
F 22 January 1993 &
ADST/WVL/TR-93-W003036

AD-A280 726 Rev. 0.0
,0 ~ ~~Iliil N1111W ElI 1III11 El111N i1i

SOFTWARE DESIGN DOCUMENT

FOR THE

AIRNET AEROMODEL AND

WEAPONS MODEL CONVERSION

VOLUME I of 3

Rev. 0.0:22 January 1993

CONTRACT NO. N61339-91-D-0001

D.O.: 0014 D T IC
CDRL SEQUENCE NO. A009 A&EECTE

Prepared for. 71994

STRICOM

Simulator Training and
Instrumentation Command

Simulator Training and Instrumentation Command
Naval Training Systems Center

12350 Research Parkway
Orlando, FL 32826-3275

~ \ Prepared by:

ADST Program Office
12443 Research Parkway, Suite 303

Orlando, FL 32826

VACo •0 ',") ,

S94-19504
I 11111 II!I llllt 111111i11-tllllllll 94 6 2 4 13 4

Best
Available

Copy

S] ~Form appoved

REPORT DOCUMENTATION PAGE OMB No. o7o4-18
Public reporting burden for th e ¢ oledion of informaton estim ated to a 1 hour per reponse, in luding the time oc reviewino instrwctions,.o se ai i lt daia aource,

gheng and maintaining the data needed, and cow~nilg an rev wng the =eldon ah9tk iftoratio'n. send omments regarding tIs' bure eiae or n ther aspect of
th=clection of informnation, Including suggestions for reducing this burden, to Washington Headquarters Services, Di oral. for information Operations and Reports, 1215
PJefferson Davis Highway, Suite 1204, Aitington, VA 22202-4302, and to the OfDie of Managment and Bud Projct (0704-0188), Washingl•on, DC 20603.

1. AGENCY USE ONLY (Leave bank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

22 January 1993 Version 0.0

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Advanced Distributed Simulation Technology Software Design Document Contract No. N61339-91-D-0001
for the AIRNET Aeromodel and Weapons Model Conversion; Volume I of 3

6. AUTHOR(S)

Branson, Roger, McCarter, Steve

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION

Loral Systems Company REPORT NUMB
ADST Program Office ADST/WDL/TR-93-Wo03036
12443 Research Parkway. Suite 303 CDRL A009
Orlando, FL 32826

9. SPONSORING/MONWTORING AGENCY NAIME(S) AND ADDRESS(ES) 10. SPONSORING

Simulation, Training and Instrumentation Command ORGANIZATION REPORT

STRICOM
Naval Training Systems Center
12350 Research Parkway

IOrlando- FL 32R26-3275
*11. SUPPLEMENTARY NOTES

12L. DwRiUnOWAV,.LABurTY STATEMENT 12. DISTR11UrON COWE

Approved for public release; distribution is unlimited.

A
13. ABSTRACT (Maimurn 200 words)

The ADST Software Software Design Document identifies the modifications made to the AirNET RWA and
weapons software for datafile access during initialization.

14. SUBJECT TERMS 15. NUMER OF PAGES

481
11. PRICE CODE.17. SECURITY CLASSIFICATION I17. SECURITY CLASSIFICATION 117. SECURITY CLASSIFICATION 21). LMTATION OF ABSTRACT

OF REPORT OF THIS PAGE IOF ABSTRACT U
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN 7540-01 20-00 Standwd Form 29 (Rev. 2-0)
Pmea by ANSI Std ZW-i

ze-t

22 January 1993
Reference # W003036

Rev. 0.0

TABLE of CONTENTS

1. Scop e .. 1
1.1. Identification .. 1
1.2. System overview ... 1
1.3. Document overview .. 1
2. Referenced documents .. 2
3. Preliminary design .. 2
3.1. CSCI overview .. 2
3.1.1. CSCI architecture ... 2
3.1.2. System states and modes .. 2
3.1.3. Memory and processing time allocation ... 2
3.2. CSCI design description ... 3
3.2.1. CSC simulationstatemachine .. 3
3.2.1.1. Sub-level CSC io-simul .. 3
3.2.1.1.1. Sub-level CSC process-a_packet .. 3
3.2.1.1.1.1. Sub-level CSC do.protocol on-simpacket 3
3.2.1.1.1.1.1. Sub-level CSC processindirectfire ... 3
3.2.1.1.1.1.1.1. Sub-level CSC failurecheckindirfiredamages 3
3.2.1.1.1.1.1.1.1. Sub-level CSC failvehicleisdestroyed 3
3.2.1.2. Sub-level CSC veh.spec-idle 3
3.2.1.2.1. Sub-level CSC iosimulidle .. 3
3.2.1.2.1.1. Sub-level CSC processa_packet ... 4
3.2.1.2.2. Sub-level CSC keyboard -simul .. 4
3.2.1.2.2.1. Sub-level CSC controlsrestorecontrols 4
3.2.1.2.2.1.1. Sub-level CSC controlssiminit ... 4
3.2.1.2.2.2. Sub-level CSC failcatkill .. 4
3.2.1.2.2.2.1. Sub-level CSC failvehicleisdestroyed 4
3.2.1.2.2.3. Sub-level CSC altinit ... 4
3.2.1.2.2.3.1. Sub-level CSC altnewheight is ... 4
3.2.1.2.2.3.1.1. Sub-level CSC failcatkill .. 4
3.2.1.3. Sub-level CSC veh .spec-init .. 4
3.2.1.3.1. Sub-level CSC controls_simu init ... 5
3.2.1.3.1.1. Sub-level CSC controlsradiosinit .. 5
3.2.1.3.2. Sub-level CSC rwainit .. 5
3.2.1.3.3. Sub-level CSC weapons-init .. 5
3.2.1.3.3.1. Sub-level CSC hydrainit ... 5 "
3.2.1.3.4. Sub-level CSC altinit .. 5
3.2.1.4. Sub-level CSC veh -spec-simulate ... 5 C3
3.2.1.4.1 Sub-level CSC keyboard-simul ... 5 ij
4. Detailed design6
4.1. CSC rwainit ... 6
4.1.1. CSU engineinit .. 6

; : odes
-ii- a nd/or

22 January 1993
Reference # W003036

Rev. 0.0

TABLE of CONTENTS

4.1.1.1. CSU engineinit design specification/ constraints 6
4.1.1.2. CSU engineinit design .. 6
4.1.2. CSU aerodyn-init.. 13
4.1.2.1. CSU aerodyn-init design specification/constraints 13
4.1.2.2. CSU aerodyn.init design .. 13
4.1.3. CSU veh-spec-kinematicsinit ... 24
4.1.3.1. CSU veh.spec .kinematicsinit design

specification!/constraints .. 24
4.1.3.2. CSU veh-spec-kinematicsinit design .. 24
4.2. CSC weapons-init ... 30
4.2.1. CSU missiletow_init ... 30
4.2.1.1. CSU missiletowinit design specification/constraints 31
4.2.1.2. CSU missiletowinit design .. 31
4.2.2. CSU missilehellfireinit ... 42
4.2.2.1. CSU missilehellfirejinit design specification/ constraints 43
4.2.2.2. CSU missilehellfireinit design ... 43
4.2.3. CSU missilestingerjinit .. 52
4.2.3.1. CSU missile -stinger init design specification/ constraints 52
4.2.3.2. CSU missilestingerjinit design ... 53
4.2.4. CSU hydrainit ... 61
4.2.4.1. CSU hydrainit design specification/constraints 61
4.2.4.2. CSU hydrainit design .. 61
4.2.5. CSU missile-hydrajinit ... 65
4.2.5.1. CSU missilejhydrainit design specification/constraints 66
4.2.5.2. CSU missile -hydrainit design ... 66
4.2.6. CSU missilem73_init .. 71
4.2.6.1. CSU missilem73_init design specification/constraints 71
4.2.6.2. CSU missilem73_init design .. 71
4.2.7. CSU missileflechetteinit .. 77
4.2.7.1. CSU missileflechetteinit design specification/constraints 77
4.2.7.2. CSU missileflechetteinit design 77
4.3. CSC controlsrestorecontrols .. 83
4.3.1. CSU controlsradiosinit ... 83
4.3.1.1. CSU controlsradiosinit design specification/constraints 83
4.3.1.2. CSU controlsjradiosinit design ... 83
4.4. CSC failvehicle isdestroyed .. 85
4.4.1. CSU controlskillradios ... 85
4.4.1.1. CSU controlskillradios design specification/constraints 85
4.4.1.2. CSU controlskill_radios design ... 85
4.5. Additional CSUs .. 86
4.5.1. CSU missile-adatinit .. 87
4.5.1.1. CSU missileadatinit design specification/constraints 87

- iii -

22 January 1993
Reference # W003036

TABLE of CONTENTS

Rev. 0.0

4.5.1.2. CSU missileadatinit design ... 87
4.5.2. CSU missile atgm-init .. 101
4.5.2.1. CSU missile -atgm-init design specification/ constraints 102
4.5.2.2. CSU missile__,atgmjinit design .. 102
4.5.3. CSU missilekem-init .. 113
4.5.3.1. CSU missilekem init design specification/constraints 114
4.5.3.2. CSU missilekem-init design ... 114
4.5.4. CSU missilemaverickinit .. 125
4.5.4.1. CSU missilemaverickminit design specification/constraints..... 125
4.5.4.2. CSU missilemaverickminit design ... 125
4.5.5. CSU missilenlosinit .. 134
4.5.5.1. CSU missile_niosinit design specification/constraints 134
4.5.5.2. CSU missile_nlosinit design ... 134
5. C SC I data ... 144
5.1. Data elements internal to the CSCI ... 144
5.2. Data elements of the CSCI's external interfaces 196
6. C SCI data files .. 197
7. Requirements traceability ... 198
8. N otes .. 204
8.1 Acronyms and abbreviations ... 204

Appendix A - RWA AirNet Call Tree Structure .. A-1
Appendix B - Source code listing for rwaaerodyn.c B-1
Appendix C - Source code listing for rwa.engme.c C-1
Appendix D- Source code listing for rwakinemat.c D-1
Appendix E - Source code listing for missadat.c .. E-I
Appendix F - Source code listing for miss.atgm.c .. F-1
Appendix G - Source code listing for missheUfr.c G-1
Appendix H - Source code listing for misskem.c H-1
Appendix I - Source code listing for missmaverck.c I-1
Appendix J - Source code listing for missnlos.c .. J-1
Appendix K - Source code listing for missstinger.c K-1
Appendix L - Source code listing for misstow.c .. L-I
Appendix M - Source code listing for rkt hydra.c .. M-1
Appendix N - Source code listing for rwa-hydra.c N-1
Appendix 0 - Source code listing for subflech.c .. 0-1
Appendix P - Source code listing for subm73.c P-1

- iv -

22 January 1993
Reference # W003036

Rev. 0.0

LIST
OF TABLES

TABLE 4.1.1.1 - CSU ENGINEINIT LOCAL DATA DEFINITION TABLE
TABLE 4.1.2.1 - CSU AERODYNINIT LOCAL DATA DEFINITION TABLE

.. ... 14
TABLE 4.1.3.1 - CSU VEH-_SPECKINEMATICSINIT LOCAL DATA

DFFINITION TABLE ... 25
TABLE 4.2.1.1 - CSU MISSILETOWINIT LOCAL DATA DEFINITION

TA BLE .. 32
TABLE 4.2.2.1 - CSU MISSILEHELLFIREINIT LOCAL DATA DEFINITION

TA BLE .. 44
TABLE 4.2.3.1 - CSU MISSILESTINGERINIT LOCAL DATA DEFINITION

TA BLE .. 54
TABLE 4.2.4.1 - CSU HYDRAINIT LOCAL DATA DEFINITION TABLE 62
TABLE 4.2.5.1 - CSU MISSILEHYDRAINIT LOCAL DATA DEFINITION

TA BLE .. 67
TABLE 4.2.6.1 - CSU MISSILEM73_INIT LOCAL DATA DEFINITION

TA BLE .. 73
TABLE 4.2.7.1 - CSU MISSILE_FLECHETrE_INIT LOCAL DATA

DEFINITION TABLE ... 78
TABLE 4.5.1.1 - CSU MISSILEADATINIT LOCAL DATA DEFINITION

TA BLE .. 89
TABLE 4.5.2.1 - CSU MISSILEATGMNIT LOCAL DATA DEFINITION

TA BLE .. 103
TABLE 4.5.3.1 - CSU MISSILEKEMINIT LOCAL DATA DEFINITION

TA BLE .. 115
TABLE 4.5.4.1 - CSU MISSILEMAVERICKINIT LOCAL DATA

DEFINITION TABLE ... 127
TABLE 4.5.5.1 - CSU MISSILENLOSJINIT LOCAL DATA DEFINITION

TA BLE .. 136
TABLE 5.1. - SUMMARY of DATA ARRAYS ... 145
TABLE 5.1.1. - AERODYNAMICS DATA ARRAY ... 150
TABLE 5.1.2. - AERODYNAMICS INITIALIZATION DATA ARRAY 154
TABLE 5.1.3. - AERODYNAMICS SIMPLE DATA ARRAY 155
TABLE 5.1.4. - AERODYNAMICS STEALTH DATA ARRAY 156
TABLE 5.1.5. - ENGINE DATA ARRAY ... 157
TABLE 5.1.6. - ENGINE INITIALIZATION DATA ARRAY 158
TABLE 5.1.7. - ENGINE STATUS DATA ARRAY ... 158
TABLE 5.1.8. - KINEMATICS DATA ARRAY ... 159
TABLE 5.1.9. - KINEMATICS INITIALIZATION DATA ARRAY 160
TABLE 5.1.10 - HELLFIRE MISSILE CHARACTERISTICS DATA ARRAY 162
TABLE 5.1.11. - HELLFIRE MISSILE POLYNOMIAL DEGREE DATA ARRAY

.. 163

22 January 1993
Reference # W003036

Rev. 0.0

LIST
OF TABLES

TABLE 5.1.12. - HELLFIRE MISSILE TIME-OF-FLIGHT DATA ARRAY 163
TABLE 5.1.13. - HELLFIRE MISSILE BURN SPEED DATA ARRAY 164
TABLE 5.1.14. - HELLFIRE MISSILE COAST SPEED DATA ARRAY 165
TABLE 5.1.15. - MAVERICK MISSILE CHARACTERISTICS DATA ARRAY

... 166
TABLE 5.1.16. - MAVERICK MISSILE POLYNOMIAL DEGREE DATA

A R R A Y .. 167
TABLE 5.1.17. - MAVERICK MISSILE BURN SPEED DATA ARRAY 167
TABLE 5.1.18. - MAVERICK MISSILE COAST SPEED DATA ARRAY 168
TABLE 5.1.19. - STINGER MISSILE CHARACTERISTICS DATA ARRAY 169
TABLE 5.1.20. - STINGER MISSILE POLYNOMIAL DEGREE DATA ARRAY

......................... -... . -.. •..... ----.... -... 170
TABLE 5.1.21. - STINGER MISSILE BURN SPEED DATA ARRAY 170
TABLE 5.1.22. - STINGER MISSILE COAST SPEED DATA ARRAY 170
TABLE 5.1.23. - TOW MISSILE CHARACTERISTICS DATA ARRAY 171
TABLE 5.1.24. - TOW MISSILE POLYNOMIAL DEGREE DATA ARRAY 171
TABLE 5.1.25. - TOW MISSILE BURN SPEED DATA ARRAY 172
TABLE 5.1.26. - TOW MISSILE COAST SPEED DATA ARRAY 172
TABLE 5.1.27. - TOW MISSILE BURN TURN DATA STRUCTURE 173
TABLE 5.1.28. - TOW MISSILE COAST TURN DATA STRUCTURE 174
TABLE 5.1.29. - ADAT MISSILE CHARACTERISTICS DATA ARRAY 175
TABLE 5.1.30. - ADAT MISSILE POLYNOMIAL DEGREE DATA ARRAY 175
TABLE 5.1.31. - ADAT MISSILE BURN SPEED DATA ARRAY 176
TABLE 5.1.32. - ADAT MISSILE COAST SPEED DATA ARRAY 177
TABLE 5.1.33. - ADAT MISSILE BURN TURN DATA ARRAY 178
TABLE 5.1.34. - ADAT MISSILE COAST TURN DATA ARRAY 179
TABLE 5.1.35. - ADAT MISSILE TEMPORAL BIAS DATA ARRAY 180
TABLE 5.1.36. - ATGM MISSILE CHARACTERISTICS DATA ARRAY 181
TABLE 5.1.37. - ATGM MISSILE POLYNOMIAL DEGREE DATA ARRAY ...181
TABLE 5.1.38. - ATGM MISSILE BURN SPEED DATA ARRAY 182
TABLE 5.1.39. - ATGM MISSILE COAST SPEED DATA ARRAY 182
TABLE 5.1.40. - ATGM MISSILE BURN TURN DATA STRUCTURE 183
TABLE 5.1.41. - ATGM MISSILE COAST TURN DATA STRUCTURE 184
TABLE 5.1.42. - KEM MISSILE CHARACTERISTICS DATA ARRAY 185
TABLE 5.1.43. - KEM MISSILE POLYNOMIAL DEGREE DATA ARRAY 185
TABLE 5.1.44. - KEM MISSILE BURN SPEED DATA ARRAY 186
TABLE 5.1.45. - KEM MISSILE COAST SPEED DATA ARRAY 187
TABLE 5.1.46. - KEM MISSILE BURN TURN DATA ARRAY 188
TABLE 5.1.47. - KEM MISSILE COAST TURN DATA ARRAY 189
TABLE 5.1.48. - NLOS MISSILE CHARACTERISTICS DATA ARRAY 190
TABLE 5.1.49. - NLOS MISSILE POLYNOMIAL DEGREE DATA ARRAY 191
TABLE 5.1.50. - NLOS MISSILE BURN SPEED DATA ARRAY 191

- vi -

22 January 1993
Reference # W003036

Rev. 0.0

LIST OF TABLES

TABLE 5.1.51. - NLOS MISSILE COAST SPEED DATA ARRAY 192
TABLE 5.1.52. - HYDRA ROCKET CONFIGURATION DATA ARRAY 193
TABLE 5.1.53. - HYDRA ROCKET CHARACTERISTICS DATA ARRAY 194
TABLE 5.1.54. - SUBMUNITIONS M73 CHARACTERISTICS DATA ARRAY

............... .. 194
TABLE 5.1.55. - SUBMUNITIONS FLECHETITE CHARACTERISTICS DATA

A R R A Y .. 195
TABLE 5.1.56. - FLECHETTE SPEED DATA ARRAY ... 195
TABLE 7.1. - AIRNET AEROMODEL AND WEAPONS MODEL

CONVERSION REQUIREMENTS TRACEABILITY 198

0
- vii -

22 January 1993
Reference # W003036

Rev. 0.0

1. Scope.

1.1. Identification.

This SDD applies to document number WDL/TR92-00301 1 entitled System
Specification for the Rotary Wing Aircraft AirNet Aeromodel and Weapons
Model Conversion. This SDD also applies to the AirNet CSCI.

1.2. System overview.

The Rotary Wing Aircraft (RWA) system and SIMNET Computer System
Configuration Item (CSCI) simulates a manned flight vehicle and associated
weapons systems for conducting simulated missions within a controlled
database and tactical environment.

1.3. Document overview.

The following paragraphs and subparagraphs identify the purpose, structure,
and design of the Computer Software Unit (CSU) modified under the Rotary
Wing Aircraft AirNET Aeromodel and Weapons Model Conversion Delivery
Order. Computer Software Components (CSC) and CSUs existing in original
code are not documented herein. The original function and operation of the
software was not modified. Certain CSUs were modified to allow the reading
of data values from data files. This additional capability allows for the change
of variables without requiring a recompile. In addition, software control was
added to the CSCI to allow control of the hardware enabling and disabling
simulated radio communications. The modifications to the MCC is covered
in a separate volume.

22 January 1993
Reference # W003036

Rev. 0.0

2. Referenced documents.

The following documents are referenced within this document.

WDL/TR--92-003011 SYSTEM SPECIFICATION FOR THE
ROTARY WING AIRCRAFT AIRNET
AEROMODEL AND WEAPONS
MODEL CONVERSION, 6 JUNE 1992.

3. Preliminary design.

The preliminary design of the RWA system and SimNET CSCI was
done previously. This delivery order used the original design as the
baseline for the modifications made here. The following paragraphs
and subparagraphs briefly describe the CSCI design and relationship
to the modified CSUs. The CSUs are documented in Paragraph 4. -
Detailed design.

3.1. CSCI overview.

The RWA CSCI simulates the rotary wing aircraft and its weapon systems
within a defined environment. The function of the CSCI was not altered and
is not detailed here.

3.1.1. CSCI architecture.

The RWA CSCI architecture was not altered. Certain CSUs used to initialize
parameters for performance and radio communication control were
modified. The aeromodel and weapon models were modified for reading
iritial performance and configuration values from data files. An abbreviated
AirNet Call Tree Structure is included in Appendix A for reference.

3.1.2. System states and modes.

The system states and modes for operation and execution were not modified.
Software control using a hardware modification was added to control radio
communications availability.

3.1.3. Memory and processing time allocation.

The memory and processing time was not computed nor were estimated
allocations made. The additional processing time occurs during input from
data files during initialization, and does not impact the real-time execution

-2-

22 January 1993
Reference # W003036

Rev. 0.0

9 frame times. The real-time simulation is executed at 15 hertz frame rate for
the majority of the functions.

3.2. CSCI design description.

"Yhe following subparagraphs indicate the call hierarchy. Design details for
original code is not documented herein.

3.2.1. CSC simulationstatemachine.

After system configuration initialization, this CSC controls the initialization,
idle state, run state, and stop state of the simulation. This CSC existed in the
original code and is not documented herein.

3.2.1.•. Sub-level CSC io-simul.

This CSC controls the state of the input/output function during simulation.
This CSC existed in the original code and is not documented herein.

3.2.1.1.1. Sub-level CSC process._a_packet.

The CSC connotes the processing of input/output packets. This CSC existed
* in the original code and is not documented herein.

3.2.1.1.1.1. Sub-level CSC do-protocol-on-sim-packet.

This CSC existed in the original code and is not documented herein.

3.2.1.1.1.1.1. Sub-level CSC process.indirectfire.

This CSC existed in the original code and is not documented herein.

3.2.1.1.1.1.1.1. Sub-level CSC failurecheck_indir.firedamages.

This CSC existed in the original code and is not documented herein.

3.2.1.1.1.1.1.1.1. Sub-level CSC fail.vehicleisdestroyed.

This CSC controls the radio availability. This CSC existed in the original code
and is not documented herein.

3.2.1.2. Sub-level CSC vehspecjidle.

This CSC controls the vehicle simulation during idle state. This CSC existed
in the original code and is not documented herein.

3.2.1.2.1. Sub-level CSC io-simulidle.

-3-

22 January 1993
Reference # W003036

Rev. 0.0

This CSC controls the input/output simulation during idle state. This CSC
existed in the original code is and not documented herein.

3.2.1.2.1.1. Sub-level CSC process.a-packet.

This CSC existed in the original code is and not documented herein.

3.2.1.2.2. Sub-level CSC keyboard_simul.

This CSC controls the radio availability. During initialization this CSC
controls radio initialization. This CSC existed in the original code is and not
documented herein.

3.2.1.2.2.1. Sub-level CSC controlsrestorecontrols.

This CSC existed in the original code is and not documented herein.

3.2.1.2.2.1.1. Sub-level CSC controlssiminit.

Ti'is CSC initializes the radios availability. This CSC existed in the original
code is and not documented herein.

3.2.1.2.2.2. Sub-level CSC failcatkill.

This CSC existed in the original code is and not documented herein.

3.2.1.2.2.2.1. Sub-level CSC fail-vehiclejs.destroyed.

This CSC controls radios availability. This CSC existed in the original code is
and not documented herein.

3.2.1.2.2.3. Sub-level CSC altinit.

This CSC existed in the original code is and not documented herein.

3.2.1.2.2.3.1. Sub-level CSC altnew.height-is.

This CSC existed in the original code is and not documen'.ed herein.

3.2.1.2.2.3.1.1. Sub-level CSC failcatkill.

This CSC existed in the original code is and not documented herein.

3.2.1.3. Sub-level CSC veh_,specjinit.

This CSC controls the initialization of the vehicle, including
communications, aeromodel and weapon models. This CSC existed in the
original code is and not documented herein.

-4-

22 January 1993
Reference # W003036

Rev. 0.0

3.2.1.3.1.
Sub-level

CSC controlssiminit.

This CSC controls the initialization of the vehicle cockpit controls. This CSC
existed in the original code is and not documented herein.

3.2.1.3.1.1. Sub-level CSC controlsradios_init.

This CSC initializes the radio controls and availability. This CSC existed in
the original code is and not documented herein.

3.2.1.3.2. Sub-level CSC rwajinit.

This CSC initializes the performance characteristics and physical
configuration of the vehicle and its weapons. This CSC existed in the original
code is and not documented herein.

3.2.1.3.3. Sub-level CSC weapons~jnit.

This CSC initializes the weapons for the vehicle configuration. This CSC
existed in the original code is and not documented herein.

3.2.1.3.3.1. Sub-level CSC hydrainit.

This CSC initializes the hydra rockets. This CSC existed in the original code is
and not documented herein.

3.2.1.3.4. Sub-level CSC alt.init.

This CSC initializes the vehicle for the altitude. This CSC existed in the
original code is and not documented herein.

3.2.1.4. Sub-level CSC veh_.specsimulate.

This CSC controls the real-time simulation state. This CSC existed in the
original code is and not documented herein.

3.2.1.4.1 Sub-level CSC keyboard.simul.

This CSC controls the radio availability. During the real-time simulation this
CSC connotes the radio state. This CSC existed in the original code is and not
documented herein.

-5-

22 January 1993
Reference # W003036

Rev. 0.0

4. Detailed design.
The following paragraphs and subparagraphs describe the detailed

design of each CSC and CSU.

4.1. CSC rwajinit.

This CSC, rwa_init, controls the initialization of the rotary wing aircraft
models, i.e., aeromodel, kinematics model, and engine model. The structure
and function of this CSC was not modified under this delivery order. The
following subparagraphs describe the design information for the modified
CSUs called by this CSC.

4.1.1. CSU enginejinit.

The CSU engineinit reads engine data from data files and initializes the
engine operating and performance parameters, limitations, initial dynamic
state, and engine status. The following subparagraphs describe the design
information for the CSU engine-init.

4.1.1.1. CSU engine_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This
subparagraph shall identify the requirements allocated to the CSC that are to
be satisfied or partially satisfied by the CSU and shall identify any constraints
on the design of the CSU.

4.1.1.2. CSU engine.init design.

The CSU engineinit is coded in the ANSI 'C' programming language,
standard language for the CSCI. The following paragraphs specify the design
of the CSU engineinit. For a complete listing, see Appendix C - Source Code
Listing For rwaengine.c.

a. Input/output data elements. None used.

b. Local data elements. TABLE 4.1.1.1 - CSU ENGINEINiT LOCAL
DATA DEFINITION TABLE describes the local data elements
originating in the CSU engineinit and not used by any other
CSU.

-6-

22 January 1993
Reference # W003036

is
Rev. 0.0

TABLE 4.1.1.1 - CSU ENGINEINIT LOCAL DATA DEFINITION TABLE

Name i data init data temp descript fp
Description array index temporary temporary temporary data file

integer data float data character pointer
storage for storage for string storage
data read data read read from file
from file from file

Type integer integer float character file pointer
array

Represent- decimal decimal real number character directory
ation number number string pathname

plus 8
character

unique
filename plus
".d" extension

Size N/A N/A N/A 64 N/A
Unit of Non- Variable Variable None None
Measure dimensional
Limit/range 0-99 Variable Variable N/A N/A
Precision single single single N /A N / A

C. Interrupts and signals. None used.

d. Algorithms. The following algorithms are used in the execution
of the CSU engine-init.

(1) An algorithm to read engine default performance data
from the "simnet/data/rwaengn.d" data file is executed.
This data determines the performance characteristics of
the engine during real-time execution. Access of the file is
"read only".

The "simnet/data/rwa.engn.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the array index is set to zero.
Each record is scanned and the first field is assigned to a
temporary float data storage. If the value of the temporary
float data is not the end-of-file, the temporary float data is
assigned to the current indexed enginedata element.
The remainder of the record is assigned to the temporary
character string. The array index is incremented by one

-7-

22 January 1993
Reference # W003036

Rev. 0.0

and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read engine default initialization data
from the "simnet/data/rw en in.d" data file is executed.
This data determines the initial dynamic state of the
engine prior to real-time execution. Access of the file is
"read only".

The "simnet/data/rw-en-in.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the array index is set to zero.
Each record is scanned and the first field is assigned to a
temporary float data storage. If the value of the temporary
float data is not the end-of-file, the temporary float data is
assigned to the current indexed engine-initdata
element. The remainder of the record is assigned to the
temporary character string. The array index is
incremented by one and the next record is scanned. If the
value of the temporary float data is the end-of-file, the file
is dosed.

(3) An algorithm to read engine default status data from the
"simnet/data/rwen__st.d" data file is executed. This data
determines the initial state of the engines prior to real-
time execution. Access of the file is "read only".

The "simnet/data/rw-en-st.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the array index is set to zero.
Each record is scanned and the first field is assigned to a
temporary integer data storage. If the value of the
temporary integer data is not the end-of-file, the
temporary integer data is assigned to the current indexed
enginestatdata element. The remainder of the record is
assigned to the temporary character string. The array
index is incremented by one and the next record is
scanned. If the value of the temporary integer data is the
end-of-file, the file is dosed.

-8

22 January 1993
Reference # W003036

Rev. 0.0

e. Error handling. Errors other than a null data file are not
handled. If a null data file is detected, a message is sent to the
standard error device reporting that the file could not be opened.

f. Data conversion. Data conversion is not done in this CSU.

g. Use of other elements. The following elements are used by CSU
engineinit.

(1) CSU fopen. This library call opens a designated file. This
CSU existed within the original code and is not
documented herein.

(2) CSU fprintf. This library call CSU prints a designated
string to a designated output device. This CSU existed
within the original code and is not documented herein.

(3) CSU rewind. This library call CSU rewinds a designated
file. This CSU existed within the original code and is not
documented herein.

(4) CSU fscanf. This library call CSU scans a record for a field
from a designated file. This CSU existed within the
original code and is not documented herein.

(5) CSU fgets. This library call CSU gets a field from a
designated file. This CSU existed within the original code
and is not documented herein.

(6) CSU fclose. This library call CSU closes a designated file.
This CSU existed within the original code and is not
documented herein.

(7) CSU failinitfailure. This CSU initializes a failure of the
engine or its subsystems. This CSU existed within the
original code and is not documented herein.

(8) Shared data elements. The following is a list of global
variables initialized within the CSU engine-init. These
variables existed in the original code and will not be
documented herein.

gov-p-gain
i gov-i-gain

-9-

22 January 1993
Reference # W003036

Rev. 0.0

engine-power
engine-percent_torque
engine-speed
integrator-gain
last.percent shaft-speed
last-percent-torque
hours -of-flight
minutes-of-flight
oldminutes ofj light
enginestatus
starting-engine
number-of-engines
engine is-damaged
transmission is damaged

h. Logic flow. The CSU engineminit is called by the CSU rwainit.
See Appendix A - RWA AirNet Call Tree Structure. Execution
of the CSU engineminit is normally done only once during CSCI
initialization and is performed sequentially.

Open engine performance data file.
If file is null, print error message and exit.
Rewind file.
Set index to zero.
While record not end-of-file,

engine.da ta [index] =first_field
descript=secondfield
increment index by one

End while.
Close data file.

Open engine initialization data file.
If file is null, print error message and exit.
Rewind file.
Set index to zero.
While record not end-of-file,

engineinitdata [index] =first_field
descript=secondfield
increment index by one

End while.
Close data file.

Open engine status data file.
If file is null, print error message and exit.

- 10-

22 January 1993
Reference # W003036

Rev. 0.0

Rewind file.
Set index=zero.
While record not end-of-file,

engine sta t_da ta [index] =firs tLfield
descript=secondfield
increment index by one

End while.
Close data file.

Set gov-p-gain=engine-data[1]
Set govi gain=engine 7.data[2]

Set engine-.power=engine init-data[0]
Set engine.percent-torque=engine-init data[l]
Set engine.speed=enginejinit data[2]
Set integrator-gain=engine init data[31
Set last-percent shaft speed=enginejinit data[4]
Set last-percent-torque-engine init-data[51
Set hours ofjflight=enginejinit data[6]
Set minutes-ofjflight=enginestatdata[O]
Set oldminutes-of-flight=engine-stat-data[1]
Set engine.status=engine.statrdata [2]
Set starting-engine=engine -stat -data[3]
Set number of._engines=engineý stat_data [4]
Set engine-is-damaged=enginestatdata [5]
Set transmission is damaged=enginestat-data[6]

If combatdamage=TRUE,
Call failinitfailure for engine oil-damage
Call failinitfailure for break_engine

End if.

If stochasticfailure=TRUE,
Call failinit_failure for transmisfilter-damage
Call failinitfailure for breaktransmission

End if.

i. Data structures. The following shared data structures are used by
the CSU enginejinit.

(1) Data structure engine-data. This shared data structure'
holds the performance data defining the operating
limitations of the engines. The data structure is an array
of 20 elements. The data structure is given default
initialization during compilation. Detailed definition of

- 11 -

22 January 1993
Reference # W003036

Rev. 0.0

each element is described in TABLE 5.1.5. - ENGINE
DATA ARRAY.

(2) Data structure engine-init data. This shared data
structure holds the dynamic initialization of the engines.
The data structure is an array of 10 elements. The data
structure is given default initialization during
compilation. Detailed definition of each element is
described in TABLE 5.1.6. - ENGINE INITIALIZATION
DATA ARRAY.

(3) Data structure engine-stat data. This shared data
structure holds the status data describing the operating
state of the engines. The data structure is an array of 10
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.7. - ENGINE
STATUS DATA ARRAY.

j. Local data files. The following data files are part of the local data
of the CSU engine-init.

(1) Data file "simnet/data/rwaengn.d". This data file
includes the performance characteristics of the engine.
The data file consists of a maximum of 20 records. Each
record consists of two fields. The first field is a float
number, and the second field is a character string of a
maximum length of 64. The first field is assigned to
sequential elements of the engine-data global array.
These fields have values consistent with the
characteristics outlined in TABLE 5.1.5. - ENGINE DATA
ARRAY. The second field is for documentation purposes
only. Access of the file is "read only" and sequential.

(2) Data file "simnet/data/rw en in.d". This data file
includes the initial dynamic state of the engine. The data
file consists of a maximum of 10 records. Each record
consists of two fields. The first field is a float number, and
the second field is a character string of a maximum length
of 64. The first field is assigned to sequential elements of
the enginejinit data global array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.6. - ENGINE INITIALIZATION DATA

- 12-

22 January 1993
Reference # W003036

Rev. 0.0

ARRAY. The second field is for documentation purposes
only. Access of the file is "read only" and sequential.

(3) Data file "simnet/data/rw en st.d". This data file
includes the initial state of the engines. The data file
consists of a maximum of 10 records. Each record consists
of two fields. The first field is a float number, and the
second field is a character string of a maximum length of
64. The first field is assigned to sequential elements of the
engine stat data global array. These fields have values
consistent with the characteristics outlined in TABLE
5.1.7. - ENGINE STATUS DATA ARRAY. The second
field is for documentation purposes only. Access of the
file is "read only" and sequential.

k. Limitations. There are no additional limitations or unusual

features that restrict the performance of the CSU engineminit.

4.1.2. CSU aerodyn-init.

The CSU aerodyninit reads aerodynamics data from data files and initializes
the aerodynamics operating and performance parameters, limitations, initial
dynamic state, and aerodynamics status. The following subparagraphs
describe the design information for the CSU aerodynjinit.

4.1.2.1. CSU aerodynjinit design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This
subparagraph shall identify the requirements allocated to the CSC that are to
be satisfied or partially satisfied by the CSU and shall identify any constraints
on the design of the CSU.

4.1.2.2. CSU aerodyn-init design.

The CSU aerodyn-init is coded in the ANSI 'C' programming language,
standard language for the CSCI. The following paragraphs specify the design
of the CSU aerodyn-init. For a complete listing, see Appendix B - Source
Code Listing For rwaaerodyn.c.

a. Input/output data elements. None used.

b. Local data elements. TABLE 4.1.2.1 - CSU AERODYNINIT
LOCAL DATA DEFINITION TABLE describes the local data
elements originating in the CSU aerodyn-init and not used by

* any other CSU.

- 13 -

22 January 1993
Reference # W003036

40 Rev. 0.0

TABLE 4.1.2.1 - CSU AERODYNINIT LOCAL DATA DEFINITION TABLE

Name i j data tmp descript fp
Description array index array index temporary temporary data file

float data character pointer
storage for string storage
data read read from file
from file

Type integer integer float character file pointer
array

Represent- decimal decimal real number character directory
ation number number string pathname

plus 8
character

unique
filename plus
".d" extension

Size N/A N/A N/A 64 N/A
Unit of Non- Non- Variable None None
Measure dimensional dimensional
Limit/range 0-99 0-99 Variable N/A N/A
Precision single single single N/A N/A

c. Interrupts and signals. None used.

d. Algorithms. The following algorithms are used in the execution
of the CSU aerodyninit.

(1) An algorithm to read aerodynamics default performance
data from the "simnet/data/rwaaero.d" data file is
executed. This data determines the performance
characteristics of the aerodynamics during real-time
execution. Access of the file is "read only".

The "simnet/data/rwaaero.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the array index is set to zero.
Each record is scanned and the first field is assigned to a
temporary float data storage. If the value of the temporary
float data is not the end-of-file, the temporary float data is
assigned to the current indexed aerodata element. The
remainder of the record is assigned to the temporary
character string. The array index is incremented by one

0
- 14 -

22 January 1993
Reference # W003036

Rev. 0.0

and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read aerodynamics default initialization
data from the "simnet/data/rw-aemin.d" data file is
executed. This data determines the initial dynamic state
of the aerodynamics prior to real-time execution. Access
of the file is "read only".

The "simnet/data/rw-aemin.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the array index is set to zero.
Each record is scanned and the first field is assigned to a
temporary float data storage. If the value of the temporary
float data is not the end-of-file, the temporary float data is
assigned to the current indexed aerominit element. The
remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read aerodynamics default simple data
from the "simnet/data/rw.ae sp.d" data file is executed.
This data determines the performance characteristics of
the "simple" aerodynamics model during real-time
execution. Access of the file is "read only".

The "simnet/data/rw-ae-sp.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the array index is set to zero.
Each record is scanned and the first field is assigned to a
temporary integer data storage. If the value of the
temporary integer data is not the end-of-file, the
temporary integer data is assigned to the current indexed
aerosimple element. The remainder of the record is
assigned to the temporary character string. The array
index is incremented by one and the next record is
scanned. If the value of the temporary integer data is the
end-of-file, the file is closed.0

- 15 -

22 January 1993
Reference # W003036

Rev. 0.0

(4) An algorithm to read aerodynamics default stealth data
from the "simnet/data/rwaesl.d" data file is executed.
This data determines the performance characteristics of
the "stealth" aerodynamics model during real-time
execution. Access of the file is "read only".

The "simnet/data/rw-ae-sl.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the array index is set to zero.
Each record is scanned and the first field is assigned to a
temporary integer data storage. If the value of the
temporary integer data is not the end-of-file, the
temporary integer data is assigned to the current indexed
aerostealth element. The remainder of the record is
assigned to the temporary character string. The array
index is incremented by one and the next record is
scanned. If the value of the temporary integer data is the
end-of-file, the file is closed.

e. Error handling. Errors other than a null data file are not
handled. If a null data file is detected, a message is sent to the
standard error device reporting that the file could not be opened.

f. Data conversion. Data conversion is not done in this CSU.

g. Use of other elements. The following elements are used by CSU
aerodyn-init.

(1) CSU fopen. This library call opens a designated file. This
CSU existed within the original code and is not
documented herein.

(2) CSU fprintf. This library call CSU prints a designated
string to a designated output device. This CSU existed
within the original code and is not documented herein.

(3) CSU rewind. This library call CSU rewinds a designated
file. This CSU existed within the original code and is not
documented herein.

0
- 16 -

22 January 1993
Reference # W003036

Rev. 0.0

(4) CSU fscanf. This library call CSU scans a record for a field
from a designated file. This CSU existed within the
original code and is not documented herein.

(5) CSU fgets. This library call CSU gets a field from a
designated file. This CSU existed within the original code
and is not documented herein.

(6) CSU fclose. This library call CSU closes a designated file.
This CSU existed within the original code and is not
documented herein.

(7) CSU engine init. This CSU initializes the engine
functions and its subsystems. This CSU is documented in
subparagragh 4.1.1.

(8 CSU vectinit. This CSU initializes a vector. This CSU
existed within the original code and is not documented
herein.

(9 CSU vehiclemassinit. This CSU initializes the vehicle
mass. This CSU existed within the original code and is
not documented herein.

(10 CSU ground-init. This CSU initializes the ground forces.
This CSU existed within the original code and is not
documented herein.

(11) CSU findcubicjfunc. This CSU computes the cubic
function of the arguments. This CSU existed within the
original code and is not documented herein.

(12) CSU aerodyn-read-simple-constants. This CSU
initializes reads "simple" aerodynamic model constants
from a designated file identified by the argument. This
CSU existed within the original code and is not
documented herein.

(13) CSU get constantsfile. This CSU identifies and opens a
constants data file. This CSU existed within the original
code and is not documented herein.

0
- 17-

22 January 1993
Reference # W003036

Rev. 0.0

(14) CSU deg-to-rad. This CSU converts a float argument
from degrees to radians. This CSU existed within tne
original code and is not documented herein.

(15) Shared data elements. The following is a list of global
variables initialized within the CSU aerodyn-init. These
variables existed in the original code and will not be
documented herein.

cyclic-pitch
cyclic-roll
selectedmodel
collective
allowtakeoff
pedal
stabaug-pitchjintegrator
stabaugjroll-integrator
stabaug-yaw_integrator
stabaugsclimbjintegrator
attitudecontrol-pitch-integrator
attitudecontrolrollintegrator
hoveraug-pitchjintegrator
hoveraug.roll-integrator
hoveraug-pitch-angle
hoveraug-roll-angle
hoverholdstate
hoverholdturnedon
loc ac mainrotor-cop[3]
loc ac tailrotor -.cop[3]
loc ac virtualwing-cop[31
loc ac vstabcop[3]
loc_accg[3]
inertiamatrix[3] [3]
pitch-damping
roll-damping
yaw-damping
MAINROTORMASTTILTSIN
MAINROTORMASTTILTCOS
vstabforce
drag-force
groundforce
force-ground effect
forcebody
moment-body

- 18-

22 January 1993
Reference # W003036

moment-body-torque-coupling

Rev. 0.0

forcebody-mainrotor
forcebodyjtailrotor
forcebody-damping
inertiamatrix
p-drag-fiticoeff[10]

h. Logic flow. The CSU aerodyninit is called by the CSU rwainit.
See Appendix A - RWA AirNet Call Tree Structure. Execution
of the CSU aerodyninit is normally done only once during
CSCI initialization and is performed sequentially.

Open aerodynamics performance data file.
If file is null, print error message and exit.
Rewind file.
Set index to zero.
While record not end-of-file,

aerodata [index] =first-field
descript=secondfield
increment index by one

End while.
Close data file.

Open aerodynamics initialization data file.
If file is null, print error message and exit.
Rewind file.
Set index to zero.
While record not end-of-file,

aeroinit[index] =firs t field
descript=secondfield
increment index by one

End v'hile.
Close data file.

Open aerodynamics simple initialization data file.
If file is null, print error message and exit.
Rewind file.
Set index=zero.
While record not end-of-file,

aero simple[index] =firstfield
descript=secondfield
increment index by one

End while.
* Close data file.

- 19-

22 January 1993
Reference # W003036

Rev. 0.0

Open aerodynamics stealth initialization data file.
If file is null, print error message and exit.
Rewind file.
Set index=zero.
While record not end-of-file,

aero_stealth[index]=firstfield
descript=secondfield
increment index by one

End while.
Close data file.

Initialize engine; call engine_init

Set cyclic-pitch = aerojinit[0]
Set cyclic-roll = aeroinit[1]

If (selectedmodel NOT EQUAL TO STEALTHMODEL) then
set collective = aeroinit[2]

else
set collective = 0.5

ediset allowtakeoff = TRUE
end if

Set pedal = aerojinit[31
Set stab-aug-pitchjintegrator = aeroinit[4]
Set stab aug-roll-integrator = aeroinit[5]
Set stab-aug.yawIintegrator = aeroinit[6]
Set stab-aug climbintegrator = aeroinit[7]
Set attitudecontrolpitchjintegrator = aeroinit[8]
Set attitudecontrolrollintegrator = aeroinit[9]
Set hoveraug-pitchjintegrator = aerojinit[10]
Set hoveraugjrolljintegrator = aeroinit[11]
Set hoveraug-pitch.angle = aeroinit[121
Set hover_augjollangle = aerojinit[13]

Set hoverholdstate = OFF
Set hoverholdturned-on = FALSE

Set loc ac mainrotor-cop[X] = aerodata[241
Set loc ac mainrotor.cop[Y] = aerodata[25]
Set loc ac mainrotor-cop[Z] = aerodata[26J

Set loc_ac tailrotorcop[XI = aero_data[341

-20-

22 January 1993
Reference # W003036

Rev. 0.0

Set loc-ac-tail-rotor-cop[Y] = aero-data[35]
Set boc-ac-tail-rotor-cop[Z] = aero-data 136]

Set loc-ac-virtual_wing-cop[llX = aero...data[10]
Set loc-ac-virtual-wing-sop[Y] = aero-data[11]
Set loc-ac-virtual-wing-cop[Z] = aero-data[12]

Set loc-ac-vstabscop[X] aero..Aata[19]
Set loc -ac -vstab-copliY] =aero...data [20]
Set loc-ac-vstab-cop[Z] =aero-datall21l

Set loc -ac -.cg[X] aero-datall6]
Set loc-ac-.cg[Y] =aero-data[717
Set loc-ac...cg[Z] =aero-data[8]

Set inertia-matrixll] [11] = aero-data[0]
Set inertia-matrix[2] 121 = aero-data~ll
Set inertia-matrix[3] [3] = aero-data[2]

Set pitch -damping = aero-data[68]
Set roll-damping =aero -data[67]
Set yaw-damping =aero -data [69]

Set MAINROTORMASTTILTSIN-
sin(deg...tojrad(aero -data[28D));

Set MAINROTORMASTTILTCOS-
cos(deg..jorad(aero-data[28]));

Initialize vstab-force vector; call vec-imit
Initialize dragjorce vector; call vec-imit
Initialize ground-force vector; call vec-imit
Initialize force-ground-effect vector; call vec-init
Initialize force-..body vector; call vec-init
Initialize moment-body vector; call vec -iit
Initialize moment-bodyjtorque...coupling vector; call vec-imit
Initialize force....body~main -rotor vector; call vec -miit
Initialize force...body...tail-rotor vector; call vec-imit
Initialize force...body-damping vector; call vec-imit

Initial vehicle mass init; call vehicle-mass-imit
Initialize ground forces; call groundjinit

Initialize parasite drag profile; set p...drag-fit..coeff = 0.0

- 21 -

22 January 1993
Reference # W003036

Rev. 0.0

If (parasite drag find-cubicfunc NOT EQUAL TO 1) then
print "AERODYN: Error - unable to fit p-drag function"

end if

If (selectedmodel) then
Set aerodyn-read-simpleconstants from
get-constants_file

end if

Data structures. The following shared data structures are used by
the CSU aerodyn-init.

(1) Data structure aerodata. This shared data structure holds
the performance data defining the operating limitations of
the aerodynamics model. The data structure is an array of
100 elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.1. -
AERODYNAMICS DATA ARRAY.

(2) Data structure aeroinit. This shared data structure holds
the dynamic initialization of the aerodynamics model
state. The data structure is an array of 20 elements. The
data structure is given default initialization during
compilation. Detailed definition of each element is
described in TABLE 5.1.2. - AERODYNAMICS
INITIALIZATION DATA ARRAY.

(3) Data structure aerosimple. This shared data structure
holds the performance data describing the "simple"
aerodynamic model. The data structure is an array of 20
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.3. -
AERODYNAMICS SIMPLE DATA ARRAY.

(4) Data structure aerostealth. This shared data structure
holds the performance data describing the "stealth"
aerodynamics model. The data structure is an array of 20
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.4. -
AERODYNAMICS STEALTH DATA ARRAY.

-22-

22 January 1993
Reference # W003036

Rev. 0.0

Local data files. The following data files are part of the local data
of the CSU aerodyninit.

(1) Data file "simnet/data/rwa aero.d". This data file
includes the performance characteristics of the
aerodynamics model. The data file consists of a
maximum of 100 records. Each record consists of two
fields. The first field is a float number, and the second
field is a character string of a maximum length of 64. The
first field is assigned to sequential elements of the
aero data global array. These fields have values
consistent with the characteristics outlined in TABLE
5.1.1. - AERODYNAMICS DATA ARRAY The second
field is for documentation purposes only. Access of the
file is "read only" and sequential.

(2) Data file "simnet/data/rw ae in.d". This data file
includes the initial dynamic state of the aerodynamics
model. The data file consists of a maximum of 20 records.
Each record consists of two fields. The first field is a float
number, and the second field is a character string of a
maximum length of 64. The first field is assigned to
sequential elements of the aero-init global array. These
fields have values consistent with the characteristics
outlined in TABLE 5.1.2. - AERODYNAMICS
INITIALIZATION DATA ARRAY. The second field is for
documentation purposes only. Access of the file is "read
only" and sequential.

(3) Data file "simnet/data/rwae-sp.d". This data file
includes the performance characteristics of the "simple"
aerodynamics model. The data file consists of a
maximum of 20 records. Each record consists of two
fields. The first field is a float number, and the second
field is a character string of a maximum length of 64. The
first field is assigned to sequential elements of the
aerosimple global array. These fields have values
consistent with the characteristics outlined in TABLE
5.1.3. - AERODYNAMICS SIMPLE DATA ARRAY. The
second field is for documentation purposes only. Access
of the file is "read only" and sequential.

-23-

22 January 1993
Reference # W003036

Rev. 0.0

(4) Data file "simnet/data/rw-ae-sl.d". This data file
includes the performance characteristics of the "stealth"
aerodynamics model. The data file consists of a
maximum of 20 records. Each record consists of two
fields. The first field is a float number, and the second
field is a character string of a maximum length of 64. The
first field is assigned to sequential elements of the
aerostealth global array. These fields have values
consistent with the characteristics outlined in TABLE
5.1.4. - AERODYNAMICS STEALTH DATA ARRAY. The
second field is for documentation purposes only. Access
of the file is "read only" and sequential.

k. Limitations. There are no additional limitations or unusual
features that restrict the performance of the CSU aerodyninit.

4.1.3. CSU veh,_spec..kinematics.init.

The CSU veh_spec kinematicsinit reads kinematics data from data files and
initializes the kinematics operating and performance parameters, limitations,
initial dynamic state, and kinematics status. The following subparagraphs
describe the design information for the CSU vehspec.kinematicsinit.

4.1.3.1. CSU veh speckinematics_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This
subparagraph shall identify the requirements allocated to the CSC that are to
be satisfied or partially satisfied by the CSU and shall identify any constraints
on the design of the CSU.

4.1.3.2. CSU veh.speckinematicsinit design.

The CSU veh-speckinematicsinit is coded in the ANSI 'C' programming
language, standard language for the CSCI. The following paragraphs specify
the design of the CSU veh-spec.kinematicsinit. For a complete listing, see
Appendix D - Source Code Listing For rwakinemat.c.

a. Input/output data elements. None used.

b. Local data elements. TABLE 4.1.3.1 - CSU
VEHSPECKINEMATICSINIT LOCAL DATA DEFINITION
TABLE describes the local data elements originating in the CSU
vehspec-kinematicsinit and not used by any other CSU.

-24-

22 January 1993
Reference # W003036

Rev. 0.0

STABLE 4.1.3.1-- CSU VEHSPECKINEMATICSINIT LOCAL DATA
DEFINITION TABLE

Name i data tmp descript fp
Description array index temporary temporary data file

float data character pointer
storage for string storage
data read read from file
from file

Type integer float character file pointer
arrayr

Represent- decimal real number character directory
ation number string pathname

plus 8
character

unique
filename plus
"".d extension

Size N/A N/A 64 N/A
Unit of Non- Variable None None
Measure dimensional
Limit/range 0-99 Variable N/A N/A
Precision single single N/A N/A

c. Interrupts and signals. None used.

d. Algorithms. The following algorithms are used in the execution
of the CSU veh-speckinematicsinit.

(1) An algorithm to read kinematics default performance data
from the "simnet/data/rwakine.d" data file is executed.
This data determines the performance characteristics of
the kinematics during real-time execution. Access of the
file is "read only".

The "simnet/data/rwakine.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the array index is set to zero.
Each record is scanned and the first field is assigned to a
temporary float data storage. If the value of the temporary
float data is not the end-of-file, the temporary float data is
assigned to the current indexed enginedata element.
The remainder of the record is assigned to the temporary
character string. The array index is incremented by one

-25-

22 January 1993
Reference # W003036

Rev. 0.0

and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read kinematics default initialization
data from the "simnet/data/rw-ki in.d" data file is
executed. This data determines the initial dynamic state
of the kinematics prior to real-time execution. Access of
the file is "read only".

The "simnet/data/rw-ki-in.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the array index is set to zero.
Each record is scanned and the first field is assigned to a
temporary float data storage. If the value of the temporary
float data is not the end-of-file, the temporary float data is
assigned to the current indexed engine-initdata
element. The remainder of the record is assigned to the
temporary character string. The array index is
incremented by one and the next record is scanned. If the
value of the temporary float data is the end-of-file, the file
is closed.

e. Error handling. Errors other than a null data file are not
handled. If a null data file is detected, a message is sent to the
standard error device reporting that the file could not be opened.

f. Data conversion. Data conversion is not done in this CSU.

g. Use of other elements. The following elements are used by CSU
vehspec-kinema ticsinit.

(1) CSU fopen. This library call opens a designated file. This
CSU existed within the original code and is not
documented herein.

(2) CSU fprintf. This library call CSU prints a designated
string to a designated output device. This CSU existed
within the original code and is not documented herein.

(3) CSU rewind. This library call CSU rewinds a designated
file. This CSU existed within the original code and is not
documented herein.

-26-

22 January 1993
Reference # W003036

Rev. 0.0

(4) CSU fscanf. This library call CSU scans a record for a field
from a designated file. This CSU existed within the
original code and is not documented herein.

(5) CSU fgets. This library call CSU gets a field from a
designated file. This CSU existed within the original code
and is not documented herein.

(6) CSU fclose. This library call CSU closes a designated file.
This CSU existed within the original code and is not
documented herein.

(7) CSU vehicleangular.velocity. This CSU existed within
the original code and is not documented herein.

(8 CSU vehiclevelocity. This CSU existed within the
original code and is not documented herein.

(9) CSU mat-ident. This CSU initializes a failure of the
kinematics or its subsystems. This CSU existed within the
original code and is not documented herein.

(10) Shared data elements. The following is a list of global
variables initialized within the CSU
vehspeckinematics-init. These variables existed in the
original code and will not be documented herein.

pos-unit-vel[3]
neg-unit-vel[31
sinaoa
cos aoa
sin-yaw
cos-yaw
altitude
body-pitch
body-pitch.offset
velocity-pitch
roll
heading
true -airspeed
indicatedairspeed
g-force
vertical-speed

-- 27-

22 January 1993
Reference # W003036

Rev. 0.0

ang...vel
velocity-vector
gravity[3]
norm- vel[3]
velocity-to.body

h. Logic flow. The CSU veh.speckinematicsinit is called by the
CSU rwainit. See Appendix A - RWA AireNet Call Tree
Structure. Execution of the CSU veh-spec.kinematicsinit is
normally done only once during CSCI initialization and is
performed sequentially.

Open kinematics performance data file.
If file is null, print error message and exit.
Rewind file.
Set index to zero.
While record not end-of-file,

kinemat-data [index] =firstfield
descript=secondfield
increment index by one

End while.
* Close data file.

Open kinematics initialization data file.
If file is null, print error message and exit.
Rewind file.
Set index to zero.
While record not end-of-file,

kinematinit_data[index] =first-field
descript=secondfield
increment index by one

End while.
Close data file.

Set pos-ununitvel[Y] = kinematinitdata[1]
Set pos-unityvel[Z] = kinematinitdata[2]
Set negunit vel[XI = kinematinitdata[3]
Set neg-unit-vel[Y] = kinematinitdata[4]
Set neg-unit.vel[Z] = kinematinitdata[5]
Set sinaoa = kinematinit-data[6]
Set cosaoa = kinematinitdata[7]
Set sin-yaw = kinematinitdata[8]
Set cos-yaw = kinematuinit_data[91
Set altitude = kinematinit_data[10]

-28-

22 January 1993
Reference # W003036

Rev. 0.0

Set body-pitch = kinemat_initdata[11]
Set body...pitch_offset = kinemat_init_data[121

Set velocity-pitch = kinematinitdata[13]
Set roll = kinematinit-data[141
Set heading = kinematinitdata[15]
Set true airspeed = kinematminitdata[16]
Set indicated-airspeed = kinematinit-data[17]
Set g-force = kinematinitdata[18]
Set verticalspeed = kinematinitdata[19]
Set ang-vel = vehicle.angular-velocity0
Set velocity- vector = vehicle-velocity0
Set gravity[X] = kinematinitdata[20]
Set gravity[Y] = kinematinitdata[211
Set gravity[Z] = kinematinitdata[22]
Set normvel[X] = kinematinit data[23]
Set normvel[Y] = kinematinit data[24]
Set normvel[Z] = kinematinit-data[25]

Compute identity matrix; call mat ident(velocitytobody)

Data structures. The following shared data structures are used by
the CSU veh-spec-kinematicsinit.

(1) Data structure kinematdata. This shared data structure
holds the performance data defining the operating
limitations of the engines. The data structure is an array
of 20 elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.8. - KINEMATICS
DATA ARRAY.

(2) Data structure kinematinitdata. This shared data
structure holds the dynamic initialization of the engines.
The data structure is an array of 30 elements. The data
structure is given default initialization during
compilation. Detailed definition of each element is
described in TABLE 5.1.9. - KINEMATICS
INITIALIZATION DATA ARRAY.

j. Local data files. The following data files are part of the local data
of the CSU veh-speckinematicsinit.

(1) Data file "simnet/data/rwa-kine.d". This data file
includes the performance characteristics of the kinematics.

-29-

22 January 1993
Reference # W003036

Rev. 0.0

The data file consists of a maximum of 20 records. Each
record consists of two fields. The first field is a float
number, and the second field is a character string of a
maximum length of 64. The first field is assigned to
sequential elements of the engine-data global array.
These fields have values consistent with the
characteristics outlined in TABLE 5.1.8. - KINEMATICS
DATA ARRAY. The second field is for documentation
purposes only. Access of the file is "read only" and
sequential.

(2) Data file "simnet/data/rw ki in.d". This data file
includes the initial dynamic state of the kinematics. The
data file consists of a maximum of 10 records. Each record
consists of two fields. The first field is a float number, and
the second field is a character string of a maximum length
of 64. The first field is assigned to sequential elements of
the engine-init-data global array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.9. - KINEMATICS INITIALIZATION DATA
ARRAY. The second field is for documentation purposes
only. Access of the file is "read only" and sequential.

k. Limitations. There are no additional limitations or unusual
features that restrict the performance of the CSU
vehspec-kinema ticsinit.

4.2. CSC weapons-init.

This CSC, weaponsjinit, controls the initialization of the rotary wing aircraft
weapon models, i.e., hydra, tow, hellfire. The structure and function of this
CSC was not modified under this delivery order. The following
subparagraphs describe the design information for the modified CSUs called
by this CSC.

4.2.1. CSU missile_towinit.

The CSU missiletowinit reads tow missile data from data files and
initializes the 1) performance limitations and characteristics data array, 2) the
polynomial degree array, 3) the burn speed polynomial coefficients array, 4)
the coast speed polynomial coefficients array, 5) the burn speed turn,
maximum cosine coefficient structure, and 6) the coast speed turn, maximum
cosine coefficient structure. The following subparagraphs describe the design
information for the CSU missiletowinit.

- 30 -

22 January 1993
Reference # W003036

S~Rev. 0.0

4.2.1.1. CSU missiletowinit design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This
subparagraph shall identify the requirements allocated to the CSC that are to
be satisfied or partially satisfied by the CSU and shall identify any constraints
on the design of the CSU.

4.2.1.2. CSU missiletowinit design.

The CSU missiletowminit is coded in the ANSI 'C' programming language,
standard language for the CSCI. The following paragraphs specify the design
of the CSU missiletowinit. For a complete listing, see Appendix L - Source
Code Listing For misstow.c.

a. Input/output data elements.

(1) tptr - This input data element is a pointer to the particular
array of missiles to be initialized. This element is declared
global.

(2) No output data elements are declared.

b. Local data elements. TABLE 4.2.1.1 - CSU MISSILETOWINIT
LOCAL DATA DEFINITION TABLE describes the local datu
elements originating in the CSU missiletowinit and not used
by any other CSU.

- 31 -

22 January 1993
Reference # W003036

Rev. 0.0

TABLE 4.2.1.1 - CSU MISSILETOWINIT LOCAL DATA DEFINITION
TABLE

Name i data-tmp_ datajtmp descript fp
int

Descrip- array index temporary temporary temporary data file
tion integer data float data character pointer

storage for storage for string storage
data read data read read from file
from file from file

Type integer integer float character file pointer
arrayt

Represent- decimal decimal real number character directory
ation number number string pathname

plus 8
character

unique
filename plus
".d" extension

Size N/A N/A N/A 64 N/A
Unit of Non- Variable Variable None None
Measure dimension-al
Limit/range 0-99 Variable Variable N/A N/A
Precision single single single N/A N/A

c. Interrupts and signals. None used.

d. Algorithms. The following algorithms are used in the execution
of the CSU missiletow init.

(1) An algorithm to read the performance limitations and
characteristics of the tow missile from the
"simnet/data/mstwch.d" data file is executed. This
data determines the performance limitations and
characteristics of the tow missile during real-time
execution. Access of the file is "read only".

The "simnet/data/mstw_ch.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the array index is set to zero.
Each record is scanned and the first field is assigned to a
temporary float data storage. If the valv-e of the temporary
float data is not the end-of-file, the temporary float data is

* assigned to the current indexed tow miss char element.
The remainder of the record is assigned to the temporary

- 32 -

22 January 1993
Reference # W003036

Rev. 0.0

character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and burn
speed coefficients data from the
"simnet/data/ms-tw bs.d" data file is executed. This data
determines burn speed polynomiai coefficient data used
during real-time execution to compute the speed of the
tow missile during engine burn for the tow missile flyout.
Access of the file is "read only".

The "simnet/data/nLs_twbs.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the first element of the
towmiss.poly.deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero. Then, each record is
scanned and the first field is assigned to a temporary float
data storage. If the value of the temporary float data is not
the end-of-file, the temporary float data is assigned to the
current indexed towburnispeedcoeff element. The
remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is dosed.

(3) An algorithm to read polynomial degree data and coast
speed coefficients data from the
"simnet/data/mstwcs.d" data file is executed. This data
determines coast speed polynomial coefficient data used
during real-time execution to compute the speed of the
tow missile after engine burn for the tow missile flyout.
Access of the file is "read only".

The "simnet/data/ms-tw_cs.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the

- 33 -

22 January 1993
Reference # W003036

Rev. 0.0

first field. The first field is assigned to a temporary integer
data storage and then to the third element of the
towmiss-poly.deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero. Then, each record is
scanned and the first field is assigned to a temporary float
data storage. If the value of the temporary float data is not
the end-of-file, the temporary float data is assigned to the
current indexed towcoast-speedcoeff element. The
remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is dosed.

(4) An algorithm to read polynomial degree data and
maximum turn cosine coefficients during engine burn
data from the "simnet/data/mstwbt.d" data file is
executed. This data defines the maximum cosine
coefficients during real-time execution to compute the
maximum cosine of a turn in each axis during engine
burn of the tow missile flyout. Access of the file is "read

* only".

The "simnet/data/mstwbt.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the third element of the
towmiss..poly..;-deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero for the side axis, with
the limit set to the degree. Then, each record is scanned
and the first field is assigned to a temporary float data
storage, and assigned to the current indexed
towburnturn_coeff.sidecoeff element. The remainder
of the record is assigned to the temporary character string.
The array index is incremented by one and the next record
is scanned and stored until the degree limit is hit. The
process is repeated for the up and down axes. Then, the
file is closed.

-34-

22 January 1993
Reference # W003036

Rev. 0.0

(5) An algorithm to read polynomial degree data and
maximum turn cosine coefficients data after engine burn
from the "simnet/data/ms-tw ct.d" data file is executed.
This data defines the maximum cosine coefficients during
real-time execution to compute the maximum cosine of a
turn in each axis after engine burn of the tow missile
flyout. Access of the file is "read only".

The "simnet/data/mstwct.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the fourth element of the
towmiss-poly-deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero for the side axis, with
the limit set to the degree. Then, each record is scanned
and the first field is assigned to a temporary float data
storage, and assigned to the current indexed
towcoastturncoeff.sidecoeff element. The remainder
of the record is assigned to the temporary character string.
The array index is incremented by one and the next record
is scanned and stored until the degree limit is hit. The
process is repeated for the up and down axes. Then, the
file is closed.

e. Error handling. Errors other than a null data file are not
handled. If a null data file is detected, a message is sent to the
standard error device reporting that the file could not be opened.

f. Data conversion. Data conversion is not done in this CSU.

g. Use of other elements. The following elements are used by CSU
missiletowinit.

(1) CSU fopen. This library call opens a designated file. This
CSU existed within the original code and is not
documented herein.

(2) CSU fprintf. This library call CSU prints a designated
string to a designated output device. This CSU existed
within the original code and is not documented herein.

- 35 -

22 January 1993
Reference # W003036

Rev. 0.0

(3) CSU rewind. This library call CSU rewinds a designated
file. This CSU existed within the original code and is not
documented herein.

(4) CSU fscanf. This library call CSU scans a record for a field
from a designated file. This CSU existed within the
original code and is not documented herein.

(5) CSU fgets. This library call CSU gets a field from a
designated file. This CSU existed within the original code
and is not documented herein.

(6) CSU fclose. This library call CSU closes a designated file.
This CSU existed within the original code and is not
documented herein.

(7) Shared data elements. The following is a list of global
variables initialized within the CSU missiletowinit.
These variables existed in the original code and will not be
documented herein.

tptr
mptr.state
mptr.max-flight-time
mptr.max turndirections
speed-factor
maxrange-limit
maxrange..squared
towammo-type
munitionUSTow

h. Logic flow. The CSU missiletowinit is called by the CSU
weapons-init. See Appendix A - RWA AireNet Call Tree
Structure. Execution of the CSU missiletowinit is normally
done only once during CSCI initialization and is performed
sequentially.

Open tow missile characteristics data file.
If file is null, print error message and exit.
Rewind file.
Set index to zero.
While record not end-of-file,

towmisschar[indexl =first_field

-36-

22 January 1993
Reference # W003036

Rev. 0.0

descript=secondfield
increment index by one

End while.
Close data file.

Open burn speed data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set towmiss.poly-deg[0] =first_field
Set descript=secondfield
Set index to zero.
While record not end-of-file,

towburn-speed-coeff[index] =first_field
descript=secondfield
increment index by one

End while.
Close data file.

Open coast speed data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set towmiss.poly-deg[1 J=firstfield
Set descript=secondfield
Set index to zero.
While record not end-of-file,

towcoast-speed-coeff[index] =first_field
descript=secondfield
increment index by one

End while.
Close data file.

Open burn turn data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set towmisspoly_deg[2]=first_field
Set descript=secondfield
For index from 0 to tow_miss-poly-deg[21, single step,

towburnturncoeff.sidecoeff[index] = firstfield
descript=secondfield

End for loop.
For index from 0 to towmiss-poly-deg[2l, single step,

- 37 -

22 January 1993
Reference # W003036

O Rev. 0.0

towburnturncoeff.up-coeff[index]
= firstfield

descript=secondfield
End for loop.
For index from 0 to towmiss_polydeg[2], single step,

towburnturncoeff.downcoeff [index] = first field
descript=secondfield

End for loop.
Close data file.

Open coast turn data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set towmiss.poly-deg[3] =firstfield
Set descript=secondfield
For index from 0 to towmiss_poly-deg[3], single step,

towcoastturn_coeff.side coeff[index] = firstfield
descript=secondfield

End for loop.
For index from 0 to tow_misspoly.deg[3], single step,

towcoastturnmcoeff.up-coeff[index] = firstfield
descript=secondfield

End for loop.
For index from 0 to towmisspoly-deg[3], single step,

towcoastturn_coeff.downcoeff [index] = firstfield
descript=secondfield

End for loop.
Close data file.

Set mptr.state = FALSE
Set mptr.max-flight -time = towmisschar[21
Set mptr.maxturn_directions = 3
Set speed-factor = MISSILEUSSPEEDFACTOR
Set maxrange-limit = MISSILEUSMAXRANGELIMIT
Set max-range.squared = maxjrange-limit * maxrangejlimit
Set towammo.type = munitionUSTow

Data structures. The following shared data structures are used by
the CSU missiletowinit.

(1) Data structure tow-misschar. This shared data structure
holds the performance limitations and characteristics for
the tow missile. The data structure is an array of 5
elements. The data structure is given default

- 38 -

22 January 1993
Reference # W003036

Rev. 0.0

initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.23. - TOW
MISSILE CHARACTERISTICS DATA ARRAY.

(2) Data structure tow-miss.poly-deg. This shared data
structure holds the polynomial degree data defining the
size if the polynomial arrays and strucures used in this
CSU. The data structure is an array of 5 elements. The
data structure is given default initialization during
compilation. Detailed definition of each element is
described in TABLE 5.1.24. - TOW MISSILE POLYNOMIAL
DEGREE DATA ARRAY.

(3) Data structure towburn-speedscoeff. This shared data
structure holds the burn speed coefficients for the burn
speed polynomial. The data structure is an array of 5
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.25. - TOW
MISSILE BURN SPEED DATA ARRAY.

(4) Data structure towcoast-speedcoeff. This shared data
structure holds the coast speed coefficients for the coast
speed polynomial. The data structure is an array of 5
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.26. - TOW
MISSILE COAST SPEED DATA ARRAY.

(5) Data structure towburn_turncoeff. This shared data
structure holds the maximum cosine coefficients for a
turn in each axis during engine burn for the burn turn
polynomial. The data structure is an array of 2 elements
for each axis. There are three axes: side, up, and down.
The data structure is given default initialization during
compilation. Detailed definition of each element is
described in TABLE 5.1.27. - TOW MISSILE BURN TURN
DATA STRUCTURE.

(6) Data structure towcoastturncoeff. This shared data
structure holds the maximum cosine coefficients for a
turn in each axis during engine burn for the burn turn
polynomial. The data structure is an array of 4 elements
for each axis. There are three axes: side, up, and down.

- 39 -

22 January 1993
Reference # W003036

Rev. 0.0

The data structure is given default initialization during
compilation. Detailed definition of each element is
described in TABLE 5.1.28. - TOW MISSILE COAST TURN
DATA STRUCTURE.

j. Local data files. The following data files are part of the local data
of the CSU missiletowinit.

(1) Data file "simnet/data/ms_tw_ch.d". This data file
includes the performance limitations and characteristics
of the tow missile. The data file consists of a maximum of
5 records. Access of the file is "read only" and sequential.

Each record consists of two fields. The first field is a float
number, and the second field is a character string of a
maximum length of 64. The first field is assigned to
sequential elements of the global towmisschar data
array. These fields have values consistent with the
characteristics outlined in TABLE 5.1.23. - TOW MISSILE
CHARACTERISTICS DATA ARRAY. The second field is
for documentation purposes only.

