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ABSTRACT

The automation of reachability analysis is an important step in verification of aetwork
protocols. The memory size needed for the full state analysis of complex protocols is
usually very large and not available on most of the systems. A controlled partial search
algorithm “Supertrace” is implemented in this thesis to analyze protocols that can not be
analyzed efficiently by full state scarch method. Supertrace algorithm provided the
analysis of large protocols by generating 80% to 95% more states and is much faster as total
process time than full state analysis.

Second problem addressed in this thesis is the improvement of conformance testing
for protocol implementations. The “conformance testing” is used to check that the external
behavior of a given implementation of a protocol is equivalent to its formal specification.
A previously created procedure for conformance test sequence generation is automated in
this thesis by the ADA programming language. The software tool implemented, uses a
protocol specified formally with systems of communicating machines and creates test
sequences as output. The ool was applied to a formal specification of the CSMA/CD and
FDDI protocols and the results obtained, was consistent with the previous results. The
automation of the tool expanded the applicability of the previous procedure to larger and

more complex protocols.
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L INTRODUCTION

A. Background

Systems of communicating machines (SCM) [LUNDS88) is a formal protocol model
introduced during the last decade, which is used for specification, verification and analysis of
communication protocols. The main goal of the SCM model was to improve the well-known
simpler Communicating Finite State Machines (CFSM) model. In several papers the model was
used to specify and verify several communication protocols. The analysis which is carried out with
the model, called system state analysis, has been automated. The SCM model of a protocol can then
be easily verified.

This model uses a combination of finite state machines and variables. The variables may be
local to a single machine or shared by multiple machines. It can be classified in the models known
as “extended finite state machines.”

The global state analysis of protocols usually generates a very large number of states. A
previous work [BULB93] on reachability analysis, automated the analysis of communication
protocols. This analysis was based on the exhaustive search method. The main restriction with this
method is its inability to continue processing in the face of the “state space explosion.” As stated in
[HOLZ91], an estimate for the maximum size of the state space that can be reached for a full
reachability analysis is about 10° states. A protocol with more than 10° states cannot be fully
analyzed utilizing the exhaustive search method, due to computer memory limitations. A controlled
partial search method “Supertrace” was thus introduced in (HOLZ91] to analyze protocols which
cannot be analyzed by the exhaustive search method. The Supertrace is implemented in this thesis.

A conformance test is used to ensure that the extemal behavior of a protocol’s
implementation is equivalent to its formal specification. In conducting a conformance test, we are
given a known protocol specification and an unknown implementation. The implementation, for
practical purposes, is considered a “black box™ with a finite set of inputs and outputs. The test
provides a sequence of input signals, and observes the resulting outputs. The implementation under
test (IUT) should pass the test only if all observed outputs match those prescribed by the formal
specification. The series of input sequences which are used to exercise the protocol implementation
in this way are referred as conformance test sequence throughout this thesis.

A previous study [MILL90] on this issue observed gaps between the specification, the
verification, and the conformance testing of network protocols. Protocol models which are designed
for specification purposes usually have many powerful program language constructs, to simplify
the specification, but are difficult to analyze. Protocol models designed primarily for analysis




purposes, such as the CFSM model, are too simple for the specification of modem, complex
protocols. Recent works on conformance testing have started from the description of a protocol as
an incompletely specified finite state machine with input/output labels on the transitions
[CHEN90],{DAHB90]. Protocol specifications are not normally described in this manner.

Suppose a test designer was required to test a protocol specified using a formal language (i.e.
Estelle). First, the specification must be translated to an I/O diagram. This is a labor intensive
complex process, and during which errors are easily introduced. Only, when this translation is
complete, can the designer begin to generate the inputs for conformance testing.

A procedure, created in [LUND90A], is implemented in this thesis, for the generation of a
test sequence for a protocol specified in the SCM model. The purpose was to reduce the work and
the possibility of error, for the designer. The automation of the conformance test sequence
generation is also an attempt to close the gap between specification/verification and testing of
protocols. In this thesis, the test generation starts from a protocol model, designed for the
specification and verification of protocols. The procedure [LUND90A] and its automation as a
software tool does not guarantee that all the errors or combination of errors in a protocol are found.
But they do represent an attempt to exercise all parts of the protocol, providing some assurance that
the implementation meets its purpose.

B. Scope Of Thesis

The scope of this thesis is two fold: The first is to present implementation of the Supertrace
algorithm, apllied to the CFSM and SCM protocol models. This leads to the reachability analysis
of larger protocols formally specified by CFSM and SCM models that cannot be totally analyzed
by using exhaustive search methods. An earlier study on this issue is capable of generating
reachability analysis of protocols that are small enough to be analyzed by full state space search
method. This thesis expands this work to cover the analysis of bigger protocols by a controlled
partial search method known as “Supertrace” algorithm. The output of the program was compared
to several previous works and was consistent with their results.

The second part of this thesis is on testing protocol implementations. A software tool that
automates the generation of a testing sequence is introduced for testing and verification of network
protocols. The procedure implemented in this program was created in [LUND90A].

When combined with the earlier work a protocol can be specified as a system of
communicating machines, analyzed by the mushroom program and a set of “conformance tests” can
be generated from to insure that an implementation of the protocol is, to some degree at least, in
conformance with its specification




C. Organization

This thesis has six chapters. Chapter II reviews the Communicating Finite State Machines
(CFSM) and System of Communication (SCM) models. Chapter ITI describes the Super Trace
algorithm and introduces two programs based on the algorithm. The Simple Mushroom With
Supertrace and Big Mushroom With Supertrace, expand the automation of the global
reachability analysis of larger protocols formally specified by CFSM and SCM models
respectively.

In Chapter IV, a procedure for generating test sequences for a formally specified protocol is
introduced and a software tool that automates this process is described.

In Chapter V, examples of the use of software tools are given.

Chapter VI concludes the thesis with a research review and suggestions for future work.




. INTRODUCTION TO CFSM AND SCM MODELS

A. Communicating Finite State Machines

Communicating finite state machine (CFSM) mode! is a simple model which requires that
each machine in the network is modeled as a finite automaton or finite state machine (FSM). The
Communication channels between pairs of machines are modeled as one-way, infinite length FIFO
queues. There is a great deal of literature on this model [PENG91][RUDI86][VUON83]. The model
is defined for an arbitrary number of machines. A two machine model (shown in Figure 1) will be
presented in this chapter for simplicity.

Machine 1 Machine 2

Figure 1 : CFSM, Two machine model representation

1. Model Definition

This section defines the CFSM model [GOUDS83] and provides a simple protocol
specification and analysis to clarify the definition.

A communicating machine M is a finite, directed labeled graph with two types of edges,
sending and receiving. A sending (receiving) edge is labeled ‘-g” (‘+g’°) for some message g, taken
from a finite set G of messages. One of the nodes in M is identified as the initial node by some
directed path. A node in M whose outgoing edges are all sending (receiving) edges is a sending
(receiving) node; otherwise the node is a mixed node. The nodes of M are often referred to as states;
these two terms will be used interchangeably throughout this thesis.

Let M and N be two communicating machines having the same set G of messages the pair
(M,N) is a network. A global state of this network is a four tuple [m, ¢, 1, c,], where m and n are
nodes (states) from M and N, and c,,, and c,, are strings from the set G of messages. Intuitively, the
global state [m, c,,, n, c,] means that the machines M and N have reached states m and n, and the
communication channels contain the strings c,, and ¢, of messages, where c,, denotes the messages
sent from M to N in channel Cyy, and c,, denotes the messages sent from N to M in channel Cy. In
the case of say k number of machines where k > 2 the global state can be represented as




(m).9124130--M2.921:923+-- 13,931,432 MpGk1-Ga20---) Where m;’s are the nodes of machines
M; and g;; contains the messages sent from M; to M;. Subscripts i and j ranges from ..k and i#j.

The initial global state of (M,N) is [my,E, ng.E), where mg and ny are the initial states of
M and N, and E is the empty string.

The network progresses as transitions are taken in either M or N. Each transition consists
of a state change in one of the machines, and either the addition of a message to the end of one
channel (sending transition) or the deletion of a message from the front of one channel (receiving
transition).

A sending transition in M (N) adds a message to the end of channel Cys (Cy); a receiving
transition in M (N) removes a message from the front of channel C (Cyy).

Suppose +2 is a receiving transition from state i to j in machine M (N). The transition can
be executed if and only if M (N) is in state i and the message g is at the front of the channel Cy (Cyy).
The execution takes zero time. After its execution, machine M (N) is in state j, and the message g
has been removed from the channel Cy (Cyy).

Similarly, suppose - g is a sending transition from state i to j in machine M (N). The
transition can be executed if and only if M (N) is in state i. Afterwards, g appears on the end of the
outgoing channel, and the machine has transitioned to state j.

Suppose s;= [m, c;, n, ¢j] is a global state of (M,N). State s, follows s if there is a
transition (in M or N) which can be executed in s; if there is a sequence of states s;, 5;4.,-.., Si+p Such
that s; follows sy, s;, follows s;, and so on, and s; follows s;,, A state s is reachable if it is
reachable from the initial state.

The communication of a network (M,N) is a directed graph in which the nodes
correspond to the reachable global states of (M ,N), and the edges represent the follows function.
That is, there is an edge from state s; to state s; if ad only if s; follows s;. The edges are labeled with
the transitions which they represent. This reachability graph can be generated by starting with the
initial state, and adding the states which follow it, connecting them to it with edges; and repeating
for each new state generated.

The next two definitions are of errors that may occur in a communication protocol which
are detectable by analysis.

A global state [m, c,,n, c,] is a deadlock state if both m and n are receiving nodes and
¢n=cn=E, where E denotes the empty string.

A global state [m, c,,,n, c,] is an unspecified reception state if one of the following two
conditions is true:




(1) m is a receiving state, the message at the head of channel c,, is g, and none of m's
outgoing transitions is labeled ‘+g.’

(2) n is a receiving state, the message at the head of the channel c,, is g, and none of n’s
outgoing transitions is labeled ‘+g.’

These error conditions can be identified by generating the reachability for a network, and
inspecting all states as they are generated. In the next section, an example protocol is specified and
analyzed using CFSM model.

2. An Example Of Protocol Specification And Analysis Using CFSM Model

A simplified version of the Stop-and-Wait data link protocol will be analyzed as an
example of analysis with CFSM model. The interface between user and data link layer are assumed
to be error free and higher layer passes information/frame without error to the Data link layer. At
data link layer this protocol consist of two machines a sender and a receiver. In Figure 2, machine
1 serves as the sender and machine 2 serves as the receiver.

Machine 1
(©)
-D +A

Figure 2 : CFSM Specification for Stop-and-Wait

The sender places a frame on the channel for the receiver. The receiver senses a frame on
the incoming channel and accepts and removes the message from the channel. The receiver then
sends an acknowledgment packet to the sender. The sender receives the acknowledgment packet
and is able to send another frame of information to the receiver.

The -D and +D represents the sending and receiving of data respectively. The -A, and +A
represent the sending and receiving acknowledgment respectively. Since the initial state of each
machine is O; the initial global state is [0,E,0,E).

The reachability analysis can be done by a simple procedure. Starting with the initial
global state only one transition is possible, the -D of machine 1 from state 0. This leads to global
state [1,D,0,E]. We can continue the analysis in the same manner detecting the possible transitions
from this global state until possible global states are found. The complete reachability analysis




consisting of four states is given in Figure 3. There are no deadlocks or unspecified receptions in
this protocol.
—{0,E,0,E]

‘-D

[1,D,0,E]

‘ +D
[1,E,1,E]
-A

[1,E,0,A]
_|+A

Figure 3 : Reachability Analysis of Stop-and-Wait protocol

Another CFSM specification of an imaginary network protocol consisting of three
communicating machines is shown in Figure 4.

Machine 1 Machine 2
-D3,2 +D3,1
+D2,3 -D1,3 +D0, 1

Machine 3

-D2,1 +D2,2
-D4,1

Figure 4 : CFSM Specification of Example protocol

The directed edges are labeled such that the character-number combinations following
the *-/+’ shows the messages and the numbers at the end represent the destination machine. A
clockwise ring is formed with each machine sending one message to the next machine and recziving
a message from the previous machine. The initial state of each machine is 1; thus the initial giobal




state is [1,E,E,1,E.E,1.E.E]. The reachability analysis of this protocol shown in Figure 5. In this
analysis there is one deadlock condition and one unspecified reception. In global state
(3.E.E,3,E.E,1,E.E], all the channels are empty and all the nodes are receiving nodes satisfying the
deadlock condition. In giobal state [2,E,E,1,E,E,3,D4,E], machine 1 and machine 2 are in receiving
states but none of the outgoing transitions are labeled ‘+D4’, satisfying an unspecified reception
condition.

—»[l,E,E,l,E,E,l,E,B] D3 D) >[3»D3sE’1oE,E’1’E’E]
-D0,2 ’ +D3,1
[2,D0,E,1,E,E,1,E,E] [3,E.E,3,E,E,1,EE]
+D0,1 Deadlock
[2,E,E,2,EE,1,E,E]
-D1,3
[2’E1E’ l > ’D 1 * l ’E’E]
+D1,2
[2,EE,1,E,E,2EE] Dal »[2,EE,1,LE}L,« 4,E]
-D2.1 T Unspecified
[2.EE1EE,1,D2E] Reception
+D2,3

Figure 5 : Reachability Analysis of Example protocol

3. Summary

The CFSM model is simple and easy to understand. However, as the protocols become
more complex, this model becomes difficult to use due to a combinatorial explosion of states. The
analysis might not terminate if the queue length is unbounded. The number of states in the
reachability graph will be unmanageably large for such complex protocols even if the queue length
is bounded. A computer analysis might eventually terminate, but still the CPU time would be days
even months, obviously impractical.

Another disadvantage is that as the protocols become more complex, the specification of
the protocol can be so large, consisting of many states and transitions, that makes it very hard to
understand if it is the intended specification. Several examples are given in Chapter V that shows
the largeness of analysis output for some protocols.




B. Systems Of Communicating Machines

In this section the SCM model is described. First the model definition is given, then the
algorithm for generating the system state analysis is described. Finally, to illustrate the important
aspects of the model it is used to specify analyze a sample protocol.

1. Model Definition

A system of communicating machines is an ordered pair C= (M,V), where

M= (my,my,...,m,}

is a finite set of machines, and

V= {v),Vo..,Vk)

is a finite set of shared variables with two designated subsets R; and W; specified for each
machine m;. The subset R; of V is called the set of read access variables for machine m;, and the
subset W; the set of write access variables for m;.

Each machine m; € M is defined by a tuple (S;.s,.L;,N;, T)), where

(1) Si is a finite set of states;

(2) s € S; is a designated state called the initial state of m;.

(3) L; is a finite set of local variables;,

(4) N; is a finite set of names, each of which is associated with a unique pair (p.a), where
p is a predicate on the variables L; U R;, and a is an action on the variables of L, UR; U W,.
Specifically, an action is a partial function

a L;XR,-L,xW,

from the values of the local variables and read access variables to the values of the local
variables and write access variables.

(5) t;: S;XN; > §; is a transition function, which is a partial function from the states
and names of m; to the states of m;.

Machines model the entities, which in a protocol system are processes and channels. The
shared variables are the means of communication between the machines. Intuitively, R; and W; are
the subsets of V to which m; has read and write access, respectively. A machine is allowed to make
a transition from one state to another when the predicate associated with the name for that transition
is true. Upon taking the transition, the action associated with that name is executed. The action
changes the values of local and/or shared variables, thus allowing other predicates become true.

The sets of local and shared variables specify a name and range for each. In most cases,
the range will be a finite or countable set of values. For proper operation, the initial values of some
or all of the variables should be specified.




A system state tuple is a tuple of all machine states. That is, if (M,V) is a system of »
communicating machines, and s;, for 1 SiSn , is the state of the machine m;, then the n-tuple
(51.82,....5) is the system state tuple of (M,V). A system state is a system state tuple, plus the
outgoing transitions which are enabled. Thus two system states are equal if every machine is in the
same state, and the same outgoing transitions are enabled.

The global state of a system consists of the system state tuple, plus the values of all
variables, both local and shared. It may be written as a larger tuple, containing the system state tuple
with the values of the variables. The initial global state is the initial system state tuple, with the
additional requirement that all variables have their initial values. The initial system state is the
system state such that every machine is in its state, and the outgoing transitions are the same as in
the initial global state.

A global state corresponds to a system state if every machine is in the same state, and the
same outgoing transitions are enabled. Clearly, more than one global state may correspond to the
same state.

Let T(s;.n) = s, be a transition which is defined on machine m;. Transition T is enabled
if the enabling predicate p, associated with name n, is true. Transition T may be enabled whenever
mi is in state si and the predicate p is true (enabled). The execution of 7 is an atomic action, in which
both the state change and the action a is associated with n occur simultaneously.

It is assumed that if a transition is enabled indefinitely, then it will eventually occur. This
is an assumption of faimess, and is needed for the proofs of certain properties.

2. Algorithm: System State Analysis

The process of generating the set of all system states reachable from the initial state is
called system state analysis. This analysis construct a graph, whose nodes are the reachable system
states, and whose arcs indicate the transitions leading from each system state to another. This graph
may be generated by a mechanical procedure which consist of the following three steps [LUND91];

1. Set each machine to its initial state, and all variables to their original values.The initial
set of reachable system states consists of only the initial system state; the initial graph is a single
node representing this case.

2. From the current system state vector and variable values, determine which transitions
are enabled. For each of these transitions determine the system state which results from its
execution. If this state (with the same enabled transitions) has already been generated, then draw an
arc from the current state to it, labeling the arc with the transition name. Otherwise, add the new
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system state to the graph, draw an arc from the current state t0 it, and label the arc with the name of
the transition.

3. For cach new state generated in step 2, repeat step 2. Continue until step 2 hos initial,
been repeated for each system state thus generated, and no more new states are generated

3. An Example Protocol Specification and Analysis Using SCM Model

The stop-and-wait protocol is also used to demonstrate the analysis using SCM model.
The specification of the stop-and-wait protocol as represented by SCM model is shown in . The
specification consists of two finite state machines, the local and shared variables, and the predicate
action table, Table 1. The local variables are in_buff and out_buff shown under their corresponding
FSMs. The shared variables are: CHAN and RET and shown between the two machines. The initial
state of each machine is 0, with the shared and local variables are empty except the local variable
out_buff which has “D.” The ‘D’ in out_buff represents data and characters ‘E’ and ‘A’ in predicate
action table represent empty string and acknowledgment respectively.

