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Abstract

This research advances feature and model selection for feedforward neural networks. Feature

selection involves determining a good feature subset given a set of candidate features. Model

selection involves determining an appropriate architecture (number of middle nodes) for the neural

network. Specific advances are made in: neural network feature saliency metrics used for evaluating

or ranking features, statistical identification of irrelevant/noisy features, and statistical investigation

of reduced neural network architectures and reduced feature subsets. Additionally, a comprehensive

statistically-based methodology is presented for feature and model selection.

New feature saliency metrics are presented which provide a more succinct quantitative mea-

sure of a feature's importance than other similar metrics. A catalogue of feature saliency metric

definitions and interrelationships is developed which consolidates the set of available metrics for

the neural network practitioner.

A statistical screening procedure for identifying noisy features is presented. The procedure

involves statistically comparing the saliency of candidate features with the saliency of a known

noisy feature. Noisy features are successfully identified over a series of test problems using the new

saliency screening procedure.

Two novel neural network selection algorithms are developed by posing the neural network

model as a nonlinear regression statistical model. The first is an architecture selection algorithm

and the second is a feature selection algorithm. The feature selection algorithm is unique because

architecture reduction is investigated as features are removed. Both algorithms use the likelihood

ratio test statistic within a backwards sequential procedure. Application results demonstrate how

these algorithms can be used to search for a more parsimonious neural network model with equiv-

alent prediction accuracy.

A comprehensive neural network selection methodology is developed for identifying both

a good feature set and an appropriate neural network architecture for a specific situation. It

encompasses a combination of the statistical screening and the statistical architecture and feature

selection procedures. Application results demonstrate the utility of the methodology.

xii



Feature and Model Selection

in

Feedforward Neural Networks

I. Introduction

This research advances feature and model selection for feedforward neural networks. Feature

selection involves determining a good feature subset from a set of candidate features, and model se-

lection involves determining an appropriate neural network architecture (number of middle nodes).

Generally speaking, feedforward neural networks are used as either regression functions or

discriminant functions. For both linear and nonlinear regression analysis, as well as discriminant

analysis, there is statistical theory formalizing the process of feature and model selection. Until

this research, statistical theory has not been practically used to formalize the selection process for

feedforward neural networks.

These research results contribute to theory formalizing feature and model selection for feed-

forward neural networks. Specific advances are made in: neural network feature saliency metrics

used for evaluating or ranking features, statistical identification of irrelevant/noisy features, and

statistical investigation of reduced neural network architectures and reduced feature subsets. Ad-

ditionally, a comprehensive statistically-based methodology is presented for feature and model

selection. The remainder of this chapter provides background on feature selection and feedforward

neural networks, and a preview of the dissertation.

1.1 Feature Selection

Feature selection as considered in this research involves determining a subset of candidate

features specifically in the context of estimating a sufficiently accurate neural network prediction

function. Figure 1 shows how feature selection fits into an overall prediction process. In this section,

the term 'prediction function' is general and is also used to refer to classification functions.



There are many reasons for using feature selection techniques to reduce the number of features.

Reasons for using feature selection techniques include:

"* satisfying the general goals of maximizing the accuracy of the prediction function while min-
imizing the associated measurement costs

"* improving prediction accuracy by reducing irrelevant and possibly redundant features

"* reducing the complexity and the associated computational costs of a prediction function

"* reduce the amount of data needed for accurate prediction (i.e. reduce the 'curse of dimen-
sionality' [14:4871).

"* reducing associated data collection and data processing cost

"* improving the chances that a solution will be both understandable and practical

"* improving the possibility of graphical representation of the data

Generally, a prediction function is finely tuned to the finite amount of available training data.

When "feature spaces" are plagued with irrelevant or redundant features, a prediction function

may not generalize well for predicting unknown data, particularly if there is insufficient training

data. A reduction in the number of features may degrade prediction accuracy on the training data,

but it also reduces the amount of data required for good generalization. Foley recommends the

ratio of training vectors in a class to the dimensionality of the feature space should be greater

than three to ensure that the error rate on held out data is close to the true error rate [17:623].

pedicted
objects data candidate selected (lasuified)

ffeatures eatures 
data I

measurement possible feature prediction action
transformations selection (classification)

Figure 1. Prediction Process for Regression and Discrimination Problems
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His results are based on empirical results for a two-class discrimination problem with multivariate

normal distributions for the input features.

In this research a formalized feature selection process is characterized by three components.

The first component is a metric or criterion function for evaluating and ranking the features (or

feature subsets). The second component is a set of screening procedures for identifying irrelevant

and redundant features. The third component is a search methodology for examining possible

feature subsets. The results of this research provide advances to all three components of the

feature selection process in the context of feedforward neural networks.

1.2 Feedforward Neural Networks

Feedforward networks are generally used in two types of applicatiom: regression analysis

and discriminant analysis. For regression applications, the network is used ,o estimate a linear or

nonlinear function for prediction. For discriminant analysis applications, the network is used to

estimate a linear or nonlinear discriminant function for classification. Covered in the remainder of

this section are:

"* an overview of feedforward neural networks

"* the backpropagation algorithm

"* the neural network approximation to the Bayesian optimal discriminant function

"* confidence interval estimation techniques

1.2.1 Feedforward Neural Networks Overview. Feedforward neural networks, often referred

to as multilayer perceptrons, generally have a feature input layer, one or more hidden layers, and a

function output layer. The neural network shown in Figure 2 illustrates the structure and notation

associated with a single hidden layer feedforward neural network. The notation will be defined in

Section 1.2.2.

The feature input layer consists of normalized feature input data. The feature input data

can be the raw data or an appropriate 'tansformation (or projection) of the raw data. Typical

normalization of the feature inputs consists of either a simple transformation so that all features

3



Feedforward Neural Network

Output Laye
Nodes

Hidden Layer
Nodesr

input Layer ZZ 2 ............ Z
Nodes bias

Expansion of Hidden Node

=2 %E=O ziwtv2)

bi W022

Figure 2. Single Hidden Layer Feedforward Neural Network
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have the same range, say between -1 and 1, or between 0 and 1, or a statistical normalization

which standardizes each feature to null mean and unit variance [41:50] [60:16] [76:100].

Depending on the application, the nodes on the hidden (middle) layers either have linear or

nonlinear activation functions f(a). For example, linear activation functions, where f(a) = a, could

be used in linear regression. The sigmoidal activation function is commonly used as a nonlinear

activation function since its derivative is continuous and makes the weight update rule simple for

backpropagation training. The sigmoidal activation function and its derivative are defined as:

1
I ( a ) - e -

8(f(a)) f(a)[1- f(a)- Oa
Ox F

A single hidden layer network with sigrmoidal squashing functions on the hidden layer is used

in this research. A single hidden layer configuration is common because Cybenko, and Hornik and

others', show that this type of network (with linear output nodes) is capable of arbitrarily accurate

approximations for any arbitrary function provided a sufficient number of hidden nodes are used

with either sigmoidal activation functions [12], or appropriately smooth activation functions [27].

Although the number of required hidden nodes is unknown in advance, a reasonable number of

middle nodes is often determined by a trial and error process or by more sophisticated methods

[9, 13, 25, 28, 31, 32, 37, 44, 52, 64, 69, 79, 83]. A by-product of the feature selection research

done in this dissertation is a novel architecture selection algorithm presented in Chapter V for

investigating the appropriate number of middle nodes. The algorithm is unique because it is based

on a nonlinear statistical model selection criterion.

The function output layer consists of one or more nodes with linear or nonlinear activation

functions depending on the application. Linear output activations are generally used for function

approximation. Nonlinear sigmoidal output activation functions are generally used for discriminant

function applications. In this research, the output layer has sigmoid activation functions since

discrimination function applications are used.

1.2.2 Backpropagation Training Algorithm. Backpropagation is the most popular algorithm

for finding a feedforward neural network's weight parameters. The backpropagation algorithm was

5



first developed by Werbos [77]. Later, it was rediscovered independently by Parker and then

reformulated by Rumeihart, Hinton and Williams with reference to prior work by Parker[48, 63].

A good overview of the backpropagation training algorithm is in Lippmann [40, 41].

Backpropagation is an iterative gradient descent algorithm requiring sample problem data.

It involves minimizing the error between the actual and desired outputs of the network in order to

estimate a neural network's optimal weight parameters. In the backpropagation algorithm described

herein, the weights are "instantaneously" updated after the presentation of each input vector. In

another version of backpropagation, batch backpropagation, the weights are only updated after the

error gradient has been aggregated for one full presentation or "epoch" of the training data. The

instantaneous back propagation algorithm followed by additional details is presented next.

The Instantaneous Backpropagation Algorithm

for a

Single Hidden Layer Feedforward Neural Network

1. Randomly partition data into training, training-test, and validation sets.
2. Normalize the feature input data.

3. Initialize weights to small random values.

4. Present the network with a randomly selected vector from the training set, denoted xP.

5. Calculate the network output z0 associated with the pth training vector.

kth neural network output: 4 = f(j` 0  A w

- H is the number of middle nodes
- 1(a) = 1/(1 + e-4) for sigmoidal activation functions
- f(a) = a for linear activation functions
-w,' is the weight from middle node j to output node k
- z0 is the middle layer bias term and is set equal to 1

-J = fo •=0 w! ,Ozi) is the output of middle nodej
- M is the number of feature inputs
-wij is the weight from input node i to middle node j
- e0 is the input layer bias term, and is equal to 1
- z is the ith feature input

6. Update the weights.

* upper layer weights: (W1,%)+ = (w,2)- + jQSzj,

6



-lower layer weights: (wfr)o = (w'd)e + q6t1 o~', where

- (w]')- is the updated weight from middle node j to output k
- (wi)+ is the old weight from from middle node j to output k
- (wu4)- is the updated weight from input i to middle node j
- (wtuj) is the old weight from from input i to middle nodej
- q7 is the step size
- 62 = (d - 4)4(1 - 4) if there is a sigmoid on the output
- 6Q = (d4 - 4) if the output is linear
- = - z}) E', fiS(wut)-, if there is a sigmoid on middle node j
- =1 K 6.(u), if middle node j is linear

- 4 is the kth desired output of the pth exemplar

7. If training-test set error does not indicate sufficient convergence, go to step 4.

In Step 1, the problem data is randomly divided into two sets: a training data set and a

validation data set [23:116-117]. The training data set is further subdivided into a training set and a

training-test set. The training set is used to estimate the weight parameters, and the training-test set

is used to evaluate the backpropagation learning process by measuring the network's performance

on unknown data. The validation data set is a set of data which has not been used in any way to

determine the prediction function. The validation data set is used to evaluate a neural network's

capability to adequately generalize to future data. Some guidelines on determining these data sets

are given in [23:116-119] [76:28-39].

Data normalization schemes which can be used for feature input normalization in Step 2 are

discussed in Section 1.2.1. In this research, the validation data set is normalized separately from

the training data. This keeps the normalization information for the training and validation data

sets separate.

In Step 3, weight parameters are usually initialized to small random numbers between -. 5

and .5 [55:56]. Step 4 of the backpropagation algorithm is characterized by feeding a randomly

selected feature input vector xV into the neural network, where p indicates that x is the pth vector

7



in the training set. Step 5 involves calculating the vector of network outputs in a feedforward

manner via the summations and sigmoids defined by the network's structure.

In Step 6, the instantaneous network output error C.P associated with xV is calculated using

the pth vector of neural network outputs VP and the corresponding vector of desired outputs dv.

Instantaneous network output error E is the squared error associated with the pth exemplar and

is given as:
KC. D -42

k=1

whire K is the number of output nodes, dP is the desired output associated with the pth exemplar

and kth output, and 4 is the network output with the pth exemplar and the kth output. The

gradient descent step direction is determined by taking the partial derivative of C.p with respect to

the weight parameters. A derivation of the gradient descent step direction used in Step 6 is given

by Rogers and others [551.

The step size, il, can be constant or variable. White makes the point that a constant learning

rate is inefficient because the random influences in the input will result in random fluctuations in the

weight vector preventing backpropagation from ever settling down to the optimal weight vector [80].

A declining learning rate (eventually declining to zero) is minimally required for backpropagation

to settle down [801. White suggests declining learning rates which are inversely proportional to the

number of epochs or the log of the number of epochs [80]. Three potential declining learning rates

are defined below in terms of: the total number of epochs Ne, the current epoch L, and the starting

value a for a linearly declining learning rate. The drawback of the linearly declining learning rates

is that the maximum number of training epochs is used, which is not generally known in advance.

1
Log Declining Rate VL = Ln(l + L)

Linearly Declining Rate VL = a 1 N"e L )

8



Log-Linearly Declining Rate YL =N+1
n (1 + L)

Two types of error rates are associated with backpropagation training: output error and

classification error. Output error is measured as a function of the approximation error between

the vector of network outputs x and the vector of desired or true outputs d. Typically, the output

error is measured as the average squared network error. For a training set of P vectors, the output

error, denoted C., is defined
P K

co = P- F- (2)

P=1 A=1

where P is the number of exemplars in the training set, K is the number of output nodes, dP is the

desired output associated with the pth exemplar and the kth output, and 4 is the network output

with the pth exemplar and the kth output.

Classification error is used to measure the percentage of vectors which are incorrectly classified

in a data set. This type of error is applicable only when neural networks are used for discriminant

analysis or pattern classification problems. Define IP, a Bernoulli random variable as:

I = 1 if zP is incorrectly classified

{0 otherwise

where zP is the pth exemplar. The classification error, denoted 46, is then defined as the average

of P Bernoulli random variables P:
P

p-=1

The random partitioning of the data in Step 1 is often referred to as the hold-out method when

discussed in the context of error estimation. The hold-out method gives a conservative estimate of

the average network error for two reasons. One, it does not use all available data while training the

9



classifier [14:355]. Two, it uses an independent validation data set, rather than the training-test

set, to measure the average network error.

Minimum output error (and minimum classification error if appropriate) on the training-test

set is a good indicator of sufficient convergence or good 'generalization capability.' In Step 7, the

algorithm terminates if the error rate has converged sufficiently or the algorithm continues back to

Step 4 to get a new training vector.

Over-training is an undesirable phenomena which sometimes occurs with backpropagation

training. This phenomena has occurred if the training-test set error begins to increase while the

training set error continues to decrease. Over-training indicates the training set has been memorized

at the expense of the network's capability to predict (generalize to) the training-test set. In this

research, over-training was observed in cases of small training sets where a. neural network with

more than enough middle nodes were used. The combination of a small training data set with a

large number of middle nodes gives the network the capability to memorize or to over-generalize

to the training set.

1.2.3 Approzimation to the Bayesian Optimal Discriminant Function. In this section, the

neural network approximation to the Bayes optimal discriminant is discussed. The Bayes optimal

discriminant function minimizes the probability of error. It can be defined for the kth class of a

multi-class problem using the posterior probability of x belonging to class k [61]. The vector x is

classified as belonging to class k if the largest discriminant function value is from the kth class.

Several researchers have proven that a neural network approximates a Bayes optimal discrim-

inant under certain conditions [30, 54, 61, 68, 751 [41:501. These conditions are:

"* The neural network is trained to outputs of 0 and 1.

"* The training set data are random variables.

"• The network is trained to a minimum mean square error measure.
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* The training set class membership percentages reflect the real world.

When these conditions are met the neural network outputs z% can be interpreted as approximations

to the posterior probability for class k. The quality of these approximations is affected by:

"* Neural network complexity (i.e. number of middle nodes)

"* Amount of training data

"* Convergence of the neural network to a solution

1.2.4 Confidence Interval Estimation. Confidence intervals can be used to assess neural

network error rates. The performance over several runs of a neural network can be characterized

as an average error rate. A confidence interval for the average error provides information as to

the point statistics variability. Generally, more observations on a random variable will reduce the

corresponding confidence interval length.

The error rate of a neural network can be considered an independent random variable depen-

dent on: the random order of the training data set, the random starting point used to determine

the weight parameters, and the selected termination point of the neural network training. For

reasonably large number of training vectors P, the standard normal distribution or the t distribu-

tion can be used for confidence interval estimation, depending on whether the variance is known

or must be estimated. These distributions are appropriate for large P, since the error is inde-

pendent and approximately normally distributed by the central limit theorem [47:6]. For small

data sets, confidence intervals for proportions may also be appropriate for classification error rates

[24:252-254].

Let ti, i = 1,..., N be a random sample of N observations of the neural network error rate

6 which are assumed to be normally distributed. The mean and variance of 6 are defined as:

E{C} =i
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var{e} = a-

where E{.} is the expectation operator and var{.} is the variance operator. The corresponding

unbiased and consistent estimators for E(E} and var{i} are 1 and a', respectively, which are

defined

N

t--1
N

a=1

The mean error 1 is also approximately normally distributed with an expected value of i and

variance of e [47:71. That is:

var{ C} 
N

The corresponding unbiased and consistent estimators for E{B } and var{1} are 1 and - respec-N'

tively.

When o2 is known, the standard normal distribution can be used to form confidence intervals

for the expected value of t. In practice, however, the true variance is unknown and must be

estimated with s2. Therefore, the t distribution is most appropriate for forming confidence intervals

for E{t} with the statistic
t-p

which is distributed as a t distribution with N - 1 degrees of freedom. Confidence intervals for

E{1} using the t distribution look like:

12t
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where t(I_;N-_1) is determined by the t distribution for a given confidence coefficient 1 - a and

degrees of freedom N - 1. One can be 100(1 - a) percent confident that the absolute error in

estimating the EJE} is less than the confidence interval half width of *t(i;N_).

When computing confidence intervals for neural networks, one factor to consider is that

backpropagation learning may or may not converge to a local minima [80:143]. Usually, one does

not want to corrupt neural network point statistics and confidence intervals by including a network

which has not converged. According to White, it makes sense to train a number of neural networks

and select the network which minimizes network error [80:143]. Although this type of methodology

does not guarantee being close to a global minima, it usually yields estimated network parameters

which are consistent for a local minima [80:1431.

In this research, the inconsistency of backpropagation training is taken into consideration.

An attempt is made to only use neural network results which correspond to networks which are

trained to good local minima. For a network to be considered 'trained,' the network is required

to attain a predetermined (for the problem at hand) maximum error rate on the training set.

When a reasonable error rate is not attained, it is assumed that the network has not converged

to a good local minimum, and the results from this network are not used. In some cases, it is

impractical to enforce a reasonable error rate. In these cases, only a subset of the neural networks

are used to compute the statistics for network error. Each network in the subset represents the

best network from a sub-experiment where only the best network is kept from a number of trained

neural networks.

1.3 Preview

The remainder of this dissertation is organized as follows: Chapter II provides background

on the feature selection techniques associated with regression, discriminant analysis, and neural

networks. In Chapter HI, novel feature metrics for evaluating and ranking candidate features are
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defined and evaluated, and theoretical relationships among the set of available feature metrics are

documented. A technique for statistically identifying noisy features is presented in Chapter IV.

In Chapter V, selection algorithms are developed using a nonlinear regression statistical model

building perspective for both architecture determination and feature input selection in neural net-

works. Then, in Chapter VI, a comprehensive neural network selection methodology is developed

for identifying both a good feature set and an appropriate neural network architecture for a spe-

cific situation. The research is summarized and future research recommendations are made in

Chapter VII.
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IH. Background on Feature Selection Techniques

2.1 Introduction

This chapter provides a complete review of feature selection techniques developed for regres-

sion, discriminant analysis, and neural networks. The feature selection techniques developed for

regression and discriminant analysis, as well as those developed for neural networks, are relevant

background material since neural network applications include problems which have often been

solved using more classical regression and discriminant analysis techniques. Feature selection tech-

niques formally developed for classical regression and discriminant analysis may also be potentially

useful in a neural network context.

In Section 2, some common feature (variable) selection criteria and methodologies for linear

regression are covered. Statistical variable selection criteria for univariate nonlinear regression

are covered in Section 3. In Section 4, feature evaluation criteria and selection methodologies are

reviewed for discriminant analysis. The feature evaluation metrics and selection methods developed

specifically for neural networks are discussed in Section 5. In Section 6, the chapter is summarized.

2ý2 Linear Regression

There are several good references which survey aspects of the variable (feature) selection

problem for linear regression [26, 43, 47, 49]. In the linear regression literature features are gener-

ally referred to as predictor variables or just variables. In this section, univariate response linear

regression is reviewed including standard variable evaluation criteria and selection procedures. An

extension to the multivariate response case can be found in Chapter 8 of Anderson 13] and Chapter

15 of Krzanowski [35].

2.2.1 Univariate Linear Regression Overview. Univariate response linear regression is a

technique which describes the statistical relationship between a response variable and a set of
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fixed predictor variables. A statistical relationship, in contrast to a functional relationship, is not

exact. Statistical relationships are characterized by the tendency for the response variable to change

systematically with the set of fixed predictor (regressor) variables, and the tendency for points to

scatter around the curve of statistical relationship. Neter, Wasserman, and Kutner [47:27) describe

how these characteristics are embodied in a regression model by postulating:

"* There is a probability distribution of the response variable for each level of
the predictor variables.

"* The means of these probability distributions of the response variable vary in
some systematic fashion with the predictor variables.

A discussion of linear regression assuming randomly distributed predictor variables with a multi-

variate normal distribution can be found in both Thompson [73] and Anderson [3].

Consider the linear regression model

y =XP + e ~- N (O, a,2L) (3)

where, y is an n-dimensional vector of responses, and X is an n by k matrix with k - 1 columns

of fixed independent predictor variables and a column of l's for the constant or bias term. Also,

0 is a k-dimensional vector of unknown variable coefficients. The predicted or fitted vector of y,

denoted k, is defined

y=Xb, (4)

where b is a k-dimensional vector of estimated parameters for )9.

The method of least squares is used more extensively than any other estimation procedure for

determining regression model coefficients [46:121. This method requires minimization of the sum of

squared errors, SSE, given as

SSE = (y - k)'(y-
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now substituting for y using Equation 4 gives

SSE = (y - Xb)'(y - Xb)

To find the least squares estimator, partial derivatives of SSE are taken with respect to b and set

equal to 0, defining a set of normal equations. In matrix terms, these normal equations are:

(X'X)b = (X'y), (5)

where X'X is a k-dimensional matrix and X'y is a k-dimensional vector. Now, assuming (X'X)-l

exists, Equation 5 is solved for b using matrix algebra giving the least squares estimate:

b = (X'X)-'(X'y) (6)

Regardless of the distribution of the errors e, the method of least squares provides unbiased point

estimators with minimum variance among all unbiased linear estimators [47:52]. However, for

confidence intervals and most statistical hypothesis tests, it is necessary to assume that the errors

are independently distributed as given in Equation 3.

In neural network terms, the vector y is the n x 1 vector of observations of desired outputs

whereas the vector # is the n x I vector of actual outputs or trained neural network outputs. The

matrix X is the data matrix of measured feature vectors, including the bias term which is equal

to one for each feature vector. The vector P is somewhat analogous to the vector of unknown

optimal neural network weight parameters, and the vector of estimated coefficients b is somewhat

analogous to the vector of trained or estimated neural network weight parameters. Also, SSE is

the squared error function which is minimized in the standard backpropagation algorithm.

2.2.2 Selection Criteria. In this section, six of the common variable selection criteria used

with linear regression are reviewed. The first two, RI and R2., are measures of the proportionate
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reduction in the total variation of y associated with a subset of p predictor variables. These metrics

can be used to evaluate the quality of a regression model's fit to the present data. The third and

fourth criterion, C, and Pressp, are measures of a regression model's predictive error for a subset of

p predictor variables. These criteria are computed using a validation data set which is independent

of the data set used to estimate the regression parameters. C, and Press, are used to assess the

quality of future prediction for a subset of candidate variables. The last two selection criteria are

the Akaike and Swartz information criteria. These criteria are based on maximizing the theoretic

information content of a variable subset.

The coefficient of multiple determination, R., measures the proportionate reduction of total

variation in y associated with a particular set of p predictor variables. The total sums of squares

SSTO which is constant regardless of which predictors are used, the regression sums of squares for

p predictor variables SSRp,, and the sum of squared errors for p predictor variables SSE, are all

needed to define 1P.

SSTO = (y-y)'(y- k)

SSRP = (- y - y) (7)

SSEp = (y - k)'(y - k) (8)

Now, the coefficient of multiple determination can be defined as

S= ssr 1 - SSE,P S-•-- 1 S
STO SSTO

where the subscript p indicates that only p predictor variables have been used from a 'superset' of

q candidate predictors, where p < q.

For classical least squares linear regression, presented in Section 2.2.1, SSTO = SSR, + SSE,.

The criterion R2 does not correct for the number of variables in the model; therefore, it is maximized
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when all q predictor variables are used. The criterion is useful for comparing several subsets of

equal size. The subset with the largest value of R, is the subset which is associated with reducing

the largest proportion of the total variation in y. When subsets are not of equal size, Rq can be

subjectively inspected to identify variables which do not substantially increase in In.

The R2. criterion is similar to the R.2 criterion, except that it is adjusted for the number of

variables in the regression model. It is defined as

ssB.
R• = 1 -'SSE.

n--i

Using the fact that mean squared error for p predictor variables MSE_ is defined as

MSE= SSE, (9)
n--p

Now, R2 can be written as

MSEp
(SSTO)

Maximizing R2. is equivalent to minimizing the mean squared error for p variables MSEp, therefore,

a good feature subset will be associated with a large value of R.2. The relationship between R.2 and

Ris

2 = 2 _p-1 SSE,
" n - p SSTO

Mallows suggests a criterion based on minimizing the mean squared error of prediction MSEP

[421. The definition of MSEP for p predictor variables is the same as MSEp in Equation 9, except

that now the variables y, Sy, and n correspond to an independent validation data set (different from

the data set used to estimate the regression parameters).

A standardized MSEP criterion, r,, is defined as the ratio of the reduced model's MSEP over

the full model's true error variance, a2. This criterion is meant to find a reduced model with p
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predictor variables that provides a similar MSEP to the full model. Here, the full model is assumed

to be unbiased, so the full model's MSEP is an unbiased estimator of a'.

Mallow's C, criterion is an estimator of r, and is defined as

= SSEP, (n - 2p)
MSEP

where SSEP, is the sum of squared errors for p predictor variables on the validation data set, and

MSEP is the mean square prediction error for the full model on the validation data set. If there is

no bias in the reduced model of p predictor variables, then SSEP, ;- SSEP for the full model, and

the expected value of C, is approximately p. For a good feature subset, the C, criterion should be

small and as close to p as possible, indicating a small prediction bias associated with the reduced

regression model of p predictors.

The PRESS, selection criterion proposed by Allen is based on minimizing the sum of squared

deleted residuals [2]. Let d be the n-dimensional vector of deleted residuals, where the deleted

residual d. is the prediction error for observation i when a regression model is fit without the ith

observation. The PRESS, statistic for a model with p predictor variables is formed by the sum of

the squared deleted residuals for that model.

PRESS, = dd'

An equivalent expression for d. can be used which makes it unnecessary to re-estimate the

regression model for each d4 [47:451]. The equivalent expression is

1- hi

where ej is the ordinary residual with no observations deleted, and hN is the ith element along

the diagonal of the matrix iH = X(X'X)-1 X'. Models with the lowest PRESS, for a subset of
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size p fit well in a predictive sense. This criterion is subjective when used to discriminate between

variable subsets of different sizes p.

Akaike proposed a criterion developed for statistical model identification based on information

theoretic considerations [1]. The criterion can be defined as

AIC, = log[f(y; X,b)]- p

where p is the number of unknown parameters, and f(y; X, b) is the probability density function

of V evaluated at b (maximum likelihood estimates of the p unknown parameters of the subset

model). A good feature subset is identified by a maximum AIC.

Schwartz proposes a Bayesian version of AIC which is also maximized when used for feature

selection [71]. It is defined as

log[f(y; X, b)] - 1 p log n

where f(y; X, b) is the probability density function of y evaluated at b (maximum likelihood esti-

mates of the p unknown parameters of the subset model), and n is the number of samples. This

criterion is better suited than Akaike's to selecting lower-dimensional models. When n is large, the

two procedures may produce results which differ greatly [71:4631.

The selection criteria described in this section are methods for measuring the relative worth

of one variable subset compared to another. By themselves, however, they do not indicate which

variables should be retained in a linear regression model. These selection criteria in concert with

the selection methodologies described next can be used to determine what variables to retain.

2.2.3 Selection MethWdologies. Generally, a variable selection procedure involves both a

criterion (metric) to evaluate or rank variable subsets, and a methodology to select the best subsets.

Variable selection involves selecting the p best variables from among q candidate variables, where

p !5 q. Some of the well known methodologies for selecting the best variable subset are discussed in
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this section. The well known methodologies include: explicit enumeration of all subset regressions,

best k subset regressions, and sequential search of subsets. Two other methodologies are reviewed:

ridge regression and principal components regression.

The regression of all subsets requires an explicit enumeration of all 2' - 1 possible subsets.

When this approach is used, one of the selection criterion from Section 2.2.2 is used to subjectively

discriminate between variable subsets. Sometimes, a small subset of the best regression models is

selected for further detailed examination. This method is the most computationally intensive of the

selection methods described. Time-saving algorithms, which evaluate substantially fewer subsets,

are described next.

Best k subsets algorithms have been developed which give the best k subsets according to a

given criterion. Furnival and Wilson propose a branch and bound algorithm which uses product

inverse matrices and a sophisticated sequence of pivots or Gaussian eliminations [18]. The algorithm

evaluates the SSRP at each step against some bound to determine the next pivot. Furnival and

Wilson's algorithm provides the k best regressions for each subset size p.

Sequential algorithms are substantially less computational; however, there is no guarantee

that these methods provide the best variable subset. Three algorithms for sequential selection

are: forward selection, backward selection, and stepwise selection. These algorithms discriminate

between feature subsets using a measure of the predictive or explanatory capability of the regression

function. A measure of a regression function's predictive capabilities for a specific subset is given by

the metrics described in the previous section. A conditional measure of the additional explanatory

contribution of a variable or a set of variables is embodied in the F-statistic given in a partial

F-test.
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The partial F-test is used to test the significance of one or more variables. The linear regres-

sion model in Equation 3 is used with the partial F-test. It is given again for reference as

y = XO+ e e .N.(0, Oai'r),

where y is an n-dimensional vector of responses; X is an n x k matrix of regressor variables

consisting of k - 1 independent variables and a column of l's for the constant term; and 68 is a

(k + 1)-dimensional vector of unknown variable coefficients. The partial F-test is associated with

the null hypothesis:

HO: 0,

where p is the number of parameters hypothesized to be in the model, and k - p are the number

of parameters hypothesized to be 0. When testing the significance of just a single variable, then

k - p = 1 or p = k - 1 in Ho. The associated test statistic, denoted F', is defined:

SSE,-SSBh

F = (--)-(.k) (10)
It-k

Under Ho:

F" - F,%-,.-'

When F' < Fk-,,.-k, the null hypothesis can not be rejected which means the reduced model

with some parameiers hypothesized to be zero is accepted. The variables which are not in the

reduced model correspond to the parameters which are hypothesized to be zero. Otherwise, if

FP > Fk-p,,-0 , then the null hypothesis can be rejected. This means that the full model is

accepted and no variables are removed.

The sequential selection algorithms presented in this section are based on the F-statistics

computed for the partial F-test. The strategy is to apply successive partial F-tests to test the

explanatory contribution of a variable to the total sum of squares.
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The forward selection procedure starts with no variables in the model and increases the

number of variables one at a time. At each step, partial F-statistics are computed. If the null

hypothesis can not be rejected, then the algorithm terminates at that number of variables in the

model.

Forward Selection

1. p =0

2. Compute all regression models for size k = p + 1 which include all previously selected p vari-
ables in the model

3. Select as a candidate for entry, the new variable associated with the model having the highest
F* statistic computed using Equation 10

4. Perform partial F-test described beginning on page 23

5. If Fkp,._k > F, -p,-k, allow candidate variable to enter model, set p = p + 1 and go to
Step 2
Otherwise, So to Step 6

6. Stop

The backward selection procedure starts with all the variables in the model and decreases

the number of variables one at a time. At each step, partial F-statistics are computed. If the null

hypothesis is rejected at any step, the algorithm terminates. Advantages of a backward selection

procedure over a forward selection procedure are discussed in Mantel [431. These advantages include

economy of effort and, potentially, better variable selection when correlated variables are present.

Because of these advantages, the backwards sequential selection algorithm is used in the selection

procedures presented in Chapters V and VI.

Backward Selection

1. k - q, where q is the total number of candidate variables

2. p= k -1
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3. Compute all regression models for size p which do not include any previously eliminated vari-
ables

4. Select as a candidate variable for elimination, the variable which when removed produces the

model with the lowest F" statistic computed using Equation 10

5. Perform partial F-test described beginning on page 23

6. If Fk P,,_k > Fk-p,,-k, go to Step 7 and do not eliminate candidate variable
Otherwise, eliminate candidate variable, set k = k - 1, and go to Step 2

7. Stop

Stepwise selection procedures include forward and backward stepwise procedures. They are,

essentially, modifications of the forward and backward selection procedures. The forward stepwise

procedure tests to see if any other variables should be eliminated after each iteration of the al-

gorithm. The backward stepwise procedure tests to see if any other variables should be included

after each iteration of the algorithm. The forward stepwise algorithm is illustrated here. Like the

forward selection algorithm, the forward stepwise selection algorithm starts with no variables in

the model.

Forward Stepwise Selection

1. p=0

2. Compute all regression models for size k = p + 1 which include all previously selected p vari-
ables in the model

3. Select as a candidate for entry, the new variable associated with the model having the highest
F* statistic computed using Equation 10

4. Perform partial F-test described beginning on page 23

5. If F;-P,,-h > Ft-p,-k, allow candidate variable to enter model, and go to Step 6
Otherwise, go to Step 9
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6. Compute all regression models of size p which include only variables that are currently in the
model

7. Select as a candidate for elimination, the variable which when removed produces the model
with the lowest F" statistic

8. If F > Fk-.,,.-_, set p = p + 1, and do not eliminate candidate variable
Otherwise, eliminate the candidate variable and go to Step 2

9. Stop

Pope and Webster, and Krishnaiah point out problems with the use of the F-statistic for the

forward, backward, and stepwise sequential procedures [36, 49]. Krishnaiah recommends not using

these procedures for the selection of variables, since, in general, the necessary conditions are not

met for F* to be distributed as an F distribution [36:814] [49:331-3321. Instead, Krishnaiah recom-

mends using the overall F test and methods based on all possible regressions or finite intersection

tests (FIT). The FIT, developed by Krishnaiah, involves using a multivariate F-distribution for

simultaneously testing whether a set of variable coefficients are zero [65]. Details for applying the

FIT for either univariate or multivariate regression can be found in Schmidhammer [65].

Another technique which can be utilized for feature selection is ridge regression. Ridge re-

gression is a biased regression technique primarily designed as a remedy for multicollinearity. The

technique introduces a biasing constant, c, where c > 0, into the least squares normal equation,

Equation 5, to give

(X'X + cI)bR = X'y

A simple way of choosing c is to increase c gradually and plot a ridge trace. A ridge trace is a plot of

the regression coefficients against c. Variables which are candidates for elimination are associated

with unstable ridge traces (details can be found in Neter Wasserman and Kutner [47:414-417]) and

coefficients close to zero.

Principal components regression is yet another technique which can be utilized for feature

selection. In principal components regression, the original variables are transformed using linear
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combinations suggested by the eigenvectors of the covariance matrix. Transformed variables asso-

ciated with very small eigenvalues can be identified as candidates for elimination, since they are

not associated with a very big portion of the original variables' variance. There are two prob-

lems associated with this method: difficulty in interpreting the transformed variable, and lack of a

quantitative stopping rule to indicate the number of transformed variables to drop.

2.3 Nonlinear Regression

There is a limit to what can be adequately approximated by a linear model, even after exploit-

ing transformations of the dependent or independent variables. When this is the case, a nonlinear

regression model is usually considered. This section reviews univariate nonlinear regression and

standard statistical selection criteria. Multivariate response extensions to the univariate case are

presented in Chapter 5 of Gallant [20].

