22 January 1993 ADST/WDL/TR-93-W003036 Rev. 0.0

. و

SOFTWARE DESIGN DOCUMENT

FOR THE

AIRNET AEROMODEL AND

WEAPONS MODEL CONVERSION

VOLUME 1 of 3

Rev. 0.0: 22 January 1993

CONTRACT NO. N61339-91-D-0001

D.O.: 0014

CDRL SEQUENCE NO. A009

Prepared for:

STRICOM

Simulator Training and Instrumentation Command

Simulator Training and Instrumentation Command Naval Training Systems Center 12350 Research Parkway Orlando, FL 32826-3275

DISTR BUTION STATEMENT A Approved for public releases Distribution Juliantion

94-19504

Prepared by:

Loral

ADST Program Office 12443 Research Parkway, Suite 303 Orlando, FL 32826

DTIC QUALITY AND A CONTRACTION

94 6 24 134

Best Available Copy

REPOR	OMB No. 0704-0188		
Public reporting burden for this collection gathering and maintaining the data neer this collection of information, including to Jafferson Davis Hichway, Suite 1204. A	n of information is estimated to average 1 hou ded, and completing and reviewing the collect uggestions for reducing this burden, to Wash rington VA 22202-4302, and to the Office of	r per response, including the time for reviewing on of information. send comments regarding i ngton Headquarters Services, Directorate for i Management and Budget Project (0704-0188)	instructions, searching existing data sources, his burden estimate or any other aspect of nformation Operations and Reports, 1215 Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank	2. REPORT DATE 22 January	1993 3. REPORT TYPE Version 0.0	AND DATES COVERED
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Advanced Distributed S for the AIRNET Aeron	Simulation Technology Sof nodel and Weapons Model	tware Design Document Conversion; Volume 1 of 3	Contract No. N61339-91-D-00
6. AUTHOR(S) Branson, Roger; McCarte	r, Steve		-
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
Loral Systems Company ADST Program Office 12443 Research Parkway, Suite Orlando, FL 32826	303		ADST/WDL/TR-93-W0030 CDRL A009
9. SPONSORING/MONITORING AGEN	CY NAME(S) AND ADDRESS(ES)		10. SPONSORING ORGANIZATION REPORT
STRICOM Naval Training Systems Cen 12350 Research Parkway Orlando, FL 32826-3275	ler		
	ATELSTAT		
Approved for muhi	ic releases distribution is w	alimated	12b. DISTRIBUTION CODE
		inninteti.	Λ
13. ABSTRACT (Maximum 200 words)			
The ADST Software So weapons software for da	ftware Design Document io tafile access during initiali	lentifies the modifications r zation.	nade to the AirNET RWA ar
4. SUBJECT TERMS			15. NUMBER OF PAGES
			481
			16. PRICE CODE
7. SECURITY CLASSIFICATION FREPORT	17. SECURITY CLASSIFICATION OF THIS PAGE	17. SECURITY CLASSIFICATION OF ABSTRACT	20. LINITATION OF ABSTRACT UL
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	
N 7540-01-280-5500			Standard Form 296 (Rev. 2-89) Prescribed by ANSI Std 239-18

Į.

., Jodes

Aveil and/or

Special

Jist

1A-1

TABLE of CONTENTS

1.	Scope1
1.1.	Identification1
1.2.	System overview1
1.3.	Document overview1
2.	Referenced documents2
3.	Preliminary design2
3.1.	CSCI overview2
3.1.1.	CSCI architecture2
3.1.2.	System states and modes2
3.1.3.	Memory and processing time allocation2
3.2.	CSCI design description
3.2.1.	CSC simulation_state_machine
3.2.1.1.	Sub-level CSC io-simul
3.2.1.1.1.	Sub-level CSC process_a_packet
3.2.1.1.1.1.	Sub-level CSC do_protocol_on_sim_packet
3.2.1.1.1.1.1.	Sub-level CSC process_indirect_fire
3.2.1.1.1.1.1.1.	Sub-level CSC failure_check_indir_fire_damages
3.2.1.1.1.1.1.1.1.	Sub-level CSC fail_vehicle_is_destroyed
3.2.1.2.	Sub-level CSC veh_spec_idle
3.2.1.2.1.	Sub-level CSC io_simul_idle
3.2.1.2.1.1.	Sub-level CSC process_a_packet4
3.2.1.2.2.	Sub-level CSC keyboard_simul
3.2.1.2.2.1.	Sub-level CSC controls_restore_controls
3.2.1.2.2.1.1.	Sub-level CSC controls_sim_init
3.2.1.2.2.2.	Sub-level CSC fail_cat_kill
3.2.1.2.2.2.1.	Sub-level CSC fail_vehicle_is_destroyed
3.2.1.2.2.3.	Sub-level CSC alt_init
3.2.1.2.2.3.1.	Sub-level CSC alt_new_height_is4
3.2.1.2.2.3.1.1.	Sub-level CSC fail_cat kill
3.2.1.3.	Sub-level CSC veh_spec_init4
3.2.1.3.1.	Sub-level CSC controls_sim_init
3.2.1.3.1.1.	Sub-level CSC controls_radios_init
3.2.1.3.2.	Sub-level CSC rwa_init
3.2.1.3.3.	Sub-level CSC weapons_init
3.2.1.3.3.1.	Sub-level CSC hydra init
3.2.1.3.4.	Sub-level CSC alt_init
3.2.1.4.	Sub-level CSC veh_spec_simulate
3.2.1.4.1	Sub-level CSC keyboard simul
4.	Detailed design
4.1.	CSC rwa init
4.1.1.	CSU engine init

– ii –

TABLE of CONTENTS

4.1.1.1.	CSU engine_init design specification/constraints	6
4.1.1.2.	CSU engine_init design.	6
4.1.2.	CSU aerodyn_init	13
4.1.2.1.	CSU aerodyn_init design specification/constraints	13
4.1.2.2.	CSU aerodyn_init design	13
4.1.3.	CSU veh spec_kinematics_init	24
4.1.3.1.	CSU veh_spec_kinematics_init design	
	specification/constraints	24
4.1.3.2.	CSU veh_spec_kinematics_init design	24
4.2.	CSC weapons_init	30
4.2.1.	CSU missile_tow_init	30
4.2.1.1.	CSU missile_tow_init design specification/constraints	31
4.2.1.2.	CSU missile_tow_init design	31
4.2.2.	CSU missile_hellfire_init.	42
4.2.2.1.	CSU missile_hellfire_init design specification/constraints	43
4.2.2.2.	CSU missile_hellfire_init design	43
4.2.3.	CSU missile_stinger_init	52
4.2.3.1.	CSU missile_stinger_init design specification/constraints	52
4.2.3.2.	CSU missile_stinger_init design	53
4.2.4.	CSU hydra_init	61
4.2.4.1.	CSU hydra_init design specification/constraints	61
4.2.4.2.	CSU hydra_init design	61
4.2.5.	CSU missile_hydra_init	65
4.2.5.1.	CSU missile_hydra_init design specification/constraints	66
4.2.5.2.	CSU missile_hydra_init design	66
4.2.6.	CSU missile_m73_init	71
4.2.6.1.	CSU missile_m73_init design specification/constraints	71
4.2.6.2.	CSU missile_m73_init design	71
4.2.7.	CSU missile_flechette_init.	77
4.2.7.1.	CSU missile_flechette_init design specification/constraints	77
4.2.7.2.	CSU missile_flechette_init design	77
4.3.	CSC controls_restore_controls	83
4.3.1.	CSU controls_radios_init	83
4.3.1.1.	CSU controls_radios_init design specification/constraints	83
4.3.1.2.	CSU controls_radios_init design	83
4.4.	CSC fail_vehicle_is_destroyed	85
4.4.1.	CSU controls_kill_radios	85
4.4.1.1.	CSU controls_kill_radios design specification/constraints	85
4.4.1.2.	CSU controls_kill_radios design	85
4.5.	Additional CSUs.	86
4.5.1.	CSU missile_adat_init	87
4.5.1.1.	CSU missile_adat_init design specification/constraints	87

TABLE of CONTENTS

4.5.1.2.	CSU missile_adat_init design	87
4.5.2.	CSU missile_atgm_init	.101
4.5.2.1.	CSU missile_atgm_init design specification/constraints	102
4.5.2.2.	CSU missile_atgm_init design	.102
4.5.3.	CSU missile_kem_init	.113
4.5.3.1.	CSU missile_kem_init design specification/constraints	114
4.5.3.2.	CSU missile_kem_init design	114
4.5.4.	CSU missile_maverick_init.	125
4.5.4.1.	CSU missile_maverick_init design specification/constraints	125
4.5.4.2.	CSU missile_maverick_init design	125
4.5.5.	CSU missile_nlos_init	134
4.5.5.1.	CSU missile_nlos_init design specification/constraints	134
4.5.5.2.	CSU missile_nlos_init design	134
5.	CSCI data	144
5.1.	Data elements internal to the CSCI	144
5.2.	Data elements of the CSCI's external interfaces	196
6.	CSCI data files.	197
7.	Requirements traceability.	198
8.	Notes	204
8.1	Acronyms and abbreviations	204
	· · · · · · · · · · · · · · · · · · ·	

Appendix A - RWA AirNet Call Tree Structure	A-1
Appendix B - Source code listing for rwa_aerodyn.c	B-1
Appendix C - Source code listing for rwa_engine.c.	C-1
Appendix D- Source code listing for rwa_kinemat.c	D-1
Appendix E - Source code listing for miss_adat.c	E-1
Appendix F - Source code listing for miss_atgm.c.	F-1
Appendix G - Source code listing for miss_hellfr.c	G-1
Appendix H - Source code listing for miss_kem.c.	H-1
Appendix I - Source code listing for miss_maverck.c.	I-1
Appendix J - Source code listing for miss_nlos.c	J-1
Appendix K - Source code listing for miss_stinger.c.	
Appendix L - Source code listing for miss_tow.c	L-1
Appendix M - Source code listing for rkt_hydra.c	M-1
Appendix N - Source code listing for rwa_hydra.c.	N-1
Appendix O - Source code listing for sub_flech.c.	
Appendix P - Source code listing for sub_m73.c	P-1

- iv -

LIST OF TABLES

TABLE 4.1.1.1 - CSU ENGINE_INIT LOCAL DATA DEFINITION TABLE	
TABLE 4.1.2.1 - CSU AERODYN_INIT LOCAL DATA DEFINITION TABLE	
	.14
TABLE 4.1.3.1 - CSU VEH_SPEC_KINEMATICS_INIT LOCAL DATA	
DFFINITION TABLE	.25
TABLE 4.2.1.1 - CSU MISSILE_TOW_INIT LOCAL DATA DEFINITION	
TABLE	.32
TABLE 4.2.2.1 - CSU MISSILE_HELLFIRE_INIT LOCAL DATA DEFINITION	N
TABLE	.44
TABLE 4.2.3.1 - CSU MISSILE_STINGER_INIT LOCAL DATA DEFINITION	1
TABLE	.54
TABLE 4.2.4.1 - CSU HYDRA_INIT LOCAL DATA DEFINITION TABLE	.62
TABLE 4.2.5.1 - CSU MISSILE_HYDRA_INIT LOCAL DATA DEFINITION	
TABLE.	67
TABLE 4.2.6.1 - CSU MISSILE_M73_INIT LOCAL DATA DEFINITION	
TABLE.	73
TABLE 4.2.7.1 - CSU MISSILE_FLECHETTE_INIT LOCAL DATA	-
DEFINITION TABLE	78
TABLE 4.5.1.1 - CSU MISSILE_ADAT_INIT LOCAL DATA DEFINITION	
	89
TABLE 4.5.2.1 - CSU MISSILE_ATGM_INIT LOCAL DATA DEFINITION	
	103
TABLE 4.5.3.1 - CSU MISSILE_KEM_INIT LOCAL DATA DEFINITION	
	115
TABLE 4.5.4.1 - CSU MISSILE_MAVERICK_INIT LOCAL DATA	
DEFINITION TABLE	127
TABLE 4.5.5.1 - CSU MISSILE_NLOS_INIT LOCAL DATA DEFINITION	10/
\mathbf{IABLE}	136
TABLE 5.1 SUMMARY OF DATA ARKAYS	145
TABLE 5.1.1 AERODYNAMICS DATA ARKAY	150
TABLE 5.1.2 AERODINAMICS INITIALIZATION DATA ARKAY	154
TABLE 5.1.3 AERODINAMICS SIMPLE DATA ARKAY	155
TABLE 5.1.4 AEKOD INAMICS STEALTH DATA AKKAY	150
TABLE 5.1.5 ENGINE DATA AKKAY	15/
TABLE 5.1.6 ENGINE INITIALIZATION DATA AKKAY	158
TABLE J.I./ ENGINE JIATUS DATA ARRAY	128
1ABLE 5.1.8 KINEMATICS DATA AKKAY	159
TABLE 5.1.9 KINEMATICS INITIALIZATION DATA AKKAY	160
TABLE 5.1.10 - HELLFIKE MISSILE CHARACTERISTICS DATA ARRAY	162
TABLE 5.1.11 HELLFIRE MISSILE POLYNOMIAL DEGREE DATA ARRA	.Y
	.163

. (]

LIST OF TABLES

TABLE 5.1.12 HELLFIRE MISSILE TIME-OF-FLIGHT DATA ARRAY	.163
TABLE 5.1.13 HELLFIRE MISSILE BURN SPEED DATA ARRAY	.164
TABLE 5.1.14 HELLFIRE MISSILE COAST SPEED DATA ARRAY	.165
TABLE 5.1.15 MAVERICK MISSILE CHARACTERISTICS DATA ARRAY	r
	.166
TABLE 5.1.16 MAVERICK MISSILE POLYNOMIAL DEGREE DATA	
ARRAY	.167
TABLE 5.1.17 MAVERICK MISSILE BURN SPEED DATA ARRAY	.167
TABLE 5.1.18 MAVERICK MISSILE COAST SPEED DATA ARRAY	.168
TABLE 5.1.19 STINGER MISSILE CHARACTERISTICS DATA ARRAY	.169
TABLE 5.1.20 STINGER MISSILE POLYNOMIAL DEGREE DATA ARRA	Y
	.170
TABLE 5.1.21 STINGER MISSILE BURN SPEED DATA ARRAY	170
TABLE 5.1.22 STINGER MISSILE COAST SPEED DATA ARRAY	170
TABLE 5.1.23 TOW MISSILE CHARACTERISTICS DATA ARRAY	.171
TABLE 5.1.24 TOW MISSILE POLYNOMIAL DEGREE DATA ARRAY	.171
TABLE 5.1.25 TOW MISSILE BURN SPEED DATA ARRAY	172
TABLE 5.1.26 TOW MISSILE COAST SPEED DATA ARRAY	172
TABLE 5.1.27 TOW MISSILE BURN TURN DATA STRUCTURE	173
TABLE 5.1.28 TOW MISSILE COAST TURN DATA STRUCTURE	174
TABLE 5.1.29 ADAT MISSILE CHARACTERISTICS DATA ARRAY	175
TABLE 5.1.30 ADAT MISSILE POLYNOMIAL DEGREE DATA ARRAY	175
TABLE 5.1.31 ADAT MISSILE BURN SPEED DATA ARRAY	176
TABLE 5.1.32 ADAT MISSILE COAST SPEED DATA ARRAY	177
TABLE 5.1.33 ADAT MISSILE BURN TURN DATA ARRAY	178
TABLE 5.1.34 ADAT MISSILE COAST TURN DATA ARRAY	179
TABLE 5.1.35 ADAT MISSILE TEMPORAL BIAS DATA ARRAY	180
TABLE 5.1.36 ATGM MISSILE CHARACTERISTICS DATA ARRAY	181
TABLE 5.1.37 ATGM MISSILE POLYNOMIAL DEGREE DATA ARRAY.	181
TABLE 5.1.38 ATGM MISSILE BURN SPEED DATA ARRAY	182
TABLE 5.1.39 ATGM MISSILE COAST SPEED DATA ARRAY	182
TABLE 5.1.40 ATGM MISSILE BURN TURN DATA STRUCTURE	183
TABLE 5.1.41 ATGM MISSILE COAST TURN DATA STRUCTURE	184
TABLE 5.1.42 KEM MISSILE CHARACTERISTICS DATA ARRAY	185
TABLE 5.1.43 KEM MISSILE POLYNOMIAL DEGREE DATA ARRAY	185
TABLE 5.1.44 KEM MISSILE BURN SPEED DATA ARRAY	186
TABLE 5.1.45 KEM MISSILE COAST SPEED DATA ARRAY	187
TABLE 5.1.46 KEM MISSILE BURN TURN DATA ARRAY	188
TABLE 5.1.47 KEM MISSILE COAST TURN DATA ARRAY	189
TABLE 5.1.48 NLOS MISSILE CHARACTERISTICS DATA ARRAY	190
TABLE 5.1.49 NLOS MISSILE POLYNOMIAL DEGREE DATA ARRAY	191
TABLE 5.1.50 NLOS MISSILE BURN SPEED DATA ARRAY	191

LIST OF TABLES

TABLE 5.1.51 NLOS MISSILE COAST SPEED DATA ARRAY	192
TABLE 5.1.52 HYDRA ROCKET CONFIGURATION DATA ARRAY	Y193
TABLE 5.1.53 HYDRA ROCKET CHARACTERISTICS DATA ARRA	AY194
TABLE 5.1.54 SUBMUNITIONS M73 CHARACTERISTICS DATA	ARRAY
	194
TABLE 5.1.55 SUBMUNITIONS FLECHETTE CHARACTERISTICS	DATA
ARRAY	195
TABLE 5.1.56 FLECHETTE SPEED DATA ARRAY	195
TABLE 7.1 AIRNET AEROMODEL AND WEAPONS MODEL	
CONVERSION REQUIREMENTS TRACEABILITY	

1. Scope.

1.1. Identification.

This SDD applies to document number WDL/TR92-003011 entitled System Specification for the Rotary Wing Aircraft AirNet Aeromodel and Weapons Model Conversion. This SDD also applies to the AirNet CSCI.

1.2. System overview.

The Rotary Wing Aircraft (RWA) system and SIMNET Computer System Configuration Item (CSCI) simulates a manned flight vehicle and associated weapons systems for conducting simulated missions within a controlled database and tactical environment.

1.3. Document overview.

The following paragraphs and subparagraphs identify the purpose, structure, and design of the Computer Software Unit (CSU) modified under the Rotary Wing Aircraft AirNET Aeromodel and Weapons Model Conversion Delivery Order. Computer Software Components (CSC) and CSUs existing in original code are not documented herein. The original function and operation of the software was not modified. Certain CSUs were modified to allow the reading of data values from data files. This additional capability allows for the change of variables without requiring a recompile. In addition, software control was added to the CSCI to allow control of the hardware enabling and disabling simulated radio communications. The modifications to the MCC is covered in a separate volume.

2. Referenced documents.

The following documents are referenced within this document.

WDL/TR--92-003011 SYSTEM SPECIFICATION FOR THE ROTARY WING AIRCRAFT AIRNET AEROMODEL AND WEAPONS MODEL CONVERSION, 6 JUNE 1992.

3. Preliminary design.

The preliminary design of the RWA system and SimNET CSCI was done previously. This delivery order used the original design as the baseline for the modifications made here. The following paragraphs and subparagraphs briefly describe the CSCI design and relationship to the modified CSUs. The CSUs are documented in Paragraph 4. -Detailed design.

3.1. CSCI overview.

The RWA CSCI simulates the rotary wing aircraft and its weapon systems within a defined environment. The function of the CSCI was not altered and is not detailed here.

3.1.1. CSCI architecture.

The RWA CSCI architecture was not altered. Certain CSUs used to initialize parameters for performance and radio communication control were modified. The aeromodel and weapon models were modified for reading iritial performance and configuration values from data files. An abbreviated AirNet Call Tree Structure is included in Appendix A for reference.

3.1.2. System states and modes.

The system states and modes for operation and execution were not modified. Software control using a hardware modification was added to control radio communications availability.

3.1.3. Memory and processing time allocation.

The memory and processing time was not computed nor were estimated allocations made. The additional processing time occurs during input from data files during initialization, and does not impact the real-time execution

frame times. The real-time simulation is executed at 15 hertz frame rate for the majority of the functions.

3.2. CSCI design description.

The following subparagraphs indicate the call hierarchy. Design details for original code is not documented herein.

3.2.1. CSC simulation_state_machine.

After system configuration initialization, this CSC controls the initialization, idle state, run state, and stop state of the simulation. This CSC existed in the original code and is not documented herein.

3.2.1.1. Sub-level CSC io-simul.

This CSC controls the state of the input/output function during simulation. This CSC existed in the original code and is not documented herein.

3.2.1.1.1. Sub-level CSC process_a_packet.

The CSC connotes the processing of input/output packets. This CSC existed in the original code and is not documented herein.

3.2.1.1.1.1. Sub-level CSC do_protocol_on_sim_packet.

This CSC existed in the original code and is not documented herein.

3.2.1.1.1.1.1. Sub-level CSC process_indirect_fire.

This CSC existed in the original code and is not documented herein.

3.2.1.1.1.1.1.1. Sub-level CSC failure_check_indir_fire_damages.

This CSC existed in the original code and is not documented herein.

3.2.1.1.1.1.1.1. Sub-level CSC fail_vehicle_is_destroyed.

This CSC controls the radio availability. This CSC existed in the original code and is not documented herein.

3.2.1.2. Sub-level CSC veh_spec_idle.

This CSC controls the vehicle simulation during idle state. This CSC existed in the original code and is not documented herein.

3.2.1.2.1. Sub-level CSC io_simul_idle.

This CSC controls the input/output simulation during idle state. This CSC existed in the original code is and not documented herein.

3.2.1.2.1.1. Sub-level CSC process_a_packet.

This CSC existed in the original code is and not documented herein.

3.2.1.2.2. Sub-level CSC keyboard_simul.

This CSC controls the radio availability. During initialization this CSC controls radio initialization. This CSC existed in the original code is and not documented herein.

3.2.1.2.2.1. Sub-level CSC controls_restore_controls.

This CSC existed in the original code is and not documented herein.

3.2.1.2.2.1.1. Sub-level CSC controls_sim_init.

This CSC initializes the radios availability. This CSC existed in the original code is and not documented herein.

3.2.1.2.2.2. Sub-level CSC fail_cat_kill.

This CSC existed in the original code is and not documented herein.

3.2.1.2.2.2.1. Sub-level CSC fail_vehicle_is_destroyed.

This CSC controls radios availability. This CSC existed in the original code is and not documented herein.

3.2.1.2.2.3. Sub-level CSC alt_init.

This CSC existed in the original code is and not documented herein.

3.2.1.2.2.3.1. Sub-level CSC alt_new_height_is.

This CSC existed in the original code is and not documented herein.

3.2.1.2.2.3.1.1. Sub-level CSC fail_cat_kill.

This CSC existed in the original code is and not documented herein.

3.2.1.3. Sub-level CSC veh_spec_init.

This CSC controls the initialization of the vehicle, including communications, aeromodel and weapon models. This CSC existed in the original code is and not documented herein.

3.2.1.3.1. Sub-level CSC controls_sim_init.

This CSC controls the initialization of the vehicle cockpit controls. This CSC existed in the original code is and not documented herein.

3.2.1.3.1.1. Sub-level CSC controls_radios_init.

This CSC initializes the radio controls and availability. This CSC existed in the original code is and not documented herein.

3.2.1.3.2. Sub-level CSC rwa_init.

This CSC initializes the performance characteristics and physical configuration of the vehicle and its weapons. This CSC existed in the original code is and not documented herein.

3.2.1.3.3. Sub-level CSC weapons_init.

This CSC initializes the weapons for the vehicle configuration. This CSC existed in the original code is and not documented herein.

3.2.1.3.3.1. Sub-level CSC hydra_init.

This CSC initializes the hydra rockets. This CSC existed in the original code is and not documented herein.

3.2.1.3.4. Sub-level CSC alt_init.

This CSC initializes the vehicle for the altitude. This CSC existed in the original code is and not documented herein.

3.2.1.4. Sub-level CSC veh_spec_simulate.

This CSC controls the real-time simulation state. This CSC existed in the original code is and not documented herein.

3.2.1.4.1 Sub-level CSC keyboard_simul.

This CSC controls the radio availability. During the real-time simulation this CSC connotes the radio state. This CSC existed in the original code is and not documented herein.

4. Detailed design.

The following paragraphs and subparagraphs describe the detailed design of each CSC and CSU.

4.1. CSC rwa_init.

This CSC, rwa_init, controls the initialization of the rotary wing aircraft models, i.e., aeromodel, kinematics model, and engine model. The structure and function of this CSC was not modified under this delivery order. The following subparagraphs describe the design information for the modified CSUs called by this CSC.

4.1.1. CSU engine_init.

The CSU engine_init reads engine data from data files and initializes the engine operating and performance parameters, limitations, initial dynamic state, and engine status. The following subparagraphs describe the design information for the CSU engine_init.

4.1.1.1. CSU engine_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.1.1.2. CSU engine_init design.

The CSU engine_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU engine_init. For a complete listing, see Appendix C - Source Code Listing For rwa_engine.c.

- a. <u>Input/output data elements</u>. None used.
- b. <u>Local data elements</u>. TABLE 4.1.1.1 CSU ENGINE_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU engine_init and not used by any other CSU.

TABLE 4.1.1.1 - CSU ENGINE	_INIT LOCAL DATA	DEFINITION TABLE
----------------------------	------------------	------------------

Name	i	data_init	data_temp	descript	fp
Description	array index	temporary integer data storage for data read from file	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Туре	integer	integer	float	character array	file pointer
Represent- ation	decimal number	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A_	N/A	N/A	64	N/A
Unit of Measure	Non- dimensional	Variable	Variable	None	None
Limit/range	0 - 99	Variable	Variable	N/A	N/A
Precision	single	single	single	N/A	N/A

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU engine_init.
 - (1) An algorithm to read engine default performance data from the "simnet/data/rwa_engn.d" data file is executed. This data determines the performance characteristics of the engine during real-time execution. Access of the file is "read only".

The "simnet/data/rwa_engn.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed engine_data element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one

and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read engine default initialization data from the "simnet/data/rw_en_in.d" data file is executed. This data determines the initial dynamic state of the engine prior to real-time execution. Access of the file is "read only".

The "simnet/data/rw_en_in.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed engine_init_data element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read engine default status data from the "simnet/data/rw_en_st.d" data file is executed. This data determines the initial state of the engines prior to real-time execution. Access of the file is "read only".

The "simnet/data/rw_en_st.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary integer data storage. If the value of the temporary integer data is not the end-of-file, the temporary integer data is assigned to the current indexed engine_stat_data element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary integer data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU engine_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
 - (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
 - (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
 - (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
 - (7) CSU fail_init_failure. This CSU initializes a failure of the engine or its subsystems. This CSU existed within the original code and is not documented herein.
 - (8) Shared data elements. The following is a list of global variables initialized within the CSU engine_init. These variables existed in the original code and will not be documented herein.

gov_p_gain gov_i_gain

engine_power engine_percent_torque engine_speed integrator_gain last_percent_shaft_speed last_percent_torque hours_of_flight minutes_of_flight old_minutes_of_flight engine_status starting_engine number_of_engines engine_is_damaged transmission_is_damaged

h. <u>Logic flow</u>. The CSU engine_init is called by the CSU rwa_init. See Appendix A - RWA AirNet Call Tree Structure. Execution of the CSU engine_init is normally done only once during CSCI initialization and is performed sequentially.

Open engine performance data file. If file is null, print error message and exit. Rewind file. Set index to zero. While record not end-of-file, engine_data[index]=first_field descript=second_field increment index by one End while. Close data file.

Open engine initialization data file. If file is null, print error message and exit. Rewind file. Set index to zero. While record not end-of-file, engine_init_data[index]=first_field descript=second_field increment index by one End while. Close data file.

Open engine status data file. If file is null, print error message and exit.

Rewind file. Set index=zero. While record not end-of-file, engine_stat_data[index]=first_field descript=second_field increment index by one End while. Close data file.

Set gov_p_gain=engine_data[1] Set gov_i gain=engine_data[2] Set engine_power=engine_init_data[0] Set engine_percent_torque=engine_init_data[1] Set engine_speed=engine_init_data[2] Set integrator_gain=engine_init_data[3] Set last_percent_shaft_speed=engine_init_data[4] Set last_percent_torque=engine_init_data[5] Set hours_of_flight=engine_init_data[6] Set minutes_of_flight=engine_stat_data[0] Set old_minutes_of_flight=engine_stat_data[1] Set engine_status=engine stat data[2] Set starting_engine=engine_stat_data[3] Set number_of_engines=engine_stat_data[4] Set engine_is_damaged=engine_stat_data[5] Set transmission_is_damaged=engine_stat_data[6]

If combat_damage=TRUE,

Call fail_init_failure for engine_oil_damage

Call fail_init_failure for break_engine End if.

If stochastic_failure=TRUE,

Call fail_init_failure for transmis_filter_damage Call fail_init_failure for break_transmission End if.

- i. <u>Data structures</u>. The following shared data structures are used by the CSU engine_init.
 - (1) Data structure engine_data. This shared data structure holds the performance data defining the operating limitations of the engines. The data structure is an array of 20 elements. The data structure is given default initialization during compilation. Detailed definition of

each element is described in TABLE 5.1.5. - ENGINE DATA ARRAY.

- (2) Data structure engine_init_data. This shared data structure holds the dynamic initialization of the engines. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.6. - ENGINE INITIALIZATION DATA ARRAY.
- (3) Data structure engine_stat_data. This shared data structure holds the status data describing the operating state of the engines. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.7. - ENGINE STATUS DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU engine_init.
 - (1) Data file "simnet/data/rwa_engn.d". This data file includes the performance characteristics of the engine. The data file consists of a maximum of 20 records. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the engine_data global array. These fields have values consistent with the characteristics outlined in TABLE 5.1.5. - ENGINE DATA ARRAY. The second field is for documentation purposes only. Access of the file is "read only" and sequential.
 - (2) Data file "simnet/data/rw_en_in.d". This data file includes the initial dynamic state of the engine. The data file consists of a maximum of 10 records. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the engine_init_data global array. These fields have values consistent with the characteristics outlined in TABLE 5.1.6. - ENGINE INITIALIZATION DATA

ARRAY. The second field is for documentation purposes only. Access of the file is "read only" and sequential.

- (3) Data file "simnet/data/rw_en_st.d". This data file includes the initial state of the engines. The data file consists of a maximum of 10 records. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the engine_stat_data global array. These fields have values consistent with the characteristics outlined in TABLE 5.1.7. - ENGINE STATUS DATA ARRAY. The second field is for documentation purposes only. Access of the file is "read only" and sequential.
- k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU engine_init.

4.1.2. CSU aerodyn_init.

The CSU aerodyn_init reads aerodynamics data from data files and initializes the aerodynamics operating and performance parameters, limitations, initial dynamic state, and aerodynamics status. The following subparagraphs describe the design information for the CSU aerodyn_init.

4.1.2.1. CSU aerodyn_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.1.2.2. CSU aerodyn_init design.

The CSU aerodyn_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU aerodyn_init. For a complete listing, see Appendix B - Source Code Listing For rwa_aerodyn.c.

- a. <u>Input/output data elements</u>. None used.
- b. <u>Local_data_elements</u>. TABLE 4.1.2.1 CSU_AERODYN_INIT LOCAL_DATA_DEFINITION_TABLE describes the local data elements originating in the CSU aerodyn_init and not used by any other CSU.

TABLE 4.1.2.1 - CSU AERODYN_INIT LOCAL DATA DEFINITION TABLE

Name	i	j	data_tmp	descript	fp
Description	array index	array index	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Туре	integer	integer	float	character array	file pointer
Represent- ation	decimal number	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A	N/A	N/A	64	N/A
Unit of Measure	Non- dimensional	Non- dimensional	Variable	None	None
Limit/range	0 - 99	0 - 99	Variable	N/A	N/A
Precision	single	single	single	N/A	N/A

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU aerodyn_init.
 - (1) An algorithm to read aerodynamics default performance data from the "simnet/data/rwa_aero.d" data file is executed. This data determines the performance characteristics of the aerodynamics during real-time execution. Access of the file is "read only".

The "simnet/data/rwa_aero.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed aero_data element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one

and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read aerodynamics default initialization data from the "simnet/data/rw_ae_in.d" data file is executed. This data determines the initial dynamic state of the aerodynamics prior to real-time execution. Access of the file is "read only".

The "simnet/data/rw_ae_in.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed aero_init element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read aerodynamics default simple data from the "simnet/data/rw_ae_sp.d" data file is executed. This data determines the performance characteristics of the "simple" aerodynamics model during real-time execution. Access of the file is "read only".

> The "simnet/data/rw_ae_sp.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary integer data storage. If the value of the temporary integer data is not the end-of-file, the temporary integer data is assigned to the current indexed aero_simple element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary integer data is the end-of-file, the file is closed.

(4) An algorithm to read aerodynamics default stealth data from the "simnet/data/rw_ae_sl.d" data file is executed. This data determines the performance characteristics of the "stealth" aerodynamics model during real-time execution. Access of the file is "read only".

The "simnet/data/rw_ae_sl.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary integer data storage. If the value of the temporary integer data is not the end-of-file, the temporary integer data is assigned to the current indexed aero_stealth element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary integer data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU aerodyn_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.

- (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
- (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) CSU engine_init. This CSU initializes the engine functions and its subsystems. This CSU is documented in subparagragh 4.1.1.
- (8 CSU vect_init. This CSU initializes a vector. This CSU existed within the original code and is not documented herein.
- (9 CSU vehicle_mass_init. This CSU initializes the vehicle mass. This CSU existed within the original code and is not documented herein.
- (10 CSU ground_init. This CSU initializes the ground forces. This CSU existed within the original code and is not documented herein.
- (11) CSU find_cubic_func. This CSU computes the cubic function of the arguments. This CSU existed within the original code and is not documented herein.
- (12) CSU aerodyn_read_simple_constants. This CSU initializes reads "simple" aerodynamic model constants from a designated file identified by the argument. This CSU existed within the original code and is not documented herein.
- (13) CSU get_constants_file. This CSU identifies and opens a constants data file. This CSU existed within the original code and is not documented herein.

- (14) CSU deg_to_rad. This CSU converts a float argument from degrees to radians. This CSU existed within the original code and is not documented herein.
- (15) Shared data elements. The following is a list of global variables initialized within the CSU aerodyn_init. These variables existed in the original code and will not be documented herein.

cyclic_pitch cyclic_roll selected model collective allow_takeoff pedal stab_aug_pitch_integrator stab_aug_roll_integrator stab_aug_yaw_integrator stab_aug_climb_integrator attitude_control_pitch_integrator attitude_control_roll_integrator hover_aug_pitch_integrator hover_aug_roll_integrator hover_aug_pitch_angle hover_aug_roll_angle hover_hold_state hover_hold_turned_on loc_ac_main_rotor_cop[3] loc_ac_tail_rotor_cop[3] loc_ac_virtual_wing_cop[3] loc_ac_vstab_cop[3] $loc_ac_cg[3]$ inertia matrix[3][3] pitch_damping roll_damping yaw_damping MAIN_ROTOR_MAST_TILT_SIN MAIN_ROTOR_MAST_TILT_COS vstab force drag_force ground_force force_ground_effect force_body moment_body

moment_body_torque_coupling
force_body_main_rotor
force_body_tail_rotor
force_body_damping
inertia_matrix
p_drag_fit_coeff[10]

h. Logic flow. The CSU aerodyn_init is called by the CSU rwa_init. See Appendix A - RWA AirNet Call Tree Structure. Execution of the CSU aerodyn_init is normally done only once during CSCI initialization and is performed sequentially.

Open aerodynamics performance data file. If file is null, print error message and exit. Rewind file. Set index to zero. While record not end-of-file, aero_data[index]=first_field descript=second_field increment index by one End while. Close data file.

Open aerodynamics initialization data file. If file is null, print error message and exit. Rewind file. Set index to zero. While record not end-of-file, aero_init[index]=first_field descript=second_field increment index by one End while. Close data file.

Open aerodynamics simple initialization data file. If file is null, print error message and exit. Rewind file. Set index=zero. While record not end-of-file, aero_simple[index]=first_field descript=second_field increment index by one End while. Close data file.

```
Open aerodynamics stealth initialization data file.
If file is null, print error message and exit.
Rewind file.
Set index=zero.
While record not end-of-file,
      aero stealth[index]=first field
      descript=second_field
      increment index by one
End while.
Close data file.
Initialize engine; call engine_init
Set cyclic_pitch = aero_init[0]
Set cyclic_roll = aero_init[1]
If (selected_model NOT EQUAL TO STEALTH_MODEL) then
      set collective = aero init[2]
else
      set collective = 0.5
      set allow takeoff = TRUE
end if
Set pedal = aero_init[3]
Set stab_aug_pitch_integrator = aero_init[4]
Set stab_aug_roll_integrator = aero_init[5]
Set stab_aug_yaw_integrator = aero_init[6]
Set stab_aug_climb_integrator = aero_init[7]
Set attitude_control_pitch_integrator = aero_init[8]
Set attitude_control_roll_integrator = aero_init[9]
Set hover_aug_pitch_integrator = aero_init[10]
Set hover_aug_roll_integrator = aero_init[11]
Set hover_aug_pitch_angle = aero_init[12]
Set hover_aug_roll_angle = aero_init[13]
Set hover_hold_state = OFF
Set hover_hold_turned_on = FALSE
Set loc_ac_main_rotor_cop[X] = aero_data[24]
Set loc_ac_main_rotor_cop[Y] = aero_data[25]
Set loc_ac_main_rotor_cop[Z] = aero_data[26]
Set loc_ac_tail_rotor_cop[X] = aero_data[34]
```

- 20 -

Set loc_ac_tail_rotor_cop[Y] = aero_data[35] Set loc_ac_tail_rotor_cop[Z] = aero_data[36] Set loc_ac_virtual_wing_cop[X] = aero_data[10] Set loc_ac_virtual_wing_cop[Y] = aero_data[11] Set loc_ac_virtual_wing_cop[Z] = aero_data[12] Set $loc_ac_vstab_cop[X] = aero_data[19]$ Set $loc_ac_vstab_cop[Y] = aero_data[20]$ Set loc_ac_vstab_cop[Z] = aero_data[21] Set $loc_ac_cg[X] = aero_data[6]$ Set loc_ac_cg[Y] = aero_data[7] Set $loc_ac_cg[Z] = aero_data[8]$ Set inertia_matrix[1] [1] = aero_data[0] Set inertia_matrix[2] [2] = aero_data[1] Set inertia_matrix[3] [3] = aero_data[2] Set pitch_damping = aero_data[68] Set roll_damping = $aero_data[67]$ Set yaw_damping = aero_data[69] Set MAIN_ROTOR_MAST_TILT_SIN = sin(deg_to rad(aero_data[28])); Set MAIN_ROTOR_MAST_TILT_COS = cos(deg_to_rad(aero_data[28])); Initialize vstab_force vector; call vec_init Initialize drag_force vector; call vec_init Initialize ground_force vector; call vec_init Initialize force_ground_effect vector; call vec_init Initialize force_body vector; call vec init Initialize moment_body vector; call vec_init Initialize moment_body_torque_coupling vector; call vec_init

Initialize force_body_tail_rotor vector; call vec_init Initialize force_body_tail_rotor vector; call vec_init Initialize force_body_damping vector; call vec_init

Initial vehicle mass init; call vehicle_mass_init Initialize ground forces; call ground_init

Initialize parasite drag profile; set p_drag_fit_coeff = 0.0

If (parasite drag find_cubic_func NOT EQUAL TO 1) then print "AERODYN: Error - unable to fit p_drag function"

end if

If (selected_model) then Set aerodyn_read_simple_constants from get_constants_file

end if

- i. <u>Data structures</u>. The following shared data structures are used by the CSU aerodyn_init.
 - (1) Data structure aero_data. This shared data structure holds the performance data defining the operating limitations of the aerodynamics model. The data structure is an array of 100 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.1. -AERODYNAMICS DATA ARRAY.
 - (2) Data structure aero_init. This shared data structure holds the dynamic initialization of the aerodynamics model state. The data structure is an array of 20 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.2. - AERODYNAMICS INITIALIZATION DATA ARRAY.
 - (3) Data structure aero_simple. This shared data structure holds the performance data describing the "simple" aerodynamic model. The data structure is an array of 20 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.3. -AERODYNAMICS SIMPLE DATA ARRAY.
 - (4) Data structure aero_stealth. This shared data structure holds the performance data describing the "stealth" aerodynamics model. The data structure is an array of 20 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.4. -AERODYNAMICS STEALTH DATA ARRAY.

- j. <u>Local data files</u>. The following data files are part of the local data of the CSU aerodyn_init.
 - (1) Data file "simnet/data/rwa_aero.d". This data file includes the performance characteristics of the aerodynamics model. The data file consists of a maximum of 100 records. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the aero_data global array. These fields have values consistent with the characteristics outlined in TABLE 5.1.1. - AERODYNAMICS DATA ARRAY. The second field is for documentation purposes only. Access of the file is "read only" and sequential.
 - (2) Data file "simnet/data/rw_ae_in.d". This data file includes the initial dynamic state of the aerodynamics model. The data file consists of a maximum of 20 records. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the aero_init global array. These fields have values consistent with the characteristics outlined in TABLE 5.1.2. - AERODYNAMICS INITIALIZATION DATA ARRAY. The second field is for documentation purposes only. Access of the file is "read only" and sequential.
 - (3) Data file "simnet/data/rw_ae_sp.d". This data file includes the performance characteristics of the "simple" aerodynamics model. The data file consists of a maximum of 20 records. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the aero_simple global array. These fields have values consistent with the characteristics outlined in TABLE 5.1.3. - AERODYNAMICS SIMPLE DATA ARRAY. The second field is for documentation purposes only. Access of the file is "read only" and sequential.

- (4) Data file "simnet/data/rw_ae_sl.d". This data file includes the performance characteristics of the "stealth" aerodynamics model. The data file consists of a maximum of 20 records. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the aero_stealth global array. These fields have values consistent with the characteristics outlined in TABLE 5.1.4. - AERODYNAMICS STEALTH DATA ARRAY. The second field is for documentation purposes only. Access of the file is "read only" and sequential.
- k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU aerodyn_init.

4.1.3. CSU veh_spec_kinematics_init.

The CSU veh_spec_kinematics_init reads kinematics data from data files and initializes the kinematics operating and performance parameters, limitations, initial dynamic state, and kinematics status. The following subparagraphs describe the design information for the CSU veh_spec_kinematics_init.

4.1.3.1. CSU veh_spec_kinematics_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.1.3.2. CSU veh_spec_kinematics_init design.

The CSU veh_spec_kinematics_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU veh_spec_kinematics_init. For a complete listing, see Appendix D - Source Code Listing For rwa_kinemat.c.

- a. <u>Input/output data elements</u>. None used.
- b. <u>Local_data_elements</u>. TABLE 4.1.3.1 CSU VEH_SPEC_KINEMATICS_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU veh_spec_kinematics_init and not used by any other CSU.

TABLE 4.1.3.1 - CSU VEH_SPEC_KINEMATICS_INIT LOCAL DATA DEFINITION TABLE

Name	i	data_tmp	descript	fp
Description	array index	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Туре	integer	float	character array	file pointer
Represent- ation	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A	N/A	64	N/A
Unit of Measure	Non- dimensional	Variable	None	None
Limit/range	0 - 99	Variable	N/A	N/A
Precision	single	single	N/A	N/A

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU veh_spec_kinematics_init.
 - (1) An algorithm to read kinematics default performance data from the "simnet/data/rwa_kine.d" data file is executed. This data determines the performance characteristics of the kinematics during real-time execution. Access of the file is "read only".

The "simnet/data/rwa_kine.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed engine_data element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one

and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read kinematics default initialization data from the "simnet/data/rw_ki_in.d" data file is executed. This data determines the initial dynamic state of the kinematics prior to real-time execution. Access of the file is "read only".

The "simnet/data/rw_ki_in.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed engine_init_data element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU veh_spec_kinematics_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.

- (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
- (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) CSU vehicle_angular_velocity. This CSU existed within the original code and is not documented herein.
- (8 CSU vehicle_velocity. This CSU existed within the original code and is not documented herein.
- (9) CSU mat_ident. This CSU initializes a failure of the kinematics or its subsystems. This CSU existed within the original code and is not documented herein.
- (10) Shared data elements. The following is a list of global variables initialized within the CSU veh_spec_kinematics_init. These variables existed in the original code and will not be documented herein.

pos_unit_vel[3] neg_unit_vel[3] sin_aoa cos_aoa sin_yaw cos_yaw altitude body_pitch body_pitch_offset velocity_pitch roll heading true_airspeed indicated_airspeed g_force vertical_speed
ang_vel velocity_vector gravity[3] norm_vel[3] velocity_to_body

h. Logic flow. The CSU veh_spec_kinematics_init is called by the CSU rwa_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU veh_spec_kinematics_init is normally done only once during CSCI initialization and is performed sequentially.

Open kinematics performance data file. If file is null, print error message and exit. Rewind file. Set index to zero. While record not end-of-file, kinemat_data[index]=first_field descript=second_field increment index by one End while. Close data file.

Open kinematics initialization data file. If file is null, print error message and exit. Rewind file. Set index to zero. While record not end-of-file, kinemat_init_data[index]=first_field descript=second_field increment index by one End while. Close data file.

```
Set pos_unit_vel[Y] = kinemat_init_data[1]
Set pos_unit_vel[Z] = kinemat_init_data[2]
Set neg_unit_vel[X] = kinemat_init_data[3]
Set neg_unit_vel[Y] = kinemat_init_data[4]
Set neg_unit_vel[Z] = kinemat_init_data[5]
Set sin_aoa = kinemat_init_data[6]
Set cos_aoa = kinemat_init_data[7]
Set sin_yaw = kinemat_init_data[8]
Set cos_yaw = kinemat_init_data[9]
Set altitude = kinemat_init_data[10]
```

```
Set body_pitch = kinemat_init_data[11]
Set body_pitch_offset = kinemat_init_data[12]
Set velocity_pitch = kinemat_init_data[13]
Set roll = kinemat_init_data[14]
Set heading = kinemat_init_data[15]
Set true_airspeed = kinemat_init_data[16]
Set indicated_airspeed = kinemat_init_data[17]
Set g_force = kinemat_init_data[18]
Set vertical_speed = kinemat_init_data[19]
Set ang_vel = vehicle_angular_velocity()
Set velocity_vector = vehicle_velocity()
Set gravity[X] = kinemat_init_data[20]
Set gravity[Y] = kinemat_init_data[21]
Set gravity[Z] = kinemat_init_data[22]
Set norm vel[X] = kinemat_init_data[23]
Set norm_vel[Y] = kinemat_init_data[24]
Set norm_vel[Z] = kinemat_init_data[25]
```

Compute identity matrix; call mat_ident(velocity_to_body)

- i. <u>Data structures</u>. The following shared data structures are used by the CSU veh_spec_kinematics_init.
 - (1) Data structure kinemat_data. This shared data structure holds the performance data defining the operating limitations of the engines. The data structure is an array of 20 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.8. - KINEMATICS DATA ARRAY.
 - (2) Data structure kinemat_init_data. This shared data structure holds the dynamic initialization of the engines. The data structure is an array of 30 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.9. - KINEMATICS INITIALIZATION DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU veh_spec_kinematics_init.
 - (1) Data file "simnet/data/rwa_kine.d". This data file includes the performance characteristics of the kinematics.

The data file consists of a maximum of 20 records. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the engine_data global array. These fields have values consistent with the characteristics outlined in TABLE 5.1.8. - KINEMATICS DATA ARRAY. The second field is for documentation purposes only. Access of the file is "read only" and sequential.

- (2) Data file "simnet/data/rw_ki_in.d". This data file includes the initial dynamic state of the kinematics. The data file consists of a maximum of 10 records. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the engine_init_data global array. These fields have values consistent with the characteristics outlined in TABLE 5.1.9. - KINEMATICS INITIALIZATION DATA ARRAY. The second field is for documentation purposes only. Access of the file is "read only" and sequential.
- k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU veh_spec_kinematics_init.

4.2. CSC weapons_init.

This CSC, weapons_init, controls the initialization of the rotary wing aircraft weapon models, i.e., hydra, tow, hellfire. The structure and function of this CSC was not modified under this delivery order. The following subparagraphs describe the design information for the modified CSUs called by this CSC.

4.2.1. CSU missile_tow_init.

The CSU missile_tow_init reads tow missile data from data files and initializes the 1) performance limitations and characteristics data array, 2) the polynomial degree array, 3) the burn speed polynomial coefficients array, 4) the coast speed polynomial coefficients array, 5) the burn speed turn, maximum cosine coefficient structure, and 6) the coast speed turn, maximum cosine coefficient structure. The following subparagraphs describe the design information for the CSU missile_tow_init.

4.2.1.1. CSU missile_tow_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.2.1.2. CSU missile_tow_init design.

The CSU missile_tow_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_tow_init. For a complete listing, see Appendix L - Source Code Listing For miss_tow.c.

- a. <u>Input/output data elements</u>.
 - (1) tptr This input data element is a pointer to the particular array of missiles to be initialized. This element is declared global.
 - (2) No output data elements are declared.
- b. <u>Local data elements</u>. TABLE 4.2.1.1 CSU MISSILE_TOW_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_tow_init and not used by any other CSU.

Name	i	data_tmp_	data_tmp	descript	fp
Descrip- tion	array index	temporary integer data storage for data read	temporary float data storage for data read	temporary character string storage read from file	data file pointer
Туре	integer	integer	float	character array	file pointer
Represent- ation	decimal number	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A	N/A	N/A	64	N/A
Unit of Measure	Non- dimension-al	Variable	Variable	None	None
Limit/range	0 - 99	Variable	Variable	N/A	N/A
Precision	single	single	single	N/A	N/A

TABLE 4.2.1.1 - CSU MISSILE_TOW_INIT LOCAL DATA DEFINITION TABLE

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_tow_init.
 - (1) An algorithm to read the performance limitations and characteristics of the tow missile from the "simnet/data/ms_tw_ch.d" data file is executed. This data determines the performance limitations and characteristics of the tow missile during real-time execution. Access of the file is "read only".

The "simnet/data/ms_tw_ch.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed tow_miss_char element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and burn speed coefficients data from the "simnet/data/ms_tw_bs.d" data file is executed. This data determines burn speed polynomial coefficient data used during real-time execution to compute the speed of the tow missile during engine burn for the tow missile flyout. Access of the file is "read only".

The "simnet/data/ms_tw_bs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the first element of the tow_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed tow_burn_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read polynomial degree data and coast speed coefficients data from the "simnet/data/ms_tw_cs.d" data file is executed. This data determines coast speed polynomial coefficient data used during real-time execution to compute the speed of the tow missile after engine burn for the tow missile flyout. Access of the file is "read only".

The "simnet/data/ms_tw_cs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the

first field. The first field is assigned to a temporary integer data storage and then to the third element of the tow_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed tow_coast_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(4) An algorithm to read polynomial degree data and maximum turn cosine coefficients during engine burn data from the "simnet/data/ms_tw_bt.d" data file is executed. This data defines the maximum cosine coefficients during real-time execution to compute the maximum cosine of a turn in each axis during engine burn of the tow missile flyout. Access of the file is "read only".

The "simnet/data/ms_tw_bt.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the third element of the tow_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero for the side axis, with the limit set to the degree. Then, each record is scanned and the first field is assigned to a temporary float data storage, and assigned to the current indexed tow_burn_turn_coeff.side_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned and stored until the degree limit is hit. The process is repeated for the up and down axes. Then, the file is closed.

(5) An algorithm to read polynomial degree data and maximum turn cosine coefficients data after engine burn from the "simnet/data/ms_tw_ct.d" data file is executed. This data defines the maximum cosine coefficients during real-time execution to compute the maximum cosine of a turn in each axis after engine burn of the tow missile flyout. Access of the file is "read only".

The "simnet/data/ms_tw_ct.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the fourth element of the tow_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero for the side axis, with the limit set to the degree. Then, each record is scanned and the first field is assigned to a temporary float data storage, and assigned to the current indexed tow_coast_turn_coeff.side_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned and stored until the degree limit is hit. The process is repeated for the up and down axes. Then, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data_conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile_tow_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.

- (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
- (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
- (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) Shared data elements. The following is a list of global variables initialized within the CSU missile_tow_init. These variables existed in the original code and will not be documented herein.

tptr mptr.state mptr.max_flight_time mptr.max_turn_directions speed_factor max_range_limit max_range_squared tow_ammo_type munition_US_Tow

h. <u>Logic flow</u>. The CSU missile_tow_init is called by the CSU weapons_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_tow_init is normally done only once during CSCI initialization and is performed sequentially.

Open tow missile characteristics data file. If file is null, print error message and exit. Rewind file. Set index to zero. While record not end-of-file, tow_miss_char[index]=first_field

descript=second_field increment index by one End while. Close data file.

Open burn speed data file. If file is null, print error message and exit. Rewind file. Get first field of first record. Set tow_miss_poly_deg[0]=first_field Set descript=second_field Set index to zero. While record not end-of-file, tow_burn_speed_coeff[index]=first_field descript=second_field increment index by one End while. Close data file. Open coast speed data file. If file is null, print error message and exit. Rewind file. Get first field of first record.

Set tow_miss_poly_deg[1]=first_field

Set descript=second_field Set index to zero.

While record not end-of-file,

tow_coast_speed_coeff[index]=first_field
descript=second_field

increment index by one

End while.

Close data file.

Open burn turn data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set tow_miss_poly_deg[2]=first_field
Set descript=second_field
For index from 0 to tow_miss_poly_deg[2], single step,
 tow_burn_turn_coeff.side_coeff[index] = first_field
 descript=second_field
End for loop.
For index from 0 to tow_miss_poly_deg[2], single step,

```
tow burn turn coeff.up coeff[index] = first field
      descript=second_field
End for loop.
For index from 0 to tow_miss_poly_deg[2], single step,
      tow burn turn coeff.down_coeff[index] = first_field
      descript=second_field
End for loop.
Close data file.
Open coast turn data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set tow_miss_poly_deg[3]=first_field
Set descript=second field
For index from 0 to tow_miss_poly_deg[3], single step,
      tow_coast_turn_coeff.side_coeff[index] = first field
      descript=second_field
End for loop.
For index from 0 to tow_miss_poly_deg[3], single step,
      tow_coast_turn_coeff.up_coeff[index] = first field
      descript=second_field
End for loop.
For index from 0 to tow_miss_poly_deg[3], single step,
      tow_coast_turn_coeff.down_coeff[index] = first field
      descript=second_field
End for loop.
Close data file.
Set mptr.state = FALSE
Set mptr.max_flight_time = tow_miss_char[2]
Set mptr.max_turn_directions = 3
Set speed_factor = MISSILE_US_SPEED_FACTOR
Set max_range_limit = MISSILE_US_MAX_RANGE_LIMIT
Set max_range_squared = max_range_limit * max_range_limit
Set tow_ammo_type = munition_US_Tow
```

- i. <u>Data structures</u>. The following shared data structures are used by the CSU missile_tow_init.
 - (1) Data structure tow_miss_char. This shared data structure holds the performance limitations and characteristics for the tow missile. The data structure is an array of 5 elements. The data structure is given default

initialization during compilation. Detailed definition of each element is described in TABLE 5.1.23. - TOW MISSILE CHARACTERISTICS DATA ARRAY.

- (2) Data structure tow_miss_poly_deg. This shared data structure holds the polynomial degree data defining the size if the polynomial arrays and strucures used in this CSU. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.24. - TOW MISSILE POLYNOMIAL DEGREE DATA ARRAY.
- (3) Data structure tow_burn_speed_coeff. This shared data structure holds the burn speed coefficients for the burn speed polynomial. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.25. - TOW MISSILE BURN SPEED DATA ARRAY.
- (4) Data structure tow_coast_speed_coeff. This shared data structure holds the coast speed coefficients for the coast speed polynomial. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.26. - TOW MISSILE COAST SPEED DATA ARRAY.
- (5) Data structure tow_burn_turn_coeff. This shared data structure holds the maximum cosine coefficients for a turn in each axis during engine burn for the burn turn polynomial. The data structure is an array of 2 elements for each axis. There are three axes: side, up, and down. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.27. - TOW MISSILE BURN TURN DATA STRUCTURE.
- (6) Data structure tow_coast_turn_coeff. This shared data structure holds the maximum cosine coefficients for a turn in each axis during engine burn for the burn turn polynomial. The data structure is an array of 4 elements for each axis. There are three axes: side, up, and down.

The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.28. - TOW MISSILE COAST TURN DATA STRUCTURE.

- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile_tow_init.
 - (1) Data file "simnet/data/ms_tw_ch.d". This data file includes the performance limitations and characteristics of the tow missile. The data file consists of a maximum of 5 records. Access of the file is "read only" and sequential.

Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_miss_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.23. - TOW MISSILE CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.

(2) Data file "simnet/data/ms_tw_bs.d". This data file includes the burn speed degree of polynomial and coefficients data for the tow missile. The data file consists of a maximum of 6 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global tow_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.24. - TOW MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_burn_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.25. - TOW MISSILE BURN SPEED DATA ARRAY. The second field is for documentation purposes only.

(3) Data file "simnet/data/ms_tw_cs.d". This data file includes the coast speed degree of polynomial and coefficients data for the tow missile. The data file consists of a maximum of 6 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global tow_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.24. - TOW MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_coast_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.26. - TOW MISSILE COAST SPEED DATA ARRAY. The second field is for documentation purposes only.

(4) Data file "simnet/data/ms_tw_bt.d". This data file includes the burn turn degree of polynomial and coefficients data for the tow missile. The data file consists of a maximum of 7 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global tow_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.24. - TOW MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_burn_turn_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.27. - TOW MISSILE BURN TURN DATA ARRAY. The second field is for documentation purposes only.

(5) Data file "simnet/data/ms_tw_ct.d". This data file includes the coast turn degree of polynomial and coefficients data for the tow missile. The data file consists of a maximum of 13 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global tow_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.24. - TOW MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_coast_turn_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.28. - TOW MISSILE COAST TURN DATA ARRAY. The second field is for documentation purposes only.

k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_tow_init.

4.2.2. CSU missile_hellfire_init.

The CSU missile_hellfire_init reads hellfire missile data from data files and initializes the 1) performance limitations data array, 2) the polynomial degree array, 3) the time-of-flight polynomial coefficients array, 4) the burn speed polynomial coefficients array, and 5) the coast speedpolynomial coefficients

array. The following subparagraphs describe the design information for the CSU missile_hellfire_init.

4.2.2.1. CSU missile_hellfire_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.2.2.2. CSU missile_hellfire_init design.

The CSU missile_hellfire_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_hellfire_init. For a complete listing, see Appendix G - Source Code Listing For miss_hellfr.c.

- a. <u>Input/output data elements</u>.
 - (1) mptr This input data element is a pointer to the particular array of missiles to be initialized. This element is declared global.
 - (2) No output data elements are declared.
- b. <u>Local data elements</u>. TABLE 4.2.2.1 CSU MISSILE_HELLFIRE_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_hellfire_init and not used by any other CSU.

Name	i	data_tmp_ int	data_tmp	descript	fp
Description	array index	temporary integer data storage for data read from file	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Туре	integer	integer	float	character array	file pointer
Represent- ation	decimal number	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A	N/A	N/A	64	N/A
Unit of Measure	Non- dimension-al	Variable	Variable	None	None
Limit/range	0 - 99	Variable	Variable	N/A	N/A
Precision	single	single	single	N/A	N/A

TABLE 4.2.2.1 - CSU MISSILE_HELLFIRE_INIT LOCAL DATA DEFINITION TABLE

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_hellfire_init.
 - (1) An algorithm to read the performance limitations and characteristics of the hellfire missile from the "simnet/data/ms_hf_ch.d" data file is executed. This data determines the performance limitations and characteristics of the hellfire missile during real-time execution. Access of the file is "read only".

The "simnet/data/ms_hf_ch.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed hellfr_miss_char element. The remainder of the record is assigned to the

temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and time of flight coefficients data from the "simnet/data/ms_hf_tf.d" data file is executed. This data determines time-of-flight polynomial coefficient data used during real-time execution to compute the estimated time-of-flight for the hellfire missile flyout. Access of the file is "read only".

The "simnet/data/ms_hf_tf.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the first element of the hellfr_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed hellfire_tof_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read polynomial degree data and burn speed coefficients data from the "simnet/data/ms_hf_bs.d" data file is executed. This data determines burn speed polynomial coefficient data used during real-time execution to compute the speed of the hellfire missile during engine burn for the hellfire missile flyout. Access of the file is "read only".

The "simnet/data/ms_hf_bs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not

null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the second element of the hellfr_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed hellfire_burn_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(4) An algorithm to read polynomial degree data and coast speed coefficients data from the "simnet/data/ms_hf_cs.d" data file is executed. This data determines coast speed polynomial coefficient data used during real-time execution to compute the speed of the hellfire missile after engine burn for the hellfire missile flyout. Access of the file is "read only".

The "simnet/data/ms_hf_cs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the third element of the hellfr_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed hellfire_coast_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile_hellfire_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
 - (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
 - (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
 - (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
 - (7) Shared data elements. The following is a list of global variables initialized within the CSU missile_hellfire_init. These variables existed in the original code and will not be documented herein.

mptr state max_flight_time max_turn_directions speed_factor max_range_limit

max_range_squared hellfire_ammo_type munition_US_Hellfire

h. <u>Logic flow</u>. The CSU missile_hellfire_init is called by the CSU weapons_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_hellfire_init is normally done only once during CSCI initialization and is performed sequentially.

Open hellfire missile characteristics data file. If file is null, print error message and exit. Rewind file. Set index to zero. While record not end-of-file, hellfr_miss_char[index]=first_field descript=second_field increment index by one End while. Close data file.

Open time_of_flight data file. If file is null, print error message and exit. Rewind file. Get first field of first record. Set hellfr_miss_poly_deg[0]=first_field Set descript=second_field Set index to zero. While record not end-of-file, hellfire_tof_coeff[index]=first_field descript=second_field increment index by one End while. Close data file.

Open burn speed data file. If file is null, print error message and exit. Rewind file. Get first field of first record. Set hellfr_miss_poly_deg[1]=first_field Set descript=second_field Set index to zero. While record not end-of-file, hellfire_burn_speed_coeff[index]=first_field

descript=second_field increment index by one End while. Close data file.

Open coast speed data file. If file is null, print error message and exit. Rewind file. Get first field of first record. Set hellfr_miss_poly_deg[2]=first_field Set descript=second_field Set index to zero. While record not end-of-file, hellfire_coast_speed_coeff[index]=first_field descript=second_field increment index by one End while. Close data file.

Set state = FALSE Set max_flight_time = hellfr_miss_char[2] Set max_turn_directions = 1 Set speed_factor = MISSILE_US_SPEED_FACTOR Set max_range_limit = MISSILE_US_MAX_RANGE_LIMIT Set max_range_squared = max_range_limit * max_range_limit Set hellfire_ammo_type = munition_US_Hellfire

- i. <u>Data structures</u>. The following shared data structures are used by the CSU missile_hellfire_init.
 - (1) Data structure hellfr_miss_char. This shared data structure holds the performance limitations and characteristics for the hellfire missile. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.10. -HELLFIRE MISSILE CHARACTERISTICS DATA ARRAY.
 - (2) Data structure hellfr_miss_poly_deg. This shared data structure holds the polynomial degree data defining the size if the polynomial arrays used in this CSU. The data structure is an array of 3 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.11. -

HELLFIRE MISSILE POLYNOMIAL DEGREE DATA ARRAY.

- (3) Data structure hellfire_tof_coeff. This shared data structure holds the time_of-flight coefficients for the time-of-flight polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.12. - HELLFIRE MISSILE TIME-OF-FLIGHT DATA ARRAY.
- (4) Data structure hellfire_burn_speed_coeff. This shared data structure holds the burn speed coefficients for the burn speed polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.13. HELLFIRE MISSILE BURN SPEED DATA ARRAY.
- (5) Data structure hellfire_coast_speed_coeff. This shared data structure holds the coast speed coefficients for the coast speed polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.14. HELLFIRE MISSILE COAST SPEED DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile_hellfire_init.
 - (1) Data file "simnet/data/ms_hf_ch.d". This data file includes the performance limitations and characteristics of the hellfire missile. The data file consists of a maximum of 16 records. Access of the file is "read onlyacteristics for the tow missileconsists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global hellfr_miss_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.10. - HELLFIRE MISSILE CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.

(2) Data file "simnet/data/ms_hf_tf.d". This data file includes the time-of-flight degree of polynomial and coefficients data for the hellfire missile. The data file consists of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global hellfr_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.11. - HELLFIRE MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global hellfire_tof_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.12. - HELLFIRE MISSILE TIME-OF-FLIGHT DATA ARRAY. The second field is for documentation purposes only.

(3) Data file "simnet/data/ms_hf_bs.d". This data file includes the burn speed degree of polynomial and coefficients data for the hellfire missile. The data file consists of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global hellfr_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.11. - HELLFIRE MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global

hellfire_burn_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.13. - HELLFIRE MISSILE BURN SPEED DATA ARRAY. The second field is for documentation purposes only.

(4) Data file "simnet/data/ms_hf_cs.d". This data file includes the coast speed degree of polynomial and coefficients data for the hellfire missile. The data file consists of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global hellfr_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.11. - HELLFIRE MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global hellfire_coast_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.14. - HELLFIRE MISSILE COAST SPEED DATA ARRAY. The second field is for documentation purposes only.

k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_hellfire_init.

4.2.3. CSU missile_stinger_init.

The CSU missile_stinger_init reads stinger missile data from data files and initializes the 1) performance limitations data array, 2) the polynomial degree array, 3) the burn speed polynomial coefficients array, and 4) the coast speed polynomial coefficients array. The following subparagraphs describe the design information for the CSU missile_stinger_init.

4.2.3.1. CSU missile_stinger_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.2.3.2. CSU missile_stinger_init design.

The CSU missile_stinger_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_stinger_init. For a complete listing, see Appendix K - Source Code Listing For miss_stinger.c.

- a. <u>Input/output data elements</u>.
 - (1) missile_array This input data structure is a pointer to the particular array of missiles to be initialized. This structure is declared global.
 - (2) num_missiles This input data element is the number of missiles defined in the missile_array. This element is declared global.
 - (3) No output data elements are declared.
- b. <u>Local data elements</u>. TABLE 4.2.3.1 CSU MISSILE_STINGER_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_stinger_init and not used by any other CSU.

	and the second	_				
Name	i	j	data_tmp_ int	data_tmp	descript	fp
Description	array index		temporary integer data storage for data read from file	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Туре	integer		integer	float	character array	file pointer
Represent- ation	decimal number		decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A		N/A	N/A	64	N/A
Unit of Measure	No dimen	on- sion-al	Variable	Variable	None	None
Limit/range	0 -	99	Variable	Variable	N/A	N/A
Precision	sin	gle	single	single	N/A	N/A

TABLE 4.2.3.1 - CSU MISSILE_STINGER_INIT LOCAL DATA DEFINITION TABLE

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_stinger_init.
 - (1) An algorithm to read the performance limitations and characteristics of the stinger missile from the "simnet/data/ms_st_ch.d" data file is executed. This data determines the performance limitations and characteristics of the stinger missile during real-time execution. Access of the file is "read only".

The "simnet/data/ms_st_ch.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed stinger_miss_char element. The remainder of the record is assigned to the

temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and burn speed coefficients data from the "simnet/data/ms_st_bs.d" data file is executed. This data determines burn speed polynomial coefficient data used during real-time execution to compute the speed of the stinger missile during engine burn for the stinger missile flyout. Access of the file is "read only".

The "simnet/data/ms_st_bs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the first element of the stinger_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed stinger_burn_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read polynomial degree data and coast speed coefficients data from the "simnet/data/ms_st_cs.d" data file is executed. This data determines coast speed polynomial coefficient data used during real-time execution to compute the speed of the stinger missile after engine burn for the stinger missile flyout. Access of the file is "read only".

The "simnet/data/ms_st_cs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not

null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the second element of the stinger_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed stinger_coast_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile_stinger_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
 - (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
 - (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.

- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) CSU missile_fuze_prox_init. This CSU initializes the proximity fuze for the stinger missile. This CSU existed within the original code and is not documented herein.
- (8) Shared data elements. The following is a list of global variables initialized within the CSU missile_stinger_init. These variables existed in the original code and will not be documented herein.

missile_array num_missiles stinger_array num_stingers stinger_array[].mptr.state stinger_array[].mptr.max_flight_time stinger_array[].mptr.max_turn_directions speed_factor max_range_limit max_range_limit max_range_squared stinger_ammo_type munition_US_Stinger

h. <u>Logic flow</u>. The CSU missile_stinger_init is called by the CSU weapons_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_stinger_init is normally done only once during CSCI initialization and is performed sequentially.

Open stinger missile characteristics data file. If file is null, print error message and exit. Rewind file. Set index to zero. While record not end-of-file, stinger_miss_char[index]=first_field descript=second_field increment index by one End while. Close data file.

Open burn speed data file.

```
If file is null, print error message and exit.

Rewind file.

Get first field of first record.

Set stinger_miss_poly_deg[0]=first_field

Set descript=second_field

Set index to zero.

While record not end-of-file,

stinger_burn_speed_coeff[index]=first_field

descript=second_field

increment index by one

End while.

Close data file.

Open coast speed data file.

If file is null, print error message and exit.
```

Rewind file.

Get first field of first record.

Set stinger_miss_poly_deg[1]=first_field

Set descript=second_field

Set index to zero.

While record not end-of-file,

stinger_coast_speed_coeff[index]=first_field descript=second_field

increment index by one

End while. Close data file.

```
Set num_stingers = num_missiles
Set stinger array = missile_array
For index = 0 to less than num_missiles, single step,
    Set state = FALSE
    Set max_flight_time = stinger_miss_char[1]
    Set max_turn_directions = 1
End for loop
Set speed_factor = MISSILE_US_SPEED_FACTOR
Set max_range_limit = MISSILE_US_MAX_RANGE_LIMIT
Set max_range_squared = max_range_limit * max_range_limit
Set stinger_ammo_type = munition_US_Stinger
```

Initial proximity fuze; call missile_fuze_prox_init

i. <u>Data structures</u>. The following shared data structures are used by the CSU missile_stinger_init.

- (1) Data structure stinger_miss_char. This shared data structure holds the performance limitations and characteristics for the stinger missile. The data structure is an array of 15 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.19. -STINGER MISSILE CHARACTERISTICS DATA ARRAY.
- (2) Data structure stinger_miss_poly_deg. This shared data structure holds the polynomial degree data defining the size if the polynomial arrays used in this CSU. The data structure is an array of 2 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.20. -STINGER MISSILE POLYNOMIAL DEGREE DATA ARRAY.
- (3) Data structure stinger_burn_speed_coeff. This shared data structure holds the burn speed coefficients for the burn speed polynomial. The data structure is an array of 2 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.21. - STINGER MISSILE BURN SPEED DATA ARRAY.
- (4) Data structure stinger_coast_speed_coeff. This shared data structure holds the coast speed coefficients for the coast speed polynomial. The data structure is an array of 4 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.22. - STINGER MISSILE COAST SPEED DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile_stinger_init.
 - (1) Data file "simnet/data/ms_st_ch.d". This data file includes the performance limitations and characteristics of the stinger missile. The data file consists of a maximum of 15 records. Access of the file is "read only" and sequential. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global

stinger_miss_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.19. - STINGER MISSILE CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.

(2) Data file "simnet/data/ms_st_bs.d". This data file includes the burn speed degree of polynomial and coefficients data for the stinger missile. The data file consists of a maximum of 3 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global stinger_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.20. - STINGER MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global stinger_burn_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.21. - STINGER MISSILE BURN SPEED DATA ARRAY. The second field is for documentation purposes only.

(3) Data file "simnet/data/ms_st_cs.d". This data file includes the coast speed degree of polynomial and coefficients data for the stinger missile. The data file consists of a maximum of 5 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global stinger_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.20. - STINGER

MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global stinger_coast_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.22. - STINGER MISSILE COAST SPEED DATA ARRAY. The second field is for documentation purposes only.

k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_stinger_init.

4.2.4. CSU hydra_init.

The CSU hydra_init reads hydra rocket data from data files and initializes the configuration data array. The following subparagraphs describe the design information for the CSU hydra_init.

4.2.4.1. CSU hydra_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.2.4.2. CSU hydra_init design.

The CSU hydra_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU hydra_init. For a complete listing, see Appendix N - Source Code Listing For rwa_hydra.c.

- a. <u>Input/output data elements</u>. No input/output data elements are declared.
- b. <u>Local data elements</u>. TABLE 4.2.4.1 CSU HYDRA_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU hydra_init and not used by any other CSU.

Name	i	data_tmp_ int	data_tmp	descript	fp
Descrip- tion	array index	temporary integer data storage for data read from file	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Туре	integer	integer	float	character array	file pointer
Represent- ation	decimal number	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A	N/A	N/A	64	N/A
Unit of Measure	Non-dimen- sional	Variable	Variable	None	None
Limit/range	0 - 99	Variable	Variable	N/A	N/A
Precision	single	single	single	N/A	N/A

TABLE 4.2.4.1 - CSU HYDRA_INIT LOCAL DATA DEFINITION TABLE

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU hydra_init.
 - (1) An algorithm to read the configuration for the hydra rocket from the "simnet/data/rwa_hydr.d" data file is executed. This data determines the configuration for the hydra rocket during real-time execution. Access of the file is "read only".

The "simnet/data/rwa_hydr.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed hydra_rkt_char element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one

nd the next record is scanned. If the value of the morary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU hydra_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
 - (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
 - (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
 - (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
 - (7) CSU rotate_init_element. This CSU existed within the original code and is not documented herein.
 - (8) CSU hull. This CSU existed within the original code and is not documented herein.
 - (9) CSU articulation. This CSU existed within the original code and is not documented herein.
- (10) CSU missile_hydra_init. This CSU is documented in paragraph 4.2.5 CSU missile_hydra_init.
- (11) CSU missile_hydra_set_pylon_position_offsets. This CSU existed within the original code and is not documented herein.
- (12) CSU hydra_config_rockets. This CSU existed within the original code and is not documented herein.
- (13) Shared data elements. The following is a list of global variables initialized within the CSU hydra_init. These variables existed in the original code and will not be documented herein.

left_launcher_pos right_launcher_pos articulation_pos articulation_element pylon_L_element pylon_R_element hydras left_rocket_launch right_rocket_launch pylons_set

h. <u>Logic flow</u>. The CSU hydra_init is called by the CSU weapons_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU hydra_init is done during CSCI initialization.

Open hydra rocket cconfiguration data file. If file is null, print error message and exit. Rewind file. Set index to zero. While record not end-of-file, hydra_rkt_char[index]=first_field descript=second_field increment index by one End while. Close data file.

Set left_launcher_pos[0] = hydra_rkt_char[0]

Set right_launcher_pos[0] = hydra_rkt_char[0] Set articulation_pos[1] = hydra_rkt_char[1] Set articulation_pos[2] = hydra_rkt_char[2] Rotate articulation_element If Rotate articulation_element fails, send error message Rotate pylon_L_element Rotate pylon_R_element Call missile_hydra_init Call missile_hydra_set_pylon_position_offsets Call hydra_config_rockets Set left_rocket_launch = FALSE Set right_rocket_launch = False Set pylons_set = FALSE

- i. <u>Data structures</u>. The following shared data structures are used by the CSU hydra_init.
 - (1) Data structure hydra_rkt_char. This shared data structure holds the configuration for the hydra rocket. The data structure is an array of 7 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.52. -HYDRA ROCKET CONFIGURATION DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU hydra_init.
 - (1) Data file "simnet/data/rwa_hydr.d". This data file includes the configuration and characteristics of the hydra rocket. The data file consists of a maximum of 7 records. Access of the file is "read only" and sequential. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global hydra_rkt_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.52. - HYDRA ROCKET CONFIGURATION DATA ARRAY. The second field is for documentation purposes only.
- k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU hydra_init.

4.2.5. CSU missile_hydra_init.

The CSU missile_hydra_init reads hdyra rocket data from data files and initializes the characteristic data array. This CSU copies the paramaters into variables static to the rkt_hydra.c module and initializes the state of all the rockets. The following subparagraphs describe the design information for the CSU missile_hydra_init.

4.2.5.1. CSU missile_hydra_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.2.5.2. CSU missile_hydra_init design.

The CSU missile_hydra_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_hydra_init. For a complete listing, see Appendix M - Source Code Listing For rkt_hydra.c.

- a. <u>Input/output data elements</u>.
 - (1) rocket_array This input data structure is an array of rocketsof structure type HYDRA_ROCKET. This structure is declared global.
 - (2) num_rockets This input data element is the number of rockets defined in the rocket_array. This element is declared global.
 - (3) No output data elements are declared.
- b. <u>Local data elements</u>. TABLE 4.2.5.1 CSU MISSILE_HYDRA_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_hydra_init and not used by any other CSU.

Name	i	data_tmp_ int	data_tmp	descript	fp
Descrip- tion	array index	temporary integer data storage for data read from file	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Туре	integer	integer	float	character array	file pointer
Represent- ation	decimal number	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A	N/A	N/A	64	N/A
Unit of Measure	Non-dimen- sional	Variable	Variable	None	None
Limit/range	0 - 99	Variable	Variable	N/A	N/A
Precision	single	single	single	N/A	N/A

TABLE 4.2.5.1 - CSU MISSILE_HYDRA_INIT LOCAL DATA DEFINITION TABLE

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_hydra_init.
 - (1) An algorithm to read the characteristics for the hdyra rocket from the "simnet/data/rkt_hydr.d" data file is executed. This data determines the characteristics for the hdyra rocket during real-time execution. Access of the file is "read only".

The "simnet/data/rkt_hydr.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed rkt_hydra_char element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one

and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile_hydra_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
 - (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
 - (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
 - (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
 - (7) CSU missile_util_load_ball_traj_file. This CSU existed within the original code and is not documented herein.
 - (8) CSU rva_create_output_list. This CSU existed within the original code and is not documented herein.
 - (9) CSU missile_fuze_prox_init. This CSU existed within the original code and is not documented herein.

(10) Shared data elements. The following is a list of global variables initialized within the CSU missile_hydra_init. These variables existed in the original code and will not be documented herein.

hydra_array num_hydra rkts_in_flight hydra_fly pylon_x pylon_y pylon_z flight_time speed_factor MISSILE_US_SPEED_FACTOR max_range_limit MISSILE_US_MAX_RANGE_LIMIT ball table loaded table_size HYDRA_TRAJ_FILE ball_table flechette_veh_list flechette is valid veh RVA_ALL_VEHICLES_LIST

h. <u>Logic flow</u>. The CSU missile_hydra_init is called by the CSU hydra_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_hydra_init is done during hydra rocket initialization.

Open hdyra rocket characteristic data file. If file is null, print error message and exit. Rewind file. Set index to zero. While record not end-of-file, rkt_hydra_char[index]=first_field descript=second_field increment index by one End while. Close data file.

Set hydra_array = rocket_array Set num_hydra = num_rocket

For each rocket. Set state = FREE Set missile id = 0Set rkts in_flight = 0Set hydra_fly = 0Set $pylon_x = 0.0$ Set $pylon_y = 0.0$ Set pylon_z = 0.0Set flight time = 0Set speed_factor = MISSILE_US_SPEED_FACTOR Set max_range_limit = MISSILE_US_MAX_RANGE_LIMIT If ball table_loaded is FALSE, Load ballistics table Set ball table loaded = TRUE Create flechette_veh_list for proximity fuze Initialize the proximity fuze for rockets armed with Flechettes

- i. <u>Data structures</u>. The following shared data structures are used by the CSU missile_hydra_init.
 - (1) Data structure rkt_hydra_char. This shared data structure holds the characteristics for the hdyra rocket. The data structure is an array of 12 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.53. HDYRA ROCKET CHARACTERISTICS DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile_hydra_init.
 - (1) Data file "simnet/data/rkt_hydr.d". This data file includes the characteristics of the hdyra rocket. The data file consists of a maximum of 12 records. Access of the file is "read only" and sequential. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global rkt_hydra_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.53. - HDYRA ROCKET CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.

- (2) Data file "simnet/data/hydra70.sd". This data file includes the trajectory data of the hdyra rocket. This data file existed under the original code and has not been modified. It is loaded during execution of the CSU missile_hydra_init.
- (3) Data file "simnet/data/hydra70.sp". This data file includes the trajectory parameters of the hdyra rocket. This data file existed under the original code and has not been modified. It is loaded during execution of the CSU missile_hydra_init.
- k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_hydra_init.

4.2.6. CSU missile_m73_init.

The CSU missile_m73_init reads m73 missile data from data files and initializes the performance limitations and characteristics data array. The following subparagraphs describe the design information for the CSU missile_m73_init.

4.2.6.1. CSU missile_m73_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.2.6.2. CSU missile_m73_init design.

The CSU missile_m73_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_m73_init. For a complete listing, see Appendix P - Source Code Listing For sub_m73.c.

- a. <u>Input/output data elements</u>.
 - (1) bmptr This input data element is a pointer to BALLASTIC_MISSILE structure that's ammo-type is MPSM, i.e., it releases sub-munitions of type munition_US_M73. This structure is declared global.

- (2) sub_mun This input data element is a pointer to the sub-munition structure associated with bmptr. This structure is declared global.
- (3) speed This input data element is the terminal speed of the rocket at detonation. This strucutre is declared global.
- (4) No output data elements are declared.
- b. <u>Local data elements</u>. TABLE 4.2.6.1 CSU MISSILE_M73_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_m73_init and not used by any other CSU.

TABLE 4.2.6.1 - CSU MISSILE_M73_INIT LOCAL DATA DEFINITION TABLE

Name	i	data_tmp	descript	fp
Description	array index	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Туре	integer	float	character array	file pointer
Represent- ation	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A	N/A	64	N/A
Unit of Measure	Non- dimension-al	Variable	None	None
Limit/range	0 - 99	Variable	<u>N/A</u>	N/A
Precision	single	single	N/A	N/A

TABLE 4.2.6.1 - CSU MISSILE_M73_INIT LOCAL DATA DEFINITION TABLE [CONTINUED]

Name	impact_pt	displacement	
Description	impact point	displacement	
	for the M73	from the	
		target of the	
		impact point	
Туре	VECTOR	VECTOR	
Represent-	X, Y, Z	X, Y, Z	
ation	coordinates	coordinates	
Size	N/A	N/A	
Unit of	map	map	
Measure	coordinates	coordinates	
Limit/range	N/A	N/A	
Precision	single	single	

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_m73_init.
 - (1) An algorithm to read the performance limitations and characteristics of the m73 missile from the

"simnet/data/sub_m73.d" data file is executed. This data determines the performance limitations and characteristics of the m73 missile during real-time execution. Access of the file is "read only".

The "simnet/data/sub_m73.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed sub_m73_char element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile_m73_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
 - (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.

- 74 -

- (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) CSU missile_util_comm_release_sub_munition. This CSU existed within the original code and is not documented herein.
- (8) Shared data elements. The following is a list of global variables initialized within the CSU missile_m73_init. These variables existed in the original code and will not be documented herein.

bmptr sub_mun speed time impact.timer impact.distance impact_pt[3] location[3] MSL_TYPE_BALLISTIC SUB_MUN_IMPACT zero_velocity

h. <u>Logic flow</u>. The CSU missile_m73_init is called by the CSU missile_hydra_fly_rockets. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_m73_init is done for each hydra rocket flyout.

Open m73 missile characteristics data file. If file is null, print error message and exit. Rewind file Set index to zero. While record not end-of-file, sub_m73_char[index]=first_field descript=second_field increment index by one End while.

Close data file.

Set time = 0
Set impact.timer = 0
Set impact.distance = speed
Get point under sub-munition release point
 Set impact_pt[X] = location[X]
 Set impact_pt[Y] = location[Y]
 Set impact_pt[Z] = 10.0
 Call missile_util_comm_release_sub_munition

- i. <u>Data structures</u>. The following shared data structures are used by the CSU missile_m73_init.
 - (1) Data structure sub_m73_char. This shared data structure holds the performance limitations and characteristics for the m73 missile. The data structure is an array of 3 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.54. -SUBMUNITIONS M73 CHARACTERISTICS DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile_m73_init.
 - (1) Data file "simnet/data/sub_m73.d". This data file includes the performance limitations and characteristics of the m73 missile. The data file consists of a maximum of 3 records. Access of the file is "read only" and sequential. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global sub_m73_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.54. - SUBMUNITIONS M73 CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.
- k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_m73_init.

4.2.7. CSU missile_flechette_init.

The CSU missile_flechette_init reads flechette data from data files and initializes the 1) performance limitations data array and 2) the speed after release polynomial coefficients array to behave according to sub_munitions type of munition_US_Flechette_60. The following subparagraphs describe the design information for the CSU missile_flechette_init.

4.2.7.1. CSU missile_flechette_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.2.7.2. CSU missile_flechette_init design.

The CSU missile_flechette_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_flechette_init. For a complete listing, see Appendix O - Source Code Listing For sub_flech.c.

- a. <u>Input/output data elements</u>.
 - (1) bmptr This input data element is a pointer to a BALLISTIC_MISSILE structure that's ammo-type is Flechette, i.e., it releases sub-munitions type of munition_US_Flechette_60. This structure is declared global.
 - (2) sub_mun This input data element is a pointer to a BALLISTIC_SUB_MUN structure associated with bmptr. This element is declared global.
 - (3) init_speed This input data element is the terminal speed of the rocket and assigned as the initial speed of the flechettes. This element is declared global.
 - (4) No output data elements are declared.
- b. <u>Local_data_elements</u>. TABLE 4.2.7.1 CSU MISSILE_FLECHETTE_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_flechette_init and not used by any other CSU.

	······				
Name	1	data_tmp_	data_tmp	descript	tp
		int			
Descrip-	array index	temporary	temporary	temporary	data file
tion	-	integer data	float data	character	pointer
		storage for	storage for	string storage	•
		data read	data read	read from file	
	ł	from file	from file		
Tumo	integer	integer	float	character	file pointer
Type	mieger	integer	noat	Character	me pontter
				array	
Represent-	decimal	decimal	real number	character	directory
ation	number	number		string	pathname
					plus 8
					character
				}	unique
					filename plus
					".d" extension
Size	N/A	N/A	N/A	64	N/A
Unit of	Non-dimen-	Variable	Variable	None	None
Measure	sional				
Limit/range	0 - 99	Variable	Variable	N/A	N/A
Precision	single	single	single	N/A	N/A

TABLE 4.2.7.1 - CSU MISSILE_FLECHETTE_INIT LOCAL DATA DEFINITION TABLE

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_flechette_init.
 - (1) An algorithm to read the performance limitations and characteristics of the flechette from the "simnet/data/sub_flec.d" data file is executed. This data determines the performance limitations and characteristics of the flechette during real-time execution. Access of the file is "read only".

The "simnet/data/sub_flec.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed sub_flech_char element. The remainder of the record is assigned to the temporary

character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and burn speed coefficients data from the "simnet/data/flec_spd.d" data file is executed. This data determines burn speed polynomial coefficient data used during real-time execution to compute the speed of the flechette after release for the flechette flyout. Access of the file is "read only".

The "simnet/data/flec_spd.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the variable sub_flech_poly_deg. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed flechette_speed_coef element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile_tlechette_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.

- (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
- (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
- (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
- (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) CSU vec_scale. This CSU scales the argument vector. This CSU existed within the original code and is not documented herein.
- (8) CSU missile_util_comm_release_sub_munition. This CSU existed within the original code and is not documented herein.
- (9) Shared data elements. The following is a list of global variables initialized within the CSU missile_flechette_init. These variables existed in the original code and will not be documented herein.

bmptr sub_mun init_speed distance pptr orientation velocity MSL_TYPE_BALLISTIC SUB_MUN_CANISTER zero_vector

h. <u>Logic flow</u>. The CSU missile_flechette_init is called by the CSU missile_hydra_fly_rockets. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_m73_init is done for each hydra rocket flyout..

Open flechette characteristics data file. If file is null, print error message and exit. Rewind file. Set index to zero. While record not end-of-file, sub_flech_char[index]=first_field descript=second_field increment index by one End while. Close data file.

Open speed data file. If file is null, print error message and exit. Rewind file. Get first field of first record. Set sub_flech_poly_deg=first_field Set descript=second_field Set index to zero. While record not end-of-file, flechette_speed_coef[index]=first_field descript=second_field increment index by one End while. Close data file.

Set time = 0 Set dart = address of sub_mun Set distance = 0.0 Set init_speed = init_speed Set pptr = NULL Scale the orientation vector; call vec_scale Call missile_util_comm_release_sub_munition

- i. <u>Data structures</u>. The following shared data structures are used by the CSU missile_flechette_init.
 - (1) Data structure sub_flech_char. This shared data structure holds the performance limitations and characteristics for

the flechette. The data structure is an array of 3 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.55. - SUBMUNITIONS FLECHETTE CHARACTERISTICS DATA ARRAY.

- (2) Data structure flechette_speed_coef. This shared data structure holds the burn speed coefficients for the burn speed polynomial. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.56. - FLECHETTE SPEED DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile_flechette_init.
 - (1) Data file "simnet/data/sub_flec.d". This data file includes the performance limitations and characteristics of the flechette. The data file consists of a maximum of 3 records. Access of the file is "read only" and sequential. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global sub_flech_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.55. SUBMUNITIONS FLECHETTE CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.
 - (2) Data file "simnet/data/flec_spd.d". This data file includes the burn speed degree of polynomial and coefficients data for the flechette. The data file consists of a maximum of 6 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to the global variable sub_flech_poly_deg. This field has an integer value. The second field is for documentation purposes only.

Each remaining records consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global flechette_speed_coef data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.56. - FLECHETTE SPEED DATA ARRAY. The second field is for documentation purposes only.

k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_flechette_init.

4.3. CSC controls_restore_controls.

The following subparagraphs identify and describe the CSU added to this CSC. The CSC controls_restore_controls uses other CSUs that existed in the original code, were not modified, and are not documented herein.

4.3.1. CSU controls_radios_init.

The CSU controls_radios_init sets the pilot and copilot radio kill output to off. This CSU initializes the radio disable output values. The following subparagraphs describe the design information for the CSU controls_radios_init.

4.3.1.1. CSU controls_radios_init design specification/constraints.

This CSU is developed to allow the radios on the RWA devices to be disabled upon ownship death. This CSU sets the two signals output to the associated hardware to the do not disable state (OFF).

4.3.1.2. CSU controls_radios_init design.

The CSU control_radios_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU controls_radios_init. The function depends on two idc positions being connected via hardware and the associated values set in the rwhard.p file which must be prepocessed.

- a. <u>Input/output data elements</u>. None.
- b. Local data elements. None.
- c. <u>Interrupts and signals</u>. None.

- d. <u>Algorithms</u>. None.
- e. <u>Error handling</u>. None.
- f. <u>Data conversion</u>. None.
- g. <u>Use of other elements</u>. The following elements are used by CSU controls_radios_init.
 - (1) CSU idc_output_set. This function call sets the hardware output signals to not disable radios. This CSU existed within the original code is is not documented herin.
 - (2) Shared data elements. The following is a list of global variables initialized within the CSU controls_radios_init.

PIL_RADIO_KILL CPG_RADIO_KILL OUTPUT_OFF

h. <u>Logic flow</u>. The CSU controls_radios_init is called by the CSU controls_restore_controls. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU controls_radios_init is normally done only once during CSCI initialization.

