NUWC-NPT Technical Report 10,637 25 May 1994

Determination of the Distance and Velocity of an Acoustic Source From Bearing and Frequency Measurements

Jon P. Beam Submarine Sonar Department

DTIC QUALITY INSPECTED 2

AD-A280 821

PREFACE

This report was prepared under NUWC Detachment New London Project No. S0223, Automatic Detection and Automatic Classification, principal investigator M. R. Leask (Code 2123). The sponsoring activity was the Naval Sea Systems Command (NAVSEA 63D), program manager Dr. Y. Yam (Code 06UR).

The technical reviewer for this report was Dr. W. K. Fischer (Code 2121).

For their review of the manuscript as well as several invaluable suggestions, the author expresses his appreciation to Dr. John P. Beam (Code 3314), Mr. Stephan A. Dzerovych (Code 2123), Dr. G. Clifford Carter (Code 21), and Mr. Harold J. Teller (Code 2123), all of NUWC Detachment New London.

REVIEWED AND APPROVED: 25 MAY 1994

W. J. Coggins Acting Head, Submarine Sonar Department

	CUMENTATION	PAGE	Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information multiplining the data needed, and completing and rev	n is estimated to average 1 hour per responsion of information. Sen	nee, including the time for reviewing d comments regarding this burden	Instructions, searching existing data sources, gathering and stimute or any other aspect of this collection of information,
ACENCY USE ONLY (Leave Black)	hington Headquarters Services, Directors d Budget, Paperwork Reduction Project (2 DECODT DATE	19 107 (mormation Openations and H 1704-0188), Washington, DC 2050: 12 DEPODT TVDE	AND DATES COVERED
. AGENCY USE ONLY (LORVE BIRINK)	2. REPORT DATE	J. HEFORI TIFE	DRIES COVERED
	25 May 1994	Final	
			S. TONDING NOMELIO
Source From Bearing at	tance and velocity of the second s	or an acoustic	
· PERFORMING ORGANIZATION NAME(S)	AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPOR
Naval Lindersea Warfare Centre	Ar		NUMBER
Detachment New London	51		TR 10,637
New London, Connecticut 06	320		
). SPONSORING/MONITORING AGENCY N	AME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING AGENCY REPORT NUMBER
Commander Neuel See Susteme Command			
2531 Jefferson Davis Highway	,		
Arlington, VA 22242-5160			
Approved for public release;	distribution is unlimited		
3. ABSTRACT (Maximum 200 words)	<u></u>		
which may or may not be in motio	sinusoidal acoustic sourc	ce moving with consta	ant velocity relative to a receiver
4. SUBJECT TERMS Bearing Measurements, Dist Relative Velocity, Sinusoidal	ance of Source, Freque Acoustic Source, Veloci	ncy Measurements, ty of Source	15. NUMBER OF PAGES 14 16. PRICE CODE
 SUBJECT TERMS Bearing Measurements, Dist Relative Velocity, Sinusoidal SECURITY CLASSIFICATION 18. OF REPORT 	ance of Source, Freque Acoustic Source, Veloci SECURITY CLASSIFICATION OF THIS PAGE	ncy Measurements, ty of Source 19. SECURITY CLASSIF ABSTRACT	15. NUMBER OF PAGES 14 16. PRICE CODE ICATION OF 20. LIMITATION OF ABSTRACT

Prescribed by ANSI Std Z39-18 298-102

TABLE OF CONTENTS

.

P	ag	e
---	----	---

INTRODUCTION	1
THEORETICAL ANALYSIS	1
CONCLUSIONS	5

Accesi	on For		I	
NTIS	CRA&I	X)	
	TAB			
Unannounced				
Ву				
Distribution /				
Availability Codes				
Dist	Avail and Specia	or		
	1	•	1	
A-1				
<u>, , (</u>				

DETERMINATION OF THE DISTANCE AND VELOCITY OF AN ACOUSTIC SOURCE FROM BEARING AND FREQUENCY MEASUREMENTS

INTRODUCTION

A technique that uses bearing and frequency measurements to determine the distance between an observer and a sinusoidal acoustic source moving at constant velocity relative to the observer is developed in this report.

