NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A280 784

Sm—

=

= DTIC

ELECTE
. JUN 3 01994
A Computer Simulation of
Vehicle and Actuator Dynamics
for a Hexapod Walking Robot
by
Karl Johann Ragnar Wrussell Kristiansen VII
March 1994
Thesis Advisor: Robert B. McGhee
Approved for public release; distribution is un;nmét;%um INGPECTED 3

AR

94 6 29 018




,

orm roved :
REPORT DOCUMENTATION PAGE OB Ny, 0704.018 |
*Pmmbumlwmmdm--mmwvmnmm the twne h g data ﬁ
gmmwmmmmmw WWNMWNdeaMSM MrWMWMﬂMuuymwdm
9 Sugg for reducing this burden to W Headquarters Servics Op and Reports. 1215 Jefterson
Davis thwq Sutte 1204, AM VA 222024302, lndb the Office of Mu\w and Budget. Pagerw.sk Reduction Pro'ca (0704-01.l) Washington, DC 20503
1. (Leave A |
March 1994 Magter s Thesis
4. TITLE AND SUBTITLE i N i 5. FUNDING NUMBERS
A Computer Simulation of Vehicle and Actuator Dynamics
for a Hexapod Walking Robot (U)

[6. AUTHOR(S)
Kristiansen VII, Karl Johann Ragnar Wrussell

[7- PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NAIIE‘S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION =
Naval Postgraduate Schoo REPORT NUMBER
Monterey, CA 93943-5000
9. SPONSQORING/ MONITORING AGENCY NAME(S) AND ADD;ESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

(11, SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

(122, DISTRIBUTION / AVAILABILITY STATEMENT, o @ . A 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited. A

[13. ABSTRACT (Maximum 200 words) ] ] ] ] ]
Underwater walking machines offer a potential for replacement of human divers in certain aspects of

underwater construction and inspection. One such vehicle, Aquarobot, is currently under test in Japan.
However, this vehicle is currently too slow to be economically utilized, and limited hardware availability
restricts progress in control software improvements. A software dynamic simulation model is desirable
to relieve this restricted access. The problem addressed by this research is the modeling of system
dynamics of underwater walking vehicles with sufficient simplification to achieve a real-time simulation.
The approach taken includes an object-oriented, massless leg robot dynamic model and employs a high
performance graphics rendering toolkit.

The resulting simulations of a robotic joint actuator and of the robot itself, utilizing springs and
dampers in the joints, runs in real-time. The robot simulation model executes on a four-processor machine
with under fifteen percent utilization of the processor dedicated to system dynamics. This result indicates
that the simulation is likely to retain real-time capability after replacing the springs and dampers with the
more accurate joint actuator model also developed in this thesis.

14. SUBJECT TERMS 18. NUMBER OF PAGES
Robotics, Aquarobot 165
A i 16, SECURITY CLASSIFICATION  J190. SECURITY CLASSITICATION 120, LIMITATION OF ABSTRACT
OF REPO'RT OF THIS !’AOE OF ABSTRACT .
Unclassified Unclassified Unclassified Unlimited
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

i Prescribed by ANSI Std. 239-18




Approved for public release; distribution is unlimited

A COMPUTER SIMULATION OF
VEHICLE AND ACTUATOR DYNAMICS
FOR A HEXAPOD WALKING ROBOT

by
Karl Johann Ragnar Wrussell Kristiansen VII

Lieutenant, United States Navy
B.A., Lake Forest College, 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the
NAVAL POSTGRADUATE SCHOOL

March 1994

Author: Zlﬂ.j 9 i M

Kar] Johann Ragnar ;\m ﬂ\lintlrnvn
(

Approved By:

Robert B. McGhee, Thesis Advisor
: 05’,./ N F i e —

id R. Pratt, Second Reader
(I8 Z e

Ted Lewis, Chairman,
Department of Computer Science




ABSTRACT

Underwater walking machines offer a potential for replacement of human divers in
certain aspects qf underwater construction and inspection. One such vehicle, Aquarobot,
is currently under test in Japan. However, this vehicle is currently too slow to be
economically utilized, and limited hardware availability restricts progress in control
software improvements. A software dynamic simulation model is desirable to relieve this
restricted access. The problem addressed by this research is the modeling of system
dynamics of underwater walking vehicles with sufficient simplification to achieve a
real-time simulation. The approach taken includes an object-oriented, massless leg robot
dynamic model and employs a high performance graphics rendering toolkit.

The resulting simulations of a robotic joint actuator and of the robot itself, utilizing
springs and dampers in the joints, runs in real-time. The robot simulation model executes
on a four-processor machine with under fifteen percent utilization of the processor
dedicated to system dynamics. This result indicates that the simulation is likely to retain

real-time capability after replacing the springs and dampers with the more accurate joint

- —

actuator model also developed in this thesis. Accesior For
b . ..

1
\

NTIS CRAR) N
]

{

Uil Tab
U: anrounceg
Ju:tification

R L LT PP SR

“reevneisnseainian

Dist:ibution |

Availability Coces

. Avail at;(-iT or
Dist Special

N EI




II.

III.

TABLE OF CONTENTS

INTRODUCTION ...
A AQUAROBOT ... ...
B. GOALS ...
C. ORGANIZATION ... ...
SURVEY OF PREVIOUS AND CONCURRENTWORK .....................
A INTRODUCTION ... e
B. BRIEF HISTORY OF WALKING MACHINES .......................
C. AQUAROBOTPROJECTATNPS ..o,
1. Control Software Development .................................
2. Simulation Software Development ..............................
D. REUSED SOFTWARE ....... ... ...
1. Rigid Body ...........oouuiniiiiiiiiiiiiiiiiiiiiiie
2. KinematicModel .............. ...l
E. SUMMARY ...
DESCRIPTION OF AQUAROBOT VEHICLE AND SIMULATION
ENVIRONMENT ...ttt ettt et e
A INTRODUCTION ... eee
B. PHYSICAL DESCRIPTION OF AQUAROBOT ......................
C. AQUAROBOT JOINT ACTUATORS ...........ccoovviiiinnaeenen.n.
D. SOFTWARETOOLS ..... ... e
1. C++(ObjectOriented) ...............ccoevviiiiiniiiiiinnn...
2. Performer ....... ... ..o
3 5.
E. SUMMARY ... e

iv




Iv.

A INTRODUCTION ... ..o 20
B BASICDCMOTOR ...t 20
C. REDUCTIONGEAR ... 23
D JOINT ACTUATOR PROTOTYPE .................................. 25

l. BaseClasses . ........ ... 26

2 JointClass ............ ... ... 28

3. Additional SupportingCode ................................... 29
E. SUMMARY ... 29
SPRING AND DAMPERMODELS .................................oooen... 31
A INTRODUCTION ... i 31
B INVERSEKINEMATICS ...t 32
C JACOBIANMATRIX ...t 35
D FORCESON AQUAROBOT ..........ccoiiiiiiiiii i 36
E. SPRING AND DAMPERTORQUES ........................cuel 38
F LISPPROTOTYPE ... ... 39
G CHPROTOTYPE ... 42
H SUMMARY ... 43
SIMULATION RESULTS ....... ... 44
A INTRODUCTION ... iiiia e nn, 44
B JOINT ACTUATOR SIMULATION ..., 44
C AQUAROBOT SPRING AND DAMPER SIMULATION ............ 54
D SUMMARY ... 55
SUMMARY AND CONCLUSIONS ...ttt 56
A UTILITY OF LISP FOR EXPERIMENTAL PROGRAMMING ...... 56
B INCORPORATING THE JOINT ACTUATORMODEL ............. 56
C. SUMMARY ... 58




APPENDIX A - LISP JOINT ACTUATOR SIMULATOR ........................... 60

APPENDIX B - C++ JOINT ACTUATOR SIMULATOR ........................... 76
APPENDIX C - LISP AQUAROBOT SIMULATOR ...............cooooiiiiiii. .. 86
APPENDIX D - C++ AQUAROBOT SIMULATOR ................ccccvvvvvn.... 116
LISTOFREFERENCES ... ... ... 156
INITIAL DISTRIBUTION LIST ...... ... 158




I. INTRODUCTION

A. AQUAROBOT

Aquarobot is a six-legged "insect type", articulated, experimental prototype robot
under development at the Port and Harbour Research Institute (PHRI) in Japan. This
robot is being investigated as an alternative to the currently used human divers for seawall
construction and inspection. While the divers are fully capable, the limited stay time at
required depths make progress slow and expensive. A walking robot is preferred to
tracked, wheeled, or floating versions for its abilities to maneuver without disturbing the
bottom enough to cloud the water and restrict visibility, and to provide a stable reference
platform from which measurements can be made [Iwasaki, 1987). The prototype
Aquarobot has successfully walked underwater and demonstrated functional feasibility for
the intended task, but it is currently too slow to be economically utilized [Davidson,
1993]. The Naval Postgraduate School (NPS) is working with PHRI to upgrade

Aquarobot's control software, from the original version written in BASIC, to improve its

operating speed.

B. GOALS
The goal of this thesis is to investigate the feasibility of dynamic modeling of

Aquarobot with sufficient simplifications to achieve a real-time simulation. The simulation




model should be statically accurate and dynamically approximate. The major
simplifications considered are:

(1) massless legs,

(2) body mass evenly distributed in a cylinder,

(3) center of mass at geometric center of the inboard leg joints,

(4) infinite friction for foot contact with surface,

The dynamic Aquarobot model of this thesis uses springs and dampers in place of
joint actuators for this initial feasibility study. A joint actuator simulation model, including
servomotor and controller models, is also developed and is intended to eventually replace
the springs and dampers. Inputs to that model will be control software orders to the joint

motor controller.

C. ORGANIZATION

Chapter II of this thesis reviews previous and concurrent work in the area of walking
robots with emphasis on work related to Aquarobot. Chapter III provides a more detailed
description of Aquarobot and introduces the software tools used. Chapters IV and V
develop the necessary mathematical models and then present prototype dynamic
simulation models for an Aquarobot joint actuator and for Aquarobot itself (with springs
and dampers in place of joint actuators). Chapter VI reviews the results of simulations
accomplished with the models introduced in Chapters IV and V. Finally, Chapter VII

presents some conclusions, suggestions for further research, and a summary.




II. SURVEY OF PREVIOUS AND CONCURRENT WORK

A. INTRODUCTION

To place Aquarobot research in relative perspective, this chapter begins with a brief
historical review of walking machines. An overview of ongoing Aquarobot research at
NPS follows and places this thesis in context. Other contributions, some completed and
some currently in progress, are described. Also, as this thesis is a continuation of previous
work, a short review of some of the key elements of that work is presented to provide a

starting frame of reference.

B. BRIEF HISTORY OF WALKING MACHINES

In an early exploration of walking mechanisms, 1965 to 1968, General Electric
Corporation built a four legged vehicle called the Quadruped Transporter. Because of the
lack of theory and technology, designers incorporated human sensing and neural control of
the limbs by attaching "position following, force feedback” control levers to the operator's
arms and legs. Each of these levers had three degrees of freedom, corresponding to those
of the leg it controlled. Very few mastered the skills required to operate the vehicle, and
those that did found it to be very demanding [McGhee, 1985]. While the Quadruped

Transporter lacked practicality, its successful implementation encouraged further research.




Automation of low level tasks, such as individual limb control, leaves the operator
free to concentrate on higher level, "supervisory control" of the vehicle. In 1977, this
method of control was used in the Ohio State University (OSU) "Hexapod Vehicle." The
operator controlled vehicle speed and direction, using a joystick, while limb motion
control and coordination was handled by computer. This machine was utilized in the
development of gait algorithms [McGhee, 1985].

[McGhee, 1986] addresses the energy-efficiency issue of limb control and introduces
a method used to achieve a cyclic leg motion without requiring the reversal of drive
motors. This approach was demonstrated in MELCRABs 1 and 2 at Mechanical
Engineering Laboratory in Japan.

From 1981 to 1986, the Adaptive Suspension Vehicle (ASV) was constructed and
tested at OSU. The ASV was a six-legged vehicle designed for outdoor operation on
irregular, unmapped terrain and included a self contained, onboard power supply. It
carried an operator who exercised supervisory control via a joystick and keypad. Leg
coordination and foothold selection were fully automated; the latter was allowed by
employment of extensive environmental sensors including an optical terrain scanner
[Waldron, 1986]. Related later work [Kwak, 1990] explores the use of rule-based limb
motion coordination to implement a "free," non-periodic, gait permitting on-line

optimization of foot placement.




C. AQUAROBOT RESEARCH AT NPS

Aquarobot research at NPS is divided into two concurrent phases: control and
simulation. The first of these, control, consists of Aquarobot control software
development. The second phase, simulation, invblves development of a graphical
computer simulation of the Aquarobot hardware. The simulator is required for the final

stages of the control software development, including testing.

1. Control Software Development
While final development and testing of control software depends the availability
of the simulation model, some work has been accomplished prior to such availability. In
[Schue, 1993] an algorithm is presented for statically stable, aiternating tripod gait
planning and foot path planning for smooth leg motion during walking on flat terrain.
Further developments in gait planning algorithms and demonstration of alternative gaits,
which allow variable direction and speed but require continuous adjustment of leg liftoff

and touchdown sequence, are reviewed in [Yoneda, 1993].

2. Simulation Software Development
The framework for the Aquarobot simulation model is provided in [Davidson,
1993], in which an object-oriented kinematic model is developed. Both
Danevit-Hartenberg (DH) and Craig (Modified Danevit-Hartenberg or MDH) methods are
presented and then compared. The fundamental difference in the two methods is in the

coordinate systems used for a "link," the rigid limb component between two joints. The




DH methodology utilizes the outboard, closer to end-effector, joint as the coordinate
system origin while the Craig method uses the inboard, closer to body, joint. The Craig
version of Davidson's kinematic model is used in this thesis.

[Goetz, 1994] explores a variety of enhancements for the Aquarobot simulation
model. A graphics model, which incorporates a surrounding operating environment
(terrain), is developed to replace the original stick figure. The mudel includes I/0 control
interfaces (i.e. keyboard, joystick, spaceball) and foot/ground collision detection.

A complete, unsimplified physical dynamic simulation model of Aquarobot,
including the hydrodynamic forces of its operating environment, is also being developed
[McMillan, 1993]. While this simulation is not expected to run in real time, it will provide

valuable data for comparison to the simplified model.

D. REUSED SOFTWARE
As mentioned above, the Aquarobot simulation presented in this thesis is based on the
model described by [Davidson, 1993]. A summary of the key features of that model is

provided here for quick reference.

1. Rigid Body Class
In both LISP and C++ versions of the Aquarobot model, system dynamics for six
degrees of freedom, three translational and three rotational, are handled within a "rigid
body class" from [Davidson, 1993]. System state variables include world coordinate

position and orientation, stored in a 4x4 "body to world" coordinate transformation




matrix, called the "H-matrix", and velocities in body coordinates. Euler integrations are

used for dynamic updates. Acceleration equations in body coordinates are:

1‘4=vr—wq+f;'-gsin9; 2.1
V=wp—ur+% +g cosd sing ; (22
w=uq-vp+L2 +gcosd cosd; (23)
jotoctoren, a9
g=le—=ptl, @.5)

=
where m is body mass; g is gravitational acceleration, in world coordinates; /_, / , and I,
are the moments of inertia, f = (f,, £, f)) is the vector of applied forces; 7= (L, M, N) is the
vector of applied torques; theta and phi are Euler pitch and roll angles, respectively; «, v,
w are the components of translational velocity; and p, g, r are rotational rate components
[Frank, 1969]. With a single exception, g, the above values are expressed in body
coordinates. The dynamic update is achieved by determining incrementa! position and
orientation changes, in body coordinates, and using those to generate an incremental
motion matrix which is then post-multiplied with the body's H-matrix, and using that result
to update (replace) the H-matrix. Euler integrations and equations 2.1 through 2.6 are

used to update the velocity state variables [Davidson, 1993].




2. Kinematic Model

Each Aquarobot limb (leg) is made up of a series of links: the inboard end of the
series being physically connected to the robot's body and the outboard end the foot. Using
the Craig method, a coordinate system at the outboard end of a link is described relative to
the coordinate system at the inboard end by a transformation matrix called a "T-matrix".
The T-matrix depends on the physical construction of the link and, in the case of rotary
links, the rotation angle of the inboard joint. The origin of each such coordinate system is
the position of the joint between two such links, and the z-axis is aligned so that a joint
rotation is a z-axis rotation. The entire system is kept in a hierarchical structure of "rigid
bodies", with H-matrix updates done from the top down: i.e. a link's H-matrix may be
updated only after the link next inboard is updated (the robot body in the case of the

inboard end of each leg) [Davidson, 1993].

[H]=[H,][T] 2.7

E. SUMMARY

The development of the Aquarobot simulation model will directly support final
de\‘/elopment and testing of Aquarobot control software. The dynamic model developed in
this thesis is based on a previously developed kinematic model. Before describing the
dynamic model, a more detailed description of Aquarobot and an overview of the software

tools used is needed and is provided in Chapter III.




III. DESCRIPTION OF AQUAROBOT VEHICLE AND
SIMULATION ENVIRONMENT

A. INTRODUCTION

This chapter provides a physical description of Aquarobot, including some details that
are beyond the scope of models developed in this thesis. Special emphasis is given to the
joint actuators as they are the primary feature to be modeled. In addition, the software

tools used in the development are introduced.

B. PHYSICAL DESCRIPTION OF AQUAROBOT

Figure 3.1 is a photograph of Aquarobot which has a body, that is generally
cylindrical in shape, and six legs, equally spaced at sixty degrees apart. Mounted on top of
the body is a camera boom with three rotary joints for positioning. The boom is equipped
with an ultrasonic ranging device to assist in the scaling of measurements. Within the
body are two inclinometers (for attitude sensing), a gyrocompass, and a depth sensing
device. Aquarobot is computer controlled from the surface via a four centimeter diameter
tether cable attached to the top of the body. The cable carries control signals to the robot
and returns sensor signals back to the controlling computer.

Each of the six identical insect type legs has three rotary joints, which are driven by
the joint actuators described in the next section, and a freely rotating ball joint to attach

the disc shaped foot. Each foot has a pressure sensitive touch sensor to provide an




indication of ground contact. Figure 3.2 illustrates the axis of rotation for each joint in an

Aquarobot leg.

Figure 3.1
Photograph of Aquarobot

Joint2 Link3

Ball Joint
Foot

Figure 3.2
Aquarobot Leg Construction

10




C. AQUAROBOT JOINT ACTUATORS

Figure 3.3 is a block diagram of an Aquarobot joint actuator. Control software sends
incremental rotation orders to the controller as pulses, with polarity indicating the desired
direction of rotation. Motor response is fed back to the control software as pulses in the
same manner. These feedback pulses are produced by a pulse generator on the motor
shaft. Additional signals to and from the control software include pulse counter (PC)

overflow, pulse counter clear, and driver enable.

Control

Interface

Figure 3.3
Agquarobot Joint Actuator

The difference between the actual and ordered position, the error signal of the motor,
is kept in the pulse counter. Orders increment the counter, plus or minus, depending on

desired direction; response pulses decrement it. One hundred pulses are required for one

11




motor revolution (determined by the motor shaft pulse generator output). The counter
overflows if the maximum count, +/- 6144 pulses, is exceeded.

A digital to analog converter (D/A) produces a DC signal directly proportional to the
current count in the pulse counter, and its output is the motor driver's primary input. That
is, the larger the error, the higher the voltage applied to the motor to correct the error. A
maximum count of +/-6144 is converted to +/- 10VDC, i.e.

DA ous = count *(10/6144). 3.1

A high gain for the error signal is desirable for fast response and for sufficient
response to small errors. However, by itself, the high gain would cause severe overshoot
and oscillations in the motor. Degenerative feedback, proportional to motor speed, is
used to prevent, or at least minimize, this overshoot. This degenerative feedback is
provided by the frequency to voltage converter (F/V) which monitors the pulse generator
output. The output is 3VDC per thousand RPM's, so

FV ou = RPM *(3/1000) (3.2)

The driver amplifies outputs from the D/A and F/V converters to produce the source
voltage (V) for the servomotor. So far, we have

Vs = G1DA ost ~ G2FV ora, (3.3)
where G, and G, are respective gains. However, the driver is actually more complex and
includes an additional internal feedback path.

The signals form the D/A and F/V converters are amplified and fed into the pulse

width modulator (PWM) with the F/V signal inserted between inverting amplifiers to

12




provide degeneration. A current pickup on the PWM output line provides a signal
proportional the current drawn by the motor, and therefore proportional to the motor
torque. Recall that for a given voltage applied to a motor, it has a limited speed due to
back EMF. As the motor approaches that speed, it draws less current. This current
(torque) feedback signal provides regenerative feedback in the driver during motor
acceleration, thus reducing the response time. Adding the torque feedback to Equation
3.3 yields

Vs = G\DAou = G2FVou +Gila, 3.4)
where /, represents the motor's armature current. Actually, this equation still neglects
some complexities in the Aquarobot joint comtroller. Not shown in Figure 3.3 are
feedback capacitors around amplifiers which further modify the equation for /. These
effects are not modeled in the work of this thesis.

The motor is driven by a squarewave rather than a DC voltage. Figure 3.4 illustrates
idealized signals. The function of the PWM is to provide a squarewave of constant
amplitude, zero to +/- 75 volts, with a duty cycle proportional to the input signal, so /', in
Equation 3.4 is actually an average value. Motor response to this signal is very close to its
response to a DC voltage equal to the average voltage of the squarewave. Applying
Signals 1 or 2 of Figure 3.4 to the motor is thus equivalent to applying +25VDC or
-25VDC, respectively. This methodology is used primarily for its efficiency advantage

over a DC linear amplifier [Truxal, 1958].

13




w UL
™ Uy

signal 1 , signal 2

Figure 3.4
PWM Outputs For 33 % Duty Cycles

Attached to each servomotor is a harmonic reduction gear, built together as a single
unit. The model used for joint one in each leg, RA-20, has a reduction ratio of 161:1,
while that used for joints two and three, RH-25, has a 160:1 ratio. In addition, joints two
and three have a bevel gears cascaded with the harmonic gears with 3:1 and 2:1 ratios,
respectively. Figure 3.5 summarizes the total reduction ratios and gives the control puises

required for a single joint shaft revolution.

Joint 1 2 3

Harmonic Gear 161:1 160:1 160:1

Bevel Gear NA 3:1 2:1

Total Gear Ratio 161:1 480:1 320:1

Pulses / Revolution | 16,100 | 48,000 | 32,000

Figure 3.5
Total Reduction Gear Ratios and
Control Pulse Requirement per Joint Revolution




D. SOFTWARE TOOLS

C++ is the programming language selected for modeling Aquarobot. This choice was
based on both hardware and software considerations. IRIS Performer, a C/C++ visual
simulation toolkit, provides rendering that is fast enough to display a real time dynamic
simulation [Goetz, 1994). Common LISP was used for rapid prototyping and testing

during the early stages of development.

1. C++

In a long term project with many contributors, object oriented design provides a
high level of abstraction which promotes rapid system level comprehension by new team
members as well as loosely coupled, easily maintained source code. Not only does C++
support the object oriented design paradigm, but also, it is based on, and includes as a
subset, the highly efficient, structured language, C [Wiener, 1988].

The simulation platform, both here and at PHRI, is an IRIS Reality Engine. The
C/C++ compilers delivered with the IRIS systems are very efficient, due to direct access to
the low level hardware, and are intended to be used as native development languages.

Popularity and widespread use make C/C++ source code portable, and while
portability is not a key issue for the Aquarobot simulation, it is very much so for the

Aquarobot control software which is likely to have to survive hardware upgrades.

