
RUIIYD TO: YOU=T Ill? WO3KIUG Cxu '4 O IFZANZ CIUPUTIU FORCRITICAL APPLICATIOWS JAN 4-6. 1994 SAN DIEGO, CA

AD-A280 819
Iml1 lflI

Optimal Message Log Reclamation for
Uncoordinated Checkpointing DT IC

Yi-Min Wang and W Kent Fuchs TM U L E UA 2 ?A,1994. us

Primary contact: W. Kent Fuchs

- Center for Reliable and High-Performance Computing
z = Coordinated Science Laboratory

44k University of Illinois
1308 West Main Street

Urban& IL 61801
E-mail: fuchs@crhc.uiuc.edu

Phone: (217) 333-9731
v*4 FAX: (217) 244-5686

A~p1Wixd bar Pub- lso
Abstract I

Uncoordinated checkpointing for message-passing systems allows maximum process autonomy and

general nondeterministic execution, but suffers from potential domino effect and the large space overhead

for maintaining checkpoints and message logs. Traditionally, it has been assumed that only obsolete

checkpoints and message logs before the global recovery line can be garbage-collected. Recently, an

approach to identifying all garbage checkpoints based on recovery line transformation and decomposition

has been developed. We show in this paper that the same approach can be applied to the problem of

identifying all garbage message logs for systems requiring message logging to record in-transit messages.

Communication trace-driven simulation for several parallel programs is used to evaluate the proposed

algorithm. DTIC QUALITY INSPECTED a

Key words: checkpointing, rollback recovery, message-passing systems, message logging, garbage

collection

1This research was supported in part by the National Aeronautics and Space Administration (NASA) under Grant NASA NAG

S1-613, in cooperation with the Illinois Computer Laboratory for Aerospace Systems and Software (ICLASS), and in part by the
Department of the Navy and managed by the Office of the Chief of Naval Research under Contract N00044-91 4-1 2R3

1 Introduction

Qieckpointing and rollback recovery is an effective approach to recovering from both hardware and

software errors. During normal execution, the state of each process is periodically saved as a checkpoint

on stable storage, and can be restored after a failure in order to avoid the costly reexecution from the

very beginning. Numerous checkpointing and recovery techniques for message-passing systems have been

proposed in the literature. They can be classified into three primary categories: uncoordinated checkpointing,

coordinated checkpointing and log-based approach. Uncoordinated checkpointing [1-31 allows maximum

process autonomy and general nondeterministicexecution. Each process takes its checkpoints independently

and keeps track of the dependencies among checkpoints resulted from message communications. When a

failure occurs, the dependency information is used to determine the recovery line to which the system should

roll back. The major disadvantages of uncoordinated checkpointing have been the potential domino effect

[4,5], i.e., when cyclic rollbackpropagation prevents recovery line nrogression, and the space overhead for

maintaining checkpoints and message logs.

Coordinated checkpointing [6-11] eliminates the domino effect by sacrificing a certain degree of

process autonomy and incurring nm-time and message overhead. Processes are required to coordinate their

checkpointing actions in order to guarantee the consistency of corresponding checkpoints and hence the

recovery line progression. In one experiment, it has been shown that the run-time overhead for coordinated

checkpointing can be made reasonably small for a set of benchmark programs if optimization techniques

primarily involving changes to the operating systems can be employed [12]. However, for many practical

applications in which modifying the operating system is not considered a feasible solution, process autonomy

in taking application-level checkpoints is essential for reducing run-time overhead by checkpointing when

the process state is minimal.

Log-based approach [13-21] eliminates the domino effect by assuming piecewise deterministic execu- 0

tion model [22] which views process execution as consisting of a number of deterministic state intervals,

each started by a nondeterministic event such as processing a new message. Nondeterministic event logging

in addition to checkpointing is employed to reduce rollback propagation through deterministic state recon- 4
7odea

-- -- u.-J•/QZ

/Dist S~peciM' "

1 I t

struction. However, it has been pointed out that the assumption of piecewise determinism may not be valid

for the entire process execution, and hence the support for general nondeterministic execution is important

[23].

