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ABSTRACT

The automation of reachability analysis is an important step in verification of ietwork

protocols. The memory size needed for the full state analysis of complex protocols is

usually very large and not available on most of the systems. A controlled partial search

algorithm "Supertrace" is implemented in this thesis to analyze protocols that can not be

analyzed efficiently by full state search method. Supertrace algorithm provided the

analysis of large protocols by generating 80% to 95% more states and is much faster as total

process time than full state analysis.

Second problem addressed in this thesis is the improvement of conformance testing

for protocol implementations. The "conformance testing" is used to check that the external

behavior of a given implementation of a protocol is equivalent to its formal specification.

A previously created procedure for conformance test sequence generation is automated in

this thesis by the ADA programming language. The software tool implemented, uses a

protocol specified formally with systems of communicating machines and creates test

sequences as output. The tool was applied to a formal specification of the CSMA/CD and

FDDI protocols and the results obtained, was consistent with the previous results. The

automation of the tool expanded the applicability of the previous procedure to larger and

more complex protocols.
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L INTRODUCTION

A. Background

Systems of communicating machnes (SCM) [LUND88) is a formal prtocol model

introduced during the last decade, which is used for specification, verification and analysis of

communication protocols. The main goal of the SCM model was to improve the well-known

simpler Communicating Finite State Machines (CFSM) model. In several papers the model was

used to specify and verify several communication protocols. The analysis which is caried out with

the model, called system state analysis, has been automated. The SCM model of a protocol can then

be easily verified.

This model uses a combination of finite state machines and variables. The variables may be

local to a single machine or shared by multiple machines. It can be classified in the models known

as "extended finite state machines."

The global state analysis of protocols usually generates a very large number of states. A

previous work [BULB93] on reachability analysis, automated the analysis of communication

protocols. This analysis was based on the exhaustive search method. The main restriction with this

method is its inability to continue processing in the face of the "state space explosion."As stated in

[HOLZ91], an estimate for the maximum size of the state space that can be reached for a full

reachability analysis is about l0ý states. A protocol with more than lWs states cannot be fully

analyzed utilizing the exhaustive search method, due to computer memory limitations. A controlled

partial search method "Supertrace" was thus intnxluced in [HO1291] to analyze protocols which

cannot be analyzed by the exhaustive search method. The Supertrace is implemented in this thesis.

A conformance test is used to ensure that the external behavior of a protocol's

implementation is equivalent to its formal specification. In conducting a conformance test, we are

given a known protocol specification and an unknown implementation. The implementation, for

practical purposes, is considered a "black box" with a finite set of inputs and outputs. The test

provides a sequence of input signals, and observes the resulting outputs. The implementation under

test (IUM) should pass the test only if all observed outputs match those prescribed by the formal

specification. The series of input sequences which are used to exercise the protocol implementation

in this way are referred as conformance test sequence throughout this thesis.

A previous study [MILL90] on this issue observed gaps between the specification, the

verification, and the conformance testing of network protocols. Protocol models which are designed

for specification purposes usually have many powerful program language constructs, to simplify

the specification, but are difficult to analyze. Protocol models designed primarily for analysis
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purposes, such as the CFSM model, are too simple for the specification of modem, complex
protocols. Recent works on conformance testing have started from the description of a protocol as
an incompletely specified finite state machine with input/output labels on the transitions
[CHEN90],[DAHB90]. Protocol specifications are not normally described in this manner.

Suppose a test designer was required to test a protocol specified using a formal language (i.e.
Estelle). First, the specification must be translated to an I/O diagram. This is a labor intensive
complex process, and during which errors are easily introduced. Only, when this translation is

complete, can the designer begin to generate the inputs for conformance testing.
A procedure, created in [LUND90A], is implemented in this thesis, for the generation of a

test sequence for a protocol specified in the SCM model. The purpose was to reduce the work and
the possibility of error, for the designer. The automation of the conformance test sequence
generation is also an attempt to close the gap between specification/verification and testing of
protocols. In this thesis, the test generation starts from a protocol model, designed for the
specification and verification of protocols. The procedure [LUND90A] and its automation as a

software tool does not guarantee that all the errors or combination of errors in a protocol are found.
But they do represent an attempt to exercise all parts of the protocol, providing some assurance that

the implementation meets its purpose.

B. Scope Of Thesis

The scope of this thesis is two fold: The first is to present implementation of the Supertrace
algorithm, apllied to the CFSM and SCM protocol models. This leads to the reachability analysis
of larger protocols formally specified by CFSM and SCM models that cannot be totally analyzed
by using exhaustive search methods. An earlier study on this issue is capable of generating
reachability analysis of protocols that are small enough to be analyzed by full state space search
method. This thesis expands this work to cover the analysis of bigger protocols by a controlled
partial search method known as "Supertrace'" algorithm. The output of the program was compared
to several previous works and was consistent with their results.

The second part of this thesis is on testing protocol implementations. A software tool that
automates the generation of a testing sequence is introduced for testing and verification of network

protocols. The procedure implemented in this program was created in [LUND90A].
When combined with the earlier work a protocol can be specified as a system of

communicating machines, analyzed by the mushroom program and a set of "conformance tests" can
be generated from to insure that an implementation of the protocol is, to some degree at least, in

conformance with its specification

2



C. Orpnization

This thesis has six chapters. Chapter I1 reviews the Communicating Finite State Machines
(CFSM) and System of Communication (SCM) models. Chapter m describes the Super Trace
algorithm and introduces two programs based on the algorithm. The Simple Mushroom With
Supertrace and Big Mushroom With Supertracem expand the automation of the global
reachability analysis of larger protocols formally specified by CFSM and SCM models
respectively.

In Chapter IV, a procedure for generating test sequences for a formally specified protocol is
introduced and a software tool that automates this process is described.

In Chapter V, examples of the use of software tools are given.
Chapter VI concludes the thesis with a research review and suggestions for future work.



EL INTRODUCTION TO CFSM AND SCM MODELS

A. Communicating Finite State Machines

Communicating finite state machine (MFSM) model is a simple model which requires ta

each machine in the network is modeled as a finite automaton or finite state machine (FSM). The

Communication channels between pairs of machines am modeled as one-way, Infinite length FIFO

queues. There is a great deal of literature on this model [PENG91][RUDI86][VUON83]. The model

is defined for an arbitrary number of machines. A two machine model (shown in Figure 1) will be

presented in this chapter for simplicity.

Machine I Machine 2

Figure I : CFSM, Two machine model representation

1. Model Definition

"Tris section defines the CFSM model [GOUD83] and provides a simple protocol

specification and analysis to clarify the definition.

A communicating machine M is a finite, directed labeled graph with two types of edges,

sending and receiving. A sending (receiving) edge is labeled '-g' ('+g') for some message g, taken

from a finite set G of messages. One of the nodes in M is identified as the initial node by some

directed path. A node in M whose outgoing edges are all sending (receiving) edges is a sending

(receiving) node; otherwise the node is a mixed node. The nodes of M are often referred to as statesr,

these two terms will be used interchangeably throughout this thesis.

Let M and Nbe two communicating machines having the same set G of messages the pair

(M,N) is a network. A global state of this network is a four tuple [in, cm, n, cn], where in and n are

nodes (states) from M and N, and cm and cn are strings from the set G of messages. Intuitively, the

global state [Im, cm, n, c.] means that the machines M and N have reached states m and n, and the

communication channels contain the strings cm and cn of messages, where cm denotes the messages

sent from M to N in channel CM, and cn denotes the messages sent from N to M in channel CN. In

the case of say k number of machines where k > 2 the global state can be represented as

4



[mjj2,3,....mn2.2Iq3,...,P3,q31132 ........ nqkqk.... Iwhere mi's are the nodes of machines
Mi and qij contains the messages sent from Mi to Mp. Subscripts i and j ranges from 1..k and i * j.

The initial global state of (MN) is [m0iE , 0,EJ, where m0 and no are the initial states of

M and N, and E is the empty string.

The network progresses as transitions are taken in either M or N. Each transition consists

of a state change in one of the machines, and either the addition of a message to the end of one

channel (sending transition) or the deletion of a message from the front of one channel (receiving
transition).

A sending transition inM (N) adds a message to the end of channel CM (CN); a receiving

transition in M (N) removes a message from the front of cLannel CN (CM).

Suppose +g is a receiving transition from state i to j in machine M (N). The transition can
be executed if and only ifM (N) is in state i and the message g is at the front of the channel CN (CM).

The execution takes zero time. After its execution, machine M (N) is in state j, and the message g

has been removed from the channel CN (CM).

Similarly, suppose - g is a sending transition from state i to j in machine M (N). The
transition can be executed if and only if M (N) is in state i. Afterwards, g appears on the end of the

outgoing channel, and the machine has transitioned to state j.

Suppose s1= [M, ci, n, cj] is a global state of (MN). State s2 follows sl if there is a
transition (in M or N) which can be executed in s, if there is a sequence of states si, si+q,..., Si+p such

that si follows s1 , sj+1 follows si, and so on, and s2 follows si+o. A state s is reachable if it is

reachable from the initial state.

The communication of a network (MN) is a directed graph in which the nodes

correspond to the reachable global states of (MN), and the edges represent the follows function.
That is, there is an edge from state si to state sj if ad only if sj follows si. The edges are labeled with

the transitions which they represent. This reachability graph can be generated by starting with the

initial state, and adding the states which follow it, connecting them to it with edges; and repeating

for each new state generated.

The next two definitions are of errors that may occur in a communication protocol which

are detectable by analysis.

A global state [m, cmn, c,] is a deadlock state if both in and n are receiving nodes and

Cm=Cn=E, where E denotes the empty string.

A global state [In, cm,n, cnj is an unspecified reception state if one of the following two

conditions is true:

5



(1) m is a receiving state, the message at the head of channel c. is g, and none of m's
outgoing transitions is labeled '+g.'

(2) n is a receiving state, the message at the head of the channel cm is g, and none of n's
outgoing transitions is labeled '+g.'

These error conditions can be identified by generating the reacdability for a network, and
inspecting all states as they are generated. In the next section, an example protocol is specified and
analyzed using CFSM model.

2. An Example Of Protocol Specification And Analysis Using CFSM Model

A simplified version of the Stop-and-Wait data link protocol will be analyzed as an
example of analysis with CFSM model. The interface between user and data link layer are assumed
to be error free and higher layer passes information/frame without error to the Data link layer. At
data link layer this protocol consist of two machines a sender and a receiver. In Figure 2, machine
1 serves as the sender and machine 2 serves as the receiver.

Machine 1 Machine 2

-D +A + A

Figure 2: CFSM Specification for Stop-and-Walt

The sender places a frame on the channel for the receiver. The receiver senses a frame on
the incoming channel and accepts and removes the message from the channel. The receiver then
sends an acknowledgment packet to the sender. The sender receives the acknowledgment packet
and is able to send another frame of information to the receiver.

The -D and +D represents the sending and receiving of data respectively. The -A, and +A
represent the sending and receiving acknowledgment respectively. Since the initial state of each
machine is 0; the initial global state is [O,0OE].

The reachability analysis can be done by a simple procedure. Starting with the initial
global state only one transition is possible, the -D of machine 1 from state 0. This leads to global
state [ 1,DO0E]. We can continue the analysis in the same manner detecting the possible transitions
from this global state until possible global states are found. The complete reachability analysis

6



consisting of four states is given in Figure 3. There are no deadlodks or uspecified receptions in

this pwtocol.
-0,E,0,EJ

[1,D 0,E]

[1,E, ,E]

[1,E,O,A]

Figure 3: Reachability Analysis of Stop-and-Wait protocol

Another CFSM specification of an imaginary network protocol consisting of three
communicating machines is shown in Figure 4.

Machine 1 Machine 2
-D39 2 3+D3, 1

+D2,3 -DO,2 -D1, 3 +DO, 1

Machine 3

-D2, 1 +D2,2

Figure 4: CFSM Specification of Example protocol

The directed edges are labeled such that the character-number combinations following
the '-1+" shows the messages and the numbers at the end represent the destination machine. A
clockwise ring is formed with each machine sending one message to the next machine and receiving
a message from the previous machine. The initial state of each machine is 1; thus the initial global

7



state is [1,I,E,1,EJ]. The reachability analysis of this protocol shown in Figure 5. In this
analysis there is one deadlock condition and one unspecified reception. In global state
[3,E,,3,EII,, all the channels are empty and all the nodes are receiving nodes satisfying the
deadlock condition. In global state [2X,,EIE,3,D4,E], machine I and machine 2 are in receiving
states but none of the outgoing transitions are labeled '+D4', satisfying an unspecified reception

condition.
[1EE,, I .,E,E,E, E] - 0 [3,D3,E,1,E,E,1,EE]

-DO,2 2D,2+D3,1

[2,D0,E,EE,1,EE] [3,E,,3,EE,1,E,E]
+DO,1 Deadlock

[2,E,E,2f,E,I,E,E]

-DI,3

[2,EEli,DI,1,E,E]
+D1,2

[2,E,E,1, {E,2,EE] - [2,EE,1, ,4X1
-D2,1 -D4,1 Unspecified

[2,E,E,1,E,E,1,D2,E] Reception

J+D2,3

Figure 5: Reachability Analysis of Example protocol

3. Summary

The CFSM model is simple and easy to understand. However, as the protocols become
more complex, this model becomes difficult to use due to a combinatorial explosion of states. The
analysis might not terminate if the queue length is unbounded. The number of states in the
reachability graph will be unmanageably large for such complex protocols even if the queue length
is bounded. A computer analysis might eventually terminate, but still the CPU time would be days
even months, obviously impractical.

Another disadvantage is that as the protocols become more complex, the specification of
the protocol can be so large, consisting of many states and transitions, that makes it very hard to
understand if it is the intended specification. Several examples are given in Chapter V that shows
the largeness of analysis output for some protocols.
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B. Systems Of Communicating Macidnes

In this section the SCM model is described. Frt the model defiiimn Is ghiv then

algorithm for generatin the system state analysis is described. Finally, to illustrate th mpou

aspects of the model it is used to specify analyze a sample protocol.

1. Model Definition

A system of communcaulng machines is an ordered pair C= (MV), where
M= {ml~m2,...,M,}

is a finite set of machines, and
V= (vlv2,...,Vk)

is a finite set of shared variables with two designated subsets Ri and Wi specified for each
machine mi. The subset Ri of V Is called the set of read access variables for machine mi, and the

subset Wi the set of write access variables for mi.
Each machine m, e M is defined by a tuple (isLiJi, Ti), where

(1) Si is a finite set of states;
(2) s e Si is a designated state called the initial state of mi,

(3) L4 is a finite set of local variables,

(4) Ni is a finite set of names, each of which is associated with a unique pair (pa), where

p is a predicate on the variables Li u Ri, and a is an action on the variables of Li u Ri U Wi.

Specifically, an action is a partial function

a: Li x Ri -+ Li X W,

from the values of the local variables and read access variables to the values of the local

variables and write access variables.

(5) ;i: Si x Ni -+ Si is a transition function, which is a partial function from the states
and names of mi to the states of mi.

Machines model the entities, which in a protocol system are processes and channels. The

shared variables are the means of communication between the machines. Intuitively, Ri and Wi are
the subsets of V to which mi has read and write access, respectively. A machine is allowed to make

a transition from one state to another when the predicate associated with the name for that transition

is true. Upon taking the transition, the action associated with that name is executed. The action
changes the values of local and/or shared variables, thus allowing other predicates become true.

The sets of local and shared variables specify a name and range for each. In most cases,

the range will be a finite or countable set of values. For proper operation, the initial values of some

or all of the variables should be specified.
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A system state tuple is a tuple of all machine states. That is, if (MV) is a system of n
commucatg machines, and si, for I S i . n , is the state of the machine mi, then the n-tnple

(:1s2.*..,s,,) is the system state tuple of (MV). A system state is a system state tupie, plus the
outgoing transitions which are enabled. Thus two system states are equal if every machine is In the

same state, and the same outgoing transitions arm enabled.

The global state of a system consists of the system state tupie, plus the values of all

variables, both local and shared. It may be written as a larger tuple, containing the system state tuplc
with the values of the variables. The initial global state is the initial system state tuple, with the

additional requirement that all variables have their initial values. The initial system state is the
system state such that every machine is in its state, and the outgoing transitions arm the same as in

the initial global state.

A global state corresponds to a system state if every machine is in the same state, and the
same outgoing transitions are enabled. Clearly, more than one global state may correspond to the

same state.

Let ?(spn) = s2 be a transition which is defined on machine mi. Transition T is enabled
if the enabling predicate p, associated with name n, is true. Transition T may be enabled whenever
mi is in state si and the predicate p is true (enabled). The execution of T is an atomic action, in which
both the state change and the action a is associated with n occur simultaneously.

It is assumed that if a transition is enabled indefinitely, then it will eventually occur. This
is an assumption of fairness, and is needed for the proofs of certain properties.

2. Algorithm: System State Analysis

The process of generating the set of all system states reachable from the initial state is
called system state analysis. This analysis construct a graph, whose nodes are the reachable system
states, and whose arcs indicate the transitions leading from each system state to another. This graph

may be generated by a mechanical procedure which consist of the following three steps [LUND91 ;

1. Set each machine to its initial state, and all variables to their original values.The initial
set of reachable system states consists of only the initial system state; the initial graph is a single
node representing this case.

2. From the current system state vector and variable values, determine which transitions
are enabled. For each of these transitions determine the system state which results from its
execution. If this state (with the same enabled transitions) has already been generated, then draw an

arc from the current state to it, labeling the arc with the transition name. Otherwise, add the new

10



system state to tgraph, draw an arc frm die curret ste to it. md abd o w ith te n o

the tramsitio.
3. For each new state generated in step 2, repea step 2. Coenue wittll sp 2 hls initial

been repeated for each system state thus generated, and no more new ftfsmwe p Med

3. An Example Protocol Spedfication and Analysis Using SCM Model

The stop-and-wait protocol is also used to demnstrate the anlysis usin SCM model.

The specification of the stop-and-wait protocol as represented by SCM model is shown in . The
specification consists of two finite state machines, the local and shared variables, and the predicate
action table, Table 1. The local variables are in_buff and out-buff shown under their correspLnding

FSMs. The shared variables are: CHAN and RET and shown between the two machines. The initial
state of each machine is 0, with the shared and local variables are empty except the local variable

out_buff which has "D." The 'D' in out-buff represents data and characters 'E' and 'A' in predicate
action table represent empty string and acknowledgment respectively.

Machine 1 Machine 2CHAN

0n- E cv 0

RcvAck RET Snd.Ack

Figure 6: SCM Specification of Stop-and-Wait Protocol with Variables

TABLE 1: PREDICATE ACTION TABLE FOR STOP-AND-WAIT PROTOCOL

lYansition Enabling Predicate Action

Snd_data CHAN = E A out_buff 0 E CH .-= outbuff
out_buff:= E

Rcv Ack RET- A RET:= E; CHAN:= E
Rcy-data CHAN• * E in~buff.= CMAN

_Snd_Ack TRUE RET:= A; inrbuff:- E

11



For t&i example the assumption is made that dam is always made available to the CHAN

from out.buff. Tie global reachability analysis, shown In Figure 7, has 4 states. Mitount for die

global state tuple is:

(Machine l -state, ouLbuff, Machine2_state, intbuff, CHAN, RLl

-DO,DO,Ej,EJ

,+D
[1,D,I DD,E]

•r-A
[1,D1D,DP,E

[1,D,0,DD,A ]

+A

Figure 7: Global Reachability Analysis of Stop-and-Wait Protocol

The system state analysis for the stop-and-wait protocol also has 4 states (see Figure 8).

For more complex protocols, there may be a big difference between global and system states. For

example a sliding window protocol with a window size of 8 the system state analysis was shown to

generate 165 states, while the full global analysis generated 11880 states (LUND91].

Tie format for a system state tuple analysis is:

[Machine lstate, Machine2.statel

.. [0,0]
-D

÷D(1 011

_-A

[1,0]
+A

Figure 8: System Reachability Analysis of Stop-and-Wait Protocol

12



4. Summary

The SCM model has desirable properties which overcome some of the disadvantages of

the CFSM model. One of the advantages of the SCM model is that it significantly reduces the state

explosion through the use of system state analysis. In some cases, however the system state analysis

is not sufficient for protocol analysis. Some other method - such as global analysis must be

performed. A problem is that loops in the state machines may cause an insufficient system state

analysis.