15




2. Performer
IRIS Performer is used primarily for its performance as a rendering tool
- Performer is a hardware oriented, C/C++ graphics tqol kit designed to operate on Silicon
Graphics products. Its routines take full advantage of the "known hardware" platform to
allow much higher performance than routines written for generic hardware. Also, some
precision is traded for speed as real numbers in Performer data structures are single
precision "floats" rather than "doubles”. Upon initialization, Performer detects hardware
capability and automatically sets up a multiprocessing environment with shared memory
when running on a multiprocessor machine. The default configuration, which the user
may override, is separate processors assigned for (1) user application, (2) graphics
database culling, and (3) drawing the culled database to a graphics window [SGI, 1992].
Performer’s graphics database is stored in a hierarchical data structure, a tree.
The structure is culled and rendered by doing a pre-order traversal with child nodes
inheriting the accumulated environments (transformations) of all ancestors traversed in the
current path. These accumulated environments are kept on a stack and are popped off
when traversing back up the tree. The basic nodes are Scene (the root), Static Coordinate
System (SCS), Dynamic Coordinate System (DCS) (variable for motion where an SCS is
fixed), Group (a container for children requiring a common transformation), and Geode (a
container for polygons to be rendered). Geodes must be leaves but may have more than
one parent. This reduces the memory requirements when a group of polygons is to be

rendered more than once in a frame (two or more identical objects) [SGI, 1992].

16




Robotics and mechanics users must be aware that graphics standards are used in
matrix construction and operations. The graphics matrix is the transpose of the standard
robotics matrix [Fu, 1987], GM, = RM,. This is only important when using the pfMatrix
data type and operations outside those that directly support the graphics database. or
when directly manipulating individual elements, rows, and / or columns. Since MxN =
(N"xM")', the order of matrix multiplications may also have to be reversed. Lastly. X and
Y axis rotations are as expected; however in Performer, pitch refers to an X, rather than
Y. axis rotation, and likewise, roll refers to a Y axis rotations [SGI, 1992].

Synchronization for a real-time application may be achieved by setting
Performer’s "desired frame rate” and then using the pfSync function call. The pfSync
function will put all processes to sleep between each frame to force the desired frame rate.
If the desired frame rate is faster than can be achieved, pfSync will have no effect, and the
application will free run at its fastest speed. In the Aquarobot simulation, the frame rate is
set to twenty frames per second and then a fixed delta-time of one twentieth of a second is
used for dynamic updates. Reading the internal clock for delta-time would have been
equivalent providing the application is capable of running at the desired frame rate. The

fixed delta-time ensures control over data points [SGI, 1992].

3. LISP
The problem with "rapid, experimental” prototyping in C/C++, as well as other
compiled languages, is the difficulty with testing and verification. Specifically, a test shell

must be written, compiled and run to thoroughly test a block of source code. If the test

17




results in the detection of errors, debugging tools are available, but the source code must
be recompiled to include them. Other methods, such as insertion of additional lines of
code, are also available but also require multiple compilations. In any case, logic errors
are still difficult to find when they exist in large blocks of code, especially when they only
apply to specific inputs. LISP, on the other hand, is an ideal language for experimental
work. LISP is an interpreted, functional language which gives the developer the ability to
call any defined function directly from the command prompt. The function's return value
is immediately displayed for easy comparison to expected values; test routines are not
required. Since functions may be nested, these test calls may include any desired level of
abstraction. Variables are also directly accessible in LISP and may be inspected at any
time. The basic structure of a LISP program is an on-line database of definitions:
constants, functions, and symbols (pointers to variables) [Koschmann, [990].

Weak typing in LISP allows additional flexibility. Typing is done dynamically at
run time. For example, a single definition of the function "minimum" may be used for
integers, reals, or any argument type for which the operator "<" is defined. Variables,
arguments, and return values may also be lists, allowing the developer to call a function
with a comprehensive set of test inputs [Koschmann, 1990].

The Common LISP Object System, CLOS, provides full support for object
oriented programming. In this thesis, a prototype design using CLOS is first developed to
implement system design decisions. Subsequent translation to C++ is then accomplished

without abstract structure modifications.

18




E. SUMMARY

This chapter physically describes Aquarobot with the intention of providing sufficient
orientation prior to the model presentations. Several Aquarobot features are not included
in the dynamic simulation model presented later in Chapter V. 7The kinematic model
includes the body, legs and feet but not the camera boom. Joint position, foot contact,
and azimuth information are available; however, attitude and depth are not. The tether
cable and hydrodynamic forces, currents and viscosity, are also neglected.

Also in preparation for the model presentations, the software tools utilized, along
with the reasons for their selections, are introduced. Object-oriented system design and
the need for a high performance made C++ ard IRIS Performer ideal software tools for
the Aquarobot simulation model. CLOS, with its capability for rapid testing of complex
functions, was used for prototyping and model verification.

The following chapters present dynamic simulation models of an Aquarobot joint

actuator and Aquarobot itself.

19




IV. JOINT ACTUATOR MODEL

A. INTRODUCTION

The purpose of this chapter is to present a simulation model for a single Aquarobot
joint actuator. It begins with a review of the basic mathematics required to model

servomotors and reduction gears and then develops the joint actuator model.

B. BASIC DC MOTOR

A motor is a device used to convert electrical energy into mechanical energy. The
force, F, on a current, i, carrying conductor of length / in a uniform magnetic field, B, is
given by [Halliday, 1981}

F=|idlxB. 4.1)

If the conductor is fixed on a shaft, parallel to the shaft, at radius r, the resulting torque,
tau, is given by [Halliday, 1981]

t=rxF. (4.2)

The motor's armature includes a set of such conductors and is usually constructed so as to
be symmetrical with respect to the axis of rotation; therefore, the total conductor length
and relative position (to the magnetic field) is independent of the armature's angular

position. Furthermore, if a constant magnetic field (ie. permanent magnet or constant

20




current electromagnet) is used, then the force and resulting torque become directly
proportional to the armature current, simplifying the above equations to

F=iC, (4.3)
and

ta=iK,, (4.4)
where rau  is developed torque, and torque constant X is a characteristic of the motor.
The armature current depends on applied voltage, armature resistance, and armature
angular velocity, omega. The velocity dependency is due to the voitage induced in the
conductors as they move through the field (Faraday's Law). Since this induced voltage is
of such polarity that it causes a decelerating torque (Lenz's Law), it is called Back or
CounterEMF, /), [Halliday, 1981] [McPherson, 1981]

Vy = Kb, (4.5)
where K, is the motor's back EMF constant.
Armature inductance is usually negligible for high quality servomotors, so using Ohm's
Law, the armature current, /, is given by [Halliday, 1981] (McPherson, 1981]

I=222, (4.6)
where V_ is the voltage applied to the armature and R, is armature resistance.

Combining Equations 4.4 through 4.6, the motor's developed torque is

K’( Vg"Kb@)

Td = [aKl = Ra . (4'7)

Given no external torques and ignoring losses for now, for any V, there is an associated

maximum speed, when ¥V, = K, omega, that results in tau, = 0 and therefore no further

21




acceleration. Still ignoring losses, motor acceleration, omega-dot. is given by the standard

rotational dynamics equation [Halliday, 1981]

torque _ t4+t, (4.8)

where J, is internal motor inertia, and fau, and J, are external torque and inertia,
respectively. There are several sources for losses in a motor, but as long as the motor is
operated within its prescribed limits, most of them may be consolidated into two groups:
constant, F, and directly proportional to velocity, F, omega. Some examples are friction,
copper (i°R), and windage [McPherson, 1981]. External loads may also include constant
and velocity dependent losses. The actual loss is state dependent and requires some
special handling:

(1) shaft turning (omega <> 0) : loss opposes omega
lloss} = Fc + F,lal; 4.9)
(2) shaft at rest (omega = 0) : loss opposes torque

(a) torque sufficient to overcome friction ({torque| > Fc)
loss = F., (4.10)
(b) torque insufficient to overcome friction (requires torque - loss = 0)
loss = torque . (4.11)
State 2a may be handled by the method used for state 1, but since it is already detected by

the test for state 2b, there is no reason to perform the arithmetic. Incorporating losses

into Equation 4.8 yields
= e (4.12)

22




The only other significant loss not fitting into one of the groups above is the voltage drop
across the motor brushes, brush drop loss /. The voltage applied to the motor armature,
V', is the motor source voltage, V/, minus this brush drop loss [McPherson, 1981].

Va=Vi=1Vsa (4.13)
Combining Equations 4.7, 4.12 and 4.13, motor response depends on construction, state,
applied voltage, and load (external torque and inertia).

Vo=t (Kpe) )

'
. “A, —T——J +T, —Lasus:l
o= _ (4.14)

As a final note, motors are given voltage and load ratings. These are determined by
motor construction and are intended to keep armature current within safe operating limits

[McPherson, 1981].

C. REDUCTION GEAR

A reduction gear is a mechanical coupling device that provides a mechanical
advantage allowing a higher speed, lower torque source to drive a lower speed, heavier
load. This enables both source and load to operate at or near their optimal, most efficient
speeds, even though those speeds are not the same. The gear ratio, », is the ratio of the
input and output shaft angular displacements, velocities and accelerations, theta, omega

and omega-dot, respectively [Chen, 1993].

Oou = =, (4.15)
Oout = ==, (4.16)
Oow = 2. (4.17)

23




While the output shaft speed is reduced by a factor of n, the torque is increased by a factor
of n [Chen, 1993].

Tour =M Tin (4.18)
Recalling and rearranging Equation 4.8 and applying it to the output shaft

Jou = 2. (4.19)

Wour

Substituting for omega-dot,,, and tau , using Equations 4.17 and 4.18

our?

Jou = (&"‘;"") (4.20)
= nzf‘,z. (4.21)
=ntJiy (4.22)

This gives a coupling factor for inertia of /7, i.e.

= =2, (4.23)

Combining a motor and a reduction gear as a drive tra'n for some load, Equations 4.12,

4.18 and 4.22, yields:

. x/n) — L
Op = tq +(tz/n) 0sses , or (424)
Jm +(Jatn?)
or
. - (nty) + 5 = (n Losses) (4 25)
* (U m2) +44 '

where m is the input (motor) side of the reduction gear, and x is the output side.

24




D. JOINT ACTUATOR SIMULATION

Figure 4.1 is a block diagram of the foint Actuator Simulation Model. Refer to
Figure 3.3 for a comparison to the actual Aquarobot Joint Actuator. Since the model was
in essence a "bench top" device, physical limitations, such as pulse counter overflow and
motion limits, were not detected or enforced. Also, input pulses were replaced by a
change in desired angular position of the joint shaft in revolutions, delta-theta, and the
motor driver's rectangular wave output is simplified to its average value. Loading and

operating instructions and a complete source code listing for this model may be found in

Appendix A.
positioning
orders Pulse emor l['>-
Counter signal
position
velocity |
Motor feedback PWM
omega cument ,
la— feedback Oriver
Figure 4.1
Joint Actuator Simulation Model

The D/A converter is not necessary in the simulation model as the Pulse Counter
stores the difference between the current and ordered shaft positions rather than a discrete

pulse count. Motor velocity and armature current, slots values in the motor class, are

25




directly accessed to provide those inputs to the driver. The cascaded amplifiers in the
driver are separated and then summed in order to simplify gain adjustments. Positional
feedback is taken after the reduction gear to match the implementation of the positioning
orders input. This is in contrast to the physical device in which feedback pulses come

directly from the motor itself.

1. Base Classes

Several base classes are used in the joint actuator model. Refer to Appendix A
for a source code listing. The first is the "diff-counter” class used to model the pulse
counter. A single slot, "current-count”, which is initialized to zero, holds the cumulative
sum of all delta theta orders and feedback. Its single method, "diff-signal”, updates and
returns the current count.

count = count + order - feedbac (4.26)

The "amplifier-clipper” class has three slots: "amplification-factor” (or gain),
"max-value” and "min-value”. The "amplify” method simply muitiplies the argument by
the gain and retums the product, clipped of course, to the maximum or mmimum value if
the product exceeds those prescribed limits.

The "driver-class”, a sub-class of amplifier-clipper, adds three gain slots for
independent amplification of the three imputs before summing them in the final
amplifier-clipper stage. The current feedback is not internal but relies on a saved slot

value in the motor-class.

26




The "shaft” class is used as a superclass for the motor class, as slots for reduction
gear input and output shafts, and for the actual joint shaft. Slots angular-position (theta),
angular-velocity (omega), inertia, coulomb-friction-constant (Fc or constant loss
component). viscous-friction-constant (Fv or velocity dependent loss component), and
time-stamp are defined. Methods are defined to provide capability to set theta and omega
to some position and speed, reset theta and omega to zero, and couple (transfer) theta and
omega to another shaft.

The "motor"” class inherits from the shaft class and defines additional slots:
torque-constant (K ), back-emf-constant (X,), armature-resistance (R,), armature-current
(i), and brush drop parameters (max-brush-drop and half-brush-drop-source-value).
Methods "developed-torque” and "omega-dot" are direct implementations of Equations
4.7 and 4.14, respectively. Brush drop was approximated by using an exponential form
that approaches max-brush-drop as the source voltage increases [McPherson, 1981].

Voa = Vidmax (1= 0.5 V71V siaatvins) (4.27)
Method "run-motor” gets the elapsed time (df), calculates omega-dot, then updates the
motor state using Euler integrations.

The "reduction-gear” class has slots “gear-ratio” (n), "in-shaft" and "out-shaft",
the last two being instances of class shaft. Methods are provided to multiply or divide an
argument by n (n squared if the argument is inertia). The method "rg-connect" is provided
to replace the shaft couple method for internal coupling and reduces the coupled theta and

omega by the gear ratio.

27




2. Joint Class

The “joint" class actually represents a joint-actuator. It includes the entire
system: motor controller, servo-motor (pn'me-mo;er), and reduction-gear. An additional
shaft slot, "load-shaft", is actually only included to allow a convenient method to store the
previous theta value in order to determine the feedback deita theta. The output shaft of
the reduction gear actually holds the remaining load shaft slot values. The motor could
likewise have been the reduction gear input shaft; however, they were kept separate for
clarity.

Methods are provided to sum system parameters external to the motor (i.e.
load-inertia, ...) so they may be passed into calls to run-motor. "Feedback” returns the
difference between the output shaft of the reduction gear and the load shaft.
“Increment-joint” calls “run-motor" then couples all the shafts, being careful to save the
old reduction gear output shaft position first for use in next call to feedback.
"Step-input-to-joint” provides the facility to send delta theta orders to the pulse counter,
and "reset-joint” reinitializes the system.

Loading "joint.instance.cl” creates the instance of a joint used for model testing.
The functions provided allow various orders to be sent to the joint and then displays
system response to those orders. "Move-joint-mult” orders multiple repetitions of the
same “delta-theta” order, each order being initiated upon completion of the previous
order. "Move-joint-list” is similar in execution, but takes a list (sequence) of delta-theta's

rather than repeating the same one. "Run-joint” orders a continuous sequence of small

28 ;




delta-thetas, determined by argument "speed” and system elapsed time, required to achieve
the ordered RPM speed. The remaining functions are intended to be internal calls. They
are "clear-and-reset” (called by each of the previous three for initialization),
"move-joint-list-2" (recursive call for move-joint-list), and "move-joint" (called by
move-joint-mult and move-joint-list-2). "Move-joint" is the workhorse and makes
repeated calls to method "increment-joint" until the ordered delta-theta has been achieved
(the pulse counter's current count approaches zero). In contrast, "run-joint" makes

repeated calls to "increment-joint" until the ordered speed is achieved.

3. Additional Supporting Code

Loading "Window.instance.cl" creates a display window with a gradicule. A call
to "display-state” reads the appropriate state slots and draws the set of data points for the
current time. Additional methods are provided for internal calls and for reinitialization
(i.e. clearing or resetting the window). The end result is a display of system state vs. time
for program output. Finally, the file "joint-loader" is provided as a convenience, and
loading it ensures loading of the source code files in the correct sequence (dependencies
are observed). After loading the cource code, it then makes calls that test run various

features of the system.

E. SUMMARY

This chapter provides a review of the basic mathematics required to model

servomotors and reduction gears and then describes the simulation of an Aquarobot joint

29




actuator. The model is simplified in that exception handling control signals are ignored
and the pulse counter input is desired delta-theta for the joint shaft, but functionally, it is
equivalent. In the next chapter, the Aquarobot model is presented; however. joint
actuators are not yet included but instead are functionally represented by springs and

dampers.

30




V. SPRING AND DAMPER MODEL

A. INTRODUCTION

A modified dynamic simulation model for Aquarobot is developed in this chapter. It
has springs and dampers in place of servo motors to provide joint torques. The springs
and dampers are intended to eventually be replaced by a joint actuator model such as that
presented in the previous chapter. The model can be tested by giving the Aquarobot an
initial position and orientation and then allowing it to drop, observing the response as the
feet contact the ground and the legs provide support.

Since the purpose of the model is to provide an approximate dynamic simmlation.
capable of running in real time, several simplifications have been made:

(1) the legs are considered to be massless;

(2) the ground-foot friction is infinite (no slippage);

(3) the center of mass is assumed to be at the geometric

center of the inboard joints of the legs; and

(4) body inertia is that of a solid homogeneous cylinder.

In addition, joint stops (physical limits) in the kinematic model are disabled and collisions,

other than feet contacting the ground, have been ignored.

31




B. INVERSE KINEMATICS

The Aquarobot leg kinematic model allows determination of foot position, given the
joint angles. The inverse kinematic problem, on the other hand, is to determine the joint
angles, given the foot position. Using the appropriate coordinate systems simplifies
inverse kinematics. Figure 5.1 illustrates the coordinate system used to calculate joint!'s
angle. theta 1: the joint is the origin, the Z-axis is down (parallel to body Z-axis) and the
X-axis is radially outward from the body. Thetal is measured as a right handed Z-axis

rotation using the X-axis as a zero reference.

foot

Figure 5.1 '
Top View of Jointi Coordinate System Used to Calculate Thetal.

Given the foot position in this coordinate system, thetal is easily calculated:

0, = arctan(i—g : 5.1

32




>X

L Vv
Y(out) Z

Side View

foot

i

Figure 5.2
Side View of Coordinate System Used to Calculate Theta2 and Theta3.

Figure 5.2 illustrates the coordinate system used for calculating theta2 and theta3. Joint2
serves as the origin. the X-axis is defined as the direction directly away from joint1, and
the Z-axis is again down. Using this coordinate system reduces the problem to two
dimensions as the y-component of the foot position is now zero. Figure 5.3 and Equation
5.2 illustrate the /aw of cosines [Oakley, 1971] which is used to determine theta2 and
theta3.

a* = b*+c*-2bccos (5.2)

x(foot)

Figure 5.3
Applying Law of Cosines

33




Solving Equation 5.2 for angle A:

A =arccos["2—"z"'—2]. (5.3)

Angles B and C are determined in the same manner:

B= arccos[‘”‘ "] (5.4)
—arcco[ ‘;’b ] (5.9)

Referring back to Figure 5.3, sides a and b correspond directly to the lengths of link2 and

link3, respectively, and side ¢ may be calculated using Pythagorean's theorem:

-

c= x}w, +Zfoor - (5.6)
Angle D may be determined by several trigonomic functions; arcsin is used here:
D=arcsin[i’4;':"-]. (5.7)

Theta2 and theta3 are measured using the sign convention shown. Note that theta3 is the

negative of C's compliment:

0.=B-D, (5.8)
and

0;=C-n. (5.9)

Combining Equations, (5.4, 5.7 and 5.8) and (5.5 and 5.9), and substituting L2 and L3 for

a and b results in
L2ec?-1} . =
0, = arccos[ 222,: ’]—arcsm[—’?], and (5.10)
2 ri_2
0; = arccos[l"uL:Lsc ]—n. (5.11)
34




C. JACOBIAN MATRIX

The Jacobian Matrix, J(g) or simply J, of vector r with respect to vector ¢ is
defined:

J,(q)=[%]. (5.12)
and is used to express the relation between an end effector velocity and the joint velocities

of a manipulator [Yoshikawa, 1990]. In the case of Aquarobot, the foot velocity with

respect to leg joint velocities is given by:

;foor él
Yioor |=[potl3s| 02 |- (5.13)
Zfoot Le3

By rearranging Equation 5.13, the inverse Jacobian and the foot velocity may be used to

determine the joint velocities:

é[ ifool

b4 -1 °

0; |=pal | Voou |- (5.14)
93 =foot

The Jacobian will also be used in the next section to determine ground reaction forces.
The derivation of the Jacobian matrix for an Aquarobot leg is straightforward. The
foot position of an Aquarobot leg is kinematically described as a function of the joint

angles in [Schue, 1993]):

x=LocosOp +L1cos00 +L2c0800,c080; +L3¢0500,c050, (5.15)
y=Losin0o +L;sin@o; +L2sin0;cos02 +L3sinBo1cos023, (5.16)
z=—L,snQ; - Lisn 0,3, (5.17)

35




where L, is link; length, theta, is joint, angle, theta, is the sum of theta, and theta, and link,
represents the constant pseudo-link from center of body to joint, and has a joint angle

equal to the "leg attachment angle". Differentiating Equations 5.15 through 5.17 gives:

x= -Ll(sinem é, ) —Lz(sinemcosez 61 +cos»9msin92 éz )
—L;(sinemcosezg él +coseo|sin623(é2 +é3 )) , (5.18)

\. = —Ll(cosem él ) -—Lz(cosem cos02 él +sin 0o sin 02 éz )
—L;(cosemcosezg él +sin601si11923(é2 +é3 )) , (5.19)

c= —Lz(cosez é; ) —L3(005923(éz +é3 )) . (5.20)
Regrouping and translating Equations 5.18 through 5.20 into the form of Equation 5.13,

the Jacobian Matrix is given by

~(Ly+ L0050, + L3c080,3)sin09, —(L8in0; — L35in023)c0sB01 —L3C080015inHO2;
J=| (Li+L2c050;+L3c08023)c0800 —(L25in02—L3sin023)sin001 —L3sinB¢15inO7;3
0 -chosez - L;cosen -L;cosen

(5.21)

D. FORCES ON AQUAROBOT
Assuming homogeneous cylindrical distribution of body mass and massless legs
reduces the complexity of the forces and torques on Aquarobot. As Figure 5.4 illustrates,

the resulting summations of these forces and torques may be expressed

- 6 —>

S aquarobr =ME + I‘Z;ﬂflcga (5.22)

36




and
- —_
T .iquarobor =l¢§' . Fieg xfltg, (5.23)

where f, . is ground reaction force, and 7, is the moment arm, from the body's center of

mass to the foot, on which that force is exerted.

(oo >

ground level foot in contact
_9
f

Figure 5.4
Forces on Aquarobot

Given an initial known state (position, orientation and velocity), Aquarobot's motion may
be completely described by application of Newton's second law. The kinematic solution

forr,,

is already available [Davidson, 1993], so all that remains is determination of Sres
The torques at the joints in a manipulator are related to the force exerted by the end

effector by the transpose of the Jacobian [Yoshikawa, 1990]:

Te, -
T=| 1, |=WNf. (5.24)
Te,

37




where fis the force the foot exerts on the ground, equal magnitude but opposite direction
of ground reaction force. To avoid confusion, f will thus refer to the ground reaction
force, the force the ground exerts on the foot, as it is the force in which we are interested;

therefore Equation 5.24 must have a sign change:

T=[] T(—?) . (5.25)

Solving Equation 5.25 for f yields:

=2 -1

E. SPRING AND DAMPER JOINT TORQUES

In the spring and damper model, joint torque is the sum of spring restoring torque and

damping torque:

yom =(ks(@—00)) + (k4 6) (5.27)

where £, and &, are spring and damping constants, and theta0 is the ordered position. For
the remainder of this chapter, theta0 will be taken as the rest position or zero torque
reference. For convenience, the symbols on the right side of Equation 5.27 will be used to
refer to their vector form.s and will represent all three joints in a leg. Replacing the left

side with 7, and assuming the same spring and damping constants for each joint,

el elo él
T=-k,| 0, |- 92, —kaq 0, |- (5.28)
03 s, 63

38




The joint angles are determined using the inverse kinematic method described above
and are then available for the Jacobian matrix. For any foot in contact with the ground, its
velocity, relative to the body, is simply the negative of the sum of the body’s translational
velocity and the cross product of the body’s rotational velocity with the foot's position
vector. Combining Equations 5.14 and 5.27, and substituting for foot velocity gives us:

T=-k; (0-00) +kaJ ™" [Voody + (@sodr X 'foar)], (5.29)

which is now substituted into Equation 5.26 to give us the ground reaction force:

_)
S =71 [hs(8 = 00) — kS~ [Vooay + (@bosy X Toor)] - (5.30)

F. LISP PROTOTYPE

The kinematic model for the Aquarobot simulation was borrowed from [Davidson,
1993] with the only code modification being the conversion to Modified
Danevit-Hartenberg (MDH) coordinate systems to match the C++ version. The complete
source code listing with loading and operating instructions may be found in Appendix C.
The additions required for dynamic operation of the model are best presented by the
following walk-through of a dynamic update. Figure 5.5 provides a flowchart for
reference.