This paper mainly considers uncoordinated checkpointing. The recovery line progression problem

is addressed elsewhere [24]. Essentially, a domino-free unifying framework can be built by considering

uncoordinated checkpointing as the basic scheme, and checkpoint coordination (whenever desirable) and

exploiting piecewise determinism (whenever possible) as two mechanisms for bounding rollback propaga-

tion. More specifically, communication-induced checkpoints in a lazy checkpoint coordination scheme [24],

and the logical checkpoints [25] obtained through event logging when piecewise determinism is available

provide additional checkpoints to advance the recovery line.

The main focus of this paper is on the space overhead problem of uncoordinated checkpointing (and

the unifying framework as well). Traditionally, garbage collection has been based on the notion of obsolete

checkpoints and message logs: the global recovery line which suffices to recover from the failure of the

entire system is computed, and all the obsolete checkpoints and message logs before that recovery line are

no longer useful and can be discarded. In contrast, all the non-obsolete checkpoints and message logs have

been assumed to be possibly useful for some future recovery and should be retained. With the possibility of

domino effects, the space overhead may become prohibitively high.

Motivated by the observation that being obsolete is simply a sufficient condition for being garbage, we

previously derived the necessary and sufficient condition for identifying all garbage checkpoints, which leads

to an optimal checkpoint reclamation algorithm [261. By using the approach of recovery line transformation

and decomposition, we have demonstrated that any non-garbage checkpoint belonging to a possible future

recovery line must also be contained in one of the N "immediate future" recovery lines, where N is the

number of processes. In this paper, we apply the same approach to solving the problem of optimal message

log reclamation2 for systems requiring message logging to record in-transit, i.e., "sent but not yet received,"

2A simple sufficient condition based on local information has been presented to identify some garbage messages before they are
logged (3), this paper derives the necessary and sufficient condition based on global information for identifying all garbage message
logs.

2

messages. We will show that any non-garbage message log which can become an in-transit message with

respect to a possible future recovery must also be an in-transit message with respect to one of the N

"immediate future" recovery lines. We wish to stress that the message logs considered in this paper arm used

to record the state ofthe channels [81, and are different from the message logs used for deterministic replay in

the log-based recovery schemes [13,15]. While both message contents and ordinalpositions are important

in the latter, only message contents are needed in the former. In Section 5, we will also demonstrate the

applicability of the optimal garbage collection algorithm to executions that exploit piecewise determinism.

The paper is organized as follows. Section 2 describes the checkpointing and recovery protocol; Section 3

derives the necessary and sufficient condition for identifying all garbage message logs, based on recovery

line transformation and decomposition; experimental evaluation is described in Section 4; Section 5 extends

our work to a partially-exploited piecewise deterministic model, and Section 6 concludes with a summary.

2 Checkpointing and Recovery Protocol

The system considered in this paper consists of a number of concurrent processes for which all process

communication is through message passing. Processes are assumed to mn on fail-stop processors [27]

and, for the purpose of presentation, each process is considered an individual recovery unit. In order to

allow general nondeterministic execution, we do not assume a piecewise deterministic model. This implies

whenever the sender of a message m rolls back and unsends m, the receiver which has already processed

m must also roll back to undo the effect of m because the potential nondeterminism preceding the sending

of m (Fig. l(a)) may prevent the same message from being resent during reexecution. Let ci,_- denote the

xth checkpoint (x > 0) of process pi (0 < i < N - 1), where N is the number of processes in the system.

Two checkpoints c1,+I and c,,,y are then considered inconsistent if there is any message sent after ci,, and

processed before c1,,+, i.e., ci,y happened before cj,.+1 [28], or vice versa. In contrast, when the receiver pi

of a message m' rolls back and unreceives m' (Fig. 1(b)), the sender pi may not need to roll back to unsend

M'. If the acknowledge message for every normal message is treated as an additional dependency-carrying

message, such an in-transit message m' may be retrieved through a reliable end-to-end transmission protocol

3

[17,29]. Alternatively, message m' can be retrieved from a synchronous [13,14] or an asynchronous [3, 15]

message log. Therfore, checkpoints cj• and civ in Fig. 1(b) are considered consistent.

During normal execution, each process periodically and independently takes its checkpoints. The

interval between ci,. and ei,=+1 is called the zth checkpoint interval of pi, denoted by (i, z). Each message

is tagged with the process number and the current checkpoint interval number of the sender, and each receiver

pi performs direct dependency tracking [1,30] as follows: if a message sent from (j, y) is processed in

(i, z), the direct dependency of Ci,,+j on cq,. is recorded.