Another advantage of SCM model is that it allows communication between machines in

nonsequential manner, unlike a FIFO queue representation in the CPSM model. The SCM model

specification is easier to understand than the CFSM model for more complex protocols

13



I.L SUPERTRACE ALGORrITM

A. The Idea Behind The Supertrace Algorithm

The standard full, or exhaustive, search algorithm explores all reachable composite system
states for a set of interacting finite state machines. Every reachable state and every sequence of
reachable states can be checked for a set of correctness criteria such as deadlock condition and
unspecified reception. However, the size of the search space and the limits of physical memory
severely restrict the use of this method. Ifthe size of the state space is R and the maximum number
of states that can be stored in memory during the search is M both the coverage and the search
quality can only reach 100% when R 5 M. When R > M the coverage reduces to MIR, but the
search quality is likely to be worse.

To give an idea of the magnitude of such a search consider the following example. Suppose
that we have a protocol for two machines, each with 100 states, one message queue, and five local
variables. The two message queues are restricted to five slots each, and the range of values for local
variables are assumed to be limited to ten values. The number of distinct messages exchanged is 10.
In this sample system, there are 05"2 possible states of the protocol variables. Each process can
be in one of 102 different states, so two processes can maximally be in 104 different composite
system states. Finally each queue can hold up to five messages, where each message can be one out
of ten permutations. The total number of system states in the worst case is

1021010 *ie

or in the order of 1024 different states. If each state could be encoded in 1 byte of memory
and analyzed in 1-e sec, it would still require at least 10' 5 times more memory as currently
available on most systems, and would take roughly 1011 years to perform an exhaustive analysis.

Fortunately, the number of effectively reachable states is usually much smaller than the total
number of states calculated above. Even relatively small protocol systems, however, can easily

generate up to 109 reachable states. Therefore the full search method is feasible only if we can
reduce the complexity of our models to the maximum that a given machine can analyze.

If the state space is larger than the available memory can accommodate, the exhaustive search
strategy discussed above reduces to a partial search, without guaranteeing that the most important
parts of the protocol are inspected. This observation has led to the development of a new class of
algorithms that exploits the benefits of partial search.

14



One of the most effective partial search methods is the "Supeitrace Algorithm" [HOL291I,

which is implemented In this thesis.

1. Supertrace Algorithm (A Controlled Partial Search Method)

In this section the idea behind the supemtrace will be discussed as it is introduced in

[HOLZ91I.

Let A represent our state space set and M the bytes of memory available.The standard

way to maintain the state space set A is using a technique called hashing. Redundant states are

restricted from set A by means of a hashing function.

Each state is placed into a hashing table based on their hashing value h(s)=i where h is

the hashing function, s is the global state, and i is the index for the hash lookup table (see Figure 9).

0

S h(,)

H-1l
Lockup Table

Figure 9: Hash Lookup Table

If we have H slots in the hash lookup table. Hash function h(s) must be defined such that

it returns arbitrary value i in the range O..(H-1). But the possibility exists that two different states

produce the same hash value. In the case of a large protocol the hash table will have to accommodate

a large number of states. When A > H the hash function will always produce some duplicates

indices values of i for an average of A/H different states. To accommodate these duplicate index

vamues we use an open hash and all states that hash to the same value are stored in a linked list that

is accessible via the lookup table under the calculated index. When the table is full, each new state

must be compared to average A/H other states before it can be inserted into ui- linked list or

discarded as redundant As A continues to grow beyond the first H states, the number of

comparisons required increases steadily, and the search efficiency degrades. There is a time penalty

for analyzing systems of more than H states. This type of hashing was used for analysis of protocols

in previous work [BULB93].
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We want to make H as big as possible or at least 103 times bigger than we expect A to
be. If we can have H * A then there will be very few, if any, conflicts. In this case we do not need

to store complete state descriptions in the hash table: in all but a few cases the hash value h(s)
uniquely identifies a state. A single bit of storage will suffice to verify if a state has already been

generated.

If we have M bytes of memory available, assuming 8 bits per byte we have &V bits for
state space. The state is not stored. Since no state is stored, memory efficiency is greatly increased

and there are r. states to compare a new state against. The bit position in the hash table uniquely
identifies the state. The method can be expected to work well if the state space is sparse and indeed
H is very large. For H * A hash conflicts are rare. When A > H then conflicts will occur. The
accuracy of our analysis will depend upon the percentage of hash conflicts. Because of hash
conflicts some deadlocks or unspecified receptions may go undetected.Tbe method therefore

approximates an exhaustive search for smaller protocols and slowly changes into a controiled
partial search method for larger protocols.The Supertrace Algorithm as compared to the exhaustive
search can not guarantee 100% coverage due to possibility of unresolved hash conflicts. The
implementation of the "Supertrace Algorithm" will be explained in the following sections.

B. Simple Mushroom With Supertrace

The first program to be examined is called Mushroom with Supertrace. It was written in the
Ada programming language. Mushroom was written to automate the reachability analysis of

protocols specified by the CFSM and SCM models [BULB93]. The Mushroom with Supertrace was
developed to extend the applicability of Mushroom program to larger and more complex programs.
There are actually two separate versions. The first called, simple mushroom with supertrace,
analyzes the CFSM models. The second version analyzes the SCM models, either as system state
analysis (smart mushroom), or a full global analysis (big mushroom with supertrace) of a protocol
specified formally by the SCM model. The Supertrace algorithm is not implemented for smart
mushroom program since the state space generally does not grow beyond the limits of memory. The
General structure of mushroom program is shown in Figure 10.

The explanation, Simple Mushroom with Supertrace, is divided into four sections: program

structure, inputs, reachability analysis, and outputs. The portions of this program that are common
to the original Mushroom program along with the details of the mushroom program are not

discussed.
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FigA urem 10: Geerlstnctueof Mshroo Prgram

1.gdo PrgamS ructureg~

The Simple Mushroom prora consists of Ada subprograms (proceures and

functions), which are separate compilation units and subunits of compilation units. Related

subprograms wre also gathered in the same files. The compilation units of the Program are shown in

Table 2. Procedure main is the parent unit. All of the subprograms are the subunits Of Procedure

main [ANSIMIL93].

TABLE 2: SIMPLE MUSHROOM COMPILATION UNITS

Compilation Unit Descipio FIle, Name

main(procedure) This is the parent nimit Contains the main tmain~a
data structres, glbW variable

______________________and the driver. ________

load-nachine...aray Builds the adjacency lists from FSKs. tnputa
(procedure) _ _ _ _ _ _ _ _ _ _

read in.Ale(proedure) Parses the input FSM text file tinputa
buil&..Gstate~graph Generates the reachability graph. treachability~a
(procedure) _ _ _ _ _ _ _ _ _ _

IsEqual (function) Compares two global states for equality treachabilty~a

hash(function) Generates an index number according to the treachabilty~a
_____________________hashing function_________

clear.pointers(procedure) Deloae the dynamic memory space for treachability~a
another analysis ________

Print Queue(procedmr) Prints the FEF0 queues toutputa
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TABLE 2: SIMPLE MUSHROOM COMPILATION UNITS

Compilation Put Descriptm File Name
outpuLOstate-ransition (proce- Outputs the transition name touqtpua
dure)

outpuLGstea=node Outputs the machine states, unspecified toutpuLa
(procedure) receptions, and the states with deadlocks.
outputmachinemarrays Outputs the FSM description in a tabular toutputa
(procedure) format
output-unexecutedjtransitions Outputs the unexecuted transitions toutpuLa
(procedure)

create-outputfile (procedure) Creates an output file for storing the toutpuLa
analysis results

outpuLanalysis(procedure) Driver for the output subprograms touputWa
systemscall(procedure) Interface procedure for Unix system calls tsystem.a

via C.

message.queues (package) Implements the queue operations for the tqueues.a
FIFO communication channels.

pointer..queues Implements the queue operations for the tqueues_2.a
(generic..package) pointer queue that stores the global tuples

temporarily

2. Input

The CFSM specification of a protocol consists of only FSMs of the communicating

machines. FSMs are represented with a text file. The user enters the directed graphs as a text file

using some reserved words, numbers, and characters. For the list of reserved words the reader

should refer to [BULB93]. The maximum number of machines allowed is eight, and the number of
states for each machine can be from 0 to 50. Transition names must be at most three characters long

and may be any combination of letters or digits. These constraints can be relaxed with modifications

to the program, if necessary.

The input file for the stop-and-wait protocol in Chapter H for the CFSM model is shown
in Figure 11. The reserved word "state" represents the states of the machine that they come after.

For example "trams -D 1 2" (first line at state 1 in machine 1) represents a transition from state 0 to

statel by sending D to machine 2. The first character '-' or '+' following reserved word "state"

represents sending or receiving data respectively. "Initialstate 0 0" means that the initial states of

machine 1 and machine 2 are state 0.

First, this file is parsed by read~injile procedure and tokens are generated. Then,
Load_machinearray procedure constructs an adjacency list which represents the FSMs.
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start
number-of.-machinas 2
machine I
state 0
trans -D 1 2
state I
trans *A 0 2
machine 2
state 0
trans + . 1I
state 1
trans -A 0 1
initIa1.state 0 0
finish

Figure 11: Text File Description of Stop-and-Wait protocol

The adjacency list for the stop-and-wait protocol is depicted in its structural form in
Figure 12. This adjacency list is used for constructing the global reachability graph. The adjacency

list contains all the necessary information for generating the global reachability graph.

transition s

next Mhtate J

0 I mVisted -JUL--

Machine 1 T
ftransition r
[ess A

I next M•tate 0

trasition t

next mstawT -

Machine 2 Stlik t a I
transition r
message
next MstateT
othr achine 1

Figure 12: Adjacency list for the example Stop-and-Wait protocol
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3. Reachability Analysis

After reading the input file the program geumats the global reachabity graph. It uses
the adjacency list and the initial state to begin constuction the global reachability graph. Starting
with the initial state new states ame generated and compared with previous ones based on their
respective index value. The global reachability graph construction algorithm is given in Figure 13.

loop (main loop)
for Index] in I .. total number of machines loop

place holder(lndexl) := maFc array(indexlXMstate(indexl))
whilelplaceholderfindex) /- nuff) loop

loop
if (place holderfindexl).transidon = s) then

Enque-e the message into the corresponding message queue
search hash look-up table for this global state tuple
if slot of the hash look-up table was not set then

This is assumed to be a new state set the slot and create a new state
Enqueue this new node to the pointerqueue

else
print out the transition and discard the tuple

end if
else

if (place holder(indexl).transition) - r and at least one of the message queues for
this maichine is not empty then
fInd this message queue and Dequeue
search hash look-up table for this new global state tuple
If slot of the hash look-up table was not set then

This is assumed to be a new state set the slot and create a new node
Enqueue this new node to the pointerqueue

else
print out the transition and discard the tuple

end if
end #1

end f
place holder(indexl) :=placeholder(indexl).Sltnk
exit;

end loop
end loop
if pointerqueue empty then

exit
else

Dequeue pointerqueue and update M state for this new node
end if

end loop (main loop)

Figure 13: Algorithm for Generating Global Reachability Graph for CFSM

During the graph construction, the program also detects the global states with dead locks
or unspecified receptions. The program also finds the maximum message queue size and channel
overflows. Analysis results are stored in an output file. This avoids the need to transverse the entire
graph an additional time at the end of the program. Program run time is thus dramatically reduced.
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One of the most time consuming procedures Is the seanrc algorlthn ueed to detect if a

state was previously created The previous version of this program used open hashing to search

throughthe previously created global states. All stats were kept in a lnked list associated withtheir

hash Index. For the analysis of small Motcols this is not a problem. The search is fast the memory

required is small, and the linked lists are short. The analysis of larger protocols, link lists grows

longer due to increased hash conflicts and the applicability of regular mushroom becomes

restricted.

With Supertrace the search is also made via hash function but utilizes a different

implementation. First, the size of hash table is determined based upon the expected number of the

states generated, to ensure adequate coverage, but is limited by the availability of memory. Second,

the hash function uses the machine states and the messages on the queues between the machines to

provide a fast and efficient mapping. The complexity of the search algorithm is always 0(l). This

is obvious when the hash function generates a unique index (no collision). When the hash function

generates the same index for two different states Supertrace, discards the new state, (as a duplicate)

as it only checks if the hash table slot is set(collusion) or not set(new state). Previous tuples are not

compared. This makes the search more efficient Because we are using a very big hash table, the

hash function creates a distinct index (table slot) for almost every global state.

The effectiveness of the Super Trace algorithm depends upon the ratio of hash table size

to the expected number of states, the effectiveness of the hash function which generates the indices

for the hash array. The hash function which generates the indices for protocols specified in CFSM

model is shown in Figure 14.

The second issue that has effect on Supertrace Algorithm's efficiency is the available

memory on the system. The size of the hash table must be as big as possible to minimize the- number

of hash conflicts. The need for a very large memory can not be overemphasized.

The impact of such a large table is minimized by utilizing the Ada Programming

Language predefined pragma "pack." The pragma "pack" tells that storage minimization should be

main criterion for representing of the given type (bash-lookup-table) to the compiler. By using that

option, boolean types which normally are represented as 1 byte (8 bits) in the memory;, can be

reduced to one bit which saves seven bits per byte. We can effectively increase the size of our hash

table by 700% without using additional memory space. So a hash table of size 1545278 is used in

our applications without using big part of memory.

The structure of a global state is shown in Figure 15. The maximum numlter of outgoing

transitions is artificially limited to 7. It can be increased if necessary. A maximum channel capacity

of 6 messages is introduced to ensure that the analysis eventually stops.
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function MAi (M : in Machim Cuwe.p~ra
q: qiamaeqyp) retum integer is

ine: integer -O0
suns inseger= &0;

be!n

for I in l..8 lmoopyp~)lxuahn sp~).t)lo
f i in l..3 loop

sud :=suaq~mtmachkezposq~ij=mzjuacuejpe(j)jist.machutypj)-0treIdk)j
eo nd loop;rq~u-wie-fiumwd-yej).o)lo

end loop;,
end loop;

ende= (if-, rm8)175+inee m7)27)+ itgrm6)420
end nge loop;91 izee~() 243 {mee~(3)127

end zge loop-777, (neerm1) 359)
rneturn-((inteexrsm4g)mo 3054542);(nea(M*98 (nee((*420

end hash;,

Figur 14: Example Hash Function For Stop-and-wait Protocol

System_$sate mumber
Machine ,state ý J213I156178ý
queue mum 1,1

queue mum 1,2
GTUPLE

______queue um 8,8

1 
iNP4O achhe

2____ nomw mode

LIMh

____ now mode

Figure 15S Global State Structure with outgoing transitions
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4. Output

The program stores the analysis results in a file named by the user during the reachability

graph construction. The file contains the specification in a tabular f1oinz the reachability graph and

the results of the analysis. The analysis results consists of six separate sections. They me the number

of states generated, number of states analyzed, number of deadlocks detected, number of

unspecified receptions detected, maximum message queue size and the number of channel

overflows. Global states with deadlocks and unspecified receptions are also marked in the

reachability graph. The output file also lists any unexecuted transitions.

The program output for the imaginary protocol in Chapter H is listed in Figure 16. Since

no states are stored, in case of a collision we can not determine whether it is a hash conflict of a new

state or a duplicate state. These states are referred as 0 in the output file. For example, In our

example protocol after state 8 "+d2" transition is taken which leads to state 1. Since program

doesn't keep state 1 it will just output 0 for the duplicate state.

C. Big Mushroom With Supertrace

In this section, the program that automates the full global analysis (big mushroom) for a

protocol specified by a SCM is model described. The description of the program is divided into four

sections: general program structure, inputs to the program, generating the reachability graph, and

outputs of the program. Since the smart mushroom program mentioned in Chapter II generates a

relatively small number of states it is considered outside the scope of this thesis and will not be

mentioned in the following sections.

1. Program Structure

Program structure of Big mushroom is similar to the structure of Simple Mushroom. The

SCM model specification is more complicated than the CFSM specification, but this complexity in

the specification brings some advantages to the analysis as mentioned in Chapter H. A protocol

specified by the SCM wodel consists of FSMs, variable definitions, and predicate-action table,

rather than just the FSMs as in CFSM model.

FSMs are entered into the program in the same manner as in the Simple Mushroom

program using a text file. The variable definitions and predicate-action table must also be entered

into the program. The user enters these parts by completing Ada packages and subprograms using

the templates provided.

The compilation units for the program are shown in Table 3. The user has access to the

last four packages/subprograms. Once the user completes these programs using the templates and
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RZAC1IABILITY ANALYSIS of : exampl*. fa
SPSCIFZCAT!ON

I Mcine 1 State Transit ionsI

I From I To I other machine I Transition I

1 1 1 2 1 2 1I adO I
I 1 1 3 1 2 1 a d3 I
1 2 1l 1 I 3 1 r d2 I

I Machine 2 State Transitions I

I From I To I other machine I Transition I

1 1 1 2 1 1 1 r dO I
1 1 1 3 1 1 1 r d3 I
1 2 1i 1 I 3 1 a dl I

I Machine 3 State Transitions

I From I To I other machine I Transition I

1 1 1 2 1 2 1 r dl I
1 2 1l 1 I 1 1 s d2 I
1 2 1 3 1 1 1 a d4 I

REACHABILITY GRAPH
1 I 1,3,3, 1,3,3, 1,3,31

-do 2 [ 2,dO ,E, 1,9.E. 1,2,E] 2
-d3 2 [ 3,d3 E3, 1,3,3, 1,3,31 3

2 2,dO E., 1,E,E, 1,3,31
.dO 1 [ 2,3,3, 2,3,3, 1,3.31 4

3 C3,d3 E3, 1,E,E, 1,3,31
+d3 1 [ 3,E,E, 3,3,3, 1,3,31 S

4 (2,3,3, 2,3,3, 1.E,E1
-dl 3 ( 2,E.3, 1,8,dl , 1,3,31 6

S C33,3,E 3,3,3, 1,E,31***********D3ADL4XcK condition**************
6 [2.,3,, 1,E,dl , 1.3,E1

*dl 2 [ 2,E,E, 1E,3,, 2.3.11 7
7 C2.3EE 1,3,3, 2,E,Ej

-d2 1 C 2,E,E, 1,3,3, 1,d2 E]1 8
-d4 1 ( 2.9,E, 1,3,3, 3,d4 E3] 9

8 C2,3,3, 1,3,3, 1,d2 E]1
+d2 3 [ 1,3,3, 1,3,3, 1,3,31 0

9 C2,3,3, 1,3,3, 3,d4 ,E]**********U~ns pecified Reception*~**""""

SUMMARY OF REACHABILITY ANALYSIS (ANALYSIS COMPLETED)

Total number of states generated :9
Number of states analyzed :9
number of deadlocks :1
number of unspecified receptions :1
maximum message queue size :1
channel overflow :NONE

UNEXECUTED TRANSITIONS
** * **NON* * ***

Figure 16: Program Output for the example protocol

compiles them with the other compilation units, the analysis of the specified protocol can be

performed. Constniction of the specification in the form of Ada packages and subprograms is

explained in the next section.
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TABLE 3: BIG MUSHROOM PROGRAM COMPRIAION UNIT

CoqiilaaonUnit Description FfielameN
main~iwecedaxe) TIs is the parent wait. Canoiwlu do. mai= mm

dat - -mioovariable
___________ mand doe driver._ __ _

load anschine....rra Builds die adjacency liss from FS~s. sinouw

read-fllkpocdm) Parss the input FSM text file siopu"
build...stafte-raph Geeatses the global reachablity graph. sgtfeschability-a

Glojaa-sh(fumction) Geneates an index number according to dhe sgjeachabilizy~a
SupeWrace hashing function for Big
mushrloom.

hush(function) Generates an index number according to the sgjeachabilty.a
_______________ hashing function for Smart mushroom option,__

ckea..poinlers(procedure) Deallocates die dynamic memory space for sg..eachabilty~a
_ _ _ _ _ _ _ aother -nalysis

SCWrchjor..Stupl Scarciw the reachability graph for the sgjarh~a
(function) equivalen system tupies using hashing _________

clearjihsjasfr-aray Clears die hash way and deallocates the sgjeaih~a
(procedure) memory for systm sate analysis _ _ _ _ _

ouipuL.Gstie..node Outputs die machine, states, and the sotats sg...ututa
(procedure) with deallocks for global reachability

output-sys-node Outputs machine staes. and stte with s9-Outp"~
(procedure) deadlocks for system sftat analysis.__________
outputQstaftejraniton Otusdetrantsition name, for global sg..owutpuA
(pffocedure) rec a ndalysis_ _ _

ouxput systransition dupiesf transition name for system state sLou~tpu

outpu~.unexectedjtransitions Ouitputs dim unexeued, transitions S9-OutPUt

outputjachine..rarys Outputs the FSM description in a tabular sg-oulputa
___________________________formnat____________

outpuLanalysis(procedure) Driver for die output subprograns sgjoutput~a
crae....outpujle (procedure) Crete an output file for stormng the analysis sg..output~a

_____________rag reUlS
systems-all~grocedure) Interfaice procedure for Unix system calls via ssystem-a

______ ______ ______ C._ _ _ _ _ _ _

queues(generic package) Imple~ments the queu operations for the squeus.a
pointer queu that stores the nodes

_________ temporarily. _ _ _

stocks (generic package) Implements the sack operation for storing sstr~ack
__________________ enabled transition

definitions (package) Includes user defined local and shared named by the user
______________ variables

AnalyzeyPredicates (pocedur Determines the, enaibled transitions from the named by the user
there is one for each machine predicates ______
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TABLE 3: BIG MUSHROOM PROGRAM COMPILATION UNITS

Comupladonunit Decripion iM Name
Action (pcedure) ExecuM s the actions for do atbled userbt

tansitiam_
OutpLgtup (procedure) Oulutste gloal stb bqies in a formm named by do um

bydefmedby e ouser.