A dynamic update of Aquarobot is achieved by calling method "update-aquarobot".
The body's acceleration, velocity and position are all updated by calls to previously defined
methods in the rigid-body class. After these are completed, and the body is repositioned,

the legs, forces and torques are then updated by calling "update-forces-and-torques”.

39




Figure 5.5
Flowchart for Dynamic Update of Aquarobot.

Gravity is handled separately in the "update-acceleration” method; therefore, only the
forces and torques due to foot contact with the ground need be considered.
Update-forces-and-torques resets the body's forces-and-torques vector, a rigid-body slot,
to zeros, then calls “add-leg-forces-and-torques” for each leg to gemerate an updated

cumulative value.

40




Add-leg-forces-and-torques tests for “"foot-contact”, a Boolean type slot, or
"new-contact”, a function that sets foot-contact to true and the foot's world z coordinate
to zero (ground level) if ground penetration is detected (z coordinate greater than zero).
If there is no foot contact, nothing happens: joint angles remain set to their default values
and the body's cumulative forces-and-torques value is left unchanged. If however, there is
contact, the inverse kinematics routine is called, the ground reaction force is calculated
using Fauation 5.30, and the joint angles are updated. Before updating the cumulative
force.  .-torques, loss of contact must be detected. This is done by testing the world z
component of the calculated ground reaction force in a call to "still-in-contact”. If the
force is such that it is pulling the robot down rather than supporting it, then foot-contact is
set to false, the joint angles are reset to their default values, and again, no contribution to
forces-and-torques. If the foot is determined to be still-in-contact, world z component of
the force less than zero (pushing up), then method "add-forces-and-torques-to-body" is
called which adds f and » x f to the cumulative value of forces-and-torques as in
Equations 5.22 and 5.23. After cycling through all the legs, Aquarobot is completely
updated and ready for another cycle.

This dynamic update cycle actually uses the (i +1),, velocity for the i, update. While
the i, velocity might just as easily have been used, it is neither better nor worse. Better is

actually the average of the two.

41




G. C++ PROTOTYPE

The C++ version of the dynamic Aquarobot model is algorithmically identical to the
LISP version. A complete source code listing with operating instructions may be found in
Appendix D. As discussed in Chapter III, use of IRIS Performer structures required some
modifications. For example, six-vectors were divided into pairs of three-vectors. The
dynamic model is otherwise identical. A feature added to this version is the ability to pass
spring and damper constants, drop height, and dynamic update time increment into main
as command line arguments. After handling these optional arguments, main nitializes
Performer, instantiates and initializes dynamic and graphic Aquarobot objects, then cycles
in an update-render loop.

The "graphic Aquarobot” object was not required in the LISP version as the “dynamic
Aquarobot” slot values were directly accessed to render a stick figure. This version,
however, draws thousands of filled polygons each cycle to render a single frame. IRIS
Performer was used, as previously stated, primarily for its high performance in this task.
The graphic Aquarobot is a hierarchical database containing the information required to
draw Aquarobot. After each dynamic update, the body's position and orientation and the
leg's joint angles are passed into "Dynamic Coordinate Systems” in the database pﬁof to

calling the draw routine.

42




H. SUMMARY

This chapter develops a simplified dynamic simulation model for Aquarobot using
springs and dampers to provide the joint torques. Inverse kinematics, Jacchian matrices
and their utility, and forces acting on Aquarobot are discussed. The model was
implemented and tested using both LISP and C++. In the next chapter, simulation results
of the spring and damper model, and also of the joint actuator model from Chapter IV, are

presented.

43




VI. SIMULATION RESULTS

A. INTRODUCTION

This chapter presents the simulation results. The joint actuator simulation model was
tested to verify the model and to experimentally determine suitable amplifier gains. As
stated in the previous chapter, the spring and damper Aquarobot model was tested by

dropping the robot from a low height and observing is dynamic behavior.

B. JOINT ACTUATOR SIMULATION

The motor class is designed such that constructor arguments are parameters listed on
the motor specification sheet. At the time of the simulation, specification sheets for the
motors used in Aquarobot were not available; therefore, another model was used. The
model was tested by applying rated voltage to the motor and observing its acceleration
and attained RPM. In Figure 6.1, both motor and output shaft, after 200:1 reduction gear,
speeds and positions are shown. Motor scales are on the left, while output shaft scales are
on the right. Qualitatively, the motor model is well behaved, and quantitatively, it closely

matches the no-load speed parameter listed in the specifications.




1000

+1

No Load Joint Actuator Response With +75VDC Applied to the Motor

To obtain fast joint actuator response to input orders, it is desirable to set the error
signal, D/A converter output, gain to a relatively high value. A gain of 150 resulted in the
optimum response. Values from 100 to 200 gave satisfactory results while higher values
progressively reduced the effectiveness of the degenerative feedback. Figures 6.2 through
6.5 show joint actuator responses to the following sequence of shaft positioning orders, in
revolutions, with various driver gain values: (+1/4, +1/2, -1, -1/2, +1, +3). Figure 6.2

illustrates the response with an error signal gain of 150 and with velocity and current

feedback signals disabled.

45

Revs Revs

-1500 -1
4000 40
REM r ........................................................................ oY

4500 - : ' : . -40

0 10 20 30 40 50 60
motor tine joint
Figure 6.1




+1
Revs
~1
40
ey
: B : : -40
v} 10 20 30 40 S0 60
motor tine joint

Figure 6.2
Joint Actuator Response with Error Signal Gain of 150.
Velocity and Current Feedback Disabled.

The optimum velocity feedback signal gain is a compromise between response time
and stability. Too high a value results in slower response, while lower values allow
increased overshoot. Values from three to seven were satisfactory. A gain of five proved
optimum when combined with current feedback. Figure 6.3 displays the results of using

various gain values for velocity feedback with current feedback still disabled.

46




jutitl o Lt sl atwon

190C +1
Revs Revs
-17400 -1
100c 40
RPM RPX
-390 ' ? ’ 5 ' 42
0 10 20 30 40 50 60
notcr tine joint
Figure 6.3a

Joint Actuator Response with Velocity Feedback Gain of 3
and Error Signal Gain of 150. Current Feedback Disabled.

juitnt actoatuy sunudation

1000 1
Revs Revs
-1300 -1
40NG 40
RPN RPY
-4300 ? : f 3 : -42

0 10 20 30 40 S0 60
motor tine joint
Figure 6.3b

Joint Actuator Response with Velocity Feedback Gain of §
and Error Signal Gain of 150. Current Feedback Disabled.

47




102¢ .l
Revs Revs
-1200 5 i : % : -1

4000 ; ; ; ; g 40

ReY
41
60
notor tine jownt

Figure 6.3c
Joint Actuator Response with Velocity Feedback Gain of 7
and Error Signal Gain of 150. Current Feedback Disabled.

ot acteaten sl dion

1800

+1

Revs Revs

-14500 : : i : -1
4000 : : : : : 40
RPN RPN

-4500 ? § f f ‘ -43

0 10 20 30 40 50 60
motor tine joint
Figure 6.3d

Joint Actuator Response with Velocity Feedback Gain of 20
and Error Signal Gain of 150. Current Feedback Disabled.

48




The current feedback gain value turned out to be the most sensitive. A value of 0.3
produced negligible change, while 0.7 resulted in some oscillation. This regenerative
feedback, intended to reduce response time, also aided in reducing the overshoot. As the
error signal approached zero with speed on, back EMF caused a decelerating current
which was aided by the regenerative current feedback. Figure 6.4 displays the results of
using various gain values for current feedback with velocity feedback again disabled. In
addition, in the presence of the degenerative velocity feedback, the error signal was
overcome earlier by decelerating signals, bringing the current feedback contribution in
even sooner. Figure 6.5 illustrates results with both velocity and current feedbacks in
effect. The response of the joint actuator in this simulation highlights the effectiveness of
the design: high error signal gain with velocity and current compensating feedback
networks.

While these tests results are not for the specific motors used in Aquarobot, they
provide a good set of gain parameters to use as a starting point in the experimental

determination of the gains for those motors.

49




1000

Revs

-1200

4000
RPX
4300 : : : : 40
0 10 20 30 40 50 60
notor tine joant

Figure 6.4a
Joint Actuator Response with Current Feedback Gain of 0.3
and Error Signal Gain of 150. Velocity Feedback Disabled.

] 10 20 30 40 50 60
notor tine joint

Figure 6.4b
Joint Actuator Response with Current Feedback Gain of 0.5
and Error Signal Gain of 150. Velocity Feedback Disabled.

50




1000 +1
Revs Revs
-1200 -1

4000 40

RPN RPX
-4500 : § : -0
0 10 20 30 40 50 60
ROLOr time joint
Figure 6.4¢

Joint Actuator Response with Current Feedback Gain of 1.0
and Error Signal Gain of 150. Velocity Feedback Disabled.

51




13

Revs
-1

40

RPN

4300 : ' : : <0

0 10 20 30 40 50 60
motor tine joant
Figure 6.5a

Joint Actuator Response with Velocity Feedback Gain of 3,
Error Signal Gain of 150, and Current Feedback Gain of 0.5.

Revs

-1

40
RPN
-40
60
motox tins joint
Figure 6.5b

Joint Actuator Response with Velocity Feedback Gain of S,
Error Signal Gain of 150, and Current Feedback Gain of 0.5.

52




1000 +1
Revs Revs
-1300 5 : : : 5 -1

4000 : . : 40

RPX RPX
4390 : : . : : -40

0 10 20 30 40 50 60
motor tine joant

Figure 6.5¢
Joint Actuator Response with Velocity Feedback Gain of 7,
Error Signal Gain of 150, and Current Feedback Gain of 0.5.

] 10 20 0 40 50 60
aotor tine joint

Figure 6.5d
Joint Actuator Response with Velocity Feedback Gain of 10,
Error Signal Gain of 150, and Current Feedback Gain of 0.5.

53




C. AQUAROBOT SPRING AND DAMPER SIMULATION

LISP and C++ versions of the spring and damper Aquarobot model were tested by
using a "droptest” in which the model is dropped from low height. It may be tilted, but
not so much that it does not land on its feet. The LISP version served as the prototype,
and after successful testing, the model was translated into C++.

The LISP simulation ran uncompiled on a Sun Sparc-10 at six to eight frames per
minute and was too slow for comprehension of motion detail. It did, however, allow
experimental determination of spring and damper constants sufficient to support the model
when dropped. To increase the simulation speed, two dynamic update cycles were run
between each display, and the source code was then compiled. After compilation, the
simulation ran at near 30 frames per minute, with 60 dynamic updates of 50ms each, to
achieve a simulation with approximately a 10:1 time dilation. This simulation was fast
enough for an observer to assimilate the dynamic behavior of the model which was
qualitatively satisfactory and considered successful. Some additional fine tuning of
experimentally determined parameters was done prior to translation to C-++.

After translation to C++/Performer, the model was again tested, and a real-time
simulation was achieved on a four processor IRIS 440/RE workstation. Only three
processors were actually utilized, one assigned to each of the following tasks: application,
database pre-draw cull, and database rendering traversal. The application processor
utilization was approximately fifteen percent which indicates that the increased complexity

of adding the joint actuators will not present any difficulty. The cull processor utilization

54




was approximately twenty percent while that of the rendering processor veried from fifty
to seventy percent. (Note: the source code was not compiled and/or linked with
optimizations on.) Typical images obtained can be found in [Goetz, 1994].

Running in the three processor configuration described above, Performer
synchronized the framerate to the fixed 50ms dynamic updates by limiting the framerate to
20Hz. On a single processor IRIS R-4000, where the application, database cull, and
database rendering were forced to run sequentiaily, the highest framerate achieved was

10Hz. This resulted in a 2:1 time dilation (slow down) simulation.

D. SUMMARY

Testing of both simulation models was considered successful. While it is unfortunate
that there was insufficient time to incorporate the joint actuator model into the Aquarobot
model, replacing the springs and dampers, the topic was given some time and effort. This

next step is among the topics addressed in the final chapter: Summary and Conclusions.

55




VIl. SUMMARY AND CONCLUSIONS

A. UTILITY OF LISP FOR EXPERIMENTAL PROGRAMMING

The primary benefit of using LISP as a prototyping language in this thesis was the
immediate testing capability it provided. No test routines were required. Each function
was easily tested by direct calls as it was developed. While compilation capability allowed
a faster simulation, repeated compilations were not required as the routines could called
from the interpreter's command line. Finally, nesting functions allowed larger and larger
integrated blocks of source code to be tested.

One of the benefits of using LISP during prototyping was realized when an apparent
limit cycle appeared if Aquarobot was tilted when dropped. The problem was actually a
lack of rotational damping due to the absence of the omega cross r term in the foot
velocity calculation. Without it, damping ceased shortly after landing because of "zero
translational foot velocity." While the author took a considerable period of time to find
the cause of the problem, with a simple modification to the LISP source code, the

correction was quickly and easily verified.

B. INCORPORATING THE JOINT ACTUATOR MODEL

The next step required for the Aquarobot dynamic simulation model is to replace the

springs and dampers with joint actuators. This was initially assumed to be a simpler task

56

S




than it turned out to be. The difficulty arises from a conflict over control of joint state
variables. In the spring and damper model, the joints only supply state dependent torques
which are then used to dynamically update the robot's body. After the body is updated,
the new states of the joints depend only on the new body position and not on the joint
torques. In the joint actuator model, the joint state depends directly upon the motor
torque. Two possible solutions are proposed to eliminate the conflict.

One possible solution is to extend the massless leg simplification to the motor and
gear-train, making them inertialess. While this seems easiest and will probably have as
little impact as the massless legs, the overall effect may be greater than anticipated due to
the large reduction ratios involved. Recall that motor inertia reflected outside the
reduction gear is multiplied by the square of the reduction ratio. A C++ version of the
joint actuator model is included in Appendix B. This model is a variation of the original
LISP version and provides state dependent torques as output rather than the state itself. It
could be used to implement inertialess joint actuators, and the changes required in the
Aquarobot model would be minor.

Another possible solution is to use the concept of "added mass," an apparent increase
in mass (affecting acceleration) due to the internal inertia of the drive motors. Assuming a
unit acceleration for one of the body's six degrees of freedom, it is possible to calculate the
resulting joint accelerations. If a joint acceleration is known, inertial torque in the joint
can be calculated. The net torque for the joint then is armature torque (determined using

motor applied voltage and speed) minus the inertial torque. Doing this for all six degrees

57




of freedom gives a matrix of added mass which can be inverted to get acceleration for any
given vector of joint motor applied voltages. An “equilibrium torque," torque vector
which results in a zero joint acceleration vector, is also needed and must be calculated

[Koozekanani, 1983].

C. SUMMARY

IRIS Performer has proven its utility as a graphics rendering tool in a real time
simulation. It also provided easy synchronization for fixed duration integration intervals.

A real-time dynamic simulation of Aquarobot was accomplished and is eventually
expected to provide a valuable tool for Aquarobot control software developers. While an
integrated model, with the joint actuators in place, is not yet completed, we are a step
closer, and the task has certainly proven to be feasible. Once the joint actuators are
installed into the Aquarobot model, simple walking simulations, on smooth, flat terrain
may be achieved. Concurrent work on collision detection for uneven terrain will also
further improve the simulation model when incorporated [Goetz, 1994].

Further work could improve on the Performer Aquarobot rendering database to
decrease the rendering time. This is the area where there is the most room for
improvement in cycle time. Finally, other than using the "faster” Performer routines, no
attempt has been made to optimize the source code which was written with ease of

modification in mind. Utilization of compile and link optimizations, and eventually some

58




source code tuning, may also contribute toward achievement of a real-time Aquarobot

simulation on a single processor.

59




APPENDIX A

LOADING AND OPERATING INSTRUCTIONS

To run demo, start LISP Interpreter and call:
(load "joint-loader")

SOURCE CODE FILES

; ""joint-loader"

; load files

(load "math.routines.cl")

(load "time.routines.cl")

(load "diff-counter.class.cl")
(load "amplifier-clipper.class.cl")
(load "shaft.class.cl")

(load "motor.class.cl")

(load "reduction-gear.class.cl")
(load “joint.class.cl")

(load "joint.instance.cl")

(load "window.instance.cl")

; execute tests

(move-joint-mult -.25 4)
(move-joint-mult .25 4)
(move-joint-mult .05 4)
(move-joint-list '(.25 .5-1-513))
(run-joint 15)

60




; "diff-counter.class.cl"

(defclass diff-counter ()
((current-count
‘accessor current-count
‘tnitform 0
‘type  float )))

(defmethod diff-signal ((dc diff-counter) plus-input minus-input)
(setf (current-count dc)
(+ (current-count dc) plus-input (- minus-input))))

; "amplifier-clipper.class.cl"

(defclass amplifier-clipper ()
((amplification-factor
:initarg :amplification-factor
:accessor amplification-factor
:initform 1
type float)
(max-value
:initarg :max-value
:accessor max-value
:initform 1
‘type  float)
(min-value
‘initarg :min-value
:accessor min-value
:initform -1
‘type  float)))
(defmethod amplify ((amp amplifier-clipper) input-value)
(max (min (* (amplification-factor amp) input-value)

(max-value amp))
(min-value amp)))

61




(defclass motor-driver (amplifier-clipper)
((displacement-gain
‘initarg :displacement-gain
:accessor displacement-gain
:initform 1
‘type  float)
(velocity-fb-gain
;initarg :velocity-fb-gain
-accessor velocity-fb-gain
:imtform 0
‘type float)
(current-fb-gain
‘initarg :current-fb-gain
.accessor current-fb-gain

:initform 0
:type  float)))
(defmethod drive((driver motor-driver) displacement-input
velocity-input
current-input)

(amplify driver (+ (* displacement-input (displacement-gain driver))
(* (- velocity-input) (velocity-fb-gain driver))
(* current-input  (current-fb-gain driver)))))

62




; "shaft.class.cl"

(defclass shaft ()
((angular-position ; radians
.accessor theta
:initform 0
type float)
(angular-velocity ; rad/sec
:accessor omega
:initform 0
type  float)
(inertia . Kg-(meters-square)
‘initarg 1
-accessor 1
:initform 0
type  float)
(coulomb-friction-constant ; Newton-meters (Fc >= 0)
:initarg :Fc
:accessor Fc
:initform 0
‘type  float)
(viscous-friction-constant ; Newton-meters/(rad/sec) (Fv >= 0)
‘initarg Fv
.accessor Fv
‘initform 0
type  float)
(time-stamp , seconds
:accessor time-stamp
.initform  (System-time))))

(defmethod set-shaft ((s shaft) theta omega)
(setf (omega s) omega)
(setf (theta s) theta))

(defmethod reset-shaft ((s shaft))
(set-shaft s 0 0)
(setf (time-stamp s) (system-time)))

(defmethod connect ((source shaft) (load shaft))

(setf (time-stamp load) (time-stamp source))
(set-shaft load (theta source) (omega source)))

63




; "motor.class.cl"

(defclass motor (shaft)
((torque-constant  ; Newton-meters/ampere
;initarg Kt
.accessor Kt
‘type float)
(back-emf-constant ;. Volts/(rad/sec)
:initarg Kb
:accessor Kb
type float)
(armature-resistance ; ohms (must be > 0)
:initarg R
:accessor R
indtform 1
type  float)
(max-brush-drop ; volts
:initarg :max-brush-drop
:accessor max-brush-drop
:initform 2.0
‘type  float)
(half-brush-drop-source-value ; volts
:initarg :half-BD-value
:accessor half-BD-value
:initform 3.0
‘type float)
(armature-current ; amperes (saved for feedback purposes)
:accessor armature-current
:initform 0
‘type  float)))

(defmethod applied-voltage ((m motor) source-voltage)
(if (zerop source-voltage) 0
(* source-voltage
-1
(* (/ (max-brush-drop m) (abs source-voitage))
-1
(exp (* (log 0.5)
(/ (abs source-voltage)
(half-BD-value m))))))))))

(defmethod developed-torque ((m motor) source-voltage)
(setf (armature-current m)

(/ (- (applied-voltage m source-voitage) (* (Kb m) (omega m))) (R m)))

(* (Kt m) (armature-current m)))




(defmethod omega-dot ((m motor) source-voltage load-inertia load-torque
load-coulomb-friction-constant
load-viscous-friction-constant)

(let* ((torque (+ (developed-torque m source-voltage) load-torque))
(Fc-total (+ (Fc m) load-coulomb-friction-constant))
(friction-loss

(if (zerop (omega m))
(if (zerop torque)
0
(if (> Fc-total (abs torque))
torque
(* Fc-total (sgn torque))))
(+ (* (+ (Fv m) load-viscous-friction-constant) (omega m))
(* Fc-total (sgn (omega m)))))))
(/ (- torque friction-loss) (+ (I m) load-inertia))))

(defmethod run-motor ((m motor) source-voltage load-inertia load-torque
load-coulomb-friction-constant
load-viscous-friction-constant)

(let ((dt (delta-time (time-stamp m)))

(omega-dot (omega-dot m source-voltage load-inertia load-torque
load-coulomb-friction-constant
load-viscous-friction-constant)))

(setf (theta m) (+ (theta m) (* (omega m) dt)))
(setf (omega m) (+ (omega m) (* omega-dot dt)))
(setf (time-stamp m) (+ (time-stamp m) dt))))

65




; "reduction-gear.class.cl"

(defclass reduction-gear ()
((gear-ratio
:initarg :gear-ratio
:accessor gear-ratio

:initform |
‘type  float)
(in-shaft

‘initarg :in-shaft

:accessor in-shaft

:initform (make-instance ‘shaft))
(out-shaft

‘initarg :out-shaft

:accessor out-shaft

:initform (make-instance 'shaft))))

(defmethod rg-reduce ((rg reduction-gear) value)
(/ value (gear-ratio rg)))

(defmethod rg-reflect ((rg reduction-gear) value)
(* value (gear-ratio rg)))

(defmethod rg-inertia-forward ((rg reduction-gear) inertia-value)
(* inertia-value (sqr (gear-ratio rg))))

(defmethod rg-inertia-backward ((rg reduction-gear) inertia-value)
(/ inertia-value (sqr (gear-ratio rg))))

(defmethod rg-connect ((rg reduction-gear))
(set-shaft (out-shaft rg)
(rg-reduce rg (theta (in-shaft rg)))
(rg-reduce rg (omega (in-shaft rg)))))

66




; "joint.class.cl"

(defclass joint ()

((pulse-counter

:initarg :pc

:accessor pc

-initform (make-instance 'diff-counter))
(dniver

‘initarg :driver

:accessor driver

‘initform (make-instance 'motor-driver))
(prime-mover

‘initarg  :prime-mover

.:accessor prime-mover

:initform (make-instance 'motor))
(red-gear

‘initarg :red-gear

:accessor red-gear

:initform (make-instance ‘reduction-gear))
(load-shaft

:initarg :load-shaft

:accessor load-shaft

:initform (make-instance ‘shaft))))

