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ABSTRACT

Underwater walking machines offer a potential for replacement of human divers in

certain aspects of underwater construction and inspection. One such vehicle, Aquarobot,

is currently under test in Japan. However, this vehicle is currently too slow to be

economically utilized, and limited hardware availability restricts progress in control

software improvements. A software dynamic simulation model is desirable to relieve this

restricted access. The problem addressed by this research is the modeling of system

dynamics of underwater walking vehicles with sufficient simplification to achieve a

real-time simulation. The approach taken includes an object-oriented, massless leg robot

dynamic model and employs a high performance graphics rendering toolkit.

The resulting simulations of a robotic joint actuator and of the robot itself utilizing

springs and dampers in the joints, runs in real-time. The robot simulation model executes

on a four-processor machine with under fifteen percent utilization of the processor

dedicated to system dynamics. This result indicates that the simulation is likely to retain

real-time capability after replacing the springs and dampers with the more accurate joint

actuator model also developed in this thesis. Acce!ion For
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I. INTRODUCTION

A. AQUAROBOT

Aquarobot is a six-legged "insect type", articulated, experimental prototype robot

under development at the Port and Harbour Research Institute (PHRI) in Japan. This

robot is being investigated as an alternative to the currently used human divers for seawall

construction and inspection. While the divers are fully capable, the limited stay time at

required depths make progress slow and expensive. A walking robot is preferred to

tracked, wheeled, or floating versions for its abilities to maneuver without disturbing the

bottom enough to cloud the water and restrict visibility, and to provide a stable reference

platform from which measurements can be made [Iwasakl, 1987]. The prototype

Aquarobot has successfully walked underwater and demonstrated functional feasibility for

the intended task, but it is currently too slow to be economically utilized [Davidson,

1993]. The Naval Postgraduate School (NPS) is working with PHRI to upgrade

Aquarobot's control software, from the original version written in BASIC, to improve its

operating speed.

B. GOALS

The goal of this thesis is to investigate the feasibility of dynamic modeling of

Aquarobot with sufficient simplifications to achieve a real-time simulation. The simulation
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model should be statically accurate and dynamically approximate. The major

simplifications considered are:

(1) massless legs,

(2) body mass evenly distributed in a cylinder,

(3) center of mass at geometric center of the inboard leg joints,

(4) infinite friction for foot cointact with surface,

The dynamic Aquarobot model of this thesis uses springs and dampers in place of

joint actuators for this initial feasibility study. A joint actuator simulation model, including

servomotor and controller models, is also developed and is intended to eventually replace

the springs and dampers. Inputs to that model will be control software orders to the joint

motor controller.

C. ORGANIZATION

Chapter H of this thesis reviews previous and concurrent work in the area of walking

robots with emphasis on work related to Aquarobot. Chapter M] provides a more detailed

description of Aquarobot and introduces the software tools used. Chapters IV and V

develop the necessary mathematical models and then present prototype dynamic

simulation models for an Aquarobot joint actuator and for Aquarobot itself (with springs

and dampers in place of joint actuators). Chapter VI reviews the results of simulations

accomplished with the models introduced in Chapters IV and V. Finally, Chapter VII

presents some conclusions, suggestions for further research, and a summary.

2



II. SURVEY OF PREVIOUS AND CONCURRENT WORK

A. INTRODUCTION

To place Aquarobot research in relative perspective, this chapter begins with a brief

historical review of walking machines. An overview of ongoing Aquarobot research at

NPS follows and places this thesis in context. Other contributions, some completed and

some currently in progress, are described. Also, as this thesis is a continuation of previous

work, a short review of some of the key elements of that work is presented to provide a

starting frame of reference.

B. BRIEF HISTORY OF WALKING MACHINES

In an early exploration of walking mechanisms, 1965 to 1968, General Electric

Corporation built a four legged vehicle called the Quadruped Transporter. Because of the

lack of theory and technology, designers incorporated human sensing and neural control of

the limbs by attaching "position following, force feedback" control levers to the operator's

arms and legs. Each of these levers had three degrees of freedom, corresponding to those

of the leg it controlied. Very few mastered the skills required to operate the vehicle, and

those that did found it to be very demanding [McGhee, 1985]. While the Quadruped

Transporter lacked practicality, its successful implementation encouraged further research.
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Automation of low level tasks, such as individual limb control, leaves the operator

free to concentrate on higher level, "supervisory control" of the vehicle. In 1977, this

method of control was used in the Ohio State University (OSU) "Hexapod Vehicle." The

operator controlled vehicle speed and direction, using a joystick, while limb motion

control and coordination was handled by computer. This machine was utilized in the

development of gait algorithms [McGhee, 1985].

[McGhee, 1986] addresses the energy-efficiency issue of limb control and introduces

a method used to achieve a cyclic leg motion without requiring the reversal of drive

motors. This approach was demonstrated in MELCRABs 1 and 2 at Mechanical

Engineering Laboratory in Japan.

From 1981 to 1986, the Adaptive Suspension Vehicle (ASV) was constructed and

tested at OSU. The ASV was a six-legged vehicle designed for outdoor operation on

irregular, unmapped terrain and included a self contained, onboard power supply. It

carried an operator who exercised supervisory control via a joystick and keypad. Leg

coordination and foothold selection were fully automated; the latter was allowed by

employment of extensive environmental sensors including an optical terrain scanner

[Waldron, 1986]. Related later work [Kwak, 1990] explores the use of rule-based limb

motion coordination to implement a "free," non-periodic, gait permitting on-line

optimization of foot placement.
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C. AQUAROBOT RESEARCH AT NPS

Aquarobot research at NPS is divided into two concurrent phases: control and

simulation. The first of these, control, consists of Aquarobot control software

development. The second phase, simulation, involves development of a graphical

computer simulation of the Aquarobot hardware. The simulator is required for the final

stages of the control software development, including testing.

1. Control Software Development

While final development and testing of control software depends the availability

of the simulation model, some work has been accomplished prior to such availability. In

[Schue, 1993] an algorithm is presented for statically stable, alternating tripod gait

planning and foot path planning for smooth leg motion during walking on flat terrain.

Further developments in gait planning algorithms and demonstration of alternative gaits,

which allow variable direction and speed but require continuous adjustment of leg liftoff

and touchdown sequence, are reviewed in [Yoneda, 1993].

2. Simulation Software Development

The framework for the Aquarobot simulation model is provided in [Davidson,

1993], in which an object-oriented kinematic model is developed. Both

Danevit-Hartenberg (DH) and Craig (Modified Danevit-Hartenberg or MDH) methods are

presented and then compared. The fundamental difference in the two methods is in the

coordinate systems used for a "link," the rigid limb component between two joints. The
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DH methodology utilizes the outboard, closer to end-effector, joint as the coordinate

system origin while the Craig method uses the inboard, closer to body, joint. The Craig

version of Davidson's kinematic model is used in this thesis.

[Goetz, 1994] explores a variety of enhancements for the Aquarobot simulation

rnodel. A graphics model, which incorporates a surrounding operating environment

(terrain), is developed to replace the original stick figure. The mudel includes I/O control

interfaces (i.e. keyboard, joystick, spaceball) and foot/ground collision detection.

A complete, unsimplified physical dynamic simulation model of Aquarobot,

including the hydrodynamic forces of its operating environment, is also being developed

[McMillan, 1993]. While this simulation is not expected to run in real time, it will provide

valuable data for comparison to the simplified model.

D. REUSED SOFTWARE

As mentioned above, the Aquarobot simulation presented in this thesis is based on the

model described by [Davidson, 1993]. A summary of the key features of that model is

provided here for quick reference.

1. Rigid Body Class

In both LISP and C++ versions of the Aquarobot model, system dynamics for six

degrees of freedom, three translational and three rotational, are handled within a "rigid

body class" from [Davidson, 1993]. System state variables include world coordinate

position and orientation, stored in a 4x4 "body to world" coordinate transformation
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matrix, called the "H-matrix", and velocities in body coordinates. Euler integrations are

used for dynamic updates. Acceleration equations in body coordinates are:

,=vr-wq+ -g sinO; (2.1)

= wp- ur + L +g cosO sin ; (2.2)

iv=uq - vp + L +g cosO coso; (2.3)

[(= y [ , - 1. )q,+ L) (2.4)
I=

Wn -1.)r +AA(2.5)

;.=[(I. -',,X +M.(26
&(2.6)

where m is body mass; g is gravitational acceleration, in world coordinates; I•, IY,, and I.

are the moments of inertia; f= (,fy, f) is the vector of applied forces; T-= (L, M, N) is the

vector of applied torques; theta and phi are Euler pitch and roll angles, respectively; u, v,

w are the components of translational velocity; and p, q, r are rotational rate components

[Frank, 1969]. With a single exception, g, the above values are expressed in body

coordinates. The dynamic update is achieved by determining incremental position and

orientation changes, in body coordinates, and using those to generate an incremental

motion matrix which is then post-multiplied with the body's H-matrix, and using that result

to update (replace) the H-matrix. Euler integrations and equations 2.1 through 2.6 are

used to update the velocity state variables (Davidson, 1993].
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2. Kinematic Model

Each Aquarobot limb (leg) is made up of a series of links: the inboard end of the

series being physically connected to the robot's body and the outboard end the foot. Using

the Craig method, a coordinate system at the outboard end of a link is described relative to

the coordinate system at the inboard end by a transformation matrix called a "T-matrix".

The T-matrix depends on the physical construction of the link and, in the case of rotary

links, the rotation angle of the inboard joint. The origin of each such coordinate system is

the position of the joint between two such links, and the z-axis is aligned so that a joint

rotation is a z-axis rotation. The entire system is kept in a hierarchical structure of "rigid

bodies", with H-matrix updates done from the top down: i.e. a link's H-matrix may be

updated only after the link next inboard is updated (the robot body in the case of the

inboard end of each leg) [Davidson, 1993].

[HK] = [H. 4] [TJ] (2.7)

E. SUMMARY

The development of the Aquarobot simulation model will directly support final

development and testing of Aquarobot control software. The dynamic model developed in

this thesis is based on a previously developed kinematic model. Before describing the

dynamic model, a more detailed description of Aquarobot and an overview of the software

tools used is needed and is provided in Chapter IMI.
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III. DESCRIPTION OF AQUAROBOT VEHICLE AND
SIMULATION ENVIRONMENT

A. INTRODUCTION

This chapter provides a physical description of Aquarobot, including some details that

are beyond the scope of models developed in this thesis. Special emphasis is given to the

joint actuators as they are the primary feature to be modeled. In addition, the software

tools used in the development are introduced.

B. PHYSICAL DESCRIPTION OF AQUAROBOT

Figure 3.1 is a photograph of Aquarobot which has a body, that is generally

cylindrical in shape, and six legs, equally spaced at sixty degrees apart. Mounted on top of

the body is a camera boom with three rotary joints for positioning. The boom is equipped

with an ultrasonic ranging device to assist in the scaling of measurements. Within the

body are two inclinometers (for attitude sensing), a gyrocompass, and a depth sensing

device. Aquarobot is computer controlled from the surface via a four centimeter diameter

tether cable attached to the top of the body. The cable carries control signals to the robot

and returns sensor signals back to the controlling computer.

Each of the six identical insect type legs has three rotary joints, which are driven by

the joint actuators described in the next section, and a freely rotating ball joint to attach

the disc shaped foot. Each foot has a pressure sensitive touch sensor to provide an

9



indication of ground contact. Figure 3.2 illustrates the axis of rotation for each joint in an

Aquarobot leg.

Figure 3.1
Photograph of Aquarobot

Link2

Jomt2 Lil

uioint3

Body
Ball Joint

Foot

Figure 3.2
Aquarobot Leg Construction
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C. AQUAROBOT JOINT ACTUATORS

Figure 3.3 is a block diagram of an Aquarobot joint actuator. Control software sends

incremental rotation orders to the controller as pulses, with polarity indicating the desired

direction of rotation. Motor response is fed back to the control software as pulses in the

same manner. These feedback pulses are produced by a pulse generator on the motor

shaft. Additional signals to and from the control software include pulse counter (PC)

overflow, pulse counter clear, and driver enable.

Overflo•,,lear

Figure 3.3
Aquarobot Joint Actuator

The difference between the actual and ordered position, the error signal of the motor,

is kept in the pulse counter. Orders increment the counter, plus or minus, depending on

desired direction; response pulses decrement it. One hundred pulses are required for one

11



motor revolution (determined by the motor shaft pulse generator output). The counter

overflows if the maximum count, +/- 6144 pulses, is exceeded.

A digital to analog converter (D/A) produces a DC signal directly proportional to the

current count in the pulse counter, and its output is the motor driver's primary input. That

is, the larger the error, the higher the voltage applied to the motor to correct the error. A

maximum count of +/-6144 is converted to +/- 1OVDC, i.e.

DA.0 t = count * (10/6144). (3.1)

A high gain for the error signal is desirable for fast response and for sufficient

response to small errors. However, by itself, the high gain would cause severe overshoot

and oscillations in the motor. Degenerative feedback, proportional to motor speed, is

used to prevent, or at least minimize, this overshoot. This degenerative feedback is

provided by the frequency to voltage converter (F/V) which monitors the pulse generator

output. The output is 3VDC per thousand RPNTs, so

FVw = RPM * (3/1000) (3.2)

The driver amplifies outputs from the D/A and F/V converters to produce the source

voltage (;,) for the servomotor. So far, we have

V, = GIDAw - G2FVw,, (3.3)

where G, and G2 are respective gains. However, the driver is actually more complex and

includes an additional internal feedback path.

The signals form the D/A and F/V converters are amplified and fed into the pulse

width modulator (PWM) with the F/V signal inserted between inverting amplifiers to

12



provide degeneration. A current pickup on the PWM output line provides a signal

proportional the current drawn by the motor, and therefore proportional to the motor

torque. Recall that for a given voltage applied to a motor, it has a limited speed due to

back EMF. As the motor approaches that speed, it draws less current. This current

(torque) feedback signal provides regenerative feedback in the driver during motor

acceleration, thus reducing the response time. Adding the torque feedback to Equation

3.3 yields

V, = GiDA.., - G2FV0., + G3•I, (3.4)

where 1 represents the motor's armature current. Actually, this equation still neglects

some complexities in the Aquarobot joint controller. Not shown in Figure 3.3 are

feedback capacitors around amplifiers which further modify the equation for V. These

effects are not modeled in the work of this thesis.

The motor is driven by a squarewave rather than a DC voltage. Figure 3.4 illustrates

idealized signals. The function of the PWM is to provide a squarewave of constant

amplitude, zero to +/- 75 volts, with a duty cycle proportional to the input signal, so V, in

Equation 3.4 is actually an average value. Motor response to this signal is very close to its

response to a DC voltage equal to the average voltage of the squarewave. Applying

Signals I or 2 of Figure 3.4 to the motor is thus equivalent to applying +25VDC or

-25VDC, respectively. This methodology is used primarily for its efficiency advantage

over a DC linear amplifier [Truxal, 1958].
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+75VHJ FLFL

-75V
signal I signal 2

Figure 3.4
PWM Outputs For 33 % Duty Cycles

Attached to each servomotor is a harmonic reduction gear, built together as a single

unit. The model used for joint one in each leg, RA-20, has a reduction ratio of 161:1,

while that used for joints two and three, RH-25, has a 160:1 ratio. In addition, joints two

and three have a bevel gears cascaded with the harmonic gears with 3:1 and 2:1 ratios,

respectively. Figure 3.5 summarizes the total reduction ratios and gives the control pulses

required for a single joint shaft revolution.

Joint 1 2 3

Harmonic Gear 161:1 160:1 160:1

Bevel Gear NA 3:1 2:1

Total Gear Ratio 161:1 480:1 320:1

Pulses / Revolution 16,100 48,000 32,000

Figure 3.5
Total Reduction Gear Ratios and

Control Pulse Requirement per Joint Revolution
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D. SOFTWARE TOOLS

C++ is the programming language selected for modeling Aquarobot. This choice was

based on both hardware and software considerations. IRIS Performer, a C/C++ visual

simulation toolkit, provides rendering that is fast enough to display a real time dynamic

simulation [Goetz, 1994]. Common LISP was used for rapid prototyping and testing

during the early stages of development.

1. C++

In a long term project with many contributors, object oriented design provides a

high level of abstraction which promotes rapid system level comprehension by new team

members as well as loosely coupled, easily maintained source code. Not only does C++

support the object oriented design paradigm, but also, it is based on, and includes as a

subset, the highly efficient, structured language, C [Wiener, 1988].

The simulation platform, both here and at PHRI, is an IRIS Reality Engine. The

C/C++ compilers delivered with the IRIS systems are very efficient, due to direct access to

the low level hardware, and are intended to be used as native development languages.

Popularity and widespread use make C/C++ source code portable, and while

portability is not a key issue for the Aquarobot simulation, it is very much so for the

Aquarobot control software which is likely to have to survive hardware upgrades.
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2. Performer

IRIS Performer is used primarily for its performance as a rendering tooL

Performer is a hardware oriented, C/C++ graphics tool kit designed to operate on Silicon

Graphics products. Its routines take fiull advantage of the "known hardware" platform to

allow much higher performance than routines written for generic hardware. Also, some

precision is traded for speed as real numbers in Performer data structures are single

precision "floats" rather than "doubles". Upon initialization, Performer detects hardware

capability and automatically sets up a multiprocessing environment with shared memory

when running on a multiprocessor machine. The default configuration, which the user

may override, is separate processors assigned for (1) user application, (2) graphics

database culling, and (3) drawing the culled database to a graphics window [SGI, 1992].

Performer's graphics database is stored in a hierarchical data structure, a tree.

The structure is culled and rendered by doing a pre-order traversal with child nodes

inheriting the accumulated environments (transformations) of all ancestors traversed in the

current path. These accumulated environments are kept on a stack and are popped off

when traversing back up the tree. The basic nodes are Scene (the root), Static Coordinate

System (SCS), Dynamic Coordinate System (DCS) (variable for motion where an SCS is

fixed), Group (a container for children requiring a common transformation), and Geode (a

container for polygons to be rendered). Geodes must be leaves but may have more than

one parent. This reduces the memory requirements when a group of polygons is to be

rendered more than once in a frame (two or more identical objects) [SGI, 1992].
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Robotics and mechanics users must be aware that graphics standards are used in

matrix construction and operations. The graphics matrix is the transpose of the standard

robotics matrix [Fu, 1987], GMO, = RMA. This is only important when using the poMatrix

data type and operations outside those that directly support the graphics database, or

when directly manipulating individual elements, rows, and / or columns. Since MxN =

(NrXMf)T. the order of matrix multiplications may also have to be reversed. Lastly. X and

Y axis rotations are as expected; however in Performer, pitch refers to an X, rather than

Y. axis rotation, and likewise, roll refers to a Y axis rotations [SGI, 1992].

Synchronization for a real-time application may be achieved by setting

Performer's "desired frame rate" and then using the pfSync fumction call. The pfSync

fimction will put all processes to sleep between each frame to force the desired frame rate.

If the desired frame rate is faster than can be achieved, pfSync will have no effect, and the

application will free run at its fastest speed. In the Aquarobot simulation, the frame rate is

set to twenty frames per second and then a fixed delta-time of one twentieth of a second is

used for dynamic updates. Reading the internal clock for delta-time would have been

equivalent providing the application is capable of running at the desired frame rate. The

fixed delta-time ensures control over data points [SGI, 1992].

3. LISP

The problem with "rapid, experimental" prototyping in C/C++, as well as other

compiled languages, is the difficulty with testing and verification. Specifically, a test shell

must be written, compiled and run to thoroughly test a block of source code. If the test

17



results in the detection of errors, debugging tools are available, but the source code must

be recompiled to include them. Other methods, such as insertion of additional lines of

code, are also available but also require multiple compilations. In any case, logic errors

are still difficult to find when they exist in large blocks of code, especially when they only

apply to specific inputs. LISP, on the other hand, is an ideal language for experimental

work. LISP is an interpreted, functional language which gives the developer the ability to

call any defined function directly from the command prompt. The flmction's return value

is immediately displayed for easy comparison to expected values; test routines are not

required. Since functions may be nested, these test calls may include any desired level of

abstraction. Variables are also directly accessible in LISP and may be inspected at any

time. The basic structure of a LISP program is an on-line database of definitions:

constants, functions, and symbols (pointers to variables) [Koschmann, 1990].

Weak typing in LISP allows additional flexibility. Typing is done dynamically at

run time. For example, a single definition of the function "minimum" may be used for

integers, reals, or any argument type for which the operator "<" is defined. Variables,

arguments, and return values may also be lists, allowing the developer to call a function

with a comprehensive set of test inputs [Koschmann, 1990].

The Common LISP Object System, CLOS, provides full support for object

oriented programming. In this thesis, a prototype design using CLOS is first developed to

implement system design decisions. Subsequent translation to C++ is then accomplished

without abstract structure modifications.
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E. SUMMARY

This chapter physically describes Aquarobot with the intention of providing sufficient

orientation prior to the model presentations. Several Aquarobot features are not included

in the dynamic simulation model presented later in Chapter V. 1 he kinematic model

includes the body, legs and feet but not the camera boom. Joint position, foot contact,

and azimuth information are available; however, attitude and depth are not. The tether

cable and hydrodynamic forces, currents and viscosity, are also neglected.

Also in preparation for the model presentations, the software tools utilized, along

with the reasons for their selections, are introduced. Object-oriented system design and

the need for a high performance made C++ ard IRIS Performer ideal software tools for

the Aquarobot simulation model CLOS, with its capability for rapid testing of complex

functions, was used for prototyping and model verification.

The following chapters present dynamic simulation models of an Aquarobot joint

actuator and Aquarobot itself.
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IV. JOINT ACTUATOR MODEL

A. INTRODUCTION

The purpose of this chapter is to present a simulation model for a single Aquarobot

joint actuator. It begins with a review of the basic mathematics required to model

servomotors and reduction gears and then develops the joint actuator model.