2.3.1 Univariate Nonlinear Regression Overview. Univariate response nonlinear regression

is analogous to linear regression: it is a technique which describes the statistical relationship between

a response variable and a q-dimensional set of fixed predictor variables. The predictor variables

are treated as fixed known constants and not as random variables [20:21. However, it is possible

to consider the "random predictor variables case" of nonlinear regression as a special case of the

"fixed predictor variables theory [20:247]." The discussion of the nonlinear regression model in this

section is taken from both Gallant's [20] and Seber and Wild's [66] presentations.

Consider the univariate nonlinear regression model

y = f(X, 0) + e -N,, N(0, o2 IL)

where, y is an n-dimensional vector of responses, X is an n x a matrix with q columns of predictor

variables and a column of l's for the bias term, 0 is an s-dimensional vector of unknown parameters,
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and f(X, 9) is the response function. The functional form hypothesized for f(X, 9) is normally

chosen based on the problem at hand or experience.

The predicted value of y, denoted k, is defined

k =f(X,)

where 0 is the least squares estimate for 9. The least squares estimator 6 is found by minimizing

thc sum of squared errors SSE

SSE = [y - f(X, 6)1'[y - f(X, 6)]

with respect to 0.

In neural network terms, the vector y is the n x 1 vector of observations of desired outputs

whereas the vector k is the n x 1 vector of actual outputs or trained neural network outputs.

The matrix X is the data matrix of measured feature vectors, including the bias term which

is equal to one for each vector. The vector 9* is analogous to the vector of unknown optimal

neural network weight parameters, and the vector 6 is the vector of trained or estimated neural

network weight parameters. Also, SSE is the squared error function which is minimized in standard

backpropagation. In Chapter V, the neural network model will be posed in the framework of a

nonlinear regression statistical model.

To find the parameters which minimize SSE, the nonlinear function f(X, 9) is expanded in a

Taylor series about 0 = 9*, retaining only the linear terms as [46:427]:

f(X,o) f(X,9*) + F(X, o.)(o- 9*),

where

F(X,9) f -f(X,O) (11)
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and F(X, 0") represents F evaluated at 0 = 0". The truncated Taylor series representation is

essentially a linearization of f(X, 0) in the neighborhood of the unknown parameter 0*. With this

form of f(X, 9), several methods, such as the Gauss-Newton method, exist for computing the least

squares parameters, 0 [20:26-46].

In general, estimators for 0 are not unbiased [46:426]. The properties of unbinsedness and

minimum variance are only approached asymptotically or in the limit when n the number of obser-

vations is large [46:4261. The distributional properties of normal-error least squares paramet-rs have

practical importance, since the assumed distributional properties are used in hypothesis testing to

make inferences about the parameters. With the assumption of normal errors and certain regularity

conditions, 0 has approximately an a-dimensional multivariate normal distribution defined as

6 , N.[0, s2(F'F)-1]

where F is defined in Equation 11, and

2 SSE

is an estimate of the error variance a,2 corresponding to 9.

In practice, the matrix t is used to approximate (F'F)-', assuming (F'F)-l exists, where

C = (F(O)'F(6))-' (12)

The assumption of normal errors and certain regularity conditions also gives

n -(13)
O.2

Gallant rigorously presents the regularity conditions used to make these distributional assumptions

[201. The conditions are summarized below [20:19-21]:
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1. The sequence of observations on predictor variables x must behave properly as n tends to

infinity. Proper behavior is obtained when:

"* The predictor variable observations are chosen by random sampling.

"* The predictor variable observations are chosen by disproportionate replication of a fixed
set of points.

2. The response function f(X, 0), as well as it's first and second partial derivatives, must be
continuous in (X, 0).

3. The identification condition holds which requires that the
lim,.-. n-1 E7=1-[f(xi, 0) - f(x•,0*)] 2 has a unique minimum at a = 69, where xi is the ith
predictor variable.

4. The rank qualification condition holds which requires that the
hm.-. n-1 E7=, F'(x., G*)F(xi, 0*) be nonsingular.

2.3.2 Statistical Model Selection Criteria. In this section, three statistical selection criteria

for nonlinear regression are reviewed: the Wald test statistic, the likelihood ratio test statistic,

and the Lagrange multiplier test statistic. Seber and Wild discuss the asymptotic equivalence of

these statistics [66:571-5811. All three criteria are test statistics which are formed during hypothesis

testing. Several detailed examples of applying these test statistics for hypothesis testing are given in

Gallant [20:48-100]. In this section, these criteria are presented and reviewed in nonlinear regression

terminology for ease of access into the nonlinear regression literature. In Chapter V, these criteria

will be redefined for use in the context of a neural network model.

The first model selection criterion is the Wald test statistic W [20:48]. Define h(O) as a once

differentiable function mapping from I° to Rk with a s x k Jacobian H defined as

H(9) = d h(O), (14)

where a is the number of parameters in the full model, and k are the number of parameters

hypothesized to be zero in the reduced model. Consider testing the hypothesis H0 which is given
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as

Ho: h(O*) = 0,

The Wald test statistic is defined as

w = h'(6)(H# 1')-h(6)ks82

where C and H = H(6) were defined previously in Equations 12 and 14, s2 is for the full model with

a parameters, and k is the number of parameters in the hypothesized model. The Wald test statistic

is formed using the ratio of two independent chi-squared statistics each divided by its respective

degrees of freedom. Under H0 , the numerator, to within approximation error, is a chi-squared

statistic with k degrees of freedom which is associated with the null hypothesis (see Gallant for

details [20:47-48]). The denominator, to within approximation error, is a chi-square statistic with

n - a degrees of freedom, and is associated with the full model [20:47-481. The chi-squared statistic

in the denominator was previously shown in Equation 13.

Under Ho, the Wald statistic is distributed as an F-distribution with k numerator and n - a

denominator degrees of freedom. When W exceeds the a x 100% critical point of the F-distribution

with k numerator and n - s denominator degrees of freedom, the hypothesis Ho is rejected. This

means that the reduced model with fewer parameters is statistically not equivalent to the full model

with all a parameters. Therefore, no parameters would be removed.

The second model selection criterion is the likelihood test statistic, which is analogous to

the partial F-test discussed in the previous section. The likelihood test statistic L is also used to

test Ho : h(B9) = 0, where h(O*) is defined to be a subset of k parameters from the full set of a

parameters. It is defined as

L = (SSE._, - SSE.) /( (n - (@ - k)) - (n- a) (5)
(SSE.) /(n- -a)
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where SSE.-.. corresponds to the sum of squared errors associated with fitting the model under

the null hypothesis, and SSE, corresponds to the sum of squared errors associated with the full

model. Under Ho, L is distributed as an F distribution with k and n - a degrees of freedom for the

numerator and denominator, respectively. When the L exceeds the a x 100% critical point of the

F-distribution with k numerator and n - a denominator degrees of freedom, the hypothesis H0 is

rejected. This means that the reduced model with fewer parameters is statistically not equivalent

to the full model with all a parameters. Therefore, no parameters would be removed.

The third model selection criterion is the Lagrange multiplier or efficient score test statistic.

There are two versions of this test statistic discussed in Gallant [20:85-97]. The Lagrange multiplier

test statistic is also used to test H0 : h(O*) = 0, where h(O*) is defined to be a subset of k

parameters from the full set of a parameters. Let SSE be minimized for the full model subject to

the null hypothesis h(O*) = 0. This is a constrained minimization. The resulting estimator of the

constrained minimization is denoted 6.

Now i is used as a starting value and one 'unconstrained' Gauss-Newton step is taken away

from 6, presumably towards i which is the least squares estimator for the unconstrained minimiza-

tion of SSE. The Gauss Newton step, denoted fD is defined in Gallant [20:85] as

= [y -

where F = F(i) as previously defined in Equation 11. If Ho is true, then f) will be small.

Conversely, if Ho is false, then f) will be large. The two forms of Lagrange test statistics, R, and

R2, are based on a measure of 1. They are defined in Gallant [20:86] as:

&r (t'I) ti/k
= SSE(6)/(n - a)

R2 nbi (frt) b
R2  = SSE(d)
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where SSE(6) represents the minimum sum of squared errors when fitting the full model with no

constraints, and SSE(i) represents the constrained minimum sum of squared errors when fitting

the full model subject to Ho. With RI, the Lagrange multiplier test rejects Ho when R, exceeds

F. i With R2 , the Lagrange multiplier test rejects Ho when R2 exceeds d. which is

defined

dam nF.
(n - s)/k + F.

2.3.3 Summary of Statistical Model Selection Criteria. In Summary, there are three model

selection hypothesis tests used in feature selection for nonlinear regression: the Wald hypothesis

test, the likelihood ratio test and the Lagrange multiplier tests. The Wald test statistic has both

advantages and disadvantages. The advantage is that only the unconstrained/full model must be

estimated for this criterion. However, the disadvantage is that Wald test statistic can be seriously

affected by parameter effects curvatures of the error surface which are not accounted for in the

linearized approximation used for f(X, 0) [66:200-220). The likelihood ratio test statistic and the

Lagrange multiplier test statistics are not affected by the parameter effects curvatures [66:2001.

Between the two versions of the Lagrange multiplier test, the first test R, is always more powerful

than R2, although this increase in power is sometimes negligible [20:88-89]. In practice, R 2 is more

commonly used than R1, since R2 requires just one minimization of SSE rather than two, making

R2 easier to compute [20:86-87]. When comparing the likelihood ratio test statistic and the two

versions of the Lagrange multiplier test statistic, the likelihood test statistic is always the more

powerful [20:89].

The last two sections reviewed feature selection topics related to linear and nonlinear regres-

sion. The next section reviews feature selection topics related to discriminant analysis.
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2.4 Diacriminant Anayis

In discriminant analysis problems, the practitioner is concerned with classifying a pattern

or an object into one of K classes. A pattern or an object is represented by a vector of features

which ideally contain discriminatory information between the classes. There are many algorithms

available for doing discriminant analysis. The vast number of algorithms makes it impossible to

provide a concise overview of these algorithms in this document. Devijer and Kittler, Dillon and

Goldstein, and James are all good references on discriminant analysis and pattern recognition

algorithms [14, 15, 29].

Feature selection in these applications is similar to linear regression, since, ideally, feature

subsets would be evaluated based on a measure of the classification function's accuracy. In linear

regression, calculating this measure is very simple, but for discriminant analysis it can be pro-

hibitively time consuming. Therefore, feature selection is often carried out by trying to maximize

an alternative measure. This alternative measure is hopefully related closely to the error rate of

the resulting classifier [29:127]. There are several good references which review feature evaluation

criteria and feature selection methodologies in the context of pattern recognition and discriminant

analysis [8, 14, 15, 29, 74]. In the remainder of this section, standard distance metrics used for

evaluating or ranking features and feature selection methodologies are reviewed.

2.4.1 Selection Metrics. A common need for all feature selection procedures is to have an

evaluation function for measuring the saliency or potency of features. This section reviews non-

probabilistic and probabilistic feature evaluation metrics. The non-probabilistic feature evaluation

metrics are reviewed first, since they are relatively simple to calculate. After a discussion of the

non-probabilistic metrics, the more sophisticated, often computationally burdensome, probabilistic

metrics are reviewed.

Non-probabilistic feature evaluation metrics are used as an alternative to measuring the error

rate or a sophisticated probabilistic measure of the classifier's performance. Generally, these metrics
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are a measure of distance between classes. The non-probabilistic feature evaluation metrics are

based on the rationale that classes should be maximally separated in the feature space. The larger

the average separation between classes, the better the feature subset. While non-probabilistic

distance metrics are somewhat unsophisticated compared to the probabilistic metrics, they are

relatively easy to calculate.

Generally, these types of metrics attempt to maximnize the between class (interclass) distances

while minimizing the within class (intraclass) distances. An estimated matrix of the between class

distances, Sb, is defined as
K

s1 = P(Ch)Cn - m)(-a - m)',
k=1

where min is a M-dimensional mean vector of the kth class of M-dimensional training vectors, m is

a M-dimensional mean vector of all the training vectors, M is the number of features in a training

vector, and P(Ca) is the estimated prior probability of class k, denoted as Ch. An estimated matrix

of the within class distances, S., is defined as

K Ni

s. = E P(ck)N 5-' (zi - .,)(.,,- ,,4)',
k=1 i=1

where zk, is the ith training vector from the kth class and Nk is the number of training vectors in

class k. Two possible metrics D(x) which are maximized to find a good subset of features are

trS1
D(x) -trS

trS.

D (x) -

where E is equal to S. + Sb. Also, I " denotes calculation of a determinant. The main criticism

of these types of metrics is that they are not closely related to error probability. Two additional
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drawbacks of these metrics are: discriminatory potential of these metrics depends on the classes

having equal covariance matrices; and, pattern classes with equal means may give misleading results.

A general nonlinear metric D(x) which reflects the local probability structure of the data can

be mayxmized to find a good subset of features [14:242]

1 K P( K 1 _ Nb N,
D(x) = F = P(C,) = =1d(s I,,, x),

k=1 i= j=_

where d(z5 i, zjj) is the nonlinear distance metric between the ith vector in class k and the jth

vector is class 1. This nonlinear distance is equal to a constant H, if its Euclidean distance is

above a threshold T, otherwise it is equal to zero. The threshold T represents a safe or effective

distance for correctly classifying the two points into separate classes. Methods for determining

T are discussed in Devijver and Kittler [8:197-198,242-245]. This nonlinear metric represents a

compromise between probabilistic and non-probabilistic feature evaluation metrics.

The following survey of probabilistic distance metrics is primarily based on the discussion in

Ben-Basset and Devijver and Kittler [8, 141. Ben-Basset categorizes probabilistic feature evaluation

metrics into three categories by [8:778]:

1. Distance metrics derived from Information measures.

2. Distance metrics derived from distance measures.

3. Distance metrics derived from dependence measures.

The probabilistic feature evaluation metrics are reviewed using this taxonomy.

The first category of probabilistic feature evaluation metrics are the information metrics.

Probabilistic information measures are sometimes referred to as uncertainty measures. Given an

uncertainty function u and a prior probability vector w, the information gain, I(x) can be defined

in general terms as

1(x) = U(W) -
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Table 1. Distance Metrics Based on Probabilistic Uncertainty

Uncertainty Function Definition

Bayes P. U(*(X)) = [1 -max{P(CiIX),. *, P(Cjlx)}]
Shannon H u(r(x)) = - E P(CaIX)l19P(Ck IX)
Quadratic Q u(*(x)) = ELI P(CGIx)(1 - P(C Ilx))
Daroczy Q. u(*(x)) = 721-.- (Xf=, P(CKfx)a - 1)
f-entropy u(*(x)) = E 'fP(CsIx))

Renyi H. u(*U(x)) = 1 log E'=I P(CW IX)

This table adapted from [8:780].

where u(w) is the prior uncertainty and E.[u(*(x))] is the posterior uncertainty using the vector

of posterior probabilities *(x). The prior uncertainty, u(w), is independent of x, so an information

metric based on x can be reduced to

U(x) = E.[u(*(x))]

where we want to find the set of features x which minimizes the uncertainty U(x).

Uncertainty metrics differ by their definition of u(*(x)). Define the posterior probability

of Class k as P(Ct x) which is used in Table I to define several different uncertainty metrics

[8:779-780]. All of the uncertainty metrics are bounded above and below by some function of P.,

also defined in Table 1 (see Ben-Basset [8:780]). Also, Bayes, Shannon, Quadratic, and Daroczy

uncertainty functions all belong to the f-entropy family of uncertainty metrics defined in Table 1.

The Bayesian probability of error, P., is probably the most commonly used feature selection

metric. It falls into the category of probabilistic uncertainty metrics. The P, feature evaluation

metric is commonly used whenever the goal is minimizing classifier error rate with features of equal
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measurement cost. Let the posterior probability of class k for x, P(C5 Ix) be defined as

P(C5 lx) = P(Cs)P(xlCs)
E2kr~i P(Cs)P(xlCs)

where P(C5 ) is the prior probability of class k and P(xiCt) is the conditional probability function

of x for class k. Now, the P. metric can be given as [8:774]

P.(x) = E,[1 - max{P(C1 lx),..., P(CIx)}] (16)

where x is the vector of features for which P. is measured.

Ben-Basset discusses several reasons why alternative feature evaluation metrics may be pre-

ferred to P, [8:776-777]. First, the P, may not be sensitive enough to discriminate between good

and better features, because it is based on the most probable class which can be strongly influenced

by the prior probabilities P(C5 ). Second, sequential selection of features using P. does not en-

sure good performance on resulting subsets, even for conditionally independent features [8, 11, 16].

Third, other feature evaluation criterion may perform better when the objective of a myopic se-

quential selection procedure is to reach a predetermined level of P. by a minimum number of

features. Lastly, computation of P. may be costly, since it involves integration of the function

max{P(C1 Ix),..., P(Cslx)}. Of the four reasons just discussed, Ben-Basset concludes that the

most significant reason for avoiding P. is that it may not be sensitive enough to discriminate be-

tween good and better features [8:788]. Even if alternate metrics offer no computational advantage

over P., they should be considered when P. becomes highly insensitive due to a relatively high

prior probability for one class [8].

The second category of probabilistic feature evaluation metrics are the distance metrics.

Probabilistic distance metrics are based on distances between probability measures. Measures of

probability are prior probability density functions, posterior probability density functions, and
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conditional density functions. These metrics are also known as discriminatory, separability, or

divergence measures. Probabilistic distance metrics can be divided into two classes:

1. Those based on the distance between prior probability density functions and posterior prob-
ability density functions of each class.

2. Those based on distances between conditional density functions.

Probabilistic distance functions of the first type are based on the rationale that a feature

subset which changes the assessment of the true class probability is a good feature subset. The

more drastic the assessed change, the better the feature subset. This type of metric is similar to

the probabilistic information metrics except that distance functions are used instead of uncertainty

functions. Table 2 presents several different distance measures based on distance between prior

and posterior probability density functions for each class [8:783]. For these distance measures, the

probability of x, denoted P(x) is defined

K

P(x) = P(CS)P(xICk),
k=1

where P(Ck) is the prior probability of class k, and P(xICt) is the class-conditional probability

density function of x for class k.

Probabilistic distance functions of the second type are based on the rationale that the larger

the distance between class-conditional density functions P(xlCk), the easier it will be to discrim-

inate between classes. For a two class problem, this type of distance function is minimized when

P(xICi) = P(xIC 2), and is maximized when P(xICI) and P(xIC 2) are orthogonal [8:781]. For a

multi-class problem, the distance function can be generalized to be the weighted sum of distances

between class-conditioned density functions for all pairs of classes [8:781] [14:2611. The distance

function for a multi-class function measures the discriminatory power of the evaluated feature vector

over all K classes as
X K

D(x) = E P(Ck)P(CI)dk,(x)
k=1 1=1
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where dka(x) is the distance between class k and class I's class-conditioned density functions. A

disadvantage of this metric is that one large dhi may dominate D(x) by imposing a ranking which

is biased by the two most separable classes [8:782]. Table 3 presents several versions of d&I adapted

from Ben-Basset [8:784] and Devijver and Kittler [14:257-258]. Functions of the distance functions

in this table serve as lower and upper bounds for Pe [8:784]. Another multi-class distance measure

between class-conditional density functions is Matusita's extension of the infinity distance measure,

where D(x) is defined as [8:782]

K

D(x) =Ji P(xlCk)]*dx
k=1

The third category of probabilistic feature evaluation metrics are the dependence metrics.

Probabilistic dependence metrics can also be referred to as correlation metrics. They are natural

multi-class feature selection metrics related to both probabilistic information measures and prob-

abilistic distance measures. The probabilistic dependence metrics are based on the rationale that

correlation is important between an evaluated feature vector and its true class. The larger the

Table 2. Distance Metrics Based on Prior and Posterior pdfs

Distance Function Definition

Affinity f f[-I=L P(Cs Ix)]* P(x)dx
Bayesian f f[E=A1 P(Ctlx)2]P(x)dx

Directed Divergence f[t¶.l P(CG Ix) log " 'x]P(x)dx

Divergence of Order a > 0 k=f[log '=1 P(CkIx)GP(CS)(-a)]P(x)dx
Variance f [E=I P(Ct)(P(Ckjx) - P(C,%)) 2]P(x)dx

This table adapted from [8:783].

40



Table 3. Distance Metrics Based on Class-Conditioned Density Functions

Distance Function II Definition d5,

Chernoff - log f(P(xICs)' P(xIC,))(1-")dx
Bhattacharyya (Chernoff where a = .5) -log f(P(xIC.)P(xICI))idx

Matusita {fYP-iT -x

Kullback-Liebler f[P(xIC) - P(xdx

Patrick-Fisher {f[P(Ck)P(XICk) - P(CI)P(xjCI)]2dx}I
iAssack-Fu f I P(Ck)P(xIC,) - P(C,)P(xIC,) IQ P(-")(x)dx

Kolomogorov f I P(CA)P(xICD) - P(C,)P(xICa) I dx

This table adapted from [8:784] and [14:257-258]

Table 4. Distance Metrics Based on Probabilistic Dependence

Distance Function Definition R(x)_ _ _ _ _ _ _ _ _ _ _ _ _ ~II _ _ _ _ _ _ _ _

Chernoff Ek- P(Ch) { - log fC(P(xjC)aP(x))('-a)dx}
Bhattacharyya (Chernoff where a = .5) =L P(Ch) - log f(P(xICQ)P(x))idx

Matusita &= P(C,) {f[ VP(X[) - VP XIJ2dx}
Joshi (Kullback-Liebler) E•=I P(Ck) f[P(xICk) - P(x)_] lg dx

Patrick-Fisher E=l P(CG) {f[P(xICk) - P(x)Iidx}
Lissack-Fu VE=ý P(CA) f I P(xlCt) - P(x) I" P(l-*)(x)dx

Kolomogortv 1 E' P(Ck) fI P(xlC&) - P(x) I dx

This table adapted from [8:785] and [14:261]

dependence, denoted R(x), the better the feature vector x. Table 4 presents several versions of

R(x) adapted from Ben-Basset [8:785] and Devijver and Kittler [14:261].
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2.4.2 Selection Methodologies. Selection methodologies used for classification analysis are

essentially the same as those used in linear regression. Exhaustive search of all 2q - 1 feature subsets

for q candidate features is usually impractical for moderately large values of q. Even choosing the

best subset of size k by exhaustive enumeration is usually impractical, since it involves evaluation of

(q-k)!k! subsets. The are a number of optimal and suboptimal search algorithms which are designed

to circumvent an exhaustive search procedure. Most search algorithms look for the best features

by adding and/or removing features from the current feature set. A forward procedure starts with

no features and searches for the features in a "bottom up" manner, whereas a backward procedure

begins with all the candidate features and searches in a "top down" manner. A feature evaluation

metric is evaluated at each step of these algorithms to determine which features to add or remove

at each step. For some of the probabilistic distance metrics displayed in Table 3, computational

savings can be realized by exploiting recursive evaluation of the metrics during "bottom up" and

"top down" searches [14:265-269]. Genetic or evolutionary algorithms, which will not be discussed,

are alternative methods.

Branch and bound is an optimal search algorithm for finding the best subset of size k. It is

basically a "top down" search which avoids exhaustive search by using the monotonicity property

that applies to most feature evaluation metrics [14:207]. The monotonicity property dictates that

the error from a set of features is never greater than the error from a subset of those features.

This principal can be translated to mean more features implies more information which in turn

implies lower error. Monotonicity may allow many feature subsets to be inspected implicitly with

no additional computation. Devijver and Kittler provide a detailed presentation of the branch-and-

bound algorithm [14:207-214]. When the superset size k is approximately 1, the branch-and-bound

algorithm may yield substantial potential savings in computation costs compared to exhaustive

enumeration; however, the savings are not as impressive for very small k or k close to q [14:214]. In

many cases, the monotonicity assumption used by the branch-and-bound algorithm may be invalid
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if the statistical structure of the prior class probabilities is not known [74:799]. Van Campenhout

discusses the Hughes paradox which documents the phenomena of error being minimized at some

finite size feature set [74:796-780].

For many problems, the optimal branch-and-bound algorithm is still computationally imprac-

tical. Suboptimal search algorithms which trade off optimality for computational feasibility can

be used for these problems. With these algorithms, there is no guarantee that the best feature

set will be found. Some suboptimal searches are more sophisticated than others in two respects:

the number of computations required, and the number of feature subsets evaluated. There is also

no guarantee that more sophisticated algorithms will yield better subsets than less sophisticated

algorithms. The next paragraphs summarize several suboptimal search algorithms.

The least sophisticated suboptimal search algorithm is to choose a feature set of size k based

on the k best features when measured independently with one of the feature evaluation metrics

discussed previously in this chapter. Even if all the features are statistically independent, this

method does not guarantee optimality [8, 11, 14, 16].

Sequential forward and backward selection algorithms are similar to those discussed for linear

regression in Section 2.2.3. These algorithms allow just one feature to be added or taken away

at a time. The main drawback of forward and backward sequential selection algorithms is that

they do not allow a feature to be removed or added at a later point in the algorithm. Another

drawback is that the total number of features to be selected, k, must be known up front, since k

serves as a "stopping" mechanism. The algorithms stop when the current number of features in

the model, p, equals the number to be selected, k. The sequential selection algorithms which follow

are summarized from Devijer's and Kittler's presentation [14:216-217].
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Forward Sequential Selection

1. p=O
Set the total number of features to select equal to k
Select any of the feature evaluation metrics described in Section 2.4.1, say D(x)

2. Compute D(x) for all feature subsets of size p + I which include all previously selected p
features

3. Select the feature set of size p + 1 which maximizes (minimizes) D(x)

4. Set p=p+ 1

5. Ifp < k go to step 2
Otherwise, go to step 6

6. Stop, since k features have now been selected

Backward Sequential Selection

.p = q
Set the total number of features to select equal to k
Select any of the feature evaluation metrics described in Section 2.4.1, say D(x)

2. Compute D(x) for all feature subsets of size p - 1 which do not include any previously elim-
inated features

3. Select the feature set of size p - 1 which maximizes (minimizes) D(x)

4. Set p=p+ 1

5. Ifp> kgoto step 2
Otherwise, go to step 6

6. Stop, since k features have now been selected

Generalized sequential forward or backward selection allow more than one feature to be added

or taken away during each iteration [14:217-219]. By taking more than one measurement into con-

sideration, the statistical relationship among potential features is partially taken into consideration.

These algorithms are computationally more sophisticated than sequential algorithms, since more
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feature subsets must be evaluated at each step. These algorithms differ from the non-generalized

version of the algorithms primarily in Step 2. Now all feature subsets of size p + r or p - r are

evaluated, where r is the number of additional features added or taken away from the feature set.

The generalized forward or backward algorithm still does not allow features to be taken away or

added later in the algorithm.

Stepwise selection algorithms are sophisticated algorithms which allow one feature to be

added and taken away during each iteration of the algorithm. These algorithms partially take into

consideration the statistical relationship between feature subsets. Stepwise selection algorithms

require more computation than strictly sequential algorithms. The forward sequential algorithm

can be adapted to perform forward stepwise selection as follows.

Forward Stepwise Selection

1. p = 0
Set the total number of features to select equal to k
Select any of the feature evaluation metrics described in Section 2.4.1, say D(x)

2. Compute D(x) for all feature subsets of size p + I which include all previously selected p
features

3. Select the feature set of size p + 1 which maximizes (minimizes) D(x)

4. Compute D(x) for all feature subsets of size p which include previously selected p+ 1 features

5. If feature subset of size p which maximizes D(x) is not the same subset of size p from step 2,
then retain only those p features and go to step 2
Otherwise, go to step 6

6. Set p=p+ 1

7. If p < k go to step 2
Otherwise, go to step 8

8. Stop, since k features have now been selected

Stepwise selection algorithms can also be generalized to allow for more than one feature to be

added or taken away (or possibly both added and taken away) at each iteration of the algorithm
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[15:220-223]. Further generalization allows the number of features added or taken away to vary at

each iteration within the algorithm.

The last three sections have reviewed feature selection topics related to classical linear and

nonlinear regression and discriminant analysis. The next section reviews the work which has been

done for feature selection specifically in the context of neural networks.

2.5 Feedforward Neural Networks

In this section, techniques designed to evaluate and select features within a neural network

framework are reviewed. Notational conventions, network structure, and the back propagation

learning algorithm are reviewed in Chapter I for neural networks.

2.5.1 Feature Saliency Metrics. In this section, the established feedforward neural network

feature metrics are described. The single hidden layer neural network is displayed again for reference

in Figure 3.

The probability of error measure, Pe(x), introduced in Section 2.4, Equation 16, is often

used as a bench mark for independently evaluating the usefulness of neural network features for

discriminant analysis problems [51, 59, 60]. P.(x) is defined again here for reference

Pe(X) = EX[l - max {P(CIjx),..-, P(Q%,x)J],

where E B.} is the expectation function with respect to x, max{-) is the maximization function,

and P(C&Ix) is the posterior probability of class k. The probability of error Pe(x) is approximated

with a feedforward neural network when appropriate conditions are met (discussed in Chapter I

Section 3). Therefore, the net's approximation to P.(x) can also be used to independently evaluate

the usefulness of neural network features.
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Figure 3. Single Hidden Layer Feedforward Neural Network
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The network's approximation can be defined as

p

Pf,(x,) = P-I [1 j - max{zi(x,*),- •.,zjr(x,*)),]
p=I

where P is the number of data exemplars x in the data set and zk(x, *) is the network output for

the kth class. The network approximation to probability of error is computed for the feature vector

x and the estimated network weight parameters *. Alternatively, P.(x, *) can be used to evaluate

a subset of features with the network. In this case, the correlations between specific feature inputs

considered are taken into account.

Le Cun and others propose a saliency metric for evaluating features or middle nodes which

is based on second derivative information [39]. They construct a local model of the network error

function using a Taylor series approximation of the network's error (see Appendix A for details)

Then, the network's change in error due to weight changes is approximated. In order to make it

computationally practical to evaluate the Taylor series expression for the change in error, three

simplifying assumptions are used:

1. Assume the Taylor series is evaluated at a local mrinimurn of the error which makes the first
order terms equal to zero.

2. A diagonalizing assumption is used to eliminate all cross terms of the Hessian matrix.

3. A quadratic approximation assumption about the error surface is used which implies that 3rd
order and higher order terms are negligible.

All that remains are the second order diagonal terms, which are assumed positive at a lo-

cal minimum. Therefore, a perturbation of the vector of estimated weight parameters *,I =

{ibl,. .. , tbiq} associated with feature i should cause the error to either increase or to stay the

same. For a trained network, the saliency metric for feature node i developed by Le Cun and

others uses the second derivative of network output error with respect to the vector of associated

feature input weights. The network output error is defined as the squared output error C. defined
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as
P X

. =- - 4)
p=1 k=1

The second order saliency metric for feature i, denoted si, is defined as

• '2

where Or denotes the pth input exemplar, and

h = M' _2(.
j=1 (Wi~j)

As defined above, si corresponds to the saliency of feature i for a single input exemplar. When the

metric s, is averaged over the entire training set, the result, denoted ii, is given as

P

E sja (zip)
P=1

where P is the number of training vectors, and si(xP) indicates that s, is a function of the pth

input vector xP. A more detailed derivation of s, and ii is shown in Appendix A, Section A.1.

Another technique for measuring the saliency or relevance of a neural network unit, such

as a feature, is proposed by Moser and Smolensky [45]. Mozer and Smolensky propose that the

relevance of a feature be measured as a function, pi, of how well the network performs with the

unit versus how well the network performs without the unit, i.e.

P -- Cwlthout uni, i - twlth .ni, i

They propose approximating pi by examining the derivative of the error with respect to a relevance

factor coefficient, at. The relevance factor coefficient, a5 , represents the attentional strength of a

unit.
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This coefficient can be thought of as gating the flow of activity from the unit:

o, = f(E wjjooi), where oj is the activity of unit j, wji the connection strength

to j from i, and f the sigmoid squashing function. If a, = 0, unit i has no influence

on the rest of the network; if ac = 1, unit i is a conventional unit. [45:109]

In terms of a,, pi can be defined as

.o = fa,=o - Ea,=1

and Mozer and Smolensky approximate pi with:

84= =

The derivation and notational details of pi are shown in Appendix A, Section A.2.

Ruck describes a feature saliency metric which measures feature i's effect on a neural network's

output [59]. The metric attempts to capture the total of the partial derivatives of the network's

outputs with respect to the entire M-dimensional feature space IZM. Ruck's saliency metric for

feature i is built from the exact partial derivatives of network outputs, zk, with respect to feature

inputs zi using a trained network.

Ideally, the input space would be systematically sampled over its entire range of values [59:341.

If R points were used for each input, the total number of derivatives would be on the order of R',

where M is the number of feature inputs. For other than very small problems, RM is computa-

tionally impractical. Ruck proposes a sampling method which is computationally practical. For

every training vector, each feature input is sampled over its range while the other feature inputs

are fixed as determined by the actual training vector being evaluated. For P training vectors, the

number of derivative evaluations is KPRM, where K is the number of output classes represented

by the net, M is the number of features, and R is the number of samples for each feature input of

each training vector. For the saliency computation of each feature, the set of "pseudo" data points

remains the same. Following Reinhart's notation [53:21-22], define d. as the vector of R uniformly
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spaced pseudo points covering the range of the rnth input feature. The rth component, d, of d

can be defined as:

d, = rainz. + (, - 1) max z. - min z. .- 1,..IR(7R-i1 r=1,2,...,R (17)

The Ruck saliency metric for feature i, A., is defined as

P M R K (8

where P is the number of training vectors x; M is the number of features; R is the number of

uniformly spaced points covering the range of each input feature found in the training set; K is the

number of output classes; the vector Xe,) is the pth exemplar xv with its mth component replaced

by, d, the rth component of d.; and (xL(,), *) indicates that the derivative is evaluated with the

feature vector and the final estimates of the trained network weight parameters w. Also, the

absolute value of the derivatives are used; therefore, positive and negative derivative changes do

not cancel each other. Empirical results indicate that A, provides similar rankings to Pe [59:461.

Equation 18 has been modified from Ruck's original presentation to reflect that for each

vector there are PRM function evaluations of the network's sensitivity E= I -- (x, *) as Ruck

intended, rather than PR evaluations as suggested by Ruck's notation [59, 62].

Priddy illustrates a relationship between the class specific Bayesian probability of error and

the derivative-based feature saliency metric, A. [51]. The relationship relies on the assumptions

necessary for feedforward neural networks to approximate a Bayes optimal discriminant function

[30, 54, 61, 68, T5] [41:50]. When these assumptions are met, the trained feedforward neural network

output zk can be interpreted in the limit as P(Ct[x), which is the posterior probability of class k

for x. Since =IE- P(Ct Ix) = 1, the neural network approximation to the class specific probability
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of error for class k is defined as

P.(k,x,*) 1-z(x,.)
K

j(x

Using Ruck's method of feature space sampling, Priddy suggests a Bayesian-based saliency metric,

0,. It is defined using the modified notation shown in Equation 18 as [51]:

P M R K 8apS(kjx( 7 ,* (9fl, = ,(T I *1, (19)
p=1 M---- r---- &=I

where P is the number of training vectors x; M is the number of features; R is the number of

uniformly spaced points covering the range of each input feature found in the training set; K is the

number of output classes; the vector 4(,) is the pth exemplar xP with its ruth component replaced

by, d, the rth component of d,. defined in Equation 17; and (x(), I*) indicates that the derivative

is evaluated with the feature vector xP.(, and the final estimates of the trained network weight

parameters w.

In neural network terms, fgi is defined as

P M R K IK L9za(x(r),W) (20)
P=lua=1=lv=1l Ik

Using the triangle inequality, Priddy shows that %, is bounded above by a simplified saliency metric

(1,, where , !5 f< i [51]:

aEEEEEI

Priddy shows fl, is a scalar multiple of the A., i.e.

(1 5 (K - 1)2,,
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where K is the number of output classes [51].

Since Priddy's metric is developed from Ruck's metric, Equations 19, 20, and 21 have been

modified from Priddy's original presentation. This reflects PRM or (K - 1)PRM sensitivity

function evaluations (i.e. E=¶ t, 1) for each vector similar to Equation 18, rather than PR or

(K - 1)PR function evaluations as denoted in Priddy's original notation (see discussion on page 51)

[51].

Tarr suggests using a weight-based metric, T,, for measuring feature i's saliency [72]. This

metric depends only on the training exemplars used in training the neural network. The weight

saliency is defined as

T= 1 )2, (22)

where tj denotes the estimated weight parameter connecting input feature i to hidden node

[72:45]. The idea is that the weights emanating from important features would grow the most; the

weights emanating from less important features would grow less; and the weights emanating from

unimportant features would fluctuate up and down about zero. The effectiveness of T. depends on

two things [72:45].