(2) Data file "simnet/data/ms_tw_bs.d". This data file
includes the burn speed degree of polynomial and
coefficients data for the tow missile. The data file consists
of a maximum of 6 records. Access of the file is "read
only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global towmiss-poly.deg data array.
This field has a value consistent with the characteristics
outlined in TABLE 5.1.24. - TOW MISSILE POLYNOMIAL
DEGREE DATA ARRAY. The second field is for
documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
towburn.speedcoeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.25. - TOW MISSILE BURN SPEED DATA

- 40 -

22 January 1993
Reference # W003036

Rev. 0.0

ARRAY. The second field is for documentation purposes
only.

(3) Data file "simnet/data/mstwcs.d". This data file
includes the coast speed degree of polynomial and
coefficients data for the tow missile. The data file consists
of a maximum of 6 records. Access of the file is "read
only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global towmiss-poly-deg data array.
This field has a value consistent with the characteristics
outlined in TABLE 5.1.24. - TOW MISSILE POLYNOMIAL
DEGREE DATA ARRAY. The second field is for
documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
towcoast speedcoeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.26. - TOW MISSILE COAST SPEED DATA
ARRAY. The second field is for documentation purposes
only.

(4) Data file "simnet/data/mstwbt.d". This data file
includes the burn turn degree of polynomial and
coefficients data for the tow missile. The data file consists
of a maximum of 7 records. Access of the file is "read
only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global towmiss-poly.deg data array.
This field has a value consistent with the characteristics
outlined in TABLE 5.1.24. - TOW MISSILE POLYNOMIAL
DEGREE DATA ARRAY. The second field is for
documentation purposes only.

- 41 -

22 January 1993
Reference # W003036

Rev. 0.0

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
towburnturncoeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.27. - TOW MISSILE BURN TURN DATA
ARRAY. The second field is for documentation purposes
only.

(5) Data file "simnet/data/mstwct.d". This data file
includes the coast turn degree of polynomial and
coefficients data for the tow missile. The data file consists
of a maximum of 13 records. Access of the file is "read
only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global towmiss.poly.deg data array.
This field has a value consistent with the characteristics
outlined in TABLE 5.1.24. - TOW MISSILE POLYNOMIAL
DEGREE DATA ARRAY. The second field is for
documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
towcoastturncoeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.28. - TOW MISSILE COAST TURN DATA
ARRAY. The second field is for documentation purposes
only.

k. Limitations. There are no additional limitations or unusual
features that restrict the performance of the CSU
missiletowinit.

4.2.2. CSU missilehellfirejinit.

The CSU missile hellfireinit reads hellfire missile data from data files and
initializes the 1) performance limitations data array, 2) the polynomial degree
array, 3) the time-of-flight polynomial coefficients array, 4) the burn speed
polynomial coefficients array, and 5) the coast speedpolynomial coefficients

- 42 -

22 January 1993
Reference # W003036

Rev. 0.0

array. The following subparagraphs describe the design information for the
CSU missilehellfireinit.

4.2.2.1. CSU missilehellfirejinit design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This
subparagraph shall identify the requirements allocated to the CSC that are to
be satisfied or partially satisfied by the CSU and shall identify any constraints
on the design of the CSU.

4.2.2.2. CSU missile_hellfirejinit design.

The CSU missilehellfireinit is coded in the ANSI 'C' programming
language, standard language for the CSCI. The following paragraphs specify
the design of the CSU missilehellfireinit. For a complete listing, see
Appendix G - Source Code Listing For misshellfr.c.

a. Input/output data elements.

(1) mptr - This input data element is a pointer to the
particular array of missiles to be initialized. This element

* is declared global.

(2) No output data elements are declared.

b. Local data elements. TABLE 4.2.2.1 - CSU
MISSILEHELLFIREINIT LOCAL DATA DEFINITION TABLE
describes the local data elements originating in the CSU
missilehellfireinit and not used by any other CSU.

- 43 -

22 January 1993
Reference # W003036

40 Rev. 0.0

TABLE 4.2.2.1 - CSU MISSILEHELLFIREINIT LOCAL DATA DEFINITION
TABLE

Name i data-tmp_ data.tmp descript fp
int

Description array index temporary temporary temporary data file
integer data float data character pointer
storage for storage for string storage
data read data read read from file
from file from file

Type integer integer float character file pointer
array"

Represent- decimal decimal real number character directory
ation number number string pathname

plus 8
character

unique
filename plus
".d" extension

Size N/A N/A N/A 64 N/A
Unit of Non- Variable Variable None None
Measure dimension-al
Limit/range 0-99 Variable Variable N/A N/A
Precision single single single N/A N/A

c. Interrupts and signals. None used.

d. Algorithms. The following algorithms are used in the execution
of the CSU missilehellfireinit.

(1) An algorithm to read the performance limitations and
characteristics of the hellfire missile from the
"simnet/data/mshf ch.d" data file is executed. This data
determines the performance limitations and
characteristics of the hellfire missile during real-time
execution. Access of the file is "read only".

The "simnet/data/ms hf ch.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the array index is set to zero.
Each record is scanned and the first field is assigned to a
temporary float data storage. If the value of the temporary
float data is not the end-of-file, the temporary float data is
assigned to the current indexed hellfrmisschar
element. The remainder of the record is assigned to the

-44-

22 January 1993
Reference # W003036

Rev. 0.0

temporary character string. The array index is
incremented by one and the next record is scanned. If the
value of the temporary float data is the end-of-file, the file
is dosed.

(2) An algorithm to read polynomial degree data and time of
flight coefficients data from the
"simnet/data/mshftf.d" data file is executed. This data
determines time-of-flight polynomial coefficient data used
during real-time execution to compute the estimated
time-of-flight for the hellfire missile flyout. Access of the
file is "read only".

The "simnet/data/ms hf tf.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the first element of the
hellfrmiss.poly-deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero. Then, each record is
scanned and the first field is assigned to a temporary float
data storage. If the value of the temporary float data is not
the end-of-file, the temporary float data is assigned to the
current indexed hellfiretof-coeff element. The
remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is dosed.

(3) An algorithm to read polynomial degree data and burn
speed coefficients data from the
"simnet/data/ms hf bs.d" data file is executed. This data
determines burn speed polynomial coefficient data used
during real-time execution to compute the speed of the
hellfire missile during engine burn for the hellfire missile
flyout. Access of the file is "read only".

The "simnet/data/ms-hfbs.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not

- 45 -

22 January 1993
Reference # W003036

Rev. 0.0

null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the second element of the
hellfrmiss-poly-deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero. Then, each record is
scanned and the first field is assigrned to a temporary float
data storage. If the value of the temporary float data is not
the end-of-file, the temporary float data is assigned to the
current indexed hellfire burn-speedcoeff element. The
remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is dosed.

(4) An algorithm to read polynomial degree data and coast
speed coefficients data from the
"simnet/data/mshfcs.d" data file is executed. This data
determines coast speed polynomial coefficient data used
during real-time execution to compute the speed of the
hellfire missile after engine burn for the hellfire missile
flyout. Access of the file is "read only".

The "simnet/data/ms-hf-cs.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the third element of the
hellfrmiss.poly-deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero. Then, each record is
scanned and the first field is assigned to a temporary float
data storage. If the value of the temporary float data is not
the end-of-file, the temporary float data is assigned to the
current indexed hellfirescoast-speedcoeff element. The
remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is dosed.

0
- 46 -

22 January 1993
Reference # W003036

Rev. 0.0

e. Error handling. Errors other than a null data file are not
handled. If a null data file is detected, a message is sent to the
standard error device reporting that the file could not be opened.

f. Data conversion. Data conversion is not done in this CSU.

g. Use of other elements. The following elements are used by CSU
missilehellfireinit.

(1) CSU fopen. This library call opens a designated file. This
CSU existed within the original code and is not
documented herein.

(2) CSU fprintf. This library call CSU prints a designated
string to a designated output device. This CSU existed
within the original code and is not documented herein.

(3) CSU rewind. This library call CSU rewinds a designated
file. This CSU existed within the original code and is not
documented herein.

(4) CSU fscanf. This library call CSU scans a record for a field
from a designated file. This CSU existed within theoriginal code and is not documented herein.

(5) CSU fgets. This library call CSU gets a field from a
designated file. This CSU existed within the original code
and is not documented herein.

(6) CSU fclose. This library call CSU closes a designated file.
This CSU existed within the original code and is not
documented herein.

(7) Shared data elements. The following is a list of global
variables initialized within the CSU
missilehellfireinit. These variables existed in the
original code and will not be documented herein.

mptr
state
maxflight-time
maxturn-directions
speed-factor
maxrange-limit

- 47 -

22 January 1993
Reference # W003036

maxrange-squared

Rev. 0.0

hellfireammotype
munitionUSHellfire

h. Logic flow. The CSU missilehellfireinit is called by the CSU
weaponsinit. See Appendix A - RWA AireNet Call Tree
Structure. Execution of the CSU missilehellfireinit is
normally done only once during CSCI initialization and is
performed sequentially.

Open hellfire missile characteristics data file.
If file is null, print error message and exit.
Rewind file.
Set index to zero.
While record not end-of-file,

hellfrmisschar [index] =first_field
descript=secondfield
increment index by one

End while.
Close data file.

Open time of .. flight data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set hellfrmiss-poly-deg[O]=firstfield
Set descript=secondfield
Set index to zero.
While record not end-of-file,

hellfiretofcoeff[index]=firstfield
descript=secondfield
increment index by one

End while.
Close data file.

Open burn speed data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set hellfrmiss-poly-deg[1]=firstfield
Set descript=secondfield
Set index to zero.
While record not end-of-file,

hellfire.burn-speedcoeff[index]=firstfield

- 48 -

22 January 1993
Reference # W003036

Rev. 0.0

descript=second field
increment index by one

End while.
Close data file.

Open coast speed data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set hellfr-miss-poly-deg[2]=firstfield
Set descript=second_field
Set index to zero.
While record not end-of-file,

hellfire-coast-speed coeff [index] =firstjfield
descript=second field
increment index by one

End while.
Close data file.

Set state = FALSE
Set maxjflighttime = hellfrmisschar[2]
Set maxturndirections = 1
Set speedifactor = MISSILEUS SPEEDFACTOR
Set maxrangelimit = MISSILEUSMAXRANGELIMIT
Set maxrange-squared = maxjrange_limit * maxrangelimit
Set hellfireammo.type = munitionUSHellfire

Data structures. The following shared data structures are used by
the CSU missilehellfireinit.

(1) Data structure hellfrmisschar. This shared data
structure holds the performance limitations and
characteristics for the hellfire missile. The data structure
is an array of 5 elements. The data structure is given
default initialization during compilation. Detailed
definition of each element is described in TABLE 5.1.10. -
HELLFIRE MISSILE CHARACTERISTICS DATA ARRAY.

(2) Data structure hellfrmiss.poly-deg. This shared data
structure holds the polynomial degree data defining the
size if the polynomial arrays used in this CSU. The data
structure is an array of 3 elements. The data structure is
given default initialization during compilation. Detailed
definition of each element is described in TABLE 5.1.11. -

- 49 -

22 January 1993
Reference # W003036

Rev. 0.0

HELLFIRE MISSILE POLYNOMIAL DEGREE DATA
ARRAY.

(3) Data structure hellfiretofcoeff. This shared data
structure holds the timeof-flight coefficients for the
time-of-flight polynomial. The data structure is an array
of 10 elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.12. - HELLFIRE
MISSILE TIME-OF-FLIGHT DATA ARRAY.

(4) Data structure hellfireburn-speedcoeff. This shared
data structure holds the burn speed coefficients for the
burn speed polynomial. The data structure is an array of
10 elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.13. - HELLFIRE
MISSILE BURN SPEED DATA ARRAY.

(5) Data structure hellfirecoast.speedcoeff. This shared
data structure holds the coast speed coefficients for the
coast speed polynomial. The data structure is an array of
10 elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.14. - HELLFIRE
MISSILE COAST SPEED DATA ARRAY.

j. Local data files. The following data files are part of the local data
of the CSU missilehellfireinit.

(1) Data file "simnet/data/ms hf ch.d". This data file
includes the performance limitations and characteristics
of the hellfire missile. The data file consists of a
maximum of 16 records. Access of the file is "read
onlyacteristics for the tow missileconsists of two fields.
The first field is a float number, and the second field is a
character string of a maximum length of 64. The first
field is assigned to sequential elements of the global
hellfrmisschar data array. These fields have values
consistent with the characteristics outlined in TABLE
5.1.10. - HELLFIRE MISSILE CHARACTERISTICS DATA
ARRAY. The second field is for documentation purposes
only.

-50-

22 January 1993
Reference # W003036

Rev. 0.0

(2) Data file "simnet/data/ms-hf-tf.d". This data file
includes the time-of-flight degree of polynomial and
coefficients data for the hellfire missile. The data file
consists of a maximum of 11 records. Access of the file is
"read only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global hellfrmiss-poly-deg data array.
This field has a value consistent with the characteristics
outlined in TABLE 5.1.11. - HELLFIRE MISSILE
POLYNOMIAL DEGREE DATA ARRAY. The second field
is for documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
hellfiretofcoeff data array. These fields have values
consistent with the characteristics outlined in TABLE
5.1.12. - HELLFIRE MISSILE TIME-OF-FLIGHT DATA
ARRAY. The second field is for documentation purposes
only.

(3) Data file "simnet/data/ms hf bs.d". This data file
includes the burn speed degree of polynomial and
coefficients data for the hellfire missile. The data file
consists of a maximum of 11 records. Access of the file is
"read only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global hellfrmiss-poly-deg data array.
This field has a value consistent with the characteristics
outlined in TABLE 5.1.11. - HELLFIRE MISSILE
POLYNOMIAL DEGREE DATA ARRAY. The second field
is for documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global

- 51 -

22 January 1993
Reference # W003036

Rev. 0.0

hellfire -burn .. speed-coeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.13. - HELLFIRE MISSILE BURN SPEED DATA
ARRAY. The second field is for documentation purposes
only.

(4) Data file "simnet/data/ms hf cs.d". This data file
includes the coast speed degree of polynomial and
coefficients data for the hellfire missile. The data file
consists of a maximum of 11 records. Access of the file is
"read only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global hellfr miss-poly-deg data array.
This field has a value consistent with the characteristics
outlined in TABLE 5.1.11. - HELLFIRE MISSILE
POLYNOMIAL DEGREE DATA ARRAY. The second field
is for documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
hellfirecoastspeed.coeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.14. - HELLFIRE MISSILE COAST SPEED DATA
ARRAY. The second field is for documentation purposes
only.

k. Limitations. There are no additional limitations or unusual
features that restrict the performance of the CSU
missilehellfireinit.

4.2.3. CSU missilestinger..init.

The CSU missile_stingerjinit reads stinger missile data from data files and
initializes the 1) performance limitations data array, 2) the polynomial degree
array, 3) the burn speed polynomial coefficients array, and 4) the coast speed
polynomial coefficients array. The following subparagraphs describe the
design information for the CSU missilestingerjinit.

4.2.3.1. CSU missilestinger.init design specification/constraints.

- 52 -

22 January 1993
Reference # W003036

Rev. 0.0

This subparagraph shall state the design requirements for the CSU. This
subparagraph shall identify the requirements allocated to the CSC that are to
be satisfied or partially satisfied by the CSU and shall identify any constraints
on the design of the CSU.

4.2.3.2. CSU missilestinger.init design.

The CSU missile-stingerinit is coded in the ANSI 'C' programming
language, standard language for the CSCI. The following paragraphs specify
the design of the CSU missilestingerjinit. For a complete listing, see
Appendix K - Source Code Listing For miss-stinger.c.

a. Input/output data elements.

(1) missile-array - This input data structure is a pointer to the
particular array of missiles to be initialized. This structure
is declared global.

(2) nummissiles - This input data element is the number of
missiles defined in the missile-array. This element is
declared global.

(3) No output data elements are declared.

b. Local data elements. TABLE 4.2.3.1 - CSU
"MISSILESTINGERINIT LOCAL DATA DEFINITION TABLE
describes the local data elements originating in the CSU
missile.stingerinit and not used by any other CSU.

- 53 -

22 January 1993
Reference # W003036

Rev. 0.0

TABLE 4.2.3.1 - CSU MISSILESTINGERINIT LOCAL DATA DEFINITION
TABLE

Name i j data tmp_ data-tmp descript fp
_ mint

Description array index temporary temporary temporary data file
integer data float data character pointer
storage for storage for string storage
data read data read read from file
from file from file

Type integer integer float character file pointer
- array

Represent- decimal decimal real number character directory
ation numbr number string pathname

plus 8
character

unique
filename plus
".d" extension

Size N/A N/A N/A 64 N/A
Unit of Non- Variable Variable None None
Measure dimension-al
Limit/range 0-99 Variable Variable N/A N/A
Precision single single single N/A N /A

c. Interrupts and signals. None used.

d. Algorithms. The following algorithms are used in the execution
of the CSU missilestinger-init.

(1) An algorithm to read the performance limitations and
characteristics oi the stinger missile from the
"simnet/data/msst_ch.d" data file is executed. This data
determines the performance limitations and
characteristics of the stinger missile during real-time
execution. Access of the file is "read only".

The "simnet/data/ms-stch.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the array index is set to zero.
Each record is scanned and the first field is assigned to a
temporary float data storage. If the value of the temporary
float data is not the end-of-file, the temporary float data is
assigned to the current indexed stinger-misschar
element. The remainder of the record is assigned to the

-54-

22 January 1993
Reference # W003036

Rev. 0.0

temporary character string. The array index is
incremented by one and the next record is scanned. If the
value of the temporary float data is the end-of-file, the file
is dosed.

(2) An algorithm to read polynomial degree data and burn
speed coefficients data from the
"simnet/data/ms_st_bs.d" data file is executed. This data
determines burn speed polynomial coefficient data used
during real-time execution to compute the speed of the
stinger missile during engine burn for the stinger missile
flyout. Access of the file is "read only".

The "simnet/data/ms-st bs.d" data file is opened and
tested for records. If it. is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the first element of the
stingernmisspolydeg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero. Then, each record is
scanned and the first field is assigned to a temporary float
data storage. If the value of the temporary float data is not
the end-of-file, the temporary float data is assigned to the
current indexed stinger burnspeed.coeff element. The
remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is dosed.

(3) An algorithm to read polynomial degree data and coast
speed coefficients data from the
"simnet/data/msst_cs.d" data file is executed. This data
determines coast speed polynomial coefficient data used
during real-time execution to compute the speed of the
stinger missile after engine burn for the stinger missile
flyout. Access of the file is "read only".

The "simnet/data/ms-stcs.d" data file is opened and
tested for records. If it is a Pull file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not

- 55 -

22 January 1993
Reference # W003036

Rev. 0.0

null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the second element of the
stinger-miss.poly-deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero. Then, each record is
scanned and the first field is assigned to a temporary float
data storage. If the value of the temporary float data is not
the end-of-file, the temporary float data is assigned to the
current indexed stinger-coastspeedccoeff element. The
remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is dosed.

e. Error handling. Errors other than a null data file are not
handled. If a null data file is detected, a message is sent to the
standard error device reporting that the file could not be opened.

f. Data conversion. Data conversion is not done in this CSU.

g. Use of other elements. The following elements are used by CSU
missile_stinger.init.

(1) CSU fopen. This library call opens a designated file. This
CSU existed within the original code and is not
documented herein.

(2) CSU fprintf. This library call CSU prints a designated
string to a designated output device. This CSU existed
within the original code and is not documented herein.

(3) CSU rewind. This library call CSU rewinds a designated
file. This CSU existed within the original code and is not
documented herein.

(4) CSU fscanf. This library call CSU scans a record for a field
from a designated file. This CSU existed within the
original code and is not documented herein.

(5) CSU fgets. This library call CSU gets a field from a
designated file. This CSU existed within the original code
and is not documented herein.

-56-

22 January 1993
Reference # W003036

Rev. 0.0

(6) CSU fclose. This library call CSU closes a designated file.
This CSU existed within the original code and is not
documented herein.

(7) CSU missilefuze.proxinit. This CSU initializes the
proximity fuze for the stinger missile. This CSU existed
within the original code and is not documented herein.

(8) Shared data elements. The following is a list of global
variables initialized within the CSU missilestinger-init.
These variables existed in the original code and will not be
documented herein.

missile-array
nummissiles
stingerarray
numstingers
stinger-array[].mptr.state
stinger.array[].mptr.maxjflight-time
stinger-array[].mptr.max turndirections
speed-factor
maxrangejlimit
maxrange-squared
stinger-ammotype
munitionUS_Stinger

h. Logic flow. The CSU missile stinger init is called by the CSU
weaponsinit. See Appendix A - RWA AireNet Call Tree
Structure. Execution of the CSU missile-stingerinit is
normally done only once during CSCI initialization and is
performed sequentially.

Open stinger missile characteristics data file.
If file is null, print error message and exit.
Rewind file.
Set index to zero.
While record not end-of-file,

stinger misschar [index] =firstjfield
descript=secondfield
increment index by one

End while.
Close data file.

Open burn speed data file.

- 57-

22 January 1993
Reference # W003036

Rev. 0.0

If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set stinger-miss-poly-deg[0] =firstfield
Set descript=secondfield
Set index to zero.
While record not end-of-file,

stinger-burnspeed-coeff [index] =firs tjfield
descript=secondfield
increment index by one

End while.
Close data file.

Open coast speed data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set stinger-miss-poly-deg[1 I=firstfield
Set descript=secondfield
Set index to zero.
While record not end-of-file,

stinger-coastspeedcoeff [index] =first-field
descript=secondfield
increment index by one

End while.
Close data file.

Set numstingers = nummissiles
Set stinger array = missilearray
For index = 0 to less than nummissiles, single step,

Set state = FALSE
Set maxjflight-time = stinger-misschar[l]
Set max turndirections = 1

End for loop
Set speed-factor = MISSILEUSSPEEDFACTOR
Set maxrange-limit = MISSILEUSMAXRANGELIMIT
Set maxrange-squared = max-range-limit * maxrange-limit
Set stinger-ammo-type = munitionUSStinger

Initial proximity fuze; call missilefuze.proxinit

Data structures. The following shared data structures are used by
the CSU missilestinger-init.

-58-

22 January 1993
Reference # W003036

Rev. 0.0

(1) Data structure stinger-misschar. This shared data
structure holds the performance limitations and
characteristics for the stinger missile. The data structure is
an array of 15 elements. The data structure is given
default initialization during compilation. Detailed
definition of each element is described in TABLE 5.1.19. -
STINGER MISSILE CHARACTERISTICS DATA ARRAY.

(2) Data structure stinger miss-poly-deg. This shared data
structure holds the polynomial degree data defining the
size if the polynomial arrays used in this CSU. The data
structure is an array of 2 elements. The data structure is
given default initialization during compilation. Detailed
definition of each element is described in TABLE 5.1.20. -
STINGER MISSILE POLYNOMIAL DEGREE DATA
ARRAY.

(3) Data structure stinger-burn.speedcoeff. This shared
data structure holds the burn speed coefficients for the
burn speed polynomial. The data structure is an array of 2
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.21. - STINGER
MISSILE BURN SPEED DATA ARRAY.

(4) Data structure stinger-coast-speedcoeff. This shared
data structure holds the coast speed coefficients for the
coast speed polynomial. The data structure is an array of 4
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.22. - STINGER
MISSILE COAST SPEED DATA ARRAY.

j. Local data files. The following data files are part of the local data
of the CSU missilestinger-init.

(1) Data file "simnet/data/ms st ch.d". This data file
includes the performance limitations and characteristics
of the stinger missile. The data file consists of a
maximum of 15 records. Access of the file is "read only"
and sequential. Each record consists of two fields. The
first field is a float number, and the second field is a
character string of a maximum length of 64. The first
field is assigned to sequential elements of the global

- 59 -

22 January 1993
Reference # W003036

Rev. 0.0

stinger miss char data array. These fields have values
consistent with the characteristics outlined in TABLE
5.1.19. - STINGER MISSILE CHARACTERISTICS DATA
ARRAY. The second field is for documentation purposes
only.

(2) Data file "simnet/data/ms st bs.d". This data file
includes the burn speed degree of polynomial and
coefficients data for the stinger missile. The data file
consists of a maximum of 3 records. Access of the file is
"read only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global stinger-miss-poly-deg data
array. This field has a value consistent with the
characteristics outlined in TABLE 5.1.20. - STINGER
MISSILE POLYNOMIAL DEGREE DATA ARRAY. The
second field is for documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
stinger burn-speedccoeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.21. - STINGER MISSILE BURN SPEED DATA
ARRAY. The second field is for documentation purposes
only.

(3) Data file "simnet/data/ms st cs.d". This data file
includes the coast speed degree of polynomial and
coefficients data for the stinger missile. The data file
consists of a maximum of 5 records. Access of the file is
"read only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global stinger-miss-poly-deg data
array. This field has a value consistent with the
characteristics outlined in TABLE 5.1.20. - STINGER

- 60 -

22 January 1993
Reference # W003036

Rev. 0.0

MISSILE POLYNOMIAL DEGREE DATA ARRAY. The
second field is for documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
stinger-coastspeedscoeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.22. - STINGER MISSILE COAST SPEED DATA
ARRAY. The second field is for documentation purposes
only.

k. Limitations. There are no additional limitations or unusual
features that restrict the performance of the CSU
missilestingerminit.

4.2.4. CSU hydrainit.

The CSU hydraminit reads hydra rocket data from data files and initializes the
configuration data array. The following subparagraphs describe the design
information for the CSU hydra init.

4.2.4.1. CSU hydra_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This
subparagraph shall identify the requirements allocated to the CSC that are to
be satisfied or partially satisfied by the CSU and shall identify any constraints
on the design of the CSU.

4.2.4.2. CSU hydrainit design.

The CSU hydrainit is coded in the ANSI 'C' programming language,
standard language for the CSCI. The following paragraphs specify the design
of the CSU hydrainit. For a complete listing, see Appendix N - Source Code
Listing For rwahydra.c.

a. Input/output data elements. No input/output data elements are
declared.

b. Local data elements. TABLE 4.2.4.1 - CSU HYDRA_INIT LOCAL
DATA DEFINITION TABLE describes the local data elements
originating in the CSU hydrainit and not used by any other
CSU.

- 61 -

22 January 1993
Reference # W003036

40 Rev. 0.0

TABLE 4.2.4.1 - CSU HYDRAINIT LOCAL DATA DEFINITION TABLE

Name i datatmp_ data-tmp descript fp
int

Descrip- array index temporary temporary temporary data file
tion integer data float data character pointer

storage for storage for string storage
data read data read read from file
from file from file

Type integer integer float character file pointer
array

Represent- decimal decimal real number character directory
ation number number string pathname

plus 8
character

unique
filename plus
".d" extension

Size N/A N/A N/A 64 N/A
Unit of Non-dimen- Variable Variable None None
Measure sional
Limit/range 0-99 Variable Variable N/A N/A
Precision single single single N/A N/A

c. Interrupts and signals. None used.

d. Algorithms. The following algorithms are used in the execution
of the CSU hydra-init.

(1) An algorithm to read the configuration for the hydra
rocket from the "simnet/data/rwa-hydr.d" data file is
executed. This data determines the configuration for the
hydra rocket during real-time execution. Access of the file
is "read only".

The "simnet/data/rwa-hydr.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the array index is set to zero.
Each record is scanned and the first field is assigned to a
temporary float data storage. If the value of the temporary
float data is not the end-of-file, the temporary float data is
assigned to the current indexed hydra .rktchar element.
The remainder of the record is assigned to the temporary
character string. The array index is incremented by one

- 62 -

22 January 1993
Reference # W003036

Rev. 0.0

-d the next record is scanned. If the value of the
.nporary float data is the end-of-file, the file is dosed.

e. Error handling. Errors other than a null data file are not
handled. If a null data file is detected, a message is sent to the
standard error device reporting that the file could not be opened.

f. Data conversion. Data conversion is not done in this CSU.

g. Use of other elements. The following elements are used by CSU
hydraminit.

(1) CSU fopen. This library call opens a designated file. This
CSU existed within the original code and is not
documented herein.

(2) CSU fprintf. This library call CSU prints a designated
string to a designated output device. This CSU existed
within the original code and is not documented herein.

(3) CSU rewind. This library call CSU rewinds a designated
file. This CSU existed within the original code and is not
documented herein.

(4) CSU fscanf. This library call CSU scans a record for a field
from a designated file. This CSU existed within the
original code and is not documented herein.

(5) CSU fgets. This library call CSU gets a field from a
designated file. This CSU existed within the original code
and is not documented herein.

(6) CSU fdose. This library call CSU closes a designated file.
This CSU existed within the original code and is not
documented herein.

(7) CSU rotateinitelement. This CSU existed within the
original code and is not documented herein.

(8) CSU hull. This CSU existed within the original code and
is not documented herein.

(9) CSU articulation. This CSU existed within the original
code and is not documented herein.

- 63 -

22 January 1993
Reference # W003036

Rev. 0.0

(10) CSU missile_hydrajinit. This CSU is documented in
paragraph 4.2.5 - CSU missilehydra-init.

(11) CSU missile_hydra-set-pylon-positionoffsets. This
CSU existed within the original code and is not
documented herein.

(12) CSU hydra-config-rockets. This CSU existed within the
original code and is not documented herein.

(13) Shared data elements. The following is a list of global
variables initialized within the CSU hydrainit. These
variables existed in the original code and will not be
documented herein.

left_launcherpos
right-launcher-pos
articulation-pos
articulationelement
pylon...L_element
pylonR_element
hydras
left_rocketlaunch
right.rocketlaunch
pylonsset

h. Logic flow. The CSU hydrainit is called by the CSU
weapons-init. See Appendix A - RWA AireNet Call Tree
Structure. Execution of the CSU hydra-init is done during CSCI
initialization.

Open hydra rocket cconfiguration data file.
If file is null, print error message and exit.
Rewind file.
Set index to zero.
While record not end-of-file,

hydra-rktchar[index]=first_field
descript=secondfield
increment index by one

End while.
Close data file.

Set leftlauncher.pos[0] = hydrarktchar[O]

-64-

22 January 1993
Reference # W003036

Rev. 0.0

Set right-launcherpos[0] = hydrajrkt-char[01
Set articulation-pos[1] = hydra-rktchar[1]
Set articulation-pos[2] = hydra rktchar[2]
Rotate articulationelement
If Rotate articulation element fails, send error message
Rotate pylonL_element
Rotate pylon_R_element
Call missile hydra-init
Call missile hydraset-pylon-positionoffsets
Call hydra-configjrockets
Set leftrocketlaunch = FALSE
Set right-rocketlaunch = False
Set pylons-set = FALSE

i. Data structures. The following shared data structures are used by
the CSU hydrainit.

(1) Data structure hydrajrkt char. This shared data structure
holds the configuration for the hydra rocket. The data
structure is an array of 7 elements. The data structure is
given default initialization during compilation. Detailed
definition of each element is described in TABLE 5.1.52. -
HYDRA ROCKET CONFIGURATION DATA ARRAY.

j. Local data files. The following data files are part of the local data
of the CSU hydrajinit.

(1) Data file "simnet/data/rwahydr.d". This data file
includes the configuration and characteristics of the hydra
rocket. The data file consists of a maximum of 7 records.
Access of the file is "read only" and sequential. Each
record consists of two fields. The first field is a float
number, and the second field is a character string of a
maximum length of 64. The first field is assigned to
sequential elements of the global hydra rktchar data
array. These fields have values consistent with the
characteristics outlined in TABLE 5.1.52. - HYDRA
ROCKET CONFIGURATION DATA ARRAY. The second
field is for documentation purposes only.

k. Limitations. There are no additional limitations or unusual
features that restrict the performance of the CSU hydra-init.

4.2.5. CSU missile~hydrajnit.

- 65 -

22 January 1993
Reference # W003036

Rev. 0.0

The CSU missile-hydrainit reads hdyra rocket data from data files and
initializes the characteristic data array. This CSU copies the paramaters into
variables static to the rkt-hydra.c module and initializes the state of all the
rockets. The following subparagraphs describe the design information for the
CSU missile.hydrainit.

4.2.5.1. CSU missile.hydrainit design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This
subparagraph shall identify the requirements allocated to the CSC that are to
be satisfied or partially satisfied by the CSU and shall identify any constraints
on the design of the CSU.

4.2.5.2. CSU missilejhydrajinit design.

The CSU missile-hydrainit is coded in the ANSI 'C' programming
language, standard language for the CSCI. The following paragraphs specify
the design of the CSU missile-hydra-init. For a complete listing, see
Appendix M - Source Code Listing For rkt-hydra.c.

a. Input/output data elements.

(1) rocket-array - This input data structure is an array of
rocketsof structure type HYDRA.ROCKET. This structure
is declared global.

(2) numrockets - This input data element is the number of
rockets defined in the rocket-array. This element is
declared global.

(3) No output data elements are declared.

b. Local data elements. TABLE 4.2.5.1 - CSU
MISSILEHYDRAINIT LOCAL DATA DEFINITION TABLE
describes the local data elements originating in the CSU
missilejhydrainit and not used by any other CSU.

-66-

22 January 1993
Reference # W003036

Rev. 0.0

TABLE 4.2.5.1 - CSU MISSILE-HYDRAINIT LOCAL DATA DEFINITION
TABLE

Name i datatmp. data.tmp descript fp
int

Descrip- array index temporary temporary temporary data file
tion integer data float data character pointer

storage for storage for string storage
data read data read read from file
from file from file

Type integer integer float character file pointer
array

Represent- decimal decimal real number character directory
ation number nuiber string pathname

plus 8
character

unique
filename plus
".d" extension

Size N/A N/A N/A 64 N/A
Unit of Non-dimen- Variable Variable None None
Measure sional
Limit/range 0-99 Variable Variable N/A N/A
Precision single single single N/A N/A

c. Interrupts and signals. None used.

d. Algorithms. The following algorithms are used in the execution
of the CSU missilehydrajinit.

(1) An algorithm to read the characteristics for the hdyra
rocket from the "simnet/data/rkt-hydr.d" data file is
executed. This data determines the characteristics for the
hdyra rocket during real-time execution. Access of the file
is "read only".

The "simnet/data/rkt-hydr.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the array index is set to zero.
Each record is scanned and the first field is assigned to a
temporary float data storage. If the value of the temporary
float data is not the end-of-file, the temporary float data is
assigned to the current indexed rkt hydrachar element.

SThe remainder of the record is assigned to the temporary
character string. The array index is incremented by one

- 67 -

22 January 1993
Reference # W003036

Rev. 0.0

and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is dosed.

e. Error handling. Errors other than a null data file are not
handled. If a null data file is detected, a message is sent to the
standard error device reporting that the file could not be opened.

f. Data conversion. Data conversion is not done in this CSU.

g. Use of other elements. The following elements are used by CSU
missile-hydrainit.

(1) CSU fopen. This library call opens a designated file. This
CSU existed within the original code and is not
documented herein.

(2) CSU fprintf. This library call CSU prints a designated
string to a designated output device. This CSU existed
within the original code and is not documented herein.

(3) CSU rewind. This library call CSU rewinds a designated
file. This CSU existed within the original code and is not
documented herein.

(4) CSU fscanf. This library call CSU scans a record for a field
from a designated file. This CSU existed within the
original code and is not documented herein.

(5) CSU fgets. This library call CSU gets a field from a
designated file. This CSU existed within the original code
and is not documented herein.

(6) CSU fclose. This library call CSU closes a designated file.
This CSU existed within the original code and is not
documented herein.

(7) CSU missile_utilloadball-trajfile. This CSU existed
within the original code and is not documented herein.

(8) CSU rva create.outputjlist. This CSU existed within the
original code and is not documented herein.

(9) CSU missilefuze.proxinit. This CSU existed within
the original code and is not documented herein.

-68-

22 January 1993
Reference # W003036

Rev. 0.0

(10) Shared data elements. The following is a list of global
variables initialized within the CSU missile-hydrainit.
These variables existed in the original code and will not be
documented herein.

hydra-array
numhydra
rkts injflight
hydra-fly
pylon_x
pylon-y
pylon_z
flight-time
speed -factor
MISSILEUSSPEEDFACTOR
maxrange-limit
MISSILEUSMAXRANGELIMIT
balltableloaded
tablesize
HYDRA_TRAJFILE

* ball table
flechettevehlist
flechette is validveh
RVAALLVEHICLESLIST

h. Logic flow. The CSU missile -hydra-init is called by the CSU
hydrainit. See Appendix A - RWA AireNet Call Tree
Structure. Execution of the CSU missile-hydrainit is done
during hydra rocket initialization.

Open hdyra rocket characteristic data file.
If file is null, print error message and exit.
Rewind file.
Set index to zero.
While record not end-of-file,

rkt-hydrachar [index] =firstfield
descript=secondfield
increment index by one

End while.
Close data file.

Set hydra-array = rocketarray
Set num-hydra = num-rocket

- 69 -

22 January 1993
Reference # W003036

Rev. 0.0

For each rocket,
Set state = FREE
Set missileid = 0

Set rkts-in-flight = 0
Set hydra.fly = 0
Set pylon.x = 0.0
Set pylon -y = 0.0
Set pylon -z = 0.0
Set flight time = 0
Set speed-factor = MISSILEUSSPEEDFACTOR
Set max-range limit = MISSILEUSMAXRANGELIMIT
If balltableloaded is FALSE,

Load ballistics table
Set balltableloaded = TRUE

Create flechettevehlist for proximity fuze
Initialize the proximity fuze for rockets armed with Flechettes

Data structures. The following shared data structures are used by
the CSU missile-hydrainit.

(1) Data structure rkt.hydrachar. This shared data structure
holds the characteristics for the hdyra rocket. The data
structure is an array of 12 elements. The data structure is
given default initialization during compilation. Detailed
definition of each element is described in TABLE 5.1.53. -
HDYRA ROCKET CHARACTERISTICS DATA ARRAY.

j. Local data files. The following data files are part of the local data
of the CSU missile.hydrainit.

(1) Data file "simnet/data/rkt-hydr.d". This data file
includes the characteristics of the hdyra rocket. The data
file consists of a maximum of 12 records. Access of the file
is "read only" and sequential. Each record consists of two
fields. The first field is a float number, and the second
field is a character string of a maximum length of 64. The
first field is assigned to sequential elements of the global
rkt-hydra char data array. These fields have values
consistent with the characteristics outlined in TABLE
5.1.53. - HDYRA ROCKET CHARACTERISTICS DATA
ARRAY. The second field is for documentation purposes
only.

-70-

22 January 1993
Reference # W003036

Rev. 0.0

(2) Data file "simnet/data/hydra70.sd". This data file
includes the trajectory data of the hdyra rocket. This data
file existed under the original code and has not been
modified. It is loaded during execution of the CSU
missile-hydrainit.

(3) Data file "simnet/data/hydra70.sp". This data file
includes the trajectory parameters of the hdyra rocket.
This data file existed under the original code and has not
been modified. It is loaded during execution of the CSU
missile-hydrainit.

k. Limitations. There are no additional limitations or unusual
features that restrict the performance of the CSU
missile-hydrainit.

4.2.6. CSU missile-m73_init.

The CSU missilem73_init reads m73 missile data from data files and
initializes the performance limitations and characteristics data array. The
following subparagraphs describe the design information for the CSU
missilem73_init.

4.2.6.1. CSU missilem73_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This
subparagraph shall identify the requirements allocated to the CSC that are to
be satisfied or partially satisfied by the CSU and shall identify any constraints
on the design of the CSU.

4.2.6.2. CSU missile_.m73_init design.

The CSU missilem73_init is coded in the ANSI 'C' programming language,
standard language for the CSCI. The following paragraphs specify the design
of the CSU missilem73_init. For a complete listing, see Appendix P - Source
Code Listing For sub m73.c.

a. Input/output data elements.

(1) bmptr - This input data element is a pointer to
BALLASTICMISSILE structure that's ammo-type is
MPSM, i.e., it releases sub-munitions of type
munitionUSM73. This structure is declared global.

- 71 -

22 January 1993
Reference # W003036

Rev. 0.0

(2) submun - This input data element is a pointer to the
sub-munition structure associated with bmptr. This
strucutre is declared global.

(3) speed - This input data element is the terminal speed of
the rocket at detonation. This strucutre is declared global.

(4) No output data elements are declared.

b. Local data elements. TABLE 4.2.6.1 - CSU MISSILEM73_INIT
LOCAL DATA DEFINITION TABLE describes the local data
elements originating in the CSU missile m73_init and not used
by any other CSU.

-72-

22 January 1993
Reference # W003036

Rev. 0.0

STABLE 4.2.6.1 - CSU MISSILE_.M73_INIT LOCAL DATA DEFINITION
TABLE

Name i datajtmp descript fp
Description array index temporary temporary data file

float data character pointer
storage for string storage
data read read from file
from file

Type integer float character file pointer
array

Represent- decimal real number character directory
ation number string pathname

plus 8
character

unique
filename plus
".d" extension

Size N/A N/A 64 N/A
Unit of Non- Variable None None
Measure dimension-al
Limit/range 0-99 Variable N/A N/A
Precision single single N/A N/A

TABLE 4.2.6.1 - CSU MISSILE M73_INIT LOCAL DATA DEFINITION
TABLE [CONTINUED]

Name impact pt displacement
Description impact point displacement

for the M73 from the

target of the
impact point

Type VECTOR VECTOR
Represent- X, Y, Z X, Y, Z
ation coordinates coordinates
Size N/A N/A
Unit of map map
Measure coordinates coordinates

Limit/range N/A N/A

Precision single single

c. Interrupts and signals. None used.

d. Algorithms. The following algorithms are used in the execution
of the CSU missilem73_init.

(1) An algorithm to read the performance limitations and
characteristics of the m73 missile from the

- 73 -

22 January 1993
Reference # W003036

Rev. 0.0

"simnet/data/sub m73.d" data file is executed. This data
determines the perforrrn-nce limitations and
characteristics of the m73 missile during real-time
execution. Access of the file is "read only".

The "simnet/data/subm73.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard e:ror device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the array index is set to zero.
Each record is scanned and the first field is assigned to a
temporary float data storage. If the value of the temporary
float data is not the end-of-file, the temporary float data is
assigned to the current indexed subm73_char element.
The remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is dosed.

e. Error handling. Errors other than a null data file are not
handled. If a null data file is detected, a message is sent to the
standard error device reporting that the file could not be opened.

f. Data conversion. Data conversion is not done in this CSU.

g. Upr, of other elements. The following elements are used by CSU
missile m73_init.

(1) CSU fopen. This library call opens a designated file. This
CSU existed within the original code and is not
documented herein.

(2) CSU fprintf. This library call CSU prints a designated
string to a designated output device. This CSU existed
within the original code and is not documented herein.

(3) CSU rewind. This library call CSU rewinds a designated
file. This CSU existed within the original code and is not
documented herein.

(4) CSU fscanf. This library call CSU scans a record for a field
from a designated file. This CSU existed within the
original code and is not documented herein.

-- 74-

22 January 1993
Reference # W003036

Rev. 0.0

(5) CSU fgets. This library call CSU gets a field from a
designated file. This CSU existed within the original code
and is not documented herein.

(6) CSU fclose. This library call CSU closes a designated file.
This CSU existed within the original code and is not
documented herein.

(7) CSU missile util comm release submunition. This
CSU existed within the original code and is not
documented herein.

(8) Shared data elements. The following is a list of global
variables initialized within the CSU missile m73_init.
These variables existed in the original code and will not be
documented herein.

bmptr
submun
speed
time
impact.timer
impact.distance
impact pt[3]
location[3]
MSLTYPEBALLISTIC
SUBMUNIMPACT
zerovelocity

h. Logic flow. The CSU missilem73_init is called by the CSU
missile-hydra-fly-rockets. See Appendix A - RWA AireNet
Call Tree Structure. Execution of the CSU missilem73_init is
done for each hydra rocket flyout.

Open m73 missile characteristics data file.
If file is null, print error message and exit.
Rewind file
Set index to zero.
While record not end-of-file,

subm73 char [index] =first-field
descript=secondfield
increment index by one

End while.

- 75 -

22 January 1993
Reference # W003036

Rev. 0.0

Close data file.

Set time = 0
Set impact.timer = 0
Set impact.distance = speed
Get point under sub-munition release point

Set impact_pt[XI = location[X]
Set impact-pt[Y] = location[Y]
Set impact-pt[Z] = 10.0
Call missileutil-comm-releasesub munition

i. Data structures. The following shared data structures are used by
the CSU missilem73_init.

(1) Data structure subm73_char. This shared data structure
holds the performance limitations and characteristics for
the m73 missile. The data structure is an array of 3
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.54. -
SUBMUNITIONS M73 CHARACTERISTICS DATA

* ARRAY.

j. Local data files. The following data files are part of the local data
of the CSU missilem73_init.

(1) Data file "simnet/data/sub-m73.d". This data file
includes the performance limitations and characteristics
of the m73 missile. The data file consists of a maximum
of 3 records. Access of the file is "read only" and
sequential. Each record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
sub m73_char data array. These fields have values
consistent with the characteristics outlined in TABLE
5.1.54. - SUBMUNITIONS M73 CHARACTERISTICS
DATA ARRAY. The second field is for documentation
purposes only.

k. Limitations. There are no additional limitations or unusual
features that restrict the performance of the CSU
missilem73_init.

-76-

22 January 1993
Reference # W003036

40
Rev. 0.0

4.2.7. CSU missile-flechette-init.

The CSU missileflechetteinit reads flechette data from data files and
initializes the 1) performance limitations data array and 2) the speed after
release polynomial coefficients array to behave according to submunitions
type of munitionUSFlechette_60. The following subparagraphs describe
the design information for the CSU missileflechetteinit.

4.2.7.1. CSU missileflechetteinit design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This
subparagraph shall identify the requirements allocated to the CSC that are to
be satisfied or partially satisfied by the CSU and shall identify any constraints
on the design of the CSU.

4.2.7.2. CSU missile-flechette-init design.

The CSU missileflechetteinit is coded in the ANSI 'C' programming
language, standard language for the CSCI. The following paragraphs specify
the design of the CSU missileflechetteinit. For a complete listing, see
Appendix 0 - Source Code Listing For subflech.c.

a. Input/output data elements.

(1) bmptr - This input data element is a pointer to a
BALLISTICMISSILE structure that's ammo-type is
Flechette, i.e., it releases sub-munitions type of
munitionUSFlechette_60. This structure is declared
global.

(2) submun - This input data element is a pointer to a
BALLISTICSUBMUN structure associated with bmptr.
This element is declared global.

(3) initspeed - This input data element is the terminal speed
of the rocket and assigned as the initial speed of the
flechettes. This element is declared global.

(4) No output data elements are declared.

b. Local data elements. TABLE 4.2.7.1 - CSU
MISSILEFLECHETTEINIT LOCAL DATA DEFINITION
TABLE describes the local data elements originating in the CSU
missileflechetteinit and not used by any other CSU.

-77-

22 January 1993
Reference # W003036

40 Rev. 0.0

TABLE 4.2.7.1 - CSU MISSILE FLECHETIE_INIT LOCAL DATA
DEFINITION TABLE

Name i datatmprap data.tmp descript fp
int

Descrip- array index temporary temporary temporary data file
tion integer data float data character pointer

storage for storage for string storage
data read data read read from file
from file from file

Type integer integer float character file pointer
array

Represent- decimal decimal real number character directory
ation number number string pathname

plus 8
character

unique
filename plus
".d" extension

Size N/A N/A N/A 64 N/A
Unit of Non-dimen- Variable Variable None None
Measure sional
Limit/range 0-99 Variable Variable N/A N/A
Precision single single single N/A N/A

C. Interrupts and signals. None used.

d. Algorithms. The following algorithms are used in the execution
of the CSU missileflechetteinit.

(1) An algorithm to read the performance limitations and
characteristics of the flechette from the
"simnet/data/sub flec.d" data file is executed. This data
determines the performance limitations and
characteristics of the flechette during real-time execution.
Access of the file is "read only".

The "simnet/data/sub_flec.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the array index is set to zero.
Each record is scanned and the first field is assigned to a
temporary float data storage. If the value of the temporary
float data is not the end-of-file, the temporary float data is0 assigned to the current indexed subflechchar element.
The remainder of the record is assigned to the temporary

- 78 -

22 January 1993
Reference # W003036

Rev. 0.0

character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and burn
speed coefficients data from the "simnet/data/flec-spd.d"
data file is executed. This data determines burn speed
polynomial coefficient data used during real-time
execution to compute the speed of the flechette after
release for the flechette flyout. Access of the file is "read
only".

The "simnet/data/flec.spd.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the variable subjflech-poly-deg.
The second element of the first record is assigned to the
temporary character string. The local array index is set to
zero. Then, each record is scanned and the first field is
assigned to a temporary float data storage. If the value of
the temporary float data is not the end-of-file, the
temporary float data is assigned to the current indexed
flechette-speedcoef element. The remainder of the
record is assigned to the temporary character string. The.
array index is incremented by one and the next record is
scanned. If the value of the temporary float data is the
end-of-file, the file is closed.

e. Error handling. Errors other than a null data file are not
handled. If a null data file is detected, a message is sent to the
standard error device reporting that the file could not be opened.

f. Data conversion. Data conversion is not done in this CSU.

g. Use of other elements. The following elements are used by CSU
missile_tlechetteinit.

(1) CSU fopen. This library call opens a designated file. This
CSU existed within the original code and is not

* documented herein.

-- 79-

22 January 1993
Reference # W003036

Rev. 0.0

(2) CSU fprintf. This library call CSU prints a designated
string to a designated output device. This CSU existed
within the original code and is not documented herein.

(3) CSU rewind. This library call CSU rewinds a designated
file. This CSU existed within the original code and is not
documented herein.

(4) CSU fscanf. This library call CSU scans a record for a field
from a designated file. This CSU existed within the
original code and is not documented herein.

(5) CSU fgets. This library call CSU gets a field from a
designated file. This CSU existed within the original code
and is not documented herein.

(6) CSU fclose. This library call CSU doses a designated file.
This CSU existed within the original code and is not
documented herein.

(7) CSU vecscale. This CSU scales the argument vector.
This CSU existed within the original code and is not
documented herein.

(8) CSU missileutil commreleasesubmunition. This
CSU existed within the original code and is not
documented herein.

(9) Shared data elements. The following is a list of global
variables initialized within the CSU
missileflechetteinit. These variables existed in the
original code and will not be documented herein.

bmptr
submun
ini tspeed
distance
pptr
orientation
velocity
MSLTYPEBALLISTIC
SUB MUN CANISTER
zerovector

-80-

22 January 1993
Reference # W003036

Rev. 0.0

0 h. Logic flow. The CSU missileflechetteinit is called by the CSU
missile-hydrajfly-rockets. See Appendix A - RWA AireNet
Call Tree Structure. Execution of the CSU missilem73_init is
done for each hydra rocket flyout..

Open flechette characteristics data file.
If file is null, print error message and exit.
Rewind file.
Set index to zero.
While record not end-of-file,

subflechchar[index]=first_field
descript=secondfield
increment index by one

End while.
Close data file.

Open speed data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set subflechWpoly.deg=firstjfield
Set descript=secondfield
Set index to zero.
While record not end-of-file,

flechette -speed-coef [index] =firs t_field
descript=secondfield
increment index by one

End while.
Close data file.

Set time = 0
Set dart = address of submun
Set distance = 0.0
Set init-speed = initspeed
Set pptr = NULL
Scale the orientation vector; call vecscale
Call missile_utilcommreleasesubmunition

i. Data structures. The following shared data structures are used by
the CSU missileflechetteinit.

(1) Data structure subflechchar. This shared data structure
holds the performance limitations and characteristics for

- 81 -

22 January 1993
Reference # W003036

Rev. 0.0

the flechette. The data structure is an array of 3 elements.
The data structure is given default initialization during
compilation. Detailed definition of each element is
described in TABLE 5.1.55. - SUBMUNITIONS
FLECHETTE CHARACTERISTICS DATA ARRAY.

(2) Data structure flechette.speedscoef. This shared data
structure holds the burn speed coefficients for the burn
speed polynomial. The data structure is an array of 5
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.56. - FLECHETTE
SPEED DATA ARRAY.

j. Local data files. The following data files are part of the local data
of the CSU missileflechetteinit.

(1) Data file "simnet/data/subflec.d". This data file includes
the performance limitations and characteristics of the
flechette. The data file consists of a maximum of 3
records. Access of the file is "read only" and sequential.
Each record consists of two fields. The first field is a float
number, and the second field is a character string of a
maximum length of 64. The first field is assigned to
sequential elements of the global subflechchar data
array. These fields have values consistent with the
characteristics outlined in TABLE 5.1.55. -
SUBMUNITIONS FLECHETTE CHARACTERISTICS
DATA ARRAY. The second field is for documentation
purposes only.

(2) Data file "simnet/data/flec.spd.d". This data file includes
the burn speed degree of polynomial and coefficients data
for the flechette. The data file consists of a maximum of 6
records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
the global variable subflech-poly.deg. This field has an
integer value. The second field is for documentation
purposes only.

0
- 82 -

22 January 1993
Reference # W003036

Rev. 0.0

Each remaining records consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
flechette.speedcoef data array. These fields have values
consistent with the characteristics outlined in TABLE
5.1.56. - FLECHETTE SPEED DATA ARRAY. The second
field is for documentation purposes only.

k. Limitations. There are no additional limitations or unusual
features that restrict the performance of the CSU
missile flechetteinit.

4.3. CSC controls restorecontrols.

The following subparagraphs identify and describe the CSU added to this CSC.
The CSC controlsrestorecontrols uses other CSUs that existed in the
original code, were not modified, and are not documented herein.

4.3.1. CSU controls.radios_init.

The CSU controlsradiosinit sets the pilot and copilot radio kill output to
off. This CSU initializes the radio disable output values.The following
subparagraphs describe the design information for the CSU
controlsradiosinit.

4.3.1.1. CSU controlsjradios.init design specification/constraints.

This CSU is developed to allow the radios on the RWA devices to be disabled
upon ownship death. This CSU sets the two signals output to the associated
hardware to the do not disable state (OFF).

4.3.1.2. CSU controlsradios.init design.

The CSU controlradiosinit is coded in the ANSI 'C' programming
language, standard language for the CSCI. The following paragraphs specify
the design of the CSU controlsjradiosinit. The function depends on two idc
positions being connected via hardware and the associated values set in the
rwhard.p file which must be prepocessed.

a. Input/output data elements. None.

b. Local data elements. None.

c. Interrupts and signals. None.

- 83 -

22 January 1993
Reference # W003036

Rev. 0.0

d. Algorithms. None.

e. Error handling. None.

f. Data conversion. None.

g. Use of other elements. The following elements are used by CSU
controls-radiosinit.

(1) CSU idc-outputset. This function call sets the hardware
output signals to not disable radios. This CSU existed
within the original code is is not documented herin.

(2) Shared data elements. The following is a list of global
variables initialized within the CSU controlsradiosinit.

PILRADIOKILL
CPGRADIOKILL
OUTPUTOFF

h. Logic flow. The CSU controlsradiosinit is called by the CSU
controls.restorecontrols. See Appendix A - RWA AireNet Call
Tree Structure. Execution of the CSU controlsradiosinit is
normally done only once during CSCI initialization.

Call idc-output set
Set PILRADIOKILL = OUTPUTOFF
Set CPGRADIO KILL = OUTPUTOFF

End

i. Data structures. The following shared data structures are used by
the CSU controlsradiosinit.

(1) Data structure PILRADIOKILL. This data structure
already existed and is thus not documeted herin.

(2) Data structure CPGRADIOKILL. This data structure
already existed and is thus not documeted herin.

(3) Data structure OUTPUTSET. This data structure already
existed and is thus not documeted herin

-84-

22 January 1993
Reference # W003036

Rev. 0.0

j. Local data files. None.

k. Limitations. There are no additional limitations or unusual
features that restrict the performance of the CSU
controlsradiosinit.

4.4. CSC failvehiclejs_destroyed.

The following subparagraphs identify and describe the CSU added to this CSC.
The CSC fail vehicleis.destroyed uses other CSUs that existed in the
original code, were not modified, and are not documented herein.

4.4.1. CSU controls_.kill.radios.

The CSU controlskillradios sets the pilot and copilot radio kill output to
off. This CSU sets the radio disable output values. The following
subparagraphs describe the design information for the CSU
controls_killradios.

4.4.1.1. CSU controls._kill.radios design specification/constraints.

4 This CSU is developed to allow the radios on the RWA devices to be disabled
upon ownship death. This CSU sets the two signals output to the associated
hardware to the disable state (ON).

4.4.1.2. CSU controls_kill.radios design.

The CSU controlradiosinit is coded in the ANSI 'C' progc'amming
language, standard language for the CSCI. The following paragraphs specify
the design of the CSU controlskillradios. The function depends on two idc
positions being connected via hardware and the associated values set in the
rwhard.p file which must be prepocessed.

a. Input/output data elements. None.

b. Local data elements. None.

c. Interrupts and signals. None.

d. Algorithms. None.

e. Error handling. None.

f. Data conversion. None.

- 85 -

22 January 1993
Reference # W003036

Rev. 0.0

g. Use of other elements. The following elements are used by CSU
controls-kill-radios.

(1) CSU idcoutput_set. This function call sets the hardware
output signals to disable radios. This CSU existed within
the original code is is not documented herin.

(2) Shared data elements. The following is a list of global
variables initialized within the CSU controlskill-radios.

PIL RADIO KILL
CPG RADIO KILL
OUTPUTON

h. Logic flow. The CSU controlskill-radios is called by the CSU
fall cat kill. See Appendix A - RWA AireNet Call Tree
Structure. Execution of the CSU controlskill-radios is
normally done only once during CSCI initialization.

Call idcoutput set
Set PILRADIOKILL = OUTPUTON
Set CPGRADIOKILL = OUTPUTON

End

i. Data structures. The following shared data structures are used by
the CSU controlskillradios.

(1) Data structure PILRADIOKILL. This data structure
already existed and is thus not documeted herin.

(2) Data structure CPGRADIOKILL. This data structure
already existed and is thus not documeted herin.

(3) Data structure OUTPUTSET. This data structure already
existed and is thus not documeted herin

j. Local data files. None.

k. Limitations. There are no additional limitations or unusual
features that restrict the performance of the CSU
controlskill radios.

9 4.5. Additional CSUs.

-86-

22 January 1993
Reference # W003036

Rev. 0.0

The following subparagraphs identify and describe additional CSUs that were
modified for data reads under this delivery order. These CSUs would usually
replace one of the missile CSUs for inclusion within a build having the
desired missile system characteristics. The following CSUs are not part of the
baseline build, and are documented here for convenience. These CSUs are
generally called by CSC weaponsminit during initialization of the CSCI.

4.5.1. CSU missile-adat-init.

The CSU missileadatinit reads adat missile data from data files and
initializes the 1) performance limitations and characteristics data array, 2) the
polynomial degree array, 3) the burn speed polynomial coefficients array, 4)
the coast speed polynomial coefficients array, 5) the burn turn, maximum
cosine coefficients array, 6) the coast turn, maximum cosine coefficients array,
and 7) the temporal bias coefficients array. This CSU copies the parameters
into variables static to the missadat.c module and initializes the state of all
the missiles. This CSU also initializes the proximity fuze. The following
subparagraphs describe the design information for the CSU misile_adatminit.

4.5.1.1. CSU missileadat-init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This
subparagraph shall identify the requirements allocated to the CSC that are to
be satisfied or partially satisfied by the CSU and shall identify any constraints
on the design of the CSU.

4.5.1.2. CSU missile adat-init design.

The CSU missileadatinit is coded in the ANSI 'C' programming language,
standard language for the CSCI. The following paragraphs specify the design
of the CSU missileadatinit. For a complete listing, see Appendix E - Source
Code Listing For missadat.c.

a. Input/output data elements.

(1) missile-array - This input data structure is a pointer to the
array of ADAT missiles defined in vehicle specific code..
This structure is declared global.

(2) num -missiles - This input data element is the number of
missiles defined in the missile-array. This element is
declared global.

(3) No output data elements are declared.

- 87 -

22 January 1993
Reference # W003036

Rev. 0.0

b. Local data elements. TABLE 4.5.1.1 - CSU MISSILEADATINIT

LOCAL DATA DEFINITION TABLE describes the local data

elements originating in the CSU missile_adatinit and not used

by any other CSU.

- 88 -

22 January 1993
Reference # W003036

Rev. 0.0

TABLE 4.5.1.1 - CSU MISSILEADATINIT LOCAL DATA DEFINITION
TABLE

Name i datatmp_ data-tmp descript fp
int

Descrip- array index temporary temporary temporary data file
tior. integer data float data character pointer

storage for storage for string storage
data read data read read from file
from file from file

Type integer integer float character file pointer
array

Represent- decimal decimal real number character directory
ation number number string pathname

plus 8
character

unique
filename plus
".d" extension

Size N/A N/A N/A 64 N/A
Unit of Non- Variable Variable None None

LMeasure dimension-al
Limit/range 0-99 Variable Variable N/A N/A
Precision singlle single single N/A N/A

TABLE 4.5.1.1 - CSU MISSILEADATINIT LOCAL DATA DEFINITION
TABLE [CONTINUED]

Name mag
Descrip- scale of
lion magnetic

orient-
ation vector

Týpe float
Represent- real number
ation
Size N/A
Unit of None
Measure
Limit/range N/A
Precision single

c. Interrupts and signals. None used.

d. Algorithms. The following algorithms are used in the execution
of the CSU missileadat.init.

- 89 -

22 January 1993
Reference # W003036

Rev. 0.0

S(1) An algorithm to read the performance limitations and
characteristics of the adat missile from the
"simnet/data/ms ad ch.d" data file is executed. This
data determines the performance limitations and
characteristics of the adat missile during real-time
execution. Access of the file is "read only".

The "simnet/data/ms-ad-ch.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the array index is set to zero.
Each record is scanned and the first field is assigned to a
temporary float data storage. If the value of the temporary
float data is not the end-of-file, the temporary float data is
assigned to the current indexed adatmisschar element.
The remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and burn
speed coefficients data from the
"simnet/data/ms ad bs.d" data file is executed. This data
determines burn speed polynomial coefficient data used
during real-time execution to compute the speed of the
adat missile during engine burn for the adat missile
flyout. Access of the file is "read only".

The "simnet/data/msadbs.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the first element of the
adatmiss-poly-deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero. Then, each record is
scanned and the first field is assigned to a temporary float
data storage. If the value of the temporary float data is not
the end-of-file, the temporary float data is assigned to the
current indexed adatburnspeedscoeff element. The
remainder of the record is assigned to the temporary

- 90 -

22 January 1993
Reference # W003036

Rev. 0.0

character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read polynomial degree data and coast
speed coefficients data from the
"simnet/data/ms ad cs.d" data file is executed. This data
determines coast speed polynomial coefficient data used
during real-time execution to compute the speed of the
adat missile after engine burn for the adat missile flyout.
Access of the file is "read only".

The "simnet/data/ms ad cs.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the second element of the
adatmiss-poly-deg array. The second element of the
first record is assigned to the temporary character string.

0 The local array index is set to zero. Then, each record is
scanned and the first field is assigned to a temporary float
data storage. If the value of the temporary float data is not
the end-of-file, the temporary float data is assigned to the
current indexed adatcoast-speedcoeff element. The
remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is dosed.

(4) An algorithm to read polynomial degree data and
maximum turn cosine coefficients during engine burn
data from the "simnet/data/ms-ad-bt.d" data file is
executed. This data defines the maximum cosine
coefficients during real-time execution to compute the
maximum cosine of a turn during engine burn of the adat
missile flyout. Access of the file is "read only".

The "simnet/data/ms.adbt.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the

- 91 -

22 January 1993
Reference # W003036

Rev. 0.0

first field. The first field is assigned to a temporary integer
data storage and then to the third element of the
adatmiss-poly-deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero. Then, each record is
scanned and the first field is assigned to a temporary float
data storage. If the value of the temporary float data is not
the end-of-file, the temporary float data is assigned to the
current indexed adatburnturncoeff element. The
remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is closed.

(5) An algorithm to read polynomial degree data and
maximum turn cosine coefficients data after engine burn
from the "simnet/data/ms-ad ct.d" data file is executed.
This data defines the maximum cosine coefficients during
real-time execution to compute the maximum cosine of a
turn after engine burn of the adat missile flyout. Access of
the file is "read only".

The "simnet/data/ms-ad-ct.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the fourth element of the
adat miss.poly.deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero. Then, each record is
scanned and the first field is assigned to a temporary float
data storage. If the value of the temporary float data is not
the end-of-file, the temporary float data is assigned to the
current indexed adatcoast turncoeff element. The
remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is closed.

(6) An algorithm to read polynomial degree data and
temporal bias coefficients data from the
"simnet/data/ms ad tb.d" data file is executed. This data

- 92 -

22 January 1993
Reference # W003036

Rev. 0.0

defines the temporal bias coefficients during real-time
execution to compute the temporal bias of the adat missile
flyout. Access of the file is "read only".

The "siinnet/data/ms-ad-tb.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the fifth element of the
adat miss.poly-deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero. Then, each record is
scanned and the first field is assigned to a temporary float
data storage. If the value of the temporary float data is not
the end-of-file, the temporary float data is assigned to the
current indexed adat-temp.biascoeff element. The
remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is closed.

e. Error handling. Errors other than a null data file are not
handled. If a null data file is detected, a message is sent to the
standard error device reporting that the file could not be opened.

f. Data conversion. Data conversion is not done in this CSU.

g. Use of other elements. The following elements are used by CSU
missileadat_init.

(1) CSU fopen. This library call opens a designated file. This
CSU existed within the original code and is not
documented herein.

(2) CSU fprintf. This library call CSU prints a designated
string to a designated output device. This CSU existed
within the original code and is not documented herein.

(3) CSU rewind. This library call CSU rewinds a designated
file. This CSU existed within the original code and is not

is documented herein.

-- 93-

22 January 1993
Reference # W003036

Rev. 0.0

(4) CSU fscanf. This library call CSU scans a record for a field
from a designated file. This CSU existed within the
original code and is not documented herein.

(5) CSU fgets. This library call CSU gets a field from a
designated file. This CSU existed within the original code
and is not documented herein.

(6) CSU fclose. This library call CSU closes a designated file.
This CSU existed within the original code and is not
documented herein.

(7) CSU missilefuze-proxinit. This CSU initializes the
proximity fuze for the adat missile. This CSU existed
within the original code and is not documented herein.

(8) CSU sqrt. This CSU computes the square root of a series of
arguments. This CSU existed within the original code and
is not documented herein.

(9) CSU mat-copy. This CSU copies a matrix. This CSU
existed within the original code and is not documented
herein.

(10) Shared data elements. The following is a list of global
variables initialized within the CSU missileadatinit.
These variables existed in the original code and will not be
documented herein.

missile-array
num_missiles
tube_C.sight-right[] []
tube_C.sightjleft[][]

h. Logic flow. The CSU missileadatinit is called by the CSU
weapons-init. See Appendix A - RWA AireNet Call Tree
Structure. Execution of the CSU missileadatinit is normally
done once during CSCI initialization and is performed
sequentially.

Open adat missile characteristics data file.
If file is null, print error message and exit.
Rewind file.
SSet index to zero.

- 94 -

22 January 1993
Reference # W003036

Rev. 0.0

While record not end-of-file,
adat_miss-char[index]=first_field
descript=second field
increment index by one

End while.
Close data file.

Open burn speed data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set adatmiss-poly-deg [0] =first_field
Set descript=secondfield
Set index to zero.
While record not end-of-file,

adatburn-speed-coeff[index] =firs t-field
descript=secondfield
increment index by one

End while.
Close data file.

Open coast speed data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set adat-miss-poly-deg[1 I=first-field
Set descript=secondfield
Set index to zero.
While record not end-of-file,

adat_coast speed-coeff [index] =firs t_field
descript=secondfield
increment index by one

End while.
Close data file.

Open burn turn data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set adatmiss.poly.deg[2]=firstfield
Set descript=secondfield
Set index to zero.
While record not end-of-file,

adatburnturn coeff[index] =firstfield

- 95 -

22 January 1993
Reference # W003036

Rev. 0.0

descript=secondfield
increment index by one

End while.
Close data file.

Open coast turn data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set adat_miss-poly.deg[3]=firstfield
Set descript=secondfield
Set index to zero.
While record not end-of-file,

adatcoastturncoeffl[index] =firstfield
descript=secondfield
increment index by one

End while.
Close data file.

Open temporal bias data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set adatmiss.poly-deg[4]=firstfield
Set descript=secondfield
Set index to zero.
While record not end-of-file,

adattemp.bias-coeff[index) =first_field
descript=secondfield
increment index by one

End while.
Close data file.

Set numadats - nummissiles
Set adatarray = missile-array
Set mptr.state = ADATFREE
Set mptr.max-flight time = ADATMAXFLIGHTTIME
Set mptr.maxturn_directions = 1

Initialize the proximity fuze
Initialize the tube-to-sight transformation matrices

Data structures. The following shared data structures are used by
the CSU missileadatinit.

-96-

22 January 1993
Reference # W003036

Rev. 0.0

(1) Data structure adat_misschar. This shared data structure
holds the performance limitations and characteristics for
the adat missile. The data structure is an array of 10
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.29. - ADAT
MISSILE CHARACTERISTICS DATA ARRAY.

(2) Data structure adatmiss-poly-deg. This shared data
structure holds the polynomial degree data defining the
size if the polynomial arrays and strucures used in this
CSU. The data structure is an array of 5 elements. The
data structure is given default initialization during
compilation. Detailed definition of each element is
described in TABLE 5.1.30. - ADAT MISSILE
POLYNOMIAL DEGREE DATA ARRAY.

(3) Data structure adatburn-speedcoeff. This shared data
structure holds the burn speed coefficients for the burn
speed polynomial. The data structure is an array of 10
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.31. - ADAT
MISSILE BURN SPEED DATA ARRAY.

(4) Data structure adatcoast-speedcoeff. This shared data
structure holds the coast speed coefficients for the coast
speed polynomial. The data structure is an array of 10
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.32. - ADAT
MISSILE COAST SPEED DATA ARRAY.

(5) Data structure adatburn turn coeff. This shared data
structure holds the maximum cosine coefficients for a
turn during engine burn for the burn turn polynomial.
The data structure is an array of 10 elements. The data
structure is given default initialization during
compilation. Detailed definition of each element is
described in TABLE 5.1.33. - ADAT MISSILE BURN
TURN DATA ARRAY.

- 97 -

22 January 1993
Reference # W003036

Rev. 0.0

(6) Data structure adatcoastturncoeff. This shared data
structure holds the maximum cosine coefficients for a
turn after engine burn for the coast turn polynomial. The
data structure is an array of 10 elements. The data
structure is given default initialization during
compilation. Detailed definition of each element is
described in TABLE 5.1.34. - ADAT MISSILE BURN
TURN DATA ARRAY.

(7) Data structure adattemp-biasscoeff. This shared data
structure holds the temporal bias coefficients for the
temporal bias polynomial. The data structure is an array
of 10 elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.35. - ADAT
MISSILE TEMPORAL BIAS DATA ARRAY.

j. Local data files. The following data files are part of the local data
of the CSU missileadatminit.

(1) Data file "simnet/data/ms ad ch.d". This data file
includes the performance limitations and characteristics
of the adat missile. The data file consists of a maximum
of 10 records. Access of the file is "read only" and
sequential.

Each record consists of two fields. The first field is a float
number, and the second field is a character string of a
maximum length of 64. The first field is assigned to
sequential elements of the global adat misschar data
array. These fields have values consistent with the
characteristics outlined in TABLE 5.1.29. - ADAT MISSILE
CHARACTERISTICS DATA ARRAY. The second field is
for documentation purposes only.

(2) Data file "simnet/data/ms.adbs.d". This data file
includes the burn speed degree of polynomial and
coefficients data for the adat missile. The data file consists
of a maximum of 11 records. Access of the file is "read
only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to

- 98 -

22 January 1993
Reference # W003036

Rev. 0.0

an element of the global adatmiss -poly-deg data array.
This field has a value consistent with the characteristics
oul-l1ned in TABLE 5.1.30. - ADAT MISSILE
Pr)LYNOMIAL DEGREE DATA ARRAY. The second field
is for documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
towburn-speedcoeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.31. - ADAT MISSILE BURN SPEED DATA
ARRAY. The second field is for documentation purposes
only.