B. BASIC DC MOTOR

A motor is a device used to convert electrical energy into mechanical energy. The

force, F, on a current, i, carrying conductor of length I in a uniform magnetic field, B, is

given by [Halliday, 1981]

F=idl x B. (4.1)

If the conductor is fixed on a shafi, parallel to the shaft, at radius r, the resulting torque,

tau, is given by [Hailiday, 1981]

S= r x F. (4.2)

The motor's armature includes a set of such conductors and is usually constructed so as to

be symmetrical with respect to the axis of rotation; therefore, the total conductor length

and relative position (to the magnetic field) is independent of the armature's angular

position. Furthermore, if a constant magnetic field (ie. permanent magnet or constant

20



current electromagnet) is used, then the force and resulting torque become directly

proportional to the armature current, simplifying the above equations to

F = iC, (4.3)

and

"d= iK, (4.4)

where taud is developed torque, and torque constant K, is a characteristic of the motor.

The armature current depends on applied voltage, armature resistance, and armature

angular velocity, omega. The velocity dependency is due to the voltage induced in the

conductors as they move through the field (Faraday's Law). Since this induced voltage is

of such polarity that it causes a decelerating torque (Lenzis Law), it is called Back or

CounterEMF, V [Halliday, 1981] [McPherson, 1981]

Vb = Kbw, (4.5)

where Kb is the motors back EMF constant.

Armature inductance is usually negligible for high quality servomotors, so using Ohm's

Law, the armature current, I., is given by [Halliday, 1981] [McPherson, 1981]

Ia = r---- (4.6)Ret

where VP is the voltage applied to the armature and R. is armature resistance.

Combining Equations 4.4 through 4.6, the motor's developed torque is
K,(V,-Kxb) (4.7)

Td = loKt = Re

Given no external torques and ignoring losses for now, for any V. there is an associated

maximum speed, when V = Kb omega, that results in taud = 0 and therefore no further
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acceleration. Still ignoring losses, motor acceleration, omega-dot, is given by the standard

rotational dynamics equation [Halliday, 1981]

* =orque •d*¶I (4.8)

where J, is internal motor inertia, and tau, and J are external torque and inertia,

respectively. There are several sources for losses in a motor, but as long as the motor is

operated within its prescribed limits, most of them may be consolidated into two groups:

constant, F#, and directly proportional to velocity, F, omega. Some examples are friction,

copper (i2R), and windage [McPherson, 1981]. External loads may also include constant

and velocity dependent losses. The actual loss is state dependent and requires some

special handling:

(1) shaft turning (omega <> 0): loss opposes omega

Ilossl = F, + F&knl; (4.9)

(2) shaft at rest (omega = 0) : loss opposes torque

(a) torque sufficient to overcome friction (Itorquel > Fc)

loss = F,; (4.10)

(b) torque insufficient to overcome friction (requires torque - loss = 0)

loss = torque. (4.11)

State 2a may be handled by the method used for state 1, but since it is already detected by

the test for state 2b, there is no reason to perform the arithmetic. Incorporating losses

into Equation 4.8 yields

rd+t,-Laues= -o.+/ (4.12)
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The only other significant loss not fitting into one of the groups above is the voltage drop

across the motor brushes, brush drop loss Vb,, The voltage applied to the motor armature,

Vt, is the motor source voltage, V, minus this brush drop loss [McPherson, 1981].

Va = V, - bd (4.13)

Combining Equations 4.7, 4.12 and 4.13, motor response depends on construction, state.

applied voltage, and load (external torque and inertia).

K't Ra •+ T, - Losses

• = J,, +.h (4.14)

As a final note, motors are given voltage and load ratings. These are determined by

motor construction and are intended to keep armature current within safe operating limits

[McPherson, 1981].

C. REDUCTION GEAR

A reduction gear is a mechanical coupling device that provides a mechanical

advantage allowing a higher speed, lower torque source to drive a lower speed, heavier

load. This enables both source and load to operate at or near their optimal, most efficient

speeds, even though those speeds are not the same. The gear ratio, n, is the ratio of the

input and output shaft angular displacements, velocities and accelerations, theta, omega

and omega-dot, respectively [Chen, 1993].

0 = Ou (4.15)

o ,, (4.16)

(;Out (4.17)
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While the output shaft speed is reduced by a factor of n, the torque is increased by a factor

of n [Chen, 1993].

Tout, = It Ti (4.18)

Recalling and rearranging Equation 4.8 and applying it to the output shaft

, -.' (4.19)

Substituting for omega-dot.., and tauu.,, using Equations 4.17 and 4.18

J. (4.20)

= n2 (4.21)

= n 2 J,. (4.22)

This gives a coupling factor for inertia of n2, ie.

J. n2" (4.23)

Combining a motor and a reduction gear as a drive train for some load, Equations 4.12,

4.18 and 4.22, yields:

Td + (.,/In) - Losses (4.24)

or

(n TO +T - (n Loss) (4.25)(J. 11) +..

where m is the input (motor) side of the reduction gear, and x is the output side.
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D. JOINT ACTUATOR SIMULATION

Figure 4. 1 is a block diagram of the Joint Actuator Simulation Model. Refer to

Figure 3.3 for a comparison to the actual Aquarobot Joint Actuator. Since the model was

in essence a "bench top" device, physical limitations, such as pulse counter overflow and

motion limits, were not detected or enforced. Also, input pulses were replaced by a

change in desired angular position of the joint shaft in revolutions, delta-theta, and the

motor driver's rectangular wa-ve output is simplified to its average value. Loading and

operating instructions and a complete source code listing for this model may be found in

Appendix A.

positioning

Figure 4.1
Joint Actuator Simulation Model

The D/A converer is not necessary in the simulation model as the Pulse Counter

stores the difference between the current and ordered shaft positions rather than a discrete

pulse count. Motor velocity and armature current, slots values in the motor class, are
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directly accessed to provide those inputs to the driver. The cascaded amplifiers in the

driver are separated and then summed in order to simplify gain adjustments. Positional

feedback is taken after the reduction gear to match the implementation of the positioning

orders input. This is in contrast to the physical device in which feedback pulses come

directly from the motor itself.

1. Base Classes

Several base classes are used in the joint actuator model. Refer to Appendix A

for a source code listing. The first is the "diff-counter" class used to model the pulse

counter. A single slot, "current-count", which is initialized to zero, holds the cumulative

sum of all delta theta orders and feedback. Its single method, "diff-signal", updates and

returns the current count.

count = count + order -feedbac (4.26)

The "amplifier-clipper" class has three slots: "amplification-factor" (or gain),

"max-value" and "min-value". The "amplify" method simply multiplies the argument by

the gain and returns the product, clipped of course, to the maximum or minimum value if

the product exceeds those prescribed limits.

The "driver-class", a sub-class of amplifier-clipper, adds three gain slots for

independent amplification of the three inputs before summing them in the final

amplifier-clipper stage. The current feedback is not internal but relies on a saved slot

value in the motor-class.
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The "shaft" class is used as a superclass for the motor class, as slots for reduction

gear input and output shafts, and for the actual joint shaft. Slots angular-position (theta),

angular-velocity (omega), inertia, coulomb-friction-constant (Fc or constant loss

component). viscous-friction-constant (Fv or velocity dependent loss component), and

time-stamp are defined. Methods are defined to provide capability to set theta and omega

to some position and speed, reset theta and omega to zero, and couple (transfer) theta and

omega to another shaft.

The "motor" class inherits from the shaft class and defines additional slots:

torque-constant (K,), back-emf-constant (Kb), armature-resistance (R.), armature-current

('a), and brush drop parameters (max-brush-drop and half-brush-drop-source-value).

Methods "developed-torque" and "omega-dot" are direct implementations of Equations

4.7 and 4.14, respectively. Brush drop was approximated by using an exponential form

that approaches max-brush-drop as the source voltage increases [McPherson, 198 1].

Vbd = Vbdum. (1 -0.5 1 IV, l&wd.) (4.27)

Method "run-motor" gets the elapsed time (dr), calculates omega-dot, then updates the

motor state using Euler integrations.

The "reduction-gear" class has slots "gear-ratio" (n), "in-shaft" and "out-shaft",

the last two being instances of class shaft. Methods are provided to multiply or divide an

argument by n (n squared if the argument is inertia). The method "rg-connect" is provided

to replace the shaft couple method for internal coupling and reduces the coupled theta and

omega by the gear ratio.
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2. Joint Class

The "joint" class actually represents a joipt-actuator. It includes the entire

system: motor controller, servo-motor (prime-mover), and reduction-gear. An additional

shaft slot, "load-shaft", is actually only included to allow a convenient method to store the

previous theta value in order to determine the feedback delta theta. The output shaft of

the reduction gear actually holds the remaining load shaft slot values. The motor could

likewise have been the reduction gear input shaft; however, they were kept separate for

clarity.

Methods are provided to sum system parameters external to the motor (i.e.

load-inertia, ...) so they may be passed into calls to run-motor. "Feedback" returns the

difference between the output shaft of the reduction gear and the load shaft.

"Increment-joint" calls "run-motor" then couples all the shafts, being careful to save the

old reduction gear output shaft position first for use in next call to feedback.

"Step-input-to-joint" provides the facility to send delta theta orders to the pulse counter,

and "reset-joint" reinitializes the system.

Loading "joint.instance.cl" creates the instance of a joint used for model testing.

The functions provided allow various orders to be sent to the joint and then displays

system response to those orders. "Move-joint-mult" orders multiple repetitions of the

same "delta-theta" order, each order being initiated upon completion of the previous

order. "Move-joint-list" is similar in execution, but takes a list (sequence) of delta-theta's

rather than repeating the same one. "Rau-joint" orders a continuous sequence of small
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delta-thetas, determined by argument "speed" and system elapsed time, required to achieve

the ordered RPM speed. The remaining functions are intended to be internal calls. They

are "clear-and-reset" (called by each of the previous three for initialization),

"move-joint-list-2" (recursive call for move-joint-list), and "move-joint" (called by

move-joint-mult and move-joint-list-2). "Move-joint" is the workhorse and makes

repeated calls to method "increment-joint" until the ordered delta-theta has been achieved

(the pulse counter's current count approaches zero). In contrast, "run-joint" makes

repeated calls to "increment-joint" until the ordered speed is achieved.

3. Additional Supporting Code

Loading "Window.instance.cl" creates a display window with a gradicule. A call

to "display-state" reads the appropriate state slots and draws the set of data points for the

current time. Additional methods are provided for internal calls and for reinitialization

(i.e. clearing or resetting the window). The end result is a display of system state vs. time

for program output. Finally, the file "joint-loader" is provided as a convenience, and

loading it ensures loading of the source code files in the correct sequence (dependencies

are observed). After loading the , aurce code, it then makes calls that test run various

features of the system.

E. SUMMARY

This chapter provides a review of the basic mathematics required to model

servomotors and reduction gears and then describes the simulation of an Aquarobot joint
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actuator. The model is simplified in that exception handling control signals are ignored

and the pulse counter input is desired deka-theta for the joint shaft, but functionally, it is

equivalent. In the next chapter, the Aquarobot model is presented; however, joint

actuators are not yet included but instead are functionally represented by springs and

dampers.
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V. SPRING AND DAMPER MODEL

A. INTRODUCTION

A modified dynamic simulation model for Aquarobot is developed in this chapter. It

has springs and dampers in place of servo motors to provide joint torques. The springs

and dampers are intended to eventually be replaced by a joint actuator model such as that

presented in the previous chapter. The model can be tested by giving the Aquarobot an

initial position and orientation and then allowing it to drop, observing the response as the

feet contact the ground and the legs provide support.

Since the purpose of the model is to provide an approximate dynamic simulation.

capable of running in real time, several simplifications have been made:

(1) the legs are considered to be massless;

(2) the ground-foot friction is infinite (no slippage);

(3) the center of mass is assumed to be at the geometric

center of the inboard joints of the legs; and

(4) body inertia is that of a solid homogeneous cylinder.

In addition, joint stops (physical limits) in the kinematic model are disabled and collisions,

other than feet contacting the ground, have been ignored.
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B. INVERSE KINEMATICS

The Aquarobot leg kinematic model allows determination of foot position, given the

joint angles. The inverse kinematic problem, on the other hand, is to determine the joint

angles, given the foot position. Using the appropriate coordinate systems simplifies

inverse kinematics. Figure 5.1 illustrates the coordinate system used to calculate joint I's

angle. theta 1: the joint is the origin, the Z-axis is down (parallel to body Z-axis) and the

X-axis is radially outward from the body. Thetal is measured as a right handed Z-axis

rotation using the X-axis as a zero reference.

oitl.
body -oitl >X

Top View v foot
Y

Figure 5.1
Top View of Jointl Coordinate System Used to Calculate Theta 1.

Given the foot position in this coordinate system, theta I is easily calculated:

0 arctan 

(5.Y
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joint3

Side View

Figure 5.2
Side View of Coordinate System Used to Calculate Theta2 and Theta3.

Figure 5.2 illustrates the coordinate system used for calculating theta2 and theta3. Joint2

serves as the origin, the X-axis is defined as the direction directly away from joint 1. and

the Z-axis is again down. Using this coordinate system reduces the problem to two

dimensions as the y-component of the foot position is now zero. Figure 5.3 and Equation

5.2 illustrate the law of cosines [Oakley, 1971] which is used to determine theta2 and

theta3.

a 2 = b2 +c 2 -2bccos (5.2)

joint3 .leta3

a C L2 C

joint2 +•teta2 L3 x
B D >A

Cc A z(foot)

V D V
Z< x(foot) > foot

Figure 5.3
Applying Law of Cosines
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Solving Equation 5.2 for angle A:

A = arccosF bc 2  1" (5.3)

Angles B and C are determined in the same manner:

B = arccos[!;±-,2 ±, (54)

C = arccos [F2 -b-•21. (5.5)

Referring back to Figure 5.3, sides a and b correspond directly to the lengths of Iink2 and

link3, respectively, and side c may be calculated using Pythagorean's theorem:

c= . (5.6)

Angle D may be deterrmined by several trigonomic functions; arcsin is used here:

D = arcsin [" •. ]. (5.7)

"[heta2 and theta3 are measured using the sign convention shown. Note that theta3 is the

negative of C's compliment:

02 = B- D, (5.8)

and

03 = C-. (5.9)

Combining Equations, (5.4, 5.7 and 5.8) and (5.5 and 5.9), and substituting L2 and L3 for

a and b results in

02 = arccos L2 + - arcsm[ -],and (5.10)

03 = arccos[L 2L22 +L1 -. (5.11)
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C. JACOBIAN MATRIX

The Jacobian Matrix, J,(q) or simply J,, of vector r with respect to vector q is

defined:

J,,q (5.12)

and is used to express the relation between an end effector velocity and the joint velocities

of a manipulator [Yoshikawa, 1990]. In the case of Aquarobot, the foot velocity with

respect to leg joint velocities is given by:

Xfoof 0 I

I -~fo I.OJ~3 6 (5.13)

By rearranging Equation 5.13, the inverse Jacobian and the foot velocity may be used to

determine the joint velocities:

01 XfOW0 = [JJ- o (5.14)

603 j fL o

The Jacobian will also be used in the next section to determine ground reaction forces.

The derivation of the Jacobian matrix for an Aquarobot leg is straightforward. The

foot position of an Aquarobot leg is kinematically described as a function of the joint

angles in [Schue, 1993]:

x=LOcos0o+L 1 cos0O1 +L 2cos0oIcos0 2 +L 3 cos0olcos02, (5.15)

y = Losin0o +Li sin0oi +L 2sin0o1COS0 2 +L 3sin0otCOS0 23, (5.16)

= - L 2sin0 2 -L 3sin0 23, (5.17)
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where L, is linki length, thetai is joint, angle, theta4 is the sum of thetai and theta,, and link0

represents the constant pseudo-link from center of body to joint, and has a joint angle

equal to the "leg attachment angle". Differentiating Equations 5.15 through 5.17 gives:

x-L i(sin Oot 61 ) -L2 (sin~oiCoOS2 61 +cos OosinO 02)6

-L.3 ( sin0ocs01CO036 +cos0oisin0 23(62  03 )), (.8

0C +sin0olSin02 02)

-L3 (cos~Otcos023 01 +Sin0o1isi0 23(624+3)) ,(5.19)

=-L 2 ( COS0 2 02 ) -L3 (CsOS23 (02 03 ) ) . (5.20)

Regrouping and translating Equations 5.18 through 5.20 into the form of Equation 5.13,

the Jacobian Matrix is given by

-(Li + L2cos02 + L3cos023)sin0o1 -(L2sin0 2 - L3sin023)cos0o1 -L3coSO~Osin823

J= (Li +L2cos02+L 3cos023)coS0o1 -(L 2sin02-L3sin02)sin~oi -L3sin0oisin0 23

0 -L 2cO602 - L3 cAOSO -L 3cAO023

(5.21)

D. FORCES ON AQUAROBOT

Assuming homogeneous cylindrical distribution of body mass and massless legs

reduces the complexity of the forces and torques on Aquarobot. As Figure 5.4 illustrates,

the resulting summations of these forces and torques may be expressed

-+ 6 --

f .iquro.b = mg + Y fASg, (5.22)
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and

T .4quawobot = leg ×J'g, (5.23)
leftI

where f,, is ground reaction force, and r,, is the moment arm, from the body's center of

mass to the foot, on which that force is exerted.

r
ground leve foot in contact

Figure 5.4
Forces on Aquarobot

Given an initial known state (position, orientation and velocity), Aquarobot's motion may

be completely described by application of Newton's second law. The kinematic solution

for r,,, is already available [Davidson, 1993], so all that remains is determination offo,..

The torques at the joints in a manipulator are related to the force exerted by the end

effector by the transpose of the Jacobian [Yoshikawa, 1990]:

T= Te 2  [J] T (5.24)
1T33
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wheref is the force the foot exerts on the ground, equal magnitude but opposite direction

of ground reaction force. To avoid confusion, f will thus refer to the ground reaction

force, the force the ground exerts on the foot, as it is the force in which we are interested;

therefore Equation 5.24 must have a sign change:

T= [J], -f). (5.25)

Solving Equation 5.25 forf yields:

f =_[jTr-'T. (5.26)

E. SPRING AND DAMPER JOINT TORQUES

In the spring and damper model, joint torque is the sum of spring restoring torque and

damping torque:

'jr:=(-k,(0 - Oo)) + (-kd ),(5.27)

where k, and kd are spring and damping constants, and thetaO is the ordered position. For

the remainder of this chapter, thetaO will be taken as the rest position or zero torque

reference. For convenience, the symbols on the right side of Equation 5.27 will be used to

refer to their vector forms and will represent all three joints in a leg. Replacing the left

side with T, and assuming the same spring and damping constants for each joint,

01 010 91
T=-k, 02 - 02, -kd . (5.28)

031 031
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The joint angles are determined using the inverse kinematic method described above

and are then available for the Jacobian matrix. For any foot in contact with the ground, its

velocity, relative to the body, is simply the negative of the sum of the body's translational

velocity and the cross product of the body's rotational velocity with the foot's position

vector. Combining Equations 5.14 and 5.27, and substituting for foot velocity gives us:

T = -k, (0 - 0o) + kd J-1 [Vbod, + (Obo4. x rfow,)], (5.29)

which is now substituted into Equation 5.26 to give us the ground reaction force:

f = [JTI [k,(O - Go) - k 1J-' [vbodt. + (bodb.ý. X rfoyt)]. (5.30)

F. LISP PROTOTYPE

The kinematic model for the Aquarobot simulation was borrowed from [Davidson,

1993] with the only code modification being the conversion to Modified

Danevit-Hartenberg (MDH) coordinate systems to match the C++ version. The complete

source code listing with loading and operating instructions may be found in Appendix C.

The additions required for dynamic operation of the model are best presented by the

following walk-through of a dynamic update. Figure 5.5 provides a flowchart for

reference.

A dynamic update of Aquarobot is achieved by calling method "update-aquarobot".

The body's acceleration, velocity and position are all updated by calls to previously defined

methods in the rigid-body class. After these are completed, and the body is repositioned,

the legs, forces and torques are then updated by calling "update-forces-and-torques".
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Figure 5.5
Flowchart for Dynamic Update of Aquarobot.

Gravity is handled separately in the "update-acceleration" method; therefore, only the

forces and torques due to foot contact with the ground need be considered.

Update-forces-and-torques resets the body's forces-and-torques vector, a rigid-body slot,

to zeros, then calls "add-leg-forces-and-torques" for each leg to generate an updated

cumulative value.
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Add-leg-forces-and-torques tests for "foot-contact", a Boolean type slot, or

"new-contact", a function that sets foot-contact to true and the foot's world z coordinate

to zero (ground level) if ground penetration is detected (z coordinate greater than zero).

If there is no foot contact, nothing happens: joint angles remain set to their default values

and the body's cumulative forces-and-torques value is left unchanged. If however, there is

contact, the inverse kinematics routine is called, the ground reaction force is calculated

using Fquation 5.30, and the joint angles are updated. Before updating the cumulative

force- s-torques, loss of contact must be detected. This is done by testing the world z

component of the calculated ground reaction force in a call to "still-in-contact". If the

force is such that it is pulling the robot down rather than supporting it, then foot-contact is

set to false, the joint angles are reset to their default values, and again, no contribution to

forces-and-torques. If the foot is determined to be still-in-contact, world z component of

the force less than zero (pushing up), then method "add-forces-and-torques-to-body" is

called which adds f and r x f to the cumulative value of forces-and-torques as in

Equations 5.22 and 5.23. Alter cycling through all the legs, Aquarobot is completely

updated and ready for another cycle.

This dynamic update cycle actually uses the (i + ), velocity for the i, update. While

the i,, velocity might just as easily have been used, it is neither better nor worse. Better is

actually the average of the two.
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G. C++ PROTOTYPE

The C++ version of the dynamic Aquarobot model is algorithmically identical to the

LISP version. A complete source code listing with operating instructions may be found in

Appendix D. As discussed in Chapter III, use of IIUS Performer structures required some

modifications. For example, six-vectors were divided into pairs of three-vectors. The

dynamic model is otherwise identical. A feature added to this version is the ability to pass

spring and damper constants, drop height, and dynamic update time increment into main

as command line arguments. After handling these optional arguments, main initializes

Performer, instantiates and initializes dynamic and graphic Aquarobot objects, then cycles

in an update-render loop.

