polymerizable 1,2,3,4-tetramethyl-1,2,3,4-tetraphenylcyclotetrasilane:

It was interesting to follow the chemoselectivity and stereoselectivity of the dearylation and methylation process in order to better control structure of possible isomers of the polymerizable rings and also to optimize conditions of the synthesis.

The structures of possible isomers are shown in the Scheme 2 below. The substituents in the ring may symbolize triflate or methyl groups, whereas phenyl groups are not shown:

(2)

The reaction was performed in CH_2Cl_2 increasing the $[TfOH]/[(Ph_2Si)_4]$ ratios: from 0.5 to 5 mol/mol (H₂O and O₂ concentrations were below 1 ppm). The ¹⁹F NMR spectra show several signals of various intensities (Fig. 1). A compilation of spectra enabled the tentative assignment of the signals. The positions of these signals shift downfield with increasing order of substitution.

After addition of 0.5 equivalent of TfOH a singlet corresponding to (TfO)Ph₇Si₄ and 4 signals corresponding to the 4 isomers of (TfO)₂Ph₆Si₄ were observed (rel. intensity 7:4:3:2). There are four isomers of $(TfO)_2Ph_6Si_4$ (Scheme 2, 2a,b,c,d). With further addition of TfOH, the signal ascribed to (TfO)Ph7Si4 disappeared, and 2 signals corresponding to (TfO)₃Ph₅Si₄ increase in intensity. At $[TfOH]/[(Ph_2Si)_4]=3$ there were two main signals with a ratio 2:1 ascribed to (TfO)₃Ph₅Si₄ (3a). With continuous addition of the acid, the signals attributed to $(TfO)_4Ph_4Si_4$ (approx. ratio 4:4:1) appeared. Addition of a 5th equivalent of triflic acid resulted in broadening of signals making spectra difficult to resolve.

Fig. 1. ¹⁹F NMR spectra recorded during triflation of octaphenylcyclotetrasilane

The triflation reaction is very fast up to 3 equivalents of the acid added (it had been completed before the first spectrum was taken). The reaction slows down considerably when the fourth equivalent of TfOH is added. The signal of the free acid is present in the solution for several hours and the progress of the substitution can be followed by NMR Some broadening of the signal of triflic acid and of two signals of tetrakis(triflate) isomers was observed. The signals become sharp when the acid is consumed (ca. 6 hrs, 25° C, $[(Ph_2Si)_4]_0=0.05$ mol/L). In the case of $[TfOH]/[(Ph_2Si)_4]=5$, free acid is present in the mixture even after 24 hrs.

The triflated cyclotetrasilanes were characterized also by INEPT ²⁹Si NMR . All compounds show two groups of signals: one in the range 13 to 33 ppm corresponding to SiOTf moiety, the other in the range -20 to -30 ppm, typical for >SiPh₂ group. The chemical shifts of triflated silicon nuclei change upfield with the number of triflic groups in the ring. Monotriflate as well as all four isomers of bis(triflate) have been identified in the spectra. Four signals corresponding to tris(triflate) isomers were observed in the SiOTf range. Two main peaks (20.5, 19.4 ppm, approx. ratio 2:1) have been ascribed to the isomer predominant in the mixture. Only two signals were observed for

tetrakis(triflate) cyclotetrasilane Previous studies of the reactivity of phenyl silanes towards triflic acid revealed that the presence of a triflate moiety inhibits displacement at the same silicon atom and reduces the rate of dearylation at neighboring silicon atoms¹⁰. The NMR data are in agreement with these results showing that the rate of the dearylation reaction drops with the number of triflate groups introduced to the silane molecule. The selectivity of the reaction increases with the degree of substitution. Thus, bis(triflate) may be obtained with ca. 70% yield, while tris- and tetrakis(triflates) are formed in over 90% yield. The selectivity of triflation is relatively low at the stage of monotriflate, because the reaction is heterogeneous (the solubility of octaphenylcyclotetrasilane in CH₂Cl₂ is below 1%). Monotriflate is more soluble and undergoes further triflation in solution. Cyclotetrasilane containing five triflate groups in the molecule cannot be obtained selectively since the substitution reaction of the second phenyl for a triflate group at silicon atom is very slow and is accompanied by electrophilic ring cleavage by the acid.