2. Input

The inputs to the program consists of three parts, as mentioned eartier. FSMs are entered
using a text Mile representation as in Simple Mushroom program. Variables and predicate-action
table are entered as Ada packages/subprograms. The user needs to complete these packages and
subprograms by filling in templates provided.

The Ada package template for the variable declarations is called "definitions." The
predicate-action table is entered using an Ada subprogram template which consists of one procedure
named "Action" and two to eight procedures called "Analyze_PredicateMachine" according to
the number of machines in the protocol. The" 5 " at the end of the procedure name is replaced by the
corresponding machine number for each machine in the protocol.

After completing the templates described above, the user must compile these units with
the other compilation units listed in Table 3. Since the completion of these was explained in
[BULB93], they will not described here. But our example protocol stop-and-wait in Chapter i1 is
used to illustrate how to complete the templates.

a. Finite State Machines

There are a few differences in the FSM description of Big Mushroom program from
Simple Mushroom program. In the SCM model, explicit machine numbers to show which machine
the message sent to or received from are not needed for the transition names. Since shared variables
are used for communication between machines. this information is included in the predicate-action
table. The FSM text file for the example ring protocol is shown in Figure 17.

The FSM text file is read by the input procedures and the adjacency list, which is
used during the construction of system and global reachability graph is generated.

b. Variable Definitions

The user defines the protocol variables in Ada package named definitons. This
package includes the local variables for each machine and the global variables, which are
considered shared and allow communication between machines. A variable can be one of the Ada
defined types such as: integer, array, string, record, character, boolean etc. These types and their
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start
numborof.j.achines 3
machine 1
state 0
trans Snd.data 2

tat.* 1
trans RcvAck 2
machine 2
stat* 0
trans Rcvdata
state 1
trans SndAck
initial-stat* 0 0
finish

Figure 17: Text file description of the example ring protocol

subtypes are used to define the protocol variables. The variable declaration for the stop-and-wait

protocol is shown in Figure 18.

c. Predicate-Action Table

The predicate-action table is represented by a number of subprograms as separate

compilation units. These subprograns are nnamd Analyze-Predicates and are used to detennine the

enabled transiions for each machine. The procedure named Action executes the actions to be taken

for the corresponding enabled predicates. There is one Analyze Predicates procedure for each

machine and one Action procedure for the protocol.The user completes the template for each stat

of the maddnes. The predicate-action file for the example stop-and-wait protocol is shown in

Figure 19.

The enabled Uansitions are passed into this procedure through the "intransition"

formal parameter and the necessary changes are made to the local and shared variables by theActon

procedure. The "outsystem_state"parameter passes the changed protocol variables to the calling

procedure. The completed Action procedure is shown in Figure 20. Text in boldface shows the user

deflned pans.

27



i~tpuhimu: comtuaz 2;
OyP ucM.Uu*itLwjPe is (Saikd d8 Rcýr daft. SOAd4Ak Rcv Ack~ uwmme):

P -kq ebJ uLI'-6is now mweau kmeauos (buff~Myp);
in b&ffeinum...k
tyW dMUnmYjtYPe is nagp L..255.

type mcidneljmuejtype is

out-buff : bufer-type -- D,
end record;
type Rmudwaesutejype is

in..buiff: buffer-type :- E;

type machine3_.stujype is
record

dummy: dummy~type;
end record;

type machine8..stazejtype is
recoid

dummy: dwnmyrjMp
end record;
the globLm.yrad"ejype is

OJAN: bufferjtype :-E;
RET : bufferjtype E;

adl record

end definitions;

Figure 18 : Completed Definitons pckage for stop-and-wait protocol
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GLBAL: globavariabley"M
s :natural; W: in out uuiin..tk~caesu)is

cues3 is
when 0-

if ((GLODAL.CHAN = E) and (LOCAL~out buff I= E)) then
PuhwSnd _data);

ad if*.
when 1 =>

if (GLOBAL.RE = A) then
Pushw,Rcv _Ack);

ead if, -

When other =
null;

end case;
end Anlz-rdcatm-bachim1;

procedure Analyzeireicates bfachine;2(local: machine2.stae-ype
GLOB-AL: gWWbayariableVjype;,

s:natural; w: in out trnsitim *jmck-acie~stack) is

cuses is
when 0 =

if (GLOBALCHAN 1=E) then
Push(w,Rcvý datb);

end if,
when 1 =>

if tMu then
Push(w,SnadAck)*;

end if-.
when othes =

null;
end case;

end Analyze-Predicates...Macbine2;

procedure Analyzejftedicates Machine3(ocal: machine,3jwejy-rpe;
GLOBAXL. globaJ-vaiablejype;
s : natural ; w : in out transition..staek..packtage~stack) is

begin
null;

end Analyze-Predicazes...Machine3;

procedure Analyzeyrfedicates Machineg8Qocal : achidne8-statejtype;
GLOBAKL: global..yariable-"p;
s : natural ; w : in out trinsition..stack-ja6ckage~stack) is

nulin
end Analyze-Px&cates Miachfineg;

Figure 19: Completed Analyze_Predicates procedures for the Stop-and-wait protocol
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ale~ (MdA
o Acdonmn~yawhhstaa in0ou Gsimejecomrm iw

.jmnuition: in out umnuwAUoIIjSqV
out-syumm-me : uin-out GstateMcardjype ) is

Cam (in~wfhidont) is
when (Sad daft) =>

outsynm._s.•t.GLOBAL VARLABLES.CHAN= in..sysmjtmacIews..sta.bof_blM
out-SYSIO .stwBmachinelsAW -t buff:= i;

when (Iv daft) a>

Whe ( Ack - IRbof :m in..sysam.Aaw.GLODAL..VARIADLES.CHAN;
outysem..staeGLOBAL VARIABLES.RWT :- A;
ouLsystem..stat.macbine2jtawJabuff -- E;

when (RcvAck) ->
ouLMsystmtme.GLOBAL VARIABLES.CHAN:- E;
ouwsystemstwe.GLOBAL-VARIABLES.T *- E3;

when others => putine("Mide is an ame in he Action procedure");
end cae;

end Action

Figure 20: Completed Action procedure for the Stop-and-Wait protocol

3. Global Reachability Analysis

The process of generating and examining the set of all reachable states from the initial

state is called reachability analysis. The program is capable of generating both the global and

system reachability analyses separately for a protocol formally specified by the SCM model. Since

the system reachability analysis generates relatively small number of states Supertrace Algorithm

is not used for that analysis.

The user can select either global reachability analysis or system state analysis from a

menu. During the graph construction, the program also detects any deadlock conditions. Analysis

results are stored in an output file named "rgrph.dat" in parallel with graph construction.

The structure of the global state used for the program is shown in Figure 21. This node

structure also includes outgoing transitions. The maximum number of outgoing transitions is

artificially limited to 7. It can be increased as necessary. The shared variables are stored in the

"globalyvariables" variable and local variables are stored separately for each machine in

"machine-state*" variables.
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inachifel state
GTtPLE a stm

inachin8 'tAt.

I 1

Figure 21 Global State Structure with Outgoing Trdtsins

The initial global state is created from both the FSM text file and the initial values of the
variables assigned in the definitions package. All the outgoing transitions are initially set to m1l.
Starting with the initial global state, new nodes are added and linked to the graph. The pseudo-code
algorithm for constructing the global reachability graph is shown in Figure 22.

The program implements hashing to seareh through hash table for duplicate states which
increases the run time efficiency of the analysis. There is a major difference between the Simple
mushroom and the Big mushroom hashing functions. In the Simple mushroom program the user
does not need to specify a hashing function. A predetermined function which considers machine
states and message queues is implemented in the program. For the Big mushroom program the user
must design and enter a global hashing function. The function must account for machine states,
local, and global variables. An example of a global hash function for Stop-and-wait protocol is
given in Figure 23.

4. Output

The program stores the results of the analysis in a file named "rgraph.dat." This file

contains FSMs in a tabular format, system/global reachability graph, and the results of analysis
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-hmI lop
frindex) In 1. total nmberw of machines loop

rIpidon holderfin&J) :- ujiacAknearray(ixde~x1XM stateindexl))
eterm6X the enabled transitins for the machine(imnd~) and push into transition-stack

While not Enmpty(transltlon stack) loop
while (position hokler(lnex) /- nul) loop

T1raverse the machine anrays for each enabled transition in the Stack
ifa transition found in the machine arrays

create a temporary node resulting from this transition
call Action procedure to make the necessary changes to the variables of this node
Search the Hash look-up table to see this node was created~redurdant)
lIfthe table slot corresponding to the index created by hash function Is not set(false) then

set the table slot(true)
Enqueue the node into the Gpolnterqueue

else
write transition to the output fie and discard the node

end V
else

position holder(indexl) := position holder(indexl).Sllnk
end if

end loop
if nor Empty(transition stack) wand a transition not found in the machine arrays

pop the stack
end i

end loop
end loop
If Gpointer queue Empty then

exit
else

Dequeue Gpointer _queue
Update Mstate for this new node

end i
end loop (main loop)

Figure 22 : Algorithm for Generating Global Reachability Graph for Big Mushroom

function GLOBALJIHASH ( curzwn...state: Gstaterecordjtype) return integer is
index: integerM)
swm:integer-0,
m :machine-.state .armay: currenz~taeaciesa

begin
index :((m(8) *83999) + ( m(7 * 72888) + (m(6) *61997) + (mn(5) *5995) +

(m(4) * 46571) +g(nm(3) * 34677) + (nm(2) * 21323) + (m(1) *18203));
stum :- bufferjrypeposcurret-gswjnachinieI -staiemou.bufl)*37335l+

bufferý.typeposcuentgszýmahme2.suta.in..bufl677l39+
bufer-ipe~s(cuent~gtute.GLOBAL..VARIA3LE.CHAN)*973551+
bufferj.ylpeVoscwrem...gateGLOBAL...ARLABLES&REW 12355 1;

return ((index3+sixn*7) mod 1545423);
end GLOBALJ{HASHt

Figure 23 : Global Hash functinn for Stop-and-wait protocol
consisting of number of states generated, number of states analyzed, and number of deadlocks.

Unexecuted transtions are also listed at the end of the analysis.

Since each protocol specification has different variables, the user also has the flexibility

to output the desired variables. This is done in a similar manner to the predicate-action table and
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variable definitions rqpresntation explained in [BULB93J usingaui Ada procedur template~lb
user completes the template with Ada "put"' statements for outputting the global states. Since the
system state tuples do not include the variables, there is no, need to define an output formas for
system reachability graph. The completed template for the outpuL-Otuple procedure for stop-and-
wait protocol is also given in Figure 24,

SSparfta (main)
Procedure output-Gbzplc (tupie : in out Gstae-mcord-type) is

if prinCheader then
new-lme(l);
set~col(S);
puijine, (" ml(out-buff),m2(in-.buff), (CHAN. lREI);
printjieader := fase;

else
p ut(" ["&ineogerimagetuplemarachinstate(l)));

buff..enumjio.put~tuple.machinel~stwe.ouL bff;

pui( ["&irneger'imnagetplehinanestaze(2)));

buff enurno. put(tuple.machinel~s.itenjbuff);

buff-'.nun-o.put(tuple.GLOBALY-ARIALEdLS.OLAi4;

wiff-enw)uMo.piut~uple.GLOBAI.,VARLABLES.RE1);

end if-
end outpuLGtuple;

Figure 24: Completed outputLGtuple procedure for Stop-and-wait protocol
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The output of the program for t~he example ring protocol is given in Figure 25.
REACHABILITY ANALYSIS of :stOpwait.sca

SPECIFICATION

I Machine 1 State Transitions I

I From I To I Transition I

I 0 I 1 I ond-data I
I 1 I 0 I rcv-ack I

I Machine 2 State Transitions I

I From I To I Transition I

I 0 I 1 I rcvydata I
I 1 I 0 I and-ack I

REACHABILITY GRAPH

ml, outbuff ,m2 , in_.buff, CHAN, RET

0 [ 0 ,D , 0 , E , E , E I and_data 1
1 1 ,D , 0 , E , D , E I rcvdata 2
2 1 D , 1 D , D , E I snd_ack 3
3 [1 D , 0, D , D , A rcvack 0

SUMMARY OF REACHABILITY ANALYSIS (ANALYSIS COMPLETED)
Number of states generated :4
Number of states analyzed :4

Number of deadlocks : 0

UNEXECUTED TRANSITIONS
*****NON(RE*****

Figure 25 : The Output of the Program for the Example Ring Protocol

D. Summary

In this chapter, example protocols in Chapter 1I were analyzed to demonstrate the usage of

Mushroom program. The protocols analyzed in this chapter are intentionally chosen simple to help
the user understand the mushroom program's inputs and outputs. However, the analysis results
verifies that Supertrace algorithm approximates the full search method by generating the same
outputs obtained manually in Chapter I. The major achievement of Supeitrace will be illustrated in
Chapter V with larger protocols.
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IV. A PROGRAM FOR PROTOCOL TEST SEQUENCE GENERATION

In this chapter, the concept of conformance testing is first introduced; next, a procedure
created for test sequence generation [LUND9OA] is discussed. Finally, 'WrE ," the program
which automates the test sequence generation is illustrated.

A. Introduction To Confornmance Testing

A conformance test is used to ensure that the external behavior of an implementation of a
protocol is equivalent to its formal specification. In conducting a conformance test we are given a
known protocol specification and an unknown implementation. The implemenation, for practical
purposes, is considered as a black box with a finite set of inputs and outputs. The test provides a
sequence of input signals, and observes the resulting outputs. The implemenation under test (IUT)
should pass the test only if all observed outputs match those prescribed by the formal specification.
The series of input sequences which are used to exercise the protocol implementation in this way
are referred as conformance test sequence throughout this thesis.

Two problems with conformance testing need to be solved:
1. Find a general, applicable, efficient procedure for generating a conformance test sequence

for a given protocol implementation, and
2. Find a method for applying the test sequence to a running implementaion.
This first issue is the focus of this thesis while the second problem is beyond the scope of this

thesis.
It is desirable to have the specification of a protocol expressed in a formal model and the

specification formally verified.

A previous study [MILL90] on this issue observed gaps between the specification, the
verification, and the conformance testing of network protocols. Protocol models which are designed

for specification purposes usually have many powerful program language constructs, to simplify

the specification, but are difficult to analyze. Protocol models designed primarily for analysis
purposes, such as the CFSM model, are often too simple for the specification of modem, complex

protocols. Much recent work on conformance testing starts from the description of a protocol as an

incompletely specified finite state machine with input/output labels on the

transitions[CHEN90][DAHB90]. Normally protocol specifications are not described in this

manner.

Suppose a test designer was to design a test for a protocol specified using the formal language
LOTOS. First, he must translate the specification to an I/O diagram. This is a difficult and complex

35



PMCM ad dt whic u a ui easiy intoduced. Only th& when this wnsatio Is compe,
can he bein to genefrat the test for conformane testing.

The autNmaion of the test sequence generation [LUND A] is an attempt to close the gap
between specification/verification and testing of protocols. In this thesis, the test generation starts

from a protocol model, designed for the specification and verification of protocols A procedure

created in [LUND90B], is used for the generation of a test sequence for a protocol specified in the

SCM model. This procedure and its automation as a software tool does not guarantee that all the
errors or combination of errors in a protocol are found. But they do represent an attempt to exercise

all parts of protocols providing some assurance that the implementation meets its purpose.

B. Test Generation Procedure

In this section a procedure and its automation are described for generating a sequence of tests

for a protocol specified as a SCM model. The input is the formal protocol specification (FSM and
predicate-action table) specified as a system of communicating machines (SCM). The output is a
sequence of tests and an I/O diagram in a tabular format. The generated sequence is intended to be

applied to an IUT.
The sample IUT throughout this section is the network node for CSMA/CD protocol. Before

generating the sequence of tests and the I/O diagram for each test in the sequence, shared and local
variables must be identified. The test inputs (the shared and local variables that can be set in a

controlled way) and the outputs (the shared and local variables can be observed for test purposes)
should be identified. These inputs and outputs form the I/O for the test steps.

The format for each single test is

SIi, i2, ...-,in;01-,2, .... ,OmSE

S is the state of machine when the test begins. The il i2, ... ,4 are the input values at the start
of test execution. The ol, 02, ... , om are the values of the output variables after test execution. SE is

the state of the machine when the test is complete. The input and the output variables are taken from

the shared and local variables of the machine. The determination of these variables is explained in

the following section.

The procedure explained in the following sections is taken from [LUND90A]. It is written in

three parts:

"* Preliminary steps,

"* Test sequence generating procedure, and

"* Refining steps.
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1. PrelIminary Steps

1. From the machine specification FSM diagram, maok each trmitim whose -aw

appears on more than one transtion. Each such instance for a given name is given a sepmt

disingui ga label.
2. From the predicate-action table, note the number of clauses in each enabling predicate.

Mark each clause. An enabling predicate may consist of several clauses, any one of which might be
true, allowing the transition to execute. Marking each clause insures that each one is tested

individually.

3. For each shared variable x, determine if x is an input variable, an output variable, or

both. For each x which is both, split x into two variables, xi and x. for testing purposes.

4. For each local variable I, determine if I is used as an interface to the higher layer user

of this protocol. If so mark I as input, output or both. Each such local variable is specifically

designated, and is an input variable if it appears in an enabling predicate, and an output variable if

it appears in an Action part of predicate-action table. If I is both input and output, split it into two

variables Ii and I0 for test purposes.

2. Test Sequence Generating Procedure

Initially the test sequence is empty.

1. state +- initial state.

2. Let t = (pa) be an untested transition from state.

(a) Determine the values of the input variables which make exactly one of the untested

clauses of p true. Check to see if these values allow any other transition from this state to be

executed. If there is one, set additional input variables to values that insure only the transition under

test is enabled. Fill these in, and mark others "DC" for "don't care."

(b) Determine and mark the expected values for the output variables; also record the

expected values assumed by the local variables.

(c) Set S1 to state; determine the next state and set SE to it.

(d) Determine if SE is transient; if not mark it as a "stop state" and skip to (3). The state

is transient if one of its enabling predicates is true immediately upon reaching the state. This means

that it can pass on to another state immediately, without waiting for further input.