The "graphic Aquarobot" object was not required in the LISP version as the "dynamic

Aquarobot" slot values were directly accessed to render a stick figure. This version,

however, draws thousands of filled polygons each cycle to render a single frame. IRIS

Performer was used, as previously stated, primarily for its high performance in this task.

The graphic Aquarobot is a hierarchical database containing the information required to

draw Aquarobot. After each dynamic update, the body's position and orientation and the

leg's joint angles are pa-,,ed into "Dynamic Coordinate Systems" in the database prior to

calling the draw routine.
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H. SUMMARY

This chapter develops a simplified dynamic simulation model for Aquarobot using

springs and dampers to provide the joint torques. Inverse kinematics, Jscc-An matrices

and their utility, and forces acting on Aquarobot are discussed. The model was

implemented and tested using both LISP and C++. In the next chapter, simulation results

of the spring and damper model, and also of the joint actuator model from Chapter IV, are

presented.
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VI. SIMULATION RESULTS

A. INTRODUCTION

This chapter presents the simulation results. The joint actuator simulation model was

tested to verify the model and to experimentally determine suitable amplifier gains. As

stated in the previous chapter, the spring and damper Aquarobot model was tested by

dropping the robot from a low height and observing is dynamic behavior.

B. JOINT ACTUATOR SIMULATION

The motor class is designed such that constructor arguments are parameters listed on

the motor specification sheet. At the time of the simulation, specification sheets for the

motors used in Aquarobot were not available; therefore, another model was used. The

model was tested by applying rated voltage to the motor and observing its acceleration

and attained RPM. In Figure 6. 1, both motor and output shaft, after 200: 1 reduction gear,

speeds and positions are shown. Motor scales are on the left, while output shaft scales are

on the right. Qualitatively, the motor model is well behaved, and quantitatively, it closely

matches the no-load speed parameter listed in the specifications.
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Figure 6.1
No Load Joint Actuator Response With +75VDC Applied to the Motor

To obtain fast joint actuator response to input orders, it is desirable to set the error

signal, D/A converter output, gain to a relatively high value. A gain of 150 resulted in the

optimum response. Values from 100 to 200 gave satisfictory results while higher values

progressively reduced the effectiveness of the degenerative feedback. Figures 6.2 through

6.5 show joint actuator responses to the following sequence of shaft positioning orders, in

revolutions, with various driver gain values: (+1/4, +1/2, -1, -1/2, +1, +3). Figure 6.2

illustrates the response with an error signal gain of 150 and with velocity and current

feedback signals disabled.
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Figure 6.2
Joint Actuator Response with Error Signal Gain of 150.

Velocity and Current Feedback Disabled.

The optimum velocity feedback signal gain is a compromise between response time

and stability. Too high a value results in slower response, while lower values allow

increased overshoot. Values from three to seven were satisfactory. A gain of five proved

optimum when combined with current feedback. Figure 6.3 displays the results of using

various gain values for velocity feedback with current feedback still disabled.
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Figure 6.3a
Joint Actuator Response with Velocity Feedback Gain of 3
and Error Signal Gain of 150. Current Feedback Disabled.
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Figure 6.3b

Joint Actuator Response with Velocity Feedback Gain of 5
and Error Signal Gain of 150. Current Feedback Disabled.
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Figure 6.3c
Joint Actuator Response with Velocity Feedback Gain of 7
and Error Signal Gain of 150. Current Feedback Disabled.
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Figure 6.3d
Joint Actuator Response with Velocity Feedback Gain of 20
and Error Signal Gain of 150. Current Feedback Disabled.
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The current feedback gain value turned out to be the most sensitive. A value of 0.3

produced negligible change, while 0.7 resulted in some oscillation. This regenerative

feedback, intended to reduce response time, also aided in reducing the overshoot. As the

error signal approached zero with speed on, back EMiF caused a decelerating current

which was aided by the regenerative current feedback. Figure 6.4 displays the results of

using various gain values for current feedback with velocity feedback again disabled. In

addition, in the presence of the degenerative velocity feedback, the error signal was

overcome earlier by decelerating signals, bringing the current feedback contribution in

even sooner. Figure 6.5 illustrates results with both velocity and current feedbacks in

effect. The response of the joint actuator in this simulation highlights the effectiveness of

the design: high error signal gain with velocity and current compensating feedback

networks.

While these tests results are not for the specific motors used in Aquarobot, they

provide a good set of gain parameters to use as a starting point in the experimental

determination of the gains for those motors.
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Figure 6.4a
Joint Actuator Response with Current Feedback Gain of 0.3
and Error Signal Gain of 150. Velocity Feedback Disabled.
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Figure 6.4b
Joint Actuator Response with Current Feedback Gain of 0. 5
and Error Signal Gain of 150. Velocity Feedback Disabled.
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Figure 6.4c
Joint Actuator Response with Current Feedback Gain of 1.0
and Error Signal Gain of 150. Velocity Feedback Disabled.
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Figure 6.5a
Joint Actuator Response with Velocity Feedback Gain of 3,
Error Signal Gain of 150, and Current Feedback Gain of 0.5.

1000 +1

R. ...... ........ . ..... .. .................. ...........

-1000 : :-1
.... . .. .... .. . .. ........... i ............

-4000 : -40

0 10 20 30 40 so 60
motor t4ms joint

Figure 6.5b
Joint Actuator Response with Velocity Feedback Gain of 5,
Error Signal Gain of 150, and Current Feedback Gain of 0.5.
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Figure 6.5c

Joint Actuator Response with Velocity Feedback Gain of 7,
Error Signal Gain of 150, and Current Feedback Gain of 0.5.
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Figure 6.5d
Joint Actuator Response with Velocity Feedback Gain of 10,
Error Signal Gain of 150, and Current Feedback Gain of 0.5.
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C. AQUAROBOT SPRING AND DAMPER SIMULATION

LISP and C++ versions of the spring and damper Aquarobot model were tested by

using a "droptest" in which the model is dropped from low height. It may be tilted, but

not so much that it does not land on its feet. The LISP version served as the prototype,

and after successful testing, the model was translated into C++.

The LISP simulation ran uncompiled on a Sun Sparc-10 at six to eight frames per

minute and was too slow for comprehension of motion detail. It did, however, allow

experimental determination of spring and damper constants sufficient to support the model

when dropped. To increase the simulation speed, two dynamic update cycles were run

between each display, and the source code was then compiled. After compilation, the

simulation ran at near 30 frames per minute, with 60 dynamic updates of 50ms each, to

achieve a simulation with approximately a 10:1 time dilation. This simulation was fast

enough for an observer to assimilate the dynamic behavior of the model which was

qualitatively satisfactory and considered successful. Some additional fine tuning of

experimentally determined parameters was done prior to translation to C++.

After translation to C++/Performer, the model was again tested, and a real-time

simulation was achieved on a four processor IRIS 440/RE workstation. Only three

processors were actually utilized, one assigned to each of the following tasks: application,

database pre-draw cull, and database rendering traversal. The application processor

utilization was approximately fifteen percent which indicates that the increased complexity

of adding the joint actuators will not present any difficulty. The cull processor utilization

54



was approximately twenty percent while that of the rendering processor veried from fy

to seventy percent. (Note: the source code was not compiled and/or linked with

optimizations on.) Typical images obtained can be found in (Goetz, 1994].

Running in the three processor configuration described above, Performer

synchronized the framerate to the fixed 50ms dynamic updates by limiting the framerate to

20Hz. On a single processor IRIS R-4000, where the application, database cull, and

database rendering were forced to run sequentially, the highest framerate achieved was

10Hz. This resulted in a 2:1 time dilation (slow down) simulation.

D. SUMMARY

Testing of both simulation models was considered successful. While it is unfortunate

that there was insufficient time to incorporate the joint actuator model into the Aquarobot

model, replacing the springs and dampers, the topic was given some time and effort. This

next step is among the topics addressed in the final chapter: Summary and Conclusions.
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VII. SUMMARY AND CONCLUSIONS

A. UTILITY OF LISP FOR EXPERIMENTAL PROGRAMMING

The primary benefit of using LISP as a prototyping language in this thesis was the

immediate testing capability it provided. No test routines were required. Each fiinction

was easily tested by direct calls as it was developed. While compilation capability allowed

a faster simulation, repeated compilations were not required as the routines could called

from the interpreter's command line. Finally, nesting flnctions allowed larger and larger

integrated blocks of source code to be tested.

One of the benefits of using LISP during prototyping was realized when an apparent

limit cycle appeared if Aquarobot was tilted when dropped. The problem was actually a

lack of rotational damping due to the absence of the omega cross r term in the foot

velocity calculation. Without it, damping ceased shortly after landing because of "zero

translational foot velocity." While the author took a considerable period of time to find

the cause of the problem, with a simple modification to the LISP source code, the

correction was quickly and easily verified.

B. INCORPORATING THE JOINT ACTUATOR MODEL

The next step required for the Aquarobot dynamic simulation model is to replace the

springs and dampers with joint actuators. This was initially assumed to be a simpler task
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than it turned out to be. The difficulty arises from a conflict over control of joint state

variables. In the spring and damper model, the joints only supply state dependent torques

which are then used to dynamically update the robot's body. After the body is updated,

the new states of the joints depend only on the new body position and not on the joint

torques. In the joint actuator model, the joint state depends directly upon the motor

torque. Two possible solutions are proposed to eliminate the conflict.

One possible solution is to extend the massless leg simplification to the motor and

gear-train, making them inertialess. While this seems easiest and will probably have as

little impact as the massless legs, the overall effect may be greater than anticipated due to

the large reduction ratios involved. Recall that motor inertia reflected outside the

reduction gear is multiplied by the square of the reduction ratio. A C++ version of the

joint actuator model is included in Appendix B. This model is a variation of the original

LISP version and provides state dependent torques as output rather than the state itself. It

could be used to implement inertialess joint actuators, and the changes required in the

Aquarobot model would be minor.

Another possible solution is to use the concept of "added mass," an apparent increase

in mass (affecting acceleration) due to the internal inertia of the drive motors. Assuming a

unit acceleration for one of the body's six degrees of freedom, it is possible to calculate the

resulting joint accelerations. If a joint acceleration is known, inertial torque in the joint

can be calculated. The net torque for the joint then is armature torque (determined using

motor applied voltage and speed) minus the inertial torque. Doing this for all six degrees
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of freedom gives a matrix of added mass which can be inverted to get acceleration for any

given vector of joint motor applied voltages. An "equilibrium torque," torque vector

which results in a zero joint acceleration vector, is also needed and must be calculated

[Koozekanani, 1983].

C. SUMMARY

IRUS Performer has proven its utility as a graphics rendering tool in a real time

simulation. It also provided easy synchronization for fixed duration integration intervals.

A real-time dynamic simulation of Aquarobot was accomplished and is eventually

expected to provide a valuable tool for Aquarobot control software developers. While an

integrated model, with the joint actuators in place, is not yet completed, we are a step

closer, and the task has certainly proven to be feasible. Once the joint actuators are

installed into the Aquarobot model, simple walking simulations, on smooth, flat terrain

may be achieved. Concurrent work on collision detection for uneven terrain will also

further improve the simulation model when incorporated [Goetz, 1994].

Further work could improve on the Performer Aquarobot rendering database to

decrease the rendering time. This is the area where there is the most room for

improvement in cycle time. Finally, other than using the "faster" Performer routines, no

attempt has been made to optimize the source code which was written with ease of

modification in mind. Utilization of compile and link optimizations, and eventually some
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source code tuning, may also contribute toward achievement of a real-time Aquarobot

simulation on a single processor.
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APPENDIX A

LOADING AND OPERATING INSTRUCTIONS

To run demo, start LISP Interpreter and call:
(load "joint-loader")

SOURCE CODE FILES

"joint-loader"

load files
(load "math.routines.cl")
(load "time.routines.cl")
(load "diff-counter.class.cl")
(load "amplifier-clipper.class.cl")
(load "sbaft.class.cl")
(load "motor.class.cl")
(load "reduction-gear~clawacl")
(load "joint.class.cl")
(load "joint.instance.cl")
(load "window.instance.cl")

;execute tests
(move-joint-mult -.25 4)
(move-joint-mult .25 4)
(move-joint-mult .05 4)
(move-joint-list '(.25 .5 -1 -.5 1 3))
(run-joint 15)
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"diff-counter~class.cI"

(defclass duff-counter0
((current-count

:accessor current-count
:uuitform 0
ty-pe float))

(defmnethod diff-signal ((dc diff-counter) plus-iniput -linus-inpu()
(setf (current-count dc)

(+ (current-count dc) plus-input (-minus-input))))

"amplifier-clipper.class.cl"

(defclass amplifier-clipper0
((amplification-factor

:initarg :amplification-factor
:accessor amplification-factor
:initform 1
:type float)

(max-value
:imitarg :max-value
:accessor max-value
:initform 1
:type float)

(nun-value
:initarg nuin-value
:accessor nun-value
:initform -1
:type float)))

(defmethod amplifyt ((amp amplifier-clipper) input-value)
(max (min (* (amplification-factor amp) input-value)

(max-value amp))
(min-value amp)))
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(defclass motor-driver (amplifier-clipper)
((displacement-gain

:iitarg :displacement-gain
:accessor displacement-gain
:initform 1
:type float)

(velocity-tb-gain
:initarg :velocity-fb-gain
:accessor velocity-tb-gain
:initform 0
:type float)

(current-tb-gain
:imtarg :current-tb-gain
:accessor current-tb-gain
:intform 0
:type float)))

(defmethod drive((driver motor-driver) displacement-input
velocity-input
current-input)

(amplify. driver (+ (* displacement-input (displacement-gain driver))
(* (- velocity-input) (velocity-tb-gain driver))
( current-input (current-tb-gain driver)))))
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"; shaft.class.d"

(defclass shaft 0
((angular-position ; radians

:accessor theta
:iniform 0
:type float)

(angular-velocity ; rad/sec
:accessor omega
:initform 0
:type float)

(inertia Kg-(meters-square)
initarg :I
:accessor I
:initform 0
:type float)

(coulomb-friction-constant ; Newton-meters (Fc >= 0)
:initarg :c
:accessor Fc
:intiform 0
:type float)

kviscous-friction-constant Newton-meters/(rad/sec) (Fv >= 0)
:iritarg :Fv
:accessor Fv
:initform 0
:type float)

(time-stamp ; seconds
:accessor time-stamp
:initform (system-time))))

(defmethod set-shaft ((s shaft) theta omega)
(setf (omega s) omega)
(setf(theta s) theta))

(defmethod reset-shaft ((s shaft))
(set-shaft s 0 0)
(setf (time-stamp s) (system-time)))

(defmethod connect ((source shaft) (load shaft))
(setf (time-stamp load) (time-stamp source))
(set-shaft load (theta source) (omega source)))
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"nu"otor.classd"

(defclass motor (shaft)
((torque-constant ; Newton-meters/ampere

:initarg :Kt
:accessor Kt
:type float)

(back-emf-constant -.Volts/(rad/sec)
:initarg Kb
:accessor Kb
:type float)

(armature-resistance ,ohms (must be > 0)
:initarg A
:accessor R
:inJIform I
:type float)

(max-brush-drop volts
:initarg :max-brush-drop
:accessor max-brush-drop
:initform 2.0
:type float)

(half-brush-drop-source-value ;volts
:initarg :half-BD-value
:accessor half-BD-value
:initform 3.0
t ype float)

(armature-current ; amperes (saved for feedback purposes)
:accessor armature-current
:initform 0
:tyfpe float)))

(defmnethod applied-voltage ((in motor) source-voltage)
(if (zerop source-voltage) 0

(*source-voltage

((I(max-brush-drop mn) (abs source-voltage))

(exp ('(log 0.5)
(I(abs source-voltage)
(half-BD-value m))))))))))

(definethod developed-torque ((in motor) source-voltage)
(setf (armature-current m)

(/ (- (applied-voltage mn source-voltage) (* (Kb m) (omega mn))) (R in)))

(*(Kt m) (armature-current in)))
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(defmethod omega-dot ((m motor) source-voltage load-inertia load-torque
load-coulomb-friction-constant
load-viscous-friction-constant)

(let* ((torque (+ (developed-torque m source-voltage) load-torque))
(Fc-total (+ (Fc m) load-coulomb-friction-constant))
(friction-loss

(if (zerop (omega m))
(if (zerop torque)

0
(if (> Fc-total (abs torque))

torque
(* Fc-total (sgn torque))))

(+ (* (+ (Fv m) load-viscous-friction-constant) (omega m))
(* Fc-total (sgn (omega m)))))))

(/(- torque friction-loss) (+ (I m) load-inertia))))

(defmethod run-motor ((m motor) source-voltage load-inertia load-torque
load-coulomb-friction-constant
load-viscous-friction-constant)

(let ((dt (delta-time (time-stamp m)))
(omega-dot (omega-dot m source-voltage load-inertia load-torque

load-coulomb-friction-constant
load-viscous-friction-constant)))

(setf (theta m) (+ (theta m) (* (omega m) dt)))
(setf (omega m) (+ (omega m) (* omega-dot dt)))
(setf (time-stamp m) (+ (time-stamp m) dt))))
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"red uction-gear.class~cI"

(defclass reduction-gear (
((gear-ratio

:initarg :gear-ratio
:accessor gear-ratio,
:initfonn I
*tq-pe float)

(in-shaft
*initarg in-shaft
:accessor in-shaft
:initform (make-instance 'shaft))

(out-shaft
:initarg :out-shaft
:accessor out-shaft
:initform (make-instance 'shaft))))

(definethod rg-reduce ((rg reduction-gear) value)
(/ value (gear-ratio rg)))

(defmnethod rg-reflect ((rg reduction-gear) value)
(* value (gear-ratio rg)))

(defmnethod rg-inertia-forward ((rg reduction-gear) inertia-value)
(* inertia-value (sqr (gear-ratio rg))))

(defmnethod, rg-inertia-backward ((rg reduction-gear) inertia-value)
(/ inertia-value (sqr (gear-ratio rg))))

(defmnethod rg-connect ((rg reduction-gear))
(set-shaft (out-shaft rg)

(rg-reduce rg (theta (in-shaft rg)))
(rg-reduce rg (omega (in-shaft rg)))))
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"jvu.uoint.cas.d

(defclass joint ()
((pulse-counter

:initarg :pc
:accessor pc
:iuitform (make-instance 'duff-counter))

(driver
:inhtarg driver
*accessor driver
:initform (make-instance 'motor-driver))

(prime-mov er
:initarg :pnme-mover
:accessor prime-mover
:initform (make-instance 'motor))

(red-gear
.rnitarg :red-gear
:accessor red-gear
-initform. (make-instance reduction-gear))

(load-shaft
:initarg load-shaft
:accessor load-shaft
:initformn (make-instance 'shaft))))

(definethod motor-load-inertia (aj joint))
(+ (I (in-shaft (red-gear j)))

(rg-inertia-backward (red-gear j) (+ (I (out-shaft (red-gear j)))
(I (load-shaft j))))))

(definethod motor-load-coulomb-friction-constant (0j joint))
(+ (Fc (in-shaft (red-gear j)))

(rg-reduce (red-gear j) (i- (Fc (out-shaft (red-gear j)))
(Fc (load-shaft j))))))

(defmnethod. motor-load-viscous-friction-constant (0j joint))
(+ (Fv (in-shaft (red-gear j)))

(rg-reduce (red-gear j) (+ (Fv (out-shaft (red-gear j)))
(Fv (load-shaft j))))))

(defmnethod feedback (0j joint))
(-(theta (out-shaft (red-gear j))) (theta (load-shaft j))))
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(definethod increment-joint (0j joint) order)
(run-Molor (prime-moverj)

(drive (driver j) (diff-signal (pc j) order (feede~ck M)
(0 .003 (RAD/SECtoRPM (omega (prime-mover j))))
(armature-ýcun (pime-mover j)))

(motor-load-inertiaj)
0 ,load not producing any torque
(motor-load-coulomb-frictloflcoflstant j)
(motor-Ioad-viscous-friction-constaflt j))

(connect (out-shaft (red-gear j)) (load-shaft j))
(connect (prime-mover j) (in-shaft (red-gear j)))
(rg-connect (red-gear j)))

(defmnethod. step-input-to-joint (( jJoint) step)
(diff-signal (pcj) (RE VtoRAD step) 0))

(defmnethod reset-joint (0j joint))
(setf (cuffent-count (pc j)) 0)
(reset-shaft (load-shaft j))
(reset-shaft (out-shaft (red-gear j)))
(reset-shaft (in-shaft (red-gear j)))
(reset-shaft (prime-mover j)))
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"jointinstance.d"

(setfjointl (make-instance 'joint
driver (make-instance 'motor-dniver

:amplification-factor I
:max-value 75 -.volts
,min-value .75 ; volts
displacement-gain 150
:velocity-tb-gain 5
:current-tb-gain .5)

:prime-mover (make-instance 'motor
:1 .0005 . Kg-m*m
:Fc .0075 N-m
:Fv .00004 N-mI(rad/sec)
:Kt .005 • N-m/ampere
:Kb .255 Volts/(rad/sec)
:R I )'ohms

-red-gear (make-instance'reduction-gear
:gear-ratio 200)

load-shaft (make-instance 'shaft
:1 5 •Kg-m*m
:Fc . I N-m
:Fv .02 ))), N-m/(rad/sec)

(defun move-joint (delta-theta)
(setf (time-stamp (prime-mover joint 1)) (system-time))
;input delta-theta a little at a time
(if (< delta-theta 0)

;negative delta-theta (use -0.015 steps)
(do* ((input-index 0 (+ input-index 0.015)))

((< (+ delta-theta input-index) 0.015)
(step-input-to-joint joint I (+ delta-theta input-index)))

(step-input-to-joint joint 1 -0.015)
(increment-joint jointl 0)
(display-state *display* joint 1 (time-stamp (prime-mover joint 1))))

;positive delta-theta (use 0.015 steps)
(do* ((input-index 0 (+ input-index 0.0 15)))

((< (- delta-theta input-index) 0.015)
(step-input-to-joint jointl (- delta-theta input-index)))
(step-input-to-joint joint 1 0.015)
(increment-joint jointl 0)
(display-state *display* jointl (time-stamp (prime-mover joint1)))))