Monomer Synthesis/Substitution

The samples containing 3, 4 and 5 equivalents of TfOH were methylated using MeMgBr and the ¹H NMR spectra of the methylated cyclotetrasilanes were correlated with the ¹⁹F NMR spectra of triflate derivatives. This helped to assign signals to particular cyclic silanes and their isomers. The relative intensities of the isomers of disubstituted cyclics are similar in the corresponding ¹⁹F and ¹H NMR spectra. This may indicate high stereoselectivity in the reaction of silyl triflates with Grignard reagent.

The ¹H NMR spectrum of the 3:1 mixture reveals, the main isomer of trimethylcyclotetrasilane, 3a. The ¹H NMR spectrum of the 4:1 reaction mixture shows 5 signals corresponding to tetramethylcyclotetrasilane isomers9. In the case of the 5:1 mixture, the ^{1}H NMR spectrum of the methyl region reveals 55% unreacted tetramethyl derivative, signals probably corresponding to pentamethyl cyclics (δ : 0.3-0.5 ppm) and to linear 1,1,2,3,4pentamethyl-1,2,3,4-tetraphenyltetrasilane (δ : 0.0-0.06 ppm, 15%). The SiH multiplet at $\delta = 4.15$ ppm, confirmed the Fig. 2. ¹H NMR spectra of methylated cyclotetra presence of the opened silane structure.

Scheme 2 showed the formal transformation of isomers during the triflation/substitution process. A comparison of the ¹H and ¹⁹F NMR spectra of the corresponding cyclotetrasilanes indicates highly stereoselective reaction of triflates with a Grignard reagent. The relative proportion of isomers is preserved during methylation. In other words, the proportion of isomers does not correspond to a statistical distribution but rather to steric effects. Triflate group is the most bulky one, followed by phenyl and methyl. The content of a particular isomer of the triflated ring might be related to its steric constrains, especially for triflate groups which can exchange at the level of trisubstituted and tetrasubstituted rings, **2c** isomer should be the most stable and should dominate the reaction products. Two others (presumably **2a**, **2b**) appear in similar amounts while the most hindered one (**2d**) should be formed in a minor quantity (Fig. 1).

\$

The ¹⁹F NMR spectrum of the $[TfOH]/[(Ph_2Si)_4]=4$ mixture shows only three tetrakis(triflate) signals while there are five signals in the ¹H NMR spectrum. (There are four isomers of tetrasubstituted rings possible, which should give six signals total, but the most hindered one (4d) is probably not formed). Some fluorine signals for tetrakis(triflate) isomers can coincidentally overlap each other. In fact, the triflate groups in positions 1 and 3 in 4c are shielded similarly to the ones in 4b awhile the triflate group in position 4 would be shielded as in 4a. Only the triflate group in position 2 is different and it appears downfield from the others.

Exchange of triflate groups occurs very rapidly in less sterically hindered silyl triflates, e.g. Me₃SiOTf. In the case of phenyl(triflate)cyclotetrasilanes, fast exchange should lead to the thermodynamic mixture of stereoisomers at each stage of substitution. The dearylation reaction at $[TfOH]/[(Ph_2Si)_4]<3$ is so fast that the exchange cannot be directly observed by NMR, since the acid is consumed very rapidly. However, the substitution of the fourth phenyl group is slow enough to make such observations possible.