(e) Attempt to make SE into a stop state by setting "DC" values. That is, make the DC

values such that, upon reaching state SE, none of the enabling predicates are true. If successful, go

to (3).
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(M) If SE Is a transient state and moe than one truansition leaving S is eambled, choose
one and set inputs not yet specified (if any exist), so that only one transition leaving SE is enabled
set t - (pa) to this tansition.

3. Output this test S1 I1, 12, ... i,, / ol, o2, .... o. SE as the next test in the test sequence.
4. Mark the clause just tested. If all clauses in transition t are now tested, mark : as tested.

If all transitions are now marked as tested, exit to "refining steps." Otherwise, continue to step (5).
5. Set state to SE. If state is a stop state go to (2), otherwise go to step2(b).

Step 2(a) assumes that it is possible to set the input variables to values that make exactly
one of the clauses true. If the protocol is well designed this assumption will generally be true.

However, there is always a possibility this is not the cas; if so, the test designer must choose the

values so that the clauses will be tested as thoroughly as possible, perhaps in combination with other

clauses. If a clause cannot be tested individually, the question of its necessity to the specification

should be considered.

Step 5 sets the starting state of the next test in the sequence to the ending state of the
current test. This makes the ordering of the tests follow the order of their occurrence in the actual

protocol execution.

3. Refining Steps

1. Construct the I/O state diagram from the test sequence.

2. Determine if the sequence are unique, so that from each state, we have a unique input
output (UIO) sequence to confirm. If not attempt to extend the.sequence so that we have a unique

UIO sequence from each state.

3. Check for any converging transitions. Mark these, as potential problems for testing.

The I/0 diagram can be constructed from the test sequence and is a tool to help the test
designer insure completeness. This finite state machine is often used as the starting point in test

generation in the literature.

A UIO sequence has been defined as a sequence of inputs such that, if the input sequence
is applied to the FSM when FSM is in state i, the resulting output sequence could not have been

produced by the FSM when the FSM is in any other state [DAHB90][SIDH88]. If the sequence of
tests applied to a machine implementation in a state i is a UIO sequence, and the output is expected,

then we have a stronger argument that the machine was, in fact, in state i.
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C. Test Generation of the CSMA/CD Protocol

In this section, the test generation procedure is illustrated through an application on a well

known pmOtocol for local area networks, the CSMA/CD (carrier sense multiple access with collision

detection) protocol. The protocol has a formal specification as a SCM model in [LUNP93].

The topology of the CSMA/CD is a simple bus with a single channel, as in displayed in Figure

26. All stations transmit and receive on the channel. If more than one station transmits

simultaneously, interference or "collision" occurs. A station wishing to transmit first checks the

medium. If no other transmission is detected, it begins transmitting its own message. If a collision

occurs, the station attempts to retransmit its message after waiting a random time period.

0 00

Figure 26: Topology of the CSMA/CD Network

The specification of CSMA/CD protocol consists of the finite state machine and the local

variables of the network stations (Figure 27) and the predicate action table for the network stations

(Table 4). The shared variables, Medium and Signal and finite state machine of the controller,

responsible for the control of shared variables, are shown in Figure 28.

DAMS data PA SA da..

Figure 27 : Specification of the Network Nodes

"The predicate action table of Controller is shown in Table 5.
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DA SA &asp

Figure 28 : Controller and Shared Variables

The local variables of each network node are mug and Wnbu. Msg is of the same type as

medium. Inbstis used to receive incoming messages. State 0 is the initial state, from which either a

receive or trnmit action is initiated. States 0,2, and 3 make up the tranmmit/collision states, and

states 0 and I comprise the receiving portion of the machine.

The controller continually monitors the communication medium. Whenever a nonean•y

value is detected it U•itions to either state 2 or 1, according to whether a collision or good

transmission occurre If a collision occurs (medluw = undefined), the cotroller moves to state 2.

When all stations have detected the collision (SIgnal(1..n) = collision), the controller clears the

medium and returns to 0. 1 a good trnsmission occurs, the controller moves to state 1. After

receiving station accepts the message, the controller clears the medium and returns to 0. The

predicate-action table for controller is shown in Table 5.

The network stations may either transmit or receive from the initial state 0. If a station, in state

0 has data to transmit, indicated by a nonempty mgs, and the medium is clear, it will transition to

state 2 and the message written to medium. The variable mug becomes nonempty when the upper

layer of the protocol has data to send. f no collision occurred the OK transition will set the state

back to 0. This is indicated by the value of Signal(l), being set to clear by the controller, providing

if no collisions occurred. Hf a collision occurs, then the coll-D (collision detected) transition will be

taken. Once the controller clear the medium, indicated by Signal(i):= clear, the node will return to

state 0 and attempt to retransmit.

The receive transition is also starts from state 0. This transition becomes enabled when a

message appears in medium with the station's address in medium.DA. The node copies the message

into its input buffer inbuf, then signals the controller by setting Signal(i) to transceive and returns

to state 0.
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TABLE 4: PREDICATE ACTION TABLE FOR NETWORK NODES

ThmItim predica•e Action

wat M *0 A nudWn = 0 '4
S SilmO)_:=tceMv

OK Signal(, clear mig:.' 0

coli-D mediumn undefined Signal(i) := collision
ready sigina(i) - clme
receive mediun.DA inbuf := medium;

_ SixnlW)_:= tansceive

Generation of the Protocol test sequence will be discussed later in this chapter along with

the software tool TESTGEN.

TABLE 5: PREDICATE-ACTION TABLE FOR THE CONTROLLER

Tmfsion Predicate Acdon

message -inedimun ei undefmned,0_

reset-M Signal(medinu.DA) - transceive medium :. 0;
Sipwal(l..n) := clear

collision medium - undefined

reset-C Signall..n) = collusion medium .- 0;
Signal(1..n) := clear

1. Creating Inputs For The "TESTGEN" Program

The software tool that automates the generation of test sequences is called "TESTGEN."

The general structure of TESTOEN is shown in Figure 29. The inputs of the program are two text

files which are created and named by the user.

FSM (Text File)
TESGENGenerated Test Seque=c

P redicate-A eto a l[ , ' . (Text File)
(TextFile) -- - -

Figure 29: The General Structure of TEST, EN Program

The input files are easily created utilizing the following procedures. Before creating the

FSM input file, the user should assign a number to each transition of the FSM. This distinguishes

each arc, even though, they may represent the same transition name. The numbered FSM of the

CSMA/CD protocol is shown in Figure 30.
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=soy (4)

Figure 30: Assignment of Numbers to Transitions of CSMA/CD Protocol

To create the first file, the user first specifies the initial state of the FSM as the first line

in the FSM input file. Each line, thereafter, represents a tmnmsition arc and is entered in the format

From State To State Number Assigned Transiton Name

with a single space between each field.

It is a practical way to enter ansition arcs staring from initial state, listing all outgoing
arcs and then continuing with the next state. Transition arcs can be entered in any order as long as

they have the previous structure.

An example FSM input file for the CSMA/CD protocol is shown in Figure 31. The "0"
in the first line shows the initial state of our example CSMA/CD protocol.

0

o0 1 1 receive
0 2 3 xmit
0 3 2 coll-D
1 0 4 ready

2 0 4 ok
2 3 5 coll-D

3 0 7 ready

Figure 31: FSM Input File of CSMA/CD Protocol

Figure 32 shows the parts of a transition arc and their meanings in FSM input file.

0 11 receive M Transition Name

From State To State Transition Number

Figure 32 :Representation of Transition Arcs in FSM Input File.
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MW scond Iput file couwaisprale action (PAT) ofthe spedfu prot=L Ibis
file is cated in the sarm tXla format a the premcae-acgion table. •ach column of the PAT Is

separated with vertical bar' I' with a space on each side, bo that it is d gu- e from the odir

table entrees. The' I 'delineates the borders of transitio pedicaft and ation colmnns of the PAT.

Multiple action statement should be separted with a semi-colcm (;). If no action Is to be taken for

a transition, the keyword "no" must be entered as the action part of the inpt file. If a transition

occurs every time we enter a state, it is Indicated by putting keyword the "true" inthe predicate part

of the input file. An example of predicate-action Input for the CSMA/CD protocol is shown in

Figure 33.

umit I mug /- empty and medium = empty I medium s- mng i signal(i) t- tranoceive I
ok I aignal(i) - clear I mag , -Mpty I
coll-D I medium - unidentif I signal(i) s- collision
ready I signal(i} . clear I no I
receive I medium - Mx.x,i) I inbuf s- medium , signal(t) &- transceive I

Figure 33: Predicate-Action File Input of CSMA/CD Protocol

An example line in the predicate-action input file is shown in Figure 34.
Mk I OMg/a=mply A madim = amy I wediam o sitl(O);= mOceive I

Trwsiuia. Tramsiioan Fiu Rdaioal Second Pfdicate RFt Sepmram Secand Aciam
Name Boadr Pedicao Symbol Prdicate Bade Action Symbol Adioan Balt

Figure 34 Example Input line of Predicate-Action File

Since the predicate action input is a text file, some relational symbols are not readily

apparent. They need to be represented in a format that can be easily entered from the keyboard yet

understandable by the program. The method used in this thesis to handle this problem is shown in

Figure 35.

If there is more than one clause in a disjunctive predicate part of a transition it is difficult

to determine which predicates need to be enabled to make a transition occur. The TESTGEN

program is capable of parsing and presenting clauses in following form

- first clause relational symbol second clause

* first clause relational symbol (second clause relational symbol third clause)

- (first clause relational symbol second clause) relational symbol third clause

The TESTOEN program represent these relational clauses by putting the relational

symbol between two clauses together with the values of the input variable to the output table. The

relational symbol between the relational clauses in parenthesis is put in the output file in parenthesis
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Relational -4 Text

Symbols Symbols

x *y--+x/-y

0 -empty

XAY -+x andy

x V y -+ x or y

'Assignment toavariable -+:=

x 4y -+ x mod+y

Figure 35 : Relational Symbols and Their Representations

so it is distinguishable from other relational symbol. If the enabling predicate has more than three

clauses the TESTGEN program may not correctly represent these clauses in the output test

sequence. The user should control the ouut test sequence for these transitions.
If input variables are record structures such as medium, mag, inbu, assignment or

comparison of a specific fields of the record are done within pareitheses and by putting "x" in the

positions that is unimportant. For example, assume a variable "Z" is a record structure with three

subparts a, b and c. Assignment of the value "3" to the 'a' field of Z should be in the format "Z:=

(3,xx)." This means 3 is assigned to 'a' and mno changes are made to 'b' and 'c.' The TESTGEN

program finds local and shared variable by parsing predicate action input file so instead of entering
differnt representations of one variable such as mwdim.DA or mediumA, entering variables in

this format helps program determine the variable structure and makes output file easy to read.

Comparisons and assignments to arrays should be entered in the format A(l)=value. This

may create more than one representation of the same variable in the output file but it makes the

output test sequence more ule.

2. Procedure Of The Protocol Test Sequence Generator

The algorithm of the test generator consists of two major subparts: the first part finds all

possible paths and cycles in the FSM starting from the initial state. It prints the list of paths and

cycles to a text output file, named by the user. It also ensures that there is a path from all cycles

eventually returning to the start sate. If it can't find such a path it will print out a message, warning

the user of possible errors in the specification of the protocol.The pseudo-code algorithm for finding
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all pat and cycles of FSM is lilu ated In Figure 36. ftnding all po be bunidm squenm m

eiures that each instance of each transition is tested.

Parse dhe P511 Input fie and mvake a lIst of transition arcs(Ust of transitions);
Take one arc origina•ngfrom the Initial state put it Into a WS6.ofpatMu;
If there is more than one arc

Append other arcs to the end of stof pathsen~d if.,
Start *th the first arc in the Ust ofjath andfind the destinatio node
Main 

_ptp:

keop until there is no path processed In the list ofjwaths
Look for other arcs orlginating from the desFadon node In the Ust ofjranultion
If there is one;

Check that arc is put in the path generated

Mark the path as cycle found
Mark the path generated as processed and skip the next path in the list.ofpath
replace the starting arc with the arc at the end of the path on the next unprocessed path
go to the main loop

#els
Append that arc to the original arc

elsr there is more than one arc
Copy the path generated and append the copy to the end of l ofjpaths along
with the other arc or arcs originating from destination node append

else"There may be an error in the protocol. Inform the user."
end If
check to see destination node is initial state
if It is then
mark the path generated as a new path and skip to the next path in the listqfjpaths
replace the starting arc with the arc at the end of the path on the next unprocessed path

else
replace the starting arc with the arc originating from the destination node

end V
end leop;

Figure 36: Algorithm for Finding Paths and Cycles in the FSM

To trace all the possible paths which could be generated, a queue of linked lists is

implemented. The trace is as follows: Starting with the initial state, all transitions are placed into

the queue. The first entry is dequeued, becoming the current entry, and is used to continue the trace.

The current entry remains so until it describes a cycle back to the initial state.

All transitions out of the last node of the current path are determined, and one of them is

appended to the current entry.

Any other transitions are each appended to a copy of the current path and placed at the

end of the queue (list of_paths). When the initial state is reached, next path in the queue becomes

current path. This procedure continues until the queue is empty.

The program starts with an arc originating from the initial state. In our example CSMA/

CD protocol the first arc selected is transition #1 (0 11 receive). It is inserted to the listofjpaths.
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Since there is more than one transition leaving the initial state, the other (0 2 3 transmit), (0 3 2 coil-

D) arcs are also inserted to the list-of.paths. Then destination node "1" of transition #1 is found

from the listof_transition and since there is one transition (transition #4) leaving destinati, in node;

it is appended to the end of our path. Then transition #4 becomes current arc. Since the destination

node of the transition #4 is 0 (initial state) the path is marked as processed. The current entry

becomes the last arc in the next unprocessed transition sequence (transition #3). The procedure

continues until all paths and cycles originating from the initial state are found. The steps of finding

paths and final path list at the end of procedure FINDPATHS for CSMA/CD protocol is shown in

Figure 37.

-ý, IstFirst StepForhSe

Second Step

Third Step S

Figure 37: The List of Paths Generated with TESTOEN for CSMA/CD Protocol FSM

3. Preliminaries

In our example many of our variables perform as both input and output sources. The

shared variables medium, Signal and local variable msg are input and output variables. The second

part of the TESTGEN determines our input and output variables. If a variable is used as both an

input and output variable it is marked by placing (i) or (o) next to them to indicate its current

usage.The program reads the transitions, predicates and actions associated with each transition from

the predicate action table (PAT). It then creates the test sequence table and lists all transition

sequences starting from the initial state by using list ofpaths. It prints each transition with the

expected values of any local and shared variables. It also prints the action to be taken if the predicate
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associated with transition Is enabled. Pseudo-code of the second put of TESTOEN is shown in

Figure 38.

Parse the predicate action inputfile
Determine transitions. local and shared variables predicates and actions associated with each
transition
Determine and mark the expected values for the output variables and record the expected values
assumed by local variables for each transition
Print the input. output, and shared variables
Take the first path from the list of patds
loop until no more list remainea in the list of files

begin with the first transition in the patdF
set Si to the originating node of the transition
set input variables of this transition according to the predicate action table
if input variable is a record type

set unimportant fields with "x"
end 4f;
set other input variables "DC' for don't care
set output variables
set Se to the terminal state of current transition
Print the completed test to the output file
set Si to the Se
Snot end of path

replace Mhe current transition with the next transition in the path
*W

mark the path as processed
replace the current transition with the first transition of the next unprocessed path

end 4,;
end loop

Figure 38: Pseudo-Code Algorithm for Generating Protocol Test Sequence

4. Test Sequence Generation

The TM GEN program begins with the first transition (#1 receive) in the path list

generated by the FIND_PATHS procedure. According to the predicate action input file to enable

this transition, the DA field of medium must be set to the station's address, which we assume to be

i. The remaining fields of the record medium may be any values, and are indicated by 'x' in the

output table (Figure 39). The other input variables are set to "don't care" or DC.

When the receive transition occurs, signal(l) should be set to transceive, and inbufshould

contain We value which was previously in medium. Si is set to source state of the current transition

(in this case 0), and SE to the to terminal state (in this case 1). This completes the first test in the

sequence and these values are output.The clause and transition are now marked "tested". The value

of S1 is now set to 1, and next transition in the path is called.

The next iteration is the ready transition from state 1. The values selected are the second

test in the output table (Figure 39). The ending state of this test is state 0 the initial state, so the path

is marked as processed.

47



At the next iteration first transition in the next unprcessed path (=U1) is chosen.
followed by the OK transition back to state 0. The same process continues with transition coil-D,
which takes the machine state 3, and the ready transition returns it to state 0. Then the Xmit
transition is chosen a second time in the last path which takes the machine state 2; then transition

colU-D is chosen which is different from previous sequence; that takes the machine to state 3 and
ready transition again returns it to the initial state. At this point all possible transition sequences

have been processed.

The table generated by the TESTOEN program for the CSMA/CD protocol is shown in
Figure 39. The table lists all nine possible transitions according to their order of occurrence. It is
relatively easy to test all sequences of a transitions by simply following the order in the table.

Trans I I Input variables I""I output variables I

name ISilmedium(i)Imag(il) Isignal(i)li*l inbuf Imedium(o) lmsg(o)lsignal(o) ISel

receivel0 I (i~xx} I1 IDC It 3diuml3- I-- Itransceive il
ready I1 IDC IIC Iclear I*l -- I-- I-- I-- 1 01
xitt 10 leapty I/-emptyIDC "I1 -- Img I-- Itransceivel 21
ok 12 IDC IDC [clear '*tl -- I-- Iempty I-- I 01
coll-D 10 lundeinedlDC IDC I* -- I-- I-- Icollision 1 31
ready 13 IDC I1C Iclear I*l I-- I-- I-- 1 01
xMit 10 Impty I/=emptylDC "** -- Iag I-- Itransceiv.l 21
coll-D 12 lundefinedllC IOC l**1 -- - I-- 1collimion 1 31
ready 13 IIC IIOC Iclear 1"*1 -- I-- -- 1-- 1 01

Figure 39: The Test Sequence Table Generated with TESTGEN for CSMA/CD protocol

5. Refinement

The first refining step calls for the construction of the I/O diagram. This diagram can be
constructed from the sequence of tests generated. In this case, because there are no transient states,
there are four states which correspond to the four states of the specification; and the arcs between
states are the same set as in the specification. The only difference is in the labeling of the arcs; for

the 1/0 diagram, the label on each arc is the set of values if the input and output variables, as shown
in output table Figure 39.

Next we must determine if the sequence is a UIO sequence. Consider the first test in the
table, the receive transition. If the machine is in state 0 and we apply the inputs for the first test, the

outputs are the transceive value in Signal(i) and a copy of medium in inbuf. The user may confinn
that in no other state does this combination occur, so for the first state and test, we have an U1O

sequence. From state 1, the ready transition is considered. This transition leads back to state 0; note
that another ready transition leads from state 3 to state 0. This means that there is not a U1O
sequence for states 1 and 3. This makes it difficult for the test designer to confirm these states. There
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is howevera UIO seqwencc leading into these states; so the lack of a UIO squence fomm theseta s

is less disturbing.
Finally a check for converging transitions shows tht thwe is one case of this: the ready

Mtsition, leading to state 0 from both states I and 3. The test designer must be aware of this, as a
possible source of problems in the execution of tests.

49



V. APPLICATIONS OF THE SUPERTRACE AND TESTGEN PROGRAMS

In this chapter Simple Mushroom with Supertrace and Big Musroom with Super race are

demonstrated with several examples. Both programs are run with diffetret protocols to give a

specific view of the Supeflrace algorithm.

In the first section, Simple Mushroom with Supertrace wiln be used to analyze a simple

example four machine protocol which illustrates some basic aspects such as detecting unspecified

receptions, unexecuted transitions etc. Then information transfer phase of a full duplex LAP-B

protocol specified by the CFSM model will be analyzed. Later, the Big Mushroom with Supertrace
will be used to analyze the Go Back N protocol with different window sizes and the Token Bus

protocol, which illustrates important aspects of SupetrbaCe algorithm.

In the second part of this chapter, an application of the protocol test sequence generator

program (TESTGEN) to the well known FDDI protocol is illustrated.