1. The weight parameters must be from a trained neural network of the appropriate complexity.

2. The vectors of input features must be normalized to about the same range.

Computationally, this metric is much simpler than the other available feature saliency metrics.

Steppe reports the Minkowskil (taxi-cab) and MinkowskiX, (infinity) norms of the weights provide

similar feature rankings to Tarr's weight saliency which is defined using the squared Minkowski 2

norm [70]. Tarr reports that T, provides rankings similar to &- [72:49].

2.5.2 Senuisitiity Analysis Procedures. Sensitivity analysis procedures for feedforward neural

network feature inputs are related to feature selection. This section reviews sensitivity analysis
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procedures for neural network feature inputs using exact first and second order partial derivatives

[21, 22, 78], and estimated first order partial derivatives [33].

Werbos summarizes a collection of algorithms involving differentiation and cost minimization

[781. These algorithms are all variations of neural networks using a form of error backpropagation for

cost minimization. The first partial derivatives are commonly used in sensitivity analysis. Further

information is also provided by the second partial derivatives, . The second partials can

be used for understanding the effect of feature interactions on model dynamics [78:766]. Werbos

recommends calculating exact first and second order derivatives of the neural network at each data

point. According to Werbos, exact partial derivatives are more accurate and easier to compute

than attempting to estimate the partial derivatives using input variable perturbation [78:764,766].

Hashem presents mathematical expressions of first and second order neural network feature

sensitivities [22]. The expressions are generalized for a neural network with more than one hidden

layer which has sigmoidal activation functions on the hidden and output layers. Hashem computes

feature sensitivities using exact first and second partial derivatives of zk with respect to zi, i.e.

O and 0 For approximating a two dimensional function g(z) = sin(4z) with z E [-1,1],xz axz•azj"

Hashem demonstrates how the exact partial derivatives of the neural network correspond closely

to the exact partial derivatives of the true function. Hashem does not present methodologies for

analyzing or summarizing these sensitivities for studying features.

Guo and Urig studied a neural network model of nuclear power plant thermal performance

data to identify the variables which strongly affect the heat rate [21]. In their study, they calculated

a feature's sensitivity in a global or average sense. For each feature, the absolute values of the neural

network partial derivatives of output k with respect to feature i, I S 1, are averaged over all known

exemplars. This metric differs from Ruck's metric in three ways. First, only the training data are

used. Second, it represents an average versus a summation over the feature space. Third, it only

examines sensitivities with respect to one output at a time rather than summing over all outputs.
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Guo and Urig use their metric to rank order features with respect to their sensitivities for a specific

output. They do not suggest improving network performance by selecting a reduced set of the most

sensitive variables according to their sensitivity metric. However, they do suggest doing another

level of sensitivity analysis to determine the input variables which strongly affect the most sensitive

inputs [21:457]. To determine a second level of sensitivity, a neural network is trained to predict the

most sensitive feature variable using the remaining feature variables as network inputs. Then the

sensitivities are determined as before using Guo and Urig's sensitivity metric for the neural network.

Guo and Urig propose that the information about sensitive input variables used by plant personal

to determine which efforts will be most effective in improving nuclear power plant efficiency [21].

Klimasauskas investigates the impact of small changes in feature inputs on the neural net-

work output activations using estimated first order partial derivatives [331. When measuring the

sensitivity of feature i on neural network outputs, Klimasauskas "samples" two additional unknown

exemplars for an input exemplar which are used for estimating partial derivatives of the neural net-

work model. The original exemplar remains the same except that it is perturbed a small amount

above and below the value of feature i. For each known exemplar, the partial derivative of zk with

respect to zi is estimated by taking the difference of the trained neural network's output at the

two additional exemplar samples divided by the total change in feature i for the two additional

exemplars. Klimasauskas estimates the partial derivatives of the neural network output rather than

using exact partial derivatives of the trained neural network output as Werbos does [78]. Using

two-dimensional plots, Klimasauskas studies the estimated derivatives over the entire feature space

for sensitivity analysis. Two-dimensional plots display the numerical value of feature i's partial

derivatives for each input exemplar with the z and y axes being feature i's and j's values [33:221.

For a simple problem, the derivatives are significantly different thian zero only at the classification

borders where the neural network output transitions from one classification state to another [33:221.
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2.5.3 Selection Methodologies. Exhaustive enumeration of the feature subsets can be ac-

complished using either a prediction-type error or a P.-type criterion depending on the neural

network application. However, this method becomes impractical in a situation with more than a

few variables. It is impractical for two reasons: the large number of enumerated subsets, and the

computational requirements of training a neural network.

Practical feature selection methodologies available for neural networks can be divided into

three broad categories. The first category selects the k best features using one of the feature saliency

metrics described earlier. The second category involves screening a feature set for "noise" features.

The third category involves hypothesis testing for the presence of irrelevant features.

The first category of selection methodologies, selecting the k best features, includes several

of the feature metrics described in Section 2.5.1. For these metrics, the k best features are selected

according to the metric rankings, although no guidance or procedure accompanies the metrics for

determining k [39, 59, 51, 72].

In the second category of selection methodologies, Belue and Bauer offer a feature screening

technique for identifying a "noise" feature [5]. Their procedure requires adding a noise feature into

the original set of features. The neural network is trained with the augmented set of features, and

the saliency of all features is computed using either the ;i or Ti metric. The training and saliency

computation is repeated many times with randomized initial weights in order to characterize the

saliency distribution of the noise feature. Belue and Bauer recommend selecting only the k features

whose mean saliency falls outside a one-sided confidence interval for the mean saliency of the noise

[5].

White's irrelevant input hypothesis test (for neural networks trained with backpropagation)

falls into the third category of feature selection methodologies (821. The hypothesis testing method-

ology requires the computation of a chi-squared test statistic to identify when a vector of weights

connected to an feature input are irrdevant (i.e. can not be rejected as statistically different than

56



zero). White's hypothesis test is expressed as

Ho : Sw* = 0,

where S is a q x a selection matrix picking out the q elements of the a X 1 vector of neural network

optimal weights w" which are hypothesized to be zero under Ho. When H0 is true, the q elements

of the estimated weight vector *, selected by S*, are typically weights which are small in absolute

magnitude.

White's irrelevant input hypothesis test requires that the limiting distribution of * as it

converges to w* is a multivariate normal distribution [79]. The limiting distribution of * will

be multivariate normally distributed in the limit if the redundant inputs and/or irrelevant hidden

units are removed [79:441]. When * has a multivariate normal limiting distribution, then

-v-(* - w*) ~,N.(O, C*),

where P is the number of data exemplars [79]. White shows that the multivariate normal distribu-

tion of viP(* - w*) implies the following is true [79]:

vri-S(* - w*) N,(O, SC*S')

When H0 is true, then Sw* = 0 [79]. This implies

-vs* ~ NJq(O, SC*S'),

and therefore

P*'S'(SC'S')-'S* (23)
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An analytical expression for C* is not available, but an estimator C exists which is weakly consis-

tent, where

S= A-']A- (24)

The matrices AL and B are defined

S= IE V2e(x,,)
p1

P

P==

where E is the neural network error used for training, and the operators V and V2 denote the a x 1

gradient and the a x a Hessian operators of C defined with respect to *, where xP is the pth input

exemplar, z0. Replacing C* with C does not affect the limiting X.2 distribution. However, White

warns that sometimes a much larger sample size P is required to obtain a good approximation

of C* [79:442-443]. The X2 test statistic defined in Equation 23 is used to test Ho at a desired

accuracy of I - a. Whenever, the test statistic exceeds the 1 - a percentile of Xq , the irrelevant

input hypothesis is rejected. The probability of failing to reject Ho when H0 is false is equal to a.

2.6 Summary

Feature evaluation metrics and feature selection techniques developed for linear regression,

nonlinear regression, discriminant analysis, and feedforward neural networks are surveyed in the

body of this chapter. In the remainder of the dissertation, research results are presented which in

some cases were derived from the body of knowledge surveyed in this chapter.

In Chapter III, improved neural network feature saliency metrics are introduced along with a

catalogue of all the available saliency metric definitions and relationships. A good number of these

metrics are surve) . in Section 2.5. The saliency screening technique and the irrelevant input hy-

pothesis test reviewed in Section 2.5 are used for the results presented in Chapter IV. To determine
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a practical model selection criteria for neural network selection, the linear and nonlinear regression

model seWection criteria from Sections 2.2 and 2.3 are studied. The sequential selection algorithms

from linear regression and discriminant analysis are the basis for the backwards sequential algorithm

used in the procedures developed in Chapters V and VI.
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III Feedforward Neural Network Feature Saliency Metrics

9.1 Introduction

Feature saliency metrics are used for evaluating and ranking individual features within a

neural network. In this research, the terminology metric is used to refer to a measure of feature

importance. The results shown in this chapter are important for three reasons. First, new and

improved feature saliency metrics are presented. Second, saliency metric sensitivities to sampling,

training, and redundant middles nodes are documented. Third, a catalogue of feature saliency

metric definitions and interrelationships is presented which consolidates the set of available neural

network feature saliency metrics. An overview of this chapter follows.

In Section 2 of this chapter, a framework for understanding derivative-based saliency is dis-

cussed. Several variations of derivative-based saliency are investigated, including a known data

metric which requires fewer derivative evaluations than an established metric. The saliency metrics

are evaluated for their sensitivities to sampling, training, and redundant middle nodes. In Section

3, a mathematical relationship is derived between derivative-based saliency and the weight-based

saliency. P.-based feature saliency metrics and related research results are discussed in Section

4. These results include the illustration of a precise relationship between an established P,-based

metric and an established derivative-based metric, the introduction of a new P.-based feature

saliency metric, and derivation of relationships between the new P.-based metric and the improved

derivative-based metric. In Section 5, a catalogue of definitions and theoretical relationships amon:g

the set of available feature saliency metrics is presented. Also in Section 5, feature saliency results

are documented on a 'real world' problem for the set of available feature metrics. The results

presented in this chapter are summarized in Section 6.

The research and theoretical results presented in this chapter reflect the exclusive use of the

sigmoidal activation functions on the middle and output nodes of a feedforward neural network

(presented in Chapter I). The fundamental network output and network derivative definitions will
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change for other types of activation functions. However, similar the underlying concepts and rela-

tionships shown throughout this chapter will still hold. The neural network notational conventions,

network structure, and backpropagation algorithm introduced in Section 3 of Chapter I, as well

as the feature saliency notation reviewed in Section 4 of Chapter Il, are used as necessary in this

chapter.

3.2 Derivative-based Feature Saliency Metrics

In this section, neural network partial derivatives and related notations are reviewed. Then,

an integrated saliency metric is introduced as a 'truth model' for derivative-based saliency. Sev-

eral approximations for integrated saliency are discussed since the integrated saliency metric is

intractable for most problems. The first approximation is ar. established saliency metric proposed

by Ruck which involves evaluating the saliency with what could be called 'pseudo-samples' from

the feature space [60]. The second approximation is similar to Ruck's, but the saliency is eval-

uated with random samples from the feature space. The third approximation is also similar to

Ruck's, but the saliency is evaluated with only the known data from the feature space. All of these

derivative-based saliency metrics are analyzed for their sensitivity to sampling, training length, and

redundant middle nodes. Finally, a summary of the derivative-based saliency results is presented.

3.2.1 Background. The importance of an input feature is a function of the network's sen-

sitivity to changes in the input feature [21, 22, 33, 59, 78]. Evaluating the network's sensitivity

to the ith feature input is analogous to evaluating partial derivatives of the network output with

respect to the ith feature input.

A slight digression is necessary to review some of the neural network notation related to

evaluating partial derivatives. Let the input features z, be indexed from i = 0,.-. , M, the middle

node activations z, be indexed from j = 0,-.-, H, and thr t node activations be indexed from
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k = 1,.-. ,K. Let f(a) represent the sigmoidal nonlinear activation function defined as:

1
= a + e-(-)

When sigmoidal activation units are used on the middle and output nodes, the feedforward

neural network output and hidden node activations and associated specialized terms are defined as

follows:

N

2 1)

g = Z,,(1 - Z)
M

t=1

where 2o and zo are bias terms which are equal to one, tbj is an estimate of the weight parameter

connecting the ith middle node with the kth output, 1143 estimates the weight parameter connecting

the ith feature input with the ith middle node. Now, applying partial differentiation to z& with

respect to zi gives:

_19 = 1 (25)
j=1

The definitions for zt, z}, and -0, are significantly different when sigmoidal activation functions

are not used.

In Figure 4, there are three examples of classification problems displayed. These three ex-

amples encompass the range from output classes not overlapping (Example 1) to output classes

significantly overlapping (Example 3). For each example shown in Figure 4, a neural network was

trained on 200 training vectors using two output nodes and one middle node with a step size of 0.3

and a momentum of 0.7. Training was discontinued when the training-test set error was minimized.

This occurred at two, five, and ten epochs for the three examples.
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Figure 4. Three Examples of a Two-Clas Univariate Normal Problem
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In the first row of Figure 4, the true likelihood function of the data in each class is shown. For

all three examples, the true underlying distribution function is the normal distribution function,

denoted h(x), which is

hoz -. 7 =ep l [ _ (Z_ ) 2]

where p and a are the expected value and standard deviation of z.

In the second row of Figure 4, the a posterior distribution function of x is shown. The a

posterior distribution function for the kth class, denoted P(CtIx), is defined from Bayes rule as

PP(Chjhk)(=
P(Ck lX) = X~~P(C,)ht(x)'

where P(Cj) denotes the prior probability of class k and h&(x) denotes the likelihood function for

class k.

In the third row of Figure 4, the neural network's output function for class one is shown. In

this network, the outputs from each class can be interpreted as an approximation to the a posterior

distribution for x (see discussion Section 3 of Chapter 1). Notice in Example 1, the neural network

output for class one is a poor approximation to the a posterior distribution when the classes are

not overlapping. However, when the tails of the two classes do overlap in Examples 2 and 3, the

neural network outputs are better approximations to the a posterior probabilities.

In the fourth row of Figure 4, the absolute value of the neural network's feature 'sensitivity

function' is shown. For these univariate two-class examples, the 'saliency function' is

O zk(x,w)

where zk(x, *) indicates that zk is evaluated with the univariate feature vector x and the vector

of estimated weight parameters *. Notice, the neural network's maximum feature sensitivity

corresponds to the classification borders where the neural network's output is equal to .. For the
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second and third examples, the region where the network is most sensitive to the features is also the

region where the true a posterior distribution is most sensitive. However, in Example one where

the likelihood distributions are not overlapping, the most sensitive regions of the feature saliency

and the a posterior distribution do not correspond.

3.2.2 'Truth Model:' Integrated Feature Saliency. A comprehensive measure of derivative-

based feature saliency is defined as the expected feature sensitivity integrated over the entire feature

space. For the univariate discrimination problems shown in Figure 4, this metric entails integrating

under the 'saliency function' curves shown in the fourth row. Although the results shown in this

section use notation and definitions specific to feedforward neural networks with sigmoid activa-

tion functions, this framework can also be applied to neural networks defined with other types of

activation functions.

For the second and third examples shown in Figure 4, the region of integration is representative

of where the true data exists. However, for the first example, the region of integration includes a

portion of the curve where the likelihood of being in either class is zero. This portion of the curve

corresponds to large values of the 'saliency function,' yet poor approximations to the a posterior

distribution.

Define integrated feature saliency as the average value of the saliency function fi(x, *) =

FK=1 aS, I over the feature space region [67:179]. Let the integrated feature saliency, denoted A•,

be given as

A. = V L- M j , )=o ( , I df. dVm, (26)

where R' represents the M-dimensional feature space region (i.e. , f5 f, """ and dVM-

d.M dzM._ ... d.,), and Vi represents the total saliency 'volume' which is given as [67:187]

v = f ;,,.= dlZm, (27)
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The limits of integration on each feature correspond to the observed range of the data inputs. The

absolute value of the derivatives are measured to ensure that the positive and negative derivatives

do not cancel each other.

A number of numerical methods can be used to evaluate Equation 26. These methods are

good approximations for smooth regions with no pockets of highly peaked regions [50:]. With most

numerical integration methods, a discrete number of function evaluations are required which is

dependent on the number of features M and the number of evaluation points R for each feature

dimension. The number of function evaluations increases exponentially with M. This means that

on the order of R' function evaluations will be needed. For example, a 10 point Gauss-Legendre

integration requires 10 M function evaluations for M features. The number of function evaluations

is reasonable when M is small, but consider a case where 10 point Gauss-Legendre integration is

used for M = 10 features. In this case, 1010 or 10 billion function evaluations of fi are needed to

compute the saliency of each feature.

Clearly, a computationally tractable method is needed for evaluating feature saliency. In

the next three sections, tractable methods for approximating A. are defined. These approxima-

tions are similar, but each one uses a different set of data for evaluating the function f (x, w) -

3.2.3 'Pseudo-Data' Approzimation. The first method for approximating A, was proposed

(implicitly) by Ruck [591. This metric is reviewed in Section 2.5 of Chapter H. Ruck's metric

involves what could be called 'pseudo-sampling' from the M-dimensional feature space JZM.

A description of 'pseudo-sampling' follows [59]. For every training vector, each feature input is

sampled uniformly over its observed range while the other feature inputs correspond to the training

vector being sampled. This corresponds to PRM 'pseudo-samples,' where P is the number of

vectors in the training set, R is the number of uniformly spaced sample points per feature dimension,

and M is the number of features as before. For the saliency computation of each feature, the set of
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"pseudo" data points remains the same. This approximation is computationally tractable, because

the number of function evaluations now increase linearly with M rather than exponentially.

For the ith feature, Ruck's metric (defined earlier in Equation 18) is described again for

reference. Following Reinhart's notation [53:21-221, let dl be the vector of R uniformly spaced

pseudo points covering the range of the mth input feature. The rth component, dr, of d can be

defined as:
dý = minz,, + (r - 1)m"-z - min x, 1 , R(8Ra m1 r=1,2,...,R (28)

The Ruck saliency metric for feature i, A-, is defined again for convenience as

P M R K I zh 3EEj E -(,* (29)
p=I m=1 r=1 k=1

where P is the number of training vectors x; M is the number of features; R is the number of

uniformly spaced points covering the range of each input feature found in the training set; K is

the number of output classes; the vector x..(,) is the vector xP with its mth component replaced

by, d, the rth component of dn; and (x,(,), I*) indicates that the derivative is evaluated with the

feature vector 4,(r) and the final estimates of the trained network weight parameters w.

The approximation A, represents the total network saliency for PMR 'pseudo-sampled' data

points. Let the average 'pseudo-saliency' be defined

ASeud° = (PRM)'A- (30)

For making empirical comparisons between A, and the various approximations to A,, the average

'pseudo saliency' Aeudo is most appropriate .

3.2.4 Random Data Approzimation. A second method for approximating A. can be defined

using random samples from the M-dimensional feature space IZM. This approximation is similar
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to •.,Udo, but random samples are used instead of 'pseudo-samples.' For data normalized to a unit

hypercube, the nth random sample is created by drawing a UNF(O, 1) random number for each

feature.

The random data approximation, denoted A-dom , is given as

~aadomN= KN~Z ~(Xs,
A--1;=1

where x" denotes the nth random samples drawn from RM, and N" is the total number of random

samples. The random data approximation to A. represents the average network saliency over Nr

randomly sampled data points.

3.2.5 Known Data Approximation. A third method for approximating A, is defined by

sampling only the known data. Guo and Urig suggested a similar metric for sensitivity analysis of

nuclear power plant thermal data [21]. Guo and Urig's metric is different because they consider

the sensitivity for each of the K outputs separately. For the known data saliency, the network's

feature sensitivity is evaluated in a manner proportional to the total likelihood function of the data.

Note that regions of maximum total likelihood may not correspond to regions of maximum feature

saliency, as in Example one in Figure 4 on page 63.

The known data saliency, denoted k"at, is given as

~t~ata= P K(31)

This metric requires a factor of RM fewer computations than APaeudo The known data approxi-

mation to Ai represents the average network saliency over the P known data points.

The various approximations to A, are analyzed in the next section. The known data approx-

imation provides results similar to the other metrics. It is probably the best choice for practical
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use since it evaluates regions of the feature space where the data is known, and it requires fewer

calculations than the integrated or pseudo metrics.

3.2.6 Analysis. The derivative-based metrics introduced in the previous sections are ana-

lysed in this section. To do this, the three examples shown in Figure 4 are revisited. However,

for this analysis, a N(O, 1) random variable, denoted Znoi., is added as a second feature to each

class. Both features are normalized between 0 and 1. The relative importance of the 'truly salient'

feature to noise is analyzed. The saliencies for these examples are evaluated for sensitivities to

over-training and redundant middle nodes. The metrics AfIdo and Afa-do-n are also analyzed for

their sensitivity to sampling.

Since these examples are linearly separable, a minimal network (i.e. no redundant middle

nodes) consists of one middle node. For each level of training, the minimal network's results are

used as the baseline for comparison. Figure 5 is a collection of three dimensional plots summarizing

the three examples. Figure 6 and Table 5 are used to summarize the sensitivities of the derivative-

based saliency metrics. In Table 6, a general summary of these sensitivities is presented.

For all the examples, the networks used 400 training vectors, two output nodes, and a log-

linear declining learning rate (see Chapter I for definition). The neural network plots for each

example in Figure 5 are from a single realization of a trained neural network using one middle

node. For all of the plots, the z-axis corresponds to the variable zi, and the y-axis corresponds to

the variable Znoise.

In the first and second rows of Figure 5, the z-axis represents the value of the individual

likelihood functions and the trained neural network output functions for each class. In the third

and fourth rows, the z-axis represents the value of the ith 'saliency function' k= I [ I). The

terminology 'saliency function' is appropriate, because each of the derivative-based saliency metrics

are defined as a series of 'saliency function' measurements. In the last row of Figure 5, the z-axis

represents a ratio of the 'saliency function' for x, divided by the 'saliency function' for Zo..
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The 'saliency functions' shown in the third and the fourth row vary greatly across the feature

space. They are most peaked where the neural network's output function has the greatest slope. All

three derivative-based metrics obtain markedly different values due to different 'saliency function'

measurements. For instance, in the first example, the known data saliency metric would be the

smallest, because the known data is from a region where the 'saliency function' is not peaked.

The 'saliency function' ratio shown in the fifth row is a relatively flat or a constant function.

Where the ratio is uot flat, it fluctuates due to the division of two very small numbers. Also, in

the regions where the ratio is not constant, there is very little, if any, true data.

The 'saliency function' ratio at any point can be interpreted as the relative importance of the

feature x, to the feature Znoje. The 'saliency function' ratios in Figure 5 indicate that the relative

importance of one feature to another is nearly constant regardless of how or where the 'saliency

function' is measured. Therefore, when measuring the relative importance of a feature, all of the

metrics perform about the same. This can be seen in Figure 6 when comparing integrated and

known-data saliencies, and in the last row of Table 5 when comparing the sample saliency function

ratios.

The results shown in Figure 6 document the saliency metric sensitivities to training and

redundant middle nodes. For completeness, the results documented in Figure 6 are summarized in

Table 5. In Figure 6, the z-axis correspo " to the number of middle nodes used, and the y-axis

corresponds to the value of the 'saliency function' ratio. Each line of the pl-ts corresponds to a

different amount of training. The smallest amount of training corresponds to the point where the

network classification error is initially minimized. A point on the plots represents an experiment

involving 30 neural network runs with the corresponding amount of training and number of middle

nodes.

For each experiment, the 'saliency function' ratios for the integrated and the known feature

saliency metrics are about the same. The 'saliency function' ratios corresponding to the metrics
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Figure 6. Summary of Middle Node and Training Sensitivities
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Table 5. Derivative-Based Saliency Metrics for Three Examples

( xample I Example 2 Bxample3

(t&Us net overlapping) (tales slightly oveolapping) (9-a16 overlapping)

Relative 'saliency function' small large large
ratio for 1 middle node

Sensitivity to R none none none

Sensitivity to increased Saliency Ratio none Saliency Ratio
training for 1 middle node Increases Iacreases

Sensitivity to increased saliency function' ratio 'saliency function' ratio 'saliency function' ratio
training for > 1 middle node decreases decreases decreases

Sensitivity to saliency function' ratio s1aliency function' ratio decreases at 'saliency function' ratio
Redundant middle nodes increases high amounts of training decreases

Average 'saliency function' ratios over 30 runs of traiaed neural networks using 1 middle node

Epocks 100 s0 100

Ati 8.991 17.906 15.46
A~pseudo f.995 15.148 15.03
A•ado 8.985 18.147 17.96

8.968 16.158 14.11

APudo and k-ndo- are not shown, since their results do not differ significantly from those shown

for the integrated and known saliency metrics in Figure 6.

The first example with non-overlapping classes has the smallest 'saliency function' ratios,

in general, and the third example with significantly overlapping classes has the largest 'saliency

function' ratios. This was specifically illustrated for one middle node and 100 epochs in Figure 5.

For a minimal network of one middle node, the 'saliency function' ratio varies for different amounts

of training. In the third example where the two classes are significantly overlapping, there is

a definite relationship between training and the 'saliency function' ratio for a minimal network.

In this example, the 'saliency function' ratio increases when the network is trained longer. This

relationship does not hold for a network trained with redundant middle nodes.
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In the presence of redundant middle nodes, a negative relationship exists between the 'saliency

function' ratio and additional training. With additional training, the redundant middle nodes begin

to incorporate unnecessary information from Znoj. without affecting the network error rate. As a

result, the saliency of z30o,. increases, which in turn deflates the 'saliency function' ratio. This type

of behavior is evidence of over-training.

In the first example where the two classes are greatly separated, there is a great deal of

flexibility in the function which can effectively discriminate between the two classes. The minimal

network trains to a function which is not very steep in slope; however, a network output function

with a different slope would also be effective. On the average, a 'saliency function' ratio of about 10

is produced by the minimal network containing one middle node. Interestingly, redundant middle

nodes afford the flexibility for a different network output function, so there is an increase in the

'saliency function' ratio when additional middle nodes are added.

For the first example, a network with eight middle nodes produces a distorted output function

compared to a network with one middle node. The saliency functions shown in Figure 7 are for

one and eight middle nodes after five epochs of training. At eight middle nodes, there is graphical

evidence that the noise feature is affecting the neural network saliency functions. After about five

epochs, the middle nodes begin 'training' to the information in .oi~e which deflates the 'saliency

function' ratio. Inspection of the weights associated with zj. confirms that the proportional

influence of z.oi, grows with increased training.

For the second and third examples where the two classes are overlapping, the minimal network

trains to a function which is very steep. There is not as much flexibility in the 'choice' of a

network output function which can effectively separate the classes. For these examples, the 'saliency

function' ratio does not increase in the presence of redundant middle nodes. After sufficient training,

the redundant middle nodes begin to incorporate unnecessary information from z•,e, which makes

the saliency function between zr and z,• decrease. This behavior is best seen when looking at
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Table 6. Summary of Derivative-Based Saliency Metrics

Ctoi __j I,, A.-d- ••

Computation Intractable tractable tractable traclable

Sampling includes legioms may Include egiom.s May include region$ e mAY include legions
legions of maxima= sensitivity of maximum sensitivity of muimum senitivity of msdaema. sensitivity

9 includes omly legions
of likelihood

Number of flvaleatlons RM PRM N' P

Sensitivity to R Rot tested not siganficact Rot sigiaicalt N/A

Semsitivity to yes yes yes yes
Redundant Mriddle Nodes

Semsitivity to if there are redundant if there ale geduadaut if these are redundeat if there are redundant
Tlrining middle modes middle nodes middle nodes middle nodes

Tactical Decisions I, middle modes A, middle mode. R, middle modes middle nodes

Performamce good (whom tractable) good good good

the third example for 1000 and 2000 epochs. In the second example, the 'saliency function' ratio

corresponding to two middle nodes begins to decrease after 5000 epochs of training. However, 5000

epochs is not sufficient to affect the 'saliency function' ratio for more than two middle nodes. In

the third example, a similar phenomena also occurs at 500 epochs of training.

The integrated saliency metric A. and the three approximations, A!"anudo 1 andom and A.€l"

are summarized in Table 6.

3.2.7 Summary. In this section, a framework for derivative-based saliency is presented. In-

tegrated saliency is introduced as a 'truth model' for derivative-based saliency. Three tractable

approximations for integrated saliency are defined. The approximations were analyzed for sensitiv-

ities with respect to sampling, training, and redundant middle nodes.

All of the metrics are sensitive to the number of middle nodes and to the amount of training.

It is important to minimize the number of redundant middle nodes, since the saliency metrics are
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most sensitive to the effects of training in the presence of redundant middle nodes. This is because

the redundant middle nodes begin to incorporate unnecessary information from irrelevant features.

After sufficient training, the extraneous parameter weights associated with redundant middle nodes

will increase, which is indicative of data memorization. If the parameter weights do not increase

proportionally with all the features, the saliency results become contaminated.

Although similar results are produced by all of these metrics, the known data metric A.'t

in Equation 31 on page 68 is probably the best choice. This metric is measured in regions where

the data is known, and it requires fewer calculations than the integrated and 'pseudo-sampling'

metrics.

3.3 Relating Derivative and Weight-Based Saliency

In this section, a mathematical connection is shown between the known derivative-based

saliency, Adata, and weight-based saliency. First, a form of the weight-based saliency is defined.

Then, the theoretical relationship between kd` and the vector of weights emanating from feature

i, * , is derived. This relationship is evaluated using 'saliency function' ratios for the three examples

shown in Figure 5.

3.3.1 Backgrnund. A weight-based saliency metric is suggested by Tarr [72:45]. Tarr con-

ceived weight saliency based on the idea that weights connected to important features attain the

largest values (absolute values); weights connected to less important features attain smaller values

(absolute values); and weights connected to unimportant features would probably attain values

somewhere near zero [72:451. Tarr defined weight saliency as
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where tbý. denotes the jth element of w, or the estimated weight between the ith input feature and

the jth hidden node. Tarr's definition of weight saliency is based on the Euclidean norm of the

estimated weights associated with a feature input. A general definition of weight saliency based on

the definition of the rth norm of a feature's estimated weights is given as

S= 11" 111 , (32)

The effectiveness of weight-based saliency depends on two things [72:45].

1. wi must be from a trained neural network of appropriate complexity.

2. The input features must be normalized to have approximately the same ranges.

Computationally, this metric is much simpler than other available saliency metrics. Tarr presents

results which show T, provides feature saliency rankings similar to A, [72:49].

3.3.2 Theoretical Relationship. The derivative-based saliency, Aat8, is defined as a function

of the estimated weight parameters and the known training data. The estimated weight parameters

are defined as a function of the known training data used to train the network. The derivative-based

saliency, Adat&, and the estimated weight parameters used to define weight saliency are interrelated.

In this section, an upper bound is derived for wdata Which relates these quantities. The upper bound

of tA for any feature i is the vector product of a constant vector times a vector containing the

absolute value of the estimated weight parameters associated with feature i [70].

The term -O,(x, ,)of Adata defined in Equation 31 on page 68 can be expanded as

~ C90 [ H -2

,I: ZWk
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= j
2 O

H

j=1O

where definitions of bil5,, zý, zk%, tb,2k and t, are reviewed in Section 2 of this chapter. Using this

expression, k"is defined as

I:p1~ F h, 26E '1 (33)
P=Ik=11 j1=

The theoretical relationship between k"~t and the estimated weight parameters associated

with feature i is developed by expanding ka'at1 about the K output nodes and then about the H

middle nodes.

dafta = -'Zjý 6.Y2 Sw&'2kt%
P=1k=1 I =1

P H1ý ff 6 
H

-~ ~ P'[6Z tb~1 i2 2** 66Ijb~ii
P=I j=i .1=1

I'-1 '~ + ...Ibjj~~ + 8K6WHU'HIIb,
<P- I [I6~~bb +*** + H + +

P=I

1481wC2KlhllI + . + 428H Kti'~KhHI (34
-

1  1 I '~~I +* 6bM 4It~~

lP-1~ jW1512l b~ltl+ ... + I6K8HWHK 211oI 35

- P1  l6~~M±1 l6 tPiKI lii~il+

P=1

{l8~4I +..+ ' ltlHK (36)
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An inequality sign replaced the equality sign for Equation 34 when the triangle inequality (38:92]

was used to decouple the outputs. For a given input exemplar p and middle node j, the result in

the brackets {. }, prior to each Ijt&11 in Equation 36 is the same regardless of which feature is being

examined. Therefore, a constant e is substituted into Equation 36 for the quantity in the brackets

{'} prior to each Jti.j1 giving

PK data <• p-1
_ lIb'l+" HIbII (37)

p= 1

Now, since Il6,1 is independent of p, then replacing P, with a new constant 4 and rearranging

terms gives

Adata < p-It1+.. 1 Ii4 I I4H (38)is -- Ib 4 + +P i

Now, let 1*1] be an H-dimensional vector containing the absolute values of the weights

associated with the ith feature, (i.e. I•=,1I [Itbi'll .. , libiI]'), and let 4, be an H-dimensional

vector of constants associated with the middle nodes (i.e. 4 = P-'[4 1,.. -, ,f]'). The vector of

constants k is independent of i. Therefore, the known derivative-based saliency for the ith feature

is bounded above by a constant linear combination of the vector I*1*. That is

3.3.3 Analysis. To study this mathematical connection, the weight saliency metric T!, for

r equal to one, two, and infinity, is compared to the saliency metric Akata for sensitivity to training

and redundant middle nodes. Figure 8 shows average 'saliency function' ratio results over 30 neural

networks for the three two-class multivariate examples summarized in Figure 5. The networks were

trained for 100, 80, and 100 epochs, respectively. The z-axis represents the number of middle nodes

and the p-axis corresponds to the 'saliency function' ratio of ZI to Zno.ie. For each experiment, the

average 'saliency function' ratio for known data is plotted against the average 'saliency function'
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Figure 8. Summary of Derivative versus Weight Saliency

ratios for weight saliency. In Figure 8, it can be seen that the weight-based metric produces

approximately the same ratio as the known data saliencies when one middle node is used. This

occurs for two reasons:

1. The metric__•ata is bounded above by I,*'IýJ, where I*1I is a H-dimensiou, vector of the

absolute value of the weights from feature i to the H middle nodes, and +' is a H-dimensional

vector of constants associated with the H middle nodes.

2. Only one middle node is used to train the neural network. Therefore, the constant term +' in

I•' j*' cancels when a ratio is taken. When there is just one middle node, the ratio of Aýdta

to ;ds.t! is equal to the ratio of J*w] to-w since the triangle inequality in Equation 34

is not needed.

For more than one middle node, the ratio of the weight saliencies is always smaller than

the ratio of the derivative-based saliency. With additional middle nodes the network is over-

parameterized. As middle nodes are added, the weights associated with x.oie increase faster than
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the weights associated with cl. Due to the over-parameterization, the parameters between Z5 0o.

and the redundant middle nodes incorporate unnecessary information about the feature o.. This

behavior can be associated with over-training. The sensitivity of the 'saliency function' ratios to

increased middle nodes is revisited in Section 3.5 for a 'real world' problem. A final observation

is that the similarity in the saliency rankings and 'saliency function' ratios of the collection of

weight-based saliencies indicates that the choice of r for T! makes no appreciable difference.

3.3.4 Summary. The theoretical relationship between ida'a and J*jw provides a mathemat-

ical connection between the metrics kdata and TI:

/dat4 is a vector product of a constant vector and the vector 1*w1
(i.e. it is a linear combination of 1* 1)

" Tr corresponds to the rth norm of w(or j*l)

An analysis of this relationship shows that the relative weight-based saliencies are equal to

the relative derivative-based saliencies for neural networks with one middle node. In the presence of

additional redundant middle nodes, empirical results encompass a range of two-class multivariate

examples (from class distributions not overlapping to class distributions significantly overlapping)

indicates that the relative weight-based saliencies are smaller than the relative derivative-based

saliencies.