Both reactions, dearylation and ester group exchange, probably compete leading to a thermodynamically preferred mixture of isomers. The proportion of isomers (within accuracy of integration) is independent of the [TfOH]/[(Ph₂Si)₄] ratio (Fig. 1). Kinetic isomer distribution should be observed at a low acid/silane ratio. The distribution should change towards a thermodynamic proportion of isomers as the amount of TfOH and the lifetime of the acid in the reaction mixture increase. The exchange occurs at the stage of substitution of the third triflate group. Isomer 3a can be directly formed from isomers 2a and 2b, which both constitute approximately 50% of bis(triflate)cyclotetrasilane, while the concentration of isomer 3a among the tris(triflate) cyclics exceeds 85%. This proves that at this stage, the exchange of ester groups must be faster than the dearylation. The substitution of the fourth phenyl group is even slower so the exchange must also take place, leading to the thermodynamically controlled mixture of isomers.

It is difficult to separate triflated and methylated derivatives since they are very sensitive to moisture and oxygen. However, repeated crystallization from hexane at low temperatures allows enhancement of 4a up to >90% purity.

New Initiators for the Ring-Opening Polymerization

We have previously reported on the anionic polymerization of the mixture of 1,2,3,4-tetramethyl-1,2,3,4-tetraphenylcyclotetrasilanes with silyl potassium and butyl lithium as initiators in relatively non-polar media (benzene with less than 5% THF), sometimes in the presence of crown ethers and cryptands (cryptand [2.1.1] which is selective for lithium). Polysilylenes with molecular weights up to M_n =50,000 were prepared at ambient temperatures. Silyl anions are very reactive species and they may not only induce ring-opening of the strained cycle (propagation) but also lead to either dearylation or demethylation of the ring (transfer/termination). Silyl anions may also loose an electron and form silyl radicals which will very rapidly react with a solvent. Silyl anions, especially accompanied by cryptated Li cations, may react with various impurities:

In order to increase selectivity of silyl anions we attempted their modifications by adding copper cyanates which form various types of complexes. Up to three silyl moieties can be coordinated with Cu atom. The catalytic efficiency is the highest for the ratio Si/Cu=2. Equilibrium constants for the complexation decreases with the number of Si moieties:

; K1 $CuCN + Ph_2MeSiLi$ Ph₂MeSiCu(CN)Li (Ph₂MeSi)₂Cu(CN)Li₂ ; K₂ $Ph_2MeSiCu(CN)Li + Ph_2MeSiLi$ (Ph₂MeSi)₃CuLi +LiCN ; K₃ (Ph₂MeSi)₂Cu(CN)Li + Ph₂MeSiLi $K_1 > K_2 > K_3 = 34 (+-10)$ (4)

Silyl cuprates are active in THF solution and complete polymerization with less than 1 mol% of the initiator. Monomers purified in the same way require at least 2 mol% of nBuLi as the initiator. This may indicate higher selectivity and lower sensitivity for impurities of copper based initiators. Moreover, no depolymerization to strainless cycles was observed in THF with Cu containing initiators. In contrast, BuLi in THF gives within 5 minutes complete depolymerization of linear chains.

One of the most interesting aspects of Cu/2Si initiator is the control of tacticities. As shown in Fig. 3, three relatively sharp signals of poly(methylphenylsilylene) are observed in the contrary to a very broad signal found with BuLi initiator. In both cases the same enriched (>90%) "all-trans" isomer was used. It seems that Cu/2Si species react with a monomer with w the retention of configuration on the attacked Si atom. Unmodified silyl lithium has lower stereoselectivity and allows also inversion.

Thus, the application of copper modified catalysts leads to 1.1 more selective and slower polymerization, reduced amount of macrocyclics and to considerable increase of the stereoselectivity of the ring opening process.

Fig.3. 300 MHz ¹H NMR spectra of polymers obtained by polymerization of enriched (>90%) all-trans 1,2,3,4-tetramethyl-1,2,3,4-tetra phenylcyclotetrasilane initiated by 4 mol% of BuLi (with cryptand [2.1.1]) in benzene and 2 mol% of (PhMe₂Si)₂Cu(CN)Li₂ in THF at RT.

