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Abstract

The Deterministic Versus Stochastic algorithm developed by Martin Casdagli is modi-

fied to produce two new prediction methodologies, each of which selectively uses embedding

space nearest neighbors. Neighbors which are considered prediction-relevant are retained for

local linear prediction (which is shown a reasonable alternative to local nonlinear prediction),

while those which are ccnsidered likely to represent noise are ignored. The new algorithms

may in this sense be considered to employ embedding space filtrations of the time series.

For many time series, it is shown rather easy to improve on unhitered local linear prediction

with one or both of the new algorithms. For other time series, prediction improvement is

more difficult. It is suggested that prediction improvement difficulty is indicative of stochastic

data, independently of the direct results of the Deterministic Versus Stochastic algorithm. The

theory of embedded time series is also shown capable of determining a reasonable length of

test sequence sufficient for accurate classification of moving objects. Sequentially recorded

feature vectors of a moving object form a training trajectory in feature space. Each of the

sequences of feature vector components is a time series, and under certain conditions, each of

these time series will have approximately the same fractal dimension. The embedding theorem

may be applied to this fractal dimension to establish a number of observations sufficient to

determine the feature space trajectory of the object. It is argued that this number is a reasonable

test sequence length for use in object classification. Experiments with data corresponding to

five military vehicles (observed following a projected Lorenz trajectory on a viewing sphere)

show that this length is indeed adequate.

xi



EMBEDDED CHAOTIC TIME SERIES: APPLICATIONS

IN PREDICTION AND SPATIO-TEMPORAL

CLASSIFICATION

I. Introduction

1.1 Background

It is often easier to measure and record data than it is to explain how the data was

generated. It is one thing, for example, to record the inflight positions of an enemy aircraft

but quite another to set forth equations which will allow accurate prediction of its future

behavior. Throughout this document, a time series will refer to a discrete time-ordered set

of real numbers corresponding to a single component of a dynamical system (although less

restrictive definitions are common (14:3)). In the case of a flying aircraft, a time series might

be recorded for the measured longitudinal position of the aircraft; another time series might

represent its altitude.

Some time series are predictable with much greater accuracy than others. The position

of a drone aircraft with locked controls is far easier to predict than the position of a piloted

aircraft conducting evasive maneuvers. Certain factors lend a degree of unpredictability,

however, to both situations. In particular, unknown atmospheric conditions (such as winds

aloft) limit the long term predictability of both. Other factors sharply limit even the short term

predictability of the piloted aircraft (for instance, the intellect and will to survive of the pilot).

Loosely, a chaotic time series refers to a time series generated by a dynamical system having a

large number of poorly understood controlling influences. Although chaotic is a relative term,

time series generated by the piloted aircraft are more likely to be referred to as chaotic than

are those generated by the drone.



More precise definitions of chaotic dynamical systems suggest the often intricate, fractal

structure of their phas: space portraits (25:341). It wasn't until the early 1960's that the exis-

tence of what is now called a chaotuic dynamical system was conclusively demonstrated (21).

As understanding of this phenomenon has increased, it has been realized that a sensitivity to

initial conditions is inherent in chaos. Even given the equations governing a chaotic system,

sensitivity to initial conditions destroys long term predictability in the sense that, given an ap-

proximation to an object's phase space location, the divergence of nearby trajectories renders

worthless attempts to infer future nearness from current nearness.

Nevertheless, it is possible to accurately predict chaotic time series, sometimes remark-

ably far into the future. Probably the best current understanding of how this is possible has

its foundations in what Tim Sauers has called the theory of embedology (33). This will be

discussed more completely in Chapter HI, but roughly what it involves is reducing the initial

complexity of a dynamical system to a few essential degrees of freedom and embedding the

given time series in a space whose dimension is only about twice that number of degrees.

An important theorem published by Takens (37) in 1981 (its generalization by Sauers will be

called the embedding theorem) guarantees that the resulting embedding is a faithful repro-

duction of the original dynamics. Knowledge of the behavior of portions of the embedded

time series near the portion corresponding to its end value may then be exploited to form

predictions. Fanner took this approach in 1987 in formulating what he called a local linear

prediction technique (8).

1.2 Problem Statement

Greater prediction accuracy is always desirable. The local linear prediction technique

will be enhanced by excluding detracting global influences from the local prediction region.

A central tenet of the technique, the embedding theorem, will also be shown to extend to

spatiotemporal pattern recognition.
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1.3 Scope

Farmer's basic local linear approximation methodology has since been refined by a

number of researchers; for example, (4, 33). Most refinements, however, retain the basic

technique of using a globally applicable embedding dimension and globally applicable number

of nearest neighbors to predict from any given point in a time series. It might be imagined that

applying a number of nearest neighbors appropriate to prediction from a single closest point

in embedding space (an extremely local approach) might offer prediction improvement. This

was found not necessarily the case. Improved predictability can often be realized by pruning

from a globally determined number of nearest neighbors, those neighbors which are least

relevant to the local behavior of the dynamical system, provided the system is not extremely

stochastic. A pruning technique is introduced which eliminates from a globally ascertained

number of nearest neighbors, those neighbors which lie farthest from the regression hyperplane

that they determine. It is further shown that pruning from sets of neighbors determined by

different choices of delay interval, those which do not overlap in time, can also enhance

prediction accuracy. These contentions are supported by examining the performances of both

new algorithms against pure local linear prediction for six time series. Ten predictions are

provided for each of the six time series. Both techniques introduced here enhance predictability

by reducing noise, in that they provide the most striking benefits for time series usually

considered noisy, such as experimental measurements and financial data. These approaches

are considered in Chapter III.

The existence of fractal qualities in time series may be exploited not only for prediction

but also for classification. Considerable recent research focuses on the problem of identify-

ing various objects using not only the spatial content of observations, but also information

imparted by the evolution in time of those observations (34, 20, 3, 12). Training sequences

of feature vectors are obtained from numerous sequentially obtained views of the objects.

Test sequences are then compared to the training data, but thus far, little theoretical justi-

fication has been provided for an appropriate test sequence length. A new view of training

sequences is here provided. Training sequences can be interpreted as projected solution curves

3



of dynamical systems. It is shown in Chapter IV that the embedding theorem, applied to the

fractal dimensions of the solution curves, yields a required length of test sequence which

experimentation reveals quite adequate for a classification task.

1.4 Outline

The following chapter presents some of the fundamental theory underlying prediction

of chaotic time series. Chapter III develops two modifications of the local linear prediction

method introduced by Farmer in 1987 (8). Chapter IV presents an application of the embedding

theorem to the problem of moving object recognition. Chapter V presents some conclusions.

4



II. Background

This chapter presents some of the fundamental theory underlying prediction of chaotic

time series. The first section provides some concepts from dynamical systems theory. The

second section provides an overview of a commonly applied technique for extracting the

correlation dimension from time series data. A computer program which implements this

algorithm is included in Appendix C. Sectic.. *hree shows how knowledge of correlation

dimension can be applied to find an appropriate embedding dimension for a time series.

2.1 Basics of Dynamical Systems Theory

Throughout this document, a time series will refer to a discrete time-ordered set of

real numbers corresponding to a single component of a dynamical system. In a broad sense,

a dynamical system is simply a map f : X -+ X of a metric space (X, d) (1:60) (i.e.,

set X with metric d) into itself. The orbit of a point x in X is the sequence of points

{x, f(x), fo f(x), f of o f(x),.. .} (2:134). For time series extraction, attention is restricted

to the particular metric spaces R", n > 1, or subsets of them, with the metric specified in

context.

Consider the metric space X = [0, 1] with the Euclidean metric; that is, the closed unit

interval where the distance between two points is the absolute value of their difference. The

identity map on X is 4 dynamical system. So, too, is the map f which takes each element x

of X to z/2. The orbit of the point 1 under f is the sequence {1, 1/2, 1/4, 1/8,...}.

A more interesting type of dynamical system can be defined on a subset C of [0, 1]

called the (classical) Cantor set (1:180). The Cantor set can be formed by iteratively deleting

open middle intervals from [0, 1]. Figure 1 shows the first few steps in its generation. Letting

Bo = [0, 1], B, = [0, 1/3] U [2/3, 1], B2 = [0,1/9] U [2/9,1/3] U [2/3, 7/9] U [8/9, 1],

C is defined as ni*oB,. However, it is possible to view the Cantor set as the unique

"fixed point," or "attractor," of an "iterated function system" (2:82). To this end, define two

"contraction mappings" w, and w2 from R into R by w,(x) = x/3 and w2 (X) = x/3 + 2/3.

5



B0 o 1

B1  I
0 1/3 263 1

B2  [ fI x I
0 1/9 2/9 1/3 2/3 7/9 8/9 1

Figure 1. Building the Cantor set

An intuition of the reason for the name "contraction mappings" can be gained by noticing that

these functions shrink any interval on which they operate (by a factor of 1/3). Together with

the space R on which they operate, w, and w2 form an iterated function system. The term

"iterated function system" derives from the fact that these functions are understood to operate

jointly and repeatedly on R, or a subset of R. Consider the actions of these functions on the

closed unit interval.

At the first iteration, w, takes [0, 1] to [0, 1/3], and w2 takes [0, 1] to [2/3, 1]. Thus the

set B, results from one application of w, and w2. The second iteration consists of applying

w, and w2 to B1. The resulting set is B2. With very few further iterations, it should be clear

to the reader that the "infinite iteration" of this iterated function system is the Cantor set. In

fact, Barnsley provides a theorem which assures that C will result from applying w, and w2

to any nonempty compact subset of R (2:82). It is in this sense that C is referred to as the

attractor of this iterated function system.

The Cantor set is perhaps the quintessential example of a fractal set. A rough "mind's

eye" image of it is available in Figure 2; it actually consists of uncountably many points but

contains no intervals (2:134) (6:39). Like many fractals, it is self-identical across scale; for

6



0 1/3 2/3

Figure 2. Low Resolution Cantor Set C

example, if the portion of C lying in the interval [0, 1/9] is expanded by a factor of 9, all of C

is retrieved.

A dynamical system S : C -- C can be defined by taking the image S(a) of any number

a in C to be the preimage of the only map w, : C -- C or W2 : C --- C whose range contains

a. This type of dynamical system is called a shift dynamical system (2:144). Appendix A

contains an elaboration of iterated function systems, shift dynamical systems, and related

concepts.

The word dynamical in the preceding definition of dynamical system comes from the

repeated discrete actions of a function on a set - the dynamics implied is the discrete evolution

of points under iterations of the defining map. Another definition allows for the continuous

motion of points in a set (18:160). Accordingly, a dynamical system is a continuously

differentiable map 0 : R x S --- S where S is an open subset of •'R, n > 1, and letting

O(x, t) = Ot(x), the map Ot : S --+ S satisfies (1) the map Oo : S -+ S is the identity; and

(2) the composition Ot o 0. = Ot+. for each t, s in R.

The parameter t is usually associated with time; thus the magnitude of t2 (relative to

some previous time tj) gives an indication of how long a point x has wandered about in S;

7



and Ot.(x) gives the point in S to which it has arrived at time t2. Property (2) demands that a

terminal location be independent of choice of initial time.

With this definition, every dynamical system gives rise in a natural way to a differential

equation (18:160). Conversely, the fundamental theorem of differential equations shows that

every differential equation gives rise to a dynamical system. Consider, for example, the

differential equation

x'= Ax (1)

where
dit) 1 [n 2= r, (t)
di == 1,an I ]
di 0 -1/2 x2(t)
dt

For any initial condition xo = (Xl(0), x 2 (0))T, this equation has the unique solution

et(x) = (xI(0)e 2t, x2(0)et/2)

Given any point (xI, x2) in R2, therefore, there is a unique solution curve et(x) passing

through that point. Such solution curves are called trajectories. A trajectory may be thought

of as the path taken by a particle placed at the point (x1 , x2) subject to a set of forces

represented by Equation 1. The set of all points in the plane are acted on by the map et, t E R

to determine a family of trajectories, which are collectively called theflow on •R2 determined

by Equation 1. A qualitative representation of the flow determined by Equation 1 is given in

Figure 3.

In dynamical systems theory, the space 'W2 of Figure 3 is called phase space (25:438).

The term state space is sometimes used instead (18:22). The current state of a particle - that

is, its location (x1, X2) - is all the information needed to characterize for all time the motion

of the particle under the influence of the forces represented by Equation 1.

This last fact is a consequence of the fundamental theorem of (ordinary) differen-

tial equations and warrants emphasis. One version of this theorem may be stated as fol-

lows (18:162). Let W be an open subset of RI, f : W --- R' a continuously differentiable

8



X2

Figure 3. Some Solution Curves to x' = Ax

map, and xo E W. Then there is some a > O and a unique solution x : (-a, a) - W of the

differential equation x' = f(x) satisfying the initial condition x(O) = xo.

This theorem assures both the existence and uniqueness of solutions to a large class of

differential equations. As an immediate consequence of uniqueness, two solution curves of

x' = f(x) cannot cross. Furthermore, a solution curve cannot cross itself (18:168). Thus

solution curve(s) cannot evolve through RI as depicted in Figure 4. A solution curve which

revisits the same point in R' must close up as shown in Figure 5.

A dissipative dynamical system is one which contracts phase space volumes. Suppose,

for example, that all points in the phase space of Figure 5 were on trajectories that converged

to the closed curve depicted. Then any small volume element in the phase space would

ultimate'y be contracted onto the closed curve. Since the closed curve has volume zero, the

volume element was contracted by the dynamical system. Thus the dynamical system would

be dissipative. On the other hand, if trajectories far outside the closed curve diverged away

from it, then some volume elements would expand and the dynamical system would not be

dissipative.

9



A c

Figure 4. Impossible Trajectories

Figure 5. A Possible Trajectory
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A chaotic dynamical system is a dissipative dynamical system which has one or more

positive Lyapunov exponents (40). Wolf et al provide a good explanation of Lyapunov

exponents and their relationship to time series (42). This reference also provides source

code for a program which finds positive Lyapunov exponents. All numerical methods for

determining Lyapunov exponents, however, involve rather subjective choices of parameters,

and there is often disagreement over whether any particular time series is or is not chaotic.

Essentially, the existence of at least one positive Lyapunov exponent assures that a

chaotic dynamical system stretches small volume elements in one or more directions; but

since the system is dissipative, the volume elements contract to volume zero. For example, a

small cube in R might be transformed into a long curve in R. Perhaps the most celebrated

chaotic dynamical system is given by the Lorenz equations (21:135):

x =- -Ox + oy

y = -xz + rx - y

Iz = xy-bz

A solution curve for this system of equations (corresponding to the initial condition x = y =

z = 5, and with a = 10, r = 28, and b = 8/3) winds through a bounded region of R',

without ever intersecting itself (16:29). Its projection into the (x, y)-plane is approximated in

Figure 6. This figure also provides a "mind's eye" image of the projection of the "limit set" in

3 toward which trajectories from almost all initial points converge. This limit set is called

the strange attractor associated with the Lorenz equations, or sometimes simply the Lorenz

attractor. The attractor of a dynamical system is of considerable interest because it represents

the long term behavior of the system.

2.2 Dimensionality of Chaotic Trajectories

Often a strange attractor will have associated with it a fractal quality such as exhibited

by the Cantor set. For example, (apparent) pairs of inner loops of the strange attractor

II
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10

x

4P-20

Figure 6. A Lorenz Trajectory

approximated by Figure 6 appear to be nestings of pairs farther outside. It turns out that a

single noninteger number can characterize the self-similarity of the Lorenz attractor. Other

attractors may fail to display a fractal quality (7:625).

The quantity used to characterize the self-similarity of trajectories such as those which

approximate the Lorenz attractor is called fractal dimension. Actually fractal dimension is

something of a catchall phrase used to describe a number of such quantifications, although

some authors do rigorously define the term (usually in a manner consistent with what is

descriptively known as the box counting dimension (2:174)).

Theiler provides a geometric intuition of fractal dimension as a generalization of the

more commonly understood notion of dimension of geometric objects (39:1059). Dimension

can be interpreted as an exponent that expresses the scaling of an object's bulk with its size:

bulk ,-, size dimension (2)

The "bulk" in this formulation may correspond to a mass, a volume, or some measure of

information content, and "size" is a linear distance. The volume (bulk) of an object in R3

such as a sphere, for example, scales cubically with its diameter (size), so the object is three

12



dimensional. Accordingly, the various definitions of fractal dimension are usually cast as

equations of the form

dimension = lir log bulk
size-0O log size

where the limit of small size is taken to ensure that an object's fractal dimension will not

change if it is linearly transformed (for instance, by a rotation). This small-size limit also

makes dimension a local quantity so that a global definition of fractal dimension requires some

kind of averaging.

This global averaging is achieved automatically by the definition of capacity or box

counting dimension (25:330) (2:176). Consider an attractor A in Wm . Cover R'R by closed

just-touching hypercubes of side length Cr' where C > 0 and 0 < r < 1 are fixed real

numbers; see Figure 7, where m = 2, C = 1, and r = 1/2. Let A'(A) denote the number of

3M--

112- 1/2

0•_ 1 /.8 - - "- -' -A 1-

0 2-1/2 114 1/2-

0 1/4 1/2 3/4 1

Figure 7. Finding Capacity Dimension; .M2(A) = 10 and .A3(A) = 23

hypercubes of side length Cr' which intersect A. If the limit

D = lirn

exists, then A has capacity dimension D.
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A time series x 1 , x2, x3 .... consists of a sequence of real numbeis, hence there is little

a priori geometric intuition behind the notion of fractal dimension of a time series. Suppose,

however, that the dme series consists of samples equally spaced in time and is delay coordinate

embedded into a space of dimension higher than one, in the following manner. Fix some small

integer k > 2. Form from the time series a set of points xi, i = 1,2,... in Kk by taking

successive k-tuples from the sequence x1 , x2, x 3, .... That is,

x1 = (xIX 2,. .. ,Xk)

X2 = (X2 ,X 3 ,..., k+l)

X3 = (X3 1X4 ... Xk+2)

Then the resulting set of points may ind ,zd have a fractal structure in •Rk, similar perhaps to

the attractor A depicted in Figure 7. The spaces Rk are called embedding or reconstruction

spaces.

Grassberger and Procaccia provided in 1983 an elegant algorithm for finding a fractal

dimension of a time series using just such delay coordinate embeddings (17). They termed

the dimension which results from their algorithm the correlation exponent (denoted v) for the

time series, but the term correlation dimension is now commonly used. They demonstrated

that correlation dimension is bounded above by information dimension (another commonly

used measure of fractal qualities (38)) which in turn is bounded above by capacity dimension.

For most attractors studied, these bounds are quite tight. As will be seen, great accuracy of

fractal dimension estimation is not necessary for implementation of the embedding theorem,

which is the foundation for the local linear prediction method. For this reason. the term fractal

dimension will often be used to mean the approximately equal value of any of these quantities.

The Grassberger and Procaccia algorithm is easy to describe and to implement; Refer-

ence (36:3-7), for example, provides a succinct explanation. It involves examining, for each

of a small set of embedding dimensions k, k + 1, k + 2,. . ., k + s, the embedded time series

14



data to see if it exhibits an exponential scaling as in Equation 2. Here k is taken slightly

larger than the actual correlation dimension v; since v is unknown, additional embedding

dimensions are used to ensure that v has indeed been exceeded, and that k + s exceeds about

2v. The condition indicative of the existence of a fractal structure, the linearity of log-log

plots, is always displayed for values of embedding dimensions in excess of about 2v, (and

often for smaller values). In fact, the value of v is the common slopes of these plots.

Using the embedding dimension k, the Grassberger and Procaccia method locates all

contiguous k-tuples from the time series as points in Rk. A set of small numbers 1i is chosen

(about eight is adequate), and for each i the number of pairs of contiguous k-tuples within

Euclidean distance 1i of each other is determined and denoted C(l). Figure 8 illustrates a

P7

P6

P4

P3 PM+2

p1  PM+1

Figure 8. Counting Close k-tuples (k = 3)

case where the 3-tuple (PM, PM+1, PM+2) is close to (Po, P1, P2 ) in Euclidean distance and

would likely contribute to the count C(li) for most Ii. On the other hand, (P5 , P6, P7 ) is

relatively far from (Po, P1, P2) and might not contribute to the count C(1,) for any of the

selected 1j. The Grassberger algorithm can be implemented by taking the smallest 1i and

the leftmost 3-tuple (Po, P1 , P2) and checking each 3-tuple to the right for its adherence to

the 1i distance criterion - first (P1 , P 2, P3 ), then (P2 , P3, P4), continuing until all contiguous

3-tuples are compared with (Po, P1 , P2). After the rightmost 3-tuple has been compared, the
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process repeats beginning at the left with (P1 , P2 , P3). The C(lQ) counter continues to grow

as more pairs of 3-tuples are found to fall within the allowable 1i distance. After the rightmost

3-tuple is compared with (P1 , P2 , P3 ), (P2, P3 , P4) serves as the leftmost 3-tuple for the next

iteration.

Continuing in like manner, leftmost finally becomes rightmost, and the counter C(li)

indicates the total number of contiguous 3-tuples which lie within distance 1i of each other.

The numbers i• and C(Q) are stored, another 1J is selected, and the process begins anew with

(Po, P1, P2) at the left. It terminates with C(1j) determined. All pairs (1n, C(l1,)) are likewise

determined and stored.

If the pairs (In(l,), ln(C(l,))) are plotted, and are found nearly collinear, then the slope

of a line through these points provides a good approximation of the fractal dimension of the

dynamical system which produced the time series. See Figure 36 and Figure 40 for examples

of such plots; LO = 1 in these plots.

A local linear prediction methodology will be described in the next section. This

methodology is based on the existence of a unique finite fractal dimension of a solution

trajectory, rather than on the chaos of the system which produced it. It might make more

sense, therefore, to speak of fractal time series prediction rather than chaotic time series

prediction. Following Farmer (8), however, the latter terminology is preserved.

2.3 Embedology and Prediction

The process of successfully extracting a correlation dimension v reveals that beyond a

certain integer dimension m for the delay coordinate embedding space, the calculated value

of v remains nearly constant. Putting the numerical process of dimensionality determination

aside, there is (subject to certain mild technical conditions (33:13)) a theoretical value M of

embedding space dimension beyond which v cannot change. This is because for values m >

M, the delay coordinate embedding of the state space trajectory into reconstruction space R'

is (in a probability-one sense) a smooth diffeomorphism, and correlation dimension is invariant

under such mappings (32:178) (27:368). (A diffeomorphism is a differentiable mapping from
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one open subset of a vector space to another with a differentiable inverse (18:242); to say that

it is smooth means that its derivative is continuous (33:6).)

More to the point, Sauer showed that as long as M > 2d, where d is the box counting

dimension of the trajectory in state space R1, the delay coordinate mapping from the trajectory

into RM is one-to-one (32:178). This is the essence of what he called the fractal delay coordi-

nate embedding theorem, which is a generalization of Takens' theorem. Although correlation

dimension is always less than or equal to the box counting (aka fractal (2:176)) dimension,

the difference between them is rarely larger than 0.05 (17:193) and the embedding theorem

will often be invoked using box counting, fractal and correlation dimensions interchangeably.