A garbage collection procedure can be periodically invoked by any process p,. First, p, collects the

direct dependency information from all the other processes to construct the checkpoint graph [I] as shown in

Fig. 2(b). Then the rollbackpropagaton algorithm (Fig. 3) is applied to the checkpoint graph to determine

dte global recovery lined (black vertices in Fig. 2(b)), before which all the checkpoints and message logs

are obsolete and can be discarded. When any process initiates a rollback, it starts a similar procedure for

recovery. The currnt volatile states of the surviving processes are treated as additional virtual checkpoints

[21 for constructing an extended checkpoint graph of which the recovery line is called the local recovery

line (shaded vertices) and indicates the consistent state for the system to roll back to.

3 Optimal Message Log Reclamation

Since the purpose of message logging is to record in-transit messages needed for rollback recovery, a

message log is non-garbage if and only if it can become an in-transit message with respect to a possible

future recovery line or, for short, intersecI4 a possible future recovery line. We model a process execution

as consisting of a number of operational sessions [21 and recovery sessions, where an operational session is

the interval between the start of normal execution and the instance of rollback initiation, and between two

consecutive operational sessions is a recovery session. Since a future process execution may contain any

3Mw global recovery line i. used when the entire sysuem fails; a local recovery line is used when only a subset of processes
becomes faulty.

4Any nummage can only in ect a recovezy line from the left to the right, as shown in Fig. 1(b), because intsecting in the other
direction coneadict the fact tat a recovety line cannot contain any inconsistent checkpoints.

4

-44 Checkpoint interval (i~x) 1.

P1 P

C j L cjy+1 pi ~ *4Jy

Potential nondeterministic event

(a) (b)

Figure 1: Checkpoint consistency. (a) inconsistent checkpoints c,,, and cijj; (b) in-transit message m'
and consistent checkpoints ci,,1 and cj,~.

checkphectpgiap

+ checkpoint 'N* message __CeI heckpoint graph

(a) (b)

Figure 2: Oieckpointing and rollback recovery. (a) example checkpoint and communication pattern; (b)

checkpoint graph and extended checkpoint graph when po initiates a rollback.

1* (P stands for chdckpont. Initially, all the CPs are unmadked *
include the latest CP of each process in die moot set;
mark all CPs strictly reachable (31] from any CP in the root set;
while (at least one CPmi the root set is marked) f

replace each marked CP in the root set by the latest unmarked CP on the same process;
mark all CPs strictly reachable from any CP in the root set;

the root set is dhe recovery line.

Figure 3: The rollback propagation algorithm.

5

number of arbitrary operational sessions and recovery sessions, there are an infinite number of possible future

recovery lines. We first describe the recovery line transformation and decomposition which can provide a

finite set of "immediate future" recovery lines sufficient for representing the infinite future possibilities for

the purpose of garbage collection.

3.1 Recovery Line Transformation and Decomposition

Based on the previous description of checkpoint consistency, we define a consistent global checkpoint as a

set of N checkpoints, one from each process and no two of which are related through the happened before

relation. A recovery line refers to the "latest available" consistent global checkpoint.

Since a checkpoint graph represents program dependency, vertices must be added to and removed from

the graph according to a specific set of rules. In an operational session, new vertices are added to the

checkpoint graph and can not have any outgoing edges to any existing vertices5. (If a graph G' can be

obtained by adding new vertices to another graph G in this way, G' is called apotential supergraph of G.) In

a recovery session, existing vertices after the local recovery line are removed together from the checkpoint

graph. The above rules for checkpoint graph evolution then determine the possible future checkpoint graphs,

and therefore the possible future recovery lines.

We first define a set of 2 N immediate supergraphs which are the supergraphs of G and the subgraphs of

as shown in Fig. 4. 6 is constructed by adding a new-node nj with single incoming edge at the end for each

process pi. Let U denote the set of all such new-nodes and XC(G) denote the recovery line of a checkpoint

graph G. Given any possible future recovery line 7£C(G') of G, we first apply recovery line transformation

to 7.L(G') to transform it bacxwards in time into one of the 2N recovery lines 7L((O - W), W C U,

followed by a recovery line decomposition to express the latter recovery line in terms of the N recovery

lines 7ZL((6 - n,),0 _< i 5 N - 1. We will demonstrate that since recovery line transformation and

decomposition preserve all non-garbage checkpoints and message logs of any possible future recovery line,

the above N recovery lines suffice for the purpose of optimal garbage collection.