;delta-theta entry into PC is complete
,cycle until ordered position is reached
(do* ((indexl))

((and (< (abs (current-count (pcjointl))) 0.05)
(< (abs (omega (prime-mover joint 1))) 10)) (pprint 'stop))

(increment-joint joint1 0)
(displa, -state *display* joint I (time-stamp (prime-mover joint 1)))))
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(detim move-jAnt-mult (deltatdicta mult)
(clear-and-reset)
(dotimes (i mult) (move-joint delta-theta)))

(deft un njoint (speed)
(clear-and-reset)
(do* ((dtime (delta-time (time-stamp (primemover jointiW))

(delta-time (time-stamp (prime-mover jointi))))
(<(abs (- (RPMtoRAD/SEC speed) (om~ega (load-shaft joint OM)
0. 1) (ppnint 'stop))

(increment-joint joint I (* dtime (RPMtoRAD/SEC speed)))
(display-state *display* joint I (time-stamp (prime-mnover jointl1)))))

(defun move-joint-list (delta-theta-list)
(clear-and-reset)
(if (equalp nil delta-theta-list) nil

(move-joint-list-2 delta-theta-list)))

(defun move-joint-list-2 (delta-theta-list)
(move-joint (car delta-theta-list))
(if (equalp nil (cdr delta-theta-list)) nil

(move-joint-list-2 (cdr delta-theta-list))))

(defun clear-and-reset 0
(update-minutes *display* 0)
(reset-systemt-time)
(reset-joint joint I))

""window.instance.cI"

limensions for x-y coord system (window size auto adjusts)
(setf *x-origin* 50)
(setf *x-length* 500)
(setf *x-tics* 6)
(self Oy-origin* 50)
(setf O'y-length* 340)
(self *y-ticso 8)

(setf *max-speed* 4000) ; (max rpm's of motor scale)
(setf *max-revs* 1000) ; (max rev's of motor scale)

(require :xcw)
(use-package :cw)
(cw: initia~lize-common-windows)
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(defknehod draw-grid ((window window-stream))
(draw-line-xy window *x-origin* ;top border

(+ yv-origin* y4ength*)

(+ *y-origin' sy-length*))
(draw-line-xy window *x-origin* ;mniddle x axis

(4. Oy.origin* (/ *y-Icngth* 2))
(4. *x..origin* *x-length*)
(-r. *vyorigjf* (/ *v.Iength* 2)))

(draw-Iine-xy window *x.4)rigjn* :bottomn border
yv-origin*

(4 *x-orgjn* *x-Iength*)
*y-origin*)

(draw-Iine-.w wiindow *x..orgin* :Ieft border
*y-onigin*

* x-origin*
(+ *v.-origjn* *y-length*))

(draw-linc-xv window (+ *x.&rigin* *x-Iength*) -,right border
*y-origin*
(4 *x..origin* *x-length*)
(+ *v-origin* *y..Iength*))

(dotimes 0i *x..tics*) ;mark x axis
(draw-line-xv window (+ *x-origin*

VI (* i *x-length*) *x-tics*))

(4. *x-orijgin*
(/ (* j *x..Iengtjl*) *x-tcs*))

(4. *y-orgjfl* *y..Iength*)
dashing '(1 3)))

(dotimes (i *y-tics*) mark y axis
(draw-Iine-xy window *x-origin*

(4. *y-rgin*

(4. *x-origifl* *x-lengtjl*)
(4. *y..origin*

:dashing (1 3)))
(label-graph window))
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(definethod label-graph ((w window-stream))
;theta labels
(adt (window-stream-y-position w) (4 *y-origin* *y-length* 4))
(setf (window-stream-x-position w) (4 *x-origin* -35))
(setf (window-stream-foreground-color w) red)
(format w "--s" *max-revs*)
(setf (window-stream-x-positiofl w) (+ *x-oijgin* *x-length* 5))
(setf (window-stream-foreground-cOlor w) blue)
(format w +I"
(setf (window-stream-y-position w) (4 *y-origin* (* *y-length* 0.75) -3))
(setf (window-stream-x-position w) (+ *xoi~grn* -40))
(setf (window-stream-foreground-color w) black)
(format w "Revs")
(setf (window-stream-x-position w) (+ *x-origin* *xlength* 5))
(format w "Revs")
(setf (window-stream-y-position w) (4 *y-origin* (* yv.length* 0.5) 3))
(setf (window-stream-x-position w) (4 *x-origin* 43))
(setf (viindow-stream-foreground-color w) red)
(format w "-.s" (- *max-revs*))
(setf (window-stream-x-position w) (+ *x-ori~gin* *x..lengtjl* 5))
(setf (window-stream-foreground-color w) blue)
(format w "-1)
-omega labels

(serf (window-stream-y-position w) (4 *y-origin* (* *y-length* 0.5) -10))
(setf (window-stream-x-position w) (4 *x-origin* -35))
(serf (window-stream-foreground-color w) red)
(format w "-s" *max..speed*)
(serf (window-stream-x-position w) (4 *x-origin* x-length* 10))
(serf (windo-v-stream-foreground-color w) blue)
(format w "-s" VI *max-speed* 100))
(serf (window-stream-y-position w) (4 *y-orgin* (* *y..length* 0.25) -3))
(serf (window-stream-x-position w) (4 *x-origin* -36))
(serf (window-stream-foreground-color w) black)
(format w "RPM")
(serf (window-stream-x-position w) (4 *x-origin* x-length* 5))
(format w "RPM")
(serf (window-stream-y-position w) (4 *y-origin* 3))
(serf (window-stream-x-position w) (4 *x-oigin* 43))
(serf (window-stream-foreground-color w) red)
(format w "-s" (- *max-speed*))
(serf (window-streamr-x-position w) (4 *x-oigin* *x..length* 5))
(serf (window-stream-foregiround-color w) blue)
(format w "-s" (- (I eed 100)))

time labels
(serf (window-stream-foregiround-color w) black)
(serf (window-stream-y-position w) (4 *y-.&jgjn* -15))
(setf (window-stream-x-position w) (+ *x-origin* -3))
(format w "0")
(serf (window-stream-x-position w) (4 *x-origin* (I*x..length* 6) -7))
(format w " 10")
(serf (window-stream-x-position w) (4 *x-origin*( *x-lengthj* 3) -7))
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(format w "20")
(setf (window-steam-x-position w) (+ *x-origin* ( x-length* 2) -7))
(format w "30")
(setf (window-stream-x-pouition w) (+ *x-origin* (*x-length ( 2 3)) -7))
(format w "40")
(sctf (window-stream-x-position w) (4 *x-origin* (*x-length* 5I 6)) -7))
(format w "S0")
(setf (window-stream-x-position w) (+ *x-origin* *x-length* -7))
(format wv "60")
(setf (window-streamn-y-position wv) (+ *y-origin* -30))
(setf (%%indow-stream-x-position wv) (+ *x..ongin* -35))
(setf (window%-stream-foreground-color wv) red)
(format %,. "motor")

(setf iiindowi-streamn-x-position wv) (+ *x..otjgin* *x-4ength*))
(setf (iiindowi-stream-foreground-color wv) blue)
(format wv "joint")
(setf (window-stream-foreground-color w) black)
(setf (window-stream-x-position w) (+ *x..orgin* (* *x..length* .5) -13))
(format wv "time"))

(defmnethod draw-motor-position ((window window-stream) revolutions)
(draw-point-.xv window

*x-time..value*
(+ *y..rijgin~* (* 0.75 *y-length*)

(0.25 *y-lengtll*
(cond ((zerop revolutions) 0)

(<revolutions 0)
((-(mod revolutions *max-revs*)

*Ipa..re¶Js*))

(t (/ (mod revolutions *max-revs*)
*mxp-.revs*)))))

-color red))

(defmnethod draw-load-position ((window window-stream) revolutions)
(draw-point-xy window

*x..time-value*
(4 *y-oigjjj* (* 0.75 *y-length*)

(*0.25 *y-Icngth*
(cond ((zerop revolutions) 0)

(<revolutions 0)
(- (mod revolutions 1.0) 1.0))

(t (mod revolutions 1.0))))
:color blue))
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(defmethod draw-motor-speed ((window window-stream) speed)
(dnw-point-xy window

Ox-time-value*
(+ *y-origin* (* 0.25 *y-length*)

(* 0 25 *y-length* (/ speed max-speed*)))

:color red))

(defmethod draw-load-speed ((window window-stream) speed)

(draw-point-xy window
*x-time-value*

(+ *v-origin* (* 0.25 *y-length * )
(* 0.25 *v-length* 100 (/ speed *max.speed*)))

:color blue))

(defmethod update -minutes ((window window-stream) minutes)
(clear window)
(draw-grid window)
(serf *minutes* minutes))

(defmethod set-x-coord ((window window-stream) seconds)
(if (> (truncate (/ seconds 60)) *minutes*)

(update-minutes window (truncate (/ seconds 60))))
(setf *x-time-value* (round (+ *x-origin*

( ((mod seconds 60) 60)
*x-length*)))))

(defmnethod display-state ((window window-stream) (j joint) current-time)
(set-x-coord window current-time)
(draw-motor-speed window (RAD/SECtoRPM (omega (prime-mover j))))
(draw-load-speed window (RAD/SECtoRPM (omega (load-shaft j))))
(draw-motor-position window (RADtoREV (theta (prime-mover j))))
(draw-load-position window (RADtoREV (theta (load-shaft j)))))

(setf *display*
(make-window-stream

left 1
:bottom 1
:width (+ *x-length* ( 2 *x-origin*))
:height (+ *y-length* ( 2 *y-origin*))
background-color white
:foreground-color black
:inner-region-left
:inner-region-bottom
:inner-region-width
inner-region-height
:title "joint actuator simulation"
:activate-p t))

(setf *minutes* 0)
(draw-grid *display*)
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"timc.routines.cI"

(defun reset-system- time0
(setf *Retfime* (get-internial-real-time)))

(defun system-time0
V(I -(get-internal-real-time) *Retfime*) 1000.0))

(defun delta-time (time)
(- (system-time) time))

(reset-system-time)

";"math. routines.cI"

(defun sqr (x) (* x x))

(defun sgn (x)
(if(<xO0) -1 M)

(defun RPMtoRAD/SEC (rpm)
(* rpm (/ pi 30))) ; * 2pi/60

(defun RAD/SECtoRPM (rad/sec)
(* rad/sec (/ 30 pi)))

(defun REVtoRAD (rev)
(* 2 pi rev))

(defu~n RADtoREV (rad)
(Irad (* 2 pi)))

75



APPENDIX B

SOURCE CODE FILES (untested)

//file "motor.h"

#ifndef MOTORH
#define _MOTOR_H

#include <math.h>
#include <stdio.h>

class motor { H/inertia-less motor class
private:

float Fc; fl Coulomb friction constant
float Fv; // Viscous friction constant
float Kt. H Torque constant
float Kb; H Back EMF constant
float Ra, II Armature resistance
float BDm; // Rated brush brop value
float BDc; H Ln(l/2)/BDh

H BDh = Voltage applied such that brush drop = 1/2 BDm
H subtracts brush drop from source voltage
float AppliedVoltage(float);

public:
float Ia; H Armature current (available for current feedback)
motoro ()
H called after constructor for initialization
void mit motor(float TorqueConstant, / Nnm/Ampere

float BackEMFConstant, /Volts/RPM
float NoLoadCurrent, // Amperes
float NoLoadSpeed = 1000.0,/I RPM
float StartingCurrent = 0.0,// Amperes
float ArmatureResistance = 1.0,/ HOhms
float RatedBrushDrop = 2.0,/ HVolts
float HalfBrushDrop = 3.0)1/ Volts

float DevelopedTorque(float, float);
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IIprovide initialization for specific motor types in Aquarobot
void makeRA2O(motor& in);

void makeRH25(motor& in);

#endif
/* EOF1

H/rile "motorxc"

#include "mtrh

v-oid motor:: iit-motor(float TorqueConstant.
float BackEMFConstant.
float NoLoadCurrent.
float NoLoadSpeed,
float StartingCurrent.
float ArmatureResistance,
float RatedBrushDrop,
float HaffBrushDrop)

Ia =0.0;

Fc TorqueConstant * StautingCurrent;
Fv =(TorqueConstant *NoLoadCurrent - Fc) INoLoadSpeed;

Kt TorqueConstant;
Kb = BackEMFConstant;,
Ra = ArmatureResistance;

BDin= RatedBrushDrop;
if (BDm < 0.0) (

printf("efror: rated brush drop must be >= 0 Volts... .\0");
printf("default brush drop value (0 Volts) used..A.n");
BDm = 0.0,
BDc = 1.0-,

else if (BDm 0.0)
BDc = 1.0;

else if (HalfBnishDrop < BDm/2){
printf("error: half brush drop must be >= 1/2 rated brush drop..")
printf("defaulted to 1/2 RatedBrushDrop,... \n");,
BDc = log(0.5) *2.0 / BDin;

elsef
BDc = log(0.5) IHalfBrushDrop;
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float motor::DevelopedTorque(float SourceVoltage, float omega)
{

float Torque.
float FrictionLoss;

// determine armature current and save
la = (AppliedVoltage(SourceVoltage) - (Kb * omega)) / Ra.

// determine motor torque
Torque = Kt * Ia:

//calculate loss
/loss opposes omega (viscous and coulomb components)
if (omega > 0.0) FrictionLoss = omega * Fv + Fc;
else if (omega < 0.0) FrictionLoss = omega * Fv - Fc;
// if (omega - 0) : loss opposes Torque (no viscous component)
else if (Torque > Fc) FrictionLoss = Fc.
else if (Torque < -Fc) FrictionLoss = - Fc:
H/if ((omega == 0) && (ITorquel < Fc)) : Torque insufficient to overcome Fc
else FrictionLoss = MotorTorque;

return (Torque - FrictionLoss);

7
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/* Private Function */

float motor: Applied Voltage(float Vs)

IIreturn Vs(I - (BDm/IVsI)*(l - exp(in(1/2)*IVsVBDh)))
if ( Vs == 0.0)(

return 0.0:.

else if (Vs < 0.0) { Inegative Vs
return (Vs + (BDm * (I - e~xp(-BDc*Vs))));

else { Ipositive Vs
return (Vs - (BDm * (1 - exp( BDc*Vs)))).,

1* specific Aquarobot motor type initializations 0/

// Aquarobot motor parameters for unit-motor
HI read from spec sheet provided, includes harmonic gear
#define RA20-PARAMETERS 32.0. 3.4. 0.78. 25.0, 0.32, 3.2, 2.0, 3.0
#define RH.25_PARAMETERS 33.0. 3.5. 0.89, 25.0, 0.48, 1.1, 2.0, 3.0

void makeRK 4N9motor& mn)

m~init-motor(RA2O PARAMETERS);

void makeRH25(motor& mn)

muinit-motor(RH25_PARAMETERS);

/* EOF '
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H file "amplifierclipper.h"

#ifndef AMPCLIP H
#define _AM _CLIPH.

class amplifier-clipper {

private:
float gain-
float max_value.
float minvalue;

public:
amplifier clipperO f }
// call after constructor for initialization
void init-amplifier clipper(float g. float maxyv, float min-Y);

float amplify(float inputvalue),

class aquadriver : private amplifier-clipper {
private:

float thetagain;
float omegagain;
float current_gain;

public:
aquadriver0 {
H call after constructor for initialization
initaqua_driver(float displacementjain,

float velocitygain,
float current_feedbackgain);

float drive(float thetaerror, float omega, float current);

// provide initialization for specific joint on aqualeg
void makeJldriver(aqua driver& d);
void makeJ2driver(aqua driver& d);
void makeJ3driver(aqua,_driver& d);

#endif
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H/ Mie "amplifler-clipperxc

#include "amplifier clipper.h"

void
init-amplifier-clipper(float g, float max-v. float minv)

gain =g,
max value =max v.
minvalue =mm -v;

float
amplifier clipper:.ampliAv(float input-value)

float output value = gain * input-value;

if (min value > output-Value)
return min-value,

elsif (max-value < output-value)
return max-value-,

else
return output-value-.

aqua_driver:: mit aqua..driver(float displacement-gain,
float velocity~gain,
float current feedback~gain)

IIset final gain to 1 and clip at +/- 75 VDC
init-amplifier clipper( 1.0, 75.0, -75.0);

thetajgain = displacementjgain;
omega~gain velocity~gain,
current~gain =current-feedbackjgain;

float
aqua_driver::drive(float theta-error, float omega, float current)

return (amplify( thetagain * theta -error
. omnegajgain * omiega
+ cumrntjain *current));
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// driver specs (theta, omega, current)
#define SHOULDER. DRIVER GAINS 150.0. 3.0 0.3
#define KNEE! IDRIVER GAINS 130.0. 5.0, 0.5
#define KNEE2 DRIVER GAINS 150.0, 5.0, 0.5

void makeJldriver(aquA driver& d)
I
dam: taqua driver(SHOULDER..PRIVER..GAINS);

void makeJ2driver(aqua driver& d)-.

d.init -aqua -driver(KNEE 1_DRIVER-GAINS):.

void makei3driver(aqua driver& d)-,

d.init_aqua_driver(KNEE2-DRlVER-GAINS),

rI ile "joint-actuator.h"

#fifdef__JAH_
#define __IAH__

#include <>
#include ""

class aquaJoint-actuator
protected:

float ordered theta;
amplifier-clipper da~converter,
amplifier -clipper fV - onverter;
aqua-driver d,
motor

public:
aquaJoint,.actuatoro (
void reset(float theta);
void tnputprder(float deltajhdeta);
float torque(float current theta, float currento9mega);

cl~ass shoulder-actuator : public aquajoint,_actuator(

public.
shoulderý_actuator(float theta);
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class kneel-~actuator: public aquajointactuator

public:
knee I actuator(float theta),
float to-rque(float currentthieta, float current-omega)

class knee2_actuator :public aquajoint actuator

public:
knee2 -actuator(float theta),
float torque(float current-theta, float current-omega);,

#endif

H1 file "joint-actuator.c"

#include "joint-actuator.h"

// aquajoint actuator (parent class) functions

void
aqua~joint actuator: :rest(float theta)-,

ordered theta = theta;
m~la = 0.0.

void
aquajoint actuator: :input~order(float delta-theta);

ordered-theta += delta-theta;

float
aquajoint actuator: :torque(float current theta, float current-omega);

float source -voltage;
source-voltage = d->drive

(daconverter->amplify(currnt -theta - ordered_theta),
fv converter->amplify(current_omega),
min-a);

return (m->developed torque(source_voltage));
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1/derrived class specs

H/output 10 volts for 6144 pulse count

#dcfine DA CONVERTER RATIO 10.0/6144.0

// 100 pulses drive the motor 1 revolution
#define PULSES PER REV 100.0

// output 3 volts per 1000 RPMs
#define FV CONVERTER RATIO 3.0/1000.0

// harmonic gear oidy for shoulder
#define SHOULDERREDUCTION 16 1.0

// harmonic and bevel gears for knees
#define KNEE IREDUCTION 160.0*3.0
#define KNEE2_REDUCTION 160.0*2.0

HI derrived class functions

shoulder actuator::shoulder actuator(float theta)

ordered - heta = theta.
da-converter->init..amplifier .clipper

(SHOULDERREDUCTION * PULSES PER REV *DACONVERTERRATIO. 10.0. -10.0);
fv converter->tnit..amplifier-.clipper

CSHOULDER. EDUCTION 0 FV CONVERTERRATIO. 10.0, -10.0);
make) ldriver(&d);
makeRA20(&m);

kneel -actuator::knee I actuator(tloat theta)

ordered-theta = theta,
da-converter->inita.Mplifier -clipper

(KNEEl REDUCTION * PULSES PER REV * DACONVERTfERRATIO. 10.0, -10.0);
fv conveiier->init amptifier..clipper

(KNEEl REDUCTION * FV CONVERTER RATIO. 10.0, -10.0);
makel2driver(&d);,
makeRH25(&m);

float
kneel -actuator: :torque(float current-theta, float current onlega)

return (3.0 0 aqua~joint actuator::torque(current..theta, current-omega/3.0));
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knee2 actuator: :knee2_actuator(float theta)

ordered -theta - theta;
da converer->init-ampliuier-clpPer
(KNEE2REDUCTION 0 PULSES PER REV *DA CONVERTERRATIO. 10.0. -10.0);

fv converter->~t~amplitierclipper
(kNEE2_-REDUCTION * FV CONVERTERRATIO. 10.0, -10.0)-,

makeJ~driver(&-d).
ms~keRH25(&m);

float
knee2_-actuator: :torque(float current-theta, float current omega)

return (2.0 *aquajoint actuator: :torque(current-theta, current-omlega/2.0)):.
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APPENDIX C

LOADING AND OPERATING INSTRUCTIONS

To run demo. start LISP Interpreter and call:
(load "aqua-loader")

This file loads the source code in the correct sequence and makes calls to run the demo.
Additional runs may be observed by calling:

(drop-aqua)

SOURCE CODE FILES

"; aqua-loader"

,LOADER FOR AQUA-ROBOT

* define loader/compiler functions

(load "load-files.cl")

* aqua-robot loader/compiler functions

* (load-aqua)
(load-compiled-aqua)

(compile-and-load-aqua)

(defun drop-aqua 0
(restart-aqua)
(do 0 (nil)

(dotimes (i *loops*) (update-aquarobot aqua-l))
(new-picture)))

(aqua-picture)
(drop-aqua)

86



"load-fMes.cI"

(defun load-aqua0
general purpose files

(load "misc.cl")
(load "vector~ci")
(load "matrix.c1")
(load "kinematics.c1")
(load nrgid-body.cl")
(load "strobe-camera.cl")
(load "link.cl")
..aqua-robot specific files

(load "aqua-data.cl")
(load "aqua-link.cl')
(load "aqua.cl")
(load "aqua-leg.cl")
(load "aqua-inv-kinematics.cl")
(load "aqua-jacobian.cl")
(load "aqua-update-forces-and-torques.cl"))

(deftan load-compiled-aqua0
(load "misc.fasl")
(load "vector~fasi")
(load "matrix.fasl")
(load "kinematics.fasl")
(load -rigid-body.fasl")
(load "strobe-camera~fasl")
(load -link.fasl')
(load "aqua-data.fasl")
(load "aqua-link.fasl")
(load "aqua~fasl")
(load "aqua-leg.fasl")
(load "aqua-inv-kinernatics.fasl")
(load "aqua-jacobian.fasl")
(load "aqua-update-forces-and-torques.fasl"))
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(defun compile-and-load-aquia0
;(compile-file "misc.cl")
(load "niisc.fasl")
-(compile-file *vector~ci")
(load "vector. fasl")
(compile-file "matrixecl')

(load "matix~fasl")
(compile-file "kinematics~cI")
(load "kinematics. fasl")
(compile-file "rigid-body.cI")
(load "rigid-bodyfasi")
(compile-file 'strobe-camera~cI")
(load "strobe-camera. fasl")
(compile-file "link.cl")
(load "link~fasl")
(compile-file "aqua-dataxcl")
(load "aqua-data.fasl")
(compile-file "aqua-link.cl")
(load "aqua-link.fasl")
(compile-file "aqua.cl")
(load "aqua.fasl")
(compile-file "aqua-leg.cl")
(load "aqua-leg.fasl")
(compile-file "aqua-inv-kinematics.cl")
(load "aqua-inv-kinematics.fasl")
(compile-file "aqua-jacobian.cl")
(load "aqua-jacobian.faslm)
(compile-file "aqua-update-forces-and-torques.cl")
(load "aqua-update-forces-and-torques.fasl"))
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"mise.d"

(defun atan.2 (dx dy)
(cond ((zerop d~x) (cond ((zerop dy) 0.0)

((< dy 0) (- (* 0.5 pi)))
kt(* 0.5 pi)))

((< x 0) (cond ((< dy 0) (- (atan (/ dy dx)) pi))
(t (+ (atan VI dy dx)) pi)))

(t (atan (U dy dx)))))

returns angle in degrees.
(defun atan2d (dx dy) trad-to-deg (atan2 dx dy)))

(defuin sqr (x) (* x x))

(defconstant rad-to-deg-multiplier (180 pi))
(defun rad-to-deg (rad) (* rad rad-bo-deg-multiplier))

(defconstant deg-to-rad-multiplier (/ pi 180))
(defuii deg-to-rad (deg) (* deg deg-to-rad-multiplier))

-,Returns first n elements of list.
(deflan ncar (n list)

(cond ((zerop n) nil)
(t (cons (car list) (ncar (I- n) (cdr list))))))
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"vector.d"

A vector is a list of numerical atoms.