A. Applications Ot Mushroom Program With Supertrace

1. CFSM Model with Supertrace

a. Simple Four Machine Protocol

The specification of the protocol using the CFSM model is shown in Figure 40. This

sample is chosen to demonstrate the coverage of supertrace algorithm with protocols that has

relatively small number of states. Each machine sends/receives a message/acknowledgment from

other machine. Machines 2 and 3 also have another send transition from state I to state 3. The FSM

description of the protocol is shown in Figure 41 and analysis results obtained by the simple

Mushroom with supertrace is shown in Figure 42. The analysis generated 36 global states. There

are three unspecified receptions and one unexecuted transition. No deadlocks or chanmel overflows
are recorded. The maximum channel size 2. These results am obtained by simply entering the FSM

text file as an input to the program. This analysis would be difficult to do manually, even for a

simple specification like this one.

The analysis results obtained is the same with simple mushroom [BULB93] results,

showing the coverage and reliability of Supertrace for small protocols is around 100%.
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Machine 1 Machine 2

+Ajw3 D~A2 +DOM4 +D11

2 2

Machine 3 Machine 4
1 A,m1 31

-D~mW +D~mZ -Dm2 +D~mS

2 2

Figure 40: Specification of the example four machine protocol

start
number-of-iachines 4
machine 1
state 1
trans -D 2 2
state 2
trans +A 1 3
machine 2
state 1
trans -D 3 3
trans +D 2 1
state 2
trans +D 1 4
machine 3
state 1
trans -A 3 1
trans +D 2 2
state 2
trans -D 1 4
machine 4
state 1
trans +D 2 3
state 2
trans -D 1 2
initialstate 1 1 1 1
finish

Figure 41: FSM text file for the example protocol
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RRUACHASXLTY ANALYSIS Of 1 fOur-P&Chine. fdl

SPUCIFICAITXOK

I Machine 1 State Transitions I

I From I To I other machine I Transition I

I 1 1 2 1 2 1 .0D I
I 2 1i 1 I 3 1 r A I

I machine 2 State Transitions I

I From I To I other machine I Transition I

I 1 1 3 I 3 I 8 0
I 1 1 2 1 1 1 r D I
1 2 1i 1 I 4 1 r D I

I Machine 3 State Transitions I

I From I To I other machine I Transition I

I 1 1 3 1 1 1 s A I
I 1 1 2 1 2 1 rOD I

1 2 1 i 1 I 4 I 8 0 I

I Machine 4 state Transitions I

I From I To I other machine I Transition I

1 1 1 2 1 3 1 r D I
1 2 1i 1 I 2 1 a D I

RWOIABILITY GRAPH
1 1 ,,..19,3.3.3 11.9.3.. 1.3.3.18

-D 2 C2.0 .3.3. 1,.3...133,.1333 2
-D 3 C1.33.3.3. E.31.33..333 3
-A 1 C 1.3.3., 1.3.3.3. 3,A 3,3.1..33 4

2 C2.0 .8.8.13... 1.3..3,3 1.,3,.31
-D 3 C2.D .3.3. 3.3,0 .3. 1,3.3,3, 1...3
+D 1I 2.3,3.3, 2.3.3,3, 1,.3.3.. 1.3.3,3) 6
-A 1 C2.0 .9,3813,.3 3,A E,3.1..33 7

3 C1,3,9,E, 3,9,D .8, 1,3,3, , 913..1
-D 2 C 2,0 E.g,3 3,3,0 S3, 1,.3.,3, 1.3.3.31 0-A 1 C .. 33 3.3,0 .3. 3.A EZ3, 1...3
+D 2 C 1.3.3.3, 3,.9.323 2,3.,8 1.33.3 9

4 C .. 33 .3.3,3, 3,A .3.8. 2,3,2,3]
-D 2 1 2,0 E3,3. 1..3,3. 3,A E3,B13..3 0
-D 3 C 1,.3.3., 3,3.0 E3. 3,A 93,3, 1...1 0

5 2,D E.g,3 3.3,D E,. 1.,3.3.E 1.3.3.31
-A 1 C 2.D E3,E, 3,3,0 .3. 3,A E3,3, 1.3.3.31 10
+D 2 C 2.0 .E,3, 3,.3.32, 2,9.,3,9 1.3.3.31 11

6 C 2,3,.9, 2,8,2.8. 1.... 1.3.3.3
-A 1 C 2,3,3.3. 2.,3,9,9 3,A 83,3 1.3,.23.3 12

7 C2,D .9,9, 1,.3,3,, 3.A EE3, 1.3,.3.3
+A 3 ( 1.0 8,23, 1,3.3.3. 3,.3.,3, 1,..113
-0 3 C 2,D E3,3, 3,8,0 .3, 3,A .8,2. 1...1 0
*D 1 C 2.,3.3.B 2,3,3,3, 3,A E.g.. 1.3.3.31 0

S ,333 3,9,D .3, 3,A .33,1..33
-0 2 C 2.0 9.8.. 3,.D .3, 3,A 9,9,31333 0

9 C1333. 3.3.3.3 2,3.,3,, 1,.3.3.3
-D 2 C2,D 93,3, 3,3,3,3, 2.,3,3,, 1,.3.3.3 0
-D 4 C1,,33.383,8,, 1,3,3,0 , 1...3 24

10 C2,D E.g,3 33,, E.3 3,A E.E.. 1.,3,31E
+A 3 C 1,0 E,3. 3.3.0 3. 3,.8.33.8,,33 15

11 C 2,D E.3., 3,.3.3., 2,3,3,3, 1333
-D 4 C 2,0 .3.3. 3.~,&,3., 1,3,3,0 , 1,3.3.31 16

12 C 2.,3.3,, 2,E,3,8, 3,A ..;.,B13..3
+A 3 C 1,3,3.3. 2.3.3,3, 3,3.3,,. 1...3 7

13 C 1.0 E3,3, 1,3,3,3, 3.,3.3,, 1,3,3,31
-D 2 C 2.0 0 2,3, 1.3.3.3. 3,.3..3 13..3 10
-D 3 C 1.0 E.g,3 3,3,0 E3, 3.38,2, 1.33.3 0
+0 1 C 1,3,.3.. 2,3.,3.E 33,3.3,, 1.3,3.31 0

14 C .. 33 3.8,9,E, 19,9,3D , 1,9,8.3]
-D 2 C 2,0 .3,8, 3,3.,3.E 1,3.,3. .333 0
-A 1 I 1.3.3.3. 3.3.3.3. 3,A .3.0 1.3.3.31 19
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.0 3 C ,.33 3.3.3.3. 1.3.3.3. 2,.3.3.1 20
15 C 1,0 .3.3. 3,3.0 .3. 3.3.3.3. 1.3.3.31

-0 2 t 2.D D .3.3. 3.9,11 .3. 3.3.3,3. 1,3.3.31 21
16 C 2.0 .3.3. 3,.3.3.. 2..3.3 ,0 1.3.3.31

-A 1 I 2.0 .3.3. 3.3.3.3. 3.A .3.0 , 1.3,.3.1 22
.0 3 C 2,D .3.3. 3.3,3.3. 1.3.3.3. 2.3.3.31 23

17 1 2.3.3.R. 2,8.3,3. 3,.3.32, 1,3,3,33
-D 2 ( 2.0 9.3,3 2,.3.3.. 3.3,3.3, 1.3.3.31 24

14 2.11 D .3.3.13... 3.3.3.3. 1333
-D 3 ( 2,0 0 .3,3, 3.3.D .3. 3.3.3.3. 1.3.3.31 0
+0 I ( 2.0 .3,3. 2.3.3.3. 3.3,.3.. 1,3.3,31 0

19 1 1,3,3.2, 3.3.3,3. 3,A 9.3. . 1,,3.3.1
-D 2 C2.0 E.g.. 3.3.3.3, 3.A .3,0 , 1.3.3.31 0
#D 3 C .3.3.3, 3.3.3.3. 3,A .3.3. 2.3.3.31 2S

20 E 1.3.3.3. 3,3,3.3. 1.3.3.3. 2.3.3.31
-D 2 C 2,0 E.3g, 3.3.3.3. 1,3.3.3. 2.3.3.31 0
-A I C 1.3.3.E. 3.3,.3.. 3,A .3,3. 2.3,.3.1 0
-0 2 C 1.3.3.9. 33X,3.1.33.. 1.3.0 .31 26

21 2.0 0 E.3Z. 3.3.11 .3. 3,3,3,3. 21,.3.3.31''t **UMpecif10d Ieeroa"'
22 C2.0 .3.3. 3.8,2,3. 3.A B.D. , 1.3..931

*A 3 C1.0, Z.393 3.3.3.3. 3.3.3,D * 1.8.3.31 27

.0 3 1 2.1) 9.8. 3.8.8.3, 3,A .3.3. 2.3.3.31 28
23 C 2.0 .3.3. 3.3.3.8, 1.3.3.3. 2.3,.3.3

-A 1 C 2.0 .3.3, 3.3.3,3, 3.A .3.3. 2.3.3.31 0
-D 2 C 2.0 9.3.3 3.3.3.3. 1.3.3.3. 1.3.0 .31 29

24 C 2.0 8.3.3 2.3,3,3. 3.3,.3.. 1.3.,3.1""' ""UIupecified Reception*******
25 C 1.3.3.3, 3.3,.3.. 3,A .3.8, 2,.3.3.3

-0 2 C 2.01 .3.3. 3.3.3.3. 3.A .3.3, 2,1.3.3.1 0
-0 2 C 1.3.3.3. 3.3,.39. 3.A. .3.3. 1,.3, .3) 30

26 C1,3.,3,, 3.3.3.3. 1.33.. .3. .31
-D 2 C2.01 E3.. 3,3.3,3. 1E.3..33, 1.3 .31 0
-A I C ,3.3.3. 3,.8,9,3 3,A E.3g, 1.9,0 .31 0

27 C, 1.0 .3., 3,.3,3.. 3,.3.3 .0 1.3.3.31
-0 2 C 2.0 0 .3.3. 3.3.3.3. 3.3.9.011.333 31
+D 3 C 1.0 83,3, 3.3,9.3, 3.9.,2,. 23,3.31Z 32

20 C 2,0 23,3, 3,2,3,8. 3,A .3,3, 2,3.3.831
*A 3 I, 1.0 ,9,3 3.8.9,3, 3.3.3,.3 2.3.3.31 0
-0 2 C2.0 E.3g. 3.3.3,3. 3,A 93,3. 1,3,0 .31 33

29 C 2,0 .3.3. 3,.9,83 13..3 1.3.0 .3)
-A 1 C 2.0 E.E.. 3.3.3.3. 3.A E.g,, 1.3.0 .31 0

30 C 1.,3,3,. 3,.3.3.3 3,A .3.3. 1,3,0 .31
-D 2 ( 2,D 9.3,3 3.393.9. 3,A .3,3. 1,3.0 .31 0

31 C 2.0 D 93,3. 3,3,3.3. 3.3,2.0 , 1.3,3.31
+0 3 C 2.0 0 9.3.3 3.3.3.3. 3,.3.32. 2,.3.3.1 34

32 C 1,0 .3,E, 3.E.8,3, 3.3.3,3, 2.3.3.31
-D 2 C 2.0 0 .3.8. 3,.3.3.3 3,9,3.8, 2.3,3.31 0
-0 2 ( 1,0 9,.3. 3,3,3,3. 3,.8.2.. 1.3.0 .31 3S

33 C 2,0 EE3, 3.3.3.3. 3,A EE, 1,.3. 81
*A 3 ( 1.0 93,3, 3.3,3.3. 3,9.3 8,3 1.30 E31 0

34 C 2.01 D E3,3. 3E.3.3. 3.8,8,8, 2.3.3.31
-0 2 C 2,0 D .3.3. 3.3.3.3. 3.3,.3.3 1,.3. .31 36

35 C 1.0 8,.3, 3.9.9.E, 3.3.3.3. 1.3.0 .31
-0 2 C 2.0 D .3.3. 3.3.3.3. 3.3,.3.. 1.3.0 .31 0

36 C 2.0 D .3.3, 3,E,3,8, 3.3.3.3. 1,.3, 2310""""Unspecified Reception********

StROARY OF REACHABILITY ANALYSIS (ANALYSIS COMPLETED)

Total number of states generated 1 36
Number of states analyzed 1 36
number of deadlocks s 0
numnber of unspecifiled receptions : 3
maximum message queue size a 2
channel overflow tWON3

UNEXECUITED TRANSITIONS

I Nachine 2 UneXecurzed Transitiong

I From I To I other machine I Unexecuted Transition I

1 2 1 1 1 4 I r DI

Figure 42 :Program Output for the Example
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b. Analysi Of Inferusaten Transfr Phm Of The L4V-B Preocel

In this Section, analysis of a Daft Link Control (DLC) protocol is described using
the Simple Mushroom with Supewrace program. The physical layer of DLC (LAP-B) protocol was

modeled and analyzed with CFSM model [LUND86].
The analysis of known protocols is important because it help us to determine the

correctness and the coverage of the Supertrace algorithm. It Is also an excellent example of how the
total number of global states cam grow very larg, even for such a limited Protocol.

This analysis demonstrates the main feature of the Supefure algorithm, improved

coverage, where there is insufiient memory available to conduct a full state analysis. The
description of the information transfer phase is explained below as it appears in [LUND86J.

The network nodes, which communicates by the protocol, consist of Data Terminal
Equipment (lYE) and a Data COrcuit Terminating Equipment (DCE). In this model, DTE and DCE

are considered process I and process 2 respectively. Each of these processes are also modeled as

three sub-processes: Sender, Receiver and Frame Assembler Disassembler (FAD).

Figure 43 shows the processes and their interrelationship. The FAD process

combines data blocks, from the sender with acknowledgments from the Receiver, into complete I-
frames. It sends the I-frames to the FAD of the other process. The FAD also pares received I-
frames from the other FAD and sends the acknow'ledgment to the Sender, and data blocks to the

Receiver.

DTE DCE

SIIIII, N(S), N(R) NR

FADI FAD2

(M3) (M4)

Figure 43: Processes for the Information Transfer Phase
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•Modd 1: 1- humes only

I-frames are expressed in the form "Ia", where n is the send sequence number N(S),

and m is the receive sequence number N(R). The message "Di" Is a data block sent from the Sender

to the FAD, or from the FAD to the receiver. It Is this data block which is placed In or taken frm,

the I-frame. The 'I' in "Di" is the send sequence number. The message "Ar' is an acknowledgment

with a receive sequence number of 'I'. The finite state machines for the Sender, Receiver and FAD

of the DTI are shown in Figures 44, 45, and 46. The FSMs for the DCE are the same with a 2

substituted for 1 wherever it occurs. Since no RR-frames are used, I-frames can only be

acknowledged by receiving an N(R) from an incoming data frame.

* Model 2: 1 - frames and RR's

If the DCE does not have any user data blocks to send, it is not able to acknowledge

the receipt of the DTE I-frames. In this case, the DTE should stop sending frames after it reaches

the window limiL

The solution to this problem is the Receive Ready, or "RR" message. It is an S-

frame, containing no user data block, but does contain an acknowledging sequence number. Its

purpose is to inform the receiving process (UT in this case) that the sending process (DCE) is

ready to receive the I-frame numbered N(R); it acknowledges I-frames up to N(R) - 1. The

Receiverl with I and RR frames is shown in Figure 46. The FAD with RR frames are specified by

dashed transitions in Figure 47.

In the Receiverl there are now two types of acknowledgment messages: "ACKI,"

and "Ai," for i = 0, 1, 2; in the first model we had only "Ai". This is to allow for two different ways

of acknowledging I-frames by the Receieverl process: by 1-frames or by RR-frames.

When the FAD process has data to send, it queries the Receiver by sending an

"ENQ"; this insures that the latest N(R) is sent along with the I-frame. These enquiries are answered

by an "Ai" message. But if the FAD process has no data to send, it has no way of knowing whether

any I-frames have been received and need to be acknowledged. This is the purpose of the "ACKi"

messages; to allow the Receiver to initiate an acknowledgment.
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Figure 46 : Receiver 1 of LAP-B Protocol (I and RR Frames)

For the automated analysis, dhe FSMs in Figures 44,45,46 and 47 are converted to a

text file and entered into program. The transition names in this test file are dhe same as in the FSM
diagrams except, transition arc "ACKi" is represted as AC.

The program was run with two different input files the LAP-B protocol with l-frames
and Lap-B protocol with I and RR frames At the end of analysis 69102 states from the Lap-B

protocol with I-frames were generated and analyzed. No unspecified receptions, unexecuted

transitions or channel overflows were discovered. The maximum channel lea gth was 6.

A deadlock condition was found at state 16817. All channels were empty and

Senderl, Receiverl, FADI, FAD2, Sender2, Receiver2 were in states 3, 3, 1, 1, 3, 3 respectively.
The state deadlock was expected since RR-frames were not included in this analysis. The main

difference between the analysis results with supertrace and the full state analysis of the protocol
[BULB93], is the number of states generated and analyzed. The number of states generated with

full state search algorithm was 73391. The supertrace algorithm generated almost 95% (69102/
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73391 - 0.941) of all the states. The size of the memory is a critical factor in the geneawion of

collisions. The algorithm provides better coverage with a larger hash table and effective hash

function.

In the analysis of the same protocol utilizing the regulr mushrom program, the

deadlock was detected at state number 17034. The difference of 217 states between the two

programs, does not necessarily mean that 217 collisions occurred. It is possible, though not

probable, that one collusion occurred and 216 successor states were never considered. We do know

that the number of collusions is between I and 217. It should be emphasized that the purpose of the

supertrace program is not to produce a total coverage of states. The purpose is to validate those

network protocols through a controlled partial search which cannot be exhaustively analyzed.

The LAP-B Protocol, including RR-frames, was also analyzed. The program could

not complete the analysis due to insufficient memory. At the point of termination 300456 global

states had been generated and analyzed. No unspecified receptions, deadlocks or channel overflows

were recorded for the analyzed portion of the protocol. The maximum channel size reached was 5.

The number of states generated with regular mushroom program on the same protocol was 153565

[BULB93]. These results clearly show the improvement of the supertrace algorithm option over the

regular mushroom. 146891 more states are generated and analyzed by Supertrace algorithm.Tbe

96% increase in the number of states analyzed, is a clear indication of the improvement of the

Supertrace algorithm over regular Mushroom program. A sample input for LAP-B protocol with I

and RR frames and partial analysis results are shown in Appendix A.

2. SCM Model With Supertrace

There are a few programs specified formally by SCM model which have been analyzed

by Big mushroom program in [BULB93]. The same specifications will be used to make a

comparison of regular and big mushroom with supertrace.

a. Go Back N Protocol

The protocol selected for analysis is a one way data transfer protocol with a variable

window size, which is essentially a subset of the High-Level Data Link Control(HDLC) class of

protocols. This model is modeled and analyzed in [LUND9I][BULB93]. The same specification
with different window sizes was used to compare the supertrace and exhaustive search algorithms.

The summary of the specification is explained below. There are two machines in the

system, a sender (mi) and a receiver (m2). The sender sends data blocks to the receiver, which are

numbered sequentially, 0, 1 ...... w, 0, 1, ... for a window size of w. As in HDLC, the maximum

59



number of data blocks which can be sent without receiving an acknowledgment is w, the window
size. The receiver, m2, receives the data blocks and acknowledges them by sending the sequence

number of the next data block expected (which is stored in local variable expel). The shared

variables DATA and SEQ are used to pass messages from sender to receiver, and the shared variable

ACK is used to pass acknowledgments back to the sender. The receiver may acknowledge any
number of blocks received up to the window size. Upon receiving the acknowledgment, the sender

must be able to deduce how many data blocks are being acknowledged. This is done by observing
the difference between the values of the received acknowledgment and the sequence number of the
last data blocks sent.

The general specification of the protocol is given in Figure 48 and in Table 6.

Initially, both sender and receiver are in state 0, arrays DATA and SEQ are empty, and ACK is

empty. The domains of DATA, Rdata and Sdata are not specified; these are used to hold user data
blocks. Sdata and Rdata are the interface or access points of the higher layer protocol. The local
variables for the sender are Sdata, used to store data blocks, seq, used to store the sequence number

of the next data block to be sent out, and i, used as an index into the DATA and SEQ arrays. Initially

seq is set to 0, and i is set to 1. The local variables of the receiver are Rdata, exp, and j. Rdata is
used to receive and store incoming data blocks, exp to hold the expected sequence number of the
next incoming data block, and j is an index into the shared arrays DATA and SEQ.