Machine 1
CHAN
0) E
SM_ ata
Rev_Ack RET
E
out_buff [D in_buff [ E

Figure 6 : SCM Specification of Stop-and-Wait Protocol with Variables

TABLE 1: PREDICATE ACTION TABLE FOR STOP-AND-WAIT PROTOCOL

Transition Enabling Predicate Action
Snd_data = CHAN:= out_buff
CHAN = E A out_buff #E out_buff:= E
Rev_Ack RET=A RET:=E ; CHAN:=E
Rev_data CHAN #E in_buff:= CHAN
Snd_Ack TRUE RET:= A ;in_buff:=E
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For this example the assumption is made that data is always made available to the CHAN
from out_buff. The global reachability analysis, shown in Figure 7, has 4 states. The format for the
global state tuple is:

[Machine1_state, out_buff, Machine2_state, in_buff, CHAN, RET]
| 0,D,0.EEE ]

-D
[1,DO.ED.E]

+D
[1,D,1,DD,E]

-A
[1,D,0,D,D,A]

I +A

Figure 7 : Global Reachability Analysis of Stop-and-Wait Protocol

The system state analysis for the stop-and-wait protocol also has 4 states (see Figure 8).
For more complex protocols, there may be a big difference between global and system states. For
example a sliding window protocol with a window size of 8 the system state analysis was shown to
generate 165 states, while the full global analysis generated 11880 states ([LUND91].

The format for a system state tuple analysis is:
[Machine1_state , Machine2_state]

—-[0,0]

. ‘-D
[1,0]
+D

(1,1]
|-+
[1,0]

|+A

Figure 8 : System Reachability Analysis of Stop-and-Wait Protocol
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4. Summary

The SCM model has desirable properties which overcome some of the disadvantages of
the CFSM model. One of the advantages of the SCM model is that it significantly reduces the state
explosion through the use of system state analysis. In some cases, however the system state analysis
is not sufficient for protocol analysis. Some other method - such as global analysis must be
performed. A problem is that loops in the state machines may cause an insufficient system state
analysis.

Another advantage of SCM model is that it allows communication between machines in
nonsequential manner, unlike a FIFO queue representation in the CFSM model. The SCM model
specification is easier to understand than the CFSM model for more complex protocols
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III. SUPERTRACE ALGORITHM

A. The Idea Behind The Supertrace Algorithm

The standard full, or exhaustive, search algorithm explores all reachable composite system
states for a set of interacting finite state machines. Every reachable state and every sequence of
reachable states can be checked for a set of correctness criteria such as deadlock condition and
unspecified reception. However, the size of the search space and the limits of physical memory
severely restrict the use of this method. If the size of the state space is R and the maximum number
of states that can be stored in memory during the search is M both the coverage and the search
quality can only reach 100% when R S M. When R > M the coverage reduces to  M/R, but the
search quality is likely to be worse.

To give an idea of the magnitude of such a search consider the following example. Suppose
that we have a protocol for two machines, each with 100 states, one message queue, and five local
variables. The two message queues are restricted to five slots each, and the range of values for local
variables are assumed to be limited to ten values. The number of distinct messages exchanged is 10.
In this sample system, there are 10° "2 possible states of the protocol variables. Each process can
be in one of 10° different states, so two processes can maximally be in 10* different composite
system states. Finally each queue can hold up to five messages, where each message can be one out
of ten permutations. The total number of system states in the worst case is

2
L1
10'°. 10*- [2 101
-

or in the order of 10> different states. If each state could be encoded in 1 byte of memory
and analyzed in 107 sec, it would still require at least 10'>times more memory as currently
available on most systems, and would take roughly 10" years to perform an exhaustive analysis.

Fortunately, the number of effectively reachable states is usually much smaller than the total
number of states calculated above. Even relatively small protocol systems, however, can easily
generate up to 10° reachable states. Therefore the full search method is feasible only if we can
reduce the complexity of our models to the maximum that a given machine can analyze.

If the state space is larger than the available memory can accommodate, the exhaustive search
strategy discussed above reduces to a partial search, without guaranteeing that the most important
parts of the protocol are inspected. This observation has led to the development of a new class of
algorithms that exploits the benefits of partial search.
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One of the most effective partial search methods is the “Supertrace Algorithm™ [HOLZ91],
which is implemented in this thesis.

1. Supertrace Algorithm (A Controlled Partial Search Method)

In this section the idea behind the supertrace will be discussed as it is introduced in
[HOLZ91]}.

Let A represent our state space set and M the bytes of memory available.The standard
way to maintain the state space set A is using a technique called hashing. Redundant states are
restricted from set A by means of a hashing function.

Each state is placed into a hashing table based on their hashing value h(s)=i where 4 is
the hashing function, s is the global state, and i is the index for the hash lookup table (see Figure 9).

0
—s > = |

Linked List

—>__|

H-1

Lookup Table
Figure 9 : Hash Lookup Table

If we have H slots in the hash lookup table. Hash function h(s) must be defined such that
it retums arbitrary value i in the range 0..(H-1). But the possibility exists that two different states
produce the same hash value. In the case of a large protocol the hash table will have to accommodate
a large number of states. When A > H the hash function will always produce some duplicates
indices values of i for an average of A/H different states. To accommodate these duplicate index
values we use an open hash and all states that hash to the same value are stored in a linked list that
is accessible via the lookup table under the calculated index. When the table is full, each new state
must be compared to average A/H other states before it can be inserted into wu.> linked list or
discarded as redundant. As A continues to grow beyond the first H states, the number of
comparisons required increases steadily, and the search efficiency degrades. There is a time penaity
for analyzing systems of more than H states. This type of hashing was used for analysis of protocols
in previous work [BULB93].
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We want to make H as big as possible or at least 10° times bigger than we expect A to
be. If we can have H » A then there will be very few, if any, conflicts. In this case we do not need
to store complete state descriptions in the hash table: in all bui a few cases the hash value A(s)
uniquely identifies a state. A single bit of storage will suffice to verify if a state has already been
generated.

If we have M bytes of memory available, assuming 8 bits per byte we have 8M bits for
state space. The state is not stored. Since no state is stored, memory efficiency is greatly increased
and there are 19 states to compare a new state against. The bit position in the hash table uniquely
identifies the state. The method can be expected to work well if the state space is sparse and indeed
H is very large. For H » A hash conflicts are rare. When A > H then conflicts will occur. The
accuracy of our analysis will depend upon the percentage of hash conflicts. Because of hash
conflicts some deadlocks or unspecified receptions may go undetected.The method therefore
approximates an exhaustive search for smaller protocols and slowly changes into a controlled
partial search method for larger protocols.The Supertrace Algorithm as compared to the exhaustive
search can not guarantee 100% coverage due to possibility of unresolved hash conflicts. The
implementation of the “Supertrace Algorithm” will be explained in the following sections.

B. Simple Mushroom With Supertrace

The first program to be examined is called Mushroom with Supertrace. It was written in the
Ada programming language. Mushroom was written to automate the reachability analysis of
protocols specified by the CFSM and SCM models [BULB93]. The Mushroom with Supertrace was
developed to extend the applicability of Mushroom program to larger and more complex programs.
There are actually two separate versions. The first called, simple mushroom with supertrace,
analyzes the CFSM models. The second version analyzes the SCM models, either as system state
analysis (smart mushroom), or a full global analysis (big mushroom with supertrace) of a protocol
specified formally by the SCM model. The Supertrace algorithm is not implemented for smart
mushroom program since the state space generally does not grow beyond the limits of memory. The
General structure of mushroom program is shown in Figure 10.

The explanation, Simple Mushroom with Supertrace, is divided into four sections: program
structure, inputs, reachability analysis, and outputs. The portions of this program that are common
to the original Mushroom program along with the details of the mushroom program are not
discussed.
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Figure 10 : General Structure of Mushroom Program
1. Program Structure

The Simple Mushroom program consists of Ada subprograms (procedures and
functions), which are separate compilation units and subunits of compilation units. Related
subprograms are also gathered in the same files. The compilation units of the program are shown in
Table 2. Procedure main is the parent unit. All of the subprograms are the subunits of procedure

main [ANSIMIL93].

TABLE 2: SIMPLE MUSHROOM COMPILATION UNITS

Compilation Unit Description File Name
main(procedure) This is the parent unit. Contains the main tmain.a
data structures, global variable
and the driver.
load_machine_array Builds the adjacency lists from FSMs. tinput.a
(procedure)
read_in_file(procedure) Parses the input FSM text file tinput.a
build_Gstate_graph Generates the reachability graph. treachability.a
(procedure) '
IsEqual (function) Compares two global states for equality treachabilty.a
hash(function) Generates an index number according to the | treachabilty.a
hashing function
clear_pointers(procedure) Deallocates the dynamic memory space for | treachability.a
another analysis
Print Queue(procedure) Prints the FIFO queues toutput.a
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TABLE 2: SIMPLE MUSHROOM COMPILATION UNITS

Compilation Uit Description File Name
output_Gstate_transition (proce- | Outputs the transition name toutput.a
dure)
output_Gstate_node Outputs the machine states, unspecified toutput.a
(procedure) receptions, and the states with deadlocks.
output_machine_arrays Outputs the FSM description in a tabular toutput.a
(procedure) format
output_unexecuted_transitions Outputs the unexecuted transitions toutput.a
(procedure)
create_output_file (procedure) Creates an output file for storing the toutput.a

analysis results
output_analysis(procedure) Driver for the output subprograms toutput.a
system_call(procedure) Interface procedure for Unix system calls tsystem.a
viaC.
message_queues (package) Implements the queue operations for the tqueues.a
FIFO communication channels.
pointer_queues Implements the queue operations for the tqueues_2.a
(generic_package) pointer queue that stores the global tuples
temporarily
2. Input

The CFSM specification of a protoco! consists of only FSMs of the communicating
machines. FSMs are represented with a text file. The user enters the directed graphs as a text file
using some reserved words, numbers, and characters. For the list of reserved words the reader
should refer to [BULB93]. The maximum number of machines allowed is eight, and the number of
states for each machine can be from O to 50. Transition names must be at most three characters long
and may be any combination of letters or digits. These constraints can be relaxed with modifications
to the program, if necessary.

The input file for the stop-and-wait protocol in Chapter II for the CFSM model is shown
in Figure 11. The reserved word “state” represents the states of the machine that they come after.
For example “trans -D 1 2” (first line at state 1 in machine 1) represents a transition from state 0 to
statel by sending D to machine 2. The first character ‘-’ or ‘+’ following reserved word “state”
represents sending or receiving data respectively. “Initial_state 0 0” means that the initial states of
machine 1 and machine 2 are state 0.

First, this file is parsed by read_in_file procedure and tokens are generated. Then,
Load_machine_array procedure constructs an adjacency list which represents the FSMs.
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start
number_of_machines 2
sachine 1

state O

trans -D 1 2
state 1

trans +A 0 2
machine 2

state O

trans +D 1 1
state 1

trans -A 0 1
initial _state 0 O
finish

Figure 11 : Text File Description of Stop-and-Wait protocol

The adjacency list for the stop-and-wait protocol is depicted in its structural form in
Figure 12. This adjacency list is used for constructing the global reachability graph. The adjacency
list contains all the necessary information for generating the global reachability graph.
transition

|_message
next Mstate

_mac
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message
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—tt-

Machine 2
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Figure 12 : Adjacency list for the example Stop-and-Wait protocol

ﬁ
s i

19




3. Reachability Analysis

After reading the input file the program generates the global reachability graph. It uses
the adjacency list and the initial state to begin construction the global reachability graph. Starting
with the initial state new states are generated and compared with previous ones based on their

respective index value. The global reachability graph construction algorithm is given in Figure 13.

loop (main loop)
for index! in 1 .. total_number_of machines loop
place_holder(indexI) := machine array(indexl (Mstate(indexl))
wl;ile'?place_holder(indax) /= null) loop
00p
if (place_holder(indexl ).transition = s) then
Enqueue the message into the corresponding message queue
search hash look-up table for this global state tuple
if slot of the hash look-up table was not set then
This is assumed to be a new state set the slot and create a new state
IEuqueue this new node to the pointer_queue
else
print out the transition and discard the tuple
end if
else
if (place_holder(index1).transition) = r and at least one of the message queues for
this machine is not empty then
find this message queue and Dequeue
search hash look-up table for this new global state tuple
If slot of the hash look-up table was not set then
This is assumed to be a new state set the slot and create a new node
lEnqueue this new node to the pointer_queue
else
print out the transition and discard the tuple
end if
end if
end if
place_holder(indexl1) := place_holder(index1).Slink
exit;
end loop
end loop
if pointer_queue empty then
exit

else

ngffqueue pointer_queue and update M_state for this new node
end i
end loop (main loop)

Figure 13 : Algorithm for Generating Global Reachability Graph for CFSM

During the graph construction, the program also detects the global states with dead locks
or unspecified receptions. The program also finds the maximum message queue size and channel
overflows. Analysis results are stored in an output file. This avoids the need to transverse the entire
graph an additional time at the end of the program. Program run time is thus dramatically reduced.




One of the most time consuming procedures is the search algorithm used to detect if a
state was previously created. The previous version of this program used open hashing to search
through the previously created global states. All states were kept in a linked list associated with their
hash index. For the analysis of small protocols this is not a problem. The search is fast, the memory
required is small, and the linked lists are short. The analysis of larger protocols, link lists grows
longer due to increased hash conflicts and the applicability of regular mushroom becomes
restricted.

With Supertrace the search is also made via hash function but utilizes a different
implementation. First, the size of hash table is determined based upon the expected number of the
states generated, to ensure adequate coverage, but is limited by the availability of memory. Second,
the hash function uses the machine states and the messages on the queues between the machines to
provide a fast and efficient mapping. The complexity of the search algorithm is always O(1). This
is obvious when the hash function generates a unique index (no collision). When the hash function
generates the same index for two different states Supertrace, discards the new state, (as a duplicate)
as it only checks if the hash table slot is set(collusion) or not set(new state). Previous tuples are not
compared. This makes the search more efficient. Because we are using a very big hash table, the
hash function creates a distinct index (table slot) for almost every global state.

The effectiveness of the Super Trace algorithm depends upon the ratio of hash table size
to the expected number of states, the effectiveness of the hash function which generates the indices
for the hash array. The hash function which generates the indices for protocols specified in CFSM
model is shown in Figure 14.

The second issue that has effect on Supertrace Algorithm’s efficiency is the available
memory on the system. The size of the hash table must be as big as possible to minimize the number
of hash conflicts. The need for a very large memory can not be overemphasized.

The impact of such a large table is minimized by utilizing the Ada Programming
Language predefined pragma “pack.” The pragma “pack” tells that storage minimization should be
main criterion for representing of the given type (hash-lookup-table) to the compiler. By using that
option, boolean types which normally are represented as 1 byte (8 bits) in the memory; can be
reduced to one bit which saves seven bits per byte. We can effectively increase the size of our hash
table by 700% without using additional memory space. So a hash table of size 1545278 is used in
our applications without using big part of memory.

The structure of a global state is shown in Figure 15. The maximum numt-er of outgoing
transitions is artificially limited to 7. It can be increased if necessary. A maximum channel capacity
of 6 messages is introduced to ensure that the analysis eventually stops.
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function hash (m : in machine_state_ssray;
q : queue_type) retumn integer is

index : integer = (;
sum :integer :=0;

oriin 1..8 loop
for j |f’ in 1..8 loop
muegu(q(mt machine_type(i),next _machine_type(j)) tail) /=0 then
for &L ui 1. nga(q(next _machine_type(i),next_machine_type(j)).tail) loop
in
sum :=sum: ter'pos(q(next_machine_type(i),next_machine_type(j)).store(I(k))*j;

end loop;
end
mdexlo':p(mwget(m(&)‘ 19765)+(integer (m(7))*2978) + (integer(m(6))* 43270)
+(integer (m(5))*13791) + (integer(m(4))* 28433) +(integer(m(3))* 17237)
+(integer (m(2))* 37777) + (mleger(m(l))‘ 635799);
mmdex-bsmnﬁ)mod 30545423);
e

Figure 14 : Example Hash Function For Stop-and-wait Protocol

System_state_number
Machine state |1]2]3]4]5]6]7|8

queue_num 1,1

queue_num 1,2

GTUPLE

queue_num 8,8
1 o Glransition

2 _m&

Figure 15 : Global State Structure with outgoing transitions




4. Output

The program stores the analysis results in a file named by the user during the reachability
graph construction. The file contains the specification in a tabular format, the reachability graph and
the results of the analysis. The analysis results consists of six separate sections. They are the number
of states generated, number of states analyzed, number of deadlocks detected, number of
unspecified receptions detected, maximum message queue size and the number of channel
overflows. Global states with deadlocks and unspecified receptions are also marked in the
reachability graph. The output file also lists any unexecuted transitions.

The program output for the imaginary protocol in Chapter II is listed in Figure 16. Since
no states are stored, in case of a collision we can not determine whether it is a hash conflict of a new
state or a duplicate state. These states are referred as O in the output file. For example, In our
example protocol after state 8 “+d2” transition is taken which leads to state 1. Since program
doesn’t keep state 1 it will just output O for the duplicate state.

C. Big Mushroom With Supertrace

In this section, the program that automates the full global analysis (big mushroom) for a
protocol specified by a SCM is model described. The description of the program is divided into four
sections: general program structure, inputs to the program, generating the reachability graph, and
outputs of the program. Since the smart mushroom program mentioned in Chapter II generates a
relatively small number of states it is considered outside the scope of this thesis and will not be
mentioned in the following sections.

1. Program Structure

Program structure of Big mushroom is similar to the structure of Simple Mushroom. The
SCM model specification is more complicated than the CFSM specification, but this complexity in
the specification brings some advantages to the analysis as mentioned in Chapter II. A protocol
specified by the SCM :r:odel consists of FSMs, variable definitions, and predicate-action table,
rather than just the FSM's as in CFSM model.

FSMs are entered into the program in the same manner as in the Simple Mushroom
program using a text file. The variable definitions and predicate-action table must also be entered
into the program. The user enters these parts by completing Ada packages and subprograms using
the templates provided.