The one-to-one property has important implications for prediction. The fundamen-

tal theorem of differential equations assures that a phase space solution trajectory is com-

pletely determined by any point on it (18:162). A delay coordinate embedding into re-

construction space *I, m > M, shares this property. In particular, given any point

(y(t), y(t - -r),... , y(t - (m - 1)Tr)) on the reconstruction space trajectory, its image on the

phase space trajectory has a unique succeeding point. The y-component of that succeeding

point is y(t + T); see Figure 9. If the point (Y(t),y(t - T),...,y(t - (m - 1)T)) reappears

on the reconstruction space trajectory at a time t* > t, so that (y(t*), y(t* - T),... , y(t* -

(m - 1)r) = (y(t), y(t - T),.. ., y(t - (m - 1)r)), then necessarily the next point on the

reconstruction space trajectory is the same for both times (and the trajectories in both spaces

are closed curves, as in Figure 5). That is, y(t* + r) = y(t + r). If t* happens to be the

current time, then a match of any previous rn consecutive time series values (with the m-tuple

ending with y(t*)) provides a means of predicting y(t* + r): simply read off the known next

value of the time series, y(t + T).

2.4 Conclusion

This chapter has introduced the concepts of chaotic dynamical systems and fractal

properties. It is stressed that for all but a few simple examples, numerical techniques must

be relied upon to reveal the presence or absence of chaotic dynamics, and the results of these
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delay coordinate
embedding

x(t) x(t + TC )yt y(t + "T
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y(t) t+' )yt-m-) ) yt-m-) )

Figure 9. An Embedding in Reconstruction Space •

techniques are often open to subjective interpretation. The terminology chaotic time series is

herein understood to designate a time series which exhibits a unique finite fractal dimension.

In this work, this will generally mean that Grassberger and Procaccia analyses reveal nearly

linear log-log plots.

The following chapter will build on the important embedding theorem to develop two

modifications of the local linear prediction method introduced by Farmer.
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IlI. Further Localizing Local Linear Prediction

3.1 Introduction

This chapter develops some modifications of the local linear prediction method intro-

duced by Farmer in 1987 (8). Section 3.2 reviews the basic method. Section 3.3 provides

insight into the method by demonstrating some conditions under which linear prediction

is exact. Section 3.4 reviews some important enhancements to the local linear prediction

method which were introduced by Casdagli (4). He showed how to determine appropriate

data-dependent parameters for use with the method. These parameters consist of the best pair

(i, k) of embedding dimension m and number k of nearest neighbors to use on average for

prediction from anywhere within a reserved portion (called the "testing set") of the available

time series data. It may seem that prediction accuracy could be enhanced by using the value

of k found optimal for a single point in the embedding space which is nearest the desired

prediction point. It is shown in Section 3.5, however, that such a localization of parameter

estimation often resulted in reduced prediction accuracy. The next two sections describe the

two pruning algorithms developed during this research, and provide support for the contention

that they often enhance prediction accuracy over pure local linear prediction for time series

which are not extremely stochastic. Section 3.6 explains a method for predicting from a given

point by pruning from a set of its neighbors (of globally determined optimal size, or slightly

larger) those neighbors which are least typical. Section 3.7 then gives a method of prediction

from a given point based on two optimal time delays associated with the given data. Sets of

nearest neighbors are found corresponding to each of the delays, and one of the sets is pruned

based on the overlap of its constituent time intervals with those of the other set. Three or

more delays could be used with a suitable overlap criterion. Some time series not described

previously in the chapter, including some financial time series, are considered in Section 3.8.
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3.2 Local i'near Prediction

As noted earlier, any time series obtained from a dynamical system having a fractal

dimension may be delay coordinate embedded into a Euclidean space of sufficiently high

dimension that the embedding is dynamically equivalent to the original system. Suppose the

time series x(t), t = 1,2,... corresponds to any component of such a system, and that the

system has fractal dimension d. The embedding theorem implies that if m is an integer greater

than 2d, then each set of points {z(t - 1), x(t - 2),..., x(t - m)} uniquely determines a

next point x(t).

The embedding theorem gives a sufficient condition for dynamic equivalence, not a

necessary one. That is, there may be a space of integer dimension less than 2d which also

accepts an embedding of the original dynamics. This is, in fact, the case for a time series

extracted from the Lorenz equations, since the Lorenz attractor has a fractal dimension of

about 2.05. Consider a time series obtained by sampling the function depicted in Figure 10.

Suppose it is possible to embed the dynamical system from which the time series was obtained

x(t)

b*

ax ~bx ýe

ax bx

j U 

t

Figure 10. Selected (Value, Next Value) Pairs of a Time Series

in one dimension, so that its reconstruction space phase portrait is a function of one variable
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as depicted in Figure 11. In Figure 11, every present value y has a unique next value y*,

1*

x

ax Px bX

Figure 11. Selected Next Values Over a One-Dimensional Embedding Space

although only three such (value, next value) pairs are shown.

Suppose the last known value of the time series is p.,, and it is desired to predict its

value p. at the end of the next sample period. One method of prediction is to perform a linear

regression using the nearest neighbors to the point p., , i.e., using the time series values closest

to p., (regardless of their time indices) - in this example, the points a., and b.. That is, a line is

formed joining the pairs of points (a2 , a.) and (b,, , b1) in '2. The value p* assumed by this

regression line at p., is the predicted value.

Linear regression generalizes easily to Euclidean spaces of arbitrary positive integer

dimension (4:307). It typically involves using more than the minimum number of nearest

neighbors necessary to establish a hyperplane; in the case of Figure 11, more than the two

points nearest p,. In these cases, a hyperplane is fit to the available (neighbor, next value) pairs

in such a way as to minimize the resulting squared error. In essence, a least-squares-optimal

hyperplane is used to approximate the (neighbor, next value) surface in the neighborhood of

the last known portion of the time series. See Figure 12, for example, in which the next value
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X n+2

X n+1

Figure 12. Local Linear Prediction with a Two-Dimensional Embedding Space

Xk+2 of a time series is predicted using a plane fit through four (neighbor, next value) points

corresponding to the four neighbors closest to the point (xk, Xk+l).

3.3 Some Sufficient Conditions for Perfect Linear Predictability

Consider again the prediction of the first unknown value p* of the time series depicted in

Figure 10. Under what circumstances will linear regression prediction yield the exact value?

A perfect linear regression prediction is shown in Figure 11. That is, if the value of

p is as indicated, then linear regression gives its value exactly. The only requirement for

the points (b., b.), (p., p.), and (as, a.) to be collinear is that the slopes of the lines joining

(be, b) to (p., p:) and (p., p*) to (a+, a*) be equal. That is,
.*-p*- p*-a*(3)

b. -p. p. - a.

The time series from the sampled function x(t) is assumed chaotic. This means that the

function x(t) represents a component of a chaotic dynamical system. For simplicity, assume
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this system has an attractor which can be represented in two dimensions. Assumptions about

the attractor which make Equation 3 valid will now be considered.

Suppose the attractor is a dense cluster of loops that are nearly concentric circles. This is

simplified further in Figure 13 by showing three collinear points a, p and b on three concentric

"".a* P

b•

Figure 13. An Attractor as Concentric Racetracks

circular loops (shown disconnected) of the attractor. Suppose that their respective succeeding

points a*, p* and b* evolved counterclockwise and in such a way as to remain in perfect

alignment. If the lines ab and a*b* intersect at the center (X, y) = (0, 0) of the imaginary

attractor, then the ratios of their x-component increments remain unchanged. That is,

b.-p - b*- . (4)
p. - ax p. - ax*

since each ratio is equal to
Rb - Rp
S- Ra
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by similar triangles. Since Equation 4 is simply a cross multiplication of Equation 3, this

assumed configuration of points results in perfect linear regression predictability. This con-

figuration is analogous to being near a "center" of an attractor. Relatively slight perturbations

of this assumed geometry can seriously degrade the equality of the ratios of x-component

increments. For example, consider the effect of a shift of the intersection of the lines ab and

a*b* to the point -Ra/4 on the y-axis.

On the other hand, if the points under consideration are relatively far from any "center"

of an attractor, an adequate model of the local dynamics might be as shown in Figure 14.

The line segments aa*, pp* and bb* are assumed parallel, as are the lines through the sets of

Y

Figure 14. Parallel Segments of an Attractor

collinear points a, p and b, and a*, p* and 6*. In this case, too, the ratios of x-component

increments remain unchanged, so linear regression predictability is again perfect.

In general, linear regression involves using more than the minimum number of points

necessary to establish a hyperplane. An n-dimensional hyperplane requires at least n + 1

points for its linear regression determination (29:34), but often more than n + 1 points are

available. In the present case, linear regression often involves using more than two points
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to establish a linear regression line. If an additional neighbor c of the point p is used, and

if the point (c•, c*) is collinear with the points (a, a*) and (b., b.) of Figure 11, then the

rule for perfect linear regression predictability, Equation 3, is unchanged. That is, all b's,

say, in Equation 3 can simply be replaced with c's. However, if (cs, c*) is not collinear with

the points (a., a.) and (b., b*), then perfect linear predictability equates to the perfect fit of

the point (p.,p*,) to the regression line determined by the three points (as, a,), (b, b*) and

(ci, c,). Assumptions of perfect linear predictability always reduce to assumptions on the

unknown value p:.

This development generalizes to spaces of integer dimension greater than two. The

intuition gained is that if past local trajectory segments closely resemble the present segment,

then local linear prediction is likely to be quite accurate.

3.4 Identification of Optimal Parameters

Given a time series for which local linear prediction is to be implemented, a number

of parameters must first be determined. It is assumed that the time series is fractal, that is,

that a correlation dimension d has been identified for it. The embedding theorem guarantees

that the time series may be embedded in a space of any integer dimension m greater than 2d.

There may be, however, a space of dimension less than or equal to 2d in which the time series

can also be embedded. In any case, for purposes of linear prediction, some advantage may be

realized by choosing one sufficiently large embedding dimension over another.

Furthermore, whatever embedding dimension m is chosen, some number k of neighbors

nearest the prediction point in the embedding space (i.e., the final m-tuple of the time series)

must be chosen. In general, a best value of k will depend on the chosen value of m.

Assuming a limitless supply of time series data, what is the best number N of time

series values to use? Furthermore, should every time series value be used, or should gaps be

allowed between them? For example, should only every Th time series value be used, where

the delay time r might exceed one? What is the desired prediction horizon - one time unit
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into the future, or T time units? These are some of the decisions which need to be made; in

practice, they are often made by trial and error.

Martin Casdagli presented a technique for finding both the best m and k for a given

time series (4). It is essentially an exhaustive search of all possible rn's and k's for the pair

of values (m, k) which yields the lowest prediction error over a restricted portion of the time

series.

Although Casdagli does not elaborate the point, some attempt should be made to

"detrend" the given data, ideally to create a time series having locally identical statistics. For

example, many financial time series exhibit strong upward trends, and the final embedding

point of the raw data from such a time series may have too few neighbors to perform a

meaningful regression. Perhaps the simplest way to detrend the data is to replace the given

data values xi with their differences from the succeeding values; that is, the given time series

X1 , X2 , x3 ,... is replaced with the time series yl = X2 - x1 , Y2 = X3 - X2,... (24:257). The

resulting time series is then normalized to zero mean and unit variance (5:351). That is, each

time series value y, is then replaced with (y, - ys)/a where p is the average value of all the yj

and o" is their standard deviation. This was the approach taken throughout most of this research.

Hereafter, the resulting normalized detrended time series is denoted X1 , X2 , X3,... , ZN. The

following steps were then applied, preserving Casdagli's notation. Figure 15 illustrates most

of the quantities involved.

(a) Two distinct portions of the time series are identified, one consisting of the first N1

time series values Xl, X2,... , XNf (called the fitting set) and the other of the final Nt values

XN,+11, XN+2,... , XNJf+N, (called the testing set). Thus N1 + Nt = N.

(b) Some small value of mn is selected (typically three or four; it will be incremented),

some delay time r, and some prediction horizon T. In general, r and T need not be equal,

but they were always taken equal in this work.

(c) Now the m-tuple xi ending with xi, i > Nf, is chosen for a T-step ahead forecasting

test. The index i will be incremented by one across as much of the testing set as possible; that
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time series indices (here m=T=T =2):

fitting set testing set

12 3 t j(1) t Nf t i t N t

j(l)- T j(l) + T Nf+1 i-T i +T N + T

xj(l) =(x j( 1) - , Z, xj( 1)) x i --(x i -T • xi)

\ /

embedding space ( selected points in 8 2 ):

xn'

"xj(Nf- T - (m-1)t )

S .xi
\,, •Vxj(2(m+l))

".. ..... .*

xj(2(rn+1)+1)

Xn-T

A Xn+T

Figure 15. Illustration of Embedding Parameters
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is, until i + T > N. The m-tuples xq are called delay vectors, or sometimes fitting vectors (if

Xq is in the fitting set) or test vectors (if xq is in the testing set).

(d) The distances dij from the test vector xi to the fitting vectors xj are computed,

using the maximum norm (i.e., maximum of the absolute differences of paired component

values) for computational efficiency. Here j ranges over the set of integers in the interval

[1 + (m - 1)r, Nf - T].

(e) The distances dij are ordered so that the relative proximities of the fitting vector

neighbors to xi can be determined. The neighbor nearest xi is labeled xj(1 ); the next nearest

neighbor is labeled x3 (2); etc. A least squares hyperplane in R'+1 is then fitted to the m + 1-

tuplcs formed from the k nearest neighbors in Rm and their respective "forecasted" values.

That is, the parameters a, are determined by least squares from the following affine model:

m

X 3(i)+T ,z ao + E anxj(l)-(n-l)i-, l - 1,..., k (5)
n=1

The number k of nearest neighbors is incremented from 2(m + 1) to Nf - T - (m - 1)r, and

a prediction error is calculated for each k (see step (f)). Exponential spacing of k'% us usually

adequate; for example, the values for k may be taken as the set

{2(m + 1),2(m + 1) + 2 0,2(m + 1) + 21,2(m + 1) + 2 2 ,...,N-T-(m-)}

Each of the k approximations in Equation 5 represents an error which depends on the param-

eters ao, a,,... , am. Squaring these errors (i.e., the differences of the left- and right-hand

sides of these approximations), and summing them, gives an error function dependent on

these m + 1 parameters. Setting the partial derivatives of this error function to zero gives a

system of m + 1 equations (the 'normal" equations) in m + 1 unknowns. The solution of this

system (assuming it has a unique solution) is the set of values a, which give the desired least

squares hyperplane. The normal equations may be updated recursively as k is increased. Let

rh = m - 1. In vector notation, the system of equations actually being solved is Aa = b
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where A is the matrix

k k k

k=1 1=1 . =1

k k k k

E = x(') E 1 x('Xj() xj')j('-" ... EX 1 (I)Xx()-'',.

k=1 1=1 k=1 k=1

k k k k

1---1 1=1 i=1 1=1

k k k k

1= =1 il1=1

and where the vectors a and b are given by

k
EXJ(l)+T

1=1
Oto ka, Z Xj(I)Xj(l)+T

a1=

S= al2  , b = Xi(l)_rXj(l)+T

1=1

atm kc

EXj(l)-&hrXj(l)+T

Notice that all of the summations can be updated as k is increased simply by adding additional

terms. The actual solution of the system Aa = b is facilitated using LU decomposition; see

e.g. (29:44-48) and Appendix C.

(f) Using the hyperplane determined by Equation 5, a T-step ahead forecast Xi+T(k)

is made for the test vector xi and for all applicable k; that is, the estimated value Si+T(k) of

Xi+T is calculated as

Xi+T(k) = ao0 + CnXi-(n-1)-

n=1

For N1 < i < N - T, the error ei(k) = Ixi+T(k) - Xi+TI is computed.
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(g) Steps (c)-(f) are repeated for all applicable i and the normalized root-mean-square

(RMS) forecasting error E( (k) is calculated as

N-T
Em(k) = f[ Ee(k)J/(Nt - T + 1)11/2/0

i=N!

where oa is the standard deviation of the time series (a = 1 for time series which have been

normalized to unit variance). If the time series' mean p and variance o,2 are shared by the

testing set data, then the trivial predictions ii+T(k) = p give a normalized RMS forecasting

error of one. On the other hand, if the predictions •i+T(k) are perfect, then En(k) = 0.

(h) Finally, the embedding dimension m is varied and plots are made of Em (k) versus

k.

The algorithm described above (with minor modifications) has recently been named

the DVS (for deterministic versus stochastic) algorithm (5). The name derives from the fact

that the shapes of the resulting plots can provide evidence of low dimensional deterministic

chaos, or of high dimensional or stochastic dynamics. Low dimensional chaos is typically

characterized by U-shaped or monotonically increasing plots whose minimum En (k) values

are small and occur at low values of k. High dimensional or stochastic behavior is often

indicated by relatively large minimum En(k) values occurring at high k values. Compare for

example Figure 16, which represents data derived from the low dimensional Henon attractor,

and Figure 17, which may be surmised to represent data of higher dimension or more

stochastic origin. In fact, Figure 17 was obtained from a time series derived from views taken

of a military vehicle by an observer following a raster-style traversal of a viewing sphere (see

Chapter IV).

The absolute minimum value attained by the Em(k) curves provide the best m and k

values to use on average for local linear prediction within the testing set; see for example

Figure 17, where the best m is 10 and the best k is 86.

The normal equations of the DVS algorithm do not necessarily admit a unique solution;

basically, three (or more) points in R do not determine a unique plane if the points happen
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Figure 16. DVS Plots of Low Dimensional Data (from Henon map)

to be collinear (the idea generalizes to higher dimensional spaces). Furthermore, it is possible

that some of the points in the various embedding spaces Rm may be revisited from different

portions of the time series; in the worst case, for example, the k nearest neighbors of a

point in Rm might all be identical. The latter condition was not often observed in this work;

the embedded data was examined for uniqueness before applying the DVS algorithm, and

in the few cases where overlap existed for small values of m, taking slightly larger values

of m eliminated the problem. The former condition is more difficult to screen, but normal

equations which were not uniquely solvable (ie, the condition of having a noninvertible matrix

A) seldom arose in this research. It is felt that taking k greater than or equal to 2(m + 1) in step

(e), rather than merely greater than or equal to the absolute minimum m + 1, served to help

assure unique solvability, by decreasing the likelihood of inadvertently creating noninvertible

matrices A.

3.5 Using Locally Best Number of Nearest Neighbors

Suppose that one has used the DVS algorithm with a particular time series and found

the optimal m and k values for a particular choice of fitting and testing set sizes. Suppose

furthermore that a prediction is desired of the time series value at time N1 + Nt + T. One
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Figure 17. DVS Plots of Higher Dimensional Data (from raster traversal)

clear choice of prediction methodology is to apply local linear prediction at the time N1 + Nt,

using the optimal m and k; that is, simply extend the testing set m-tuples to the the most

recent one and allow the algorithm to compute one more prediction. Since this requires very

little modification of the DVS algorithm, it will be referred to as DVS prediction.

Recall, however, that the optimal (m, k) pair was found globally over the entire testing

set. Suppose that instead of using the number k of nearest neighbors found optimal for

the entire testing set, one used instead the number of nearest neighbors found optimal for

predicting from the one m-tuple in the testing set which is closest to the m-tuple ending at

N! + Nt. In terms of Figure 15, the prediction from the m-tuple xi, where i = N1 + Nt,

is based on the number of neighbors found best for predicting from the m-tuple x j (i) where

now xj3 () is understood to be in the testing set rather than the fitting set. The intuition is that

different regions of the attractor may be populated more densely with embedded points than are

other regions, and more populated regions may predict more accurately with fewer numbers of

nearest neighbors determining the linear regression hyperplane. That is, the effect of including

neighbors which are too far away may be to skew the prediction hyperplane from its optimal

orientation. Using only the number of nearest neighbors found locally optimal may reduce
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the skewing as compared to using the number of neighbors found globally optimal. Similarly,

sparsely populated regions may predict more accurately using more nearest neighbors.

Mixed results were obtained when this technique was used. It was applied to the time

series "A.dat" used in the 1991 Santa Fe Institute's time series prediction competition. This

data was obtained from an infrared laser experiment. It is arguably low-dimensional chaotic

and noise-corrupted (41:32,325). Figure 18 shows the 1000 data values made available to the

A.dat value
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Figure 18. Experimentally Obtained Laser Data

contestants. This data was used in this research without differencing or normalization. The

DVS algorithm was applied to this data using N1 = 800 and ten successive values of N•

beginning with Nt = 180. In it, the parameters used were m = 4 and T = 7 = 1 (although

a smoothing advantage may have been realized by taking T = r > 1); the globally best

number k of nearest neighbors was recomputed with each new value of Nt. The predictions

are summarized in Table 1. Notice that although the algorithm which used the locally best

number of nearest neighbors had a far higher total error, it actually came closer to the correct

result than the DVS algorithm half the time.

A similar comparison was made of the two algorithms using differenced and normalized

data from the Lorenz equations. Once again, the DVS algorithm had a lower total error, but
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Table 1. Laser Data Predictions

time series index true val DVS preds locally best k preds
981 57.0000 57.0509 58.5805
982 21.0000 20.0848 20.3972
983 13.0000 13.3638 13.5735
984 14.0000 13.5747 13.6128
985 27.0000 26.9606 37.6951
986 87.0000 83.8718 83.7341
987 179.0000 182.4079 178.1631
988 103.0000 104.2120 102.7556
989 33.0000 31.3810 31.6529
990 15.0000 15.1364 15.1646

RMS error using DVS preds = 1.6329
RMS error using locally best k preds = 3.6193

this time only slightly lower. The DVS algorithm was more clearly superior in a test of data

generated from the Henon map.

Prediction using the optimal k for the one embedded testing set vector nearest the

prediction vector resulted in increased RMS prediction error compared to the DVS algorithm.

This approach was therefore abandoned. It may be possible to improve upon the approach

by using an averaged value of the best k's for several nearest embedded testing set vectors,

rather than just one. This modification may reduce the likelihood of outlier predictions such

as occurred at time series index 985 in Table 1.

3.6 Pruning by Variance from Regression Hyperplane

The DVS algorithm often supplies a larger number of nearest neighbors than necessary

for a unique solution of the normal equations. It was found that a sort of local filtering can often

yield increased prediction accuracy by eliminating from the utilized set of nearest neighbors

some which might be considered noise corrupted.

Recall that local linear prediction fits a least squares hyperplane to the (neighbor, next

value) surface in the vicinity of the last known m-tuple of the time series. Any (neighbor,

next value) pairs which depart radically from the presumed reasonably smooth (neighbor, next
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value) surface may skew the computed least squares hyperplane and detract from the accuracy

of the prediction. Consider Figure 19, in which it is presumed that the DVS algorithm yielded

xn

Xi+l .......

Xj~j R

D-Xn.1
1j(5) xj(3) Xj(1) xi yj(2 ) xj(4)

Figure 19. Pruning Nearest Neighbors

an optimum embedding dimension m = 1 and number of nearest neighbors k = 5. The

presumed noiseless (neighbor, next value) surface is shown as a smooth curve. The linear

regression hyperplane determined by the five neighbors nearest xi is actually a line when

m = 1 and is here denoted R. Notice that the "noisy" neighbors x3j() and Xj( 5) pull R away

from the true next time series value xi+,. If these two points are deleted from the set of nearest

neighbors and a new linear regression line Rne,, is determined using only the remaining three

neighbors, then the error in the predicted value :5 i+1 (found now on Rne,, instead of on R) is

reduced. Some criterion must be adopted to determine how far away from R the (neighbor,

next value) points must be to warrant exclusion. In this work, the average p and standard

deviation a of the distances of all next values from R was determined, and points falling

outside ±-(p + -to,) bounds of R were excluded. Here the exclusion parameter -/ is a real

number of small magnitude, typically between zero and four. The exclusion zone in Figure 19

is the region outside the band between R+ and R_.