The example shown in Fig. 5 will be used to illustrate the transformation and decomposition throughout

5Vertices with incoming edges ftim not-yet-collected verees are temporarily excluded from the checkpomint graph.

6

P O ,IN no

PI na

", lid i :"P2 n '-"2

I __ I s

IG ^

-------------------------------- 'j G

Figure 4: The immediate supergraphs.

this paper. (Formal proofs can be found elsewhere [26].) Suppose G in Fig. 5(a) is the current checkpoint

graph considered for garbage collection. Fig. 5(b) shows the extended checkpoint graph when p3 later

initiates the first rollback, and G, is the checkpoint graph immediately after the recovery. Fig. 5(d) shows

another possible extended checkpoint graph when po initiates a second rollback. We now describe how to

transform and decompose IZC(Gd), a possible future recovery line of G.

Recovery Line Transformation: Since any future process execution can be viewed as consisting of a num-

ber of operational sessions and recovery sessions, our approach is to define two elementary transformations:

transformation within an operational session and transformation across a recovery session. Any possible

future recovery line can then be transformed by repeatedly and alternately applying the two transformations.

Transtormation within an operational session: First we consider G, and Gd, where G, is at the

beginning of of a new operational session and Gd is a potential supergraph of G,. Given the recovery

line IZ(Gd), we replace the checkpoints X, Y and Z which are not in G, with their corresponding new-

nodes P, Q and R of Go, as shown in Fig. 5(g). IZC(Gd) = {A, B, X, Y, Z} is then transformed into

IZC(G,) = {A, B, P, Q, R}, where G. is an immediate supergraph of GC.

Transformation across a recovery session: We next consider G. and Gb which is the checkpoint

graph at the end of the first operational session (without the virtual checkpoints). Given the recovery line

PU(G.), we replace the two new-nodes Q and R which are contributed by the rolled-back processes in the

first recovery with their cornesponding checkpoints on the local recovery line, namely, C and D. IZC(Gg)

7

P1
P

P2P
P3

P4P P4:P : I

(a) Gb(e)

P0

P 1 I

P2

P3

P3P3

P4 MQ-P :

PO G
PO ;

P 2

P3 P -------

P4

(d)

Figure 5: Example recovery line transformation.

8

is then transformed into 1?C(Gf) = {A, B, P, C, D}, where G/ is recognized as an immediate supergraph

of Gb.

Finally, since Gf is a potential supergraph of G, 7RC(G 1) can be transformed into Z•C(Ge) =

{A, B, n2 , C, D}. The possible future recovery line 71£(Gd) is then transformed into the recovery line of

an immediate supergraph Ge of G.

Recovery Line Decomposition: Let min(S) denote the set of minimal elements, i.e., vertices without any

incoming edges, of S. The recovery line decomposition expresses each of the 2 N recovery lines in terms of

the N recovery lines IZZ(Oz - nj),0 < i < N - 1, as follows.

- W) = min(U X - ne))(1)
niEW

For example, the recovery line of Ge = n- {no, ni, n3, n4} in Fig. 5(e) has the following decomposition

(referring to Fig. 6):

I(Ge) = min(J(O - no1 U 1•((-nli) U (0- fl3) UI C£(- n4))

= min({A, B,n 2,n 3 ,n4,no, I, nl,J,C,D})= {A,B, n2,C,D}.

3.2 Message Log Reclamation

Based on the approach of recovery line transformation and decomposition, it has been shown that the union

of the N recovery lines 794(0 - ni),0 < i < N - 1, contains all the non-garbage checkpoints [26]. For

the example shown in Fig. 6, while all the checkpoints in G are non-obsolete, only the shaded checkpoints

in Fig. 6(f) are non-garbage and need to be retained. We next demonstrate that the set of in-transit messages

with respect to the N recovery lines contains all the non-garbage messages.

Instead of considering each individual message, we use its corresponding edge in the checkpoint graph

for our discussion. Let (a, b) denote the directed edge from vertex a to vertex b. By definition, (a, b)

intersects a recovery line 7XC(G) if a is on the left hand side of RC(G) and b is on the right hand side of

XC(G).