THEORETICAL ANALYSIS

Consider a sinusoidal acoustic source with period T_e and fixed relative velocity $\vec{v_R}$ (having a nonzero transverse component) with respect to an observer with known velocity \vec{v} . Let \vec{r} be the position vector of the source from the observer. We wish to determine the position vector \vec{r} and the relative velocity $\vec{v_R}$ of the source relative to the observer from bearing θ and frequency f_e measurements. The absolute velocity $\vec{v_s}$ of the source is also determined.

Since we are interested in obtaining kinematic quantities subject to the constraint that the acceleration is zero, let us examine this aspect of the problem. For convenience, we use plane polar coordinates. For the position vector, we have

$$\vec{\mathbf{r}}(\boldsymbol{\theta}) = \mathbf{r}\,\hat{\mathbf{r}}(\boldsymbol{\theta})$$
 , (1)

where

$$\hat{r}(\theta) = \hat{i} \cos \theta + \hat{j} \sin \theta$$
 (2)

and

$$\hat{\theta}(\theta) = -\hat{i}\sin\theta + \hat{j}\cos\theta \quad . \tag{3}$$

Differentiating the unit vectors with respect to θ , we have

$$\frac{\partial \hat{\mathbf{r}}}{\partial \theta} = \hat{\boldsymbol{\theta}} \tag{4a}$$

and

$$\frac{\partial \theta}{\partial \theta} = -\hat{\mathbf{r}} \quad . \tag{4b}$$

The time derivative of \vec{r} is

$$\frac{d\vec{r}}{dt} = \frac{d\vec{r}(\theta)}{dt} = \dot{r}\hat{r} + r\theta\hat{\theta}.$$
 (5)

Differentiating again, we have

$$\ddot{\vec{r}} = (\vec{r} - r \dot{\theta}^2) \hat{r} + (r \ddot{\theta} + 2 \dot{r} \dot{\theta}) \hat{\theta} \qquad (6)$$

Since by construction the relative velocity between the source and the observer is fixed, the acceleration must be identically zero. Consequently, all linearly independent components of the acceleration must be zero. Thus, we obtain the following expressions:

$$\ddot{\mathbf{r}} = \mathbf{r} \, \dot{\mathbf{\theta}}^2 \tag{7}$$

and

$$\mathbf{r} = -2 \dot{\mathbf{r}} \boldsymbol{\theta} / \boldsymbol{\theta} \quad . \tag{8}$$

The quantities $\hat{\theta}$ and $\hat{\theta}$ are obtained from measurements of θ . The quantities \dot{r} and \ddot{r} are not measurable but are related to changes in the observed acoustic frequency of the source. Therefore, we seek the relationship involving \dot{r} , \ddot{r} , and the measured frequency and its time derivatives.

At time t_0 , let the sinusoidal source emit a "pulse" and let $\mathbf{r} = \mathbf{r}_1$ so that the magnitude of \mathbf{r} is r_1 . After one period T_e , the source again emits a pulse at time t_0+T_e . Let $\mathbf{r} = \mathbf{r}_2$ so that the magnitude of \mathbf{r} is r_2 . Suppose that the first pulse is heard by the observer at time t_1 and the second pulse at time t_2 . Denoting the speed of sound as c, we have

$$t_1 = t_0 + \frac{r_1}{c}$$
 (9)

and

$$t_2 = t_0 + T_e + \frac{r_2}{c} \quad . \tag{10}$$

The period T_r of the acoustic signal as seen by the observer is

$$\mathbf{T}_{\mathbf{r}} = \mathbf{t}_2 - \mathbf{t}_1 \quad . \tag{11}$$

Substitution of the expressions for t_1 and t_2 in equations (9) and (10) into equation (11) yields

$$T_r = T_e + \frac{r_2 - r_1}{c}$$
 (12)

The ratio of T_r to T_e is

$$\frac{T_{\rm r}}{T_{\rm e}} = 1 + \frac{r_2 - r_1}{cT_{\rm e}} \quad . \tag{13}$$

In equation (13), we identify an expression for the radial velocity \dot{r} as follows:

$$\dot{r} = \frac{r_2 - r_1}{T_e}$$
 (14)

Thus, we obtain

$$\frac{T_r}{T_e} = 1 + \frac{\dot{r}}{c} \quad . \tag{15}$$

Letting $f_e = 1/T_e$ and $f_r = 1/T_r$, we have

$$\mathbf{f}_{\mathbf{e}} = \mathbf{f}_{\mathbf{r}} \left(1 + \frac{\dot{\mathbf{r}}}{c} \right) \quad . \tag{16}$$