(3) Data file "simnet/data/msadcs.d". This data file
includes the coast speed degree of polynomial and
coefficients data for the adat missile. The data file consists
of a maximum of 11 records. Access of the file is "read
only" and sequential.

0 The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global adatmiss-poly-deg data array.
This field has a value consistent with the characteristics
outlined in TABLE 5.1.30. - ADAT MISSILE
POLYNOMIAL DEGREE DATA ARRAY. The second field
is for documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
towcoast.speed coeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.32. - ADAT MISSILE COAST SPEED DATA
ARRAY. The second field is for documentation purposes
only.

(4) Data file "simnet/data/msadbt.d". This data file
includes the burn turn degree of polynomial and
coefficients data for the adat missile. The data file consists

-99-

22 January 1993
Reference # W003036

Rev. 0.0

of a maximum of 11 records. Access of the file is "read
only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global adatmiss-poly-deg data array.
This field has a value consistent with the characteristics
outlined in TABLE 5.1.30. - ADAT MISSILE
POLYNOMIAL DEGREE DATA ARRAY. The second field
is for documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
towburn turncoeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.33. - ADAT MISSILE BURN TURN DATA
ARRAY. The second field is for documentation purposes
only.

(5) Data file "simnet/data/msadct.d". This data file
includes the coast turn degree of polynomial and
coefficients data for the adat missile. The data file consists
of a maximum of 11 records. Access of the file is "read
only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global adatmiss.poly-deg data array.
This field has a value consistent with the characteristics
outlined in TABLE 5.1.30. - ADAT MISSILE
POLYNOMIAL DEGREE DATA ARRAY. The second field
is for documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
towcoastturncoeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.34. - ADAT MISSILE COAST TURN DATA

-100-

22 January 1993
Reference # W003036

Rev. 0.0

ARRAY. The second field is for documentation purposes
only.

(6) Data file "simnet/data/ms-adtb.d". This data file
includes the coast turn degree of polynomial and
coefficients data for the adat missile. The data file consists
of a maximum of 11 records. Access of the file is "read
only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global adatmiss-poly-deg data array.
This field has a value consistent with the characteristics
outlined in TABLE 5.1.30. - ADAT MISSILE
POLYNOMIAL DEGREE DATA ARRAY. The second field
is for documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
towcoastturncoeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.35. - ADAT MISSILE TEMPORAL BIAS DATA
ARRAY. The second field is for documentation purposes
only.

k. Limitations. There are no additional limitations or unusual
features that restrict the performance of the CSU
missileadatinit.

4.5.2. CSU missile-atgm-init.

The CSU missile-atgm-init reads tow missile data from data files and
initializes the 1) performance limitations and characteristics data array, 2) the
polynomial degree array, 3) the burn speed polynomial coefficients array, 4)
the coast speed polynomial coefficients array, 5) the burn speed turn,
maximum cosine coefficient strucure, and 6) the coast speed turn, maximum
cosine coefficient strucure. The following subparagraphs describe the design
information for the CSU missileatgmjinit.

This CSU was built using the CSU missiletowinit and retains the same
variable names from that CSU.

- 101 -

22 January 1993
Reference # W003036

Rev. 0.0

4.5.2.1. CSU missile.atgm-init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This
subparagraph shall identify the requirements allocated to the CSC that are to
be satisfied or partially satisfied by the CSU and shall identify any constraints
on the design of the CSU.

4.5.2.2. CSU missileatgminit design.

The CSU missile.atgmjinit is coded in the ANSI 'C' programming language,
standard language for the CSCI. The following paragraphs specify the design
of the CSU missile-atgm init. For a complete listing, see Appendix F -
Source Code Listing For miss.atgm.c.

a. Input/output data elements.

(1) tptr - This input data element is a pointer to the array of
missiles to be initialized. This element is declared global.

(2) No output data elements are declared.

b. Local data elements. TABLE 4.5.2.1 - CSU
MISSILE ATGMINIT LOCAL DATA DEFINITION TABLE
describes the local data elements originating in the CSU
missile-atgminit and not used by any other CSU.

-102-

22 January 1993
Reference # W003036

I Rev. 0.0

TABLE 4.5.2.1 - CSU MISSILEATGMJINIT LOCAL DATA DEFINITION
TABLE

Name i datatmp_ datajtmp descript fp
int

Descrip- array index temporary temporary temporary data file
tion integer data float data character pointer

storage for storage for string storage
data read data read read from file
from file from file

Type integer integer float character file pointer
array

Represent- decimal decimal real number character directory
ation number number string pathname

plus 8
character

unique
filename plus
".d" extension

Size N/A N/A N/A 64 N/A
Unit of Non- Variable Variable None None
Measure dimension-al
Limit/range 0-99 Variable Variable N/A N/A
Precision single single single N/A N/A

c. Interrupts and signals. None used.

d. Algorithms. The following algorithms are used in the execution
of the CSU missileatgmjinit.

(1) An algorithm to read the performance limitations and
characteristics of the tow missile from the
"simnet/data/ms atch.d" data file is executed. This data
determines the performance limitations and
characteristics of the tow missile during real-time
execution. Access of the file is "read only".

The "simnet/data/ms-at-ch.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the array index is set to zero.
Each record is scanned and the first field is assigned to a
temporary float data storage. If the value of the temporary
float data is not the end-of-file, the temporary float data is

Sassigned to the current indexed tow miss char element.
The remainder of the record is assigned to the temporary

-103-

22 January 1993
Reference # W003036

Rev. 0.0

character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is dosed.

(2) An algorithm to read polynomial degree data and burn
speed coefficients data from the
"simnet/data/ms-at bs.d" data file is executed. This data
determines burn speed polynomial coefficient data used
during real-time execution to compute the speed of the
tow missile during engine burn for the tow missile flyout.
Access of the file is "read only".

The "simnet/data/ms.at bs.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the first element of the
towmiss.poly-deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero. Then, each record is
scanned and the first field is assigned to a temporary float
data storage. If the value of the temporary float data is not
the end-of-file, the temporary float data is assigned to the
current indexed towburn.speedcoeff element. The
remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read polynomial degree data and coast
speed coefficients data from the
"simnet/data/ms-at cs.d" data file is executed. This data
determines coast speed polynomial coefficient data used
during real-time execution to compute the speed of the
tow missile after engine burn for the tow missile flyout.
Access of the file is "read only".

The "simnet/data/ms-at-cs.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not5 null, the file is rewound and the first record is read for the

-104-

22 January 1993
Reference # W003036

Rev. 0.0

first field. The first field is assigned to a temporary integer
data storage and then to the third element of the
towmiss-poly-deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero. Then, each record is
scanned and the first field is assigned to a temporary float
data storage. If the value of the temporary float data is not
the end-of-file, the temporary float data is assigned to the
current indexed towcoast-speedcoeff element. The
remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is dosed.

(4) An algorithm to read polynomial degree data and
maximum turn cosine coefficients during engine burn
data from the "simnet/data/ms-at-bt.d" data file is
executed. This data defines the maximum cosine
coefficients during real-time execution to compute the
maximum cosine of a turn in each axis during engine
burn of the tow missile flyout. Access of the file is "read

* only".

The "simnet/data/ms-at bt.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the third element of the
towmiss-poly-deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero for the side axis, with
the limit set to the degree. Then, each record is scanned
and the first field is assigned to a temporary float data
storage, and assigned to the current indexed
towburnturn_coeff.sidecoeff element. The remainder
of the record is assigned to the temporary character string.
The array index is incremented by one and the next record
is scanned and stored until the degree limit is hit. The
process is repeated for the up and down axes. Then, the
file is dosed.

0
- 105-

22 January 1993
Reference # W003036

Rev. 0.0

(5) An algorithm to read polynomial degree data and
maximum turn cosine coefficients data after engine burn
from the "simnet/data/ms at ct.d" data file is executed.
This data defines the maximum cosine coefficients during
real-time execution to compute the maximum cosine of a
turn in each axis after engine burn of the tow missile
flyout. Access of the file is "read only".

The "simnet/data/ms-at-ct.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the fourth element of the
towmiss-poly.deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero for the side axis, with
the limit set to the degree. Then, each record is scanned
and the first field is assigned to a temporary float data
storage, and assigned to the current indexed
towcoastturncoeff.sidecoeff element. The remainder
of the record is assigned to the temporary character string.
The array index is incremented by one and the next record
is scanned and stored until the degree limit is hit. The
process is repeated for the up and down axes. Then, the
file is dosed.

e. Error handling. Errors other than a null data file are not
handled. If a null data file is detected, a message is sent to the
standard error device reporting that the file could not be opened.

f. Data conversion. Data conversion is not done in this CSU.

g. Use of other elements. The following elements are used by CSU

missile-atgminit.

(1) CSU fopen. This library call opens a designated file. This
CSU existed within the original code and is not
documented herein.

(2) CSU fprintf. This library call CSU prints a designated
string to a designated output device. This CSU existed

0 within the original code and is not documented herein.

-106-

22 January 1993
Reference # W003036

Rev. 0.0

(3) CSU rewind. This library call CSU rewinds a designated
file. This CSU existed within the original code and is not
documented herein.

(4) CSU fscanf. This library call CSU scans a record for a field
from a designated file. This CSU existed within the
original code and is not documented herein.

(5) CSU fgets. This library call CSU gets a field from a
designated file. This CSU existed within the original code
and is not documented herein.

(6) CSU fclose. This library call CSU closes a designated file.
This CSU existed within the original code and is not
documented herein.

(7) Shared data elements. The following is a list of global
variables initialized within the CSU missileatgmjinit.
These variables existed in the original code and will not be
documented herein.

tptr
mptr.state
mptr.max-flight-time
mptr.max turndirections

h. Logic flow. The CSU missile.atgm-init is called by the CSU
weapons-init. See Appendix A - RWA AireNet Call Tree
Structure. Execution of the CSU missile ..atgminit is normally
done only once during CSCI initialization and is performed
sequentially.

Open atgm missile characteristics data file.
If file is null, print error message and exit.
Rewind file.
Set index to zero.
While record not end-of-file,

towmisschar[index]=first_field
descript=secondfield
increment index by one

End while.
Close data file.

-107-

22 January 1993
Reference # W003036

Rev. 0.0

Open burn speed data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set towmiss.poly-deg[01=firstfield
Set descript=secondfield
Set index to zero.
While record not end-of-file,

towburn.speed-coeff [index] =firs t_field
descript=secondfield
increment index by one

End while.
Close data file.

Open coast speed data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set towmiss.poly-deg[1]=firstfield
Set descript=secondfield
Set index to zero.
While record not end-of-file,

towcoast-speedccoefffindexl=first_field
descript=secondfield
increment index by one

End while.
Close data file.

Open burn turn data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set towmiss.poly-deg[2]=firstfield
Set descript=secondfield
For index from 0 to towmisspoly.deg[2], single step,

towburnturncoeff.side coeff [index] = firstfield
descript=secondfield

End for loop.
For index from 0 to towmisspoly.deg[2], single step,

towburnturncoeff.up.coeff[index] = firstfield
descript=secondfield

End for loop.
For index from 0 to towmisspoly.deg[2], single step,

0 towburnturncoeff.downcoeff[index] = firstfield

-108-

22 January 1993
Reference # W003036

descript=secondfield

Rev. 0.0

End for loop.
Close data file.

Open coast turn data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set towmiss.poly-deg[3]=firstfield
Set descript=secondfield
For index from 0 to towmisspoly-deg[3], single step,

towcoastturncoeff.side.coeff[index) = firstfield
descript=secondfield

End for loop.
For index from 0 to towmisspoly-deg[3], single step,

towcoastturn_coeff.up-coeff[index] = firstfield
descript=secondfield

End for loop.
For index from 0 to towmiss_poly-deg[31, single step,

towcoastturncoeff.downcoeff[index] = firstfield
descript=secondfield

End for loop.
Close data file.

Set mptr.state = FALSE
Set mptr.max -flighLtime = tow.miss-char[2]
Set mptr.max turn_directions = 3

Set the burn and turn coefficients as adjusted by the atgm turn
factor; adjusts the data from tow to atgm missile
performance

Data structures. The following shared data structures are used by
the CSU missile-atgminit.

(1) Data structure towmisschar. This shared data structure
holds the performance limitations and characteristics for
the tow missile. The data structure is an array of 5
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.36. - ATGM
MISSILE CHARACTERISTICS DATA ARRAY.

0
-109-

22 January 1993
Reference # W003036

Rev. 0.0

(2) Data structure tow_miss-poly-deg. This shared data
structure holds the polynomial degree data defining the
size if the polynomial arrays and strucures used in this
CSU. The data structure is an array of 5 elements. The
data structure is given default initialization during
compilation. Detailed definition of each element is
described in TABLE 5.1.37. - ATGM MISSILE
POLYNOMIAL DEGREE DATA ARRAY.

(3) Data structure tow-burn.speedcoeff. This shared data
structure holds the burn speed coefficients for the burn
speed polynomial. The data structure is an array of 5
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.38. - ATGM
MISSILE BURN SPEED DATA ARRAY.

(4) Data structure towcoast speedcoeff. This shared data
structure holds the coast speed coefficients for the coast
speed polynomial. The data structure is an array of 5
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.39. - ATGM
MISSILE COAST SPEED DATA ARRAY.

(5) Data structure tow_burn_turn_coeff. This shared data
structure holds the maximum cosine coefficients for a
turn in each axis during engine burn for the burn turn
polynomial. The data structure is an array of 2 elements
for each axis. There are three axes: side, up, and down.
The data structure is given default initialization during
compilation. Detailed definition of each element is
described in TABLE 5.1.40. - ATGM MISSILE BURN
TURN DATA STRUCTURE.

(6) Data structure towcoastturncoeff. This shared data
structure holds the maximum cosine coefficients for a
turn in each axis during engine burn for the burn turn
polynomial. The data structure is an array of 4 elements
for each axis. There are three axes: side, up, and down.
The data structure is given default initialization during
compilation. Detailed definition of each element is
described in TABLE 5.1.41. - ATGM MISSILE COAST
TURN DATA STRUCTURE.

-110-

22 January 1993
Reference # W003036

Rev. 0.0

j. Local data files. The following data files are part of the local data
of the CSU missileatgm-init.

(1) Data file "simnet/data/ms at ch.d". This data file
includes the performance limitations and characteristics
of the tow missile. The data file consists of a maximum of
5 records. Access of the file is "read only" and sequential.

Each record consists of two fields. The first field is a float
number, and the second field is a character string of a
maximum length of 64. The first field is assigned to
sequential elements of the global towmiss char data
array. These fields have values consistent with the
characteristics outlined in TABLE 5.1.36. - ATGM MISSILE
CHARACTERISTICS DATA ARRAY. The second field is
for documentation purposes only.

(2) Data file "simnet/data/ms at bs.d". This data file
includes the burn speed degree of polynomial and
coefficients data for the tow missile. The data file consists
of a maximum of 6 records. Access of the file is "read
only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global tow miss-poly.deg data array.
This field has a value consistent with the characteristics
outlined in TABLE 5.1.37. - ATGM MISSILE
POLYNOMIAL DEGREE DATA ARRAY. The second field
is for documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
towburn.speedcoeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.38. - ATGM MISSILE BURN SPEED DATA
ARRAY. The second field is for documentation purposes
only.

0

- 111 -

22 January 1993
Reference # W003036

Rev. 0.0

(3) Data file "simnet/data/ms.at-cs.d". This data file
includes the coast speed degree of polynomial and
coefficients data for the tow missile. The data file consists
of a maximum of 6 records. Access of the file is "read
only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global towmiss.poly-deg data array.
This field has a value consistent with the characteristics
outlined in TABLE 5.1.37. - ATGM MISSILE
POLYNOMIAL DEGREE DATA ARRAY. The second field
is for documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
towcoast-speedcoeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.39. - ATGM MISSILE COAST SPEED DATA
ARRAY. The second field is for documentation purposes
only.

(4) Data file "simnet/data/ms at bt.d". This data file
includes the burn turn degree of polynomial and
coefficients data for the tow missile. The data file consists
of a maximum of 7 records. Access of the file is "read
only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global towmiss-poly-deg data array.
This field has a value consistent with the characteristics
outlined in TABLE 5.1.37. - ATGM MISSILE
POLYNOMIAL DEGREE DATA ARRAY. The second field
is for documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is

O assigned to sequential elements of the global

-112-

22 January 1993
Reference # W003036

Rev. 0.0

towburnturncoeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.40. - ATGM MISSILE BURN TURN DATA
ARRAY. The second field is for documentation purposes
only.

(5) Data file "simnet/data/ms at ct.d". This data file
includes the coast turn degree of polynomial and
coefficients data for the tow missile. The data file consists
of a maximum of 13 records. Access of the file is "read
only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global towmiss-poly-deg data array.
This field has a value consistent with the characteristics
outlined in TABLE 5.1.37. - ATGM MISSILE
POLYNOMIAL DEGREE DATA ARRAY. The second field
is for documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
towcoastturn_coeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.41. - ATGM MISSILE COAST TURN DATA
ARRAY. The second field is for documentation purposes
only.

k. Limitations. There are no additional limitations or unusual
features that restrict the performance of the CSU
missile-atgminit.

4.5.3. CSU missile-kemninit.

The CSU missilekeminit reads kem missile data from data files and
initializes the 1) performance limitations and characteristics data array, 2) the
polynomial degree array, 3) the burn speed polynomial coefficients array, 4)
the coast speed polynomial coefficients array, 5) the burn turn, maximum
cosine coefficients array, 6) the coast turn, maximum cosine coefficients array,
and 7) the temporal bias coefficients array. This CSU copies the parameters
into variables static to the misskem.c module and initializes the state of all

-113-

22 January 1993
Reference # W003036

Rev. 0.0

the missiles. The following subparagraphs describe the design information
for the CSU missilekeminit.

4.5.3.1. CSU missilekem-init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This
subparagraph shall identify the requirements allocated to the CSC that are to
be satisfied or partially satisfied by the CSU and shall identify any constraints
on the design of the CSU.

4.5.3.2. CSU missile.keminit design.

The CSU missilekem-init is coded in the ANSI 'C' programming language,
standard language for the CSCI. The following paragraphs specify the design
of the CSU missilekem-init. For a complete listing, see Appendix H -
Source Code Listing For misskem.c.

a. Input/output data elements.

(1) missile-array - This input data structure is a pointer to the
array of KEM missiles defined in vehicle specific code..
This structure is declared global.

(2) nummissiles - This input data element is the number of
missiles defined in the missile-array. This element is
dedared global.

(3) No output data elements are declared.

b. Local data elements. TABLE 4.5.3.1 - CSU MISSILEKEMINIT
LOCAL DATA DEFINITION TABLE describes the local data
elements originating in the CSU missilekernminit and not used
by any other CSU.

- 114 -

22 January 1993
Reference # W003036

Rev. 0.0

TABLE 4.5.3.1 - CSU MISSILE KEMINIT LOCAL DATA DEFINITION
TABLE

Name i data-tmp_ data-tmp descript fp
int

Descrip- array index temporary temporary temporary data file
tion integer data float data character pointer

storage for storage for string storage
data read data read read from file
from file from file

Type integer integer float character file pointer
array

Represent- decimal decimal real number character directory
ation number number string pathname

plus 8
character

unique
filename plus
".d" extension

Size N/A N/A N/A 64 N/A
Unit of Non- Variable Variable None None
Measure dimension-al
Limit/range 0-99 Variable Variable N/A N/A
Precision single single single N/A N/A

C. Interrupts and signals. None used.

d. Algorithms. The following algorithms are used in the execution
of the CSU missilekem init.

(1) An algorithm to read the performance limitations and
characteristics of the kem missile from the
"simnet/data/ms kmch.d" data file is executed. This
data determines the performance limitations and
characteristics of the kern missile during real-time
execution. Access of the file is "read only".

The "simnet/data/ms-kmch.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the array index is set to zero.
Each record is scanned and the first field is assigned to a
temporary float data storage. If the value of the temporary
float data is not the end-of-file, the temporary float data is
assigned to the current indexed kem misschar element.
The remainder of the record is assigned to the temporary

-115-

22 January 1993
Reference # W003036

Rev. 0.0

character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and burn
speed coefficients data from the
"simnet/data/mskmbs.d" data file is executed. This
data determines burn speed polynomial coefficient data
used during real-time execution to compute the speed of
the kem missile during engine burn for the kern missile
flyout. Access of the file is "read only".

The "simnet/data/mskmbs.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the first element of the
kemrmiss.poly.deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero. Then, each record is
scanned and the first field is assigned to a temporary float
data storage. If the value of the temporary float data is not
the end-of-file, the temporary float data is assigned to the
current indexed kemrburn.speedcoeff element. The
remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is dosed.

(3) An algorithm to read polynomial degree data and coast
speed coefficients data from the
"simnet/data/ms-kmcs.d" data file is executed. This
data determines coast speed polynomial coefficient data
used during real-time execution to compute the speed of
the kem missile after engine burn for the kern missile
flyout. Access of the file is "read only".

The "simnet/data/mskmcs.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the

-116-

22 January 1993
Reference # W003036

Rev. 0.0

first field. The first field is assigned to a temporary integer
data storage and then to the second element of the
kemrmiss-poly-deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero. Then, each record is
scanned and the first field is assigned to a temporary float
data storage. If the value of the temporary float data is not
the end-of-file, the temporary float data is assigned to the
current indexed kemcoast-speedcoeff element. The
remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is closed.

(4) An algorithm to read polynomial degree data and
maximum turn cosine coefficients during engine burn
data from the "simnet/data/mskm_bt.d" data file is
executed. This data defines the maximum cosine
coefficients during real-time execution to compute the
maximum cosine of a turn during engine burn of the kem
missile flyout. Access of the file is "read only".

The "simnet/data/mskmbt.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the third element of the
kemrmiss.poly-deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero. Then, each record is
scanned and the first field is assigned to a temporary float
data storage. If the value of the temporary float data is not
the end-of-file, the temporary float data is assigned to the
current indexed kemrburnturncoeff element. The
remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is closed.

(5) An algorithm to read polynomial degree data and
maximum turn cosine coefficients data after engine burn
from the "simnet/data/mskmct.d" data file is executed.

-117-

22 January 1993
Reference # W003036

Rev. 0.0

This data defines the maximum cosine coefficients during
real-time execution to compute the maximum cosine of a
turn after engine burn of the kem missile flyout. Access
of the file is "read only".

The "simnet/data/ms-kmct.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the fourth element of the
kemrmiss.poly-deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero. Then, each record is
scanned and the first field is assigned to a temporary float
data storage. If the value of the temporary float data is not
the end-of-file, the temporary float data is assigned to the
current indexed kemcoastturn coeff element. The
remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is closed.

e. Error handling. Errors other than a null data file are not
handled. If a null data file is detected, a message is sent to the
standard error device reporting that the file could not be opened.

f. Data conversion. Data conversion is not done in this CSU.

g. Use of other elements. The following elements are used by CSU
missilekem-init.

(1) CSU fopen. This library call opens a designated file. This
CSU existed within the original code and is not
documented herein.

(2) CSU fprintf. This library call CSU prints a designated
string to a designated output device. This CSU existed
within the original code and is not documented herein.

(3) CSU rewind. This library call CSU rewinds a designated
file. This CSU existed within the original code and is not
documented herein.

- 118 -

22 January 1993
Reference # W003036

Rev. 0.0

(4) CSU fscanf. This library call CSU scans a record for a field
from a designated file. This CSU existed within the
original code and is not documented herein.

(5) CSU fgets. This library call CSU gets a field from a
designated file. This CSU existed within the original code
and is not documented herein.

(6) CSU fclose. This library call CSU closes a designated file.
This CSU existed within the original code and is not
documented herein.

(7) Shared data elements. The following is a list of global
variables initialized within the CSU missilekeminit.
These variables existed in the original code and will not be
documented herein.

missile-array
num_missiles
num_kems
kemarray
mptr.state
mptr.maxjflighttime
mptr.maxturndirections

h. Logic flow. The CSU missilekeminit is called by the CSU
weapons-init. See Appendix A - RWA AireNet Call Tree
Structure. Execution of the CSU missilekeminit is during
initialization and is performed sequentially.

Open kem missile characteristics data file.
If file is null, print error message and exit.
Rewind file.
Set index to zero.
While record not end-of-file,

kemmisschar [index] =firs tfield
descript=secondfield
increment index by one

End while.
Close data file.

Open btrn speed data file.
If file is null, print error message and exit.

-119-

22 January 1993
Reference # W003036

Rewind file.

Rev. 0.0

Get first field of first record.
Set kemmiss.poly-deg[0] =first_field
Set descript=secondfield
Set index to zero.
While record not end-of-file,

kemburn-speed coeff [index] =firstfield
descript=secondfield
increment index by one

End while.
Close data file.

Open coast speed data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set kern .miss-poly-deg[1]=firstfield
Set descript=secondfield
Set index to zero.
While record not end-of-file,

kemcoast-speed-coeff[index] =firstfield
descript=secondfield
increment index by one

End while.
Close data- file.

Open burn turn data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set kernmiss-poly-deg[2]=firstfield
Set descript=secondfield
Set index to zero.
While record not end-of-file,

kemburnturn coeff[index] =first_field
descript=secondfield
increment index by one

End while.
Close data file.

Open coast turn data file.
If file is null, print error message and exit.
Rewind file.

* Get first field of first record.

-120-

22 January 1993
Reference # W003036

Rev. 0.0

Set kemrmiss.poly.deg[3] =firs t_field
Set descript=secondfield
Set index to zero.
While record not end-of-file,

kemrcoastturn-coeff[index] =firstfield
descript=secondfield
increment index by one

End while.
Close data file.

Set numkems = nummissiles
Set kemarray = missile-array
Set mptr.state = KEMFREE
Set mptr.max-flight time = KEMMAXFLIGHTTIME
Set mptr.max turn_directions = 1

Data structures. The following shared data structures are used by
the CSU missilekem-init.

(1) Data structure kemmisschar. This shared data
structure holds the performance limitations and
characteristics for the kern missile. The data structure is
an array of 10 elements. The data structure is given
default initialization during compilation. Detailed
definition of each element is described in TABLE 5.1.42. -
KEM MISSILE CHARACTERISTICS DATA ARRAY.

(2) Data structure kemmiss-poly.deg. This shared data
structure holds the polynomial degree data defining the
size if the polynomial arrays and strucures used in this
CSU. The data structure is an array of 5 elements. The
data structure is given default initialization during
compilation. Detailed definition of each element is
described in TABLE 5.1.43. - KEM MISSILE POLYNOMIAL
DEGREE DATA ARRAY.

(3) Data structure kemburnmspeedcoeff. This shared data
structure holds the burn speed coefficients for the burn
speed polynomial. The data structure is an array of 10
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.44. - KEM MISSILE
BURN SPEED DATA ARRAY.

- 121 -

22 January 1993
Reference # W003036

Rev. 0.0

(4) Data structure kemcoast-speedcoeff. This shared data
structure holds the coast speed coefficients for the coast
speed polynomial. The data structure is an array of 10
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.45. - KEM MISSILE
COAST SPEED DATA ARRAY.

(5) Data structure kern_burnturn coeff. This shared data
structure holds the maximum cosine coefficients for a
turn during engine burn for the burn turn polynomial.
The data structure is an array of 10 elements. The data
structure is given default initialization during
compilation. Detailed definition of each element is
described in TABLE 5.1.46. - KEM MISSILE BURN TURN
DATA ARRAY.

(6) Data structure kern_coastturn coeff. This shared data
structure holds the maximum cosine coefficients for a
turn after engine burn for the coast turn polynomial. The
data structure is an array of 10 elements. The data
structure is given default initialization during
compilation. Detailed definition of each element is
described in TABLE 5.1.47. - KEM MISSILE COAST TURN
DATA ARRAY.

j. Local data files. The following data files are part of the local data
of the CSU missilekem-init.

(1) Data file "simnet/data/mskmch.d". This data file
includes the performance limitations and characteristics
of the kemr missile. The data file consists of a maximum
of 10 records. Access of the file is "read only" and
sequential.

Each record consists of two fields. The first field is a float
number, and the second field is a character string of a
maximum length of 64. The first field is assigned to
sequential elements of the global kemrmisschar data
array. These fields have values consistent with the
characteristics outlined in TABLE 5.1.42. - KEM MISSILE
CHARACTERISTICS DATA ARRAY. The second field is
for documentation purposes only.

-122-

22 January 1993
Reference # W003036

Rev. 0.0

(2) Data file "simnet/data/ms_km_bs.d". This data file
includes the burn speed degree of polynomial and
coefficients data for the kern missile. The data file consists
of a maximum of 11 records. Access of the file is "read
only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global kern miss poly-deg data array.
This field has a value consistent with the characteristics
outlined in TABLE 5.1.43. - KEM MISSILE POLYNOMIAL
DEGREE DATA ARRAY. The second field is for
documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
towburn-speedcoeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.44. - KEM MISSILE BURN SPEED DATA
ARRAY. The second field is for documentation purposes
only.

(3) Data file "simnet/data/ms kmcs.d". This data file
includes the coast speed degree of polynomial and
coefficients data for the kern missile. The data file consists
of a maximum of 11 records. Access of the file is "read
only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global kemrmiss.poly-deg data array.
This field has a value consistent with the characteristics
outlined in TABLE 5.1.43. - KEM MISSILE POLYNOMIAL
DEGREE DATA ARRAY. The second field is for
documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is

Sassigned to sequential elements of the global

-123-

22 January 1993
Reference # W003036

Rev. 0.0

towcoast-speedcoeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.45. - KEM MISSILE COAST SPEED DATA
ARRAY. The second field is for documentation purposes
only.

(4) Data file "simnet/data/ms-kmbt.d". This data file
includes the burn turn degree of polynomial and
coefficients data for the kem missile. The data file consists
of a maximum of 11 records. Access of the file is "read
only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global kemmisspoly-deg data array.
This field has a value consistent with the characteristics
outlined in TABLE 5.1.43. - KEM MISSILE POLYNOMIAL
DEGREE DATA ARRAY. The second field is for
documentation purposes only.

O Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
towburnturncoeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.46. - KEM MISSILE BURN TURN DATA
ARRAY. The second field is for documentation purposes
only.

(5) Data file "simnet/data/ms-kmct.d". This data file
includes the coast turn degree of polynomial and
coefficients data for the kern missile. The data file consists
of a maximum of 11 records. Access of the file is "read
only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global kemmiss-poly.deg data array.
This field has a value consistent with the characteristics
outlined in TABLE 5.1.43. - KEM MISSILE POLYNOMIAL

-124-

22 January 1993
Reference # W003036

Rev. 0.0

DEGREE DATA ARRAY. The second field is for
documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
towcoastturncoeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.47. - KEM MISSILE COAST TURN DATA
ARRAY. The second field is for documentation purposes
only.

k. Limitations. There are no additional limitations or unusual
features that restrict the performance of the CSU
missilekeminit.

4.5.4. CSU missile..maverickinit.

The CSU missilemaverickinit reads maverick missile data from data files
and initializes the 1) performance limitations data array, 2) the polynomial
degree array, 3) the burn speed polynomial coefficients array, and 4) the coast
speed polynomial coefficients array. This CSU copies the parameters into
variables static to the missmaverck.c module and initializes the state of all
the missiles. The following subparagraphs describe the design information
for the CSU missilemaverickinit.

4.5.4.1. CSU missile..maverick.init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This
subparagraph shall identify the requirements allocated to the CSC that are to
be satisfied or partially satisfied by the CSU and shall identify any constraints
on the design of the CSU.

4.5.4.2. CSU missile..maverickjnit design.

The CSU missilemaverickinit is coded in the ANSI 'C' programming
language, standard language for the CSCI. The following paragraphs specify
the design of the CSU missilemaverickinit. For a complete listing, see
Appendix I - Source Code Listing For missmaverck.c.

a. Input/output data elements.

-125 -

22 January 1993
Reference # W003036

Rev. 0.0

(1) missile-array - This input data structure is a pointer to the
particular array of missiles to be initialized. This structure
is declared global.

(2) nummissiles - This input data element is the number of
missiles defined in the missile-array. This element is
declared global.

(3) func - This input data element is the operational function
of the missile. This element is declared global.

(4) No output data elements are declared.

b. Local data elements. TABLE 4.5.4.1 - CSU
MISSILEMAVERICKINIT LOCAL DATA DEFINITION
TABLE describes the local data elements originating in the CSU
missilemaverickinit and not used by any other CSU.

-126-

22 January 1993
Reference # W003036

Rev. 0.0

TABLE 4.5.4.1 - CSU MISSILEMAVERICKJINIT LOCAL DATA
DEFINITION TABLE

Name i j data-tmp_ data.tmp descript fp
_ mint

Description array index temporary temporary temporary data file
integer data float data character pointer
storage for storage for string storage
data read data read read from file
from file from file

Type integer integer float character file pointer
array

Represent- decimal decimal real number character directory
ation number number string pathname

plus 8
character

unque
filename plus
".d" extension

Size N/A N/A N/A 64 N/A
Unit of Non- Variable Variable None None
Measure dimension-al
Limit/range 0-99 Variable Variable N/A N/A

[Precision single single single N/A N/A

c. Interrupts and signals. None used.

d. Algorithms. The following algorithms are used in the execution
of the CSU missilemaverickinit.

(1) An algorithm to read the performance limitations and
characteristics of the maverick missile from the
"simnet/data/msmkch.d" data file is executed. This
data determines the performance limitations and
characteristics of the maverick missile during real-time
execution. Access of the file is "read only".

The "simnet/data/msmkch.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the array index is set to zero.
Each record is scanned and the first field is assigned to a
temporary float data storage. If the value of the temporary
float data is not the end-of-file, the temporary float data is
assigned to the current indexed maverick-misschar
element. The remainder of the record is assigned to the

-127-

22 January 1993
Reference # W003036

Rev. 0.0

temporary character string. The array index is
incremented by one and the next record is scanned. If the
value of the temporary float data is the end-of-file, the file
is closed.

(2) An algorithm to read polynomial degree data and burn
speed coefficients data from the
"simnet/data/msmkbs.d" data file is executed. This
data determines burn speed polynomial coefficient data
used during real-time execution to compute the speed of
the maverick missile during engine burn for the
maverick missile flyout. Access of the file is "read only".

The "simnet/data/msmk bs.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the first element of the
maverickmisspoly-deg array. The second element of
the first record is assigned to the temporary character
string. The local array index is set to zero. Then, each
record is scanned and the first field is assigned to a
temporary float data storage. If the value of the temporary
float data is not the end-of-file, the temporary float data is
assigned to the current indexed
maverickburn.speedscoeff element. The remainder of
the record is assigned to the temporary character string.
The array index is incremented by one and the next record
is scanned. If the value of the temporary float data is the
end-of-file, the file is closed.

(3) An algorithm to read polynomial degree data and coast
speed coefficients data from the
"simnet/data/ms mkcs.d" data file is executed. This
data determines coast speed polynomial coefficient data
used during real-time execution to compute the speed of
the maverick missile after engine burn for the maverick
missile flyout. Access of the file is "read only".

The "simnet/data/msmkcs.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file

-128-

22 January 1993
Reference # W003C36

Rev. 0.0

cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the second element of the
maverickmisspoly-deg array. The second element of
the first record is assigned to the temporary character
string. The local array index is set to zero. Then, each
rEcord is scanned and the first field is assigned to a
temporary float data storage. If the value of the temporary
float data is not the end-of-file, the temporary float data is
assigned to the current indexed
maverickcoast speedscoeff element. The remainder of
the record is assigned to the temporary character string.
The array index is incremented by one and the next record
is scanned. If the value of the temporary float data is the
end-of-file, the file is dosed.

e. Error handling. Errors other than a null data file are not
handled. If a null data file is detected, a message is sent to the
standard error device reporting that the file could not be opened.

f. Data conversion. Data conversion is not done in this CSU.

g. Use of other elements. The following elements are used by CSU
missilemaverickinit.

(1) CSU fopen. This library call opens a designated file. This
CSU existed within the original code and is not
documented herein.

(2) CSU fprintf. This library call CSU prints a designated
string to a designated output device. This CSU existed
within the original code and is not documented herein.

(3) CSU rewind. This library call CSU rewinds a designated
file. This CSU existed within the original code and is not
documented herein.

(4) CSU fscanf. This library call CSU scans a record for a field
from a designated file. This CSU existed within the
original code and is not documented herein.

0
- 129 -

22 January 1993
Reference # W003036

Rev. 0.0

(5) CSU fgets. This library call CSU gets a field from a
designated file. This CSU existed within the original code
and is not documented herein.

(6) CSU fclose. This library call CSU closes a designated file.
This CSU existed within the original code and is not
documented herein.

(7) CSU missilefuze.proxinit. This CSU initializes the
proximity fuze for the maverick missile. This CSU existed
within the original code and is not documented herein.

(8) Shared data elements. The following is a list of global
variables initialized within the CSU
missilemaverickinit. These variables existed in the
original code and will not be documented herein.

missile-array
nummissiles
func
maverickconethreshold
maverick array
num mavericks
maverickarray[].mptr.state
maverickarray[l.mptr.max-flight time
maverickarray[].mptr.max-turndirections
maverick.array[] .object being-tracked
maverick -array[.sensorid
pel-callbackfunc

h. Logic flow. The CSU. missilemaverickinit is called by the CSU
weapons-init. See Appendix A - RWA AireNet Call Tree
Structure. Execution of the CSU missile.maverickinit is done
during initialization and is performed sequentially.

Open maverick missile characteristics data file.
If file is null, print error message and exit.
Rewind file.
Set index to zero.
While record not end-of-file,

maverickmiss char[index] =first_field
descript=secondfield
increment index by one

End while.

-130-

22 January 1993
Reference # W003036

Rev. 0.0

Close data file.

Open burn speed data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set maverick-miss-poly-deg[0]=firstjfield
Set descript=secondfield
Set index to zero.
While record not end-of-file,

maverickburnspeed-coeff[index]=firs tfield
descript=secondfield
increment index by one

End while.
Close data file.

Open coast speed data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set maverick.miss-poly-deg[1 I=first-field
Set descript=secondfield
Set index to zero.
While record not end-of-file,

maverickcoast.speedscoeff [index] =firstjfield
descript=secondfield
increment index by one

End while.
Close data file.

Set maverickconethreshold = maverickmiss-char[3]
Set nummavericks = nummissiles
Set maverickarray = missilearray
For index = 0 to less than nummissiles, single step,

Set state = 0
Set max flight-time = maverickmisschar[2]
Set maxturndirections = 1
Set object-beingtracked = NOOBJECT

End for loop
Set pelcallbackfunc = func

Data structures. The following shared data structures are used by
the CSU missilemaverickinit.

- 131 -

22 January 1993
Reference # W003036

Rev. 0.0

(1) Data structure maverick-miss-char. This shared data
structure holds the performance limitations and
characteristics for the maverick missile. The data
structure is an array of 15 elements. The data structure is
given default initialization during compilation. Detailed
definition of each element is described in TABLE 5.1.15. -
MAVERICK MISSILE CHARACTERISTICS DATA
ARRAY.

(2) Data structure maverick miss-poly-deg. This shared
data structure holds the polynomial degree data defining
the size if the polynomial arrays used in this CSU. The
data structure is an array of 2 elements. The data structure
is given default initialization during compilation.
Detailed definition of each element is described in TABLE
5.1.16. - MAVERICK MISSILE POLYNOMIAL DEGREE
DATA ARRAY.

(3) Data structure maverick burn sp'ed.coeff. This shared
data structure holds the burn speed coefficients for the
burn speed polynomial. The data structure is an array of 5
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.17. - MAVERICK
MISSILE BURN SPEED DATA ARRAY.

(4) Data structure maverickcoastspeedscoeff. This shared
data structure holds the coast speed coefficients for the
coast speed polynomial. The data structure is an array of 5
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.18. - MAVERICK
MISSILE COAST SPEED DATA ARRAY.

j. Local data files. The following data files are part of the local data
of the CSU missilemaverickinit.

(1) Data file "simnet/data/msmkch.d". This data file
includes the performance limitations and characteristics
of the maverick missile. The data file consists of a
maximum of 15 records. Access of the file is "read only"
and sequential. Each record consists of two fields. The
first field is a float number, and the second field is a
character string of a maximum length of 64. The first

-132-

22 January 1993
Reference # W003036

Rev. 0.0

field is assigned to sequential elements of the global
maverickmisschar data array. These fields have values
consistent with the characteristics outlined in TABLE
5.1.15. - MAVERICK MISSILE CHARACTERISTICS DATA
ARRAY. The second field is for documentation purposes
only.

(2) Data file "simnet/data/ms-mkbs.d". This data file
includes the burn speed degree of polynomial and
coefficients data for the maverick missile. The data file
consists of a maximum of 6 records. Access of the file is
"read only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global maverickmiss.poly-deg data
array. This field has a value consistent with the
characteristics outlined in TABLE 5.1.16. - MAVERICK
MISSILE POLYNOMIAL DEGREE DATA ARRAY. The
second field is for documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
maverickburn_speed...coeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.17. - MAVERICK MISSILE BURN SPEED
DATA ARRAY. The second field is for documentation
purposes only.

(3) Data file "simnet/data/ms mkcs.d". This data file
includes the coast speed degree of polynomial and
coefficients data for the maverick missile. The data file
consists of a maximum of 6 records. Access of the file is
"read only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global maverickmiss.poly.deg data
array. This field has a value consistent with the
characteristics outlined in TABLE 5.1.16. - MAVERICK

-133-

22 January 1993
Reference # W003036

Rev. 0.0

MISSILE POLYNOMIAL DEGREE DATA ARRAY. The
second field is for documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
maverick coast speed-coeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.18. - MAVERICK MISSILE COAST SPEED
DATA ARRAY. The second field is for documentation
purposes only.

k. Limitations. There are no additional limitations or unusual
features that restrict the performance of the CSU
missilemaverickinit.

4.5.5. CSU missile_nlos..init.

The CSU missile_nlosinit reads nlos missile data from data files and
initializes the 1) performance limitations data array, 2) the polynomial degree
array, 3) the burn speed polynomial coefficients array, and 4) the coast speed
polynomial coefficients array. This CSU initializes the state of the missile to
indicate that it is available and sets the values that never change. The
following subparagraphs describe the design information for the CSU
missilenlosinit.

4.5.5.1. CSU missilenlosjnit design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This
subparagraph shall identify the requirements allocated to the CSC that are to
be satisfied or partially satisfied by the CSU and shall identify any constraints
on the design of the CSU.

4.5.5.2. CSU missile.nlos.jnit design.

The CSU missilenlosinit is coded in the ANSI 'C' programming language,
standard language for the CSCI. The following paragraphs specify the design
of the CSU missilenlosminit. For a complete listing, see Appendix J - Source
Code Listing For missnlos.c.

a. Input/output data elements.

-134-

22 January 1993
Reference # W003036

0 Rev. 0.0

(1) mptr - This input data element is a pointer to the array of
nlos missiles to be initialized. This structure is declared
global.

(2) No output data elements are declared.

b. Local data elements. TABLE 4.5.5.1 - CSU MISSILENLOSINIT
LOCAL DATA DEFINITION TABLE describes the local data
elements originating in the CSU missile nlosminit and not used
by any other CSU.

0
- 135 -

22 January 1993
Reference # W003036

Rev. 0.0

TABLE 4.5.5.1 - CSU MISSILE_NLOS_INIT LOCAL DATA DEFINITION
TABLE

Name i data.tmp_ data-tmp descript fp
int

Description array index temporary temporary temporary data file
integer data float data character pointer
storage for storage for string storage
data read data read read from file
from file from file

Type integer integer float character file pointer
a rrayv

Represent- decimal decimal real number character directory
ation mnuber number string pathname

plus 8
character

unique
filename plus
".d" extension

Size N/A N/A N/A 64 N/A
Unit of Non- Variable Variable None None
Measure dimension-al
Limit/range 0-99 Variable Variable N/A N/A
Precision single single single N/A N/A

c. Interrupts and signals. None used.

d. Algorithms. The following algorithms are used in the execution
of the CSU missile nlos init.

(1) An algorithm to read the performance limitations and
characteristics of the nlos missile from the
"simnet/data/ms nl ch.d" data file is executed. This data
determines the performance limitations and
characteristics of the nlos missile during real-time
execution. Access of the file is "read only".

The "simnet/data/ms-nl-ch.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the array index is set to zero.
Each record is scanned and the first field is assigned to a
temporary float data storage. If the value of the temporary
float data is not the end-of-file, the temporary float data is
assigned to the current indexed nlosmisschar element.
The remainder of the record is assigned to the temporary

-136-

22 January 1993
Reference # W003036

Rev. 0.0

character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and burn
speed coefficients data from the
"simnet/data/ms_nl_bs.d" data file is executed. This data
determines burn speed polynomial coefficient data used
during real-time execution to compute the speed of the
nlos missile during engine burn for the nlos missile
flyout. Access of the file is "read only".

The "simnet/data/ms nil bs.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the
first field. The first field is assigned to a temporary integer
data storage and then to the first element of the
nlosmiss-poly-deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero. Then, each record is
scanned and the first field is assigned to a temporary float
data storage. If the value of the temporary float data is not
the end-of-file, the temporary float data is assigned to the
current indexed nlos_burnspeed_coeff element. The
remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read polynomial degree data and coast
speed coefficients data from the
"simnet/data/ms nlcs.d" data file is executed. This data
determines coast speed polynomial coefficient data used
during real-time execution to compute the speed of the
nlos missile after engine burn for the nlos missile flyout.
Access of the file is "read only".

The "simnet/data/ms-nl-cs.d" data file is opened and
tested for records. If it is a null file, an error message is
sent to the standard error device reporting that the file
cannot be opened, and the CSU is exited. If the file is not
null, the file is rewound and the first record is read for the

-137-

22 January 1993
Reference # W003036

Rev. 0.0

first field. The first field is assigned to a temporary integer
data storage and then to the second element of the
nlosmiss.poly-deg array. The second element of the
first record is assigned to the temporary character string.
The local array index is set to zero. Then, each record is
scanned and the first field is assigned to a temporary float
data storage. If the value of the temporary float data is not
the end-of-file, the temporary float data is assigned to the
current indexed nloscoast speedcoeff element. The
remainder of the record is assigned to the temporary
character string. The array index is incremented by one
and the next record is scanned. If the value of the
temporary float data is the end-of-file, the file is closed.

e. Error handling. Errors other than a null data file are not
handled. If a null data file is detected, a message is sent to the
standard error device reporting that the file could not be opened.

f. Data conversion. Data conversion is not done in this CSU.

g. Use of other elements. The following elements are used by CSU
missilenlosinit.

(1) CSU fopen. This library call opens a designated file. This
CSU existed within the original code and is not
documented herein.

(2) CSU fprintf. This library call CSU prints a designated
string to a designated output device. This CSU existed
within the original code and is not documented herein.

(3) CSU rewind. This library call CSU rewinds a designated
file. This CSU existed within the original code and is not
documented herein.

(4) CSU fscanf. This library call CSU scans a record for a field
from a designated file. This CSU existed within the
original code and is not documented herein.

(5) CSU fgets. This library call CSU gets a field from a
designated file. This CSU existed within the original code
and is not documented herein.

-138-

22 January 1993
Reference # W003036

Rev. 0.0

(6) CSU fclose. This library call CSU closes a designated file.
This CSU existed within the original code and is not
documented herein.

(7) CSU cos. This library call CSU computes the cosine of the
radian measure given as the argument. This CSU existed
within the original code and is not documented herein.

(8) Shared data elements. The following is a list of global
variables initialized within the CSU missilenlosinit.
These variables existed in the original code and will not be
documented herein.

state
maxflight-time
maxturndirections
speed
cosmaxturn
nlosreq-id
nlostarget-id
nlosammo-type
vehicleIDIrrelevant

h. Logic flow. The CSU missilenlosinit is called by the CSU
weapons-init. See Appendix A - RWA AireNet Call Tree
Structure. Execution of the CSU missilenlosinit is normally
done only once during CSCI initialization and is performed
sequentially.

Open nlos missile characteristics data file.
If file is null, print error message and exit.
Rewind file.
Set index to zero.
While record not end-of-file,

nlosmiss_char [index] =firstfield
descript=secondfield
increment index by one

End while.
Close data file.

Open burn speed data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.

- 139 -

22 January 1993
Reference # W003036

O Rev. 0.0

Set nlosmisspoly_deg[0]
=first_field

Set descript=second field
Set index to zero.
While record not end-of-file,

nlosburn.speed-coeff[index] =first_field
descript=secondfield
increment index by one

End while.
Close data file.

Open coast speed data file.
If file is null, print error message and exit.
Rewind file.
Get first field of first record.
Set nlosmiss-poly-deg[1]=firstfield
Set descript=second field
Set index to zero.
While record not end-of-file,

nloscoast-speed-coeff [index] =firstfield
descript=secondfield
increment index by one

* End while.
Close data file.

Set state = FALSE
Set maxjflighttime = nlosmiss.char[7]
Set maxturndirections = I
Set speed = nlos_miss.char[8]
Set cosmaxturn[0] = cos(nlosmisschar[1])
Set nlosjreqjid = NEARNOREQUESTPENDING
Set nlos-targetid = vehiclelDIrrelevant

Data structures. The following shared data structures are used by
the CSU missilenlosinit.

(1) Data structure nlosmisschar. This shared data structure
holds the performance limitations and characteristics for
the nlos missile. The data structure is an array of 20
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.48. - NLOS
MISSILE CHARACTERISTICS DATA ARRAY.

-140-

22 January 1993
Reference # W003036

Rev. 0.0

(2) Data structure nlosmiss-polydeg. This shareK data
structure holds the polynomial degree data defining the
size if the polynomial arrays used in this CSU. The data
structure is an array of 5 elements. The data structure is
given default initialization during compilation. Detailed
definition of each element is described in TABLE 5.1.49. -
NLOS MISSILE POLYNOMIAL DEGREE DATA ARRAY.

(3) Data structure nlosburn.speed-coeff. This shared data
structure holds the bum speed coefficients for the burn
speed polynomial. The data structure is an array of 5
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.50. - NLOS
MISSILE BURN SPEED DATA ARRAY.

(4) Data structure nlos_coast speedcoeff. This shared data
structure holds the coast speed coefficients for the coast
speed polynomial. The data structure is an array of 5
elements. The data structure is given default
initialization during compilation. Detailed definition of
each element is described in TABLE 5.1.51. NLOS
MISSILE COAST SPEED DATA ARRAY.

Local data files. The following data files are part of the local data
of the CSU missile nlosjinit.

(1) Data file "simnet/data/ms nl ch.d". This data file
includes the performance limitations and characteristics
of the nlos missile. The data file consists of a maximum
of 20 records.. Access of the file is "read only" and
sequential. Each record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
nlosmisschar data array. These fields have values
c:nsistent with the characteristics outlined in TABLE
5.1.48. - NLOS MISSILE CHARACTERISTICS DATA
ARRAY. The second field is for documentation purposes
only.

(2) Data file "simnet/data/ms nl bs.d". This data file
includes the burn speed degree of polynomial and
coefficients data for the nlos missile. The data file consists

- 141 -

22 January 1993
Reference # W003036

Rev. 0.0

of a maximum of 6 records. Access of the file is "read
only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global nlosmiss.poly-deg data array.
This field has a value consistent with the characteristics
outlined in TABLE 5.1.49. - NLOS MISSILE POLYNOMIAL
DEGREE DATA ARRAY. The second field is for
documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
nlos burn-speed coeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.50. - NLOS MISSILE BURN SPEED DATA
ARRAY. The second field is for documentation purposes
only.

(3) Data file "simnet/data/ms- nl _cs.d". This data file
includes the coast speed degree of polynomial and
coefficients data for the nlos missile. The data file consists
of a maximum of 6 records. Access of the file is "read
only" and sequential.

The first record consists of two fields. The first field is an
integer number, and the second field is a character string
of a maximum length of 64. The first field is assigned to
an element of the global nlosmiss-poly-deg data array.
This field has a value consistent with the characteristics
outlined in TABLE 5.1.49. - NLOS MISSILE POLYNOMIAL
DEGREE DATA ARRAY. The second field is for
documentation purposes only.

Each remaining record consists of two fields. The first
field is a float number, and the second field is a character
string of a maximum length of 64. The first field is
assigned to sequential elements of the global
nlos coast-speedcoeff data array. These fields have
values consistent with the characteristics outlined in
TABLE 5.1.51. - NLOS MISSILE COAST SPEED DATA

-142-

22 January 1993
Reference # W003036

Rev. 0.0

ARRAY. The second field is for documentation purposes
only.

k. Limitations. There are no additional limitations or unusual
features that restrict the performance of the CSU
missile_nlosinit.

-143-

22 January 1993
Reference # W003036

Rev. 0.0

5. CSCI data.

This section describes only those global data elements modified or
added within the CSCI under this delivery order. For ease in
readability and maintenance, the information is provided in tables.

5.1. Data elements internal to the CSCI.

a. For data elements internal to the CSCI, the
following tables describe the data arrays and the
data.

0

0

-144-

V se V5
-0 I * 0

.00 - 5 .

I~~ E ~

a~~~ C
E E E

'a 5 5an- -

a a a a a a '

lo c 1 a4

E I a D
55 E

0 9:6
CL N N N N

zI = z~~IAL A I A I in A I AIA I AI

'4it

Zt E

FA 'a Fa
-6 J-H -j uE, f fi r 1

a! ~-145- I ~

0%

V0 V

E.

-3 -3 I - -

2 C I

222

E4 8 4 E 'm 4U ' 4'

A~ 1 .2 JO 21 j 3 2
. ~E E A 2 2 2

w16

E .4

-Cc r ; m

I U
U

U

a w v V

a i

2a~ SO AA a

0)1

z -z

Q-44 U U) R) "13 Z I4 -aU

E3. - It~

am se a 5

~~Ii

8~.azI~8 8
) uz8.z ~z 8'147-i 1

0°

- - -! V --

E•. .,r

UL

.. 3, z

E I E I - I I

A -VI ,E V E•

or~~ ~ ~ 14 -. . L co

Elell

a3 .21 Ez-

E EV

0MI

N N N N N 14N-

4 fna .-
- - -

IL

I) q

• O -_ -

l IV If I

U, IC

I=

L-I

4:.4+

CI

- 149 -

lotV * U JU .

4.. r .5" c-

IS -8 S 0 I0 S0 -8 -3 4,0. 0 , ~ -8 s- 1 -1 CIS Is- -3 Is%- I. S- S- I. S . - N .

'41 4.' 4s .sr 8 9 4. '4 4. 4 4 4. .0 . .El1 4 54 4 .0 .

b- 4 2O fo V -0 -0 -0 V'" 4

I C Pi i ~ ~ 4. 4 . 4 . 4 I I 4 . 4 . 4

4.~C I . 4 I I I I I I 4 . i I I

_4 F F

- - -- -

W '6 1 U

C C S 5 U,

~ 4. 4. 4.1 u 4. 4.1 411 '1 .1 41 ''1 .'1m'14.14.1u'14.1q'1 .1 .1 .1 .1 .'1'1 '1 1 , u
4.~ ~~~~~~ ~~~ t64-. ~ . u~4 - 4 . 4 .14 4 4 ..

go . .4 4 4

P5 . 5 * 5 . 5 ~ . 5 . 5 . 5 . 5 Z ~

4.~~ 4. 4. z. 7. 4. 4. 4. 4. 4Z. 4 . .

41

U150

.-. ... r . .. 7

I • I -•- i IS

or- 4 C Le 9 tr rQ L cc

A A. A .9 -1 .2 .2 ! . 2-

,6 ll, a , , a, ,of , ", " , : : , : -

*' -U U ' U -' -'U ." .." -" 5 ' 5 - -" -" -" 5 ' -5 -

W. .4

r6 E

* . •* , , , 4',. _ ' '

•, i ,' ' •, i -i ", - "

I.- R -a V; 7 za -a T a z a -

t ,4 U,.. , U ,U • • ' * , U ,

* U **i iU Ui i i l i i*U 1U U6 mi U'U~ 1Ui :U ,U

., .0 .u • ,a .a .. .a 1 . 0
q q q E 4~ 4 6J G E E EEE E Eff

•' ' ' •' !:,. • 4. 4. 4' • • • • • •, • •.5 is ' aa .a a 0 'a

.. S.- - - s s.s..S..-
E 6 E 9 E g 2 2 2

4 ' 4 ' - ~ u . 5 ~ 4 ' 4 ' 4 ' s -4 '- 4'- 4 ' - "' ' 4 ' "

•, • •Is . . .
o 01 a of4o

~~J ~ L! 4 : R 4 4 4 4' 4' 4 q ' '

-5 -5 -9 A c 5

I n

4 -0 a aa- Cc15

'a Or a 'aC 'a 0- ",-a 0a. 1 1- V a

f~~ I A

000 Iq q C

-152-

75 'S S S 'S S

g - .- - §,= L= g- 9.-

k: I g ' 1 11 Hol 22 2E
r V -0~

r .. ~i
MM M ME U*U3 U0

"a V 4 '40 '4 '4 '4 '4 v4 IV IV v4 '4 '4M 4

C! 0 0 q ad 0 4b CI q

-13

.,. 0

0*.

1; re C E g

ol ~m~ go .0 .4 .4 l 'I

~ SE S EIM

a t a aa all I I

V -

V 1 4V10 I V 4 I V V14 IV I

-2 2 2 _ _ 22..i i !Ui2 22 2

o ~ ~ t Ot t0 o0 0 ~0

-154

q V q qV V q q q N q

~ E E :: : I l: :: a, x a, aa a, , ,

I~ ~ ~ I 6 % 6 E E

.5 E

o~~59 Ma 0 I I I I

11lal]
0 6, 610610 I~ I6,0 I I i, 6, I, T, ITe 0, 6 ,0, 60

.0 ra r
0 010 ..3 -

c~j Dg j i

0

*z -

kz 5.z
u-VI, , 1 q ý1

-~ W - Z z

-15

01 -t al oi aI' at V

a a a;

ESLoE 5 ~ ~ 5 S E

~~~a~~~aL aU wa~ . a &aI a a

a~~~~~~~O O- ON ON O--.--S.- %-N~~%,.--.

.C z C 'o 8 C C C C

2 2 2 2 2 2 2 2 ~ 2 2 2 2 2 2 *

*E E 3 a a a *E156- a



! -. '! I .! U U i .,i i,

S.. lII W " l"o

* K

S.. , , , - - - : • , - - -, , , .5 .,

V. r

- .5' ' U 4 5. u* . t* ~ * u * ~ *

73 S S S S -a S S

E r *E E I E E I 2 I E E 2 a 2

~ ~~ ~ I, ~ c c c T c ro cs Es rs E s

r, r r E 5 5 -5 '

r. r. 
4. 4. 4 4

W .5 r .5 4 e' -I 4-. 9, -0 o Es s' s-T2 ToEE2EEEs s s T o ToEE To2 vc -a To W TCE

_ a'a'a 'a''a ' 4 a'a a

10 u :Ia.Taa7!'4 Taq7!- a" T
15 55 5 55 5 15 1_1 ý5 6' ~ ASA S-1 Is

.3 Ct q'. Ct 0 q q

Cu >

a. l

-157



a0.

it

- ~ ~~~~~~~~ ~~~~ 4. 4 .i . 4 . 4 4 s 4 . i . 4 s

4. 4.. i .

tsi ~ ~ ~ S tltl ioB4

-1 r- rs 4 s 4 s 4

V-4

'4 L Li i ' '4 4 '4 '4 4 >4U U '4 ' '4 4 ' '4old'

Si ~ i Ii S S i i Si S 0 0 i Si S S i izi S

CC CCCCCC C CCCC C CCCCCC C CCCC C CCCCCC C

SiFMiiS 0c -C C . 4 Cs - - -s - - - - - C
0i 1i Pi2 .CC C

o sCz*2~2~24~ sC 4 . CiC CK S 4 . ~"'*~S
33 3~ 3 3*~ 3* ~0Si~~ 3Si 34.S

'4CU '40i0'O'4040LC'4~ '4'4.'494C~i'4C0to
Si~i~S~ ~ 2 j~~i~Zw

t6 ~ i~s iCC E~ 4C.4U
4

C.C

Z~m zd z~~ i z2~ 2zi z2i

0 ~ ~ .0 *re

14 -0 . *

I~rb CC Ct C . I



@% 00

*~ ~~ ~ r i S

a V

2 c
D~*~ *

0% 0

Es* E "E E Wr: E E

:1 :g; 1 :: Q: 2 E 2

C A 1 C
c

IV I -a
U 5ý j U U U

T v V -0 r -

A A

UU CU CU CU CU CU UU CU C Ck US qU Ct qU Uq qs U U
22 22 cD o2 o~ 22 E 2c>~ 2~2~ E

V2 V

z
uj _u _jL j

Li z zs Xc Z Os~

-. I I I -. I g - - i U U U&6 U

0 th Uzi, IdU~

CU ~ ~ ~ ~ ~ ~ ~ ~ ~ r 3U CU C U C U CU C .C . -

-159- e *



ace -i A- -A - - - - -S,

Pa is * * a aa a 'a

.-. ,. -S S -S - -3.

2 2 2 2 2 2 22 :2 u :2 :Q 2: :2.

15::2 12 M

43 .5 *3 3 -3 *3j

c; Ui *j .5* c; 0s 0 .

.3M J- U

> z

NJ - 5

2 L6~

a in V

-~~ ~ E

- ~ ~ .C 141 -160 -'I



V~ V
lox- - - - --1 -E - -

* i I I I I I E E r

I c a t

de Q :2 22 22 r, 2 : M 2 :2 M2 ;29 2 29 : 2 ;2 2 :2-

If 3

o'

2. A

-3 - j j -

IS I I I ~ -

00 e'~
U. ug aa a. aa

P - I~
k q' :0 q _ l C!

II II I II I I I II II I II II I I

E~~~~~~~~~ ~~~~ Iz ~ C IC I C IC I I~ C IC I ~ IC 1 -



E E ;.
.4S 7 -

a.~~ -6 E~ - -6 - - E~ 6, E

U ra a At

'N 1 j? l 1 
i ri 1 

";A I

S I I I

.5-6

0-P-• ,•- . .

6 2

10 -0 -. - Is- - -

isd = •:, m-•a 
d

"eE •E " 4 ." 4,. , 4. 4=.J 4 1:' a =o 4. E.

o oa a 4. • " ' r•

, . U, a ar' 9 12,

EdA
IHUM

- 162-



*"*00

Si~' A

I - - -0 -0

-C E. A it .1 -t 1 *
4-4 IE I

ls dl s' 16- =a 2it

.2. -, -r cc C

J.1a E i . E 4. C. E E ~E
0 w l i .9 A= A 1 .2

st 1!11 -M
-0 ; 73 1 7

.1 H

-,Fi Ai g~AjA

0. E E.2 A
-~~~ 1!.AI1I 1 !1

11I1I 11r

j2 C,
V

=5 =5 =SIMJw ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ C C! , E5 -- - -.. - . --~~~ i. ;z
> ~ C A C ) .A

I- I- IE -

ZAC A 1

m i

.5-163- .5.= 5



.a-1 Ct- - -A AA AA

01a

11.isp a,1- aaaa1SP.11 i11

A A ALM

.1 a2*i~ ~.11! I ,a* * ~*.01A1 31 ~ ;4 .1 Q., .1 1a a, 21

.1 .1C .CC i~

F~E' ~ E' 56 1 5. S ~ . E.

.40, 6 VC CV CC E

C. 4RC-

ru~. .9 0 0 .
0 -t A 2

E E E E E E E S 9

3 Z V 7

-14



C

S]~ d, d, •-. .

I- U - '"'0V

.g'i I

__ ' E jE E ~ U*~E E E 2

~~- 1 5 -

s

w 21

Eo

:1 at t1 41 4iI!

Cis A =.c Sc C!-
0-4

73 r, 75

0U- .

ESE E E E. E - 'Z I

165



a.M-

E E I I I

a0 4 6 6 a

-a a 9 u 31 W. :E T 7a E a5 C

ii'~ ~ I I I, I I I *
E~ E E E E

-3 j j; -3 *u :1 1 -3 -

Ck q 1 A I .

Wk a'a33 3 t' 3 ' u

Id 3 1 aL I

C:~1 ~ 1. g L
aid -C A~J~ M~

Nc~ ~ cW W i

LiE 1ý .J -. 16- ~

-3 , C

Uc

E E 1>

is
-166-



pt E

I T I ji 5 still

U -T1.

Io I & I0~I ~ I~

M M ~ -it

'I '3 - 3U S S S *

! ~ 4n 2

*~~~ E _ E-

oi~

E E*

I A .12,I I IIII

It~

-167



C!!I

In I

F-0I I u I

az
S" ""iI' ",

E E

. ! , i

-- C i- 5i i-,

-168-



C Ae

*I f

A w t t -

E E I -E E r. 6 G E E

A J, am I a a a I I a

1 .14 E A 6 E E - E E

-00 ow .r0.CI c~a E a

- -9 11 1 1 A- V - E- i A 1 '1 i- 1 1 1 E

al 2! =l E= El El El 2 El 21 El

11 .q -S 7Um .5 .5 .wS .Se S .22 -q 5 .w e

to .-

V -V V *a

* 21w 26

Ct q2
a;0 0 40 0 C

> - '

- as 258~ ~ ;

III 'a I

44~~i 00

INW

gal~' g
1E __ E_ e.

-169-



V.-S NOL: 1+ -15 1, 1, 'a 1-5
"" -M I

44 A

@. ' eII 1 '3 ,

E .EEl = 1

-, , -, , - -T w ,

*A s i

4 ! I E~ El i E! l m i at El Eb TI `

I--- - - e- - ' 4- - I l-- - - t

! Le - z-3

"; " .• :•""44 . e.

- E" E - 66

'4 E E flU UI 'S

~I / S U S...SiI U... -_ ~ *

"3a" '"8.1 "--
! ~ 1 T IT ME~ ~ . A 2 T A T

z .

P-7

45 z.-3 -

6 5 _ 1 5 45 1z

-~~ ~ E E6~ Eo E5- ~
' A -S

Rl t 5~~-

NJ ~ 6 .6 U

U u ~ . ~ U~U x

~A " w 17A 2 "



is'.
4. , . .' 5 .5'

*00~ .5 . e

- I - 4 4- . 3 3 3
'i ? A IA AAI A ~ .

>4 #

- -'Isit 1 1,, ' E "1 -

.02 .12.2, w 22
E' E4 25 V 1= *4 1 W a E

T0 v 2 1

*1 V

& 4 1 2! E

0- .- I £ Ito Il S

_ C,

"a000 V ~ 0

A' 2' 2 2.

'd .. i

on IV

:u - - --- ,

,,w+ .

0*

I--171 0



Fa l' 
F j - - a- -

-~~ 1., 1., I I I

~ A A A Vi ? ?
I* 2 1 fil I =1 @1 I~ ,

5 E E 11 5 22E I A
z; 4 z z ;T -c-- U V '

It st 31 a s

~~~ AK I~

V- -0 - IC -

j 13 13 3 1.3 33 -2 13 1 1

.fl2 02 cc 1

.12 '~. a.I21221S5
.... 2~' fl, 2.' 2.' E.' ~a .1 2' 2' 2. q.* I; :j lii' Ii~.e4

o ~ ~ I 2 2-W'2
(C) . ---. - L1

0 o 04 c

2' -Z .

.2. 1 2

2-8E~ 210 12

0 -I 0

41, A.C- - -

a V

1. lx 9 E . -1. -

C 111

Z 1ý

le
!

V 9U u - a3U

_~ ~ 1 U 1 E1

z -

0 ~ ** 11111

O4 16 Is a 1

'-4 14EEkIii ,
1f eoi~eee~Ii

EE~~~5

LII.. ~Ea~

4: -- -- 173-

di We- - iiii- --

a 0 -1 A !A .1 S,-. - £ 2 - , 2.2o s -

•'"~ ~ i -' it•"'

I. I - I C C C- CI * 1

0ao 1 . E .H I v

_.2 .29 _. _9 .29E92 .292 _ . 2 -
E E..6 EA E ~2 2E A E .1 '

_ o i7' -1 i 8I 8.. ll= =- - = 328 !2 30 03 3.3 .E E

I •.I- 'iI] '= ! ji I-o. I- I- I-I- I! I

E -5 - - - -j. j; E

ii

z -

w--17 -

---. 5 1on~ii
0EII

".44

L2~' 71 -d ' . ~2.2. I I

-1-4

A C!+' V'
- V- -V-

+.l "i oU 'il ' ll 'u~ i Il

-. A, .' . .a .' .9 , - _ _I I I44I ~ 6 6E

6 6 A E U '

T- 4 "T : 'C ' 'v 'U 4 '. ° o4.0•i•i .I I,J,.J -Ii-'
72 73 1 .240-0 .E .0

I A

2- I !i ~ i j ~ > -- 6 6 6

!'I E LE 'U EU 'I EU LE 'U

'1 l,' 3= li :1 72

727 I' -2 "S -2 w

J-0 V..+ -0, .0v. -1, ,.0

1! E E E .2 t q - 0 1 6

_ _ _. i ++*'

a+ - + +6- 6- ..

~661 - 175-

t -0 -q -. -5 -C T - -27

V V0

s - V E-- - - - - - - -

'm4 C

C~ 41 3

z ca -2 N0

Cd LU W wz 'a 4 Zo ~ E~

z z z

E~ .1Li ;

-175-

"a,, '2 '9 3U'U '

cc C -C 4I C 4C C Cc T 'a Cc TC0

.0 .04 ; - ;. ;% . .'s. - -4 . -"14S

LM' M L I I. I A .I i. A A.

V QI. T...
1
a

1
T u~aa a v~ a w' a~a. .aa.

r r

E

~~~ E Eh~i j~~
2 W~C CIC CIC

E r

I- 176-



.l -~ I _ 8 - IiI I., I R II Ig ! I_

4- - - - -, -, - .- ... - -

C, C, -2 C, ,2c E '2_• 'c T ,

r• Ij le I , 4 s I,, ~SI4

EA E EAGAEAGAEA6.9 SA EAGLE 6-

E1 i E,- -

w .0 E GE.E..E.I. WG E.

E E

T IN7

U)U

on

GE GEE GE E E

I- "

177



i I~

€I' I'a € • A I• I IP A I I a

me 1- e 0 E0 aý , W.e%

I U U I: 1 3 3 33:• •_

-31 -..

1; Z'_8 Z_'ls -_ 4 _, l eg.l

"ao I 'i •i" i"

I

l E E E E E

E~~1liI A E A

a C a a a a aC a

E E E E E IE IE E E E

UE Eu EU .u EU SV E

z T

0�-• 78

. 1I -.

- ~- 1



v v

Ilk I, I, II I

'9' -0 12. is.f 3

E 1 U 1 E EE 9.V Eu E

IE E E E E E E E

w ;- . w u2 1 1 12"' 1 1U

US" "-• ii~i j; i] ii

._ E A. .E USEE mE

(4 179,-

x I 1

1-4 U U

F179



-- Il Y, l

MI I

S,: E E _• E E E E- E: E E•

S I' I' 3 q 5 11

* S- a * c Z a Z.5

EE E E: U E

6 z E ? 1 ' l E • "

LU

ILQ

•,_•,_- . _g r,_ .• _,,

i !

aý a 1 ý

- 180-



~.4.0 S --- - -° - "

""" '4. -l I I I -

I I I, I l ll

.9. U U ~iiiL i i

LM L-- V, V ,

jD E 6 E 62

-II -i N: ! I N:1 " N' 9

. .• ' If If I I. If

L q

I** II 'I *I '- ... ' U ' i.

I "V- !

3i! _ f

- 181 -

| i



LL L U L L

X I I,

-9- A- - -

S S I f -1 I I I 5

'j JL C CE W C jL LL LL C

... 1-Al

44 214 Z *c

Ii Ig Ir r " I -- I 'i r~

0 0a

-~40 V I 4 LI.

jj ~ I I ~ i ~-3 -3 -3 - -

4V4

ES 2 rES ES E E

I_. tI I E5 .

~ Lei

W~~ ~ E * .

E~ E1 -i E 3 E E'j E E' *2E -
: j ! .2 3! - '1 .i!

w -- - - - -182- - - -



A- V. V V V V V v

II E Tl

i i i s 11 1 _ .
E E E .E 'j - - -

- 4 4 4 R 41

'I! S i E i I, i * .I *

Ti i i T ,T ' T; ii

E- I E 6-

~I e, I3

0-)

W aft
a

wE

SEx K E E o It
ILIE

_ -183



V TO

MI64 :F E. a 3 ~ u, . 3 a

E E 2 2 E 2 E E 2 g

E, ' E, ' E ,. L' L L ' L' o
-a a 'i I il aa t'g a 1 " 1

.0t

• -= -= ,.-.,= -=• -S, "-S, -S-S-" -S

5! ~ _ _._ _

E I a E a E a
1ý ¶It 4, aL U 4 L! 4 'q~ I a!

E E.E' a- L E L LL La-a• 9

. -LE. - , a.. a. a a. a. V.- V

Z. If ZI If l.i 9. 4 ;

El E0 E; -. E• A•=E
u C -- -q . ' Z -

.. . - .',flre w {. ••

,aa1 • 1 • - -. ll 91 -

.. I a a a. .

7 7

cc 1% m. cc,

6 a.c a.

""I i 4 EL ; I ;

aI
~~1 21;~~;s G s.mu

F184



---- -- " + + +.