3.4 Pe-based Feature Saliency Metrics

In this section, neural network P,-based feature saliency metrics are discussed. These metrics

are appropriate for classification problems, but not for regression problems. Probability of error

metrics are developed for feedforward neural networks which approximate a Bayesian optimal dis-

criminant. The assumptions necessary for this approximation are discussed in Chapter I. There

are several contributions in the area of P, metrics presented in this section.
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In this section, the background on P.-based feature saliency metrics is reviewed. Then, an

exact relationship is shown between a P.-based metric and A.. Next, a new P,-based neural network

feature metric 17i is defined using a restricted subset of the terms associated with A,4 Two results

related to 1, are derived. One, the relationship between 17 and a.dt is derived, and two, an upper

bound for 17 is derived. Analysis is presented which compares the metrics 1i and k.a± , and Ap.eudo

for both a two class and a four class problem. Finally, the results presented in this section are

summarized.

3.4.1 Background. The P. feature evaluation metric is commonly used whenever the goal is

minimizing classifier error rate with features of equal measurement cost. As a result, probability of

error is often used as a bench mark for independently measuring the classification error associated

with using either a single feature or a set of features for classification neural networks [51, 59, 60].

The P. metric defined in Section 2.4.1 page 38 Equation 16 is defined again here for conve-

nience,

P,(x) = Ex[1 - max{P(Cjjx),. .. ,P(CKIx)}] , (40)

where x is the vector of features for which P. is measured, Ex[ ] is the expectation operator, and

P(Cklx), is the posterior probability of class k for x, defined as

(K I p (x )E

where P(Ck) is the prior probability of class k and P(xIC&) is the class conditional probability

function of x for class k.

By definition, E=, P(Ct lx) = 1. Also, the class specific probability of error associated with

the kth class is given as P,(Ch, x), is given as:
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Pe(C&,x) = 1-P(C Ix) (42)
K

= xP(CatX) (43)

Under certain necessary conditions, the feedforward neural network approximates a Bayes

optimal discriminant function in the limit (see Section 1.2 of Chapter I). The implications for

interpreting a trained feedforward neural network in the limit as an approximation for a Bayes

optimal discriminant function are that classical definitions associated with probability of error

given in Equations 40, 41, and 42 can be redefined as an approximation in neural network terms.

Specifically, using the fact that zk(x,*) ;t: P(CA Ix), the neural network approximations to the

class specific probability of error P.(Ct,x) and classifier probability of error P.(x) are defined in

Equations 45 and 49, respectively.

Priddy illustrates a relationship between class specific probability of error Pe(k, x) and the

derivative-based feature saliency metric, &. defined in Equation 29 [51]. This relationship relies

on the assumptions necessary for feedforward neural networks to approximate a Bayes optimal

discriminant function in the limit. Priddy's defines a Bayesian-based saliency metric, flu, as

P M Rt K O~n, El . (44)
p=1 m-=1 r=1 =1(

where P is the number of training vectors x; M is the number of features; R is the number of

uniformly spaced points covering the range of each input feature found in the training set; K is the

number of output classes; the vector x3e.,) is the pth exemplar xV with its mth component replaced

by, d, the rth component of dm defined in Equation 28; (,•(,), indicates that the derivative

is evaluated with the feature vector 4(r) and the final estimates of the trained network weight
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parameters w; and P.(k, x, w) is a neuraJ etwork approximation to the class specific probability

of error.

Priddy defines the neural network approximation for class specific probability of error A. (Ch, x, w)

as
K

P.(C•,x,*) E ,z(x, w) (45)
Ilfk

which is similar to Equation 43. Now, substituting Equation 45 into Equation 44 results in

r P M R K K L9a(,(6
za [ .(x,.) (46)

p=1 m=1 r=1 k=lI l•k

Using the triangle inequality, Priddy proves that fli is bounded above by a simplified saliency metric

f1i [51], i.e.

fl• < flu, (47)

where

p=l m=1 T=I kh=1 flo z

The Bayesian-based metric fl, is related to the metric I&, since it involves the partials of z5

with respect to zi and the pseudo-sampling of unknown vectors from the feature space [59]. Priddy

shows (Ij is a scalar multiple of the A, in Equation 29:

f•, = (K - 1)A,-, (48)

where K is the total number of output classes [51]. Therefore, the two saliency metrics, fl, and A.,

produce identical feature rankings.

3.4.2 Equality of Two P,-based Metrics. In this section, it is shown that the metric f(i is

exactly equal to the metric A,. Using the relationship shown in Equation 42, a neural network
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approximation to class specific probability of error can also be defined as

P.(CkX,*) = I- z;(x,*). (49)

Now substituting Equation 49 into Equation 44 and simplifying illustrates the equality of Ei and

Ai:

PMU R K 1 86.(kx..,

p=I m=lv=lk= =zh

P MR KO[ -Zh(e.(,) I*)]

PMU R K IOZk (X'P(,),W

p=lni=l r=l k_ 2,i

A. (50)

The relationship between 0, and A- is derived exactly without recourse to (I of Equation 47 [511.

3.4.3 Derivation of a New P.-based Metric. The definition of P. reviewed in Equation 40

is used to derive a new Bayesian-based saliency metric. This metric is related closely to the neural

network approximation to the Bayesian classification error P.(x) which is defined in neural network

terms as

PA,(x, *) = P-l - [1 -max{zl(xP, *), ... , Zi(x', *)}] (51)

= P'IE[P.(xP,*)] (52)
P=1

where P,(xP, *) is the probability of error associated with the pth exemplar from a set of P total

exemplars. The new Bayesian-based saliency metric for the ith feature is defined using P.(xP, *)

,---1 (x',*) (53)
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Like A4, this metric depends only on the known data. Let zs...(x', w) be a function which is

given as

z,..(x, = max{z,(x',*),. *,ZK(x',W)}

where k.. represents the subscript k associated with the max {z,(xP, ... , Z(xP, *)}. Using

zA*.., P,(xP, *) in Equation 53 becomes

Pe(xP,*) = 1 - ,,...(xP.*) (54)

giving:
ri = P-IE zll ['("*)l .

P=I~

3.4.4 Theoretical relationships. The relationship between r1 and the derivative-based saliency

A.dta is derived from the definition of k.datg:

Maft = P-1f 8Oz5 (Xp,*),
p=l k=1 zi

= P1 P_ I az.... (xP, + _) +P I K Oz(xp,*)

P=I IP=1 k k.
= p-1 "P D[1-max{zl(xP,*),.",zK(xP, *)I +fP-1 - K " (Xp, I

p=1 p=1 Ok,.

= _PO1 P 'p .(xp,*) P_ Pf Kd Z .(x,

= ==,

= ri+p-'Ea i
P=1 .. 8,

In summary, the exact relationship between rF and •dta is

8=Am=',*) (55)
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It can also be shown that i--ata is an upper bound for ri. This relationship is derived using

the triangle inequality on the second term of Equation 55 in concert with the Bayesian relationship

that 1 z&(x, *) = 1 as follows:

r, at&pi - Oz&i1*M- = "--E E a o,,
p=1 kok-.s

kr a t a 1P Ky k 8z(XP',
p=l kok-.. 8:

r, & Aa -_ p- I °•hon.---;(x"*)

r, S p- 1  ... (X,.)

P

p=1
,a&-P1P I[1 -- maxrjzx(xP, "'ZK(XP,'}I~

r, k E..,_p-l

r, 1 < ata (56)

For a two class problem, the new metric is at its upper bound exactly. That is: r, = 2 A't,

since

p-1 kEk.., p11 E •&.E

when K = 2. This means that for a two class problem

8z, 2 8z,

For more than a two class problem, the metric r, wil be at its upper bound only if the

partial derivatives os,(x', ) for k $ km. are all the same sign. To analyze the partial derivatives,
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Equation 25 is shown again below for convenience as

0•,x'*)= 5:• ,5fr _.

azi j=1

For all k, the following is true:

Q6 > 0

* i. are constants

Therefore, it is the middle node to output weights wik which influence whether the partial deriva-

tives will be the same sign for all outputs. For a net with just one middle node, all the derivatives

will be the same sign if the weights wuk are the same sign for all k $ k..

3.4.5 Analysis. The upper bound for ri is investigated empirically with a two class and a

four class problem. For the two class problem, the XOR problem is used. The exclusive-or (XOR)

problem illustrated in Figure 9 is a standard benchmark problem used with neural networks. In

this nonlinear classification problem, no single line can be drawn to separate class 1 and class 2

regions. Five hundred data points are randomly generated for the XOR problem. A training set of

400 and a training-test set of 100 are used.

Saliency metric results for k.dM& and ri are summarised for 30 'trained' neural networks which

were trained with the same data set, but with different random initial weights and a different

random order of training vector presentation. The neural networks used four middle nodes. Log-

linear declining learning rates were used to improve the neural network's convergence to a solution.

For all runs, 700 epochs were used. Also, a seven percent minimum training set classification error

was required for the network's solution to be considered from a 'trained' network. In total, 51

networks were trained; 21 networks did not meet the seven percent requirement. The average
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Figure 9. The XOR Problem
reprinted from [5]

Table 7. XOTL Problem: Salienc Metric Means for 30 Trained Networks

Feature 1pIwa r,

z 1.001 1.001

V 1.078 1.078
bias 0.84 0.84

training data used

training and test set classification errors for the remaining 30 neural networks were 1.59 and 2.96

percent, respectively. The saliency was computed for the 30 networks at 700 epochs. As expected,

the metric ri (to within roundoff error) is exactly equal to its upper bound of _AIAA. This is2,•

demonstrated with the XOR problem in Table 7.
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Table 8. Four Class Problem: Saienc Metric Means for 30 Trained Networks

Feature 1dma r,

z 0.879 0.843
y 0.567 0.606

bias 0.360 0.387

training data used

The metric ri is, generally, less than its upper bound when used with more than a two

class problem. A four class problem with two variables is studied. The classes are multivariate

normally distributed with an identity matrix for the covariance matrix. The mean vectors for

the four classes are: (4.5, 2.17), (2.0, 6.5), (7.0, 6.5), and (12.0, 6.5). Five hundred data vectors

are randomly generated for this problem: 400 for the training set and 100 for the training-test set.

Again, saliency metric results are summarized for 30 'trained' neural networks trained with the same

data set. For all runs, a minimal network of two middle nodes (determined from a number of pilot

simulations), a log-linear declining learning rate, and 500 epochs were used. Also, a five percent

minimum training set classification error was required for the network's solution to be considered

from a 'trained' network. For this problem, 30 networks were trained, and all the networks met the

five percent requirement. The average training and test set classification errors for the remaining

30 neural networks were 2.06 and 5.77 percent, respectively. The saliency was computed for the 30

networks at 500 epochs. The metric Akda& and ri are shown in Table 8.

9.4.6 Summary. Neural network Bayesian-based feature saliency metrics are covered in this

section. These metrics are developed for use with neural networks which approximate a Bayesian

optimal discriminant in the limit, and they are only appropriate for use with classification problems.
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The research contributions in this section are:

"* An exact relationship is shown between Ruck's metric A, and the Bayesian-based metric

suggested by Priddy.

"* A new Bayesian-based neural network feature metric ri is defined using only a subset of the

terms in A•dta.

"* The relationship between ri and k.d'L, is derived.

"* An upper bound for ri is derived.

For classification applications, the metric ri is more appealing than AVdit". The metric ri is

developed from classifier error P.(x, *) (see Equation 51 on page 86), rather than class specific

error P. (k, x, *) (see Equation 45 on page 85). Also, the saliency metric ri is computed using only

a subset of the terms used for kdata making the definition of ri more succinct than the definition

of AOata.

3.5 Unifying Theoretical Relationships

3.5.1 Introduction. This section documents the relationships between the set of available

neural network feature saliency metrics. Neural network feature saliency metrics include the es-

tablished metrics introduced in Chapter H1 and three new metrics defined in this chapter: A,, k.daft

and JI2.

The derivative and weight-based feature saliency metrics are defined in Table 9. Formal

definitions and applicable references are presented for each metric. With the exception of the

weight-based saliencies, each of the feature saliency metrics is defined in Table 9 as a function of

g,. The metrics differ in the derivative that is taken and in the definition of g, which is used.

The function g,, also given in Table 9 can be interpreted as the absolute value of some form

of a derivative of a network error function. For the metrics A., A,, k.d,, and fl,, the network
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error function is defined d4 - zk(x, *), and the derivative is taken with respect to the feature of

interest zi. For the metric pi, the network error function is the same, but the derivative is taken

with respect to a relevance function ai for the feature of interest. For the metric f(I, the network

error function is the approximate probability of error for the kth network output for the pth input

exemplar, i.e. P.(k, xV, *), and the derivative is taken with respect to the feature of interest zi. For

the metric ri, the network error function is the approximate probability of error for the network

given the pth input exemplar, i.e. P.(xP, *), and the derivative is taken with respect to the feature

of interest zi. For the metric ii, the error function is the squared error defined [d4 - zk(x, *)]2,

and here a form of the Taylor Series approximation to the total derivative is used. In Table 10,

detailed notational saliency definitions, as well as established theoretical relationships among the

saliency metrics are presented.

Since previous examples have been contrived problems, a 'real world' problem is analyzed in

this section. A description of this problem followed by a comparison and evaluation of the various

feature saliency metrics follows.

3.5.2 Background. The 'real world' problem is a two class problem using forward looking

radar (FLIR) data to discriminate targets from non-targets. The targets consisted of tanks, trucks,

and armored personnel carriers. Nine features were used based on previous application experience

by Roggemann [56, 57, 58] and by Ruck [601. A description for the nine FLIR features is given in

Table 11.

3.5.3 Analysis. Analysis of the FLIR problem is discussed in this section. Saliency metric

ranks, means, and standard deviations are documented for all of the metrics presented in Table 9,

except the integrated metric A,. Results are not computed for A,, because it is not computation-

ally tractable for this problem. The average network accuracy is documented as the features are
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Table 9. Saliency Metric Definitions
Salleacy Reference Metric lFunction gtj
Metric Delnlition Dednitlon

Ai Section 3.2 V4 =l

where Vi is defined in Uquatioa 27

7 represents the feature space region

A,59 F,.l Z F_-, =.' ErR. rlk-.~ Doi - "' '"
Ar.-. .,o .- -- ;:, y.:, x;=, •f;= ,, ,,; o.,

Section 3.2 (PMR)-' I,

Sectlon 3.2 = vi

P~ Ni

-, 51] and Section 3.4 ,P x.,i M _ = °., .

where P.(&, is*) , deuioed in Squation 45

, (5] • I . =,, = " -.Dh(e ,*)

r4 Section 3.4 P-
1  1 p_1 gi = o ,

where P.(xv,*) is deted with ]quatloa 54

p. Skeletoisation (45] p 
1 

11 _ X = . b*
Appendix A where at is a reIevaace factor

associated with feature i

JI Optimal brain dama~ge (391 P-, Ep= _k= at at = d C, where C [d14 - X(P

Concerned with change In £ due to deletion
of the weight parameters, *!,

associated with feature i

Appendix A Taylor's Series approximation@
for both £ and dt &ae used, where

dE requires simplifying assumptions

TV Weight-based saliency [121
vrdoo 00* NIA

= N/A
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Table 10. Detailed Notational Definitions and Relationships

Saliency

Metric Detailed Detaition Relationships

f F'" 1h1 Ell ,..

V.

where Vi is delned in Equation 27

X. represents the feature space region

EP.,Efa &; jb2 2j

A5uO (PAM)- 1  oil 11Y' i 'j P1M-

Aseud° i n approximation to A,

* Ep1 I= 10 = b i Ad"' is an estimator of A'

XI=1  fli= =1 YAjI~ a~
lquatioe 60

j jJi~ihi = (jC- t)Aj

Equation 46

hit > fl
Bquation 47

rip-E 1 jj2.. 1X Sljh. b r At p-1 F X. 2 *~*

-i jAdta." for K =2

-2 k a, for K > 2

Bquatlons 56 and 56

Pi P P= E i .3 I't 1 Ij * n, This metric amounts to weighting the saecy, Vat,

for each vector by the feature mt

see Appendix A for derivation Note: if the relevance factor were associated with the vector of
weights, *', connected to feature i, then the result would be:

2.j Xp2l'=1  1, which is very close to a

see Appendix A for derivation

T'

,g, 1o 0E', I*11[°,0 Ads" < *' a*& 1nd T- m 1 i1,

r = m95 Equation 39
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Table 11. Description of FLIR Features Evaluated

Feature Number Feature Description

1 Length/Width Ratio of object length to width
2 Standard Deviation Standard deviation of pixel values

on object
3 Maximum Brightness Maximum brightness on object
4 Compactness Ratio of number of pixels on ob-

ject to number of pixels in rect-
angle which bounds object

5 Complexity Ratio of border pixel to total ob-
ject pixels

6 Mean Contrast Contrast ratio of object's mean to
local background mean

7 Contrast Ratio Contrast ratio of object's highest
pixel to its lowest

8 Bright Pixel Ratio Ratio of number of pixels on
object within 10% of maximum
brightness to total object pixels

9 Difference of Means Difference of object and local
background means

Adapted from Ruck [60:42]
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eliminated one-by-one based on the saliency metric rankings. Finally, the set of saliency metrics

are factor analyzed to look for any underlying statistical relationships among the different metrics.

Saliency results are summarized for 30 'trained' neural networks which were trained with the

same data set, but with different random initial weights and a different random order of training

vector presentation. A data set of 550 vectors was randomly partitioned for each neural network

into training, training-test, and validation sets of size 300, 125, and 125, respectively. The neural

networks were trained with four middle nodes for 500 epochs before the saliency was computed.

FRom some pilot runs, four middle nodes seemed to be a minimal network structure for this data,

since results were degraded for fewer middle nodes and no significant improvements were realized

with additional middle nodes. Log-linear declining learning rates and a momentum rate of 0.30

were used to improve the neural network's convergence to a local minimum. Also, a seven percent

minimum training set classification error was required for the network's solution to be considered

from a 'trained' network. Thirty networks were trained, and all 30 networks met the seven percent

requirement. The average training and training-test set classification errors for the 30 neural

networks was 3.30 and 9.39 percent, respectively.

In Table 12, rankings are shown for the saliency metrics, where a ranking of '1' indicates the

best feature and a ranking of '9' indicates the worst feature. With the exception of the metrics pi

and ii, similar features receive high rankings, and similar variables receive low rankings across the

metrics.

The mean saliency and the corresponding standard error for the 30 runs are presented in

Tables 13 and 14. Some further analysis is done using 'saliency function' ratios to evaluate the

relative saliency of one feature to another.

Differences in the mean value of the derivative-based metrics presented in Section 3.2 are

due to the method used to sample the saliency function -- I I I-•al when measuring the saliency

for the ith feature. The relative saliencies of the feature ranked first to the feature ranked last

97



Table 12. FUR Problem: Salieny Metric Rank for 30 Run

[FeatrD atureo A'S..dO Aid' A, J-t H-
R= 10 R=1 10i~ 7
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using rankings from A.d&*& are 4.54, 4.56, and 4.53, respectively for A.udo jado- and it.`. As

expected, the metric ri (to within roundoff error) is exactly equal to its upper bound of 1k.

since this is a two class problem. Despite differences in sampling and the higher dimensional feature

space (M = 10), the derivative-based saliencies all perform quite similarly.

Among themselves, the weight saliencies have rankings and 'saliency function' ratios which

are similar to each other. The relative saliency of the feature ranked first to the feature ranked

last using k a's rankings are: 3.17, 3.45, and 3.52 for the three weight saliencies T!, T?, and T9*.

The similarity in the weight-based saliency rankings and 'saliency function' ratios indicates that

the choice of r for weight saliency T! makes no appreciable difference.

As seen with the examples presented in Section 3.3.3, the 'saliency function' ratios associ-

ated with the weight-based saliencies are smaller than those experienced with the derivative-based

saliencies. However, a minimal number of nodes were used to analyze the FLUIR problem, these

results indicate that the relative saliencies of important to irrelevant features are degraded when

using the weight-based saliency metrics for greater than one middle node. This phenomena is also

associated documented for redundant middle nodes in Section 3.3.3.

The metrics pi and ii have similar rankings to each other (six of the nine features are ranked

the same), but not to the other saliency metrics documented. It is interesting to look at the relative

saliency of the features ranked first and last by both pi and i,. In this case, the respective relative

saliencies are 10.34 and 59.78, which are markedly different. The corresponding relative saliencies

for the derivative-based metrics are 0.86, 0.89, and 0.82, and the corresponding relative saliencies

for the weight-based metrics are 0.92, 0.86, and 0.82. These results indicate that the metrics pi

and ii are fundamentally different from the other saliency metrics.

The saliency feature rankings from Table 12 are used to perform systematic feature elimination

and evaluation of the network's corresponding classification accuracy. The features are eliminated

one-by-one based on the saliency metric rankings, i.e. the worst features are removed first. The
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results from this analysis are shown in Figure 10, where the z-axis corresponds to the number

of features which have been removed, and the y-axis corresponds to the network accuracy. Four

middle nodes are used for the entire evaluation, although fewer middle nodes might have been more

appropriate as more features were eliminated. A log-linear declining learning rate was also employed

as before. For each neural network, the data set is partitioned as before into training, training-

test and validation sets of 300, 125 and 125 vectors, respectively. The data-base partitioning and

confidence interval procedures described in Chapter I are used to compute the network accuracy

Since the error rate of the training-test set no longer exhibits wide variations after approximatc

100 training epochs, 150 epochs were used for each neural network.

In Figure 10, the mean accuracy and a 95 percent confidence interval error band (plotted

as horizontal bars about the means) are plotted using the best 10 of 30 neural networks for Ata .

Only a subset of the 'best' neural networks are used to compute the means and standard deviations,

since backpropagation learning may not converge to a local minima (see discussion at the end of

Section 3 of Chapter I) [80:143]. Although only one of the nine metrics is represented in Figure 10,

it is representative of the other metrics. Identical features are retained for many of the saliency

metrics at each point in the analysis, so the results from the other metrics are similar.

The results from all of the evaluated metrics indicate it is possible to remove one to three

features based on saliency metric rankings with little or no degradation in the average network

error. However, further reduction of the feature set requires a trade-off in classification error. This

is demonstrated in Figure 10 for k.datA. When more than three features are eliminated, there is

great variation in the average network performance depending on which saliency metric was used.

This is not surprising, since the saliency of the features was measured when all the features were

in the network. If the feature saliencies were re-evaluated for the smaller subset of features, the

remaining features would be ranked differently in many cases. Nevertheless, the significant point

is that all of the metrics are able to rank expendable features last.
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Figure 10. Average Validation Set Accuracy on FLIR Problem as Features are Eliminated

An exploratory factor analysis using a varimax rotation (see Dillon and Goldstein for details

[15]) is done on the correlation matrix of the various saliency metrics. The exploratory factor

analysis was done in hopes of identifying whether some of the saliency metrics are statistically

related to each other by some underlying factor. Using the saliency results from thirty neural

network simulations, a factor analysis was performed for each feature in the FLIR problem. The

results are displayed in Table 15. In all cases, a two factor model was most appropriate.

For each feature, all of the saliency metrics, generally, load together on the first factor to

explain between 70 and 94 percent of the variance in the saliency prior to the varimax rotation.

From Table 15, it can be seen that k.A ", r,, pi, and ii have a strong statistical relationship for this

problem, since they consistently load on the same factor for each feature. There is also a statistical

relationship between k"4"-' and the weight-based saliencies, T!, T?, and T90. The metric .s

did not consistently load with one factor or the other; however, seven out of nine times it loaded

with A4m.
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Table 15. FLUIR Problem: Saliency Metric Loadings after Varimax Rotation

Features

Saliency Metrics 1 2 3 4 5 6 7181
1.__ _ 1_1 1 2 1 1 1 1 1

A-adom 1 2 22222 2
_ .__t_ 2 1 1 111 1 1

P_ 2 1 1 111 1 1
P 21111111 1
_ _ 2 1 1 1 1 1 1 1 1
TI 12222222 2
T? 12_2_2221222222 2
T_ _ 1_22 22 22222 2

Each column corresponds to a factor analysis performed
on the saliency metrics for the feature in that column

The numbers indicate which factor a saliency
metric loaded on after a varimax rotation
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It is interesting to note that factor analysis results for all the features indicate a statistical

relationship between p,, &-, and the metrics ri and k.d for this problem, since they correspond

to markedly different saliency rankings and 'saliency function' ratios. This statistical relationship

is, most likely, due to the fact that all of these metrics are evaluated only at the known data

points. This may indicate an underlying 'sampling factor.' It is also true that the terms in p, are

weighted averages of the terms in Af.', where the weighting term for the pth exemplar is 0,. Other

similarities between pi and i, are discussed in Appendix A.

3.5.4 Summary The relationships between the available neural network feature saliency

metrics are documented in this section. The definitions and relationships presented in Tables 9

and 10 consolidate what is known about the available feature saliency metrics.

A 'real world' problem is analyzed in this section to evaluate the set of available feature

saliency metrics including those introduced in Section 3.2 and 3.4 of this chapter. The derivative-

based metrics discussed in Section 3.2 all have similar rankings and 'saliency function' ratios. The

weight-based metrics all have similar rankings and 'saliency function' ratios. The weight-based

metrics had rankings similar to the derivative-based metrics, but the 'saliency function' ratios

between important and unimportant features are smaller for the weight-based saliency metrics.

The metrics pi and ii are statistically related to each other and the derivative-based metrics

by an underlying 'sampling factor,' since all of these metrics are evaluated using the known data.

However, their saliency metric rankings are markedly different from the other metrics. Also, their

'saliency function' ratios for important to unimportant features are not similar to each other or to

the other metrics. This indicates that the results from pi and i, are fumdamentally different from

the other saliency metrics despite the underlying 'sampling factor.'

One final observation is made from the feature-by-feature elimination using the saliency metric

rankings. All of the metrics, despite fundamental differences, had a set of 'worst' ranked features
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which did not drastically affect the classification accuracy when removed from the feature set (see

Figure 10).

3.6 Summary

There are four important research results presented in this chapter. These results are sum-

marized in the next four paragraphs followed by a discussion of which metrics are recommended.

In Section 2, a framework is developed and used for analyzing a variety of derivative-based

metrics. Sampling modifications for an established metric are evaluated in this framework. Using

'saliency function' ratios, the saliency metric sensitivities to sampling, training, and redundant

middle nodes are evaluated. The metrics do not appear to be particularly sensitive to sampling;

however, they are sensitive to redundant middle nodes and the amount of training. It is most im-

portant to eliminate redundant middle nodes, since the metrics are most sensitive to training effects

in the presence of redundant middle nodes. Increased training may cause the weights associated

with the redundant nodes to grow disproportionately. This can contaminate saliency results, since

the weights from irrelevant features can get large.

In Section 3, a theoretical relationship is shown between derivative-based and weight-based

saliency. In summary, the derivative-based feature saliency metrics are bounded above by a con-

stant linear combination of the feature weights. At one middle node, the 'saliency function' ratios

produced with the weight-based metrics and derivative-based metrics are equal, to within roundoff

error. This occurs because the constant term directly cancels for the 'saliency function' ratio be-

tween any two features. When additional middle nodes are used, empirical results indicate that the

relative saliency of important to unimportant features is smaller with weight-based saliency than

it is for derivative-based saliency. For problems with redundant middle nodes, this is partly due to

the growth of the irrelevant weights associated with redundant middle nodes.
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In Section 4, contributions are made in the area of Bayesian-based feature saliency. First,

a succinct and exact relationship is demonstrated between a previously suggested Bayesian-based

metric and derivative-based saliency. Then a novel Bayesian-based saliency metric using the partial

derivative of classifier error is introduced. The computation of this metric requires only a subset of

the terms associated with the previously suggested Bayesian-based metric. Finally, the relationship

between the new Bayesian-based saliency and derivative-based saliency is derived, and an upper

bound for the Bayesian-based saliency is defined. For a two class problem, the new metric produces

results exactly equivalent to derivative-based saliency.

In Section 5, a catalogue of feature saliency metric definitions and relationships is presented in

Tables 9 and 10. In this section, the catalogue of metrics are evaluated for a 'real world' problem. On

this problem, saliency rankings, 'saliency function' ratios, and factor analysis are used to empirically

evaluate similarities and differences between the saliency metrics. One similarity is that, despite

differences, all of the metrics consistently ranked a set of 'nonessential' features last.

Since metrics perform differently, the remainder of this section summarizes recommendations

for selecting a feature saliency metric.

For discriminant analysis problems using networks with more than one middle node, the

saliency metric 1i in Equation 53 on page 86 is preferable to A.dta in Equation 31 on page 68 for

two reasons. First, it is intuitively appealing, since it represents a saliency metric which is related to

the average classifier P.. Second, it provides feature rankings using a subset of the terms required

for computation of A.

For function approximation or discriminant analysis problems using networks with more than

one middle node, the saliency metric &data in Equation 31 on page 68 should be preferred over

;%. The saliency metric A."d' provides good feature rankings, requires less computation than A-,

and is based on information known about the data from feature space. Furthermore, the metric A-

requires a tactical decision concerning the amount of 'pseudo-sampling.'
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For any classification or function approximation problem using a network with only one middle

node, the weight-based metrics T! (see Equation 32 on page 78) are best. In this case, the relative

saliencies produced using weight-based saliency will be identical to ri or ma• . For networks using

more than one middle node, weight-based saliency can still be used for a cursory analysis of a

feature's relative importance. However, the empirical results suggest that the relative importance

of one feature to another is degraded when additional middle nodes are used. Despite a potential

degradation in results, weight-based saliency is still appealing. It is related to the metric AdU& and

it is directly computable from a trained network witho6t reevaluating the data.

The metrics k. dm, ii and pi are not recommended, because they require unnecessary work or

additional assumptions with no gains in performance over the other available saliency metrics. The

experimental pseudo-sampling metrick aadom is not preferred, since it invokes unnecessary random

sampling and potentially greater computation. The second order metric, ii, is not recommended,

since it is associated with additional assumptions which are used to simplify the evaluation of the

Taylor's series expansion of the network error. The relevance metric, A, is not recommended, since

it requires the assumption that pi can be approximated using a partial derivative of the error with

respect to a relevance factor.

The results shown in Section 3.5 of this chapter indicate that the least important features, as

ranked by any of the feature saliency metrics, may not be essential to good classification accuracy.

In the next chapter, feature screening techniques are presented which can be used to formally

identify unimportant or noise-like features.
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IV. Feature Screening Techniques for Feedforward Neural Networks

4.1 Introduction

Feature screening can be used to take a preliminary look at a set of features. Specifically, it

can be used to identify and eliminate noisy features prior to a formalized feature selection procedure.

Two feature screening procedures are discussed and evaluated in this section. The first procedure,

presented in Section 2, is based on statistically comparing the saliency of candidate features to

the saliency of a noisy feature. The second procedure, presented in Section 3, is based on the

weight screening hypothesis test proposed by White [82]. These procedures are summarized and

recommendations are made in Section 4.

As in Chapter MI, the research and theoretical results presented in this chapter reflect the

exclusive use of the sigmoidal activation functions on the middle and output nodes of a feedforward

neural network (presented in Chapter 1). The fumdamental definitions of network output activations,

saliency, and network derivatives will change for other types of activation functions. However, the

underlying procedures presented in this chapter remain the same. The neural network notational

conventions, network structure, and the backpropagation algorithm introduced in Section 3 of

Chapter I are used as necessary in this chapter.

4.2 Feature Saliency Screening

4.2.1 Introduction. A saliency screening procedure which statistically formalizes the screen-

ing methodology proposed by Belue and Bauer is presented in this section [5]. In their procedure,

Belue and Bauer augment a set of features with a known irrelevant feature (i.e. noise). They

recommend eliminating any feature whose mean saliency falls inside a one-sided confidence interval

about the mean saliency of noise. Mean saliency is calculated from the feature saliency results of

several trained neural networks.
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In the formalized procedure presented here, the entire feature set is simultaneously screened

for nonsalient features using a specified degree of statistical confidence. The formalized procedure

requires an injected noise feature, a Bonferroni test statistic, and an appropriate hypothesis for

testing the equality of means. These are reviewed before the formalized screening procedure is pre-

sented. The saliency screening procedure is evaluated on the XOR problem and on two application

problems to determine if artificially included noise features can be identified.

The saliency metric A.d't, is used in this discussion, although a different saliency metric could

easily have been used. For reference, "data defined in Equation 31 of Chapter m is given again as:

P K 1 0
Ada~ E Ep.y L (x'*

P=1 h=1

4.2.2 Noise Injection. There are two reasons for augmenting the feature set with noise.

First, the saliency of noise features is significantly greater than zero; therefore, a test cannot be

developed based on Mda'a = 0. Second, the actual magnitude of this saliency can be different from

problem to problem; therefore, the magnitude of noise-like features should be characterized for the

problem at hand. This entails:

"* Augmenting the original feature set with a true noise feature, z., One way to generate a

noise feature is by drawing random numbers from a Uniform (0,1) distribution.

"* Training a neural Eetwork using the augmented feature set to minimize the training-test set

error.

"* Calculating the feature saliency for all the features (including the noise).

4.2.3 Bonferroni Joint Hypothesis Testing. The Bonferroni procedure accounts for the fact

that the significance level for a 'family' of tests is not the same as that for an individual test.

To conduct M one-sided hypothesis tests with a 'family' significance level of a, each individual

test must be conducted with an individual significance level of - [47:5941. The M hypothesis tests
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correspond to the M candidate features in the feature set. The individual significance level is found

using the Bonferroni inequality which is derived from simple probability theorems.

Let Ai be the event that the ith hypothesis test is rejected when it is true. The probability

of A, is denoted as P(A.) and the confidence coefficient for A,- be defined 1 - P(A.). The following

set of probability theorems are used to derive the Bonferroni inequality.

Probability Theorem 1

P(A. U A,) = P(A,) + P(A,) - P(A. n A,)

Probability Theorem 2

P(A•) =:1 - P(A.)

Probability Theorem 3

P(AL U A,) = P(- fl A,)

Using these basic probability theorems, the following statement can be derived.

P(A. n A,) = 1 - P(A.)- P(A,) + P(A. n Aj)

Since P(A, n Aj) is greater than or equal to zero, the Bonferroni inequality is defined as [47:160]:

P(A. n A,) >_ 1 - P(A.) - P(A,)

The right hand side of the Bonferroni inequality represents a conservative estimate of the joint

confidence coefficient for the individual hypothesis tests A, and A,.

The Bonferroni inequality can be generalized for simultaneous hypothesis testing of M indi-

vidual hypothesis tests denoted A 1, A2," AM as

P(A, 1 A 2 fl ... fl AM) 1-( P(A1 ) + P(A 2) + .. + P(AM) )
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Table 16. Bonferroni Critical Values

Individual Significance Levels

Degrees of Freedom v a 0.01 • - 0.005 j2- = 0.0005

10 2.764 3.169 4.587
20 2.528 2.845 3.850
30 2.457 2.750 3.646
40 2.423 2.704 3.551
60 2.390 2.660 3.460
120 2.358 2.617 3.373
00 2.326 2.576 3.291

a: 'family' level of significance, where a = M . (-)

M is the number of individual hypothesis tests

Now let P(A.) = 8 for each of the M individual hypothesis tests. The result is that the joint

hypothesis test has a confidence coefficient of 1 - M o. For the joint test to have a confidence

coefficient of I - a (or a 'family' significance level of a), the individual hypothesis tests must have

significance levels of / equal to AM"*

To produce a 'family' significance level of a, the Bonferroni critical value, denoted B, is used

for each individ .al hypothesis test. For M one-sided tests, the Bonferroni critical value is:

B = (57)

where v = N - 1 and N is the number of observations on which the tests are based. Table 16

contains Bonferroni critical values B for combinations of v and -.
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4.2.4 Hypothesis Tests for the Equality of Means. The saliency screening methodology con-

sists of simultaneously applying individual hypothesis tests on the equality of two means: (1) the

mean saliency of feature i, denoted P•d.,., and (2) the mean saliency of noise, denoted In

general, this type of hypothesis test requires two conditions:

1. The saliency for each feature i should be a normally distributed random variable, or if the

saliency is nonnormal, the conditions of the central limit theorem (CLT) should hold [24:2801.

2. The saliency for the ith feature is independently distributed with mean 1A#... and variance

or'2.,.. Similarly, the saliency for the augmented noise feature is independently distributed

with mean pXd.,. and variance o2d... [24:281].