(defun vector-add (vector-I vector-2) (mapcar '+ vector-I vector-2))

(defun vector-subtract (vector- I vector-2) (mapcar '- vector- I vector-2))

(defun scalar-multiply (scalar vector)
(cond ((null vector) nil)

(t (cons (* scalar (car vector))
(scalar-multiply scalar (cdr vector))))))

(defun dot-product (x y)
(apply '+ (mapcar '* x y))) ;A matrix is a list of row vectors.

(defun cross-product (x y) ;x and y are 3D vectors.
(list (- (* (cadr x) (caddr y)) (* (caddr x) (cadr y)))

(- (* (caddr x) (car y)) (* (car x) (caddr y)))
(- (* (car x) (cadr y)) (* (cadr x) (car y)))))

(defun vector-length (vector) (sqrt (dot-product vector vector)))

(defun distance-between (x y) ;points x and y represented by vectors.
(vector-length (vector-subtract x y)))

returns a vector (0*(one-position - 1) 1 0*(length-one-position))
(defun unit-vector (one-position length)

(do ((n length (1- n))
(vector nil (cons (cond ((= one-position n) 1) (t 0)) vector)))
((zerop n) vector)))

(defun appendl (L) (append L '(1)))
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"; matri.dl"

requires VECTOR-CL

requires MISC.CL "ncar"

A matrix is a list of row vectors.

(defun transpose (A)
(cond ((null (cdr A)) (mapcar 'list (car A)))

(t (mapcar 'cons (car A) (transpose (cdr A))))))

(defun post-multiply (M x) AM is a square matrix. x is a conformable vector.
(cond ((null (cdr M)) (list (dot-product (car M) x)))

(t (cons (dot-product (car M) x) (post-multiply (cdr M) x)))))

(defun pre-multiply (vector matrix)
(post-multiply (transpose matrix) vector))

(defun matrix-multiply (A B) ;A and B are conformable matrices.
(cond ((null (cdr A)) (list (pre-multiply (car A) B)))

(t (cons (pre-multiply (car A) B) (matrix-multiply (cdr A) B)))))

(defun chain-multiply (L) ;L is a list of names of conformable matrices.
(cond ((null (cddr L)) (matrix-multiply (eval (car L)) (eval (cadr L))))

(t (matrix-multiply (eval (car L)) (chain-multiply (cdr L))))))

(defun cycle-left (matrix) (mapcar 'row-cycle-left matrix))

(defin row-cycle-left (row) (append (cdr row) (list (car row))))

(defun cycle-up (matrix) (append (cdr matrix) (list (car matrix))))

(defun unit-matrix (size)
(do ((row-number size (1- row-number))

(I nil (cons (unit-vector row-number size) 1)))
((zerop row-number) 1)))

(defun concat-matrix (A B) ;A and B are matrices with equal number of rows.
(cond ((null A) B)

(t (cons (append (car A) (car B)) (concat-matrix (cdr A) (cdr B))))))

(defun augment (matrix)
(concat-matrix matrix (unit-matrix (length matrix))))

(defun normalize-row (row) (scalar-multiply (/ 1.0 (car row)) row))
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(defun solve-first-column (matrix) .Reduces first column to (1 0 ... 0).
(do* ((LI matrix (cdr Li))

(L2 (normalize-row (car matrix)))
(L3 (list L2) (cons (vector-add (car Li)

(scalar-multiply (- (caar Li)) L2)) L3)))
((null (cdr LI)) (reverse L3))))

(defun square-car (MND Returns square matrix extracted from front of matrix M.
(do ((m (length M))

(LI M (cdr Li))
(L2 nil (cons (ncar m (car LI)) L2)))

((null L i) (reverse L2))))

:1 is a list of lists. This function finds list iwith
:largest car and moves it to head of list of lists.
(defun max-car-first (L)

(cond ((null (cdr L)) L)
(t (if (> (abs (caar L)) (abs (caar (max-car-first (cdr L))))) L

(append (max-car-first (cdr L)) (list (car L)))))))

-Applies max-car-first to first n elements of list.
(defun nmnax-car-first (n list)

(append (max-car-first (ncar n list)) (nthcdr n list)))

(defun matrix-inverse (M)
(do ((MI (max-car-first (augment M))

(cond ((null MI) nil)
(t (nmax-car-first n (cycle-left (cycle-up MI))))))

(n (1- (length M)) (I- n)))
((or (minusp n) (null MI)) (cond ((null MI) nil) (t (square-car Ml))))
(setq MI (cond ((zerop (caar MI)) nil) (t (solve-first-column Mi))))))
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"kinematics.cI"

requires MATRIX.CL

(deflin dh-niat~rix (cosrotate sinrotate costwist sintwist length translate)
(list (list cosrotate (- (* costwist sinrotate))

(* sintiwist sinrotate) (* length cosrotate))
(list sinrotate (* costwist cosrotate)

(- (* sintwist cosrotate)) (* length sinrotate))
(list 0. sint'wist costwist translate) (list 0. 0. 0. 1.)))

(defiin mdh-matrix (cosrotate sinrotate
costwist-i- I sint~~ist-i- I
length-i- I translate)

(list (list cosrotate (- sinrotate) 0. length-i-i1)
(list (* sinrotate costwist-i-1) (* cosrotate costwist-i-I)

(- sintwist-i-1) (- (* sintwist-i-l translate)))
(list (* sinrotate sintwist-i- 1) (* cosrotate sintwist-i-l1)

costwist-i-1 (* costwist-i-I translate))
(list 0. 0. 0. 1.)))

(defuin homogeneous-transform (azimuth elevation roll x y z)
(rotation-and-translation (sin azimuth) (cos; azimuth) (sin elevation)
(cos elevation) (sin roll) (cos roll) x y z))

(defun rotation-and-translation (spsi cpsi sth cth sphi cphi x y z)
(list (list (* cpsi cth) (- (* cpsi sth sphi) (* spsi cpbi))

(+ (* cpsi sth cphi) (* spsi sphi)) x)
(list (Sspsi cth) (+ (* cpsi cphi) (* spsi sth sphi))

(* ( spsi sth cphi) (Scpsi sphi)) y)
(list (-sth) (* cth spbi) (Scth cphi) z)
(list 0. 0. 0. 1.)))

(deflin inverse-H (H)
(let* ((minus-P (list (- (fourth (first H)))

(-(fourth (second H)))
(-(fourth (third H)))))

(inverse-R (transpose (square-car (reverse (rest (reverse H))))))
(inverse-P (post-multiply inverse-R minus-P)))

(append (concat-matrix inverse-R (transpose (list inverse-P)))
(list (list 0 0 0 1)))))
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"rigid-body.€l"

requires KINEMATICS.CL

(defclass rigid-body 0
((location ,The three-vector (x y z) in world coordinates.

:initarg location
:accessor location)

(velocity ;The six-vector (u v w p q r) in body coordinates.
initarg :velocity

:accessor velocity)
(acceleration ;The vector (u-dot v-dot w-dot p-dot q-dot r-dot).
:accessor acceleration)

(forces-and-torques ;The vector (Fx Fy Fz L M N) in body coordinates.
:accessor forces-and-torques)

(moments-of-inertia ,The vector (Ix ly Iz) in principal axis coordinates.
:initarg :moments-of-inertia
:accessor moments-of-inertia)

(mass
:initarg :mass
:accessor mass)

(node-list ;List of vertices for wire frame model
:initarg :node-list
:accessor node-list)

(polygon-list ;Sets of above vertices defining polygons
:initarg :polygon-list ;Ex:'((l 2 3)(2 3 4 5)(4 5 6))
:accessor polygon-list)

(transformed-node-list
:accessor transformed-node-list)

(H-matrix
:accessor H-matrix)

(current-time
:accessor current-time)))

(definethod move ((body rigid-body) azimuth elevation roll x y z)
(setf (H-matrix body)

(homogeneous-transform azimuth elevation roll x y z))
(transform-node-list body)
(update-position body))
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(defmethod move-incremental ((body rigid-body) increment-list)
(setf (H-matrix body)

(matrix-multiply (H-matrix body) (homogeneous-transform
(first increment-list)
(second increment-list)
(third increment-list)
(fourth increment-list)
(fifth increment-list)
(sixth increment-list))))

(transform-node-list body)
(update-position body))

(defmethod get-delta-t ((body rigid-body))
(let* ((new-time (get-internal-real-time))

(delta-t ( (- new-time (current-time body)) 1000)))
(serf (current-time body) new-time)
delta-t))

(defmethod start-timer ((body rigid-body))
(setf (current-time body) (get-internal-real-time)))

(defmethod update-rigid-body ((body rigid-body)) ;Euler integration.
(let* ((delta-t (get-delta-t body)))

(update-H-matrix body delta-t)
(transform-node-list body)
(update-position body)
(update-velocity body delta-t)
(update-acceleration body)))

(definethod update-acceleration ((body rigid-body))
(setf (acceleration body) ;(list u-dot v-dot w-dot p-dot q-dot r-dot)

(multiple-value-bind ;Assumes principal axis
(FxFyFzLMN uvwpqr Ix Iy Iz) ;coordinates with origin at
(values-list ;center of gravity of body.
(append
(forces-and-torques body) (velocity body) (moments-of-inertia body)))

(list (+ (* v r) (* -I w q) (/Fx (mass body))
(* *gravity* (first (third (H-matrix body)))))

(+ (0 w p) (* -I u r) (/Fy (mass body))
(* *gravity* (second (third (H-matrix body)))))

(+ (* u q) (* -1 v p) (I Fz (mass body))
(* *gravity* (third (third (H-matrix body)))))

(+ (* (- Iy Iz) q r) L) Lx)
(V (4 (0 Iz Ix) r p) M) ly)
(I (+ ( (- Ix ly) p q) N) Iz)))))
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(defmethod update-velocity ((body rigid-body) delta-t)
(setf (velocity body)

(vector-add (velocity body)
(scalar-multiply delta-t (acceleration body)))))

(defmethod update-H-matrix ((body rigid-body) delta-t)
(setf (H-matrix body)

(matrix-multiply
(H-matrix body) (homogeneous-transform

(* delta-t (sixth (velocity body)))
(* delta-t (fifth (velocity body)))
(* delta-t (fourth (velocity body)))
(* delta-t (first (velocity body)))
(* delta-t (second (velocity body)))
(* delta-t (third (velocity body)))))))

(defmethod transform-node-list ((body rigid-body))
(setf (transformed-node-list body)

(mapcar #'(lambda (node-location)
(post-multiply (H-matrix body) node-location))

(node-list body))))

(defmethod update-position ((body rigid-body))
(setf (location body) (ncar 3 (first (transformed-node-list body)))))

(defconstant *gravity* 32.2185)

(definethod world-to-body ((body rigid-body) xyz-pos)
(ncar 3 (post-multiply (inverse-H (H-matrix body))

(append xyz-pos'(1)))))

(defmethod body-to-world ((body rigid-body) xyz-pos)
(ncar 3 (post-multiply (H-matrix body) (append xyz-pos '(1)))))
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"; "strobe-camera.c"

requires RIGTD-BODY.CL

(require :xcw)
(cw:initialize-common-windows)

(defclass strobe-camera (rigid-body)
((focal-length

:accessor focal-length
:initform 6)

(camera-window
:accessor camera-window
:initform (cw:make-window-stream :borders 5

left 500
:bottom 500

:width 300
:height 300
:title "strobe-camera-image"
:activate-p t))

(H-matrix
:initform (homogeneous-transform .3 -.3 0 -300 -90 -90))

(inverse-H-matrix
:accessor inverse-H-matrix
initform (inverse-H (homogeneous-transform .3 -.3 0 -300 -90 -90)))

(enlargement-factor
:accessor enlargement-factor
:initform 30)))

(defmethod erase-camera-window ((camera strobe-camera))
(cw:clear (camera-window camera)))

(defmethod move ((camera strobe-camera) azimuth elevation roll x y z)
(setf (H-matrix camera) (homogeneous-transform azimuth elevation roll x y z))
(setf (inverse-H-matrix camera) (inverse-H (H-matrix camera))))

(defmethod take-picture ((camera strobe-camera) (body rigid-body))
(let ((camera-space-node-list (mapcar #'(lambda (node-location)

(post-multiply (inverse-H-matrix camera) node-location))
(transformed-node-list body))))

(dolist (polygon (polygon-list body))
(clip-and-draw-polygon camera polygon camera-space-node-list))))
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(definethod clip-and-draw-polygon
((camera strobe-camera) polygon node-coord-list)
(do* ((initial-point (nth (first polygon) node-coord-list))

(from-point initial-point to-point)
(remaining-nodes (rest polygon) (rest remaining-nodes))
(to-point (nth (first remaining-nodes) node-coord-list)

(if (not (null (first remaining-nodes)))
(nth (first remaining-nodes) node-coord-list))))

((null to-point)
(draw-clipped-projection camera from-point initial-point))

(draw-clipped-projection camera from-point to-point)))

(defmethod draw-clipped-projection ((camera strobe-camera) from-point to-point)
(cond ((and (<= (first t:om.point) (focal-length camera))

(<= (first to-point) (focal-length camera))) nil)
((<= (first from-point) (focal-length camera))
(draw-line-in-camera-window camera

(perspective-transform camera (from-clip camera from-point to-point))
(perspective-transform camera to-point)))

((<= (first to-point) (focal-length camera))
(draw-line-in-camera-window camera

(perspective-transform camera from-point)
(perspective-transform camera (to-clip camera from-point to-point))))

(t (draw-line-in-camera-window camera
(perspective-transform camera from-point)
(perspective-transform camera to-point)))))

(defmethod from-clip ((camera strobe-camera) from-point to-point)
(let ((scale-factor (/ (- (focal-length camera) (first from-point))

(- (first to-point) (first from-point)))))
(list (+ (first from-point)

(* scale-factor (- (first to-point) (first from-point))))
(+ (second from-point)

(* scale-factor (- (second to-point) (second from-point))))
(+ (third from-point)

(* scale-factor (- (third to-point) (third from-point)))) 1)))

(defmethod to-clip ((camera strobe-camera) from-point to-point)
(from-clip camera to-point from-point))

(defmethod draw-line-in-camera-window ((camera strobe-camera) start end)
(cw:draw-line (camera-window camera)

(cw:make-position :x (first start) :y (second start))
(cw:make-position :x (first end) :y (second end))
:brush-width 0))
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(defmethod perspective-transform ((camera strobe-camera) point-in-camera-space)
(let* ((enlargement-factor (enlargement-factor camera))

(focal-length (focal-length camera))
(x (first point-in-camera-space)) ;x axis is along optical axis
(y (second point-in-camera-space)) ,y is out right side of camera
(z (third point-in-camera-space))) ;z is out bottom of camera

(list (+ (round (* enlargement-factor (/ (* focal-length y) x)))
150) ;to right in camera window
(+ 150 (round (* enlargement-factor (/ (* focal-length (- z)) x))

))))) ;up in camera window
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"link~cI"

requires RIGID-BODY. CL

(defclass link (rigid-body)
((motion-limit-flag

:initform nil
:accessor motion-limit-flag)

(twist-angle
:imtarg twist-angle
:accessor twist-angle)

(link-length
:initarg link-length
-accessor link-length)

(inboard-joint-angle
:initarg inboard-joint-angle
:accessor inboard-joint-angle)

(inboard-joint-displacement
i nitarg :inboard-joint-displacement

:accessor inboard-joint-displacement)
(inboard-link
:initarg :inboard-link
:accessor inboard-link)

(A-matrix
:accessor A-matrix)

added for mdh
(twist-angle-i-I
:initarg :twist-angle-i- I
:accessor twist-angle-i-i)

(link-length-i-i
:initarg :link-length-i-i
:accessor link-length-i-i)

fr-matrix
:accessor T-matrix)))

(defclass rotary-link (link)
((min-joint-angle

:initarg :mm-joint-angle
:accessor min-joint-angie)

(max-joint-angle
:imitarg :max-joint-angle
:accessor max-joint-angle)))
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(defclass sliding-link (link)
((min-joint-dsplacement

:initarg mm-joint-displacement
:accessor nun-joint-displacement)

(max-joint-displacement
:imtarg max-joint-displacement
:accessor max-joint-displacement)))
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"faqua-dataxcI'

load after MISC.CL

(defconstant *dt* 0.0 1) ;delta-t each update.
(defconstant *loops* 2) updates between draws.

(defconstant link0length 37.5)
(defconstant link llength 20.0)
(defconstant link2length 52.0)
(defconstant link3length 102.0)
(defconstant flag-length 25.0)

-leg attachment angles.
(defconstant leg 1 -angle (deg-to-rad 0))
(defconstant leg2-angle (deg-to-rad 60))
(defconstant leg3-angle (deg-to-rad 120))
(defconstant leg4-angle (deg-to-rad 180))
(defconstant leg5-angle (deg-to-rad 240))
(defconstant leg6-angle (deg-to-rad 300))

;initial position and orientation in world coordinates.
(defconstant azimuth-init (deg-to-rad 0.0))
(defconstant elevation-mnit (deg-to-rad 0.0))
(defconstant roll-mnit (deg-to-rad 9.0))
(defconstant x-init 0.0)
(defconstant y-inmt 0.0)
(defconstant z-init -135.0)

;initial (default) joint angles.
(defconstant joint 1-int (deg-to-rad 0.0))
(defconstantjoint.2-init (deg-to-rad 25.0))
(defconstant joint3-init (deg-to-rad -115.0))
(defconstant default-angles (list joint 1-int joint2-init joint3-init)i

;joint spring constants. (fill in: Kg-cm2/sec2 per radian)
(defconstant joint I1-K -2000000) ; 5000000 = Scott's 500 Nm per radian.
(defconstant joint2-K -2000000)
(defconstant joint3-K -2000000)
(defconstant spring-constants (list jointl-K joint2-K joint3-K))
;joint spring damping constants. (fill in : Kg-cm2/sec2 per radian/sec)
(defconstant jointlI-D -800000) ; 800000 =Scott's 80 Nm-sec per radiantsec.
(defconstant joint2-D -800000)
(defconstant joint3-D -800000)
(defconstant spring-damping-constants (list joint l-D joint.2-D joint3-D))
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*joint limits.
;(defconstant joint I1-mmn-limit (deg-to-rad -60.0))
;(defconstant joint I1-max-limit (deg-to-rad 60.0))
;(defconstant joint2-min-limit (deg-to-rad -106.6))
.(defconstant joint2-max-linxit (deg-to-rad 73.4))
;(defconstant joint3-min-Iimit (deg-to-rad -156.4))
.(defconstant joint3-max-limit (deg-to-rad 23.6))
(defconstant joint I -min-limit -50.0)
(defconstant joint I-max-limit 50.0)
(defconstant joint2-min-limit -50.0)
(defconstant joint2-ma~x-limut 50.0)
(defconstant joint3-min-limit -50.0)
(defconstant joint3-max-limit 50.0)

mass in Kg.
(defconstant aqua-body-mass 500.0)
-Adefconstant link imass 0.0)
;(defconstant link2mass 0.0)
;(defconstant tink3mass 0.0)

(Ix ly Iz)-Kg-cm. in principal axis coordinates.
assumes solid cylindrical body of constant density.