This idea generalizes to embedding dimensions greater than one. As a prediction

algorithm, it will be referred to as pruned outliers prediction. As will be shown, it was
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generally found capable of improving prediction accuracy compared to the DVS algorithm.

Except for extremely stochastic time series, prediction improvement occurred for most values

of-y chosen in the range of zero to four. Roughly, pruning anywhere from just one neighbor,

up to about ten percent of the DVS-specified neighbors, resulted in improved prediction

accuracy. Monitoring the number of neighbors pruned during algorithm implementation

allowed verification of compliance with this range. The only data set for which prediction

improvement was not observed was financial data consisting of tick-by-tick Swiss franc

exchange rates. This data set is examined in Section 3.8.

3.7 Pruning by Shared Local History

Choosing a good delay time T for predicting a chaotic time series is not a trivial problem.

Because chaos displays sensitive dependence on initial conditions (Appendix A), the delay

time should not be too large. On the other hand, if the data is from a finely sampled continuous

time system, sampling too closely will result in overlapping points in most reasonably sized

embedding spaces. For example, if a sequence contains 20 consecutive identical values

because of oversampling, then an embedding space of dimension 19 has at least two repeated

points (assuming r = 1). Furthermore, if a time series is quite noise-corrrupted, taking -r too

small accentuates the effect of the noise. Fraser and Swinney (13) suggest determining a good

delay time from the mutual information curve constructed from the given data, although their

approach was not taken in this research.

With prediction accuracy the ultimate criterion for the choice of r, it seems reasonable to

choose this parameter directly from multiple runs of the DVS algorithm. For example, once an

optimal embedding dimension m and number k of nearest neighbors has been obtained using

r = T = 1, the algorithm can be applied several more times with varying values of r = T

and with the optimal m fixed. Exhaustive search of the resulting data can reveal which value

of r gives best results for the selected m. Values of embedding dimension near the winning

value m could also be so examined, but this approach was not applied in this work. For the

data considered in this work, r = 1 almost always yielded greatest accuracy. This is probably
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because the data was not usually given in oversampled form, and any T > 2 necessarily

involves discarding some available information. Consider, for example, the data represented

by the plot in Figure 20. This plot depicts variations in the blood oxygen concentration of a

oxy concentration
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Figure 20. Sleep Apnea Blood Oxygen Concentration

sleep apnea patient. It was taken from data set Bl.dat of the Santa Fe Institute's time series

prediction competition (41:4). Lines 6781 through 9480 of file B 1.dat (2700 data points) were

chosen because these values correspond to a lengthy period of uninterrupted stage 2 sleep.

After differencing and normalizing this data, DVS plots were made to determine an optimal

embedding dimension m and number k of nearest ncighbors. Figure 21 shows a few of the
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Figure 21. Sleep Apnea DVS Plots
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embedding dimensions considered, including the dimension m = 14 which yielded the lowest

normalized RMS error (at k = 286). A commitment is made to the dimension m = 14 and a

search for values of T which might yield lower error is performed by examining the outputs of

the DVS algorithm using a range of r values (in this case, r = T = 1 through r = T = 12).

Table 2 shows a subset of this range (r = 4 through r = 8); no value of r (whether displayed

Table 2. Selected Error Values (Sleep Apnea Data, m = 14)

k rr=4 T=5 r=6 r=7 T=8
30 0.7704 1.0498 0.8999 0.9554 1.0440
31 0.7553 1.0100 0.8867 0.9621 1.0181
32 0.7489 0.9952 0.8839 0.9543 1.0090
34 0.7514 0.9220 0.8594 0.9161 0.9836
38 0.7159 0.8789 0.7898 0.8821 0.9413
46 0.6706 0.8036 0.7713 0.8007 0.8919
62 0.6580 0.7717 0.7140 0.7317 0.8293
94 0.6259 0.7213 0.6856 0.6912 0.7316
158 0.6093 0.6866 0.6606 0.6570 0.6834
286 0.5885 0.6622 0.6474 0.6491 0.6595
542 0.6013 0.6516 0.6450 0.6557 0.6604
1054 0.5804 0.6437 0.6334 0.6498 0.6625
2078 0.5716 0.6451 0.6354 0.6588 0.6389

in Table 2 or not) yields a lower value of normalized RMS error than the 0.4974 recorded at

7--=1.

Notice in Table 2 that normalized RMS error often does not increase monotonically

with 7- for a fixed value of k (eg, for k = 158). It was discovered in the course of this work

that for some time series, for a fixed m and fixed k, there are two or more values of r which

give particularly low error values. As will be shown, this was often the case with financial

time series. A technique was developed to combine the predictive advantages of two r's

corresponding to the lowest error values, and it was often able to increase prediction accuracy

compared to DVS prediction.

Let 7- denote the smaller of the two optimal r- values and let 72 denote the larger.

Prediction with this technique proceeds basically the same as DVS prediction, using DVS-
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determined values of m and k and with r = rl = T A T1. Some of the k nearest neighbors are

eliminated, however, before the prediction hyperplane is determined. The neighbors pruned

correspond to intervals in time which do not overlap intervals relevant to prediction using

r2 . Intuitively, if the data corresponding to a particular interval of time are not prediction-

relevant to both short term and long term prediction, then that data might beneficially be

eliminated from the set of prediction-determining points in the embedding space. Perhaps the

nonoverlapping data represents noise.

Consider Figure 22, for example, in which a prediction of the time series value XN+i

at time N + 1 is desired. It is assumed in Figure 22 that for the embedding dimension

m = 2 and some number k of nearest neighbors, r1, = 3 and T2 = 5 have been found optimal.

Prediction occurs from the point X(N+I)T-1 in the ri embedding space using neighbors nearest

X(N+I)-7"• in the fitting set. Not all of the k nearest neighbors are used, though. Short solid

arrows in Figure 22 indicate the endpoints of intervals in the fitting set corresponding to some

of the k points in the 7-1 embedding space which are closest to X(N+I)-7"1. The long solid

arrows indicate the endpoints of an interval corresponding to one of the k nearest neighbors

to the point (X(N+1)-2.T 2 , X(N+1)-T 2 ) in its r2 embedding space (the T2 embedding space is

not illustrated). It is assumed that none of the intervals of length five corresponding to the k

nearest neighbors of (X(N+I)-2"T2 , X(N+I)-7 2 ) overlap the interval [r - 7-1, rJ. Since there is no

overlap, the point x, is eliminated from the set of points which will determine the prediction

hyperplane. On the other hand, the interval [q - r1 , q] does overlap the interval [p - r 2 , p],

so the point Xq is retained. Care is taken that at least 2(m + 1) nearest neighbors are retained

regardless of overlap, and local linear prediction proceeds as described in Section 3.4.

The algorithm just described will be referred to as overlap prediction. A number of

variations of it come readily to mind. There is no inherent need to combine only two optimal

,r's, and various schemes can be devised to eliminate neighbors based on complete or partial

isolation of prediction-relevant intervals when intervals of several different lengths are used.

Even in the case of only two optimal r's, some benefit might be gained by requiring strict

inclusion of smaller intervals (as illustrated in Figure 22) rather than merely overlap. Never-
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time series indices (here m =2, = T= 3 ,and T2 =T2 =5):

i I I I I I I I I I I

Nf AA N+1q " 1 % r( N ÷I ) - 2 T , ( N ÷I ) - T , l

P-T2 P (N+I)-2 T2  (N+1)-T 2

x (N+1) - = (x(N+l)-2T, ' x(N+I) - ,

xn

oXr

x(N+I) = %

X

40



theless, overlap prediction as presented above often gives prediction accuracy improvement

for many time series. Table 3 compares DVS predictions, pruned outliers predictions, and

Table 3. Selected Predicted Values (Sleep Apnea Data, "t = 14)

ts index true val DVS preds pruned outliers preds overlap preds
2671 1.4624 0.4120 0.3051 0.2894
2672 0.3710 1.0757 1.1453 0.1562
2673 1.3210 0.6858 0.7350 0.3807
2674 0.9370 0.7490 0.6667 0.4318
2675 0.8359 0.7Q23 0.7386 0.6121
2676 0.3104 0.6682 0.4319 -0.0132
2677 0.9167 0.8379 0.8287 0.5865
2678 -0.1342 0.5722 0.4713 -0.0879
2679 0.0477 0.8037 0.6235 0.6758
2680 0.0679 0.2812 0.3404 0.0634

RMS error 0.5737 0.5621 0.5676

overlap predictions for the sleep apnea time series. In applying DVS prediction, the number k

of nearest neighbors used was 286, and r ani T were set to one. In applying pruned outliers

prediction, the same values of k, r and T were used, cid the ,arameter y which determines

the exclusion region was set to two. A smaller number of nearest neighbors was used with

overlap prediction; here k = 158 was used to avoid swamping the available time with candi-

date intervals (thereby making pruning unlikely to occur). Although a wider range of r's was

considered than is shown in Table 2, this table nonetheless illustrates why the values of r1 and

"r2 were chosen as four and seven respectively.

3.8 Some Other Time Series

The pruned outliers and overlap prediction algorithms yielded improvement over DVS

prediction for many, but not all, types of time series. [he laser data discussed in Section

3.5 was differenced and normalized (as described in Section 3.4), then analyzed using the

three algorithms. Data generated by the DVS algorithm (with N1 = 560 and Nt = 439)

revealed an optimal embedding dimension of seven and number of nearest neighbors k = 17.

Further runs of this algorithm with m fixed at sevea and with varying delay times r produced
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data from which a number 48 of nearest neighbors was selected for overlap prediction using

,'1 = 4 and r2 = 7. For the pruned outliers al, rithm, the exclusion parameter -y was taken to

be 2.0. Ten data values beyond those available to the Santa Fe contestants were utilized for

purposes of comparing predictions (these values being the first ten points in the continuation

file A.cont). The results are presented in Table 4. Recall that at least 2(m + 1) neighbors are

Table 4. Selected Predicted Values (Santa Fe Laser Data, m = 7)

ts index true val DVS preds pruned outliers preds overlap preds
1000 1.0807 1.0734 1.0734 1.1939
1001 2.3363 2.2353 2.2437 2.0421
1002 ' 2321 -1.0735 -1.0735 -0.8828
1003 -1.8929 -1.8870 -1.8868 -1.8261
1004 -0.4832 -0.4743 -0.4706 -0.5686
1005 -0.0647 -0.0745 -0.0747 -0.0662
1006 0.0675 0.0743 0.0743 -0.1847
1007 0.3979 0.4200 0.4200 0.4634
1008 1.7195 1.6223 1.7646 1.7197
1009 1.7195 1.7033 1.7405 1.7267

RMS error 0.0677 0.0609 0.1735

always retained for determining the prediction hyperplane; in this case, 16. Thus the pruned

outliers predictor can only prune at most one neighbor. In fact, with -t = 2.0, it only pruned

one neighbor in six of the ten predictions; the remaining four predictions used all 17 nearest

neighbors and were therefore identical with the DVS predictions. Recognizing the lack of

"orunability" allowed by the use of the DVS optimal k = 17, a larger number (48) of nearest

neighbors was used with overlap prediction. Unfortunately, normalized RMS errors escalate

quickly as the number of nearest neighbors increases from 17. From k = 17 to k = 48, there

is an increase of normalized RMS error from 0.21 to 0.34 for T = 1; similar increases exist

for all examined r's. As Table 4 reveals, overlap prediction cannot overcome the inherent

loss of prediction accuracy associated with using too many neighbors.

The laser data just examined is presumed to have relatively few degrees of freedom

associated with its generation. Its DVS plots reveal that it is nearer the D (deterministic) than

the S (stochastic) extreme. On the other hand, certain types of financial data have higher
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numbers of nearest neighbors associated with their optimal prediction, even relative to the

-,ometimes larger embedding dimensions. Accordingly, their DVS plots reveal more stochastic

behavior, or higher dimensional dynamics. Such time series are less accurately predictable

than those coming more from the deterministic extreme, but it is easier to enhance whatever

predictability there is using the pruned outliers and overlap prediction algorithms.

Figure 23 shows daily opening bids for Standard and Poor's 500 futures contracts for

S and P value
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Figure 23. Standard and Poor's Bid Prices

the period from 20 October 1988 to 26 February 1993; it zontains a total of 1100 data points.

These data were differenced, then normalized to zero mean and unit variance (as described in

Section 3.4). The resulting time series (containing 1099 data points) is shown in Figure 24.

This time series was then processed by the DVS algorithm (using N1 = 990 and Nt = 90)
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to establish optimal values of embedding dimension and number of nearest neighbors. These

were determined to be m = 12 and k = 154 respectively. These values of m and k were

also used in pruned outliers prediction, with the exclusion parameter -y = 4.0 (see Section

3.6). For overlap prediction, the smaller value m = 3 was chosen to avoid excessive overlap

of intervals; had m = 12 been used in overlap prediction with a delay time of T = 11, for

example, then each interval would extend over 12 x (11 - 1) = 120 time series values.

Since there are only 1099 time series values available, the chances of pruning would be quite

small for any moderate number of nearest neighbors. The value m = 3 was chosen not only

because 3 is small but also because the normalized RMS errors associated with prediction

using m = 3 (0.69 at k = 72, for example) are only slightly higher than those associated

with prediction using m = 12 (0.67 at k = 72). Having chosen to use m = 3 with overlap

prediction, a good number of nearest neighbors and corresponding good delay times rl and

"r2 were selected. Table 5 shows some of the r values considered, and illustrates why the

values k = 72, rl = 3 and r2 = 11 were chosen. Some results of predicting with the various

Table 5. Selected Error Values (Standard and Poor's Data, m = 3)

k T=3 r=5 T= 7  r=9 r=11
8 0.9829 0.8932 0.8514 1.0856 0.9397
9 0.8435 0.8607 0.8608 0.9934 0.8805
10 0.8377 0.8400 0.8035 0.8848 0.8347
12 0.8498 0.8275 0.7610 0.8634 0.8121
16 0.7797 0.7688 0.7285 0.8108 0.7290
24 0.7098 0.7153 0.7258 0.7886 0.7217
40 0.7005 0.7036 0.7029 0.7545 0.6807
72 0.6878 0.7007 0.6953 0.7155 0.6432
136 0.6914 0.7021 0.6889 0.7049 0.6478
264 0.6905 0.6813 0.6751 0.6951 0.6409
520 0.6864 0.6865 0.6737 0.6868 0.6475

algorithms are presented in Table 6.

Figure 25 shows daily opening prices for the British pound for the period from 19

December 1988 to 27 April 1993. It contains 1101 data points. This data was differenced,

then normalized to zero mean and unit variance. The resulting time series (containing 1100
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Table 6. Selected Predicted Values (Standard and Poor's Data)

ts index true val DVS preds pruned outliers preds overlap preds
1081 -0.2339 -0.4028 -0.3632 0.1268
1082 0.7550 0.1413 0.0693 0.1756
1083 0.4932 0.2114 0.1757 0.3174
1084 1.5984 -0.2228 -0.0974 0.1111
1085 -0.1030 0.1475 0.0605 -0.0095
1086 0.0424 0.1419 0.2559 0.0398
1087 -0.5829 -0.0624 -0.0624 -0.2704
1088 -0.3211 -0.2619 0.0126 -0.0857
1089 0.2896 0.1025 0.1926 -0.0146
1090 0.1006 0.0146 0.0484 0.0749

RMS error 0.6474 0.6269 0.5444

bp-open value

180

160

140-WP

200 400 600 800 1000 time

Figure 25. British Pound Opening Bids

data points) was then processed by the DVS algorithm (using N1 = 990 and Nt = 90) to

establish optimal values of embedding dimension and number of nearest neighbors. These

were found to be m = 6 and k = 270 respectively. These values of m and k were also

used in pruned outliers prediction, but now with the smaller exclusion parameter -Y = 1.0.

The embedding dimension m = 6 was also used for overlap prediction; this value of m is

considerably smaller than the value m = 12 found optimal for the Standard and Poor's data

and therefore alleviates excessive overlap caused by very long candidate intervals. Examining

the DVS data for a range of r values from 1 to 14 resulted in the selection of k = 46 as
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the baseline number of candidate intervals of lags r1 = 3 and r2 = 14. Some prediction

results using these parameters are presented in Table 7. Although Table 7 reflects the use of

Table 7. Selected Predicted Values (British Pound Data)

ts index true val DVS preds pruned outliers preds overlap preds
1081 -0.1036 0.0986 0.0962 0.2003
1082 1.0478 0.1116 0.1125 -0.1885
1083 0.4289 0.0594 -0.0188 -0.0684
1084 1.5371 0.2028 0.2133 -0.1458
1085 -1.0246 -0.0584 -0.1294 -0.5622
1086 -0.2187 0.2834 0.3007 0.2154
1087 0.1411 -0.1998 -0.0121 -0.0080
1088 0.0835 0.0571 0.0694 -0.3890
1089 1.3788 -0.0694 -0.0598 0.3855
1090 1.2205 0.0858 0.0930 0.2508

RMS error 0.8673 0.8546 0.8529

the exclusion parameter - = 1.0 in pruned outliers prediction, it was found that several other

small positive choices of -f also yielded accuracy improvement over DVS prediction.

Figure 26 displays 2000 values of consecutively obtained spatial Fourier magnitude

M60 trajectory 14th component
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Figure 26. Fourteenth Fourier Component Data from an Apparently Moving M60 Tank

components derived from an M60 tank located at the center of a viewing sphere (see Chapter

IV). The tank was viewed while the observer was following a Lorenz-like viewing sphere

traversal, and the time series represents fourteenth Fourier components. As usual, these
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data were differenced, then normalized to zero mean and unit variance. The resulting time

series was then processed by the DVS algorithm (using N! = 1820 and Nt = 160) to

establish optimal values of embedding dimension and number of nearest neighbors. These

were determined to be m = 9 and k = 36 respectively. These values of m and k were used

in both DVS and pruned outliers prediction. The exclusion parameter -7 = 2.0 was selected

for pruned outliers prediction. A smaller-value of m than 9 was sought for overlap prediction

(to avoid excessively long candidate intervals). DVS analyses revealed low prediction errors

associated with prediction using m = 5, k = 28, Tr1 = 3, and r'2 = 5 (relative to neighboring

values of these parameters), so these values were fixed for use in overlap prediction. Some

prediction results using these parameters are given in Table 8.

Table 8. Selected Predicted Values (M60 Tank Data)

ts index true val DVS preds pruned outliers preds overlap preds
1981 -0.0860 -0.0022 -0.0099 -0.1011
1982 -0.1330 -0.0197 -0.0400 -0.1038
1983 0.0800 -0.0902 -0.1256 -0.0989
1984 -0.0964 -0.0207 -0.0824 -0.0453
1985 -0.0072 -0.0272 0.0454 -0.1602
1986 -0.2905 -0.1941 -0.1920 -0.1538
1987 -0.1957 -0.1078 -0.0642 -0.1997
1988 -0.0885 -0.2379 -0.1915 -0.1558
1989 -0.3078 -0.2088 -0.2951 -0.3862
1990 -0.1371 -0.3029 -0.3035 -0.1956

RMS error 0.1147 0.1118 0.0958

It may be that both pruned outliers and overlap prediction (with fortuitous choices of

parameters) improve upon DVS prediction by eliminating noise. Not all noisy data is equally

amenable to prediction improvement, however. The time series illustrated in Figure 27 is a

plot of tick-by-tick quotes of Swiss franc exchange rates, over a period of about two and one

half weeks in late 1990 (3000 data points). It represents data set C2.dat of the Santa Fe Institute

competition. The values of this data almost always change in multiples of 0.0005, and seven

or more contiguous identical values in the data are not uncommon. For this reason, direct

embedding of the data results in considerable overlap in all but very high dimensional spaces.
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Figure 27. Plot of Santa Fe Institute Swiss Franc Data Set C2.dat

To alleviate this problem, the time series was sampled at every second point, creating a time

series with values spaced roughly (but variably) seven minutes apart. The rnsultant series was

differenced, then normalized, giving a time series with 1499 data points. The DVS algorithm

was applied using m values from 7 to 14, with N1 = 1300 and Nt = 170. Analysis of the

resulting data indicated best prediction accuracies (such as they were) at quite high values of

k. The DVS plots for m = 7, m = 8, and m = 9 are shown in Figure 28. Their trailing
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Figure 28. Swiss Franc DVS Plots

tails and high error values (always above 0.82) indicate data near the stochastic (as opposed to

deterministic) extreme (4). In other words, these data are likely either very noisy or generated

by a dynamical system having a very large number of degrees of freedom. For the range of
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m's examined, the least error was found to occur at m = 8 with k = 1042. These were the

values used with DVS prediction. They were also used with pruned outliers prediction, where

the exclusion parameter -y = 1.0 was chosen again. With overlap prediction, m = 8 was

retained, but k = 1042 was so large that many potentially valuable close neighbors would

likely be eliminated by the overwhelming number of candidate neighbors, even by neighbors

which were quite distant and perhaps error-accentuating. Therefore, when a range of values

of r were examined (from r = 1 through r = 16), the smaller value k = 82 was selected,

along with rl = 4 and r2 = 9. A comparison of the three methodologies is presented in

Table 9. Notice that all of the methodologies produce poor predictions (recall that RMS errors

Table 9. Selected Predicted Values (Swiss Franc Data)

ts index true val DVS preds pruned outliers preds overlap preds
1471 -1.3745 -0.0367 -0.0049 -0.1999
1472 0.0047 -G.0506 -0.0876 0.4973
1473 -0.9148 -0.0369 -0.0480 -0.0314
1474 -0.4550 -0.0665 -0.0690 -0.0301
1475 0.9242 -0.0487 0.0352 0.2161
1476 -1.3745 -0.0961 -0.0148 -0.2729
1477 0.0047 -0.0859 -0.1370 0.1076
1478 -0.9148 -0.0612 -0.0889 0.6342
1479 -1.3745 -0.1714 0.0346 -0.0026
1480 0.9242 -0.0476 -0.0034 0.1306

RMS error 0.9178 0.9472 0.9602

of unity result from merely predicting the average data value). Several different choices of

parameters -' were tried with pruned outliers prediction, as were several different choices of

parameters k, rl, and r2 with overlap prediction. None of these choices improved prediction

accuracy over DVS prediction. This is not to say that no choices could improve accuracy.

Rather, the relative difficulty of improving on DVS prediction accuracy with the Swiss franc

data suggests it possesses a very high degree of randomness and may not be a suitable subject

for local linear prediction. Mozer was able to attain a slightly lower RMS error (0.859) for

15-minute-ahead predictions using a neural network (26:260).
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3.9 Conclusion

The DVS algorithm has been presented in some detail, and its modification to a DVS pre-

diction algorithm has been described. Two extensions of this algorithm have been developed,

and some results of their implementations have been presented.

The first algorithm, pruned outliers prediction, excludes from the DVS-determined

optimal number of neighbors nearest the prediction point, those which lie farthest from

the linear prediction hyperplane. A new hyperpiane is calculated based on the remaining

neighbors, and the value assumed on this hyperplane at the prediction point becomes the

predicted value. This algorithm was able to predict more accurately than DVS prediction for

a number of time series examined. For example, prediction improvement was noted using

Standard and Poor's financial data, where an RMS error value of 0.627 was found with pruned

outliers prediction, as compared to 0.647 with DVS prediction.