9

G-n * G-nI

....... 2 2-

P 22

(a) (b)

G-n 2 G-3

P 0 &K.,.. . . .----- ----- n

p1 -- 3C P

(C) (d)

igur 6: ExmlGxcto foragrtm

P 0 no P10

PROPERTY 1 Given a checkpoint graph G and one of its edges (a, b), if(a, b) intersects a possible future

recovery line, (a, b) must intersect PU£(, - W) for some W C U.

Sketch of the proof. Again, we use the example in Fig. 5. In particular, since the edge (E, F) in G

intersects a possible future recovery line 1L£(Gd), we want to show that (E, F) must also intersect £I.(G,)

where G. = - W, W = {no, ni, n33, n4}.

Transformation within an operational session: First, we consider the relative position of any remaining

checkpoint of G to the recovery lines £ZC(Gd) and R12(Gg). Any such checkpoint which is on the

left (right) hand side of X£(Gd) must remain on the left (right) hand side of 1Z£(G.). Therefore, any

edge of G intersecting lC(Gd), for example (E, F), must also intersect IRL(Gg) after the recovery line

transformation.

Transformation across a recovery sess!on: We next consider JZI(G.) and 1C(Gf). Any remaining

vertex of G which is on the right hand side of IZ1(Gg) must remain on the right hand side of RJ2(Gf); those

on the left hand side of I.C(Gg) remain on the left hand side of 1ZL(Gf) except for C and D. Therefore,

any remaining edge (a, b) of G intersecting IZL(Gg) must also intersect 1ZC(G1) except for the possible

outgoing edges of C and D. But since C and D are on the local recovery line, all their outgoing edges must

have been removed during the rollback; so any such (a, b) must also intersect 1ZC(Gf). Again, (E, F)

serves as such an example.

Finally, we can show that (E, F) also intersects IZL(Ge) by again applying the transformation within

an operational session. 0

Before applying the recovery line decomposition, we first express Eq. (1) in another form which is more

convenient for considering the relative position of a checkpoint to a recovery line.

LEMMA 1 min(U!,ew e7Z1(O - ni)) in Eq. (1) consists of the leftmost checkpoint of each process in the

union.

Proof. If a checkpoint v of pi is not the leftmost checkpoint of pi in the union, then v can not be a

minimal element because there exists at least one checkpoint on its left. Conversely, if v is the leftmost

11

checkpoint of pi, v must be in min(U,,1 6 W £c(I - ni)) because there are only N leftmost checkpoints

and 1•C((0 - W) = min(UREw I£(I6 - ni)) must contain N checkpoints. C

PROPERTY 2 Given a checkpoint graph G and one of its edges (a, b), if (a, b) intersects IZLC(6 - W)

for some W C U, (a,b)must intersect X£(O- ni)for someO < i < N - 1.

Proof. We will prove the property by showing that if (a, b) does not intersect any IZI(6 - n,), (a, b)

cannot intersect any PU(6 - W).

Suppose (a, b) does not intersect any IZL(6 - ni). Then, each RZ£(C - ni) must lie either entirely on

the right hand side of (a, b) or entirely on the left hand side of (a, b).

Recovery line decomposition: Given any I£(0 - W), W C U, if all IZL(C - ni)'s, ni E W, are entirely

on the right hand side of (a, b), I£(6 - W) must also lie on the right hand side of (a, b) by Eq. (1) and

Lemma 1; if at least one X£((C - ni). ni E W, lies entirely on the left hand side of (a, b), RI(C - W) will

be on the left hand side of (a, b) again by Lemma 1. In either case, (a, b) cannot intersect C(6• - W). 0

We art now prepared to prove the major result of this paper. the necessary and sufficient condition for

a message log to be non-garbage.

THEOREM 1 A message log with its corresponding edge contained in G is non-garbage if and only if the

edge intersects ZC((4 - ni) for someO < i < N - 1.

Proof. Any non-garbage message log must have its corresponding edge (a, b) intersecting a possible

future recovery line. From Property 1, (a, b) must intersect X£(0 - W) for some W C U. From Property 2,

(a, b) must intersect X£(6 - ni) for some 0 !< i < N - 1. The Tf part comes from the fact that every

X£((- ni) is a possible future recovery line. 0

Theorem I also leads an optimal message log reclamation algorithm for finding all non-garbage message

logs: first compute the N recovery lines 1ZI2(0 - ni), 0 • i < N - 1; only those message logs with their

corresponding edges intersecting any of the N recovery lines are non-garbage. In Fig. 6, the edge (E, F)

12

intersects 1£C(O - no), (G, H) intersects X£(O - n4) and none of the edges intersects 1ZL(O - ii),

1ZL(O - n2) or XC(O - n3). Therefore, while all the edges in Fig. 6(f) are non-obsolete, only those

message logs corresponding to (E, F) and (G, H) need to be retained.