(defconstant aqua-body-height 50.0)
(defconstant aqua-body-radius 30.0)
(defconstant aqua-body-Ix

(+ (/ ( 1 4) aqua-body-mass (sqr aqua-body-radius))
(* 1I 112) aqua-body-mas (sqr aqua-body-height))))

(defconstant aqua-body-1y aqua-body-Ix)
(defconstant aqua-body-Iz (* (/ 1 2) aqua-body-mass (sqr aqua-body-radius)))
(defconstant aqua-body-inertia (list aqua-body-Ix aqua-body-Iy aqua-body-Iz))

center of mass.
(defconstant body-mass-center '(0 0 0))
;(defconstant link Imass-center (list (Ilinkllength 2) 0 0))
,(defconstant li-nk2mass-center (list (Ilink2length 2) 0 0))
;(defconstant link3 mass-center (list (Ilink3 length 2) 0 0))

(defconstant *gravity* 980.0) ;cm/sec/sec.
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"aqua-tinkxcI"

requires LINK.CL
requires AQUA-DATA.CL

(defclass linkO (rotary-link)
((twist-angle initform 0)
(link-length imitform. link0length)
(inboard-joint-angle : initform 0)
(inboard-joint-displacement : initform 0)
(mmýi-joint-angle :initform (deg-to-rad -360))
(ma'x-joint-angle initform (deg-to-rad 360))
(node-list : initform (list (list 0 0 0 1) (list 0 0 0 1)

(list linkolength 0 0 1))) for mdli
(list (- link~lengili) 0 0 1))) -,for dli

(polygon-list initform '((1 2)))))

(defclass link I (rotary-link)
((tuist-angle :initform (dleg-to-rad -90))
(link-length initformn linkllength)
(inboard-joint-angle :initform jointi-init)
(inboard-joint-displacement :initform 0)
(min-joint-angle :initform joint I1-nin-limit)
(max-joint-angle :initform joint 1-max-limit)
(node-list : initform (list (list 0 00 1) (fist 0 00 1)

(list link Ilengtli 0 0 1))) ; for mdli
(list (- link Ilengili) 0 0 1))) ; for dli

(polygon-list initform '((1 2)))))

(defclass link2 (rotary-link)
((twist-angle :initform 0)
(link-length :initform. link2lengtli)
(inboard-joint-angle :initformjoint2-init)
(inboard-joint-displacement :initform 0)
(mmn-joint-angle : initform joint2-nmin-limit)
(max-joint-angle :initform. joint2-max-limit)
(node-list :initform (list (list 0 0 0 1) (list 0 0 0 1)

(list link2lengtli 0 0 1))) ;for mdli
(list (- link2length) 0 0 1))) ;for dli

(polygon-list :initform '((1 2)))))
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(defclass link3 (rotary-link)
((twist-angle :initform 0)
(link-length :initform link3length)
(inboard-joint-angle :initform joint3-init)
(inboard-joint-displacement :initform 0)
(min-joint-angle :initform joint3-min-limit)
(max-joint-angle :initform joint3 -max-limit)
(node-list :initform (list (list 0 0 0 1) (list 0 0 0 1)

(list link3length 0 0 1))) for mdh
(list (- link3length) 0 0 1))) for dh

(polygon-list :initform '((I 2)))))

for dh
(defmethod update-A-matrix ((link link))

(with-slots (twist-angle link-length inboard-joint-angle
inboard-joint-displacement A-matrix) link
(setf A-matrix

(dh-matrix (cos inboard-joint-angle) (sin inboard-joint-angle)
(cos twist-angle) (sin twist-angle)
link-length inboard-joint-displacement))))

added for mdh
(defmethod update-T-matrix ((link link))

(with-slots (twist-angle-i- I link-length-i- I inboard-joint-angle
inboard-joint-displacement T-matrix) link
(setf T-matrix

(mdh-matrix (cos inboard-joint-angle) (sin inboard-joint-angle)
(cos twist-angle-i-i) (sin twist-angle-i-i)
link-length-i-I inboard-joint-displacement))))

(defmethod rotate ((link link) angle)
(setf (inboard-joint-angle link) angle)
(update-T-matrix link)
(setf (H-matrix link) (matrix-multiply (H-matrix (inboard-link link))

(T-matrix link)))
(transform-node-list link))

(defmethod rotate-link ((link link) angle)
(cond ((> angle (max-joint-angle link))

(rotate link (max-joint-angle link))
(setf (motion-limit-flag link) t))

((< angle (min-joint-angle link))
(rotate link (min-joint-angle link))
(setf (motion-limit-flag link) t))

(t (rotate link angle) (setf (motion-limit-flag link) nil))))
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'asqua.d"

*requires STROBE-CAMERA.CL
requires AQUA-LEG.CL

(defclass aquarobot-body (rigid-body)
((mass: initform aqua-body-mass)
(moments-of-inertia : initform aqua-body-inertia)
(node-list

initform (list (listO0O0O 1)
(list (S(cos legi-angle) link~length)

(S(sin leg 1 -angle) link~length) 0 1)
(list (S(cos leg2-angle) linkolength)

(S(sin leg2-angle) link0length) 0 1)
(list (S(cos leg3-angle) link~length)

(S(sin leg3-angle) linkolength) 0 1)
(list (S(cos leg4-angle) linkolength)

(S(sin leg4-angle) link0length) 0 1)
(list (S(cos leg5-angle) linkolength)

(* (sin legS-angle) linkolength) 0 1)
(list (~(cos leg6-angle) linkolength)

(* (sin leg6-angle) linkolength) 0 1)
(list linkolength 0 (- flag-length) 1)))

(polygon-list
:initform '((1 2 3 4 5 6) (1 7)))))

(defclass aquarobot0
((body

Anitform (miake-instance 'aquarobot-body)
:accessor body)

(legI
:initform. (make-instance'aqua-leg leg-attachment-angle leg 1-angle)
:accessor legi)

(leg2
: initform (make-instance 'aqua-leg leg-attachment-angle leg2-angle)
:accessor leg2)

(leg3
:initform (make-instance 'aqua-leg leg-attachment-angle Ieg3-angle)
:accessor leg3)

(leg4
:initformn (make-instance'aqua-leg :leg-antachment-angle leg4-angle)
:accessor leg4)

(legS
:initform (make-instance'aqua-leg leg-attachment-angle legS-angle)
:accessor legS)

(leg6
:initform (make-instance 'aqua-leg leg-attachment-angle leg6-angle)
:accessor leg6)))
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(defmethod wodd-to-aqua ((aqua aquarobot) xyz-pos)
(world-to-body (body aqua) xyz-pos))

(defmethod aqua-to-world ((aqua aquarobot) xyz-pos)
(body-to-world (body aqua) xyz-pos))

-(defmethod initialize ((aqua aquarobot))
(setf (H-matrix (body aqua))

(homogeneous-transform azimuth-init elevation-init roll-init
x-init y-init z-init))

(transform-node-list (body aqua))
(update-position (body aqua))
(serf (forces-and-torques (body aqua)) '(0 0 0 0 0 0))
(setf (acceleration (body aqua)) '(0 0 0 0 0 0))
(setf (velocity (body aqua)) '(0 0 0 0 0 0))
(start-timer (body aqua))
(initialize-leg (legI aqua) (body aqua))
(initialize-leg (leg2 aqua) (body aqua))
(initialize-leg (leg3 aqua) (body aqua))
(initialize-leg (leg4 aqua) (body aqua))
(initialize-leg (leg5 aqua) (body aqua))
(initialize-leg (leg6 aqua) (body aqua)))

(defun aqua-picture 0
(setf aqua-I (make-instance 'aquarobot))
(initialize aqua-i)
(move-incremental aqua-I null-move-list);sets "prev-foot-pos".
(setf camera- I (make-instance 'strobe-camera))
(take-picture camera-I aqua-i))

(defmethod take-picture ((camera strobe-camera) (aqua aquarobot))
(take-picture camera (body aqua))
(take-picture camera (legI aqua))
(take-picture camera (leg2 aqua))
(take-picture camera (leg3 aqua))
(take-picture camera (leg4 aqua))
(take-picture camera (leg5 aqua))
(take-picture camera (leg6 aqua)))

(defun new-picture 0
(erase-camera-window camera-I)
(take-picture camera-I aqua-I))
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(defmethod move-incremental ((aqua aquarobot) increment-list)
(move-incremental (body aqua) (first increment-list))
(move-incremental (legI aqua) (second increment-list))
(move-incremental (leg2 aqua) (third increment-list))
(move-incremental (leg3 aqua) (fourth increment-list))
(move-incremental (leg4 aqua) (fifth increment-list))
(move-incremental (leg5 aqua) (sixth increment-list))
(move-incremental (leg6 aqua) (seventh increment-list)))

(defconstant null-move-list '((0 0 0 0 0 0) (0 0 0) (0 0 0) (0 0 0)
(0 0 0) (0 0 0) (0 0 0)))

(defmethod feasible-movep ((aqua aquarobot) allowable-sinkage
allowable-slippage)

(and (feasible-movep (leg I aqua) allowable-sinkage allowable-slippage)
(feasible-movep (leg2 aqua) allowable-sinkage allowable-slippage)
(feasible-movep (leg3 aqua) allowable-sinkage allowable-slippage)
(feasible-movep (leg4 aqua) allowable-sinkage allowable-slippage)
(feasible-movep (leg5 aqua) allowable-sinkage allowable-slippage)
(feasible-movep (leg6 aqua) allowable-sinkage allowable-slippage)))

(defun restart-aqua ()
(initialize aqua-1)
(move-incremental aqua-I null-move-list);sets "prev-foot-pos".
(new-picture))

;replace some rigid-body functions:

(definethod start-timer ((body aquarobot-body))
(setf (current-time body) 0))

(defmethod get-delta-t ((body aquarobot-body))
(let* ((delta-t *dt*)

(new-time (+ (current-time body) delta-t)))
(setf (current-time body) new-time)
delta-t))

(defmethod update-aquarobot ((aqua aquarobot)) ;Euler integration.
(let* ((body (body aqua))

(delta-t (get-delta-t body)))
(update-acceleration body)
(update-velocity body delta-t)
(update-H-matrix body delta-t)
(transform-node-list body)
(update-position body)
(update-forces-and-torques aqua))) ;updates positions of legs
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"requ-ires QU.CI

requires AQUA. NKCL

requires STROBE-CANMEA.CL

(defclass aqua-leg ()
((leg-attachment-angle

:imtarg :leg-attachment-angle
:accessor leg-attachment-angle)

(linkO
initform (make-instance'linkO)
:accessor linkO)

(linkI
:initform (make-instance 'linki)
:accessor linki)

(link2
:initformn (mnake-instance 'link2)
:accessor link2)

(link3
:initform (miake-instance 'link3)
:accessor link3)

(motion-complete-flag
:initform nil
:accessor motion-complete-flag)

(previous-foot-position
Anitfora nal
:accessor previous-foot-position)

(current-foot-position
:initform ni
:accessor current-foot-position)

(foot-contact
:initformn nil
:accessor foot-contact)))
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(deftethod initialize-leg ((leg aqua-leg) (body aquarobot-body))
(setf (foot-coatact ) nil)
(serf (inboard-link (linkO le)) body)
(setf (inboard-link (linkI leg)) (lnk-O leg))
(setf (inboard-link (link2 leg)) (link1 leg))
(serf (inboard-link (link3 leg)) (link2 leg))
- added for mdh
(setf (twist-angle-i-I (linkO leg)) 0)
(serf (twist-angle-i-I (linkI leg)) (twist-angle (linkO leg)))
(serf (twist-angle-i-I (link2 leg)) (twist-angle (linkl leg)))
(serf (twist-angle-i-I (link3 leg)) (twist-angle (link2 leg)))
(self (link-length-i-I (linkO leg)) 0)
(self (link-length-i- I (link I leg)) (link-length (linkO leg)))
(serf (link-length-i- I (rink2 leg)) (link-length (link I leg)))
(setf (link-length-i-I (link3 leg)) (link-length (link2 leg)))
(set-default-angles leg))

(deftnethod set-default-angles ((leg aqua-leg))
(rotate-link (linkO leg) (leg-attachment-angle leg))
(rotate-link (link1 leg) jointl-init)
(rotate-link (link2 leg) joint2-init)
(rotate-link (link3 leg) joint3-init)
(setf (previous-foot-position leg) nil)
(self (current-foot-position leg)

(ncar 3 (third (transformed-node-list (link3 leg)))))) ; for mdh

(defmtethod set-angles ((leg aqua-leg) angle-list)
(rotate-link (linkO leg) (leg-attachment-angle leg))
(rotate-link (link1 leg) (car angle-list))
(rotate-link (link2 leg) (cadr angle-list))
(rotate-link (link3 leg) (caddr angle-list)))

(defmethod take-picture ((camera strobe-camera) (leg aqua-leg))
(take-picture camera (linkI leg))
(take-picture camera (link2 leg))
(take-picture camera (link3 leg)))
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(defmethod move-incremental ((leg aqua-leg) increment-list)
(rotate-link (linkO leg) (leg-attachment-angle leg))
(rotate-link (linkl leg)

(+ (first increment-list) (inboard-joint-angle (linkl leg))))
(rotate-link (link2 leg)

(+ (second increment-list) (inboard-joint-angle (link2 leg))))
(rotate-link (link3 leg)

(+ (third increment-list) (inboard-joirt-angle (link3 leg))))
(setf (previous-foot-position leg) (current-foot-position leg))
(set/f (current-foot-position leg)

(ncar 3 (third (transformed-node-list (link3 leg))))) for mdh
(ncar 3 (first (transformed-node-list (link3 leg))))),. for dh

(setf (motion-complete-flag leg) (not (or (motion-limit-flag (link I leg))
(motion-limit-flag (link2 leg)) (motion-limit-flag (link3 leg))))))

(defmethod feasible-movep ((leg aqua-leg) allowable-sinkage allowable-slippage)
(and (<= (third (current-foot-position leg)) allowable-sinkage)

(or (minusp (third (current-foot-position leg)))
(minusp (third (previous-foot-position leg)))
(<= (vector-length (vector-slippage leg)) allowable-slippage))))

(defmethod vector-slippage ((leg aqua-leg))
(vector-subtract (rest (reverse (previous-foot-position leg)))

(rest (reverse (current-foot-position leg)))))

(defmnethod current-joint-angles ((leg aqua-leg))
(list (inboard-joint-angle (linkl leg))

(inboard-joint-angle (link2 leg))
(inboard-joint-angle (link3 leg))))
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"aqua-inverse-kinematics.cl"

load after AQUA-LEG.CL
load after AQUA-DATA.CL

(defconstant L2sqr (sqr link2length))
(defconstant L3sqr (sqr link3length))

assumptions: dh coord system for linkO of respective leg:
origin at joint 1,
x-axis directed away from center of body.
z-axis aligned with body z-axis;

foot-position = '(x y z).
(defun thetal (foot-position)
(if (< (car foot-position) 0)

(atan2 (- (car foot-position)) (- (cadr foot-position)))
(atan2 (car foot-position) (cadr foot-position))))

assumptions: dA coord system for linki of respective leg:
* origin at joint2,
* x-axis directed away from jointi,

z-axis aligned with body z-axis;
foot-position = '(x y z);
hyp = distance from joint2 to foot.

(defun theta2 (foot-position hyp hyp-sqr)
(- (acos (I (+ L2sqr hyp-sqr (- L3sqr)) (* 2 fink2length hyp)))

(if (< (car foot-position) 0)
(- pi (asin (I (caddr foot-position) hyp)))
(asin (I (caddr foot-position) hyp)))))

assumptions: same as for theta2.
(defun theta3 (foot-position hyp-sqr)

(- (acos (/ (+ L2sqr L3sqr (- hyp-sqr)) (* 2 link2length link3length))) pi))

returns foot position with respect to joint I in linko coord.
(defmethod foot-joint 1/link0coord ((leg aqua-leg) foot-pos)

(vector-subtract (world-to-body (linkO leg) foot-pos)
(list link0length 0 0)))

; returns foot position with respect to joint 2 in link1 coord.
; given foot-joint l/linkOcoord.
(defun foot-joint2/linklcoord (foot-pos)

(list (- (sqrt (+ (sqr (car foot-pos)) (sqr (cadr foot-pos)))) link llength)
0 (caddr foot-pos)))
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returns list of joint angles required for given (world coord) foot position.
(definethod aqua-inv-kin ((leg aqua-leg) foot-position)

(let* ((posO (foot-jointi/link~coord leg foot-position))
(posi1 (foot-joint2/linkl~coord, posO))
(hvp-sqr (+ (sqr (car posi1)) (sqr (caddr posi1))))
(hv.p (sqrt hyp-sqr)))
(list (thetal posO)

(theta2 pos I hyp) h)T)sqr)
(theta3 pos 1 hyp-sqr))))

"aqua-jacobianxcI"

(defrethod jacobian ((leg aqua-leg))
(let* ((TO I (+4 (leg-attachment-angle leg)

(inboard-joint-angle (linki leg))))
(SO0I (sin TO 1)) (CO I (cos TO 1))
(T2 (inboard-joint-angle (link2 leg)))
(S2 (sin T2)) (C2 (cos T2))
(T23 (+ T2 (inboard-joint-angle (link3 leg))))
(S23 (sin T23)) (C23 (cos T23))
(LI linkilength) (L2 Iink2length) (L3 link3lengtli))

(list (list (* ( (+ L I (* L2 C2) (* L3 C23)) SO 1))
(( (+ (* L2 S2) (* W3 S23)) CO 1))

(list (*(+ L I (* L2 C2) (* L3 C23)) COl1)
(( (+ (* L2 S2) (* U3 S23)) SO 1))

(list 0
(-(+ (* L2 C2) (* LU C23)))

(dlefmethod inverse-jacobian ((leg aqua-leg))
(matrix-inverse (jacobian leg)))

(dlefmnethod foot-to-joint-rates ((leg aqua-leg) dX dY dZ)
(post-multiply (inverse-jacobian leg) (list dX dY dZ)))

(definethod joint-to-foot-rates ((leg aqua-leg) dtheta I dtlieta2 dtheta3)
(post-multiply (jacobian leg) (list dthetal dtheta2 dtheta3)))
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"aquarobot-update-forces-and-torques.cl"

load after AQUA-DATA.CL
load after AQUA. CL
load after AQUA-LEG.CL

(defmethod update-forces-and-torques ((aqua aquarobot))
(setf (forces-and-torques (body aqua)) '( 0 0 0 0 0)) ;clear last cycle.
(add-leg-forces-and-torques (leg1 aqua))
(add-leg-forces-and-torques (leg2 aqua))
(add-leg-forces-and-torques (leg3 aqua))
(add-leg-forces-and-torques (leg4 aqua))
(add-leg-forces-and-torques (leg5 aqua))
(add-leg-forces-and-torques (leg6 aqua)))

(defmethod add-leg-forces-and-torques ((leg aqua-leg))
(if (or (foot-contact leg) (new-contact leg))

(let* ((body (inboard-link (linkO leg)))
(joint-angles (aqua-inv-kin leg (current-foot-position leg))))
(set-angles leg joint-angles)
(let* ((r (world-to-body body (current-foot-position leg)))

(omega (cdddr (velocity body)))
(foot-velocity , in body coordinates

(vector-add
(scalar-multiply -I (ncar 3 (velocity body)))
(cross-product r omega)))

(torques (vector-add
(mapcar '* spring-constants

(vector-subtract joint-angles default-angles))
(mapcar '* spring-damping-constants

(post-multiply (inverse-jacobian leg) foot-velocity))))
(resultant-force

(scalar-multiply
-1 (post-multiply

(matrix-inverse (transpose (jacobian leg)))
torques))))

(if (still-in-contact leg resultant-force body)
(add-forces-and-torques-to-body

body r resultant-force))))))

(defmethod add-forces-and-torques-to-body ((body aquarobot-body) r f)
(let ((torques (cross-product r f)))

(setf (forces-and-torques body)
(vector-add (forces-and-torques body)

(append f torques)))))
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;update joint angles and foot position. detect foot hitting ground.
(defmnethod new-contact ((.-g aqua-leg))

(move-incremental leg '(0 0 0))
(if (> (third (current-foot-position leg)) 0)

(setf (third (current-foot-position leg)) 0
(foot-contact leg) t)

nil))

Adetect loss of contact. (positive/down z component in world coord)
*side effect of reseting leg to default state when nil is returned.
(defmethod still-in-contact ((leg aqua-leg) force/body-xyz

(body aquarobot-body))
(let ((force/world-xyz (vector-subtract (body-to-world body force/bodv-xyz)

(location body))))
(if (> (third force/world-xvz) 0)

(and (set-default-angles leg) (serf (foot-contact leg) nil))
t)))
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APPENDIX D

OPERATING INSTRUCTIONS

Call "droptest" with zero to four arguments.
First arg Spring Constant (2.. 15, default 5)
Second arg Damper Constant(0.5.. 15. default 5)
Third arg Drop Height (0.. 100, default 0) cm
Fourth arg Update Time Increment (10.50. default 50) ms

SOURCE CODE FILES

H file "droptest.c"

1*

/* droptest.c
/*

/* performer Aquarobot model with "spring" joints.
/*
/* */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <gl/device.h>

/* performer */
#include "pf.h"

/* performer aqua-robot object constructor */
#include "pfaqua.h"

/* physical aqua-robot object constructor and controls */
#include "aqua.H"

static void OpenPipeline (piPipe *p);
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void
main (int argc, char *argv[])
{

pfPipe *p;
pfChannel *chan,
pfScene *scene;
pfDCS *robot_.position;
pfGroup *aqua robot; /* graphics object (performer) */
pfDCS *JointDCS[61[41;
aquarobot robot; /* physical object */

/ defaults for args
float spring = SPRING_K;
float damp = SPRING_D,
float height =0.Of;
float step = 0.05f, // default - real time

// process args
if (argc> 1) { // spring constant
IH first arg: -15,000.000 <= spring <= -2,000,000
spring = fabs((float)(atoi(argv[ I])));
if (spring < 2.00

spring = 2.0f;
else if (spring > 15.0f)

spring = 15.0f;
spring *= -1000000;

}
if (argc > 2) ( H/spring damping constant
/ second arg: -1,500,000 <= damp <= - 50,000
damp = fabs((float)(atoi(argv[2])));
if (damp < 0.50

damp = 0.5f;
else if (damp > 15.00

damp = 15.0f;
damp *= -100000;

if (argc > 3) {
//third arg: 0 <= drop height <= 100
height = fabs((float)(atoi(argv[3])));
if (height > 100.0f)
height = 100.0f;

}
if (argc > 4) {
H fourth arg: lOms <= integration time step <= 50ms
step = fabs((float)(atoi(argv[4D)))/1000.0f;
if(step < 0.01f

step = 0.O If,
else if (step > 0.050

step = 0.05f;
1
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I* 1. initialize Performer*I

/* 2. configure NIP mode and start parallel processes */
pfConfigO;

/* 3. load scene database */
scene = pfNewSceneO.

robotposition = pfNewDCSO;
pfAddChild(scene, robot position).
aqua robot = MakeAquaRobot(JointDCS).
pfAddChild(robotposition. aqua_robot):

/* 5. configure and open full-screen pipeline */
p - pfGetPipe(0);
pflnitPipe(p, OpenPipeline); /* pflnitPipe(p, NULL); */

/* set frames per second ( if step = .05 sec, then - real time) */
pfFrameRate(20.0f);

/* 6. get and configure channel */
chan = pfNewChan(p);
pfChanScene(chan, scene);
pfChanNearFar(chan, 0. If. 1000.0f);
pfChanFOV(chan, 45.0f, -1.0f);

/* zero clock (not really needed) /
pflnitClockO;

/* initialize robot */
robot. initialize(spring, damp, height);
updatejointDCS(robot, JointDCS);

/* set up view position */
pfCoord view;
pfSetVec3(view.hpr, 0.Of, 30.0f, 180.0f);
pfSetVec3(view.xyz, 0.Of, -500.0f, -350.00;
pfChanView(chan, view.xyz, view.hpr);
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/* 7. create rendering loop *1
/* simulate for 30 seconds /
int t = 0;
while (t < 600)/~ 20 frames per second
{

/* Transfer robot data to graphics object. */
ptDCSMatrix(robotjposition, robot.body.Hmatrix); /* body */
updatejointDCS(robot JointDCS); /* joints */

/* Go to sleep till next frame time */
pfSynco; t++.