(defmethod motor-load-inertia ((j joint))
(+ (1 (in-shaft (red-gear j)))
(rg-inertia-backward (red-gear j) (+ (I (out-shaft (red-gear j)))
(I (load-shatt j))))))

(defmethod motor-load-coulomb-friction-constant ((j joint))
(+ (Fc (in-shaft (red-gear j)))
(rg-reduce (red-gear j) (+ (Fc (out-shaft (red-gear j)))
(Fc (load-shatt j))))))

(defmethod motor-load-viscous-friction-constant ((j joint))
(+ (Fv (in-shaft (red-gear j)))
(rg-reduce (red-gear j) (+ (Fv (out-shaft (red-gear j)))
(Fv (load-shaft j))))))

(defmethod feedback ((j joint))
(- (theta (out-shaft (red-gear j))) (theta (load-shaft j))))

67




(defmethod increment-joint ((j joint) order)
(run-motor (prime-mover j)
(drive (driver j) (diff-signal (pc j) order (feedback j))
(* .003 (RAD/SECtoRPM (omega (prime-mover j))))
(armature-current (prime-mover j)))
(motor-load-inertia j)
0 ; load not producing any torque
(motor-load-coulomb-friction-constant j)
(motor-load-viscous-friction-constant j))
(connect (out-shaft (red-gear j)) (load-shaft j))
(connect (prime-mover j) (in-shaft (red-gear j)))
(rg-connect (red-gear j)))

(defmethod step-input-to-joint ((j joint) step)
(diff-signal (pc j) (REVIoRAD step) 0))

(defmethod reset-joint ((j joint))
(setf (current-count (pc j)) 0)
(reset-shaft (load-shaft j))
(reset-shaft (out-shaft (red-gear j)))
(reset-shaft (in-shaft (red-gear j)))
(reset-shaft (prime-mover j)))

68




; "joint.instance.cl"

(setf joint] (make-instance ‘joint

:driver  (make-instance 'motor-driver
-amplification-factor 1
:max-value 75 . volts
.min-value -75 . volts
:displacement-gain 150
:velocity-fo-gain  §
:current-fb-gain .5)

:prime-mover (make-instance 'motor

1 .0005 : Kg-m*m

:Fe 0075 ; N-m

‘Fv .00004 ; N-m/(rad/sec)

Kt .005 . N-m/ampere

Kb .255 . Volts/(rad/sec)

‘R I );ohms
:red-gear  (make-instance ‘reduction-gear

:gear-ratio 200)

:load-shaft (make-instance 'shaft
|1 5 : Kg-m*m
:Fc A ; N-m
‘Fv .02 ))) : N-m/(rad/sec)

(defun move-joint (delta-theta)
(setf (time-stamp (prime-mover jointl)) (system-time))
.input delta-theta a little at a time
(if (< delta-theta 0)
‘negative delta-theta (use -0.015 steps)
(do* ((input-index 0 (+ input-index 0.015)))
((< (+ delta-theta input-index) 0.015)
(step-input-to-joint jointl (+ delta-theta input-index)))
(step-input-to-joint jointl -0.015)
(incremeant-joint jointl 0)
(display-state *display* jointl (time-stamp (prime-mover joint1))))
;positive delta-theta (use 0.015 steps)
(do* ((input-index 0 (+ input-index 0.015)))
((< (- delta-theta input-index) 0.015)
(step-input-to-joint jointl (- delta-theta input-index)))
(step-input-to-joint jointl 0.015)
(increment-joint joint1 0)
(display-state *display* jointl (time-stamp (prime-mover joint1)))))
;delta-theta entry into PC is complete
;cycle until ordered position is reached
(do* ((index1))
((and (< (abs (current-count (pc joint1))) 0.05)
(< (abs (omega (prime-mover joint1))) 10)) (pprint 'stop))
(increment-joint jointl Q)
(displa; -state *display* joint! (time-stamp (prime-mover joint1)))))

69




(defun move-joint-mult (deita-theta muit)
(clear-and-reset)
(dotimes (i mult) (move-joint delta-theta)))

(defun run-joint (speed)
(clear-and-reset)
(do* ((dtime (delta-time (time-stamp (prime-mover joint1)))
(defta-time (time-stamp (prime-mover joint1)))))
((< (abs (- (RPMtoRAD/SEC speed) (omega (load-shaft joint1))))
0.1) (pprint 'stop))

(increment-joint jointl (* dtime (RPMtoRAD/SEC speed)))
(display-state *display* jointl (time-stamp (prime-mover jointl)))))

(defun move-joint-list (delta-theta-list)
(clear-and-reset)
(if (equalp nil delta-theta-list) nil
(move-joint-list-2 delta-theta-list)))

(defun move-joint-list-2 (delta-theta-list)
(move-joint (car delta-theta-list))
(if (equalp nil (cdr delta-theta-list)) nil
(move-joint-list-2 (cdr delta-theta-list))))

(defun clear-and-reset ()
(update-minutes *display* 0)
(reset-system-time)
(reset-joint joint1))

; "window.instance.cl"

, dimensions for x-y coord system (window size auto adjusts)
(setf *x-origin* 50)

(setf *x-length* 500)

(setf *x-tics* 6)

(setf *y-origin*®* 50)

(sedf *y-length* 340)

(sedf *y-tics®*  8)

(setf *max-speed* 4000) ; (max rpm's of motor scale)
(setf *max-revs* 1000) ; (max rev's of motor scale)

(require :xcw)

(use-package :cw)
(cw:initialize-common-windows)

70




(defmethod draw-grid ((window window-stream))

(draw-line-xy window *x-origin® ;top border
(+ *y-origin® *v-length®)
(+ *x-origin® *x-length®)
(+ *y-origin® *y-length®))
(draw-line-xy window *x-origin®* .middle x axis

(+ *v-origin® (/ *y-length® 2))
(+ *x-origin* *x-length®)
(+ *v-origin®* (/ *y-length* 2)))
(draw-line-xy window *x-origin* :bottom border
*y-ongin*
(+ *x-origin* *x-length*)
*y-origin*)
(draw-line-xy window *x-origin* :left border
*v-origin®
*x-origin*
(+ *v-origin* *v-length*))
(draw-line-xy window (+ *x-origin* *x-length*) ;right border
*y-origin*
(+ *x-origin* *x-length*)
(+ *v-origin* *y-length*))
(dotimes (i *x-tics*) . mark x axis
(draw-line-xy window (+ *x-origin*
(/ (* i *x-length*) *x-tics*))
*y-origin*
(+ *x-origin*
(/ (* i *x-length*) *x-tics*))
(+ *y-origin* *y-length®)
:dashing ‘(1 3)))
(dotimes (i *y-tics*) ; mark y axis
(draw-line-xy window *x-origin*
(+ *y-origin*®
(/ (* i *y-length*) *y-tics*))
(+ *x-origin* *x-length*)
(+ *y-origin®*
(/ (* i *y-length®) *y-tics*))
:dashing ‘(1 3)))
(label-graph window))

71




(defmethod label-graph ((w window-stream))
; theta labels
(setf (window-stream-y-position w) (+ *y-origin® *y-length* -4))
(setf (window-stream-x-position w) (+ *x-origin®* -35))
(setf (window-stream-foreground-color w) red)
(format w "~5" *max-revs®)
(setf (window-stream-x-position w) (+ *x-origin® *x-length* 5))
(setf (window-stream-foreground-color w) blue)
(format w "+1")
(setf (window-stream-y-position w) (+ *y-origin® (* *y-length* 0.75) -3))
(setf (window-stream-x-position w) (+ *x-origin® -40))
(setf (window-stream-foreground-color w) black)
(format w "Revs")
(setf (window-stream-x-position w) (+ *x-origin* *x-length* 5))
(format w "Revs")
(setf (window-stream-y-position w) (+ *y-origin®* (* *y-length® 0.5) 3))
(setf (window-stream-x-position w) (+ *x-origin®* -43))
(setf (window-stream-foreground-color w) red)
(format w "~s" (- *max-revs*))
(setf (window-stream-x-position w) (+ *x-origin* *x-length* 5))
(setf (window-stream-foreground-color w) blue)
(format w "-1")
, omega labels
(setf (window-stream-y-position w) (+ *y-origin* (* *y-length® 0.5) -10))
(setf (window-stream-x-position w) (+ *x-origin®* -35))
(setf (window-stream-foreground-color w) red)
(format w "~s" *max-speed®)
(setf (window-stream-x-position w) (+ *x-origin* *x-length* 10))
(setf (windo v-stream-foreground-color w) blue)
(format w "~s" (/ *max-speed* 100))
(setf (window-stream-y-position w) (+ *y-origin* (* *y-length* 0.25) -3))
(setf (window-stream-x-position w) (+ *x-origin* -36))
(setf (window-stream-foreground-color w) black)
(format w "RPM")
(setf (window-stream-x-position w) (+ *x-origin* *x-length* 5))
(format w "RPM")
(setf (window-stream-y-position w) (+ *y-origin® 3))
(setf (window-stream-x-position w) (+ *x-origin* -43))
(setf (window-stream-foreground-color w) red)
(format w "~s" (- *max-speed®))
(setf (window-stream-x-position w) (+ *x-origin* *x-length* 5))
(setf (window-stream-foreground-color w) blue)
(format w "~s" (- (/ *max-speed* 100)))
; time labels
(setf (window-stream-foreground-color w) black)
(setf (window-stream-y-position w) (+ *y-origin* -15))
(setf (window-stream-x-position w) (+ *x-origin* -3))
(format w "0")
(setf (window-stream-x-position w) (+ *x-origin* (/ *x-length® 6) -7))
(format w "10")
(setf (window-stream-x-position w) (+ *x-origin* (/ *x-length* 3) -7))

72




(format w “20")
(setf (window-stream-x-position w) (+ *x-origin* (/ *x-length® 2) -7))
(format w "30")

(setf (window-stream-x-position w) (+ *x-origin* (* *x-length® (/ 2 3)) -7))

(format w "40")

(setf (window-stream-x-position w) (+ *x-origin* (* *x-length® (/ 5 6)) -7))

(format w "50")

(setf (window-stream-x-position w) (+ *x-origin* *x-length* -7))
(format w "60")

(setf (window-stream-y-position w) (+ *y-origin* -30))

(setf (window-stream-x-position w) (+ *x-origin* -35))

(setf (window-stream-foreground-color w) red)

(format w "motor")

(setf (window-stream-x-position w) (+ *x-origin* *x-length*))

(setf (window-stream-foreground-color w) blue)

(format w "joint")

(setf (window-stream-foreground-color w) black)

(setf (window-stream-x-position w) (+ *x-origin®* (* *x-length* .5) -13))
(format w "time"))

(defmethod draw-motor-position ((window window-stream) revolutions)
(draw-point-xy window
*x-time-value*
(+ *y-origin® (* 0.75 *y-length*)
(* 0.25 *y-length*
(cond ((zerop revolutions) 0)
((< revolutions 0)
(/ (- (mod revolutions *max-revs*)
*max-revs®)
*max-revs*))
(t (/ (mod revolutions *max-revs*)
*max-revs*)))))
:color red))

(defmethod draw-load-position ((window window-stream) revolutions)
(draw-point-xy window
*x-time-value*
(+ *y-origin* (* 0.75 *y-length*)
(* 0.25 *y-length*
(cond ((zerop revolutions) 0)
((< revolutions 0)
(- (mod revolutions 1.0) 1.0))

(t (mod revolutions 1.0)))))

:color blue))

73




(defmethod draw-motor-speed ((window window-stream) speed)
(draw-point-xy window
*x-time-value*
(+ *y-origin® (* 0.25 *y-length®)
(* 025 *y-length® (/ speed *max-speed®)))
:color red))

(defmethod draw-load-speed ((window window-stream) speed)
(draw-point-xy window
*x-time-value*
(+ *v-origin®* (* 0.25 *y-length*)
(* 0.25 *y-length* 100 (/ speed *max-speed*)))

:color blue))

(defmethod update -minutes ((window window-stream) minutes)
(clear window)
(draw-grid window)
(setf *minutes® minutes))

(defmethod set-x-coord ((window window-stream) seconds)
(if (> (truncate (/ seconds 60)) *minutes*)
(update-minutes window (truncate (/ seconds 60))))
(setf *x-time-value* (round (+ *x-origin*
(* (/ (mod seconds 60) 60)
*x-length*)))))

(defmethod display-state ((window window-stream) (j joint) current-time)
(set-x-coord window current-time)
(draw-motor-speed window (RAD/SECtoRPM (omega (prime-mover j))))
(draw-load-speed window (RAD/SECtoRPM (omega (load-shaft j))))
(draw-motor-position window (RADtoREV (theta (prime-mover j))))
(draw-load-position window (RADtoREYV (theta (load-shaft j)))))

(setf *display*

(make-window-stream
deft 1
:bottom 1
:width (+ *x-length* (* 2 *x-origin*))
:height (+ *y-length® (* 2 *y-origin*))
‘background-color white
:foreground-color black
.inner-region-left
:inner-region-bottom
:inner-region-width
:inner-region-height
‘title "joint actuator simulation”
:activate-p t))

(setf *minutes* 0)
(draw-grid *display*)

74




; "'time.routines.cl"
(defun reset-system-time ()
(setf *RefTime* (get-internal-real-time)))

(defun system-time ()
(/ (- (get-internal-real-time) *RefTime*) 1000.0))

(defun delta-time (time)
(- (system-time) time))

(reset-system-time)

; "math.routines.cl"

(defun sqr (x) (* x x))

(defun sgn (x)
(if (<x0) -1 1))

(defun RPMtoRAD/SEC (rpm)
(* rpm (/ pi 30)) ; * 2pi/60

(defun RAD/SECtoRPM (rad/sec)
(* rad/sec (/ 30 pi)))

(defun REVtoRAD (rev)
(* 2 pirev))

(defun RADtoREV (rad)
(/ rad (* 2 pi)))

75




APPENDIX B

SOURCE CODE FILES (untested)

// file "motor.h"

#ifndef _ MOTOR_H
#define _ MOTOR_H

#include <math.h>
#include <stdio.h>

class motor { // inertia-less motor class
private:
float Fc; // Coulomb friction constant
float Fv; // Viscous friction constant
float Kt. // Torque constant
float Kb; // Back EMF constant
float Ra; // Armature resistance
float BDm; // Rated brush brop value
float BDc; // Ln(1/2)/BDh
// BDh = Voltage applied such that brush drop = 1/2 BDm
// subtracts brush drop from source voltage

float AppliedVoltage(float);
public:

float [a; // Armature current (available for current feedback)

motor() {}

// called after constructor for initialization

void nit_motor(float TorqueConstant, // N*m/Ampere
float BackEMFConstant, {/ Volts/RPM
float NoLoadCurrent, /l Amperes
float NoLoadSpeed = 1000.0, // RPM

float StartingCurrent = 0.0, // Amperes
float ArmatureResistance = 1.0, // Ohms

float RatedBrushDrop = 2.0, // Volts
float HalfBrushDrop = 3.0);// Volts
float DevelopedTorque(float, float);

5

76




// provide initialization for specific motor types in Aquarobot
void makeRA20(motor& m);
void makeRH25(motor& m),

#endif
/* EOF */

/! file "'motor.c"

#include "motor.h"

void motor::init_motor(float TorqueConstant,
float BackEMFConstant.
float NoLoadCurrent,
float NoLoadSpeed,
float StartingCurrent,
float ArmatureResistance,
float RatedBrushDrop,
float HalfBrushDrop)

[a=0.0;
Fc = TorqueConstant * StartingCurrent;
Fv = (TorqueConstant * NoLoadCurrent - Fc) / NoLoadSpeed,

Kt = TorqueConstant;
Kb = BackEMFConstant;
Ra = ArmatureResistance,

BDm = RatedBrushDrop;

if (BDm < 0.0) {
printf("error: rated brush drop must be >= 0 Volts...\n"),
printf(*default brush drop value (0 Volts) used...\n");
BDm =0.0;

BDc = 1.0;
}
else if (BDm = 0.0) {
BDc = 1.0;
}
else if (HalfBrushDrop < BDm/2) {

printf("error: half brush drop must be >= 1/2 rated brush drop...\n"),
printf("defaulted to 1/2 RatedBrushDrop...\n"),
BDc = log(0.5) * 2.0 / BDm;
}
else {
BDc = log(0.5) / HalfBrushDrop;
3

}

77




float motor::DevelopedTorque(float SourceVoltage, float omega)
{

float Torque;

float FrictionLoss;

// determine armature current and save
Ia = (AppliedVoltage(Source Voltage) - (Kb * omega)) / Ra;

// determine motor torque
Torque = Kt * Ia:

// calculate loss

// loss opposes omega (viscous and coulomb components)

if  (omega > 0.0) FrictionLoss = omega * Fv + F¢;

else if (omega < 0.0) FrictionLoss = omega * Fv - Fc;

/1 if (omega == 0) : loss opposes Torque (no viscous component)

else if (Torque > F¢) FrictionLoss = Fc,

else if (Torque < -Fc) FrictionLoss = - Fc.

/1 if ((omega == 0) && (|Torque| < Fc)) : Torque insufficient to overcome F¢
else FrictionLoss = MotorTorque;

return (Torque - FrictionLoss);
}

78




/* Private Function */

float motor:: AppliedVoltage(float Vs)
{
{/ return Vs(1 - (BDnv/|Vs|)*(1 - exp(In(1/2)*|Vs/BDh)))
if (Vs ==0.0) {
return 0.0;
H
else if (Vs < 0.0) { // negative Vs
return (Vs + (BDm * (1 - exp(-BDc*Vs))));
H
else § /1 positive Vs
return (Vs - (BDm * (1 - exp( BDc*Vs)))):
H
H

/* specific Aquarobot motor type initializations */

/! Aquarobot motor parameters for init_motor

/1 read from spec sheet provided, includes harmonic gear

#define RA20_PARAMETERS 32.0, 3.4, 0.78, 25.0, 0.32, 3.2, 2.0, 3.0
#define RH25_PARAMETERS 33.0, 3.5, 0.89, 25.0,0.48, 1.1, 2.0, 3.0

void makeRA . J(motor& m)

{
m.init_motor(RA20_PARAMETERS),

}

void makeRH25(motor& m)

{
m.init_motor(RH25_PARAMETERS),

}

/* EOF */

79




/l file " amplifier_clipper.h"

#ifndef _ AMP_CLIP_H__
#define _ AMP_CLIP H__

class amplifier_clipper {

private:
float gain;
float max_value;
float min_value;

public:
amplifier_clipper() {}
// call after constructor for initialization
void init_amplifier_clipper(float g, float max_yv, float min_y);

float amplify(float input_value);
b

class aqua_driver : private amplifier_clipper {
private:

float theta_gain;

float omega_gain;

float current_gain;

public:
aqua_driver() {}
// call after constructor for initialization
init_aqua_driver(float displacement_gain,
float velocity_gain,
float current_feedback_gain),
float drive(float theta_error, float omega, float current);
|8
// provide initialization for specific joint on aqualeg
void makeJldriver(aqua_driver& d);
void makeJ2driver(aqua_driver& d);
void makeJ3driver(aqua_driver& d);

#endif

80




// file " amplifier_clipper.c"

#inctude "amplifier_clipper.h”

void
init_amplifier_clipper(float g, float max_v. float min_v)
{

gain =g

max_value = max_v.

min_value = min_v,

}

float
amplifier_clipper::amplify(float input_value)
{

float output_value = gain * input_value;

if (min_value > output_value)
return min_value:
elsif (max_value < output_value)
return max_value;
else
return output_value;
}

aqua_driver::init_aqua_driver(float displacement_gain,
float velocity_gain,
float current_feedback_gain)
{
// set final gain to 1 and clip at +/- 75 VDC
init_amplifier_clipper(1.0, 75.0, -75.0);

theta_gain = displacement_gain;

omega_gain = velocity_gain;
current_gain = current_feedback_gain;
}

float

aqua_driver::drive(float theta_error, float omega, float current)

{
return (amplify( theta_gain * theta_error
-omega_gain * omega
+ current_gain * current));

81




/! driver specs (theta, omega, current)

#define SHOULDER_DRIVER_GAINS 150.0. 5.0.0.5
#define KNEE1_DRIVER_GAINS 150.0. 5.0, 0.5
#define KNEE2_DRIVER_GAINS 150.0,5.0,0.5

void makeJ 1driver(aqua_driver& d)

{
d.init_aqua_driver(SHOULDER_DRIVER_GAINS);

}

void makeJ2driver(aqua_driver& d);
{

d.init_aqua_driver(KNEE!_DRIVER _GAINS):
}

void makeJ3driver(aqua_driver& d);

{
d.init_aqua_driver(KNEE2_DRIVER_GAINS);

}

// file "' joint_actuator.h"

#ifndef _JA H__
#define __JA_H__

#include <
#include "

class aqua_joint_actuator {
protected:
float ordered_theta;
amplifier_clipper da_converter;
amplifier_clipper fv_converter,
aqua_driver d;
motor m;

public:

aqua_joint_actuator() {}

void reset(float theta);

void input_order(float delta_theta);
float torque(float current_theta, float current_omega),
b

class shoulder_actuator : public aqua_joint_actuator {
public:

shoulder_actuator(float theta),
b

82




class kneel_actuator : public aqua_joint_actuator {
public:
kneel_actuator(float theta),

float torque(float current_theta, float current_omega):
b

class knee2_actuator : public aqua_joint_actuator {
public:

knee2_actuator(float theta);
float torque(float current_theta, float current_omega).
|

#endif

// file " joint_actuator.c"

#include "joint_actuator.h"

// aqua_joint_actuator (parent class) functions

void
aqua_joint_actuator::reset(float theta);
{

ordered_theta = theta;

m.Ja=0.0:
}
void
aqua_joint_actuator::input_order(float delta_theta);
{

ordered_theta += delta_theta;
}
float

aqua_joint_actuator::torque(float current_theta, float current_omega);

{
float source_voltage;
source_voitage = d->drive

(da_converter->amplify(current_theta - ordered_theta),

fv_converter->amplify(current_omega),
m.Ia);

return (m->developed_torque(source_voltage));
}

83




1/ derrived class specs

// output 10 volts for 6144 pulse count
#define DA_CONVERTER_RATIO 10.0/6144.0

// 100 pulses drive the motor 1 revolution
#define PULSES_PER_REV 100.0

/1 output 3 voits per 1000 RPMs
#define FV_CONVERTER_RATIO 3.0/1000.0

// harmonic gear oily for shoulder
#define SHOULDER_REDUCTION 161.0

// harmonic and bevel gears for knees
#define KNEE!_REDUCTION 160.0*3.0
#define KNEE2_REDUCTION 160.0*2.0

// derrived class functions

shoulder_actuator::shoulder_actuator(float theta)
{
ordered_theta = theta;
da_converter->init_amplifier_clipper
(SHOULDER_REDUCTION * PULSES_PER_REV * DA_CONVERTER_RATIO, 10.0, -10.0),
fv_converter->init_amplifier_clipper
(SHOULDER_REDUCTION * FV_CONVERTER_RATIO, 10.0, -10.0);
makeJ ldriver(&d);
makeRA20(&m);
}

kneel_actuator::kneel_actuator(float theta)
{
ordered_theta = theta;
da_converter->init_amplifier_clipper
(KNEE1_REDUCTION * PULSES_PER_REV * DA_CONVERTER_RATIO, 10.0, -10.0);
fv_converter->init_amplifier_clipper
(KNEE1_REDUCTION * FV_CONVERTER_RATIO, 10.0, -10.0);
makeJ2driver(&d);
makeRH25(&m),
}

float
kneel_actuator::torque(fioat current_theta, float current_omega)

return (3.0 * aqua_joint_actuator::torque(current_theta, current_omega/3.0)),
}

84




knee2_actuator::knee2_actuator(float theta)
{
ordered_theta = theta;
da_converter->init_amplifier_clipper
(KNEE2_REDUCTION * PULSES_PER_REV * DA_CONVERTER_RATIO. 10.0, -10.0),
fv_converter->init_amplifier_clipper
(KNEE2_REDUCTION * FV_CONVERTER_RATIO. 10.0, -10.0);
makeJ3driver(&d).
makeRH25(&m),
H

float
knee2_actuator::torque(float current_theta, float current_omega)
)
1
return (2.0 * aqua_joint_actuator::torque(current_theta, current_omega/2.0)).