The complexity of the algorithm is analyzed as follows. The rollback propagation algorithm in Fig. 3

is of complexity O(IEI), where IEI is the number of edges, because every edge marked by the algorithm

can be removed. The remaining incoming edges of those checkpoints on the right hand side of the recovery

line then give the set of edges intersecting the recovery line. Since the complexity of scanning through the

above set of checkpoints is no greater than O(IEI), the complexity remains O(IE1). Our optimal garbage

collection algorithm involves executing the rollback propagation algorithm on N checkpoint graphs and is

therefore of complexity O(NIEI).

4 Experimental Evaluation

Three hypercube programs are used to illustrate the message log reclamation capabilities and benefits of

our algorithm. They are Cell placement, Channel router and QR decomposition, running on an 8-node Intel

iPSC/2 hypercube. Communication traces are collected by intercepting the send and receive system

calls. Communication trace-driven simulation is then performed to obtain the results. The execution time

for each program is listed in Table 1. The checkpoint interval is chosen to be approximately one tenth of

the execution time.

Table 1: Execution time and checkpoint interval.

Programs 11 Cell placement Channel router QR decomposition

Execution time (sec) 324 469 370
Checkpoint interval (sec) 35 40 35

Figs. 7 compares our algorithm with the traditional algorithm for the three programs in terms of the

number of retained message logs. Each curve shows the remaining space overhead after garbage collection

if the algorithm is invoked after a certain number of checkpoints have been taken. Since the checkpointing

13

. 100000
Non-obsolete -

[80000 Non-garbage

160000

I140000 k %

200 8 1
0

Z 8 16 24 32 40 48 56 64 72

Number of checkpoints taken
(a)

.2 140000

Non-obsolete -4--
100000 Non-garbage ---

80000

160000
'40000

20000

Z 0 8 16 24 32 40 48 56 64 72 80 88

Number of checkpoints taken

(b)

. 24000 , , , ,

20000 - Non-obsolete --1 16000 Non-garbage

1 0 8 16 24 32 40 48 64 72 80

Number of checkpoints taken
(b)

Figure 7: Message log reclamation results for the three parallel programs.

14

clocks on all nodes are approximately synchronized, checkpoints #8n through #8(n+ I)-I are taken at about

the same time, which explains the fact that the number of messages is almost constant within that interval.

The domino effect is illustrated by the constant increase in the number of non-obsolete message logs as

the total number of checkpoints increases, for example, between checkpoints #40 and #64 in Fig. 7(a) and

between checkpoints #48 and #88 in Fig. 7(b). The figure shows that our algorithm performs consistently

better than the traditional algorithm.

5 Exploiting Piecewise Determinism

Instead of viewing the piecewise deterministic (PWD) model as a constraint imposed upon the program

behavior, we consider exploiting piecewise determinism, whenever possible and deinble, as a mechanism

for bounding rollback propagation in an uncoordinated checkpointing protocol. °ihe notion of logical

checkpoints [251 has been proposed to provide a unified dependency model for both PWD and non-PWD

scenarios. Essentially, referring to Fig. 8(b), the physical checkpoint co, the message log of mo (including

both the message content and ordinal position) and the underlying PWD model equivalently place a logical

checkpoint Lo at the end of the state interval initiated by mo because of the capability of deterministic

state reconstruction up to that point. Fig. 8(b) shows a situation where the PWD model is valid throughout

the execution and so message logging can always be employed to insert additional logical checkpoints to

effectively advance the recovery line, as compared with (a).