Call idc_output_set

Set PIL_RADIO_KILL = OUTPUT_OFF Set CPG_RADIO_KILL = OUTPUT_OFF

End

- i. <u>Data structures</u>. The following shared data structures are used by the CSU controls_radios_init.
 - (1) Data structure PIL_RADIO_KILL. This data structure already existed and is thus not documeted herin.
 - (2) Data structure CPG_RADIO_KILL. This data structure already existed and is thus not documeted herin.
 - (3) Data structure OUTPUT_SET. This data structure already existed and is thus not documeted herin

- j. <u>Local data files</u>. None.
- k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU controls_radios_init.

4.4. CSC fail_vehicle_is_destroyed.

The following subparagraphs identify and describe the CSU added to this CSC. The CSC fail_vehicle_is_destroyed uses other CSUs that existed in the original code, were not modified, and are not documented herein.

4.4.1. CSU controls_kill_radios.

The CSU controls_kill_radios sets the pilot and copilot radio kill output to off. This CSU sets the radio disable output values. The following subparagraphs describe the design information for the CSU controls_kill_radios.

4.4.1.1. CSU controls_kill_radios design specification/constraints.

This CSU is developed to allow the radios on the RWA devices to be disabled upon ownship death. This CSU sets the two signals output to the associated hardware to the disable state (ON).

4.4.1.2. CSU controls_kill_radios design.

The CSU control_radios_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU controls_kill_radios. The function depends on two idc positions being connected via hardware and the associated values set in the rwhard.p file which must be prepocessed.

- a. <u>Input/output data elements</u>. None.
- b. Local data elements. None.
- c. <u>Interrupts and signals</u>. None.
- d. <u>Algorithms</u>. None.
- e. <u>Error handling</u>. None.
- f. <u>Data conversion</u>. None.

- g. <u>Use of other elements</u>. The following elements are used by CSU controls_kill_radios.
 - (1) CSU idc_output_set. This function call sets the hardware output signals to disable radios. This CSU existed within the original code is is not documented herin.
 - (2) Shared data elements. The following is a list of global variables initialized within the CSU controls_kill_radios.

PIL_RADIO_KILL CPG_RADIO_KILL OUTPUT_ON

h. <u>Logic flow</u>. The CSU controls_kill_radios is called by the CSU fall_cat_kill. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU controls_kill_radios is normally done only once during CSCI initialization.

Call idc_output_set Set PIL_RADIO_KILL = OUTPUT_ON Set CPG_RADIO_KILL = OUTPUT_ON End

- i. <u>Data structures</u>. The following shared data structures are used by the CSU controls_kill_radios.
 - (1) Data structure PIL_RADIO_KILL. This data structure already existed and is thus not documeted herin.
 - (2) Data structure CPG_RADIO_KILL. This data structure already existed and is thus not documeted herin.
 - (3) Data structure OUTPUT_SET. This data structure already existed and is thus not documeted herin
- j. <u>Local data files</u>. None.
- k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU controls_kill_radios.
- 4.5. Additional CSUs.

The following subparagraphs identify and describe additional CSUs that were modified for data reads under this delivery order. These CSUs would usually replace one of the missile CSUs for inclusion within a build having the desired missile system characteristics. The following CSUs are not part of the baseline build, and are documented here for convenience. These CSUs are generally called by CSC weapons_init during initialization of the CSCI.

4.5.1. CSU missile_adat_init.

The CSU missile_adat_init reads adat missile data from data files and initializes the 1) performance limitations and characteristics data array, 2) the polynomial degree array, 3) the burn speed polynomial coefficients array, 4) the coast speed polynomial coefficients array, 5) the burn turn, maximum cosine coefficients array, 6) the coast turn, maximum cosine coefficients array, and 7) the temporal bias coefficients array. This CSU copies the parameters into variables static to the miss_adat.c module and initializes the state of all the missiles. This CSU also initializes the proximity fuze. The following subparagraphs describe the design information for the CSU micsile_adat_init.

4.5.1.1. CSU missile_adat_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.5.1.2. CSU missile_adat_init design.

The CSU missile_adat_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_adat_init. For a complete listing, see Appendix E - Source Code Listing For miss_adat.c.

- a. <u>Input/output data elements</u>.
 - (1) missile_array This input data structure is a pointer to the array of ADAT missiles defined in vehicle specific code.. This structure is declared global.
 - (2) num_missiles This input data element is the number of missiles defined in the missile_array. This element is declared global.
 - (3) No output data elements are declared.

b. <u>Local data elements</u>. TABLE 4.5.1.1 - CSU MISSILE_ADAT_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_adat_init and not used by any other CSU.

Name	į	data_tmp_ int	data_tmp	descript	fp
Descrip- tior.	array index	temporary integer data storage for data read from file	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Туре	integer	integer	float	character array	file pointer
Represent- ation	decimal number	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A	N/A	N/A	64	N/A
Unit of Measure	Non- dimension-al	Variable	Variable	None	None
Limit/range	0 - 99	Variable	Variable	N/A	N/A
Precision	single	single	single	N/A	N/A

TABLE 4.5.1.1 - CSU MISSILE_ADAT_INIT LOCAL DATA DEFINITION TABLE

TABLE 4.5.1.1 - CSU MISSILE_ADAT_INIT LOCAL DATA DEFINITION TABLE [CONTINUED]

Name	mag
Descrip-	scale of
tion	magnetic
	orient-
	ation vector
Туре	float
Represent-	real number
ation	
Size	N/A
Unit of	None
Measure	
Limit/range	N/A
Precision	single

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_adat_init.

(1) An algorithm to read the performance limitations and characteristics of the adat missile from the "simnet/data/ms_ad_ch.d" data file is executed. This data determines the performance limitations and characteristics of the adat missile during real-time execution. Access of the file is "read only".

The "simnet/data/ms_ad_ch.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed adat_miss_char element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and burn speed coefficients data from the "simnet/data/ms_ad_bs.d" data file is executed. This data determines burn speed polynomial coefficient data used during real-time execution to compute the speed of the adat missile during engine burn for the adat missile flyout. Access of the file is "read only".

The "simnet/data/ms_ad_bs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the first element of the adat_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed adat_burn_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read polynomial degree data and coast speed coefficients data from the "simnet/data/ms_ad_cs.d" data file is executed. This data determines coast speed polynomial coefficient data used during real-time execution to compute the speed of the adat missile after engine burn for the adat missile flyout. Access of the file is "read only".

The "simnet/data/ms_ad_cs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the second element of the adat_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed adat_coast_speed_coeff_element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(4) An algorithm to read polynomial degree data and maximum turn cosine coefficients during engine burn data from the "simnet/data/ms_ad_bt.d" data file is executed. This data defines the maximum cosine coefficients during real-time execution to compute the maximum cosine of a turn during engine burn of the adat missile flyout. Access of the file is "read only".

The "simnet/data/ms_ad_bt.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the

first field. The first field is assigned to a temporary integer data storage and then to the third element of the adat_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed adat_burn_turn_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(5) An algorithm to read polynomial degree data and maximum turn cosine coefficients data after engine burn from the "simnet/data/ms_ad_ct.d" data file is executed. This data defines the maximum cosine coefficients during real-time execution to compute the maximum cosine of a turn after engine burn of the adat missile flyout. Access of the file is "read only".

The "simnet/data/ms_ad_ct.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the fourth element of the adat_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed adat_coast_turn_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(6) An algorithm to read polynomial degree data and temporal bias coefficients data from the "simnet/data/ms_ad_tb.d" data file is executed. This data

defines the temporal bias coefficients during real-time execution to compute the temporal bias of the adat missile flyout. Access of the file is "read only".

The "sinnet/data/ms_ad_tb.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the fifth element of the adat miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed adat_temp_bias_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile_adat_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.

- (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
- (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) CSU missile_fuze_prox_init. This CSU initializes the proximity fuze for the adat missile. This CSU existed within the original code and is not documented herein.
- (8) CSU sqrt. This CSU computes the square root of a series of arguments. This CSU existed within the original code and is not documented herein.
- (9) CSU mat_copy. This CSU copies a matrix. This CSU existed within the original code and is not documented herein.
- (10) Shared data elements. The following is a list of global variables initialized within the CSU missile_adat_init. These variables existed in the original code and will not be documented herein.

missile_array num_missiles tube_C_sight_right[][] tube_C_sight_left[][]

h. <u>Logic flow</u>. The CSU missile_adat_init is called by the CSU weapons_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_adat_init is normally done once during CSCI initialization and is performed sequentially.

Open adat missile characteristics data file. If file is null, print error message and exit. Rewind file. Set index to zero.

While record not end-of-file, adat_miss_char[index]=first_field descript=second_field increment index by one End while. Close data file.

Open burn speed data file. If file is null, print error message and exit. Rewind file. Get first field of first record. Set adat_miss_poly_deg[0]=first_field Set descript=second_field Set index to zero. While record not end-of-file, adat_burn_speed_coeff[index]=first_field descript=second_field increment index by one

End while. Close data file.

Open coast speed data file. If file is null, print error message and exit. Rewind file. Get first field of first record. Set adat_miss_poly_deg[1]=first_field Set descript=second_field Set index to zero. While record not end-of-file, adat_coast_speed_coeff[index]=first_field descript=second_field increment index by one End while. Close data file.

Open burn turn data file. If file is null, print error message and exit. Rewind file. Get first field of first record. Set adat_miss_poly_deg[2]=first_field Set descript=second_field Set index to zero. While record not end-of-file, adat_burn_turn_coeff[index]=first_field

descript=second_field increment index by one End while. Close data file.

Open coast turn data file. If file is null, print error message and exit. Rewind file. Get first field of first record. Set adat_miss_poly_deg[3]=first_field Set descript=second_field Set index to zero. While record not end-of-file, adat_coast_turn_coeff[index]=first_field descript=second_field increment index by one End while. Close data file.

Set num_adats = num_missiles Set adat_array = missile_array Set mptr.state = ADAT_FREE Set mptr.max_flight_time = ADAT_MAX_FLIGHT_TIME Set mptr.max_turn_directions = 1

Initialize the proximity fuze Initialize the tube-to-sight transformation matrices

i. <u>Data structures</u>. The following shared data structures are used by the CSU missile_adat_init.

- (1) Data structure adat_miss_char. This shared data structure holds the performance limitations and characteristics for the adat missile. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.29. - ADAT MISSILE CHARACTERISTICS DATA ARRAY.
- (2) Data structure adat_miss_poly_deg. This shared data structure holds the polynomial degree data defining the size if the polynomial arrays and strucures used in this CSU. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.30. - ADAT MISSILE POLYNOMIAL DEGREE DATA ARRAY.
- (3) Data structure adat_burn_speed_coeff. This shared data structure holds the burn speed coefficients for the burn speed polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.31. - ADAT MISSILE BURN SPEED DATA ARRAY.
- (4) Data structure adat_coast_speed_coeff. This shared data structure holds the coast speed coefficients for the coast speed polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.32. - ADAT MISSILE COAST SPEED DATA ARRAY.
- (5) Data structure adat_burn_turn_coeff. This shared data structure holds the maximum cosine coefficients for a turn during engine burn for the burn turn polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.33. - ADAT MISSILE BURN TURN DATA ARRAY.

- (6) Data structure adat_coast_turn_coeff. This shared data structure holds the maximum cosine coefficients for a turn after engine burn for the coast turn polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.34. - ADAT MISSILE BURN TURN DATA ARRAY.
- (7) Data structure adat_temp_bias_coeff. This shared data structure holds the temporal bias coefficients for the temporal bias polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.35. - ADAT MISSILE TEMPORAL BIAS DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile_adat_init.
 - (1) Data file "simnet/data/ms_ad_ch.d". This data file includes the performance limitations and characteristics of the adat missile. The data file consists of a maximum of 10 records. Access of the file is "read only" and sequential.

Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global adat_miss_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.29. - ADAT MISSILE CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.

(2) Data file "simnet/data/ms_ad_bs.d". This data file includes the burn speed degree of polynomial and coefficients data for the adat missile. The data file consists of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to

an element of the global adat_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.30. - ADAT MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_burn_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.31. - ADAT MISSILE BURN SPEED DATA ARRAY. The second field is for documentation purposes only.

(3) Data file "simnet/data/ms_ad_cs.d". This data file includes the coast speed degree of polynomial and coefficients data for the adat missile. The data file consists of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global adat_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.30. - ADAT MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_coast_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.32. - ADAT MISSILE COAST SPEED DATA ARRAY. The second field is for documentation purposes only.

(4) Data file "simnet/data/ms_ad_bt.d". This data file includes the burn turn degree of polynomial and coefficients data for the adat missile. The data file consists
of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global adat_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.30. - ADAT MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_burn_turn_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.33. - ADAT MISSILE BURN TURN DATA ARRAY. The second field is for documentation purposes only.

(5) Data file "simnet/data/ms_ad_ct.d". This data file includes the coast turn degree of polynomial and coefficients data for the adat missile. The data file consists of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global adat_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.30. - ADAT MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_coast_turn_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.34. - ADAT MISSILE COAST TURN DATA

ARRAY. The second field is for documentation purposes only.

(6) Data file "simnet/data/ms_ad_tb.d". This data file includes the coast turn degree of polynomial and coefficients data for the adat missile. The data file consists of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global adat_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.30. - ADAT MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_coast_turn_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.35. - ADAT MISSILE TEMPORAL BIAS DATA ARRAY. The second field is for documentation purposes only.

k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_adat_init.

4.5.2. CSU missile_atgm_init.

The CSU missile_atgm_init reads tow missile data from data files and initializes the 1) performance limitations and characteristics data array, 2) the polynomial degree array, 3) the burn speed polynomial coefficients array, 4) the coast speed polynomial coefficients array, 5) the burn speed turn, maximum cosine coefficient strucure, and 6) the coast speed turn, maximum cosine coefficient strucure. The following subparagraphs describe the design information for the CSU missile_atgm_init.

This CSU was built using the CSU missile_tow_init and retains the same variable names from that CSU.

4.5.2.1. CSU missile_atgm_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.5.2.2. CSU missile_atgm_init design.

The CSU missile_atgm_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_atgm_init. For a complete listing, see Appendix F - Source Code Listing For miss_atgm.c.

- a. <u>Input/output data elements</u>.
 - (1) tptr This input data element is a pointer to the array of missiles to be initialized. This element is declared global.
 - (2) No output data elements are declared.
- b. <u>Local data elements</u>. TABLE 4.5.2.1 CSU MISSILE_ATGM_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_atgm_init and not used by any other CSU.

		كتني كالمسكي كي	كالمستك ومستكن المستهد		
Name	i	data_tmp_ int	data_tmp	descript	fp
Descrip- tion	array index	temporary integer data storage for data read from file	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Туре	integer	integer	float	character array	file pointer
Represent- ation	decimal number	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A	N/A	N/A	64	N/A
Unit of Measure	Non- dimension-al	Variable	Variable	None	None
Limit/range	0 - 99	Variable	Variable	N/A	N/A
Precision	single	single	single	N/A	N/A

TABLE 4.5.2.1 - CSU MISSILE_ATGM_INIT LOCAL DATA DEFINITION TABLE

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_atgm_init.
 - (1) An algorithm to read the performance limitations and characteristics of the tow missile from the "simnet/data/ms_at_ch.d" data file is executed. This data determines the performance limitations and characteristics of the tow missile during real-time execution. Access of the file is "read only".

The "simnet/data/ms_at_ch.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed tow_miss_char element. The remainder of the record is assigned to the temporary

character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and burn speed coefficients data from the "simnet/data/ms_at_bs.d" data file is executed. This data determines burn speed polynomial coefficient data used during real-time execution to compute the speed of the tow missile during engine burn for the tow missile flyout. Access of the file is "read only".

The "simnet/data/ms_at_bs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the first element of the tow_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed tow_burn_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read polynomial degree data and coast speed coefficients data from the "simnet/data/ms_at_cs.d" data file is executed. This data determines coast speed polynomial coefficient data used during real-time execution to compute the speed of the tow missile after engine burn for the tow missile flyout. Access of the file is "read only".

The "simnet/data/ms_at_cs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the

first field. The first field is assigned to a temporary integer data storage and then to the third element of the tow_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed tow_coast_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(4) An algorithm to read polynomial degree data and maximum turn cosine coefficients during engine burn data from the "simnet/data/ms_at_bt.d" data file is executed. This data defines the maximum cosine coefficients during real-time execution to compute the maximum cosine of a turn in each axis during engine burn of the tow missile flyout. Access of the file is "read only".

The "simnet/data/ms_at_bt.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the third element of the tow_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero for the side axis, with the limit set to the degree. Then, each record is scanned and the first field is assigned to a temporary float data storage, and assigned to the current indexed tow_burn_turn_coeff.side_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned and stored until the degree limit is hit. The process is repeated for the up and down axes. Then, the file is closed.

(5) An algorithm to read polynomial degree data and maximum turn cosine coefficients data after engine burn from the "simnet/data/ms_at_ct.d" data file is executed. This data defines the maximum cosine coefficients during real-time execution to compute the maximum cosine of a turn in each axis after engine burn of the tow missile flyout. Access of the file is "read only".

The "simnet/data/ms_at_ct.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the fourth element of the tow_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero for the side axis, with the limit set to the degree. Then, each record is scanned and the first field is assigned to a temporary float data storage, and assigned to the current indexed tow_coast_turn_coeff.side_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned and stored until the degree limit is hit. The process is repeated for the up and down axes. Then, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile_atgm_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.

- (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
- (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
- (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) Shared data elements. The following is a list of global variables initialized within the CSU missile_atgm_init. These variables existed in the original code and will not be documented herein.

tptr mptr.state mptr.max_flight_time mptr.max_turn_directions

h. <u>Logic flow</u>. The CSU missile_atgm_init is called by the CSU weapons_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_atgm_init is normally done only once during CSCI initialization and is performed sequentially.

Open atgm missile characteristics data file. If file is null, print error message and exit. Rewind file. Set index to zero. While record not end-of-file, tow_miss_char[index]=first_field descript=second_field increment index by one End while. Close data file.

Open burn speed data file. If file is null, print error message and exit. Rewind file. Get first field of first record. Set tow_miss_poly_deg[0]=first_field Set descript=second_field Set index to zero. While record not end-of-file, tow_burn_speed_coeff[index]=first_field descript=second_field increment index by one End while. Close data file. Open coast speed data file. If file is null, print error message and exit. Rewind file. Get first field of first record. Set tow_miss_poly_deg[1]=first_field Set descript=second_field Set index to zero. While record not end-of-file, tow_coast_speed_coeff[index]=first_field descript=second_field increment index by one End while. Close data file. Open burn turn data file. If file is null, print error message and exit. Rewind file. Get first field of first record. Set tow_miss_poly_deg[2]=first_field Set descript=second_field For index from 0 to tow_miss_poly_deg[2], single step, tow_burn_turn_coeff.side_coeff[index] = first_field descript=second_field End for loop. For index from 0 to tow_miss_poly_deg[2], single step, tow_burn_turn_coeff.up_coeff[index] = first_field descript=second_field End for loop. For index from 0 to tow_miss_poly_deg[2], single step, tow_burn_turn_coeff.down_coeff[index] = first_field

```
descript=second_field
End for loop.
Close data file.
Open coast turn data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set tow_miss_poly_deg[3]=first_field
Set descript=second_field
For index from 0 to tow_miss_poly_deg[3], single step,
      tow coast turn_coeff.side_coeff[index] = first_field
      descript=second_field
End for loop.
For index from 0 to tow_miss_poly_deg[3], single step,
      tow_coast_turn_coeff.up_coeff[index] = first_field
      descript=second_field
End for loop.
For index from 0 to tow_miss_poly_deg[3], single step,
      tow_coast_turn_coeff.down_coeff[index] = first_field
      descript=second_field
End for loop.
Close data file.
Set mptr.state = FALSE
Set mptr.max_flight_time = tow_miss_char[2]
Set mptr.max_turn_directions = 3
```

Set the burn and turn coefficients as adjusted by the atgm turn factor; adjusts the data from tow to atgm missile performance

- i. <u>Data structures</u>. The following shared data structures are used by the CSU missile_atgm_init.
 - (1) Data structure tow_miss_char. This shared data structure holds the performance limitations and characteristics for the tow missile. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.36. - ATGM MISSILE CHARACTERISTICS DATA ARRAY.

- (2) Data structure tow_miss_poly_deg. This shared data structure holds the polynomial degree data defining the size if the polynomial arrays and strucures used in this CSU. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.37. - ATGM MISSILE POLYNOMIAL DEGREE DATA ARRAY.
- (3) Data structure tow_burn_speed_coeff. This shared data structure holds the burn speed coefficients for the burn speed polynomial. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.38. - ATGM MISSILE BURN SPEED DATA ARRAY.
- (4) Data structure tow_coast_speed_coeff. This shared data structure holds the coast speed coefficients for the coast speed polynomial. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.39. - ATGM MISSILE COAST SPEED DATA ARRAY.
- (5) Data structure tow_burn_turn_coeff. This shared data structure holds the maximum cosine coefficients for a turn in each axis during engine burn for the burn turn polynomial. The data structure is an array of 2 elements for each axis. There are three axes: side, up, and down. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.40. - ATGM MISSILE BURN TURN DATA STRUCTURE.
- (6) Data structure tow_coast_turn_coeff. This shared data structure holds the maximum cosine coefficients for a turn in each axis during engine burn for the burn turn polynomial. The data structure is an array of 4 elements for each axis. There are three axes: side, up, and down. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.41. - ATGM MISSILE COAST TURN DATA STRUCTURE.

- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile_atgm_init.
 - (1) Data file "simnet/data/ms_at_ch.d". This data file includes the performance limitations and characteristics of the tow missile. The data file consists of a maximum of 5 records. Access of the file is "read only" and sequential.

Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_miss_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.36. - ATGM MISSILE CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.

(2) Data file "simnet/data/ms_at_bs.d". This data file includes the burn speed degree of polynomial and coefficients data for the tow missile. The data file consists of a maximum of 6 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global tow_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.37. - ATGM MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_burn_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.38. - ATGM MISSILE BURN SPEED DATA ARRAY. The second field is for documentation purposes only.

(3) Data file "simnet/data/ms_at_cs.d". This data file includes the coast speed degree of polynomial and coefficients data for the tow missile. The data file consists of a maximum of 6 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global tow_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.37. - ATGM MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_coast_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.39. - ATGM MISSILE COAST SPEED DATA ARRAY. The second field is for documentation purposes only.

(4) Data file "simnet/data/ms_at_bt.d". This data file includes the burn turn degree of polynomial and coefficients data for the tow missile. The data file consists of a maximum of 7 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global tow_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.37. - ATGM MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global

tow_burn_turn_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.40. - ATGM MISSILE BURN TURN DATA ARRAY. The second field is for documentation purposes only.

(5) Data file "simnet/data/ms_at_ct.d". This data file includes the coast turn degree of polynomial and coefficients data for the tow missile. The data file consists of a maximum of 13 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global tow_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.37. - ATGM MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_coast_turn_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.41. - ATGM MISSILE COAST TURN DATA ARRAY. The second field is for documentation purposes only.

k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_atgm_init.

4.5.3. CSU missile_kem_init.

The CSU missile_kem_init reads kem missile data from data files and initializes the 1) performance limitations and characteristics data array, 2) the polynomial degree array, 3) the burn speed polynomial coefficients array, 4) the coast speed polynomial coefficients array, 5) the burn turn, maximum cosine coefficients array, 6) the coast turn, maximum cosine coefficients array, and 7) the temporal bias coefficients array. This CSU copies the parameters into variables static to the miss_kem.c module and initializes the state of all

the missiles. The following subparagraphs describe the design information for the CSU missile_kem_init.

4.5.3.1. CSU missile_kem_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.5.3.2. CSU missile_kem_init design.

The CSU missile_kem_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_kem_init. For a complete listing, see Appendix H - Source Code Listing For miss_kem.c.

- a. <u>Input/output data elements</u>.
 - (1) missile_array This input data structure is a pointer to the array of KEM missiles defined in vehicle specific code.. This structure is declared global.
 - (2) num_missiles This input data element is the number of missiles defined in the missile_array. This element is declared global.
 - (3) No output data elements are declared.
- b. <u>Local data elements</u>. TABLE 4.5.3.1 CSU MISSILE_KEM_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_kem_init and not used by any other CSU.

Name	i	data_tmp_	data_tmp	descript	fp
		int			
Descrip-	array index	temporary	temporary	temporary	data file
tion		integer data	float data	character	pointer
		storage for	storage for	string storage	-
}		data read	data read	read from file	
		from file	from file		
Туре	integer	integer	float	character	file pointer
				array	
Represent-	decimal	decimal	real number	character	directory
ation	number	number		string	pathname
					plus 8
					character
					unique
					filename plus
					".d" extension
Size	N/A	N/A	N/A	64	N/A
Unit of	Non-	Variable	Variable	None	None
Measure	dimension-al				
Limit/range	0 - 99	Variable	Variable	N/A	N/A
Precision	single	single	single	N/Ā	N/A

TABLE 4.5.3.1 - CSU MISSILE_KEM_INIT LOCAL DATA DEFINITION TABLE

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_kem_init.
 - (1) An algorithm to read the performance limitations and characteristics of the kem missile from the "simnet/data/ms_km_ch.d" data file is executed. This data determines the performance limitations and characteristics of the kem missile during real-time execution. Access of the file is "read only".

The "simnet/data/ms_km_ch.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed kem_miss_char element. The remainder of the record is assigned to the temporary

character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and burn speed coefficients data from the "simnet/data/ms_km_bs.d" data file is executed. This data determines burn speed polynomial coefficient data used during real-time execution to compute the speed of the kem missile during engine burn for the kem missile flyout. Access of the file is "read only".

The "simnet/data/ms_km_bs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the first element of the kem_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed kem_burn_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read polynomial degree data and coast speed coefficients data from the "simnet/data/ms_km_cs.d" data file is executed. This data determines coast speed polynomial coefficient data used during real-time execution to compute the speed of the kem missile after engine burn for the kem missile flyout. Access of the file is "read only".

> The "simnet/data/ms_km_cs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the

first field. The first field is assigned to a temporary integer data storage and then to the second element of the kem_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed kem_coast_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(4) An algorithm to read polynomial degree data and maximum turn cosine coefficients during engine burn data from the "simnet/data/ms_km_bt.d" data file is executed. This data defines the maximum cosine coefficients during real-time execution to compute the maximum cosine of a turn during engine burn of the kem missile flyout. Access of the file is "read only".

The "simnet/data/ms_km_bt.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the third element of the kem_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed kem_burn_turn_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(5) An algorithm to read polynomial degree data and maximum turn cosine coefficients data after engine burn from the "simnet/data/ms_km_ct.d" data file is executed.

This data defines the maximum cosine coefficients during real-time execution to compute the maximum cosine of a turn after engine burn of the kem missile flyout. Access of the file is "read only".

The "simnet/data/ms_km_ct.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the fourth element of the kem miss poly deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed kem_coast_turn_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile_kem_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.

- (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
- (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) Shared data elements. The following is a list of global variables initialized within the CSU missile_kem_init. These variables existed in the original code and will not be documented herein.

missile_array num_missiles num_kems kem_array mptr.state mptr.max_flight_time mptr.max_turn_directions

h. <u>Logic flow</u>. The CSU missile_kem_init is called by the CSU weapons_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_kem_init is during initialization and is performed sequentially.

Open kem missile characteristics data file. If file is null, print error message and exit. Rewind file. Set index to zero. While record not end-of-file, kem_miss_char[index]=first_field descript=second_field increment index by one End while. Close data file.

Open burn speed data file. If file is null, print error message and exit.

Rewind file. Get first field of first record. Set kem_miss_poly_deg[0]=first_field Set descript=second_field Set index to zero. While record not end-of-file, kem_burn_speed_coeff[index]=first_field descript=second_field increment index by one End while. Close data file. Open coast speed data file. If file is null, print error message and exit. Rewind file. Get first field of first record. Set kem_miss_poly_deg[1]=first_field Set descript=second_field Set index to zero. While record not end-of-file, kem_coast_speed_coeff[index]=first_field descript=second_field increment index by one End while. Close data file. Open burn turn data file. If file is null, print error message and exit. Rewind file. Get first field of first record. Set kem_miss_poly_deg[2]=first_field Set descript=second field Set index to zero. While record not end-of-file, kem_burn_turn_coeff[index]=first_field descript=second_field increment index by one End while. Close data file. Open coast turn data file. If file is null, print error message and exit. Rewind file. Get first field of first record.

```
Set kem_miss_poly_deg[3]=first_field
Set descript=second_field
Set index to zero.
While record not end-of-file,
kem_coast_turn_coeff[index]=first_field
descript=second_field
increment index by one
End while.
Close data file.
```

Set num_kems = num_missiles Set kem_array = missile_array Set mptr.state = KEM_FREE Set mptr.max_flight_time = KEM_MAX_FLIGHT_TIME Set mptr.max_turn_directions = 1

- i. <u>Data structures</u>. The following shared data structures are used by the CSU missile_kem_init.
 - (1) Data structure kem_miss_char. This shared data structure holds the performance limitations and characteristics for the kem missile. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.42. -KEM MISSILE CHARACTERISTICS DATA ARRAY.
 - (2) Data structure kem_miss_poly_deg. This shared data structure holds the polynomial degree data defining the size if the polynomial arrays and strucures used in this CSU. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.43. - KEM MISSILE POLYNOMIAL DEGREE DATA ARRAY.
 - (3) Data structure kem_burn_speed_coeff. This shared data structure holds the burn speed coefficients for the burn speed polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.44. - KEM MISSILE BURN SPEED DATA ARRAY.

- (4) Data structure kem_coast_speed_coeff. This shared data structure holds the coast speed coefficients for the coast speed polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.45. - KEM MISSILE COAST SPEED DATA ARRAY.
- (5) Data structure kem_burn_turn_coeff. This shared data structure holds the maximum cosine coefficients for a turn during engine burn for the burn turn polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.46. - KEM MISSILE BURN TURN DATA ARRAY.
- (6) Data structure kem_coast_turn_coeff. This shared data structure holds the maximum cosine coefficients for a turn after engine burn for the coast turn polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.47. - KEM MISSILE COAST TURN DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile_kem_init.
 - (1) Data file "simnet/data/ms_km_ch.d". This data file includes the performance limitations and characteristics of the kem missile. The data file consists of a maximum of 10 records. Access of the file is "read only" and sequential.

Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global kem_miss_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.42. - KEM MISSILE CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.

(2) Data file "simnet/data/ms_km_bs.d". This data file includes the burn speed degree of polynomial and coefficients data for the kem missile. The data file consists of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global kem_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.43. - KEM MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_burn_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.44. - KEM MISSILE BURN SPEED DATA ARRAY. The second field is for documentation purposes only.

(3) Data file "simnet/data/ms_km_cs.d". This data file includes the coast speed degree of polynomial and coefficients data for the kem missile. The data file consists of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global kem_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.43. - KEM MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global

tow_coast_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.45. - KEM MISSILE COAST SPEED DATA ARRAY. The second field is for documentation purposes only.

(4) Data file "simnet/data/ms_km_bt.d". This data file includes the burn turn degree of polynomial and coefficients data for the kem missile. The data file consists of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global kem_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.43. - KEM MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_burn_turn_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.46. - KEM MISSILE BURN TURN DATA ARRAY. The second field is for documentation purposes only.

(5) Data file "simnet/data/ms_km_ct.d". This data file includes the coast turn degree of polynomial and coefficients data for the kem missile. The data file consists of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global kem_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.43. - KEM MISSILE POLYNOMIAL

DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_coast_turn_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.47. - KEM MISSILE COAST TURN DATA ARRAY. The second field is for documentation purposes only.

k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_kem_init.

4.5.4. CSU missile_maverick_init.

The CSU missile_maverick_init reads maverick missile data from data files and initializes the 1) performance limitations data array, 2) the polynomial degree array, 3) the burn speed polynomial coefficients array, and 4) the coast speed polynomial coefficients array. This CSU copies the parameters into variables static to the miss_maverck.c module and initializes the state of all the missiles. The following subparagraphs describe the design information for the CSU missile_maverick_init.

4.5.4.1. CSU missile_maverick_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.5.4.2. CSU missile_maverick_init design.

The CSU missile_maverick_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_maverick_init. For a complete listing, see Appendix I - Source Code Listing For miss_maverck.c.

a. <u>Input/output data elements</u>.

- (1) missile_array This input data structure is a pointer to the particular array of missiles to be initialized. This structure is declared global.
- (2) num_missiles This input data element is the number of missiles defined in the missile_array. This element is declared global.
- (3) func This input data element is the operational function of the missile. This element is declared global.
- (4) No output data elements are declared.
- b. <u>Local data elements</u>. TABLE 4.5.4.1 CSU MISSILE_MAVERICK_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_maverick_init and not used by any other CSU.

	_					
Name	i	j	data_tmp_	data_tmp	descript	fp
			int			_
Description	array	index	temporary	temporary	temporary	data file
-			integer data	float data	character	pointer
			storage for	storage for	string storage	•
			data read	data read	read from file	
			from file	from file		
T	integer		intoger	float	character	file mainten
туре	Integer		mileger	noat	character	me pointer
	L				array	
Represent-	decimal		decimal	real number	character	directory
ation	nun	nber	number		string	pathname
						plus 8
						character
						unique
						filename plus
						".d" extension
Size	N,	/A	N/A	N/A	64	N/A
Unit of	No	m-	Variable	Variable	None	None
Measure	dimen	sion-al				
Limit/range	0 -	99	Variable	Variable	N/A	N/A
Precision	sin	gle	single	single	N/A	N/A

TABLE 4.5.4.1 - CSU MISSILE_MAVERICK_INIT LOCAL DATA DEFINITION TABLE

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_maverick_init.
 - (1) An algorithm to read the performance limitations and characteristics of the maverick missile from the "simnet/data/ms_mk_ch.d" data file is executed. This data determines the performance limitations and characteristics of the maverick missile during real-time execution. Access of the file is "read only".

The "simnet/data/ms_mk_ch.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed maverick_miss_char element. The remainder of the record is assigned to the

temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and burn speed coefficients data from the "simnet/data/ms_mk_bs.d" data file is executed. This data determines burn speed polynomial coefficient data used during real-time execution to compute the speed of the maverick missile during engine burn for the maverick missile flyout. Access of the file is "read only".

The "simnet/data/ms_mk_bs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the first element of the maverick_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to. the current indexed maverick burn speed coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read polynomial degree data and coast speed coefficients data from the "simnet/data/ms_mk_cs.d" data file is executed. This data determines coast speed polynomial coefficient data used during real-time execution to compute the speed of the maverick missile after engine burn for the maverick missile flyout. Access of the file is "read only".

The "simnet/data/ms_mk_cs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file

cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the second element of the maverick_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is current assigned to the indexed maverick_coast_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile_maverick_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
 - (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.

- (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) CSU missile_fuze_prox_init. This CSU initializes the proximity fuze for the maverick missile. This CSU existed within the original code and is not documented herein.
- (8) Shared data elements. The following is a list of global variables initialized within the CSU missile_maverick_init. These variables existed in the original code and will not be documented herein.

missile_array num_missiles func maverick_cone_threshold maverick array num_mavericks maverick_array[].mptr.state maverick_array[].mptr.max_flight_time maverick_array[].mptr.max_turn_directions maverick_array[].object_being_tracked maverick_array[].sensor_id pel_callback_func

h. <u>Logic flow</u>. The CSU missile_maverick_init is called by the CSU weapons_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_maverick_init is done during initialization and is performed sequentially.

Open maverick missile characteristics data file. If file is null, print error message and exit. Rewind file. Set index to zero. While record not end-of-file, maverick_miss_char[index]=first_field descript=second_field increment index by one End while.

Close data file.

Open burn speed data file. If file is null, print error message and exit. Rewind file. Get first field of first record. Set maverick_miss_poly_deg[0]=first_field Set descript=second_field Set index to zero. While record not end-of-file, maverick_burn_speed_coeff[index]=first_field descript=second_field increment index by one End while. Close data file. Open coast speed data file. If file is null, print error message and exit. Rewind file. Get first field of first record. Set maverick_miss_poly_deg[1]=first_field Set descript=second_field Set index to zero. While record not end-of-file, maverick_coast_speed_coeff[index]=first_field descript=second_field increment index by one End while. Close data file. Set maverick_cone_threshold = maverick_miss_char[3] Set num_mavericks = num_missiles Set maverick_array = missile_array For index = 0 to less than num_missiles, single step, Set state = 0Set max_flight_time = maverick_miss_char[2] Set max_turn_directions = 1 Set object_being_tracked = NO_OBJECT End for loop Set pel_callback_func = func

i. <u>Data structures</u>. The following shared data structures are used by the CSU missile_maverick_init.

- (1) Data structure maverick_miss_char. This shared data structure holds the performance limitations and characteristics for the maverick missile. The data structure is an array of 15 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.15. -MAVERICK MISSILE CHARACTERISTICS DATA ARRAY.
- (2) Data structure maverick_miss_poly_deg. This shared data structure holds the polynomial degree data defining the size if the polynomial arrays used in this CSU. The data structure is an array of 2 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.16. - MAVERICK MISSILE POLYNOMIAL DEGREE DATA ARRAY.
- (3) Data structure maverick_burn_speed_coeff. This shared data structure holds the burn speed coefficients for the burn speed polynomial. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.17. - MAVERICK MISSILE BURN SPEED DATA ARRAY.
- (4) Data structure maverick_coast_speed_coeff. This shared data structure holds the coast speed coefficients for the coast speed polynomial. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.18. - MAVERICK MISSILE COAST SPEED DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile_maverick_init.
 - (1) Data file "simnet/data/ms_mk_ch.d". This data file includes the performance limitations and characteristics of the maverick missile. The data file consists of a maximum of 15 records. Access of the file is "read only" and sequential. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first

field is assigned to sequential elements of the global maverick_miss_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.15. - MAVERICK MISSILE CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.

(2) Data file "simnet/data/ms_mk_bs.d". This data file includes the burn speed degree of polynomial and coefficients data for the maverick missile. The data file consists of a maximum of 6 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global maverick_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.16. - MAVERICK MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global maverick_burn_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.17. - MAVERICK MISSILE BURN SPEED DATA ARRAY. The second field is for documentation purposes only.

(3) Data file "simnet/data/ms_mk_cs.d". This data file includes the coast speed degree of polynomial and coefficients data for the maverick missile. The data file consists of a maximum of 6 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global maverick_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.16. - MAVERICK

MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global maverick_coast_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.18. - MAVERICK MISSILE COAST SPEED DATA ARRAY. The second field is for documentation purposes only.

k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_maverick_init.

4.5.5. CSU missile_nlos_init.

The CSU missile_nlos_init reads nlos missile data from data files and initializes the 1) performance limitations data array, 2) the polynomial degree array, 3) the burn speed polynomial coefficients array, and 4) the coast speed polynomial coefficients array. This CSU initializes the state of the missile to indicate that it is available and sets the values that never change. The following subparagraphs describe the design information for the CSU missile_nlos_init.

4.5.5.1. CSU missile_nlos_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.5.5.2. CSU missile_nlos_init design.

The CSU missile_nlos_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_nlos_init. For a complete listing, see Appendix J - Source Code Listing For miss_nlos.c.

a. <u>Input/output data elements</u>.

- (1) mptr This input data element is a pointer to the array of nlos missiles to be initialized. This structure is declared global.
- (2) No output data elements are declared.
- b. <u>Local data elements</u>. TABLE 4.5.5.1 CSU MISSILE_NLOS_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_nlos_init and not used by any other CSU.
| Name | i | data_tmp_
int | data_tmp | descript | fp |
|---------------------|----------------------|--|--|--|---|
| Description | array index | temporary
integer data
storage for
data read
from file | temporary
float data
storage for
data read
from file | temporary
character
string storage
read from file | data file
pointer |
| Туре | integer | integer | float | character
array | file pointer |
| Represent-
ation | decimal
number | decimal
number | real number | character
string | directory
pathname
plus 8
character
unique
filename plus
".d" extension |
| Size | N/A | N/A | N/A | 64 | N/A |
| Unit of
Measure | Non-
dimension-al | Variable | Variable | None | None |
| Limit/range | 0 - 99 | Variable | Variable | N/A | N/A |
| Precision | single | single | single | N/A | N/A |

TABLE 4.5.5.1 - CSU MISSILE_NLOS_INIT LOCAL DATA DEFINITION TABLE

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_nlos_init.
 - (1) An algorithm to read the performance limitations and characteristics of the nlos missile from the "simnet/data/ms_nl_ch.d" data file is executed. This data determines the performance limitations and characteristics of the nlos missile during real-time execution. Access of the file is "read only".

The "simnet/data/ms_nl_ch.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed nlos_miss_char element. The remainder of the record is assigned to the temporary

character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and burn speed coefficients data from the "simnet/data/ms_nl_bs.d" data file is executed. This data determines burn speed polynomial coefficient data used during real-time execution to compute the speed of the nlos missile during engine burn for the nlos missile flyout. Access of the file is "read only".

The "simnet/data/ms_nl_bs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the first element of the nlos_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed nlos_burn_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read polynomial degree data and coast speed coefficients data from the "simnet/data/ms_nl_cs.d" data file is executed. This data determines coast speed polynomial coefficient data used during real-time execution to compute the speed of the nlos missile after engine burn for the nlos missile flyout. Access of the file is "read only".

The "simnet/data/ms_nl_cs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the

first field. The first field is assigned to a temporary integer data storage and then to the second element of the nlos_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed nlos_coast_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile_nlos_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
 - (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
 - (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.

- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) CSU cos. This library call CSU computes the cosine of the radian measure given as the argument. This CSU existed within the original code and is not documented herein.
- (8) Shared data elements. The following is a list of global variables initialized within the CSU missile_nlos_init. These variables existed in the original code and will not be documented herein.

state max_flight_time max_turn_directions speed cos_max_turn nlos_req_id nlos_target_id nlos_ammo_type vehicleIDIrrelevant

h. <u>Logic flow</u>. The CSU missile_nlos_init is called by the CSU weapons_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_nlos_init is normally done only once during CSCI initialization and is performed sequentially.

Open nlos missile characteristics data file. If file is null, print error message and exit. Rewind file. Set index to zero. While record not end-of-file, nlos_miss_char[index]=first_field descript=second_field increment index by one End while. Close data file. Open burn speed data file.

If file is null, print error message and exit. Rewind file. Get first field of first record.

Set nlos_miss_poly_deg[0]=first_field Set descript=second_field Set index to zero. While record not end-of-file, nlos_burn_speed_coeff[index]=first_field descript=second_field increment index by one End while. Close data file. Open coast speed data file.

If file is null, print error message and exit. Rewind file. Get first field of first record. Set nlos_miss_poly_deg[1]=first_field Set descript=second_field Set index to zero. While record not end-of-file, nlos_coast_speed_coeff[index]=first_field descript=second_field increment index by one End while. Close data file.

Set state = FALSE Set max_flight_time = nlos_miss_char[7] Set max_turn_directions = 1 Set speed = nlos_miss_char[8] Set cos_max_turn[0] = cos(nlos_miss_char[1]) Set nlos_req_id = NEAR_NO_REQUEST_PENDING Set nlos_target_id = vehicleIDIrrelevant

- i. <u>Data structures</u>. The following shared data structures are used by the CSU missile_nlos_init.
 - (1) Data structure nlos_miss_char. This shared data structure holds the performance limitations and characteristics for the nlos missile. The data structure is an array of 20 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.48. - NLOS MISSILE CHARACTERISTICS DATA ARRAY.

- (2) Data structure nlos_miss_poly_deg. This shared data structure holds the polynomial degree data defining the size if the polynomial arrays used in this CSU. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.49. -NLOS MISSILE POLYNOMIAL DEGREE DATA ARRAY.
- (3) Data structure nlos_burn_speed_coeff. This shared data structure holds the burn speed coefficients for the burn speed polynomial. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.50. - NLOS MISSILE BURN SPEED DATA ARRAY.
- (4) Data structure nlos_coast_speed_coeff. This shared data structure holds the coast speed coefficients for the coast speed polynomial. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.51. - NLOS MISSILE COAST SPEED DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile_nlos_init.
 - (1) Data file "simnet/data/ms_nl_ch.d". This data file includes the performance limitations and characteristics of the nlos missile. The data file consists of a maximum of 20 records. Access of the file is "read only" and sequential. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global nlos_miss_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.48. NLOS MISSILE CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.
 - (2) Data file "simnet/data/ms_nl_bs.d". This data file includes the burn speed degree of polynomial and coefficients data for the nlos missile. The data file consists

of a maximum of 6 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global nlos_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.49. - NLOS MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global nlos_burn_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.50. - NLOS MISSILE BURN SPEED DATA ARRAY. The second field is for documentation purposes only.

(3) Data file "simnet/data/ms_nl_cs.d". This data file includes the coast speed degree of polynomial and coefficients data for the nlos missile. The data file consists of a maximum of 6 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global nlos_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.49. - NLOS MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global nlos_coast_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.51. - NLOS MISSILE COAST SPEED DATA

ARRAY. The second field is for documentation purposes only.

k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_nlos_init.

5. CSCI data.

This section describes only those global data elements modified or added within the CSCI under this delivery order. For ease in readability and maintenance, the information is provided in tables.

5.1. Data elements internal to the CSCI.

a. For data elements internal to the CSCI, the following tables describe the data arrays and the data.

TABLE 5.1. - SUMMARY of DATA ARRAYS

NAME OF DATA ARRAY	DESCRIPTION NOTE 1]	Size of Array	DATA TYPE (MOTE 2)	FREQUENCY OF	DECLARATION/DEFAULT	DATA SOURCE
aero_data	This data array consists of characteristics and parameters describing the physical vehicle and its aerodynamic performance and control.	001	REAL	15 Hz	rwa_aerod yn c	simnet/data/rwa_aero.d
sero_hit	This data array consists of initial values for positions of the control inputs, stabilator germentation integrators, attitude control integrators, and hover aumentation integrators.	20	REAL	15 Hz	rwa_aerod yn c	simnei/data/rw_ae_in.d
eero_simple	This data array consists of characteristics and parameters deacribing the physical vehicle and its aerodynamic performance and control in the "ample" mode.	20	REAL .	15 Hz	rwa_aerodyn.c	simnet/data/rw_ae_sp.d
aero_staatth	This data array consists of characteristics and parameters describing the physical vehicle and its aerodynamic performance and control in the "sealth" mode.	- 20	REAL	15 Hz	rwa_aerodyn.c	simnet/data/rw_ae_std
engine_data	This data array consists of characteristics and parameters describing the engine performance and control.	20	REAL	15 Hz	rwa_engine.c	simnet/data/rwa_engnd
engine_init_data	This data array consists of initial values of the current engine state, performance, and control.	10	REAL	15 Hz	rwa_engine.c	simnet/data/rw_en_in.d
engine_stat_data	This data array consists of the initial values for filght time, engine status, number of engines, and powertrain damage status.	01	int	15 Hz	rwa_engine.c	simnet/data/rw_en_st.d
kinemat_data	This data array consists of kinematic constants and limits for the vehicle and its control.	20	REAL	15 Hz	rwa_kinemat.c	simnet/data/rwa_kine.d
kinemat_init_data	This data array consists of initial values for kinematic variables including velocity, angle- of-attack, pitch, altitude, heading, and g-force.	30	REAL	15 Hz	rwa_kinemat.c	simnet/data/rw_ki_in.d
adat_miss_char	This data array consists of characteristics and parameters describing an ADAT missile system and its performance constraints.	Ot	REAL	15 Hz	miss_atad.c	simnet/data/ms_adchd
adat_miss_poly_deg	This data array consists of values of the degree of each polynomial equation used to compute the burn speed, the coast speed, maximum cosines of turns while powered, maximum cosines of turns while unpowered, and temporal blas for the ADAT missile.	\$, int	15 Hz	miss_atad.c	See DESCRIPTION of individual elements of TABLE
adat_bum_speed_coeff	This data array consists of the coefficients for a polynomial equation defining the ADAT missile burn speed with repect to time in the form using the Newton-Raphson method.	01	REAL	15 Hz	miss_atad.c	simnet/data/ms_ad_bs.d
adat_coast_speed_coeff	This data array consists of the coeffictents for a polynomial equation for finning the ADAT missile coast speed with repect to time in the form using the Newton-Raphaon method.	10	REAL	15 Hz	miss_atad.c	simnet/data/ms_ad_cs.d
adat_burn_turn_coeff	This data array consists of the coefficients for a polynomial equation defining the ADAT missile maximum cosine of turn while provered with repect to time in the form using the Newton-Raphaon method.	10	REAL	15 Hz	mise_etad.c	simnet/data/ms_ad_bt.d
adat_coast_turn_coeff	This data array consists of the coeffictents for a polynomial equation defining the ADAT missile maximur "osine of turn while unpowered with repect to time in the form using the Newton-Kaphson method.	10	REAL	15 Hz	miss_eted.c	simnet/data/ms_ad_ct.d

- 145 -

Refe 2. Mo03036 Rev. 0.0

TABLE 5.1. - SUMMARY of DATA ARRAYS [Continued]

NAME OF DATA ARRAY	DESCRIPTION [WOTE 1]	SIZE of ARRAY	DATA TYPE (MOTE 2)	FREQUENCY OF CALCH ATION	DECLARATION/DEFAULT	DATA SOUNCE
adat_temp_bizs_coeff	This data array consists of the coefficients for a polynomial equation defining the ADAT missife temporal bias with repect to thme in the form using the Newton-Raphson method.	10	REAL	15 Hz	miss_atad.c	simnet/data/ms_ad_tb.d
hellfr_miss_char	This data array consists of characteristics and parameters describing a Helifine missile system and its performance constraints.	51	REAL	15 Hz	miss_hellfr.c	simnet/data/ms_hf_ch.d
hellfr_miss_poly_deg	This data array consists of values of the degree of each polynomial equation used to compute the time-of-flight, the burn speed, and the coast speed for the Heilfite misails.	E	ţı	15 Hz	miss_hellfr.c	See DESCRIPTION of individual elements of TABLE
hellfire_tof_coeff	This data array consists of the coefficients for a polynomial equation defining the Hellifre misalle tune-of-flight with repect to time in the form using the Newton-Raphson method.	01	REAL	15 Hz	miss_hellfr.c	simnet/data/ms_M_tf.d
hellfire_burn_speed_coeff	This data array consists of the coefficients for a polynomial equation defining the Hellfire missile burn speed with repect to range in the form using the Newton-Raphson method.	10	REAL	15 Hz	miss_bellfr.c	simnet/data/ms_hf_bs.d
hellfire_coast_speed_coeff	This data array consists of the coefficients for a polynomial equation defining the Hellifre missile coast speed with repect to time in the form using the Newton-Raphaon method.	10	REAL	15 Hz	miss_hellfr.c	simnet/data/ms_hf_cs.d
kem_miss_char	This data array consists of characteristics and parameters describing a KEM misaile system and its performance constraints.	10	REAL	15 Hz	misskem.c	simnet/data/ms_km_ch.d
kem_miss_poly_deg	This data array consists of values of the degree of each polynomial equation used to compute the burn speed, the coast speed, maximum costness of turns while powered, and maximum costness of turns while unpowered for the KEM missile.	ŧŊ	int .	15 Hz	misskem.c	See DESCRIPTION of Individual elements of TABLE
kem_burn_speed_coeff	This data array consists of the coefficients for a polynomial equation defining the KEM missile burn speed with repect to thrue in the form using the Newton-Raphson method.	10	REAL	15 Hz	misskem.c	simnet/data/ms_km_bs.d
kem_coast_speed_coeff	This data array consists of the coefficients for a polynomial equation defining the KEM missile coast speed with repect to time in the form using the Newton-Raphson method.	10	REAL	15 Hz	mísskem.c	simnet/data/ms_km_cs.d
kem_burn_turn_coeff	This data array consists of the coefficients for a polynomial equation defining the KEM missile maximum cosine of turn while powered with repect to time in the form using the Newton-Rephasen method.	10	REAL	15 Hz	missken.c	simnet/data/ms_km_bt.d
kem_coast_tum_coeff	This data array consists of the coefficients for a polynomial equation defining the KEM misaile maximum cosine of turn while unpowered with repect to time in the form using the Newton-Raphaon method.	10	real	15 Hz	misskem.c	simnet/døla/ms_km_ct.d
maverick_miss_char	This data array consists of characteristics and parameters describing a Maverkk missile even and its performance constraints.	15	REAL	15 Hz	miss_maverck.c	simnet/data/ms_mk_ch.d

TABLE 5.1. - SUMMARY of DATA ARRAYS [Continued]

NAME OF DATA ARRAY	DESCRIPTION [NOTE 1]	SIZE of ARRAY	DATA TYPE (MOTE 2)	FREQUENCY of CALCHEATION	DECLARATION/DEFAULT	DATA SOURCE
maverick_miss_poly_deg	This data array consists of values of the degree of each polynomial equation used to compute the burn speed and the coast speed for the Maverick missile.	2	Ĩ	15 Hz	miss_maverck.c	See DESCRIPTION of individual elements of TABLE
maverick_burn_speed_coeff_	This data array consists of the coeffictents for a polynomial equation defining the Maverick missile burn speed with repect to time in the form using the Newton-Raphson method.	s	REAL	15 Hz	miss_maverck.c	simnet/data/ms_mk_ba.d
maverick_coast_speed_coeff	This data array consists of the coefficients for a polynomial equation defining the Maverick missile coast speed with repect to time in the form using the Newton-Raphson method.	ŝ	REAL	15 Hz	miss_maverck.c	simnet/data/ms_mk_cs.d
nios_miss_char	This data array consists of characteristics and parameters describing a NLOS missile system and its performance constraints.	20	REAL	15Hz	miss-nlos.c	simnet/data/ms_nl_ch.d
nlos_miss_poly_deg	This data array consists of values of the degree of each polynomial equation used to compute the time-of-flight, the burn speed, and the coast speed for the NLOS missile.	w	ţı	15 Hz	mi ss -nlos.c	See DESCRIPTION of Individual elements of TABLE
nlos_burn_speed_coeff	This data array consists of the coefficients for a polynomial equation defining the NLOS missile burn speed with repect to time in the form using the Newton-Raphson method.	ŝ	REAL	15 Hz	mi ss -nios.c	simnet/data/ms_nl_bs.d
nlos_coust_spred_coeff	This data array consists of the coefficients for a polynomial equation defining the NLOS missile coast speed with repect to time in the form using the Newton-Raphson method.	ss.	REAL	11 SHz	mi ss -nlos.c	simnet/data/ms_nl_cs.d
stinger_miss_char	This data array consists of characteristics and parameters describing a Stinger missile system and its performance constraints.	15	REAL	15 Hz	miss_stinger.c	simnet/data/ms_st_ch.d
stinger_miss_poly_deg	This data array consists of values of the degree of each polynomial equation used to compute the burn speed and the coast speed for the Stinger missile.	2	Į	15 Hz	miss_stinger.c	See DESCRIPTION of Individual elements of TABLE
stinger_burn_speed_coeff	This data array consists of the coefficients for a polynomial equation defining the Shinger missile burn speed with repect to time in the form using the Newton-Raphson method.	2	REAL	15 Hz	miss_stinger.c	#imnet/data/ms_st_ba.d
stinger_coast_speed_coeff	This data array consists of the coefficients for a polynomial equation defining the Stinger missile coast speed with repect to time in the form using the Newton-Raphson method.	4	REAL	15Hz	ruiss_stinger.c	simnet/data/ms_st_cs.d
tow_miss_char	This data array consists of characteristics and parameters describing a TOW missile system and its performance constraints.	5	REAL	15 Hz	miss_tow.c	simnet/data/ms_tw_ch.d
tow_miss_poly_deg	This data array consists of values of the degree of each polynomdal equation used to compute the burn speed, the coast speed, maximum cosines of turns while powered, and maximum cosines of turns while unpowered for the TOW missile.	ς	ţ	15 Hz	miss_tow.c	See DESCRIPTION of individual elements of TABLE
tow_burn_speed_coeff	This data array consists of the coefficients for a polynomial equation defining the TOW missile burn speed with repect to time in the form using the Newton-Raphson method.	ŝ	REAL	15 Hz	misa_tow.c	simnet/data/ms_tw_bs.d

Refe 7 1993 Refe 7 1993 W003036 Rev. 0.0

TABLE 5.1. - SUMMARY of DATA ARRAYS [Continued]

See DESCRIPTION of individual elements of TABLE simnet/data/rwa_hydr.d simmet/data/ms_tw_bt.d simnet/data/ms_tw_ct.d simnet/data/ms_at_ch.d simnet/data/ms_at_cs.d simnet/data/rkt_hydr.d simnet/data/ma_at_bs.d simnet/data/ms_at_bt.d simnet/data/ms_at_ct.d simnet/data/ms_tw_cs.d DATA SOURCE DECLARATION/DEFAULT MODULE miss_tow.c miss_atgm.c miss_atgm.c rkt_hydra.c rwa_hydra.c miss atgm.c miss_atgm.c miss_atgm.c miss_atgm.c miss_tow.c miss_tow.c FREQUENCY of CALCULATION 15 Hz 15 Hz 15 Hz 15 Hz 15 Hz 15 Hz <u>15 Hz</u> 15 Hz 15 Hz 15 Hz 15 Hz MAX COS COEFF MAX_COS_COEFF MAX_COS_COEFF MAX_COS_COEFF DATA TYPE [NOTE 1] REAL REAL REAL REAL REAL REAL ŝ SIZE OF ARRAY 3×4 3×2 3×2 3×4 12 using the Newton-Raphson method. This two-dimensional data array consists of the coefficients for three polymonial equations [sidewards, upwards, and downwards movement] defining the TOW missile polynomial equation defining the TOW missile form using the Newton-Raphson method. This two-dimensional data array consists of the coefficients for three polynomial equations [sidewards, upwards, and downwards movement] defining the ATGM missile This data array consists of the coefficients for a This data array consists of the coefficients for a the coefficients for three polynomial equations (sidewards, upwards, and downwards system and its performance constraints. This data array consists of values of the degree of each polynomial equation used to compute form using the Newton-Raphson method. This data array consists of the coefficients for a parameters deecribing a Hyra 70 missile burst. This data array consists of characteristics and parameters describing a missile launcher the coefficients for three polynomial equations maximum cosine of turn while powered with repect to time in the form using the Newtoncosines of turns while powered, and maximun cosines of turns while unpowered for the maximum cosine of turn while powered with repect to time in the form using the Newton-This data array consists of characteristics and parameters describing an ATGM missile polynomial equation defining the ATGM missile coast speed with repect to time in the polynomial equation defining the ATGM missile burn speed with repect to time in the This data array consists of characteristics and coast speed with repect to time in the form This two-dimensional data array consists of This two-dimensional data array consists of the burn speed, the coast speed, maximum maximum cosine of turn while unpowered maximum cosine of turn while unpowered with repect to time in the form using the with repect to time in the form using the movement] defining the ATGM missile ystem and its performance constraints. (sidewards, upwards, and downwards movement) defining the TOW missile DESCRIPTION on-Raphson method. Newton-Raphson method. Raphson method Raphson method ATGM missile. Zew low_burn_speed_coeff nom # tow_coast_speed_coefif nom tow_coast_turn_coeff nom a tow_miss_poly_deg nom s tow_burn_turn_coeff (NOTE) ow_miss_char hore x tow_coast_speed_coef tow_coast_turn_coef tew_burn_turn_coef NAME of DATA ARRAY rkt_hydra_char hydra_rkt_char

TABLE 5.1. - SUMMARY of DATA ARRAYS [Continued]

NAME OF DATA ARRAY	DESCRIPTION	SIZE of AURAY	DATA TYPE	FREQUENCY of	DECLARATION/DEFAULT MODULE	DATA SOURCE
sub_flech_char	This data array consists of characteristics and parameters describing a flechette flyout.	3	REAL	15 Hz	sub_flech.c	simmet/data/sub_flec.d
flechette_speed_coeff	This data array consists of the coeflictents for a polynomial equation defining the flecthette flyout speed with repect to time in the form using the Newton-Raphson method.	ŝ	REAL	15 Hz	sub_flech.c	simnet/dats/flec_spd.d
sub_m73_char	This data array consists of characteristics and parameters describing M73 bomblettes falling.	3	REAL	15 Hz	Jr£2m_due	simnet/data/sub_m73.d

See individual TABLES for description of Individual elements. NOTE 1 NOTE 2

bit is a "C" type for Intager. IE.A. is a "C" means DUTAE for type feet. IA.A. COS.,COBT is a "C" means DEPRE for a extreme of NE.A. types.

changed to reflect ATGM. The modules are used in separate builds. Ì The ATCH mission module uses the same data array names as the TOW mission NOTE 3

TABLE 5.1.1. - AERODYNAMICS DATA ARRAY

NAME OF DATA ELEMENT	DESCAPTION	UNITS of MEASURE	DEFAULT	DATA TYPE [MOTE 1]	CSU WHERE SET OR	CSU WHERE USED	DATA SOURCE
aero_data[0]	MOMENT_OF_INERTIA_X;	rad/sec	5000.0	REAL	default declaration rwa_aerodyn.c frwa_aendwn.claerodwn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[1]	MOMENT_OF_INERTIA_Y;	kg-m**2	5000.0	REAL	default declaration rwa_aerodyn.c Irwa_aerodyn.claerodyn_init	[rwa_aerodyn.c]aerodyn_init	simnet/data/rwa_aero.d
aerodata[2]	MOMENT_OF_INERTIA_Z;	kg-m**2	50000.0	REAL	default declaration rwa_aerodyn.c Irwa_aerodyn.claerodyn_init	[rwa_aerodyn.c]aerodyn_init	simnet/data/rwa_aerc.d
sero_data[3]	AIRFRAME_MASS;	kę	4881.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[4]	ORDINANCE_MASS;	kg	1591.0	REAL	default declaration rwa_aerodyn.c {rwa_aerodyn.c}aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
eero_data[5]	GRAV_CONSTANT;	m/sec ^m 2	9.8	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	{rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[6]	cc.Ac.X;		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn_c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[7]	cc_Ac_Y;		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	{rwa_aerodyn.c}aerodyn_simu}	simnet/data/rwa_aero.d
aero_data[8]	cc_Ac_2;		-0.1	REAL	default declaration rwa_aerodyn.c frwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_aimul	simnet/data/rwa_aero.d
aero_data[9]	VIRTUAL_WING_AREA;	7E	25.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[10]	VIRTUAL_WING_COP_AC_X;		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_fnit	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[11]	VIRTUAL_WING_COP_AC_Y;		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_init	simnet/data/rwa_aero.d
aero_data[12]	VIRTUAL_WING_COP_AC_Z;		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	{rwa_aerodyn.c]aerodyn_init	simnet/data/rwa_aero.d
aero_data[13]	WING_UFT_COEFFICIENT_FIT_3;		0.0	REAL .	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[14]	WING_LIFT_COEFFICIENT_FIT_2;		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_dats[15]	WING_UFT_COEFFICIENT_FIT_1;		1.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aaro_data[16]	WING_LIFT_COEFFICIENT_FIT_0;		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[17]	WING_STALL_AOA:	deg	30.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[16]	VSTAB_AREA;	m**2	R	REAL	default declaration rwa_aerodyn.c Irwa_aerodyn.claerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[19]	VSTAB_COP_AC_X;		0.0	REAL	default declaration rwa_aerodyn.c Irwa_aerodyn_claerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[20]	VSTAB_COP_AC_Y;		I.e-	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simu!	simnet/data/rwa_aero.d
aero_data[21]	VSTAB_COP_AC_Z;		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_init	simnet/data/rwa_aero.d
aero_data[22]	VSTAB_LIFT_COEFFICIENT_1;		5.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	Irwa_aerodyn.c)aerodyn_init	simnet/data/rwa_aero.d
aero_data[23]	VSTAB_STALL_SSA;	geg	60.0	REAL	default declaration rwa_aerodyn.c frwa_aerodyn.claerodyn_init	[rwa_aerodyn.c]aerodyn_simu]	simnet/data/nwa_aero.d
sero_data[24]	MAIN_ROTOR_COP_AC_X;		0:0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_aimul	simnet/data/rwa_aero.d
aero_data[25]	MAIN_ROTOR_COP_AC_Y;		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.claerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[26]	MAIN_ROTOR_COP_AC_2:		2.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.claerodyn_init	[rwa_aerodyn.c]aerodyn_aimul	simnet/data/rwa_aero.d
aero_data[27]	MAIN_ROTOR_MAX_THRUST;	z	123500.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.claerodyn_init	lrwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d

- 151 -

TABLE 5.1.1. - AERODYNAMICS DATA ARRAY [Continued]

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of	DEFAULT	DATA TYPE	CSU WHERE SET OR	CSU WHERE USED	DATA SOUNCE
aero_data[55]	ATT_CTL_ROLL_P_CAIN;	MCSUR	5.0	REAL	CALCULATED default declaration rwa_aerodyn.c	frwa aerodyn.claerodyn simul	simnet/data/rwa_aero.d
and develop1	ATT CTI BOLLI CAIN.		2	14	[rwa_aerodyn.c]aerodyn_init		
			970	KEAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[57]	HOVER_AUC_ROLL_P_CAIN;		0.100	REAL	default declaration rwa_aerodyn.c frwa_aerodyn.claerodyn_init	[rwa_aerodyn.c]aerodyn_simu!	simnet/data/rwa_aero.d
aero_data[58]	HOVER_AUC_ROLL_1_CAIN;		100.0	REAL	default declaration rwa_aerodyn.c frwa_aerodyn.claerodyn_init	{rwa_aerodyn.c}aerodyn_simu}	simnet/data/rwa_aero.d
aero_data[59]	HOVER_AUG_MITCH_P_GAIN;		0.100	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simut	simnet/data/rwa_æero.d
sero_data[60]	HOVER_AUG_PITCH_1_GAIN;		100'0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_Init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[61]	HOVER_AUG_YAW_P_CAIN;		10.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_init	simnet/data/rwa_aero.d
aero_data[62]	HOVER_AUG_YAW_I_GAIN;		5.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_init	simnet/data/rwz_aero.d
eero_data[63]	HOVER_AUG_CLIMB_P_CAIN;		1.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	{rwa_aerodyn.c]aerodyn_simu!	simnet/data/rwa_aero.d
aero_data[64]	HOVER AUG_CLIMB_I_CAIN;		50	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data(65)	MAX_STAB_AUG_PITCH_ROLL_CONTROL;		0.20	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[66]	MAX_STAB_AUG_YAW_CLIMB_CONTROL;		0.05	REAL	default declaration rwa_aerodyn.c {rwa_aerodyn.c]aerodyn_Init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[67]	ROLL_RATE_DAMPING_CAIN;		100000.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[68]	PITCH_RATE_DAMPING_GAIN;		10000.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simu]	simnet/data/rwa_aero.d
aero_data[69]	YAW_RATE_DAMPING_GAIN;		100000.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn.init	{rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[70]	VERTICAL_RATE_DAMPING_GAIN;		2000.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
2010_data[7]]	LATERAL_VELOCITY_DAMPING_CAIN;		1000.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_init	simnet/data/rwa_aero.d
sero_dats[72]	LIFT_COEFF_VIRTUAL_WING;		0.6	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	{rwa_aerodyn.c}aerodyn_init	simnet/data/rwa_aero.d
sero_data[73]	OSWALD_EFFIC_FACTOR;		6:0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simu]	simnet/data/rwa_aero.d
sero_data[74]	INDUCED_DRAG_COEFF;		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_deta[75]	NOT USED		0:0	REAL	default declaration rwa_aerodyn.c (rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[76]	NOT USED		0:0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_Init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[77]	NOT USED		0:0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[78]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	(rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[79]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c Irwa_aerodyn.claerodyn_init	[rwa_aerodyn.c]aerodyn_simu]	simnet/data/rwa_aero.d
sero_data[60]	NOT USED		0'0	. REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simu]	simnet/data/rwa_aero.d
sero_data[81]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c Irwa_aerodyn.claerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d

,

TABLE 5.1.1. - AERODYNAMICS DATA ARRAY [Continued]

NAME OF DATA ELEMENT	DESCREPTION	UNITS of MEASURE	DEFAULT	DATA TYPE [NOTE 1]	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
aara_data[82]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
eere_data[83]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data(84)	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[85]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data(86)	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[87]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.claerodyn_simul	simnet/data/rwa_aero.d
aero_data(66)	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aaro_data[69]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_Init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aaro_data(90)	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_fnit	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[91]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_aimul	simnet/data/rwa_aero.d
sero_data[92]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[93]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	(rwa_aerodyn.c}aerodyn_simul	simnet/data/rwa_aero.d
sero_data[94]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
avro_data[95]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
tero_data[96]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[97]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_dats[98]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	(rwa_aerodyn.claerodyn_simul	simnet/data/rwa_aero.d
sero_data[99]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d

HOTE 1 REAL is a "C" macra OEFINE for type front.

- 153 -

TABLE 5.1.2. - AERODYNAMICS INITIALIZATION DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE	DEFAULT	DATA TYPE	CSU WHERE SET OR CALOULATED	CSU WHERE USED	DATA SOURCE
aere_ink[0]	cyclic pitch		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_aimul	simnet/data/rw_se_in.d
are_ink[1]	cyclic roll		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_init	simnet/data/rw_se_in.d
aero_ink[2]	collective		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_init	simnet/data/rw_ae_in.d
aero "ink[3]	Pedal		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_intt	[rwa_aerodyn.c]aero_aimul	eimnet/data/rw_ae_in.d
aere_hht[4]	stab aug pitch integrator		0.0	REAL	default declaration rwa_aerod yn.c [rwa_aerod yn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnei/data/rw_ae_ind
are_hk[5]	stab aug roll integrator		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_ind
aaroink[6]	stab aug yaw integrator		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodync]aero_simul	simnet/data/rw_ae_in.d
aero_hk[7]	stab aug climb integrator		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	(rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_ind
	attitude control pitch integrator		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_in.d
are_hk[9]	attitude control roll integrator		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_ind
aero_Init[10]	hover aug pitch integrator		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_in.d
aero_init[11]	hover aug roll integrator		0.0	REAL	default declaration rwa_aerodyn.c Irwa_aerodyn.c]aero_init	Irwa_aerodyn.c]aero_simul	simnet/data/rw_ae_ind
aero_Ink[12]	hover aug pitch angle		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_in.d
aero_Init[13]	hover aug roll angle		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simu!	simnet/data/rw_ae_in.d
aero_Init(14)	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c Irwa_aerodyn.c]aero_init		simnet/data/rw_ae_in.d
sero_Init(15)	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init		simnet/data/rw_se_in.d
aero_init[16]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_Init		simnet/data/rw_ae_ind
ano_hit[17]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init		simnet/data/rw_se_in.d
sere_init(18)	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_Init		simnet/data/rw_ae_in.d
aero_htt[19]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init		simnet/data/rw_ae_ind

NOTE 1 REAL & a "C" marce DEPAG for type float.

- 154 -

TABLE 5.1.3. - AERODYNAMICS SIMPLE DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNTS of MEASURE	DEFAULT	DATA TYPE INOTE 1]	CSU WHERE SET OR CALCHRATED	CSU WHERE USED	DATA SOUNCE
eero_stmple(0)	MAX_HEUCOPTER_POWER;	z	200000.0	REAL	default declaration rwa_aerodyn.c Irwa_aerodyn.claero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_sp.d
aero_simple[1]	MAX_HH;	rad	0.5	REAL	default declaration rwa_aerodyn.c Irwa_aerodyn.claero_init	[rwa_aerodyn.c]aero_init	simnet/data/rw_ae_sp.d
aero_simple[2]	H_K1; gain on position error		4 8.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_init	simnet/data/rw_ae_sp.d
aero_ampie[3]	H_K2: gain on gravity term of power setting		0.15	REAL	default declaration rwa_aerodyn.c Irwa_aerodyn.claero_init	Irwa_aerodyn.claero_simul	simnet/data/rw_ae_sp.d
[+]einpie.	H_DC; air drag coefficient		10.0	REAL	default declaration rwa_aerodyn.c frwa_aerodyn.claero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_sp.d
aero_simple[5]	H_K3; air drag coefficient	s,	100.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simu]	simnet/data/rw_ae_sp.d
aero_simple[6]	H_KP; power		15000.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_sp.d
eero_simple[7]	H_KPR: pitch/roll constant, approximately pl/3		1.5	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_se_sp.d
sero_simple(8)	H_KY: yaw constant, approximately pi/2		6.7	REAL	default declaration rwa_aerodyn.c frwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_sp.d
(9) alqmis_ones	H_KH; hover hold gain on velocity term		0.03	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_sp.d
aero_simple[10]	H_CHH; collective hover hold gain		0.00004	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_se_sp.d
eero_simple[11]	H_CL: coefficient of lift		100.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	(rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_sp.d
zero_simple[12]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init		simnet/data/rw_ae_sp.d
aero_simple[13]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c {rwa_aerodyn.c]aero_init		simnet/data/rw_ae_sp.d
aero_simple[14]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init		simnet/data/rw_ae_sp.d
aero_pimple[15]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_Init		simnet/data/rw_ae_sp.d
aero_simple[16]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init		simnet/data/rw_se_sp.d
[1]alqmic_ones	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init		simnet/data/rw_ae_sp.d
sero_simple[18]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init		simnet/data/rw_ae_sp.d
aero_simple[19]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c {rwa_aerodyn.claero_init		simnet/data/rw_ae_sp.d

NOTE 1 REAL is a "C" made DEPRE for type foot.

TABLE 5.1.4. - AERODYNAMICS STEALTH DATA ARRAY

NAME OF DATA	DESCRIPTION	UNITS of MEASURE	DEFAULT VALUE	DATA TYPE [MOTE 1]	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
aere_steath[0]	H_FWD_MUL;		80.0	REAL	default declaration rwa_aerodyn.c Irwa_aerodyn.claero_stealth	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_si.d
aero_steath[1]	H_SIDE_MUL:		30.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_stealth	[rwa_aerodyn.c]aero_stealth	simnet/data/rw_se_si.d
aero_steath[2]	H_COLL_MUL:		10.0	REAL	default declaration rwa_aerodyn.c Irwa_aerodyn.c]aero_stealth	[rwa_aerodyn.c]aero_stealth	simnet/data/rw_ae_sl.d
aere_steakh[3]	MAX_TORQUE:		10000000000	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_stealth	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_al.d
sen_steath[4]	MAX_FORCE;		10000000000	REAL	default declaration rwa_aerod yn.c [rwa_aerod yn.c]aero_stealth	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_si.d
aero_steakh[5]	MASS;	4	5000.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_stealth	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_sl.d
ere_steath(6)	INERTIA:		25000.0	REAL	default declaration rwa_aerod yn.c [rwa_aerod yn.c]aero_stealth	[rwa_aerodyn.c]aero_simul	aimnet/data/rw_ae_sl.d
sere_steath[7]	DEAD_ZONE;		0.03	REAL	default declaration rwa_aerod yn.c frwa_aerod yn.c]aero_stealth	[rwa_aerod yn.c]aero_aimul	simnet/data/rw_ae_si.d
sero_steakh(8)	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c {rwa_aerodyn.c}aero_stealth		simnet/data/rw_ae_al.d
aero_steakh[9]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_stealth		simnet/data/rw_ae_sl.d
aero_staalth(10)	NOT USED		0.0	REAL	default declaration rwa_aerod yn.c [rwa_aerod yn.c]aero_stealth		simnet/data/rw_ae_sl.d
aero_stealth[11]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_stealth		simnet/data/rw_ae_si.d
sero_staalth[12]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c {rwa_aerodyn.c]aero_stealth		simnet/data/rw_ae_sl.d
aero_staatth[13]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_stealth		simnet/data/rw_ae_si.d
sero_steadth[14]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_stealth		simnet/data/rw_ae_si.d
aero_staalth[15]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_stealth		simnet/data/rw_ae_si.d
aero_staalth[16]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_stealth		simnet/data/rw_ae_si.d
sero_staatth[17]	NOT USED		0.0	REAL	default declaration rwa_aerod yn.c [rwa_aerod yn.c]aero_stealth		simnet/data/fw_ae_si.d
aero_staafth[18]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c frwa_aerodyn.claero_stealth		simner/data/rw_ac_stu
aero_staalth[19]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_stealth		simner/ data/ tw_ac_st.u

HOTE 1 REAL is a "C" made DEPLE for type float.

.

- 156 -

TABLE 5.1.5. - ENGINE DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE	DEFAULT	DATA TYPE NOTE 1]	CSU WHERE SET ON CALCULATED	CSU WHERE LISED	DATA SOURCE
engine_data[0]	COVERNOR_ENCINE_SPEED_SETTING;	rad/sec	1030.55	REAL	default declaration rwa_engine.c [rwa_engine.c]engine_init	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
angina_data[1]	COVERNOR_P_CAIN;		0.05	REAL	default declaration rwa_engine.c [r:/a_engine.c]engine_Init	[rwa_engine.c]engine_init	simnet/data/rwa_engn.d
angine_data{ 2}	COVERNOR_I_CAIN;		0.05	REAL	default declaration rwa_engine.c [rwa_engine.c]engine_init	Irwa_engine.clengine_init	simnet/data/rwa_engn.d
engine_data[3]	MAX_ENCINE_TORQUE;	۳-N N	1031.6	LEAL	default declaration rwa_engine.c [rwa_engine.c]engine_init	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
engine_data[4]	MIN_ENCINE_LOAD_TORQUE	ш-Х	25.0	REAL	default declaration rwa_engine.c [rwa_engine_ciengine_init	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
angha_data[5]	MAX_ENCINE_PERCENT_POWER;	percent	12	REAL	default declaration rwa_engine.c [rwa_engine.c]engine_init	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
angina_data[6]	ENCINE_TORQUE_INTERCEPT;		1200.0	REAL	default declaration rwa_engine.c [rwa_engine.c]engine_init	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
engine_data(7)	ENCINE_TORQUE_SLOPE;		0.16438	REAL	default declaration rwa_engine.c [rwa_engine.c]engine_init	[rwa_engine.c]engine_stmut	simnet/data/rwa_engn.d
engine_data[8]	NOSF_CEARBOX_RATIO;		2.130	REAL	default declaration rwa_engine.c frwa_engine.clengine_init	[rwa_engine.c]engine_simu]	simnet/data/rwa_engn.d
·ngine_data[9]	MAIN_ROTOR_CEAR_RATIO		0.HE	REAL	default declaration rwa_engine.c [rwa_engine.c]engine_Init	[rwa_engine.c]engine_simu]	simnet/data/rwa_engn.d
ergine_data[10]	TAIL_ROTOR_GEAR_RATIO;		7.0	REAL	default declaration rwa_engine.c [rwa_engine.c]engine_Init	{rwa_engine.c]er. _b simu}	simnet/data/rwa_engn.d
ergine_data[11]	POWERTRAIN_INERTIA;		100.0	REAL	default declaration rwa_engine.c [rwa_engine.c]engine_init	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
engine_data[12]	MAX_FUELFLOW;	gals/hr	153.8461539	REAL	default declaration rwa_engine.c [rwa_engine.c]engine_init	[rwa_engine.c]engine_simu]	simnet/data/rwa_engn.d
engine_data[13]	NOT USED		0.0	LEAL	default declaration rwa_engine.c [rwa_engine.c]engine_init	[rwa_engine.c]engine_simul	simnei/data/rwa_engn.d
engine_data[14]	NOT USED		0.0	REAL	default declaration rwa_engine.c [rwa_engine.c]engine_init	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
engine_data[15]	NOT USED		0.0	REAL	default declaration rwa_engine.c [rwa_engine.c]engine_init	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
engine_data[16]	NOT USED		0.0	TVEN	default declaration rwa_engine.c [rwa_engine.c]engine_init	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
engine_data[17]	NOT USED		0.0	REAL	default declaration rwa_engine.c [rwa_engine.c]engine_init	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
engine_data[18]	NOT USED		0'0	REAL	default declaration rwa_engine.c [rwa_engine.c]engine_init	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
engine_data[19]	NOT USED		0.0	REAL	default declaration rwa_engine.c [rwa_engine.c]engine_init	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d

NDTE 1 REAL Is a "C" madro DEPHE for type Reat.

- 157 -

uery 1993 W003036 Rev. 0.0 ž

TABLE 5.1.6. - ENGINE INITIALIZATION DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of	DEFAULT	DATA TYPE	CSU WHERE SET OR	CSU WHERE USED	DATA SOURCE
		MEASURE	VALUE		CALCULATED		
engine_Init_data[0]	engine power		0.0	REAL	default declaration rwa_engine.c	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
					[rwa_engine.c]engine_Init		
engine_Init_data[1]	engine percent torque		0.0	REAL	default declaration rwa_engine.c	[rwa_engine.c]engine_init	simnet/data/rwa_engn.d
					[rwa_engine.c]engine_init		
engine_init_data[2]	engine speed		0.0	REAL	default declaration rwa_engine.c	[rwa_engine.c]engine_init	simnet/data/rwa_engn.d
					[rwa_engine.c]engine_init		
engine Init data[3]	integrator gain		6.0	REAL	default declaration rwa_engine.c	[rwa_engine.c]engine_simu!	simnet/data/rwa_engn.d
					[rwa_engine.c]engine_init		
endine init dataf 41	last percent shaft spred		0.0	REAL	default declaration rwa_engine.c	[rwa_engine.clengine_simul	simnet/data/rwa_engn.d
					[rwa_engine.c]engine_init		
endine init data[5]	last percent torque		1.0	REAL	default declaration rwa_engine.c	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
	•				[rwa_engine.c]engine_init		
encine init datal 61	hours of flight		0.0	REAL	default declaration rwa_engine.c	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
	•				[rwa_engine.clengine_init		
ensine hit data[7]	NOT USED		0.0	REAL	default declaration rwa_engine.c		simnet/data/rwa_engn.d
					[rwa_engine.c]engine_init		
entities init data(A)	NOT USED		0.0	REAL	default declaration rwa_engine.c		simnet/data/rwa_engn.d
					[rwa_engine.c]engine_init		
ensine brit data[9]	NOT USED		0.0	REAL	default declaration rwa_engine.c		simnet/data/rwa_engn.d
					Irwa_engine.clengine_init		

REAL is a "C" mucro DEPNE for type flort. NOTE 1

TABLE 5.1.7. - ENGINE STATUS DATA ARRAY

TANK - A SATA ELEVENT	Let'r signifia	1 INTIS of	DEFAULT	DATA TYPE	CSU WHERE SET OR	CSU WHERE USED	DATA SOURCE
		MEASURE	VALLE	(INDIE 1)	CALCULATED		
engine_stat_data[0]	minutes of flight		0	int	default declaration rwa_engine.c {rwa_engine.c]engine_init	(rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
engine_stat_data[1]	old minutes of flight		0	lnt	default declaration rwa_engine.c frwa_engine.clengine_init	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
engine_stat_data[2]	engine status		-	Int	default declaration rwa_engine.c [rwa_engine.c]engine_init	(rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
engine_stat_data[3]	starting engine		-	int	default declaration rwa_engine.c (rwa_engine.c)engine_init	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
engine_stat_data[4]	number of engines		2	int	default declaration rwa_engine.c [rwa_engine.c]engine_init	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
engine_stat_data[5]	engine is damaged		0	int	default declaration rwa_engine.c Irwa_engine.clengine_init	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
engine_stat_data[6]	transmission is damaged		0	int	default declaration rwa_engine.c [rwa_engine.c]engine_init	(rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
engine_stat_data[7]	NOT USED		0	int	default declaration rwa_engine.c [rwa_engine.c]engine_init		simnet/data/rwa_engn.d
engine_stat_data[8]	NOT USED		0	int	default declaration rwa_engine.c frwa_engine.clengine_init		simnet/data/rwa_engn.d
engine_stat_deta(9)	NOT USED		0	int	default declaration rwa_engine.c [rwa_engine.c]engine_init		simnet/data/rwa_engn.d

M Is a Trippe for Megar.

NOTE 1

- 158 -

TABLE 5.1.8. - KINEMATICS DATA ARRAY

MANE OF DATA	DECREMINA	14476 -1	ACCALLY T	DATA TWAF			
ELEMENT		MEASURE	VALUE	MOTE 1]	CALCULATED	CSU WHERE USED	DATA SOUNCE
kinemat_data(0)	GRAV_CONSTANT;	m/sec ⁴² 2	9.810	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init	(rwa_kinemat.c]engine_simul	simnet/data/rwa_kine.d
tinemat_data(1)	SIN_AOA_LUMIT;	deg	0.642787610	REAL	default declaration rwa_kinemat.c { [rwa_kinemat.c]veh_spec_kinematics_ Init	irwa_kinemat.civeh_spec_kinematics_ init	simnet/data/rwa_kine.d
kinemet_data(2)	COS_AOA_LUMIT;	deg	0.76604443	REAL	default declaration rwa_kinemat.c [[rwa_kinemat.c]veh_spec_kinematics_ init	irwa_kinemat.civeh_spec_kinematics_ init	simnet/data/rwa_kine.d
khemat_data[3]	SIN_YAW_LIMIT;	deg	0.642787610	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init	(rwa_kinemat.c)engine_simul	simnet/data/rwa_kine.d
kinemat_data(4)	COS_YAW_UMIT;	و ا رو ا	0.76604443	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematks_ Init	[rwa_kinemat.c]engine_simu]	simnet/data/rwa_tine.d
kinemet_data[5]	DISPLAY_SPEED_UMIT;		5.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init	[rwa_kinemat.c]engine_simul	simnet/data/rwa_kine.d
kinemat_data[6]	NOT USED		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rwa_kine.d
kinemat_data[7]	NOT USED		0.0	REAL	default declaration rwa_kinemat.c frwa_kinemat.clveh_spec_kinematics_ init		simnet/data/rwa_kine.d
kinemat_data[8]	NOT USED		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ [nut		simnet/data/rwa_kine.d
kinemat_data[9]	NOT USED		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ [nit		simnet/data/rwa_kine.d
kinemat_data[10]	NOT USED		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematks_ [nit		simnet/data/rwa_kine.d
kinemet_data[11]	NOT USED		0.0	REAL	default declaration rwa_kinemat.c frwa_kinemat.c]veh_spec_kinematics_ init		simnet / data/ rwa_kine.d
kinemet_data[12]	NOT USED		0.0	REAL	default declaration rwa_kinemat.c frwa_kinemat.clveh_spec_kinematics_ init		simnet/data/rwa_kine.d
kinemat_data[13]	NOT USED		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rwa_kine.d
kinemat_data[14]	NOT USED		0.0	REAL	default declaration rwa_kinemat.c frwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rwa_kine.d
kinemat_date[15]	NOT USED		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ [nit		simnet/data/rwa_kine.d
kinemst_data[16]	NOT USED		0.0	REAL	default declaration rwa_kinemat.c frwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rwa_kine.d
kinemat_data[17]	NOT USED		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rwa_kine.d
kinemat_data[16]	NOT USED		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ [nit		simnet/data/rwa_kine.d

TABLE 5.1.8. - KINEMATICS DATA ARRAY [Continued]

DATA SOURCE	simnet/data/rwa_kine.d
CSU WHERE USED	
CSU WHERE SET OR CALCULATED	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematks_ tote
DATA TYPE [MOTE 1]	REAL
DEFAULT	0.0
UNITS of MEASURE	
DESCRETION	NOT USED
NAME OF DATA ELEMENT	kinemat_data[19]

NOTE 1 REAL is a "C" macro DEPNE for type front.

TABLE 5.1.9. - KINEMATICS INITIALIZATION DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE	DEFAULT VALUE	DATA TYPE [NOTE 1]	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
kinemat_hit_data[0]	positive unit velocity in X axis		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init	(rwa_kinemat.clengine_simul	simnet/data/rw_ki_in.d
kinemat_but_data[1]	positive unit velocity in Y axis		0.1	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init	[rwa_kinemat.c]veh_spec_kinematics_ init	simnet/data/rw_ki_in.d
themat int. data[2]	positive unit velocity in Z axis		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init	{rwa_kinemat.c]veh_spec_kinematics_ init	simnet/data/rw_ki_in.d
kinemat_init_data[3]	negative unit velocity in X axis		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ [nit	[rwa_kinemat.c]engine_simu]	simnet/data/rw_ki_ln.d
tinemer_init_data[4]	negative unit velocity in Y axis		-1.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init	[rwa_kinemat.c]engine_simu]	simnet/data/rw_ki_in.d
kinamat_init_data[5]	negative unit velocity in Z axis		0.0	REAL	default declaration rwa_kinemat.c frwa_kinemat.clveh_spec_kinematics_ init	[rwa_kinemat.clengine_simu]	simnet/data/rw_ki_in.d
themat int_data[6]	sine angle of attack		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rw_ki_in.d
kinamar_hit_data(7)	cosine angle of attack		1.0	REAL	default declaration rwa_kinemat.c [:wa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rw_ki_in.d
themat int data[B]	sine yaw		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.clveh_spec_kinematics_ nit		simnet/data/rw_ki_in.d
kinemat_init_data[9]	cosine yaw		1.0	REAL	default declaration rwa_kinemat.c (rwa_kinemat.civeh_spec_kinematics_ init		simnet/data/rw_ki_in.d
kinemat_init_data[10]	altitude		0.0	REAL	default declaration rwa_kinemat.c frwa_kinemat.clveh_spec_kinematics_ init		simnet/data/rw_ki_in.d
kinemat_init_data[11]	body pitch		0.0	REAL	default declaration rwa_kinemat.c {rwa_kinemat.c}veh_spec_kinematics_ {nit		simnet/data/rw_kl_in.d
kinemat_Init_data[12]	body pitch offset		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ [nit		simnet/data/rw_ki_in.d
kinemat_Init_data[13]	velocity pitch		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.clveh_spec_kinematics_ init		simnet/data/tw_ki_in.d

TABLE 5.1.9. - KINEMATICS INITIALIZATION DATA ARRAY [Continued]

NAME of DATA ELEMENT	DESCRIPTION	UNITS OF MEASUME	DEFAULT VALUE	DATA TYPE [NOTE 1]	CSU WHERE SET OR CALCIN ATED	CSU WHERE USED	DATA SOURCE
timemer_int_data[14]	roll		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rw_ki_in.d
themat_init_data[15]	heading		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematica_]nit	[rwa_kinemat.c]engine_simu]	simnet/data/rw_ki_in.d
lthremat_init_data[16]	true airspeed		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rw_ki_in.d
thremat_init_data[17]	indicated airspeed		0'0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rw_ki_in.d
khemat_hit_data[18]	.\$, lorce		0.1	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ Init		simnet/data/rw_ki_in.d
thromat_init_data[19]	vertical speed		0'0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ [nit		simnet/data/rw_ki_in.d
himmer_INI_data[20]	gravity component in X axis		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rw_ki_tn.d
kinemat_init_data[21]	gravity component in Y axis		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinematc veh_spec_kinematics_ init		simnet/data/rw_ki_in.d
khomaCint_data[22]	gravity component in Z axis		0.1-	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rw_ki_in.d
kinemat_init_data[23]	normal velocity component in X axis		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ Init		simnet/data/rw_ki_in.d
kinemat_init_data[24]	normal velocity component in Y axis		1.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rw_ki_in.d
knemet_init_data[25]	normal velocity component in Z axia		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init		almnet/data/rw_ki_in.d
kinemat_ink_date[26]	NOT USED		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_]nit		simnet/data/rw_ki_ln.d
themet_int_date[27]	NOT USED		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ fn/t		simnei/data/rw_ki_in.d
themselvic data[28]	NOT USED		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rw_ki_in.d
kinemet_Init_date[29]	NOT USED		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_apec_kinematics_ Init		simnet/data/rw_ki_in.d

- 161 -

REAL is a "C" macro DEFNE for type Acet.