There are four basic types of transitions. In the sender, ml, the -D transition

transmits a data block by placing it into the shared variable DATA(i), and the sequence number into
SEQ(i). The send is enabled whenever those variables are empty.(The interaction between the

sender and the user, or higher layer is not specified here). The inc operation increments its
arguments, if less than their maximum value, in which case it resets them to the minimum value.

The operator "" Q "" represents the inc operation repeated k times, if the argument is k and the

symbol E denotes the empty value. The receive transition in the receiver, m2, is enabled whenever

a data block of the appropriate sequence number is in the jth element of DATA and SEQ. An
acknowledgment may be sent by m2 in any state except 0, in which case no acknowledged data

blocks have been received.

The remaining transition is the +Ak receive acknowledgment, in m I. Ifim is in state

u, 1 < u < w, and there is nonempty value in shared variable ACK, then exactly one of the
transitions +AO, +Al, ..., +Aw-l will be enabled; it will be that Ak such that the predicate

ACK ( k = seq is true, and the next state is k[LUND91].
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AAA

2 2
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1 2 w
SDATA : EI -TI RDATA:

seq :(0,1,2, ... ,w) exp :(0,1,2...., w)

i :(1.2,3,..... w) j :(1,2...., w)

Figure 48: State Machine and Variables of the Go-Back-N Protocol

TABLE 6: PREDICATE ACTION TABLE OF GO-BACK-N PROTOCOL

Transition Enabling Predicate Action

-D DATA(i) = e A SEQ(i) = 8 DATA(i) := Sdat(i)
SEQ(i) := seq

_____ _____ ____ inc(ixeq)
+Ak ACK(Dk = seqAACK*e ACK:=8
(0ýk:w) (next state :k)
+D DATA(j) e A SEQ(j) = exp Rdata := DATAO)

DATA(j), SEQ(j) := E
ic(ijexp)

-A DATA(J) = ACK := exp
Rdata := 8

For analyzing this protocol by Big Mushroom with Supertrace program, the inputs

to the program should be completed. These consist of a text file description of FSMs, the package,

definitions, which include the variables of the protocol, and the subprograms

61



AnalyzePredicate.Machines and Action, which define the predicate-action table and

OutputG$ple procedure, which defines the output format for the global tuples, must be entered.

The user should also write the Global-hash function in Ada Programing language that covers local

and shared variables and machine states of the protocol. Completed packaes/procedures and global

hash function for a window size of 10 are given in Appendix B.

The same names are used for local and shared variables in the package definitions as

in the predicate-action table. Variables DATA, ACK and Sdata are declared as one dimensional

array of window size. Local variables seq and exp and index numbers i andj are declared as integers

in the range 0 to window size. Global variable ACK Is declared as integer in the range -I to window

size, where -1 represents e value in the predicate action table. An enumeration type, buffer type, is

declared for storing the data passed by the upper layer to local variable Sdata. Data are declared as

dO, dl, .... d9,e, where e represents the E value. Transition names in the specification are defined as

senddata, rcv.data, snd ack, Rcv.acki for -D, +D, -A, and +Ai in predicate-action table

respectively.

The global state analysis of Go-Back-N protocol with different window sizes was

conducted by both Big Mushroom and Supertrace algorithms. The number of global states

generated in these programs is listed in Table 7 ("WS" represents the window size). In the analysis

of the Go-Back-N protocol with a window size of 18, Big Mushroom program was interrupted due

to a memory error and could not complete the analysis. No deadlocks, unexecuted transitions or

Channel overflows were encountered in the analyzed portion of the protocol. The comparison of

these results and the advantages of Supertrace algorithm will be discussed in Chapter V.

TABLE 7: THE NUMBER OF STATES GENERATED WITH BIG MUSHROOM AND
SUPERTRACE ALGORITHM

GBN Protocol WS =10 WS=I2 WS=13 WS=14 WS=18

Big Mushroom 31460 70980 101920 142800 161431

Supeirace 30632 66654 90210 122880 290980

Coverage of Super- 97% 94% 89% 86% Unknown
trace

b. Token Bus Protocol

Another example of the program application, the token bus specification in

[CHAR90 will be used. The specification is a simplified one, which will be used to demonstrate
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the coverage of Supeace algorithm for protocols with small number of states. It assumes that the

transmission medium is error free and all transmitted messages are received undamaged. The global

state analysis is generated from this token bus specification for a protocol consisting of 8 machines.

The specification of the protocol is given in Figure 49 and Table 8. The FSM

diagram and the local variables are the same for each machine, where the transition names: ready,

rcv, pass, get-tk, pass-tk, Xmit, and moreD are appended with the corresponding machine number

to the end of each machine in the specification. This makes it easier to follow the reachability

graphs. The remainder of the protocol specification as described in [CHAR90] is as follows: The

shared variable, MEDIUM, is used to model the bus, which is "shared" by each machine. A

transmission onto the bus is modeled by a write into the shared variable. The fields of this variable

correspond to the parts of the transmitted message: the first field, MEDIUM.T, takes the values Tor

D, which indicate whether the frame is a token or a data frame. The second field contains the address

of the station to which the message is transmitted (DA for "destination address'); the next field, the

originator (SA for "source address"); and finally the data block itself.

The network stations, or machines, are defined by a finite state machine, a set of local
variables, and a predicate-action table. The initial state of each machine is state 0, and the shared

variable is initially set to contain the token with the address of one of the stations in the "DA" field.
The value of local variable next is the address of the next or downstream neighbor,

these are initialized so the entire network forms a cycle, or logical ring.
The local variable i is used to store the station's own address. As implied by the

names, the local variables inbuf and outbuf are used for storing data blocks to be transmitted to or

retrieved from other machines on the network. The latter of these, outbuf, is an array and thus can

store a potentially large number of data blocks. The local variable ctr serves to count the number of

blocks sent; it is an upper bound on the number of blocks which can be sent during a single token
holding period. The local variable j is an index into the array outbuf.

The local variables j and cor are initially set to 1, and inbuf and outbufare initially

set to empty. The shared variable MEDIUM initially contains the token, with the address of the
station in the DA field. Thus the initial system state tuple is (0, 0, ..., 0) and the first transition taken
will be get.tk by the station which has its local variable i equal to MEDIUM.DA.

Each machine has four states. In the initial state, 0, the stations are waiting to either

receive a message from another station, or the token. If the token appears in the variable MEDIUM

with the station's own address, the transition to state 2 is taken. When taking the get-tk transition,

the machine clears the communication medium and sets the message counter ctr to 1. In state 2, the

station transmits any data blocks it has moving to state 3, or passes the token, returning to state 0.
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In state 3, the station will return to stabe2 if any additionallocks at to be sat, until ft maximum

count k is reacbed, or when all the stations' messages have been sent. the station eturns to state 0.

I DA SA data
Mediwn

rady i : (my address)

next: (address of the next station)
0 rv akctr:(1,2,...,k+I)

Pass ge-l : (1, 2, ..., k )

DA SA data t DA SA dataZIZIZZT outbuf .1 _______

Figure 49: FSM and Variables of Token Bus Protocol

The receiving station, as with all stations not in possession of the token, will be in

state 0. The message will appear in MEDIUM, with the receiving station's address in the DA field.

The receiving transition to state 1 will then be taken, the data block copied, and MEDIUM cleared.

By clearing the medium, the receiving station enables the sending station to return to its initial state

(0) or to its sending state (2).

TABLE 8: PREDICATE ACTION TABLE FOR TOKEN BUS PROTOCOL

Transition Enabling Predicate Action

rcv MEDIUM.(tLDA)= (D, i) inbuf := MEDIUM.(SAdata)
ready true MEDIUM := 0

ge-tk MEDIUML(tDA) = (T, i) MEDIUM:= 0;
ctr := 1

pass outbuf[j] = 0 MEDIUM:= ( T, next, , 0)
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TABLE 8: PREDICATE ACTION TABLE FOR TOKEN BUS PROTOCOL

T-asium Enabling Pkedcaft AcaW

Xmit outa *0 'ME N M:=; oafe;
ctr .= tr c l;j0mj 0 1;

mioreD MEDIUM A = ou=tufflt null

pUs-tk MEDIUM = 0Am" MEDIUM:=(T, next. , 0)
(om*bul =Ovctr=k+l)

The symbol "0" indicates that the variable should be incremented unless its

maximum value has been reaclhed in which case it should be reset to the initial value.The notation

MEDIUM.(t, DA) is used to denote the first two fields of the variable MEDIUM. For example,

MEDIUM.(t, DA) = (T, i) is a boolean expression which is true if and only if the first fields of

MEDIUM contains the value T, and the second field contains the value i. Other notations in the

predicate-action table are intuitive.

The same names as in the specification are used for the local and global variables in
the package definitions. Also, the "empty" value is represented by "E" and the data are represented

by "r' in this package. The upper bound on the number of the data blocks in the outbufvariable is

set to 7.

The results are same with the previous analysis results [BULB93].The global state

analysis with supertrace has generated 263 global states and there were no deadlocks or unexecuted

transitions.

B. Automated Test Generation Of FDDI Protocol By "TE GEN" Program

In this section an automated test generation of the FDDI protocol is illustrated. FDDI is a

standard for a 100Mb/s fiber optic network which has come on the market in the last few years. The

protocol was formally specified, including timing requirements, and verified, in [LUND90B]. The

same specification of FDDI protocol will be used in this section. The brief description of the FDDI

protocol is given below.

The protocol specification consists of the FSM description of each machineFigure 50;, the

predicate-action table (Table 9); and the timer specifications (not shown). A detailed description of

protocol appears in [LUND90B], so here we give only a brief description.

Each machine shares one variable with its upstream neighbor (called inbuj) and one with its

downstream neighbor (called outbuf). (These shared variables serve as the input and output ring

connections).
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The FSM consists of 20 states In state 0-7 the station ha in to trasmit, so is merely
waiting for the token and processing iL In states 10-21 the station has a message to transmit, and

does so upon receiving the token. The transition names on the transition amcs serve m a key into the

PAT, which specifies the action taken when the transition is executed.

There are two transitions specified in the Table 9 which are not shown in the state diagram;

this is because these maitions can be taken from any state.The TRT-watch transitim becomes

enabled whenever the TRT timer expires. This ftrnsition immediately resets the timer, and

increments variable Lawe-cnt. The second transition not shown is called CRASH; this is the

termination of the ring operation, which occurs if the token fails to circulate within twice the TTRT.

•,, eDU-0 (4)I -

10

(11) (12) (13) (14)

Figure 50: FSM of the FDDI Protocol
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TABLE 9: PREDICATE AMfON OF THE FDDI PROTOCOL

TDwudon FM"SPb~tA m

______ A-uf~i * 0 vS-buf(D 0 0_________

token inbufT..71 - U.J. K. 0. 0T. T) inlbuf.-0; Sagt-0

early Laft-cu m 0 TIflr-val :- TRT-val
________TRT-val -T-Opt

boLAa-cn > 0 Late-cm 0.
p~ua-tk ItmU ouibfl..71 - 0. J.K. .0.T. T)
rcv-F ibW [] e 11, 21A

_______ inbuff6..7] = MA

CP1PC inbuf~in * T msg-butinjoutbfinj:.- inbufimi;
_______ ~ ~ ~ ~ i AM+________ In-

T inbu[in = T oud~m] -J:=T inbuf -a0;
in:= in +1

end-F TRUE oinbuf[injin+1,in+21:m
________________________ (erinutl~in+1.in+21)

______ TRUE outbufl, in+1, in+2J -a (err, 1.,1)

pmFinbuffl5]e 11, 21A in -.-1
________ ~inbuf[6j.7] * MA __________

rPeS ibuf Oi]*T outbufln:= inbuflin]; in -in~.1

X-Syn S-bffuow 0 ousbuf ot] a S-but jouzi;
out= out+ 1

X-Asyn A-butiwot] *0 A outbfoutl :- A-but[i~outJ;

(S-cnt = tnax vS-buf~j 0) out= out+1

end-S S-b~utrj1 0 outbfouctout+1,ou+2] := (T,O,);
S-cnt,F-cn -w S-cnt+1;

_________~j ________ out-= j S$I.1

end-A A-bufli~out] 0 ou~bftfouLut+1,out+2] := (T,0,0);
F-cnt- F-Mnz.; L out:= i 1, 1

next-S S-cat < MU A S-buft] *0

next-A TWr-val > 0 A A-bah] *0

stifp inbuf[6..7J = MA AF-cnt >0 inbuf:= 0; F-cnt-= F-cnt- I

clear F-cnt= 0

7RT-watch TRT-val = 0 TRT-val :- T-Wpr
Late-cnt:= Latc-cnt+l

CASH J..tecnt > 1 terminate ring opeuizon

67



1, Creting the FSM And Predicat.Acdon Input Ma1 for the FDDI Protocl

Creation of the FSM input file Is a utralghttbrwaul process. The user should mber ll
transitions on the finite state machine as shown in Figure 50. All transitions should be written to a
input text file according to the rules in Chaptr IV. The FSM input file for the FDDI protocol is
shown in Figure 51 and Predicate-action input file is shown in Figure 52.

Some of the relational symbols in the Predicate-Action Table are converted to their
semantically equivalent text forms. For example relational symbols A, v are converted to "and"
and "oe' respectively. A relatively more complex symbol .-= i O 1 is representd as "I
l(mod+)l."

The TESTGEN program first prints out all the paths in the protocol. It also finds all the
cycles and checks them for a transition that will ultimately lead back to the initial state. All possible
paths in the FDDI protocol are output to a file as shown in Figure 53. The paths are depicted
according to the numbers assigned by the user.

0
0 1 1 token
0 2 2 rcv-f
0 3 3 pass-f
0 10 4 pdu-q
1 4 5 early
1 5 6 late
2 2 7 cp-rpt
2 6 t
3 3 9 repeat
3 7 10: t
4 0 11 pasu-tk
S 0 12 pas--tk
6 0 13 ack
7 0 14 end-f
10 11 15 token
10 12 16 rcv-f
10 13 17 pass-f
11 14 18 early
11 15 19 late
12 12 20 cp-rpt
12 16 21 t
13 13 22 rep•at
13 17 23 t
14 14 24 x-syn
14 18 25 Ind-u
15 15 26 x-syn
15 19 27 end-u
16 10 28 ack
17 10 29 and-f
18 14 30 next-u
18 18 31 x-asyn
18 20 32 end-a
19 15 33 next-a
19 21 34 pass-tk
20 18 35 next-a
20 21 36 paeo-tk
21 21 37 strip
21 0 38 clear

Figure 51 : FSM Input File of FDDI Protocol

68



Piu-q I a-bU(l) /. 0 or a-buf(j) /. 0 I no J
token I lnuf(1..7) o (I.Jk,OO.tt) I tobuf .- 0 a u-cot is 0
early I late-cut a 0 Itht-val I. trt-val I trt-val so t-opr I
late I late-cot > 0 1 late-cut $a 0 1
paaa-tk I true I outbuf(1..7) *. (I.Jk.oo.tt) I
rcv-f I labuf - (x.x,x.x.lor2,m) I in is I I
cp-rpt I lnbumf(in /- t I usg-buf(ln] a- inbuf(in] a outbuffin] a. lobuftlln i In ,- in0l I
t I iobuf(lnl t I outbuf(ulI a. t i inbuf a- 0 # In s. iael I
gnd-f I true I outbuf(in.ino1,In+2] ,. (err.inbuf(In+o.in21]) I
ack I true I outbUf(inin+o.Ino21 (.err.1.1) I
paas-f I inbut - (x.x,x.x,lor2./Ia) I in s. 1 I
repeat I inbuftin] I. t I outbuflial %. inbu]t(ifl i in s- in+ I
x-eyn I a-buf•jout] I. 0 I outbuflout] a. a-buf[jout] a out &- out+1 I
x-aayn I a-bufCIout] I-0 and ( a-cnt - max or a-buf(j) . 0 ) I outbut(outI s. a-buf(Iout) out.-outllI
egd-s I -buf(joutj 0 1 outbufjout,out+l,out.+2 s- (t.0,O) I a-cut s. u-cnt+l j f-cnt. f-cnt+l I
end-a I a-butti.ut) 0 outbutoutout.+l.•.t+ a. it.0,0) f t-cot %. I-cnt,1 I
nut-s I a-cot < sax and a-buf (j /. 0 I no
next-a I tht-val > 0 and a-bu(i] I- 0 I no
strip I tnbuf(6..7) - ms and f-cnt > 0 I Inbuf t. 0 a f-cnt s. f-cnt.T I
clear I f-cut - 0 I no
trt-watch I trt-val . 0 I trt-val s- t-opr i late-cnt a. late-cnotl I
cra•h I late-cnt > I I no I

Figure 52: Predicate Action Input File of FDDI Protocol

1 5 11 Ia another path
1 6 12 Is another path
2 6 13 Is another path
2 7 6 13 Is another path
3 10 14 is another path
3 9 10 14 is another path
4 15 19 27 34 30 Is another path
4 IS 19 27 34 37 38 tI another path
4 1S 19 26 27 34 38 Is another path
4 15 19 26 27 34 37 38 Is another path
4 15 18 25 32 36 30 is another path
4 15 18 25 32 36 37 38 is another path
4 15 18 24 2S 32 36 38 is another path
4 15 18 24 25 32 36 37 36 in another path

4 17 22 23 29 16 21 28 IS 16 25 31 32 36 38 is another path
4 17 22 23 29 16 21 28 15 18 25 31 32 36 37 30 in another path
4 17 22 23 29 16 21 28 15 18 24 25 31 32 36 30 Is anothar path
4 17 22 23 29 16 21 28 15 18 24 25 31 32 36 37 38 is another path
4 17 22 23 29 16 20 21 28 15 18 25 31 32 36 38 in another path
4 17 22 23 29 16 20 21 28 15 18 25 31 32 36 37 38 Ia another path

Figure 53: The Representation of Paths in the Output File for the FDDI Protocol

In our example, the number of paths found by the TESTOEN program is 162. There are
no cycles without an outgoing transition that leads back to the initial state.

Finally, the TESTGEN program creates the testing sequence table by printing all possible
transition sequences, excluding continuous cycles. The table is 2112 lines long. Since the size of the
table generated for the FDDI protocol is too big to show here, it is partially depicted in Figure 54.

Each of these 2112 output lines corresponds to a single tesL In Figure 55 only the first

few test are shown. The width of the table corresponds to the number of input and output variables.

69



iI I I - - - - - -
- - - -

7 .

'1 ,. :: ::..II ,,III, Ii

il : S i:;: : S±:; :: j: . -

IsI

Is : :. --

H -i -

-I 1- - -' "-- - - - ----11 -1-111 I1 -.f- ; I

"!: : I
S,,

-T T 'iT

I'• I ! I! III :::':;:i I ' I :li! l| ,II : " I I

Is 14

'............ •- .I-

- : -- - -. -- a ---

W!,! !I ! __I IIIII III. IIIiI III II I I i] K a § !

:~ IN s

fi~uaua!a!urnuuanniunrnluhhanin I it I I

FoDr example, consider the first test in Figure 55. The start state, Sg is state 0; the end state, SE, is
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state 1. The Wpin variables must be set t the values shown on the left side of the tae and the
output variables we expected to take on the values shown on the right side. The next test will take
us to state 4.

I a variable Is both Input and output it is marked by (1) for input and (o) for outt

variable to show their status in the generated test sequence. For example, lae..couxt appears both
in te enabling predicate and in the action part of transitio "d e ". It Is both an input and output
variable and is thus represented in the output test sequence as late_cnt(l) and latecnro) as in Figure
54.

If there is more than one clause in the enabling predicate part of the predicate action table
the TESTGEN program generates one test sequence and marks the variabIs of this test with the
clause's relational symbol. In our example enabling predicate for the PDU-Q transition consists of
two clauses. The TESTGEN program illustrates this by putting the relational symbol "or"
(relational symbol in this case) in front of the values to be compared in the output file. The values

for a-ba (or I=empty) and s-bu (orl=empty) should be read as "A-buf is not equal to empty or S-

bur Is not equal to empty." It is the responsibility to the user to change the variables for that

transition to enable that transition. For testing purposes, the user can either make one or both of
these two variables non-empty.