~~~~~~ E E • EI "

'E E •' E • '

"-, -J,,-0 , . . .

' ' I e E i

E f f 2El E E ~.
.U~~L EM~ .~a

77 -q q ~

E E E iil•i ! dii A AI E j E. d !,i -I -I W -- j E 'E2 222 E 2

P• : j ,14

"Ua a0ata0 aV 1110

fiW 0-'l V1 11 .1 1- 1 .

-3 filj I • j•
l • : • l ! l •

I i

-~ 'll * . -=' -i
12 E

,i 1 i 5! I
d Il . 2

.iiii S "LU w2 2i

P 16

2I T

- 185-

0% • i . . ., 3 • . • .. • . ,3

IN I l Ic I Ic

SE- E E- : E- E- 6 'E E• -

1- .1

E E ' E E IE ej _E i

~ A A A A AA
'a T v T -a Lt -a - a -C4

4l 4

im'a 0 V- mi. ii I -1 .0 .0 I'I T q A *1 If I M11 L I EA *&ISEE

S i -- - - Y 4 - 16 -

I~ ~ ')a _ S~ E Ia '. a'~.I j CI 1

ii X i A

T2 V EEA2!21AEAvE T&ET

08 1E E2 E E E~ E~~ ~ 1

V- V -

o 2 'E 'E. ' E 'l E 'E E1 E1 E1

U;

-a E~ E E E0 C

.2 A A 2 A A A

F E E E 6 E

-186-

CK Ili8 8 8 8 8

ma .'. I I A.~

4. G4 CR c 4. C 4-a .i-

~ .j E - 1 2. i -. 1 -M

£6 E E &I i ý 'E Ea ýE4

1471il IA A I j Ej -jA I AIA

Tn. T'. 1'. mUa! T'. T '! A'.
75 =l A S Al 'S Al l 7l AlA

j -3 -2 '-3' -

U)

a- " I, JM

E E' E' U 6 E U6 E' E

U187

I E E E
. I -I "I -I -I '-I -I - I

.. . 0 . - A j j 20

E E

Is - - II' -1 i' 'is I' I i I

-l S SS" E ' E 5 '

22 2 22 2 22 4 22 2

k;_ . _ , . _ .21_ .E l g k:

I, I- I- .22 -2 .-

00 E--- ---- 9--- -

m-V V- V- a a t

,.4

c; t4

Ail

-188-

; : 1 411 I 1 I II I I I q I I

E- -E'• E'E O' '•EE' E E" E'E '

E9 'Er

I 1 i *; : i1 Ir tl 2 : i Z.:I

i E.'l. E. . El' r.e ' . E'e r E

SE E,• E', E ,•E El '41 , •

S•• • -:-••4- --, . 4 -q

E=E E I

11 111I lol I I

T 1A I E 'EA E A T" I, I I ' A

~Ai iE iE "i EA EA EA EA E

U- I- -
t 4 ra I = I, .. r C. II s

De E E.'. . E '= E' Es E.,' E' E' Es

-~~~ ~ EEEEE !E ~E~E

.0C v

Hi- 4: w w w

-- a IE - '

E. I I19

E IU, -j

.~ xi j
S 7 RE E~ S

v VCE C V

W9 Nf189-

s E S s

S E 6 C E E E E E E E E E E E S E

- - - - - -- - --
I I I I *- • I . . - - • " - I I °- "II -I '- I - I

0 -a a a 2 a a-2 '- . .9 a.
a . a . a - a - .-_

a a aE a aE , -E a aE a E E a a a

S. f cis i - -. , - c is =is

_ ' 8 ' " ' 8Oa'a'a I I 9 I I I I I' ' I

- . 1 - I

S 2 2E 2 E E 2 E t E 1 SE Et E t Et

9 i c c
.8 .!i 0

m iiE -4E1 E1iE I E Z E Z2 E U E Z E X E E2 E % E X E

UC 03 a-0aC :a T t~~ -0V

.. 0~~ EaEaa'a jaaa~ 2.aa'~2E i '2ai 'i 'Ea i

1!a a- T T "! -a2-a 4! r~~ 7 r- Tj r,'2 2,
u 'S~ 73 .1 'S a 73o 75 *u eS ' 73 7

v_ V

o6 IAs 6R o c; c o

z zz

AS r

aca
E~~ cE~0 .

T!i* Us
dWE E a0r c -c

x AC. A me - -
in r, -, I -J -' Ia

> au

- - - - -~ -1 -~ - - - -

-190-

oe. , , ., , , , 2, ,

a. -_ E t i~ l _

SiT -I I '

2 E

E E c- 6-

C-C

2E E 2E

I I +

o 8 , s I
0

- E i :" 11

S i~i •-u~-' '* I- * +'~ I*

I II E E

0 9 * 9.j ' -' .E 9 1 E.1-2 r,

r in

a E=I .2 E U4 -"W l~

Af AI I-.A

V -CO -aw U -. Vu Eu

o4 2

> % :6-
a MCA el

Uj E- - -1..~ -E E

U, F u-
- - - - 1 a- 2

2 A .0-1 .
E 7s E S

r V c V

0~0

c~

rl -r, ; I rC

r -

1,2 Al 1-2 .-. -a
E E~ -

U,4 .4

104 4T*
E I T E

9 oz

If,

E .I E 6 E S

T4 C-z 4

a., r .0 c .0 2 V Z

-192-

V V! V 0 -0 0 .0

C-C

- ,- - - 5 .- -

z 0 in 0. I

o o I C CC

ra Cc

04 - D m

UI

2n x ~
e ea 06.

I *0z

a
6

2222193-

T. 1 "9 1 2

.0 V v v v2; v2

*0~ I A'M 0

I. LZAr- --- - - - - - - : -1 -

* ~ ~ ~ ~ S A, N. A.- - - % N . N .
0 Z a ElpU- a

4,. 4 =. .C c c c = CX 9U 8t

C .C C, C . '= = . .C C C cc
22~~~~~ E 2 2 2 1 .

E S EN 'I T S E E 'E I E a s

41 ... - - -

=00 .0.0. .0 10 10 C. .0c. f0.g.-.0.0000.0 ..

.. ! A

a ~ -u titU gI* g14U i
af 5,- , ~ a U a a Ua a ~ aI~ r I

lc-- I~~ I -lI .!

E22 EE E

w !*~ ~ i

0.

EE

I h - 4 E

JOS :6 16 1

pa E

2 2

~ 2 ~ -194-

~~00

Ia ~0.0-0m

P-4

-e - -C- .. .
a IC a

1 4. -2 I g-
V VE- 2& o i. V.!

.2 u 2j
*I 4 '

~C6 *IC9h, 4~4

I.

0

0-4.

ku

.1 44
_ E4uF

E -- --

V411

x6

wn
- -h50

Z (a) .. 195-

22 January 1993
Reference # W003036

Rev. 0.0

5.2. Data elements of the CSCI's external interfaces.

Existing data elements of the CSCIs external interfaces were not modified nor
were any new external interfaces to the CSCI added.

-19 -

22 January 1993
Reference # W003036

Rev. 0.0

6. CSCI data files.

Existing CSCI shared data files were not modified nor were any shared data
files added.

- 197-

22 January 1993
Reference # W003036

Rev. 0.0

7. Requirements traceability.

Traceability of the requirements allocated down to the CSU level of
each CSC back to the requirements of the SYSTEM
SPECIFICATION FOR THE ROTARY WING AIRCRAFT AIRNET
AEROMODEL AND WEAPONS MODEL CONVERSION are
shown in TABLE 7.1 - AIRNET AEROMODEL AND WEAPONS
MODEL CONVERSION REQUIREMENTS TRACEABILITY.

TABLE 7.1. - AIRNET AEROMODEL AND WEAPONS MODEL
CONVERSION REQUIREMENTS TRACEABILITY

Requirement SDD Title Description
ID Traceability

Reference
3.2.1.3.1. 4.1 Flight Model The Flight Model Segment

Initialization Initialization State shall be entered
State. during the System Initialization process

after system bootup. System state and
status variables uniquely identify the
RWA AirNet configuration and state.

13.2.1.3.1.1 4.1.3 Flight Controls Initialization of the Flight Controls
Initialization. Model Sub-Segment configuration shall

be done during this state upon command
from the s"stem.

3.2.1.3.1.1.1 4.1.3.2 Flight Controls Parameters to be set shall include
Data. maximum pitch, roll and yaw rates,

turning radius, flight controls input
sensitivity and profile, physical
constants, conversion factors, integration
constants, gains, and limits.

3.2.1.3.1.1.1.1 4.1.3.2 Flight Controls Data values shall be read from a flight
Data File. controls model initialization file.

3.2.1.3.1.1.1.2 4.1.3.2 Flight Controls The format of the data file shall allow
Data Format. modification of the data using a text

editor.
3.2.1.3.1.2 4.1.2 Flight Dynamics Initialization of the Flight Dynamics

Initialization. Model Sub-Segment configuration shall
be done during this state upon command
from the system. During this mode,
configuration flags and variables are set
which point to specific submodules and
data files for execution and loading.

- 198 -

22 January 1993
Reference # W003036

Rev. 0.0

TABLE 7.1. - AIRNET AEROMODEL AND WEAPONS MODEL
CONVERSION REQUIREMENTS TRACEABILITY [CONTINUED]

Requirement SDD Title Description
ID Traceability

Reference

3.2.1.3.1.2.1 4.1.2.2 Right Dynamics Initialization shall include
Data. downloading of coefficient tables for the

main rotor, fuselage, and stabilizers.

3.2.1.3.1.2.1.1 4.1.2.2 Right Dynamics These values shall be read from a flight
Data File. dynamics model initialization file.

3.2.1.3.1.2.1.2 4.1.2.2 Flight Dynamics The format of the data file shall allow
Data Format. modification of the data using a text

editor.
3.2.1.3.1.3 4.1.1 Engine Initialization of the Engine Model Sub-

Initialization. Segment configuration shall be done
during this state upon command from the
system.

3.2.1.3.1.3.1 4.1.1 Engine Initialization shall include
Initialization. downloading of data tables for the gas

and power turbines, fuel consumption,
power output, and acceleration
coefficients.

3.2.1.3.1.3 4.1.1.2 Engine Data. These values shall be read from an
engine model initialization file.

3.2.1.3.1.3 4.1.1.2 Engine Data The format of the data file shall allow
Format. modification of the data using a text

editor.
3.2.1.3.2 3.2.1 Flight Model Run- In this mode the Flight model Segment

(Functionality Time State. shall be in stand-by awaiting RWA
un________d) AirNet fight model activity.

3.2.1.3.2.1 3.2.1 Flight Model Idle During the Right Model Idle mode, the
(Functionality Mode. execution of the flight model functions
unchanged) shall be suspended.

3.2.1.3.2.1.1 3.2.1 Flight Model Idle Integration computations shall be put in
(Functionality Mode Integration. a stable state.unchange~d)

3.2.13.2.1.2 3.2.1 Flight Model Idle Execution shall be started or resumed
(Functionality Mode Change. from this mode.
unchanged)

3.2.1.3.2.1.3 3.2.1 Flight Model Idle This mode shall be controlled by the
(Functionality Mode Control. system executive.
unchanged)

3.2.1.3.2.1.4 3.2.1 Flight Model Idle The modifications shall have no adverse
(Functionality Mode Functionality. affects upon the Flight Model Idle mode
unchanged) functionality.

3.2.1.3.2.2 3.2.1 Flight Model During the Flight Model Execution mode,
(Functionality Execute Mode. the flight model shall be executed in

_unchanged) I real-time.

-199-

22 January 1993
Reference # W003036

Rev. 0.0

TABLE 7.1. - AIRNET AEROMODEL AND WEAPONS MODEL
CONVERSION REQUIREMENTS TRACEABILITY [CONTINUED]

Requirement SDD Title Description
ID Traceability

Reference
3.2.1-3.2.2.1 3.2.1 Flight Model Execution shall be stopped from this

(Functionality Execute Mode mode.
unchan__d) Execution.

3.2.1.3.2.2.2 3.2.1 Flight Model The rate of execution shall be controlled
(Functionality Execute Mode by the system executive.
unchanged) Execution Rate.

3.2.1.3.2.2.3 3.2.1 Flight Model The source of coefficient data shall be
(Functionality Execute Mode Data table look ups.
unchangd) Sources.

3.2.1.3.2.2.4 3.2.1 Flight Model The modifications shall have no adverse
(Functionality Execute Mode affects upon the Flight Model Execute
unchanged) Functionality. mode functionality.

3.2.1.3.2.2.5 3.2.1 Flight Controls The Flight Controls Model Sub-Segment
(Functionality Model shall simulate the flight controls of the
unchange_-_d) aircraft.

3.2.1.3.2.2.5a 3.2.1 Flight Controls Input shall be used to calculate a
(Functionality Model resultant movement of a control surface
unchanged) and corresponding output to the flight

_dynamics model sub-segmenL
3.2.1.3.2.2.6 3.2.1 Flight Dynamics The Flight Dynamics Model Sub-

(Functionality Model Segment shall provide a simulation of
unchanged) the flight characteristics of the aircraft.

3.2.1.3.2.2.6b 3.2.1 Fight Dynamics The simulation shall include portions of
(Functionality Model the flight envelope including cruise,
unchanged) ascent, descent, hover, and low-level

flight with ground effect.

3.2.1.3.2.2.6c 3.2.1 Fight Dynamics The simulation shall include calculation
(Functionality Model of forces and moments, equations of
unchanged) motion, weight and balance, and

aerodynamics.
3.2.1.3.2.2.7 3.2.1 Engine Model The Engine Model Sub-Segment shall

(Functionality provide core engine representation,
unchanged) torque generation, engine fuel system

utilization, and transmission
representation.

3.2.1.3.2.3 3.2.1 Flight Model Stop During the Flight Model Stop mode, the
(Functionality Mode. execution of the flight model functions
unchanged) shall be suspended.

3.2.1.3.2.3.1 3.2.1 Flight Model Stop This mode shall be controlled by the
(Functionality Mode Control. system executive.
unchanged)

3.2.1.3.2.3.2 3.2.1 Flight Model Stop The modifications shall have no adverse
(Functionality Mode Functionality. affects upon the Flight Model Stop mode

Suncha functionality.

- 200 -

22 January 1993
Reference # W003036

Rev. 0.0

TABLE 7.1. - AIRNET AEROMODEL AND WEAPONS MODEL
CONVERSION REQUIREMENTS TRACEABILITY [CONTINUEDI

Requirement SDD Title Description
ID Traceability

Reference
3.2.1.3.3 3.2.1 Segment Capability Flight Model Segment capability

(Functionality Relationships. relationships shall not be affected by
unchanged) modifications and restructuring of the

flight model functions.

3.2.1.3.3a 3.2.1 Segment Capability The capability relationships shall
(Functionality Relationships. remain intact.unchanged)

3.2.1.3.4 3.2.1 Segment External Flight Model Segment interface
(Functionality Interface requirements shall not be affected by
unchanged) Requirements. modifications and restructuring of the

flight model functions.

3.2.1.3.4a 3.2.1 Segment External The interface requirements shall remain
(Functionality Interface intact.
unchanged) Requirements.

3.2.1.5 3.2.1 RWA Weapons The intent of the RWA Weapons Model
(Functionality Model Upgrade Upgrade is to improve the software by
unchangd) Segment making it table driven.

3.2.1.5.1 4.2.1 Initialize Weapons The Initialize Weapons Segment state is
4.2.2 State entered during the System Initialization
4.2.3 process after system bootup.
4.2.4
4.2.5
4.2.6
4.2.7

3.2.1.5.1.1.1 4.2.1.2 Guided Missile Trajectory coefficient data associated
4.2.2.2 Trajectory with guided missiles shall be loaded at

Coefficient Data mission initialization.
3.2.1.5.1.1.2 4.2.1.2 Guided Missile Trajectory coefficient data files for

4.2.2.2 Trajectory Guided Missiles shall be in a format
Coefficient Data which allow modification through a

Format standard text editor.
3.2.1.5.1.1.3 4.2.3.2 Ballistic Missiles Trajectory coefficient data associated

4.2.4.2 Trajectory with ballistic missiles shall be loaded
4.2.7.2 Coefficient Data at mission initialization.

3.2.1.5.1.1.4 4.2.3.2 Ballistic Missile Trajectory coefficient data files for
4.2.4.2 Trajectory Ballistic Missiles shall be in a format
4.2.5.2 Coefficient Data which allow modification through a
4.2.7.2 Format standard text editor.

3.2.1.5.1.1.5 4.2.6.2 Ballistic Rounds Trajectory coefficient data associated
Trajectory with Ballistic Rounds shall be loaded at

Coefficient Data mission initialization.

- 201 -

22 January 1993
Reference # W003036

Rev. 0.0

TABLE 7.1. - AIRNET AEROMODEL AND WEAPONS MODEL
CONVERSION REQUIREMENTS TRACEABILITY [CONTINUED]

Requirement SDD Title Description
ID Traceability

Reference
3.2.1.5.1.1.6 4.2.6.2 Ballistic Rounds Trajectory coefficient data files for

Trajectory Ballistic Rounds shall be in a format
Coefficient Data which allow modification through a

Format standard text editor.

3.2.1.5.1.2.1 4.2.1.2 Guided Missiles Guided missile characteristics shall be
4.2.2.2 Characterization initialized via data files.

3.2.1.5.1.2.2 4.2.3.2 Ballistic Missiles Ballistic missile characteristics shall be
4.2.4.2 Characterization initialized via data files.
4.2.5.2
4.2.7.2

3.2.1.5.1.2.3 4.2.6.2 Ballistic Rounds Ballistic Rounds characteristics shall be
Characterization initialized via data files.

3.2.1.5.2.4.1 4.2.1.2 Guided Missile Guided Missile Flyout shall utilize new
4.2.2.2 Flyout data structures containing trajectory and

control data.
3.2.1.5.2.4.2 4.1.1.2 Use of Data Tables Updates required Modification of the

4.1.2.2 source code shall be limited to reference
4.1.3.2 data tables containing data which is
4.2.1.2 read in via data files.
4.2.2.2
4.2.3.2
4.2.4.2
4.2.5.2

4.2.6.2
4.2.7.2
4.3.1.2
4.3.2.2

3.2.1.5.2.4.3 42..3.2 Ballistic Missile Ballistic Missile Flyout shall utilize
4.2.4.2 Flyout new data structures containing trajectory
4.2.5.2 and control data.
4.2.7.2

3.2.1.5.2.4.4 4.2.6.2 Ballistic Round Ballistic Round Flyout shall utilize new
Flyout data structures containing trajectory and

control data.
3.2.1.6.1 4.3.1 Initialization State The Kill COMM Initialization state

places the communications system into a
known state. The Initialization state
hasno modes.

3.2.1.6.1.1 4.3.1.2 COMM On Variable The Kill COMM Initialization shall set
the communications "COMM On"
variable to enable ownship two-way

communications.

- 202 -

22 January 1993
Reference # W003036

Rev. 0.0

0 TABLE 7.1. - AIRNET AEROMODEL AND WEAPONS MODEL
CONVERSION REQUIREMENTS TRACEABILITY [CONTINUED]

Requirement SDD Title Description
ID Traceability

Reference
3.2.1.6.2.1 4.3.1.2 RunTuneCOMMOn The Run Time COMM On mode shall

Mode enable two-way communications between
the ownship and other AirNet vehicles.

3.2.1.6.2.2 4.3.2.2 Run Tune COMM The Run Time COMM Off mode shall
Off Mode disable two-way communications

between the ownship and other AirNet
vehicles.

- 203 -

22 January 1993
Reference # W003036

Rev. 0.0

8. Notes.

This following section contains general information that aids in
understanding this document.

8.1 Acronyms and abbreviations.

The following is a list of acronyms and abbreviations used in this document.

ADAT Air Defense Anti-Tank Missile
ADST Advanced Distributed Simulation

Technology
ASCII American Standard Code for

Information Interchange
ATGM Anti-Tactical Guided Missile
CDRL Contract Data Requirements List
CSC Computer Software Component
CSCI Computer Software Configuration

Item
CSU Computer Software Unit
deg degree. gals gallons
I/O Input/Output
KEM Kinetic Energy Missile
kg kilogram
kg-m kilogram-meter
Hz hertz
Msec millisecond
N Newton
N-m Newton-meter
NLOS Non-Line-of-Sight Missile
rad radian
SDD Software Design Document
sec second
STRICOM Simulator Training and

Instrumentation Command
TOW Tube-launched, Optically-tracked,

Wire guided Anti-Tank Missile

- 204 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix A - RWA AirNet Call Tree Structure.

The following appendix contains information for convenience in
document maintenance and understanding of the overall CSCI
architecture. This call tree is not all inclusive, i.e., it only contains the
calls from the top-level down to the CSU of interest in this
document. Other CSU have been included in the Call Tree for clarity
and reference.

-A-1 -

(Ui ' '~1 VIC 0I0

filI 0

4, I

uuuuu u~uuoreu 444

LU L

L, ValI

16! U

77 00 .' LA V' 12 0' Iola c

~~a ;o ELI

14 0,001

JO e 0--

14-111 A I a~~ 1, II IsE . :1

cA~~~~ .- A- A A .2

Hill II
2 1

III
Go

in

1 .09zp.- 2 1

i~- II~jIL
CE

TeU

'N NI

II

'MM

>I >

e I I t t t

~13L

•1• ,. • l • '• Sal "1 o

LA 9 El LA, L9

04

I,•, I

*b C

'eta

.. RI , ,

II

-0

14 4 4 %q L 4 4 4444 44 4 44 4

li2 Li

C4-.- .,

- 0

110 0CI0

to 0

Ný

%D GW

0=

8 0 0 00 00 0 0080 08

va I

-,~~ 1 ~
LOJ: 00 o

8 ~ 88
Iu >%Iv %.

I E

.5E

8 ,8,8,88 , 8,8,8, ,ii,

II li i li -

00

(A. . .1 i1i

0 '

IS
w

Iv z

:1V~I a 3 5 :! II

2 1 1jt 1I
1 12

0 a

b~13-4

aa

a 0,

= 2 r. It E
c : V.) I to

o0 00 8, 81 .~ I

qv1.
"8

C)~ i *LLLLt14*LLIL~*~* LLl 4
I 1 e11 5

ww

Ow 10clb IO 0.;w 0lb T

In' el.;Iewi To T

CJ W J @~ @G~@J ~OJ@
>I -6 11 11 1 III III III -m-o r s1-epi s1i 111 v ED-D -E E

(UU((U (UU(W((UU(elEU el 9,(5, 9, e 15 1 45 51 el51 9 1

C'J4

0.0 o

oilI I -E

Go w .

II

"44

bi

G °"o To"

I1, C

li"tI "
SI0 00'•

S(4kl

CO

Oiei~

=•~~ bo, 8, ' -- j
bb.

ii

SiI

40

L m l i~ -4

IS Cc

an w 6' L 0 L

I.0 d ton~

s Is

4N4

IIL
W)c '

*L
kcC J

pa
GO

.1 roI clS -
I-I

go~ cI

012 " ,O r"

pa

tu

00

I 'I, .

,

>

0¶

0)01 X

C,4

wi

VM II Iq r

I Is I L L ""ft X
r- r-- r-Ii

I1 I M

I~ I I I0 IQ I0

GJ O~u
tgt

C4C~

I A

60)

I~%
Uc

a ww

*111 i i •IW

C4

•31

din
ro" t- -++- 0

* .. 23+<,
't~' r' r

.gqj*; @

I o.

(14

S.:o .6 A-

~T -S88s 8 888 888888888888 1' 0

-T *& I .1 4 188

8ý &e&e F I e.e. & T &
1i 8 1 ""(ý ý I I I I ý oi

"V4

Ir &

I
04 U

hiai,

CD-

toII% 2(, 2 :r

040

L2 E'
'iHIsa

qp

,,._,-_,- F, ,,,,•,F ' F , , F• • rg,._, . , a,• '. a, g, gg ,a , ,

0

LD 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

d)11 1 II l ii 1 1 1 1 =1 4,12121 tog
0to0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

La

cnuununn rnu uuunE Uu urnur

II
8,11 1,a,6

.9 lb Ia Lu aI ~ e

2 ~. .s~ 'ilb

.3

VID gi g-' ' g6 rDV

E L o W . 1 p . -I -M I -S

0C 00 E

I ~ ~ d I~i~ 'D i
Go-4 jE 0 -~

a.. i aE 8 8 E .
~o '2o 40

Ic pi
-E c 71 f -1 0 1 N0A r : 2 1

a a 24

tun t' t orn I I I II i ii2 2 1 1 1 1 1 1:1 1 1 11 1 l1 l

In In

C4

la,

ET80

U)A

'.4v

4 4 4-C 4 44 y q 4UU 4 y44 4q4

gg ,FggFF, g g ,g .
Ev tU 2U~ U 2 22'2'2'2'2

60- .2

71 72 71.v uvlu
=. I .%I0 M

-S4

aw

"fn

14 44 4 444

I

cr4

CC

• "" • •,I . A Al••' • .

IJ

C44

ILGoj

a0
G P. i.a-

Ij I A . 2
:1 f

tow

14:1101--IIE
all V.0 I

W, w V

6r4U~ ~J ~ J ~ 4a., aa4LLaa:~aaa

rtu EU U 4 .cn E E E I I W G
liiI g-i

EU ((U~U~LL EUUE~m~~ ~ EUE EU17UE

Co

SO L

EU
I n r*2

2q u

S•, %vi i

,a a a...':1

~ ~1r 5w I t to' i i I~

II

2 22 2 2222

El -

=X-I

Is.

i Al

W Wl
II AM I 1 6 a-a

.2.
+, m + .m' '.!w' WI[

0'

4~pl 444 4

a ~ ~ U)cl

C39 LI signI~rI LLo w

I-S

8 81 1 8 1 -6 F

1* l i i 1

ET~

""a .22 So~

Lu * w a)
c

IS~ ~

WW ol4

id

la"l
t~t~m0~ U (lsitu

in4

SDm
Ck

0 SDI

0.: Q 4Z

, w',l••• t ,,• "• "• %

t
8 8

ZIof
Ul~~ .0 1111'-

LuL

I aItlE

E8 E E
t- :1 8~ 8

:I A

N3l

IIV,

-a-

b.

to x x

11

RI
1-4!

-f2an

-S

oJo

.2
a

a, E!

S;,, i ••. ', I ' <
C owl• t .a..

a

'.4

4 ~ ; 444 x4x 4444

• I-. •i!' .•,
•..) E. . L, e. -g,_

2i Ir 8~ 8 rAl

81 s

it

It:

06L

- -LW- 0WL

51 IL
E~ I

Z~IN

da6

22 January 1993
Reference # W003036

Rev. 0.00
Appendix B - Source code listing for rw;,_aerodyn.c.

The following appendix contains the source code listing for
rwaaerodyn.c for convenience in document maintenance and
understanding of the CSU.

B

0
- B--1

22 January 1993
Reference # W003036

Rev. 0.0

i Appendix B - Source Code Listing for rwa..aerodyn.c

/- $Header. /a3/adst-cm/RWA/simnet/vehicle/rwa/src/RCS/rwaaerodyn.cv 1.1 1992/
10/07 19.00:23 cm-adst Exp $ /
/*

" $Log. rwa-aerodyn.cv $
" Revision 1.1 1992/10/07 19:00.23 cm-adst
" Initial Version

*/

static char RCSIDO = "$Header. /a3/adst-cm/RWA/simnet/vehicle/rwa/src/RCS/rwa_
aerodyn.c,v 1.1 1992/10/07 19.-00.23 cm-adst Exp $";

Revisions:

* Version Date Author Title SP/CR Number

* 1.2 10/09/92 R. Branson Data File Initiali-
* zation
* 1.3 10/16/92 R. Branson Data filenames changed
0 to eight charachters

I IA 10/30/092 R. Branson Added pathnarne to data
* directory

---------------------------------------drcor-I81844 - 48w

0 SP/CR No. Description of Modification

SIHard coded defines changed to array elements.
* Aerodyn data array added.
0 Aerodyn initialization data array added.
* Aerodyn stealth data array added.
0 Aerodyn simple data array added.
0 Added file read for aerodyn data, aerodyn initiali-
0 zation data, aerodyn stealth data, and aerodyn
* simple data to the "aerodyn-init" function.

0 Added "/simnet/data/" to each data file pathname.

"* FILE: rwaaerodyn.c

" AUTHOR: James Chung 0

" MAINTAINER. James Chung *
* HITRY: 4/19/89 james: Creation *

- B-2 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B - Source Code Listing for rwa.aerodyn.c

* 8/02/90 carol: added simplified aero dynamics

* Copyright (c) 1989 BBN Systems and Technologies Corporation
All rights reserved. *

Interim aerodynamics model for a generic rotary-wing aircraft*
* with flight characteristics similar to that of a McDonnell
* Douglas AH-64 Apache attack helicopter.

- - - - - - - - ---

#include "stdio.h'
#include 'simstdio.h"
#include SLaathJh"

#include "sim_dfns.h"
#include "siremtypes.h"
#include "sire_macros.h"
#include "libmatrix.h"
#include "libmath.h"

#include 'Ywa-engineh"
#include "vehicle.h"
#include "aero.param.h"
#include "std.atm.h"
#include "ground.h"
#include "rwaground.h"
#include "parametersh"
#include "rwa.kinemat.h"
#include "libmun.h"
#include "libhull.h"
#include "libkin.h"
#include "rwa.aerodyn.h"

#define MOMENTOF INERTIAX aeidatal 01
#define MOMENTOFINERTIA Y aero-data[11
#define MOMENTOFINERTIA Z aerodata[21

#define AIRFRAMEMASS aerojdata[31
#define ORDINANCE-MASS aero.data[41
#define GRAVCONSTANT aeroidata[51
#define CGACX aerojdata[61
#define CGACY aerodata[71
#define CCACZ aero data[81

#define VIRTUAL WINGAREA aero_data[91
#define VIRTUAL WINGCOP.ACX aero data[10O
#define VIRTUAL_WING_COPACY aero_data[ll]
#define VIRTUALWINGCOPACZ aero-data[12]
#define WINGQ_LTFtCOEFFICIENTFIT_3 aeroudata[13]
#define WINGLIF._COEFFICIENTjIT_2 aero.data[14]

- B-3 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B - Source Code Listing for rwa-.aerodYn-c

#deflne WINGLjJFT..COEFFICIENT_FITý_I aerodata[15J
#define WING...LFLýCOEFFIGNTFIT_0 aero..Aata[16J
#define WINQSTALL.AOA (degto~rad(aero...dataI1lD)

#define VSTABLAREA aero-data[18l
#define VSTABLCOP.AC...X aero..data[191
#define V9TAB..COPAC...Y aerodcata[20J
#define VSTABLCOP..AC...Z aero..dataI21J
#define VSTABLWIFFCOEFFCIENT-1 aero..data[221
#define VSTAk5TALLSSA (deg~to._ad(aero.data[23]))

#define MAU{.ROTORCOPACX aero...dataI24J
#define MAIN_-ROTOR COP..AC.Y aero..data[251
#define MAIN -ROTORCOP_-AC..Z aero..data[26J
#define MAIN-ROTORJAAXJHRUST aero-data[27l
#define MAIN -ROTORMASTJILT (deg-to.-rad(aero.-ata28J))
#define MAIN -ROTOR_MAXLOADTORQUE aero..data[291

#define MAIN.RoToR~mAXJ'ITrCILMOMENT aero._data[30J
#define MAJN3OTORMAX_-ROLLMOMEN4T aero__data[311
#define MAIN _ROTO)R-TORQUECOUPLING-GAIN aero-data[32J
#define mAII43oToR_GROUND-EFFECI FACTO:R aerojlata[33J

#define TAIL_,ROTORCOP AC X aero._data[341
#define TAIL -ROTOR COP. AC Y aero-data[351.#define TAILROTOR-COP..AC-Z aero.Aata[361
#define TAIL3-OTORMAXJTHRUST aero..dataI37I
#define TAIL-ROTOR MAX LOAD -TORQUE aero..Aata[381

#define Pý.DRAG.COEFF.-CONST aeroOata[391
#define P...DRAG-TAS -BREAK aero..4ata[401
#define PDRACSOEFF-BREAK aero_4ata[41J
#define P..DRAG TASLMAX aero_%lata[42J
#define PýDRAG_.COEFFJAMAX aero..data[43J

#define TOTAL-WE1TED SURFACEAREA aero.AataI44J

#define AIT DAMPING MODESIMPLE TRUE

Hover hold changes:

if A7r..DAMPING.LMODESIMPLE
when slow moving (airspeed<10 knots) the max pitch is 5 degrees

medium (10<=airspeed<30) pitch is 10 degrees
other (30<=airspeed) pitch is 15 degrees

else
when airspeed >= 10 knots pitch is proportional to log(speed)
otherwise pitch is +/- 5 degrees

PaulIJ. Metzger 11-1-89
44-N-4111140- -- - - - - - - i-. am"O static REAL MAX AlTCL _1-_NGLE;

#define MAXAlT CTL _ANGLE 10TP aero.Aata[451

-B-4

22 January 1993
Reference # W003036

Rev. 0.0

Appendix V - Source Code Listing for rwa.aerodYn-c

#define MAX..ATr DAMPING..FACTOR aero~data[461
#define HOVER...LOW-IMrT aero.-dataI471
#define HOVER AUG_PiTCH_RESETYALUE aero-data[481
static int hoverý-hold-turned....n; /* transition node, TRUE or FALSE/

if A7r..DAMPING_.MODE..SIM4PLE
#define MAXLA*1_TLCnANGLEYNORM (deg Jo..rad (aero...dataI49J))
#define MAX...AT LCjANGLjE.MED (degjo...rad (aero..Aata[50J))
#def ine MAXA7T_CRANýGLE..sLOW (degjtojad (aero.Aata[51 1))
#define HOVERAED...UMT aero...data[52]
#endif

#define A7T_Cli._P1TCHF...GAIN aerodata[53J
#define A77...CTLJ'1TCH I GAIN aero...dataIS4J
#define AlTCli.ROLLJ._.GAIN aero...datal55]
#define ATT..C'TLROLLJ.-GAIN aero...data[56l

#def ine HOVER..AUG-ROLL.PGAIN aetp-data[571
#define HOVER.AUG..ROLLJ..GAIN aero...dataf 58]
#define HOVER.AUG-PrTCH-J'.GAIN aero..data[59l

#define HOVER..AUG-IrrJU...GAIN aero...data[60J
#define HOVERAUGLYAWý_PGAIN aero..data[611

#define HOVER..AUGYAW-I-.GAIN aero...data[62J
#define HOVER.AUC-CLIMBA-GAIN aervo-ataI63J
#define HOVEK.AUGC~lNBJ.GAlN aervojlatul641
#def ine MAX..STABAuG._pH.-RoLL....CONTRoL aero...data[65]
#define MAX STAB AUG-YAW-CLIMB.CONTROL aerqjlatal66]

#define ROLL RATE DAMPING GAIN aero~data[671
#define Pfri c-RATE-..DAMPING.GAIN aeMo~data[681
#define YAW RATE DAMPINQGAIN aero...data[691
#define VEiCAL-RATE...AMPINGGAIN aero..sata[701
#def ine LTRALVELOCITY...DAMPING..GAIN aerp~data[711

#def ine LIFI COEFF VTRTAL3V!ING aero...data[721
#define OSWALDEftqICACI'OR aero..dataI73J
#definc INDUCED-DRAG..COEFF aero~data[741

static REAL aero data[1O00=
r40000.000, 50000).000, 50000.000, 4881.000, 1591.000,

9.8, 0.0, 0.0, -0.100, 25.0,
0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 30.0, 3.0, 0.0,

-9.1, 0.0, 5.0, 60.0, 0.0,
0.0, 2.0, 123500.0, 2.5, 76476.0,

100000.0, 100000.0, 0.5, OA, 0.0,
-9.1, 0.0, 8909.1, 1684.8, 0.0,
50.0, 0.02, 100.0, 0.06, 50.0,
6.0, 4.5, 5.15, 0.44, 15.0,
10.0, 6.0, 15.46, 2.5, 0.05,

-B-5 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B - Source Code Listhng for rwa-aerodyn.c

5.0, 0.05, 0.1, 0.001, 0.1,
0.001, 10.0, 5.0, 1.0, 0.5,
0.2, 0.05,100000.0, 100000.0, 100000.0,

2000.0, 1000.0, 0.6, 0.9, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0};

static REAL aeroinit[201 =
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0

1;

static REAL aero -simple[20 ={
500000.0, 0.5, 48.0, 0.15, 10.0,

100.0, 150000.0, 1.5, 0.7, 0.03,
400000.0, 100.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0

S~~static REAL aero..stealth(201

80.0, 30., 10.0, 01 0000.0, 10000000000.0,

5000.0, 25000.0, 0.03, 0.0, 0,0,
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0

static int hover..holdstate; /* OFF or ON*/

static REAL M1 'N ROTORMASTTILT SIN;
static REAL MAINROTOR MAST TILT_COS;

static REAL altitude; m */
static REAL true-airspeed; /* m/sec /
static REAL last-airspeed = 0; 1r m/sec /
static REAL vertical-speed; I* m/sec /
static REAL roll; /* rad */
static REAL pitch; /* rad 0/
static REAL roll_.rate; /* rad/sec */
static REAL pitch.rate; /* rad/sec /
static REAL g-force;
static REAL last-g-force;
static REAL yawrate; /* rad/sec */
static REAL pitch-damping;. static REAL roll-damping;
static REAL yaw-damping;

-- B.-6 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B - Source Code Listing for rwa..aerodyn-c

static REAL amnbientjtemperature; /* deg R V
static REAL amhbient-pressure; /* N / rnA2 0/
static REAL ambienLdensity; /* kg / MA3 */
static REAL dynarniic...pressure; /* N / mA2 V/
static REAL mnainjrotorjhrust; /4 N /
static REAL tail-rotor-thrust; / N 4/

static REAL lift..yirtu4wing;/NV
static REAL lift~stab;
static REAL lift..coefficientyidual-wing;
static REAL lift..coefficient -vstab;
static REAL tot&Ldrag;
static REAL total incompressiblejldrag-coefficient;
static REAL grow-..weight; /4 N /

static REAL vehicle-.mass; /* kg*4/
static REAL angle-of..attack, /4 rad 4

static REAL sideý-slip_.Angle; /* rad 4

static REAL main -rotor load .jorque; /* N-rn V/
static REAL tail rotor load torque; /* N-n V/
static REAL powertrain..percent~shaft.speed; /*0-1*/

static REAL cyclic-pitch; /* -1 to 1 V/ /* Flight controls V/
static REAL cyclic...oll; /P-Itol1 / / Flight controls /
static REAL collective; /0 Otol 4/
static REAL pedal; /* -Ito 1I*/
static REAL stab-aug-pitch;
static REAL stab...augjroll
static REAL stab..aug..yaw;
static REAL stabaug...cimb;
static REAL stabý_aug-.pitchjntegrator;
static REAL stab -aug-joll ntegrator;
static REAL stab aug..yaw integrator;
static REAL stab augscliib integrator;
static REAL hover...aug-.pitch-.angle;
static REAL hover...au~yoll..angle;
static REAL hover-4u&_pitch integrator;
static RE-AL hover -aug-roliintegrator;
static REAL attitude...controLrolLintegrator,
static REAL attitude..controLpitch integrator;
static REAL attitudecontroL..rolLconumand;
static REAL attihzdeý-control-pitchsconrnand;
static REAL controlierscyclic-.pitch;
static REAL controller-cyclic-roll;
static REAL controller collective;
static REAL controller-tailrotor;

static REAL Oangular-velocity vector; /4 kinernatic state vectors*4/
static REAL Ononmalized_ývelocity-yector,
static REAL -veloatyector;
static REAL *gravity dir vector;. static REAL p..drag-jitcoeff[9l; /4 parasite drag fit coefficients 4

-B-7 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B - Source Code Listing for rwasaerodync

static REAL oswald-efficieicyjactor;
static REAL induced-dragscoefficient;
static REAL parasite..drag-coefficient;

static VECTOR loc.ac-main-rotorscop;
static VECTOR loc.ac-tail.rotorscop;
static VECTOR loc..ac.virtualwing-cop;
static VECTOR loc.ac.vstabscop;
static VECTOR loc-ac-sg

static VECTOR lift-body_virtual_.wing; /* body [X Y ZI /
static VECTOR lifLbody.vstab;
static VECTOR force._body_main-rotor;
static VECTOR force.bodytai1..otor;
static VECTOR force_ body_damping;
static VECTOR drag-body;
static VECTOR gravityjorce._body;
static VECTOR force.ground-effect;
static VECTOR force._body; /* sum of all forces *

static VECTOR momenLbody--vual..wing; /* body [X Y Z] /
static VECTOR moment bodyvstab;
static VECTOR momenLbody-mainrotor;
static VECTOR momenLbodyjtorque._coupling;
static VECTOR momentbodyjtai rotor;
static VECTOR monmenLbodyscg;
static VECTOR momenLbody-jdamping;
static VECTOR momenLbody;

static VECTOR virtual.wing_force; /* velocity [H D LI /
static VECTOR vstabjorce;
static VECTOR drag_force;

static TMATPTR velocityto0body; /* vei -> body xform /

static TMATRIX inertia matrix =
((50000.0,0,0),

(0,50000.0,0),
(0, 0, 500.0));

int funny-littledkudge = 1;/* default is logarithmic for complex model */
static int aerodynidebug = 0,

static int selected~model = COMPLEXMODEL; /* default: James' model /
static int allow-takeoff = TRUE; /* allow stealth model to take off*/
static int level-view = TRUE; /* unset any pitch /
static REAL ground-height = 2.8;

void aere .bodypoinsetjfront_wheels(distance_fromhull)
REAL distancejfrom-huli;

-B•-8

22 January 1993
Reference # W003036

Rev. 0.0

Appendix 3 - Source Code Listing for rwa-aerodyn-c

body..pointlOl.position[Zl = distaceý-froni~hull;
body-.pointlll.position[ZJ = distancejfronik-hull;
ground height = (REALX((intX-distmncej-rozn..hull- 10)) /10.0);
pnintf("Front Wheels set %1Alf mn under Huil.n",

distarwc-jrom-hull);

void aero..body..point-setjear...wheel(distancejroiný-hufl
REAL distance-from hull;

body-.point[21.positionlZl = distanceý-froznihull;
pnintf("Rear Wheel set %1 Alf m. under Hu~li.n",

distance from bull);

REAL aero...get-.ground~height()

return(ground-height)

void aerodyn-init()

int i;

0~/* DEFAULT DATA FOR rwa.aerodyn~c READ FROM FILE
int j
float datajznp;
char descriptl64l;

FILE *fp;

fP = fopen("/siinnet/data/rwa-aero~d","r");
if(fp*=NUL.L)(

fprintf(stderr, "Cannot open /siinnet/data /rwa-aero~d\n");
exito;

rewind(fp);

/Read array data/
j=O;

while(fscanf(fp,"%f", &datajrnp) != EOF)I
aero..data~j) = datajtnip;
fgets(descript, 64, 4p);
printf("aero~data(%3d) is%11.3f %s", I aero.Aataljl,

descnipt);
4++t

-B-9 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B - Source Code Listing for nva-.aurodyn-c

fclose(fp);
/* END DEFAULT DATA FOR rwa..aerodyn.c READ FROM FILE

/* DEFAULT piNITALIZATION DATA FOR rwa..aerodyn-c READ FROM FILE
fp = fopen("/simnet/data/rw...aejin-d","r-);
if(fp==NULL)X

fprintf(stderr, "Cannot open /sirnnet/data/rw-ae-in~d\n");
exitO;

rewind(fp);

/ Read array data
j=O;

while(fscanf(fp,"%F", &data-tmp) != EOFN
aerojnit[j] = data..tmp;
fgets(descript, 64, fp);
printf("aerojinit(%3d) is%l 1.3f Ws, j, aerojnit[j],

descript);

fclose(fp);
/END DEFAULT INITALIZATION DATA FOR rwa-.aerodyn~c READ FROM FILE /

/* DEFAULT SIMPLE INITIAUZATION DATA FOR rwa-aerodyn~c READ FROM FILE '
fp = fopen("/szmnet/data/rw...ae..sp~d","r");
if(fp=--NULL)(

fprintf(stderr, "Cannot open /siret/data/rw..ae.spd\n");
exito;

rewind(fp);

/* Read array data

j=-O;

while(fscanf(fp,"%f", &datajtmp) != EOF)M
aero...simnple[jI = datatinp;
fgets(descnipt, 64, fp);
pnintf("aero-.simple(%d) is%l113f %s", j, aero..simple[jJ,

descnipt);

fclose(fp);

/* END DEFAULT SIMPLE INITALIZATION DATA FOR rwa aerodyn.c READ FROM FILE*/

/*DEFAULT STEALTH INITIALIZATION DATA FOR rwa..aerodyn.c READ FROM FILE 0/
fp = fopen("/sinmet/data/rw..ae...sld",Yr);

-B-10 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B - Source Code Listing for rwa-aerodyn~c

lf(fp==-NUL-L)(
fprintf(stderr, "Cannot open /sirnnet/data/rw-aeý-sl-d\n"),
exitO;

rewind(fp);

/Read array data/
j--0;

while(fscanf(fp,"%f", &datatmp) != EOF)(
aero...stealth[j] = dataitmp;
fgets(descript, 64, fp);
printf("aero..stealth(%3d) is%1 1 .3f %s", , aero...stealthljl,

descript);

++j

fclose(fp);
/* END DEFAULT STEALTH INITLALIZATION DATA FOR rwa..aerodyn.c READ FROM
FILE*/

enginejinitO,
cyclic-.pitch =aerojinit[0];
cyclic-roll = aerojinit[11;
if (selected-model != STEALTH-MODEL)

collective = aerojinit[21;
else

Collective = 0.5;
allow tkeoff = TRUE;

pedal =aero-init[31;

stab-augpitch-integrator = aerolinit[41;
stab..aug-Toll-integrator = aero....init[51;
stab...aug..yaw-integrator = aero-mitE 61;
stab...aug-climb -integrator =aero-initj 71;
attitude -control pitch integrator = aero .initf 81;
attitude _control roll intgao = aront 91;
hover...au&_pitch integrator = aerojnit[10J;
hover aug-roll integrator = aero ..n[1J
hover aug-pi tch-angle aemo..init[12l;
hover..aug-roll-angle = aerojinit[131;

hover _hold -state = OFF,
hover hold turned-jon = FALSE;

loc..acjnmainjotor...copIXl = MAINROTORCOPACX,
loc....acjain..rotor-cop[Y) = MAINROTORCOPACY;
locýac-mainrotor-coplZ] = MAIN{ROTOR-COP-.AC..Z;

-B-11 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B - Source Code Listing for rwa..aerodyn~c

loc.acjaliLrotors-op[XJ = TAILhR~OROCOPACýX;
loc...acj-aiLrOtorý-sopf I = TAIL...ROTOR.COP_-ACY;
loc..acj-ail rotorý-copIZi TAIL..ROTOR.COPý_AC_Z;

lop-acý_virtual~yring-cop[XJ = VIRTUAL_-WNQ-COP..AC-X;
Ioc..acvirtuaLwing-cop[YI = VIRTUAL -WINIGCOP..AC..X;
ocý_acý_virtual~wing-qop[ZI = VIRTUALYJINGCOP..AC_.Z;

locýacý-vstab...cop,[XJ = VTABLCOPýAC:ýX;
boc...acy-stab...cop1YJ = VSTAB..COPAC_-Y;
loq-acý-vstab copIZ] = VSTAB..COPACZ;

boc..a~ccg[XI = CG.AQýX;
IoczaccglYJ = CGQAC.;
Io-aipcg[ZJ = CGAC...Z;

inertia mwtrixfll 111 = MOMENTý_Of_INERTIAX;
inertia - atrix[21 121 = MONIENT..OF1ýJNERTIA..Y;
inertiamn-atrix[31 131 = MOMENT-OF INERTIA Z;

pitch -damiping = PrICK-TE..DAMPING.GAIN;
roiLdamping = ROLL..RATE-DAMPING..GAIN;
yawý_damping = YAWRATEDAMPINQ-GAIN;

MAIn qROTOKRMAST _ILTSIN = sin(MAINROTOK..MASTTILT);
MAW-ROTORKvAST-TILTCOS = cos(MAIN-ROTOR MAST TILT);

vec~init (vstabjforce);
vecjnit(rg-force);
vec.-nit (ground-orce);
vec..jnit (force..groundseffect);
vecp~nit (forcebody);
vec-init (moment-body);
vec~init (miomnwnbody-.torque-coupling);
vec-init (force..body...main..rotor);
vecjnit (forcebodytail~rotor);
vecjnit (force..body....amping);

vebidejnmassjnit (AIRFRAME JAASS + ORDINANCE...MASS, inertia-matrix);
ground .. nito;

for (i-O; k<9; i++) /* Set parasite drag profile/

p-O.rag-jitcoefflil = 0.0;

if (find-cubicj- unc (0.0, P-DRAGS.OEFFS.ONST,
P_ DRAG_TAS_-BREAK, P _DRAG.COEFF..BREAK,
P -DRAGTASLMAX., P -DRAG COEFF MAX,
0.5, p-drag-fit.coeff)!= TRUE)

-B-12 -

22 January 1993
Reference # W003036

Rev. 0.0

isAppendix B - Source Code Listing for rwa..aerodyn~c

fprintf (stderr, "AERODYN: Error - unable to fit p-O.rag function\n");

/* So one can tweak the constants without recompiling '

if (selected jnodel)
aerodynjread-.simpleý-onstants (get..constants-file 0);

static void get-aircraftjcineinatic-state()

orientation -calco;
paramneters-salc0;

true...arspeed = kineinatics....getrueý-airspeed0;
altitude = kinernatics-get-altitude0;

anuar..ylocity...vetor = keneiaticsge -angular...velocity~ector0;
normalized..yelocity-vector = kinenintics~ge,..nornalized velocity~yectror0
velocity-yector = Idnematietloinear...velocity~vectror;
gravity-;dir -vector = kinematics..get..gravity~yectozr0;
angle..oLattack =kineinaticsgeaoao;

sideslip-angle =-kinernatics...geyaw0;

velocityjo...body =kineinatics..get~yelodtyjo..bodyO;

&.force = kinematics...get.....forceO;
vertical-speed = kinematics..St..verticaLspeed0;

static void deb...iaLprint (mn)
T MATRIX mn;

int i;
for 0i=0, i<=2; i++)

printf("%0.31f %O.31f %0.31f\W", n~iill1, minfijil, min]i2J);

static void compute flight parameters()

ambient~dertsity = air...ensity(altitude);
amnbientjemperature = airjtemperature(altitude);
ambient--pressure =air...presswre(altitude);

dynainic...pressure =0.5 6ambienLdensity * square (true...airspeed);
pitch-.rate = angular-.yelocity..yectorf X];
roll-rate = angular velodtyector(Y];
yaw-ate - angular...wlocity~yector4ZJ;
roll = atan2 (-gravity..dirý_vector[XJ, -gravityIrvectorlZl);
pitch = atan2 (-gravity.Air..vector[Yj, -gravity_;.iirý_ectorlZl);

- B-13 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix BU- Source Code Listing for rwa-aerodyn~c

static void interact~witK..groundO

REAL brake f~actor;

brake-factor = nonmalized...elocity~ector[YI
true...airspeed / (true...airspeed + 5);

body...point[0I.xjforce = - 6000 *brakejactor;
body-.pointlllx-force = body-point[OI-x-force;

ground interaction(groundjforce,groundjtorque,body..point,grnd,
NUMBEROF _BODY-POINTS);

force-gound -effect[ZI = mnairnrotorj-hrust
MAINRCTIORGROUNDEFFECI7...ACTOR
/(cig-altitude..above..gndo + 1.0);

I' fuel get current level returns gallons
/- gals-(6.51bs/gal) -(1kg /2.2Ibs)/
/0444-44iq- WG ý /
#define KILOGRAMS-PER GALLON 2.95454545454

static void compute-.gross...weight()

vehicle mass = AIRFRAMEMASS + ORDINANCE-MASS +
fuel-W-etcurrent-levelO *KILOGRAMSY-EKGALLON;/* kg

grow-.weight = vebidlejnass *GRAVCONSTANT; /* N *

void aerodyn setiateral stick (val)
REAL val;

I
cyclic...oli = -val;

void aerodyn set longitudinal-stick (val)
REAL val;

cyclic-.pitch = -val;

void aerodyn-set-pedal (val)
REAL val;

pedal = val;

- B-14 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B3- Source Code Listing for rwa-.aerodyn-c

void aerodyn..set..collective (val)
REAL val;

if (funny liffk-leudge)
collective = loglO (val *9.0 + 1.0); /0 or, how to make linear log/

else
collective = val;

static void computejift-drag-forces()

lift-virtual...wing = dynamic.-Pressure
lift-coefficientcvfttualwing *VIRTUALWING-AREA;

lift..ystab = dynaniic..pressure * lift..coeffldient-vstab * VSTABAREA;

total-drag = totaljincompressibleý-rag-coefficient * dynamidc..pressure
TOTAL-WErrTED.SURFACELAREA;

static void computejbody..dampn~forcesandjnom-entsO

moment.body...damping[X] = - pitch~camping * pitch rate;
nlomenLbody-.damping[Yi = - rofll..damping * roUl-rate;
mwment-body..damping[Zl = - yaw-damping *yaw~jate;

force-body..damping[XJ = -veiocty~ector[XJ LATERALYVELOCrlTY..DAMPIN SGAIN;
forcebody..damnping[Yj = 0.0;
force..body-.damping[ZI = -velocityectorlZJ VERTICALRATEDAMPINGGAIN;

static REAL virtual-wing-likmcefficient (alpha)
REAL alpha;

if (alpha > WINQSTALL-AOA I I alpha < 0.0)
return (0.0);

else
return (((WINQSLW~lCOEFFICIENTJILrý3 * alpha +

WINGLIF17_COEFFICIENTFIT_2) * alpha +
WINGLIFECOOEFFICIENTJ-ITJl) * alpha +
WINGLEFTCOEFFICIENT-F1T0);

static REAL vstab-lift-coefficient (yaw)
REAL yaw;

REAL yawval;

if (abs(yaw) > VSTAB..STALL...SSA)
yawval = sign(yawval) 0 VSTABSTALLSSA;

else

- B-15 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B - Source Code Listing for rwa-.aerodyn~c

yawval = yaw;

return (VSTABUFIUCOEFFICIENT)j yawval);

static void computejift.Arag-coeffiients)

REAL multiplier;

lift..coefficient~vstab = vstabjlift coefficient (side-slip-angle);
/* Computing virtual wing coefficient as independent of AQA */

lift-coefficient~virtuaLwing = LIFILCOEFFVIRTUALWING;
P ~~virtual-ýwingjift...coefficient (angle..oLattack); */

parasite..drag-coefficient = cubic-func (true..airspeed, p-.drag..fit-.coefO);

if (true...airspeed > 0.0 && angle-of~attack > 0.0) /* speed brake

multiplier = 5.0 * true.airspeed * sin(angle...oL.attack);
if (multiplier > 1.0)

parasite..drag-.coefficient *= multiplier;

oswald..efflciencyjactor =OSWALD_.EFFICFACTOR;

induced drag~coefficient = NDUCEID.DRAGCOEFF;

total-incompressible -drags-oefficient = parasite...dragscoefficient +
induced dragscoef ficient;

static void send-to-dynam-ics kinematics()

vehide-massjinit (vebidlejnass, inertiajnatrix);
vebiclejors (force..body);
vehicle-torques mOmn-ent-.body);

void dump-forces()

vec dump ("lift...body-vrtual-wing-" lift-body-yirtual..wing);
vec-dump ("lift-.bodyys tab:", lift..body..vstab);
vec-dump, ("dragbody,.", drag..body);
vec..dump ("gravity-force-body-.", gravity-force~body);
vec...dump ("force...body..mainjrotor.", force...body...main~rotor);
vec..dunp, ("force..body-tal-rotor:", force..body..tail..rotor);
vec-dump ("ground-force:", ground-force);
vec-.dump ("force...body", force-..body);

static void sum..bodyjforces.and-moments-about-ac()

-B-16 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B3- Source Code Listing for rwa..aerodyn~c

vecinit (force-.body);
vec-add (force-body, force...body..main-rotor, force body);

/* vecý-add (forceý-body, force-.body-taiLrotor, force...body); ~
vec.add (force..body, lift-body-virtual~wing, force..body);
vec...add (forc'..body, lit..body...vstab, force...body);
vec..add (frce...body, drag-body, force..body);
vec..add (force..body, fomce.body..damping, force...body);
vec-add (force-.body, gravityj..orce...body, force~body);
vec-add (force-body, ground jorcejforce...body);
vec-add (force...body, force..ground...effect, force -body);

vecý-cross-pro~d(loc..ac -tailrwtors-op, force...body jail otor,
moment.bodyjaiL..rotor);

ve-csrosprod(Ioc .ac virtual-wingscop~liftbody..yirtual.wing,

momnt-oy.virtual-wing);vw-ross...prod~loc~ac vstab-cop, lift...body~ystab, moment-body-ystab);
vec...crss...prod(loc-ac-cg, gravity jorce..body, mnoment..bodyscg);

vec-init (mromnwrt-body);
vec-add (momen-body, mnoment-body...maipnotor, rnoment.body);
vecý_add (momnent ._.body, m-orent...bodyjtailryotor, moment..body);
vec..add (mnoment-body, momnwrt.body...irtuaLwing, moment..body);
vec -add (momnent-body, mornent-body-vstab, mnoment body);
vec-add (momnent-body, Tnoment-body..cg, mnoment~body);
vecadd (rnorenLbody, ground torque, mnoment -body);
vec -add (moment..body, mnoment-body-damping, rnoment-body);

static void transformlift~dragjforcesjo....bodysoo~rdinates()

virtual...wingjforce(Z] = lift-virtual-wing; /* IH, D, LI
vstab force[)i lift _vstab;
drag-force(YJ -total-drag;

if (true airspeed < P -DRAG T AS -BREAKC) /0 jwc 8/90 *
dragjforcefYj -- sin(pitch) * 50m0;

vec-mat-mul (virtual..wing-force, velocity-Wobody, lift~body~yirtualwing);
vec-mat-mul (vstab-force, velocity-o..body, lifbody..ystab);
vec-rmat-mul (drag-force, velocity-wo..body, drag_..body);

static void generate..gravity..oyjforce(

compute-.grosseweighto;

gravity-force..bodyfXl = gravity-dir-vector[Xi * gross-.weight;
gravity-force-bodylYJ = gravity-dir-vector[YJ * gross..weight;
gravityjorce...body[ZI = gravity-dir-vectoriZi * gross..weight;

- B-17 -

22 January 199
Reference # W003036

Rev. 0.0

Appendix B - Source Code Listing for rwa-aerodyn-c

static int fr-ame;

void aerodyndAebug-pnint()

REAL roll, pitch, yaw, heading. airspeedjcnots, weightjbs, thrust-lbs;
REAL *position;
roll=atan2(-amvity_..ir...vector[X],-gravity...ir..yector(ZJ) *180.0 /3.1416;
pitch=;atan2(-ay....~dir..vector[YJ,-graviy..4ir-.vector[ZI)"180.0 / 3.1416;
yaw = side...slip_.Angle;
airspeed knots = true...airspeed * 3.26 / 1.69;
weight-jbs = gross...weight / 9.8 *"2.2;
position = vehicle...A..pO;
heading = rad..to..deg (knemnatics-.get-headingO);
printf ("KTAS = %0.21f WV = %0.31f %0.31f %0.31f YR = %0.31f\n"',

airspeed-knots, velocity~yector[XI, velocity~ector[YJ,
veloaty~vector[ZJ, angularý-velocity...vector[ZJ);

printf ("xyzh = %0.31f %0.31f %0.31f %0.21f rpy =%0.31f %0.31f %0.31f\n",
position[X], position[Y], position[ZJ, heading.
roll, pitch, yaw);

if (hover _holc state == ON)
printf ("stab-augirpyc): %0.31f %O.31f %0.31f %0.31f\n",
stab aug~roll, stab aug..pitch, stab...aug..yaw, stab-.aug-lixnb);

static void compute~jotorjoads()
I

main-rotorjload~torque = controller _collective"
MAIILROTORMAX LOAD TORQUE;

tail-rotor load torque = abs (controller _tall otor)"*
TAIL -ROTOR MAXLCIAD...TORQUE;

static void compute -engine torque()

engine simul(miain rotorý_load_torque, taiLrotorjoad torque, altitude);
powertrain..percenLshaft.speed = engine..getjotor-.percenLshaft-.speedo;

static void compute...rotoriorces..and mtomentso

main-rotor -thrust = powertrain...percent..shaft-speed *controllerý-collective
0M AIN ROTOR-MAX THRUST;

tafl~rotor~jhrust = powertrain..percent..shaft..speed * controller~tail-rotor
"TAILROTORMAXTHRUST;

force...body-main - otoriYJ = main-rotor-thrust"* MAINROT'ORMASTTILT SIN;

force...body....ainjotorlZJ = main-rotor-thrust * MAINROTOR_MASTj_TILT...COS;

-B-18 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B - Source Code Listing for rwa-.aerodYn-c

force _bodyjtaiLrotor[X] = taiLrotorj.thrust;

nmOnen~body~nWinrotor[Xj =
- controller-cyclic..pitch * MAINLROTORMAX-.PITCHMOMENT;

mjonlent.bodyjflainrotor[Y1 =
controlier-yclic-oll * MAINROTOR-MAXROLL..MOMENT;

nmomenLbody_ývnaifLrotor[Z] =
- ain rotor ioadjtorque * MAIN_ROTORTORQUJE.COUPLINQ-GAIN;

static REAL limniter (lower, val, upper)
REAL lower, val, upper;

if (val > upper) return (upper);
else if (val < lower) return (lower);
else return (val);

static REAL set -roll -attitude (angle)
REAL angle;

attitude..control-roll integrator+= Al CTL.ROLLJ..GAIN *(roll - angle);
/- These used to be attitudescontrol..pitch-integatr instead of

attitude...control~roll integrator. PJM 11-1-89
attitudeý-control-pitch-integrator =

limiter (-0.1, attitude-controLpitch-integrator, 0.1);

attitude...wntrolrofllintegrator=
limitber (-0.1, attitude...wntroLrolljntegrator, 0.1);

attitude..control..yoll-command = ATT-CRIROLLJ'.GAIN *(roll - angle);
attitudes-ontrol-rolLcommnand += attitudeý_ontrol~roflintegrator;
attitude...controUl-rl-conunand = limniter (-MA ýSTAB..AUGLPITCHROLLCONTROLa

ttitude.-ontrol_roll_command,
MAX..STABAUG3_PITCH-.ROLL..CONTROL);

return (attitude-.control-roll-commuand);

static REAL set...pitch-attitude (angle)
REAL angle;

attitude,_ontrol-pitch-integator +=

ATTr0rLYITCI-LLGAIN I(pitch - angle);
attitude controlpc -integao

limidter (-0.1, attitude...control-pitch-integrator, 0.1);
attitude-.control-pitch-commnand = A1T..CTLYPITCI-LP..GAIN (pitch - angle);
attitude...control~pitchscommand += attitudesontrol-pitch-integrator;
attitudescontrol-pitch-omniand = limiter (-MAX..STAB..AUGPITCH.YOLLCONTROLa

ttitude control jpitchý_commiand,
MAXSTABL.AUGYITCI-ROLL.._CONTROL);

return (attitude.-ontrol-pitch-somlnand);

-B-19 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B - Source Code Listing for rwa-.aerodyn-c

static void compute..stab...augmlentation..gains()

if (hover-hold-state =- ON)

if (M!over -holdctured-pon)

hover-hold-jurned..on = TRUE;

pitch~damping = 2 *PITCHRTE..DAMPING.GAIN; /* jwc 8/90*
roUlAamping = 2 *ROLL..RATE...AMPING..GAIN;

/0 You should already be "hovering" (airspeed < 10 knots)
for hover hold to show little visible swaying./

hover -augjrolljintegrator = 0.0;
hover _augjpitch integrator = HOVER.AUGPrIrCRESETVALUE;
stab _aug...aw-.integrator = 0.0;
stabaug-climbjntegrator = 0.0;

#fif A7TTDAMPING MODE3IMP]LE
if (tnze...airspee < HOVER-.SLOW LJMIT

if (true-.airspeed > -HOVE&SLOW..LAMIT
MAX.A IýC71L ANGLE = MAX..ATI _CTR ANGLESLOW;

else if (true..airspeed > -HOVER..MEDLLUM~f
MAX_-A7T -CML.ANGLE = MAX..ATICrLANGLEMED;

else
MAX AITT CTANGLE = M4AX..A7TCTrLANGLENORM;

else if (true-airspeed < HOVERMEDJJ~MIT
MAX..A71LT..CL.ANGLE = MAX KI7ý_TCI,,ANGLE MED;

else
MAX.A7TT.CTL-ANGLE = MAX._Af CTitANGLENORM;

#endif

#if A7TT..DAMPING.MODE..SIMPLE
if (true..airspeed > HOVERSLOW_-LIMIT

MAX..ATh~rL..IANGLE =
log(true..airspeed) * MAX..A1TDAMPING FACTOR;

else if (true -airspeed < -HOVERSLOW LIMT)
MAXAlTTL..1ANGLE =

log(-true-.airspeed)*MAXAlLýDAMPINGFACrOR;
else

MAX ATlT CrL,_ANGLE = MAX..A77CTL ANGLE STOP;

MAX_AlT CTL ,ANGLE = degjoj~ad(MAX AlT_CTLANGLE);

- B-20 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B - Source Code Listing for rwa-aerodyn~c

hover...augjoll -ntegrator +--
HOVER_.AUG-.ROU~j-GAIN *veloclty-vectoriXi;

hoverý-augjolU integrator =
limiiter(-0.2,hover...aug-roll-intertor,0.2);

hover...augjollangle = HOVERAUQLROLLJ'..GAIN * velocity..yector[X]
+ hover aug-roll-integrator;

hover _augj.oll..angle = limiter (-MAX..A7T_.C~rL,_ANGLE,
hover -aug-roll-angle,
MAX Afl_-CitANGLE);

stab-augjoll = seLrolLattitude (hover-aug-rolLangle);

hover...aug~pitchjinkertr+

HOVERAUGYITQFL-LGAIN 0velocity..yector[Y];
hover _aug~pitch integrator =

lin-ter-lhhover..aug..pitchintegrator,0.2);
hoverý-aug-pitch-angle = HOVER.AUG.YITCI-LP.GAIN * velocity..vectorfYJ

+ hover-aug-pitchjntegrator;
hover..aug-pitch..angle = limidter (-MAX..A1TI..CIL,..ANGLE,

hover...aug...pitch-.angle,
MAX A7T_-Cit_.ANGLE);

stab..augpitch = set-pitch-.attitude (hover-aug-pitch...angle);

stab _aug-yaw -integrator --
HOVER_-AUG YAW I GAIN *angular-velocity-vector[Z];

if (stab..aug..yaw-integrator > 0-5) stab..aug...yawintegrator = 0.5;
if (stab...aug...aw integrator < -0.5) stab...aug...awjntegrator = -0.5;
stab _aug...aw = - HOVERAUG..YAWJ'-GAIN * angular-ýyeloctyi.ector[Z] +

stab-aug..yaw-integrator;

stab aug-.climb integrator -=
HOVER-AUG CLIMB I GAIN * velocity..yectorfZl;

if (stab aug...dmb integrator > 0.2) stab...aug-.clinibjintegrator = 0.2;
if (stab _augsclimb ýintegrator < -0.2) stab-.augsclimbkintegrator = -0.2;
stab...augsclimnb = - HOVER..AUQCLIMBPFýGAIN * velocity ývector[Zl +

stab-augsclimb integrator;

stab aug-yaw = limidter (-AX -SAB..AUGYA W_.CLIM CONTROL,
stabaug-yaw,
MAXSTABAUGYAWCLIMBCONTROL);

stab aug-cliinb = limiter (-MAXSTABAUGYAWCLIMBCONTROL,
stab..aug-limb,
MAX _STAB AUGYAW_CUIMB.CONTROL);

else

stal..aug-.roll = 0.0;
stab..aug-.Pitch = 0.0;
stab..aug..yaw = 0.0;
mtb..aug-climb = 0.0;

-B-21 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B - Source Code Usting for rwa..aerodyn~c

pitch.Adamping = PITCI{.RATEý_DAMPlNQGAIN; /* wc 8/90!
roll-.damping = ROLl.RATE_-DAMPINGGAN;

#ifdef notdef
hover -aug...oll integrator = 0.0; I' added 8/31/89 (jwc)/
hover..aug~pitchintegrator = 0.0;

#endif

controller cyclic roll = cyclic...oil + stab...augjoll;
controller...cyclic...pitch = cyclic-pitch + stab...aug.pitch;
controller _tail rotor = pedal + stab..aug..yaw;
controller-collective = collective + stab-aug~climb;

static void send-.aero..data...toý-isplays()

if (velocity-vector[Yl > 0.0)
meter...air..speed~set(true-airspeed),

else
meter-airk.speed-set (0.0);

mieter..altitudecýset(altitude);
meevertical-speed-set(verticaL speed);

void aerodyn~simul()

get-aircaftjdinernatic-stateo;
computejlight..parameterso;
compute _stab _augmentation..ginso;
compute rotor-loadso;
compute...enginejo~rqueo;
computej-otorj-orces~and-momentsO;
compute lift-drag-coefficientso;
coMpute lift -drag-fbrcesO,
Compute boy-..ampun-forces_and-momentso;
transformj-ift...dragjforces toý-body...CoordinatesO;
generate..gravity..body-forceo;
interac -with..groundo;
sum..boyjforces andjnoments~about~aco;
send-to dynamnics-kineznaticsO;

/* send~aero _data_to_displaysO; Must call if not calling orientation-calc
vebide-updateo;

REAL aerody~et~true~airspeed()

return (true...airspeed);

-B-22 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B - Source Code Listing for rwa-aerodyn.c

void aerodynsethoverhold.pon 0
{

hover holdstate = ON;}

void aerodynWsethoverhold_offO
{

hover_.hold_state = OFF;
hoverhold-turnedmon = FALSE;
level_view = TRUE;

void aerodyn-togglen hover-hold(0
i
if (hoverfholdstate == OFF)hover~hold...state = ON;
else

hoverholdstate = OFF;
hover holdjturnedon = FALSE;
}

void forcesjnit 0

aerodynjnitO;
}

I--- --.--- 1-------------

* The following stuff is for the simplified dynamics model. The model is

* a modification of the aerodynamics model Warren wrote for the SAF.
* Global variables defined for the real aerodynamics are reused here to
* allow overlap in generic routines for operations such as control inputs,*

* init, etc. -CJC *

#define MAXHELICOPTERPOWER aero..simple[01
#define MAXHH aero..simple[11

/* constants for tweaking */
#define H_KI aero_simple[21
#define HK2 aeroksimple[31

/* as increase drag coefficients, helicopter slows down faster /
define HK7 aerosimplel 41
#define HK8 aero._simple[51
#define H_KP aerosimple[61
#define HKPR aero..simple[71
#define HKY aero_simple[81

-B-23 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B - Source Code Listing for rwa-.aerodyn-c

#define H-KH aero..simple[91
#define l-LCHH aeMwsirnple[I0J
#define HCL aero...simple~llJ

void aerodyn...sinple...simul 0)

register int i;
register REAL -vecý-ptr;
register REAL -res...ptr,
register REAL *cur...ptr;,
register REAL -des...ptr;
REAL -dra-ptr;
REAL power;
REAL collijactor;
REAL lift-factor;

VECIOR orient vec;
VECTOR angular-accel;
VECTOR hover _hold additions;
REAL euler[3J; /* euler angles/
VECTOR gravity.ector; i* in body coordinates ~
TMATFMR C mat; /* direction cosine matrix ~

get...arcraft..idnematic...state 0;
generatejgravityj.ody-lorae0;
compute~jotorjoadsO;
compute...engintorque0;

if (hover -hold-state == ON)

hover _hold additions[0l = miin(velocity-vector[lJ HJCHMAXJ*I);
hover _hold additionsl0l = nmax(hover...hold-additions(01,-MAX.HH);
hover...holdadditions~llJ = mnin(- velocityector[lo - H-KHAMAXJH);
hover*.hold-o*dditions!1J = max(hover-.hold additions! 11,-MAkj-H);
hoverý_hold...dditionsl2J = - velocity.ector(2) HJKH 0H..CHH;

else

hoeIodadiin[)=0
hover _hold-additionstll = 0;

hover-hold-additions[21 = 0;

lift-factor =velocity-vectorill 0 velocity~vectorllj * HC
-cydlic...pitch;

/00 original commuent from SAP code/
/0 may want to put in power limit per unit time ... 0
coll jactor = max(0.0,collective - 0.3);
power = H...P * cell-factor + hovet..hold-additions[21;
power += gross-.weight 0 collective/(HK2+collective) *1.25;

- B-24,-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B3- Source Code Listing for rwa-aerodyzLc

power = mmd (MAX(-IEUCOFlERJ'OWER, power);
power = max (0.0, power);

if (fue~levielmpty 0)
power = 0.0,

P* Calculate the torque required to achieve the desired orientation/
P* orientation vector is [pitch element, roll element, yaw element] ~

orient..vec[0I = HJCKPR * - cycliq.-pitch + hoverý-hold-additions[01;
orient _vecill = HJCPR *cyclic-roll + hover...hokldadditions[11;

/- yaw element = current-yaw (beading) + rudder (pedals) *K ~
orienLvec[2J = kinemnatics..getQ'aw ()+ sign(pedal) *pedal

pedal - H-KY;

res...ptr = momnenLbody;
des...ptr = orient.vec;

Cj~nat = kinem atics..getwjo..h (veh kinematics),
eulerlOl = atan2 (-gravity-4.irý-vector[Y], -gravityd4ir-vectoriZi);
eulerili = - atan2 (-gravity-dir vector[X], -gravity dir vect~oriZi);
euler(21 = kinemnatic...get..yaw 0;
cur-Wt = euler;

P* First, compute the angular velocity necesshry to achieve the '
P* desired orientation in exactly one tick. (delta theta/ delta 1) V
/* Then get the angular acceleration needed to get to that velocity V
P* Inone tick.1
for Ui = X; i <= Z; ++i)

vKcptr~iJ = M(es...ptrlil - cur-.ptrUiI / DELTA.T / H..Kl);
angularacceflil = (vec-ptr[iJ - angular...velocity~yector[ij)

/ DELTA_.T,
res...ptr[iJ = MOMEMNLOFJNERTIA-X *angular...acceljiJ;

res...ptrfXj += lift factor, /*this should add some torque for turns/

P* cumpute force vector*/
res..ptr = force...body;
cur..ptr = velocity...vector;
vec-4tr = euler;
drag-ptr = drag-force; P0 drag-.body or drag-force 0/

drag-ptr(XI = sqaecur...ptrIXI) *H1C8;
drag~ptrIYJ = square(cur...ptr(YJ) *HFK7;
drag-ptrMZ = square(cur-.ptr(ZJ) * HJ(8;

res..ptrIXJ = (sin(vecý_ptr[YJ) * power) - (sign(cur-.ptrIXI) * drag-.ptr(X]);
res...ptr[Y] = -(sin(vec-.ptrf Xl) *power) - (sign(cur-ptrlYD * drag-.ptrIYJ);

- B-25-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B - Source Code Listing for rwa...aerodyn-c

res..ptr(ZJ = C_..mat[2J!21 0 power;
re~s..ptr[Z] -= sign(cut..ptr[Il) *drag-ptr[Z];
res...ptr[Z] += lift factor, /* this should add some force for lift/

vec-add (force-ýbody, ground-force~force-.body);
vec~add (force..body, gravity-forceJ-body~force-.body);
interactcwith..groundo;
vec.add (force..body, force-.ground..effect, force-body);
vecý_add (moment-body, ground-torque, monoient...body);
send jo..dynamidcs..kinematics 0;
vehidle..update 0;

T1he following is for the simplified model incorporating the stealth
dynamics. In this model, the cyclic changes the desired velocity

- - --- --

#define HFWD -MUL aero -stealth[01
#define HCSIDEvfLJL aero-stealth! 11
#define H..COLLMUL aero-stealth! 2]

#define MAX TORQUE aero -stealth! 31
#deflne MAXFORCE aero-stealth[41
#define MASS aero...stealth[51O #define INERTIA aero...stealth(61
#define DEAD-ZONE aero..stealthl 71

/*use for gravity frame matrix, eliminate all pitch and roll
*start with identity. substitute cos (yaw) for last term.