/* initiate cull/draw for this frame /
pfFrame();
pfDrawChanStats(chan);

/* Move robot to new position. */
robot.updateaquarobot(step);

}

/* 8. terminate parallel processes and exit */
pfExito;
exit(0);
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I.

"* OpenPipelineO - create a pipeline: setup the window system,
"* the BUS GL, and IUS Performer. This procedure is executed in
"* the draw process (when there is a separate draw process).
*/

static void
OpenPipeline (pfPipe *p)
{

/* negotiate with window-manager /
foregroundo;
prefposition(0,600,0,600):
winopen("Aqua Drop");

/* negotiate with GL */
pflnitGfx(p);

/* create a light source /
Sun = pfNewLight(pfGetSharedArenao);
pfLightPos(Sun, 0.0f, 0.0f, 1.0f, 0.0f);

/ create a default lighting model */
pfApplyLModel(pfNewLModel(pfGetSharedArenaO));
pfLightOn(Sun);
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H/fMe "pfaqua.h"

*pf aqua-h

*call "MakeAquaRobot" to make AquaRobot performer object.

*JointDCS~iIUJ points to pfDCS for leg i, joint j,
where j = 0 is the shoulder joint- and j = 3 attaches the foot.

#include "pfth"

pfGroup*

MakeAquaRobot(pffD "-, *JointDCS[61[4J);

HI rile "pfaquaxc"

*pfaqua-c

*call "MakeAquaRobot" to make AquaRobot performer object.

#include "pfaqua.h"
#include "aqua link.H"

/* polygon data for aquarobot ~
#include "polybody.hh
#include "polyshoulder.h"
#include "polyupperleg.h"
#include "polylowerleg.h"
#include "polyfoot.h"

/* geostate for multiple pans
static pfGeoState *robotyeliow~gstate,
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pfGicowc
MakeflodyGSet(void)

PfGeoSet *gset;
void *arena;
Wtaterial *mt;

arena - pfGetSharedArenaO;
gst pfNewGSct(arena);,

/* set the coordinate and normal arrays/
pfGSetAttr(gset. PFGS COORD3. PFGS PERVERTEX. bodycoords. NULL);
pfGSetAttr(gset. PFGSNORMAL3, PFGSPERPRIM, bodynorms. NULL);

pfGSccPrimType(gset. PFGSQUADS);
pfGSetNumPrims(gset, 94)-,

/* set up geostate for "robotyeliow" material *

roboyellowjgstate -pfNewGState(arena);
int = PfNewMtl(arena)*;
pfMtlColor(mtl, PFM[TL AMBIENT, 0.2f, 0.2f, 0.0f);
pEMtlColor(mtl. PFMTL DIFUSE, 1.0f. 1.0f, 0.0f);
pfMtlColor(mtl. PFMTL EMIlSSION, 0.0f, 0.0f. 0.00);
pfMtIColor(mtl, PFM1TL -SPECULAR, 0.0f, 0.0f, 0.00;-
pfMtlAlpha(mtl, 1.0);
pfGStateAnr(robotyellow~gstate. PFSTATE FRONTMTL, mtl);
pft3SetGState(gset, robotyellow~jptate);

return pset;

pfGeoSet*
MakeL~ink IGSet(void)

pfGeoSet *gset;
void *arena;

arena = pfGetSharedArenao;
pset = pfr~ewGSet(arena);

pfGSetAttr~gset, PFGS -COORD3, PFGS PERVERTEX. link icoords, NULL);
pf;SctAttrgset, PFGS NORMAL3, PFGS_PER PRIM, link lnorzns, NULL);

pfGSetdrimType(gset,. PFGSQUADS);
pfGSetNum~qims(gset, 42);

pfUSetGState(gset, robotyellow~gstate);

return pset;
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pfGeoSet*
MakeLink2GSet(void)

pfGeoSct gsset;
void *arena;

arena - pfGetSharedArenaoj;
gset =pfNe%%-GSet(arena);,

pfGSetAttr(gset. PFGS COORD3. PFGSPERVERTEX. Iink2coords, NULL)-.
pfGSetAttr(gset. PFGSNORMAL3, PFGSPER PRIM. Iink2norms. NULL);

pfGSetPrimType(gset. PFGSQUADS);
pfGSetNumPrims(gset. 91);

pfGSetGState(gset, robotyellowgstate);

return gset.

pftjeoSet*
MakeLink3GSet(void)

pfGeoSet *gst;
void *aren;

arena = pfGetSbaredArenaO;
gset =pfNcwGSct(arena);

pfGSetAttr(gset~ PFGS COORD3, PFGS PER VERTEX, Iinkcoords. NULL);
pfGSetAttr(gset, PFGS NORMAL3, PFGS PER-PRiM. 1innorms, NULL);

pfGSetPrimType(gset, PFGSQUADS);
pfGSetNumPrimns(gset, 103);

pfGSetGStatc(gsct, robotyellowjgstate);

return gset;
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MakcootG~tvOid)

plsci *pet,
void *arena;

arena - pfrjetSbaredArenaO;
gset -pfNewGSet(arena);

pfGSetAttr(gset, PFGS-COORD3. PFGS-PER3'ERTEX, foocoor.% NULL):
pfGSetAttr(get. PFGS NORMAL3, PFGS-PER PRIM. footnorms, o7-i"LL);

pfGSetPrimType(gset. PFGSJTRISTREPS);
pfGSetNumPrims(gset, 49);
pfGSetPrimLenghIs(gset. footstriplengths);

pfGSetGState(gsMt robo"yUowSMat);,

return pset-.

pfGeoSet*
MakeShaftGSet(void)

pfGeoSet *gset;
void *arena;
pfGeoState *robotgrayjgstate;
POV~azerial *mt;
arena - pfGctSharedArenaO;
gset = pfNewGSet(arena);

pfGSetAtrgiset, PFGS COORD3, PFGS..PER.YRTX shaftcords, NULL);
pfGSetAttr(gset, PFGS-NORMAL3, PFGS-PERPRIMK sbaftnorms, NULL);

ptfrSet~rmType(gset, PFGS..9UADS);
pft3SctNumPrims(gset, 20);

/* set up material */
robotgray~gstatc - pfNeiwGStatearea);
md - pfNewMtl(arena);
p84tlColor(mtl, PFMTL ABET 0. 1, 0. 1, 0. 1);
pfMtdColor(mtLPFMTL DIFUSE, 0.2, 0.2,0.2);
piMtIColor(mtI, PFMTL EMISSION, 0.0, 0.0, 0.0);
pfMtUColor~mtd, PFMTL...SPECULAR. 0.0, 0.0, 0.0);
ptMdmlpbamd, 1.0);
pfGStateAtt(robotgraystatc, PFSTATE FRONTMTL, mU);
pfGSetGSwta~gsct, robotgrayjgstate);

return gvet
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MakeAqualkobo(ptDCS *JointDCS[6j 141)

pt3CS *LegAttachSCS(6).
*LinkISCS(61, *Link2SCS(61, *Link3SCSI6I,
*FootSCS[61;

pt~atrix rotjnat. trans mat;
pfGroup *AquaRobotGroup, *BodyGroup[61, *LegGroup[6j;
pffleode *geode~bodv,

*geodejlinkl. *geode_link2. *geode~lirk3,
*geode..shaft. *geodejobot.

int i. /* loop counter ~

/* make geodes *I
geode body = pfNewGeodeO;
pfAddGSet(geodq_body, MakeBod~yOSetO);

geodejtinki I= pfNewGeodeO,;
pfAddGSet(geodejlinkl. MakeLink IGSeto);

geodejlink2 = pfNewGeodeO);
pfAddGSet(geodejlink2, MakeLink2GSeto);

geodejink3 = pfNewGeodeO);
phkddGSet(geode~link3. MakeLink3GSeto);

geode foot = pfNewGeodeO;
pfAddGSet(geodejobot. MakeootGSetO);

geode~shaft = pfNewGeodeo,
pfAddGSet(geode_shaft, MakeShaftGSctQ);

/* M~ake Parent Group 1/
AquaRobotGroup = pfNewGroupO;

/* Add Structure (6 segiments)1
for(i = 0; i < 6; i++)

/* rotate to segment
pff~akeRot~atrot..mat, i*60.0, 0.0, 0.0, 1.0);
LegAttachSCS[ii - pft~cwSCS(rotjnat);
pf~ddChild(AquaRobotGroup, LegAttachSCSf ij);

1* add body slice *
BodyGroup Iij = piNew~roupO;
pfAddChild(LcgAttachSCSli), Bodyurouplil);
pfAddChild(BodyGroupjij, geodebody);
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/* add leg/

* lin I */
pgvjakeTrans~t(trans mat, L[NKOLENGTH, 0.0. 0.0),
LinkISCS ji] - PfNewSCS(tran*s mat);
pfAddChild(BodyGroup~ij, LinkISCS[i I);
pfAddChild(LinklSCS~ii, geode-shaft);

JointDCS~i][OI =PfNewDCSO;
pfAddChild(LinklSCS[ii, JointDCS~ili01)*.
pfAddChild(JointDCS~i][OJ, geodejlinki);

/* link 2 */
ptlakeRotMat(rot mat, -90.0, 1.0, 0.0. 0.0);,
pfMakeTransMat(trans_mat, LINK 1LENGTH. 0.0. 0.0):,
ptPostMultMat(rot mat, trans-mat):,
Link2SCS[ij = pfNewSCS(rotjniat);
pfAddChild(JointDCS~iI[0I, Link2SCS(i I):
pfAddChild(Link2SCS[i], geode_shaft);

JointDCS[i][11 = pfNewDCSO;
pfAddChild(Link2SCS~ii. JointDCS~iiI 11);
pfAddChild(JointDCStij [11, geodelIink2);

/* link 3 */
pff~akeTransMat(trans_mat, LINK2LENGTH, 0.0, 0.0);
Link3SCS~i] = pfNewSCS(transjnat);
pfAddChild(JointDCSf i][1 I, Link3SCS[iJ);
pfAddCbild(Link3SCS (i], geodeshaft);

JointDCS[ij j21 = pfNewDCSO;
pfAddChild(Link3SCS~iI, JointDCS~iII2I);
pfAddChild(JointDCS~iII2I, geodecjink3);

/* foot */
ptfvakeTrans~fat(trans_mat, LINK3LENGTH, 0.0, 0.0);
FootSCS~i] = pfNcwSCS(ftans..mat);
pfAddChild(JointDCS~i]I2], FootSCSf ii);

JointDCS~iII3I = pfNewDCSO;
pfAddChild(FootSCS(i), JointDCS~iJI3 1);
pfAddChild(JointDCS(i](31, geodejoot);,

return AquaRobotGroup;
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iirn. laqua.b"

#ifndef -AQUA H
#define _AQUAH

#include <Performejrlpf.h>
#include '4misc.H*

tinclude "rigid body .lH"
#include "aquajleg.H"

typedef rigid body aquarobot_body,

l* mass in Kg. */
Mdefine AQUABODYMASS 500.Of

/* (Ix ly Iz)-Kg-cm. in principal axis coordinates.
l* assumes solid cylindrical body of constant density. *
#define AQUABODYHEIGHT 50.Of
#define AQUABODYRADIUS 30.Of
static pfVec3 aqua,_body inertia {

H/ Ix
IMAM4.O * AQUA -BODY MASS * AQUA BODYRADIUS *AQUA_BODYRADJUj1

+ 1.01~2.0f * AQUABODYMA55 * AQUA.BODYHEIGHT * AQUABODYHEIGHT.
Hily

L.ON'.Of * AQUA -BODY MASS * AQUA BODY RADIUS * AQUABODYRADIUS
+ L.OV/2.0f * AQUA BODY MASS * AQUA BODYHEIGHT * AQUA_BODY HEIGHT,
HI Iz

l.0f/2.Of * AQUA BODY MASS * AQUA BODYRADIUS * AQUABODYRADIUS);

/* initial position and orientation in world coordinates. *
#define AZIURTH INIT deg~jqoad(O.Of)
#define ELEVATIONINIT degtorad(O.Of)
#define ROLLINIT deg~tojrad(O.Of)
#define XIIT O.Of
#define Y lNITO.Of
#define ZINIT sinf(default angles[ IJ)*LH4K2LENGTH - LINK3LENGTH

/* leg attachment angles. 1/
#define LEG lANGLE degtqrad(O.0f)
#define LEG2ANGLE deg~torad(60.Ot)
#define LEG3ANGLE deg to rad(I20.0i)
#define LEG4ANGLE deg~tqrad(18O.Ot)
#define LEGSANGLE deg~torad(240.0f)
#define LEG6ANGLE degtjorad(300.Of)
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class aquarobot

public:
aquarobot body body;,

//private:
aqualeg legi, leg2, leg3, leg4. leg5, leg6;,

private:
void
aquarobot: :initjoint_accesso;,

void
update forces-and-torqueso;.

void
update legso;,

public:
HI External access to joint angles for passing to performer model
HI This could be private if "updatejointDCS" were a friend;
HI however, the class should not depend on needs of user.
float* joint-nmatrix[6jj4J;

public:
aquaroboto:body(AQUABODY _MASS, aqua body inertia),

leg l(LEG lANGLE),
leg2(LEG2ANGLE),
leg3(LEG3ANGLE),
leg4(LEG4ANGLE),
legS(LEG5ANGLE),
leg6(LEG6ANGLE) {initjointaccess();)

void
initialize(float k -SPRING K, float d = SPRINGD, float height =0.0f);

void
update _aquarobot(float dt =0.0f);

HI coordinate transformation routines
void
world~to_aqua(jpfVec3 destination, pfVec3 source)

{body.world,_to body(destination, source);)

void
aqua to,_world(pfVec3 destination. pfVec3 source)

(body.body_to _world(desfination, source);)
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void
updatejointDCS(aquarobot robot, pfDCS *JointDCS[6II41D;

#ecndi
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R/Fie "aquac"

#include "aqua. H"
#include <math.h>

/* user routines

void
aquarobot: :initialize(float k. float d. float height)

body.move(AZ[MU'TH [NIT, ELEVATIONINIT. ROLLJNIT,
XIN[MT. Y[NIT, -fabs(height)+ZIMT);

pfSetVec3(body.velytans, 0.0f. 0.0f, 0.00:
pfCopyVec3(body.veljrot. body.vel_trans):
pfCopyVec3(body.accel-trans. body~vel-trans).
pfCopyVec3(body.accel_rot, body.veljtrans);
pfCopyVec3 (body. forces, body vel-trans).,
pfCopyVec3(body.torques, body vel-trans),
body.start- timero;,

leg2.initeIg(&body, k, d)-,

leg3 .initjeg(&body, k. d):
leg4.jit~leg(&body. k, 6);
legS.init -eg(&body, kc, di).
leg6.init leg(&body, k, d),
update forces..and,_.torquesO;,

void aquarobot::update__aquarobot(float dt)

float dt_ = dt;
if (dt <= 0.0)
dt- = body.get delta tO; H/ default

bodv.lipdate_accelerationo;
body-updatevyelocity(dtj;
body. updateH matrix(dtj;
body.update~position(dtj;

H/ body.updatevelocity(dtj;
update legso;
/* This is done last as it also updates leg positions-/
1* leg positions depend on "new" body position! ~
update forces and torquesO;
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/* Internal Routines1

void
aquarobot: :initjoint~access()

HI for use, see fn:"update~jointDCS" below
joint matrix [01101 = Mleg 1. link 1. inboard joint angle;
joint matrix(Oj [l1 = Mlegl 1.link2. inboardjoint angle;,
joint matrixiOl (21 = Mleg 1 .link3 .inboardjoint angle-,
joint_matnix[0j(3 I = Mleg I.link4.H-matrix[fl 101;

joint matrixl 11(01 = &leg2. linkl 1.inboardjoint angle.,
joint matrixf It I1II1 = &leg2. link2. inboard Joint-angle,
joint matrixi 11121 = &leg2.link3 inboardjoint angle:
joint matrix[ 11(31 =&leg2.Iink4.H-matrix[Ol [01;

joint matrix[21101 = &leg3 linki .inboardjoint angle:
joint matrix(21 [ 11 = &leg3. link2. inboardjoint~angle.
joint -matrix[21 [21 = &Ieg3 .link3 .inboard~joint angle;,
joint matrixf 21(31 = &leg3 .link4.H-matrix[Ol [01;

joint -matnix[3 1(01 = &leg4. lnk 1. inboard~joint angle;.
joint -matrix[3 1111 = &leg4.link2.inboardjoint angle;
joint matrix[3 1121 =&leg4.ink3 inboardjoint angle;
joint-matrix[3 1131 =&leg4.link4.H-matrixfOJ(0J;

joint -matrix[41[01 = &leg5.linkl .inboardjoint angle;
joint -niatrix(41[ 11 = &leg5.link2.inboardjointangle.
joint -matrix[41121 =&leg5.link3.inboardjoint -angle;
joint..matrix[41 [31 = &leg5.link4.H-matrix[0J [01;

joint matrix(SJ(01 &leg6.linkl .inboardjoint~angle;
joint -nmatrix(51(1 I = &leg6.link2.inboardjoint~angle;,
joint -matrix[51[21 = &leg6.link3.inboardjoint angle;
joint - atrix15j [31 =&leg6.link4.H-matrix[0J(Oj;

void aquarobot::update forcesý_and,_torqueso

pfe{ c(oyfre,00,00,00)
pfSetVec3(body.forcues, 0.0f, 0.0f, 0.0f);

legl.add leg forces and_torqueso;

leg2.add leg forces-andjtorqueso;

leg4.add leg forces and__torqueso;'
leg5.add leg forces-and,_torqueso;
leg6.add leg forces_and_torqueso;
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void aquarobot::update legs()

{eludt~eo
leg2I.updatejlegO;

leg3.updatcJegO;
leg4.updateJegO;
leg5.update~lego:,
leg6.update~legO-,

f* joint angle transfer routine *

void
updatejointDCS(aquarobot robot. pfD)CS *JointDCS[61 (41)

static pfflatrix m4 = ((0,0,0,0),{0,0,0,01,(0,0,0,01,10,0,0, 1 ));
for(int i=O~i<6;i++) (

HI rotate first three joints
for(intj=Oj<3j++) {

pflDCSRot(JointDCSJiJfjJ,
radtofideg(*robot~jointmnatrix~iJ]jJ), 0.0f. 0.00),

HI equiv to rot(Ox,-90y,Oz) * inverse(leg[i].link4.HMatrix)
HI accomplishes DCS such that link(x-axis) 11 world(z-axis)
m4[0]101 = (robot~joint matrixji][3])[2];
m4[1[11I = (robot~jointniatrix[i1131)[61;
m4101[2] = (robot~jointmnatrixji][31)[1OI;
m41 11101 (robot~joint matrixlill3l)I1;
m4[lJ[1J (robot~joint~matrix[iJ[31)[51;
m41 11121 =(robot~joint -matrix[i1131)[91;
m4121101 = -(robot~jointmnatrixlij3J)01O;
m4(2j[ 11 = -(robot~jointniatrix[iJI3j)[4];
m4[2][121 = -(robot~jointmnatrix~i][31)[81;
pfDCSMatrix(JointDC~f~i[3J, m4);
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H file "aqua leg.h"

#ifndef _AQUALEG H
#define _AQUA LEG H

#include <Performer/pf~h>
#include "rigid-body. H"
#include "aqualinkH"
#include "misc.H"

/* initial (default) joint angles. */
static pfVec3 default angles = (

/* 0deg*/ 0.0f
/* 45deg*/ 25.Of* PI_F/180.0f,
/* -135 deg */ -1 15Of * PIF M 10.Of);

/* joint spring constant. (default 5,000,000 Kg-cm2/sec2 per radian) */
#define SPRING K -5000000.0f

/* joint spring damping constant. (default 500,000 Kg-cm2/sec2 per radian/sec) */

#define SPRINGD -500000.0f

/* AQUA LEG CLASS */

class aqualeg
{
public:

float leg attachmentangle;
aqualinkO linkO;
aqualinki linkl;
aqualink2 link2;
aqualink3 link3,
aqualink4 link4;
boolean motion complete flag;
pfVec3 previous footposition;
pfVec3 current foot-Position;
boolean foot contact;
float spr..k;
float sprd;

public:
aqualeg(float angle = 0.0f): leg attachment angle(angle)