For the saliency screening methodology, the first condition must be met by using the CLT,

since the theoretical distribution of k.dat& has not been shown to be normal. The CLT states [47:6]:

Theorem 1 If Y1,' ", YN are independent random observations from a population with probability

function f(Y) for which 0,2 {y} is finite, the sample mean Y:

N

is approzimately normally distributed when the sample size N is reasonably large, with mean E {Y}

and variance 02_(Y.N

To invoke the CLT, the saliency metric kdata is defined as

apl

P

where K~

1=x11 , )
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The superscript p corresponds to the pth exemplar from a set of P exemplars. The variable YP is

a random observation from a population with probability function f(Yi) for which a,' {Y,) is finite.

The variable YjP is a random observation since it is a function of xP which is a random observation

from the population of input exemplars. The conditions of the CLT can be applied in a similar

fashion for many of the metrics shown in Table 9 in Chapter ITM.

The second condition for 'equality of means' hypothesis testing is also met. The samples of

saliency for each feature are associated with independent realizations of neural networks. Each

realization is independent for three reasons: (1) the random partitioning of the data set, (2) the

random initialization of the weight parameters, and (3) the random order for presentation of the

training data.

The test statistic and the hypothesis test used to test for the equality of two means is defined

by one of four cases [24:280-292]. They are:

1. The variances (r.d.t. and ad.,.) corresponding to the distributions of pad.*. and Pqd.,. are
a aaa r

known. The observations of ;Adata and Idata are independent.

2. The variances (o
2
p.,. = ark.,.) corresponding to the distributions of Alta and A data are un-

a~~

known but equal. The observations of Aidta and A•dta are independent.

3. The variances (o,2 # •12d,,,) for the distributions of A.dta and Adata are unknown and un-

equal. The observations of k.Mat and ,•data are independent.

4. The observations of Aa and A. are paired and dependent.

Cases 1, 2, and 3, which each correspond to a null hypothesis of Ho : PAd.-. = /A.•t,

are inappropriate, because in this application the observations of A! ' and Adata are paired and
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dependent. The appropriate hypothesis testing procedure is the Paired t-test defined using Case 4.

The Paired t-test is defined here as:

Null Hypothesis Ho: PD = 0

Alternative Hypothesis HA: PD, > 0,

where PD,, the difference between the ith feature's mean saliency and the noise feature's mean

saliency, is defined

PAD, = fdt- Adt

Define the test statistic t* as
15,

* ,i (58)

where

D,== D,, (59)
N

= ""ao - Ada-a

N j( ,- 
(6)0SDi= (N-1) (60)

and j indicates the jth of the N samples of Dj. For feature i, 1D and S are the sample mean

and sample variance, respectively, for N samples. The critical value for an individual significance

level of a is tcit = t-.,,,, where v = N - 1. The null hypothesis is rejected if the test statistic, t,

exceeds the critical value tt.

4.2.5 Methodology. The formalized statistical screening procedure for identifying nonsalient

features is based on applying the Bonferroni inequality to M individual hypothesis tests to achieve
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a predetermined 'family' significance level a. The individual hypothesis test used is

Null Hypothesis H0 : pD, = 0

Alternative Hypothesis HA: PD, > 0,

The procedure is summarized as:

Saliency Screening Procedure

1. Augment feature set with a noise feature, z,.

2. Train neural net to minimize training-test set error.

All nets should ideally use a minimal network structure with no redundant middle nodes or

features.

All nets should ideally converge to a local minimum and not a saddle point.

3. Compute the feature saliency, k.data for each of the features, including z..

4. Repeat steps 2 and 3 a minimum of ten times (N = 10), using random initialization of weight

parameters and random data set partitioning.

5. Select 'family' significance level, a.

6. For each feature do an individual hypothesis test as follows:

(a) Compute D, and S,2 using Equations 59 and 60 on page 113.

(b) Compute the test statistic t" using Equation 58 on page 113.

(c) Determine the Bonferroni critical value B = t*,.

(d) Evaluate the test statistic as follows:

* If t" < B, the null hypothesis can not be rejected for feature i.

Conclusion: feature i is nonsalient, since the difference between the ith feature's
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saliency and the noise feature's saliency is not statistically different from sero at the

a 'family' significance level.

* If t > B, reject the null hypothesis for feature i.

Conclusion: feature i is salient, since there is a statistical difference at the a 'family'

significance level between the saliency of the ith feature and the saliency of the noise

feature.

7. Eliminate the nonsalient features and retrain the network with only the salient features.

If there are any questions concerning the salient features, the procedure can be performed

again on the reduced feature set to confirm the remaining features are all still salient.

The identification of nonsalient features using saliency screening is related to the sample size.

A larger sample size usually corresponds to a smaller standard error for S2, and a smaller standard

error corresponds to a larger test statistic for t" in Equation 58. Additionally, a larger sample

means a smaller t-statistic or Bonferroni critical value B. For a feature which is borderline or very

nearly noise-like, Ho may be more easily rejected with larger sample sizes.

The saliency metrics used in this procedure are sensitive to training and middle nodes as

discussed in Chapter III; therefore, this procedure may also be sensitive to training and middle

nodes redundancies. These factors are partially minimized for evaluation of the saliency screening

procedure, since a minimal number of middle nodes and sufficient training epochs are determined

through a series of pilot runs.

4.2.6 Analysis. The robustness of the saliency screening methodology is evaluated with

three problems. These problems include: the XOR problem, the Armor Piercing Incendiary (API)

Projectile Functioning problem, and the FLIB problem. The second and third problems are used

to evaluate whether the saliency screening procedure is practical for application problems. For

each test problem, the feature set is augmented with one or more additional noise features. Then
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the saliency screening procedure is used to determine if additional noise features are identified as

nonsalient.

4.2.6.1 XOR Probem. In this section, the saliency screening procedure is applied to

an XOR problem (shown in Figure 9 of Chapter HII) which has been augmented with five additional

noise features. One of the artificial noise features serves as the augmented noise a., and the others

serve as candidate features. The procedure is evaluated to see if the candidate noise features are

identified during the screening process.

The saliency screening procedure was repeated with N equal to 10, 30, and 100 realizations of

'trained' neural networks which were all trained with the same data set, but with different random

initial weights and different training order presentations. A data set of 600 vectors was partitioned

into training, training-test, and validation sets of size 400, 100, and 100, respectively. The networks

were trained with four middle nodes, which was the minimal network which would reliably train

to a local minima. A log-linear declining learning rate and a momentum rate of 0.30 were used.

For all runs, 700 epochs were used with a requirement for a seven percent or lower training set

classification error for the network's solution to be considered from a 'trained' network.

Saliency screening results for N = 30 realizations are reported in Table 17. In total, 38

networks were trained, and 30 networks met the minimum error requirement. The average training

and training-test set error rates averaged over the 30 networks were 2.69% and 6.83%, respectively.

Using the screening procedure, the artificial noise features are identified as nonsalient, and the

features z and y are identified as salient. Equivalent results are produced for the saliency screening

procedure with N = 10 and N = 100 neural network realizations. The other saliency metrics (see

Table 9 of Chapter MI) also provide similar results when they are used with the saliency screening

procedure.

The feature saliency rankings from Table 17 are used for successive removal of candidate

features. In Figure 11 the mean error and a 95% confidence interval band (plotted as horizontal
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Table 17. Saliency Screening Results on XOR Problem for 30 Runs

D data data

Feature A. A.a A jo to Rejecti akn Ho

z 2 2.055 0.610E-01 1.914 0.611E-01 31.3 29 yes
Y 1 2.149 0.476E-01 2.008 0.456E-01 44.1 29 yes

noise 1 6 0.133 0.148E-01 -0.796E-02 0.148E-01 -0.536 29 no
noise 2 7 0.128 0.111E-01 -0.132E-01 0.840E-02 -1.570 29 no
noise 3 4 0.142 0.145E-01 -0.893E-03 0.142E-01 0.630E-01 29 no
noise 4 3 0.151 0.148E-02 -0.104E-01 0.179E-01 0.582 29 no

a,. 5 0.141 0.122E-01 N/A N/A N/A N/A N/A

Features ranked from best to worst

Individual Significance Level A =.005

Bonferroni Critical Value B = 2.756
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Figure 11. Average Validation Set Error on XOR Problem as Features are Eliminated

bars about the means) are plotted on a validation set of 100 vectors. The mean error at each point

is labeled with the features retained in the neural network model. The database partitioning and

confidence interval procedures discussed in Chapter I are used to estimate the average network

classification errors using the best 30 of 100 realizations of neural network training. The network's

accuracy generally improves as the nonsalient candidate features are removed from the training

set one-by-one. The 95% confidence interval for the average error is significantly smaller when all

the noise has been eliminated from the feature set. Another way of saying this is that prediction

variance is reduced after noise-like features are eliminated. The network accuracy is only seriously

degraded when the first salient feature z is removed.
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4.2.6.2 Armor Piercing Incendiary (API) Problem. In this section, the saliency screen-

ing procedure is applied to the API problem which uses data on the performance of API projectiles

to classify an API projectile's performance as "complete" or "other [34]." For each shot, four in-

dependent parameters are known; impact striking velocity (Vs), impact striking mass (Ms), panel

ply thickness in inches (PLY), and the secant of the impact obliquity angle (SECT). The firing

process is illustrated in Figure 6. A feature vector for this application consists of the parameters

of each API projectile firing. The API problem has been augmented with two additional noise

features. One of the artificial noise features serves as the augmented noise zx, and the other serves
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as a candidate feature. The saliency screening procedure is evaluated to see if the candidate noise

feature is identified during the screening process.

The saliency screening procedure was repeated for this application with N equal to 10, 30,

and 100 realizations of 'trained' neural networks which were all trained with the same data set,

but with different random initial weights and different training order presentations. A data set of

281 vectors was partitioned into training, training-test, and validation sets of size 181, 50, and 50,

respectively. The networks were trained with five middle nodes, which was the minimal network

which would reliably train to a local minima. A log-linear declining learning rate and a momentum

rate of 0.30 were used. For all runs, 700 epochs were used with a requirement for a seven percent

or lower training set classification error for the network's solution to be considered from a 'trained'

network.

Saliency screening results for N = 30 realizations are reported in Table 18. In total, 30

networks were trained, and all 30 networks met the minimum error requirement. The average

training and training-test set error rates averaged over the 30 networks were 2.32% and 8.4%,

respectively.

Using the screening procedure, the artificial noise feature and the feature Ms are identified

as nonsalient. All other features are identified as salient. These results are consistent with Belue

and Bauer [7]. Using the saliency screening procedure with N = 10 and N = 100 neural network

realizations produced equivalent results to the results shown in Table 18. Using the saliency screen-

ing procedure with the other metrics presented in Table 9 of Chapter IT[ also produced equivalent

results.

The feature saliency rankings from Table 18 are used for successive removal of candidate

features. In Figure 13 the mean validation error (50 vectors) and a 95% confidence interval band

(plotted as horizontal bars about the means) are plotted. The mean error at each point is labeled

with the features retained in the neural network model. The database partitioning and confidence
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Table 18. Saliency Screening Results on API Problem for 30 Runs

Sdata -data 1 1 1
Feature A. A, ai.t Di SDI j v Reject

i RaknxHo

PLY 2 0.583 0.290E-01 0.432 0.310E-01 13.9 29 yes
Vs 3 0.472 0.147E-01 0.320 0.217E-01 14.8 29 yes
Ms 5 0.150 0.119E-01 -0.939E-03 0.179E-01 -0.525E-01 29 no

SECT 1 0.960 0.369E-01 0.809 0.408E-01 19.8 29 yes
noise 6 0.148 0.926E-02 -0.335E-02 0.164E-01 -0.205 29 no

xnoise 4 0.151 0.144E-01 N/A N/A N/A N/A N/A

Features ranked from best to worst

Individual Significance Level a- = .005

Bonferroni Critical Value B = 2.756

interval procedures discussed in Chapter I are used to estimate the average network classification

errors using the best 30 of 100 realizations of neural network training. The 95% confidence interval

for the average error is significantly smaller when the noise feature and Ms are eliminated from

the features set. Once again, as with the XOR problem, the prediction variance is reduced after

noise-like features are eliminated. It is only after the next feature Vs is removed that the average

network accuracy becomes seriously degraded.

4.2.6.3 FLIR Problem. The FLIR problem used in Chapter III is revisited to evaluate

the saliency screening procedure. The FLIR feature set described in Table 11 is augmented with

two artificial noise features. One of the artificial noise features serves as the augmented noise z.,

and the other serves as a candidate feature. The saliency screening procedure is evaluated to see if

the additional noise feature is identified during the screening process.
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The saliency screening procedure was repeated with N equal to 10, 30, and 100 realizations of

'trained' neural networks which were all trained with the same data set, but with different random

initial weights and different training order presentations. A data set of 550 vectors was partitioned

into training, training-test, and validation sets of size 350, 100, and 100, respectively. The networks

were trained with four middle nodes, which was the minimal network which would reliably train

to a local minima. A log-linear declining learning rate and a momentum rate of 0.30 were used.

For all runs, 500 epochs were used with a requirement for a seven percent or lower training set

classification error for the network's solution to be considered from a 'trained' network.

Saliency screening results for N = 30 realizations are reported in Table 19. In total, 30

networks were trained, and all 30 networks met the minimum error requirement. The average

training and training-test set error rates averaged over the 30 networks were 3.86% and 8.77%,

respectively.

Using the screening procedure for N = 30, the artificial noise feature is the only feature

identified as nonsalient, and all other features are identified as salient. The third feature 'maximum

brightness' has a fairly small test statistic of 5.37 which is only half the size of the next largest

test statistic, but it would not be identified as nonsalient with the saliency screening procedure.

However, it might warrant further screening after the noise feature is removed.

Using the saliency screening procedure with N = 100 neural network realizations produced

equivalent results. However, when the saliency screening procedure is used with N = 10 neural

network realizations the test statistic for 'maximum brightness' drops to 3.02. With an individual

significance level - =.005 it still would not be identified as nonsalient, but at a higher significance

level, say • - .0005, it would be identified. This result demonstrates the relationship between

sample size and the identification of nonsalient features using the sahency screening procedure.

When the saliency screening procedure was performed using the other metrics presented in

Table 9 of Chapter III, the results are similar. The differences are that feature 3 is identified as
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Table 19. Saliency Screening Results on FLIR Problem for 30 Runs

Sdata - data
Feature A, A,- Di sD, Reject

1 7 0.629 0.374E-01 0.537 0.367E-01 14.6 29 yes
2 1 1.537 0.564E-01 1.444 0.572E-01 25.2 29 yes
3 9 0.256 0.303E-01 0.163 0.304E-01 5.37 29 yes
4 8 0.481 0.169E-01 0.389 0.163E-01 23.9 29 yes
5 2 1.447 0.506E-01 1.355 0.499E-01 27.1 29 yes
6 6 0.853 0.475E-01 0.761 0.487E-01 15.6 29 yes
7 4 0.946 0.392E-01 0.853 0.408E-01 20.9 29 yes
8 3 1.208 0.941E-01 1.115 0.939E-01 11.9 29 yes
9 5 0.857 0.427E-01 0.764 0.441E-01 17.3 29 yes

noisp 10 0.115 0.106E-01 0.229E-01 0.141E-01 1.62 29 no
X, 11 0.925E-01 0.763E-02 N/A N/A N/A N/A N/A

Features ranked from best to worst

Individual Significance Level A = .005

Bonferroni Critical Value B = 2.756

nonsalient for N = 10 using the metrics Ai and ii, and feature 8 is identified as nonsalient with the

met-ic ii. The conclusion reached is that the results may differ slightly depending on the saliency

metric used.

The feature saliency rankings from Table 19 are used for successive removal of candidate

features. In Figure 14 the mean error and a 95% confidence interval band (plotted as horizontal

bars about the means) are plotted on a validation set of 100 vectors. The mean error at each point

is labeled with the features retained in the neural network model. The database partitioning and

confidence interval procedures discussed in Chapter I are used to estimate the average network

classification errors using the best 30 of 100 realizations of neural network training. The average
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Figure 14. Average Validation Set Error on FLIR Problem as Features are Eliminated

network accuracy does not significantly change by removal of the three least salient features, includ-

ing noise. In fact, the accuracy is not significantly degraded until the sixth feature is removed from

the model. The explanation for this is two-fold. First, only the least salient features are removed

and second, the features are intercorrelated, so a certain degree of natural redundancy may exist

in this feature set.

In Figure 15, an ordered plot of the features versus the test statistics from the saliency

screening procedure is shown. The relationship between 'essential' and 'nonessential' features can

be seen visually. Belue and Bauer use a similar plot with features versus feature saliencies as a

visual 'scree test,' to determine which features to retain [5]. For the FUR problem, there seems

to be three visual categories of features based on the test statistics. Based on using Figure 15,
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features 3 and noise might be categorized as 'nonessential' and removed, and the features 5, 2, 4,

and 7 might be categorized as 'essential' and retained. The third category of features might be

categorized as 'important' but warrant further analysis in the context of an overall feature selection

process.

4.2.7 Summary. The saliency screening procedure is a statistical procedure for identifying

nonsalient features in a feature set using a specified level of statistical confidence. A series of

paired-t tests are used to test for a statistical difference between the saliency of a true feature azid

the saliency of noise. A feature's paired-t test statistic is a comprehensive measure of a feature's

saliency for two reascns. First, it incorporates the relative saliency of each feature compared to a

known nonsalient feature, and second, it also incorporates the variance of feature saliency.

An empirical evaluation of the saliency screening procedure indicates that conservative results

are common with this procedure. That is, a nonessential feature, having little or no bearing on the

classification accuracy, may be identified as salient if it is statistically different from noise. This

occurs in the FLIR problem, since the third and eighth features are statistically different than noise
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in Table 19, but have little impact on classification accuracy as shown in Figure 14. For this reason,

features with relatively low test statistics may warrant further consideration in the context of a

feature selection process.

4.3 Weight Screening

4.3.1 Introduction White describes a weight screening procedure for identifying irrelevant

features [82]. The procedure uses a statistical hypothesis test which is developed using the limiting

distribution of the weights w [82:4421. The premise is that the vector of feature weights is not

statistically different from zero for an irrelevant feature. An overview of this section follows.

First, the irrelevant input hypothesis test and the associated distributional assumptions are

reviewed. Then, a relationship is shown between weight screening and weight-based saliency. Next,

a weight screening methodology using the irrelevant input hypothesis test is described. The weight

screening problem is then evaluated on the same problems as were previously used with the saliency

screening procedure. Finally, the results are summarized along with a comparison of the two

screening procedures.

4.3.2 Background In this section, the weight screening hypothesis test for identifying irrel-

evant inputs is presented. Related distributional assumptions are stated as required. The weight

screening hypothesis test involves weight parameters from one realization of a trained neural net-

work. The hypothesis test as given in White [82] follows:

Null Hypothesis Ho: Sw* = 0

Alternative Hypothesis HA : Sw* 5 0 ,

where w" is an a-dimensional vector of neural network optimal weight parameters and S is a q by

a selection matrix picking out the q elements of w* which are hypothesized to be zero under H0 .
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To statistically test Ho for a neural network, the limiting distribution of the vector of esti-

mated network weights * must be multivariate normal as * converges to w" [82]. The vector of

estimated weights * will be multivariate normally distributed 'in the limit' if redundant feature

inputs and redundant hidden units are removed [79:441]. 'In the limit' refers to weights from a

network trained using an infinitely large data set. When * has a multivariate normal limiting

distribution, then

V-( - w* N,(o, C'),

where C* is the a-dimensional covariance matrix of VF(* - w*) (and V{I*) and P is the number

of data exemplars [82:441]. Also,

-,I-S(*- W') ~ N,(O, SC'S')

and

P(* - w*)'S'(SC*S')-S(* - w*) - Xq'

Under the null hypothesis where Sw* = O, the limiting distributions are simplified to

v Nq(O, SC*S')

and

P*'S'(SC4S')-'S* " Xq (61)

where the X2 test statistic is defined by the left hand side of Equation 61.

The analytical expression for C* cannot be computed; however, a weakly consistent estimator

C5 is available [79]. The estimator denoted Cb is defined as

C = A-"Bli-" (62)
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The &-dimensional matrices A and B are

A = PlE- V 2 C$P(P,,*) (63)
p=1
P

B = P-' •ve.(x,,*)Ve6(3,,*)' (64)
p=1

where C. is the neural network error associated with the pth exemplar (see Chapter I Equation 1),

and the operators V and V2 denote the a x 1 gradient and the s x a Hessian operators of (.

Replacing C" with 4b does not affect the limiting X. distribution; however, White warns that a

much larger sample size P may be required to obtain a good approximation of C* [79:442-4431.

The x.2 test statistic must be estimated using t. It is defined as

,2'= p*'S'(S(bS')-1 S* (65)

If Xq2* exceeds the 1 - a percentile of x.2, the irrelevant input hypothesis is rejected where the

probability of failing to reject Ho when Ho is false is equal to a.

4.3.3 Relationahip between Weight Saliency and Weight Screening In this section, a relation-

ship is shown between the Euclidean weight-based saliency T, proposed by Tarr (see Equation 22

in Chapter II) and the x test statistic (on the left hand side of Equation 61) [82, 72]. Let Si be the

q by a selection matrix which selects the q weights associated with feature i. The weight saliency

T, and the x: test statistic associated with the ith feature are redefined in terms of the selection

matrix S, as

Ti = *'S!S1*,

P*'S!(S,1C'S!)-•s,* ~
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A relationship between T, and the test statistic is developed as follows

T,= Wa4'S&.aja*

=

= v•SI(Sj,IS!)-ISj*

Now, by considering the special case where C* = I. and substituting C" for I1 above gives

T, = *,Sa(SC'Sw)-Si*

which is equivalent to

PT, = P*'S!(S 1 CS)-1 S,*

Therefore, the special case where C* = I., gives the relationship

PTj ^. X:

This relationship can only be shown for C" = I.. This fact highlights that weight saliency

does not incorporate the variance covariance structure of the weights emanating from the feature

of interest.

4.3.4 Methodology. A formalized statistical weight screening procedure for identifying ir-

relevant features is based on applying the Bonferroni inequality to M individual hypothesis tests

to achieve a predetermined 'family' significance level a. For the weight screening procedure, the

130



individual hypothesis test associated with the ith feature is given as

Null Hypothesis Ho: Sw" = 0

Alternative Hypothesis HA: Siw" # 0

The null hypothesis is referred to by White as the 'irrelevant input hypothesis' for testing whether

the ith feature is irrelevant [821.

The weight screening procedure can be summarized in a similar manner to the saliency

screening procedure as follows:

Weight Screening Procedure

1. Train a neural net to minimize training-test set error.

The net should use a minimal network structure with no redundant feature inputs and no

redundant middle nodes.

The net should be trained to a local minimum.

2. Select 'family' significance level, a.

3. For each of the M features, do an individual hypothesis test as follows:

(a) Compute the matrices A and A in Equations 63 and 64.

(b) Compute C in Equation 62.

(c) Form the appropriate selection matrix S which picks out the q elements of w" which are

hypothesized to be zero under Ho.

(d) Compute x:" test statistic in Equation 65.

(e) Determine the Bonferroni critical value B = X,.

(f) Evaluate the test statistic as follows:
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" If X" - B, the null hypothesis can not be rejected for feature i.

Conclusion: feature i is irrelevant, since the weights associated with the ith feature

are not statistically different from 0 at the a 'family' significance level.

"* If X" > B, reject the null hypothesis for feature i.

Conclusion: feature i is relevant, since the weights are statistically different than 0

at the a 'family' significance level.

4. Eliminate the irrelevant features and retrain the network using only the relevant features.

If there are any questions concerning the salient features, the procedure can be performed

again on the reduced feature set to confirm the remaining features are all still salient.

There are two potential problems with practical implementation of the weight screening pro-

cedure:

1. rn-conditioned matrices due to redundant inputs and/or middle nodes.

2. Intractable matrix inversion due to a very large network structure.

When there are redundant inputs or redundant middle nodes, the weights * are no longer

multivariate normally distributed; therefore, the X2" test statistic is no longer distributed as a

x: under the null hypothesis. If ill-conditioning is present or suspected, one should proceed with

caution. Ideally, all redundancies should be eliminated in order to perform the irrelevant input

hypothesis test with the x?,' test statistic. The second potential problem can not always be avoided

or eliminated. The computation of x,2* may become intractable even when the network is trained

and redumniancies in the features and middle nodes have been eliminated. The intractability is

primarily due to the inversion of the s-dimensional matrix A which is required for estimating the

covariance matrix C*.

The practical limitations on the problem size can be mitigated by making simplifying assump-

tions about the covariance structure of the weights. These assumptions will in turn simplify the
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process of inverting the Hessian matrix A. However, improving the practical implementation when

there are siue limitations only makes sense if the procedure is useful for consistently identifying

irrelevant features. The performance of the weight screening procedure is evaluated in the next

section.

4.3.5 Analysis In this section, an empirical evaluation oi the weight screening procedure is

presented using the XOR, API, and FLIR problems. For all three problems, results are presented

for the same 30 runs which were used with the saliency screening in Section 2. All of the same

training sets, training parameters, and final weight estimates are used.

Recall the XOR problem which was augmented with five additional noise features (all treated

as candidate features). The weight screening hypothesis test results for the XOR problem are

summarized in Table 20. The number of times the null hypothesis was rejected in 30 neural

network runs is reported in the first column of Table 20. For example, the null hypothesis was

rejected for feature z in 25 out of 30 runs. This means that in five of the runs, the vector of weights

connected to feature z were not statistically different than 0. Depending on which run is used, the

'true' features z and y, may or may not be statistically different than noise. In fact, for one of the

network runs the test statistic from one of the noise features was larger than the test statistic from

one of the 'true' features. The average X2* test statistics over 30 runs are reported in the second

column of Table 20. While the results shown in column one indicate what might occur on any

given run, the results shown in column two indicate what can be gleaned if the information from

all 30 runs is combined. On this problem, the average test statistics indicate the features z and y

are relevant, and the noise features are irrelevant.

The second problem used is the API problem which is augmented with two additional noise

features (both treated as candidate features). The weight screening hypothesis test results are

summarized in Table 21. The number of times the null hypothesis was rejected in 30 neural network

runs is reported in the first column of Table 21. On any individual run, the weight screening results
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Table 20. Weight Screening Results on XOR Problem for 30 Runs

Feature Ho Rejections Average X2 "

out of 30

x 25 139.57
Y 22 145.78

noise 1 3 4.74
noise 2 0 3.70
noise 3 1 4.31
noise 4 0 3.89
noise 5 3 5.32

Individual Significance Level .005

Critical Value X. = 14.86, where q = 4

may or may not be consistent with the saliency screening results. That is, the noise features and

Ms may or may not be irrelevant and the other 'salient' features may or may not be identified

as irrelevant. The average x2* test statistics over 30 runs are reported in the second column of

Table 21. On this problem, the average test statistics indicate that only the noise features are

irrelevant. The feature Ms probably warrants further investigation, since its test statistic is fairly

close to the critical value.

The third problem used is the FLIR problem which was augmented with two additional noise

features (both treated as candidate features). The weight screening hypothesis test results are

summarized in Table 22. The number of times the null hypothesis was rejected over 30 neural

network runs is reported in the first column of Table 22. These results indicate that none of the

features are consistently relevant. In fact, on several of the 30 simulations none of the features have

weights which are statistically relevant (i.e. weights that are statistically different than 0). The

average X2" test statistics over 30 runs are reported in the second column of Table 22. For this
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Table 21. Weight Screening Results on API Problem for 30 Runs

Feature Ho Rejections Average X"
out of 30

PLY 29 126.3
Vs 25 51.8
Ms 14 20.5

SECT 29 106.67
noise 1 6 11.21
noise 2 11 15.61

Individual Significance Level .005

Critical Value X2 = 16.75, where q = 5

problem, the average test statistics indicate that only three features are relevant. The fifth feature

which has the largest average X2 test statistic also has the largest saliency screening test statistic in

Table 19. However, feature two which has the second largest saliency test statistic in Table 19 was

identified as relevant only seven times out of the thirty runs using the weight screening procedure.

On all of these problems, the weight screening methodology did not provide consistent reliable

results for the 30 runs evaluated. For the first two problems, noise was not consistently identified

as irrelevant. Using the weight screening procedure resulted in identifying some or even all of the

true variables as irrelevant on some individual runs.

Although the weight screening procedure is meant to be used with just a single neural network

run, the average test statistics over 30 runs has more potential as a screening tool. For the XOR

and API problems, the average test statistics indicate that all of the features are relevant except for

noise. However, when using the average test statistics for the FLIR problem, none of the features

are relevant except feature five.
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Table 22. Weight Screening Results on FLIR Problem for 30 Runs

Feature Ho Rejections Average X2"
out of 30

1 4 10.6
2 7 10.3
3 1 2.0
4 12 14.8
5 23 39.8
6 5 7.2
7 11 15.3
8 5 8.4
9 0 2.5

noise 1 1 3.2
noise 2 1 3.1

Individual Significance Level .005

Critical Value X2 = 14.86, where q = 4
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4.3.6 Summary The weight screening procedure, while a single run procedure, is not robust.

It does not provide consistent reliable results for a single run This indicates the procedure is

extremely sensitive to less than ideal conditions where the weights may not be multivariate normally

distributed in the limit or may not be from a perfectly trained network. Further, the weight

screening procedure is computationally impractical for reasonable sized networks due to the required

Hessian matrix inversion.

In the identification of noise, the average test statistics over several runs are more useful than

the test statistics from a single run. However, in the case of the FLIR problem, only one feature is

identified as relevant. As with the saliency screening procedure, a visual comparison of the average

test statistics might be useful to categorize features as 'relevant' and 'irrelevant' for some problems.

4.4 Summary

Two statistically based feature screening procedures are discussed in this chapter. The two

statistically based methods for the identifying nonsalient/irrelevant features are the saliency screen-

ing procedure and the weight screening procedure. In the saliency screening procedure, a feature's

mean saliency is statistically compared to the mean saliency of a known noise feature. In the weight

screening procedure, the weights emanating from a feature are tested to see if they are statistically

different than 0. With either of these statistical screening procedures, features can be ranked and

categorized as 'essential' and 'nonessential' based on their test statistics.

It is desirable for a featurt screening procedure to be able to consistently identify noise or

irrelevant features as different from other features. An evaluation of both procedures demonstrates

that the saliency screening procedure is more robust than the weight screening procedure, since

it consistently identifies noise-like features as being nonsalient/irrelevant whereas the the weight

screening procedure does not. Additionally, disadvantages are associated with the weight screening
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procedure which are not associated with the saliency screening procedure. A summary of the

disadvantages follows.

"* The procedure requires the weight parameters to have a multivariate normal limiting distri-

bution, which is often violated in the practical implementation of neural networks.

"• The procedure relies on a weakly consistent estimate of the limiting covariance matrix of the

weights.

"* The procedure for estimating the limiting covariance matrix of the weights requires the second

derivative information from the Hessian matrix.

"* The procedure has practical limitations on the problem size, since the Hessian matrix must

be inverted.

"* The irrelevant noise features are not consistently identified with this procedure.

The statistical saliency screening procedure presented in this chapter is useful for identifying

and eliminating noisy features from a set of candidate features up front prior to using a feature

selection procedure for investigating reduced feature subsets. In the next chapter, two novel neural

network selection algorithms are presented for investigating reduced feature subsets and appropriate

neural network architecture.
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V. Selection Algorithm. for Neural Networki

5.1 Introduction

In this chapter, a statistical model selection perspective is adopted for neural networks. Algo-

rithms are developed for automating the process of model selection for feedforward neural networks.

Both algorithms are developed based on nonlinear regression model selection criteria within a back-

wards sequential procedure. The first is an initial architecture selection algorithm for determining

an appropriate number of middle nodes. The second is a feature selection algorithm for reducing

feature sets which may be either larger than necessary, or larger than desired. An overview of the

chapter follows.

Univariate response nonlinear regression, model selection criteria, and practical considera-

tions for neural network model selection are reviewed in Section 2. In Section 3, a backwards

sequential selection algorithm, and neural network algorithms for architecture and feature selection

are presented. The results in this chapter are summarized in Section 4.

5.2 Univariate Nonlinear Regression and Model Selection

5.2.1 Introduction. "Backpropagation and nonlinear regression can be viewed as alternative

statistical approaches to solving the least squares problem" [80:85]. The major difference between

instantaneous backpropagation least squares nonlinear regression is that in least squares nonlinear

regression, the weight parameters are determined with techniques which use "batched" updates

rather than "instantaneous" updates which use one data point at a time. In this section, a single

output neural network trained with backpropagation is formalized by adopting the framework of

a univariate nonlinear least squares regression model [80:85-89]. Using this framework, nonlinear

regression statistical model selection criteria are defined. Practical considerations for neural network

model selection are discussed.
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5.2.2 The Neural Network Nonlinear Regression Model. Consider a single output neural

network as a univariate response nonlinear regression model.

d = z(X, w) + c (66)

where d is the Px× vector of true 'desired' network outputs; s(X, w) can be interpreted as E(dIX)

the P x 1 vector of neural network responses conditioned on the P x M matrix of feature input

variables X; w* is the sxl vector of unknown optimal weight parameters; and e is the P×x vector

of neural network errors. The least squares estimator of w* is the a x I vector * that minimizes

the neural network sums of squared errors (SSE) with respect to w.

S= argmin{SSE(w)},

where

SSE(w) = [d - z(X, w)]'[d - z(X, w)] (67)

An estimate of the variance of the errors e corresponding to the least squares estimator * is

, SSE(*)
P-a

When there are no isolated flats in the parameter space caused by redundant inputs or

middle nodes, the unknown optimal weight vector w* is said to be locally unique [80:106]. The

neural network model is said to be locally identifiable, that is w* is a unique local solution, and

the estimated weight vector * has a multivariate normal distribution [80:106-7].

A discussion of conditional probability laws as they pertain to the interpretation of neural

networks can be found in White [80:95]. In the discussion, White recognizes the special case of the

binary dependent variable d associated with any two-way classification problem [80:95]. Minimizing

the squared errors with backpropagation produces a minimum mean-squared %rror estimator
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and a minimum mean-squared error approximation to E(dIX) (80:981. By the definition of c =

d - z(X, w') and the properties of conditional expectation, the expectation of e conditioned on X

is zero [82:430]. With the added assumption of normally distributed errors, least squares nonlinear

regression is equivalent to the method of maximum likelihood nonlinear regression [80:259].

5.2.3 Three Selection Criteria. There are three model selection criteria for correctly spec-

ified nonlinear regression models which are associated with normally distributed errors. They are

the Wald, Lagrange multiplier, and likelihood ratio tests. Taken in the context of neural network

model selection, all of these tests can be defined with the same general hypothesis test:

Null Hypothesis H 0 : Sw" = 0

Alternative Hypothesis HA: Sw * 0,

where w* is an a x 1 vector of neural network optimal weight parameters and S is a q x a selection

matrix picking out the q elements of w* which are hypothesized to be zero under HO.

All three tests have an associated model selection criterion, sometimes referred to as a test

statistic. These are denoted as: W for the Wald test statistic, R, or R2 for the Lagrange multiplier

test statistics, and L for the likelihood ratio test statistic. In this section, these test statistics are

defined in neural network terminology.

The Wald test statistic is adapted from Gallant [20:481, and White [80:109].

W *IS(S(fI') S') S* / q (68)
SSE/P- a

where F = F(w) and where F is defined

F(*) = (69)
Ow1
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and SSE is the sum of squared-errors defined in Equation 67 which is evaluated for the full model.

Under the null hypothesis, W in Equation 68 is approximately F distributed with q numerator and

P - a denominator degrees of freedom [20:481.

For the Lagrange multiplier test statistics, the SSE is minimized for the full model subject to

the null hypothesis. This is a constrained minimization where the resulting estimator is denoted

*. The unconstrained minimization of SSE results in the estimator *. Using the constrained

estimator * as a starting value, one 'unconstrained' Gauss-Newton step is taken towards *. In

neural network terms, a Gauss-Newton step is equivalent to one epoch of instantaneous updates or

one batch update. The Gauss Newton step, denoted b is defined in Gallant [20:85] as

Pk F ~ ) ' e [d - z(X,),

where F = F(*), similar to Equation 69. If H0 is true, then b will be small. Conversely, if Ho is

false, then b will be large.

There are two versions of the Lagrange multiplier test statistics, R, and R2. Each is based

on a measure of b). The definitions of R1 and R2 are adapted from Gallant [20:86].