NOTE 1

TABLE 5.1.10 - HELLFIRE MISSILE CHARACTERISTICS DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of	DEFAULT	DATA TYPE	CSU WHERE SET OR	CSU WHERE USED	DATA SOURCE
		MEASURE (MOTE 1)	VALLE	(NOTE 2)	CALCULATED		
hellfr_miss_char[0]	HELLFIRE_ARM_TIME: helifite missile arm time delay before firing in ticks [1.3 seconds]	ticks	20.0	REAL	default declaration miss hellfr.c [miss_hellfr.c]missile_hellfire_init	(miss_hellfr.c]engine_simul	simnet/data/ms_hf_ch.d
helfr_miss_char[1]	HELLFIRE_BURNOUT_TIME; time of powered flight for helifire missife in ticks [2.4 seconds]	ticits	36.0	REAL	default declaration miss, hellir.c [miss_hellfr.c]missile_helffire_Init	lmiss_hellfr.c]missile_hellfire_Init	simnet/data/ms_M_ch.d
hefft_miss_char[2]	HELLFIRE_MAX_FUGH1_TIME: maximum flight time for the helifire missile assumed in ticts (36.0 seconds)	ticks	540.0	REAL	default declaration miss_hellfr.c [miss_hell'r.c]missile_hellfire_inlt	[miss_hellfr.c]missile_hellfire_init	simnet/data/ms_M_ch.d
heith_miss_char(3)	SPEED_0;		30.95953043	REAL	default declaration miss_heilfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]engine_simul	simnet/data/ms_M_ch.d
hellfr_miss_char[4]	THETA_0;		0.046542113	REAL	default declaration miss hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]engine_simul	simnet/data/ms_hf_ch.d
hellfr_miss_char{ 5}	SIN_UNCUIDE: sine of the delta pitch angle [4.0 degrees] for an unguided helifire missile		0.069756474	REAL	default dictaration miss_hellfr.c [miss_helifr.c]missile_hellfire_init	[miss_hellfr.c]engine_simul	simnet/data/ms_hf_ch.d
helth_miss_char[6]	COS_UNGUIDE: coaine of the delta plitch angle [4.0 degrees] for an unguided hellfire missile		0:07564050	REAL	default declaration miss_hellfr.c {miss_hellfr.c]missile_hellfine_fruit	[miss_hellfr.c]engine_simul	simnet/data/ms_M_ch.d
helffr_miss_char(7)	SIN_CLIMB; sine of the delta pitch angle [3.5 deenees] for a climbing helifing missile		0.004072424	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_inft	[miss_hellfr.c]engine_simul	simnet/data/ms_M_ch.d
helfr_mas_char[8]	COS_CLIMB: cosine of the delta pitch angle [35 degrees] for a climbing helifite missile		0.999991708	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_Init	[miss_hellfr.c]engine_simul	simnet/data/ms_hf_ch.d
hettr_miss_char(9)	SIN_LOCK: sine of the lock cone angle [9.0 degrees] for a locked-on helifite mussile		0.156434465	REAL	default declaration miss_hellfr.c {miss_hellfr.c]missile_hellfire_init	[miss_hellfr.clengine_simu]	simnet/data/ms_N_ch.d
hettr_miss_char[10]	COS_LOCK: cosine of the lock cone angle [9.0 demeent for a locked-on helifire missile		0.987688341	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]engine_simul	stmnet/data/ms_n_cn.d
helth_miss_char[11]	COS_TERM; cosine of the terminal pitch angle 176.0 deeneed for a locked-on helifite missile		0241921896	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_helifr.c]engine_stmul	simnet/data/ms_N_ch.d
heitir_miss_char[12]	COS_LOSE: cosine of the pitch angle (20.0 deeneed for a loss of lock-on heilifire missile		0.939692621	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	(miss_hellfr.c]engine_simuf	simnet/data/ms_hf_ch.d
heitfr_miss_char[13]	NOT USED		0.0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	(miss_hellfr.c)engine_simul	simnet/data/ms_M_ch.d
hettr_miss_char[14]	NOT USED		0:0	REAL	default declaration miss_hellfr.c {miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]engine_simul	simnet/data/ms_N_ch.d

NDTE 1 are tick is equal to are frame at 1/15th of a second NDTE 2 FEAL is a "C" marce DEFME for type float.

TABLE 5.1.11. - HELLFIRE MISSILE POLYNOMIAL DEGREE DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE	DEFAULT VALUE	DATA TYPE (NOTE 1)	CSU WHERE SET OR CALOULATED	CSU WHERE USED	DATA SOUNCE
heliftre_miss_poly_deg[0]	HELLFIRE_TOF_DEG: polynomial degree for helifire missile time-of-flight coefficient data array		default: 4 range: 0 to 9	ŗ	default declaration miss_hellfr.c; [miss_hellfr.c]missile_hellfire_fnit	[miss_hellfr.c]missile_hellfire_init; [miss_hellfr.c]missile_hellfire_catc_tof	simnet/data/ms_hf_tf.d
helffire_miss_poly_deg[1]	HELLFIRE_BURN_SPEED_DEC; polynomial degree for hellfire missile burn speed coefficient data array		default: 3 range: 0 to 9	int	default declaration miss_hellfr.c; [miss_hellfr.c]missile_hellfire_init	Imiss_hellfr.cjmissile_helffire_init; Imiss_hellfr.cjmissile_helffire_fire; Imiss_hellfr.cjmissile_helffire_fire;	simnet/data/ms_hf_bs.d
halffre_miss_poly_deg(2)	HELLFIRE_COAST_SPEED_DEC; polynomial degree for hellfire missife coast stood coefficient data array		default 5 range: 0 to 9	Ę	default declaration miss_hellfr.c; [miss_hellfr.c]missile_heilfire_init	[miss_hellfr.c]missile_hellfire_init; [miss_hellfr.c]missile_hellfire_fly	simnet/data/ms_hf_ca.d

HOTE 1 MIN & C" type for Integer.

TABLE 5.1.12. - HELLFIRE MISSILE TIME-OF-FLIGHT COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE [NOTE 1]	DEFAULT VALUE	DATA TYPE [NOTE 2]	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
helffire_tof_coeff[0]	hellfire missile time-of-flight coefficient ag: default to 1.2 seconds	ticks	18.0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	{miss_hellfr.c}missile_hellfire_init; [miss_hellfr.c]missile_hellfire_calc_tof	simnet/data/ms_hf_tf.d
helitire_tof_coeff[1]	hellfire missile time-of-flight coefficient at	ticks/meter	3.1461816 e- 2	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_heilfr.c]missile_hell/ire_init; [miss_hellfr.c]missile_hellfire_calc_tof	simnet/data/ms_hf_tf.d
helitire_tof_coeff[2]	hellfire missile time-of-flight coefficient az	ticks/m**2	3.1921274e-6	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]missile_hellfire_init; [miss_hellfr.c]missile_hellfire_calc_tof	simmet/data/ms_hf_tf.d
hettire_tof_coeff[3]	hellfire missile time-of-flight coefficient as	ticks/m**3	3.5260413e-10	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_heilfr.c]missile_hellfire_mit; [miss_hellfr.c]missile_hellfire_calc_tof	simnet/data/ms_hf_tf.d
helitive_tof_coeff(4)	helifire missile time-of-flight coefficient at	ticks/m**4	-2.8469594e-14	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]missile_hellfire_init; [miss_hellfr.c]missile_hellfire_calc_tof	simnet/data/ms_hf_tf.d
helitine_tof_coeff[5]	hellfire missile time-of-flight coefficient as	ticks/m•*5	0.0	REAL	default declaration miss_heilfr.c [miss_heilfr.cjmissile_heilfire_init	[miss_heilfr.c]missile_hellfire_init; [miss_hellfr.c]missile_hellfire_calc_tof	simnet/data/ms_hf_tf.d
helitire_tof_coeff[6]	hellfire missile time-of-flight coefficient a6	ticks/m**6	0.0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]missile_hellfire_init; [miss_hellfr.c]missile_hellfire_calc_tof	simnet/data/ms_hf_tf.d
halfire_tof_coaff[7]	helifire missile time-of-flight coefficient a7	ticks/m"?	0.0	REAL	default declaration miss_hellfr.c [miss_he"fr.c]missile_hellfire_init	[miss_hellfr.c]missile_hellfire_inlt; [miss_hellfr.c]missile_hellfire_calc_tof	simnet/data/ms_hf_tf.d
helitire_tof_coeff[8]	helifize missile time-of-flight coefficient ag	ticks/m**8	0.0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]missile_hellfire_init; [miss_hellfr.c]missile_hellfire_calc_tof	simmet/data/ms_hf_tf.d
helifire_tof_coeff[9]	hellfire missile time-of-flight coefficient ap	ticks/m**9	0.0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c missile_hellfire_init; [miss_hellfr.c]missile_hellfire_cakc_tof	simnet/data/ms_hf_tf.d

NOTE 1 are bit is equal to one frame or 1/15(h ef a second NOTE 2 REAL or 5 °C" means DEFRE (or type front.

TABLE 5.1.13. - HELLFIRE MISSILE BURN SPEED COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE	DEFAULT	V W	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
helftre_bur _speed_coeff[0]	hellfire missile burn speed coefficient ao	melers	2.0044395e-2	REAL	default declaration mise_helifr.c [mise_helifr.cjmiseile_helifire_init	(miss_helifr.c]missife_helifire_init; (miss_helifr.c]missife_helifire_fire; (miss_helifr.c]missife_helifire_fire;	simnet/data/ms_hf_bs.d
heithe burn speed_coeff 1]	hellfire missile burn speed coefficient an	m/tick	6.7384206 6 -1	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	miss_hellfr.c]missile_hellfire_init: {miss_hellfr.c]missile_hellfire_fire; [miss_hellfr.c]missile_hellfire_fly	simnet/data/ms_hf_bad
helftre_bert_speed_coeff[2]	hellfire missile burn speed coefficient az	m/tick ^w 2	9.8007701e-3	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]missile_hellfrre_fnit; [miss_hellfr.c]missile_hellfrre_frre; [miss_hellfr.c]missile_hellfire_fly	simnet/data/ms_M_bad
heithre_burn_speed_coaff[3]	hellfire missile burn speed coefficient as	m/tick=3	-1.678227 e-4	REAL	default declaration miss_hellfr.c (miss_hellfr.cjmissile_hellfire_init	miss_hellfr.c]missile_hellfre_hult; miss_hellfr.c]missile_hellfre_ftre; miss_hellfr.c]missile_hellfire_fly	aimnet/data/ms_hf_bad
haithre_buin_speed_coeff[4]	helifire missile burn speed coefficient ad	m/tick*4	0.0	REAL	default declaration miss_heliftr.c [miss_helifr.c]missile_helifire_init	{miss_helMr.c}missile_helMfre_init; {miss_helMr.c}missile_helMfre_ftre; {miss_helMr.c}missile_helMfre_My	simnet/data/ms_hf_bs.d
heithe_burn_speed_coeff[5]	hellfire missile burn speed coefficient as	m/tick*5	0.0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hell/f.c]missile_hell/fire_init; [miss_hell/f.c]missile_hell/fire_fire; [miss_hell/f.c]missile_hell/fire_fly	simnet/data/ms_M_ba.d
heithre_burn_speed_coeff[6]	helifire missile burn speed coefficient as	m/tick*6	0.0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]missik_hellfire_Init; [miss_hellfr.c]missik_hellfire_fire; [miss_hellfr.c]missik_hellfire_fly	simnet/data/ms_hf_bs.d
hettre_burn_speed_coeft[7]	helifire missile burn speed coefficient a7	m/tick**7	0.0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_helifr.c]missik_heliftre_init; [miss_helifr.c]missik_heliftre_ftre; [miss_helifr.c]missike_heliftre_fty	simnet/data/ms_hf_ba.d
heithe burn speed coeff[8]	hellfire missile burn speed coefficient ag	m/tick*8	0.0	REAL	default declaration miss_heilfr.c [miss_heilfr.c]missile_heilfire_init	[miss_hell(r.c]missik_hell(ire_init; [miss_hell(r.c]missile_hell(ire_fire; [miss_hell(r.c]missile_hell(ire_fiy	simnet/data/ms_hf_ba.d
heitre_burn_speed_coeff[9]	hellfire missile burn speed coefficient ag	m/tick+9	0.0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_heltfr.c]missile_heltfire_fnit; [miss_heltfr.c]missile_heltfire_fire; [miss_heltfr.c]missile_heltfire_fly	simner/data/ms_M_bs.d

HOTE 1 are bick is equal to any home or 1/15th of a second HOTE 2 REAL is a "C" made DEPHE for type float.

- 164 -

TABLE 5.1.14. - HELLFIRE MISSILE COAST SPEED COEFFICIENT DATA ARRAY

	DESCRIPTION			DATA	Fell WARRE PET AD		
		MEASURE	VALIE	E	CALCULATED	CSU WHERE USED	DATA SOUNCE
helffre_coast_speed_coaff[0]	hellfire missile coast apeed coefficient ao	meters	427384041	REAL	default declaration miss_hellfr.c	(miss hellfr.c)missile hellfire init:	simnet/data/ms hf cad
					[miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]missile_hellfire_fly	
Name _coest_speed_coeff[1]	helitire missile coast speed coefficient an	m/tick	-4.1048613-1	REAL	default declaration mise_helifr.c	[miss_heltfr.c]missile_helifire_thit;	simnet/data/ms hi cud
					[miss hellfr.c]missile_hellfire_init	[mise_hellfr.c]missile_hellfire_fly	
Namina_coast_speed_coeff 2]	Netitire missile coast speed coefficient as	m/tick*2	2.6023604e-3	REAL	default declaration miss_heilfr.c	[miss_heltfr.c]missile_heltfire_init;	simnet/data/ms_hf_cs.d
	· · · · ·				[mise_hellfr.c]missile_hellfire_init	[miss_hellfr.c]missile_hellfire_fly	•
Neithr_coest_speed_coeff[3]	Nellfire missile coast speed coefficient as	m/tick*3	-8.4870417-6	REAL	default declaration miss hellfr.c	[miss_hellfr.c]missile_hellfire_init;	aimnet/data/ms_hf_ca.d
					[miss_hellfr.c]missile_hellfire_init	[miss_helifr.c]missile_helifire_fly	
helffre_coast_speed_coaff[4]	hellfire missile coast speed coefficient ag	m/tick=4	1.33229326-8	REAL	default declaration mise_hellfr.c	[miss_hellfr.c]missile_hellfire_init;	simnet/data/ms_N_cs.d
					[miss_helifr.c]missile_helifire_init	[miss hellfr.c]missile_hellfire_fly	
helling_coast_speed_coeff[5)	hellfire missile coast speed coefficient as	m/lick*5	-7.9542005e-12	REAL	default declaration mise_hellfr.c	Imiss hellfr.clmissile_hellfire_init;	simnet/data/ms_h/ cs.d
					Imiss hellfr.c]missile_hellfire_init	[mise_hellfr.c]missile_hellfire_fly	- -
helling_coest_speed_coeff(6)	hellfire missile coast speed coefficient as	m/tick*6	0.0	REAL	default declaration miss_hellfr.c	[miss_helifr.c]missile_helifire_init;	simnet/data/ms_hf_cs.d
					[miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]missile_hellfire_fly	
helitine_coast_speed_coeff[7]	helifire missile coast speed coefficient ay	m/tick ⁴⁴	0.0	REAL	default declaration miss_helifr.c	[miss_hellfr.c]missike_hellfire_init;	simnet/data/ms_hf_cs.d
					[miss_hellfr.c]missile_hellfire_init	[miss_helifr.c]missile_helifire_fly	
helline_coast_speed_coeff[8]	helifire missile coast speed coefficient ag	m/tick**8	0.0	REAL	default declaration miss_hellfr.c	[miss_hellfr.c)missile_hellfire_init;	simnet/data/ms_hf_cs.d
					Imiss hellfr.c]missile hellfire init	[miss_helifr.c]missile_helifire_fly	1
helffire_coest_speed_coeff[9]	hellfire missile coast speed coefficient ap	m/tick**9	0.0	REAL	default declaration miss hellfr.c	[miss_helifr.c]missike_helifire_init;	simnet/data/ms_hf_cs.d
				-	[miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]missile_hellfire_fly	

NOTE 1 — ena tack is equal to ano Annua ar 1/754h of a second NOTE 2 — REAL is a "C" macro DEFRE for type Anot.

- 165 -

TABLE 5.1.15 - MAVERICK MISSILE CHARACTERISTICS DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of	DEFAULT	DATA	COLI WINEBE SET DE		DATA COMPLE
		MEASURE (NOTE 1)	VALUE	TYPE MOTE 2)	CALCULATED		
maverict_miss_char[0]	MAVERICK_ARM_TIME: maverkk missile arm time delay before firing in ticks [1.3 acconds]	ticks	20.0	REAL	default declaration miss_maverck.c; [miss_maverck.c]missik_mavertck_ init	(miss_maverck.c missile_maverkck_fly	simnet/data/ms_mk_ch.d
maverict_miss_char[1]	MAVERICK_BURNOUT_TIME; time of powered flight for maverick missile in ticks [1.5 seconds]	ticks	522	REAL	default declaration miss_maverck.c; [miss_maverck.c]missile_maverick_ Init	Iniss_maverck.clmissile_maverick_fly	simnet/data/ms_mk_ch.d
maverich_miss_char[2]	MAVERICK_MAX_FLICHT_TIME: maximum flight time for the maverick missile assumed in ticks [60.0 seconds]	ticks	0.006	REAL	default declaration miss_maverck.c; [miss_maverck.c]missile_maverick_ init	{miss_maverck.c}missile_maverick_ init	aimnet/data/ms_mk_ch.d
maverict_miss_char[3]	MAVERICK_LOCK_THRESHOLD; cosine squared of the lock threshold angle for the maverick missile [6.0 degrees]		008620686.0	REAL	default declaration miss_maverck.c; fmiss_maverck.c]missile_maverick_ init	[miss_maverck.c]missile_maverick_ init; [miss_maverck.c]missile_maverick_ detectbillity	simnet/data/ma_mk_ch.d
maverick_miss_char[4]	MAVERICK_HOLD_THRESHOLD; cosine squared of the hold threshold angle for the maverick missile [10.0 degrees]		01697869670	REAL	default declaration miss_maverck.c; [miss_maverck.c]missile_maverick_ init	[miss_maverck.c]missile_maverick_ detectibility	simnet/data/ms_mk_ch.d
mavarick_miss_char[5]	SPEED_0;		SESSENC 02	REAL	default declaration miss_maverck.c; [mias_maverck.c]missile_maverick_ Init	(miss_maverck.c)missile_maverick_fly	simnet/data/ms_mk_ch.d
mavericit miss_char[6]	THETA_0;		0.046542113	REAL	default declaration miss_maverck.c; [miss_maverck.c]missik_maverick_ Init	[miss_maverck.c]missile_maverick_f)y	simnet/data/ms_mk_ch.d
maverick_miss_char[7]	SIN_UNCUIDE: sine of level flight (0.0 degrees pitch) for an unguided maverick missile		0.0	REAL	default declaration miss_maverck.c; [miss_maverck.c]missils_maverick_ Init	[miss_maverck.c]missile_maverick_fly	simnet/data/ms_mk_ch.d
mavartch_miss_char[8]	COS_UNCUIDE: cosine of level flight (0.0 degrees pitch) for an unguided maverick missile		0.1	REAL	default declaration miss_maverck.c; [miss_maverck.c]missile_maverick_ init	l [miss_maverck.c]missile_maverick_fly	eimnet/data/ms_mk_ch.d
mavericit, miss_char[9]	SIN_CLIMB: sine of the delta pitch angle [35 degrees] for a climbing maverick missile		0.004072424	REAL	default declaration miss_maverck.c; [miss_maverck.c]missile_maverick_ init	{miss_maverck.c}missile_maverick_f/y	simnet/data/ms_mk_ch.d
maverick_miss_char(10)	COS_CLIMB; cosine of the delta pltch angle [3.5 deprees] for a climbing maverick missile		80/166666.0	REAL	default declaration miss_maverck.c; [miss_maverck.c]missile_maverick_ init	[miss_mavenck.c]missile_mavenck_fly	simnet/data/ms_mk_ch.d
maverick_miss_char[11]	SIN_LOCK; sine of the lock cone angle (5.0 degrees) for a locked-on maverick missile		0.067155743	REAL	default declaration miss_maverck.c; [miss_maverck.c]missile_maverick_ init	[miss_mavenck.c]missile_maverick_fly	simnet/data/ms_mk_ch.d
maverick_miss_char[12]	COS_LOCK: cosine of the lock cone angle [5.0 degrees) for a locked-on maverick missile		0.996194698	REAL	default declaration miss_maverck.c; [miss_maverck.c]missile_maverick_ init	miss_mavenck.c]missile_maverick_fly	simnet/data/ms_mk_ch.d
mavarick_miss_char[13]	COS. TERM: cosine of the terminal angle (80.0 degrees) for a locked-on maverick missile		0.173648178	REAL	default declaration miss_maverck.c; [miss_maverck.c]missile_maverick_ init	[miss_maverck.c]missile_maverick_fly	simnet/data/ms_mk_ch.d
maverick_miss_char[14]	COS_LOSE; cosine of the angle [20.0 degrees] for a loss-of-lock-on maverick missile		0.939692621	REAL	default declaration miss_maverck.c; [miss_maverck.c]missile_maverick_ finit	[miss_maverck.c]missile_maverick_fly	simnet/data/ms_mk_ch.d

NOTE 1 and bick is equal to ana frame ar 1/1 Sih of a second NOTE 2 REAL a a "C" macro OLFARE for type Acat.

TABLE 5.1.16. - MAVERICK MISSILE POLYNOMIAL DEGREE DATA ARRAY

DATA SOUNCE	ck simnet/data/ma_mk_ba.d :tc	cksimnet/data/ms_mk_cs.d
CSU WHERE USED	(miss_maventk.clmisslie_mavent init; (miss_maventk.clmisslie_maventk imiss_maventk.clmisslie_maventek	[miss_mavenck.clmissile_maverix init; [miss_mavenck.clmissile_mavenck
CSU WHERE SET OR CALCULATED	default declaration miss_mavertk <i>c;</i> [miss_maverckc]missile_maverick_ init	default declaration miss_maverck.c; [miss_maverck.c]missile_maverick_ init
ATAC MATA	Ē	ŗ
DEFAULT	default 1 range: 0 to 9	default 3 range: 0 to 9
UNITS of MEASURE		
DESCRIPTION	MAVERICK_BURN_SPEED_DEG; polynomial degree for maverick missile burn speed coefficient data array	MAVERICK_COAST_SPEED_DEC; polynomial degree for maverick missile coast speed coefficient data array
NAME of DATA ELEMENT	maverict_miss_poly_deg[0]	maverick_miss_poly_deg[1]

MOTE 1 Int las 17 type for Mager

TABLE 5.1.17. - MAVERICK MISSILE BURN SPEED COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE MOTE 1]	DEFAULT VALUE	DATA TYPE INDE INDE 2)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
mavantit_burn_speed_coeff[0]	maverick missile burn speed coefficient ao; default is 67.0 m/sec	m/tick	EEEEEE0.0	REAL	default declaration miss_maventk.c [miss_maventk.clmissile_maventk_ init	lmiss_maverck.clmissile_maverick_ int: fmiss_maverck.clmissile_maverick_ <i>fiss</i> _maverck.clmissile_maverick_fly	simnet/data/ms_mk_bs.d
maverick_burn_speed_coefi[1]	maverick missile burn speed coefficient a ₁ ; default is 274,9732662 m/ sec^o2	m/tick*2	<i>11111</i> 21	REAL	default declaration mús_ mavertek.c (míss_mavertek cimissile_mavertek_ ínit	(miss_maverck.clmissile_maverick_ ialt; [miss_maverck.clmissile_maverick_ firs; [miss_maverck.clmissile_maverick_fly	simnet/data/ms_mk_bs.d
maverick_burn_speed_coeff[2]	maverick missile burn speed coefficient az	m/tick**3	0.0	REAL	default declaration miss_maverck.c [miss_maverck.clmissile_maverick_ init	[miss.maverck.c]missile_maverck_ int: [miss_maverck.c]missile_maverck_ ffrs: [miss_maverck.c]missils_maverick_ffy	simnei/data/ms_mk_bs.d
maventit_burn_speed_coeff[3]	maverick missile burn speed coefficient ag	m/tick**4	0.0	REAL	default declaration miss_maverck.c [miss_maverck.c]missile_maverick_ [nit	(miss_mavertkc)missile_maverick_ intr; [miss_mavertkc]missile_maverick_ fins_mavertkc]missile_mavertck_f1	simnet/data/ms_mk_bs.d
maventik burn_speed_coefi[4]	maverick missile burn speed coefficient ad	m/tick**5	0.0	REAL	default declaration miss_mavertk.c [miss_mavertk.c]missile_mavertck_ [nit	(miss_mavertk_chmissile_maverick_ init; (miss_mavertk_chmissile_mavertk_ finiss_mavertk_chmissile_mavertck_fly	simnet/data/ms_mk_bs.d

NOTE 1 one toch is equal to one frame or 1/15th of a second NOTE 2 REAL is a "C" made DEPRE for type freet.

TABLE 5.1.18. - MAVERICK MISSILE COAST SPEED COEFFICIENT DATA ARRAY

NAME of DATA ELEMENT	DESCRIPTION	UNITS of MEASURE MOTE 11	DEFAULT	DATA TYPE INDTE ZI	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
meverich.coast_speed_coaff[0]	maverkk missile coast speed coefficient ag: default is 322/2858074 m/ sec	m/tick	30.46972849	REAL	default declaration miss_maverck.c [miss_maverck.c]missile_maverick_ init	[miss_maverck.c]missile_maverick_ init: [miss_maverck.c]missile_maverick_fly	simnet/data/ms_mk_Cs.d
maverick_coast_speed_coaff[1]	maverick missile coast speed coefficient a ₁ ; default is -21.4609544 m/aec ^{ar2}	m/tick**2	-9.7721160 e- 2	REAL	default declaration miss_maverck.c [miss_maverck.c]missile_maverick_ init	lmise_maventk.clmiselle_maverktk_ indt; lmise_maventk.clmiselle_maverktk_fly	simnet/data/ms_mk_cta.d
maverick_cossi_speed_coeff[2]	maverick missile coast speed coefficient a2: default is 0.8227650 m/sec ^{are} 3	m/tick*3	1.2433925+4	REAL	default declaration miss_maverck.c [miss_maverck.c]missile_maverick_ init	[miss_maverck.c]missile_maverick_ [miss_maverck.c]missile_maverick_]] [miss_maverck.c]missile_maverick_]]y	simnet/data/ms_mk_Cs.d
mavarich_coast_speed_coeff[3]	maverick missile coast speed coefficient a3: default is -0.0133200 m/sec ⁴⁴ 4	m/tick*4	-5.4061501e-8	REAL	default declaration miss_maverck.c [miss_maverck.c]missile_maverick_ Init	[miss_maverck.c]missile_maverick_ fait; [miss_maverck.c]missile_maverck_fly	simnet/data/ms_mk_cs.d
maverick_coast_speed_coeff(4)	maverick missile coast speed coefficient ad	m/tick ^{ur5}	0.0	REAL	default declaration miss_maverck.c [miss_maverck.c]missile_maverick_ init	(miss_maverck.clmissile_maverick_ init: (miss_maverck.clmissile_maverick_f)y	simnet/data/ms_mk_ca.d

NDTE 1 eve bick is equal to and frame an 1/15th of a second NDTE 2 REAL is 9 °C" means DEPRE for type Acet.

TABLE 5.1.19 - STINGER MISSILE CHARACTERISTICS DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	LINITS of	DEFAIN T	ATA0		Cert where ties	
		MEASURE (NOTE 1)	VALUE	TYPE MOTE 2)	CALCULATED		
stinger_miss_char(0)	STINGER_BURNOUT_TIME; time of powered flight for stinger missile in ticks [1.275 seconds]	ticks	19.125	REAL	default declaration miss_stinger.c; [miss_stinger c]missile_stinger_ Init	[miss_stinger.c]missile_stinger_ Init: {miss_stinger.c]missile_stinger_fly	simnet/data/ms_st_ch.d
stinger_miss_char[1]	STINGER_MAX_FLICHT_TIME; maximum flight time for the stinger missile assumed in ticks (26.667 seconds)	ticks	400.004	REAL	default declaration miss_stinger.c; fmbss_stinger.c missile_stinger_ Init	Imise_stinger.clmtssile_stinger_	simnet/data/ms_st_ch.d
stinger_miss_char(2)	STINCER_LOCK_THRESHOLD: coaine squared of the lock threshold angle for the stinger missile [12.5 degrees]		0.953153895	REAL	default declaration miss_stinger.c; [miss_athinger.c]missile_stinger_ init	(miss_stinger.c]mlssile_stinger_ init; [miss_stinger.c]missile_stinger_ pre_jaunch; [miss_stinger.c]missile_stinger_fly	simnet/data/ma_st_ch.d
sUnger_miss_char(3)	SPEED_0; default is 800.0 m/sec	m/tick	53.3333333	REAL	default declaration miss_stinger.c; [miss_stinger_c]missile_stinger_ Init	[miss_stinger.c]missile_stinger_ init; [miss_stinger.c]missile_stinger_f]y	simnet/data/ms_st_ch.d
stinger_miss_char[4]	THETA_0; default is 15.0 deg/sec	rad / tick	0.0174	REAL	default declaration miss_stinger.c; {miss_stinger c}missile_stinger_ init	{miss_stinger.c}missile_slinger_ Init; [miss_stinger.c}missile_stinger_fly	simnet/data/ms_st_ch.d
stinger_miss_char(5)	INVEST_DIST_SQ: default distance is 300 m	m**2	0.00006	REAL	default declaration miss_stinger.c; {miss_stinger c}missile_stinger_ init	{miss_stinger.c]missile_stinger_ init; [miss_stinger.c]missile_stinger_fly	simnet/data/ms_st_ch.d
stinger_miss_char(6)	FUZE_DIST_SQ; default distance (s 20 m	m*2	0.00	REAL	default declaration miss_stinger.c; [miss_stinger c]missile_stinger_ init	{miss_stinger.c missile_stinger_ init; [miss_stinger.c missile_stinger_fly	simnet/data/ms_st_ch.d
sthger_miss_char[7]	NOT USED		0.0	REAL	default declaration miss_stinger.c; [miss_stinger_c]missile_stinger_ Init		simnet/data/ms_st_ch.d
stinger_miss_char(0)	NOT USED		0.0	REAL	default declaration miss_stinger.c; [miss_stinger.cjmissile_stinger_ Init		simnet/data/ms_st_ch.d
stinger_miss_char(9)	NOT USED		0.0	REAL	default declaration miss_stinger.c; [miss_stinger c]missile_stinger_ init		simnet/data/ms_st_ch.d
stinger_miss_char[10]	NOT USED		0.0	REAL	default declaration miss_stinger.c; [miss_stinger.c]missile_stinger_ init		simnet/data/ms_st_ch.d
stinger_miss_char[11]	NOT USED		0.0	REAL	default declaration miss_stinger.c; [miss_stinger.c]missile_stinger_ init		simnet/data/ms_st_ch.d
stinger_miss_char[12]	NOT USED		0.0	REAL	default declaration miss_stinger.c; [miss_stinger.c]missile_stinger_ init		simnet/data/ms_st_ch.d
stinger_miss_char[13]	NOT USED		0.0	REAL	default declaration miss_stinger.c; [mlss_stinger.c]missile_stinger_ init		simnet/data/ms_st_ch.d
stinger_miss_char[14]	NOT USED		0.0	REAL	default declaration miss_stinger.c; [miss_stinger.c]missile_stinger_ init		simnet/data/ms_st_ch.d

NDTE 1 one bot is equal to one frame or 1/15th of a second NDTE 2 REAL is a "C" more DEFRE for type float.

TABLE 5.1.20. - STINGER MISSILE POLYNOMIAL DEGREE DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE	DEFAULT	DATA TYPE INDIE 11	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
stinger_mist_poly_deg[0]	polynomial degree for stinger missile burn speed coefficient data array		1	ž	default declaration mise_stinger.c; Imiss stineer.clmissile_stinger init	Imiss_stinger.c]missile_stinger_init	simnet/data/ms_st_bs.d
stinger_miss_poly_deg[1]	polynomial degree for atinger missile coast speed coefficient data array		3	ţi	default declaration miss_stinger.c; [miss_stinger_c]missile_stinger_init	[miss_stinger.c]missile_stinger_init	simnet/data/ms_st_cs.d

In the stat type for the page. NOTE 1

TABLE 5.1.21. - STINGER MISSILE BURN SPEED COEFFICIENT DATA ARRAY

DATA SOUNCE	mnet/data/ma_st_ba.d	mnet/data/ms_st_bs.d
CSU WHERE USED	lmiss_stinger.c)missile_stinger_init; a [miss_stinger.c)missile_stinger_fire; [miss_stinger.c]missile_stinger_fly	(miss_sting er.c)missile_stinger_init; si (miss_stinger.c)missile_stinger_fire; (miss_stinger.c)missile_stinger_fly
CSU WHERE SET OR CALCULATED	default declaration miss_stinger.c [miss_stinger.c]missile_stinger_Init	default declaration miss_stinger.c [miss_stinger.c]missile_stinger_init
DATA TYPE (MOTE 2)	REAL	REAL
DEFAULT VALUE	1.9	2.689324619
UNITS of MEASURE MOTE 1]	m/tick	m/tick*2
DESCRIPTION	stinger missile burn speed coefficient ao	stinger missile burn spred coefficient al
NAME OF DATA ELEMENT	stinger_burn_speed_coeff[0] -	stinger_burn_speed_coeff[1]

ena tick is equal to ana himme ar 1/1 Sith of a record REAL is a "C" mucro DEHRE for type Nont. NOTE 2

TABLE 5.1.22. - STINGER MISSILE COAST SPEED COEFFICIENT DATA ARRAY

NAME of DATA ELEMENT	DESCRIPTION	UNITS of MEASURE [MOTE 1]	DEFAULT VALUE	DATA TYPE [NOTE 2]	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
stinger_coast_spaed_coaff[0]	stinger missile coast speed coefficient an	m/tkck	56.73662833	REAL	default declaration miss_stinger.c [miss_stinger.c]missile_stinger_init	lmiss_stinger.c]missile_stinger_init; [miss_stinger.c]missile_stinger_fire; [miss_stinger.c]missile_stinger_fly	simnel/data/ms_st_cs.d
stinger_coast_speed_coeff[1]	stinger missile coast speed coefficient at	m/tick+2	-0.182369351	REAL	default declaration miss_stinger.c [miss_stinger.c]missile_stinger_init	lmiss_stinger.clmissile_stinger_init; lmiss_stinger.clmissile_stinger_fire; lmiss_stinger.clmissile_stinger_fly	simnet/data/ms_st_cs.d
stinger_coast_speed_coeff(2)	stinger missile coast speed coefficient az	m/tick**3	2.33020010-4	REAL	default declaration miss_stinger.c [miss_stinger.c]missile_stinger_init	{miss_stinger.c]missile_stinger_init; {miss_stinger.c]missile_stinger_fire; {miss_stinger.c]missile_stinger_fly	simnet/data/ms_st_cs.d
stinger_coast_speed_coaff[3]	stinger misule coast speed coefficient ag	m/tick**4	-1.0176282 c- 7	REAL	default declaration miss_stinger.c [miss_stinger.c]missile_stinger_init	[miss_stinger.c]missile_stinger_init; [miss_stinger.c]missile_stinger_flre; [miss_stinger.c]missile_stinger_fly	simnet/data/ms_st_cs.d

ene tide is equal to ano frame or 1/15th of a second REAL is a "C" marco DEPAE for type float. NOTE 1 NOTE 2

TABLE 5.1.23 - TOW MISSILE CHARACTERISTICS DATA ARRAY

NAME of DATA ELEMENT	DESCRIPTION	UNITS of MEASURE [NOTE 1]	DEFAULT VALUE	DATA TYPE INDIE 21	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
tow_miss_char[0]	TOW_BURNOUT_TIME: time of powered flight for tow misuite in ticks [1.6 seconds]	ticks	24.0	REAL	default declaration miss_tow_c; [miss_tow.chsile_tow_init	{miss_tow.c]missile_tow_init; {miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ch.d
tow_miss_char(1)	TOW_RANCE_LIMIT_TIME: range limit time for the tow misaile in thick 11.73 as sconda); at this point the wire is cut, but the misaile is allowed to fit to the maximum flight time	ed htt	268.35	REAL	default declaration miss_low.c, [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_f]y	simnet/data/ms_tw_ch.d
tow_miss_char[2]	10W_MAX_FLIGHT_TIME; maximum flight three for the tow missile in ticks; cosine of the max turn is greater, than 1.0 beyond this point	tictus	300.00	REAL	default declaration miss_fow.c; [miss_tow.c] :.ilssile_tow_Init	[miss_tow.c]missile_tow_init	simnet/data/ms_tw_ch.d
tow_miss_char[3]	NOT USED		0.0	REAL	default declaration miss_tow.c; [miss_tow.c]missile_tow_Init	[miss_tow.c]missile_tow_init	simnet/data/ms_tw_ch.d
tow_miss_char{ 4]	NOT USED		0.0	REAL	default declaration miss_tow.c; [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init	simnet/data/ms_tw_ch.d

MUTE 1 are lidt is equal to one frame or 1/15th af a second MUTE 2 REAL is a "C" more DEPRE for type Area".

TABLE 5.1.24. - TOW MISSILE POLYNOMIAL DEGREE DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE	DEFAULT VALUE	DATA TYPE ITYPE	CSU WHERE SET ON CALCULATED	CSU WHERE USED	DATA SOURCE
tow_miss_chog_ 0]	polynomial degree for tow missile burn speed coefficient data array		2	ţ	default declaration miss_tow.c; [mlas_tow.c]mlastle_tow_Ini*	[miss_tow.c]missile_tow_init	simnet/data/ms_tw_bs.d
tow_miss_poly_deg(1)	polynomial degree for tow missile coast speed coefficient data array		8	int	default declaration miss_tow.c; [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init	simnet/data/ms_tw_cs.d
tow_miss_deg(2)	polynomial degree for each tow missile burn turn coefficient data sub-array of the tow missile burn turn coefficient data array structure		1	İnt	default declaration miss_tow.c; [miss_tow.c]missile_tow_init	fmiss_f?w.c]missile_tow_Init	simnet/data/ms_tw_bt.d
[5]Beb_VioQ_stim_wat	polynomial degree for each tow missile coast turn coeffictent data sub-array of the tow missile coast turn coefficient data array structure		3	int	default declaration miss_tow.c; [miss_tow.c]missile_tow_init	(miss_tow c]missile_tow_init	simnet/data/ms_tw_ct.d
tow_miss_poly_deg(4)	NOT USED		0	ل تب t	default declaration miss_tow.c; [miss_tow.c]missile_tow_fnit	[miss_tow.c]missile_tow_init	simnet/data/ms_tw_ct.d

NOTE I MINING TO TYPE AN INGEN

TABLE 5.1.25. - TOW MISSILE BURN SPEED COEFFICIENT DATA ARRAY

.

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEAGINE	DEFAULT	DATA	CSU WHERE SET OR	CSU WHERE USED	DATA SOURCE
		[HOTE 1]		NOTE 2)			
tow_burn_speed_coeff[0]	tow missile burn speed coefficient ±0;	m/tick	4.466666667	REAL	default declaration miss_tow.c	[miss_tow.c]missile_tow_init;	simnet/data/ms tw bad
	default value is 67.0 m/sec				[miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_fire;	
						[miss_tow.c]missile_tow_fly	
tow_burn_speed_coeff[1]	tow missile burn speed coefficient a;	m/tick~2	1 222103405	REAL	default declaration miss_tow.c	[miss_tow.c]missile_tow_init;	simnet/data/ms_tw_ba.d
	default value is 274.9732662 m/sec 2				[miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_fire;	1
						[miss_tow.c]missile_tow_fly	
tow_burn_speed_coef!{ 2}	tow missile burn speed coefficient az;	m/tick=3	-0.024532086	REAL	default declaration miss_tow.c	[miss_tow.c]missile_tow_init;	simnet/data/ms_tw_bs.d
	default value is -82.7057910 m/sec**3				[miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_fire;	
						[miss_tow.c]missile_tow_fly	
tow_burn_speed_coeff[3]	tow missile burn speed coefficient as	m/tick*4	0.0	REAL	default declaration miss_tow.c	[miss_tow.c]missile_tow_init;	simnet/data/ms_tw_bs.d
					[miss_tow.c)missile_tow_init	[miss_tow.c]missile_tow_fire;	
				-		[miss_tow.c]missile_tow_fly	
tow_burn_speed_coeff[4]	tow missile burn speed coefficient at	m/hick**5	0.0	REAL	default declaration miss_tow.c	[miss_tow.c]missile_tow_init;	simnet/data/ms_tw_bs.d
					[miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_fire;	
						[miss_tow.c]missile_tow_fly	

ena lack in equal to one frame or 1/15/h of a second IE.A.L is a °C" macro DE/HE for type floot. L HON

TABLE 5.1.26. - TOW MISSILE COAST SPEED COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE UNITS of	DEFAULT	DATA TYPE [MOTE 2]	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
tew_coast_speed_coeff(0)	tow missile coast speed coefficient ag; default value is 327 2858074 m/sec	m/tick	21.81905383	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	sinnet/data/ms_tw_cs.d
tow_coast_speed_coeff[1]	tow missile coast speed coefficient a1; default value is -21.4609544 m/ acc ⁻² 2	m/tick ⁴²	-9-2382019 e- 2	REAL	default declaration miss_low.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_Init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_cs.d
tow_coast_spaed_coaff[2]	tow missile coast speed coefficient a2; default value is 0.8227660 m/sec ²³ 3	m/tkck*3	2.4378222e-4	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_cs.d
tow_coast_speed_coeff(3)	tow missile coast speed coefficient ag; default value is -0.0133200 m/sec ^m 4	m/tick=4	-2.631111e-7	REAL	default declaration miss_tow.c [miss_tow.c]misstle_tow_Init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_cs.d
tow_coast_speed_coeff(4)	tow missile coast speed coefficient au	m/tick ^m 5	0.0	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_Init	[miss_tow.c]missile_tow_Init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_cs.d

ano tuch ia napari ka ana firana ar 1/15M af a sacand 16.AL is a 10° macro Oliffic far type Acet. NOTE 1 NOTE 2

- 172 -

TABLE 5.1.27. - TOW MISSILE BURN TURN COEFFICIENT DATA STRUCTURE

NAME AT NATA SI ENSUT	NEFT-MATLON						
		NEASURE	VALUE		CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
The bar was and as	and the second of the second second						
	polynomial ungree for each tow			ž	default declaration miss tow.c	[miss tow.c]missile tow init;	simnet/data/ms tw bild
	missule burn turn coefficient data sub-				Imise tow.clmissile tow Init	Imise tow climically tow fly	
	array of the tow missile burn turn						
	coefficient data array structure						
tew_burn_turn_coeff.side_coeff[0]	tow missile cosine of maximum side	cos(rad)/tick	0.999976868652	REAL	default declaration mise tow.c	fairs tow chaiselle tow lait:	eimnet/deb/re hu bi d
	tum during burn coefficient ao				(mise_tow.c)missile_tow_init	[miss tow.c]missile tow fly	
tow_burn_twrn_coeff.side_coeff[1]	tow missile cosine of maximum side	coe(rad)/tick*2	-3.59339554-7	REAL	default declaration miss tow.c	Imine tow climitarile tow tait	the second state / second s
	tum during burn coefficient a				[miss tow.c]missile tow init	finise tow.clmissile tow fly	
taw_burn_tum_coeff.up_coeff[0]	tow missile cosine of maximum up turn	cos(rad)/tick*	0.999960667258	REAL	default declaration mine tow c	(min tourchained four fait-	
	during burn coefficient ao			!	[miss_tow.c]missile_tow_init	Imise tow.clmissile tow fly	
tow_burn_tum_coeff.up_coeff[]	tow missile cosine of maximum up turn	con(rad)/tick-2	-3.1492328e-6	REAL	default declaration miss tow.c	Imiss tow.clmissile tow init:	simnet/data/ms tw ht d
	during burn coefficient as	-		-	[mise_tow.c]missile_tow_init	[miss_tow.c]missile_tow_fly	
ter_bun_ten_coeff.dow_coeff[0]	tow missile cosine of maximum down	cos(rad)/tick	686606876666.0	REAL	default declaration miss tow.c	Inise tow.c)missile tow init:	simnet/data/ms tw bid
	tum during burn coefficient an				[miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_fly	
tow_burn_turn_coeff.down_coeff[1]	tow missile cosine of maximum down	cos(rad)/bick+2	-7.8194991e-9	REAL	default declaration miss tow.c	[miss_tow.c]missile_tow_init;	simnet/data/ms tw bt.d
	tum during burn coefficient at			_	[miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_fly	

ero tich begad ib ero frans er 1/1 Shi af a social R.M. b = 1° mean (R.M. fir type fran. M H = 1° type for ninger. - NON

- 173 -

TABLE 5.1.28. - TOW MISSILE COAST TURN COEFFICIENT DATA STRUCTURE

I NAME OF DATA ELEMENT	DESCRIPTION		DECAIN T	ATA A			
		MEASURE	VALUE		CALCULATED	CSU WHERE USED	DATA SOURCE
tow_coast_turn_coaff.deg	polynomial degree for each tow missile coast turn coefficient data sub- array of the tow missile coast turn coefficient data array structure		e	int	default declaration miss_tow.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
tow_coast_turn_coeff.side_coeff[0]	tow missile cosine of maximum side turn during coast coefficient ap	cos(rad)/tick	0.99995112518	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; {miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
tow_coast_tum_coeff.side_coeff[1]	tow missile cosine of maximum side turn Juring const coefficient an	cos(rad)/bck+2	8.96333 e -7	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
tow_ceest_turn_coeff.side_coeff[2]	tow missile cosine of maximum side turn during coast coefficient az	cos(rad)/bick**3	-5.995375e-9	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
tow_coast_turn_coaff.side_coaff[3]	tow missile cosine of maximum side turn during coast coefficient as	cos(rad)/tick**4	1.162225+11	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_Init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
tow_coest_turn_coeff.up_coeff(0)	tow missile cosine of maximum up turn during coast coefficient ap	cos(rad)/ tick	0.9998498495	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_Init	miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	aimnet/data/ms_tw_ct.d
tow_coast_tum_coaff.up_coaff[1]	tow missile cosine of maximum up turn during coast coefficient a	cos(rad)/tick++2	1.65777 9e- 6	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
tow_coast_tum_coaff.up_coaff[2]	tow missile cosine of maximum up turn during coast coefficient a2	cos(rad)/tick*3	-8.231861e-9	REAL	default declaration mise_tow.c (mise_tow.c)miselle_tow_init	{miss_tow.c}missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
tow_coast_tum_coaff.up_coaff[3]	tow missile cosine of maximum up turn during coast coefficient a3	cos(rad)/tick**4	1.381832e-11	REAL	default declaration miss_tow.c {miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
tow_coast_turn_coeff.down_coeff(0)	tow missile cosine of maximum down turn during coast coefficient ap	cos(rad)/tick	91091/6666	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
taw_cosst_twm_coeff.down_coeff[1]	tow missile cosine of maximum down tum during coast coefficient ay	cos(rad)/bck+2	3.382077e-7	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
tow_coast_turn_coaff.down_coaff[2]	tow missile cosine of maximum down turn during coast coefficient az	cos(rad)/tick++3	-1.601259-9	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
tow_coast_turn_coaff.down_coaff[3]	tow missile cosine of maximum down turn during coast coefficient as	cos(rad)/tick**4	2.623014 c -12	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d

eve their a squal to one frame or 1/1914 of a second R.M. to a "C" means DEFRE for type float. Initia a "C" type for mager. NOTE 1 NOTE 2

- 174 -

à

TABLE 5.1.29 - ADAT MISSILE CHARACTERISTICS DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNTS of MEAGORE	DEFAULT	DATA	CSU WHERE SET OR	CSU WHERE USED	DATA SOUNCE
		[NOTE 1]		NOTE 2]			
edat_miss_char(0)	ADAT_BURNOUT_TIME; time of powered [[]ieht for adat missile in ticks [3.2 accords]	ticks	0.84	REAL	default declaration miss_adat.c; funtee_adat chminute_adat tait	(miss_adat.c)missile_adat_init; ftee_cd_ct_c missile_cd_ct_ffe	simnet/data/ms_ad_ch.d
adat_miss_char[1]	ADAT_MAX_FLICHT_TIME; maximum	ticks	300.00	REAL	default declaration miss adat.	Imise adat cimiseile adat Init:	simnet/data/ms ad ch d
,	flight time for the adat missile in ticks (20.0 seconds)				[miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_fly	
adat_miss_char[2]	INVEST_DIST_SQ: default value is 300 meters	т. Т.	90000	REAL	default declaration miss_adat.c;	(miss_adat.c)missile_adat_init;	simnet/data/ms_ad_ch.d
	aquared				[miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_fly	1
adat_miss_char[3]	HELO_FUZE_DIST_SQ: default value is 7	2 . E	49.0	REAL	default declaration miss_adat.c;	[miss_adat.c]missile_adat_init;	simnet/data/ms_ad_ch.d
	meters squared				[miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_fire	
edet_miss_char(4)	AIR_FUZE_DIST_SQ: default value is 14	E 2	196.0	REAL	default declaration miss_adat.c;	[miss_adat.c]missile_adat_init;	simnet/data/ms_ad_chd
	meters aquared				Iniss_adat.c}missile_adat_init	[miss_adat.c]missile_adat_fire	
adat_miss_char[5]	ADAT_TEMP_BLAS_TIME: time of temporal	ticks	60.09	REAL	default declaration miss_adat.c;	(miss_adat.c]missile_adat_init;	simnet/data/ms_ad_ch.d
	bias for adat missile in ticks [4.0 seconds]				[miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_fly	
adat_miss_char(6)	CLOSE_RANCE;	E	2200.0	REAL	default declaration miss_adat.c;	(miss_adat.c)missile_adat_init;	simnet/data/ms_ad_ch.d
					[miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_fire	
adat_miss_char[7]	NOT USED		0.0	REAL	default declaration miss_adat.c;	[miss_adat.c]missile_adatnit	simnet/data/ms_ad_ch.d
					[miss_adat.c]missile_adat_init		
ader miss_char(8)	NOT USED		0.0	REAL	default declaration miss_adat.c;	[miss_adat.c]missile_adat_init	simnet/data/ms_ad_ch.d
					[miss_adat.c]missile_adat_init		
adat_miss_char[9]	NOT USED		0.0	REAL	default declaration miss_adat.c;	[miss_adat.c]missile_adat_init	simnet/data/ms_ad_ch.d
					[miss_adat.c]missile_adat_init		

ene lidd is equal to ane frame er 1/1 Sth of a second REAL is a "C" macro DEARE for type float.

1 HON

TABLE 5.1.30. - ADAT MISSILE POLYNOMIAL DEGREE DATA ARRAY

NUME of DATA ELEMENT	DESCRIFTION	UNITS of MEASURE	DEFAULT	DATA TYPE INDE	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
adat_miss_poly_deg[0]	polynomial degree for adat missile burn speed coefficient data array		2	ĩ	default declaration miss_adat.c; [miss_adat.c]missile_adat_init	(miss_adat.c)missile_adat_init	simnet/data/ms_ad_bs.d
adat_miss_poly_dag[1]	polynomial degree for adat missile coast speed coefficient data array		+	int	default declaration miss_adat.c; [miss_adat.c]missile_adat_init	[mise_adat.c]missile_adat_init	simnet/data/ms_ad_ca.d
adat_miss_poly_deg[2]	polynomial degree for cosine of adat missile maximum turn during burn coefficient data array		£	int	default declaration miss_adat.c; [miss_adat.c]missile_adat_init	(miss_adat.c)missile_adat_init	simnet/data/ms_ad_bt.d
adar_miss_poly_deg[3]	polynomial degree for cosine of adat missile maximum turn during coast coefficient data array		5	int	default declaration miss_adat.c; [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init	simnet/data/ms_ad_ct.d
adat_miss_poly_deg(4)	polynomial degree for adat missile temporal blas coefficient data array		4	ž	default declaration miss_adat.c; [miss_adat.c]missile_adat_init	(mise_adat.c)missile_adat_init	simnet/data/ms_ad_tb.d

IN IS IN THE TYPE FOR INCOME. NOTE 1

TABLE 5.1.31. - ADAT MISSILE BURN SPEED COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of	DEFAULT	DATA	CSU WHERE SET OR	CSU WHERE USED	DATA SOURCE
		NEASURE [NOTE 1]	VALUE	TYPE (NOTE 2)	CALCULATED		
edat_bum_speed_coeff[0]	adat missile burn speed coefficient ao	m/tick	5.296	REAL	default declaration miss_adat.c {miss_adat.c}missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fire;	simnet/data/ms_ad_bs.d
adat_bum_speed_coeff[1]	adat missile burn speed coefficient at	m/tick*2	0.72990856	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	unisse_even.chmissie_edar_by (miss_adar.chmissie_edar_init; (miss_adar.chmissie_adar_fire; finiss_adar.chmissie_adar_fiv	simnet/data/ms_ad_bs.d
adet_burn_speed_coeff[2]	adat missile burn speed coefficient a2	m/tick*3	0.013310932	REAL	default declaration miss_adat.c {miss_adat.c}missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fhrs; [miss_adat.c]missile_adat_fly	simnei/data/ms_ad_ba.d
adat_burn_speed_coeff[3]	adat missile burn speed coefficient ag	m/tick*4	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	(mise_adat.c missile_adat_init; mise_adat.c missile_adat_fire; mise_adat.c missile_adat_fly	simnet/data/ms_ad_bs.d
ader_bum_speed_coeff[4]	adat missile burn speed c. efficient ag	m/tick**5	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_Init	[mise_adat.c]missile_adat_inut; {mise_adat.c]missile_adat_fire; [mise_adat.c]missile_adat_fly	simnet/data/ms_ad_ba.d
adat_burn_speed_coeff[5]	adat missile burn speed coefficient as	m/tick*6	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[mise_adat.c]missile_adat_ivit; [mise_adat.c]missile_adat_flre; [mise_adat.c]missile_adat_fly	simnet/data/ms_ad_bs.d
adat_bum_speed_coeff(6)	adat missile burn speed coefficient a6	m/tick**7	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c/missile_adat_Init; [miss_adat.c/missile_adat_fire; [miss_adat.c/missile_adat_fly	simnet/data/ms_ad_bs.d
adet_burn_speed_coeff[7]	adat missile burn speed coefficient a7	m/tick**8	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_Init	[mise_adat.c]missile_adat_init; [mise_adat.c]missile_adat_fire; [mise_adat.c]missile_adat_fly	simnet/data/ms_ad_bs.d
sdat_burn_speed_coeff[8]	adat missile burn speed coefficient ag	m/tick**9	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missüe_adat_init	[miss_adat.c]missile_adat_inut; [miss_adat.c]missile_adat_fire; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_bad
adat_bum_speed_coeff[9]	adat missile burn speed coefficient ag	m/tick*10	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[mise_adat.c]missile_adat_fruit; [mise_adat.c]missile_adat_fire; [mise_adat.c]missile_adat_fly	simnet/data/ms_ad_bs.d

HOTE 1 are tick is equal to any frame or 1/15th of a second HOTE 2 REAL is a "C" made DGHKE for type float.

- 176 -

TABLE 5.1.32. - ADAT MISSILE COAST SPEED COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of	DEFAULT	DATA	CSU WHERE SET OR	CSU WHERE USED	DATA SOUNCE
-		MEASURE [HOTE 1]	VALUE	TYPE [NOTE 2]	CALCULATED		
adat_coast_speed_coeff[0]	adat missile coast speed coefficient ag	m/tick	105.52162	REAL	default declaration miss_adat.c	[miss_adat.c]missile_adat_init;	simnet/data/ms_ad_cs.d
					[miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_fly	
adat_coast_speed_coeff[1]	adat misaile coast speed coefficient ap	m/thck-2	-1.0157285	REAL	default declaration miss adat.c	[miss_adat.c]missile_adat_init;	simnet/data/ms_ad_cs.d
					(miss_adat.c)missile_adat_init	[miss_adat.c]missile_adat_fly	
adat_coast_speed_coeff[2]	adat missile coast speed coefficient az	m/tick=3	5.6124330+3	REAL	default declaration miss_adat.c	[miss_adat.c]missile_adat_init;	simnet/data/ms_ad_ca.d
					[mise_edat.c]missile_adat_init	[mise_adat.c]missile_adat_fly	
adm_coest_speed_coeff(3)	adat missile coast speed coefficient as	m/tick*4	-1.6262608-5	REAL	default declaration miss_adat.c	[miss_adat.c]missile_adat_init;	simnet/data/ms_ad_cs.d
					[miss_adat.c]missile_adat_init	[mise_adat.c]miseile_adat_fly	
adat_coast_speed_coeff[4]	adat missile coast speed coefficient at	m/tick*5	1.89919626-8	REAL	default declaration miss_adat.c	[miss_adat.c]missile_adat_init;	simnet/data/ms_ad_cs.d
					[miss_adat.c)missile_adat_init	[miss_adat.c]missile_adat_fly	
adar_coast_speed_coeff[5]	adat missile coast speed coefficient as	m/tick*6	0.0	REAL	default declaration miss_adat.c	[mise_adat.c]missile_edat_init;	simnet/data/ms_ad_cs.d
					[miss_adat.c]missile_adat_init	[mise_adat.c]missile_adat_fly	
adat_coast_speed_coeff[6]	adat missile coast speed coefficient as	m/tick-	0.0	REAL	default declaration miss_adat.c	[mise_adat.c]missile_adat_init;	simnet/data/ms_ad_cs.d
1	•				[miss_adat.c]missile_adat_init	[mise_adat.c]missile_adat_fly	-
ader_coest_speed_coeff(7)	adat missile coast speed coefficient a7	m/tick*8	0.0	REAL	default declaration miss_adat.c	[miss_adat.c]missile_adat_init;	simnet/data/ms_ad_cs.d
	•				(miss_adat.c)missile_adat_init	[miss_adat.c]missile_adat_fly	
adat_coast_speed_coeff[8]	adat missile coast speed coefficient as	m/tick**9	0.0	REAL	default declaration miss_adat.c	[miss_adat.c]missile_adat_init;	simnet/data/ms_ad_cs.d
	•				[miss_adat.c]missile_adat_init	[mise_adat.c]missile_adat_[]y	
adat coast speed_coeff[9]	adat missile coast speed coefficient as	m/tick*10	0.0	REAL	default declaration miss_adat.c	(mise_adat.c)missile_adat_init;	simnet/data/ms_ad_ca.d
					[miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_fiy	

NOTE 1 one but is equal to are frame or 1/15th of a second NOTE 2 REAL as 1°C mana DEPRE for type Acet.

•

TABLE 5.1.33. - ADAT MISSILE BURN TURN COEFFICIENT DATA ARRAY

NAME of DATA ELEMENT	DESCRIPTION	UNITS of	DEFAULT	DATA		COI WIKES (ICC)	
		MEASURE (NOTE 1)	VALUE	Ĕ	CALCULATED		
adar_burn_turn_coeff[0]	adat missile cosine of maximum turn during burn coefficient ao	cos(rad)/bck	£66666'0	REAL	default declaration miss_adat.c [miss_adatcimiesils_adat_init	[miss_adat.cjmissile_adat_init; fimiss_adat.cjmissile_adat_init;	simnet/data/ms_ad_bt.d
adat_bun_tun_coaff[1]	adat missile cosine of maximum tum during burn coefficient a ₁	cos(rad)/tick+2	-62386917e7	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_flv	simmet/data/ms_ad_bt.d
ader_burn_turn_coeff[2]	adat missile cosine of marimum tum during burn coefficient a2	costrad)/tick**3	1.61464264-7	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	(miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_bt.d
adac_bum_tum_coaff[3]	adat missile cosine of maximum turn during burn cosfiictent as	cos(rad)/Hck**4	-9.7201426-7	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simmet/data/ms_ad_bt.d
edat_bum_tum_coaff[4]	adat missile cosine of maximum turn during burn coefficient ad	coe(rad)/bick*5	0.0	REAL	default declaration mise_adat.c [mise_adat.c]miseile_adat_init	[fmiss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	sinnet/data/ms_ad_bt.d
adat_bum_tum_coaff[5]	adat missile cosine of maximum turn during burn coefficient as	coe(rad)/tick**6	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	lmiss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_bt.d
adat_bum_tum_coeff(6)	adat missile cosine of maximum turn during burn coefficient ad	cos(rad)/bick**7	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	(miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_bt.d
adat_bum_tum_coeff[7]	adat missile cosine of maximum turn during burn coefficient a7	cos(rad)/tick**8	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_bt.d
adat_bum_tum_coeff[8]	adat missile cosine of maximum turn during burn coefficient ag	cos(rad)/tick**9	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	{miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_bt.d
adar_bum_tum_coeff[9]	adat missile cosine of maximum tum during burn coefficient ag	cos(rad)/tick*10	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_bt.d

NUTE 1 are that is equal to are have at 1/7 Shi of a second NUTE 2 REAL is a "C" made DERie for type Real.

- 178 -

TABLE 5.1.34. - ADAT MISSILE COAST TURN COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	I UNITS of	DEFAULT	DATA	COLUMERE CET DO	Cell wurder inter-	
		HEASURE INOTE 11	VALUE		CALCULATED		UNIN SUURLE
adat_coast_tum_coaff[0]	adat missile cosine of maximum tum during coast coefficient ap	cos(rad)/iick	0.99753111	REAL	default declaration miss_adat.c Imise adatcImissile adat init	[miss_adat.c]missile_adat_init; Imiss_adat.c]missile_adat_fiv	simnet/data/ms_ad_ct.d
adat_coast_tum_coaff[1]	adat missile cosine of maximum tum during coast coefficient a 1	cos(rad)/tick*2	5.5817986-5	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[mise_adat.c]missile_adat_init; [mise_adat.c]missile_adat_fly	simnet/data/ms_ad_ctd
adat_coast_tum_coeff[2]	adat missile cosine of maximum tum during coest coefficient a2	cos(rad)/Bck**3	-5.12762764-7	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[mise_adat.c]missile_adat_init; [mise_adat.c]missile_adat_f]y	simnet/data/ms_ad_ct.d
adat_coast_tum_coeff[3]	adat missile cosine of maximum tum during cosst coefficient a3	cos(rad)/tick**4	2.23885934-9	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_f]y	simnet/data/ms_ad_ct.d
adat_coast_tum_coeff[4]	adat missile cosine of maximum turn during coast coefficient a4	cos(rad)/bick**5	-5.1964622e-12	REAL	default declaration miss_adat.c [miss_adatc]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_ct.d
eder_coest_turn_coeff[5]	adat missile cosine of maximum turn during coast coefficient as	cos(rad)/bick**6	45499104-15	REAL	default declaration miss_adat.c [mbs_adatc]rtissile_adat_init	{miss_adat.c}missile_adat_fnit; [miss_adat.c}missile_adat_fly	simnet/data/ms_ad_ct.d
adat_coast_turn_coeff[6]	adat missile cosine of maximum turn during coest coefficient ad	cos(rad)/bck**7	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[mise_adat.c]missile_adat_init; [mise_adat.c]missile_adat_fly	simnet/data/ms_ad_ct.d
adat_coast_turn_coeff[7]	adat missile cosine of maximum turn during coast coefficient a7	cos(rad)/tick**8	0.0	REAL	default declaration miss_adat.c [mbs_adatc]missile_adat_Init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_ct.d
eder_coast_tum_coeff[8]	adat missile cosine of maximum turn during coest coefficient ag	cos(rad)/bck**9	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missite_adat_init	[miss_adat.c]missile_adat_Init; [miss_adat.c]missile_adat_Ny	simnet/data/ms_ad_ct.d
adat_coast_turn_coeff[9]	adat missile cosine of maximum turn during coast coefficient ay	cos(rad)/Hck+10	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c]missife_adat_init; [miss_adat.c]missife_adat_fly	simnet/data/ms_ad_ct.d

NOTE 1 are lide to equal to one frame or 1/15th of a second NOTE 2 REAL to a "C" more DEPleE for type flash.

- 179 -

TABLE 5.1.35. - ADAT MISSILE TEMPORAL BIAS COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of	DEFAULT	DATA	COL WISSE CET OF	COLL WARREN LIKED	
		MEASURE (MOTE 1)	VALUE		CALCULATED		
adat_temp_blas_coeff[0]	adat missile temporal bias coefficient ao	cos(rad)/tick	5.3105657e-2	REAL	default declaration miss_adat.c	[miss adat.c]missile adat init;	simnet/data/ms ad ct.d
					[miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_fly	
adat_temp_bias_coeff[1]	adat missile temporal bias coefficient at	cos(rad)/tick+2	7.1795817e-2	REAL	default declaration miss_adat.c	[miss_adat.c]missile_adat_init;	simnet/data/ms ad ct.d
					[miss_adat.c]miselle_adat_init	[miss adat.c]missile_adat_fly	
adat_temp_bias_coeff[2]	adat missile temporal bias coefficient az	cos(rad)/bick*3	1.8064646e-2	REAL	default declaration miss_adat.c	[miss_adat.c]missile_adat_init;	simnet/data/ms ad ct.d
					[miss_adatc]missile_adat_init	[mise_adat.c]missile_adat_f]y	
adar_temp_bias_coeff(3)	adat missile temporal bias coefficient as	cos(rad)/tick**4	-6.0083762-4	REAL	default declaration miss_adat.c	[mise_edat.c]missile_edat_init;	i simnet/data/ms ad ct.d
					[miss_adatc]missile_adat_init	[miss_adat.c]missile_adat_fly	
adat_temp_bias_coeff[4]	adat missile temporal bias coefficient ag	cos(rad)/bck*5	4.6761091=6	REAL	default declaration miss_adat.c	[mise_adat.c]missile_adat_init;	simnet/data/ms ad ct.d
					[miss_adat.c]missile_adat_init	(miss adat.c)missile adat fly	1
adat_temp_biss_coeff[5]	adat missile temporal blas coefficient as	cos(rad)/bck**6	0.0	REAL	default declaration miss_adat.c	(mise_adat.c)missile_adat_init;	simnet/data/ms ad ct.d
					[miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_fly	1
adat_temp_blas_coeff[6]	adat missile temporal blas coefficient a6	cos(rad)/ticker7	00	REAL	default declaration miss_adat.c	[mise_adat.c]missile_adat_init;	simnet/data/ms ad ct.d
			•		[miss_adatc]missile_adat_init	[miss_adat.c]missile_adat_f]y	1
adat_temp_biss_coeff[7] '	adat missile temporal bias coefficient a7	cos(rad)/tick**8	σo	REAL	default declaration miss_adat.c	[mise_adat.c]missile_adat_init;	simnet/data/ms_ad_ct.d
					[miss_adatc]missile_adat_init	[miss_adat.c]missile_adat_fly	+ + -
adat_temp_biss_coeff[8]	adat missile temporal bias coefficient ag	cos(rad)/bck**9	0.0	REAL	default declaration miss_adat.c	[miss_adat.c]missile_adat_init;	simnet/data/ms_ad_ct.d
					[miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_f]y	
adat_temp_biss_coeff(9)	adat missile temporal blas coefficient ap	cos(rad)/thck*10	0.0	REAL	default declaration miss_adat.c	[miss_adat c]missile_adat_init;	simnet/data/ms_ad_ct.d
					[miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_fly	

NOTE 1 eve that is equal to ano frame or 1/15th of a second NOTE 2 R.A. a 3 °C" macro DEPNE for type float.

TABLE 5.1.36 - ATGM MISSILE CHARACTERISTICS DATA ARRAY

NAME of DATA ELEMENT	DESCRIPTION	UNITS of MEASURE [MOTE 1]	. DEFAULT VALUE	DATA TYPE PHOTE ZI	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
tow_miss_char[0]	TOW_BURNOUT_TIME: hime of powered flight for tow mbaile in theta [1.6 accords]	ticks	24.0	REAL	default declaration miss_atgm.c; [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_ch.d
tow_miss_char[1]	TOW_RANGE_LMIT_TIME: range limit time for the tow misatie in tcbi 1/7 39 seconda): at this point the wire is cut, but the misatie is allowed to fit to the maximum flack time	ticka	268.35	REAL	default declaration miss_atgm.c; [miss_atgm.c]missUe_atgm_init	{miss_atgm.c}missele_atgm_mit; {miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_chd
tow_miss_char[2]	TOW_MAX_FLIGHT_TIME: maximum flight time for the tow misaile in ticks: cosine of the max turn is greater than 1.0 beyond this point	tictus	200.00	REAL	default declaration miss_atgm_c; Imiss_atgm.c]missile_atgm_init	Imiss_atgm_c]missile_atgm_init	simnet/data/ms_at_ch.d
tow_miss_char[3]	ATGM_TURN_FACTOR: ATGM turn factor for whiter turning capability with respect to TOW		6.0	REAL	default declaration mise_atgm.c; (mise_atgm.clmissile_atgm_init	[mise_atgm.c]missile_atgm_init	simnet/data/ms_at_ch.d
tow_niss_char[4]	NOT USED		0.0	REAL	default declaration miss_atgm.c; [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_init	simnet/data/ms_at_chd

ave tick is equal to one frame at 1/150h of a second IE.M. is a "C" macro DEPHE for type floot. A HON

TABLE 5.1.37. - ATGM MISSILE POLYNOMIAL DEGREE DATA ARRAY

		Lave of	ACCALL T	1 2440	COLUMERE GET OF	CSU WHERE USED	DATA SOURCE
NAME OF DATA ELEMENT	DESCRETION	NEASURE	VALUE		CALCULATED		
tow_miss_poly_deg(0)	polynomial degree for tow missile burn speed		7	Ĩ	default declaration miss_atgm.c; finiss_atem.c/missile_atem_init	[miss_atgm.c]missile_atgm_init	simnet/data/ms_at_bad
tow_miss_poly_deg(1)	polynomial degree for tow missile coast speed		6	, L	default declaration miss_atgm.c; [miss_atgm.c]missile_atgm_init	(miss_atgm.c/missile_atgm_init	simnet/data/ms_at_cs.d
tow_miss_poly_deg[2]	polynomial degree for each tow missile burn turn coefficient data sub-array of the tow 			۲ų I	default declaration mise _atgm.c; [mise_atgm.c]missale_atgm_init	[miss_atgm.c]missile_atgm_init	simnet/data/ms_at_bt.d
[E]geb_dog_atm_wat	structure out		E	ĩ	default declaration miss_atgm.c; fmiss_atgm.cimissile_atgm_init	lmiss_atgm.clmissile_atgm_init	simnet/data/ms_at_ct.d
tow_miss_poly_dag[4]	musele coest turn coetincent data unay structure NOT USED		0	int	default declaration miss_argm.c: [miss_argm.c]missile_argm_init	lmiss_atgm.c)missile_atgm_init	simnet/data/ms_at_ct.d

In the TC type for Mager. NOTE 1

- 181 -

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE [NOTE 1]	DEFAULT	DATA TYPE INOTE 2]	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
tow_burn_speed_coeff[0]	tow missile burn speed coefficient ao: default value is 67.0 m/ sec	m/tick	4.466666667	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fite; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_ba.d
taw_burn_speed_coeff[1]	tow missile burn speed coeffictent a1; default value is 274.9732662 m/sec ^{m2} 2	m/tick ²	1 222103405	REAL	default declaration miss_atgm.c [miss_atgm.c]misslie_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fire; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_ba.d
taw_burn_speed_coeff[2]	tow missile burn speed coefficient a2; default value is -82.7057910 m/sec ^{arg}	m/tick=3	-0.024532086	REAL	default declaration miss_atgm.c [mlss_atgm.c]mlssile_atgm_init	lmise_atgm.c)missile_atgm_init; [mise_atgm.c)missile_atgm_fire; [mise_atgm.c)missile_atgm_fly	simnet/data/ms_at_bs.d
tow_burn_speed_coeff[3]	tow missile burn speed coefficient ag	m/tick*4	0.0	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_Init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fire; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_ba.d
taw_burn_speed_coeff[4]	tow missile burn speed coefficient a4	m/tick ⁴⁵	0.0	REAL	default declaration muss_aigm.c [miss_atgm.clmissile_atgm_init	[miss_atgm.c]missile_atgm_Init; [miss_atgm.c]missile_atgm_fire; [miss_atgm.c]missile_atgm_fly_	simnet/data/ms_at_bs.d

ere Uch is equal to ere. Name or 1/15/h e/ a second IEAL is a 'C' macro DEME for type Rost. L HOM

TABLE 5.1.39. - ATGM MISSILE COAST SPEED COEFFICIENT DATA ARRAY

					وللمتعادية المتعادية المتعادية المتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية		
NAME of DATA ELEMENT	DESCRIPTION	UNITS OF MEASURE PMOTE 1]	DEFAULT	DATA TYPE INTE Z]	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
tow_coast_speed_coeff[0]	tow missile coast speed coefficient ao; default value is 327/2858074 m/sec	m/tick	21.81905383	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fl_;	simnet/data/ms_at_cs.d
tow_coast_speed_coeff(1)	tow missile coast speed coefficient a; default value is -21.4609544 m/ sec**2	m/tick+2	-9.5382019 e- 2	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_cs.d
tow_coast_speed_coeff[2]	tow missile coast speed coefficient a2; default value is 0.8227660 m/sec ²³ 3	m/thck=3	2.43787226-4	REAL	default declaration miss_atgm.c (miss_atgm.c)missile_atgm_init	{miss_atgm.c]missile_atgm_init; {miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_cs.d
tow_coss_speed_coeff[3]	tow missile coast speed coefficient ag; default value is -0.0133200 m/sec ^m 4	m/tick*4	-2.63111116-7	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_fnit; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_cs.d
tow_coast_spaed_coeff[4]	tow misaile coast speed coefficient a4	m/tick*5	0.0	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_Init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_cs.d

ana táct la aguat ta ana fitama ar 1/150h af a sacond REAL a a "C" macro DEHRE far type Acet.

1 HON

TABLE 5.1.40. - ATGM MISSILE BURN TURN COEFFICIENT DATA STRUCTURE

TAME OF UALA SLEMENT	OCACHERINON	UNITS OF	DEFAULT	¥1	CSU WHERE SET OR	CSU WHERE USED	DATA SOUNCE
			ANUC	MOTE 2)			
tow_burn_turn_coeff.deg	polynomial degree for each tow		1	int	default declaration miss_atgm.c	[miss_atgm.c]missile_atgm_init;	simnet/data/ms_at_bt.d
	missile burn turn coefficient data sub-				[miss_atgm.c]missile_atgm_init	[mise_atem.c]missile_atem_fly	1
	array of the tow missile burn turn						
	coefficient data array structure						
tow_burn_turn_coeff.side_coeff[0]	tow missile cosine of maximum side	cos(rad)/bck	0.99997686852	REAL	default declaration miss_atgm.c	[miss_atgm.c]missile_atgm_init;	simnet/data/ma_at_bt.d
	tum during burn coefficient ao				[miss_atgm.c]missile_atgm_init	[mise_atym.c]miselle_atym_fly	
tow_burn_turn_coeff.side_coeff[1]	tow missile cosine of maximum side	cos(rad)/tick+2	-3.59339554-7	REAL	default declaration miss_atgm.c	[miss_atgm.c]missile_atgm_init;	simnet/data/ms_at_bt.d
	turn during burn coefficient as				[miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_fly	
tow_burn_turn_coeff.up_coeff[0]	tow missile cosine of maximum up turn	cos(rad)/tick*	0.999960667258	REAL	default declaration miss_atgm.c	[miss_atgm.c]missile_atgm_init;	simnet/data/ms_at_bt.d
	during burn coefficient an				[miss_atgm.c]missile_atgm_init	[miss_sign.c]missile_sign_fly	
tow_burn_turn_coeff.up_coeff[1]	tow missife cosine of maximum up turn	cos(rad)/bck*2	-3.1492328-6	REAL	default declaration miss_atgm.c	[miss_atgm.c]missile_atgm_init;	simnet/data/ms_at_btd
	during burn coefficient al				[miss_atgm.clmissile_atgm_init	[miss_atgm.c]missile_atgm_fly	
tow_burn_twn_coeff.down_coeff[0]	tow missile cosine of maximum down	cos(rad)/tick	686606876666.0	REAL	default declaration miss_atgm.c	[miss_atgm.c]missile_atgm_init;	simnet/data/ms_st_bt.d
	tum during burn coefficient ao			I	[miss_atgm.c]missile_atgm_fnit	[miss_atgm.c]missile_atgm_fly	
tow_burn_turn_coeff.down_coeff[1]	tow missile cosine of maximum down	cos(rad)/bck+2	-7,81949916-9	REAL	default declaration miss_atgm.c	[miss_atgm.c]missile_atgm_init;	simnet/data/ms_at_bt.d
	turn during burn coefficient as				[miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_fly	

ane Uch là aguil tà ana huma ar 1/7 Sthail a nacand 1624, là a °C" muca DCPAE far type fiont. 1414 à a °C" type far Weger. - HON

- 183 -

.

TABLE 5.1.41. - ATGM MISSILE COAST TURN COEFFICIENT DATA STRUCTURE

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE [MOTE 1]	DEFAULT	DATA TYPE [MOTE 2]	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
tow_coast_tum_coaff.dag	polynomial degree for eech tow missile coast turn coefficient data sub- array of the tow missile coast turn coefficient data array atructure		£	int	default declaration miss_atgm.c [miss_atgm.clmissile_atgm_lnit	(miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_ct.d
tow_coast_turn_coeff.side_coeff[0]	tow missile cosine of maximum side turn during coast coefficient ap	cos(rad)/ tick	0.99995112518	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_Init; [miss_atgm.c]missile_atgm_Ily	almnet/data/ms_at_ct.d
tow_coast_turn_coeff.side_coeff[1]	tow missile cosine of maximum side turn during coast coefficient at	cos(rad)/Hck ^{ar} 2	8.96333 e. 7	REAL	default declaration miss_atgm.c {miss_atgm.c}missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_ct.d
tow_coast_tum_coaff.side_coaff[2]	tow missile cosine of maximum side turn during coast coefficient az	cos(rad)/tick*3	-5.995375 e -9	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_ct.d
tow_coast_turn_coaff.side_coaff[3]	tow missile cosine of maximum side turn during coast coefficient as	cos(rad)/tick**4	1.162225 e -11	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_Init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnei/dala/ms_at_ct.d
tow_coast_tum_coaff.up_coaff[0]	tow missile cosine of maximum up turn during coast coefficient ao	cos(rad)/bick	0.9998498495	REAL	default declaration miss_atgm.c fmiss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_ct.d
tow_coest_turn_coeff.up_coeff()	tow missile cosine of maximum up turn during coast coefficient at	cos(rad)/tick+2	1.667779 e 6	REAL	default declaration miss_atgm.c (miss_atgm.c)missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_ct.d
tow_coast_tum_coaff.up_coaff[2]	tow missile cosine of maximum up turn during coast coefficient a2	cos(rad)/tick**3	-8.231861e-9	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_inlt; [miss_atgm.c]missile_atgm_f]y	simnet/data/ms_at_ct.d
tow_coast_tum_coaff.up_coaff[3]	tow missile cosine of maximum up turn during coast coefficient as	cos(rad)/tick**4	1.381832e-11	REAL	default declaration mise_atgm.c {mise_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_ct.d
tow_coast_turn_coeff.down_coeff[0]	tow missile cosine of maximum down turn during coast coefficient ap	cos(rad) / tick	\$10\$1 <i>2666</i> 60	REAL	default declaration miss_atgm.c {miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_Init; [miss_atgm.c]missile_atgm_Iy	simnet/data/ms_at_ct.d
taw_coast_turn_coaff.down_coaff[1]	tow missile costre of maximum down turn during coss coefficient at	cos(rad)/tick**2	3.382077e-7	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_Init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_ctd
tow_coast_turn_coaff.down_coaff[2]	tow missile cosine of maximum down turn during coast coefficient az	cos(rad)/tick+3	-1.601259 c- 9	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	(miss_atgm.c)missile_atgm_init; {miss_atgm.c)missile_atgm_fly	simnet/data/ms_at_ct.d
tow_coast_turn_coaff.down_coaff[3]	tow missile cosine of maximum down turn during coast coefficient ag	cos(rad)/tick**4	2.623014e-12	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_ct.d

one tick is equal to one hame or 1/15th of a second REAL is a TC mucro DCPAE for type Acet. Int is a TC type for integer. NOTE 1 NOTE 2

- 184 -

TABLE 5.1.42 - KEM MISSILE CHARACTEP.ISTICS DATA ARRAY

5

NAME of DATA ELEMENT	DESCRIPTION	UNITS of	DEFAULT	DATA	CSU WHERE SET OR	CSII WHERE LISED	DATA SMIRCE
		MEASURE [NOTE 1]	VALUE	TYPE Inore 21	CALCULATED		
kam_misa_char(0)	KEM_BURNOUT_TIME; time of powered flight for kem missile in ticks [3.2 seconds]	ticks	48.0	REAL	default declaration miss_kem.c; Imiss kem.c?missile kem init	[miss_kem.c]missile_kem_init; fmiss_kem.c]missile_kem_flv	simnet/data/ms_km_ch.d
tem_miss_char(1)	KEM_MAX_FLIGHT_TIME: maximum flight time for the kern missile in ticks [20.0 seconds]	ticks	300.00	REAL	default declaration miss_kem.c; [miss kem.c]misstle_kem_init	[miss_kem.c]misstle_kem_init; [miss_kem.c]misstle_kem_fly	simnet/data/ms_km_ch.d
tem_miss_char{ 2]	KEM_TO_MACH5_FACTOR; speed factor to raise from ADAT to KEM; just alter burnout, the ADAT has a maximum velocity of 230 m/sec, while the KEM has a maximum velocity of 1524 m/sec		6.626	REAL	default declaration miss_kem.c; [miss_kem.c]missile_kem_init	lmise_kem.clmissile_kem_init; lmise_kem.clmissile_kem_ine; imiss_kem.cjmissile_kem_iny	simnet/data/ms_km_ch.d
kem_mks_char[3]	NOT USED		0.0	REAL	default declaration miss_kem.c; [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fire	simnet/data/ms_km_ch.d
kerumiss_char[4]	NOT USED		0.0	REAL	default declaration miss_kem.c; [miss_kem.c]missile_kem_init	{miss_kem.c]missile_kem_init; {miss_kem.c}missile_kem_fire	simnet/data/ms_km_ch.d
kan_mks_char(S)	NOT USED		0.0	REAL	default declaration miss_kem.c; [miss_kem.c]missile_kem_init	(miss_kem.c)missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_ch.d
ken_miss_char(6)	NOT USED		0.0	REAL	default declaration miss_kem.c; {miss_kem.c}missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fire	simnet/data/ms_km_ch.d
ken_miss_char(7)	NOT USED		0.0	REAL	default declaration miss_kem.c; [miss_kem.c]missile_kem_Init	[miss_kem.c]missile_kem_init	simnet/data/ms_km_ch.d
ken_miss_char[8]	NOT USED		0.0	REAL	default declaration miss_kem.c; {miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init	simnet/data/ms_km_ch.d
ken_mise_char[9]	NOT USED		0.0	REAL	default declaration miss_kem.c; [miss_kem.c]missile_kem_init	(miss_kem.c)missile_kem_init	simnet/data/ms_km_ch.d
MOTE 1 6 MOTE 2 1	ne tick is equal to one frame or 1/15th of a econd E.M. is a "C" macro DEPric (or type front.						

TABLE 5.1.43. - KEM MISSILE POLYNOMIAL DEGREE DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE	DEFAULT		CSU WHERE SET OR CALQULATED	CSU WHERE USED	DATA SOURCE
kem_miss_poly_deg[0]	polynomial degree for kem missile burn speed coefficient data array		2	int	default declaration miss_kem.c; [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init	simnet/data/ms_km_bs.d
kam_miss_poly_deg[1]	polynomial degree for kem missile coast speed coefficient data array		*	ļ.	default declaration miss_kem.c; [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init	simnet/data/ms_km_cs.d
kem_niss_poly_deg[2]	polynomial degree for cosine of kem missile maximum turn during burn coefficient data array		m	int	default declaration miss_kem.c; [miss_kem.c]missile_kem_init	(miss_kem.c)missile_kem_init	simnet/data/ms_km_bt.d
kem_miss_poly_deg[3]	polynomial degree for cosine of ken missile maximum turn during coast coefficient data array		s	int	default declaration miss_kem.c; [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init	simnet/data/ms_km_ct.d
kem_miss_poly_deg[4]	NOT USED		0	int	default declaration mise_kem.c		l

Im is a T' type for Imager. NOTE 1

- 185 -

TABLE 5.1.44. - KEM MISSILE BURN SPEED COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of	DEFAULT	DATA		COIL WALEDE LICEN	DATA COUNCE
		MEASURE [NOTE 1]	VALUE	TYPE	CALCULATED		
kem_burn_speed_coeff(0)	kem missike burn speed coefficient ao	m/tick	5.2%	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	lmiss_kem.c]missile_kem_init; lmiss_kem.c]missile_kem_fire; lmiss_kem.c]missile_kem_fly	simnet/data/ms_km_bs.d
ham_burn_speed_coeff[1]	kem missike burm speed coefficient at	m/tick**2	0.72990856	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fire; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_bs.d
tem_burn_speed_coeff[2]	kem missile burn speed coefficient az	m/tick*3	0.013310932	REAL	default declaration miss_kem.c fmiss_kem.cjmissile_kem_init	{miss_kem.c]missile_kem_init; {miss_kem.c]missile_kem_fire; {miss_kem.c]missile_kem_fly	simnet/data/ms_km_bs.d
kem_burn_speed_coeff(3)	kem missile burn speed coefficient ag	m/tick*4	0.0	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_flre; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_bs.d
kem_burn_speed_coeff[4]	kem missile burn speed coefficient at	m/tick=5	0.0	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_Init	[miss_kem.c]missile_kem_inlt; [miss_kem.c]missile_kem_fire; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_bs.d
hem_burn_speed_coeff[5]	kem missile burn speed coefficient as	m/tick**6	0.0	REAL	default declaration miss_kem.c (miss_kem.c)missile_kem_init	[mise_kem.c]missile_kem_intt; [mise_kem.c]missile_kem_fire; [mise_kem.c]missile_kem_fly	simnet/data/ms_km_bs.d
kam_burn_speed_coeff[6]	kem missile burn speed coefficient a6	m/tick**7	0.0	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fire; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_bs.d
ham_burn_speed_coeff[7]	kem missile burn speed coefficient a7	m/tick**8	0.0	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	{miss_kem.c}missile_kem_init; {miss_kem.c}missile_kem_fire; {miss_kem.c}missile_kem_fy	simnet/data/ms_km_bs.d
hum_speed_coeff(8)	kem missile burn speed coefficient ag	m/tick**9	0.0	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	(miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fire; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_bs.d
ham_burn_speed_coeff(9)	kem missike burn speed coefficient ag	m/tick**10	0.0	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	(miss_kem.c missile_kem_init; [miss_kem.c missile_kem_fire; [miss_kem.c missile_kem_fly	simnet/data/ms_km_bs.d
NOTE 1 and back to equi	ual to ena frame or 1/1 Sth of a second reacts DEPAE for type float.						

- 186 -

TABLE 5.1.45. - KEM MISSILE COAST SPEED COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of	DEFAULT	DATA	CSU WHERE SET OR	CSU WHERE USED	DATA SOURCE
		MEASURE [NOTE 1]	VALUE	TYPE (NOTE 2)	CALCULATED		
ham_coast_speed_coeff(0)	kem missile coast speed coefficient ao	m/tick	105.52162	REAL	default declaration miss_kem.c	[miss_kem.c]missile_kem_init;	simnet/data/ms_km_cs.d
					[miss_kem.c]missile_kem_init	(miss_kem.c)missile_kem_fly	
<pre>hem_coast_speed_coeff[1]</pre>	kem missile coast speed coefficient at	m/tick*2	-1.0157285	REAL	default declaration miss_kem.c	[miss_kem.c]missile_kem_init;	simnet/data/ms_km_cs.d
	-				[miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_fly	
[2] Item_coast_speed_coeff[2]	kem missile coast speed coefficient az	m/tick*3	5.6124330-3	REAL	default declaration miss_kem.c	[miss_kem.c]missile_kem_init;	simnet/data/ms_km_cs.d
	-				[miss_kem.c]missile_kem_init	[miss_ken.c]missile_ken_fly	
ham_coast_speed_coeff[3]	kem missile coast speed coefficient ag	m/tick*4	-1.6262608 e- 5	REAL	default declaration miss_kem.c	[miss_kem.c]missile_kem_init;	simnet/data/ms_km_cs.d
					[miss_kem.c]misstle_kem_init	[miss_kem.c]missile_kem_fly	
tram_coast_speed_coeff[4]	kem missile coast speed coefficient at	m/tick*5	1.89919826-8	REAL	default declaration miss kem.c	[miss_kem.c]missile_kem_init;	simnet/data/ms_km_cs.d
					[miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_fly	
kem_coast_speed_coeff[5]	kem missile coast speed coefficient as	m/tick*6	0.0	REAL	default declaration miss_kem.c	[miss_kem.c]missile_kem_init;	simnet/data/ms_km_cs.d
	•				[miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_fly	
kem_coast_speed_coeff[6]	kem missile coast speed coefficient as	m/tick*7.	0.0	REAL	default declaration miss_kem.c	[miss_kem.c]missile_kem_init;	simnet/data/ms_km_cs.d
	•				[miss_kem.c]missile_kem_init	[mise_kem.c]miseile_kem_fly	
ham_coast_speed_coeff[7]	kem missile coast speed coefficient a7	m/tick*8	0.0	REAL	default declaration miss_kem.c	[miss_kem.c]missile_kem_init;	simnet/data/ms_km_cs.d
					[miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_fly	
kem_coast_speed_coeff[8]	kem missile coast speed coefficient ag	m/tick**9	0'0	REAL	default declaration miss_kem.c	[miss_kem.c]missile_kem_init;	simnet/data/ms_km_cs.d
	•				[miss_kem.c]missile_kem_inlt	[miss_kem.c]missile_kem_fly	
kem_coast_speed_coeff[9]	kem missile coast speed coefficient as	m/tick*10	0.0	REAL	default declaration miss_kem.c	{miss_kem.c]missile_kem_init;	simnet/data/ms_km_cs.d
	-				[miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_fly	

ere tick is equal to are frame at 1/19th of a second REAL is a "C" meore OEFRE for type float. NOTE 2 NOTE 2

.