The second algorithm, overlap prediction, endeavors to combine the benefits of using

one short and one longer time delay. Prediction is based on the shorter of the two time delays,

but intervals of time are allowed to be represented in the utilized set of nearest neighbors only

if they play a role in both short term and long term prediction. This algorithm was also able

to predict more accurately than DVS prediction for some time series examined, particularly

financial time series. Prediction of the Standard and Poor's data gave an RMS error of 0.544,

better than either of the other algorithms

Both algorithms were therefore shown capable of improving prediction accuracy over

DVS prediction for sonic tia. seiias Othcr time sericz seemed less susceptible to im-

provement. Numerous experiments with Swiss franc exchange rate data yielded decreased

prediction accuracy compared to DVS prediction. In one typical experiment, the RMS errors

were 0.918, 0.947, and 0.960 for DVS, pruned outliers, and overlap predictions, respectively.

It is suspected that the decreased susceptibility to improvement with Swiss franc data may

indicate that this data is more stochastic (as implied by Figure 28) than most of the other time

series examined.
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A total of 60 predictions have been presented (ten for each of six time series) comparing

the DVS, pruned outliers, and overlap prediction methods. The total RMS errors associated

with all of these 60 predictions are 0.627 for DVS prediction; 0.626 for pruned outliers

prediction; and 0.620 for overlap prediction. When the predictions associated with the highly

stochastic Swiss franc data are excluded, the 50 remaining predictions reveal total RMS errors

of 0.551 for DVS prediction; 0.539 for pruned outliers prediction; and 0.526 for overlap

prediction. These numbers suggest that the two algorithms newly developed in this research

may offer prediction advantage for time series which are not highly stochastic.

A drawback to both pruned outliers and overlap predictions is that they require selection

of parameter(s) which may not always enhance accuracy.
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IV Spatio-Temporal Classification Based on Fractal Dimension

4.1 Introduction

This chapter presents an application of the embedding theorem to the problem of moving

object classification. In this problem, shape feature vectors of several classes of objects are

identified. As these objects move through space (or appear to move through space), sequences

of views are taken and translated into sequences of feature vectors. The evolutions of the

individual components of these feature vectors comprise a set of time series. Depending on

how the views are obtained, these time series may reveal an underlying fractal nature to the

dynamical systems defined by the evolving feature vectors. It is shown that the embedding

theorem may be applied to the highest of the fractal dimensions corresponding to the objects

to set a reasonable length for the test sequences presented for classification.

The following section will describe an experimental method of obtaining views of

objects. In Section 4.3, a proof is given that a monotonic mapping of a time series yields

another time series with the same fractal dimension. Section 4.4 considers an example

classification problem using feature vectors consisting of Fourier components of the viewed

objects. A nearest neighbor spatio-temporal classifier is described in Section 4.5, and some

results of its application to the example classification problem are presented. Section 4.6

discusses strategies for viewing sphere traversals, pointing out that chaotic trajectories may

not be necessary for fractal dimension-based classification.

4.2 Creating Spatio-Temporal Training Sequences

Building on earlier work by Rabiner and others (30) (34), Capt Ken Fielding has

implemented a Hidden Markov Model spatio-temporal classifier (12, 10, 11, 9). The sequences

of views he uses are obtained by traversing (in computer simulation) a portion of the surface

of a sphere having at its center a three-dimensional model of the object of interest. The portion

of the surface traversed will be called the viewing quadrant, although it doesn't quite fill a

quadrant of the sphere. Fielding's technique can be applied to sets of data corresponding to
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arbitrary traversals simulating a wide range of possible object motions. Five objects (models

of military land vehicles) are positioned at the center of the sphere and provide five classes

for recognition. His Hidden Markov Models can be trained on sequences of feature vectors

extracted from lengthy training sequences of views. Their performance is then judged using

short test sequences of such views which are typically trajectories near, but not entirely

overlapping, the training trajectories.

One might wonder how best to assemble training sequences. Perhaps a region-filling

curve composed of segments found most typical of actual vehicle movements (derived, for

example, from observations made during training exercises) might most accurately represent

real-world scenarios. Even if it is practical, however, to train with sequences containing

subsequences near every possible test sequence, some critical questions have to be answered.

How is "nearness" measured? What minimum length test sequence should be used?

The problem of constructing an optimal training trajectory is not addressed here. Instead,

simplifying assumptions are made on the vehicle-viewer orientations to produce training

trajectories on the viewing sphere, and the fractal dimensions of the derived feature vector

trajectories are then exploited to infer a sufficient lower bound for test sequence lengths.

Suppose, for example, that a training trajectory is chosen which has a known fractal

nature. Is it possible to produce a sequence of feature vectors which derives a fractal nature

directly from that of the training trajectory? At least for a simple feature extracted from a

simple object, the answer, it will be shown, is yes. But first a necessary digression.

4.3 Time Series Having Identical Fractal Dimension

The two time series shown in Figure 29 have the same fractal dimension; a new theorem

will be proven in this section to verify this assertion. The reader who chooses not to skip this

development may wish to consult Appendix A for some basic concepts and terminology.

Figure 30 shows two disjoint fractal objects (differently warped nested triangles in the

upper left and lower right). Barnsley provides a theorem from which it may be deduced that

53



shifted Henon y-components squared shifted Henon y-components

7 7*• ';*."":"" .* .:. .:"..' . : "

":•.. ••

6 6::.: '•• :o .- •. •..-•: :;" ..

..... ' ......:. .. '... ,. ... ".. :. :... .. ..

4 4

3 3

100 200 300 400 500 600 100 200 300 400 500 600

Figure 29. Stretching a Time Series

these objects have the same fractal dimensions. This theorem may also be used to demonstrate

that the two time series of Figure 29 have the same fractal dimensions.

In both Figure 29 and Figure 30, the right-side object is the image of the left-side object

under a mapping known as a metric equivalence.

Definition: Two metric spaces (X1 , dl) and (X 2, d2) are metrically equivalent if there

is a bijective mapping h : X1 --* X 2 and constants 0 < c, < c2 < o0 such that for all x and

y in X 1,

c d (x,y) •5 d2(h(x), h(y)) < c2d (x,y)

In this context, the mapping h will be called a metric equivalence.

A metric equivalence may be thought of as a function which stretches or compresses

one space into another, but in such a way that distances between points are neither increased

nor decreased unboundedly. The linear mapping f : [0, 11 --+ [0, 2], f(x) = 2x, is an example

of a metric equivalence between the metric spaces X1 = [0, 11 and X 2 = [0, 2], where both

metrics d, and d2 are assumed Euclidean.

Barnsley provides a proof of the following theorem (2:180).

Theorem 1. Let (X 1, dl) and (X 2 , d2 ) be metrically equivalent metric spaces with a metric

equivalence h : X, --+ X 2. Suppose a nonempty compact subset A, of X, has fractal

dimension D. Then its image h(A 1 ) also has fractal dimension D.
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Figure 30. Two Objects in R2 with Same Fractal Dimension (2:173)

There is a metric equivalence h : (2, 3) --- (4, 9) between a pair of Euclidean spaces

which contain the two time series illustrated in Figure 29, namely, h(x) = z2 . It is because

this metric equivalence extends to the embedding spaces in which the fractal dimensions of

the time series are computed that the equivalence of their dimensions may be asserted.

Theorem 2. Suppose xi E (a, b) for i = 1, 2, 3,... and the time series {xi} has fracta'

dimension d. Suppose g: (a, b) --. R is one-to-one and differentiable, and satisfies

O<a< dgz)

for some real constants a and /3 and for all z E (a, b). Then the time series {g(xi)} also has

fractal dimension d.

Proof: By the embedding theorem, there is an integer k > 2d such that, in the space

(a, b)k with Euclidean metric, the points xi = (Xi-..+l i, Xi-I+2,..., x,)T, i >_ k, lie on an

attractor having fractal dimension d. Define a vector function g : ((a, b)k, Euclidean) --
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([g(a, b)]k, Euclidean) by

Y1 g(y 1 )

Y/2 _ 9(Y/2)
g =

,Yk 9(,Yk)

for ally = (Y3,3/2,i -•, Yk)T in (a, b)k. It wil be shown that g provides an equivalence of the

metric spaces (a, b)k and [g(a, b)]k (both with assumed Euclidean metrics). Theorem I then

proves the assertion about {g(xi)}.

Let y = (Y1i, y2 ,..., yk)T and z = (zl, z2,..., zk)T be any elements of (a, b)k, and
let i E {1,2,...., k}. By the mean value theorem of calculus, there is a number ci in (yi, zi)

(or in (zi, yi) if zi < yi, or equal to their common value if yi = zi) such that

g(z,) - g(yi) = g'(cj)(z, - y,)

By hypothesis, a < Ig'(ci)I < fl, and since Ig(zi) - g(yi)I = Ig'(cq)IIz, - Yi,1,

ailzi - Yi :ý Ig(z,) - g(YO1) •ý fI3zi - Yil

a21Z, - Y,12 < Ig(z,) - g(y,)1 2 </#21Z, _Y12

This is true for every i E {1,2,. , k} so

k k k
a12  Iz, _ y,12 < _Ig(z,) 1g(ys)[2 < #1 Iz, - y,12

i=1 j---1 1=1

k1/2 k 21/2,• I, -yI < g(zi)_-g(y,)12 <5 IZ, -Yi12

CaIIz - y11 < IIg(z) - g(y)ll <- PIz - y11

Thus g is indeed a metric equivalence. U
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Suppose now that the x-component of a viewing quadrant traversal forms a time series

x1 , x2 , X3,.. • with a known fractal dimension. Suppose also that measurements are taken of

an object at the center of the viewing sphere from each viewing quadrant location, and those

measurements are interpreted for classification purposes as representing a feature of the object.

If that feature changes strictly monotonically with increasing x but not at all with other viewing

location coordinates, then Theorem 2 implies that the sequence of feature vectors must have

the same fractal dimension as the time series x1 , x2, x3 , .... Toward the goal of realizing a

feature space trajectory with a known fractal dimension, the next section will consider a novel

viewing quadrant training trajectory.

4.4 A Loren7 Traversal of the Sphere (An Embedology Perspective)

Consider a scaled Lorenz attractor confined within 3-space to the viewing quadrant of

interest, where the stationary object is centered at the origin and the x and y axes determine

the equatorial plane; see Figure 31. Its evolving x components generate a fractal times

viewing
quadrant

y

equator

Figure 31. Viewing Sphere

series. Let P denote the projection of the confined attractor onto the viewing quadrant surface

(it does not extend to the edges of the surface, and leaves large portions of the viewing
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quadrant unexplored). Now suppose that the object of interest at the center of the sphere is

a circular cylinder coaxial with the y-axis of the coordinate frame. If the cylinder is painted

with two longitudinal black and white stripes, with white paint over slightly more than the

region observed during traversal, then intensity could serve as a feature which is a monotonic

transformation of the x-component of the traversal. Figure 32 illustrates how more white

becomes visible with increases in viewing position x-component, regardless of y-component.

0 degrees 90 degrees 180 degrees

Figure 32. A Monotonically Increasing Feature

Thus the trajectory of the intensity feature (in R) is a time series having the same fractal

dimension as the Lorenz attractor.

Such simple objects are of little practical interest, and features other than intensity are

often used. Suppose the Lorenz traversal is preserved, but more complex objects are viewed

using different features. In his work, Capt Fielding uses features consisting of vectors of 28

dominant two-dimensional spatial Fourier magnitudes associated with the views (12). That

is, 28 low frequency pairs are fixed, the spatial Fourier transform is evaluated at each of those

pairs, and the magnitudes of those Fourier transforms form 28-dimensional feature vectors.

Thus each view is condensed to a 28-tuple of real numbers. A training sequence then consists

of a finite number of such 28-tuples, and a test sequence consists of a smaller number of

28-tuples derived from viewing trajectories oriented near the viewing trajectory used during

training.

Fourier components do not change monotonically with viewing position. Nevertheless,

they do seem to change fairly continuously with viewing position. The five images in Figure 33

(courtesy Ken Fielding) each correspond to the flattened viewing quadrant. Each point within

each of these images thus corresponds to a position on the viewing quadrant. The gray-scale

intensity at each point represents the value of the fourteenth Fourier component of the object
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Figure 33. Fourteenth Fourier Components of Five Military Vehicles

at the center of the viewing sphere, as viewed from that point. The objects at the center

of the sphere were models of an M60 tank, M35 truck, BTR60 armored personnel carrier,

T62 tank, and M2 infantry fighting vehicle, as labeled. The darker is the gray in these

images, the higher is the component value (with white being zero). Notice the rarity of sharp

discontinuities; perhaps this is due to the complexity of these vehicles, i.e., the large number of

parts with both sharp and smooth edges, no single one of which is dominant. In any case, the

distributions of fourteenth component values generated from the Lorenz-derived viewing path

appear rather continuous. The fourteenth component values seemed typical in this respect to

other components examined.

Consider Figure 34, in which the viewing trajectory P is identified. The Lorenz attractor

is a compact subset of R31 (as is any curve which is a closed bounded subset of R' (1:59)). Now

P is the projection of the Lorenz attractor confined to the viewing quadrant, and the mapping

59



at k

Figure 34. Embedding a Time Series Derived from Views along Trajectory P

which confined the Lorenz attractor is a linear transformation. Both projections and linear

transformations are continuous, so the composition mapping with image P is also continuous.

Thus P is compact, since continuous images of compact sets are compact (1:82).

Let f denote the mapping of P into the 28-tuples of Fourier vectors associated with

each viewing position in P. It was argued above that each of the component functions of f

are continuous (at least, they will be presumed continuous); therefore f itself is continuous.

Since P is compact, the image Q of P under f is a compact subset of R"2. Since all nonempty

compact subsets of R"2 have fractal dimensions, Q has a fractal dimension; call it d (2:183).

Assume now that the trajectory Q in R2" is the solution trajectory of a system of

differential equations in R2", or the projection of a solution trajectory R in a higher dimensional

space (as the two-dimensional Lorenz curve illustrated in Figure 6 is the projection of a three-

dimensional solution trajectory). This requires that Q be continuous; but it has been argued
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that the mapping f : P -- Q is continuous, and since P is continuous, Q also must be

continuous (1:79).

The embedding theorem can now be applied to the trajectory Q. Consider any one of

the components of Q. A delay coordinate embedding of the time series corresponding to that

component into *k yields a diffeomorphic image S of Q (or of R, assuming now that R has

fractal dimension d), provided only that k > 2d.

Thus, any k consecutive values of any one component of Q determine a single point

on S. Consider now the relationship between Q and S. For greater generality, suppose Q is

projected from a higher dimensional trajectory R. The fundamental theorem of differential

equations (18:162) assures that any point on R determines all of R. Since S and R are

diffeomorphic, any single point on S not only determines all of S, but its image in R determines

all of R. Thus the projected image of the point on S traces the trajectory Q. Therefore any k

consecutive views of the object completely determine the trajectory Q, which will be called the

"object evolution" of the viewed object, to account for its temporal as well as spatial nature.

Consider now the problem of distinguishing one object from another by distinguishing

one's evolution from the other's; say, distinguishing an M60 tank's evolution from that of an

M35 truck. A priori, there is no reason to believe there is no overlap of evolutions. That

is, there may be a point, or even consecutive points, shared by the M60 and M35 evolutions.

Let K be the maximum of the embedding dimensions kM6o and kM35 found sufficient for

determining the evolutions of the M60 and M35, respectively. Then provided there are no

more than K - 1 consecutive shared points on the evolutions, the M60 and M35 may be

distinguished simply L-' matching a test sequence of K 28-tuples (taken from one of the two

evolutions) to both evolutions. The evolution which matches identifies the object of the test

sequence. If a maximum M of consecutive points on the evolutions are found to overlap,

where M > K - 1, then M + 1 points will suffice for the test sequence.

In fact, if test sequences are only taken from one or the other known evolution, then

M + 1 consecutive test sequence points will suffice for identification, regardless of whether

M > K - 1. However, given a test sequence of observations which was obtained not
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from a partial traversal of P, but perhaps just near P, the task of object classification is more

problematic. Intuitively, the object evolution in R28 which most closely matches the evolution

determined by the test sequence, probably corresponds to the object of the test sequence.

To maximize the probability of correct identification, however, at least K consecutive views

should be included in the test sequence, because K captures something of the "dynamical

essence" of the evolutions. Consider Figure 35, in which are depicted fanciful evolutions for

C

Figure 35. Nonoverlapping Evolutions and a Test Evolution

some objects A and B, and an evolution C corresponding to views of either object A or B

which were taken near but not on the viewing sphere traversal common to A and B. Since the

evolutions of A and B are disjoint, a single view from anywhere on their common viewing

traversal will suffice to classify the test object. However, one, or even more, views taken

off the common viewing traversal may not unambiguously identify the object. If it is found,

however, that K = 7, and seven or more views are taken in determining C, then a correct

classification is more likely.
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4.5 Experimental Applicadon

The Lorenz traversal just described was applied to obtain training sequences of views

of each of five military target classes. After the confined Lorenz attractor was generated, the

(x, y) components of its points were projected onto the surface of the sphere, and the resulting

path followed for 2000 points (repeated for each of the five classes). At each of the 2000

views, Fourier 28-tuples were extracted. Time series were formed from the 1st, 14th, and 28th

components of the resulting sequence of 2000 Fourier vectors. Grassberger and Procaccia

analyses of each class revealed nearly linear log-log plots from which fractal dimensions could

be estimated. See for example Figure 36, in which the fourteenth Fourier component of the

7 6
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6

ln(CL[i]) 5.5 5

5 S

4.5 0

_-2.8 -2.6 -2.4 -2 .2

ln(L[i] / LO)

Figure 36. G. and P. Plot for the 14 th Fourier Component of an M60

M60 sequence was examined. Based on the slope of the line joining the endpoints of this data,

the correlation dimension of the generating time series is estimated at about 3.96.

Similar investigations were performed for the 1st and 28th components of the M60

data, and for the 1st, 14th, and 28th components of the remaining four military vehicles. The

maximum fractal dimension so obtained (over all 15 values computed) was 5.25; this number

was used to infer a minimum test sequence length of 11 > 2 x 5.25.
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Capt Fielding, in his work with Hidden Markov Models, used training sequences which

were not derived from a Lorenz viewing trajectory (12). Typically they were derived from

roughly east-to-west (or west-to-east) viewing trajectories, and test sequences of similar

"horizontal" orientations were used. Despite the different training sequences, he found in his

experiments that test sequences of length eleven were quite adequate for accurate classification.

A nearest neighbor classifier was implemented to determine if test sequences of length 11

were adequate for accurate vehicle classification using the Lorenz-derived training evolutions.

Given a test sequence, this technique for determining its class is to match its point-by-point

nearness to all sequences of the same length contained in all the training data. The class of

the training sequence providing the best fit is declared the most likely class. Consider, for

example, hypothetical portions of five training sequences Ci as shown in Figure 37. The

Cl C2  C3 T C4  C5

C3
1  T1  C4

1

C3
2  T2  C42

"T3  C4

C4 T4  044

5 T5  C4
5

C3 6 T6 C4 6
T7T7  C4

7

Figure 37. Trajectories in •28

sampled test sequence in Figure 37 consists of just seven points, and its trajectory through

phase space is labeled T. The sum of the squared Euclidean distances from the seven points

T, through T7 to the points C3 through C3, respectively, is greater than the sum of the squared

distances from T, through T7 to the points C4 through C4, respectively. Indeed, there is no
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sequence of seven points in any class which is closer to the test sequence than the seven points

Cj through C.4. The test sequence is therefore identified as class four.

An equivalent statement of the classification procedure may be found by imagining the

test sequence a single point T in 7 x 28 = 196-space. That is, concatenate the 28 components

of each of the 7 points into a single vector T of dimension 196. Starting with each point (prior

to the final six) in all the training classes, form 196-tuples from the concatenated components

of the starting point and the six points following it. The class of the point in 196-space nearest

T in Euclidean distance is declared the class to which T belongs. This is the approach taken

in developing the nearest neighbor algorithm used in this research.

Test sequences were obtained near the Lorenz viewing trajectory, but not on it, by

solving the Lorenz equations using a different initial condition than that used to generate the

training trajectory. Figure 38 shows the projected solution of the Lorenz equations when an

y

Figure 38. Obtaining Lorenz Test Sequences

initial condition of (xo = -20, Y/o = 15, zo = 15) was used. Ignoring the initial point, the

next 20 points on this trajectory were used to construct test sequences of lengths 4, 8, and

11 (this allowed 17 sequences of length 4, 13 of length 8, and 10 of length 11). The 2 0 ih
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point is the first point after the knee of the initial portion of the trajectory; it is located at

about (x = -2, y = -4). Compare this trajectory to the trajectory used to derive the training

data. This is illustrated in Figure 6, where the initial condition used to determine the trajectory

was (xo = 5, yo = 5, zo = 5). Using the test sequences with all five vehicles, classification

accuracy was 100% for sequences of lengths 11 and 8, and 98% for sequences of length 4.

Thus sequences of length 11 proved sufficiently long to classify these particular test sequences

perfectly; but so did sequences of length 8, and even sequences of length 4 classified quite

well.

There are several possible explanations for these results. First, the military vehicles

may be so different that their training trajectory-derived evolutions in R28 overlap very little,

or not at all (for example, as in Figure 35). If this is the case, very short test sequences

will likely suffice for accurate classification. Second, there could be considerable overlap of

evolutions, but the test sequences applied didn't fall near the regions of overlap. Third, the

embedding theorem gives a sufficient, not necessary, sequence length to completely determine

an object's evolution. For example, eleven training sequence views of an M60 are sufficient to

completely determine the M60's evolution in R28; a number less than eleven may also suffice.

Test sequences were derived from Lorenz solutions using a couple of other initial con-

ditions, with similar results. In both cases, using test sequences of length eleven yielded 100%

classification accuracy, but often sequences of shorter length did the same. Perhaps hundreds

of experiments with different test sequences could yield statistics which would tend to confirm

or deny that test sequences of length eleven are sufficient for accurate classification. The test

sequences used, however, could not possibly be comprehensive - there are uncountably many

possible test sequences - so they would have to be chosen with some application or geometric

criterion in mind. It should be considered, too, that "rogue" test sequences can be contrived

such that a short test length classification will be more accurate than ones of longer length.

Figure 39 illustrates the uncertainty inherent in spatio-temporal classification. The curve

marked TM6o represents a portion of a training trajectory in •R2s corresponding to a particular

viewed object M60. The points A, B, and C represent points in R28 derived from consecutive
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Figure 39. Portions of Trajectories in •2s

testing views of the object taken near, but not on, the training trajectory; so do the points

D, E, F, and G, obtained during a separate test. Suppose that all the points A through G are

at the same small Euclidean distance from points on Tm6O, and that none of the other testing

points are as close. How likely is it that the object viewed during the test traversal which yielded

the points A, B, and C is an M60? Less likely, intuitively, than the object viewed during the

test traversal which yielded the points D, E, F, and G, because the latter testing trajectory

tracked the training trajectory over a longer period of time. Similarly, greater confidence would

attach to five consecutive close points than to four. The significance of the number eleven is

that if eleven consecutive testing points coincide exactly with eleven consecutive points on

TM6O, and the testing sequence was obtained following the same viewing quadrant traversal as

the one which yielded TM6O, then the testing trajectory and TM6o must be identical. For testing

trajectories not directly on TM6o, twelve or more consecutive near points may reasonably be

interpreted as stronger evidence of an M60 than eleven consecutive near points. Nevertheless,

lacking specification of allowable test sequences, the embedology-derived number eleven may

be a reasonable compromise test sequence length to use in practice.
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4.6 Discussion of iewing Sphere Traversal Strategies

The foregoing use of a Lorenz viewing sphere traversal is not meant to imply advantage

for that strategy as opposed to any other strategy. Any traversal which gives feature vectors

as a continuous function of viewing position will yield a feature space trajectory which has a

fractal dimension (this is because any traversal of the viewing sphere is a compact subset of

. As a finite-length continuous curve in feature space, however, its fractal dimension is

one. On the other hand, the fractal dimension of a discrete sampling of points on the curve

may well be greater than one. Consider, for example, a finite-length Lorenz trajectory in R3.