In practice, the PWD model may not be valid throughout the entire program execution; for example, it

may not be appropriate to "replay" input events such as real-time clock readings and resource status. When

the PWD model becomes invalid, it can only be resumed after the next physical checkpoint is taken because

the deterministic state reconstruction for current checkpoint interval has been interrupted. Fig. 8(c) illustrates

a situation where the PWD model can only be partially exploited. Suppose the piecewise determinism is not

available for the parts of execution indicated by the shaded bars. Then the logical checkpoints belonging to

those regions are no longer available. Fig. 9(a) shows the corresponding checkpoint graphs including all the

physical and logical checkpoints; Fig. 9(b)-(f) apply the optimal garbage collection algorithm to the above

15

P2

p 4 +:

Global recovery line (a)

P1

P2

P3 4- -- F

P 4

(b)

PI

(c)

Figure 8: Piecewise determinism and the availability of logical checkpoints. (The shaded bars in (c) indicate
those parts of process execution which do not satisfy the PWD model.)

16

checkpoint graph. Note that the logical checkpoint Lo in Fig. 9(b) being non-garbage implies that both the

physical checkpoint co and the message log of ,no (Fig. 8(c)) are non-garbage, and mo must be the first new

message to be processed after Po restarts from co. In contrast, Fig. 9(f) identifies the two thick edges as

non-garbage edges which means the contents of the message logs of ml and m2 (Fig. 8(c)) are non-garbage

but the ordinal position information can be discarded 6.

6 Summary

For systems requiring message logging to record in-transit messages, we have derived the necessary

and sufficient condition for identifying all garbage message logs, which leads to an optimal message log

reclamation algorithm. Combining it with a previous optimal checkpoint reclamation algorithm, we have

developed an optimal garbage collection algorithm for minimizing the space overhead of uncoordinated

checkpointing. The overall complexity of the algorithm is O(N IEI) where N is the number of processes

and I El is the number of edges in the checkpoint graph. Communication trace-driven simulation results for

three parallel programs showed that the algorithm can be effective in reducing the space overhead for real

applications.

Acknowledgement

The authors wish to express their sincere thanks to Andy Lowry (IBM) and Pi-Yu Chung (Illinois) for

their valuable discussions, to Junsheng Long (North Carolina) for his help with the experimental results and

to Prith Banerjee (Ilinois) for his hypercube programs.

References

[1] K. Tsumoka, A. Kaneko, and Y. Nishihara, "Dynamic recovery schemes for distributed processes,"
in Proc. IEEE 2nd Symp. on Reliability in Distributed Software and Database Systems, pp. 124-130,
1981.

6Mi&f does not include the possible FIFO order for message in the same channel.

17

PO P2

p 3 P

(a) (b)

p1 K

(c) (d)

P2P

P23 P2.......... ...

Figure 9: Checkpoint graphs and optimal garbage collection for a partially exploited piecewise deterministic
model.

8

[2] B. Bhagava and S. R. Lian, "lnependent checkpointing and concurrent rollback for recovery - An
optimistic approach," in Proc. IEEE Symp. on Reliable Distr. Syst., pp. 3-12, 1988.

[31 Y. M. Wang and W. K. Fuchs, "Optimistic message logging for independent checkpointing in message-
passing systems," in Proc. IEEE Symp. on Reliable Distr, Syst., pp. 147-154, Oct. 1992.

[4] B. Randell, "System structure for software fault tolerance," IEEE Trans. on Software Engineering,
vol. SE-i, pp. 220-232, June 1975.

[5] D. L. Russel, "State restoration in systems of communicating processes," IEEE Trans. on Software
Engineering, vol. SE-6, pp. 183-194, Mar. 1980.

[61 Y. Tamir and C. H. Sequin, "Error recovery in multicomputers using global checkpoints," in Proc.
Int'l Conf. on Parallel Processing, pp. 32-41, 1984.

[7] K. G. Shin and Y.-H. Lee, "Evaluation of error recovery blocks used for cooperating processes," IEEE
Trans. on Software Engineering, vol. 10, no. 6, pp. 692-700, 1984.

[8] K. M. Chandy and L. Lamport, "Distributed snapshots: Determining global states of distributed
systems," ACM Trans. on Computer Systems, vol. 3, pp. 63-75, Feb. 1985.

[9] K. Li, J. F. Naughtnn, and J. S. Plank, "Checkpointing multicomputer applications," in Proc. IEEE
Symp. on Reliable Distr Syst., pp. 2-11, 1991.

[10] T. H. Lai and T. H. Yang, "On distributed snapshots," Information Processing Letters, vol. 25, pp. 15 3-
158, May 1987.