- 187 -

TABLE 5.1.46. - KEM MISSILE BURN TURN COEFFICIENT DATA ARRAY

NAME of DATA ELEMENT	DESCRIPTION	INUTE A	DECAIN 7				
		MEASURE	VALUE		CALCULATED	CSU WHERE USED	DATA SOURCE
hem_burn_turn_coeff[0]	kem missile cosine of maximum turn	coe(rad)/tick	0.999933	REAL	default declaration miss kem c	(miss kam chuisaila kam inir	
	during burn coefficient an				[miss kem.c]missile kem Init	Imiss kem.cimissile kem flv	
kem_burn_turn_coeff[1]	kem missile cosine of maximum turn	cos(rad)/tick+2	-62386917 e- 7	REAL	default declaration miss kem.c	lmiss ken clmissile ken init:	simnet/data/me km kt d
	during burn coefficient aj				[miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_fly	
kem_burn_tum_coeff[2]	kem missile cosine of maximum turn	cos(rad)/tick**3	1.6146426 0 7	REAL	default declaration miss_kem.c	[miss_kem.c]missile_kem_init	simnet/data/ms km bt.d
	during burn coefficient #2				[miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_fly	
kem_burn_turn_coeff(3)	kem missile cosine of maximum turn	cos(rad)/tick**4	-9.720142e-7	REAL	default declaration miss kem.c	lmiss kem.chmissile kem init:	simnet/data/ms km bt.d
	during burn coefficient as				[miss_kem.c]missile_ken_init	[miss_kem.c]missile_kem_fly	
kem_burn_turn_coeff[4]	kem missile cosine of maximum turn	cos(rad)/lick**5	0.0	REAL	default declaration miss kem.c	(miss kem.c)missile kem init:	simnet/data/ms km ht d
	during burn coefficient as				[miss_kem.c]missile_ken_init	[miss_kem.c]missile_kem_fly	
kem_burn_turn_coeff[5]	kem missile cosine of maximum turn	cos(rad)/tick**6	0.0	REAL	default declaration miss kem.c	(miss kem.c)missile kem init:	simnet/data/ms km bt d
	during burn coefficient as				[miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_fly	
kam_burn_turn_coeff[6]	kem missile cosine of maximum turn	cos(rad)/bicker7	0.0	REAL	default declaration miss kem.c	(miss kem.c)missile kem init:	simnet/data/ms km bt.d
	during burn coefficient as				[miss_kem.c]missile_ken_init	[miss_kem.c]missile_kem_fly	
ken_burn_turn_coeff[7]	kem missile cosine of maximum turn	cos(rad)/tick**8	0.0	REAL	default declaration miss kem.c	Imiss kem.c/missile kem init:	simnet/data/ms km bt d
	during burn coefficient =7				[miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_fly	
kem_burn_txm_coeff[8]	kem missile cosine of maximum turn	cos(rad)/tick**9	0.0	REAL	default declaration miss_kem.c	[miss_kem.c]missile_kem_init;	simnet/date/ms km bt.d
	during burn coefficient as				[miss_kem.c.missile_kem_init	[miss_kem.c]missile_kem_fly	
kem_burn_turn_coeff[9]	kem missile cosine of maximum turn	cos(rad)/tick*10	0.0	REAL	default declaration miss_kem.c	[miss_kem.c]missile_kem_init;	simnet/data/ms km bt.d
	during burn coefficient ap				[miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_fly	

WJTE 1 eve bick is equal to one frame or 1/15th of a second WJTE 2 REAL is a "C" macre DEHNE for type front.

- 188 -

TABLE 5.1.47. - KEM MISSILE COAST TURN COEFFICIENT DATA ARRAY

NAME of DATA ELEMENT	DESCRIPTION	UNITS of	DEFAULT	DATA	CSU WHERE SET OR 1	CSU WHERE USED	DATA SOURCE
		MEASURE [NOTE 1]	VALUE	TYPE (NOTE 2)	CALCULATED		
kem_coast_turn_coeff(0)	kem missile cosine of maximum turn	cos(rad)/tick	11165799.0	REAL	default declaration miss_kem.c	[miss_kem.c]missile_kem_init;	simnet/data/ms_km_ct.d
	during coast coefficient ap				[miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_fly	1
kem_coast_turn_coeff[1]	kem missile cosine of maximum turn	cos(rad)/lick**?	5.58179866-5	REAL	default declaration miss_kem.c	[miss_kem.c]missile_kem_init;	simnet/data/ms_km_ct.d
	during coast coefficient as			i	[miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_fly	
kem_coast_tum_coeff[2]	kem missile cosine of maximum turn	cos(rad)/tick*3	-5.1276276+7	REAL	default declaration miss_kem.c	[miss_kem.c]missile_kem_init;	simnet/data/ms_km_ct.d
	during coast coefficient a2				[miss_kem.c]missile_kem_init	[mise_ken.c]missile_ken_fly	1
kem_coast_tum_coeff[3]	kem missile cosine of maximum turn	cos(rad)/tick**4	2.23885934-9	REAL	default declaration miss_kem.c	[miss_kem.c]missile_kem_init;	simnet/data/ms_km_ct.d
	during coast coefficient a3				{miss_kem.c}missile_kem_init	[miss_kem.c]missile_kem_fly	
kam_coast_tum_coaff[4]	kem missile cosine of maximum turn	cos(rad)/tick**5	-5.1964622e-12	REAL	default declaration miss_kem.c	[miss_kem.c]missile_kem_init;	simnet/data/ms_km_ct.d
	during coast coefficient a4				{miss_kem.c}missile_kem_in{t	[miss_kem.c]missile_kem_fly	
kem_coast_tum_coeff[5]	kem missile cosine of maximum turn	cos(rad)/tick**6	4.5499104-15	REAL	default declaration miss_kem.c	[miss_kem.c]missile_kem_init;	simnet/data/ms_km_ct.d
	during coast coefficient as				[miss_kem.c]missile_kem_init	[miss_ken.c]missile_ken_fly	
kem_coast_tum_coeff[6]	kem missile cosine of maximum turn	cos(rad)/tick+7	0.0	REAL	default declaration miss_kem.c	[miss_kem.c]missile_kem_init;	simnet/data/ms_km_ct.d
•	during coast coefficient as				[miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_fly	
kem_coast_tum_coeff[7]	kem missile cosine of maximum turn	cos(rad)/tick**8	0.0	REAL	default declaration miss_kem.c	[miss_kem.c]missile_kem_init;	simnet/data/ms_km_ct.d
	during coast coefficient a7			-	[miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_fly	
kem_coast_turn_coeff[8]	kem missile cosine of maximum turn	cos(rad)/lick**9	0.0	REAL	default declaration miss_kem.c	[miss_kem.c]missile_kem_init;	simnet/data/ms_km_ct.d
	during coast coefficient as				[miss_kem.c]missile_kem_init	[miss_ken.c]missile_ken_fly	
kem_coast_tum_coeff[9]	kem missile cosine of maximum turn	cos(rad)/tick*10	0.0	REAL	default declaration miss_kem.c	[miss_kem.c]missile_kem_init;	sinnet/data/ms_km_ct.d
	during coast coefficient ag		:		(miss_kem.c)missile_kem_init	[miss_kem.c]missile_kem_fly	

NOTE 1 and Uck is equal to and frame ar 1/15th of a second NOTE 2 REAL is a "C" macro DEFNE for type float.

_ 189 -

TABLE 5.1.48. - NLOS MISSILE CHARACTERISTICS DATA ARRAY

NAME OF DATA FI FUENT	INSCRIPTION	INUTC AF	DECAIN T		10 110 110 110 V		
		MEASURE (NOTE 1)	VALUE	TYPE More 2)	CALCULATED	LOU WHERE USEU	DATA SOURCE
nloa_misa_char[0]	NLOS_LOCK_THRESHOLD;		0.953153895	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_finit	[miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d
nios_miss_char[1]	NLOS_MAX_TURN_ANGLE;	radians/ticks	0.03490659	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_init	[miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d
nlos_miss_char[2]	NLOS_VERTICAL_FLICHT_TIME;	ticks	48.0	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_init	[miss_nlos.c]missile_nlos_init	simnet/data/ms_nl_ch.d
nlos_miss_char[3]	NLOS_DECUNE_FLIGHT_TIME;	Hcke	105.0	REAL	default declaration miss_ nlos.c; [miss_nlos.c]missile_nlos_init	[miss_n1-s.c]missile_nlos_int; [miss_nlos.c]missile_nlos_ detectibility	simnet/data/ms_nl_ch.d
nios_miss_char[4]	NLOS_LEVEL_FLICHT_TIME;	ticks	140.0	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_fnit	[miss_nlos.c]missile_nlos_ detectibility	simnet/data/ms_nl_ch.d
nics_miss_char[5]	NLOS_ARM_TIME: nlos missile arm time delay before firing in ticks (1.3 seconds)	ticks	20.0	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_fnit	{miss_nlos.c}missile_nlos_fly	simnet/data/ms_nl_ch.d
nios_miss_char[6]	NLOS_BURNOUT_TIME: time of powered flight for nlos missile in ticks [1.5 seconds]	ticks	22.5	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_init	[miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d
nios_miss_char[7]	NLOS_MAX_FLIGHT_TIME: maximum flight thme for the nlos missile assumed in ticks [120.0 seconds]	ticks	0.0008	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_init	Imiss_nics.c}missile_nics_fly	simnet/data/ms_nl_ch.d
nios_miss_char(8)	SPEED_0;		11-3333339	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_init	[miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d
ntos_mtes_char(9)	SPEED_1;		5.331313133	REAL	default declaration miss_nlos.c; [mlss_nlos.c]missile_nlos_inft	[miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d
nice_miss_char[10]	THETA_0;		0.013962634	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_init	[miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d
nlos_miss_char[11]	SIN_UNCUIDE; sine of level flight [4.0 degrees pitch] for an unguided nios missile		0.069756474	REAL	default declaration miss_nlos.c; {miss_nlos.c]missile_nlos_init	{miss_nlos.c}missile_nlos_fly	simnet/data/ms_nl_ch.d
nkos_miss_char[12]	COS_UNCUIDE; cosine of level flight [4.0 degrees plich] for an unguided nos missile		0.947564050	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_init	(miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d
nlos_miss_char[13]	SIN_CLIMB; sine of the delta pitch angle [3.5 degrees) for a climbing nlos missile		0.004072424	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_Init	[miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d
nlos_miss_char(14)	COS_CLIMB; cosine of the delta pitch angle [3.5 degrees] for a climbing nos missile		80/166666.0	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_init	[miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d
nics_char[15]	SIN_LOCK; sine of the lock cone angle [9.0 degrees] for a locked-on nios missile		0.156434465	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_init	[miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d
nlos_miss_char(16)	COS_LOCK; cosine of the lock cone angle [9.0 degrees] for a locked-on nlos missile		14688341	REAL	default declaration miss_ntos.c; [miss_ntos.c]missile_ntos_init	[miss_nlos.c]missile_nlos_f]y	simnet/data/ms_nl_ch.d
nics_char[17]	COS_TERM; cosine of the terminal angle [0.0 degrees] for a locked-on n/os missile		0.984807753	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_Init	[miss_nlos.c]missile_nlos_f]y	simnet/data/ms_nl_ch.d
nics_char[18]	COS_LOSE; cosine of the angle [20.0 degrees] for a loss-of-lock-on nios missile		0.939692621	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_Init	[miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d
nice_miss_char[19]	NOT USED		0.0	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_frút	[miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d

NOTE 1 are bick is equal to are frame at 1/15th of a second NOTE 2 REAL is a "C" mains DEFNE for type Acet.

TABLE 5.1.49. - NLOS MISSILE POLYNOMIAL DEGREE DATA ARRAY

MAME AL DATA FLENTING							
	DESCRIPTION	UNITS of MEASURE	DEFAULT VALUE	DATA TYPE INDIE 11	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
nios_miss_poly_deg[0]	NLOS_BURN_SPEED_DEG; polynomial degree for nos missile burn speed coefficient		default: 1 range: 0 to 9	int	default declaration miss_nlos.c; fmiss_nlos.c;	(míss_nlos.c]míssife_nlos_ 11.	simnet/data/ms_nl_bs.d
	data array		6		_ eour_ancenne_noor_	inu; [miss_nlos.c]missile_nlos_	
						urre; [miss_nlos.c]missile_nlos_fly	
[1] dep_poly_deg[1]	NLUS_CUAST_SPEED_DEG; polynomial degree for nlos missile coast speed coefficient		default: 3 range: 0 to 9	int	default declaration miss_nlos.c; Inter after climicate after	[miss_rlos.c]missile_nlos	simnet/data/ms_nl_cs.d
	data array					inu; [miss_nlos.c]missile_nlos_f]y	
Nos_miss_poly_deg[2]			0	int	default declaration miss_nlos.c		
nios_miss_poly_deg[3]			0	j.	default declaration miss nlos.c		
nies_miss_poly_dag[4]			0	Ĕ	default declaration miss nlos.c		

NOTE 1 Miles Th type for Integer.

TABLE 5.1.50. - NLOS MISSILE BURN SPEED COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of	DEFAIRT	DATA		COI WHERE HEED	DATA COUNCE
		MEASURE [NOTE 1]	VALUE	TYPE [NOTE 2]	CALCULATED		
nics_burn_speed_coeff(0]	nlos missik burn speed coefficient ag: default is 67.0 m/sec	m/tick	0.03333333	REAL	default declaration miss_nlos.c [miss_nlos.c]missile_nlos_Jnit	lmiss_nlos.c)missile_nlos_init; {miss_nlos.c)missile_nlos_fire; [miss_nlos.c)missile_nlos_fiy	simnet/data/ms_nl_bs.d
nlos_burn_speed_coeff[1]	nlos missile burn speed coefficient aj; default is 274.9732662 m/sec ^{ae} 2	m/tick**2	<i>uuu</i> s e 1	REAL	default declaration miss_nlos.c [miss_nlos.c]missile_nlos_init	[miss_nlos.cjmissile_nlos_fult; [miss_nlos.cjmissile_nlos_fire; [miss_nlos.cjmissile_nlos_fly	simnet/data/ms_nl_bs.d
nks_burn_speed_coeff[2]	nlos missile burn speed coefficient az	m/tick**3	0.0	REAL	default declaration miss_nlos.c [miss_nlos.c]missile_nlos_init	[miss_nlos.c]missile_nlos_init; [miss_nlos.c]missile_nlos_fire; [miss_nlos.c]missile_nlos_fly	simnet/data/ms_n!_bs.d
nka_bum_speed_coeff[3]	nlos missile burn speed coefficient ag	m/tick ⁴⁴	0.0	REAL	default declaration miss_nlos.c [miss_nlos.c]missile_nlos_init	lmise nlos clmissile_nkos_init; lmise_nlos clmissile_nkos_fire; lmise_nlos clmissile_nlos_fly	simnet/data/ms_n!_bs.d
nics_burn_speed_coeff[4]	nlos missile burn speed coefficient ag	m/tick*5	0.0	REAL	default declaration miss_nlos.c [miss_nlos.c]missile_nlos_init	[miss_nlos.c]missile_nlos_init; [miss_nlos.c]missile_nlos_fire; [miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_bs.d

NOTE 1 and both is equal to and frame or 1/15th of a second MOTE 2 REAL is a "C" mecro DEFINE for type front.

- 191 -

TABLE 5.1.51. - NLOS MISSILE COAST SPEED COEFFICIENT DATA ARRAY

MAME of DATA SI SUBAR	NECONTRACT						
		UNITS OF MEASURE	DEFAULT	DATA TYPE	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
Nos_coast_speed_coeff[0]	nlos missile coast speed coefficient ao; default is 327 2654074 m/acc	m/tick	30.46972849	REAL	default declaration miss_nlos.c	[miss_nlos.c]missile_nlos_init;	simnet/data/ms_nl_cs.d
Nos_coast_speed_coeff[1]	nlos missile coast speed coefficient a1; default is -21.4600544 m/sectro?	m/tick=2	-9.7721160e-2	REAL	default declaration mise_nlos.c	(miss_nlos.c)missile_nlos_init; f	simnet/data/ms_nl_cs.d
nics_coast_speed_coeff[2]	nios missile coast speed coefficient a2; default is 0.8222660 m/sec*3	m/tick**3	1.2433925 4 -4	REAL	default declaration miss_nlos.c fimiss nlos.c/missile nlos.c	(mus_nice.chmsne_ncs_ity [mis_nice.chmissile_ncs_init; [mis_ncs_chmissile_ncs_init;	simnet/data/ms_nl_cs.d
Nos_coast_speed_coaff[3]	nlos missile coast speed coefficient a3; default is -0.0133200 m/sec**4	m/tick**4	-5.4061501e-8	REAL	default declaration miss nios.c fmiss nios.chinissile nios init	[miss_nlos.c]missile_nlos_init; [miss_nlos.c]missile_nlos_init;	simnet/data/ms_nl_cs.d
nice_coast_speed_coaff[4]	nlos missile coast speed coefficient a4	m/tick**5	0.0	REAL	default declaration miss_nlos.c [miss_nlos.c]missile_nlos_init	[miss_nlos.c]missile_nlos_init; [miss_nlos.c]missile_nlos_f]v	simnet/data/ms_nl_cs.d

NOTE 1 one bick is equal to one frame or 1/15th of a second NOTE 2 REAL is a "C" more DEFRE for type Reat.

TABLE 5.1.52 - HYDRA ROCKET CONFIGURATION DATA ARRAY

.

NAME OF DATA ELEMENT	DESCRETION	UNITS of	DEFAULT	DATA	CSU WHERE SET OR	CSU WHERE USED	DATA SOURCE
		MEASURE (MOTE 1)	VALUE	ITPE NOTE 2)	CALCULATED		
hydra_rtt_char[0]	hydra launcher postilon, X	£	51	REAL	default declaration rwa_hydra.c; frwa_hydra.c]hydra_init	(rwa_hydra.c)hydra_init;	/simnet/data/rwa_hydr.d
hydra_ftt_char[1]	hydra launcher positon. Y	E	5.0	REAL	default declaration rwa_hydra.c; [rwa_hydra.c]hydra_init	[rwa_hydra.c]hydra_init;	/simnet/data/rwa_hydr.d
hydra_ftc_char[2]	hydra launcher postion, Z	E	-2.0	REAL	default declaration rwa_hydra.c; [rwa_hydra.c]hydra_tnit	[rwa_hydra.c]hydra_init	/simnet/data/rwa_hydr.d
hydra_ftt_char[3]	mils of Soviet articulation	nihs	104.0	REAL	default declaration rwa_hydra.c; frwa_hydra.c]hydra_init	[rwa_hydra.c]hydra_init	/simnet/data/rwa_hydr.d
hydra_frc_char[4]	degrees of hull negative pitch	deg	-5.0	REAL	default declaration rwa_hydra.c; [rwa_hydra.c]hydra_init	[rwa_hydra.c]hydra_init; [rwa_hydra.c]hydra_set_pylon_ articulation	/simnet/data/rwa_hydr.d
hydra_ftc.char[5]	degrees of maximum articulation	deg	0.61	REAL	default declaration rwa_hydra.c; [rwa_hydra.c]hydra_init	[rwa_hydra.c]hydra_init	/simnet/data/rwa_hydr.d
hydra_ftt_char[6]	degrees of minumum articulation	deg	-15.0	REAL	default declaration rwa_hydra.c; Irwa_hydra.c)hydra_init	[rwa_hydra.c]hydra_init	/simnet/data/rwa_hydr.d

ane bick is equal to ane frame or 1/1 Sth of a second RCAL is a "C" macro DEPRE for type float. NOTE 1 NOTE 2

TABLE 5.1.53 - HYDRA ROCKET CHARACTERISTICS DATA ARRAY

More chard (a) Mile Mile Mile Mile Mile Mile More chard (a) Mile Mile Mile Mile Mile Mile Mile Mile	E OF DATA ELEMENT	DESCRIPTION	UNITS of	DEFAULT	DATA	CSU WHERE SET OR	CSU WHERE USED	DATA SOURCE	_
Active (0) MMSI: JUEST SPREAD: Iven bursts which are in the first of a data (data fraine). Jyrida climate, Jarida Jiruka, Jiruka climate, Jyrida			MEASURE (NOTE 1)	VALUE	TYPE MOTE 2]	CALCULATED			_
3 meters spart 3 meters spart 7chef (1) 100(a. BURST_HEIGHT; release submundtons m 54.84 EEAL (ht. hydra c. mitchistion, hydra, hydra, hitti, hydra, climistio, hydr	re_char[0]	M151_BURST_SPREAD; twin bursts which are	6	1.5	REAL	default declaration rkt_ydra.c;	(rkt_hydra.c)missile_hydra_init;	/simnet/dat~/rkt hvdr.d	-
matched MEAL REAL default defauetion it k hydra. (Inside, hydra, Init) / simmer/Alax/At/ / simmer/Alax/At	_	3 meters apart				lrkt_hydra.c]missile_hydra_init	[rkt_hydra.c]missile_hydra_set_ nvlon_articulation		_
R261.	ra_char[1]	M261_BURST_HEIGHT; release submunitions	E	54.864	REAL	default declaration rkt hvdra.c:	Irkt hydra cimissile hydra init:	/simnet/data/rkt hvdr d	-
Action Description Inter John Adding declaration ret. John Inter John Admont/dan./rki. rachar(3) MO61_BUIST_RANGE; 0 meters in front of meters in front of larger. m 6.0 REAL default declaration ret. John /rki. John /simmer/dan./rki. rachar(3) MO61_BUIST_RANGE; release data 150 m 150.0 REAL default declaration ret. John /rki. John /simmer/dan./rki. rachar(3) MO61_BUIST_RANGE; release data 150 m 150.0 REAL (rki. hydra.climistle. hydra.cl		180 feet				frkt_hydra.c]missile_hydra_init	[rkt_hydra.c]missile_hydra_fire		_
Automatical Notice Insiste bydra_init Notice Insiste bydra_init Notice Insiste bydra_init Notice Insiste bydra_init ra_chwe(3) Notice Insiste bydra_init Notice Insiste bydra_init Notice Insiste bydra_init Notice Insiste bydra_init ra_chwe(3) Notice Insiste bydra_init Notice Insiste bydra_init Notice Insiste bydra_init Notice Insiste bydra_init ra_chwe(3) Notice Insiste bydra_init Notice Insiste bydra_init Notice Insiste bydra_init Notice Insiste bydra_init ra_chwe(3) Notice Insiste bydra_init ra_chwe(3) Notice Insiste bydra_init Notice Insiste	ra_char[2]	M261_BURST_RANGE; 0 meters in front of	E	0.0	REAL	default declaration rkt_hydra.c;	[rkt_hydra.c]missile_hydra_init	/simnet/data/rkt_hydr.d	-
Actual (3) Mode (3) UNST SPREAD: twin bursts are (3) m 6.0 REAL default declaration (4) bydra.c [missle. bydra. [mis		target				[rkt_hydra.c]missile_hydra_init			-
Image (a) M255 BUIST RANCE: release dara 150 m 150.0 REAL default declaration rit. hydra. (missle. hydra. jmit / simmer/data/rk1. Int_chwel(3) M255 BUIST READ: meets meets meets meets // simmer/data/rk1. Int_chwel(3) M255 BUIST READ: meets meets meets // simmer/data/rk1. Int_chwel(3) RECH_60 M255 BUIST READ: meets // simmer/data/rk1. Int_chwel(3) RECH_60 M255 BUIST READ: meets // simmer/data/rk1. Int_chwel(4) RECH_60 M255 BUIST READ: // simmer/data/rk1. Int_chwel(6) RECH_60 M255 BUIST READ: // simmer/data/rk1. Int_chwel(6) RECH_60 M256 me 750.0 REAL default declaration rk1. Int_chwel(1) Mydra maximum range for M151 m 750.0 REAL default declaration rk1. Int_chwel(1) Mydra maximum range for M151 m 500.0 REAL default declaration rk1. Int_chwel(1) Mydra climistic. Mydra. Irk1. // simmer/data/rk1. // simmer/data/rk1. Int_chwel(1) Mydra maximum range for M151 m // simmer/data/rk1. Int_chwel(2)	ira_char[3]	M261_BURST_SPREAD; twin bursts are 13 meters apart	E	6.0	REAL	default declaration rkt_hydra.c; frkt hydra.clmiseile hydra init	[rkt_hydra.c]missile_hydra_init	/simnet/data/rkt_hydr.d	_
Image: Including and any product of any product of any product of the pro	ira_char[4]	M255_BURST_RANGE; release darts 150	E	150.0	REAL	default declaration rkt_hydra.c;	[rkt_hydra.c]missile_hydra_init	/simnet/data/rkt_hydr.d	-
dra_char(1) Metros Metro		meters in front of target				[rkt_hydra.c]missile_hydra_init			_
meters spart. meters spart. fick hydra.climissile.hydra.init ///// ///////////////////////////////	dra_char(5)	M255_BURST_SPREAD; twin bursts are 36	E	16.0	REAL	default declaration rkt_hydra.c;	[rkt_hydra.c]missile_hydra_init	/simnet/data/rkt_hydr.d	
dra_char(1) RECH_60_MAX_RANGE: dars fly a total of m 750.0 REAL default declaration rtt. hydra.climistie. hydra. lint: //immer/daa/rtt. dra_char(7) 750 meters m 50.0 REAL default declaration rtt. hydra.climistie. hydra. lint: //immer/daa/rtt. dra_char(7) hydra minimum range m 50.0 REAL default declaration rtt. hydra.climistie. hyd		meters apart				[rkt_hydra.c]missile_hydra_init			_
dra_char(1) hydra minimum range m 500 REAL default declaration rk_1/bydra.ci frk_1/bydra.cimissile_hydra_miti; /sinmet/data/rk_1 dra_char(1) hydra maximum range for Soviet 5-5 57mm m 500.0 REAL default declaration rk_1/bydra.ci frk_1/bydra.ci frk_1/bydra.ci frk_1/bydra_miti; /sinmet/data/rk_1 dra_char(1) hydra maximum range for Soviet 5-5 57mm m 500.0 REAL default declaration rk_1/bydra.ci frk_1/bydra.ci frk_1/bydra.ci /sinmet/data/rk_1 dra_char(1) hydra maximum range for M151 m 7000.0 REAL default declaration rk_1/bydra.ci frk_1/bydra.ci /sinmet/data/rk_1 dra_char(10) hydra maximum range for M151 m 7000.0 REAL default declaration rk_1/bydra.ci frk_1/bydra.cimissite_hydra.ci /sinmet/data/rk_1 dra_char(10) hydra maximum range for M261 m 7000.0 REAL default declaration rk_1/bydra.ci frk_1/bydra.ci /sinmet/data/rk_1 dra_char(10) hydra maximum range for M263 m 7000.0 REAL default declaration rk_1/bydra.ci frk_1/bydra.ci /sinmet/data/rk_1 dra_char(10) hydra maximum range for M263 m 7000.0 REAL default declaration rk_1/bydra.ci /rk_1/bydra.cimissite.jydra_	dra_char(6)	FLECH_60_MAX_RANGE; darts fly a total of 750 meters	E	250.0	REAL	default declaration rkt_hydra.c; Irkt kudra clmissile hudra init	Irkt_hydra.clmissile_hydra_init	/simnet/data/rkt_hydr.d	
dra_char[by dra_inissite_hydra_cimissite_hydra_	dra char[7]	hvdra minimin ranse	E	50.0	PEAT	default declaration vir hudra c	Iste kudra chmiaeila kudea init	/cimner/deve/sto and d	-
Inter-char[8] hydra maximum range for Soviet S-5 S7mm m 50000 REAL default declaration rk1, hydra.c1 missile, hydra.c1 mistro.c1 mistro.c1 missile, hydra.c1 mistro.c1 missile,		-0	1			the bude of mining and the	factor burder electronic burder and	num fur wer im an in summer i	
Image for Soviet S-5 Symm m 500.0 REAL default declaration rkt_hydra [rkt_hydra.c]missile_hydra_linit /simmet/data/rkt_hydra Image for W151 m 7000.0 REAL default declaration rkt_hydra [rkt_hydra.c]missile_hydra_linit /simmet/data/rkt_hydra Image for W151 m 7000.0 REAL default declaration rkt_hydra.c] [rkt_hydra.c]missile_hydra_linit /simmet/data/rkt_hydra.c] Image for W151 m 7000.0 REAL default declaration rkt_hydra.c] [rkt_hydra.c]missile_hydra_linit /simmet/data/rkt_hydra.c] Image for W151 m 7000.0 REAL default declaration rkt_hydra.c] [rkt_hydra.c]missile_hydra_linit /simmet/data/rkt_hydra.c] Image for W1261 maximum range for W1261 m 7000.0 REAL default declaration rkt_hydra.c] [rkt_hydra.c]missile_hydra_linit [rkt_hydra.c]missile_hydra_linit /rkt_hydra.c] Image for W1261 maximum range for W1261 m 7000.0 REAL default declaration rkt_hydra.c] [rkt_hydra.c]missile_hydra_linit [rkt_hydra.c]missile_hydra_linit [rkt_hydra.c]missile_hydra_linit [rkt_hydra.c]missile_hydra_linit [rkt_hydra.c]missile_hydra_linit [rkt_hydra.c]missile_hydra_linit						וואנ_חאַטוב_האָטוב_וואַטוב	trac_nyura.comssue_nyura_ser_ pylon_articulation		
Instruction Introduct Int	fra_char[8]	hydra maximum range for Soviet S-5 57mm	E	5000.0	REAL	default declaration rkt_hydra.c;	[rkt_hydra.c]missile_hydra_init;	/simnet/data/rkt_hydr.d	-
Grant Andra Instrict Int. hydra maximum range for MI51 m 7000.0 REAL default declaration rkt_hydra.c; Int. hydra.c hydra.line: hydra.line		Tocket				[rkt_hydra.c]missile_hydra_init			_
ra_char[10] hydra maximum range for M261 m 7000.0 REAL default declaration rkt_hydra_cr frkt_hydra.clmissile_hydra_set_pint pylon articulation ra_char[11] hydra maximum range for M255 m 3200.0 REAL default declaration rkt_hydra.c; frkt_hydra.clmissile_hydra_set_pint; /simnet/data/rkt_pint; ra_char[11] hydra maximum range for M255 m 3200.0 REAL default declaration rkt_hydra.c; frkt_hydra.clmissile_hydra_int; /simnet/data/rkt_pint; ra_char[11] hydra maximum range for M255 m 3200.0 REAL default declaration rkt_hydra.c; frkt_hydra.clmissile_hydra_int; /simnet/data/rkt_hola/rkt_hola.c/data/rkt_hola.c/data/rkt_hola.c/missile_hydra_int; pylon_articulation	Ira_char[9]	hydra maximum range for M151	E	0'0002	REAL	default declaration rkt_hydra.c;	[rkt_hydra.c]missile_hydra_init;	/simnet/data/rkt_hydr.d	
ra_char(10) hydra maximum range for M261 m 7000.0 REAL default declaration rk_hydra_c; frk_hydra_cmissile_hydra_init; /simnet/data/rkt_ ra_char(10) hydra maximum range for M261 m 7000.0 REAL default declaration rk_hydra_c; frk_hydra_cmissile_hydra_init; /simnet/data/rkt_ ra_char(11) hydra maximum range for M255 m 3200.0 REAL default declaration rk_hydra_c; frk_hydra_cmissile_hydra_init; /simnet/data/rkt_ ra_char(11) hydra maximum range for M255 m 3200.0 REAL default declaration rk_hydra_c; frk_hydra_cmissile_hydra_init; /simnet/data/rkt_	_					[rkt_hydra.c]missile_hydra_init	[rkt_hydra.c]mlasile_hydra_fire;		
ra_char(10) hydra maximum range for M261 m 7000.0 REAL default declaration rkt_hydra.c; inkt_hydra.cimissile_hydra.init; /simnet/data/rkt_ ra_char(10) hydra maximum range for M261 m 7000.0 REAL default declaration rkt_hydra.c; inkt_hydra.cimissile_hydra.init; /simnet/data/rkt_ ra_char(11) hydra maximum range for M255 m 3200.0 REAL default declaration rkt_hydra.c; irkt_hydra.cimissile_hydra_art_ ra_char(11) hydra maximum range for M255 m 3200.0 REAL default declaration rkt_hydra.c; irkt_hydra.cimissile_hydra_init; /simnet/data/rkt_	_				-		[rkt_hydra.c]missile_hydra_set_		
Image for M261 m 7000.0 REAL default declaration rkt_hydra.c; [rkt_hydra.c]missile_hydra_ine; Image for M261 m 7000.0 REAL default declaration rkt_hydra.c; [rkt_hydra.c]missile_hydra_ine; Image for M255 m 3200.0 REAL default declaration rkt_hydra.c; [rkt_hydra.c]missile_hydra_ine; Image for M255 m 3200.0 REAL default declaration rkt_hydra.c; [rkt_hydra.c]missile_hydra_ine; Image for M255 m 3200.0 REAL default declaration rkt_hydra.c; [rkt_hydra.c]missile_hydra_ine; Image for M255 m 3200.0 REAL default declaration rkt_hydra.c; [rkt_hydra.c]missile_hydra_ine; Image for M255 m 3200.0 REAL default declaration rkt_hydra.c; [rkt_hydra.c]missile_hydra_ine;	1						pylon_articulation		_
ra_char[11] hydra maximum range for M255 m 3200.0 REAL default declaration rkt.hydra.ci irkt.hydra.cimissile.hydra.init: /simnet/data/rkt. ra_char[11] hydra maximum range for M255 m 3200.0 REAL default declaration rkt.hydra.ci irkt.hydra.cimissile.hydra.init: /simnet/data/rkt.	ra_char[10]	hydra maximum range for M261	E	0:0004	REAL	default declaration rkt_hydra.c;	[rkt_hydra.c]missile_hydra_init;	/simnet/data/rkt_hydr.d	_
ra_char[11] hydra maximum range for M255 m 3200.0 REAL default declaration rkt hydra.c; lrkt hydra.c;missile_hydra_init; /simnet/data/rkt_lata/rkt_			-			[rkt_hydra.c]missile_hydra_Inlt	[rkt_hydra.c]missile_hydra_fire;		
ra_char[11] hydra maximum range for M255 m 3200.0 REAL default declaration rkt_hydra.c; [rkt_hydra.cimissile_hydra_init; /simnet/data/rkt_ [rkt_hydra.cimissile_hydra_init; /simnet/data/rkt_ [rkt_hydra.cimissile_hydra_init; hydra.cimissile_hydra_init; hydra.cimissile_hydra_ert_ povion_articulation							[rkt_hydra.c]missile_hydra_set_		
ra_char[11] hydra maximum range for M255 m 3200.0 REAL default declaration rkt_hydra.cjmissile_hydra_init; / /simnet/data/rkt_h [rkt_hydra.cjmissile_hydra_fire; /simnet/data/rkt_hydra.cjmissile_hydra_cjmissile_hydra_fire; /simnet/data/rkt_h ovion articulation							pylon_articulation		
[rkt_hydra.c]missile_hydra_init [rkt_hydra.c]missile_hydra_init [rkt_hydra_c]missile_hydra_set_ [rkt_hydra_set_]	ha_char[11]	hydra maximum range for M255	E	3200.0	REAL	default declaration rkt_hydra.c;	[rkt_hydra.c]missile_hydra_init;	/simnet/data/rkt_hydr.d	_
Inkt_hydra.cjmisseie_hydra_set_						[rkt_hydra.c]missile_hydra_init	[rkt_hydra.c]missile_hydra_fire;		
			_				[rkt_hydra.c]missile_hydra_set_ ovion_articulation		_

NOTE 1 and this equal to are frame or 1/15th of a second NOTE 2 REAL is a "C" macro DEFNE for type front.

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of	DEFAULT	DATA	CSU WHERE SET OR	CSU WHERE USED	DATA SOUNCE
		MEASURE [NOTE 1]	VALUE	TYPE	CALCULATED		
sub_M73_charf 01	75% of gravity - (75% * (9.8m/sec**2)/225	m/seg/ticker	0.03266667	REAL	default declaration sub_m73 c;	[sub_m73.c]missile_m73_init;	/simnet/data/sub_m73.d
	Hicks*2)				[sub_m73.c]missile_m73_init	[sub_m73.c]missile_m73_drop	
wh M73 charl 11	bobmlettes fall with +/- 8.8 degrees	deg	15.6	REAL	default declaration sub_m73.c;	[sub_m73.c]missile_m73_init;	/simnet/data/sub_m73.d
	angular displacement	-			[sub_m73.c]missile_m73_init	[sub_m73.c]missile_m73_get_impact	
auh M73 charl 21	bobmlettes fall with +/- 12.35 degrees	deg	22.7	REAL	default declaration sub_m73.c;	[sub_m73.c]missile_m73_init;	/simnet/data/sub_m73.d
	angular displacement				[sub_m73.c]missile_m73_init	[sub_m73.c]missile_m73_get_impact	

TABLE 5.1.54. - SUBMUNITIONS M73 CHARACTERISTICS DATA ARRAY

ene tick is equal to one frame ar 1/1 Sth of a second REAL is a "C" meare DEARE for type float.

NOTE 1 NOTE 2

- 194 -

TABLE 5.1.55. - SUBMUNITIONS FLECHETTE CHARACTERISTICS DATA

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE	DEFAULT	DATA TYPE INT	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
aub_flech_char[0]	maximum speed < 100	m-2	10000.0	REAL	default declaration sub_flech.c; [sub_flech.c]missile_flechette_init	[sub_flech c]missile_flechette_init; [sub_flech.c]missile_flechette_fly	/simnet/data/sub_flec.d
sub_fiech_char[1]	flechettes fly in a cylinder with a radius of 17.5 meters and a length of 750 meters	m*2	306.253	REAL	default declaration sub_flech.c; [sub_flech.c]missile_flechette_init	[sub_flech.c]missile_flechette_init; [sub_flech.c]missile_flechette_fly	/simnet/data/sub_flec.d
eub_flech_char[2]	FLECH_60_MAX_RANGE; darts fly a total of 750 meters	E	750.0	REAL	default declaration sub_flech.c; [sub_flech.c]missile_flechette_init	[sub_flech.clmissile_flechette_init; [sub_flech.clmissile_flechette_fly	/simnet/data/sub_flec.d

In las 17 type for integer. NOTE 1

TABLE 5.1.56. - FLECHETTE SPEED DATA ARRAY

	NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE	DEFAULT VALUE	DATA DATA TYPE	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
-	flechette_speed_coef[0]	flechette speed coefficient an	m/tick	41.75	REAL	default declaration sub_flech.c [sub_flech.c]missile_flechette_Init	[sub_flech.c]missile_flechette_init; [sub_flech.c]missile_flechette_fly	/simnet/data/flec_spd.d
	flachatta_speed_coaf[1]	flechette speed coefficient as	m/tick/m	-0.20397254	REAL	default declaration sub_flech.c Isub_flech.cimissile_flechette_init	[sub_flech.c]missile_flechette_init; [sub_flech.c]missile_flech.tte_fly	/simnet/data/flec_spd.d
- 1	fischetts_speed_coef[2]	Rechette speed coefficient a2	m/tick/m*2	0.00022774278	REAL	default declaration sub_flech.c [sub_flech.c]missile_flechette_init	[sub_flech.c]missile_flechette_init; [sub_flech.c]missile_flechette_fly	/simnet/data/flec_spd.d
95 ·	flachetta_speed_coef[3]	flechette speed coefficient a3	m/tick/m°3	-0.0000006633	REAL	default declaration sub_flech.c [sub_flech.c]missile_flechette_init	[sub_flech.c]missile_flechette_init; [sub_flech.c]missile_flechette_fly	/simnet/data/flec_spd.d
_	fiechette_speed_coef[4]	flechette speed coefficient a4	m/tick/m**4	0.0	REAL	default declaration sub_flech.c [sub_flech.c]missile_flechette_init	[sub_flech.clmissile_flechette_init; [sub_flech.clmissile_flechette_fly	/simnet/data/flec_spd.d
-								

ave bick is equal to ana frame or 1/15kh of a second REAL a a "C" meano DiSARE for type float. NOTE 1 NOTE 2

5.2. Data elements of the CSCI's external interfaces.

Existing data elements of the CSCI's external interfaces were not modified nor were any new external interfaces to the CSCI added.

6. CSCI data files.

Existing CSCI shared data files were not modified nor were any shared data files added.

7. Requirements traceability.

Traceability of the requirements allocated down to the CSU level of each CSC back to the requirements of the SYSTEM SPECIFICATION FOR THE ROTARY WING AIRCRAFT AIRNET AEROMODEL AND WEAPONS MODEL CONVERSION are shown in TABLE 7.1 - AIRNET AEROMODEL AND WEAPONS MODEL CONVERSION REQUIREMENTS TRACEABILITY.

Requirement ID	SDD Traceability Reference	Title	Description
3.2.1.3.1.	4.1	Flight Model Initialization State.	The Flight Model Segment Initialization State shall be entered during the System Initialization process after system bootup. System state and status variables uniquely identify the RWA AirNet configuration and state.
3.2.1.3.1.1	4.1.3	Flight Controls Initialization.	Initialization of the Flight Controls Model Sub-Segment configuration shall be done during this state upon command from the system.
3.2.1.3.1.1.1	4.1.3.2 •	Flight Controls Data.	Parameters to be set shall include maximum pitch, roll and yaw rates, turning radius, flight controls input sensitivity and profile, physical constants, conversion factors, integration constants, gains, and limits.
3.2.1.3.1.1.1.1	4.1.3.2	Flight Controls Data File.	Data values shall be read from a flight controls model initialization file.
3.2.1.3.1.1.1.2	4.1.3.2	Flight Controls Data Format.	The format of the data file shall allow modification of the data using a text editor.
3.2.1.3.1.2	4.1.2	Flight Dynamics Initialization.	Initialization of the Flight Dynamics Model Sub-Segment configuration shall be done during this state upon command from the system. During this mode, configuration flags and variables are set which point to specific submodules and data files for execution and loading.

Requirement	SDD	Title	Description
ID	Traceability		•
	Reference		
3.2.1.3.1.2.1	4.1.2.2	Flight Dynamics	Initialization shall include
		Data.	downloading of coefficient tables for the
			main rotor, fuselage, and stabilizers.
3.2.1.3.1.2.1.1	4.1.2.2	Flight Dynamics	These values shall be read from a flight
		Data File.	dynamics model initialization file.
3.2.1.3.1.2.1.2	4.1.2.2	Flight Dynamics	The format of the data file shall allow
		Data Format.	modification of the data using a text
			editor.
3.2.1.3.1.3	4.1.1	Engine	Initialization of the Engine Model Sub-
		Initialization.	Segment configuration shall be done
			during this state upon command from the
			system.
3.2.1.3.1.3.1	4.1.1	Engine	Initialization shall include
ł		Initialization.	downloading of data tables for the gas
			and power turbines, fuel consumption,
			power output, and acceleration
			coefficients.
3.2.1.3.1.3	4.1.1.2	Engine Data.	These values shall be read from an
			engine model initialization file.
3.2.1.3.1.3	4.1.1.2	Engine Data	The format of the data file shall allow
		Format.	modification of the data using a text
			editor.
3.2.1.3.2	3.2.1	Flight Model Run-	In this mode the Flight model Segment
	(Functionality	Time State.	shall be in stand-by awaiting RWA
	unchanged)		AirNet Flight model activity.
3.2.1.3.2.1	3.2.1	Flight Model Idle	During the Flight Model Idle mode, the
	(Functionality	Mode.	execution of the flight model functions
	unchanged)		shall be suspended.
3.2.1.3.2.1.1	3.2.1	Flight Model Idle	Integration computations shall be put in
	(Functionality	Mode Integration.	a stable state.
	unchanged)		
3.2.1.3.2.1.2	3.2.1	Flight Model Idle	Execution shall be started or resumed
	(Functionality	Mode Change.	from this mode.
	unchanged)		
3.2.1.3.2.1.3	3.2.1	Flight Model Idle	This mode shall be controlled by the
	(Functionality	Mode Control.	system executive.
	unchanged)		
3.2.1.3.2.1.4	3.2.1	Flight Model Idle	The modifications shall have no adverse
	(Functionality	Mode Functionality.	affects upon the Flight Model Idle mode
	unchanged)		functionality.
3.2.1.3.2.2	3.2.1	Flight Model	During the Flight Model Execution mode,
	(Functionality	Execute Mode.	the flight model shall be executed in
	unchanged)		real-time.

Requirement	SDD	Title	Description
ID ID	Traceability		-
	Reference		
3.2.1.3.2.2.1	3.2.1	Flight Model	Execution shall be stopped from this
	(Functionality	Execute Mode	mode.
	unchanged)	Execution.	
3.2.1.3.2.2.2	3.2.1	Flight Model	The rate of execution shall be controlled
	(Functionality	Execute Mode	by the system executive.
	unchanged)	Execution Rate.	
3.2.1.3.2.2.3	3.2.1	Flight Model	The source of coefficient data shall be
	(Functionality	Execute Mode Data	table look ups.
	unchanged)	Sources.	
3.2.1.3.2.2.4	3.2.1	Flight Model	The modifications shall have no adverse
	(Functionality	Execute Mode	attects upon the Flight Model Execute
	unchanged)	Functionality.	mode functionality.
3.2.1.3.2.2.5	3.2.1	Flight Controls	The Flight Controls Model Sub-Segment
ſ	(Functionality	Model	shall simulate the flight controls of the
	unchanged)		aircraft.
3.2.1.3.2.2.5a	3.2.1	Flight Controls	input shall be used to calculate a
	(Functionality	Model	resultant movement of a control surface
	unchanged)		and corresponding output to the flight
2212224	2.2.1	This has the second second	The Richa Dunessing Madel C.
3.2.1.3.2.2.0	J.Z.I	riight Dynamics	Ine right Dynamics Model Sub-
	(runctionality	INIQUEI	the flight characteristics of the signal
2212224	anchanged)	Elicht Demonics	The simulation shall include mentions of
5.2.1.3.2.2.00	J.Z.I	Model	the flight envelope including envice
	unchanced)	iviouei	accent descent hover and low-level
	unchanged)		flight with ground effect
32132260	321	Flight Dynamics	The simulation shall include calculation
J.4.1.J.6.4.UC	(Functionality	Model	of forces and moments equations of
	unchanged)		motion, weight and balance, and
			aerodynamics.
3213227	3.2.1	Engine Model	The Engine Model Sub-Segment shall
	(Functionality	Andres Model	provide core engine representation.
	unchanged)		torque generation, engine fuel system
			utilization, and transmission
			representation.
3.2.1.3.2.3	3.2.1	Flight Model Stop	During the Flight Model Stop mode, the
	(Functionality	Mode.	execution of the flight model functions
	unchanged)		shall be suspended.
3.2.1.3.2.3.1	3.2.1	Flight Model Stop	This mode shall be controlled by the
	(Functionality	Mode Control.	system executive.
	unchanged)		
3.2.1.3.2.3.2	3.2.1	Flight Model Stop	The modifications shall have no adverse
	(Functionality	Mode Functionality.	affects upon the Flight Model Stop mode
	unchanged)	······································	functionality.

Requirement	SDD	Title	Description
ĪD	Traceability		-
	Reference		
3.2.1.3.3	3.2.1 (Functionality unchanged)	Segment Capability Relationships.	Flight Model Segment capability relationships shall not be affected by modifications and restructuring of the flight model functions.
3.2.1.3.3a	3.2.1 (Functionality unchanged)	Segment Capability Relationships.	The capability relationships shall remain intact.
3.2.1.3.4	3.2.1 (Functionality unchanged)	Segment External Interface Requirements.	Flight Model Segment interface requirements shall not be affected by modifications and restructuring of the flight model functions.
3.2.1.3.4a	3.2.1 (Functionality unchanged)	Segment External Interface Requirements.	The interface requirements shall remain intact.
3.2.1.5	3.2.1 (Functionality unchanged)	RWA Weapons Model Upgrade Segment	The intent of the RWA Weapons Model Upgrade is to improve the software by making it table driven.
3.2.1.5.1	4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7	Initialize Weapons State	The Initialize Weapons Segment state is entered during the System Initialization process after system bootup.
3.2.1.5.1.1.1	4.2.1.2 4.2.2.2	Guided Missile Trajectory Coefficient Data	Trajectory coefficient data associated with guided missiles shall be loaded at mission initialization.
3.2.1.5.1.1.2	4.2.1.2 4.2.2.2	Guided Missile Trajectory Coefficient Data Format	Trajectory coefficient data files for Guided Missiles shall be in a format which allow modification through a standard text editor.
3.2.1.5.1.1.3	4.2.3.2 4.2.4.2 4.2.7.2	Ballistic Missiles Trajectory Coefficient Data	Trajectory coefficient data associated with ballistic missiles shall be loaded at mission initialization.
3.2.1.5.1.1.4	4.2.3.2 4.2.4.2 4.2.5.2 4.2.7.2	Ballistic Missile Trajectory Coefficient Data Format	Trajectory coefficient data files for Ballistic Missiles shall be in a format which allow modification through a standard text editor.
3.2.1.5.1.1.5	4.2.6.2	Ballistic Rounds Trajectory Coefficient Data	Trajectory coefficient data associated with Ballistic Rounds shall be loaded at mission initialization.

Requirement	SDD	Title	Description
. ID	Traceability		- -
	Reference		
3.2.1.5.1.1.6	4.2.6.2	Ballistic Rounds	Trajectory coefficient data files for
		Trajectory	Ballistic Rounds shall be in a format
		Coefficient Data	which allow modification through a
	[Format	standard text editor.
3.2.1.5.1.2.1	4.2.1.2	Guided Missiles	Guided missile characteristics shall be
	4.2.2.2	Characterization	initialized via data files.
3.2.1.5.1.2.2	4.2.3.2	Ballistic Missiles	Ballistic missile characteristics shall be
[4.2.4.2	Characterization	initialized via data files.
	4.2.5.2		
	4.2.7.2		
3.2.1.5.1.2.3	4.2.6.2	Ballistic Rounds	Ballistic Rounds characteristics shall be
		Characterization	initialized via data files.
3.2.1.5.2.4.1	4.2.1.2	Guided Missile	Guided Missile Flyout shall utilize new
	4.2.2.2	Flyout	data structures containing trajectory and
		-	control data.
3.2.1.5.2.4.2	4.1.1.2	Use of Data Tables	Updates required Modification of the
	4.1.2.2		source code shall be limited to reference
	4.1.3.2		data tables containing data which is
	4.2.1.2		read in via data files.
	4.2.2.2		
	4.2.3.2		
	4.2.4.2		
	4.2.5.2		
	4.2.6.2		
	4.2.7.2		
	4.3.1.2		
	4.3.2.2		
3.2.1.5.2.4.3	4.2.3.2	Ballistic Missile	Ballistic Missile Flyout shall utilize
	4.2.4.2	Flyout	new data structures containing trajectory
	4.2.5.2	-	and control data.
	4.2.7.2		
3.2.1.5.2.4.4	4.2.6.2	Ballistic Round	Ballistic Round Flyout shall utilize new
		Flyout	data structures containing trajectory and
		-	control data.
3.2.1.6.1	4.3.1	Initialization State	The Kill COMM Initialization state
			places the communications system into a
			known state. The Initialization state
			has no modes.
3.2.1.6.1.1	4.3.1.2	COMM On Variable	The Kill COMM Initialization shall set
			the communications "COMM On"
			variable to enable ownship two-way
			communications.

Requirement ID	SDD Traceability Reference	Title	Description
3.2.1.6.2.1	4.3.1.2	Run Time COMM On Mode	The Run Time COMM On mode shall enable two-way communications between the ownship and other AirNet vehicles.
3.2.1.6.2.2	4.3.2.2	Run Time COMM Off Mode	The Run Time COMM Off mode shall disable two-way communications between the ownship and other AirNet vehicles.

8. Notes.

This following section contains general information that aids in understanding this document.

8.1 Acronyms and abbreviations.

The following is a list of acronyms and abbreviations used in this document.

ADAT ADST	Air Defense Anti-Tank Missile Advanced Distributed Simulation Technology
ASCII	American Standard Code for Information Interchange
ATGM	Anti-Tactical Guided Missile
CDRL	Contract Data Requirements List
CSC	Computer Software Component
CSCI	Computer Software Configuration Item
CSU	Computer Software Unit
deg	degree
gals	gallons
Ī/O	Input/Output
KEM	Kinetic Energy Missile
kg	kilogram
kg-m	kilogram-meter
Hz	hertz
Msec	millisecond
Ν	Newton
N-m	Newton-meter
NLOS	Non-Line-of-Sight Missile
rad	radian
SDD	Software Design Document
sec	second
STRICOM	Simulator Training and Instrumentation Command
TOW	Tube-launched, Optically-tracked, Wire guided Anti-Tank Missile

Appendix A - RWA AirNet Call Tree Structure.

The following appendix contains information for convenience in document maintenance and understanding of the overall CSCI architecture. This call tree is not all inclusive, i.e., it only contains the calls from the top-level down to the CSU of interest in this document. Other CSU have been included in the Call Tree for clarity and reference.

22 January 199.	Neterence # WUUSUOO	TRUCTURE		rwa_main.c		mann.c		Indin.C	rwa_main.c			makevers.c	makevers.c	makevers.c			rwa_main.c	rwa_connig.c	rwa_contig.c		arumo.c		anuno.c		head head	Ican haise					nary har	read_prats r	Sound Parts	Icau_paise			nars.c		read_pars.c		
		AIRNET CALL TREE S	7th 8th																		updating																				A _ D _
		RWA	5th 6th									a						type_string	•	Hty_zero	ators_require_1																			nce	
			rd 4th			idle	rintf	m state	logo	lear screen	rintf	roiect name	ersion str	ate str	elect	se_id		ess_vehicle_	stores	et_all_quant	mmo_indic	g_stores	Sand			irs_arg						led_id	lb_id	verlay_id	I			pars_file		creen_dista	
			2md 31	:	gracefully	sim_state	ā	si	print veh	ד י	5	מ	, ž	σ	3	k set exerci	viti	onfig proce	leftwing	ammo_se	đ	rightwing	turret_stc	bzero	strucmp	process_pa	sprintf	fopen	perror	printf	exit	p_evedus_d	subsys_d	subsys_0	faets	strtok	stromp	libmsg_l	sscanf	eye_to_s	
			lst	nien	enter											netwon	init ac	I'Wa CI	I							main															

21 January 193 22 January 193 21 A 24 34 4h 5h 6h 7h 8h MORDI RECULTREE STRUCTURE Reference 9 MORDI Rev 1. 21 vouling filet vouling filet vouling filet voltenage reculations Rev 1. 21 January 193 Rev 2. 22 January 193 Rev 2. 23 January 194 Rev 2. 24 January 186 Rev 2. 25 Rev 2. Rev 2. 26 A 186 Rev 2. 26 A 186 Rev 2. 26 A 186 Rev 2. 27 A 2 January 2. Rev 2. 28 A 186 Rev 2. 29 A 186 Rev 2. 20 A 186 Rev 2. 20 A 186 Rev 2. 20 A 186									
14 2nd 3nd 4nd 6nh 7nh 8nh Rev ADD Rest CALL TREE STRUCTURE 14 voordig, filel ehn 9nh end parsa voordig, filel voordig, filel ehn 9nh end parsa voordig, filel ehn 9nh end parsa end parsa voordig, filel ehn 9nh end parsa end parsa voordig, file end end parsa end parsa end parsa voordig, file end file file end parsa end parsa voordig, file end file file end parsa end parsa voordig, file end file file file end parsa voordig, file end								2	22 January 199.
14 2nd 3nd 4th 5th 6th 7th 8th Rev AltNUET CALL TREE STRUCTURE 14 2nd 3nd 4th 5th 6th 7th 8th 15 vconfig file 1th 5th 6th 7th 8th 16 4th 5th 6th 7th 8th 8th 16 4th 5th 6th 7th 8th 8th 17 14 15 15 15 16 18 16 15 16 15 16 18 16 16 16 17 16 18 16 16 16 17 16 18 16 16 16 17 16 18 16 16 16 16 16 18 16 16 16 16 16 18 16 16 16 16 16 10 16 16 16 16 16 10 16 16 16 16 16 10 16 16 16 16 16 10 16 16 16								Refere	:nce # W003036
14 2nd 3nd (th 3th 0th number CALLTREE STRUCTURE voting file: rend parse rend parse denting file: voting file: www.AUNRET CALLTREE STRUCTURE voting file: rend parse rend pa									Rev. 0.0
<pre>start and and and and and and and and and and</pre>							CALL TREE STRUCTURE		
voordig file voordig file voord	Iŝt	Znd Jrd	4th	Sth	6th	7th	8th		
vicinity file vicinity file entrop. The entrop. The e		vconfig_file1							read_pars.c
 webmap. file webmap. f		vconfig_file2							read_pars.c
ammo, map, file sammo, map, file sammo, map, file sammo, map, file sammo, map, file assoc, def file thresh, file assoc, def file assoc, assoc, def file assoc, assoc, def file assoc, file assoc, file assoc, assoc, def file assoc, assoc, def file assoc, assoc, a		veh_map_file							read_pars.c
Admage file admage file admage file admage file admage file advice file besc. def file her. all file thresh file advice file a		ammo_map_fi	ile						read_pars.c
devices file calib. file het.calib. file het.c		sdamage_file							read_pars.c
red pars read pars her callb. file her callb. file her callb. file her callb. file her callb. file her callb. file stan filter file stan filter file stan filter file register file register file register file register file read pars et authors attabase or read pars et author version de our read pars et author version de courride name cig set name default. db. name defa		devices_file							read_pars.c
<pre>esc. def file sec. def file ket. calib. file stud_file: file stud_file: file stud_file: file stud_file stud_pars register. file stud_pars stat cig_ set_aumber_subsystems default_db_version est_defaunt est_file est_defaunt est_file est_defaunt est_file /pre>		calib_file							read_pars.c
het_calib_file frect_pars. intrest_file read_pars. sint_filter_file read_pars. sint_filter_file read_pars. sint_filter_file read_pars. priority_list_file read_pars. read_pars. read_pars. sint_filter_file read_pars. read_pars. read_pars. read_pars. read_pars. cig_st_number_subsystems read_pars. default_db_version default_db_version default_db_version default_db_version default_db_version default_db_version default_db_version default_db_version default_db_version def_ans. default_db_version read_pars. default_db_version read_pars. default_db_version def_ans. default_db_version read_pars. default_db_version read_pars. def_ubranc read_pars. def_ubranc read_pars. def_ubranc read_pars. read_pars. read_pars. read_pars. read_pars. read_pars. read_pars. read_pars. read_pars. read_pars. read_pars. read_pars. read_pars.		assoc_def_file							read_pars.c
thresh, file asid_mer, file idle filter file sin_filter file priority_list file register_file subsystems register_file register_file subsystems default_db_merk default_db_merk default_db_merk default_db_merk default_db_merk default_db_merk default_db_merk default_db_merk default_db_merk default_db_merk default_db_merk def_orentide set_dat_merk read_pars read_pars read_pars read_pars read_pars read_pars read_pars default_db_merk def_orentide set_dat_merk read_pars file set_dat_merk file waypoint_list constants_file stoi file stoi defug file stoi stoi stoi stoi file stoi file file file file stoi file stoi file stoi file stoi stoi stoi stoi file stoi stoi stoi stoi stoi stoi stoi stoi		het_calib_file							read_pars.c
asid_map_file asid_map_file sim_filter_file sim_filter_file sim_filter_file register_file register_file register_file register_file read_pars. read_pars		thresh_file							read_pars.c
idle filter file priority list file register file register file register file register file register file register file read_pars edetuit db. version default db. vers		asid_map_file							read_pars.c
sin filter file protity. Its. file register file register file register file read_pars ator default. db. remion db_override default. db. remion db_override. name default. db. remion read_pars read		idle_filter_file							read_pars.c
priority_list_file register_file subsystems subsystems atri cig_set_number_subsystems default_db_name default_db_rame default_db_rame ded_override_named ded_override_named ded_override_named ded_override_named ded_override_named ded_override_named ded_override_named ded_override_named ded_pars constants_file folse et_request_send_size debug debug debug mint/ meed_to_fill_initial_munitions debug		sim_filter_file							read_pars.c
register_file register_file subsystems at i at i cit_set_number_subsystems default_db_narme default_db_narme default_db_narme default_db_narme def_overnide_narmed ded_overnide_narmed ded_overnide_narmed ded_overnide_narmed ded_overnide_narmed ded_pars est_dd_narme core lay_file waypoint_list core lay_file folde folde folde est_agrament_corr est_agr		priority_list_fi	ile						read_pars.c
subsystems atti cig_set_number_subsystems default_db_name default_db_name default_db_name default_db_name def_override_name def_override_name def_override_name def_override_name set_def_name varpoint_list constants_file warpoint_list constants_file set_def_name varpoint_list constants_file set_def_name set_def_name read_pars folose atoi set_request_serat_size set_request_serat_size set_request_serat_size set_request_serat_size set_request_serat_size set_request_serat_size set_request_serat_size set_request_serat_size set_request_name debug printf need_to_fill_initial_munitions debug		register_file							read_pars.c
atoi cig_set_number_subsystems default_db_name default_db_name default_db_remin db_override_named ded_override_named ded_override_named ded_override_named ded_override_named ded_override_named ded_pars read_pars		subsystems							read_pars.c
cig_set_number_subsystems default_db_rame default_db_rame default_db_rame default_db_rame default_db_rame cig_use_databes_override_ramed ded_override_ramed ded_override_ramed ded_override_ramed ded_pars set_ded_rame constants_file flose atoi set_request_rective_size set_request_end_size set_request_end_size debug mitif use static_dbug		atoi							
default_db_name default_db_version default_db_version db_overnide def_overnide cig_use_database_overnide_name ded_overnide_name ded_name overlay_file set_dd_name overlay_file set_dd_name fclos fclos fclos set_request_seral set_request_seral fclos		cig_set_number	r_subsyst	tems					•
default_db_version db_overnide db_overnide cig_use_database_overnide_named ded_overnide_name set_ded_name overlay_file set_ded_pars rea		default_db_nø	Ime						read_pars.c
db_override cig_use_database_override_named ded_override_name set_ded_name overlay_file set_ded_name overlay_file set_ded_pars read read_pars read read_pars read read_pars read read_pars read read_pars read read_pars read read read_pars read read_pars read read_pars read read read_pars read_pars read read_pars read read_pars read read_pars read		default_db_ve	rsion						read_pars.c
cig_use_database_override_named ded_override_named ded_override_name set_ded_name overlay_file waypoint_list constants_file folose atoi folose atoi folose atoi folose atoi folose atoi folose atoi folose atoi folose atoi folose atoi folose atoi folose atoi folose atoi folose atoi folose atoi folose atoi folose atoi folose atoi folose atoi folose atoi folose		db_override							read_pars.c
ded_override read_pars set_ded_name read_pars overlay_file read_pars waypoint_list read_pars constants_file read_pars constants_file read_pars		cig_use_databa	se_overni	ide_nam	B				•
set_ded_name overlay_file waypoint_list constants_file folose atoi set_request_recetor_size set_request_send_size set_request_send_size set_assymetric_on need_to_fill_initial_munitions debug printf use_static_debug printf use_static_debug		ded_override							read_pars.c
overlay_file vaypoint_list constants_file kaypoint_list constants_file fclose fclose fclose atoi set_request_receive_size set_receive_size set_rece		set_ded_name							-
waypoint_list constants_file constants_file fclose atoi set_request_receive_size set_request_receive_size set_request_receive_size set_assymetric_om need_to_fill_initial_munitions debug printf use_static_debug ntework dont_really_open_up_ethernet		overlay_file							read_pars.c
constants_file fclose atoi set_request_receive_size set_request_send_size set_assymetric_on need_to_fill_initial_munitions debug printf use_static_debug printf use_static_debug printf use_static_debug		waypoint_list							read_pars.c
fclose atoi set_request_receive_size set_request_receive_size set_assymetric_on rwa_main debug printf use_static_debug nework_dont_really_open_up_ethernet		constants_file							read_pars.c
atoi set_request_receive_size set_request_send_size set_assymetric_on need_to_fill_initial_munitions debug printf use_static_debug use_static_debug nework_dont_really_open_up_ethernet		fclose							
set_request_receive_size set_request_send_size set_assymetric_on need_to_fill_initial_munitions rwa_main debug printf use_static_debug neuvork_dont_really_open_up_ethernet	atoi								
set_request_send_size set_assymetric_on need_to_fill_initial_munitions debug printf use_static_debug ntework_dont_really_open_up_ethernet	set_re	squest_receive_size							
set_assymetric_on need_to_fill_initial_munitions debug printf use_static_debug nteuork_dont_really_open_up_ethernet	set_r	squest_send_size							
need_to_fill_initial_munitions debug printf use_static_debug nteuork_dont_really_open_up_ethemet	set as	symetric on							
debug printf use_static_debug ntevork_dont_really_open_up_ethernet	need	to fill initial m	unitions						rwa_main.o
printf use_static_debug ntevork_dont_really_open_up_ethernet	debu								rwa_main.
use_static_debug ntework_dont_really_open_up_ethernet	print)							
ntework dont really open_up_ethernet	use s	itatic_debug							
	ntervo	ork dont really or	sen_up_e	thernet					

.

.

.

- A-3 -

(z)
Ř
Þ
H
<u> </u>
- 2
E
୍ ଚ
- 111
E
Ř
્રોન્
- 7
5
Ľ
- 53
- 5
-2
9
- 5
<
3
Ř

	rwa_main.c	rwa_main.c		rwa main.c	rwa main.c	rwa main.c						rwa main c		rwa kevbrd.c	rwa kevbrd c						rwa_main.c	I	read_pars.c	read_pars.c	read_pars.c	read_pars.c	•	rwa_main.c		rwa_sound.c	rwa_sound.c			rwa_main.c		
8th																																				
7th																																				
6th																																				
Sth								device																											ed	
4th			-					etwork_		•		ver	•											ame	Ē	ersion					pq		evice		ide_nam	
3rd			graphics	e				rk_get_n		er_enable	Ð	ility ser	mit Setup	lly_use	 •	r_effects	_dir	eries		mode	S		b_name	lt_db_n	b_versio	lt_db_ve		no	g_on	156	use_sou		twork_d		se_overni	
2nd	other other	CIU	t_using_	overrid	to_use	help	printf	netwo		ye_track	int_chec	ntervisib	isibility I	ard_real	eyboard	able_lase	L.damage	laser_s	/_if	verbose	олеггип		efault_d	defau	efault_d	defau	ata	activati	rn_debug	_dont_u	dont	printf	'k_set_ne	bsys	e_databa	
lst	force	olav_1	cig_no	guise_	guise_	print			crit	head e	nse pr	use in	Intervi	keybo	use_k	het_em	het_sel	het sel	set_my	a pkt	print	strcpy	get_de)	get_de)	movedi	initial	roa_tu	sound			networ	db_su	cig_us	a hok

•

22 January 195. Reference # W003036 Rev. 0.0

RWA AIRNET CALL TREE STRUCTURE 6th 7th 8th

55

4th

ard

2nd

1st

main.c main.c main.c main.c rwa_sound.c rwa_status.c rwa_status.c rwa_status.c rwa_tads.c main.c rwa_sound.c rwa_sound.c rwa_sound.c rwa_sound.c rwa_mem.c rwa_sound.c rwa_tads.c rwa_mem.c . veh_sound_array dont_use_sound fprintf fflush sound_error mem_assign_shared_memory equipment_status idc_values how_to_do_intervisibility dont_use_sound fifo_init sounds status_preset sound_reset ser_heartbeat_init fifo_init simulate_state_machine sounds ternain verbose mode on tads_set_intervisibility sound init initial bbd status_init sim_state sim_state_startup sim_state dtad_init bbd_init idc init strcpy printf printf strien set_ded_name set_cig_dev set_cig_mask fprintf

- A-5 -

						22 January 199.
						Reference # W003036
						Rev. 0.0
	•	•			RWA AIRNET CALL TREE STRUCTURE	
lst	Znd	3rd status	•	5th	6th 7th 8th	
		SHIMIC .				
	pots_1	Ĕ				rwa_pots.c
		lopen				
		print				
		tit				
		pil_cy	rc_roll_l			rwa_pots.c
		pil_cy	rc_roll_c			rwa_pots.c
		pil_cy	'c_roll_r			rwa_pots.c
		fscanf				
		pots_c	hack_thre	2		
		strom	~			
		piloy	rc_pitch_	P.		rwa_pots.c
		pil_cy	rc_pitch_	U		rwa_pots.c
		pil_C	rc_pitch_	₽.		rwa_pots.c
		pil p	dal I			rwa_pots.c
		bil b.	sdal c			rwa_pots.c
		pil p.	sdal_r			rwa_pots.c
		pil co	p II			rwa_pots.c
		pil co	"I"			rwa_pots.c
		pots c	heck two	-		
		cpe t	rav_I			rwa_pots.c
		cpe t	TAV_C			rwa_pots.c
		cpg.	rav_r			rwa_pots.c
		50°	ev d			rwa_pots.c
		e do	slev_c			rwa_pots.c
		cpg e	<u>dev_r</u>			rwa_pots.c
		9 9 9	rav_I			rwa_pots.c
		cbo t	rav c			rwa_pots.c
		00 11	rav r			rwa_pots.c
		000	ilev d			rwa_pots.c
		cpo e	lev_c			rwa_pots.c
		- 00 - 00	iev_r			rwa_pots.c
		filose				
	netwo	rk init				
	obi cr	eate obie	cts			
	rio m	emare	•			

– **A-6** –

Rev. 0.0 Reference # W003036 22 January 195

RWA AIRNET CALL TREE STRUCTURE

8th 7th 6th **5th 4**th **Jrd** buffer_setup

2nd

1st

network_set_simulator_type use_cig_reconfig_startup cig_recmfig_start get_vconfig_file1 cig_strup_func network_can_i_really_1 se_network ammo_map_file vconfig_file1 cig_set_view_config_file get_ammo_map_file veh_map_file map_pehicle_file_read get_asid_map_file asid_map_file get_veh_map_file map_read_asid_file priority_list_file network_get_net_handle map_file_read get_priority_list_file rtc_init_clock init_activ veh_spec_startup sim_state sim_state_idle cig_synchronize printf printf repair_uninit msg_startup hull_init cig_stop roa_setup filter_init cuit

read_pars.c read_pars.c main.c

main.c rwa_main.c main.c main.c read_pars.c read_pars.c read_pars.c read_pars.c read_pars.c read_pars.c

.

rwa_config_init

rwa_main.c rwa_config.c

read_pars.c read_pars.c

22 January 195 Reference # W003036 Rev. 0.0

RWA AJRNET CALL TREE STRUCTURE

1st

			rwa_config.c	•		rwa config.c	rwa config.c	0	rwa_config.c	rwa_config.c)		rwa_keybrd.c	rwa_keybrd.c	rwa_keybrd.c	rwa_keybrd.c	rwa_keybrd.c	sun_wayed.c	•		rwa_failure.c			read_pars.c	read_pars.c	rwa_failure.c		rwa_weapons.c		rwa_weapons.c	rwa_weapons.c	sun_stubs.c	sun_stubs.c	rwa_ammo.c		rwa_ammo.c
1																																				•
8th																																				
7th											•														40	RAY						a	st		:	/_list_id
6th	able	lle				e	able		o_size	.0					ount			nit						e_file	nage_file	/EL_AR				<u>id</u>	r_veh	r_vehicl	utput_li	•	•	(Iddusar
5th	symbol_t f	n_find_f	_file		tag	cle_nam	itions_ta	loquus	pons_inf	pons_inf	2		it	keybrd	It_char_c	ring_str	ole_desc	ord_tty_i	بول			init	table_init	sdamage	sdan	NT_LEV	init	irtup		veh_list_	per is ai	is_ai	create_0	ply_init	J.	ammo
4th	print.	reade	data	iii	find	vehi	unui	Set_s	weal	weal	mallc	bzero	oard_in	use	inpu	enter	COD	keyb	print	enit	re_init	cfail	fail_1	Bet	I	MAI	sfail_	ons_sta	print	air	sting	,	LVA	insar o	print	IWa
3rd													keyb	•							failui							wear	•					amm		
2nd																																				

Reference # W003036 **Rev.** 0.0 22 January 199.

RWA AIRNET CALL TREE STRUCTURE

8th

7÷

6th

Sth

4th

3rd

2nd

1st

rwa_config_get_was_munition_index rwa_config_determine_ammo_needed rwa_config_get_was_munition_index resupply_get_ammo_offered rwa_config_get_was_position_name mun_set_veh_spec_resupply_completed ammo_offered veh_spec_resupply_completed resupply_in_progress resupply_in_progress ammo_struct hungry_for_ammo rwa_resupply_in progress rightwing_stores ammo_type_full leftwing_stores ehicle force vehicle_force turret_stores was rwa_ammo_resupply_check rwa_fuel_resupply_list_id rwa_resupply_completed rwa_fuel_resupply_check rightwing_stores is_ammo_vehicle leftwing_stores rva_create_output_list is fuel_vehicle turret_stores was was is_friendly is_friendly softy label printf

rwa_ammo.c sun_wayed.c sun_wayed.c

sun_stubs.c rwa_ammo.c rwa_ammo.c sun_wayed.c sun_wayed.c

rwa_config.c rwa_config.c rwa_config.c rwa_config.c rwa_config.c rwa_config.c rwa_config.c **prddnsar** resupp.c rwa_ammo.c

rwa_config.c rwa_config.c ammo.c

rwa_config.c rwa_config.c rwa_config.c rwa_config.c

rwa_config.c rwa_config.c resupp.c

Twa_ammo.c

prddnsau

rwa_config.c

rwa_config.c

- A-9 -

rwa_resupply_started

22 January 19-	OCUCUUM # ANUUNA			rwa_config.c	rwa_config.c	rwa confio c	rua_counts.		rwa_conrig.c	rwa_contig.c	rwa confier	rwa config.c	rwa confie.c	Lesupor	resupp.c		rwa main.c					rwa_main.c	rwa_status.c	rwa_status.c	rwa_status.c			rwa_mem.c	rwa_status.c										rwa_status.c	
		RWA AIRNET CALL TREE STRUCTURE	ist 2nd 3rd 4th 5th 6th 7th 8th	rwa_resupply_in_progress	resupply_in_progress	rung rwa config get was munition index		rwa mnfio oet was msition name		was softn lahel	leftwing stores	nichtwine stores	turret stores	mun_set_veh_spec_resupply_started	veh spec_resupply_started	map get damage files	use intervisibility server	IV CLIENT	Intervisibility Imit	Intervisibility Synchronize	times_simul	veh_spec_idle	status_simul	frame_counter	monitor_status	idc_palues	hard_dead	fifo_hard	st_com	fifo_enqueue	softi_dead	fifo_softi	softo_dead	ser_heratbeat	ser_dead	net_xmt_failed	net_dead	set_xmt_failed	dtad_failed	

- A-10 -

22 January 195. Reference # W003036 Rev. 0.0

.

RWA AIRNET CALL TREE STRUCTURE 6th 7th 8th

		rwa_mem.c	rwa_status.c	rwa_status.c		rwa_status.c	I				rwa_status.c	ļ				rwa_status.c					rwa_status.c	rwa_status.c	rwa_status.c	rwa_status.c	rwa_status.c	rwa_status.c	rwa_status.c	rwa_status.c	rwa_status.c	rwa_status.c	rwa_status.c				rwa_main.c	rwa_main.c
7th 8th					ire																t_red	S	red	d_red	i_red	o_red	nd_red	lage12P_red	tage12N_red	lage5_red	red					
5th 6th 7 dtad dead	sound_dead	sounds	st_sound	temperature	current_temperatu	voltage12P	current_plus12	HILIMIT-12P	plus12_dead	LOLIMIT 12P	voltage12N	current_minus12	HILLIMIT_12N	minus12_dead	LOLIMIT 12N	voltage5	current pluss	HILIMIT 5	plus5_dead	LOLIMIT 5	need_to_set_hos	equipment_statu	need_to_set_cig_	need_to_set_han	need_to_set_soft	need_to_set_soft	need_to_set_sou	need_to_set_volt	need_to_set_volt	need to set volt	need_to_set_net	status_out	1		_	ial_munitions
Ird 4th	,	•7		-	J	•	J	_	_			-									-	•	-	-	-	-	-		-				kevboard simul	io simul idle	Initial activation	need_to_fill_init
lst 2nd 3																																				-

- A-11 -

22 January 195. Reference # W003036 Rev. 0.0

RWA AIRNET CALL TREE STRUCTURE

1st 2nd 3rd 4th 5th 6th 7th 8th printf

rwa_config_get_was_munition_index rwa_config_get_was_munition_type ammo_check_availability ammo_index_ok rwa_config_initialize_munitions previous_vehicle_type fuel_get_current_level printf fuel_struct rightwing_stores leftwing_stores network_get_exercise_id process_activate_request turret_stores was was softp_send_idc_reset get_symbol fill_vehicle_status data_file find_tag printf status_preset Lrf Err String sound_reset firectl_init init_ballistics_buffer init_activ LRF Init fprintf veh_spec_init Hush idc_reset

ammo.c

ammo.c

fuelsys.c

fuelsys.c

rwa_main.c

rwa_config.c

rwa_config.c

rwa_config.c

rwa_config.c rwa_config.c rwa_config.c rwa_config.c rwa_config.c rwa_config.c rwa_config.c rwa_main.c

– A-12 –

firectl_was_init

controls_fsm_init controls_sim_init

Reference # W003036 Rev. 0.0 22 January 199.

> **RWA AIRNET CALL TREE STRUCTURE** 8th 75 6th 5th

> > 464

Bid

2nd

1st

engine_damage_engine_oil controls_start_failure_lamp_flashing engine_repair_engine_oil controls_failure_lamp_off engine_repair_engine_oil engine_is_damaged engine_is_damaged number_of_engines last_per_cent_shaft_torque transmission_is_damaged engine_percent_torque old_minutes_of_flight engine_repair_engine engine_status engine_speed engine_break_engine number_of_engines engine_is_damaged last_percent_torque hours_of_flight minutes_of_flight kinematics_viewpoint_offset starting_engine integrator_gain fail_init_failure engine_power engine_status engine_speed gov_p_gain gov_i_gain engine_init view_point resupply_init meter_init view_init rwa_init

rwa_simul.c

rwa_simul.c

rwa_engine.c

rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c

rwa_engine.c

rwa_engine.c

rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c

rwa_engine.c

– A-13 –

controls_failure_lamp_off

1st Znd 3rd 4th Sth KWAA engine_repair. engine_break. engine_break. engine_repair. engine_repair. engine_engine engine engine engine engine engine engine engine engine engine engine engine engine engine engine engine	AIRNET CALL TREE STRUCTURE 7th 8th 7th 8th regine is damaged ine status the of engines age_transmission.filter it_transmission.filter it_transmission.filter it_transmission.s age_transmission.filter engine_status engine_status engine_status engine_status regine_status number_of_engines it_transmission ite_pretent_torque engine_status number_of_engines	Reference # W003036 Rev. 0.0 Iwa_engine.c
---	---	---

2nd

1st

22 January 195. Reference # W003036 Rev. 0.0

	, C	2.0	P.C	e.c		IWa	Lwa.		IWa	•	rwa	rwa	- IMA	IWa	rwa	ГWА		rwa_	IWa	rwa_		rwa_		Iwa	IWa_	IWa_	rwa_	rwa_	rwa_	rwa	e.c		e.c	IWa	e.c		e.c
	rwa_engine	rwa_engine	rwa_engine	rwa_engine	נ ו																										rwa_engin		rwa_engin		rwa_engin		rwa_engin
6th 7th 8th	hours_of_flight	minutes_of_flight	old_minutes_of_flight	engine_damage_engine_oil	controls_start_failure_lamp_flashing	engine_is_damaged	engine_repair_engine_oil	controls_failure_lamp_off	engine_is_damaged	fail_init_failure	engine_break_engine	engine_status	engine_speed	number_of_engines	engine_repair_engine	engine_repair_engine_oil	controls_failure_lamp_off	engine_is_damaged	engine_status	number_of_engines	engine_damage_transmission_filter	engine_repair_transmission_filter	controls_failure_lamp_off	transmission_is_damaged	engine_break_transmission	engine_break_engine	engine_status	engine_speed	number_of_engines	engine_repair_transmission	engine_repair_transmission_filter	controls_failure_lamp_off	transmission_is_damaged	engine_repair_engine	engine_repair_engine_oil	controls_failure_lamp_off	engine_is_damaged
411																																					
3rd																																					

- A-15 -

-,

			rwa_	rwa_																																
22 January 199. Reference # Wimmunk	Rev. 0.0																		rwa_config.c	rwa_config.c	rwa_aerodyn.c	rwa_ground.h	rwa_aerodyn.c		rwa_config.c	rwa_config.c	rwa_aerodyn.c	rwa_ground.h								
	RWA AIRNET CALL TREE STRUCTURE	1st 2nd 3rd 4th 5th 6th 7th 8th	engine_status	number_of_engines		growing joice wehicle mase init	veuture_mass_mut	find cubic func	forint	get_constants_file	aerodyn_read_simple_constants	fopen	printf	fgets	strtok	strcanp	sscanf	fclose	rwa_config_get_front_support	front_support	aero_body_point_set_front_wheels	body_point	ground_height	printf	rwa_config_get_rear_support	rear_support	aero_body_point_set_rear_wheel	body_point	printf	alt_Init	gunnnt_init	tads_init	sad_uninit	SAD_TTY_PORT	sad_init	- A-16 -

22 January 199.	Reference # W003036 Rev. 0.0			rwa_weapons.c	rwa_weapons.c		rwa_cig.c	Twa_cig.c	,		util_comm.c	util_comm.c	•	util_comm.c	util_comm.c	rwa_cig.c			sun_stuos.c		sun_stups.c													rwa_rounds.c	rwa_rounds.c	rwa_weapons.c	rwa_weapons.c	rwa_weapons.c	rwa_weapons.c	
		RWA AIRNET CALL TREE STRUCTURE	1st 2md 3rd 4th 5th 6th 7th 8th	weapons_init	gunmnt_element	nun miste imit element	cie set proc hit mse	rwa process msg hit return	f2d_bec_copy	map_is_missile	missile_util_comm_intersected_poly	missile_comm	msg_get_veh_id_from_cig_id	missile util comm intersected model	missile comm	proc_hit_debug	printf	dmap_is_bomb	veh_kinematics	kinematics_range_squared	map_get_network_type_from_ammo_entry	network_ifire_init_burst	network_ifire_send_detonation	network_ifire_send_indirect_fire	impacts_queue_effect	rwa_config_get_was_munition_index	rounds_interp_rounds	cig_impact_from_round_fired	change_process_msg_hit_function	rounds_init_volley	volley_list	volley_free	free_ptr	first_volley	last volley	mrket laser range	eun firine state	sur din firing state	gun switch	- A-17 -

zz January 195 Reference # W003036	Rev. 0.0		Twa weamons r	Twa weapons.c	rwa_weapons.c	rwa_weapons.c	rwa_weapons.c	rwa_hydra.c	rwa_hydra.c			rwa hvdra.c	rwa hydra.c	rwa_hydra.c	rwa_hydra.c	rwa_hydra.c	rkt_hydra.c	rkt_hydra.c	rkt_hydra.c	rkt_hydra.c	rkt_hydra.c	rkt_hydra.c	rkt_hydra.c	rkt_hydra.c	rkt_hydra.c	miss_hellfr.c	miss_hellfr.c	rkt_hydra.c		rkt_hydra.c	rkt_hydra.c	util_ball.c	I			ball_load.c			
	RWA APNET CALL TREE CTRITCE	1st 2nd 3rd 4th 5th 6th 7th 8th	gun_failure	ATGM_launch_from_left	stinger_launch_from_left	left_stores_position		nyura_intr.	articulation_etement	rotate_init_clement	printf	pylon_L_element	articulation	articulation_element	pylon_R_element	hydras	missile_hydra_init	hydra_array	num_hydra	rkts_in_flight	hydra_fly	bylon_x	bylon_y	pylon_z	flight_time	speed_factor	max_range_limit	bail_table_loaded	print	table_size	ball_table	missile_util_load_ball_traj_file	fopen	fprintf	carit	EOF	getc	112Crr	- A-18 -

(

– A-19 –

22 January 195	Reference # W003036	Rev. 0.0		miss hellfr.c	miss hellfr.c	miss hellfr.c	miss hellfr.c	miss_hellfr.c	miss_hellfr.c	miss_hellfr.c	miss_stinger.c	miss_stinger.c	miss_stinger.c	miss_hellfr.c	miss_hellfr.c	miss_stinger.c	miss_hellfr.c	miss_tow.c	miss_tow.c	miss_tow.c	miss_hellfr.c	miss_hellfr.c	miss_tow.c	miss_hellfr.c		util_init.c	util_comm.c	util_comm.c					n meanna r		rwa weapons.c	- 	rwa_weapons.c		
		RWA AIRNET CALL TREE STRUCTURE	2nd 3rd 4th 5th 6th 7th 8th	missile_hellfire_set_ammo_type	hellfire_ammo_type	missile_hellfire_set_max_range_limit	max_range_limit	max_range_squared	missile_hellfire_set_speed_factor	speed_factor	missile_stinger_set_ammo_type	stinger_ammo_type	missile_stinger_set_max_range_limit	max_range_limit	max_range_squared	missile_stinger_set_speed_factor	speed_factor	missile_tow_set_ammo_type	tow_ammo_type	missile_tow_set_max_range_limit	max_range_limit	max_range_squared	missile_tow_set_speed_factor	speed_factor	printf	missile_util_init	missile_util_comm_init	missile_comm	network_missiles_init	weapons_break_gun_major	weapons_repair_gun_major	weapons_preak_gun	weapons_repair_gun weapons_heak_hellfine	controls start failure lamp flashing	weapons repair hellfire	controls_failure_lamp_off	weapons_break_stinger	controls_start_failure_lamp_flashing	
			1st																																				

– A-20 –

1st

– A-21 –

22 January 195. Reference # W003036 Rev. 0.0	main.c main.c	rwa_cig.c	main.c	main.c		rwa_main.c rwa_status.c rwa_status.c	rwa_sound.c rwa_sound.c rwa_ctl_fsm.c rwa_ctl_fsm.c rwa_ctl_fsm.c rwa_ctl_fsm.c	
1st 2nd 3rd 4th 5th 6th 7th 8th msg init	obj_init_objects cig_startup_func cig_startup_func_FPTR buffer_reset	clg_spec_init cig_msg_prepend_request_laser_nange fail_init	sim_state_simulate	sim_state RTC_FRAME rtc_start_time	RTC_FRAME_GAP bbd_bit_out RTC_TIMERS_SIMUL rtc_stop_time RTC_FAIL_SIMUL	RTC_VEH_SPEC_SIMUL RTC_VEH_SPEC_SIMUL veh_spec_simulate status_simul frame_counter monitor keyboard_simul waynoint editor	waypourt_cutuor sad_simul sound_simul controls_simul controls_status controls_sim_next_state controls_sim_next_state controls_sim_routines controls_sim_routines controls_sim_routines controls_pil_cyc_pitch_check	

1

– A-22 –

22 January 199. Reference # W003036 Rev. 0.0

> 1st 2nd 3rd 4th 5th 6th 7th 8th 8th controls_pil_pedal_check controls_pil_coll_check

controls_cpg_auto_track_toggle_check controls_radar_warning_flash_check controls_failure_lamp_flash_check controls_cpg_sensor_select_check controls_copil_laser_burst_check controls_weapons_master_check controls_master_caution_check controls_cpo_auto_track_check controls_cpg_cont_laser_check controls_manual_range_check controls_cpg_trigger_1_check controls_cpg_trigger_2_check controls_weapons_cpg_check controls_pil_trigger_1_check controls_pil_trigger_2_check controls_laser_master_check controls_medium_fov_check controls_target_store_check controls_hover_hold_check controls_narrow_fov_check controls_cpo_sensor_check controls_view_slew_check controls_zoom_fov_check controls_copil_elev_check controls_copil_trav_check controls_wide_fov_check controls_cpg_was_check controls_polarity_check controls_pil_was_check controls_slave_check controls_failure_edge controls_sim_off

rwa_ctl_fsm.c

fprintf nprintf view_simul

(

Reference # W003036 **Rev. 0.0** 22 January 199.

> **RWA AIRNET CALL TREE STRUCTURE** 8th

7th 6th 5th ammo_simul 4H 3d 2nd

1st

ammo_indicators_require_updating rwa_config_get_was_munition_index ammo_quantity_has_changed ammo_check_availability meter_missile1_set meter_missile2_set meter_rocket_set meter_ammo_set rightwing_stores leftwing_stores turret_stores

resupply_receive_gating_conditions_ok

rwa_ammo_resupply_list_id rva_lists_off

roa build hist

rwa_fuel_resupply_list_id rva_get_output_list

rwa_config_determine_ammo_needed mun_set_ammo_resupply_list

mun_set_fuel_resupply_list rva_dont_build_list

resupply_simul fuel simul

resupply_simul meter_simul bbd bit out

RTC_RWA_SIMUL rtc_start_time

rwa_simul

get_selected_model aerodyn_simul

get_aircraft_kinematic_state

orientation_calc

kinematics_get_true_airspeed parameters_calc true_airspeed

ammo.c rwa_config.c

rwa_ammo.c ammo.c rwa_config.c rwa_config.c rwa_ainmo.c rwa_ammo.c rwa_ammo.c sun_stubs.c rwa_meter.c

rwa_simul.c

rwa_aerodyn.c

rwa_aerodyn.c

rwa_kinemat.c

– A-24 –

					22 January 199. Reference # With2036
					Rev. 0.0
	•			RWA AIRNET CALL TREE STRUCTURE	
Puq	3rd	4th	Sth	6th 7th 8th	
				true_airspeed	rwa_aerodyn.c
				altitude	rwa_aerodyn.c
				kinematics_get_altitude	rwa_kinemat.c
				altitude	rwa_aerodyn.c
				angular_velocity_vector	rwa_aerodyn.c
				kinmatics_get_angular_velocity_vector	rwa_kinemat.c
				ang_vel	rwa_kinemat.c
				normalized_velocity_vector	ľ
				kinematics_get_normalized_velocity_vector	rwa_kinemat.c
				true_airspeed	rwa_kinemat.c
				norm_vel	rwa_kinemat.c
				pos_unit_vel	rwa_kinemat.c
				neg_unit_vel	rwa_kinemat.c
				velocity_vector	rwa_aerodyn.c
				kinematics_get_linear_velocity_vector	rwa_kinemat.c
				velocity_vector	rwa_aerodyn.c
				gravity_dir_vector	rwa_aerodyn.c
				kinematics_get_gravity_vector	rwa_kinemat.c
				gravity	rwa_kinemat.c
				angle_of_attack	rwa_aerodyn.c
				kinematics_get_aoa	
				side_slip_angle	rwa_aerodyn.c
				kinematics_get_yaw	
				velocity_to_body	rwa_aerodyn.c
				kinematics_get_velocity_to_body	rwa_kinemat.c
				velocity_to_body	rwa_aerodyn.c
				g_force	rwa_aerodyn.c
				kinematics get g force	rwa_kinemat.c
				g_force	rwa_aerodyn.c
				vertical_speed	rwa_aerodyn.c
				kinematics_get_vertical_speed	rwa_kinemat.c
				vertical_speed	rwa_aerodyn.c
			comp	oute_flight_parameters	rwa_aerodyn.c
				ambient_density	rwa_aerodyn.c
				altitude	rwa_aerodyn.c
				air_density ambient temperature	rwa_aerodyn.c
				A AE	

1st

- CZ-A -

4

RWA AIRNET CALL TREE STRUCTURE

3rd

2nd

1st

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c

Reference # W003036 **Rev. 0.0** 22 January 199.

> attitude_control_roll_integrator attitude_control_roll_command hover_aug_pitch_integrator compute_stab_augmentation_gains stab_aug_climb_integrator hover_aug_roll_integrator MAX_ATT_CTL_ANGLE stab_aug_yaw_integrator angular_velocity_vector hover_aug_pitch_angle hover_hold_turned_on hover_aug_roll_angle 8th gravity_dir_vector dynamic_pressure set_pitch_attitude ambient_pressure hover_hold_state set_roll_attitude pitch_damping stab_aug_pitch limiter velocity_vector air_temperature roll_damping true_airspeed stab_aug_roll true_airspeed 7th air pressure 2 pitch rate yaw_rate roll_rate imiter atan2 pitch 6th 8 5th 4th

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c

- A-26 -

Ì

rwa_aerodyn.c

rwa_aerodyn.c

Znd

1st

Reference # W003036 Rev. 0.0 22 January 19.