As a curve in R3, it has a fractal dimension of one. However, a discrete sampling of points

on the trajectory will exhibit self-similarity in space, and a fractal dimension-determining

algorithm will yield values approaching 2.05 for the set of points (as the length of the Lorenz

curve becomes large).

An experiment conducted with another viewing sphere traversal strategy, a sort of

random walk scan of the viewing quadrant, suggests that a fractal structure to the viewing

traversal may simplify the determination of fractal dimensions of feature space solution

trajectories. Perhaps the training evolutions "inherit" some of the fractal nature of a fractal

viewing trajectory. Figure 40 illustrates a typical Grassberger and Procaccia plot associated

with the 14th Fourier component of a randomly-viewed M60 tank. The relative lack of

collinearity of the data points (compare Figure 36) weakens confidence in any fractal dimension

derived from the "common" slope of the line segments joining them (17).

On the other hand, fractal structure in the viewing traversal may have the effect of

increasing the number of points required for determination of the training trajectory. Consider

again the intensity feature for the painted cylinder discussed in Section 4.4. If a second

cylinder is introduced for a classification problem, identical to the first except that the second

cylinder's white paint is brighter, then fractal dimension-based classification using the Lorenz

traversal will require five views of a test object (i.e., one of the two cylinders) to make a

classification. This is because the fractal dimension of the Lorenz attractor is about 2.05, and

five is the smallest integer greater than twice this dimension. On the other hand, if a simple
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Figure 40. G. and P. Plot for an M60 Viewed along a Random Trajectory

east-to-west, west-to-east raster traversal had been used instead of the Lorenz, then fractal

dimension-based classification will require only three views of the test object. This is because

the fractal dimension of the sinusoidal intensity features of both objects is one.

Notice that both methods of traversai can be spoofed by "unanticipated" test sequences.

The raster traversal method, for instance, could easily be fooled by a north-to-south test

sequence. This points out what is perhaps the biggest obstacle to constructing successful

spatio-temporal classifiers: anticipating likely test sequences and accounting for them in

training trajectories.

4.7 Conclusion

This chapter has demonstrated that the goal of moving object recognition might be

facilitated if the motion (or apparent motion) of the objects is chosen carefully and appropriate

features are utilized. A fractal dimension of object evolutions can be obtained and exploited if

the views of the given objects form a compact suhset of the viewing space, and the features used
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vary continuously with viewing position. The fractal dimensici is exploited via the embedding

theorem to determine a test sequence length sufficient for complete object determination.

A nearest neighbor spatio-temporal classifier was implemented to test the theoretically

determined sufficient length of test sequence against Fourier data obtained from models of

five military objects. These objects were observed wnile following a Lorenz-derived traversal

of a viewing sphere. The results revealed that indeed the theoreticaily sufficient test sequence

length was sufficient; but much shorter lengths also sufficed.
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V Conclusions

The Deterministic Versus Stochastic (DVS) algorithm developed by Martin Casdagli

uses the local linear prediction technique described by Doyne Farmer to help decide whether

a given time series represents low dimensional (deterministic) chaotic dynamics, or is high

dimensional (or stochastic) in origin. This algorithm has been modified here to produce

two new prediction methodologies, each of which selectively uses embedding space nearest

neighbors. Both have been shown advantageously applicable to prediction of noisy time series

(such as experimentally measured blood oxygen concentration data, and certain financial data).

The first algorithm, pruned outliers prediction, excludes from the DVS-determined

optimal number of neighbors nearest the prediction point, those of them which lie farthest

from the linear prediction hyperplane. A new hyperplane is calculated based on the remaining

neighbors, and the value assumed on this hyperplane at the prediction point becomes the

predicted value.

The second algorithm, overlap prediction, endeavors to combine the benefits of using

one short and one longer time delay. Prediction is based on the shorter of the two time delays,

but intervals of time are allowed to be represented in the utilized set of nearest neighbors only

if they play a role in both short term and long term prediction.

In each new algorithm, neighbors which are considered predictlon-relevant are retained

for local linear prediction, while those which are considered likely to represent noise are

ignored. These algorithms may in this sense be considered to employ embedding space

filtrations of the time series. For many time series, it was found rather easy to improve on

unfiltered local linear prediction with one or both of the new algorithms. For other time

series, prediction improvement was more difficult. It was argued that prediction improvement

difficulty is indicative of stochastic data, independently of the direct results of the DVS

algorithm.

This research has shown that the local linear tech'1ique provides perfect predictions in

cases where phase space trajectories are concentric circles, and where they are locally parallel.
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This helps to explain why attempts to use higher-order polynomial regression prediction

sometimes provide little benefit over linear regression prediction (8:846).

Another new result gives an invariance condition for the fractal dimension of a time

series. Specifically, a theorem is proven which shows that the fractal dimension of a time

series does not change if a differentiable mapping which is strictly monotonic on the series'

range of values is applied to it.

It has also been shown that the problem of moving object classification may be analyzed

in terms of embedded time series, in the sense that embedology can supply a reasonable length

of test sequence for accurate classification. Sequentially recorded feature vectors of a moving

object form a training trajectory in feature space. Each of the sequences of feature vector

components is a time series, and under certain conditions, each of these time series will have

approximately the same fractal dimension. The embedding theorem may be applied to this

fractal dimension to establish a number of observations sufficient to determine the feature

space trajectory of the object. It was argued that this number is a reasonable test sequence

length for use in object classification. Experiments with data corresponding to five military

vehicles (observed following a projected Lorenz trajectory on a viewing sphere) showed that

this length was indeed adequate.
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Appendix A. Fractal Dynamics

In his book Fractals Everywhere, Michael Barnsley provides a precise definition of

chaos and a proof that certain dynamical systems are chaotic. He also shows how calcu-

lated trajectories can maintain their fractal quality even in the presence of computational

errors (2). His development is based on the theory of iterated function systems, which is

briefly summarized in this appendix. Although Barnsley's book is remarkably self-sufficient,

a good first course in mathematical analysis is helpful. Lang's book Analysis I is especially

recommended (19).

For brevity, this Appendix omits certain definitions and proofs when it is felt that

these omissions will not hinder a broad understanding of discrete chaotic dynamical systems.

Barnsley's book is the appropriate source for all details.

A contraction mapping is a function f : X --+ X on a metric space (X, d) (that is, a

set X with distance metric d : X x X --+ R) for which there is a constant 0 < s < 1 (called

a contractivity factor for f) such that for all x and y in X,

d(f(x), f(y)) <_ s d(x, y)

A hyperbolic iterated function system (IFS) consists of a complete metric space X together

with a finite set of contraction mappings w,, : X --+ X, with respective contractivity factors

s,,, for n = 1,2,... ,N. The notation for this IFS is {X;wn,n = 1,2,...,N}. Its

contractivity factor is s = Max{s,, : n = 1, 2,..., N}. The word hyperbolic means that each

contractivity factor S, satisfies 0 _< s, < 1; unless the context clearly indicates otherwise, an

IFS is understood to be hyperbolic.

The closed unit interval [0, 11 in R, with the distance between two points being the

absolute value of their difference, is an example of a complete metric space. The function

w1(x) = x/3 is an example of a contraction mapping on X, with contractivity factor 1/3; so
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is the function w2(x) = (x + 2)/3. Thus {[0, 1]; wI, w2} is an IFS, with contractivity factor

1/3.

Let {X; w, n = 1, 2,..., N} be an IFS with contractivity factor s on the complete

metric space (X, d). There is a derived metric space f-(X) whose elements are nonempty

compact subsets of X and whose metric is the Hausdorff distance (denoted h(d) or sometimes

simply h) between such subsets. With this metric, W(X) is also complete, so the Contraction

Mapping Theorem applies to it. The upshot is that the transformation W : 7-(X) -+ .- (X)

defined by
N

W(B)= U w,(B)
n= 1

for all B E "l(X) is a contraction mapping on the complete metric space (7-H(X), h(d)) with

contractivity factor s. That is,

h(W(B), W(C)) •_ s. h(B, C)

for all B, C E 7-(X). Its unique fixed point, A E l-(X), obeys

N
A = W(A) U w, (A)

n=1

and is given by A = limn,--,o W°"(B) for any B E 1-(X), where W°" (B) denotes n

iterations of the mapping W.

The fixed point A E 7-(X) is called the attractor of the IFS.

Recall the classical Cantor set C created by successive deletions of middle thirds of

closed intervals, beginning with the closed unit interval. The set C is the attractor of the IFS

{[0, 1]; w1(X) = Ix, w2(x) = ix + 5} just described. This IFS is totally disconnected; since

its maps w, and w2 are injective, this means that C is the disjoint union of the images of itself

under w, and w2 . That is, C = W(C) = wI (C) U w2 (C) disjointly. Equivalently (in the case

of subsets of R), C contains no intervals (6:37).
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Notice that for a general IFS, an infinite composition of mappings w,, oww2 ow13 o... (y)

specifies a unique point on the attractor of the IFS, where the ai are taken from the set

{1, 2,..., N} of indices of the contraction mappings and where y is any nonempty compact

subset of X. For example, the point 1/3 in C can be written w1 o w2 o w2 o w2 o ... (0).

This fact allows a natural correspondence between the attractor A of the IFS and a complete,

compact metric space called code space whose elements are infinite sequences of symbols

taken from {1, 2,..., N}. Code space is denoted (E, d,) (or sometimes simply E) where d,

is a metric defined by

dn= (N + 1)-

for allw, a E E.

The natural correspondence alluded to is in fact a continuous transformation E : r -- A

given by O(or) = w,, o w,, o w,,o ... (y) where oa = rlr2o3... and y is any element of

7H(X). For the Cantor set example, 0(1222...) = 1/3. The transformation 0 is always

surjective but it is not necessarily injective. The IFS is totally disconnected iff ' is injective.

There is another metric on E which allows one to picture code space as a subset of the

unit interval. In particular, let d2 : E -x E ? be defined by

00

d2 (w, or) E Wd2(a• 1)=1 (N + 1)n

Then d2 is a metric on E, and (E, d,) and (E, d2 ) are equivalent metric spaces. This means that

points that are close in (E, d,) are also close in (E, d2 ), and that there is no infinite stretching

or compression when going from (E, d.) to (E, d2 ) (or from (E, d2 ) to (E, d,)). The d2 metric

on E is precisely the absolute value of the difference between points in the unit interval whose

(N + 1)-ary fractional expansions contain no zeroes. For example, with N = 2, 1/2 can be

represented in the unit interval as. 111 ... where the leading period denotes the ternary point;

11/18 can be represented .12111...; and 1.111 ... -. 12111... I = 1/9.

The concept of dynamical system can now be defined, and subsequently the notion of

a chaotic dynamical system.
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A dynamical system {X; f} is a mapping f : X -+ X on a metric space X. The orbit

of a point x E X is the sequence {f°"(x)}n=o.

Examples of dynamical system abound. Two interesting examples of dynamical systems

on the unit interval [0, 1] are given in Figure 41.

•x) = rMin(2x. 2 - 2x) S(x) = 2x (mod 1)

I 
-

i

1/2 1 x 1/2 1

Figure 41. Example Dynamical Systems on the Unit Interval

Iterated function systems admit especially interesting types of dynamical systems. Let

{X; w,, n = 1, 2,..., N} be a totally disconnected IFS with attractor A. Then A is the union

of the w,,(A), where for all i # j, wi (A) n w( (A) = 0. The associated shift transformation

on A is the transformation S : A --+ A defined by

s(a) = w-1(a)

for a E wn(A), where w,, is viewed as a transformation from A onto wn(A). The dynamical

system {A; S} is called the shift dynamical system associated with the IFS.

Using the shift transformation of a totally disconnected IFS, it is straightforward to trace

the orbit of a given point of A. A similar procedure can be used to trace orbits when the IFS is

not totally disconnected, i.e., when the code space mapping 0 : E - A is not injective. For

clarity, attention is here restricted to IFS's with only two contraction maps. Let {X; w1 , w2 }

be an IFS with attractor A. Assume that both w, and w2 are injective. A sequence of points

{x, }'o in A is called an orbit of the random shift dynamical system associated with the IFS
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if for each n E {0, 1,2,...},

J w' 1 (x.) when xn E w,(A), and xn w,(A) n w2 (A),

,+ = wj'(x,,) when x, E w2(A), and x,, wi(A) nw 2(A),

one of {wi 1 (x,,), w2 '(x.)}, when x,, E w1(A) n w2(A)

The notation X,+ 1 = S(Xn) is adopted, although there may be no well-defined transformation

S : A --+ A which makes this true. The pair {A; S} is called the random shift dynamical

system associated with the IFS.

An example of an orbit from a random shift dynamical system is provided in Figure 42.

The applicable (overlapping) IFS is {[0, 1]; W1 (X) = ½X, w 2( ) x + 1 with respective

OVERLAPPING
A p-d* rex•m a NON-OVERLAPPNG NON-OVERLAPPING
pwtalleffy tVeWnLstiu I "
shilt -Weal asystm
msi.•td wi•h the IFS

(M Ix I

UNIQUE RANDOM UNIQUE
DYNAMICS DYNAMICS DYNAMICS

Figure 42. An Example Orbit (2:154)
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inverse maps 2x and Ax - 1. Notice that in the overlapping region, the choice of inverse map

Wj 1 or w21 is random.

A deterministic dynamical system can be constructed which acts on a higher dimensional

space and whose projection into the original space X yields the random shift dynamics just

described. It turns out that the space X x E is a complete metric space, with metric defined

as the maximum of the pair of metrics d., and d, acting on X x X and E x E respectively.

The lifted IFS associated with the IFS {X : w1 , w2} is the IFS {X x E; dvh, w2 } where Z is

the code space on two symbols { 1, 2} and

tbi(x,a) = (w,(x),la) for all (x,o) E X x E

w2 (X, a) = (W2(X),2a) forall (x,a) E X x

The attractor A of the lifted IFS is the graph of the code space map 0; that is, A =

{(0(a), a) : o- E E}. Its projection into the original space X is simply the attractor A of

the original IFS. Furthermore, A is totally disconnected in the sense that the projection map

from A into E is one-to-one on E. Figure 43 shows a lifting of the the attractor A of the

IFS {[0, 1]; Wl(X) = IX, w2(X) = 2x + !}. If the maps w, and w2 in the original IFS are

injective, then the lifted IFS is totally disconnected. In this case, the shift dynamical system

{ A, S} associated with the lifted IFS is called the lifted shift dynamical system associated with

the IFS. The action of S on A is given by

S(x,Ia) =

for all (x, ar) = (x, l a2oa3... ) in A.

The following "Shadow Theorem" reveals that the orbits of a large class of (possibly

overlapping) IFS's can be viewed as projections of orbits of totally disconnected IFS's.

The Shadow Theorem: Let {X : W1 , w2} be an IFS with injective transformations w,

and w2 and attractor A. Let Fxn}0=o be any orbit of the associated random shift dynamical
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Figure 43. A Lifted Attractor (derived from (2:158))

system {A; S}. Then there is an orbit {x-}•= of the lifted shift dynamical system {A; .'}

such that the first component of x•, is x,~ for all n.

Figure 43 also illustrates the shadow theorem.

Even if one were fortunate enough to be able to identify a point xo on an attractor with

perfect precision (ie, to know perfectly o E • such that qb(o) = xo), he or she probably

wouldn't be able to calculate its orbit exactly at each step. That is, one wouldn't be able to

calculate exactly the points x1 = S(xo), x2 = S(x1 ),...Fortunately, there is a "Shadowing

Theorem" which reveals that, regardless of how many small errors are made, there is an exact

orbit which lies at every step within a small distance of the errorful one.

The Shadowing Theorem: Let {X; wl, w2, ... , wNj} be an IFS of contractivity a, where

o < a < 1. Let A denote the attractor of the IFS and suppose that each of the transformations

u•,:A -, A is injective. Let {A; S} denote the associated shift dynamical system in the

case that the IFS is totally disconnected; otherwise let {A; S} denote the associated random
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shift dynamical system. Let {I ,},o C A be an approximate orbit of S, such that

d(i,+1 ,S(in)) _< 0 for all n = 0, 1,2,3,...

for some fixed constant 0 with 0 < 0 < diam(A). Then there is an exact orbit {Xn =

SR(Xo)}1o for some xo E A, such that

sO
d(•n+1 ,X,+1 ) _ (1 s) foralln = 0,1,2,3,...

Figure 44 shows an approximate orbit of the point io on an attractor A (a Sierpinski

TRUE ORBIT OF &
The Sbatwaing Ter.

COMPUTED ORBIT OF 1 0-*0- 19ll us siker. it an cwat

1 erbt whidc s dater toUArns misw h3. e.03 (i1. ,tas 0.03 for &,,.

Figure 44. The Effect of Computational Errors (2:163)

triangle). The shadowing theorem assu:'es that there is a point xo on A whose exact orbit

remains less than or equal to sO/(1 - s) at each pair of points on the orbits.

Most of the concepts necessary to define the phrase "chaotic dynamical system" have

now been presented. Only a few more definitions are needed.
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Let (X, d) be a metric space. A subset B C X is said to be dense in X if the closure

of B equals X. A sequence {x,,}1 0 of points in X is said to be dense in X if, for each

point a E X, there is a subsequence {x7,, }n°=o which converges to a. In particular, an orbit

{x,,},o of a dynamical system {X; f} is said to be dense in X if the sequence {x,},-_o is

dense in X.

A dynamical system {X; f} is transitive if, whenever U and V are open subsets of the

metric space (X, d), there exists a finite integer n such that

unf fn(V) 0

The dynamical system {[0, 1]; f(x) =Min{2x, 2 - 2x}} depicted in Figure 41 is transitive.

The dynamical system {X; f} is sensitive to initial conditions if there exists 6 > 0

such that, for any x E X and any closed ball B(x, E) with radius e > 0 there is y E B(x, ,)

and an integer n > 0 such that d(fon(x), fon (y)) > b.

This means roughly that orbits which begin close together get pushed apart by the

action of the dynamical system. The dynamical system { [0, 1]; g (x) = 2x (mod 1)1 depicted

in Figure 41 is sensitive to initial conditions.

A dynamical system {X; f} is now defined chaotic if it is transitive, sensitive to initial

conditions, and the set of periodic orbits of f is dense in X.

The following theorem provides a wealth of chaotic dynamical systems.

Theorem: The shift dynamical system associated with a totally disconnected IFS of two

or more transformations is chaotic.

In particular, the shift dynamical system associated with the classical Cantor set C is

chaotic. This means that if the points on C are "backed out" using the inverses of the maps

which provided convergence to them, the resulting set of orbits is chaotic.
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Appendix B. Fractal Interpolation Functions

Consider the set of points

{ (xo, Fo), (x1, Fl), .. . , (xN,FN)}

in R2, where xo < x, < ... < XN. There are a number of ways these points can be

interpolated with continuous functions on the interval [Xo, XN]; the most familiar of these

interpolate using differentiable functions. There is, however, a family of functions which are

not necessarily differentiable and which also interpolate these points. These functions are

derived from mappings called shear transformations (2:214). Consider for example the three

points on the left of Figure 45. An interpolating function is sought which joins these points

2x - 2x 2

2 2

0 -X 0 X
0 ! 1 0 1 1

2 2

Figure 45. A Parabolic Interpolation of Three Points

(0, 0), (0.5,0.5), and (1, 0). One such function, a (differentiable) quadratic polynomial, is

illustrated on the right of Figure 45. It is also possible to produce curves in R2 which are the

attractors of iterated function systems (IFS's; see Appendix A) and which, viewed as real-

valued functions on [Xo, XN], interpolate the points (0, 0), (0.5, 0.5), and (1,0). The linear

splines interpolation illustrated on the left of Figure 46 is the attractor of the IFS consisting of
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Figure 46. Two Fractal Interpolation Functions (2:223)

the shear transformations

f( )= (1 ) ( ) , 2( ) =(1 ) ( ) +()
Yl= 0 Y Y 0 Y i

S2(6)

The more jagged interpolation function shown on the right of Figure 46 is the attractor

of the iterated function system

91( )=( )( ), 92 ( ) + (7)
2 2 2 2 2

Although neither of the functions shown in Figure 46 are differentiable at every point of

the interval [0, 11, iterated function systems can yield attractors whose graphs are everywhere

differentiable functions. For example, the parabolic curve shown on the right of Figure 45 is

the attractor of the IFS

hi('=2fl: h2(f=( 0)fl() 8
h,( )= (+ ), h (8)

Notice that the IFS's represented in systems (6), (7), and (8) differ only in the lower

right entries of the 2 x 2 matrices. It turns out that as long as all these entries (called
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vertical scaling factors) are less than one in magnitude, there is a metric on R2 with respect

to which the mappings fl, f2, g1 ,g 2, hl, and h 2 are contraction mappings (2:214). Hence

each of the systems (6), (7), and (8) truly are IFS's, so for each there really is an attractor
in 'R2. The contraction mappings exemplified in systems (6), (7), and (8) are called shear

transformations; because of the upper right O's in all the 2 x 2 matrices, these mappings take

lines parallel to the y-axis to lines which are also parallel to the y-axis (2:214). Consider

the attractor A depicted in Figure 46. Given any nonempty compact subset of R 2, infinite

iteration of it by the equations of system (7) (as described in Appendix A) yields the nonempty

compact attractor A. Since A is an attractor, A = g,(A) U g2(A). In this example, the first

half of A is a contracted counterclockwise rotation of all of A, and the second half of A is

obtained by flipping A vertically, rotqting it clockwise, contracting it, and translating it to the

second half of the unit interval.

More generally, any function F defined on an interval [Xo, XN] with known values

Fo, F1,..., FN at the points xo < x, < ... < XAT can be interpolated by the attractor

of an IFS consisting of shear transformations; the graph of such an attractor is called a

fractal interpolation function (2:220). It is often possible to obtain a close approximation

of the underlying function using far fewer than N shear transformations, and the savings in

representational data required can be considerable. Consider how succinct is the representation

(6) of the function A depicted on the right of Figure 46 compared, for example, to its

representation as a sum of sines and cosines. Even if A had been sampled at thousands of

points, no closer fractal approximation could be obtained than by ignoring all but the first,

middle, and last values. This is because of an inherent self-similarity within A - portions of

A are merely affine transformations (albeit sometimes hard to see) of all of A.

As will be shown, strange attractors can variously be considered real-valued functions

on a subset of a vector space, or vector valued functions on a real interval. It was felt that

their chaotic natures might allow them to be represented with fewer shear transformations than

embedded data from a random sequence time series. Experimentation, however, provided no

strong evidence of such a relationship.
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A strange attractor, such as the Lorenz or Henon attractor, represents the steady state,

nonperiodic solution of a differential (or difference) equation and as such never intersects

itself (18:168). Suppose an attractor B is the solution of an equation in n variables, so that

its "native" space is W'. The nonintersecting characteristic of B implies that if points on it

are represented in Rn+' by (n + 1)-tuples consisting of the points and the times at which

they are generated, the resulting set of points define a real-valued function on R'. Consider

for example the two-dimensional Henon attractor depicted in Figure 7. It is generated by

successive application of the equations

x(i + 1) = 1 + y(i) - .4x 2 (i)

y(i + 1) = 0.3x(i)

from some given initial condition (any initial condition will result in the same general

form (31:73)). Suppose that at each step in the generation of the Henon attractor, a time

is impressed, so that instead of ordered pairs being generated, ordered triples are generated,

according to the rules

t(i+l) = i+1

x(i+l) = l+y(i)-l.4x2(i)

y(i+ 1) - 0.3x(i)

The resulting set of points may be considered a real-valued function of the pairs (xi+,, yi+,),

or a vector-valued function of time. The first 25 of them are depicted in Figure 47. If the

points were connected sequentially, the resulting graph would be a curve in W1.