The compilation units for the program are shown in Table 3. The user has access to the
last four packages/subprograms. Once the user completes these programs using the templates and
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REACHABILITY ANALYSIS of : example.fsm
SPECIPICATION

| c—————

| | Machine 1 State Transitions I

| Prom | To | other machine | Transition |
| 1 I 2 | 2 | s d0 |
| 1 I 3 | 2 | s 43 |
i | 2 [ § | 3 | r d2 !
P e ———— — -
! | Machine 2 State Transitions |
\ -——- - - -
| | From | To | ocher machine | Transition |
| 1 1 2 | 1 | r do |
| 1 I 3 | 1 | r 43 |
2 11 | 3 | s dl |
| Machine 3 sState 'l‘nnau:ion- i
| From | To | other machine | Transicion |
I 1 | 2 I 2 | r dl I
[ 2 I 1 | 1 | s d2 |
1 | s ddi |

\ REACHABILITY GRAPH
: 11{1,B,E, 1,E,E, 1,EE]
| -0 2 [ 2,d0 ,E, 1,B,E, 1,E,E] 2
i -d3 2 [ 3,43 ,E, 1,E,E, 1,E,E] 3
i 2,40 ,E, 1,E,E, 1,E,E)
: +d0 1 [ 2,E,B, 2,B,E, 1,E,E] 4
! 31d3 IEI 1-3:3, I.E,E]
| +d3 1 [ 3,E,E, 3,E,E, 1,E,El §
2,E,E, 2,E,E, 1,E,E}

-dl 3 [ 2,E,EB, 1,E,d1, 1,E,E) 6
3,B,E, 3,E,E, 1,E,EjttreeessesDPADLOCK conditiontsesseeseveses
213031 1lEld1 ’ I'E,B’

+dl 2 [ 2,E,E, 1,B,E, 2,E,E)] 7
2'ElEl 113031 ngogl

-d2 1 [ 2,E,E, 1,E,E, 1,42 ,E) 8

-d¢ 1 ( 2,E,E, 1,E,B, 3,44 ,E] 9
8 ( 2,E,E, 1,E,E, 1,42 ,E}
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9 [ 2,E,E, 1,E,E, 3,44 El""“"“vnspecified Receptionssessveeees

SUMMARY OF REACHABILITY ANALYSIS (ANALYSIS COMPLETED)

~N oM e W N
e e e e

Total number of states generated : 9
Number of states analyzed : 9
number of deadlocks : 1

number of unspecified receptions : 1
maximum message queue size : 1
channel overflow :NONE

TRANSITIONS
TEERSNONE 40 e

Figure 16 : Program Output for the example protocol .
compiles them with the other compilation units, the analysis of the specified protocol can be
performed. Construction of the specification in the form of Ada packages and subprograms is
explained in the next section.




TABLE 3: BIG MUSHROOM PROGRAM COMPILATION UNITS

load_machine_array Builds the adjacency lists from FSMs. sinput.a

(procedure)

read_in_file(procedure) Parses the input FSM text file sinput.a

build_Gstate_graph Generates the global reachability graph. sg_treachability.a

(procedure)

Global_hash(function) Generates an index number according to the | sg_reachability.a
Supu‘moe hashing function for Big

hash(function) Genemes an index number according to the | sg_reachabilty.a
hashing function for Smart mushroom option;

clear_pointers(procedure) Deallocates the d ic memory space for | sg_reachabilty.a
another analysis yoam

search_for_Swple Searchs the reachability for the sg_search.a

(function) equivalent system tuples using hashing

clear_hs_hash_array Clears the hash array and deallocates the sg_search.a

(procedure) memory for system state analysis

output_Gstate_node Outputs the machine states, and the states sg_output.a

(procedure) with deadlocks for global reachability
analysis.

output_sys_node Outputs machine states, and states with sg_output.a

(procedure) deadlocks for system state analysis.

output_Gstate_transition Outputs the transition name for global sg_output.a

(procedure) reachability analysis.

output_sys_transition the transition name for system state | sg_output

(procedure) m

output_unexecuted_transitions Outputs the unexecuted transitions sg_outputa

(procedure)

output_machine_arrays ?ulpms the FSM description in a tabular sg_output.a
ormat

output_analysis(procedure) Driver for the output subprograms sg_output.a

create_output_file (procedure) Clﬁws an output file for storing the analysis| sg_output.a
resuits

system_call(procedure) Icmetface procedure for Unix system calls via] ssystem.a

queues(generic package) Implements the queue operations for the squeues.a
pointer queue that stores the nodes
temporarily.

stacks (generic package) Implements the stack operation for storing | sstacks.a
enabled transition

definitions (package) Inc!udlesmadeﬁnedlocalandshared named by the user
variables

Analyze_Predicates (procedure)] Determines the enabled transitions from the | named by the user

there is one for each machine predicates
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TABLE 3: BIG MUSHROOM PROGRAM COMPILATION UNITS

2. Input

The inputs to the program consists of three parts, as mentioned earlier. FSMs are entered
using a text file representation as in Simple Mushroom program. Variables and predicate-action
table are entered as Ada packages/subprograms. The user needs to complete these packages and
subprograms by filling in templates provided.

The Ada package template for the variable declarations is called “definitions.” The
predicate-action table is entered using an Ada subprogram template which consists of one procedure
named “Action” and two to eight procedures called “Analyze_Predicate_Machine*” according to
the number of machines in the protocol. The “*” at the end of the procedure name is replaced by the
corresponding machine number for each machine in the protocol.

After completing the templates described above, the user must compile these units with
the other compilation units listed in Table 3. Since the completion of these was explained in
[BULB93}, they will not described here. But our example protocol stop-and-wait in Chapter II is
used to illustrate how to complete the templates.

a. Finite State Machines

There are a few differences in the FSM description of Big Mushroom program from
Simple Mushroom program. In the SCM model, explicit machine numbers to show which machine
the message sent to or received from are not needed for the transition names. Since shared variables
are used for communication between machines, this information is included in the predicate-action
table. The FSM text file for the example ring protocol is shown in Figure 17.

The FSM text file is read by the input procedures and the adjacency list, which is
used during the construction of system and global reachability graph is generated.

b. Variable Definitions

The user defines the protocol variables in Ada package named definitions. This
package includes the local variables for each machine and the global variables, which are
considered shared and allow communication between machines. A variable can be one of the Ada
defined types such as: integer, array, string, record, character, boolean etc. These types and their
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start
number_of_machines 3
machine 1

state 0

trans Snd_data 2
state 1

trans Rcv_Ack 2
machine 2

scate 0

trans Rcv_data
state 1

trans Snd_Ack
initial_state 0 0
finish

Figure 17 ; Text file description of the example ring protocol

subtypes are used to define the protocol variables. The variable declaration for the stop-and-wait
protocol is shown in Figure 18.

¢. Predicate-Action Table

The predicate-action table is represented by a number of subprograms as separate
compilation units. These subprograms are named Analyze-Predicates and are used to determine the
enabled transitions for each machine. The procedure named Action executes the actions to be taken
for the corresponding enabled predicates. There is one Analyze_Predicates procedure for each
machine and one Action procedure for the protocol.The user completes the template for each state
of the machines. The predicate-action file for the example stop-and-wait protocol is shown in
Figure 19.

The enabled transitions are passed into this procedure through the “in_transition”
formal parameter and the necessary changes are made to the local and shared variables by the Action
procedure. The “‘out_system_state”parameter passes the changed protocol variables to the calling
procedure. The completed Action procedure is shown in Figure 20. Text in boldface shows the user
defined parts.




with TEXT,
"madmm-
nam_of_machines : constant = 2;
typucm_umiﬁm_typek(s.:d data, Rcv_data, Sad_Ack, Rev_Ack, unused);

buffer, L,AKE)
;’c”&e m‘:nai)o is new enumeration_io (buffer_type);
use buff_eaum_io;
type dummy_type is range 1.255;

type mcﬁnel_m.type is

om_bnff buffer, =D;
end record; -oype:
type machinez_m_type is
mh_b\if ; buffer_type := E;
type machine3_state_type is
record

dummy : dummy_type;
ead record;

type machine8_state_type is
dummy : dummy_type;
my : y_type;
record -ypeis
CHAN : buﬂ’ettype-B
RET : buffer_type :=E;
endleead.

end definitions;
Figure 18 : Completed Definitions package for stop-and-wait protocol




separate (main)
procedure AMyu_Pndiem_Mac!nnel(knl machinel_state _type:
GLOBAL.: global_ _type:
s :natural; w:inout transition_stack_package.stack) is
begin

cases

when

if ((GLOBAL.CHAN E) and (LOCAL.out_buff /= E)) then
Push(w.Snd data);

end if:

when 1 =
if (GLOBAL.RET = A) then
e“l‘;nsh(w,lh:v_Ack);

procedure Analyze_Predicates_Machine2(local : machine2_state_type;
GLOBAL.: global_variable_type;
s :natural; w:in out transition_stack_package.stack) is

casesis
when 0 =>
if (GLOBAL.CHAN /= E) then
Push(w,Rcv_data);
end if;

when 1=>
if true then
Push(w,Snd_Ack);
endi

procedure Analyze_Predicates_Machine3(local : machine3_state_type;
GLOBAL: global_variable_type;
s :natural; w:in out transition_stack_package.stack) is
begin
null;
end Analyze_Predicates_Machine3;

procedure Analyze_Predicates Machmesaocal machine8_state_type;
GLOBAL: global_variable_type;
. s :natural ; w:in out transition_stack_package.stack) is
begin
null;
end Analyze_Predicates_Machine8;

Figure 19 : Completed Analyze_Predicates procedures for the Stop-and-wait protocol
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separate (main)

procedure Action(in_system_state: in out Gstate_record_type;
in_transition : in out scm_transition_type;
out_system_state : in_out Gstate_record_type ) is

case (in_transition) is

when (Snd_data) =>
out_system_state. GLOBAL_VARIABLES.CHAN:= in_system_state.machinel_state.out | buff:
out_system_state.machinel_state.out_buff := E;

e Mm.nmhm) o Jn_buff GLOBAL_VARIABLES.CHAN;
out, wn ,_state = in_system_state. X

when (Snd_Ack) =>
out_system_state. GLOBAL_VARIABLES RET := A;
out_system_state.machine2_state.in_buff := E;

when (Rev_Ack) =>
out_system_state.GLOBAL_VARIABLES.CHAN:= E;
out_system_state. GLOBAL_VARIABLES.RET := E;

wm»m_wmmwmmmmmpowdm
case;
end Action

Figure 20 : Completed Action procedure for the Stop-and-Wait protocol
3. Global Reachability Analysis

The process of generating and examining the set of all reachable states from the initial
state is called reachability analysis. The program is capable of generating both the global and
system reachability analyses separately for a protocol formally specified by the SCM model. Since
the system reachability analysis generates relatively small number of states Supertrace Algorithm
is not used for that analysis.

The user can select either global reachability analysis or system state analysis from a
menu. During the graph construction, the program also detects any deadlock conditions. Analysis
results are stored in an output file named “rgraph.dat” in parallel with graph construction.

The structure of the global state used for the program is shown in Figure 21. This node
structure also includes outgoing transitions. The maximum number of outgoing transitions is
artificially limited to 7. It can be increased as necessary. The shared variables are stored in the
“global_variables” variable and local variables are stored separately for each machine in
“machine_state*” variables.




System_state_number
Machine state 12345]918
global_variables

machinel_state

1 new
2

— new_ueds
7

Figure 21 : Global State Structure with Outgoing Transitions

The initial global state is created from both the FSM text file and the initial values of the
variables assigned in the definitions package. All the outgoing transitions are initially set to null.
Starting with the initial global state, new nodes are added and linked to the graph. The pseudo-code
algorithm for constructing the global reachability graph is shown in Figure 22.

The program implements hashing to search through hash table for duplicate states which
increases the run time efficiency of the analysis. There is a major difference between the Simple
mushroom and the Big mushroom hashing functions. In the Simple mushroom program the user
does not need to specify a hashing function. A predetermined function which considers machine
states and message queues is implemented in the program. For the Big mushroom program the user
must design and enter a global hashing function. The function must account for machine states,
local, and global variables. An example of a global hash function for Stop-and-wait protocol is
given in Figure 23,

4. Output

The program stores the results of the analysis in a file named “rgraph.dat.” This file
contains FSMs in a tabular format, system/global reachability graph, and the results of analysis
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loop(main loop)
Jor indexl in 1 .. total_number_of machines loop
ition_holder(index]) := machine_array(index] XM _state(indexl))
etermine the enabled transitions for the machine(index!) and push into transition_stack
While not Empty(transition_stack) loop
while (position_holder(indexl) /= null) loop
Traverse the machine arrays for each enabled transition in the stack
{f a transition found in the machine arrays
create a temporary node resulting from this transition
call Action procedure to make the necessary changes to the variables of this node
Search the Hash look-up table to see this node was created(redundant)
If the table slot corresponding to the index created by hash function is not set(false) then
set the table slot(true)
L'Enqueue the node into the Gpointer_queue
else
n:;_te transition to the output file and discard the node
e
else
”ﬁoi;ition_holder(indexl ) := position_holder(index1).Slink
e
end loop
if nos Empsy(transition_stack) and a transition not found in the machine arrays
pop the stack
end if
end loop
end loop
If Gpointer_queue Empty then
exis

else
Dequeue Gpointer_queue
ugpdate Mstate for this new node

e
end loop (main loop)
Figure 22 : Algorithm for Generating Global Reachability Graph for Big Mushroom

function GLOBAL_HASH ( current_gstate : Gstate_record_type) return integer is
index: integer:=0;
sum:integer:=0;
m : machine_state_array := current_gstate.machine._state;

begin
index := ((m(8) *83999) + ( m(7) * 72888) + (m(6) *61997) + (m(5) *5995) +
(m(4) * 46571) +(m(3) * 34677) + (m(2) * 21323) + (m(1) *18203) ) ;

sum := buffer_type'pos(current_gsmte.machinel_state.out_buff)*373351+
buffer_type'pos(current_gstate.machine2_state.in_buff)*67713%+
buffer_type'pos(current_gstate. GLOBAL_VARIABLES.CHAN)*973551+
buffer_type'pos(current_gstate. GLOBAL_VARIABLES.RET)*123551;

retumn ((index*3+sum*7) mod 1545423);

end GLOBAL_HASH;

Figure 23 : Global Hash function for Stop-and-wait protocol
consisting of number of states generated, number of states analyzed, and number of deadlocks.
Unexecuted transitions are also listed at the end of the analysis.
Since each protocol specification has different variables, the user also has the flexibility
to output the desired variables. This is done in a similar manner to the predicate-action table and
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variable definitions representation explained in {BULB93] using an Ada procedure template.The
user completes the template with Ada “put” statements for outputting the global states. Since the
system state tuples do not include the variables, there is no need to define an output format for
system reachability graph. The completed template for the output_Gtuple procedure for stop-and-
wait protocol is also given in Figure 24.

separate (main)
gocedme output_Gtuple (tuple : in out Gstate_record_type) is

lf header then
mEhM(Z):

m"clglf(); 1(out_buff),m2(in_buff), (CHAN, RET)")
put_ " mi(out_| Jn2(in_| , ) ")
print_header := false;

mz g;:&integer’image(tuplemachine_state(l)) )
buff‘_‘_'gn'mn_io.put(mple.machinel _state.out_buff);

puté"'[;&integer'image(mplemaclﬁne state(2)) );
pu

bug' et)mm jo.put(tuple.machine1_state.in_buff);

Buff snum_io: put(tuple. GLOBAL _VARIABLES.CHAN);

oa .
E:ff _enum_io.put(tuple. GLOBAL_VARIABLES.RET);

P“t("]
end if;

end output Gtuple;

Figure 24 : Completed output_Gtuple procedure for Stop-and-wait protocol
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The output of the program for the example ring protocol is given in Figure 25.

REACHARILITY ANALYSIS of :stopwait.scm
SPECIFICATION

-

| Machine 1 State Transitions |

| From | To | Transition

- - - - = O -

|
| 0 | 1 | snd data |
|

- " - - - - - - -

| Machine 2 state Transitions |

| From | To | Transition |
| 0 | 1 | rcv_data |
I 1 | 0 | snd ack |

- - -

REACHABILITY GRAPH
ml, out_buff ,m2 , in_buff, CHAN, RET

0o (0, D 0, E

Il IB'
1 (1.D, 0.,E.,D,E]
2 (1,p, 1,D,D,E]
3[1101 OIDlDlA]

SUMMARY OF REACHABILITY ANALYSIS (ANALYSIS COMPLETED)

Number of states generated :4
Number of states analyzed :4
Number of deadlocks : 0

UNEXECUTED TRANSITIONS

".'.NONE""'

snd_data
rev_data
snd_ack
rev_ack

Figure 25 : The Output of the Program for the Example Ring Protocol

D. Summary

In this chapter, example protocols in Chapter II were analyzed to demonstrate the usage of
Mushroom program. The protocols analyzed in this chapter are intentionally chosen simple to help
the user understand the mushroom program’s inputs and outputs. However, the analysis results
verifies that Supertrace algorithm approximates the full search method by generating the same
outputs obtained manually in Chapter II. The major achievement of Supertrace will be illustrated in

Chapter V with larger protocols.
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IV. A PROGRAM FOR PROTOCOL TEST SEQUENCE GENERATION

In this chapter, the concept of conformance testing is first introduced; next, a procedure
created for test sequence generation [LUND90A] is discussed. Finally, “TESTGEN,” the program
which automates the test sequence generation is illustrated.

A. Introduction To Conformance Testing

A conformance test is used to ensure that the external behavior of an implementation of a
protocol is equivalent to its formal specification. In conducting a conformance test we are given a
known protocol specification and an unknown implementation. The implementation, for practical
purposes, is considered as a black box with a finite set of inputs and outputs. The test provides a
sequence of input signals, and observes the resulting outputs. The implementation under test (IUT)
should pass the test only if all observed outputs match those prescribed by the formal specification.
The series of input sequences which are used to exercise the protocol implementation in this way
are referred as conformance test sequence throughout this thesis.

Two problems with conformance testing need to be solved:

1. Find a general, applicable, efficient procedure for generating a conformance test sequence
for a given protocol implementation, and

2. Find a method for applying the test sequence to a running implementation.

This first issue is the focus of this thesis while the second problem is beyond the scope of this
thesis.

It is desirable to have the specification of a protocol expressed in a formal model and the
specification formally verified.

A previous study [MILL90] on this issue observed gaps between the specification, the
verification, and the conformance testing of network protocols. Protocol models which are designed
for specification purposes usually have many powerful program language constructs, to simplify
the specification, but are difficult to analyze. Protocol models designed primarily for analysis
purposes, such as the CFSM model, are often too simple for the specification of modem, complex
protocols. Much recent work on conformance testing starts from the description of a protocol as an
incompletely specified finite state machine with input/output labels on the
transitions{ CHEN9O][DAHB90]. Normally protocol specifications are not described in this
manner.

Suppose a test designer was to design a test for a protocol specified using the formal language
LOTOS. First, he must translate the specification to an I/O diagram. This is a difficult and complex
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process, and during which errors are easily introduced. Only then, when this translation is complete,
can he begin to generate the tests for conformance testing.

The automation of the test sequence generation [LUND90A] is an attempt to close the gap
between specification/verification and testing of protocols. In this thesis, the test generation starts
from a protocol model, designed for the specification and verification of protocols. A procedure
created in [LUND90B], is used for the generation of a test sequence for a protocol specified in the
SCM model. This procedure and its automation as a software tool does not guarantee that all the
errors or combination of errors in a protocol are found. But they do represent an attempt to exercise
all parts of protocols providing some assurance that the implementation meets its purpose.