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c fuelsys.c fuelsys.c rwa_engine.c rwa_engine.c rwa_engine.c

rwa_aerodyn.c

RWA AIRNET CALL TREE STRUCTURE attitude_control_pitch_command attitude_control_pitch_integrator engine_percent_torque engine_drive_torque engine_load_torque number_of_engines fuel struct fuel_level_empty main_rotor_load_torque main_rotor_load_torque angular_velocity_vector integrator_gain tail_rotor_load_torque tail_rotor_load_torque controller_cyclic_pitch engine_power engine_status engine_speed controller_cyclic_roll controller_collective controller_collective controller_tail_rotor gov_p_gain gov_i_gain controller_tail_rotor 8th compute_engine_torque stab_aug_climb limiter stab_aug_yaw pitch engine_simul compute_rotor_loads 7th cyclic_pitch cyclic_roll collective altitude pedal 6th 5th 4th Brd

- A-27 -

	22 January 19.	Reference # W003036	Rev. 0.0		n oniona sur	Twa christer	Twa endine c	rwa encine r	rwa endine c		r wa_engine.c	rwa_engine.c	contract entr		rucioyor.	rueisys.c	Incisherc	rwa_meter.c	rwa_ctl_fsm.c	rwa_ctl_fsm.c	rwa_ctl_fsm.c	rwa_ctl_fsm.c	Twa_meter.c	rwa_meter.c	rwa_meter.c		rwa_meter.c	rwa_ctl_fsm.c	rwa_ctl_fsm.c	rwa_ctl_fsm.c	rwa_ctl_fsm.c	rwa_meter.c	rwa_meter.c		rwa_engine.c	rwa_engine.c	rwa_engine.c		rwa_engine.c	rwa_engine.c	rwa_engine.c	rwa_engine.c	
			PWA AIBNET CALL TREE CTRIICHT IN	ANY ANAVEL CALL INCE SIRUCIUKE	turbine speed	main rotor shaft speed	tail rotor shaft speed	powertrain percent shaft speed	tail rotor drive torque	main mtor drive torme		sound stor cont sound	starting engine	fuel used by envine	tring struct	fuel indicators recuire undefine		meter_torque_set	controls_power_status	controls_status	controls_failure_status	controls_failure_val	conv_frac_to_percent	torque_set_val	torque_oscillation	softp_ins_panel_set	meter_rpm_set	controls_power_status	controls_status	controls_failure_status	controls_failure_val	conv_frac_to_percent	rpm_set_val	softp_ins_panel_set	hours_of_flight	minutes_of_flight	old_minutes_of_flight	sfail_cvent_occurred	engine_is_damaged	transmission_is_damaged	engine_sound_type	last_percent_shaft_speed	8
				Sth																																							
				4th																																							
				3rd																																							
				2nd																																							
				lst																																							
_																																											

– A-28 –

1st

– **A-**29 –

22 January 199: Reference # W003036 Rev. 0.0

2nd

1st

RWA AIRNET CALL TREE STRUCTURE transform_lift_drag_forces_to_body_coordinates compute_body_damping_forces_and_moments moment_body_damping total_incompressible_drag_coefficient fuel_get_current_level fuel struct compute_gross_weight lift_body_virtual_wing vehicle_mass force_body_damping generate_gravity_body_force gross_weight ift_coefficient_vstab 8th virtual_wing_force lift_virtual_wing gravity_force_body gravity_dir_vector velocity_to_body velocity_vector pitch_damping lift_body_vstab yaw_damping roll_damping true_airspeed bec_mat_mul 7th vstab force drag_body total_drag ptich_rate drag_force total_drag lift_vstab yaw_rate lift_vstab roll_rate pitch 6th Sin **5**th 4th Brd

rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c fuelsys.c fuelsys.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

RWA AIRNET CALL TREE STRUCTURE

8th

76

6th

Sth

4th

3rd

2nd

18t

normalized_velocity_vector

true_airspeed

interact_with_ground

gross_weight

Rev. 0.0 Reference # W003036 22 January 19,

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_ground.h

rwa_ground.h

rwa_aerodyn.c sun_wayed.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

cig_altitude_above_gnd sum_body_forces_and_moments_about_ac

force_body

vec_init

force_ground_effect

ground_interaction

ground_torque

grnd

ground force

body_point

main_rotor_thrust

force_body_main_rotor

vec_add

lift_body_virtual_wing

lift_body_vstab

drag_body

force_body_damping

gravity_force_body

rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

moment_body_virtual_wing

moment_body_vstab

loc_ac_vstab_cop

moment_body_cg

loc_ac_cg

moment body

loc_ac_virtual_wing_cop

moment_body_tail_rotor

vec_cross_prod

force_body_tail_rotor

loc_ac_tail_rotor_cop

force_ground_effect

ground_force

– A-31 –

moment_body_main_rotor

ground_torque

Znd

1st

22 January 199. Reference # W003036 Rev. 0.0

rwa_cig_2d.c sun_stubs.c sun_wayed.c rwa_kinemat.c rwa_aerodyn.c rwa_simul.c rwa_kinemat.c rwa_kinemat.c rwa_tads.c rwa_tads.c rwa_meter.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c **RWA AIRNET CALL TREE STRUCTURE** moment_body_damping send to dynamics kinematics 8th vehicle_mass_init moment_body inertia_matrix vehicle_torques vehicle_mass vehicle_forces 7**ch** force_body kinematics_get_body_pitch cmd_heading_val kinematics_get_heading get_cmd_heading_state cig_altitude_above_gnd sound_make_const_sound aerodyn_simple_simul aerodyn_stealth_simul vehicle_update 6th tads_element meter_radar_alt_set tinematics_get_d_pos kinematics_get_roll roll body_pitch get_cmd_heading rotate_sight_angle veh kinematics meter_adi_set meter_dg_set current bank laser_range Sth bbd_bit_out sight printf tads fabs 4th ad

world

							Reference #	: W003036
			RWA A	NIRNE	CALL TREE	TRUCTURE		Rev. 0.0
3rd	4th Full	Sth	6th	7th	8th			
	rotate	get_mat						
	Dec m	at_mul						
	meter	ball_se						
	s-dylos	iend_end_	of_tick					
	cig_2d	l_set_dg_	headin	<u>م</u>			rw?	a cig 2d.c
	•	dg hei	ading_v	al			LWG	a cie 2d.c
	cig_2d	l_set_alt	sen_be	aring			rw?	a cig 2d.c
	•	alt_sen	bearin	le val			rw?	a cig 2d.c
	cig_2d	l_set_las	er_rang	يو			IW	a cig 2d.c
)	laser_r	ange_v	al			IW	a cig 2d.c
	clg_2d	l_set_azi	muth				1W	a cig 2d.c
)	azimu	th_val				IW	a_cig_2d.c
	clg_2d	l_set_ele	vation				IW	a_cig_2d.c
)	elevati	ion_val				IW	a_cig_2d.c
rtc_stc	op time)
tads	simul							
firect	l_simul							
weap	ons_sim	ul					rwa_1	weapons.c
1	autom	atic_gun	n_simul				rwa	weapons.c
		firecti	Sun_si	elected			ž	va_firectl.c
		tads_c	urrently	y_fixed.	forward		L	rwa_tads.c
		firectl	gun_se	sected_1	y_pilot		M	va_firectl.c
			pil_w	eapon_	elect_state		ML .	va_firectl.c
		bcs_tu	ITTL_COIN	puter_)ff			
		bcs_se	t_ballist	tics_con	1 puter		I'wa_	weapons.c
			super	elevati	ua		ML	/a_hydra.c
			, d				rwa_1	weapons.c
			qz				rwa	weapons.c
			bcs_ra	ange			rwa_	weapons.c
			ballist	tics_calc	8,			ball_calc.c
				ballis	tics_calc_time			bal_calc.c
					sqrt			
					fprintf			
				atan				
		gun_o cig_2d	ut_of_c _set_st	ontstrai atus_m(nts :ssage		rwa _.	_wapons.c a_cig_2d.c
		b)			
					– A-33 –			

TWA_

22 January 19: erence # W003036 Rev. 0.0

2nd

1st

RWA AIRNET CALL TREE STRUCTURE

4th

3rd

2nd

1st

rwa_weapons.c rwa_tads.c rwa_weapons.c rwa_tads.c rwa_weapons.c rwa_weapons.c rwa_firectl.c rwa_firectl.c rwa_firectl.c rwa_firectl.c rwa_weapons.c rwa_weapons.c rwa_weapons.c rwa_weapons.c rwa_hydra.c rwa_config.c rwa_config.c rwa_weapons.c rwa_weapons.c rwa_weapons.c rwa_weapons.c rwa_weapons.c rwa_weapons.c sun_stubs.c

rwa_weapons.c

cpg_weapon_select_state pil_weapon_select_state continuous_gun_sounds gun_impacts_per_round sound_make_const_sound firectl_rocket_selected 8th kinematics_get_d_pos ammo_check_availability fire_g_to_w_mat bcs_get_super_elevation super_elevation gun_impacts_per_round veh_kinematics event_get_event projectile_drift new_gun_firing_state tracer_round_interval weapons_fire_round 7th d2f_bec_copy bias_vector scaled_rand vec_scale rightwing_stores leftwing_stores rotate_get_angle shot_interval hurret_stores 6th shot_counter ammo_type fabs bias_vector gun_switch gun_limits new_shot ast_shot sight tads Sth

- A-34 -

RWA AIRNET CALL TREE STRUCTURE

tads_currently_fixed_forward

8th

75

6th

5th

4th

3rd

2nd

13t

Reference # W003036 **Rev.** 0.0 22 January 199.

rwa_tads.c rwa_firectl.c rwa_weapons.c rwa_weapons.c rwa_weapons.c

rwa_tads.c rwa_tads.c

rwa_gunmnt.c rwa_weapons.c rwa_weapons.c rwa_weapons.c rwa_tads.c

ball_fire.c rwa_rounds.c rwa_rounds.c

rwa rounds.c rwa_weapons.c

rkt_hydra.c

rwa_weapons.c

rwa_weapons.c rwa_weapons.c

rwa_weapons.c

rwa_cig_2d.c rwa_tads.c

rwa_weapons.c

bcs_get_super_elevation map_get_tracer_from_ammo_entry network_can_i_really_use_network bes booted up firectl_gun_selected_by_pilot bcs_computer_status gunmnt_get_sight_to_world ______fixed_gun_element rotate_get_mat rounds_update_last_volley network_send_shell_fire_pkt gunmnt_element ballistics_fire_a_round mat_mat_mul mat_rof)init2 gun_munition_data last_volley continuous_gun_sounds make_sound_const_sound sound make const sound null_vehicleID cig_2d_set_inner_box rotate_get_loc current_reticle_state rounds_get_volley fixed_gun new_reticle_state gun_firing_state gunmnt world sight ammo_fired reticle_on missile_simul sight

– **A-**35 –

hull

22 January 1995 Reference # W003036	NEV. U.U				rwa_weapons.c	rwa_weapons.c	rwa_cig_2d.c	rwa_weapons.c	•	rwa_weapons.c				miss_stinger.c	,	targ_pursuit.c			rwa_weapons.c	miss_tow.c	miss_hellfr.c	sun_stubs.c		miss_hellfr.c	miss_hellfr.c	miss_atgm.c	util_eval.c	miss_atgm.c	util_eval.c	util_eval.c	miss_atgm.c	miss_atgm.c	targ_ground.c	targ lev los.c)	miss_tow.c			
	RWA AIRNET CALL TREE STRUCTURE	1st 2nd 3rd 4th 5th 6th 7th 8th	rolate_get_mat	vec_mat_mul	stinger_searching	current_search_state	cig_2d_set_stinger_location	air_veh_list_id	rva_dont_build_list	stinger_ready	rva_build_list	world	rotate_get_loc	missile_stinger_pre_launch	near get preferred veh near vector	missile_target_pursuit	sec_copy	printf	tows	missile_tow_fly	max range limit	veh_kinematics	kinematics_range_squared	max_range_squared	speed_factor	tow_burn_speed_coeff	missile_util_eval_poly	toe_burn_turn_coeff	missile_util_eval_cos_coeff	missile_util_eval_poly	tow_coast_speed_coeff	tow_coast_turn_coeff	missile_target_ground	missile target level los	missile_util_flyout	missile_tow_stop	missile_util_comm_stop_missile	missile_util_comm_check_intersection	missile_util_comm_cneck_actoriate

- **A-**36 -

22 January 199. Reference # W003036	Rev. 0.0	rwa_weapons.c		miss_hellfr.c	miss_hellfr.c	miss_hellfr.c	util_eval.c	miss_hellfr.c	miss hellfr c			miss hellfr.c	targ ground.c	targ_agm.c	targ_agm.c										util_Ayout.c							util_comm.c	4-4-	sun_stubs.c	util_comm.c	
)	RWA AIRNET CALL TREE STRUCTURE	hellfires	Laser_point missile building dis		speed_factor			neurine_coast_speed_coeff	max range limit	veh kinematics	kinematics_range_squared	max_range_squared	missile_target_ground	missile_target_agm	agm_seek	sqrt	vec_scale	vec_add	pac_sub	pec-copy	sqrt	vec_dot_prod	ver_scale	vec_add	missile_util_flyout	ans_saa	vec_dot_prod	Dec_copy	sqrt	vec_scale	vec_add	missile_util_comm_ity_missile	printf	ven_kunematucs kinematics rance sauared	missile_comm	– A -37 –
	Ind 40																																			
	2nd 3																																			
	1st																																			

22 January 195. Reference # W003036	Rev. 0.0					util_comm.c		uni conurc			miss_hellfr.c	util comm.c	util comm.c		rwa cie 2d.c	rwa firectl.c	rwa firectl.c	rwa firech c	rue config o	rwa_nrecu.c	rwa_firectl.c		rwa_cig_2d.c	rwa_cig_2d.c))			miss_stinger.c	miss_stinger.c	miss_stinger.c	miss_stinger.c	miss_stinger.c	util eval.c	miss stinger.c	נ ו			miss_hellfr.c	sun_stubs.c	
		RWA AIRNET CALL TREE STRUCTURE 1st 2nd 3rd 4th 5th 6th 7th 8th	map_get_get_tracer_from_ammo_entry	store_traj_chord	missing appearance missing with commentation		prove missile comm		network Senta Trans Timpaci	thermork stop missile flyout	missile-hellfire_stop	missile_util_comm_stop_missile	missile_util_comm_check_intersection	missile_util_comm_check_detonate	ciz_2d_check_tof_countdown	firect! hellfire_selected	pil weapon select state	pil was position	rwa mnfie eet was munition info	cpg_weapon_select_state	cpg_was_position	cig_2d_check_tof_countdown_msg	is_printing_tof	print_tof	laser_range	cig_2d_set_tof	missile_hellfire_calc_tof	missile_stinger_fly_missiles	num_stingers	stinger_array	missile_stinger_fly	stinger_burn_speed_coeff	missile_util_eval_poly	stinger_coast_speed_coeff	sqrt	COS	near get preferred veh near vector	max_range_limit	veh_kinematics	- A -38 -

22 January 199. Reference # W003036		miss_hellfr.c targ_ground.c	targ_unguide.c	rwa_rounds.c	rwa_rounds.c	rwa_rounds.c	rwa_rounds.c	fuze_prox.c						•	sun_stubs.c		rwa_rotate.c			rwa_kinemat.c			-	rwa_aerodyn.c	rwa_aerodyn.c	rwa_aerodyn.c							
	1st 2nd 3nd 4th 5th 6th 7th 8th kinematics range souared	max_range_squared missile_target_ground missile_target_intercept_pre_burnout missile_target_intercept	missile_target_unguided missile_util_flyout missile_stinger_stop missile_fuze_prox missile_util_comm_check_detonate	rounds check volleys	first_volley	last_volley	rounds_free_volley	free_ptr	volley_rree	jtæ hæd eve tracker vereive data	head one tracker send result	Lrf Err String	forintf	RTC_KINEMATICS_SIMUL	veh_kinematics	kinematics_simul	hittet simul	rotate hull simul	rolate simul	veh spec kinematics simul	world	hull	rotate_get_loc	alititude	velocity_vector	true_airspeed	- A-39 -						
22 January 195 Reference # W003036 Rev. 0.0	rwa_aerodync.	rwa_kinemat.c	rwa_kinemat.c	rwa_kinemat.c	rwa_kinemat.c	rwa_kinemat.c	rwa_aerodyn.c rwa_kinemat.c			rwa_kinemat.c	rwa_aerodyn.c	rwa_aerodyn.c		rwa_kinemat.c	:	rwa_kinemat.c	rwa_aerodyn.c	rwa_kinemat.c		rwa_nyara.c	rkt_hydra.c	rkt_hydra.c	rkt_hydra.c		IKLNYURA.C				sub_m73.c	util_comm.c	e mane likin	nui-commc	
---	-----------------------------------	---------------	---------------	---------------	---------------	---------------	--------------------------------	--------------------------	----------------	---------------	---------------	----------------	--------------	----------------	-----------------	---------------	---------------	---------------	--	-------------	---------------------------	----------------	-------------	-------------------	--------------------------------	------------------------	---------	--------------------------------------	------------------	---------------------------------	--------------	--------------	----
1st 2nd 3rd 4th 5th 6th 7th 8th str	indicated_airspeed air_density	norm_vel	sin_aca	COS_BACA	sin_yaw	COS yaw	velocity_to_body ang vel	vehicle_angular_velocity	rotate_get_mat	. gravity	g_force	vertical_speed	vec_dot_prod	velocity_pitch	astr 2 2 2 2	body_pitch	roll · ·	heading		hydra_simul	missile_hydra_fly_rockets	rkts_in_flight	hydra_fly	missile_hydra_fly	ball_table missils_m73 init	missile flechette init	printfe	missile_hydra_fly:missile_hydra_stop	missile_m73_drop	missile_util_comm_check_sub_mun		missile_comm	\$

.

- A-40 -

zz January 17. Reference # W003036	Rev. 0.0		sun stubs.c	Ì			n povem mis	oui waycur					sup_m/3.c	sub_m73.c	util comm.c		sun_stubs.c		util comm.c						siin waved r	ant malcare		;	sub_m73.c					sub m73 c		util_comm.c		util comm.c	sun stubs.c				
	RWA AIRNET CALL TREE STRUCTURE	4th 5th 6th 7th 8th	veh_kinematics	kinematics_range_squared	network ifire init burst	network_ifire_send_detomation	map get ammo entry from network type	immerte aueue effect	network_send_dencie_tmpact	scaled_rand	Sart	trai un		zero_velocity	missile_util_comm_release_sub_munition		ven_kinematics	kinematics_range_squared	missile comm	store trai chord	ment net month	encent Set Cocuting	sec_copy	d2f_bec_copy	map get ammo entry from network type	network send moinstile fire wit	investo autor affact		missile_m73_get_impact	scaled_rand	sin	alas scale	the add	miacila m73 imnart	Scales France	missile_util_comm_check_sub_mun	printf	missile comm	veh kinematics	rinematics musted	neiwork_ijtre_inui_ourst metriort ikre send detimation	- A.41 -	
	•	3rd																																									
	•	Znd																								•																	
		lst																																									

_	_		

lst

22 January 195 Reference # W003036	Rev. 0.0			sun_wayed.c			sub_m73.c	util comm.c	I	util comm.c	sun stubs.c	l			sun_wayed.c	, I			sub m73 c	sub_m73.c	Sup Invoic	util_comm.c		sun_stubs.c		util_comm.c					sun_wayed.c			sub_m73.c				5.th m13.	Sub_filition	חווו־נעטיווווינ
		RWA AIRNET CALL TREE STRUCTURE	h 6th 7th 8th	map_get_ammo_entry_from_network_type	impacts_queue_effect	network_send_oehicle_impact	missile_m73_drop	missile_util_comm_check_sub_mun	printf	missile comm	veh kinematics	kinematics range squared	network ifire init burst	network ifire send detonation	map get ammo entry from network type	impacts aveve effect	network send vehicle invact	scaled rand		uaj_up		missile_util_comm_release_sub_munition	printf	veh_kinematics	kinematics_range_squared	missile_comm	store trai_chord	coent get eventid	DEC CODV	d2f_bec_copy	map_get_ammo_entry_from_network_type	network send projectile fire pkt	impacts_gueue_effect	missile m73 get impact	scaled rand	stin	nar erale		zero_velocity	missile_util_comm_release_sup_muruon
			58																																					
			4 F																																					
			3rd																																					
			2nd																																					

22 January 199.	Reference # W003036	Rev. 0.0				sun_stubs.c		util_comm.c				sun waved.c				alt huden o		sub_flech.c	sub_flech.c	util_eval.c		rwa hvdra.c		uze_prox.c	fuze_prox.c			fuze prox.c		Inze-prox.c				fuze_prox.c	ĩ	J'XUUU ƏZIIJ		ruze_prox.c			
			RWA AIRNET CALL TREE STRUCTURE	1st 2nd 3rd 4th 5th 6th 7th 8th	printf	veh_kinematics	kinematics_range_squared	missile_comm	store trai chord	event set eventid		usjevenergy men net samme entry from network tune	understand and and and and and and	network_serve_projectue_pro_pro	noto-and the second		flechette veh_list	missile flechette fly	flechette_speed_coeff	missile util eval poly	טפן שאר חלל		missile_fuze_all_prox	missile_fuze_prox	missile_fuze_invest_prox	print	near get next veh near point			prox_free	mailoc	near_get_veh_if_still_near_point	free_prox	fire ptr				missile_fuze_detonate_prox	vec_scale	finite	

- A-43 -

22 January 199. Defemence # Winn2026	Rev. 0.0				fuze_prox.c		fuze_prox.c		fuze_prox.c			fuze_prox.c	util_comm.c	util_comm.c			util_comm.c	util_comm.c	sun stubs.c				sun_wayed.c		•	sub_flech.c	util_comm.c		sun_stubs.c		util_comm.c					sun_wayed.c			
		RWA AIRNET CALL TREE STRUCTURE	1st 2nd 3rd 4th 5th 6th 7th 8th	free_prox	free_ptr	printf	prox_free	free	12d_vec_scale	becsub	per dot prod	f2d mat transpose	missile util comm fuze detonate	missile comm	erint -	ber mut	missile util comm check sub mun	miesile comm		kinematics_range_squared	network_ifire_init_burst	network_iftre_send_detonation	map_get_ammo_entry_from_network_type	impacts_queue_cffect	network_send_vehicle_impact	zero_vector	missile_util_comm_release_sub_munition	printf	veh kinematics	kinematics_range_squared	missile_comm	store_traj_chord	event_get_eventid	Deccopy	d2f_bec_copy	map_get_ammo_entry_from_network_type	network send projectile fire pkt	impacts_queue_effect	

- A-44 -

22 January 199. Reference # W003036	Rev. 0.0		fuze_prox.c		ruze pmx.c	fuze prox.c		fuze_prox.c	•	fuze_prox.c				fuze_prox.c	util_comm.c	util_comm.c			fuze_prox.c	fuze_prox.c	fuze_prox.c		fuze_prox.c			rkt_hydra.c	rkt_hydra.c	rkt_hydra.c	rwa_hydra.c					rwa_hydra.c	•	rwa_hydra.c			
•	BWA ATBNET CALL TEBUE	1st 2nd 3rd 4th 5th 6th 7th 8th	missile_fuze_detonate_prox	vec_scale mintf	free_prox	free_ptr	printf	prox_free	fre	f2d_vec_scale	ans_200	vec_dot_prod.	poc_add	f2d_mat_transpose	missile_util_comm_fuze_detonate	missile_comm	printf	bec_mat_mul	missile_fuze_prox_stop	free_prox	free_ptr	printf	prox_free	free	network_ifire_send_indirect_fire	missile_hydra_purge_free_missiles	rkts_in_flight	hydra_fly	pylons_set	pylon_R	rotate_set_no_rotate	pylon_L	articulation	left rocket launch	hydra launch rocket	right rocket launch	Lrf Post	Lrf Err String	

- **A-4**5 -

.

22 January 199: Reference # W003036 Rev. 0.0	rwa_stubs.c	rwa_main.c	rwa_sound.c rwa_sound.c rwa_mem.c	rwa_sound.c	rwa_sound.c rwa_vision.c	rwa_vision.c	rwa_sound.c rwa_sound.c rwa_mem.c	rwa_sound.c
RWA AIRNET CALL TREE STRUCTURE	1st 2nd 3nd 4th 5th 6th 7th 8th <i>fprintf</i> RTC_REPAIR_SIMUL repair_simul RTC_NET_SIMUL net simul	io_simul veh_spec_stop idr_reed	sound_reset dont_use_sound	fifo_enqueue sound_error fprintf	musn veh_sound_array vision_break_all_blocks clear_view_flags get_cig2_present	sc-ugr process vision_clear_tc_board clear_view_flags set_view_flags Lrf Un Init Lrf Err String fprintf	hull_ummit sound_reset sounds sounds	Ityo_enqueue sound_error fprintf fflush veh_sound_array cig_unimit dtad_unimit

- A-46 -

22 January 195 Reference # W003036 Rev. 0.0	rwa_main.c	sun_stubs.c	Train.c	
1st 2nd 3nd 4th 5th 6th 7th 8th bbd_unimit	veh_spec_exit keyboard_exit_gracefully rwa_config_exit_gracefully vision_break_all_blocks timers get_current_time	printf timers_get_current_tick timers_elapsed_milliseconds network_print_statistics net_handle net_close men_free_charad	reboot on shutdown	– A-4 7 –

Appendix B - Source code listing for rwa_aerodyn.c.

The following appendix contains the source code listing for rwa_aerodyn.c for convenience in document maintenance and understanding of the CSU.

Appendix B - Source Code Listing for rwa_aerodyn.c

10/07 19:00:23 cm-adst Exp \$ */ /*
* \$Log: rwa_aerodyn.c,v \$ * Revision 1.1 1992/10/07 19:00:23 cm-adst
* Initial Version
*/
<pre>static char RCS_ID[] = "\$Header: /a3/adst-cm/RWA/simnet/vehicle/rwa/src/RCS/rv aerodyn.c,v 1.1 1992/10/07 19:00:23 cm-adst Exp \$";</pre>
/**************************************
t t
* Kevisions:
Version Date Author Title SP/CR Number
• 1.2 10/09/92 R. Branson Data File Initiali-
 Zation 1.3 10/16/92 R. Branson Data filenames changed to eight charachters
1.4 10/30/92 R. Branson Added pathname to data directory
SP/CR No. Description of Modification
Hard coded defines changed to array elements.
Aerodyn data array added.
Aerodyn initialization data array added.
Aerodyn stealth data array added. Aerodyn simple data array added
Added file read for aerodyn data, aerodyn initiali-
zation data, aerodyn stealth data, and aerodyn
simple data to the "aerodyn_init" function.
Added "/simnet/data/" to each data file pathname.
/
/******
e e e e e e e e e e e e e e e e e e e
MAINTAINER: James Chung *

- B-2 -

- 8/02/90 carol: added simplified aero dynamics *
- * Copyright (c) 1989 BBN Systems and Technologies Corporation *
- * All rights reserved.
- *

* Interim aerodynamics model for a generic rotary-wing aircraft*

- * with flight characteristics similar to that of a McDonnell *
- * Douglas AH-64 Apache attack helicopter.

#include "stdio.h"
#include "simstdio.h"
#include "math.h"
#include "sim_dfns.h"
#include "sim_types.h"
#include "sim_macros.h"
#include "libmatrix.h"
#include "libmath.h"

#include "rwa_engine.h"
#include "vehicle.h"
#include "aero_param.h"
#include "std_atm.h"
#include "ground.h"
#include "rwa_ground.h"
#include "parameters.h"
#include "rwa_kinemat.h"
#include "libmun.h"
#include "libhull.h"
#include "libkin.h"
#include "rwa_aerodyn.h"

#define MOMENT_OF_INERTIA_X	aero_data[0]
#define MOMENT_OF_INERTIA_Y	aero_data[1]
#define MOMENT_OF_INERTIA_Z	aero_data[2]

#define AIRFRAME_MASS
#define ORDINANCE_MASS
#define GRAV_CONSTANT
#define CG_AC_X
#define CG_AC_Y
#define CG_AC_Z

aero_data[3] aero_data[4] aero_data[5] aero_data[6] aero_data[7] aero_data[8]

#define VIRTUAL_WING_AREA	aero_data[9]
#define VIRTUAL_WING_COP_AC_X	aero_data[10]
#define VIRTUAL_WING_COP_AC_Y	aero_data[11]
<pre>#define VIRTUAL_WING_COP_AC_Z</pre>	aero_data[12]
<pre>#define WING_LIFT_COEFFICIENT_FIT_3</pre>	aero_data[13]
<pre>#define WING_LIFT_COEFFICIENT_FIT_2</pre>	aero_data[14]

#define WING_LIFT_COEFFICIENT_FIT_1 aero_data[15]
#define WING_STALL_AOA (deg_to_rad(aero_data[17]))
#define VSTAB_AREA aero_data[18]
#define VSTAB_COP_AC_X aero_data[19]
#define VSTAB_COP_AC_Y aero_data[20]
<pre>#define VSTAB_COP_AC_Z aero_data[21]</pre>
<pre>#define VSTAB_LIFT_COEFFICIENT_1 aero_data[22]</pre>
<pre>#define VSTAB_STALL_SSA (deg_to_rad(aero_data[23]))</pre>
#define MAIN ROTOR COP_AC_X aero_data[24]
#define MAIN ROTOR COP AC Y aero_data[25]
#define MAIN ROTOR COP AC Z aero_data[26]
#define MAIN ROTOR MAX THRUST aero data[27]
#define MAIN ROTOR MAST TILT (deg to rad(aero data[28]))
#define MAIN ROTOR MAX LOAD TOROUE aero data[29]
#define MAIN ROTOR MAX PITCH MOMENT aero data[30]
#define MAIN ROTOR MAX ROLL MOMENT aero data[31]
#define MAIN ROTOR TOROLIF COLIPLING GAIN aero data[32]
#define MAIN ROTOR GROUND FFFFCT FACTOR aero data[33]
#define TAIL_ROTOR_COP_AC_X aero_data[34]
#define TAIL_ROTOR_COP_AC_Y aero_data[35]
<pre>#define TAIL_ROTOR_COP_AC_Z aero_data[36]</pre>
#define TAIL_ROTOR_MAX_THRUST aero_data[37]
#define TAIL_ROTOR_MAX_LOAD_TORQUE aero_data[38]
#define P_DRAG_COEFF_CONST aero_data[39]
#define P DRAG TAS BREAK aero data[40]
#define P DRAG COEFF BREAK aero data[41]
#define P DRAG TAS MAX aero data[42]
#define P DRAG COEFF MAX aero data[43]
#define TOTAL WETTED SURFACE AREA aero data[44]
······································
<pre>#define ATT_DAMPING_MODE_SIMPLE TRUE /************************************</pre>
Hover hold changes:
if ATT DAMPING MODE SIMPLE
when slow moving (airspeed < 10 knots) the max pitch is 5 degrees
medium $(10 \le airspeed \le 30)$ pitch is 10 degrees
other (30 = airspeed) nitch is 15 degrees
also
when aircneed >= 10 knots nitch is proportional to log(speed)
otherwise pitch is +/- 5 degrees
Paul J. Metzger 11-1-89
static KEAL MAX_ATT_CTL_ANGLE;
<pre>#define MAX_ATT_CTL_ANGLE_STOP aero_data[45]</pre>

Appendix B - Source Code Listing for rwa_aerodyn.c

#define MAX_ATT_DAMPING_FACTOR aero_data[46]
#define HOVER_SLOW_LIMIT aero_data[47]
#define HOVER_AUG_PITCH_RESET_VALUE aero_data[48]
static int hover_hold_turned_on; /* transition mode, TRUE or FALSE */

#if ATT_DAMPING_MODE_SIMPLE
#define MAX_ATT_CTL_ANGLE_NORM (deg
#define MAX_ATT_CTL_ANGLE_MED (deg_)
#define MAX_ATT_CTL_ANGLE_SLOW (deg_
#define HOVER_MED_LIMIT aero_
#endif

(deg_to_rad (aero_data[49])) (deg_to_rad (aero_data[50])) (deg_to_rad (aero_data[51])) aero_data[52]

#define ATT CTL PITCH_P_GAIN	aero_data[53]
#define ATT_CTL_PITCH_I_GAIN	aero_data[54]
#define ATT_CTL_ROLL_P_GAIN	aero_data[55]
#define ATT_CTL_ROLL_I_GAIN	aero_data[56]

aero_data[57] #define HOVER_AUG_ROLL_P_GAIN #define HOVER_AUG_ROLL_I_GAIN aero data[58] #define HOVER_AUG_PITCH_P_GAIN aero_data[59] #define HOVER_AUG_PITCH_I_GAIN aero_data[60] aero_data[61] #define HOVER_AUG_YAW_P_GAIN aero data[62] #define HOVER_AUG_YAW_I_GAIN aero_data[63] #define HOVER_AUG_CLIMB_P_GAIN #define HOVER_AUG_CLIMB_I_GAIN aero_data[64] #define MAX_STAB_AUG_PITCH_ROLL_CONTROL aero_data[65] #define MAX_STAB_AUG_YAW_CLIMB_CONTROL aero_data[66]

#define ROLL_RATE_DAMPING_GAIN	aero_data[67]
#define PITCH_RATE_DAMPING_GAIN	aero_data[68]
#define YAW_RATE_DAMPING_GAIN	aero_data[69]
#define VERTICAL_RATE_DAMPING_GAIN	aero_data[70]
#define LATERAL_VELOCITY_DAMPING_GAIN	aero_data[71]

#define LIFT_COEFF_VIRTUAL_WING	aero_data[72]
#define OSW ALD_EFFIC_FACTOR	aero_data[73]
#define INDUCED_DRAG_COEFF	aero_data[74]

static REAL aero_data[100] = { 50000.000, 50000.000, 50000.000, 4881.000, 1591.000, 9.8, 0.0, 0.0, -0.100, 25.0, 0.0, 0.0. 0.0. 0.0. 0.0. 1.0, 0.0, 30.0, 3.0, 0.0, -9.1, 60.0, 0.0. 0.0, 5.0, 2.5, 76476.0, 2.0, 123500.0, 0.0, 100000.0, 100000.0, 0.5, 0.4, 0.0. 0.0, -9.1, 0.0, 8909.1, 1684.8, 50.0, 0.02, 100.0, 0.06, 50.0. 5.15, 6.0, 4.5, 0.44, 15.0. 15.46. 2.5. 0.05, 10.0, **6.0**.

5.0, 0.05, 0.1, 0.001, 0.1, 0.001, 10.0, 5.0, 1.0, 0.5, 0.05, 100000.0, 100000.0, 100000.0, 0.2, 0.6, 0.9, 2000.0. 1000.0, 0.0, 0.0, 0.0. 0.0, 0.0, 0.0. 0.0. 0.0. 0.0, 0.0. 0.0. 0.0, 0.0, 0.0, 0.0, 0.0, 0.0. 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 0.0. 0.0, 0.0, }; static REAL aero_init[20] = { 0.0, 0.0, 0.0. 0.0, 0.0, 0.0. 0.0. 0.0. 0.0. 0.0. 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; static REAL aero_simple[20] = { 10.0, 500000.0, 0.5, 48.0, 0.15, 100.0, 150000.0, 1.5, 0.7, 0.03, 400000.0, 100.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0); static REAL aero_stealth[20] = { 80.0. 30.0, 10.0, 1000000000.0, 1000000000.0, 5000.0, 25000.0, 0.03, 0.0, 0.0, 0.0, 0.0, 0.0. 0.0, 0.0, 0.0, 0.0. 0.0, 0.0, 0.0 }; static int hover_hold_state; /* OFF or ON */ static REAL M. TN_ROTOR_MAST_TILT_SIN; static REAL MAIN_ROTOR_MAST_TILT_COS; static REAL altitude: /* m*/ static REAL true_airspeed; /* m/sec */ static REAL last_airspeed = 0; /* m/sec */ static REAL vertical_speed; /* m/sec */ static REAL roll; /* rad */ static REAL pitch; /* rad */ static REAL roll rate; /* rad/sec */ static REAL pitch_rate; /* rad/sec */ static REAL g_force; static REAL last_g_force; static REAL yaw_rate; /* rad/sec */ static REAL pitch_damping; static REAL roll_damping; static REAL yaw_damping;

/* deg R */ static REAL ambient_temperature; static REAL ambient_pressure; /* N / m^2 */ /* kg / m^3 */ static REAL ambient_density; /* Ň / m^2*/ static REAL dynamic_pressure; /*N*/ static REAL main_rotor_thrust; /*N*/ static REAL tail_rotor_thrust; static REAL lift_virtual_wing; /*N*/ static REAL lift_vstab; static REAL lift_coefficient_virtual_wing; static REAL lift_coefficient_vstab; static REAL total_drag; static REAL total_incompressible_drag_coefficient; /*N*/ static REAL gross_weight; static REAL vehicle_mass; /* kg */ /* rad */ static REAL angle_of_attack; /* rad */ static REAL side_slip_angle; /* N-m */ static REAL main rotor_load_torque; /* N-m */ static REAL tail_rotor_load_torque; static REAL powertrain_percent_shaft_speed; /* 0-1 */ static REAL cyclic_pitch; /* -1 to 1 */ /* Flight controls */ /* -1 to 1 */ /* Flight controls */ static REAL cyclic_roll; /* 0 to 1 */ static REAL collective; static REAL pedal; /* -1 to 1 */ static REAL stab_aug_pitch; static REAL stab_aug_roll; static REAL stab_aug_yaw; static REAL stab_aug_climb; static REAL stab_aug_pitch_integrator; static REAL stab_aug_roll_integrator; static REAL stab_aug_yaw_integrator; static REAL stab_aug_climb_integrator; static REAL hover_aug_pitch_angle; static REAL hover_aug_roll_angle; static REAL hover_aug_pitch_integrator; static REAL hover_aug_roll_integrator; static REAL attitude_control_roll_integrator; static REAL attitude_control_pitch_integrator; static REAL attitude_control_roll_command; static REAL attitude_control_pitch_command; static REAL controller_cyclic_pitch; static REAL controller_cyclic_roll; static REAL controller_collective; static REAL controller_tail_rotor;

static REAL *angular_velocity_vector; /* kinematic state vectors */
static REAL *normalized_velocity_vector;
static REAL *velocity_vector;
static REAL *gravity_dir_vector;

static REAL p_drag_fit_coeff[9];

/* parasite drag fit coefficients */

static REAL oswald_efficie..cy_factor; static REAL induced_drag_coefficient; static REAL parasite_drag_coefficient;

static VECTOR loc_ac_main_rotor_cop; static VECTOR loc_ac_tail_rotor_cop; static VECTOR loc_ac_virtual_wing_cop; static VECTOR loc_ac_vstab_cop; static VECTOR loc_ac_cg;

static VECTOR lift_body_virtual_wing; static VECTOR lift_body_vstab; static VECTOR force_body_main_rotor; static VECTOR force_body_tail_rotor; static VECTOR force_body_damping; static VECTOR drag_body; static VECTOR gravity_force_body; static VECTOR force_ground_effect; static VECTOR force_body; /* body [X Y Z] */

/* sum of all forces */

/* body [X Y Z] */

static VECTOR moment_body_virtual_wing; static VECTOR moment_body_vstab; static VECTOR moment_body_main_rotor; static VECTOR moment_body_torque_coupling; static VECTOR moment_body_tail_rotor; static VECTOR moment_body_cg; static VECTOR moment_body_damping; static VECTOR moment_body;

static VECTOR virtual_wing_force; static VECTOR vstab_force; static VECTOR drag_force; /* velocity [H D L] */

static T_MAT_PTR velocity_to_body;

/* vel -> body xform */

static T_MATRIX inertia_matrix =
{ (50000.0, 0, 0),
{0, 50000.0, 0},
{0, 0, 50000.0};

int funny_little_kludge = 1;/* default is logarithmic for complex model */
static int aerodyn_debug = 0;

static int selected_model = COMPLEX_MODEL; /* default: James' model */
static int allow_takeoff = TRUE; /* allow stealth model to take off */
static int level_view = TRUE; /* unset any pitch */
static REAL ground_height = 2.8;

void aero_body_point_set_front_wheels(distance_from_hull)
REAL distance_from_hull;

*/

Appendix B - Source Code Listing for rwa_aerodyn.c

```
ſ
  body_point[0].position[Z] = distance_from_hull;
  body_point[1].position[Z] = distance_from_hull;
  ground_height = (REAL)(((int)(-distance_from_hull * 10)) / 10.0);
  printf( "Front Wheels set %1.4lf m. under Hull.\n",
      distance_from_hull);
}
void aero_body_point_set_rear_wheel( distance_from_hull )
REAL distance_from_hull;
1
  body_point[2].position[Z] = distance_from_hull;
  printf( "Rear Wheel set %1.4lf m. under Hull.\n",
      distance_from_hull);
}
REAL aero_get_ground_height()
ł
  return( ground_height );
}
void aerodyn_init()
ł
 int i;
/* DEFAULT DATA FOR rwa_aerodyn.c READ FROM FILE
 int j;
  float
          data_tmp;
 char
          descript[64];
 FILE
          *fp;
     fp = fopen("/simnet/data/rwa_aero.d","r");
   if(fp==NULL)
        fprintf(stderr, "Cannot open /simnet/data/rwa_aero.d\n");
        exit();
        }
   rewind(fp);
   /*
         Read array data */
   i=0;
   while(fscanf(fp,"%f", &data_tmp) != EOF){
        aero_data[j] = data_tmp;
        fgets(descript, 64, fp);
        printf("aero_data(%3d) is%11.3f %s", j, aero_data[j],
            descript);
        ++j;
       }
```

```
Appendix B - Source Code Listing for rwa_aerodyn.c
     fclose(fp);
                                                                       +/
 /* END DEFAULT DATA FOR rwa_aerodyn.c READ FROM FILE
 /* DEFAULT INITIALIZATION DATA FOR rwa_aerodyn.c READ FROM FILE
                                                                              */
     fp = fopen("/simnet/data/rw_ae_in.d","r");
     if(fp==NULL)
         fprintf(stderr, "Cannot open /simnet/data/rw_ae_in.d\n");
         exit();
         1
    rewind(fp);
         Read array data */
     /*
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
         aero_init[j] = data_tmp;
         fgets(descript, 64, fp);
        printf("aero_init(%3d) is%11.3f %s", j, aero_init[j],
             descript);
         ++j;
        }
    fclose(fp);
/* END DEFAULT INITIALIZATION DATA FOR rwa_aerodyn.c READ FROM FILE */
/* DEFAULT SIMPLE INITIALIZATION DATA FOR rwa_aerodyn.c READ FROM FILE */
    fp = fopen("/simnet/data/rw_ae_sp.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/rw_ae_sp.d\n");
        exit();
        1
    rewind(fp);
    /*
         Read array data */
    j=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        aero_simple[j] = data_tmp;
        fgets(descript, 64, fp);
        printf("aero_simple(%3d) is%11.3f %s", j, aero_simple[j],
            descript);
        ++i;
        }
    fclose(fp);
/* END DEFAULT SIMPLE INITIALIZATION DATA FOR rwa_aerodyn.c READ FROM FILE*/
/* DEFAULT STEALTH INITIALIZATION DATA FOR rwa_aerodyn.c READ FROM FILE */
```

fp = fopen("/simnet/data/rw_ae_sl.d","r");

```
Appendix B - Source Code Listing for rwa_aerodyn.c
```

```
if(fp==NULL){
         fprintf(stderr, "Cannot open /simnet/data/rw_ae_sl.d\n");
         exit();
    }
    rewind(fp);
     /*
          Read array data */
    j=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
         aero_stealth[j] = data_tmp;
         fgets(descript, 64, fp);
         printf("aero_stealth(%3d) is%11.3f %s", j, aero_stealth[j],
             descript);
         ++j;
    }
    fclose(fp);
/* END DEFAULT STEALTH INITIALIZATION DATA FOR rwa_aerodyn.c READ FROM
FILE*/
  engine_init();
 cyclic_pitch =
                          aero_init[0];
 cyclic roll =
                         aero_init[ 1];
 if (selected_model != STEALTH_MODEL)
    collective =
                         aero_init[ 2];
 else
 ſ
    collective = 0.5;
    allow_takeoff = TRUE;
 ł
 pedal =
                        aero_init[ 3];
 stab_aug_pitch_integrator =
                                 aero_init[4];
 stab_aug_roll_integrator =
                                aero_init[ 5];
 stab_aug_yaw_integrator =
                                  aero_init[ 6];
 stab_aug_climb_integrator =
                                  aero_init[7];
 attitude_control_pitch_integrator = aero_init[ 8];
 attitude_control_roll_integrator = aero_init[9];
 hover_aug_pitch_integrator =
                                  aero_init[10];
 hover_aug_roll_integrator =
                                 aero_init[11];
 hover_aug_pitch_angle =
                                 aero_init[12];
 hover_aug_roll_angle =
                                aero_init[13];
 hover_hold_state = OFF;
 hover_hold_turned_on = FALSE;
 loc_ac_main_rotor_cop[X] = MAIN_ROTOR_COP_AC_X;
 loc_ac_main_rotor_cop[Y] = MAIN_ROTOR_COP_AC_Y;
 loc_ac_main_rotor_cop[Z] = MAIN_ROTOR_COP_AC_Z;
```

loc_ac_tail_rotor_cop[X] = TAIL_ROTOR_COP_AC_X; loc_ac_tail_rotor_cop[Y] = TAIL_ROTOR_COP_AC_Y; loc_ac_tail_rotor_cop[Z] = TAIL_ROTOR_COP_AC_Z;

loc_ac_virtual_wing_cop[X] = VIRTUAL_WING_COP_AC_X; loc_ac_virtual_wing_cop[Y] = VIRTUAL_WING_COP_AC_Y; loc_ac_virtual_wing_cop[Z] = VIRTUAL_WING_COP_AC_Z;

loc_ac_vstab_cop[X] = VSTAB_COP_AC_X; loc_ac_vstab_cop[Y] = VSTAB_COP_AC_Y; loc_ac_vstab_cop[Z] = VSTAB_COP_AC_Z;

loc_ac_cg[X] = CG_AC_X; loc_ac_cg[Y] = CG_AC_Y; loc_ac_cg[Z] = CG_AC_Z;

inertia_matrix[1] [1] = MOMENT_OF_INERTIA_X; inertia_matrix[2] [2] = MOMENT_OF_INERTIA_Y; inertia_matrix[3] [3] = MOMENT_OF_INERTIA_Z;

pitch_damping = PITCH_RATE_DAMPING_GAIN; roll_damping = ROLL_RATE_DAMPING_GAIN; yaw_damping = YAW_RATE_DAMPING_GAIN;

MAIN_ROTOR_MAST_TILT_SIN = sin(MAIN_ROTOR_MAST_TILT); MAIN_ROTOR_MAST_TILT_COS = cos(MAIN_ROTOR_MAST_TILT);

vec_init (vstab_force); vec_init (drag_force); vec_init (ground_force); vec_init (force_ground_effect); vec_init (force_body); vec_init (moment_body); vec_init (moment_body_torque_coupling); vec_init (force_body_main_rotor); vec_init (force_body_tail_rotor); vec_init (force_body_tail_rotor);

vehicle_mass_init (AIRFRAME_MASS + ORDINANCE_MASS, inertia_matrix);
ground_init();

for (i=0; i<9; i++) /* Set parasite drag profile */
{
 p_drag_fit_coeff[i] = 0.0;
}
if (find_cubic_func (0.0, P_DRAG_COEFF_CONST,</pre>

P_DRAG_TAS_BREAK, P_DRAG_COEFF_BREAK, P_DRAG_TAS_MAX, P_DRAG_COEFF_MAX, 0.5, p_drag_fit_coeff) != TRUE)

```
ł
     fprintf (stderr, "AERODYN: Error - unable to fit p_drag function\n");
   }
 /* So one can tweak the constants without recompiling */
   if (selected_model)
     aerodyn_read_simple_constants (get_constants_file ());
}
static void get_aircraft_kinematic_state()
ł
  orientation_calc();
  parameters_calc();
  true_airspeed = kinematics_get_true_airspeed();
  altitude = kinematics_get_altitude();
  angular_velocity_vector = kinematics_get_angular_velocity_vector();
  normalized_velocity_vector = kinematics_get_normalized_velocity_vector();
  velocity_vector = kinematics_get_linear_velocity_vector();
  gravity_dir_vector = kinematics_get_gravity_vector();
  angle_of_attack = kinematics_get_aoa();
  side_slip_angle = - kinematics_get_yaw();
  velocity_to_body = kinematics_get_velocity_to_body();
  g_force = kinematics_get_g_force();
  vertical_speed = kinematics_get_vertical_speed();
}
static void deb_mat_print (m)
  T_MATRIX m;
ſ
  int i:
  for (i=0; i<=2; i++)
    printf("%0.3lf %0.3lf %0.3lf\n", m[i][0], m[i][1], m[i][2]);
  1
)
static void compute_flight_parameters()
l
  ambient_density = air_density(altitude);
  ambient_temperature = air_temperature(altitude);
  ambient_pressure = air_pressure(altitude);
  dynamic_pressure = 0.5 * ambient_density * square (true_airspeed);
  pitch_rate = angular_velocity_vector[X];
  roll_rate = angular_velocity_vector[Y];
  yaw_rate = angular_velocity_vector[Z];
  roll = atan2 (-gravity_dir_vector[X], -gravity_dir_vector[Z]);
```

```
pitch = atan2 (-gravity_dir_vector[Y], -gravity_dir_vector[Z]);
```

Appendix B - Source Code Listing for rwa_aerodyn.c

```
}
static void interact_with_ground()
  REAL brake_factor;
  brake_factor = normalized_velocity_vector[Y] *
            true_airspeed / (true_airspeed + 5);
  body_point[0].x_force = - 6000 * brake_factor;
  body_point[1].x_force = body_point[0].x_force;
  ground_interaction(ground_force,ground_torque,body_point,grnd,
        NUMBER_OF_BODY_POINTS);
  force_ground_effect[Z] = main_rotor_thrust
            * MAIN_ROTOR_GROUND_EFFECT_FACTOR
            / (cig_altitude_above_gnd() + 1.0);
}
•/
/* fuel get current level returns gallons
/* gals * (6.5 lbs / gal) * (1kg / 2.2 lbs) */
                                     /***
     -----
#define KILOGRAMS_PER_GALLON 2.95454545454
static void compute_gross_weight()
ſ
  vehicle_mass = AIRFRAME_MASS + ORDINANCE_MASS +
    fuel_get_current_level() * NILOGRAMS_PER_GALLON;/* kg */
  gross_weight = vehicle_mass * GRAV_CONSTANT;
                                                     /*N*/
}
void aerodyn_set_lateral_stick (val)
  REAL val;
ſ
  cyclic_roll = -val;
}
void aerodyn_set_longitudinal_stick (val)
  REAL val;
ł
  cyclic_pitch = -val;
}
void aerodyn_set_pedal (val)
  REAL val;
ſ
  pedal = val;
}
```

```
Appendix B - Source Code Listing for rwa_aerodyn.c
```

```
void aerodyn_set_collective (val)
   REAL val:
   if (funny_little_kludge)
     collective = log10 (val * 9.0 + 1.0); /* or, how to make linear log */
   else
     collective = val;
}
 static void compute_lift_drag_forces()
 ł
  lift_virtual_wing = dynamic_pressure *
         lift_coefficient_virtual_wing * VIRTUAL_WING_AREA;
  lift_vstab = dynamic_pressure * lift_coefficient_vstab * VSTAB_AREA;
  total_drag = total_incompressible_drag_coefficient * dynamic_pressure *
             TOTAL WETTED_SURFACE_AREA;
}
static void compute_body_damping_forces_and_moments()
ſ
  moment_body_damping[X] = - pitch_damping * pitch_rate;
  moment_body_damping[Y] = - roll_damping * roll_rate;
  moment_body_damping[Z] = - yaw_damping * yaw_rate;
  force_body_damping[X] = -velocity_vector[X] * LATERAL_VELOCITY_DAMPING_GAIN;
  force_body_damping[Y] = 0.0;
  force_body_damping[Z] = -velocity_vector[Z] * VZRTICAL_RATE_DAMPING_GAIN;
}
static REAL virtual_wing_lift_coefficient (alpha)
  REAL alpha;
ł
  if (alpha > WING_STALL_AOA | | alpha < 0.0)
    return (0.0);
  else
  return (((WING_LIFT_COEFFICIENT_FIT_3 * alpha +
        WING_LIFT_COEFFICIENT_FIT_2) * alpha +
        WING_LIFT_COEFFICIENT_FTT_1) * alpha +
        WING_LIFT_COEFFICIENT_FIT_0);
}
static REAL vstab_lift_coefficient (yaw)
  REAL yaw;
  REAL yawval;
  if (abs(yaw) > VSTAB_STALL_SSA)
    yawval = sign(yawval) * VSTAB_STALL_SSA;
  else
```

yawval = yaw;

```
return (VSTAB_LIFT_COEFFICIENT_1 * yawval);
}
static void compute_lift_drag_coefficients()
ł
   REAL multiplier;
   lift_coefficient_vstab = vstab_lift_coefficient (side_slip_angle);
 /* Computing virtual wing coefficient as independent of AOA */
   lift_coefficient_virtual_wing = LIFT_COEFF_VIRTUAL_WING;
 /+
               virtual_wing_lift_coefficient (angle_of_attack); */
   parasite_drag_coefficient = cubic_func (true_airspeed, p_drag_fit_coeff);
   if (true_airspeed > 0.0 && angle_of_attack > 0.0) /* speed brake */
   {
     multiplier = 5.0 * true_airspeed * sin(angle_of_attack);
     if (multiplier > 1.0)
       parasite_drag_coefficient *= multiplier;
  }
  oswald_efficiency_factor = OSWALD_EFFIC_FACTOR;
  induced_drag_coefficient = INDUCED_DRAG_COEFF;
  total_incompressible_drag_coefficient = parasite_drag_coefficient +
                      induced_drag_coefficient;
)
static void send_to_dynamics_kinematics()
Ł
  vehicle_mass_init (vehicle_mass, inertia_matrix);
  vehicle_forces (force_body);
  vehicle_torques (moment_body);
}
void dump_forces()
ſ
  vec_dump ("lift_body_virtual_wing:", lift_body_virtual_wing);
  vec_dump ("lift_body_vstab:", lift_body_vstab);
  vec_dump ("drag_body:", drag_body);
  vec_dump ("gravity_force_body:", gravity_force_body);
  vec_dump ("force_body_main_rotor:", force_body_main_rotor);
  vec_dump ("force_body_tail_rotor:", force_body_tail_rotor);
  vec_dump ("ground_force:", ground_force);
  vec_dump ("force_body:", force_body);
}
```

static void sum_body_forces_and_moments_about_ac()

```
{
   vec_init (force_body);
   vec_add (force_body, force_body_main_rotor, force_body);
 /* vec_add (force_body, force_body_tail_rotor, force_body); */
   vec_add (force body, lift_body_virtual_wing, force body);
   vec_add (force_body, lift_body_vstab, force_body);
   vec_add (force_body, drag_body, force_body);
   vec add (force body, force_body_damping, force body);
   vec_add (force_body, gravity_force_body, force_body);
   vec_add (force_body, ground_force,force_body);
   vec_add (force_body, force_ground_effect, force_body);
   vec_cross_prod(loc_ac_tail_rotor_cop, force_body_tail_rotor,
                 moment_body_tail_rotor);
   vec_cross_prod(loc_ac_virtual_wing_cop,lift_body_virtual_wing,
                 moment_body_virtual_wing);
   vec_cross_prod(loc_ac_vstab_cop, lift_body_vstab, moment_body_vstab);
   vec_cross_prod(loc_ac_cg, gravity_force_body, moment_body_cg);
   vec_init (moment_body);
   vec_add (moment_body, moment_body_main_rotor, moment_body);
   vec_add (moment_body, moment_body_tail_rotor, moment_body);
   vec_add (moment_body, moment_body_virtual_wing, moment_body);
  vec_add (moment_body, moment_body_vstab, moment_body);
  vec_add (moment_body, moment_body_cg, moment_body);
  vec_add (moment_body, ground_torque, moment_body);
  vec_add (moment_body, moment_body_damping, moment_body);
1
static void transform_lift_drag_forces_to_body_coordinates()
{
  virtual_wing_force[Z] = lift_virtual_wing; /* [H, D, L] */
  vstab_force[X] = lift_vstab;
  drag_force[Y] = -total_drag;
  if (true_airspeed < P_DRAG_TAS_BREAK)
                                                   /* jwc 8/90 */
    drag_force[Y] -= sin(pitch) * 50000;
  vec_mat_mul (virtual_wing_force, velocity_to_body, lift_body_virtual_wing);
  vec_mat_mul (vstab_force, velocity_to_body, lift_body_vstab);
  vec_mat_mul (drag_force, velocity_to_body, drag_body);
}
static void generate_gravity_body_force()
ł
  compute_gross_weight();
  gravity_force_body[X] = gravity_dir_vector[X] * gross_weight;
 gravity_force_body[Y] = gravity_dir_vector[Y] * gross_weight;
 gravity_force_body[Z] = gravity_dir_vector[Z] * gross_weight;
```

}

static int frame;

void aerodyn_debug_print()

.

```
REAL roll, pitch, yaw, heading, airspeed_knots, weight_lbs, thrust_lbs;
REAL *position;
roll=atan2(-gravity_dir_vector[X],-gravity_dir_vector[Z]) *180.0 / 3.1416;
pitch=atan2(-gravity_dir_vector[Y],-gravity_dir_vector[Z])*180.0 / 3.1416;
yaw = side_slip_angle;
airspeed_knots = true_airspeed * 3.26 / 1.69;
weight_lbs = gross_weight / 9.8 * 2.2;
position = vehicle_A_p();
heading = rad_to_deg (kinematics_get_heading());
printf ("KTAS = \%0.2 if VV = \%0.3 if \%0.3 if \%0.3 if YR = \%0.3 if \n",
  airspeed_knots, velocity_vector[X], velocity_vector[Y],
  velocity_vector[Z], angular_velocity_vector[Z]);
printf ("xyzh = %0.3lf %0.3lf %0.3lf %0.2lf rpy = %0.3lf %0.3lf %0.3lf \n",
  position[X], position[Y], position[Z], heading,
  roll, pitch, yaw);
if (hover_hold_state == ON)
  printf ("stab_aug[rpyc]: %0.3lf %0.3lf %0.3lf %0.3lf \n",
  stab_aug_roll, stab_aug_pitch, stab_aug_yaw, stab_aug_climb);
```

```
static void compute_rotor_loads()
```

```
{
    main_rotor_load_torque = controller_collective *
        MAIN_ROTOR_MAX_LOAD_TORQUE;
    tail_rotor_load_torque = abs (controller_tail_rotor) *
        TAIL_ROTOR_MAX_LOAD_TORQUE;
    }
}
```

}

ſ

}

3

static void compute_engine_torque()

engine_simul(main_rotor_load_torque, tail_rotor_load_torque, altitude);
powertrain_percent_shaft_speed = engine_get_rotor_percent_shaft_speed();

static void compute_rotor_forces_and_moments()

```
{
```

main_rotor_thrust = powertrain_percent_shaft_speed * controller_collective
 * MAIN_ROTOR_MAX_THRUST;

```
tail_rotor_thrust = powertrain_percent_shaft_speed * controller_tail_rotor
 * TAIL_ROTOR_MAX_THRUST;
```

force_body_main_rotor[Y] = main_rotor_thrust * MAIN_ROTOR_MAST_TTLT_SIN;

force_body_main_rotor[Z] = main_rotor_thrust * MAIN_ROTOR_MAST_TILT_COS;

- B-18 -

```
force_body_tail_rotor[X] = tail_rotor_thrust;
  moment_body_main_rotor[X] =
        - controller_cyclic_pitch * MAIN_ROTOR_MAX_PITCH_MOMENT;
  moment_body_main_rotor[Y] =
        controller_cyclic_roll * MAIN_ROTOR_MAX_ROLL_MOMENT;
  moment_body_main_rotor[Z] =
        - main_rotor_load_torque * MAIN_ROTOR_TORQUE_COUPLING_GAIN;
]
static REAL limiter (lower, val, upper)
REAL lower, val, upper;
  if (val > upper) return (upper);
  else if (val < lower) return (lower);
  else return (val);
}
static REAL set_roll_attitude (angle)
REAL angle;
Ł
  attitude control_roll_integrator += ATT_CTL_ROLL_I_GAIN * (roll - angle);
  /**** These used to be attitude_control_pitch_integrator instead of
     attitude_control_roll_integrator.
                                       PJM 11-1-89
  attitude_control_pitch_integrator =
        limiter (-0.1, attitude_control_pitch_integrator, 0.1);
  ****** /
  attitude_control_roll_integrator =
        limiter (-0.1, attitude_control_roll_integrator, 0.1);
  attitude control roll_command = ATT_CTL_ROLL_P_GAIN * (roll - angle);
  attitude_control_roll_command += attitude_control_roll_integrator;
  attitude_control_roll_command = limiter (-MAX_STAB_AUG_PITCH_ROLL_CONTROLa
ttitude control_roll_command,
                     MAX_STAB_AUG_PITCH_ROLL_CONTROL);
  return (attitude control_roll_command);
}
static REAL set_pitch_attitude (angle)
REAL angle;
ł
  attitude_control_pitch_integrator +=
        ATT_CTL_PITCH_I_GAIN * (pitch - angle);
  attitude_control_pitch_integrator =
        limiter (-0.1, attitude_control_pitch_integrator, 0.1);
  attitude_control_pitch_command = ATT_CTL_PITCH_P_GAIN * (pitch - angle);
  attitude_control_pitch_command += attitude_control_pitch_integrator;
  attitude_control_pitch_command = limiter (-MAX_STAB_AUG_PITCH_ROLL_CONTROLa
ttitude_control_pitch_command,
                     MAX_STAB_AUG_PITCH_ROLL_CONTROL);
  return (attitude_control_pitch_command);
}
```

```
static void compute_stab_augmentation_gains()
ł
  if (hover_hold_state == ON)
    if ( !hover_hold_turned_on )
        hover_hold_turned_on = TRUE ;
        pitch_damping = 2 * PITCH_RATE_DAMPING_GAIN; /* jwc 8/90 */
        roll_damping = 2 * ROLL_RATE_DAMPING_GAIN;
        /* You should already be "hovering" (airspeed < 10 knots)
         for hover hold to show little visible swaying. */
        hover_aug_roll_integrator = 0.0;
        hover_aug_pitch_integrator = HOVER_AUG_PITCH_RESET_VALUE;
        stab_aug_yaw_integrator = 0.0;
        stab_aug_climb_integrator = 0.0 ;
#if ATT_DAMPING_MODE_SIMPLE
        if (true_airspeed < HOVER_SLOW_LIMIT)
         if (true_airspeed > -HOVER_SLOW_LIMIT)
           MAX_ATT_CTL_ANGLE = MAX_ATT_CTL_ANGLE_SLOW;
         else if (true_airspeed > -HOVER_MED_LIMIT)
           MAX_ATT_CTL_ANGLE = MAX_ATT_CTL_ANGLE_MED;
         else
           MAX_ATT_CTL_ANGLE = MAX_ATT_CTL_ANGLE_NORM;
       else if (true airspeed < HOVER MED LIMIT)
           MAX_ATT_CTL_ANGLE = MAX_ATT_CTL_ANGLE_MED;
       else
           MAX_ATT_CTL_ANGLE = MAX_ATT_CTL_ANGLE_NORM;
#endif
       }
#if ATT_DAMPING_MODE_SIMPLE
   if (true_airspeed > HOVER_SLOW_LIMIT)
       MAX_ATT_CTL_ANGLE =
           log( true_airspeed ) * MAX_ATT_DAMPING_FACTOR ;
   else if (true_airspeed < -HOVER_SLOW_LIMIT)
       MAX_ATT_CTL_ANGLE =
           log(-true_airspeed) * MAX_ATT_DAMPING_FACTOR;
```

eise

MAX_ATT_CTL_ANGLE = MAX_ATT_CTL_ANGLE_STOP;

MAX_ATT_CTL_ANGLE = deg_to_rad(MAX_ATT_CTL_ANGLE); #endif

```
hover aug roll integrator +=
           HOVER_AUG_ROLL_I_GAIN * velocity_vector[X];
   hover_aug_roll_integrator =
           limiter(-0.2, hover_aug_roll_integrator, 0.2);
   hover_aug_roll_angle = HOVER_AUG_ROLL_P_GAIN * velocity_vector[X]
           + hover_aug_roll_integrator;
   hover_aug_roll_angle = limiter (-MAX_ATT_CTL_ANGLE,
                   hover_aug_roll_angle,
                   MAX_ATT_CTL_ANGLE);
   stab_aug_roll = set_roll_attitude (hover_aug_roll_angle);
   hover_aug_pitch_integrator +=
           HOVER_AUG_PITCH_I_GAIN * velocity_vector[Y];
  hover_aug_pitch_integrator =
          limiter(-0.2, hover_aug_pitch_integrator, 0.2);
  hover_aug_pitch_angle = HOVER_AUG_PITCH_P_GAIN * velocity_vector[Y]
           + hover aug pitch_integrator;
  hover_aug_pitch_angle = limiter (-MAX_ATT_CTL_ANGLE,
                    hover_aug_pitch_angle,
                    MAX ATT CTL ANGLE);
  stab_aug_pitch = set_pitch_attitude (hover_aug_pitch_angle);
  stab_aug_yaw_integrator -=
          HOVER_AUG_YAW_I_GAIN * angular_velocity_vector[Z];
  if (stab_aug_yaw_integrator > 0.5) stab_aug_yaw_integrator = 0.5;
  if (stab_aug_yaw_integrator < -0.5) stab_aug_yaw_integrator = -0.5;
  stab_aug_yaw = - HOVER_AUG_YAW_P_GAIN * angular_velocity_vector[Z] +
              stab_aug_yaw_integrator;
  stab_aug_climb_integrator -=
          HOVER_AUG_CLIMB_I_GAIN * velocity_vector[Z];
  if (stab_aug_climb_integrator > 0.2) stab_aug_climb_integrator = 0.2;
  if (stab_aug_climb_integrator < -0.2) stab_aug_climb_integrator = -0.2;
  stab_aug_climb = - HOVER_AUG_CLIMB_P_GAIN * velocity_vector[Z] +
              stab_aug_climb_integrator;
  stab_aug_yaw = limiter (-MAX_STAB_AUG_YAW_CLIMB_CONTROL,
               stab_aug_yaw,
               MAX_STAB_AUG_YAW_CLIMB_CONTROL);
  stab_aug_climb = limiter (-MAX_STAB_AUG_YAW_CLIMB_CONTROL,
               stab_aug_climb,
              MAX_STAB_AUG_YAW_CLIMB_CONTROL);
else
 stab_aug_roll = 0.0;
 stab_aug_pitch = 0.0;
 stab_aug_yaw = 0.0;
 stab_aug_climb = 0.0;
```

}

```
pitch_damping = PITCH_RATE_DAMPING_GAIN; /* jwc 8/90 */
      roll_damping = ROLL_RATE_DAMPING_GAIN;
 #ifdef notdef
     hover_aug_roll_integrator = 0.0;
                                         /* added 8/31/89 (jwc) */
     hover_aug_pitch_integrator = 0.0;
 #endif
   }
   controller_cyclic_roll = cyclic_roll + stab_aug_roll;
   controller_cyclic_pitch = cyclic_pitch + stab_aug_pitch;
   controller_tail_rotor = pedal + stab_aug_yaw;
   controller_collective = collective + stab_aug_climb;
 }
 static void send_aero_data_to_displays()
   if (velocity_vector[Y] > 0.0)
     meter_air_speed_set(true_airspeed);
   else
     meter_air_speed_set (0.0);
   meter_altitude_set(altitude);
  meter_vertical_speed_set(vertical_speed);
}
void aerodyn_simul()
ł
  get_aircraft_kinematic_state();
  compute_flight_parameters();
  compute_stab_augmentation_gains();
  compute_rotor_loads();
  compute_engine_torque();
  compute_rotor_forces_and_moments();
  compute_lift_drag_coefficients();
  compute_lift_drag_forces();
  compute_body_damping_forces_and_moments();
  transform_lift_drag_forces_to_body_coordinates();
  generate_gravity_body_force();
  interact_with_ground();
  sum_body_forces_and_moments_about_ac();
  send_to_dynamics_kinematics();
/* send_aero_data_to_displays(); Must call if not calling orientation_calc */
  vehicle_update();
}
REAL aerodyn_get_true_airspeed()
ł
  return (true_airspeed);
```


}

Appendix B - Source Code Listing for rwa_aerodyn.c

```
void aerodyn_set_hover_hold_on ()
ł
  hover_hold_state = ON;
}
void aerodyn_set_hover_hold_off()
ł
  hover_hold_state = OFF;
  hover_hold_turned_on = FALSE;
  level_view = TRUE;
}
void aerodyn_toggle_hover_hold()
Ł
  if (hover_hold_state == OFF)
    hover_hold_state = ON;
  else
    ł
    hover_hold_state = OFF;
    hover_hold_turned_on = FALSE;
    }
}
void forces_init ()
ł
  aerodyn_init();
}
             * The following stuff is for the simplified dynamics model. The model is *
* a modification of the aerodynamics model Warren wrote for the SAF.
* Global variables defined for the real aerodynamics are reused here to *
* allow overlap in generic routines for operations such as control inputs,*
                                            .
* init, etc. - CJC
                                                 *************************************
#define MAX_HELICOPTER_POWER aero_simple[0]
#define MAX_HH
                          aero_simple[1]
/* constants for tweaking */
#define H_K1
                       aero_simple[ 2]
#define H_K2
                       aero_simple[3]
/* as increase drag coefficients, helicopter slows down faster */
#define H_K7
                       aero_simple[4]
                       aero_simple[5]
#define H_K8
                       aero_simple[6]
#define H_KP
#define H_KPR
                        aero_simple[7]
                       aero_simple[8]
#define H_KY
```

- B-23 -

#define H_KH	<pre>aero_simple[9]</pre>
#define H_CHH	aero_simple[10]
#define H_CL	aero_simple[11]

void aerodyn_simple_simul ()

register int i; register REAL *vec_ptr; register REAL *res_ptr; register REAL *cur_ptr; register REAL *des_ptr; REAL *drag_ptr; REAL power; REAL coll_factor; REAL lift_factor;

VECTOR orient_vec; VECTOR angular_accel; VECTOR hover_hold_additions; REAL euler[3]; /* euler angles */ VECTOR gravity_vector; /* in body coordinates */ T_MAT_PTR C_mat; /* direction cosine matrix */

```
get_aircraft_kinematic_state ();
generate_gravity_body_force();
compute_rotor_loads();
compute_engine_torque();
```

```
if (hover_hold_state == ON)
{
    hover_hold_additions[0] = min(velocity_vector[1] * H_KH,MAX_HH);
    hover_hold_additions[0] = max(hover_hold_additions[0],-MAX_HH);
    hover_hold_additions[1] = min(- velocity_vector[0] * H_KH,MAX_HH);
    hover_hold_additions[1] = max(hover_hold_additions[1],-MAX_HH);
    hover_hold_additions[2] = - velocity_vector[2] * H_KH * H_CHH;
}
else
{
    hover_hold_additions[0] = 0;
    hover_hold_additions[1] = 0;
}
```

```
hover_hold_additions[1] = 0;
hover_hold_additions[2] = 0;
```

```
]
```

```
/** original comment from SAF code **/
/* may want to put in power limit per unit time ... */
coll_factor = max(0.0,collective - 0.3);
power = H_KP * coll_factor + hover_hold_additions[2];
power += gross_weight * collective/(H_K2+collective) * 1.25;
```

```
power = min (MAX_HELICOPTER_POWER, power);
power = max (0.0, power);
```

```
if (fuel_level_empty ())
    power = 0.0;
```

/* Calculate the torque required to achieve the desired orientation */ /* orientation vector is [pitch element, roll element, yaw element] */

orient_vec[0] = H_KPR * - cyclic_pitch + hover_hold_additions[0]; orient_vec[1] = H_KPR * cyclic_roll + hover_hold_additions[1];

```
/** yaw element = current_yaw (heading) + rudder (pedals) * K **/
orient_vec[2] = kinematics_get_yaw () + sign(pedal) * pedal
 * pedal * H_KY;
```

```
res_ptr = moment_body;
des_ptr = orient_vec;
```

```
C_mat = kinematics_get_w_to_h (veh_kinematics);
euler[0] = atan2 (-gravity_dir_vector[Y], -gravity_dir_vector[Z]);
euler[1] = - atan2 (-gravity_dir_vector[X], -gravity_dir_vector[Z]);
euler[2] = kinematics_get_yaw ();
cur_ptr = euler;
```

```
/* First, compute the angular velocity necessary to achieve the */
/* desired orientation in exactly one tick. (delta theta/ delta T) */
/* Then get the angular acceleration needed to get to that velocity */
/* In one tick.*/
for (i = X; i \le Z; ++i)
  vec_ptr[i] = ((des_ptr[i] - cur_ptr[i]) / DELTA_T / H_K1);
  angular_accel[i] = (vec_ptr[i] - angular_velocity_vector[i])
               / DELTA_T;
  res_ptr[i] = MOMENT_OF_INERTIA_X * angular_accel[i];
}
res_ptr[X] += lift_factor; /* this should add some torque for turns */
/* compute force vector */
res_ptr = force_body;
cur_ptr = velocity_vector;
vec_ptr = euler;
drag_ptr = drag_force; /* drag_body or drag_force */
drag_ptr[X] = square(cur_ptr[X]) * H_K8;
drag_ptr[Y] = square(cur_ptr[Y]) * H_K7;
drag_ptr[Z] = square(cur_ptr[Z]) * H_K8;
```

```
res_ptr[X] = (sin(vec_ptr[Y]) * power) - (sign(cur_ptr[X]) * drag_ptr[X]);
res_ptr[Y] = -(sin(vec_ptr[X]) * power) - (sign(cur_ptr[Y]) * drag_ptr[Y]);
```

```
res_ptr[Z] = C_mat[2][2] * power;
res_ptr[Z] -= sign(cur_ptr[Z]) * drag_ptr[Z];
res_ptr[Z] += lift_factor; /* this should add some force for lift */
```

vec_add (force_body, ground_force,force_body); vec_add (force_body, gravity_force_body,force_body); interact_with_ground(); vec_add (force_body, force_ground_effect, force_body); vec_add (moment_body, ground_torque, moment_body); send_to_dynamics_kinematics (); vehicle_update ();

```
}
```

ł

* The following is for the simplified model incorporating the stealth * * dynamics. In this model, the cyclic changes the desired velocity *

#define H_FWD_MUL aero_stealth[0]
#define H_SIDE_MUL aero_stealth[1]
#define H_COLL_MUL aero_stealth[2]
#define MAX_TORQUE aero_stealth[3]
#define MAX_FORCE aero_stealth[4]
#define MASS aero_stealth[5]
#define INERTIA aero_stealth[6]
#define DEAD_ZONE aero_stealth[7]

/* use for gravity frame matrix. eliminate all pitch and roll
* start with identity. substitute cos (yaw) for last term.
*/

void aerodyn_stealth_simul()

VECTOR desired_rot_vel; VECTOR desired_lin_vel; REAL adj_collective; /* collective value adjusted for dead zone and for -1 to 1 range */

adj_collective = (collective - 0.5) * 2.0; /* change to -1 to 1 */

```
if (aerodyn_debug)
    timed_printf ("adj_collective = %.3lf\n", adj_collective);
```

if (allow_takeoff)

if (adi_collective > 0.0)

```
Appendix B - Source Code Listing for rwa_aerodyn.c
```

```
ł
      allow_takeoff = FALSE;
    }
    else
    ſ
      adj_collective = 0.0;
    }
  get_aircraft_kinematic_state ();
  compute_rotor_loads();
  compute_engine_torque();
/* update desired velocity */
  desired_lin_vel[Z] = adj_collective * adj_collective *
     sign (adj_collective ) * H_COLL_MUL;
  if (hover_hold_state == ON)
  { /* no linear velocity in X,Y, only pitch */
    desired_lin_vel[X] = desired_lin_vel[Y] = 0.0;
    desired_rot_vel[X] = -cyclic_pitch * cyclic_pitch * sign(cyclic_pitch);
    desired_rot_vel[Y] = 0.0;
  }
  else
  ł
    if (level_view)/* when not in pitch mode, level view */
    ł
      vehicle_set_orientation_matrix (level); /* identity matrix */
      vehicle_set_orientation (kinematics_get_heading());
      level_view = FALSE;
    }
    desired lin vel[X] = cyclic_roll * cyclic_roll * sign (cyclic_roll)
        • H_SIDE_MUL;
    desired_lin_vel[Y] = cyclic_pitch * cyclic_pitch * sign (cyclic_pitch)
        *H FWD MUL;
    desired_rot_vel[X] = desired_rot_vel[Y] = 0.0;
  1
#ifdef notdef
    desired_lin_vel[X] = cyclic_roll * cyclic_roll * sign (cyclic_roll)
        H_SIDE_MUL;
    desired_lin_vel[Y] = cyclic_pitch * cyclic_pitch * sign (cyclic_pitch)
        *H FWD MUL;
    desired_rot_vel[X] = desired_rot_vel[Y] = 0.0;
#endif
  desired_rot_vel[Z] = pedal * pedal * sign(pedal);
  /* controller_forces */
```

force body[X] = (desired lin_vel[X] - velocity_vector[X]) * MASS/DELTA_T; force_body[Y] = (desired_lin_vel[Y] - velocity_vector[Y]) MASS/DELTA_T; force_body[Z] = (desired_lin_vel[Z] - velocity_vector[Z]) MASS/DELTA_T; force_body[X] = min (MAX_FORCE, force_body[X]); force body[Y] = min (MAX_FORCE, force_body[Y]); force_body[Z] = min (MAX_FORCE, force_body[Z]); force_body[X] = max (-MAX_FORCE, force_body[X]); force body[Y] = max (-MAX_FORCE, force_body[Y]); force_body[Z] = max (-MAX_FORCE, force_body[Z]); /* controller_torques */ moment_body[X] = (desired_rot_vel[X] - angular_velocity_vector[X]) INERTIA/DELTA_T; moment_body[Y] = (desired_rot_vel[Y] - angular_velocity_vector[Y]) INERTIA/DELTA_T; moment_body[Z] = (desired_rot_vel[Z] - angular_velocity_vector[Z]) INERTIA/DELTA_T; moment_body[X] = min (MAX_TORQUE, moment_body[X]); moment_body[Y] = min (MAX_TORQUE, moment_body[Y]); moment_body[Z] = min (MAX_TORQUE, moment_body[Z]); moment_body[X] = max (-MAX_TORQUE, moment_body[X]); moment_body[Y] = max (-MAX_TORQUE, moment_body[Y]); moment_body[Z] = max (-MAX_TORQUE, moment_body[Z]); interact_with_ground(); vec_add (force_body, ground_force,force_body); vec_add (force_body, gravity_force_body,force_body); vec_add (force_body, force_ground_effect, force_body); send_to_dynamics_kinematics ();

```
vehicle_update ();
```

}

```
aerodyn_read_simple_constants (fn)
char *fn;
{
    char *strtok ();
    FILE *fp;
    char s[80];
```
Appendix B - Source Code Listing for rwa_aerodyn.c

```
if ((fp = FOPEN (fn, "r")) == NULL)
{
  printf ("no tweakable constants file; using defaults\n", fn);
  return (-1);
}
else
  printf ("Reading tweakable constants file: %s\n", fn);
while (FGETS (s, 80, fp) != NULL)
  char *str;
  switch (s[0]) /* check for comments or blank lines */
  ſ
   case '#':
   case ' ':
   case '\n':
   case '\t':
     continue;
  }
  str = strtok (s, " \t");
  if (strcmp (str, "H_K1") == 0)
  ſ
    sscanf (strtok (0, " \t"), "%lf", &H_K1);
    continue;
  }
 if (strcmp (str, "H_K2") == 0)
  ł
    sscanf (strtok (0, " \t"), "%lf', &H_K2);
    continue;
 }
 if (strcmp (str, "H_K7") == 0)
    sscanf (strtok (0, " \t"), "%lf", &H_K7);
   continue;
 }
 if (strcmp (str, "H_K8") == 0)
   sscanf (strtok (0, " \t"), "%lf", &H_K8);
   continue;
 1
 if (strcmp(str, "H_KP") == 0)
   sscanf (strtok (0, " \t"), "%lf", &H_KP);
   continue;
 }
```

- B-29 -

```
Appendix B - Source Code Listing for rwa_aerodyn.c
```

```
if (strcmp (str, "H_KPR") == 0)
ſ
  sscanf (strtok (0, " \t"), "%lf", &H_KPR);
  continue:
if (strcmp (str, "H_KY") == 0)
  sscanf (strtok (0, " \t"), "%lf", &H_KY);
  continue;
}
if (strcmp(str, "H_KH") == 0)
ł
  sscanf (strtok (0, " \t"), "%lf", &H_KH);
  continue;
}
if (strcmp (str, "H_FWD_MUL") == 0)
  sscanf (strtok (0, " \t"), "%lf", &H_FWD_MUL);
  continue;
}
if (strcmp (str, "H_COLL_MUL") == 0)
ł
  sscanf (strtok (0, " \t"), "%If", &H_COLL_MUL);
  continue;
}
if (strcmp (str, "H_CHH") == 0)
ł
  sscanf (strtok (0, " \t"), "%lf", &H_CHH);
  continue;
}
if (strcmp (str, "H_CL") == 0)
ſ
  sscanf (strtok (0, " \t"), "%lf", &H_CL);
  continue;
ł
if (strcmp (str, "MAX_FORCE") == 0)
ſ
  sscanf (strtok (0, " \t"), "%lf", &MAX_FORCE);
  continue;
if (strcmp (str, "MAX_TORQUE") == 0)
  sscanf (strtok (0, " \t"), "%lf", &MAX_TORQUE);
```

```
Appendix B - Source Code Listing for rwa_aerodyn.c
```

```
continue;
     }
     if (strcmp (str, "MASS") == 0)
     ł
       sscanf (strtok (0, " \t"), "%lf", &MASS);
       continue;
     if (strcmp (str, "INERTIA") == 0)
       sscanf (strtok (0, " \t"), "%lf", &INERTIA);
       continue;
     }
     if (strcmp (str, "H_SIDE_MUL") == 0)
     ſ
       sscanf (strtok (0, " \t"), "%lf", &H_SIDE_MUL);
       continue;
     }
     if (strcmp (str, "DEAD_ZONE") == 0)
       sscanf (strtok (0, " \t"), "%lf', &DEAD_ZONE);
       continue;
     /* if got here -- mistake */
     printf ("ERROR: Unknown constant %s in %s\n", str, fn);
  FCLOSE (fp);
  printf ("done reading constants file\n");
/* aerodyn_dump_simple_constants ();*/
  return (1);
aerodyn_dump_control_inputs ()
ł
  printf ("collective = %.2lf\tcyclic_roll = %.2lf\tcyclic_pitch = %.2lf\n",
      collective, cyclic_roll, cyclic_pitch);
  printf ("pedal = %.2lf\n", pedal);
  aerodyn_debug = aerodyn_debug ? 0 : 1;
  printf ("aerodyn_debug is %s\n", aerodyn_debug ? "on" : "off");
aerodyn_dump_simple_constants()
{
  printf ("Aerodyn simple constants:\n");
  printf ("\tH_K1:\t%.2lf\n", H_K1);
  printf ("\tH_K2:\t%.2lf\n", H_K2);
  printf ("\tH_K7:\t%.2lf\n", H_K7);
```

}

}

Appendix B - Source Code Listing for rwa_aerodyn.c

printf ("\tH_K8:\t%.2lf\n", H_K8); printf ("\tH_KP:\t%.2lf\n", H_KP; printf ("\tH_KP:\t%.2lf\n", H_KP; printf ("\tH_KP:\t%.2lf\n", H_KP; printf ("\tH_KY:\t%.2lf\n", H_KH); printf ("\tH_FWD_MUL:\t%.2lf\n", H_FWD_MUL); printf ("\tH_SIDE_MUL:\t%.2lf\n", H_SIDE_MUL); printf ("\tH_COLL_MUL:\t%.2lf\n", H_SIDE_MUL); printf ("\tH_COLL_MUL:\t%.2lf\n", H_COLL_MUL); printf ("\tH_CHH:\t%.2lf\n", H_COLL_MUL); printf ("\tH_CHH:\t%.2lf\n", H_CHH); printf ("\tH_CL:\t%.2lf\n", H_CL); printf ("\tMAX_FORCE:\t%.2lf\n", MAX_FORCE); printf ("\tMAX_TORQUE:\t%.2lf\n", MAX_TORQUE); printf ("\tINERTIA:\t%.2lf\n", INERTIA); printf ("\tDEAD_ZONE:\t%.2lf\n", DEAD_ZONE);

set_selected_model (model)
int model;

switch (model)

}

ł

ł

```
case COMPLEX MODEL:
 printf ("switching to complex model, logarithmic collective\n");
 funny_little_kludge = 1;/* logarithmic collective */
 selected_model = model;
 break:
case SIMPLE_MODEL:
 printf ("switching to simple model, linear collective\n");
 funny_little_kludge = 0;/* linear collective */
selected_model = model;
break;
case STEALTH_MODEL:
printf ("switching to stealth model, linear collective \n");
funny_little_kludge = 0;/* linear collective */
selected model = model;
break:
default:
printf ("invalid selected model %d\n", model);
printf ("using default complex model\n");
selected_model = COMPLEX_MODEL;
```

```
}
```

}

}

break;

get_selected_model ()
{
 return (selected_model);

Appendix B - Source Code Listing for rwa_aerodyn.c

indicate_selected_model (model) int model; { switch (model) { case COMPLEX_MODEL: printf ("using complex model\n"); break; case SIMPLE_MODEL: printf ("using simple model\n"); break; case STEALTH_MODEL: printf ("using stealth model\n"); allow_takeoff = TRUE; break; default: printf ("invalid selected model %d\n", model); printf ("using default complex model\n"); break; } }

set_takeoff_status (status)
int status;
{
 allow_takeoff = status;
}

orl1 15>

Appendix C - Source code listing for rwa_engine.c.