It is possible to approximate this curve as an attractor of an IFS in much the same

way that the parabolic curve of Figure 45 can be approximated by the attractors depicted in
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Figure 47. Time-Stamped Henon Attractor

Figure 46 (22). In general, suppose a set of N + 1 points
to 

tj 
tN

X 0,1 X1 ,1 XN,1

XO,2 X1, 2  , XN,2 (9)

X O'k- 1 
\X l,k- 1 

X N ,k- 1

are available in Rk, with to < t1 < ... < tN. These might be, for example, the 25 points

depicted in Figure 47. For any two time indices ti, < tj2 , it is possible to define a contraction

mapping wi : '*I Rk by

t all 0 0 0 ... 0 b,

Y l a 2 1  a 2 2  0 0 . . . 0 b 2

Wi Y2 = a 31  0 a33 0 ... 0 + b3

Yk-i akl 0 0 0 ... akk bk

which takes all points with time indices between to and tN to points with time indices between

ti, and t42. The 2k parameters all through akl and b, through bk may be determined by the
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2k linear equations in 2k unknowns resulting from the endpoint conditions

to til tN ti2

XO,1 Xii,1 XN,1 Xiil

Wi XO,2  " Xil,2 and Wi XN,2 - Xi2,2

X0,k-1 Xil ,k-1 XNV,k-1 Xi2,k- 1

Generalizing some work by Mazel and Hayes (23), it turns out that each of the remaining

k - 1 scaling factors ajj, j = 2, 3,... , k, can be approximated as the ratio of the maximum

y.j.-deviation of the curve in the interval [ti,I ti2] to the maximum yijl-deviation in the

interval [to, tN], provided this ratio is less than one. (This ratio can always be made less than

one by taking ti, close enough to ti2.) Consider 'Nr example Figure 48, which shows how

the scaling factor aij can be determined for a shear transformation with endpoint conditions

yj-1

0 0

00

dd

d:: 0
OI

Figure 48. Determining Fractal Interpolation Scaling Factors

at t N-6 and tN. First the N + 1 points given in (9) are projected onto the (t, yj-, 1) plane.
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Then the deviation d is determined as the maximum vertical distance from the line joining

the endpoints at to and tN to the set of projected points. Then the deviation di is determined

as the maximum vertical distance from the line joining the endpoints at tN-6 and tN. The

sign of a deviation is positive if the point of maximizing distance lies above the line joining

the endpoints (so that di is positive in Figure 48). Conversely, the sign of a deviation is

negative if the point of maximizing distance lies below the line joining the endpoints (so that

d is negative in Figure 48). The scaling factor aj3 = di/d. Notice that if the interval being

considered had been [tNl, iN], then there would be zero vertical deviation in this interval,

whence ajj = 0. Indeed, if the entire interval from to to tN is partitioned point-by-point into

bubintervals [ti, ti+1], then for every subinterval, ajj = 0 for each j = 1, 2,... , k - 1. In

this case the fractal interpolation of the set of points (9) is piecewise linear in Wk and, with

N shear transformations, the number (3k - 1) x N of parameters needed to specify the set

of points is larger than the number (N + 1) x k of components required to specify the points

directly.

A fractal interpolation function is the attractor of a set S of shear transformations with

endpoint conditions which partition the interval [to, tN]. It may do either a good or poor

job approximating the given set of points (9). A closely approximating fractal interpolation

function can usually be fitted recursively to the points (9) using a higher-dimensional version

of an approach described by Mazel (23). From the final point at t N, a search is performed

backwards through all previous points at times ti, calculating at each ti the parameters of

the shear transformation wi determined by the interval [ti, tNI and recording the maximum

separation of the original set of points (9) from their images in [ti, tN]. The endpoint ti 0 tN-1

which results in the lowest computed error is selected as the new right endpoint (replacing

tN) and its corresponding shear transformation wi becomes one member of the set S. This

process is repeated on the left subinterval [to, tij of [to, tN], isolating the interval [tj, ti] and

associated shear transformation w3 which results in the least separation of the given set of

points from their images under wi in [tj, ti]. Eventually the left subinterval is selected in its
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entirety, or it becomes [to, t21; in either case, the set S of shear transformations is completely

determined.

Barnsley's collage theorem (2:96) can be used to obtain a bound on the error associated

with interpolating the set of points (9) using the set S of shear transformations. The error

bound was not computed in this research. Rather, the principle focus was on comparing the

sets S obtained for pseudo-random time series with the sets S obtained for chaotic time series,

to see if the two types of time series could be distinguished by the gross properties of these

sets.

A number of approaches were tried; none were found particularly revealing. In one

experiment, the lengths of best end intervals were determined for each of the last 82 points

in the embeddings of various time series, each of length 1082. (One of these was a pseudo-

random time series generated using Press's routine "ranY' (29:283).) For each embedded time

series, the best- fitting end interval of maximum length and the average of the 82 end interval

lengths were recorded. In addition to the pseudo-random time series, five chaotic time series

were examined: Henon and Lorenz data, and Glass-Mackey data with fractal dimensions of

5.0, 5.5, and 6.0 (15:74). The average end interval lengths ranged from about 11 to about 39,

with the pseudo-random data third lowest at about 25.

It might be expected that a random sequence would have a shorter average end interval

length than that of chaotic data; after all, there should be no self-similarity within random data

to allow compression of the entire data set into large end intervals. Perhaps this result was not

observed because the "random" data set used was not truly random but merely pseudo-random.
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Appendix C. C Program Source Listings

C1 Description

The bodies of the programs used are listed in the next section. Subroutines called (many

from Press's book Numerical Recipes in C (28)) are listed in the last section.

The parameters in the first program, fdfinder4.c, are set at values which seem to reveal

well the fractal dimension of the Henon attractor. Applying progressively larger values of

ymax, up to about 4000 (or higher, if one is willing to tolerate lengthy computer run times),

an apparent convergence to the published value 1.25 (17:193) can be seen. An input file

consisting of Henon map y-components (accurate to five decimal places) should be used, with

the Henon map parameters set to a = 1.4, b = 0.3 (35:312). The first three values of the

y-component time series are 0.00000, 0.30000, and -0.12000.

The remaining five programs all have parameters set for processing the sleep apnea data

set described in Section 3.7. The program casdagli7.c generates all DVS data; it also imple-

ments DVS prediction when the parameter kbest is set to a predetermined optimal number

of nearest neighbors. The program casdaglil 3.c implements pruned outliers prediction. Pro-

grams casdaglil7.c, casdagli18.c, and casdaglil 9.c are applied sequentially to implement the

overlap prediction algorithm; casdaglil 7.c must be run twice (using different output file names

with each run) to produce lists of candidate interval endpoints. The output file goodngbrs

produced by program casdaglil8.c contains the number of retained intervals as its first entry.

This value must be removed from goodngbrs and provided to program casdaglil9.c prior to

execution of casdaglil9.c, which produces the actual predictions in the file casdata. The user

may find it convenient to rename the output files with names corresponding to the program

which produce them; for example, replace casdata in file casdagli7.c with a file named cas7out,

replace casdata in file casdaglil 3.c with casl3out, etc.
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C.2 Main Programs

C.2.1 Grassberger and Procaccia Algorithm.

P* This program, fdfinder4.c, finds the fractal dimension of a time series xi
whose values are in the file cantvals. It implements the algorithm
described by Grassberger and Procaccia in their article "Measuring the
Strangeness of Strange Attractors." This program was written by Jim
Stright in December 1992 and is an adaptation of the Ada program fractall
which he wrote in 1988. Many of the subroutines are taken from Press et
al, "Numerical Recipes in C." See closing comments for output format.*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

float *vector();
int *ivectorO;
float **matrixo;
void freevectorO,freeivectorO,free-matrixO;

void main(void){
FILE *fp; P* input time series is in file cantvals */
int D = 5; /* nbr of elts in each xi vector */
int ymax = 4000; /* an upper bound for the nbr of D-tuples */
float distance;
float LO = 1.0;
int pts-on-line = 8; /* nbr of pts on "line" whose slope is frac dim */
float slope;
int sum;
float suml;
int y3= 1; P* counts nbr of D-tuples *1
int zl=l; P* counts position within each D-tuple */
int z3--0; /* counts nbr of time series vals in input file */
int ij,q,r; P* misc. counters */

float *L;
int *CL;
float **xi;

L = vector(1,pts-online);
CL = ivector(l,pts-online);

91



xi = matrix(l,ymax,1,D);

/* open cantvals for Input */
if ((fp = fopen("cantvals","r")) == NULL) {

printf("Cannot open file\n");
exit(l);}

/* read in the first D-tuple of data */
while (zl <= D) {

fscanf(fp, "%f", &xi[y3][zl]);
zI = zI + 1;
z3=z3+ I;

}
zi = 1;
y3 = y3 + 1;

/* read in all subsequent data points *I
while ((!feof(fp)) && (y3 <= ymhx)) {

while (zl < D) {
xi[y3][zl] = xi[y3 - l][zl + 1];
zi =zl + 1;

fscanf(fp, "%f", &xi[y3][D]);
z3=z3+ 1;
zl - 1;
y3= y3 + 1;

y3 = y3 - 1;

/* define the small radii L[ij */

for (i = 0; i <= pts-on-line - 1; i++) {
L[i + 1] = exp(0.5*i - 4.5); /* L[i + 1] = exp(0.125*i - 2.2); */

}

/* find the CL[iJ values */

for (i = 1; i <= pts-on-line; i++) {
sum = 0;
for(j = l;j < y3;j++) {

for(q =j + 1; q <= y3; q++) {
suml = 0.0;
for (r = 1; r <= D; r++) {
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suml = suml + pow(xilj][r] - xi[q][r],2.0);
I
/* sumi is now squared distance from xiU] to xi[q] */
distance = sqrt(suml);
if (distance < L[i])

sum = sum + 1;I
/* sum is now the nbr of D-tuples near xiii] */

I
/* sum is now the nbr of D-tuples within L[i] of each other */
CL[i] = sum;

/* Output the results */
printf("The number of time series values in cantvals is %d .\n\n", z3);
for (i = 1; i <= pts-on-line; i++) {

printf("%3.3f", log(L[i]/LO));
printf(" ");
printf("%3.3f\n", log(CL[il));

printf("\n");
if (CL[l =- 0.0)

printf("CL[ 11 = 0; make L[ I] larger \ n");
else {
/* output the slopes consecutively, computed from the first point */

for (i = 2; i <= pts-on-line; i++) {
slope = (log(CL[i])-log(CL[ 11)) / (log(L[i]/L0)-log(L[ 1]/LO));
printf(" %i.3.f\ n", slope);

/* last slope output is best "quick" estimate of fractal dimension */

free-vector(Ll,pts-on-line);
free.ivector(CL, l,pts-on-line);

free.natrix(xi, 1 ,ymax, 1 ,D);
fclose(fp);

/* The program's output, should all go well, will look something like this:

The number of time series values in cantvals is 10500.
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0.12 -7.53

0.72 -6.14

(these are the coordinates (ln(L[i]/LO,lnCL[i]))

1.93 -2.97

2.32 (slope from point I to point 2)
2.37 (slope from point 1 to point 3)

2.40 (slope from point I to point pts-oniline) */

C.2.2 DVS Prediction.

/* This program, casdagli7.c, implements the forecasting algorithm described
on page 307 of Casdagli's article "Chaos and Deterministic versus
Stochastic Non-linear Modelling." It was written in May 1993 by Jim
Stright. Casdagli7.c also provides a prediction of a single value beyond
the end of the data used for testing (an unknown). It does so using the
best m & k as found from previous runs of this program. Usually Nt=0 is
used in the prediction mode, with Nf the number of time series values
assumed knowii. Many of the subroutines are taken from Press et al,
"Numerical Recipes in C." As a predictor, casdagli7.c implements
"DVS prediction." */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define TINY 1.0e-20
double *dvector0;
int *ivector(;
double **dmatrixO;
double momentO;
double ludcmpo;
double lubksbO;
double sort2O;
void free-dvectoro,free-dmatrixo,freeivectoro;

void main(void)

{
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FILE *fpl, *fo2" /* fpl is tsdata (input); fp2 is casdata */
int m= 14; /* embedding dim */
mt tau = 1; /* delay time */
irt T = tau; /* forecasting time; not necessarily tau!! */
int kbest = 286; /* replace with best k, else use 2*(m+l) */
int ij,ctrl,ctr2,ctr3; /* counters */
mt row,coLl; /* more counters */
int k; /* nbr of nearest neighbors */
int kIast = 0; /* This counter is at the nbr (+2*(m+ 0)) of the

last nearest neighbor incorporated in the
A matrix */

int Nf = 2400; /* nbr of time series values in fitting set */
mt Nt = 270; /* nbr of time series values in testing set *1
mt Ns = 1; /* spacing of the sampled delay vectors */
mt n; /* required for call to "moment" */
mt FLAG = 0; /* used in ludcmp for "too large" check */
mt kexp = 0; /* counter for exponential spacing of k's */
double kbase = 2.0; /* base for exponential spacing of k's */

double ave,adevsigmasvarskew,curt;
/* all of these required for call to "moment",

although only sigma is used in
casdagli7.c; see Press Ed 2, p.613 */

double *ave-ptr=-&ave,*adev-ptr=-&adev,*sigma-ptr=&sigma;
double *svar-ptr=-&svar,*skew ptr=-&skew,*curt-ptr=&curt;
double *x;

double * *A,**Alud,* *d,*dhold,*alpha,*b,dnr;
/* Alud is repeatedly destroyed by ludcmp, dnr is Press's d, p.4 6 */

int *indx;
int *nbrtested;
double **xhat,**e,*Em,errsum;
x = dvector(1,Nf+Nt);
indx = ivector(l,m+1);
nbrtested = ivector(0,Nf-T-(m-l )*tau-2*(m+l ));
A = dmatrix(l,m+1,1,m+l);
Alud = dmatrix(1,m+ l,l,m+l);
d = dmatrix(NfNf+Nt 1,Nf-T-(m- l)*tau);
/* duil[l] is the distance from vector xli] to vector x[l+(m-l)*taul;

d[i][2] is the distance from vector x[iJ to vector x[l+(m-1 )*tau+ 1];

d[il(Nf-T-(m- 1)*taul is distance from vector x[i] to vector x[Nf-TI,
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before a swap for nearness is performed. *

dhold = dvector(lNf-T-(m-1)*tau);
alpha = dvector(l,m+l);
b = dvector(l,m+1);

xhat = dmatrix(O,Nf-T-(m-lI)*~tau-2*"(m+l1),Nf+TNf+Nt+T);
e = dmatrix(O,Nf-T-(m-l 1 u-2( 1 ),NfNf+Nt;
Em = dvector(O,Nf-T-(m-l1)*tau-2*(m+ I));

I* open tsdata for input */
if ((fpl = fopen("tsdata","r")) == NULL){

printf("Cannot open file tsdata\n");
exit(l);

1* open casdata. for output *
if ((fp2 = fopen("casdata', "w")) == NULL){

printf("Cannot open file casdata\n");
exit( 1);

I

P* read in the time series data *

for (ctrl=l1; ctrl <=Nf+Nt; ctrl ++){
fscanf(fpl, "W'f, &x[ctrl I;

1* compute distances d~i]jUJ and load d matrix with nearness indices *
for (i=Nf; i<=Nf+Nt; i++) I

for Oj= 1; j<=Nf-T-(m- 1 )*tau; j++) I /* see indexing note below *

d[i]lU = fabs(x[il - xUs(m-l)*tauI);
for (ctrl=tau; ctrl<=(m-1)*tau; ctrl=ctrl+tau){

if (fabs(x[i-ctrl I-xU+(m-1 )*tau-ctrl I) > d[iIU]){
d[ijfjJ = fabs(xfi-ctr1J-xUj+(m-l)*tau-ctr1J);

/* dist d[iIUI between vctrs xlii] & xU+(m-l)*tauI is fixed *

/* the distances d[iI Ul are now established for all j *

/* initialize the index-swap vector dhold */
for (ctr2=l1; ctr2<=Nf-T-(m- l)*tau; ctr2++){

dhold[ctr2] = ctr2 + (m-l)*tau;
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/* now the contents of dhold[1], eg, is 1+(m-l)*tm */}

/* Sort the contents of the vector d[i] and simultaneously sort the
vector dhold into ascending order of nearness of vectors to x[ij;
see Press Ed 2, page 334. */

sor(n~f-T-(m-1)*tau, d[i], dhold);

/* replace contents of vector d[i] with indices of vectors arranged
in ascending order of nearness to x[ii */

for (ctr3=l; ctr3<=Nf-T-(m-l)*tau; ctr3++) {
d[i][ctr3] = dhold[ctr3];}

/* Now the contents of vector d[i] is the set of indices of vectors
compared for nearness to vector x[i], arranged in ascending order
of nearness to x[ii. eg, d[i][1] is the index of the vctr
nearest x[i]. */

/* Find standard dev sigma for the time series; see Press 2, p. 6 13.*/
n = Nf+Nt;
moment(x,n,ave-ptr,adev-ptr,sigma-ptr,svar-ptr,skew-ptr,curtiptr);

fprintf(fp2,"Data output from program casdagli7.c\n");
fprintf(fp2,"m=%2d\ n",m);
fprintf(fp2,"Nf = %d\n",Nf);
fprintf(fp2,"Nt = %d\n",Nt);
fprintf(fp2,"T = tau = %d\n",T);
fprintf(fp2,"average data value ave = %2.5f\n",ave);
fprintf(fp2,"data standard deviation sigma = %2.5f\n",sigma);

/* Initialize the max nbr of vectors to be compared for nearness */
k =0;
kexp = 0;
while (k <= Nf-T-(m- I)*tau-2*(m+ 1)) {

nbrtested[k] = (Nt-T+I)/Ns; /* recall int division trucates */
k = (int) pow(kbase,kexp);
kexp = kexp + 1;}

/* Establish the error matrix e[k][i] *1
for (i=Nf; i<=Nf+Nt; i++) {
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/* Initialize the A matrix at k=2*(m+l) *
I* First the diagonal entries: *
AIIIII] = 2(~)
Alud[lJ[1] = A[lJ[l];
for (ctrl=2; ctrl<=(m+l); ctrl++){

A[ctrl][ctrl] = 0.0;
for (ctr2=l; ctr2<--2*(m+l); ctr2.i-i){

A[ctrlllctrll = A[ctrll[ctrll
+ x[(int)(dli][ctr2l)-(ctrl -2)*tauJ
*x[(intXd[il[ctr2l)-(ctrl-2)*taul;

Alud[ctrllJ[ctrllI = A[ctrllJ[ctrl 1;

/* Now the first row (and first column) entries: ~
for (col=2; colk=(m+ 1); col++){

A[l][col] = 0.0;
for (1=1; I<=-2*(m+ 1); 1++){

All] [coil A[ I Jcol] + x[(int)(d[i] [l])-(col-2)*tau];

Alud[l][coll =A[11[col];

Alcoll[1l = A~lilcoll;
Alud[col][lJ = Alcoll]lil;

I* Now initialize the off-diag, off-first-row-or-coi entries: *
for (row=2; row<=m; row++) f

for (col=row+ 1; colk=(m+l1); col++){
A~rowl[coll = 0.0;
for (1= 1; k=-2*(m+ I); 1+u-i){

Atrow] [coil = A[row][coll
+ x[(int)(d[i[ljl)-(row-2)*taul
*x[(intXd[il[1l])(co1-2)*tau];

Alud[row] [coil = A[row][col];
Alcoll~rowi = A~row][coll;
Alud[col][rowl = A[coll[rowl;

/* And last, initialize the b vector, and its equal alpha vector;

alpha gets replaced with the proper solution when one solves
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A*alpha = b as A*x--b-alpha; see Press, page 44. ~
bill = 0.0;
for (1=1; k=-2*(m+l); 1=1+1){

bill bill + x[(intXd[i][ll)+TI;

aiphaill bil];
for (row=2; row<=(m+ 1); row++){

birowi = 0.0;
for (1=1; k=-2*(m+l); l++){

birowi = birowl
+ x[(int)(d[il[1lj)(row-2)*tau]
*x[(int)(diil~ll)+TI;

aiphairowi birow];

f* Go after the eljkl[il; may easily change the k indexing to sample
k's at exponentially spaced intervals. In what follows, k
equals the nbr of neighbors nearest x~ii minus 2*(m+l). *

kiast = 0;
k=0O;
kexp = 0;
while (k <= Nf-T-(m-l)*tau-2*(m+l)){

/* Nf-T-(m-l)*tau is the nbr of nghbrs in fitting set whose
"Predicted" value is <= Nf *

/* Update the A matrix */

/* First update the diagonal entries ~
A[l]1] = 2*(m+l) +k;
Alud[lJ[lJ = Aill[ll;
for (ctrl =2; ctrl <=(m+l1); ctrl ++){

for (ctr2=l; ctr2<=(k-klast); ctr2++){
A[ctrll[ctrll = Aictrill~ctri]
+ x[(int)(dii]i2*(m+ 1)+klast+ctr2])-(ctrl -2)*tau]
*x[(intXd[il [2*(m+l1)+klast+ctr2l)-(ctrl -2)*taul;

Aludictrili]ctrl] A[ctrl jictrll1;
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/* Now update the first row (and first column) entries: ~
for (col=2; colk=(m+l); col++){

for (1=1; l<=(k-klast); l++){
APlJ[coll = MUM]col

+ x[(intXd[i][2*(m+1 )+klast+lJ)-(col-2)*tauJ;

AMu( I I[coll = A[1IJI[colJ;
A[colJ[lJ = ABIl~col];
Alud[col][l] = Alcol][11;

/* Now update the off-diag, off-first-row-or-col entries: *
for (row=2; row<=-m; row++) f

for (col=row+l; col<=(m+l); col++){
for (1=1; k=-(k-klast); 1++) 1

A[row][col] = A[row][col]
+ x[(intXd[il[2*(m+l1)+klast+l1)-(row-2)*tau]
* x[(intXd~i112*(m+l1)+klast+l])-(col-2)*tau];

Alud[rowlllcol] = AI~rowJ[coll;
A[colJ[rowj = A[row][col];
AludI~col]Irowl = AI~coll[row];

/* Finally, update the b vector: *
for (1=1; k<=(k-klast); 1++) 1

bfh I= b[1I] + x[(intXdli][2*(m+l1)+klast+1])+T];

alpha[ 1] = 1];
for (row=2; row<=(m+ 1); row++){

for (1=1; k<=(k-klast); 1++){
bKrowl = bKrowl

+ xII(int)(d[i][2*(m+l1)+klast+l])-(row-2)*tauI
*x[(intXd[il[2*(m+l1)+klast+1])+T];

alpha~row] = b[row];

kiast = k

1* Solve the normal eqtns for alpha[ IlJ thru alpha[m+] I/
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ludcmP(Alud,FLAG,m+1 ,indx,&dnr);

if (FLAG=1I) {
alpha[1I = 1000001;
FLAG=0;}

else{I
lubksb(Alud,m+l1,indx,alpha);

I

/* alpha[IJ,alpha[21,... are now optimum in Casdagli's eqtn 5, if
the normal equations admit a solution. Otherwise set alpha[ I
= Xfi+T], alpha[2]=alpha[3I= ... =alphafm+lI H, so that
xhat[k][i+T] = x~i+TJ, the exact data value. Also, decrement
nbrtested so this unusual event isn't included in Em[k]. *

for (ctrl=1; ctrl<=-(m+l); ctrl++) f
if ((fabs(alpha[ctrl]) > 1000000)11

(alpha[ctrl I = HUGENVAL))
nbrtested[kJ = nbrtested[kI- 1;
fprintf(fp2,"Error at I \n");
alpha[ IJ = x[i+TJ;
for (ctr2=2; ctr2<=(m+l);ctr2++){

alphallctr2l = 0.0;

break;

xhat[k]I[i+TI = alpha[l11;
for (ctrl=2; ctrl<=(m+l); ctrl++){

xhatlk][i+TI = xhatllk][i+T] + alpha[ctrl ]*x[i-(ctrl 2)*tauI;

/* xhat[kJ[i+TJ has now been established *

if (i <= Nf+Nt-T)
e[k][iJ = fabs(xhat[kJ[i+TJ - xiT)

else
eI~k][iJ = 0.0;

k = (int) pow(kbase,kexp);
kexp = kexp + 1;

/*I closes the loop over k's *
} I closes the loop over i's ~
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k =0;
kexp = 0;
while (k <=- Nf-T-(m-1)*tau-2*(m+l)){

eirsurn = 0.0;
for (i=-Nf;, i<=-Nf+Nt-T; i++){

errsum = errsum. + e[k][iI*e[kI~i];

En~kJ = (sqrt(errsunilnbrtested[kl))/sigma;

fprintf(fp2, "%d", 2*(m+1)+k); /* Output nbr of nearest nghbrs *
fprintf(fp2," ");
fprintf(fp2, "%1.6f\n", Em[kI); /* Output forecasting error ~

k = (hit) pow(kbase,kexp);
kexp =kexp + 1;

fprintf(fp2, "Predicted value at time %d is %f\n",

Nf+Nt+T,xhat[kbest-2*(m+1 )][Nf+Nt+TJ);

free-dvector(x,1 ,Nf+Nt);
free.Avector(dhold, 1,Nf-T-(m-l )*tau);
free-dvector(alpha, 1 ,m+ 1);
freeilvector(b,1 ,m-s-);
free..dvector(Em,0,Nf-T-(m- 1)*tau-2*(m+ 1));
free..ivector(indx,l1,m+ 1);
free-ivector(nbrtested,0,Nf-T-(m-lI)*tau-2*(m+ 1));
free-dmatrix(A, 1,m+1 , 1,m+ 1);
free..dmatrix(Alud, 1 ,m+I, 1 ,m+ I);
freeiimatrix(dNf,Nf+Nt-T, I,Nf-T-(m-l1)*tau);
freeilmatrix(xhat,0,Nf-T-(m-1 )*tau-2*(m+I ),Nf+T,Nf+Nt);
free..dmatrix(e0O,Nf-T-(m-I )*tau-2*(m+l),Nf,Nf+Nt-T);
fclose(fp I);
fclose(fp);

C.2.3 Pruned Outliers Prediction.