Differentiating equation (16) with respect to time, we obtain

$$\frac{df_e}{dt} = \frac{\partial f_r}{\partial t} + \frac{\dot{r}}{c} \frac{\partial f_r}{\partial t} + \frac{f_r}{c} \frac{\partial \dot{r}}{\partial t} \quad . \tag{17}$$

Since fe is constant by hypothesis, some rearrangement yields

$$0 = \frac{\partial f_r}{\partial t} + \frac{\dot{t}}{c} \frac{\partial f_r}{\partial t} + \frac{f_r}{c} \frac{\partial \dot{r}}{\partial t}$$
(18)

and

$$\frac{\partial \mathbf{f}_{\mathbf{r}}}{\partial \mathbf{t}} = -\frac{\mathbf{\dot{r}}}{c} \frac{\partial \mathbf{f}_{\mathbf{r}}}{\partial \mathbf{t}} - \frac{\mathbf{f}_{\mathbf{r}}}{c} \mathbf{\ddot{r}} \quad . \tag{19}$$

Substituting in the expressions obtained above for \dot{r} (eq. 8) and \ddot{r} (eq. 7), we have

$$\frac{\partial f_r}{\partial t} = -\left(-\frac{r\theta}{2\dot{\theta}}\right)\frac{1}{c}\frac{\partial f_r}{\partial t} - \frac{f_r}{c}\left(r\dot{\theta}^2\right) \qquad (20)$$

We solve this to obtain an expression for r as follows:

$$\frac{\partial f_r}{\partial t} = r \frac{\theta}{2\theta} \frac{1}{c} \frac{\partial f_r}{\partial t} - r \frac{f_r}{c} \frac{\theta}{\theta^2} , \qquad (21)$$

$$\frac{\partial f_r}{\partial t} = \frac{r}{c} \left[\frac{\Theta}{2\Theta} \frac{\partial f_r}{\partial t} - f_r \dot{\Theta}^2 \right] , \qquad (22)$$

$$\mathbf{r} = \mathbf{c} \frac{\partial \mathbf{f}_r}{\partial t} \left[\frac{\partial}{\partial \theta} \frac{\partial \mathbf{f}_r}{\partial t} - \mathbf{f}_r \theta^2 \right]^{-1} \qquad (23)$$

Note that, in this equation for r, all the independent parameters are known or may be determined from measurements. The sound speed c is generally known *a priori*. The quantities θ and f_r are measurable, and θ , θ , and $\partial f_y \partial t$ can be determined from these measurements.

Since θ may be measured directly and r may be calculated from measured quantities, we have the position vector \vec{r} of the source with respect to the observer. If we determine the position vector at two instants t_2 and t_3 , we may calculate the relative velocity \vec{VR} of the source as follows:

$$\vec{\mathbf{v}_{R}} = \frac{d\vec{\mathbf{r}}}{dt} = \frac{\vec{\mathbf{r}_{2}}(\theta_{2}) - \vec{\mathbf{r}_{1}}(\theta_{1})}{t_{2} - t_{1}} \quad . \tag{24}$$

Recall that the relative velocity $\vec{v_R}$ of the source from the perspective of the observer is

$$\vec{\mathbf{v}}_{\mathbf{R}} = \vec{\mathbf{v}}_{\mathbf{s}} \cdot \vec{\mathbf{v}} \quad . \tag{25}$$

Therefore, if the relative velocity $\vec{v_R}$ and the absolute velocity \vec{v} of the observer are known, then the absolute velocity of the source may be obtained:

$$\vec{\mathbf{v}}_{\mathbf{s}} = \vec{\mathbf{v}}_{\mathbf{R}} + \vec{\mathbf{v}} \quad . \tag{26}$$

CONCLUSIONS

We have shown how to calculate the distance, the relative velocity, and the absolute velocity of an acoustic source having a fixed velocity relative to an observer from measurements of its bearing and frequency.

INITIAL DISTRIBUTION LIST

Addressee	No. of Copies
Defense Technical Information Center	12
Naval Sea Systems Command (G. Kamilakis (06UR4), Dr. Y. Yam (06UR))	2

4