V1

static T-MATRIX level = (41.0, 0.0, 0.0),
(0.0,11.0,0.01,
(0.0, 0.0, 1.01);

void aerodyn-stealth-simul 0I

VECTOR desired-rot o vel;
VECTOR desired -fn -vel;
REAL adi-collective; /* collective value adjusted for dead zone and

for -i to 1 range*/1

adi-collective = (collective- 0.5)0*2.0; /*change to-ito 1 /

if (aerodyn-debug)
tinied..pnntf ("adj-collective = %.31f\n". adj-collective);

if (aflow-takeoff)

if (adi-collective > 0.0)

- B-26 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B - Source Code Listin for rwa..aerodyznc

allow-takeoff = FALSE;

else

adi-coliective = 0.0;

get ircraftjdinernatic...state 0;
comnpute..rotorloads0;
compute...enginejo~rque0;

/* update desired velocity */
desired -lin....veflZl = adi-collective *adj-collective

sign (adj~collective) * H...COLLJAUL;

if (hover hold~state == ON)
{/. no linear velocity in XY, only pitch *
desiredjin-vei[IX = desired in...vel[y] = 0.0;
desiredjrotvel[XI = -cydlic..pitch *cyclic..pitch *sign(cyclic-.pitch);
desired-rotvel(YI = 0.0;

else

if (level-view)/* when not in pitch rnode, level view 0/

vehicleý_set~orientationjrnatrix (level); /* identity mnatrix V/
vehidle..sek-orientation Odinemnatics..get-heading0);
leveLview = FALSE,

desired-lin-veI[XI = cyclic-roli cyclicjroll * sign (cycic...oll)
0HSIDEMUL;

desired -in .vel[Yl = cyclic..pitch - cyclic...pitch - sign (cyclic-.pitch)

desired.rot-vei[XJ desired_rot-vel[YJ = 0.0;

#ifdef notdef
desired-..in .velIXJ cyclic-.roll *cyclic-.roll *sign (cyclic-.roll)

* ELSJE..MUL;
desired_lin_vel[YI = cyclic..pitch * cyclic-.pitch 0 sign (cyclic..pitch)

0 H..YWD...MUL;

desired...otveflXI = desired-rot-vellYl = 0.0;
#endif

desired~rot~velIZl = pedal pedal * sign(pedal);

/* controller-forces '

-B-27 -

22 January 1993
Reference # W003036

Rev. 0.0

40 Appendix B - Source Code Listing for rwa..aerodyn~c

force...bodyf Xl = (desired -lin~veliXi - velocity..vector[Xl)
* MASS/DELTA T;

force...body[Y] = (desired jin..yel[YJ - velocity-.yectoriYl)
* MASS/DELTAJ;

force..body[Z] = (desired lin veliZI - velocity-.vector[ZJ)
0 MASS/DELTA ;

forceý-body[XJ = n-dn (MAX-.FORCE, force-bodyi)(i);
force...body[Y] = a-dn (MAX-FORCE, force..bodyfYl);
force...body[ZJ = n-dn (MAX-.FORCE, force...body[ZJ);

force...body[XI = max (-MAXJFORCE, force..body[X]);
force-body[YI = max (-MAX-.FORCE, force-.body[Yl);
force-body[Zi = max (-MAXJFORCE, forcejbodylIZ);

/* controllerjorques 5/

mornent-bodyf X) = (desired ... oLvei[XI - angular-velocity..ector[Xl)
0INERTIA /DELTAJT;

moment-bodyfYl = (desired-rot-vel[Yl - angular-yelocity..ector[Y])
* NERTIA/DELTAJ;

mmenwn.body[ZI = (desired-yo~velIZ] - angular..velocity.ector(ZI)
* NERTIA/DELTAJ;

mnoment bodyf Xl = mmn (MAX..TORQUE, mnomen~body[XI);
nioment~bodylYJ = mmi (MAX-TORQUE, momient~bodylYD);
rnorentjbody[Zl = mmn (MAX..TORQUE, rnmonwtjodyIZl);

nioment..body[Xl = max (-MAX-TORQUE, rnorent...body[XI);
mnomentcbody[Yl = max (-MAX-TORQUE, mornent.bodyiYl);
rnomenLbody[Z) = mnax (-MAX-. TORQUE, mnomenLbody[ZI);

interact-with-groundO;
vec~add (force-.body, ground jorce~force-.body);
vec..add (force-..body, gravity-force...body~fomcejbody);
vec-.add (force-.body, force..groun&.ýeffect, force..body);

send jo...dynamnics...knematics 0
vehicle _update 0

frtweaking purposes, use parame-ter file for constants

aerodyn..yeasimple-cvnstants (fn)
char *fn;

char *strtok 0;
FILE fp;
char s180J;

- B-28,-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B - Source Code Listing for rwaaerodyn.c

if ((fp = FOPEN (On, "Y")) == NULL)
{

printf ("no tweakable constants file; using defaults\n", fn);
return (-I);

}
else

printf ("Reading tweakable constants file: %s\n", fn);

while (FGETS (s, 80, fp) != NULL)
I

char *str,
switch (sf01) /* check for comments or blank lines *{
case '#'
case '':
case '\n':
case'\t':
continue;

}

str = strtok (s, t");

if (strcn p (str, "HLKI") == 0)

sscanf (strtok (0," \t"), "%W', &HKI);
continue;

}

if (sltrnp (str, "1-1K2") == 0)
{

sscanf (strtok (0," \t"), "%If', &HK2);
continue;

}

if (strcnp (str, "H-K7") = 0)
{

sscanf (strtok (0," \t"), "%Ir, &HK7);
continue;

if (strcmp (str, "HK8") == 0)
{

sscanf (strtok (0," \t"), "%Wf', &HK8);
continue;

if (sUbcmp (str, "H-IKP") == 0)

sscanf (strtok (0," \t"), "%1W', &HKP);
continue;

-B-29-

22 January 1993
Reference # W003036

Rev. 0.0

is Appendix B - Source Code Listing for rwa..aerodyn~c

if (strainp (str, "H....KR") == 0)

secant (strtok (0, " \r'), "W't, &HLKPR);
continue;

if (strcinp (str, "H_KY") == 0)

secant (strtok (0, " Wt), "W'f, &HJCY);
continue;

if (strcmnp (str, "Hi_KHý_U") == 0)

secant (strtok (0, " Wt), "W'f, &HJ(H);UL)
continue;

if (strcmnp (str, "KHFDUL) == 0)

secant (strtok (0," -tW), -%If', &HJW...L JL)
continue;

if (strmip (str, "MACOLLCE") ==0)

secant (strtok (0, " Wt), "W'f, &IA-LCOLLMU);
continue;

if (strcmp (str, "MAX.-U-I")E" == 0)

is ~secant (strtok (0, " \V"), "W'f, &H...CH}P;E)

contBnue;

22 January 1993

Reference # W003036
Rev. 0.0

Appendix B - Source Code Listing for rwa-.aerodyn~c

continue;

if (strainp (str, "MASS") == 0)

sscanf (strtok (0, " Vt"), "%If', &MASS);
continue;

if (strcrnp (str, "INERTIA") == 0)

sscanf (strtok (0, " Mt"), "W'f, &INERTIA);
continue;

if (strcmp (str, "I-ISIDEMUL") == 0)

sscanf (strtok (0, " \t"), -%If', &H...IDE-MUL);
continue;

if (strcmp (str, "DEAD...ZONE") =--0)

sscanf (strtok (0," \t0, "W'f, &DEAD...ZONE),
continue;

/* if got here - mistake *
printf ("ERROR: Unknown constant %s in %s\n", str, Wn;

FCLOSE UfP);
printf ("done reading constants fie\n");

1* aerodyndumnp.simpleý-onstants 0ON
return (1);

aerodyn-.durnp..control-inputs 0

printf ("collective = %.21f~cydic-.roli = %.21f\tcYclic..pitch =%.21f\n",

collective, cyclic - oll, cyclicý-pitch);
printf ("pedal = %.21f\n", pedal);
aerodyn..debug = aerodyn-Aebug ? 0: 1;
printf ("aerodyn..debug is %s\n", aerodyn...debug ? "on": "off");

aerodyn-.dump-.simpleý-constants ()

printf ("Aerodyn simple constants:\n");

printf ("\tHK1:\t%.21f\n", HCI);

printf ("\tFL-K7:\t%.21f\n", HK7);

-B-31 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B - Source Code Listing for rwa...aerodyn~c

printf ("\tFL-j8:\t%.21f\n",' HýK8);
printf ("\tH KP:\t%.21f\n", H..JCP);
printf ("\t CKPR:\t%.21f\n", H...KPR);
printf ('\tHJCKY:t%.21f\n", HKY);
pnintf ("\tH KI-I:t%.21f\n", H.KH);
printf ("\tHFWDMUL:\t%.21f\n", HFWDjvIUL);
printf ("\tHSIDEM`UL:\t%.21f\n", H.$IDE_.MUL);
printf ("\tH _COLLMvUL:\t%.21f\n", H COLLMUL);
printf ("\tl-LCHI-I:t%.21f\n", HO-IH);
pnintf ("\tI-LCL:\t%.2lf\re, H C-L);
printf ("\tMAXFORCE:\t%.2lf\n", MAXFORCE);
printf ("\tMAXTORQUE:\t%.21f\n", MAXI'ORQIJE);
printf ("\tMASS:\t%.21f\n", MASS);
printf ("\tINERTIA:\t%.21f\n", INERTIA);
printf ("\tDEAD-ZONE:\t%.21f\n", DEADZONE);

set~selected-model (model)
int model;

switch (model)

case COMPLEX-MODEL:
pnintf ("switching to complex model, logarithmidc collective\n");
funnylittleidludge = 1;/* logarithmnic collective/
selectedmodel = model;

case SIMPLEMODEL-
Printf (-Switching to simple model, linear collective\n");
funnyjittlejdludge = O;/* linear collective/
selected-model = model;
break;

case STEALTHMODEL-
printf ("switching to stealth model, linear coflective\n");
funnylittle -kudge = O;/* linear collective *
selected-model = model;
break;

default:
printf ("invalid selected model %d\n", model);
printf ("using default complex model~n");
selected-model =COMPLEX MODEL;
break;

get-.selectedyvdel0

return (selected model);

-B-32 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix B - Source Code Listing for rwa.aerodync

indicate-selected_model (model)
int model;
{

switch (model)

case COMPLEX-MODEL:
printf ("using complex model\n");
break;

case SIMPLE.MODEL:
printf ("using simple model\n");
break;

case STEALTHMODEL
printf ("using stealth model\n");
allow takeoff = TRUE;
break;

default.
printf ("invalid selected model %d\n", model);
printf ("using default complex model\n");
break;)

settakeoffstatus (status)
int status;

allowtakeoff = status;

orll 15>

-B-33-

22 January 1993
Reference # W003036

0 Rev. 0.0

Appendix C - Source code listing for rwa-engine.c.

The following appendix contains the source code listing for
rwa-engine.c for convenience in document maintenance and
understanding of the CSU.

1

- C-1 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix C - Source Code Liating for rwa_engine.c

/* $Header: /a3/adst-cm/RWA/simnet/vehicle/rwa/src/RCS/rwa-engine.c,v
1.1 1992/1
0/07 19:00:23 cm-adst Exp $ *//*

"* $Log: rwa engine.c,v $
"* Revision 1.1 1992/10/07 19:00:23 cm-adst
"* Initial Version

*/

static char RCS ID[] - "$Header: /a3/adst-
cm/RWA/simnet/vehicle/rwa/src/RCS/rwa_
engine.c,v 1.1 1992/10/07 19:00:23 cm-adst Exp $";

/**

* Revisions:

* Version Date Author Title SP/CR
Number

* 1.2 10/09/92 R. Branson Data File Initiali-
* zation
* 1.3 10/16/92 R. Branson Data filenames changed
* to eight characters
* 1.4 10/30/92 R. Branson Added pathname to data
* directory

/**

* SP/CR No. Description of Modification

* Hard coded defines changed to array elements.
* Engine data array added.
* Engine initialization data array added.
* Engine status data array added.
* Added file for engine data, engine

initialization
* data, and engine status data to the
"engine-init"
* function

* Added "/simnet/data/" to each data file

pathname.

0C2

7

22 January 1993
Reference # W003036

Rev. 0.0

Appendiz C - Source Code Listing for rwa.engine.c

/***

* FILE: rwaengine.c *
* AUTHOR: James Chung *
* MAINTAINER: James Chung *
* HISTORY: 4/19/89 james: Creation ** .

"* Copyright (c) 1989 BBN Systems and Technologies Corporation *
"* All rights reserved. *
* .

"* Interim engine model for the generic rotary-wing aircraft *
"* with power characteristics similar to the General *
"* T700-GE-701 turboshaft engine. The T700 is rated at a *
"* maximum continuous power of 1510 shp at sea-level. *
"* Two (2) T700s power the AH-64 Apache attack helicopter. *

c **

#include "stdio.h"
#include "math.h"

#include "sim dfns.h"
#include "sim_macros.h"
#include "sim types.h"
*#include "libsound.h"
#include "rwa soun dfn.h"#include -rwameter.h"
#include "rwa ontrl.h"

#include "libmun.h"
#include "failure.h"
#include "libfail.h"

/* Once the engine or transmission has been damaged, there is a chance
that

the engine/transmission will seize due to too many particle fragments
accumulating in the respective oil system. These are "secondary"

events.
12-10-90 pim */

#define DOCFAIL TRUE /* do combat damage simulation */
#define DO_SFAIL TRUE /* do stochastic failure simulation */

static REAL enginedata[20] - (
1030.55, 0.05, 0.05, 1031.6, 25.0,

1.2, 1200.0, 0.16438, 2.130, 34.0,
7.0, 100.0, 153.8461539, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0

static REAL engineinitdata[10] - (
0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0

- C-3-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix C - Source Code Listing for rwa_engine.c

static int enginestat data[10] - {
0, 0, 1, 1, 2,
0, 0, 0, 0, 0
) ;

#define GOVERNORENGINESPEEDSETTING engine-data[0]
#define GOVERNOR_P_GAIN engine-data[1]
#define GOVERNOR_I_GAIN engine-data[2]
#define MAXENGINE_TORQUE engine-data[3]
#define MIN_ENGINELOADTORQUE engine-data[4]
#define MAXENGINEPERCENTPOWER engine-data(5]
#define ENGINETORQUE_INTERCEPT engine-data[6]
#define ENGINETORQUE_SLOPE engine-data[7]
#define NOSEGEARBOXRATIO engine-data[8]
#define MAINROTORGEARRATIO engine-data[9]
#define TAILROTORGEARRATIO engine data[10]
#define POWERTRAIN_--INERTIA engine data[ll]
#define MAXFUELFLOW engine data[12]

/* (seconds/tick) / (seconds/hour) - (hours/tick) */
#define HOURS PERTICK (DELTAT / 3600.0
static REAL hours of flight;
static int minutes of flight, oldminutes of flight;
static BOOLEAN engine is damaged, transmission is damaged; t

/****** engine noise stuff * /
0#define ORIGINAL 0

#define BOTH DISABLED 1
#define CHANiG-E ROTOR 2
#define CHANGEIENGINE 3

#define CHANGEBOTH 4
static int engine_soundtype - CHANGEBOTH;
static int engine oscillation[2], rotoroscillation[2];

#define MINROTORSOUND 105
#define MAXROTOR SOUND 120
#define ROTORSOUND_RANGE (MAXROTORSOUND - MINROTORSOUND)
#define MINITURBINESOUND 95
#define MAXTURBINESOUND 126
#define TURBINESOUNDRANGE (MAXTURBINESOUND - MIN-TURBINESOUND)

static REAL turbine-speed;
static REAL engine_speed; /* Nose gearbox output shaft */
static REAL engine loadtorque;
static REAL enginepercenttorque;
static REAL enginedrivetorque;
static REAL mainrotorshaftspeed;
static REAL mainrotordrive-torque;
static REAL tailrotorshaftspeed;
static REAL tailrotordrivetorque;
static REAL powertrainypercent_shaftspeed;
static REAL last_percent shaft_speed;
static REAL lastpercent torque;
static REAL fuel-flow;
static REAL engine_power;

- C-4-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix C - Source Code Listing for rwa_engine.c

static REAL integratorgain;
static REAL govp_gain;
static REAL gov-i_gain;

static int numberofengines; /* Working */
static int enginestatus;

/* Flag used to determine if the engine is starting. Sounds for the
engine

and rotors are more "realistic." Starting engine speed is 0 instead
of

GOVERNOR ENGINE SPEEDSETTING, and since engine_power then maxes out
(causes "torque; to flash) a check is done and temporarily forces the
torque percentage to be equal to 1.

11-8-89 Paul J. Metzger*/
static int startingjengine;

void engine simul (main rotorload, tail rotorload, altitude)
REAL main_rotorload, tailrotor load, altitude;
(

REAL tail_rotorengine-load;
REAL main_rotor_engine load;

REAL temp_percent;
int temp_sound;

mainrotorengineload - mainrotorload / MAINROTORGEARRATIO;
tailrotorengineload - tailrotorload / TAILROTORGEARRATIO;

engineloadtorque - mainrotorengineload +
tailrotor engineload;

if (engine-load torque < MINENGINELOADTORQUE)
engineloadtorque - MINENGINELOADTORQUE;

enginepower - gov_p gain *
(GOVERNORENGINESPEEDSETTING - engine-speed):

if (engine status -- WORKING)

integrator_gain +- gov_igain *

(GOVERNOR ENGINESPEEDSETTING - enginespeed);
if (integrator gain > 0.5)

integratorgain - 0.5;
else if (integrator_gain < -0.5)

integratorgain - -0.5;

enginepower +- integratorgain;
I
else /* Damaged */
4

integrator_gain - 0.0;
if (engine-power > 0.7)

engine-power - 0.7;

-C-5 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix C - Source Code Listing for rva,_Gng~in C

if (engine..JoVer > MAXENGINEPERCENTPOWER)
engine~power - MAXENGINE..YERCENTPOWER;

if (engineypower < 0.0)
engine3'ower - 0.0;

if (fuel-level_empty C)) /* Out of gas *

enginejpower - 0.0;
engine~speed - 0.0;

engine drive torque - engine..power * number-of engines*
(EN-GINETORQUE_INTERCEPT - ENGINETORQUESLOPE * engine-Speed);

engineypercent torque -engine-drive-torque/
(MAXý_ENGINETORQUE *number-of-enigines);

if (engine-status WORKING)
engine speed +(engine drive-torque - engine load torque)

/ POWERTRAiNINERTI7A;

if (engine-speed < 0.0)
engine-speed - 0.0;

turbine speed - engine speed * NOSEGEARBOXRATIO;
main -rotor -shaft_speed - engine-speed / MAINROTORGEARRATIO;
tail-rotor_shaft_speed - engine speed / TAILROTOR_-GEARRATIO;
powertrainpercent shaft speed Z engine-spee~d/

GOVERNORENGINESPEE7DSETTING;
tail-rotor-d~rive-to-rque - -tail-rotor-load; /* Always have tail

rotor */
main-rotor-drive-torque - (engine-drive torque -

tail-rotor engine load)
* MAIN ROTORGEARRATIO;

if (main-r-otor-drive torque < 0.0)
main-rotor-drive torque - 0.0;

fuel-flow - engineyjercent-torque * MAXFUELFLOW;

if (engine status - BROKEN) /* crippled condition *

sound stop_cont_sound (SOUNDOFSTOPENGINE,
SOUNDOFVARYENGINE);

sound stop_ýcont_sound (SOUNDOFSTOPROTOR,
SOUNDOFVARYROTOR);

fuel flow *- 50.0; /* fuel leak *

if (starting_engine)

if (enginej.ercent-torque - .01 < .0001) /* within a

delta starting_ engine - FALSE;

- C-6 -

22 January 1993
Reference # W003036

Rev. 0.0

hppendiz C - Source Cod. Listing for rva eQzqi . C

else
engineypercent-torque =.01;

fuel-used-by__e-ngine (fuel-flow /3600.0 * DELTAT);

meter torque_set (engine~percent-torque);
meter rpm-set (powertrainJperceflt-shaft-speed);

hours -of -flight += HOURS_-PERTICK;
minutes Eof -flight = (int) (hours-of-flight * 60);

if DO SFAIL
if (minutes_of-flight > old-minutes--of-flight)

sfail -event -occurred (SFAILEVENTMILEAGE);
if (engine-is_damaged)

afail -event-occurred (SFAILSECONDARYEVENTENGINE);
if (transmission -is -damged)

sfail-event occurred (SFAILSECONDARYEVENTTRANSMISSION);
old minutes of flight - minutes-of_flight-;

#endif

if (!fuel-level empty 0

switch (engine-sound-type)

case CHANGEENGINE:
if (abs (povertrain~percent shaft speed

-lastpercent_shaft speed) > 0.025)

/* rotor sounds depend on RPMs
* (povertrainjsercent Ishaft -speed) ~

temp~percent - max (0.01,
powertrain~percent-shaft .speed);

sound -make-cont-sound (SOUNDOFSTARTROTOR,
SOUNDOFVARYROTOR

SOUNDOFSTOPROTOR,
tempJyercent);

lastyercent-shaft speed
powertrainy.ercent-shaft-speed;

if (abs (engineypercent-torque - lastjpercent torque) >
0.025)

/* engine sounds depend on torque
(engine_.percent-torque) */

temppercent - max (0.01, engile~percent_torque);
sound -make-cont-sound (SOUNDOFSTARTENGINE,

SOUND_-OF_-VARYENGI
NE,,

temppercnt);SOUNDOFSTOPENGINE,

- C-7 -

22 January 1993
Reference # W003036Rev. 0.0

Appendix C - Source Code Listing for rwaengine .c

lastpercenttorque - engine_percent_torque;
)
break;

case ORIGINAL:
if (abs (powertrain_percent-shaft_speed

- lastpercentshaftspeed) > 0.025)

/* rotor sounds depend on RPMS
* (powertrain_percenrt_shaftspeed) */

temppercent = max (0.01,
powertrain_percenft_shaft speed);

sound_make_contsound (SOUNDOFSTARTROTOR,
SOUNDOFVARYROTOR

SOUNDOFSTOPROTOR,
temppercent);

soundmakecontsound (SOUNDOFSTARTENGINE,
SOUNDOFVARYENGI
NE,

SOUNDOFSTOPENGINE,
temp_percent);

lastpercentshaft speed -

powertrain__percentshaft speed;

break;

case CHANGEBOTH:
/* Try the following, as per Perc's directions: vary both

the
* rotor and engine with torque, but have the rotor range be

from
* 105 to 120, and the turbine range from 95 to 126.

"* The rotor sound range is 15 points (120-105), so the %

torque is
"* multiplied by 15, then added to an offset of 105.

* The turbine sound range is 31 points (126-95), so the %

torque i
* multiplied by 31, then added to ar offset of 105.

* 11-17-90 PJM */
if (abs (engine_percent torque - lastpercent torque) >

0.025)
f

/* both sounds depend on torque */
tempsound - (int) (enginepercent.torque *

ROTORSOUNDRANGE)
MINROTOR SOUND;

if (temp-sound > MAXROTORSOUND)
temp sound - MAX_ROTOR_SOUND;

1/ We check to see if the sounds are oscillating. This

- C-8 -

22 January 1993
Reference # W003036

Rev. 0.0

hAPPnd:Lz C - Source Cod. Listizig for rwa emqngi. .c

1* event occurs while at the extreme torque edges of *
/* the hover hold mode, when we're trying to break *
/* hold. 2-15-91 PJM *

if (tenp-sound !- rotor-oscillation~i])
sound-make-arg_sound (SOUNDOFVARYROTOR,

tenp sound);

rotor -oscillation(1] - rotor-oscillationfO);
rotor-oscillation (0] - temp-sound;

temp--sound - (int) (enginey.ercent torque
TURBINESOUNDRANGE) + MINTURBINESOUND;

if (temp sound > MAXTURBINES~OUND)
temp sound =MAXTURBINESOUND;

if (temp-sound !=engine oscillation[lJ)
sound-make-arg_sound (SOUNDOFVARYENGINE,

temp-sound);
engine oscillation~l] - engine-oscillation(0];
engine oscillation 10] - temp__sound;

lastpercent torque - enginepercent torque;

break;

case CHANGEROTOR:

0.025) if (abs (engineypercent torque - lastypercent-torque) >

/* rotor sounds depend on torque *
teropsound - (int) (enginejpercent torque

ROTORSOUNDRANGE)
MIRROTORSOUND;

if (tempsound > MAXROTORSOUND)
temp-sound - MAXROTORSOUND;

sound-make arg__sound (SOUNDOFVARYROTOR, temp-sound);
sound-stop_cont-sound (SOUNDOFSTOPENGINE,

SOUNDOFVARY_-ENGINE);
lastpercent torque - engine~percent torque;

break;

case BOTHDISABLED:
sound-stop_ýcont_sound (SOUNDOFSTOPENGINE,

SOUNDOFVARYENGINE);
sound-stop cont_sound (SOUNDOFSTOPROTOR,

SOUNDOFVARYROTOR);
break;

REAL engine get rotor~percent_shaft speed (

-c-9-

22 January 1993
Reference # W003036

Rev. 0.0

Appendiz C - Source Code Listing for rye _engine .c

return (powertrainpe rcent-shaft speed) ;

void engine damage engine-oil (

if DOCFAIL
controls -start -failure-lamp_flashing (MASTERCAUTION);
controls-start-failure-lamp_flashing (ENGINEFAILURE);

#endif
engine-is-damaged - TRUE;

void engine repair-engine-oil C

if Li.)CFAIL
controls -failure-lamp_off (ENGINEFAILURE);
engine-is-damaged - FALSE;

#endif

void engine break engine 0)

engine-status -BROKEN;
engine-speed -0.0;
number of engines - 1;

void engine-repair engine (

engine repair-engine_oil 0;

engine-status - WORKING;
number-of Jengines - 2;

void engine-damage_transmission-filter (
I
if DOSTAIL

controls -start -failure -lamp flashing (MASTERCAUTION);
controls -start-failure_lamp_flashing (TRANSMISSIONFAILURE);
transmission-is damaged - TRUE;

#endif

I

#if DOSFAlL
controls -failure lamp_off (TRANSMISSIONFAILURE);
transmission-is damaged - FALSE;

*endif

void engine-break-transmission C

#if DOSFAlL

- C-10-

22 January 1993
Reference # W003036

Rev. 0.0

appendix C - Source Code Liating for rvaengine .0

engine-break-engine 0; * engine has seized *
#endif

void engine repair transmission (

#if DOSFAIL
engine repair-transmission-filter 0
engine repair engine 0

I endif

void engine mnit (

mnt data-imit;
float data -tinp;
char descript. 64];
FILE *fp;

/* DEFAULT DATA FOR rwa-.engine.c READ FROM FILE

fp - fopen("/sininet/data/rva-engn.d","r");
if(fp--NULL)(

fprintf(stderr, "Cannot open
/simnet/data/rva-engn.d\n");

exit 0;

rewind(fp);

Read array data *

i-0;

vhile(fscanf(fp,"%f", &datatinp) !- EOF)(
engine data~i] - data tmp;
fgets(ciescript, 64, fp);

1* printf("engirxe-data(%3d) is%11.3f %3", i,
engine-data (iJ,

descript);

fclose (fp);
/* END DEFAULT DATA FOR rwa engine.c READ FROM FILE

/* DEFAULT INITIALIZATION DATA FOR rwa-engine.c READ FROM FILE

fp - fopen("/simnet/data/rw-en-in.d","r");
if (fp--NULL) I

fprintf(stderr, "Cannot open
/simnet/data/rw-en-in.d\n");

- C-11

22 January 1993
Reference # W003036

Rev. 0.0

appendiz C - Source Code Listing for rwa _engine .c

exit 0;

revind(fp);

Read array data *

i-0;

while(fscanf(fp,"%f", &data-tupl EOF){
engine init datatiJ - data tmp;
fgets(descript, 64, fp);

1*printf ("engine -mit-data(%3d) is%11.3f %a", i,
engineý_mit_data~i], descript);

fclose (fp);
1* END DEFAULT INITIALIZATION DATA FOR rwa-engine.c READ FROM FILE

1* DEFAULT STATUS DATA FOR rwa-engine.c READ FROM FILE

fp - fopen("/simnet/data/rwýen-st.d","r");
if (fp-NULL)l

fprintf(stderr, "Cannot open
/sizunet/data/rw en st.d\n");

Ie -l o

rewind(fp);

Read array data *
i-0;

while(fscanf(fp,"%d", &data mnit) !- EOF)j
engine stat, data[i] - data imit;
fgets(descr~ipt, 64, fp);

1* printf ("engine-stat-data(%3d) is%lld %s", i,
engine-stat data [ii, descript);

++-i;

fclose (fp);
/* END DEFAULT STATUS DATA FOR rwa-engine.c READ FROM FILE

go*1an OENO--AN

govy ,.gain - GOVERNORPGAIN;

engineypower -engine -miit-data (0];
enginey.ercent torque -engine-init-data C 1];
engine_speed - engine imit-datal 2);
integratorý_gain -engine mnit-datat 3];

- C-12-

22 January 1993
Reference # W003036

Rev. 0.0

4 appendix C - Source Code Listing for zwaengine.c

lastpercent shaftspeed - engine initdata [4);
last_percent torque - engine initdata[5];
hours_offlight - engine initdata[6];
minutesofflight - engine-statdata[0];
old-minutes_offlight - engine-statdata[1];
enginestatus - engine statdata[2];
starting engine - engine-statdata [3];
numberofengines - engine statdata [4];
engineisdamaged - engine statdata [5];
transmission is damaged - engine statdata[6];

#if DO CFAIL
failminit failure (motiveOilLeak, enginedamageengineoil,

enginerepairengineoil, NOSELFREPAIR,
noncritKill);

failinitfailure (motiveEngineMajor, enginebreakengine,
engine repair engine, NOSELFREPAIR,

mobilityKill);
#endif

#if DO SFAIL
failminit failure (motiveTransFluidFilter,

engine-damagetransmissionfilter,
engine repair transmissionfilter,

NO_SELFREPAIR, noncritKill);
fail init failure (motiveTransmissionMajor,

engine-break transmission,
enginerepair transmission, NOSELFREPAIR,

mobilityKill);
#endif
)

void engine debugprint ()
4

printf ("rpm - %f\n rps - %f\n ps - %f\n etq - %f\n mrt -%f\n",

powertrain_percentshaft speed, engine_speed,
enginepower, enginedrivetorque, main rotor-drive-torque);

REAL enginegetspeed ()

return (engine speed);

void engine toggle sound ()
I

if ((engine sound type - 1) < ORIGINAL)
engine sound type - CHANGEBOTH;

else
engine sound type--;

"switch (enginesoundtype)I
case ORIGINAL:

printf ("Rotor: RPM Engine: RPM\n");

- C-13 -

22 January 1993
Reference # W003036

Rev. 0.0

Appandiz C - Source Code Listing for r-waengineac

break;
case CHANGE ROTOR:

printf ("Rotor: TORQUE Engine: DISABLED\n");
break;

case CHANGE ENGINE:
printf ("Rotor: RPM Engine: TORQUE\n");
break;

case CHANGE BOTH:
printf ("Rotor: TORQUE Engine: TORQUE\n");
break;

case BOTHDISABLED:
printf ("Rotor: DISABLED Engine: DISABLED\n");
break;

REAL engineget_hoursofflight ()
I

return (hoursofflight);

int engine get minutesofflight ()
(

return (minutes of flight);

- C-14 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix D- Source code listing for rwakinemat.c.

The following appendix contains the source code listing for
rwakinemat.c for convenience in document maintenance and
understanding of the CSU.

-D-1 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendiz D - Source Code Listing for rwakinemat.c

/* $Header: /a3/adst-cm/RWA/simnet/vehicle/rwa/src/RCS/rwa kinemat.c,v
1.1 1992/
10/07 19:00:23 cm-adst Exp $ *//*

"* SLog: rwa kinemat.c,v $
"* Revision 1.1 1992/10/07 19:00:23 cm-adst
"* Initial Version
*

static char RCS ID[] - "$Header: /a3/adst-
cm/RWA/simnet/vehicle/rwa/src/RCS/rwa_
kinemat.c,v 1.1 1992/10/07 19:00:23 cm-adst Exp $";

/**

* Revisions:

* Version Date Author Title SP/CR
Number

* 1.2 10/09/92 R. Branson Data File Initiali-
* zation
* 1.3 10/16/92 R. Branson Data filenames changed
S* to eight characters
* 1.4 10/30/92 R. Branson Added pathname to data
* directory

* SP/CR No. Description of Modification

* Hard coded defines changed to array element.
* Kinemat data array added.
* Kinemat initialization array added.
* Added file read for kinemat data and kinemat
initiali-
* zation data to the "vehspec_kinematicsminit"
* function.

* Added "/simnet/data/" to each data file

pathname.

*D-2

S/***

- D-2 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendiz D - Source Code Listing for ray_kinmat.c

"* FILE: rwa kinemat.c *
"* AUTHOR: Bryant Collard *
"* MAINTAINER: Bryant Collard *
"* PURPOSE: This file contains routines which process *
* information generated in the dynamics and *
* kinematics software to generate data needed *
* specifically for the rotary wing aircraft. *
* HISTORY: 03/03/89 bryant: Creation *
* 05/15/89 james: Modified for RWA *

* *

* Copyright (c) 1989 BBN Systems and Technologies, Inc. *
* All rights reserved. *

#inc* *****

#include "stdio.h"
#include "math.h"

#include "sim types.h"
*include "sim dfns .h"

#include "sim macros.h"

#include "libmatrix.h"
#include "librotate.h"
#include "vehicle.h"
#include "stdatm.h"

#define GRAVCONSTANT kinematdata[0]

#define SINAOALIMIT kinematdata(1)
#define COSAOA_LIMIT kinematdata[2]
#define SINYAW_LIMIT kinematdata[3]
#define COSYAWLIMIT kinematdata[41

#define DISPLAYSPEEDLIMIT kinematdata[5]

static VECTOR posunitvel;
static VECTOR negunit_vel;
static REAL sin_aoa;
static REAL cos_aoa;
static REAL sinyaw;
static REAL cosjyaw;
static REAL altitude;
static REAL bodypitch;
static REAL bodypitch offset;
static REAL velocitypitch;
static REAL roll;
static REAL heading;
static REAL trueairspeed;
static REAL indicatedairspeed;
static REAL gforce;
static REAL verticalspeed;
static REAL *angvel;
static REAL *velocity_vector;
static VECTOR gravity;

-D-3-

22 January 1993
Reference # W003036

Rev. 0.0

1Appendix D - Source Code Listing for rwakinemat .0

static VECTOR norm vel;
static TMATRIX velocityto body;

static REAL kinemat data[20] - I
9.81, 0.642787610, 0.766044443, 0.642787610, 0.766044443,
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.0, 0.0
) ;

static REAL kinematinitdata[30] -

0.0, 1.0, 0.0, 0.0, -1.0,
0.0, 0.0, 1.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, -1.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0
) ;

/***

"* ROUTINE: veh_spec_kinematics init *

"* PARAMETERS: none *

"* RETURNS: none *

"* PURPOSE: This routine initializes vehicle specific *

* kinematics parameters. *

void vehspec_kinematics_init ()

/* DEFAULT DATA FOR rwa kinemat.c READ FROM FILE *1
int i;
float datatmp;
char descript [64];

FILE *fp;

fp - fopen("/simnet/data/rwa-kine.d","r");
if (fp--NULL){

fprintf(stderr, "Cannot open
/simnet/data/rwa kine.d\n");

exit);

rewind(fp);

Read array data */
iI0;

while(fscanf(fp,"%f", &data tmp) !- EOF)(
kinemat datati] - data_tmp;
fgets(descript, 64, fp);

1* printf("kinematdata(%3d) is%11.3f %s", i,
kinematdata[i],

- D-4 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix D - Source Code Listing for rwa-kinernat-.

descript);

fclose(fp);

/* END DEFAULT DATA FOR rwa-kinexnat.c READ FROM FILE *

/* DEFAULT INITIALIZATION DATA FOR rwa-kinemat.c READ FROM FILE *

fp - fopen("/simnet/data/rw-ki-in.d","r");
if (fp--NULL)

fprintf(stderr, "Cannot open
/simnet/data/rw ki in.d\n");

exi~t

rewind(fp);

Read array data *
i-0;

vhile(fscanf(fp,"%f", &data-tmp) !- EOF)I

kinemat init data(i] - data tznp;
fgets descript, 64, fp);

1* printf("kinemat imit data(%3d) is%11.3f Ws, i,

*1 kinemat-init daata~i], descript);

fclose (fp);

/* END DEFAULT INITIALIZATION DATA FOR rva-kinemat.c READ FROM FILE

pos unit_vel[Y] - kinemat mnit data[1];
P05 unit_vel[ZJ - kinemat-init-data(2];
neg-ýunit-vel[XJ - kinemat-init-data(3];
neg-ýunit-velfY] - kinemat-imit-datal 4];
neg-unit vel[Z] - kinemat-imit data[5];
sin-aoa -kinernat-imit~data[6];
cos-aoa -kinemat-init-data[7];
sin-yaw kinemat -miit-data(8);
cos~yaw kinemat -iit-data[9];
altitude -kinemat imit data (10];
body~pitch - kinemat-imit~data (11];
body~pitch offset -kineinat init -data[12];
velocityypitch - kinemat~init-data(13J;
roll - kinemat -miit-data(14J;
heading -kinemat-imit-data (15];
true airspeed - kinermat imit data (16];
indi~cated airspeed -kineuat-imit-data(17];
g~force -ý kinemat-imit-data[18J;
vertical-speed - kinemat-init-data(19J;

- D'-5-

22 January 1993
Reference # W003036

Rev. 0.0

Appendiz D - Source Code Listing for zva kinemat .

angvel - vehicleangular-velocity ();
velocityvector - vehiclevelocityo;
gravity[X] - kinematinitdata [20];
gravity[Y] - kinematinit data[21];
gravity[Z] - kinemat init data[22];
norm vel[X] - kinemat init data[23];
normvel[Y] = kinemat-initdata [24];
norm vel[Z] = kinematinitdata[25];
mat_ident (velocity. to body);

/***

* ROUTINE: veh spec kinematics simul *

* PARAMETERS: none *

* RETURNS: none *

* PURPOSE: This routine finds vehicle specific kinematics *

* parameters. *

void veh_spec kinematics_simul ()
{

REAL *velocity;
REAL temp, temp2;
REAL *position;
T_MATPTR body_.to world;

position - rotategetloc (world), hull ();
altitude - position[Z];
if (altitude < 0.0)

altitude - 0.0;
/* velocity - vehicle_velocity (; */

velocity - velocityvector;
trueairspeed - sqrt (velocity[X] * velocity[X] + velocity[Y] *

velocity [y)
+ velocity[Z] * velocity[ZJ);

indicatedairspeed - trueairspeed * sqrt (airdensity (altitude) /
airdensity(0.0));

if (trueairspeed < EMILLI)

norm v.1(X) - 0.0;
normvel[Y] - 1.0;
norm vel(Z] - 0.0;

else
n
normvel[X] - velocity[X] / trueairspeed;
normvel[Y] - velocity[Y] / trueairspeed;
norm_vel(ZJ - velocity[ZJ / true airspeed;

if (normvel[Z] - 1.0 > -ENANO)
C

sin aoa - -1.0;
cos_aoa - 0.0;
sin-yaw - 0.0;

- D-6 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendiz D - Source Code Listing for rwa-kininat. c

cos~yaw - 1.0;

else if (norm-vel(ZJ + 1.0 < ENANO)

sin-aoa - 1.0;
cos-aoa - 0.0;
sin~yaw - 0.0;
COS-Yaw - 1.0;

else

sin-aoa - -norm vel(Z];
cos aoa - sqrt (norm vel[XJ norm vel[XJ + norm vel(Y]*

norm vel[Y]);
sin-yaw - norm vel(X] /cos-aoa;
cosyaw - norm-vel[Y] /cos aoa;

if (sin-aoa > SINAOALIMIT)

temp - COSAOALIMIT;
velocity_ to bodyti] (2) - -SINAOALIMIT;

else if (sin-aoa < -SINAOALIMIT)

temp - COSAOALIMIT;
velocity_ to bodyti] [2] - SINAQALIMIT;

else

tamp - cos-ace;
velocity_ to_body(1] (2) - -sin-ace;

if (cosyaw < COS_YAW_LIMIT)

velocity_ýto body(0J to] - COS-YAWLIMIT;
if (sin-Yaw > 0)

velocity_ to body(0] (1] - -SINYAWLIMIT;
else

velocity_toý_body [0] (1] - SINYAWLIMIT;

else

velocity_ to_body (0] (0] - cosyaw;
velocity_ to_body (0] [1] - -sin~yaw;

velocity_ to body[0] (2] - 0.0;
velocity_ to body(1] (0) - -velocity_ to_bodytO] (1] temp;
velocity_ to body(1J (1) - velocity__to_body[O 0] *) temp;
velocity_ýto_body(2J (0] - velocity_ to_body(1J (2]

velocity _to body(0] (1);

- D-7 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendiz D - Source Code Listing for rva-klnemat.c

velocity__to body[2] [1] - -velocity_to body~l] (2] *
velocity__to_bodylO] (0];

velocity_ to body[2] [2] - velocity_to body[l] (1] *
velocity__to_body(0] (0J -

velocity_.t~obodyll] (0] * velocity_ to body[0] [1];
ang-vel - vehicle-angular-velocity ();
body to_world - rotate get mat (hull 0, world 0);
gravity(X] - body to world[0fl2];
gravitytY) - body_ to world[1] [2];
gravity(Z] - body_to-world[2fl2];
g-force - gravity[Z] + (true -airspeed * angvyel[x] /GRAVCONSTANT);
vertical -speed - vec dotyprod (norm vel, gravity);
if (true_airspeed >- DISPLAYSPEEDLIMIT)

velocity~pitch -asin (vertical_speed);
else

velocityypitch -0.0;
vertical-speed *- true-airspeed;
bodyjuitch - asin (body to World 1] (2]);
gravity[X3 -gravity[X];
gravity EY] - -gravity CY];
gravity(Z] - .-gravity[Z];
temp - sqrt (body_ to world(l] (0] * body_ýto_world(1] (0] +

body_ýtoý_world(C1] (1] body__to_world~l [1]);
if (temp < E-NANO)

roll - 0.0;
heading - 0.0;

else

ternp2 - (body_ to world[0J [0J * body_ýto_vorld(1] (1] -

body_ýto-world[0] (1] * body_toq_world(1] (0]) / temup;
if (texnp2 > 1.0) temp2 -1.0;
roll - acos (temp2);
if (body_to_world[1J [1] *body_ýto_vorld(2] (0] -

body_ýtoý_world[1] (0] * body_to_world(2] [1] < 0.0)
roll - -roll;

if (body to_world(1] (0] >- 0.0)
heading - acos (body toý_voridjll] 1) temp);

else
heading - acos (-body__to_world~lJ 1) / temp) + PI;

/* NO METERS FOR NOW
meterý_g_force-set (g~force);
meter-vertical-speed-set (vertical-speed);
if (true -airspeed >- DISPLAY_-SPEEDLIMIT)

meterý_send-aero-data (rad-to-deg (body~pitch), rad-to-deg
(roll),

rad-to-deg (heading), as1n (sin-aoa), asin (sin~yaw),
indicated-airspeed, altitude, g-force);

else
meter-send-aero-data (0.0, 0.0,

rad-to-deg (heading), 0.0, 0.0,
indicated-airspeed, altitude, g-force);

-D-8-

22 January 1993
Reference # W003036

Rev. 0.0

appendix D - Source Code Listinig for rwa-kinemt. c

REAL kinematics_get-aoa 0)

return (asin (-velocity_ýtoý_body(11H2J));

REAL kinematics-get~yaw 0)
I

return (asin (-velocity_ to body[0J (1]);

REAL kinematics_get-altitude 0)

return (altitude);

REAL kinematics-get-body~pitch 0I

return (bodyypitch + bodyypitch-offset);

REAL kinematics_get_velocityjpitch ()

return (velocity~pitch);
I

REAL kinematics_get-roll 0)
1

return (roll);

REAL kinematics_get_heading C

return (heading);

I

return (true-airspeed).;

REPL kinematics-get-indicated-airspeed 0I

return (indicated-airspeed);

REAL kinematics get_g_force 0)

return (g_force);

REAL kinematics-get-vertical speed 0)

return (vertical-speed);

-D-9-

22 January 1993
Reference # ti003036

Rev. 0.0

Appendiz D - Sourc* Code Listing for r-wa-kin-t .0

REAL. *kinematics get gravity vector 0)

return (gravity);

REA *kijnematics get linear-velocity vectoro(

return (velocity vector);

REA *kinemtics get norm.alized_velocity_vector (

if (true-pairspeed > DISPLAYSPEEDLIMIT)
return (norm _vel);

else if (norm vel[YJ >- 0.0)
return (pos unit-vel);

else
return (neg_ unit-vel);

REALJ *kinematics get angular-velocity vector (

return (ang_vel);

TM AT_-PTR kinematics get-velocity_ýto_body (

return (velocity_.to body);

-D-10-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix E - Source code listing for miss..adat.c.

The following appendix contains the source code listing for
missadat.c for convenience in document maintenance and
understanding of the CSU.

-E-1 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix E - Source Code Listing for mlusadat.c

I* $Header. /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissle /RCS/nmiss_.adat.c,v 1
.1 1992/09/30 16"3952 cm-adst Exp $ V
I*

SLog. miss~adat.cv $
*Revision 1.1 1992/09/30 16:39:52 crn-adst
* Initial Version
*/

static char RCSMUDD = "$Header. /a3/adst-cm/RWA/simnet/vehicle/libsrc/lhbnissil
e/RCS/niss.adaLc,v 1.1 1992/09/30 16:39:52 cm-adst Exp $";

* Revisions:

* Version Date Author Title SP/CR Number

* 1.2 10/23/92 R. Branson Data File Initiali-

* zation
* 1.3 10/30/92 R. Branson Added pathnarne to data
* directory
* 1A 11/25/92 R. Branson Changed %i to %d

* SP/CR No. Description of Modification

* Hard coded defines changed to array elements.
* Characteristics/parameter data array added.
* Engine initialization data array added.
* Degree of polynomial data array added.
* Added file reads for ADAT characteristics/
* parameters, burn speed coefficients, coast speed
* coefficients, burn turn coefficients, coast turn
* coefficients, and temporal bias coefficients.

* Added "/sunnet/data/" to each data file pathname.

* FILE: miss adat.c *

* AUTHOR: Bryant Collard *

* MAINTAINER: Bryant Collard *

PURPOSE: This file contains routines which fly out a
missile with the characteristics of a ADAT *

- E-2 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix E - Source Code Listing for mulsadatc

* missile. *

* HISTORY: 06/28/89 bryant: Creation
* 08/06/90 bryant: NIU librva modifications.

"* Copyright (c) 1989 BBN Systems and Technologies, Inc.
"* All rights reserved. *

ffinclude "stdio.h"
#include "math.h"

#include "sirmktypes.h"
#include "simdfns.h"
include "basic.h"
#include "muntype.h"
#include "Iibmap.h"
#include "libmatrix.h"

#include "miss adat.h"

include Iibmissýdfn.h"
#include "libmissloc.h"

1//
* Define missile characteristics.
I*/

#define ADAT BURNOUT TIME adaLtmiss cLhrt 0]
#define ADATMAX _FLGHTTIME adaLmiss-char[1]
#define INVESTD1ISTSQ adaLmiss-chart 21
#define HELO_FUZEDISTSQ adat_misschart 31
#define AIRFUZE-DISTSQ adaLmisk.char[41
#define ADATTElMPBIAS TIME adatmiss char[5]
#define CLOSERANGE adaLmiss char[6]

/*/
* Define the states the ADATMISSILE_ can be in.

#define ADATFREE 0 /* No missile assigned. /
#define ADALGUIDE 1 /- Missile flying and guided. V
#define ADATUNGUIDE 2 /* Missile flying but unguided. */
#define ADATCLWSE 3 /* Missile flying against a close target. /
#define ADATLHOT 4 /6 Missile fired without cooling. /

/*/
* The following terms set the order of the polynomials used to determine

the speed or cosine of the maximum allowed turn rate of the missile
at any point in time.

-E-3 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix E - Source Code Listing for miss-adat.c

/*/

#define ADATBURN_SPEEDDEG adaLmiss.polydeg[01
#define ADAT_.COAST_SPEED_DEG adatjmiss_.poly_deg[11
#define ADATLBURN_TURN_DEG adaL.miss.poly.deg[21
#define ADAT._COASTTURNDEG adatmiss..poly_deg[31
#define ADAT_TEMP_BIAS_-DEG adat..miss.polydeg[41

/*/
* ADAT missile characteristic parameters initialized to default values./*/

static REAL adatnmiss char[IO0 -
{

48.0, /* ticks (3.2 sec) /
300.00, /* ticks (20.0 sec) */

90000.0, /*(300m)'2*/
49.0, 1* (7 m)0* 2/
196.0, /* (14 m) "* 2 *

60.0, /* ticks (4.0 sec) /
2200.0, /* close range/

0.);
0.0,
0.0

The following are the default values of the degree of polynomials.
I*1

static mt adatcmi _lsspoly deg[5| ;
2
2, /* Speed before motor burnout. */
4, /* Speed after motor burnout. I
3, /* Cosine of max turn before burnout. /
5, /* Cosine of max turn after burnout. */

4 /* Temporial bias. /

};

* Coefficients for the speed polynomial before motor burnout.
/*I

static REAL adat.bumrspeed-coeff[10] =

2.296, " a..0 - m/tick/
0.72990856, /0 al - m/tick*2 *
0.013310932, /0 a_2 - m/tick"3 */
0.0,
0.0,
0.0,

-13-4-

22 January 1993
Reference # WW03036

Rev. 0.0

Appendix E - Source Code Listing for miss-adatc

0.0,
0.0,
0.0,
0.0

I;

* Coefficients for the speed polynomial after motor burnout.

static REAL adatcoasLspeed-coeffl10] =
{

105.52162, /* a_0 - m/tick /
-1.0157285, /* a-1 - m/tick*2 /
5.6124330e-3,]* a-2 - m/tick**3 I

-1.6262608e-5, P* a.3 - m/tick**4
1.8991982e-8, P* a_4 - m/tick*5 /
0.0,
0.0,
0.0,
0.0,
0.0

};O /M/

SCoefficients for the cosine of max turn polynoi•al before motor burnout.
/",

static REAL adaLbum_••.coefflo =
!

0.999993, P a_0 - cos(rad)/tick I
-6.2386917e-7, I' a_1 - cos(rad)/tick-2 1
1.6146426e-7, P* a-2 - cos(rad)/tick-3 ./

-9.720142e-7, P" a_3 - cos(rad)/tick**4 1
0.0,
0.0,
0.0,
0.0,
0.0,
0.0

MO

" Coefficients for the cosine of max turn polynomial after motor burnout.

static REAL adatcoastturn.coeff[10] =

0.99753111, P* a-0 - cos(rnd)/fick /
5.5817986e-5, P" a-1 - cos(rad)/tick"2 01
-5.1276276e-7, P* a..2 - cos(rad)/tick"3 */

-E-5 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix E - Source Code Listing for miss-adat.c

2.2388593e-9, /* a_,3 - cos(rad)/tick'*4 */
-5.1964622e-12, /* ao4 - cos(rad)/tick*5 */
4.5499104e-15, /* a.5 -cos(rad)/tick'"6 *
0.0,
0.0,
0.0,
0.0

* Coefficients for the temporial bias polynomial.
/4/

static REAL adat-temp-.biasocoeff[101 =
{

53105657e-2, /*a_0--m*/
7.1795817e-2, /* a-1 -m/tick *
1.8084646e-2, /* a-2 -m/tick*2 V

-6.0083762e-4, /* a.3 - m/tick'*3
4.6761091e-6, P" a_4 -m/tck"'4"
0.0,
0.0,
0.0,
0.0,
0.0

1;

"* The following arrays are used to give the missie the proper superelevation
"* at launch time. Two are required to deal with launches off either side
"* of the turret.

static T_MATRIX tubeQCsighUeft;
static T.MATRIX tube_C_sighLright;

"- Memory for the missiles is declared in vehicle specific code. During
" initialization, a pointer is assigned to this memory then some memory
"* issues are dealt with in this module.
/*/

static ADAT_MISSILE *adat_array; /* A pointer to missile memory. */
static int num-adats; /* The number of defined missiles. V

Declare static functions.
/*/

. /* static void missile._adaLfly 0; * made external /
static void missile..adatstop 0;

-E-6 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix E - Source Code Listing for mlss-adatc

* ROUTINE: missile_adatinit
* PARAMETERS: missile.array -A pointer to an array of
* ADAT missiles defined in
* vehicle specific code. *
* num missiles - The number missiles defined in *
* : Umissile array_ *
* RETURNS: none
* PURPOSE: This routine copies the parameters into
* variables static to this module and initializes
* the state of all the missiles. It also *
* initializes the proximity fuze.

void missfle..adatjinit (missilearray, numjmissiles)
ADATMISSILE missle._arrayl];
int num missiles;

int i; /* A counter.*/
REAL mag; / Used to generate tube to sight matricies. /
int datajbmpint;
float datatrtmp;
char descript[64];
FILE fp;

/* DEFAULT CHARACrERISTICS DATA FOR missadat.c READ FROM FILE
fp = fopen("/simnet/data/msnadcch-d",r");
if(fp--NULL)(

fprintf(stderr, "Cannot open /simnet/data/msad-chA\n");
exitO;

rewind(fp);

/* Read array data*/
i--0;

while(fscanf(fp,"%fr, &datatmp) != EOF)(
adat.n.iss_char[iJ = datajtmp;
fgets(descript, 64, fp);

/* printf(-adat miss char(%3d) is%1I.3f %s", i,
adatmisscharli], descript); 0/

-+i;

fclose(fp);
/* END DEFAULT CHARACTERISTICS DATA FOR missadat.c READ FROM FILE

- E-7 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix E - Source Code Listing for mliss-adat-c

/* DEFAULT BURN SPEED DATA FOR mbissadat~c READ FROM FILE
fp = fopen("/simnet/data/mis...adbs~d","r");
if(fp==NULL)(

fprintf(stderr, "Cannot open /sixnnet/data/ns..ad..bs4\n");
exitO;

rewind(fp);

/* Read degree of polynomial/

fscanf(fp,"%d", &datajinpjint);
ADATBURNSPEEDDEG = datajnipjint;
fgets(desaript, 64, fp);

/* printf("adaLntiiss...poly-%deg(0) is%3d %s",
ADATLBURNSPEED_DEG, descript);

/* Read array data/
i=O;

whiefcnff(fp,"%f, &datajznp) != EOF)(
adat~burný-speed-coeffjij = datajxnp;
fgetsdescript, 64, fp);

P pnintf(-adaLburn..speed...coeff(%3d) is%1 1.3f Ws, i,
adaLburn..speedsoefflil, descript); ,

fclose(fp);
/*END DEFAULT BURN SPEED DATA FOR missý-adat~c READ FROM FILE *

/*DEFAULT COAST SPEED DATA FOR inissadat~c READ FROM FILE
fp = fopen("/szmnet/data/ms..ad-.cs~d","r");
if(fp==NULL)(

fpuintf(stderr, "Cannot open /sixnnet/data/ms..ad-qrsd\n");
exitO;

rewind(fp);

/* Read degree of polynomial/

fseanf(fp,"6%d",,&datajtnppjnt;
ADA7LCOAST..SPEED...DEG = data,_tmp__nt;
fgets(desaript, 64, fp);

/0 printf("adaLmss..poly-ftde(l) is%3d %C",
ADAT COASIýSPEEDDEG, descnipt);

P Read array data/
W=;

-E-8 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix E - Source Code Listing for mlss-adaLc

while(fscanf(fp,-%r', &data-ýtnip)!= EOFMl
adat..coasLspeed coeffiJ=atjzp
fgets(descript, 64, fp);

Pprnnff('adat-coasLspeedscoeff(%3d) is%l 1.3f %s", i,
adaLcoasLspeed-coefffij, descript); V

)+i

fclose(fp);
/* END DEFAULT COAST SPEED DATA FOR miss-adatc READ FROM FILE '

P* DEFAULT BURN TURN DATA FOR rniss~adat~c READ FROM FILE
fp, = fopen(" /simnet/data/ms~adbt.jd","r");
if(fp==NULL)(

fpnintf(stderr, "Cannot open /simnet/data/rns~ad-btd\n');
exito;

rewind(fp);

P* Read degree of polynomidal *

fscanf(fp,"%d",, &datajtmp-int);
ADAT BURN-LJRDEG = datak.tmp~jnt,
fgets(descpt, 64, fp);

P* printf("adacmiss..poly...deg(2) is%3d %s",,
ADAT-BURNffURN..DEG, descript);

/* Read arry data/
i_-O;

while(fscanf(fp,"%fw, &datajnip) != EOF)l
adat~bum-turrnsoeffl = data-tmp;,
fgets(descnipt, 64, fp);

P Pnintf ("adat-burn turn coeff(%3d) is%11.3f %s",l i,
adat-burn turn-coefffl, descript); ,

fclose(fp);
/* END DEFAULT BURN TURN DATA FOR miss~adat~c READ FROM FILE *

/* DEFAULT COAST TURN DATA FOR miss~adat~c READ FROM FILE
fp = fopen("/simnet/data/ms...ad..ctd",I"r");
if(fp==NULL)(

fprintf(siderr, "Cannot open /stmnet/dat&/ms..ad_.td\n");
exito;

rewind(fp);

- E-9 -

22 January 199
Reference # W003036

Rev. 0.0

Appendix E - Source Code Listing for mliss-.adat~c

/* Read degree of polynomial *

fscanf~fp,"%d", &data-tmp-jnt);
ADAT..COASTJ_`URN.PEG = dataj-Mpjnt;
fgets(desaript, 64, fp);

/* printf("adaLn-iss..poly..deg(3) is%3d %s",
ADAT_.COASTTURNLDEG, descript);

/* Read array data
i=O;

while(fscanf(fp,"%f", &datajmrp) != EOF)(
adatsoast.turnscoefflJ = datajtmp;
fgets(descript, 64, fp);

P printfC'adat..coastjturn...coeff(%3d) is%11.3f %s", i,
ada~coast-turn...coefflil, descript);

+-i;

fclose(fp);
/* END DEFAULT COAST TURN DATA FOR miss adatc READ FROM FILE '

/*DEFAULT TEMP BIAS DATA FOR mise adat~c READ FROM FILE
fp = fopen("/simnet/data/nis...adjb.d","r);
ff(fp==NULL)(

fprintf(stderr, "Cannot open /simnet/data/rns~adjbhd\n");
exitO;

rewind~fp);

P* Read degree of polynomkial *

fscanf(fp,"%d", &datajtmp-jnt);
ADAT TEMP BIAS-DEG = datatimpint;
fgets4dsapt, 64, fp);

Pprintf("adat-misA..polydeg(4) is%3d %s",
ADAT TEMPBIAS DEC. descript);

/ Read array data *
i=O;

while(fscmnf(fp,"%f", &datajrnp) != EOF)(
ada~temp-...iasscoefftil = data..tinp;
fgets(descript, 64, fp);

1* printf("ada~temp..biasscoeff(%3d) is%l 13f %e", i,
adat~temp...bas~coeff[iI, descript);V

-E-10 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix E - Source Code Listing for mlss-adaLc

fckose(fp);
I' END DEFAULT TEMP BIAS DATA FOR miss~adat~c READ FROM FILE/

num-.adats =numjn-issiles;

adat 7array = missile..array;
for 0i = 0; i < numn-nmissiles; i++e)

adat..arrayli).mptr.state = ADAT-FREE;
adat_arraylij.mptr.maxjflight..time = ADAT-MAXJUFLGHýTIME;
adat~arrayfil.mptr.max...turndirectiofls = 1;

*Initialize the proximity fuze.

mi-ssile-.fuze...prox-.init 0;

*Initialize the tube to sight transformation matricies.

inag = sqrt (adat~burn..speed-coeff[01 * adat..burn..speed-coefflOl +
2.0 *adautemp-..bias..coeff[01 *adaLtemp-.bias..coeff[01);

tube...C...ighLynght[1JIOJ = adat.temnp...biasscoeff[0J / mag;
tube...C-sight..right[11[I1 = adaLbuni...peed-coefflol / mag;
tube...C..sight~sight[1J 12] = adaLtemp...bias..coefflol / mag;
nag = sqrt (tube...C..sight-right[11[0j 0 tube-.C...sighLrightlll 101 +

tube...C .sight...ght[1J1 * tube...C-.sighcnight(1J1);
tube...C~sightLyight[iOH0l = tubejZ...sight.rightllllll mag;
tube...QsightLyight[0J(IJ = -tube....Qsaght.right[1ll0l mag;
tube_.C...sightjyight[01[21 = 0.0;
tube...C...ghrightl2l[0l = tubejZ...sight-rlght~ll[2J

tubej..C..sigh~right[OI[11;
tube...C..sighL-right[21[1J = -tube...C..sighLright[1JI2J"

tube...C..ight~jght[01[0J;
tubeý_C_saghtjfightl2ll2l = mag;
miatýcopy (tube_.C..sighLright, tube..Cjtsghtjeft);
tubeC sightjeftf0)[ll = -tubiej....sight-left[OJ[11;
tube...C~sightjef~t[1jlol = -tube...C,_sight-leftjllI~l;
tubqe...C..sight-leftI2J[0l = -tube...C..sight~left[2J [01;

int missile...adat-isýjree(missile)
int missile;

return((adaLarraylmissilel.mnptr~state == ADATYFREE);

*ROUTINE: missile...datjire
*PARAMETERS: aptr -A pointer to the ADAT missile to be

* fired.

-E-11 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix E - Source Code Listing for mliss-.adat~c

* target type - The missile can be set for three
* ~types of targets by the launching

vehicle. This variable stores
the setting.

V launch-p~oint - The location in world
cordnae that the missile isV

Vlaunched frn
V oc..sight-to-world - The sight to world

transformation matrix used
V only in this routine.

V launch-speed - The speed of the launch
V platform (assumed to be in the
V ~direction of the missile).
V range-tojo.ntercept - Range to intercept.
V tube - The tube the missile was launched from.V
V target..vehiclejd - The vehicle ID of the V

V ~target (if any). V

V RETURNS: TRUE if successful, FALSE if not. V

* PURPOSE: This routine performs the functions V
V specifically related to the firing of a ADATV
V missile.V

-------- - 64V1414-----------

int missileý_adatjire (aptr, target..type, launch...point, loc..sight..to...world,
launch-speed, range-o-intercept, tube, target~yehidejd)

ADAT-vfISSILE Vaptr,

int targetype
VECTOR launch point;
TJAATRIX Ioc..sigh~tpo..world;
REAL launch_ speed;
REAL range .. tojntercept;
int tube;
VehiclelD *target-vehicle id;

int i; /0 A counter. V

MISSILE mptr; /* Pointer to the particular generic missile
pointed at by ...aptr... */

int comm ~target-type; /V*Indication of whether target is known.*V/

VFind jnptr_ and _targetid-.

mptr = &(aptr->mptr);
if (target-y.ehicle id =-- 0)

aptr->target-vehile-id.vehidle = vehiclelrrelevant;
else

aptr->target..vehiclejd = target _vehiclejd

VSet the initial time, location, orientation, and speed of the generic
Vmissile.

-E-12 -

22 January 1993
Reference # W003036

Rev. 0.0

0 ~Appendix E - Source Code Listing for mlss-adatc

mptr-> time = 0.0;
vec copy (launch..point, mptr->location);
if (rangejoj-ntercept < CWSELRANGE)

maLcopy QIoc..sight toý_world, mptr->orientation);
else

if ((tube / 2) * 2) == tube)
maLmiat.mul (tube...C -sight-left, loc-sghcto...world,

mptr->orientation);
else

nmatrnamul(tube...QLsighLright, loc..sigh~toý_world,
mptr->orientation);

mptr->speed = missile...utiLeval-poly (ADAT..BURNSPEEDDEG,
adaLburr..speed.coeff, 0.0) + launch...speed;

mptr->init-speed = launch..speed;

*Indicate that the proximity fuze has no vehicles it is tracking.

aptr->pptr = NULL;

*Set fuze distance and fuze target according to midssile target
*setting. Set network variables.

switch (targetjtype)

cawe ADATJGLýGND.

aptr->fuze..dist..sq = 0.0;J)ST.S

aptr->targetjflag = PROXFZE...ON....LLEH;

clse D7_TE0

aptr->tagetjflag = PROXYLIUZELON_ONEVEH;
break;

case ADAILTGT..AMR
aptr->fuze..disk~sq = A1R.YLJZE..DISLýSQ-
if (aptr->target- vehicle id-vehicle =- vehicleirrlevant)

aptr->tagetjflag = PROX..UZE..PNALL_-VEH;
else

aptr->targetjlag = PROX.YUZE....N..ONEYEH;
break;

default:
aptr->fuze...dist.sq = 0.0;
aptr->targe-f lag = PROXFUZE...O-NQOYEH;
printf ("MJSS..ADAT: Unknown target type %d\n", targetjtype);
break;

if (aptr->target- vehicle-id.vehicle == vehiclelrrelevant)

- E-13 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix E - Source Code Listing for miss-adat-C

comm -target-type = targetUnknown;
else

comm ~target type = targetlsVehicle;

"* Tell the rest of the world about the firing of the missile. If this
"* cannot be done, return FALSE.

if (!missile-utiLcommriýfiremissile (mptr, MSLý-TYPE-AISSILE,
miap~get..amnx_.entryjrom...network .ype (munition..US._ADATS),
mnunitionjJS...ADATS, munitionUSL.AD)AT, &(aptr->target~yehiclejd),
conim~targe~type, objectIrrelevant, tube))

return (FALSE);

"* If all was successful, put any flying missiles in an unguided state
"* and put this missile in a guided state.

for (i = 0; i < num~adats; i-H)

if ((adat..aray[iI.mptr-state == ADAT..GUIDE) I I
(adat-arayfiJ.mptr.state == ADAT-CLOSE))

adacarrayfil.mptr.state = ADATJJUNGUIDE,

if (rangeý_ojntercept < CLOSERANGE)
mptr->state = ADATCLOSE;

else
mptT->state = ADAT-..GUIDE;

return (TRUE);

ROUTINE: missile-adat-fly...mssiles
PARAMETERS: sightiocation - The location in world

* coordinates of the gunner's
* ~sight.
* loc..sigh~to..world - The sight to world
* transfonnation matrix used

only in this routine.*
*veh list - Vehicle list 113.