The following appendix contains the source code listing for rwa_engine.c for convenience in document maintenance and understanding of the CSU.

```
Appendix C - Source Code Listing for rwa_engine.c
```

```
/* $Header: /a3/adst-cm/RWA/simnet/vehicle/rwa/src/RCS/rwa_engine.c,v
1.1 1992/1
0/07 19:00:23 cm-adst Exp $ */
/*
 * $Log: rwa engine.c,v $
 * Revision 1.1 1992/10/07 19:00:23 cm-adst
 * Initial Version
*/
static char RCS_ID[] = "$Header: /a3/adst-
cm/RWA/simnet/vehicle/rwa/src/RCS/rwa_
engine.c,v 1.1 1992/10/07 19:00:23 cm-adst Exp $";
*****
* Revisions:
                                                  SP/CR
      Version Date Author
                               Title
×
Number
*
      1.2
              10/09/92 R. Branson Data File Initiali-
*
                                 zation
              10/16/92 R. Branson Data filenames changed
*
      1.3
*
                                 to eight characters
*
              10/30/92 R. Branson Added pathname to data
      1.4
                                 directory
*****/
*****
*
      SP/CR No.
*
                 Description of Modification
*
×
*
                   Hard coded defines changed to array elements.
\star
                   Engine data array added.
*
                   Engine initialization data array added.
                   Engine status data array added.
*
                   Added file for engine data, engine
initialization
                     data, and engine status data to the
"engine_init"
                     function
                   Added "/simnet/data/" to each data file
pathname.
*************************
****/
```

Appendix C - Source Code Listing for rwa_engine.c

* * * FILE: rwa_engine.c × * AUTHOR: James Chung * * MAINTAINER: James Chung * HISTORY: 4/19/89 james: Creation * Copyright (c) 1989 BBN Systems and Technologies Corporation * All rights reserved. * Interim engine model for the generic rotary-wing aircraft * with power characteristics similar to the General * T700-GE-701 turboshaft engine. The T700 is rated at a × * maximum continuous power of 1510 shp at sea-level. * * Two (2) T700s power the AH-64 Apache attack helicopter. * #include "stdio.h" #include "math.h" #include "sim_dfns.h" #include "sim_macros.h" #include "sim types.h" #include "libsound.h" #include "rwa_soun_dfn.h" #include "rwa_meter.h" #include "rwa_cntrl.h" #include "libmun.h" #include "failure.h" #include "libfail.h" /* Once the engine or transmission has been damaged, there is a chance that the engine/transmission will seize due to too many particle fragments accumulating in the respective oil system. These are "secondary" events. 12-10-90 pjm */ #define DO CFAIL TRUE /* do combat damage simulation */ #define DO_SFAIL TRUE /* do stochastic failure simulation */ static REAL engine_data[20] = { 1030.55, 1031.6, 0.05, 0.05, 25.0, 1200.0, 1.2, 0.16438, 2.130, 34.0, 100.0, 153.8461539, 0.0, 7.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 } ; static REAL engine_init_data[10] = { 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0 };

- C-3,-

Appendix C - Source Code Listing for rwa_engine.c

static int engine_stat_data[10] = { 2, 1, 1, Λ ٥, 0, 0, 0, } ; #define GOVERNOR ENGINE SPEED_SETTING engine data[0] engine data[1] #define GOVERNOR P GAIN engine data [2] #define GOVERNOR I GAIN #define MAX ENGINE TORQUE engine data [3] #define MIN_ENGINE_LOAD_TORQUE engine data[4] #define MAX ENGINE PERCENT_POWER engine data [5] #define ENGINE_TORQUE_INTERCEPT engine data [6] #define ENGINE TORQUE SLOPE engine data [7] #define NOSE GEARBOX_RATIO engine_data[8] #define MAIN_ROTOR_GEAR_RATIO
#define TAIL_ROTOR_GEAR_RATIO engine data[9] engine_data[10] engine data [11] #define POWERTRAIN INERTIA engine data[12] #define MAX FUELFLOW /* (seconds/tick) / (seconds/hour) = (hours/tick) */ #define HOURS_PER_TICK (DELTA_T / 3600.0) static REAL hours of flight; static int minutes_of_flight, old_minutes_of_flight; static BOOLEAN engine is damaged, transmission_is_damaged; /***** engine noise stuff *****/ #define ORIGINAL 0 #define BOTH DISABLED 1 #define CHANGE ROTOR 2 #define CHANGE ENGINE 3 #define CHANGE BOTH 4 static int engine_sound_type = CHANGE_BOTH; static int engine_oscillation[2], rotor_oscillation[2]; #define MIN_ROTOR_SOUND 105 #define MAX_ROTOR_SOUND 120 #define ROTOR_SOUND_RANGE (MAX ROTOR SOUND - MIN ROTOR SOUND) #define MIN_TURBINE_SOUND 95 #define MAX TURBINE SOUND 126 (MAX_TURBINE_SOUND - MIN_TURBINE_SOUND) #define TURBINE_SOUND_RANGE static REAL turbine speed; static REAL engine speed; /* Nose gearbox output shaft */ static REAL engine_load_torque; static REAL engine_percent_torque; static REAL engine drive torque; static REAL main_rotor_shaft_speed; static REAL main_rotor_drive_torque; static REAL tail_rotor_shaft_speed; static REAL tail_rotor_drive_torque; static REAL powertrain percent_shaft_speed; static REAL last percent shaft speed; static REAL last_percent_torque; static REAL fuel_flow; static REAL engine power;

```
Appendix C - Source Code Listing for rwa_engine.c
```

```
static REAL integrator_gain;
static REAL gov p gain;
static REAL gov_i_gain;
static int number_of_engines;
                               /* Working */
static int engine status;
/* Flag used to determine if the engine is starting. Sounds for the
engine
   and rotors are more "realistic." Starting engine speed is 0 instead
of
   GOVERNOR_ENGINE_SPEED_SETTING, and since engine_power then maxes out
   (causes "torque" to flash) a check is done and temporarily forces the
   torque percentage to be equal to 1.
                                         11-8-89
                                                         Paul J. Metzger
*/
static int starting_engine;
void
        engine simul (main rotor_load, tail_rotor_load, altitude)
        main rotor load, tail rotor load, altitude;
REAL
ł
    REAL
            tail rotor engine load;
            main rotor engine load;
    REAL
    REAL
            temp percent;
    int
            temp sound;
    main rotor engine load = main rotor load / MAIN ROTOR GEAR RATIO;
    tail rotor engine load = tail rotor load / TAIL ROTOR GEAR RATIO;
    engine load torque = main rotor engine load +
tail_rotor_engine_load;
    if (engine_load_torque < MIN_ENGINE_LOAD_TORQUE)
        engine_load_torque = MIN_ENGINE_LOAD_TORQUE;
    engine_power = gov p_gain *
        (GOVERNOR_ENGINE_SPEED_SETTING - engine_speed) :
    if (engine_status == WORKING)
        integrator_gain += gov_i_gain *
            (GOVERNOR ENGINE SPEED SETTING - engine speed);
        if (integrator gain > 0.5)
            integrator_gain = 0.5;
        else if (integrator_gain < -0.5)</pre>
            integrator gain = -0.5;
        engine_power += integrator_gain;
    }
                                /* Damaged */
   else
    £
        integrator_gain = 0.0;
        if (engine power > 0.7)
            engine_power = 0.7;
    }
```

- C-5 -

```
22 January 1993
Reference # W003036
Rev. 0.0
```

```
Appendix C - Source Code Listing for rwa_engine.c
    if (engine_power > MAX_ENGINE_PERCENT_POWER)
        engine_power = MAX_ENGINE_PERCENT_POWER;
    if (engine_power < 0.0)
        engine power = 0.0;
                                /* Out of gas */
    if (fuel level empty ())
    Ł
        engine_power = 0.0;
        engine_speed = 0.0;
    ł
    engine_drive_torque = engine_power * number_of_engines *
        (ENGINE_TORQUE_INTERCEPT - ENGINE_TORQUE_SLOPE * engine speed);
    engine_percent_torque = engine_drive_torque /
        (MAX_ENGINE_TORQUE * number_of_engines);
    if (engine_status == WORKING)
        engine speed += (engine_drive_torque - engine_load_torque)
            / POWERTRAIN INERTIA;
    if (engine_speed < 0.0)</pre>
        engine speed = 0.0;
    turbine_speed = engine_speed * NOSE_GEARBOX RATIO;
    main_rotor_shaft_speed = engine_speed / MAIN_ROTOR_GEAR_RATIO;
    tail_rotor_shaft_speed = engine_speed / TAIL_ROTOR_GEAR_RATIO;
    powertrain_percent_shaft_speed = engine_speed /
    GOVERNOR_ENGINE_SPEED_SETTING;
    tail_rotor_drive_torque = tail_rotor_load; /* Always have tail
rotor */
   main rotor drive_torque = (engine_drive_torque -
tail_rotor engine load)
        * MAIN ROTOR GEAR RATIO;
    if (main_rotor_drive_torque < 0.0)
        main_rotor_drive_torque = 0.0;
    fuel flow = engine percent_torque * MAX_FUELFLOW;
    if (engine_status == BROKEN) /* crippled condition */
        sound_stop_cont_sound (SOUND_OF_STOP_ENGINE,
SOUND_OF_VARY_ENGINE);
        sound_stop_cont_sound (SOUND_OF_STOP ROTOR,
SOUND_OF_VARY_ROTOR);
        fuel flow *= 50.0;
                                /* fuel leak */
    }
    if (starting_engine)
    4
                                                         /* within a
        if (engine percent_torque - .01 < .0001)
delta */
            starting_engine = FALSE;
```

- C-6 -

```
Appendix C - Source Code Listing for rwa_engine.c
        else
            engine percent torque = .01;
    ł
    fuel_used by_engine (fuel_flow / 3600.0 * DELTA T);
    meter_torque_set (engine_percent_torque);
    meter_rpm_set (powertrain_percent_shaft_speed);
    hours of flight += HOURS PER TICK;
    minutes of flight = (int) (hours_of_flight * 60);
#if DO SFAIL
    if (minutes_of_flight > old_minutes_of_flight)
    ſ
        sfail_event occurred (SFAIL_EVENT MILEAGE);
        if (engine is damaged)
            sfail event occurred (SFAIL_SECONDARY EVENT ENGINE);
        if (transmission is damaged)
            sfail_event_occurred (SFAIL SECONDARY EVENT TRANSMISSION);
        old minutes of flight = minutes_of_flight;
    ٦
#endif
    if (!fuel level empty ())
    Ł
        switch (engine_sound_type)
        1
        case CHANGE ENGINE:
            if (abs (powertrain_percent_shaft_speed
                     - last_percent_shaft_speed) > 0.025)
            ł
                /* rotor sounds depend on RPMs
                 * (powertrain percent shaft speed) */
                temp_percent = max (0.01,
powertrain_percent_shaft_speed);
                sound_make_cont_sound (SOUND_OF_START_ROTOR,
SOUND_OF_VARY_ROTOR
.
                                        SOUND OF STOP ROTOR,
temp percent);
                last percent shaft speed =
powertrain_percent_shaft_speed;
            if (abs (engine percent torque - last percent torque) >
0.025)
            1
                /* engine sounds depend on torque
(engine_percent_torque) */
                temp_percent = max (0.01, engine_percent_torque);
                sound_make_cont_sound (SOUND_OF_START_ENGINE,
SOUND OF VARY ENGI
NE,
                                        SOUND OF STOP ENGINE,
temp_percent);
```

22 January 1993 Reference # W003036 Rev. 0.0 Appendix C - Source Code Listing for rwa_engine.c last percent torque = engine percent_torque; } break; case ORIGINAL: if (abs (powertrain_percent_shaft_speed - last percent_shaft_speed) > 0.025) ł /* rotor sounds depend on RPMS * (powertrain_percent_shaft speed) */ temp percent = $\max(0.01)$, powertrain percent_shaft_speed); sound make_cont_sound (SOUND_OF_START_ROTOR, SOUND OF_VARY_ROTOR SOUND OF STOP ROTOR, temp_percent); sound make_cont_sound (SOUND OF START ENGINE, SOUND OF VARY ENGI NE, SOUND OF STOP ENGINE, temp percent); last percent_shaft_speed = powertrain_percent_shaft_speed; break; case CHANGE BOTH: /* Try the following, as per Perc's directions: vary both the * rotor and engine with torque, but have the rotor range be from * 105 to 120, and the turbine range from 95 to 126. * The rotor sound range is 15 points (120-105), so the % torque is * multiplied by 15, then added to an offset of 105. * The turbine sound range is 31 points (126-95), so the % torque i * multiplied by 31, then added to an offset of 105. * 11-17-90 PJM ***/** if (abs (engine_percent_torque - last_percent_torque) > 0.025) £ /* both sounds depend on torque */ temp sound = (int) (engine_percent_torque * ROTOR SOUND RANGE) MIN ROTOR SOUND; if (temp_sound > MAX_ROTOR SOUND) temp_sound = MAX_ROTOR_SOUND; /* We check to see if the sounds are oscillating. This */

- C-8 -

22 January 1993 Reference # W003036 Rev. 0.0 Appendix C - Source Code Listing for rwa_engine.c /* event occurs while at the extreme torque edges of */ /* the hover hold mode, when we're trying to break */ 2-15-91 PJM /* hold. */ if (temp_sound != rotor oscillation[1]) sound_make_arg_sound (SOUND OF VARY ROTOR, temp_sound); rotor_oscillation[1] = rotor_oscillation[0]; rotor_oscillation[0] = temp_sound; temp sound = (int) (engine percent torque * TURBINE SOUND RANGE) + MIN TURBINE SOUND; if (temp sound > MAX TURBINE SOUND) temp sound = MAX TURBINE SOUND; if (temp_sound != engine_oscillation[1]) sound make arg sound (SOUND OF VARY ENGINE, temp_sound); engine_oscillation[1] = engine_oscillation[0]; engine_oscillation[0] = temp sound; last_percent_torque = engine_percent_torque; 1 break; case CHANGE ROTOR: if (abs (engine_percent_torque - last_percent_torque) > 0.025) ł /* rotor sounds depend on torque */ temp sound = (int) (engine percent torque * ROTOR SOUND RANGE) MIN_ROTOR_SOUND; if (temp_sound > MAX ROTOR SOUND) temp_sound = MAX ROTOR SOUND; sound make arg sound (SOUND OF VARY ROTOR, temp sound); sound_stop_cont_sound (SOUND_OF_STOP_ENGINE, SOUND OF VARY ENGINE); last_percent_torque = engine percent torque; ł break; case BOTH DISABLED: sound_stop_cont_sound (SOUND OF STOP ENGINE, SOUND OF VARY ENGINE); sound_stop_cont_sound (SOUND_OF_STOP_ROTOR, SOUND OF VARY ROTOR); break; } } } REAL engine get rotor percent shaft speed ()

- C-9 -

```
Appendix C - Source Code Listing for rwa_engine.c
```

```
ł
    return (powertrain_percent_shaft_speed);
 }
        engine damage_engine_oil ()
void
#if DO CFAIL
    controls start failure_lamp_flashing (MASTER_CAUTION);
    controls_start_failure_lamp_flashing (ENGINE_FAILURE);
#endif
    engine is damaged = TRUE;
}
        engine repair_engine_oil ()
void
ł
#if LO CFAIL
    controls failure lamp off (ENGINE FAILURE);
    engine_is_damaged = FALSE;
#endif
}
        engine break engine ()
void
ł
    engine_status = BROKEN;
    engine speed = 0.0;
    number of engines = 1;
}
void
        engine_repair_engine ()
ł
    engine_repair_engine_oil ();
    engine_status = WORKING;
    number of engines = 2;
}
void
        engine_damage_transmission_filter ()
#if DO SFAIL
    controls start failure lamp flashing (MASTER CAUTION);
    controls_start_failure_lamp_flashing (TRANSMISSION_FAILURE);
    transmission is damaged = TRUE;
#endif
}
void
        engine_repair_transmission_filter ()
ł
#if DO SFAIL
    controls failure lamp off (TRANSMISSION FAILURE);
    transmission_is_damaged = FALSE;
#endif
}
        engine break transmission ()
void
#if DO SFAIL
```

```
22 January 1993
Reference # W003036
Rev. 0.0
```

```
Appendix C - Source Code Listing for rwa_engine.c
```

```
engine_break_engine ();
                               /* engine has seized */
#endif
ł
void
        engine repair transmission ()
#if DO_SFAIL
    engine_repair_transmission_filter ();
    engine_repair_engine ();
#endif
}
        engine_init ()
void
ł
        int
                 i;
                 data init;
        int
        float
                data_tmp;
        char
                descript[64];
        FILE
                 *fp;
/* DEFAULT DATA FOR rwa_engine.c READ FROM FILE
*/
        fp = fopen("/simnet/data/rwa engn.d", "r");
        if (fp==NULL) {
                 fprintf(stderr, "Cannot open
/simnet/data/rwa engn.d\n");
                exit();
        ł
        rewind(fp);
        /*
                Read array data */
        i=0;
        while(fscanf(fp,"%f", &data_tmp) != EOF){
                engine_data[i] = data tmp;
                fgets(descript, 64, fp);
/*
                printf("engine_data(%3d) is%11.3f %s", i,
engine_data[i],
                         descript);
*/
                ++i;
        ł
        fclose(fp);
/* END DEFAULT DATA FOR rwa engine.c READ FROM FILE
*/
/* DEFAULT INITIALIZATION DATA FOR rwa engine.c READ FROM FILE
*/
        fp = fopen("/simnet/data/rw_en_in.d", "r");
        if (fp==NULL) {
                fprintf(stderr, "Cannot open
/simnet/data/rw en in.d\n");
```

```
Appendix C - Source Code Listing for rwa_engine.c
                 exit();
         }
         rewind(fp);
         /*
                 Read array data */
         i=0;
while(fscanf(fp,"%f", &data_tmp) != EOF){
        engine_init_data[i] = data_tmp;
                 fgets(descript, 64, fp);
/*
                 printf("engine_init_data(%3d) is%11.3f %s", i,
                         engine_init_data[i], descript);
*/
                 ++i;
         }
         fclose(fp);
    END DEFAULT INITIALIZATION DATA FOR rwa engine.c READ FROM FILE
/*
*/
/* DEFAULT STATUS DATA FOR rwa_engine.c READ FROM FILE
*/
        fp = fopen("/simnet/data/rw_en_st.d", "r");
        if (fp==NULL) {
                 fprintf(stderr, "Cannot open
/simnet/data/rw_en_st.d\n");
                 exit();
        ł
        rewind(fp);
        /*
                 Read array data */
        i=0;
        while(fscanf(fp,"%d", &data_init) != EOF){
                 engine_stat_data[i] = data_init;
                 fgets(descript, 64, fp);
/*
                 printf("engine stat data(%3d) is%11d %s", i,
                         engine stat data[i], descript);
*/
                 ++i;
        }
        fclose(fp);
/*
   END DEFAULT STATUS DATA FOR rwa engine.c READ FROM FILE
*/
                                 GOVERNOR_P_GAIN;
    gov_p_gain =
    gov_i_gain =
                                 GOVERNOR I GAIN;
                                 engine init data[ 0];
    engine power =
    engine percent torque =
                                 engine_init_data[ 1];
    engine_speed =
                                 engine init data[ 2];
                                 engine_init_data[ 3];
    integrator gain =
```

```
Appendix C - Source Code Listing for rwa_engine.c
```

```
last percent shaft_speed = engine_init_data[ 4];
                               engine_init_data[ 5];
    last percent torque =
    hours_of_flight =
                               engine_init_data[ 6];
                               engine_stat_data[ 0];
    minutes of_flight =
    old minutes_of_flight =
                               engine_stat_data[ 1];
                               engine_stat_data[ 2];
    engine status =
                               engine_stat_data[ 3];
    starting_engine =
                               engine_stat_data[ 4];
    number_of_engines =
                               engine_stat_data[ 5];
    engine is damaged =
    transmission_is_damaged = engine_stat_data[ 6];
#if DO CFAIL
    fail init_failure (motiveOilLeak, engine_damage_engine oil,
                     engine repair engine oil, NO SELF REPAIR,
noncritKill);
    fail init failure (motiveEngineMajor, engine break engine,
                       engine repair engine, NO SELF REPAIR,
mobilityKill);
#endif
#if DO SFAIL
    fail init failure (motiveTransFluidFilter,
       engine damage transmission filter,
engine repair transmission filter,
                       NO SELF REPAIR, noncritKill);
    fail init failure (motiveTransmissionMajor,
engine_break_transmission,
                  engine_repair_transmission, NO_SELF_REPAIR,
mobilityKill);
#endif
}
void
        engine debug print ()
ł
    printf ("rpm = f\n rps = f\n ps = f\n etq = f\n mrt = f\n",
            powertrain percent shaft speed, engine speed,
            engine power, engine drive_torque, main_rotor_drive torque);
}
REAL
        engine_get speed ()
Ł
    return (engine speed);
ł
void
        engine toggle sound ()
{
    if ((engine sound type -1) < ORIGINAL)
        engine_sound_type = CHANGE_BOTH;
    else
        engine sound type--;
    switch (engine_sound_type)
   case ORIGINAL:
                               Engine: RPM\n");
       printf ("Rotor: RPM
```

Appendix C - Source Code Listing for rwa_engine.c

```
break;
    case CHANGE ROTOR:
       printf ("Rotor: TORQUE Engine: DISABLED\n");
       break;
   case CHANGE ENGINE:
       printf ("Rotor: RPM Engine: TORQUE\n");
       break;
   case CHANGE BOTH:
       printf ("Rotor: TORQUE Engine: TORQUE\n");
       break;
   case BOTH_DISABLED:
       printf ("Rotor: DISABLED Engine: DISABLED\n");
       break;
   }
}
       engine_get_hours_of_flight ()
REAL
£
   return (hours_of_flight);
}
       engine_get_minutes_of_flight ()
int
{
   return (minutes_of_flight);
}
```

Appendix D- Source code listing for rwa_kinemat.c.

The following appendix contains the source code listing for rwa_kinemat.c for convenience in document maintenance and understanding of the CSU.

```
22 January 1993
Reference # W003036
Rev. 0.0
```

```
Appendix D - Source Code Listing for rwa_kinemat.c
```

```
/* $Header: /a3/adst-cm/RWA/simnet/vehicle/rwa/src/RCS/rwa_kinemat.c,v
1.1 1992/
10/07 19:00:23 cm-adst Exp $ */
/*
 * $Log: rwa_kinemat.c,v $
 * Revision 1.1 1992/10/07 19:00:23 cm-adst
 * Initial Version
*/
static char RCS ID[] = "$Header: /a3/adst-
cm/RWA/simnet/vehicle/rwa/src/RCS/rwa_
kinemat.c,v 1.1 1992/10/07 19:00:23 cm-adst Exp $";
*****
* Revisions:
                                               SP/CR
*
      Version Date Author Title
Number
×
             10/09/92 R. Branson Data File Initiali-
*
      1.2
*
                               zation
*
     1.3
             10/16/92 R. Branson Data filenames changed
*
                              to eight characters
*
             10/30/92 R. Branson Added pathname to data
     1.4
*
                               directory
*
****/
*****
×
*
     SP/CR No.
                 Description of Modification
*
*
                 Hard coded defines changed to array element.
*
                 Kinemat data array added.
*
                 Kinemat initialization array added.
                 Added file read for kinemat data and kinemat
initiali-
                    zation data to the "veh_spec_kinematics_init"
                    function.
                 Added "/simnet/data/" to each data file
pathname.
*********************
****/
÷
```

Appendix D - Source Code Listing for rwa kinemat.c

```
* FILE:
                rwa kinemat.c
  * AUTHOR:
                Bryant Collard
  * MAINTAINER: Bryant Collard
  * PURPOSE:
                This file contains routines which process
                information generated in the dynamics and
                kinematics software to generate data needed
                specifically for the rotary wing aircraft.
  * HISTORY:
                03/03/89 bryant: Creation
                05/15/89 james: Modified for RWA
  * Copyright (c) 1989 BBN Systems and Technologies, Inc.
  * All rights reserved.
  *****
#include "stdio.h"
#include "math.h"
#include "sim types.h"
#include "sim_dfns.h"
#include "sim macros.h"
#include "libmatrix.h"
#include "librotate.h"
#include "vehicle.h"
#include "std_atm.h"
#define GRAV CONSTANT
                             kinemat data[ 0]
#define SIN AOA LIMIT
                             kinemat data[ 1]
#define COS AOA LIMIT
                             kinemat_data[ 2]
#define SIN YAW LIMIT
                             kinemat_data[ 3]
#define COS_YAW_LIMIT
                             kinemat_data[ 4]
#define DISPLAY_SPEED LIMIT
                            kinemat_data[ 5]
static VECTOR pos unit vel;
static VECTOR neg_unit_vel;
static REAL sin aoa;
static REAL cos_aoa;
static REAL sin_yaw;
static REAL cos yaw;
static REAL altitude;
static REAL body pitch;
static REAL body_pitch_offset;
static REAL velocity_pitch;
static REAL roll;
static REAL heading;
static REAL true_airspeed;
static REAL indicated airspeed;
static REAL g_force;
static REAL vertical_speed;
static REAL *ang_vel;
static REAL *velocity_vector;
static VECTOR gravity;
```

```
static VECTOR norm vel;
static T MATRIX velocity_to_body;
static REAL kinemat data[20] = {
        9.81, 0.642787610, 0.766044443, 0.642787610, 0.766044443,
       0.0,
                                      0.0,
                                                0.0,
                 0.0,
                           0.0,
                 0.0,
                                      0.0,
        0.0,
                           0.0,
                                                 0.0,
       0.0,
                 0.0.
                           0.0,
                                      3.0,
                                                 0.0
        };
static REAL kinemat_init_data[30] = {
                        0.0,
       0.0,
                                      0.0,
                                                -1.0,
                1.0,
       0.0,
                 0.0,
                           1.0,
                                      0.0,
                                                1.0,
                          0.0,
       0.0,
                                      0.0,
                 0.0,
                                                0.0,
                          0.0,
                 0.0,
       0.0,
                                      1.0,
                                                0.0,
       0.0,
                 0.0,
                          -1.0,
                                      0.0,
                                                1.0,
                 0.0,
                          0.0,
                                      0.0,
                                                 0.0
       0.0,
       } ;
+
              veh_spec_kinematics_init
 * ROUTINE:
 * PARAMETERS: none
 * RETURNS:
              none
 * PURPOSE:
              This routine initializes vehicle specific
              kinematics parameters.
 ***********
void veh spec kinematics init ()
/* DEFAULT DATA FOR rwa_kinemat.c READ FROM FILE
                                               */
       int
              i;
       float
              data tmp;
       char
              descript[64];
       FILE
              *fp;
       fp = fopen("/simnet/data/rwa kine.d", "r");
       if (fp==NULL) {
              fprintf(stderr, "Cannot open
/simnet/data/rwa_kine.d\n");
              exit();
       }
       rewind(fp);
       /*
              Read array data */
       i=0;
       while(fscanf(fp,"%f", &data_tmp) != EOF)(
              kinemat_data[i] = data_tmp;
              fgets(descript, 64, fp);
/*
              printf("kinemat_data(%3d) is%11.3f %s", i,
kinemat_data[i],
```

Appendix D - Source Code Listing for rwa kinemat.c

```
22 January 1993
Reference # W003036
Rev. 0.0
```

*/

```
Appendix D - Source Code Listing for rwa kinemat.c
                        descript);
*/
                ++i;
        }
        fclose(fp);
/* END DEFAULT DATA FOR rwa kinemat.c READ FROM FILE
                                                            */
/* DEFAULT INITIALIZATION DATA FOR rwa_kinemat.c READ FROM FILE
        fp = fopen("/simnet/data/rw_ki_in.d","r");
        if(fp==NULL){
                fprintf(stderr, "Cannot open
/simnet/data/rw_ki_in.d\n");
                exit();
        }
        rewind(fp);
        /*
                Read array data */
        i=0;
        while(fscanf(fp,"%f", &data_tmp) != EOF){
                kinemat_init_data[i] = data_tmp;
                fgets (descript, 64, fp);
/*
                printf("kinemat init data(%3d) is%11.3f %s", i,
                        kinemat_init_data[i], descript);
*/
                ++i;
        ł
        fclose(fp);
   END DEFAULT INITIALIZATION DATA FOR rwa kinemat.c READ FROM FILE
/*
*/
   pos_unit_vel[Y] =
                         kinemat_init_data[ 1];
   pos_unit_vel[Z] =
                         kinemat_init_data[ 2];
   neg_unit_vel[X] =
                         kinemat_init_data[ 3];
   neg_unit vel[Y] =
                         kinemat_init_data[ 4];
   neg unit vel[Z] =
                         kinemat init data[ 5];
   sin aoa =
                         kinemat init data[ 6];
                         kinemat_init_data[ 7];
   cos aoa =
                         kinemat_init_data[ 8];
   sin yaw =
                         kinemat_init_data[ 9];
   cos_yaw =
                         kinemat_init_data[10];
   altitude =
                         kinemat_init_data[11];
   body pitch =
   body_pitch_offset =
                         kinemat_init_data[12];
                         kinemat_init_data[13];
   velocity pitch =
                         kinemat_init_data[14];
   roll =
   heading =
                         kinemat_init_data[15];
   true_airspeed =
                         kinemat_init_data[16];
   indicated_airspeed = kinemat_init_data[17];
   g_force =
                         kinemat init data[18];
   vertical_speed =
                         kinemat_init_data[19];
```

```
Appendix D - Source Code Listing for rwa_kinemat.c
```

```
ang vel = vehicle angular velocity ();
    velocity vector = vehicle velocity();
                   kinemat_init_data[20];
kinemat_init_data[21];
kinemat_init_data[22];
    gravity[\overline{X}] =
    gravity[Y] =
    gravity[Z] =
    norm_vel[X] = kinemat_init_data[23];
norm_vel[Y] = kinemat_init_data[24];
norm_vel[Z] = kinemat_init_data[25];
    mat ident (velocity_to_body);
}
veh spec kinematics_simul
 * ROUTINE:
 * PARAMETERS: none
              none
*
This routine finds vehicle specific kinematics *
 * RETURNS:
 * PURPOSE:
                parameters.
 *********
void veh_spec_kinematics_simul ()
ſ
    REAL *velocity;
    REAL temp, temp2;
    REAL *position;
    T_MAT_PTR body_to_world;
    position = rotate_get_loc (world (), hull ());
    altitude = position[Z];
    if (altitude < 0.0)
        altitude = 0.0;
/*
      velocity = vehicle_velocity (); */
    velocity = velocity_vector;
    true_airspeed = sqrt (velocity[X] * velocity[X] + velocity[Y] *
velocity[Y]
            + velocity[Z] * velocity[Z]);
    indicated_airspeed = true_airspeed * sqrt (air_density (altitude) /
            air_density(0.0));
    if (true airspeed < E MILLI)
    {
        norm vel[X] = 0.0;
        norm vel[Y] = 1.0;
        norm vel[Z] = 0.0;
    }
   else
    ł
        norm_vel[X] = velocity[X] / true_airspeed;
        norm_vel[Y] = velocity[Y] / true_airspeed;
       norm_vel[Z] = velocity[Z] / true_airspeed;
    1
   if (norm_vel[Z] - 1.0 > -E_NANO)
        sin aoa = -1.0;
       \cos a \circ a = 0.0;
       sin yaw = 0.0;
```



```
22 January 1993
Reference # W003036
Rev. 0.0
```

```
Appendix D - Source Code Listing for rwa_kinemat.c
         cos_yaw = 1.0;
     }
     else if (norm vel[Z] + 1.0 < E NANO)
     ł
         sin_aoa = 1.0;
         \cos_{aoa} = 0.0;
         sin_yaw = 0.0;
         cos_yaw = 1.0;
     }
     else
     ł
         sin aoa = -norm_vel[Z];
         cos aoa = sqrt (norm_vel[X] * norm_vel[X] + norm_vel[Y] *
norm vel[Y]);
         sin_yaw = norm_vel[X] / cos_aoa;
         cos yaw = norm vel[Y] / cos_aoa;
     }
/*
     if (sin_aoa > SIN_AOA_LIMIT)
     {
         temp = COS_AOA_LIMIT;
         velocity_to_body[1][2] = -SIN_AOA_LIMIT;
     }
    else if (sin_aoa < -SIN_AOA_LIMIT)</pre>
     1
         temp = COS AOA LIMIT;
         velocity_to_body[1][2] = SIN_AOA_LIMIT;
     ł
    else
     ſ
*/
         temp = cos_aoa;
         velocity_to_body[1][2] = -sin_aoa;
/*
    if (cos_yaw < COS_YAW_LIMIT)
     ł
         velocity_to_body[0][0] = COS_YAW_LIMIT;
         if (\sin yaw > 0)
             velocity_to_body[0][1] = -SIN_YAW_LIMIT;
         else
             velocity to body[0][1] = SIN_YAW_LIMIT;
    }
    else
    {
*/
         velocity to body[0][0] = cos_yaw;
         velocity_to_body[0][1] = -sin_yaw;
/*
    }
*/
    velocity_to_body[0][2] = 0.0;
    velocity_to_body[1][0] = -velocity_to_body[0][1] * temp;
velocity_to_body[1][1] = velocity_to_body[0][0] * temp;
    velocity_to_body[2][0] = velocity_to_body[1][2] *
velocity to body[0][1];
```

```
Appendix D - Source Code Listing for rwa_kinemat.c
```

```
velocity_to_body[2][1] = -velocity_to_body[1][2] *
 velocity to body[0][0];
     velocity_to_body[2][2] = velocity_to_body[1][1] *
 velocity_to_body[0][0] -
             velocity_to_body[1][0] * velocity_to_body[0][1];
     ang vel = vehicle angular velocity ();
     body to world = rotate get mat (hull (), world ());
     gravity[X] = body to world[0][2];
    gravity[Y] = body_to_world[1][2];
gravity[Z] = body_to_world[2][2];
     g_force = gravity[2] + (true_airspeed * ang_vel[X] / GRAV_CONSTANT);
     vertical_speed = vec_dot_prod (norm_vel, gravity);
     if (true airspeed >= DISPLAY_SPEED_LIMIT)
         velocity pitch = asin (vertical_speed);
    else
         velocity pitch = 0.0;
    vertical speed *= true airspeed;
    body_pitch = asin (body_to_world[1][2]);
    gravity[X] = -gravity[X];
    gravity[Y] = -gravity[Y];
    gravity[2] = -gravity[2];
    temp = sqrt (body_to_world[1][0] * body_to_world[1][0] +
             body_to_world[1][1] * body_to_world[1][1]);
    if (temp < E_NANO)
    ł
        roll = 0.0;
        heading = 0.0;
    }
    else
    ł
        temp2 = (body_to_world[0][0] * body_to_world[1][1] -
                 body_to_world[0][1] * body_to_world[1][0]) / temp;
        if (temp2 > 1.0) temp2 = 1.0;
        roll = acos (temp2);
        if (body_to_world[1][1] * body_to_world[2][0] -
                 body_to world[1][0] * body to world[2][1] < 0.0)
             roll = -roll;
        if (body to world[1][0] \geq 0.0)
            heading = acos (body to world[1][1] / temp);
        else
            heading = acos (-body to world[1][1] / temp) + PI;
/* NO METERS FOR NOW
    meter_g_force_set (g_force);
    meter_vertical_speed_set (vertical_speed);
    if (true airspeed >= DISPLAY SPEED LIMIT)
        meter_send_aero_data (rad_to_deg (body_pitch), rad to deg
(roll),
                 rad_to_deg (heading), asin (sin_aoa), asin (sin_yaw),
                 indicated_airspeed, altitude, g_force);
    else
        meter_send_aero data (0.0, 0.0,
                 rad_to_deg (heading), 0.0, 0.0,
                 indicated_airspeed, altitude, g_force);
*/
                                       2
3
```

```
REAL kinematics_get_aoa ()
-{
    return (asin (-velocity_to_body[1][2]));
}
REAL kinematics_get_yaw ()
Ł
     return (asin (-velocity_to_body[0][1]));
}
REAL kinematics_get_altitude ()
ł
    return (altitude);
}
REAL kinematics_get_body_pitch ()
£
    return (body_pitch + body_pitch_offset);
}
REAL kinematics_get_velocity_pitch ()
Ł
    return (velocity_pitch);
ł
REAL kinematics_get_roll ()
ſ
    return (roll);
}
REAL kinematics_get_heading ()
ł
    return (heading);
}
REAL kinematics_get true airspeed ()
Ł
    return (true_airspeed);
}
REAL kinematics_get_indicated_airspeed ()
1
    return (indicated_airspeed);
}
REAL kinematics_get_g_force ()
£
    return (g_force);
}
REAL kinematics_get_vertical_speed ()
1
    return (vertical_speed);
ł
```

Appendix D - Source Code Listing for rwa_kinemat.c

```
Appendix D - Source Code Listing for rws_kinemat.c
```

```
REAL *kinematics_get_gravity_vector ()
ſ
    return (gravity);
ł
REAL *kinematics_get_linear_velocity_vector()
ł
    return (velocity_vector);
ł
REAL *kinematics_get_normalized_velocity_vector ()
ſ
    if (true_airspeed > DISPLAY_SPEED_LIMIT)
        return (norm vel);
    else if (norm_vel[Y] >= 0.0)
        return (pos_unit_vel);
    else
        return (neg_unit_vel);
}
REAL *kinematics get_angular_velocity_vector ()
ſ
    return (ang_vel);
}
T_MAT_PTR kinematics_get_velocity_to_body ()
ł
   return (velocity_to_body);
}
```

Appendix E - Source code listing for miss_adat.c.

The following appendix contains the source code listing for miss_adat.c for convenience in document maintenance and understanding of the CSU.

Appendix E - Source Code Listing for miss_adat.c

/* \$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissile/RCS/miss_adat.c,v 1 .1 1992/09/30 16:39:52 cm-adst Exp \$ */
/* * \$Log: miss_adat.c,v \$
* Revision 1.1 1992/09/30 16:39:52 cm-adst * Initial Version
*/
static char RCS_ID[] = "\$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissil e/RCS/miss_adat.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp \$";
/*************************************
* Revisions:
Version Date Author Title SP/CR Number
 1.2 10/23/92 R. Branson Data File Initiali- Tation
 1.3 10/30/92 R. Branson Added pathname to data directory
* 1.4 11/25/92 R. Branson Changed %i to %d
/
/**************************************
SP/CR No. Description of Modification
 Hard coded defines changed to array elements.
 Characteristics/parameter data array added. Engine initialization data array added
 Degree of polynomial data array added.
 Added file reads for ADAT characteristics/
 parameters, burn speed coefficients, coast speed
 coefficients, burn turn coefficients, coast turn coefficients, and temporal bias coefficients.
 Added "/simnet/data/" to each data file pathname.

/**************************************
* AUTHOR: Bryant Collard *
* MAINTAINER: Bryant Collard *
* PURPOSE: This file contains routines which fly out a *
* missile with the characteristics of a ADAT

missile. HISTORY: 06/28/89 bryant: Creation 08/06/90 bryant: NIU librva modifications. Copyright (c) 1989 BBN Systems and Technologies, Inc. All rights reserved. #include "stdio.h" #include "math.h" #include "sim_types.h" #include "sim dfns.h" #include "basic.h" #include "mun type.h" #include "libmap.h" #include "libmatrix.h" #include "miss_adat.h" #include "libmiss_dfn.h" #include "libmiss loc.h" 1+1 * Define missile characteristics. /*/ #define ADAT_BURNOUT_TIME adat_miss_char[0] #define ADAT_MAX_FLIGHT_TIME adat_miss_char[1] #define INVEST_DIST_SQ adat_miss_char[2] #define HELO_FUZE_DIST_SQ adat_miss_char[3] #define AIR_FUZE_DIST_SQ adat_miss_char[4] #define ADAT_TEMP_BIAS_TIME adat_miss_char[5] #define CLOSE_RANGE adat miss char[6] /*/ * Define the states the _ADAT_MISSILE_ can be in. /*/ #define ADAT_FREE 0 /* No missile assigned. */ #define ADAT_GUIDE 1 /* Missile flying and guided. */ #define ADAT_UNGUIDE 2 /* Missile flying but unguided. */ #define ADAT_CLOSE 3 /* Missile flying against a close target. */ #define ADAT_HOT 4 /* Missile fired without cooling. */ 1+1 * The following terms set the order of the polynomials used to determine * the speed or cosine of the maximum allowed turn rate of the missile * at any point in time.

/*/

#define ADAT_BURN_SPEED_DEG adat_miss_poly_deg[0]
#define ADAT_COAST_SPEED_DEG adat_miss_poly_deg[1]
#define ADAT_BURN_TURN_DEG adat_miss_poly_deg[2]
#define ADAT_COAST_TURN_DEG adat_miss_poly_deg[3]
#define ADAT_TEMP_BIAS_DEG adat_miss_poly_deg[4]

/*/

* ADAT missile characteristic parameters initialized to default values. /*/

```
static REAL adat_miss_char[10] =
```

```
{

48.0, /* ticks (3.2 sec) */

300.00, /* ticks (20.0 sec) */

90000.0, /* (300 m) ** 2 */

49.0, /* (7 m) ** 2 */

196.0, /* (14 m) ** 2 */

60.0, /* ticks (4.0 sec) */

2200.0, /* close range*/

0.0,

0.0,
```

};

0.0

/*/ * The following are the default values of the degree of polynomials. /*/

```
static int adat_miss_poly_deg[5] =
```

```
{
```

```
2, /* Speed before motor burnout. */
```

```
4, /* Speed after motor burnout. */
```

```
3, /* Cosine of max turn before burnout. */
```

```
5, /* Cosine of max turn after burnout. */
```

```
4 /* Temporial bias. */
```

```
};
```

/*/
* Coefficients for the speed polynomial before motor burnout.

```
/*/
```

static REAL adat_burn_speed_coeff[10] =

{ 2.296, /* a_0 - m/tick */ 0.72990856, /* a_1 - m/tick**2 */ 0.013310932, /* a_2 - m/tick**3 */ 0.0, 0.0, 0.0,

```
0.0,
  0.0,
  0.0,
  0.0
};
 /*/
 * Coefficients for the speed polynomial after motor burnout.
/*/
static REAL adat_coast_speed_coeff[10] =
Ł
                   /* a_0 - m/tick */
 105.52162,
                 /* a_1 - m/tick**2 */
  -1.0157285,
                 /* a_2 - m/tick**3 */
  5.6124330e-3,
                  /* a_3 - m/tick**4 */
  -1.6262608e-5,
                   /* a_4 - m/tick**5 */
  1.8991982e-8,
  0.0,
  0.0,
  0.0,
  0.0,
  0.0
};
/*/
 * Coefficients for the cosine of max turn polynomial before motor burnout.
/*/
static REAL adat_burn_turn_coeff[10] =
ſ
  0.999993,
                 /* a_0 - cos(rad)/tick */
 -6.2386917e-7, /* a_1 - cos(rad)/tick**2 */
  1.6146426e-7, /* a_2 - cos(rad)/tick**3 */
 -9.720142e-7, /* a_3 - cos(rad)/tick**4 */
  0.0,
  0.0.
  0.0,
  0.0,
  0.0,
  0.0
};
/*/
* Coefficients for the cosine of max turn polynomial after motor burnout.
/*/
static REAL adat_coast_turn_coeff[10] =
{
                  /* a_0 - cos(rad)/tick */
  0.99753111,
  5.5817986e-5,
                   /* a_1 - cos(rad)/tick**2 */
                  /* a_2 - cos(rad)/tick**3 */
  -5.1276276e-7,
```



```
/* a 3 - cos(rad)/tick**4 */
   2.2388593e-9.
   -5.1964622e-12, /* a_4 - cos(rad)/tick**5 */
                    /* a_5 - cos(rad)/tick**6 */
   4.5499104e-15,
   0.0,
  0.0,
  0.0,
  0.0
}:
 /*/
 * Coefficients for the temporial bias polynomial.
/*/
static REAL adat_temp_bias_coeff[10] =
  5.3105657e-2, /* a_0 - m */
  7.1795817e-2, /* a_1 - m/tick */
                 /* a_2 - m/tick**2 */
  1.8084646e-2,
  -6.0083762e-4, /* a_3 - m/tick**3 */
  4.6761091e-6, /* a_4 - m/tick**4 */
  0.0.
  0.0,
  0.0,
  0.0.
  0.0
];
/*/
* The following arrays are used to give the missile the proper superelevation
* at launch time. Two are required to deal with launches off either side
* of the turret.
/*/
static T_MATRIX tube_C_sight_left;
static T_MATRIX tube_C_sight_right;
/*/
* Memory for the missiles is declared in vehicle specific code. During
* initialization, a pointer is assigned to this memory then some memory
* issues are dealt with in this module.
/*/
static ADAT_MISSILE *adat_array; /* A pointer to missile memory. */
                             /* The number of defined missiles. */
static int num_adats;
1+1
* Declare static functions.
/*/
/* static void missile_adat_fly (); ** made external */
```

ł

static void missile_adat_stop ();

```
* ROUTINE: missile_adat_init
 * PARAMETERS: missile_array - A pointer to an array of
                  ADAT missiles defined in
                  vehicle specific code.
          num_missiles - The number missiles defined in *
                  _missile_array_.
 * RETURNS: none
 * PURPOSE: This routine copies the parameters into
          variables static to this module and initializes *
          the state of all the missiles. It also
         initializes the proximity fuze.
                                     ++++++++++++++++++++++++++++++++++/
void missile_adat_init (missile_array, num_missiles)
ADAT_MISSILE missile_array[];
int num_missiles;
ſ
    int i; /* A counter. */
    REAL mag: /* Used to generate tube to sight matricies. */
    int data_tmp_int;
    float data_tmp;
    char descript[64];
    FILE *fp;
/* DEFAULT CHARACTERISTICS DATA FOR miss_adat.c READ FROM FILE
                                                                                  */
    fp = fopen("/simnet/data/ms_ad_ch.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_ad_ch.d\n");
        exit();
    }
    rewind(fp);
    /*
         Read array data */
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        adat_miss_char[i] = data_tmp;
        fgets(descript, 64, fp);
/+
         printf("adat_miss_char(%3d) is%11.3f %s", i,
            adat_miss_char[i], descript);
                                              •/
        ++i;
   }
    fclose(fp);
/* END DEFAULT CHARACTERISTICS DATA FOR miss_adat.c READ FROM FILE */
```
```
/* DEFAULT BURN SPEED DATA FOR miss_adat.c READ FROM FILE
                                                                          */
    fp = fopen("/simnet/data/ms_ad_bs.d","r");
    if(fp==NULL){
         fprintf(stderr, "Cannot open /simnet/data/ms_ad_bs.d\n");
         exit():
    }
    rewind(fp);
    /*
         Read degree of polynomial */
    fscanf(fp,"%d", &data_tmp_int);
    ADAT_BURN_SPEED_DEG = data_tmp_int;
    fgets(descript, 64, fp);
     printf("adat_miss_poly_deg(0) is%3d %s",
/*
         ADAT_BURN_SPEED_DEG, descript);
                                                     */
    /*
         Read array data */
    i=0;
    while(fscanf(fp,"%f", &cdata_tmp) != EOF){
        adat_burn_speed_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
/*
         printf("adat_burn_speed_coeff(%3d) is%11.3f %s", i,
            adat_burn_speed_coeff[i], descript); */
        ++i;
    }
    fclose(fp);
/* END DEFAULT BURN SPEED DATA FOR miss_adat.c READ FROM FILE */
/* DEFAULT COAST SPEED DATA FOR miss_adat.c READ FROM FILE
                                                                           */
    fp = fopen("/simnet/data/ms_ad_cs.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_ad_cs.d\n");
        exit();
    }
    rewind(fp);
         Read degree of polynomial */
    /*
    fscanf(fp,"%d", &data_tmp_int);
    ADAT_COAST_SPEED_DEG = data_tmp_int;
    fgets(descript, 64, fp);
/*
    printf("adat_miss_poly_deg(1) is%3d %s",
        ADAT_COAST_SPEED_DEG, descript);
                                                          */
    /*
         Read array data */
    i=0;
```

```
while(fscanf(fp,"%f", &data_tmp) != EOF){
        adat coast speed coeff[i] = data_tmp;
        fgets(descript, 64, fp);
/*
         printf("adat_coast_speed_coeff(%3d) is%11.3f %s", i,
             adat_coast_speed_coeff[i], descript); */
        ++i;
    }
    fclose(fp);
/* END DEFAULT COAST SPEED DATA FOR miss_adat.c READ FROM FILE */
/* DEFAULT BURN TURN DATA FOR miss_adat.c READ FROM FILE
                                                                           */
    fp = fopen("/simnet/data/ms_ad_bt.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_ad_bt.d\n");
        exit();
    }
    rewind(fp);
    1.
         Read degree of polynomial */
    fscanf(fp,"%d", &data_tmp_int);
    ADAT_BURN_TURN_DEG = data_tmp_int;
    fgets(descript, 64, fp);
    printf("adat_miss_poly_deg(2) is%3d %s",
/*
        ADAT_BURN_TURN_DEG, descript);
                                                     •/
    /+
         Read array data */
    i=0:
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        adat_burn_turn_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
/*
         printf("adat_burn_turn_coeff(%3d) is%11.3f %s", i,
            adat_burn_turn_coeff[i], descript); */
        ++i;
   }
    fclose(fp);
/* END DEFAULT BURN TURN DATA FOR miss_adat.c READ FROM FILE */
/* DEFAULT COAST TURN DATA FOR miss adat.c READ FROM FILE
                                                                           •/
    fp = fopen("/simnet/data/ms_ad_ct.d","r");
   if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms ad ct.d\n");
        exit():
   1
   rewind(fp);
```

*/

Appendix E - Source Code Listing for miss_adat.c

```
/*
     Read degree of polynomial */
```

++i;

}

```
fscanf(fp,"%d", &data_tmp_int);
    ADAT_COAST_TURN_DEG = data_tmp_int;
    fgets(descript, 64, fp);
     printf("adat_miss_poly_deg(3) is%3d %s",
 /*
         ADAT_COAST_TURN_DEG, descript);
                                                      */
          Read array data */
     /*
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
         adat_coast_turn_coeff[i] = data_tmp;
         fgets(descript, 64, fp);
         printf("adat_coast_turn_coeff(%3d) is%11.3f %s", i,
/*
             adat_coast_turn_coeff[i], descript); */
         ++i:
    }
    fclose(fp);
/* END DEFAULT COAST TURN DATA FOR miss_adat.c READ FROM FILE */
/* DEFAULT TEMP BIAS DATA FOR miss_adat.c READ FROM FILE
    fp = fopen("/simnet/data/ms_ad_tb.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_ad_tb.d\n");
        exit():
    }
    rewind(fp);
    /*
         Read degree of polynomial */
    fscanf(fp,"%d", &data_tmp_int);
    ADAT_TEMP_BIAS_DEG = data_tmp_int;
    fgets(descript, 64, fp);
/*
    printf("adat_miss_poly_deg(4) is%3d %s",
        ADAT_TEMP_BIAS_DEG, descript);
                                                    •/
    /*
         Read array data */
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        adat_temp_bias_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
/*
         printf("adat_temp_bias_coeff(%3d) is%11.3f %s", i,
            adat_temp_bias_coeff[i], descript); */
```

fclose(fp);

}

```
/* END DEFAULT TEMP BIAS DATA FOR miss_adat.c READ FROM FILE */
```

```
num_adats = num_missiles;
   adat_array = missile_array;
   for (i = 0; i < num missiles; i++)
   Ł
     adat_array[i].mptr.state = ADAT_FREE;
     adat_array[i].mptr.max_flight_time = ADAT_MAX_FLIGHT_TIME;
     adat_array[i].mptr.max_turn_directions = 1;
  }
/*/

    Initialize the proximity fuze.

1+1
  missile_fuze_prox_init ();
/*/

    Initialize the tube to sight transformation matricies.

/*/
  mag = sqrt (adat_burn_speed_coeff[0] * adat_burn_speed_coeff[0] +
       2.0 * adat_temp_bias_coeff[0] * adat_temp_bias_coeff[0]);
  tube_C_sight_right[1][0] = adat_temp_bias_coeff[0] / mag;
  tube_C_sight_right[1][1] = adat_burn_speed_coeff[0] / mag;
  tube_C_sight_right[1][2] = adat_temp_bias_coeff[0] / mag;
  mag = sqrt (tube_C_sight_right[1][0] * tube_C_sight_right[1][0] +
       tube_C_sight_right[1][1] * tube_C_sight_right[1][1]);
  tube_C_sight_right[0][0] = tube_C_sight_right[1][1] / mag;
  tube_C_sight_right[0][1] = -tube_C_sight_right[1][0] / mag;
  tube_C_sight_right[0][2] = 0.0;
  tube_C_sight_right[2][0] = tube_C_sight_right[1][2] *
       tube_C_sight_right[0][1];
  tube_C_sight_right[2][1] = -tube_C_sight_right[1][2] *
       tube_C_sight_right[0][0];
  tube_C_sight_right[2][2] = mag;
  mat_copy (tube_C_sight_right, tube_C_sight_left);
  tube_C_sight_left[0][1] = -tube_C_sight_left[0][1];
  tube_C_sight_left[1][0] = -tube_C_sight_left[1][0];
  tube_C_sight_left[2][0] = -tube_C_sight_left[2][0];
}
int missile_adat_is_free( missile )
int missile;
ł
  return( (adat_array[missile].mptr.state == ADAT_FREE ));
```

. * ROUTINE: missile_adat_fire * PARAMETERS: aptr - A pointer to the ADAT missile to be fired.

Appendix E - Source Code Listing for miss_adat.c

 target_type - The missile can be set for three types of targets by the launching * vehicle. This variable stores * the setting. launch_point - The location in world coordinates that the missile is * launched from.
 loc_sight_to_world - The sight to world transformation matrix used *
 only in this routine. launch speed - The speed of the launch
 platform (assumed to be in the *
 airection of the missile). range_to_intercept - Range to intercept.
* tube - The tube the missile was launched from. *
 target_venicle_id - i ne venicle ID of the * target (if any).
* RETURNS: TRUE if successful, FALSE if not. *
* PUKPOSE: This routine performs the functions *
* missile. *
•
<pre>int mussle_adat_nre (aptr, target_type, launch_point, loc_sight_to_world,</pre>
/*/ * Find _mptr_ and _target_id
$/^*/$
<pre>if (target_vehicle_id == 0) aptr->target_vehicle_id.vehicle = vehicleIrrelevant; alco</pre>
<pre>aptr->target_vehicle_id = *target_vehicle_id; /*/</pre>
 Set the initial time, location, orientation, and speed of the generic missile. /*/

- E-12 -

```
mptr \rightarrow time = 0.0;
  vec_copy (launch_point, mptr->location);
  if (range_to_intercept < CLOSE_RANGE)
    mat_copy (loc_sight_to_world, mptr->orientation);
  else
    if (((tube / 2) * 2) == tube)
      mat_mat_mul (tube_C_sight_left, loc_sight_to_world,
          mptr->orientation);
    else
      mat mat mul(tube_C_sight_right, loc_sight_to_world,
          mptr->orientation);
  }
  mptr->speed = missile_util_eval_poly (ADAT_BURN_SPEED_DEG,
      adat_burn_speed_coeff, 0.0) + launch_speed;
 mptr->init_speed = launch_speed;
1+1
Indicate that the proximity fuze has no vehicles it is tracking.
/*/
 aptr->pptr = NULL;
1+1
 Set fuze distance and fuze target according to missile target

    setting. Set network variables.

/*/
 switch (target_type)
 ł
 case ADAT TGT GND:
   aptr->fuze_dist_sq = 0.0;
   aptr->target_flag = PROX_FUZE_ON_NO_VEH;
   break;
 case ADAT_TGT_HELO:
   aptr->fuze_dist_sq = HELO_FUZE_DIST_SO;
   if (aptr->target_vehicle_id.vehicle == vehicleIrrelevant)
     aptr->target_flag = PROX_FUZE_ON_ALL_VEH;
   eise
     aptr->target_flag = PROX_FUZE_ON_ONE_VEH;
   break;
 case ADAT TGT AIR:
   aptr->fuze_dist_sq = AIR_FUZE_DIST_SQ;
   if (aptr->target_vehicle_id.vehicle == vehicleIrrelevant)
     aptr->target_flag = PROX_FUZE_ON_ALL_VEH;
   eise
     aptr->target_flag = PROX_FUZE_ON_ONE_VEH;
   break:
 default:
   aptr->fuze_dist_sq = 0.0;
   aptr->target_flag = PROX_FUZE_ON_NO_VEH;
   printf ("MISS_ADAT: Unknown target type %d\n", target_type);
   break;
 ł
 if (aptr->target_vehicle_id.vehicle == vehicleIrrelevant)
```

```
comm_target_type = targetUnknown;
  else
     comm_target_type = targetIsVehicle;
 /*/
 * Tell the rest of the world about the firing of the missile. If this
 * cannot be done, return FALSE.
/*/
  if (!missile_util_comm_fire_missile (mptr, MSL_TYPE_MISSILE,
       map_get_ammo_entry_from_network_type (munition_US_ADATS),
       munition_US_ADATS, munition_US_ADATS, &(aptr->target_vehicle_id),
       comm_target_type, objectIrrelevant, tube))
    return (FALSE);
/*/
 * If all was successful, put any flying missiles in an unguided state
 * and put this missile in a guided state.
/*/
  for (i = 0; i < num_adats; i++)
  {
    if ((adat_array[i].mptr.state == ADAT_GUIDE) ||
         (adat_array[i].mptr.state == ADAT_CLOSE))
       adat_array[i].mptr.state = ADAT_UNGUIDE;
  1
  if (range_to_intercept < CLOSE_RANGE)
    mptr->state = ADAT_CLOSE;
  else
    mptr->state = ADAT_GUIDE;
  return (TRUE);
}
* ROUTINE: missile_adat_fly_missiles
* PARAMETERS: sight_location - The location in world
                  coordinates of the gunner's *
                  sight.
         loc_sight_to_world - The sight to world
                    transformation matrix used *
                     only in this routine.
         veh list - Vehicle list ID.
* RETURNS: none
* PURPOSE: This routine flies out all missiles in a
         flying state.
                                        ****************************
void missile_adat_fly_missiles (sight_location, loc_sight_to_world, veh_list)
VECTOR sight_location;
T_MATRIX loc_sight_to_world;
int veh_list;
ſ
  int i;
        /* A counter. */
```

```
Appendix E - Source Code Listing for miss_adat.c
 /*/
  * Fly out all flying missiles.
 /*/
   for (i = 0; i < num_adats; i++)
   {
     if (adat_array[i].mptr.state != ADAT_FREE)
       missile_adat_fly (&(adat_array[i]), sight_location,
            loc_sight_to_world, i, veh_list);
   }
 }
                                    .
                                                  .
 * ROUTINE: missile_adat_fly
 * PARAMETERS: aptr - A pointer to the ADAT missile that is to *
              be flown out.
          sight_location - The location in world
                   coordinates of the gunner's
                   sight.
         loc_sight_to_world - The sight to world
                     transformation matrix used *
                     only in this routine.
         tube - The tube the missile was launched from. *
         veh list - Vehicle list ID.
 * RETURNS: none
  PURPOSE: This routine performs the functions
         specifically related to the flying a ADAT
         missile.
                                          444444444444444444 /
void missile_adat_fly (aptr, sight_location, loc_sight_to_world, tube,
  veh_list)
ADAT_MISSILE *aptr;
VECTOR sight_location;
T_MATRIX loc_sight_to_world;
int tube;
int veh_list;
Ł
  MISSILE *mptr;
                      /* A pointer to the generic aspects of _aptr_. */
                    /* The current time after launch (ticks). */
  REAL time;
  REAL bias;
                   /* The value of the temporal bias. */
/*/
  Set _mptr_ and _time_. These values are created mostly for increased
* readablity.
/*/
  mptr = \&(aptr->mptr);
  time = mptr->time;
/*/
• Find the current missile speed and the cosines of the maximum allowed turn
```

```
* angles in each direction. The equations used are different before and
 * after motor burnout.
 /*/
  if (time < ADAT_BURNOUT_TIME)
     mptr->speed = missile_util_eval_poly (ADAT_BURN_SPEED_DEG,
         adat_burn_speed_coeff, time) + mptr->init_speed;
     mptr->cos_max_turn[0] = missile_util_eval_poly (ADAT_BURN_TURN_DEG,
         adat_burn_turn_coeff, time);
   }
  else
   ſ
    mptr->speed = missile_util_eval_poly (ADAT_COAST_SPEED_DEG,
         adat coast speed_coeff, time) + mptr->init_speed;
    mptr->cos_max_turn[0] = missile_util_eval_poly (ADAT_COAST_TURN_DEG,
         adat_coast_turn_coeff, time);
  }
/*/
 * Find the target point, etc.
/*/
  if ((mptr->state == ADAT_GUIDE) | | (mptr->state == ADAT_CLOSE))
  ł
    if ((time < ADAT_TEMP_BIAS_TIME) && (mptr->state == ADAT_GUIDE))
      bias = missile_util_eval_poly (ADAT_TEMP_BIAS_DEG,
           adat_temp_bias_coeff, time);
      if (((tube / 2) * 2) == tube)
         missile_target_los_bias (mptr, sight_location,
             loc_sight_to_world, -bias, bias);
      else
        missile_target_los_bias (mptr, sight_location,
             loc_sight_to_world, bias, bias);
    }
    else
      missile_target_los (mptr, sight_location, loc_sight_to_world);
  }
  else if (mptr->state == ADAT_UNGUIDE)
    missile_target_unguided (mptr);
  else
    printf ("MISSILE_ADAT: disallowed missile state %d\n", mptr->state);
/*/
  Try to actually fly the missile. If this fails stop the missile altogether
* and return.
/*/
  if (!missile_util_flyout (mptr))
    missile_adat_stop (aptr);
    return;
  ł
  else
  ſ
```

Appendix E - Source Co	le Listing for miss_adat.c
------------------------	----------------------------

```
1.1
     If the missile successfully flew, process the proximity fuze.
 /*/
     missile_fuze_prox (mptr, MSL_TYPE_MISSILE, aptr->target_flag.
         &(aptr->target_vehicle_id), &(aptr->pptr), veh_list,
         INVEST_DIST_SQ, aptr->fuze_dist_sq);
/*/
     If the missile successfully flew, check for an intersection with the
     ground or a vehicle. If one is found, blow up the missile, stop its
     flyout and return.
 /*/
     if (missile_util_comm_check_detonate (mptr, MSL_TYPE_MISSILE))
       missile_adat_stop (aptr);
       return:
  }
/*/
 * If the missile is to continue to fly, return.
1+1
  return:
* ROUTINE: missile_adat_reset_missiles
* PARAMETERS: none
* RETURNS: none
 * PURPOSE: This routine puts any flying missile into an *
         unguided state.
                                         *****************
void missile_adat_reset_missiles ()
ł
  int i; /* A counter. */
1+/

    Reset all flying missiles.

/*/
  for (i = 0; i < num_adats; i++)
  ł
    if ((adat_array[i].mptr.state == ADAT_GUIDE) ||
         (adat_array[i].mptr.state == ADAT_CLOSE))
      adat_array[i].mptr.state = ADAT_UNGUIDE;
  }
)
* ROUTINE: missile_adat_stop
* PARAMETERS: aptr - A pointer to the ADAT missile that is to *
```

* be stopped. *	
* RETURNS: none *	
* PURPOSE: This routine causes all concerned to forget *	
* about the missile. It should be called when *	
* the flyout of any ADAT missile is stopped *	
* (whether or not it has exploded). Note that *	
* this routine can only be called within this *	
* module. *	
* *	

static void missile adat stop (aptr)	
ADAT MISSILE *aptr:	
{ {	
/*/	
* Tell the world to stop worrying about this missile then release the	
* memory for use by other missiles.	
/*/	
missile fuze novy ston (&(antr->nntr)):	
missile_util_comm_stop_missile (&(aptr->mptr), MSL_TYPE_MISSI	L E);

```
aptr->mptr.state = ADAT_FREE;
```

```
}
```

```
orl1 33> logout
Connection closed.
wdl1-4>
```

Appendix F - Source code listing for miss_atgm.c.

The following appendix contains the source code listing for miss_atgm.c for convenience in document maintenance and understanding of the CSU.

* \$Log: miss	_atgm.c,	v \$	•		
 Revision 1. Initial Vers 	1 1992/(ion	09/30 16:3	39:52 cm-ac	lst	
•					
)/ static char PC	- וותו א	- " C Heade	r /a3/adet.	cm/RWA/simnet/v	ehicle/libsrc/libmissil
e/RCS/miss_	_atgm.c,	v 1.1 1992/	/09/30 16:3	9:52 cm-adst Exp \$";	
/**********		*******	******	******************	
Revisions:					
Version	Date	Author	Title	SP/CR Number	r
·				<u>. </u>	
1.2 10)/23/92	R. Branso	on Data File	Initiali-	
		zation			
1.3 10)/30/92	R. Branso director	n Added p	athname to data	
1.4 11	/25/92	R. Branso	n Changed	l %i to %d	
	******				·····/
/++++++++++++	*******		*****	*******************	*****
	. .		- () (- 4)() -	- 8	
SP/CK P	NO. L	escription	of Modific	ation	
	Hard co	ded defin	es changed	to array elements.	
	Degree	of polynoi	nial data ai	rav added.	
	Added	file reads f	or ATGM o	haracteristics/	
	param	eters, bur	n speed coe	fficients, coast speed	
	coeffic	rients, bur	n turn coeff	icients, and coast	
	turn o	Defficients	•		
	Added	"/simnet/	data/" to e	ach data file pathnam	ie.
				•	
				********************	14444 /
	*******	*********	**********		
	*******	*********	**********		
	*******		***********		,
FILE: m	iss_atgn	n.c	***********	*	
FILE: m AUTHOR:	iss_atgn Bryan	n.c It Collard	*	*	
FILE: m AUTHOR: MAINTAIN	iss_atgn Bryan IER: Bry	n.c At Collard Jant Collai	• rd	* * *	
FILE: m AUTHOR: MAINTAIN PURPOSE:	iss_atgn Bryan IER: Bry This n	n.c It Collard Yant Collar hissile is the	rd It flys to a	the tow except	

```
HISTORY: 10/31/88 bryant: Creation
4/26/89 bryant: Added statically allocated mem
Copyright (c) 1988 BBN Systems and Technologies, Inc.
All rights reserved.
```

#include "stdio.h"

#include "sim_types.h"
#include "sim_dfns.h"
#include "basic.h"
#include "mun_type.h"
#include "libmatrix.h"
#include "libmap.h"
#include "librva.h"

```
#include "miss_atgm.h"
```

#include "libmiss_dfn.h"
#include "libmiss_loc.h"

```
/*/
```

* Define missile characteristics. /*/

#define TOW_BURNOUT_TIME tow_miss_char[0]
#define TOW_RANGE_LIMIT_TIME tow_miss_char[1]
#define TOW_MAX_FLIGHT_TIME tow_miss_char[2]
#define ATGM_TURN_FACTOR tow_miss_char[3]

/*/

* The following terms set the order of the polynomials used to determine

* the speed or cosine of the maximum allowed turn rate of the missile

* at any point in time.

/•/

#define TOW_BURN_SPEED_DEG tow_miss_poly_deg[0]
#define TOW_COAST_SPEED_DEG tow_miss_poly_deg[1]
#define TOW_BURN_TURN_DEG tow_miss_poly_deg[2]
#define TOW_COAST_TURN_DEG tow_miss_poly_deg[3]

/*/

Ł

Tow missile characteristic parameters initialized to default values.

```
static REAL tow_miss_char[5] =
```

```
24.0, /* ticks (1.6 sec) */
```

```
268.35, /* ticks (17.89 sec) */
  200.00, /* ticks - cos of max turn > 1.0 beyond this point */
   0.9, /* ATGM turn factor for wider turning capability */
   0.0
 ];
 1+/
  * The following terms set the order of the polynomials used to determine
  * the speed and turn of the missile at any point in time.
 /*/
 static int tow_miss_poly_deg[5] =
 ſ
   2,
        /* Speed before motor burnout. */
        /* Speed after motor burnout. */
   3,
        /* Cosine of max turn before burnout. */
   1,
  3.
        /* Cosine of max turn after burnout. */
  0
        /* not used. */
 }:
 /*/
 * Coefficients for the speed polynomial before motor burnout initialized to
 * default values.
 /*/
static REAL tow_burn_speed_coeff[5] =
 Ł
   4.466666667,
                    /* a_0 - m/tick (67.0 m/sec) */
   1.222103405,
                    /* a_1 - m/tick**2 (274.9732662 m/sec**2) */
  -0.024532086.
                    /* a_2 - m/tick**3 (-82.7057910 m/sec**3) */
   0.0.
  0.0
};
1+1
 * Coefficients for the speed polynomial after motor burnout initialized to
 * default values.
1+1
static REAL tow_coast_speed_coeff[5] =
  21.81905383,
                    /* a_0 - m/tick (327.2858074 m/sec) */
  -9.5382019e-2,
                  /* a_1 - m/tick**2 (-21.4609544 m/sec**2) */
   2.4378222e-4,
                  /* a_2 - m/tick**3 ( 0.8227650 m/sec**3) */
                  /* a_3 - m/tick**4 ( -0.0133200 m/sec**4) */
  -2.6311111e-7.
   0.0
};
/*/
* Coefficients for the cosine of max turn polynomials before motor burnout.
* The structure _MAX_COS_COEFF_ is used to store the values for the turn
```

* sideways, up, and down polynomials along with their order.

```
1+1
  static MAX_COS_COEFF tow_burn_turn_coeff =
  ſ
                /* Order of the polynomials. */
    1,
    {
                /* Sidewards turn. */
      0.999976868652, /* a_0 - cos(rad)/tick */
      -3.5933955e-7 /* a_1 - cos(rad)/tick**2 */
    },
    ſ
                /* Upwards turn. */
      0.999960667258, /* a_0 - cos(rad)/tick */
     -3.1492328e-6 /* a_1 - cos(rad)/tick**2 */
   ],
    ł
               /* Downwards turn. */
      0.999978909989, /* a_0 - cos(rad)/tick */
     -7.8194991e-9 /* a_1 - cos(rad)/tick**2 */
   )
 };
 /*/
 * Coefficients for the cosine of max turn polynomials after motor burnout.
 /*/
 static MAX_COS_COEFF tow_coast_turn_coeff =
 {
   3,
               /* Order of the polynomials. */
   £
               /* Sidewards turn. */
     0.99995112518, /* a_0 - cos(rad)/tick */
                  /* a_1 - cos(rad)/tick**2 */
     8.96333e-7,
    -5.995375e-9, /* a_2 - cos(rad)/tick**3 */
     1.162225e-11 /* a_3 - cos(rad)/tick**4 */
  },
   ſ
              /* Upwards turn. */
    0.9998498495, /* a_0 - cos(rad)/tick */
     1.657779e-6, /* a_1 - cos(rad)/tick**2 */
    -8-231861e-9, /* a_2 - cos(rad)/tick**3 */
    1.381832e-11 /* a_3 - cos(rad)/tick**4 */
  },
  1
              /* Downwards turn. */
    0.9999714014, /* a_0 - cos(rad)/tick */
    3.382077e-7, /* a_1 - cos(rad)/tick**2 */
    -1.601259e-9, /* a_2 - cos(rad)/tick**3 */
    2.623014e-12 /* a_3 - cos(rad)/tick**4 */
  }
};
```

```
1+1
 * Declare static functions.
 /*/
static void missile_atgm_stop ();
 * ROUTINE: missile_atgm_init
 * PARAMETERS: tptr - a pointer to the TOW to be
* initialized.
 * RETURNS: none *
* PURPOSE: This routine initializes the state of the
                                                   .
        missile to indicate that it is available and *
 .
        sets values that never change.
                              ***********
 void missile_atgm_init (tptr)
ATGM_MISSILE *tptr;
Ł
    int i;
    int data_tmp_int;
    float data_tmp;
    char descript[64];
    FILE *fp;
/* DEFAULT CHARACTERISTICS DATA FOR miss_atgmc READ FROM FILE
                                                                            •/
    fp = fopen("/simnet/data/ms_at_ch.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_at_ch.d\n");
        exit();
   }
   rewind(fp);
    /*
         Read array data */
   i=0;
   while(fscanf(fp,"%f", &data_tmp) != EOF){
       tow_miss_char[i] = data_tmp;
       fgets(descript, 64, fp);
/*
        printf("tow_miss_char(%3d) is%11.3f %s", i, tow_miss_char[i],
           descript);
                                       +/
        ++i;
   ]
   fclose(fp);
```

/* END DEFAULT CHARACTERISTICS DATA FOR miss_atgm.c READ FROM FILE */

*1*2

```
/* DEFAULT BURN SPEED DATA FOR miss_atgm.c READ FROM FILE
                                                                            */
     fp = fopen("/simnet/data/ms_at_bs.d","r");
     if(fp==NULL){
         fprintf(stderr, "Cannot open /simnet/data/ms_at_bs.d\n");
         exit();
     }
     rewind(fp);
     /*
          Read degree of polynomial */
     fscanf(fp,"%d", &data_tmp_int);
     TOW_BURN_SPEED_DEG = data_tmp_int;
     fgets(descript, 64, fp);
     printf("tow_miss_poly_deg(0) is%3d %s", TOW_BURN_SPEED_DEG,
         descript);
                                         */
     /*
          Read array data */
     i=0;
     while(fscanf(fp,"%f", &data_tmp) != EOF){
         tow_burn_speed_coeff[i] = data_tmp;
         fgets(descript, 64, fp);
 /*
         printf("tow_burn_speed_coeff(%3d) is%11.3f %s", i,
             tow_burn_speed_coeff[i], descript);
                                                    •/
         ++i:
    }
    fclose(fp);
/* END DEFAULT BURN SPEED DATA FOR miss_atgm.c READ FROM FILE */
/* DEFAULT COAST SPEED DATA FOR miss_atgm.c READ FROM FILE
                                                                            •/
    fp = fopen("/simnet/data/ms_at_cs.d","r");
    if(fp==NULL)
        fprintf(stderr, "Cannot open /simnet/data/ms_at_cs.d\n");
        exit():
    }
    rewind(fp);
    /*
         Read degree of polynomial */
    fscanf(fp,"%d", &data_tmp_int);
    TOW_COAST_SPEED_DEG = data_tmp_int;
   fgets(descript, 64, fp);
/*
    printf("tow_miss_poly_deg(1) is%3d %s", TOW_COAST_SPEED_DEG,
        descript);
                                         •/
        Read array data */
   i=0:
```

```
while(fscanf(fp,"%f", &data_tmp) != EOF){
          tow_coast_speed_coeff[i] = data_tmp;
          fgets(descript, 64, fp);
 /*
          printf("tow_coast_speed_coeff(%3d) is%11.3f %s", i,
              tow_coast_speed_coeff[i], descript);
                                                      •/
          ++i:
     }
     fclose(fp);
 /* END DEFAULT COAST SPEED DATA FOR miss_atgm.c READ FROM FILE */
 /* DEFAULT BURN TURN DATA FOR miss_atgm.c READ FROM FILE
                                                                               •/
     fp = fopen("/simnet/data/ms_at_bt.d","r");
     if(fp==NULL){
         fprintf(stderr, "Cannot open /simnet/data/ms_at_bt.d\n");
         exit();
     ł
     rewind(fp);
     /*
          Read degree of polynomial */
     fscanf(fp,"%d", &data_tmp_int);
     TOW_BURN_TURN_DEG = data_tmp_int;
     tow_burn_turn_coeff.deg = data_tmp_int;
     fgets(descript, 64, fp);
/*
     printf("tow_miss_poly_deg(2) is%3d %s", TOW_BURN_TURN_DEG,
         descript);
     /*
          Read array data */
    for (i=0; i <= data_tmp_int; i++) {</pre>
         fscanf(fp,"%f", &data_tmp);
         tow_burn_turn_coeff.side_coeff[i] = data_tmp;
         fgets(descript, 64, fp);
/*
          printf("tow_burn_turn_coeff.side_coeff(%3d) is%11.3f %s", i,
             tow_burn_turn_coeff.side_coeff[i], descript); */
    ł
    for (i=0; i <= data_tmp_int; i++) {
         fscanf(fp,"%f", &data_tmp);
         tow_burn_turn_coeff.up_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
/•
         printf("tow_burn_turn_coeff.up_coeff(%3d) is%11.3f %s", i,
             tow_burn_turn_coeff.up_coeff[i], descript); */
    1
    for (i=0; i <= data_tmp_int; i++) {
        fscanf(fp,"%f", &data_tmp);
        tow_burn_turn_coeff.down_coeff[i] = data_tmp;
```

```
fgets(descript, 64, fp);
          printf("tow_burn_turn_coeff.down_coeff(%3d) is%11.3f %s", i,
 /*
              tow_burn_turn_coeff.down_coeff[i], descript); */
     }
     fclose(fp);
 /* END DEFAULT BURN TURN DATA FOR miss_atgm.c READ FROM FILE */
 /* DEFAULT COAST TURN DATA FOR miss_atgm.c READ FROM FILE
                                                                               •/
     fp = fopen("/simnet/data/ms_at_ct.d","r");
     if(fp==NULL)[
         fprintf(stderr, "Cannot open /simnet/data/ms_at_ct.d\n");
         exit();
    }
    rewind(fp);
     /*
          Read degree of polynomial */
    fscanf(fp,"%d", &data_tmp_int);
    TOW_COAST_TURN_DEG = data_tmp_int;
    tow_coast_turn_coeff.deg = data_tmp_int;
    fgets(descript, 64, fp);
/*
     printf("tow_miss_poly_deg(3) is%3d %s", TOW_COAST_TURN_DEG,
                                           */
         descript);
    /*
          Read array data */
    for (i=0; i <= data_tmp_int; i++) {
         fscanf(fp,"%f", &data_tmp);
         tow_coast_turn_coeff.side_coeff[i] = data_tmp;
         fgets(descript, 64, fp);
/*
         printf("tow_coast_turn_coeff.side_coeff(%3d) is%11.3f %s", i,
             tow_coast_turn_coeff.side_coeff[i], descript); */
    }
    for (i=0; i <= data_tmp_int; i++) (
        fscanf(fp,"%f", &data_tmp);
        tow_coast_turn_coeff.up_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
/*
         printf("tow_coast_turn_coeff.up_coeff(%3d) is%11.3f %s", i,
             tow_coast_turn_coeff.up_coeff[i], descript); */
    }
    for (i=0; i <= data_tmp_int; i++) {
        fscanf(fp,"%f", &data_tmp);
        tow_coast_turn_coeff.down_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
/*
         printf("tow_coast_turn_coeff.down_coeff(%3d) is%11.3f %s", i,
             tow_coast_turn_coeff.down_coeff[i], descript); */
    }
```

fclose(fp);

```
/* END DEFAULT COAST TURN DATA FOR miss_atgm.c READ FROM FILE */
```

tptr->mptr.state = FALSE; tptr->mptr.max_flight_time = TOW_MAX_FLIGHT_TIME; tptr->mptr.max_turn_directions = 3;

/* change turn polynomial coefficients so missile has larger •/ /* max turn angle. Since Ph determines when a vehicle should be */ /* impacted, turn rates should not effect missile effectiveness */ 1444 / for (i=0; i<tow_burn_turn_coeff.deg; i++)</pre> tow_burn_turn_coeff.side_coeff[i] *= ATGM_TURN_FACTOR; tow_burn_turn_coeff.up_coeff[i] *= ATGM_TURN_FACTOR; tow_burn_turn_coeff.down_coeff[i] *= ATGM_TURN_FACTOR; } for (i=0; i<tow_coast_turn_coeff.deg; i++) tow_coast_turn_coeff.side_coeff[i] *= ATGM_TURN_FACTOR; tow_coast_turn_coeff.up_coeff[i] *= ATGM_TURN_FACTOR; tow_coast_turn_coeff.down_coeff[i] *= ATGM_TURN_FACTOR; 1 } . * ROUTINE: missile_atgm_fire * PARAMETERS: tptr - A pointer to the TOW missile to be fired. PARAMETERS: launch_point - The location in world coordinates that the missile is * launched from. loc_sight_to_world - The sight to world transformation matrix used * only in this routine. launch_speed - The speed of the launch platform (assumed to be in the * direction of the missile). tube - The tube the missile was launched from. * * RETURNS: none PURPOSE: This routine performs the functions specifically related to the firing of a TOW missile.

ATGM_MISSILE *missile_atgm_fire (tptr, launch_point, loc_sight_to_world,

```
launch speed, tube, try_to_hit_target, target_id, target loc)
 ATGM_MISSILE *tptr;
 VECTOR launch_point;
 T_MATRIX loc_sight_to_world;
 REAL launch_speed;
 int tube:
 int try_to_hit_target;
 VehicleID target_id;
 VECTOR target_loc;
 ſ
   MISSILE *mptr;
                        /* Pointer to the particular generic missile
                 pointed at by _tptr_. */
 1+1
 * Find _mptr_.
 /*/
   mptr = \pounds(tptr->mptr);
 1+1
 * Set the initial time, location, orientation, and speed of the generic
 * missile.
 /*/
  mptr \rightarrow time = 0.0;
   vec_copy (launch_point, mptr->location);
  mat_copy (loc_sight_to_world, mptr->orientation);
  mptr->speed = missile_util_eval_poly (TOW_BURN_SPEED_DEG,
       tow_burn_speed_coeff, 0.0) + launch_speed;
  mptr->init_speed = launch_speed;
/*/

    Set the wire as uncut.

/*/
  tptr->wire_is_cut = FALSE;
/*Ì
if we are trying to hit a target then save the target_id. Otherwise,
* save the target location (some point in space)
1+1
  tptr->try_to_hit_target = try_to_hit_target;
  if (try_to_hit_target)
    tptr->target_id = target_id;
  else
    ł
    vec_copy(target_loc, tptr->target_location);
/*/
* Tell the rest of the world about the firing of the missile. If this
* cannot be done, return.
/*/
  if (!missile_util_comm_fire_missile (mptr, MSL_TYPE_MISSILE,
      map_get_ammo_entry_from_network_type (munition_US_TOW),
      munition_US_TOW, munition_US_TOW, NULL, targetUnknown,
      objectIrrelevant, tube))
```

```
Appendix F - Source Code Listing for miss_atgm.c
```

```
return;
 /*/
  * If all was successful, set the missile state to TRUE and return.
 /*/
   mptr->state = TRUE;
   return;
 }
                                    .
 * ROUTINE: missile_atgm_fly
 * PARAMETERS: tptr - A pointer to the TOW missile that is to *
              be flown out.
          sight_location - The location in world
                   coordinates of the gunner's
                   sight.
         loc_sight_to_world - The sight to world
                     transformation matrix used *
                     only in this routine.
 * RETURNS: none
 * PURPOSE: This routine performs the functions
         specifically related to the flying a TOW
         missile.
                                               **********
void missile_atgm_fly (tptr, sight_location, loc_sight_to_world)
ATGM_MISSILE *tptr;
VECTOR sight_location;
T_MATRIX loc_sight_to_world;
  MISSILE *mptr;
                      /* A pointer to the generic aspects of _tptr_. */
                    /* The current time after launch (ticks). */
  REAL time;
  VehicleAppearanceVariant *target_vehicle;
              /* pointer to target vehicles appearance packet */
  VECTOR target_plus_offset; /* this vector gives a targets location
                   with an appropriate offset for ground
                   vehs*/
  static VECTOR ground_veh_offset = {0.0, 0.0, 1.0};
                  /* offset to aim missile at for ground vehs */
/•/
 Set _mptr_ and _time_. These values are created mostly for increased
* readablity.
/*/
  mptr = \&c(tptr->mptr);
  time = mptr->time;
1*1
* If the missile has reached its maximum range (not the maximum distance
* its allowed to fly), cut the wire.
1+1
```

```
if ((time > TOW RANGE LIMIT TIME) && !tptr->wire_is_cut)
    tptr->wire_is_cut = TRUE;
1+1
* Find the current missile speed and the cosines of the maximum allowed turn
* angles in each direction. The equations used are different before and

    after motor burnout.

/*/
  if (time < TOW_BURNOUT_TIME)
    mptr->speed = missile_util_eval_poly (TOW_BURN_SPEED_DEG,
         tow_burn_speed_coeff, time) + mptr->init_speed;
    missile_util_eval_cos_coeff (mptr, &ctow_burn_turn_coeff, time);
  }
  else
  ł
    mptr->speed = missile_util_eval_poly (TOW_COAST_SPEED_DEG,
         tow_coast_speed_coeff, time) + mptr->init_speed;
    missile_util_eval_cos_coeff (mptr, &tow_coast_turn_coeff, time);
 }
1+1
* If the wire has been cut, set the ground as the target; otherwise,
* find a target point which will fly the missile along the gunner's line of
  sight. This targeting scheme takes into account the errors introduced by

    attempting to guide the missile in a canted position.

/*/
 if (tptr->wire_is_cut)
    printf("G");
    missile_target_ground (mptr);
    ł
 else
    ſ
        if operator has successfully designated a target then
    * try_to_hit_target will be true. Therefore, we search the
    * list of targets for the vehicleID and fly missile to that
    * location.
        if try_to_hit_target is false then target point is passed
    * and we should fly the missile to the target_point.
        if try_to_hit_target is true and we can't find the
    * vehicle id in the rva list then the vehicle has dropped off the
    * net and we fly the missile into the ground.
    +/
   if (tptr->try_to_hit_target)
     if ((target_vehicle = rva_get_veh_app_pkt (&(tptr->target_id))) !=
        NULL)
        Ł
        /* if the target is a ground vehicle we need to guide */
        /* the missile to a point other than the center of mass */
```

```
Appendix F - Source Code Listing for miss_atgm.c
         /* for SIMNET ground vehicles the center of mass is on */
         /* the ground. This causes missiles to fly into the */
                                              •/
         /* ground
         if ((target_vehicle->guises.distinguished &
           (objectDomainMask | vehicleEnvironmentMask)) ==
           (objectDomainVehicle | vehicleEnvironmentGround))
           vec_add (target_vehicle->location, ground_veh_offset,
             target_plus_offset);
           }
         else
           vec_copy (target_vehicle->location, target_plus_offset);
           ۱
         missile_target_point(mptr, target_plus_offset);
         }
       else
         /* printf("g"); */
         missile_target_unguided (mptr);
         }
      }
    else
       /* printf("p"); */
                                    /* guide the missile toward a point for 5 ticks, then just */
       /* fly it straight ahead. With the wide turning radius
                                                              •/
       /* missile will fly around in circles otherwise
                                                           •/
                                                           ++ /
      if (time < 5.0)
         missile_target_point(mptr, tptr->target_location);
      else
         missile_target_unguided (mptr);
      1
    }
/*/
  Try to actually fly the missile. If this fails stop the missile altogether
* and return.
/*/
  if (!missile_util_flyout (mptr))
  ſ
    missile_atgm_stop (tptr);
    return;
  }
  else
  ł
/*/
    If the missile successfully flew, check for an intersection with the
```

```
Appendix F - Source Code Listing for miss_atgm.c
     ground or a vehicle. If one is found, blow up the missile, stop its
 .
     flyout and return.
 1+1
     if (missile_util_comm_check_intersection (mptr, MSL_TYPE_MISSILE))
     ł
       missile_util_comm_check_detonate (mptr, MSL_TYPE_MISSILE);
       missile_atgm_stop (tptr);
       return;
     )
  }
 1+1
 * If the missile is to continue to fly, return.
 /*/
  return;
}
                      * ROUTINE: missile_atgm_stop
 * PARAMETERS: tptr - A pointer to the TOW missile that is to *
            be stopped.
                                       .
 * RETURNS: none
 * PURPOSE: This routine causes all concerned to forget *
         about the missile. It should be called when
         the flyout of any TOW missile is stopped
         (whether or not it has exploded). Note that
         this routine can only be called within this *
         module.
                                     static void missile_atgm_stop (tptr)
ATGM_MISSILE *tptr;
ſ
/*/
* Tell the world to stop worrying about this missile then release the
* memory for use by other missiles.
/*/
  missile_util_comm_stop_missile (&(tptr->mptr), MSL_TYPE_MISSILE);
  tptr->mptr.state = FALSE;
1
* ROUTINE: missile_atgm_cut_wire
* PARAMETERS: tptr - A pointer to the TOW missile whose wire *
        is to be cut.
* RETURNS: none
* PURPOSE: This routine sets a flag indicating that the *
        guidance wire of this missile is cut.
```

```
void missile_atgm_cut_wire (tptr)
ATGM_MISSILE *tptr;
{
    /*/
 * If the the wire is not already cut, cut the wire.
    /*/
    if (!tptr->wire_is_cut)
        tptr->wire_is_cut = TRUE;
}
```

Appendix G - Source code listing for miss_hellfr.c.

The following appendix contains the source code listing for miss_atgm.c for convenience in document maintenance and understanding of the CSU.

Appendix G - Source Code Listing for miss_hellfr.c

/* \$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissile/RCS/miss_hellfr.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp \$ */ /*
* \$Log: miss_hellfr.c,v \$ * Revision 1.1 1992/09/30 16:39:52 cm-adst
* Initial Version
*/
e/RCS/miss_hellfr.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp \$";
/**************************************
* Revisions:
Version Date Author Title SP/CR Number
* * 1.2 10/23/92 R. Branson Data File Initiali- * zation
* 1.3 10/30/92 R. Branson Added pathname to data
* 1.4 11/25/92 R. Branson Changed %i to %d
••••••••••••••••••••••••••••••
/**************************************
* SP/CR No. Description of Modification
*
 Hard coded defines changed to array elements.
Characteristics/parameter data array added.
 Degree of polynomial data array added. Added file mode for hellfine share statistics /
* Added hie reads for heiling characteristics/
 coefficients, and time-of-flight coefficients.
•
 Added "/simnet/data/" to each data file pathname.
/
/**********
• •
* FILE: miss_hellfr.c *
* AUTHOR: Bryant Collard *
* PURPOSE: This file contains routines which fly out a *
 missile with the characteristics of a HELLFIRE *
* missile. *
* HISTORY: 11/25/88 bryant: Creation *

Appendix G - Source Code Listing for miss_hellfr.c

* 4/24/89 bryant: Added static memory allocation *

- 08/07/90 bryant: NIU librva modifications.
- 08/09/90 kris: corrected flight coefficients

* Copyright (c) 1988 BBN Systems and Technologies, Inc.

* All rights reserved.

*

#include "stdio.h"
#include "math.h"

#include "sim_types.h"
#include "sim_dfns.h"
#include "basic.h"
#include "hibmatrix.h"
#include "libmap.h"
/*-- need Range_Squared info --*/
#include "libhull.h"
#include "libkin.h"
/*------*/

#include "miss_hellfr.h"
#include "libmissile.h"
#include "libmiss_dfn.h"
#include "libmiss_loc.h"

/*/ * Define missile characteristics. /*/

```
#define HELLFIRE_ARM_TIME hellfr_miss_char[ 0]
#define HELLFIRE_BURNOUT_TIME hellfr_miss_char[ 1]
#define HELLFIRE_MAX_FLIGHT_TIME hellfr_miss_char[ 2]
#define SPEED_0 hellfr_miss_char[ 3]
#define THETA_0 hellfr_miss_char[ 4]
/*/
* Set parameters which will control flight trajectory behavior.
```

/*/

1.1

#define SIN_UNGUIDE#define COS_UNGUIDE#define SIN_CLIMB#define COS_CLIMB#define SIN_LOCK#define COS_LOCK#define COS_TERM#define COS_LOSE

hellfr_miss_char[5] hellfr_miss_char[6] hellfr_miss_char[7] hellfr_miss_char[8] hellfr_miss_char[9] hellfr_miss_char[10] hellfr_miss_char[11]

Appendix G - Source Code Listing for miss_hellfr.c

* The following terms set the order of the polynomials used to determine

```
* the speed or cosine of the maximum allowed turn rate of the missile
```

* at any point in time.

```
/*/
#define HELLFIRE_TOF_DEG hellfr_miss_poly_deg[ 0]
#define HELLFIRE_BURN_SPEED_DEG hellfr_miss_poly_deg[ 1]
#define HELLFIRE_COAST_SPEED_DEG hellfr_miss_poly_deg[ 2]
```

```
/*/
```

* Hellfire missile characteristic parameters initialized to default values. /*/

static REAL hellfr_miss_char[15] =

```
ſ
 20.0,
              /* ticks (1.3 sec) */
 36.0.
              /* ticks (2.4 sec) */
              /* ticks (36 sec) */
 540.0,
                                   */
 30.95953043,
                  /* max_speed
  0.046542113.
                  /* sin 4.0 deg */
  0.069756474,
  0.997564050,
                  /* cos 4.0 deg */
                  /* sin 3.5 deg */
  0.004072424,
                 /* cos 3.5 deg
  0.999991708,
                                  */
  0.156434465,
                /* sin 9.0 deg
                                 •/
  0.987688341,
                 /* cos 9.0 deg
                                  */
                 /* cos 76.0 deg */
  0.241921896,
                  /* cos 20.0 deg */
  0.939692621.
  0.0,
  0.0
};
```

.,

/•/

* Hellfire missile polynomial degree initialized to default values.

```
/*/
static int hellfr_miss_poly_deg[3] =
```

```
{
```

```
4, /* tof poly degree */
```

```
3, /* burn speed poly degree */
```

```
5 /* coast speed poly degree */
```

```
};
```

/*/

* Coefficients for the TOF polynomial initialized to default values. /*/ static REAL hellfire_tof_coeff[10] = {

```
      18.0,
      /* a_0 tick
      */ /* 1.2 seconds */

      3.1461816e-2,
      /* a_1 tick/meter */

      3.1921274e-6,
      /* a_2 tick/meter^2 */

      3.5260413e-10,
      /* a_3 tick/meter^3 */

      -2.8469594e-14,
      /* a_4 tick/meter^5 */
```

```
Appendix G - Source Code Listing for miss hellfr.c
```

0.0. /* a_6 tick/meter^6 */ 0.0, /* a_7 tick/meter^7*/ 0.0, /* a_8 tick/meter^8 */ /* a 9 tick/meter^9*/ 0.0

1:

```
/*/
```

- * Coefficients for the speed polynomial before motor burnout initialized to
- * default values.

```
1.1
```

ſ

static REAL hellfire_burn_speed_coeff[10] =

```
/* a 0 - meters */
2.0044395e-2.
6.7384206e-1,
                /* a_1 - m/tick */
9.8007701e-3, /* a 2 - m/tick^2 */
-1.6782227e-4,
               /* a_3 - m/tick^3 */
0.0.
            /* a 4 - m/tick^4 */
0.0,
            /* a_5 - m/tick^5 */
0.0.
            /* a_6 - m/tick^6 */
0.0.
            /* a_7 - m/tick^7 */
0.0,
            /* a 8 - m/tick^8 */
            /* a 9 - m/tick^9 */
0.0
```

```
};
/*/
```

ſ

* Coefficients for the speed polynomial after motor burnout initialized to * default values. /*/ static REAL hellfire_coast_speed_coeff[10] =

```
4.2738447e+1,
-4.1048613e-1, /* a_1 - m/tick */
2.6023604e-3.
```

-8.4870417e-6.

1.3322932e-8.