[11] D. Briatico, A. Ciuffoletti, and L. Simoncini, "A distributed domino-effect free recovery algorithm,"
in Proc. IEEE 4th Symp. on Reliability in Distributed Software and Database Systems, pp. 207-215,
1984.

[12] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, "the performance of consistent checkpointing,"
in Proc. IEEE Symp. on Reliable Distr. Syst., pp. 39-47, Oct. 1992.

[13] A. Borg, J. Baumbach, and S. Glazer, "A message system supporting fault-tolerance," in Proc. 9th
ACM Symp. on Operating Systems Principles, pp. 90-99, 1983.

[14] M. L. Powell and D. L. Presotto, "Publishing: A reliable broadcast communication mechanism," in
Proc. 9th ACM Symp. on Operating Systems Principles, pp. 100--109, 1983.

[15] R. E. Strom and S. Yemini, "Optimistic recovery in distributed systems," ACM Trans. on Computer
Systems, vol. 3, pp. 204-226, Aug. 1985.

[16] A. P. Sistla and J. L. Welch, "Efficient distributed recovery using message logging," in Proc. 8th ACM
Symposium on Principles of Distributed Computing, pp. 223-238, 1989.

[17] D. B. Johnson and W. Zwaenepoel, "Recovery in distributed systems using optimistic message logging
and checkpointing," J. of Algorithms, vol. 11, pp. 462-491, 1990.

[18] T. T.-Y. Juang and S. Venkatesan, "Crash recovery with little overhead," in Proc. IEEE Int'l Conf. on
Distributed Computing Systems, pp. 454-461, 1991.

19

[191 A. Lowry, J. R. Russell, and A. P. Goldberg, "Optimistic failure recovery for very large networks," in
Proc. IEEE Symp. on Reliable Distr. Syst., pp. 66-75, 1991.

[201 E. N. Elnozahy and W. Zwaenepoel, "Manetho: Transparent rollback-recovery with low overhead,
limited rollback and fast output commit," IEEE Trans. on Computers, vol. 41, pp. 526-531, May 1992.

[21] B. H. L Alvisi and K. Marzullo, "Nonbiocking and orphan-free message logging protocols," Tech.
Rep. T92- 1317, Dept. of Computer Science, Cornell University, Dec. 1992.

[22] R. E. Strom, D. F. Bacon, and S. A. Yemini, "Volatile logging in n-fault-tolerant distributed systems,"
in Proc. IEEE Fault-Tolerant Computing Symposium, pp. 44-49, 1988.

[23] D. B. Johnson and W. Zwaenepoel, "Transparent optimistic rollback recovery," ACM Operating
Systems Review, pp. 99-102, Apr. 1991.

[24] Y. M. Wang and W. K. Fuchs, "Lazy checkpoint coordination for bounding rollback propagation." To
appear in Prof. 12th Symp. on Reliable Distributed Systems, Oct. 1993.

[251 Y M. Wang, Y. Huang, and W. K. Fuchs, "Pogressive retry for software error recovery in distributed
systems," in Proc. IEEE Fault-Tolerant Computing Symposium, pp. 138-144, June 1993.

[26] Y. M. Wang, P. Y. Chung, I. J. Lin, and W. K. Fuchs, "Checkpoint space reclamation for inde-
pendent checkpointing in message-passing systems," Tech. Rep. CRHC-92-06, Coordinated Science
Laboratory, University of Illinois at Urbana-Champaign, 1992.

[27] R. D. Schlichting and F B. Schneider. "Fail-stop processors: An approach to designing fault-tolerant
computing systems," ACM Trans. on Computer Systems, vol. 1, pp. 222-238, Aug. 1983.

[28] L. Lamport, "rune, docks and the ordering of events in a distributed system," Comm. of the ACM,
vol. 21, pp. 558-565, July 1978.

[29] R. Koo and S. Toueg, "Checkpointing and rollback-recovery for distributed systems," IEEE Trans. on
Software Engineering, vol. SE-13, pp. 23-31, Jan. 1987.

[301 Y. M. Wang, A. Lowry, and W. K. Fuchs, "Consistent global checkpoints based on direct dependency
tracking." Research Report RC 18465, IBM TV. Watson Research Center, Yorktown Heights, New
York, Oct. 1992.

[311 K. P. Bogart, Introductory combinatorics. Pitman Publishing Inc., Massachusetts, 1983.

20