*RETURNS: none
PURPOSE: This routine flies out all missiles in a

*flying state.

void missile...adatjfly~missiles (sightjocation, loc..sight-.to..world, veh..list)
VECT`OR sightiocation;
TMATRIX loc..sight~to..world;
int veh list;

int i; /0 A counter./

-E-14 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix E - Source Code Listing for miusadaLc
I*/

* Fly out all flying missiles.
I*/

for (i = 0; 1 < nurneadats; i++){
if (adaLarray[iJ.mptr.state != ADATJREE)

missile._adaLfly (&(adat.array[i]), sightlocation,
locqsightuto-world, i, vehblist);

}

--------- ----------- -----------

* ROUTINE: missile__adat.fly
* PARAMETERS: aptr - A pointer to the ADAT missile that is to*
* be flown out.
* sightlocation - The location in world
* coordinates of the gunner's *
* sight.
* loc._sighLto._world - The sight to world
* transformation matrix used *

* only in this routine. *
S* tube -The tube the missile was launched from. *
* vehlist - Vehicle list ID.
* RETURNS: none
* PURPOSE: This routine performs the functions
* specifically related to the flying a ADAT
* missile. *

void missile _adaLfly (aptr, sightiocation, locqsightto.world, tube,
veh_list)

ADATMISSILE *aptr,
VECTOR sightlocation;
T_MATRD(locsighto~world;
int tube;
int veh list;
{

MISSILE *mptr; 1" A pointer to the generic aspects of .aptr_. "
REAL time; /* The current time after launch (ticks). ./
REAL bias; /* The value of the temporal bias. */

"* Set _mptr_ and -time-. These values are created mostly for increased
"* readablity.

mptr= &(aptr->mptr);
time= mptr->time;

'Find the current missile speed and the cosines of the maxdmum allowed turn

- E-15 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix E - Source Code Listing for mlss..ad&Lc

" angles in each direction. The equations used are different before and
" after motor burnout.

if (time < ADATBIJNOL-TJIME)

mptr->speed = missile-util-eval-poly (ADAT..BURNL.SPEED-.DEG,
adaLburn..speedc~ceff, time) + mptr->init.speed;

mptr->cos-;nax-turnilO = misuile...util-eval-.poly (ADAL-BURNTURNDEG,
adat.burn-.turn-coeff, time);

else

mptr->speed = wissile...utiLeval...poly (ADAT..COASTýSPEED..DEG,
adat~coast~speec~coeff, time) + mptr->iniLspeed;

niptr->cosjnaxjturnfOI = misle-tit.eval...poly (ADAT...COASLýTURN..DEG,
adaLcoas~turn...coeff, time);

Find the target point, etc.

if ((mptr->state == ADA7LGUIDE) I I (mptr->state == I JAT...CLOSE))

if ((time < ADATý_TE W..BIASJ1TME) && (mptr->state == ADAT..GUIDE))

bias = missile util-eval-poly (ADAT .TEMP .BIAS DEG,
adaLtem~p.bias-.coeff, time);

n-issilej-argetlos..bias (mptr, sightjocation,
locsighLto-.world, -bias, bias);

else
miAssile-targetlos~bias (mptr~, sightiocation,

Ioc...sighLto...world, bias, bias);

else
missile-target os (mptr, sightjocation, loc..sigh~to..world);

else if (inptr->state =- ADATJJUNGUIDE)
missilej-arget-unguided (mptb),

else
prntf ("MISSILEADAT: disallowed missile state %d\n", mptr->state);

*Try to actually fly the missile. If this fails stop the missile altogether
*and return.

if (!n-issile..util..flyout (mptr))

missile-.adaLstop (aptr),
return

* else

-E-16 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix E - Source Code Listing for mlss adat.c

*1/
If the missile successfully flew, process the proximity fuze.

/•,
missilejuzetprox (mptr, MSLI,-TYPEJIASSILE, aptr->tget_fla&

&(aptr->target.vehicle_id), &(aptr->pptr), vehlist,
INVEST-_DISTSQ, aptr->fuze dist.sq);

• If the missile successfully flew, check for an intersection with the
• ground or a vehicle. If one is found, blow up the missile, stop its
• flyout and return.
/*/

if (missile util-omm..check-detonate (mptr, MSLTYPE-MISSILE))
{

missile..adaLstop (aptr);
return;)

}
/•/
• If the missile is to continue to fly, return.
/*/

return;I

"* ROUTINE: missileadatresetmissiles
"• PAFAMETERS: none
"• RETURNS: none

"* PURPOSE: This routine puts any flying missile into an
• unguided state. *

void missile-adatureset-missiles 0
I

int i; /* A counter. 0/
1/*
• Reset all flying missiles.
/*/

for (i = 0; i < numnadats; i++)
{

if ((adat.array[i].mptrstate == ADATGUIDE) I I
(adaLarray[i].mptr.state == ADATI.CLOSE))

adat-arraylil.mptr.state = ADAT_UNGUIDE;
)

}

* ROUTINE: missile-adaLstop
* PARAMETERS: aptr - A pointer to the ADAT missile that is to *

-E-17-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix E - Source Code Listing for miss-adat.c

* be stopped. *

* RETURNS: none *
* PURPOSE: This routine causes all concerned to forget
* about the missile. It should be called when
* the flyout of any ADAT missile is stopped *

* (whether or not it has exploded). Note that
* this routine can only be called within this
* module.

static void missileadat-stop (aptr)
ADATMISSILE aptr;
{
/*/
"* Tell the world to stop worrying about this missile then release the
"* memory for use by other missiles.
I*I

missilejuze..wprox..stop (&(aptr->pptr));
missile..util_comm_stopjmissile (&(aptr->mptr), MSLTYPEMISSILE);
aptr->mptr.state = ADATFREE;

I
orll 33> logout
Connection closed.
wdll-4>

- E-18 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix E - Source Code Listing for miss-adat.c

- E-19 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix F - Source code listing for miss..atgm.c.

The following appendix contains the source code listing for
missatgm.c for convenience in document maintenance and
understanding of the CSU.

-F-1 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix F - Source Code Listing for mis.atgn.c

/* Header. /a3/adst-cm/RWA/lsimet/vehide/libsrc/libmissile/RCS/miss-atglCv 1
.1 1992/09/30 16:39:52 cm-adst Exp $ /
/-

* $Log. miss-atgrcv $
*Revision 1.1 1992/09/30 16.39.52 cm-adst
* Initial Version

./

static char RCS jD] = "$Header. /a3/adst-cm/RWA/simnet/vehide/libsrc/libmissil
e/RCS/miss.atgm.cv 1.1 1992/09/30 16:39:52 cin-adst Exp $";

• Revisions:

• Version Date Author Title SP/CR Number

• 1.2 10/23/92 R. Branson Data File Initiali-
* zation
* 1.3 10/30/92 R. Branson Added pathname to data
• directory

1 IA 11/25/92 R.Branson Changed %i tod

"*14 14 4 ON- 140 1 1o1 1 -- - - - - - - -- - - - - - - -

* SP/CR No. Description of Modification

* Hard coded defines changed to array elements.
• Characteristics/parameter data array added.
* Degree of polynomial data array added.

Added file reads for ATGM characteristics/
* parameters, bum speed coefficients, coast speed
• coefficients, burn turn coefficients, and coast

turn coefficients.

Added "/simnet/data/" to each data file pathname.

*FILE: miss.atgm.c
AUTHOR: Bryant Collard *

"* MAINTAINER. Bryant Collard
"* PURPOSE: This missile is the same as the tow except

* it uses point targeting. It flys to a point
* rather than the view direction

- F-2 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix F - Source Code Listing for ntm-s..atgm~c

*HISTORY: 10/31/88 bryant: Creation
*4/26/89 bryant- Added statically allocated mem

*Copyright (c) 1988 BBN Systems and Technologies, Inc.
*All rights reserved.
-- - - - - -- - - -

#include "stdio.h"

#include -simri_types.h"
#include "sim..dfns~h"

#iinclude "basic.h"
#include "mun_type.h"
#finclude libmatrix~h"
finclude "libmap.h"
include "librva.h"

#inndude "miss..atgrn.h"

#include "libmiss..dfn~h"

linclude "libmiss lochi"

*Define missile characteristics.

#define TOW-BURNOUTý_TIME towjnmissscharlOJ
#define 'OW..RANGELl~Iý_T TME tow miuss charill
#define TOW..MAXLIGHT-i TME tow-.miss~chadf2j

#define ATMJ-URINJACTOR towjnmise..cuar31

"* The following terms set the order of the polynomials used to determine
"* the speed or cosine of the maximum allowed turn rate of the missile

*at any point in time.

#define TOW..BURN..SPEED_.DEG towjss....poly..deg[0J
#define TOW.-COAST.SPEED.DEG tow~jniss...poly..degj11
#define TOW..BURNJTURN.. EG tWWjnlss.4,oly...eg[21
#define TOW-COASTJLJRN..DEG to~w.miss..ply...eg(31

*Tow missile characteristic parameters initialized to default values.

static REAL toWjniss..char[51=

-F-3 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix F- Source Code Listing for mlsa.atgm.c

268.35, /* ticks (17.89 sec) /
200.00, /* ticks - cos of max turn > 1.0 beyond this point /

0.9, 1" ATGM turn factor for wider turning capability "1
0.0I;

"* The following terms set the order of the polynomials used to determine
"* the speed and turn of the missile at any point in time.
/*/
static int towjmiss..poly-deg[5J =
{

2, I* Speed before motor burnout. /
3, /* Speed after motor burnout. */
1, /* Cosine of max turn before burnout. /
3, /* Cosine of max turn after burnout. /
0 /* not used. /

* Coefficients for the speed polynomial before motor burnout initialized to
* default values.

. static REAL tow._burnkspeedcoeff5 =

1
4.466666667, " a.0 - m/tick (67.0 m/sec) */
1.222103405, /0 a.l - m/dick"2 (274.9732662 m/sec"2) /

-0.024532086, /0 a-2 - m/tick'*3 (-82.7057910 m/sec*03) *
0.0,
0.0

};

I*I

"* Coefficients for the speed polynomial after motor burnout initialized to
"* default values.
I*1

static REAL towsoast-speed-coeff[5] =
{

21.81905383, * a-0 - m/tick (327.2858074 m/sec) *
-9.5382019e-2, /* a_1 - m/ticki*2 (-21.4609544 m/sec"2) /
2A378222e-4, 1" a_- 2 - m/tick"3 (0.227650 m/sec"3) "

-2.631111Ie-7, /* a..3 - m/tick"4 (-040133200 m/sec'*4) /
0.0

I./
* Coefficients for the cosine of max turn polynomials before motor burnout.
* The structure MAXCOSCOEFF_ is used to store the values for the turn
* sideways, up, and down polynomials along with their order.

-F-4 -

22 January 1993
Reference # W00303

Rev. 0.0
Appendix F - Source Code Listing for miss..atgm~c

static MAX..COSLCOEFF tow..burrn turo-.coeff

1, /* Order of the polynomials./

/* Sidewards turn./
0.99976868652, /- a 0 - cos(rad)/tick1
-3-5933955e-7 /* a-1 - cos(rad)/tick**2/

/* Upwards turn./
0.9996667258, /0 aO - cos(rad)/tick/
-3.1492328e-6 / a.1- cos(rad)/tick"2 *

P* Downwards turn. '
0.999978909989, P a_..0- cos(rad)/tick*/
-7.819499le-9 /* a)l - cos(rad)/tick*02

/*Coefficients for the cosine Of mlax turn polynomials after motor burnout.

Static M(AX CO$B COEFF towcoast _turn cOWf

3, P* Order of the polynornials.1

/0 Sidewards turn./
0.99995112518, /* a,_.0 - cos(rad)/tick/
8.96333e-7, P* a)l - cos~rad)/&W-k2/

-5-995375e-9, P* a...2 - co.(rad)/tick*31
1-16222-5--11 P a..3 - cos(rad)/ick'-4*/

/0 Upwyards turn. '
0.9998498495, /* 8A. - cos(rad)/tick ~
1.657779e-6, P*a)I -cos(rd)/tick--2/

-8.23186le-9, /* a-2 - cos(rad)/ticlc"'3/
1.381832e-11 /* a...3 - cos(rad)/dck**4/

P* Downwards turn. '
0.9999714014, /*a.0.0-cos(rad)/tick*/
3-OA82077e-7, P* a)- - cos(rad)/tick-2

-1.601259e-9, P* a.2 - cos(rad)/tick"3
2.623014e-12 /* a_,.3 - cos(rad)Itick"-4 4

- F-5 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix F - Source Code Listing for mlss-atgm.c

"I1
* Declare static functions.I.,

static void nissile.atgmAstop 0;

* ROUTINE: missileatgmnjnit
*PARAMETERS: tptr - a pointer to the TOW to be
"* initialized. *
* RETURNS: none
* PURPOSE: This routine initializes the state of the
* missile to indicate that it is available and
* sets values that never change.

void missile atgr-init (tptr)
ATGM_?ISSILE *tptr;

int i;
int datajtmp-int;
float datatrmp;
char descript[641;
l *fp;

/* DEFAULT CHARACTERISTICS DATA FOR missiatgn.c READ FROM FILE '/
fp = fopen("/sinmet/data/ms._atchd","r");
ii(fp==NULL)(

fprintf(stderr, "Cannot open /sirnet/data/rns.taLch-d\n");
exit);

rewind(fp);

I* Read array data*/
i_-0;

while(fscanf(fp,"%f", &databnp) := EOF)j
tow_.miss&charOiJ = datatmp;
fgets(descript, 64, fp);

/* printf("tow_miss9char(%3d) is%lI.3f %s", i, tow-miss..chardi],
descript); *I

ckiose(qp);
/0 END DEFAULT CHARACTERISTICS DATA POR miss.atgm.c READ FROM FILE */

-L6 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix F - Source Code Listing for mlss...atgmn.c

/* DEFAULT BURN SPEED DATA FOR miss..atgrmc READ FROM FILE 4

fp = fopen("/simnet/data/ins~at..bs4d","r');
lf(fp==NULL)(

fpnintf(stderr, "Cannot open /simnet/data/ms...aLbsd\n");
exito;

rewind(fp);

P* Read degree of polynomial/

fscanf(fp,"%d", &data..~tr'pint);
TOW-BURN..SEED-DEG = datajmrpjnt;
fgets(desaript, 64,4,p);

/4 pnintf("tow midss~poly..deg(0) is%3d Ws, TOW3.URN..SPEED..DEG,
descript); 4

/* Read array data 4

i=0;

while(fscanf(fp,"%f", &datajrnp) != EOF)(
tow-burn-.speed.coefflij = datairnp;
fgets(desaript, 64, fp);

*/0 prnf("tow-bumspeed-coeff(%3d) is%11.3f %s",, i,
tow...burn..speed-coefflu], descript);

fclose(fp);
/0 END DEFAULT BURN SPEED DATA FOR niss..atgmc READ FROM FILX4

/4DEFAULT COAST SPEED DATA FOR mISsL-atgm~c READ FROM FIL
4, = fopen("/simnet/data/rmsatcsd","r"),
if(fp==NULL)(

fpnintf(stderr, "Cannot open /simnet/data/mnsýaLcs-d\n");
exito;

rewrind(fp);

/* Read degree of polynomial/

fscanf(fp,"%d", &datajirnpjint);
TOW...COAST_.SPEED.DEG = data-jmp-jnt;
fgetsdescript, 64,4,p);

/* printfow -miss..poly-..eg(I) is%3d Ws, OW-COAST..SPEED..DEG,
descript); 4

/4 Read array data '

-F-7 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix F - Source Code Listing for milss..atgm~c

while(fscanf(fp,"%i", &datajznp) != EOF)I
toW-Q.cast~speedQweff IiJ = data-tmp;
fgets(descript, 64, fp)

Pprintf("tows-oasLspeed-coeff(%3d) is%11.3f %s". i,
tow -coasLspeec-coefflii, descript);

fclose(fp);
/* END DEFAULT COAST SPEED DATA FOR miss-.atgm~c READ FROM FILE 4

P* DEFAULT BURN TURN DATA FOR in-iss.atgm~c READ FROM FILE
fp = fopen("/sinmet/data/ms...aLbt~d","r);
if(fp=--NULL)(

fprintf(stderr, "Cannot open /simnet/data/rns~atbt~d\n");
exitO;

rewind(fp);

/* Read degree of polynomial

fsaknf(fp,"%d-, &data..biipjnt);
TOW-.BURNJTURNDE aamjt

ow -tunurn...coeffideg = data..tmpjnt;
fgets(desaript, 64, fp);

Pp~intf("towjnmiss..poly_.4eg(2) is%3d %sr, TOW.BURNJTURN-DEGR
descript);

P Read array data/

for 0i=0; i <= data -tznp..int; i.-.)
fscanf(fp,"%f", &data..tmp);
tow_burn_turrnwceff.sidecoeffliJ data-tmp;
fgets(descript, 6t, fp);

/4prntfftow..burný-zrnwceff~side-coeff(%3d) is%11.3f %s', i,
tow...burnjrn...coeff.side-coeffliJ, descript);/

for (0-0; i <= data-tinp-int; i++)(
fscanf(fp,"%f", &datajtmp);
tow-.burnjurn...weff.up-.coeffliJ = data-.tmnp;
fgets(descript, 64,4,p);

1'printf("tow-.burn turn~coeff.up-coeff(%3d) is%1 13f %s", i,
tow..burn..turn....eff.up...coeffliJ, descnipt);

for (0=0; i <= data..bnp_*t; i+-4-)
fscanf~p,"%f", &datajnip);
tow.._burnjumn.coeff.down~coeffliJ data..bnp;

F-F8 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix F - Source Code Listing for miss..atgm~c

fgets(desaript, 64, fp);
P printf(-tow...burnjurn..Coeffdowný_oeff(%3d) is%11.3f %s-, i,

towý_burnj~urn..coeff~downs-oeff[iJ, descript);/

fclose(fp);
/0 END DEFAULT BURN TURN DATA FOR miss-atgnic READ FROM FILE/

/* DEFAULT COAST TURN DATA FOR miss...atgm~c READ FROM FILE '
fp = fopen("/sirnmet/data/ms....act~d","r");
if(fp==-NULL)(

fprintf(stderr, "Cannot open /sirnnet/data/ns..act~td\n");
exito;

rewind(fp);

/* Read degree of polynomia *

fscanf(fp,"%d", &datajmp....int);
TOW_,COASITJURN-DEG = data~tmp-jnt;
towvý-oastj-urn...weffideg = datajtmp..int;
fgets(descript, 64, fp);

/*print("ow-miss..poly_4.eg(3) is%3d Ws, TOW-.COASýTJURNýDEG,
descript); *

/ Read array date

for 0i=O; i <= datajtmp...nt; i-i-.)
fscanf(fp,-%r', &datajtmp);
tow-mst jnFLoeff.sideý-oeff[iJ = datajtmp;
fgets(descript, 64, fp);

Pprintf ("tow coast turn coeff .ude _coef f(%3d) is%11.3f %s", i,
tow coast-turn-coeff .sde -coefflil, descript);/

for 0i=O; i <= data .jmp..it i-ii)
fscanf(fp,"%f", &data-timp);
toWscoasLturn~soeff.upscoeffjlJ = data..bnp;
fgets(descript, 64, fp);
printf("tow..coast.turn...coeff.up....eff(%3d) is%11.3f %s", i,

tow-.coasLturn-.coeff.up...coeffliJ, descript); '

for (i=O; i <= datajtmpjnt; i++)
fscanf(fp,"%f", &datajmp);
tow..coastjturn.coeff.down..coeffliJ = datajmtp;
fgets(descript, 64, fp);
printf("tow...coast-turn..coeff.down..coeff(%3d) is%11.3f %s", i,

tow..coast-turn..coeff.down...coefflil, descript); .

22 January 1993
Reference # W003036

Rev. 0.0

Appendix F - Source Code Listing for mlss.atgm.c

fclosefp);
/* END DEFAULT COAST TURN DATA FOR miss.a.$gm.c READ FROM FILE /

tptr->mptr.state = FALSE;
tptr->mptr.maxflight time = TOW..MAXFLIGHTTIME;
tptr->mptr.maxjturn directions = 3;

/* change turn polynomial coefficients so missile has larger /
/* max turn angle. Since Ph determines when a vehicle should be '/
/* impacted, turn rates should not effect missile effectiveness /

for (i--0; i<tow burnturncoeff.deg; i++)
I:
tow burn turn coeff.side_.coeffli] *= ATGM-TURN-FACTOR;
tow-burn-turn coeff.up-coeffliJ *= ATGM-TURNFACTOR;
tow burnjturn coeff down coeff[i] *= ATGMLTURNjACTOR;
)

for (i=0; iktow._coastturn._coeffdeg; i++)
{
tow-coast turn coeff sidecoeff iI *= ATGMTURNFACTOR;
tow_coastturn_coeff.up_coeff[i] -= ATGM_TURNFACTOR;
towcoast turn coeff down coeffli] *= ATGM_ TURN FACTOR;
}

* ROUTINE: missile atgmjfire
PARAMETERS: tptr - A pointer to the TOW missile to be

* fired.
* PARAMETERS. launch.point - The location in world
* coordinates that the missile is
* launched from.
* locighttoqworld - The sight to world
* transformation matrix used *
* only in this routine. *
* launch-speed -The speed of the launch
* platform (assumed to be in the
* direction of the missile).
* tube'- The tube the missile was launched from.
" RETURNS: none *
" PURPOSE: This routine performs the functions *
* specifically related to the firing of a TOW
* missile.

* ATGM_MISSILE *%lssile..atgmfire (tptr, launch-point, loc._sighttoworld,

-F-10 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix F - Source Code Listing for mlss..atgm~c

iaunch...speed, tube, tyjoj-hlLtarget targetid, targetjoc)
ATGKM.MIILE -tptr;
VECTOR launch point;
TMATRIX loc..sigh~to..world;
REAL launch...speed;
nt tube;

int tryjo..hiLtarget;
VehiclelD) targetjd;
VECTOR target bc;

M[ISSILE *nptr; / Pointer to the particular genetic missile
pointed at by jtptr... -

*Find...mptr_.

mptr = Cz(tptr->Mptr);

*Set the initial time, location, orientation, and speed of the generic
*missile.

mptr->time = 0.0;
veccopy (launch...point, znptr->location);
niat...py (loc...ghtct..world, mptr->orientation);
mptr->speed = missile...util..evaLpoly TOW..BURN-SPEED -DEG,

tow-.burn..speed-.coeff, 0.0) + launch-.speed;
mptr->init speed = launchspeed;

Set the wire asuncut.

tptr->wimejsLsut = FALSE;

*if we are trying to hit a target then save the targetjd. Otherwise,
save the target location (some point in space)

tptr->tryjoj&hi~arget =tryjto..hiLtarget;

if (tryjo.hit.target)
tptr->targ~et...d = targetjd;

else
I
vec..copy(targetoc, tptr->targetlocation);

"* Tell the rest of the world about the firing of the missile. If this
"* cannot be done, return.

if (!nidssile..utilComm ýfire -missile (mptr, MSLJYPELAJSSILE,
map-.get-amnino.entry-rom...networkjypev (munltionjiS TOW),
munitionUSTO W, munitionj.USJOW, NULL, targetUnknown,
objectIrrdlevant, tube))

22 January 1993
Reference # W003036

Rev. 0.0

0 Appendix F - Source Code Listing for miss-atgm.c

return;
/•/

If all was successful, set the missile state to TRUE and return.

mptr->state = TRUE;
return;

)

* ROUTINE: missile.atgmjfly
SPARAMETERS: tptr - A pointer to the TOW missile that is to *

* be flown out. •
* sightiocation - The location in world •
* coordinates of the gunner's
* sight. *
• boc sightto world - The sight to world
• transformation matrix used
• only in this routine.
* RETURNS: none
* PURPOSE: This routine performs the functions
• specifically related to the flying a TOW
• missile. •S• •

void missile..atgm_fly (tptr, sightIocation, loc..sighLtoq.world)
ATGMMISSILE •tptr;
VECTOR sightlocation;
TMATRJX locsighLto..world;

MISSiLE mptr; /* A pointer to the generic aspects of tptr_. /
REAL time; /• The current time after launch (ticks). /
VehicleAppearanceVariant *target-.vehicle;

I* pointer to target vehicles appeararne packet .I

VECTOR targetplusioffset; /0 this vector gives a targets location
with an appropriate offset for ground
vehs /

static VECTOR groundveh_offset = (0.0, 0.0, 1.01;
/* offset to aim missile at for ground vehs /

"• Set _.mptr_ and _time. These values are created mostly for increased
"* readablity.
/*/

mptr = &(tptr->mptr);
time = mptr->time;

1*/
* If the missile has reached its maximum range (not the maximum distance
* its allowed to fly), cut the wire.
/*/

- F-12 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix F - Source Code Listing for mi-atgm.c

if ((time > TOWRANGE_LMIT_TIME) && !tptr->wirejis_cut)
tptr->wirejscut = TRUE;

I*,
"* Find the current missile speed and the cosines of the maximum allowed turn
"* angles in each direction. The equations used are different before and
"* after motor burnout.
/*/

if (time < TOWBURNOUTTIME)(
mptr->speed = missile..utiLeval.poly (TOW._BURNSPEED.DEG,

towburnspeed_coeff, time) + mptr->iniLspeed;
missileutileval cos coeff (mptr, &towburnturn.coeff, time);}

else
{

mptr->speed = missile..utiLeval_poly (TOWSCOASTSPEEDJDEG,
tow._coasLspeed_coeff, time) + mptr->init-speed;

missile.util-evaLcos coeff (mptr, &tow-coast_turnscoeff, time);
)

I*,
" If the wire has been cut, set the ground as the target; otherwise,
" find a target point which will fly the missile along the gunner's line of
" sight. This targeting scheme takes into account the errors introduced by
"* attempting to guide the missile in a canted position.

if (tptr->wire iscut)

printf("G");
missilejtarget.ground (mptr);
}

else
(
/1 if operator has successfully designated a target then
"* try to hit-target will be true. Therefore, we search the
"* list of targets for the vehidelD and fly missile to that
"* location.
* if try-.to.hiuttarget is false then target point is passed
* and we should fly the missile to the target.point.
* if trytohitLtarget is true and we can't find the
* vehicle id in the rva list then the vehicle has dropped off the
* net and we fly the missile into the ground.

4/

if (tptr->tryjo..hittarget)

if ((target-vehicle = rva..getveh-app.pkt (&(tptr->targetid))) :=
NULL)
{

/i if the target is a ground vehicle we need to guide "/
P the missile to a point other than the center of mass /

- F-13 -

22 January 1993
Reference # W003036Rev. 0.0

Appendix F - Source Code Listing for miss.atgm.c

/0 for SIMNET ground vehicles the center of mass is on
/* the ground. This causes missiles to fly into the /
/g round /
/ 11 Z--- - - -- - - - -- - - -- - - -

if ((Wget ehide->guisesAsfinguished &
(objectDomainMask I vehicleEnvironmentMask))-=
(objectDoinainVehicle I vehicleEnvirnmentGround))
I
vec add (targetyehicle->iocation, grouncldvehoffset,

target-plus offset);I
else

I
vec.copy (target..vehicle->location, target.plus-offset);
I

rnissile..target .point(mptr, target.plus.offset);

else
I
/I pnrntf(••"); /
missile..targetunguided (mptr);
I

I
else

/* printf("p"); *

/* guide the missile toward a point for 5 ticks, then just
/" fly it straight ahead. With the wide turning radius "
/0 missile will fly around in circles otherwise °

if (time <€ 5.0)
missile_target-point(mptr, tpr->targetlocation);

else
missile_target-unguided (mptr);

I
I'

"Try to actually fly the missile. If this fails stop the missile altogether
and return.

/./
if (!missile-util-flyout (mptr))
I

missile..atgmnstop (tptr);
return;

I
else
i

" If the missile successfully flew, check for an intersection with the

- F-14 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix F - Source Code Listing for mlss-atgmc.

* ground or a vehicle. If one is found, blow up the missile, stop its
* flyout and return.
/*/

if (mnissle_utilcomm_checkjntersection (mptr, MSLTYPE._MISSILE))

missileutilonm -_check..detonate (mptr, MSLTYPEMISSILE);
missile._atgm-stop (tptr);
return;

)

/*/

* If the missile is to continue to fly, return.
/*/

return;
}

* ROUTINE: missile..atgrnmstop
* PARAMETERS: tptr - A pointer to the TOW missile that is to
* be stopped.

RETURNS: none *
* PURPOSE: This routine causes all concerned to forget
S* about the missile. It should be called when

the flyout of any TOW missile is stopped
(whether or not it has exploded). Note that

* this routine can only be called within this *
"module.

static void missile.atgm-stop (tptr)
ATGMMISSILE *tptr;
I
/*/

" Tell the world to stop worrying about this missile then release the
" memory for use by other missiles.
/*/

missilekutilcomm_stopmissile (&(tptr->mptr), MSLTYPEMISSILE);
tptr->mptr.state = FALSE;

}

* ROUTINE: missile..atgrmcutwire
PARAMETERS: tptr - A pointer to the TOW missile whose wire

is to be cut.
RETURNS: none 4

*PURPOSE: This routine sets a flag indicating that the
* guidance wire of this missile is cuLt

-F-15 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix F- Source Code Listing for miss-atgm.c

void missile..atgm.cut..wire (tptr)
ATGMoMISSILE *tptr;
I*

If the the wire is not already cut, cut the wire.
"I*

if (!tptr->wireis..cut)
tptr->wirej_is.cut = TRUE;

- F-16 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix G - Source code listing for misshellfr.c.

The following appendix contains the source code listing for
missatgm.c for convenience in document maintenance and
understanding of the CSU.

G-1 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix G - Source Code Listing for miss_hellfr.c

/* $Header. /a3/adst-cm/RWA/simnet/vehide/libsrc/ibmissile/RCS/missjLellfrc,v
1.1 1992/09/30 16:39.52 cm-adst Exp $ */
/*

* $Log- miss hellfrcv $
*Revision 1.1 1992/09/30 16:39.52 cm-adst
* Initial Version

./
static char RCSIDO = "$Header /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissil
e/RCS/niss-hellfr.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp $7;

* Revisions:

* Version Date Author Title SP/CR Number

1.2 10/23/92 R. Branson Data File Initiahi-
* zation
* 1.3 10/30/92 R. Branson Added pathname to data
* directory
* IA 11/25/92 R. Branson Changed %i to %d

* SP/CR No. Description of Modification

* Hard coded defines changed to array elements.
* Characteristics/parameter data array added.
* Degree of polynomial data array added.
* Added file reads for helIfire characteristics/
* parameters, burn speed coefficients, coast speed
* coefficients, and time-of-flight coefficients.

* Added "/simnet/data/" to each data file pathname.

--- --------

"* FILE: miss hellfr.c
"* AUTHOR: Bryant Collard *
"* MAINTAINER: Bryant Collard
" PURPOSE: This file contains routines which fly outa *
* missile with the characteristics of a HELLFIRE

missile.
*HISTORY: 11/25/88 bryant: Creation *

- G-2 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix G - Source Code Listing for misshellfr.c

* 4/24/89 bryant:. Added static memory allocation *

* 08/07/90 bryant: NIU librva modifications.
* 08/09/90 kris: corrected flight coefficients

* Copyright (c) 1988 BBN Systems and Technologies, Inc.
* All rights reserved. *

#include "stdio.h'
#include "math.h"

#include "sirm-types.h"
#include "simdfns.h"
#include "basic.h"
#include "mun-typeh"
#include "libmatrix.h"
#include "libmap.h"
/*- need Range-Squared info -*
#include "libhull.h"
#include "libkin~h"

#include "miss hellfr.h"
#include "libmissile.h"
#include "hb-miss-dfn.h"
#include "libmiss_loc.h"

/*/

* Define missile characteristics.
1/*

#define HELLFIRE ARMTIME hellfr-misschar[01
#define HLLFIREBURNOUTTIM hellfr•_ss-har[•1
#define HELLFIREMAXFLIGHTTIME heilfr*miss_char[2]
#define SPEED_0 hellfr miss char! 31
#define THETA_0 hellfr-miss charl 4
/*/

* Set parameters which will control flight trajectory behavior.
I*/

#define SIN_UNGUIDE hellf rjmiss-char! 51
#define COSUNGUIDE hellfr-misschadr 61
#define SINLCUMB hellfr-miss char[7]
#define COS._CLIMB hellfr miss char! 81
#define SINLOCK hellfr-miss chard 91
#define COS..LOCK hellfr...miss char[101
#define COS_TERM hellfrmisschar[11l
#define COS_.LOSE hellfr misschar[12J

G/,/

- G-3 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix G - Source Code Listing for misshellfr.c

" The following terms set the order of the polynomials used to determine
" the speed or cosine of the maximum allowed turn rate of the missile
" at any point in time.

#define _IELLFIRETOFDEG hellfr_miss..poly_deg[01
#define HELLIREBURN&SPEED.DEG hellfrniss-poly_deg[11
#define HELLFRE..COAST-SPEEDDEG helfr..miss .poly-Oeg[21

I*,

SHellfire missile characteristic parameters initialized to default values.

static REAL hellfr._miss-char[15] =

{
20.0, I* ticks (1.3 sec) V
36.0, /* ticks (2A sec) /
540.0, /* ticks (36 sec) */
30.95953043, /P max.speed V/
0.046542113,
0.069756474, /0 sin 4.0 deg *I
0.997564050, /P cos 4.0 deg /
0.004072424, /P sin 3.5 deg *V
0.999991708, /* cos 3.5 deg /
0.156434465, /* sin 9.0 deg '1
0.987688341, /* cos 9.0 deg /
0.2419218%, /0 cos 76.0 deg I
0.939692621, /0 cos 20.0 deg /
0.0,
0.01;

I.,

* Hellfire missile polynomial degree initialized to default values.
/*/
static int hellfrmiss.poly_deg[31=
{

4, /" tof poly degree V
3, /0 burn speed poly degree /
5 /0 coast speed poly degree /

};

* Coefficients for the TOF polynomial initialized to default values.
/e/
static REAL hellfiretoLcoeff[10] =

18.0, /* a..0 tick */* 1.2 seconds/
3.1461816e-2, /0 a-1 tick/meter */
3.1921274e-6, /*Pa_2 tick/meterA2*/
3.5260413e-10, /* a-3 tick/meterA3 */
-2.869594e-14, /* a&4 tick/meteri.4"
0.0, /* a-5 tick/meterA5 1

-G-4-

22 January 1993
Reference # W003036

Rev. 0.0

0 Appendix G - Source Code Listing for miss.hellfr.c

0.0, /* a_6 tick/meterA6 /
0.0, /* a_7 tick/meterA7 */
0.0, /* a_8 tick/neterA8*l

0.0 P" a_9 tick/meterA9 */
};

" Coefficients for the speed polynomial before motor burnout initialized to
"* default values.
/*/
static REAL hellfireburn.speed-coeff[llO =
{

2.0044395e-2, /* a_0 - meters /
6.7384206e-1, /* a_ - m/tick /
9,8007701e-3, /* a_2 -m/tick^2 *
-1.6782227e-4, /* a-3 - m/tickA3 */
0.0, P" a_4 - m/tickA4 */
0.0, P* a_ -_m/tickAS */
0.0, /* a_6 - m/tickA6V*/
0.0, /* a-7 - m/tickA7*/
0.0, /" a_8 - m/tickA8"
0.0 P* a.-9 - m/tick^9 */

};

S/I,/

" Coefficients for the speed polynomial after motor burnout initialized to
"* default values.

static REAL hellfirecoasLspeedcoeff[10] ={
4.2738447e+1, / a_0 - meters *
-4.1048613e-1, /* a_1 - m/tick *
2.6023604e-3, P0 a.2 - m/tickA2 /

-8.4870417e.6, /* a_3 - m/tickA3 "/
1.3322932e-8, P" a-4 - m/tickA4 "/

-7.9542005e-12, P0 a..5 - m/tickA5 "/
0.0, P* a_6 -m/tickA6 "1
0.0, /" a.7 - m/tickA7 "/
0.0, /* a_- 8 - m/tick^8 *
0.0 P a9 - m/tickA9 */

static ObjectType hellfireammojtype = munitionJUSJHellfire;
static REAL

maxrange.limit, P [MISSILEUSMAXRANGELIMIT I *
max_range squared, /* [MISSILEUSMAX RANGE LIMIT A 2 1
speed jactor; /0 [MISSILE US..SPEED FAC[fOR I

/*/

Declare static functions.
/G/

- G-S -

22 January 1993
Reference # W003036

Appendix G - Source Code Listirq for mlss..helfr.c Rv .

static void rissile..hellfire...stop 0;

*ROUTINE: rnissile-hellf irejnit
PARAMETERS: mptr - a pointer to the HELLFIRE to be

* initialized.
*RETURNS: none
*PURPOSE: This routine initializes ' estate of the

* missile to indicate that it is available and
* sets values that never change.-

void missile-hellfirie~init (mptr)
MIISSILE mptr;

int i;
int datajmrpjnt;
float datajmtp;
char descript[641;

*FILE fp;

/* DEFAULT CHARACTERISTIC DATA FOR miss helifr c READ FROM FILE/
fp = fopen("/simnet/data/ns~htch~d","r");
if(fp==NULL)I

fprintf(stderr, "Cannot open /simnet/data/ms..hfch~d\n");
exito;

rewind(fp);

/Read array data 0/
i=0O;

while(fscanf(fp,"%f", &data-tmp) != EOF)

hellfr-miss-chardiJ = data..tmp;
fgets(descript, 64, ii');

I. printfChellfr.mssýchar(%3d) is%113f %s", i,
hellfr m-iss-charlil, descript);/

)+i

fclose(fp);
/0 END DEFAULT CHARACTERISTIC DATA FOR miss hellfr~c READ FROM FILl'

/* DEFAULT T1IME-OP-FLIGHT DATA FOR mi shelifrxc READ FROM FILE/
fp = fopen("/simnet/data/ms...htfjd","r");
lf(fP==NU`LL)f

fprintf(stderr, "Cannot open /simnet/ldata /ms..hfjf.d \n");

- G-6-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix G - Source Code Listing for mlss-hellfr.c

exito;

rewind(fp);

/* Read degree of polynomial/

fscanf(fp,"%d", &data..hmp-nt),
hellfrý_miss..poly...degIOI = data-tinpint;
fgets(descript, 64, fp);

/* pinnb("elifrjn-ss..poly....eg(0) is%3c1 %s",
hellfrjriss.poly..deg[0J, descript);

/* Read array data/

i=0;

while(fscanf(fp,"%f", &datA..tmp) != EOF)

hellfire-tof~coeff[iI = data..tzp;
fgets(descrivt, 64, fp);

P printff'hellfirejot-coeff(%3d) is%11.3f %s", i,
hellfirej-ofsoeff l, descript);

fclose(fp);
/* END DEFAULT TIME-OF-FLIGHT DATA FOR misw-hft.c READ FROM FILE

f* DEFAULT BURN SPEED DATA FOR miss helfr~c READ FROM FILE
fp = fopen("/simnet/data/ms...hLbs~d","rl");
lf(fp=--NULL)(

fprintf(siderr, "Cannot open /simnet/data /rnshf-bs\n");
exitO;

rewind(fp);

P* Read degree of polynomial *

fscanf(fp,"%d", &data...tmp.-nt);
heilfr...miss..poly...degIII data...bp..int;
fgets(descript, 64, fp);

P* printf("helifr-niiss...poly...eg(l) is%3d %s",
bellfr..mise..poly..deg[lJ, descript);

P Read array data/

1=0;

while(fscanf(fp,"%f", &datajtmp) != EOF)

-G-7 -

22 January 1993
Reference #1 W003036

Rev. 0.0

Appendix G - Source Code Listing for mlssjheIlft.c

f
hellfire_1burn..speed-poeff~iI = data-tmp;
fgets(desaript, 64, fp);

P prindhellfire...burn..speec~coeff(%3d) is%11.3f %s:", i,
helifire..bum..speed-coefflul, descript); ~

++i;

fclose(fp);
/* END DEFAULT BURN SPEED DATA FOR miss..helfr~c READ FROM FILE

/* DEFAULT COAST SPEED DATA FOR miss~hellfr-c READ FROM FILE
fp = fopen("/sirmet/data/ffs...hf.cs~d",'"r");
if(fp==-NULL)(

fptintf(stderr, "Cannot open /simet/data/mkshfcs4d\n");
exitO;

rewind~fp);

/* Read degree of polynomial /

fscanf(fp,"%d", &datajtmp...nt);
hellfr..miss-poly...deg[21 = data tmp...mt;
fgets(descript, 64, fp);

P* printf e~lfr-miss..poly..deg(2) is%3d %sr,
hellrmss~.poly..deg2j2, descnpt);

I. Read armaydataV

whfle(fscanf(fp,"%f", &datajtmp) != EOF)

hellfire..coast-speed-coef~i) = datajmp;
fgets(desaript, 64, fp);

I. printfC'hellfirecoast~speedwceff(%3d) is%11.3f %s". i,
hellfire coast speed-coef flid descript);

fclose(fp);
/* END DEFAULT COAST SPEED DATA FOR miss _heilfr.c READ FROM FILE

mptr->state = FALSE;
mptr->max flight time = HELL RtEMAXJLIJGHLTIM~E;
mptr->maxjturn~directions = 1;
speed jactor = MISSELE_.US..$PEEDFACIOR,
max.rangejimirt = NMISIUSjA.M.RANGEjJMIT,
max-.range...squared = max jangejimidt * zx...angejimlt;
hellfireasmmotpe r muntiboniLUSHelfire,

G-8 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix G - Source Code Listing for mishellfr.c

void missile._heifire._seLspeedjactor(scale-speed)
REAL scale-speed;
(

speed jactor = scalekspeed;
I

void missilehelfireset_maxrangejlimit(limnitrange)
REAL limit range;

maxrangejimit = limi-Lrange;
naxTrange,_squared =- max-rangeJimit * max.rangelimit;

I

void missile..helifire..set...amiotype(ammo)
ObjectType ammo;
I

hellfireaummotype = amino;
}

"* ROUTINE: missilehellfirecalcjof
" PARAMETERS range - Range to target.
* RETURNS: Time Of Flight for -ange_ meters to target.
* PURPOSE: This routine evaluates the TOP poly and returns
* the time of flight for a Hellfire Missile

* to fly _range_ meters.

REAL missilejheilfire calc-tof(range)
REAL range;
{

REAL time;
time =

missile util.eval-poly(HELLFIREJOFDEG, hellfre toL_€eff, range);
retum((time / speed-factor));

ROUTINE: missile-hellfire-fire
PARAMETERS: mptr - A pointer to the HELLFIRE missile that *

is to be launched.
launch-point - The location in world

coordinates that the missile is
launched from. 4

4 launch_to_world - The transformation matrix of
* the launch platform to the

S* w orld . 4

launch-speed -The speed of the launch

G-C9-

22 January 1993
Reference # W0(X36

Rev. 0.0

Appendix G - Source Code Listing for miss-hellfr.c

" platform (assumed to be in the
• direction of the missile).

* tube - The tube the missile was launched from.
", RETURNS: none 0

* PURPOSE: This routine performs the functions
• specifically related to the firing of a
* Hellfire missile.

void missile._hellfireý_fire (mptr, launchpoint, launch to..world, launch.speed,
tube)

MISSILE -mptr;
VECTOR launch-point
T.MATRIX launch to-world;
REAL launchspeed;
int tube;
(
/*/

" Set the initial time, location, orientation, and speed of the generic
"0 missile.
/o/

#ifdef notdeff
Wf(maxangeJimit > 0.0)

mptr->maxjflight.time =
1.0 + misuilehelfirecalctof(max_rangejinit);

#endif
mptr->time = 0.0;
vewccopy (launchbpoint, mptr->location);
maLcopy (launch-to.world, mptr->orientation);
mptr->speed = launch.speed +

(speedjactor - (missilet_util-eval.poly (HELLFIREBURNSPEED DEG,
heuflre..burn_speedcoeff,
0.0)));

mptr->init.speed = launch.speed;
/,/

"• Tell the rest of the world about the firing of the missile. If this
"0 cannot be done, return.
/0/

if (!missile.utilcommfiremissile (mptr, MSL.TYPE_MISSILE,
mapget amn o..entryrom...networkjtype (hellfire..amnoqype),
hellfireammo_type, hellfirveammo_type, NULL,
targetUnknown, objectIrrelevant, tube))

return;
/0/

0 If all was successful, set the missile state to TRUE and return.
/0/

mptr->state = TRUE;
return;

C- 10 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix G - Source Code Listing for mlsshelifr.c

* ROUTINE: missile._hellfirefly *
* PARAMETERS: mptr - A pointer to the HELLFIRE missile that
* is to be flown out.
* target location - The location in world
* coordinates of the target.
"* RETURNS: none
"* PURPOSE: This routine performs the functions
* specifically related to the flying a HELLFIRE
* missile. *

void missile._hcllfirejfly (mptr, target location)
MISSILE mptr;
VECTOR targetlocation;
I

register REAL time; /* The current time after launch (ticks). /
/*/

* Set and -time_. This is created mostly for increased readablity.
/*/

time = mptr->time;

* Find the current missile speed and the cosines of the maximum allowed turn
angles in each direction. The equations used are different before and

* after motor burnout.
I*/

if (time < HELLFJREBURNOUTTIME)
I

mptr->speed = mptr->init.speed +
(speediactor *
(missile._utileval-poly (HELLFIREBURNSPEED_DEG,

hellfirenburn.speed-coeff, time)));
)
else
{

mptr->speed = mptr->iniLspeed +
(speed-factor *
(missile_utilevalpoly (HELLFIRECOASTSPEED DEG,

hellfirescoast-speed-coeff, time)));}
/*/

Note that this is a temporary method of finding the max turn angle.
/*/

mptr->cos-max-turnl0] = cos (sqrt (mptr->speed / SPEED_0) * THETA_0);
/*/

* If the missile is not armed, fly in a search trajectory; otherwise, fly
* in a targeted trajectory.

if(max._angeimit >0 &&

-GC11 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix G - Source Code Listing for misshellfr.c

kinenatics-range-squared (vehdkinematics, mptr->ocation) >
mrangesquared)
missiletargetground(mptr);

else if (time < HELLIREARMTIME)
missilejtarget..agn (mptr, NULL, SINJUNGUIDE, COSUNGUIDE, SIN CLIMB,

COSCL1MB, SIN..LOCK, COS_.LOCK, COG_TERM, COSLOSE);
else

missilejtarget-agm (mptr, targetlocation, SINJNGUIDE, COS_UNGUIDE,
SIN•CIM, COS-.CUMD, S _th CIC, COSLOCK, COSJTERM, COSLOSE);

/*/
" Try to actually fly the missile. If this fails stop the missile altogether
"* and return
I*1

if (!missile utiljflyout (mptr))
I

missilehellfirestop (mptr);
return;

}
elseI

/*'

* If the missile successfully flew, check for an intersection with the
* ground or a vehicle. If one is found, blow up the missile, stop its
* flyout and return.
/./

if (msile...utilcommsnheckjtesection (mptr, MSL_.TYPE._MISSILE))
I

missifeutllcomm check detonate (mptr, MSL...TYPE-MISSILE);
missile..hellfirestop (mptr);
returnI

* If the missile is to continue to fly, return.
/./

return;

* ROUTINE: missile..hellfiremstop *

"* PARAMETERS: mptr - A pointer to the HELLFIRE missile that
* is to be stopped.
"* RETURNS: none
"* PURPOSE: This routine causes all concerned to forget
* about the missile. It should be called when *
* the flyout of any HELLFIRE missile is stopped
* (whether or not it has exploded). Note that
* this routine can only be called within this
S* -module. *

-G-12 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix G - Source Code Listing for mls-hellfr.

static void missile-helifire.stop (mptr)
MISSILE -mptr;(
I*1

Tell the world to stop worrying about this missile then release the
" memory for use by other missiles.
!*1

nvssie*_utilWCom..stop-missile (mptr, MSLTYPEMISSILE);
mptr->state = FALSE;

}

- 0-13 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix H - Source code listing for miss.kem.c.

The following appendix contains the source code listing for
misskem.c for convenience in document maintenance and
understanding of the CSU.

-H-1 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix H - Source Code listing for mlss.kem.c

/ $Header. /a3/adst-cm/RWA/simnet/vehide/llibsrc/libmissile/RCS/miss.kem.c,v L.
11992/09/30 16.39:52 cm-adst Exp $ V/
/*

* SLog. miss-kem.c,v $
* Revision 1.1 1992/09/30 16:39"52 cm-adst
* Initial Version

static char RCSDD = "$Header. /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissil
e/RCS/ndsskkem.c,v 1.1 1992/09/30 16:39:52 crn-adst Exp S";

* Revisions:

* Version Date Author Thite SP/CR Number

* 1.2 10/23/92 R. Branson Data File Initiali-

* zation
* 1.3 10/30/92 R. Branson Added pathname to data
* directory
* 1A 11/25/92 R.Branson Changed %ito %d

* "

* SP/CR No. Description of Modification

* Hard coded defines changed to array elements.
* Characteristics/parameter data array added.
* Degree of polynomial data array added.
* Added file reads for KEM characterist/parameters,
* burn speed coefficents, coast speed coefficients,
0 burn turn coefficients, and coast turn coeffi-
* dents.

0 Added "/simnet/data/" to each data file pathname.

-- -- - - - - - -- - - - - - - - - 004 4

" FILE: missjkern.c
"* AUTHOR: Kris Bartol

" MAINTAINER. Kris Bartol: converted from miss._adat 0

PURPOSE: This file contains routines which fly out a 0

missile with the characteristics of a KEM 0

- H-2 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix H - Source Code Listing for mlss-kem.c

* missile.
* HISTORY: 10/23/90 kris: converted from missadat

"* Copyright (c) 1989 BBN Systems and Technologies, Inc.
"* All rights reserved.

include "stdio.h"
#include "math.h"

#include "simtypes.h"
#include "simdfns.h"
#include "basic.h"
#include "muntype.h"
include "libmap.h"

#include "libmatrixth"

include "miss kern.h"

#include "libmiss dfn.h"
#include "libmissjoc.h"

S~/./

Define missile characteristics.
/*/

#define KEMBURNOUTTIME kern_miss charlO0
#define IEMMAXFLIGHT-_TIME kern miss chadri]
/*

"* just after burnout, max V = -3418 m/tick = -230 m/sec
" so in order to get the KEM missile to fly @ Vmax = 1524 m/2
"* must multiply the speed calculated by 6.626 -= 1524 / 230
0/
#define KEM_TOMACHSFACTOR ken~missWchar[21

* Define the states the _EMMISSILE_ can be in.

#define KEMFREE 0 I* No missile assigned. *l
#define KEMGUIDE I / Missile flying and guided. */
#define KEM_UNGUIDE 2 /* Missile flying but unguided. /

/*/

"* The following terms set the order of the polynomials used to determine
" the speed or cosine of the maximum allowed turn rate of the missile
"* at any point in time.
/e/

S#define KEMBURNSPEEDDEG kern.miss..poly.degIO0

-H-3 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix H - Source Code Usting for mlsskem.c

#define KEMCOASTSPEEDDEG kemnmisspoly_deg[ll
#define KEMBURNJTURN DEG kemnmiss..poly.deg[2]
#define KEMCOAST_TURNDEG kemjnmiss."poly-degJ3J

I*,
ADAT missile characteristic parameter initialized to default values.

I*'

static REAL kern misschar[10J =(
48.0, P* ticks (3.2 sec) I
300.00, P* ticks (20.0 sec) .I
6.626, P* speed factor to raise from ADAT to IKEM /
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0

I*,
%The following are the default values of the degree of polynomials.

static int kem.miss.poly deg[51 =
{

2, I* Speed before motor burnout 0/
4, /0 Speed after motor burnout. *I
3, /* Cosine of max turn before burnout. "
5, /P Cosine of max turn after burnout. '/
01;

/./
"* Coefficients for the speed polynomial before motor burnout initialized
"• to default values.
/*/

static REAL kembumspeed_coeff[10] =

2.2%, /* a-0 - m/tick/
0.72990856, /* a_1 - m/tick°2/
0.013310932, /* a_2 - m/tick"3 *
0.0,
0.0,
.0.0,
0.0,
0.0,

0.0,

-H4-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix H - Source Code Listing for miss.kem.c

0.0

Coefficients for the speed polynomial after motor burnout.
/*/

static REAL kerncoast speedcoeff[0i] =
I

105.52162, /* a-0 - m/tick 1
-1.0157285, /* a_- - m/tick•* "
5.6124330e-3, /1 a_2 - m/tick"3 "1

-1.6262608e-5,]* a_,3 -m/tick'*4
1.8991982e-8, /* a_4 -m/tick*5 /
0.0,
0.0,
0.0,
0.0,
0.0};

1OI

Coefficients for the cosine of max turn polynomial before motor burnout.

static REAL kemn burnjturncoeft1101 =
{

0.999993, /0 a-0 - cos(rad)/tick I
-62.386917e-7, l" a-1 - cos(rad)/tick"2
1.6146426e-7, /* a-.2 - cos(tad)/ticki3 /

-9.720142e-7, /] a-3 - cos(rad)/tick"4]
0.0,
0.0,
0.0,
0.0,
0.o,
0.0

1;

I0.

" Coefficients for the cosine of max turn polynomial after motor burnout.
/./

static REAL kemrcoast tum-coeff[lIO =

0.99753111, /* a-9 - cos(rad)/tick1
5.5817986e-5, /" al - cos(rad)/tick"2 ./

-5.1276276e-7, /* a_2 - cos(rad)/tick"3/
2.2388593e-9, /0 a-3 - cos(rad)/tick"4 */
-5.1964622e-12, /* a.4 - cos(rad)/tick-5 */
4.5499104e-15, /0 a_5 - cos(rad)/tick6 "

-H-5 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix H - Source Co., Listing for miss.kem.c

0.0,
0.0,
0.0,
0.0

};

"* Memory for the missiles is declared in vehicle specific code. During
"* initialization, a pointer is assigned to this memory then some memory
"* issues are dealt with in this module.

static KEMMISSILE *kern_array; /0 A pointer to missile memory. */
static int num-kems; /* The number of defined missiles. /

* Declare static functions.

static void missilekem.stop 0;

* ROUTINE: missile kemrinit
* PARAMETERS: missile-array - A pointer to an array of *

* IKEM missiles defined in'
* vehicle specific code. *
* num_missiles -The number missiles defined in *
* _..missile._array_. *
* RETURNS: none

PURPOSE: This routine copies the parameters into *
* variables static to this module and initializes*
* the state of all the missiles.

void missilekemjinit (missile._array, num missiles)
KEM_.MISSILE missile..arrayO;
int numn_missiles;
{

int i; /* A counter. ./
int data_tmp_int;
float data..mnp;
char descript[64];
FILE *fp;

/0 DEFAULT CHARACTERISTICS DATA FOR misskem.c READ FROM FILE 0/
fp = fopen("/sirmnet/data/msjcm._.ch.d","r");
if(fp==NULL)(

fprintf(stderr, "Cannot open /simnet/data /msjcm..ch.d \n");
exit0;

- H-6-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix H - Source Code Listing for mlss-kem~c

rewind(fp);

/P Read array data '
i=0;

whfle(fscanf(fp,"%f', &datajmp) != EOF)M
kernmiwss chart il = data...tnp;
fgets(descript, 64, f;p);

I. printfeckeni miss char(%3d) is%11.3f %W, i,
kemi..,iss..charf ij, desaript);

fclose(fp);
/0END DEFAULT CHARACTERISTICS Dt TA FOR miss-kem~c READ FROM FILE *

/* DEFAULT BURN SPEED DATA FOR misskem-c READ FROM FILE
fp = fopen("/simnet/data/nsis km-bs-d","r");
if(fp==-NULL)(

fprintf(siderr, "Cannot open /simnet/data/ms_kmn_bs~d\n");
exitO;

rewind(fp);

/* Read degree of polynomial/

fscanf(fp,"%d", &datajtnip.int):
KCEMBURNSPEED DEC = data..t-,pjnt;
fgets(descript, 64, fp);

/* pnintf("kem-miss-poly...deg(0) is%3d Ws,
KEM.URN-SPEED.DEG, descript);

P Read array data/
i_-O;

while(fscanf(fp,"%f", &datajtmp) 1= EOF)(
kern-burn-speed..coeffliI = data-tmp;
fgets(descript, 64, fp);

I. printf("kem burn..speedscueff(%3d) is%11.3f Ws, i,
kern jbum-..speedscoeffl il, descript); V

fclose(fp);
/* END DEFAULT BURN SPEED DATA FOR miss-kemnc READ FROM FILE/. 1/0 DEFAULT COAST SPEED DATA FOR miss kentc READ FROM FILE

fp = fopen("/imnet /data/mns km-cs~d","r");

22 January 1993
Reference # W003036

Rev. 0.0

Appendix H - Source Code Listing for miss-kem.c

ff(fp==NULL)(
fprintf(stderr, "Cannot open /simnet/data/msjankmsd\n"),
exftO;

rewind(fp);

P* Read degree of polynomial/

fscanf(fp,"%d", &datajtmpj-nt);
KCEVCOASLýSPEED -DEG = datajmpjnt;
fgets(desaiipt, 64, fp);

/* printf(lcemjn-iss-.poly-A.eg(l) is%3d Ws,
KEMCOASTSPEED_-DEG, descript);

/* Read array data *
i=0;

wbile(fscanf(fp,"%f', &datajýmp) = EOF)(
kemscoast..speed...coeff[iJ = datajtmp;
fgets(descript, 64,4,p);

P printfC'kmso~ast.speed-coeff(%3d) is%1 13f %s", i,
kem...cast.-.speed-.coefflil, descript);/

fclose(fp);
PEND DEFAULT COAST SPEED DATA FOR miss kemx READ FROM FILE *

/* DEFAULT BURN TURN DATA FOR midss-kem~c READ FROM FILE
fp = fopen("/simnet/data/msý-kmpbt~d","r");
if(fp==NULL)(

fpnintf(stderr, "Cannot open /sunnet/data /msjkin.bLd\n");
exitO;

rewind(f,);

P* Read degree of polynomial/

fscanf(fp,"%d", &datajtmp-int);
IMB4BURNTURNDEG = data..tmpjint;
fgets(desaript, 64,4,p);

/0printf em-miss-.poly...eg(2) is%3d Ws,
KEMBURN_TURN..DEG, descript); 0 /

/ Read array data/
i=O;

wbile(fscsnf(fp,"%f", &data-tmp) != EOF)(
kern-burn-turrnsoefflil = data-tmp;

- H4-8

22 January 1993
Reference # W003036

Rev. 0.0
Appendix H - Source Code Listing for miss-.kem.c

fgets(descnipt, 64, fp);
I. printf ("kern burn 4tr..cef(%3d) is%1 1.3f %s", i,

kem..burn-jurn..coeff Iij, descript); /

fclose(fp);
/* END DEFAULT BURN TURN DATA FOR miss kem-c READ FROM FILE

/* DEFAULT COAST TURN DATA FOR nuss.Yem~c READ FROM FILE
4, = fopen("/simnet/data/Trns....kmtd","r");
if(fp==NULL)(

fprintf(stderr, "Cannot open /srmnet/data/ms~kn~ctd \n");
exitO;

rewind(fp);

/* Read degree of polynomial *

fscanf(fp,-%d-, &data-tnpjint);
ICEM..COAST..URN...EG = dataitrnpjint;
fgets(desaript, 64,4,p);

/. prnnf("kem-miss.poly..Aeg(3) is%3d %s-,
GM-COAST-TURN..DEG, descnipt);

1 Read array data/

wbile(fscanf(fp,"%f", &datajtmp) != EOF)f
kerrk-coas~ turn-coeff[iJ = data..tinp;
fgets(descript, 64,4,p);
printf~em-coastjturncoeff(%3d) is%I 1.3f Ws, i,

kem-.coast~turn..coefflij, desaript);/

fclose(fp);
/* END DEFAULT COAST TURN DATA FO)R miss kemxc READ FROM FILE

numn -kems = um-missiles;
kern..array =missile 7 ar ray;
for 0i = 0, i < num_ missiles; i++4)

kern-arrayfiJ.inptr~state = KEmFREE;
kem..amfy(iI-imptr.nmaxiflight-time = KEM_MAXFLGHTJ[IME;
kern-arraytii.mptr.maxjturn directions 1 ;

int missile kern is fre(missile)

22 January 1993
Reference # W003036

Rev. 0.0

Appendix H - Source Code Listing for miss.kem.c

int missile;{
return((kemarrayfmissilel.mptrstate == KEMFREE));}

* ROUTINE: missile kernfire *
* PARAMETERS: kptr - A pointer to the KEM missile to be
* fired. *

* launch-point - The location in world
* coordinates that the missile is
Shlaunched from.

* locsight_to_.world - The sight to world
SWtransformation matrix used

* only in this routine. *
* launch speed - The speed of the launch
* platform (assumed to be in the
* direction of the missile). *
"* target-id -Target's tracking ID
* targetloc - location of target in World Coord
* target-vehicekid - The vehicle ID of the
"4 target (if any). 4

RETURNS: TRUE if successful, FALSE if not.
PURPOSE: This routine performs the functions

* specifically related to the firing of a KEM
* missile.
4 4

int missile.kemjfire (kptr, launchpoint, loc _sighLtQworld, launch.speed,
targetid, targetloc, target yehicleid)

KEMMISSILE *kptr;
VECTOR launchdpoint;
TMATRDI iocisightto..world;
REAL launchspeed;
int target_id;
VECTOR target-loc;
VehidelD -target-yehicle.id;
{

int i; /* A counter. /
MISSILE *mnptr; /* Pointer to the particular generic missile

pointed at by _kptr_. */
int comm-target type; /* Indication of whether target is known. 4/

/.

* Find _mptr.. and _target-id_.
0/

mptr = &(kptr->mptr);
if (t-getvehicle_id == 0)

kpb->target vehicle id.vehicle = vehidelrrelevant;
else

-H-10 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix H - Source Code Listing for mniss..kem~c

kptr->target-.vehilejid = *target-.vehide-id;
kptr->targetjd = target-id;
vecsopy(targetoc, kptr->target-pos;

"* Set the initial time, location, orientation, and speed of the generic
"* missile.

mptr->time = 0.0;
vec copy (launch...point, mptr->location);
mat~copy (loc..sighLto..world, mptr->otnentation);

mptr->speed = (midssile-util-eval..poly (KEM-BURNSPEED_-DEG,
kern burnspeedso~eff, 0.0) * IKEMJTQMACH5..ACI'OR) + launch..speed;

mptr->init..speed = launch..speed;

if (kptr->target-vehidle-d-vehidle == vehicelerrelevant)
comm-target type = targetUnknown,

else
commT~target-type = targetlsVehide;

"* Telltherest of the world about the firing of the missile. If this
"* cannot be done, return FALSE.

if (!missile-util commjLfre-missile (mptr, MSLJTYPE-.MISSELE,0 map gtAmnxo-entr-rr~tok."(nrtoLSD

comm..targetjtype, objectlrrlevant, 0 /*tube*/))
return (FALSE);

*If all was successful, fly missile in guided state.

mptr->state = KEMGUIDE;
return (TRUE);

*ROU71NE: missle-kemYupdate..guidance
PARAMETERS: missile - An index to the KEM missile that

* is tobe updated.
* target-location - The location in world
* ~coordinates of the target

*RETURNS: none
*PURPOSE: This routine updates the KEM's targe's

* position in world coordinates.
*0

void missile -kern -update-.guidance(missile, targetilocation)
itmissile;

- H-11l-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix H - Source Code Listing for miss-kem.c

VECTOR target location;

if(kem..array[missileJ.mpt.state == KEM.GUIDE)
vec..copy(targetiocation, kem..array[missleJ.target-pos);)

. i0

* ROUTINE: missilekkernfly *

* PARAMET'ERS: missile - An index to the KEM missile that
* is to be flown out.
* RETURNS: none *

PURPOSE: This routine performs the functions *

* specifically related to the flying a KEM
* missile. *

void misslekern fly(missile)
int missile;
(

KEMMISSILE *kptr; /* A pointer to a KEM missile /
MISSILE *mptr; /* A pointer to the generic aspects of _kptr_. /
REAL time; /* The current time after launch (ticks). /

* Set _kptr.., _taptr_ and _time_. These values are created mostly

* for increased readablity.
0/

kptr = &kemrtarray[missilel;
mptr = &(kptr->mptr);
time = mptr->time;

/.
* Find the current missile speed and the cosines of the maximum allowed turn
* angles in each direction. The equations used are different before and
* after motor burnout.
./

if (time < KEMBURNOUT_TIME)
{

mptr->speed = (missile.utileval-poly (KEMBURNSPEEDDEG,
kemnburnspeedSoeff, time) * KEMOWMACH5_FACTOR) +

mptr->init speed;
mptr->cos -maxjturn[01 = missile-utileval.poly (KEMBURNTURNDEG,

kemnburn_turn coeff, time);

else
{

mptr->speed = (missile.tuil.eval..poly (KEMSCOASTSPEED DEG,
kme coastspeed coeff, time) * KEMTO_MAC-5 FACTOR) +

mptr->iniLspeed;
mptr->cosjmax-turl0] = missile.util.eval-poly (KEM-COASTTURNDEG,

kerncoasLturtncoeff, time);

- H-12 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix H - Source Code Listing for mldsskem.c

)
/4

"Find the target point = Missile's Target's position regardless of state
0/

if(mptr->state == KEMGUIDE I I mptr->state == KEMUNGUIDE)
missilejtarget.point(mptr, kptr->target..pos);

else
printf ("MISSILEJKEM: disallowed missile state %d\n", mptr->state);

/-

* Try to actually fly the missile. If this fails stop the missile altogether
" and return.0/

if (!missile._utilflyout (mptr)) /" checks for time > max.flighLtime 0/
{

missilej..kernstop (kpft);
return;

}
else
{

/.

* If the missile successfully flew, check for an intersection with the
* ground or a vehicle. If one is found, blow up the missile, stop its
* flyout and return.4/

if (missileutil commcheck detonate (mptr, MSLTYPE_MISSILE))

missile-kern-stop (kptr);
return;

"If the missile is to continue to fly, return.

* ROUTINE: missile_kernmreset missiles
* PARAMETERS: none
"RETURNS: none
" PURPOSE: This routine puts any flying missile into an
* unguided state.

void missile_kern_resetjnissiles 0

int 1,. /"
* Reset all flying missiles.

- H-13 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix H - Source Code Listing for mlskem.c

*/
for (i = 0; i < numjkems; i++)

if(kem..array[ijamptr.state == KEMGUIDE)
kemnarray[i].mptr.state = KEM_UNGUIDE;

-
* ROUTINE: missile..kem..stop
* PARAMETERS: kptr - A pointer to the KEM missile that is to'
* be stopped.
* RETURNS: none *

* PURPOSE: This routine causes all concerned to forget
* about the missile. It should be called when
* the flyout of any KEM missile is stopped
* (whether or not it has exploded). Note that
* this routine can only be called within this
* module.

static void missilejkemn.stop (kptr)
KEM MIISSILE kptr,. (
I.'
* Tell the world to stop worrying about this missile then release the
* memory for use by other missiles.
I*/

miu-sile.utiLCmm...stopmissile (&(kptr->mptr), MSLTYPE_MISSILE);
kptr->mptr.state = KEMFREE;

- H-14 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix I - Source code listing for missmaverck.c.

The following appendix contains the source code listing for
missmaverck.c for convenience in document maintenance and
understanding of the CSU.

- I-1 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix I - Source Code Listing for mi..maverck.c

/ $Header. /a3/adst-cm/RWA/simnet/vehide/libsrc/libmisale/RCS/missmnaverckc,
v 1.1 1992/09/30 16:39:52 cm-adst Exp $ /
/*

* $Log. miss..maverdLc,v $
* Revision 1.1 1992/09/30 16.39:52 cm-adst
* Initial Version
*/

static char RCSIDO = "$Header /a3/adst-cm/RWA/sinret/vehide/libsrc/libnissil
e/RCS/miss_maverck.c,v 1.11992/09/30 16"39-52 an-adst Exp $";

* Revisions:

* Version Date Author Title SP/CR Number

* 1.2 10/23/92 R. Branson Data File Initialh-
* zation
* 1.3 10/30/92 R. Branson Added pathname to data
0 directory

1 IA 11/25/92 R. Branson Changed %i to %d

• SP/CR No. Description of Modification

• Hard coded defines changed to array elements.
* Characteristics/parameter data array added.
• Degree of polynomial data array added.
* Added file reads for maverick characteristics/
* parameters, bum speed coefficients, and coast
0 speed coefficents.

0 Added "/simnet/data/" to each data file pathname.

SFILE: missmaverick.c
AUTHORS Bryant Collard *

* MAINTAINER. Bryant Collard
*PURPOSE: This file contains routines which fly out a
0 missile with the characteristics of a MAVERICK 0. missile. *

*HISTORY: 12/8/88 bryant: Creation *

- 1-2 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix I - Source Code Listing for miss-maverdck~

* 4/24/89 bryant: Added static memory allocation.
*7/26/91 carol: libtrack/intervis integration

"* Copyright (c) 1988 BBN Systems and Technologies, Inc.
"* All rights reserved.

ffinclude "stdio.h'
#include "math.h"

Winclude "sim-types.h"
#include "sim-dfns.h"
#include "basic.h"
#include "niun-type.h"
#include "libmnap.h"
#include "libmatrix.h"
#include "libnear.h"
#include "libtrack~h"

#include -missjnaverck.h-

hinclude "libmiss-dfn.h-
#include -libiniso-loc~h"

*Define missile characteristics.

#define MAVERICK-ARM-TME maverick jniss~ca(0
#define MA VERICK BURNOUIT-TIME maverick-miss chart 11
#define MAVERICK_-MAX FLIGHT TME maverick m-iss chart 21
#define MAVERICK-LOCK-THRESHOLD maverickjnsisschart 31

#define MAVERICKHOLD -THRESHOLD maverick miss chart 41
#define SPEED-0 maverick miss charf 51
#define THETA_0 miaverick midss char[6J

*Set parmeters which will control flight trajectory behavior.

#define SI]N JNGUIDE maverick miss chart 71
#define, COS_UNGUIDE maverick-miss-chart 81
#define SI]NCUMB maverick miss..cbarl 91
#define COSCLIMB maverický_missý_chart 10J
#define SIN-LOCK maverick miss-chart 111
#define COSj.WCK maverick miss~car12J
#define COS-TERM maverick mi-ss charil]31
#define COS-LOSE maverick midss chart 141

22 January 1993
Reference # W003036

Rev. 0.0

Appendix I - Source Code Listing for miussmaverck.c

Define the states the MAVERICK-MISSILE can be in.
/*/

#define MAVERICK_FREE 0 /* No missile assigned. /
#define MAVERICKREADY 1 /* Missile assigned to ready state. */
#define MAVERICKFLYING 2 /* Missile assigned to flying state.

/*/
"* The following terms set the order of the polynomials used to determine
"* the speed or cosine of the maximum allowed turn rate of the missile
"* at any point in time.I./

#define MAVERICKBURN-SPEEDDEG maverickjmiss._poly.degIO]
#define MAVERICK_COAST SPEEDDEG maverick_miss-polyjleg[l]

/*/
* Maverick missile characteristic parameters initialized to default values.
1/*
static REAL maverick miss char[15] =
f

20.0, /* maverick arm time ticks (1.3 sec) 0/
22.5, /* maverick burnout time ticks (1.5 sec) /

900.0, /* maverick max flight time ticks (60 sec) 0/
0.989073800, /* maverick lock threshold cos (6 deg) 2 I
0.969846310, /* maverick hold threshold cos (10 deg) 2

28.33333333, /- speed_ /
0.046542113, /* theta_0 /
0.0, /- sin level unguided flight. *I
1.0, /* cos level unguided flight. /
0.004072424, /* sin dimb 3.5 deg/sec /
0.999991708, /* cos, dimb 3.5 deg/sec/
0.087155743, /* sin lock 5 deg 0/
0.996194698, /* cos lock 5 deg 0/
0.173648178, /* cos terminal 80 deg*/
0.939692621 /* cos loose lock 20 deg 0/

P;

* The following terms set the order of the polynomials used to determine
" thespeed.
/*/

static int maverick..miss..poly.degI2] =

1, /* Maverick burn speed degree. *
3 /* Maverick coast speed degree. 0/

i;

S* Coefficients for the speed polynomial before motor burnout.