B. Test Generation Procedure

In this section a procedure and its automation are described for generating a sequence of tests
for a protocol specified as a SCM model. The input is the formal protocol specification (FSM and
predicate-action table) specified as a system of communicating machines (SCM). The output is a
sequence of tests and an /O diagram in a tabular format. The generated sequence is intended to be
applied to an IUT.

The sample IUT throughout this section is the network node for CSMA/CD protocol. Before
generating the sequence of tests and the I/O diagram for each test in the sequence, shared and local
variables must be identified. The test inputs (the shared and local variables that can be setin a
controlled way) and the outputs (the shared and local variables can be observed for test purposes)
should be identified. These inputs and outputs form the I/O for the test steps.

The format for each single test is

Syiy, i, ... »in 3 01, 02, ... , Oy Sg

Sy is the state of machine when the test begins. The ij i, ... i, are the input values at the start
of test execution. The oy, 0, ... , 0,, are the values of the output variables after test execution. Sg is
the state of the machine when the test is complete. The input and the output variables are taken from
the shared and local variables of the machine. The determination of these variables is explained in
the following section.

The procedure explained in the following sections is taken from [LUND90A]. It is written in
three parts:

* Preliminary steps,
* Test sequence generating procedure, and
* Refining steps.
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1. Preliminary Steps

1. From the machine specification FSM diagram, mark each transition whose name
appears on more than one transition. Each such instance for a given name is given a separate
distinguishing label. '

2. From the predicate-action table, note the number of clauses in each enabling predicate.
Mark each clause. An enabling predicate may consist of several clauses, any one of which might be
true, allowing the transition to execute. Marking each clause insures that each one is tested
individually.

3. For each shared variable x, determine if x is an input variable, an output variable, or
both. For each x which is both, split x into two variables, x; and x,, for testing purposes.

4. For each local variable /, determine if / is used as an interface to the higher layer user
of this protocol. If so mark / as input, output or both, Each such local variable is specifically
designated, and is an input variable if it appears in an enabling predicate, and an output variable if
it appears in an Action part of predicate-action table. If | is both input and output, split it into two
variables /; and /, for test purposes.

2. Test Sequence Generating Procedure

Initially the test sequence is empty.
1. state < initial state.
2. Lett = (p,a) be an untested transition from szate.

(a) Determine the values of the input variables which make exactly one of the untested
clauses of p true. Check to see if these values allow any other transition from this state to be
executed. If there is one, set additional input variables to values that insure only the transition under
test is enabled. Fill these in, and mark others “DC” for “don’t care.”

(b) Determine and mark the expected values for the output variables; also record the
expected values assumed by the local variables.

(c) Set S to state; determine the next state and set Sg to it.

(d) Determine if S is transient; if not mark it as a “stop state” and skip to (3). The state
is transient if one of its enabling predicates is true immediately upon reaching the state. This means
that it can pass on to another state immediately, without waiting for further input.

(¢) Attempt to make S into a stop state by setting “DC” values. That is, make the DC
values such that, upon reaching state Sg, none of the enabling predicates are true. If successful, go
to (3).
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() i Sg is a transient state and more than one transition leaving Sg is enabled, choose
one and set inputs not yet specified (if any exist), so that only one transition leaving Sg is enabled;
set t = (p,a) to this transition. i

3. Output this test Sy ij iy, ... ,iy/ 0], 03, ... , 05 Sg 88 the next test in the test sequence.

4. Mark the clause just tested. If all clauses in trangition ¢ are now tested, mark 7 as tested.
If all transitions are now marked as tested, exit to “refining steps.” Otherwise, continue to step (5).

3. Set state to Sg. If state is a stop state go to (2), otherwise go to step2(b).

Step 2(a) assumes that it is possible to set the input variables to values that make exactly
one of the clauses true. If the protocol is well designed this assumption will generally be true.
However, there is always a possibility this is not the case; if so, the test designer must choose the
values so that the clauses will be tested as thoroughly as possible, perhaps in combination with other
clauses. If a clause cannot be tested individually, the question of its necessity to the specification
should be considered.

Step 5 sets the starting state of the next test in the sequence to the ending state of the
current test. This makes the ordering of the tests follow the order of their occurrence in the actual
protocol execution.

3. Refining Steps

1. Construct the I/O state diagram from the test sequence.

2. Determine if the sequence are unique, so that from each state, we have a unique input
output (UIO) sequence to confirm. If not attempt to extend the sequence so that we have a unique
UIO sequence from each state,

3. Check for any converging transitions. Mark these, as potential problems for testing.

The I/O diagram can be constructed from the test sequence and is a tool to help the test
designer insure completeness. This finite state machine is often used as the starting point in test
generation in the literature.

A UIO sequence has been defined as a sequence of inputs such that, if the input sequence
is applied to the FSM when FSM is in state i, the resulting output sequence could not have been
produced by the FSM when the FSM is in any other state [DAHB90][SIDHS88]. If the sequence of
tests applied to a machine implementation in a state i is a UIO sequence, and the output is expected,
then we have a stronger argument that the machine was, in fact, in state i.
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C. Test Generation of the CSMA/CD Protocol

In this section, the test generation procedure is illustrated through an application on a well
known protocol for local area networks, the CSMA/CD (carrier sense multiple access with collision
detection) protocol. The protocol has a formal specification as a SCM model in [LUND93].

The topology of the CSMA/CD is a simple bus with a single channel, as in displayed in Figure
26. All stations transmit and receive on the channel. If more than one station transmits
simultaneously, interference or “collision” occurs. A station wishing to transmit first checks the
medium. If no other transmission is detected, it begins transmitting its own message. If a collision
occurs, the station attempts to retransmit its message after waiting a random time period.

I

Figure 26 : Topology of the CSMA/CD Network

The specification of CSMA/CD protocol consists of the finite state machine and the local
variables of the network stations (Figure 27) and the predicate action table for the network stations
(Table 4). The shared variables, Medium and Signal and finite state machine of the controller,
responsible for the control of shared variables, are shown in Figure 28.

coll-D Xmit

oK

w2

DA SA data DA SA data
msg inbuf

Figure 27 : Specification of the Network Nodes

"ine predicate action table of Controller is shown in Table 5.
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mediom

Figure 28 : Controller and Shared Variables

The local variables of each network node are msg and inbyf. Msg is of the same type as
medium. Inbuf is used to receive incoming messages. State 0 is the initial state, from which either a
receive or transmit action is initiated. States 0,2, and 3 make up the transmit/collision states, and
states 0 and 1 comprise the receiving portion of the machine.

The controller continually monitors the communication medium. Whenever a nonempty
value is detected it transitions to either state 2 or 1, according to whether a collision or good
transmission occurred. If a collision occurs (medium = undefined), the controller moves to state 2.
When all stations have detected the collision (Signal(1..n) = collision), the controller clears the
medium and retums to 0. If a good transmission occurs, the controller moves to state 1. After
receiving station accepts the message, the controller clears the medium and retums to 0. The
predicate-action table for controller is shown in Table S.

The network stations may either transmit or receive from the initial state 0. If a station, in state
0 has data to transmit, indicated by a nonempty msg, and the medium is clear, it will transition to
state 2 and the message written to medium. The variable msg becomes nonempty when the upper
layer of the protocol has data to send. If no collision occurred the OK transition will set the state
back to 0. This is indicated by the value of Signal(i), being set to clear by the controller, providing
if no collisions occurred. If a collision occurs, then the coll-D (collision detected) transition will be
taken. Once the controller clear the medium, indicated by Signal(i):= clear, the node will retum to
state 0 and attempt to retransmit.

The receive transition is also starts from state 0. This transition becomes enabled when a
message appears in medium with the station’s address in medium.DA. The node copies the message
into its input buffer inbuf, then signals the controller by setting Signai(i) to transceive and retums
to state 0.




TABLE 4: PREDICATE ACTION TABLE FOR NETWORK NODES

oK Signal(i) = clear msg = &

coll-D medium = undefined Signal(j) := collision
ready Signal(i) = clear

receive medium.DA inbuf ;= medium;

Generation of the Protocol test sequence will be discussed later in this chapter along with
the software tool TESTGEN.

TABLE 5: PREDICATE-ACTION TABLE FOR THE CONTROLLER

Transition Predicate Action
message —medium € {undefined,?@
reset-M Signal(medium DA) = transceive medium = &;
Signal(1..n) :=clear
collision medium = undefined
reset-C Signal(1..n) = collusion medium = J;
Signal(1..n) := clear

1. Creating Inputs For The “TESTGEN” Program

The software tool that automates the generation of test sequences is called “TESTGEN.”
The general structure of TESTGEN is shown in Figure 29. The inputs of the program are two text
files which are created and named by the user.

FSM (Text File)
TESTGEN Generated Test Sequence|
Predicate-Action Table (Text File)
(Text File)

Figure 29 : The General Structure of TESTGEN Program

The input files are easily created utilizing the following procedures. Before creating the
FSM input file, the user should assign a number to each transition of the FSM. This distinguishes
each arc, even thoug: they may represent the same transition name. The numbered FSM of the
CSMA/CD protocol is shown in Figure 30.
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Figure 30 : Assignment of Numbers to Transitions of CSMA/CD Protocol

To create the first file, the user first specifies the initial state of the FSM as the first line
in the FSM input file. Each line, thereafter, represents a transition arc and is entered in the format
From State To State Number Assigned  Transition Name

with a single space between each field.

It is a practical way to enter transition arcs starting from initial state, listing all outgoing
arcs and then continuing with the next state. Transition arcs can be entered in any order as long as
they have the previous structure.

An example FSM input file for the CSMA/CD protocol is shown in Figure 31. The “0”
_in the first line shows the initial state of our example CSMA/CD protocol.

amit

Figure 31 : FSM Input File of CSMA/CD Protocol
Figure 32 shows the parts of a transition arc and their meanings in FSM input file.

011 receive ——» Transition Name

1N

From State  To State Transition Number
Figure 32 :Representation of Transition Arcs in FSM Input File.
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The second input file contains predicate action sable( PAT) of the specified protocol. This
file is created in the same tabular format as the predicate-action table. Bach column of the PAT is
separated with vertical bar * | * with a space on each side, so that it is distinguishable from the other
table entrees. The * | * delineates the borders of transition, predicate and action columns of the PAT.
Multiple action statement should be separated with a semi-colon (;). If no action is to be taken for
a transition, the keyword “no” must be entered as the action part of the input file. If a transition
occurs every time we enter a state, it is indicated by putting keyword the “srue” in the predicate part
of the input file. An example of predicate-action input for the CSMA/CD protocol is shown in
Figure 33.

xmit | meg /= empty and medium = empty | medium 1= meg ; signal(i) := transceive |
ok | signal(l) = clear | meg 1= empty |
coll-D | medium = unidentif l ltgml(i) t=» collision |
ready | signal(i) = clear |
receive | medium = (x,x,1) | lnbut 1w medium ; signal(?) := transceive |

Figure 33 : Predicate-Action File Input of CSMA/CD Protocol
An example line in the ptedicatc-acﬂon input file is shown in Figure 34.

mit | msg/zempty A ! modiom:=msg ;  signal(i) >= transccive !
Transition  Transition Relational Second Predicate First  Soparation Second Action
Name Border PndnweSymbol Predicate  Border  Action Symbol Action Border

Figure 34 :Example Input line of Predicate-Action File

Since the predicate action input is a text file, some relational symbols are not readily
apparent. They need to be represented in a format that can be easily entered from the keyboard yet
understandable by the program. The method used in this thesis to handle this problem is shown in
Figure 35.

If there is more than one clause in a disjunctive predicate part of a transition it is difficult
to determine which predicates need to be enabled to make a transition occur. The TESTGEN
program is capable of parsing and presenting clauses in following form

« first clause relational symbol second clause
" first clause relational symbol (second clause relational symbol third clause)
« (first clause relational symbol second clause) relational symbol third clause

The TESTGEN program represent these relational clauses by putting the relational
symbol between two clauses together with the values of the input variable to the output table. The
relational symbol between the relational clauses in parenthesis is put in the output file in parenthesis
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Relational — Text
Symbols Symbols

X #y — X/=y

@ — empty

XAy —xandy
XVy—xory
'Assignmentto a variable — :=
x®y — x mod+y

Figure 35 : Relational Symbols and Their Representations

so it is distinguishable from other relational symbol. If the enabling predicate has more than three
clauses the TESTGEN program may not correctly represent these clauses in the output test
sequence. The user should control the output test sequence for these transitions.

If input variables are record structures such as medium, msg, inbuf, assignment or
comparison of a specific fields of the record are done within parentheses and by putting “x” in the
positions that is unimportant. For example, assume a variable “Z” is a record structure with three
subparts a, b and c. Assignment of the value “3” to the ‘a’ field of Z should be in the format “Z:=
(3,xx).” This means 3 is assigned to ‘a’ and no changes are made to ‘b’ and ‘c.” The TESTGEN
program finds local and shared variable by parsing predicate action input file so instead of entering
different representations of one variable such as medium.DA or medium.SA, entering variables in
this format helps program determine the variable structure and makes output file easy to read.

Comparisons and assignments to arrays should be entered in the format A(i)=value. This
may create more than one representation of the same variable in the output file but it makes the
output test sequence more understandable.

2. Procedure Of The Protocol Test Sequence Generator

The algorithm of the test generator consists of two major subparts: the first part finds all
possible paths and cycles in the FSM starting from the initial state. It prints the list of paths and
cycles to a text output file, named by the user. It also ensures that there is a path from all cycles
eventually returning to the start state. If it can’t find such a path it will print out a message, waming
the user of possible errors in the specification of the protocol. The pseudo-code algorithm for finding




all paths and cycles of FSM is illustrated in Figure 36. Finding all possible transition sequences
ensures that each instance of each transition is tested.

Parse the FSM input file and make a list of transition arcs(list_of transitions);
Take one arc originating from the initial state put it into a list_of paths;
If there is more than one arc
o other arcs to the end of list_of paths
¢ ’

:‘Yltq‘r‘;u;t:’tlwﬁmarcin the list_of paths and find the destination node
loop until there is no path processed in the list_of paths
Look for other arcs originating from the destination node in the list_of transition
If there is one;
gl;eci;k that arc is put in the path generated
t
Mark the path as cycle found
Mark the path generated as processed and skip the next path in the list_of paths
replace the starting arc with the arc at the end of the path on the next unprocessed path
£0 10 the main loop
else
:ip end that arc to the original arc
] ”
elsif there is more than one arc
Copy the path generated and append the copy to the end of list_o_:iaths along
’:‘rith the other arc or arcs originating from destination node appended
e

n;?;_wre may be an error in the protocol. Inform the user.”
¢ N

check to see destination node is initial state

it is then

mark the path generated as a new path and skip to the next path in the list_of paths

l:':place the starting arc with the arc at the end of the path on the next unprocessed path
e

;’e%lace the starting arc with the arc originating from the destination node
endif
end loop;

Figure 36 : Algorithm for Finding Paths and Cycles in the FSM

To trace all the possible paths which could be generated, a queue of linked lists is
implemented. The trace is as follows: Starting with the initial state, all transitions are placed into
the queue. The first entry is dequeued, becoming the current entry, and is used to continue the trace.
The current entry remains so until it describes a cycle back to the initial state.

All transitions out of the last node of the current path are determined, and one of them is
appended to the current entry.

Any other transitions are each appended to a copy of the current path and placed at the
end of the queue (list_of_paths). When the initial state is reached, next path in the queue becomes
current path. This procedure continues until the queue is empty.

The program starts with an arc originating from the initial state. In our example CSMA/
CD protocol the first arc selected is transition #1 (0 1 1 receive). It is inserted to the list_of_paths.
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Since there is more than one transition leaving the initial state, the other (0 2 3 transmit), (0 3 2 coll-
D) arcs are also inserted to the list_of_paths. Then destination node “1” of transition #1 is found
from the list_of_transition and since there is one transition (transition #4) leaving destinati.)n node;
it is appended to the end of our path. Then transition #4 becomes current arc. Since the destination
node of the transition #4 is O (initial state) the path is marked as processed. The current entry
becomes the last arc in the next unprocessed transition sequence (transition #3). The procedure
continues until all paths and cycles originating from the initial state are found. The steps of finding
paths and final path list at the end of procedure FIND_PATHS for CSMA/CD protocol is shown in
Figure 37.

Figure 37 : The List of Paths Generated with TESTGEN for CSMA/CD Protocol FSM

3. Preliminaries

In our example many of our variables perform as both input and output sources. The
shared variables medium, Signal and local variable msg are input and output variables. The second
part of the TESTGEN determines our input and output variables. If a variable is used as both an
input and output variable it is marked by placing (i) or (o) next to them to indicate its current
usage. The program reads the transitions, predicates and actions associated with each transition from
the predicate action table (PAT). It then creates the test sequence table and lists all transition
sequences starting from the initial state by using list_of paths. It prints each transition with the
expected values of any local and shared variables. It also prints the action to be taken if the predicate




associated with transition is enabted. Pseudo-code of the second part of TESTGEN is shown in
Figure 38.

Parse the predicate action input file
Determine trans.tions, local and shared variables predicates and actions associated with each
transition
Determine and mark the expected values for the output variables and record the expected values
assumed by local variables for each transition
Print the input , output, and shared variables
Take the first path from the list_of paths
loop uniil no more list remained in the list_of files

begin with the first transition in the path

set Si to the originating node of the transition

set input variables of this transition according to the predicate action table

if input variable is a record type

set unimportant fields with “x”

end {f;

set other input variables “DC” for don't care

set output variables

set Se to the terminal state of current transition

Print the completed test to the output file

set Si to the Se

if not end of path
’sr:place che current transition with the next transition in the path
e
mark the path as processed
re;#ace the current transition with the first transition of the next unprocessed path
end if;
end loop

Figure 38 : Pseudo-Code Algorithm for Generating Protocol Test Sequence

4. Test Sequence Generation

The TESTGEN program begins with the first transition (#1 receive) in the path list
generated by the FIND_PATHS procedure. According to the predicate action input file to enable
this transition, the DA field of medium must be set to the station’s address, which we assume to be
i. The remaining fields of the record medium may be any values, and are indicated by ‘x’ in the
output table (Figure 39). The other input variables are set to “don’t care” or DC.

When the receive transition occurs, signal(i) should be set to transceive, and inbuf should
contain ihe value which was previously in medium. S; is set to source state of the current transition
(in this case 0), and Sg to the to terminal state (in this case 1). This completes the first test in the
sequence and these values are output. The clause and transition are now marked “tested”. The value
of Sy is now set to 1, and next transition in the path is called.