}

85




APPENDIX C

LOADING AND OPERATING INSTRUCTIONS

To run demo. start LISP Interpreter and cail:

(load "aqua-loader")
This file loads the source code in the correct sequence and makes calls to run the demo.
Additional runs may be observed by calling:

(drop-aqua)

SOURCE CODE FILES

; "aqua-loader”

. LOADER FOR AQUA-ROBOT
. define loader/compiler functions
(load *load-files.cl”)
. aqua-robot loader/compiler functions
(load-aqua)
(load-compiled-aqua)
; (compile-and-load-aqua)
(defun drop-aqua ()
(restart-aqua)
(do O (nil)
(dotimes (i *loops*) (update-aquarobot aqua-1))
(new-picture)))

(aqua-picture)
(drop-aqua)

86




; "load-files.cl"

(defun load-aqua ()
. general purpose files
(load "misc.cl")
(load "vector.cl")
(load "matrix.cl")
(load "kinematics.cl")
(load "rigid-body.cl")
(load "strobe-camera.cl")
(load "link.cl")
. aqua-robot specific files
(load "aqua-data.cl")
(load "aqua-link.cl")
(load "aqua.cl")
(load "aqua-leg.cl")
(load "aqua-inv-kinematics.cl")
(load "aqua-jacobian.cl")
(load "aqua-update-forces-and-torques.cl™))

(defun load-compiled-aqua ()
(load "misc.fasl")
(load "vector.fasl")
(load "matrix.fasl")
(load "kinematics.fasl")
(load "rigid-body.fasl")
(load "strobe-camera.fasl")
(load "link.fasl")
(load "aqua-data.fasl")
(load "aqua-link.fasi")
(load "aqua.fasl")
(load "aqua-leg.fasl™)
(load "aqua-inv-kinematics.fasl")
(load "aqua-jacobian.fasl")
(load "aqua-update-forces-and-torques.fasl"))

87




(defun compile-and-ioad-aqua ()
; (compile-file "misc.cl")
(load "misc.fasl")
. (compile-file "vector.cl)
(load "vector.fasl")
. (compile-file "matrix.cl")
(load "matrix.fasl")
(compile-file "kinematics.cl")
(load "kinematics.fasl")
(compile-file "rigid-body.cl")
(load "rigid-body fasl")
(compile-file "strobe-camera.cl”)
(load "strobe-camera.fasl")
(compile-file "link.cl")
(load "link fasl")
(compile-file "aqua-data.ci”)
(load "aqua-data.fasl")
(compile-file "aqua-link.ci")
(load "aqua-link.fasl")
(compile-file "aqua.cl”)
(load "aqua.fasl")
(compile-file "aqua-leg.cl")
(load "aqua-leg.fasl")
(compile-file "aqua-inv-kinematics.cl™)
(load "aqua-inv-kinematics.fasl")
(compile-file "aqua-jacobian.cl")
(load "aqua-jacobian.fasl")
(compile-file "aqua-update-forces-and-torques.cl”)
(load "aqua-update-forces-and-torques.fasl"))

88




: "misc.cl”

(defun atan2 (dx dy)
(cond ((zerop dx) (cond ((zerop dy) 0.0)
(<dy0) (-(*05pi))
1\ (*0.5pi)))
((<dx 0) (cond ((<dy0) (- (atan (/dy dx)) pi))
{t (+ (atan (/ dy dx)) pD))))
( (atan (/ dy dx)»)))

. returns angle in degrees.
(defun atan2d (dx dyv) (rad-to-deg (atan2 dx dy)))

(defun sqr (X) (* X X))

(defconstant rad-to-deg-multiplier (/ 180 pi))
(defun rad-to-deg (rad) (* rad rad-to-deg-multiplier))

(defconstant deg-to-rad-multiplier {/ pi 180))
(defun deg-to-rad (deg) (* deg deg-to-rad-multiplier))

:Returns first n elements of list.
(defun ncar (n list)
(cond ((zerop n) nil)
(t (cons (car list) (ncar (1- n) (cdr list))))))

89




; "vector.cl"

. A vector is a list of numerical atoms.
(defun vector-add (vector-1 vector-2) (mapcar '+ vector-1 vector-2))
{defun vector-subtract (vector-1 vector-2) (mapcar '- vector-1 vector-2))

(defun scalar-multiply (scalar vector)
(cond ((null vector) nil)
(t (cons (* scalar (car vector))
(scalar-multiply scalar (cdr vector))))))

(defun dot-product (x )
(apply '+ (mapcar '* xy))) ;A matrix is a list of row vectors.

(defun cross-product (x y) ;x and y are 3D vectors.
(list (- (* (cadr x) (caddr y)) (* (caddr x) (cadr y)))
(- (* (caddr x) (cary)) (*(carx) (caddry)))
(- (* (carx) (cadry)) (* (cadrx) (cary)))))

(defun vector-length (vector) (sqrt (dot-product vector vector)))

(defun distance-between (X y) ;points x and y represented by vectors.
(vector-length (vector-subtract x y)))

: returns a vector (0*(one-position - 1) 1 0*(length-one-position))
(defun unit-vector (one-position length)
(do ((n length (1- n))
(vector nil (cons (cond ((= one-position n) 1) (t 0)) vector)))
((zerop n) vector)))

(defun append1 (L) (append L '(1)))

90




s "matrix.cl"

, requires VECTOR.CL
; requires MISC.CL "ncar"

. A matrix is a list of row vectors.

(defun transpose (A)
(cond ((null (cdr A)) (mapcar 'list (car A)))
(t (mapcar ‘cons (car A) (transpose (cdr A))))))

(defun post-multiply (M x) :M is a square matrix. x is a conformable vector.
(cond ((null (cdr M)) (list (dot-product (car M) x)))
(t (cons (dot-product (car M) x) (post-multiply (cdr M) x)))))

(defun pre-multiply (vector matrix)
(post-multiply (transpose matrix) vector))

(defun matrix-multiply (A B) ;A and B are conformable matrices.
(cond ((null (cdr A)) (list (pre-multiply (car A) B)))
(t (cons (pre-multiply (car A) B) (matrix-multiply (cdr A) B)))))
(defun chain-multiply (L) ;L is a list of names of conformable matrices.
(cond ((null (cddr L)) (matrix-multiply (eval (car L)) (eval (cadr L))))
(t (matrix-multiply (eval (car L)) (chain-multiply (cdr L))))))
(defun cycle-left (matrix) (mapcar 'row-cycle-left matrix))
(defun row-cycle-_left (row) (append (cdr row) (list (car row))))
(defun cycle-up (matrix) (append (cdr matrix) (list (car matrix))))
(defun unit-matrix (size)
(do ((row-number size (1- row-number))
(I nil (cons (unit-vector row-number size) I)))
((zerop row-number) I)))
(defun concat-matrix (A B) ;A and B are matrices with equal number of rows.
(cond ((null A) B)
(t (cons (append (car A) (car B)) (concat-matrix (cdr A) (cdr B))))))

(defun augment (matrix)
(concat-matrix matrix (unit-matrix (length matrix))))

(defun normalize-row (row) (scalar-multiply (/ 1.0 (car row)) row))

91




(defun solve-first-column (matrix) :Reduces first column to (10 ... 0).
(do* ((L1 matrix (cdr L1))
(L2 (normalize-row (car matrix)))
(L3 (list L2) (cons (vector-add (car L1)
(scalar-multiply (- (caar L1)) L2)) L3)))
((null (cdr L1)) (reverse L3))))

(defun square-car (M) :Returns square matrix extracted from front of matrix M.

(do ((m (length M))
(L1 M (cdrL1))
(L2 nil (cons (ncar m (car L1)) L2)))
((null L1) (reverse L2))))

.:L is a list of lists. This function finds list with
.largest car and moves it to head of list of lists.
(defun max-car-first (L)
(cond ((null (cdr L)) L)
(t (if (> (abs (caar L)) (abs (caar (max-car-first (cdr L))))) L
(append (max-car-first (cdr L)) (list (car L)))))))

.Applies max-car-first to first n elements of list.
(defun nmax-car-first (n list)
(append (max-car-first (ncar n list)) (nthedr n list)))

(defun matrix-inverse (M)
(do (M1 (max-car-first (augment M))
(cond ((null M1) nil)
(t (nmax-car-first n (cycle-left (cycle-up M1))))))
(n (1- (length M)) (1- n)))
((or (minusp n) (null M1)) (cond ((null M1) nil) (t (square-car M1))))
(setq M1 (cond ((zerop (caar M1)) nil) (t (solve-first-column M1))))))

92




; "kinematics.cl”

. requires MATRIX.CL

(defun dh-matrix (cosrotate sinrotate costwist sintwist length translate)
(list (list cosrotate (- (* costwist sinrotate))
(* sintwist sinrotate) (* length cosrotate))
(list sinrotate (* costwist cosrotate)
(- (* sintwist cosrotate)) (* length sinrotate))
(list 0. sintwist costwist translate) (list 0. 0. 0. 1.)))

(defun mdh-matrix (cosrotate sinrotate
costwist-i-1 sintwist-i-1
length-i-1 translate)
(list (list cosrotate (- sinrotate) 0. length-i-1)
(list (* sinrotate costwist-i-1) (* cosrotate costwist-i-1)
(- sintwist-i-1) (- (* sintwist-i-1 translate)))
(list (* sinrotate sintwist-i-1) (* cosrotate sintwist-i-1)
costwist-i-1 (* costwist-i-1 translate))
(list 0. 0. 0. 1.))

(defun homogeneous-transform (azimuth elevation roll x y z)
(rotation-and-translation (sin azimuth) (cos azimuth) (sin elevation)
(cos elevation) (sin roll) (cos roll) x y z))

(defun rotation-and-translation (spsi cpsi sth cth sphi cphi x y z)
(list (list (* cpsi cth) (- (* cpsi sth sphi) (* spsi cphi))
(+ (* cpsi sth cphi) (* spsi sphi)) x)
(list (* spsi cth) (+ (* cpsi cphi) (* spsi sth sphi))
(- (* spsi sth cphi) (* cpsi sphi)) y)
(list (- sth) (* cth sphi) (* cth cphi) z)
(list 0. 0. 0. 1.)))

(defun inverse-H (H)
(let* ((minus-P (list (- (fourth (first H)))

(- (fourth (second H)))
(- (fourth (third H)})))

(inverse-R (transpose (square-car (reverse (rest (reverse H))))))

(inverse-P (post-multiply inverse-R minus-P)))

(append (concat-matrix inverse-R (transpose (list inverse-P)))

(list (list 0 0 0 1))

93




; "rigid-body.cl"

. requires KINEMATICS.CL

(defclass rigid-body ()
((location :The three-vector (x y z) in world coordinates.
‘initarg :location
:accessor location)
(velocity :The six-vector (u v w p q r) in body coordinates.
‘initarg :velocity
:accessor velocity)
(acceleration :The vector (u-dot v-dot w-dot p-dot g-dot r-dot).
-accessor acceleration)
(forces-and-torques ;The vector (Fx Fy Fz L M N) in body coordinates.
-accessor forces-and-torques)
(moments-of-inertia ;The vector (Ix Iy [z) in principal axis coordinates.
‘initarg :moments-of-inertia
:accessor moments-of-inertia)
(mass
:initarg :mass
:accessor mass)
(node-list :List of vertices for wire frame model
:initarg :node-list
:accessor node-list)
(polygon-list ;Sets of above vertices defining polygons
‘initarg :polygon-list ;Ex:'((1 2 3}(2 3 4 5)}(4 5 6))
:acoessor polygon-list)
(transformed-node-list
:accessor transformed-node-list)
(H-matrix
:accessor H-matrix)
(current-time
:accessor current-time)))

(defmethod move ((body rigid-body) azimuth elevation roll x y z)
(setf (H-matrix body)
(homogeneous-transform azimuth elevation roll x y z))
(transform-node-list body)
(update-position body))

94




(defmethod move-incremental ((body rigid-body) increment-list)
(setf (H-matrix body)
(matrix-multiply (H-matrix body) (homogeneous-transform
(first increment-list)
(second increment-list)
(third increment-list)
(fourth increment-list)
(fifth increment-list)
(sixth increment-list})))
(transform-node-list body)
(update-position body))

(defmethod get-delta-t ((body rigid-body))
(let* ((new-time (get-internal-real-time))
(delta-t (/ (- new-time (current-time body)) 1000)))
(setf (current-time body) new-time)
delta-t))

(defmethod start-timer ((body rigid-body))
(setf (current-time body) (get-internal-real-time)))

(defmethod update-rigid-body ((body rigid-body)) ;Euler integration.
(let* ((delta-t (get-delta-t body)))
(update-H-matrix body delta-t)
(transform-node-list body)
(update-position body)
(update-velocity body delta-t)
(update-acceleration body)))

(defmethod update-acceleration ((body rigid-body))
(setf (acceleration body) ;(list u-dot v-dot w-dot p-dot g-dot r-dot)

(multiple-value-bind ;Assumes principal axis
FxFyFzLMN uvwpqr IxlyIz) ;coordinates with origin at
(values-list ;center of gravity of body.

(append

(forces-and-torques body) (velocity body) (moments-of-inertia body)))
(list (+ (* v D) (* -1 w q) (/ Fx (mass body))

(* *gravity* (first (third (H-matrix body)))))

(+ (* wp) (* -1 ur) (/ Fy (mass body))
(* *gravity* (second (third (H-matrix body)))))

(+ (* u @ (* -1 v p) (/ Fz (mass body))
(* *gravity* (third (third (H-matrix body)))))

(EC*¢lyIzqnl)Ix)
ez rpMly)
(FCG-XIypgN)I2))

95




(defmethod update-velocity ((body rigid-body) delta-t)
(setf (velocity body)
(vector-add (velocity body)
(scalar-multiply delta-t (acceleration body)))))

(defmethod update-H-matrix ((body rigid-body) delta-t)
(setf (H-matrix body)

(matrix-multiply

(H-matrix body) (homogeneous-transform
(* delta-t (sixth (velocity body)))
(* delta-t (fifth (velocity body)))
(* deita-t (fourth (velocity body)))
(* delta-t (first (velocity body)))
(* delta-t (second (velocity body)))
(* delta-t (third (velocity body)))))))

(defmethod transform-node-list ((body rigid-body))
(setf (transformed-node-list body)
(mapcar #(lambda (node-location)
(post-multiply (H-matrix body) node-location))
(node-list body))))

(defmethod update-position ((body rigid-body))
(setf (location body) (ncar 3 (first (transformed-node-list body)))))

. (defconstant *gravity* 32.2185)

(defmethod world-to-body ((body rigid-body) xyz-pos)
(ncar 3 (post-multiply (inverse-H (H-matrix body))

(append xyz-pos '(1)))))

(defmethod body-to-world ((body rigid-body) xyz-pos)
(ncar 3 (post-multiply (H-matrix body) (append xyz-pos '(1)))))

96




; "'strobe-camera.cl”

. requires RIGID-BODY.CL

(require :xcw)
(cw:initialize-<common-windows)

(defclass strobe-camera (rigid-body)
((focal-length
-accessor focal-length
:initform 6)
(camera-window
-accessor camera-window
‘initform (cw:make-window-stream :borders 5
left 500
‘bottom 500
:width 300
-height 300
:title "strobe-camera-image”
:activate-p t))
(H-matrix
:initform (homogeneous-transform .3 -.3 0 -300 -90 -90))
(inverse-H-matrix
:accessor inverse-H-matrix
:initform (inverse-H (homogeneous-transform .3 -.3 0 -300 -90 -90)))
(enlargement-factor
:accessor enlargement-factor
:initform 30)))

(defmethod erase-camera-window ((camera strobe-camera))
{cw:clear (camera-window camera)))

(defmethod move ((camera strobe-camera) azimuth elevation roll x y z)
(setf (H-matrix camera) (homogeneous-transform azimuth elevation roll x y z))
(setf (inverse-H-matrix camera) (inverse-H (H-matrix camera))))

(defmethod take-picture ((camera strobe-camera) (body rigid-body))
(let ((camera-space-node-list (mapcar #'(lambda (node-location)
(post-multiply (inverse-H-matrix camera) node-location))
(transformed-node-list body))))
(dolist (polygon (polygon-list body))
(clip-and-draw-polygon camera polygon camera-space-node-list))))

97




(defmethod clip-and-draw-polygon

((camera strobe-camera) polygon node-coord-list)

(do* ((initial-point (nth (first polygon) node-coord-list))
(from-point initial-point to-point)
(remaining-nodes (rest polygon) (rest remaining-nodes))
(to-point (nth (first remaining-nodes) node-coord-list)

(if (not (null (first remaining-nodes)))
(nth (first remaining-nodes) node-coord-list))))
((null to-point)
(draw-clipped-projection camera from-point initial-point))

(draw-clipped-projection camera from-point to-point)))

(defmethod draw-clipped-projection ((camera strobe-camera) from-point to-point)
(cond ((and (<= (first f-om-point) (focal-length camera))
(<= (first to-point) (focal-length camera))) nil)

((<= (first from-point) (focal-length camera))
(draw-line-in-camera-window camera

(perspective-transform camera (from-clip camera from-point to-point))

(perspective-transform camera to-point)))
((<= (first to-point) (focal-length camera))
(draw-line-in-camera-window camera

(perspective-transform camera from-point)

(perspective-transform camera (to-clip camera from-point to-point))))
(t (draw-line-in-camera-window camera

(perspective-transform camera from-point)

(perspective-transform camera to-point)))))

(defmethod from-clip ((camera strobe-camera) from-point to-point)
(let ((scale-factor (/ (- (focal-length camera) (first from-point))
(- (first to-point) (first from-point)))))
(list (+ (first from-point)
(* scale-factor (- (first to-point) (first from-point))))
(+ (second from-point)
(* scale-factor (- (second to-point) (second from-point))))
(+ (third from-point) :
(* scale-factor (- (third to-point) (third from-point)))) 1)))

(defmethod to-clip ((camera strobe-camera) from-point to-point)
(from-~clip camera to-point from-point))

{(defmethod draw-line-in-camera-window ((camera strobe-camera) start end)
(cw:draw-line (camera-window camera)
(cw:make-position :x (first start) :y (second start))
(cw:make-position :x (first end) :y (second end))
‘brush-width 0))

98




(defmethod perspective-transform ((camera strobe-camera) point-in-camera-space)
(let* ((enlargement-factor (enlargement-factor camera))
(focal-length (focal-length camera))
(x (first point-in-camera-space)) ;x axis is along optical axis
(v (second point-in-camera-space)) .y is out right side of camera
(z (third point-in-camera-space))) .z is out bottom of camera
(list (+ (round (* enlargement-factor (/ (* focal-length y) x)))
150) :to right in camera window
(+ 150 (round (* enlargement-factor (/ (* focal-length (- 2)) x))
))))) .up in camera window

99




s "link.cl”

; requires RIGID-BODY.CL

(defclass link (rigid-body)
((motion-limit-flag

:initform nil

:accessor motion-limit-flag)
(twist-angle

:initarg :twist-angle

:accessor twist-angle)
(link-length

‘initarg :link-length

:accessor link-length)
(inboard-joint-angle

‘initarg :inboard-joint-angle
:accessor inboard-joint-angle)
(inboard-joint-displacement
:initarg :inboard-joint-displacement
:accessor inboard-joint-displacement)
(inboard-link

:initarg :inboard-link
:accessor inboard-link)
(A-matrix

:accessor A-matrix)

; added for mdh

(twist-angle-i-1

:initarg :twist-angle-i-1
:accessor twist-angle-i-1)
(link-length-i-1

:initarg :link-length-i-1
:accessor link-length-i-1)
(T-matrix

:accessor T-matrix)))

(defclass rotary-link (link)
((min-joint-angle
:initarg :min-joint-angle
:accessor min-joint-angle)
(max-joint-angle
‘initarg :max-joint-angle
:accessor max-joint-angle)))




(defclass sliding-link (link)
((min-joint-displacement
:initarg :min-joint-displacement
:accessor min-joint-displacement)
{max-joint-displacement
‘initarg :max-joint-displacement
-accessor max-joint-displacement)))

101




; "aqua-data.cl"

; load after MISC.CL

(defconstant *dt* 0.01) ; delta-t each update.
(defconstant *loops* 2) . updates between draws.

(defconstant linkOlength 37.5)
(defconstant link1length 20.0)
(defconstant link2length 52.0)
(defconstant link3length 102.0)
(defconstant flag-length 25.0)

; leg attachment angles.

(defconstant legl-angle (deg-to-rad 0))
(defconstant leg2-angle (deg-to-rad 60))
(defconstant leg3-angle (deg-to-rad 120))
(defconstant legd-angle (deg-to-rad 180))
(defconstant legS-angle (deg-to-rad 240))
(defconstant leg6-angle (deg-to-rad 300))

, initial position and orientation in world coordinates.
(defconstant azimuth-init (deg-to-rad 0.0))
(defconstant elevation-init (deg-to-rad 0.0))
(defconstant roll-init (deg-to-rad 9.0))
(defconstant x-init 0.0)

(defconstant y-init 0.0)

(defconstant z-init -135.0)

; initial (default) joint angles.

(defconstant jointl-init (deg-to-rad 0.0))

(defconstant joint2-init (deg-to-rad 25.0))

(defconstant joint3-init (deg-to-rad -115.0))

{(defconstant default-angles (list jointl-init joint2-init joint3-init);

; joint spring constants. (fill in : Kg-cm2/sec2 per radian)

(defconstant joint1-K -2000000) ; 5000000 = Scott's 500 Nm per radian.
(defconstant joint2-K -2000000)

(defconstant joint3-K -2000000)

(defconstant spring-constants (list jointl-K joint2-K joint3-K))

; joint spring damping constants. (fill in : Kg-cm2/sec2 per radian/sec)
(defconstant joint1-D -800000) ; 800000 = Scott's 80 Nm-sec per radian/sec.
(defconstant joint2-D -800000)

(defconstant joint3-D -800000)

(defconstant spring-damping-constants (list joint1-D joint2-D joint3-D))

102




; joint limits.

;(defconstant joint1-min-limit (deg-to-rad -60.0))
:(defconstant joint1-max-limit (deg-to-rad 60.0))
;(defconstant joint2-min-limit (deg-to-rad -106.6))
‘(defconstant joint2-max-limit (deg-to-rad 73.4))
;(defconstant joint3-min-limit (deg-to-rad -156.4))
.(defconstant joint3-max-limit (deg-to-rad 23.6))
(defconstant joint1-min-limit -50.0)

(defconstant jointl-max-limit 50.0)

(defconstant joint2-min-limit -50.0)

(defconstant joint2-max-limit 50.0)

(defconstant joint3-min-limit -50.0)

(defconstant joint3-max-limit 50.0)

. mass in Kg.

(defconstant aqua-body-mass 500.0)
.{defconstant link 1mass 0.0)
;(defconstant link2mass 0.0)
.(defconstant link3mass 0.0)

. (Ix fy Iz)-Kg-cm. in principal axis coordinates.
, assumes solid cylindrical body of constant density.
(defconstant aqua-body-height 50.0)
(defconstant aqua-body-radius 30.0)
(defconstant aqua-body-Ix

(+ (* (/ 1 4) aqua-body-mass (sqr aqua-body-radius))

(* (/ 1 12) aqua-body-mass (sqr aqua-body-height))))

(defconstant aqua-body-ly aqua-body-Ix)
(defconstant aqua-body-Iz (* (/ 1 2) aqua-body-mass (sqr aqua-body-radius)))
(defconstant aqua-body-inertia (list aqua-body-Ix aqua-body-ly aqua-body-Iz))

. center of mass.