-7.9542005e-12, /* a_5 - m/tick^5 */ 0.0, /* a_6 - m/tick^6 */ 0.0, /* a_7 - m/tick^7 */ 0.0, /* a_8 - m/tick^8 */ 0.0 /* a_9 - m/tick^9 */ };

/* a_0 - meters */

/* a 2 - m/tick^2 */

/* a_3 - m/tick^3 */

/* a_4 - m/tick^4 */

static ObjectType hellfire_ammo_type = munition_US_Hellfire; static REAL

```
max_range_limit, /* [MISSILE_US_MAX_RANGE_LIMIT]
max_range_squared, /* [ MISSILE_US_MAX_RANGE_LIMIT ^ 2 ]
                                                            +/
speed_factor; /* [ MISSILE US SPEED FACTOR ]
                                                    •/
```

/*/ Declare static functions. /*/

Appendix G - Source Code Listing for miss_hellfr.c

static void missile_hellfire_stop ();

```
* ROUTINE: missile_hellfire_init
  * PARAMETERS: mptr - a pointer to the HELLFIRE to be
             initialized.
  * RETURNS: none
  * PURPOSE: This routine initializes the state of the
         missile to indicate that it is available and
         sets values that never change.
                                          void missile_hellfire_init (mptr)
 MISSILE *mptr;
 ł
    int i;
    int data_tmp_int;
    float data_tmp;
    char descript[64];
    FILE *fp;
 /* DEFAULT CHARACTERISTIC DATA FOR miss_hellfr.c READ FROM FILE */
    fp = fopen("/simnet/data/ms_hf_ch.d","r");
    if(fp==NULL)[
        fprintf(stderr, "Cannot open /simnet/data/ms_hf_ch.d\n");
        exit();
    }
    rewind(fp);
    /*
         Read array data */
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF)
    (
        hellfr_miss_char[i] = data_tmp;
        fgets(descript, 64, fp);
/*
         printf("hellfr_miss_char(%3d) is%11.3f %s", i,
            hellfr_miss_char[i], descript);
                                            •/
        ++i;
    }
    fclose(fp);
/* END DEFAULT CHARACTERISTIC DATA FOR miss_hellfr.c READ FROM FILE */
/* DEFAULT TIME-OF-FLIGHT DATA FOR miss_hellfr.c READ FROM FILE */
    fp = fopen("/simnet/data/ms_hf_tf.d","r");
   if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_hf_tf.d\n");
```

```
Appendix G - Source Code Listing for miss_hellfr.c
```

```
exit();
```

}

rewind(fp);

```
/* Read degree of polynomial */
```

fscanf(fp,"%d", &data_tmp_int); hellfr_miss_poly_deg[0] = data_tmp_int; fgets(descript, 64, fp);

```
/* printf("hellfr_miss_poly_deg(0) is%3d %s",
hellfr_miss_poly_deg[0], descript); */
```

```
/* Read array data */
```

i=0;

/*

}

```
while(fscanf(fp,"%f', &data_tmp) != EOF)
{
```

hellfire_tof_coeff[i] = data_tmp;
fgets(descript, 64, fp);

```
fclose(fp);
```

```
/* END DEFAULT TIME-OF-FLIGHT DATA FOR miss_hellfr.c READ FROM FILE */
```

```
/* DEFAULT BURN SPEED DATA FOR miss_hellfr.c READ FROM FILE */
    fp = fopen("/simnet/data/ms_hf_bs.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_hf_bs.d\n");
        exit();
```

}

rewind(fp);

/* Read degree of polynomial */

fscanf(fp,"%d", &data_tmp_int); hellfr_miss_poly_deg[1] = data_tmp_int; fgets(descript, 64, fp);

```
/* printf("hellfr_miss_poly_deg(1) is%3d %s",
hellfr_miss_poly_deg[1], descript); */
```

/* Read array data */

i=0;

while(fscanf(fp,"%f", &data_tmp) != EOF)

```
Appendix G - Source Code Listing for miss_hellfr.c
     ł
         hellfire_burn_speed_coeff[i] = data_tmp;
         fgets(descript, 64, fp);
 /*
          printf("hellfire_burn_speed_coeff(%3d) is%11.3f %s", i,
             hellfire_burn_speed_coeff[i], descript);
                                                      */
         ++i:
     }
     fclose(fp);
 /* END DEFAULT BURN SPEED DATA FOR miss_hellfr.c READ FROM FILE
                                                                               •/
 /* DEFAULT COAST SPEED DATA FOR miss_hellfr.c READ FROM FILE */
     fp = fopen("/simnet/data/ms_hf_cs.d","r");
     if(fp==NULL){
         fprintf(stderr, "Cannot open /simnet/data/ms_hf_cs.d\n");
         exit();
    1
    rewind(fp);
     /*
          Read degree of polynomial
                                       */
    fscanf(fp,"%d", &data_tmp_int);
    hellfr_miss_poly_deg[2] = data_tmp_int;
    fgets(descript, 64, fp);
     printf("hellfr_miss_poly_deg(2) is%3d %s",
             hellfr_miss_poly_deg[2], descript);
                                                    •/
    /*
         Read array data */
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF)
    ł
        hellfire_coast_speed_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
/•
         printf("hellfire_coast_speed_coeff(%3d) is%11.3f %s", i,
            hellfire_coast_speed_coeff[i], descript);
                                                    */
        ++i;
   }
    fclose(fp);
/* END DEFAULT COAST SPEED DATA FOR miss_hellfr.c READ FROM FILE
                                                                                •/
 mptr->state = FALSE;
  mptr->max_flight_time = HELLFIRE_MAX_FLIGHT_TIME;
 mptr->max_turn_directions = 1;
 speed_factor = MISSILE_US_SPEED_FACTOR;
 max_range_limit = MISSILE_US_MAX_RANGE_LIMIT;
```

```
max_range_squared = max_range_limit * max_range_limit;
hellfire_ammo_type = munition_US_Hellfire;
```
```
}
 void missile_hellfire_set_speed_factor( scale_speed )
REAL scale_speed;
ſ
  speed_factor = scale_speed;
}
void missile_hellfire_set_max_range_limit( limit_range )
REAL limit_range;
ł
  max_range_limit = limit_range;
  max_range_squared = max_range_limit * max_range_limit;
}
void missile_hellfire_set_ammo_type( ammo )
ObjectType ammo;
ſ
  hellfire_ammo_type = ammo;
}
 * ROUTINE: missile_hellfire_calc_tof
 * PARAMETERS: range - Range to target.
* RETURNS: Time Of Flight for _range_ meters to target. *
* PURPOSE: This routine evaluates the TOF poly and returns *
         the time of flight for a Hellfire Missile
         to fly _range_ meters.
                                              .
                                                ***********
REAL missile_hellfire_calc_tof( range )
REAL range;
ſ
  REAL time:
  time =
    missile_util_eval_poly( HELLFIRE_TOF_DEG, hellfire_tof_coeff, range );
  return( (time / speed_factor) );
}
          -----
                                     .
* ROUTINE: missile_hellfire_fire
                                                   .
* PARAMETERS: mptr - A pointer to the HELLFIRE missile that *
             is to be launched.
         launch_point - The location in world
                  coordinates that the missile is *
                  launched from.
         launch_to_world - The transformation matrix of *
                   the launch platform to the *
                   world.
         launch_speed - The speed of the launch
```

```
.
                  platform (assumed to be in the *
 direction of the missile).
          tube - The tube the missile was launched from. *
 * RETURNS: none
 * PURPOSE: This routine performs the functions
          specifically related to the firing of a
          Hellfire missile.
                                               *********
 void missile_hellfire_fire (mptr, launch_point, launch_to_world, launch_speed,
     tube)
MISSILE *mptr;
 VECTOR launch_point;
 T_MATRIX launch_to_world;
REAL launch_speed;
int tube:
ſ
 1+1
 * Set the initial time, location, orientation, and speed of the generic

    missile.

 /*/
#ifdef notdeff
  if( max_range_limit > 0.0 )
     mptr->max_flight_time =
       1.0 + missile_hellfire_calc_tof( max_range_limit );
#endif
  mptr->time = 0.0;
  vec_copy (launch_point, mptr->location);
  mat_copy (launch_to_world, mptr->orientation);
  mptr->speed = launch_speed +
     (speed_factor * (missile_util_eval_poly (HELLFIRE_BURN_SPEED_DEG,
                           hellfire_burn_speed_coeff,
                           0.0)));
  mptr->init speed = launch speed;
/*/
 * Tell the rest of the world about the firing of the missile. If this
* cannot be done, return.
/*/
  if (!missile_util_comm_fire_missile (mptr, MSL_TYPE_MISSILE,
       map_get_ammo_entry_from_network_type (hellfire_ammo_type),
      hellfire_ammo_type, hellfire_ammo_type, NULL,
       targetUnknown, objectIrrelevant, tube))
    return;
/*/

    If all was successful, set the missile state to TRUE and return.

/*/
  mptr->state = TRUE;
  return;
}
```

```
* ROUTINE: missile_hellfire_fly
 * PARAMETERS: mptr - A pointer to the HELLFIRE missile that *
             is to be flown out.
          target_location - The location in world
                   coordinates of the target.
 * RETURNS: none
 * PURPOSE: This routine performs the functions
          specifically related to the flying a HELLFIRE *
          missile.
                                                ******** /
void missile_hcllfire_fly (mptr, target_location)
MISSILE *mptr;
VECTOR target_location;
  register REAL time;
                            /* The current time after launch (ticks). */
/*/
 * Set and _time_. This is created mostly for increased readablity.
/*/
  time = mptr->time;
1.1
* Find the current missile speed and the cosines of the maximum allowed turn
 * angles in each direction. The equations used are different before and
* after motor burnout.
1.1
  if (time < HELLFIRE_BURNOUT TIME)
  Ł
    mptr->speed = mptr->init_speed +
      (speed_factor *
       (missile_util_eval_poly (HELLFIRE_BURN_SPEED_DEG,
                     hellfire_burn_speed_coeff, time) ));
  }
  else
    mptr->speed = mptr->init_speed +
      (speed_factor *
       (missile_util_eval_poly (HELLFIRE_COAST_SPEED_DEG,
                     hellfire_coast_speed_coeff, time) ));
 }
1+1
* Note that this is a temporary method of finding the max turn angle.
/*/
 mptr->cos_max_turn[0] = cos (sqrt (mptr->speed / SPEED_0) * THETA_0);
/*/
* If the missile is not armed, fly in a search trajectory; otherwise, fly
* in a targeted trajectory.
/*/
 if( max_range_limit > 0 &&
```

```
kinematics_range_squared (veh_kinematics, mptr->location) >
    max_range_squared )
    missile_target_ground( mptr );
  else if (time < HELLFIRE_ARM_TIME)
    missile_target_agm (mptr, NULL, SIN_UNGUIDE, COS_UNGUIDE, SIN_CLIMB,
       COS CLIMB, SIN LOCK, COS_LOCK, COS_TERM, COS_LOSE);
  else
    missile_target_agm (mptr, target_location, SIN_UNGUIDE, COS_UNGUIDE,
       SIN_CLIMB, COS_CLIMB, SIN_LOCK, COS_LOCK, COS_TERM, COS_LOSE);
/*/
  Try to actually fly the missile. If this fails stop the missile altogether
* and return.
/*/
  if (!missile util_flyout (mptr))
    missile hellfire_stop (mptr);
    return:
  }
  else
  ł
/*/
    If the missile successfully flew, check for an intersection with the
    ground or a vehicle. If one is found, blow up the missile, stop its
    flyout and return.
/*/
    if (missile_util_comm_check_intersection (mptr, MSL_TYPE_MISSILE))
      missile_util_comm_check_detonate (mptr, MSL_TYPE_MISSILE);
      missile_hellfire_stop (mptr);
      return:
    }
  }
/*/
* If the missile is to continue to fly, return.
/*/
  return;
1
• ROUTINE: missile_hellfire_stop
* PARAMETERS: mptr - A pointer to the HELLFIRE missile that *
            is to be stopped.
* RETURNS: none
* PURPOSE: This routine causes all concerned to forget
        about the missile. It should be called when
        the flyout of any HELLFIRE missile is stopped *
        (whether or not it has exploded). Note that *
        this routine can only be called within this
        module.
```

```
static void missile_hellfire_stop (mptr)
MISSILE *mptr;
{
    /*/
 * Tell the world to stop worrying about this missile then release the
 * memory for use by other missiles.
    /*/
    missile_util_comm_stop_missile (mptr, MSL_TYPE_MISSILE);
    mptr->state = FALSE;
}
```

The following appendix contains the source code listing for miss_kem.c for convenience in document maintenance and understanding of the CSU.

/* \$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissile/RCS/miss_kem.c,v 1. 1 1992/09/30 16:39:52 cm-adst Exp \$ */			
/* * \$Log: miss_kem.c,v \$ * Parision 1.1, 1992/09/20, 16:29:52, cm_adet			
* Initial Version			
*/ etatic char BCS_IDII - "SHeader /a3/adst.cm/RWA/simnet/vehicle/libro/librisil			
e/RCS/miss_kem.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp \$";			
/*************************************			
* Revisions:			
* Version Date Author Title SP/CR Number			
* 1.2 10/23/02 B Branson Data File Initialia			
 Identified and the initial set of the set			
 1.3 10/30/92 K. Branson Added pathname to data directory 1.4 11/02 (00 Pathname To data 			
* 1.4 11/25/92 R. Branson Changed %i to %d *			

/**************************************			
 SP/CR No. Description of Modification 			
 Hard coded defines changed to array elements. 			
 Characteristics/parameter data array added. Degree of polynomial data array added 			
Added file reads for KEM characteristics/parameters,			
 burn speed coefficients, coast speed coefficients, burn turn coefficients, and coast turn coeffi- 			
 cients. 			
 Added "/simnet/data/" to each data file pathname. 			

/******			
* FILE: miss_kem.c *			
* AUTHOR: Kris Bartol * * MAINTAINER: Kris Bartol: converted from miss adat *			
+ + +			
 rokrosz: This file contains routines which fly out a missile with the characteristics of a KEM 			

.

```
missile.
 * HISTORY: 10/23/90 kris: converted from miss_adat
 * Copyright (c) 1989 BBN Systems and Technologies, Inc.
 * All rights reserved.
                                               ------
#include "stdio.h"
#include "math.h"
#include "sim_types.h"
#include "sim_dfns.h"
#include "basic.h"
#include "mun_type.h"
#include "libmap.h"
#include "libmatrix.h"
#include "miss_kem.h"
#include "libmiss_dfn.h"
#include "libmiss_loc.h"
/*/
* Define missile characteristics.
/*/
#define KEM_BURNOUT_TIME kem_miss_char[0]
#define KEM_MAX_FLIGHT_TIME kem_miss_char[1]
/*
* just after burnout, max V = ~3418 m/tick = ~230 m/sec
* so in order to get the KEM missile to fly @ Vmax = 1524 \text{ m/2}
* must multiply the speed calculated by 6.626 ~= 1524 / 230
•/
#define KEM_TO_MACH5_FACTOR kem_miss_char[2]
/*/
* Define the states the _KEM_MISSILE_ can be in.
/*/
#define KEM_FREE 0 /* No missile assigned. */
#define KEM_GUIDE 1 /* Missile flying and guided. */
#define KEM_UNGUIDE 2 /* Missile flying but unguided. */
/*/
* The following terms set the order of the polynomials used to determine
* the speed or cosine of the maximum allowed turn rate of the missile
* at any point in time.
/*/
#define KEM_BURN_SPEED_DEG kem_miss_poly_deg[0]
```

 #define KEM_COAST_SPEED_DEG
 kem_miss_poly_deg[1]

 #define KEM_BURN_TURN_DEG
 kem_miss_poly_deg[2]

 #define KEM_COAST_TURN_DEG
 kem_miss_poly_deg[3]

/*/

• ADAT missile characteristic parameters initialized to default values. /*/

static REAL kem_miss_char[10] = ł 48.0, /* ticks (3.2 sec) */ 300.00, /* ticks (20.0 sec) */ 6.626, /* speed factor to raise from ADAT to KEM */ 0.0. 0.0, 0.0. 0.0, 0.0, 0.0, 0.0 }; /*/ * The following are the default values of the degree of polynomials. /*/ static int kem_miss_poly_deg[5] = ſ 2, /* Speed before motor burnout. */ 4, /* Speed after motor burnout. */ /* Cosine of max turn before burnout. */ 3, 5, /* Cosine of max turn after burnout. */ 0 **};** /*/ Coefficients for the speed polynomial before motor burnout initialized * to default values. 1+1 static REAL kem_burn_speed_coeff[10] = (2.296, /* a_0 - m/tick */ 0.72990856, /* a_1 - m/tick**2 */ 0.013310932, /* a_2 - m/tick**3 */

0.0, 0.0, 0.0, 0.0,

- 0.0, 0.0,

```
0.0
};
```

```
/•/
```

ł

* Coefficients for the speed polynomial after motor burnout. /*/

```
static REAL kem_coast_speed_coeff[10] =
```

```
105.52162, /* a_0 - m/tick */
-1.0157285, /* a_1 - m/tick**2 */
5.6124330e-3, /* a_2 - m/tick**3 */
-1.6262608e-5, /* a_3 - m/tick**4 */
1.8991982e-8, /* a_4 - m/tick**5 */
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0];
```

```
/*/
```

* Coefficients for the cosine of max turn polynomial before motor burnout. /*/

```
static REAL kem_burn_turn_coeff[10] =
```

```
{

0.999993, /* a_0 - cos(rad)/tick */

-6.2386917e-7, /* a_1 - cos(rad)/tick**2 */

1.6146426e-7, /* a_2 - cos(rad)/tick**3 */

-9.720142e-7, /* a_3 - cos(rad)/tick**4 */

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0
```

```
};
```

/*/ * Coefficients for the cosine of max turn polynomial after motor burnout. /*/

/* a_0 - cos(rad)/tick */

/* a_1 - cos(rad)/tick**2 */ /* a_2 - cos(rad)/tick**3 */

/* a_3 - cos(rad)/tick**4 */ /* a_4 - cos(rad)/tick**5 */

/* a_5 - cos(rad)/tick**6 */

static REAL kem_coast_turn_coeff[10] =

```
{
0.99753111,
5.5817986e-5,
-5.1276276e-7,
```

2.2388593e-9,

-5.1964622e-12, 4.5499104e-15,

•/

```
Appendix H - Source Cove Listing for miss_kem.c
  0.0,
  0.0,
  0.0,
  0.0
};
/*/
 * Memory for the missiles is declared in vehicle specific code. During
 * initialization, a pointer is assigned to this memory then some memory
 * issues are dealt with in this module.
/*/
static KEM_MISSILE *kem_array; /* A pointer to missile memory. */
                            /* The number of defined missiles. */
static int num kems;
/*/
* Declare static functions.
1+1
static void missile_kem_stop ();
                                  .
* ROUTINE: missile_kem_init
* PARAMETERS: missile_array - A pointer to an array of
                 KEM missiles defined in *
                 vehicle specific code.
         num_missiles - The number missiles defined in *
                 _missile_array_.
* RETURNS: none
* PURPOSE: This routine copies the parameters into
         variables static to this module and initializes *
        the state of all the missiles.
                                            .
                                              **********
void missile_kem_init (missile_array, num_missiles)
KEM_MISSILE missile_array[];
int num_missiles;
ſ
 int i; /* A counter. */
    int data_tmp_int;
    float data_tmp;
    char descript[64];
    FILE *fp;
/* DEFAULT CHARACTERISTICS DATA FOR miss_kem.c READ FROM FILE
    fp = fopen("/simnet/data/ms_km_ch.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_km_ch.d\n");
```

```
exit();
```

```
1
    rewind(fp);
     1+
          Read array data */
    i=0;
    while(fscanf(fp,"%f', &data_tmp) != EOF){
         kem_miss_char[i] = data_tmp;
         fgets(descript, 64, fp);
/*
         printf("kem_miss_char(%3d) is%11.3f %s", i,
            kem_miss_char[i], descript);
                                            •/
         ++i:
    }
    fclose(fp);
/* END DEFAULT CHARACTERISTICS DATA FOR miss_kem.c READ FROM FILE
                                                                                */
/* DEFAULT BURN SPEED DATA FOR miss kem.c READ FROM FILE
                                                                          •/
    fp = fopen("/simnet/data/ms_km_bs.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_km bs.d\n");
        exit():
    }
    rewind(fp);
         Read degree of polynomial */
    /•
    fscanf(fp,"%d", &data_tmp_int);
    KEM_BURN_SPEED_DEG = data_trap_int;
    fgets(descript, 64, fp);
     printf("kem_miss_poly_deg(0) is%3d %s",
        KEM_BURN_SPEED_DEG, descript);
                                                    •/
    /*
         Read array data */
    i=0:
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        kem_burn_speed_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
/*
         printf("kem_burn_speed_coeff(%3d) is%11.3f %s", i,
            kem_burn_speed_coeff[i], descript); */
        ++i;
    }
    fclose(fp);
/* END DEFAULT BURN SPEED DATA FOR miss_kem.c READ FROM FILE */
/* DEFAULT COAST SPEED DATA FOR miss_kem.c READ FROM FILE
                                                                           •/
    fp = fopen("/simnet/data/ms_km_cs.d","r");
```

```
Appendix H - Source Code Listing for miss_kem.c
    if(fp==NULL){
         fprintf(stderr, "Cannot open /simnet/data/ms_km_cs.d\n");
         exit():
    1
    rewind(fp);
         Read degree of polynomial */
     /*
    fscanf(fp,"%d", &data_tmp_int);
    KEM COAST SPEED_DEG = data_tmp_int;
    fgets(descript, 64, fp);
     printf("kem_miss_poly_deg(1) is%3d %s",
/*
                                                     •/
         KEM COAST SPEED DEG, descript);
    /*
         Read array data */
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        kem_coast_speed_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
/*
         printf("kem_coast_speed_coeff(%3d) is%11.3f %s", i,
            kem_coast_speed_coeff[i], descript); */
        ++i;
    }
    fclose(fp);
/* END DEFAULT COAST SPEED DATA FOR miss_kem.c READ FROM FILE */
/* DEFAULT BURN TURN DATA FOR miss_kem.c READ FROM FILE
                                                                           •/
    fp = fopen("/simnet/data/ms_km_bt.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_km_bt.d\n");
        exit();
    }
    rewind(fp);
    1*
         Read degree of polynomial */
    fscanf(fp,"%d", &data_tmp_int);
    KEM_BURN_TURN_DEG = data_tmp_int;
    fgets(descript, 64, fp);
/•
    printf("kem_miss_poly_deg(2) is%3d %s",
        KEM_BURN_TURN_DEG, descript);
                                                    •/
    /•
         Read array data */
    i=0:
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        kem_burn_turn_coeff[i] = data_tmp;
```

```
Appendix H - Source Code Listing for miss_kem.c
         fgets(descript, 64, fp);
 /*
          printf("kem_burn_turn_coeff(%3d) is%11.3f %s", i,
             kem_burn_turn_coeff[i], descript); */
         ++i:
     }
     fclose(fp);
 /* END DEFAULT BURN TURN DATA FOR miss_kem.c READ FROM FILE */
 /* DEFAULT COAST TURN DATA FOR miss_kem.c READ FROM FILE
                                                                            */
     fp = fopen("/simnet/data/ms_km_ct.d","r");
     if(fp==NULL){
         fprintf(stderr, "Cannot open /simnet/data/ms_km_ct.d\n");
         exit():
     }
     rewind(fp);
     /*
          Read degree of polynomial */
     fscanf(fp,"%d", &data_tmp_int);
     KEM_COAST_TURN_DEG = data_tmp_int;
    fgets(descript, 64, fp);
 /*
     printf("kem_miss_poly_deg(3) is%3d %s",
         KEM_COAST_TURN_DEG, descript);
                                                     */
     /*
          Read array data */
    i=0:
    while(fscanf(fp,"%f", &data_tmp) != EOF){
         kem_coast_turn_coeff[i] = data_tmp;
         fgets(descript, 64, fp);
/*
         printf("kem_coast_turn_coeff(%3d) is%11.3f %s", i,
             kem_coast_turn_coeff[i], descript); */
         ++i;
    }
    fclose(fp);
/* END DEFAULT COAST TURN DATA FOR miss_kem.c READ FROM FILE */
  num_kems = num_missiles;
  kem_array = missile_array;
  for (i = 0; i < num_missiles; i++)
  Ł
    kem_array[i].mptr.state = KEM_FREE;
    kem_array[i].mptr.max_flight_time = KEM_MAX_FLIGHT_TIME;
    kem_array[i].mptr.max_turn_directions = 1;
  }
}
```

int missile_kem_is_free(missile)

Appendix H - Source Code Listing for miss_kem.c

int missile: ſ return((kem_array[missile].mptr.state == KEM_FREE)); ł * ROUTINE: missile_kem_fire PARAMETERS: kptr - A pointer to the KEM missile to be fired. launch_point - The location in world coordinates that the missile is * launched from. loc_sight_to_world - The sight to world transformation matrix used * only in this routine. launch_speed - The speed of the launch platform (assumed to be in the * direction of the missile). target_id - Target's tracking ID target_loc - location of target in World Coord * target_vehicle_id - The vehicle ID of the target (if any). * RETURNS: TRUE if successful, FALSE if not. PURPOSE: This routine performs the functions specifically related to the firing of a KEM missile. int missile_kem_fire (kptr, launch_point, loc_sight_to_world, launch_speed, target_id, target_loc, target_vehicle_id) KEM_MISSILE *kptr; VECTOR launch_point; T_MATRIX loc_sight_to_world; REAL launch_speed; int target_id; VECTOR target_loc; VehicleID *target_vehicle_id; int i; /* A counter. */ MISSILE *mptr; /* Pointer to the particular generic missile pointed at by _kptr_. */ int comm_target_type; /* Indication of whether target is known.*/ Find _mptr_ and _target_id_. mptr = &(kptr->mptr); if (target_vehicle_id == 0) kptr->target_vehicle_id.vehicle = vehicleIrrelevant; else

Appendix H - Source Code Listing for miss_kem.c

```
kptr->target_vehicle_id = *target_vehicle_id;
kptr->target_id = target_id;
vec copy( target loc, kptr->target_pos );
```

1

```
* Set the initial time, location, orientation, and speed of the generic
* missile.
•/
 mptr->time = 0.0;
 vec_copy (launch_point, mptr->location);
 mat_copy (loc_sight_to_world, mptr->orientation);
 mptr->speed = (missile_util_eval_poly (KEM_BURN_SPEED_DEG,
      kem burn speed_coeff, 0.0) * KEM_TO_MACH5_FACTOR) + launch_speed;
 mptr->init_speed = launch_speed;
 if (kptr->target_vehicle_id.vehicle == vehicleIrrelevant)
    comm_target_type = targetUnknown;
 else
   comm_target_type = targetIsVehicle;
* Tell the rest of the world about the firing of the missile. If this
* cannot be done, return FALSE.
•/
 if (!missile_util_comm_fire_missile (mptr, MSL_TYPE_MISSILE,
     map_get_ammo_entry_from_network_type (munition_US_ADATS),
```

```
munition_US_ADATS, munition_US_ADATS, &(kptr->target_vehicle_id),
     comm_target_type, objectIrrelevant, 0 /*tube*/))
   return (FALSE);
/+
* If all was successful, fly missile in guided state.
•/
 mptr->state = KEM_GUIDE;
 return (TRUE);
```

```
.
* ROUTINE: missile_kem_update_guidance
* PARAMETERS: missile - An index to the KEM missile that
           is to be updated.
                                       .
        target_location - The location in world
                 coordinates of the target
* RETURNS: none
 PURPOSE: This routine updates the KEM's target's
        position in world coordinates.
```

void missile_kem_update_guidance(missile, target_location) int missile:

```
VECTOR target_location;
ł
  if( kem_array[missile].mptr.state == KEM_GUIDE )
    vec_copy( target_location, kem_array[missile].target_pos );
}
      * ROUTINE: missile_kem_fly
* PARAMETERS: missile - An index to the KEM missile that
         is to be flown out.
* RETURNS: none
* PURPOSE: This routine performs the functions
        specifically related to the flying a KEM
        missile.
void missile_kem_fly( missile )
int missile;
ſ
 KEM_MISSILE *kptr; /* A pointer to a KEM missile */
 MISSILE *mptr; /* A pointer to the generic aspects of _kptr_. */
                /* The current time after launch (ticks). */
 REAL time;
* Set _kptr_, _mptr_ and _time_. These values are created mostly
* for increased readablity.
•/
 kptr = &kem_array[missile];
 mptr = &(kptr->mptr);
 time = mptr->time;
* Find the current missile speed and the cosines of the maximum allowed turn
* angles in each direction. The equations used are different before and
* after motor burnout.
•/
 if (time < KEM_BURNOUT_TIME)
   mptr->speed = (missile_util_eval_poly (KEM_BURN_SPEED_DEG,
       kem_burn_speed_coeff, time) * KEM_TO_MACH5_FACTOR) +
         mptr->init_speed;
   mptr->cos_max_turn[0] = missile_util_eval_poly (KEM_BURN_TURN_DEG,
       kem_burn_turn_coeff, time);
 }
 else
   mptr->speed = (missile_util_eval_poly (KEM_COAST_SPEED_DEG,
       kem_coast_speed_coeff, time) * KEM_TO_MACH5_FACTOR) +
         mptr->init_speed;
   mptr->cos_max_turn[0] = missile_util_eval_poly (KEM_COAST_TURN_DEG,
       kem_coast_turn_coeff, time);
```

```
* Find the target point = Missile's Target's position regardless of state
 •/
  if( mptr->state == KEM_GUIDE || mptr->state == KEM_UNGUIDE )
     missile_target_point( mptr, kptr->target_pos );
  else
     printf ("MISSILE_KEM: disallowed missile state %d\n", mptr->state);
   Try to actually fly the missile. If this fails stop the missile altogether
 * and return.
 •/
  if (!missile_util_flyout (mptr)) /* checks for time > max_flight_time */
  ł
     missile_kem_stop (kptr);
     return;
  }
  else
  {
     If the missile successfully flew, check for an intersection with the
     ground or a vehicle. If one is found, blow up the missile, stop its
     flyout and return.
 •/
    if (missile_util_comm_check_detonate (mptr, MSL_TYPE_MISSILE))
      missile_kem_stop (kptr);
      return;
    }
  }
/*/
* If the missile is to continue to fly, return.
/*/
  return;
1
                                    .
* ROUTINE: missile_kem_reset_missiles
• PARAMETERS: none
* RETURNS: none
* PURPOSE: This routine puts any flying missile into an
         unguided state.
void missile_kem_reset_missiles ()
ł
  int ı,

    Reset all flying missiles.
```

}

```
•/
  for (i = 0; i < num_kems; i++)
    if( kem_array[i].mptr.state == KEM_GUIDE )
      kem_array[i].mptr.state = KEM_UNGUIDE;
}
/***
       **********************************
                                                .
* ROUTINE: missile_kem_stop
* PARAMETERS: kptr - A pointer to the KEM missile that is to *
           be stopped.
                                      ۰
* RETURNS: none
* PURPOSE: This routine causes all concerned to forget *
        about the missile. It should be called when
.
        the flyout of any KEM missile is stopped
.
        (whether or not it has exploded). Note that *
        this routine can only be called within this *
        module.
                                     static void missile_kem_stop (kptr)
KEM_MISSILE *kptr;
ſ
/*/
* Tell the world to stop worrying about this missile then release the
* memory for use by other missiles.
/*/
  missile_util_comm_stop_missile (&(kptr->mptr), MSL_TYPE_MISSILE);
  kptr->mptr.state = KEM_FREE;
```

}

Appendix I - Source code listing for miss_maverck.c.

The following appendix contains the source code listing for miss_maverck.c for convenience in document maintenance and understanding of the CSU.

_

/* \$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissile/RCS/miss_maverck.c, v 1.1 1992/09/30 16:39:52 cm-adst Exp \$ */ /*			
* \$Log: miss_maverck.c,v \$ * Revision 1.1 1992/09/30 16:39:52 cm-adst * Initial Version			
*			
*/ static char RCS_ID[] = "\$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissil			
e/RCS/miss_maverck.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp \$";			
*			
* Revisions:			
• • Version Date Author Title SP/CR Number •			
1.2 10/23/92 R. Branson Data File Initiali-			
 zation 1.3 10/30/92 R. Branson Added pathname to data directory 			
1.4 11/25/92 R. Branson Changed %i to %d			
•			
/			
/**************************************			
• CP/CP No. Description of Madification			
SF/CK No. Description of Modulication			
Characteristics/parameter data array added.			
Degree of polynomial data array added.			
Added file reads for maverick characteristics/			
parameters, burn speed coefficients, and coast			
speed coefficients.			
Added "/simnet/data/" to each data file pathname.			
· •			
/			
/**************************************			
PILE: MUSS_Mavenex.c *			
MAINTAINER: Bryant Collard *			
* PURPOSE: This file contains routines which fly out a *			
missile with the characteristics of a MAVERICK *			
missile.			
* HISTORY: 12/8/88 bryant: Creation *			

Appendix I - Source Code Listing for miss_maverck.c

4/24/89 bryant: Added static memory allocation.

7/26/91 carol : libtrack/intervis integration *

* Copyright (c) 1988 BBN Systems and Technologies, Inc.

All rights reserved.

#include "stdio.h"
#include "math.h"

#include "sim_types.h"
#include "sim_dfns.h"
#include "basic.h"
#include "basic.h"
#include "mun_type.h"
#include "libmap.h"
#include "libmatrix.h"
#include "libnear.h"
#include "libtrack.h"

#include "miss_maverck.h"

#include "libmiss_dfn.h"
#include "libmiss_loc.h"

/*/

Define missile characteristics.

#define MAVERICK_ARM_TIME maverick_miss_char[0]
#define MAVERICK_BURNOUT_TIME maverick_miss_char[1]
#define MAVERICK_MAX_FLIGHT_TIME maverick_miss_char[2]
#define MAVERICK_LOCK_THRESHOLD maverick_miss_char[3]
#define MAVERICK_HOLD_THRESHOLD maverick_miss_char[4]
#define SPEED_0 maverick_miss_char[5]
#define THETA_0 maverick_miss_char[6]

/*/

* Set parmeters which will control flight trajectory behavior. /*/

#define SIN_UNGUIDE	maverick_miss_char[7]
#define COS_UNGUIDE	maverick_miss_char[8]
#define SIN_CLIMB	maverick_miss_char[9]
#define COS_CLIMB	maverick_miss_char[10]
#define SIN_LOCK	maverick_miss_char[11]
#define COS_LOCK	maverick_miss_char[12]
#define COS_TERM	maverick_miss_char[13]
#define COS_LOSE	maverick_miss_char[14]

/*/

* Define the states the _MAVERICK_MISSILE_ can be in. /*/

#define MAVERICK_FREE 0 /* No missile assigned. */ #define MAVERICK READY 1 /* Missile assigned to ready state. */ #define MAVERICK_FLYING 2 /* Missile assigned to flying state. */

1+1

- * The following terms set the order of the polynomials used to determine
- * the speed or cosine of the maximum allowed turn rate of the missile
- * at any point in time.

/*/

#define MAVERICK BURN_SPEED_DEG maverick_miss_poly_deg[0] #define MAVERICK_COAST_SPEED_DEG maverick_miss_poly_deg[1]

```
/•/

    Maverick missile characteristic parameters initialized to default values.

 /*/
static REAL maverick_miss_char[15] =
ł
  20.0.
            /* maverick arm time ticks (1.3 sec) */
  22.5,
            /* maverick burnout time ticks (1.5 sec) */
            /* maverick max flight time ticks (60 sec) */
 900.0.
  0.989073800, /* maverick lock threshold cos (6 deg) ** 2 */
  0.969846310, /* maverick hold threshold cos (10 deg) ** 2 */
  28.33333333, /* speed_0 */
  0.046542113, /* theta_0 */
  0.0,
            /* sin level unguided flight. */
            /* cos level unguided flight. */
  1.0,
  0.004072424, /* sin climb 3.5 deg/sec */
  0.999991708, /* cos climb 3.5 deg/sec */
  0.087155743, /* sin lock 5 deg */
  0.996194698, /* cos lock 5 deg */
  0.173648178, /* cos terminal 80 deg */
  0.939692621 /* cos loose lock 20 deg */
};
```

/*/

 The following terms set the order of the polynomials used to determine * the speed. /*/ static int maverick_miss_poly_deg[2] = £ /* Maverick burn speed degree. */ 1, 3 /* Maverick coast speed degree. */ 1: 1.1 Coefficients for the speed polynomial before motor burnout.

1+1

```
static REAL maverick_burn_speed_coeff[5] =
ſ
  0.033333333.
                /* a 0 - m/tick (67.0 m/sec) */
                 /* a 1 - m/tick**2 (274.9732662 m/sec**2) */
  1.25777777
1:
/*/
 * Coefficients for the speed polynomial after motor burnout.
/*/
static REAL maverick_coast_speed_coeff[5] =
ł
                   /* a 0 - m/tick (327.2858074 m/sec) */
  30.46972849.
                  /* a_1 - m/tick**2 (-21.4609544 m/sec**2) */
  -9.7721160e-2,
   1.2433925e-4, /* a_2 - m/tick**3 (0.8227650 m/sec**3) */
                   /* a_3 - m/tick**4 (-0.0133200 m/sec**4) */
  -5.4061501e-8
}:
/*/
* Memory for the missiles is declared in vehicle specific code. During
* initialization, a pointer is assigned to this memory then all memory
* issues are dealt with in this module.
/*/
static MAVERICK_MISSILE *maverick_array; /* A pointer to missile memory. */
                                 /* The number of defined missiles. */
static int num_mavericks;
#define STRING_LEN 20
static char prelaunch_intervis_method [STRING_LEN + 1] = "lrf";
static char in_flight_intervis_method [STRING_LEN + 1] = "omniscient";
static PFI pel_callback_func;
static REAL maverick_cone_threshold;
/*/

    Declare static functions.

1+1
static void missile_maverick_fly ();
static MAVERICK_MISSILE *missile_maverick_get_missile_from_sensor_id ();
static void missile_maverick_lock_handler ();
static void missile_maverick_break_lock_handler ();
static REAL missile_maverick_detectibility ();
static void missile_maverick_object_update ();
     ------
                                  -----
* ROUTINE: missile_maverick_init
* PARAMETERS: missile_array - A pointer to an array of
                 MAVERICK missiles defined in *
                 vehicle specific code.
```

~ I-5 -

```
num missiles - The number missiles defined in *
                 _missile_array_.
 * RETURNS: none
 * PURPOSE: This routine copies the parameters into
         variables static to this module and initializes *
         the state of all the missiles.
                                                ****** /
 void missile_maverick_init (missile_array, num_missiles, func)
 MAVERICK_MISSILE missile_array[];
int num_missiles;
PFI func:
  int i; /* A counter. */
    int data_tmp_int;
    float data_tmp;
    char descript[64];
    FILE *fp;
/* DEFAULT CHARACTERISTICS DATA FOR miss_maverck.c KEAD FROM FILE
    fp = fopen("/simnet/data/ms_mk_ch.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_mk_ch.d\n");
        exit();
    }
    rewind(fp);
         Read array data */
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        maverick_miss_char[i] = data_tmp;
        fgets(descript, 64, fp);
/*
         printf("maverick_miss_char(%3d) is%11.3f %s", i,
            maverick_miss_char[i], descript);
                                                   •/
        ++i;
    }
    fclose(fp);
/* END DEFAULT CHARACTERISTICS DATA FOR miss_maverck.c READ FROM FILE */
/* DEFAULT BURN SPEED DATA FOR miss_maverck.c READ FROM FILE
                                                                              •/
    fp = fopen("/simnet/data/ms_mk_bs.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_mk_bs.d\n");
        exit();
   }
```

```
num_missiles - The number missiles defined in *
                _missile_array_.
 • RETURNS:
              none
              This routine copies the parameters into
 * PURPOSE:
         variables static to this module and initializes *
         the state of all the missiles.
                   void missile_maverick_init (missile_array, num_missiles, func)
MAVERICK_MISSILE missile_array[];
int num missiles;
PFI func:
ł
  int i; /* A counter. */
    int data_tmp_int;
    float data_tmp;
    char descript[64];
    FILE *fp;
/* DEFAULT CHARACTERISTICS DATA FOR miss_maverck.c READ FROM FILE
    fp = fopen("/simnet/data/ms_mk_ch.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_mk_ch.d\n");
        exit();
    }
    rewind(fp);
    /*
         Read array data */
   i=0:
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        maverick_miss_char[i] = data_tmp;
        fgets(descript, 64, fp);
/*
         printf("maverick_miss_char(%3d) is%11.3f %s", i,
            maverick_miss_char[i], descript);
                                                  */
        ++i;
   }
   fclose(fp);
/* END DEFAULT CHARACTERISTICS DATA FOR miss_maverck.c READ FROM FILE */
/* DEFAULT BURN SPEED DATA FOR miss_maverck.c READ FROM FILE
                                                                           •/
   fp = fopen("/simnet/data/ms_mk_bs.d","r");
   if(fp==NULL)[
        fprintf(stderr, "Cannot open /simnet/data/ms_mk_bs.d\n");
        exit();
   }
```

rewind(fp);

++i;

}

```
/*
         Read degree of polynomial */
    fscanf(fp,"%d", &data_tmp_int);
    MAVERICK_BURN_SPEED_DEG = data_tmp_int;
    fgets(descript, 64, fp);
     printf("maverick_miss_poly_deg(0) is%3d %s",
/*
                                                             */
        MAVERICK_BURN_SPEED_DEG, descript);
    /*
         Read array data */
    i=0:
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        maverick_burn_speed_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("maverick_burn_speed_coeff(%3d) is%11.3f %s", i,
/*
             maverick_burn_speed_coeff[i], descript);
                                                       */
        ++i;
    }
    fclose(fp);
/* END DEFAULT BURN SPEED DATA FOR miss_maverck.c READ FROM FILE
                                                                                */
/* DEFAULT COAST SPEED DATA FOR miss_maverck.c READ FROM FILE
                                                                              */
    fp = fopen("/simnet/data/ms_mk_cs.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_mk_cs.d\n");
        exit();
    }
    rewind(fp);
    /*
         Read degree of polynomial */
    fscanf(fp,"%d", &data_tmp_int);
    MAVERICK_COAST_SPEED_DEG = data_tmp_int;
    fgets(descript, 64, fp);
/*
    printf("maverick_miss_poly_deg(1) is%3d %s",
                                                              */
        MAVERICK_COAST_SPEED_DEG, descript);
    /*
         Read array data */
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        maverick_coast_speed_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
/*
         printf("maverick_coast_speed_coeff(%3d) is%11.3f %s", i,
            maverick_coast_speed_coeff[i], descript);
                                                      •/
```

```
fclose(fp);
 /* END DEFAULT COAST SPEED DATA FOR miss_maverck.c READ FROM FILE
                                                                               •/
  maverick_cone_threshold = MAVERICK_LOCK_THRESHOLD;
  num_mavericks = num_missiles;
  maverick_array = missile_array;
  for (i = 0; i < num_missiles; i++)</pre>
  Ł
    maverick array[i].mptr.state = MAVERICK_FREE;
    maverick_array[i].mptr.max_flight_time = MAVERICK_MAX_FLIGHT_TIME;
    maverick_array[i].mptr.max_turn_directions = 1;
    maverick_array[i].object_being_tracked = NO_OBJECT;
    maverick_array[i].sensor_id = NULL;
  1
  pel_callback_func = func;
1
                                     ........................
                                 .
* ROUTINE: missile_maverick_sensor_init
* PARAMETERS: none
* RETURNS: none
* PURPOSE: Calls to initialize a libtrack sensor
                                 .
void missile_maverick_sensor_init (mvptr, iv_method)
MAVERICK_MISSILE *mvptr;
char *iv_method;
ſ
  if (TrackSensorInit (missile_maverick_lock_handler,
            missile_maverick_break_lock_handler,
            missile_maverick_detectibility,
            pel_callback_func,
            missile_maverick_object_update,
            E_NANO,
            & mvptr \rightarrow sensor_id < 0
    printf ("missile_maverick_sensor_init: TrackSensorInit: %s\n",
        TrackErrString ());
 if (TrackSetIntervisibility (mvptr -> sensor_id, prelaunch_intervis_method)
< 0)
    printf ("missile_maverick_sensor_init: TrackSetIntervisibility: %s\n",
        TrackErrString());
 if (TrackSetPersistence (mvptr -> sensor_id, 5 /* ticks of persistence */)
    < 0
    printf ("missile_maverick_sensor_init: TrackSetPersistence: %s\n",
        TrackErrString ());
```

Appendix I - Source Code Listing for miss_maverck.c

- if (TrackSetMaxResponses (mvptr -> sensor_id, 1) < 0)
 printf ("missile_maverick_sensor_init: TrackSetMaxResponses: %s\n",
 TrackErrString ());</pre>
- if (TrackSetVehicleID (mvptr -> sensor_id, network_get_vehicle_id ()) < 0)
 printf ("missile_maverick_sensor_init: TrackSetVehicleID: %s\n",
 TrackErrString ());</pre>

* RETURNS: A pointer to a missile that is currently * available. *

* PURPOSE: This routine finds, if possible, a missile that *

- * is not being used, puts it in a ready state and *
- returns a pointer to it.

}

MAVERICK_MISSILE *missile_maverick_ready ()

```
ł
  int i; /* A counter. */
 /*/
 * Try to find a free missile.
/*/
  for (i = 0; i < num_mavericks; i++)</pre>
  ł
 /*/
     If a free missile is found, put it in a ready state, clear the target
     ID and return a pointer to it.
/*/
    if (maverick_array[i].mptr.state == MAVERICK_FREE)
       maverick_array[i].mptr.state = MAVERICK_READY;
       maverick_array[i].target_vehicle_id.vehicle = vehicleIrrelevant;
       missile_maverick_sensor_init (&maverick_array[i],
                        prelaunch_intervis_method);
       return (&maverick_array[i]);
    1
  )
/*/
If no free missile is found, return a NULL pointer.
/*/
  return (NULL);
}
```

```
* ROUTINE: missile_maverick_pre_launch
 * PARAMETERS: mvptr - A pointer to the missile that is to be *
             serviced.
         launch point - The location of the missile in *
                 world coordinates.
         launch to world - The transformation matrix of *
                   the missile to the world.
         veh list - Vehicle list ID.
* RETURNS: none
 * PURPOSE: This routine is called after a missile has been *
         readied and before it has been launched. It *
         determines if the seeker head can see a target *
         and, if it can see a target, stores its
         position.
                                         void missile_maverick_pre_launch (mvptr, launch_point, launch_to_world,
  veh_list)
MAVERICK MISSILE *mvptr;
VECTOR launch_point;
T_MATRIX launch_to_world;
int veh_list;
Ł
  register TObjectP object;
  VECTOR object_loc;
/*/

    tick libtrack to update location and see if any callbacks need to be

* invoked.
/*/
 if (TrackUpdate (mvptr -> sensor_id, veh_list, launch_point,
           launch_to_world[1]) < 0
    printf ("missile_maverick_pre_launch: TrackUpdate: %s\n",
        TrackErrString ());
/*/
* If a target is found, store its location.
/*/
 if ((object = mvptr -> object_being_tracked) != NO_OBJECT)
   mvptr->target_vehicle_id = object -> var.vehicleID;
   GetLocationOfTObject (object, object_loc);
/* change pursuit to take a VECTOR rather than VAP for location */
   missile_target_pursuit (&(mvptr->mptr), object_loc);
 }
 else
   mvptr->target_vehicle_id.vehicle = vehicleIrrelevant;
   if (TrackAcquire (mvptr -> sensor_id, veh_list, launch_point,
              launch_to_world[1]) < 0)</pre>
      printf ("missile_maverick_pre_launch: TrackAcquire: %s\n",
          TrackErrString ());
 }
```

1

. * ROUTINE: missile_maverick_fire PARAMETERS: mvptr - A pointer to the MAVERICK missile that * is to be launched. launch_point - The location in world coordinates that the missile is * . launched from. launch_to_world - The transformation matrix of * the launch platform to the * world. launch_speed - The speed of the launch platform (assumed to be in the * direction of the missile). tube - The tube the missile was launched from. * * RETURNS: TRUE for a successful launch and FALSE for an * unsuccessful launch. * PURPOSE: This routine performs the functions specifically related to the firing of a MAVERICK missile. int missile_maverick_fire (mvptr, launch_point, launch_to_world, launch_speed, tube) MAVERICK_MISSILE *mvptr; VECTOR launch_point; T_MATRIX launch_to_world; REAL launch_speed; int tube; { MISSILE *mptr; /* Pointer to the particular generic missile pointed at by _mvptr_.*/ /*/ * Get a pointer to the generic elements of the MAVERICK missile. This * improves code readability. /*/ mptr = &(mvptr->mptr); /*/ Set the initial time, location, orientation, and speed of the generic • missile. /*/ $mptr \rightarrow time = 0.0;$ vec_copy (launch_point, mptr->location); mat_copy (launch_to_world, mptr->orientation); mptr->speed = missile_util_eval_poly (MAVERICK_BURN_SPEED_DEG, maverick_burn_speed_coeff, 0.0) + launch_speed; mptr->init_speed = launch_speed;

```
1+1
 * Tell the rest of the world about the firing of the missile. If this
 * cannot be done, release the missile memory and return FALSE.
 /*/
   if (!missile_util_comm_fire_missile (mptr, MSL_TYPE_MISSILE,
       map_get_ammo_entry_from_network_type (munition_US_Maverick),
       munition_US_Maverick, munition_US_Maverick,
       &(mvptr->target_vehicle_id), targetIsVehicle, objectIrrelevant,
       tube))
   ſ
     mptr->state = MAVERICK_FREE;
     return (FALSE);
  }
/*/
 * If all was successful, set the missile state to MAVERICK_FLYING and
 * return TRUE.
/*/
  mptr->state = MAVERICK_FLYING;
  return (TRUE);
}
                                   .
* ROUTINE: missile_maverick_fly_missiles
 * PARAMETERS: veh_list - Vehicle list ID.
* RETURNS: none
 * PURPOSE: This routine flies out all missiles in a
         flying state.
void missile_maverick_fly_missiles (veh_list)
int veh_list;
ſ
        /* A counter. */
  int i;
/*/

    Fly out all flying missiles.

/*/
  for (i = 0; i < num_mavericks; i++)</pre>
  ł
    if (maverick_array[i].mptr.state == MAVERICK_FLYING)
      missile_maverick_fly (&(maverick_array[i]), veh_list);
  }
)
* ROUTINE: missile_maverick_fly
* PARAMETERS: mvptr - A pointer to the MAVERICK missile that *
             is to be flown out.
                                          .
```

```
veh_list - Vehicle list ID.
* RETURNS: none
 * PURPOSE: This routine performs the functions
         specifically related to the flying a MAVERICK
         missile.
                                        *****************
static void missile_maverick_fly (mvptr, veh_list)
MAVERICK_MISSILE *mvptr;
int veh list;
                             /* A pointer to the generic aspects of
  register MISSILE *mptr;
                     _mvptr_.*/
                         /* The current time after launch (ticks). */
  REAL time;
                             /* The location of the target. */
  VECTOR target_location;
/*/
 * Set _mptr_ and _time_. These values are created mostly for increased
* readablity.
/*/
  mptr = &(mvptr->mptr);
  time = mptr->time;
/*/
* Find the current missile speed and the cosine of the maximum allowed turn
* angle. The equations used are different before and after motor burnout.
/*/
  if (time < MAVERICK_BURNOUT_TIME)
  ſ
    mptr->speed = missile_util_eval_poly (MAVERICK_BURN_SPEED_DEG,
        maverick_burn_speed_coeff, time) + mptr->init_speed;
  }
  else
  ł
    mptr->speed = missile_util_eval_poly (MAVERICK_COAST_SPEED_DEG,
        maverick_coast_speed_coeff, time) + mr_r->init_speed;
 1
/*/
* Note that this is a temporary method of finding turn angle.
/*/
  mptr->cos_max_turn[0] = cos (sqrt (mptr->speed / (SPEED_0 +
      mptr->init_speed)) * THETA_0);
  if (TrackUpdate (mvptr -> sensor_id, veh_list, mptr -> location,
           mptr \rightarrow orientation[1]) < 0
    printf ("missile_maverick_fly: TrackUpdate: %s\n", TrackErrString ());
/*/
* Find the target point to which the missile is to fly. The missile ignores
* any targets until it is armed.
/*/
  if (time < MAVERICK_ARM_TIME)
    missile_target_agm (mptr, NULL, SIN_UNGUIDE, COS_UNGUIDE, SIN_CLIMB,
```

```
COS_CLIMB, SIN_LOCK, COS_LOCK, COS_TERM, COS_LOSE);
   else
   ł
     TObjectP object = mvptr -> object_being_tracked;
 /*/
     Try to find a target. If one is found, fly towards it in the
     proper trajectory, otherwise, fly in a search trajectory.
 /*/
     if (object != NO_OBJECT)
       VECTOR target_location;
       GetLocationOfTObject (object, target_location);
       mvptr->target_vehicle_id = object -> var.vehicleID;
       missile_target_agm (mptr, target_location, SIN_UNGUIDE,
           COS_UNGUIDE, SIN_CLIMB, COS_CLIMB, SIN_LOCK, COS_LOCK,
           COS_TERM, COS_LOSE);
     }
     else
     ſ
       mvptr->target_vehicle_id.vehicle = vehicleIrrelevant;
       if (TrackAcquire (mvptr -> sensor_id, veh_list, mptr -> location,
                 mptr \rightarrow orientation[1]) < 0
         printf ("missile_maverick_fly: TrackAcquire: %s\n",
             TrackErrString ());
       missile_target_agm (mptr, NULL, SIN_UNGUIDE, COS_UNGUIDE,
           SIN_CLIMB, COS_CLIMB, SIN_LOCK, COS_LOCK, COS_TERM,
           COS_LOSE);
    1
  }
/*/
  Try to actually fly the missile. If this fails stop the missile altogether
* and return.
/*/
  if (!missile_util_flvout (mptr))
    missile_maverick_stop (mvptr);
    return;
  }
 else
  ł
/•/
    If the missile successfully flew, check for an intersection with the
    ground or a vehicle. If one is found, blow up the missile, stop its
    flyout and return.
/*/
    if (missile_util_comm_check_intersection (mptr, MSL_TYPE_MISSILE))
      missile_util_comm_check_detonate (mptr, MSL_TYPE_MISSILE);
      missile_maverick_stop (mvptr);
      return;
   }
```

```
Appendix I - Source Code Listing for miss_maverck.c
  }
 1+1
 * If the missile is to continue to fly, return.
 /*/
   return:
 }
 * ROUTINE: missile_maverick_stop
 * PARAMETERS: mvptr - A pointer to the MAVERICK missile that *
            is to be stopped.
 * RETURNS: none
 * PURPOSE: This routine causes all concerned to forget *
         about the missile. It should be called when
         the flyout of any MAVERICK missile is stopped *
         (whether or not it has exploded).
                                    void missile_maverick_stop (mvptr)
MAVERICK_MISSILE *mvptr;
ł
/*/
* If the world has been told to worry about this missile, tell it to stop
* then release missile memory for use by other missiles.
/*/
  if (mvptr->mptr.state == MAVERICK_FLYING)
    missile_util_comm_stop_missile (&(mvptr->mptr), MSL_TYPE_MISSILE);
  mvptr->mptr.state = MAVERICK_FREE;
  TrackSensorUnInit (mvptr -> sensor id);
  mvptr -> sensor_id = NULL;
  mvptr -> object_being_tracked = NO_OBJECT; /* perhaps call break lock? */
static MAVERICK_MISSILE *missile_maverick_get_missile_from_sensor_id (sensor_id)
int sensor_id;
  register MAVERICK_MISSILE *mvptr = maverick_array;
  register int i;
  for (i = 0; i < num_mavericks; i++, mvptr++)</pre>
  ł
    if (mvptr -> sensor_id == sensor_id)
      return (mvptr);
  }
```

return (NULL);

}

}

ł

```
static void missile_maverick_lock_handler (sensor_id, object)
int sensor_id;
TObjectP object;
ł
  MAVERICK_MISSILE *mvptr;
  if (object == NO_OBJECT)
     if (TrackDontLock (sensor_id, object) < 0)
       printf ("MaverickLockHandler: TrackDontLock: %s\n",
           TrackErrString ());
     return;
  }
  if ((mvptr = missile_maverick_get_missile_from_sensor_id (sensor_id))
     != NULL)
  ſ
/* already tracking an object, but because of the delay from the TrackAqcuire
  call, the lock handler has been invoked again. It does not matter if it is
  the same object or not as before. Just do not lock again */
    if (mvptr -> object_being_tracked != NO_OBJECT)
     ł
       if (TrackDontLock (sensor_id, object) < 0)
         printf ("MaverickLockHandler: TrackDontLock: %s\n",
             TrackErrString ());
       return;
    }
    mvptr -> object_being_tracked = object;
    if (TrackLock (sensor_id, object) < 0)</pre>
      printf ("MaverickLockHandler: TrackLock: %s\n", TrackErrString ());
  }
  else
  ł
    printf ("LockHandler: No missile for SensorId %d\n", sensor_id);
    if (TrackDontLock (sensor_id, object) < 0)
    printf ("MaverickLockHandler: TrackDontLock: %s\n",
         TrackErrString());
  }
}
static void missile_maverick_break_lock_handler (sensor_id, object)
int sensor_id;
TObjectP object;
ł
  register MAVERICK_MISSILE *mvptr;
  if (object == NO_OBJECT)
    return:
  if ((mvptr = missile_maverick_get_missile_from_sensor_id (sensor_id))
    != NULL)
```
```
Appendix I - Source Code Listing for miss_maverck.c
  ł
    if (mvptr -> object_being_tracked == NO_OBJECT)
      printf ("MaverickBreakLockHandler: BREAK LOCK BUT NOT LOCKED !!!\n")
;
      return;
    }
    if (mvptr -> object_being_tracked != object)
      printf ("MaverickBreakLockHandler: BREAK LOCK ON UNKNOWN OBJECT !!! \n
");
      return:
    }
    if (TrackBreakLock (sensor_id, object) < 0)
      printf ("MaverickBreakLockHandler: TrackBreakLock: %s\n",
           TrackErrString ());
    mvptr -> object_being_track_cd = NO_OBJECT;
  ł
  elæ
    printf ("BreakLockHandler: No missile for SensorId %d\n", sensor_id);
1
static REAL missile_maverick_detectibility (sensor_id, object, mav_loc,
                       mav_boresight,
                       flags)
int sensor_id;
TObjectP object;
```

```
VECTOR mav_loc;
VECTOR mav_boresight;
int flags;
{
```

REAL detectibility; VECTOR target_location; VECTOR to_target; REAL dotProduct; MAVERICK_MISSILE *mvptr;

```
/* Get location of object */
```

GetLocationOfTObject (object, target_location);

/* Determine detectibility. This is the cosine squared of the angle

- * between a vector from the sensor to the object and the boresight of
- * the sensor (for now).

•/

/* Some of these computations may be duplicated in the tracking package.

- * May provide object calls to get them if that is more efficient.
- •/

Appendix I - Source Code Listing for miss_maverck.c

```
vec_sub (target_location, mav_loc, to_target);
   dotProduct = vec_dot_prod (mav_boresight, to_target);
   detectibility = sign (dotProduct) * dotProduct * dotProduct /
           vec_dot_prod (to_target, to_target);
   /* if the object is outside the detection cone of the sensor,
   * return a detectibility of 0.
   •/
   if ((mvptr = missile_maverick_get_missile_from_sensor_id (sensor_id))
     != NULL)
   ſ
     switch (mvptr -> mptr.state)
      case MAVERICK READY:
       maverick_cone_threshold = MAVERICK_LOCK_THRESHOLD;
       break:
      case MAVERICK_FLYING:
       maverick_cone_threshold = MAVERICK_HOLD_THRESHOLD;
      break;
      case MAVERICK_FREE:
     default:
      printf ("MaverickDetectibility: Maverick not READY or FLYING\n");
      maverick_cone_threshold = MAVERICK_LOCK_THRESHOLD;
      break;
    }
    if (detectibility < maverick_cone_threshold)
      detectibility = 0.0;
  }
  else
  ł
    printf ("MaverickDetectibility: no missile for sensorID %d\n",
        sensor_id);
  }
  return (detectibility);
static void missile_maverick_object_update ()
* MissileMaverickSetPrelaunchIntervisibility

    Called from command line switch processing code to set the intervisibility

* interface to use and the way to init it.
•/
```

}

ł }

Appendix I - Source Code Listing for miss_maverck.c

```
void missile maverick_set_prelaunch_intervisibility_mode (mode)
 char *mode;
 {
   if (strlen (mode) > STRING_LEN)
     printf ("missile_maverick_set_prelaunch_intervisibility: type string to
 o \log(n');
     return;
   )
   strcpy (prelaunch_intervis_method, mode);
}
 /*
 * MissileMaverickSetLaunchedIntervisibility
 * Called from command line switch processing code to set the intervisibility
 * interface to use and the way to init it.
 */
void missile_maverick_set_launched_intervisibility_mode (mode)
char *mode;
ł
  if (strlen (mode) > STRING_LEN)
  ł
     printf ("missile_maverick_set_launched__intervisibility: type string too
 long\n");
    return;
  }
  strcpy (in_flight_intervis_method, mode);
}
is_maverick_flying (sensor_id)
register int sensor_id;
ſ
  register int i;
  for (i = 0; i < num_mavericks; i++)</pre>
  ł
    if (maverick_array[i].sensor_id == sensor_id)
    ł
       if (maverick_array[i].mptr.state == MAVERICK_FLYING)
         return (TRUE);
      else
         return (FALSE);
    1
  }
  return (FALSE);
}
static void (*sensor_uninit_func) ();
void sensor_uninit_callback (sensor_id)
```

Appendix I - Source Code Listing for miss_maverck.c

int sensor_id;

{
 (*sensor_uninit_func) ();

missile_maverick_prepare_to_uninit_seeker (mvptr, uninit_func)
MAVERICK_MISSILE *mvptr;
void (*uninit_func) ();

{

}

sensor_uninit_func = uninit_func; TrackSensorUnInitPrep (mvptr -> sensor_id, sensor_uninit_callback);
}

Appendix J - Source code listing for miss_nlos.c.

The following appendix contains the source code listing for miss_nlos.c for convenience in document maintenance and understanding of the CSU.

/* \$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissile/RCS/miss_nlos.c,v 1 .1 1992/09/30 16:39:52 cm-adst Exp \$ */
/* * \$Log: miss_nlos.c,v \$ * Participe 1 1, 1992 (09, 20, 16:39:52, cm adat
* Initial Version
*/
<pre>static char RCS_ID[] = "\$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissil e/RCS/miss_nlos.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp \$";</pre>
/**************************************
* * Revisions:
 Version Date Author Title SP/CR Number
 1.2 10/23/92 R. Branson Data File Initiali- zation
* 1.3 10/30/92 R. Branson Added pathname to data
* 1.4 11/25/92 R. Branson Changed %i to %d
* ************************************
/**************************************
•
SP/CR No. Description of Modification
 Hard coded defines changed to array elements
* Characteristics/parameter data array added.
 Degree of polynomial data array added. Added file reads for NLOS characteristics /
 parameters, burn speed coefficients, and coast
* speed coefficients.
* Added "/simnet/data/" to each data file pathname.
•
/**************************************
• •
* FILE: miss_nlos.c *
* AUTHUK: Bryant Collard *
* PURPOSE: This file contains routines which fly out a *
* missile with the characteristics of a NLOS *
* missile. * * HISTORY: 11/25/88 brant Creation *

4/24/89 bryant: Added static memory allocation * 05/17/89 dan: changed hellfire to nlos * Copyright (c) 1988 BBN Systems and Technologies, Inc. * All rights reserved. . #include "stdio.h" #include "math.h" #include "sim_types.h" #include "sim_dfns.h" #include "mass_stdc.h" #include "dgi_stdg.h" #include "sim_cig_if.h" #include "protocol/pro_hdr.h" #include "protocol/ammo.h" #include "libmatrix.h" #include "libmath.h" #include "librva_util.h" #include "libnear.h" #include "miss_nlos.h" #include "libmiss_dfn.h" #include "libmiss_loc.h" 1+1 Define missile characteristics. /*/ #define NLOS_LOCK_THRESHOLD nlos_miss_char[0] #define NLOS_MAX_TURN_ANGLE nlos miss char[1] #define NLOS_VERTICAL_FLIGHT_TIME nlos_miss_char[2] #define NLOS_DECLINE_FLIGHT_TIME nlos_miss_char[3] nlos_miss_char[4] #define NLOS_LEVEL_FLIGHT_TIME nlos_miss_char[5] #define NLOS_ARM_TIME #define NLOS_BURNOUT_TIME nlos_miss_char[6] #define NLOS_MAX_FLIGHT_TIME nlos_miss_char[7] nlos_miss_char[8] #define SPEED_0 #define SPEED_1 nlos_miss_char[9] /*#define THETA_0 0.046542113 */ /*0.013962634*/ nlos_miss_char[10] **#define THETA_0** /*/

* Set parameters which will control flight trajectory behavior. /*/

#define SIN_UNGUIDE #define COS_UNGUIDE nlos_miss_char[11] nlos_miss_char[12]

#define SIN_CLIMB	nlos_miss_char(13)
#define COS_CLIMB	nlos_miss_char(14)
#define SIN_LOCK	nlos_miss_char[15]
#define COS_LOCK	nlos_miss_char[16]
#define COS_TERM	nlos_miss_char[17]
#define COS_LOSE	nlos_miss_char[18]

/*/

* The following terms set the order of the polynomials used to determine

* the speed or cosine of the maximum allowed turn rate of the missile

* at any point in time.

/*/

#define NLOS_BURN_SPEED_DEG nlos_miss_poly_deg[0]
#define NLOS_COAST_SPEED_DEG nlos_miss_poly_deg[1]

/*/

* NLOS missile characteristic parameters initialized to default values. /*/

static REAL nlos_miss_char[20] =

ł 0.953153895, /* NLOS_LOCK_THRESHOLD */ 0.03490659, /* NLOS_MAX_TURN_ANGLE radians/tick */ /* NLOS_VERTICAL_FLIGHT_TIME */ 48.0. 105.0. /* NLOS_DECLINE_FLIGHT_TIME */ 140.0, /* NLOS_LEVEL_FLIGHT_TIME */ 20.0, /* NLOS_ARM_TIME ticks (1.3 sec) */ 22.5, /* NLOS_BURNOUT_TIME ticks (1.5 sec) */ 8000.0, /* NLOS_MAX_FLIGHT_TIME ticks (120 sec) */ 11.333333333, /* SPEED_0 */ 5.333333333, /* SPEED_1 */ /* THETA_0 0.046542113 */ /*0.013962634*/ 0.013962634, /* THETA_0 */ 0.069756474, /* SIN_UNGUIDE 4 deg */ 0.997564050, /* COS_UNGUIDE 4 deg */ 0.004072424, /* SIN_CLIMB 3.5 deg/sec*/ 0.999991708, /* COS_CLIMB 3.5 deg/sec */ 0.156434465, /* SIN_LOCK 9 deg*/ 0.987688341, /* COS_LOCK 9 deg*/ 0.984807753, /* COS_TERM 0 deg */ 0.939692621, /* COS_LOSE 20 deg*/ 0.0

};

/*/

The following terms set the order of the polynomials used to determine
the speed and turn of the missile at any point in time.

/•/

ł

static int nlos_miss_poly_deg[5] =

1, /* Speed before motor burnout. */

```
/* Speed after motor burnout. */
  3,
  0,
 0,
 0
};
/*/
* Coefficients for the speed polynomial before motor burnout.
/*/
static REAL nlos_burn_speed_coeff[5] =
ſ
                   /* a_0 - m/tick (67.0 m/sec)
                                                      */
  0.033333333,
                   /* a_1 - m/tick**2 (274.9732662 m/sec**2) */
  1.25777777,
  0.0,
  0.0,
  0.0
};
/*/
* Coefficients for the speed polynomial after motor burnout.
/*/
static REAL nlos_coast_speed_coeff[5] =
ſ
                   /* a_0 - m/tick (327.2858074 m/sec) */
  30.46972849,
                  /* a_1 - m/tick**2 (-21.4609544 m/sec**2) */
  -9.7721160e-2.
                 /* a_2 - m/tick**3 ( 0.8227650 m/sec**3) */
  1.2433925e-4,
                   /* a_3 - m/tick**4 ( -0.0133200 m/sec**4) */
  -5.4061501e-8,
  0.0
};
static VECTOR nlos_initial_pos;
static VECTOR nlos_final_pos;
static VECTOR peak_target;
static VECTOR decline_target;
static VECTOR level_target;
static int nlos_target_id;
static int nlos_req_id;
/*/

    Declare static functions.

/*/
static void missile_nlos_stop ();
                                    .
* ROUTINE: missile_nlos_init
                                                 ۰
• PARAMETERS: mptr - a pointer to the NLOS to be
```

```
Appendix J - Source Code Listing for miss_nlos.c
             initialized.
 * RETURNS: none
 * PURPOSE: This routine initializes the state of the
         missile to indicate that it is available and
         sets values that never change.
void missile_nlos_init (mptr)
MISSILE *mptr;
ſ
    int i;
    int data_tmp_int;
    float data_tmp;
    char descript[64];
    FILE *fp;
/* DEFAULT CHARACTERISTICS DATA FOR miss_nlos.c READ FROM FILE
                                                                               */
    fp = fopen("/simnet/data/ms_nl_ch.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_nl_ch.d\n");
         exit();
    }
    rewind(fp);
    /*
         Read array data */
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        nlos_miss_char[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("nlos_miss_char(%3d) is%11.3f %s", i,
        nlos_miss_char[i], descript);
        ++i;
    }
    fclose(fp);
/* END DEFAULT CHARACTERISTICS DATA FOR miss_nlos.c READ FROM FILE */
/* DEFAULT BURN SPEED DATA FOR miss_nlos.c READ FROM FILE
                                                                           •/
    fp = fopen("/simnet/data/ms_nl_bs.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_nl_bs.d\n");
        exit();
   }
   rewind(fp);
    /*
         Read degree of polynomial */
```

- J-6 -

```
Appendix J - Source Code Listing for miss_nlos.c
    fscanf(fp,"%d", &data_tmp_int);
    NLOS_BURN_SPEED_DEG = data_tmp_int;
    fgets(descript, 64, fp);
/*
     printf("nlos_miss_poly_deg(0) is%3d %s", NLOS_BURN_SPEED_DEG,
         descript);
                                          •/
     /*
          Read array data */
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
         nlos_burn_speed_coeff[i] = data_tmp;
         fgets(descript, 64, fp);
/*
         printf("nlos_burn_speed_coeff(%3d) is%11.3f %s", i,
             nlos_burn_speed_coeff[i], descript);
                                                     */
         ++i;
    }
    fclose(fp);
/* END DEFAULT BURN SPEED DATA FOR miss_nlos.c READ FROM FILE */
/* DEFAULT COAST SPEED DATA FOR miss_nlos.c READ FROM FILE
                                                                             */
    fp = fopen("/simnet/data/ms_nl_cs.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms nl cs.d\n");
        exit();
    }
    rewind(fp);
    /*
         Read degree of polynomial */
    fscanf(fp,"%d", &data_tmp_int);
    NLOS_COAST_SPEED_DEG = data_tmp_int;
    fgets(descript, 64, fp);
    printf("nlos_miss_poly_deg(1) is%3d %s", NLOS_COAST_SPEED_DEG,
        descript);
                                          */
    /*
         Read array data */
    i=0;
    while(fscanf(fp,"%f', &data_tmp) != EOF){
        nlos_coast_speed_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
/+
         printf("nlos_coast_speed_coeff(%3d) is%11.3f %s", i,
            nlos_coast_speed_coeff[i], descript);
                                                     */
        ++i;
   }
   fclose(fp);
```

/* END DEFAULT COAST SPEED DATA FOR miss_nlos.c READ FROM FILE */

mptr->state = FALSE; mptr->max_flight_time = NLOS_MAX_FLIGHT_TIME; mptr->max_turn_directions = 1; mptr->speed = SPEED_0; mptr->cos_max_turn[0] = cos (NLOS_MAX_TURN_ANGLE); nlos_req_id = NEAR_NO_REQUEST_PENDING; nlos_target_id = vehicleIDIrrelevant;

```
* ROUTINE: missile_nlos_fire
 * PARAMETERS: mptr - A pointer to the NLOS missile that
             is to be launched.
         launch_point - The location in world
                 coordinates that the missile is *
                  launched from.
                                          ٠
         launch_to_world - The transformation matrix of *
                   the launch platform to the *
                   world.
         launch_speed - The speed of the launch
                 platform (assumed to be in the *
                 direction of the missile).
         tube - The tube the missile was launched from. *
 * RETURNS: none
  PURPOSE: This routine performs the functions
         specifically related to the firing of a
         Hellfire missile.
void missile_nlos_fire (mptr, launch_point, launch_to_world, launch_speed,
    tube)
MISSILE *mptr;
VECTOR launch_point;
T_MATRIX launch_to_world;
```

T_MATRIX launch_to_work REAL launch_speed; int tube:

{ /*/

ł

* Set the initial time, location, orientation, and speed of the generic

```
* missile.
```

/*/
mptr->time = 0.0;
mptr->speed = SPEED_0;
vec_copy (launch_point, mptr->location);
vec_copy (launch_point, nlos_initial_pos);
mat_copy (launch_to_world, mptr->orientation);
mptr->init_speed = launch_speed;

```
/*/
```

```
Appendix J - Source Code Listing for miss_nlos.c
 * Tell the rest of the world about the firing of the missile. If this
 * cannot be done, return.
 /*/
   if (!missile_util_comm_fire_missile (mptr, MSL_TYPE_MISSILE,
                        ammoHellfire, EFF_HELLFIRE,
                        vehicleIDIrrelevant, targetUnknown,
                        fuzePointDetonating, tube))
     return;
 /*/
 * If all was successful, set the missile state to TRUE and return.
 /*/
   mptr->state = TRUE;
   peak_target[X] = 0.0;
   peak_target[Y] = 1000.0;
   peak_target[Z] = 1000.0;
   vec_mat_mul (peak_target, mptr->orientation, peak_target);
   vec_add (mptr->location, peak_target, peak_target);
   printf("peak_target: x = \% f, y = \% f, z = \% f \setminus n",
     peak_target[X],
     peak_target[Y],
     peak_target[Z]);
  decline_target[X] = 0.0;
  decline_target[Y] = 1800.0;
  decline_target[Z] = 0.0;
  vec_mat_mul (decline_target, mptr->orientation, decline_target);
  vec_add (mptr->location, decline_target, decline_target);
  printf("decline_target: x = \% f, y = \% f, z = \% f \n",
     decline_target[X],
     decline_target[Y],
     decline_target[Z]);
  level_target[X] = 0.0;
  level_target[Y] = 2000.0;
  level_target[Z] = 300.0;
  vec_mat_mul (level_target, mptr->orientation, level_target);
  vec_add (mptr->location, level_target, level_target);
  printf("level_target: x = \% f, y = \% f, z = \% f \ n",
    level_target[X],
    level_target[Y],
    level_target[Z]);
  return;
}
                                      .
* ROUTINE: missile_nlos_fly
 * PARAMETERS: mptr - A pointer to the NLOS missile that
             is to be flown out.
```

```
target_location - The location in world
                   coordinates of the target.
 * RETURNS:
              none
               This routine performs the functions
 • PURPOSE:
         specifically related to the flying a NLOS
         missile.
                                               ********
void missile_nlos_fly (mptr, nlos_target_loc, target_scheme)
MISSILE *mptr;
VECTOR nlos_target_loc;
int target_scheme;
ſ
  register REAL time;
                            /* The current time after launch (ticks). */
  register REAL temp;
  VehicleAppearancePDU *target; /* A pointer to the target vehicles
                        appearance packet. */
  timed_printf("target_scheme = %d\nloc %f %f %f\n",
    target_scheme,
    nlos_target_loc[0],
    nlos_target_loc[1],
    nlos_target_loc[2]
    );
•/
/*/
 * Set and _time_. This is created mostly for increased readablity.
/*/
  time = mptr->time;
  if (time > 800.0)
    mptr->speed = SPEED_1;
1+1
* choose the correct targettting option depending on flight time
/*/
if (time == NLOS_LEVEL_FLIGHT_TIME)
  printf("extra_waypoint: %f %f %f\n",
    mptr->location[0],
    mptr->location[1],
    mptr->location[2]);
 if (time < NLOS_VERTICAL_FLIGHT_TIME)
    missile_nlos_fly_to_point(mptr, peak_target);
  else if (time < NLOS_DECLINE_FLIGHT_TIME)
    missile_nlos_fly_to_point(mptr, decline_target);
  else if (time < NLOS_LEVEL_FLIGHT_TIME)
    ł
    level_target[Z] = mptr->location[Z];
```

- J-10 -

Appendix J - Source Code Listing for miss_nlos.c

```
missile_nlos_fly_to_point(mptr, level_target);
     }
   else
     ł
     switch (target_scheme)
       ł
       case NLOS_FLY_TO_POINT_IN_SPACE:
         missile_nlos_fly_to_point(mptr, nlos_target_loc);
         break;
       case NLOS_FLY_TO_POINT_RELATIVE:
         missile_target_nlos(mptr, nlos_target_loc);
         break;
       case NLOS_FLY_TO_TARGET:
         target = near_get_preferred_veh_near_vector (
                      &nlos_target_id,
                      RVA_ALL_VEH,
                      mptr->location,
                      mptr->orientation[1],
                      NLOS_LOCK_THRESHOLD,
                      &nlos_req_id);
         if (target != NULL)
           timed_printf("miss_nlos: target locked on\n");
           missile_target_pursuit (mptr, target);
           }
         else
           ł
           missile_target_unguided(mptr);
           }
         break;
      default:
         printf("missile_nlos_fly: bad target_scheme\n");
         break;
      }
    }
/*/
* check to see if the missile is "out of gas"
/*/
 if (mptr->time > 1500.0)
    mptr > target[Z] = 0.0;
/*/
* Try to actually fly the missile. If this fails stop the missile altogether
* and return.
1+1
 if (!missile_util_flyout (mptr))
 1
```

```
Appendix J - Source Code Listing for miss_nlos.c
     missile nlos stop (mptr);
     if (target_scheme == NLOS_FLY_TO_TARGET)
       nlos_target_id = vehicleIDIrrelevant;
       nlos_req_id = NEAR_NO_REQUEST_PENDING;
       1
    return:
  }
  else
  ł
 /*/
     If the missile successfully flew, check for an intersection with the
     ground or a vehicle. If one is found, blow up the missile, stop its
     flyout and return.
/*/
    if (missile_util_comm_check_intersection (mptr, MSL_TYPE_MISSILE))
      missile_util_comm_check_detonate (mptr, MSL_TYPE_MISSILE);
       missile_nlos_stop (mptr);
       return;
    )
  }
 /•/
 * If the missile is to continue to fly, return.
/*/
  return;
                                                  .
* ROUTINE: missile_nlos_stop
* PARAMETERS: mptr - A pointer to the NLOS missile that
             is to be stopped.
* RETURNS: none
* PURPOSE: This routine causes all concerned to forget
         about the missile. It should be called when
         the flyout of any NLOS missile is stopped
         (whether or not it has exploded). Note that
         this routine can only be called within this
         module.
                                    •••••••••••••••••••••
static void missile_nlos_stop (mptr)
MISSILE *mptr;
ſ
/•/
  Tell the world to stop worrying about this missile then release the

    memory for use by other missiles.

/*/
  printf("initial_pos = %f %f %f\n",
```

nlos_initial_pos[0], nlos_initial_pos[1], nlos_initial_pos[2]);

```
printf("final_position = %f %f %f \n",
    mptr->location[0],
    mptr->location[1],
    mptr->location[2]);
```

missile_util_comm_stop_missile (mptr, MSL_TYPE_MISSILE);
mptr->state = FALSE;

}

Appendix K - Source code listing for miss_stinger.c.

The following appendix contains the source code listing for miss_stinger.c for convenience in document maintenance and understanding of the CSU.

<pre>/* \$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissile/RCS/miss_stinger.c, v 1.1 1992/09/30 16:39:52 cm-adst Exp \$ */ /* * \$Log: miss_stinger.c,v \$ * Revision 1.1 1992/09/30 16:39:52 cm-adst * Initial Version * */ static char RCS_ID[] = "\$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissil</pre>		
e/RCS/miss_stinger.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp \$";		
• • Revisions:		
Version Date Author Title SP/CR Number		
 * 1.2 10/23/92 R. Branson Data File Initiali- * zation 		
• 1.3 10/30/92 R. Branson Added pathname to data		
 1.4 11/25/92 R. Branson Changed %i to %d 		
SP/CR No. Description of Modification		
 Hard coded defines changed to array elements. Characteristics/parameter data array added 		
 Degree Of polynomial data array added. 		
 Added file reads for stinger characteristics/ parameters, burn speed coefficients, and coast 		
speed coefficients.		
 Added "/simnet/data/" to each data file pathname. 		

* *		
* FILE: miss_stinger.c *		
* AUTHOR: Bryant Collard *		
* PURPOSE: This file contains routines which fly out a *		
* missile with the characteristics of a STINGER *		
mussile. HISTORY: 12/08/88 bryant: Creation		

04/24/89 bryant: Added static memory allocation * 08/07/90 bryant: NIU librva modifications. * Copyright (c) 1988 BBN Systems and Technologies, Inc. * All rights reserved. . ----#include "stdio.h" #include "math.h" #include "sim_types.h" #include "sim_dfns.h" #include "basic.h" #include "mun_type.h" #include "libmap.h" #include "libmatrix.h" #include "libnear.h" /*- need Range_Squared info -*/ #include "libhull.h" #include "libkin.h" /*--.*/ #include "miss_stinger.h" #include "libmissile.h" #include "libmiss_dfn.h" #include "libmiss_loc.h" /*/ Define missile characteristics. /*/ #define STINGER_BURNOUT_TIME stinger_miss_char[0] #define STINGER_MAX_FLIGHT_TIME stinger_miss_char[1] #define STINGER_LOCK_THRESHOLD stinger_miss_char[2] #define SPEED_0 stinger_miss_char[3] **#define THETA_0** stinger_miss_char[4] #define INVEST_DIST_SQ stinger_miss_char[5] #define FUZE_DIST_SQ stinger_miss_char[6] 1+1 * Define the states the _STINGER_MISSILE_ can be in. /*/ #define STINGER_FREE 0 /* No missile assigned. */ #define STINGER_READY 1 /* Missile assigned to ready state. */ #define STINGER_FLYING 2 /* Missile assigned to flying state. */

/•/

The following terms set the order of the polynomials used to determine

```
* the speed of the missile at any point in time.
 /*/
 static int stinger_miss_poly_deg[2] =
 ſ
   1, /* burn speed poly degree */
   3 /* coast speed poly degree */
 ];
 /*/
 * Stinger missile characteristic parameters initialized to default values.
 /*/
 static REAL stinger_miss_char[15] =
 {
   19.125.
                 /* ticks (1.275 sec) */
  400.000,
                 /* ticks (26.667 sec) */
   0.953153895, /* cos (12.5 deg) ** 2 */
   53.33333333,
                   /* m/tick (800 m/sec) */
                 /* rad/tick (15.0 deg/sec) */
   0.0174.
 90000.0,
                 /* (300 m) ** 2 */
  400.0,
                /* (20 m) ** 2 */
   0.0.
   0.0,
   0.0.
   0.0.
   0.0,
   0.0,
   0.0.
   0.0
};
/*/
* Coefficients for the speed polynomial before motor burnout initialized to
* default values.
/*/
static REAL stinger_burn_speed_coeff[STINGER_BURN_SPEED_DEG + 1] =
ſ
  1.9,
               /* a_0 - m/tick */
  2.689324619
                /* a_1 - m/tick**2 */
};
/*/
* Coefficients for the speed polynomial after motor burnout initialized to
* default values.
/*/
static REAL stinger_coast_speed_coeff[STINGER_COAST_SPEED_DEG + 1] =
                   /* a_0 - m/tick */
  56.73662833,
  -0.182369351,
                   /* a_1 - m/tick**2 */
  2.3302001e-4.
                   /* a_2 - m/tick**3 */
```

(

```
-1.0176282e-7 /* a_3 - m/tick**4 */
```

/*/* Memory for the missiles is declared in vehicle specific code. During

- * initialization, a pointer is assigned to this memory then all memory
- * issues are dealt with in this module.

/*/

static STINGER_MISSILE *stinger_array; /* A pointer to missile memory. */
static int num_stingers; /* The number of defined missiles. */

```
static ObjectType stinger_ammo_type = munition_US_Stinger;
static REAL
max_range_limit, /* [ MISSILE_US_MAX_RANGE_LIMIT ] */
max_range_squared, /* [ MISSILE_US_MAX_RANGE_LIMIT ^ 2 ] */
speed_factor; /* [ MISSILE_US_SPEED_FACTOR ] */
```

/*/ * Declare static functions. /*/

char descript[64];

FILE *fp;

static void missile_stinger_fly ();

. * ROUTINE: missile_stinger_init * PARAMETERS: missile_array - A pointer to an array of STINGER missiles defined in * vehicle specific code. num_missiles - The number missiles defined in * _missile_array_. * RETURNS: none * PURPOSE: This routine copies the parameters into variables static to this module and initializes * the state of all the missiles. It also . initializes the proximity fuze. *********** void missile_stinger_init (missile_array, num_missiles) STINGER_MISSILE missile_array[]; int num_missiles; ł int i; /* A counter.*/ int j; int data_tmp_int; float data_tmp;

```
/* DEFAULT CHARACTERISTIC DATA FOR miss_stinger.c READ FROM FILE
                                                                                */
    fp = fopen("/simnet/data/ms_st_ch.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_st_ch.d\n");
        exit();
    }
    rewind(fp);
    /*
         Read array data */
    i=0;
    while(fscanf(fp,"%f", &clata_tmp) != EOF){
         stinger_miss_char[j] = data_tmp;
        fgets(descript, 64, fp);
         printf("stinger_miss_char(%3d) is%11.3f %s", j,
/*
             stinger_miss_char[j],
                                          */
             descript);
        ++j;
    }
    fclose(fp);
/* END DEFAULT CHARACTERISTIC DATA FOR miss_stinger.c READ FROM FILE */
/* DEFAULT BURN SPEED DATA FOR miss_stinger.c READ FROM FILE */
    fp = fopen("/simnet/data/ms_st_bs.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_st_bs.d\n");
        exit();
    }
    rewind(fp);
         Read degree of polynomial
                                       */
    /*
    fscanf(fp,"%d", &data_tmp_int);
    stinger_miss_poly_deg[0] = data_tmp_int;
    fgets(descript, 64, fp);
/* printf("stinger_miss_poly_deg(0) is%3d %s", j.
    stinger_miss_poly_deg[0], descript);
    /*
         Read array data */
    j=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        stinger_burn_speed_coeff[j] = data_tmp;
        fgets(descript, 64, fp);
         printf("stinger_burn_speed_coeff(%3d) is%11.3f %s", j,
/+
            stinger_burn_speed_coeff[j],
            descript);
                                          */
```

```
Appendix K - Source Code Listing for miss_stinger.c
```

```
++j;
    }
    fclose(fp):
/* END DEFAULT BURN SPEED DATA FOR miss_stinger.c READ FROM FILE
                                                                               •/
/* DEFAULT COAST SPEED DATA FOR miss_stinger.c READ FROM FILE */
    fp = fopen("/simnet/data/ms_st_cs.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_st_cs.d\n");
        exit():
    }
    rewind(fp);
    /*
         Read degree of polynomial
                                      */
    fscanf(fp,"%d", &data_tmp_int);
    stinger_miss_poly_deg[1] = data_tmp_int;
    fgets(descript, 64, fp);
     printf("stinger_miss_poly_deg(1) is%3d %s", j,
                                                     +/
        stinger_miss_poly_deg[1], descript);
    /*
         Read array data */
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        stinger_coast_speed_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
/+
         printf("stinger_coast_speed_coeff(%3d) is%11.3f %s", j,
            stinger_coast_speed_coeff[j],
            descript);
        ++i;
    }
    fclose(fp);
/* END DEFAULT COAST SPEED DATA FOR miss_stinger.c READ FROM FILE
                                                                                •/
  num_stingers = num_missiles;
  stinger_array = missile_array;
  for (i = 0; i < num_missiles; i++)
  ſ
    stinger_array[i].mptr.state = STINGER_FREE;
    stinger_array[i].mptr.max_flight_time = STINGER_MAX_FLIGHT_TIME;
    stinger_array[i].mptr.max_turn_directions = 1;
  speed_factor = MISSILE_US_SPEED_FACTOR;
 max_range_limit = MISSILE_US_MAX_RANGE_LIMIT;
 max_range_squared = max_range_limit * max_range_limit;
 stinger_ammo_type = munition_US_Stinger;
/*/
```

```
Appendix K - Source Code Listing for miss_stinger.c
```

```
* Initialize the proximity fuze.
 /*/
  missile_fuze_prox_init();
ł
void missile_stinger_set_speed_factor( scale_speed )
REAL scale_speed;
{
  speed_factor = scale_speed;
}
void missile_stinger_set_max_range_limit( limit_range )
REAL limit_range;
ł
  max_range_limit = limit_range;
  max_range_squared = max_range_limit * max_range_limit;
}
void missile_stinger_set_ammo_type( ammo )
ObjectType ammo;
ſ
  stinger_ammo_type = ammo;
}
                                  * ROUTINE: missile_stinger_ready
* PARAMETERS: none
* RETURNS: A pointer to a missile that is currently
.
        available.
* PURPOSE: This routine finds, if possible, a missile that *
        is not being used, puts it in a ready state and *
        returns a pointer to it.
******
STINGER_MISSILE *missile_stinger_ready ()
ł
  int i; /* A counter. */
/*/

    Try to find a free missile.

/*/
  for (i = 0; i < num_stingers; i++)</pre>
  ſ
/*/
    If a free missile is found, put it in a ready state, clear the target
    ID and return a pointer to it.
/*/
    if (stinger_array[i].mptr.state == STINGER_FREE)
```

```
ł
       stinger_array[i].mptr.state = STINGER_READY;
      stinger_array[i].target_vehicle_id.vehicle = vehicleIrrelevant;
      return (&stinger_array[i]);
    }
  }
/*/
 * If no free missile is found, return a NULL pointer.
/*/
  return (NULL);
}
        -----
 * ROUTINE: missile_stinger_pre_launch
 * PARAMETERS: sptr - A pointer to the missile that is to be *
            serviced.
         launch_point - The location of the missile in *
 .
 .
                world coordinates.
                                          .
         launch_to_world - The transformation matrix of *
                  the missile to the world. *
         veh_list - Vehicle list ID.
* RETURNS: none
 * PURPOSE: This routine is called after a missile has been *
         readied and before it has been launched. It *
         determines if the seeker head can see a target *
        and, if it can see a target, stores its
        position.
                                  .
            void missile_stinger_pre_launch (sptr, launch_point, launch_to_world, veh_list)
STINGER_MISSILE *sptr;
VECTOR launch_point;
T_MATRIX launch_to_world;
int veh_list;
ſ
  VehicleAppearanceVariant *target; /* A pointer to the target vehicles
                      appearance packet. */
/*/
* Try to find a target.
/*/
  target = near_get_preferred_veh_near_vector (&(sptr->target_vehicle_id),
      veh_list, launch_point, launch_to_world[1],
      STINGER_LOCK_THRESHOLD);
/*/
If a target is found, store its location.
/*/
 if (target != NULL)
  ł
```

```
sptr->target_vehicle_id = target->vehicleID;
    missile_target_pursuit (&(sptr->mptr), target->location);
  }
  else
    sptr->target_vehicle_id.vehicle = vehicleIrrelevant;
}
 * ROUTINE: missile_stinger_fire
 * PARAMETERS: sptr - A pointer to the STINGER missile that *
             is to be launched.
                                        .
         launch_point - The location in world
                 coordinates that the missile is *
                 launched from.
         launch_to_world - The transformation matrix of *
                   the launch platform to the *
                   world.
         launch_speed - The speed of the launch
                 platform (assumed to be in the *
                 direction of the missile).
         tube - The tube the missile was launched from. *
* RETURNS: TRUE for a successful launch and FALSE for an *
         unsuccessful launch.
 PURPOSE: This routine performs the functions
         specifically related to the firing of a
         STINGER missile.
                                     int missile_stinger_fire (sptr, launch_point, launch_to_world, launch_speed,
    tube)
STINGER_MISSILE *sptr;
VECTOR launch_point;
T_MATRIX launch_to_world;
REAL launch_speed;
int tube;
ł
                /* Counter. */
 int i;
                   /* Pointer to the particular generic missile
  MISSILE *mptr;
                pointed at by _sptr_. */
1+1

    Get a pointer to the generic elements of the STINGER missile. This

    improves code readability.

/*/
 mptr = &(sptr->mptr);
/*/
* Set the initial time, location, orientation and speed of the generic
• missile.
/*/
```

```
mptr \rightarrow time = 0.0;
   vec_copy (launch_point, mptr->location);
   mat_copy (launch_to_world, mptr->orientation);
   mptr->speed = launch_speed +
     (speed_factor *
     missile_util_eval_poly (STINGER_BURN_SPEED_DEG,
                   stinger_burn_speed_coeff, 0.0));
   mptr->init_speed = launch_speed;
 1+1
 * Indicate that the proximity fuze has no vehicles it is tracking.
 /*/
   sptr->pptr = NULL;
 1+1
 * Determine range equations for intercept targeting.
 /*/
   sptr->stinger_burn_range_coeff[0] = 0.0;
  for (i = 1; i <= STINGER_BURN_SPEED_DEG + 1; i++);</pre>
   ſ
     sptr->stinger_burn_range_coeff[i] = (1.0 / ((REAL) i)) *
         stinger_burn_speed_coeff[i - 1];
  }
  sptr->stinger_burn_range_coeff[1] += launch_speed;
  missile_target_intercept_find_poly (STINGER_COAST_SPEED_DEG, launch_speed,
       stinger_coast_speed_coeff, sptr->stinger_coast_range_coeff,
       sptr->stinger_coast_range_2_coeff);
/*/
  Tell the rest of the world about the firing of the missile. If this
 * cannot be done, release the missile memory and return FALSE.
/*/
  if (!missile_util_comm_fire_missile (mptr, MSL_TYPE_MISSILE.
       map_get_ammo_entry_from_network_type (stinger_ammo_type),
       stinger_ammo_type, stinger_ammo_type,
       &(sptr->target_vehicle_id), targetIsVehicle, objectIrrelevant,
       tube))
  ł
    mptr->state = STINGER_FREE;
    return (FALSE);
  }
1+1
* If all was successful, set the missile state to STINGER_FLYING and
 return TRUE.
/*/
  mptr->state = STINGER_FLYING;
  return (TRUE);
}
* ROUTINE: missile_stinger_fly_missiles
* PARAMETERS: veh_list - Vehicle list ID.
```

```
* RETURNS: none
  * PURPOSE: This routine flies out all missiles in a
          flying state.
                                             ******
 void missile_stinger_fly_missiles (veh_list)
 int veh_list;
 ł
   int i; /* A counter. */
 /*/

    Fly out all flying missiles.

 /*/
   for (i = 0; i < num_stingers; i++)
   ł
     if (stinger_array[i].mptr.state == STINGER_FLYING)
       missile_stinger_fly (&(stinger_array[i]), veh_list);
  }
                                         والمقابلة فالقائلة فتخرج ومحمد والمتعاد والم
 * ROUTINE: missile_stinger_fly
                                                    ٠
 * PARAMETERS: sptr - A pointer to the STINGER missile that *
             is to be flown out.
         veh_list - Vehicle list ID.
 * RETURNS: none
 * PURPOSE: This routine performs the functions
         specifically related to the flying a STINGER *
         missile.
                                    •••••••••••••••••••••••••••••••••• /
static void missile_stinger_fly (sptr, veh_list)
STINGER_MISSILE *sptr;
int veh_list;
ſ
  register MISSILE *mptr;
                                /* A pointer to the generic aspects of
                      _sptr_.*/
  REAL time:
                          /* The current time after launch (ticks). */
  VehicleAppearanceVariant
    *target;
                      /* A pointer to the targets appearance
                      packet. */
/*/
  Set _mptr_ and _time_. These values are created mostly for increased
* readablity.
/*/
  mptr = \&(sptr -> mptr);
  time = mptr->time;
/*/
```

```
* Find the current missile speed and the cosine of the maximum allowed turn
 * angle. The equations used are different before and after motor burnout.
 /*/
   if (time < STINGER_BURNOUT_TIME)
     mptr->speed = missile_util_eval_poly (STINGER_BURN_SPEED_DEG,
         stinger_burn_speed_coeff, time) + mptr->init_speed;
   )
   else
   ł
     mptr->speed = missile_util_eval_poly (STINGER_COAST_SPEED_DEG,
         stinger_coast_speed_coeff, time) + mptr->init_speed;
  }
 1+1
 * Note that this is a temporary method of finding turn angle.
 1+1
   mptr->cos_max_turn[0] = cos (sqrt (mptr->speed / (SPEED_0 +
       mptr->init_speed)) * THETA_0);
 /*/
 * Try to find a target. If one is found, fly towards it in the
 .
  proper trajectory, otherwise, fly in a straight line.
 /*/
  target = near_get_preferred_veh_near_vector (&(sptr->target_vehicle_id),
       veh_list, mptr->location, mptr->orientation[1],
       STINGER_LOCK_THRESHOLD);
  if( max_range_limit > 0 &&
    kinematics_range_squared (veh_kinematics, mptr->location) >
    max_range_squared)
    missile_target_ground( mptr );
  else if (target != NULL)
    sptr->target_vehicle_id = target->vehicleID;
    if (time < STINGER_BURNOUT_TIME)
      missile_target_intercept_pre_burnout (mptr, target,
           sptr->stinger_burn_range_coeff, STINGER_BURNOUT_TIME,
           STINGER_BURN_SPEED_DEG + 1,
           sptr->stinger_coast_range_coeff,
           sptr->stinger_coast_range_2_coeff,
           STINGER COAST SPEED DEG + 1);
    else
      missile_target_intercept (mptr, target,
           sptr->stinger_coast_range_coeff,
           sptr->stinger_coast_range_2_coeff,
          STINGER_COAST_SPEED_DEG + 1);
  }
  else
    sptr->target_vehicle_id.vehicle = vehicleIrrelevant;
    missile_target_unguided (mptr);
 ł
/*/
```

```
Appendix K - Source Code Listing for miss_stinger.c
```

```
* Try to actually fly the missile. If this fails, stop the missile
 * altogether and return.
 /*/
   if (!missile_util_flyout (mptr))
     missile_stinger_stop (sptr);
     return;
  }
  else
  ł
 /*/
     If the missile successfully flew, process the proximity fuze.
/*/
     if (sptr->target_vehicle_id.vehicle == vehicleIrrelevant)
       missile_fuze_prox (mptr, MSL_TYPE_MISSILE, PROX_FUZE_ON_ALL_VEH,
           &(sptr->target_vehicle_id), &(sptr->pptr),
           veh_list, INVEST_DIST_SQ, FUZE_DIST_SQ);
    else
       missile_fuze_prox (mptr, MSL_TYPE_MISSILE, PROX_FUZE_ON_ONE_VEH,
           &(sptr->target_vehicle_id), &(sptr->pptr),
           veh_list, INVEST_DIST_SQ, FUZE_DIST_SQ);
/*/
    If the missile has intersected of self detonated, blow it up, stop its
     flyout and return.
1+1
    if (missile_util_comm_check_detonate (mptr, MSL_TYPE_MISSILE))
    ł
      missile_stinger_stop (sptr);
      return;
    }
  }
/*/
* If the missile is to continue to fly, return.
/*/
  return;
1
* ROUTINE: missile_sunger_stop
* PARAMETERS: sptr - A pointer to the STINGER missile that *
            is to be stopped.
* RETURNS: none
* PURPOSE: This routine causes all concerned to forget
        about the missile. It should be called when
        the flyout of any STINGER missile is stopped *
        (whether or not it has exploded).
```

void missile_stinger_stop (sptr)

– K-15 –

```
STINGER_MISSILE *sptr;
{
    /*/
* If the missile has been fired, tell the world to stop it and clear the
* proximity fuze targets. Release missile memory for use by other missiles.
/*/
if (sptr->mptr.state == STINGER_FLYING)
{
    missile_util_comm_stop_missile (&(sptr->mptr), MSL_TYPE_MISSILE);
    missile_fuze_prox_stop (&(sptr->pptr));
  }
  sptr->mptr.state = STINGER_FREE;
```

}

Appendix L - Source code listing for miss_tow.c.