SSE(*)/(P- -)

R2 n&' (fvi) f)
SSE(*)

where SSE(*) represents the constrained minimum sum of squared errors associated with fitting the

full model subject to Ho, and SSE(*) represents the minimum sum of squared errors after taking

one unconstrained Gauss Newton step. When using the first version of the Lagrange multiplier

test statistic, the null hypothesis is rejected when R1 exceeds the a x 100 critical point of the

F-distribution, denoted FI-a;q,P.-# When using the second version of the Lagrange multiplier test
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statistic, the null hypothesis is rejected when R 2 exceeds d,, where

d.= nF.
(P - o)l(q) + F.

The likelihood ratio test involves fitting two nonlinear regression models. The full model is

fit under the alternative hypothesis, and the reduced model is fit under the null hypothesis. The

full model has P - a degrees of freedom, and the reduced model has P - (a - q) degrees of freedom,

where q is the number of weight parameters constrained to be zero in the reduced model. The

associated likelihood ratio test adapted from Gallant [20:56] is:

L = (SSE - SSEp)/q (70)
(SSEI,) /(P - s)

where SSE, and SSER are the full and reduced models' sums of squared-errors. Under Ho, L is

F-distributed with q numerator and P - a denominator degrees of freedom. Therefore, whenever

L exceeds the a x 100 critical point of the F-distribution, the null hypothesis is rejected.

5.2.4 Two Specification Robust Selection Criteria. The neural network model is generally

an incorrectly specified probability model and normally distributed errors can not be assumed.

White "explores the ramifications of maximizing a general likelihood function that is not derived

from a correctly specified probability model - precisely the situation under which network learning

generally occurs" [80:259-288].

For situations where the errors are non-normal or the model is not correctly specified, White

describes specification robust versions of the Wald and Lagrange multiplier tests which are asymp-

totically distributed as X: [80:263-267]. The robust version of the Wald test statistic for neural

network model selection is iden~cal to the weight screening X.2 test statistic presented in Chapter IV

[80:109,2661. The robust versions of both of these test statistics are given in White [80:266-267].

Under misspecification, the likelihood ratio statistic is, generally, not equivalent to the Wald or
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Lagrange multiplier test statistic, nor is it asymptotically distributed as x7 (in the x4 version of

the test statistic considered by Gallant) [80:267], [20:591].

The primary difference between the specification robust and non-specification robust versions

of the Wald and Lagrange multiplier test statistics is that the weight parameter covariance matrix

is no longer approximated by &2((Ff)- 1 . Instead, the matrix is approximated by P-iC*. An

analytical expression for C* is not available, but an estimator C exists which is weakly consistent.

The estimator is defined as

c = A-IBA-' (71)

The matrices AL and b are defined

A = P-EV (x,,*)
t=1

P

where P is the sample size; £ is the neural network error used for training; the operator V is the

a x 1 gradient of 6 with respect to *, and the operator V2 is the s x a Hessian operator of . with

respect to *, where xt is the t -th input exemplar. Replacing C" with C does not affect the limiting

e,, distribution; however, White warns that a much larger sample size may be required to obtain a

good approximation of C* [79:442-443].

Some disadvantages associated with the specification robust Wald statistic are documented

for its application to neural network feature screening in Chapter IV. They are reviewed here for

completeness:

* The procedure requires the weight parameters to have a multivariate normal limiting distri-

bution. Due to redundant inputs and middle nodes, this is often violated in the practical

implementation of neural networks.
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"* The procedure relies on a weakly consistent estimate of the limiting covariance matrix of the

weights.

"* The procedure for estimating the limiting covariance matrix of the weights requires second

derivative information from the Hessian matrix.

"* The procedure has practical limitations on the problem size since the Hessian matrix must

be inverted.

"* Irrelevant noise features are not consistently identified with this procedure (see results shown

in Chapter IV, Section 3.5).

For the specification robust version of the Lagrange multiplier test, these disadvantages remain.

However, no decisive statement can be made regarding the last disadvantage, since use of the

Lagrange multiplier test for neural network model selection has not been documented.

5.2.5 Practical Considerations for Neural Network Selection. For practical implementation

by a neural network practitioner, the specificstion robust versions of model selection criteria are

associated with computationally burdensome test statistics and restrictive assumptions which are

often compromised in a model selection scenario.

The required estimation of the covariance matrix of the weights involves the formation and

subsequent inversion of the (possibly ill-conditioned) Hessian matrix. This is computationally

burdensome, and puts a practical limitation on the size of the network to be analyzed

When there are no redundancies in either the network structure or feature inputs the required

normality assumption is satisfied [80:105]. White assumes control can be exercised over the limiting

multivariate distribution of the weight parameters and that the neural network practitioner has ex-

pended the effort necessary to remove feature and middle node redundancies [80:106-108]. However,

redundancies are not always easy to detect or remedy. This fact has been well documented for the
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phenomena of multicollinearity in linear regression [46]. FV-rt' r, the specification robust tests are

not appropriate for identifying unnecessary redundant parameters [80:109,145].

Consider a neural network feature selection scenario where irrelevant noise features have

been identified and removed through the feature screening procedures defined in Chapter IV. In

this feature selection scenario, any candidate features which should be eliminated are probably

redundant. This is precisely the scenario where the specification robust test statistics have problems,

since the asymptotic normality assumptions do not hold in the presence of redundancies.

Since the advantage of specification robust test statistics is generally compromised in a feature

selection scenario, the "non-specification robust" test statistics are considered further. Of the three

"non-specification robust" test statistics discussed in Section 2, the likelihood ratio test is the most

appealing for practical use. It is appealing for the following reasons:

"* The likelihood ratio test is not affected by parameter effects curvatures which are associated

with the linearized approximation of z(X, w) used for the Wald statistic [66:200-220].

"• The likelihood ratio test is more powerful than either version of the Lagrange ratio test

statistics (20:89].

"* The likelihood ratio test statistic is the only test statistic which does not require estimating

and subsequently inverting the covariance matrix of the weight parameters.

"* The likelihood test statistic is based on comparing minimum sums of squared-errors which is

the basis for parameter estimation in standard backpropagation training.

"* The likelihood ratio test statistic is prominently used in linear regression model selection

algorithms.
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5.3 Neumvl Network Selection Algorithms

5.3.1 Introduction. Two neural network model selection algorithms are proposed in this

section: the initial architecture selection algorithm and the feature selection algorithm. Both al-

gorithms are developed by adopting a statistical model building perspective using a backwards

sequential procedure. For completeness, the backwards sequential selection algorithm will be re-

viewed before it is used with the model selection algorithms. The backwards sequential selection

algorithm is proposed in this research because potentially better features may be selected when

correlated features are present [43].

Due to the practical considerations discussed in Section 2, the likelihood ratio test statistic

is used in this research. Since neural network models do not generally have normally distributed

errors, the likelihood ratio test statistic L in Equation 70 will not be exactly F-distributed. The

assumption is that L will be approximately F-distributed, and that the relative magnitudes of the

likelihood test statistics are more palatable if one applies the F distribution at some appropriately

conservative significance level. The assumptions about the approximate distribution of L give the

proposed selection algorithms a heuristic flavor.

Neural networks trained with backpropagation can get stuck at local minima or saddle points,

or they can diverge [80:143]. White recommends several neural networks be trained, and the

network which has converged to the smallest error be used [80:143]. To be more specific, several

nets should be trained using a different random initialization of the weight parameters and the order

of presentation. When multiple neural networks are used, the minimlum error network will usually

yield consistent parameter estimates for some local minima, but there is still no guarantee of being

close to a global minima [80:143]. Using multiple neural networks helps to minimize the probability

of accepting a network which has not converged to a good local minima. For this reason, both

of the neural network selection algorithms proposed in this section use multiple neural networks.

From among the neural networks, a best network is selected based on the minimum total SSE of
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the training and test sets. The number of neural networks one can afford ; any given situation

is usually limited by the time and computing resources available. A reasonable number of neural

networks, five or ten, is usually sufficient for finding a good local minimum.

5.3.2 Backwards Sequential Selection The likelihood ratio test statistic can be used within

a sequential search algorithm for model selection. The backwards sequential selection algorithm

is proposed in this research because potentially better features may be selected when correlated

features are present [43]. For completeness, a backwards sequential feature selection algorithm is

outlined.

Backward Sequential Selection

1. Set k = M, where M is the total number of candidate features.

2. Choose a significance level a for feature elimination.

3. Estimate the full model with k candidate features. Associated with this full model is SSEp
for univariate models and Tp for multivariate response models.

4. Set p = k - 1, where p is the number of features in the reduced model.

5. Estimate all models with p features which do not include any previously eliminated features.
Associated with each of the k reduced models is SSER for univariate models and Tn for mul-
tivariate response models.

6. Compute the likelihood ratio test statistic using Equation 70 for each of the k models of p
features.

7. Select as a candidate feature for elimination, the feature which when removed produces the
model with the lowest likelihood ratio test statistic L.

8. If L < F. (for appropriate numerator and denominator degrees of freedom), eliminate the
candidate feature, set k = k - 1 and go to Step 3.
Otherwise, go to Step 9 and do not eliminate the candidate feature.

9. Stop.
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5.3.3 Architecture Selection Algorithm. In practice, the neural network practitioner does

architecture selection through a trial and error process using an informal set of "pilot runs." The

pilot runs consist of a series of neural networks trained with a varying number of middle nodes.

Quite often, the practitioner selects the architecture associated with the smallest network structure

which can be used for accurate prediction. However, no specific criteria are universally accepted

for automatically identifying a good initial network structure.

In this section, a formal architecture selection algorithm is proposed for a univariate response

neural network. The algorithm uses the concepts of statistical model selection described in Section

2 to evaluate an organized series of pilot runs. Reduced neural network architectures are system-

atically investigated. At each step of the algorithm, a likelihood ratio test statistic is evaluated.

Figure 16 depicts the neural network architecture algorithm for a univariate response neural

network. A description of the algorithm follows.

Neural Network Architecture Selection Algorithm

1. Initialize and define parameters.

"* Number of middle nodes: H.

"* Significance level for statistical testing of reduced structure models: a.

"* Number of neural network runs: I.

"* Number of network features: M.

"• Number of training set exemplars: Pt,.

"* Number of training-test set exemplars: Pg,

"* Total number of exemplars: P = Pt, + Pt,

"* Number of network weight parameters: a.

a=(M + 1)H + (H + 1)
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Figure 16. Neural Network Architecture Selection Algorithm

S... ... .... ... ... .... ... ... .... ... ... ................ ... . ..................................................................

Full Model Reduced Model

wit

SSEp = min(SSEP,) SSEn min(SSER,)

Form Likelihood Ratio: L

L = -

L < Pl.,•_=,dfjt-dfp,.dfF?

YES NO

Accept Reduced Structure Reject Reduced Structure
Update: H = H - 1 No update
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2. Train I realizations of the full neural network model with H middle nodes.

e Compute the SSE for P exemplars using Equation 67.

Define SSEp, = SSE for the ith neural network realization.

Define SSEp = min{SSEp1,- •., SSEp, }

3. Train I realizations of the reduced neural network model with H - 1 middle nodes.

"• Compute the SSE for P exemplars using Equation 67.

"* Define SSER, = SSE for the ith neural network realization.

"* Define SSER = min{SSER,, - SSER,}.

4. Compute degrees of freedom.

"* Full model: dfp = P - a.

"* Reduced model: dfR = P - [- (M + 1)1.

5. Compute the Likelihood Ratio Test Statistic: L.

L= [SSBa-SSBPI/(dft-df.)
SSBEp/dfp

6. Test the null hypothesis that the reduced model is equivalent to the full model using L defined

in Equation 70.

"* If I. <- F.,df.-dfp,df., the reduced model can not be rejected.

- Accept the reduced structure model.

- H=H-1

- s=s-[M+2]

- Go to Step 2.

"* If L > Fa,dfn.df,,df., then reject the reduced model.
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- Go to Step 7.

7. Stop, an appropriate network structure has been determined with H middle nodes.

In Step 1, parameters are initialized and defined. A reasonable number of neural networks

is usually five or ten. When trying to find good or improved local minima, there is a point of

diminishing returns for the computational cost of running additional networks.

In Steps 2 and 3, each training realization involves a different training and training-test set

which is randomly selected from among the total pool of exemplars. Randomly selected training

and training-test sets means that each neural network run is trained using a unique partitioning of

the data. Normal proportions of splitting the training and training-test sets is a -, 1 split '76:301.

With smaller data sets, it is common to use a larger portion of the data in the training set [76:30].

To fairly compare results, the SSE is computed in Steps 2 and 3 using all P exemplars, so

the full and reduced models are compared using the same data set. If there is sufficient data, a

validation set SSE can be used to provide the most unbiased comparison between models.

A finite number of full and reduced model networks are trained. From this, the networks

corresponding to the best full and reduced model local minima are used to form the likelihood

ratio in Step 5. In this scenario, where only a finite number of networks are trained, it is possible

that the reduced model may produce a lower total SSE than the full model. If the likelihood test

statistic is negative in Step 6, the reduced model should be accepted, since the best reduced model

from I runs is better than the best full model from I runs.

The architecture selection algorithm is generally initialized with more than enough middle

nodes (i.e. some middle nodes are redundant). Redundant middle nodes in a neural network's

structure cause flat., in the parameter space, which may cause premature convergence to undesirable

local minima. Multiple runs are used to avoid using neural networks which have not converged to

good local minimum.
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Some prior knowledge about the complexity of the problem at hand is useful for setting a

reasonable number of initial middle nodes for the architecture selection algorithm. The number

of middle nodes needs to be large enough to ensure there is sufficient complexity for accurate

prediction on a test data set. However, an excessive number of middle nodes will unnecessarily

increase the computational cost, and the possibility of accepting a model with more middle nodes

than necessary.

One way to determine the maximum number of middle nodes for a given situation is to

examine the degrees of freedom for the full model dfp in Step 4. Since dfp must be greater than

zero, an upper bound for H can easily be derived as

H P<< M (72)

where P is the number of training exemplars, and M is the number of feature inputs not including

the bias term. This upper-bound is much greater than the more analytically-based upperbound

developed by Cover [10].

Cover's rule is based on the separating capacities of families of nonlinear decision surfaces [10].

Cover shows that a family of surfaces having a degrees of freedom has a natural separating capacity

for 2s training exemplars [10]. Therefore, unless the number of training exemplars is greater than

the separating capacity of 29, there is a large probability of ambiguous generalization [10]. Cover's

theorem translates into a more restrictive number of middle nodes:

.5P- 1 (73)H<M + 1 (3

It is possible that when the number of candidate features is large and the number of exemplars

is small, Cover's rule may indicate fewer middle nodes than are required for the complexity of

the problem at hand (a situation where feature reduction is necessary). In this case, one should
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proceed with caution since the neural network's ability to generalize to unknown data can be easily

compromised in this situation.

There are situations where the required complexity is unclear, and the practitioner is not

constrained by a small data set. One option to the practitioner is to use an excessively large

number of middle nodes within the limits defined by Equation 73. However, this increases the

possibility of accepting a model with more middle nodes than necessary. Initial experimentation is

one method to use for determining an appropriate initialization for the middle nodes.

When computing resources are available, the architecture selection algorithm is best utilized

by performing more than one initialization of H. Performing multiple architecture selection runs

provides the practitioner with additional insight and may reduce the risk of potentially accepting

a larger than necessary network structure. The downside is that this approach can also complicate

the goal of automatic architecture selection, since multiple architecture selection runs may produce

multiple network structures. In general, when choosing from a variety of network structures which

all have acceptable prediction accuracies, the smallest network structure is preferred.

5.3.4 Application of the Architecture Selection Algorithm The architecture selection algo-

rithm was applied to the API problem used in Chapter IV to determine whether a reduction in the

network architecture could be justified. Belue and Bauer found eight middle nodes were sufficient

for good neural network performance [6]. Using this prior knowledge, the number of middle nodes

was initialized at eight. The networks are trained for a minimum of 500 epochs and improvement

in the test set SSE is monitored every 50 epochs to justify continuation of training. Once the test

set SSE no longer improves, training is discontinued. The parameter initializations for Step 1 are:

"* Number of middle nodes: H = 8.

"* Significance level for statistical testing of reduced structure models: a = .05.

"* Number of neural network runs: I = 10.
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"* Number of network features: M = 4.

"* Number of training set exemplars: P,. = 181.

"* Number of training-test set exemplars: P,, = 100.

"* Total numb .r of exemplars: P = 281.

"* Number of network weight parameters: a = 49.

Ten architecture selection experiments are performed with different initial random number

seeds. Backpropagation follows a unique gradient descent path for every run. The path is unique for

three reasons: (1) the random partitioning of the training and test sets, (2) the random initialization

of the weight vector, and (3) the random presentation of the training vectors. Therefore, the result

of each experiment will be different. The results are summarized for the ten experiments in Table 23.

Table 23. Summary of Ten API Problem Architecture Selection Experiments

Experiment Final minimum Corresponding
Number Number SSE % Classification

Middle Nodes Error

1 8 4.398 1.779 %
2 8 5.630 1.779 %
3 7 6.373 2.850 %
4 7 6.245 2.847 %
5 7 6.445 2.135%
6 7 5.018 1.423 %
7 6 4.656 2.491%
8 6 4.365 2.491%
9 6 5.003 2.847 %
10 6 4.758 1.779 %
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These results demonstrate that backpropagation converges to a variety of local minimums

Each SSE represents the smallest of the local minimums from 10 different runs. The 'local min-

imum' phenomena means the algorithm will not always converge to the most parsimonious archi-

tecture. However, these results seem to indicate the algorithm is conservative. Therefore, if the

initial number of middle nodes is sufficient, the final number of middle nodes will also be sufficient,

whether or not a reduction has taken place.

All of the selected architectures, whether or not they are reduced, are associated with good

SSE's and classification errors. On average, there is not a great difference between the minimum

SSE's or classification error rates of the various architectures as reported in Table 24. For the API

Table 24. API Problem: Average Performance of Selected Architectures

Final Average Corresponding
Number Minimum SSE % Classification

Middle Nodes Error

8 5.014 1.779 %

7 6.020 2.313 %
6 4.696 2.402 %

problem, eight middle nodes are sufficient [6], and corresponds to the results of experiments one

and two. In eight out of ten experiments, the selected architecture contains fewer middle nodes.

To summarize, the algorithm selected a sufficient initial architecture for each experiment, and the

selezted architecture was more parsimonious 80% of the time.

The tenth experiment which selected an architecture of six middle nodes is summarized in

Table 25. Figure 17 shows the relationship between the number of model parameters and SSE

for each number of middle nodes tested. Similarly, Figure 18 shows the relationship between the

number of model parameters and the total classification error for each number of middle nodes
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Table 25. Summary of API Problem Architecture Selection (Experiment 10)

Iterzadoa Number Number pia Reduced Numeator,1 Deaominator Llkellkood Pos Rejecsi of of SUB SB depgtee of deprees of Rltio Cdtical or Accept
P.6mete,. Middle Nodes freedom freed I Sstaistics L.I Value Reduced Model?

f 40/43 8/7 6.7U 0.952 1 232 1.062 2.1 Accept

2 43/37 7/6 6.952 4.Ca8 4 236 -12.520 2.1 Accept

3 37/31 6/5 4.568 5.181 6 244 3.619 2.1 Reject

tested. The variation in local minimum for all 10 runs is displayed above the minimum SSE run

for each of the tested architectures. Although the selected architecture contained six middle nodes,

the results for five middle nodes are shown for comparison. More detailed results of this experiment

are shown in an audit log contained in Appendix B, Section B.1.

5.3.5 Feature Selection Algorithm. In this section, a sequential foz.ture selection algorithm is

proposed for examining candidate feature subsets for systematic elimination from a feature set. The

algorithm can be implemented for feature sets which are larger than necessary which may contain

irrelevant or redundant features. Alternatively, the algorithm can also be used to sequentially

reduce a feature set which is larger than desired.

The algorithm uses the concepts of statistical model selection described in Section 2. Specifi-

cally, a backwards sequential selection procedure is used to systematically investigate reduced neural

network models using likelihood ratio test statistics for statistically testing the reduced models. The

feature selection algorithm is unique because initial architecture selection and architecture adjust-

ment are embedded within the algorithm. Architecture adjustment allows the neural network to

dynamically adapt its architecture as necessary throughout the feature selection process. Figure 19

depicts the neural network feature selection algorithm. A description of the algorithm follows.
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Figure 17. API Problem Architecture Selection: SSE for 10 Runs (Experiment 10)
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Figure 18. API Problem Architecture Selection: % Classification Error for 10 Runs (Experiment

10)
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Figure 19. Neural Network Feature Selection Algovithm
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Neural Network Feature Selection Algorithm

1. Initialise and define parameters.

"* Number of features being evaluated: M

"* Current number of features being evaluated: k.

Initialize k = M.

"* Current number of middle nodes: H.

"* Number of neural networks: I.

"* Number of training exemplars: Pt,.

"* Number of training-test exemplars: Pt.

"* Total number of exemplars: P = Pt,. + Pt,.

"* Number of neural network weight parameters: a.

a = (k+ 1)H + (H + 1)

"* Significance level for feature elimination: a,.

"* Significance level for middle node elimination: a2.

"* Set f = 0.

If desired, f can also be set equal to the final number of features to be selected.

"* Count=0.

2. Train I realizations of the full neural network model with k features and H middle nodes.

"* Compute SSE using Equation 67.

"* Define SSEP, = SSE for the ith neural network realization.

"• Define SSEp= min{SSEp,.., SSEp,}
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3. Train I realizations of the reduced neural network model with k features and H - I middle

nodes.

"* Compute SSE using Equation 67.

"* Define SSER, - SSE for the ith neural network realization.

"* Define SSER = min{SSER,,-- ., SSEi,}

4. Compute degrees of freedom for the full and reduced models.

"* dfp = P -a (full model).

"* dfR = P - [a - (k + 2)] (reduced model).

5. Compute the Likelihood Ratio Test Statistic: L.

* L = [SSBn-SSBr]/(dfa-dfr)
SSD,/df,

6. Test the null hypothesis that the reduced model is equivalent to the full model using the

likelihood ratio test statistic.

"* If L <ý Fa,,dfatdf,,dfp, the reduced structure model can not be rejected.

- Accept the reduced structure model (i.e. remove 1 middle node).

- H=H-1

- a-= a- [k + 1]

- SSEP = SSER

dfp = dfR

- If Count=1, then go to Step 2 and investigate a reduced architecture model before

investigating feature reduction.

If Count>1, then go to Step 7

"* If L > Fa,,dfa-df,,df, then reject the reduced structure model.
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- SSE, = SSE,

- df, = dfp

- Go to Step 7.

7. If k = 1 or k < f, then go to Step 13 since no further feature reduction is required.

8. Train I realizations for each of the k reduced feature candidate models. Each candidate model

has H middle nodes and a different feature set containing k - 1 of the k remaining features

which have not been previously eliminated.

"* Compute SSE using Equation 67.

"* Define SSERJ = SSE for the ith neural network realization of the jth reduced feature

model, where j=1,...,k.

"* Define SSE = min(SSER,,, , SSER.,.. . -,SSER•,. •., SSERJ}

"* Select as a candidate feature for elimination, the feature which when removed produces

the model with the smallest SSER.

9. Compute degrees of freedom for the reduced model.

* dfR = P - [a - H].

10. Compute the Likelihood Ratio Test Statistic: L.

(L -- SSBn-SSP]/(dfa-dfr)
SSE,/dfp

11. If L < 0 or 0 < f < k accept reduced feature model.

* Eliminate the candidate feature.

* k=k-1

SL= -H
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"* Count=Count+1

"* Go to Step 2.

12. Test the null hypothesis that the reduced model is equivalent to the full model using the

likelihood ratio test statistic.

a If L e_ Fa.,dfj-df,,d,., the reduced model can not be rejected.

- Accept the reduced feature model.

- Eliminate the candidate feature.

- k-k-I

-a =a - H

- Count=Count+l

- Go to Step 2.

e If L> Faa,dft_dfP,df, and p = 0, then reject the reduced feature model.

- Go to Step 13.

13. Stop, the final neural network model has been determined with H nodes and k features.

In Step 1, parameters are initialized and defined. A reasonable number of neural networks

is usually five or ten. When trying to find good or improved local minima, there is a point of

diminishing returns for the computational cost of running additional networks.

In Steps 2 and 3, each training realization involves a different training and training-test set

which is randomly selected from among the total pool of exemplars. Randomly selected training

and training-test sets means that each neural network run is trained using a unique partitioning of

the data.
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To fairly compare results, the SSE is computed in Steps 2 and 3 using all P exemplars, so

the ful and reduced models are compared using the same data set. If there is sufficient data, a

validation set SSE can be used to provide the most unbiased comparison between models.

A finite number of full and reduced model networks are trained. From this, the networks

corresponding to the best full and reduced model local minima are used to form the likelihood

ratio in Step 5. In this scenario, where only a finite number of networks are trained, it is possible

that the reduced model may ýiroduce a lower total SSE than the full model. If the likelihood test

statistic is negative in Step 6, the reduced model should be accepted, since the best reduced model

from I runs is better than the best full model from I runs.

With any type of network redundancies (middle nodes or features), there are flats in the

parameter space [80:1061. These flats can make convergence to a good local minimum more dif-

ficult; consequently, identification of an unnecessary or redundant feature may be more difficult.

Therefore, initial architecture selection, as well as, architecture adjustment are incorporated into

the algorithm.

Because the architecture selection is incorporated into the algorithm, middle node initializa-

tion is important (see Section 5.3.3). Architecture adjustment is investigated because, fewer input

features may be associated with reduced network complexity. The algorithm attempts to maintain

a minimal network structure at each step, thereby, allowing the focus to remain on the elimination

of unnecessary features.

The feature selection algorithm is set up with two potential stopping criteria. The first

stopping criteria is the most classical and is depicted in Figure 19. Here, the algorithm stops when

the likelihood ratio test statistic L is greater than the selected critical point of the F-distribution.

If this stopping criteria is used, the parameter f is set equal to zero.

The second stopping criteria involves stopping the algorithm after a predetermined number

of features have been eliminated. In this case, the algorithm is implemented with the parameter
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f set equal to the final number of features to be selected. When this stopping criteria is used,

the candidate feature for elimination is removed at each step as long as the current number of

features is greater than the final number of feature desired, even when the likelihood ratio test

statistic L exceeds the critical point of the F-distribution. When the second stopping criteria is

used, the following information should be reported at each step: SSE, L, P-values, classification

error (for a classification problem), current features, and current number of middle nodes. With

this information, a neural network practitioner can determine the most appropriate feature set by

analyzing the tradeoffs between an accurate model and a parsimonious model.

It is ideal to do some screening and analysis prior to using the feature selection algorithm. Ide-

ally, the noise-like features have been identified and removed using the feature screening techniques

of Chapter IV.

5.3.6 Application of the Feature Selection Algorithm. In this section, the feature selection

algorithm is applied to the FLIR problem introduced in Chapter III. For the FLIR results reported

in Chapters III and IV, four middle nodes are used. Here, the FLIR problem is initialized with

eight middle nodes to demonstrate the feature selection algorithm's effectiveness.

The results shown in Figure 10 of Chapter III, page 101 indicate that one to three features can

be eliminated without a significant degradation in validation set results. Using the second stopping

criteria, the feature selection algorithm is applied to select six good features with an appropriate

network architecture. Five neural networks are used in this experiment. Each network is trained

for a minimum of 500 epochs and improvement in the test set SSE is monitored every 50 epochs to

justify continuation of training. Once the test set SSE no longer improves, training is discontinued.

The parameter initializations for Step 1 are:

"* Number of middle nodes: H = 8.

"* Significance level for statistical testing of reduced structure models: a = .05.

165



* Significance level for statistical testing of reduced feature models: a = .05.

* Number of neural network runs: I = 5.

* Number of network features: M = 9.

* Number of training set exemplars: Pg, = 350.

* Number of training-test set exemplars: Ps, = 200.

9 Total number of exemplars: P = 550.

* Number of network weight parameters: s = 89.

9 Final number of features to be selected: f = 6.

The results from applying the feature selection algorithm to the FLIR problem are summa-

rized in Table 26. For the reduced models accepted within each iteration of the algorithm, Figure 20

shows the relationship between the number of model parameters and minimum total SSE. Sim-

ilarly, Figure 21 shows the relationship between the number of model parameters and the total

classification error for each of the accepted models.

Both the first and second stopping rules are indicated in Figures 20 and 21. Using the first

stopping rule, only statistically equivalent reduced models are selected. The indicated stopping

point corresponds to a 43% reduction in parameters with no degradation in accuracy. The second

stopping rule allows the practitioner the flexibility to trade off accuracy for a more parsimonious

model. In this case, the indicated stopping point corresponds to a 63% reduction in parameters

with only a small degradation in accuracy. Notice that using the second stopping rule uncovers

three additional models for consideration. The besL of these additional models occurs with four

middle nodes and seven features. More detailed results of this experiment are shown in an audit

log contained in Appendix B, Section B.2.

Since saliency metric results in Figure 10 indicate that one to three features can be eliminated,

the six most salient features would be a logical alternative for selecting six good features. However,
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Figure 20. FLUR Problem Feature Selection: Minimum SSE's
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Figure 21. FUR Problem Feature Selection Experiment: % Classification Error for Minimum
SSE Networks
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Table 26. Summary of a Feature Selection Experiment for the FLIR Problem

Numerator &ad
Iteration Number Number Number Pull Reduced Denominator Likelihood P.o0 Reject

of of of $$B 55 5 degrees of Ratio Citlcal or Accept
Parameters Middle Nodes features freedom Statistic: 4. Value Reduced Model?

1 69/T7 6/7 9 15.900 16.327 11 and 461 1.109 1.T9 Accept: L < P.

I T7/67 7/6 9 16.327 16.139 11 aud 472 -0.494 1.79 Accept: L < P.

1 67/56 6/5 9 16.139 19.724 11 and 463 9.754 1.79 Reject: L > P.

I 6T/61 6 9/6 16.139 16.554 6 Lad 463 2.067 2.10 Accept: L < Po

2 61/61 6/5 8 16.554 14.553 10 sad 469 .5.911 1.83 Accept: L < P.

2 51/46 5 8/7 14.553 17.071 6 and 499 17.2T 2.21 Accept: (I < 0)

3 46/57 5/4 7 17.071 12.099 9 &ad 604 -16.310 1.88 Accept: L < P.

3 57/53 4 T/6 12.099 17.845 4 cad 513 60.91 2.60 Accept: (f < T)

4 53/45 4/3 6 IT.845 19.495 6 aud 51T 5.9T4 1.94 Reject: L > P,

eliminating the three least salient features does not take into account that a seemingly unimportant

feature may be interacting in an important way with the remaining features. Whereas, the sequen-

tial feature selection algorithm described in this section partially takes the feature interactions into

account when selecting a feature subset.

Indeed, the feature selection algorithm does not select the three least important features for

elimination. Out of the nine FLIR featuref, the 3rd, 6th and 8th ranked salient features using A•.d tý

in Table 12 on page 98 are eliminated using the feature selection procedure. Figures 22 and 23 can

be studied to compare the error rates over 800 epochs of training for the 'selected feature subset'

versus the 'salient feature subset.' The 'salient feature subset' contains the six most salient features

using the saliency metric A!".

In Figures 22 and 23, the minimum SSE and the corresponding percent classification error

from 10 runs are plotted for the P vectors used in the feature selection experiment. The results
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Figure 22. FLIER Problem Feature Subsets: Minimum SSE
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Figure 23. FLIE Problem Feature Subsets: % Classification Error for Minimum SSE Network
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shown for the minirmum SSE network tell the same story as the average results over the 10 runs.

The average SSE for the selected features versus the most salient features was 24.58 and 30.36,

respectively at 800 epochs. Similarly, the average percent classification error for the selected features

versus the most salient features was 5.23 and 6.96, respectively at 800 epochs. The average percent

classification error is significantly better (at the 0.05 statistical significance level) for the subset of

selected features. This illustrates a quantifiable advantage to using the selection procedure on the

FLIER problem.

5.4 Summary

Since a neural network can be viewed as a nonlinear regression model, nonlinear regression

model selection concepts are applicable for neural networks. This chapter reviews nonlinear re-

gression model selection and the practical considerations encountered in a neural network model

selection scenario. Nonlinear regression model selection is the basis for proposing architecture and

feature selection algorithms for neural networks. Both algorithms use the likelihood ratio test

statistic (shown in Equation 70 on page 143) within a backwards sequential selection procedure.

The first algorithm is an architecture selection algorithm for determining a good number

of middle nodes. The algorithm is used to automate what is often a process of trial and error

experimentation for many practitioners. Application results from ten initial architecture selection

experiments using the API problem data are presented. A reduced architecture was determined for

this problem for eight of the ten experiments.

The second algorithm is a feature selection algorithm for statistically investigating reduced

feature subsets. Embedded in the algorithm is initial architecture selection and architecture ad-

justment. The network architectu-e is dynamically adapted as necessary throughout the feature

selection process. Application results from a feature selection experiment on the FLIR problem

demonstrate that 43% and a 63% reduction of parameters for using two different stopping rules.
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The 43% parameter reduction produced approximately the same prediction accuracy. This re-

duction corresponded to accepting only statistically equivalent reduced models using the likelihood

ratio test statistic. The 63% parameter reduction produced a slightly degraded prediction accuracy,

and it corresponded to stopping the algorithm after three features had been eliminated, whether

or not the reduced model was statitically equivalent. When the six most salient features are com-

pared to the 'selected feature subset,' the prediction accuracy from the 'salient feature subset' is

significantly lower than the 'selected feature subset' at the .05 statistical significance level. This

result is possible because the feature selection algorithm partly takes the correlation structure of

the features into account.

In the next chapter, a comprehensive neural network selection methodology is developed for

identifying both a good feature set and an appropriate neural network architecture for a specific

situation. The methodology combines both the statistical screening procedure from Chapter IV and

the statistical architecture and feature selection algorithms into a comprehensive statistically-based

approach for neural network model selection.
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VI. A Comprehensive Neural Network Selection Methodology

6.1 Introduction

In Chapter IV, a sttistical screening procedure is developed for the identification of noise-

like irrelevant features using the saliency metrics developed in Chapter III. In Chapter V, neural

network selection algorithms for architecture selection and feature selection are proposed. In this

chapter, a comprehensive neural network selection methodology is presented which logically inte-

grates the screening and selection algorithms into an overall statistically-based approach for neural

network model selection. As in the previous chapters, application of the proposed methodology

is investigated using a single hidden layer architecture with sigmoidal activation function on the

middle and output layers. However, this methodology is general and is, therefore, appropriate for

any feedforward neural network architecture using a variety of activation functions. Changes in

architecture or activation functions would merely change the definitions of the neural network error

function which is minimized. This in-turn changes the definitions of the saliency function described

in Chapter UI.

6.2 Comprehensive Neural Network Selection Methodology

6.2.1 Introduction. The methodology proposed in this section is the culmination of this

dissertation effort. The proposed methodology represents the logical combination of research results

from Chapters HI, IV, and V into an overall procedure for dynamically identifymg both a good

feature set and an appropriate neural network structure for a specific situation.

6.2.2 Comprehensive Selection Methodology. The comprehensive selection methodology de-

picted in Figure 24 is composed of three separate modules within the algorithm: (1) initial archi-

tecture selection, (2) saliency screening, and (3) feature selection.

172



The initial architecture module is described in Section 3 of Chapter V. The saliency screening

module is described in Section 2 of Chapter IV. The feature selection module is described in

Section 3 of Chapter V. A description of the comprehensive neural network selection methodology

is depicted in Figure 24 follows.

Comprehensive Neural Network Selection Methodology

1. Initialize and define parameters for:

"* Initial architecture selection algorithm.

"* Saliency screening procedure.

"* Feature selection algorithm.

2. Perform initial architecture selection algorithm.

3. Perform saliency screening and remove any noise-like features which are identified.

4. Perform feature selection algorithm.

When no additional features can be removed based on the stopping rules, continue to Step 5.

5. Stop, a final neural network has been selected for the problem at hand.

Compute the associated feature saliencies.

The comprehensive selection methodology calls for finding an appropriate initial neural net-

work architecture, and then scteening and eliminating any noise-like features. Next, the methodol-

ogy calls for iteratively investigating the elimination of unnecessary or redundant middle nodes and

features. When no further features can be removed, the saliencies are calculated for the remaining

features using the final network architecture.