(defconstant body-mass-center (0 0 0))

.(defconstant link 1 mass-center (list (/ link1length 2) 0 0))
;(defconstant link2mass-center (list (/ link2length 2) 0 0))
:(defconstant link3mass-center (list (/ link3length 2) 0 0))

(defconstant *gravity* 980.0) ;cm/sec/sec.

103




; "aqua-link.cl"

; requires LINK.CL
. requires AQUA-DATA.CL

(defclass linkO (rotary-link)
((twist-angle :initform 0)
(link-length :initform linkOlength)
(inboard-joint-angle :initform 0)
(inboard-joint-displacement :initform 0)
(min-joint-angle :initform (deg-to-rad -360))
(max-joint-angle :initform (deg-to-rad 360))
(node-list :initform (list (list 000 1) (list000 1)
(list linkOlength 0 0 1))) . for mdh
. (list (- linkOlength) 0 0 1))) ; for dh
(polygon-list :initform "((1 2)))))

(defclass link 1 (rotary-link)
((twist-angle :initform (deg-to-rad -90))
(link-length :initform link1length)
(inboard-joint-angle :initform jointl-init)
(inboard-joint-displacement :initform 0)
(min-joint-angle :initform jointl-min-limit)
(max-joint-angle :initform joint1l-max-limit)
(node-list :initform (list (list0 00 1) (list000 1)
(list linkllength 0 0 1))) ; for mdh
: (list (- linkllength) 0 0 1))) ; for dh
(polygon-list :initform '((1 2)))))

(defclass link2 (rotary-link)
((twist-angle :initform 0)
(link-length :initform link2length)
(inboard-joint-angle :initform joint2-init)
(inboard-joint-displacement :initform 0)
(min-joint-angle :initform joint2-min-limit)
(max-joint-angle :initform joint2-max-limit)
(node-list :initform (list (list 00 0 1) (list000 1)
(list link2length 0 0 1))) ; for mdh
; (list (- link2length) 0 0 1))) ; for dh
(polygon-list :initform '((1 2)))))

104




(defclass link3 (rotary-link)
((twist-angle :initform 0)
(link-length :initform link3length)
(inboard-joint-angle :initform joint3-init)
(inboard-joint-displacement :initform 0)
(min-joint-angle :initform joint3-min-limit)
(max-joint-angle :initform joint3-max-limit)
{node-list :initform (list (list000 1) (list000 1)
(list link3length 0 0 1))) : for mdh
. (list (- link3length) 0 0 1))) . for dh
(polvgon-list :initform ‘((1 2)))))

.. for dh
(defmethod update-A-matrix ((link link))
(with-slots (twist-angle link-length inboard-joint-angle
inboard-joint-displacement A-matrix) link
(setf A-matrix
(dh-matrix (cos inboard-joint-angle) (sin inboard-joint-angle)
(cos twist-angle)  (sin twist-angle)
link-length inboard-joint-displacement))))

, added for mdh
(defmethod update-T-matrix ((link link))
(with-slots (twist-angle-i-1 link-length-i-1 inboard-joint-angle
inboard-joint-displacement T-matrix) link
(setf T-matrix
(mdh-matrix (cos inboard-joint-angle) (sin inboard-joint-angle)
(cos twist-angle-i-1) (sin twist-angle-i-1)
link-length-i-1  inboard-joint-displacement))))

(defmethod rotate ((link link) angle)
(setf (inboard-joint-angle link) angle)
(update-T-matrix link)
(setf (H-matrix link) (matrix-multiply (H-matrix (inboard-link link))
(T-matrix link)))
(transform-node-list link))

(defmethod rotate-link ((link link) angle)
(cond ((> angle (max-joint-angle link))
(rotate link (max-joint-angle link))
(setf (motion-limit-fiag link) t))
((< angle (min-joint-angle link))
(rotate link (min-joint-angle link))
(setf (motion-limit-flag link) t))
(t (rotate link angle) (setf (motion-limit-flag link) nil))))

105




; "aqua.cl”

, requires STROBE-CAMERA.CL
, requires AQUA-LEG.CL

(defclass aquarobot-body (rigid-body)

((mass :initform aqua-body-mass)
(moments-of-inertia :initform aqua-body-inertia)
(node-list

:initform (list (list000 1)
(list (* (cos legl-angle) linkOlength)
(* (sin legl-angle) linkOlength) 0 1)
(list (* (cos leg2-angle) linkOlength)
(* (sin leg2-angle) linkOlength) 0 1)
(list (* (cos leg3-angle) linkOlength)
(* (sin leg3-angle) linkOlength) 0 1)
(list (* (cos leg4-angle) linkOlength)
(* (sin leg4-angle) linkOlength) 0 1)
(list (* (cos leg5-angle) linkOlength)
(* (sin leg5-angle) linkOlength) 0 1)
(list (* (cos leg6-angle) linkOlength)
(* (sin leg6-angle) linkOlength) 0 1)
(list linkOlength 0 (- flag-length) 1)))
(polygon-list
:initform '((1 2 3 4 5 6) (1 I))))

(defclass aquarobot ()

((body
:initform (make-instance 'aquarobot-body)
:accessor body)

(legl
:initform (make-instance 'aqua-leg :leg-attachment-angle legl-angle)
:accessor legl)

(leg2
:initform (make-instance ‘aqua-leg :leg-attachment-angle leg2-angle)
:accessor leg2)

(leg3
:initform (make-instance 'aqua-leg :leg-attachment-angle leg3-angle)
:accessor leg3)

(leg4
:initform (make-instance ‘aqua-leg :leg-attachment-angle leg4-angle)
:accessor leg4)

(legs
:initform (make-instance ‘aqua-leg :leg-attachment-angle leg5-angie)
:accessor leg5)

(legb
‘initform (make-instance ‘aqua-leg :leg-attachment-angle leg6-angle)
-accessor leg6)))

106




(defmethod world-to-aqua ((aqua aquarobot) xyz-pos)
(world-to-body (body aqua) xyz-pos))

(defmethod aqua-to-world ((aqua aquarobot) xyz-pos)
(body-to-world (body aqua) xyz-pos))

.(defmethod initialize ((aqua aquarobot))

(setf (H-matrix (body aqua))
(homogeneous-transform azimuth-init elevation-init roll-init
X-init y-init z-init))

(transform-node-list (body aqua))
(update-position (body aqua))
(setf (forces-and-torques (body aqua)) '(0 0 0 0 0 0))
(setf (acceleration (body aqua)) '(0 0 0 0 0 0))
(setf (velocity (body aqua)) '(0 0 0 0 0 0))
(start-timer (body aqua))
(initialize-leg (legl aqua) (body aqua))
(initialize-leg (leg2 aqua) (body aqua))
(initialize-leg (leg3 aqua) (body aqua))
(initialize-leg (leg4 aqua) (body aqua))
(initialize-leg (legS aqua) (body aqua))
(initialize-leg (leg6 aqua) (body aqua)))

(defun aqua-picture ()
(setf aqua-1 (make-instance ‘aquarobot))
(initialize aqua-1)
(move-incremental aqua-1 null-move-list);sets "prev-foot-pos".
(setf camera-1 (make-instance 'strobe-camera))
(take-picture camera-1 aqua-1))

(defmethod take-picture ((camera strobe-camera) (aqua aquarobot))
(take-picture camera (body aqua))
(take-picture camera (legl aqua))
(take-picture camera (leg2 aqua))
(take-picture camera (leg3 aqua))
(take-picture camera (leg4 aqua))
(take-picture camera (legS aqua))
(take-picture camera (leg6 aqua)))

(defun new-picture ()

(erase-camera-window camera-1)
(take-picture camera-1 aqua-1))

107




(defmethod move-incremental ((aqua aquarobot) increment-list)
(move-incremental (body aqua) (first increment-list))
(move-incremental (legl aqua) (second increment-list))
(move-incremental (leg2 aqua) (third increment-list))
{move-incremental (leg3 aqua) (fourth increment-list))
(move-incremental (leg4 aqua) (fifth increment-list))
(move-incremental (leg5 aqua) (sixth increment-list))
(move-incremental (leg6 aqua) (seventh increment-list)))

(defconstant null-move-list (000000) (000)(000)(000)
(000)(000)(000))

(defmethod feasible-movep ((aqua aquarobot) allowable-sinkage

allowable-slippage)

(and (feasible-movep (legl aqua) allowable-sinkage allowable-slippage)
(feasible-movep (leg2 aqua) allowable-sinkage allowable-slippage)
(feasible-movep (leg3 aqua) allowable-sinkage allowable-slippage)
(feasible-movep (leg4 aqua) allowable-sinkage allowable-slippage)
(feasible-movep (leg5 aqua) allowable-sinkage allowable-slippage)
(feasible-movep (leg6 aqua) allowable-sinkage allowable-slippage)))

(defun restart-aqua ()
(initialize aqua-1)
(move-incremental aqua-1 null-move-list);sets "prev-foot-pos".
(new-picture))

;replace some rigid-body functions:

(defmethod start-timer ((body aquarobot-body))
(setf (current-time body) 0))

(defmethod get-delta-t ((body aquarobot-body))
(let* ((delta-t *dt*)
(new-time (+ (current-time body) delta-t)))
(setf (current-time body) new-time)
delta-t))

(defmethod update-aquarobot ((aqua aquarobot)) ;Euler integration.
(let* ((body (body aqua))
(delta-t (get-delta-t body)))
(update-acceleration body)
(update-velocity body delta-t)
(update-H-matrix body delta-t)
(transform-node-list body)
(update-position body)
(update-forces-and-torques aqua))) ;updates positions of legs

108




; "aqua-leg.cl”

, requires AQUA.CL
. requires AQUA-LINK.CL
. requires STROBE-CAMERA.CL

(defclass aqua-leg ()
((leg-attachment-angle
‘initarg :leg-attachment-angle
:accessor leg-attachment-angle)
(link0
:initform (make-instance 'link0)
:accessor 1ink0)
(link1
:initform (make-instance 'link1)
:accessor link1)
(link2
‘initform (make-instance ‘link2)
:accessor link2)
(link3
‘initform (make-instance 'link3)
-accessor link3)
(motion-complete-flag
:initform nil
:accessor motion-complete-flag)
(previous-foot-position
:initform nil
:accessor previous-foot-position)
(current-foot-position
:initform nil
:accessor current-foot-position)
(foot-contact
:initform nil
:accessor foot-contact)))

109




(defmethod initialize-leg ((leg aqua-leg) (body aquarobot-body))
(setf (foot-contact leg) nil)
(setf (inboard-link (linkO leg)) body)
(setf (inboard-link (link1 leg)) (linkO leg))
(setf (inboard-link (link2 leg)) (link1 leg))
(setf (inboard-link (link3 leg)) (link2 leg))
. added for mdh
(setf (twist-angle-i-1 (link0 leg)) 0)
(setf (twist-angle-i-1 (link1 leg)) (twist-angle (link0 leg)))
(setf (twist-angle-i-1 (link2 leg)) (twist-angle (link1 leg)))
(setf (twist-angle-i-1 (link3 leg)) (twist-angle (link2 leg)))
(setf (link-length-i-1 (link0 leg)) 0)
(setf (link-length-i-1 (link1 leg)) (link-length (linkO leg)))
(setf (link-length-i-1 (link2 leg)) (link-length (link1 leg)))
(setf (link-length-i-1 (link3 leg)) (link-length (link2 leg)))
(set-default-angles leg))

(defmethod set-default-angles ((leg aqua-leg))
(rotate-link (linkO leg) (leg-attachment-angie leg))
(rotate-link (link1 leg) jointl-init)
(rotate-link (link2 leg) joint2-init)
(rotate-link (link3 leg) joint3-init)
(setf (previous-foot-position leg) nil)
(setf (current-foot-position leg)
(ncar 3 (third (transformed-node-list (link3 leg)))))) ; for mdh

(defmethod set-angles ((leg aqua-leg) angle-list)
(rotate-link (linkO leg) (leg-attachment-angie leg))
\rotate-link (link1 leg) (car angle-list))
(rotate-link (link2 leg) (cadr angle-list))
(ratate-link (link3 leg) (caddr angle-list)))

(defmethod take-picture ((camera strobe-camera) (leg aqua-leg))
(take-picture camera (link1 leg))
(take-picture camera (link2 leg))
(take-picture camera (link3 leg)))

110



I -

(defmethod move-incremental ((leg aqua-leg) increment-list)
(rotate-link (link0 leg) (leg-attachment-angle leg))
(rotate-link (linkl leg)
(+ (first increment-list) (inboard-joint-angle (link1 leg))))
(rotate-link (link2 leg)
(+ (second increment-list) (inboard-joint-angle (link2 leg))))
(rotate-link (link3 leg)
(+ (third increment-list) (inboard-joirt-angle (link3 leg))))
(setf (previous-foot-position leg) (current-foot-position leg))
(setf (current-foot-position leg)
(ncar 3 (third (transformed-node-list (link3 leg))))) : for mdh
(ncar 3 (first (transformed-node-list (link3 leg))))) : for dh
(setf (motion-complete-flag leg) (not (or (motion-limit-flag (link1 leg))
(motion-limit-flag (link2 leg)) (motion-limit-flag (link3 leg))))))

(defmethod feasible-movep ((leg aqua-leg) allowable-sinkage allowable-slippage)
(and (<= (third (current-foot-position leg)) allowable-sinkage)
(or (minusp (third (current-foot-position leg)))
(minusp (third (previous-foot-position leg)))
(<= (vector-length (vector-stippage leg)) allowable-slippage))))

(defmethod vector-slippage ((leg aqua-leg))
(vector-subtract (rest (reverse (previous-foot-position leg)))
(rest (reverse (current-foot-position leg)))))

(defmethod current-joint-angles ((leg aqua-leg))
(list (inboard-joint-angle (linkl leg))
(inboard-joint-angle (link2 leg))
(inboard-joint-angle (link3 leg))))

111




; "aqua-inverse-kinematics.cl"

. load after AQUA-LEG.CL
; load after AQUA-DATA.CL

(defconstant L2sqr (sqr link2length))
(defconstant L3sqr (sqr link3length))

. assumptions: dh coord system for linkO of respective leg:
: origin at jointl,
x-axis directed away from center of body.
z-axis aligned with body z-axis;
foot-position = '(x y z).
(defun thetal (foot-position)
(if (< (car foot-position) 0)
(atan2 (- (car foot-position)) (- (cadr foot-position)))
(atan2 (car foot-position) (cadr foot-position))))

assumpnons dh coord system for link1 of respective leg:
: origin at joint2,
R x-axis directed away from jointl,
; z-axis aligned with body z-axis;
; foot-position = '(x y z);
; hyp = distance from joint2 to foot.
(dcfun theta2 (foot-position hyp hyp-sqr)
(- (acos (/ (+ L2sqr hyp-sqr (- L3sqr)) (* 2 link2length hyp)))
(if (< (car foot-position) 0)
(- pi (asin (/ (caddr foot-position) hyp)))
(asin (/ (caddr foot-position) hyp)))))

, assumptions: same as for theta2.
(defun theta3 (foot-position hyp-sqr)
(- (acos (/ (+ L2sqr L3sqr (- hyp-sqr)) (* 2 link2length link3length))) pi))

; returns foot position with respect to joint 1 in link0 coord.
{defmethod foot-joint1/linkOcoord ((leg aqua-leg) foot-pos)
(vector-subtract (world-to-body (linkO leg) foot-pos)
(list linkOlength 0 0)))

; returns foot position with respect to joint 2 in link1 coord.
; given foot-joint1/linkOcoord.
(defun foot-joint2/link1coord (foot-pos)
(list (- (sqrt (+ (sqr (car foot-pos)) (sqr (cadr foot-pos)))) link1length)
0 (caddr foot-pos)))

112




. returns list of joint angles required for given (world coord) foot position.
(defmethod aqua-inv-kin ((leg aqua-leg) foot-position)
(let* ((posO (foot-joint1/linkOcoord leg foot-position))
(pos1 (foot-joint2/link lcoord pos0))
(hyp-sqr (+ (sqr (car pos1)) (sqr (caddr posl))))
(hyp (sqrt hyp-sqr)))
(list (thetal pos0)
(theta2 posl hyvp hyp-sqr)
(theta3 posl hyp-sqr))))

; "aqua-jacobian.cl”

(defmethod jacobian ((leg aqua-leg))
(let* ((TO1 (+ (leg-attachment-angle leg)
(inboard-joint-angle (link1 leg))))
(SO1 (sin TOL)) (CO1 (cos TOL))
(T2 (inboard-joint-angle (link2 leg)))
(S2 (sin T2)) (C2 (cos T2))
(T23 (+ T2 (inboard-joint-angle (link3 leg))))
(523 (sin T23)) (C23 (cos T23))
(L1 linkllength) (L2 link2length) (L3 link3length))
(list (list (- (* (+ L1 (* L2 C2) (* L3 C23)) S01))
(- (* (+ (* L2 S2) (* L3 §23)) COD))
(- (* L3 CO1 S23)))
(list (* (+ L1 (* L2 C2) (* L3 C23)) CO1)
(- (* (+ (* L2 S2) (* L3 S23)) SO1))
(- (* L3 S01 S23)))
(list 0
-(+(*L2C2)(*L3C23)))
(- (*L3 C23)»))

(defmethod inverse-jacobian ((leg aqua-leg))
(matrix-inverse (jacobian leg)))

(defmethod foot-to-joint-rates ((leg aqua-leg) dX dY dZ)
(post-multiply (inverse-jacobian leg) (list dX dY dZ)))

(defmethod joint-to-foot-rates ((leg aqua-leg) dthetal dtheta2 dtheta3)
(post-multiply (jacobian leg) (list dthetal dtheta2 dtheta3)))

113




; "aquarobot-update-forces-and-torques.cl”

. load after AQUA-DATA.CL
. load after AQUA.CL
: load after AQUA-LEG.CL

(defmethod update-forces-and-torques ((aqua aquarobot))
(setf (forces-and-torques (body aqua)) ‘(0 0 0 0 0 0)) ;clear last cycle.
(add-leg-forces-and-torques (legl aqua))
(add-leg-forces-and-torques (leg2 aqua))
(add-leg-forces-and-torques (leg3 aqua))
(add-leg-forces-and-torques (leg4 aqua))
(add-leg-forces-and-torques (leg5 aqua))
(add-leg-forces-and-torques (legé aqua)))

(defmethod add-leg-forces-and-torques ((leg aqua-leg))
(if (or (foot-contact leg) (new-contact leg))
(let* ((body (inboard-link (linkO leg)))
(joint-angles (aqua-inv-kin leg (current-foot-position leg))))
(set-angles leg joint-angles)
(let* ((r (world-to-body body (current-foot-position leg)))
(omega (cdddr (velocity body)))
(foot-velocity ; in body coordinates
(vector-add
(scalar-multiply -1 (ncar 3 (velocity body)))
(cross-product r omega)))
(torques (vector-add
(mapcar '* spring-constants
(vector-subtract joint-angles default-angles))
(mapcar '* spring-damping-constants
(post-multiply (inverse-jacobian leg) foot-velocity))))
(resultant-force
(scalar-multiply
-1 (post-multiply
(matrix-inverse (transpose (jacobian leg)))
torques))))
(if (still-in-contact leg resultant-force body)
(add-forces-and-torques-to-body
body r resultant-force))))))

(defmethod add-forces-and-torques-to-body ((body aquarobot-body) r f)
(let ((torques (cross-product r 1)))
(setf (forces-and-torques body)
(vector-add (forces-and-torques body)
(append f torques)))))

114




.update joint angles and foot position. detect foot hitting ground.
(defmethod new-contact ((.sg aqua-leg))
(move-incremental leg *(0 0 0))
(if (> (third (current-foot-position leg)) 0)
(setf (third (current-foot-position leg)) 0
(foot-contact leg) t)
nil))

-detect loss of contact. (positive/down z component in world coord)
-side effect of reseting leg to default state when nil is returned.
{defmethod still-in-contact ((leg aqua-leg) force/body-xyz
(body aquarobot-body))
(let ((force/world-xyz (vector-subtract (body-to-world body force/body-xyz)
(location body))))
(if (> (third force/world-xyz) 0)
(and (set-default-angles leg) (setf (foot-contact leg) nil))
1)

115




APPENDIX D

OPERATING INSTRUCTIONS

Call "droptest" with zero to four arguments.
First arg Spring Constant (2..15, default 5)
Second arg Damper Constant(0.5..15, default 5)
Third arg  Drop Height (0..100, default 0) cm
Fourth arg Update Time Increment (10..50. default 50) ms

SOURCE CODE FILES

// file "droptest.c"

/#

/* droptest.c

/t

/* performer Aquarobot model with "spring” joints.
/#

**

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <gl/device.h>

/* performer */
#include “pf.h"

/* performer aqua-robot object constructor */
#include "pf_aqua.h"

/* physical aqua-robot object constructor and controls */
#include "aqua.H"

static void OpenPipeline (pfPipe *p);




vaid
main (int arge, char *argv([})
{
pfPipe  *p;
pfChannel *chan;
pfScene  *scene;
pfDCS  *robot_position;
pfGroup *aqua_robot. /* graphics object (performer) */
pfDCS  *JointDCS[6](4].
aquarobot robot; /* physical object */

// defaults for args

float spring = SPRING_K;

float damp = SPRING_D;

float height = 0.0f;

float step = 0.05f; // default ~ real time

// process args
if (argc > 1) { // spring constant
// first arg: -15,000,000 <= spring <= -2,000.000
spring = fabs((float)(atoi(argvi1])));
if (spring < 2.0f)
spring = 2.0f,
else if (spring > 15.0f)
spring = 15.0f,
spring *= -1000000;
}
if (argc > 2) { // spring damping constant
/! second arg: -1,500,000 <= damp <= - 50,000
damp = fabs((float)(atoi(argv(2])));
if (damp < 0.5f)
damp = 0.5f;
else if (damp > 15.0f)
damp = 15.0f;
damp *= -100000;
}
if (arge > 3) {
// third arg: 0 <= drop height <= 100
height = fabs((float)(atoi(argv{3])));
if (height > 100.0f)
height = 100.0f;
}
if (arge > 4) {
// fourth arg: 10ms <= integration time step <= 50ms
step = fabs((float)(atoi(argv{4])))/1000.0f;
if (step < 0.01f)
step = 0.01f;
else if (step > 0.05f)
step = 0.05f;
}

117




/* 1. initialize Performer */
pfInitQ);

/* 2. configure MP mode and start parallel processes */
pfConfig();

/* 3. load scene database */
scene = pfNewScene():

robot_position = pfNewDCS():
pfAddChild(scene, robot_position);
aqua_robot = MakeAquaRobot(JointDCS):
pfAddChild(robot_position, aqua_robot):

/* 5. configure and open full-screen pipeline */
p = pfGetPipe(0);
pfInitPipe(p, OpenPipeline); /* pfInitPipe(p, NULL); */

/* set frames per second ( if step = .05 sec, then ~ real time) */
pfFrameRate(20.0f);

/* 6. get and configure channel */
chan = pfNewChan(p);
pfChanScene(chan, scene);
pfChanNearFar(chan, 0.1f, 1000.0f);
pfChanFOV(chan, 45.0f, -1.0f);

/* zero clock (not really needed) */
pfInitClock();

/* initialize robot */
robot.initialize(spring, damp, height);
update_jointDCS(robot, JointDCS),

/* set up view position */

pfCoord view;

pfSetVec3(view.hpr, 0.0f, 30.0f, 180.0f);
pfSetVec3(view.xyz, 0.0f, -500.0f, -350.0f),
pfChanView(chan, view.xyz, view.hpr);

118




/* 7. create rendering loop */

/* simulate for 30 seconds */

intt=0,

while (t < 600) // ~ 20 frames per second

{
/* Transfer robot data to graphics object. */
pfDCSMatrix(robot_position, robot.body.H_matrix); /* body */
update_jointDCS(robot, JointDCS); /* joints */

/* Go to sleep till next frame time */
pfSync(); t++;

/* initiate cull/draw for this frame */
pfFrame();
pfDrawChanStats(chan);

/* Move robot to new position. */
robot.update_aquarobot(step);
}

/* 8. terminate parallel processes and exit */
PEXit();
exit(0);

119




Al

OpenPipeline() -- create a pipeline: setup the window system,
the IRIS GL, and IRIS Performer. This procedure is executed in
the draw process (when there is a separate draw process).