The next iteration is the ready transition from state 1. The values selected are the second
test in the output table (Figure 39). The ending state of this test is state 0 the initial state, so the path
is marked as processed.
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At the next iteration first transition in the next unprocessed path (omis) is chosen,
followed by the OK transition back to state 0. The same process continues with transition coll-D,
which takes the machine state 3, and the ready transition returns it to state 0. Then the Xmit
transition is chosen a second time in the last path which takes the machine state 2; then transition
coll-D is chosen which is different from previous sequence; that takes the machine to state 3 and
ready transition again retums it to the initial state. At this point all possible transition sequences
have been processed.

The table generated by the TESTGEN program for the CSMA/CD protocol is shown in
Figure 39. The table lists all nine possible transitions according to their order of occurrence. It is
relatively easy to test all sequences of a transitions by simply following the order in the table.

name I1S1imedium(i) Imsg(l) Isignal(i)i**| inbuf |medium(o) imsg(o)|signal (o) iSe|

LAA AR A2 L AL Rl 2 R Al 2 Al A R I T P R R A A A A R R A R R s SR 2222 l2lg])

receivei0 |({i,x,x) IDC IDC j**| medium|-- I-=- |transceive| 1|
ready |1 |DC I1DC Iclear |er] -- |=-=- 1-- |=-= | 01
xmit 10 jempty | /=empty | DC jre| -- Imeg |=-= |transceive| 2|
ok 12 iDC I |clear jee| -~ |-~ |empty |-- [
coll-D {0 {undetined|DC |1DC jee| -- |=-= I=-=- lcollision | 3|
ready |3 iDC IDC |clear j**l ~-- |=-= |=-=- |-= 1 01
xmit 10 jempty | /=ampty | DC jor| -~ Imsg |-~ |transceivel| 21
coll-D |2 jundefined|DC |DC |**| -- |-- |-- jcollision | 3|
ready 13 |DC 1DC Iclear fee| -- |-- f=- (R I 01

Figure 39 : The Test Sequence Table Generated with TESTGEN for CSMA/CD protocol

5. Refinement

The first refining step calls for the construction of the I/O diagram. This diagram can be
constructed from the sequence of tests generated. In this case, because there are no transient states,
there are four states which correspond to the four states of the specification; and the arcs between
states are the same set as in the specification. The only difference is in the labeling of the arcs; for
the I/O diagram, the label on each arc is the set of values if the input and output variables, as shown
in output table Figure 39.

Next we must determine if the sequence is a UIO sequence. Consider the first test in the
table, the receive transition. If the machine is in state 0 and we apply the inputs for the first test, the
outputs are the transceive value in Signal(i) and a copy of medium in inbuf. The user may confirm
that in no other state does this combination occur; so for the first state and test, we have an UIO
sequence. From state 1, the ready transition is considered. This transition leads back to state 0; note
that another ready transition leads from state 3 to state 0. This means that there is not a UIO
sequence for states 1 and 3. This makes it difficult for the test designer to confirm these states. There
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is however a UIO sequence leading into these states; so the lack of a UIO sequence from these states
is less disturbing.

Finally a check for converging transitions shows that there is one case of this: the ready
transition, leading to state 0 from both states 1 and 3. The test designer must be aware of this, as a
possible source of problems in the execution of tests.
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V. APPLICATIONS OF THE SUPERTRACE AND TESTGEN PROGRAMS

In this chapter Simple Mushroom with Supertrace and Big Mushroom with Super race are
demonstrated with several examples. Both programs are run with different protocols to give a
specific view of the Supertrace algorithm.

In the first section, Simple Mushroom with Supertrace will be used to analyze a simple
example four machine protocol which illustrates some basic aspects such as detecting unspecified
receptions, unexecuted transitions etc. Then information transfer phase of a full duplex LAP-B
protocol specified by the CFSM model will be analyzed. Later, the Big Mushroom with Supertrace
will be used to analyze the Go Back N protocol with different window sizes and the Token Bus
protocol, which illustrates important aspects of Supertrace algorithm.

In the second part of this chapter, an application of the protocol test sequence generator
program (TESTGEN) to the well known FDDI protocol is illustrated.

A. Applications Of Mushroom Program With Supertrace
1. CFSM Model with Supertrace

a. Simple Four Machine Protocol

The specification of the protocol using the CFSM model is shown in Figure 40. This
sample is chosen to demonstrate the coverage of supertrace algorithm with protocols that has
relatively small number of states. Each machine sends/receives a message/acknowledgment from
other machine. Machines 2 and 3 also have another send transition from state 1 to state 3. The FSM
description of the protocol is shown in Figure 41 and analysis results obtained by the simple
Mushroom with supertrace is shown in Figure 42. The analysis generated 36 global states. There
are three unspecified receptions and one unexecuted transition. No deadlocks or channel overflows
are recorded. The maximum channel size 2. These results are obtained by simply entering the FSM
text file as an input to the program. This analysis would be difficult to do manually, even for a
simple specification like this one. -

The analysis results obtained is the same with simple mushroom [BULB93] results,
showing the coverage and reliability of Supertrace for small protocols is around 100%.
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Machine 1 Machine 2
-Dm3

Machine 3 Machine 4

Figure 40 : Specification of the example four machine protocol

start
number_of_machines 4
machine 1
state 1
trans -D 2
state 2
trans +A 1
machine 2
state 1
trans -D 3
trans +D 2
state 2
trans +D 1
machine 3
gtate 1
trans -A 3
trans +D 2
state 2
trans -D 1
machine 4
state 1
trans +D 2 3

state 2

trangs -D 1 2

injitial _state 1 111
finish

w N

N [ X 7]

-

Figure 41 : FSM text file for the example protocol
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11
12
13

14

REACHABILITY ANALYSIS of : four_machine.fsa
SPECIFICATION

i Machine 1 sr.at:. ’rnnlluon:

| From | To | other mchlno | Transition
| 1 I 2 | 2 | s D
| 2 I 1 | 3 | r A

| Machine 2 sState Transitions

| From | To | other machine | Transition
| 1 |1 3 i 3 | s D
| 1 | 2 | 1 | r D
| 2 | 1 | 4 | r D

| From | To | other machine | Transition
| 1 | 2 ] 1 { 8 A

| 1 | 2 I 2 i r D

| 2 I 1 ) 4 | s D

I Machine 4 State Transitions

| From | To | other machine | 'rransu:ion
| 1 P 2 | 3 | r D

i 2 i1 | 2 | s D

REACHABILITY GRAPH

{1, B.B.B. 1,E,8,B, 1,E,E,E, 1,B,8,8B)
2 (2, ,E,B, 1,E,E,B, 1,E,E,E, 1,EE,E] 2

-D 3 (1,E,B,E 3, B.D .E, 1,E,E,B, 1,E,B,E] 3

-A 1 [ l,B.B.B. I.B,B.B, 3,A ,B,8, 1,E,B,E] 4
t2,0 ,EB, 1,EEBS, 1,EKZEBE, 1,8,8,B)

-» 3 (2,0 ,RBE 38D .8, 1,R,E,8B 1,E,B,E] 5

+D 1 [ 2,B,8,B, 2,B,EE, 1,B,8,B, 1,B,E,E] 6

-A 1 ( 2,0 ,E,B, 1,E,E,B, 3,A +E,B, llg'B'g’ 7
(1,E8,B, 3,E,0D ,E, 1,ER,B, 1,RB,E,BE)

-0 2 (2,0 ,EBS 3,8,0D ,B, 1,BE,E,B 1,E,E,E] O

- 1 [1,5E,E, 3,8,0 ,B, 3,A ,E,B, 1,E,B,E) 8

+0 2 [ 1,8.,8,8B, 3,B,8,E 2,8,8B,B, 1,E.E,E] 9
(t1,B,EE, 1,B,EE 3,A ,B,B 1,BEEBE)

-b 2 (2,0 ,EBR, 1,EE,E, 3,A ,EB, 1,E,E,E) 1]

-0 3 (1,BR,B, 3,B,D ,E, 3,A ,E,B, 1,E,E,E] 0
(2,0 ,E,E, 3,E,0b ,B, 1,E,E,B, 1,E,E,E]

-A 1 {2,p ,E,E, 3,E,D ,B, 3,A ,E,B, 1,E,EE] 10

+0 2 (2,0 ,E,E, 3,EB.B 2,EB,8E 1,EE,EB] 11
{2,888 2,BEE 1,BB,B 1,BE,BE)

-A 1 (2,8B,EB, 2,EEE, 3,A ,BE, 1,E,B,B] 12
[0 ,EB 1,EER, 3,A ,EE, 1,EB,E]

« 3 (1,0 ,8,8B, 1,8,E,EB, 3,888 1,BE,E} 13

-b 3 {2,p ,E,E, 3,B,D ,R, 3,A ,E,E. 1,E,R,E] 0

«0 1 { 2,EB8,B 2,E,B 3,A ,EE 1,BE,E] 0
({1,8EE 3,ED ,B, 3,A ,E,B, 1,E,B,E]

-b 2 {2,0p ,B,B, 3,E,D ,E, 3,A ,E,B, 1,E.,B,E) O
{1,888 3,EE,E 2,EKEB, 1,EEE]

- 2 (2,0 ,8,B, 3,E,B,B, 2,E,E,B, 1,B,KE,E] 0

-b 4 [(1,BE,B 3,B,K.E, 1,E,B,D , 1.EB,B] 14
{2 ,E.B, 3,E,D ,E, 3,A ,E,E, 1,E,E,E]

+A 3 (1D ,EB, 3,E,D .B. 3,E,B,B, 1,8,B,B] 15
tz2,0 ,BE 3,EEBE., 2,EEB, 1,BEB]

-p 4 (2,0 ,B,B, 3,%.8,8, 1,B,ED , 1,EBE,E) 16
{2, B,B,B. 2,E,B,E, 3.A ,.,B, 1,8,B,E]

3 (1,8,8,B, 2,B,EE, 3,ER,BE, 1,E.B,E] 17

{1, D .E.E, 1,E,E,E, 3,E,E,E, 1, B,B,B]

-D 2 (2,p D ,B.B, 1, E,B,B, ,B,E,E, 1,E,B,E] 18

-D 3 (1,0 .B,B, 3,E,0 ,E, 3:8,3:3, 1,E,E,E} ']

+0 1 ( 1,E,B,E, 2,B,E,E, },B,EE, 1,BE,E,E)} 0
(1,B,B,B, 3,E,B,E, 1,E,B,D , 1,E,B,E]

- 2 (2,0 ,E,B, },B,B,E, 1,E,B,D , 1,E,E,B) O

-» 1 [ 1,BEBE 3,BE,B, 3.A ,BD , 1,E,E,E] 19
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+0 3 ([ 1,E.E,E 385858 1,%5EEK 2.8.8.8) 20
(1,0 ,ER, 3.0 ,E 3.KB.E 1,8EE]
-0 2 2D D ,RB 3¥RD ,B 3.KK% 1,REB) 21
16 ( 2,0 .8,k J.8K,B, 1,5EKD , 1,KER)
-~ 1 (20 ,EE 38%KZ5% 3A ,RD , 1,KEB8) 22
+ 3 (2D ,KE, ).KB.8 1,EKE 2,EEK 23
1?7 ({ 1,8.B,%, 2,8.KB, 3,KEEK 1,KLKE)
-p 2 (2,0 ,E.B 2,888 3¢ELZRB 1,KEEER] 24
¢ { 2,0 D ,E,B. 1,888, 3,8R%K 1,58,5)}

-0 3 2,b D ,R,B, 380 ,8 3,KLKEK 1,KKE] ]

+D 1 ( 2.0 a‘¢.: 2.8...!. 3.':'0'; 10'0‘18] 0
19 { 1,K.E.B, 3,B.B.EB, 3,A ,ED , 1,B,EE]

-0 2 (20 ,ER 3B,B.K 3A ,ED ,1,EKEKE O

+0 3 [ 1,E,B,B, 3,E,B.B, 3,A ,E.R, 2,B.B,E) 25
20 ( i,B.B,B, J,8,KE 1,KEB.E Z.Ial.ll

-0 2 (2D ,E,B 3,B,RE 1,RLE 2,E,R,E] O

-A 1 [ 1,B,B.E, ),B.8,B, 3,A ,EB 2,E,R,E] O

-0 2 [ 1,EB8,8%, 3, I.B.l. Ll,l.l. 1,8,0 ,E} 26
(2,0 » ,R,E, J,ED .E. 3,8,B,B, 1,B B, E)*vrevecesengpecified Receptionsstrrenrees
2 (2,0 ,EsB 3,EBER 3A ,ED , 1,ERE

+A 3 {10 ,E,E, 3,KR.B 3,E.ED ., 1,RER,E] 27

+0 3 t 2,0 ,E,EB, 3,B,EB.B, )3,A ,BE 2.KE,B) 20
23 ({2,0 ,EB, 3.BBB8 1,%LCK 288K

-A 1 (2,0 ,8,B 3858 3A .KE 2,KEE8] O

-D 2 ( 2:0 IEISI 3:.:!;'. 10"'081 10'00 :') 29
24 [ 2,0 ,B,B, 2,EE,E, 3,B,E,B, 1,ER,E)**********Ungpecified Reception***erretere
25 [ 1,E,E,EB, 3,E,EB, 3,A ,EE, 2,BKE]

-0 2 (2,0 ,B,l, 3,8,E,B, 3,A .EGE 2.88,E) 0

-0 2 ([ 1,EBE, 8. 3,8,8,E, 3,A ,E,E 1,B.,D ,E) 30
26 ( 1,8.E,B, 3},E,E,B 1,E,ER 1,E,D ,E]

-0 2 [ 2.D .E,E. 3,BE,E,E, 1,EK,E, 1,E,D ,B) 0

-A 1 {1,EEE, 3,EB8E 3,A ,EE 1,ED ,[E] 0
27 (1,0 ,E,B, J,E,E, B, J.B.E.D . 1,8,8,E)

-p 2 (20 D ,EB, },EBE 3BED , 1,EEEl 3N

+«0 3 (1D ,E,B, 3,B,B,E, 1J,8EB, 2,EB,EB] 32
28 [ 2,0 ,E,E, 3,ER,E 3,A ,BE, 2,EKE)

«A 3 (1D ,B,B, J,8,E,E, 1},KEB 2,8.EE] 0

-p 2 (2,0 ,E,B, 3,E,B,B, 3,A ,EKE 1,B,D ,E] 33
29 { 2,0 ,E,E, 3,B.B,E 1,EB,E, 1,B,D ,E]

-A 1 (20 ,EBE, 3,BEE 3,A ,EE 1,BE,0 ,E] 0
30 { 1,E,E,B, },B,E,E, 3,A .B,B, 1,E,D ,E]

-0 2 [ zln :gagn 30‘18180 3;“ l'l‘l 1!"0 l‘, 0
31 (2,0 D ,EB, 3,8BE,R, 3,BED , 1,8,EE]

« 3 (2, D ,E,B, 3,EEB 3,EBE, 2,BEBE) 34
321D ,B,E, 3.BBB, 3,B,E,B, 2,B,BE)

-p 2 (2D D ,E.B, )EGEB 3EBEBE 2,EEE 0

-0 2 (1,0 ,g,B, 3,88, 3,8,E¢E 1,B,D ,El] 35
33 (2,0 ,BE 3EZEE 3,A ,EE 1,ED ,E]

+A 3 (11.,D ,E,B, 3,E,EB, J,E.B.B, 1,E,D0 ,E) 0
32,0 D ,E,B, 3,E,EE, 3,EEE 2,EEE]

~D 2 ( 2,b D ,B,B, 3,EBEE, 3,E,E,E, 1,B,D ,E) 36
31,0 .E,EB, J),E,B,E, 3,E,B,E, 1,B,D ,E]

-p 2 [2D D .E,E, 3,E, E.E, 3.E,E.B, 1,E,D ,El

[
3¢(2,0 D ,EB, 3,EE,B 3, B.B.B, 1,E.D ,B]"""""Unlp.ciﬂ.d Reception*s*ttrreere
SUMMARY OF REACHABILITY ANALYSIS (ANALYSIS COMPLETED)

Total number of states generated : 36
Number of states analyzed : 36
number of deadlocks : 0

number of unspecified receptions : 3
maximum message queue size : 2
channel overflow :NONE

UNEXECUTED TRANSITIONS

- - - " " - > . " - - - - - -

| Machine 2 Unexecuted Translr.ions ]
| From | To | other machine | Unexecuted Transiclon |
! 2 1 | 4 | r D |

Figure 42 : Program Output for the Example
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b. Analysis Of Information Transfer Phase Of The Lap-B Protocol

In this Section, analysis of a Data Link Control (DL.C) protocol is described using
the Simple Mushroom with Supertrace program. The physical layer of DLC (LAP-B) protocol was
modeled and analyzed with CFSM model [LUNDS86}.

The analysis of known protocols is important because it help us to determine the
correctness and the coverage of the Supertrace algorithm. It is also an excellent example of how the
total number of global states can grow very large, even for such a limited protocol.

This analysis demonstrates the main feature of the Supertrace algorithm, improved
coverage, where there is insufficient memory available to conduct a full state analysis. The
description of the information transfer phase is explained below as it appears in [LUND86).

The network nodes, which communicates by the protocol, consist of Data Terminal
Equipment (DTE) and a Data Circuit Terminating Equipment (DCE). In this model, DTE and DCE
are considered process 1 and process 2 respectively. Each of these processes are also modeled as
three sub-processes: Sender, Receiver and Frame Assembler Disassembler (FAD).

Figure 43 shows the processes and their interrelationship. The FAD process
combines data blocks, from the sender with acknowledgments from the Receiver, into complete I-
frames. It sends the I-frames to the FAD of the other process. The FAD also parses received I-
frames from the other FAD and sends the acknow'edgment to the Sender, and data blocks to the
Receiver.

DTE DCE
LNS LN
SENDER1 [
I, N(S), N(R)
1) N®) e NR) M6
]
FADI1 FAD2
3 4
wl ™ I, N(S), N® ™M) ®
RECEIVER1 _};’ I
SENDER2
LNGS
o |LNGS) ™MS)

Figure 43 : Processes for the Information Transfer Phase




* Model 1: I - frames only

I-frames are expressed in the form “L,"”, where n is the send sequence number N(S),
and m is the receive sequence number N(R). The message “Di” is a data block sent from the Sender
to the FAD, or from the FAD to the receiver. It is this data block which is placed in or taken from,
the I-frame. The ‘i’ in “Di" is the send sequence number. The message “Ai” is an acknowledgment
with a receive sequence number of ‘i’. The finite state machines for the Serwier, Receiver and FAD
of the DTE are shown in Figures 44, 45, and 46. The FSMs for the DCE are the same with a 2
substituted for 1 wherever it occurs. Since no RR-frames are used, I-frames can only be
acknowledged by receiving an N(R) from an incoming data frame.