If there are more than two clauses in the enabling predicate part of the PATas mentioned

in Chapter TV, the TESTGEN program is able to represent these clauses in the output test sequence

table. In the FDDI PAT (TABLE 9), the X-Asyn transition has more than two clauses in the format

"first clause relational symbol (second clause relational symbol third clause)." The TESTGEN

program shows this in the output sequence by putting the relational symbol in parentheses to

represent the symbol between the second and third clauses, and placing the first relational symbol

without parentheses in the output file. For example, the a-bufWi,outj has a value "=Iempty," s-buf

has a value "(or)empty" and s-count has a value "(or) max" in the generated test sequence. This test

sequence input should be read as "A-buffi, out) should not be empty and either S-cnt should be equal

to max or S-buf[j] should be empty."

The TESTGEN program can determine some transitions which make a state transient. It
informs the user by printing out a warning to the terminal and output file. In our example, the

TESTGEN detects "end-f' and "ack" transitions, which makes states 6, 7, 16 and 17 transient, and

prints out a warning.

Since the TESTGEN program generates all possible transition sequences, returning to

the initial state, protocol testing can be executed by following the order of tests in the test sequence
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file. This moans tere is no need to find the UIO (unique input-outpw) sequence after each
individual test, but only at he end of the last test (or possibly net at all).

Finally, the TESTEN program also detects converging transitions, if ny, and pri•ts out

the list of the converging transitions. In the case of FDDI protocol, pan-tk is deteced as a
converging state from states 4-5 and also from states 19-20. The test designer should be aware of

this as a possible source of problems in the execution of tests.
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VL CONCLUSION AND FURTHER RESEARCH POSSIBILnTIES

In this chapter both software tools' capabilities are summarized and furdtr research
possibilities are discussed.

A. Supertrace Algorithm

In the first part of this thesis a software tool has been described which improves the automatic
analysis of protocols specified b) oe CFSM and SCM models, by using the Supertrace algorithm.

This algorithm improves the coverage of protocol analysis by generating a larger number of
states than regular mushroom program. In cases where exhaustive search algorithm is infeasible,
this can be extremely helpful. It also shows that the mushroom program with supertrace is capable
of covering up to 95% for protocols with 1.5 x 10i global states. The improvement of the
Supertrace algorithm is illustrated in Figure 55 and Figure 56. The protocols are represented in
abbreviated form (i.e. Gbn for the Go-Back-N protocol).The number of states generated by
mushroom with supertrace is between 90% and 95% for protocols up to 150000 global states and
around 99% for protocols with 20000 global states.

35000t

Simple

z

50000
Lap-B(T) Lmp-B(I and RR Frames)

Protocols Analyzed

Figure 55: The Analysis Results of Supertrace and Simple Mushroom
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I 5 0C ..........................-.

150000 ................ .... .

100000............... .......

Tk"mGbnl0 Gbnl2 Gbal3Gtml4Gbal8
Prtcl Analyzed

Figure 56 : U Analysis Results of Superb= and Big Mushroom

The main achievement of Supenrb= can be realized when the memory c~apacity is

insufficient to allow an exhaustive analysis. In the analysis of Go-Back-N protocl with a window

size 18, Big Mushroom cannot complete the analysis due to insufficient memory. The number of

states analyzed with Big Mushroom is 161431 and fth number of states analyzed with Supertrace

is 290,980. Since we do not know the total number of global states in this protocol, we can not

estimate the exact coverage established by Supertrace but we do know that it analyzed 290980 -

161431 =129549 extra states which is 80% more than the number of states generated and analyzed

by Big Mushroom. A similar result is established for protocols specified with CFSM model. The

analysis of Lap-B protocol with I and RR1 frames can not be completed by Simple musro
program. ThP number of states analyzed is 153565. Tle same specification analyzed with

Supertrace algorithm, and generated 300456 states which is 95% more than the number of states
generated by Simple Mushroom.

The results shows that Supertrace algorithm approximates an exhaustive search analysis for

smaller protoall an ex hau e o a ontrolled partial search method for larger protocols.

The Supertrace algorithm cannot guarantee 100% overagdue to possibility of unresolved hash

conflicts for small protocols. As a partial search technique (for Lager protocols) it is far superior to

the exhaustive search teceique.

The analysis of protocols specified in CFSM model was conducted on a computer with 64

Mbyte memory, the analysis of protocols specified in SCM model was conducted on a computer
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with 48 Mbyte memory. The overall improvement of supertrace algorithm is based on theam

available memory values. The number of states generated can be increased as the amount of the

available memory increases. The supertrace algorithm uses a simple hash table for keeping track of

the generated global states. Instead of keeping previously generated states in the hash table, a hash

value is calculated and corresponding value in the hash table is set. Each state is checked against

the hash table values to determine if it was previously generated.

The number of states analyzed and the coverage can be significantly improved by increasing

the hash table size in the main program.The supertrace algorithm is also more efficient in speed than

the exhaustive search method, since time spent in ceking hash table is constant (0(1)). The total

processing time difference between these two methods increases as the number of global states

increases.

The number of states analyzed is usually very large and it is hard to locate faults by manually

searching the output text file. An improvement would be to store the reachability analysis results in

the form of a data base.A query language that allows the user to easily analyze the results of the

analysis is suggested in [AGGA87].
The data structures can be simplified to allow more efficient utilization of memory so the user

can analyze a larger number of states and obtain a more accurate analysis.

Finally, the mushroom with supervace is a tool which will greatly improve the analysis of

large protocols specified by the SCM and CFSM models which cannot be analyzed with exhaustive

search methods.

B. TESTGEN Program

In the second pat of this thesis a software tool called "TESTGEN" was introduced which

automatically produces a sequence of conformance test for protocols specified by the SCM protocol

model. The purpose is to conduct conformance testing on implementations. The TESTGEN

program checks key control points in the protocol and informs the user if it detects a possible error.

The TESTGEN program takes as input a protocol specified formally as two separate text

files, one containing the finite state machine part, the other containing the predicate-action table and

variables. It outputs test sequences beginning from the initial s -, finding all transition sequences,

excluding continuous cycles, and generates tests for every transition on the path back to the initia"

state, so long as there is such a path (when there is no path back user is warned).

The main achievement of the TESTGEN program is its applicability to protocols specified

formally with the SCM model which make it possible for implementors and buyers/users of

protocol implementations to automatically generate a set of tests, which ideally determine if the
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protocol implementation meets its specification. It was used to generate test sequences for the FDDI

protocol in Chapter V and CSMA/CD protocol in Chapter MI. It produced the same test sequence

generated for the CSMA/CD protocol in [MILL90]. The automation of the test sequence generation

procedure TESTGEN expanded the applicability of the procedure to larger and more complex

protocols.

A second, broader purpose of this work has been to unify the fields of protocol specification,

testing and verification under a single protocol modeL systems of communicating machines. As
earlier work [BULB93] has automated the verification process (to some degree), we now have tools

for specification, verification and testing in this protocol model.

The TESTGEN programs generates a test sequence based on the specification of the protocol
and a conformance test originated on these test sequences. It verifies that a given implementation

realizes all functions of the original specification, over the range of parameter values. If the

implementation under test (IUT) passes these tests, it is capable of reproducing the behavior formal

specification. We do not know if IUT will handle erroneous inputs in a manner consistent with the
original specification. Because conformance test sequence is used to test the presence of desirable

behavior, not the absence of undesirable behavior.

A further study on this issue might be the generation of a simulator consistent with the

specified protocol such that the expected output values can be calculated quickly. Each step in the

transition sequence could also be tested and verified easily. The success of this method will depend

on the correctness of the simulator program.

The TESTGEN program is originated from the procedure created in [LUND90A]. Further

research in this area might be to improve of the procedure itself and determine what assumptions

are made concerning the IUT.
The TESTGEN program does not guarantee detection of all the errors in the protocol. It does

represent an attempt to exercise all parts of IUT and provides some assurance that the

implementation meets its purpose without obvious or easily detected errors.
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APPENDIX A (LAP-B Protocol Infonnalom Trauder Phase)

Analysis Results (I Frames Only)

R3ACHABILITY AgALYSIS of a fad.fam
SPCI ICATICI

I Machine 1 state Transitions I

I Prom I To I other machine I Transition I

1 1 3 1 r AO I
1 2 1 3 1 aDO

1 2 1 2 1 3 1 r A0 I
1 2 13 I 3 a D1 I
I 2 14 1 3 1 r &l
1 3 13 1 3 1r Ar I
1 3 I5 1 3 1r Al
1 3 1 7 1 3 1 r A2 I
1 4 14 1 3 1r Al I
I 4 IS I 3 a D1 I
1 5 15 1 3 1r Al I
I S 1 7 1 3 I r A2 I
1 5 1 6 1 3 1 D2 I
1 6 1 6 1 3 1 r Al I
1 6 1 1 3 1r AO I
1 6 1 a 3 1 r A2 I
1 7 1 7 1 3 1 r A2 I
1 7 1 8 1 3 1 D2 I

1 3 1 r A2 I
1 S 3 1r AO I

1 S 1 9 1 3 1 a DO I
1 9 1 9 1 3 1 r A2 I
1 9 12 1 3 Ir AO I
1 9 1 4 I 3 1 r Al I

I Machine 2 State Transitions I

I prom I To I other machine I Transition I

1 4 1 3 1 r ND I
1 2 1 3 1 r DO I

1 2 1 S. 3 I r END I
1 2 1 3 1 3 I r D1 I
1 3 1 6 1 3 1 r IG
1 3 1 1 3 I r D2 I
1 4 1 1 3. 1 AO I
1 5 1 2 1 3 1 a l I
1 6 1 3 1 3 1 a A2 I

I Machine 6 State Transitions I

I From I To I other machine I Transition I

I 1 14 1 4 1 r ENO I
1 2 1 4 1 r DO I

1 2 I5 1 4 1r ENO I
1 2 13 1 4 1r Dr I
I 3 16 1 4 Ir rEN I
1 3 1 1 4 I r D2 I
1 4 1 I 4 1 AO I

5 1 2 1 4 1 Al I
1 6 1 3 I 4 1 a A2 I

REACHABILITY GRAPH

I ( 1,EE.E,EEE, 1.EEEEE,E,E. 1,EE,E,E,,E 1,2.2.2,2.2. 1.2.2.22.2. 1,E.E, EE,E]
-DO 3 t2,E,DO ,E.,1,E,E,E,E,E,I.E,E,E,E.E.1,E,E,E,EE,.2E,E,,E,2oE,,E,E,.E,E] 2
-DO 4 [1,E.E,E,E,E,1,E,E,E.E,E.1,E,E,E,E,E,1,E,E,E,B,E,2.E,E,ED0,E,1,E,E,E,E,2] 3

2 [ 2,E,D0 ,E,E,E 1,E.E,E,E,E. 1,E,EE,E,E, 1,EE.E.2, 1,EEE,E,E, 1,E,2.E,E,E]
-D1 3 (3,E,DODI,r1.E,E,1,EEEEE,1,,EE,EE, 2.1,EEE,EE, 2,EEEEEl.,EEEEEj 4

+DO 1 (2,E,E,E,E,E,1.E,E,E,EoE, 2,E,E,E,E,2 , 21,E,E.E,E,I,E,2E.E,E,1E,2E,E,EE] 5
-DO 4 (2,E,D0,E,E,E,I,E,E,E,E,E,1,E,.2E,E,E.1,E,E,EE.E,2,E,E,E,D0,E,I,E.E,EEE] 6

3 ( 1,E,EEEo, 1,E,E,E,E,E,I 1,E,2E,,E, ..E.EEEoE, 2,E.E.E,DO .E, 1,E,E,E.EE]
-DO 3 ( 2,.0 ..E,E,E, I..E,E,E,E. 1 ,E,E,E,E,E, I,E,E,E,EE, 2,E,E,E,D0 2E, 1,E,E,E,E,E 0

+DO 5 ( 1,E..,E.EE. 1,EE,E,E.EE 1E,E,E,E,E, 2,E,E.EE.., 2,E,E,E,E,E, 1,E,E,E,E.E] 7
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-D 4C .33..33.1.,33..3 13..33.. .33..33.3.3.3.3.D00 D 3. 1.....18
4 13.3.00 D1..33 1.3.3.3.3,3. 11,31.8193.. 11.3.3.3..3. 1.3.3.3.,311. 1.2.3.83.533

+DO 1 C3.3241 .3.3..13....3. 2.3.3.8.3.3.l33333.133333.l.33331 9
-00 4 (3.3.00 D1 .3.8.3. l.3333 .... 3l3...3.2..3031..333 10

-D1 3 1 3.3.01 .3... ...3. 3.. 2.33333 ..3.3. .3 .,..3.3. 1.3.8.2.3.31 0
-31M 2 1 2.3,3333 ..3.3.8.3. 8.53.WQ.9.3.9,133333 ... 333 ,... 1 1
-00 4 ( 2.3.3.3.3.3.133.... 2.9.2.2,9.3..133333 2.3.3.3.00 .3, 1.3.3.3.3.3) 12

16817 C3.3.3.3.3.3. 3.3,.3.3.3.3133333,13...3....33.3...3
""D803A0CK condtitiam"""t

161 6 B.N.R.3.3.. 2.8.9,.9.3..1.., 2133 9.3.3.3.3.8. 6.2.3.3.02 .8, 6.3.3.3.3.31

69102...
The reolt of Lap-B Protocol analysis (I framnes only)

SUMMIARY OF REACHABILITY ANALYSIS (ANALYSIS COMPLETED)

Total number of states generated :69102
Number of states analyzed :69102
number of deadlocks. 1
number of unspecifiled receptions :0
maximum message queue size :6
channel overflow :NONE

UNEXECUTED TRANSITIONS
S* * ***M *

Lap-B Protocol IFSM Text Mie (I and RR frames)

start
rnuabr~of..jchinaa 6
machine 1
state 1
trans 4AO 1 3
trans -DO 2 3
state 2
trans *AO 2 3
trans -D1 3 3
trans *A1 4 3
state 3
t rans +AO 3 3
trans .A1 5 3
trans +A2 7 3
state 4
trans *A1 4 3
trans -DI 5 3
state 5
trans +At 5 3
trans +A2 7 3
trans -02 6 3
state 6trans *A1 6 3
trans +K0 1 3
trans +A2 8 3
state 7
trans +A2 7 3
trans -02 8 3
state a
t rans +A2 8 3
trans .AO 1 3
trans -DO 9 3
state 9
trans .A2 9 3
trans .AO 2 3
trans +At 4 3
machine 2
state I
trans *ENO 10 3
trans +DO 2 3
satet 2
trans +8K 13 3
trans .01 3 3
trans -ACI 4 3
state 3
trans + EM 14 3
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tram -AC2 7 3
state 4
trans DYI 5 3
tram. 4I* 11 3
state S
trael 1IQ 14 3
tran. -AC2 7 3
traml .D2 6 3
state 6
trans -ACO 1 3
trans .iR 15 3
state 7
trans .WQ 12 3
trans .D2 8 3
state 8
trans -ACO 1 3
trans *0 15 3
trans +DO 9 3
state 9
tram. -ACI 4 3
trans *NQ 13 3
state 10
trans -AO 1 3
state 11
trans -Al 4 3
state 12
trans -A2 7 3
state 13
tram. -A1 4 3
state 14
tram. -A2 7 3
state 15
trans -AO 1 3
machine 3
state 1
trams .00 2 1
trans .01 3 1
tram. +D2 4 1
traes .100 20 4
trams .110 21 4
tran. .120 22 4
tranm .101 23 4
tran. .111 24 4
trans .121 25 4
trans .102 26 4
tranm +112 27 4
tra•s .122 28 4
trams .ACO S 2
tram. AC1 6 2
trans .AC2 7 2
trams .RRO 29 4
trams .RR1 30 4
trams .RR2 31 4
state 2
trans -ENI 8 2
state 3
trans -ENQ 9 2
state 4
trams -ENQ 10 2
state 5
trans -RRO 1 4
state 6
tran. -RR1 1 4
state 7
trans -RR2 1 4
state 0
trans +AG 11 2
trams +A1 12 2
trams .A2 13 2
trams ÷ACO 8 2
tranm +AC1 8 2
trams *AC2 8 2
state 9
trams +A0 14 2
trams +A1 15 2
tran. ÷A2 16 2
trams +ACO 9 2
trans .AC1 9 2
trams .AC2 9 2
state 10
trams .AO 17 2
tran. .A1 18 2
tran. +A2 19 2
tran. sACO 10 2
trams .AC1 10 2
trans .AC2 10 2
state 11
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trasm -100 1 4
state 12
trasm -101 1 4
stat* 13
trans -102 1 4
state 14
trasm -210 1 4
stat* 15
trasm -111 1 4
stat* 16
trans -112 1 4
state 17
trans -120 1 4
state 18
trans -121 1 4
stat* 19
trans -122 1 4
state 20
trans -DO 29 2
state 21
tranm -D1 29 2
stat* 22
trans -D2 29 2
state 33
trams -DO 30 2
state 24
trans -D1 30 2
state 25
trans -D2 30 2
state 26
trans -DO 31 2
state 27
trans -D1 31 2
state 28
trans -D2 31 2
state 29
trans -AO 1 1
state 30
trans -A2 1 1
state 31
trans -A2 1 1
machine 4
state 1
trans +00 2 5
trans *D1 3 5
trans +D2 4 S
trans +100 20 3
trans +110 21 3
trans +120 22 3
trans .101 23 3
trans +111 24 3
trans +121 25 3
trans .102 26 3
trans +112 27 3
trans +122 28 3
traes +ACO 5 6
trans +,C1 6 6
trans +AC2 7 6
trans *RRO 29 3
trans *RR1 30 3
trans +RR2 31 3
state 2
trans -ENQ 8 6
state 3
trans -ENQ 9 6
state 4
tramn -IMN 10 6
state 5
trans -RRO 1 3
state 6
trans -RR1 1 3
state 7
trams -RR2 1 3
state 8
trans *AO 11 6
trans +Al 12 6
trans +A2 13 6
trans +ACO 8 6
trans +ACl 8 6
trans +AC2 8 6
state 9
trans *AO 14 6
trans +AX 15 6
trans +A2 16 6
tram. +ACO 9 6
trans .AC1 9 6
trans +AC2 9 6
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state 10
trams *A 17 6
tran *l 18 6
tram 4,A2 19 6
trans CO 10 6
trams sAI 10 6
trans *AC2 10 6
state 11
trams -100 1 3
state 12
trans -101 1 3
state 13
tranm -102 1 3
state 14
trams -110 1 3
state 15
trams -11 1 3
state 16
trams -112 1 3
state 17
trans -120 1 3
"state 1t
trans -121 1 3
state 19
trans -122 1 3
state 20
trams -DO 21 6
state 21
trams -D1 29 6
state 22
trams -D2 29 6
state 23
trans -DO 30 6
state 24
trans -DI 30 6
state 25
trams -D2 30 6
state 26
trans -DO 31 6
state 27
trans -DI 31 6
state 26
trans -D2 31 6
state 29
trams -AO 1 5
state 30
trans -Al 1 5
state 31
tranm -A2 1 5
machine 5
state 1
trans 'AO 1 4
trans -DO 2 4
state 2
trans *AO 2 4
trams -D 3 4
trans +Al 4 4
state 3
trans +AO 3 4
trans +kl 5 4
trans +A2 7 4
state 4
trams +Al 4 4
trams -D1 5 4
state S
trams +Al S 4
trams +A2 7 4
trams -02 6 4
state 6
trams +Al 6 4
tranm +AO 1 4
trams +A2 64
state 7
trams +A2 7 4
tranm -D2 84
state a
trams sA2 84
trams sAO 1 4
trams -DO 9 4
state 9
trams A2 9 4
trans +AO 2 4
trans +Al 4 4
machine 6
state I
trams +MQ 10 4
trams *DO 2 4