*/

static void
OpenPipeline (pfPipe *p)

{

pfLight *Sun;

/* negotiate with window-manager */
foreground();
prefposition(0,600,0,600);
winopen("Aqua Drop");

/* negotiate with GL */
pfnitGfx(p),

/* create a light source */
Sun = pfNewLight(pfGetShared Arena());
pfLightPos(Sun, 0.0f, 0.0f, 1.0f, 0.0f);

/* create a default lighting model */

pfApplyLModel(pfNewLModel(pfGetShared Arena()));
pfLightOn(Sun);

120




// file "pf_aqua.h"

/t

pf_aqua.h

call "MakeAquaRobot” to make AquaRobot performer object.

JointDCS{i](j] points to pfDCS for leg i, joint j,
where j = 0 is the shoulder joint, and j = 3 attaches the foot.

% # # # & ®

*/
* #include "pf.h"

pfGroup*
MakeAquaRobot(pfD: s *JointDCS[6][4]);

// file "'pf_aqua.c"

/‘
* pf_aquac
*

* call "MakeAquaRobot" to make AquaRobot performer object.
®
*/

#include "pf_aqua.h”
#include "aqua_link H"

/* polygon data for aquarobot */
#include "polybody.h"

#include "polyshoulder.h”
#include "polyupperleg.h”
#include "polylowerleg.h"
#include "polyfoot.h"

/* geostate for multiple parts */
static pfGeoState *robotyellow_gstate;

121




pfGeoSet*
MakeBodyGSet(void)

{

}

pfGeoSet *gset;
void  *arena,

pfMaterial *mtl;

arena = pfGetSharedArena();
gset = pfNewGSet(arena),

/* set the coordinate and normal arrays */
pfGSetAttr(gset, PFGS_COORD3, PFGS_PER_VERTEX, bodycoords, NULL),
pfGSetAnr(gset. PFGS_NORMAL3, PFGS_PER_PRIM, bodynorms, NULL);

pfGSetPrimType(gset, PFGS_QUADS);
pfGSetNumPrims(gset, 94).

/* set up geostate for "robotyellow” material */
robotyellow_gstate = pfNewGState(arena);

mtl = pfNewMtl(arena);

pMtlColor(mtl, PFMTL_AMBIENT, 0.2f, 0.2f, 0.0f).
pMtlColor(mtl, PFMTL_DIFFUSE, 1.0f, 1.0f, 0.0f);
pMtColor(mtl, PFMTL_EMISSION, 0.0f, 0.0f, 0.0f);
pfMtiColor(mtl, PFMTL_SPECULAR, 0.0f, 0.0f, 0.0f);
piMtlAlpha(mtl, 1.0); .
pfGStateAttr(robotyellow_gstate, PFSTATE_FRONTMTL, mtl);
pfGSetGState(gset, robotyellow_gstate);

return gset,

pfGeoSet*
MakeLink 1 GSet(void)

{

pfGeoSet *gset;
void *arena;

arena = pfGetSharedArena();
gset = pfNewGSet(arena);

pfGSetAttr(gset, PFGS_COORD3, PFGS_PER_VERTEX, linklcoords, NULLY);
pfGSetAttr(gset, PFGS_NORMAL3, PFGS_PER_PRIM, link1norms, NULL);

pfGSetPrimType(gset, PFGS_QUADS);
pfGSetNumPrims(gset, 42);

pfGSetGState(gset, robotyellow_gstate);

return gset;

122




pfGeoSet*
MakeLink2GSet(void)
{

}

pfGeoSet *gset;
void *arena;

arena = pfGetSharedArena(),
gset = pfNewGSet(arena),

pfGSetAttr(gset. PFGS_COORD3, PFGS_PER_VERTEX. link2coords, NULL);
pfGSetAttr(gset. PFGS_NORMALS3, PFGS_PER_PRIM, link2norms, NULL);

pfGSetPrimType(gset. PFGS_QUADS).
pfGSetNumPrims(gset. 91);

pfGSetGState(gset, robotyellow_gstate);

return gset;

pfGeoSet*
MakeLink3GSet(void)

{

pfGeoSet *gset;
void *arena;

arena = pfGetSharedArena();
gset = pfNewGSet(arena);

pfGSetAttr(gset, PFGS_COORD3, PFGS_PER_VERTEX, link3coords, NULL),
pfGSetAttr(gset, PFGS_NORMAL3, PFGS_PER_PRIM, link3norms, NULL);

pfGSetPrimType(gset, PFGS_QUADS);
pfGSetNumPrims(gset, 103);

pfGSetGState(gset, robotyellow_gstate);

return gset;

123




pfGeoSet*
MakeFootGSet(void)
{
pfGeoSet *gset;
void *arena;

arena = pfGetSharedArena();
gset = pfNewGSet(arena),

pfGSetAtr(gset, PFGS_COORD3, PFGS_PER_VERTEX, footcoars's, NULL):
pfGSetAttr(gset, PFGS_NORMAL3, PFGS_PER_PRIM, footnorms, ."ILL);

pfGSetPrimType(gset, PFGS_TRISTRIPS);
pfGSetNumPrims(gset, 49);
pfGSetPrimLengths(gset. footstriplengths);

pfGSetGState(gset, robotyellow_gstate),

return gset,
}

pfGeoSet*
MakeShaftGSet(void)
{
pfGeoSet *gset;
void  *arena;
pfGeoState *robotgray_gstate;
pfMaterial *mtl;
arena = pfGetSharedArena();
gset = piNewGSet(arena);

pfGSetAttr(gset, PFGS_COORD3, PFGS_PER_VERTEX, shaftcoords, NULL);
pfGSetAttr(gset, PFGS_NORMALS3, PFGS_PER_PRIM, shaftnorms, NULL);

pfGSetPrimType(gset, PFGS_QUADS);
pfGSetNumPrims(gset, 20);

/* set up material */

robotgray_gstate = pfNewGState(arena);

mtl = pfNewMtl(arena);

piMtiColor(mtl, PFMTL_AMBIENT, 0.1, 0.1, 0.1);
pMtiColor(mtl, PFMTL_DIFFUSE, 0.2, 0.2, 0.2);
piMtiColor(mtl, PFMTL_EMISSION, 0.0, 0.0, 0.0);
piMtiColor(mtl, PFMTL_SPECULAR, 0.0, 0.0, 0.0);
pfMtiAlpha(mtl, 1.0);

pfGStateAttr(robotgray_gstate, PFSTATE_FRONTMTL, mtl);
pfGSetGState(gset, robotgray_gstate);

return gset;

124




pfGroup*
MakeAquaRobot(pfDCS *JointDCS[6][4})
{

pfSCS  *LegAttachSCS|6],
*Link1SCS[6], *Link2SCS[6], *Link3SCS[6],
*FootSCS[6];
pfMatrix rot_mat, trans_mat,
pfGroup  *AquaRobotGroup, *BodyGroup(6], *LegGroup[6].
pfGeode *geode_body,
*geode_linkl, *geode_link2, *geode_link3,
*geode_shaft, *geode_foot:
int i; /* loop counter */

/* make geodes */
geode_body = pfNewGeode(),
pfAddGSet(geode_body, MakeBodyGSet();

geode_link]1 = pfNewGeode();
pfAddGSet(geode_link1, MakeLink1GSet()),

geode_link2 = pfNewGeode();
pfAddGSet(geode_link2, MakeLink2GSet());

geode_link3 = pfNewGeode();
pfAddGSet(geode_link3, MakeLink3GSet()),

_foot = pfNewGeode();
pfAddGSet(geode_foot, MakeFootGSet());

geode_shaft = pfNewGeode();
pfAddGSet(geode_shaft, MakeShaftGSet().

/* Make Parent Group */
AquaRobotGroup = pfNewGroup();

/* Add Structure (6 segments) */

for(i=0;i <6; i++)

{
/* rotate to segment */
pfMakeRotMat(rot_mat, i*60.0, 0.0, 0.0, 1.0);
LegAttachSCS{i] = pfNewSCS(rot_mat);
pfAddChild(AquaRobotGroup, LegAttachSCS[i]);

/* add body slice */

BodyGroupli] = pfNewGroup();
pfAddChild(LegAttachSCS[i], BodyGrouplil);
pfAddChild(BodyGroupli], geode_body);

125




/% add leg */

/*link 1%/

pfMakeTransMat(trans_mat, LINKOLENGTH, 0.0. 0.0),
Link1SCS[i] = pfNewSCS(trans_mat);
pfAddChild(BodyGroup(i], Link1SCS[i]);
pfAddChild(Link ISCS[i], geode_shaft),

JointDCS{i}{0] = pfNewDCS();
pfAddChild(Link1SCS(i], JointDCS{i][0]):
pfAddChild(JointDCS({i)[0], geode_link1);

/* link 2 */

pfMakeRotMat(rot_mat, -90.0, 1.0, 0.0, 0.0);
pfMakeTransMat(trans_mat, LINKILENGTH. 0.0. 0.0):
pfPostMultMat(rot_mat, trans_mat);

Link2SCS[i} = pfNewSCS(rot_mat),
pfAddChild(JointDCS([i]{0], Link2SCS[i]):
pfAddChild(Link2SCS[i], geode_shaft);

JointDCSi][1] = pfNewDCS();
pfAddChild(Link2SCS({i], JointDCS[i][1]);
pfAddChild(JointDCS[i][1], geode_link2);

/*link 3 %/

pfMakeTransMat(trans_mat, LINK2LENGTH, 0.0, 0.0);
Link3SCS[i] = pfiNewSCS(trans_mat);
pfAddChild(JointDCS[i]{1], Link3SCS[i]);
pfAddChild(Link3SCS[i], geode_shaft);

JointDCSJi][2] = pfNewDCS();
pfAddChild(Link3SCS(i], JointDCS[i][2));
pfAddChild(JointDCS({i][2], geode_link3);

/* foot */

pfMakeTransMat(trans_mat, LINK3LENGTH, 0.0, 0.0);
FootSCS{i] = pfNewSCS(trans_mat);
pfAddChild(JointDCSIi][2], FootSCS[i]);

JointDCS[i]{3] = pfNewDCS();
pfAddChild(FootSCSli}], JointDCS[i][3]);
pfAddChild(JointDCS{i]{3], geode_foot);
}
return AquaRobotGroup;
}

126




// file “aqua.h"

#ifndef AQUA_H
#define_AQUA_H

#include <Performes/pf.h>
#include "misc. H"
#include "rigid_body.H"
#include "aqua_leg. H"

typedef rigid_body aquarobot_body;

/* mass in Kg. */
#define AQUA_BODY_MASS 500.0f

/* (Ix Iy I1z)-Kg-cm. in principal axis coordinates. */
/* assumes solid cylindrical body of constant density. */
#define AQUA_BODY_HEIGHT 50.0f
#define AQUA_BODY_RADIUS 30.0f
static pfVec3 aqua_body_inertia = {
I Ix
1.0/4.0f * AQUA_BODY_MASS * AQUA_BODY_RADIUS * AQUA_BODY_RADIUS
+ 1.0/12.0f * AQUA_BODY_MASS * AQUA_BODY_HEIGHT * AQUA_BODY_HEIGHT,
"y
1.0f/4.0f * AQUA_BODY_MASS * AQUA_BODY_RADIUS * AQUA_BODY_RADIUS
+ 1.0£/12.0f * AQUA_BODY_MASS * AQUA_BODY_HEIGHT * AQUA_BODY_HEIGHT,
Iz
1.0£2.0f * AQUA_BODY_MASS * AQUA_BODY_RADIUS * AQUA_BODY_RADIUS};

/* initial position and orientation in world coordinates. */

#define AZIMUTH_INIT deg_to_rad(0.0f)

#define ELEVATION_INIT deg_to_rad(0.0f)

#define ROLL_INIT  deg_to_rad(0.0f)

#define X_INIT 0.0f

#define Y_INIT 0.0f

#define Z_INIT sinf(default_angles[1])*LINK2LENGTH - LINK3LENGTH

/* leg attachment angles. */

#define LEGIANGLE deg_to_rad(0.0f)
#define LEG2ANGLE deg_to_rad(60.0f)
#define LEG3ANGLE deg_to_rad(120.0f)
#define LEG4ANGLE deg_to_rad(180.0f)
#define LEGSANGLE deg_to_rad(240.0f)
#define LEG6ANGLE deg_to_rad(300.0f)

127




class aquarobot
{
public:
aquarobot_body body;
/lprivate:
aqua_leg  legl, leg2, leg3, leg4, leg$, leg6:

private:
void
aquarobot::init_joint_access();

void
update_forces_and _torques(),

void
update_legs();

public:
/# External access to joint angles for passing to performer model
// This could be private if "update_jointDCS" were a friend;
// however, the class should not depend on needs of user.
float*  joint_matrix[6][4];

public:
aquarobot():body(AQUA_BODY_MASS, aqua_body_inertia),
legl(LEG1ANGLE),
leg2(LEG2ANGLE),
leg3(LEG3ANGLE),
leg4(LEG4ANGLE),
legS5(LEGSANGLE),
leg6(LEG6ANGLE) {init_joint_access();}

void
initialize(float k = SPRING_K, float d = SPRING_D, float height = 0.0f);

void
update_aquarobot(float dt = 0.0f),

/1 coordinate transformation routines

void

world_to_aqua(pfVec3 destination, pfVec3 source)
{body.world_to_body(destination, source);}

void
aqua_to_world(pfVec3 destination, pfVec3 source)
{body.body_to_world(destination, source);}
|8

128




void
update_jointDCS(aquarobot robot, pfDCS *JointDCS{6}{4}).

#endif

129




// File "aqua.c"

#include "aqua. H"
#include <math.h>

/* user routines */

void
aquarobot: initialize(float k, float d, float height)
{
body.move(AZIMUTH_INIT, ELEVATION_INIT. ROLL _INIT,
X_INIT, Y_INIT, -fabs(height)+Z_INIT);,
pfSetVec3(body.vel_trans, 0.0f, 0.0f, 0.0f):
pfCopyVec3(body.vel_rot, body.vel_trans):
pfCopyVec3(body.accel_trans. body.vel_trans);
pfCopy Vec3(body.accel_rot, body.vel_trans),
pfCopy Vec3(body.forces, body.vel_trans),
pfCopyVec3(body.torques, body.vel_trans);
body.start_timer();
legl.init leg(&body, k, d);
leg2.init_ieg{& body, k, d);
leg3.init_leg(&body. k. d):
legd.init_leg(&body, k. dj;
leg$.init_leg(&body. k, dj:
leg6.init_leg(&body, k. d):
update_forces_and_torques();
}

void aquarobot::update_aquarobot(float dt)
{
float dt_ =dt;
if {dt <=0.0)
dt_ = body.get_delta_t(); // default

bodv.ipdate_acceleration();
body.update_velocity(dt_);
body.update_H_matrix(dt_);
body.update_position(dt_);

// body.update_velocity(dt_);
update_legsQ:
/* This is done last as it also updates leg positions: */
/* leg positions depend on "new” body position! */
update_forces_and_torques();

}

130




/* Internal Routines */

void

aquarobot::init_joint_access()

{
/! for use, see fn:"update_jointDCS" below
joint_matrix[0][0] = &legl link].inboard_joint_angle;
joint_matrix|[0])[1] = &legl.link2.inboard _joint_angle.
joint_matrix{0](2] = &leg].link3.inboard_joint_angle.
joint_matrix[0](3] = &leg!.link4. H_matrix[0][0];

joint_matrix[1}{0] = &leg2.link].inboard_joint_angle;
joint_matrix[1]{1] = &leg2.link2.inboard_joint_angle;
joint_matrix[1}{2] = &leg2.link3.inboard_joint_angle;
joint_matrix[1][3] = &leg2.link4. H_matrix[0][0];

joint_matrix[2][0] = &leg3.link1.inboard_joint_angle;
joint_matrix[2][1] = &leg3.link2.inboard_joint_angle;
joint_matrix[2][2] = &leg3.link3.inboard_joint_angle;
joint_matrix[2][3] = &leg3.link4. H_matrix{0]([0];

joint_matrix[3][0] = &leg4.link1.inboard_joint_angle:
joint_matrix[3][1] = &leg4.link2.inboard_joint_angle;
joint_matrix[3][2] = &leg4.link3.inboard_joint_angle;
joint_matrix[3][3] = &leg4.link4 H_matrix[0}{0];

joint_matrix(4][0] = &leg5.link].inboard_joint_angle;
joint_matrix{4][1] = &leg5.link2.inboard_joint_angle;
joint_matrix[4][2] = &leg5.link3.inboard_joint_angle;
joint_matrix[4][3] = &leg5.link4.H_matrix[0][0];

joint_matrix[5][0] = &leg6.link1.inboard_joint_angle;
joint_matrix[5](1] = &leg6.link2.inboard _joint_angle;
joint_matrix[5][2] = &leg6.link3.inboard_joint_angle;
joint_matrix[5}[3] = &leg6.link4. H_matrix[0][0];

}

void aquarobot::update_forces_and_torques()

{
pfSetVec3(body.forces, 0.0f, 0.0f, 0.0f);
pfSetVec3(body.torques, 0.0f, 0.0f, 0.0f);
legl.add_leg_forces_and_torques();
leg2.add_leg forces_and_torques();
leg3.add_leg_forces_and_torques();
legd.add_leg forces_and_torques();
leg5.add_leg_forces_and_torques();
leg6.add_leg_forces_and_torques();

131




void aquarcbot::update_legs()

{
legl.update_leg();
leg2.update_leg();
leg3.update_leg();
legd.update_leg();
leg5.update_leg();
leg6.update_leg():

/* joint angle transfer routine */

void
update_jointDCS(aquarobot robot. pfDCS *JointDCS[6][4])
{

static pfMatrix m4 = {{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,1}}:

for(int i=0;i<6;i++) {
// rotate first three joints
for(int j=0,j<3;j++) {
pIDCSRot(JointDCS[i}{j],

rad_to_deg(*robot.joint_matrix{i](j]), 0.0f, 0.0f);

}

/1 equiv to rot(0x,-90y,0z) * inverse(leg|i].link4.H_Matrix)

// accomplishes DCS such that link(x-axis) || world(z-axis)

m4[0][0] = (robot joint_matrix[i][3])[2];

m4[0][1] = (robot joint_matrix[i]{3])[6];

m4[0}[2] = (robot.joint_matrix[i][3])[10];

m4[1][0] = (robot.joint_matrix[i]{3D{1];

mé[1]{1] = (robot joint_matrix[i][3]D[5];

m4[1][2] = (robot joint_matrix[i][3])[9};

m4[2]{0] = ~(robot.joint_matrix{i][3]){0];

m4[2][1] = -(robot.joint_matrix[i}[3D[4];

m4{2}[2] = -(robot.joint_matrix[i][3]){8];

pfDCSMatrix(JointDCS[i}[3], m4);

132




// file "aqua_leg.h"

#ifndef AQUA_LEG_H
#define _AQUA_LEG_H

#include <Performer/pf.h>
#include "rigid_body H"
#include "aqua_link H"
#include "misc. H"

/* initial (default) joint angles. */
static pfVec3 default_angles = {
/* Odeg®* 0.0f,
/* 45deg*/ 25.0f * PI_F/ 180.0f,
/* <135 deg */ -115.0f * P1_F / 180.0f};

/* joint spring constant. (default : 5,000,000 Kg-cm2/sec2 per radian) */
#define SPRING K -5000000.0f

/* joint spring damping constant. (default : 500,000 Kg-cm2/sec2 per radian/sec) */
#define SPRING_D -500000.0f

/* AQUA LEG CLASS */
class aqua_leg

public:

float leg_attachment_angle;
aqualink0 link0;

aqualinkl linkl;

aqualink2 link2;

aqualink3 link3;

aqualink4 linkd4;

boolean motion_complete_flag;
pfVec3  previous_foot_position;
pfVec3  current_foot_position;
boolean foot_contact;

float  spr_k;

float  spr_d;

public:
aqua_leg(float angle = 0.0f): leg_attachment_angle(angle)
{
motion_complete_flag = TRUE;
foot_contact = FALSE;
}

void
init_leg(rigid_body *body, floatk = SPRING K. float d = SPRING_D),

133




void
set_defauli_angles();

void
update_leg();

void
update_foot_pos():

void
set_angles(float joint!, float joint2, float joint3),

void
set_angles(pfVec3 angles) {set_angles(angles(0], angles{1], angles(2]);}

void
Jjacobian(pfMatrix J);

void
inverse_jacobian(pfMatrix J_inv),

void
joint_rates(pfVec3 rates),

void
FootPosFmJjoint1(pfVec3 foot_pos_j1, pfVec3 foot_pos_world);

void
aqua_inv_kin(pfVec3 joint_angles, pfVec3 world_foot_pos);

void
add_leg_forces_and_torques();

int

new_contact();

int

still_in_contact(pfVec3 leg_force_body);
h

#endif

134




// file "aqua_leg.c"

#include <math.h>
#include "aqua_leg. H"

/* AQUA-ROBOT INVERSE KINEMATICS ROUTINES */

static float L2sqr = LINK2LENGTH * LINK2LENGTH;
static float L3sqr = LINK3LENGTH * LINK3LENGTH:

/* routines that return the joint angles for a leg. given the foot position */

float
thetal(pfVec3 foot_pos)
{
if (foot_pos{0] < 0.0f)
return (atan2f(-foot_posf1}, -foot_pos[0)));
else
return (atan2f( foot_pos{1], foot_pos[0]));
}

float
theta2(pfVec3 foot_pos, float hyp, float hyp_sqr)
{
float temp = asinf(foot_pos{2)/hyp);
if (foot_pos{0} < 0.0f) temp = PI_F - temp;
return (acosf((L2sqr + hyp_sqr - L3sqr) / (2 * LINK2LENGTH * hyp)) - temp );
}

float
theta3(float hyp_sqr)
{
return (acosf((L2sqr + L3sqr - hyp_sqr) / (2 * LINK2LENGTH * LINK3LENGTH)) - PI_F);
}

/* supports theta2 and theta3 which require foot position with respect */

/* to joint2 position. joint2 position depends on thetal. */
void
FootPosFmJoint2(pfVec3 destination, pfVec3 source)
{
destination[0] = sqrtf(source[0]*source[0] + source[1]*source[1])
- LINK1LENGTH,

destination{1] = 0.0f,
destination{2] = source[2];
}

135




/* AQUA LEG CLASS */

void

aqua_leg::init_leg(rigid_body *body, float k. float d)

{
spr k=k. spr d=d.
foot_contact = 0;
linkO.inboard_link = body;
link1 .inboard_link = &link0;
link2.inboard_link = &link]1:
link3.inboard_link = &link2;
link4.inboard_link = &link3;
set_default_angles():

H

void
aqua_leg::set_default_angles()

{

set_angles(default_angles),

update_foot_pos();

pfCopy Vec3(previous_foot_position, current_foot_position);
}

void
aqua_leg::update_leg()
{
pfCopy Vec3(previous_foot_position, current_foot_position);
set_angles(linkl.inboard_joint_angle,
link2.inboard_joint_angle,
link3.inboard_joint_angle);
update_foot_pos();
}

void
aqua_leg::update_foot_pos()
{
if ('foot_contact) {
current_foot_position[0] = link4.H_matrix[3}{0};
current_foot_position[1] = link4. H_matrix{3]{1};
current_foot_position{2] = link4. H_matrix{3](2];
}
}