* Model 2: 1 - frames and RR’s

If the DCE does not have any user data blocks to send, it is not able to acknowledge
the receipt of the DTE I-frames. In this case, the DTE should stop sending frames after it reaches
the window limit.

The solution to this problem is the Receive Ready, or “RR” message. It is an S-
frame, containing no user data block, but does contain an acknowledging sequence number. Its
purpose is to inform the receiving process (DTE in this case) that the sending process (DCE) is
ready to receive the I-frame numbered N(R); it acknowledges I-frames up to N(R) - 1. The
Receiver] with I and RR frames is shown in Figure 46. The FAD with RR frames are specified by
dashed transitions in Figure 47.

In the Receiverl there are now two types of acknowledgment messages: “ACKi,”
and “Ai,” fori =0, 1, 2; in the first model we had only “Ai”. This is to allow for two different ways
of acknowledging I-frames by the Receieverl process: by I-frames or by RR-frames.

When the FAD process has data to send, it queries the Receiver by sending an
“ENQ"; this insures that the latest N(R) is sent along with the I-frame. These enquiries are answered
by an “Ai” message. But if the FAD process has no data to send, it has no way of knowing whether
any I-frames have been received and need to be acknowledged. This is the purpose of the “ACKi”
messages; to allow the Receiver to initiate an acknowledgment.

53




Figure 45 : Receiver 1 of LAP-B Protocol (I-frames only)




Figure 46 : Receiver 1 of LAP-B Protocol (I and RR Frames)

For the automated analysis, the FSMs in Figures 44,45,46 and 47 are converted to a
text file and entered into program. The transition names in this teit file are the same as in the FSM
diagrams except, transition arc “ACKi" is represented as “ACi.”

The program was run with two different input files the LAP-B protocol with I-frames
and Lap-B protocol with I and RR frames. At the end of analysis 69102 states from the Lap-B
protocol with I-frames were generated and analyzed. No unspecified receptions, unexecuted
transitions or channel overflows were discovered. The maximum channel length was 6.

A deadlock condition was found at state 16817. All channels were empty and
Senderl, Receiverl, FAD1, FAD2, Sender2, Receiver2 were in states 3, 3, 1, 1, 3, 3 respectively.
The state deadlock was expected since RR-frames were not included in this analysis. The main
difference between the analysis results with supertrace and the full state analysis of the protocol
[BULB93], is the number of states generated and analyzed. The number of states generated with
full state search algorithm was 73391. The supertrace algorithm generated almost 95% (69102/
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73391 = 0.941) of all the states. The size of the memory is a critical factor in the generation of
collisions. The algorithm provides better coverage with a larger hash table and effective hash
function.

In the analysis of the same protocol utilizing the regular mushroom program, the
deadlock was detected at state number 17034. The difference of 217 states between the two
programs, does not necessarily mean that 217 collisions occurred. It is possible, though not
probable, that one collusion occurred and 216 successor states were never considered. We do know
that the number of collusions is between 1 and 217. It should be emphasized that the purpose of the
supertrace program is not to produce a total coverage of states. The purpose is to validate those
network protocols through a controlled partial search which cannot be exhaustively analyzed.

The LAP-B Protocol, including RR-frames, was also analyzed. The program could
not complete the analysis due to insufficient memory. At the point of termination 300456 global
states had been generated and analyzed. No unspecified receptions, deadlocks or channel overflows
were recorded for the analyzed portion of the protocol. The maximum channel size reached was 5.
The number of states generated with regular mushroom program on the same protocol was 153565
[BULB93]. These results clearly show the improvement of the supertrace algorithm option over the
regular mushroom. 146891 more states are generated and analyzed by Supertrace algorithm.The
96% increase in the number of states analyzed, is a clear indication of the improvement of the
Supertrace algorithm over regular Mushroom program. A sample input for LAP-B protocol with I
and RR frames and partial analysis results are shown in Appendix A.

2. SCM Model With Supertrace

There are a few programs specified formally by SCM model which have been analyzed
by Big mushroom program in [BULB93]. The same specifications will be used to make a
comparison of regular and big mushroom with supertrace.

a. Go Back N Protocol

The protocol selected for analysis is a one way data transfer protocol with a variable
window size, which is essentially a subset of the High-Level Data Link Control(HDLC) class of
protocols. This model is modeled and analyzed in [LUND91][BULB93). The same specification
with different window sizes was used to compare the supertrace and exhaustive search algorithms.

The summary of the specification is explained below. There are two machines in the
system, a sender (m;) and a receiver (m;,). The sender sends data blocks to the receiver, which are

numbered sequentially, O, 1....., w, 0, 1, ... for a window size of w. As in HDLC, the maximum
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number of data blocks which can be sent without receiving an acknowledgment is w, the window
size. The receiver, m2, receives the data blocks and acknowledges them by sending the sequence
number of the next data block expected (which is stored in local variable expel). The shared
variables DATA and SEQ are used to pass messages from sender to receiver, and the shared variable
ACK is used to pass acknowledgments back to the sender. The receiver may acknowledge any
number of blocks received up to the window size. Upon receiving the acknowledgment, the sender
must be able to deduce how many data blocks are being acknowledged. This is done by observing
the difference between the values of the received acknowledgment and the sequence number of the
last data blocks sent.

The general specification of the protocol is given in Figure 48 and in Table 6.
Initially, both sender and receiver are in state 0, arrays DATA and SEQ are empty, and ACK is
empty. The domains of DATA, Rdata and Sdata are not specified; these are used to hold user data
blocks. Sdata and Rdata are the interface or access points of the higher layer protocol. The local
variables for the sender are Sdata, used to store data blocks, seq, used to store the sequence number
of the next data block to be sent out, and i, used as an index into the DATA and SEQ arrays. Initially
seq is setto 0, and i is set to 1. The local variables of the receiver are Rdata, exp, and j. Rdata is
used to receive and store incoming data blocks, exp to hold the expected sequence number of the
next incoming data block, and j is an index into the shared arrays DATA and SEQ.

There are four basic types of transitions. In the sender, ml, the -D transition
transmits a data block by placing it into the shared variable DATA(i), and the sequence number into
SEQ(i). The send is enabled whenever those variables are empty.(The interaction between the
sender and the user, or higher layer is not specified here). The inc operation increments its
arguments, if less than their maximum value, in which case it resets them to the minimum value.
The operator "" @ "" represents the inc operation repeated k times, if the argument is k and the
symbol € denotes the empty value. The receive transition in the receiver, m2, is enabled whenever
a data block of the appropriate sequence number is in the jth element of DATA and SEQ. An
acknowledgment may be sent by m2 in any state except 0, in which case no acknowledged data
blocks have been received.

The remaining transition is the + Ak receive acknowledgment, inm1. If m1 is in state
u, 1 Sus<w, and there is nonempty value in shared variable ACK, then exactly one of the
transitions +A0Q, +Al, ..., +Aw-1 will be enabled; it will be that Ak such that the predicate
ACK ® k = seq is true, and the next state is k[LUND91].




DATA SEQ

-D AQ
(W) w-1
ACK
1 2 w
soata [T 1] RoATA:[ ]
seq :(0,1,2, ..,w) exp :0,1,2,..,w)
i 1(1,2,3,..., W) j 11,2, 0 W)

Figure 48 : State Machine and Variables of the Go-Back-N Protocol
TABLE 6: PREDICATE ACTION TABLE OF GO-BACK-N PROTOCOL

Transition Enabling Predicate Action

-D DATA() = eASEQ() = ¢ DATA() := Sdata(i)
SEQ(i) ;= seq
inc(i.seq)

+A, ACK @k = seq A ACK #¢ ACK =€

0<ksw) (next state :k)

+D DATA() #¢e A SEQ(j) = exp | Rdata := DATA()
DATA(j), SEQ() := €
inc(j.exp)

-A DATAG) = e ACK := exp
Rdata:= €

For analyzing this protocol by Big Mushroom with Supertrace program, the inputs
to the program should be completed. These consist of a text file description of FSMs, the package,
definitions, which include the variables of the protocol, and the subprograms
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Analyze_Predicate_Machines and Action, which define the predicate-action table and
Output_Gtuple procedure, which defines the output format for the global tuples, must be entered.
The user should also write the Global_hash function in Ada Programing language that covers local
and shared variables and machine states of the protocol. Completed packages/procedures and global
hash function for a window size of 10 are given in Appendix B.

The same names are used for local and shared variables in the package definitions as
in the predicate-action able. Variables DATA, ACK and Sdata are declared as one dimensional
array of window size. Local variables seq and exp and index numbers i and j are declared as integers
in the range 0 to window size. Global variable ACK is declared as integer in the range -1 to window
size, where -1 represents € value in the predicate action table. An enumeration type, buffer_type, is
declared for storing the data passed by the upper layer to local variable Sdata. Data are declared as
do, d1, ..., d9,e, where ¢ represents the € value. Transition names in the specification are defined as
send_data, rcv_data, snd_ack, Rev_acki for -D, +D, -A, and +Ai in predicate-action table
respectively.

The global state analysis of Go-Back-N protocol with different window sizes was
conducted by both Big Mushroom and Supertrace algorithms. The number of global states
generated in these programs is listed in Table 7 (“WS” represents the window size). In the analysis
of the Go-Back-N protocol with a window size of 18, Big Mushroom program was interrupted due
to a memory error and could not complete the analysis. No deadlocks, unexecuted transitions or
Channel overflows were encountered in the analyzed portion of the protocol. The comparison of
these resuits and the advantages of Supertrace algorithm will be discussed in Chapter V.

TABLE 7: THE NUMBER OF STATES GENERATED WITH BIG MUSHROOM AND

SUFERTRACE ALGORITHM
GBN Protocol WS =10 Ws=12 Wws=13 ws=14 ws=18
Big Mushroom 31460 70980 101920 142800 161431
Supertrace 30632 66654 90210 122880 290980
Coverage of Super- 97% 94% 89% 86% Unknown
trace

b. Token Bus Protocol

Another example of the program application, the token bus specification in
[(CHAR90] will be used. The specification is a simplified one, which will be used to demonstrate
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the coverage of Supertrace algorithm for protocols with small number of states. It assumes that the
transmission medium is error free and all transmitted messages are received undamaged. The global
state analysis is generated from this token bus specification for a protocol consisting of 8 machines.

The specification of the protocol is given in Figure 49 and Table 8. The FSM
diagram and the local variables are the same for each machine, where the transition names: ready,
rcv, pass, get-tk, pass-tk, Xmit, and moreD are appended with the corresponding machine number
to the end of each machine in the specification. This makes it easier to follow the reachability
graphs. The remainder of the protocol specification as described in [CHAR90] is as follows: The
shared variable, MEDIUM, is used to model the bus, which is “shared” by each machine. A
transmission onto the bus is modeled by a write into the shared variable. The fields of this variable
correspond to the parts of the transmitted message: the first field, MEDIUM.T, takes the values T or
D, which indicate whether the frame is a token or a data frame. The second field contains the address
of the station to which the message is transmitted (DA for “destination address”); the next field, the
originator (SA for *“‘source address™); and finally the data block itself.

The network stations, or machines, are defined by a finite state machine, a set of local
variables, and a predicate-action table. The initial state of each machine is state 0, and the shared
variable is initially set to contain the token with the address of one of the stations in the “DA” field.

The value of local variable next is the address of the next or downstream neighbor,
these are initialized so the entire network forms a cycle, or logical ring.

The local variable i is used to store the station’s own address. As implied by the
names, the local variables inbuf and outbuf are used for storing data blocks to be transmitted to or
retrieved from other machines on the network. The latter of these, outbuf, is an array and thus can
store a potentially large number of data blocks. The local variable c7 serves to count the number of
blocks sent; it is an upper bound on the number of blocks which can be sent during a single token
holding period. The local variable j is an index into the array outbuf.

The local variables j and ctr are initially set to 1, and inbuf and outbuf are initially
set to empty. The shared variable MEDIUM initially contains the token, with the address of the
station in the DA field. Thus the initial system state tuple is (0, 0, ..., 0) and the first transition taken
will be get_tk by the station which has its local variable i equal to MEDIUM.DA.

Each machine has four states. In the initial state, 0, the stations are waiting to either
receive a message from another station, or the token. If the token appears in the variable MEDIUM
with the station’s own address, the transition to state 2 is taken. When taking the get-tk transition,
the machine clears the communication medium and sets the message counter ctr to 1. In state 2, the
station transmits any data blocks it has moving to state 3, or passes the token, returning to state 0.
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In state 3, the station will retum to state2 if any additional blocks are to be sent, until the maximum
count k is reached, or when all the stations’ messages have been sent, the station retumns to state 0.

t DA SA data

Medium
i : (my address)
next : (address of the next station)
ctr: (1,2, ..., k+1)
j:(1,2,..k)
DA SA_data t DA SA data
inbuf outbuf 1
J

Figure 49 : FSM and Variables of Token Bus Protocol
The receiving station, as with all stations not in possession of the token, will be in
state 0. The message will appear in MEDIUM, with the receiving station’s address in the DA field.
The receiving transition to state 1 will then be taken, the data block copied, and MEDIUM cleared.
By clearing the medium, the receiving station enables the sending station to retumn to its initial state

(0) or to its sending state (2).
TABLE 8: PREDICATE ACTION TABLE FOR TOKEN BUS PROTOCOL
Transition Enabling Predicate Action
cv MEDIUM.(t,DA)= (D, i) inbuf ;= MEDIUM.(SA data)
ready true MEDIUM = @
get-tk MEDIUM.(t,DA) = (T, i) MEDIUM:= &;
cr:=1
pass outbuf{j} = @ MEDIUM :=( T, next, i, &)




TABLE 8: PREDICATE ACTION TABLE FOR TOKEN BUS PROTOCOL

Xmit outbuf{j] # @ MEDIUM := outbuflj);
cr=cr®l;j=j@DI1;
outhuf{j} == @

moreD MEDIUM A @ = outbuflj] # @ null

pass-tk MEDIUM = @A™ MEDIUM := ( T, next, i, &)

(outhuflf) = Bver =k+1)

The symbol “@3” indicates that the variable should be incremented unless its
maximum value has been reached, in which case it should be reset to the initial value.The notation
MEDIUM.(t, DA) is used to denote the first two fields of the variable MEDIUM. For example,
MEDIUM.(t, DA) = (T, i) is a boolean expression which is true if and only if the first fields of
MEDIUM contains the value T, and the second field contains the value i. Other notations in the
predicate-action table are intuitive.

The same names as in the specification are used for the local and global variables in
the package definitions. Also, the “empty” value is represented by “E” and the data are represented
by “I” in this package. The upper bound on the number of the data blocks in the outbuf variable is
setto 7.

The results are same with the previous analysis results [BULB93].The global state
analysis with supertrace has generated 263 global states and there were no deadlocks or unexecuted
transitions.

B. Automated Test Generation Of FDDI Protocol By “TESTGEN” Program

In this section an automated test generation of the FDDI protocol is illustrated. FDDI is a
standard for a 100Mb/s fiber optic network which has come on the market in the last few years. The
protocol was formally specified, including timing requirements, and verified, in [LUNDS0B]. The
same specification of FDDI protocol will be used in this section. The brief description of the FDDI
protocol is given below.

The protocol specification consists of the FSM description of each machine,Figure 50; the
predicate-action table (Table 9); and the timer specifications (not shown). A detailed description of
protocol appears in [LUND90B], so here we give only a brief description.

Each machine shares one variable with its upstream neighbor (called inbuf) and one with its
downstream neighbor (called outbuf). (These shared variables serve as the input and output ring
connections).
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The FSM consists of 20 states. In states 0-7 the station has nothing to transmit, so is merely
waiting for the token and processing it. In states 10-21 the station has a message to transmit, and
does so upon receiving the token. The transition names on the transition arcs serve as a key into the
PAT, which specifies the action taken when the transition is executed.

There are two transitions specified in the Table 9 which are not shown in the state diagram;
this is because these transitions can be taken from any state.The TRT-watch transition becomes
enabled whenever the TRT timer expires. This transition immediately resets the timer, and
increments variable Late-cnt. The second transition not shown is called CRASH, this is the
termination of the ring operation, which occurs if the token fails to circulate within twice the TTRT.

Figure 50 : FSM of the FDDI Protocol




TABLE 9: PREDICATE ACTION OF THE FDDI PROTOCOL

Transition Enabling predicate Action
PDU-Q A-buf(l) # @ Vv S-buf() # @
token inbuf{1..71=(1,1,K,0,0,T.T) inbuf:=@; S-cat:=0
carly Late-cnt = 0 THT-val := TRT-val;
TRT-val := T-Opr
late Laswe-cnt > 0 Late-cnt := 0;
pass-tk TRUE outhuf[1..7] = (1,J,K,0,0, T, T)
rov-F inbufls) € {1,2} A in:=1
inbuff6..71 = MA
cp-pt inbuffin) # T msg-buffin),outbuf{in]:= inbuffin};
in =in+]
T inbuflin) = T outbuffin] := T; inbuf = &;
in:=in+l
end-F TRUE outbuffin,in+1,in+2}:=
(err,inbuflin+1,in+2])
ack TRUE outbuffin, in+1, in+2) :=(em, 1, 1)
pass-F inbufl5) € {1,2} A =1
inbuf{6..7] = MA
repeat inbuffin] # T outbuffin):= inbuflin]; in := in+1
X-Syn S-buffj,out] # @ outbuffout] := S-buffj.out);
out:= out+1
X‘Asyn A‘bﬂf[i out] # DA O“Mf[m‘]l = A-buf[i.out]:
(S<nt = max v S-buffjl = 0) out= Out+
end-S _bufli = outbuffout.out+1,0ut+2] := (T,0,0);
S-buffj.ou] = @ S-cnt.F-cnt == S-cnt+1;
jhout:=jD1,1
end-A A-buffiout] = @ outbuflout,out+1,0ut+2] := (T,0,0);
F-cnt=F-cnt+l;i,out:=i ® 1,1
next-S S-cnt < max A S-buf(j] # @
next-A THT-val > 0 A A-buffi] # @
strip inbuf[6.7] = MA A F-cnt >0 inbuf:= @; F-cnt :=F-cnt - 1
Clear Fcnt =0
TRT-watch TRT-val = 0 TRT-val := T-opr;
Late-cnt := Late-cnt+1
CRASH Late-cnt > 1 terminate ring operation
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1. Creating the FSM And Predicate-Action Input Files for the FDDI Protocol

Creation of the FSM input file is a straightforward process. The user should number all
transitions on the finite state machine as shown in Figure 50. All transitions should be written to a
input text file according to the rules in Chapter IV. The FSM input file for the FDDI protocol is
shown in Figure 51 and Predicate-action input file is shown in Figure 52.

Some of the relational symbols in the Predicate-Action Table are converted to their
semantically equivalent text forms. For example relational symbols A , Vv are converted to “and”
and “or” respectively. A relatively more complex symbol i:= i @ 1 is represented as “i :=
i(mod+)1.”