I. This program, casdagU1l3.c, adapts the forecasting algorithm described
on p. 307 of Casdagli's article "Chaos and Deterministic versus Stochastic
Non-linear Modelling." Written Nov 1993 by Jim Stright, it is a
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modification of program casdagli7.c. Casdagli 13.c provides a prediction of
a single value beyond the end of the data used for testing (an unknown). It
does so using the best k (kbest) as found from a previous run of program
casdagli7.c. Rather than use all kbest nearest nghbrs, it uses only those
p of them which are close to the hyperplane linear regression best fit of
the kbest. Fix Nt = 0 in this program; there are Nf known time series
values. Many of the subroutines are taken from the book by Press et al,
"Numerical Recipes in C." Casdaglil3 c implements "pruned outliers
prediction." */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define TINY 1.0e-20
double *dvectorO;
int *ivector0;
double **dmatrixo;
double momentO;
double ludcmpo;
double lubksbO;
double sort2O;
void free-dvectoro,freeidmatrixo,freeivectorO;

void main(void)
{

FILE *fpl, *fp2; /* fpl is tsdata (input); fp2 is casdata *1
mt m--14; /* embedding dim *f
mt tau= 1; /* delay time */
int ij,ctrl,ctr2,ctr3; /* counters */
int rowcol,l,q; /* more counters */
int p; /* nbr of nearest nghbrs close to L.reg. line */
int k; /* ctr of nbr of nearest neighbors */
mt kbest = 286; /* from casdagli7.c's output */
mt klast = 0; /* This counter is at the nbr (+2*(m+ 1)) of the

last nearest neighbor incorporated in the
A matrix */

int Nf = 2670; /* nbr of time series values in fitting set */
int Nt = 0; /* nbr of time series values in testing set *1
mt Ns = 1; /* spacing of the sampled delay vectors */
mt T = tau; /* forecasting time; not necces. tau!! */
int n; /* required for call to "moment" */
mt FLAG = 0; /* used in ludcmp for "too large" check */
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int kexp = 0; 1* counter for exponential spacing of k's *

double kbase = 2.0; /* base for exponential spacing of k's */
double sig; /* a measure of nearness to lin.regr. line *
double gammna =2.0; /* may want totry eg gamma =3.0/

double ave,adev~sigma~svar~skew~curt;
1* all of these required for call to "moment",

although only sigma and ave used in
casdagli I3.c; see Press Ed 2, p.613 */

double *aepr-ae*dvpr-aesgapr-sga
double *svar-ptr--&svar,*skew-ptr--&skew,*curt-ptr=-&curt;
double *x,*xJjr,*er;

double **A,**Alud,* *d,*dhold,*alpha,*b,dnr;
/* Alud is repeatedly destroyed by ludcmp, dnr is Press's d, p.46 *

mnt *indx;
int *nbrtested;
iiit *dn; /* used to index nearest nghbrs close to lin. reg. line *
double **xhat,* *e,*Em,errsum;
x = dvector(l,Nf+Nt+T);
xlr = dvector( 1 kbest);
er = dvector(l,kbest);
indx = ivector(1,m+l);
nbrtested = ivector(0,Nf-T-(m-1 )*tau-2*(m+ 1));
dn = ivector(l,kbest);
A = dmatrix(1,m+l,l,m+l);
Alud = dmatrix(l,m+ 1,1l,m+ 1);
d = dmatrix(NfNf+Nt, I,Nf-T-(m-lI)*tau);
/* dti][l1 is the distance from vector x[i] to vector x[1+(m-l)*tau];

dlliI(21 is the distance from vector xlii] to vector xI~l+(m-l)*tau+1];

d[i][Nf-T-(m-1)*tau] is distance from vector x[i] to vector xIINf-T],
before a swap for nearness is performed. *

dhold =dvector( I,Nf-T-(m- 1)*tau);
alpha =dvector(l,m+l);

b = dvector(l1,m+ 1);

xhat = dmatrix(0,Nf-T-(m-lI)*tau-2*(m+l1),Nf+TNf+Nt+T);
e = dmatrix(0,Nf-T-(m-1 )*tau-2*(m+lI),NfNf+Nt);
Em = dvector(O,Nf-T-(m- I )*tau-2*(m+ 1));

I* open tsdata for input */
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if ((fpl = fopen("tsdata","r")) =- NULL) {
printf("Cannot open file tsdata\n");
exit(l);)

/* open casdata for output *I
if ((fp2 = fopen("casdata", "w")) =- NULL) {

printf("Cannot open file casdata\n");
exit(l);

I

/* read in the time series data *
for (ctrl=l; ctrl<=Nf+Nt+T; ctrl++) {

fscanf(fpl, "%lf", &x[ctrl]);}

/* compute distances d[i]Uj and load d matrix with nearness indices */
for (i=Nf; i<=Nf+Nt; i++) {

for (j=l; j<=Nf-T-(m-l)*tau; j++) { /* see indexing note below */
d[i]U] = fabs(x[i] - x[j+(m-1)*tau]);
for (ctrl=tau; ctrl<=(m-l)*tau; ctrl=ctrl+tau) {

if (fabs(xfi-ctrl l-xU+(m-1)*tau-ctrl 1) > d[i](j]) {
d[ilUJ = fabs(x[i-ctrll-xU+(m-l)*tau-ctrll);

I
I
I* dist d[ilj] between vctrs x[i] & x[j+(m-1)*taul is fixed */

/* the distances d[iiUl are now established for all *j

/* initialize the index-swap vector dhold */
for (ctr2=1; ctr2<=Nf-T-(m-1)*tau; ctr2++) {

dhold[ctr2j = ctr2 + (m-l)*tau;
/* now the contents of dhold[11, eg, is l+(m-1)*tau */I

/* Sort the contents of the vector d[i] and simultaneously sort the
vector dhold into ascending order of nearness of vectors to x[il;
see Press Ed 2, page 334. */

sort2(Nf-T-(m-l)*tau, d[i], dhold);

/* replace contents of vector d[i] with indices of vectors arranged
in ascending order of nearness to x[i] *1
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for (ct-1=1; ctr3<=-Nf-T-(m-1 )*tau; ctr3++){
d[i][ctr3] = dhold~ctr3];

I
/* Now the contents of vector d[iJ is the set of indices of vectors

compared for nearness to vector x[il, arranged in ascending order
of nearness to x[il; eg, d[i][lI is index of vctr nearest x[i]. *

/* Find standard dev sigma for the time series; see Press 2, page 613.*I
n = Nf+Nt;
monment(x,n,ave-.ptr,adev-.ptr,sigma-pjtr,svar-ptr,skew-.ptr,curt-ptr);

fprintf~fp2,"Data. output from program casdaglilI3.c \n");
fprintf(fp2,"m=-%2d \n",m);
fprintf~fp2,"Nf = %d\ n",Nf);
fprintf~fp2,"Nt = %~"N)
fprintf(fp2,"T = tau - % n,)
fprintf~fp2,"gamma = %f \n",gamma);
fprintf(fp2,"Global optim nbr nearest nghbrs kbest=%3d\n",kbest);
fprintf(fp2,"average data value ave = %2.5f \n",ave);
fprintf(fp2, "data standard deviation sigma = %2.5f\n",sigma);

i = Nf+Nt; /* i remains fixed now at the last known ts value *

/* Initialize the A matrix at k=kbest ~
1* First the diagonal entries: *
A[l][lJ = kbest;
Alud[l][lJ = A[l]11];
for (ctrl =2; ctrl <=(m+l1); ctrl ++){

A[ctrll~ctrlI = 0.0;
for (ctr2=- 1; ctr2<=kbest; ctr2++){

A[ctrlllctrl] = A[ctrl][ctrl]
+ x[(int)(d[i] [ctr2j)-(ctrl -2)*tau]
*x[(int)(d[i][ctr2j)-(ctrl -2)*tau];

Alud[ctrlllctrl] = A[ctrlllctrl];

/* Now the first row (and first column) entries: *
for (col=2; colk=(m+ 1); col++){

A[1IJI[colI = 0.0;
for (1=1; 1k-kbest; 1++){
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Ail][coll = A[l][coll + x[(int)(d~ij[l1)-(co1-2)*tauI;

Alud~l][col] = A~llicoll;
A[col][1J = A[l][colJ;
Alud[colJ[1JI = A[co~llhI

I* Now initialize the off-diag, off-first-row-or-col entries: ~
for (row=2; row<=m; row++) I

for (col=row+l; col<=(m+ 1); col++){
At~rowI[coll = 0.0;
for (1=1; l<=kbest; 1++){

AI~row][coll = Afrow][col]
+ x[(intXdli][l])-(row-2)*tau]
*x[(int)(d~iIWl)-(coI-2)*tau];

Aludtrowl[col] = A[rowl[coll;
A[colj[rowl = A[row][coll;
Alud~collfrowl = AI~co~llrowl;

/* And last, initialize the b vector, and its equal alpha vector;
alpha gets replaced with the proper solution when A*alpha =b is
solved as A*x--b=alpha; see Press, page 44. "

b[l] = 0.0;
for (1=1; l<=kbest; 1++){

b[lJ b[11 + x[(int)(d[il[l1)+T];

alpha[lI b[1IJ;
for (row=2; row<=(m+I); row++){

b[row] = 0.0;
for (1=1; 1k=kbcst; 1++){

bKrowl = bKrowl
+ x[(intXd[ij[lJ)-(row-2)*tauj

*x[(int)(d[ifI()+TI;

alpha[rowl =b[row];

k = kbest - 2(~)

/* Solve the normal eqtns for alpha[ IlI thru alpha[m+ I I1
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ludcmp(Alud,FLAG,m+1 ,indx,&dnr);

if (FLAG==1) I
alpha[1] = 1000001;
FLAG=-0;}

else{I
lubksb(Al~ud,m+ 1 ,ndx,alpha);

I
/* alpha[1I1,alpha[2J,... are now optimum in Casdagli's eqtn 5, if

the normal equations admit a solution. Otherwise set alpha[lIl
= x[i+TI, alpha[21=alpha[3]= ... =alpha[m+ 11]0, so that
xhat[k][i+TJ = x[i+TJ, the exact data value. Also, decrement
nbrtested so this unusual event isn't included in Em[kl. *

for (ctrl=l; ctrl<=-(m+1); ctrl++) I
if ((fabs(alpha[ctrll) > 1000000)I1

(aiphaictri I = HUGENVAL))
nbrtestedllk = nbrtested[kJ-l;
alpha[ 11 = x[i+TI;
for (ctr2=2; ctr2<=(m+ 1);ctr2++){

alpha[ctr2] = 0.0;

break;

for (q--1; q <=- kbest; q++){
xlr~ql = alpha[ 11;
for (ctrl =2; ctrl <= (m+l1); ctrl ++){

xlr[qJ = xlr[qJ + alphafctrl] *
x[(int)(d[illqJ) - (ctrl-2)*tauJ;

I* The value of each of the nearest nghbrs x[(int)(dI~illqJ)J of
x[iJ on the linear regression hyperplane is now established
asxlrfqj. */

for (q=1; q <= kbest; q++){
er[q] = fabs(xlr[qJ - x[(int)(d[iJ[q])+T]);
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/* The error er[q] between the next value of the time series
corresponding to nghbr q and the value of its linear
regression is now established for all q. */

moment(er,kbest,ave-ptr,adev-ptr,sigma-ptr,svar-ptr,skew-ptr,
curt-ptr);

/* Now sigma is the standard deviation of the er[q], and ave
is the average value of the er[q]. */

sig = gamma*sigma; /* may want to try, eg, sig=2.0*sigma */

p=l;
q=l;
while (q <= kbest) {

if (er[q] < ave + sig) {
dn[p] = (intXd[il[q]);
p- =p+l;
}

q = q+l;
}
p=p- ;
/* Now the p nearest nghbrs to vctr x[Nf+Nt] (p<=kbest) with next

vals within ave+sig of the regression hyperplane determined by
the kbest nearest nghbrs to vctr x[Nf+Nt] are the vectors
x[dn[l]],x[dn[211,...,x[dn[p]] (given in descending order
of nearness; eg, x[dn[ lJ is nearest x[Nf+Nt]). */

if(p < 2*(m+l)) f
fprintf(fp2,"Too few near with p=%2d; INCREASE GAMMA! \n",p);
}

else{
/* Reestablish the A matrix at k=p. */
/* First the diagonal entries: */
A[l][1]= p;
Alud[l][l] = A[1][I];
for (ctrl=2; ctrl<=(m+1); ctrl++) {

A[ctrl j[ctrl ] = 0.0;
for (ctr2=I; ctr2<=p; ctr2++) {

A[ctrl [ctrl I = A[ctrl ][ctrl ]
+ x[dn[ctr2]-(ctrl-2)*tau]
* x[dn[ctr2]-(ctrl-2)*tau];

}
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Alud[ctrlllctrll = A[ctrl][ctrlj;

/1 Now the first row (and first column) entries: ~
for (col=2; cok=-(m+ I); col++){

A[l][coll =0.0;
for (1=1; k=p; 1++){

A[l][col] =A~llicol] + x[dn[l1-(col-2)*tauj;

Alud[1I[coll A[11[colJ;
A~col][lJ = AMUMco];
Alud[col][I] = A[col][11];

/* Now init. the off-diag, off-first-row-or-col entries: *
for (row=2; row<=-m; row++) {

for (col=rc'w+l1; col<=(m+l1); col++){
A[row][coll = 0.0;
for (1=1; k=p; 1++){

A[row][col] = Alirow][col]
+ x[dn[l1-(row-2)*tau]
*x[dntl]-(col-2)*tau];

Alud[row][coll = A[row][colJ;
A[colffrow] = Atrowl]lcol];
Alud~col][row] = A~colf[row];

/* And last, init. the b vctr, and its equal alpha vector;
alpha gets replaced with the right sol. when one solves
A*alpha = b as A*x=b=alpha; see Press, page 44. ~

b[l] = 0.0;
for (1=1; k=p; 1++){

b[l I= b[lIJ + x[dn[IJ+T];
I
alpha[l I b[Ill
for (row=2; row<=(m÷ I); row++){

b[rowl = 0.0;
for (1=1; k=p; 1++){

Wiow] = birow]
+ x~dn~ll-(row-2)*taul
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*x[dn[l]+TJ;

alpha[rowl W iow];

/* Solve the normal eqtns for alpha[lII thru alpha[m+l I I

ludcmp(Alud,FLAG,m+l1,indx,&dnr);

if (FLAG--l) I
aiphaf 11 = 1000001;
FLAG=0;}

else{f
lubksb(Alud,m+ I ,ndx,alpha);

/* alpha[lIJ,alpha[21,... are now optimum in Casdagli's eqtn 5, if
the normal equations admit a solution. Otherwise set alpha[ 1I
= x~i+T], alpha[2]=alpha[3J= ... =alpha[m+lJ=-O, so that
xhat[kJ[i+T] = xli+T], the exact data value. Also, decrement
nbrtested so this unusual event isn't included in EmlikI.

for (ctrl=l;cetrlcz=(m+l); ctrl ++,) f
if ((fabs(alpha[ctr11) > 1000000)11

(alpha[ctrl I = HUGENVAL))
nbrtested[kJ = nbrtested[kJ-l;
alpha[ IJ = x[i+T];
for (ctr2--2; ctr2<=(m+ 1);ctr2++){

alpha[ctr2l = 0.0;

break;

xhat[kJ [i+TJ = alpha[lI];
for (ctrl=2; ctrl <=(m+ 1); ctrl ++){

xhat[kI[i+T] = xhat[kJ[i+TJ + alpha[ctrl J~x[i-(ctrl -2)*tau];

1* xhat[kJfi+T] has now been established; it is the predicted ts
value at time i+T = Nf+Nt+T. ~



fprintf(fp2, "fin. regr. hyperplane errors ave = %3.5f\n",ave);
fprintf(fp2, "nbr nghbrs close to fin. regr. hyperplane = p = %2d\n",p);
fprintf(fp2, "The predicted value at time %d is %f\n",

Nf+Nt+T,xhat[kbest-2*(m+ 1)][Nf+Nt+T]);
fprintf(fp2, "The actual value at time %d is %f\n",Nf+Nt+Tx[Nf+Nt+T]);

freeidvector(x,1,Nf+Nt+T);
freeAdvector(xlr, l,kbest);
free.dvector(er, 1 ,kbest);
free.dvector(dhold, I,Nf-T-(m- 1)*tau);
freeidvector(alpha, l,m+l);
free.dvector(b, 1,m+ 1);
free.dvector(Em,O,Nf-T-(m- 1)*tau-2*(m+ 1));
free ivector(indx,l ,m+1);
freeivector(nbrtested,O,Nf-T-(m- 1 )*tau-2*(m+ 1 ));
freeivector(dn, l,kbest);
free.dmatrix(A, l,m+ 1,1 ,m+l );
free-dmatrix(Alud, 1,m+ 1,l,m+ 1);
free.dmatrix(d,Nf,Nf+Nt-T, 1 ,Nf-T-(m- I )*tau);
free.dmatrix(xhat,O,Nf-T-(m- 1 )*tau-2*(m+ 1 ),Nf+T,Nf+Nt);
free.dmatrix(e,O,Nf-T-(m- 1 )*tau-2*(m+ 1 ),Nf,Nf+Nt-T);
fclose(fpl);
fclose(fp2);

C.2.4 Overlap Prediction.