136




void
aqua_leg::set_angles(float jointl, float joint2, float joint3)
{
linkO.rotate_link(leg_attachment_angle);
link1.rotate_link(jointl);
link2.rotate_link(joint2);
link3.rotate_link(joint3),
/I this works for each leg in 2D, but world 3D solution requires(0.0)
/I linkd.rotate_link(-deg_to_rad(90.0f) - joint2 - joint3);
linkd.rotate_link(0.0f);
}

void
aqua_leg::jacobian(pfMatrix J)
{

pfVec3 row,

float angle, SO1, CO1, S2. C2, $23, C23;
#define L1 LINK1ILENGTH

#define L2 LINK2LENGTH

#define L3 LINK3LENGTH

angle = leg_attachment_angle + link1.inboard_joint_angle;
S01 = sinf(angle);

C01 = cosf(angle);

angle = link2 inboard_joint_angle;

52 = sinf(angle);

C2 = cosf(angle);

angle += link3.inboard_joint_angle;

$23 = sinf(angle);

C23 = cosf(angle),

pfMakeldentMat(J);

pfSetVec3(row, -SO1 * (L1 + L2*C2 + L3*C23),
-Co1 * (1.2*S2 + L3*S23),
-Col1 * L3 * S23);

pfSetMatColVec3(], 0, row);

pfSetVec3(row, CO1 * (L1 +L2*C2 + L3*C23),
-SO1 * (L2*S2 + L3*823),
-S01 * L3 * §23),

pfSetMatColVec3(J, 1, row);

pfSetVec3(row, 0.0f,
-L2*C2 - L3*C23,
-L3 * C23),

pfSetMatColVec3(J, 2, row);

}

137




void
aqua_leg::inverse Jaeobun(pﬁhmx I_inv)

{
pfMatrix J,
jacobian(J),
pfInvertMat(J_inv, J);
}

void
aqua_leg::joint_rates(pfVec3 rates)
{

pfMatrix J_inv;

pfVec3 trans_rates;

pfVec3 omega,

pfVec3 foot_r,

pfVec3l rot_rates;

pfVec3 foot_rates;

inverse_jacobian(J_inv),
pfScaleVec3(trans_rates, -1.0f, ((rigid_body *)link0.inboard_link)->vel_trans);

pfCopyVec3(omega, ((rigid_body *)link0.inboard_link)->vel_rot);
((rigid_body *)link0.inboard_link)->world_to_body(foot_r, current_foot_position);
pfCrossVec3(rot_rates, omega, foot_r);

pfSubVec3( foot_rates, trans_rates, rot_rates);
post_mult(rates, J_inv, foot_rates);
}

void
aqua_leg::FootPosFmJointl(pfVec3 foot_pos_j1, pfVec3 foot_pos_world)
{
link0.world_to_body(foot_pos_jl, foot_pos_world);
foot_pos_j1{0] = LINKOLENGTH,
}

void
aqua_leg::aqua_inv_kin(pfVec3 joint_angles, pfVec3 world_foot_pos)
{

pfVec3 foot_joint1, foot_joint2;

float hyp, hyp_sqr;

FootPosFmJoint1(foot_joint1, world_foot_pos);

FootPosFmJoint2(foot_joint2, foot_joint1);

hyp = pfLengthVec3 oot _joint2);

hyp_sqr = hyp * hyp;

pfSetVec3(joint_angles, thetal(foot_jointl),
theta2(foot_joint2, hyp, hyp_sqr),
theta3(hyp_sqn));

138




void
aqua_leg::add_leg_forces_and_torques()
{
if (foot_contact || new_contact())
{
pfVec3 angles, joint_torques, damp, forces, foot_pos;
pMatrix work_matrix1, work_matrix2;

aqua_inv_kin(angles, current_foot_position):
set_angles(angles):

/* get spring force of joints */
pfSubVec3(joint_torques, angles, default_angles):
pfScaleVec3(joint_torques, spr_k, joint_torques);

/* add damping */

joint_rates(damp);

pfScaleVec3(damp, spr_d, damp),
pfAddVec3(joint_torques, joint_torques. damp),

jacobian(work_matrix1);
pfTransposeMat(work_matrix2, work_matrix1);
pflnvertMat(work_matrix 1, work_matrix2);
post_mult(forces, work_matrix1. joint_torques);
pfScaleVec3(forces, -1.0, forces);

if (still_in_contact(forces))
{
((rigid_body *)link0.inboard_link)->world_to_body(foot_pos, current_foot_position)
((rigid_body *)link0.inboard_link)->add_force_and_torques(foot_pos, forces);
}
}
H

int
aqua_leg::new_contact()
{
if (current_foot_position[2] > 0.0f)
{
current_foot_position[2] = 0.0f;
return (foot_contact = TRUE),
}
else
return FALSE;
}

139




int
aqua_leg::still_in_contact(pfVec3 leg_force_body)
{
pfVec3 leg_force_world;
((rigid_body *)link0.inboard_link)->body_to_world(leg_force_world, leg_force_body);
pfSubVec3(leg_force_world, leg_force_world. ((rigid_body *)link0.inboard_link)->location);
if (leg_force_world{2] > 0.0f)
{
set_default: angles();
return (foot_contact = FALSE),
}
else
return TRUE;

}

140




// file "aqua_link.h"

#ifndef AQUA_LINK_H_
#define_AQUA_LINK_H_

#include <Performer/pf.h>
#include "rigid_body H"

/* BASE CLASSES */

class link:public rigid_body

{

public:

int  motion_limit_flag;

float length_i_I;

float twist_t_l,

float inboard_joint_angle;

float inboard_joint_displacement;
void* inboard_link;

pfMatrix T_matrix;

public:
link(float mass = 1.0f, pfVec3 moments = NULL):rigid_body(mass, moments){}
void update_T_matrix();

void rotate(float angle);

5

class rotary_link;public link
{

public:

float min_joint_angle;
float max_joint_angle;

public:
rotary_link(float length =0.0f,
float min_angle = 0.0f,
float max_angle =(.0f,
float twist = (0.0f,

float joint_angle =0.0f,
float joint_displacement = 0.0f,
void® inboard_link =0);
void rotate_link(float angle);
5

141




/* MODIFIED DANEVIT-HARTENBERG LINK COORDINATE TRANSFORMATION MATRIX */

void

mdh_matrix(pfMatrix mdh,
float cosrotate, float sinrotate,
float costwist_i_1, float sintwist_i_1.
float length_i_1, float translate):

/* AQUA-LINK CLASSES */

/* link lengths */

#define LINKOLENGTH 37.5f
#define LINK1LENGTH 20.0f
#define LINK2LENGTH 52.0f
#define LINK3LENGTH 102.0f
#define LINK4LENGTH 3.0f

/* joint limits */

#define JOINTIMIN deg_to_rad( -60.0f)
#define JOINTIMAX deg_to_rad( 60.0f)
#define JOINT2MIN deg_to_rad(-360.0f)
#define JOINT2MAX deg_to_rad( 360.0f)
#define JOINT3MIN deg_to_rad(-360.0f)
#define JOINT3IMAX deg_to_rad( 360.0f)
#define JOINT4MIN deg_to_rad( -22.5f)
#define JOINTAMAX deg_to_rad( 22.5f)

class aqualinkO:public rotary_link
{

public:

aqualink0();

¥

class aqualink1:public rotary_link

{
public:

aqualink1();
b

class aqualink2:public rotary_link
{

public:

aqualink2();

5

142




class aqualink3:public rotary_link
{

public:

aqualink3().

|

class aqualink4:public rotary_link
$

1

public:

aqualink4();

b

#endif

143




// file "aqua_link.c"

#include <math.h>
#include "aqua_link H"
#include "misc. H"

/* BASE CLASSES */

void

link::update_T_matrix()

{
float sa = sinf(inboard_joint_angle):
float ca = cosf(inboard_joint_angle).
float st = sinf(twist_i_1).
float ct = cosf(twist_i_1);

mdh_matrix(T_matrix, ca, sa, ct, st, length_i_1, inboard_joint_displacement);
}

void
link::rotate(float angle)
{
inboard_joint_angle = angle;
update_T_matrix();
// multiplied in reverse order as they are stored as transposes.
pMultMat(H_matrix, T_matrix, ((rigid_body *)inboard_link)->H_matrix),
}

rotary_link::rotary_link(float length,
float min_angle,
float max_angle,
float twist,
float joint_angle,
float joint_displacement,
void* inboard_link )

{
length_i_1 = length;
min_joint_angle = min_angle;
max_joint_angle = max_angle;
twist_i_1 = twist;
inboard_juint_angle = joint_angle;
inboard_jcint_displacement = joint_displacement;
inboard_link = inboard_link_;
pfMakeldentMat(T_matrix);

}

144




void
rotary_link: :rotate_link(float angle)
{
/* joint stops disabled.
if (angle < min_joint_angle)
{
rotate(min_joint_angle);
motion_limit_flag = -1
}
else if (angle > max_joint_angle)
{
rotate(max_joint_angle);
motion_limit_flag = 1.
}
else
{
*/
rotate(angle);
motion_limit_flag = 0;
/i
}
*/
}

void

mdh_matrix (pfMatrix mdh,
float cosrotate, float sinrotate,
float costwist_i_1, float sintwist_i_I,
float length_i_1, float translate)

/*col 1%/

mdh[0][0] = cosrotate;

mdh{1}{0} = - sinrotate;

mdh[2][0] = 0.0f;

mdh(3][0] = length_i_1;

/*col 2%/

mdh[0][!] = sinrotate * costwist_i_1;
mdh[1][1] = cosrotate * costwist_i_1;
mdh[2}{1] = - sintwist_i_1;

mdh{3}{1] = - sintwist_i_1 * translate;
/*col 3 */

mdh[0][2] = sinrotate * sintwist_i_1;
mdh(1]{2] = cosrotate * sintwist_i_1;
mdh{2}[2] = costwist_i_};

mdh[3][2] = costwist_i_1 * translate;
/* col 4 */

mdh[0][{3] = mdh[1][3] = mdh{2][3] = 0.0f;
mdh[3](3] = 1.0f;

145




/* alternate method using pf functions
pfVec3 col;
pMMakeldentMat(mdh),
pfSetVec3(col, cosrotate, sinrotate * costwist_i_1.
sinrotate * sintwist_i_1);
pfSetMatRowVec3(mdh, 0, col);
pfSetVec3(col, -sinrotate, cosrotate * costwist_i_1.
cosrotate * sintwist_i_1).
pfSetMatRowVec3(mdh, 1, col);
pfSetVec3(col, 0.0, -sintwist_i_1, costwist_i_1):
pfSetMatRowVec3(mdh, 2, col).
pfSetVec3(col. length_i_l, - sintwist_i_1l * translate.
costwist_i_1 * translate):
pfSetMatRowVec3(mdh. 3, col);
*/
}

/* AQUA-LINK CLASSES */

aqualink0::aqualink0()
{

max_joint_angle = deg_to_rad(360.0f);
}

aqualink]::aqualink1()

{
length i 1 =LINKOLENGTH,
min_joint_angle = JOINTIMIN;
max_joint_angle = JOINTIMAX;

}

aqualink2::aqualink2()

{
length_i_1 =LINKILENGTH,;
twist_i_1 = deg_to_rad(-90.0f);
min_joint_angle = JOINT2MIN;
max_joint_angle = JOINT2MAX;

}

aqualink3::aqualink3()

{
length i 1 =LINK2LENGTH;
min_joint_angle = JOINT3MIN;
max_joint_angle = JOINT3MAX;

}

146




aqualink4::aqualink4()
{

length_i_ |  =LINK3LENGTH;

min_joint_angle = JOINT4MIN,

max_joint_angle = JOINT4MAX;

}

147




// file "rigid_body.H"

#ifndef RIGID_BODY_
#define _RIGID_BODY _

#include <Performer/pf.h>
#define GRAVITY 980.0

class rigid_body

{

public:
pfVecs location; /* The vector (X y z) in world coordinates. */
pfVec3 vel_trans; /* The vector (u v w) in body coordinates. */
pfVec3 vel_rot; /* The vector (p q r) in body coordinates. */
pfVec3 accel_trans;/* The vector (u-dot v-dot w-dot). */
pfVec3 accel_rot; /* The vector (p-dot q-dot r-dot). */
pfVec3 forces; /* The vector (Fx Fy Fz) in body coordinates. */
pfVec3 torques; /* The vector (L M N) in body coordinates. */
pfVec3 moments_; /* The vector (Ix Iy Iz) in principal axis coordinates. */
float mass_; /*inKg */
float current_time;
pfMatrix H_matrix;

public:
rigid_body(float mass, pfVec3 moments = NULL);

void
move(float azimuth, float elevation, float roll,
floatx, floaty, float z);

float
get_delta_t();

void
start_timer();

ad

void

update_rigid_body();
*/

void
update_acceleration();

void
update_velocity(float dt);

148




void
update_H_matrix(float dt);

void
update_position(float dt);

void
world_to_body(pfVec3 destination. pfVec3 source);

void
body_to_world(pfVec3 destination, pfVec3 source);

void
add_force_and_torques(pfVec3 r, pfVec3 f);
}
void
homogeneous_transform(pfMatrix homo,
float azimuth, float elevation. float rotl,
floatx, floaty, float z);

void
post_mult(pfVec3 destination, pfMatrix m, pfVec3 source);

#endif

149




/I file "rigid_body.C"

#include "rigid_body H"
#include "misc.H"

rigid_body::rigid_body(float mass, pfVec3 moments)
{
location [0] = location [1] = location [2] =
vel_trans [0] = vel_trans [1] = vel_trans [2] =
vel_rot [O] =vel_rot [1]=vel_rot [2]=
accel_trans[0] = accel_trans|1] = accel_trans[2] =
accel_rot [0] = accel_rot [1] = accel_rot [2] =
forces [0} =forces [l] =forces |[2]=
torques {0] = torques (1] =torques (2] =0.0f,
if (moments == NULL)
moments_[0] = moments_[1] = moments_{2] = 0.0f;
else
pfCopyVec3(moments_, moments);
mass_ = mass;
pfMakeldentMat(H_matrix);
current_time = 0.0f;

}

void

rigid_body::move(float azimuth, float elevation, float roll,
floatx, floaty, float 2)

{

homogeneous_transform(H_matrix, azimuth, elevation, roll, x, y, z);
pfSetVec3(location, X, y, z);
}

float
rigid_body::get_delta_t()
{

float dt = 0.05f;
current_time +=dt;
return dt;

}

void
rigid_body::start_timer()
{

current_time = 0.0f;

}

150




/‘
void

r{isid.bodyi ‘update_rigid_body(

float dt = get_delwa_t;

update_H_matrix(dt);

update_position(dt);

update_velocity(dt):

update_acceleration().
4

void
rigid_body::update _acceleration()
{
accel_trans[0] = vel_trans[1] * vel_rot[2] - vel_trans[2] * vel_rot{1}
+ forces{0] / mass_ + GRAVITY * H_matrix{0}{2];
accel_trans{1} = vel_trans(2] * vel_rot{0] - vel_trans{0] * vel_rot(2]
+ forces[1] / mass_ + GRAVITY * H_matnix{1}{2];
accel_trans[2] = vel_trans[0] * vel_rot{1] - vel_trans{[1] * vel_rot[0]
+ forces{2] / mass_ + GRAVITY * H_matrix{2](2];
accel_rot[0] =
((moments_{1] - moments_[2]) * vel_rot[1] * vel_rot[2] + torques[0])
/ moments_[0];
accel_rot{l] =
((moments_{2] - moments_[0]) * vel_rot{2] * vel_rot[0] + torques(1])
/ moments_{1};
accel_rot[2] =
((moments_[0] - moments_[1]) * vel_rot[0] * vel_rot{1] + torques{2])
/ moments_[2];

}

void

rigid_body::update_velocity(float dt)

{
pfVec3 dv;
pfScaleVec3(dv, dt, accel_trans),
pfAddVec3(vel_trans, vel_trans, dv);
pfScaleVec3(dv, dt, accel_rot);
pfAddVec3(vel_rot, vel_rot, dv);

}

151




void
rigid_body::update_H_matrix(float dt)
{
piMatrix homo;
homogeneous_transform(homo, dt * vel_rot{2],
dt * vel_rot{1],
dt * vel_rot[0],
dt * vel_trans{0],
dt * vel_trans{1},
dt * vel_trans[2]);
pfPreMultMat(H_matrix, homo),
}

void
rigid_body::update_position(float dt)
{
pfGetMatRow Vec3(H_matrix, 3. location),
}

void
rigid_body::world_to_body(pfVec3 destination, pfVec3 source)
{
pfMatrix inv_H;
pfinvertMat(inv_H, H_matrix);
post_mult(destination, inv_H, source),
}

void
rigid_body::body_to_world(pfVec3 destination, pfVec3 source)
{
post_mult(destination, H_matrix, source);
}

void
rigid_body::add_force_and_torques(pfVec3 r, pfVec3 f)
{
pfVec3 t;
pfCrossVec3(t, r, f);
pfAddVec3(torques, torques, t);
pfAddVec3(forces, forces, f);
}

152




void
homogeneous _transform(pfMatrix homo,
float azimuth, float elevation, float roll,
floatx, floaty, float z)
{
float sz, ¢z, sy, cy, SX, ¢x;

pfSinCos(rad_to_deg(azimuth), &sz. &cz).
pfSinCos(rad_to_deg(elevation). &sy. &cv):
pfSinCos(rad_to_deg(roll), &sx. &cx);
*cal L ¥
homo|0}][0] = cz*cy.
homo([1][0] = cz*sy*sx - sz*cx;
homo{2]{0] = cz*sy*cx + sz*sx;
homo({3][0] = x:
/*col 2 ¥/
homo[0][1] = sz*cy;
homo{1)[1] = cz*cx + sz*sy*sx;
homo{2}{1] = sz*sy*cx + cz*sx;
homo[3][1l] =y.
/*col 3%/
homo[0][2] = -sy.
homo[1]{2] = cy*sx;
homof2]{2] = cy*cx;
homo([3}[2] = z;
/*col 4 */
homo[0](3] = homo[1}{3] = homo[2](3] = 0.0f;
homo[3][3] = 1.0f;

}

void
post_mult(pfVec3 destination, pfMatrix m, pfVec3 source)
{
destination[0] = source[0] * m{0}{0] + source[1] * m{1]{0] +
source(2] * m(2](0] + m(3](0};

destination{ 1} = source{0] * m[0]{1] + source[1] * m[1][1] +
source{2] * m(2][1] + m[3}{1];

destination[2] = source[0] * m{0}[2] + source[1] * m[1]}[2] +

source(2] * m[2]{2] + m(3]i2};
}

153




// file "misc.H"
#ifndef MY_MISC_
#define MY _MISC_
/* type BOOLEAN */
typedef int boolean;
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif

#define PI 3.14159265358979323846
#define PI_F 3.14159f

/* angle measurement conversions */

float
deg_to_rad(float deg);

float
rad_to_deg(float rad);

double
deg_to_rad(double deg);

double
rad_to_deg(double rad);

#endif

154




/! file "misc.C"

#include “misc. H"
/* angle measurement conversions */

float

deg_to_rad(float deg)

{
const float rad_per_deg = PI_F / 180.0f,
return (deg * rad_per_deg);

H

float

rad_to_deg(float rad)

{
const float deg_per_rad = 180.0f / PI_F;
return (rad * deg_per_rad);

}

double
deg_to_rad(double deg)

{
const double rad_per_deg = PI/ 180.0;
return (deg * rad_per_deg);

}

double

rad_to_deg(double rad)

{
const double deg_per_rad = 180.0 / PI;
return (rad * deg_per_rad),

}

155




LIST OF REFERENCES

Chen, C., Analog and Digital Control System Design: Transfer-Function, State-Space,
and Algebraic Methods, Saunders College Publishing, 1993.

Davidson, S. L., An Experimental Comparison of CLOS and C~~ Implementations of an
Object-Oriented Graphical Simulation of Walking Robot Kinematics, Master's Thesis,
Naval Postgraduate School, Monterey, California, March 1993.

Frank, A. A., and McGhee, R. B., "Some Considerations Relating to the Design of
Autopilots for Legged Vehicles," Journal of Terramechanics, Vol. 6, No. 1, pp. 23-35,
1969.

Fu, K. S., Gonzalez, R. C, and Lee, C. S. G, Robotics: Control, Sensing, Vision and
Intelligence, McGraw-Hill, 1987.

Goetz, J., Graphical Simulation of Articulated Rigid Body System Kinematics with
Collision Detection, Master's Thesis, Naval Postgraduate School, Monterey, California,
March 1994,

Halliday, D., and Resnick, R., Fundamentals of Physics, 2d ed., John Wiley & Sons,
1981.

Iwasaki, M, et al., "Development on Aquatic Walking Robot for Underwater Inspection,"
Report of the Port and Harbour Reasearch Institute, Vol. 26, No. S, pp. 393-422,
December 1987.

Koozekanani, S. H., Barin, K., McGhee, R. B, and Chang, H. T., "A Recursive
Free-Body Approach to Computer Simulation of Human Postural Dynamics," /EEE
Transactions on Biomedical Engineering, Vol. BME-30, No. 12, December 1983.
Koschmann, T. D., The Common LISP Companion, John Wiley & Sons, 1990.

Kwak, S. H, and McGhee, R. B., "Rule-Based Motion Coordination for a Hexapod
Walking Machine," Advanced Robotics, Vol. 4, No. 3, pp.263-282, 1990.

McGhee, R. B., "Vehicular Legged Locomotion,", Advances in Automation and Robotics,
ed. by G. N. Saridis, Vol. 1, Chapter 7, JAI Press Inc., 1985.

McGhee, R. B,, Nakano, E., Koyachi, N, and Adachi, H., "An Approach to Computer

Coordination of Motion for Energy-Efficient Walking Machines," Bulletin of Mechanical
Engineering Laboratory, Japan, No. 43, 1986.

156




Silicon Graphics, Inc., /RIS Performer Programming Guide, 1992.

McMillan, S, Orin, D. E, and McGhee, R. B., "Efficient Dynamic Simulation of an
Unmanned Underwater Vehicle with a Manipulator," Proceedings of 1994 IEEE
International Conference on Robotics and Automation, San Diego, California, May 8-13,
1994.

McPherson, G., An Introduction to Electrical Machines and Transformers, John Wiley &
Sons, 1981,

Oakley, C. O., Calculus: A Modern Approach, Barnes & Noble, 1971.

Schue, A. S., Simulation of Tripod Gaits for a Hexapod Underwater Walking Machine,
Master's Thesis, Naval Postgraduate School, Monterey, California, June 1993.

Waldron, K. J., and McGhee, R. B., "The Adaptive Suspension Vehicle," /EEE Control
Systems Magazine, Vol. 6, No. 6, December 1986.

Wiener, R. S., and Pinson, L. J., An Introduction to Object-Oriented Programming and
C+~, Addison-Wesley, 1988.

Yoneda, K., Suzuki, K., and Kanayama, Y., "Gait and Foot Trajectory Planning for
Versatile Motion of a Six Legged Robot," Proceedings of 1994 IEEE International
Conference on Robotics and Automation, San Diego, California, May 8-13, 1994.

Yoshikawa, T., Foundations of Robotics, MIT Press, 1990.

157




1o

10.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA  22304-6145

Dudley Knox Library

Code 052

Naval Postgraduate School
Monterey, CA  93943-5101

Chairman, Code CS
Computer Science Department

Naval Postgraduate School
Monterey, CA 93943

Dr. Robert B. McGhee, Code CS/Mz
Computer Science Department
Navai Postgraduate School
Monterey, CA 93943

Dr. David R. Pratt, Code CS/Pr
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr. Se-Hung Kwak

Loral / ADS

50 Moulton St.
Cambridge, MA 02138

Dr. Yutaka Kanayama, Code CS/Ka
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Mr. Hidetoshi Takahashi

Port and Harbour Research Institute
Ministry of Transport

1-1, 3-Chome, Nagase

Yokosuka, Japan

Lt. Karl J. R. W. Kristiansen
264 Worden St.
Portsmouth, RI 02871

Lt. John Goetz

R.R. 1,Box 133
Florence, SD 57235

158