With any type of network redundancies (middle nodes or features), there are fiats in the

parameter space [80:106]. These flats can make convergence to a good local minimum more dif-

ficult; consequently, identification of an unnecessary or redundant feature may be more difficult.
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Figure 24. Comprehensive Neural Network Selection Methodology
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Therefore, as unnecessary features are removed, the network structure is dynamically reduced as

necessary. The algorithm attempts to maintain a minimal network structure at each step, thereby,

allowing the algorithm to focus on the elimination of unnecessary features.

6.2.3 Scope of Application Two issues are discussed in this section. First the scope of the

algorithm's application is discussed. Second, the prospects for parallel processing are discussed.

Due to the multi-module/multi-iteration characteristics of the proposed network selection

algorithm, it is most efficient and prudent for problems where the total number of candidate features

is a manageable number of at most 20 or 30 features. This means the practitioner may need to

apply screening, intuition, or feature rotations to reach a reasonable number of features before

using the selection methodology.

The multi-iteration characteristic of the proposed network selection algorithm, makes the

algorithm amenable to parallel computation. For the architecture and feature modules, multiple

iterations are used to ensure that a good local minimum is found. All of these iterations could be

parsed out and trained on separate networks; subsequently, the results from the trained networks

could be centrally analyzed. In the saliency screening module, multiple iterations are used so

saliency statistics can be collected for statistical hypothesis testing. Similar to the architecture

and feature modules, the iterations could be parsed out and trained on separate networks, and the

statistics could be centrally collected and analyzed.

6.2-.4 Application of the Comprehensive Selection Algorithm. To test the comprehensive

selection algorithm, the XOR problem was modified to include the following features: z, y, n1 , n2 ,

and mt. The true features shown in Figure 7, page 90 are z and V; nj and n2 are augmented noise

features; and m1 is an augmented feature which is highly correlated with a. The feature m1 is

defined

mt = z + 0.01 UNF(0,1)
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The modified XOR problem was designed to demonstrate that the saliency screening could be

used to identify and eliminate one or both of the noise features, and that the feature module could

be used to identify and eliminate either z or ml, since the presence of both features constitutes

redundant feature information.

The selection experiment is performed with five network runs for the architecture and feature

modules, and ten network runs for the saliency modules. In the feature selection module, the

first stopping criteria is used. This means the algorithm stops when no additional features can be

removed using the likelihood ratio test statistics. The networks are trained for a minimum of 500

epochs and improvement in the test set SSE is monitored every 50 epochs to justify continuation

of training. Once the test set SSE no longer improves, training is discontinued. The parameter

initializations for Step 1 are:

"* Number of middle nodes: H = 6.

"* Significance level for statistical testing of reduced structure models: al = .05.

"* Significance level for statistical testing of reduced feature models: a 2 = .05.

"* Individual significance level for saliency screening for noise-like features: a3 = .01 (family

significance level of 0.05)

"* Number of architecture and feature module neural network runs: 5.

"* Number of saliency module neural network runs: 10.

"* Number of network features: M = 5.

"* Number of training set exemplars: Pt, = 300.

"* Number of training-test set exemplars: Pg, = 200.

"* Total number of exemplars: P = 500.

"* Number of network weight parameters: a = 43.
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Table 27. Selection Experiment with the Modified XOR Problem

Numerator &ad

Module Number Number Number PFul Reduced Desomiastor Likelihood P.0a Reject
of of of S5 55B degrees of Ratio Critical or Accept

Parameters Middle Nodes features freedom Statistic: L Value Redaced Model!

asat Arch 43/36 6/5 5 7.912 6.091 1 and 457 1.471 2.01 Accepts L < P.

Jail Arch 36/29 5/4 5 8.091 8.336 7 and 464 2.026 2.01 Reject: L > F.

Sal Screen 36/26 5 3 a n/a n/a /a& a/a Accept

Feature 26/21 6/4 3 7.043 7.365 5 and 464 -3.126 2.21 Accepts L < P.

Feature 21/16 4/3 3 7.385 16.222 5 and 469 112.232 2.21 Reject: L > P.

Feature 21/17 4 3/2 7.385 6.496 4 and 469 -14.122 2.37 Accepts L < P.

Feature 17/13 4/3 2 6.496 16.429 4 and 473 180.604 2.37 Reject: L > P.

Feature 17/13 4 2/1 6.496 124.431 4 and 473 2146.919 2.37 Reject: L > P.
stop

Table 27 summarizes the experiment. The saliency screening procedure is separately summa-

rized in Table 28, since the format of Table 27 is not adequate. The initial architecture selection

module reduces the network architecture from six middle nodes to five middle nodes. The saliency

screening module identifies both n, and n 2 as noise-like, which reduces the network model to five

middle nodes and three features. In the feature module, the architecture is reduced to L, aid-

die nodes, and the reduced feature model with y and mi is identified as equivalent to the full

feature model with z, y, and mi. In summary, the comprehensive feature selection procedure is

used to sequentially reduce the neural network model from 43 parameters to 17 parameters using

likelihood ratio test statistics to sequentially identify reduced models which are approximately sta-

tistically equivalent. This represents a 60% reduction in weight parameters, with no degradation

in prediction or classification accuracy.

More detailed results of this experiment are shown in an audit log contained in Appendix B,

Section B.3.
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Table 28. Saliency Screening Results on XOR Problem for 10 Runs

Z data - data
Feature A, A,. 1 ___o A_ S_ , to =V Reject

i Ranking i Ho

z 2 0.558 0.703E-01 0.455 0.746E-01 6.09 9 yes
y 1 1.036 0.856E-01 0.933 0.910E-01 10.3 9 yes
n, 4 0.107 0.317E-01 0.348&-02 0.371E-01 0.939E-01 9 no
n2 6 0.073 0.229E-01 -0.301E-01 0.223E-01 -1.35 9 no
MI 11 3 0.532 0.443E-01 0.429 0.301E-011 14.2 9 yes
0, 5 0.103 0.365E-01 N/A N/A N/A N/A N/A

Features ranked from best to worst

Individual Significance Level - = .01

Bonferroni Critical Value B = 2.821

6.3 Summary.

The comprehensive selection methodology proposed in this Chapter represents the logical in-

tegration of the statistical screening and selection procedures of Chapters IV and V, along with the

saliency metrics of Chapter III. The methodology is designed for identifying both a good feature set

and a potentially reduced neural network architecture for a specific situation. The scope of appli-

cation and the potential for parallel implementation are discussed. An application experiment on a

modified XOR problem demonstrate the utility of the methodology for identifying and eliminating

both noise-like and redundant features, while adjusting the neural network architecture as neces-

sary. In Chapter VII, the dissertation research is summarized and future research recommendations

are made.
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VII. Summary and Recommendations

7.1 Introduction

Feature and model selection for feedforward neural networks are advanced in this research.

Feature selection involves determining a good feature subset from a set of candidate features, and

the process of feature selection is characterized by three components in this research: (1) a metric or

criterion fimction for evaluating and ranking the features, (2) a procedure for identifying irrelevant

and redundant features, and (3) a search methodology for examining candidate feature subsets.

Model selection involves determining an appropriate architecture (number of middle nodes) for the

neural network. In this chapter, contributions advancing the process of neural network featlire and

model selection are summarized and recommendations for future research are made.

7.2 Summary

This research begins with a review of feature selection techniques developed for regression,

discriminant analysis, and neural networks. Because neural network appLications include problems

which have often been solved using classical regression and discriminant analysis techniques, non-

neural feature selection techniques are reviewed for their potential use in a neural network context.

What follows is a summary of the research advances and contributions made in the areas of feature

saliency, identification of noisy features, and neural network model selection.

7.2.1 Feature Saliency Metrics. Feature saliency metrics are used to measure the relative

importance of a feature with respect to a trained neural network. This research consolidates the set

of available neural network feature saliency metrics by developing a catalogue of feature saliency

metric definitions and interrelationships.

In this research, a framework is developed and used for analyzing a variety of derivative-

based metrics. Several of the derivative-based saliency metrics are evaluated for their sensitivities
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to sampling, training, and redundant middle nodes. The metrics do not appear to be particularly

sensitive to sampling; however, they are sensitive to redundant middle nodes and the amount of

training. It is most important to eliminate redundant middle nodes, since the metrics are most

sensitive to training effects in the presence of redundant middle nodes. Increased training may cause

the weights associated with the redundant nodes to grow disproportionately. This can contaminate

saliency results, since the weights from irrelevant features can get large.

A theoretical relationship is shown between derivative-based and weight-based saliency. In

summary, the derivative-based feature saliency metrics are bounded above by a constant linear

combination of the feature weights. At one middle node, the 'saliency function' ratios produced

with the weight-based metrics and derivative-based metrics are equal, to within roundoff error.

When additional middle nodes are used, empirical results indicate that the relative saliency of

important to unimportant features is smaller with weight-based saliency than it is for derivative-

based saliency. For problems with redundant middle nodes, this is partly due to the growth of the

irrelevant weights associated with redundant middle nodes.

Contributions are also made in the area of Bayesian-based feature saliency metrics. First,

a succinct and exact relationship is demonstrated between a previously suggested Bayesian-based

metric and derivative-based saliency. Then a new Bayesian-based saliency metric using the partial

derivative of classifier error is introduced. The computation of this metric requires only a subset of

the terms associated with the previously suggested Bayesian-based metric. Finally, the relationship

between the new Bayesian-based saliency and derivative-based saliency is derived, and an upper

bound for the Bayesian-based saliency is defined. For a two class problem, the new metric produces

results exactly equivalent to derivative-based saliency.

The catalogue of metrics are evaluated for a 'real world' problem. On this problem, saliency

rankings, 'saliency function' ratios, and factor analysis are used to empirically evaluate similarities

and differences between the saliency metrics. One similarity is that, despite differences, all of
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the metrics consistently ranked a set of 'nonessential' features last. Since the metrics perform

differently, recommendations are me ! for selecting a feature saliency metric.

For discriminant analysis problems using networks with more than one middle node, the new

saliency metric ri in Equation 53 on page 86 is preferable to Adts in Equation 31 on page 68 for

two reasons. First, it is intuitively appealing, since it represents a saliency metric which is related

to the average classifier P.. Second, it is more succinctly defined using only a subset of the terms

required for computation of Adata.

For function approximation or discriminant analysis problems using networks with more than

one middle node, the proposed saliency metric Ad~ta in Equation 31 on page 68 should be preferred

over A,. The saliency metric Ad~at provides good feature rankings, is more succinctly defined than

A., and is based on information known about the data from feature space.

For any classification or function approximation problem using a network with only one middle

node, the weight-based metrics T (see Equation 32 on page 78) are best. In this case, the relative

saliencies produced using weight-based saliency will be identical to 1i or k.d For networks using

more than one middle node, weight-based saliency can still be used for a cursory analysis of a

feature's relative importance. However, the empirical results suggest that the relative importance

of one feature to another is degraded when additional middle nodes are used.

7.2.2 Identification of Noisy Features. A saliency screening procedure for identifying noisy

features is developed based on statistically comparing the mean saliency of candidate features to

the mean saliency of a noisy feature. This research extends the work of Belue and Bauer to jointly

screen an entire feature set for irrelevant features using a paired-t hypothesis test. Irrelevant features

are successfully identified over a series of test problems using the proposed saliency screening

procedure. The procedure is robust for identifying irrelevant features, even in the presence of input

redundancies.
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The saliency screening technique is compared to the irrelevant input hypothesis test proposed

by White [79]. The same test problems are used to evaluate the weight screening procedure. On

any single run, the weight screening results were not reliable. When average test statistics from

several runs are used, the weight screening procedure does provide comparable results for two of

the three problems.

7.2.3 Neural Network Model Selection. Two novel neural network selection algorithms are

developed by posing the neural network model as a nonlinear regression statistical model. Both

algorithms are developed using the likelihood ratio test statistic (shown in Equation 70 on page 143)

within a backwards sequential selection procedure. The first algorithm is an architecture selection

algorithm which automates the process of determining an appropriate number of middle nodes.

The second is a feature selection algorithm for statistically investigating reduced feature subsets.

The feature selection algorithm is unique because architecture reduction is investigated as features

are removed. The feature selection algorithm indirectly takes the correlation structure of the

features into account. For this reason, a better reduced feature set may be identified using the

feature selection algorithm versus using a subset of the most salient features. Application results

demonstrate how these algorithms can be used to search for a more parsimonious neural network

model with equivalent prediction accuracy.

A comprehensive neural network selection methodology is developed for identifying both a

good feature set and an appropriate neural network structure for a specific situation. It encompasses

a combination of statistical screening and statistical architecture and feature selection. Application

results demonstrate how the comprehensive methodology can be used for identifying and eliminating

both noise-like and redundant features, as well as reducing the number of middle nodes in the neural

network architecture.
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7.3 Recommendationa

There are related research topics which could not be adequately handled within this research

effort. Four of the research topics could be pursued with worthwhile benefits.

The first research topic is an extension of the model selection procedures in Chapters V and VI.

These single output procedures need to be extended for a multi-output neural network. A covariance

adjusted sum of squared-errors must be computed for the multivariate response likelihood ratio test

statistic. This involves separately estimating the covariance matrix of the neural network responses.

The second research topic is the development of an automatic stopping point selection for

neural network training runs. The procedures proposed in Chapters IV, V, and VI require multiple

runs of trained neural networks. Normally, trained networks correspond to a minaimum training-test

set error. However, a trained network is difficult to automatically identify within a multiple run

procedure for several reasons. First, a network may take fewer or greater epochs, from run to run,

depending on the gradient descent path taken with the backpropagation algorithm. Second, there

is a great deal of variability in a network's error during training. Third, there may be several epochs

where the test set error does not improve prior to eventual convergence. Fourth, neural networks

may converge to a variety of local minima, to saddle points, or even diverge, making it unrealistic

to expect all networks to reach a predetermined target value.

The model selection algorithms described in Chapter V, depend on the network's SSE which

can be biased low or high depending on where the stopping point is selected. In this research, prior

knowledge was used to select a minimum number of training epochs, and then the network was

trained as long as periodic monitoring indicated a reduction in the test set error. This procedure

should be improved. A relatively simple yet accurate method for automatic stopping point selec-

tion is needed for practical implementation within the multiple runs procedures proposed in this

dissertation.
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The third research topic is the development of a diagnostic tool for identifying neural network

redundancies. Throughout this research, feature space and middle node redundancies were an issue.

There is a great need for a statistical or non-statistical technique for reliably diagnosing the existence

of these redundancies in neural networks. The specification robust irrelevant input hypothesis can

only be reliably used in the absence of these redundancies [80]. If these redundancies are difficult to

diagnose and remedy a priori, then procedures are needed which are robust to the possible presence

of these redundancies.

The fourth research topic is the development of residual analysis techniques for a neural

network practitioner. There is a dearth of information available on residual analysis of neural

network models. Residual analysis is well documented in a regression setting for examining the

model aptness, but has not been documented in a neural network setting. Although neural network

residuals are not generally normally distributed, residual analysis techniques should be developed

which would be of practical benefit to a practitioner.
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Appendix A. Derivation and DetaiLs of Two Saliency Metrics

A.1 Second Order Feature Evaluation Metric

Le Cun and others introduced a technique called Optimal Brain Damage for reducing the size

of a neural network by selectively deleting weights or units from a neural network based on their

saliencies [391. The technique can be applied to feature evaluation when all the weight parameters

from a feature are evaluated together.

Le Cun and others approximate the error of a neural network using a Taylor's series expansion,

where neural network error, 4., refers to a function of the squared error [39]. A perturbation of the

weight parameters connected to feature i will change the neural network error by

d4 = d + h + d + O(d, 3), (74)
3== ="

where

g j - O w• a n d h • . L9

This saliency metric measures the impact to C4 when deleting the feature to middle node

weights for each feature. When a non-salient feature's associated weights are deleted, the change

in C4 is small. When a highly salient feature's associated weights are deleted, the change in C. is

large. In order to make it computationally practical to evaluate the Taylor series expression for the

change in error, Le Cun and others make three simplifying assumptions [39]:

1. They assume they are at a local minimum of the error which makes the first order terms

equal to zero.

2. They make a diagonalizing assumption to eliminate cross terms.

3. They make a quadratic approximation assumption which implies that 3rd order and higher

order terms are negligible.
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What remains is the second order terms, which should be positive at a local minimum. This means

any change in error due to perturbation of a parameter will be an increase in error. The simplifying

assumptions reduce Equation 74 to

I Wi
d6= 2 h =(d ,)2, (75)

j=1

The neural network expression for C. is

C£0=2 Z[dk _ ZkI2

k=1

To show the detailed neural network notation for Equation 75, the diagonal of the Hessian h3, must

be derived in detail:

h024 a=2=

(a (060 ' _

Owl. I Ow'.J

(0a I (•d •t..ld - Zk]2))

Sk=1 03(-zk))

= o$. ([dk-zh] 0,)

O- -(, [d.- OWj•

K OZ Oz. K 02. Z
E Odk- zk] (W,)

k=i '3 S3 k=112

Using the Levenberg and Marquardt approximation, the second term is assumed to be neg-

ligible [39], [50:523]. Essentially, this assumption is good when the second term is zero (as in the

linear case), or when the second term is small or negligible compared to the term involving the
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first derivative [50:523]. Also the term multiplying the second derivative in the second term is

[d4 - z1J, which should just be the random measurement error of each point for a trained network.

This error should fluctuate randomly around zero and should in general be uncorrelated with the

network model, so the second derivative terms would tend to cancel out when summed over entire

data set [50:523]. When the second term is negligible, hij is guaranteed to be positive, and can be

approximated as

hj=K / 9 Z" ~2

"Fj= ( L
k=1\ 3

Substituting hij into Equation 75 gives

d&o=-E Ow=1) (d w4) 2 , (76)
2 =1 k=1

where

O. -i W8261w Z,,
Owli -

and 68 and 6,' are defined in Chapter 1, Section 3. Also, dwh when the weight parameter is elim-

inated is -wu,. Making these substitutions, the detailed neural network notation for Equation 76

becomes
d0= 1 H K (-2•~ki#

d.6. (_6261 2kZWý.)2 j=1 h=1 - t-I

which is the definition of error corresponding to the saliency si(xP) of feature i for the pth input

vector, i.e.
ai(P l 2 =1= 1 2 12

"= k---- usz'1I,

The second order saliency metric, ii is formed by averaging ai(x) over all P data vectors:

P
i, = P-1 E Z,(x,) (77)

p=1
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A.2 Releuance Feature Evaluation Metric

Moser and Smolensky propose a saliency technique for measuring the relevance of a neural

network feature. The relevance of a neural network feature i, pi, is measured as a function of

how well the network performs with the feature versus how well the network performs without the

feature.

PA = -without feature i - with feature i

where neural network error & is defined as the mean absolute error over all P vectors: 6 =

P-1  P K

A relevance factor aj is introduced which corresponds to the attentional strength of feature

i, zi. Mozer and Smolensky's relevance factor aj is associated with the feature unit zi. Essentially,

Mozer and Smolensky consider two discrete levels of relevance: ai = 0 and ai = 1, corresponding

to twithout feature i and twith feature i respectively. The neural network output zt can be defined as:

Z1 2

zk = ( 3 w ,t

where ai is associated with feature zi as follows

Zý f ziaiw
3 (M +1Wi)

Mozer and Smolensky propose approximating pi using the derivative of the error with respect

to aj:

lim 6=7 - = a

and they assume this relationship holds approximately for 7 - 0, giving

86
Pd = 0•
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Using this definition of neural network error, the relevance of feature i, g, can be derived in

detailed neural network notation as follows

Pi "--

a (P- I E,=, k=,l d,%- zk 186a

P- 1 P K IzkI
p=l k=1

- p=l k=1 ,=l6h W j

-E E FH Lqc,
P=1kh1 j=1

p=-- --I h= j=1

The relevance or saliency pi is essentially a weighted average of the terms which comprise

Adata which is defined here for completeness.

P K H

&data = p- 1 I 2W

p=l k=1 =1

If a relevance factor a is defined which is associated with the weight parameters connected

to a feature, rather than the feature itself, the resulting relevance of feature i would be:
P H K

Oi = P_1 q 51 W.,,, W. i
p=1 j=l k=1

which is very similar ii defined in Equation 77 in Sectionsec:dalone.
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Appendix B. Model Selection Audit Runs

B. 1 Application of the Architectuire Selection on the API Problem

OVEBRALL NEURAL NETWORK SELUCTIONs AUDIT TRAIL

Number of ANN iterations to Sand good local min

in arckItecture and featume mnodules 10

Number: of ANN Iterations for saliency screening module statistics 10

Initial model structure aIs

NUMBER OF INITIAL MIDDLE NODES A

NUMBER OF INITIAL FEATURES 4

NUMCBER OF OUTPUTS 1

1 OUTPUTS USED FOR 2 CLASSES

NUMBER OF VECTORS; TRAIN - TESTs 111 100

NUMBER OF INITIAL TRAINING EPOCHS 500

NUMBBR OF ADDITIONAL TRAINING EPOCHS BETWEEN TEST SET S53 EVALUATIONS (in) 50

IM[PROVEMENT RBQUMED BETWEEN TEST SET EVALUATIONS FOR TRAINING TO CONTINUE (1.C3)% =5.00000OE.03%

TRAINING CONTINUES IFits~se(B1 ; TS.SSE~t-uI
5

C3

LOG declining learning rates used

MOMENTUM STEP SIZE C2 =0.300000

ONLY THEB STATISTICALLY INDICATED FEATURES ARE REMOVED

STATISTICAL SIGNIP LEVELS: ARCH.PEAT,SAL= 5.000000000000O1D.02 5.0000000000000D.02

5.000000000000013-02

RANDOM NUMBER SEED 10.00000

.... **-IN~ITIAL ARCHITECTURE SELECTION MODULE:seseerneeeessssss*..

MODEL, SELECTION ITERATION 1

CURRENT NUMBER MIDDLE NODES/FEATURES . FULL MODEL 6 4

CURRENT FEATURE SELECTION VECTOR

1111I

SUMMARY OF 10 RUNS

1 #aep= 550 FULL %ER.R= 2.64696 % TOTAL SSE= 7.34563

2 #ae=s 700 FULL %ERR= 3.91450 % TOTAL SSE= 7.402?7

3 #cps= 550 FULL %ERR= 4.98221 % TOTAL 553= 9.91086

4 *cps= 600 FULL %ERR= 4.62633 % TOTAL 553=a 10.49259

5 #ae.s 550 PULL %ERR= 2.84696 % TOTAL SSE= 7.90157

6 *ae.s 550 FULL %ERR= 3.91459 % TOTAL SSE= 9.52043

7 #cps= 550 FULL %ERR= 4.27046 % TOTAL 553= 7.46130

I #ae=s 550 FULL %ERR= 6.04082 % TOTAL SSE= 11.7366

9 #cps= 600 FULL %ERRt 5.69396 % TOTAL 553= 12.513?

10 #cps= 650 FULL %ERR= 3.55672 % TOTAL 532= 0.43272

SUMMARY OF 10 RUNS

1 #spa= 550 RBDU %ERR= 4.62633 %l TOTAL 83E= 11.0259

2 #ae=si 550 REDU %ER.R= 5.69395 % TOTAL 333E 11.9587
3 #cpse= 650 RBDU %ER.R= 4.62633 % TOTAL 55Ez 0.91830

4 #spa. 650 REDU %ERR= 4.62633 % TOTAL SSE= 0.35401
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5 *ePga, 550 RADU %BRA.R 2.46940 % TOTAL SS3= 7.17376

6 #*Vs. 550 REOIJ %ERR'. 4.27046 % TOTAL SSRs 10.a5T3

7 #ape. 550 REDU %BRR~ 4.2"046 % TOTAL 353= 9.06195

6 #ape- 650 RADU %BRR= 4.27046 % TOTAL SSE= 7.02945

9 #cpsc= 650 RADU %BRR= 3.91459 % TOTAL SSS= 10.02436

10 #cps= 650 EEDU %SRRz: 4.27046 % TOTAL SSB= 6.94219

Cuurent feature select vector I I 1 1

Degrees of freedom 6 232

Pull model miniulme TOTAL 553= 7.3456332077325

Reduced model saiiumar TOTAL 3311. 7.1731430674471

LEmELIBOOD RATIO TEST STATISTIC L= -. 9.0460199615694

Accept Reduced Models SSER ISSE*P L IP'ALPEA

REDUCED MODDL BECOMES PULL MODEL

APPROPRIATE NUMBER. OF MIDDLB NODES 7

INVESTIGATING REDUCED &RCHITBCTURB NEXT

bIODEL SELECTION ITERATION 1

CURRENT NUMBER MIDDLE NODES/FEATURES - PULL MODEL 7 4

CURRENT PRATURE SELECTION VECTOR

1 I111

BEST PULL MODEL: TOTAL SSE= 7.1737830674671

SUMMARY OP 10 RUNS

1 *cps= 550 REDU %ERR= 4.96221 % TOTAL SSE= 11.6277

2 *eps= 600 RBDU %ERR= 3.55472 % TOTAL SSE= 8.30053

3 *cps= 550 RBDU %ERR= 4.62633 % TOTAL SSSE 11.7695

4 #cps= 700 REDU %E1LR= 4.27046 % TOTAL SSE= 0.07790

5 *cps= 750 RBIJU %ERR= 3.20285 % TOTAL 3SE= 7.99463

6 *cps= 550 RSDU %ERR= 3.91459 % TOTAL SSE= 6.47713

7 #cps= 550 REDU %ERR= 3.20265 % TOTAL SSE= 6.63114

& #cps= 1000 RSDU %ERR= 2.49110 % TOTAL SSE= 4.36473

9 #cps= 550 REBDU %ERR= 4.27046 % TOTAL SSE= 9.12368

10 *cps= 550 RHDU %ERR= 2.84606 % TOTAL SSE= 7.01263

Current feature select vector 1 1 1 1

Degrees of freedom 6 236

Poll model minimum TOTAL SSE=z 7.1737830674671

Reduced model minimaum TOTAL SSE= 4.3647347487185

LIXELIROOD RATIO TEST STATISTIC L= .15.532332419716

Accept Reduced Models SSE*R SSSEP L PALPHA

REDUCED MODEL 8ECOME1S PULL MODEL,

APPROPRIATE NUMBER OF MIDDLE NODES$ 6

INVESTIGATING REDUCED ARCHITECTURE NEXT

MODEL, SELECTION ITERATION 1

CURRENT NUMBBR, MIDDLE NODESIPEATURES.- PULL MODEL 6 4

CURRENT PDATURE SELE2CTION VECTOR

1 I111
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BEST FULL MODBLt TOTAL 332- 4.3644347447185

SUMMARY OF 10 RUNS

1 #.ps- 550 RBDU %BRA= 2.49110 % TOTAL 333= 7.41936

2 #eps= 860 RBDU %BRR= 1.77930 % TOTAL 393= 5.70470

3 #cps= 530 RBDU %3RR= 2.49110 % TOTAL 553= 6.64141

4 #cps= 600 REDU %ERR= 3.91480 % TOTAL 333=z 8.55716

5 #spa= 700 RDDU %DRR= 4.27046 % TOTAL 533= 0.60406

6 #cps= 550 RBDU %DRR=z 2.84699 % TOTAL 533= 4.62692

T #optz= 650 RBDU %ERR= 3.91450 % TOTAL 553= 6.20973

6 #cps= 550 RUDU %3RR~= 4.27046 % TOTAL 353= 10.02347
9 #spa= 1400 REDU %ERR= 2.13523 % TOTAL SSE= 6.401557

10 #cps= 650 REB)U %BRR= 4.27046 % TOTAL S53= 11.5320

Current feature select vector 1 1 1 1

Degrees of freedom 6 244

Full model minimum TOTAL 532= 4.3647347487196

Reduced model minimum TOTAL 353=: 5.7047026045141

LIKELIHOOD RATIO TEST STATISTIC L= 12.464615310246

Alpkal = 5.OOOOOOOOOOOOOD.02

REJECT RBDUCBD MODEL,

APPROPRIATE NUM]BER OF MIDDL3 NODES 6

FINAL NUM3BUR MIDDL3 NODES/FEATURES 6 4

STOP= 1

PROGRAM COMPLETE

B.2 Application of the Featutre Selection Algorithm on the FLIR Problem

OVERALL NEURAL NETWORK SELECTION, AUDIT TRAIL

Number of ANN iterations to And good local waln

in arckitecture and feature modules 5

Number of ANN iterations for saliency screening module statistics 10

Initial model structure is:

NUMBER OF INITIAL MIDDLE NODES 6

NUMBER OF INITIAL FEATURES 9

NUM3BER OF OUTPUTS 1

1 OUTPUTS USED FOR 2 CLASSES

NUMZBR OF VBCTORSI TRAIN - TESTs 350 200

NUM3BUR OF INITIAL TRAINING EPOCHS 500

NUMBER OP ADDITIONAL TRAINING 3POCES BETWEEN TEST SET 9333 EVALUATIONS (in) 50

IMAPROVEMENT REQUIRED B3TW33N TEST O3T EVALUATIONS FOR TRAINING TO CONTINUE

(1.C3)% = 6.0000011-03%

TRAINING CONTINUES ]Fsts~msetj I TS-SSE[t.=]*C3

LOG declining learalng rates used

MOMENTUM STEP 5122 C2 at 0.300000

MAXIMUM NUMBUR OF FINAL FEATURES TO BE SELECTED, 6

STATISTICAL SIGNIF LEVBLS: ARCHFEAT,SAL= 5.0000000000000D.02 5.0000000000000D.02

5.000000000000OD-02

RANDOM NUMBER SEED11 19.0000
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0*0***C
5

C
5
04TIAL ARCHITECTURE SELECTION MO D ULE:**.*..

MODESL SELECTION ITERATION 1

CURREINT NUMB3R MIDDLE NODNS/PEATURUS - FULL MODEL 609

CURREINT FEATURE SEILECTION VECTOR

I1I11111I11I

SUMMARY OP 5 RUNS

1 #cps= 650 PULL %ERR= 3.00091 % TOTAL 333= 15.0061
2 #cpsp= 150 PULL %3RR= 4.54545 % TOTAL 333= 19.1941
3 Akeps= 600 PULL %ERR= 5.27273 % TOTAL S33= 27.1451

4 #cps= 550 PULL %DRR= 3.8l818 % TOTAL 333= 16.2626

6 #eps= 600 FULL %BRR= 4.00000 % TOTAL 333=- 19.5451

SUMMARY OF 5 RUNS

1 *cps= 600 REDU %DRR= 4.16162 % TOTAL S332= 20.1310

2 #spa= 650 RESDO %3RR= 3.61616 % TOTAL 533= 17.0305

3 #cps= 550 RBDU %EILR= 4.00000 % TOTAL SS3= 21.1545
4 #eps= 600 RUDU %ERR= 3.27273 % TOTAL S3SE= 16.3210

b #cps= 550 RBDU %BRR= 3.00031 %1 TOTAL 333= 17.3626

Current feature select vector 1 1 1 1 1 1 1 1 I

Degrees of freedom 11 461

Pull model minimum TOTAL 838= 15.906069873657

Reduced model mialmumz TOTAL 333= 16.320094202223

LIIC3LINOOD RATIO TEST STATISTIC L= 1.1090455462504

Aipbal = 5.080000000000013-02

Accept Reduced Model: L iPapbah

RBDUC3D MODERL BUCOMES PULL MODDL

APPROPRIATE1 NUM3BER OP MIDDLE NODES 7

INVESTIGATING RUDUC3D ARCHITECTURE NEXT

MOD3L SELECTION ITZRATION 1

CURRESNT NUMBER MIDDLES NODESIPEATURES - FULL MODEL 7 9

CURRENT PEATURE S2L3CTION VUCTOR

I1 111 11 111

BEST PULL MOD3L: TOTAL 553= 16.326004202223

SUMMARY OP 5 RUNS

1 #cps= 600 REDU %3RR= 3.45455 %1 TOTAL 333= 16.1392

2 #spa= 550 REDU %BRR= 4.00000 %1 TOTAL 333= 17.5202

3 #cps= 550 REDU 51ERR= 4.90009 %1 TOTAL SSE= 22.6240
4 #cps= 600 REDU %31EE. 3.61618 %1 TOTAL 333B= 16.6526

5 #cps= 600 REDU 51ERR= 3.81516 %1 TOTAL SSE= 16.4436

Current feature select vector 1 1 1 I I I 1 1 1

Degree& of freedom It 412
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Full model minimum TOTAL 313= 19.326064202233

Reduced model minimum TOTAL 3511 16.130161523OU9
LIKELIHOOD RATIO T83T STATISTIC L- *0.46S34444061440

Accept Reduced Models S3331 I SORT L I P ALPHA

REDUCED MODEL, 33003433 PULL MODEL

APPROPRIATR NUMDBR OP MIDDLB NODDI 6

INV11STIGATING RZDUCND ARCHIT3CTURX NEXT

MODDL 3ELZCTION ITZRATION 1

CURRENT NUMBER MIDDLES NODE3S/PEATURNS - PULL MODEL 6 9

CURRENT FEATURE SULDOTION VECTOR

11 I11 11 111

833?T PULL MODDLs TOTAL 333=. 16.139161526359

SUMMARY OP 5 RUNS

I #cps= 600 REDU %11RR 4.54545 % TOTAL SS33 20.2141

2 #ape= 600 REDU %EflR= 4.90909 96 TOTAL 333= 22.6786
3 #cps= 550 RESDU %BRR= 4.34364 % TOTAL 333= 19.7243

4 #ap~e= 600 REDU %ERR= 4.34364 % TOTAL 333= 19.9564

5 #cps= 550 REDU N3RR= 4.909090 % TOTAL 333= 21.9964

Current feature select vector 1 1 1 1 1 1 1 1 1

Degrees of freedom 11 463

Fail model minimum TOTAL 333= 16.139161526359

Reduced model minimum TOTAL 333= 19.724257955158

LEKNLIHOOD RATIO TRST STATISTIC L= 9.7538106146135

Alpbal= 5.0000000000000D.02

RUJE1CT REDUCUD MODDL

APPROPRIATE NUMBUR OP MMDL3 N0D33S 6

REDUCBD MOD3L MIDDL3 NODD3IP3ATURE3 6 6
CANDIDAT3 P3ATURE SULECTION VECTOR.