It has been previously reported that disilane can be metathesized in the presence of palladium based catalysts and rings containing disilane bond (e.g. 1,1,2,2-tetramethyl-1,2-disilacyclopentane) can be dimerized¹². We have used various Pd and Pt based homogeneous catalysts for polymerization of cyclotetrasilanes. We found that usually the reaction in the presence of 2 mol% of Pd(PPh₃)₄ leads to the formation of dimers in high (>90%) yield. Size

exclusion chromatography shows one peak with a retention time corresponding to species with M=950. Mass spectroscopy (SIMS) confirms a dimer structure (cf. observed and simulated MS spectra for the dimer). ¹H NMR spectra of dimers prepared from the mixture of various stereoisomers of cyclotetrasilanes are very complicated. On the other hand a relatively simple spectrum is obtained for a dimer prepared from the enriched "all-trans" isomer: ¹H-NMR (in C₆D₆)

Fig.4. Mass spectra (SIMS) of the cyclooctasilane (simulated and observed spectra)

Fig. 5. ¹H NMR spectra of enriched "alltrans" cyclotetrasilane during conversion to a dimer in the presence of $Pd(PPh_3)_4$

This may indicate high stereoselectivity for this reaction (probably all-trans eight-membered ring is formed). Dimers are the main products in the reaction catalyzed by transition metals containing bulky ligands (PPh₃). Smaller ligands provide also linear chains. This process is strongly accelerated in the presence of moisture and oxygen. It seems that linear Si-Si catenation is interrupted in these polymers by Si-O-Si linkages which can be formed by hydrolytic polymerization or oxygen insertion. The obtained polymers absorb at shorter wavelengths (<300 nm) in contrast to 340 nm observed for poly(methylphenylsilylene). This again confirms incorporation of oxygen to a backbone which reduces delocalization of the electrons¹³ in polysilylene backbone.

We focus our current research on the catalysts which will provide linear polysilylenes with high chemoselectivity, regioselectivity, and stereoselectivity.

ACKNOWLEDGMENTS

Support of the Office of Naval Research for this work is greatly appreciated. K.M. acknowledges support by the National Science Foundation, as well as from Eastman Kodak, General Electric, Hoechst Celanese, and PPG Inc.

REFERENCES

- 1. R. West, J. Organomet. Chem., <u>300</u>, 327 (1986)
- 2. R. D. Miller and J. Michl, Chem. Rev., <u>89</u>, 1359 (1989).
- 3. K. Matyjaszewski, M. Cypryk, H. Frey, J. Hrkach, H. K. Kim, M. Moeller, K. Ruehl, M. White, J. Macromol. Sci., Chem. <u>A28</u>, 1151 (1991)
- 4. K. Matyjaszewski, J. Inorg. Organomet. Polym., 1, 463 (1991)
- 5.. H. G. Woo, J. F. Waltzer, T. D. Tilley, Macromolecules, <u>24</u>, 6863 (1991)
- 6. H. K. Kim and K. Matyjaszewski, J. Amer. Chem. Soc., <u>110</u>, 3321 (1988)
- 7. K. Sakamoto, K. Obata, H. Hirata, M. Nakajima, H. Sakurai, J. Amer. Chem. Soc., 111, 7641 (1989).
- 8. Y. Gupta, M. Cypryk, K. Matyjaszewski, J. Amer. Chem. Soc., <u>113</u>, 1046 (1991)
- 9. K. Matyjaszewski, Makromol. Chem. Macromol. Symp., <u>42/43</u>, 269 (1991)
- 10. K. Ruehl, K. Matyjaszewski, J. Organomet. Chem, 441, 1 (1991)
- 11. S. Sharma, A. C. Oehlschlager, Tetrahedron, 45, 557 (1989)
- 12. K. Tamoa, T. Hayashi, M. Kumada, J. Organomet. Chem., <u>114</u>, C19 (1976)

13. K. A. Klingensmith, J. W. Downing, R. D. Miller, and J. Michl, J. Amer. Chem. Soc., <u>108</u>, 7438 (1986)