81



state a
tram .UG 13 4
trams +D0 3 4
tram -Acl 4 4
state 3
tran +MQ 14 4
tranm -AC2 7 4
state 4
tranm .T1 S 4
tram *fI 11 4
state S
tranm +RIO 14 4
tram -AC2 7 4
trasm #D2 6 4
@tate 6
tranm -Ao0 1 4
trams .IQ 15 4
state 7
trans .#M 12 4
trasm #02 8 4
state a
tram -ACO 1 4
trans .DQ 15 4
tranm +DO 9 4
state 9
trans -ACl 4 4
trans #EM 13 4
state 10
trans -AO 1 4
state 11
trans -Al 4 4
state 12
trans -A2 7 4
state 13
tranm -Al 4 4
state 14
tranm -A2 7 4
state IS
trans -AO 1 4
Initialastate 1 1 1 1 1 1
finish The result of Lap-B Protocol analysis (I and RR frames)

SU)VDARY OF REACHABILITY ANALYSIS (ANALYSIS COMPLETED)

Total number of states generated :3204S7
Number of states analyzed : 300456
number of deadlocks : 0
number of unspecified receptions : 0
maximum message queue size : S
channel overflow :NONE

UNEXECUTED TRANSITIONS
S**** *NC* *** *
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APPENDIX B (GO BACK N PROTOCOL)

Variable Definitions (Window Sin 10)
with TEXT_10I; use TEXT..10;
package definitions i.

nua.oftjnachines : constant := 2;
type scu~transition..type in

(snd...data *rcv-.data. rcv-ack0, rcvackl, rcv~ack2,*rcv~ack3, rcv..ack4, rcv..ack5 *rcv..ack r. rcv..ack7
,rcv..ackS, rcv...ack9, snd..ack. unused);

type bufter..type Is (d0.d1.d2.d3,d4.d5,d6.d7,dS~d9,E);
package but t..enuni..io is new enumeration-IO(bufter-.type);
use but t..num..io;
type butter..array..type is array~i. .101 ot butter..typ.;
type soq..array..typ. is array(1. .10) of integer range -1.-10;

type machinel_state_type is
record

Sdata: butter_array..type:z (dO~dl~d2.d3.d4,d5.d6.d7,dS,d9);
seq integer range 0.-10 :=0;
i integer range 1. .10 1;

end record;

type machine2...state...type is
record

Rdata : butter_type:= E;
exp :integer range 0. .10 :=0;
j integer range 1. .10 1;

end record;
type dunuy..type is range 1. .255;
type machine3-.state...type is

record
dummy: dumvny..type;

end record;

type machine&..state~.type is
record

dummy: dunmmy-type;
end record;

type globalvariable..type is
record

DATA : butter_array..type :=(E,EEE.EE,EEE,E);
SEQ : seq..array..type (1-1-1-1-,-1-1-,-1i;
ACK : integer range -1. .10 := -1;

end record;
end definitions;

Predicate-Action Table (Window Size 10)

separate (main)
procedure Analyze_.PredicatesMachinel (local machinel-state~type;

global :global...variable_type;
s natural;
w in out transition...tack..package.stack) is
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tempi : integer :u WBAL.ACK + 0;
temp2 : integer :u ELOUAL.ACK + 1) mod 11;
teM3 : integer :u(OLOAL.ACI + 2) mod 11;
temV4 : integer :3(GLOBAL.ACK + 3) mod 11;
tempS integer :u(GLO5ALACK + 4) mod 11;
t"W6 :Integer :z(OLOBAL.ACI + 5) mod 11;
teW7 :integer :3(OLOUAL.ACK + 6) mod 11;
temp8 : integer z(GLORAL.ACK + 7) mod 11;
temp9 :integer :a (GLOIAL.ACK + 6) mod 11;
tewplO :Integer :=(GOBAL.ACK + 9) mod 11;

begin
case a 1n
when 0 3>

if ( (GLOSAL.DATA(local.i) = E and (CLODAL.SEQ(local.i) =-1) 3then
Puah(w. und-data);

end if;
when I =>

if ( (OLOBAL.DATA(iocali.) = E and (GLODAL.SEQ(local.i) -1) 3then
Push(v. an&.data);

end if;
if ( (temi z locai-Beq) and (GLOSAL.ACK /z -1)) then

Puuhlw~rcv...ackO);
end if.

when 2 =>
if ( (OLOBAL.OATA(locai.i) = E ) and (GLOBAL.SEO(locai.i)= -1)3 then
Puuh(w, and..data);

end if;
if ( (tetrl = local.seq) and (GLODAL.ACK /= -1)) then
Push(v~rcv-ack0);

end if;
if ( (teim2 = local..eq) and (OLODAL.ACK /z -1)) then
Puuh (w.rcv-ackl);

end it;
when 3 =>

If ( (OLOSAL.DATA(locai.i) = E ) and CGLOBAL.SEQ~locai.i) =-1) 3then
Puah Cv, nd..data);

end if;
if ( (templ = local.seq) and (GLOBAL.ACR -1)) then
Puuh(w, rcv-ack0);

end if;
if ( (teap2 = local.seq) and (GLOBAL.ACK /3-1)) then

Puah(w,rcv..ackl);
end if;
if ( (tem3 = local.seq) and (GLOBAL.ACK /3-1)) then

Puahlv,rcvack2);
end if;

when 4 =>
if ( (GLODAL.DATA(locai.i) = E ) and (GLOBAL.SEQ(local.i) -1) then
Push(w, unddata);

end if;
if ( (tetql = local.seq) and (GLOBAL.ACK 1=-1)) then

Puah(w~rcv..ackO);
end if;
if ( (temp2 = local.seq) and (GLORAL.ACK /3-1)) then

Puah(w~rcv..acki);
end if;
if ( (temp3 = local.seq) and (GLOBAL.ACK /3-1)) then

Push~w.rcv-.ack2);
end if;
if ( (te.W4 z local.seq) and (OLOBAL.ACK 1=-1)) then
Puuh(w~rcv-ack3);
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end i A
When 5 a>

if ( (GLOBAL.-DATA (local. i) z I and (GLOBAL. Soo(local.i1) a-1) 3thhai
Push~wan~vdata);

end if;
if ( (templ a iocai-ueq) and (GLODAI.ACK /z -1)) then

Pugh Iv. cv..ackO);
end if;
it ( (temp2 z locai.seqJ and (GLOBAL.ACK /z -1)) then

Pumh(w.rcv.acki3;
end if;
if ( (temp3 =local-seq) and (GLOBAL.ACK 1=-1)) then

Pushiwrvam.ack2l;
end if;
if ( (temp4 = locai.seq) and (GLOBAL.ACK 1=-1)) then
Push Ivrcv-.ack3);

end if;
if ( (temp5 = local.seq) and (GLOUAL.ACK N= -111 then

Pushfw,rcv-ack4);
end if;

when 6 =
if ( (CLOBAL.DATAClocaI.i) = E )and (GLOBAL.SEQ~iocal.i) =-1) 3then

Push Cv, snddata);
end if;
if C (tezupl = local.seq) and (GLOBAL.ACK /= -1)) then
Push(w,rcv~ackO3;

end if;
if ( (temp2 = locai-seq) and (GLODAL.ACK A= -1)) then
Push~w, rcv.,acki);

end if;
if ( Ctemp3 = locai.s~q) and (GLOBAL.ACK /=-1)) then
Puuhiw,rcv-ack2);

end if;
if j (tezrp4 = locai.seq) and ((ILOBAL.ACK 1=-1)) then
Pushlw,rcv-ack3);

end if;
if ( (tempS = local.aeq) and (GLOBAL.ACK 1=-1)) then

Push(w,rcvack4);
end if;
if ( (teqp6 = locai.seq) and (GLOBAL.ACK 1=-1)) then
Push~w,rcv-ack5);

end if;
when 7 =>

if ( (GLOBAL.DATAClocai.i) = E ) and CGLODAL.SEQ~local.i) =-1) )then
Push Cv.snd-data3;

end if;
if ( (teqpl = locai.seq) and (GLOBAL.ACK 1=-1)) then

Pushlw, rcv~ackO);
end if;
if I (tezmp2 = locai-seq) and (GLOBAL.ACK 1=-1)) then

Puuh~w~rcv-..ackl);
end if;
if ( (teaqp3 = local.seq3 and (GLOBAL.ACK :-i)) then

Puuhlv,rcv-ack2);
end if;
if ( Cteirp4 = local.seq) and (GLOBAL.ACK 1=-1)) then

Push v, rcv-ack3);
end if;
if ( (teirp5 = locai.seq) and (GLOBAL.ACK A= -1)) then

Push~w~rcv-ack4l;
end if;
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if ( (tem6 a iocAl.@eq) and (OLOSAL.ACK /a -1)) then
Puahtv. rcv..ackS),

md it;
if ( (teM7 a locai.ueq) and (GILO3AL.ACK /m -1)) then

Push(v,rcv..ack6);
end if;

when 8 =>
if ( (OLOBAL. DATA (local. i) = E ) and (OJ.,OAL.SUQ (locali-i) -1) then

Piumhtw, nd~data);
end i f,
if ( (tw~l a iocai.seq) and (GLOBAL.ACK /z -1)) than
Puah(v~rcv-ackO);

end if;
if ( (teM2 a 1or.ai.seq) and (GLOSAL.AC)K /a -1)) then

Pumh(v~rcv..acki);
end if;
if ( (tewp3 a iocai.ugq) and (GLOBAL.ACK 1=-1)) then

Push(v~rcv..ack2);
end if;
if I (teirq4 = lacai.seq) and tGLOBAL.ACK -1) i) then

Push~v, rcv..ack3);
end if;
if ( (temp5 = iocal.seq) and (GLWBAL.ACK 1=-1)) then

Puahfv, rcv...ack4);
end if;
if ( (teW6 = iocai.aeq) and (OLODAL.ACK 1=-1)) then
Push Cv.rcvack5);

end if;
if C (teajp7 = locai.seq) and CGLODAL.ACK 1=-1)) then
Push(w~rcv-ack6);

end if;
if ( CteWa8 locai.seq) and (GLWBAL.ACK /=-1)) then

Pushfv~rcv...ack);
end if;

when 9 =>
if C (QLOBAL.DATAClocai.i) = E ) and CGLOBAL.SEQ(locai.i) =-1) )then

Puuh Cv. n&..data);
end if;
if C (tempi = locai.seq) and (GLOBAL.ACK /=-1)) then
Push(w, rcvý-ackO);

end if;
if C Ctemp2 = iocai.aeq) and (GLOBAL.AcC 1 -1)) then

Push(v,rcvacki);
end if;
if C Cteq3 = iocai.seq) and (GLOBAL.ACK~1 -1)) then
Push~v,rcv-ack2);

end if;
if C Ctemp4 = local.seq) and CQLOBAL.ACK 1=-1)) then

Puuh~v,rcv...ack3);
end if;
if C CtemrpS = local.seq) and (GLOBAM.ACK~1 -1)) then

Puuh~v,rcvacW4;
end if;
if C (temp6 = loca1.seq) and (GLOBAL.ACK -1) i) then

Push~w~rcv-ackS);
end if;
if C Ctemp7 = local.seq) and (GLOBAL.ACK 1=-1)) then
Push(v,rcvack6);

end if,
if C (tempS = local-seq) and (GLODAL.ACK 1=-1)) then

Push~w~rcvack7);
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eOWIt
it ( (t*W9 a local.ueq) and (CLOSAL.ACK /a -1)') then

Push(v. rcv..ackS);
end if;
if ( (temlo a local..eq) and (GLoODAL.ACK /a -1)) then
Push (v.rcv...ack9)b

end if;
when 10 a>

if ( (teapia Jocal.ueq) and (GLAOBAL.ACK /= -1)) then
Puxh(v~rcv..ack0);

end if;
if ( (tenp2 = local.seq) and (GLOBAL.ACK /z -1)) then
Puuh(v~rcv~ackl):

end it:
if ( (temr3 = locaI-ueq) and (GWOBAL.ACK /2 -1)) then

Puah(w~rcv...ack2);
end if;
if ( (temp4 = local-ueq) and (GLOBAL.ACK /a -1)) then
Push(v, rcv~ack3);

end if;
if ( (teapS x1ocal.seq) and. (GWDRAL.ACK /2-1)) then

Puuh(w.rcv..ack4);
end if;
if ( (teap6 = local.ueq) and (GWDOAL.ACK /2-1)) then

Push(v,rcv..ackS);
end if;
if ( (teap7 = iocal.seq) and (GLOBA-ACK /z -1)) then

Push(w, rcv-acM6;
end if;
if ( (tempO = local.aeq) and (GLODAL.ACK Ia-1)) then
Push(v~rcv-ack7);

end if;
if ( (teap9 = local.seq) and (GLODAL.ACK (2-1)) then
Puuh Cv.rcv...ackS);

end if;
if ( (templO = local.seq) and (GLOMA.ACK 1=-1)) then

Push~v~rcv-ack9);
end if;

when others =>
null;

end case,
end Analyze...Predicates_idachinel;

separatetmain)
procedure Analyzeý_Predicatesjlachine2 (local machine2...stat&..type;

global :global-variable...tYPe;
S natural;
w :In out transition-stack~package.stack) is

begin
case s is
when 0 =

if ((GLOBAL.DATA(local.j)/= E) and CGLOBAL.SEtilocal.j) = locai.exp)) then
push~v,rcvdata);

end if;
when 11213141516171819 =>

if (GLOBAL.DATAClocal.j)= E) then
Push (- ,snd-ack);

end if;
if ((GLOEAL.DATAC1ocal.j)/= E) and (GLOBAL.SEQCIoca1.j) = local.exp)) then
Push~v,rcvdata);
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end it;
when 10 a>

it (QWURAL.DATA(local-J)=Z) then
Push(w. und..ack),

end if;
when others =>
null,

end case;
end Analyze...PredicateosjMachine2;

separate (main)
procedure Analyze...PredicatesjMachin*3 (local machine3...state..type;

global global_variable_type;
U natural;
w in out transition-s.tack-.package-utack) is

begin
null;

end Analyze...Predicatestachine3;

separate (main)
procedure Analyze-Predicates_iMchine8(local machine8_state_type;

global :global variable...type;
s natural;
w in out transition...stack..package.stack) is

begin

null;

end Analyze..Predicates..)tachineS;

separate(main)
procedure Action ( in...system..state :in out Getate...record~type;

in_transition :in out scm..transition..type;
out-systen...state :in out Ustate...record.type) is

begin
case (in-.transition) is
when snd.data =>

out..system-state.GLOBAL...VARIABLES.DATA( in~system~state.machinel_state. I):
in..systen...state.nachinel_state.sdata Cin-.system..state.nachinel_state. i);
out-.system...state .GLOBAL_VARIABLES. SEQ Cin~system...state .machinel_state. i):=

in..system..state.machinel..state. seq;
out~system..atate.nachinel-state.i:= (in~system..state.machineL-state.i mod 10) +1

out..system..state.machinel-state.seq C (((in..systeiu..state.machinel~state.seq) +l)modll);
when rcv...ackO Ircv..ckl Ircvack2 Ircv...ack3 Ircv..ack4 Ircv..ack5 Ircv...ack6 Ircvý_ack I

rcv...ackB Ircv...ack9 =>
out....sytensatate.GLOBAL_VARIABLES.ACK -1;

when sndack =>
out..systen...state . LOBAL_VARIABLES. ACK :in-systen...state .machine2_state. exp;
out...systen....tate.machine2_state.Rdata :=e

when rcv...data =>
out..system..state . achine2_state. Rdata =in-g..ystenL-state .GLODAL_VARIABLES. DATA

(in-.systemrLstate.machine2_state.j);
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out..system...tate.GL#OBAL.VARIARDES .DATA( in..syut Lstate.machine2..state.j) :X E;
out.,system...tate .GLODAL_VARIABLES. SEQ (in...aystem...tate .maehine2_B.tate. j) := -1;
out..systenLestate.machine2_.state.j := (in~systeam...tate.machine2..state.j mod 10) +1;

out-systesL.state.Inachine2_state.exp: C C(in..ysytea~utate.machin.2_..tate..xp) +1)mod 11);
when others =>
put(gError in action procedure*);

end case;
end Action;

Output Formiat
separate (main)
procedu~re output....tuple(tuple : in out Gstate...record-type) is
begin
if print..header then

new-.line(2);
setcsol (7) ;
put...line(' ml(seq,i,Sdata) , m2(exp,JRdata) , (DATASEQ,ACK) 0);
print-.header := false;

else
put(*( integerlimagettuple.machine~state(l)) )
put( *
put (tuple-machinel-state.seq,width => 1);
put(, , ;
put(tuple-machinel state.i,vidth => 1);
put(* , )
but L-enum-Ao.put (tuple.machinei..state.Sdata(l), set => upper..case);
put(, , )
put( integer image(tuple.machine~state(2)) )
put(, , )
put (tuple-machine2_state.exp,width => lb;
put(, 1);
put(tuple.machine2_state.j ,width => 1);
put(' , ');
butff..enum~io.put (tuple .machine2_state .Rdata, set => upper..case);
for i in 1- 10 loop
putt*,m);
but L-enum...io.put (tuple.GLOBAL..VARIABLES.DATA( i),*set => upper-..case);
put (,,*);
put(tuple.GLOBAL-VARIABLES.SEQ(i), width => 1);

end loop;
put(, , )
put(tuple.c3LOBAL-VARIABLES.ACK, width => 1);
put(* ]1);

end if;
end outputGtuple;

Global Hash Function (Window Size 10)
function GWOBALJiASI4 ( current..gstate tasGtaterecor&..type) return integer is

index: integer :.0g
eumi *u'm2:aintegers =0,

a a~~ machine..state~array -. current..gstate.aachine-o.tate;

index W=( 3() *83999) + ( m(7) * 72888) + (m(6) '61997) + (mn(5) '5995) +
-(mM4 * 46571) +(m(3) * 34677) + (m(2) * 21323) + (m~i) '19203) )I

sumi t-= but Zer-type poe (current..gstate .machinel~state. Sdata (current..gstate .machineltstate. i)),
sumli a =utmi,(23323 'current-.getate.machinel...tate . eq+31107'current-.gstate.machinel-state. i);
smimi:= smlm *(20331'buffer..typelpos(current~gstate.machine2_state.Rdata).

(19977'current~gstate-machine2_state.exp.17773*current-getate.machine2u-tate.j))I
for i in 1..10 loop

suM2 s= eUm2+butfer-typelpo.(current-getate.global variablee.DATA(i) )'1112*i.
currmit-.gstate.global-.variables.SEQ(i) *3371*20i,

end loop,
return ((iodex'5+euml*7+11' um2+7232'current...getate.globel~variablea.ACK) mod 1545423)1

and GLOSAL.JIASH;
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The result of t , Go Back N Protocol analysis(Wlndow size 10)

SUMMARY OF REACHABILITY ANALYSIS (ANALYSIS COMPLETED)

Number of states generated :30632
Number of states analyzed :30632
Number of deadlocks : 0

UNEXECUTED TRANSITIONS
*****NONE*****

The result of the Go back N Protocol analysis(Window size 12)

SUMMARY OF REACHABILITY ANALYSIS (ANALYSIS COMPLETED)
Num-ber of states generated :66655
Number of states analyzed :66655

Number of deadlocks : 0

UNEXECUTED TRANSITIONS*** * *NOE* ** **

The result of the Go back N Protocol analysis(Window size 13)

SUMMARY OF REACHABILITY ANALYSIS (ANALYSIS COMPLETED)
Number of states generated :90210
Number of states analyzed :90210

Number of deadlocks : 0

UNEXECUTED TRANSITIONS
*****NON•E* ***

The result of the Go back N Protocol analysis(Window size 14)

SUMMARY OF REACHABILITY ANALYSIS (ANALYSIS COMPLETED)
Number of states generated :122-80
Number of states analyzed :122880

Number of deadlocks : 0

UNEXECUTED TRANSITIONS
*****NONE*****

The result of the Go back N Protocol analysis(Window size 18)

SUMMARY OF REACHABILITY ANALYSIS (ANALYSIS COMPLETED)
----- r of states generated :290980
Number of states analyzed :290980

Number of deadlocks : 0

UNEXECUTED TRANSITIONS
*****NONE*****
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