01 11 1 111 1

SUMMARY OP & RUNS

1 #cps= 550 R3DU %3BRR= 5.27273 91 TOTAL 333=. 24.6755

2 #cps= 600 RUDU %3R1= 5.27273 % TOTAL 3113= 26.1357

3 #ps=e 650 R3DU %3RR= 5.61618 % TOTAL 333= 25.2757

4 #ps-e 600 REDU %3RR= 6.00000 % TOTAL 383= 24.1635

5 #cps= 550 RZDU %3RR= 4.9000 96 TOTAL 333= 25.61628

REDUCUD MODUL MIDDLE N0D33/PEATURE3 658

CANDIDAT3 FEATURE SULWCTION VECTOR,

10 11 1 111 1

SUMMARY OP 5 RUNS
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I #cps- 650 RRDU %UkRR= 6.09091 % TOTAL $IN- 23.1254

2 #ape- 550 3.UDU SAfR=a 5.27213 % TOTAL 53-3 22.3473

3 #opomt 650 RUDU %UBR=m 5.63636 % TOTAL 532- 24.2026

4 #spa= 550 RSDU %JUB.R 5.2T313 % TOTAL 2311m 25.1004

a #cps. t00 RVIDU %BAR. 6.15142 % TOTAL 3311- 23.554"

USOUCIBD MODUL MIDDLX NODES/FEBATURES 6 4
CANDIDATS FEBATURE SEkLNCTION VECTORo

I110 111 1 11

SUMMARY OF 6 RUJNS

1 #cps- 550 RXDU 33311= 4.909090 % TOTAL 393- 22.2894

2 #ae.s 550 REDU 33R.R 5.27213 % TOTAL 533=m 23.2684

3 #spa. 550 RBDU 3811RR 6.54545 % TOTAL 5S33 28.4469
4 #cps= 550 RBDU 33311= 5.45455 % TOTAL S53I= 26.5311

G #ape. 550 RXIDU 33311= 3.51615 % TOTAL 553=: 14.4095

REDUCIID MODUL MIDDLE NODNS/FRATURJBS 059
CANDIDATES VVATURES SELIICTION VEICTOR:

1I110 11 1 11

SUMMARY OF & RUNS

1 #cps= 550 REIDU 33311= 1.09001 % TOTAL 553= 26.9630

2 #cps. 300 RRDjI 3ERRa 4.12127 % TOTAL 353= 22.1023
3 #cps= 550 RBDU %33R= 3.63636 % TOTAL 553=~ 10.4445

4 #cps= 600 REDU 33311= 6.71721 % TOTAL 553= 25.3158
5 #psp= 600 R3DU 3EBRR= 4.72727 % TOTAL 333= 21.2301

RINDUCED MODEL MIDDLE NOD3SS/FUATUREIS S 8
CANDIDATEB FEATURE S3ILNCTION VECTOR:

1 111 01 11 1

SUMMARY OF 5 RUNS

I #cps= 550 R3DU 33311= 1.45455 % TOTAL 533=m 32.9257
2 #eps. 550 RADU 33311= 5.63436 % TOTAL 133I= 26.5051

3 #spa= 550 RBDU 33311= 1.63636 % TOTAL S33= 30.2543
4 #cps= 600 REDU 33311= 6.36344 % TOTAL 533= 20.33"0
5 #,ape= TO0 R3DU 333.3= 5.19152 % TOTAL 553~ 37.5252

REIDUCED MOD3L KMIDLB NODISS/F3IATURNS 6 4
CANDIDAT3 FUATURE SRL3CTION VEICTOR:

11 I1110 11 1

SUMMARY OF 5&RUNS

I #ps=, 600 RS3Db 33311 5.00000 % TOTAL SSN- 20.1042

2 #ape= 550 33BDb 33311 4.00000 % TOTAL $313- 21.4321

3 #cps= 550 RNDU 33311= 4.7122 % TOTAL BO3S= 20.4513

4 #cps= 550 RNDU 33311= 4.90909 % TOTAL 8353. 21.0110

5 #cps. 750 R3DU 33311= 4.13142 % TOTAL 333=w 20.2130

REIDUCUSD MODUIL MMDL3 NOD3S/F3ATUREU 65G

CANDIDATE FRATURN S3LISCTION VECTOR:
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SUMMARY OF I RUNS

1 #epa. 560 REIDU SRR- 6.00000 %TOTAL 1332 24.6645

2 #*Va. 650 RESDO %ERR= 4410606 TOTAL 113. 23.1404

3 #tps= 510 11E1O %BRR. 5.00001 % TOTAL 533. 24.0323
4 #eps- 550 REDO %saRR 4.14142 % TOTAL $11u; 20.7260

5 #eps= 550 REDO %3RR= 6.54545 %I TOTAL 53311 30.1554

RESDUCED MOD3L MMDL2 NODISS/PEBATURNS 6 4

CANDIDATE FESATURE SELECTION VECTOR:

11 11 1 110 1

SUMMARY OF 5BRUNS

I *evez: 550 REBDO %BRA= 3.09091 % TOTAL 53=19 10.563?

2 #ape= 550 REDU %BRR= 4.909009 % TOTAL 113=o 19.6356

3 #aep= 600 REDO %3RR=: 6.34364 % TOTAL 113=: 31.2186

4 #*Va= 650 REDO %3RRE= 5.27213 % TOTAL 8813= 21.7155
5 #eps= $60 RUDOU %BRR= 3.45415 % TOTAL SO3= 16.4166

RJBDUC3ID MODEL MlI)DLES NODES/FEATURES 6 S

CANDIDATES PUATURE SELECTION VECTOR:

111 I1 11 110

SUMMARY OP 5 RUNS

I #cps= 650 REBDO %BRA= 4.18182 % TOTAL 133= 21.6605
2 #aep= 550 REDO %ERR=o 4.72727 % TOTAL 1S33= 22.3330

3 #cps= 550 RESDO %ERR= 6.54545 % TOTAL 133= 31.4654

4 #epm= 750 REIDO %ERR= 3.45455 % TOTAL 833= 17.5"22

5 #opt= 700 RESDO %BRA= 6.36364 % TOTAL SSE= 27.3671

FEBATURE selection Iteration # 1

Degrees of freedom 6 443

Poll model minimum 551B= 16.139161526369

Reduced model minimum 553=z 16.533680461726
IJKELIHOOD RATIO TEBST STATISTIC Lot 2.0676676703377

Alpha2 desired= 5.OOOOOOOOOOOOOD.02

ACCEPT REDUCED MODEL: PNVAR I CNVAR end L IPFaipka

STOP=z 0

*.....u....eO-STRUCTIJR SUBMODULE NEXT: 0" "" "0"IZAIN 2

MODEL SELEBCTION ITERATION 2

CURREINT NUMBER1 MIDDLES NODES/FEIATURES - PULL MODS]L 6 a

CURREINT FEATURE SELECTION VICTOR

I11 11 1110 1
91E1T PULL MODDL: TOTAL 113= 16.553660541626

SUMMARY OF G RUNS

I 0epe- 650o REIDO %EBRI 4.00000 % TOTAL SSE=- 17.42"3

2 #epso= m0 REDO %ERR- 2.54545 % TOTAL 25E- 14.562

3 41epew 600 REDO %ERR= 3.45416 % TOTAL 313=z 16.3739
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4 0epon 550 EUDU V.EE*= 7.27273 % TOTAL 233a 31.9494

a #Or&- 640 RRDU %EER- 9.81416 % TOTAL 532. 3s.7003

Comet featureselect Teter 1 I I 1 1 1 1 0 1

Degrees of furweeds 10 469

p~ul model mizimum TOTAL Sl~w 16J46401419624
Reduced model minisamum TOTAL 11113 14.65252544663?

LIKELIHOOD RATIO TEST STATISTIC Le, -5.91145250206628

Accept Reduced Models USE2R IUSEPS L IF*ALPHA

REDUCED MODEL BECOMES FULL MODEL

APPROPRIATE, NUMBER OF MIDDLE NODES 5

..... "'EATURE SURMODULA, NEXT: S**
0 0 0 0 0 0 0 0 0 0 0

OC*ITBRATION. 2

REDUCED MODEL MIDLE NODRS/PNATURNS 5 T

CANDIDATE FEATURE SELECTION VECTOR:

0 11 11 110 1

SUMMARY OF G RUNS

1 *4pffi 550 RUDU NERR= 7.27273 % TOTAL SSE= 30.6956

2 #cps= 000 RZDU NERR= 6.15102 % TOTAL 953= 30.5071

3 #cps= 050 RSDU NERR= 4.00000 % TOTAL SSE=z 31.2504

6 #cps= 600 RESDU NERR= 8.36364 % TOTAL SSE= 33.1243
5 #cps= 050 RESDU NERR= 6.90909 % TOTAL SSEI= 34.6414

REDUCED MODEL MIDLE NODES/FEATURES & 7

CANDIDATE FEATURE SELECTION VECTOR:

10 11 1 110 1

SUMMARY OP B RUNS

I #psp= 600 REDU NERR= 6.00000 % TOTAL SSE=: 2T.2022

2 #eve= $Go0 REU NERR= 4.7272? % TOTAL S33= 20.6952

3 #cps= 700 EEDU NERR=1 as .00000 % TOTAL SSE= 17.36??

4 #cps= 650 REDU NERJL= 5.81818 % TOTAL SSEI= 23.4969
5 #eps= 650 REDU %BAlR= 7.09091 % TOTAL SSE= 36.0911

REDUCED MODEL MIDDLEB NODES/FEATURES G 7

CANDIDATE FEATURE SELECTION VECTOR:

11 01 11 10 1

SUMMARY OF B RUNS

1 *eps. 500 REDU %11R.w 6.16182 % TOTAL SSE. 30.2673

2 #eps- 600 REDU %BRA- 4.54545 % TOTAL SSE. 20.3390

3 feps= 000 REDU NERR= 6.72727 % TOTAL S13= 26.649"

4 Gepo. 600 REDU NERRR 4.64045 % TOTAL 832c; 22.2004
& #spa= 550 REDU NERIRw 5.45400 % TOTAL SSE= 23.5200

REDUCED MODEL MIDLE NODESS/FEATURSS 5 7

CANDIDATE FEATURE SELECTION VECTOR:

1I110 11 10 1
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SUMMARY OF 6 RUNS

I Gqe=o 600 REDU P.33k-t 8.5454S S. TOTAL 133. 31.3550
2 #spa. 465 RIDUD P.33k- 4.54145 %. TOTAL 5531= 23.314

3 #*ea= no030 AMU 33- 6.99M0 P. TOTAL 232= 26.8150
4 Eeps- 650 79DU P.33k- 5.366 P. TOTAL 9331- 34.1223

8 #epo- 5U0 3300U %AMR= 3.4141 P. TOTAL 1333 11.8090

RNIDUCSD MODBIL MIDDLII NOD3IIP3IATO33IS 5 1
CANDDAT3 PUATIURN SEILUCTION VIICTORi

11 I110 1 101

SUMMARY 0F a RUNS

1 Esp.= 650 H3IS UP.33= 1.27273 P. TOTAL 93S. 32.2244

2 #epiu 550 1300U P.3 - 8.7272? P. TOTAL SSA. 37.460T

3 #spa= 600 RXD0 P.33k- 5.00000 P. TOTAL 533= 30.5131

4 #spa= 60130 P.33kBR= 6.90096 P. TOTAL 533=m 30.9343
5 #eis= 510 3300 P.33k- 5.36364 P. TOTAL 113= 32.0639

R200C3D MODUL MIDDLII NOD3I/SI3ATUREIS G 1
CANDMATII PDATURN SNILSCTION VIICTORo

1 1111 0 10 1

SUMMARY OF & RUNS

1 #eq.= 650 R300 P.33k- 3.63636 P. TOTAL 313I= 21.2184

2 Eeve= 550 3300 P.33k 5.27213 P. TOTAL 113=. 20.4325

3 Eel.- 100 3300U P.33k- G.09091 P. TOTAL 133= 20.2335

4 Gep*.- 530 3300 P.BRA= 1.63636 P. TOTAL 533= 25.4101

5 0.,.- 550 SI300 P.33k 5.63636 P. TOTAL SSN3 22.7511

3300UCID MODDL MIDOLD NOD3S/PlIATURVIS B 1
CAIIDIATS PDATURA SSILNCTION VNCTOR:

11 11 1 100 1

SUMMARY OF 5 RUNS

1 fepe- 50330 P.333=JMR 4."4545 P. TOTAL 153=: 22.1150

2 #spa= 650 3300U P.33k- 4.90509 P. TOTAL SS3~ 21.9502

3 #spae- 530 3300 P.3= 6.15182 P. TOTAL 533= 2.5.1"1

4 #eqea 561330 P.33k-BR 1.63636 P. TOTAL 533=: 35.5400

b #spa. SN 3300U P.33- 5.03091 P. TOTAL 533=- 24.2112

USOUCIID MODDL MIDDLEI NOD3IS/P3IATURXIS 5 1
CANDIDATII P3ATURN SUULECTION VIICTORo

11 11 11 1 00

SUMMARY OF & RUNS

I #ei.= 0503300 P.BRA= 4.154"S P. TOTAL S393= 18.1514
2 ey.- 500000RID P.3RR- 4.12727 P. TOTAL 333=m 19.315"

3 #"s- 1603300 P.ERR- 6.18182 P. TOTAL 333= 23J1416

4 #*l.- 11030 P.33k-BR~ 3.63N36 P. TOTAL 93a3 171103

6 Eq.- 5109 0 P.33k 5I ~ .63636 P. TOTAL S33= 25.2310

PIATURS .eletlea Ifteatl1.uE 2
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Degrees of treedom 6 499

Fail model minimum 3I11- 14.543295245"1

Reduced model mdaimom 933-= 17.07061026162

LIKELIHOOD RATIO TEST STATISTIC L- 17.270664420016

Alpb&2 dealred. 6.OOOOOOOOOOOD.02

ACCEPT REDUCED MODELs PRYVAAR CNVAR

STOP.. 0

* .... ***
t

*STRUCTU"R 3UUMODULN NEXTt .... O*OO*ITERATION- I

MODEL SELECTION ITERATION 3

CURRENT NUMBER MIDDLE NODSS/PEATURE3 -PULL MODEL G T

CURRENT FEATURE SELECTION VECTOR

IlIlo0li1le0l

BEST FULL MODEL. TOTAL S311z 17.070916928162

SUMMARY OF 5 RUNS

I #epe= 550 REDU %ERRA 7.09091 % TOTAL 3311= 31.4753

2 #spa= 600 REDU %ERR= 5.21273 % TOTAL 533.= 25.415"

3 #spa. ?50 REDU %ERR= 4.&4&4s % TOTAL 1311- 13.3076

4 #spa- 1300 REDU %ARR= 2.14162 % TOTAL 3311- 12.0600

$s Ppa. 6"0 REDU %ERR= 3.61818 % TOTAL 3S21- 17.4642

Calnout feemuxe "tloci vector 1 1 1 0 1 1 1 a 1

Degrees of feedom S 504

Full model minimum TOTAL 333= 17.070916962162

Reduced model minimum TOTAL $33. 12.03026470063

LIKELIHOOD RATIO TEST STATISTIC L= -16.306647194121

Accept Reduced Modelt USE1R 1 3311 L I PALPHA

REDUCED MODEL BECOMES PULL MODEL

APPROPRIATE NUMBER OP MIIDLE1 NODES 4

.. SS..... ** 3*ATLY" SUBMODULE NEXT% ... CeCC*OSSC**lTERATION= 3

REBDUCED MODEL WDLE NODBS/FEATURE3S 4 6

CANDIDATE PEATURE SELECTION VECTOR:

0 1 1 011 101

SUMMARY OP 5&RUNS

1 fePOe= 550 RNDU %ERR=- 6.60606 % TOTAL 392- 32.6491

2 #epa- 600 REDU %NRR- 7.09091 S TOTAL S333 32.3501

3 #epoo: 550 REDU %BAR.= S.7227 % TOTAL 11111 35.3371

4 #epo=m G"REDU %E1RR= 9.4545" % TOTAL 333=z 42.4533

a #*q- 604 REDU %BRR- 6.00006 % TOTAL 5UE. 31.5726

REDUCED MODEL MIDDLE NODEUIPE71ATUREU 4 6

CANDIDATE FEATURE SELECTION VECTOR.

199



101011101

SUMMARY OP s RUNS

I #spa. SSG RIDU %33RR 6I.0900 % TOTAL 13=. 39.6344

2 #*pes o00 RID)U %1B1R .00021 % TOTAL 851s 23.4250

3 #aepe. 50 RIDU %B33.= 4.27273 % TOTAL $S33. 21.8065

4 ap.= 000 1I]DU %3331= 10.72?3 % TOTAL Si33 41.0231

5 spi., W0 RIDU %R3.= 9.900M0 % TOTAL 9231- 42.1789

3.IDUCBD MODEL MIDDLZ NOD/PSATURNI 4 0

CANDIDATE PBATURI SELECTION VZCTORi

1 10 0 1 1 1 0 1

SUMMARY OP & RUNS

I aepe= 550 RIDU %BRA-= 8.54545 % TOTAL 333= 34.0640

2 #ape= 560 RIDU 3131= 4.72727 % TOTAL 8311= 34.6525

3 #sep.= 60 RIDU %BRA- 0.14102 % TOTAL 5333 35.0360

# #ape= 550 RADU ?) 3IR3 4.90009 % TOTAL $93. 20.9469

5 #epe= 000 RIDU 3BRR= 4.7272? % TOTAL 333= 20.9025

REDUCED MODEL MIDDL3 NODRS/PBATURNS 4 0

CANDIDATE PFATURE SRLBCTION VUCTORi

1 1 1 0 0 1 1 0 1

SUMMARY OP 5 RUNS

I #spa= TS0 .0DU %3RR= 7.09001 % TOTAL 232= 30.0034

2 #ape= 55031 DU %3I1 5.6054545 % TOTAL SSI= 34.389T

3 #ape= 530 RUDU 3B33= 10.00000 % TOTAL 3S33= 37.1591

4 #spa= 550 RUDU 31RR= T.00M1 % TOTAL 333= 33.6600

5 #spa= 000 RIDU %XR3I= 8.54545 % TOTAL 331= 30.9951

REDUCED MODEL KIDDLN NODBS/]FEATUR]S 4 0

CANDIDATE PRATURE SELBCTION VBCTOR:

I I 1 0 1 0 1 0 1

SUMMARY OP a RUNS

I #*F.= 600 RIDU %BRA-1 5.0901 % TOTAL 9231. 23.4959

2 #ape= 650 RBDU ? BRR= 9.8151 % TOTAL 3933 35.1012

3 #*p.= 550 RSADU %BRA= 0.72721 % TOTAL 3833 38.0012

4 #ape.= 6", R*DU 3RR= 5.00091 % TOTAL 3S33 23.5077

G #spsa= 00 R.DU ?)R3.= 0.16102 % TOTAL 331= 23.9230

REDUCRD MODBL MIDDLE NODES/1JPATURlS 46

CANDIDATE FEATURE SELECTION VBCTORt

111011001

SUMMARY OP a RUNS

I #spa= 550 RIDU 3331= 5. 43636 % TOTAL 331- 23.2047

2 #pe-= 550 RIBDU %333= 0.15182 % TOTAL $831- 29.208

3 #sp.. 646 RIDU 3RI3L= S.5•t4 % TOTAL 219= 24.9051

4 iep.= 58 RIDU ? Ri3m3 5.7272? % TOTAL 3l3s 40.7001

a #*ae= 0503 1DU %BAR. 5.21272 S TOTAL 391-= 22.4001
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R2DUCXD MOD3L MIDDLX NODDS/FNATURNS 4 0

CANDIDATED YEATURN SELECTION VECTOR:

I11101 I110 0

SUMMARY OF & RUNS

I #opt= 000 RBSDU %BRA-= 4.14102 % TOTAL SSE=, 17.8449
2 #ops. Go0 R3DU %Zflfl 3.27273 % TOTAL SSX. 20.04410

3 #ape. 500 REDU %ZRR= 7.81816 % TOTAL 355= 34.3010

4 #aep= 500 RJBDU %EER=L 4.45454 % TOTAL 353- 10.09??
5 #aep= 550 RESDU %EUR= 5.45415 91 TOTAL 592- 25.7864

FESATURE selection 14,acation.# 3

Dopre.. of freedom 4 113

Pull model minimum SSE= 12.000026470063

Reduced model minimum SSE. 17.844950420117

LEIKELIHOOD RATIO TEST STATISTIC L= "0.9049142902"0

Alpha3 desivedzz 5.0000000000000D.02

ACCEPT REDUCED MODElL: PNVAR I CNVAR
FINAL NUMBER OP MI3DDLE NODES/FEATURES:i 4/ 0

FINAL FEATURB SSLEBCTION VEBCTOR

11 10 1 110 0

STOP= 0

..........STRUCTURZ SUB3MODULE NESXT: **
0 0 0 0

.....
0
.ITRRATION= 4

MODSL SELECTION ITERATION 4

CURRENT NUMBER MIDDLE NODEBS/FEBATUREDS - FULL MODEL 46e

CURRENT FEATURE SELESCTION VECTOR

I1 110 1 1100

DEBT FULL MODEL: TOTAL SSE= 17.544950420117

SUMMARY OF B RUNS

1 #aep= 600 RJSDU %EWRR= 4.90900 % TOTAL SSE=z 22.1010

2 #aep. 550 REDU %ERR. 5.27273 % TOTAL S52= 22.2"5?

3 #ape= 600 REDU %EAR= 4.00000 % TOTAL 39E= 19.4940

4 #eptz: 050 REDU %ERIL= 7.03030 % TOTAL $32E 31.1421

5 #ape= 550 REBDU %EER= 0.30304 % TOTAL SSE= 27.3371

Current feature select vector 1 1 1 0 1 1 1 0 0

Dopre., of freedom a 5ll

Pull model minimum TOTAL 3S31= 17.84495042011T

Reduced model minimum TOTAL SSJ5E 19.49405751212"

LIKLELIOOD RATIO TEST STATISTIC L=c 5.9740069"4096

Alpbal= 5.0OOOOOOOOOOOOD-02

REJEACT REDUCED MODEL

APPROPRIATE NUMBEER OF XMDLE NODES 4
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FINAL NUMBER MIDDLE NOD2S/FEATURES% 4 6

FINAL FEATURE SELECTION VECTOR

I1 110 1110 0

PROGRAM COMPLETE

B.3 Application of the Comprehensive Neu~ral Network Selection Methodology on a Modified XOR

Problem
OVERALL NEURAL NETWORK SELEICTION: AUDIT TRAIL

Number of ANN iterations to fad good local saia

iu arckitecture and feature modules 5

Number of ANN iterations for saliency screening module statistics 10

Initial model structure in:

NUMBER OF INITIAL MIDDLE NODES 6

NUMBER OF INITIAL FEATURES 5

NUMBER OF OUTPUTS 1

1 OUTPUTS USED FOR 2 CLASSES

NUMBER OF VECTORSI TRAIN - TEST: 300 300

NUMBER OF INITIAL TRAINING EPOCHS 800

NUMBER OF ADDITIONAL TRAINING EPOCHS BETWEEN TEST SET SSE EVALUATIONS (us) 50

IMPROVEMENT REQUIRED BETWEEN EVALUATIONS FOR TRAINING TO CONTINUE (I-C3)%

5.000001E-03%

TRAINING CONTINUES IFits-se(t] I TS.SSBEIt=]*C3

LOG declining learning rates used
MOMENTUM STEP SIZE C2 = 0.300000

ONLY THE STATISTICALLY INDICATED FEATURES ARE REMOVED

STATISTICAL SIGNIF LEVELS. ARCHFEAT,SAL=. '0000000800000D-02 5.000000000000OD-02

5.0000000000000D.02

RANDOM NUMBER SEED 14.0000

...... **e.... INTIAL ARCHITECTURE SELECTION MODULE1eeeee*
0 5 0 0

*OO

MODEL SELECTION ITERATION 1

CURRENT NUMBER MIDDLE NODES )FEATURZS - FULL MODEL 6 6

CURRENT FEATURE SELECTION VECTOR

I1I11I1

SUMMARY OF B RUNS

1 #eps= 550 FULL %ERR= 1.60000 % TOTAL S55E 1.91164

2 #eps:= 550 FULL %ERR= 3.20000 % TOTAL SSE. 10.1772

3 #eps= 700 FULL NEERR 3.60000 % TOTAL SS~gs 1S.22166

4 *eps= 600 FULL NERR= 2.60000 S TOTAL 832= 10.32434

5 #eps= 550 FULL NERR- 2.20000 % TOTAL 55Ez 10.07594

SUMMARY OF s RUNS
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1 #alep 000 REDU %EIIRA 3.6000M TOTAL 5311- 14.60"

2 *epes 6S0 REDU %SERR 1.40000% TOTAL 35331 6.09073

3 #spo= 560 EEDU %ERRk= 1.840410 96 TOTAL 553= 10.46256

t #aper 1140 REDU 911IRaER 2.00000 %TOTAL 333= 6.26766

5 #ae-. 16" 3.EDU %RRA., 4.40000 TOTAL 5332- 16.11891

Current featue, ealect vector I 1 I I 1

Degrees of freedom 7 45?

Pull model minimum TOTAL S353= T.9119345043529

Reduced model minimum TOTAL 9331a 6.000726664773?

LIX3LIHOOD RATIO TUST STATISTIC L. 1.4753134456556

Alphol se 5.0000000000000D-02

Accept Reduced Models L jP'ALPHA

REDUCED MODEL, DUCOME3 FULL MODEL

APPROPRIATE1 NUM1;8R OF MIDDLE NODES 5

INVEISTIGATING REDUCED ARCHITECTURE NEXT

MODAL S8L3CTION ITERATION 1

CURRENT NUMZ3R MIDDLE NODES/FEATURES - FULL MODEL 5 5

CURRENT FEATURE SEL3ECTION V3CTOR

DEST PULL MODEL: TOTAL 9S33 8.06072"6547737

SUMMARY OF 5 RUNS

1 *aes= 600 REDU %ERR= 2.40000 % TOTAL 55E: 10.0701

2 #eps= 560 RBDU %BRR= 1.60000 % TOTAL SSE= 9.59462

3 *aep= 650 RBDU %ERR= 1.40000 % TOTAL 3S3= 6.3360?

4 #eps= 550 RBDU %ERR= 3.20000 % TOTAL 553= 14.3301

5 *eps= 750 RBDU %ERR= 1.60000 % TOTAL S553= 6.37509

Curveat featuer select vector 1 1 1 1 1

Degrees of freedom 7 464

Pull model minimum TOTAL SSE= 6.0007266547737

Reduced model minimum TOTAL 983= 6.3360696446074

LIKELIHOOD RATIO TEST STATISTIC L= 2.0264133471364

Alphel= 5.0000000000000D.02

REBJECT REDUCED MODEL

APPROPRIATE NUMBER OF MIDDLE NODES 5

SALIENCY SCREE1NING MDL:ee~~e~~C*

SUMMARY OF 10 TRAIN4ING RUNS

1 #epe: 6650 REIDU %EBRR=: 2.40000 % TOTAL 53=. 10.26702

2 #ope= 760 REIDU %ERR= 1.60000 % TOTAL 113E1 7.46634

3 #.pe= 550 REDU %ERR= 1.6000 % TOTAL SS11a 9.116066
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4 #.Pa= 510 REDO %BRE= 2.20000 % TOTAL SiE= 6.1233"
a #e.Pa 600 RED U E3k- 2.80000 % TOTAL 53=2 0.81324

* #*Pa= 708 REDU %NRR= 1.s0000 % TOTAL $$A- 0.90154

1r #eps- 000 REDU %3BRR 88o0000% TOTAL 539= 24.058"

G #ape= ?SO RED %BRAh= 3.30000 % TOTAL 352= 14.1040
9 #*Pa. 400 REDO %ERR= 3.40000 % TOTAL SSA= 11.2806

10 #*Pa= 010 REODU %EB.R= 2.40000 % TOTAL SSE= 9.01073

NUMBER OF NOISELI1KE FEATURES REMOVED WITH SALIENCY SCREENING 2

PSATUP.E SELECTION VECTOR APTER SALIENCY SCREENNING

"...TRSTUCTURE SU11MODULE NEXT: . *-* ......... * .. ITNRATION=

MODEL SELECTION ITBRATION 1

CURRENT NUMDBR MIDDLE NODES/PEATURES - FULL MOD3L 5 3

CURRENT FEATURE SELECTION4 VECTOR

I110 01

SUMMARY OF 5 RUNS

1 #cps= 700 FULL %ERR= 1.40000 % TOTAL 999= r.64260

2 #ceps= 700 FULL %BRBA= 1.80000 % TOTAL SS8= 8.00043

3 *cps= 550 FULL %ERR= 1.60000 % TOTAL 399= 4.04025

4 #cps= 750 PULL %ERIL= 2.00000 % TOTAL 93E= 6.76780
5 #aep= 550 PULL %ERR= 0.400000 % TOTAL 93E= 7.62390

SUMMARY 01' BRUNS

I #cps= 600 REDO %ERR= 17.4000 %1 TOTAL 992= 60.9630
2 #cps= 550 REDU %ERR= 2.00000 % TOTAL 535= 12.5482

3 #psp= 600 RESDO %ERR= 1.40000 %1 TOTAL SSE= 7.65013

4 #cpse= 700 REDU %ERRL= 1.60000 %1 TOTAL SS2= 7.38523

5 #cps= 600 REDU %ERR~= 1.00000 %1 TOTAL SS9= 1.504610

Cureuut feature select vector 1 1 0 0 1

Dpegree of freedom 5 464

Full model minimum TOTAL 99E= 7.6426026397260

Reduced model minimum TOTAL SSZ= 7.3682344052716

,I)KELIHOOD RATIO TEST STATISTIC L=: -3.1260222730495

Accept Reduced Models SSWR I553.1'

RNDUCED MODEL BECOMES PULL MODEL,

APPROPRIATE NUMBER OP MID)DLE NODES 4

INVESTIGATING REDUCED ARCHITECTURE

MODEL SELECTION ITERATION 1

CURRENT NOMNER MIDDLE NODES$PEATURES - PULL MODEL, 4 3

CURRENT FEATURE SESLECTION VECTOR

1 10 01

BEST PULL MODEL: TOTAL SOE= 7.3882344052716

204



SUMMARY OF G RUNS

I #spa= 550 RUDU %BRR= 5.00000 % TOTAL 553=z 10.2218

2 #cps= 550 RUDU %BRR= 111.4000 % TOTAL 551= 02.6749

3 #spa= 650 REDU %BRR= 6.00000 % TOTAL 553= 17.5724

4 #aep= 600 RBDU %ERR= 16.2000 % TOTAL SSB= 410.4270

5 #cps= 600 RADU %ERR= 4.00000 % TOTAL SSB= 14.2334

Current feacture select vector 1 1 0 0 1

Degrees of freedom 5 469

Pull model sainlmum TOTAL SSE= 7.3652344052716

Reduced model misneivem TOTAL SSE= 16.2217571206865

LIKELIHOOD RATIO TEST STATISTIC L=a 112.23203998664

Alphsl= 5.0O00OOOOOOOOOD-02

REJECT REDUCED MODEL

APPROPRIATE NUMBESR OF MIDDLE NOD3S 4

.... -OCCOPATURE SUBMODULE NEXT: .... e**OCCOOOOOOOIT3RATION=. 1

REDUCED MODEL MIDDLE NODESIPEATURBS 4 2

CANDIDATE FEATURE SELECTION VECTOR:

01 00 1

SUMMARY OP 5 RUNS

1 #cps= 1250 REDU %BRR= 1.20000 % TOTAL SSB= 6.495Y2

2 #cs 600 REDU %ERB= 1.60000 % TOTAL SSE= 6.61672

3 #cps= 550 REDU %ERR= 4.20000 % TOTAL SSE= 19.1155

4 *cps= 750 REDU %ERR= 3.60000 % TOTAL SSE= 16.3031

5 #cps= $650 REDU %ERR= 1.20000 % TOTAL SSE= 6.34364

REDUCED MODEL MIDDLE NODES/FBATUI1ES 4 2

CANDIDATE FEATURE SELECTION VECTOR:

1 000 1

SUMMARY OF 5 RUNS

1 *aep= 550 RADU %ERR= 51.8000 % TOTAL SSE= 124.733

2 #cps= 550 RBDU %ERR= 51.8000 % TOTAL SSE= 125.079

3 *cps= 550 RBDU %BRR= 49.6000 %1 TOTAL 85E= 124.842

4 #cps= 550 REDU %ERR= 46.2000 %1 TOTAL 55E~ 125.595

5 #eps= 550 ANDU 5ERR= 46.2000 51 TOTAL 55Ez 124.645

REDUCED MODEL MIDDLE NODES/FEATURES 4 2

CANDIDATE FEATURE SELECTION VECTOR:

I1100 0

SUMMARY OF 5 RUNS

1 #cps= T60 REDTJ %BAR= 3.2000 %1 TOTAL 551= 14.6345

2 #ape. 560 RBDU WERA= 17.6000 %1 TOTAL 383E 00.4445
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3 #.pa= 1250 RNDU %EJlRR= 1.40000 % TOTAL 338= 7.45167

4 #spa. 600 REDU %BAR-l 3.60000 % TOTAL 333=. 17.6820
G #es 1200 RBDU %BRR= 2.20000 % TOTAL 333= 10.9745

FSATURE selection itsratioa # I

Degrees of freedom 4 469

Pull model mlinnmum 33111 7.3a52344052116

Reduced model minimum 933= 6.49572424856711

LUCELmOOD RATIO T11ST STATISTIC L=, -14.122106374419

ACCEPT REDUCE1D MODE1L: USE1R 139117

STOP. 0

... ss**S... STRUCTURA SUBMODULD NEXT: ... *-ITBRATION= 2

MODDL SNLECTION ITERATION 2

CURRIBNT NUMBER MIDDLE NODES/FEATURES - FULL MOD3L 4 2

CURRENT FEATURE SELECTION VXCTOTL

01 00 1

BEST FULL MODEL: TOTAL 333= 6.4057242458571

SUMMARY OF 5 RUNS

1 #eps= 600 RBDU %3RR= 16.2000 % TOTAL 553= 60.7769

2 #cps= 550 RBDU %BRA~= 5.40000 % TOTAL 353= 21.5857

3 #cps= 600 REDU %NRR= 5.40000 % TOTAL 333= 16.4563

4 #cps= 550 REDU %ERR= 14.2000 % TOTAL 333= 60.3443

5 #cps= 600 REDU %BRR= 3.40000 % TOTAL 392= 16.4279

Current feature select vector 0 1 0 0 1

Degrees of freedom 4 473

Full model minimum TOTAL 333= 6.4957242485671

Reduced model minimum TOTAL S33= 16.427660500077

LIERLIHOOD RATIO TEST STATISTIC L= 1110.80777936258

Alphal. 5.000000000000O1302

REJECT REDUCED MODEL,

APPROPRIATE1 NUMBER OF MIDDLE NODES 4

*'*lAEt1 SUBMODULE NEXT: ... *ITXRATION= 2

REDUCED MODEIL MIDDLE NODBS/FEATURES 4 1

CANDIDATE FEATURE SELECTION VECTOR:

00 00 1

SUMMARY OF 5 RUNS

1 #cps= 600 REDU %2RRr. 50.4000 %1 TOTAL 332= 124.063

2 #eps= 600 REBDU %EBRR= 40.6000 %1 TOTAL 393= 125.793

3 #cps= 600 REDU 31ERR= 50.2000 %1 TOTAL 332= 124.773
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4 #cps. 600 RADU %2RR. 46.4000 % TOTAL 635= 124.660

5 #cps- "60 REIDO W3R11 48.2000 % TOTAL $35= 124.749

RBDUCBD MODEL MIDDLE NODRS/FSATURD3 4 1

CANDIDATE1 FBATURB SBLBCTION VECTOR:

01 00 0

SUMMARY OF 5 RUNS

1 #cps= 550 REDU %ORR. 47.0000 % TOTAL 8133= 124.697

2 #cps. 550 RAUD %SRR= 51.6000 % TOTAL $82- 124.544

3 #spa= 560 RJSDU %ERA= 40.4000 % TOTAL SSE= 124.431

4 #*po= 550 REIDO %BRR= 46.2000 % TOTAL 355= 124.718

5 #cps. 550 RBSDU %BRR= 47.6000 % TOTAL 335= 125.169

PUATURJS selection Itozailoa * 2

Doegree of freedom 4 473

Pull model minimum SSB= 6.4987242485871

Reduced model minimum 335z 124.4305746"644

LIK3LIHOOD RATIO TEST STATISTIC L= 2146.91934 73471

Alpb&2 desired. 5.0000000000000D3-02

RE1JDCT REDUC3SD MOD3L

FINAL NUMBEIR OF MIDDLE NOD3S/FBATURESs 4/ 1

FINAL FEATURE S3LECTION VECTOR

01 00 1

STOP= I

..e...... ***SALmBNCY MODULO NEXT: eoeeeoeoee** eoo**ITBRATION= 3

SUMMARY OF 10 TRAINING RUNS

1 #cps= 550 REDO %3RX= 2.00000 % TOTAL 033= 7.57726

2 #spazz 600 REBDO %3RR= 1.40000 % TOTAL 3S3B 6.56912

3 #cps= 550 REDU %3R.R= 4.40000 % TOTAL 333: 16.0252

4 #cps= 550 RBDU %BRfl= 1.60000 % TOTAL 35U~c 10.6667

5 #cps= 550 REDU %BRA= 4.40000 % TOTAL 353= 17.3650

6 #cps= 000 REDU %3flR= 1.40000 % TOTAL SS3E= 7.73438

7 #cps= 650 REDO %ERR= 2.20000 % TOTAL 553= 9.11519

11 #spa= 600 REDO %3Rfl= 2.00000 % TOTAL 393= 9.46292

0 #ops= 550 RDUD %3RR= 5.40000 % TOTAL 35E= 19.1411

10 #cps= 600 REDU %ERR= 4.00000 % TOTAL 9811c 15.5100

FINAL NUMBER MIDDL3 NOD3S/FDATUU.ES: 4 2

FINAL FEATURE SBL3CTION VECTOR

01 00 1

PROGRAM COMPLETE
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