The TESTGEN program first prints out all the paths in the protocol. It also finds all the
cycles and checks them for a transition that will ultimately lead back to the initial state. All possible
paths in the FDDI protocol are output to a file as shown in Figure 53. The paths are depicted
according to the numbers assigned by the user.

'

2 pass-tk

~NOVMAWWNNHMNOOOOO
OO0O0ONWAHANNVEHWN M

10 12 16 rcv-t£
10 13 17 pass-f
11 14 18 early
11 15 19 late
12 12 20 cp-rpt
1216 21 ¢

13 13 22 repeat
1317 23 ¢

14 14 24 x-syn
14 18 25 end-s
15 15 26 x-syn
15 19 27 end-s
16 10 28 ack

17 10 29 end-t
18 14 30 next-s
18 18 31 x-asyn
18 20 32 end-a
19 15 33 next-s
19 21 34 pass-tk
20 18 35 next-a
20 21 36 pass-tk
21 21 37 strip
21 0 38 clear

Figure 51 : FSM Input File of FDDI Protocol




.-

pdi-q | a-buf{i) /= 0 or s-buf(j) /= 0 | noO |

token | inbuf(1..7) « (1,3,k,0,0,t,t) | inbutf := 0 ; s-cot 1= 0 1

early 1 late-cnt = 0 itht-val := trt-val ; trt-val i» t-opr |

late | late-ent > 0 | late-cnt i= 0 [}

pass-tk | true | outbuf(1..7) 3= (i,3.k.0,0,t,t) ]

rev-£ | inbuf = (x,x,x,%x,10r2,ma) } in=s 1l |

cp-rpt | iobuf{in] /= t | meg-buf{in] :» inbuf(in) ; outbuf{in] :s inbuf(in) ; in ;= in+l |
t | tobuf{in] = t | outbuf(in]l = t ; inbut 1= 0 ; ia 1= inel |
end-f | true | outbut(in,inel,ineld) :« (orr,inbuflinel, in+2]) |
ack | true | outbuf(in,inel,in+2) := (err,1,1) |

pass-f | f{obuf = (x,x,x.x,l10r2,/=ma) | in 1= 1 |

repeat | inbuf(in} /=t { outbuf{in] := inbuf{in) ; in 1= inel |

x-syn | s-buf(j,out] /e« O | outbuf{out] ;= s-buf(j,out) ; out i= ocutsl |

x-asyn | a-buf(i,out) /= 0 and ( s-cnt = max or s-buf{j) « 0 ) | ocutbuffout] := a-buf(i,out);out:=ocut+l|
end-s | s-buf(j,out) = 0 | outbuff{out,outs+i,out+2) 1= (¢,0,0) ; s-cot := s-cnt+l ; f-cat = f-cntel |
end-a { a=buffi,cut] = 0 { outbhutfout,outesl,out+2) s (t,0,0) ; f-cot 1a f-cntel |}

next-s | s-cnt < max and s-buf{j} /= 0 | no |

next-a | tht-val > 0 and a-buf(i} /= 0 | no [

strip | inbuf(6..7) » ma and f-cnt > 0 | inbuf := 0 ; f-cnt = f-cntel |

clear | f-cnt = 0 | no |
trt-watch | trt-val = 0 | trt-val := t-opr ; late-cnt :» late-cnt+l |
crash | late-cat > 1 { no i

Figure 52 : Predicate Action Input File of FDDI Protocol

5 11 1is another path

6 12 is another path

8 13 is another path

7 8 13 is another path

0 14 is another path

9 10 14 1is another path

15 19 27 34 38 1is another path

19 27 34 37 38 1is another path
15 19 26 27 34 38 is another path

15 19 26 27 34 37 38 1is another path
15 18 25 32 36 38 is another path
15 18 25 32 36 37 38 is another path
15 18 24 25 32 36 38 is another path
15 18 24 25 32 36 37 38 is another path

L R N S S S S I S
>
w

17 32 23 29 16 21 28 15 18 25 31 32 36 38 {is ancther path

17 22 23 29 16 21 28 15 18 25 31 32 36 37 38 1is another path
17 22 23 29 16 21 29 15 18 24 25 31 32 36 38 is another path
17 22 23 29 16 21 28 15 18 24 25 31 32 36 37 38 is another path
17 22 23 29 16 20 21 28 15 18 25 31 32 36 38 is another path
17 22 23 29 16 20 21 28 15 18 25 31 32 36 37 38 is another path

L I A A Y

Figure 53 : The Representation of Paths in the Output File for the FDDI Protocol

In our example, the number of paths found by the TESTGEN program is 162. There are
no cycles without an outgoing transition that leads back to the initial state.

Finally, the TESTGEN program creates the testing sequence table by printing all possible
transition sequences, excluding continuous cycles. The table is 2112 lines long. Since the size of the
table generated for the FDDI protocol is too big to show here, it is partially depicted in Figure 54.

Each of these 2112 output lines corresponds to a single test. In Figure 55 only the first
few test are shown. The width of the table corresponds to the number of input and output variables.
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Figure 54 : Partial Output of FDDI Protocol

iiewssunnpnnyunvunnnunntun uy oy ty
[

!!!!!!!!!!!a!!!!!!!!%!!!!! !! g !
segysnpunnunnsunsunutunfuy v B Y,
" g

3iy.u8.08puuyunsuupuytu, gy 8 8 Y
Bicoia: M3 3 M3 3 3,355 £,355,3 5,5u5,5,8 & s T
!3‘ §=!;-2§=!2!252==!!i2!==!!Siﬁgzgz‘!'ﬁgzgt!z!g!:!: !2!2 !i !: != .
6 E.E :§~: §§ :S: : 'i :EE: ' . :!:: i
g{;@;g;;;;ggggggagéggsggs By a-ag \
s idiliiiiiiiiiiiiiiiiiiigell ;i1 Mg
i g!!!!assggs!!!;gagggggauig g8 . f
1 ii gggangzglgi!;!i!i!i!‘!;!L!L!L!;!i!Lg‘siﬂ‘szsg.isi!* ey
L I I B
!: a2 i i rlilillllriLrrrirrorry i-L -
} g asaaasgayagaasgssgagﬁgggﬁa s! '
. % sussEsussNsunnussunulonylny uw oy {
-t 12 2::22352!322!52532:5!2=§!= 2 =2 = 2
bbb iioabaile 1t s

For example, consider the first test in Figure 55. The start state, Sy, is state 0; the end state, Sg, is
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state 1. The input variables must be set o0 the values shown on the left side of the table, and the
output variables are expected to take on the values shown on the right side. The next test will take
us to state 4.

If a variable is both input and output it is marked by (i) for input and (o) for output
variable to show their status in the generated test sequence. For example, late_count appears both
in the enabling predicate and in the action part of transition “late”. It is both an input and output
variable and is thus represented in the output test sequence as late_cni(i) and late_cn#{0) as in Figure
54.

If there is more than one clause in the enabling predicate part of the predicate action table
the TESTGEN program generates one test sequence and marks the variables of this test with the
clause’s relational symbol. In our example enabling predicate for the PDU-Q transition consists of
two clauses. The TESTGEN program illustrates this by putting the relational symbol “or”
(relational symbol in this case) in front of the values to be compared in the output file. The values
for a-buf (or /=empty) and s-buf (or/=empty) should be read as “A-buf is not equal to empty or S-
buf is not equal to empty.” It is the responsibility to the user to change the variables for that
transition to enable that transition. For testing purposes, the user can either make one or both of
these two variables non-empty.

If there are more than two clauses in the enabling predicate part of the PAT as mentioned
in Chapter IV, the TESTGEN program is able to represent these clauses in the output test sequence
table. In the FDDI PAT (TABLE 9), the X-Asyn transition has more than two clauses in the format
“first clause relational symbol (second clause relational symbol third clause).” The TESTGEN
program shows this in the output sequence by putting the relational symbol in parentheses to
represent the symbol between the second and third clauses, and placing the first relational symbol
without parentheses in the output file. For example, the a-buffi,out] has a value “=/empty,” s-buf
has a value “(or)empty” and s-count has a value “(or) max” in the generated test sequence. This test
sequence input should be read as “A-buffi,out] should not be empty and either S-cnt should be equal
to max or S-buffj] should be empty.” '

The TESTGEN program can determine some transitions which make a state transient. It
informs the user by printing out a waming to the terminal and output file. In our example, the
TESTGEN detects “end-f* and “ack” transitions, which makes states 6, 7, 16 and 17 transient, and
prints out a warning.

Since the TESTGEN program generates all possible transition sequences, returning to
the initial state, protocol testing can be executed by following the order of tests in the test sequence
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file. This means that there is no need to find the UIO (unique input-outpus) sequence after each
individual test, but only at the end of the last test (or possibly not at all).

Finally, the TESTGEN program also detects converging transitions, if any, and prints out
the list of the converging transitions. In the case of FDDI protocol, pass-tk is detected as a
converging state from states 4-5 and also from states 19-20. The test designer should be aware of
this as a possible source of problems in the execution of tests.




VL. CONCLUSION AND FURTHER RESEARCH POSSIBILITIES

In this chapter both software tools’ capabilities are summarized and further research
possibilities are discussed.

A. Supertrace Algorithm

In the first part of this thesis a software tool has been described which improves the automatic
analysis of protocols specified by the CFSM and SCM models, by using the Supertrace algorithm.
This algorithm improves the coverage of protocol analysis by generating a larger number of
states than regular mushroom program. In cases where exhaustive search algorithm is infeasible,
this can be extremely helpful. It also shows that the mushroom program with supertrace is capable
of covering up to 95% for protocols with 1.5 % 10° global states. The improvement of the
Supertrace algorithm is illustrated in Figure 55 and Figure 56. The protocols are represented in
abbreviated form (i.e. Gbn for the Go-Back-N protocol).The number of states generated by
mushroom with supertrace is between 90% and 95% for protocols up to 150000 global states and
around 99% for protocols with 20000 global states.
350000

3000004
2500004

200000

Number of States Generated

uq;-B(I) L;p-B(I and RR Frames)
Protocols Analyzed

Figure 55 : The Analysis Results of Supertrace and Simple Mushroom
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Figure 56 : The Analysis Results of Supertrace and Big Mushroom

The main achievement of Supertrace can be realized when the memory capacity is
insufficient to allow an exhaustive analysis. In the analysis of Go-Back-N protocol with a window
size 18, Big Mushroom cannot compliete the analysis due to insufficient memory. The number of
states analyzed with Big Mushroom is 161431 and the aumber of states analyzed with Supertrace
is 290,980. Since we do not know the total number of global states in this protocol, we can not
estimate the exact coverage established by Supertrace but we do know that it analyzed 290980 -
161431 =129549 extra states which is 80% more than the number of states generated and analyzed
by Big Mushroom. A similar result is established for protocols specified with CFSM model. The
analysis of Lap-B protocol with I and RR frames can not be completed by Simple mushroom
program. The number of states analyzed is 153565. The same specification analyzed with
Supertrace algorithm, and generated 300456 states which is 95% more than the number of states
generated by Simple Mushroom.

The results shows that Supertrace algorithm approximates an exhaustive search analysis for
smaller protocols and gradually changes into a controlled partial search method for larger protocols.
The Supertrace algorithm cannot guarantee 100% coverage due to possibility of unresolved hash
conflicts for small protocols. As a partial search technique (for larger protocols) it is far superior to
the exhaustive search technique.

The analysis of protocols specified in CFSM model was conducted on a computer with 64
Mbyte memory, the analysis of protocols specified in SCM model was conducted on a computer
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with 48 Mbyte memory. The overall improvement of supertrace algorithm is based on these
available memory values. The number of states generated can be increased as the amount of the
available memory increases. The supertrace algorithm uses a simple hash table for keeping track of
the generated giobal states. Instead of keeping previously generated states in the hash table, a hash
value is calculated and corresponding value in the hash table is set. Each state is checked against
the hash table values to determine if it was previously generated.

The number of states analyzed and the coverage can be significantly improved by increasing
the hash table size in the main program.The supertrace algorithm is also more efficient in speed than
the exhaustive search method, since time spent in checking hash table is constant (O(1)). The total
processing time difference between these two methods increases as the number of global states
increases.

The number of states analyzed is usually very large and it is hard to locate faults by manually
searching the output text file. An isaprovement would be to store the reachability analysis results in
the form of a data base.A query language that allows the user to easily analyze the results of the
analysis is suggested in [AGGAS87].

The data structures can be simplified to allow more efficient utilization of memory so the user
can analyze a larger number of states and obtain a more accurate analysis.

Finally, the mushroom with supertrace is a tool which will greatly improve the analysis of
large protocols specified by the SCM and CFSM models which cannot be analyzed with exhaustive
search methods.

B. TESTGEN Program

In the second part of this thesis a software tool called “TESTGEN™ was introduced which
automatically produces a sequence of conformance test for protocols specified by the SCM protocol
model. The purpose is to conduct conformance testing on implementations. The TESTGEN
program checks key control points in the protocol and informs the user if it detects a possible error.

The TESTGEN program takes as input a protocol specified formally as two separate text
files, one containing the finite state machine part, the other containing the predicate-action table and
variables. It outputs test sequences beginning from the initial s :, finding all transition sequences,
excluding continuous cycles, and generates tests for every transition on the path back to the initia’
state, so long as there is such a path (when there is no path back user is wamed).

The main achievement of the TESTGEN program is its applicability to protocols specified
formally with the SCM model which make it possible for implementors and buyers/users of
protocol implementations to automatically generate a set of tests, which ideally determine if the
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protocol implementation meets its specification. It was used to generate test sequences for the FDDI
protocol in Chapter V and CSMA/CD protocol in Chapter I11. It produced the same test sequence
generated for the CSMA/CD protocol in [MILL90). The automation of the test sequence generation
procedure TESTGEN expanded the applicability of the procedure to larger and more complex
protocols.

A second, broader purpose of this work has been to unify the fields of protocol specification,
testing and verification under a single protocol model, systems of communicating machines. As
carlier work [BULB93] has automated the verification process (to some degree), we now have tools
for specification, verification and testing in this protocol model.

The TESTGEN programs generates a test sequence based on the specification of the protocol
and a conformance test originated on these test sequences. It verifies that a given implementation
realizes all functions of the original specification, over the range of parameter values. If the
implementation under test (IUT) passes these tests, it is capable of reproducing the behavior formal
specification. We do not know if IUT will handle erroneous inputs in a manner consistent with the
original specification. Because conformance test sequence is used to test the presence of desirable
behavior, not the absence of undesirable behavior.

A further study on this issue might be the generation of a simulator consistent with the
specified protocol such that the expected output values can be calculated quickly. Each step in the
transition sequence could also be tested and verified easily. The success of this method will depend
on the correctness of the simulator program.

The TESTGEN program is originated from the procedure created in [LUND90A]. Further
research in this area might be to improve of the procedure itself and determine what assumptions
are made conceming the IUT.,

The TESTGEN program does not guarantee detection of all the errors in the protocol. It does
represent an attempt to exercise all parts of IUT and provides some assurance that the
implementation meets its purpose without obvious or easily detected errors.
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APPENDIX A (LAP-B Protocol Information Transfer Phase)

Analysis Results (I Frames Only)

REACHABILITY ANALYSIS of : fad.fsm
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The result of Lap-B Protocol analysis (I frames only)

SUMMARY OF REACHABILITY ANALYSIS (ANALYSIS COMPLETED)
Total number of states generat:ed : 69102

Number of states analyzed : 69102

number of deadlocks : 1

number of unspecified receptions : 0

maximum message queue size : 6

channel overflow :NONE

UNEXECUTED TRANSITIONS
rraesNONEYS®*

Lap-B Protocol FSM Text File (I and RR frames)

start
number_of_machines 6
machine 1
state 1

trans +A0 1 )
trans -DO0 2 3
state 2

trans +A0 2 3
trans ~D1 3 3
trans +Al 4 3
state 3

trans +A0 3 3
trans +Al1 5 3
trans +A2 7 3
state 4

trans +Al &4 3
trans -D1 5 3
state S

trans +Al S5 3
trans +A2 7 3
trans -D2 6 3
state 6
trans +Al 6 3
trans +A0 1 3
trans +A2 8 3
state 7

trans +A2 723
trans ~-D2 8 3
state 8

trans +A2 8 3
trans +A0 1 3
trans -DO 9 3
state 9

trans +A2 9 3
trans +A0 2 3
trans +Al 4 3
machine 2
state 1

trans +ENQ 10 3
trans +D0 2 3
state 2

trans +ENQ 13 3
trans +D1 3 3
trans -AC1 4 3
state 3

trans +ENQ 14 3
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crans -100
state 12
trens -101
state 1)
trans -102
state 14
trans -I110
state 15
trans -I11
state 16
traus -112
state 17
trans -120
state 18
trans -121
state 19
trans ~-122
state 20
trans -D0
state 21
trans -D1
state 11
trans -D2
state 13
trans -DO
state 24
trans -D1
state 25
trans -D2
state 36
trans -DO
state 27
ctrans -D1
state 28
trans -D2
state 29
trans -A0
state 30
trans -Al1 1 1
state 31
trans -A2 11
machine ¢
state 1
trans +D0 2 S
trans +D1 3 S
trans +D2 4 S
trans +100 20
ctrans +110 21
trans +120 22
trans +101 23
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trans +121 25
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state 2

trans +8MQ 13 ¢
crens +D1 3 4
trans -AC1 4 &
state 3

trans +ENQ 14 ¢
trans -AC3 7 4
state ¢

trans +D1 S 4
trans +BNQ 11 4
state 5

trans +ENQ 14 ¢
trens -AC3 7 4
trans +D2 6 ¢
state 6

trans -ACO 1 4
trans +ENQ 15 ¢
state 7

trans +ENQ 12 4
trans +D2 8 4
state §

trans ~ACO 1 4
crans +ENQ 15 4
trans +D0 9 4
state 9

trans -AC1 ¢4 4
trans +ENQ 13 ¢
state 10

crans A0 1 4
state 11

trans -Al 4 4
state 12

trans -A2 7 4
state 13

trans -Al 4 4
state 14

trans -A2 7 4
state 15

trans -A0 1 4
initial _state 1 11111

cinieh The result of Lap-B Protocol analysis (I and RR frames)

SUMMARY OF RBACHABILITY ANALYSIS (ANALYSIS COMPLETED)
Total number ot states generated : 320457