-1-4-

22 January 1993
Ref erence # W003036

Rev. 0.0

Appendix I - Source Code Listing for miss-maverck~c

static REAL maverick-burn speed-.coeffl5l

0.03333333, /* a-.0 - rn/tick (67.0 m/sec)/
1.25777777 /* a-1 - m/tick**2 (274.9732662 m/sec-2) U

Coefficients for the speed polynomidal after motor burnout.

static REAL m-averick-coas~speed-coeffI5l

30.46972849, P a_- rn/tick (327.2858074 m/sec) U]
-9.7721160e-2, /0 a-1 - m/tick'2 (-21.4609544 m/sec**2) U
1.2433925e-4, /0 a..2 - m/tick*3 (0.8227650 m/sec**3) */

-5.406150le-8 /* a_3 - m/tick**4 (-0.0133200 m/sec**4)U

" Memory for the missiles is declared in vehicle specific code. During
" initialization, a pointer is assigned to this memory then all memory
" issues are dealt with in this module.

static MAVERICKJAISSILE 'maverick-array; /* A pointer to missile memory. U
static int num mavericks; I' The number of defined missiles. U

#define STRING-LEN 2U
static char prelaunchjntervisjnmethod ISTRING_.LEN + 11 = "lrf";
static char lnjlightjntervis..jethod [STRING-.LEN +11)= "omnniscient";
static PFI pel callback func;
static REAL maverick-cone threshold;

Declare static functions.

static void mnissile...maverickjfly 0
static MAVERICIQ.MISSILE rmissile-maverick~get muisilej-rom-sensor-id 0;
static void missile mnavericklockiý_andler 0);
static void m-issile maverick.break -lock -handler 0
static REAL miissile-nmaverick detectibility ();
static void missile-maverick-.object-update 0;

ROUTINE: missile - maverick - nit
PARAMETERS: m'issile..array - A pointer to an array of

N ~MAVERCK missiles defined in

vehicle specific code.

22 January 1993
Reference # W003036

Rev. 0.0

Appendix I - Source Code Listing for mlssmiaverck~c

*numn issiles - The number missiles defined in
* ...min-ssile._.array_...

*RETURNS none
*PURPOSE: This routine copies the parameters into

*variables static to this module and initializes
* the state of all the missiles.

void n-ssile...mkavenickijnit (missile-..array, numn-tissiles, func)
MAVERJCKMISSILE midssile-array[];
int numn-missiles;
PRI func;

nt i; /* A counter./
int data-tmp int;
float data-trnp;
char descriptl64l;
FILE *fp;

/0 DEFAULT CHARACTERISTICS DATA FOR missjnmaverckxc READ FROM FILE

fp = fopen("/szmnet/data/ms4-mk-ch-d","r");
if~fp==NULL~f

fprintf(stderr, "Cannot open /simnet/data/nisjnk..ch.d\n");
exito;

rewind(fp);

P Read array data/
i=-O;

while(fscanfffp,"%f", &data-tznp) != EOF)M
unaverick~jniss..charlil = data~tjmp;
fgets(descript, 64, fp);
printfC'maverick...miss-cWr%3d) is%113f %s", i,

mnaverick.mnisscharf ii, descript); *

fclose(fp);
P* END DEFAULT CHARACTERISTICS DATA FOR mnissjnaverck.c READ FROM FILE

/* DEFAULT BURN SPEED DATA FOR rnissjnaverck~c READ FROM FILE
fp = fopen("/srmnet/data/msjn-kbs.d","r");
iftfp==NULL)(

fprintf(stderr, "Cannot open /simnet /data /xrrsjnk...bs~d \n");
exitO;

22 January 1993
Reference # W003036

Rev. 0.0

0 ~Appendix I - Source Code Listing for missmaverck~c

* num missfies - The number missiles defined in
* _~~missile...array_..

"* RE~TURNS: none
"* PURPOSE: This routine copies the parameters into

variables static to this module and initializes
* the statz- of all the missiles.

void midssile__maverickinit (missile...array, num...missiles, fund)
MAVERICK-.MISSILE missike-.arrayll;
int num missiles;
PFI func;

int data ..tmp...nt;
float data..tmnp;
char descnipt[641;
FILE -fp;

/* DEFAULT CHARACTERISTICS DATA FOR miss maverck~c READ FROM FILE

fp = fopen("/simnet/data/ims.mk..ch.d","r");
if~p=--NULL)f

fprintf(stderr, "Cannot open /simnet/data/ms-mk~ch.d\n");
elito;

rewind~fp);

/* Read array data/
i=0;,

whfle(fsvapf(fp,"%C, &databntp) != EOF)(
maverick..miss..charfij =datajtmp,
fgels(descript, 64, fp);

P printfC'nmaverick...msss-har(%3d) is%11.3f %s", i,
maverický_miss~charfi), descript); *

++i

fclose(fp);
/* END DEFAULT CHARACTERISTICS DATA FOR midss maverck.c READ FROM FILE/

/* DEFAULT BURN SPEED DATA FOR miss -maverckxc READ FROM FILE 0
fp, = fopen("/s~mnet/data/rMms..ks.d","r");
if(fp==NULL)(

fprintf(stderr, "Cannot open /simnet/data/ms..mk...bs~d\n");
exito,

-1-6-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix I - Source Code Listing for miu..mnaverck~c

rewind(fp);

/* Read degree of polynomidal *

fscanf(fp,"%d", &datajmrp~jnt);
MAVERIQ(-BURNSPEED...PEG = data...bnp-nt;
fgets(descript, 64, fp);

/* printf("niaverick....ms&.poly...deg(0) is%3d %s",
MAVlKBURNSPEED..PEG, descript); *

/Read arry data '
i=O;

while(fscanf(fp,"%fr, &datajtmp) != EOF)(
maverick -burn~speed-coefflul data..tmp;
fgets(descript, 64, fp);

PprintfC'nmaverick..burn~speed-coeff(%3d) is%11.3f %s", i,
maverick~burn~speed-coeff[iJ, desaript);/

fclose~fp);
/* END DEFAULT BURN SPEED DATA FOR inissjnaverck~c READ FROM FIE *

/* DEFAULT COAST SPEED DATA FO)R missjn-averckc READ FROM FILE *

fp = fopen("/sinmet/data/mis..mk...csd","r");
if(fp==NULL)(

fprintf(stderr, "Cannot open /simnet/data/msjrakcssd\n");
exitO;

rewind(fp);

/* Read degree of polynomial/

fscanf(fp,"%d", &datamp~jnt);
MAVERIOCCOAST..SPEED.. PEG = datajtmp~jnt;
fgets(descnipt, 64, fp);

/* printf("maverick..miss..poly....eg(l) is%3d Ws,
MAVECCOAST.SPEED..DEG, descript);

PRead arry data/
i=O;

while(fscanf(fp,"%f", &datajmip) != EOF)(
maverick-soat.speed-coefflil = data-timp;
fgets(descript, 64, fp);

P printfC'miaverickscoast..speec-coeff(%3d) is%11.3f Ws, i,
maverick..coasuspeed-coefflil, descript);/

-1-7

22 January 1993
Reference # W003036

Rev. 0.0

Appendix I - Source Code Listing for mlss-maverckc

ficlose~fp),
/* END DEFAULT COAST SPEED DATA FOR miss-maverck~c READ FROM FILE

maverick-cone-threshold = MAVERICK-LOCK-THRESHOLD;
num mavericks =num-missiles;
m-averick..array =missile...array,

for (i = 0; i < num midssiles; i++)

n-averick...arrayiil.mptr.state = MAVERIcCK-FREE;
nmaverck..arrayliJ.mptr.maxjlight-timie = MAVERICKMAXJLIJGHTJITME;
nmaveck...arryil.mptr.fmaxjum..direcfions = 1;
mraverick..arrayfii.objectj-eng&racked = NQ-OBJEaT;
maverick..arrayfil-sermorjd = NULL;

pel~callbackjfunc =func;

"* ROUTINE: rnissilejnaverick~sensorjnit
"* PARAMETERS: none
*RE'TURNS: none
*PURPOSE: Calls to initialize a libtrack sensor

void missile...maverick_sensorý_iit (mvptr, ivjnethod)
MAVERICKMISSILE *mvptr,
char *iv...method;

if (TrackSensorinit (n-issile-niaveridk-lock-handler,
missile-maverick..break lock handler,
missile.maverick...detectibility,
pel~callbackjunc,
missile...maverick..object_ýupdate,
E..NANO,
&mvptr -> sensor~id) < 0)

printf ("missfie..mnaverick.sensor mnit: TrackSensorinit: %s\n",
TrackErrString 0I);

if (TrackSetlntervisibility (mvptr -> sensor~jd, prelaunchjintervis~method)
< 0)

printf ("missile -maverick..sensor mnit: TrackSetlntervisibility: %s\n",
TrackErrString 0);

if (TrackSetPersistence (mvptr -> sensorIjd, 51/* ticks of persistence /
< 0)
printf ("n-issilemnaverick..sensor.Jinit: TrackSetPersistence: %s\n",,

TrackErrString 0);

-'4-8

22 January 1993
Reference # W003036

Rev. 0.0

Appendix I - Source Code Listing for miss~maverck~c

if (TraclcSetMaxResponses (mvptr -> sensorjd, 1) < 0)
printf ("missile -mnaverick_sensor~init: TrackSetMaxResponses: %s\n",,

TrackErrString 0);

if (TrackSetVehiclelD (mvptr -> sensor - d, network...get-vehiclejd 0) < 0)
pnintf ('inissilejnaverick.sensor...init: TrackSetVehidelD: %s\n",

TrackErrString 0);

*ROUTINE: missileý-maverick.jedy
*PARAMETERS: none
*RETURNS: A pointer to a missile that is currently *

* available.
PURPOSE: This routin finds, if possible, a missile that

* is not being used, puts it in a ready state and
* returns a pointer to it.

MAVERICK..MISSILE *miss ile-naverick-.ready (

int i; /* A counter./

*Try to find a free missile.

for (i = 0; i < num-mavericks; i++)

*If a free missile is found, put it in aready state, clear the target
* ID and return a pointer to it.

if (maverick-.arraytiJ.mptr~state =- MAVERICKJ-REE)

maverick,_array[iJ .mptr.state = MAVERICIC-READY;
maverick-array[iI.targetvehicle-id.vehide = vehiclelrrlevant;
missile-mavericksensorinit (&mnaverickarrayliJ,

prelaunchjntervisjnethod);
return (&maverick..arrayjiJ);

*If no free missile is found, return a NULL pointer.

return (NULL);

22 January 1993
Reference # W003036

Rev. 0.0

Appendix I - Source Code Listing for missmaverckc

" ROUTINE: missilernaverick._pre_launch *
" PARAMETERS: mvptr - A pointer to the missile that is to be
* serviced. *
* launch.point -The location of the missile in *
* world coordinates. •
* launchjto..world - The transformation matrix of*
• the missile to the world.
* veh_list - Vehicle list ID.
• RETURNS: none *
* PURPOSE: This routine is called after a missile has been *
* readied and before it has been launched. It
* determines if the seeker head can see a target
* and, if it can see a target, stores its *

• position.

void missile..maverick.prejaunch (mvptr, launch point, launch-to-world,
veh list)

MAVERICK_MISSILE *mvptr;
VECTOR launch-point;
T_MATRIX launchtoworld;
int veh-iist;
{

register TObjectP object;
VECTOR objectloc;

1//

* tick ibtrack to update location and see if any callbacks need to be
* invoked.
/*/

if (TrackUpdate (mvptr -> sensorjid, vehklist, launch.point,
launch.to-world[l) < 0)

printf ("missile maverick-preJaunch: TrackUpdate: %s\n",
TrackErrString 0);

1//
* If a target is found, store its location.
/*/

if ((object = mvptr -> object-being-tracked) := NO_.OBJECr)

mvptr->target-vehicleid = object -> var.vehiclelD;
GetLocationOfTObject (object, objectioc);

/* change pursuit to take a VECTOR rather than VAP for location /
missiletarget.-pursuit (&(mvptr->mptr), objectioc);

}
else
{

mvptr->target-.vehicle.id.vehicle = vehidelrrelevant;
if (TrackAcquire (mvptr -> sensorid, vehblist, launch-point,

launchtoworld[1]) < 0)
printf ("issile..maverick..pre-jaunch: TrackAcquire: %s\n",

TrackErrString 0);

-1}0

22 January 1993
Reference # W003036

Rev. 0.0

Appendix I - Source Code Listing for mlss-maverck.c

• ROUTINE: missile_maverick fire •
• PARAMETERS: mvptr - A pointer to the MAVERICK missile that
• is to be launched. •
• launchmpoint - The location in world *
• coordinates that the missile is
• launched from.

launchtoworld -The transformation matrix of•
the launch platform to the

• world.
launch.speed -The speed of the launch

platform (assumed to be in the
direction of the missile).

tube - The tube the missile was launched from. *
RETURNS: TRUE for a successful launch and FALSE for an *

unsuccessful launch.
PURPOSE: This routine performs the functions

specifically related to the firing of a
MAVERICK missile.

int missle._maverickl_fire (mvptr, launch.point, launchtoý_world, launchlspeed,
tube)

MAVERICKjAISSILE *mvptr,
VECTOR launch.point;
TMATRJX launchtoworld;
REAL launch-speed;
int tube;
{

MISSILE *mptr; /* Pointer to the particular generic missile
pointed at by _mvptr_. 4/

/*/

" Get a pointer to the generic elements of the MAVERICK missile. This
"• improves code readability.
/*/

mptr = &(mvptr->mptr);
*//

"• Set the initial time, location, orientation, and speed of the generic
" missile.
/*/

mptr->time = 0.0;
vec...copy (launchkpoint, mptr->location);
matcopy (launch.to-world, mptr->orientation);
mptr->speed = missile._util-eval poly (MAVERICKBURNSPEEDDEG,

maverick..burn-speedccoeff, 0.0) + launch-speed;
mptr->initspeed = launch-speed;

- 1-11 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix I - Source Code Listing for missmaverck.c

"* Tell the rest of the world about the firing of the missile. If this

"* cannot be done, release the missile memory and return FALSE.
/*/

if (!missile-util_comm fire.missile (mptr, MSL5TYPEMISSILE,
map-getýamimnentryifromn.networkitype (munition US Maverick),
munition US Maverick, munitionUSMaverick,
&(mvptr->target_vehicleid), targetlsVehicle, objectlrrelevant,
tube))

mptr->state = MAVERICKFREE;
return (FALSE);

"* If all was successful, set the missile state to MAVERICKFLYING and
"* return TRUE.
/*/

mptr->state = MAVERICK_FLYING;
return (TRUE);

}

:ROUTINE: missile_maverick. fly nmissiles *

"* PARAMETERS: vehblist - Vehicle list ID.
"* RETURNS: none

PURPOSE: This routine flies out all missiles in a
* flying state. *

void missile rmaverickflymissiles (vehjlist)
int veh list;
I

int i; /* A counter. 0I
1/*
* Fly out all flying missiles.
1/*

for (i = 0; i < numjmavericks; i++)
{

if (maverick-arraylil.mptr.state == MAVERICKJFLYING)
missile-maverick-fly (&(maverickarray[i]), veh..list);

}

* ROUTINE: missile-maverick..fly *

PARAMETERS: mvptr - A pointer to the MAVERICK missile that *

is to be flown out. *

- 1-12 -

22 January 1993
Reference # W003036

Rev. 0.0

0 Appendix I - Source Code Listing for miss-maverck.c

* veh_list - Vehicle list ID.
SRETURNS: none

• PURPOSE: This routine performs the functions *
• specifically related to the flying a MAVERICK
• missile.

static void missilemaverick.fly (mvptr, veh_list)
MAVERICKMISSILE *mvptr;
int veh-list;
{

register MISSILE *mptr; /* A pointer to the generic aspects of
mvptr.. /

REAL time; /* The current time after launch (ticks). */
VECTOR targetjlocation; /* The location of the target. */

1/*

"• Set _mptr_ and time_. These values are created mostly for increased
"• readablity.
/*/

mptr= &(mvptr->mptr);
time = mptr->time;

f//

* Find the current missile speed and the cosine of the maximum allowed turn
• angle. The equations used are different before and after motor burnout.
/1f

if (time < MAVERICKBURNOUTTIME)
I

mptr->speed = missileutil eval.poly (MAVERICKBURNSPEED)DEG,
maverick-.burn-speed-coeff, time) + mptr->iniLspeed;

}
else
{

mptr->speed = missile.utilseval.poly (MAVERICKCOAST SPEED DEG,
maverickcoast speed-coeff, time) + mp.. ->iniLspeed;

I1

Note that this is a tenporary method of finding turn angle.
/*/

mptr->cos_max-turn[10 = cos (sqrt (mptr->speed / (SPEEDO +
mptr->iniLspeed)) * THETA_0);

if (TrackUpdate (mvptr -> sensorjd, veh-list, mptr -> location,
mptr -> orientationfl[) < 0)

printf ("missilemaverickjfly: TrackUpdate: %s\n", TrackErrString 0);
/*/

Find the target point to which the missile is to fly. The missile ignores
any targets until it is armed.

I./
if (time < MAVERICK_ARMTIME)

missile target.agm (mptr, NULL, SINUNGUIDE, COSUNGUIDE, SINCLIMB,

- 1-13 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix I - Source Code Listing for mlss..maverck~c

COS-CLIMB, SINLOCK, COS-.LOCK, COS-TERM, COSLOSE);
else

TObjectP object = mvptr -> objectbeing-tracked;

Try to find a target. If one is found, fly towards it in the
proper trajectory, otherwise, fly in a search trajectory.

if (object != NCLOBJECI')

VECTOR target location;
GetLocationOtTX~bject (object, targetiocation);
mvptr->target~vehicle.-id = object -> var.vehidelD;
znissilejtargetagmn (rnptr, target-location, SINJJNGUIDE,

COS_-UNGUIDE, SIN..CLIMB, COS%.CLIMB, SINLOCK, COS -LOCK,
COSTERM, COS LOSE);

else

mvptr->target_vehicle_id.vehicle = vehideleirlevant;
if (TrackAcquire (nwptr -> sensor-id, veh-ist, nlptr -> location,

inptr -> orientation[IJ) < 0)
pirintf ("midssile..maverickjfly: TrackAcquire: %s\n',

TrackErrString 0);

SINCLIMB, COSCLIMB, SWNJDCK, COS..LOCK, COSý_TERM,

COS LOSE);

Try to actually fly the missile. If this fails stop the missile altogether
and return.

if (!miissile util flvout (Inptr))

miissile_maeverick-stop (mvptr);
return,

else

If the missile successfully flew, check for an intersection with the
* ground or a vehicle. If one is found, blow up the missile, stop its
* flyout and return.

if (miissileutil...cmm check _intersection (mptr, MSLJ7YPE-.MISSILE))

missile -util -commncheckA.etonate (mptr, MSLJ,_YPE_.MISSILE);
missilejnaverick-stop (nwptr);
return;

22 January 1993
Reference # W003036

Rev. 0.0

0 Appendix I - Source Code Listing for miss-maverck.c

/*/

* If the missile is to continue to fly, return.
/*/

return;
}

ROUTINE: missilemaverick..stop *
PARAMETERS: mvptr - A pointer to the MAVERICK missile that
* is to be stopped. *
" RETURNS: none
" PURPOSE: This routine causes all concerned to forget
* about the missile. It should be called when *
* the flyout of any MAVERICK missile is stopped
* (whether or not it has exploded). *

void missile..maverick,.stop (mvptr)
MAVERICKMISSILE *mvptr;{

S~/0/

* If the world has been told to worry about this missile, tell it to stop
* then release missile memory for use by other missiles.

if (mvptr->mptr.state == MAVERICK_FLYING)
missile.util-conm..stop-missile (&(mvptr->mptr), MSLTYPEMISSILE);

mvptr->mptr.state = MAVERICKFREE;
TrackSensorUnInit (mvptr -> sensorjd);
mvptr -> sensor..id = NULL;
mvptr -> objectbeing_.racked = NO_OBJECT; /- perhaps call break lock? ./

static MAVENITCKMISSILE *missile maverick.getmissilefrom sensor id (sensor-id)
int sensor.id;
{

register MAVERICKMISSILE mvptr = maverick.array;
register int i;

for (i 0; i < numnavericks; i++, nvptr++)
{

if (mvptr -> sensorjid == sensorid)
return (mvptr);

r

return (NULL);

- 1-15 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix I - Source Code Listing for mlass.maverck~c

static void mnissileniaverick_lock-handler (sensorjid, object)
int sensor id;
TObjectP object

MAVERCJCK_MISSILE *mvptr;

if (object -= NO_-OBJECT)

if (TrackDonttock (sensorjd, object) < 0)
pnintf ('MavenickLocki-andler: TrackDontL~ck: %s\n",

TrackErrString 0);
return;

if ((mvptr = rmssilejnavenck..get~n-ssile _from-sensor-id (sensor-id))
1=NULL)

/* already tracking an object, but because of the delay from the TrackAqcuire
call, the lock handler has been invoked again. It does not matter if it is
the samne object or not as before. just do not lock again ~

if (mvptr -> object-being-tracked != NQOBJECI)
f

if (TrackDontLock (sensor~id, object) < 0)
pnintf ("MaverickLock~iandler- TrackDontLodcL %s\n",

TrackErrStrn 0);
return;

mvptr -> objectbeingtracked = object;
if (TrackLock (sensor-id, object) < 0)

printf ("MaverickLocki-andler: Tracktock: %s\n", TrackErrString 0);

else

printf (tLockHandler: No missile for Sensorld %d\n", sensor-id);
if (TrackDontLock (sensorjd, object) < 0)
printf ("May rckLockHandier. TrackDontL.ock: %s\n",

TrackErrString 0);

static void midssile miaverick~break-lock-handler (sensor-id, objec)
int sensorjd;
TObjectP object;

register MAVERICK-.MISSILE *mvptr;
if (object -= NCLOBJECr)

return;
if ((mvptr = missile-n-averick...ge-missilej-romýsensorýid (sensor-id))

1= NULL)

22 January 1993
Reference # W003036

Rev. 0.0

Appendix I - Source Code Listing for miss_maverck.c

if (mvptr -> objectbeing..racked == NQOBJECT)

printf ("MaverickBreakLockHandler: BREAK LOCK BUT NOT LOCKED !!!\n")

return;

if (mvptr -> object-being-tracked != object)

printf ("MaverickBreakLockHandler: BREAK LOCK ON UNKNOWN OBJECT'.!!\n

return;)

if (TrackBreakLock (sensor-id, object) < 0)
printf ("MaverickBreakLockHandler: TrackBreakLock: %s\n",

TrackErrString 0);
mvptr -> objectbeing..tracl':d = NO_OBJECT;

}
else

printf ("BreakLockHandler: No missile for Sensorld %d\n", sensorjid);

static REAL missilemaverickdetectibility (sensor.jd, object, mavioc,
mav_boresight,
flags)

int sensorjd;
TObjectP object
VECTOR mayv1oc;
VECTOR mavy boresight;
int flags;

REAL detectibility;
VECTOR target location;
VECTOR totarget;
REAL dotProduct;
MAVERICKMISSILE *mvptr;

/* Get location of object */

GetLocationOfTObject (object, targetlocation);

/1 Determine detectibility. This is the cosine squared of the angle
"* between a vector from the sensor to the object and the boresight of
"* the sensor (for now).
*/

/* Some of these computations may be duplicated in the tracking package.
@May provide object calls to get them if that is more efficient.

- 1-17 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix I - Source Code Listing for mlss..maverck~c

vec~sub (targetiocation, inavjoc, to...target);
dot~roduct =vec....oLprod (mav...boresight, tojtarget);
detectibility =sign (dotllroduct) *dotProduct *dotProduct/

vec...dot~prod (tojarget, to-.target);

/* if the object is outside the detection cone of the sensor,
return a detectibility of 0.

if ((mvptr = missilejn~averick-.getjnmissile~from...sensorj.d (sensor-id))
!=NULL)

switch (mvptr -> znptrstate)

case MAVERICK_READY:
maverickcone-threshold = MAVERICKIDLCK..THRESHOLD;
break,

case MAVERICKFLYING:
maverick conej-hreshold = MAVERICK..HOLD_THRESHOLD;
break,

case MAVERICK..FREE:
default:
printf ("MaverickDetectibility- Maverick not READY or FLYING \n");
maverick -cone-threshold = MAVERICLCIDCTHRESHOLD;
break-

if (detectibility < inaverick-.conejwtheshold)
detectibility = 0.0;

else

printf ("MaverickDetectibility: no missile for sensorlD %d\n",
sensor-i)

return (detectibility);

static void missile maverick objetjpdate (

*Missi eMavefickSetPrelaunchlntervisibility

*Called from command line switch processing code to set the intervisibility
interface to use and the way to init it.

22 January 1993
Reference # W003036

Rev. 0.0

Appendix I - Source Code Listing for mlss-.maverck~c

void misslej-naveick-set.prelaund~ntervisibfihtyjnode (mode)
char Onode,

if (strien (mnode) > STRNG-LEN)

printf (mimlejnaverick..set-prelaunch intervisibi~ity- type string to
o long\n");

return,

strc~py (prelaunchjntervisjnethod, mode);

*MissileMaverickSetLaunchedlntervisibility

*Called from commnand line switch processing code to set the intervisibility
interface to use and the way to init it.

void misslej-n-avenck~setj-aunchiedjntervsibilityjnode (mode)
char *niode;

if (strien (node) > STRINGJEN)
I

printf ("missile miaverick set-launched__intervsiblity, type string too
long\n-);

return

strcp (inflighLintervis...method, nwde);

ksnaverickjflying (sensorjid)
register int sensor-id;

register hit i;
for 0i = 0, i < num mavericks; i-i-i)

if (rnaverick..array[iI.sensorjd == sensor.ijd)

if (rnaveridckarrayliJ.mptr.state = MAVERICK YLYING)
return (TRUE);

else
return (FALSE);

return (FALSE);

static void (*sensor _uninit-func) 0;

* ~void sensor _uninit callback (sensr..id)

22 January 199

Reference # W003036
Rev. 0.0

Appendix I - Source Code Listing for miss-maverck-c

int sensorjid;

(*sensoruninitfunc) 0;
I

mrssilem-naverick~prepareý-to.unifliseeker (mvptr, wunitjfunc)
MAVERICKMISSILE *mptr,
void (Ouninit func) 0;

sensory-niflit-func = uninit-func;
TrackSensorUnlnitprep (mvptr ->sensorjd, sensorjzninit-callback);

-1-20 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix J - Source code listing for miss_nlos.c.

The following appendix contains the source code listing for
missnlos.c for convenience in document maintenance and
understanding of the CSU.

- J-1 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix J - Source Code Listing for mlss.nlos.c

/- $Header. /a3/adst-cm/RWA/simnet/vehide/libsrc/libmissile/RCS/miss..nloscv 1
.1 1992/09/30 16:39:52 cm-adst Exp $ */
/*

* $Log- miss_nlos.c,v $
*Revision 1.1 1992/09/30 16:39:52 cm-adst
* Initial Version

static char RCSIDO = "$Header. /a3/adst-cm/RWA/simnet/vehicle/libsrc/libnissil
e/RCS/rnissnlos.c,v 1.11992/09/30 16:39:52 cm-adst Exp $";

* Revisions:

* Version Date Author Title SP/CR Number

* 1.2 10/23/92 R. Branson Data File Initial/-
* zation
* 1.3 10/30/92 R. Branson Added pathname to data
* directory
* 1.4 11/25/92 R.Branson Changed %i to %d

* SP/CR No. Description of Modification

* Hard coded defines changed to array elements.
* Characteristics/parameter data array added.
* Degree of polynomial data array added.
* Added file reads for NLOS characteristics/
* parameters, bum speed coefficients, and coast
* speed coefficients.

* Added "/simnet/data/" to each data file pathname.

"* FILE: missnlos.c *
"* AUTHOR: Bryant Collard *
"* MAINTAINER. Bryant Collard *

"* PURPOSE: This file contains routines which fly out a
* missile with the characteristics of a NLOS
* missile.

HISTORY: 11/25/88bryant:Creation *

- J-2 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix J - Source Code Listing for mlss~nlos~c

4 /24 /89 bryant: Added static memory allocation
* 05/17/89 dan: changed hellfire to nlos,

*Copyright (c) 1988 BBN Systems and Technologies, Inc.
*All rights reserved.

#include "stdio.h"
#include "math.h"

#include "simntypeslh"
#include "sun-dfns.h"

* #include "mass stdc.h"
#include "dgi stdg.h"

#include "simsigjf.h"
Mnlue"poo0l/r...drh

#include "protocol/ammohd.h"
#include "Prtbm latrixhh
#include "Iibmathi.h"

#include "librva~util.h"
#include "libnear.h"

#include "midss nlos.h"

#include "libmissdfn.h"
#include "libmiss-loc.h"

Define missile characteristics.

#define NLOSLOCKTHRESHOLD nlos..missschar[01
#define NLOSL.MAXJLJURN..ANGLE nlosjnissschar[11
#define NLOSYERTICALYLIGHT-rrJE nlosjniss-char[21
#define NLOSMPECLNINELIGHýTIME nlos-miss-char[31
#define NLOSý..LEVELJLIGHTJTIME nlos...missschar[41
#define NLOS...ARMJTIME nios~miss...char(51
#define NLOS..BURNOUTJIME nlo9niiss-,har[61
#define NLODSJAAX..LFUIHT..IME nlos~miss..char[71
#define SPEED...0 nlosjniss..charl 81
#define SPEED-1 nlos miss....charf 91
/-#define THE'rAO 0.04652113 7/ /-0.013962634-/
#define THETA)0 nlos miss char[101

*Set parameters which will control flight trajectory behavior.

.#define SVNJJNGUJDE nlosjn-dss~char1111
#define COSUNGUIDE nlosjniss~char[12J

-J-3-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix J - Source Code lsting for miss-nlos.c

#define SINCLIMB nlos.misschar[131
#define COSCLIMB nlos misschar[14]
#define SIN-LOCK nlosmiss_charil5]
#define COSLOCK nlosmiss_char[16]
#define CO$TERM nlosnmisschai[17J
#define COS LOSE niosmiss_char 181

I*1
" The following terms set the order of the polynomials used to determine
" the speed or cosine of the maximum allowed turn rate of the missile
"* at any point in time.
1*/

#define NLOS.BURN SPEEDDEG nios_miss.poly-deg[O]
#define NLOSCOAST_SPEED_DEG nlos-miss~poly.deg[l]

I.,
* NLOS missile characteristic parameters initialized to default values.
I*,
static REAL nlosmiss char[201 =(

0.953153895, / NLAS LOCKTHRESHOLD /
0.03490659, * NLOSMAXJTURNANGLE radians/tick /

48.0, I* NLOSVERTICALFIGHTTIýM I
105.0, /0 NLOSDECLINE_FLIGIT_7IME *]
140.0, P/ NLOSLEVELIFGHT_TIME V
20.0, /* NL.0SARM TIME ticks (13 sec) *
22.5, 1" NLOSBURNOUTTIME ticks (1.5 sec) "

8000), /* NLOSG._MAXLIGHTI_TIME ticks (120 sec) *1
1133333333, /0 SPEED_0 */
5.333333333, /* SPEEID /
P* THETA_0 0.046542113*/ /*0.013962634*/
0.013962634, IP THETA_0 "/
0.069756474, P SINJUNGUIDE 4 deg /
0.997564050, / COSJUNGUIDE 4 deg 1
0.004072424, P" SIN CLIMB 3.5 deg/sec "
0.999991708, P* COSCLIMB 3.5 deg/sec /
0.156434465, /* SINLOCK 9 deg */
0.987688341, /* COSLOCK 9 deg*/
0.984807753, /- COS-TERM 0 deg /
0.939692621, /* COSLOSE 20 deg /
0.01;

" The following terms set the order of the polynomials used to determine
"* the speed and turn of the missile at any point in time.1*/
static int nlosjniss...poly-deg[51 =

1, I' Speed before motor burnout. /

-J-4-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix J - Source Code Listing for miss-nlos.c

3, / Speed after motor burnout. /
0,
0,
0

* Coefficients for the speed polynomial before motor burnout.
I*/

static REAL nlosL~burn.speedcoeff[5j =
{

0.03333333, /* a.O - rm/tick (67.0 m/sec) /
1.25777777, /* a-1 - m/tick**2 (274.9732662 m/sec'*2) /
0.0,
0.0,
0.0

/*/

* Coefficients for the speed polynomial after motor burnout.
I*/

static REAL nlos coasLspeed_coeff[51 =

30.46972849, /* a-0 - m/tick (327.2858074 m/see)
-9.7721160e-2, /* a-1 - m/tick'*2 (-21.4609544 m/sec*2) /
1.2433925e-4, /* a_2 - m/tick"3 (0.8227650 m/sec"3) /

-5.4061501e-8, /* a..3 - m/tick**4 (-0.0133200 m/sec'*4) /
0.0

static VECTOR nlos}jnitia;~os;
static VECTOR nlosjiniaIpos;
static VECTOR peaktarget;
static VECTOR decline.arget;
static VECTOR leveltarget;
static int nlos targetid;
static int nlos~reqjd;

Declare static functions.

static void missile..nlos.stop 0;

- -- - - - - -- - - - - ------

* ROUTINE: missile_nlosinit
PARAMETERS: mp - a pointer to the NLOS to be

- J-5 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix J - Source Code Listing for mlss-nlos~c

* ~initialized.
*RETURNS: none
PURPOSE: This routine initializes the state of the

* missile to indicate that it is available and
* sets values that never change.

void midssile_nlos_mit (mptr)
IMISILE *%ptr;

int i;
int datajmip-int;
float data~jrnp;
char descriptl64i;
FILE -fp;

/. DEFAULT CHARACTERISTICS DATA FOR mnissjdlos~c READ FROM FILE
fp = fopen("/simnet/data/ms..nLch.d","r");
if(fp==NULL)(

fprintf(stderr, "Cannot open /simnet/data /ms...L..chd\n");
exito;

rewind(fp);

/* Read array data/
i--01

whfle(fscanf(fp,-%f-, &datajtmp,)!= EOF)(
nlosjniss-charlil = data..trnp;
fgets(descript, 64, fp);

P printf("nlosjnzss..char(%3d) is%I1l3f %s" , i,
nlosjmiussharlil, descript);

++i

fclose(fp);
/* END DEFAULT CHARACTERLSTICS DATA FOR missnlros~c READ FROM FILE/

/* DEFAULT BURN SPEED DATA FOR missjilos~c READ FROM FILE
fp, = fopen("/sinmet/data/ms~nlbs~d","r");
if(fp=--NULL)I

fprintf(stderr, "Cannot open /simnet/data /ms_nl_bs~d\n"),
exitO;

rewind(fp);

P* Read degree of polynomial

-1-6 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix J - Source Code Listing for mlss-.nlos~c

fscanf(fp,"%d", &data..bnp..nt);
NLOS..BURN_.SPEED..DEG = data-tmpint;
fgets(descript, 64, fp);

/* printfC'nlos midss..poly..deg(0) is%3d %s", NOSBURN.SPEEDDEG,
descript);

/ Read array data/
i=0;

while~fscanf~fp,"%f', &datatmp) != EOFX(
nios..bumn.speed..coeffliJ = data-tmp;

fgets(descript, 64, fp);
1* printf("nlos..burný_speed-coeff(%3d) is%11.3f %C", i,

nlos-burn..speed~coeff[iJ, descript);

fcloseffp);
P* END DEFAULT BURN SPEED DATA FOR midss..nlos~c READ FROM FILE *

P* DEFAULT COAST SPEED DATA FOR nissjdnos c READ FROM FILE
4, = fopen("/simnet/data/ms-nl-cs~d","r");
if(fp=-NULLX(

fprintf(stderr, "Cannot open /sirnnet/data/ms-ni-cs4d\n");
exito;

rewind(fp);

P* Read degree of polynomial/

fscanf(fp,"%d", &datajxnpjnt);
NLSO$QASr...$PEEDDEG = datajnipijnt;
fgets(desaript, 64, fp);

P* printf("nmisn-s...poly-jdeg(1.) is%3d %s", N jS..COAST...SPEEpD.. EG,
descript);

P Read array data *
i=O;

wbile(fscanf(fp,"%f", &datajtmp) != EOF)(
nios~coast_speedXoefflil = data fa.np
fgets(descript, 64, fp);

P printfC'nlosscoast~speec~coeff(%3d) is%1 1 3f %s", i,
niosý-coast-speedscoefflij, descript);

++i

fclose(fp);. P/ END DEFAULT COAST SPEED DATA FOR miss nIos~c READ FROM FILE

-J-7 -

22 January 1993
Reference # W003036

Rev. 0.0

S= Appendix J - Source Code Listing for miss.nloLc

mnptr->state = FALSE;
mptr->max.flightjtime = NLOS_MAX_FLIGHTTIME;
mptr->max_turn_directions = 1;
mptr->speed = SPEED0I;
mptr->cos max turn[0I = cos (NLOSMAXTURNANGLE);
nlosjreqjid = NEARNQREQUESTPENDING;
nlosjtargetid = vehicleIDlrrelevant;

II

* ROUTINE: missile_nlos..fire
* PARAMETERS: mptr - A pointer to the NLOS missile that
* is to be launched.
* launch-point - The location in world
* coordinates that the missile is

au launched from.
launch to-world - The transformation matrix of *

the launch platform to the
world.

launch-speed - The speed of the launch *
platform (assumed to be in the

b -direction of the missile). *
tobe - The tube the missile was launched from. *

RETURNS: none 4

*PURPOSE: This routine performs the functions
specifically related to the firing of a
Hellfire missile. 4

void missilejnlosjire (mptr, launch-point, launch-to-world, launch_speed,
tube)

MISSILE Omptr;
VECTOR launchpoint;
TMATRIX launch_to_world;
REAL launchspeed;
int tube;
(
/*/

" Set the initial time, location, orientation, and speed of the generic
"* missile.
/*/

mptr->time = 0.0;
mptr->speed = SPEEDO;
vec copy (launchpoint, mptr->location);
vecscopy (launch.point, nlosjinitial..pos);
mat_copy (launch.to.world, mptr->orientation);
mptr->init..speed = launchispeed;

-J-8-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix J - Source Code Listing for mlss..nlos.c

"* Tell the rest of the world about the firing of the missile. If this
"* cannot be done, return.

if (!missile-utilocomm...firejniissile (mptr, MSLJ-YPE..MISSHLE,
aminol-eilfire, EFFJFIELLFIREA,
vehiclelDlrrelevant, targetUnknown,
fuzePointDetonating, tube))

return;

*If all was successful, set the missile state to TRUE and return.

niptr->state = TRUE;

peakjtarget[XJ = 0.0;
peak_"rget[Yl = 1000.0;
peak..targetlZl = 1000.0;
vec_mat_mul (peakjtarget, mptr->onientation, peakjtarget);
vec-add (mptr->location, peak-target, peakjaOret);
printf ("peak .target: x = %f, y = Vf, z = %~"

peak_"rgetl(l,
peakjtarget[Y],
peak-target[Zl);

declinejtarget[XI = 0.0;
declinejargetlYl = 1800.0;0 declinejtargetfZl = 0.0;
vecjnmat-mul (declinejtarget, niptr->orientation, declinejtarget);
vec..add (mptr->location, decline-.target, declinejtarget);
pnintf("dedinej-arget. x = Vf, y = %f, z = %~"

dedlinejargeti XI,
declinej-arget(Yl,
dedine..targetlZl);

level..targetfX] = 0.0,
level - target[Yl = 2000.0;
level-targetiZi = 300.0;
vec-Mat-mul (level jarget, mptr->orientation, level-target),
veq..add (mptr->location, leveL..target, level jarget);
printf("leveLtarget- x = Wf, y = %f, z =%A"

level~target! XI,
level-target[Y],
level-target[Zi);

return,

*ROUTINE: mrissile - losjfly
*PARAMETERS: mptr - A pointer to the NLOS missile that

is to be flown out.

- J-9-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix J - Source Code Listing for miss-nlos.c

* target-location - The location in world
* coordinates of the target.
"* RETURNS: none
" PURPOSE: This routine performs the functions
* specifically related to the flying a NLOS
* missile. *

void missile...nlosjfly (mptr, nlos,.targetioc, targeLscheme)
MISSILE nmpt';
VECTOR nlosjtargetioc;
int targetscheme;
{

register REAL time; /* The current time after launch (ticks). *register REAL temp;
VehicleAppearancePDU *target; /0 A pointer to the target vehicles

appearance packet. /

/.
timed-printf("targetscheme = %d\nloc %f %f %f\n",

targe_scheme,
nlostargetJoc[01,
nlojargetlocil 11,
nlos_targetjoc[2]

I.,

* Set and -time. This is created mostly for increased readablity.
I/1

time = mptr->time;

if (time > 800.0)
mptr->speed = SPEED 1;

* choose the correct targettting option depending on flight time

if (time == NLOSLEVELFLIGHTTIME)
printf("extra.waypoint: %f %f %f\n",

mptr->location[0O,
mptr->locationl1],
mptr->location[2]);

if (time < NLOSYVERTICALFLIGHTjIME)
missilejnlos fly-to-point(mptr, peak-target);

else if (time < NLOSDECLINEJFLIGHTTIME)
missilejnlosjflyjto-point(mptr, decline.target);

else if (time < NLOSLEVELFLIG-_TIME)
I9 leveLtargetIZi mptr->location[Z];

-J-10 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix J - Source Code Listing for misiinlos-c

n-issileiý_losjly-jo,..point(mnptr, level-target);

else

switch (target-scheme)

case NLOSý_FLYTQPOINTJN.qSPACE:
nssile...nlosj-lyjo..point(mptr, nlos-targetloc);

break;

case NWDS.FLYjOJ'OINTRELATIVE:
midssile..target-nlos(mptr, nios~targetioc);
break;

case NLOS FLYTOTARGET:
target = near-.geLpreferred-veh-nearý-yector(

&nlos-targetid,
RV& ALLt-EH,
mptr->location,
mptr->orientationjlIL
NLOS$LOCKJTHRESHOLD,
&nlos..yeq 3d);

if (target != NULL)

timed-printf("midss..nlos: target locked on\n");
missile-target-pursuit (mptr, target);

else

miussilej-arget-unguided(pftr);

break;

default:
printff'missile-nlosjfly-. bad target-schen-e\h");
break,

check to see if the missile is "out of gas"

if (mptr->tin > 1500.0)
mPtr->target(ZJ = 0.0;

*Try to actually fly the missile. If this fails stop the missile altogether
*and return.

if (!n-ssile...util-flyout (mptr))

-J-11-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix J - Source Code Listing for miss_nlos.c

missile..nlos.stop (mptr);
if (target_scheme == NLOSJFLY TO TARGET)

(
nlostargetid = vehidclelDlrrelevant;
nlosreq-id = NEAR_NO_REQUESTPENDING;

return;}
else{

• If the missile successfully flew, check for an intersection with the
"• ground or a vehicle. If one is found, blow up the missile, stop its
"* flyout and return.

if (missileutilcommcheckintersection (mptr, MSL_TYPE_MISSILE))

missile.util_commcheckdetonate (mptr, MSL._.TYPEMISSILE);
missile.nlos_.stop (mptr);
return;}

}
/0/

• If the missile is to continue to fly, return.

return;

"• ROUTINE: missile..nlos.stop •
" PARAMETERS: mptr - A pointer to the NLOS missile that
Sis to be stopped.

"* RETURNS: none •
"• PURPOSE: This routine causes all concerned to forget
• about the missile. It should be called when
• the flyout of any NLOS missile is stopped
• (whether or not it has exploded). Note that
• this routine can only be called within this
• module. •

static void missile nlos.stop (mptr)
MISSILE 0mptr;
!
/0/

"* Tell the world to stop worrying about this missile then release the
"• memory for use by other missiles.
/*/

printf("initial.pos = %f %f %fAn",

-J-j12-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix J - Source Code Listing for miss-nlos~c

nios~initial~pos[lO,
rklos~initial~pos~ll,
rlos~initial-pos[21);

printf("final-.position = %f %f %f\n",
mptr->location[01,
mptr->Aocation~ll,
niptr->Iocation[21);

n-issile..utiljom~rn.stop-.inissile (mptr, MSL-TYPEMISSTLE);
znptr->state = FALSE;

-J-13 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix K - Source code listing for miss_stinger.c.

The following appendix contains the source code listing for
missstinger.c for convenience in document maintenance and
understanding of the CSU.

-K-1 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix X - Source Code Listing for mlss..stinger~c

/*$SHeader. /a3/adst-cm/RWA/siznnet/vehicle/libsrc/libmissile/RCS/miss...stinger.c,
v 1.11992/09/30 1639:52 cm-adst Exp $ V

*$Log- miss..stinger.c~v $
"' Revision 1.1 1992/09/30 16:39.52 cm-adst
*Initial Version

static char RCSJDO = "$Header- /a3/adst-cm/RWA/simnet/vehicle/libsrc/ibznissjl
e/RCS/mijss..stinger.c,v 1.11992/09/30 16:39:52 cm-adst Exp, $";

600**00

*Revisions:

* Version Date Author Title SP/CR Number

* 1.2 10/23/92 R. Branson Datak File Initiali-
* zation

* 1.3 10/30/92 R. Branson Added pathnan-te to data
* directory

*1A4 11 /25/92 R. Branson Changed %ito %d

* SP/CR No. Description of Modification

*Hard coded defines changed to ary elements.
* Characteristics/parameter data arry added.
* Degree Of polynomial data array added.
* Added file reads for stinger characteristics/
* ~parameters, burn speed coefficients, and coast
* speed coefficients.

* Added "/simnnet/data/" to each data file pathname.

"* AUTHOR: Bryant Collard
"* MAINTAINER.~ Bryant Collard
*PURPOSE: This file contains routines which fly out a

* missile with the characteristics of a STINGER
*missile. 4,

HISIDRY: 12/O8/88bryant
Creation -K2

22 January 1993
Reference # W003036

Rev. 0.0

Appendix K - Source Code Listing for miss-stinger.c

04/24/89 bryant: Added static memory allocation*
* 08/07/90 bryant: NIU librva modifications.

* Copyright (c) 1988 BBN Systems and Technologies, Inc.
* All rights reserved. *

#include "stdio.h"
#include "math.h"

#include "sirntjypes.h"
#include "sin dfnsJh"
#include "basic.h"
#include "mun~type.h"
#include "libmap.h"
#include "libmatrix.h"
#include "libnear.h"
/*m- need Range-Squared info -*
#include "hlbhull.h"
#include "libkin.h"

#include "miss-stinger.h"

#include "libmissile.h"
#include "hibmiss~dfn.h"
#include "libmisslocih"

* Define missile characteristics.
I*/

#define STGERBURNOUT TIME stinger• missehar 01
#define STINGER._MAXJFLIGIrTTIME stingermisskhar 1)
#define STENGERLOCKTHRESHOLD stinger miss_char[21
#define SPEED_0 stingermisschad 31
#define 7T[IETA_0 stinger miss-char[41
#define TNVES_DIST_SQ stinger-missehar[51
#define FUZE_DJST._SQ stinger-miss char! 61

/*/
* Define the states the _STINGERMISSILE can be in.
I*,

#define STINGER-FREE 0 I/ No missile assigned. *
#define STINGER-READY I I* Missile assigned to ready state. *
#define STINGERFLYING 2 I* Missile assigned to flying state. *

The following terms set the order of the polynomials used to determine

-K-3 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix K - Source Code Listing for missstinger.

the speed of the missile at any point in time.
/*/

static int stinger_miss.poly-deg[21 =(
1, /* burn speed poly degree 1
3 1" coast speed poly degree/

*//

Stinger missile characteristic parameters initialized to default values.

static REAL stinger-missschar[15] =
{

19.125, /* ticks (1.275 sec) ./
400.000, 1" ticks (26.667 sec) "1

0.953153895, 1" cos (12.5 deg) ,4 2
53.33333333, P* m/tick (800 m/sec) "1
0.0174, /* rad/tick (15.0 deg/sec) 1

90000.0, 1" (300 m) * 2"
400.0, I* (20 m) 2*I
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,ob),
0.01;

I.'
"* Coeffidents for the speed polynomial before motor burnout initialized to
"* default values.
*//

static REAL stinger..burn...speed..weff[STNGERBURN...SPEED... PEG + 11=
{

1.9, /* a-0- m/tick/
2.689324619 /* a-1 - m/tick"2 *};

"* Coeffidents for the speed polynomial after motor burnout initialized to

" default values.
I*/

static REAL stinger coast.speedcoefEISTINGERCOASTSPEED DEG + 11=

56.73662833, /* aO - m/tick */
-0.182369351, /* a_1 - m/tick"2 */
2.3302001e-4, /* a_2 - m/tick"3*/

-K-4-

22 January 1993
Reference # W003036

Rev. 0.0

SAppendix K - Source Code Listing for missstinger.€

-I.0176282e-7 [* a3 - m/tick"4 */
};

I*I
* Memory for the missiles is declared in vehicle specific code. During
* initialization, a pointer is assigned to this memory then all memory
* issues are dealt with in this module.
I*I

static STINGERMISSILE *stinger array; I* A pointer to missile memory. *I
static int humstingers; /* The number of defined missiles. *I

static Ob•ctType stinger..ammotype = munitionUSStinger;
static REAL

maxrangelimit, /* [MLSSILEUS..MAXRANGELIMYr] */
maxrangesquared, 1" [MISSILEUSMAXRANGELIMIT ^ 2] */
speedfactor; /* [MISSILEUS SPEEDFACTOR] */

I*I
* Declare static functions.
I*I

static void missilestingerfly O;

Si2•:T:--•T=gg:22•=:-T2:222=.•22=::===22===•=::::=::::•===•======:

* RoLrrlNE: missile stinger init *
* PARAMETERS: missilearray - A pointer to an array of *
* STINGER missiles defined in *
* vehicle specific code. *
* nummissiles - The number missiles defined in *
* _missilearray_. *
* RETURNS: none *
* PURPOSE: This routine copies the parameters into *

* variables static to this module and initializes *
* the state of all the missiles. It also *
* initializes the proximity fuze. *

void missilestingerinit (missilearray, hum missiles)
STINGERMISSILE missile array[l;
int num missiles;
{

int i; /* A counter.*]
int j;
int datatmpint;
float data trap;

Schar descripti641;
FILE "fp;

-K-5-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix K - Source Code Listing for mlss..stinger~c

/* DEFAULT CHARACTERISTC DATA FOR nuss..stinger~c READ FROM FILE '
fp = fopen("/sintnet/data/nis...s-ch~d","r");
if(fp==NULL)X

fprintf(stderr, "Cannot open /simnet/data/ms...sLchd\n");
exitO;

rewind(fp);

/* Read array data '
j=01

while(fscanf(fp,"%f", &datajznp) != EOF)(
stirkger..miss..cbar[= data-fanp;
fgets(descript, 64, fp);

1* printf("stinger-nzss..char(%3d) is%11.3f Ws, j
sfingerjnissshar[i,
descript);

fclose(fp);
/* END DEFAULT CHARACTERSTIC DATA FOR Miss -stinger-c READ FROM FILE '

1DEFAULT BURN SPEED DATA FOR miss..stinger.c READ FROM FILE /
fp, = fopen("/sinmet/data/ms..st~bs-d","r"),
if(fp==NUL.L)(

fprintf(stderr, "Cannot open /siznnet/data/ms.Abjsd\n");
exito;

revi n d (fp);

/* Read degree of polynomial /

fscanf(fp,"%d", &data-jmnp-int);
stinger-miss...poly....eg[0J = datajtmpint;
fgets(descnipt, 64, fp);

I.prnn (tingerjrrss..poly_..eg(0) is%3d %s", j
stinger-niss-.poly...egIOI, descript);

/*Read array data '
j=O;

wbile(fscanf(fp,"%r, &datajtmp) != EOF)M
stigr-.burn._Apeed~coeff[jI = data-tmnp;
fgets(descript, 64, fp);

I. printf("stinger...burn...seed..Coeff(%3d) is%11.3f %bs", j
stinger .burn..spee&..coefflj),
descript);

22 January 1993
Reference # W003036

Rev. 0.0

Appendix X - Source Code Listing for mlss..stlnger-c

fclose(fp);
PEND DEFAULT BURN SPEED DATA FOR niiss..stinger-c READ FROM FILE

/P DEFAULT COAST SPEED DATA FOR miss_..stinger~c READ FROM FILE *
fp = fopen("/sinnet/data/ms...st...cs-d","r");
if(fp==NULL)(

fprintf(stderr, "Cannot open /simnet/data/ms..sLcs-d\n");
exitO;

rewind(fp);

/* Read degree of polynomial

fscanf(fp,"%d", &datajmirpint);
stinget~mis..polyd4eg[1J = datajtmp-int;.
fgets(desaript, 64, fp);

/* printf("stingerjniss...poly....eg(l) is%3d %s",
stingr-t.miss..poly...deg[lI, descript); *

/* Read array data '
* j=0;

while(fscanf(fp,"%fw, &daUtajmp) != EOF)(
stintWcoas~speedsoeffljl = datajtmp;
fgets(descript, 64, fp);

I. printf(-stinger..coascspeec_!coeff(%3d) is%I I 3f Ws, j
stinger~coat..speed-coeffljl,
descript);

fclose~fp);
/* END DEFAULT COAST SPEED DATA FOR mass...$inger~c READ FROM FILE/

num...singers = num..missiles;
stinger-.array = missile-array;
for (i = 0; 1< nuxnjnissiles; i.-.)

stinger..Array[iJ.mptr-state = STNGERJREE;
sting ..r-gyliIbmptrnmax-flight-time = STINGERYAXJFLIGHT-.TIME;
stinger-o.rrayl.mptr.max-urn...directions = 1;

speed jactor = MISSILE-US-SPEEDJAC'OR,'
maxjange imint = MJSSILU$.MAX.RANGE..IJMIT,
nux-range-squared = max-.rangejimit * max-.rangejimit;

stiner amo ype = munition-i.Sigr

I.,7

22 January 1993
Reference # W003036Rev. 0.0

Appendix K - Source Code Listing for miss-stinger.c

* Initialize the proximity fuze.
/*/

missilejuze..prox-init 0;}

void missilestinger.seLspeed_factor(scale..speed)
REAL scale..speed;
{

speed factor = scale_speed;}

void missile.stinger-set max_rangelimit(limit.range)
REAL limit-range;
I

max-rangejlimit = limit.range;
maxjrange squared = max-rangeilimit * max-rangeimit;

I

void missile..stinger-set-aminmotype(ammo)
ObjectType ammo;
f

stinger-ammoqtype = ammo;}

@*

"* ROUTINE: missilestingerjeady
"* PARAMETERS: none
" RETURNS: A pointer to a missile that is currently *
* available. *

PURPOSE: This routine finds, if possible, a missile that
* is not being used, puts it in a ready state and
* returns a pointer to it.

STINGERMISSILE *missile.stinger-ready0
{

int i; /* A counter. /
/*/
* Try to find a free missile.
/*/

for (i = 0; 1 < num stingers; i++)
{

1/*
* If a free missile is found, put it in a ready state, dear the target

ID and return a pointer to it.

if (stinger.mrayfi].mptrstate =-- STINGER-FREE)

22 January 1993
Reference # W003036

Rev. 0.0

Appendix K - Source Code Listing for miss-stinger.c

stinger..array[i].mptr.state = STINGEREADY;
stingeran'ay[i].target_vehicle._id.vehicle = vehiclelrrelevant;
return (&stinger-array[il);

}
}

/./

* If no free missile is found, return a NULL pointer.
/*/

return (NULL);)

* ROUTINE: missile-stingerpre-launch 4

* PARAMETERS: sptr - A pointer to the missile that is to be *
* serviced.
* launch.point - The location of the missile in *
* world coordinates.
* launch_to_world - The transformation matrix of
* the missile to the world.
* vehjlist - Vehicle list ID.
* RETURNS: none 4

PURPOSE: This routine is called after a missile has been'
* 4: readied and before it has been launched. It

determines if the seeker head can see a target
* and, if it can see a target, stores its
* position. 4

void missile-stingerpre-jaunch (sptr, launch-point, launchjo._world, veh-list)
STINGERMISSILE *sptr;
VECTOR launch-point;
TMATRIX launchlJo world;
int veh-iist;
I

VehicleAppearanceVariant *target; /* A pointer to the target vehicles
appearance packet. */

/*/

Try to find a target.
/*/

target = near.getpreferred-veh.near-vector (&(sptr->target~yehiclejid),
veh-list, launch-point, launch-to-world[l],
STINGERLOCK_THRESHOLD);

/*/

If a target is found, store its location.
/*/

if (target!= NULL)

-K-9-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix K - Source Code Listing for miss.stinger.c

sptr->target-vehicle-id = target->vehiclelD;
missile_targetpursuit (&(sptr->mptr), target->location);

}
else

sptr->targetvehicle_id.vehicle = vehiclelrrelevant;

"* ROUTINE: missile..stingertfire
"* PARAMETERS: sptr - A pointer to the STINGER missile that
* is to be launched. *
* launchpoint - The location in world
* coordinates that the missile is *
* launched from.
* launch-to.world - The transformation matrix of
* the launch platform to the *
* world.
* launch-speed - The speed of the launch *
* platform (assumed to be in the
* direction of the missile).
* tube -The tube the missile was launched from.
* RETURNS: TRUE for a successful launch and FALSE for an *

unsuccessful launch.
PURPOSE: This routine performs the functions

* specifically related to the firing of a
* STINGER missile.

int missile_stingertre (sptr, launchpoint, launch_to_world, launch-speed,
tube)

STINGERMISSILE *sptr;
VECTOR launchpoint;
TMATRIX launch._toworld;
REAL launch-speed;
int tube;
(

int i; /* Counter. */
MISSILE *mptr; /* Pointer to the particular generic missile

pointed at by sptr_. /
/*/

"* Get a pointer to the generic elements of the STINGER missile. This
"* improves code readability.
/*/

mptr = &(sptr->mptr);
/*/
"* Set the initial time, location, orientation and speed of the genericS*" missile.

I1/

- K-bO-

22 January 199
Reference # W003036

Rev. 0.0

Appendix K - Source Code Listing for miss..stinger~c

znptr->time = 0.0;
vec...copy (launch-.point, mptr->location);
nmat-.copy (launch jo world, mptr->orientation);
mptr->speed = launch..speed +

(speecdfactor*
nissile-util-eval-poly (STINGEK.BURNSPEEDDEC.

stinger-burn-speec-coeff, 0.0));
mptr->init..speed = launch-.speed;

Indicate that the proximidty fuze has no vehicles it is tracking.

sptr->pptr = NULL;

*Determidne range equations for intercept targeting.

sptr->stinger burn _rangescoeff[OI = 0.0;
for (i = 1; i <= STINGER...BURN..5PEED..DEG + 1; i++);

sptr->stinger...burnjranges oeffjiJ = (1.0 / ((REAL) iW
stinger...burn-.speed-coeff[i - 11;

sptr->stinger-.bum~range-soeff~lJ += launch..speed;
missileý-argetjntercept-find-.poly (STINGER..COAST-.SPEED..DEG, launch..speed,

stingerscoas..speed..coeff, sptr->stingersoasLrangespoeff,
sptr->stingerscoascrange......coeff);

*Tell the rest of the world about the firing of the missile. If this
*cannot be done, release the missile memory and return FALSE.

if (!nmissile _util comm _fire _missile (mptr, MSL,.IYPEMISSELE.
znap~get..ammo..entry~ftoni...networkjype (stinger_.ammoj~ype),
stinger..ammoj ype, stinger..am..ye
&(sptr->target-vehiclejd), tairgetIsVehicle, objectlrrlevant,
tube))

mptr->state = MWIGER-.FREE;
return (FALSE);

I f all was successful, set the missile state to STINGER FLYING and
*return TRUE.

mptr->state = STIGERFLYING;
return (TRUE);

ROUTINE: midssile...stngerjlymJnssiles
PARAMETERS: veh list -Vehicle list ID.

-K-11 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix K - Source Code Listing for miss-stlnger.c

"* RETURNS: none
"* PURPOSE: This routine flies out all missiles in a
* flying state. *

void missile..stinger-flyrmissiles (vehblist)
int vehblist;f

int i; /* A counter. */
/*/

* Fly out all flying missiles.

for (i = 0; i < numstingers; i++)
{

if (stinger-array[i].mptrstate == STINGERFLYING)
missile..stinger.fly (&(stinger.arraytil), veh..ist);

}
}

* ROUTINE: missile..stingerjfly
* PARAMETERS: sptr - A pointer to the STINGER missile that

is to be flown out.
vehblist -Vehicle list ID.

* RETURNS: none
* PURPOSE: This routine performs the functions *

* specifically related to the flying a STINGER
* missile. *

static void missile..stinger.fly (sptr, veh list)
STINGERMISSILE *sptr;
int vehblist;
{

register MISSILE *mptr; /* A pointer to the generic aspects of
spt. "/

REAL time; /* The current time after launch (ticks). *
VehicleAppearanceVariant

target / A pointer to the targets appearance
packet. "

I.,

* Set .taptr_ and _tne._. These values are created mostly for increased
* readablity.
I*/

mptr= &(sptr->mptr);
time = mptr->time;

I/,/

- K-12 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix X - Source Code Listing for miss-stinger~c

"* Find the current missile speed and the cosine of the maximum allowed turn
"* angle. The equations used are different before and after motor burnout.

if (time < STINGERBUTRNOUIýTJIE)

mptr->speed = missileý-util-eval-poly (STINGER..BURN-.SPEED-.DEG,
stinger...burn...speed-coeff, time) + mptr->init-speed;

else

mptr->speed = midssile-util-eval..poly (STINGEILCOASTI-SPEED..DEG,
stigercoat.speed-coeff, time) + mptr->init.)peed;

*Note that this is a temporary method of finding turn angle.

mptr->cos-maxjturnlOj = cos (sqrt (mptr->speed / (SPEED...0 +
mptr->init~speed)) * THETA~..0);

Try to find a target. If one is found, fly towards it inthe
proper trajectory, otherwise, fly in a straight line.

target = near..get..prefemed.yehjiearyector (&(sptr->target-yehiclejd),
*Ieh-list, mptr->location, mptr->orientation[1J,
STINGER-.LOCKTHRESHOLD);

iffmax_rangejimzt >0 &&
kinenmatic4sjange...squared (veh-kinematics, mptr->location) >
max-rangesquared)
missile target..ground(mptr);

else if (target != NULL)

sptr->target-.vehiclejid = target->vehiclelD;
if (time < ST"INGER-BURNOUT-TEIME)

missile target intercept pre_ burnout (mptr, target,
Sptr->stinger-burnrange..coeff, STINGERBURNOULýTIME,

STNGER..BURN_.SPEED _DEC + 1,
sptr->stinger..coasLrange~coeff,
sptr->stingerscast-range...2..coeff,
STINGERCOASUPEED..DEG + 1);

else
missile-.target-intercept (mptr, target,

sptr->stinger..ccoast~range~coeff,
sptr->stingerscoasLrange..2-coeff,
STINGERCOAST...SPEED...DEG + 1),

else

spt->target-vehicle id.vehicle = vehiclelnrelevant;
missilejargetýunguided (mptr);

-K-13 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix K - Source Code Listing for miss..stinger.c

"* Try to actually fly the missile. If this fails, stop the missile
"* altogether and return.
/*1

if (:missileutil flyout (mtr))
{

missile..stinger-stop (sptr);
return;

}
else
{

/*/
If the missile successfully flew, process the proximity fune.

I*/
if (sptr->targetvehildejd.vehide =- vehidelrrelevant)

missilejuzem.prox (mptr, MSLTYPE_MISSILE, PROXFUZEON ALL_VEH,
&(sptr->target_vehide_id), &(sptr->pptr),
veh-list, INVES DISTLSQ, FUZE.DIST-SQ);

else
missilejuze.prox (mptr, MSL_TYPEMISSILE, PROX)_FUZEONONEVEH,

&(sptr->targetvehicle-id), &(sptr->pptr),
vehjlist, INVEST._DIST._SQ, FUZE._PIS.SQ);

* If the missile has intersected of self detonated, blow it up, stop its
* flyout and return.

if (missile_uti.u coDmmcheck.detonate (mptr, MSL TYPE•MISSILE))

missile._stingerstop (sptr);
return

}
}

/*/
" If the missile is to continue to fly, return.
I*/

return;

ROUTINE: missile..sdngerstop
* PARAMETERS: sptr - A pointer to the STINGER missile that
* is to be stopped.
* RETURNS: none *
"* PURPOSE: This routine causes all concerned to forget
* about the missile. It should be called when
* the flyout of any STINGER missile is stopped
* (whether or not it has exploded). *

. void missle..stinger._stop (sptr)

-K-14 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix K - Source Code Listing for miss.stinger.c

STNGERISTILE °sptr;
{
/./
" If the missile has been fired, tell the world to stop it and dear the
"* proximity fuze targets. Release missile memory for use by other missiles.
/*/

ff (sptr->mptr-state =-- STINGERFLYING)
{

missile, utl-cornmrstopjnissile (&(sptr->mptr), MSLTYPEMISSILE);
missilejuze..prox-stop (&(sptr->pptr));

}
sptr->mptr.state = STINGE•YREE;

-K-15 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix L - Source code listing for miss.tow.c.

The following appendix contains the source code listing for
misstow.c for convenience in document maintenance and
understanding of the CSU.

22 January 1993
Reference # W003036

Rev. 0.0

SAppendix L - Source Code Listing for misstowc

/ $Header. /a3/adst-cm/RWA/simnet/vehicle/iibsrc/lhrissile/RCS/misstow.cv 1.
1 1992/09/30 16.39"52 cm-adst Exp $ /
/,

" $Log. missjtow.c,v $
" Revision 1.1 1992/09/30 16:39:52 cm-adst
"• Initial Version
*I

static char RCSDO = "$Header. /a3/adst-cm/RWA/simnet/vehide/libsrc/libnissil
e/RCS/rmss.tow.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp $7;

* Revisions:

* Version Date Author Title SP/CR Number

* 1.2 10/23/92 R. Branson Data File Initiali-
* zation
* 13 10/30/92 R. Branson Added pathname to data
* directory

I A 11/25/92 R. Branson Changed %i to %d

0 SP/CR No. Description of Modification

0 Hard coded defines changed to array elements.
* Characteristics/parameter data array added.
• Degree of polynomial data array added.
0 Added file reads for TOW characteristics/parameters,
0 burn speed coefficients, coast speed coefficients,
* bum turn coefficients, and coast turn coeffi-
• coeffidents.

0 Added "/simnet/data/" to each data file pathname.

--- -- --- ----- -- --------------- ---------

0 0

"0 FILE: missjtow-c
*AUTHOR. Bryant Collard
" MAINTAINER. Bryant Collard
" PURPOSE: This file contains routines which fly out a
"* missile with the characteristics of a TOW 0

*s missile. *

- L-2 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix L - Source Code Listing for misstowc

HISTORY: 10/31/88 bryant: Creation
4/26/89 bryant: Added statically allocated mem

* Copyright (c) 1988 BBN Systems and Technologies, Inc.
* All rights reserved.

#include "stdio.h"

#include "sim-types.h"
#include "simdfns.h"
#include "basic.h"
#include "munjtype.h"
include "librnatrix.h"
#include "'libmap.h"
I*- need Range-Squared info -*
#include "libhull.h"
#include "libldn.h"
/i */
#include "miss tow.h"

#include "libmissileih"S#include "libmiss dfn.h"

include "libmissjloc.h"

I*/
* Define missile characteristics.
I*/

#define TOWBURNOUITTIME tow-misschar[0]
#define TOWRANGELIBTý.TIME tow-misskchard[
#define TOW_MAX_FLIGHFTIME towmiss char[21

/*/
"• The following terms set the order of the polynomials used to determine
"• the speed or cosine of the maximum allowed turn rate of the missile
"* at any point in time.
I*/

#define TOWBURN_SPEED_DEG tow_miss-.poly.deg[0]
#define TOWCOASTSPEED_DEG towmisspolydegjlJ
#define TOWBURNJTURN_DEG towjmiss.poly-deg[2J
#define TOWCOASTTURN.DEG towmisskpoly-deg[3I

/*/

* Tow missile characteristic parameters initialized to default values.1//. static REAL tow miss char5] =

- L-3 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix L - Source Code Listing for miss-towc

24.0, /ticks (1.6sec)P/
268.35, P* ticks (17.89 sec) /
300.00,]* ticks - cos of max turn > 1.0 beyond this point V
00,
0.0};

" The following terms set the order of the polynomials used to determine
" the speed and turn of the missile at any point in time.
/*/
static int tow-miss.polyjdeg[5] =f

2, P" Speed before motor burnout. "
3, /* Speed after motor burnout. V/
1, /* Cosine of max turn before burnout. VI
3, /* Cosine of max turn after burnout. */
0 /* not used. */

};

* Coeffldents for the speed polynomial before motor burnout initialized
* to default values.

static REAL tow..burnrspeed_coef51 =
{

4.466666667, 1" a_0 - m/tick (67.0 m/sec) 0/
1.222103405, P* a-1 - m/tick"2 (274.9732662 m/sec"2) *I

-0.024532086, 1" a-2 -m/tickW3 (-82.7057910 m/sec"3) V
0.0,
0.0

I.'

* Coefficients for the speed polynomial after motor burnout.

static REAL towscoastspeedcoeff[5j =
{

21.81905383, P* a_0 - m/tick (327.2858074 m/sec) V
-9.5382019e-2, P* a_1 - m/tick*2 (-21.4609544 m/sec*2) /
2A378222e.4, /0 a..2 - m/tick**3 (0=.27650 m/sec"3) */

-2.6311111e-7, / a.-3 - m/tick'M 4 (-0.0133200 mr/ec*'4) V
0.0

};

I*,

* Coefficients for the cosine of max turn polynomials before motor burnout.
The structure _MAXCOSCOEFF is used to store the values for the turn

* sideways, up, and down polynomials along with their order.