{
motion completeflag = TRUE;
footcontact = FALSE;

void
init leg(rigidbody *body, float k = SPRING_K, float d = SPRING D);
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void
set defauk .anglesO;

void
update jego;

void
update foot..psos;

void
set angles(float joint 1, float joint2, float joint3);,

void
set angles(pfVec3 angles) (set-angles(anglesjOl. angles( 11. angles[2 I); )

void
jacobian(pt~atrix J);

void
inverse~jacobian(pfl~atrix Limv);

void
joint rates(pfVec3 rates);

void
FootPosFmJointl(pfVec3 foot~posj 1, pfVec3 footjpos.world);

void
aquia mv kin(pfVec3 joint angles, pfVec3 world foot~jpos);

void
add leg forces and_jtorquesO;

int
new-contactO;

int
still -in -contact(ptVec3 lcgjobrcikbody);

#endif
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H/ Mfe "aquajegxc"

#include <mnath.h>
#include "aqua leg.H"

/* AQUA-ROBOT INVERE KINEMATICS ROUTINES *

static float L2sqr = LINK2LENGTH * LINK2LENGTH:
static float L3sqr = LrNK3LENGTH * LINK3LENGTH:

/* routines that return the joint angles for a leg. given the foot position ~

float
theta Il(pfVec3 footjpos)

if (foot--postOI <O0.Of)
return (atan2fI(-footjposf I], -footjpos[OJ));

else
return (atan2f( footjpos( 11. foot__posIOI));

float
theta2(pfVec3 footjpos, float hyp, float hyp~sqr)

float temp = asinf(fbotpjosl2J/hyp);
if (foot..ps[oj <O0.0f) temp -PIJF - temp;
return (acosf((L2sqr + hyp sqr - L3sqr) / (2 *LINK2LENGTH *hyp)) - temp)

float
theta3(float hyp-sqr)

return (acosf((L2sqr + L3sqr - hyp-sqr) /1(2 * LINK2LENGTH * LINK3LENGTH)) - PI-F);

/* supports theta2 and theta.3 which require foot position with respect *
/* to joint2 position. joint2 position depends on theta 1.
void
FootPosFmJoint2(pfVec3 destination, pfVec3 source)

destinationjO) = sqrtf(source[OI*sourcelJ0 + source[t11 source[ 11)
-LINK lLENGTH

destination[ II = 0.0f,
destination[21 - source(21;
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I' AQUA LEG CLASS 0/

void
aqua leaj:: initjleg(rigid~body *body, float k. float d)

spr~k = k; spr_d = d
foot contact = 0;
liniO-.inboard link = body';
linkl1.inboard-link = &link0;
link2.inboard link = &linkl;
link3.inboard-link =&link2;
link4.inboard link = &link3;
set -default angleso:,

void
aqua leg::set default angles()

set angles(default ange)

update footjpos);
pfCopyVec3(previous-footposition, current_foot~position);

void
aqua leg: :update~leg()

pfCopyVec3(previousfobotpotin curntotyosition);

set angles(linkl .inboard joint _angle,
link2.inboardjoint angle,
link3 .inboardjoint angle);

update foot..posO;

void
aqua,_eg::update foot..ps)*

if ('foot contact)(
curren~t foot~positionjOj - Unk4.Hjnatrxj3)!j0;
current footjmoitionfli = link4.H inatrix[311 II;
current~foot..position[2J = Iink4.Hjnatrix[3jI2j;
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void
aquajIeg:: set angies(float joint 1, float joizn2. float joint3)

linkO~rotate link(legttacment angle);,
link I rotate link(joint 1);
link2.rotate link(joint2);
link3.rotate~link~joint3)

N/hs works for each leg in 2D, but world 3D solution requir*s(.O)
IIlink4.rotate -link(-degjto rad(90.Of) -joint2 - joint.3),
link4.rotate~link(O.Of);.

void
aqualeg: :Jacobian(pffN~auix J)

pfVec3 row-,
float angle, S01, CO I, S2. C2, S23, C23;
#define LI LINILENOTH
#define L2 LINK2LENGTH
#define U3 L1NK3LENGTH

angle = leg-attachment angle + link 1. inboardjoint_angle;,
SO I = sinf(angle);,
CO 1 = cosf(angle);,
angle = link2.inboardjoint angle;
S2 =sinf(angle);
C2 = cosfi~angle);
angle +- link3.inboard~joint angle;
S23 - sinf(angle);
C23 = cosf(angle);

pff-akeldenthbt(J);
ptSetVec3(row, -SOI * (LI + L2*C2 + L3*C23),

-COIl (L2*S2 + L3S23),
-CO I * L3 * S23);

ptSetMatColVec3(J. 0, row);
ptSetVec3(row, COI * (LI + L2*C2 + L3*C23),

-SOI * (L2*S2 + L3S23),
-SO101UL*S23);

pfSetNatColVec3(J, 1. row);
pfSetVec3(row, 0.Of,

..L2*C2 - L3*C23,
-L3 * C23);

pfSetM~atColVec3(J, 2, row);
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vowd
aquaIcg::inversjacobian(peAMarix Linw)

jacobian(l);
ptlnvertmat(Jiuv, A)

void
aqua leg: joint rates(pfVec3 rates)

p84atrixJ 1inv~;
pfVec3 transjrates;
pfVev3 omega;
pfVec3 foot r:
pfVec3 rot-rates;
pfVec3 foot-rates;

inversejacobian(Jinv);,

pfScaleVec3(trans rates, -1.Of. ((rigid body *)IinkO.inboard link)->vel-trans),

pfCopyVec3 (omega. ((rigid~body *)IinkO.inboard-link)->veljrot);
((rigid body *)linkO.inboard. link)->worldtobody(foot r, currentjfoot~position);
pfCross Vec3(rot rates, omega, footj);

pfSubVec3( foot_rates, trans rates, rot rates);
post mult(rates, Jinv, foot rates);

void
aqua~leg: :FootPosFmJointl(pfVec3 foot~posj 1, pf~ec3 foot~poswyorld)

IinkO.worldto~body(footj~s 1,fotj~sol)

foot_.posj 1101 -= LINKOLENGTH;

void
aqua lcg::aqxRamv kidn(pfVec3 joint,_angles, pfVec3 world foot~pos)

PfVec3 footJointl, foot-joint2;
float hyp, hyp sqr,
FootPosFuiJointl(foot~jointl, world footjpos).
FootPosFniJoint2(foot~joint2, footjoint 1);
hyp = pfbengthVcO34botjoint2);
hyp~sqr = hyp * hyp;
pfSetVec3(joint~anglcs, thetal(footjoint 1),

theta2(footjoint2, hyp, hyp sqr),
theta3(hyp-sqr));
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void
aquajleg::add ~leg jorvesand torques()

if (fboo-conwat 11 new..cOMonat)

pfVec3 angies jontjorqums damp. forcms footpos;
pftvltrix work nMatix I, work niazrix2

aqua~inv-kin(angles, currentjfoot.,position).
set_.angles(angles),;

/* get spring force of joints ~
pfSubVec3(joint~torques, angles, default angles);.
pfScaleVec3(jointjtorques. spr_k, joint-torques);

1* add damping *I
joint -rates(damp);
pfScaleVec3(damp, sprd, damp);
pfAdd Vec3 (joint torques, joint_torques, damp);

jacobian(work-matrixl);.
pfl'ransposeMat(work -matrix2. work-matrix 1);
pflnvert~at(work-matraxl. workjnatrix2);,
post mult(forces, work -matrix 1. joint-torques),
pfScaleVec3(forces, -1.0, forces);

if (still in contact(forces))

((rigid body *)linkO.inboardjink)->worldjto body(footpos, currentjoot_.position);
((rigid body *)linkO.inboard link)->add force_andktorques(footos forces);

int
aqua leg: :new-contact()

if (current footjposition[2J > 0.0f)

current,_foot~position[2l - 0.0f;
return (foot contact = TRUE);

else
return FALSE;
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int
aqua lIeg::still incontact(pfVec3 legjorcc..body)

pfVec3 le&_force world,
((rigidbody *)linkO.inboard link)->body to _world(legjforce~world. leg force _body);,
pfSubVec3(lcg..force..woriLd leg~forc;_world. ((rigidbody *)hnlinbjphd-ljjn).>locatol);
if (legjorce-worldf21 > 0.0f)

set - efault. angiesO;,
return (foot contact = FALSE).

else
return TRUE-.
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/H file "aquajlink~h"

#ifndef -AQUA -LINK H
#define -AQUA_LINKH_

#include <Performer/pf.h>
#include "rigid body.H"

/* BASE CLASSES */

class link:public rigidbody
I

public:
int motionj- imit -flag-,
float length~i_1;
float twist i 1;
float inboard~joint angle;
float inboard~joint displacement.
void* inboard link;
pfMatrix T-matrix;

public:
link(float mass = 1.0f. pfVec3 moments =NULL):rigid body(mass. moments){ }
void update -T matrixo;
void rotate(float angle);

class rotary link:public link

public:
float minjoint angle;
float maxjoint~.angle;

public:
rotary Iink(float length =0.0f,

float min-angle = 0.0f,
float max _angle = 0.0f,
float twist =O.0f
float joint _angle 0 .0f~,
float joint.displacement - 0.0f,
void* inboard-link =0O);

void rotate-link(float angle);
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/* MODIFIED DANE VIT-HARTENBERG LINK COORDINATE TRANSFORMATION MATRIX *

'void
mdhmatrix(ptMatnx mdli,

float cosrotate, float sinrotte,
float costwist i-1, float sintwist -i 1.
float length i_ 1, float translate):

/* AQUA-LINK CLASSES ~

/* link lengths S/

#define LINKOLENGTH 37.5f
#define LINK1LENGTH 20.Of
#define LINK2LENGTH 52.Of
#define LINK3LENGTH 102.Of
#define LINK4LENGTH 3.Of

/* joint limits */
#define JOINT I MIN degjto rad( -60.0f)
#define JOINT IMAX deg torad( 60.00)
#define JOINT2M1N deg~to~rad(-360.0f)
#define JOINT2MAX deg...torad( 360.0f)
#define JOINT3MIN degto~rad(-360.Of)
#define JODNTMAX deg to ad( 360.00)
#define JOINT4MIN deg to rad( -22.50)
#define JOINT4MAX deg to ad( 22.5f)

class aqualink0:public rotary link

public:
aqualinkoO(;

class aqualinkl:public rotaly link

public:
aqualinkl10;

class aqualink2:public rotary link

public:
aqualink2O;
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class aqualink3:public rotary_link

public:
aqualink3().

class aqualink4: public rotaryjlink

public:
aqualink40;

#endif
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H/fMe "aqualfinkxc"

#include <math. h>
#include 'aqua_Iink.H'
#include "misc.H"

/* BASE CLASSES *

void
link:: updateT-matrix()

float sa =sinf(inboardjoint-angle)-.
float ca =cosf(inboard~joint angle).
float st -sinf(twist -i -1);
float ct -cosf(twist iil);

mdh -matrix(T_matrix, ca, sa, ct. St. length i I. inboardjointjlisplacement);,

void
link:: rotate(float avgle)

inboardjoint angle = angle;
update Tmatrixo;

Imutiplied in reverse order as they are stored as transposes.
ptMultMat(H_matrix, T-matrix, ((rigid body *)inboard link)->H matrix);

rotary link::rotary link(float length,
float min angle,
float max _angle,
float twist,
float joint angle,
float joint-displacement,
void* inboard link)

length-i 1 length;
minjoint angle = minkangle;
maxjointangle = max _angle;
twist i I =twist;
inboard~ointangle = jointangle;
inboardj'oint displacement = joint displacement;
inboardlink = inboard link_
p&1AkeldentN~at(T..matrix);
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void
rotary link::rotate link(float angle)
I
I* joint stops disabled.

if (angle < minjoint~angle)

rotate(minjoint angle);
motion limit flag -l-1

else if (angle > max~joint angle)

rotate(maxjoint angle);,
motion limit flag =1L

else

rotate(angle);
motion-limnitfa 0-

void
mdh mfatrix (pMatrix mdh,

float cosrotate, float sinrotate,
float costwist i 1, float sintwist -i 1,
float length i 1, float translate)

/* col 1I*
mdh[O110j = cosrotate;
mdhllI 110 = - sinrotate;,
mdhI2IIOI = 0.0f,
mdh[3j[O = lengthj_i;
/* col 2 */
mdhI01[lI = sinrotate * costwist -i - ;
mdh[IIlj[II =cosrotate *costwist-i-1
mdhI2I11lI= -sintwist-ii1;
mdhI3I1lI = - sintwist-i 1 * translate;
I* cot 3 */
mdh[OI[21 = sinrotate *sintwist i 1;
mdhI 1J[2]= cosrotate sintwisCCi1;
mdh[2II2I costwist i 1;
mdh[31[21 =costwist-iI *translate;
/* col 4 */
mdhIOII31 mdh[1lI3l = mdhI2113] O.Of;,
mdhI3II31 = 1.0f,
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/* alternate method using pf functions
ptVec3 colt,
pff~akeldenctat(mdh);,
pfSetVec3(col. cosrotate, sinrotate * costwist-i- I.

sinrotate * sjfltwist i 1);
pfSetMatRowVec3(mdh, 0, col);
pfSetVec3(col. -sinrotate, cosrotate * costwist i I.

cosrotate * sintwist i-I);.
pfSetMatRowVec3(mdh, 1. cot);,
pfSetVec3(col, 0.0, -sintwist i I, costwist_i_1).
pfSetMatRowVec3(mdh, 2, cot)-,
pfSetVec3(col. length~i_1, - sintwist i 1 translate.

costwist -i I *translate):
pfSetMatRowVec3(mdh. 3, col),

1* AQUA-LIN CLASSES/

aqualinkO: :aqualink0()

ma'c~joint angle = deg~to~rad(360.0f);

aqualinki::aqualinklo

length iil LINKOLENGTH;
minjoint-angle = JOINT iMIN;
maxjoint angle = JOINT1MAX;

aqualink2: :aqualink2()

length i-I= LINKILENGTH;
twist i I =degtorad(-90.0f);

minjoint angle = JOINT2MvfN;
max~joint angle = JOINT2MAX;

aqualink3: :aqualink3o

lengthi Ii LUNKLENGTH,
minjoint _angle = JOINTMMN;
maxjoint angle = JORNTMAX;
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aqualink4: :aqualink4O

lengthJii LINK3 LENGTH;,
minjoint angle - JOINT4MNUN;
mkax joint angle -JOINT4MAX;
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SMfile "rigid-body.H"

#ifndef RIGIDBODY_
#define _RGIDBODY_

#include <Performer/pf.h>

#define GRAVITY 980.0

class rigidbody
{
public:

pfVec3 location; /* The vector (x y z) in world coordinates. */
pfVec3 vel trans: /* The vector (u v w) in body coordinates. */
pfVec3 velrot; /* The vector (p q r) in body coordinates. */
pfVec3 acceltrans;/* The vector (u-dot v-dot w-dot). */
pfVec3 accel_rot; /* The vector (p-dot q-dot r-dot). */
pfVec3 forces; /* The vector (Fx Fy Fz) in body coordinates. */
pfVec3 torques; /* The vector (L M N) in body coordinates. */
pfVec3 moments_; /* The vector (Ix ly Iz) in principal axis coordinates. *
float mass_; /* in Kg. */
float currenttime;
piMatrix Hmatrix;

public:
rigid body(float mass, pfVec3 moments = NULL);

void
move(float azimuth, float elevation, float roll,

float x, float y, float z);

float
get-delta tO;

void
starttimero;

/*

void
updatejigidbodyO;

void
updateaccelerationO;

void
updatevelocity(float dt);
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void
updat;_Kmatrix(float dt);

void
updateposition(float dt);

void
%%orld to body(ptVec3 destination, pfVec3 source),.

v'oid
bodv to_world(ptVec3 destination, pfVec3 source);

void
add-force-andjtorques(pfVec3 r, ptVec3 f)-,

v'oid
homogeneous transfor~n(pff~atrix homo,

float azimuth. float elevation. float roll,
float x, float y, float z),

void
post mult(pfVec3 destination, pfMatrix m, pfVec3 source);

#endif
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iirdi "rigid~body.C"

#include "rigid body.H*
#include "misc.HU

rigid body::rigid~body-(float mass, pfVec3 moments)

location (01 location [11 - location 121=
vel trans (01 =vel -trans [1 I = vel -trans 121 =

vel rot 101 vel -rot (11 =vel rot 121 =

accel~transfOl = accel transf I I = accel trAns(21
accel -rot 101 =accelrot [11j accel rot 121=
forces 101 =forces I II =forces 121 =
torques 101=torques (11 =torques 121=0.0f;
if (moments -NULL)

moments_101 = momentsJ I1I = moments 121 = 0ON;
else

pfCopyVec3(moments_. moments);
mass = mass,
pINIakeldentMat(H mnatrix):
current time = 0.Of;

void
rigid body::move(float azimuth, float elevation, float roll,

float x. float y, float z)

homogeneous transform(H matrix, azimuth, elevation, roll, X, y, z);
pfSetVec3(location, x. y, z);,

float
rigid body: :getfieltajto

float dt = 0.05f;
current time +*= dt;
return dt;

void
rigid body: :start-timerO

current-time = 0.Of;
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void
rigid~body: :.updatefigid~bodyO

float dt getdeha-t;
update H..matrix(dt);
update~position(dt);,
update velocity (dtO:
update acceterationo;,

void
rigid body::update acceleration()

accelttrans[Oj = vel-trans I I * vet rotl2I - vet trans[2i vet rot[Ili
+ forceslOl / mass_ + GRAVITY 0H-matrix[O1[21;

accel-transi t I = vel transl2I * vel rotlol - vel translOl * vet rotl2I
+ forcesl I I / mass_ + GRAVITY * H-matrix[il[21;

accel-trans[21 = vet trans[0j * vet roll I I - veljtransf I * vel rot[Ol
+ forces(21 / mass_ + GRAVITY * H-matrixlij[l1l;

accel-rotlOl =
((momentsj III - moments [21) * vet rotil] * vet rotf2I + torques[0j)

/ moments 101:,
accel rot[ IlI =

((moments 121 - moments-101) *veI rot[21 * vel-rot[lj + torques[1I)
/ momentsj 11;

acceltrotl2l =
((moments [01 - moments-111) *vel rotlOl 0 vel jot[IJ + torqucsf 21)

Imoments 121;

void
rigid body::update vetocity(float dt)

pfVec3 dv;.
pfScaleVec3(dv, dt, accet-trans);
pfAddVec3(veL~trans. veltmtrnsp dv);
pfScaleVoc3(dv, dt, accel rot);
pfAddVec3(veL~rot, vet_rot, dv);

151



void
nigid body::update~~matzix(fioat dt)

pimatuix bomo;
homogeneousjransfomi(homo. dt 0 vel-rot[2j,

dt *vel-rotil I
dt * vel rotlOl,
dt * vel translOj,
dt * vel trans( I .
dt * vel-transl21);

pfPreMultMat(Hjnfatrix. homo);,

void
rigid body::updateposition(float dt)

pfGetMatRow Vec3(H mtatrix. 3. location)-.

voi

rigid bocdy::world_to_bodv(pfVec3 destination, pfVcc3 source)

pflvatrix inv H;
pflnvert~bt~invHi. H matrix);
post mult(destination, invI source~);

void
rigid body::body to world(pfVec3 destination, pfVoc3 source)

post mult(destination, H-matrix. source);

void
rigid _body::add-force~andjorques(pfVec3 r. pfVec3 f)

pfVec3 t,
pfCrossVec3(t, r. f);
pfAddVcc3(torques, torques, t);
pfAddVoc3(forces, forces, f);
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void
homiogeneous I ransform(pt~atfix horno,

float azimuth, float elevation. float roll.
float X, float y, float z)

float sz. cz, sy. cy, sx, cx;

pfSinCos(radjo-deg(azimuth). &sz. &cz).
pfSinCos(rad~todeg(elevation). &sy. &cv).
ptSinCos(radto-deg(roll). &sx, &cx);
/* col I */
homo[OllOl = cz*cy-.
homol 11101 = cz~sy~sx -sz*c~x-
homo[21101 = cz~sy~cx + sz*sx;
homoj3 1101 =x,
/* col 2 */
homo[Oj[ I] = sz*cy;
homol 11111 = cz'cx + sz*sy*sx;
homoI2 1( 1 = sz*sy*cx + cz*sx;
homo(3 1[l1 = y-
/* col 3 */
homoIJI121 = -sy.,
homot 11121 = cy*sx.,
homo[2lI2) cy*cx;
homo[31I21 = z
/* col 4 */
homnoIO1t31 = homo(11(31 homol2l[31 =0ON;
bomo[3It3I 1.0f,

void
post mult(pfVec3 destination, ptMtrix in, pfVec3 source)

destinationjOl = source[Oj * m10][01 + sourcefl 1* 'mf11101 +
source[2l mJ21(OI + m(31(OI;

destination[IlI = sowrce[01 * m(Oj [ I + source[lII * m[Ill [Ill +
source[2i m[2][1] + m[3]1111;

destination(21 = sourcefOl * m[01[21 + sourcell] * m[11121 +
sowrce[2J * in12][21 + m[3][21;
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/ file "misc.fl"

#ifndef MYMISC
#define _MY_MISC_

/* type BOOLEAN */

typedef int boolean;

#ifndef TRUE
#define TRUE I
#endif

#ifndef FALSE
#define FALSE 0
#endif

#define P1 3.14159265358979323846
#define PIF 3.14159f

/* angle measurement conversions */

float
degjo~rad(float deg);

float
rad-tofdeg(float rad);

double
degto~rad(double deg);

double
rad_to_deg(double rad);

#endif
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H1 rile "misc.C'

#include "misc.H"

/* angle measurement conversions ~

float
deg_to_rad(float deg)
I

const float radjper deg =P1_F / 180OOf-,
return (deg * radjper~deg);

float
rad -o - eg(float rad)
I

const float degjper rad =180.Of/ P1_F,
return (rad * degjxerjad)-

double
deg~to~rad(double deg)

const double radjxerdeg = PI/ 180.0;
return (deg * radjper..deg);

double
rad - o deg(double rad)

const double degjxer.rad = 180.0 /PI;
return (rad *degjxerjad);
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