/* This program, casdaglil7.c, uses the best m and k as found from previous
runs of casdagli7.c to prepare for pred. of Nf+Nt+l = Nf+l for a given
value of T = tau (a common best compromise m and k are used throughout
casdaglil7.c and casdaglil8.c). Written Jan 1994 by Jim Stright, it is
derived from casdagli7.c. Progam casdaglil7 c provides as outputs the
files tauxdata containing the right endpoincs of the k ngbrs nearest
the point Nf+Nt+l-taux, where taux is the value of tau = T used and "x"
is replaced with I and 2, corresponding to short and long delays tau.
Many of the subroutines are taken from the book by Press et al,
"Numerical Recipes in C." Two runs of this program produce the files
tauldata and tau2data and constitute the first part of implementing
"overlap predictions." The file tauldata is pruned against tau2data
using the program "casdaglil 8.c." Casdaglil 7.c is the first of three
programs used to implement "overlap prediction;" after casdaglil 8.c is
executed, the actual predicted value is obtained using casdagli I 9.c. */
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#include <stdio.h>
#include <stdlib.h>
#include <math.h>
double *dvector0;
double **dmatrixo;
double sort2O;
void free.dvectoro,freedmatrixo;

void main(void)
{

FILE *fpl, *fp2; /* fpl is tsdata (input); fp2 is tauxdata */
/* CHANGE NAME TAUXDATA BELOW WITH EACH CHANGE IN T = TAU */
int m = 14; /* embedding dim; from casdagli7.c's output */
mt k = 158; /* from casdagli7.c's output; compromise kbest */
mt Nf = 2670; /* nbr of time series values in fitting set */
int Nt = 0; /* nbr of ts vals in testing set; fixed at0 *0
int T = 4; /* T = tau; eg, lst taul = 4, then tau2= 7*/
int tau = T; /* delay time; must equal T now */
int i; /* sameasNf +Nt+ -tau*/
int j,ctrl,ctr2,ctr3; /* counters */

double *x;
double *dhold;
double **d;

x = dvector(1,Nf+Nt);
dhold = dvector(1,Nf+Nt-m*tau);
d = dmatrix(Nf+Nt+l -tau,Nf+Nt+ I -tau, l,Nf+Nt-m*tau);
/* d[i][1] is the distance from vector x[i] to vector x[l+(m-l)*tau];

d[i][21 is the distance from vector x[i] to vector x[l1+(m-l)*tau+l];

d[iJ[Nf+Nt-m*tau] is distance from vctr x[i] to vctr x[Nf+Nt-tau],
before a swap for nearness is performed. */

/* open tsdata for input */
if ((fpl = fopen("tsdata","r")) == NULL) {

printf("Cannot open file tsdata\n");
exit(l);

}

/* open tauxdata for output */
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if ((fp2 = fopen("tauldata", "w")) =- NULL) {
printf("Cannot open file tauxdata\n");
exit(l);}

/* read in the time series data
for (ctrl=l; ctrl<=Nf+Nt; ctrl++) {

fscanf(fpl, "%If', &x[ctrl]);}

/* compute distances d[i]jUl and load d matrix with nearness indices */
i=Nf +Nt + 1 -tau;
for (j= 1; j<fNf-T-(m-1)*tau; j++) { /* see indexing note below */

dQi]10] = fabs(x[i] - xlj+(m-1)*tau]);
for (ctrl=tau; ctrl<=(m-l)*tau; ctrl=ctrl+tau) {

if (fabs(x[i-ctrl]-xU+(m-1)*tau-ctrl]) > dli][jJ) {
d[i]j] = fabs(x[i-ctrl ]-x[j+(m- 1)*tau-ctrl ]);}

}
/* dist d[i][j] between vctrs x[i] & x[j+(m-1)*tau] is fixed */

}
/* the distances d[i][UJ are now established for all j */

/* initialize the index-swap vector dhold */
for (ctr2=l; ctr2<=Nf-T-(m-1)*tau; ctr2++) {

dhold[ctr2l = ctr2 + (m-I)*tau;
/* now the contents of dhold[1], eg, is 1+(m-1)*tau */

}

/* Sort the contents of the vector d[i] and simultaneously sort the
vector dhold into ascending order of nearness of vectors to x[i];
see Press Ed 2, page 334. */

sort2(Nf-T-(m-1)*tau, d[i], dhold);

/* replace contents of vector d[i] with indices of vectors arranged
in ascending order of nearness to x[i] */

for (ctr3=l; ctr3<=Nf-T-(m-1)*tau; ctr3++) {
d[i][ctr3] = dhold[ctr3l;

/* Now the contents of vector d[i] is the set of indices of vectors
compared for nearness to vector x[ii, arranged in ascending order
of nearness to x[ii; eg, d[i][1I is index of vctr nearest x[ii. */
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for (j=1; j <- kj+) {
fprintf(fp2,"%dc\ n",(intXd[i][j]));}

freeidvector(xl,Nf+Nt);
free-dvector(dhold, l,Nf+Nt-m*tau);
freeidmatrix(d,Nf+Nt+l -tauNf+Nt+l -tau, 1,Nf+Nt-m*tau);
fclose(fpl);
fclose(fp2);

/* This program, casdaglil 8.c, inputs two sets of right endpoints of intervals
corresponding to two sets of nearest ngbrs for two different values of tau,
here denoted taul and tau2. The left endpoints corresponding to the most
distant past component of each interval are computed and stored. The
resulting sets of intervals are checked for overlap; the strategy is to
retain small intervals which overlap bigger ones. The retained right
endpoints are output to be used for prediction in program casdagli 19.c.
Written Jan 1994 by Jim Stright, program casdaglil8.c is used after the
program casdaglil7.c as one of three programs which together implement
"overlap prediction." It uses compromise values of k & m as found
from previous runs of casdagli7.c; it also relies on casdagli7.c for the
best two delays taul and tau2 (tau2 > taul) to use for prediction. Some
subroutines are taken from Press et al, "Numerical Recipes in C." *1

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int *ivector0;

void free-ivectorO;

void main(void)
{

FILE *fpl, *fp2; /* fp I is tau I data, fp2 is tau2data (inputs) */
FILE *fp3; /* fp3 is goodngbrs (output) */
int m = 14; /* embedding dim; from casdagli7.c's output */
int k = 158; /* from casdagli7.c's output; compromise k */
int tau If= 4; I* delay time for small intervals */
int tau2 = 7; /* delay time for big intervals *!
int a = 0; /* nbr small intervals retained; initially 0 */
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int i = 1; /* small interval counter */
it j = 1; /* big interval counter */

mt q; /* general purpose counter */
hit *srep; /* right endpoints of input small intervals "1
int *brep; /* right endpoints of input big intervals */
int *slep; /* left endpoints of input small intervals */
mt *blep; /* left endpoints of input big intervals */
int *dn; /* right endpoints of output small intervals */

srep = ivector(l,k);
brep ivector(1k);
slep = ivector(lk);
blep = ivector(l,k);
dn = ivector(l,k);

/* open tauldata for input */
if ((fpl = fopen("tauldata","r")) == NULL) {

printf("Car 'ot open file tauldata\n");
exit(l);}

/* open tau2data for input */
if ((fp2 = fopen("tau2data","r")) == NULL) {

printf("Cannot open file tau2data\n");
exit(l);}

/* open goodngbrs for output */
if ((fp3 = fopen("goodngbrs", "w")) == NULL) {

printf("Cannot open file goodngbrs\n");
exit(l);I

/* read in the tau I data */
for (q=1; q<=k; q++) {

fscanf(fpl, "%d", &srep[ql);}

/* read in the tau2data */
for (q=l; q<=k; q++) {

fscanf(fp2, "%d", &brep[ql);
1
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/* set the small left endpoints */
for (q=1; q<=k; q++) {

slep[qJ = srep[q] - (m-1)*taul;
}

/* set the big left endpoints */
for (q=l; q<=k; q++) {

blep[q] = brep[q] - (m-1)*tau2;
}

while (i <= k) {
/* If it is possible to reject a small interval and still obtain

enough small itervals for linear regression, do so if there
is any overlap. */

if (a + (k-i+l) > 2*(re+l))

while (j <= k) { /* check intervals i and j for overlap */

if (srep[i] < blep[j]) {
j =j+l;
}

else {
if (slep[i] <= brep[j]) {

a= a+l;
dn[a] = srep[i];
break;
}

elsej =j + 1;
}

I
j=l;
I

else {
for (q=i; q <= k; q++) {

a=a+ 1;
dn[a] = srep[q];}

break;
}

/* Now dn[1], dn[21, ... dn[a] are all of the retained right endpts. */
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fprintf(fp3,"a- %d\n",a);

for (q=1; q <- a; q++) {
fprintf(fp3,"%d \ n",dn[q]);

i

free-ivector(srep, l,k);
freeivector(brep, l,k);
freeivector(slep, l,k);
freeivector(blep, l,k);
free.ivector(dn, l,k);
fclose(fp1);
fclose(fp2);

fclose(fp3);

/* This program, casdaglil 9.c, modifies the forecasting algorithm described
on p. 307 of Casdagli's article "Chaos and Deterministic versus Stochastic
Non-linear Modelling." Written Jan 1994 by Jim Stright, it is also a
modification of casdagli7.c. Casdaglil9.c provides a prediction of
a single value beyond the end of the data used for testing. It does so
using the best m and k (kbest) as found from previous runs of program
casdagli7.c. Rather than use all kbest nearest nghbrs, it uses only those
knext of them derived from overlapping intervals from the best 2 tau values
(those used in program casdaglil8.c). The smaller T=tau (taul) is used;
also used is the number "a" of neighbors which is taken from the file
"goodngbrs" provided by program casdaglil8.c. Casdaglil9.c is the final
one of three programs used to implement "overlap prediction;" the order of
execution is casdaglil7.c (twice), casdaglil8.c, then casdaglil9.c. Many
of the subroutines are taken from Press et al, "Numerical Recipes in C."*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define TINY 1.0e-20
#define BIG 1.0e20
double *dvector0;
int *ivector0;
double **d 0atrixo;
double momentO;
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double ludcmpO;
double lubksbo;
void free-dvectorO,free.dmatrixO,free.ivectorO;

void main(void)
{

FILE *fpl, *fp2; /* fpl is tsdata, fp2 is goodngbrs (inputs) */
FILE *fp3; /* fp3 is casdata (output) */
int koriginal = 158; /* original nbr of intervals; from casdaglil7.c */
mta = 151; /* nbr kept intrvls (STRIPPED FROM GOODNGBRS!) */
int m=f14; /* embedding dim; from casdagli7.c's output */
int Nf = 2670; /* nbr of time series values in fitting set */
int Nt = 0; /* nbr of ts vals in testing set; fixed at 0*/
int T = 4; /* forecasting time; = taul of casdaglil8.c */
int tau = T, /* delay time; must equal T now */
mt taul = TI, /* the smaller of the two tau values */
mt tau2 = 7; /* larger tau value; can get from casdaglil8.c */
mt lastpred = 0; /* number of desired predictions minus one */
int ij,ctrl,ctr2,ctr3; /* counters */
mt rowcol,lq; /* more counters */
int k = a; /* same as a above*/
int kbest = a; /* same as a above */
int knext = a; /* same as a above*/
int klast = 0; /* This counter is at the nbr (+2*(me+l)) of the

last nearest neighbor incorporated in the
A matrix */

int Ns = 1; /* spacing of the sampled delay vectors */
int n; /* required for call to "moment" */
int FLAG = 0; /* used in ludcmp for "too large" check */
int kexp = 0; /* counter for exponential spacing of k's */
double kbase = 2.0; /* base for exponential spacing of k's */
double xhatn; /* the (repeatedly replaced) predicted value */
double ave,adevsigmasvarskewcurt;

/* all of these required for call to "moment",
although only ave and sigma are used in
casdaglil9.c; see Press Ed 2, p.613 */

double *ave-ptrf&ave,*adev-ptr=&adev,*sigma-ptrf&sigma;
double *svar.ptr=&svar,*skew-ptrf&skew,*curt-ptr=&curt;
double *x,*xlr,*er;
double *dadd; /* dadd]j] is distance from (m+l)-tuple ending at

xU+m*tau] to the final (m+l)-tuple in the time series */
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double **A,**Mjjuj,**d,*a~pha,*bdcj&;
/* Mlud is repeatedly destroyed by ludcmp, dnr is Press's d, p.46 *

double *dhiold; /* used to index nearest m-tuples */
double *dahold; /* used to index nearest (m+ I)-tuples *
int *indx;

int *dn; /* used to index nearest nghbrs close to lin. reg. line *
mnt *dnn; /* used to index nghbrs a little farther away */
int *gngblrs; /* the nbr of nghbrs used, and their values *

x = dvector(lNf+Nt+(lastpred+1)*T);
xlr = dvector(l kbest);
er = dvector(l~kbest);
dadd = dvector(l-tau,Nf-T-m*tau);
dhold = dvector(l,Nf-T-(m-l)*tau);
dahold = dvector(1-tau,Nf-T-m*tau);
indx = ivector(l,m+1);
dn = ivector(l,kbest);
dim = ivector(l,kbest);
gngbrs = ivector(l,a);
A = dmatrix(l,m+l,1,m+1);
Mlud = dmatrix(l,m+l,l,m+l);
d = dmatrix(Nf+NtNf+Nt+lastpred*TI ,Nf-T-(m- 1)*tau);
/* d[i][lJ is the distance from vector x[i] to vector x[l+(m-l)*tau];

d[i][2] is the distance from vector x[i] to vector x[l+(m-l)*tau+l];

d[i][~Nf-T-(m-l )*tau] is distance from vector x[iJ to vector x[Nf-TI,
before a swap for nearness is performed. *

alpha = dvector(l,m+1);
b = dvector(l,m-i-);

/* open tsdata. for input *
if ((fpl = fopen("tsdata","r")) =- NULL){

printf("Cannot open file tsdata\n");
exit(l);

I

I* open goodngbrs for input ~
if ((fp2 = fopen("goodngbrs","r")) == NULL){

printf("Cannot open file goodngbrs \n");
exit(l);
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/* open casdata for output */
if ((fp3 = fopen("casdata", "w")) == NULL) {

printf("Cannot open file casdata\n");
exit(l);}

/* read in the time series data
for (ctrl=l; ctrl<-Nf+Nt+l; ctrl++) {

fscanf(fpl, "%If, &x[ctrl ]);}

/* read in the right endpoints of neighboring intervals data */
for (ctrl=l; ctrl<=a; ctrl++) {

fscanf(fp2, "%d", &gngbrs[ctrl ]);}

/* Find standard dev sigma for the time series; see Press, page 613. */
n = Nf+Nt;
moment(x,n,ave-ptr,adev-ptr,sigma-ptr,svar-ptr,skew-ptr,curt-ptr);

fprintf(fp3,"Data output from program casdaglil9.c\ n");
fprintf(fp3,"m=%2d \ n",m);
fprintf(fp3,"using taul=%d and tau2=%d\n",taul,tau2);
fprintf(fp3,"original nbr nearest nghbrs = %d\n",koriginal);
fprintf(fp3,"nbr nearest nghbrs retained a = %3d\n",a);
fprintf(fp3,"average data value ave = %2.5f\n",ave);
fprintf(fp3,"data standard deviation sigma = %2.5f\n",sigma);
fprintf(fp3,"ts index true val pred val\n");

i=Nf+Nt+l-T; /* A fixed value in this program */

/* Proceed to predict from the m-tuple ending at x[i], using as
nearest ngbrs the knext ngbrs nearest to x[i] (with components
spaced tau units apart). That is, use as the m-tuple neighbors
of the m-tuple x[i], the m-tuples with indices gngbrs[ 1],
gngbrs[2], ... , gngbrslknext]. */

/* Establish the A matrix at k=knext. */
/* First the diagonal entries: */
All Ill = knext;
Alud[l][11 = A[I][iI;
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for (ctrl=2; ctrl<=-(m+l); ctrl ++){
A~ctrll~ctril =0.0;
for (ctr2--l; ctr2cz-knext; ctr2++){

A[ctrll[ctrl] = A[ctrlJ[ctrl]
+ x[gngbrs[ctr2]-(ctrl -2)*tau]
*x[gngbrsI~ctr2l-(ctri-2)*tau];

Alud[ctrll[ctrlj = Atctrlllctrlj;

/* Now the first row (and first column) entries: ~
for (col=2; col<=(m+ I); col++){

A[l][col] = 0.0;
for (1=1; k--knext; 1++){

AI~lI[col] A[l1[colI + x[gngbrs[lJ-(col-2)*tau];

Alud[l][col] A[l][col];
A[colJ[1I = A[lJ[col];
Alud[coll[ I = A[coll[ 11;

I* Now initialize the off-diag, off-first-row-or-col entries: *
for (row=2; row<=m; row++) I

for (col=row+ 1; colk=(m+ 1); col++){
A[row]tcol] = 0.0;
for (1=1; k=knext; 1++){

A[rowJ[col] = Afrowl[col]
+ x[gngbrs~l]-(row-2)*taul
*x[gngbrs[ll-(col-2)*taul;

Alud[row][col] = Airow][coll;
A[col][rowj = A[rowl[col];
Aludlcolllrowl = A[colJ~rowl;

I* And last, initialize the b vector, and its equal alpha vector;
alpha gets replaced with the right solution when
A*alpha = b is solved as A*x=b--alpha; see Press, page 44**/

b[lJ = 0.0;
for (1= 1; k<Aknext; 1++){

b[1IJ = b[lI1 + x[gngbrs~ll+TI;
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alpha[lII = b[ill;
for (row=2; row<--(m+1); row++){

birow] = 0.0;
for (1= 1; k<-knext; I++){

btrowl = birowl
+ xfgngbrs[l]-(row-2)*tau]
*xllgngbrs[l]+T];

aiphairowl W ~ow];

/* Solve the normal eqtns for alpha[IlI thru alpha~m+l I/

ludcmp(Alud,FLAG,m+l ,indx,&dnr);

if (FLAG--l) I
alpha[ IlI= 100000 1;
FLAG=0O;}

else{f
lubksb(Alud,m+lI,indx,alpha);

/* alpha[l1],alpha[211,... are now optimum in Casdagli's eqtn 5, if
the normal equations admit a solution. Otherwise set alpha[ 1]
= x[ij, alpha[21=alpha[3]= ... =alpha[m+ 11]0, so that
xhatn = xli], the previous data value. ~

for (ctrl=l; ctrl<=(m+l); ctrl++) I
if ((fabs(alpha[ctrIj) > 1000000)11

(alphatctrlj I= HUGENVAL))
alpha[ 1] = i]
for (ctr2=2; ctr2<=(m+ 1);ctr2++){

alphafctr2] = 0.0;

break;

xhatn = alpha[lI];
for (ctrl =2; ctrl <=(m+I1); ctrl ++){

xhatn = xhatn + alpha~ctrll*xti-(ctrI-2)*taul;
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I* xhatn has now been established; it is the predicted time series
value at tim i+T. */

fprintf(fp3,"%5d %f %f\ n",i+T~xfi-,T],xhatn);
freeiivector(x, I,Nf+Nt+(lastpred+l1)*T);
free-dvector(xlr,lI Jibest);
free.4vector(er,l1,kbest);
freeiivector(dadd, 1 -tau,Nf-T-m*tau);
free-dvector(alpha,I ,m+l);
freeuivector(b,l1,m+ 1);
free-dvector(dhold, I,Nf-T-(m-l1)*tau);
free..dvector(dahold,l1 tau,Nf-T-m*tau);
freeivector(indx, 1 ,m+ 1);
freeivector(dn, I ,kbest);
freeivector(dnn,lI,kbest);
freeivector(gngbrs, 1 ,a);
free-dmatrix(A,1,m+1,1,m+l);
free..dmatrix(Alud, 1 ,m+ 1, 1 ,m+ 1);
freejlmatrix(d,Nf+Nt,Nf+Nt+lastpred*T, 1,Nf-T-(m-lI)*tau);
fclose(fp 1);
fclose(fp2);
fclose(fp3);

C 3 Subroutines

double moment(data~n,ave,adev~sdev~svar~skew~curt)
int n;
double *data*ave,*adev,*sdev,*svar,*skew,*curt;

int ij;
double s,p;
void nrefrorO;

if (n <= 1) nrerror("n must be at least 2 in MOMENT");

s=O.0;
for 0j=I j<-n j++) s += dataol
*ave~sln;
*adev--(*svar)=(*skew)=(*curt)=O.O;
for (j=1 j<-nj++){
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*adev +-- fabs(s=dataij]-(*ave));
*svar += (p=s*s);

*skew += (p *= s);
*curt += (p *=s)

*sv~ar /= (n-I);
*sdev--sqrt(*svar);

if (*svar) I
*skew /= (n*(*svar)*(*sdev));
*curt-(*curt)/(n*(*svar)*(*svar))-...0;

Ielse nrerror("No skew/kurtosis when variance =0 (in MOMENT)");

double Iudcmp(a,FLAG,n,indx,d)
int FLAG,n,*indx;
double **a,*d;

hit i,imax~j,k;
double big,dumsum~temp;
double *vv,*dvectojj);
void nrerfror,freeilvectoro;

vv--dvector(lI,n);
*d...I.0;
for (i=1 ;i<=n;i++){

big=-O.O;
for 0=1 j<=-nj++)

if ((temp=fabs(a[iJjUl)) > big) big=temp;
if (big 0.=

FLAG = 1;
return;

vv[iJ=1 .0/big;

for 0j= Ij<=n~j++){
for (i= I;k~j;i+e+){

sum7-a[i]U];
for (k=lbk<i~k++) sum -=aIij[k]*a[k]U];

a[i]Ul=sum;

big=-O.0;
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for (i7-ji<=n5++){
sum-=a[i]UJ;
for (k=l;k<j~k++)

sum -= a[iJ[k]*a~klUJ;
a[i]UI=sum;
if ( (dum--vv[iI~fabs(sum)) >= big){

big=dum;
imax=i;

if (j! imax){
for (k=1 k<=n~k++){

dum7-a[fimax[kI;
allimax]Ik]=a~jJ[kj;
afl][k]J-dum;

vvlimax]=vvu];

indxUjJ=imax;
if (aUlUl ==0.0) aUJUJ]=TINY;
ifj 0!=n){

dum=1 I.0/(aUJUI);
for (i=j+l ;i<=n;i++) alilUl j dum;

free.4vector(vv,lI,n);

double lubksb(an,indx,b)
double **a~b[J;
mnt n,*indx;

int i,ii=0,ipj;
double sum;

for (i=l I;i=n;i++){
ip=indx[iJ;
sum--b[ipJ;
b[ipJ=b[iJ;
if (ii)

for (j=iij<=-i-lI j++) sum -=a~iJUl*bUJ;
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else if (sum) ui-i;
b[ij=sum;

for (i--n~i>= 1 ,-
sum=b~i];
for (j=i+l j<=-nj+i+) sum -=a[iJjU]*b~j~;

b[iI=sunila[il[i1;

double sort2(n,rarb)
mnt n;
double ra[J,rb[];

int L~j,ir~i;
double rrb,rra;

l=(n» l>)+1;
ir--n;
for (;;) I

if (I> 1){
rra--ra[-lJ;
rrb=rb[l];

}else{f
rra7-ra[irl;
ntb-rb[irJ;
ra[irj=ra[l 1;
rb[irJ=rb[l];
if (-ir = 1){

ra[l]=rra;
rb(1j=rrb;
return;

-I;

j=lc<< 1;
while j<-- ir){

ifj< ir && rag] < raU+I]) ++j;
if (ffa< raoJ)

ra[i]=raujJ;
rb[iJ=rbU];
j += 0i-j);
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I
else j=ir+ 1;

ra[iJ=rra;
rb[il=rrb;

void nrerror(error-text)
char efrorltext[];

void exito;

fpritf(stderr,"Numerical Recipes run-time error... \n");
fprintf(stderr,"%s \n",error..text);
fprintf(stderr,".....now exiting to system ... \n");
exit( 1);

int *iveco1.(pJnh)
nt, nl~nh;

int *v;

v=-(int *)pi~o]((unsigned) (nh-nl+lI)*sizeof(int));
if (!v) nrerror("allocation failure in ivectoro");
return v-ni;

float *vecor(nl,nh)
int. nLanh;

float *v;

v=-(float *)gjaioc((unsigned) (nh-nl+l )*sizeof(float));
if (!v) nreffor("allocation failure in vectorl9");
return v-ni;

double *dvector(n~nh)
int nl~nh;
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double *v;

v=-(double *)mailoc((unsigned) (nh-nl+1 )*sizeof(double));
if (!v) nrerror("alocation failure in dvectoro");
return v-ni;

float **pmatrix(nfLr,ncL~nch)
int nrLnrh,ncLnch;

int i;
float **m;

mr=(float **) malloc((unsigned) (nrh-nrl+l1)*sizeof(float*));
if (!m) nrerror("allocation failure I in matrixO");
m -= nrl;

for(i--nrljk-nrhj++){
m[i]=(float *) mailoc((unsigned) (nch-ncl+1)*sizeof(float));
if (!m[i]) nrerror("allocation failure 2 in matrixo");
m[iJ -= ncl;

return m;

double **mti~r~r~cnh
int nrLnrh,ncL~nch;

int i;
double **m;

m=-(double **) malloc((unsigned) (nrh-nrl+1 )*sizeof(double*));
if (!m) nrerror("allocation failure 1 in dmatrixo");
m -- nrl;

for(i=nrli<=-nrh;i++){
m[il=(double *) malloc((unsigned) (nch-ncl+1 )*sizeof(double));
if (!niDi nrerror("allocation failure 2 in dmatrixo");
m[iJ -= ncl;

return m;
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void freeivector(vynnh)
hit *v~nLnh;
f

free((char*) (v+nl));

void free-.vector(v~nLnl)
float *v;
hit n1~nh;
I

free((char*) (v+nl));
I
void free-dvector(v~nlnh)
double *v;
hit nJlnh;
I

free((char*) (v+nl));

void freejmatix(m~nrlnrh,ncl,nch)
float **m;
hit nrlnrh,nclnch;

int i;

for(i--nrh~i>=nrl;i-) free((char*) (m[iJlsncl));
free((char4') (m+nrl));

void free.Amatrix(mnrl~nrh~ncl~nch)
double **m;
hit nrlnrh,ncLnch;

int i;

for(i--nrh~i>=-nrl;i-) free((char*) (mI~il+ncl));
fre(char*) (m+nrl));
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