Number of states analyzed : 300456

number of deadlocks : 0

number of unspecified receptions : 0

maximum message queue gize : S

channel overflow :NONE

TRANSITIONS
SOSESNONE e




APPENDIX B (GO BACK N PROTOCOL)
Variable Definitions (Window Size 10)

with TEXT_I0; use TEXT_IO;
package definitions \is
num_of_machines : constant := 2;
type scm_transition_type is
{and_data, rcv_data, rev_ack0, rev_ackl, rev_ack2, rcv_ack3, rcv_ack4, rcv_acks, rcv_acks, rev_ack?
,rcv_ack8, rev_ack9, snd_ack,unused) ;
type buffer_type 1s (d0,d1,d2,d3,d4,d5,d6,d7,d48,d9,E);
package buff_enum_io is new enumeration_IO(buffer_type);
use buff_enum_io;
type buffer_array_type is array(l..10) of buffer_type;
type seq array_type is array(1l..10) of integer range -1..10;

type machinel_state_type is
record
Sdata: buffer_array_type:= (d0,dl,d2,d3,d4,d5,d6,d7,d8,d9);
seq : integer range 0..10 := 0;
i : integer range 1..10 := 1;
end record;

type machine2_state_type is

record
Rdata : buffer_type:= E;
exp : integer range 0..10 := 0;
3 : integer range 1..10 := 1;

end record;
type dummy_type is range 1..25S;
type machinel_state_type is
record
dummy: dummy_type;
end record;

type machine8_state_type is
record

dummy : dummy_type;
end record;

type global_variable_type is

record
DATA : buffer_array_type := (E,E,E,E,E,E,E,E,E,E);
SEQ : seq array_type :s (~1,-1,-1,-1,-1,-1,-1,-1,-1,-1);
ACK : integer range -1..10 := -1;

end record;
end definitions;

Predicate-Action Table (Window Size 10)

separate(main)
procedure Analyze_Predicates_Machinel(local : machinel_state_type:;

global : global_variable_type;
s : natural;
w : in out transition_stack_package.stack) is
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cempl : integer := GLOBAL.ACK + 0;
cenp2 : integer := (GLOBAL.ACK + 1) mod 11;
temp3 : integer := (GLOBAL.ACK + 2) mod 11;
comp4d : integer := (GLOBAL.ACK + 3) mod 11;
cempS : integer := (GLOBAL.ACK + 4) mod 11;
tempé : integer := (GLOBAL.ACK + S5) mod 11;
temp? : integer := (GLOBAL.ACK + 6) mod 11;
temp8 : integer :z (GLOBAL.ACK + 7) mod 11;
temp9 : integer := (GLOBAL.ACK + 8) mod 11;
templ0 : integer := (GLOBAL.ACK + 9) mod 11;
begin
case s is

when 0 =>

if ( (GLOBAL.DATA(local.i) =
Push(w, snd_data);
end if;

when 1 =>

if ( (GLOBAL.DATA{local.}i) =
Push(w, snd_data);

end if;

if ( (templ = local.seq) and
Push(w, rcv_acko0);

end if;

when 2 =>

if ({ (GLOBAL.DATA(local.i) =
Push(w, snd_data);

end if;

if ( (templ = local.seq) and
Push(w, rcv_acko0);

end if;

it ( (temp2 = local.seq) and
Push(w, rcv_ackl);

end if;

when 3 =>

1f ( (GLOBAL.DATA{local.i) =
Push(w, snd_data);

end 1if;

if ( (templ = local.seq) and
Push(w, rcv_ack9);

end if;

if ( (temp2 = local.seq) and
Push(w,rcv_ackl);

end {f;

if ( (temp3 = local.seq) and
Push(w, rcv_ack2);

end if;

when 4 =>

if ( (GLOBAL.DATA{local.i) =
Push(w, snd_data) ;

end if;

if ( (templ = local.seq) and
Push(w, rcv_acko0);

end if;

if {( (temp2 = local.seq) and
Push(w,rcv_ackl);

end if;

if ( (temp3 = local.seq) and
Push(w, rcv_ack2);

end 1if;

it ( (tempd = local.seq) and
Push(w, rcv_ack3l);

E ) and (GLOBAL.SEQ(local.i)

E ) and (GLOBAL.SEQ(local.i)

(GLOBAL.ACK /= -1)) then

E ) and (GLOBAL.SEQ(local.i)

(GLOBAL.ACK /= -1)) then

(GLOBAL.ACK /= -1)) then

E ) and (GLOBAL.SEQ(local.i)

(GLOBAL.ACK /= -1}) then

(GLOBAL.ACK /= -1}) then

(GLOBAL.ACK /= -1)) then

E ) and (GLOBAL.SEQ(local.i)

(GLOBAL.ACK /= -1)) then

(GLOBAL.ACK /= -1)) then

(GLOBAL.ACK /= -1)) then

(GLOBAL.ACK /= -~1)} then

-1} ) then

-1) ) then

-1} )} then

-1) )} then

-1) ) then




end if;
wvhen 5 =>
if ( (GLOBAL.DATA(local.l) =
Push(w, snd_data};
end if;
if ( (templ =z local.seq) and
Push(w, rcv_ack0);
end if;
if ( (temp2 = local.seq) and
Push(w,rcv_ackl);
end if;
it ( (temp3 = local.seq) and
Push(w, rcv_ack2);
end if;
if ( (cempd = local.seq) and
Push(w, rcv_ack3);
end if;
if ( (temp5 = local.seq) and
Push(w,rcv_ackd);
end 1if;
when 6 =>
if ( (GLOBAL.DATA(local.i) =
Push (w, snd_data);
end {f;
if ( (templ = local.seq) and
Push(w, rcv_ack0);
end if;
1f ( (temp2 = local.seq) and
Push(w, rcv_ackl);
end if;
i1f ( (temp3 = local.seq) and
Push(w, rcv_ack2);
end if;
if ( (tempd = local.seq) and
Push{w, rcv_ack3);
end if;
if ( (temp5S = local.seq) and
Push{w,rcv_ackd);
end if;
if ( (temp6 = local.seq) and
Push({w, rcv_ack5);
end if;
when 7 =>
if ( (GLOBAL.DATA(local.i) =
Push(w, snd_data);
end if;
1f ( (templ = local.seq) and
Push(w, rcv_ack0) ;
end if;
if { (temp2 = local.seq) and
Push{w, rcv_ackl);
end if;
if ( (temp3l = local.seq) and
Push(w,rcv_ack2);
end if;
if ( (tempd = local.seq) and
Push(w,rcv_ack3);
end if;
if ( (tempS = local.seq) and
Push(w, rcv_ack4);
end if;

E ) and (GLOBAL.SEQ(local.i) = -1) )} then

(GLOBAL.ACK /= -1)} then

(GLOBAL.ACK /= -1)) then

(GLOBAL.ACK /= -1)) then

(GLOBAL.ACK /= -1)) then

(GLOBAL.ACK /= -1)] then

E ) and (GLOBAL.SEQ(local.i) = -1) ) then

(GLOBAL.ACK /= -1)) then

(GLOBAL.ACK /= -1)) then

(GLOBAL.ACK /= -1)) then

(GLOBAL.ACK /= -1)) then

(GLOBAL.ACK /= -1}) then

(GLOBAL.ACK /= -1)) then

E ) and (GLOBAL.SEQ(local.i) = -1) ) then

(GLOBAL.ACK /= -1)) then

(GLOBAL.ACK /= ~-1}) then

(GLOBAL.ACK /= -1}) then

(GLOBAL.ACK /= -1)) then

(GLOBAL.ACK /= -1)) then
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if ( (temp6é = local.seq) and (GLOBAL.ACK /= -1)) then
Push(w, rcv_ackS);

end if;

it ( (temp7 = local.seq) and (GLOBAL.ACK /= -1)) then
Push(w, rcv_acké) ;

end 1f;

when 8 =>

if ( (GLOBAL.DATA(local.i) = E ) and (GLOBAL.SEQ(local.i) = -1} ) then
Push(w, snd_data);

end if;

if ( (templ = local.seq) and (GLOBAL.ACK /= -1)) then
Push(w, rcv_ack0) ;

end if;

if ( (temp2 = local.seq) and (GLOBAL.ACK /= -1)) then
Pushi{w, rcv_ackl);

end 1if;

if ( (temp3 = local.seq) and (GLOBAL.ACK /= -1)) then
Push(w, rcv_ack2);

end {f;

if { (tempd4 = local.seq) and {GLOBAL.ACK /= -1}) then
Push{w, rcv_ack3);

end if;

if ( (temp5 = local.seq) and (GLOBAL.ACK /= ~-1)) then
Push(w, rcv_ackd);

end if;

1f ( (temp6 = local.seq) and (GLOBAL.ACK /= -1)) then
Pushi{w,rcv_ackS);

end if;

if ( (temp7 = local.seq) and (GLOBAL.ACK /= -1)) then
Push(w, rcv_acké) ;

end 1if;

if ( (temp8 = local.seq) and (GLOBAL.ACK /= -1)) then
Pushi(w, rcv_ack?);

end if;

when 9 =>

if ( (GLOBAL.DATA(local.i) = E ) and (GLOBAL.SEQ(local.i) = -1) )} then
Push(w, snd_data);

end if;

if ( (templ = local.seq) and (GLOBAL.ACK /= -1)) then
push(w, rcv_ack0);

end 1if;

if ( (temp2 = local.seq) and (GLOBAL.ACK /= -1)) then
Push(w, rcv_ackl);

end if;

if ( (temp3 = local.seq) and (GLOBAL.ACK /= -1)) then
Push(w, rcv_ack2);

end 1if;

if { (tempd4 = local.seq) and (GLOBAL.ACK /= -1)) then
Push(w, rcv_ack3);

end if;

if ( (tempS = local.seq) and (GLOBAL.ACK /= -1)) then
Push(w, rcv_ack4);

end if;

if ( (tempé = local.seq) and (GLOBAL.ACK /= -1)) then
Push(w, rcv_ack5);

end if;

if ( (temp7 = local.seq) and (GLOBAL.ACK /= -1)) then
Push(w, rcv_acké) ;

end 1f;

if ( (temp8 = local.seq) and (GLOBAL.ACK /= -1)) then
Push(w, rcv_ack7);




end 1f;
if ( (temp9 = local.seq) and (GLOBAL.ACK /= -1)) then
Push(w, rcv_ack8) ;
end if;
it { (templ0 = local.seq) and (GLOBAL.ACK /= ~1)) then
Push (w,rcv_ack9);
end if;
when 10 =>
if ({ (templ = local.seq) and (GLOBAL.ACK /= -1}) then
Push(w,rcv_ack0l;
end if;
if ( (temp2 = local.seq) and (GLOBAL.ACK /= -1}) then
Push(w, rcv_ackl);
end if;
it ( (cemp3 = local.seq) and (GLOBAL.ACK /= -1)) then
Push(w, rcv_ack2);
end i{f;
if ( (tempd = local.seq) and (GLOBAL.ACK /= -1)) then
Push(w, rcv_ack3l);
end 1f;
if ( (tempS = local.seq) and (GLOBAL.ACK /= -1}) then
Push(w, rcv_ackd);
end if;
if ( (temp6é =z local.seq) and (GLOBAL.ACK /= -1)) then
Push(w, rcv_ack$S);
end if;
if ( (temp7 = local.seq) and (GLOBAL.ACK /= -1)) then
Push(w, rcv_acks6);
end if;
if ( (temp8 = local.seq) and (GLOBAL.ACK /= -1)) then
Push(w,rcv_ack7);
end if;
1f ( (temp9 = local.seq) and (GLOBAL.ACK /= ~1)) then
Push(w, rcv_acks);
end {f;
if ( (templ0 = local.seq) and (GLOBAL.ACK /= -1}) then
Push(w, rcv_ack9);
end if;
when others =>
null;
end case;
end Analyze_Predicates_Machinel;
separate(main)
procedure Analyze_Predicates_Machine2(local : machine2_state_type:
global : global_variable_type;

s : natural;
w : in out transition_stack_package.stack)
begin
case 8 is
when 0 =>

if ((GLOBAL.DATA(local.j)/= E) and (GLOBAL.SEQ(local.j) = local.exp)) then
push(w, rcv_data);

end if;

when 11213141516171819 =>

if (GLOBAL.DATA(local.j)= E) then
Push(-’, snd_ack);

end {f;

if ((GLOBAL.DATA(local.j)/= E) and (GLOBAL.SEQ{local.j) = local.exp)) then
Push(w, rcv_data);
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end if;
when 10 =>
if (GLOBAL.DATA(local.j}=E) then
Push(w, snd_ack) ;
end if;
when others s>
null:
end case;
end Analyze_Predicates_Machine2;
separate(main)
procedure Analyze_Predicates_Machiiield{local : machine3_state_type;
global : global_variable_type;
8 : natural;
w : in out transition_stack_package.stack) is

begin
null;
end Analyze_Predicates_Machine3l;

- " S - - - - - - T - A1 4 = 4 = Y . - - - - - - -

separate({main)
procedure Analyze_Predicates_Machine8(local : machine8_state_type;
global : global_variable_type;
8 : natural;
w : in out transition_stack_package.stack) is

begin
null;

end Analyze_Predicates_Machine8;

separate(main)

procedure Action ( in_system_state : in out Gstate_record_type;
in_transition : in out scm_transition_type;
out_system_state : in out Gstate_record_type) is

begin
case (in_transition) is

when snd_data =>
out_system_state.GLOBAL_VARIABLES.DATA(in_system_state.machinel_state.}i):=
in_system_state.machinel_state.Sdata(in_system_state.machinel_state.i);
out_system_state.GLOBAL_VARIABLES.SEQ(in_system_state.machinel_state.l):=

in_system_state.machinel_state.seq;

out_system_state.machinel_state.i:= (in_system_state.machinel_state.il mod 10) +1 ;

out_system _state.machinel_state.seq :=(((in_system_state.machinel_state.seq)+1)medll);

when rcv_ack0 |rcv_ackl [rcv_ack2 |rcv_ack3 ircv_ack4 Ircv_ackS Ircv_acké |[rcv_ack7 |

rcv_ack8 |[rcv_ack9 =>

out_gystem_state.GLOBAL_VARIABLES.ACK := -~1;

when snd_ack =>
out_system_state.GLOBAL_VARIABLES.ACK :
out_system _state.machine2_state.Rdata :

when rcv_data =>
out_sgystem_state.machine2_state.Rdata := in_system_state.GLOBAL_VARIABLES.DATA

(in_system_state.machine2_state.j);

in_system_state.machine2_state.exp;
e
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out_system_state.GLOBAL_VARIABLES.DATA{in_system_state.machine2_state.j) := E;
out_system_state.GLOBAL_VARIABLES.SEQ(in_system_state.machine2_state.j) := -1;
out_system_state.machine2_state.j := (in_system_state.machine2_state.j mod 10) +1;
out_system_state.machine2_state.exp:=z(((in_system_state.machine2_state.exp)+1)imod 11);
when others =>
put (*Error in action procedure®);
end case;
end Action;

Output Format
separate(main)
procedure output_Gtuple(tuple : in out Gstate_record_type} is
begin

if print_header then
new_line(2);
set_col(7);
put_line(* ml(seq,i,Sdata) , m2{exp,]j,Rdata) , (DATA,SEQ,ACK) *);
print_header := false;
else
put(* (°* & integer'image(tuple.machine_state(l)) );
put(* , *);
put (tuple.machinel_state.seq,width => 1);
put(* , *);
put (tuple.machinel_state.i,width => 1);
put(* , *);
buff_enum_io.put{tuple.machinel_state.Sdata(l), set => upper_case);
put(* , ");
put( integer'®image(tuple.machine_state(2)) );
put(® , *);
put (tuple.machine2_state.exp,width => 1);
puc(* , *);
put (tuple.machine2_state.j,width => 1);
put(* , °};
buff_enum_io.put(tuple.machine2_state.Rdata,set => upper_case);
for 1 in 1..10 loop
put(*,*);
buff_enum_io.put(tuple.GLOBAL_VARIABLES.DATA(l),set => upper_case);
put(®,*);
put (tuple.GLOBAL_VARIABLES.SEQ(1i), width => 1);
end loop;
puc(* , *);
put (tuple.GLOBAL_VARIABLES.ACK, width => 1);
put(* 1°);
end if;
end output_Gtuple;

Global Hash Function (Window Size 10)

function GLOBAL_HASH ( current_gstate : Gstate_record_type) return integer is
index: integer 1203
suml,sum2:integer:=0;
m s+ machine_state_array := current_gstate.machine_state;
begin
index := ( (m{(8) *83999) + ( m(7) * 72888) + (m(6) *61997) + (m(5) *5995) +
-(m(4) * 46571) +(m(3) * 34677) + (m(2) * 21323) + (m(1) *18203) ) ;
suml := buffer_type’'pos(current_gstate.machinel_state.Sdata(current_gstate.machinel_state.i));
suml:= suml+(23323*current_gstate.machinel_state.seq+31107*current_gstate.machinel_state.i);
suml:= suml +(20331*buffer_type’pos(current_gstate.machine2_state.Rdata)+
{(19977*current_gstate.machine2_state.exp+17773%current_gstate.machine2_state.j)):
tor 1 in 1..10 loop
sum2 := sum2+buffer_type‘pos({current_gstata.global_variables.DATA(i))*1112%i+
current_gstate.global_variables.SEQ(i)*3371*2%4,
end loop;
return {(index*S+sumi*7+11*sum2+7231*current_gstate.global_variables.ACK) mod 1545423))
end GLOBAL_HASH;
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The resuit of t  Go Back N Protocol analysis(Window size 10)

SUMMARY OF REACHABILITY ANALYSIS (ANALYSIS COMPLETED)
Number of states generated :30632
Number of states analyzed :30632
Number of deadlocks : 0
UNEXECUTED TRANSITIONS
'tt"“wgt'.'t

The result of the Go back N Protocol analysis(Window size 12)

SUMMARY OF REACHABILITY ANALYSIS (ANALYSIS COMPLETED)

- - - - -

Number of states generated :66655
Number of states analyzed :66655
Number of deadlocks : 0

UNEXECUTED TRANSITIONS

sttt s ENONES e *

The resuit of the Go back N Protocol analysis(Window size 13)

SUMMARY OF REACHABILITY ANALYSIS (ANALYSIS COMPLETED)

Number of states generated :90210
Number of states analyzed :90210
Number of deadlocks : 0

UNEXECUTED TRANSITIONS
CeERANONE P e

The result of the Go back N Protocol analysis(Window size 14)

SUMMARY OF REACHABILITY ANALYSIS (ANALYSIS COMPLETED)

- - -

Number of states generated :122880
Number of states analyzed :122880
Number of deadlocks : 0

UNEXECUTED TRANSITIONS
CEESENONE* S+ ¢

The result of the Go back N Protocol analysis(Window size 18)

l SUMMARY OF REACHABILITY ANALYSIS (ANALYSIS COMPLETED)
Number of states generated :290980

Number of states analyzed :290980

Number of deadlocks : 0

UNEXECUTED TRANSITIONS
teaesNONEss*t?
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