The following appendix contains the source code listing for miss_tow.c for convenience in document maintenance and understanding of the CSU.

Appendix L - Source Code Listing for miss_towc

/* \$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissile/RCS/miss_tow.c,v 1. 1 1992/09/30 16:39:52 cm-adst Exp \$ */	
/* *\$Log: miss_tow.c,v \$	
* Revision 1.1 1992/09/30 16:39:52 cm-adst * Initial Version	
*/	
static char RCS_ID[] = "\$Header: /a3/adst-cm/KWA/simnet/vehicle/libsrc/libmissil e/RCS/miss_tow.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp \$";	
/**************************************	
* * Revisions:	
Version Date Author Title SP/CR Number	
 1.2 10/23/92 R. Branson Data File Initiali- zation 	
 1.3 10/30/92 R. Branson Added pathname to data directory 	
* 1.4 11/25/92 R. Branson Changed %i to %d	
/	
/	
 SP/CR No. Description of Modification 	
* The d add de Grae allow and to annou allow ante	
 Hard coded defines changed to array elements. Characteristics/parameter data array added. 	
 Degree of polynomial data array added. Added file mode for TOW characteristics (normatication) 	
 burn speed coefficients, coast speed coefficients, 	
 burn turn coefficients, and coast turn coeffi- coefficients. 	
 Added "/simnet/data/" to each data file pathname. 	
- /	
/**************************************	
* * *	
* AUTHOR: Bryant Collard *	
* MAINTAINER: Bryant Collard *	
* PURPOSE: This file contains routines which fly out a *	
* missile. *	

- L-2 -

HISTORY: 10/31/88 bryant: Creation
4/26/89 bryant: Added statically allocated mem
Copyright (c) 1988 BBN Systems and Technologies, Inc.
All rights reserved.

#include "stdio.h"

#include "sim_types.h"
#include "sim_dfns.h"
#include "basic.h"
#include "mun_type.h"
#include "libmatrix.h"
#include "libmap.h"
/*- need Range_Squared info --*/
#include "libhull.h"
#include "libkin.h"
/*_____*/
#include "miss_tow.h"

#include "libmissile.h"
#include "libmiss_dfn.h"
#include "libmiss_loc.h"

/*/ * Define missile characteristics. /*/

#define TOW_BURNOUT_TIME tow_miss_char[0]
#define TOW_RANGE_LIMIT_TIME tow_miss_char[1]
#define TOW_MAX_FLIGHT_TIME tow_miss_char[2]

/•/

* The following terms set the order of the polynomials used to determine

* the speed or cosine of the maximum allowed turn rate of the missile

* at any point in time.

/*/

#define TOW_BURN_SPEED_DEG tow_miss_poly_deg[0]
#define TOW_COAST_SPEED_DEG tow_miss_poly_deg[1]
#define TOW_BURN_TURN_DEG tow_miss_poly_deg[2]
#define TOW_COAST_TURN_DEG tow_miss_poly_deg[3]

/*/

Tow missile characteristic parameters initialized to default values.
 /*/
 static REAL tow_miss_char[5] =

```
24.0. /* ticks (1.6 sec) */
  268.35, /* ticks (17.89 sec) */
  300.00, /* ticks - cos of max turn > 1.0 beyond this point */
   0.0.
   0.0
 };
 /*/
 * The following terms set the order of the polynomials used to determine
  * the speed and turn of the missile at any point in time.
 /*/
 static int tow_miss_poly_deg[5] =
 ł
        /* Speed before motor burnout. */
  2,
        /* Speed after motor burnout. */
  3,
  1,
        /* Cosine of max turn before burnout. */
  3.
        /* Cosine of max turn after burnout. */
        /* not used. */
  0
 };
 /*/
   Coefficients for the speed polynomial before motor burnout initialized
 * to default values.
 /*/
static REAL tow_burn_speed_coeff[5] =
ſ
                    /* a_0 - m/tick (67.0 m/sec) */
  4.466666667,
  1.222103405.
                   /* a_1 - m/tick**2 (274.9732662 m/sec**2) */
  -0.024532086,
                   /* a_2 - m/tick**3 (-82.7057910 m/sec**3) */
  0.0.
  0.0
}:
/*/
 * Coefficients for the speed polynomial after motor burnout.
/*/
static REAL tow_coast_speed_coeff[5] =
ł
  21.81905383,
                    /* a_0 - m/tick (327.2858074 m/sec) */
  -9.5382019e-2,
                  /* a_1 - m/tick**2 (-21.4609544 m/sec**2) */
  2.4378222e-4,
                  /* a_2 - m/tick**3 (0.8227650 m/sec**3) */
  -2.6311111e-7.
                  /* a_3 - m/tick**4 (-0.0133200 m/sec**4) */
  0.0
];
/*/
* Coefficients for the cosine of max turn polynomials before motor burnout.
* The structure _MAX_COS_COEFF_ is used to store the values for the turn
```

* sideways, up, and down polynomials along with their order.

-L4-
```
1+1
static MAX_COS_COEFF tow_burn_turn_coeff =
               /* Order of the polynomials. */
   1,
   {
              /* Sidewards turn. */
     0.999976868652, /* a_0 - cos(rad)/tick */
    -3.5933955e-7 /* a_1 - cos(rad)/tick**2 */
   },
   ſ
              /* Upwards turn. */
     0.999960667258, /* a_0 - cos(rad)/tick */
    -3.1492328e-6 /* a_1 - cos(rad)/tick**2 */
  },
  ſ
              /* Downwards turn. */
     0.999978909989, /* a_0 - cos(rad)/tick */
    -7.8194991e-9 /* a 1 - cos(rad)/tick**2 */
  }
};
/*/

    Coefficients for the cosine of max turn polynomials after motor burnout.

/*/
static MAX_COS_COEFF tow_coast_turn_coeff =
ſ
  3,
               /* Order of the polynomials. */
  ſ
              /* Sidewards turn. */
    0.99995112518, /* a_0 - cos(rad)/tick */
                 /* a_1 - cos(rad)/tick**2 */
    8.96333e-7,
    -5.995375e-9, /* a_2 - cos(rad)/tick**3 */
    1.162225e-11 /* a_3 - cos(rad)/tick**4 */
  ],
  {
              /* Upwards turn. */
    0.9998498495, /* a_0 - cos(rad)/tick */
    1.657779e-6, /* a_1 - cos(rad)/tick**2 */
    -8.231861e-9, /* a_2 - cos(rad)/tick**3 */
    1.381832e-11 /* a_3 - cos(rad)/tick**4 */
  },
  ł
              /* Downwards turn. */
    0.9999714014, /* a_0 - cos(rad)/tick */
    3.382077e-7, /* a_1 - cos(rad)/tick**2 */
    -1.601259e-9, /* a_2 - cos(rad)/tick**3 */
    2.623014e-12 /* a_3 - cos(rad)/tick**4 */
  }
};
```

```
static ObjectType tow_ammo_type = munition_US_TOW;
 static REAL
   max_range_limit, /* [ MISSILE_US_MAX_RANGE_LIMIT ]
                                                               */
                                                                 +/
   max_range_squared, /* [ MISSILE_US_MAX_RANGE_LIMIT ^ 2 ]
   speed_factor; /* [ MISSILE_US_SPEED_FACTOR ]
                                                          +/
 /*/

    Declare static functions.

 /*/
 static void missile_tow_stop ();
  .
 * ROUTINE: missile_tow_init
 * PARAMETERS: tptr - a pointer to the TOW to be
            initialized.
                                   ٠
 * RETURNS: none
 * PURPOSE: This routine initializes the state of the
         missile to indicate that it is available and
         sets values that never change.
                               void missile_tow_init (tptr)
TOW_MISSILE *tptr;
ſ
    int i;
    int data_tmp_int;
    float data_tmp;
    char descript[64];
    FILE *fp;
/* DEFAULT CHARACTERISTICS DATA FOR miss_tow.c READ FROM FILE
                                                                          +/
    fp = fopen("/simnet/data/ms_tw_ch.d","r");
    if(fp==NULL)[
        fprintf(stderr, "Cannot open /simnet/data/ms_tw_ch.d\n");
        exit():
    }
    rewind(fp);
    /*
         Read array data */
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        tow_miss_char[i] = data_tmp;
        fgets(descript, 64, fp);
/•
         printf("tow_miss_char(%3d) is%11.3f %s", i, tow_miss_char[i],
           descript);
                                       •/
```

•/

```
Appendix L - Source Code Listing for miss_towc
```

```
++i;
}
```

```
fclose(fp);
```

```
/* END DEFAULT CHARACTERISTICS DATA FOR miss_tow.c READ FROM FILE */
```

```
fprintf(stderr, "Cannot open /simnet/data/ms_tw_bs.d\n");
exit();
```

```
}
```

rewind(fp);

```
/* Read degree of polynomial */
```

```
fscanf(fp,"%d", &data_tmp_int);
TOW_BURN_SPEED_DEG = data_tmp_int;
fgets(descript, 64, fp);
```

```
/* Read array data */
i=0;
```

```
while(fscanf(fp,"%f", &cdata_tmp) != EOF){
    tow_burn_speed_coeff[i] = data_tmp;
    fgets(descript, 64, fp);
/* printf("tow_burn_speed_coeff(%3d) is%11.3f %s", i,
```

```
tow_burn_speed_coeff[i], descript); */
```

```
}
```

```
fclose(fp);
```

```
/* END DEFAULT BURN SPEED DATA FOR miss_tow.c READ FROM FILE */
```

```
/* DEFAULT COAST SPEED DATA FOR miss_tow.c READ FROM FILE
    fp = fopen("/simnet/data/ms_tw_cs.d","r");
    if(fp==NULL)(
        fprintf(stderr, "Cannot open /simnet/data/ms_tw_cs.d\n");
        exit();
```

```
}
```

rewind(fp);

/* Read degree of polynomial */

```
fscanf(fp,"%d", &data_tmp_int);
TOW_COAST_SPEED_DEG = data_tmp_int;
fgets(descript, 64, fp);
```

```
Appendix L - Source Code Listing for miss_towc
      printf("tow_miss_poly_deg(1) is%3d %s", TOW_COAST_SPEED_DEG,
 /*
         descript);
          Read array data */
     /*
     i=0;
     while(fscanf(fp,"%f", &data_tmp) != EOF){
         tow_coast_speed_coeff[i] = data_tmp;
         fgets(descript, 64, fp);
          printf("tow_coast_speed_coeff(%3d) is%11.3f %s", i,
 /*
             tow_coast_speed_coeff[i], descript);
                                                      */
         ++i;
    }
     fclose(fp);
/* END DEFAULT COAST SPEED DATA FOR miss_tow.c READ FROM FILE */
/* DEFAULT BURN TURN DATA FOR miss_tow.c READ FROM FILE
                                                                              •/
     fp = fopen("/simnet/data/ms_tw_bt.d","r");
    if(fp==NULL){
         fprintf(stderr, "Cannot open /simnet/data/ms_tw_bt.d\n");
         exit();
    }
    rewind(fp);
     /•
          Read degree of polynomial */
    fscanf(fp,"%d", &data_tmp_int);
    TOW_BURN_TURN_DEG = data_tmp_int;
    tow_burn_turn_coeff.deg = data_tmp_int;
    fgets(descript, 64, fp);
/*
     printf("tow_miss_poly_deg(2) is%3d %s", TOW_BURN_TURN_DEG,
         descript);
                                           */
    /*
         Read array data */
    for (i=0; i <= data_tmp_int; i++) {
        fscanf(fp,"%f", &data_tmp);
        tow_burn_turn_coeff.side_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
/*
         printf("tow_burn_turn_coeff.side_coeff(%3d) is%11.3f %s", i,
             tow_burn_turn_coeff.side_coeff[i], descript); */
    1
    for (i=0; i <= data_tmp_int; i++) {
        fscanf(fp,"%f", &data_tmp);
        tow_burn_turn_coeff.up_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
/*
         printf("tow_burn_turn_coeff.up_coeff(%3d) is%11.3f %s", i,
             tow_burn_turn_coeff.up_coeff[i], descript); */
```

```
Appendix L - Source Code Listing for miss_towc
    }
    for (i=0; i <= data_tmp_int; i++) {
         fscanf(fp,"%f", &data_tmp);
         tow_burn_turn_coeff.down_coeff[i] = data_tmp;
         fgets(descript, 64, fp);
          printf("tow_burn_turn_coeff.down_coeff(%3d) is%11.3f %s", i,
/*
             tow burn turn coeff.down_coeff[i], descript); */
    }
    fclose(fp);
/* END DEFAULT BURN TURN DATA FOR miss_tow.c READ FROM FILE */
/* DEFAULT COAST TURN DATA FOR miss_tow.c READ FROM FILE
                                                                              •/
    fp = fopen("/simnet/data/ms_tw_ct.d","r");
    if(fp==NULL){
         fprintf(stderr, "Cannot open /simnet/data/ms_tw_ct.d\n");
         exit():
    }
    rewind(fp);
          Read degree of polynomial */
     /*
    fscanf(fp,"%d", &data_tmp_int);
    TOW_COAST_TURN_DEG = data_tmp_int;
    tow_coast_turn_coeff.deg = data_tmp_int;
    fgets(descript, 64, fp);
/*
     printf("tow_miss_poly_deg(3) is%3d %s", TOW_COAST_TURN_DEG,
        descript);
                                           +/
    /*
         Read array data */
    for (i=0; i <= data_tmp_int; i++) {
        fscanf(fp,"%f", &data_tmp);
        tow coast_turn_coeff.side_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
/*
         printf("tow_coast_turn_coeff.side_coeff(%3d) is%11.3f %s", i,
             tow_coast_turn_coeff.side_coeff[i], descript); */
    }
    for (i=0; i <= data_tmp_int; i++) {
        fscanf(fp,"%f", &data_tmp);
        tow_coast_turn_coeff.up_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("tow_coast_turn_coeff.up_coeff(%3d) is%11.3f %s", i,
/*
             tow_coast_turn_coeff.up_coeff[i], descript); */
    }
    for (i=0; i <= data_tmp_int; i++) {
```

```
fscanf(fp,"%f", &data_tmp);
```

```
Appendix L - Source Code Listing for miss_towc
```

```
tow_coast_turn_coeff.down_coeff[i] = data_tmp;
         fgets(descript, 64, fp);
          printf("tow_coast_turn_coeff.down_coeff(%3d) is%11.3f %s", i,
 /*
             tow_coast_turn_coeff.down_coeff[i], descript); */
    }
     fclose(fp);
/* END DEFAULT COAST TURN DATA FOR miss_tow.c READ FROM FILE */
  tptr->mptr.state = FALSE;
  tptr->mptr.max_flight_time = TOW_MAX_FLIGHT_TIME;
  tptr->mptr.max_turn_directions = 3;
  speed_factor = MISSILE_US_SPEED_FACTOR;
  max_range_limit = MISSILE_US_MAX_RANGE_LIMIT;
  max_range_squared = max_range_limit * max_range_limit;
  tow_ammo_type = munition_US_TOW;
ł
void missile_tow_set_speed_factor( scale_speed )
REAL scale_speed;
ł
  speed_factor = scale_speed;
1
void missile_tow_set_max_range_limit( limit_range )
REAL limit_range;
ſ
  max_range_limit = limit_range;
  max_range_squared = max_range_limit * max_range_limit;
}
void missile_tow_set_ammo_type( ammo )
ObjectType ammo;
ł
  tow_ammo_type = ammo;
}
                                  .
* ROUTINE: missile_tow_fire
* PARAMETERS: tptr - A pointer to the TOW missile to be
            fired.
* PARAMETERS: launch_point - The location in world
                coordinates that the missile is *
                launched from.
        loc_sight_to_world - The sight to world
                   transformation matrix used *
                   only in this routine.
        launch_speed - The speed of the launch
                platform (assumed to be in the *
```

```
direction of the missile).
          tube - The tube the missile was launched from. *
 * RETURNS: none
 * PURPOSE:
                This routine performs the functions
          specifically related to the firing of a TOW
          missile.
                                         ********
 TOW_MISSILE *missile_tow_fire (tptr, launch_point, loc_sight_to_world,
     launch_speed, tube)
 TOW_MISSILE *tptr;
 VECTOR launch_point;
 T_MATRIX loc_sight_to_world;
 REAL launch_speed;
 int tube;
 ſ
   MISSILE *mptr;
                       /* Pointer to the particular generic missile
                 pointed at by _tptr_. */
 /*/
 * Find _mptr_.
 /*/
  mptr = &(tptr->mptr);
 /*/
 * Set the initial time, location, orientation, and speed of the generic
 * missile.
/*/
  mptr > time = 0.0;
  vec_copy (launch_point, mptr->location);
  mat_copy (loc_sight_to_world, mptr->orientation);
  mptr->speed = launch_speed +
    (speed_factor * missile_util_eval_poly (TOW_BURN_SPEED_DEG,
                          tow_burn_speed_coeff, 0.0));
  mptr->init_speed = launch_speed;
1+1
  Set the wire as uncut.
/*/
  tptr->wire_is_cut = FALSE;
/*/
* Tell the rest of the world about the firing of the missile. If this
* cannot be done, return.
/*/
  if (!missile_util_comm_fire_missile (mptr, MSL_TYPE_MISSILE,
      map_get_ammo_entry_from_network_type (tow_ammo_type),
      tow_ammo_type, tow_ammo_type, NULL, targetUnknown,
      objectIrrelevant, tube))
    return:
1+1
* If all was successful, set the missile state to TRUE and return.
/*/
 mptr->state = TRUE;
```

```
return;
```

}

```
* ROUTINE: missile_tow_fly
                                                .
  * PARAMETERS: tptr - A pointer to the TOW missile that is to *
             be flown out.
          sight_location - The location in world
                   coordinates of the gunner's
                   sight.
          loc_sight_to_world - The sight to world
                     transformation matrix used *
                     only in this routine. *
 * RETURNS: none
 * PURPOSE: This routine performs the functions
         specifically related to the flying a TOW
         missile.
                                         void missile_tow_fly (tptr, sight_location, loc_sight_to_world)
TOW_MISSILE *tptr;
VECTOR sight_location;
T_MATRIX loc_sight_to_world;
{
  MISSILE *mptr;
                      /* A pointer to the generic aspects of _tptr_. */
  REAL time;
                    /* The current time after launch (ticks). */
/*/
 * Set _mptr_ and _time_. These values are created mostly for increased
* readablity.
1*/
  mptr = &(tptr->mptr);
  time = mptr->time;
1+1
* If the missile has reached its maximum range (not the maximum distance
* its allowed to fly), cut the wire.
/*/
#ifdef notdeff
  if ((time > TOW_RANGE_LIMIT_TIME) && !tptr->wire_is_cut)
    tptr->wire_is_cut = TRUE;
#endif
  if (!tptr->wire_is_cut &&
    ((time > TOW_RANGE_LIMIT_TIME) ||
    (max_range_limit > 0 &&
     kinematics_range_squared (veh_kinematics, mptr->location) >
     max_range_squared) ))
    tptr->wire_is_cut = TRUE;
/*/
  Find the current missile speed and the cosines of the maximum allowed turn
```

* angles in each direction. The equations used are different before and

```
Appendix L - Source Code Listing for miss_towc
* after motor burnout.
/*/
 if (time < TOW_BURNOUT_TIME)
  ł
    mptr->speed = mptr->init_speed +
      (speed_factor *
      missile_util_eval_poly (TOW_BURN_SPEED_DEG,
                    tow_burn_speed_coeff, time));
    missile_util_eval_cos_coeff (mptr, &tow_burn_turn_coeff, time);
  }
  else
  ł
    mptr->speed = mptr->init_speed +
      (speed_factor *
       missile_util_eval_poly (TOW_COAST_SPEED_DEG,
                    tow_coast_speed_coeff, time));
    missile_util_eval_cos_coeff (mptr, &tow_coast_turn_coeff, time);
  }
/*/
* If the wire has been cut, set the ground as the target; otherwise,
* find a target point which will fly the missile along the gunner's line of
* sight. This targeting scheme takes into account the errors introduced by

    attempting to guide the missile in a canted position.

/*/
  if (tptr->wire_is_cut)
    missile_target_ground (mptr);
  else
    missile_target_level_los (mptr, sight_location, loc_sight_to_world);
/*/
  Try to actually fly the missile. If this fails stop the missile altogether
* and return.
/*/
  if (!missile_util_flyout (mptr))
  {
    missile_tow_stop (tptr);
    return;
  }
  else
  ł
/*/
    If the missile successfully flew, check for an intersection with the
    ground or a vehicle. If one is found, blow up the missile, stop its
    flyout and return.
1+1
    if (missile_util_comm_check_intersection (mptr, MSL_TYPE_MISSILE))
      missile_util_comm_check_detonate (mptr, MSL_TYPE_MISSILE);
       missile_tow_stop (tptr);
      return;
    }
  }
```

```
/*/
 * If the missile is to continue to fly, return.
/*/
  return;
}
      -----
 * ROUTINE: missile_tow_stop
 * PARAMETERS: tptr - A pointer to the TOW missile that is to *
    be stopped.
                                    ۰
 * RETURNS: none
 * PURPOSE: This routine causes all concerned to forget *
        about the missile. It should be called when
        the flyout of any TOW missile is stopped
        (whether or not it has exploded). Note that *
        this routine can only be called within this *
        module.
                                **********************
static void missile_tow_stop (tptr)
TOW_MISSILE *tptr;
Ł
/*/
* Tell the world to stop worrying about this missile then release the
* memory for use by other missiles.
1*/
  missile_util_comm_stop_missile (&c(tptr->mptr), MSL_TYPE_MISSILE);
  tptr->mptr.state = FALSE;
1
     ******
* ROUTINE: missile_tow_cut_wire
* PARAMETERS: tptr - A pointer to the TOW missile whose wire *
       is to be cut.
* RETURNS: none
* PURPOSE: This routine sets a flag indicating that the *
        guidance wire of this missile is cut.
                              .
                         void missile_tow_cut_wire (tptr)
TOW_MISSILE *tptr;
(
/*/
* If the the wire is not already cut, cut the wire.
/*/
 if (!tptr->wire_is_cut)
   tptr->wire_is_cut = TRUE;
```

Appendix M - Source code listing for rkt_hydra.c.

The following appendix contains the source code listing for rkt_hydra.c for convenience in document maintenance and understanding of the CSU.

/* \$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissile/RCS/rkt_hydra.c,v 1 .1 1992/09/30 16:39:52 cm-adst Exp \$ */ /*
* \$Log: rkt_hydra.c,v \$ * Revision 1.1 1992/09/30 16:39:52 cm-adst * Initial Version */
static char RCS_ID[] = "\$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissil e/RCS/rkt_hydra.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp \$";
/**************************************
* Revisions:
Version Date Author Title SP/CR Number
 1.2 10/23/92 R. Branson Data File Initiali- zation
* 1.3 10/30/92 R. Branson Added pathname to data
* 1.4 11/25/92 R. Branson Changed %i to %d
·
*
SP/CR No. Description of Modification
 Hard coded defines changed to array elements.
* Characteristics/parameter data array added.
 Added file reads for rocket characteristics/
parameters.
 Added "/simnet/data/" to each data file pathname.

/
¢ •
* FILE: rkt_hydra.c *
* AUTHOR: Kris Bartol *
* MAINTAINER: Kris Bartol
* PURPOSE: This file contains routines which govern *
* the behavior of an Hydra70 Rocket flown with *
* a ballistic trajectory. *
* HISTORY: 10/06/90 kris *
र म

* Copyright (c) 1989 BBN Systems and Technologies, Inc.

* All rights reserved.

#include "stdio.h"
#include "math.h"

#include "sim_types.h"
#include "sim_dfns.h"
#include "basic.h"
#include "mun_type.h"

#include "librva.h"
#include "libmap.h"
#include "libmatrix.h"
#include "libmiss_dfn.h"
#include "libmiss_loc.h"
#include "libmissile.h"

#include "rkt_hydra.h"

#define DEBUG 0 /* debugging is ON */

/*- Define rocket performance characteristics -*/
#define HYDRA_MIN_RANGE rkt_hydra_char[7]
#define HYDRA_MAX_RANGE_S5 rkt_hydra_char[8]
#define HYDRA_MAX_RANGE_M151 rkt_hydra_char[9]
#define HYDRA_MAX_RANGE_M261 rkt_hydra_char[10]
#define HYDRA_MAX_RANGE_M255 rkt_hydra_char[11]

```
/*- Define the states of an HYDRA70_ROCKET -*/
#define HYDRA FREE
                             /* Rocket available to launch */
                       0
#define HYDRA_FLY
                       1
                            /* Rocket flying */
#define HYDRA_DETONATE 2
                                 /* Rocket detonates - release or impact */
#define HYDRA_FALL
                        3
                             /* Sub-munitions falling.....
                                                           •/
#define HYDRA_RELEASED 4
                                /* Sub-munitions released towards impact */
                                /* Rocket gets killed at end of this tick */
#define HYDRA_REMOVE 10
```

```
static REAL rkt_hydra_char[12] =
```

M151_BURST_SPREAD, /* twin bursts are 3 m apart */ M261_BURST_HEIGHT, /* release submunitions 180 ft */ M261_BURST_RANGE, /* 0 m in front of target (49 ?) */ M261_BURST_SPREAD, /* twin bursts are 13 m apart */ M255_BURST_RANGE, /* release darts 150 m front of tgt */ M255_BURST_SPREAD, /* twin bursts are 35 m apart */ FLECH_60_MAX_RANGE, /* darts fly total of 750 m */

•/

Appendix M - Source Code Listing for rkt_hydra.c

50.0,	/* hydra minimum range */
5000.0,	/* hydra maximum range for Soviet S-5 57mm Rocket */
7000.0,	/* hydra maximum range for _M151 [actual 9000 m] */
7000.0,	/* hydra maximum range for M261 */
3200.0	/* hydra maximum range for M255 */
):	, 0

/*- burst releases 9 bombletts --*/ static int m73_per_m261_burst = M73_PER_M261_BURST;

/*-- pointer_to & number_of HYDRA70_ROCKET array --*/ static HYDRA_ROCKET *hydra_array; /* A pointer to Hydra70_Rkt memory */ static int num_hydra; /* The number of defined missiles */

/*- array of pointers to Hydra70_Rockets in flight -*/ static HYDRA_ROCKET *hydra_fly[MAX_HYDRA70_ROCKET]; static int rkts_in_flight;

/*-- Ballistics Table ... array of structures _MISSILE_BALLISTIC_OFFSETS_ --*/
static MISSILE_BALLISTIC_OFFSETS ball_table[BALLISTIC_TABLE_SIZE];
static int table_size;
static BOOLEAN ball_table_loaded = FALSE;

static VehicleID null_vehicleID;

static int flight_time; /* Time Of Flight for ballistic traj */
static REAL
max_range_limit, /* [MISSILE_US_MAX_RANGE_LIMIT]
speed_factor, /* [MISSILE_US_SPEED_FACTOR] */
pylon_x, /* [0.0] <xyz> position offset of pylon */
pylon_y, /* [0.0] */
pylon_z; /* [0.0] */

static int flechette_veh_list; /* list ID of flechette target vehicles */

static void missile_hydra_stop ();
static void missile_hydra_purge_free_missiles ();

ROUTINE: missile_hydra_init
PARAMETERS: rocket_array - Array of rockets of structure
type _HYDRA_ROCKET_
num_rockets - The number rockets defined in
_rockets_array_.
RETURNS: none
PURPOSE: This routine copies the parameters into
variables static to this module and initializes
the state of all the rockets.

```
Appendix M - Source Code Listing for rkt_hydra.c
```

```
void missile_hydra_init( rocket_array, num_rocket )
HYDRA_ROCKET *rocket_array;
int num_rocket;
ſ
    int i:
    int data_tmp_int;
    float data_tmp;
    char descript[64];
    FILE *fp;
/* DEFAULT CHARACTERISTICS DATA FOR rkt_hydra.c READ FROM FILE
                                                                              */
    fp = fopen("/simnet/data/rkt_hydr.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/rkt_hydr.d\n");
        exit();
    }
    rewind(fp);
         Read array data */
    /*
    fscanf(fp,"%d", &data_tmp_int);
    m73_per_m261_burst = data_tmp_int;
    fgets(descript, 64, fp);
    printf("m73_per_m261_burst is%3d %s", m73_per_m261_burst,
         descript)
                                         •/
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        rkt_hydra_char[i] = data_tmp;
        fgets(descript, 64, fp);
/*
         printf("rkt_hydra_char(%3d) is%11.3f %s", i,
            rkt_hydra_char[i], descript)
                                                •/
        ++i;
   }
    fclose(fp);
/* END DEFAULT CHARACTERISTICS DATA FOR rkt_hydra.c READ FROM FILE */
 hydra_array = rocket_array;
 num_hydra = num_rocket < MAX_HYDRA70_ROCKET ?
   num_rocket : MAX_HYDRA70_ROCKET;
 for (i = 0; i < MAX_HYDRA70_ROCKET; i++)
    hydra_array[i].bmptr.state = HYDRA_FREE;
    hydra_array[i].bmptr.missile_id = 0;
 rkts_in_flight = 0; /* no missiles in flight */
 for( i = 0; i < MAX_HYDRA70_ROCKET; i++ )
   hydra_fly[i] = 0;
```

```
pylon_x = 0.0;
  pylon_y = 0.0;
  pylon_z = 0.0;
  flight_time = 0;
  speed_factor = MISSILE_US_SPEED_FACTOR;
  max_range_limit = MISSILE_US_MAX_RANGE_LIMIT;
  if (!ball_table_loaded)
    {
 * load Hydra70 Rocket's ballistic table
 */
  printf( "loading Hydra70 Rocket's ballistic table %s\n",
      HYDRA_TRAJ_FILE );
  table_size =
    missile_util_load_ball_trai_file( HYDRA_TRAJ_FILE, ball_table );
    ball_table_loaded = TRUE;
    ł
 * create _flechette_veh_list_ for proximity fuze
*/
  flechette_veh_list = rva_create_output_list( flechette_is_valid_veh );
#ifdef notdef
  flechette_veh_list = RVA_ALL_VEHICLES_LIST;
#endif
/*
* initialize the proximity fuze for rockets armed with Flechette's
•/
  missile_fuze_prox_init();
int missile_hydra_is_free( rocket )
int rocket:
{
  return( (hydra_array[rocket].bmptr.state == HYDRA_FREE ));
}
* ROUTINE: missile_hydra_set_pylon_position_offsets
* PARAMETERS: x = X offset (in meters )from center of HULL. *
         y = Y offset.
         z = Z offset.
* RETURNS: none.
* PURPOSE: Sets the X, Y and Z offsets from center of
         HULL for trajectory calculations.
                                                 ۰
                                                      ++/
void missile_hydra_set_pylon_position_offsets( x, y, z )
REAL x, y, z;
```

```
ł
  pylon_x = x;
  pylon_y = y;
  pylon_z = z;
void missile_hydra_set_speed_factor( speed_scale )
REAL speed_scale;
ł
  speed_factor = speed_scale;
void missile_hydra_set_max_range_limit( limit_range )
REAL limit_range;
ſ
  max_range_limit = limit_range;
}
 * ROUTINE: missile_hydra_set_pylon_articulation
 * PARAMETERS: tgt_range - Range to target.
         rkt_type - Type of Rocket to be launched.
         time - Pointer to Time Of Flight
             variable in vehicle-spec code. [int]
         se_angle - Pointer to Super Elevation
             variable in vehicle-spec code. [REAL]
         lead_angle - Pointer to Lead Elevation
             variable in vehicle-spec code. [REAL] *
* RETURNS: none.
* PURPOSE: Sets _laser_range_ of next Hydra70 rocket to *
         be launched and calculates Time Of Flight,
         Super Elevation angle and Lead angle for next *
        rocket launch.
                                   ********
void missile_hydra_set_pylon_articulation( tgt_range, rkt_type, time,
                      se_angle, lead_angle )
REAL tgt_range;
int rkt_type, *time;
REAL *se_angle, *lead_angle;
ł
  REAL range;
                   /* Range to target */
  REAL ball_range; /* Range to look-up in Ballistic Table */
  if( tgt_range < HYDRA_MIN_RANGE )
    range = HYDRA_MIN_RANGE;
  else if(( max_range_limit > 0.0 ) &&
      ( tgt_range > max_range_limit ) )
    range = max_range_limit;
 else
```

```
Appendix M - Source Code Listing for rkt_hydra.c
```

```
range = tgt_range;
 /* SuperElevation & TOF for each Rocket Type */
   switch( rkt_type )
                                    /* type 10lb WARHEAD */
   case ROCKET HE:
     if( range > HYDRA_MAX_RANGE_M151 )
       range = HYDRA_MAX_RANGE_M151;
     ball_range = range / speed_factor;
     missile_util_ballistics_calc_traj( ball_table, table_size,
                       ball_range, 0.0, 0.0,
                       time, se_angle );
     *lead_angle = atan( (rkt_hydra_char[ 0] - pylon_x) / range );
                   /* Does not have a timed fuze */
     *time = -5:
    break:
   case ROCKET_MPSM:
                                      /* type MPSM */
     if( range > HYDRA_MAX_RANGE_M261 )
       range = HYDRA_MAX_RANGE_M261;
     ball_range = range / speed_factor;
     missile_util_ballistics_calc_traj( ball_table, table_size,
                       ball_range, 0.0, rkt_hydra_char[ 1],
                       time, se_angle );
    *lead_angle = atan( (rkt_hydra_char[ 3] - pylon_x) / range );
    break;
  case ROCKET_FLECHETTE:
                                          /* type FLECHETTE */
    if( range > HYDRA_MAX_RANGE_M255 )
      range = HYDRA_MAX_RANGE_M255;
    ball_range = range / speed_factor;
    missile_util_ballistics_calc_traj( ball_table, table_size,
                      ball_range, rkt_hydra_char[ 4], 0.0,
                       time, se_angle );
    *lead_angle = atan((rkt_hydra_char[ 5] - pylon_x) /
              (range - rkt_hydra_char[ 4]));
    break;
  default:
    printf( "hydra_set_pylon_articul: unknown warhead_type %d\n", rkt_type )
    *time = 0;
    *se_angle = 0.0;
    *lead_angle = 0.0;
    break;
  flight_time = *time;
1
* ROUTINE: missile_hydra_fire
* PARAMETERS: rkt_type - Type of Rocket warhead.
         ammo - Ammo Type of rocket's warhead.
         launch_pt - The location in world
```

coordinates that the rocket is *

- launched from.
* launch_orient - The sight to world *
 transformation matrix used
 only in this routine.
* launch_speed - Speed of launch platform *
* (assumed to be in the direction *
 of the Rocket).
* RETURNS: TRUE if successful, FALSE if not.
* PURPOSE: This routine performs the functions
specifically related to the firing of a HTDRA70*
rocket.
int missile hydra fire(rkt type, ammo, launch pt.
launch orient launch speed)
int rkt type:
ObjectType ammo:
VECTOR launch pt:
T MAT PTR launch orient;
REAL launch_speed;
{
T_MATRIX
launch_lead,
launch_se;
REAL
<pre>se_angle, /* munition_specific SuperElevation angle */</pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */</pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */ int time; /* munition_specific FlightTime */</pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */ int time; /* munition_specific FlightTime */ HYDRA_ROCKET *rkt;</pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */ int time; /* munition_specific FlightTime */ HYDRA_ROCKET *rkt; BALLISTIC_MISSILE *bmptr;</pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */ int time; /* munition_specific FlightTime */ HYDRA_ROCKET *rkt; BALLISTIC_MISSILE *bmptr; ObjectType fuze;</pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */ int time; /* munition_specific FlightTime */ HYDRA_ROCKET *rkt; BALLISTIC_MISSILE *bmptr; ObjectType fuze; int i, valid_msl;</pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */ int time; /* munition_specific FlightTime */ HYDRA_ROCKET *rkt; BALLISTIC_MISSILE *bmptr; ObjectType fuze; int i, valid_msl; /* ext next EREE modest */</pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */ int time; /* munition_specific FlightTime */ HYDRA_ROCKET *rkt; BALLISTIC_MISSILE *bmptr; ObjectType fuze; int i, valid_msl; /* get next FREE rocket */ valid_msl = 0;</pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */ int time; /* munition_specific FlightTime */ HYDRA_ROCKET *rkt; BALLISTIC_MISSILE *bmptr; ObjectType fuze; int i, valid_msl; /* get next FREE rocket */ valid_msl = 0; rkt = hydra_array;</pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */ int time; /* munition_specific FlightTime */ HYDRA_ROCKET *rkt; BALLISTIC_MISSILE *bmptr; ObjectType fuze; int i, valid_msl; /* get next FREE rocket */ valid_msl = 0; rkt = hydra_array; for(i = 0; i < MAX_HYDRA70_ROCKET; i++ rkt++)</pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */ int time; /* munition_specific FlightTime */ HYDRA_ROCKET *rkt; BALLISTIC_MISSILE *bmptr; ObjectType fuze; int i, valid_msl; /* get next FREE rocket */ valid_msl = 0; rkt = hydra_array; for(i = 0; i < MAX_HYDRA70_ROCKET; i++, rkt++) if(rkt->hmptr state == HYDRA_FREE)</pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */ int time; /* munition_specific FlightTime */ HYDRA_ROCKET *rkt; BALLISTIC_MISSILE *bmptr; ObjectType fuze; int i, valid_msl; /* get next FREE rocket */ valid_msl = 0; rkt = hydra_array; for(i = 0; i < MAX_HYDRA70_ROCKET; i++, rkt++)</pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */ int time; /* munition_specific FlightTime */ HYDRA_ROCKET *rkt; BALLISTIC_MISSILE *bmptr; ObjectType fuze; int i, valid_msl; /* get next FREE rocket */ valid_msl = 0; rkt = hydra_array; for(i = 0; i < MAX_HYDRA70_ROCKET; i++, rkt++) if(rkt->bmptr.state == HYDRA_FREE) { valid_msl = 1: </pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */ int time; /* munition_specific FlightTime */ HYDRA_ROCKET *rkt; BALLISTIC_MISSILE *bmptr; ObjectType fuze; int i, valid_msl; /* get next FREE rocket */ valid_msl = 0; rkt = hydra_array; for(i = 0; i < MAX_HYDRA70_ROCKET; i++, rkt++) if(rkt->bmptr.state == HYDRA_FREE) { valid_msl = 1; hydra fly[rkts in flight] = rkt; } </pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */ int time; /* munition_specific FlightTime */ HYDRA_ROCKET *rkt; BALLISTIC_MISSILE *bmptr; ObjectType fuze; int i, valid_msl; /* get next FREE rocket */ valid_msl = 0; rkt = hydra_array; for(i = 0; i < MAX_HYDRA70_ROCKET; i++, rkt++) if(rkt->bmptr.state == HYDRA_FREE) { valid_msl = 1; hydra_fly[rkts_in_flight] = rkt; bmptr = &r(rkt->bmptr); </pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */ int time; /* munition_specific FlightTime */ HYDRA_ROCKET *rkt; BALLISTIC_MISSILE *bmptr; ObjectType fuze; int i, valid_msl; /* get next FREE rocket */ valid_msl = 0; rkt = hydra_array; for(i = 0; i < MAX_HYDRA70_ROCKET; i++, rkt++) if(rkt->bmptr.state == HYDRA_FREE) { valid_msl = 1; hydra_fly[rkts_in_flight] = rkt; bmptr = &c(rkt->bmptr); #if DEBUG</pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */ int time; /* munition_specific FlightTime */ HYDRA_ROCKET *rkt; BALLISTIC_MISSILE *bmptr; ObjectType fuze; int i, valid_msl; /* get next FREE rocket */ valid_msl = 0; rkt = hydra_array; for(i = 0; i < MAX_HYDRA70_ROCKET; i++, rkt++) if(rkt->bmptr.state == HYDRA_FREE) { valid_msl = 1; hydra_fly[rkts_in_flight] = rkt; bmptr = &r(rkt->bmptr); #if DEBUG printf("Launching Rocket %d\n", i);</pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */ int time; /* munition_specific FlightTime */ HYDRA_ROCKET *rkt; BALLISTIC_MISSILE *bmptr; ObjectType fuze; int i, valid_msl; /* get next FREE rocket */ valid_msl = 0; rkt = hydra_array; for(i = 0; i < MAX_HYDRA70_ROCKET; i++, rkt++) if(rkt->bmptr.state == HYDRA_FREE) { valid_msl = 1; hydra_fly[rkts_in_flight] = rkt; bmptr = &c(rkt->bmptr); #if DEBUG printf("Launching Rocket %d\n", i); #endif</pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */ int time; /* munition_specific FlightTime */ HYDRA_ROCKET *rkt; BALLISTIC_MISSILE *bmptr; ObjectType fuze; int i, valid_msl; /* get next FREE rocket */ valid_msl = 0; rkt = hydra_array; for(i = 0; i < MAX_HYDRA70_ROCKET; i++, rkt++) if(rkt->bmptr.state == HYDRA_FREE) { valid_msl = 1; hydra_fly[rkts_in_flight] = rkt; bmptr = &c(rkt->bmptr); #if DEBUG printf("Launching Rocket %d\n", i); #endif rkts_in_flight++; /* rkts_in_flight == # flying */</pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */ int time; /* munition_specific FlightTime */ HYDRA_ROCKET *rkt; BALLISTIC_MISSILE *bmptr; ObjectType fuze; int i, valid_msl; /* get next FREE rocket */ valid_msl = 0; rkt = hydra_array; for(i = 0; i < MAX_HYDRA70_ROCKET; i++, rkt++) if(rkt->bmptr.state == HYDRA_FREE) { valid_msl = 1; hydra_fly[rkts_in_flight] = rkt; bmptr = &c(rkt->bmptr); #if DEBUG printf("Launching Rocket %d\n", i); #endif rkts_in_flight++; /* rkts_in_flight == # flying */ break;</pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */ int time; /* munition_specific FlightTime */ HYDRA_ROCKET *rkt; BALLISTIC_MISSILE *bmptr; ObjectType fuze; int i, valid_msl; /* get next FREE rocket */ valid_msl = 0; rkt = hydra_array; for(i = 0; i < MAX_HYDRA70_ROCKET; i++, rkt++) if(rkt->bmptr_state == HYDRA_FREE) { valid_msl = 1; hydra_fly[rkts_in_flight] = rkt; bmptr = &c(rkt->bmptr); #if DEBUG printf("Launching Rocket %d\n", i); #endif rkts_in_flight++; /* rkts_in_flight == # flying */ break; }</pre>
<pre>se_angle, /* munition_specific SuperElevation angle */ lead_angle; /* munition_specific (+/-)Lead angle */ int time; /* munition_specific FlightTime */ HYDRA_ROCKET *rkt; BALLISTIC_MISSILE *bmptr; ObjectType fuze; int i, valid_msl; /* get next FREE rocket */ valid_msl = 0; rkt = hydra_array; for(i = 0; i < MAX_HYDRA70_ROCKET; i++, rkt++) if(rkt->bmptr_state == HYDRA_FREE) { valid_msl = 1; hydra_fly[rkts_in_flight] = rkt; bmptr = &c(rkt->bmptr); #if DEBUG printf("Launching Rocket %d\n", i); #endif rkts_in_flight++; /* rkts_in_flight == # flying */ break; } if(!valid_msl) /* no available missile to launch */</pre>

```
return( FALSE );
  }
/* set MaxRange for Rocket Type */
  switch( rkt_type )
  ł
  case ROCKET_HE:
                              /* High Explosive */
    bmptr->max_range = HYDRA_MAX_RANGE_M151;
    rkt->sub_mun_type = SUB_MUN_NONE;
    rkt->sub_ammo_type = 0;
    fuze = munition_US_M433;
    break:
  case ROCKET_MPSM:
                                /* Multi-Purpose Sub-Munition */
    bmptr->max_range = HYDRA_MAX_RANGE_M261;
    rkt->sub_mun_type = SUB_MUN_IMPACT;
    rkt->sub_ammo_type = munition_US_M73;
    rkt->sub_munition.impact.ammo = munition_US_M73;
    rkt->sub_munition.impact.fuze = munition_US_M433;
    rkt->sub_munition.impact.guantity = m73_per_m261_burst;
    rkt->sub_munition.impact.height = rkt_hydra_char[ 1];
    fuze = munition_US_M439;
    break;
  case ROCKET_FLECHETTE:
                                   /* Flechette discharging warhead */
    bmptr->max_range = HYDRA_MAX_RANGE_M255;
    rkt->sub_mun_type = SUB_MUN_CANISTER;
    rkt->sub_ammo_type = munition_US_Flechette_60;
    rkt->sub_munition.dart.ammo = munition_US_Flechette_60;
    rkt->sub_munition.dart.fuze = 0;
    fuze = munition_US_M439;
   break:
 default:
   printf( "hydra_fire_rkt: unknown rocket_type %d\n", rkt_type );
   rkts_in_flight-;
   bmptr -> state = HYDRA_FLY;
   return( FALSE );
   break:
 }
 mat_copy( launch_orient, bmptr->launcher_C_world );
 mat_copy( launch_orient, bmptr->orientation );
 vec_copy( launch_pt, bmptr->location );
 bmptr->speed = launch_speed;
/* - Tell the rest of the world about the firing of this B-missile. -

    If this cannot be done, return FALSE. –

•/
 if( !missile_util_comm_fire_missile
   (bmptr, MSL_TYPE_BALLISTIC,
   map_get_ammo_entry_from_network_type( ammo ),
   ammo, ammo, /*guises*/
   &(null_vehicleID), 0/*targ_type*/, fuze, 0/*tube*/ ))
```

l

```
rkts_in_flight-;
    bmptr -> state = HYDRA_FLY;
    return( FALSE );
  }
  bmptr -> max_flight_time = flight_time;
  bmptr -> ammo_type = ammo;
                            /* initialize in-flight timer */
  bmptr \rightarrow time = 0;
                            /* first point into Ball-table */
  bmptr -> ball_index = 0;
  bmptr -> state = HYDRA_FLY; /* rocket is now flying */
  return( TRUE );
}
* ROUTINE: missile_hydra_fly_rockets
* PARAMETERS: none
* RETURNS: none
* PURPOSE: This routine flys out all rockets that are in *
        a flying state.
                                      void missile_hydra_fly_rockets()
ł
  register int i;
  int at_least_one_empty_MPSM;
     Fly out all launched & flying rockets.
    - may have to also 'fly out' all released submunitions -
•/
  at_least_one_empty_MPSM = FALSE;
  for( i = 0; i < rkts_in_flight; i++ )</pre>
  ſ
   switch( hydra_fly[i]->bmptr.state )
    Ł
   case HYDRA_FREE:
      hydra_fly[i]->bmptr.state = HYDRA_REMOVE;
      break:
   case HYDRA_FLY:
      missile_hydra_fly( hydra_fly[i] );
      break;
   case HYDRA DETONATE:
      switch( hydra_fly[i]->sub_ammo_type )
      case munition_US_M73:
                                     /* MPSM bomblets */
        missile m73_init
          ( &(hydra_fly[i]->bmptr),
           &(hydra_fly[i]->sub_munition),
            ball_table[ hydra_fly[i]->bmptr.ball_index ].speed );
        hydra_fly[i]->bmptr.state = HYDRA_FALL;
        break:
                                        /* FLECHETTE darts */
      case munition_US_Flechette_60:
```

```
missile_flechette_init
      ( &(hydra_fly[i]->bmptr),
       & (hydra_fly[i]->sub_munition),
       ball_table[ hydra_fly[i]->bmptr.ball_index ].speed );
    hydra_fly[i]->bmptr.state = HYDRA_RELEASED;
    break:
  default:
    printf( "Hydra Detonate: R %d unknown ammo-type \n",i );
    missile hydra stop(hydra_fly[i]);
    break:
  }
  break;
case HYDRA_FALL:
  switch( hydra_fly[i]->sub_ammo_type )
  l
                                 /* type MPSM */
  case munition_US_M73:
    if( missile_m73_drop( &(hydra_fly[i]->bmptr),
                &(hydra_fly[i]->sub_munition)))
      hydra_fly[i]->bmptr.state = HYDRA_RELEASED;
    break:
  default:
    printf( "Hydra_Fall(): R_%d bad sub_munition\n",i );
    missile_hydra_stop( hydra_fly[i] );
    break:
  break:
case HYDRA_RELEASED:
  switch( hydra_fly[i]->sub_ammo_type )
  ł
 case munition_US_M73:
                                 /* type MPSM */
    if(!missile_m73_impact( &(hydra_fly[i]->bmptr),
                 &(hydra_fly[i]->sub_munition)))
      at_least_one_empty_MPSM = TRUE;
      missile_hydra_stop( hydra_fly[i] );
    1
    break:
 case munition_US_Flechette_60:
                                    /* type FLECHETTE */
    if( ! missile_flechette_fly( &(hydra_fly[i]->bmptr),
                 &(hydra_fly[i]->sub_munition),
                 flechette_veh_list ))
    ł
      missile_hydra_stop( hydra_fly[i] );
      missile_fuze_prox_stop
        ( &(hydra_fly[i]->sub_munition.dart.pptr) );
   break:
 default:
   printf( "Hydra_Release: R_%d bad sub_munition\n",i );
   missile_hydra_stop( hydra_fly[i] );
   break:
```

```
Appendix M - Source Code Listing for rkt_hydra.c
```

```
1
      break;
    case HYDRA_REMOVE:
      break;
    default.
      printf( "Msl_hydra_fly_rkts(): rkt_%d not flying\n", i );
      missile_hydra_stop( hydra_fly[i] );
      break:
    }
  }
/* Send out remaining (if any) Indirect Fire pkts */
  if( at_least_one_empty_MPSM )
    network ifire_send_indirect_fire();
/* Get rid of DEAD rockets */
  missile_hydra_purge_free_missiles();
}
------
* ROUTINE: missile_hydra_fly
                                              .
 * PARAMETERS: rkt - Pointer to a _HYDRA_ROCKET_ structure *
* RETURNS: none
* PURPOSE: This routine performs the functions
        specifically related to the flying an HYDRA70 *
        rocket.
                            ------/
void missile_hydra_fly( rkt )
HYDRA_ROCKET *rkt;
ſ
  BALLISTIC_MISSILE *bmptr;
  int index;
  bmptr = &c(rkt->bmptr);
  index = bmptr->ball_index;
/*
* Check for rocket detonation via timed-fuze.
•/
  if( missile_util_comm_check_timer( bmptr, MSL_TYPE_BALLISTIC ))
    bmptr->state = HYDRA_DETONATE;
/•
* Try to actually fly the missile. If this fails stop the missile altogether
* and return.
•/
 else
    if( !missile_util_ball_flyout( bmptr, &(ball_table[index]),
                   table_size, speed_factor ) )
    ſ
#if DEBUG
      printf( "Hydra_Rkt out of range -- stopping B-missile\n" );
```

```
#endif
       missile_hydra_stop( rkt );
       return;
     }
   if( missile_util_comm_check_detonate( bmptr, MSL_TYPE_BALLISTIC ))
   ł
 * IF rocket hit ground or vehicle -> stop its flyout
 •/
     if( missile util_comm_check_intersection( bmptr, MSL_TYPE_BALLISTIC ))
       missile_hydra_stop( rkt );
 * Else do nothing -> missile is not dead yet...
           OR rocket timed-fuze detonated
 */
  }
 /* otherwise, let B-missile continue on its merry way.
 •/
  return;
}
 * ROUTINE: missile_hydra_stop
                                                   .
 * PARAMETERS: rkt - Pointer to a _HYDRA_ROCKET_ structure *
         that is to be stopped.
* RETURNS: none
* PURPOSE: Stops the flight a Hydra70_Rocket.
         Stops telling the world about said Rocket
         and frees up the Rocket for another launch.
static void missile_hydra_stop( rkt )
HYDRA_ROCKET *rkt;
ſ
  BALLISTIC_MISSILE *bmptr;
  int i:
  bmptr = &c( rkt->bmptr );
• Tell the world to stop worrying about this missile then release the

    memory for use by other missiles.

•/
  missile_util_comm_stop_missile( bmptr, MSL_TYPE_BALLISTIC );
#if DEBUG
  printf( "stop:: T: %d Rkt: %d Pos: %1.2lf %1.2lf %1.2lf \n",
      bmptr->time, bmptr->missile_id, bmptr->location[0],
      bmptr->location[1], bmptr->location[2] );
#endif
/*
```

```
* Mark rocket to be Removed
 */
   bmptr->state = HYDRA_REMOVE;
 }
 static void missile_hydra_purge_free_missiles()
 ł
   int i;
   i = 0;
   while( i < rkts_in_flight )</pre>
   ł
     if( hydra_fly[i]->bmptr.state == HYDRA_REMOVE )
     {
        /*
        * Swap -- BAD-- rocket[i] with -- LAST-- rocket[rkts_in_flight]
        * Cut-off (now BAD) -- LAST-- rocket
        * Check (now Good) rocket[i]
        •/
       hydra_fly[i]->bmptr.state = HYDRA_FREE;
       rkts_in_flight-;
       hydra_fly[i] = hydra_fly[rkts_in_flight];
       hydra_fly[rkts_in_flight] = 0;
     }
     else
       /*

    Check next rocket[i+1]

       •/
       i++;
  }
}
void mbmat( mat )
T_MAT_PTR mat;
ł
  int i, j;
  for( i=0; i<3; i++ )
  ł
    for( j=0; j<3; j++ )
      printf( " %1.4lf ", mat[i][j] );
    printf( "\n" );
  }
}
void mbmat_nan( mat )
T_MAT_PTR mat;
ł
  int i, j;
  union foo
  ſ
```

```
Appendix M - Source Code Listing for rkt_hydra.c
```

```
REAL df;
     long 1[2];
   } x;
   for( i=0; i<3; i++ )
   (
     for( j=0; j<3; j++ )
        printf( " %1.4lf ", mat[i][j] );
     printf( "->" );
     for( j=0; j<3; j++ )
     (
       x.df = mat[i][j];
       printf( " 0x%08x 0x%08x", x.1[0], x.1[1] );
     }
     printf( "\n" );
  }
}
void mbm( n, msg )
int n;
char msg[];
ſ
  printf( "BM: %d -> %s\n", n, msg );
}
void mbfl( n, msg )
REAL n;
char msg[];
l
  printf( "BM: %6.4lf -> %s\n", n, msg );
}
```

Appendix N - Source code listing for rwa_hydra.c.

The following appendix contains the source code listing for rwa_hydra.c for convenience in document maintenance and understanding of the CSU.

Appendix N - Source Code Listing for rwa_hydra.c

/* \$Header: /a3/adst-cm/RWA/simnet/vehicle/rwa/src/RCS/rwa_hydra.c,v 1.1 1992/09 /30 17:02:58 cm-adst Exp \$ */ /* * \$Log: rwa_hydra.c,v \$ * Revision 1.1 1992/09/30 17:02:58 cm-adst * Initial Version •/ static char RCS_ID[] = "\$Header: /a3/adst-cm/RWA/simnet/vehicle/rwa/src/RCS/rwa hydra.c,v 1.1 1992/09/30 17:02:58 cm-adst Exp \$"; * Revisions: SP/CR Number Version Date Author Title 1.2 10/23/92 R. Branson Data File Initialization 1.3 10/30/92 R. Branson Added pathname to data directory SP/CR No. **Description of Modification** Hard coded defines changed to array elements. Characteristics/parameter data array added. Added file reads for hydra rocket characteristics/ parameters. Added "/simnet/data/" to each data file pathname. /*********************** * SYSTEM NAME: rwa * FILE: rwa_hydra.c * AUTHOR: Kris Bartol * SIMNET simulation of Hydra70 Rocket * Copyright (c) 1990 BBN Advanced Simulation Division. * All rights reserved. . ***********

#include "simstdio.h"

#include "sim_types.h"
#include "sim_dfns.h"
#include "sim_macros.h"
#include "basic.h"
#include "mun_type.h"
#include "veh_type.h"

#include "libmatrix.h"
#include "libmath.h"
#include "librotate.h"
#include "libturret.h"
#include "libhull.h"
#include "libkin.h"
#include "libcig.h"
#include "libimps.h"
#include "libmap.h"
#include "libmissile.h"
#include "libmiss_dfn.h"
#include "rkt_hydra.h"

#include "rwa_kinemat.h"
#include "rwa_weapons.h"
#include "rwa_meter.h"
#include "rwa_config.h"

#define DEBUG 0 /* debugging is ON */

#define LEFT 0 #define RIGHT 1

#define NUM_ROCKETS_LAUNCHED_PER_TICK 2

/*/ * Define rocket characteristics. /*/

#define HYDRA_LAUNCHER_POS_X hydra_rkt_char[0]
#define HYDRA_LAUNCHER_POS_Y hydra_rkt_char[1]
#define HYDRA_LAUNCHER_POS_Z hydra_rkt_char[2]

/* *****

* Articulation Limits are +4 to -15 degrees but are adjusted to * +19 to -15 degrees for simulation's fixed OTW reticle * ***** #define SOVIET_ARTICULATION (mil_to_rad(hydra_rkt_char[3])) #define HULL_NEG_5_PITCH (deg_to_rad(hydra_rkt_char[4])) #define ARTICULATION_MAX (deg_to_rad(hydra_rkt_char[5])) #define ARTICULATION_MIN (deg_to_rad(hydra_rkt_char[6]))

/*/

* Hydra rocket characteristic parameters initialized to default values.

/*/

static REAL hydra_rkt_char[7] =
{

4.5, /* hydra launcher position X */

0.5, /* hydra launcher position Y */

- -2.0, /* hydra launcher position Z */
- 104.0, /* mils of Soviet articulation */
- -5.0, /* degrees of hull negative pitch */
- 19.0, /* degrees of maximum articulation */
- -15.0 /* degrees of minimum articulation */

};

ROTATE_ELEMENT_DEF (articulation_element); ROTATE_ELEMENT_DEF (pylon_L_element); ROTATE_ELEMENT_DEF (pylon_R_element);

static HYDRA_ROCKET hydras[MAX_HYDRA70_ROCKET + 1] = { 0 };

static VehicleID null_VehicleID;
static int flight_time; /* Time Of Flight for ballistic traj */
static REAL
super_elevation, /* Adj angle for ballistic traj */
target_range; /* Range by which to calculate ballistics */

static ObjectType ammo_type; /* Ammo_Type of rockets to be launched */
static int warhead_class; /* one of [HE | MPSM | FLECHETTE] */

static int pylons_set; /* TRUE when pylon articulation is complete */
static int left_rocket_launch; /* TRUE -> launch left rocket */
static int right_rocket_launch; /* TRUE -> launch right rocket */

static VECTOR left_launcher_pos = { 4.5, 0.0, 0.0 }; static VECTOR right_launcher_pos = { 4.5, 0.0, 0.0 }; static VECTOR articulation_pos = { 0.0, 0.5, -2.0 };

extern REAL weapons_get_rocket_range(); extern REAL kinematics_get_true_airspeed(); extern void mbmat(); extern void mbmat_nan(); extern void mbvec();

ROTATE_ELEMENT *articulation()

return(& articulation_element);

ROTATE_ELEMENT *pylon_L()

1

return(& pylon_L_element);

```
}
ROTATE_ELEMENT *pylon_R()
  return( &pylon_R_element );
}
void hydra_launch_rocket_left()
ł
  left_rocket_launch = TRUE;
}
void hydra_launch_rocket_right()
  right_rocket_launch = TRUE;
}
int hydra_launch_rocket( launch_from_right )
int launch_from_right; /* 0 = left-side (neg) :: 1 = right-side (pos) */
  T_MAT_PTR launch_orient;
  VECTOR launch_velocity;
  REAL
    *launch_point,
    se_angle,
    lead_angle;
/* get launch_point & launch_orient */
  if( launch_from_right ) /* launch from right */
  ł
    launch_point = rotate_get_loc( world(), pylon_R() );
    launch_orient = rotate_get_mat( pylon_R(), world() );
  }
  else
    launch_point = rotate_get_loc( world(), pylon_L() );
    launch_orient = rotate_get_mat( pylon_L(), world() );
  )
#if DEBUG
  if( mat_check(launch_orient) == FALSE )
    mbmat_nan( launch_orient );
#endif
  if( !missile_hydra_fire( warhead_class, ammo_type,
               launch_point, launch_orient,
               (kinematics_get_true_airspeed()/15) /*init speed*/))
  ł
#if DEBUG
    printf( "No memory in missile_comm for HYDRA\n");
#endif
    printf( "Rocket launch failed\n" );
```

```
return( FALSE );
```

```
}
return( TRUE );
}
```

```
int hydra_pylons_are_set()
{
    return( pylons_set );
```

```
}
```

```
void hydra_set_pylon_articulation( WAS_position )
int WAS_position;
{
```

```
MUNITION_DATA *mun_data;
int flight_time; /* time of flight to fly _range_ meters */
REAL
range, /* range to target */
```

```
super_elev, /* super elevation angle for trajectory */
dispersion; /* dispersion angle for trajectory */
```

```
* Given _range_ & _ammo_type_ ::
```

```
* calculate and return super_elev & dispersion angles
```

```
* calculate and set Time-Of-Flight timer
```

```
* *set _ammo_type_ of next rocket(s) to be fired
*/
```

```
mun_data = rwa_config_get_was_munition_info (WAS_position);
ammo_type = mun_data->munition_type;
```

```
if (mun_data->code != MUNITION_ROCKET)
    /* bombs, for example */
    return;
```

```
switch(mun data->data.rocket.warhead)
ł
case WARHEAD_HE:
  warhead class = ROCKET_HE;
  break:
case WARHEAD_MPSM:
  warhead_class = ROCKET_MPSM;
  break:
case WARHEAD_FLECHETTE:
  warhead_class = ROCKET_FLECHETTE;
  break:
default:
  printf( "hydra_set_artic: unknown warhead %d for WAS %d\n",
     mun_data->data.rocket.warhead, WAS_position );
  break:
}
```

```
* Get rocket range & calculate SuperElevation and Dispersion angles
 •/
   pylons_set = FALSE;
   if( mun_data->data.rocket.articulation )
     range = weapons_get_rocket_range();
   else
    range = (REAL)(mun_data->data.rocket.flyout_range);
 1
 * Set pylon Super Elevation angle & pylon Dispersion angle
 +/
   missile_hydra_set_pylon_articulation( range, warhead_class, &flight_time,
                      & super_elev, & dispersion );
   s_per_elev += HULL_NEG_5_PITCH;
   rotate_set_angle( articulation(), super_elev );
  rotate_set_angle( pylon_R(), (- dispersion) );
  rotate_set_angle( pylon_L(), dispersion );
}
void hydra_config_rockets()
  MUNITION_DATA *mun_data;
  int i:
  for( i = 0; i < MAX_WAS_POSITIONS; i++ )</pre>
  ſ
    if( (mun_data = rwa_config_get_was_munition_info( i )) == NULL )
      continue:
    if( mun_data->code == MUNITION_ROCKET )
    ł
      missile_hydra_set_speed_factor
        ((REAL)(mun_data->data.rocket.speed_factor));
      missile_hydra_set_max_range_limit
        ((REAL)(mun_data->data.rocket.flyout_range));
    }
  }
}
void hydra_init ()
    int i;
    int data_tmp_int;
    float data_tmp;
    char descript[64];
    FILE *fp;
/* DEFAULT CHARACTERISTICS DATA FOR rwa_hydra.c READ FROM FILE
                                                                                  */
    fp = fopen("/simnet/data/rwa_hydr.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/rwa_hydr.d\n");
        exit();
```

```
}
     rewind(fp);
     /*
          Read array data */
     i=0;
     while(fscanf(fp,"%f", &data_tmp) != EOF){
         hydra_rkt_char[i] = data_tmp;
         fgets(descript, 64, fp);
 /*
          printf("hydra_rkt_char(%3d) is%11.3f %s", i,
             hydra_rkt_char[i], descript);
         ++i:
     }
     fclose(fp);
 /* END DEFAULT CHARACTERISTICS DATA FOR rwa_hydra.c READ FROM FILE */
     left_launcher_pos[0] = HYDRA_LAUNCHER_POS_X;
     right_launcher_pos[0] = HYDRA_LAUNCHER_POS_X;
     articulation_pos[1] = HYDRA_LAUNCHER_POS_Y;
     articulation_pos[2] = HYDRA_LAUNCHER_POS_Z;
  if(!rotate_init_element( & articulation_element, hull(),
               1.0, 0.0, 0.0, 0.0,
            ARTICULATION_MIN, ARTICULATION_MAX, /*TWO_*/PI, /*rate*/
            0.0, HYDRA_LAUNCHER_POS_Y, HYDRA_LAUNCHER_POS_Z ))
  ſ
    printf( "Rotate_Init_Element: articulation_element FAILED\n" );
  }
  rotate_init_element( &pylon_L_element, articulation(), 0.0, 0.0, 1.0, 0.0,
            -TWO_PI, TWO_PI, TWO_PI, /*rate*/
            -HYDRA_LAUNCHER_POS_X, 0.0, 0.0 );
  rotate_init_element( & pylon_R_element, articulation(), 0.0, 0.0, 1.0, 0.0,
            -TWO_PI, TWO_PI, TWO_PI, /*rate*/
            HYDRA_LAUNCHER_POS_X, 0.0, 0.0 );
  missile_hydra_init( hydras, MAX_HYDRA70_ROCKET );
  missile_hydra_set_pylon_position_offsets( HYDRA_LAUNCHER_POS_X,
                        HYDRA_LAUNCHER_POS_Y,
                        HYDRA_LAUNCHER_POS_Z );
  hydra_config_rockets();
  left_rocket_launch = FALSE;
  right_rocket_launch = FALSE;
  pylons_set = FALSE;
}
void hydra_simul()
  missile_hydra_fly_rockets();
```

Appendix N - Source Code Listing for rwa_hydra.c

```
if( !pylons_set )
  ł
    pylons_set = TRUE;
    rotate_set_no_rotate( pylon_R() );
    rotate_set_no_rotate( pylon_L() );
    rotate_set_no_rotate( articulation() );
  )
  else
  ł
    if( left_rocket_launch )
      if( hydra_launch_rocket( LEFT ) )
         left_rocket_launch = FALSE;
    if( right_rocket_launch )
      if(hydra_launch_rocket(RIGHT))
         right_rocket_launch = FALSE;
  }
void mbvec( str, vec )
char *str;
```

```
VECTOR vec;
l
  printf( "%s [ %1.4lf %1.4lf %1.4lf ]\n",
      str, vec[X], vec[Y], vec[Z] );
```

```
}
```

}
22 January 1993 Reference # W003036 Rev. 0.0

Appendix O - Source code listing for sub_flech.c.

The following appendix contains the source code listing for sub_flech.c for convenience in document maintenance and understanding of the CSU.

/* \$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissile/RCS/sub_flech.c,v 1 .1 1992/09/30 16:39:52 cm-adst Exp \$ */
* \$Log: sub_flech.c,v \$ * Revision 1.1 1992/09/30 16:39:52 cm-adst * Initial Version
*/ static char RCS_ID[] = "\$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissil e/RCS/sub_flech.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp \$";
/*************************************
* Version Date Author Title SP/CR Number
 1.2 10/23/92 R. Branson Data File Initiali- zation
* 1.3 10/30/92 R. Branson Added pathname to data
 1.4 11/25/92 R. Branson Changed %i to %d
SP/CR No. Description of Modification
 Hard coded defines changed to array elements.
 Characteristics/parameter data array added. Added file reads for sub flechette characteristics/
 parameters and flechette speed coefficients.
 Added "/simnet/data/" to each data file pathname.
······································
• •
* FILE: sub_flech.c * * AUTHOR: Kris Bartol * * MAINTAINER: Kris Bartol *
 PURPOSE: This file contains routines which simulates the behavior of sub-munitions of type Transition US Flock atta (2)
HISTORY: 10/06/90 kris

* Copyright (c) 1989 BBN Systems and Technologies, Inc.

.

* All rights reserved.

#include "stdio.h"
#include "math.h"

#include "sim_types.h"
#include "sim_dfns.h"
#include "basic.h"
#include "mun_type.h"

#include "libhull.h"
#include "libimps.h"
#include "libkin.h"
#include "libmath.h"
#include "libmap.h"
#include "libmatrix.h"
#include "libmiss_dfn.h"
#include "libmiss_loc.h"

#include "rkt_hydra.h"

#define DEBUG 0 /* debugging is ON */

#define INVEST_DIST_SQ sub_flech_char[0]
#define FUZE_DIST_SQ sub_flech_char[1]
#define FLECHETTE_SPEED_DEG sub_flech_poly_deg

/*/

* Sub_flechette characteristic parameters initialized to default values.
/*/
static REAL sub_flech_char[3] =
{
10000.0, /* (100 m)^2 :: max speed < 100 */
306.25, /* (17.5 m)^2 :: flechettes fly</pre>

in a cylinder with a radius of 17.5 m and length of 750 m */ FLECH_60_MAX_RANGE /* darts fly total of 750m */ };

/*/

The following term sets the order of the polynomial used to determine
the speed of the flechettes.
/*/

static int sub_flech_poly_deg = 3;

/*/

* Coefficients for the speed polynomial for flechettes initialized

```
* to default values.
1+1
static REAL flechette_speed_coef[5] =
ł
                                  +/
               /* a_0 - m/tick
  41.75,
                /* a_1 - m/tick/m
  -0.20397254.
                                       */
   0.00022724278, /* a_2 - m/tick/m^2 */
  -0.0000008633, /* a_3 - m/tick/m^3 */
   0.0
1:
static VECTOR zero vector = { 0.0, 0.0, 0.0 };
static VehicleID null_VehicleID;
/* this routine is invoked by the rva for each vehicle to see if it
 * should be included on the flechette valid vehicle list
*/
flechette_is_valid_veh (veh)
VehicleAppearanceVariant *veh;
ſ
  return( /* is_alive_vehicle (veh->appearance) */ TRUE );
1
                   * ROUTINE: missile_flechette_init
 * PARAMETERS: bmptr - Pointer to a BALLISTIC_MISSILE_
             structure that's ammo-type is Flechette *
             i.e. it releases sub-munitions of type *
             _munition_US_Flechette_60_.
         sub_mun - Pointer to sub-munition structure
             associated with _bmptr_.
         init_speed - Terminal speed of rocket ==
             initial speed of flechettes.
* RETURNS: none
* PURPOSE: Initialize rocket's _bmptr_ to behave according *
         sub-munitions type of
         munition US_Flechette_60_.
void missile_flechette_init( bmptr, sub_mun, init_speed )
BALLISTIC_MISSILE
                        *bmptr;
BALLISTIC_SUB_MUN
                          *sub_mun;
REAL
                init_speed;
ł
  BALLISTIC_CANISTER *dart;
  VECTOR velocity;
    int i;
```

```
Appendix O - Source Code Listing for sub_flech.c
```

```
int data_tmp_int;
     float data_tmp;
     char descript[64];
     FILE *fp;
 /* DEFAULT CHARACTERISTICS DATA FOR sub_flech.c READ FROM FILE
                                                                               •/
     fp = fopen("/simnet/data/sub_flec.d","r");
     if(fp==NULL){
         fprintf(stderr, "Cannot open /simnet/data/sub_flec.d\n");
         exit();
    }
     rewind(fp);
     /*
          Read array data */
     i=0;
     while(fscanf(fp,"%f", &data_tmp) != EOF){
         sub_flech_char[i] = data_tmp;
         fgets(descript, 64, fp);
/*
         printf("sub_flech_char(%3d) is%11.3f %s", i, sub_flech_char[i],
             descript);
                                         */
        ++i;
    }
    fclose(fp);
/* END DEFAULT CHARACTERISTICS DATA FOR sub_flech.c READ FROM FILE */
/* DEFAULT FLECHETTE SPEED DATA FOR sub_flech.c READ FROM FILE
                                                                              •/
    fp = fopen("/simnet/data/flec_spd.d","y");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/flec_spd.d\n");
        exit();
    }
    rewind(fp);
        Read degree of polynomial */
    /*
    fscanf(fp,"%d", &data_tmp_int);
    FLECHETTE_SPEED_DEG = data_tmp_int;
    fgets(descript, 64, fp);
/*
    printf("sub_flech_poly_deg is%3d %s", FLECHETTE_SPEED_DEG,
        descript);
                                         •/
    /•
         Read array data */
   i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        flechette_speed_coef[i] = data_tmp;
        fgets(descript, 64, fp);
```

```
/* printf("flechette_speed_coef(%3d) is%11.3f %s", i,
flechette_speed_coef[i], descript); */
++i;
}
```

fclose(fp);

```
/* END DEFAULT BURN SPEED DATA FOR sub_flech.c READ FROM FILE */
```

bmptr->time = 0;

#if DEBUG

printf("InitSpeed %1.2lf Dist %1.2lf\n", init_speed, dart->distance);
#endif

```
}
```

* ROUTINE: missile_flechette_fly * PARAMETERS: bmptr - Pointer to a _BALLISTIC_MISSILE_ structure that's ammo-type is Flechette * i.e. it releases sub-munitions of type * _munition_US_Flechette_60_. sub_mun - Pointer to sub-munition structure associated with _bmptr_. veh_list - Vehicle list ID. * RETURNS: none. PURPOSE: Simulates the flying of munition-type _munition_US_Flechette_60_. ~1200 2" lead darts are released and fly a cylindrical pattern 35 m in diameter ... Hence, we simulate the flechettes with ONE dart flown down the center of the cylinder and give it a 17.5 m proximity fuze. If the proximity fuze detonates, we impact the recipient vehicle and continue the lone dart's * flyout to a distance of 750 m. At this point, * the flechette rounds have lost the momentum and fall to the ground - the rocket is terminated. **********************

int missile_flechette_fly(bmptr, sub_mun, veh_list)
BALLISTIC_MISSILE *bmptr;

```
BALLISTIC_SUB_MUN *sub_mun;
 int veh_list;
 ſ
   BALLISTIC_CANISTER *dart;
   VECTOR
                  velocity;
  dart = &(sub_mun->dart);
 /*
 * SPEED */
  bmptr->speed =
     missile_util_eval_poly(FLECHETTE_SPEED_DEG, flechette_speed_coef,
                dart->distance ) + dart->init_speed;
 /*
 * DISTANCE */
  dart->distance += bmptr->speed;
  if( dart->distance >= sub_flech_char[2] )
    return( FALSE );
 * VELOCITY */
  vec_scale( bmptr->orientation[Y], bmptr->speed, velocity );
 /+
 * POSITION */
  vec_add( bmptr->location, velocity, bmptr->location );
* PROX_FUZE */
  if( missile_fuze_all_prox( bmptr,
               MSL_TYPE_BALLISTIC, PROX_FUZE_ON_ALL_VEH,
               &(null_VehicleID), &(dart->pptr),
               veh_list, INVEST_DIST_SQ, FUZE_DIST_SQ))
    do
    ł
/* DETONATION ? */
      if( missile_util_comm_check_sub_mun( bmptr, MSL_TYPE_BALLISTIC,
                        sub_mun, SUB_MUN_CANISTER ))
        missile_util_comm_release_sub_munition( bmptr,
                            MSL_TYPE BALLISTIC,
                            sub_mun,
                            SUB_MUN_CANISTER,
                            zero_vector,
                            velocity);
    ) while( dart->pptr != NULL &&
        missile_fuze_detonate_prox( bmptr, MSL_TYPE_BALLISTIC,
                      &r(dart->pptr), FUZE_DIST_SQ, 0));
  return( TRUE );
}
```

22 January 1993 Reference # W003036 Rev. 0.0

Appendix P - Source code listing for sub_m73.c.

The following appendix contains the source code listing for sub_m73.c for convenience in document maintenance and understanding of the CSU.

Appendix P - Source code listing for sub_m73.c.

The following appendix contains the source code listing for sub_m73.c for convenience in document maintenance and understanding of the CSU.

Appendix P - Source Code Listing for sub_m73.c

/* \$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissile/RCS/sub_m73.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp \$ */
/* * \$Log: sub_m73.c,v \$ * Revision 1.1 1992/09/30 16:39:52 cm-adst
* Initial Version
*/ static char RCS_IDII = "\$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissil
e/RCS/sub_m73.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp \$";
/*************************************
• Revisions:
Version Date Author Title SP/CR Number
 1.2 10/23/92 R. Branson Data File Initiali- zation
 1.3 10/30/92 R. Branson Added pathname to data directory

/
SP/CR No. Description of Modification
 Hard coded defines changed to array elements.
 Characteristics/parameter data array added. Added file mode (on sub on 20 ab constrainties (
 Added the reads for sub_m/3 characteristics/ parameters.
 Added "/simnet/data/" to each data file pathname.

/*********
* FILE: sub m73.c *
* AUTHOR: Kris Bartol *
* MAINTAINER: Kris Bartol
* PURPOSE: This file contains routines which simulates *
 the behavior of sub-munitions of type
• munition_US_M73.
* HISTORY: 10/06/90 kris *
* Copyright (c) 1989 BBN Systems and Technologies Inc. *

Appendix P - Source Code Listing for sub_m73.c

```
* All rights reserved.
       -----
#include "stdio.h"
#include "math.h"
#include "sim_types.h"
#include "sim_dfns.h"
#include "basic.h"
#include "mun_type.h"
#include "libmath.h"
#include "libmap.h"
#include "libmatrix.h"
#include "libmiss_dfn.h"
#include "libmiss_loc.h"
#include "rkt_hydra.h"
#define DEBUG 0
                        /* debugging is ON */
/*/
* Sub M73 characteristic parameters initialized to default values.
/*/
static REAL sub_m73_char[3] =
ſ
 0.03266667,
               /* 75% of gravity - 75% * 9.8m/sec^^2/225 ticks^^2*/
 M73_FOOT_ANGLE_X, /* bomblettes fall w/ +/- 8.8 deg angular displ */
 M73_FOOT_ANGLE_Y /* bomblettes fall w/ +/- 12.35 deg angular displ */
Ŀ
static REAL zero_velocity[3] = { 0.0, 0.0, 0.0 };
static void missile_m73_get_impact ();
* ROUTINE: missile_m73_init
                                            .
* PARAMETERS: bmptr - Pointer to a _BALLISTIC_MISSILE_
            structure that's ammo-type is MPSM
            i.e. it releases sub-munitions of type *
            munition_US_M73_.
        sub_mun - Pointer to sub-munition structure
            associated with _bmptr_.
        speed - Terminal speed of Rocket at detonation. *
* RETURNS: none
```

* PURPOSE: Initialize rocket's _bmptr_ to behave according * sub-munitions type of _munition_US_M73_.

void missile_m73_init(bmptr, sub_mun, speed)

```
Appendix P - Source Code Listing for sub_m73.c
 BALLISTIC_MISSILE *bmptr;
 BALLISTIC_SUB_MUN *sub_mun;
 REAL
             speed;
   VECTOR impact_pt;
   VECTOR displacement;
     int i;
     float data_tmp;
     char descript[64];
     FILE *fp;
 /* DEFAULT CHARACTERISTICS DATA FOR sub_m73.c READ FROM FILE
                                                                              */
     fp = fopen("/simnet/data/sub_m73.d","r");
     if(fp==NULL)[
         fprintf(stderr, "Cannot open /simnet/data/sub_m73.d\n");
         exit();
    }
    rewind(fp);
     /*
          Read array data */
    i=0:
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        sub_m73_char[i] = data_tmp;
        fgets(descript, 64, fp);
/•
         printf("sub_m73_char(%3d) is%11.3f %s", i, sub_m73_char[i],
                                         •/
             descript);
         ++i:
    }
    fclose(fp);
/* END DEFAULT CHARACTERISTICS DATA FOR sub_m73.c READ FROM FILE
                                                                                 •/
  bmptr->time = 0;
  sub_mun->impact.timer = 0;
  sub_mun->impact.distance = speed; /* distance rocket travelled last
                      frame, i.e. before detonation */
  get point under sub-munition release point
  impact_pt[X] = bmptr->location[X];
  impact_pt[Y] = bmptr->location[Y] - 10;
  impact_pt[Z] = 10.0;
  missile_util_comm_release_sub_munition( bmptr, MSL_TYPE_BALLISTIC,
                      sub_mun, SUB_MUN_IMPACT,
                      impact_pt, zero_velocity );
}
```

Appendix P - Source Code Listing for sub_m73.c

```
* ROUTINE: missile_m73_drop
 * PARAMETERS: bmptr - Pointer to a BALLISTIC MISSILE
              structure that's ammo-type is MPSM
              i.e. it releases sub-munitions of type '
              _munition_US_M73_.
         sub_mun - Pointer to sub-munition structure
             associated with _bmptr_.
 * RETURNS: TRUE if time of drop has been long enough to *
         cause sub-munitions to hit the ground.
         FALSE otherwise.
 * PURPOSE: Simulation of the dropping of munition-type
         _munition_US_M73_ rounds.
                                                    ++ /
static int trai_up = TRUE; /* TRUE: vector UP - FALSE: vector down */
int missile_m73_drop( bmptr, sub_mun )
BALLISTIC_MISSILE *bmptr;
BALLISTIC SUB_MUN *sub_mun;
ſ
  BALLISTIC_IMPACT *impact;
  VECTOR impact_pt;
  impact = &c(sub_mun->impact);
  if(impact->timer == 0)
  1
    if( missile_util_comm_ eck_sub_mun( bmptr, MSL_TYPE_BALLISTIC,
                       sub_mun, SUB_MUN_IMPACT ))
    ł
      if( impact->distance > 0.0 )
        impact->timer = (int)
          ((8 * scaled_rand()) + 1.0 +
           (sqrt((1.9 * impact->distance) / sub_m73_char[0])));
      else
        impact->timer = -1;
#if DEB!JG
      printf( "Height %1.4lf Time %d\n",
          impact->distance, impact->timer);
#endif
    3
    else
    ſ
      impact_pt[X] = bmptr->location[X];
      impact_pt[Y] = bmptr->location[Y] - 10;
      if(traj_up)
        impact_pt[Z] = bmptr->location[Z] + impact->distance;
      else
        impact_pt[Z] = 10;
      trai_up = (! trai_up );
```

```
Appendix P - Source Code Listing for sub_m73.c
      missile_util_comm_release_sub_munition( bmptr, MSL_TYPE_BALLISTIC,
                           sub_mun, SUB_MUN_IMPACT,
                           impact_pt, zero_velocity );
    }
    return( FALSE );
  }
  else
  ł
                                       /* wait until sub_mun's */
    if( bmptr->time < impact->timer )
                         /* hit the ground.... */
    ł
                                 /* incr time counter */
      bmptr->time += 1;
      return( FALSE );
    }
                           /* ie. time == timer */
    else
    ſ
      if( impact->timer > 0 )
      ł
        missile_m73_get_impact( bmptr->location, impact_pt,
                    bmptr->launcher_C_world,
                    impact->distance);
        missile_util_comm_release_sub_munition
          (bmptr, MSL_TYPE_BALLISTIC, sub_mun,
           SUB_MUN_IMPACT, impact_pt, zero_velocity );
      }
 /* reset time counter */
      bmptr->time = 0;
      return( TRUE );
    }
  }
}
* ROUTINE: missile_m73_impact
* PARAMETERS: bmptr - Pointer to a BALLISTIC_MISSILE_
             structure that's ammo-type is MPSM
             i.e. it releases sub-munitions of type *
             _munition_US_M73_.
        sub_mun - Pointer to sub-munition structure
             associated with _bmptr_.
* RETURNS: FALSE if all m73 have impacted the ground.
* PURPOSE: Simulation of _munition_US_M73_ impacts.
int missile_m73_impact( bmptr, sub_mun )
BALLISTIC MISSILE *bmptr;
```

BALLISTIC_SUB_MUN *sub_mun;

ſ

BALLISTIC_IMPACT *impact; VECTOR impact_pt;

Appendix P - Source Code Listing for sub_m73.c

```
impact = &(sub_mun->impact);
  if( impact->timer < 0 )
  ł
#if DEBUG
    printf( "ignore under ground detonation \n", bmptr->missile_id );
#endif
    return( FALSE );
  1
  if bmptr > time < 1)
    impact->delay = 0;
                     /* 0 - 0.250 sec delay */
  else
    impact->delay = (int)(250 * scaled_rand());
  bmptr->time += 1;
  if( missile_util_comm_check_sub_mun( bmptr, MSL_TYPE_BALLISTIC,
                     sub_mun, SUB_MUN_IMPACT ))
 {
* send impact to util ball & to world
    missile_util_comm_impact_ball_sub_munition( bmptr, impact );
*/
   impact->quantity -= 1;
 get NEXT M73 _impact_location_ OR stop
   if( impact->quantity > 0 )
   ſ
     missile_m73_get_impact( bmptr->location, impact_pt,
                  bmptr->launcher_C_world,
                  impact->distance);
     missile_util_comm_release_sub_munition( bmptr, MSL_TYPE_BALLISTIC,
                          sub_mun, SUB_MUN_IMPACT,
                          impact_pt, zero_velocity );
     return( TRUE );
   }
   else
     return( FALSE );
 }
 else
         /* Didn't get an impact */
 ł
   missile_m73_get_impact( bmptr->location, impact_pt,
               bmptr->launcher_C_world,
               impact->distance);
   missile_util_comm_release_sub_munition( bmptr, MSL_TYPE_BALLISTIC,
                        sub_mun, SUB_MUN_IMPACT,
                        impact_pt, zero_velocity );
   if( bmptr->time > impact->timer ) /* time's up */
   ł
     printf( "M73_SIMUL timed-out: %d non-impacts\n",
         impact->quantity );
     return(FALSE);
```


22 January 1993 Reference # W003036 Rev. 0.0

```
Appendix P - Source Code Listing for sub_m73.c
    }
    return( TRUE ); /* keep trying */
  }
}
static void missile_m73_get_impact( release_pt, impact_pt, mCw, height )
VECTOR release_pt;
VECTOR impact_pt;
T_MAT_PTR mCw;
REAL height;
l
  VECTOR detonation;
                             /* Offset Vector in World Coords
                   of detonation point */
  REAL x, y;
  x = height * sin(deg_to_rad( sub_m73_char[1] * (0.50 - scaled_rand())));
  y = height * sin(deg_to_rad( sub_m73_char[2] * (0.50 - scaled_rand())));
  detonation[X] = x * mCw[0][0] - y * mCw[0][1];
  detonation[Y] = y * mCw[0][0] + x * mCw[0][1];
  detonation[Z] = - height;
* Stretch_detonation_ vector to ensure intersection with ground/vehicle
*/
  vec_scale( detonation, 1.5, detonation );
/*
* add to _release_pt_ to get location of _impact_ in World Coords
*/
  vec_add( release_pt, detonation, impact_pt );
}
```