-L-4 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix L - Source Code Listing for mlssjowc

I*/

static MAXCOS._COEFF tow burnmurn.coeff =
{

1, /* Order of the polynomials. /
{

/* Sidewards turn. /
0.999976868652, /* a_0 - cos(rad)/tick /

-3.5933955e-7 /* a-1 - cos(rad)/tick"2*/
},

I* Upwards turn. I
0.999960667258, /* a-0 - cos(rad)/tick /

-3.1492328e-6]* a_1 - cos(rad)/tick&2 *V
},
{

I* Downwards turn. /
0.999978909989, /* a_0 - cos(rad)/tick /

-7.8194991e-9 /* a-1 - cos(rad)/tick*2 *]
}

};

* Coefficients for the cosine of max turn polynomials after motor bumouL

static MAXCOSCOEFF tow-coast.turncoeff =
{

3, /0 Order of the polynomials. 1
{

/* Sidewards turn. /
0.99995112518, /- a_O - cos(rad)/tick VI
8.96333e-7, P* a-1 - cos(rad)/tick'*2 */
-5.995375e-9, P" aR2 - cos(rad)/tic*3 "/
1.162225e-11 a_3 - cos(rad)/ick*4 "/

},
{

P* Upwards turn. *
0.9998498495, /0 a_O - cos(rad)/tick /
1.657779e-6, I* a_1 - cos(rad)/tick"2 *

-8.231861e-9, /- a_2 - cos(rad)/tick3 V*
1.381832e-11 P" a_3 - cos(rad)/ticke4 "/

),
{

P* Downwards turn. *
0.9999714014, /* a-0 - cos(rad)/tick /
3-382077e-7, /* a-1 - cos(rad)/tick"2 *
-1.601259e-9, P* a_2 - cos(rad)/tick**3*
2.623014e-12 /- a-3 - cos(rad)/tick'4 4 V

}

- L-5 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix L - Source Code Listing for missjowc

static ObjectType tow..ammiojtype = munitionUSTOW;
static REAL

maxjangelimit, 1 [MISSILEUSMAXRANGELIMIT]
nmaxrange-squared, I* [MISSILEUS..MAX._RANGELIMIT A 21
speed-factor; /1 [MISSILE-USSPEEDFACIOR I "

* Declare static functions.
1//
static void missileýJow.stop 0;

* ROUTINE: missiletowjinit *
* PARAMETERS: tptr - a pointer to the TOW to be
* initialized. *
* RETURNS: none *
* PURPOSE: This routine initializes the state of the
* missile to indicate that it is available and
* sets values that never change.

void missile-tow nit (tptr)
TOWMISSILE "pfr;

int i;
int datajmp-int;
float datajznp;
char descript[641;
FILE *fp;

/* DEFAULT CHARACTERISTICS DATA FOR nissjtow.c READ FROM FILE /
fp = fopen("/simnet/data/nsjtw-ch.d","r");
if(fp==NULL>{

fprintf(stderr, "Cannot open /simnet/data/msjtwsch4d\n");
exit(;

rewind(fp);

/* Read array data */
i--o;

while(fscanf(fp,"%f", &data-.tmp) I= EOF){
towjnss_charfi] = datatmp;
fgets(descript, 64, fp);. 1 printf("townisschar(%3d) is%11.3f %s", i, towmiss_char[i],

descript);

-L-6

22 January 1993
Reference # W003036

Rev. 0.0

Appendix L - Source Code Listing for mlssjowc

fclose(fp);
P* END DEFAULT CHARACTERISTICS DATA FOR miss-tow.c READ FROM FILE

P* DEFAULT BURN SPEED DATA FOR missjow.c READ FROM FILE
fp = fopen("/snmnet/data/msjtw..bsd",'r");
if(fp==NULL)M

fprintf(stderr, "Cannot open /simnet/data/ms~tw..bsd\n");
exito;

rewind(fp);

/* Read degree of polynomial/

fscanf(fp,"%d", &datajmrpjnt)
TOW..BURN.SPEEDpEG = datajtmp-jnt;
fgets(desaript, 64, fp);

P pnintf("tow..miss...poly...deg(0) is%3d %C", TOWýBURN-SPEED.DEG,
descript);

/*Read arry data/
i=0;

while(fscanf(fp,"t%f', &datajtmp) != EOF)(
tow..burn-.speed-.coeff Iii = data..tmp;
fgets(descript, 64, fp);

P printf ("tow _burn speed-coeff(%3d) is%11.3f Ws, i,
tow-burr...spedwceffluj, descript);

fclose(fp);
P* END DEFAULT BURN SPEED DATA FOR missjow~c READ FROM FILE *

P* DEFAULT COAST SPEED DATA FOR missjtowc READ FROM FILE
fp = fopen("/simnvet/ data/mstWsdr)
if(fp==NLYLL)(

fprintf(stderr, "Cannot open /simnet/data/mAjw~cs.d\n");
exito;

rewind(fp);

/0 Read degree of polynomial/

fscanf(fp,"%d", &data-jmpjint);
OW-COAST.-SPEED-DEG = datajinp-jnt;

fgets(descrlpt, 64, fp);

- L-7 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix L - Source Code Listing for maaj-owc

/* pnntf("tow -miss~poly~deg(1) is%3d %sr, TOW COASTSPEED-DEG,
descript);

/* Read array data/
i--01

while(fscanf(fp,"%f", &datajtmp) != EOF)(
towsoasL~speedscoefflil = datajmp;
fgets(descript, 64, fp);

P printfC'tow~coasLspeecdcveff(%3d) is%I I 3f %s", i,
tow~coast..speedcowefflul, desaript);

fclose(fp);
/P END DEFAULT COAST SPEED DATA FOR n-isstow~c READ FROM FILE *

/* DEFAULT BURN TURN DATA FOR misastow-c READ FROM FILE
fp = fopen("/samnet/data/msjtw...btd","r");
if(fp==-NULJ.fl

fprintf(stderr, "Cannot open /sirnnet/data/ms~tw_btd\n");
exito;

rewind(fp);

/* Read degree of polynomial/

fscanf(fp,"%d", &datajtmp-jnt;
TOW..BURNJTURN..PEG = datajrinp-int;
tow..-burnjurn-coeffideg = datajzinp-int;
fgets(descript, 64, fp);

/*pnntf ("tow-miss...poly...eg(2) is%3d %s", OW..BURNJTURN-DEGY
descript);

P Read array data/

for 0i=O; i <= datajtmpjnt; i++4)
fscanf(fp,"%f-, &datajmip);
tow..burnjuhrn-soeffisideý_coeffl= data-tmp;
fgetsdescript, 64, fp);

P printfC'tow-burn..turnoeff~side..coeff(%3d) is%11.3f %s", i,
tow burn turn coeff.side _coeffliI, descript); '

for 0i=0; i <= data-tnp-int; i+-4)
fscanf(fp,-%?', &data...tp);
toW..bunp~turn..coeff.up~soefflJi = datajmip;
fgets(descript, 64, fp);. P printf("tow-.burnjurnsoeff.up-coeff(%3d) is%1 13f %sr, i,

tow._.burPjurnso~eff.up...coefflul, descript);

-L-8 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix L - Source Code Listing for miss-towc

for 0i=O; i <= data-Jmp-int; i+-s)
fscanf(fp,-%f-, &datajtmp);
towý_burn_tur...coeff.down...oeffli = data..tmp;
fgets(descript, 64, fp);

1*printf("towj-bmrnurn...coeffdown..coeff(%3d) is%l 1.3f %sr", i,
tow.-burn -turn coeff-down..coeff[iJ, descript);

fclose(fp);
/* END DEFAULT BURN TURN DATA FOR miss~tow.c READ FROM FIE '

/* DEFAULT COAST TURN DATA FOR miss-tow-c READ FROM FIE
fp = fopen("/sinmet/data/ms...tw..ct-d","r");
if(fp==NULL)(

fprintf(stderr, "Cannot open /simnet/data/msjwý_std\n");
exito;

rewind(fp);

/* Read degree of polynomial/

fscanfffp,"%d", &data-ýtmpjint);
TOW..COAST..YURN-.PEG = data jmp jnt;
tow..coast-turn...oeffideg = datajintp-.int;
fgets(descript, 64, fp);

1* pnntf("tow-n-mis...poly-.deg(3) is%3d %s", TOWýCOAST-.TURI{.DEG,
descript);

/* Read array data/

for 0(i=O i<= data_trnp .inti+)
fscanf(fp,"%f", &datAjtmp);
tow coast-turn....effiside-soefflil = datajinp;
fgets(descnipt, 64, fp);

Iprintf("tOWjxCasLturnsoeff.sidesoeff(%3d) is%11.3f %s", i,
tow woast-tur..coeff .sdideoefflul, descript);/

for 0-0,; i <- datajbmpnt; i++)
ftcanf(fp,"%fw, &data-tmp);
tow...coastjturnscoeff.upscoefflil = datakjmnp;
fgets(descript, 64, fp);

Pprintf("tow...wasLturns~oeff.up...weff(%3d) is%113f %6", i,
towsoasLturn-.coeff-up..weffli1, descript);/

for (0=0; i <= data..tnp-jnt; i++i)
fscanf(fp,-%f-, &datajtmp);

22 January 1993
Reference # W003036

Rev. 0.0

Appendix L - Source Code Listing for mlssjowc

tow...was~t-urnsoceff-down-coeffii = data-.tinp;
fgets(desaript, 64, 4p);

1*printf "tow-coast-turný-oeff.downw~ceff(%3d) ls%11.3f %s", i,
tow cast..turn...coeff-down..coeffli], descript); 0/

fclose(fp);
/* END DEFAULT COAST TURN DATA FOR missjtow~c READ FROM FILE

tptr->mptr.state = FALSE;
tptr->mptr maxjlight...tme = TOWývIAX_.FLIGHTrl_TIME;
tptr->mptr.maxjturn..directions = 3;
speed jactor = NMIILEUSJS..SPEED-FACTOR,
max-iangejimit = hMISSILE..USJAAX..RANGE_..WM1T;
rnax-range-squared = max-.rangeimin-t *max..rangej.lmit;
tow-.ammojtype = munition...USjOW,

void mnISSilejotw-.set-speedfactor(scale..speed)
REAL scale...speed;

sped&ctor =scaleý.speed;

0void missilejow...set x...rangejirni(limitjug)
REAL limdLtrange;

max...r -leimit = lizniLrange;
max...range-.squared = max-rangeimint *max....angejlimidt

void mxissilejow-.set..ammojtype(ammno)
ObjectType ammo;

tow-.arnmmjyPe = ammo;

400- 4 4011 $10 44 4 a o --- - -- --- -

*ROUTINE: missilej-owfire
PARAMIETERS: tptr -Apointer to the TOWnmissile to be

*fired.

PARAMETERS: launch-..point - The location in world
* coordinates that the missile is'
* ~launched from.
* loc-sghLto...world - The sight to world
* transformation matrix used
* only in this routine.

* launch-.speed - The speed of the launch
platform (assumed to be in the

- L-10 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix L - Source Code Listing for missjowc

* direction of the missile).
* tube - The tube the missile was launched from. *
"* RE'URNS: none

"* PURPOSE: This routine performs the functions *
* specifically related to the firing of a TOW *

missile.

TOWMISSILE *missie_tow_fire (tptr, launch-point, locfsight..oworld,
launchlspeed, tube)

TOWMMISSLE *tptr;
VECTOR launch-point;
TMATRDX locsight-toworld;
REAL launchspeed;
int tube;
{

MISSILE -mptr; / Pointer to the particular generic missile
pointed at by _tptr_.. /

/*/
* Find _mptr_.
I*/

mptr = &(tptr->mptr);

Set the initial time, location, orientation, and speed of the generic
*missile.

/*/
mptr->time = 0.0;
vec_copy (launchpoint, mptr->location);
mat-copy Ooc..sighLto..world, mptr->orientation);
mptr->speed = launchlspeed +

(speed jactor * missile util.eval-poly (TOWBURNSPEEDDEG,
tow..bumnspeed.oeff, 0.0));

mptr->init-speed = launchispeed;

* Set the wire as uncut.
/*/

tptr->wirejsscut = FALSE;
/*/
* Tell the rest of the world about the firing of the missile. If this
* cannot be done, return.
I.,

if (!missile.util-commnfire..missie (mptr, MSLTYPEMISSILE,
map..get-am entryfronnetworkjtype (tow_amrm_type),
towammno_type, tow-ammojtype, NULL, targetUnknown,
objectlrrelevant, tube))

return;

* If all was successful, set the missile state to TRUE and return.

mptr->state = TRUE;

22 January 1993
Reference # W003036

Rev. 0.0

Appendix L - Source Code Listing for mlsstowc

return;
}

P - -- -- -- ---- - - - - - - - - - - -

* ROUTINE: missilejowjfly
* PARAETERS: tptr - A pointer to the TOW missile that is to'
* be flown out.
* sightjlocation - The location in world *
* coordinates of the gunner's
* sight.
* locsightto.world - The sight to world '

* transformation matrix used'
* only in this routine. *
SRETURNS: none

*PURPOSE: This routine performs the functions
specifically related to the flying a TOW
missile.

void missilejow_fIy (tptr, sightlocation, loc.sight_topworld)
TOWMISSILE *tptr;
VECITOR sightlIocation;
7T_MATRIX locsighLto..world;
(

MISSILE *mptr; /* A pointer to the generic aspects of tptr. */
REAL time; /* The current time after launch (ticks). */

/*/

" Set _mptr_ and Jime_. These values are created mostly for increased
" readablity.
/*/

mptr = &(tptr->Tptr);
time = mptr->time;

/4/

* If the missile has reached its maximum range (not the maximum distance
'its allowed to fly), cut the wire.

/4/

#ifdef notdeff
if ((time > TOWRANGE_LIMITTIME) && !tptr->wire_is cut)

"tptr->wire is cut = TRUE;
#endif

if (tptr->wireis.cut &&
((time > TOWRANGELIMTffr TIME) I I
(max-rangejimit > 0 &&
kinematics-range-squared (veh-kinematics, mptr->location) >
max-range-squared)))

tptr->wirejss_cut = TRUE;
I*/
' Find the current missile speed and the cosines of the maximum allowed turn
" angles in each direction. The equations used are different before and

- L-12 -

22 january 1993
Reference # W003036

Rev. 0.0

Appendix L - Source Code Listing for miss-owc

*after motor burnout.

if (time < TOW...BuRNOULTJMDE)

mptr->speed = mptr->init~speed +
(speed jactor
missikeýuil-eval-poly (TOW.BURN-.SPEED_..EG,

tow...burn...speed-Poeff, time));
missilejatfiLjeval~cosS;oeff (niptr, &tow..burnjtUrn..eff, time);

else

mptr->speed = mptr->iniLspeed +
(speed-factor *
missileý_util~eval~poly (TO W_.COAST..SPEED...DEG,

tow-.coast-speed..coeff, time));
missile...util~evaLCosSpeff (mptr, &toW...cas~tUýWncoeff, time);

" H the wire has been cut, set the ground as the taget; otherwise,
"O find a target point which will fly the missile along the gunnees line of
"* sighL This targeting scheme takes into account the errors introduced by
" attempting to guide the midssile in a canted position.

if (tptr->wirejs-cut)
missilej-arget..ground (mptr);

else
missilejargetjevel jos (mnptr, sightJocation, Iocfighctq..world);

Try to actually fly the missile. If this fails stop the missile altogether
*and return.

if (!missile...utiljlyout (mnptr))

missilejoWw..stop (tptr);
ret~urn;

else

0 if the missile successfully flew, check for an intersection with the
*ground or a vehicle. If one is found, blow up the missile, stop its
*flylout and return.

if (rissile...utilccommr~heck...intersection (mptr, MSLJYPE-.MISSILE))

niaie..utii~commschecl..detoflate (mptr, MSL..1YPEý-MMSILE);
missilej-ow..stop(tr;
return;

-L-13 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix L - Source Code Listing for milsstowc

/*/
* If the missile is to continue to fly, return

return;
//

"* ROUTINE: missile.tow -stop
"* PARAMETERS: tptr - A pointer to the TOW missile that is to*

* be stopped. *
* RETURNS: none
* PURPOSE: This routine causes all concerned to forget '

* about the missile. It should be called when
* the flyout of any TOW missile is stopped
* (whether or not it has exploded). Note that
* this routine can only be called within this
* module.

static void missileýtow-stop (tptr)
TOW MISSILE tptr;
(

/Tell the world to stop worrying about this missile then release the
* memory for use by other missiles.

missile util comm-stop missile (&(tptr->mptr), MSLTYPEM[ISSILE);
tptr->mptr.state = FALSE;

}

* ROLTINE: missiletowcutwire
* PARAMETERS: tptr - A pointer to the TOW missile whose wire*

is to be cut.
'RETURNS: none
'PURPOSE: This routine sets a flag indicating that the '

guidance wire of this missile is cut.

void missile-tow cut.wire (tptr)
TOWvflSSILE *tptr
(

'If the the wire is not already cut, cut the wire.

if (!tptr->wireis..cut)
tptr->wirejs._cut = TRUE;

- L-14 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix L - Source Code Listing for miss-towc

L

- L-15 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix M - Source code listing for rkLhydra.c.

The following appendix contains the source code listing for
rktIhydra.c for convenience in document maintenance and
understanding of the CSU.

-M-1 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix M - Source Code Usting for rkLhydrac

/* $Header. /a3/adst-cm/RWA/simnet/vehide/libsrc/libmissile/RCS/rkLhydra.c,v I
.1 1992/09/30 16:39:52 cm-adst Exp $"
/.

* SLog: rkLhydra.cv $
* Revision 1.1 1992/09/30 16:39-.52 cm-adst
* Initial Version

./

static char RCSIDD = "$Header. /a3/adst-cm/RWA/simnet/vehide/libsrc/libmissil
e/RCS/rkt hydra.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp $";

- - - - - - - - - - -- - - - - - - - - - ---- ie-4-"4-

* Revisions:

* Version Date Author Title SP/CR Number

* 1.2 10/23/92 R. Branson Data File Initiali-
* zation
* 1.3 10/30/92 R. Branson Added pathname to data
* directory
* 1A 11/25/92 R. Branson Changed %i to %d

* SP/CR No. Description of Modification

* Hard coded defines changed to array elements.
* Characteristics/parameter data array added.
* Added file reads for rocket characteristics/
* parameters.

* Added "/simnet/data/" to each data file pathname.

* FILE: rkt-hydra.c

AUTHOR:. Kris Bartol
MAINTAINER. Kris Bartol

PURPOSE: This file contains routines which govern
the behavior of an Hydra7O Rocket flown with
a ballistic trajectory. *

HISTORY: 10/06/90 kris

- M-2 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix M - Source Code Listing for rkthydrauc

"* Copyright (c) 1989 BBN Systems and Technologies, Inc.
"* All rights reserved. *

#include "stdio.h"
#include "math.h"

#include "sirnetypes.h"
#include "simdfns.h"
#include "basic.h"
#include "mun type.h"

#include "librva.h"
#include "libmap.h"
#include "libmatrix.h"
#include "libmissdfn.h"
#include "libmissloc h"
#include "libmissile.h"

#include "rkLhydra.h"

#define DEBUG 0 /* debugging is ON /. #define HYDRATRAJ_FILE "/sirrnet/data/hydra7sd"
#define HYDRAPARAMntLE "/sinmet/data/hydra7O.sp"

IP- Define rocket performance characteristics -*/
#define HYDRAhMNRANGE rkt._hydra.clhar[71
#define HYDRAMAXRANGES5 rkLhydradhard 81
#define HYDRA_MAX._RANGEAM151 rkLhydra.char[91
#define HYDRAMAXRANGEgM261 rkLhydraschadr[0]
#define HYDRAMAX(RANGEM255 rkLhydra-char[ll]

/*- Define the states of an HYDRA70-ROCKET -*/
#define HYDRA REE 0 /* Rocket available to launch V/
#define HYDRA-FLY I /* Rocket flying*/
#define HYDRA-DETONATE 2 /* Rocket detonates - release or impact' /
#define HYDRAFALL 3 I* Sub-munitions falling._ 0/
#define HYDRARELEASED 4 1" Sub-munitions released towards impact /
#define HYDRAREMOVE 10 /* Rocket gets killed at end of this tick V/

static REAL rkLhydrachar[121 =

M151-BURSTSPREAD, /* twin bursts are 3 m apart */
M261_BURST_HEIGHT, /* release submunitions 180 ft 0/
M261.BURSTRANGE, /1 0 m in front of target (49 ?) "1
M261_BURSTSPREAD, /0 twin bursts are 13 m apart 0/
M255..BURSTRANGE, /* release darts 150 m front of tgt */
M255_BURSTSPREAD, I" twin bursts are 35 m apart VI
FLECH_60MAXRANGE, /0 darts fly total of 750 m

M-3 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix M - Source Code Listing for rkLhydrac

50.0, /* hydra minimum range */
5000.0, /* hydra maximum range for Soviet S-" 57mm Rocket */
7000.0, /* hydra maximum range for _M151 [actual 9000 rnm/
7000.0, /* hydra maximum range for M261 */
3200.0 /* hydra maximum range for M255 */

I*- burst releases 9 bombletts -*/
static int m73..per_.m261_burst = M73_PERM261_BURST;

/*- pointer_to & numberof HYDRA70_ROCKET array-*/
static HYDRAROCKET *hydra-array; /* A pointer to Hydra7T_Rkt memory */
static int num-hydra; /* The number of defined missiles '/

/*- array of pointers to Hydra7T0Rockets in flight -*/
static HYDRA_ROCKET *hydra_fly[MAX_HYDRA7TROCKET];
static int rkts.in_flight;

/*- Ballistics Table ... array of structures _MISSILEBALUSTICOFFSETS_-*/
static MISSILEBALLISTICOFFSETS ball_table[BALLISTICTABLESIZE];
static int table._size;
static BOOLEAN balltablejloaded = FALSE;

static VehiclelD nulvehideID;. static int flighLtime; /* Time Of Flight for ballistic traj '/
static REAL

max.rangeimit, I* [MISSILEUS MAXRANGEUMIT I *I
speed factor,]* ['ISILE_.EUS._SPEEDFACTOR I 'I
pylonx /* [0.01 <xyz> position offset of pylon 'I
pylon-y, /* [0.0J *I
pylonz; I* [0.01 '!

static int flechettekveh list; /* list ID of flechette target vehicles '/

static void missile._hydra~stop U;
static void miseik._hydra.purge_feenis-lles 0;

'ROUTINE: missdle_hydrajinit
*PARAMETERS: rocket-array - Array of rockets of structure

type _YDRAROCKET_ *
num-rockets - The number rockets defined in *

*_rocketsarray_. *
'RETURNS: none
'PURPOSE: This routine copies the parameters into '

variables static to this module and initializes'
the state of all the rockets.

-M-4-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix M - Source Code Listing for rk~hydra~c

void missile-hydra-init(rocket.array, numjocket)
HYDRAROCKET *rocket-.array;
int num rocket;

int i;
int data-jmp...nt;
float dataitmp;
char descriptl64l;
FIlu -fp

/* DEFAULT CHARAC7ERMISCS DATA FOR rkt..hydra.c READ FROM FILE
fp = fopen("/sinmet/data/rkLhydr4d"" r");
if~fp==NULL)(

fprintf(stderr, "Cannot open /sinlnet/dats /rkt.hydr4\n");
exitO;

rewind(fp);

P Read array data .

fscanf(fp,"%d", &data-tnp-int);
m73..pern26l-burst = datajtnipjnt;
fgetsdescript, 64, 4');

/* printf("m73.4per..u261_burst is%3d %s",. m73_.perj2bst
descvipt) *

while(fucaniftf,"%f", &datajmirp) 1= EOF)(
rkLhydrascharjiI = datajmip;
fgets(desaript, 64,4,p);

P printf("rkLhydra-.Char(%3d) is%I1 Y3 %s", i,
rkLhydmacharfiJ, descript)

++i

fclowefp);
/* END DEFAULT CHARACTERISTICS DATA FOR rkt hydrac READ FROM FILE

hydra-.array =rocket-array;
numbhydra =numjvocket < MAX-HYDRA70 ROCKET?

nuM rocket: MA)(_YDRA70LROCKET;
for 0i = 0, i < MAX -HYDRA70LROCKET; i.-+)

hydra..rraylil.bmptr.state = HYDRAYREE;
hydra_.Arraylij.bmptr.in-ssilejd = 0

rktsjinjlight= 0, /* nonmissiles in fight/
for(i 1=0; i < MAX - YDRA70L.ROCKET; i++)

hydra..flyfiJ = 0;

- M-5 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix M - Source Code Listing for rkt..hydra~c

pylon..x = 0.0,
pylon..y = 0.0,
pylon..z = 0.0;
flightjtime = 0;
speedjactor = MISSEL.EySSPEEDjACTOR;
maxjrange~limt = hassmLEusmAX..RANGE..LIm1,

if (!ball-able...oaded)

load Hydra70 Rocket's ballistic table

printf(loading Hydra70 Rocket's ballistic table %s\n",
HYDRA,_RAJFILE);

table-.size=
missile...util-load..ball~traj-file(HYDRA..TRALFILE, ball-table)
ball jablejoaded = TRUE;

*create ..fechtte-veh-jist. for Proximity fuze

flechettekveh-list = rva..create..outputjist(flechettejis~yalid.y.eh);
#ifdef notdef

flechette..yeh-list = RVA..ALL-VEJ-UCLESJJLST;
#endif

*initialize the proxim-ity fuze for rockets armed with Flechette's

missilejuzej~rox~inito;

int missik..hydrajsjreve(rocket)
int rocket;

return((hydra-arraylrocketl.bmnptr~state == HYDR&.FREE D);

*ROUI~fNE: nmieý-hydra..set-.pylon..poslibon off sets
*PARAMETERS: x = X offset (in meters)from center of HULJL

y y=Y offset.
z z=Z offset.

*RETURNS: none.
* PURPOSE: Sets the X, Y and Z offsets from center of

* HULL for trajectory calculations. 0. ~void missile-hydra..set on.psto..fst(x, y, z)
REAL x, y, z;

22 January 1993
Reference # W003036

Rev. 0.0

Appendix M - Source Code Listing for rkt-hydra.c

{
pylon x = X;
pylon-y = y;
pylon-z = z;

}

void missile_hydra-setspeedactor(speed_scale)
REAL speedscae;
I

speedfactor = speedscale;

void missile..hydra.setunax.rangelimit(limitrange)
REAL limitrange;

mnax-rangeliinit = limit.;range

* ROUTINE: nissile..hydra set-pylonr.articulation
PARAMETERS: tgtrange -Range to target.

* ~rkttype -Type of Rocket to be launched.
* time - Pointer to Time Of Flight
* variable in vehicle-spec code. [int]
* seangle - Pointer to Super Elevation
* variable in vehide-spec code. IREALI
* lead-angle - Pointer to Lead Elevation
* variable in vehicle-spec code. [REAL]

* RETURNS: none. *
* PURPOSE: Sets jaser range. of next Hydra70 rocket to
0 be launched and calculates Time Of Flight, *

Super Elevation angle and Lead angle for next
* rocket launch. *

void missilei_hydra.set_pylonarticulation(tgt range, rkttype, time,
se._angle, lead.angle)

REAL tgt_range;
int rkttype, *timw;
REAL *se..angle, *lead-angle;

REAL range; /0 Range to target l
REAL ball-range; /0 Range to look-up in Ballistic Table 0/

if(tgt range < HYDRAMIN RANGE)
range = HYDRA.MINRANGE;

else if((maxrange•irn-t > 0.0) &&
(tgt.range > max-range-limit))

range = max.rangejinit;
else

- M-7 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix M - Source Code Listing for rktzjydra~c

range = tgt-range;
/* SuperElevation & TOF for each Rocket Type/

switch(rkLtype)

cawe ROCKELHE: /* type 101b WARHEAD/
if(range > HYDRA_.MAX...RANGE...MI51

range = HYDR&AJAA..RANGEL.M151;
ball ange = range / speed...actor;

n-dsil-ut~balistics..calcj-raj(bailltable, table -size,
ball-range, 0.0, 0A0
time, se...angle);

*lead..angle = atan((rkt.hydra..char[01 - pylon..x) / range)
time = -5; / Does not have a timed fuze ~

break,
case ROCKET .MPSM: /* typ MPSM ~

if(range > HYDRA..MAX..RANGEW6I)
range = HYDR&AkAX.RANGELvI261;

ball jange = range / speed jactor;
midssileutiL baRListics..calc...traj(bafl..table, table~size,

ball..ynge, 0.0, rkLhydMashar[1],
time, se...angle);

*lead-angle = atan((rkLhydmashar[31 - pylon..x) / range)
break;

cae ROCKETJFLECHETTE: /* type FLECI-ETE1
if(range > HYDRA..MAX...RANGE,_M255)

range = HYDRA...MAX..RANGE..k255;
ball-range = range / speed jactor;
xnissile...uti-lstics..calic..traj(ball~table, tablesize,

bal~rnge, rkLhydra..charf 41, 0.0,
time, se...angle);

Olead-o.ngle = atan((rkt.hydra...char 51 - pylon..x)/
(range - rktiihydra..char[41);

break;
default:

printf("hydra-.set..pylon..articul: unknown warhead jype %d\n,. rkLtype)

*time = 0;
*se...angle = 0.&,
*lead-.angle = 0.0;
break;

flight-.time = tiine;

"* ROUTINE: nmisle..hydrajire
"* PARAMETERS: rkt-type - Type of Rocket warhead.

a mmo - Anmin Type of rocket's warhead.
* launch-.pt - The location in world

coordinates that the rocket is

22 January 1993
Reference # W003036

Rev. 0.0

Appendix M - Source Code Listing for rkLhydra.c

* launched from.
* launchprient - The sight to world
* transformation matrix used
* only in this routine.
* launch-speed - Speed of launch platform
* (assumed to be in the direction

of the Rocket).

"* RETURNS: TRUE if successful, FALSE if not.
"* PURPOSE: This routine performs the functions
* specifically related to the firing of a HYDRA70

rocket.

int missile._hydrafire(rkt type, ammo, launch..pt,
launchorient, launch.speed)

int rkt-type;
ObjectType ammo;
VECTOR launch-pt;
T MATJPTR launch orient;
REAL launch-speed;
{

T_MATRIX
launchtlead,
launchse;

REAL
se..angle, /* munition.specific SuperElevation angle /
lead-angle; /0 munitionospecific (+/-)Lead angle 4 /

int time, /* munitionspecific FlightTune 4/

HYDRAROCKET rkt;
BALLISTIC_-MISSILE -bmptr;
ObjectType fuze;
int i, valid msl;

/* get next FREE rocket 4/

valid msl =0;
rkt = hydra-array;
for(i = 0, i < MAX HYDRAT ROCXXET; i++, rkt++)

if(rkt->bmptr.state == HYDRA-FREE)
{

valid_msl = 1;
hydrafly[rktsý_in_flightl = rkt;
bmptr = &(rkt->bnptr);

if DEBUG
printf("Launching Rocket %d\n", i);

#endif
rktsjinjflight++; /* rktsinflight == # flying f
break;

}

if(!valid-nsl) /* no available missile to launch /

-M-9-

22 January 1993
Reference N W003036

Rev. 0.0

Appendix M - Source Code Usting for ik~hydra~c

return(FALSE);

/set MaxRange for Rocket Type *
switch(rktj-ype)
I
case ROCKCET-HE: /* High Explosive/

bmptr->mnax range =HYDRA-MAX.RANGELM151;

rkt->sub-mnun type =SUB..MUN_NONE;
rkt->sub -amnunotype = 0;
fuze = munition JUSjA433;
break;-

case ROCIKETMPSM: /* Multi-Purpose Sub-Munition/
bmnptr->mnax-range =HYDRAMAXRANGEývI26I;
rkt->sub mun-type =SUB jvfUN IMPACT;
rkt->sub_amino_type = murtition.US..M73;
rkt->sub-munition.impact~Ammo = munition....U.j473;
rkt->submunition.impact.fuze = munition...U5ýM433;
rkt->sub...munition.iinpact~quantity = m73 .prn26b- t
rkt->sub -nunition~impact~height = rkt.hydra-char[11;
fuze = munition_.USjAM439;
break,

cas ROCKE7_yLECHETrE: /* Flechette discharging warhead '
bmnptr->mnax~jange = HYDRA..MAkRANGE...M255;
rkt->sub-mun-type = SUB...MUN..CANST`ER,
rkt->subý ammo tpe = murdtioný-S..Flecheft-te..
rkt->subniunition-dart~Amino = munitionUjj.Flechette...0;
rkt->sub-munition.dartlfuze = 0;
fuze = munitionUS _M439;

default:
pritf(-hydrajfire...kt: unknown rocket_".yp %dAn", rktL type)

rktskjnjflight-;
bmptr -> state = HYDRA-FLY;
retun(FALSE);

m'atcopy(launch-orient, bmptr->launcherC _world)
maLcopy(launch_orient, bmnptr->orientation)
vec..copy(launch jpt, bmptr->location)
bmnptr->speed = launcb..speed;

/0- Tell the rest of the world about the firing of this B-m-issile. -
-If this cannot be done, return FALSE. -

if(!missile util commn fire._missile
(bmnptr, MSLJ7YPE3.ALLJSTIC,
map...getammo..entryjfrom..networkjtype(ammro)
ammo, anmmo,/guise?/
&(null-vehiclelD), O/Otarg~type/, fuze, O/Otube'/)

-M-10 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix M - Source Code Listing for rkt-hydra.c

rktsinpflight-;
bmptr -> state = HYDRA-FLY;
return(FALSE);

bmptr -> max_flight.time = flighttime;b~mpb -> ammojype = ammo;

bmptr -> time = 0; /* initialize in-flight timer*/
bmptr -> ballindex = 0;]* first point into Ball-table]
btnpr -> state = HYDRAFLY; I* rocket is now flying /
return(TRUE);

" ROUTINE: missile-hydra_fly_rockets
" PARAMETERS: none
" RETURNS: none
" PURPOSE: This routine flys out all rockets that are in
* a flying state.

void missile._hydra_fly_rocketsO

register int i;
int a Lleastone_emptyMPSM;

/1 Fly out all launched & flying rockets.
* - may have to also 'fly out' all released submunitions -
4/

atjieastoneemptyMPSM = FALSE;
for(i = 0; i < rktsjinflight; i++)

switch(hydrajflyfi]->bmptr.state)
{

case HYDRAFREE:
hydra_flyfi->bmptr.state = HYDRAREMOVE;
break;

case HYDRA-FLY:
missile..hydra_fly(hydrafly[i]);
break;

case HYDRA-DETONATE:
switch(hydrajfly[i]->sub.amnmotype)
I
case munition_- US M73: /0 MPSM bomblets V/

missilem73_init
(&(hydra -flyfil->bmptr),
&(hydramflyfil->subjmunition),
ball-table[hydra_flyli]->bmptr.balUindex].speed);

hydm..flyli]->bmptr.state = HYDRA-FALL;
break,

case munitionUSFlechettep60. /0 FLECHETTE darts */

-M-11 -

22 January 199
Reference # W003036

Rev. 0.0

Appendix M - Source Code Listing for rkt-hydra~c

midssile..flechette..init
(&(hydrajlylil->bmptr),
&(hydra~flylil->sub-.munition),
baiLtablet hydra-fly[iJ->bmnptr.bal~index].speed)

hydrajflylil->bmptr.state = HYDRA-RELEASED;
break,

default:
printf("HydraDetonate: R_%d unknown ammo-type\n",i)
mniissile...hydra..stop(hydrajfly[iI)
break;

break;
case HYDRAFALL-

switch(hydrajflylil->sub...amm~ojype)

case munitiopUS..M73: /* type MPSM/
Mf inissilejn73,drop,(&-(hydra~flylii->binptr),

&(hydrajflyliJ->sub...munition)))
hydrajfly[iJ->bmptr.state = HYDRA-RELEASED;

break;
default:

printf("Hydra...Fall(): R,..%d bad sub .mumtfion\n",i)
m-issile...bydra..stop(hydra..fly[iI)

break,

case HYDRA -RELEASED:
switch(hydrajflyji->sub...axnnpojype)

case munition.XSM73: /* type MPSM/
if(! missile-.m73- impact(&(hydrajflyliJ->bmnptr),

&(bydra-jly~iI->sub..munition)))

atj-easLone...emptyjvPSM = TRUIE;
missileý_hydra..stop(hydra..flyfil)

break;
case munition.US..Ylechette-60- /* type FLECHEITE 0/

if(! mssilejflechettej-ly(&(hydra__lyl->bmptr),
&(hydra..flylii->subjnmunition),
flechetteý-yehjist))

niissilejiydra-.stop(hydra-.flytiI)
tnisilejze..prox...stop

(&(hydra-fylil->sub..munition.dart~pptr));

break.
default:

prmntf("Hydra..Releaw. R .%d bad sub -munition\n",i)
rrsile-.hydra-.stop(hydrajfly~iJ)

break,

-M-12 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix M - Source Code Lsting for rkLhydra.c

}

break;
case HYDRA-REMOVE:

break;
default

printf("Mslhydra.flyrkts0: rkt.%d not flying\n", i);
missleihydra.stop(hydrajfly[i]);
break,

}
}

/* Send out remaining (if any) Indirect Fire pkts */
if(atleasLonesemptyMPSM)

networkj_ifire..sendindirectfireO;

/* Get rid of DEAD rockets *
missile..hydra-purgejfree...mssilesO;

}

ROUTINE: missile_hydrajfly
* PARAMETERS: rkt - Pointer to a _HYDR ROCKET. structure
* RETJRNS: none *

* PURPOSE: This routine performs the functions
specifically related to the flying an HYDRA7O
rocket. _

void missilephydrajfly(rkt)
HYDRAROCKET *rkt;
{

BAUJSTIC_MISSILE *bmpt;r,
int index;

bmptr = &(rkt->bmptr);
index = bmptr->ballindex;

/.
* Check for rocket detonation via timed-fuze.
*/

if(missile..util-commcheck.timer(bmptr, MSLYTYPE-BALLISTIC))
bmptr->state = HYDRA-DETONATE;

/,
* Try to actually fly the missile. If this fails stop the missile altogether
* and return.

else
if(!mlssile_uti.ballflyout(bmptr, &(baflltable[index]),

table..size, speedfactor))

#if DEBUG
printf("HydraRkt out of range - stopping B-missile\n");

-M-13 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix M - Source Code Listing for rkLhydra.c

#endif
mssiles,.hydra_.stop(rkt);
return;}

if(ise-utie ommnmheckdetonate(bmptr, MSL._TYPEBALLISTIC))

* IF rocket hit ground or vehicle-> stop its flyout
*I

if(missile..utiLcommncheck.intersection(binptr, MSL_-TYPE.BALLISTIC))
missile._hydra.stop(rkt);

I.
* Else do nothing -> missile is not dead yet...
* OR rocket timed-fuze detonated
.I

1" otherwise, let B-missile continue on its merry way.
*1

return;
}

"ROUTINE: missile..hydrajstop
6 PARAMETERS: rkt - Pointer to a HYDRAROCKET_ structure

* that is to be stopped.*
RETURNS: nones

PURPOSE: Stops the flight a HydraW0_Rocket. *

Stops telling the world about said Rocket
and frees up the Rocket for another lunch.

static void missile.hydrastop(rkt)
HYDRAROCKET *rkt;
(

BALUSTICMISSILE *bmptr;
int i;

bmptr - &(rkt->bmptr);I*
* Tell the world to stop worrying about this missile then release the
* memory for use by other missiles.
"1

missile util_commstopjmissile(bmptr, MSLTYPEBALLLSTIC);

if DEBUG
printf("stop:: T: %d Rkt: %d Pos: %1.21 %1.21f %12.fMn",

bmptr->time, bmptr->missilejid, bmptr->Aocation[0],
bmptr->iocationlll, bmptr->location[21);. #endif

M4

- M-14 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix M - Source Code Listing for skLhydra~c

*Mark rocket to be Removed

bniptr->state = HYDRAREMOVE;

static void missile~hydra...purgejrteem-rissiles()

int i;

i =0;
while(i < rkts~in_flight)

Wf hydrajfly[iJ->bniptrstate == HYDRA-REMOVE)

" Swap -BAD- rocketlil with -LAST- rocketlrktsjnjflightj
"* Cut-off (now BAD) -LAST- rocket
"* Check (now Good) rocketlil

hydra..fly[iJ->bmptr.state = HYDRAJFREE;
rktsjnjflight-;
hydra-.fly[iI = hydrajlyfjrkts~io..flightl;
hydra..fly(rkctsjo-flightj =0;

* else

*Check next rocketbi+11

void nibmat(mat)
TMIATI'TR mnat;

int i,
for(i=0; i.6; i++)

for(j=0; j<3; j-++
printf(" %1.41f , matti~fl);

pnintf("\n");

void xnmniat nan(mat)
T.MAI'TRmat;

int i,
union fbo

-M-15 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix M - Source Code Listing for ik&.hydra~c

REAL df;
long 1121;

for(i=-O; k3; i++)

for(j=0; j<3; j++)
printf(" %lAlf", matfi[0lj);

printf("-9");
for(j=0; j<3; j++)

x~df = inatfiI[jJ;
printf(" Ox%O8x Ox%Ogx", x.1[01, xjlll)

printf("\n");

void unbni(n, msg)
int n;
char nisgfl;
I

printf("BM: %d -> %s\n", n, rnsg)

void mbfl(n, xnsg)
REAL n;
char nisgOj;

printf("BM: %6.41f -> %s\n". ni, msg)

-M-16 -

22 January 1993
Reference # W003036

Rev. 0.00
Appendix N - Source code listing for rwa...hydra.c.

The following appendix contains the source code listing for
rwa -hydra.c for convenience in document maintenance and
understanding of the CSU.

N

- N-I -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix N - Source Code Listing for rwa-hydra.c

/* $Header ./a3/adst.cm/RWA/sisnet/vehide/rwa/src/RCS/rwa-hydra.cv 1.1 1992/09
/30 17:02:58 cm-adst Exp $ */
I*

* $Log- rwa.hydra.cv $
* Revision 1.1 1992/09/30 17:02.58 cm-adst
* Initial Version
*I

static char RCSIDO = "$Header. /a3/adst-cm/RWA/simnet/vehicle/rwa/src/RCS/rwa_
hydra.c,v 1.1 1992/09/30 17.'02:58 an-adst Exp S";

* Revisions:

* Version Date Author Title SP/CR Number

* 1.2 10/23/92 R. Branson Data File Initiali-
* zation
* 1.3 10/30/92 R. Branson Added pathname to data
* directory

* SP/CR No. Description of Modification
0

* Hard coded defines changed to array elements.
* Characteristics/parameter data array added.
* Added file reads for hydra rocket characteristics/
* parameters.

* Added "/smnert/data/" to each data file pathname.

"* SYSTEM NAME: rwa
"* FILE: rwa.hydra.c *
"* AUTHOR. Kris Bartol

* SIMNET simulation of Hydra7O Rocket

* Copyright (c) 1990 BBN Advanced Simulation Division.
* All rights reserved.

#.include "simstdio.h"

- N-2 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix N - Source Code Listing for rwa-.hydra-c

i#include "sini~dfitsh"
#indude "simmnacros.h'
#include wbasic.W'
include "inunjype~h"

41include "veh..type.h"

ffinclude "libmatrix.h"
#include "libmath-h"
finclude "librotntelh"
#include 'libturret-h"
finclude "Iibhull.h"

#include "Ibkin.h"
ffinclude "libcig.h"
#include "libinips.h"
#include "libmap.h"
#include "libmissile.h"
#include "librniss-fn.h"
#include "rkLhydra.h"

#include "rwakidnenat-h"
Anclude "rwaweapons~h"
#include "rwa meter~h"
#include "rwa..config.h"

#define DEBUG 0 /* debugging is ON *

#define LEFT 0
#define RIGHT 1

#ldefine NUMR0CFICET$LAUNCHEP-PER.TICK 2

*Define rocket characterisics.

#define HYDRA..LAUNQHEKPOS..X hydrajktcharlOI
#define HYDRA JAUNCHIER_'OS..Y hydrarkLcharI1
#define HYDRAl.LAUNCFHER.POS..Z hydra~rkLchar(21

* Articulation Lirmits are +4 to -15 degrees but are adjusted to
* +19 to -15 degrees for simulation's fixed 01W reticle

#define SYVIETARTICULATION (nitioý_rad(hydra..rkLchar13]))
#define HUL.LNEQ5jL'rCH (deg~t.joad(hydra..rkLchar[4J))
#define ARTICULATION-MAX (deg~tojad(hydra..rktcduw15]))
#define ARTICULA11ON)AIN (deg-to..yad(hydra-rkt.char[6l))

N 1-3 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix N - Source Code Listing for rwa_hydra.c

Hydra rocket characteristic parameters initialized to default values.
/*/
static REAL hydrarktLchar[7 =

4.5, / hydra launcher position X/
0.5, /* hydra launcher position Y /
-2.0, /* hydra launcher position Z */
104.0, /* mils of Soviet articulation /
-5.0, / degrees of hull negative pitch *
19.0, /* degrees of maximum articulation *

-15.0 /* degrees of minimum articulation '/};

ROTATEELEMENTDEF (articulation-element);
ROTATEELEMENTDEF (pylon_.Lelement);
ROTATE ELEMENTDEF (pylonLRelement);

static HYDRA-ROCKET hydras[MAXHYDRA70_.ROCKET + 11= (0;

static VehicleID nullVehicleID;
static int flight time;]* Time Of Flight for ballistic traj *
static REAL

superelevation, /* Adj angle for ballistic traj /
target-range; I* Range by which to calculate ballistics I

static ObjectType ammo_type; /* Amro_Type of rockets to be launched *
static int warheaddclass; /* one of [HE I MPSM I FLECHErrE] */

static int pylons set; /* TRUE when pylon articulation is complete */
static int leftkrocket launch; /* TRUE -> launch left rocket */
static int rightrocketlaunch; /* TRUE -> launch right rocket*!

static VECTOR lefttjauncherpos = (4.5, 0.0, 0.0);
static VECTOR righLlauncherwpos = (4.5, 0.0, 0.0);
static VECTOR articulationpos = (0.0, 0.5, -2.0);

extern REAL weaponsgetrocket_rangeo;
extem REAL kinematics_gettrueairspeed0;
extern void mbmatO;
extesn void mbmat.nan0;
extern void mbvecO;

ROTATEELEMENT *articulation()

return(&articulationelement);

ROTATEELEMENT *pylonL()

return(&pylon_.Lelement);

- N-4 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix N - Source Code Listing for rwa..hydra~c

ROTATEELEMENT -pylon...R(

return(&pylon R element)

void hydrajaunch-rocket-left()

Ieftjocketjaunch = TRUE;

void hydrajaunch~rocketdght()

righLrocketl-aunch = TRUE;

int hydra launchjrocket(launch-fronijight)
int launchjfrom..rght; /* 0 = left-side (neg):: I =right-side (poe) V

Tý_MATý_PTR launch orient;
VECTO)R launch-velocity;
REAL

*launch~point,
se..angle,
lead...agle;

/. get launck~point & launclhyrient V
if(launchjwom~right) /* launch from right/

baunch-.point = rotate-..etoc worido, pylon..RO)
launch-orient = rotate..get-mat(pylon...RO, woridO)

else

launch point =rotate..getjoc(worido, pylon..LO)
launch-orient =rotate..gt..mat(pylon-.LO, woridO)

#if DEBUG
lf(mat...check~launch-onient) =FALSE)

mibmat-nan(launch-orient)

lf(!missile...hydra-.fire(warhead..class, ammo-type,
launch..point, launchoprient,
(kinem~atics...getrue-.airspeedO/15) /9nit speed/))

#if DEBUG
printf("No memory in missiles-omm for H-YDRAWn);

printf("Rocket launch failed\n");

- N-5 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix N - Source Code Listing for rwa...ydrac

retum(FALSE);

return(TRUE);

mnt hydrajpylons-.are-.set()

return(pylons...et);

void hydra-.set-pylon-.articulation(WAS~position)
int WASýposition;

MUNITINDATA '*mun data;
int flight..time; /* time of flight to fly -range-. meters
REAL

range, /* range to target
super...$ev, /* super elevation angle for trajectory '
dispersion; /* dispersion angle for trajectory

*Given -ryange-.. & -anmmo ype-::
- calculate and return super-p.lev & dispersion angles
0calculate and set Time-Of-Rlight timer

9 Axnmojype... of next rocket(s) to be fired

mun~data = rwa...conflgJet..was _munition info (WAS-.position);
ammo-type = mun-data->munitionjtype;

if (mun data->code 1= MUNITONROCKET)
/* bombs, for example 0/

switch(munýdata->data.rodcet.warhead)

case WARH-EADJ-HE:
warhead class = ROCKET ýHE;
break;

case WARHEAD MPSM:
warheadclass = ROCIMCETMPSM;
break;

cas WARHEADYFLECHEIT:
warhead class = ROCKET LECHETITE;
break;

default:
printf("hydra-Wse-.artic: unknown warhead %d for WAS %d\n",

mun-data-,data.rocket.warhead, WASposition;
break;

N-I

22 January 1993
Reference # W003036

Rev. 0.0

Appendix N - Source Code Listing for rwajtydra~c

Get rocket range & calculate SuperElevation and Dispersion angles

pylons....et = FALSE;
if(munýdata->data.wocket~articulation)

range = weapons..get..yocket-rangeO;
else

range = (REALXinun..data->data.rocket~flyout-range);

*Set pylon Super Elevation angle & pylon Dispersion angle

nsiiwle-hydra-set~.pylon..articulation(range, warhead..class, &flight..time,
&super-elev, &dispersion);

siper...lev += HULLNEQ5jIPTCH;
rotate...set..angle(articulationO, super~jev);
rotate...set-angle(pylon...RO, (- dispersion))
rotate-setangle(pylon...LO, dispersion);

void hydra..config-rockets()

MUNITION DATA *mun~data;
int i;

for(i = 0; i < MAX _WAS _POSMTONS; J+..-

if((mun-data = rwa config~get_ was munition _info(i))NULL)
continue;

if(mun..data->code =- MUNTION-.RaMXT)

mnssle..hydra..set_...peed-factor
((REALXmunýdata->data.rocket.speed factor));

missile..hydra.set...max..range limit
((REALXmun..data->data.rocketflyouLrange));

void hydra-init (

int i;
int data jrnpint;
float datajzntp;
char descript[641;
FILE Ofp;

/* DEFAULT CHARACTERISTICS DATA FOR rwa..hydra.c READ FROM FILE
fp = fopen("/simnet/data/rwa...hydrd","r");
if(fp==NULL,)(

fpiintf(stderr, "Cannot open /simnet/data /rwa..hydrd \n");
e xitO;

-N 7

22 January 1993
Reference # W003036

Rev. 0.0

Appendix N - Source Code Listing for rwa..hydra~c

rewind(fp);

/ Read array data/
i=0;

while(fscaif(fp,"%C', &data~jznp) != EOF)X
hydrajrktcharliI = datajmap;
fgets(descript, 64, fp);

1* prnnt"hydra-rkt~char(%3d) is%1 13f %s", i,
hydra..rkcchartil, descript);

fclose~fp);
/* END DEFAULT CHARACTERISTICS DATA FOR rwa-.hydra.c READ FROM FILE

left-jauncher.PosIOl = HYDRALAUNCERYS..X)(
righLlauncher-pos[OJ = HYDRA.JAUNGIERJS..X,
articulation-.pos[1J = HYDRA..LAUNQ-IER-POS..Y;
articulation..posI2J = HYDRA..LAUNCHER..YOS..Z;

if(!rotate-initelement(&articulation elen-ent, hullO,
* 1.0,0.0,0.0,0.0,

ARTIUA70ýMP.7CTO{M.RCULATION.MAX,/v1W0k_/PI,/ate*/
0.0, HYDRALAUjNCH[ER OSY, HYDRA..LAUNCHERPOS..Z))

printf("RotatejnitLElement: articulation..element FAILED\n");

rotate miit-elenient(&pylonLlelembent, articulationo, 0.0, 0.0, 1.0, 0.0,
-.IWo-PI TwOýPI, TwOJ'I, /-rate/
-HYDRA LAUNCHER P05_X, 0.0, 0.0);

rotate-init-ekenwnt(&Pylon..R...elemwnt, articulationO, 0.0, 0.0, 1.0, 0.0,
-TWO PI, TWO P1, TwQ.Pi, /*rate/
HYDRA -LAUNCH-ER-POSX, 0.0,0.0);

miissile...hydrajinit(hydras, MAX-HYDRA70-ROCKET);
nussilehydra~sLpyon..position.offsets(HYDRA_.LAUNCHER-!OSX.ý

HYDRA...LAUNCH-ER.YO...Y,
HYDRA LAUNC3-IER-POS-Z);

hydrasconfig-.rocketsO;
left rocket launch = FALSE;
right -rocket-launch = FALSE;
pylons _set = FALSE;

void hydra..simul()

mdsile...hydra..fly...rocketso;

22 January 1993
Reference # W003036

Rev. 0.0

Appendix N - Source Code Listing for rwa~hydra~c

if(Ipylons~set)

pylonsset = TRUE;
rotate-set-noý-rotate(pylon-Ro);
rotate-set-noý-rotate pyloLLO);
rotate.set~no_rotate articulationO)

else

if(left~rocketjlaunch)
if(hydra~jaunch..rocket(LEFT)

leftjrocket -launch =FALSE;

if(night~rocket 'launch)
if(hydra-launch-rocket(RIGHT))

right rocketjaunch = FALSE;

void mbvec(str, vec)
char Ostr;
VECTOR vec;

printf("%s I %1.41f %1.41f %1.41f 1\n",
str, vec[)i, vec[Y], vec[ZJ)

-N-9 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix 0 - Source code listing for subflech.c.

The following appendix contains the source code listing for
subflech.c for convenience in document maintenance and
understanding of the CSU.

-0o-1 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix 0 - Source Code Listing for sub-flech.x

/* $Header. /a3/adst-on/RWA/simnet/vehide/libsrc/libmisslle/RCS/sub_flechcv 1
.1 1992/09/30 16.3952 cm-adst Exp $ /
/*
* SLog:. subjflech.c,v $
* Revision 1.1 1992/09/30 16:39.52 cm-adst
* Initial Version
*/

static char RCSIDO = "WHeader. /a3/adst-cm/RWA/simnnet/vehide/libsrc/libniissil
e/RCS/sub-flech.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp $";

• Revisions:

• Version Date Author Title SP/CR Number

• 12 10/23/92 R. Branson Data File Initiali-
* zation
* 1.3 10/30/92 R. Branson Added pathname to data
• directory
• IA 11/25/92 R. Branson Changed %i to %d

* SP/CR No. Description of Modification

* Hard coded defines changed to array elements.
SOCharacteristics/parameter data array added.

• Added file reads for sub_flechette characteristics/
* parameters and flechette speed coefficients.

* Added "/simnet/data/" to each data file pathname.

* FILE: sub_flech.c *
* AUTHOR Kris Bartol
* MAINTAINERI Kris Bartol

* PURPOSE: This file contains routines which simulates
* the behavior of sub-munitions of type
• munitionUS_Flechette._0.

HISTORY: 10/06/90 kris,

-0-2-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix 0 - Source Code Listing for sub-flech.c

"* Copyright (c) 1989 BBN Systems and Technologies, Inc.
"* All rights reserved. *
o *

#include "stdio.h"
#include "math.h"

#include "siMetypes.h"
#include "simdfns.h"
#include "basic.h"
#include "munrype.h"

#include "libhull.h"
#include "libimps.h"
#include "libkin.h"
#include "libmath.h"
#nclude "libmap.h"
#include "libmatrix.h"
#include "libniiss_dfn.h"
#include "libmissloc.h"

#include "rkthydra.h"

#define DEBUG 0 /* debugging is ON */

#define INVEST-DIST$SQ sub flech-charlOJ
#define FUZE_DIST_SQ subflech-charfl]
#define FLEC]HEITESPEEDDEG subjflechpoly-deg

I*/
• Subflechette characteristic parameters initialized to default values.
I*/
static REAL subflechchar[31 =
I
10000.0, /* (100 m)^2 :: max speed < 100 0/
306.25, /* (17.5 m)A2 :: flechettes fly

in a cylinder with a radius
of 17.5 m and length of 750 m/

FLECH_60_MAXRANGE /* darts fly total of 750m
};

* The following term sets the order of the polynomial used to determine
* the speed of the flechettes.
/*/

static int subjflech.poly-deg = 3;

O I*1
O Coefficients for the speed polynomial for flechettes initialized

-0-3-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix 0 - Source Code Listing for sub flech.c

to default values.
I*/

static REAL flechettespeed-ceef[51 =
{

41.75, /* a-0 - m/tick */
-0.2W397254, /* a-1 -m/tick/m /
0.00022724278, /* a-2 - m/tick/mA2 /
-0.00000008633, /* a_3 - m/tick/mA3 */
0.0

1;

static VECTOR zero vector = (0.0, 0.0, 0.0};
static VehiclelD nullVehiclelD;

/* this routine is invoked by the rva for each vehicle to see if it
* should be included on the flechette valid vehicle list
*/
flechette is validveh (veh)
VehicleAppearanceVariant *veh;
{

return(/* is.alive-vehide (veh->appearance) */TRUE);

* ROUTINE: missilejflechette_init
* PARAMETERS: bmptr - Pointer to a _BALLISTICMISSILE_
* structure that's ammo-type is Flechette
* i.e. it releases sub-munitions of type *
* munitionUS.Fechette_60_ *
* sub..mun - Pointer to sub-munition structure
* associated with _bmptr.
* init-speed - Terminal speed of rocket =
* initial speed of flechettes.
* RETURNS: none
* PURPOSE: Initialize rocket's brmptr_ to behave according
* sub-munitions type of
* _munitionUSFlechette_60.

void inissile_flechette..init(bmptr, sub.mun, initspeed)
BALLISTICMISSILE -bmptr;
BALLISTICSUBMUN -subnmun;
REAL init-speed;

BALLISTICCANISTER dart;
VECTOR velocity;

int i;

-- 0"4--

22 January 1993
Reference # W003036

Rev. 0.0

Appendix 0 - Source Code Listing for sub .jlech~c

int data..tmpjnt;
float datajtmp;
char descript[64l;
FILE *fp;

/* DEFAULT CHARACTERISTICS DATA FOR sub jlech~c READ FROM FILE
fp = fopen("/simfnet/data/subj-lec-d","r");
if(fp==NULL)(

fprintf(stderr, "Cannot open /simnnet/data/subjlec.d\n");
exitO;

rewind(fp);

/* Read array data *
i=0;

while(fscanf(fp,"%f', &data..tmp) != EOF)(
sub-flech-charlil = data-tmp;
fgets(descript, 64, fp);

1* printf("sub...flech-.cbar(%3d) is%11.3f Ws, i, subj-lechcharjij,
descript);

)+i

fclose(fp);
/* END DEFAULT CHARACTERISTICS, DATA FOR sub _flech~c READ FROM FILE

/* DEFAULT FLECHIETTE SPEED DATA FOR sub Ifech.c READ FROM FILE
fp = fopen("/simnet/data/flec...spdAd","r);
if(fp==-NULL)f

fprintf(stderr, "Cannot open /simnet/data/flec..spdd \n");
exitO;

rewind(fp);

/* Read degree of polynon-ial!

fscanf(fp,"%d", &datajznpj-nt);
FLECHETTE..SPEED-DEG = data-jrnpjnt;
fgets(descnipt, 64, fp);

I' printf("sub -flech-poly..deg is%3d Ws, FLECFE77E..SPEEDDEC.
descript);

I.Read array data/
1=0;l

while(fscanf(fp,"%f", &data-jrnp) != EOF)M
flecitette-.speed-coeflil = data-tmp;
fgets(dqsaript, 64, fp);

-0-5-

22 January 1993
Reference # W003036

Rev. 0.0

Appendix 0 - Source Code Listing for sub-flech.c

/* printf("flechette..speedscoef(%3d) is%11.3f %s", i,
flechette._speed coef[ij, descript);

+-i;

fclose(fp);
/* END DEFAULT BURN SPEED DATA FOR subjlech.c READ FROM FILE *

bmptr->time = 0;

dart = &(subOmun->dart);
dart->distance = 0.0;
dart->init..speed = iniLspeed;
dart->pptr = NULL;
vecscale(bmptr->orientation, iniLspeed, velocity);
missile_util_comm_release_sub_munition(bmptr, MSLJTYPEBALLISTIC,

submun, SUBMUN _CANISTER,
zero-vector, velocity);

#if DEBUG
printf("InitSpeed %1.21f Dist %1.21f•n", iniLspeed, dart->distance);

#endif

ROUTINE: missilejflechettefly
* PARAMETERS: bmptr - Pointer to a _BALLISTICMISSILE_
* structure that's ammo-type is Flechette *

* i.e. it releases sub-munitions of type
* munitionUS.Flechette_60_ *

* sub~mun - Pointer to sub-munition structure
* associated with .bmptr_. *
* veh list - Vehicle list ID.
"* RETURNS: none.
"* PURPOSE: Simulates the flying of munition-type *

* munitionUSFlechette_6_. *
* -1200 2" lead darts are released and fly a *

* cylindrical pattern 35 m in diameter ...
* Hence, we simulate the flechettes with ONE *

* dart flown down the center of the cylinder
* and give ital7.5mproximityfuze. If the
* proximity fuze detonates, we impact the
* recipient vehicle and continue the lone dart's
* flyout to a distance of 750 m. At this point, *
* the flechette rounds have lost the momentum
* and fall to the ground - the rocket is
* terminated.

int missilejflechette-fly(bmptr, sub-mun, veh-list)
BALLISTICMISSILE *bmptr;

-0-"6--

22 January 199
Reference # W003036

Rev. 0.0

Appendix 0 - Source Code Listing for sub-jlech~c

BALLLSTIC_SUB_ýMUN *sub..mun;
int vehjlist;'

BALLISTIQCANISTR -dart;
VECTOR velocity,

dart = &(sub...mun->dart);

SPEED
bmptr->sped=

missfie..utilepval-poly(FLECHETSPEED-.DEG, flecbette...speedscoef,
dart->distance) + dart->iniLspeed;

*DISTANCE/

dart->distance += bmptr->speed;
if(dart->distance >= subjlechsbhar(2l

retun(FALSE);

VELOCITY
vec...scale(bmnptr->orientation[YJ, bmnptr->speed, velocity)

*POSITION/
vec,.add(bmptr->location, velocity, bmrptr->Iocation)

if(missile~fuzeý_all-prox(bmptr,
MSL-TYPE-BALLISTIC, PROXJUZEOQN.ALLVEH,
&(nuII..VehideID), &(dart->pptr),
veb~list, lNVE9TDIST SQ. FUZELDI9ýST.Q)

do

/0 DETONATION ?
ff(missileý_util-comm -check sub mun(bmptr, MSLTYPE_BALLISTIC,

sub mun, SUB MUN-CANISTER))
midssile util comm ýrelease sub _munition(bmptr,

MSL,_YPELBALLISTIC,
sub mun,
SUBý_MUNCANISTERt,
zero vector,
velocity)

)while(dart->pptr != NULL &&
midssile-fuze detonate ~prox(brptr, MSLTYPEBALLISTIC,

&(dart->pptr), WUZELDIST-SQ, 0));
retun(TRUE);

- 0-7 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix P - Source code listing for subm73.c.

The following appendix contains the source code listing for
subm73.c for convenience in document maintenance and
understanding of the CSU.

0

- P-I -

[Document control number and date: Volume x of y (if multi-volume)]

* Appendix P - Source code listing for subm73.c.

The following appendix contains the source code listing for
subm73.c for convenience in document maintenance and
understanding of the CSU.

-P-1 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix P - Source Code Listing for sub.m73.C

/* $Header. /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmisaile/RCS/sub._m73.cv 1.1
1992/09/30 16:39:52 cm-adst Exp $ V

/*

$Log- subm73.c,v $
*Revision 1.1 1992/09/30 16:39.52 cm-adst
* Initial Version

static char RCSID = "WHeader. /a3/adst-cm/RWA/sinuet/vehide/libsrc/libmissil
e/RCS/sub-m73.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp $";

* Revisions:

* Version Date Author Title SP/CR Number

* 1.2 10/23/92 R. Branson Data File titali-
* zation
* 1.3 10/30/92 R. Branson Added pathname to data
* directory

* SP/CR No. Description of Modification

* Hard coded defines changed to array elements.
* Characteristics/parameter data array added.
* Added file reads for subm73 characteristics/
* parameters.

* Added "/simnet/data/" to each data file pathname.

* FILE: sub_m73.c
* AUTHOR. Kris Bartol
* MAINTAINER: Kris Bartol

* PURPOSE: This file contains routines which simulates
* the behavior of sub-munitions of type
* munitionUSM73.
* HISTORY: 10/06/90 kris

Copyright (c) 1989 BBN Systems and Technologies, Inc.

- P-2 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix P - Source Code Listing for sub.m73.c

All rights reserved.

#include "stdio.h"
#include "math.h"
#include "simtypes.h"

#include "simrdfns.h"
#include "basic.h"
#include "mun_type.h"

#include "libmath.h"
#include "libmap.h"
#include "libmatrix.h"
#include "libndssdfn.h"
#include "libmissjoc.h"

#include "rkthydra.h"

#define DEBUG 0 /0 debugging is ON /

/./

* Sub M73 characteristic parameters initialized to default values.S/,//

static REAL sub m73..charu31 =

0.03266667, /* 75% of gravity - 75% * 9.8m/secAA2/225 ticksAA2*/
M73_Rý)TANGLEX, /* bomblettes fall w/ +/- 8.8 deg angular displ */
M73_FOOTANGLEY /0 bomblettes fall w/ +/- 1235 deg angular displ /

};

static REAL zero._velocity[3J = 10.0, 0.0, 0.0);

static void ndssile.m73_get-impact 0;

1 1aa- -aa - -- -- --

* ROUTINE: missile.m73_init
* PARAMETERS: bmptr - Pointer to a _BALLISTICMISSILE_
* structure that's ammo-type is MPSM
* i.e. it releases sub-munitions of type
* _munitionUS_M73
* submun - Pointer to sub-munition structure
* associated with nbmptr_. *
* speed -Terminal speed of Rocket at detonation.
* RETURNS: none *
* PURPOSE: Initialize rocket's _bmptr_ to behave according*
* sub-munitions type of -munitionUSM73_..

* void missile..m73_init(bmptr, sub.mun, speed)

- P-3 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix F - Source Code Listing for sub..m73.c

BALLISTC jvMSILE *bmptr,.
BALLIMTC...SUB..MUN *subýmun;
REAL speed;

VECTOR impact.pt;
VECTOR displacement;

int i;
float data -tnp;
char descniptl64l;
FILE -fp;

P* DEFAULT CHARACTERISTICS DATA FOR sub-rn73.c READ FROM FILE
fp= fopen("/siinnet/data/subý-m73.d","r");

if(fp==NULL)(
fprintf(stderr, "Cannot open /simnet/data/subý_in7d\n");
exitO;

rewind(fp);

PRead array data 0/
i=0;

while(fscanf(fp,"%f", &datajirnp) != EOFMf
sub..m73_sharf ij = data jmp;
fgets(desaript, 64, fp);

/0 printf("subjnm73...char(%3d) is%I1I.3f %9", i, sub _m73LcharliJ,
descript);

++i

fcloseffp);

P* END DEFAULT CHARAC-MRISTCS DATA FOR sub-m73.c READ FROM FILE

bniptr->time = 0;
sub .. niun->imnpact.timer = 0;
sub -Mun->impact.distance = speed; /* distance rocket travelled last

frame, i~e. before detonation 0/

*get point under sub-munition release point

impact..PtIXJ = bmptr->IocationlX];
impact4AptIY = bniptr->IocationlY] - 10,
impact..pt[ZI = 10.0;
midssile-util_comm_release -subý_munition(bmptr, MSLTYPEBALLISTC,

sub mun, SUBMUNJIMPACT,
impact-pt, zero..yelocity)

.- -

22 January 1993
Reteei-'ce # W003036

Rev. 0.0

Appendix P - Source Code Listing for 5ub..m73.c

"* ROUTINE: missulejn73..drop
" PARAMETERS: bmptr - Pointer to a_-BALLISTIQ.MISSIL.E_

*structure that's ammo-type is MPSM
*~i~e. it releases sub-munitions of type
* munitionUS_M73.

* subý_mun - Pointer to sub-munition structure
REURS associated with ...bmptr.... *neouht

* RETURNS:TRUE if time of drop has been logeouht
* cause sub-munitions to hit the ground.
* FALSE otherwise.

*PURPOSE: Simulation of the dropping of munition-type
-munitionUSM73_ rounds.

static int traj..up = TRUE; /* TRUE: vector UP - FALSE: vector down

int midssile m73...drop,(bmptr, subjnun)
BALLISTIC)4MISSIE *bmptr;
BALLISTICý_SUBMUN -subý_mun;

BALIXSTIC _IMPACT Impact;
VECTOR impact~pt;

impact = &(subjnmun-,'impact);
if(impact->timer ==0)

if(miusile..utilacomm_ eck.sub...mun(bmptr, MSLJTYPE..BALLTISIC,
sub-mun, SUB..MUN-IMPACr))

if(impact->distance > 0.0)
impact->firner = (int)

((8 * scaled-randO) + 1.0 +
(sqrt((1.9 impact->distance) / sub..m73...char[01)));

else
impact->timer = -1;

#if DEBUG
printf("Height %1 Alf Time %d\n",

impact->distance, impact->timner);
#endif

else

impac~ptlXI = bmptr->location[Xl;
impact-.ptIYI = bmptr->locationfYl - 10;

f(tra~up)
impact-.ptIZI = bmptr->locationlZl + impact->distance;

else
impact-.ptIZI = 10;

traLup = !traLup);

-P-5 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix P - Source. Code Listing for sub-m73.c

missileý_util_commnirelease_..sb...munition(bxnpt, MSL'ITYPEBALLLSTIC,
subjnmun, SUB..MUNVMPAaT,
impact..pt, zero.-.velocity)

return(FALSE)

else

if(bmptr->time < impact->timer) /* wait until sub-.mun's ~

bmptr->time += 1; /* incr time counter
return(FALSE);

else /* ie. time== timer*/

if impact->timer > 0)

midssilejn73...gLimpact(bmptr->location, impact-pt,
bmptr->NauncheK_.C...world,
impact->distance);

midssileý-util-comm..release-.subjnmunition
(bmptr, MSLITYPE..BALLITC, sub-mun,
SUB.MUNjMPAaT, imnpact~pt, zero-yelodty)

/* reset time counter/
bmptr->time = 0,
rehzn(TRUE);

*ROUTINE: miissilejn73 impact
PARAMETERS: bmptr - Pointer to a ... ALLISTIC~vflSILE...

* structure that's ammo-type is MPSM
* ~i~e. it releases sub-munitions of type
* ...munitionrLUS...M73_.
*sub mun - Pointer to sub-mnunition structure

* ~associated with ...bmptr_..
*RETURNS: FALSE if all m73 have impacted the ground.
*PURPOSE: Simulation of _~munition..m.US..73L. impacts.

int mtissilejnm73jmpact(bmptr, sub..mun)
BALLISTIC.JAISSIE -bmptr,
BALLISTC SUB_.MUN *sub..mun;

BALLISTICJMPACr *impact,
VECTOR impact-.pt;

- P-6 -

22 January 1993
Reference W003036

Rev. 0.0

Appendix P - Source Code Listing for sub..m73c

impact = &(sub...mun->impact);
if(impact->timer <0)
I

if DEBUG
printf("ignore under ground detonation\n', bmptr->midssilejd)

#endif
return(FALSE)

if(bmptr->time <1)
impact->delay = 0;

else /*0 - .250sec delay/
impact->delay = (intX250 0 scled-ranO);

bmptr->time += 1;
if(midssilejiutil-comm_check~sub...mun(bmptr, MSL TYPEBALLISTIC,

sub _mun, SUBMUNIMPACT))

"* send _impact.. to util~ball & to world
"* missile-util~commji-mpacLball..sub..munition(bmptr, impact);

impact->quantity -=1;

*get NEXT M73 -impact.-ocation- OR stop

if(impact->quantity > 0)

missile..m73-get-impact(bmptr->location, impact -pt,
bmptr->isuncher...C.world,
impact->distance);

missileý-util-comm..release-subjnunition(bmptr, MSlJ,_YPEBALULSTC,
sub-mun, SUB)AUNIMPACr,
impacLpt, zeroL.yelocity)

return(ThIE);

else
Teturn(FALSE);

else /* Didn't get an impact/

missile...m,73-.ge-.impact(bmptr->location, impact..pt,
bmnpt->chendr..C..world,
impact->distance);

missile util-comm reles -sub munition(bmptr, MSLJTYPE..BALLISTC,
subjnmun, SUD..JUNjMPACr,
fimpact-pt, zeroý-yeloity);

ff(bmptr->time >impact->timer) /*Wm's up 'I

pnintf("M73 -SIMUL limed-out: %d non-impacts\n",
bmpact->quantity),

retun(FALSE);

- P-7 -

22 January 1993
Reference # W003036

Rev. 0.0

Appendix P - Source Code Listing for sub.m73.c

return(TRUE); I keep trying*/
)

static void missilenm73_-get.-impact(releasept, impact .pt, mCw, height)
VECTOR release-pt;
VECTOR impact..pt;
T MATJPTR mCw;
REAL height;
(

VECTOR detonation; /* Offset Vector in World Coords
of detonation point */

REAL x, y;

x = height - smn(deg.torad(sub._m73_char[f]' (0.50 - scaled randO)));
y = height * sin(dego.t..ad(subm73..char[21 * (0.50 - scaled-randO)));
detonation(XJ = x * mCw[0101 - y * mCw[0]1]h;
detonation[Y] = y * rnCw[0][0] + x * mCw[0]11;
detonationIZI = - height;

/*
Stretch _detonation_ vector to ensure intersection with ground/vehicle

veqscale(detonation, 1.5, detonation);
/*

"add to release..pt_ to get location of impact, in World Coords
*/

vecadd(release-pt, detonation, impact-pt);

P-8 -

